IBM graphics revealed

Millimetric optics

Detecting meteors

Low noise audio

Communications

TAYLOR RF/VIDEO MEASUREMENT INSTRUMENTS

MEASUREMENTS MADE EASY

UNAOHM EP741FMS FIELD STRENGTH METER/SPECTRUM ANALYZER
Frequency Range: $\quad 38.9 \mathrm{MHz}$ to $860 \mathrm{MM} / \mathrm{z}$. continuously adjustable via a geared-down vernier
Frequency Reading TV Bands 4 digit counter with 100 KHz resolution FM Band - 5 digit counter with 10 KHz resolution Reading Accuracy: reference Xtal +/-I digit
Function: TV Monitor

NORMAL picture only
LOOM: 2 to 1 horizontal magnification of picture $\square \begin{aligned} & \text { picture }+ \text { line sync pulse (with chromabursi if TV signal is coded } \\ & \text { for colour }\end{aligned}$

Panorama: Panoramic display of the frequency spectrum within the selected band and of tuning Pianorama Expansion Adjusiable expansion of a portion of the specrum around the cuned frequency.
Analogue 20 to 40dB. Static measurement of received signal. Scale callbrated in dBuV (at top Measuremenl: of picture tube) to rms value of signal level.

DC/AC Voltmeter: 5 to 50 V

Vteasurement 20 to 130 dBuV in ten 10dB attenuation steps for all bands. 60 to 130 dBuV in nine
Kange:
ANAL.OGUE: brightness stripe against calibrated scale superimposed on picture ube The stripe length is proponional to the sync peak of the video signal.
Videu Ont pul: \quad BNC connector. 1 Vpp maximum on 75Ω.
DC Outpul: $\quad+12 \backslash / 50 \mathrm{~m} 1 \mathrm{~A}$ maximum. Power supply source for boosters and conveners.
TV Receiver: Tunes in and displays CCIR system I TV signals. Other standards upon request. Additional (1) Video input 75Ω (2) 12 V input for external car battery. (3) Output connector fo Features: PRICE: $\mathbf{E 1 3 4 4 . 0 0}$ nell, excluding V.A.T. and Carriage

UNAOHM EP742

FIELD STRENGTH METER/SPECTRUM ANALYZER

$$
\begin{aligned}
& \text { (EPBIS Satel lite Convener can er added as illustrated) } \\
& \text { PRICE } \quad £ 1498.00 \text { nell, excluding V A.T and Cartuge } \\
& \hline
\end{aligned}
$$

UNAOHM EP815

T.V. SATELLITE CONVERTER

Frequency Range of $\begin{aligned} & \text { 950Miliz to } 1750 \mathrm{MH} / \text { e. Frequency is continuously adjustable through a geared -down } \\ & \text { Inpul Signal; } \\ & \text { control }\end{aligned}$
Frequency Reading: Throughout the frequency metet of the associated field strengith meter
Inpur Signal I.evel: From 20 to 100 d isuV in two ranges -20 to 70 and 70 to 100.
Power Source: Avalable at BNC input connectors as follows: 15 V DC/0. 5 A imerrial or 25 V DC
Sahns ludication: Connmity, overload and shon circuit conditions of power circuit are all shown by LED Conhmuity, overload and shon circuit conditions of power circuit are all shown by LED
lighis Demodulation: FMI for PAL and SECAM coding. Suitthing to MAC system is provided together with Audio Subcarrier: $\quad 5.5 \mathrm{MHz}$ to 7.5 AlHz continuously adjustable Provision for an automatic frequency control. PrICE: $\quad \mathbf{5} \mathbf{3 6} \mathbf{2 0}$ neu. excluding V.A.T. and Carragge

TAYLOR BROS (OLDHAM) LTD. BISLEY STREET WORKS, LEE STREET,

ENTER I ON REPLY CARD

UNAOHM EH 1000
TELETEXT AND VIDE() ANALYZER

Function:	Eye Patem: display of RF and video-frequency teletest signals by means of eye pattern diagrams both in linear representation and lissajous figures (0 and X). Line selection: display of video signals and line by line selection. Measurement of modulation depth. Telecext: monitoring of teletext pages.
KF Input:	Frequency Range: $\mathbf{4 5}$ to 860 Mitz . Frequency synthesis. 99 channel recall facility. 50 Kliz resolution, 30 channel digital memory. Level: 40 to 120 dBuV : attenuator continuously adjustable. Indication of the minimum level for a correct operation of the instruments. Impedance: 75Ω. Connector type: BNC.
Video Frequency Jiput:	Minimum Voltage: IVpp. Impedance: 75Ω or $10 \mathrm{~K} \Omega$ in case of a through-signal. Connector type: BNC
Telctext Input:	Voluge: I $\mathrm{V} \mathrm{pp} / 75 \Omega$
Teletext Clock Input:	Voltage: I $\mathrm{Vpp}_{\mathrm{p}} / 5 \Omega$. Measurement: Aperture of eye pattern; linear or Lissajous figures, selectable. Indication: directly on the picture tube. A calibrated scale shows percentage of eye pattem apenture. Error: the instruntent introduces an error of less than or equal to 5% with video input and 20% with RF input. Jiter on regen'd clock: less than or equal to 25 ns . Line selector: Selection of any TV line berween the 2nd and the 625 th scanning cycle by means of a 3 digit thumbwheel switch.
Oscilluscope:	VERTICAI. CIIANNEL: Serisitivity: 0.5 to $2 \mathrm{Vpp} / \mathrm{cm}$. Frequency Response: DC to 10 MHz . Rise time: pre \& overshoot less than or equal to 2%. Input Coupling: AC. Input Impedance: $75 \Omega / 50 \mathrm{pp}$: TIME BASE: Sweep Range: 20 to 10 ms ($1.1 / 2$ frames); $32 ; 64 / 192 \mathrm{us}(1 / 2 ; 1: 3$ lines). Linearity: $+/-3$. Alorizonial Width: 10 divisions; $x 5$ magnification.
Price:	£1670.20 ${ }^{\text {nett. excluding V.A.T and Carriage }}$

$\frac{\text { METEOR LOGGING }}{\frac{540}{\text { A new meteor detection system works in }}$| broad daylight |
| :--- |}

ALPHA TORQUE FORCES

556
Can physicists fail to have noticed a force which can punch holes in steel
PC GRAPHICS MAZE
$\mathbf{5 6 0}$

We offer the definitive progranmer's suide
to the IBM graphics modes

ARTIFICLAL INTELLIGENCE 570

Tom lvall reports on knowledge based techniques for signal processing

DIY PLD
$\mathbf{5 7 8}$
In the second part of the series, Brian Frost uses a widely availahle PLI) to replace conventional logic blocks
μ P AUDIO PRE-AMP
$\mathbf{5 8 4}$
A new circuit configuration allows accurate
remote control of audio gain

OPTICAL TECHNIQUES FOR MICROWAVES

613

Millimetric radio waves are better handled by quasi-optical techniques than conventional microwave plumbing says Rachael Padman

DUAL BUSES FOR
INDUSTRIAL I/O

618

A look at software for the STE bus I/O board running under the OS/9 operating system

Complex vibration analysis is one area of research at Cranfield Institute of Technology - turn to page 553.

PIONEERS 626

As a boy, Alan Turing stopped at every lamp post to read the serial number. He also laid
foundations for modern computing

DESIGNING LOW NOISE AUDIO

628
1)esigning for low audio front-end noise with real semiconductor devices

APPLICATIONS 590
CIRCUIT IDEAS 574
COMMENTS 539
LETTERS 621
NEW PRODUCT CLASSIFIEI) 567
RESEARCH NOTES 544
ON THE HOUSE 588
RF COMMENTARY 610
TV/RADIO BROADCAST 634
UPDATE 550

IN DEPTH

RS-232 protocol analyser uses oscilloscope display. If you were to design a protocol analyser for serial links, most of the overall costs would probably be taken up by the display; this new unit is made cheap by not having one.

595
Extending RS-232 links. Modem techniques extend the range of RS-232 links cost effectively

597

Multigigabit optical-fibre transmission. If data rates in telecommunications are to rise above $10 \mathrm{Cbit} / \mathrm{s}$, more efficient ways of getting data down optical fibres will have to be developed. 599

Blown fibre - a novel idea that made good. A novel technique makes optical-fibre transmission more attractive by reducing installation costs.

605

Coherent techniques for higher fibre. Optical-fibre transmission using coherent laser:s with multiple wavelengths make possible low-cost ungrading of telecoms equipment for increased capacity. 606

Ethernet versus token ring. Collision detection or token passing: which is better? Is there a simple answer? 608

1992 and beyond. Communications Industry's support for the single European market was among topics discussed at this year's conference of the Mobile Radio Users. Association; Richard Lambley reports. 548

IN OUR NEXT ISSUE

THE CAD REVOLUTION

Next month's issue brings you the definitive guide to electronic engineering CAD for the smaller company. There will be at least six IBM PC software reviews covering circuit modelling, schematic capture and PCB layout. We will also publish introductory articles on the use of CAD ngineering tools.

Communications test equipment

Farnell Instruments Limited manufacture a wide range of test and measuring instruments for use with mobile radios, pocket pagers and other communications equipment. Instruments include synthesized signal generators, transmitter test sets, communications test sets, power meters, automatic modulation meters, frequency meters, etc.

Field portable units, bench or rack mounting models and complete systems are available. The latter are for manual use or microcomputer control via GPIB bus. Various software packages for standard measurement routines and self-test diagnostics are available. These allow non-technical staff to test complex communications equipment.
Designed and manufactured in Britain, a short form listing of Farnell communications test equipment follows. Further information is available on request.

DESCRIPTION

100 kHz to 520 MHz portable synthesized signal generator 10 MHz to 520 MHz portable synthesized signal generator 10 kHz to 1 GHz portable synthesized signal generator 10 MHz to 520 MHz synthesized signal generator 10 Hz to 1 GHz synthesized signal generator 10 Hz to 2 GHz synthesized signal generator 1.5 MHz to 520 MHz linear amplifier 10 MHz to 520 MHz transmitter test set 1.5 MHz to 1 GHz portable transmitter test set 100 kHz to 520 MHz communications test set Spectrum Analyser 300 kHz to 1 GHz

MODEL	DESCRIPTION
SGIB-B	GPIB (IEEE488) Interface bus for SSG520/TTS520 combination
SWIB	GPIB (IEEE488) 32 channel switching unit
F952	Power supply programming module for use with SWIB
0B1	GPIB (IEEE488) interface - non dedicated
0B2	GPIB (IEEE488) interace with AD converter and digital panel meter
	non dedicated
TM8	Autoranging rf. millivoltmeter 10 kHz to $1 \mathrm{Ghz}+$
AMM (B)	Automatic modulation meter 1.5 MHz to 2 GHz
TM10	Directional rf. power meter 25 MHz to 1 GHz
2081	RF power meter
FM600(B)	Digital frequency meter 20 Hz to 600 MHz

CONSULTING EDITOR
Philip Darrington
EDITOR Frank Ogden
EDITOR - INDUSTRY INSIGHT
Geoffrey Shorter, B.Sc. 01-661 8639
DEPUTY EDITOR Martin Eccles 01-661 8638
COMMUNICATIONS EDITOR
Richard Lambley 01.6613039
ILLUSTRATION
Roger Goodman 01-661 8690
DESIGN \& PRODUCTION
Alan Kerr 01.6618676
ADVERTISEMENT MANAGER Paul Kitchen 01.6613130
SENIOR ADVERTISEMENT EXECUTIVE
Rodney Woodley 01-661 8640
CLASSIFIED SALES EXECUTIVE
Christopher Tero 01-661 3033
ADVERTISING PRODUCTION
Brian Bannister $01-6618648$ PUBLISHER
Susan Downey $01-6618452$
REED
BUSINESS
PUBLISHING

A surplus of electronics

The result of the latest study into satellite hroadcasting by the TV manufacturer Ferguson will come as no surprise to the cynics. In short it says that satellite dish equipment sales won't even get near initial expectations. It now looks as though the industry will be lucky to sell a third of it sexpected first year volume. around 4000000 dishes.

The retailers naturally dismiss this pessimism: only time will tell if they are right even though history doesn't give them much support. Remember the great cable explosion of '84? Neither dol. A second look at the video film rental market would suggest to those of us who aren't market researchers that the public appetite for feat ure films is well catered for. After all, more than 50 percent of homes now include a video recorder among their consumer chattels.

A substantial number of homes have other hits of high technology cluttering un dark cuphoards. What happened to all those home computers for instance? Gathering dust. having served their purpose. ()stensibly to satiate a public demand for arcade games in a safe first encounter with a microprocessor. Their consequence hasn't been totally meaningless. These machines educated and inspired a small minority of their users to seek new horizons beyond the space invaders. They harnessed their machines and the successors to industrial problems. medicine and defence. The same people were also in the vanguard of the electronic office revolution.
But most have simply put them back in the caphoard.
This is how the public generally perceives technology. Talking cars, electronic Filofax and washing machines with a bra n the size of the universe. The true worth of consumer electronics has been minimalised to the point where it has become just another marketing gimmick.

This public perception won't assist the take-up of new consumer electronics senvices such as CT-2 cordless phones. These can make out going calls with in a few hundred metres of fixed puhlic base stations hut lack the facility for accepting incoming calls: cf. cellular service phones now selling for under $£ 200$. It is an almost exact re-run of the video disc player saga. These playback-only machines were launched against a well-established video recorder market. They were first undersold and then virtually given away. They were built because the technology existed to build them.
Technology for technology's sake no longer works in the consumer market. Ignoring this fundamental piece of wisdom will result in large. white bird baths in front gardens throughout the land. And a cupboardful of high technology:

[^0][^1]
A new meteor logging technique

Meteor trails are of interest to radio propagation specialists as well as to astronomers. This instrument can detect them even in daylight.

For thousands of years man has puzzled over the significance and origin of shooting stars. In past ages they were associated with comets and auroras as portents of ill omen. Today's astronomers still bracket meteor showers with comets, noting the similarity between the orbits of defunct comets and present periodic meteor showers.

These conclusions have been drawn from the painstaking analysis of thousands of individual meteor sighting reports carefully collated from all over the world. Despite the possibility of logging neteors by radio reflection and radar, the majority of sightings are still made by amateur observers who send their reports to organizations such as the British Astronomical Association for evaluation. In Britain. meteor watchers are at the mercy of the weather, which in late 1988 hid the maxima of four major showers behind persistent cloud, leaving a gap in the log. Any new and simple technique that can detect meteors through cloud or in daylight therefore has great potential.

For some ten years t have been designing and using electrometers to study the fine grain of the Earth's electric field. To gauge the performance of portable instruments in trials. I have maintained a regular watch on the ambient field using a fixed elect rometer wired to a roof antenna and pen recorder in an upstairs room.

My interest in meteors was aroused in April 1988, when I saw a fine meteor cross the skylight over the recorder followed by a distinctive transient on the trace.

In August 1988, prompted by predictions

ANTHONY HOPWOOD

that the Perseid display would be very good, I tried to observe and record it. Unfortunately. conditions at maximum were impossible, with heavy rain precluding all forms of observation. But next morning the sky was clear and sunny and so I started recording. At 0735 I detected a train of transients similar to the one I had seen in April.
There the matter rested until December, when the Geminids were also predicted to give a fine display. Over the Ceminid period, I took some 50 hours of recording which. although visually unconfirmed because the sky remained obstinately cloudy, showed an increase in transients from the "background" hourly rate of under 5 to over 100 during the run up to maximum (Fig.1).
The Ursids on December 23 also showed a surge of transient activity beneath cloudy skies, so the stage was set for the Quadrantids, due to peak on January 3 (Fig.2).
In the meantime. I had enlisted the enthusiastic help of Worcester amateur astronomers. This meant more pairs of eyes for visual corroboration, and the establishment of a second electrometer station in Malvern.
Eventually the sky cleared: and while recording 'background' during the evening of December 28 . I saw a single meteor which also left its mark on the electrometer recording. This event also confirmed that there was a delay of several seconds between the visible

Fig.1. Electrometer recording made on December 13, 1988, during the Geminid meteor shower. Range is $10 \mathrm{~V} \mathrm{pk} \cdot \mathrm{pk}$; the markers below are at five-minute intervals.
event and the arrival of the signal on the antenna.
The Quadrantids duly arrived with another flurry of transient act ivity hidden by cloudy skies. The evening of January 4 was clear, however, and the combined observations at Malvern and Upton showed that out of 10 meteor sightings, no less than seven were electrically recorded.

ELECTROMETERS

My work so far suggests that it is possible to detect meteors burning up in the ionosphere over a well-insulated antenna connected to an electrometer. So what is involved?
An electrometer is a very high inpedance vollmeter which draws so little current that it can measure electrostatic fields and the ionization caused by smoke, radioactivity and high voltages. The instrument I use was specially built to monitor the ambient electric field and can accurately log atmospheric potentials because +350 and -350 volts (Fig.3). It uses a single indirectly-heated 6Q7 valve in cathode-follower mode, free to float because positive and negative HT rails. A valve is used hecause it has the voltage range and can withstand kilovolt transients on the antenna during thunderstorms.
The electrometer has an effective input impedance of about 10^{12} ohms, and its output is drawn from the wiper of a potentiometer used as a cathode load. This allows the atmospheric DC signal from the antenna to be backed off so that it can be recorded at high gain by a DC servo pen recorder.
One major surprise is the way the system

'ignores' the mains-induced 50 Hz wave on the antenna yet is able to sense millivolt atmospheric signals faithfully. Three factors are involved. Firstly, the recorder uses a mains frequency servo loop and so is geared to sense deviation from the algebraic centre of the waveform. Secondly, the mechanical frequency response of the recorder cuts off about loltz. so it naturally ignores mains transients caused by domestic appliances which alter the algehraic centre of the waveform too rapidly for it to follow. Thirdly. the induced waveform of about 15 volts peak-to-peak is symmetrically clipped at high gain to give a square wave signal whose mark: space ratio accurately reflects the bC excursions caused by electric field alterations.

The end result is a system well able to record atmospheric transients from a few millivolts to hundreds of colts peak-to-peak.

EARTH AND IONOSPIIERE

The classical description of the Earth/ ionosphere system is that of a giant spherical capacitor whose outer plate, the ionosphere. is continually charged by the Sun and whose lower plate, the Earth, is insulated by the leaky lower atmosphere dielectric. The ionospheric charge shows as a normally positive voltage gradient averaging ahout 150 volts per metre ahove earth, but ranging from zero in fog to kilovolts during a thunderstorm'. This voltage can be monitored hy an electrometer connected to a well-insulated wire or whip antenna.
My obsenations have shown that the effective atmospheric source impedance varies between wide limits. from $10^{1 " 1}$ ohms to over 100^{2-1} ohms. The lower atmosphere voltage gradient alters not only with the condition of the ionosphere, but with water vapour and relative humidity. This variation in effective source impedance has led to problems with the simple wire antenna input to the electrometer. At times when the atmosphere goes 'high impedance', the antemna has too much capacitance to follow the relatively rapid variations in field caused by meteors. This often occurs on cold clear winter nights when visual confirmation of the electrical signal is wanted!
The problem can be overcome by replacing the "passive" wire antenna with an 'active" short rod aerial fitted with a radioactive collector plate to improve the effective coupling with the atmosphere'. Ionization caused by the radioactive source improves the sensitivity by a factor of at least low. Another. more conventional. option is to use a mosfet-input electrometer where the voltage gain makes up for the loss in collecting area of a vertical rod. The mosfet-input electrometer has the disadvantage that its operating point may need input bias adjustment and can easily limit or cut off if atmospheric conditions change.
Whatever input system is used, the input capacitance must be kept as low as possible. Any damping or averaging circuit is best fitted on the output. Nevertheless it is nermissible to fit a low loss air-spaced 300 pF variable capacitor across the input to double as a spark-gap and variable damping element (Fig.4). The mosfet can be further protected

Fig.2. Electrometer transients during the Quadrantid shower 1988-1989, plotted as incidence per hour. Period covered was December 28-January 4.

Fig.3. Circuit of the electrometer. It can accurately \log atmospheric potentials in the range $\pm 350 \mathrm{~V}$ (by courtesy of the editor of Practical Wireless).
hy wirings a small neon across it provided it is kept out of daylight hecause the ultra-violet component will turn it intoa varriable leak!

METEOR TRAILS

When a meteor hurns up in the ionosphere. it leaves a short-lived, hishly conducting ionized trail. This I rail can be 'seen' by radar or radio because until it disperses it is an efficient reflector of short electromagnetic waves. Radar observations suggest that the average meteor leaves a trail some 30 km long. These trails have been seen at up to 800 km by radar².

A meteor trail forms a downtard ionospheric projection which locally "lowers" the ionosphere by many kilometres. The electrical effect is a temporary increase in the local electrostatic capacity as the effective atmospheric dielectric below is thinned. This causes a pro rata reduction in atmospheric votage accordings to the simple expression ($)=$ CV'. where Q is the charge. C the
capacitance and V the voltage: and it explains why meteor transients usually start with a negative spike. As the trail decays, equilibrium is restored by a balancing positive spike as extra tons disperse into the ionosphere leaving a characteristic transient on the recorder (Fig. I).

It is likely that other mechanisms are involved, and a more complete explanation must await more data. Explaining why a small number of transients are recorded with reversed polarity is more difficult. A possible cause is a large or metallic meteor crossing the electrometer signal zone at a shallow angle above the electrical centre of the ionosphere. The strongly ionized trail would momentarily lift the charge plane causing an initial positive excursion of the surlace electric field. followed hy a negative recovery pulse. One important factor is that maximum ionization occurs before the meteor becomes incandescent ${ }^{3}$; the system may 'see" different events to a visual obsencer.

Observations on spacecraft suggest that meteors do not carry an appreciable charge when they enter the Earth's atmosphere because the solar wind and increasing ionization during re-entry rapidly strip off any surplus electrons as they heat up ${ }^{3}$.
The intriguing observation that the signal takes several seconds to reach the antenna suggests that its propagation mode is electronic, and may be related to the $30 \mathrm{~km} / \mathrm{s}$ stroke velocity recorded for lightning. At this early stage, further verification of the exact relationship between meteor track and electrical signal by visual and other means is needed.
Validation of such a simple method of meteor observation will add many thousands of observation hours annually during daylight hours and under cloudy conditions. and will help produce a more accurate profile of meteor frequency throughout the year. It may even uncover additional showers that have been missed because they always occur during daylight. A more accurate meteor frequency monitor will he of real value to the growing numbers of radio amateurs who rely on meteor trail reflection to log distant stations.
There is also a commercial implication. With the growing numbers of manned space launches and permanent broadcast satellites, the probability of damage from meteor strike becomes of more than academic interest to those insuring commercial space vehicles. I am sure that further research will

Fig.4. Simple portable electrometer. The bias adjustment is necessary to compensate for atmospheric changes.
disclose how the shape and duration of the meteor signal can tell us its velocity, direction, mass and probable composition, and pave the way for a fully automatic 24 -hour meteor logging system suitable for observatory and amateur use.

References

1. Equipment for forecasting lightning danger, Paul B MacCready jr, in Recent Advances in Atmospheric Electricity. Pergamon. 1958
2. Radio observation of meteors, J.G. Davies. Advances in Electronics and Electron Physics. IX. 1957.
3. Electrohydrodynamic properties of satellites. Lester Kraus, in Avionics Research: Satellites and problems of long range detection and tracking. Agardograph 40, Pergamon. 1960.

DEVELOPMENT SUPPORT FOR IBM PC (AND COMPATIBLES) USERS

CROSS ASSEMBLERS

The METAi development system supports over 50 processors including all the common ones

- A complete range of RELOCATABLE ASSEMBLERS, which have INCLUDE MACROs and CONDITIONAL ASSEMBLY facilities
- An editing environment with dual-windows and automatic erroneous line search
Universal LINKER. LIBRARY and MAKEFILE fealures
- A source level DEBUGGER
- On-line HELP facility
- A complete range of DISASSEMBLERS with code labelling

An EPROM Emulator which emulates 2716 to 27512 EPROMS

- Object code in several formats compatible with the Model 18 EPROM PROGRAMMER
- Comprehensive User Manual

PRICE LIST (excluding VAT)
METAi-01 Assembler, Linker, Loader, Editor, Manual and Interface Card £395 METAi-01 As METAi-01 but including Disassembler . METAi-03 As METAi-02 but including EPROM Emulator 9995 Also the following upgrades
METAi-11 Extra EPROM Emulator
METAi-12 Extra Intertace Card for muttipie users includes Manual - \quad - 325 META 13 Disassembler to uprade METALDI META 02 XA48 8048/41 Cross assembler $\quad £ 9 . \quad \begin{aligned} & \text { £9.50 }\end{aligned}$ Compatible with Intel assembler
5512 EPROM EMULATOR 2716 to 27512 ¢149.80
Use in conjunction with the Model 18 Programmer
£149.80
 PAL PROGRAMMER EPLD PROGRAMMER The PLD-1100 programs all commonly available 20 and 24 pin PALS as well as the new EEPROM based second generation GALs. It can read, test and program both bipolar and CMOS PALs. GALs, PEELs, PLDs and EPLDs PLD1100 c795+VAT
(E)EPROM PROGRAMMER

100 (E)EPROM and MICRO-CONTROLLER types...

THE MODEL 18 PROM PROGRAMMER
 Overnight dellvery can be arranged al E14 plus VAT' (E 18 for Northern letand
Highiands and Islands and Scilly isles). Teliephone ACCESS orders welcome.

H-bomb tamed in a test-tube?

At the time of going to press (and it seems to get earlier and earlier in spite of new technology) two electrochemists, one British and one American helieve they have made a big step fonward in harnessing nuclear fusion power. Up till now, in spite of 40 years of mind-hoggling expense, the only way Man has been able to duplicate the energy-generating processes of the Sun has been in the form of H -bomb explosions hardly ven user-friendly.
Achieving the same process - fusing hydrogen atoms into helium - in a controlled continuous fashion would go a long way to solving the world's energy problems for the foreseeable future. Unfortunately, at least if conventional wisdom is to he believed, such a process would involve enormous pressures. stupendous temperatures or both. Noone seriously expects a practical powergenerating fusion reactor to he commercially viable until well into the next century.
So what are we to make of an announcement at a press conference in Salt Lake City that Professor Martin Fleischmann of Southampton University and Dr Stanley Pons of the University of Utah have fused deuterium atoms, virtually on the kitchen table? Details are still somewhat obscure because there's been no publication in the scientific literature (Fleischmann and Pons say they called the press conference because their work was already being leaked).

Fusion or illusion? - the Fleischmann and Pons experiment.

What we do know is that the process involves an electrolytic cell in which deuterium atoms apparently fuse together inside a solid electrode made of palladium.
As with any seemingly crazy scientific discovery, what now needs to be done is to reproduce it with consistent results under controlled conditions. Such experiments are in fact under way at the UKAEA's Hawell Laboratories near Oxford and in about 100 other laboratories around the world. Scientists are not expecting dramatic results, nor are they planning, this time, to circumvent the normal channels of scientific publication. They also note that the earlier experiments were not all successful and that the
effect was not always evident from the moment of switching on
For those reasons they will be conducting a large number of experiments over a prolonged period.
Stop press. Researchers at the Texas AdM University in Houston claim, along with physicists in Hungary, Japan and elsewhere, to have repeated Fleischmann's and Pons's experiment. They haven't, however, detected any of the neutron emission that would be expected from the most obvious nuclear fusion reaction involving deuterium:

$$
{ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{2}^{3} \mathrm{He}+\mathrm{n}+3.2 \mathrm{MeV}
$$

Other possible reactions might occur, but they too would produce radioactive decay products which would presumably also be detectable. The Texas team, like many others, is therefore still not ruling out some obscure chemical source for the obsenved excess heat output.

I personally would stick my neck out and suggest that until there is some positive demonstration of a phenomenon that has the authentic stamp of nuclear fusion, it's all a load of moonshine. And before 1 am hranded as unscientific. I'd just like to draw your attention to the amazing lack of control experiments. Does it work with tap water? Or common salt? And why is it that none of the big research establishments like Hanvell, MIT. Los Alamos, or Lawrence Livermore. has been able to re-create something to simple that even a schoolhoy could do it? Watch this space!

Laser clock check

As time standards become increasingly accurate, clock synchronization around the world becomes correspondingly difficult. In an attempt to improve international synchronization, the European Space Agency has recently been experimenting with laser stations firing optical pulses at an experimental package fitted to the geostationary Meteostat P2 satellite. The package consists of two components: a passive reflector array and an optical pulse detector that registers the time of arrival. A combination of these features will allow laser stations in Europe and America to achieve a time reference accurate to within $10^{-9} \mathrm{~s}$.

As yet the complete system remains to be tested, though some parts of it including the passive reflector are already yielding useful results. Initial tests involving the firing and receipt of laser pulses from a single ground station have, for example, enabled ESA researchers to measure the ground-to-satellite distance with an accuracy of 5 to 10 centimetres.
Right: laser ground station (by courtesy
 of CERGA/CNRS).

comurite
 NPQ*
 INK JET PRINTER

262,143 MORE COLOURS THAN THE MODEL ${ }^{\top}{ }^{\prime}$

Superluminescence

Getting power into an optical fibre has never been particularly easy. Laser diodes have the undoubted advantage of high output power and coupling efficiency but, being highly coherent feedback devices, are prone to noise. Light emitting diodes (leds) on the other hand suffer from poor output, poor coupling efficiency and excessive spectral width.
A hybrid device which seems to offer the best of both worlds has now been developed by a team working at the Compound Semiconductor Devices Center of the OKI Electric Industry Company of Tokyo. This superluminescent diode (SLD) is reported (Electronics Letters Vol. 24 No 24) to have overcome the tendency of earlier SLI) to behave partially, at least, like laser diodes.
Conventional SLDs are in fact structually very like lasers but with anti-reflection coatings where the mirrors would otherwise be. This in theory allows stimulated emission, but without feedback that can make a laser noisy.

The Japanese team says that it is impossible to make perfect anti-reflection coatings, so it's adopted a completely new type of structure so as to suppress any residual lasing action. In brief, it makes use of a buried active layer in a V -shaped groove on an indium phosphide substrate. This also incorporates a light diffusion surface to scatter backward emission from the active layer.

The practical device, which can produce output of 2.2 mW at $I .3 \mu \mathrm{~m}$ (infra-red), has a spectral width of 30 nm , roughly a third that of a typical led. No lasing activity of any sort has been observed and the maximum modulation bandwidth (-1.5 dB) is 350 MHz . The Japanese team claims that its new device is a remarkable improvement that should widen the applications of single mode optical fibre transmission systems.

Electric vehicles we're getting there

Electric vehicles, heloved of environmentalists, have never really caught the puhlic imagination. True, there are fleets of deliseny vans and a variety of other successful commercial vehictes. but where speed and range are paramount the internal combustion engine still reigns supreme. One ohvious disadrantage of most electric vehicles is the so-called "action radius", half the distance they will go on a single charge.
At the moment steady improvements are being made in lead-acid hattery technology and in some of the more futuristic power storage devices such as the sodium/sulphur batter:: But however much battery technology advances, it s sulikely that it will ever he possible to replace a full charge in the time it takes to fill up with 10 gallons of four-star. In this respect the greatest technical limitation
is the rise in hattery temperature during charging.
Just imagine, moreover, how much current yourd need to recharge fully a 150 ah battery in one minute. The average set of crocodile dips might just he turning cheryred!

A one-minute charge prohahly always will remain a pipe-dream, hut a one-hour top-up now seems a realistic possibility according to research being undertaken at the Siwedish Institute of Microelectronics. Experiments there used a 1433h lead-acid hattery in which each cell contained a cooling coil encased in plastic. The idea was to circulate cold water around the coil and extract the excess heat produced by fast charging - a sort of domestic bot-water cylinder in reverse.

In the course of these experiments the Sisedes found that if cold water was circulated at a rate of $11 / \mathrm{min}$. they could perionm up to five charge and discharge cycles in eight hours. What's more, the hattery would reach its full charge with 95% efficiency.
To get the fastest possible charge, it was found necessary to vary the charge rate to accommodate the changing internal resistance of the hattery. This rises considerably as the hattery approaches full charge. The Institute found that an initial charging current of 150 A gradually reducing 1050 A ensured a more-or-less constant thermal dissipation within the baltery:
This experimental work, which also extended to nickel-iron batteries, has considerable implications for the development of electric vehicles. For while it doesn't yuite lead to the convenience of petrol, it does offer the possibility of taking on hoard substantial amounts of ponerer during hreaks in service. The opportunity of a quick charge during the lunch break would. for example. double the daily range of any given vehicle.
The Swedish team also envisage trackbound vehicles such as trolley-huses and trains in which the supply lines are placed only intermittently along the route. Just imagine the comvenience if pantugraphs or third conductor rails could be omitted through tunnels or over complex junctions. Imagine also the safety benefits of keeping conductor rails anay from stations or of a train that is capable of reaching the next platform during a power failure.

Silicon sands of time

Classical melaphors for numerical masnitude may soon underge, a revolution if the semiconductor industry keeps up its present momentum. Current guesstimates suggest that the number of transistors in a typical household may well exceed the proverbial hairs on our heads. And while this burgeoning hipolarity doesn't have quite the same poetic ring as its hiblical predecessor, it does make one stop and think.
According to Gordon Mowre, chairman of the Intel Corporation, 1988 saw the creation of some 10^{-2} individual transistor junctions more than had ever previously existed in the whole world. This rate of growth, which has been kept up for many years, can be translated into an arerage annual consumption of four million transistors per household in the developed world. It will moreoner, according to Moore, double this year and double again in 1990. What use, I wonder. will you he making of your eight million.

Taking the heat out of temperature

From January 1, 1990, water will no longer boil at $100^{\circ} \mathrm{C}$ - and that's official! It's all a consequence of standards revision by the International Committee for Weights and Measures and takes into account advances in both theoretical and practical thermometry.
The first international scale was agreed in 1927, only to be revised in 1948 and 1968 to take advantage of the greater number of reproducible fixed points. The latest scale, known as ITS-90, extends the process further taking into account everything from helium vapour pressure equations (relevant at 0.65 K) to radiation pyrometry at and beyond the freezing point of gold (around 1337K).

Because various different techniques have been used to establish these fixed points, there's been the inevitable problem of what happens if one measurement technique is recalibrated in any way. Shifting one point on a temperature scale is a bit like giving a small nudge to the middle of a taut piece of string; it affects the position of virtually every point along its length.

ITS-90 no longer uses boiling points as primary fixed points because they're not as accurately reproducible as freezing points or various other physical parameters. Timehonoured values, like the boiling point of water, are therefore subject to the pull of linearizing influences elsewhere on the scale and will accordingly be revised to reduce errors of interpolation.
From the beginning of next year a properly calibrated thermometer immersed in pure boiling water at standard atmospheric pressure will read $99.975^{\circ} \mathrm{C}$.
Research Notes is written by John Wilson of the BBC World Service science unit.

MAKING ELECTRONICS C.A.D. AFFORDABLE

TLXTPE

Are you still using tapes and a light box?
Have you been putting off buying PCB CAD software?
Have you access to an IBM PC/XT/AT or clone inc Amstrad 1640 \& 1512 or Archimedes with P.C. Emulator?
Would you like to be able to produce PCB layouts up to 17 " square? With up to 8 track layers and 2 silk screen layers?
Plus drill template and solder resist?
With up to eight different track widths anywhere in the range . 002 to 531 "?
With up to 16 different pad sizes from the same range?
With pad shapes including round, oval, square, with or without hole and edge connector fingers?
With up to 1500 IC's per board, from up to 100 different outlines?
With auto repeat on tracks or other features - ideal for memory planes?
That can be used for surface mount components?
With the ability to locate components and pads on grid or to 002^{\prime} resolution?
With an optional auto via facility for multilayer boards?
With the ability to create and save your own symbols?
That can be used with either cursor keys or mouse?
That is as good at circuit diagrams as it is at PCB's?
Which with EASY-PLOT and EASY-GERB can outpul to pen-plotter or photo-plotter (via bureaux)
Where you can learn how to use it in around an hour?

-THAT ONLY COSTS £95 + VAT (TINY-PC), £275 + VAT (EASY-PC)

smith chart program - LWIITHI

For IBM, PC/XT/AT and clones inc. Amstrad 1512

CIRCUIT ANALYSIS 3Y COMPUTER|TNTME:

and 1640 and BBC B, B + and Master

Z-MATCH - Takes the drudgery out of R.F. matching problems. Includes many more features than the standard Smith Chart.
Provides solutions to problems such as TRANS VISSION LINE MATCHING for AERIALS and RF AMPLIFIERS with TRANSMISSION LINE, TRANSFORMER and STUB MATCHING methods using COAXIAL LINES MICROSTRIP, STRIPLINE and WAVEGUIDES The program takes account of TRANSMISSION LINE LOSS. DIELECTRIC CONSTANT, VELOCITY FACTOR and FREQUENCY
Z-MATCH is supplied with a COMPREHENSIVE USER MANUAL which contains a range of WORKED EXAMPLES
$£ 130$ for $\mathrm{PC} / \mathrm{XT} / \mathrm{AT}$ etc.
$\mathbf{£ 6 5 . 0 0}$ for BBC B, B+ and Master

For IBM PC/XT/AT and clones inc. Amstrad 1512 1640, R.M. NIMBUS, and BBC B, B+, and Master.

"ANALYSER II" - Analyses complex circuits for GAIN, PHASE, INPUT IMPEDANCE, OUTPUT IMPEDANCE and GROUP DELAY over a very wide frequency range.

Ideal for the analysis of ACTIVE and PASSIVE FILTER CIRCUITS, AUDIO AMPLIFIERS, LOUDSPEAKER CROSS-OVER NETWORKS, WIDE BAND AMPLIFIERS TUNED R.F. AMPLIFIERS, AERIAL MATCHING NETWORKS, TV I.F. and CHROMA FILTER CIRCUITS, LINEAR INTEGRATED CIRCUITS etc

STABILITY CRITERIA AND OSCILLATOR CIRCUITS can be evaluated by "breaking the loop"
Can save days breadooarding and thousands of pounds worth of equipment

£195 for PC/XT/AT etc.

£130 for BBC, B, B + and Master

All prices Ex-VAT
WRITE OR PHONE FOR FULL DETAILS:- REF WW
Number One Systems Ltd

Harding Way, St lves. Huntingdon Cambs, PE17 4WR Tel: St Ives (0480) 61778
We provide full after-sales support with free telephone hotline help' service.
Sofiware updates are free within 6 months of purchase date

1992 and beyond

The communications industry's support for the single European market was among topics discussed at this year's conference of the Mobile Radio Users'Association.

RICHARD LAMBLEY

Britain's mobile radio is the fastestgrowing industry in Europe. After the explosive growth of the last few years this might have been a time for it to take stock and consolidate its recent achievements. But a series of presentations on the first day of the conference concentrated attention on the imminence of 1992 and the single European market.

Stephen Temple, of the Radiocommunications Division of the DTI. emphasized the point: "From 1992. Britain's home market, which today is Manchester and Clasgow. will tomorrow be Turin and Stuttgart". Preparation of the infrastructure to support the consequent expansion of business activity needed to begin now, he said. Temple. who sits on the EC's RACE management committee and is chairman of the European Technical Standards Institute, reviewed a number of European developments in the radiocommunications field.

NEW RADIO SYSTEMS

GSM the all-digital pan-European successor for national cellular radiotelephone systems such as Britain's TACSI was, he said. the cornerstone of the industry's preparations for 1992 and had become a model for other European initiatives. Frequency managers had identified the need for it and had started the planning process almost ten years ahead of the implementation fopening is set for 1991). Such fonward planning was the key to successful spectrum management.
CT-2. the cordless telephone system shortly to make its public appearance in Britain, now seemed to have caught on abroad thanks to the common air interface agreed by British manufacturers. "By June we may have a four or five-country agreement". said Temple. He saw CT-2 as occupying a gap in the market which would exist between cellular and DECT, the forthcoming digital European cordless telephone; to begin with. DECT would be expensive and pitched at cordless PABX applications rather than at domestic or consumer use.
In wide-area paging, frequency managers were not so far ahead of the game. The EC had proposed a directive on channels for a pan-European paging system at 160 MHz , to be known as ERMES. But an interim common service was likely to begin on 466 MHz in France, Italy. Germany and the UK in the next 12-18 months. Many people had asked whether this was simply a spoiler for ERMES, hut in fact it would stimulate the market for it. A problem was that different

On the air soon: Ferranti's Zonephone is one of the two handsets which will launch CT-2.
markets were developing at vastly different speeds.

Another new system was aeronautical public correspondence (in plain language. telephones fitted to passenger aircraft); British Ainways was already running trials on its shuttle services, using the $1.5-1.6 \mathrm{GHz}$ hand. But ETSI would tackle the question of international standards. In the short term, this would mean a pay-phone-like senvice, but two-way calling could become possible later. Europe should consider integrating this system into a larger network such as CSM or telepoint.

RADIOTELEPHIONES

Looking at the economics of communications networks. Temple commented on the very rapid growth of cellular telephones in Britain. where subscribers have just passed the half-million mark, as compared with Germany. He attributed this to competition in Britain between networks, equipment suppliers and service providers. "The whole cake". he said. "is five times bigger". Germany and France were now following the British example and introducing competition, and others were likely to follow.
In Britain. however. dissatisfied cellular users in the congested city areas might well argue that the systems had been too successful. Good news came in an address to the conference by Robert Atkins MP, Parliamentary Under-secretary of State for Industry: "We will be making available 120 additional channels in major conurhations outside London and along the major trans-

Last year's consultative document from the DTI on ways of using the millimetric waves drew 41 responses Some of the early applications suggested by the industry are listed here. One millimetric operator already active in the UK is Mercury Communications, which by March 1989 had installed about 75 2 Mbit/s links in its $49.2 \cdot 50.2 \mathrm{GHz}$ assignment.

General

Around 60 GHz - short range applications with intensive frequency reuse
High speed radio lans
Communication between buildings with line-of-sight
Low cost medium to high capacity point-to-point and radial point-to multipoint distribution links for data, speech or video
CCTV
Local area multipoint telemetry schemes
Final conrection in PTO network to customers, in oxygen absorption band

Radiometric temperature measurement
Use in oil industry to communicate between fixed platforms and semisubmersible rigs or other vessels stationed alongside Radioastronomy in selected bands between 30 GHz and 50 GHz

Broadcasting

Outside broadcast services $M^{3} V D S$ at 40 GHz
Electronic news-gathering equipment at 40 GHz
47-49GHz for feeder links Military
SMART munitions
High definition battle-field radars
TGSM (Terminally guided sub. munitions) at 94 GHz
Air surface movement indicator radar (ASMI)
Space
Inter-satellite links at 60 GHz
Aeronautical satellite commun ications
port routes". These extra channels, 60 for each network, are part of the 400 -channel ETACS block released earlier by the Ministry of Defence for use in London, and should just about carry Cellnet and Vodafone through to the launch of CiSM. Nevertheless, the M(OD can at any time har the extra channels by telling the networks to switch them off. Since call set-up is organized over the standard TACS channels, this action would simply result in greater congestion.

A major topic of the Minister's speech was piracy. "The public perception of radio piracy as harmless fun needs changing", he said. "Pirate radio has disrupted the mobile radio equipment of the police, fire brigade. gas and electricity services. If these senvices could not respond to emergencies there would be, quite rightly, an outcry:" Pirates had even interfered with the new business senices in Band 111. "I want pirates stamped out, and I hope you will keep up the pressure on me and other MPs."

SATELIIITES

Despite some attractive-looking frequency allocations, satellite services for the private mobile radio industry had not yet quite taken off, according to Dr Keith Shotton. who led the large I)TI contingent at the conference. But a speaker from Inmarsal. Bob Phillips. described the land mobile

Despite the widespread impression of wide-open, empty spaces in the Defence bands, only 26% of the spectrum between 470 MHz and 3400 MHz is exclusive to Defence users. Principal civil and military uses are shown in this chart (Mike Goddard, DTI).
senvicts which will soon become availab'e from the international co-operative following amendments to its constitution. Spectrum in the 1.5-1.601\% hand had now been reallocated to support such a service.

Inmarsat's first product specifically for the land mobile industry will be derived from its Stendard C marine system and will be a

The Forum Personal Phone is the CT-2 handset designed by Shaye Communications.

600 bit/s (wo-way messaging senice. This will use compact upward-looking antennas (no steering is required) and portable PChased terminals. But Inmarsal was developing a telephony senvice based on $4.8 \mathrm{kbit} / \mathrm{s}$ voice coding and was working also on a half-rate version of the $13 \mathrm{kbit} / \mathrm{s}$ CSM system. In this way, satellite communications could be integrated with CSM's UIIF senvice to produce what another speaker. Dr Stephan Pascall of the EC. called the Heineken of radio systems - it would reach the parts other radiotelephones could not reach.

CIVIL, SPECTRUM REVIEN

Mike Goddard, head of the IJTI division concerned with frequency planning, discussed some of the ground covered by his department's recent review of the 470 3400 MH ta range. He avoided dealing with the finer details. saying (with the recent LonrhoHarrods affair in mind) that the I)TI had become a little sensitive ahout unpublished reports.

The review was essentially a backwardlooking affair, an audit, but it would lead to a sinopping list of requirements for five. ten. fifteen years ahead. Frequencies up to 1 CHz would remain more or less unchanged hecause there was little chance of moving the large television broadcasting allocation. But an international review of the $1-3 \mathrm{GHz}$ band was expected soon, and a there was interest in accommodating new senvices such as personal advanced radio senvice (PARS) and a digital sound broadcastings service. There was also the possibility of (T-') outgrowing its initial 4 MH -wide allocation. Full details (if what changes might be made would he set cut in the report, to appear shortly.

The YRUA is sixth annual conterence was held in mid-Ipril at Exeter College: Oxtord. A set of napers is availahle at $t 25$ from the Mohile Radion Users Association. 28 Nottingham Place. London W\%M.3FI. tel. 01-400 I.518. Other topics conered hy. it include PMR applications in ariation and road theet management. Irunked sistems, mobile data communications. and trainings for mobile radiotechnicians.

Italian Inmos

British chip maker Inmos has finally been taken over, by the Franco-Italian semiconductor combine SGS-Thomson Microelectronics. some ten years after its creation.

Entertainment-to-electronics group Thorn E.MI swapped Inmos for a 10 per cent stake in SCS-Thomson. The company was founded with Gowernment money and was acyuired by Thom in 1984 for $\& 125$ million.

SCS-Thomson's boss Pasquale Pistorio is promising further investment for Inmos and its transputer parallel-processing chip. Ihe moved swiftly to allay tears for the future of the company' by spelling out his plans just two days after taking control.
"Financial resources will not be a limiting factor to the growth of Inmos." he pledged.

Pistorio explained his wish to build a
European semiconductor company that will
ensure that Europe is indenendent of Japanese and American chip technology: Acquiring Inmos gives SCS-Thomson a 32bit transputer microprocessor.

Pistorio called the transputer concept the "number one" reason for taking over the commany. He said that laster versions of the chip will be developed and that Inmos" chip factory in Newport will be upgraded and that more than 100 extra engineers will he hired during this year.

The lnmos processors are designed so that any number of them can be strapped together to make powerful parallel computer systems. They contain an integer processor, a floating-point processor. local memony and on-chip communications links. The communications facilities prowide the key to ease of use.

Most powerful cisc processor yet

The launch of Intel's 486 processor marks an evolutionary milestone in the development of the humble IBM PC'. The $33 . \mathrm{NIt} \%$ version will deliver a clamed ? 2 lax mips of performance, at least three and a half times that of the best 80,386 powered machines currently available. It will give a massive performance boost to all the software currently available in the dos market, currently estimated to be worth $\$ 16$ to $\$ 0$ billion.

The 486. which has complete downwards compatibility with existing dos and OS/2 soltware releases. includes a full floating point 387 co-processor. 8K bytes of static cache, cache controller. IOMA with paging and a high-speed integer instruction decoding unit on a single chip. It claims a floating point performance of 49 dhrystones. a figure comparahle with risc-hased Unix chip sets.

The first release running at 25.11 toclock will be available towards the end of the year in commercial yuantities.

It uses 32 -hit internal architecture with 32 -bit address and data buses. A five-level pipeline which forms part of a risc integer instruction decoder runs frequently used instructions in a single clock cycle. it burst data transfer mechanism allows four 32-bit words to be read from memone to keen the on-chip cache and instruction queues filled.

Intel has adapted the memory management and paging facilities to match those of its other new processor chip, the 860 . A few additional chips hung around the bus will enable multiprocessing systems to be built using a mix of 486 and 860 devices. The company expects this to be used in power Unix multi-user machines.

860 graphics supercomputer

One of the first applications to emerge for the new Intel 860 processor uses a transputer chip in tandem. The result is an add-on graphics accelerator for AT-compatibles with a power associated with a Cray-1. It is also British.

The Flute graphics/processing module will expand the computing and display capa bilities of a standard business desktop PC to a level "which exceeds the fastest Sun. Vax or Mips workstation" says the Felixstowe company Tektite.

Paper processor

Motorola has outlined the architecture to be used on the next generation of $68000\left(33^{2}\right.$-bit microprocessors, having been stung into action by the succession of recent Intel micro announcements.
Unlike Intel's chips, the 68040. software
compatible with earlier 68000 devices, is still at the development stage and isn't expected to appear before autumn. When it does, it will integrate a lotal of 1.2M transistors.

Gallium arsenide takes off

The increase in non-military cials applications for such things as logic chips and optoelectronics will quadruple US sales of devices made with the technology. says a new study by New York analysts Frost d Sullivan.

It claims that Gads must increasingly be recognised as a mainstream semiconductor technology: although density limitations and higher material and fabrication costs will continue to exclude it from bulk memon' and other high-volume silicon-type applications. The growth areas will use the higher electron mobility of the material compared to silicon which allows higher clock rates and access times in digital systems and higher operating frequencies in microwave applications.

Advances

Maximum capacity, minimum price and fastest data processing can be found in the latest crop of machines for in-circuit logic testing.

During the 1960)s, engineers working on computer equipment found that existing measuring instruments were inappropriate for systems producing non-repetitive signal patterns and the first logic analysers were conceived. These were add-ons that turned an oscilloscope into a multi-channel instrument capable of displaying timing relationships between several signals.

In the next decade, analyser manufacturers developed the concept of data-state analysis which involves displaying digital information in terms of data values against machine cycles rather than individual signal-point levels against time.

Since about 1975. when the first combined state and timing analysers appeared. the logic analyser has not changed a great deal conceptually: it has simply evolved. There have been significant increases in the number of channels available, acquisition speed and triggering sophistication.

One feature of logic analysers that has not changed a great deal is the price of the cheapest instruments. Cenerally, the lowest price complete analysers still cost around £3000). According to John Nichols, technical director of Thurlby Electronics at Huntingdon, the low-cost logic analyser market is quite small and almost saturated which could explain why bottom prices have not fallen a great deal.
So why has Thurlby decided to introduce a logic analyser at under $£ 1000$? Nichols says that the market could he expanded a great deal if only engineers in small and mediumsized companies knew the advantages of logic analysis.
Even now. logic analysers remain a bit of a mysten' to many engineers. With prices at $£ 3000$. there is little incentive for an engineer with a small budget to learn about logic analysis: but given a completely selfcontained instrument costing under $£ 1000$. that could change. Thurlby's challenge is to expand the low-cost analyser market through education; unless it can do that the product will fail - but Nichols is very confident.
The £ 898 Thurlby LA3200 is a 32 -channel analyser that can operate at acquisition speeds up to 1000 MHz . Its 48 -channel counterpart, the LA4800. costs £1195. Both have

UpDATE

in logic analysis

a footprint half the size of any other analyser and a bigger screen than comparable units and their screens are graphics/text liquidcrystal devices with fluorescent backlighting so they can be read even in bright sunlight.

Cost has been kept low mainly by using off-the-shelf components. Two c-mos 6803 processors control the instrument - one acquires data while the other handles the user interface - and the logic ICs and memory are advanced high-speed c-mos parts. There have been few compromises with the software. On-screen help, comprehensive menus and data search/compare facilities are all standard.

Triggering facilities include multi-level triggering with if-then-else sequencing and multiple delays via event or clock counts. It is also possible to select full-width start/stop trace words for data qualification.

There are various optional pods for the analysers ranging from a three-channel clock-input unit at $£ 49$ to a 68000 pod with built-in disassembler software at $£ 345$. Included in the range are a 16 -channel general purpose pod that allows glitch capture down to 5 ns and six disassembler pods for 8 bit processors.

Up to four 96-channel analysers in one unit
At the other end of the price scale is Could's CLAS4000 at around $£ 20000$. Being modular, the 4000 can be configured for anything from general-purpose high-speed analysis to
a design tool for wide-bus multi-processor computers and complex asics.

There are many options for the 4000 but basically it can be configured as from one to four independent logic analysers with up to 384 channels and for data capture rates from 200 MHz to 1 GHz .

Instead of developing a user interface for the 4000 , Gould has chosen to send captured data to a Mac computer, included with the system, via an SCSI port. Apart from decreasing development costs, this move increases flexibility by allowing custom post processing data and it provides a proven user interface with windows and mouse control With a 19 in high-resolution monitor, the Mac is capable of displaying more than 50 timing waveforms at once. Gould plans to develop Mac based tools for the design engineer.

