ELECTRONICS \& WIRELESS WORLD

Noise and the Kalman filter

Transient analysis by computer

The

experiments of Heinrich Hertz

The field of permanent magnets

State

 machines and reliable designWalter Bruch, pioneer of PAL

A Gould high quality instrument and support for under $£ 3,000$? No Problem. It's all in our new full-function K50 logic analyser.
See what it offers

- Simplicity-you won't even need to read the manual!

The new K50 logic-analyser from-Gould.

At under $£ 3 \mathrm{~K}$, you couldn't have your 'hands on' anything better.

- Interfaces: RS232, Centronics, IEEE488
- 32 data channels.
- Non-yolatile memory for data and set-ups.
- 100 MHz sampling rate

4-level trigger sequence with event count and delay.

- 5 ns glitch capture

Disassembly for 8 and 16 Bit processors.
No-quibble, 2-year warranty

- Lightweight and portable.

The K50 brings powerful logic analysis to
8 bit \& 16 bit designers, the test area or
repaif department ... and then makes it
easy to reap the benefits.
Need convincing? Order the K50 now and
use it for 14 days on our
FREE TRIAL OFFER.
Try it. We know you'llnever giveit back!
Gould Electronics Limited
Test and Measurement Sales Div.
Roebuck Road, Hainault,
Ilford, Essex IG6 3UE
Telephone: 01-500 1000.

COVER

Extra layers on multilayer backplanes, like this one for STEbus, allow separate 5 V and ground planes. These extra layers improve signal integrity by reducing the effects of
noise and crosstalk. British Telecom's Microprocessor Systems Group produces the one shown here.

MULTIPROCESSOR

 SYSTEMS
1052

A look at the practical side of linking processors, using VMEhus with the 68000 as an example Alan Clements

A RADIANT CENTURY

1061
Ken Smith discusses Hertz's remarkable work leading to the discovery of electromagnetic waves
K. L. Smith

TRANSIENT ANALYSER 1076
Hardware and software design discussion of a 50 ms transient-capture interface with its own memory J. F. van der l'alle
$\frac{\text { KALMAN FILTERING }}{1083}$

Kalman noise filters out-perform first-order low-pass filters and provide an element of state prediction
G.F. Steven
$\frac{\text { MAGNETS }}{1087}$

Principles, uses and current status of permanent magnets - often taken far too much for granted Joules Watt

A DTI-sponsored project called "Awareness initiative in object-oriented programming" and coordinated by Edinburgh University has bought 15 of these add-on boards for the Sun workstation. The boards, with full 32bit VMEbus, are based on the Rekursiv chip set discussed by Rupert Baines in his article on page 1111.

WHAT IS HAPPENING TO RDS?
1096
With the launch of Radio Data System on all BBC f.m. radio transmitters in England. set makers now have the potential to offer receivers with automatic tuning and other novel features Bev Marks

PIONEERS

1101

Walter Bruch, known as Mr PAL was captivated by television when he first saw a flickering image on a screen at the age of 17 .
W. A. Atherton

STATE MACHINES AND RELIABILITY

1108

This procedure describing the development of a car theft-protection system forms an illustration of sound logic design Jeremy Stevens

ENHANCED-INSTRUCTIONSET PROCESSOR

1111

While most processor manufacturers are concentrating on risc. Linn has gone completely in the opposite direction Rupert Baines

FAST FOURIER TRANSFORMS OF SAMPLED WAVEFORMS 1122

A procedure for accurate determination of frequency as low as half the frequency interval and higher than the Nyquist frequency S. E. Georgeoura

BOOKS 1066
LEGO LOGO 1085
SATCOMS ON THE MOVE 1095
MICROWAVE TESTING COMPLEX 1116

REGULARS

COMMENT 1051
FEEDBACK 1067
CIRCUIT IDEAS 1071
SIDEBANDS 1086
APPLICATIONS 1105
TELECOMMS TOPICS 1117
SATELLITE SYSTEMS 1127 NEW PRODUCTS 1129

RESEARCH NOTES 1137
TELEVISION BROADCAST 1140
RADIO BROADCAST 1142
RADIO COMMUNICATIONS 1144

You Can See It! A Light with a 670 mm Wavelength!

Toshiba's TOLD9200 laser diode emits red light that is clearly visible to the human eye. It produces visible light by shortening the wavelength to 670 nm , a feat which was impossible with conventional laser diodes.

A laser diode that opens a new age. InGaAlP is used as the crystal material. Computer simulation optimizes the component structure. And so, once again, Toshiba technology leads the world and produces the first laser diode in a visible short wavelength.

Toshiba has achieved a tremendous reduction in size, weight and power consumption, when compared to $\mathrm{He}-\mathrm{Ne}$ gas lasers. And unlike infrared laser diodes, Toshiba's new laser diode's beam-focusing location can be confirmed with the human eye. This innovation has many new application fields from bar code readers, optical communications or measurement instruments, and control equipment to laser pointers. And even beyond this it has potential for use in highspeed laser printers and high-density recording disk systems. Toshiba has already begun mass production of this laser diode.

The TOLD9200 laser diode See for yourself how it outshines the rest.

$$
\begin{aligned}
& \text { InTopach wihh Tomorouv }
\end{aligned}
$$

Building for the future?

EDITOR

Philip Darrington

EDITOR - INDUSTRY INSIGHT Geoffrey Shorter, B.Sc. 01.6618639 DEPUTY EDITOR Martin Eccles 01.6618638

COMMUNICATIONS EDITOR
Richard Lambley $01-6613039$ ILLUSTRATION Roger Goodman $01-6618690$
DESIGN \& PRODUCTION Alan Kerr $01-6618676$
ADVERTISEMENT MANAGER Martin Perry
01.6613130

SENIOR ADVERTISEMENT EXECUTIVE
James Sherrington
$01-6618640$
CLASSIFIED SALES EXECUTIVE
Peter Hamilton
$01-6613033$
ADVERTISING PRODUCTION
Brian Bannister
01.6618648

Clare Hampton
01.6618649

MARKETING EXECUTIVE
Rob Ferguson
$01-6618679$
PUBLISHER
Susan Downey
01.6618452

REED
BUSINESS
PUBLISHING

One result of the recent questionnaire, which readers were kind enough to respond to in their thousands, was an indication that a respectable number of professional engineers are still happy to continue their interest in electronics into their leisure time and to build equipment for their own use.
It is taking us rather longer than we had hoped to analyse the results and to hold a conference of all involved in running the journal to decide how to implement them. When that is all settled, the result will be published in these pages.
But. to go back to my opening point. I find it most encouraging that. at a time when many people are saying that it is no longer considered worthwhile to spend one's spare time in this way because most electronic requirements are well met by extremely well presented boxes from Japan. Taiwan or Korea. a visible proportion of engineeers do not agree.
Shortly after HTWII, when thousands of people were back in civilian life after having become acyuainted with military radio, radar and other manifestations of the electronic art. there was a truly remarkable surge of activity in the spare-time building of equipment. Television was new and the high-quality reproduction of sound was heginning to attract the attention of engineers. Components arrived on the market via the government surplus suppliers in profusion, allowing those who were determined to use their recently provided training to follow somewhat less warlike pursuits. Radar receivers became television receivers and the number of KTifi valves which were never called upon to amplify in anger must have run into the hundreds of thousands.

A large number of well known and respected figures in the electronics industry received a major incentive to make their careers in the subject in this way. University and technical-college courses were not plentiful and journals such as Wireless W'orld helped in their education, often by the provision of designs for them to study and sometimes to build.
Now, of course, electronics is well catered for in the teaching institutions. Students are short of nothing and the level of education is such that the subject would be well-nigh unrecognizable to a graduate of 20 years ago. But, to judge from comments made by lecturers, there is very little evidence of any spark of fascination in the subject. Everything, it appears is provided and the scope for any spirit of investigation and discovery - even if it exists before the youngsters reach university. and it seems that it rarely does - is limited by the need to get through the course and obtain a degree.
It is my view that part of this journal's job is to help in the education process. Indeed, when it was launched in 1911, the editor stated that he intended The Vireless World to "inform, instruct and entertain". Ellw does, of course, just that. hut the instruction, if it consists solely of theory' can be a little arid. Design principles need to be illustrated by practical application.
In the future, therefore. we will not feel yuite so inhibited about publishing articles of a tutorial nature which culminate in a design for a piece of hardware. There is no substitute for practice, even when the theon' is well understood.

[^0][^1]
Multiprocessor systems

In this fourth article Alan Clements looks at the practical side of linking processors using VMEbus with the 68000 as an example.

Ihave already indicated that the hus topology offers the simplest approach to multiprocessor design*. While this statement is true, it is not true that the design of a multiprocessor system based on a common bus is a trivial task. In fact. the design of any high-speed hus, be it a simple bus in a single-processor system or a conten-
tion hus, is much more complicated than it might appear. Many of the prohlems in bus design arise from the electrical effects associated with high-speed pulses on transmission lines.

Probably the hest approach to designing a bus-based microcomputer is to choose one of the popular and standardized commer-
cially availahle huses - unless. of course. the volume of production justifies the design. development and manufacture of a custom bus. This article looks at multiprocessor systems using a bus structure - namely the VMEbus that is now standard in many 68000 -hased microcomputers.

Originally. VMEhus was designed and

Fig. 1. Structure of the VMEbus.

Fig. 3. Protocol flowchart for a VMEbus access.

supported hy three major manutacturers; Motorola. Mostek and Signetics. Today it is supported by a wide range of manufacturers and is in the process of hecoming an international standard (IEEE-1014 and IEC-821). Although primarily intended for 68000 based microcomputers the VMEbus is suitable for other advanced 16 or 32bit microprocessors.

Physically. VMEhus is a typical backplane bus with plug-in cards of either 233.35 by 160 mm or 100 by 160 mm . These are socalled single-height 3 U Eurocards and double-height 6 U Eurocards. The cards connect to the V"ME bus by means of two-part 96 way DIN - 1612 standard plugs and sockets which are relatively expensive but are highly reliable

There are. in fact, two VMEbuses. In minimal systems a 11 bus with 96 lines provides all the facilities required to support a 16 bit data bus and a 2 ? 3 hit address. A second hus. called J2, expands the II bus to cater for processors with 32 hit data and 32 hit address buses. Most of the tracks on the 12 bus are user-defined. Table I defines the VMEbus pinout.

Logically. VMEbus divides into four subbuses; a data transter bus (d.t.b.), an arbitration bus. an interrupt bus and a utilities bus. The data transter bus is a conventional non-multiplexed address and data bus that
provides several miscellaneous functions not catered for by the other buses such as a 16 NHz clock and a system-failure line.

DATA-TRANSFERIBUS

The data transfer hus of the VMEbus is based on the 68000's own address, data and control hus. Figure 2 illustrates the d.t.b. component of the VMEhus. Fig. 3 provides a protocol hlow diagram for a VMEbus access and Fig. 4 provides the timing diagram of a read cycle.

Principal differences between the 68000 s own bus and the VME data-transfer bus are the inclusion of a 6 bit address modifier bus (A. 4,5). the addition of a long-word data stronc ((IMORD), the re-naming of $\overline{1 . D S}$ UUS (I.DS $\left.=\mathbb{E}_{0}, \overline{\mathrm{INS}}=\overline{\mathrm{JS}}\right)$ and the extension to 32 address and data bits. Signal l.wornis asserted active-low during a long-word (32bit) data transter on 3_{0-31}. In 68000 systems not using long-word transfers, NORI is passively pulled up to Vic

Information on the address bus is verified by means of the address modifier bus Amm-5. For example, the current bus master can use AN 0_{0-5} to indicate the type of the current access (short. standard or long address), memory-management intormation. or any other user-defined function.

Fig. 4. Timing of a VMEbus read cycle.
enables information to be transterred between a bus master and a bus slave.

At this point it is worth noting that VMEbus operates in a master-slave mode so that at any instant only one device (e.g. 68000 microprocessor or direct memory access controller) may access a slave connected to the bus.

The arbitration bus provides the VMEbus with multiprocessor facilities by enabling control to be passed from one master to another in an orderly fashion. Interruptors signal their need for attention via the interrupt hus. which also allows an interrupt handler to deal with the interrupt request.

In Fig. I. illustrating the VMEbus structure, you can see that the utilities bus

ARBITRATIONBUS

It is the arbitration sub-bus of the VMEbus that makes it so suitable for multiprocessor syslems. Two types of functional unit access the arbitration bus: the requester and the arbiter. Fig. 5. A requester is part of any module that maywish to request mastership of the VMEbus. An arbiter is part of the sysiem controller hoard and must be located phissically in slot 1 of the VMEhus system. Whenever the arbiter receives a request for the bus from a requester, the arbiter decides how the request is to he handled.

Figure 5 also illustrates the actual arrangement of the arbitration bus. A requester in any slot (apart from slot 1) may

Fig. 5. VMEbus requester and arbiter.
request the data transier bus by asserting one of the bus request lines, $\overline{B k_{11-2}}$. On detecting a request for the bus on $\overline{B k_{10} 2}$, the arbiter decides whether to grant the request or to ignore it (1 will describe how this is done later). Figure 6 provides a protocol flow diagram for a typical VMEbus arbitration sequence.

If the arbiter grants the d.t.h. request. it asserts the corresponding active-low husgrant output level (i.e. Bextron. where $\mathrm{x}=$ $0,1.2$ or 3$)$. For example. a request on $\overline{3 k_{2}}$ would result in a bus grant signal on $\overline{16 i 2 g \pi}$.

Bus-grant output lines are daisv-chained
 the $\overline{G_{x} I N}$ pin on module $i+1$. When a module receives $\overline{b_{x} / \mathrm{l}}$ asserted from its upstream neighbour, it either lakes the bus-grant
itself (and does not assert its $\overline{18 i_{x}(0 T T}$ signal) or it passes the bus grant to its downstream neighbour by asserting its $\overline{B 6 i o n T}$. Consequently. a level-x bus grant ripples down the daisy-chain unt il the first device reyuesting the bus at level x receives the bus grant and does not pass it on.

Of course. لaisy chaining includes an implicit prioritization mechanism: a module nearer to the arbiter is always senved heiore its neighbours furt her away from the aribter.

When a requester has been granted control of the data-transter bus via the bus-grant daisy-chain, the requester takes control of the hus hy driving Blisy (bus husy) low. Once Busy has heen asserted by the new hus master. the arbiter can once again begin to perform arbitration if any other potential

Fig. 6. Protocol flow for a VMEbus arbitration sequence.