Resolution of the 4000 depends on the number of channels used. When 96 channels are needed, resolution is 5 ns but for 64 channel operation, resolution rises to lns.

The 4000 has a number of facilities for simplifying measurements. For timing verification in, say, asic design, there's an accessory called Design Ruler, and probe assignment, trace control and external clocking functions are all done in graphics.

Colour windows - up to 16 of them contain instrument configuration, status and time-correlated data in multiple formats for viewing simultaneously.

Currently there are two measurement

An instrument with a price of under $£ 1000$ brings 100 MHz logic analysis within the reach of small companies and educational establishments.
modules available, called Pyramid and Magnifying Class. Pyramid is a general-purpose module for examining detailed operation of the most sophisticated microprocessors, including 88000 , R3000, 29000 and Spare devices. Magnifying Glass, when used in conjunction with Pyramid, allows you to examine part of a trace in detail; it is capable of sampling at $1 \mathrm{C} \mid \mathrm{Hz}$.

Don't get fooled by specifications

Marconi Instruments says that many logic analyser manufacturers cook the figures by creating confusion between sampling and decision rate. The company points out that the two may not necessarily be identical

Vaturally enough it uses its latest offering, the 50 MHz 5500 logic analyser, as the ideal example of how these instruments should be specified.

The essence of the confusion is this. Unless an analyser can evaluate a logic condition and then store a particular event wi-hin the time span between two successive samples, then its effective working speed must be less than the sampling rate.
Its own instrument is claimed always to evaluate a logic expression within the 20 ns span between the 50 MHz samples. It is also sa d do detect and place a marker on logic glitches down to $4 n s$.
Marconi says a further source of error frequently arises through circuit loading. Its 5500 instrument overcomes this by using up to 240 high impedance probes, each with a bandwidth of 100 MHz and an associated capacitance of just 5pF
Marconi's instrument has been designed for testing large microprocessor systems including the latest issue of Intel and risc parts. Prices start at $£ 10500$ for a basic 48 -probe machine expandable in multiples of 48 .

Research profile - Cranfield

MARTIN ECCLES

In radar displays for air-traffic control, clutter reduction using FFT does not provide a perfect solution. Analysis and reduction of clutter in radar returns is currently the subject of research in Cranfield's Department of Electronic System Design.

Theoretical studies of clutter using spectral and statistical analysis techniques have made possible the construction of computer models. These computer models can simulate natural and man-made clutter which can then be used to assess the efficiency of various clutter-reduction techniques.

Clutter-reduction methods involve both spectral and statistical techniques to disting. uish between the target and clutter. Many of the models are running on a Vax cluster together with several PDP11/83 minicomputers fitted with DSP coprocessors.

Some research is needed into exposure times for photographing radar screens like the one shown here. Had the predicted four seconds been enough. I would have been able to show you before and after shots illustrating how statistical and spectral pro. cessing removes clutter.

One of the most interesting finds in Doug Russell's brain-interface work (above, centre) is the tiny 40 Hz ripple on this brain-wave graph that you can see disappearing towards the back of this three-dimensional plot.
This plot is an EEG spectrum obtained from a subject looking at a visual stimulus of 40 Hz for about the first two-thirds of the experiment, which is devised to investigate the eye/brain pathways. Doug Russell is also looking at brain wave patterns to try and detect whether pilots have fallen asleep.

Cranfield Institute of Technology is a very business-like university. It probably has the closest links with industry of any university and it claims to be the largest academic centre for industrial research, development and design in western Europe. Cranfield also researches for defence - the Royal Military College of Science became a faculty of Cranfield in 1984 -and the public services.
Being applications-oriented, and working so closely with industry, Cranfield is quite well off. A number of offshoot companies have evolved from research projects, providing anything from consultancy and troubleshooting services to products like data loggers for racing cars.

Judging by all the publicity a few years ago, you would think that speech recognition would be more in evidence by now: could there be problems? Researcher Doug Rus. sell is bypassing speech recognition and instead looking into the possibility of interfacing computers directly to the human brain. This work is part of a wide-ranging research project into reducing pilot stress.

One of the best ways of looking at stress in pilots is to monitor the electrical signals that control the heart beat. While the pilot is not moving the signals are easy to measure but as soon as any movement is made, the signals going to the large muscles in the upper body swamp those detected from the heart.

As you see here, signal processing, in the form of high-speed adaptive filtering, removes noise from the ECG.

Dominant activities of Cranfield's microprocessor application group are now software engineering and microelectronics in which expertise in real-time systems is most significant.
This display is of a prototype simulator using transputers. The simulator faithfully represents the dynamic characteristics of a weapon system, its missiles and many independent moving targets, including high speed aircraft Normally, the display in cludes a realistic background terrain image.
Such simulators must be flexible, reconfigurable and require the most efficient combination of hardware and software. These systems have only become costeffective with the advent of modern devices.

Dynamic analysis of rotating machinery such as aero engines, power generation plant, automotive engines, etc., both in the development stages and as a part of routine maintenance programmes, enables engineers to optimize design and to program. me planned maintenance shut downs when necessary.

Analysis of this type is usually performed during a speed run-up or run-down of the machine. Otten the acceleration and deceleration rates can be quite rapid, creating a need for collection and analysis of vast amounts of data in very short time frames.
The illustration shows a display from EDASP 9000 of an acceleration of a jet engine displayed as a composite Campbel diagram. In essence, the colour-coded amplitude display shows, in three dimensional form, the areas of high vibra-
tion amplitude, with corresponding frequency and speed information. Armed with this information, the engineer can ask the computer to perform order and frequency tracking to examine the behaviour of harmonic orders or frequencies as a function of speed.

In aerospace and defence industries, electronic and mechanical systems often have to operate in severe shock environments. Also. almost every commercially purchased product has to be protected by packaging enabling it to withstand the shock and vibration experienced during transport from the factory to the end user. Shock testing of products or packaging is generally carried out by using drop-test methods: however. other techniques such as using electrodynamic shakers. hydraulic or pyrotechnic techniques are also in common use.
Systems such as Cranfield Data Systems' EDASP 9000 rapidly perform complex shock analysis, such as the shock response spectrum illustrated, on vast amounts of data.

Modal analysis plays an important role in the understanding of the dynamic behaviour of structures. Advanced signal processing systems such as the Cranfield Data Systems EDASP 9000 series carry out comprehensive analysis in a fraction of the time that it would have taken a few years ago. Structures tested can be as small as a few inches or as large as an aircraft. Response measurements are taken from multiple points, often hundreds, on the structure. The system performs transfer function analysis and curve-fitting routines and provides the engineer with an animated display of the modal behaviour of the structure, combined with measurements such as the damping values for each mode.
The structure shown on the displays here is an aluminium housing from an aerospace

application which is designed to contain delicate printed-circuit assemblies. Modal analysis enables engineers to establish the suitability of a design for use in the environment in which it will operate.

One company within the Institute is devoted to research into precision mechanical engineering. This company, CPE, has produced a machine-tool guidance system consisting of modules for everything from bed positioning to user interfacing.

Cuproc, as the system is called, is for producing complex profiles with high precision on a multi-axis machine tool. Tool-path accuracy is ensured by unique high resolution feed-forward techniques and laser interferometry. Cuproc's curve.fitting software is capable of a resolution of 1.25 nm at a speed of $0.9 \mathrm{~m} / \mathrm{s}$.

Real-time telemetry is used to monitor racing-car performance. Cranfield's Microsystems Design Group has developed a telemetry link in the form of a UHF transmitter that sends data from sensors within the car to a PC.

With such a system, the race manager in the pits can request updates on parameters such as oil and water temperatures, ride height and fuel consumption. It is even possible to detect a slowly leaking tyre.

Software for producing the telemetry dis. play shown here is part of the system.

UPDATE

Read-write optical disc for DEC, PC and Sun

Magneto-optical technology in a 640Mbyte drive allows as much reading and writing as you like without the chance of accidental erasure through magnetic fields.

MARTINECCLES

A random-access storage capacity of over 600 Mbyte on one $5^{1 / 3 \text { in }}$ disc is in itself quite useful, hut combine that with the portability of a floppy disc, the speed of a Winchester and the data safety of a compact disc and you have a very interesting storage medium. On top of that. non-contact head also remove the possibility of crashes - one of the primary data-loss culprits.
Decade Computers of Newbury is now distributing the Alphatronix Inc. erasable optical storage system in the UK. Inspire. as the system is called, connects to Sun 2/3/4 workstations and PC. XT and AT compatibles. It is also the first optical read/write system for DEC workstations. specifically PDP. MicroVax and Vax machines.
Read/write optical discs are not just an alternative to existing storage media. They suit applications where there is too much data for floppy discs, where hard-disc storage
is too costly and where tape storage is too slow. Such applications include cad/cam. image and data processing and desktop publishing. Since the disc is in cartridge form, data is easily archived and the need for tape back up is removed.
In medical imaging for example, a chest X-ray needs about 30 Mbyte of storage capacity; where tomography, nuclear magnetic resonance and X -ray scanning techniques are used there can be dozens of these images for one patient. Magneto-optical storage, in conjunction with a medical workstation. simplifies and cheapens image enhancement and allow's convenient archiving.
Currently, the drives cost from about £6000; a disc costs around $\$ 300$ but when production rises, that price is expected to fall to between $\$ 25$ and $\$ 50$. Compared with $\$ 1200$ for two removable 300 Mbyte Winchester disc packs or $\$ 600$ for the equivalent
floppy disc capacity. $\$ 300$ is cheap. In fact, it works out at about the same price as halfinch magnetic tape.

One of the main worries with having so much valuable data on one disc is that the manufacturer will go out of business. There is already a standard for $51 / 4$ in optical drives agreed by ISO. ECMA, ANSI and Japan's MITI Committee 23. Inspire conforms to this standard (ISO DP10089-1) and there are already two sources of discs -3 M and Sony.

It is too early yet to say what will happen in the optical storage field. If a manufacturer comes up with an extremely cheap nonstandard system, drives conforming to the standard could suddenly become prohibjtively expensive. The chances are though that the byte-for-hyte prices are even now so competitive that potential users of such a system will not he able to afford to wait around to see what will happen.

There is more than one optical read/write technology, but the magneto-optical method used in Alphatronix's Inspire is proving to be one of the most popular.
Conventional magnetic media rely on using as small a magnetic field as possible, so it is not surprising that they are easily erased by loudspeakers and TVs. Magneto-optical discs, on the other hand, can only be erased by very high magnetic fields. Dr Robert Freese, President of Alphatronix, claims that it would take a room-sized electromagnet of the type used in research to erase a magneto-optical disc; placing an ordinary magnet on the surface of the disc has no effect.

The magnetic material is in the form of a thin film on the disc's surface and is vertically magnetized north-pole up for a logical one and south-pole up for a logical zero. A transparent plastic film covers the magnetic surface. At normal temperatures, the coercive force needed to flip a domain is in the region of $400 \mathrm{kA} / \mathrm{m}$ but at about $150^{\circ} \mathrm{C}$ that force falls to almost zero.

During writing, a semiconductor Jaser of about 8 mW output heats the domain making it possible for a bias coil creating a small magnetic field to flip the domain's polarity.
A pulse of a few nanoseconds from an infrared laser heats a bit domain $1 \mu \mathrm{~m}$ across to a temperature that allows the bias coil to determine the polarity of the magnetic particle representing the bit's state.

Reading of a domain is carried out by the same beam but at a reduced power. After reflection off the disc surface, the read beam's polarization varies depending on the polarity of the domain under it (Kerr magnetic-optical effect), hence ones and zeros can be differentiated.

Optical read/write technology is still in its early days. Predictions based on envisaged advances in optical heads, more efficient recording and error-correction methods and the use of visible-wavelength laser diodes now under development indicate that the current $51 / 4$ in disc capacity could be increased to 7000Mbyte and the existing data transfer rates could go from $5 \mathrm{Mbit} / \mathrm{s}$ to $500 \mathrm{Mbit} / \mathrm{s}$.

RF EQUIPMENT

LOW NOISE GASFET PREAMPLIFERS
Aligned to your specified frequency in the range $30-1000 \mathrm{MHz}$ Masthead or local use
TYPE 9006. NF 0.6 dB . Gain $10-40 \mathrm{~dB}$ variable. In the range $30-250 \mathrm{MHz}$
£78
TYPE 9006 FM . As above. Band $1188-108 \mathrm{MHz}$
£78
TYPE 9002. Two stage Gasfet preamplifier. NF 0.7dB. Gain 25dB adjustable. High Q filter. Tuned to your specified channels in bands
IV or V
£102
TYPE 9004. UHF two stage Gasfet preamplifier. NF 0.7dB. Gain
25 dB adjustable. High Q filter. Aligned to your specified frequency in
the range $250-1000 \mathrm{MHz}$
£102
TYPE 9035. Mains power supply for above amplifiers
£30
TYPE 9010. Masthead weatherproof unit for above amplifiers......£12

TYPE 9006

WIDEBAND AMPLIFIERS

Monolithic microwave integrated circuits in a fully packaged microstrip module format. Full-wave shottky diode protected inputs. Temperature compensated bias circuitry. Voltage regulated local or remote operation.
TYPE 9007. 1-900MHz. NF 2.3dB at 500MHz. Gain 20dB.......... £150 TYPE 9008 Gasfet. $100 \mathrm{MHz}-2 \mathrm{GHz}$. NF 2.5 dB at 1 GHz . Gain 10 dB . Power output $+18 \mathrm{dBm}, 65 \mathrm{~mW}$ £150
TYPE 9009 Gasfet. $10 \mathrm{MHz}-2 \mathrm{GHz}$. NF 3.8 dB at 1 GHz . Gain 20 dB . Power output $+20 \mathrm{dBm}, 100 \mathrm{~mW}$ £150 TYPE 9253. $40-860 \mathrm{MHz}$. NF 6dB. Gain 30 dB . Voltage output $100 \mathrm{mV}, 100 \mathrm{dBuV},-10 \mathrm{dBm}$

TYPE 9252
PHASE LOCKED LOOP FREQUENCY CONVERTERS
TYPE 9113 Transmitting. Converts your specified input channels in the range $20-1000 \mathrm{MHz}$ to your specified output channels in the range $20-1000 \mathrm{MHz}$. 1 mV input, 10 mW output (+10dBm). AGC controlled. Gain 60 dB adjusiable -30 dB . Will drive transmitting amplifiers directly £356 TYPE 9114 Receiving. Low noise Gasfet front-end. NF 0.7 dB . Gain 25 dB variable

TMOS WIDEBAND LINEAR POWER AMPLIFIERS
TYPE 9246. 1 watt output $100 \mathrm{KHz}-175 \mathrm{MHz} 13 \mathrm{~dB}$ gain

TYPE 9176
TYPE 9247. 4 watts output $1-50 \mathrm{MHz} 13 \mathrm{~dB}$ gain
TYPE 9051.4 watts output $20-200 \mathrm{MHz} 13 \mathrm{~dB}$ gain
TYPE 9176.4 watts output $1-50 \mathrm{MHz} 26 \mathrm{~dB}$ gain
TYPE 9177. 4 watts output $20-200 \mathrm{MHz} 26 \mathrm{~dB}$ gain
TYPE 9173. 20 watts output $1-50 \mathrm{MHz} 10 \mathrm{~dB}$ gain
TYPE 9174. 20 watts output $20-200 \mathrm{MHz} 10 \mathrm{~dB}$ gain
TYPE 9271.40 watts output $1-50 \mathrm{MHz} 10 \mathrm{~dB}$ gain £308

TYPE 9271. 40 watts output 1 -50 M Hz 10dB gain ... £308

TYPE 9172. 40 watts output $20-200 \mathrm{MHz} 10 \mathrm{~dB}$ gain £616

TYPE 9235. Mains power supply unit for above amplifiers

PHASE LOCKED SIGNAL SOURCES
Very high stability phase-locked oscillators operating directly on the signal frequency using a low frequency reference crystal. Phase noise is typically equal to or better than synthesized signal generators. Output will drive the Types 9247 and 9051 wideband linear power amplifiers and the Types 9252 and 9105 tuned power amplifiers
TYPE 8034. Frequency as specified in the range $20-250 \mathrm{MHz}$. Output 10 mW £120
TYPE 8036. Frequency as specified in the range $250-1000 \mathrm{MHz}$ Ouput 10 mW [170
TYPE 9182. FM or FSK modulation. $20-1000 \mathrm{MHz}$. Output 10 mW
£248

FM/FSK RECEIVERS

TYPE 9300 FSK data receiver single channel up to $200 \mathrm{MHz} \ldots \ldots 248$ TYPE 9301 FSK data receiver single channel $200-1000 \mathrm{MHz} \ldots .$. £398 TYPE 9302 FM receiver single channel up to 100 MHz [248 TYPE 9303 FM receiver single channel $100-1000 \mathrm{MHz}$ £398

FM TRANSMITTERS $88-108 \mathrm{MHz}$. 50 watts RF output
TYPE 9086. 24 V + DC supply
£945
TYPE 9087. Includes integral mains power supply $£ 1,110$ TYPE 9182FM exciter $\pm 75 \mathrm{KHz}$ deviation. Output 10 mW £248

TYPE 9263

TYPE 9259

TELEVISION LINEAR POWER AMPLIFIERS
Tuned to your specified channels in bands IV or $V .24 V+D C$ supply. TYPE 9261.100 mV input, 10 mW output.................................. $£ 218$
TYPE 9252. 10 mW input, 500 mW output....................................... $£ 254$
TYPE 9259. 500 mW input, 3 watts output $£ 290$
TYPE 9262500 mW input, 10 watts output $£ 530$
TYPE 9263. 2-3 watts inpui. 15 watts output................................. $£ 400$
TYPE 926610 watts input, 50 watts output $£ 1,585$
See below for Television A nplifiers in bands I \& III.

TYPE 9105

TYPE 9158/9235

TMOS RF LINEAR POWER AMPLIFIERS
Tuned to your specified frequency in the range $20-250 \mathrm{MHz}$, or your specified channels in bands $\mathfrak{\text { or }} \mathrm{II} .24 \mathrm{~V}+\mathrm{DC}$ supply TYPE 9105. 10 mW input, 1 watt output.

TYPE 9155. 1 watt input, 30 watts output.
TYPE 9158.5 watts input, 70 watts output.

COMPLETE TELEVISION RETRANSMISSION SYSTEMS AVAILABLE
All prices exclude p\&p and VAT

RESEARCH COMMUNICATIONS LTD

Unit 1, Aerodrome Industrial Complex, Aerodrome Road, Hawkinge, Folkestone, Kent CT18 7AG. Tel: 0303893631 . Fax: 0303893838

Alpha-torque forces

Neglect of basic physics, argues the author, has led us to overlook some extraordinary electrical phenomena. He envisages uses ranging from party tricks to industrial and military applications, including a space catapult of astonishing power.

PETER GRANEAU

Nearly 170 years have elapsed since Oersted discovered electromagnetism. The dominant theory of the first 80 years was the electrodynamics (interaction of current elements) developed hy Ampere in France and Neumann in Cermany. It presided over the inventions of electricity generators, motors, transformers. transmission lines and electromagnets. The whole of electric power engineering can be explained with it. Flourishing in the schools of France and Germany, the key memoirs were not translated into English. Contemporary scientists and engineers are largely ignorant of the old electrodynamics and frequently confuse it with later ideas. As Newton did with universal gravitation, and Coulomb with electrostatics, Ampere based his fundamental force law - which Maxwell later called the cardinal formula of electrodynamics - on simultaneous far-actions. or instantaneous action-at-a-distance. The resulting Ampere-Neumann electrodynamics is a theory which was specifically developed for the flow of electric currents in metallic conductors ${ }^{1}$.
Electron beams in a vacuum do not ohes: Ampere's force law. This caused Lorent\% to develop an alternative electrodynamics ${ }^{2}$ which he hased on the borent\% force formula. It became the electrodynamics of Einstein's Special Theory of Relativity. It openly violates Newton's third Law of equal and opposite reaction forces between particles of matter. For certain metallic conductor arrangements. hoth the old Newtonian and the modern relativistic electrodynamics predict identically the same ponderomotive forces which agree with measurements. However, there are important exceptions to this rule which escaped Lorentz's attention. They fall into four groups: (1) electrodynamic jets at solid/liquid interfaces; (2) tensile wire fragmentation; (3) linear momentum
conservation; and (4) electric arc expansion. Experiments in anl four groups support Ampere's law and contradict Lorentz's. Fifteen of the experimental tests favouring the old electrodynamics have been fully reviewed in reference 1 .

In view of this, the unification of the Coulomb law of electrostatics with the force law of electrodynamics, attained in the Lorentz force formula, now appears to be null and void, at least as far as metallic conductors are concerned. While arantgarde physics storms ahead with supercolliders and the unification of the electromagnetic force with nuclear forces, we find that simple hench-top experiments have

Fig.1. Angular degrees of freedom of two Ampèrian current elements.
been de-unifying electric and magnetic actions. Alpha-torque forces will play an important role in this evolving drama.

The old electrodynamics is hy no means a complete theory. In a recent enlargement of it ${ }^{\prime}$ it has been shown why two Amperian current elements, which differ from Lorentzian current elements in substantial details, must be subject to mutual torques or turning moments. The torques are superimposed on the mutual forces of attraction or repul-

INDUSTRIAL, MILITARY AND SPACE APPLICATIONS

Abstract

Potential industrial applications of alphatorque phenomena range from the suppression of turbulence in aluminium smelters and other metal processing cells; the control of metal flow in arc furnaces and in arc welding; liquid metal pumping and stirring; metal forming and cutting with water projectiles; pressure welding of dissimilar metals by water impact; rock blasting and other mining operations; the control of switching arcs in air, gases and vacuum; current limiting fuses; and so on.

The more important military applications of Ampère forces are likely to be related to the water-arc launcher and the sea-water jet The water-arc gun appears to be ideal as an anti-tank weapon and also as a kinetic energy killer of ballistic missiles. The seawater jet could become a powerful torpedo drive or a silent propulsion device for submarines.
Space launching of small payloads with the water-arc launcher is a particularly exciting prospect.
sion existing between the current elements An interacting pair of Amperian current elements, $i_{m} d m$ and $i_{n} d n$ has (wo angular degrees of freedom. The two angles are shown in Fig. 1 and have heen denoted by the Greek letters alpha and epsilon. Each of the angles is associated with a mutual torque. The alpha-torque is ponderomotive in nature and acts on the atoms of the conductor metal, and not on the conduction electrons. It has many technological ramifications.

DERIVATION OF THIE
 ALPHA-TORQUE FORCE

Neumann was responsible for introducing the concept of the electrodynamic potential P. This is measured in joules and in modern physics it is called stored magnetic energy. Neumann was also the originator of the virtual work concept. This states that if the stored magnetic energy hetween two current circuits changes with the distance between the circuits. then there must exist a force between the circuits. Similarly, if the stored energy changes when one of the circuits is rotating with respect to the other, then there must exist a mutual torque between the circuits.

In the recent extension of the old electrodynamics ${ }^{\prime}$ it has heen shown that the stored magnetic energy $\Delta P_{\text {m.n }}$ hetween two Amperian current elements $i_{1 n} d m$ and $i_{n} d n$ is given hy

$$
\Delta P_{m . n}=-\left(\mu_{1} / 4 \pi\right) i_{m} i_{n}\left(d m \cdot d n / r_{m . n}\right)
$$

$$
\begin{equation*}
\mid(0.5 \cos \varepsilon)-1.5 \cos (2(x+\varepsilon) \mid \tag{1}
\end{equation*}
$$

where $r_{m .1 n}$ is the distance between the elements and the angles o x and ε are indicated in Fig.1. Amperes proved that any three-dimensional current element problem reduces to a two-dimensional problem because the out-of-plane forces and torques are zero. This is the justification of the universal representation of Amperian current elements he diagrams like Fig. 1 .
The principle of virtual work' requires the mutual force $\Delta \mathrm{F}_{\mathrm{m} . n}$ hetween the element pair to be

This equation is Ampere's force law which he proposed in 182?. By the same virtual work principle. the mutual alphatorque between the two current elements $\left(\mathrm{J}_{\mathrm{mm}, 1)^{\prime}}\right)_{\text {, }}$ turns out to be

$$
\begin{align*}
\left(\Delta T_{m . .1}\right)_{(x)}= & -\left(i / / i(x) \Delta P_{m . n}\right. \\
= & -3\left(\mu_{1} / 4 \pi, i_{m} i_{n}(\mathrm{dm} . \mathrm{dn} /\right. \\
& \left.r_{\mathrm{m} . \mathrm{n}}\right) \sin (2(x+\varepsilon) \tag{3}
\end{align*}
$$

$$
\begin{align*}
& \Delta F_{m . n}=-\left(i / i / i r_{m . n}\right) \Delta P_{m . n} \\
& =-\left(\mu_{1} / 4 \pi / \pi i_{m} \mathrm{i}_{11}\left(\mathrm{~m}^{2} \mathrm{~m} \cdot \mathrm{dn} / \mathrm{r}_{m . .1}^{2}\right)\right. \\
& {[(1) .5 \cos \varepsilon)-1.5 \cos (2(x+\varepsilon)]} \tag{2}
\end{align*}
$$

The alpha-torque force is the torque of equation 3 divided by the torque arm r_{m}. that is

$$
\begin{aligned}
\left(\Delta F_{m .11}\right)_{(x}= & 3\left(\mu_{1} / 4 \pi\right)(d m) d n / r^{2} \\
& \sin (2)(x+\varepsilon)
\end{aligned}
$$

To obtain an idea of the relative magnitudes of the various Ampere forces, we shall compare them for the normalized case of $i_{m}=i_{11}=1 \mathrm{~A}$, and $d m=d n=r_{m .11}=1 \mathrm{~mm}$. The negative sign in equation 2 stands for attrac tion. When the force becomes positive it changes to repulsion. Maximum repulsion occurs between elements lying on the same straight line, as indicated in Fig.2a. It is equal to $1 \times 10^{-7} \mathrm{~N}$. When the elements are arranged side by side (Fig.2b), they exhibit a maximum attraction of $2 \times 10^{-6} \mathrm{~N}$. The

(c) 45° off-set

Fig.2. Principal Ampère forces between a pair of current elements.
greatest alpha-torybe force oecurs when the elements are offset hy 45° as in Pig.2c. The maximum alpha-toryue force is found to be $: 3 \times 10^{\circ} \mathrm{N}$, acting in such a direction as to decrease the angle ex. In general, therefore. the alphatorque forces are stronger than the attractions and repulsions between imperian current elements.

1.IQUII) METAL.CELIS

Whilst most of the important inventions made in the past few centuries were far ahead of explanatony science. we are now in a phase in the histony of science when we expect innowation 10 arise from modern physics theong. When this theory is at variance with experience, as the relativistic electrodynamics is. we are in danger of missing out on possible important technological advances. Consider the liquid metal cell of Fig.3. This may be taken as a model of several industrial metal processingsplants in which large direct currents are passed from a
solid anode to a solid cathode via a liquid metal hath. Examples are aluminium smelters and other metal reduction cells.

If the lorentz force were the ruling electrodynamic law, the only electrodynamic forces experienced hy the atoms of the liquid metal pool would be pinch forces of the type shown in Fig.'2h. These forces are also predicted by Amperes law. The direc tion and distribution of the pinch forces in the liquid metal pool is such that they create hydrostatic pressure but cannot produce liquid metal circulation.

Contrary to this expectation, an experimental test with liquid mercuny" did reveal lisuid metal circulation, as indicated in Fis..'3. This obsenation asreed with the existence of the two types of Ampere forces depicted by Fig. $2 \mathrm{a}, 2 \mathrm{E}$, which are not included in the relativistic electro dynamics tanght at present. The alpha-torque forces between current elements in the liquid metal pool push atoms radially outward in and neat the centre plane between anode and cathode. This action is reinforced hy Ampere repulsions hetween solid elements in the electrodes and liquid elements in the pool.

The metal circulation in the cell provides free stirring, if the process should reyuire it. When no stirring is needed. as in the reduction of aluminium. circulation has the disaduantage of wasting energy and eroding the electrode surfaces. Hall-Heroult aluminium reduction cells are known to be only 35 percent energy efficient. Much of the wasted energs is converted to Joule heat. But 15 percent could be spent on harmful metal circulation. If true. this would amount to $24 \times 10 . \mathrm{klih}$ of electricity per year in the [1S alone. This waste of enersy somehow remains hidden if we choose to ignore the alphatoryue forces of the ampere electrodynamics.

TIIE I.IQUIII MERCURYFOUNTAN

An even more dramatic result of the exse ence of Ampere forces is the liyuid mercury fountain (Fig.4). This was achieved in my Mll' láooratory with liguid mercung contained in the dielectric cup. An insulated copper rod electrode, bare on the end face. projected through the bottom of the cup. A copper ring electrode was partially suhmerged in the free top surface of the reercum: The cup was 4.5 cm deep and $6,40 \mathrm{~m}$ in diameter. With 500 to lotold flowing hetween the electrodes, a conical fountain head would form above the free surface of the liquid metal (Fig, 4h). Mercun could be seen to stream down the cone. While the current was maintained. the mercun flow and circulation was continuous. This behaviour prosed that the electrodymamic force shistem propelling the fountain did not prevent liquid mercury from streaming hack laterally toward the rod electrode. ceep inside the cup.

The broken lines in Fig. fa from the rod to the ring electrode represent current streamlines in the mercury. The Lorentz forces must act transwersely to these lines and radially inward near the rod electrode. This relativistic action proxiuces only pinch on the mercune column above the rod electrode. By hydrostatic action. this pinch

Fig.3. Circulation in liquid metal cell.

Fig.4. Above, cross-section through mercury fountain and (lower) photograph of it.
would be conserted to an upthrust as well as a domenthrust. The downthrust would prerent liyuid atoms from entering the column (1) replenish others which have been transprorted into the fountain head. Hence present electrodynamics does not permit liquid mercury circulation and is therefore incapable of explaining the observed jet fountain.

In 198: this experiment was demonstrated hefore an audience of professors. researchers. and gradate students of the

Massachuselts Institute of Technology. Some of the distinguished MIT professors refused to look at the mercury fountain. lest it might upset their routine lectures on electromagnetism. Their behaviour reminded me of the professorial colleagues of Galileo who refused to look through his telescope to observe the moons orbiting around Jupiter.

Applying the Newtonian Ampere electrodynamics to the liquid mercury fountain. we find that repulsions and alpha-torque forces assist each other in causing the upllow of liquid mercury: By action-at-adistance. the forces of reaction to the lift forces then reside in the solid rod and in the ring electrodes. In this way the reaction forces are not creating back-pressure in the liquid which would stop it from circulating. The operation of the liquid mercuñ fountain was completely silent.

SEA-WATER JET

It seems feasible that the principle of the liquid mercury fountain can be exploited to design a sea-water jet engine, as an alternalive to the propeller ${ }^{\text {t }}$ (Fig.5.) Research on MHII) ship propulsion has been in progress in Japan for the past ten years ${ }^{\top}$. The Japanese technique is based on the use of lorentz forces which arise in a magnetic field in sea-water when direct current is driven through the water and across the magnetic field lines. A superconducting magnet on board ship is being employed for generating the strong magnetic field. Only a small current can be made to flow through salt water because of its high resistivity.

Published results indicate that a 700 kg magnet-cryostat combination in a small wooden vessel was able to drive vessel at a relocity of $0.6 \mathrm{~m} / \mathrm{s}$. A current through the water of 65 A produced a thrust of 15 N . The sea-water jet of Fig. 5 is expected to be a far more effective means. per kilogram of power supply. for driving surface and submarine vessels or torpedos.
like the liquid mercury fountain, the sea-water jet also contains rod-and-ring electrodes. For the operation of the seawater jet, a sufficiently high voltage must he maintained between the electrodes to form a continuous electric are in the water. The water arc has a veny low resistivity and. therefore, allows the flow of large currents. The arc plasma is the most important component of the jet engine. It takes the place of the liquid mercury in the fountain. Most of the ship propulsion force is the reaction force on the copper atoms in the rod electrode. A component of the reaction force in the ring electrode is also expected to contribute to propulsion. This tatter component arises from alpha-torque forces.

Will the sea-water jet be noisy or silent? Silent drives are known to be of great interest to the navy. Jets will not generate the rotary turbutence characteristics of propellers. However, when first switched on. and if no special precautions are taken, the establishment of the arc will be an explosive event. Subsequently the drive might well he as silent as the liquid mercury fountain. The electrodynamic propulsion force is proportional to the square of the current.

Fig.5. Sea-water jet.

Fig.6. Miniature coaxial water-arc gun.
Therefore the constancy of the current is likely to decide how noisy or silent a drive it will be. Continuous arcs in air burning between carbon electrodes are hissing. This is the result of small fluctuations in the air ionization process. The continuous ionization of salt water is expected to be a much smoother process because of the presence of sodium and chloride seed ions. How silent a drive the sea-water jet can be made will have to be decided by experiment.

WATER-ARC LAUNCHERS

Ampere designed his electrodynamic force law to explain the hehaviour of metallic conductors. The law failed when it was applied to electron beams in vacuum. How does it fare with plasma conductors". At the end of the 1980s we have amassed enough experimental evidence to feel confident that Ampere-Neumann electrodynamics does hold for high-density plasmas such as those found in lightning channels and undenvater electric arcs. There is no way of telling. as yet. how far the plasma density must fall before impere's force law breaks down.

Water-arc explosions caused by short current pulses have in recent years become a most fascinating research topic. In 1947 Frungel ${ }^{*}$ experimented with the first water-
arc launcher. He had a rod-and-ring electrode arrangement in which the ring, sealed to a dielectric plate and covered by a mica sheet. formed the pressure vessel. Water filled the annular cavity between the electrodes. By discharging a 12.2 kl . $0.07 \mu \mathrm{~F}$ capacitor through the water. Frungel was able to catapult a two-gram weight. lying on the mica sheet. two metres up in the air. The energy stored in the capacitor was only 5.2J. The projectile travelled with an initial velocity of $6.26 \mathrm{~m} / \mathrm{s}$. The mica sheet, on which the projectile rested. stayed in place. demonstrating that the weight was accelerated by a sharp blow probably lasting no longer than the 50 us current pulse. All the water remained under the mica sheet and there was no residual steam pressure present capable of lifting the sheet after the projectite had departed.

The energy supplied by the canacitor was insufficient to raise all the water to $100^{\circ} \mathrm{C}$ and convert it to steam. Those not familiar with the science of dielectric breakdown usually argue that the arc energy may have been concentrated in a tiny steam bubble which would then create an arbitrarily large pressure. The fact is there exists no breakdown mechanism which could confine the discharge of thousands of amperes to a small volume of the electric field between the electrodes. Quite the contrany is the case. Photography proves that all of the interelectrode gap is fully aglow with plasma (Fig.7). From these facts we know the water-arc explosions are not driven by thermal action. Frungel then considered Lorentz forces, hut came to the conclusion that they would try to contain the arc plasma rather than explode it. Not having any knowledge of the Ampere electrodynamics. he reluctantly concluded: "A satisfactong explanation of this phenomenon (water-are explosion) could not be found". It is now over 40 years later and we finally are making some progress by applying the Newtonian electrodynamics to the problem.
The most powerful water-arc launcher which has so far been built is shown in Fig. 6. It is still only a miniature device with a $11 / \mathrm{cm}$-long gun harrel. Being subjected to a 75 kA current pulse. this miniature gun produced an acceleration force of no less than 31641 N . It ejected a 3.8 gg coherent slug of salt water from the barrel at an estimated velocity of $10000 \mathrm{~m} / \mathrm{s}$. After flying 10 cm through the air. the water crashed through a quarter-inch thick aluminium plate and then was captured on the other side of the plate. The captured water was found to be lukewarm and still contained all the salt in solution.

Electrodynamic propulsion mechanisms are expected to attain higher projectile velocities than gas expansion accelerators. The limitations of adiabatic gas expansion have prevented chemical guns from shooting objects into space. Electrodynamic water-arc launchers are a potential alternative to rocket launchers for unmanned space missions in which the payload can withstand the highaccelaration of a gun launch.
On the basis of experimental results obtained with small water-arc launchers. it now seems feasible to accelerate a 20 kg mass
to $14 \mathrm{~km} / \mathrm{s}$ (well above Earth escape velocity) in a multi-stage water-arc harrel of less than 100 m in length. The barrel could be installed in a one-foot diameter vertical borehole drilled through bedrock. About 3CJ of energy would have to be made available from an electromagnetic energy store A space launcher of this kind should he capable of placing the plutonium charge of a single nuclear warthead into a suitable solar orbit, as for example the Asteroid helt.

THUNIDER

The cause of thunder is one of the oldest riddles of recorded scientific speculation. Three centuries BC. Aristotle published the first thunder theory. Many others were proposed until at the beginning of the present century a consensus evolved which assumed thunder must besin with a shockwave in air due to the sudden thermal expansion of the plasma in the lighting channel. The only experimental support for this theory came from spectroscopic temperature determinations up to 36000 K . Any one of a number of assumptions made in equating "optical" to thermodynamic temperatures can be challenged and some have been outright disputed.

Experiments with short atmospheric arcs of lightning strength revealed average are pressures in excess of 400 atmospheres and peat pressures approaching 1000 atmospheres. These results demand much higher temperatures than those found by lightning spectroscopy. Furthermore, when the strength of the laboratory arc explosions was plotted against the integral of the current pulse. it followed an electrodynamic law rather than a heating curve. Are photography then proved conclusively that the plasma did not expand thermally in all directions, hut preferentiallyat right angles to the current. as if driven by organized electrodynamic action. and in particular alpha-torque furces.
Figure 7 is an opern-shutter photograph of a 45 k 4 . $188 \mu \mathrm{~s}$ are in atmospheric air between quarter-inch diameter stainless steel rod electrodes. It was taken at a distance of 30 cm from the are with a 12 cm stack of filters placed in front of the camera. Figure 8 has been drawn to explain the features of the colour photograph which furnished the most direct evidence of alpha-torque forces in action.
The are region in which ions and free electrons are created and accelerated toward the metal electrodes E (Fig. 8) is denoted by A. The strong electric field is confined to the arc region. Surface melting ocurred where the are was rooted on the metal electrodes and where most of the ion recombination heat must have been liberated. After ten shots. outward flow of molten metal had made the electrode ends dome-shaped, and pronounced lips had formed at the edges. The arc enveloped the lips and thereby concealed their outline on the photograph. Bright amber jets I can he seen to emerge from the bright amber are region A. The jet focused on an edge which. when photographed from above, was found to be a circle. In three dimensions the J-region had the shape of a discus. A sharp houndary can be

Fig.7. Atmospheric arc expansion.

Fig.8. Explanation of the atmospheric arc photograph of Fig.7.
seen to separate the J-region from the surrounding red "plume" P. In successive shots. utilizing the same current pulse. the J-resion was always the same shape and size. However. the outline of the plame varied from one shot to the next, presumably on account of air draughts. The outline of the J-region appears to be the shock front at the time the light emission became faint. The wedge-shaped plasma stream confirms the radial ejection of ions from the arc, exactly as predicted by the alphatorque forces. The shockfront is cerlainly not of the spherical shape that would be produced by omnidirectional thermal plasma expansion. All along the shock front, ion pairs appear to have been scattered into the ambient air. These jons become entrained in the surrounding air. This explains the existence of the red plume. Photographs like Fig. 7 have furnished decisive evidence against thermal are expansion. From them one may reasonably conclude that thunder is not caused by heat in the lightning channel. but rather by radially outward directed alpha-torque forces.

References

1. P. Graneau. Ampere-Neumann electrodyna-

Fig.9. Author with miniature water-arc gun.
mics of metals. Ifadronic Press. Nonantum MA 12195. I'SA. 1985.
2. H.A. Lorentz. The theon' of electrons. Teubner. Leipatg. 19019.
3. A.M. Ampere, Theorie mathematique des phenomenes electro-dynamiques uniquement deduite dellexperience. İlanchard. Paris. 1958.
4. F.E. Neumann. Vorlesunges uher elektrische Stronte. Teubner, deipzig. 1884.
5. P. (iraneau. I).R. Sadoway, Electromagnetic jets oifer large potential to metallurgists. Industrial Research di hevelopment. December. 1982. p. 98.
6. I'. Graneau. Electrodynamic seawater jet: An alternative to the propeller'? Proceedings of the IEEE Intermas 89 Conference. March $28-31$. 1989 , Washington. DC.
7. S.K. Yoder, Japan plans speedy superconducting stips. The Wall Street Journal, August 17. 1988.
8. F. Frungel. High speed pulse lechnology. Vol.I. p. 4 亿̄̄, Academic Press. New York, 1965.

The author is at the Center for Electromagnetics Research, Northeastern Iniversity. Boston. MA (IIll5. USA. He acknowledges support in the preparation of this article from The Advanced Energy Research Institute it Devonshire Mew's South. London (HIN ILI) and its director Leonard Holihan.

The PC graphics maze

Applications software has long since outgrown the graphics capability of the original IBM PC architecture. The hardware has more or less kept pace by evolving a series of graphics adaptors of increasing complexity, each with a different number of display colours and pixel definitions. We offer a programmer's guide to the IBM graphics maze.

KEITH WOOD

IBM designed a business machine which put text on a screen for day-long confrontation. Its monochrome display was good then and still is. Graphics developed as a direct result of its success, and its use in every rational and artistic field.

In the beginning there was the Monochrome Display Adapter (MDA), provided with a useful set of graphics characters identified by bytes in the range BOH to DFH. Boxes, tables and bar graphs could be constructed with them. Colour could be had in a limited way by adding the Colour Craphics Adapter (CCA), but character definition suffered. The scanning raster had fewer lines and the colour monitor phosphor array wasn't designed for close viewing.

Graphics requires pixel addressing and therefore uses far more memory than text modes. which generate the video from the ascii codes using hardware. Development of advanced graphics has followed closely the falling price of mass memory.

The Enhanced Graphics Adapter (EGA) was introduced next. and most recently the PS/2 range. The Multi Colour Graphics Array (MCCA) is found on PS/2 models 25 and 30 and the Video Craphics Array (VCA) on the others.

Early graphics systems used plug-in boards. giving full rein to add-on equipment suppliers. PS/2 graphics sub-systems are built on to the motherboard; plug in VGA cards are for updating earlier models. Modern adapters exceed even the VCA specification, having half a megabyte of memory on the card. By contrast, the MDA had 4 Kbyte.

The memory used by the graphics system is addressable by the CPU either directly or using the service provided in the dos and bios. The graphics subsystem reads this memory when sending data to the display. The part of the CPU memory map allocated to the video system is from $\mathrm{A} 000: 0000 \mathrm{H}$ to B000:FFFFH, or 128 Kbyte (See box "Addressing the 8086 family memory").

Each enhancement incorporates enough of the display modes of earlier versions to maintain the utility of existing software. Monitors were fixed frequency; multi-sync is a recent phenomenon. Thus an ECA text mode. for example, is not identical to the

CGA equivalent in raster terms. even though it may be in character terms. The difference is compensated by having an alternative character set.

CREATING THE DISPLAY

As a general rule, the video display should be created using the highest-level means appropriate to the task in hand. There are so many options that different application programmes will not necessarily address the video system in the same way. A popup utility may use different

A Video Graphics Array 16-colour display. Although only 16 are available, they can be chosen from 262144 and subtle effects are possible. The resolution is 640 horizontally by 480 vertically, and this is the only display mode available having equal pixel "size" both ways.

Fig.1. An 8×14 character array such as that supplied with the EGA. 9-pixel wide arrays are specified by the same byte, the video display circuits provide the extra pixel. MDA characters occupy the top 11 rows of 14, leaving row 13 for underline. The position of the underline is programmable and can also be displayed by the EGA in graphics mode.
settings from the main task and cause disruption of the display. Such programs often state the applications software with which they are compatible. Using high-level services reduces this risk by presenting a constant interface. Low-level entry should be used only when an effect can't be obtained otherwise.

Languages such as Basic and C have graphics facilities either built in or in libraries. Some versions have functions for addressing the bios (basic input/output system) directly from the language.

The text services available through dos resemble the time honoured teletype. The graphics symbols used to produce tables and histograms can be handled through dos. Character and string handling routines in text mode are uniform and perhaps the worst that can happen is that the screen changes colour when a second application takes control.

Bios functions cover every requirement. In many cases the bios keeps a record of the settings sent to the video sub-system. An application or installation programme can call the more recent bios versions to find out what the settings are. Alternatively the bios data can be read. Writing to the video system bypasses the process and subsequent bios calls may crash the display. Such bugs are hard to trace as the fault is not at the point where the crash occurs. The bios facilities should therefore be used.

Where a video subsystem is provided by a third party. it either emulates the IBM systems, responding to bios calls, or it has a mode of its own, requiring direct addressing bypassing the bios. One such system is the original Hercules Craphics Adapter.

Programs using the bios are likely to have a longer life and wider application than those using direct access. The latter give greater speed and creative freedom, especially when writing pixels to the display memory. The bios call to write a pixel requires the colour. the row and column numbers and the display page for each pixel submitted. This is very slow when a large area is to be filled from a buffer. The actual call is NT 10 H with $\mathrm{AH}=\mathbf{O C H}, \mathrm{AL}=$ pixel colour, $\mathrm{BH}=$ page . $\mathrm{CX}=$ column. $\mathrm{DX}=$ row. The same call with $\mathrm{AH}=\mathrm{ODH}$ reads a pixel, which is returned in the AL register.
All bios video service calls are grouped into interrupt 10 H , with the service required in AH register and the subservice usually in AL. The 80286 and 80386 generate interrupt 10 H on chip after a co-processor error, such as overilow. To resolve a clash, additional code is required to look at the instruction just completed to see if it is INT 10 H -video services. Suitable code may be present in the bios rom or in the rom on some of the more advanced video adapter cards.
Each issue of the bios rom has more services than the last. A recent estimate has 23 senvices arising from interrupt 10 H , with a further 64 sub-services and even 10 sub-sub-senvices. Refer to the technical computer documentation for the subset in use. Later roms have all the earlier services, and are almost identical
When the MDA and CCA were introduced. there were eight video modes of operation provided by the bios, 00 H to 07 H in Table 1. The ECA added four more. 0 DH to 10 H , and the VGA a further three, to 13 H . These modes are invoked by INT 10 H with $\mathrm{AH}=0$. $\mathrm{AL}=$ mode .

text data format

Whatever graphics system is in use, text mode data is stored in memory using two bytes per character. The first byte of a pair is the ASCII code for the character, while the second. the altribute byte. governs its appearance. In colour. the foreground the character itself) and the background can each have any one of 16 colours (see helow). Invisibility or reverse video is simply a matter of assigning appropriate colours. The bits in the second byte of the pair are assigned thus:

Bit Significance in CGA mode.
 $0 \quad$ Foreground blue Foreground green Foreground red Foreground intensity Background blue Background green Background red Background intensity

Bit 7 has a second interpretation. It can cause the foreground colour to blink, while the background colour assumes the low intensity state. To enable this feature, it is necessary to set a bit in an I/O port (in CGA mode, bit 5 of port 3D8H).

The EGA. MCGA and VCA modes use each nibble to select one of 16 colours (see below). Blinking can be enabled using bios interrupt 10 H with $\mathrm{AH}=10 \mathrm{H}, \mathrm{AL}=03 \mathrm{H}$ and $\mathrm{BL}=1$.

Table 1. The bios video modes.

AL	ADAPTER	TEXT chars \times rows	DISPLAY pix \times scans	CHARACTER MATRIX w x h	COLOURS	MEMORY start address	PAGES	MEMORY REQUIRED bytes/page	FRAME RATE Hz
00H*	CGA	40×25	320×200	8×8	16 of 16	B800:0000H	8	2.000	60
and	EGA		320×350	8×14	16 of 64		8		60
01H	MCGA		320×400	8×16	16 of 262144		8		70
	VGA		360×400	9×16	16 of 262144		8		70
$02 \mathrm{H}^{*}$	CGA	80×25	640×200	8×8	16 of 16	B800:0000H	4	4.000	60
and	EGA		640×350	8×14	16 of 64		8		60
03H	MCGA		640×400	8×16	16 of 262144		8		70
	VGA		720×400	9×16	16 of 262144		8		70
04H	CGA				4 of 16				60
and	EGA		320×200		4 of 64	B800:0000H	1	16,000	60
05H*	MCGAVGA				4 of 262144				70
06H	CGA				2 of 16				60
	EGA		640×200		2 of 64	B800:0000H	1	16.000	60
	MCGA VGA				2 of 262144				70
07H	MDAEGA	80×25	720×350	9×14	mono	B800:0000H	1	4,000	50
	VGA		720×400	9×16	mono		8		70
ODH	EGA		320×200		16 of 64	A000:0000H	8	32.000	60
	VGA				16 of 262144		8	32,000	70
OEH	EGA		640×200		16 of 64		4	64,000	60
	VGA				16 of 262144		4	64,000	70
OFH	EGAVGA		640×350		mono		2	28,000	60/70
10H	EGA		640×350		16 of 64	A000:0000H ${ }^{-}$	2	112.000	60
	VGA				16 of 262144		2		70
11 H	MCGA VGA		640×480		2 of 262144	A000:0000H	1	38.400	60
12H	VGA		640×480		16 of 262144	A000:0000H ${ }^{-1}$	1	153.600	60
13H	mCGA VGA		320×200		256 of 262144	A000:0000H	1	64.000	70

These modes are invoked using INT $10 H$ with $A H=0$ and the above mode number in $A L$.
-In the se modes the colour burst signal is disabled in the composite output for monochrome monitors.
Signals interleaved memory.
Setting the video mode clears the screen. Resetting the same video mode is a handy way to do it
Blinking occurs when bit 7 is set, leaving a choice of eight background colours. The same interrupt with $\mathrm{BL}=0$ disables blinking and enables 16 colours.

In monoclirome. there is an attribute byte in which bit 7 can also be enabled to cause blinking.

Attribute
 00 H
 01 H

07H*
09 H
$0 \mathrm{FH}{ }^{*}$
$70 \mathrm{H}^{*}$

Significance

No display
Underlined. lit character. dark background Same, not underlined Bright character underlined
*Only these respond to bit 7 . When blinking is not enabled, bit 7 increases the background on some monitors.

The data tables for character display are supplied by the bios. There are several different sets available, originally one based on a 9×14 pixel array for the MDA and one based on an 8×8 array for the CGA.

The four-byte address of the CGA charac ter pixel data table for bytes 080 H to 0 FFH is to be found at $0000: 007 \mathrm{CH}$, or interrupt vector location IFH. An application can substitute the graphics symbols by pointing this vector to its own pixel data table. The MDA characters are not available for substitution.

The EGA. MCGA and VGA permit the substitution of the entire character set, with bios calls for the purpose. The eight-pixel wide character array is conveniently specified as one byte per horizontal row (Fig.1). A table or part of a table can be substituted for the default using bios interrupt 10 H with $\mathrm{AH}=11 \mathrm{H}, \mathrm{AL}=0$, the address of the table in ES:BP. the number of characters in CX, the ASCII code of the first character in DX and

A display created using the normal character set with attributes.

A Hercules Monochrome Graphics display. Part of a Julia set associated with the Mandelbrot set. The resolution is 720 hori. zontally by 348 vertically, with an aspect ratio of 1.45 .

TEXT MODE BIOS CHARACTER CALLS

FUNCTION	AH	AL	BH	BL	CX	COMMENTS
Read character at cursorlocation.	08H		Page			Returns Ascii in AL, attribute in $A H$
Write character and attribute	$09 \mathrm{H}$	Ascii	Page	Attribute	Number of repeats of the byte required	Cursor not advanced, wrap around available
						Cursor not advanced, wrap around avallable. current attribute used
Write character in teletype mode	OEH	Ascii	Page (very early bios)			Cursor advanced, uses current attribute, wrap around and scroll

GRAPHICS MODE BIOS CHARACTER CALLS

FUNCTION	AH	AL	BH	BL	CX	COMMENTS
Read character at cursorlocation.	O8H	Page		Returns Ascii in AL or zero if nomatch found		
Write character and attribute	O9H Ascil					

XOR applies to the foregound colour if bit 7 is set on. The colour number supplied in BL is XORed with the existing colour for each pixel. All 1's creates reverse video. Read character $(8 \mathrm{H})$ in graphics mode works by pattern recognition, so if an alternate user supplied graphics character is sought, it still finds it and returns the byte describing it.
the number of hytes per character in BH . Characters nine pixels wide duplicate the right hand pixel (hit 0) or use the hackground.

The cursor consists of some scan lines within a single character having the foreground colour. Bios calls manipulate the cursor using $1 \mathrm{~N}^{\prime} 10 \mathrm{H}$ with $\mathrm{AH}=01 \mathrm{H}$, set cursor size. $\mathrm{AH}=02 \mathrm{H}$, set cursor position or $\mathrm{AH}=03 \mathrm{H}$, read cursor position. For all three services. $\mathrm{BH}=$ page, $\mathrm{CH}=$ cursor start scan line. $\mathrm{CL}=$ cursor stop scan line. $\mathrm{DH}=$ row. $\mathrm{DL}=$ column. Scan lines count from 0 . Bit 5 set in CH when $\mathrm{AH}=01 \mathrm{H}$ hides the cursor.

For normal purposes characters are most easily written by using dos through interrupt 21 H . Function 02 H or 06 H in AH causes the ASCIt character in DI, to be written on screen. The cursor is adjusted. Function 09 H in AH does the same for a string terminated with '\$. Function 06 H will transmit any code from 00 H to FEH : FFH changes the function to keyboard input. Later versions of dos permit redirection. so a file service could send data to the display, or one of the above services could be directed elsewhere. Dos function 040 H is particularly useful.

Bios calls to write characters are involved. Table 2 gives the necessary information.

Scrolling in a window uses bios (iNT 10H) services $A H=6$ for up and $A H=7$ for down. $\mathrm{CH} / \mathrm{CL}=$ row/column of the top left corner and D$) \mathrm{H} / \mathrm{I} \mathrm{L}=$ row/column of the bottom right corner of the window. $\mathrm{AL}=$ number of lines to scroll and $\mathrm{BH}=$ attribute byte for the blanklines.

Character data for display in text mode is held in the video buffer at address B000:0000H (monochrome video mode 07 H) or $\mathrm{B} 800: 0000 \mathrm{H}$ (CGA text modes 00 H to 03 H) whichever graphics adapter is in use. Because character data takes up little room in memory, up to eight different pages can be held and swit ched using further bios calls. The actual number of pages varies with the

An Enhanced Graphics Adapter display The limited choice of colours results in obvious distinctions between regions. The resolution is 640 horizontally by 350 vertically.

A Video Graphics Array 256-colour display. The large number allows subtle graduations in a display, though the limited resolution of 320 horizontally by 200 vertically loses fine detail.
mode in use ('Table 1). Pages start on 4 khyte boundaries in memory in the regular 80 column by 25 row text modes.

The EGA and VGA use interleaved pages in memory for characters and attributes; this is transparent as the hardware allocates bytes according to whether the address is odd or even.

Where four planes of memory all have the same address. a CPU instruction to read a byte causes four bytes to appear on the data lines from the four planes. These bytes are intercepted by four latch. es. Control registers select one of these bytes to be returned to the CPU. Seen as an 8×4 bit array, reading across the bytes reveals eight 4 bit pixel values from consecutive screen locations.
A CPU write causes the contents of the latches to be written back to the memory planes. modified on the way by the settings of the control registers. A simple read and write cycle causes four bytes to be transferred without change from one place to another.
There are nine internal registers giving a large number of options in reading and writing: a single read and write operation is described here. The port at 3 CEH receives the number of the register to be written to, and the port at 3 CFH receives the data.
Read mode 0 is set at bit 3 of register 5 to read a byte. The select register 4 receives the number of the memory plane the byte is to come from. To read the first byte from plane 3 requires the fullowing fragment of assembler:

| mov ax,0AOOOh | ;start of video buffer |
| :--- | :--- | :--- |
| mov $d s, a x$ | ;segmentaddress |
| mov ax,00005h | ;read mode 0 to R5 |
| mov $d x, 003 \mathrm{CEh}$ | ;port |
| out $d x a x$ | ;word out writes both |
| mov ax,00304h | ;plane 3 to R 4 |
| out dx,ax | |
| xor sisi | ;first byte offset is 0 |
| mov al,ds:[si] | iread the byte |
| A block may be read from the plane using | | A block may be read from the plane using a repeating movsb to a local buffer

Write modes are pixel oriented: they access the latch array across the bytes. Mode 2 is set in bits 0 and 1 of register 5. There is a mask in register 8 to define which of the eight pixels is to be modified ($1=$ change, $0=$ leave). The pixel data from the CPU consists of bits $0-3$ of the byte sent. Register 3 is set to 0 in this case, it controls extensive bit twiddling facilities.
mov ax.OAOOOh :start of video buffer
mov ds.ax \quad movite mode 2 to R5
mov dx.003CEh
$\begin{array}{ll}\text { out } d x, a x \\ \text { mov } & a x .06408 h \quad \text {;bit mask } 01100100\end{array}$
to R8
$\begin{array}{ll}\text { out } & d x, a x \\ \text { mov } & a x, 00003 h \\ \text { out } & d x, a x\end{array} \quad ; 0$ to R3
$\begin{array}{ll}\text { out } & \text { dx,ax } \\ \text { xor } & \text { si,si }\end{array} \quad$;first byte
mov BYTE PTR ds:[si]. isend pixel value 13 00Dh
The existing pixel values have to be read to the latches before the write, or random data will be sent. If the eight pixels are to be all different (very unlikely) the read and write process will be repeated eight times. Tedious. If all eight pixels are to be the same (very likely) they are all done in one write. Larger areas only require incrementing addresses as register data stands until changed.

A WRITE PROCESS

Latches		Memory planes
00000000---0- -- --->01100100		
00000000--- -0-- --->01100100		
00000000--- ---->00000000		
00000	0--- - --	>01100100
	$x \times x \times 1 \quad 10$ CPU data	01100100

AREAD PROCESS

Memoryplanes Latches

$01100100--0->01100100<$
$01100100-\cdots->01100100$
00000000 --- ->00000000
01100100 --- ->01100100
$01100100-$
data to CPU
$\times \times \times \times \times \times 11$
select register
Saving and restoring a bit map requires some data manipulation. It is a wise precaution to reset default register values after any operation.

GRAPHICS DATA FORMAT

When in a graphics mode. characters can still be displayed. The bios keeps a record of a phantom cursor and places characters accordingly. accessing the character tables for pixel data and writing it to the video display buffer rather than direct to the screen. To make the cursor visible write one of the graphics characters to the reported cursor position. Bios services move and report its position as in text modes.
Each pixel is specified separately in graphics mode. Even at one bit per pixel the memory requirement is much larger than in text modes. It is vital to compress the data as much as possible not only to save memory. but to make it possible to read the memory fast enough to keep up with the raster.
The system employed is akin to painting by numbers. One bit per pixel can have the
value 0 or 1 which specify two colours. The actual colours referred to by () and 1 are chosen in advance from all the colours available to the particular video subsystem. Two bits can specify four colours, up to eight bits can specity 256 colours (Table 1).

The number of possible colours is larger than the number that can be displayed. The descriptors of the chosen subset are placed in a table known as a palette. 'The bits describing a pixel are read from the video buffer. and used to select the corresponding entry in the palette. This entry is used to generate the video signal.

In CGA mode. there are 16 possible colours. These are provided by red. green and blue. each of which can be on or off. combined with two overall levels of in tensity.
The CCA does not give a free choice of colours for the palette. In mode 04 H . two
bits per pixel, there is a choice between two permanent palettes, green. red. brown or cyan, magenta. white for 01,10 . 11 respectively. Mode 05 H allows cyan. red, white only. In each case 00 can be any one of the 16 colours. Mode 06 H , two colour mode. permits free choice for 1 while 0 is black. Bios service $0 \mathrm{BH}($ INT $10 \mathrm{H}, \mathrm{AH}=0 \mathrm{BH})$ has two subservices. $\mathrm{BH}=0$ and $\mathrm{BL}=$ colour sets the free choice which is also used for the border except in video mode 6. Bit 5 of BL then sets the palette choice. Othenwise, $\mathrm{BH}=1$ sets the palette choice by $\mathrm{BL}=0$ or I respectively.

All the CGA graphics modes access data in the video buffer starting at address B800:0000H. Each byte is read left to right: in two colour mode bit 7 of the byte at offset 0000 H represents the top left pixel. bit 6 the pisel immediately to the right of it and so-on. The next scan line can odd numbered line) accesses memory at B800:20000 H in

TWO CHIP VGAGRAPHICS

It is now possible to purchase VGA graphics on a two-chip set providing all the control functions of a 256 -colour palette. The Cirrus logic GD510/520A devices provide register and bit level compatibility with all the popular software written for IBM graphics standards including the newest. VGA. The same company also supplies an extended 16 -bit bios to enhance the performance of the standard 8 -bit offerings.
Analogue monitor implementation requires an additional 256 K of $\times 4$-dram, video dac and bus interface circuitry in addition to the extended bios which forms part of the package. The CL.GD510A Graphics/ Attributes chip and the CL.GD520A

Sequencer/CRT Controller chip are hardware-compatible with the IBM Hercules VGA. EGA. CGA and MDA standards, as well as with the Hercules HGC. The company has a version appropriate to lap-top LCD screens.
Operating at dot clock rates up to 40 MHz , the chip set supports high resolution graphics and alphanumeric display modes for both monochrome and colour, and for high resolution variable frequency and PS/2 monitors. Video outputs are provided in four bits per pixel (all resolutions) and eight bits per pixel (320×200). Using analogue video output and an external palette, selection may be made from 256 K colours.

The set implements control and data registers in the current graphics standards appropriate to the 6845 CRT controller. It also includes data manipulation capabilities and data paths providing complete hardware and software compatibility.

The sequencer design provides additional video memory cycles for the CPU during the normal video refresh/display cycle. Memory cycles not used to refresh the display or video memory can be allocated to process CPU memory requests.
The hardware supports a mouse/graphic cursor, and a blinking insertion point text cursor together with an independent smooth scrolling of two separate text screens.

the same way. and the third scan line (even) data follows that of the first line. Even and odd numbered lines occupy two distinct blocks of memory.
ECA provides a choice from 64 colours. Two bits specify each of the primaries. giving three coarse steps in brightness and off. Sixteen choices are loaded to the palette. with defaults corresponding to the CCA colours, which in turn has a six bit entry to specify six inputs to the monitor where they are combined. Each byte loaded has the form 00 rgh RCB . and a 17 th byte specifies border colour. Rr represents the two-bit value for the red component, and so on.

VGA and MCGA both use a video digital-to-analogue converter (DAC). It has its own array of registers holding 256 colours available for display. Each primary colour is specified by six bits; the colour descriptor has 18 bits providing 262144 possible choices.

VGA and EGA have $640 \times 480 \times 16$ and $640 \times 350 \times 16$ modes respectively. These require 150 and 110 kbyte of memory, to be read 60 times a second. The memory is divided into four pages of 64 khyte, all of which have the same address starting at A000:0000 H and which are read in parallel. In use, bit 7 of the first byte in each of the pages $3,2,1.0$ in that order yields a four-bit

Table 3. A sample of the colour handling BIOS calls available using INT 10 H with $\mathrm{AH}=10 \mathrm{H}$.

Title of service	Adapter	AL	BH	BL	Comments
Load a palette register Read a palette register	EGA VGA VGA	$\begin{aligned} & 00 \mathrm{H} \\ & 07 \mathrm{H} \end{aligned}$	new colour descriptor	palette register number	Colour descriptor returned in BH
Load a palette register Read a palette register	EGA VGA VGA	$\begin{aligned} & 02 \mathrm{H} \\ & 09 \mathrm{H} \end{aligned}$			A 17 byte table in data memory is specified in ES:DX. the 17th byte is the border colour
Load a video DAC register Read a video DAC register	MCGA VGA MCGA VGA	$\begin{aligned} & 10 \mathrm{H} \\ & 15 \mathrm{H} \end{aligned}$	$B X=$ register number $B X=$ register number		Data supplied or returned in 6 bit quantities. $\mathrm{DH}=$ red. $\mathrm{CH}=$ green and $\mathrm{CL}=$ blue.
Load a video DAC block Read a video DAC block	MCGA VGA MCGA VGA	$\begin{aligned} & 12 \mathrm{H} \\ & 17 \mathrm{H} \end{aligned}$	$B X=$ number of first register in the block $C X=$ the number of registers		The address is ES:DX is of a table of 3-byte colour values red. green, blue.
Change video DAC page	VGA	13H	$\begin{array}{\|l\|} \hline \mathrm{OOH} \\ \mathrm{O} 1 \mathrm{H} \\ \text { page number } \end{array}$	$\begin{aligned} & \mathrm{OOH} \\ & \mathrm{OOH} \\ & \mathrm{OLH} \\ & \hline \end{aligned}$	Use 64 register pages Use 16 register pages select page number

number specifying 1 of 16 palette entries for the top left pixel.
As four memony planes have the same address, CPU access requires the intermediary of four latches. Read or write to the video memory transfers four hytes to or from these latches. See the box "Writing to interleaved memory".
MCGA does not implement the 640×480 16 -colour mode. and its memory requirement is limited to 64 kbyte. This and all other modes use the video buffer to supply a
single continuous hit stream read from A000:0000H on,
IGA has one other enhancement over MCCA. it has a 16 colour palette as well as a 256 entry array. In 16 colour modes the pixel data selects from the palette which in turn selects from the 256 entry array. In 16 colour mode the MCGA uses the first 16 colours in the array.
VGA uses the palette to page the array. specifying any block of 16 entries or 16 from any block of 64 entries. Bios call INT 10 H

ADDRESSING THE 8086 FAMILY MEMORY

The 8088/8086 CPU is a 16-bit machine, but has 20 address lines. There is therefore 1 Mbyte of addressable memory. A 16 -bit word can only address 64 Kbyte , a block of memory called a "segment". The 16 -bit address within the segment is called an "offset". A segment can be placed anywhere in the 1 megatyte addressing range by adding a constant to the offset to generate a physical 20 -bit address. This constant is the segment address and it has by definition four zeros for the four low-order bits of the 20. These zeros are not recorded and the segment address is a 16 -bit value which is shifted four places left before adding the offset
The address is written as $2345: 5432 \mathrm{H}$ where the segment address is 2345 H and the offset or pointer 5432 H . When computing the physical address the shifts are included automatically by the CPU.

23450 H segementaddress
 5432H
 $\overline{28882 H}$
 offset
 physical address

Unless specified otherwise, coding is assumed to be within a given segment and only the offset address appears in instruments. Thus code can be loaded and run anywhere in memory without modification. It is also faster as an address fetch is only two bytes.
Four segment addresses are maintained in registers within the CPU, code, data, stack and extra. The assembler and the CPU distinguish between these and generate code accessing the right segment address automatically. The offset for the code segment is the instruction pointer, and for the stack segment the stack pointer. The instruction and stack pointers are automatically incremented and decremented, and SI and DI registers may also be incremented or decremented depending on the instruction and the direction flag. A full address in registers would be written ES:BP, for example.
In memory, a four byte address is used as one entity in the interrupt vector table. The address is stored as two 16 bit words, the offset at the vector address and the segment at the vector address +2 . Each word is stored least significant byte at the address, the other at the address +1 . The vector address is four times the interrupt number. Thus interrupt 10 H has its vector address at 0000:0040H to 0000:0043H.

Available registers are:

AX (16 bit)
BX (16 bit)
CX (16 bit)
DX (16 bit)

15	87	
AH	AL	
BH	BL	
CH	CL	
DH	DL	

These are common to the $8088 / 8086,80286$ and 80386. The latter have further registers in addition, used for addressing memory beyond the 1 megabyte memory and in multitasking.

The memory map is:

Extended memory	80286/38	High limit100000 H
Rombios		E 0000 H
Installable rom		COOOOH
Video buffer		AOOOOH
		installed ram limit
Dos transient code		
Transient programme area (TPA)		
Dos resident code		
Rombios/Basic data		00500 H
Rom bios data		00400H
Interrupt vectors		00000H

The 640 kbyte limit is set by the dos which will not load programmes and data above this address. but will load a programme into the TPA which contains instructions to write to memory above that limit

The 8086 and 8088 are identical as far as programming is concerned. The 8086 is faster in operation having a 16 bit data bus where the 8088 data bus is 8 bit. The 80286 and 80386 in "real" mode use the low-address megabyte of memory in exactly the same way. The 80286 also has a 16 bit data bus, but is faster again through instruction pipelining and internal improvements. The 80386 has a 32 bit bus.

Not surprisingly, bios makes no provision for the Hercules graphics mode. It is necessary to set the display controller, a Motorola 6845, by direct access. Consequently the method does not fit into the classification used in describing the IBM graphics modes. The code below was used to load graphics modes. The code below was used to load the display of Fig.3, and illustrates the method. colour cards by Hercules. It is assumed that a file of pixel data exists having one pixel per byte (wastepixel data exists having one pixel per byte (wasteful, but simple) in which the pixels are in the usual
page-of-test order. The pixel values are 0 black or 1 pag
lit.

TITLE HGCLOAD
 DOSSEG
 MODEL small
 .STACK 100h
 .DATA

:Default BIOS data to replace possible prior changes.

biosd DB 780			
	DW	80	:crtcols
	DW	08000h	critien
	DW	0	:crtstart
	DW	8 DUP (0)	;curs_posn
	DB	0	;curs_mode
	DB	0	:actpage
cricad	DW	00384h	;addr_6845
crimod	DB	00Ah	$\begin{aligned} & \text { icrtr_m_set (for } \\ & 388 \mathrm{~h} \text {) } \end{aligned}$
	DB	0	;crtpal (unused)
biodln	EQU	\$-biosd	
:Motorola 6845 CRTC settings for 16 pixels $\times 4$			
crtedt	DB	000h.035h	;horiz. lotal 54 chars.
	DB	001h.020h	:horiz. displayed 45
	DB	002h,02Eh	;horiz. sync posn. 46
	DB	003h,007h	;horiz. sync width 7
	DB	004h,05Bh	;vert total 92 rows
	DB	005h,002h	;vert. adjust 2
	DB	006h.057h	scans : vert displayed 87
			rows
	DB	007h,057h	;vert syn posn. 87
	DB	009h,003h	; 4 scans/
			character
crdtin	EQU	(\$ cricdt)/2	:read by word ac.

xbf	DB	$\begin{aligned} & 23040 \\ & (?) \end{aligned}$	byte/pixel
pbfin	EQU	23040	
: $23040=8$ passes $\times 4$ planes $\times 90$ bytes $\times 8$ pixels			
inphan	dw	0	;pixel source file

CODE
:access data file and place hand
le in inphan.
:DGROUP to ds then continue as follows:

start:	cld	,	;index upwards
	mov	ax,00040h	;BIOS data area
	mov	es,dx	
	mov	$\text { di. } 00049 \mathrm{~h}$	
	mov	si. OFFSET biosd	
	mov	cx.biodln	
	rep	movsb	```:reset video mode7 data```
	mow	dx,003BFh	: configuration
	mov	a1,1	switch :graphics on, page 1 off
	out	$d x . a l$	
; blank the screen			
	mov	dx.003B8h	:CRTC mode con. trol port
	nor	al,al	;bit $3=0$ disables video
	out	dx, al	
:programme the CRTC			
	mov	dx.003B4h :CRTC address port	
	mov	si.OFFSET crtedt	
	mov	cx.crdtin	
hgel:	lodsw		
	out	dx,ax	$\begin{aligned} & \text { ial=reg. no.. } \\ & \text { ah=data } \end{aligned}$
	loop	hgcl	
:set graphics mode			
	mov	dx.00388h	
	mov	al,crtmod	;enable graphics + video
	out	dx,al	
;load th	pixel		

	mov	Si.OFFSET pixbf		
	mov	ax,0B000h	: video buffer address	
	mov	es,ax		
	xor	di,di		
	mov	dl. 87	; 87 lines per plane : 4 planes	
fill: fill2:	mov	dh. 4		
	mov	bh. 90	;90 bytes per scan line	
fill3:	mov	cx. 8	;8 pixels per byte	
	xor	blibl		
fill4:	shr	al. 1	:pixel to carry	
	rcl	bl. 1	;and into bl	
	loop	fill 4		
	mov	al,b1		
	stosb		;byte to video buffer	
	dec	bh		
	jnz	SHORT fill3 :for 90 bytes		
	add	di.02000h-:next plane90		
	dec	dh		
	jnz	SHORT fill2		
	sub	di, 08000 h -back to plane 0 90		
	mov	al, 7	;mask for group counter	
	and	al,dl		
	jnz	SHORT fill5	:every 8 passes refill :the byte buffer	
	call	fillbf		
fill5:	dec	dl		
	jnz	SHORT filll $\$$;87 times ;reset when tired of it	
	jmp			
fillbf.	push	$\frac{d x}{d i}$ bx,inphan cx.pbín dx.OFFSET pixbf		
	push			
	mov			
	mov			
	mov			
	mov	$\begin{aligned} & \text { ax,03F00h } \\ & 021 \mathrm{~h} \end{aligned}$:read input file to buffer	
	int			
	mov	si. OFFSET pixbf		
	pop	di		
	pop	dx		
	ret			
	END	start		

with $\mathrm{AH}=10 \mathrm{H}, \mathrm{AL}=1.3 \mathrm{H}, \mathrm{BL}=0$ and $\mathrm{BH}=0$ sets 64 entry hlocks or $\mathrm{B} 1 \mathrm{I}=1$ for 16 entry hlocks. The same call with $B 1,=1$ takes the value in BII for the required hlock number.

The first 16 entries in the video DAC and the 16 -colour ECA palette have default settings corresponding to the CCA colours. The second 16 in the viden DAC constitute a grey scale: all 256 entries have default settings.
A sample of the hios calls available through INT 101t for specifying colour selections can be found in Table 3.

The latter graphics modes can he modified through the use of a range of masking hytes and enablings hits. There are too many to describe here. and their actions do not condense into neat classifications. The defaults are adequate usually. This article assumes defaults are in force.

MONOCIIROME GRIPHICS

Services 0.02 H and 05 H generate a monochrome signal from the CGA composite output hy disabling the colour burst signal. The R.C.B outputs are unaffected. Senvice 5 creates a four-level grey scale: services 0 and 2 provide a variable number of shades from the colour attributes. These senvices are othenwise identical to services 1 . 3 and 4 respectively.

Service 6 is one colour and black. which is effectively monochrome on a colour monitor.

This lap top computer includes a Cirrus Logic VGA chip set for PS/2-type graphics.

Service 7 is the MIDA and service 15 provides a monochrome signal from EGA and $\mathrm{C} ⿳ \mathrm{C} .1$ systems. These services require a direct drive monochrome monitor. as oppesed to the composite input monitor required hy the com.
Operation of these senvices is the same as the corresponding colour services described above.

ACKNOWI.EDAEMENT
1 wrould like to acknowledge the loelp received
from Rapid Computers l.td.. of Childwall Five ways, Laserpool 1.15 6.NX. for the use of them range of demonstration l'Cs.

BIBLIOGRAPHY

The New Peter Norton P'rogrammer's ciuide to the IBM P'C and Ps/2. Peter Norton and Richard Wilton. Sicrosoft Press. 1SBN 1-5.5ti5-131-4.
Pregrammers cuide to $1^{\prime} C$ and IS's Video Systems. Richard Wilton, Vicrosoft Press. ISBN $1-5.5615-103.4$
[13.1] Technical Reference Manuals for the bat rious models.

OPEN LEARNING TRAINING SYSTEMS - TECHNICIANS \& ENGINEERS

Telecommunications - AM/FM/PCM/Modems/Fibre Optics

Analogue \& Digital

Telephony

Microwave

Radar

4A Harding Way, St Ives,
Huntingdon, Cambs PE17 4WR
Tel: 0480300695 . Fax: 048061654

R.я.T. LANGREX в.s.T. SUPPLIES LTD

One of the largest stockists and distributors of electronic valves, tubes and semiconductors in this country.
Over 5 million items in stock covering more than 6,000 different types, including CRT's, camera tubes, diodes, ignitrons, image intensifiers, IC's, klystrons, magnetrons, microwave devices, opto electronics, photomultipliers, receiving tubes, rectifiers, tetrodes, thryatons, transistors, transmitting tubes, triodes, vidicons.
All from major UK \& USA manufacturers.
Obsolete items a speciality. Quotations by return. Telephone/telex or fax despatch within 24 hours on stock items. Accounts to approved customers. Mail order service available.

LANGREX SUPPLIES LTD

1 Mayo Road, Croydon, Surrey CR0 2QP. Tel: 01-684 1166
Telex: 946708
Fax: 01-684 3056

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

R. Henson Ltd.

21 Lodge Lane, N. Finchley, London, N12 8JG.
5 mins. from Tally Ho Corner

Telephone:
 01-445 2713/0749

Active

Asic

28-pin pal device. The PALCE26V12H. fabricated in an electrically erasable c-mo process. is an extension of the AMD 24 -pin the 22 V 10 's functionality by about 20 percent and offers more inputs outputs an percent and ofrers more inputs outputs an
macrocells than the 22 V 10 and a second clock. Advanced Micro Devices (UK) Lid. clock. Advance
$04862-22121$

A-to-D and D-to-A converters Voltage-outputD/A converter. The AD7846 digital-to-analogue converter uses segmented-ladder architecture to ensure 1 bits of both resolution and monotonicity It fabricated in BICMOS and includes track and-hold output amplifiers to generate a low-glitch buffered voltage output To permit the microprocessor to write data and verify It. the AD7846 incorporates a readbach
feature Analog Devices. $0932-253320$

Triple 8-bit palette DAC The IDT75C458, a triple 8-bit video d•to•a converter with on-chip. dual-ported colour palette memory designed for high-resolution colour-graphic display applications The architecture of the DT75C458 eliminates the ECL pixel
nterface by providing multiple
compatible pixel ports and by multiplexing the pixel data on-chip Microlog Ltd. 04862

20 MHz 8 -bit video ADC. The single-chip

 20 MHz .8 bit video ADC. SP94308, is fully compatible with both NTSC and PAL video signals and accepts an AC-coupled input of Vpk-pk Plessey Semiconductors, 0793 .Development and evaluation
H16 evaluation card. The EVC641016
32 -bit H16 microprocessor to be develope and tested in the IBM PC environment The card consists of a single IBM PC XT format PCB contaning the H16 CPU. control logic and an RS-232C interface, an IBM bus interface and a variety of I/O signals Hitach Europe.0923-246488

General microprocessors
$10 \mathrm{MHzH16}$. The HD64 $1016 \mathrm{CP}-10$ is a OMHz version of the H1 6 embedded coniroler The device is built in $13 \mu \mathrm{mc}$ and contains a 32 -bit CPU, 1 Kbyte of fast of peripheral circuits The H 16 architecture has been specifically designed to support C and other high level languages Hitachi and other high level languages Hitachi
Europe. 0923.246488

16-bit single-chip microcomputer

Mitsubishis 16 -brit single chip
microcomputer family is now avalable the Mitsubishi 700 series micrcomputers are avalable in 8 MHz or 16 MHz versions.
resulting in a minimum instruction cycle time of only $0.25 \mu \mathrm{~s}$ On-chip memory sizes are the largest currently avalable from any manufacturer - ether 16 Kbytes rom with 512 bytes ram or 32Kbytes rom with programmable) versions are also avalable for development work and low volume applications. Impulse Electronics, 0883. 46433

Microcontroller. The OTP 28 integrates the Ziloge-mos 28 microcontroller with 8 K byte of one-time-programmable rom Designated the Z86E2116, the ZIlog OTP 28 is a field programmable device designed for use by engineers as a code development tool Microlog. 04862-29551

Interfaces
IntelligentSTEbus serial I/O. A new four channel serratio Stebus board. SISER4. control language and memory for dual por control and data buftering. CLIP Is a new standard high-level control language for
intelligent peripherals Arcom Control

Linear integrated circuits Four-channel video multiplexer. The AD9300 provides four-to-one.channel switching for video signal routeing and medical imaging A tyoical full. cower band width of 34 MHz (30 MHz minimum) and small-signal bandwidth of 350 MHz are combined with $\pm 01 \mathrm{~dB}$ gain flaness to 8 MHz Any of the four inputs can be randomly switched to the output at rates of 20MHz or higher with a two.bit channel.
Ouad bifet op-amp. The AD713 s a new
monolithic quad operational armolifier whic in addition to setting to 001% in $1 \mu \mathrm{~s}(10 \mathrm{~V}$ step). offers an input offset voltage of 0.5 mv and a blas current of 40 pA . harnionic distortion of 00003% at 3 V RMS. a slew rate of 18 V per microsecond and mirimum common-moderejection of 84 dB Analog Devices. 0932-253320

C-mos operational amplifiers. Exhbiting an input impedance to -fet types and
extremely low input offset ($2 \cdot 10 \mathrm{mV}$) and bia currents. the TS27x) family of of-amps are pin compatible with and suitable
replacements for. most-fet and sipolar types These devices operate at up to 12 V and are suitable for use with single rall supplies Impulse Electronics. 0883-46433

Low-cost op-amps. Motorolas MC33170/ MC34180 serles op-amps have a
significantly improved bandwidth and output voltage swing with no deadband cross-over distortion Other benefits include
capacitive drive capability of 10000 pF and power consumption of $180 \mu \mathrm{~A}$ per amplifier Features of the device include a $13 \mathrm{~V}^{\prime} \mu \mathrm{s}$ slew rate and 45 MHz bandwidth Jermyn Distribution 0732-450144
Video line driver. Two new integrated vide line drivers. VS620 and VS621 frcm VTC. are
designed to be fulliy compatible w th SMPTE RP 125 requirements Both devices are 10
bits wide, parallel-format line drivers providing differential outputs for: 0 data brits compatible, and the devices operzte from a 27 MHz interface clock Mogul Elertronics.

Satellite prescaler. Adivide-by-two prescaler IC for satellite televisior receiver
can also be used as a frequency dvider in high-frequency measuring equiprient The IC. SAB8726 has a guaranteed incut sensitivity of $-10 \mathrm{dBm}(70 \mathrm{mV}$ RMS) and a
frequency range from 1 GHz to 26 GHz it $)$ frequency range from 1 GHz to 26 GHz . It
accepts a sinusoidal signal from the local oscillator of a satellite television tuner and provides an input which drives the loop of the trequency synthesizer Philips Components Ltd. $01-5806633$

Negative linear regulator. The IPIR19 senes of ixed-volage negative regulator guaranteed to give 5A output over the ful operating temperature range Ther are avalable with output voltages of 5.12 and 15 volts, with the "A" series offering $\pm 1 \%$ outpu tolerance The devices give line reEmulation o $001 \% / \mathrm{V}$ and load regulation of 05%, both o conditions Seagate Microelectron cs Ltd conditions Sea

Memory chips

150ns 2Mbit eprom. Organized a; a 262 144×8 bit device, NEC's μ PD27C2001 2Mbit c-mos eprom family offers access D 17 and $\mathrm{D}-20$ models respectively, whils consuming a maximum active current of on 50 mA . This reduces to $100 \mu \mathrm{~A}$ in standby mode 2001 Electronic Components, 0438 . 742001

1Mbit flash eprom. Samples of the one megabit flash eeprom $27 F 010$ are zvallable reprogram at room temperature and can

EIA chassis-mounting relays from Silicon Power Cube provide zero-switched opto-isolated output of 4 kV RMS

erase. allowing its 128 sectore of 1024 oytes each to be individually erased and

reprogrammed. and it can also be bulk
erased in less than five seconds Amega Electronics. 0256.843166
improved gate protection higher breakdow oltage and narrower threshold voltage Silicon file memory chip. Sucon-file memory ch' ρ. μ PD4 2501 is designed to with megabyte or even gigabye constructed and with access speeds hundrads of tin es faster than hard disk drives The chip features a solf refresh current as low as 1048576×1 bit Very high par hing densities enable a compact ${ }^{\text {- }}$ silicon disk ${ }^{-}$unit witha 40Mbyte capacity to be constructed with an access time or 1 ms and a data transfer rat NEC Electronics (UK). 0908-691133

Power semiconductors
Mosfets. The Dill series power mosfets by

Power mosfet drivers. The Maxim MAX626/627 628 each contain two high output current divers which have beer optimized to turn large power mosfets on
and off auickly Besides power fets, the new devices chy Besides and pulse generators The MAX626 has two inverting channels the MAX 627 has two non-Inverting channels and the MAX628 has Thame Components. 0844.214561

Surface-mount rectifiers. General are a range of Jedec.regist Superectifier passivated silicon devices These 1 A 50 1000 PRV. leadless surface mounted devices that provide new space options fro increased surface density at reduced bond
size VSI Electronics (UK) 0279 -354T

PASSIVE EQUIPMENT

Passive components
Multi-chip capacitors. A rang of large custom, murnple ceramic capar. ors housed in OIL and modular packages are ior use in high-frequency filter applications in switched-mode power supplies A wide range of capacitance is possible. and by using mult-chip terhniques, valves uf to 100μ can be achueved Voltages range trom 50 to

Low profile dual beam socket The C9. and C84 series sockets from Texas Instruments have been designed tor high water use features include an a tir wick ng contamination wide protected open entiy or ease of IC insertion, and dual beam-ecge grip contacts VSI Electronics (UKI 0279.
3547 .

Connectors and cabling Burn-in test socket for SMDs. The 639 Copeland allow surface mount device tests up to 150 C The sockets provide fully enclosed contacts and the top of the socke provides a pre-insertion ner" ior self 393200 of lic pins Dage (GB) 0296

Interface modules. Modules based on the provide a wide range of interfacing connections They provide a transitron from barrier strip discrete wiring to IDC flat pibbon cable or D sub-miniature connector

Wire-to-board connectors. JST of Japan offers a range of wire-to printed circuit boa

A selection of Takbro's JST wire-to-board connectors

MGP miniature stainless steel piezo accelerometers from Entran
connectors. designed to minimize PCB space requirement. The range includes both rimp and insulation displacement types, with pitches trom 2.0 to 6.2 mm . Single pole

Circuit protection
Suppressors. The SAB range of p-n
ransient suppressors from General emiconductor Industries marketed under he name Transzorb, is capable of dissipating 500 watts of peak pulse power for 1 ms . Stand-off voltages range from 5 to 28 watts. RRElectronics, 0234.270272

Displays
Tri-colour led. The SPR54MVW led from Rohm is a three-lead bi-colour device with red and green chips in the same 5 mm package. The three-lead arrangemen enables the red and green leds to be separately biased and by muxing the red and reen light a third amber colour is produced. Hero Electronics. 0525.405015

Instrumentation
Data acquisition system. The MC80000
 ystems offers speeds from 1 to 2000000 samples a second at full 16 -bit accuracy Databasix 0635-37373

Process monitor and controller. The PM 5070 is an intelligent panel-mount instrument designed for strain gauge and other bridge-type measurement applications. It includes a high-accuracy 10 V excitation output and two input channel one $\pm 50 \mathrm{mV}$ input for connection to the bridge output and one $\pm 10 \mathrm{~V}$ input for excitation sense measurement. A atiometric measurement mode automatically compensates for excitation drift and lead wire resistance. whilst input gain and offset errors are correcte automatically. Datel. 0256-469085

Digital multimeter. The Rohde and Schwarz UDL 44 multimeter has five AC ranges from 250 mV to 750 V and five DC anges from 250 mV to 100 V Accuracy is within 0.04%. It measures current from 10 nA tol and 10 A Frequencies between 10 Hz and 100 H 2 can be displayed as such or as a period measurement. Feedbac

60 MHz oscilloscope. The Hameg HM604 oscilloscope is a universal 60 MHz unit whic etaures an automatic after-delay trigger mode, for jitter-free measurements of asynchronous signal sections, bursts or pulse trains, independent of amplitude fluctuation. Feedback Instruments, 0892 653322

Audio and acoustics. Audio Precision System One provides a full set of audio/ acoustic measurements to internationa tandards, controlled by an IBM, PC. AT or lone. Menu-driven software provides mult parameter tests which can be further linked into complex procedures including go/no.go
limits. Swept measurements include noise requency response, CMRR, THD \pm N, IMD thir d-octave band filtering. phase, crosstaik wow and flutter and polarity. The instrument permits examination of DAC and ADC performance up to 20 bits linearity. Island Acoustics. 0983.297780

Universal counter. The Stanford universal counter offers high-accuracy measurement of time intervals, frecuency period pulse. width. phase and rise and fall times. It gives high-resolution measurements over the requency range 0.001 Hz to 1.3 GHz . Even counting up to 200 MHz is also achievable Resolution for single-shot operation is $4 p s$ Lambda Photometrics, 05827-64334

Wattmeters. INFRATEK 104B (single phase) and 3048 (three phase) precision wattmeters accurately measure complex signals produced by power switching devices. They determine the RMS value, the ectified mean value and the mean value of current and voltage, power, apparent power eactive power, power factor, energy charge, and impedance in one measuremen cycle for one- and three-phase systems. Both wattmeters combine broad bandwidth ($104 \mathrm{~B}, \mathrm{DC}-400 \mathrm{kHz}: 304 \mathrm{~B}, \mathrm{DC}-100 \mathrm{kHz}$) with wide measurement range $12 \mathrm{~mA}-200 \mathrm{~A}, 2 \mathrm{~V}$. 1000 V and 0.1% accuracy Lyons
Instruments. 0992-467161
100 MHz DSO. The 100 MHz Trace 8608 has an integrated equivalent sampling rate of 4Gsample/s for repetitive wavelorms and a ull eight bits of vertical resolution. Real-time single-shot traces are digitized at
$40 \mathrm{Msample} / \mathrm{s}$. It has a flip up. flat-scree electroluminescent display and a 100 trace internal memory. Reflex Technology. 0494 814208

Transmission analyser. The SI 714

performs transmit and receive functions a he four major data rates standardized by the CCITT for interconnecting digita ransmissionsystems that is 28,34 and $140 \mathrm{Mbit} / \mathrm{s}$. Schlumberger Instruments 0252.544433

Printers and controllers
Colour video printer. The CP-100B is a ull-colour video copy processor which is capable of producing hard.copy images of almost photographic quality from a video picture in 80 seconds it can also accept images from graphic display monitors as we conventional television systems.
Mitsubishi Electric UK. 07072-76100
Production equipment
Automatic wave-soldering. The Supe
Nova automatic wave-soldering system, has overall package dimensions of only 72×22 to fill the solder pot The bi-directional solde sable height and is controlled and stabilized by laminar-flow side plates. Hollis Europe, 0634-716733

Power supplies
Modular power supplies. The Powercube Goldline range consists of separate modules
or "Cirkitblocks" which perform different functions within the power supply, for
example flitering input and output. The example filterng, input and output. These can be individually designedin to customer circuits or combined and fully inter connected in a variety cf ways to Norbain Technology. 0734-85441

VME power supply. The VME003 pluggable VMEbus power supply has fully independent outputs which are permanently protected against short circuit and idling. Operating from either 110 or $220 \mathrm{~V}(40.400 \mathrm{~Hz})$, this $6 \mathrm{U} / 12 \mathrm{HP}$ power supply has outputs of +5 V $35 \mathrm{~A}+12 \mathrm{~V} / 6 \mathrm{~A}$ and $-12 \mathrm{~V} / 2 \mathrm{~A}$. The PSU also features soft start and fold-back (up to 2/31 mar $^{\text {I }}$. Schroff UK, 044240471

Switch-mode power supplies. The P serie of single-output, switch-mode powe supplies operate from animput of $85-264 \mathrm{~V}$ the larger models (up to 600 W) having automatic AC voltage selection. Outputs of 5 12. 15 and 24 V are provided. Efficiency is typically 80% line and load regulation 0.5 Ripple and noise are quoted as less than 150 mV pk-pk for all units. Operating temperature is $0-50^{\circ} \mathrm{C}$, output adjustment $\pm 10 \%$, is olation 3750 V AC and all units have overvoltage. overload and short circuit protection. The 300 and 600 watt mode have the facility for parallel operation. All models comply with U. CSA and
standards. XP plc, 0734-576211

Switches and relays
Security relays. For secunty systems, reed relays based on the DYAD switch have been developed to offer users the advantage of n polarity and no interface problems, with the additional benefits of noise immunity. power handling, line-drive and line receive the DYAD switch can handle loads from 0 to 10 watts. C.P. Clare Internatio 7 al NV (Belgium) 0101223331

COMPUTER

Task-oriented processors
PC module for the VMEbus. The HVME XT286 allows system designers to run any PC-compatible software on their VMEbus systems. The HVME.XT286 is based on the NEC V30 processor (10 MHz clock): this has the same instruction set as the 8086 but is much faster. since all instructions are hard wired rather than microcoded. HTEC, 0703 58155

High speed FFT analysis. A high-speed solution to fast Fourier transform (FFT) analysis by Plessey Semiconductors consists of three integrated circuits, namely one PDSP1 6112 (complex multiplier) and two PDSP16316(complex accumulators). The chip set provide a solution to the Radix 2 Decimation-in-Time (DIT) algorithm for FFT

Dual-in-line switches. New version of the Grayhill Series 76 and Series 78 lamilies of d switches have a new epoxy to seal the switch bases for higher thermal ratings. The new formulation also offers an improved seal. Highland Electronics, 04446-45021

Miniature power relay. A single-pole PCB mounting relay type TRK 17. measuring 21. $\times 16.2 \times 14.2 \mathrm{~mm}$, switches up to 7 A at up to 1800 operations per hour The silverplated contack can switch loadsaslow as only 0.19 W to actuate the monostable relay Iskra. 01.6687141

Snap-action relay. Type R20 is a snap action relay incorporating a microswitch
featuring a contact rating of 6 A at 250 V . The elay has up to three changeover contacts, either silver-cadmium oxide or 5 micron har gold-plate. Radiatron Components, 01-891 1221

Solid-state relays. The standard ETA relay is chassis-mounted with TO-3 case centres and has zero-voltage switching. With an opto-isolated input/output of 4 kV RMS. these SSRs have a load circuit range of 24-280V RMS and 85A single-cycle peak range of 3.5 .12 VDC and a load-current rating up to 10A. Silicon Power Cube (UK), 0883 717252

Transducers and sensors
Accelerometer. The MGP Series of
minature piezoelectric accelerometers are constructed in stainless steel with electron beam welds to give hermetic sealing of the housing. Threaded studs or holes are provided for fixing purposes. With operating temperature ranges of $-55^{\circ} \mathrm{C}$ to $+250^{\circ} \mathrm{C}$. the devices have a mounted resonant frequency up to 46 kHz . Entran, 0344 778848

HTEC's HVME XT286 module for the VMEbus, based on the NEC V30 processor

analysis of complex signals, which enables a complex FFT to be broken down into a number of easily calculated two point Discrete Fourier Transforms called Butterlies. This enables each butterily to be ater 100 ns and a 1024 point FFT array in 512μ s. RR Electronics. $0234-270272$

Computer board level products
STEbus PC. A single-board PC for the STEbus is believed to be the first to provide full hardware and software compatibility while occupying Iust one backplane slot. The Celeste PC card is based on the 8088 processor running at 10 MHz or the V20 a

With over 125 leading Exhibitors Leetronex ' 89 has, once again, all the elements needed to maintain its position as the North's leading Electronics Exhibition.... so: whether you're buying, selling, contracting, manufacturing, using or researching; it's certainly going to be the one Exhibition where you'll be absolutely positive of making the right contacts!
SEMINAR INFORMATION
EXHIBITOR AND PRODUCT INFORMATION

FREE PARKING

27th - 28th - 29th JUNE 1989

AT THE UNIVERSITY OF LEEDS EXHIBITION CENTRE

CALL THE LEETRONEX'89 INFOLINE 0532332021 TO RESERVE YOUR EXTRA TICKETS NOW!

.,.make the positive connection

By road, rail or air you'll find Leeds and Leetronex ' 89 so accessible. London and many European cities are within day-visit range by air into Leeds Bradford Airport, the Intercity Station is quite literally a five minute drive from Leetronex ' 89 and the Leeds Inner Ring Road, which connects with the M1 and M62 motorways, runs directly alongside the Exhibition Centre. It couldn't be easier to make the connection....and, if that's your intention, then please accept the Complimentary Ticket below....we look forward to seeing you at Leetronex '89. In the meantime if you need any further information just call us on the Leetronex ' 89 Infoline.

AI in signal processing

Tom Ivall reports on the knowledge-based techniques for signal processing discussed at a recent IEE Colloquium

TTo help diagnose abnormalities in the human brain more reliably, Plymouth Polytechnic and Derriford Hospital, Plymouth, are developing a digital signal processing system which is guided by a database of empirical knowledge obtained from medical experts. The brain abnormalities concerned include tumours, epilepsy, injuries and other neurological disorders. These are normally diagnosed by electroencephalography (EEG) but the reliability of the results is often affected by signal artefacts, originating from other parts of the patient's body, which contaminate the EEG signal and make it difficult to analyse. Typical artefacts are the large muscle potentials (in the mV range) resulting from normal eye movements and blinks.

The purpose of the empirical knowledge database is to enable the real-time signal processing to recognise and distinguish between the artefacts and the pathological signals (and between different artefacts) so that it can automatically remove the added artefact components from the EEC signals and produce a 'clean' recording. Clinical information in the knowledge base is held as a series of 'IF. . . THEN' rules (logical implication statements) built up from years of human experience in the analysis of EEG records. It is utilised as shown in the simplified schematic of the real-time system under development (Fig.1).

AI TECHNOLOGY

Altogether the IEE colloquium, by concentrating on a specific field of application, proved a valuable corrective to the air of mystery which still surrounds the subject of Artificial Intelligence. As the concept. of human intelligence is in itself highly controversial (is it innate or something that can be learned?) the qualifying adjective 'artificial' seems to make this area of both science and technology even more remote. But experience as a technical reporter and editor has taught to me to be distrustful of mere words and their implied concepts, and especially to watch out for what the philosopher A.N. Whitehead calls the fallacy of misplaced concrete.
ness.
As far as electronic engineering is concerned, I would recommend that we forget the word 'intelligence' here and just use the abbreviation Al for convenience (except in farming contexts). Al is effectively demystified if you think of it merely as the latest and most advanced manifestation of non-numerical computing or symbolic information processing. This purely technological function can be conveniently kept separate from the scientific role of AI which, along with psychology, linguistics and philosophy, is really part of the study of human and animal intelligence, now called cognitive science.

After pre-processing, the EEG and artefact signals are passed to a feature extractor and selector, which provides information necessary for determining the regions of signal contamination. These features are classified and labelled and then transferred into a rule interpreter, which, together with the knowledge base, is the heart of the whole system. The rule interpreter produces control rules of the IF. . . THEN type and these direct the action of the artefact removal process, which

Fig.1. Use of a knowledge base in a system for automatically removing interfering artefacts from electroencephalography signals.

takes place in the block marked 'adaptive filters

This adaptive-filter artefact removal tech nique has already been fully developed anc used experimentally on its own. Here the information in the contaminated EEC and the artefact signal is used to obtain an estimate of the artefact. The artefact estimate is then subtracted from the contaminated EEC to yield an estimate of the true EEG. As indicated by the variable-control arrow, the true EEC estimate is used to adjust the coefficients of the adaptive filters. by means of a recursive least-squares algorithm. to obtain an optimal estimate of the artefact.

Although this artefact removal filter does work, it suffers from a number of deficiencies as an independent unit. These include non-stationarity and lack of correlation in the signals and the presence of multiple artefacts from different eye movements. It is for this reason that the knowledge-based processing system is being added to distinguish reliably between the artefacts and the pathological EEC signals.

Another knowledge-based, real-time signal processing system is being developed in the UK for the analysis of marine radar signals. The Admiralty Research Establishment (ARE) is supporting research into DSP techniques for automatic detection. surveillance and identification of radar transmitters. It involves receiving on one antenna a multiplicity of radar signals from different sources (total pulse density about 1 million per second). separating them out and identifying them.

One of the problems which makes a knowledge base of human expertise necessan' is that the separation process - called de-interleaving - chops up the individual radar pulse trains into fragments. So before the transmissions can be identified these fragments have to be put together again into continuous pulse trains - a technique called merge processing.

It has been found that a merging process based on empirical knowledge gives much better results than a conventional algorithmic approach. This human knowledge is in the form of rules and comes from two main sources: generic information about radar transmissions; and knowledge of the experienced failure patterns of the de-interleaver. The latest position here is that ARE has commissioned Cambridge Consultants to investigate a rule-based merging system working in real time on transputer architecture. Other ARE signal processing research going on concurrently is concerned with rule-based de-interleaving in real time (with Philips) and knowledge-based radar transmitter identification (with SD/Scicon).

Both of these knowledge-based signal processing applications were outlined in a recent IEE colloquium entitled "The application of artificial intelligence techniques to signal processing". E.C. Ifeachor spoke for Plymouth Polytechnic and J. Roe for ARE. Initiated by the colloquium chairman. P.V. Coates of Thorn-EMI Electronics. the meeting was intended to be an informal exploration of the extent to which knowledge databases could be used to advantage in signal processing.

Other fields of application mentioned during the colloquium included speech recognition (using lexical, syntactical and semantic knowledge bases). image recognition, aerial photography. sonar systems, aircraft detection, geomagnetic data analysis, detection and classification of fetal heart sounds, and the accurate re-positioning of patients on nuclear magnetic resonance imaging machines. Some of these were on-line systems, others off-line.

COUPLEI) SYSTEMS

It seems clear from the above examples that the main reason for using knowledge bases to enhance conventional signal processing is to cope with raw data from the messy real world which is somehow inadequate - erratic, incomplete, unpredictable, contaminated with unwanted data and so on. The input of empirical human knowledge controls or assists a signal-processing system which would otherwise be unable to produce satisfactory results through deterministic algorithms based on conventional mathematical models, because such models often prove inadequate in trying to represent some characteristic of the real world.

An ovendiew paper given at the colloquium by David Sharman of consulting engineers Yard Itd. Clasgow. put this anecdotal evidence into formal terms with the aid of a diagram like Fig.2. It shows the emergence of what are being called coupled sy'stems. These systems are created by interactively coupling conventional numerical

Fig.2. Coupled systems use symbolic processing to control the application of numerical processing efficiently, in accordance with human knowledge previously acquired from experience.
computing, based on mathematical models, with symbolic computing, based on coded representations of knowledge, manipulation of symbols, logic and inference. (The well known expert systems typically use an "inference engine'.

The coupled system, explained Sharman, deals with the kind of problems mentioned above by using symbolic rule-based computing processes to control the application of numerical algorithms. There are two main benefits. First, the coupled system improves the quality of numerically computed solutions. Secondly, it can make savings in the cost and complexity of the computational resources needed by numerical processes.

One way of achieving these savings, mentioned by other speakers as well, is to design the coupled system to selectively direct the numerical processes onto relevant segments of the incoming data or signals, where they will be most useful. This avoids the need to process the entire data or signal. The appropriate segments of data/signal can be selected either by using some characteristic of the incoming information ('data driven') or from expectations of the incoming information derived from a mathematical model ("model driven'). Such 'focus of attention" methods had been successfully applied to image and sonar signal processing, said Sharman.

Judging from the contributions to the colloquium, there seem to be two main methods by which human knowledge is introduced to control the signal processing. One amounts to the interactive coupling of an on-line expert system to the signalprocessing equipment. Expert systems are now commercially available in 'shell' form from software houses. But extracting the detailed knowledge from the experts and structuing it into coded forms suitable for symbolic processing is by no means a straightforward task. everyone agreed. In the second method the empirical knowledge is applied not as accumulated expertise but as desired results in specific examples, which provide goals for machine learning systems to aimat.

NEURAL NETWORKS

One form of learning system, which learns by being 'trained' to achieve a specific result, is the artificial neural network. Nigel Allinson. of the University of York, explained that an artificial neural network is an intercon-
nected structure of many simple non-linear processing elements, roughly comparable with biological neurons. The network is twained to learn, from the presentation of examples, to form an internal representation of a problem. The processing elements are often analogue in operation (the Perceptron of 1959 was an early form). Networks can have multiple layers of elements. the layers signifying different levels of abstraction in the representation of the problem.

In signal-processing applications, said Alinson, a neural network can be considered as an adaptive pattern classifier. An unknown input pattern applied to it (e.g. through transducers) is allocated to the most representative of a number of classes. In the training mode the network adapts itself in response to the applied signals by cnanging the weighting of the synaptic inputs to the processing elements (analogous to the synapses in neurons). After this learning process the synaptic weights are frozen and no further adaptation takes place.

The colloquium did not produce any specific descriptions of neural networks applied to signal processing. Various speakers. however. did mention in passing that these networks were being successfully developed for speech and image recognition, for identifying pulsations in geomagnetic data and for detecting trading patterns in stock market prices. Japan and the USA were the leaders in this field. Sometimes neuralnetwork solutions were attempted when conventional signal-processing techniques would be far better.

Whereas neural networks are essentially non-linear systems - the elements have thresholds and 'fire' like biological neurons - another kind of adaptive device capable of learning. the adaptive combiner, is linear in operation. As described by A.R. Mirzai of the Lniversity of Edinburgh. the combiner gives an output which is a linear function of several inputs, the individual effects of which can be varied by weighting. Like the reural network, the combiner can be trained. This is done by presenting to it a set of input values and the corresponding desired output value. An adaptive algorithm t een automatically adjusts the weightings of the several inputs to the combiner so that the mean square of the error between the actual output value and the desired output value is brought to a minimum. In practice. multiple adaptive combiners are used in retworks because usually more than one output is required.
Mr Mirzai said that this technique had been used in a machine learning system for fault diagnosis and adjustment of electronic devices (e.g. tuning waveguide filters). Essentially it was capable of learning the relationships between the inputs and outputds of a system by looking at a number of examples which included system features and the corresponding desired action taken. (See Intelligent techniques for electronic component and system alignment' Electronics \& Communication Engineering Journal, IEE, Jan/Feb, 1989). The EEC signalprocessing application mentioned earlier also uses this general principle, in its adaptive filters.

TCS 240

A new top quality temperature controlled 50 Watt power imon available in 240V, 115 V . 100 V or 24 V yet measuring only 22.4 cms long.