Pin	Signal mnemonic		
	Row a	Row b	Row c
1	D_{00}	$\overline{\text { BBSY }}$	D_{08}
2	D_{01}	$\overline{B C L R}$	D_{09}
3	D_{02}	ACFAIL	D_{10}
4	D_{03}	BG ${ }_{0}$ IN	D_{11}
5	D_{04}	BG ${ }_{0}$ OUT	D_{12}
6	D_{05}	BG, ${ }^{\text {d }}$	D_{13}
7	D_{06}	BG, OUT	D_{14}
8	D_{07}	BG, IN	D_{15}
9	GND	BG ${ }^{\text {OUT }}$	GND
10	SYSCLK	$\overline{B G}_{3} 1 \bar{N}$	SYSFAIL
11	GND	BG_{3} OUT	BERR
12	$\overline{\mathrm{DS}}_{1}$	$\overline{B R}_{0}$	SYSRESET
13	$\overline{\mathrm{DS}}_{0}$	$\frac{B R_{1}}{}$	LWORD
14	WRITE	$\overline{B R}_{2}$	AM5
15	GND	$\overline{B R}_{3}$	A_{23}
16	DTACK	AM_{0}	A_{22}
17	GND	AM_{1}	A_{21}
18	$\overline{\text { AS }}$	AM_{2}	A_{20}
19	GND	AM_{3}	A_{19}
20	IACK	GND	A_{18}
21	IACKIN	SERCLK	A_{17}
22	IACKOUT	SERDAT	A_{16}
23	AM_{4}	GND	A_{15}
24	A_{07}	$\overline{T R Q}_{7}$	A_{14}
25	A_{06}	IRQ_{6}	A_{13}
26	A_{05}	RQQ_{5}	A_{12}
27	A_{04}	$\overline{\mathrm{FRQ}}_{4}$	$\mathrm{A}_{1!}$
28	A_{03}	IRQ	A_{10}
29	A_{02}	$\underline{\mathrm{IRQ}}{ }_{2}$	A_{09}
30	A_{01}	IRQ_{1}	A_{08}
31	-12V	+5VSTDBY	$+12 \mathrm{~V}$
32	+5V	$+5 \mathrm{~V}$	+5V

master requests the bus. The requester is now the new bus master and will remain so until it negates misis.

Interestingly. the VMFhus specification provides no mechanism for forcing a requester off the bus: $\overline{\text { BBST}}$ can be negated only by the current bus master. However, a bus clear, Ben, signal is provided as an option. When a potential hus master with a request higher than the current level requests the VMEbus, the arbiter asserts $\overline{B C I A R}$ to inform the current master that it should consider giving up the VMEhus. It is left to the system implementer to decide how $\overline{13 C . R}$ should be used.

ARBITRATION

An arbiter in VMEbus slot 1 may implement three basic types of arbitration: single level. priority. or round-robin select. The actual mode of arbitration (scheduling algorithm) used in any particular system is an option selected by the designer and the VMEbus specification does not exclude scheduling algorithms other than the three mentioned above.

Single-level arbitration offers the simplest scheduling algorithm. Only requests for arbitration on $\overline{B 2 k}$, are accepted by the arbiter in slot 1 (i.e. the bus-request lines, and bus-grant lines for levels 0 . 1 and 2. are not used).

Prioritized arbitration makes use of all bus arbitration lines. Bus-request line BRo has the lowest priority and $\overline{k k_{3}}$ has the highest. If more than one level of interrupt is pending, the arbiter always grants priority to the highest level of request
Whenever a requester with a priority greater than that of the current hus master requests the d.t.b.. the arbiter asserts the $\overline{B C L I R}$ (bus clear) line. An active-low on $\overline{\text { BCLIR }}$ indicates to the current master that it should relinquish the bus as soon as possible - but remember that it cannot be forced off the bus.
A round-robin select scheduling algorithm attempts to be fair to requesters by

Fig. 7. Timing of an arbitration sequence.

Fig. 8. The interrupt bus (above).
Fig. 9. Protocol flow for a VMEbus interrupt sequence
rotating the current level of maximum priority. For example. if the current highest level of priority is 3 . the highest priority in the next cycle of arbitration will be (0)

Figure 7 shows the timing diagram of a typical arbitration sequence. Initially, datatransier bus requests are made on $\overline{B K 1}, 2$ at approximately the same time. The arbiter in slot I detects both requests and gives priority to $\overline{\mathrm{BR}_{2}}$, by asserting the $\overline{\mathrm{BG} \mathrm{g}_{2} \mathrm{IN}}$ line. When the requester that asserted $\overline{B R}$ detects $\overline{\text { Gcrin }}$ asserted, it asserts Bisw to claim the data-bus transifer and negates its $\overline{\text { Br }} \mathrm{k}_{2}$ line.

J2/P2			
Pin	Signal minemonic Row b		
1	SV	17	D_{19}
2	GND	18	D_{20}
3	Reserved	19	D_{21}
4	$\mathrm{~A}_{24}$	20	D_{22}
5	$\mathrm{~A}_{25}$	21	D_{23}
6	$\mathrm{~A}_{26}$	22	GND^{2}
7	$\mathrm{~A}_{27}$	23	D_{24}
8	$\mathrm{~A}_{28}$	24	D_{25}
9	$\mathrm{~A}_{29}$	25	D_{26}
10	$\mathrm{~A}_{30}$	26	D_{27}
11	$\mathrm{~A}_{31}$	27	D_{28}
12	GND^{2}	28	D_{29}
13	+5 V	29	D_{30}
14	D_{16}	30	D_{31}
15	D_{17}	31	GND
16	D_{18}	32	+5 V

[^2]

Fig. 10. The 68175, 68154, 68155 and VMEbus (above).

Once the current bus master has finnished with the data-transfer bus it negates $\overline{\text { BSSY. }}$ The arbiter detects that the bus is once more free and there is still a request pending on level 1. Therefore. the arhiter asserts $\overline{B G}$ IN to pass control to the new bus master.
Later 1 will discuss interfaces to the priority arbitration bus.

INTERRUPT BUS

You have now seen that the VMEhus implements a data-transfer bus very much like the 68000 's own data transier hus and implements an arhitration hus that fits in well with the 68000 s own arbitration control signals (BR, BG, BGACK). It should therefore not surprise you to discover that the VMEbus implements an interrupt handling structure in keeping with the 68000's own interrupt mechanism.
Three types of module are associated with the priority interrupt bus: the interrupter. the interrupt handler and the lACK (interrupt acknowledge) daisy-chain driver. Fig. 8.
An interrupser is a module capable of signalling an interrupt a request on one of the seven prioritized interrupt request lines, $\sqrt{1 / G_{1-7}}$. The uck daisy-chain driver in slot 1 detects an interrupt request and transmits a falling edge down the lackovt lackin daisychain. Figure 9 provides the protocol tlow diagram of a VMEhus interrupt sequence

An incoming interrupt acknowledgement is detected by the interrupt handler on its anchis pin. If this requester initiated the interrupt, it uses its on-board bus requester to request the d.t.b. and. when granted access to the d.t.h., initiates an interruptacknowledge cycle. By reading the stitusio byte from the interrupter, the handler initiates the appropriate interrupt-servicing sequence. The actual servicing of an interrupt (i.e. how it is done and which device
Fig. 11. The 68175 and its interface to the VMEbus and a local bus master.

 memory and logic of all kinds.
That is what you do for a living isn't it? Or did they send you this magazine by mistake instead of Practical Beekeeping?

"I think I have all the tools I need"

Engineers have discovered lately that they are more productive in a windowing, multitasking computer environment. The PC workstation is now fashionable. Coffee-stained notebooks, boxes of tangled wire and two-legged-transistors are going out-of-style. Today you can sit down at a computer keyboard and tackle everything from design to documentation. At a keystroke you can re-assemble your source-file, download to your memory-emulator and run your program. The

"Unbelievably good, obviously designed by working engineers for working engineers"

prototype of your new product will work exactly like the real thing, except that you can set breakpoints, examine variables and stack, debug the code and so forth. Logic Analysers, Storage Scopes, lots of instruments these days have RS232 or IEEE interfaces, and can be controlled in another task-window, to provide insight into what's going on. S3 fits in well, needing only a single RS232 port for complete remote control. In short, if you value your time, isn't it time you bought yourself some proper equipment?
"I wonder - would I use it much?" S3 is a small computer which uses PROMS for storage like other computers use disks. A PROM in the front panel socket can be loaded as a working program or as data. S3 can make this datamemory externally available, taking the place of any 25 or 27 series PROM in your prototype. If the Flying Write Lead is connected to the microprocessor's write-line, it can emulate RAM too, by providing the WRITE input missing from PROMS. This is a real advantage over simple ROM-emulators, because variables and stack can be inspected and the target system can feedback data. Memory is permanent, in effect,

"I wouldn't dream of parting with it"

because in standby mode only a tenth of a milliamp is drawn from the battery. S3 is ready for work next morning or next month - even if you're not. back.

£495 buys S 3, a programmer with knobs on

S3 . $£ 495$
 DISPLAY: 80 character Liquid Crystal Display

KEYBOARD: 45 "real click keys" - metal-domes with buttons PROGRAMS: 28/24 pin $25 / 27$ series (E)EPROMS to 512 k . EMULATES: $28 / 24$ pin $25 / 27$ series (E)EPROMS to 512 k EMULATION RAM: 64k bytes of 100ns static CMOS RAM EMTERAFACE: Bi-directional remote control by serial RS232 NIERFACE: Bidirectional remote contro by serial RS232

$$
300,600,1200,2400,4800 \text { or } 9600 \text { baud DB25 }
$$ socket with CTS/DTR handshake. (Actually, S 3 will receive files at $9600, \mathrm{~N}, 8,1$ at full speed without handshake).

SIZE: $7.3 \times 4.4 \times 1.8$ ins. WEIGHT: 180 z . approx.
BATTERY: 8.4 volt $500 \mathrm{ma} / \mathrm{hr}$ rechargeable nicad.
WORKLOAD: With mains-supply connected you can edit or
program continuously. A fully charged battery will program continuously. A fully charged battery will do several days ${ }^{\circ}$ work e.g.
EDIT for 45 hours.
EMULATE for 6 hou
PROGRAM 1000 fast or 100 slow PROMS or RETAIN program \& data for several week
CHARGING: 3 hrs on BOOST or 14 hrs on TRICKLE.
Charging ends when battery-temperature rises $5^{\circ} \mathrm{C}$ You can use S 3 when charging
You could possibly put together a set-of-tools equivalent to $\mathbf{S 3}$, from several other products on the market and you might even get them to work together. But you could waste a lot of time and spend a lot of money doing it. S3 is a solution, ready-made, here-and-now and cheap enough for engineers to have one each.
"Why should I spend hard-earned cash?"
Presumably to help you make some more cash, a little easier.

"What's it like as a programmer?"

S3, as it comes, will program any $24 / 28$ pin EPROM/EEPROM that goes in the socket. Of course, the manufacturers, bless their little hearts, are always bringing out PROMS which use new programming methods. But not-to"I'll bet you sell thousands of these" worry, upgrading is usually a simple matter of installing the latest software which takes only a few seconds. We supply up grades at nominal cost in a PROM - or you can get 'em FREE by calling our Bulletin Board.

"It's a bit of a risk. Does it work?"

Yest Do be careful; other makers go on about performance, yield, dire-consequences and peace-of-mind to frighten you into buying their big, expensive Prommers. Why not buy one of these on approval and compare it with S3? The
"It beats the socks off the two ****s we've got"
PROM makers supply free data-sheets which set-out the way to program their devices. You can check voltages and signals with an oscilloscope. Speed comparisons - theirs, not ours prove S3 to be faster. 14 secs to Program an Intel 27C256, 3 secs to Load or Verify. Compare features, price, performance, decide which Prommer you like best and send the other one

"What are the odds I will like it?"

Better than 100 to 1. We kn w that because our products have a 28 day money-back trial-period and we get less than 1 in 100 back.
"Best bit of kit we've bought this year"

```
        Lead and Help ROM.
```


S3 Editor/Assembler

TMS320C15	TMS320C17	TMS32020	TMS320C2S
F8/3870	COP400	COP440	HMCS400
64180	$65 C 02$	6502	$65 C 812$

F813870	COP400	COP440	HMCS4
64180	65 C 02	6502	65 C 812
65 C 816	6800	6801	6301

$65 C 816$	6800	6801	6301
6802	6803	6303	6804

6802	6803	6303
6805	6809	6309

6805
68000
uPD7500B
uPD7811
8039
8039
8080
8080
80188
TS94110

S3 Developer's Package bler, S3 BIOS calls and Circuit-Diagram.
EPROMS 32 or 40 pins... $£ 75$ each Two m.dules cover Imeg and $2 \mathrm{meg} 8 \& 16$ bii EPROMs. 8748/8749
£125
XICOR 2212 £45

EPLDS

 £295Handes Erasable Proerammable Logic Devices. Works with PLPL and ohher manuracturer's desigit sofware (mostly free on requesti) to provide complere development package. Receives rranslates. creates and transmits JEDEC files. Loads, burms and | copies. |
| :--- |
| $22 V 10$ |
| 10. |

EP320, 22 ERT 4 , I6R6, 16R8, $16 \mathrm{LB}, 20 \mathrm{G} 10$, EP300, EP310, 50 C 60.60 C 90 from MM1, Almel CY , Texas. elc

Quotations in italics are typical unsolicited customers' comments

28 days money-refund trial period Guarantee - both parts \& labour 3 yrs on S3, 1 yr on other hardware UK customers please add VAT

[^3]

SUBSCRIPTION ORDER FORM

Please send me Electromcs \& Wireless World for three years at the special price of $£ 53.00$ chuces postage and packing

I enclose a cheque/PO to the value of $\{$ made payable to Reed Business Publishing Limited.
Please debit my credit account:
\square Access \square Barclaycard/Visa

\square American Express Diners Club

Expiry date

Address

ANTRIM
 RANSFORMERS LTD

UNIT 3A/9, 25 RANDALSTOWN ROAD, ANTRIM, CO ANTRIM, N. IRELAND.
Telephone: (08494) 66734. Telex: 74667 Fax: (08494) 68745

Manufacturers and designers of high quality toroidal transformers to specifications VDE 0550, BS415 Class 2 and IEC65 Class 2.
Prices quoted are lots of 100 inclusive of delivery anywhere in UK (VAT not included). Prices firm to October '89.

15 VA	120VA - £6.70	625 VA - £13.80
30VA - £5.18	160VA - £ 7.57	750VA - £22.60
50VA - £5.52	225VA - £8.40	1000VA - £37.20
80VA - £6.00	300VA - £9.40	
100VA - £6.56	500VA - £12.50	
Prices quoted are for primary voltage 110, 120, 220, 230, 240.		
For additional primaries please add 4% to price for the following:$\begin{gathered} 120 / 120,220 / 240,110 / 110,115 / 115 \\ 110-120 / 110 / 120 . \end{gathered}$		

AGENTS WANTED - ALL COUNTRIES
*SECURITY - PANELS \quad PIRS SIRENS DOORPHONES STROBES
 EInstruments/Security Computer - General Catalogue

Please state Trade/Education ol Retail/mail order Send $123 / /^{\prime \prime} \times 9^{\prime \prime}$

TIME AND FREQUENCY

The Company is Registered to Def-Stan 05-2 (AOAP-1)

TIME CODE INSTRUMENTATION

0880

\star Synchronisation of remote sites.

* Time Stamping GMT/BST
* Ouartz master/slave systems

Accurate off-air standard (MSF Rugby). \star Calibration and reference for timers, counters. frequency meters.

Generators, Readers with high speed tape search and control. Timecodes IRIG A, B, vela, EBU, NASA, XR3.

Analogue, digital and self-setting analogue types (desk, wall or console mounting).
\star Public time displays for airports, bus, railway stations and factories.

A computer network monitoring and management system for synchronisation and fault reporting of up to 64 independent computers.

* Feasibility studies and consultancy.
\star Small quantity manufacturing and test services.
* System design.

European Electronic Systems Limited, Maldon, Essex CM9 65W, UK.
Telephone: 0245415911 Telex: 995917 EULECG Fax: 0245415785

Fig. 12. Timing diagram for a local master access to the VMEbus.
a hardware link. If there were sufficient pins. the 68175 could have had a softwareselectable hus-request priority level.
Eventually, the current VMlBus master responds to the 68175 s request hy passing a bus-grant signal down the $\overline{\text { Bciveliciom daisy- }}$ chain. If the 68175 receives BGIN low hefore it asserted its own $\overline{B K}$ output, it passes BCIN down the daisy-chain by asserting its own B6OIT. That is, the 68175 is a polite device if another potential bus master requested the bus before its own local bus master, it will not attempt to grab the bus at the first opportunity. If the 68175 receives $\overline{\text { Bal }}$ low after it asserts its $\overline{B K}$ output. the 68175 will assert its $\overline{\text { BBSY }}$ output to claim ownership of the VMEbus and negate its $\overline{\text { B. }}$, as it is now new VMEbus master.

Actual VMEbus accesses do not begin until the old hus master has released the hus
 bus master has control of the VMEbus. it provides the necessary signals to control a VMEbus access. For each bus access. the 68175 asserts its mien (address and data enable). STBEN (strobe enable) and is outputs active-low. ADIFN is a totem pole output that is used to enable the module's address and data-hus drivers. The STBEN output enables the two data strohes (i.e. $\bar{\pi}$ en, 1 .
Tiwo pins of the 68175 bus controller are devoted to the generation of an appropriate delay hetween the point at which the VMEbus address is valid and the point at which the VMEbus sis is asserted low. Whenever a VMEbus cycle is executed. the 68175 asserts its $\overline{\text { ADDIMO }}$ pin (address-delay output). $\overline{\text { ADDI.YO }}$ is comected to the $\overline{\text { AlODTM1 }}$ (address-delay input) pin by a user-supplied delay tine. This delay, typically 35 n s. guarantees a minimum setup time between the assertion of mmen and \bar{s} Figure 12. 13.

As I have already said. the VMEbus has no explicit mechanism for forcing a current bus master off the CMEbus. That is the control of the 68175 's active-high blef. (bus release) input is left to the designer of the specific system using the 68175 bus controller.

In some applications. Bserel can be permanently asserted by tying it to a logical one (i.e. $V_{\text {cc }}$). As bres is always asserted. the 68175 will never control the VMEbus for more than a single bus cycle. In other words. the 68175 is configured to carry out one VMEbus cycle at a time and to release the vMEbus between successive cycles. This mode may result in a relatively high latency if there are many contending bus masters. It is. however, fair because it prevents the local hus master from hogging the VMEbus.

Alternatively. the alate input to the 68175 can be connected to the VMEhus s $\overline{B C L I R}$ (hus clear) line via an inverter. Whenever the VMEhus arbiter in slot 1 requests the hus by asserting $\overline{\text { BCI.K. }}$. the local bus master wil he forced off the VMEbus at the end of its current bus cycle by ska, being high.

Signal iskei can also be connected to one or more of the VIEbus's bus-request lines by means of suitable gating (BkeF, is the Nand of the appropriate bus requests). Note that a Nand gate is used to make reel the logical Or

Loral master 68175 bus controller

Fig. 13. Protocol flowchart for Fig. 12.
(in negative logic) of the appropriate $\overline{B_{k}}$ inputs). In this mode. the 68175 implements a release on request (r.o.r.) strategy - as soon as the 68175 sees that another potential master is requesting the bus, it begins its release sequence. Note that the 68175 does not monitor its brefo input until the last
leading edge of BGN or ताnc| is negated to prevent the 68175 relinquishing control of the VMEhus due to its own hus request.

There is a mechanism on the 68000 for re-running faulty bus cycles, i.e. bus cycles terminated hy the assertion of $\overline{B C R K}$ rather
 logether. the 680000 attempts to re-run the current bus cycle using the same address and function coles. "The hus cycle re-run. or retry mode, helps the 68000 recover from certain forms of soft errors.

A facility for the automatic re-rumning of bus cycles is incladed on the 68175 bus controller. If the controller receives cither BERR from the VMEbus or R.BERK (during a local bus cycle) it asserts both $\overline{1, B F \cdot R I R}$ and $\overline{\text { KSTIIIT. } \mathrm{S}}$ Simultaneous assertion of hoth these signals allows the bus master to execute a re-run ciscle. However. if the re-run cycle also leads to the assertion of BERK or liserk. the 68175 will assert only $\overline{\text { I.BFkR: the } 68175}$ is designed to at tempt one bus re-run cycle.

The 69175's external bus error input. $\overline{F P R E R R}$, is provided to enable local resources to initiate a bus cycle re-run sequence. For each access to the IMEhus, Ampx, stis: and Is are asserted low. If the 68000 accesses its local memory (i.e. OFFBI goes high), AmPN. STBEN and $\overline{\text { As }}$ all remain inactive-high throughout the cycle.

As I said earlier. the 68000 is capable of executing an indivisible read-modify-write instruction called ris (test and set). A read-modily-write cycle cannot he interrupted (i.e. hy bus arbitration). The 680000 asserts $\overline{A s}$ throughout or read-modify-write cycle and the 68175 is designed to retain control of the bus as long as is is low. Consequently. the 68175 bus controller automatically handles the 68000 s read-modify-write cycle or, for that matter. any other indivisible hus cycle for which $\overline{\text { As }}$ remains low throughout (see Fig. 4 on p876 of the September issue). Next month's final article discusses the 68154 interrupt requester and the 68155 interrupt handler.

A radiant century

Hertz's discovery of electromagnetic waves in 1888

K.L. SMITH

In the January 1988 issue of Ecsll If: W.A. Atherton gave us a brief glimpse of Heinrich Hertz's work. So far this year. very few parts of the media - much of it utterly indebted to Hertz - have shown any interest in celebrating his remarkable achievement. I am pleased to say that Edill W once again is an exception, and hecause this is the centenary year regarding Hertz's important obsenvations and publications on the subject. another small contribution might record our continuing appreciation.
As well as tiat. I suspect many readers find absorbing interest in the depth and thoroughness of much pioneering work such as lertz's. I am pleased to report. contrary to other claimed indications, that young people to whom I have re-enacted some of Hertz's experiments during lectures to them, are absolutely fascinated bewhat he achieved.
So 1 recommend Atherton's article, to which these supplementany notes might add a little more technical detail.

DYNAMICALANI MECHANISTIC THOUGHT

When Helmholtz suggested an attempt on the problem of experimentally testing some of the clains made by Maxwell in his Electronagnetic Theory, Hert\% held back from an early attack on this. A few years passed but, hy the mid 1880 s. Hertz gradually hegan to swing his researches towards experimental programmes. This seems to indicate that he probably mulled over the subject during the inactive years: no doubt. as he later stated'. he found Maxwell's exposition difficult to understand.

Maxwell. although using systems of cogs and rollers ${ }^{2}$ to help visualize the aether in his early work - a highly mechanistic way of thinking - nevertheless was a highly dynamical thinker; he soon dropped the "cogs...' analogy in his later work. In fact. natural philosphers holding dynamical outlooks tend to use analogy. and Maxwell was no exception. He had been brought up in the Scottish dynamical philosophy tradition in education, and received major influences on
his career from Whewell, who was steeped in that tradition. Maxwell also came under the influence of Hamilton and Tait, whose mathematics of quaternions - also dynamically hiased - contained all the seeds of Vector Ana' ysis.
Through all this. Maxwell thought vectorially, as indeed he showed in his invention of the 'curl', 'convergence' (negative 'divergence") and "gradient". together with the use of Γ^{-2} (ref.3). But this vital breakthrough was too much even for Maxwell and he presented his results in Cartesian form (triple components): the full vector method had to await the work of Oliver Heaviside and Willard Cibbs.

By the mid 1880)s. Hertz was still "Cartesian". In effect. he had been nurtured through the Continental mechanistic tradition, and found all this vague dynamical field theory' and 'quaternion-vector' approach from the Scottish/English schools very hafling.

IHERTZ BECOMES CONVINCED)

Nevertheless. Hertz became convinced of the reality of electric and magnetic wave radiation. produced electrically. These should travel through space at the velocity of light. and not instantaneously as "action-at-a-distance".

Maxwell's contruction. which in true reductionist-mechanistic terms Ilertz called "Maxwell's Theory is Maxwell's Equations". had succeeded handsomely in optics. so (risking a speculative assertion) in Helmholtz and Hertz's minds, "there must be a considerable content" in the theory.

Fig.1. The zinc spheres on Hertz's "long. wave apparatus" were 30 cm diameter, connected by a 5 mm thick wire 2.6 metres long with a spark gap in the centre. Hertz calculated the wavelength radiated by this apparatus as $\lambda=7.5$ metres. This very reasonable result agrees with the "half. wave dipole" length of 2.6 m , when you consider it was capacitively end loaded with the spheres.

Fig.2. This extract ${ }^{4}$ shows Hertz's introduction of the quantity II, later known as the "Hertz vector".

Hertz then proceeded with an induction coil to produce high-intensity electric energ g . which he stored in the capacitance of an oscillator consisting of spherical capacitors (C) coupled to the inductance of conducting rods (L), extended in space, see Fig.1. He knew perfectly well how this oscillator would perform and calculated its frequency. employing in modern notation, $f=1 / 2 \pi \mathrm{~V}$ LC). He was averse to Maxwell's "rector potential $A^{\prime \prime}$ and proceeded to invent a new quantity: which, when later placed into vector notation, hecame the Ilert\% vector in Fig.?.

With II he analysed the radiation to be expected from the oscillating dipole he had set up, obtaining all the terms. (the 'static' field. the 'induction'. or near field and the radiation, or far field). He went on to discuss the radiation resistance in terms of the damping effect to be expected in his oscillator. "even if the conductors themselves were resistanceless ${ }^{\prime 5}$.

Douring the course of the experiments, Hertz was fully aware of the need to employ resonance or, as he called it. tuning in the receiving apparatus. This he did hy selecting the dimensions of the receiving loop aerial and by using a variable capacitor at its poles. as shown in Fig. 3.

It is ironic that. many decades later, the magnetron using small Hertz resonators made a huge contribution to defeating the Nazis ruling his fatherland at the time of the World War II. Figure 4 shows them clearly.

HERTZ'S POWER OUTPUT

The quoted extract from Hertz's paper shows in a fascinating way how advanced and rigorous he was in the business of explaining what he had accomplished. Though he had no interest in the engineering applications of his results, nevertheless nearly all the design data was there for the development of a radio telegraphy system. As we know. Professor Righi at Padua was most interested in Hertz oscillators, and during his many demonstrations, the young Cuglielmo Marconi often sat in the audience. Telegraphy to ships at sea and ultimately telegraphing the Morse Letter " S " across the Atlantic soon followed - although Hert\% was never to see these results.

The power radiated from a Hertzian Dipole is ${ }^{6 i}$.

$$
w=\frac{\eta_{\omega}\left(\left.3^{2} \hat{n^{2}}\right|^{2}\right.}{12 \pi} \text { watts }
$$

where $\eta_{0}=\sqrt{\mu_{0} / \epsilon_{01}}=377 \Omega$. the characteristic impedance of free space. β is the phase constant $2 \pi / \lambda^{\prime}$. with λ^{\prime} equal to the wavelength in metres. (Hertz tended to use λ for the half wavelength in all his papers. which makes a preliminary reading of them quite difficult.) i is the peak current. and the I the dipole length.

The oscillating charge Q, relates to the peak current İ via.

$$
\mathrm{Q}=\int_{0}^{\frac{1}{2}} \hat{i} \sin \omega t \mathrm{dt}=\frac{\hat{\mathrm{I}}}{\omega}
$$

where ω as usual $=2 \pi f$ with f the frequency in hertz. The time of one cycle is $\mathrm{T} / 2$ or $1 / 2 \mathrm{f}$. so that:
"...we get for the energy which goes out through the whole sphere during a half-oscillation

$$
1 / 3 E^{2} I^{2} m^{3} n t=\pi^{4} E^{2} I^{2} / 3 \lambda^{3}
$$

Let us now try to deduce from this an approximate estimate of the quantities actually involved in our experiments. In these we charged two spheres of 15 cm . radius in opposite senses up to sparking distance of about 1 cm . If we estimate the difference of potential between the two spheres as 120 C.G.S. electrostatic units $\left(\mathrm{gm} .^{1 / 2} \mathrm{~cm} .^{1 / 2} \mathrm{sec} .^{-1}\right)$, then each sphere was charged to a potential of ± 60 C.G.S. units, and therefore its charge was $\mathrm{E}=15$ $\times 60=900$ C.G.S. units (gm. ${ }^{1 / 2} \mathrm{~cm} .^{3 / 2}$ $\left.\mathrm{sec} .^{-1}\right)$. Hence the whole stock of energy which the oscillator possessed at the start amounted to $2 \times 1 / 2 \times 900 \times 60=54,000$ ergs, or about the energy which a gramme-weight would acquire in falling through 55 cm . The length 1 of the oscillator was about 100 cm ., and the wave-length about 480 cm . Hence it follows that the loss of energy in the half-period of oscillation was about 2400 ergs. It is therefore evident that after eleven half-oscillations one-half of the energy will have been expended inradiation. The rapid damping of the oscillations, indicated by our experiments, was therefore necessarily determined by the

Hertz correctly states this would be the required power of ac.w. transmitter to maintain the radiation. Then he calculates the solar constant S. and claims that the initial density from his aerial at 12 metres just about equals S .