- 200° to $450^{\circ} \mathrm{C}$ temperature range
- Analogue

Proportional control within $\pm 1 \%$

- Up to $450^{\circ} \mathrm{C}$ in 60 seconds
- Ceramic heater element
- RTO sensor Ideal for Production, Maintenance, Repair or educational work.
FOR
PRECISION SOLDERING A $\backslash N \times T \times E \times x\rangle$
2 Westridge industial Estate, Trvistuck. Devon PL19 80E
Tel: (0822) 613565 Fax (0822) 617598 Telax: 9312110595 AEG
ENTER 5 (ON IREIPI.Y CARI)

Three axis microproces sor controlled machine

STEPPER MOTOR XYZ MACHINE
Complete with microprocessor controller and software Capable of engraving routing, drilling, cuiting-out shapes and ploting "Working area $12^{\prime \prime} \times 19^{\prime \prime}$ " Qwerly keyboard * 40 Character liquid crystal display * RS232 computer link PRICE $£ 3,900$.plus VAT

COMPUTERISED CONVERSION FOR PANTOGRAPH ENGRAVING MACHINE * Easy fit conversion * Computer controller * RS232 Intertace * Qwerty clean-wipe keyboard * 40 character LCD * 3 fonts * Looper * Auto serioling * Reverse engrave * Expond/condense * liahics * Easy progrom for logos, cur-outs etc PRICE £3,200 (plus VAT) MCI LATHE CONTROLLER
The MCI Lathe Controller is o 8085 microprocessor bosed system capable of driving directly three stepping motors up to 2 omps per phase and corrying out numerically controlled machine operations Programs are entered vio o membrane keyboard and displayent through a 40 charocter LCD Data may be reviewed and edited The system is busically miended as a low cost controller for machine toals for instalation by the user Features include * Easy program operation * Progranmable axis speed * Repeat routine - Halt and wat external restar1s * Pre progrommed contours
J. A. F. GRAPHICS

Unit S, Thomas Street, Congleton, Cheshire CWI2 1QU. Tel: 0260275127
ENTER 13 ON REI'LY CARI)

aluable ADDITION TO YOUR OWN PROMOTIONAL MATERIAL.

FOR EXAMPLE, A TWO PAGE ARTICLE CAN BE REPRODUCED AS A FOUR PAGE FOLDER WITH ADDITIONAL WORDING ON THE FRONT PAGE AS AN INTRODUCTION.

FOR FURTHER DETAILS CONTACT: CLARE HAMPTON ON 01-661 8672

COUNTAR TIMERS

PFM200A

$£ 75.50$＋VAT
$20 \mathrm{~Hz}-200 \mathrm{MHz}$ in 2 ranges， 4 gate tirnes． 10 mV sensitivity 8 －digit LED display．Battery／mains operation．

TF200

£175＋VAT
$10 \mathrm{~Hz}-200 \mathrm{MHz}$ in 2 ranges， 5 gate times．Frequency，period period average，totalize． 10 mV sensitivity． 8 －digit $0.5^{\prime \prime} \mathrm{LCD}$ 200 hour battery life
TF600 $\quad \mathrm{E139.50+} \mathrm{VAT}$
$5 \mathrm{~Hz}-600 \mathrm{MHz}$ in 3 ranges， 3 gate times． 10 mV sensitivity．8－digit
$0.5^{\prime \prime}$ LED display．Battery／mains complete with adaptor／charger
$0.5^{\prime \prime}$ LED display．Battery／mains；complete with adaptor／charger．
$\overline{\text { TF1000 }} \boldsymbol{\text { £395＋VAT }}$
$D C-100 \mathrm{MHz}$ on both channels． 6 gate times．Frequency period，period average，time interval，time interval average requency ratio and totalise． 20 m sensitis．HF fite attenuator，trigger contiols，trigger hold－off． 8 －digit $0.6^{\prime \prime}$ LED display．Mains operatio
TF1100
$£ 495+$ VAT
As for TF 1000 but with 70 MHz to 1 GHz prescaler（frequency only）： 10 mV sensitivity

TP600	$\mathbf{\Sigma 5 5}+\mathrm{VAT}$
$\div 10$ prescaler， $40 \mathrm{MHz}-600 \mathrm{MHz} .10 \mathrm{mV}$ sensitivity	
TP1000	$\mathbf{~} 75+$ VAT

thandar
ELECTRONICS LIMITED
ENTER 8 ON REPLY CARD

Thandar Electronics Limited， 2 Glebe Road，Huntingdon， Cambridgeshire PE18 7DX，England Telephone（0480） 412451 Telex 32250 Test G Fax（0480） 411463
THE LOGICAL CHOICE

HEWLETT PACKARD

1122A power unit for let probes 116028 transistor fixtur
80078 pulse generator 8733A pln modulator
500 F milit－volimeter
10529A 10526T Logic troubleshooter
334A distortion meter
3400 A m Hivolimeter
382A（P）P－band atenuator 0－50ab 415 E swr meter
$43188 \mathrm{C} / 478 \mathrm{~A}$ microwave power meters from
6516A power supplies $0-3 \mathrm{KV} 6 \mathrm{~mA}$
$7046 \mathrm{~B}(07)$ 2－pen XY plotier high－s
$8018 A(01)$ serial data generator
5011 Toyic troubleshooting kit complete
400 FL mV meter
3438 A dignal multumeter HPIB
8165 A unction $1 \mathrm{MHz}-50 \mathrm{MHz}$
$435 \mathrm{~A} 48 \mathrm{~A} 1 \mathrm{~A} F$ power meter \＆head
（Other heads available）
3581 A AF wave analyser
2871G thermal graphics printer
3575A gain／phase meter 1 Hz － 13 Mhz
332A447LA microwave RF power meter
8553B 170 MHz spectrum analyser plug－ın

ADDITIONAL EX－STOCK T \＆M KIT

VARIAC：＇s（Claude Lyons）0－270V．20A £100．15A 〔75． 8 A

GOULD OSA600 digital synthesizer analyse
NEUTRIK YP401 audio 1est sel
PM5534 standard pattern generato
PM5545 PAL 625 colour encoder
PM6302 RCL component bridge
PM2120 universal switches for syst＇ 21
PM5580 IF modulators．Systems B．G \＆M
PM5597 TV VHF modulators．Rack of 5 System
FLUKE 8060A digital mulit－meler
THURLEY LA 160 B logic analyse
ELECTFOVISUALS TV waveform r
EV40 TO／EV4020 19 rackmounting 30
$3 u^{\text {monto }}$
and ROHDE \＆SCHWARZ SWOF III videoskop c／w sideband adaplor SCHLUMBERGER 4010A＇stabilock＇mobile radio test sel \quad §1．500

TEST \＆MEASUREMENT EOUPMENT

AVO RM 1603 universa bridge
LYONS PG73N Bipolar pulse generato
PHILLPS PM $15901 \mathrm{mHz}-2 \mathrm{mHz}$ synth．function ger
STOLTZ A．G．prom orogrammer M2 Maest
RACAL 9102 DC－1 GHz 30W power meter
RACAL 9084104 MHz synthesized sig．gen．GPIB WAVETEK 1503 sweeper $450-950 \mathrm{MHz}$
AL PADD RHODE \＆SCHWARZ 1 kW 50 ohm load．N－types BRUEL \＆KJAER 4428 noise dose－mete
RIKADENK1 3 pen chan recorder
TEKTRONIX $7012 \mathrm{M} / 2$ AND converter plug－in
TEK 2901 time－mark gen TEXSCAN WB713（1．950 sweep generator TEXSCAN 9900300 Mh 2 sweeper／display
PHILIPS PM2554 AF milli－voll meters
PHILLPS PM5532．4 FF generalor 0.11110 MHZ AMFE
HIIIPS PMB8043 KYT Plotier A4
PHILIPS PM667 High－res＇ 120 MHz counter（LP 5592
EADER signal senerat char recorder
AM／FM BRUEL \＆KJAER 3347 Real time $1 / 3$ Octave analyser $(2130$ frequency analyser +4710 display unit）

ALL DUR EQUIPMENT IS SOLD IN EXCELLENT，FULLY FUNCIIDNAL CDHDITION AND GUARANTEE FOR 90 DAYS TELEPHONE FOR CARRIAGE DUDTE．ALL INSTRUMENTS ARE AVAILABLE EX．STDCK AS AT CDPY DATE．GDDD QUALITY TEST EDUIPMENT AL WAYS WANTED FDR STDCK．PRICES QUOTED ARE SUB．JECT TO ADDITIONAL VAT

Intro scan for compact-disc players

When selecting tracks for programming into a compact disc player, using the track search button can be tiresome. This design, when fitted to any player with a subcode output, allows a scan of the first ten seconds or so of each track.

Pressing the start button causes IC_{12} to go high and operate the play button via $\mathrm{IC}_{2 \mathrm{a}}$. During the scan, IC_{3} latches high. When $\mathrm{IC}_{1 \mathrm{~h}}$ goes high as a result of the first track being located, IC_{5} produces a low-going pulse of around 10 s depending on the RC time constant. Monostable device IC_{6}, triggered by the rising edge of this low pulse, creates a 400 ms pulse which is long enough to trigger the next-track button but not so long as to start any auto-repeat facility that may be built into the player.

Once the next-track button has been operated. $\mathbb{I C}_{1 \mathrm{~h}}$ will go low while the next track is located. On returning high, this IC retriggers the timer.

When $\mathrm{IC}_{4 \mathrm{~b}}$ pulses high, IC_{7} is triggered. This creates a 30 ms pulse which is longer than the time taken for $\mathrm{IC}_{1 \mathrm{~h}}$ to go low after the next-track button is operated. The end of this pulse triggers triggers IC_{8}, creating another 400 ms pulse. If at the start of this pulse $\mathrm{IC}_{1 \mathrm{~h}}$ is still high, i.e.. the disc is still playing because the next-track button failed to find another track, as would be the case at the end of the disc. IC, will pulse high for 400 ms , operating the stop button and resetting IC_{3}.

1 have tested the design on a Pioneer PD5010 unit, obtaining the 'not-playing' signal from pin 1 of the subcode output socket.
G.J. Aspland

Bury St Edmunds
Suffolk

Motor control

Adjustable voltage regulators make very good motor speed controllers but devices such as the LM317 cannot give an output lower than about 1.35 V . In my application, motor voltage had to go to zero and control at low speeds had to be good. This circuit is my solution.
One side of the motor connects to a 5 V rail produced by a 7805 fixed-voltage regulator. The 79 MG is a four-terminal negative regulator with a separate con-
trol terminal. It gives an output from -5 V to -12 V . resulting in a voltage over the motor from zero to about 7 V . Since the 7805 produces 5 V at all times, output of the 79 MG cannot be reduced below -5 V .
Zero motor voltage is set using the $1 \mathrm{k} \Omega \Omega$ potentiometer. The tab of the 79 MG is connected to the input pin, which is also ground. so both ICs can be bolted to the same heat sink without insulating washers.
I.W. Berry

Manchester

Novel RS bistable

Two spare non-inverting gates from a tristate IC such as the 74125 can be connected to form an RS bistable multivibrator.

Assume that q is high. The upper gate is high impedance so its output resistor pulls \bar{Q} low. A negative pulse at R makes Q go low, enabling the upper gate. When the upper gate's output goes high, the lower gate is disabled and thus Q is pulled low.
P.M. Delaney

Wargrave, Berkshire

Circuit ideas

Low dissipation supply

I needed to power some car audio equipment from a poor 240 V AC supply in a yacht. Tests showed that the equipment drew up to 2.5 A and that it would not tolerate much 100 Hz ripple; it would however tolerate supply voltage variations.

Air flow in the equipment's location was restricted so the supply had to be efficient. Conventional low drop-out voltage regulators waste power; this design is more efficient since it absorbs peaks in the rectifier output while dropping very little voltage during the troughs. As a result, the seriespass element dissipates only a fraction of the power that it would in a conventional linear regulator.

Even though the equipment could handle voltage variations I decided to limit the circuit's maximum output voltage to make
its use safe under low load and high input voltage conditions. The circuit is upside down simply because this configuration allows an n-channel power fet to be used instead of a more expensive p-channel device.

Diode D_{2} ensures that the input sample from divider $R_{2,3}$ is slightly less than half the input voltage. Precision rectifier $1 C_{\text {Ia }}$ tracks the lowest (most positive) point in the rectifier trough while R_{1} provides a slow 'leak' so that if load is removed output from the rectilier will creep up to the new trough value over a second or so.

An upper limit of 15 V is placed on the output by $\mathrm{R}_{1}, \mathrm{D}_{1}, I \mathrm{IC}_{16}$ and D_{3} which ensure that output from the precision rectifier never exceeds 7.5 V . Buffered output from the precision rectifier is compared with half
the output voltage by IC_{l}. Residual ripple from the precision rectifier's output is filtered by R_{5} and C_{3}. Resistor R_{6} and C_{4} slug the feedback loop to ensure stability while retaining adequately fast load response.

Conveniently, the threshold voltage of the power fet ensures that the output of $\mathrm{IC}_{\mathrm{lc}}$ operates at approximately half the supply voltage. Diode D_{2} ensures that the fet always has a voltage across it. Since the BUZ71 has an on-resistance of about 1Ω, the fet will have to drop about 0.25 V for the rated output.

Sufficient heatsinking for the prototype was provided by the walls of the small diecast box that the unit was built into. With careful PCB layout, output ripple was visible but unmeasurable on a $5 \mathrm{mV} / \mathrm{div}$ oscilloscope even with an input ripple of several volts.
C.G. Miller

Sevenoaks
Kent

Reducing demodulator distortion

Output of the 1496 balanced modulator/ demodulator is proportional to the product of an input voltage and a carrier. Suppression of the 1496 output is quite poor at the higher end of its frequency range, and alias frequencies (even multiple of $f_{c}+$ even multiple of f_{s}) cause serious in-hand spurious interference.

By placing a differential amplifier at the output of the product detector. these unwanted frequencies can be eliminated. Since I only needed low-frequency operation I used a CA3193 op-amp which is pin compatible with the 741 but has more suitable characteristics for this application.

Connecting a balanced amplifier at the output removes the need for a symmetrical carrier to reduce aliasing and it makes highly symmetrical switching in the mixer unnecessany.

Attenuation of $2 f_{c}+2 f_{s}$ products is greater than 60 dB . As shown, the circuit is suitable only for low frequencies but if the op-amp is replaced by a CA.3450 for example, bandwidth is greatly increased; note that the 3450 and 1446 in this case would both be powered
from $\pm 6 \mathrm{~V}$ rails. The 1496 operates at up to 100MHz.
V. Iakshminarayanan

Centre for Development of Telematics
Bangalore
india

Circuit ideas

Tunable loudness control

Here, a capacitance multiplier provides a loudness control that can be tuned with ease to suit the ear. Being easily tunable. it lends itself to experimentation.

At low volume levels (i.e. $n \leqslant 1 / 2$, see panel) combined impedance of C_{1} in parallel with $R_{1} / 2$ decreases as frequency increases so upper frequencies are boosted. Likewise, equivalent capacitance C_{2} produced by the multiplier combines with R_{2} to boost lower frequencies.
With R_{1} at about $40 \mathrm{k} \Omega$ and C_{1} at about 3 nF , tuning the capacitance multiplier and adjusting R_{2} achieves a wide variety of loudness effects with simplicity and smoothness (see curves). Resistor R_{a} tunes the capacitance multiplier; varying it from 0 to $100 \mathrm{k} \Omega$ varies the corresponding equivalent capacitance of C_{2} from 15 nF to $1.5 \mu \mathrm{~F}$.

Moving the wiper of R_{1} for different volume levels (i.e. different values of n) only shifts the whole compensation curve up or down when all other component values are fixed.
Tseng C. Liao
Peking University
Beijing

LOUDNESS CONTROL TRANSFER FUNCTION

Equivalent capacitance of the multiplier is $C_{2}=C_{1}\left(1+R_{\mathrm{a}} / R_{b}\right)$.
Voltage transfer of the circuit in decibels is $V_{0} / V_{i}=20 \log \left[n R_{1}\left(A^{2}+B^{2}\right)^{1 / 2}\left(C^{2}+D^{2}\right)^{1 / 2}\right]$ where
$A=\left(R_{1} / 2\right) R_{2}-1 /\left(4 \pi^{2} F^{2} C_{1} C_{2}\right)$, $\mathrm{B}=\left(\mathrm{R}_{1} / 2\right) /\left(2 \pi \mathrm{fC}_{2}\right)+\mathrm{R}_{2} /\left(2 \pi \mathrm{fC} \mathrm{C}_{1}\right)$, $C=\left(R_{1} / 2\right)^{2} R_{2}-\left(R_{1} / 2\right) /\left(2 \pi^{2} r^{2} C_{1} C_{2}\right)$. $D=\left(R_{1} / 2\right) R_{2} /\left(\pi f C_{1}\right)+\left(R_{1} / 2\right)^{2}\left(C_{1}+C_{2}\right)$ $\left(2 \pi f C_{1} C_{2}\right)$.
$n=\mathbf{R}_{0} / \mathbf{R}_{1}$.

V-525 Cursor measurement $50 \mathrm{MH} \quad \mathrm{real}$ time oscilloscope

NEW

- 2 Channel
- CRT Readout of Key Parameters
- Cursor Measurement of $\Delta \mathrm{V}, \Delta \mathrm{t}$ and $1 / \Delta t$
- $1 \mathrm{mV} /$ div Sensitivity
- Max Sweep 20ns/div
- Alternate Magnification
- DC Offset Function
- Signal Delay Line and TV Sync.

Expect more from Hitachi
 In a word, reliability
13 Garrick Industrial Centre, Irving Way, London NW9 6AQ Telephone: 01-202 4311. Telex: 27449

ENTEIK 38 ON REPLY CARD

- Current to 30 A , voltage to 110 V
- Wide model range, 22 versions
- Analogue or digital meters, rack mount
- IEEE-488 interface option

The TRIO connection. Trio is a trade name of the giant Kenwood Corporation of Japan. The well known family of Trio test equipment now carries the Kenwood logo.
Let us send you data on the product featured above and update you on the extensive Kenwood instrument range.

Thurlby Electronics Ltd, Burrel Road,
Thurlby St. Ives, Huntingdon, Cambs PE17 4LE. Tel: (0480) 63570

In the second part of this article, the author introduces a popular PLD and shows how it can be used to replace blocks of conventional logic.

BRIAN J. FROST

The architecture I described last month is found in many pal devices. But there is one device that has become an industry standard in its architecture and pin capacity - the 16L8. As with eprom type numbers (e.g. 2764), the part number conveys some idea of how the device is actually organized, with pals having numbering of the form
<qty array inputs> <output state logic> <qty array outputs>
for example, $16 \mathrm{~L} 8,20 \mathrm{Ll} 10,16 \mathrm{R} 8$ etc.
Thus the 16 L 8 has 16 pins that can be inputs, eight pins that can be outputs, and has logic that organizes outputs toward being low when "active". As we shall see shortly, the active-low description is not as rigid as in the case of outputs taken from. say, a 74LS138 active-low decoder. This is because the 16 L 8 can be programmed in such a way that the required input condition causes the out put to go high.

Figure 6 shows a complete layout of the 16L8 pal allowing us to identify its important
characteristics.
In Fig.5, where the address decoder design was coded on to the pal architecture. the 16 L 8 's inputs enter from the left and are available to the entire array in both "true" and "complement" forms by means of pairs of vertical wires. For example the input pin 2 is assigned to vertical wires 0 and 1 , the input pin 3 is assigned to wires 4 and 5 and so on.

Each output is the (active low) output of a seven-input Or-gate with each of these seven inputs being a 32 -input And-gate that straddles all the vertical wires. Additionally in the case of the six output pins 13 to 18 , the state of the output pin itself is taken back into the array and accounts for the remaining vertical wires. This organization means that any output can be made dependent not just on any input combination, but also on the state of any output pin. In situations such as address decoding where there may be very few outputs but a large number of inputs. this feature can be exploited to make output pins 13 to 18 available as "extra" inputs in addition to the dedicated 10 input pins (the
$10+6$ inputs result in the " 16 " of the device's name). Since an output can be made dependent upon itself, this feedback facility will be seen to be particularly useful when we move on to the creation of latch functions.

Since any given output may be required to become true on more than just one combination of And-ed inputs, each output is provided with seven such And lines - called "product terms" (Ors) - which are Ored together. (In the simple example of the address decoder, there was only one product term; hence only one And line in Fig. 5 was needed for each out put pin.)

Another feature of the 16 L 8 is that each output pin is actually formed using a threestate driver, with its three-state control taken from another single horizontal And wire with one product term. This feature may be used to create an "open collector" type output, or to create a bi-directional pin for applications involving processor buses or other shared-output situations where one or more device outputs can be deselected by combinations of input control lines.

WHERE TO USE THE 16L8

The 16 L .8 pal is now a ven' popular PILD and is probably the best value for money: a unit costs $80 \mathrm{p}-£ 1.80$ depending on quantity. As a result it is a good device on which to learn, since most other devices have a very similar array layout but changed pin quantities and characteristics.

The 16 L 8 can be programmed to operate as an address decoder, multiplexer. demultiplexer, comparator, or to replace most combinatorial logic functions, i.e. those that do not require clocked or counting operations. In this sense, the l 6 L 8 can be thought of as a collection of universal multi-input gates available to replace or augment such existing TTL circuitry.

A common query expressed by those starting to use programmable Jogic is how to know in advance whether the particular device is going to fit the application, or whether you will run out of input and/or output pins. Fortunately, no matter which of these limitations - if any-appear during the design, there are several options providing soiutions.

A check on the required number of input and output pins is the first task since outputs tend to go quickly. If the number of pins is adequate, the design will fit within a 16 L .8 if the logic equations can be reduced to fit the seven product terms available on each output.

Fig.7. How your equations overlay the pal fuses.

If it turns out that the equation for an output is particularly complex. you always have the option to cascade inputs and outputs hy using the feedhack path that connects an output hack into the array - i.e. a spare output can he thrown away as an internal node within your design. If you do exceed the pin count - and this quite often happens in larger designs - you can either move to a larger device with more pins, or divide your design into smaller sections that would each fit within one smaller pal device. In either case there is no queston of having no way out: in fact it is here that the creativity really hegins.

In a later section on partitioning your designs we shall look at the trade-offs of these kinds of choices.

WHEN THE 16LX IS LESS TIAN IDEAL

Because of the flexibility of the pal architecture, the same type of array organization has appeared in many subsequent programmable logic devices. Where these differ from the 161.8 is in the output logic cell, which is the logic circuitry associated with each single output pin. In the 161.8 this circuitry is biased towards a pin that is active-low: that is. the minimum number of product terms (Ors) will he used in the array when the pin is used in the active-low state. And since there are 32 And terms hut only seven product terms it is possible that using the pin in an active-high mode may exceed the product term capacity of the pin.

An example of this is as follows. Suppose the address decoder example shown earlier were to be modified hecause the octal latch was required to be selected at two unique addresses that were not successive or related as a power of two. For example the output
latch might be required active at address 18_{14} and also at $\mathrm{B} 2_{16}$.
From the previous design, the equation that selects this latch at address 188_{16} is

For the additional address $\mathrm{B} 2_{16}$ the equation simply has its bits altered to correspond to the value B2, e.g.

latch clk =! $10 W \& A 7 \&!A 6 \&: A 5 \& A 4 \&$:A.3\&:A2\&Al\&'A0

For the latch to respond to buth addresses. these two equations are simply Ored together in exactly the same way as in designing with TTL. Thus a new equation for this would read

latch_cIk $=1$! IOW\&! $A 7 \&!$ 'A6\& ! $.45 \&$
 A4\&A3\&A2\&:Al \&'A0)
 \#! !IOW\&A7\&!A6\&A5\&
 A4\&! A3\&! A2\&A1\&'A(1)

where the \# symbol signifies the logical or function.
This has created two product terms. one for the address 18_{15}, and the other for the address $\left.\mathrm{B}^{2}\right)_{16}$. A point to note is that there is no need to be concerned here with clever reductions of this kind of logic expression down to more compact. hut perhaps less comprehensible equations, for two reasons. Firstly, this kind of logic minimization is already handled adequately by the lagic compiler that you will use to turn this equation into a fuse map and thus formal knowledge of logic reduction techniques is not required. Secondly. ary attempt to reduce the equation manually will almust
certainly degrade its clarity and so reduce its value as documentation.

In fact the equation as written above makes it possible to see in your mind how it actually overlays the pal architecture of Fig.6. You will notice that I have written the equation showing each product term ($(0$ r) on a separate line: and were there to be more product terms leach beginning with the "\#" Or symbol) then each of these would he written on another new line. Thus with the Fig. 6 drawing, where the And lines are horizontal and the seven Or terms are clastered vertically before entering each output cell. one can easily visualize this equation placed directly over the circuitry for one output: each line of the equation runs along a horizontal And line and each or term starts the next horizontal line down.

Figure 7 demonstrates the equation in place in the pal. The drawing has been simplified to remove all hut the required output pin (Larcllci.k), and the unwanted output feedhack wires have been removed. Associated with this output are the seven horizontal lines, each of which are programmed to And together any combination of the input pins or their inverse. As a result, the upper line has connections shown exactly as specified by reading the equation that selects the output i-Itil cik at address $188_{1 n}$. The next lower line is the same, but constructed for the address $B 2_{15}$, and so the output pin becomes 'true' when either condition is met.
Notice how close is the resemblance hetween the fuse pattern and the way the equation is actually written; this makes it easy to see just how much of the pal circuitry for this particular output pin is still unused. For example it is easy to see that across the "width" of the device (in the And direction) (.ne would run out of input pins leng before running out of fuses. Thus we could easily add more address lines to our definition. assuming that we still have pins free on the device. By contrast. each time we create a new address at which the output is to he selected, we add one more "product term" to the output and this requires a new horizontal wire. In the 161.8 there are only seven such wires for each output and this hecomes a far more real limitation. Running out of available product terms on an output is probably the most common mistake second only to trying to assign one of the power pins to he a signal!
Now hack to logic minimization. As I have mentioned the 16 L X is organized for outnuts that are true when low - hence the nverter symbol on the output cell. However.

this does not prevent us from using the device to generate outputs that are true when high, because the logic compiler will re-arrange the way that the equation is specified to try to fit it within the physical organization of the device. This operation is directly equivalent to that in TTL design where you find yourself with several Nand gates available, but need a Nor function; and you solve the problem by placing Nand inverters on another Nand gate's pins. The great advantage with the pal is that inverters already exist at each input of the pal. and only the And and Or terms of the equations need to rearranged to fit inverted equations.

Compared to the TTL design, we are spared the boolean arithmetic that such logic conversion would entail since the logic compiler will perform this automatically, removing any redundant logic terms. Whilst you might have an initial feeling of a loss of control over the design, you will still see the exact operation of the logic by examining the simulation results, as explained earlier.

Although this logic conversion is an excellent tool for allowing pin polarities to change as required. it is worth bearing in mind is that when you specify an output pin to be used inverted from the way that the pal was organized it can generate more product terms than you expected. For example.

Fig.8. Simple SR latch function (a), redrawn (b), and implemented in a 16 L 8 (c).
consider the expression
output $=$
!(in1\&in2\&in3\&in4\&in5\&in6\&in7\&in8)
This requires that the output is true and low when inputs 1 to 8 are all high (i.e. it is a big Nand gate). Should we want to invert one or more inputs, the way in which the equation fits inside the pal does not change: the input is simply taken into the array inverted using a different iuse link and the same horizontal And wire used.
However. if we needed the output to be true and high (i.e. a big And gate instead), we wouldwrite
output =
in $1 \& i n 2$ \&in3\&in4\&in5\&in6\&in7\&in8
The 16 L 8 pal is still an active-low device and so the logic compiler will reorganize the expression in such a way that logically it is identical, but physically the output is low when false. i.e.
output $=!$ (in 1
\#in4
\#in5
\#in6
\#in7
\#in8)
This is still the hig And gate function that we wanted: but it now uses only one fuse connection along each horizontal And line in the pal requires eight Or product-term lines to fit. Because there are only seven in the 16L8, this expression has too many product terms to fit.
Of course one could combine this expression with another output to fit it within the 16 L .8 pal , but the example does illustrate how any particular pal device gets its limitations from hoth the fuse pattern and the way in which the output cell is oganized. The next step is to examine how other devices use different output cell types to solve specific requirements.

COUNTING AND LATCHING

Although popular, the 16 L 8 pal is really useful only for general "combinatorial" applications which allow it to replace some of the most untidy gate bits of TTL logic. Generally it cannot perform counting or other clocked operations because these

Fig.9. One output of the 16R8 pal.
functions are too complex to implement in the fuse array. The 16 L 8 can, however. implement the set-reset latch function. often shown as a cross-coupled Nand-gate (Fig.8a), and this happens to illustrate how close the correspondence hetween a gatebased design and its pal equivalent can be.

Many of us have used this type of circuit. where a $74(1)$ gate IC_{1} is used to provide a simple latching start/stop control circuit. The start hutton sets the output high, the stop hutton resets it low.

Ironically, the hest explanation of how this circuit fits into a pal is achieved hy changing Fig.sa to a type of drawing that always annoys me if I see it used on a circuit diagram - an identical circuit but drawn with the gates cascaded, so making the essential latch nature much less evident. Now look at Fig.8c. where this same function is coded into a 16 L .8 using just three fuses.
Activating the start input to the pal makes the output "Running" go true hecause there is no other And term on its line.
As this output goes true, it latches itself in the true state hecause its own output is being fed back into the array as another term Anded with the inverted state of the stop input. Thus the Running output continues to hold itself set until the stop input is activated to release the latched output. The signal flow as seen on the pal architecture can be seen to be very like the "cascaded" latch drawing of Fig.8h and the operation of the pal tatch is identical even down to the indeterminate output that results from depressing hoth huttons at the same time!
This is one example of using low-level gating to implement a SR latching function. but to perform more sophisticated counting operations some additional circuitry is required to the hasic 161.8 pal. One method of doing this is to insert a flip-flop between the seven-input Or-gate and the output driver. as shown in Fig. 9 where a D-type flip-flop is used, and the pal becomes a repeated array of one of these functions for each output pin. This particular device is named the 16R8.
where the R stands for registered. Incidentally. aprectiation of these two devices $16 \mathrm{~L} . \mathrm{x}$ and $16 R 8$ gives a newcomer actual knowledge of some ${ }^{20}$ real pal devices. since there are relations within the family where the total outputs comprise a mix of registered and direct outputs. This mix is conveyed by the type number: 16R4 contains four registered outputs, the loRt contains six registered outputs etc. Other devices follow the same nomenclature but with smaller pinouts.
In the 16 R 8 registered pal. the clock inputs to each flip-flop are commoned and brought to one external pin. reflecting the synchronous nature of clocked functions built with this device. In fact as we shall see shortly: the construction of any counter is only one sequence of a general set of sequences possible by a state-machine'. or prosrammabie sequence generator, where any next state can be defined as a function fo the present state, Behind this definition lies the key to the design of any clocked functions using Plols.

The flexibility of the 16 R 8 in Fig. 9 is due to the fact that the I) input of its flip-flop can be made dependent upon the state of any combination of the device inputs or its outputs. This means that on any successive clock pulse. all the flip-flops can be set tor a new state determined by the states of the device mput pins and the flip-flop's last states. For example, it is easy to see that a reset eperation can be implemented here by having one input pin (call it "reset") that uses the array gating to present an overriding logic () to all I) inputs of each flip-flops irrespective of any other gating. With this reset input true, receipt of a clock pulse would cause all flip-flops to move to the (1) (reset) condition. implementinga "synchronous" reset operation.

Because of the various array fuse connections that can precede these (D)-type flop. flops, it canalso be shown that all other types of conventional flip-flops can he created from this D-type design by suitable design equations.

In the concluding part of this article. the author will present a simple counter as a design example, and will discuss of soltware and harduare programming tools.

Further reading

There is much informatoon readily abailable on the subject of Pl.I)s. most of which explores their applation and examples far more comprelensisely then this article. Beloware listed a tew of the more prominent manufacturers and their loften free data books. Toobtain these or other informa tion. contact several semiconductor distributors. sidee in the interest of promoting these devices they can all provide large quantities of data on reyuest. This list is by momeanscomprehensire.

Aevanced Micro Devices. Use the P:ML Device Data Beroh 1988 and the PAI, Inerice Handbor, 1988 for incormation on pals generallys. therr desisn. and using IMID's logsic compiler PALASM. There are many examples and prohlems with theor solutiens. Wse the P(bi) IVata Bonk 1988 for informa tion specific to the longic Cell Irray device.

National Semiconductor. L'se the Programmathe Longic Design Ciuide for information on all Nationals devices a seneral oweriew of logic design and many examples.

Texas Instruments. I'se the Programmable logsic lass lata book for information on all texas devices meluding FIP As and proms.

Ithilips (Mullard, Signetics), I'se IProgrammable logic devices (Book a part dal for information on all signetas devices and therr .MM, KR: logic compiler.

Atera, Cypress. Lattice. These companies spe (Wallize in erasable Pl.|)s.

Brian I. Frosi is with Inased / esigh and Devedrymentslidd. Fermdenm, Iorsel.

30. Alan Mathison Turing (1912-1954): the solitary genius who wanted to build a brain.

W.A.ATHERTON

Buried treasure conjures up childhood images of sandy heaches, tropical islands and Long John Silver. The M25 London circular motonway hardly fits this image; but next time you are stuck in a traffic jam. spare a thought for buried treasure. For somewhere near junction 2?, during the dark daysof 1940 when Britain awaited invasion, Alan Turing huried two bars of silver bullion. It seems strange to relate that the man who did as much as anyone to break the German codes, and whom many regard as the father of the modern computer, was unable to find his hoard again.
A long-distance runner and cyclist. Turing has been described as a self-reliant misfit who ran against the social norms of his time. He was a practising homosexual at a time when this was not only illegal hut was deemed to be a security risk. He paid the price of being found out, if that is the right expression, for Turing was deeply honest to himself and never concealed his homosexuality.
In his trial at Knutsford in 1952 he was described as "a national asset" and "one of the most profound and original mathematical minds of his generation". It was true, hut he was still found guilty and was given probation on condition that he accepted hormone treatment - in effect. chemical castration. According to his biographer. Andrew Hodges, Turing rode the storm as if he had been caught doing some naughty experiment in the dormitory'. But a little over two years later. on June 7, 1954, he doused an apple with cyanide and killed himself.
Turing's claim to fame is as one of the fathers of electronic computers. His 1936 paper "On Computable Numbers" is the classic in its field. He dreamed of making a "brain", his Universal Machine. His influence was felt hy all the early pioneers of computers from von Neumann in the USA to the teams that huilt the first post-war British computers. The National Physical I.aboratory's ACE computer was his concept of a Universal Machine. Today his memorial is The Turing Institute in Glasgow, dedicated to research and training in artificial intelligence.

CHHLDHOOI)

They say the child is the father of the man and that seems to have been true of Alan Mathison Turing. For long periods he was separated from his parents, especially his father. Later in life he was a confirmed solitary, one with whom many found it difficult to get along.

Turing was born a londoner, in Padding-
ton. on June 23, 1912. His mother, formerly Ethel Stoney. was a distant relative of Ceorge Johnstone Stoney, the Irish physicist who gave the electron its name. Alan's father, John Mathison Turing, senved the Empire through the Indian Civil Service. For the first decade of his life Alan and his elder hrother, another John, stayed in England whilst their parents lived in India. except for their often long visits to England. Much of the time the hoys were farmed out to a retired Army couple at St Leonards on Sea near Brighton.

Alan Mathison Turing
Alan Turing has heen described as a naughty. wilful and cheeky hoy ${ }^{\prime}$. Apart from being par for most boys it may also have heen an outworking of his high intelligence. which was recognized quite early. Once on a family holiday in Scotland he noted the flight paths taken hy bees. plotted the intersection and bravely raided the nest for honey'. He was also said to be a jolly hoy and to have a high integrity to which he held strictly in adulthood. Confidences were rigidly respected. There may have been a hint of his future mathematical abilities in his habit at one time of stopping at every lamp post to read the serial number.
Throughout his life he appears to have been untidy. As a child. he found writing difficult and accompanied it with many ink
little ahout his personal appearance. Colleagues remember the holes in his jacket, the old tie he used as a belt, and the hright red cord that sened as a pair of braces long after the day when his real braces broke.
When Alan was about 12 years old his father resigned from the Indian Civil Senvice and settled for an early retirement in France, at Dinard in Brittany. School French lessons suddenly acquired a purpose. So far he had been educated by his mother, at a private day school. and the nat a preparatory school near Tunbridge Wells. He was particularly interested in maps and formulae.
For public school it was decided that he should go to Sherborne in Dorset. When he arrived at Southampton from France in 1926 there were no trains because of the General Strike. He set out on his hicycle and arrived on the second day. Later in life he rejected an offer of an official car in favour of his bike. Cycling and running were to be his great loves. He learned to run, so he said, by avoiding the ball on the hockey pitch. But for an injury, he might have qualified for the British marathon team in the 1948 Olympic Games: his hest time was only 17 minutes behind the Olympic champion!
At Sherborne his ability at mathematics developed. as did his passion for science. He took an avid interest in astronomy to which he was introduced by a fellow student with whom he developed an intense, hut doomed, friendship. Tuberculosis killed his friend in 1930. But Sherborne fulfilled its purpose and in 1931 he progressed to King's College. Cambridge - Britain's Mecca for a mathematician. Turing gained his degree in mathematics with distinction in 1934 and was awarded a research studentship of $£ 200$. This was followed in 1935, at the tender age of 22 , by a coveted Fellowship at $£ 300$. At last he had the academic freedom to pursue his ideas.

COMPUTABLE NUMBERS

Amost simultaneous with his election to a Fellowship was the publication of his first paper, a slight improvement on earlier work by the master mathematician John von Neumann. As it happened, von Neumann arrived in Cambridge shortly afterwards to spend the summer away from his home university of Princeton in America. Turing almost certainly attended his course of lectures: but his main problem now lay in choosing his field of research.

His interest in mathematical logic had been aroused by M.H.A. Newman's lectures in 1935. These included problems posed at the end of the 19th century by the German mathematician David Hilhert. One of these remained unsolved and in 1928 Hilhert
himself proposed the Entscheidungsproblem - "to find a method for deciding whether or not a given formula is a logical conseguence of some other given formulae". (The mathematical details are discussed in references 1 and 2.)
Turing solved the remaining problem and went on to postulate a logical machine that could solve any problem of logic provided it was given a suitable set of instructions. This ran counter to the prevalent belief that different calculating machines were needed for different mathematical problems. Turing showed that it was possible logically, if not physically, to have one machine to do all. The concept was soon to be known as a "Turing machine". Within ten years such machines had. as Gandy put it. "descended from the sky to the firm ground of information technology".
Turing's paper was called "On Computable Numbers, with an application to the Entscheidungsproblem" - Computable Numbers for short. Alan Turing had solved a major problem of mathematics with a fresh. direct and "simple" approach. Though it would take a little time to establish his reputation, that reputation was now assured.
He was not the only one to tackle the problem, however, for it had just been solved hy an established American mathematician. Alonzo Church. at Princeton University. Though Turing's approach was radically different from Church's. the discovery of Church's work must have been a painful experience. Max Newman wrote to Church asking for help in getting Turing to Princeton so that he could be at the centre of things for a time and "so that he should not develop into a confirmed solitary". Alan Turing duly sailed for America on September 23, 1936.

Princeton University had acquired the status of being the place for a mathematician to be. The Institute for Advanced Study had been set up there in 19:32 and the double institute, as it could be viewed, attracted leading scientists to its bosom; Einstein was there. for example.
As with many great ideas when they are new. "Computable Numbers" did not cause a sensation though Church's review of it coined the expression "Turing machine" Turing described his work at a poorlyattended seminar and the paper was puhlished whilst he was at Princeton. He was offered a second year in America, accepted. and submitted for a Ph.I). after a brief return to Cannbridge

BLETCHLEYPARK

By the time he received his Ph.I). in June 1938, a number of things had happened which set his course for the next few years. Von Neumann had become aware of, and admired. "Computahle Numbers" and had offered him a research assistantship at the Institute of Advanced Study. Turing had built an electronic multiplier and developed his earlier interest in codes and ciphers. And Hitler's war was threatening.
Bravely he turned down von Neumann's offer and returned to Cambridge in the hope that "Hitler will not have invaded England before I come back". He arrived at South
ampton on July 18 with his electronic multiplier wrapped in brown paper. Within weeks he was on a course at the Government Code and Cipher School, one of sixty or so people earmarked for recruitment if war should break out. The day after war was declared he reported to Bletchley Park in Buckinghamshire. the home of the Code and Cipher School, and set to work on the German ciphers. He was ideal for the joh.

The British effort at breaking the German codes initially depended on work done in Poland. It is a complex story and one that has already been described, for example hy Hodges in his biography of 'Turing'. The Germans used a machine called Enigma to encipher their messages but the Poles had, in effect, obtained a logical cory of the hasic machine. To break the cipher they had built other machines which, because of the ticking noises they made, came to be known as bombes. The Germans increased the complexity of Enigma and rendered the Polish bombes ineffective.

He arrived at Southampton with his electronic multiplier wrapped in brown paper.

The Bletchley team, especially Alan Turing and Gordon Welchman, brought new ideas to the problem and new bombes were designed and built. According to Hodges they were "impressive and rather heautiful machines. making noises like that of a thousand knitting needles". There began what Hodges has termed the "relay race" as each side sought to stay one step ahead of the other but with the Germans never believing that Enigma had been broken, only that spies were at work ${ }^{1}$.

When America came into the war Turing was despatched on the Queen Elizabeth to brief them on the cipher breaking work. During his visit he spent a couple of months at Bell Laboratories, meetings Nyquist and Claude Shannon amongst others. Meanwhile Max Newman had arrived at Bletchley and had started work on electronic counting machines which became known as the Robinsons. These were followed by a series of electronic computers, each known as Colossus. Turing played little, if any, part. He moved on to a new pet project on speech encipherment which reduced speech to meaningless white noise and then recovered it. He designed the machine, huilt it, called it Delilah-and it worked.

By the end of the war Turing had returned to his pre-war ideas, developed now into a

Universal Turing Machine. Strengthened by his experiences with electronics he faced the question of whether this could now become something more than an intellectual concept. Could it become a real machine: He wanted to build an electronic "brain". essentially what we would now recognize as an automatic digital computer with internal program storage.
()i course he was now not alone in thinking such thoughts, for in America the ENLAC was now built and plans had been published for another machine to be called EIDVAC. Such news probahly influenced the National Physical Laboratory in its plan to huild a national computer with Turing's help: a Universal Turing Machine. It was to he known as the Automatic Computing Engine or ACE. Turing's design used binary arithmetic and was to have the simplest possible hardware based on the logical functions And. Or and Not. and a large and fast memory. The rest would be performed by the sets of instructions, the programs. As a design it was unique and owed little to the other pioneer computers ${ }^{3}$.

Finds were allocated in 1946 to begin work on a small machine, later known a Pilot ACE. Internal politics and delays did not augar well, however. for the urgency of wartime had not carried fonvard into peace. Turing left hefore even the Pilot ACE was completed. He was on sabbatical at Cambridge when the new computer team al Marichester University offered him a position. He accepted in May 1948 and joined them in the autumn. The Manchester prototype ran its first program on June 21. 1948, and in February 1951 the first of the Ferranti Mkl computers was delivered. based on the university machine. Pilot ACE (which is now in the Science Museum, Lordon) ran its first program on May 10. 1951. and the full ACE was not completed until late in 1957^{3}. At Manchester, Turing canse to spend much of his time in developing programming techniques, even doing manual arithmetic in base 32.

Turing was always a loner. Many found hind difficult to get on with. He received the OBE in June 1946 as official thanks for his wartime work. It came through the post. And in March 1951 he was elected a Fellow of the Royal Society, probably a more fitting tribute. Clasgows Turing Institute opened in 1984. Perhaps one more tribute is yet to come, when someone finds those silver bars near the M25 motonvay

References

1. A. Hedges, Alan Turing: The Enigma, Burnett Books. 1983. Much of this article is based on this excellent hiography
2. R. Gandy. A victory against logic. The Times Digher Education supplement. June 19. 1987. n13.
3.s.II Lavington. Early British Computers, Manche ster Inniversity Press. 19811

Next in this series will be Konrad Zuse. the German computer pioneer.

Dr Tony Atherton is on the staff of the IB.A Harman Ensineering Training College at Seaton in Devon.

Microcomputer-controlled audio preamplifier

A new op-amp technique makes it possible to create a remotely controllable preamplifier on a single chip without sacrificing audio quality.

PETER KRÜGER

Until now, the circuits used to control the input selection, gain and frequency response of signals in audio preamplifiers have usually consisted of switches and complicated RC networks with potentiometers to provide control. In these systems. the potentiometers and switches lie in the signal path and are expensive and bulky, and they deteriorate with wear. They have to be connected to the circuitry using screened cables - which are nonetheless affected by spurious signals - and they restrict the freedom of the control panel designer. These limitations have demanded a new approach to satisfy the stringent demands of modern equipment.

One solution was to control op-amps in the signal path, using voltages derived from manually-operated potentiometers. This method eliminates problems caused by potentiometers situated directly in the signal path, hut still requires expensive and unreliable electromechanical controls. Multi-gang potentiometers develop tracking errors and become noisy as a result of wear. especially in a harsh operat ing environment. They are also difficult to adapt to the trend towards computer control. especially if remote control is required.
However. Philips has developed an entirely new approach to audio signal control. using a VLSI circuit under the command of simple pushbuttons. A microcontroller (microprocessor plus rom) connected via a simple, two-wire $\mathrm{l}^{\prime \prime} \mathrm{C}$-hus processes the input commands.
At the core of this VLSil circuit are op-amp stages where the gain is switched according to data on the $\mathrm{I}^{-1} \mathrm{C}$-bus. Connecting op-amps in series provides a complete control system with independent control for input selec-
tion. gain and frequency response.
To design a system consisting of severa! op-amps in series which still achieves high quality performance demanded that special attention be paid to noise, distortion, offset voltages and the suppression of supply line spikes.

LINEAR SIGNAL CONTROL

In the double op-amp stage shown in Fig. 1 . the left-hand, non-inverting op-amp provides an output voltage V_{1} depending on resistor values $R_{1}-R_{3}$. The right-hand opamp is a voltage follower with a potential divider on its input. The output voltage is therefore V_{1} multiplied by a fraction determined by resistors $\mathrm{R}_{1}-\mathrm{R}_{3}$, and the total gain of this stage depends solely on the values of R_{2} and R_{3}. Insertion loss is small because of the infinite input impedance of the left-hand op-amp and the very low output impedance of the right-hand op-amp.

If independently-controlled, four-position switches are introduced at the op-amp inputs, with connections to the resistive potential divider (Fig.2), then the gains of the left-hand and right-hand op-amps can be independently set to one of four values. Total gain of the op-amp stage is again obtained by multiplying the two op-amp gain values, to give. theoretically 4×4 values for the total gain. In fact, there are only 13 values since four of the total gain values are 1 ()dB). Since the left-hand op-amp always provides amplification and the right-hand op-amp always provides attenuation. it is possible to control the output signal level in predetermined steps (e.g. '2dB) by the selecting the resistor values $R_{1}-R_{1}$. To control the output signal level in 2 dB steps would require three 6dB steps for the gain of the

Fig.1. This dual op-amp stage arrangement illustrates the operating principle of the new device. Total gain depends solely on the resistor values R_{2} and R_{3}.

right-hand op-amp, and three 2 dB steps for the gain of the left-hand op-amp, to give an output signal control range from +6 dB to -18 dB . Naturally, an extended linear signal control range is ohtained by cascading stages. so that a linear signal control range of 96 dB in 2 dB steps is possible using four cascaded linear op-amp stages. Note that although Fig. 2 represents the principle involved, it does not show the actual physical switching arrangement.

BASS CONTROL

Adding a single capacitor in the feedback loop of the left-hand linear op-amp stage (Fig.3) allows the low-frequency end of the frequency response characteristic to be controlled. The op-amp stage gain now includes a pole and a zero where the hreak-points of the transfer function are determined by the resistor and capacitor values. At very low frequencies. the capacitor is effectively open-circuit and so the circuit operates as a linear op-amp stage. At high frequencies, the capacitor is a short circuit and sets the op-amp stage gain to unity irrespective of the switch positions. The low-frequency amplification/attenuation is. therefore. determined by the resistor values and its effective range by the resistor and capacitor values. Since the gain control range is determined only by the resistors, the capacitor value is used to set the effective frequency range (example, Fig.4).

TREBLE CONTROL

Likewise. adding a single capacitor to the linear op-amp stage (Fig.5) makes it possible to control the high-frequency end. At low frequencies. the high reactive impedance of the capacitor reduces the current through R_{8} to set the op-amp stage gain to unity independent of the switch positions. At high frequencies, the capacitor is virtually a short circuit so that the circuit operates as a linear op-amp stage. High-frequency amplification/ attenuation is determined by the resistor values only. and the frequency range by the breakpoints established by the resistor and capacitor values. For this reason. the capacitor value is used to set the effective frequency range (example. Fig.6).
When the op-amp stage for controlling either low or high-frequency response is switched so that the left-hand op-amp is in position 4. and the right-hand op-amp

Fig.2. If independently-controlled, four-position switches are introduced at the op-amp inputs, the gains of the left-hand and right-hand op-amps can be independently set to one of four values.

Fig.3. Inserting a single capacitor in the feedback loop of the left-hand op-amp stage makes it possible to control the low.frequencies. Low-frequency gain is determined by the resistors and the effective frequency range by the resistor and capacitor values.
is in position l, both op-amps operate as frequency-independent source followers. This has the advantage that above approximately 301 Hz the gain is unity and independent of component tolerances. It can also be seen from these curves that the incremental gain at a given frequency is the same for each step.

SOURCE SELECTION

Series connection of these circuits to provide integrated radio signal control for a car radio preamplifier is shown in Fig.7. The volume/halance control consists entirely of linear op-amp stages; bass control is a low-frequency signal control stage and treble control is a high-frequency signal control stage. Also incorporated in the IC (TEA630)()) are an input buffer/source selector and a fader/mute control. These consist basically

Fig.4. Example frequency response characteristic. Gain control range is +15 dB to -12 dB in 3 dB steps.
of linear op-amp stages with unity or variable gain, with switching to provide source and output selection. These functions tor can be switched under the control
of the $\mathrm{I}^{2} \mathrm{C}$-bus. A sister IC to the TEA6300, the TEA6310, lacks a source selector but has an extra fader control input which is used as a hardware override to disable the fader control for a twospeaker system.

$\mathrm{I}^{\prime} \mathrm{C}$ BUS

Philips's two-wire $1^{2} \mathrm{C}$-hus (interIC bus) conveys serial clock pulse trains from the serial data and serial clock outputs of an eightbit microcontroller. Synchronization of the two pulse trains is determined by the microcontroller. More slave devices can be connected in parallel to the $\mathrm{I}^{2} \mathrm{C}$ bus, for example a frequency synthesizer: each slave device must therefore be defined by a unique slave aiddress. The serial data (sid) input is basically a three-byte word. each byte consisting of eight address or data bits. The first byte

Fig.5. Adding a single capacitor allows the high-frequency response to be controlled. High-frequency amplification/attenuation is determined by the resistor values only, and the frequency range by the breakpoints established by the resistor and capacitor values.
contains the slave address, the second the slave parameter address and the third byte contains the parameter value data and system switching data.

The bus is bidirectional: the eighth bit of the slave address determines the direction of the parameter value data, which, for the TEA6300, is always from the microcontroller. Parameter values are latched in the $I^{2} \mathrm{C}$-bus logic of the TEA6300 until changed by a further output from the microcontroller. The outputs of the latches drive fet switches which select the opamp stage gain and therefore the analogue parameter value. The seven parameters in this case are

1. Volume control of channel 1, performed by switching the gain of cascaded linear op-amp stages.
2. Volume control of channel 2 . Note that independent control of both channels permits balance control with a total range equal to twice that of the dynamic range of each separate channel.
3. Bass control of both channels, performed by switching the gain of the lowfrequency signal control op-amp stages of each channel in parallel.
4. Treble control of both channels, performed by switching the gain of the highfrequency signal control op-amp stages of each channel in parallel.
5. Fader control of both channels, performed by switching the gain of cascaded linear op-amp stages.
6. Input selection (switch selection of inputs A, B or C).
7. Mute control, performed by switching 80 dB attenuation into each output. For the TEA6300 a logic high is between 3 and 12 V and a logic low is between -0.3 and +1.5 V . Pull-up resistors may be necessary on the $I^{2} \mathrm{C}$-bus inputs, depending on the

technology and supply voltages of master/slave devices connected to the I ${ }^{3} \mathrm{C}$-bus. A high-tolow transition of the sid input while sict is high defines the message start condition. Each message consists of slave address, slave parameter address and one or more consecutive bytes of data. A low-to-high transition of the sla input while sco. is high defines a message stop condition. At the end of each byte the slave device holds the sim line low during the acknowledged bit on the sol. line from the microcontroller to confirm the transfer.

Fig.6. Example frequency response. Gain control range is +12 dB to -12 dB in 3 dB steps.