The main thrust of the experiment Hertz discussed theoretically was to measure the velocity of the EM waves he was generating. He did this by interference and antinode detection. The clear reporting of problems connected with working close to the oscillator were covered in his grasp of near and far field effects. Most of thie techniques and principles he reported, still apply to anyone starting aerials research today.

In the same paper. Hertz discusses singlewire. waveguide-mode propagation, and perhaps slow-wave modes on spiral wires. which later enabled techniques of travellingwave amplifiers to be developed. Alternative interpretations of his spiral wire pickur loops shown in Fig. 5 include the obvious one that he had reduced the size of resonators by utilizing self-inductance.
There is a fascinating question Hertz did not directly answer. The magnetic axis of a single open loop is perpendicular to the plane of the loop, so I lert\% would have held it so that the magnetic vector of the EM wave coupled a maximum changing flux through the loop. But in the case of his spiralconductor loop. the magnetic axis runs along the centre line of the toroid so produced. The E. (and therefore D) vector would now require to be threaded through the loop, so that via curl $B=o D / a t$ the required coupling would have been maximized again - the integral of curl B now circulating a changing magnetic flux through the turns of the toroidal loop.

Thus was started the remarkable research school I reviewed some time ago ${ }^{\top}$, with all the paradoxes mentioned there. The "Hertzians" as this school became called. carried out most of the work to establish microwave optics. The results peaked, then the efforts fell away. deserted, because the long-wave "wireless telegraphers" began to achieve their spectacular success with waves three or four miles long. The importance of the "useless" short waves had to await the discoveries of radio amateurs decades later. and the microwave engineering revival brought on by the second world war.

References

1. "Electric Waves", II. Hertz, trans. D.E. Jones. published Macmillan Co. (1893). P.20.
2. "Joules Watt", Maxwell's e.m. theory revisited. EdWU', pp697, July. 1987.
3. "Joules Watt", All about curls and divs, E¢ $\because 17$ ". pp809. August. 1987.
4. Ref. 1. page 140.
5. Ref. 1. page 150. See also the quoted extract. 6. See Ref. 5.
6. "Field and Wave Electromagnetics". I.K. Cheng, Chap. 11, p.512. Addison-Wesley 1983. 8. K.L.Smith. Victorian microwaves, Wireless World. 85. p93. Sept. 1979.

Remotely controlled RC oscillators

Final design steps towards a precision Wien bridge oscillator

A.J.P. WILLIAMS

From past experience 1 knew that the capacitance of the analogue switches would give errors on the 100 kHz to 1 MHz range. The switch can be placed as in Fig. 15(a) or as in Fig. 15(b).
The bulk of the stray capacitance in the analogue switch is from either side of the switch to earth. Figure 15(a) gives maximum capacitance across the resistive arm when the switches are closed and minimum when they are open. The configuration in Fig. 15(b) gives negligible capacitance effects when the switches are closed, but when they are open there is a series RC combination across the active resistors as in Fig.16. At the oscillation frequency, the stray series components C_{1} and R_{1} can be replaced by their parallel equivalents $R_{1}{ }^{\prime}$ and $C_{1}{ }^{\prime}$. as shown in Fig.17. $\mathrm{C}_{1}{ }^{\prime}$ will only have a small effect on the frequency, but $R_{1}{ }^{\prime}$ will move the frequency significantly, especially at frequencies where the reactance of C_{1} is equal to the resistance of R_{1}.

The above effects can be almost completely eliminated by using a two-way analogue switch and a boostrapping circuit, as shown in Fig. 18. Providing $\mathrm{C}_{1}>\mathrm{C}_{s}$ in Fig. 18, where C_{s} is the stray switch capacitance, then the alternating voltage across any resistor switched to its right-hand contact is very small. This results in a negligible current drawn by any resistor that is switched out of circuit; hence, it has a negligible effect on frequency or amplitude.

THE FIRST COMPLETE CIRCUIT

The complete circuit based on Fig. 5 (October, page 987) is shown in Fig. 19. The circuit was constructed on a printed circuit board using LM6361N op-amps, which have a gain bandwidth product of 35 MHz and a full-power bandwidth of 4.5 MHz .

This time, the unwanted high-frequency oscillation was more persistent and occurred on all except the highest frequency range. Many methods were tried to introduce sufficient loss at the unwanted oscillation frequency (about 10 MHz) but they all caused excessive phase shift and hence frequency

(a)

(b)

Fig.15. Switching capacitance effects for either switching method.
shift at 1 MHz . A 2 nF capacitor connected between the output of amplifier A_{3} and earth was sufficient to prevent unwanted h.f. oscillation on all ranges, causing excessive frequency error on range 5 only. Hence, diodes D_{6} and D_{i} were used to switch the capacitor out of circuit on range 5. This was achieved by switching point A to a +5 V supply for ranges 1 to 4 and a -5 V supply for range 5. The logic controlling S_{I} and S_{2} can be decoded to provide a signal suitable for switching D_{6} and D_{7} on the appropriate ranges. The analogue switches were operated with supply lines of $\pm 5.1 \mathrm{~V}$ obtained from 5.1V zener diodes, which provide suitable voltages for switching D_{6} and D_{7}.
RC circuits $\mathrm{C}_{12}, \mathrm{R}_{1}$ and $\mathrm{C}_{13}, \mathrm{R}_{2}$ provide phase-advance networks to compensate for phase lag introduced by amplifiers $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$ and the stray capacitance in R_{4} and R_{5} at the high frequencies.
Amplitude control. R_{4} is a cadmium sulphide photo-conductive cell, which has peak response at about $0.62 \mu \mathrm{~m}$ and an active area of approximately $5.3 \times 5.3 \mathrm{~mm}$. I used a highbrightness led $(500 \mathrm{mcd}$ at 20 mA$)$ to illuminate R_{4} : the led has a peak output at $0.68 \mu \mathrm{~m}$ and therefore is a good wavelength match for R_{4}.
The viewing angle for the led is 70°, so by mounting the led and R_{4} inside an opaque tube a few millimetres apart, almost all the light output of the led illuminates all the active area of R_{4}. The combination is such that amplitude control can be achieved with less than ImA of current flowing in the led.
Amplitude control proved to be more stable with full-wave rectification than halfwave and the use of A_{7} as a differential amplifier enabled the full-wave bridge to be used on the unbalanced output of amplifier A_{6}. It is possible to use the led directly in the bridge circuit, but then the discharge time constant varies as the current through the led varies. In Fig.19, both charge and discharge time constants can be adjusted to achieve good stability. The gain of A_{6} can be adjusted R_{3} to set the output amplitude to a convenient level.

Fig.19. Final circuit, based on arrangement of Fig. 5 (October issue, page 987).
Fig.20. Using an integrator in place of one phase shifter reduces gain at frequency of unwanted oscillation.

A resistor of 430 ohms was included in series with R_{f} to force it to stabilize at a lower value, which reduces the effect of strav capacitance within R_{4}. If this resistor is increased to a higher value. the capacitance effects are reduced even further, but only at the expense of reduced amplitude control.

The D_{8} and R_{5} combination of led and cadmium sulphide cell is exactly the same as for D_{5} and R_{4}. Current I_{1} was set to about 4.2 mA to make the resistance of R_{5} such that the frequency is the nominal value determined by $f=1 / 2 \pi \mathrm{CR}$. Increasing the value of I_{1} reduces the resistance of R_{5}, which reduces the gain of A_{1} and hence lowers the frequency. Similarly decreasing l_{1} increases the frequency.

The percentage change in frequency is the same for all frequencies.

Obviously, current I, must be very stable and free from noise to prevent frequency drift and frequency jitter.

Alternative circuit. The problem of preventing unwanted high-frequency oscillation led me to the circuit shown in Fig.20. In this circuit one of the 90° phase shifters has been replaced by an integrator, which gives 90° of phase shift over a wide frequency range. Switching the input resistors to the integrator is only necessary to keep the gain of the integrator close to unity and hence limit amplitude variation.
The gain of the integrator naturally reduces as the frequency is increased (providing the component values are not changed) and this makes the gain too low to sustain unwantedhigh-frequency oscillation.

As the circuit of Fig. 20 has only one frequency-determining network compared with two networks for that of Fig. 19. Then its frequency stability must be approximately halved. However. the frequency stability is adequate for most purposes and the circuit does have a few advantages as listed below.

- The initial setting up is easy. For example. the larger capacitors such as C_{1} are usually at hest $\pm 5 \%$ tolerance. In this circuit. C_{1} only is trimmed to give the correct frequency, then separately $\mathfrak{C}_{6 \mathrm{i}}$ can be trimmed to give the same amplitude to range 1 as for the other ranges where the component tolerance is closer
- The gain of the integrator is $1 / \omega C R$.

The gain of the phase shifter with fine frequency control (Fig.13) is

$$
\begin{aligned}
& \sqrt{\left(R_{2} / R_{1}+I\right) /\left(R_{1} / R_{2}+I\right)} \text { at a frequency } \\
& \text { given hy } f=\sqrt{R_{2} / R} / 2 \pi C R \text {. }
\end{aligned}
$$

When the phase shifter and integrator are used together the gain is
$\sqrt{\left(R_{2} / R_{1}+1\right) /\left(R_{1} / R_{2}+1\right)} \times$
$1 /\left(\sqrt{R_{2}^{2} / R_{1}} / C R\right)=1$.
As a result the adjustment of $R 2$, produces a change in frequency without producing any overall amplitude variation.

- The amplitude control is good throughout the frequency range and when the temperature is varied. The inclusion of R_{1} in series with the main frequencydetermining resistors compensates for a small frequency error due to analogue switch resistance in series with the integrating capacitors.

Table l: performance of the circuit of fig. 19.

Time after switch on	conditions	frequency	change in frequency
23 min	0.1 V supply change	1 MHz	$\approx 10 \mathrm{~Hz}$
30 min	supply varied 12.5 V to 16 V	100 kHz , range 5.	$<5 \mathrm{~Hz}$
35 min	supply constant at 15 V	100 kHz , range 5	$\pm 1 \mathrm{~Hz}$ over $>10 \mathrm{~min}$ period.
$45 \mathrm{~min}$	supply constant at 15 V	100 kHz , range 4	$\pm 3 \mathrm{~Hz}$ over >10 min period.
60 min	supply constant at 15 V	$1 \mathrm{MHz}$	distinct moving cycles for $>4 \mathrm{~min}$

Table 2: performance of the circuit of Fig. 20.

Time after switch on	conditions	frequency	change in frequency
$>30 \mathrm{~min}$	0.05 V supply change	$\approx 10 \mathrm{~Hz}$	
$"$	supply varied 15 V to 16 V	1 MHz	$<5 \mathrm{~Hz}$
$"$	supply varied 14.21014 .6 V	100 kHz , range 5.	$100 \mathrm{kHz}, \mathrm{R} 4$

- If amplitude variation can be tolerated then the integrator capacitors could be 5% tolerance.

Frequency accuracy. On a frequency counter. all switched frequencies were within $+1-2 \%$ about 90% of the frequencies being within $+/-1 \%$ for both circuits over the full range of 10 Hz to I .3 MHz .

Frequency stability. No buffer amplifier was used. The frequencies were checked against a temperature-controlled crystal oscillator using Lissajous figures (Table 1.2)

The circuit of Fig. 20 was checked for harmonic distortion using a wave analyser at a time when R_{5} was a conventional resistor.

Frequency	2nd	3rd	4th	5th	harmonic
100 Hz	-54	-41	<-60	-57	
1 kHz	-57	-41	<-60	-58	dBrelative
10 kHz	-50	-41	<-60	-56	to funda-
100 kHz	-51	-43			mental
450 kHz	-41	-48			

By increasing the value of the resistor in series with R_{4} to 730 ohms, the third harmonic was improved as shown below.

Frequency	2nd	3rd	4th	5th	harmonic
100 kHz	-45.7	-47.2	-64	-69	dB relative
					dame funt

This change resulted in the amplitude control heing reduced to about $\pm 5 \%$.

Amplitude control for Fig. 20.

Initially, the amplitude was set to 2.0 V peak at 5 kHz . The upper and lower frequency amplitudes were then measured on each range.

The voltage amplitude of all frequencies measured lay within $\pm 2.5 \%$ of the 5 kHz amplitude. These results could have been improved with finer adjustment of the integrating capacitors.

The oscillater was then placed in a domestic refrigerator and cooled to $+10^{\circ} \mathrm{C}$. After 2 hours, the maximum change in amplitude was $1 \% \%$ relative to the room-temperature amplitude.

The oscillator was then removed from the refrigerator and a soldering iron held under the $\mathrm{D}_{5} / \mathrm{R}_{9}$ combination until the two components felt warm to touch. The amplitude had then only moved a maximum of 1% relative to the room temperature amplitude.

A further improvement in frequency
accuracy, frequency stability, harmonic distortion and amplitude control can be expected for the circuits discussed in this article, when designed with mechanical rather than analogue switches. compared with the results quoted above.

Books

Electronic engineering index. Technical Indexes Lid (Willoughby Road. Bracknell. Berkshire RG12 4DW. tel. 0344-426311): a £60 subscription ($£ 90$ overseas) brings three issues. published in March, July and November. Product locator and address book, an index to a series of component catalogues on microfilm. Publisher offers a comprehensive range of index senvices both on-line and on fiche or film. covering British. European and American industry. documentation and technical standards.

CMOS circuits manual by R.M. Marston. Heinemann. 9.95 . Beginner's book covering the various functional groups of cmos devices. At the back is a miscellany of useful circuits. Soft covers. 190 pages.

Electronics for electricians and engineers

 by lan R. Sinclair. Heinemann. £9.95. Nonmathematical treatment of electrical and electronic theory and circuit operation. aimed at the newly-qualified technician. Soit covers. $£ 9.95$.Oscilloscopes: how to use them. by lan Hickman. Heinemann, 25.95 . Extensively illustrated with photographs and diagrams. For sixth-formers. ONC/HNC students and others who require a practical introduction. Soit covers. 133 pages.

Transistor selector guide and Power selector guide by J.C.I. van de Ven. Bernard Babani, $£ 4.95$ each. Alphanumeric listings covering, in the two volumes, over 2400 Jedec. IIS. Pro-Electron and branded devices; plus selection tables and charts of package outlines and leadouts. The volume dealing with transistors includes a conversion table for decoding markings on surfacemounted devices. Pocket size. soft covers.

FeedBack

Underground radio

South Africa is undoubtably a leader in mining technology and Dr Austin's article EWW, September 1987 draws attention to work in the underground radio field in that country. In view of the political climate, this is laudable but he is guilty of the omissions and errors about which he complains in other publications.

The principles of Wadleys "invention", particularly the Tellurometer, were not sufficiently novel to allow worthwhile patents to be obtained. This prototype design submitted to us in Cape Town by the NITR (CSIR) was a disaster insamuch as the units were poorly designed and the principle used resulted in serious measurement errors. It was left to the undersigned to redesign the units and change the method of operation to obviate the serious errors and this work led to the present design of the Tellurometer, which is a very fine instrument.

With reference to underground radio and Dr Martin's letter in EIIIT; January 1988. his suggestion of "rediscovery" is relevant inasmuch as in 1961 at the request of the S A Chamber of Mines I designed a "transistorized" communication system using s.s.b. at around 70 kHz . I was only advised recently that Messrs Blignaut and Vermeluen had made a valve unit using a.m. at around 300 MHz , although one of these gentlemen actually conducted the tests on my unit in extensive gold and coal mines in which we ran out of space. S.s.b. was used mainly because of the high power efficiency - an important point when batteries are used as nower sources.

The low radio frequency was chosen because (i) the transmission loss through rocks is smaller at lower frequencies, (ii) the transmission loss is lower when conductors are present, e.g. railway lines, power cables, etc., (iii) the s.s.h. filter system is greatly simplified (I can see little point in using commercially available filters as this results in complications). (iv) I never believed the aerial inefficiency loading factors applied to Wadley's curves and (v) no clarifier (fine tuning) is
required. The increased transmission loss at higher frequencies can be deducted from the lower peak-to-peak values of the standing waves shown in Dr Austin's article and | make the guess that if the flow of water he mentions was stopped or deflected the resulting curves would not be altered appreciably.

Mr Lord. EllW: May 1988, reminds us that the e.m. waves radiated from a loop aerial are of low level. However a multi-turn loop aerial is efficient in coupling to or from transmission lines comprising railway lines or other conductors as 1 demonstrated over 25 years ago.

Thus there is a good case for the use of lower radio frequencies and s.s.b. for underground radio particularly as, in large mines, railway lines waterpipes electric conductors and compressed air pipes usually extend to the working faces and can assist in reducing the transmission loss. Nostalgic humour reminds us of a previous underground case in which to reduce transmission losses the frequency was lowered from 50 Hz to 25 Hz at Charing Cross.

In view of the foregoing perhaps I should state that I am in no way commercially involved in the Tellurometer or underground radios (any offers)?
F.G.Clifford

Wetton
South Africa

The
 Subjectivist Manifesto

Predictably, Doug. Self's article has provoked correspondence on this thorny topic. Great though my respect for John Linsley Hood is. I regret his letter in the September issue because he has unwittingly thrown crumbs of succour to the Subjectivist sparrows. They will peck eagerly at what he's said, as further evidence that The Engineers Don't Always Know What They Are Doing. John’s generous evenhandedness is wholly admirable: but a tactical error, nevertheless.

Let me try and put it all in perspective. As I write, I have just dug out of my archives an article I was commissioned to write for

Wireless World and published June 1969. It analysed the state of audio amplifier design at that time and covered comprehensively, so I thought, the matter of crossover distortion. It even included a cover picture in colour showing this objectionable artefact! It was also my impression that everyone by then was familiar with the concept. that any amplifier design using n.f.b. had to preserve the essential characteristics of such feedback under both static as well as dynamic conditions. Moreover, there were plenty of test techniques to ensure that obtained. It was my view at the time that most of the important problems of transistor audio amplifier design had been solved.
In any case, what hiccups did occur arose during the earlier transition into the semiconductor age. A new, younger generation of design engineers had emerged and were, tis true, fully au fait with the technology; but many were totally unfamiliar with the requirements of highquality audio amplifier design. Some had never even heard of crossover distortion.
This, sir, was almost two decades ago!
With our disciplined engineer's approach, we run the risk of missing the real differences between us and the Suhjectivist trendies, hecause we can furnish all the objective Jata we like and they still won't believe us. Why? Simple, because one of their tenets of faith is that There Are Phenomena We Don't Understand and Won't - Ever. Another tenet is one that real engineers will regard as fatally flawed - that the human ear must always be the final arbiter of whether the sound is acceptable or not. Note. I did not say faithful or otherwise and for good reason. Eneotional content enters into it in a way that I, certainly, have never understood; perhaps a clinical psychologist can explain it. It is useless insisting that as a qualitative assessing instrument, the human ear/brain interface is insufficiently consistent; and as far as quantitative assessment goes, almost useless. Nevertheless, for purposes of argument, il may be regarded as a measuring instrument of sorts. so long as one observes the golden rule 1 drum into my students - if two measurements don't agree, then
one or even both are certainly wrong. Again, a concept the Subjectivists will never understand. even if they wanted to.
As I said in my earlier letter. we can do nothing about the ex-shop assistants. Our target must he those who ought to know better: those who suggest. for example, that a minimum of n.f.h. is a Cood Thing; or even obliquely, lend credence to all this cable and fancy capacitor rubbish. The latest lunacy is a passive preamplifier, a contradiction in terms if there ever was one and a real con. There is not one specialist hi-fi publication in this country that offers to its readers competent and reliable engineering expertise. Happily, this trend appears to be in reverse in the USA and at least two respected magazines are now firmly rejecting the irrational myths that are so avidly promoted in the UK by the less responsible sections of the industry and its sycophantic press friends.
Finally, in our attempts to eliminate this parasitic blight on the science and craft of audio, we need to presenve a sense of humour: and to this end. I must repeat my favourite true story. A well-known "professional reviewer" was lobhying a senior figure from a leading audio manufacturing company, seeking to evaluate their latest product - an audio amplifier. The senior figure, who had a somewhat jaundiced view of the reviewing profession, eventually responded - tongue well in cheek - with "Well, yes, you can - if you compare it with a piece of straight wire". Pause.... and came the apprehensive answer "What sort of wire?"
Reg. Williamson
Kidsgrove
Staffordshire

Firstly. I would like to say how pleased I was to see Douglas Self's article in the July edition of bdillw. One feels impelled to say that such a breath of sanity is long overdue in the now crazy world of audio criticism.

I do. however, take the point made by Reg. Willianson (September Feedhack) that because this superlative article has appeared only in the pages of Eculw: Mr Self is preaching largely to the converted.

Notice that I use the term "largely". for in the very same letters column we are treated to the views of Mr J.L.LinsleyHood, and it appears that Mr Linsley-llood is far from being converted. I can only say, and I make this statement as an amateur electronics enthusiast. that I find the views expressed by J.H. almost unhelievably naive.

After re-iterating the oldest chestnut in the subjectivist litany - that steady-state measurements do not tell us enough about an amplifiers dynamic performance - Mr Linsley-Hood then invites us to contemplate the possibility that the humble capacitor may possess as yet unexplained manipulative properties when confronted with music signals.

What I find so unacceptable about the above arguments is that they are propounded without any reference to the tests outlined by Mr Self which demonstrably prove that these 'effects' do not in reality exist. I refer of course to the Baxandall cancellation technique and the I lafler staight wire" differential test. Perhaps Mr linsley-Hood would like tocomment on this.
Steve Price
Bethel
Caernarfon
Cwynedd

1 too read Douglas Self's excellent article (July 1988). as well as the subsequent correspondence. with great interest: but it was forcibly brought home to me last week just how far the spreading of pseudotechnical misinformation has gone when I was in the local branch of a nationwide firm specialising in p.a. equipment. I had to wait to be served while the resident expert demonstrated a range of speaker systems to a would-he purchaser (who, I think. was a disco or night club operator): this was done at sound levels well over 100dB. making comparison impossible to my ears) - hut that's beside the point.

While the bemused customer pondered the choice, the following pearls of wisdom were offered by our friendly man behind the counter. One particular design of h.f./Il.f. enclosure has the bass unit set a couple of inches forward of the tweeter "because high-írequency sound travels
slightly faster than low frequency". (I ielt it would be rude to butt in and suggest that the same compensation might have been made more cheaply hy using a longer cable to the treble unit.)

Another design of combined enclosure, employing the familiar vertically split h.f. horn above a sealed (infinite baffle) bass cabinet, was designed this wav "to economise on bass amplifier power. sealed cabinets being much higher in efficiency than horns".

Needless to say. the customer appeared perfectly satistied with these explanations: I was only thankiul that I had gone into that shop knowing exactly what I wanted. and why. It does seem at times that the world has gone completely mad.
F.J.P.Crampton

Carlton
Nottingham

An audio system is "linear" in the mathematical sense if, given any two input waveforms $I_{1}(t)$ and le, (t) from which separately it generates the output waveforms $0_{1}(t)$ and $0,(t)$ it generates from the sum of the two input waveforms the sum of the two output waveforms. The input and output waveforms need not show any obvious similarities. The transient response of a linear system can be deduced from its frequency/phase response, so that if both types of measurement are made on a system which is linear they must yield compatible results. From J. Linsley-Hood's September letter it is not clear whether he is asserting that different linear audio systems may have different transient responses. which noone denies, or instead that for many audio systems the measured transient response fails to agree with the transient response predicted from the frequency response for a linear system. In the latter case the system must he nonlinear. and if capacitors are the components responsible then measurements such as those carried out hy I). Self (July letters) can be expected toshow non-zerot.h.d.
B. Juncan's series of articles on capacitors ${ }^{1}$ in /ifiFi. Vens describes how the behaviour of real capacitors of various types departs from that of ideal capaci-
tors. Some of these deficiencies. dielectric absorption for example, may be consistent with the mathematical definition of linear behaviour. In general. his conclusion that capacitor tenes for particular applications must be selected with their limitations in mind seems inescapable. Howerer 1 would want to see clear evidence for his assertion that occasional hursts of noise with a d.c component applied to a conditioned electrolytic capacitor can change its behaviour for an appreciable period.
In an article in the same journal -, M. Hawksford pointed out that in coaxial cables the skin effect is beginning to become appreciable at the upper audio frequencies. He interpreted the particular solution he used for the radial variation of current in a linear conductor as representing a wave travelling inward from the surface of the conductor at a speed which for a fifty cycle signal in conper is as low as $3 \mathrm{~m} / \mathrm{s}$, and on this hasis claimed that. if the driving signal were cut off, the currents instantaneously present in the conductor would collapse outward through the skin depth at speeds of this order, providing a worstcase "memory' for a 1 mm diameter wire of a few hundred microseconds. The much more direct time-domain calculation for a 1 mm diameter copper wire with a resistance of about 2×10^{3} ohm per cm and an inductance of about 1 nll per centimetre makes the time constant for rearrangement of local current irregularities a mere 5 mic roseconds. Thus those who "cite conductor and interconnect performance as a limiting factor within an audio system" do so without any physical justification ior the ir views.
C.F.Coleman

Crove
()xfordshire

References

1. B. Duncan. Series With a Strange Device. Ili-Fin News. 1986.
2. M. Hawhfurd, Ili-fi Nens 30 (1985) $27-33$

Flow charts

Attention all digital hardware engineers: Mr Pratt (June Feedback) has revealed that all those 7400 Nand gates you have been using are a fiction: they are "inherently impossible and...cannot exist". Apparently the words he uses in his computer programs are what reality is all about.
I suspect that it is something to do with the stigma attached to blue-collar work (using soldering irons. etc.) that leads programmers (white-collar workers) to believe that their programs are more real than the machines they run on. The difference between hardware and software, Mr Pratt, is that software (as is is done now is a pathetically inefficient representation of what the hardware will do when it is switched on
D. Celano (also June Feed back) says that circuit diagrams "show all the physical information about a circuit with the exception of the actual p.c.b. layout...whereas flow charts in no way show all the program details". Turning that veny nage I saw a circuit diagram showing an integrated circuit as a blank rectangle: no physical information there.
Sometimes a circuit diagram reduces to a block diagram as simple as microphone-amplifierspeaker. Or else it can be ven detailed, even showing the p.c.b. tracks (very important at higher frequencies). Circuit diagrams. flow charts and computer programs are simply convenient forms for representing and thinking about real machines The detail they are drawn in depends on their intended use. all can be either very simple block diagrams, or else ven detailed showing the "cogs" of the machineny. When doing detailed work it is hest that the representation is close to the real thing. So when developing a new product it is bread-boarded (i.e. represented in the three dimensions of space and the changeability of time) so that any unforeseen bugs in the paper design can be seen in the round.

Programming languages are about as far from the real thing as is possible, being one dimensional "wavy lines". Circuit diagrams and flow charts are more than half way there, heing two and a half dimensional (the
"half" dimension being the convention for crossing lines that are not connected). But with available technology we can do even better.
Imagine programming your latest version of a flight simulator. You are unhappy with the operation of one of the cockpit instruments appearing on the screen. so you take your programming tools. lift the lid off the instrument. find that it consists of a number of integrated circuits ("subroutines"). lift the lid off the offending circuit. RUN THE CIRCUIT to determine its operation and timing. move a few wires and transistors around (alter the "machine code"). put the lids back on, and you have an instrument that does just what you want. Just like working with the real thing. only much easier.
Try doing that with your wavy lines. Mr Pratt. And Celano, if you do not wish to dirty your hands on the "cogs...hidden from the programmer" then you will have to make do with what others give you.
The absymally slow von Neumann architectures of current computers would not do justice to the above program: a more flexible arrangement of wires and switches would be better. But that is another story.

A. Medes

I).Y.

Australia

Dimensions and definitions

Mr S.K. Chatterjee in his interesting article "A Dimensional Approach to Unified Theory" in the September issue of EdIITI: on the one hand makes it clear that he is rejecting all but one definition of the word dimension'. whilst on the other hand he fails to give us the definition he has selected. Ilence, as in all cases, in all walks of life where one or more words are left undefined. confusion results.