TEA6300 typical performance data,

Supply voltage	7.0 to 13.2 V
Gain control range	$\begin{aligned} & -66 \text { to }+20 \mathrm{~dB} \\ & \text { in } 2 \mathrm{~dB} \text { steps } \end{aligned}$
Low-frequency control range	$\begin{aligned} & -12 \text { to }+15 \mathrm{~dB} \\ & \text { in } 3 \mathrm{~dB} \text { steps } \end{aligned}$
High-frequency control range	$\begin{aligned} & -12 \text { to }+12 \mathrm{~dB} \\ & \text { in } 3 \mathrm{~dB} \text { steps } \end{aligned}$
Input sensitivity (for full output power)	50 mV
Maximum input signal	1.65 V
Operating frequency range	35Hz to 20kHz
Channel separation (250 Hz to 10 kHz)	92dB
Total harmonic distortion	0.05\%
Signal-to-noise ratio	80 dB
Operating ambient temperature range	-40 to $+85^{\circ} \mathrm{C}$

Fig.7. Car radio preamplifier based on the TEA6300. The volume/balance control consists entirely of linear op-amp stages.

Fig.8. Hi-fi stereo sound processor for television receivers. Input selection, mode, volume, bass and treble are all controlled via the two-wire $1^{2} \mathrm{C}$-bus.
tively. Noise levels of this order satisfy the requirements for Dolby B and C noise reduction.
To reduce switching noise. offset voltage compensation is incorporated into the opamp stages. The resistor values in the potential dividers are as small as possible to minimize offset current effects. These design precautions eliminate the audible clicks and plops normally associated with lowfrequency signal switching. Total harmonic distortion measured under the above conditions is typically 0.05%; ; but signal clipping will occur at input signal levels greater than IV with a gain of 20 dB , and so the total harmonic distortion will then increase rapidly.

A second example of integrated audio signal control is the hi-fí television stereo audio processor of Fig.8. In this case, volume, bass
and treble settings are normally determined by a remote control system. The data output from an infra-red remote control transcoder must either incorporate an I' C -bus interface (as in the Philips IC type SA43028) or feed the remote control data as a serial data word into an input port of the microcontroller. In each case. the remote control data is processed in the micrcontroller and output on the sim line to the TDA8425. Since both the TIDA8425 and the SAA3028 are connected in parallel :o the I^{2} C-bus the necessity of a unique slave address for each device is immediately apparent (there is no chip-enable input with the $I^{2} \mathrm{C}$-bus system). The SAA3028 feeds data to the microcontroller on the $I^{2} \mathrm{C}$-bus whereas the TDA8425 receives data from the microcontroller as determined by the eighth bit of the slave address byte.

The TDA8425 has a volume control range from -64 to +6 dB per channel in 2 dB steps. with the same low- and high-frequency contrel values given in Table 1 for the TEA6300. Total harmonic distortion is typically 0.05%. for an input signal of 500 ml with a gain of 0 dB , over the frequency range 20 Hz 12.5 kHz . Signal-to-noise ratio (weighted to CCIR 468-3) at unity gain is 86 dB and the stereo channel separation $(30 \mathrm{~Hz}-20 \mathrm{kHz})$ is typically 85 dB . Maximum data transfer rate using the $I^{2} \mathrm{C}$-bus is $100 \mathrm{kbit} / \mathrm{s}$.

[^2]

Ban the bugs

It takes a special kind of person to stay up until 2.30a.m. in the morning of Budget Day to debate the availability of electronics surveillance devices to Daily Telegraph readers; but James Cran, Tory MP for Beverley in North Yorkshire, is just such a person. In a short dehate. he discovered that not only the Government would not control the use of electronic bugs by a licensing system, it could not legislate to prevent their improper use because an acceptable definition of privacy was too elusive.

Cran's view was supported by a Labour MP. Barry Sheerman - probably not an avid Daily Telegraph reader - who said that the argument should not be about banning technology. but the "relationship of individual rights and the right to privacy in relation to changes in modern technology".

I"The current law is
a bugger's charter. .

The debate was very reminiscent of the joke definitions of the Three Laws of Thermodynamics which state: (1) One can't win. only break even. (2) one can only break even at absolute zero, and (3) one can't reach absolute zero. Thus MPs discovered: (1) once privacy has been breached there could be a legal remedy through a breach of confidence (2) one must know beforehand of the existence of a surveillance device and (3) one cannot discover these devices beforehand because they are designed to avoid detection.

Tim Renton, the llome Officer Minister. also stated that to extend the criminal law to cover surveillance or eavesdropping is not practicable. Either the law would be drafted too narrowly, in which case some new electronics gimmick would overtake the law. or too broadly. in which case the law would become unreasonable since it would encompass everyday electronics that use some of the qualities of a surveillance device. "Criminal offences", the Minister intoned, "must also be capable of clear definition": something that eludes individual privacy.

In short. the secret is now out: the current law is a bugger's charter and nothing can be done about it.

[^3]
"Something wrong with our bloody ships"

In a recent debate on the Royal Navy, it became clear that five of the Navy's modern Type 23 frigates will enter service without Command and Control Systems (CACS). This. according to the Government. "does little to impair intrinsic performance of [its] main defensive armaments but will impose a number of limitations on lits| use". It transpired that these "limitations' will continue until 1992. Until then the new ships will be incapable of properly using their main missile defence, the Sea Wolf missile.

The Minister's problems in the debate began when he smoothly stated that "the original CACS 4 program was cancelled when it was realised that the computing power and capacity of the original design would be inadequate". This was as much as MPs were to get in way of explanation. Even when pressed. the Minister did not fully explain why the original specification for CACS was so far out: who was responsible and when problems were first discovered: whether Ferranti, the contractor, had failed to deliver what had been promised; whether Ministry of Defence officials had moved the design 'goal-posts' as the project developed. or even when the new CACS contract would be signed and how much it would cost.

This evasion resulted in a barrage of cynicism. led by Martin O'Neill, Labour's shadow defence spokesman. O'Neill concluded. "The pride of the British surface fleet
will go to the defence of the country in a state in which they are less capable of defending themselves". Two other MPs were more rude: Menzies Camphell, the Democrats' defence expert. noted that the Minister was as convincing as a second-hand car salesman who told a potential customer that a used car on offer had "about two" previous owners; and Labour's Bruce George mentioned "rumours that the ships will be sent to the West Indies" or other sun-drenched

tropical "trouble-spots" in NATO's dangerous front-line.

Rumour has it that the Navy is placing recruiting adverts in this season's holiday brochures.

- The quotation at the head of this item is attributed to Vice-Admiral Beatty following the second catastrophic explosion which blew up a battle-cruiser during the Battle of Jutland, May 30, 1916.

Flying short of electronics engineers

Allan Rogers, one of Labour's front-bench experts on defence has uncovered that the RAF could be running dangerously short of qualified electronics engineers. In 1988. for example, the number of electronics engineers trained by the RAF was 808 . but since 436 failed "to complete engagement" only 381 eventually entered the Service. When other job changes and retirements are taken into account, Rogers claims that the RAF lost 427 electronic engineers from its trained strength of 11127 ; according to Rogers, too many "RAF personnel are voting with their feet" and leaving. His figures indicate a drop out rate of over 50% from the RAF training courses; and that the proportion of 'drop-outs' has progressively in-
creased over the decade, and that all the engineering disciplines in the RAF are suffering similarly.

It is therefore perhaps fortunate that demand for electronics engineers is less than expected. Because of problems with late delivery and performance of the muchmaligned Foxhunter radar, Rogers believes that 32 Tornadoes costing $£ 500$ million are mothballed in hangers at RAF St Athan in Wales at an annual cost of $£ 60000$, whilst Tornadoes are still flying training missions with concrete ballast instead of the radars and so require less maintenance. If this were a Labour council. Rogers concluded, it would be surcharged, harassed by the press. removed from office and thrown into jail!

HERRY'S

ELECTRONICS FORTBADE NDUSTIZ, EXPORT, EDUCATION AND RETAIL

COMPONENTS
HUGE STOCKS ALSO

V-VIDEG AMPLIFIER

 AUDIO TVIVIDEO SECURITY CBRADIO ACCESSORIES\cap ROR 404 Edgware Road, London W2 IED Tel: 01-724 0323
*ALSO AT Audio Electronics 301 Edgware Road W2 01-7243564 SALES OFFICE $01-2581831$ Telex 298102 Fax 01-7240322

ENTER 36 ON REPIL.Y (CARI)

\triangle NTRIM

RANSFORMERS LTD
UNIT 3A/9, 25 RANDALSTOWN ROAD, ANTRIM CO ANTRIM, N. IRELAND.
Telephone: (08494) 66734. Telex: 74667

$$
\text { Fax: }(08494) 68745
$$

Manufacturers and designers of high quality toroidal transformers to specifications VDE 0550, BS 415 Class 2 and IEC65 Class 2.

Prices quoted are lots of 100 (VAT not included). Prices firm to October '89.

15VA - £4.70 120VA - £6.70 625VA - £13.80
30VA - £5.18 160VA - £7.57 750VA - £22.60
50VA - £5.52 225VA - £8.40 1000VA - £37.20
80VA - £6.00 300VA - £9.40
100VA - £6.56 500VA - £12.50
Prices quoted are for primary voltage 110, 120, 220, 230, 240.

For additional primaries please add 4% to price for the following
120/120, 220/240, 110/110, 115/115, 110-120/110/120.

AGENTS WANTED - ALL COUNTRIES

VALVES			'SPECIAL OUALITY	Pices are correct at time of press but may fluctuati Please phone for firm quotation V A T included					
A1065	1.40	EF80 0.65	PCL86 - 0.80	2900	4.30	6CL6	2.75	12A6	00
A2293	7.00	EF83 3.90	PCL805. 5 - 0.95		3.80	6CW4	740		350
A2900	12.75	EFBS 0.90	PO500 510	12.4	0.65	${ }_{6} 6 \times 8$	4.60	12A16	195
AR8	1.15	EF86 1.45	PFL200 - 110	1815	100	6 CY 5	115	12 AT7	125
ARP3	1.15	EF89 1.60	PFL200 2.80	154	1.00	606	250	12AU7	095
ARP35	1.15	EF91 1.60	PL36 $\quad 1.60$	15	075	6F6G	290		110
ATP4	0.90	EF92 2.15	Pl81 $\quad 130$	11.4	075	6F 6 GB	110	-	285
$\mathrm{B12H}$	6.90	EF95 1.90	Pl82 070	104	0.80		280	128178	4. 3.35
Cr31	2.40	EF96 0.60	PL83 0.90	$2 \times 2 \mathrm{~A}$	3.80	${ }^{6 F 8} 8$	175	12E1	1995
DAF70	1.75	EF183 0.75	PL84 0.90 1504	3AA	1.30	${ }^{6 F} 12$	1.60		0.55
DAF96	1.35	EF-184 0.75	$\begin{array}{ll}\text { Pl.504 } & 1.25 \\ \text { PL508 } & 200\end{array}$	${ }^{3} \mathbf{3 A 2} 28$	3.40 1750	6F-14 $6+15$	1.15 3 3	12 K 7 GI	1.95
DE T22	32.80	EFB12 0.75	$\begin{array}{ll}\text { PL508 } & 2.00 \\ \text { PL509 } & 565\end{array}$	${ }^{3828}{ }^{38} 28$.	1750	6F 15	3.40 310	12 KBGT	1.25
DF92	0.65	EFL200 1.85	PL509 PL 519	${ }^{3828}{ }^{3}$	1950	${ }_{6}^{6 F-17}$	310 075	1207 C	115
DF96 ${ }^{\text {DH7 }}$	1.15 1.15	EH90 0.85	PL802SE $\quad 3.85$	3t29	2185	¢ 24	115	12 SC	0.80
DL92	1.70	L32 0.85	PY80 070	354	170	6r 33	1050	12 SJ	1.40
DY86.87	0.65	EL34 $\quad 7.50$	PY81 $800 \mid 085$	$4 \mathrm{AB32}$	4025	$6 F 48$	1880	12 S	145
DY802	0.70	$E L 34^{-}-5.95$	PY82 0.75	5R4GY	4.85	6GA8	0.65	$12 \mathrm{SO} \mathrm{C}^{\text {a }}$	2.20
E92CC	2.80	El82 0.70	PY88 - 0.60	$5{ }^{\text {S }}$ 4G	1.85	6GH8A	0.90	12 Y 4	0.70
E180CC	11.50	EL84 -1.35	PY500 A 210	5VAG	1.90	6H6	160	${ }^{13 \mathrm{D} 3}$	2.80
E1148	0.75	EL86 $\quad 1.45$	OOV03 to 5.95	$5 \times 3 \mathrm{GI}$	2.20	604	195	1306	0.90
EA76	1.60	EL90 1.75	OOvo3 13* 750	523	4.85	6u4W	310	19AOS	1.85
EB34	1.15	EL91 $\quad 6.50$	OOV0325A 2750	524G	1.25	ful	230	19G3	1150
E891	0.60	EL95 1.80	OOVO640A 28.50	544GT	220	6.50	150	$19 \mathrm{G6}$	10.35
EBC33	2.20	El519 7.70		6/30L2	0.80	6 J 6	2.20	19H	3800
EBC90	0.90	EL821 8.05	Qvo31. 5.75	6AB7	0.70	6J6W	2.80	200,	0.80
EBC91	0.90	EL822 9.95	SP61 2.50	6AC7	1.15	6ut 6C	8.45		-. 0.60
E8F80	0.95	Ellbose 4.50	$1121 \quad 45.00$	6AG5	0.60	$6.56{ }^{\text {6 }}$	8.45	25.6 G	160
EBF 89	0.80	Emb0 1.35	T122 45.00	6Ak5	1.90	$6 \mathrm{U} \mathrm{V}^{6}$	635	25L60	075
ECS2	0.65	EM87 $\quad 3.00$	UABCBU UBF80 0.75	6AR6	2.85 0.60	6 KK	1.45	85 A2	140
EC91	4.80	EYST - 0.90	UBF80 UBF89 070 070	6AL5	1.50		710		255
ECC81	1.25	EY81 1.10	UCC84 085	6AM5	6.50	6L6GC	9.60	${ }_{807} 572$	6190
ECC82	0.95	EY86 87-0.75	UCC85 0.70	6AM6	1.60	6L6GT C	2.90	${ }_{807}$	345 4.30
ECC83	1.1	EY88 0.65	UCH42 2.50	6anga	3.80	6.18	0.70	811A	13.50
ECC84	0.6	E280 - 0.80	UCH81 0.75	6AC5	1.75	6LD20	0.70	812A	32.00
ECC85	0.75		$\begin{array}{ll}\text { UCL82 } & 1.60 \\ \text { UF41 } & 1.85\end{array}$	6AO5	2.90	$6 \mathrm{6LO}$	8.45 1.30	813.	28.50
ECC88	1.10	$\begin{array}{ll}\text { GM4 } & 8.90 \\ \text { GN4 } & 6.30\end{array}$	$\begin{array}{ll}\text { UF80 } & 160\end{array}$	AS6	4.9	6 SA	180	813	44.00 16.00
ECC804	0.65	GY501 - 1.50	UF-85 145	6AUG	-90	6SG7	1.80	829	24.00
ECF80	1.25	GZ32 $\quad 1.90$	UL84 $\quad 150$	6AXAGI	1.30	6SJ7	275	866E	14.95
ECFP2	1.15	GZ33 4.20	UM80 	6AK5GT		6Sk	1.85	931A	5
ECF802	1.80	GZ34. 2.45	$\begin{array}{ll}\text { UM84 } & 0.95\end{array}$	6Ba6	140	6SL7GI	1.50	431A.	1980
ECH42	1.65	G734. 4.40	UY82 0.70	$6 \mathrm{BA} 6^{\circ}$	2.20			954	110
ECH81	1.25	G237. 3.95	UY85 0.85	${ }^{68 E 6} 6$.	1.75	6Sh7	4.60	955	1.10
ECH84	0.90	K177.. 14.00	VR105 30245	6BE6 ${ }^{\circ}$	2.20	6V6G			1.20
ECL80	0.65	$\begin{array}{lll}\text { K188** } & 25.00\end{array}$	VR150 $30 \quad 2.45$	6BG6G	160	6V6Gi	140	5763	575
ECL82	0.75	ML4 $\quad 3.20$	$\times 61 \mathrm{M} \quad 1.70$	6EN6	175	6×4	1.50	6060	195
ECL85	0.75	ML6 $\quad 3.20$	X66 4.95	6E07A	0.85	6X5Gi	075	6080	730
ECL86-	1.10	M $\times 1200129.50$	2749075	6BR	4.80	6Y6G	280	613	280
	3.50	N78 $\quad 9.90$	$2759 \quad 1990$	6BW6	610	624		6146	1270
EF22	3.90	${ }^{\text {OB2 }}$ - ${ }^{1.80}$	z800U 3.45	$6 \mathrm{6CW} 7$	150		190	9001	140
EFP37A	2.15	PCL82 $=0.95$	Z801U 3.75	6 C .4	1.20		2.15	9002	6.50
Er	1.10	84	$28030 \quad 21.15$	6CH6	7.50	11:2	9.	9003	850
VALVES AND TRANSISTOFS				NEW HEADSETS with buill in mucrophones					
FIELD TELEPHONE. CABLE TYPE 010 FIELD TELEPHONES TYPE J. Iropical in malal cases 10-line MAGNE TO SWITCH-BOARD. CAn work weth every type of magneto telephones				CAROL HP E-80 al £15 Hedaphone ohms Surplus VID	.339M .00 $\operatorname{imp} 4$ DICON	£ 10.00 hims Microph 6 ohms Mict 8211 and oth	hone im crophon thers al	11600 ohms mp 1200 £1800	
Over $£ 20$ € 230 but below 2 kg Parcils over 2 ke al Cost									

ENTER IRON REPIS (CARI)

	${ }_{61222}^{12929}$
orderne CARRIGGE all unit. C16 VAT to be added to total ot goods and carriage	
STEWART OF READING 110 WYKEHAM ROAD, READING, BERKS RG6 IPL Callers welcome 9am to 530 pm MON-FRI (UNTIL 8 pm THURS)	

ENTER 10 ON REIPIS (ARI)

APPLICATIONS SUMMARY

Low-pass filters for PLLs

Loop filters for phase-locked-loop applications can often be simple first or secondorder types but when minimum output jitter and good transient response are required simultaneously, more attention has to be paid to the loop filter's design.
Fast transient response implies wide filter bandwidth and low VCO output jitter relates to ripple at the VCO input. To achieve low jitter and fast response, the low-pass filter needs high outband attenuation.
Such a filter based upon the LTC1062 low-pass filter $\mathbb{I C}$ is discussed in Linear Technology's Application Note 24. With the aid of empirical results, the note compares performance of an LTC 1062 -based filter with

that of a passive RC filter, and it outlines clock sweepable bandpass/notch filters and programmable cut-off frequency filters.

Linear Technology. 111 Windmill Road. Sunbury. Middlesex TH'16 ZEF. 0932765688.

A 125W resonantmode supply

In switching power supplies, efforts to decrease physical size by increasing switching speeds result in higher losses in the power switches, despite the use of mosfets. A detailed note called "Using the LD405 in a 125 W resonant-mode power supply" explains how zero-current switching provides higher efficiency at higher frequencies.
A full resonant-conversion supply is presented in the note together with comprehensive design details. Gennum Corporation, P.O.Box 489, Station A, Burlington, Ontario, Canada L7R 3Y3. 4166322996.

APPLICATIONS SUMMARY

Audio level detection system

A precision level detection IC designed specifically for audio applications features both linear and logarithmic outputs, as this pin-connection option diagram shows. The device comes from a company little known outside the professional-audio area called SSM; in August 1988 PMI took over SSM and so it is likely that information about the company's products will be more widely disseminated from now on.

Unlike many ICs of this type, the

SSM2110's logarithmic output can be internally compensated for scale-factor changes with temperature. It has true RMS and absolute-value outputs, the latter of which can be configured for peak readings and both of which also have temperature compensation on chip.
According to SSM's first data book since its incorporation. it is possible to achieve a 100 dB dynamic range with the 2110, and its "unique' pre-bias circuit allows dynamic range to be traded for
faster response time at low signal levels.
Further applications information is included in the data book on this and other interesting professional audio devices such as voltage-controlled amplifiers, an $800 \mathrm{p} / \sqrt{1 \mathrm{~Hz}}$ noise microphone preamplifier, a four-pole VCF and 'music voicing system:

PMI, Bourns Electronics, 90 Park Street. Camberley: Surrey GU15 3NT. Tel. 0276 692392.

IBM-PC BUS Input/Output Cards

DIP-24 Opto-isolated digital input
DOP-24 Opto-isolated Darlington output
PIO-48 TTL level digital input/output
DPC-10 Pulse counter/timer/generator
DCM-16 8 Inputs, 8 Outputs, CTC
AIP-24 12 Bit ADC input
AOP-8 12 BitDAC output
AIS-16 12 Bit isolated $A D C$ input
TIP-8 Thermocouple input
SIO-2 RS232/422/485/20mA I/O
ST-24 Screw terminaladaptors
BXT Backplane extenders
BP-5/11 5/ll Slotbackplanes

To obtain details of the full range of plug-in data acquisition and control cards for the IBM-PC/XT/AT.

Model 30. Amstrad, Olivetti and compatibles - call us NOW!

Blue Chip Technology Limited. Main Avenue. Hawarden Industrial Park. Manor Lane.
Deeside CH5 3PP. Telephone: (0244) 520222.

HATE IT?
 THEN WRITE IT YOURSELF!

Electronics \& Wireless World wouldn't exist if it were not for people who are prepared to report on and write about the technical world around them.

Our market research indicates that if you read E\&WW, then there is a 90 percent chance that you work in electronics at a professional level. Great! Why not write about it for us? Your job may be just as interesting to others as it is to you.

Interested? I am. Why not give me a call on 01-661 3128 for a chat.
FRANK OGDEN
Editor
ENTER 70 ON REPLY CARD

FFT
 ANALYSIS SEMINARS

LEARN HOW TO EXPLOIT THE FREQUENCY DOMAIN IN JUST ONE DAY

- Insight into benefits
- Hands-on tutoring
- Applications based
- No confusing maths
- Local and convenient
- Small groups

Max number per seminar is 10

- 100\% practical

COST ONLY

 £150+ VATincluding lunch and course materials

Ideal for applications engineers of all disciplines who are unsure of the very considerable benefits of using FFT Analysis Techniques in all manner of applications.

LAPLACE INSTRUMENTS LTD
PO BOX 14, BRAMHALL.
STOCKPORT SK7 2QS.
8. 061-440 9579

NDUGIir
 HEडCH

RS-232 protocol analyser uses an oscillosope as display medium to reduce cost, p. 595 Madem techniques extend the range of RS-232 links cost effectively, p. 597 Europe's new generation of telecoms equipment works at $2.4 \mathrm{Gbit} / \mathrm{s}$ - but what next? p. 599 A novel technique makes optical-fibre transmission more attractive by reducing installation costs, p. 605 Optical-fibre transmission using coherent lasers with multiple wavelengths make possible low-cost upgrading of telecoms equipment for increased capacity, p. 606 Collision detection or token passing which is better? Is there a simple answer? p. 608
Communications Editor Richard Lambley reports on mobile radio developments, p. 548.

A class act.

Lobs-Wolt - a world-class provider of :echnical train ng programs for:

\square Electricity and Electronics

\square Refrigeration, Air Concitioning, and Heating
\square Digital, Microprocessor, and Computer Technologies
\square Telecommunications
\square Instrumentation a ad Process Control
\square Electric Power and Control Systems
\square Fluid Power

Our programs are complete training systems. Our equipment is engineered or educational purposes and is accompanied by comprehensive courseware emshasizing hands-on laboratory experiments and troubleshooting exercises.

For more information or how we can help you meet your training needs, contact:

Lab-Volt (UK) Ltd.
4A Harding Way Industrial Estate St. Ives Cambridgeshire PE17 4WR

Call: 0480300695

Colo- Wots

RS232 protocol analyser uses oscilloscope display

Iotell you which lines are high and which are low, you can use a cheap hreakout hox with leds, but to get the link right first time you need to know whether or not a parity bit is being used, whether the parity bit is odd or even, and how many stop hits are used. It is also helpful to know the data rate.
Hardware for a protocol analyser need not be too expensive: some switches and a handful of ICs will provide a good deal of digital information about an RS232 interface. But to make a practical protocol analyser that is user friendly, a display is needed.

A company familiar with designing lowcost test equipment, Thurlhy, has noticed that many of the people responsible for sorting out problems with RS232 links already have an ideal display medium in the form of an oscilloscope.

The Thurlhy DA100 protocol analyser

Since the RS232 standard

 defines very little, an RS232 interface can take a variety of forms. To some this indicates flexibility but to most it represents a nuisance RTS/CTS or XON/XOFF, modem or terminal, CTS or DCD, the possibilities are manifold.

Menu options for the DA100 are displayed on the oscilloscope screen.
takes advantage of this observation. It connects to any [) C-coupled oscilloscope with a bandwidth above 5MHz to display 32 characters of alphanumeric information indicating bit rate, data-word format and the data itself in ASCII or hexadecimal form. It is also possible to set up triggered data capture. so the oscilloscope also needs to have a triggerable time base.

If the RS232 transmitting device is suspect or there is no transmitting device available, the DA100 can also generate test data. For full monitoring and patching facilities there is a breakout box option. the DA102, that connects to the DAllot to allow full level checking and arhitrary patching of all 25 lines. There is also an optional liquid crystal display, the DA101. to replace the oscilloscope. Prices of the units excluding vat are $£ 79$ for the DA100. $£ 49$ for the DA101 display and $£ 69$ for the breakout hox.

Thurlby's DA100 protocol analyser uses an oscilloscope at its display, showing bit rate, word format and the data.

Now available from L.J. Technical Systems is a modular system that meets the needs of modern communications training.
The MODICOM series covers the spectrum of Digital Communications training from signal sampling and re-construction through to fibre optic technology.

For full details on the MODICOM System contact:-

MoricoM The Complete Digital Communications Training System

L.J. Technical Systems, Francis Way, Bowhorpe indusinat Esae, Normicin NR5 9MA. Tel (0603) 748001. Teex: 975504.

ENTER 45 ON REPLY CARD

```
radiolink Profile
```

User-friendly software package for comprehensive analysis of line-ofsight radio link systems.
Plot path profiles.
Determine antennae heights, space diversity, minimum frequencies, $R x$ levels, fade margins, reflection points, and availability
Optimise antennae heights.

- Terrain and climate factors

Compatible with
IBM PC and clones with CGA, EGA, VGA, or Hercules graphics adapters. Epson, Oki and HP LaserJet printers All HP/GL and DM/PL plotters. US $\$ 450$ or equivalent in convertible currencies (Airmail inclusive).

Q8 Pty Ltd

6 Yardam Court, Ocean Reef, WA 6027, Australia
Fax\# +61 92461749.

RACKMOUNT CASES

19" Self-Assembly Rack Mounting Case with lift off Covers. Front Panel 10 gauge, Brushed Anodised Aluminium, Case 18 gauge, Plated Steel with Removeable Rear \& Side Panels. In $1 \cup \& 2 U$ Types, a Subplate Chassis is Mounted to Bottom Cover. In 3U Type the Subplate is located on two Rails Mounted Between The Side Plates.
$1 \mathrm{U}(13 / 4)$ height, 230 m depth £28.30
$2 \mathrm{U}\left(3^{1} 1 / 2\right)$ height, 308 m depth £33.60
$3 \mathrm{U}(51 / 4)$ height, 230 m depth . $£ 41.00$
Width Behind Front Panel 437 m (All Types).
All prices include Postage \& VAT. Cheques, Postal Orders Payable to
J. D. R. Sheetmetal, 131 Grenfell Road, Maidenhead, Berks SL6 1EX.

Maidenhead 29450.

INDUSTRY INSIGHT

EXTENDING RS-232 LINKS

Data communication between computer terminals over vanying distances is achieved in many different ways, some very complex and expensive. The complex. expensive solution is sometimes prohibitive to smaller organizations. A hasic. flexible serial data system to facilitate various types. sizes and speeds of installation has been formulated and adopted as an ELA standard the RS-23'2' standard.
This interface is sery flexible and can be used both for simple. simplex communica tion. with only two wires (signal + ground). or in highly complex full-duplex handshake installations using up to 25 different data and instruction interface lines. Basically the RS-232 format is serial, asynchronous data in the form of logic is and (1s whose amplitude levels are in the ranges -3.0 N to -25 . N a a a logic 1 (off) and +3.3 (1) $10+25 \mathrm{v}^{\prime}$ as a logico (on). This datacan be transmitted at rates of 50 to 9600 baud using current modem technology, and at up to $\overline{6} 800$ haud with high speed data transmission.

Since data transier is asynchronous, to allow for variations between transfer and receiver timing clocks, there is a frequent requirement to stop the transfer toallow one or other terminal to catch up. This means that a stop signal and a corresponding start signal must be appended to the 'intelligence: The number of data bits contained within each group varies.
One drawhack of this type of data transier is its range - the basic Res-2:32 interface is intended for distances of not more than 15 metres

Data link

The 'Wata Link' is a simple, kow-eost. 1200 baud, full-duplex modem requiring only

Andrew Dawes and Roger

Lyons of Consumer

Microcircuits describe a cost-

 effective method of boosting the range of serial data links.four lines of the EIA RS-232C system interface (INRand (Ta (.si)). This circuit increases the range of local data terminal communication to the limits of the chosen transmission medium. I bue to its low-nower requirement (a single 5 V rail) and small size. this link
could be an integral part of any desk-top or hand-loeld terminal.

In essence. the 'bata Link' consists of separate transmit and receive channels (Fig.1), each incorporating an FX439 FFSK modem. Input data (Tan) is converted from RS-232C to TTL and then to FFSK tones for transmission in the chosen medium, radio or $t:$ lephone line. At the receiver the PFSK is demodulated and converted to RS-232C levels for the receiving terminal. Using an FFSK modem ensures good signal-to-noise rat 1 , and hit error rate.

Transmit channel

Timing of the input and output data in the trarsmitter section is the key to the operation of the data link (Fig.2). Serial RS-232C

Fig. I. Block diagram of the link. which provides hidirectional asynchronous communication at up to 1200 bit s.

Fig.2. Timing diagram. Data is converted to parallel form within the circuit to allow for variations in timing between the input data and the FX439's clock.
data (rxin) from the transmitting data terminal ((ITE) is converted to TTL at the circuit input by IC_{1}, the RS-232C to TTL/c-mos converter. Input data at the correct (TTL) level is applied to the serial to parallel shift register $\left(\mathrm{lC}_{6}\right)$ and the start bit detector $(1 / 2$ $\left.\mathrm{IC}_{3}\right)$. Detection of the negative-going edge of the start bit enables the 12001 lz oscillator (C_{2}, and $1 / 2 \mathrm{IC}_{5}$) for a period of nine clock pulses (this period is adjustable using R_{2}). which clocks the eight hits of input data into this register (IC_{6}). On completion of the input loading, after the ninth clock cycle. the eight hits are transierred to the parallel to serial shift registers (IC_{7}. IC $_{8}$) whilst the

FX439 tx sync output (FX439 clock, pin 3) is low. This operation is carried out to allow for variations between the data input timing and the FX439 clock. The data, back in serial form, is then clocked out of the shift registers starting on the next positive edge of the FX439 Tx sysc, to be transmitted by the

Fig.3. The complete modem. To set it up, $T P_{2}$ should be earthed and R_{1} adjusted to give $1200 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$ at $T P_{1}$; then, with $R S$-232C data applied in the recommended format (with 16 bit preamble), R_{2} should be adjusted to produce a monostable pulse at TP_{2} of 7.5 ms .

FX439 (IC_{4}) in a 1200 haud. $(1200 \mathrm{~Hz}$ 1800 Hz) FFSK format.
The start bit ($1 \mathrm{C}_{\kappa}$ pin 1) and stop bit (IC_{7} pin 15) are 'hard wired' in the parallel to serial (output) registers, giving the final RS-232C format required by this application.

An advantage of the independent input/ output timing is that, whilst one set of data is being clocked out of IC_{-}and IC_{2}, more data can be clocked into IC_{6} and the cycle can continue. To allow for phase variation between the RS-2.32C incoming clock and the FX439 clock, the clear-to-send (cts) line is held low, disabling further transmission for

a period equal to one clock cycle $(\approx 8333 \mu \mathrm{~s}$. set by R_{1}) from the end of the input stop hit.

FX439 FFSK modem

The FX439 is a single chip c-mos LSl circuit which operates as a 120) haud FFSK modem. Mark and space frequencies are 1200 Hz and 1800 Hz . phase-continuous with the frequency transitions occurring at the zerocrossing point. The transmitter and receiver sections work independently to provide fullduplex operation at 1200 baud. Data rate. transmit mark and space frequencies and synchronization are all derived from a highly stable crystal oscillator. The on-chip oscillator of the FX439 is capable of working at one of two pin-selectable input freyuencies, a 1.008 Mltz or $4.03^{\circ} 2 \mathrm{MHz}$ enstal or clock
pulse input. The device includes circuitry for carrier detection (although for simplicity the funct.on is not used in this data link) and a facility for recovering the received clock. Carrier and data channel filtering is performed by on-chip analogue switched capacitor filters, resulting in good overall dyma. mic performance.

Few external components are required. with transmitter and receiver enable functions being pin-selectable and available for incorporation into the data link for further current saving when in standby mode.

The FX439's receiver converts the FFSK data to TTL. This data is in the correct format and only requires to be level converted back to RS-23?C standards again using l_{1}.

To enable the FX439 to synchronize properls, it is recommended that 16 bits (ideally as hit reversals) should be transmitted as preamble before the data proper is loaded; however. a shorter preamble may prove adtcuate. The communications program must monitor the cis line and transmit only when this line is active (high).

- I data sheet and application note on the FX439 can be obtained from Consumer Microcircuits limited. I Wheaton Road. Witham. Essex (:183TD), It. 11376 -5138:33.
Two prototype 'data link' modems were produced. using one-off component and device prices. for less than E50.

0ptical fibre has been in use in commercial systems for over ten years but the bandwidth provided by the fibre medium has to date been barely utilised. Single mode silica fibre with low attenuation windows centred on wavelengths of 1300 and 1550 mm have available a total frequency bandwidth of some 20000 Cl z corresponding to approximately ' 200 nm . This could in principle be used to carry several thousand gigabits per second of data.

Present generation digital lelecommunications systems employ the highest transmission data rates using fibre optics. the highest capacity installed links are at $565 \mathrm{Mbit} / \mathrm{s}$ within the $(\mathrm{K}$. and hetween 1 and 2Chit/s in the US and Japan. These systems

If data rates in telecommuni-
cations are to rise above
\section*{10Gbits, more efficient ways} of getting data down optical fibres will need to be looked at. Brian Debney of Plessey's
Allen Clark Research Centre
\section*{discusses one of the main}
alternatives.

A diffraction grating like this one can be used to extend the cavity of a semiconductor laser, resulting in thinner. spectrally pure beart s.
are clearly not limited by the bandwidth of the fibre, but by the optoelectromic components for transmitters and receivers and the electronic circuits associated with the timedivis on multiplexing (T1):M).
Ilistorically the trend in telecommunications sustems development is ever upwards in capacity. The next generation of telecoms equipment in development within Europe is for ?.f(bibits and we can expect that the
demand for even higher data rates will emerge. "his view is reinforced by cument research and development leading towards the future integrated hroadhand communications networks (FBC CN for providing broadhand senvices via optical fibre for hoth business and private subscribers. A major European research programme called R:NCE Research and development in Adsanced Communication technologies for Europe) is undenway with the goal of establishing at pan-European IBCN.

The need to carry interactive broadhand senvices including vider down to the subseriber will give rise to a massive increase in the demand for transmission capacity hoth within the subseriber loon and the trunk network. Current optical fibre research and development is therefore keenly adressing fransmission technologies which could achieve these high capacities. Single channel Tos of using direct detection. wavelenglh division multiplexing. and coherent optical transmission techniques are some of the key fechnologies and these will be descrited further here For the purpose of discussion and comparison we will consider a single fibrecapacity of Iucibit/s.

Limitations of existing systems

fresent day optical fibre systems are based on the principles of intensity modulation of an optical source and direct detection of the power modulation of the received signal (I, $|/ / D|)$). Fig. 1 . Combined with time division multiplexing this is the hasis of modern telecommunication systems

Fixtending the principles to locibit/s and beyond presents major challenges to elect ronic and optoelectronic techologies because of the requirements on handwidth for the transmitter, optical receiver, amplifiers, and mult iplexing electronics. At these very high data rates the chromatic dispersion properties of the fibre combined with the spectral width of the laser source is a serious limitation on the transmission distance as indicated in Fig.2. This relates to the feature that different optical wavelengths propagate at different velocities because of the wavelength dependence of the refractive index.

As a consequence the temporal width of an optical pulse comprising a range of wavelengths will expand as it propagates. resulting in intersymbol interference. This severely restricts the use of multilongitudinal mode Fabry Perot lasers. The distributed feedhack (I)FB) semiconductor laser, commercialle arailable at 1.300 and 15.50 nm wavelength, exhibits a single longitudinal mode output whose narrow spectral width significantly reduces the effect of dispersion. However. even with this type of laser the spectral broadening under direct modalation yied as significant dispersion penalty at locbit/s.

Direct modulation of the output power via

(a)

Fig. I. Principle of direct-detection optical communications (a) and principle of coherent optical detection (b).
the laser drise current at focibit/s is technically very demanding and a possible solntion which aroids the need for high speed modulation of the laser and the associated spectral broadening is to use a separate component for intensity modulation of the CW laser output. External intensity modulafors hased on wavesuide structures formed in the material lithium niohate are now commerciallyavailable.

Experimental devices have demonstrated modulation bandwidths up to 2bcill\% alt hough no commercial devices suitable for lochit/s are yet being produced. Semiconductor waseguide intensity modulators rabricated in Cials and InP'are also being researched with the potential for modulattionat up tofolitiz.
(Other difficulties assuciated with $1.9 / 1$)) systems uperating at single chamel data rates of 10 cibits or more are the relatively
poor receiver sensitivities achievahle. At these handwidths the gatn availathe from an avalanche photodiode (APl) does not bield any significant performance advantage oser the simple unity gain PIN photodiode.

The design of wide bandwidth los-moise optical receivers to maximize transmission span is therefore a key issue. An example of a low noise design featuring a Calnds PIN photodiode and Gials fet front-end heing developed at Messey is shown in Pig.3. This has yielded a handwidh of bicily with the expectation of achieving locily and will suitable for a locibit/s data rate.

Courently, neither silicon nor gallium arsenide based 10 techonologies are avalable which could implement the appropriate locibits functions, Ilowever, it is projected that within the next five years locihits ICs could be achieved using gallium arsenide heterojunction hipolar technology with $1.5 \mu \mathrm{~m}$ emitter feature size and $\mathrm{EC} \cdot \mathrm{C}$. silicon bipolar technology with $0,5 \mu$ m feature siza. Iligh data rate experiments carried out in recent yearsaresummari\%ed in Table 1.

Wavelength division multiplexing

An atternative to the single chamel approach and the associated wide bandwidth devices is to adopt the principle of combining optical channels using the technique of wavelength division multiplexing (W'I).W). With this approach a number of low datarate channels, each operating on a different wavelength, are combined on to (multiplexed) and removed from (demultiplexed) a single fibre using wavelength selective components. The principle is shown in Fig. 4 for a point-to-point link.

The same total capacity can be achieved on the transmission fibre but using low bandwidth transmitters and receivers. I comparison between single channel ToM and multichanmel 1910.1 involves the tradeoff in performance, complexity, and cost of the high and low-speed transmitters and recemers, multiplexing electronics, and

Fig.2. Maximum transmission distance versus bit rate showing limitations due to fibre attenuation and dispersion.

USE PC COMPILERS FOR AN SBC

For really fast development of stand alone systems, use a Lancer or Hunter target board with Hexatron's PromDOS. This emulates DOS and BIOS calls, gives you silicon discs and even allows you to run non-ROMable compiled code in a ROM environment. Too good to be true? Call us now for a free demonstration. STOP PRESS: We now have a four port multi-standard serial expansion card for the Lancer and Hunter - ring us for details

THE SDS LANCER

An 8088/v20 target board on a double Eurocard with two serial ports, four parallel ports, six counter-timers, four 32 pin memory sockets, battery backup, RTC, watchdog timer, optional 8087, optional mains psu and case.

THE SDS HUNTER

An 80188 target board with 256 k bytes EPROM, 256k bytes battery backed RAM, 256k bytes D-RAM, wo serial ports, three counter-timers, RTC, watchdog timer, optional mains power supply and case

Sherwood Data Systems Ltd

Unit 6, York Way, Cressex Estate, High Wycombe. Tel: 0494464264
ENTER 41 (ON IREIPLY CARD

ENTER 19 ON REPLY CARI)

	BSemany IE GOMPOUSNLS
PRODUCT RANGE	
CRT's	R.F. CAPACITORS
CAMERA TUBES	R.F. TRANSISTORS
COAXIAL ISOLATORS \&	RECEIVING TUBES
CIRCUIATORS	RECTIFIERS
DIDEES	SILICON CONTROLLED
ignitrons	RECTIFIERS
IMAGE INTENSIFIERS	SPARK GAP TUBES
INTEGRATED CCTS	TR/PRE TR TUBES
KLYSTRONS	TETRODES
MAGNETRONS	THYRATRONS ${ }_{\text {TRANSMITTING TUBES }}$
MICROWAVE TUBES	TRIODES
NOISE GENERATORS	TUBE ACCESSORIES
OSCILLATORS	WAVE GUIDE
PHOTOMULTIPLIER TUBES	CIRCULATORS
PLANAR TRIODES	

MAIN MANUFACTURERS	
ACRIAN	MULLARD
AMPEREX	NATIONAL
EEV	PHILIPS
EIMAC	RCA
GENERALELECTRIC	SIEMENS
MACHLETT	SYLVANIA
MOTOROLA	THOMSON

For more information on any type of Electronic Tubes/ Power Transistors:
RE RAEDEK ELECTRONICS
bannerley road, garretts green, birmingham b33 OSL Tel 021-784 8655. Telex: 333500 CROSAL G. Fax: 021-7897128

Fig.3. A low-noise GaInAs p-i-n/GaAs fet oplical receiver front-end. This prototype module has a -3dB bandwidth of 6 GHz .

WDM components. The technical challenge of WDM is to achieve a large number of discrete wavelength channels to make efficient use of the available fibre spectrum. This involves designing for close channel spacing: typically very much less than 10 nm if an appreciable number (greater than 10) is to be located within a low attenuation window of the fibre.
A typical configuration for multiplexing 10Cbits could be 16 channels operating at approximately 620 Mbit s. A WDM component capable of multiplexing and demultiplexing 16 channels is shown in Fig. 5 and 6. This component, designed to be operated with single frequency DFB lasers emitting in the 1550 nm wavelength window, provides 7.2 nm channel spacing and 2.4 nm channel

Fig.4. Use of wavelength division multiplexing to provide high transmission capacity.
bandwidth. The component shown has demonst rated a single channel insertion loss of typically 7 dB , hut 4 dB should be attainable.

Coherent optical communication

The technique offering perhaps the greatest possibilities for efficient use of the fibre bandwidth is coherent optical communications. This transmission technique is in essence the optical equivalent of the superheterodyne radio principle in which a singlefrequency laser replaces the RF or microwave oscillator as transmitter and local oscillator sources.

A fibre link employing coherent heterodyne detection is outlined in Fig.7. The powerful local oscillator laser is combined

Fig.5. Packaged 16-channel single-mode fibre WDM component. The device features a grating as wavelength dispersive element and a lithiam-niobate concentrator.
with that of the weak incoming modulated optical carrier wave and mixed in a conventional semiconductor $\mathrm{p}-\mathrm{i}-\mathrm{n}$ photodiode. This results in amplification of the signal which appears on an intermediate-frequency electrical carrier as indicated in Fig. I.
An advantage of coherent detection over direct detection is the increase in receiver sensitivity, which is typically between 10 and 20 dB depending on the modulation format.

Unlike IM/DD where only intensity modulation or amplitude-shift keying is possible. coherent optical transmission offers the full gamut of modulation options involving amplitude, phase and frequency-shift keying. A further advantage of coherent detection, in common with the situation in radio, is the possibility of populating the fibre with many closely spaced optical carriers which can be accessed via a heterodyne receiver employing a tunable local-oscillator laser.
The principle is outlined in Fig. 8 which illustrates a configuration appropriate to a broadcast mode of operation which could be used to provide broadband channels in the subscriber network. The signals from a large number of transmitter lasers are combined using a wavelength independent star coupler so that all channels are present equally on every fibre.
An optical heterodyne receiver is strongly frequency selective. just as in radio. which means that the optical channels need only be of the order of gigahertz frequency spacing (typically around ten times the signal bandwidth) so that the fibre bandwidth is used very efficiently. In practice the transmission capacity which is accessible via this technique is limited by the tuning range of the

TABLE 1. Recently reported high data capacity experimental systems.

Date rate (Gbit/s)	Distance (km)	Wavelength (nm)	Modulation	Fibre type	Receiver	Source
8	68.3	1530	external	standard single- mode dispersion shifted	APD/FET	APD/HEMT

local oscillator laser, which for the tunable semiconductor laser devices currently under development is typically a few nanometers. This tuning range could provide 250 completely indepenedent channels at $140 \mathrm{Mbit} / \mathrm{s}$ data rate, representing a capacity of $35 \mathrm{Cbit} / \mathrm{s}$.

As the single channel data rate gets higher it becomes increasingly difficult to realize the sensivity advantage of coherent detection. This is because the noise associated with the wide bandwidth receivers demands higher levels of local-oscillator power than are achievable with present semiconductor lasers in order to achieve local-oscillator shot-noise-limited performance.
Table 1 summarizes the highest data rate single channel experiments yet performed. In the last few years more attention has focused on the multichannel application of coherent transmission specifically relating to the broadcast concept described in Fig. 8. Results of some experimental systems reported so far are also indicated in Table 1.
Within the concept shown in Fig. 8 each output fibre from the star combiner carries a very high data capacity and so the concept can be modified to provide very high capacity

Fig.6. Passband characteristics for 18 channels of the component shown in Fig. 5.

TABLE 2. Summary of the systems technology trade. offs for achieving a total transmission capacity B.

System technology	Features
Single-channel intensity modulation direct detection	" one transmitter/receiver
" wide bandwidth transmitter/	
receiver/electronics	
"capacity fixed by TDM	

point-to-point links. In this case the transmission fibre is terminated in a passive splitter with each output feeding a heterodyne receiver. Each receiver is locked to a particular data channel so that the total capacity of the fibre is simultaneously accessed in a manner similar to that depicted in Fig. 4.

A coherent multichannel !ink using passive combining and splitting possesses intrinsic losses which are approximately $20 \log \mathrm{~N} \mathrm{~dB}$ where N is the number of char:nels. Techniques for lossless frequency addıtion are currently being explored which wi!l substantially eliminate this. The transmitters and receivers though operating at a relatively low data rate are more complex
than their $\mathrm{IM} / \mathrm{DD}$ counter parts, but the resulting system offers great flexibility for atding capacity to a link and with the potential for accessing the largest transmission capacity.

And the future?

The techniques and technologies described are all at present within the realms of research and development although the level of background and development is different for each case and this must be taken into account in making comparisons. The field of coherent optical communications is reatively new. being a major field only within the last five years, but the component technology and systems engineering is

You are about to hire Electronic Equipment...

- How can you be sure the equipment will work when it arrives?

- How can you be sure it will arrive on time?
> - How can you be certain it is calibrated traceable to National Standards? - How can you be sure?

BY CALLING MICROLEASE
THE ONLY ELECTRONICS HIRE COMPANY WITH A QUALITY SYSTEM INDEPENDENTLY ASSESSED BY THE BRITISH STANDARDS INSTITUTION.

Setting Standards in Electronics Hire... 01.4278822 and that's official!

F. NIFRRION REIPLA (CARI)

maturing rapidly. This technology is beginning to move into the phase of addressing performance and stability outside the laboratory environment. An example of this is shown in Fig. 9 which shows a 140Mhits frequency-shift-keying system mounted in 19in racks for transportability.

The techniques described here all have relative advantages and disadvantages for providing very high capacity links and the main issues as currently perceived are summarized in Table 2. Loss budgets available for the fibre link using these techniques are assessed and compared in Table 3 for a link capacity of $10 \mathrm{Gbit/s}$. These results suggest that both WDM and CMC techniques have possible link hudget advantages over the single channel approach. The increase in receiver sensitivity obtained from operating at the lower dala rate more than compen-

TABLE 3. Comparison of link budgets for 10Gbit/s system capacity.

	Singlechannel 10Gbit/s; IM/DD	$\begin{aligned} & \text { WDM } \\ & 16 \times 620 \\ & \mathrm{Mbit} / \mathrm{s} \end{aligned}$	$\begin{aligned} & \text { CMC } \\ & 16 \times 620 \\ & \mathrm{Mbit} / \mathrm{s} \end{aligned}$
Laser launch power: dBm	0	0	0
Combining loss (mux): dB	-	4	12.5
Splitting loss demux): dB	-	4	12.5
Additional losses (connectors etc.): dB	-	1	1
Receiver sensitivity: dBm	-22	-37	-51°
Link budget: dB	22	28	25

[^4]Fig. 7 (left). Illustration of the functional requirements of a coherent fibre-optic link using the heterodyning principle.

Fig. 8 (above, right). A wideband distribution system using coherent transmission technology. This example illustrates the use of optical frequency division multiplexing (OFDM). The subscriber terminal 'tunes in' to the service on the channel with frequency f_{k} by adjusting the localoscillator frequency f_{l} until IF $\left(f_{k}-f_{t}\right)$ falls within the passhand of the receiver.

Fig.9. Prototype 140Mbit/s FSK coherent system constructed at Plessey and mounted in 19in racks. The transmitter is on the left and the receiver on the right.
sates for the losses associated with fibre combiners and splitters or WDM components.

For telecommunications the demand for capacity has so far heen met by extension of the conventional technology of 1 M/DD and TDM. Wavelength division multiplexing, though researched and developed for many years, has so far not proved either technically or economically attractive enough to be implemented.

However. looking to the future and specifically at data rates in excess of $10 \mathrm{Cbit} / \mathrm{s}$, the lechnological demands of the conventional approach will become such that alternatives must be sought. Multiplexing in the optical wavelength or frequency domain has been shown to provide attractive candidate techniques.

BLOWN FIBRE - A NOVEL IDEA THAT MADE GOOD

Known as blown fibre, the technique involves laying miniature conduits or ducts of polyethylene and running the optical fibre cables into them hy blowing with compressed air. Because the technique is so straightionvard and fast it is set to revolutionize the installation of optical fibre cables: by culting the cost and time overheads of cabling it is likely to make optical fibres economic in fields up to now not considered appropriate.

Mick Reeve, the British Telecom research engineer who invented the unique system for installing optical fibre, was awarded the company's Martlesham Medal earlier this year in recognition of his idea. Reeve, who had spent more than 15 years researching the behaviour and performance of optical fibres, has shown that taking a radically new view of an old technology (cable making) can yield substantial henefits to the network operator. Not only did he invent the blown fibre process, but he also led the team in developing it to the point where it is now in large scale production and available from a number of commercial outlets. It is not often that European technology is licensed to Japan, hut hlown fibre is an example.

Like most of the hest innovations, blown fibre is very simple. In the system. hundles of up to eight optical fibres, held tugether in a polyethylene sleeve, are simply hlown into place down a small (3 to (imm bure) tube or microduct. The microduct is tough and flexible and joints are made using ordinary push-fit connectors; it can he installed quickly and cheaply by unskilled labour. Once the microduct is safely in position, the fibre bundles can be hlown through. using compressed air. The fihre moves hriskly - at ahout walking nace - taking hends, junctions and vertical rises and falls in its stride. so the system works just as well inside huildings as outside under the pavement. Itsing tandem blowing heads the fibre can be hlown in continuous lengths of several kilometres, without splicing.
When more capacity is needed on a route. the old bundles can be blown out and replaced with larger ones very quickly and cheaply. The whole process is fast. efficient and virtually foolproof - and both installa tion and upgrading costs are reduced.

How it works

The pace of optical fibre cable development at BT's Martlesham research lahoratories was increasing after 1980, when Mick Reeve was put in charge of the (Iptical Cable

A novel means of installing

optical fibre inside buildings

 and outdoors has earned itsinventor a medal for

innovation as well as

recognition from glass manu-
facturing concerns.

Mick Reeve, inventor of the blown fibre technique (picture from BT).

Research Croup there, working clasely with all the majo UK cable manufacturers to develop and apply new strain measurement lechniques for optical fibres.

By 198', it was ven clear that uptical fihres represented the way ahead. But there were still urgent practical problems to he solved. In particular, no-one had devised a whotly satisfactory way of putting the actual fibres in place, cheaply and efficiently, under field conditions, without straining or damaging them. It was at this point that Mick Reeve and his colleague Steven Cassidy began looking at possible installation methods. compressed air had advantases as an installation medium hut initial experiments using a hung attached to the end of a hundle of fibres were disappointing, and since the fibres were effectively heing pulled alons. they were being put under strain.