If he has taken as the definition 'a degree of freedom' which is sometimes done implicitly. how than are we to interpret the various ratios such as L / T and $1: 3 / L=1: 3$

This failure to define words is extremely common in the writings of theoretical physicists. Mass, energy, time, and dimension have no definition. (This is despite the 'definitions' given in science dictionaries, which fail because they define all the key words in terms of each other.) It should be realised that for progress to be made in understanding. almost a dirty word in physics these days, definitions must be agreed upon, even though they may at a later time be changed for other agreed definitions. In other words, it is vital to have definitions right or wrong. othenwise chaos results: witness the current state of yuantum mechanics etc.
DavidA. Chalmers
Finchley
London N1

I see the argument on dimensions advanced by Chatterjee in the September 1988 issue of EUTl' as another attempt to step away from reality and into a world of abstraction.

Einstein has done enough damage in trying to explain physical phenomena in terms of a dimensional distortion of space 11_{3}^{3} and time T.

If C is to be dimensionless and mass has the dimensions L^{3} / T^{2}. may l ask how the mass of a brick is to be quantified: Civen that both L and T are measured in terms of the size and rate of rotation of the Earth, are we to suppose that the mass of a brick can be defined without reference to a unit of mass such as Earth mass?

Chatterjee's substitution $m=L^{3} / T^{2}$ is purely arbitrary. In physics it needs three physical equations to eliminate M. P and E from five quantities P. E. M. L and T and leave two unknowns L and T. Chatterjee uses two physical equations (Newton's force law for P and Einstein's energy law for E) and one that has no physical foundation at all.

Surely the energy crisis is not so bad that we have to eliminate it and its mass equivalent from the dimensions of physics. I am all for making changes to improve science. but this is one change that is not feasible.

Il. Aspden

Department of Electrical Engineering
Southampton University

Smith charts

In his August article on Smith charts, Joules Watt makes a welcome plea for the geometrical tradition. because it harnesses the sense of sight so effectively to the process of learning. The Smith chart exploits inversion. The geometrical definition of the inverse of a point with respect to a circle makes it the point on the same radius vector which is such that the radius of the circle is the geometric mean of the radial distances to the two points. The inverse of a curve is just the locus of the inverses of the points which make it up. The inverse cunves of circles and lines are circles and lines.

If now one looks in the complex plane at a set of complex numbers which trace out any particular curve, the points representing the reciprocals of the set of numbers trace out another curve. which is closely related to the inverse of the original curve with respect to the circle of radius unity centred at the origin, being the reflection of the inverse cunce in the X -axis

The phasors which represent currents and voltages varying sinusoidally at a particular frequency are two-dimensional vectors. Despite Joules Watt's Figs Al to A4. they do not have reciprocals. The Smith chart, lnowever. is concerned with impedances. which are twodimensional vector operators. and do have reciprocals and products. Though phasors and impedances can both be modelled by complex numbers, only impedances show behaviour corresponding to the multiplication and division of these numbers.

In the November 1987 Letters. I pointed out that, although in three dimensions there is a traditional definition of vector multiplication. c.f. the Poynting vector $\mathbf{~ E X H}$. there is no associated definition of vector division. There are in fact two distinct types of 3-D vector. The vector product of a force F and the radius vector r from a point on its line of action to a fulcrum represents the torque T which the force exerts about the fulcrum. F and \mathbf{r} are "polar vectors" having 'negative parity', i.e when viewed in a mirror their components perpendicular to it change sign (c.f the hehaviour of two-
dimensional vectors reflected in a line). T. however, like H. is an 'axial vector' with 'positive parity", i.e when viewed in a mirror its component perpendicular to the mirror does not change sign. Axial vectors are really antisymmetric tensors, but in three dimensions they happen to behave in almost the same way as true. i.e polar, vectors (just as in two dimensions vector operators add in the same way as vectors). while the 3-D co-called vector' product is a tensor product.
C.F. Coleman

Crove
Oxfordshire

Computers, language and logic

A.Medes ELITW: February 87. August 88) seems set to banish logic and mathematics from electronic engineering. He hasn't succeeded so far.

Mr Medes's all-important point of departure is that an electronic oscillator, as used in clocks, for example, is a logical contradiction. yet exists and is put to good use by engineers. To Mr Medes, this proves that logic is wrong. It is clear, however. that the operation of the oscillator is based on propagation delays. If both the output and the input of an inverter happen to be at the same logic level, this just means that propagation is in progress. It is NOT a contradiction, and it doesn't prove anything about logic. We would have a contradiction if we had a point on a wire with two logic voltage levels at the same time, but engineering hasn't progressed to that piont yet, has it?

But Mr Medes doesn't stop at logic. He cites the view that mathematics is a model of nature, and as he has just presented a contradiction in nature, namely, the electronic oscillator, he concludes the contradictions should be allowed and useful in mathematics, too, But, as 1 pointed out above, his contradiction isn't there, and so Mr Medes's criticism of mathematics fails.
Sakuri Aaltonen
Helsinki
Finland

FeedBack

A.Medes has produced a neat intuitive shorthand for logic cicuit design (August) but his theoretical speculations about sequential analysis and the liar paradox are based upon a misconception that anything in the universe can be truly static.
All theoreticians and engineers please understand this point: absolutely nothing is static if you analyse the interactions in sufficient detail - at the microscopic level of causal interactions, propagating information on changing stimuli.
Absolutely everything is iteratively updated from moment to moment at the speed of light (or faster but finite) to take into account fluctuating conditions for the interaction to converge to some equilibrium.
For example, bonding between atoms by electro-static' fields; atoms in a steel bridge are under contimual stress, and superimposed upon this apparent constancy ('bias') is the noise of fluctuating traffic load that leads to metal fatigue and structural failure.

The interaction becomes a non-convergent power series when the system is loaded heyond its elastic limit. manifesting as oscillation or catastrophe depending on the signal' phasing. This is the continuation of the classical equilibrium theories into the theory of socalled 'chaotic' behaviour reg. squegging, turbulence, critical opalescence, critical-point amplifiers, super-regenerative amplifiers in electronics or muclear physics - an atom bomb is merely a super-regenerative neutron amplifier. as a pulsed laser is a super-regenerative photon amplifier. etc.).
Chaotic behaviour occurs for any system biased beyond its 'radius of convergence' for stability of self-referential interactions to produce self-consistency on each iterative update.
Apologies to the memory of Hume, as much as I admire the style of his writings he is simply wrong when he tries to reduce causality to mere constant conjunction. Causality is causality. Asymptotic convergence of a causal chain of interactions to a self-consistent limit is where causality only apparently reduces to mere constant conjunction'. But it is continually being iteratively updated from
picosecond to picosecond to take into account changing conditions.

The interactions to-and-fro in an apparently 'constant' (static) electric field means that continuous change is an illusion of negligible delay times where the differential calculus becones valid as a useful tool - but it is not physical reality. Physical reality is fundamentally digital with a continuously variable sampling rate dependent upon the propagation delay times. From this concept of the sampling rate of reality we can derive the Planck constant in terms of classical physics and geometry. And in orbital mechanics the propagation time delay for gravitational interactions produces the observed advance of perihelion of orbital motions. That is the physical mechanism - the mathematics of time-retarded forces is so complicated that we still have to use the Einsteinian shortcut of a curved geometry for natural (unforced) motions. That is merely a calculation device. not reality.

So. returning to the logical problem of the liar paradox, it is not a paradox between alternate co-existential equilibrium states but it is a real non convergence that can never be resolved into asymptotic consistency as it swings from one 'decision' to the other upon each consideration of the facts.

As a theoretical speculation I ofter wonder if there is an upper frequency limit to the electromagnetic spectrum defining an indivisible unit of time (I.eibnitz Monads) so fantastically small that is the 'spool of thread which passes through every microscopic point of the universe to effect change and 'weave the tapestry' of our 3-dimensional existence. Remember the Greek anthropomorphic myth of the tapestn woven by the Olympian gods. But it seems an unnecessary extravagance to have that point of change' continually defining the taws of physics from moment to moment at every point in the Universe. How else can the laws of phosics he defined and derived in a causal theory as the asymptotic limit of a causal chain of interactions!

P.J. Ratcliffe

Stevenage
Hertforshire

Relativity

The arguments about STR, over the last 75 years or so, are distinguished by their repetitiousness, if not their adherence to logic. Viewed from somewhere towards the sidelines, one of the interesting things about all this is that there is one good argument against the theory that is very carefully avoided. Einstein himself made no bones about it. Writing in his book in 1916, he says:
"The special theory of relativity cannot claim an unlimited domain of validity: its results hold only so long as we are able to disregard the influence of gravitational fields on the phenomena (e.g. light)."
As we are being constantly reminded, the time is long past when the consequences of these influences are detectable, if not always accurately measured. within the solar system and particularly within the Earth's field. It seems more than just odd that everyone should studiously avoid using this argument and concentrate so hard on attempts. so far abortive. to destroy the theory completely.

The reason is not far to seek. It is perhaps easiest to understand the theory if we can clear our minds of misconceptions arising from the use of the somewhat vague term "velocity effects" and realise that it really concerns itself with energy. and the consequences upon the measurements of time, length and mass of changes in the total energy level of the body being observed. In his first paper². Einstein considers alterations in energy levels due to variations of kinetic energy resulting from relative motion. The game is given away by the appearance of v^{2} and not just v in the transform $\left(1 / 2 v^{2}\right.$ in its approximate expansion). In his third paper ${ }^{3}$ it is changes in potential energy due to alterations of position in a gravitational field which give rise to the effects. In this case gh appears in the approximate transform in place of $1 / 2 v^{2}$. Both gh and $1 / 2 v^{2}$ are measures of energy per unit mass. In this latter paper he only considers the effect on time and mass, but hy analogy length is also changed. It is this that leads him to the mathematical description of gravitation via the curvature of space. In his book ${ }^{4}$
he considers the effects of rotation and demonstrates this distortion of space, concluding:
"This proves that the propositions of Euclidean geometry cannot hold exactly on the rotating disc, nor in general in a gravitational field.. Hence the idea of a straight line also loses its meaning."
STR thus disqualifies itself by showing that the Galilean inertial reference system, upon whose validity the theory depends and which demands Euclidean space and 'straight' lines. has no meaning in the presence of gravity. But the whole of classical Newtonian mechanics is also only valid for Galilean inertial reference systems.

The uncomfortable truth is that neither classical theory nor STR can claim an unlimited domain of validity, the former less than the latter. This does not mean that within their limitations they are not superb approximations, their use usually resulting in errors which are welt inside our capability to detect. unless we use them outside those limitations. We should be more than foolish not to use either theory where it is the hest for our purnose, that is to say "where it works", hut it is equally foolish to waste time and brainpower trying to obliterate the really important lesson which arises from the first real attempt to develop a theory of relativity that the real step fomard is to move to a more generalised theory.

To the best of my knowledge. the only candidate so far is the General Theory of Relativity. and that is the theory that we really ought to be arguing about.
Alan Watson
Mallorca
Spain

References:

1. Relativity, the Special and the Cieneral Theory. A.Einstein. Methuen. First published in English translation 1920. 15th edition reprinted 1962. p.if.
2. On the Electrodynamics of Moving Bodies. A.Einstein. Annalen der Physik 17. 1905.
3. On the Influence of Gravitation on the Propagation of Light. A.Einstein. Annalen der Physik 35. 1911.
4. Reference I.p. 82

Circuit ideas

Tone decoder with

 noise-chatter immunity

Phase-locked-loop decoders like the 567 are frequently used for tone detection. They can be over-sensitive and give spurious chatter when a noise spike or out-of-band signal of amplitude greater than the detection threshold appears at the input.

Common methods of solving such problems, such as feeding back part of the output or inserting a band-pass filter are of little use since no filter can have an infinitely sharp characteristic and noise is by definition random.

Normally, shaping the tone decoder output to average out the effects of noise pulses does not give immunity to spurious response as far as the logic circuit driven by the tone decoder is concerned. But noise pulses are nulled by the logic interface shown here.

Output of the 567 is high in the absence of a tone and becomes low when a tone is detected. Trace A on the timing diagram shows correctly decoded tone bursts and trace B is decoder output with spurious
noise pulses on the correctly decoded tone information.

When tone-decoder output goes low in the presence of a tone, the monostable circuit is triggered and its output remains high for timing period T_{A}. Until $\mathrm{IC}_{2 \mathrm{a}}$ times out, further transitions at the input due to noise, etc., cannot cause any output change.
After period T_{A} the inverted positive input edge triggers monostable circuit $\mathrm{IC}_{2 \mathrm{~b}}$. Since both gates are disabled, spurious transitions at the tone-decoder output cannot give a false output at bistable i.c. output (point J).

Monostable circuit timing periods T_{A} and T_{B} should be chosen so that $T_{A}<T, T_{B}<T$ and $T_{A}-T_{B}>T$, where T is the tone 'on' duration (i.e. the time during which decoder output is low).
V. Lakshminarayanan

Centre for the Development of Telematics Bangalore
India

Crossover filter

This diagram and its equations should have appeared with the crossover network on page 650 of the July issue. We apolgize for these omissions.

$$
\begin{aligned}
& e_{\text {in }}=\frac{1}{G}+\frac{1}{G} j \omega+\frac{1}{G}+\frac{1}{j \omega}=\frac{3}{G}+j\left(\omega-\frac{1}{\omega}\right) \\
& T_{L P}=\frac{-\frac{1}{j \omega}}{\frac{3}{G}+j\left(\omega-\frac{1}{\omega}\right)} \\
& \left|T_{L P}\right|=\frac{1}{\sqrt{\left(\frac{3 \omega}{G}\right)^{2}+\left(\omega^{2}-1\right)^{2}}}
\end{aligned}
$$

If,

$$
\left|T_{L P}\right|=\frac{1}{\sqrt{\omega^{4}+1}} \quad G=\frac{3}{\sqrt{2}}
$$

the maximally-flat case, and,
$\left|T_{H P}\right|=\frac{1}{\sqrt{\frac{1}{\omega^{4}}}+1}$
McKenny W. Egerton
Owings Mills,
Maryland.

Pulse-cancellation is applied in this design to produce a simple sum and difference circuit that operates over a wide range of frequencies. From input frequencies f_{1} and f_{2} it produces signals of $f_{1}-f_{2}$ and $f_{1}+f_{2}$ and detects $f_{1}>f_{2}$.
input signals A and B are latched by two D-type bistable devices on both leading and trailing clock edges. The clock is nearly symmetrical and its period, T_{c}, is less than the minimum on or off durations of signals A or B.