The hreakthrough came when the fibres were observed to continue snaking through the tube even when the hung had left the end
of the tube. Close examination of the experimental rig showed that the hundle of fibres was heing carried fonvard hy the viscous drag set up by the turbulent airflow around it. Instead of heing pulled just from the end, it was tugged at every point along its length by the moning cushion of air.
Then the development work began. The microducts has to be just right - with the right bore and the right slip agents in the polymers. The design of the fibre bundles and the sleeve that held them together was catical. both in terms of signal loss and nexibility. Colour-coded fibres were needed, so that field engineers could tell which fibres to splice together. Ind these were other practical improvements to he made, such as the inclusion of a thread in each fihre hundle to make it easier to strip off the conating. Arove all. it had to he shown that the production of the fibre cable could be scaled up to allow large quantities to be produced without quality problems.

The first installations

Mick Reeve's group sel up an experimental cable-making plant on an industrial estate neat dow to the Martlestham stte. giving them the opportunity to make cables using full-scale commercial extruders. As the practical problems were onercome one hy one. the momentum increased and hy late 1984 the hlown fibre system was ready for a first trial installation, in leeeds. The result confirmed it - blown fibre worked just as well in the real world as it did in the laboraton.

After further successful field trials, hlown fibre was used outside British Telecom for the first time in 1986, in a system carrying cables under the runways to the new Terminal Four at Heathron Airport. The same year saw the first licensing agreement signed with Optical Fihres teeside and the heginning of blown fibre installation in the British Telecom City Fibre Network in London.

Since then the pace has been stepped up even further. with the introduction of suppor! (ools such as tandem blowing heads and the ingenious rosette pans that allow instaltation teams to blow fibre in two directions at once. RAF hases such as I,yneham, Otdham and High Wycombe have heen given multiple fibre optical cable routes. Blown fibre has now heen used inside a customer's building for the first time, at British Petroleum's new headquarters at Hemel Hempstead.

The system has now heen licensed to the largest fibre makers in the United States and Japaา. Corning Class and Sumitomo.

COHERENT TECHNIQUES FOR HIGHER FIBRE

Notwithstanding the undoubted advantages of singlemode over mult i-mode transmission. existing optical systems are still remarkably primitive. In terms of exploitation of the optical ether, they are still at a stage of development equivalent to that of the spark era of radio. Despite the dramatic increase of digital bit-rates transported down the optical fibre medium. the method of transmission is remarkably impure, occupying large frequency bandwidths. This has been imposed by the technology available, hut new techniques have emerged allowing multiple-frequency operation in the same fibre. Continuing the same analogy, the transmitters are now adjusted to operate on a single frequency. with heterodyne detection techniques employed for recention.
The adrantages of such a system are truly dramatic in terms of the cost reductions they make possible. Coherent transmission, a technique which can increase the signal handling capacity of existing optical fihres at least ten-fold. was first exploited operationally last autumn by British Telecom. The upshot was that the hair-thin strands of glass currently carrying up to 7516 calls at the same time could now he capable of carrying 25 notor more comsersations.
At the European Conference on Optical Communications, taking nlace in Brishton. the company announced that it was the first in the world to demonstrate coherent ontical transmission over the operational network. outside the laboratory:
Ir Tom Rowhotham, of British Telecom Research Laboratories. explained that whereas previous demonstrations of coherent transmission had been made on the laboratory bench or under other controlled conditions, these trials were the first to be made over an existing optical fibre cable, in this case more than 170 km long and without any intermediate signal amplification.

The success of this operation was said to offer the real opportunity to establish direct fibre links, of virtually limitless capacity: between cities as far apart as London and Birmingham. More dramatically it offered network operators the opportunity to increase the message capacity of their systems without installing further cable plant. The growth of telephone and data calls scurently 7 percent per annum in Britain) could be met hy installing new. coherent transmission equipment re-using existing cables

Scarcely a month seems to
pass without one or other
telephone administration
claiming a first or record in the
field of optical fibre
transmission, leading one to
wonder whether the whole
affair is not just an exercise in
technical one-upmanship. It is,
however, possible to
distinguish some genuine
breakthroughs. One such is
coherent transmission.

rather than having to provide additional complete systems alongside existing ones at much higher cost.

While existing optical fibre systems can carry up to 7680 conversations or data calls. which is no mean achievement compared to a few years ago, these sustems still waste most of the capacity of the fibre medium hy occupying the bandwidth of the fibre with onty one transmission.

By comparison. the new fourthgeneration uptical systems, which researchers have demonstrated and must now refine, can split the frequency spectrum in a fihre and send different groups of messages on separate wavelengths. Each of these carries a different communication channel and they can all go down the same optical fibre "pine". At the far end it can he arranged for the receiver to filter and sort them out. without interference or crosstalk.

ISTRL's demonstration of coherent transmission last autumn employed lasers operating on the single wavelength of 1550 mm . with a typical spectral linewidth of 50 kHz . In these tests. digital test equipment was used
to simulate calls and coupt hit-errors, rather than using live messages. The 176 km route ran from Cambridge - Bedford - Cambridge - St Neots - Cambridge, making use of spare capacity of already installed consentional single-mode fibre temporarily avaitable.

Multiplexing

Having denonstrated coherent transmission with a single wavelength, the next task was to interleave multiple wavelengths on the same fibre, a technique termed wavelength-division multiplexing. This was achieved in March of this year on an unresenerated fibre in the optical submarine cable between the cumbrian coast and the Isle of Man. With this achievement British Telecom hecame the first carrier to use optical wavelength division multiplexing wer its operational network.
In this exercise the BTR1, research team combined the outputs of distributed ieedhack lasers operating on wavelengths of 1525. 1533,1546 and 1557 nm to feed one of the fibres in the cable. One laser was modulated at $141 \mathrm{Mbit/s}$, the other three at 56.5 Mhits , all four outputs heing multiplexed on to a single fibre using a combination of passive and wavelength-sensitive fibre couplers. The operation of three channels at $5(551 \mathrm{Mit} / \mathrm{s}$ and one at $140 \mathrm{Mhit} / \mathrm{s}$ increased the capacity of the system by 13 times, to 24968 telephone channels. Whis was equivalent to operating the complete fibresystemat 1.8 Gibit/s.

The wavelength spacing of the four separate outputs was significantly closer - by an order of magnitude - than that achieved in earlier trials of wavelength division multiplexins. It was also the first time that WDM had heen used in the fietd using fullypackaged and commercially available components.
While wavelength-division multiplexing and coherent transmission are the key to dramatically increasing the capacity of fibres, including those already installed in the ground. a number of options remain to be tested and proven, before customers have the full henefit of the techniques. ※onetheless, these two demonstrations prove that unregenerated systems can be readily upgraded in the future at minimum cost to provide direct increases in capacity. The same henefit applies with equal force to longer systems incorporating optical amplifiers. which are able to handle multiple transmissions without difficulty.

ENTER 4:B ON REPICY CARI)

ANY MAKE OF RADIO TELEPHONE SYSTEM RETROFIT Silles TONE SIGNALLING

 SELCALL, CTCSS \& AUTO IDENT via MICROPHONE REPLACEMENT Low price desk top controllers, ANI display units with hard copy printouts.Private Mobile Radio Ltd., Industrial Estate, Gwaelod-y-Garth, Cardif, CF4 8JN, U.K
0222810999

Making Radio Work - Your Way

COMMERCIAL QUALITY SCANNING RECEIVER

The IC-R7000, advanced lechnology, continous coverage communications receiver has 99 programmable memorie; covering aircroff, morine, FM broadcasl Amateur radio, televisıon and weather solellite bands. For simplified operation and quick luning the IC.R7000 features drrect keyboard entry Frecise frequencies can be selected by pushing the digit keys in sequence of the frequency or by furning the maintuning knob FM wide/FMnarrow/AM upper and lower SSB modes with 6 luning speeds: $0.1,1.0,5,10,12$ s and 2.5 kHz A saphisticated sconning syslem provides instant access to the most used trequencies By depressing the Auto.M switch the IC. R7000 outomatically memor-ses frequencies thatare in use whilst it is in the scan mode, this allaws you to recall frequencies that were in use Readout RC. 12 infto-red remose controller voise synthesizer and HP. 1 headphones
 Icom (UK) Itd. Tell: 0227363859 . Telex: 965179 ICOM G N.B. Authorised Welsh distribution by
M.R.S. Commurications Ltd. Cardiff. Tel: 0222224107

Please send information on Icam products \& my nearest lcom dealer.
Name/address/postcode:
\square

Status:
Post to:Icom (UK) Led. Depl. WW, FREEPOST, Herne Bay Ken CT6 8 BR
Status:
Post to:lcom (UK) Led. Depl. WW, FREEPOST, Herne Bay Ken CT68BR
ENTER 17 ON REPLYCARD

ETHERNET VERSUS TOKEN RING

Eor simple situations, the design of a network can he very simple; but selection of the wrong technology could lock you into a very expensive disaster in the long lerm. So how should you design your network and select the technology to use? Certain things are fixed, such as the geography of your company. So the network has to fit the buildings. Usually you end up with a mix of technologies, usually defined as local area networks within the buildings and wide area networks between distant sites.

Network standards

If you read the computer press, you will see hundreds of branded network products. But essentially these fall into two camps - those that are designed to conform with the international standard for networking. "the OSI Open Systems Interconnect model (OSI), and those that are pure proprietary networks. The latter encompass a range of low-speed I'C networks together with products for interconnecting peripherals such as terminals and printers. Because these are proprietary, by definition they are heading rapidly into the obsolescence hin.

OSI specifies a number of interconnection technologies, i.e. the glue with which networks can be physically built.
X. 25 is a wide area technology hest known as packet switching. In the UK it is offered as a public data network service by Hritish Telecom as PSS (1)acket Switch Stream). Mercury Communications offers similar services.

IEEE 802.3 for to give it its ISO title, IS $8802 / 3)$ is a standard derived from, and compatible with, the original ethernet standard developed by IDEC, Xerox and Intel. introduced in 1980. Ethernet technology

eventually grow into multiple sites! So the basic topology is one of local area networks interconnected with wide area links. Since the choice of wide area services is defined by the public suppliers the major decision is which lan technology to adopt.

IEEE 802.4 MAP style networks are really limited to specific factory applications, whereas the bulk of the market place is looking for networking for the commercial and office environment.

So the choice reduces to ethernet or token ring. To compare these two technologies, we

Collision detection or token

passing: which is better? Chris Bard of Synergy says there is no simple answer.

dominates the local area network marketplace, with about 70% of installed networks being hased on ethernet. It is a nonproprietary standard used hy a great number of computer system vendors, as well as the three developing companies.

IEEE 802.4 is a standard for a tokenpassing hus technology. The most well known implementation is the MAP (Manufacturing Automation Protocol) used in some factory environments.

IEEE 802.5 is the standard hased on IBM's Token Ring technology, introduced in 1985.

Choosing the technology

The majority of networks are used to interconnect multiple sites, with many computer systems on each site. A single site can be regarded as a sub-set of this, although we would hope that all successful companies

Simple ethernet topology.

must look at specific areas, but first let us describe the basic technology:

Ethernet

Ethernet is a bus technology, with all devices attached to a single piece of wire. In its simplest form, this is an unbroken length of coaxial cable. The computers attach by clamping on to, but not breaking, this cable. This extremely simple design results in very high reliability, since the only common component is the cable.

Since all devices have equal access to the physical cable, there has to be an arbitration scheme. This scheme is called CSMA/Cl) fcarrier sense multiple access with collision detection). All devices have equal access and wait for a clear period on the cable before transmitting. Where two or more stations start transmitting simultaneously, there will be a collision and both stations will wait a short random time before re-transmitting.

Because devices all have access to the cable, only active devices actually participate in the network. Devices can be added or removed on a live network with no disruption, since the cable is not broken.

Token ring

IBM's 'loken Ring differs at a very basic level. in that the arbitration scheme used is that devices are not free to transmit when they wish: rather, they have to gain the right to transmit. This right is in the form of a token which is continually passed around the network, a continuous ring.
Each station on the network is an integral part of the cable, with all signals passing into and out of it. Each station must take all incoming data and retransmit it to the next station. When the token is received by a station. it decides whether to use it or not

To allow for errors and the reconfiguration of the ring, there must he a network master (or masters), which ensures that the token is kept circulating and re-starts the network in the case of failure or loss of the token. Token rings are extended by interconnection of separate rings, so as to limit the maximum number of stations, and hence the propagation delay, of the token.

LAN performance

This is the area which is promoted most: basically. "My network is faster than yours" advertising. Like comparing computer systems. where all the argument revolves around Mips and benchmarks, raw numbers are a poor indicator of system performance.

The basic numbers are that ethernet propagates signals at $10 \mathrm{Mbit} / \mathrm{s}$ and IBM Token Ring at $4 \mathrm{Mbit} / \mathrm{s}$, with 16 Mbits available in the future. Some proprietary token passing systems clock signals at up to $10 \mathrm{Mbit} / \mathrm{s}$. This is not the real story. Both networks support many attached systems. all of which may be trying to use the network for different things. So what performance can any one system get from a network and how many systems can simultaneously use the network:

The time taken for a data packet to reach its destination varies linearly with a number of factors, whilst the network is loaded below a certain threshold. Above that threshold. network performance drops off dramatically, with maximum network throughput some way below the maximum network speed.

On an ethernet, the propagation delay varies with the overall length of the network. but not with the number of attached nodes. Also the network overhead varies with the size of packets, smaller packets carrying more overhead per byte of data. As the load rises, as expected. each station is more likely to have to wait for the cable to be clear hefore transmitting; and there are more collisions. so the delay rises linearly with load. This continues until the knee is reached when multiple collisions are regularly occurring and many stations are waiting to transmit.

On a token ring, the propagation delay depends on the number of stations in the ring, since each station has to pass the token. whether or not it has any data to transmit. This leads to the situation where even if only two stations wish to be active on a ring, they have to suffer the propagation delay of token passing through all other stations. In a similar way to ethernet, delay rises linearly with load until so many stations wish to be active that the token is taken at each station it reaches, and the time taken for the token to traverse the whole ring becomes large.

There is a solution. The solution for both ethernet and token rings is to break the network and hence the workload into smaller sub-networks and to link the subnetworks with bridges. It is the performance of these bridges which will define the absolute performance of the network.

Bridges

Because the bridge learns the topology of the network, it is able to make decisions about network packets that arrive at it. Where the data destination is on the same side of the bridge as it arrives at, it can be discarded: hence the traffic is kept local to the subnetwork. This technique might be used to separate a file server and its client workstations from the rest of the network, thus keeping overall network load down. This technique works well because computer usage tends to follow human patterns, with people interchanging data and sharing resources much more frequently at a departmental or work-group level than with the rest of the company.
Over time, as loading increases. bridges can be inserted at strategic points on the network to solve any load-related problems. It is obvious that the performance of the bridge is critical to the overall network performance. since the bridge must be able to process all the packets that arrive in real time and forward, with minimum delay. some subset of them.

Network growth

We have already considered the network's response to increasing load, but what of its physical growth? What are the limits?

A single ethernet segment can support up to 1024 attached devices and this can be grown by extending the network with bridges to over 8000 stations. There is no advised maximum attachment since adding stations physically does not affect network performance.

The station limit on token ring depends on the cable used. For the simplest twistedpair cable at $4 \mathrm{Mbit} / \mathrm{s}$ the station limit is 72 stations, but configuration guidelines suggest about 30% of this ($20-30$). to avoid excessive delays in token passing. For higher quality cables the station limit is 260 . Beyond these figures the ring must be grown by bridging to another. separate ring.

Ethernet's great advantage over token rings is that no station relies on any other. Stations can be added and taken away at will. In fact even new attachments can be made to the ethernet cable, whilst the network is live, without affecting performance. On joining an ethernet, a station may choose to broadcast a regular status message, from which other stations may build up a database of active stations. but there is no absolute need to do so to maintain network integrity.

On the other hand, on a token ring, the integrity of the ring must be maintained at all costs. Adding a station involves breaking the ring; and even if this is transient. the configuration databases must be updated before the ring can continue processing. Similarly, if a station fails, the ring must bypass it physically to maintain the ring.

In summary, ethernet has a don't care. open approach to re-configuration and growth, whereas token ring has a closed and controlled method.

Simple token ring.

Token ring wiring technology.

Meshed ethernet technology.

Chris Bard is DEC Business Manager at Synergy, one of Digital's authorized distributors. Synergy is on (11-2456535.

Adaptive HF management

The dramatic increase in traffic throughput achieved in two large UK defence systems by the use of automatic frequency-adaptive control systems is encouraging the Electronic Engineering Association's HF Communications Committee to press forward with proposals for the establishment by the ITU of a number of "common pools of channels" in the international table of HF frequency allocations. They foresee the possibility of two types of licences being issued for civilian point-to-point services: one comprising common blocks of frequencies (akin to amateur radio band allocations) in which adaptive systems would be permitted to find and use free channels; the other form of licence would remain similar to existing practice where users are allocated a small number of specific channels and are not authorized to shift frequency to dodge interference.

At a recent IEE colloquium, "Adaptive HF management", a paper by G.K.L. Smith and R.J. Goodwin, representing the EEA committee, defined an HF adaptive system as "one which automatically (i.e. without the necessity of intervention by an operator) carries out the functions of establishing the communication link(s) and exchanging the message(s) in an optimum manner despite the variations in propagation conditions and the high probability of interference inherent in the HF band".

In support of block allocations. EEA points to the experience of two UK automatic systems using the relatively large number of

Above: example output from the Hull MUF measurement system. Solid bars in the 'Chirps' columns represent a chirp occurrence in the channel. 'Interference' is the value logged on the pre-scan. Propagation here is patchy between 6 and 18 MHz . Below, for comparison, is the output of a traditional chirpsounder, which compares well with the Hull results. These comparative trials were performed at RAE Farnborough with both receivers connected to the same antenna.

channels available for defence purposes - the Plessey AiCORN system now in use for the Home Radio Defence System (HRI)S) project and the Marconi ASSATS (automatic ship-to-shore channel-selection and telegraph traffic-handling system). It is clained that these systems have shown that traffic density has been dramatically increased relative to earlier non-adaptive systems: "Improved efficiency is apparent in the better utilisation of station equipment through shorter message transmissions achieved in terms of less need for queueing whilst awaiting favourable propagation conditions and in less 'on air' time".

EEA believes that. although further study is needed, "block" segments of spectrum for adaptive working could be introduced into existing allocations without necessarily increasing interference to existing users since adaptive systems would not choose to transmit on busy channels. It is pointed out that (as amateur users of "shared" bands can confirm) interfering stations seldom check whether a channel is already in use hefore starting to transmit! Adaptive systems might also decrease the time spent by point-bypoint senvices in "idling" on channel to discourage other users. Adaptive channelselection systems for commercial operators would. in effect. bring them into line with amateur practice over the past 40 years. Amateurs largely abandoned fixed (crystalcontrolled) channels in favour of VFO operation. manually searching for free channels and often sending QRL? ("is this frequency husy?") before transmitting a CQ call.

The ten-paper IEE colloquium also included contributions from the Universities of Hull and Wanwick which together have formed the llull-Wanvick Communications

Research Group. The morning papers were concerned with frequency management including the increasing use of chirpsounders and adaptive systems. The afternoon session was concerned with coding and modems including performance details achieved with computer-simulation tests of the 4800hit/s serial HF modem developed at Loughhorough University of Technology using hand-limited quaternany phase-shift keying.

Currently over 40 listed chirpsounder transmitters are located throughout the world: they are capable of heing used to ohtain real-time ionograms to enhance the accuracy of propagation predictions made using an automatic IIF frequency management system. Unfortunately the reception equipment for this system currently costs in the region of E50 (10\%) so that it is not cost-effective to incorporate such equipment directly into automated systems. in which the cost per terminal might be of the order of 10 -20) ofro. Tony Jowett lliniversity of Hull) described a relatively cheap alternative hased on a TMS320025 matched filter hoard attached to a Personal Computer clone to provide a combined display of detected chirps and interference on a series of channels spaced at $2001 \mathrm{k} 1 \mathrm{l} \%$ intenals (illustrated opposite. top of page). Apart from its use to enhance the nerformance of atutomatic systems. the technique, it is suggested. could be useful to those unable to employ active RTCE freal time channel evaluation) systems.

HF beacons

At the Adaptive IIF Management colloquium. Professor Mike l)arnell (liniversity of Ilull) gave further information on the ambitious plan to set up a glohal network of IFF (2-30N1 1%) transmitters and receivers that will enable a wide range of users (including radio amateurs) to monitor and collect a bariety of real-time data on HF propagation and noise/interference conditions (see "PIF propagation study.". Ed:U71 Fehruaņ 1989. page '2(12). It is hoped that the first two or three beacon transmitters will be in operation by about July and the system should then progressively build up to nine or ten transmitters. The motivation for this plan, as proposed by I.es Barclay (1)Tll, is 10 provide C"ClR with an enhanced data base for IIf broadcast planning. Transmitter frequencies will be in the fixed senvice allocations. close to 1IF hroadcast hands near 5.5 . $8,11,15$ and 20 Ml 3 z . For a nine-transmitter network, each transmitter would cycle through the same five freguencies in a ?(1)-minute sequence, transmitting three 1?second samples on each frequency (see diagram, above, right). There would be 45 components radiated in each 20 -minute intenal, requiring two receivers in parallel to monitor all components four times in this period. A trial system using just Wo LK tänsmitters ($9915 \mathrm{kH} \%$ and $12040 \mathrm{kH} \%$) was

Format of the 12 -second beacon signals from the real-time-channel-evaluation (RTCE) system to be based on an HF network. This is due to become operational progressively from next July on frequencies near $5.5,8,11,15$ and 20 MHz and will be suitable for automatic or manual use.
demonstrated at Geneva in May 1988. While hoth transmitters and receivers will be automated, it will remain possible for amateurs to derive some useful information on the real-time propagation conditions.
A simple lif beacon system has been operated by the IISSR for many years, and I have always found the two or three heacons often atudible on ahout $20993 \mathrm{klt} \%$ a vens useful indication of propagation conditions on the 21.41% amateur hand. Each transmitter radiates a "single letter" Morse symbol and such heacons have been reported at times on many other frequencies from 3 to $21 \mathrm{Mil} \mathrm{\%}$ According to the latest edition of Guide tolltility Stations roth edition, Klingenfus: Publications). which gives frequencies and locations. the locations include: B. S Archangel: C. O Moscow: 1) (Odessa: F V'adivostok: K Khabaronsk: I. I.eningrad: M Magadan: P Kaliningrad: U Kholmsk: Z Nukacheva. X in this series is given as Prague. Czechoslovakia, the only heaton listed outsiue the USSR.

Pioneers no longer?

Recently in qiving a talk to a Surrey amateur radio society I could not help noticing that although the meeting had attracted ia sizeable audience. few of those present were under 35 years of age, and the majority will not see 50 again. Aftenvards I enquired whether this was representative of the society's membership and was told that recent attempts lo attract more younger members had proved unsuccessful. It seems to be part of a glohal pattern, with relatively few teenasers now seriously interested in amateur radio as a hobby. Those that are show little interest in local activities.

Some suggest that the abilit! to communicate from home with other enthusiasts over long distances has lost its appeal to a generation served by international directdialling telephones, with transportable satellite terminals bringing vivid news pictures from λ fghanistan into the home. and where many youngsters now expect at some time to see for themselves those remote
places with which an occasional radio contact was once an exciting event. Radio communication seems to have lost much of the unique slamour that once surrounded it. altnough still retaining its appeal to those who have lived through so much technolosial change in this field.

In the LISA, efforts to interest the young often revolve around a plea to introduce a licence not subject to Morse tests. Such licences. widely available in Europe for VhF-only since the 196ids, certainly led to significant growth for a time but this seems not to have heen sustained.

A Californian amateur. Harn Helms. AAt.FW', in a letter to Ham Radio (Februany 19891 points out that the ageing of the hobhy is itself a discentive: "Would you (as a teenager) want to talk to a hunch of people old enough to be your grandfather? "'m " 35 and have a hard time finding someone interesting to have a ragchew with. .. He poirts out that, although few existing amateurs openly admit it many secretly want fewer rather than more amateurs despite the argument that unless very full use continues to he made of all amateur frequency allocations, they could be pared away at future World Administrative Radio Conferences.

One recalls how in the 1930s, relatively youns amateurs pioneered many aspects of the technology, not just for the hobby but also tor professional communications. Small firms set up by amateurs to cater for their own market soon hecame established leaders with the wartime expansion of the radio communications industñ.

Arthur Collins. WOCXX. formed Collins Kadic, to build a range of transmitters for the amateur market: Bill Halligan. W'9WZE, formed Flallicratters to build low-priced communications receivers: in the LK, Eddystone Radio in the mid-thirties under Harold Cox and Arthur Edwards. C6XJ. concentrated on IIF receivers for the tropics (pioncering tropicalization) and component parts for amateurs.

The death in late Fehruany, at the age of 81 of Bill Eitel. WhL'F, is a reminder of how in 1934. at the age of 26 , he joined forces with Jack McCullough. W6CHE. to form, with a $\$ 5000$ stake, the firm Eitel-McCullough Inc. (Eimac) to manufacture RF power valves for amateur transmitters. Eimac's products were soon used also for commercial and military transmitters - and later gained a major role in television hroadeasting, satellite links ete. In 1965 the firm, which then

RF COMMENTARY

had a work-force of 1800, merged with Varian Associates and became their Eimac division, headed by Bill Eitel until his retirement in 1974. Throughout his working life and retirement he continued to encourage amateur radio. The Eimac cluh helped pioneer amateur "moonhounce" (EME) and in 1965 he played a key role in "Project Oscar" to launch amateur radio satellites. Even after his retirement he installed a well-equipped laboratory at his retirement home in Nevada, making further useful inventions.

Meteor scatter

Over thirty years ago. the then Proc.IRE (December 1957) devoted a special issue to communicating by means of meteor scatter propagation. a concept that can be traced back to a note by G.W. Pickard on the relationship between meteor showers and radio reception in Proc.IRE (July 1931). A good deal of experimental work. particularly during the 1950s, was carried out using high-speed hursts, during the periods when the short-lived ionized trails from meteors result in paths opening over distances up to about 2000 km intermittently for short periods - usually less than a second duration but occasionally for a few seconds. It was shown that an average throughput of a few words per minute could be achieved consistently at all times.

But with so much interest in the 1960 s and 1970 s concentrated on satellite communications, interest in meteors waned for professional communications, although the mode continued to be used by some radio amateurs during the regular meteor shower periods when paths open more often for the longer periods.

Recently interest has revived and it is now confidently expected that during the next few years a number of modern meteor communication systems will add to the few already operational for both civilian and defence applications. In a tutorial paper "Meteor scatter: an overview" (IEEE Trans. Ant. \& Prop. December 1988, pages 1813-19), Ir Jay Weitzen and William Ralston (University of Lowell, Mass.) suggest that the revival of interest in hoth IIF and VIIF meteor scatter communications is due to such factors as the recently perceived vulnerability of satellite-based systems. coupled with the availability of inexpensive microprocessor-based control systems. Both HF and meteor-scatter can prowide survivable back-up to high-throughput systems. and are also suitable for remote sensing. Meteor scatter has the advantage over IIF in that it does not depend on variable ionospheric reflection. can work on a single frequency with less complex control and is free of the problem of a varying skip zone (with suitable antenna patterns and link protocols, paths can be established over all distances up to the single-hop E-layer max-
imum of about 2000 km). The disadvantage is the low average data rate and the short gaps between transmissions. The authors also point out that frequencies between about 40 and 100 MIIz are less subject to polar cap absorption and the frequent IIF blackouts at high latitudes, while the relatively small "footprint" from a meteor trail provides a degree of protection against interception and/or jamming.

Both RAE and the Royal Signals have been experimenting with computer-controlled meteor scatter systems (EdIIT' November 1988. page 1135 etc.), achieving average data rates of $20-25 \mathrm{bit} / \mathrm{s}$. The US Air Force at its high-latitude test-bed between Anchorage and Bethel in Alaska has shown (IEEE Trans. Comms. August 1984) that data rates can be increased by a factor of ten with adaptive systems that adjust the data rate to the capacity of the channel for a given bit-error rate. Multipath problems can be experienced during sporadic E conditions and also from auroral scatter which is important at high latitudes.

- See also "A new meteor logging technique", page 540 .

Simpler OTA-C oscillator

The August 1987 EdllW' (pages 794-796) introduced a number of novel sine-wave oscillators stemming from work at the University of Bahrain. One was an electronically tunable active-C oscillator requiring no resistors and based on operational transconductance amplifiers (OTA) rather than the more commonly-used op-amps. The 1987 OTA-C oscillator used a chain of five OTAs and two earthed capacitors, with a nearlinear variation of frequency from 5 to 50 kl l achieved by vanying the direct bias current. ()ther workers have described ()TAC oscillators using four OTAs.

A simplified form of OTA-C sineware oscillator, using only three OTAs (illustrated

Circuit permitting simultaneous variation of the bias currents for the three OTAs.

OTA.C electronically tunable sinewave oscillator developed by R Senani (Electro. nics Letters).
above), has been described by R. Senani at the Dethi Institute of Technology in Electronics Letters (February 16. 1989, pages 2867). It is pointed out that circuits which consist of only OTAs and capacitors provide several attractive features not possible with conventional op-amp-based circuits, including linear electronic tunability of parameters over a wide range by vanying an external current or voltage, as well as greater suitability for IC implementation as a result of the elimination of external passive resistors.

To achieve variation of frequency without disturbing the condition of oscillation, previous OTA-C oscillators have used four or five OTAs and more than two capacitors, or alternatively have included passive resistors. The circuit shown above meets the required conditions with only three OTAs and two earthed capacitors. Condition for oscillation: $g_{n 13}-g_{m 2}=0$ with $C_{1}=C_{2}=C$ and f_{1} $=\left(g_{m 1} \cdot g_{m 3}\right) /(2 \pi C)$.
R. Senani also provides an integratable circuit to provide simultaneous variation of the direct hias current for the three OTAs (helow by variation of a single external current.

RF Commentany is written hy Pat Ilawker.

"Optical" techniques for microwaves

At sub-millimetre wavelengths, waveguide exhibits large losses. Quasi-optical techniques, using collimated beams of radiation, avoid the problem

RACHAEL. PADMAN
RACHAELPADMAN

The region of the electromagnetic spectrum between ahout 10 (ill\% $1 \lambda=3$ $\mathrm{mm})$ and $100 \mathrm{OH} \mathrm{CHz}(\lambda=(1.3 \mathrm{~mm})$ has hecome increasingly important over the last 10-15 years. Originally. the only detectors available for this frequency range were bolometric, or incoherent detectors, similar to those in use in the infrared wavehands. More recently, however. applications as diverse as astronomy, molecular spectroscopy. plasma diagnostics, high-resolution imaging and secure communications have senerated requirements for high spectral resolution and/or high time resolution, which can only be achieved by the use of heterodyne (coherent) techniques, with a concomitant increase in the complexity of systems. All the standard micronvave-type components such as filters, attenuators. couplers. terminations etc. are required. in a frequency range where the standard waveguide may have typical dimensions of less than a millimetre - for example. WCOS (WR3), which nominalIy covers the band from 220 CHz to 325 CHz has standard dimensions of $10.87 \mathrm{~mm} \times 0.44$ mm . At these frequencies even the very best waveguide could he expected to have an attentuation in excess of $10 \mathrm{~dB} / \mathrm{m}$ hased purely on considerations of skin-depth: practical waveguides often have attenuations somewhat higher than this.
Waveguide propagation therefore is subject to considerable losses. Because of the ven' short wavelengths involved, however. it is instead possible to produce well collimated heams of radiation which propagate in free space. and only occasionally need to be refocussed by lenses or mirrors. Because of the close similarity of such systems to those of conventional optics, the name guasi-optics has been coined to describe applications of optical techniques to the far-infrared and millimetre/submillimetre wavehands. With careful system design it is possible to keep the losses down to the level of a few percent or less in any leg of the optical path. Components for quasi-optical systems generally have dimensions characteristic of the beam diameter, naking them easier to manufacture than their microwave counterparts at the same frequency.
Of course, the idea of using optical componentsal microwave frequencies is not new - the parabolic dişh antenna is an early example of a design lifted directly from traditional optics. while lenses were also

Fig.1: Propagation through a waist of a fundamental mode Gaussian beam. The intensity distribution along any cut perpendicular to the propagation axis is a Gaussian function of the distance from the axis (Adapted from Fig. 2 of reference 3).

Fig.2: Re-imaging with a quasi-optical lens. Ncte that the radii of curvature R of the
incoming and outgoing beams are not necessarily equal to the distances of the
Fig.2: Re-imaging with a quasi-optical lens. Ncte that the radii of curvature R of the
incoming and outgoing beams are not necessarily equal to the distances of the beam-waists from the lens.
discussed in the late 1940. ${ }^{1}$. However, two factors have combined to give the field of quasi-optics the prominence it enjoss loday The requirement for complex. low-noise fand hence low-loss) millimetre-wave heterodyne radiometers and spectrometers
as outl:ned above - provided the push. while the pioneering work on Gaussian beam-modes at Bell Labs in the mid 1960. provided the mathematical foundation which allowed relatively easy calculation of coupling and loss factors. In the rest of this article we will briefly review the characteristics of such Gaussian heams and then look at some common quasi-optical components, comparing them with their microwave ana-
logue.

FLINIAMENTALS OF GAUSSIAN OPTICS

Although we can. of course, apply a full electromagnetic diffraction analysis to the problem of wave propagation in quasiuptical systems. the costs in development and computer time would be prohibitive for all hut the largest systems. Early work on laser resonators ${ }^{2}$. homever. showed that beams of radiation oheying certain, not very restrictive symmetry conditions could be represented as sums of orthogonal heam monles. in much the same way as the set of fields in a waverguide can be decomposed into transverse electric (TE) and transverse masnetic (T:V) modes. For beams with axial

(cylindrical) symmetry the natural expansion is in terms of the so-called LaguerreGauss functions, while beams with symmet$r y$ about the planes $x=0$ and $y=0$ can be expanded in terms of Hermite-Gauss functions.
We imagine a beam propagating along the z - axis away from the beam waist - that is. the plane in which the beam has minimum spatial extent and zero radius of curvature Isee Fig 1, taken from reference ${ }^{3}$. The fundamental. or lowest-order mode is identical for both sets of modal expansions: at every plane such that $\%=$ const the electric field intensity is a gaussian (hell-shaped) function of the transverse distance r from the propagation axis. That is:

$$
\begin{equation*}
\xi(r) \times w(z)^{-1} \cdot \exp \left\{-r^{-2} / w(z)^{-2}\right\} \tag{1}
\end{equation*}
$$

The beam is completely defined by the heam radius w and the radius of curvature of the wavefront R which these depend on z and λ as (see reference 4):

$$
\begin{gather*}
w(z)=w_{11}\left(1+(z / \bar{z})^{2}\right)^{1 / 2} \\
R(z)=z \cdot\left[1+(\bar{z} / z)^{2}\right] \tag{2}
\end{gather*}
$$

where w_{0} is the waist radius, and the confocal distance $\hat{z}=\pi w_{11}{ }^{2} / \lambda$. Note that $w(z)$ is the field radius - i.e., the distance from axis at which the field strength drops to e^{-1} of its value on the axis: at this point the relative power is e^{-2}, or 8.7 dB .

To compare these results with those for conventional optics, observe that in the so-called geometric optics limit, as $\lambda \rightarrow 0$. the confocal distance, associated with a waist radius w_{0}, much greater than λ is vent large. and from equation (2) we see that the radiation propagates as an apparently parallel beam for very large distances before diverging. On the other hand, if w_{11} and λ are both very small compared with the dimensions of the optical system being studied. the heam appears to diverge from a point-like focus - here the beam diameter grows linearly with $\%$ and the radius of curvature of the beam. $\mathrm{R}(z)$, is everywhere equal to the distance z from the focus. Thus Caussianbeam optics reveals the existence of three regimes, depending on whether z / \bar{z} is $\gg 1$ (linearly growing beam), <1 (parallel beam) or somewhere in between. Many millimetre and submillimetre wave systems fall into this grey in-between area, requiring us to use the formulae (1) or (2) for design purposes, rather than the simple formulae of geometric optics.

Fig.3: Aluminium mandrel for a corrugated scalar horn for 270 GHz . The horn is produced by electroforming copper over the aluminium, and then etching away the mandrel using sodium hydroxide solution. The aluminium mandrel is therefore a solid "negative" of the inside of the final horn. The corrugations in the horn help to produce a more circularly symmetric beam pattern than can be obtained with a simple smooth profile. Note the detailed machining of the low-loss mode transducer at the throat of the horn, where rectangular waveguide is converted into circular waveguide.

Fig.4: Bowtie antenna on quartz hyperhemisphere. (From M.J. Wengler, D.P. Woody, R.E. Miller and T.G. Phillips, "A low noise receiver for millimetre and submillimetre wavelengths", in Int'I J.IR and mm Waves, vol. 6, No. 8 Aug. 1985 pp 697.706)
If a beam consisting of just a fundamental (pure gaussian) component is to propagate unhindered. then the diameters of all optical components should be at least four times the beam radius at that point - otherwise the truncation will produce sharn edges on the beam and scatter energy into higher order modes. For many purposes it is possible to consider only the fundamental mode, and in the interests of simplicity we ignore the higher-order modes in the following sections. It should be borne in mind, however. that when the beams cannot be well described by a simple gaussian alone, then the higher-order modes must be included in any calculation for maximum accuracy".

FOCUSSING COMPONENTS

Lenses and mirrors are used as focussing components in exactly the same way as for
conventional optics. The beam radius of cunature, $\mathrm{R}(z)$, however. is not equal to the distance z from the heam-waist, or focus. except for very large values of z . It is therefore necessany to use \mathbb{R} rather than z itself when calculating the required lens or mirror focal length. For example, the familiar optics formula:

$$
\begin{equation*}
1 / f=1 / d_{1}+1 / d_{2} \tag{3}
\end{equation*}
$$

becomes

$$
\begin{equation*}
1 / i=1 / R\left(d_{1}\right)+1 / R\left(d_{2}\right) \tag{4}
\end{equation*}
$$

where d_{1} and d_{2} are the distances from the lens of object and image respectively (see Fig. 2) and R(d) is the radius of cunvature of the gaussian beam at distance d. Since R depends on the wavelength. lenses and mirrors for quasi-optical applications are generally not wavelength independent.

Many dielectrics have been used to make lenses at millimetre wavelengths, including various plastics, such as PTFE, high-density polyethylene (HDPE), Rexolite (a crosslinked styrene polymer) and TPX (Poly-4-methylpent-I-en屯́), as well as high refractive index materials such as quartz. The latter. however, require blooming if reflections from the surfaces are to be reduced to an acceptable level. All dielectrics also have some absorption loss at these frequencies. which generally increases with increasing frequency.

For many applications mirrors are preferred as focussing elements. These are normally machined to the required paraboloidal or ellipsoidal shape on a numerically controlled milling machine, and then handpolished to give a near-optical-quality finish. Mirrors have the further advantage that the optical system can normally be set up and aligned using visible light, whereas most of the dielectrics suitable for mm-wave use are either only translucent, or at hest are transparent. but with a quite different refractive index (TPX is an exception. in that its mm -wave refractive index is servelose to the value it has in the optical).

LAUNCHERS

Much as we would like to carn' out all signal processing in quasi-optical "circuitn". we do from time to time need transducers to convert quasi-optical signals to and from guided waves in waveguide or coaxial line. This is done with an antenna, with perhaps a lens or mirror to provide focussing and keep down the size of the aperture. Fortuitousl: it turns out that the species of horn antenna known as the scalar feed generates a very close approximation to the fundamental Gaussian mode. with 98 "K of the total energy carried in the fundamental mode. and most of the rest in the first few higher-order modes. This is thus the launcher of choice for most applications. At submillimetre wavelengths it becomes increasingly difficult to manufacture the corrugated horns required for widehand performa. cz, and smooth-walled dual-mode horns may then he used; these give comparable performance but with very limited bandwidth $(\$ 10 \%)$. Figure 3 shows the internal structure of a scalar feed. Other less conventional laun-

Fig.5: A quasi-optical directional coupler, as discussed in the text under "Couplers and filters". Also shown is the conventional symbol for a microwave directional coupler, emphasizing the direct equivalence of these two devices.
chers include the bowtie antenna on a quart\% hyper-hemisphere (Fig. 4) and the cornercubereflector ${ }^{\text {th }}$.

COUPLERS AND FILTERS

One standard configuration for such a structure consists of a thin dielectric sheet placed to make some angle to the beam axis, with the thickness of the sheet determining the degree of constructive interference between retlections from the two air/dielectric interfaces (see Fig. 5). If the heam-splitter is lossless. and a fraction T of the incident energy is transmitted through the main arm, then it is apparent that a fraction $\mathrm{R}=1$ - T is reflected into the side-arm. Now. if we consider a signal arriving from one of the side-arms, then we can see that a fraction T of this must also be transmitted straight through isince the two arms are identical in every way), and therefore a fraction R is reflected into the main arm. The beamsplitter is thus exactly analogous to a 4-port direction coupler. with coupling coefficient in dB equal to - $10 \log _{10} \mathrm{R}$ - values between 6 dB and 20 dB are easy to generate in this way. As an exampie. a piece of mylar dielectric $12 \mu \mathrm{~m}$ thick has a reflection coefficient of about $2 \%(-17 \mathrm{~dB})$ at a frequency of 460 Cillz, for 45° angle of incidence (E-field polarized normal to the plane of incidence).

Most filter designs depend on interference between reflections at multiple mismatches. These may be produced by dielectric inter-

Fig.6: Inductive and capacitative meshes for use as quasi-optical filters or filter elements. Also shown are their lumped element equivalent circuits and their normalized filter transmission curves. (Adapted from C. Cunningham, Ph.D. thesis, University of London, 1982).

Fig.7: Schematic layout of the MartinPuplett interferometer shown in Fig. 8. The full ray path is shown only for the beam labelled ' 1 ' - the ray path for beam 2 is similar as can be easily verified. The beam is split by the " $45^{\circ "}$ wire grid into two components polarized parallel to and perpendicular to the mesh. The beam polarizations are then rotated by 90° after the double reflection at the roof mirrors, so that the beam which was reflected from the mesh is now transmitted, and vice versa. The final output of the interferometer depends on the difference in optical path in the two arms, which determines whether the two beams interfere constructively or destructively as they recombine in the output arm.

Capacitive

faces, as in the beam splitter just discussed (in which case the filter structure is identical to the multi-layer blooming on high-quality optical components, such as camera lenses). or more commonly by metallic meshes of various shapes and sizes. Such meshes can be designed to have either capacitative or inductive impedances, depending on whether the principal energy storage is in the electric field between metallic patches. or in the magnetic field around currentcarrying strips. If they are spaced at intervals of $\lambda / 4$, then all the theory of traditional quarter-wave filters applies. Mesh filters have been constructed for the entire range of frequencies considered in this article - an example is shown in Fig 6.

ATTENUATORS

One obvious way to make an attenuator is to make a coupler with a very high coupling coefficient, or alternatively to make a coupler with a small coupling coefficient and

Fig.8: Photograph of a dual-polarization Martin-Puplett interferometer for use in the $220-280 \mathrm{GHz}$ receiver of the James Clerk Maxwell Telescope, on Mauna Kea, Hawaii.
interchange the lahels of the side-arm and main-arm. Absorbing material can be introduced into the two unused arms of such a device to mop up the unwanted part of the signal. Modifications might include coating the dielectric sheet with a thin layer of conducting material, so that the wave impedance seen hy the heam is no longer purely reactive. thus destroying the condition which makes the simple coupler lossless.

SYSTEMS

Many more complicated devices can also be manufactured, some of which have no direct analogy at microwave wavelengths. These are mostly derived from such optical devices as the Michelson interferometer, quart\% half-wave delay plates, etc. One of the most versatile such devices is the Martin-Puplett, or polarizing Michelson interferometer ${ }^{\top}$, which has the form shown in Fig 7. This depends for its operation on the fact that a wave polarized in the 45°-plane will have its polarization rotated by 90° on reflection from a roof mirror. A beam which is initially reflected from the polarizing grid will therefore be transmitted when it returns, whereas the initially transmitted heam is now re-

flected. The output in each polarization then depends on the relative phases of the two heams recombining at the grid. MartinPuplett interferometers have found widespread use in the construction of receivers for millimetre-wave astronomy, as local oscillator diplexers. single-sideband filters and LO noise filters. Tandem versions have been built to get more bandwidth than is possible with a single filter (this is essentially the same as using two coupled cavities to increase the bandwidth of a filter). An example of a dual-polarization Martin-Puplett interierometer for frequencies in the range $220-280 \mathrm{CHz}$ is shown in Fig. 8.

In an article of this length it is unfortunately impossible to cover all the quasioptical devices which are of use in the construction of systems for the millimetre and submillimetre wavehands. In addition to the types of device outlined above, there are many more. including now the first nonlinear devices such as the quasi-optical frequency doubler, which uses an array of diodes arranged in a mesh much smaller than the heam. Intensive work is now going on in a number of laboratories worldwide to produce integrated quasi-optical structures, in which devices such as superconducting detectors, filters and IF amplifiers are all integrated on a single substrate with a planar beam launcher for coupling to quasi-optical beams. In future, we can expect to see the use of yuasi-optics extending to somewhat lower frequencies, with more suphisticated techniques also being applied at the very highest frequencies of interest as the art of making the various components advances.

Rachael Padman is at the Cavendish Lahoraton: Cambridge.

References

1. S. Silver (ed). "Microwave antenna theory and design" New York. I over, 1965.
2. II. Kogelnik and T.Li, "Laser beams and resonators". Proc.IEEE.. vol. 54 pp 13121966. 3. D. H. Martin and J. Lesurf, "Submillimetre wave optics". Infrared Ph's. vol. 18 pp 4115-412 1978.
3. P.F. Coldsmith, "Quasi-optical techniques at millimetre and submillimetre wavelengths", in Intrared and Millimetre Haves vol. 6. K.J. Button (ed). pp277-343. New York, Academic, 1982.
4. R. Padman, J.A. Murphy and R.E. Ilills, "Gaussian mode analysis of Cassegrain antenna efficiency", IEEE Trans. Antenna. Fropagat. vol. AP-35 pp 1093-11030ct. 1987.
5. H.R. Fetterman, P'E. Tannenwald, B.J. Clifton. C.I). Parker. W.D. Fitzgerald and N.R. Erickson, "Far-ir heterodyne radiometric measurements with quasi-optical Schottky diode mixers", Appl. Phys. Letl. vol. 33 pp 151-154 Jul. 1978 .
6. D.H. Martin and E. Puplett, "Polarized interferometric spectroscopy for the millimetre and submillimetre spectrum", Infrared Phiss. vol. 10 pp 105-109 Mar. 1970.

8151 Project--.-?

From simple minimum chip solutions through to complex turnkey multiprocessor systems, Cavendish Automation has the hardware and tools to allow you or us to design rapid and professional implementations.

$7 . \mathrm{F}_{2} \mathrm{f}$,

Off-the-st elf hardware includes numerous DACs, ACCs, bus-drivers and decoders. and many other forms of analogue and digit al I/O cards, logether with power supprlies, backplanes, card cages and equiכment cases.

Softhare dewelopment couldn't be easier. Our 7034 card $=$ text e-jitor enables software development for the 8051.2 in either assembler or MCS-52 BASIC Programs are simply blown into EPROM or EEPROM on the card iself. When writing in assembler both source and/or assembled code may be saved in this way.

15

Cavendish Automation Limited Oak Park. Barford Road.
St. Neots. Huntingdon. Cambs PE192SJ Telephone: C480-219457
FAX 0480-215300 TELEX 32681 CAVCOMG

With 40 years' experience in the design and manufacture of several hundred thousand transformers we can supply
AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE YOUNAMEIT! WEMAKEIT!

OUR RANGE INCLUDES:

Abstract

Microphone transformers (all types), Microphone Splitter/ We can design for RECORDING QUALITY, STUDIO Combiner transformers, Input and Output transformers. Direct QUALITY, HI-FI QUALITY OR P. A. QUALITY. OUR njection transformers for Guitars, Mulil-Secondary outout transformers, Bridging transformers, Line transformers, Line transformers to B.T. Isolating Test Specification, Tapped impedance matching transformers, Gramophone Pickup transformers, Audio Mixing Desk transformers (all types), Miniature transformers, Microminiature transformers for PCB mounting, Experimental transformers, Ulira low frequency transformers, Ulira linear and other transformers for Valve Amplifiers up to 500 watts. Inductive Loop transformers. Smoothing Chokes, Filter, Inductors, Amplifiers to 100 volt line transformers (f:om a few watts up to 1,000 watts), 100 volt line transformers tc speakers. Speaker matching transformers (all powers), Column Loud-speakers transformers up to 300 watts or more.

PRICES ARE HIGHLY CONPETITIVE AND WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFOPMERS. Many standard types are in stock and normal despatch times are short and sensible. OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AJTHORITIES, MIXING DESK MANUFACTURERS, RECORDING STUDIOS, HI-FI ENTHUSIASTS, BAND GROUPS AND PUBLIC ADDRESS FIRMS. Export is a speciality and we have overseas clients in the COMMONWEALTH, EEC, USA, MIDDLE EAST, etc. Send for our questionnaire which, when completed, enables us to post quotations by returr.

SOWTER TRANSFORMERS

Manufacturers and Designers

E. A. SOWTER LTD. (Established 1941). Reg. No. England 303990 The Boat Yard, Cullingham Road, Ipswich IP1 2EG. Suffolk. PO Box 36, Ipswich IP1 2EL, England.
Phone: 0473252794 \& 0473219390 - Telex: $987703 G$ - Fax: (0473) 236188

Dual buses for industrial I/O-2

Continuing the discussion of dual-bus computer systems, Jeremy Bentham of Arcom Control Systems examines the software aspects

Aconsiderable mystique has grown up about the method of driving I/O cards in high-performance systems such as VME. Most manufacturers provide a software "driver' to go with their boards. for interfacing to the operating system. Whilst this approach has the great advantage of insulating the user from the harsh realities of real-world I/O. it can be extremely inflexible: if the driver doesn't quite do what you want, tough luck.
This article describes the steps to take in writing some software to drive an I/O board using the OS -9 operating system on a 68020 processor board. The two main boards under discussion (SPIBB and SPCGA) are on STEbus. and the processor is the VSC020 dualbus STENME one, since this is the most economical method of providing I/O on small-to-medium systems.

HARDWARE CONSIDERATIONS

The 68000 family of processors use a 32 -bit address to access all memory and peripherals, unlike the 8080 -type processors which have separate memory and $1 / 0$ spaces. The manufacturer of a 68000 series CPU board designates which areas of the four-gigabyte address space are to be used for which purpose; the only restriction imposed by the CPU is that the bottom 4 K of the address space is reserved for the interruption vector table in ram.

In part 1. Anthony Winter described the way the address space is split up on the VSC020 dual-bus processor, with separate areas for the VME and STEbus interfaces. On the face of it. there is no real difference between programming an STE and VME board: both appear as a series of locations in the CPU address map. The minor differences in access speed are rarely significant in real industrial I/O applications, but the uncomplicated nature of STEbus boards does make them easier to program.

VME bus. The VME bus appears at six different spaces in the 68 K address map. depending on the type of VME board being handled. I/O boards are generally of the 'A16' type, that is to say that they take in a 16 -bit address value from the bus. Memory boards, on the other hand. often require a 32 -hit address. In order that the CPU hardware might determine whether a 16.24 or 32 bit address is to be put onto the bus. the bus space appears several times in the CPU's memory map. Thus, assuming the VME board appears at hus address 0, a CPU address of $\mathrm{FF} 800000_{16}$ would be used if it

PROCEDURE spibb
REM OS-9 68020 Basic program to set up SPIBB on STE JPB 21/2/89 DIM spibb,n:INTEGER
spibb=\$7e800fe0
POKE spibb+3,\$80
POKE spibb+7,\$80
POKE spibb+6,\$3f
FOR $n=0$ TO 65535
POKE spibb,n
POKE spibb+1,n/256

Next n

Fig. 1. Parallel I/O initialisation in Basic.
were A16. or addresses of 7 D0000000). 400000000 for $\mathrm{A}^{2} 4$ and A32.
Regrettably, the complication does not stop there! VME boards also have restrictions on the data bus width that the CPU can access. A 68020 processor can request an 8 . 16 or 32 -bit word from a VME peripheral board. yet the device being accessed may only have an 8 -bit data hus, for example a simple 8 -bit input port. There appears to be no standardisation on the way this is handled: some manufacturers make the peripheral board ignore a mismatched bus transaction, while others pad the data out by the appropriate amount. If in doubt, the programmer must ensure that only 8 -bit accesses are made to the board.
The VSC020 CPU hoard can also make full

STE BUS BOARDS

The two STEbus boards described in this article are a single 32 -bit parallel I/O board (SPIBB), and a PC-compatible text/graphics board (SPCGA). A 68020 CPU and PC graphics board may appear to be an unlikely combination, but the SPCGA is handy when 80×25 text is required, or simple graphics up to 640×256 pixels. The text mode is equipped with the very comprehensive range of PC graphics characters, and is link-selectable to provide standard video output for conventional colour/ monochrome monitors, or a high-quality display when used with a high scan-rate monitor such as a multisync. The C code given here will work with the board in either mode, since the increase in scan rate is transparent to the software.

32-bit accesses to V'ME peripheral boards, but normally only memory boards which require very fast transactions use this feature.

One final trap for the unwary: some $1 / 0$ boards are set to ignore any "user mode" bus transactions. on the assumption that a user has insufficient privilege to access the board. The CPU has to be in 'system mode' in order that the access may go through. This makes it much harder to write software for the hoard. since all normal Basic or 'C' programs run in user mode, as does the normal debug utility. One cannot easily create a little program to exercise the board: system mode programming demands considerable extra effort.

STEbus. Through its inherent simplicity, the STEhus is much easier to use. STEbus has a 1 Mhyte memory-address space, and a 4Khyte I/O address space. These appear at two different base locations on the CPU memory map. Simple peripheral hoards appear in the I/O space only. More sophisticated ones may have dual-port ram. and also appear in the STE memony space. For example, the CGA graphics hoard appears at STE I/O locations SID0 to 3IDF, and the video ram appears at STE memory locations B8000)BBFFF. When accessing this board with the VSC020 CPU, address 7 E 8003 DO is used to access the base address of the graphics chip. and $7 E A B 8000$ is used for the base of the ram.
Operation of the STEbus is completely transparent to the programmer: the hardware will perform automatic conversion of 16 or 32 -hit cycles into the 8 -hit ones required by STE. If an attempt is made to access a non-existent board. the CPU receives a bus timeout' interrupt.

LOW-I.EVEI. PROGRAMMING

With a new I/O hoard, a vent useful first step is to send it a few test bytes to confirm the settings and hasic operation. It is also very handy to be able to access the hoard at low-level, while the higher-level software is being developed

The lowest possible level of access is with the OS/9 Iser-State Vebugger (dehug), typing hyte strings in by hand. If the hoard being tested is on IME and operates in system mode only, then the OS/9 System State lebugger (sysdhg) must be used instead. Figure 2 shows 'dehug' heing used to set up an STE parallel I/O board (SPIBB) as an output port. and sending test bytes to it. Since the typing of large numbers of 8 -digit addresses is tedious. one of the relocation registers in 'debug' has been used to point to the board base address. These relocation registers are purely implemented in software in an analogous fashion to the hardware CPU registers. llawing been set, they can be used as shorthand for the hoard hase address.

USER-MOIDE PROGRAMMING

Having established that the board is operational by typing hex strings in dehug', the next stage is to write some simple software to initialise the board. It is most convenient to do this in "user mode', i.e. as a normal C or Basic program. Since the hoard appears as a number of addresses in the 68020 address map, accessing it is no different to accessing any memory location in the system.
Basic. OS-9 Basic is a very powerful structured implementation of the language. Direct I/O reads and writes are performed hy the standard functions 'peek' and 'poke". using the full 32 -hit address as described above (e.g. TE800FE. 0 for the SPl IBB). Figure 1 shows a Basic program which initialises a SPIBB and then cycles the hinary values (1)-65535 out toa 16 -hit port.

C language. When programming in C°, a pointer needs to be set to the hoard base address, whereupon accesses can be made as offisets from the hase. Figure 3 is a demonstration program for the CCiA text/graphics hoard. which uses this method for both STE $1 /(0)$ and memory functions. The two $1 / 0$ functions ('inporth' and 'outporth') use as a hase pointer the start of the STE I/() space. TE8\%oon hex. The calling function supplies the offset from the hase (e.g. FEO hex). which corresponds to the hus address of the peripheral hoard.

Memony accesses to the COA ram are performed by setting a character pointer ("screenh") to the hase address of the STE memory space plus the hoard STEhus address: thereafter. all memory references can he performed hy indexing off this pointer. The accesses will be single-hyte read or write. since screent is defined as a pointer to char". To show how wider data transfers are performed. the clear screen function has heen implemented using long-word (4 -hyte) transfers. A pointer to long is set up. and equated to the ram base address. All memory accesses using this pointer will be f-hyte.

debug	Enter debug utility
.r1 7e800feo	Set relocation reg 1 to base of SPIBB
21	Use relocation reg 1 as default
c 3	Change value in register 3 of SPIBB...
80	... to 80H (all ports of IC8 to 0/P)
c 7	Change value in register 7 of SPIBB...
80	... to 80H (all ports of IC9 to 0/P)
c 6	Change value in register 6 of SPIBB...
3 f	... to 3FH (all buffers to O/P)

Sending sample data to a SPIBB port...

$$
\begin{array}{ll}
\text { c } 0 & \text { Change value in register } 0 \text { of SPIBB... } \\
\text { aa } & \ldots \text { to AAH (O/P AAH from IC8 port A) }
\end{array}
$$

Fig. 2. Using 'debug' to initialise a parallell/O board.
Fig. 3. CGA demonstration program in C.

```
/* CGA demonstration for OS/9 68020 JPB 30/12/88 */
/* CPU addresses...*/
#define PORTBASE 0x7e800000 /* Base address of STE 1/O */
#define RAMBASE 0x7ea00000 /* Base address of STE memory */
/* STEbus addresses...*/
#define CGRAM 0xb8000 /* CGA RAM base address */
#define IR 0x3d4 /* 6845 index register */
#define DR 0x3d5 /* 6845 data register */
#define MCR 0x3d8 /* mode control register */
#define CSR 0x3d9 /* colour select register */
#define SR 0x3da /* status register */
/* CGA characteristics...*/
#define LINSIZ 160 /* Number of bytes per line (chars+attribs) */
#define LINES 25 /* Number of lines per screen */
#define ATTR 7 /* Normal value of attribute byte */
#define BLANKL Ox20072007 /* Long word containing 2 blank chars
                                    (ASCII spaces with attribute 7) */
/* Global variables..*/^E
^E
int op; /* Pointer for 0/p to CGA (offset from base) */
char *screenb; /* Base address of screen RAM */
/* Initialised data... */
unsigned char data[] = { /* CRTC initialisation for 80*25 text mode */
    0x71, 0x50, 0x5a, 0x0a,
    0x1f, 0x06, 0x19, 0x1c,
    0x02, 0x07, 0x06, 0x07 3;
main() ( /* Demonstration program */
    int i;
    init_cga();
    strout("Arcom SPCGA character set...");
    for (i=0; i<256; i++) ( /* Display char set */
        if (!(i%32)) op = (op/LINSIZ+2)*LINSIZ; /* 32 char per line */
        cout(i); cout(' '); /* 1 space between char */
    }
```

```
)
init_cga() { /* Initialise CGA, clear screen */
        int i;
        screenb = (char *)(RAMBASE + CGRAM); /* Set CGA RAM base addr */
        outportb(MCR, 0); /* Disable video */
        for (i=0; i<12; i++) ( /* Set up CRTC registers */
        outportb(IR, i); outportb(DR, data[i]);
        }
        cls(); /* Clear screen */
        outportb(CSR,0); /* Black border */
        outportb(MCR,9); /* 80*25 alpha, video on */
}
cls() { /* Clear screen */
    long *p; int n;
    p = (long *)screenb;
    for ( }n=0;n<LINES*LINSIZ/4; n++) *p++ = 8LANKL;
    op = 0;
)
cout (c) /* Raw character O/P to screen */
char c; {
        screenb[op++] = c; screenb[op++] = ATTR;
}
strout (s) /* Raw string O/P to screen */
char *s; {
    while (*s) cout(*s++0;
}
outportb(addr,byte) /* Output byte to STE I/O port */
char *addr, byte; (
    *(addr+PORTBASE) = byte; }
importb(addr) /* Input byte from STE I/O port */
char *addr; <
    return(*addr+PORTBASE); }
```

and automatically translated into four single-byte transfers down STEbus. Since this translation is performed by the CPU hardware. it is considerably quicker than coding four transfers into the sottware. Word or long-word transiers will always be handled correctly by the VSC020 when accessing STEbus; however. care is needed when using other CPUs or VMEbus. Check on the permissible types of access if a VME hoard is being driven, and also avoid performing word or long-word accesses starting on an odd address. since earlier CPUs may not perform such accesses in the way you expect.

DEVICE DRIVERS

An OS/9 device driver is a piece of software which has been written so that the device can be fully integrated into the operating system. All devices known to the operating system must have a device driver: as standard. the operating system is supplied with device drivers for discs, consoles etc. Once written and compiled, any extra drivers can be loaded into the operating system, and then all the normal commands can be used with them.

Building computer systems with access to VME and STE, two buses possessing different cost and performance trade-offs, allows major cost savings to be made.

Conventional wisdom has it that for every I/O board in the system, a device driver is needed. However, there is no rule in OS/9 that every I/O board must be known to the operating system: what it doesn't know about, it just ignores. Thus, user-mode programs can direct-drive I/O boards, and in many cases this results in smaller, more versatile code. since the programmer is freed from the restrictions and difficulties of $\mathrm{OS} / 9$ device driver interfacing.

Device drivers are almost always written in assembly language, because of the detailed interaction with the operating system.

It is possible to write the bulk of a device driver in C , with a small assembly language front-end, but only a subset of normal C code can be used. Variables and arrays cannot be pre-initialised. and library functions must be used with great care. For reasonably simple algorithms. such as terminal emulation for the CGA, these restrictions pose no great difficulty, and the Arcom CCA device driver is in fact largely written in C.
It is beyond the scope of this article to describe how to write an OS-9 device driver: it requires a strong will, stout heart, and the OS-9 System Debugger!

VSWR

I must comment on the article by P.B. Buchan in your December 1988 issue entitled "The VSWR enigma". Whilst not wishing to criticise the author personally. I believe that, rather than explaining the subject from a new angle, he has based his argument on a couple of incorrect assumptions which I hope to clarify.

The first error concerns the assumption that a complex AC circuit problem can be analysed and solved by using facts that relate to a similar, simple DC one. The second is his statement that "power is the rate at which energy is expended".

As far as 1 can recall from my days of study, this is in contradiction of one of the basic laws of physics, i.e. energy cannot be created or destroyed, it can only be converted from one form to another.

The crux of the author's argument concerns what happens when an electro-magnetic wave from an RF power-generating source encounters a mismatched load or transmission line. Simply stated, if a wave reaches the end of a transmission medium (coaxial cable etc.) and "sees" a load impedance greatly differing from its characteristic impedance, only some of the power/energy will be transformed into another form (radiated) and the remainder will have nowhere elese to go but back down the line to the sending end. Most people accept this fact.

Now the problem is what happens to the remainder of the power when it arrives back at the transmitter (assuming the transmission line has negligible loss). Many people think that mismatch energy is all dissipated as heat in the output stage and leads to excessive device dissipation, possibly resulting in failure of the device. Agreed, some will be transformed into heat and cause some increase in device dissipation. But, as the two impedances are vastly different, the large proportion will act in the same way that the wave did on encountering the mismatched antenna/load: the wave will once aga in be forced to turn back and will continue to travel from one end to the other until the major-
ity is radiated by the antenna and the balance will be converted into heat in the transmission line and output stage due to losses. Obviously, there will be points of high VSWR at one or more places along the transmission line, which can cause dielectric failure in extreme cases: with well constructed, open-wire lines this is a small danger; with coaxial transmission lines of reasonable attenuation factors, more of the power/energy will be converted into heat and may cause dielectric failure due to excessive temperature and/or voltage breakdown.

In conclusion, the author's argument does not hold water. The output impedance of a transmitter is not 50 ohms, despite what others would have us believe; if that was the case the best efficiency we could expect would be somewhere around 30 to 40% with low-loss components. The author has fallen into the trap of directly using the analogy of the equivalent circuit of a voltage and current source and assumed that it can be applied to RF transmitters. Take a look at the output impedance of an audio amplifier to see the similar problem. Here we drive 4 -ohm or less loudspeakers at high current levels, yet we all know that in this case we talk in output impedances of much less than 0.1 ohm!

I believe that the industry is largely to blame, one often sees specification sheets relating to transmitting equipment which fails to distinguish clearly between output impedance and system load impedance.
J.H. Fielding, ZS5JF

Durban
South Africa

Weinstock

1 am sure your editorial in the February issue raised more than a few eyebrows in the industry.

Whilst I don't work for, nor am 1 associated with, any GEC companies, I have worked for the Croup in the past.

Your condemnation of Lord Weinstock is less than fair. In the years that he has been chief executive of the GEC Croup of companies, he has brought together the biggest and most
profitable engineering group in the UK. Many smaller companies taken into the GEC group would have disappeared but for CEC.

Your appraisal of 'The Nimrod Affair' is altogether one-sided and viewed with hindsight. When the project first started, no-one had any real understanding of the complexity of such a project. Furthermore, the 'customer' (the MoD) could not specify their requirements. As developments took place through the years so the specifications changed - in the vernacular they kept moving the goal posts. I am not claiming that CEC were entirely blameless, but let us make sure that the blame is shared with those who change their minds.

May I point out that no British or European country has the wherewithal to compete with the semiconductor giants of the USA and Japan. Furthermore, it was never CEC's policy to do so. They manufacture leading-edge, specialist semiconductors and have never intended to get into the feast-famine standard markets.

Finally, may I point out that GEC is the biggest emplover of electronic engineers in Britain and furthermore has proved to be a good investment for its shareholders.
T. Jeffrey Burton
T. Jeffrey Burton Associates Tunbridge Wells

Ball-bearing motor

Stefan Marinov fails to hit the nail on the head in his description of the principles behind the ball-bearing motor (The Intriguing ball-bearing motor, EWW, April 1989). I would suggest that the operation of this 'thermal engine is based on the noninstantaneous thermal expansion of the metal due to electrical heating ($\left.I^{2} R\right)$.

Consider a stationary solid conducting sphere placed on a large flat metallic plate and pressed against it by the force of gravity. At time t, a large current is applied between the sphere and the plate. giving rise to local electrical heating at the point of high resistance, i.e. the point contact. As the metal is heated, it will take a finite time Δt for the thermal expansion to reach a
maximum. at which point small bulges will have been produced on both the sphere and the plate. The sphere will become 'top heavy' and topple over.

Consider now the second case. in which the sphere has already been set in motion, rolling along the plate. On the application of the current it will again take a finite time for the metal to expand. by which time the sphere will have rolled through a small angle $\Delta \phi$. See Fig. 1. It is now

possible to see that the force contributed by the thermal expansion will supplement the momentum of the sphere and, assuming that the friction is extremely small, would ultimately move it randomly across the surface of the plate.

These ideas can easily be extended to the case where two plates are employed on opposite sides of the sphere and moving in opposite directions. It only re mains to confine the movement in a single plane and fold it round on itself to create a ball-bearing.

The torque produced by the motor will be proportional to the number of balls: the current flowing (AC or DC): the thermal expansion properties of the metal surfaces: the friction between the surfaces; and the electrical resistance of the point contact.

These effects are not confined to ball-bearings alone: lineartype motors may also be contrived. For instance, one idea consists of placing a metallic cylinder on two rails as shown in Fig. 2. Once the cylinder is pushed into action it shows a variation on the theme, whereby a metallic sphere propels itself a round a circular railway.

The particularly interesting fact, however, is that the two ideas presented here are far from novel: they are culled from 'The Theory of the Nature of Light, Part 5 p. 195 by John Harris, published in June 1875. With

reference to the 'circular railway' of Fig. 3 it is worth quoting the book, as follows:
"When the circular base. . . is made level, the ball placed upon the rails. and a voltaic current. copious in quantity and moderate in intensity. introduced at the screws the ball will begin inmmediately to wihrate, and increase its motions till it revolves on the rails. It revolves with equal facility in either direction. . and it becomes much heated during its motion." and further that "the cause of the motion to be an intermittent thermic action taking place at the surface of contact, at a point a minute distance behind the centre of gravity of the rolling metal.

Dr Marinov's assertion that the mechanical energy is produced from nothing was obviously an April Fool's joke designed to confuse the majority of readers who probably believe. as 1 do. that you cannot get something for nothing'.
F. Donachie

Watford
Hertfordshire
In the Department of Electrical Engineering of the institute
where I was working as a teacher from 1975 to 1985, one of my colleagues liked to intrigue students and teachers with the same ball-bearing motor as the one described by Stefan Marinov in the April issue of EWW.

As electrical engineers, we all tried to explain the machine with electromechanics. Some of us considered the ball-bearing motor as a special case of the homopolar machine, which can be considered as a very sophisticated variant of the well-known Barlov wheel. A homopolar machine is a direct-current electromagnetic machine without a commutator and can be used as generator and as motor. It operates with very big currents and very small voltages.

Looking at the rotating ballbearing motor, we had the idea that the tremendous currents in the connecting wires produced a magnetic field with components perpendicular to the current in the rotor and thus producing Lorentz forces. However, when I stopped the motor with ny hand to feel the torque and next tested its self starting capabilities by giving it a flick in the opposite direction. it started to rotate in that opposite direction, opposite to the torque produced by the Lorentz forces!

At that time, this obsenvation killed our homopolar machine model and we left the ballbearing machine unexplained. There was, however, another obsenvation, that might be crucial for Stefan Marinov's statement that his motor delivers energy from nothing: when it was rotating in one direction the motor ran slower and produced a smaller torque than when it was running in the other direction! I fully appreciate Stefan Marinov's explanation of the ball-bearing motor as a thermal engine, but his claim that it delivers energy from nothing is nonsense.

He remarks: "One can see immediately that the ball-bearing motor has no back tension because there are no magnets, and the magnetic field of the current in the stator cannot induce electric tension in the metal of the rotor." Where currents of ten or even hundreds of ampères are flowing. you can never see immediately that there are no magnetic fields including elec-
tric tension in the rotor. (It would have been nice if Mr Marinov had mentioned the metal from which his rotor was made. Ours was steel.)

I am pretty sure that the outcome of the energy measurements will be different for different directions of rotation. If so, we can draw the conclusion that a ball-bearing motor is partly a thermal engine and partly an electromagnetic motor.
Petervan der Wurf
Bosrand
Geldrop
Netherlands
To criticise Stefan Marinov's ball-bearing motor may be to push at an open door, but it would be poor science if I were just to pour scorn on it. Here, then are some explanations of the more glaring flaws in his reasoning.

First, the thermal contraction of the ball bearing is not a direct reversal of the expansion. In expanding, the ball does work by pushing against the inner or outer ring, whereas in contracting it simply loses heat to the air without doing work (apart from against small internal stresses, which in any case operate in the opposite sense from the expansion work, and so increase the discrepancy rather than reduce it). This causes the curve of expansion against temperature to have a hysteresis shape, corresponding to the increase in entropy common to all thermal engines. This in turn means that more electrical energy has to be put in than the mechanical work got out, so in no way can the motor be said to run on zero energy.

Secondly, the calorimeter experiment proves nothing except what we know already, namely that all of the electrical energy becomes heat eventually - even the part which temporarily becomes mechanical work. Now, if Marinov could repeat the experiment with the motor generating heat equal to the electrical energy and with the axle protruding from the calorimeter doing useful work in the outside world. then we would have something worth looking at.

Finally, the reason for the reduction in resistance at higher currents is trivial. At higher cur-
rents, the balls expand more, and so the area of contact between ball and ring is greater.

There may be some uses for a motor based on this design, but energy for nothing it is not?

Tim Bierman

Hendon
London NW4

Faster than light?

The interesting and varied explanations for the Obolensky effect, submitted by your correspondents in EWW, March, 1989, show how valuable such letters are. Here was an experiment giving results of apparent superluminal speeds, and now we have a plethora of possible explanations requiring nothing of the kind! Yet the fact that those explanations were varied means that there was no unanimous opinion on several points.
(a) Where did the precursor signal originate? (At the relay? On the braided cable? Within the conductor? At the oscilloscope terminals? Previously induced within the oscilloscope? By stray coupling? etc.).
(b) When did that precursor signal begin? (The experiment had no independent timing device to indicate this vitally important instant).
(c) How did that precursor signal travel? (Through the air to the oscilloscope? On the outside of the cable? Through the braiding of one cable to the conductor of another?)
(d) When did that precursor signal reach the oscilloscope? (The experiment has no independent timing device to indicate this second. vitally important instant).

Although your correspondents made the above assumptions given in brackets, any epoch-making experiment should not require that an explicator is forced to make assumptions. No doubt many of your correspondents (or the authors) could suggest ways in which the above points could be obtained with certainty.

Do we have to use cables for discovering precursor signals? Why not send a signal pulse to the Moon? A.H. Winterflood

Muswell Hill
London, N10

I still think that the Pappas/ Obolensky thing is all a leg-pull. How else can we explain an arithmetic where the closer together two signals arrive, the greater the difference in their speeds (vide the three 39ft figures in Table 1); ditto where 620,000 km / s is only twice $200,110 \mathrm{~km} / \mathrm{s}$; signals which are "proved" not spurious because they conform with the theory that has been construcled to account for them; plates which are added to "enhance the signals" (not to mention the blast of radiation) but then nothing is done to show that it still works with that bit shut up in a good, sound Faraday cage; and information which might have given some of the game away, on the last two photos, conveniently falling off the bottom of the page? Perhaps by being so thoroughly impolite as to suggest that it is no more than extremely poor science?

However, some people seem happy to take it seriously. I think that Messrs Winterflood and Bierman have both overlooked what little evidence we can get out of those last two photos. In the latter's case, however, the results of this need not be quite so fatal to his proposal. If the extra cable (about 6 ft ?) was inserted right up against the oscilloscope and perhaps coiled up neatly out of the way, he is probably still on the right track. More information is needed.

Nonetheless, until someone with a bit of time (and access to some suitably exotic 'scopery) repeats some of the results, and then shows that they repeat yet again with the "hot" end screened off, I don't think we should bother any more about it. Alan Watson
Pollença
Mallorca

Crossed-field antenna

I read the article on the crossedfield antenna with a great deal of interest (EWW, March, 1989, p.216). However, the field diagram in Fig. 6 troubled me deeply. Joules Watt (EWW, July, 1987, p.698) has caused me similar concern. French and Tessman wrote an excellent paper (Am. J. Phys. (1963]: 31, 201) in which they calculated the
magnetic field at the edge of a capacitor that was being slowly discharged. For the convenience of EWW readers, I have repeated this calculation below. The radius of the capacitor plates $=\mathrm{R}$ and distance of separation $=\mathrm{d}$.

AtP $\quad 2 \pi R H=\iint \bar{J} d \bar{s}+\iint \frac{\delta \bar{D}}{\delta t} \cdot d \bar{s}$

$$
\begin{aligned}
& 2 \pi R H=1-1\left\{1-\frac{d}{2 R}\right\} \\
& H=\frac{l d}{4 \pi R^{2}}
\end{aligned}
$$

M.G. Wellard summed up the dilemma with Maxwell"s equations (EWW, April, 1983, p.45): "The present confusion in e.m. theory lies in our failure to differentiate between electric displacement and displacement current." The above derivation would make one reach the following conclusion. A capacitor 'works' because of the presence of fringing fields, therefore a displacement current is the existence of a non-uniform field and lines of displacement must be uniform: a uniform electric field cannot change with time. The next question that needs asking is: how do you differentiate between space and time? If you asked a very intelligent child (say the young James Clerk Maxwell) what space was, he might come up with the following statement. I must define space so that there is no temporal implication, therefore space is a condition that is, always was and always will be. It is analogous to the existence of lines of \bar{D} in a capacitor. Lines of $\overline{\mathrm{D}}$ are by definition uniform. If a field is uniform, then it is physically inpossible for it to become nonuniform. Conversely, if a field is non-uniform, it is physically impossible for it to become uniform. A non-uniform field is analogous to the existence of time. Time can never begin or end; it must always exist in closed loops.

A capacitor is supposed to be a condition of perfect space: i.e. it is, always was and always will be. However, when we try to create perfect space and convert $\pi \bar{D} / a t$ into \bar{D}, we succeed only by shorting out the capacitor plates. In other words, the concept that we call space - emptiness - is really solid and not hollow! Space is, by

definition, instantaneous (since it is solid). The only observation in nature that is valid is the belief that change is important. Everybody forgets that change is always happening. Now once you mistakenly believe that change can begin and end, you start to invent the meaningless concept that we call space. You also invent the meaningless concept of electric charge. $\overline{\mathrm{D}}$ and $\pi \overline{\mathrm{D}} / \partial \mathrm{t}$ are mutually exclusive. A cuned line cannot unlock itself and become a straight line. It is phrsically impossible for space or electric charge to change with time. Beginnings and ends do not exist in nature.

Finally, has anyone ever wondered why we call the circles, that surround a conductor $\overline{\mathrm{B}}$ and not $i \overline{\mathrm{~B}} / \mathrm{dt}$ in view of the definition of $\dot{\pi} / \overline{\mathrm{D}}$? ? presume that the answer is that we assume that a uniform field exists along the axis of the induction coil and can therefore postulate the existence of imaginary magnetic charges at either end of the coil and thus invent a magnetic capacitor. The same argument applies to an inductor. If we wind a conductor in a helix, then the current should be considered di/ it at since the current is now rotating. At least lvor Calt is consistent in that he knows that energy current exists in closed loops in the active state and they must therefore exist in closed loops in the inactive state.
Lawrence A. Jones
Endress and Hauser
Manchester
I read your article on the Crossed-field Antenna (March 1989) with interest, having been introduced to it by Mr Hateley at a conference in 1987. Arstenna engineers, of whom I am one, regard this device with considerable scepticism on both theoretical and practical grounds

The authors' attempts to
ascribe causative properties to Maxwell's well-known equations describing electromagnetic phenomena are misleading and erroneous. The presence of a quantity on the left-hand side of an equation is not, as the authors try to assert, sufficient evidence for its physical existence. In fact. in equation (4), one can let the frequency tend towards zero. in which event the conduction current density J becomes equal and opposite to the rate of change of charge density D. Equation (4) then shows that the "resulting" H -field tends to zero.

In the experiment carried out with capacitor plates. can the authors explain why they have ignored any contribution to the observed magnetic field arising from Maxwell's first equation? The E-field between the two plates must be appreciable and if they wish to use Maxwell's equations in a prescriptive rather than a descriptive manner they must apply the principle consistently.

A further theoretical objection to the analysis given is that the conduction currents in the wires feeding the two sets of plates are ignored. A true analysis of the crossed-field antenna would undoubtedly show that any radiated power arises from these currents. No doubt the antenna will radiate some power but as yet there is no evidence that its radiating efficiency is any more than other antennas of a similar size (i.e. 10% or less).

The value or otherwise of the crossed-field antenna could be very quickly established by an experiment conducted by any generally-accepted method. The radiated field produced at some large distance from the antenna should be measured and related to the RF power being input to the antenna terminals. The IEEE Standard Test Procedure for Antennas (IEEE Std. 149-179)
offers one such procedure by which the authors could (maybe) silence their critics immediately. Can they explain why this has not been done? Until it is, the verdict on the crossed-field antenna must remain "not proven"
A.G.P. Boswell

Great Baddow
Essex

Software productivity

I fully agree with the views expressed in Brian Frost's excellent article in the April 1989 issue of EWW. as I have come through almost exactly the same programming development phases myself, and reached substantially the same conclusions as Mr Frost

Having started with mainframe Basic nearly twenty years ago, I progressed through those dinosaurs Fortran 66 and For tran 77 to several assemblylanguage variants, including 6502, 6809, 8086 and NS32000. I, too. was very proud of my "hand-coded" and fully optimised assembler routines for real-time image-processing applications. However, just like Mr Frost, I soon realised that something rather better was needed for larger programs and discovered the wonderful TURBO Pascal from Borland. All of Brian Frost's comments on this Pascal variant are sound. The language enables one to develop custom applications-specific functions and procedures. For example, I combine the TURBO Pascal functions "gotoXY()" and "write()" into a very useful "writeat (X,Y, 'string')" procedure for text display.

My biggest disappointment was the C programming language. I expected great things from a system which is said to possess the advantages of lowlevel assembler and high-level convenience. After persevering with the language over several months at the start of my postgraduate research. I became fedup after being told that my program contained 38,352 errors when all that was missing was a bracket! I finally gave up \mathbf{C} when I discovered that the timings for image processing routines were actually much better in TURBO

Pascal. In fact, even my lowly interpreted Basic 4 (running on the Acorn NS32000 Cambridge Co-processor) was almost as fast as the many versions of C (including VAX) that (have used! My own feeling is that the current C craze may wane over the next couple of years, leaving the language back in the hands of the converted.
Mr Frost raises the interesting point about the lack of a great speed increase when moving from 8 bit to 16 bit processors. I have realised this for some years now, and have come to the conclusion that the small instruction set of 8 bit processors, such as the 6502, accounts for the relative efficiency of these older microprocessors. Although 6502 is not a risc processor per se, the new reduced instruction set philosophy is at least partially applicable. The provision of complex microprocessor operations. such as multipy and divide, and large instruction sets, all carry a cycle-time penalty. There is therefore the usual trade-off between efficiency and ease of programming in 16 bit and 32 bit processors.

Assembly language has still much to commend it, though. If a macro library is developed, then optimum-coded assembler routines can be almost as easy to use as a high-level language. For example, using macros, one can code
@-write ('Opening a data file for reading. . .')
@-fopen ('items_file')
@-read (item-1)

@_fclose ('items_file')

and so on, almost like a highlevel language. In fact, large optimised and customised macro libraries. with conditional assembly, can be easier to use than the likes of the C language. Custom macro libraries are the key to fast and efficient coding in assembler

As Mr Frost observes, programming languages, no matter how functional or exotic, will always attract their own groups of adherents. It is rather like one's personal taste in clothes. music or food
Thomas McIndoe
Clasgow

Microwave television distribution

After several years of investigation, prevarication, two reports and now a White Paper, the future of broadcasting is still very much confused. The confusion has been intensified by conflicting comments from the DTI "The government should not attempt to determine artificially the success of different technologies", and the Home Office ". . . the government interest was focusing on those frequencies above 30 GHz ."
Two points in particular are completely missing from the discussions: power or energy conservation and interference to users of the spectrum, which is a form of pollution. The report from Touche Ross for the DTI concluded that, in the UK, the 2.5 CHz band was already fully loaded and without further investigation ruled this out for the use of microwave distribution of domestic services.
It is a great pity that the current uses of the 2.5 GHz band were not investigated more closely. The main high-power occupancy is troposcatter com munications; today, this is not in keeping with good spectrum management or power efficiency. The technique involves directing several kilowatts of RF from a relatively large antenna in the general direction of a similarly large receiving antenna, which collects a few picawatts of RF. The rest of the radiation becomes someone else's interference. As an example of this situation. Jodrell Bank has a research frequency at about 2.67 GHz and, due either to the out-ofband radiation from microwave cookers at 2.45 GHz or interference from some other sources. this line of research has been virtually abandoned. That the troposcatter service has provided good communications in the past is no reason not to look for a more effective alternative. These senvices could be moved to the spare capacity on the geostationary satellite links using the VSAT concepts (Very Snall Aperture Terminals), reducing the size of the ground station antennas, removing the need for sewo steering systems and considerably re-
ducing the station costs.
If this could be achieved, then the 2.5 GHz band would become available for the MVDS users in line with Jim Slater's excellent article in the March issue of Electronics and Wireless World. Current tests being carried out by the Broadband Systems Group of Manitoba Telephones in Canada show that good to very good television pictures are received at distances beyond 5 kilometres using $1 W$ of RF power into the antenna. Current addon costs to the user would be in the order of $£ 150$ with about $£ 20,000$ per four-channel headend unit to the service provider.

Since costs for small-quantity production runs, such as would be needed for 30 CHz head-end units, are roughly proportional to the square of the frequency increase, this would be of no help to the hard-pressed interactive cable systems that might otherwise be customers for MVDS

As for the use of a digital channel over an MVDS link, it can easily be shown with a link power budget that 10 mW of RF power from a Gunn-diode-based transmitter and a 50 cm diameter antenna can provide digital data at the teletext rate with negligible errors.

It has been shown by work in Ireland that the 2.5 GHz band will support 12 PAL-system 8 MHz channels and, since, PAL would appear to have a future of at least 15 more years for terrest rial applications, to describe such a concept as obsolete from the start of a service is inaccurate.
Geoff Lewis
Geoff Lewis Enterprises
Canterbury
Kent

Readers' letters for publication are always very welcome, and it is helpful if they can be kept as short as possible to enable us to print a varied selection. Please do not feel inhibited about starting new hares for correspondents to chase - there is no need to confine your letter to matters already mentioned in the journal -Ed

RUGBY TIME?

MSF CLOCK is EXACT - never gains or loses, SELF SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds, automatic GMT/BST and leap year - and leap seconds, EXPANDABLE to Years, Months, Weekday and Milliseconds or use as a STOPCLOCK to show event time, ALSO parallel BCD (including Weekday) output for computer or alarm and audio to record and show time on playback, $5 \times 8 \times 15 \mathrm{~cm}$, receives Rugby 60 KHz atomic time signals, only £97.90, GET the RIGHT TIME
60 KHz RECEIVER, narrow band superhet as in MSF CLOCK, " S " meter and serial data outputs (with Basic computer listings), built-in antenna, $1,000 \mathrm{Km}$ range, easily retuned to 17.8 KHz for aurora forecasting or 134.2 KHz for weather facsimile, only £35.30.
Each fun-to-build kit (ready-made to order) includes all parts, case, pre-wound coils, fibre-glass pcb, instructions, by-return postage etc and list of other kits.

Toroidal \& E.I. Transformers

As manufacturers we are able to offer a range of quality toroidal and laminated transformers at highly competitive prices.

Toroidal Mail Order Price List

prices inclusive of VAT \& Postage
$15 \mathrm{va} 9.12,30 \mathrm{va} 9.48,50 \mathrm{va} 10.16$, $80 \mathrm{va} 11.02,120 \mathrm{va}$ $12.23,160$ va $14.44,225$ va $16.37,300$ va $18.05,500 \mathrm{va}$ $26.46,625 \mathrm{va} 30.66,750 \mathrm{va} 34.14,1000 \mathrm{va} 49.40$. Also available $1 \mathrm{k} 2,1 \mathrm{k} 5,2 \mathrm{k}, 2 \mathrm{k} 5,3 \mathrm{k}$. Prices on request. Available from stock in the following voltages: 6-0-6, 9-0-9, 12-0-12, 15-0-15, 18-0-18, 22-0-22, 25-0-25, 30-0-30, 35-0-35, 40-0-40, 45-0-45, 50-0-50, 110, 220 , 240. Primary 240 volt.

Quantity prices and delivery on request

Air Link Transformers
Unit 6, The Maltings, Station Road, Sawbridgeworth, Herts. Tel: 0279724425

KESTREL ELECTRONIC COMPONENTS LTD.

* All items guararteed to manufacturers spec.
* Many other items available.
'Exclusive of V.A.T. and post and package

	$1+$	$00+$		$1+$	$100+$
74LS00	0.15	008	2.4576 MHz Crystal	0.75	0.55
74LS32	0.15	0.08	4 Meg Crystal	0.45	0.26
74LS125	0.15	0.11	6 Meg Crystal	045	0.26
74LS241	0.30	0.18	8 Meg	045	0.26
74LS244	0.30	018	1488	0.25	0.16
74LS245	0.30	019	1489	0.25	0.16
74LS373	0.30	0.18	2732A	2.50	2.30
74HC00	0.14	0.09	2764A	2.20	1.80
74HC02	014	0.08	27C64-20	2.50	1.80
74HC147	0.25	014	27128A-25	2.80	2.30
74HC153	0.24	0.12	27256-25	2.80	2.50
74HC194	0.25	015	27C256-25	3.00	2.50
74HCTO4	016	0.13	27512-25	6.20	5.50
74HCT32	0.16	008	8259AC-2	1.60	1.20
74HCT74	0.16	012	8255-5	1.90	1.30
74HCT123	0.23	0.16	82C55	1.50	1.10
74HCT 138	0.23	016	8085	1.60	1.00
74HCT373	0.35	0.28	6522P	2.60	1.75
74HCT374	0.35	028	Z80ACPU	100	0.65
74 HCT574	0.40	0.32	Z80AP10	100	0.65
74 HCT643	0.42	030	Z80ACTC	100	0.65

All memory prices are fluctuating daily, please phone to confirm prices.
178 Brighton Road, Purley, Surrey CR2 4HA Tel: 01-668 7522. Fax: 01-668 4190

ENTER 20 ON REPLY ('ARD

PINEAPPLE SOFTWARE

BBC PCB SOFTWARE

PCB auto－route is remarkable．No similar sohware comes near the price．			
PCB manual track routing	E85．00	PCB outa－routing	¢185．00
PCB Plomer driver	¢35．00	P\＆P free	Acorn User Aug 88

IBM PCB Software

then packoge．Up to

 Suitable for IBM PC／XT／AT and comporibles with 512 k RAM $\mathbf{5 2 7 0 . 0 0 \mathrm { P } \$ \mathrm { P } \text { free．}}$ PCB TURBO V2 unbeotoble full feature outo－routing IBMPCB des gnep，Boords up to 32×32 with olayers p695 00 P\＆ProtROLAND PLOTTERS
speed．Forollel ond serial interfaces and soff pen landing with outomatic origin selting on all models． 1200 model has oddition of electrostatic paper hold and X－Y ccordinate display． 1300 model also has monuol pen $\begin{array}{lllllllllll}\text { DXY } 880 \mathrm{~A} & £ 540 & \text { DXY } 1100 & \text { £625．00 } & \text { DXY } & 1200 & £ 865.00 & \text { DXY } 1300 & \text { £ } 1025.00 & \text { P\＆PP } £ 15.00\end{array}$ MARCONI TRACKERBALLS

ENTER 15 ON REPLY CARD
Field Electric Ltd．Tel：01．9536009． 3 Shenley Road，Borehamwood，Herts WD6 1 AA． Fax：01．2076375，0836 640328

SPECIAL OFFERS

```
NEC 9" Green Screen Monitors 7501 compuddo input,
&2.95 c/0
bandwidth 12V DC mput New & bored with crrcuft
Milsubisnim485/4 new 1/2 herght dish down 80 trac
GENERAL TEST EQUIPMENT SALE－ 1 MONTH ONLY
MP5000A Logc State Analyzer (55000
HP1607A Logk Slate Analyzer &150.00
```



```
Hp19000 Pulse Gererato S.silem {37500
```



```
M-2,
```


GENERAL TEST AND MEASUREMENT EQUIPMENT
Sivers Laboratorny vane Ateruwator $\$ 150.00$
Fuide AC/DCD Difle entibl V. meter $\$ 150.00$
Datron 10.030 RMM Dighal Votmeter $\$ 125.00$
Solatrion Freauency Res Analyzer $1310 \leq 220.00$

Advance Inst|PG552A Pusp Gen $\$ 100.00$
Phitip PMSI 68 Function Gien 550.00

COMPUTER EQUIPMENT SALE
DEC Ranba 1004512000

We would like the opportunity to tender for surplus equipment OHicial Orders／Overseas Enquitres Welcome＂Order by phone of post Open 6 days．Postal fates apoly U．K
manland only．All test equipment carres warianty．All prices inclucc 15% VAT unless slated Phone your order

A powerful control computer based on the new Hitachi 6303 Y and high level language Forth． $100 \mathrm{~mm} \times 72 \mathrm{~mm}$ ． 30 K bytes RAM．16K dictionary RAM PROMI． 256 bvtes EEPROM． 16 K Forth．You can attach 64 key kevboard． LCD and IC bus peripherals．Built in are interrupts． multitasking．time of day clock．watchdog timer．full screen editor and symbolic assembler． 32 parallel and two serial ports．Single power supply and low power 3 mA operational mode．
1 off £ 194.95 including manual and non－volatile RAMI vas

Triangle Digital Services Ltd

100a Wood Street，London E17 3HX

Telephone 01－520 0442 Telex 262284 （quote M0775）Fax 01－509 3263 ENTER 16 ON REPLIY CARD

M \＆B RADIO（LEEDS）

THE NORTH＇S LEADING USED TEST－EQUIPMENT DEALER
TEST EQUIPMENT
Bradiey 156 Oscilloscope Callbrator Bradley 192 Oscilloscope Calibrator
Bradley $171+718$ Mete $\mathbf{C l}$ Bradley $171+1718$ Meter Calbrator Radometer SMG1 Sterev Generator Hatield Psophameter Type 1000 AS Huze $470-850 \mathrm{MHz}$ Feld Strengt RS Huze $44-210 \mathrm{MHz}$ Field Sirength Gen Rad 1390日 Randorn Noise Generato Gen Rad 1617A Capactance Bridge Gen Rad 190015218 Wave Analyse Ractara LD02＊DMS Audio Test Se MP 202C Oscillator
Radtord DMS3
Marconi TF 2331 Distort on Meter
Marconi TF2120 Wavelorm Generator
Marconi TF 1313 A． 1% LCR Bridge
Marconi TF2700 in situ Bridge
Marconi TF 2700 LCR Bridge
Alm Inst 401 LCR Bridge 402
Aim Inst 401 LCR Bridge 402 Cor
Radiometer MM2 LCR Bridge
Radıometer MM2 LCR Bridge
Gen Ract 138320 Hz －2CMHz Rancom Noiso
Gen Rad SWB Meler
HP5300B Counter
HP651A Audio Oscillato
HP3465A Digtal Voltmeter
HP3403 True RMS Voltmeter
HP5381A 80 MHz Freq Con
HP5045A Digutal IC Tester
HP5045A Digral IC Tester
HP3761A 3760A 3722A Error Detector
HP461 Amplitier IKcs 1
HP3200日 VHF Oscillator
HP83300A Radiant Flu M M
Farnell SG1B Interiace New
HP141A Storage Frame
Racal IEE Counter Interlace 9932
HP3495A Scanner
HP5253B Counter Unif 500 MHz
HP250B RX Meter
Tektionux M
8561／8562

	SPECTRUM ANALYSERS
¢200	HP8559A 10MHz to 21GHz New boxed
¢400	HP8558B 1 10 1500 MHz
¢150	HP5420A Diglial Signal Analyser
¢150	HP141T Brand new boxed
¢200	HP141T 8556 A 0.300 KHz 8552 BIF
¢125	HP14TT 8554 B 1200MHz 8552 BIF
¢100	HP141T 8553B $110 \mathrm{MHz8552AIF}$
575	Tektronix 49140 GHz Analyser
¢100	Scientidic Allanta 4657B 4651日
£200	Marconi TF 2370 110MHz
£300	HIP8443A Teaching Generator
£200	HP8750A Storage Normalizeq
¢300	Signal generators
¢75	HP8640B AMFM 1024 MHz
£150	Adret AM FM 300 KHz 650 MHz
£295	Marconi TF 2015 AM FM 10－520MHz Signal Gene
£245	TF2171 Synchronser
¢150	Marconi TF 2016 AM／FM 10Hz $120 \mathrm{MHz}+$ TF2 17
£50	Synchronizer
£100	Marconi TF $2012400-520 \mathrm{MHz}$
295	Marconi 995 A3 1．5－220MHz AMFM
$£ 95$	Marconi TF2008／2 AMFM 10KHz 520 MHz w wh
¢150	Sweeper
$£ 100$	Marconi TF $2002100 \mathrm{MHz} 72 \mathrm{MHz} \mathrm{AM.FM}$
¢125	Marconi 2022 1000M1／2 AM／FM
¢200 £175	OSCILLOSCOPES
£175	Tektronux 24454 Trace 150MHz
§500	Tektronı 475 Dualtrace 200 MHz
¢125	Tektronx 465 Dualirace 100 MHz
$¢ 750$	Tektronx 466 Storage
	Telequipment D83 Dualtrace 50 MHz
	Telequipmeni D755 50MHz D／L tune
¢95	Tektronix 7603 with plugins
¢150	SPECIAL OFFERS
¢75	Cossor CDU150 35MHz Dual Beam Oscillosed
¢100	with $\times 1 \times 10$ probe and froni cover
［125	0－250MHz 5011300 wath dummy load
$¢ 100$	Bradley CT471 RF Mutimeters 1200 MHz
¢150	Erandenturg HT PSU 0－2．5hv 5MA
E100	HP532 Freq Meter 26.40 GHz
¢350	1／2kG Corea Solder 22－18 SWG
8560	Racal Ra17 Receivers 500 MSC 30 MHz
	Dalong FLI Audio Filler

ALL PRICES PLUS VAT AND CARRIAGE 86 Bishopgate Street，Leeds LS1 4BB． Tel： 0532 435649．Fax：（0532） 426881

COLOUR MONITORS
PRINTERS
POWER SUPPLIES

15．Deca， 80 series bixdoge range．crour montors leatures in

 20 ＂\＆ $22^{\prime \prime}$ AV Specials

MONOCHROME

FLOPPY DRIVE SCOOP Drives from Only £39．95

 Taccep the common slandard 34 way interace connector
 Toshibs etc．Spectry 40 or 80 track TEAC FD55－F $40-80$ track double sided Hall Height $\begin{aligned} & \text { Brand New } \varepsilon 115.00 \text {（B）}\end{aligned}$ DISK DRIVE ACCESSORIES

8＂DISK DRIVES
SUGART $800 / 801$ single sided refurbith
 MiTsualshi Mz89463D Duble stred s Witchable

COMPUTER SYSTEMS

TATYNG Praioo．．ilo broher ol the tamous，EINSTTEIN

Orgnal p price V Vureranile
Only £299（E）

 Controler r85．00（B）．IMS ABG2 CPU 8 Vo E65．00（B）

On con pont seed wht bolh

 \qquad

Ultra Fast 240 cps NEWBURY DATA NDR 8840 High Speed Printers Only $£ 449$ II

 quarne

 aned 日MAND NEW OIII E225．00（E）

Most of the ttems in this Advert．plus a whole range of other electronic components and goodies can be seen or purchased at our
＊＊South London Shop＊＊
 come．Shop calers siss suave ine cosi Iol carame．

MODEMS

MASTER SYSTEMS IIPe 212 miriorocose

 zaung you 7 st oly your t phone blis and ogue axay price and you have as supen buy

\square Only $£ 149{ }^{(0)}$

 EX Th hiveresed Molem 20175512020 Baud to
 TrANSDATA 307 A A 30 bavil acousisic couple
 As abwe boone merand As above bur 2 meres sing

RECHARGEABLE BATTERIES

SPECIAL INTEREST

\section*{RACAL－AEDAC real time，colour drafting} PCB layout system $V A X 11 / 750$ inc 2 Mb Ram DZ ，and full | doc etc |
| :--- |
| HP7580A 8 pen digital AI drum New 58500 | EEE Interface \quad As New $£ 4750$ CHEETAH Telex machine

1.5 kw 115 v 60 Hz power source
500 watt INVERTER 24v DC

End of line purchase enables this brand ne Machine oit it manuacure ， 355° based UNIX sysiem comaeli WaYM Kbwnc Rase disk dive
 TEKTRONIX R140 NTSC TV
COOLING FANS incestructable refillable NICAD stack by
ALCAD．Unit features $10 \times$ indlidual type
XLI． 5 cells in wooden crate．Supplied to the ourput currents \＆withstand ling periods a
starage in discharged state．Dlm cm $61 \times 14 \times$
22 Cost over $£ 250$ Sypplied umsed 8 tested
completewinstructions
EX EQUIPMENT NICAD Cells by GE
Removed trom equioment and betteved I
good but used condition．＇F＇size 7Ah 6 for I8（B）Also D＇size 4Ah 4 ior 55 （B）

Disk Drives ONLY £399

ull CPU D2246 8＂ 80 Mb disk drive features

 iterface，Ulira high speed datandard SMDace standing Supplied BRAND NEW with Dual drive plug in 135 Mb Only $£ 399.00$（E
 tc avaiable AT unit in case with PSU etc．$£ 1499.00$（F Inteŕace cards for upto 4 dives on IBM At
etc availabler
Brand new al $£ 395.00$

Abstract

Special Offer
EXPERIMENTORS PSU

£16．95（c）

四 OOVER ONE PHC 24 vDC 2 amps Linear PSU fully regulated

The AMAZING TELEBOX Converts your montorinto a
QUALITY COLOUR TELEVISION
 riving a speaker plus an auxillary output for Headphones or Hi Fi sys．
em elc Many other leatures：LED Status indicator．Sman mouded Camage code（B）Suppled BRAND NEW with full＇ 1 year guaramee

TV SOUND
TVIDEO
TUNER
£29．95

ELEEPOX ST Tor monitiors with composile wideo Input 529.95 ELEBOX RGB

Designing low-noise audio amplifiers

In any system, the front-end amplifier sets important limits to performance. This article examines the limitations of low-noise amplifers as defined by the laws of physics and the practicality of real-world components.

WILFRIED ADAM

Since the invention of electronic amplifiers, their dynamic range (the ratio between the smallest signal just above amplifier noise and the largest possible signal at a given level of distortion) has increased steadily. Despite this improvement. the dynamic range of a modern microphone amplifier is considerably less than the capability of the human ear or of a modern microphone (Fig.1). Therefore in the quest for fidelity it is desirable to improve the dynamic range of electronic amplifiers still further.
The main factors behind the expanded dynamic range of modern amplifiers have been an improved knowledge of distortion mechanisms and methods of combating distortion. together with a better understanding of noise sources in amplifiers and the way in which external noises are picked up.

Modern transducers general analogue signals at low level, mainly because of their poor efficiency in converting the input energy into electrical energy. Analogue signal amplification is therefore needed to match the transducer signal to the subsequent analogue or digital signal processing circuitry. The noise performance of this first amplification stage is of considerable importance, because signal information from the transducer which is lost through noise in the first stage cannot normally be recovered through signal processing later on.
One type of interference which influences the performance of the first amplification stage may arise from external sources such as radio frequency signals, in all frequency ranges. Such interference may vary statistically or may be of a repetitive nature. It may be coupled into the amplifier either inductively or capacitively.
Other forms of interference are generated within the amplifying circuitry itself. They are of a statistical nature and are also present at all frequencies. It is on this class of interference that this article will concentrate.

NOISE AND PIHYSICS

In audio amplifier design. several varieties of internally generated noise must be considered.
Thermal noise. This occurs at all frequencies and is the dominant noise from around

100 Hz right up into the multi- CHz range. The cause of thermal noise is thermal oscillation of electrons; for example, in the crystal lattice of a conductor. Thermal noise is frequently also called Johnson noise or (not quite correctly) white noise - there are other sources of white noise. The amplitude
of thermal noise increases with temperature: it is proportional to the bandwidth and the resistance value. The so-called Nyquist equation gives the relationship
$E_{n}=\sqrt{4 \times k \times T \times b \times R}$

Fig.1. Comparison between the dynamic range of the human ear, a modern microphone and a microphone amplifier with a gain of 1000 (60dB).

Fig.2. Noise spectral density plot showing white noise and flicker noise components of a bipolar opamp for audio, and the definition of corner frequency f_{c}.

where $E_{n}=$ noise voltage (RMS): $k=$ Boltzmann's constant ($1.38 \times 10^{-23}\left(\mathrm{As} \mathrm{K}^{-1}\right) ; \mathbf{T}=$ absolute temperature in kelvins: $\mathrm{b}=$ bandwidth in Hz : and $\mathrm{R}=$ resistance in ohms. Using this equation it is possible to calculate the noise voltage of. for example, a 50 as $(=50 \mathrm{VA})$ resistor at a temperature of $27^{\circ} \mathrm{C}$ (300 K) and a bandwidth of 20000 Hz $\left(=200000 \mathrm{~s}^{-1}\right)$.
$E_{n}=\sqrt{\frac{4 \times 1.38 \times 10^{-23} / \mathrm{VAS}}{} \mathrm{K}^{-1} \times}$

$\mathrm{K}(\Omega)$	$E_{n}(\mathrm{nV})$	$\mathrm{E}_{\mathrm{n}}(\mathrm{dBm})$	$\mathrm{E}_{\mathrm{n}}(\mathrm{nV} / \mathrm{V} H z)$
	$b=20 \mathrm{kHz} z$	$b=20 \mathrm{kHz}$	

50	125	-136	0.91
75	153	-134	1.12
200	250	-130	1.82
610	433	-125	3.15
1 k	559	-122	4.17

Fig.3. Block diagram of a noise measurement circuit for white noise and flicker noise.
Fig.4. Circuit for the measurement of white noise and flicker noise.

Fig.5. Optional CCIR weighting filter for the circuit of Fig.6.

In the right-hand column, the table also gives the noise voltage in units of $\mathrm{nV} / \mathrm{V} \mathrm{Hz}$, i.e. normalized to a bandwidth of 1 Hz . This has the advantage that it is not necessary to state the bandwidth to which a particular noise voltage applies. In the case of white noise this is permissible since the noise spectral density is constant - the noise voltage is the same within any bandwidth interval. no matter where this interval is placed in the frequency spectrum.
Flicker noise. In taking a closer look at the low-frequency noise from an amplifier in the frequency range below 100 Hz one discovers an additional noise component. Flicker noise is caused by material impurities and also depends on the production process employed. The amplitude of flicker noise increases at lower frequencies, where it very much dominates the white noise. especially in view of the small bandwidth under consideration. Since the flicker noise amplitude is proportional to the inverse frequency it is also called $1 / 1$ noise:

$$
E_{n f}=K / f
$$

where \mathbf{E}_{nf} is the flicker noise voltage. K a constant of proportionality and f the frequency.

In expressing the amount of flicker noise present in an amplifer, the frequency at which the flicker noise region starts is of particular interest. This corner frequency, ic is defined in the noise spectral density plot of Fig.2. For audio purposes a corner frequency well below 100 Hz is desirable.