Although the inputs might have coincident transitions, the transitions at outputs $\mathrm{Q}_{1.2}$ are separated by at least $\mathrm{T}_{\mathrm{c}} / 2$ since the bistable devices are triggered at different clock edges. Also, ouputs $\mathrm{Q}_{1,2}$, have the same frequency as their respective inputs A and B.
Two monostable i.cs, triggered on leading edges, produce sharp pulses A^{\prime} and B^{\prime} of duration T_{m}. After passing through Or gating, these pulses form a signal with an average frequency of $f_{1}+f_{2}$; this represents the sum of the input frequencies since A^{\prime} and B^{\prime} do not overlap.

A third bistable device is set by A and reset by B; its output, Q_{3}, is delayed by $T_{d}\left(T_{m}<T_{d}<T_{d}\right)$. When f_{1} is greater than f_{2}, the first And gate produces a signal with an average frequency of $f_{1}-f_{2}$ by cancelling (inhibiting) a pulse of A^{\prime} for each pulse of B^{\prime}.

Pulse cancellation takes place since pulse duration T_{m} is less than T_{d}. Output $Q_{3}{ }^{\prime}$ goes to zero after delay T_{d} from the occurrence of a pulse at B^{\prime} and remains at zero until T_{d} after the occurrence of the next A^{\prime} pulse. Subsequent A^{\prime} pulses pass through the first And gate since $\mathrm{Q}_{3}{ }^{\prime}$ remains at logical one until another B pulse appears. Output of the second And gate, however, remains at zero.

Similarly when f_{2} is greater than f_{1}, frequency of the second And gate is $f_{2}-f_{1}$ and output of the second And gate is zero. After passing through an Or gate, outputs of the two And gates have a frequency of $\left|f_{1}-f_{2}\right|$ and output of the fourth bistable device gives the polarity of the frequency difference; it is logical one only when $f_{1}>f_{2}$.
S. Murugesan

Digital-delay echo

Delays from 20 ms to 250 ms for the generation of echo and reverberation effects are produced by this digital delay line. An $8 \mathrm{~K} \times 8$ static ram, an 8 bit digital-to-analogue converter and an 8bit analogue-to-digital converter form the digital delay line; analogue signals are recirculated to provide the required audio effects. Minimum sampling rate is about 33 kHz and bandwidth is 10 kHz .
The audio signal is amplified and filtered and fed into the a-to-d converter. An sc pulse of approximately $1 \mu \mathrm{~s}$ initiates conversion of an analogue sample; this forces eoc low together with the $\frac{1 . E}{}$ input of the $d-t o-a$
converter and loads data from the current ram address into the converter. Recovered analogue output passes through IC_{9} to the output filter and mixer circuits.

When conversion is complete eoc goes high, freezing the d-to-a converter latch contents and triggering the right-hand monostable multivibrator. The \bar{Q} output of this multivibrator enables the data from the a-to-d converter to be placed on the data bus. At the same time the ram is set to read the new data. When the right-hand multivibrator times out, the left-hand one is triggered, producing an sc pulse and incrementing the ram address counters.
The sequence is, read-write-increment.

ISRO Satellite Centre
Bangalore India

Circuit ideas

20 dB noise reducer

Two signals paths are involved in this 20 dB noise-reducer - an auxiliary path which selectively processes the higher frequencies, and a broadband main signal path. Outputs of the respective paths are added and the resultant inverted at the processor output; the signal applied to the auxiliary input determines whether the circuit encodes or decodes (as shown).
In encode mode, (a), auxiliary-block input A is connected to processor input C and if the input singal is $V_{\text {in }}$, the auxiliary block output is then $f\left(V_{i n}\right)$ and the output of the entire processor B is,

$$
V_{\text {out }}=-\left[V_{\text {in }}+f\left(V_{\text {in }}\right) \mid\right.
$$

This effectively turns the ram into an $8 \mathrm{~K} \times 8$ shift register. Delay time is varied in two ways; the clock of the a-to-d converter is variable from 290 kHz to 1 MHz , and the ram address range is adjusted by inhibiting address lines $\mathrm{A}_{11,12}$. The clock is controlled by a potentiometer and the address range by S_{1}. Delay time is given by

$$
\Delta t=\frac{9}{f_{c k}} \times N
$$

where N is the address range of 8192,2048 or 4096. Clock frequency is 295 kHz to 1 MHz so Δ_{t} is 0.25 s to 18 ms at a minimum sample rate of 32.8 kHz . To prevent aliasing the input bandwidth is limited to about 10.7 kHz

by a four pole low-pass filter $\mathrm{IC}_{5,7}$.
Output from the delay line is also passed through an identical filter to remove the quantitization step noise. Recovered audio is recirculated through mixer amps $\mathrm{IC}_{1,4}$ to give a variable reverberation time.

Treated audio and the original signal are mixed in IC_{3} to provide control over the depth of echo. In spite of there being no companding and no sample-and-hold circuit the audio output is remarkably good. A G Birkett, London.

Circuit ideas

In decode mode, (b) auxilian' path input A is connected to the processor output B and if the processor input C is V_{in}, the processor output is,

$$
V_{\text {out }}^{\prime}=-\left[V_{\text {in }}^{\prime}+f\left(V_{\text {out }}\right)\right],
$$

If now,

$$
V_{\text {in }}^{\prime}=V_{\text {out }}=-\left|V_{\text {in }}+f\left(V_{\text {in }}\right)\right|
$$

then

$$
V_{\text {out }}^{\prime}=-\left|-\left|V_{\text {in }}+f\left(V_{\text {in }}\right)\right|+f\left(V_{\text {out }}^{\prime}\right)\right]
$$

or

$$
V_{\text {out }}^{\prime}+f\left(V_{\text {out }}^{\prime}\right)=V_{\text {in }}+f\left(V_{\text {in }}\right)
$$

and evidently $\mathrm{V}^{\prime}{ }_{\text {out }}=V_{\text {in }}$, i.e. the processor input in encode mode is identical to the processor output in decode mode irrespective of the form $f(V)$ which the processing takes.

In the circuit of the auxiliary block and adder/inverter, IC_{1} amplities the auxiliary signal by 20 dB and the two high-pass filters $\mathrm{R}_{1} \mathrm{C}_{5}$ and $\mathrm{R}_{6} \mathrm{C}_{4}$ provide for the $40 \mathrm{~dB} /$ decade roll-off below 1.5 kHz to prevent noise modulation by low-frequency signal components.

Light-dependent resistors were chosen as the variable-gain element on account of their ease of use compared to fets which require a.c. biasing to avoid even-harmonic distortion.

The attenuator pass band slides upward in frequency with increasing attenuation as in Dolby B to avoid modulation by high-level signals close in frequency to the filter cut off. Clipping diodes $\mathrm{D}_{1.2}$ suppress spikes due to transients which are too fast to be handled by the control loop.
Suppression level may be set by varying the ratio of resistors R_{8} and R_{9}. Values shown have been chosen to give a suppression threshold of roughly -3 dBVU . Op-amp IC_{2} recombines the main and auxiliary signals and inverts the resultant. Resistor R_{12} sets the overall gain. Op-amp IC_{3} and its associated circuitry form a full-wave detector which monitors the output of the auxiliary

path, while IC_{4} drives the control-loop time constant.
In the main circuit a low-pass filter is incorporated before the encode processor to eliminate trouble from sources with strong ultrasonic components; it prevents tracking errors by ensuring that the processor handles similar signal bandwidths on encode and decode.
A signal amplitude of 6 V pk-to-pk at the processor output in encode mode was chosen to correspond to 0 VU for the tape recorder. The processing threshold is de-
fined as the level of a pure 10 kHz tone at the processor input which causes the total processor gain to be 6 dB in encode mode.

In the prototype circuit the processing threshold was set at 300 mV pk-to-pk which corresponds to a processor output of -20 dBVU and a noise reduction of 6 dB . With this setting the noise reduction at -40 dBVU and 10 kHz is in excess of 17 dB and the full 20 dB of noise reduction is realized at about -50 VU .
J. F. Gregg

The Clarendon Laboratory, Oxford.

(E) EPROM PROGRAMMER

AT LAST! Over 50 Generic Device Types.

$1-2508$. 10 ms 2-2508/50ms 3-2516/10ms $4-2516.50 \mathrm{~ms}$ $5-2532 / 10 \mathrm{~ms}$ $6-2532 / 50 \mathrm{~ms}$ $7.2564 / 10 \mathrm{~ms}$ $8-2564 / 50 \mathrm{~ms}$ 9.2758 10.2716 11.2732 12-2732A/ 10 ms $13.2732 A .50 \mathrm{~ms}$ 14.2764 .50 ms	15-2764 16.2764A 17-27128 18.27128A 19-27256 $20.27256 / 21 \mathrm{~V}$ 21.27512 22.27513 23-87C64 24-87C256 25-8755 26.8755A 28.8748	29-8749 30.8750 31.8748 M 32.8749 H $33-8750 \mathrm{M}$ 34.8741 35.8742 37.8042^{\prime} 38 -8048' 39.8049' 40.8050° 41.8751 $42 \cdot 8752 / 21 \mathrm{~V}$	43.8744 44.8057° 45.8052 46.8044° 47.87 C 51 48.63701 V 49.63701 X 50.63705 V 51.63702 Z 52.63701 Y $53-2816 \mathrm{~A}$ 54.2817 A 55.2864 A

. at a price to suit any budget!
THE MODEL 18 PROM PROGRAMMER

* Types Include 27C . . . parts: EEPROMs now programmed 5 till 10 only
E.89.95
1.95
* Automatic Data Rate selting 300-192000 Baud.

Two independent Communications Prolocols built in. Use with
any hosi computer with RS232 port and Terminal Emulator.
MS.DOS PC.DOS and CPM M- Features User Interlace Package available for at MS-DOS, PC-DOS and CP/M-80 computers

- Fast interactive algorithms automatically selected as appropriate
- Designed, manufactured and

Comprehensive User Manual supponed in the UK

* n.b. Devices other than 24/28 pin require low cost socket adapter

NEW PRODUCTS!!!!
8048/4 1 Cross assembler for MS-DOS
B048/4 Cross assembler for MS-DOS
EPROM EMULATOR 2716 to 27512 Introductory Ofter Price $£ 99.50+$ VAT
EPROM ERASER $£ 93.50+$ VAT
Write or telephone for further details:
111 1$]^{\text {ELECTRONICS, UNIT 2, PARK ROAD CENTRE }}$
MALMESBURY, WILTS SN16 OBX. Tel: 0666825146
ENTER 20 ON IREPLY CARD

You don't only get equipment when you buy from Carston...

 1st

IN SECOND USER
TEST \& MEASUREMENT AND COMPUTER EQUIPMENT

2-6 Queens Road. Teddington Middlesex TWII OLR Telex: 938120 (CARLEG G)
Tel Ol-943 4477
alsoinfrance contact OCCASELEC
Telephone Paris (1) 46869701

Cantensell Cortionbuy Cortensell

ENTER 9 ON REPL.Y CARD

Microcomputer as transient analyser

This computer interface provides the basic facilities of a digital storage oscilloscope, but at a much lower cost - and with more flexibility.

J.F. VAN DER WALLE

In many fields of research and production there often arises the need to analyse signals representing a single event or recurring phenomena. The most economical way to do this is to feed these signals to an analogue-to-digital converter and store them in a digital memory; the next step is, by using the appropriate timing circuits, to clock the data from memory via a digital-toanalogue converter, and to display the resulting analogue signals on an oscilloscope. The advantage of this method is that the entire signal can now he examined at leisure. time after time, without any loss of detail. A digital storage oscilloscope can do this, hut the price is often out of reach for small research and/or production groups. Substituting a computer for a d.s.o. gives the distinct advantage that the user is now able
to write his own program, or add extra modules to an existing program, to suit his own requirements best.

Two programs have been written for this particular analyser, both to run on a BBC model B computer. The first, called TRTI). drives the transient analyser and stores the data on a floppy disc. The second program. TRFD. brings data from the disc back to the computer and includes facilities for detailed analysis of the signal under study.
The t.a. can digitize analogue signals lasting from a few microseconds to several seconds. This particular t.a. has been used to study signals from both charge-coupled devices and very low frequency sources. The interface from the t.a. to the BBC computer has been kept as simple as possible and is incorporated into the design itself: all it
needs is a cable to connect it to the 1 MH zo bus of the computer.
Another interesting feature is that the i.c. which digitizes the analogue signal $\left(\mathrm{IC}_{37}\right)$ also contains a d-to-a. This makes it possible to check the output of the a-to-d by connecting it the input of the d -to-a, which in turn is connected to an amplifier and driver.
After being digitized, the signal under study is stored in a 2048 word. eight-hit memory. Under program control the data is

Fig.1. Preamplifier and conversion stage: the combined a-to-d and d-to-a is an STC device. The digitized output can be looped back to the analogue driver for comparison with the original signal.