Besides these two principal types of noise several others are significant in the design of low-noise audio amplifiers:
Shot noise. Noise from active components such as vacuum tubes and transistors contains, in the frequency range above 100 Hz .

The NAB filter shoudd have the following characteristics Frequency $(\mathrm{Hz}) \quad$ Gain (dB) Tolerance ((dB)

Frequency(Hz)	Cain (dB)	Tolerance (DB)
31.5	-39.6	
200	-10.9	-1.0
1000	-0	-1.0
2500	-1.3	-1.0
6300	-0.1	$-1.5 /-2.0$
12500	-6.3	$-3.01-6.0$
16000	-6.6	$-3.01-\infty$
20000	-83	$+3.01-\infty$

Fig.6. Optional NAB weighting filter for the circuit of Fig. 6.
impulsive nature. consisting of momentary changes of the output voltage due to fluctuations in the current through an active device. Contaminated semiconductor surfaces aggravate this type of noise. Other factors which may increase popcorn noise are low temperatures and high-value resistors. The "pops" occur quite randomly with the device. sometimes being absent for several minutes and then appearing several times per second . The precise causes of popcorn noise, or burst noise as it is sometimes called, are not known.
Current flow through resistors. Besides thermal noise. resistors generate excess noise when a current flows through them or when a high voltage is applied. The reason for this excess noise is inhomogeneity in the resistor material. Metal film resistors produce less excess noise than carbon film types and small-sized resistors are noisier than large ones.

Mechanical contacts. Inhomogeneous and unstable contacts in connectors or potentiometers cause voltage fluctuations and are especially troublesome sources of noise

Vibration. Noise can also be generated by mechanical vibration of components such as vacuum tubes and transistors. This causes a displacement current which makes itself felt as noise. It is especially noticeable in coaxial cables where vibrations cause a change in capacitance. Large components such as capacitors or printed circuil boards are also affected.

Leakage currents. Noise may arise from leakage currents due to contaminants such as finger prints and soldering residues on printed circuit boards or across components.

NOISE MEASUREMENT

To measure noise precisely demands a spectrum analyser, with which to measure the spectral noise density distribution. This instrument is not part of everybody's electronics tool kit because of its price; but simpler means, suitable for the purposes of comparison, may be used for measuring the two principal noise components.

A circuit suitable for evaluating white noise and flicker noise in audio amplifiers is shown in Fig. 3 and Fig.4. Its frequency range is 20 Hz to 20 kHz for white noise and 0.1 Hz to 30 Hz for flicker noise. Full scale deflection of the meter can be set in the range between -130 dBm and -90 dBm , so that the lowest noise voltage which can he indicated is in the region of -140 dBm $(75.5 \mathrm{nV})$. In making measurements it is important to set the gain of the amplifier under test to 20 dB , because otherwise the calibration of the range switch does not hold good. The device under test should be well screened from external interference such as mains hum, preferably by metal box.

Optional weighting filters can be added as given in Fig. 5 and Fig. 6. Note that the CCIR standard requires peak rectification and the NAB standard true-RMS rectification ${ }^{-2}$. whereas this circuit provides only full-wave averaging. If gain of the CCIR fiiter is set to OdB at 2 kHz this will correspond to the CCIR-ARM standard ${ }^{3}$.

When switching to the measurement of flicker noise, wait for at least 10 seconds for the meter to stabilize. Usually it will be better to evaluate the amount of flicker noise on a IDC-coupled oscilloscope. It is also a good idea to connect a power amplifier with an old loudspeaker to the output. so that one can listen to the noise as long as the loudspeaker can stand it. This helps to identify rapidly any noisy components and amplifiers. or any externally-injected mains hum and radio interference.

Input-referred noise. Results obtained from the instrument are the noise voltages at the input of the device under test; the 20 dB gain of the device under test has already been subtracted. The value of input-referred noise is usefur because it allows a quick calculation of the noise voltage at the output of the device for any gain setting. For example, the input-referred noise of an amplifier is -122 dBm . At a gain of +20 dB the output noise level will be $-122+20=-102 \mathrm{dBm}$ and for a gain of +32 dBm the output noise will be -90 dBm and so on.

Optimum source resistance. By taking a series of measurements with different resistance values, preferably using fixed-value metal film resistors, connected to the input of the device under test, it is rossible to determine the optimum source resistance of the amplifier under test. This is the source resistance at which the difference between the noise generated by the amplifier and the noise of the source resistance is at a minimum. Figure 7 shows an example for the popular low-noise op-amp NE5534. From this diagram it can be seen that the optimum source resistance is approximately $5 \mathrm{k} \Omega$.

Fig.7. Optimum source resistance of an NE5534 op-amp (typical example without flicker noise in the audio band).

Fig.8. Noise figure and optimum source resistance R_{s} as a function of collector current I_{c} for an LM394 transistor.

LOW'-NOISE DEVICES

Bipolar transistors. P-n-p transistors are preferred in low-noise transistor circuits because of their marginally hetter noise characteristics at low source resistances. compared to equivalent $n-p$ - n devices under the same conditions. The magnitude of the collector current influences the value of the base spreading resistance $\mathrm{R}_{\text {bh }}$ and thus the achievable optimum source resistance of a particular circuit. This is demonstrated in Fig. 8 for the LM394 transistor.

The base spreading resistance is effectively in series between the input terminal and the base of the transistor and generates most of the noise within the transistor. Unfortunately the value of base spreading resistance is not normally stated in manufacturers data sheets and it cannot be measured easily.

This leaves the designer with three options when selecting a transistor for lownoise circuits:

1. Use special transistors designed for low-

Fig.9. NE5534 op-amp with substituted differential transistor pair for optimum source resistance matching.

Fig.10. Microphone amplifier with NE5534 op-amp and transformer for optimum source resistance matching.
noise purposes such as the MAT01 (dual) ${ }^{*}$. MAT03 (dual) ${ }^{4}$. MAT04 (quad) ${ }^{4}$. LM394 (dual) ${ }^{5}$. This may be expensive or the devices may he hard to ohtain, but the advantage is that one can be sure that these devices are matched and will be essentially free of flicker or popcorn noise, because they have been screened by the manufacturer.
2. Use medium-power RF transistors. By design these transistors exhibit a low value of base spreading resistance, 4-3092 being common. and they are usually free of flicker and popcorn noise. although it can be worthwhile to check this using the noise measurement circuit outlined above. A good example is the BFW16A with its R_{bb} ' of less than $5 \Omega \Omega^{6}$.
3. Use medium-power AF transistors. The familiar BD140 or medium current switching transistors such as the 2N4403 ${ }^{7}$ will work well because the chip is fairly large, as they are designed to handle currents of around $1 A$. They therefore exhibit a correspondingly low value of base spreading resistance. They are easily available, but before being used in a low-noise amplifier should be screened individually for low flicker and popcorn noise with the noise measurement circuit.

If the optimum source resistance obtained with one transistor is not low enough. several may be connected in parallel. This method suffers from diminishing returns. because the noise-free gain increases by the factor n, where n is the number of devices in parallel. For example. 50 transistors are paralleled within the L.M394. Moreover each transistor may have to be screened for low flicker and popcorn noise. This can become quite unpractical when using a large number of devices per amplifier. Emitter resistors are necessary because transistors exhibit wide tolerances, hut this increases noise because any emitter resistors are effectively in series with the input.

Bipolar transistors may be used with
optimum source resistances between 3Ω and approximately 10 ks . If the source resistance is higher it worth considering fieldeffect transistors. However, bipolar transistors might be preferable even for source resistances where field effect transistors might he used, because bipolar devices have a much lower flicker noise corner frequency of 1 Hz to 100 Hz ; fets exhibit corner frequencies between 1001 lz and 1 kHz .
Field-effect transistors. If the source resistance is higher than approximately $10 \mathrm{k} \Omega$. n-channel field-effect transistors should be used on account of their lower current noise at high input resistances ${ }^{*}$. P-channel fets are noisier than n-channel ones. Here again. special low-noise devices such as J'2029. J20 03^{94}. NF5101 1^{10}, 2N4867A ${ }^{10}$. 2N6483 (dual) il may he used although the good old dirty 2 N 3819 or BF' 264 A will still do the trick, if measured for noise. Modern lownoise fets can be made to work at optimum source impedances as low as 500 g if you dare (noise corner up to 1 kHz).
Mosfets have no place in the front-end of low-noise amplifiers because their optimum source resistance is well above $100 \mathrm{M} \Omega$ or so ${ }^{122}$.

Bipolar, fet and c-mos op-amps. Bipolar op-amps can be selected by the noise voltage quoted in the data sheet and the curve giving the optimum source resistance. The flicker noise corner frequency of bipolar op-amps ranges between 111 z and 100 Hz compared to 100 to lkHz for fet op-amps. C-mos op-amps also have corner frequencies in the region of 1 kFlz . With cheaper types of bipolar beware of flicker and popcorn noise. Frequently op-amps are stated to have low noise; this may have been so at the time they were first marketed, or they may be the lowest-noise devices of a quite noisy family.

Low-noise op-amps by today's standards are the LT10281:3. $1, T 1037^{14}$, OP4.,$~ O P 37^{4}$.

ZN459 ${ }^{15}$, ZN460 ${ }^{15}$, SSM2016 6^{16} and SSM2 134^{16}. The NE5534 or the improved LM833 are standard devices for use in many low-noise circuits, although they have to be monitored for noise performance.

Op-amps may be paralleled by summing their outputs. to reduce the value of the optimum source resistance. But this technique suffers from the limitations described above for the paralleling of transistors.
Hybrid devices. There are some very good hybrid or discrete op-amps. such as the Transamp $\mathrm{L} Z^{17}$. the Matchamp XTX 129^{18} or the Jensen JE990. The latter is notable for excellent op-amp design ${ }^{14}$. Besides heing very low-noise devices with optimum source resistances in the region $200-50012$, these components have the additional advantage of extended $\pm 24 V^{\prime}$ supply rails, thus increasing dynamic range by a further 6 dB or so.

LOW-NOISE CIRCUITS

In designing a low-noise amplifier, the foremost task is to adapt the optimum source resistance of the amplifier (that source resistance at which the amplifier is quietest) to the value of the $A C$ source resistance provided by the transducer. It is usually a good idea to measure the resistance of the source, as manufacturers' data usually states only the DC resistance, which in our case does not help, or some sort of nominal value. Source resistance is best measured by connecting a resistor across the source terminals and determining the resistance value at which the output drops by half. This is preferably done at several frequencies - say $100 \mathrm{~Hz}, 1 \mathrm{kHz}$ and 10 kHz - within the audio band. The average of these values is taken as the source resistance to which the optimum source resistance of the amplifier is to be matched. The maximum value of the three should be multiplied by 10 . giving the input resistance value for which the amplifier has to be designed.

There are three different ways to lower the optimum source resistance of a given amplifier.

- Collector current through the transistor. Let us consider a common dynamic microphone having an average source resistance of $100 \Omega 2$ and a common low noise op-amp with an optimum source resistance of $5 \mathrm{k} \Omega$ (Fig.7). As Fig. 8 shows, the collector current determines the optimum source resistance of a transistor stage. For the given source resistance the corresponding collector current is around 2 mA per transistor. If such a diagram is not at hand. for example when using medium-nower transistors whose noise performance is not specified by the manufacturer, the following rule ${ }^{2 \prime \prime}$ may be applied:

$$
\mathrm{I}_{\mathrm{c}}=\frac{\sqrt{\beta}}{40 \times R_{5}}
$$

where $I_{\text {s }}$ is the collector current. β is the current gain of the transistor and R_{s} is the source resistance. The collector current must be within the limits given in the data sheet of the transistor.

One can. of course. place a differential stage running at 2 mA per transistor in front of the NE55.34, hut this creates stability
problems. These can be avoided nicely by substituting the input differential pair of the NE5534. This is done by taking the normally used inverting and non-inverting inputs to $-15 \mathrm{~V}^{\prime}$ and feeding the signal from the difference amplifier running at 2 mA per transistor into the offset adjustment pins 1 and 8 . These are internally connected to the collectors of the now disabled internal differential pair (Fig.9). It is also necessany to parallel the internal collector resistors with external resistors so that the collector is maintained at $2.5 \mathrm{~V}^{\circ}$.
Resistance values around the op-amp should be made as low as possible to prevent the introduction of additional thermal noise from the feedhack resistors. The NE5344 supports this. being capable of driving a 60012 load without reduced output voltage.

- Paralleling. When going for even lower source resistances. several transistors can he directly paralleled as outlined above. Howerer, to avoid excessive offsets at the output. the transistors should be selected so that each one carries the same current.
- Resistance transformation through a transformer. A transformer converts a low impedance into a high impedance and vice versa. If a tow signal source resistance is to be matched to the higher optimum source resistance of an amplifier the required transformer turns ratio is given by

$$
n=\sqrt{\frac{R_{u p t}}{R_{1}}}
$$

where n is the turns ratio of the transformer. $R_{\text {, }}$ the source resistance and $\mathrm{R}_{\text {wopt }}$ the optimum source resistance of the anmplifier. With $R_{\text {s }}$ at lokes and $\mathrm{R}_{\text {wp }}$ at $5 \mathrm{kS} \Omega . \mathrm{n}=\overline{7}$.
Fig. 10 show's the use of a $1: 7$ step-un transformer with a rather clever circuit ${ }^{-1}$ which allows the gain to be varied over a very: wide range of 60 dB by a single linear potentiometer. whilst maintaining optimum noise conditions (i.e. first-stage gain is always higher than the gain of the second stage).

Don't he put off hy rumours that transformers have a had reputation. In the days of valves with their high optimum source resistances ($30 \mathrm{k} \Omega$ or more), there was no other way than to use step up transformers with ratios up to $1: 20$ with consequently nasty frequency response and distortion characteristics. and with less-than-nerfect production techniques and materials. However. modern audio transformers are produced using much improved materials and techniques. and excessive step-up ratios are no longer necessary, thanks to the lower optimum source resistance of modern transistors and op-amps.

Inverting summing amplifiers have their particular noise problems. which are due firstly to the unavoidable series input resistor and secondly to the amount of noise gain as defined in Fig. 11 . which shows the circuit of a typical summing amplifier with five inputs. As far as each input is concerned, the gain of this stage is odB. But as far as noise gain is concerned there is 14 dB of noise gain (2.2kS) divided by the 440) of the five parallel input resistors). This consequently increases the noise level of, say. - 11 (1)d3 to

Gain for each input: $R_{f} / R=1(0 \mathrm{~dB})$
Nouse garn:
$\frac{R_{f}}{\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{4}}+\frac{1}{R_{5}}}}=\frac{2 \mathrm{k} 2}{4600 \mathrm{hm}}=5(14 \mathrm{~dB})$

Fig.11. Noise performance of the inverting summing amplifier with five inputs.
-9fdll. so, surnrisingly, this stage must be designed for low noise hy using, for example. the circuit of Fig. 9 as the operational amplifier. What is even worse, the more inputs. the noiser the summing amplifier will be.

TRAPSANI PITFALLS

Besides taking into account the design rules outlined above, you should rote some pitfallstorovid.

Reverse biasing of transistors. Juring tests with an ohmmeter or while the circuit is being switched off, the transistors may become reverse biased. leading to an increase in ficker and popcorn noise. li, for example. a circuit measures well the first time after it has been switched on and develops noise the next time it is used, it is very likely that the transistors are briefly reverse-biased during switch-off This fault can be cured only by chansing the discharsing time constant in question and replacing the front-end transistor.
Power supply noise. Noise can be injected into an otherwise low-noise ponver amplifier via the power supply. Circuits usually exhibit good power supply noise rejection ratios of typically 120 dB at 50 or 100 dz . hut values decrease significantly $1020-40 \mathrm{~dB}$ in the range hetween 1 and $20 \mathrm{kll} / \mathrm{z}$. This means, for example, if there is a noise level of -60 dBm on the power supply voltages (a value typical for most fixed-value voltage regulators). a noise voltage of -1 loldBm will appear at the output of the low-noise amplifier. if its power supply rejection ratio is 40 dB . So some care must also put into the design of low-noise power supplies. Consequently all types of switching power supply should be avoided in such applications hecause they cannot he made to run sufficiently yuiet. Zener diodes also produce significant amounts of white noise if not properly hypassed with low series-resistance capacitors.

Noise levels of power supply voltages can be measured by connecting the supply woltage via a capacitor to the input of the NE55:34 amplifier (Fig.4). Note that in this case ?(0dB must he subtracted from the calibrat ion values of the stepped gain switch.

Capacitive reactance. When using the input capacitor and input resistor time constant to cut off low-frequency signal components. low-frequency noise is introduced. For example. with a $1 \mu \mathrm{~F}$ capacitor and a 10 ks s resistor giving a cut-off frequency of 16 Hz a horribly high series resistance X_{r} of $8 \mathrm{k} \Omega \mathrm{at}$? 0 H lz and still 160 s at 1 kllz is placed in series with the input. This produces considerable amounts of noise. Since the capacitive resistance increases at lower frequencies irrespective of whether you are using foil capacitors or electrolytics, the noise spectrum due to the capacitive reactance is similar to that of flicker noise. Designers have spent many hours, happy and otherwise finding this one. The only thing to do is to use very large and therefore electrolytic capacitors so as to achieve a cut-off frequency of well below $0.0111 z$. Bypass the electrodyties with ceramic capacitors. if you must. Remove any low-írequency signal components after the low-noise amplifier stage.
Spurious oscillations. Be warned that internocodulation products of RF oscillations produced by an unstable amplifier will cause unexpected noise.

References

1. Harris. Analog Pocket Ipplication Ciuide No.5: Operational amplifiers (dudio) 1988. p. 7 th.
2. Rohde and Schwarz. (perating Instructions for tI'CR.
3. Ray Dolby. 1). Robinson and K. Ciundry: CCIR/ARM: A practical noise-measurement method. Inurnal or the Audio Enginetring . Woctety Vol. 27. . No 3. March 1979.p.149-157.
4. PM1. Linear and Conversion Products 1986/8i bat.a Borek.
5. National Semiconductor. IAP394 Data , Sheet.
6. E. H. Nordholt and R.M. van Vierzen, Iltra-lownoise preamplifier for nosing cooil phono cartridges. Joumat of the Audio Engineering were ty Vol.2x, No - 4. April 1480. p.2ly-22'3.
7. In. Self. Jesign of moving-coil head amplifiers. Elictronics de Wireless World December 1987. p. 121tionell
K. John llaxwell. The low-noise JFET - the noise problem solver. National semiconductor. Application note N 15 L .

9 Intersil, I fata book.

10. Aational Semiconductor. Fet databork.
11. Steven W. Smith. Internal noise of lowfrequency preamplifiers. Revicu of serentific /hstruments 55 , May I984. p. 8 I2/813.
12. M. Ilartley Jones. A practical introduction to electronic circuits. Cambridge Iniversity Press. p. 411.51 .
13. Linear 'Technology. Linear latabook 1986.
14. Linear Technology: leinear latahook Supple ment 1988.
15 Ferranti. Technicalllandhook Standard ICs.
15. P9I/SSM. Products Datal Book
16. Transamp LZData Sheet.
17. I lugh Ford. Matchamp XTX 129 mic. preamp.. Broadiast sound Jinuary/Fehruary 1984. p.5'255.
18. Deane Jensen, JF990 biscrete uperational amplifer, Journal of the dudio Eingincermg society l'3. 28 No $1 / 2$, January/Fehruary 1980. p.2634.
19. A. Foord. Introduction to low-noise amplifier design. Hïreless Itiorld April I981.p.71-7.3
20. Stere [bo e besigning a professional mixing console'. Part i: The Mixer Frontend. Studio Sound hecember 1980. P. 101 - 4 K .
21. Steve Dove, Designing a professional mixing console, Part 12: The Channel Frontend. Sterdio Sound (ketoher 1981.p.70-72.

Digital audio broadcast systems

Despite steady progress in the introduction of digital audio techniques into the programme chains of radio, television and recording studios, there remain problems in standards; in equipment interfacing, routeing, synchronization. sample rate conversion, and in monitoring. Yet, for example, there now seems little doubt that the future of audio editing will increasingly centre on the use of computer-based, magnetic disc digital systems - possibly with a central store and multiple self-operated desk-top controllers, though the general use of multiple systems may be some way off.

Such matters formed the basis of an IEE discussion at which Richard Lawrence (BBC), Robin Caine (Protel), Tony Criffiths (Decca International) and David Meares (BBC Research) were the panel speakers under the chairmanship of Chris Daubney (Channel 4 Television).

Richard Lawrence noted that although the BBC has been using PCM for signal distribution for 15 years, it is only within the past year that a complete digital audio broadcast chain has been engineered. This was built and installed in Broadcasting House, London, and first used in September 1988. Sources can be from digital audio tape (DAT) or from the digital control vehicle (DVC) using a 1.5 GHz radio link, 32 -to- 48 digital bypass mixer, digital limiter, 48-to-32 sampling rate converter (SRC) and then Nicam companding for distribution to the VHF/FM transmitters where the signals are finally converted to analogue form. Despite this progress, it is recognized that broadcasters will be working in a mixed digital/ analogue environment for many years to come.
The AES/EBU 48 kltz standard is not error-corrected and needs a fairly clean environment. Precautions are necessary for long cable runs. particularly with mixed cables. Mixing consumer and professional digital equipment can result in balance. level and impedance differences, but it is amplitude levels rather than reflections which tend to cause the most problems. The BBC is currently designing an LSI chip to implement AES interfaces.

Rate conversion between 44.1 and 48 kllz samples is slightly more difficult than 32 to 48 kHz . Since cascading SRCs can degrade the signal, specifications need to take account of the number that may be connected in tandem.

Robin Caine described a new digital switcher system developed in association with Thames Television. Tony Griffiths commented that Decca was in its eleventh year of digital recording and tended to assume that the "whole world has gone digital". Nevertheless the company is still thinking about $\mathrm{A} D$ and D/A conversion, how to connect it
all together, how to make signal processing work. He felt that there is need for more than 16-bit words at the professional front end: "lt needs 20 bits to do the job properly but nobody is shouting loud enough. It is not certain that manufacturers are listening."

Digital audio revolution

The London presentations of the IEE's highprofile Faraday and Silvanus P. Thompson lectures, by a BBC team and John Borwick respectively, both placed emphasis on the improvements in audio reproduction in the home, primarily as a result of the digital audio revolution. The Faraday was good entertainment and seemed to win over its young audiences who are encouraged to think of broadcasting as a career. John Bonwick may have expected a rather less youthful audience but seemed surprised to find so many white hairs among his housefull audience at Savoy Place. Presumably he had this generation in mind when he suggested that "Resistance to change is enormous - we prefer to stay with what we have". A view not entirely borne out by the boom in CD equipment and discs.

He listed 14 advantages of digital audio compared with six disadvantages. Advantages include predictibility, robustness (with error correction), copies exactly duplicated. quality unaffected by the type or quality of the transmission or storage medium, wide dynamic range, no significant distortion except on low-level signals. no wow or flutter, low crosstalk, exact channel synchronization, no print-through, and accurate editing and processing.

The disadvantages he listed were cost, revolutionary rather than evolutionary change, the need for basic standards which are still lacking, performance "fixed in aspic" for all time by the sampling frequency and number of hits. high power consumption, and noise and distortion at low signal levels as present for much of the time in classical music.

He compared analogue audio to a glass of water: fluid, fragile, exact. Digital was a glass filled with marbles: discrete, robust and approximately. Digital audio permits the restoration of "non-ideal" recordings, and not only old recordings. Such techniques, he suggested. are proving "modestly successful".

John Borwick stressed the current use of digital audio in professional recording studios for some broadcast origination. but concentrated mainly on the evolution and progress of CD records. He had surprisingly little to say on broadcast digital transmission in spite of the imminent introduction of Nicam 728 for terrestrial television stereo sound and digital packet multichannel sound on D-MAC satellites. He remains unconvinced that consumer DAT will prove
a viable consumer product: "price wrong. market wrong - not selling in Japan - it may never happen." CD, on the other hand, is spawning CD-V, CD-ROM, CD-1 (interactive). CD-R (recordable) and CD-E (erasable) though this may be some years away. There is also the prospect of the still unrevealed CD-X. He feels that 16 -bit words are adequate for consumer play-out but additional front-end digits permit improved processing during manufacture.

Illegal RDS?

Following the publication in the March EdUTH (page 316) of my item on the pros and cons of RDS, I received a letter from S.H.F. Sarl (Stanley Sarl \& Associates) questioning the legality of RDS and other data broadcasting systems. He believes that such systems, even when used as ancillary services to broadcasting, are in breach of the licences issued to broadcasters under the present Wireless Telegraphy Acts. His controversial views are set out in detail in "Regulating a radio data system" in the Uecember 1988 issue of the Journal of The Socicty of Engineers (SoE Journal).

As someone who was obliquely concerned at the $1 B A$ with questions involving the introduction of teletext. radio-text (SCA) etc.. it always seemed to me that data broadcasting as an ancillary senice, provided it was conducted with full Home Office/DTI permission (as was obtained) could not be challenged on legal grounds.

A much greyer area was where the data is directed at private "subscription" users on an individually addressed hasis - to my mind a telecommunications rather than a broadcasting service. It was this consideration that delayed the introduction in the UK of such senices on VIIF radio for a number of years. It was resolved on the rather dubious principle that it became broadcasting if decoders had to be made available (at a price) to anyone who demanded one.

I still wonder how the transmission of electricity control signals on $198 \mathrm{kH} / \mathrm{z}$ can be classified as "broadcasting": and the same goes where RDS is used for radio-paging as it is in some countries (not the LK). But then we seem to be tolerating other legal quibbles such as the ITI's permitting direct reception of fixed-senice satellites (such as Astra) in the home. It is highly questionable whether transmissions outside the internationally agreed "broadcast" frequencies can be considered as "duly authorised broadcasting stations". ITU Radio Regulations are supposed to have the status of an international treaty but it is not unknown for treaties to be broken when it suits governments to do so! I doubt if Mr Sarl will succeed in having RDS declared illegal. even though he has a valid point.

SMALL SELECTION ONIY LISTED EXPORT TRADE AND QUANTITY DISCOUNTS

 RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STIOCKCossor Oscilloscopes CDU150(CT531/3) £150 only. Solid state general purpose bandwidth DC to 35 MHZ at $5 \mathrm{MV} / \mathrm{Cm}$ - Dual Channel - delayed time base - illuminated graticule - Beam finder - Callbrator - power 200 V - 250 volts AC protection cover containing polarized viewer and camera adaptor plate - probe (1) - mains lead. Tested in fair condttion with operating instructions. FEW AVAILABLE - NO PROTECTIVE COVERBUT MAINSLEAD + 1 PROBE - §125 - TESTED-Manual 15 extra.

Tektronix 475 - 200Mc/s Oscilloscopes - tested from $£ 500$ less attachments to £750 as new c/w manual, probes etc.
Telequipment D755-50Mc/s Oscilloscopes - Tested c/w 2 Probes - £250 Manual $£ 5$ extra.
Marconi TF2002AS - AM-FM Signal Generator - $10 \mathrm{Kc} / \mathrm{s}$ to $72 \mathrm{Mc} / \mathrm{s}-£ 85$. Tested probe kit-£15 extra-Manual $£ 10$ extra
Marconi TF2002B-AM-FM Signal Generator - $10 \mathrm{Kc} / \mathrm{s}-88 \mathrm{Mc} / \mathrm{s}-£ 100$ Tested to £150 as new - Probe kit $£ 15$ extra - Manual $£ 10$ extra.
Marconi TF2008 - AM-FM Signal Generator - Also Sweeper - $10 \mathrm{Kc} / \mathrm{s} .510 \mathrm{Mc} / \mathrm{s}$ from $£ 450$ Tested to $£ 550$ as new with manual - Probe kit in wooden carrying box - $£ 50$ extra

Don 10 Telephone Cable - $1 / 2$ mile canvas contaners or wooden drum new from £20.
Army Whip Aerials screw type F sections and bases large qty avallable P.O.R
Test Equipment we hold a large stock of modern and old equipment - RF and AF Signal Generators - Spectrum Analysers - Counters - Power Supplies - Scopes - Chart Recorders all speeds single to multipen - XY Plotters A4-A3.

Racal Modern Encryption Equipment - Racal Modern Morse Reaciers and Senders-Clark Air Operated Heavy Duty Masts - P.O.R.
All items are bought direct from H M Government being surplus equipment: price is ex-works. S.A.E. for enquiries. Phone for appointment for demonstration of any tems, also availability or price change V.A.T. and carriage extra.

JOHNS RADIO, WHITEHALL WORKS,
84 WHITEHALL ROAD EAST, BIRMENSHAW, BRADFORD BD11 2ER. TEL NO. (0274) G84007. FAX: 651160 WANTED: REDUNDANT TEST EQUIPMENT - YALVES - PLUES - SOCXETS - SYNCHRDS EIC. REEEIVING AND TRANSMITING EQUIPMENT - GENERAL GECTRONIC EQUIPMENT

ENTER 28 ON REPI.Y CARD

COMPUTER PLUS
8 Acres, Great Totham Road. Wickham Bishops, Witham, Essex CM8 3NP. Telephone: (0621) 892049

ENTEH 46 ON REIPLY ('Alil)

Advertisements accepted up to 12 noon 19th May for July issue.

DISPLAYED APPOINTMENTS VACANT: £27 per single col. centimetre (min .3 cm). LINE ADVERTISEMENTS (run on): $£ 6.00$ per line, minimum $£ 48$ (prepayable).
(Please add on 15% V.A.T. for prepaid advertisements)
BOX NUMBERS: $£ 15.00$ extra. (Replies should be addressed to the Box Number in the advertisement, co Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS).
PHONE: CHRISTOPHER TERO on 01-661 3033 (Direct Line).
Cheques and Postal Orders payable to REED BUSINESS PUBLISHING and crossed

Technical Services
 TELECOMMUNICATIONS ENGINEERS

£14,475-£15,537 p.a. incl.

You will undertake the design of telecommunications projects and the supervision of the technical operation (by computer keyboard control) of the Council's telephone network, and electronic security systems.
To join a progressive group you should have a telecommunications or electronics qualification, or have acquired equivalent expertise. Additionally you will need at least three years' experience including supervision of staff.
Closing date: 14.6.89.
Ref: 278AR
Application forms obtainable from the Director of Personnel, Ealing Civic Centre, 14-16 Uxbridge Road, London W5 2HL. Tel: 01-840 1995. Please quote reference.

When replying to
classified
advertisements
readers are
recommended to
take steps to protect

their interest before

sending money.

Part-Time Tutors Engineering

Part-time futors required in the following subject areas
Basic electric/electronic skills Digital and analogue electronics Posts available throughout Southern England.
Attractive rates of pay and ideally suited for college lecturers interested in enhancing their pay, or recently retired professional persons anxious to retain contact with their subject areas. Please write. Dr Colin Chadwick, Thames Valley College, Wellington Street, Slough, Berks SLI IYG.

TECHNICIANS

London Electricity have a number of vacancies for technicians who will be based at our Neckinger Workshops. Spa Road. London SE5, but working throughout the London area

Candidates, (preferably with a BTEC qualification). must be experienced in either of the following areas:

DATA \& TELEPHONY: here you will be working within a team responsible for the supervision of installation and maintenance of telephone exchanges. instruments and associated wiring.

RADIO/CABLES: with the responsibility for the installation and maintenance of UHF mobile radios and base stations.

London Electricity is an Equal Opportunities Employer and offers salaries within the range $£ 11.422$ to $£ 12.135$ p.a. (pay award pending) plus a superb benefits package including 5 weeks holiday, pension scheme linked to mortgage facility. personal accident insurance, interestfree season ticket loan and excellent spor ts and social activities.

Please send your C.V. stating which position you are interested in and quoting ref: 2700. to Sue Adams LONDON ELECTRICITY. Templar House, 81-87 High Holborn. London WCIV 6NU - to arrive no later than Thursday 1st June

THE POWER BEHIND LONDON

MAINTENANCE ENGINEER PROFESSIONAL VIDEO

- South Wales -
required with experience of Umaric, VHS, and preferably component video. Iraining available. Excellent solary ond conditions. JOIN THE FUTURE! Please contact
Richard Morgan, Prolovision,
127 Minehead Avenue, Sully,

5. Glamorgan. : (0222) 531437
protovision

ALWAYS AHEAD IN DESIGN, TEST \& SERVICE $\mathbf{£ 1 0 , 0 0 0 - £ 3 0 , 0 0 0}$

With the most successful companies and consultancies - both large and small - throughout the UK: Cffering first class salary/benefit packages - several include company car - plus excellent career advancement opportunities.
Interest and experience in any of these fields:
DIGITAL SIGNAL PROCESSING; ADVANCED PROCESSOR ARCHITECTURES; IMAGE ANALYSIS; GRAPHICS / SPEECH PROCESSING; LASER / FIBRE OPTICS; PARAL FL PROCESSORS; REAL-TIME CONTROL / ${ }^{3} 1$ SYSTEMS; RADAR; SONAR; COMMUNICATIONS; OSI / X4OO NETWORKS; AI E IKB SYSTEMS; ANALOGUE \& DIGTTAL VLSI / ASIC DESIGN; SIMUILATION; MILUMETRIC SYSTEMS; SOFTWARF - C, PASCAL, ADA, OCCAM, 68000 ASM, MODCILA, UNIX / VMS; CAD TOOLS.
ECM offers confidential and professional guidance: we will listen to your requirements and identify o aportunities to suit your plans.
Phone now for your FREE CASSETTE "Jobsearch Technology" and hear how ECM can help you to develop your career.
Call ECM on 0638742244 - until 8.00 p.m. most evenings - or send your cv by FAX (0638743066) or mail to:

ELECTRONIC ENGINEERS

Make your next career move a milestone not a millstone.
Irrespective of your career objectives - financial or geographical - let Cadmus put direction into your search.
If you are a Qualified Service. Sales, Design, Production. Test or Quality Engineer, send your C.V. to the address below or telephone Norwich 761220 for an informal chat.

PERSONNEL LIMITED
Freepost. Sack ville Place
44-48 Magdalen Screet Norwich NR3 I BR

\section*{日
 Many people want to help the Third World. But relatively few can offer the kind of help wanted most: the handing on of skills and professions which lead to self-reliance.
 You could make this priceless contribution by working with VSO.
 Current requests include:

For more details, please complete and return to: Enquiries Unit, VSO, 317 Putney Bridge Road, London, SW15 2PN. Tel. 01-780 1331.
Conditions of work: • Pay based on local rates • Posts are for a minimum of 2 years - You should be without dependants - Many employers will grant leave of absence.
I'm interested. I have the following training/ experience:

Name

Address
EwW/5/89

CHIVEDEN
 Technical
 Recruitment

100 s of other Electronic vacancies available
Customer Support Engineer
Berks
Repair and maintain tape and disk drives. Fault finding to component level. Some overseas travel involved. Good electronics background required.

To £15,000
Network Installation Engineers Various
Various positions, from cabling engineers to installation managers. Experience of one or more of the following: Novell, Ethernet, IBM
Tokenrirg, Modems, X25, RS232 etc. Electronics qualification preferred.
£7,000 to £18,000

RF Test Engineers

Berks
Fault finding and repair of communications equipment. RF experience and HNC in electronics essential
c $\{13,000$
Field Service Engineer 8erks
Installation, commissioning, maintenance and repair of access control products. Microprocessor and PC based equipment. HNC and 1 year's field experience required
£12,000 + car
Surrey/Berks
Various positions exist at all levels for engineers with an electronics qualification and experience of test, repair and fault finding to component level.

Salaries $£ 7,000$ to $£ 15,000$
Customer Engineer Berks
Test and repair of datacomms. Experience of modems and multiplexors

Up to $£ 11,000$
Test Engineer Berks

Fault finding to component level of PC's and peripherals. $\mathbf{C} 99,000$
Test Engineer Surrey
Working on CCTV or video. Either 5 years' relevant experience or a recent electronics qualification Salary negotiable Test and Service Technicians Bucks Testing and fault finding to component level both in house and on site. Analogue electronics experience required. Medical equipment.
£9,000-£13,000
Test Supervisor
Watford
Supervising 10 engineers, responsible for the efficient throughput of chemical sensing instruments, to meet production targets.

To £14,000
Test and Repair Engineers
Bucks
Various in-house positions, fault finding and repairing to
component level on test and measurement equipment. Previous
experience on similar instruments preferred. Salary Neg
Test fault find and repair a range of broadcast equipment
consisting of complex analogue and digital circuitry. ONC Min
£8,000-£12,000
Technician Berks
Servicing and repair of X-ray equipment. ONC qualification preferred

C 88,500
Test Engineer Surrey
Fault finding on a range of complex medical equipment. Medical or computer mainframe experience, gained over 3

years

To £12,000
RF Microwave Test Engineer
Hants
Good theoretical knowledge of microwave, skilled in RF test techniques.

Field Service Engineers

Oxon

Engineers to work on processors + PC's. Good knowledge of electronics (repair and installation) necessary

Salaries $£ 8,000-£ 15,000$
Installation Technician Berks

ONC qualified engineers in Radio Telecomms to cover nationwide area. Must be prepared to travel. $£ 9,500$
Junior Test Engineer Surrey
Testing and fault finding to board level on PCB's and modules.
Enthusiastic, electronically interested people required. $£ 8,000$
Test Engineer
Microprocessor instrumentation company. c£10,000
Technical Support Engineer Berks
Knowledge of IBM PC compatibles and experience of customer liaison required.
£11,000+ car
Bench Engineer Berks
People with telecomms, radio and television experience required.
Must be able to fault-find to component level. $\quad £ 11,000+$ bonus
Phone or write to Roger Howard, C.Eng, M.I.E.E.
CLIVEDEN TECHNICAL RECRUITMENT
92 The Broadway, Bracknell, RG1 21 AR
Tel: (0344) 489489. (Reverse charges)
163 Bitterne Road, Southampton, SO2 4BH
Tel: (0703) 229094. (Reverse charges)
Many other South Coast vacancies are also registered with us.

Helping the Third World help itself.
32p S.A.E. appreciated.

ARTICLES FOR SALE

ARTICLES WANTED

WANTEI: VALVES TRANSIS TOHS I.Cs lesuecially types KT66. KT88 PX4, IX25). Also plugs, sockets and complete factory clearance. If possible, send written list for offer b return. Billington Valves, phone: 0403 210729 . Fax: 040340214 . See adjoining advert.

COMPU'TER, TEIEPIIONE RADIO COMIONENT'S WANTEI Realistic prices offered for redundant surplus electronic components. Send lists or contact: J. B. Patrick. 14 Hil Road, Brentwood, Essex CM|4 4QY Tel: 0277211410.

STEWART OF READING
110 WYKEHAM ROAD.
READING RG6 1 PL.
TEL: 073468041
FAX: 0734351696
TOP PRICES PAID FOR ALL TYPES OF SURPLUS TEST EQUIPMENT, COMPUTER EQUIPMENT, COMPONENTS etc. ANY QUANTITY.

SERVICES

PCB ASSEMBLY \& OPTO TERMINATION
Small batch production, fast turnround. Orwell Electronics, Lynton House, Flowton, Ipswich, Suffolk IP8 4LG. ๕. 047333595

TURN YOUR SURPLUS

ICs transistors etc into cash Immediate settlement We also welcome the opportunity to quote for complete factory clearance. Contact:
COLES, HARDING \& CO 103 South Brink, Wisbech, Cambs. Tel: 0945584188 Fax: 0945588844 * ESTABLISHED OVER 15 YEARS * 692

When replying to classified advertisement readers are

 recommended to take steps to protect their interest before sending money.
OSCILLOSCOPE SPECIAL TEKTRONIX 475
 \star Dual beam 'scope.
 $\star 200 \mathrm{MHz}+$ delay
 \star Fully reconditioned
 $\mathbf{E A C H}-\mathbf{E} 599$ + VAT

Many other items of Test and Radio Equipment available - phone or fax for a list.

ANCHOR SURPLUS LTD

Cattle Market Depot, off London Road, Nottingham, England NG2 3GY. Telephone: 0602 864041. Fax: 0602864667

CARRIAGE:	Add $£ 12$ per item (UK mainland).
VAT:	Add 15% VAT to cost of items ordered.
GUARANTEE: All items guaranteed 30 days.	
MANUALS:	Thousands of test equipment manuals for sale. Full calibration service available on all items (any specification level).
OPTIONS:	
ACGESSNISAORDERSSENTWITHNN 24	

HAVING DIFFICULTY OBTAINING AN OBSOLETE VALVE/TRANSISTOR/IC? (or magnetron; Klystron, CRT, trav wave tube etc)

- SPECIAL OFFER EEC83 93p + VAT (discount for 50pes or more)
* RARE \& OBSOLETE TYPES \& SPECIALTTY!
* All POPular types stocked at competitive prices
* SPECIAL PRICES FOR wholesale quantities
* OFFICIAL ORDERS FROM GVT DEPTS, MIITTARY, PLCs, OVERSEAS ETC. WELCOME
* PHONE/FAXTELEX FOR UP TO DATE PRICES ON YOUR REqUIREMENTS Visa - Barclaycard phone orders accepted

By BILLINGTON VALVES
 Good quality - Low price - Rarities a speciality 39 Highlands Road, Horsham, Sussex RH13 5LS, UK Phone: 0403210729 Fax: 040340214 Tolox: 87271 omice houre mon-Fri gam-5.30pm Callere wolcome but by appointment only
 TO MANUFACTURERS, WHOLESALERS, BULK BUYERS, ETC.
 LARGE QUANTITIES OF RADIO, TV AND ELECTRONIC COMPONENTS FOR DISPOSAL

SEMICONDUCTORS, all types, INTEGRATED CIRCUITS, TRANSISTORS, DIODES RECTIFIERS, THYRISTORS, etc. RESISTORS, C/F, M/F, W/W, etc. CAPACITORS, SILVER MICA, POLYSTYRENE, C280. C296. DISC CERAMICS, PLATE CERAMICS, etc ELECTROLYTIC CONDENSERS, SPEAKERS. CONNECTING WIRE, CABLES, SCREENED WIRE. SCREWS, NUTS. CHOKES, TRANSFORMERS, etc ALL AT KNOCKOUT PRICES

> TELEPHONE: 445 O749/445 2713 21 Lodge Lane. HErson Tind Finhey, London N12.

GOLLEDGE

ELECTRONICS
QUARTZ CRYSTALS OSCILLA TORS AND FILTERS of all types Large stocks of standard items. Specials supplied to order. Personal and export orders welcomed - SAE for lists please. OEM support thru: design advice, prototype quantities, production schedules. Golledge Electronics, 046073718.

173 MHZ FM TELEMETRY TELECOMMAND RADIO LINKS

- Remote Switching

- Voltage Monitoring
- Serial Data Transmission

ADENMORE LTD
27 Longsholt Estate, Bracknell RG12 1RL Tel: (0344) 861886

Imagine writing your own specification for your next job. Would it have:-

- Proper recognition for individual contribution/talents
- Good prospects for career development
- Real improvement in earnings standards
- A chance to get involved with the latest signal processing, $\mathrm{RF} /$ Microwave and micro processor techniques.
- A friendly and comfortable high-tech working environment

YOU could find all of these and more. Our client can offer you the chance of participating in some of the most exciting developments of electronic warfare systems putting Britain in the forefront well into the next century.

To find out more telephone our engineer consultants on 072741101 or use our evening/ weekend number 072730602 . Alternatively send your CV in complete confidence to:-

CLASSIFIED ADVERTISEMENTS

Use this Form for your Sales and Wants

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW
To "Electronics \& Wireless World" Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate £6 PER LINE. Average six words per line. Minimum £48 (prepayable).
- Name and address to be included in charge if used in advertisement.
- Box No. Allow iwo words plus £15.
- Cheques, etc., payable to "Reed Business Publishing" and cross " $\&$ Co." 15\% VAT to be added.

TRIUMPH ADLER ROYAL Daisy Wheel Printers

Our purchase of nearly 2000 T/A Royal Office Master Printers direct from West Germany enables us to offer them at enormous savings!

Features include:

- 20 cps operation
\star Full DIABLO 630 and IBM compatibility
\star CENTRONICS compatible parallel interface

* 132 column with variable pitch capability including micro proportional spacing
- Subscripts, superscripts, bold type, underline etc.
* Manufactured to highest standards (rigid steel chassis etc) in West Germany by Europe's largest typewriter manufacturer
$\star 6$ month full guarantee \star Ribbon ${ }^{2}$ typewheel included
£99.50 for one £6.50 carriage ALL PRICES
+ VAT

Racal V22 1200 Baud Modem

Micro controlled. BT approved modem very high quality. Auto answer 1200, 600, 300 Baud. Cased, uncased card or 15 cards in rack. Cased $\mathbf{6 5 5}$. Uncased $£ 24.95 .15$ in rack $£ 375$ (carriage: $1 £ 3.50 ; 15 £ 20$).

Epson MX80 Dot Matrix Printers

Genuine Epson printer at very low cost. Full feature 80 column.
$£ 59.50$ (carriage £6.50)

Hitachi Colour Monitors
20" 64 KHz Ultra High Res CAD $£ 795$ (carriage £30), 20" $48-51 \mathrm{KHz}$ Ultra High Res CAD $\{649$ (carriage £30) $14^{\prime \prime} 30.4 \mathrm{KHz}$ PGA £149 (carriage £10), 12" CGA £119.50 (carriage £6.50).
Winchester Drives (ex-equipment)
$40 \mathrm{MB} 1 / 2$ height $£ 149,40 \mathrm{MB}$ full height $£ 110,10 \mathrm{MB}$ full height C39.50 (carriage $£ 5$ all models).
Hitachi CD Rom Drive 550MB
Last few very high spec drives. High sierra format £199 (carriage £6.50).
Modems (all BT approved)
Transdata 307 Acoustic Coupler 300 baud fits all phones
£9.95 (carriage £3)

Power Supplies

Farnell N300 R113U cased, 300 watt PSU, +5 V at $40 \mathrm{~A},+12 \mathrm{~V}$ at $5 \mathrm{~A},-12 \mathrm{~V}$ at $5 \mathrm{~A},+24 \mathrm{~V}$ at $5 \mathrm{~A},-5 \mathrm{~V}$ at 1 A , current model (list price £244).

659 (carriage £4)

Floppy Disc Drives

Double sided 8 inch £29.95 (carriage $£ 4$). Single sided 3 inch $£ 24.95$ (carriage £3), Single sided 8 inch $£ 14.95$ (carriage £4). Keyboards
STC Wordprocessor keyboard top quality German manufacture
$£ 5.95$ (carriage £3)

Lighting and Sound Equipment

All used equipment. Lighting: carriage POA.

Strand Tempus M24 1,275. Berkey/Colortran System 2 - full computer control, 150 channel, monitor, disc drive with 100 channel de-multiplexer box $£ 1,750$. Berkey/Colortran 2×12 way portable timed crossfade $£ 145.6 \times 2.5 \mathrm{~kW}$ Dimmer Rack $£ 120$. Sound: EDC Radio Mic's, Revox A77 varispeed, mixers, amplifiers, speakers (studio \& stage). effects, POA. 35 mm cinema projectors POA.
Visa \& Access accepted 24 hour phone service

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 636-639

PACE	PACE	PACE	PACE
AEL, Communications607	E. A Sowter............................ 617	LJJ Technical Systems Ltd.......596	Ralfe Electronics573
Al Signal 570-571	Eltrak5920	Lab-Volt UUKしId............566594	Research Communications555
Airlink Transformers 625	Farnell lnstruments 538	L.angrex Supplies L.td.............566	
Antex Electronics..................572	Field Electric..............626	Laplace592	Stewart of Reading................... 589 Sherwood I)ata Systoms 601
Antrim Transformers lid....... 589	Henrys Audio Electronıcs 589	l.eetronex 89.............569	Sherwood Data Systems601
Audio Elect ronics.................572	Henrys Audio Electronıcs........ 589 Hitachi.................................... 577	M\&B Radio................................ 626	Solex International 635/Loose Insert
Blue Chip 'Technology592	I R Group543/0BC	MQPElectrontes 54.640 Matnos I.td................... 64.	Strumech Eingineering601
Cambridge Kits......................625	ICOM (UK) Itd607	Microlease'6.6. 6.3	Surrey Electronics Ltd..... 625
Carston Electronics...l) Loose insert	Integrex545	Number ()ne Systems Lid....... 547	Taylor Bros.
Cavendish Automation Lid ...ft7	JAF Graphics572	Pineapple Software626	(Oldham) Ltd1FC/IBC
Colomor Electronics.............589	JI)k Sheetmetal 596	Private Mobile Radio 607	Thandar Electronies L.td.........573
İigitask Business	Johns Radio................ 635	Q.X Pty Lutd............................596	Thurlby Electronics 577
Systems.............. Loose Insert	Kestrel Electronic	R Henson56. 56	
Display Electronics Ltd627	Components625	Raedek Electronics Co.601	Waveband Electronics635
OVERSEAS ADVERTISEMENT AGENTS			
France and Belgium: Pierre Mussard. 18-20 Place de la Madelaıne. Parıs 75008			
United States of America: Jay Feinman. Reed Business Lid. 205 East 42nd Street. New York. NY 10017 - Telephone (212) 8672080 - Telex 23827.			
 Wireless World \$5.95174.513)			

PERFORMANCE \& QUALITY

19" RACK MOUNT CRYSTAL CONTROLLED VESTIGIAL SIDEBAND TELEVISION MODULATOR PRICES FROM £214.13 (excluding VAT \& carriage) Prices CCIR/3 £214.13

CCIR/3-1 £273.67

19" RACK MOUNT VHFIUHF TELEVISION DEMODULATOR PRIC: AT CNIY $\$ 198.45$ (excluding VAT \& carriage)

WALLMOUNT DOUBLE SIDEBAND
TELEVISION MODULATCR
PRICES FROM ONLY $£ 109.76$ (excluding VAT \& carriage)

Prices
CCIR/5-1 l Modulator $£ 109.76$ CCIR/5-2 2 Modulators $£ 167.99$ CCIR/5-3 3 Modulators $£ 237.59$ CCIR/5-4 4 Modulators $£ 307.19$ CCIR/5-5 5 Modulators £376.79

TAYLOR BROS (OLDHAM) LTD. BISLEY STREET WORKS, LEE STREET, OLDHAM, ENGLAND.

TOGETHER WE STAND THE TEST

 IR GROUP AND MARCONI

IR Group and Marconi Instruments have joined forces to provide you with an outstanding supply of communications test equipment.
Sales:
IR Group are a leading sales distributor of Marconi radio test sets, RF signal generators, spectrum analysers, microwave counters and power meters. They're all available from stock, and for next day delivery, if required.
Rental:
We also stock an in-depth range of Marconi products for short,
medium or long-term rental - all at competitive prices and guaranteed delivery times.
Leasing:
We offer our own lease purchase scheme which provides a highly cost-effective and long-term method of acquiring equipment.

Marconi Products from IR Group
The following Marconi products are now available:-

- Radio communications test sets such as 2955 and the new total system capability 2960 for testing Band III, TACS, AMPS, RS2000 radio systems.
- RF Signal Generators including the 2022A 1GHz programmable unit and the higher output
- 400 MHz and 4.2 GHz spectrum analysers. with built-in tracking generator.
- Microwave counters - 20 GHz (2440) and 26.5 GHz (2442).
- Microwave power meters, up to 26.5 GHz , with a full range of power heads.
When you need the best Marconi test equipment put IR Group to the test. Ring us today for a very positive response.

EN'TER 3 (ON REPPLY (CARI)

[^0]: Whatromus \& Wiraless Wirld is pulblished month!

 atel Wirodes Whirld. (Quadrant llouse. The (Quadront sut tom. Surrev int2 5AS. (heques shuld the payable to Reed Jtanmens Problishing Led Editorial Advertising offices: FHW (Quadrant Heruse. The (Quadrant. Suttom, Sur res SML 5AS Telephones: Fiditorial 11 - fitil :361t Adver. t1sug (1) 6i61 3130 01-661 8464 Telex: 842(184 REEI) BP (i EED' Facsimile: 01 - 661 S 9481 (iroup- II \& III Bereline:

 ITh atnd \& BF coutside (Th subscriptions: (Quadrant sul

[^1]: Hards Heath. Suanex R1116;30)H Telepherne (1444 441212 Pleate motify a changte of address ["SA: \$11600) arman! Reed Busimess Publishing (lNA) Subscriptions ()ffice. 205 E 4 iend Street. NY 10117 Overseas advertising agents: France and Belgium: Perre Musadrd. 1K-20 Place de Id Madele/me. Pari- 75008 United Siateg of America: Jat Femman. Reed Buamess Publinhmg Letd, 20, East 42nd Sitent. New rork. Ar kotia Tolephome 12121 86T-20xil Telex $23 x_{2} 2$ C'SA mailing agents: Mercurs Aurfreght International Litd. Ine Iotbl Emplehard Ase. Ssenel No . 0706. 1 2nd clase pratage pad at Rahuals N.J Pomatmaster send addrese to the alsow.

[^2]: Peter Krüger is with Philips Bauelemente at Hamburg.

[^3]: Notes on the llouse are by Chris Pounder.

[^4]: - CPFSK modulation