This program in BBC Basic sets up the interface for operation. Functions of individual modules within the program are indicated by Rem statements. Fuller information is available from the editorial office: send a stamped, self-addressed envelope or two international reply coupons, marking your covering envelope "Transient analyser"

10 REM MODULE 1 (SET UP INTERFACE)
20 REM: PROGRAM NAME IS TRTO
30 REM: DATA FROM TRAN.ANAL.TO DISC
$40 \mathrm{CLS}:$ MODE 4
50 ? \&FD $12=\& F F:$ REM $D: R . R G(B)=0 / P$ FD 10
60 ? \&FD $10=800:$ REM LOAD 00 ON BUS B
70 ? \&FD1C $=8 \mathrm{EC}:$ REM IC10/9=L. BREAK
80 ?\&FD10=\&08:REM LOAD 08 ON BUS B
90 ?\&FDIC $=8 E E:$ REM IC6/15=L.RST.INTF.
100 ? \&FD $13=\$ 00:$ REM DIR.RG(A) $=1 / \mathrm{P}$ FD 11
$110 \times \%=$ \& \& F 11 : REM RESET BUS B FLAG
120 PRINTTAB $(20,0)^{\prime \prime}$
130 INPUTTAB $(20,0) " T$ IMEBASE (ms) $=" U$
140 IF U>6710.8864 THEN 240
150 PRINTTAB $(20,1)^{\prime \prime}$
160 I NPUTTAB $(20,1)$ "SAMPLE $\quad F($ ImS $)=" B$
170 IF $B<.05$ OR $B>3276.8$ THEN 260
180 N\%=(U/B) 1000.1 : $N=N \%:$ REM $N=M E M$. LC
190 PRINTTAB $(20,3) "$
200 PRINTTAB (20, 3)"MEM.LOCATIONS="; N
210 IF N>2048 THEN 280
220 DIM A(N): REM DATA INTO ARRAY
230 GOTO 300
240 PRINTTAB $(20,1)$ MMAX. TB. $=6710.8864{ }^{\prime \prime}$
250 GOTO 120
260 PRINTTAB $(20,2)^{\prime \prime} .05=<S F<=3276.8^{\prime \prime}$
270 GOTO 150
280 PRINTTAB (20,4) "MAX, MEM. LOCS $=2048$ "
290 GOTO 150
300 PRINTTAB $(20,4)^{\prime \prime}$
310 INPUT TAB $(20,4)$ "PRETRIG(\%)=", F
320 If $F>=100$ THEN 300
$330 F \%=F: I=F \% / 100$: REM ROUNDING
$340 \mathrm{R}=250-(($ N DIV 8$) *(1-1)): R \%=R$
350 Z=((256-R\%)*8*B)/1000
360 PRINTTAB(20,4)"
370 PRINTTAB $(20,4)$ "POSTTR (ms $)={ }^{4} ; 2$
380 S\%=(B*20)-1:S=S\%:REM(1/P)IC11/14
390 PRINTTAB (20,2)"FREQ.DIVISION="; S
$400 \mathrm{~V}=\mathrm{S}$ DIV 256:REM V IS MSB OF S
$410 \mathrm{~W}=\mathrm{S}$ MOD 256: REM W IS LSB OF S 420 REM MODULE 2(LOAD !C3,4 AND 5) 430 ? 8 FD 10=R\% : REM LOAD R\% ON BUS B 440 ? \& FD 1C = \&CC: REM IC $10 / 15=$ L.CLC IC3 450 7\&FD1C $=8$ EE : REM $1 \mathrm{C} 10 / 12=$ L. BREAK 460 ? $\& F D 10=W$: REM LOAD W ON BUS B 470 ? 8 FD 1C= $\&$ CE:REM IC10/14=L.CLC IC 4 480 ? \& FD 1C = \&EE: REM 1C10/12=L. BREAK 490 ? 8 FD $10=V$: REM LOAD V ON BUS B 500 ? \& FD 1C= \& EC: REM IC 10/13=L.CLC IC5 510 finishtime $=T$ IME $+\left(U^{*} .1\right)+100$: REPEAT 520 UNTIL TIME>=finishtime:REM DELAY 530 REM:MODULE 3(READ FLAG REGISTER) 540 ? \& FD 1C= \& EC: REM IC 10/9=L. BREAK 550 ? 8 FD 10=80F:REM LOAD OF ON BUS B 560 ? 8 FDIC= 8 EE:REM IC10/7=L. RESTART I 570 ? $8 F D 10=800$:REM LOAD 00 ON BUS B $580 \mathrm{~F} \%=$? 8 FD 10 : REM READ FLAG REG(CAI) 590 PRINTTAB $(0,0)$ "FLAG RG(RD.1) $=1 ;$ F $\%$ 600 IF $F \%=0$ THEN 540:REM $F \%=0$ NO FLAG 610 REM: MODULE 4(READ TRAP ADD.) 620 ? $\& F D 10=80$ A: REM IC6/13=L.ENA.IC16 $630 \times \%=? \% F D 11$: REM READ MEM.ADD.LSB 640 ? $\& F D 10=80 B:$ REM IC6/12=L.ENA.IC17 $650 \mathrm{Y} \%=$? \& FD 11 : REM READ MEM. ADD.MSB 660 ? \&FD1C $=\& E C:$ REM IC 10/9=L. BREAK $670 \mathrm{~T}=\mathrm{X} \%+(256 * Y \%):$ REM T=TRIGGER ADDR . 680 PRINTTAB (0,1)'MMEM.ADD (TRIG) ='' \boldsymbol{T} 690 REM:MODULE 5(LOAD PRETRIG.ADD.) 700 P\%=T-(N*!)
710 IF P\%<0 THEN P\%=(2048+T)-(N*I) 720 P=P\%:REM P=PRETR.ADO.
$730 \mathrm{~J}=\mathrm{P}$ DIV 256:REM J IS MSB OF P $740 \mathrm{~K}=\mathrm{P}$ MOD 256:REM K IS LSB OF P 750 ? 8 FD $10=800$: REM LOAD OD ON BUS B

760 ? $8 \mathrm{FD} 1 \mathrm{C}=8 \mathrm{EE}:$ REM $\mathrm{IC} 6 / 10=\mathrm{L}(1 \mathrm{C} 23 / 6=\mathrm{L})$ 770 ? \&FDIC=\&EC:REM IC10/9=L. BREAK 780 ? $\& F D 10=K$: REM LOAD K ON BUS B 790 7\&FD1C= 8 CC: REM IC10/11=L.LD. $1 \mathrm{C} 7+8$
800 ? $\& F D 10=\& 00:$ REM LOAD OD ON BUS B 810 ? 8 FDIC= $8 E E:$ REM $1 \mathrm{C} 6 / 10=\mathrm{L}(I C 23 / 6=\mathrm{L})$ 820 ? 8 FD1C=\&EC:REM 1C10/9=L, BREAK 830 ? 8 FO10=J: REM LOAD J ON BUS B $84 \mathrm{D} 78 \mathrm{FD} 1 \mathrm{C}=8 \mathrm{CE}:$ REM IC $10 / 10=\mathrm{L}$, LD. IC9 850 REM:MODULE 6(READ PRETRIG.ADD.) 860 ? 8 FD $10=80 E:$ REM LOAD OE ON BUS B 870 ? \&FD1C=\&EE:REM IC6/9=L*CLCIC16/17 880 ? $8 . \mathrm{FD}^{10=80 \mathrm{~A}: \text { REM IC6/13=L, ENA. IC } 16}$ $890 \times \%=$ \&FD 11 : REM READ MEM.ADD. LSB 900 ? 8 FD10= $80 \mathrm{OB}:$ REM IC6/12=L, ENA, IC17 $910 \mathrm{Y} \%=? \& F D 11$:REM READ MEM.ADD.MSB $920 \mathrm{Q}=\mathrm{X}^{*}+\left(256^{*} \mathrm{Y} \%\right)$: REM $\mathrm{Q}=$ READ PRETRIG. 930 PRINTTAB(0,2)"START=";0
940 IF $Q=P$ THEN 960
950 REM:MODULE 7(STEP ADD.COUNTER)
$960 \mathrm{C}=0$: REM ADD. STEPCOUNTER IS C
970 FOR $\mathrm{I}=0$ TO ($\mathrm{N} \cdot \mathrm{I}$):REM N ELEMENTS
980 ? 8 FD $10=\$ 0 C:$ REM LOAD OC ONTO BUS B
990 ?\&FOIC=\&EE:REM IC10/7=IC18/1=L
1000 A(I) $=$? \&FD 11 :REM DATA MEMORY (IC19)
$1010 \operatorname{PRIUTTAB}(0,3)$ "MEM. ADD (STEP) $=" ; C$
1020 PRIMTTAB $(0,4)$ "MEMORY DATA $=$ "; $A(1)$
1030 ? \&FD $10=800:$ REM LD. $00,1 C 5 / 10=$ L
1040 ? \&FD 1C=8EC:REM IC10/9=L,BREAK
$1050 \mathrm{C}=\mathrm{C}+1$: IF $\mathrm{C}=2048$ THEN $\mathrm{C}=0$
1060 NEXT I
1070 PRINTTAB $(0,3) "$
1080 PRINTTAB $(0,4) "$
1090 REM:MOOULE 8 (READ END ADDRESS) 1100 ? 8 FD $10=80 E:$ REM LOAD OE ON BUS B 1110 28FD1C=8EE:REM $1 \mathrm{C} 6 / 9=\mathrm{L}$.CLCIC16/17 1120 ? \& FD 10=80A:REM IC6/13=L, ENA.IC16
$1130 \times \%=$? \&FD 11 : REM READ MEM.ADD. LSB
1140 ? \&FD $10=80 \mathrm{OB}$: REM IC6/12=L, ENA. IC17
1150 Y\%=? \&FD 11 : REM READ MEM.ADD.MSB
1160 ? \&FD1C $=\& E C:$ REM IC $10 / 9=$ L, BREAK
$1170 E=X \%+(256 * Y \%)$: REM E=END ADD
1180 PRINTTAB $(0,2)$ "START="; 0 ; "END="; E
1190 IF $E=C \cdot 1$ THEN 1210
1200 REM:MODULE 9 (READ FLAG REGISTER)
$1210 \mathrm{~F} \mathrm{\%}=$? 8 FD 10 : REM READ FLAG REG(CA1)
1220 PRINTTAB $(0,0)$ " F LAG $\operatorname{RG}(R D .2)=1 ; F \%$
1230 REM:MODULE 10 (PLOT GRAPH)
1240 INPUTTAB $(0,3)$ "PLOT MULTP. $=1$; G
$1250 \mathrm{X}=(1279 /(\mathrm{N} \cdot 1))$
1260 PLOT $4, X,(A(0) * G)+40$
1270 FOR $I=0$ TO ($N \cdot 1$)
1280 PLOF $5, X * 1,(A(I) * G)+40:$ NEXT !
$1290 \quad Y=T \cdot Q:$ IF $Y<0$ THEN $Y=T-O+2048$
1300 PLOT $4, X * Y, 0:$ REM TRIGGER MARKER
1310 PLOI $5, X * Y,(A(Y) * G)+20$
1320 ? 8 FD $10=808:$ REM LOAD 08 ON BUS B
1330 ? \&FD $1 \mathrm{C}=\& E E:$ REM $I C 6 / 15=L$, RST. I $N T F$.
1340 REM:MODULE 11 (DATA TO DISC)
1350 INPUTTAB(0,5)"NAME FILE", AS
1360 AB=OPENOUT AS
1370 PRINTTAB(O,3)"LOADING DATA="; N
1380 PRINTसAB,U:PRINT\#AB, B
1390 PRINTसAB,N:PRINTHAB, F
1400 PRINT\#AB, T:PRINT\#AB, Q:PRINTHAB,E
1410 FOR $I=0$ TO $\mathrm{N} \cdot 1$:REM DATA TO DISC
1420 PRINTTAB(14,4);1
1430 PRINTHAB,A(1):NEXT I
1440 CLOSE\#AB
1450 PRINTTAB (14,4);
1460 PRINTTAB $(0,3) "$
1470 PRINTTAB $(0,3)^{\text {"DATA NOW ON OISC" }}$ 1480 PRIMTTAB $(0,4)$ "END OF PRJGRAM" 1490 VDU 23, 1, 0;0;0;0;:REM CURSOR OFF 1500 END
transferred to the computer and displayed on the monitor.

TECHNICAL.DESCRIPTION

The transient analyser consists of four parts a d.c. coupled analogue amplifier; an interface bus system: the register system; the interrupt system.

Direct coupling of the pre-amplifier (Fig 1) has the advanlage that very low frequency signals. or even the output fluctuations of a d.c. power supply, can he directly coupled to the flash a-to-d $\left(\mathrm{IC}_{6 i}\right)$: this prevents zeroline shift by applying a non-symmetrical waveform via a capacitor-coupled input

The differential input stage makes it possible to raise or lower the input threshold of the amplifier. If an input signal is applied which has a positive or negative bias. one can set the associated potentiometer to such a value that the hias is cancelled and the input signal itself occup ies the a-to-d's full conversion range of 0 to 2 V

The input stage is followed by an inverter and so the input signal is fed to the a-to-d (pin 21 of $1 \mathrm{C}_{37}$) as a non-inverted signal. The amplification factor A of the amplifier is governed by the ieedhack resistors R_{x} and $\mathrm{R}_{\text {. }}$. and the input resistors R_{1} and R_{2}

$$
a=\left(\frac{R_{x}}{R_{1}}\right) \cdot\left(\frac{R_{v}}{R_{2}}\right)
$$

Ifall resistorsare 5.1 k ? , then $A=1$. Fora gain greater than unity, change the inpul resistors R_{1} and R_{2} and let $R_{x}=R_{y}=5.1 \mathrm{k} \Omega$ If hoth R_{x} and R_{y} are 5.1 k ! and the feedback capacitors across R_{x} and R_{y} are carefully selected. a rise-time of approximately 90 ns can he achieved at the output, pin 6. With urity gains the pre-amplifier is fast enough to be used for studying the output of a video camera. If the amplifier is to he used for low frequency work. R_{1} and R_{2} can be decreased to give a much higher amplification with a restricted frequency response. By using opamps with a much faster slewing performance. the rise-time can he improved. hut at a greater cost.
A similar amplifier is connected to the output of the d-to-a. The analogue output of the line driver BFX $85 / 87$ can he raised or lowered, with reference to ground. by means of a second potentiometer. The design of the t.a. is such that if a video signal is digitized, the analogue output via the line driver will generate the same picture on the monitor.

The bi-fet op-amp AD)744 (Analog levices) was chosen as the hest compromise between price and rise-time.

BUS SYSTEM

The interface hetween, the hus system of the transient analyser (Fig. 2) and the computer consists of the peripheral interface adapter IC_{6} with IC_{2}. for full decoding of the 1 MHz bus circuit of the BBC computer
As can be seen from Fig. 2. there are two internal bus systems. one for data to the computer, port λ of the 6522 , and a second for data from the computer. Port B. Under soltware control, port A is used as an input port and port B as an output. This is set up in the first part of the program (see software for the t.a.) and is not changed during the

Fig.2. Bus system. The transient analyser connects directly to the 1 MHz bus port of a BBC microcomputer.

running of the program.
Data collected by the t.a. is placed on the PA bus by the octal buffer C_{18} and the memory (IC_{19}) address via edge-triggered octal latches IC_{16} and CC_{17}. Data for the t.a. from the computer is handled by the PB bus and consists of 16 -bit data to the octal flip-flops IC_{4} and IC_{5} : 11 bits of data to preset the four-bit synchronous counters $\mathrm{IC}_{7.89}$; eight bits to the input registers IC_{3} (Fig. 3): four bits of data for the three-to-eight decoder IC ${ }_{6}$.

REGISTERS

The registers receive the computer data via the eight-bit hus connected to port B of the 6522. To make sure that the correct data reaches the registers $\left(\mathrm{IC}_{3.45}\right)$ a strohing system is employed. The register system (Fig. 4) consists of $1 \mathrm{C}_{6} .112 .29 .33 .34$ and generates the three clock signals for the registers after the data has been placed on the port B bus. These clock signals are generated by connecting control signals C_{2} and $\mathrm{c}_{2} \mathrm{~B}_{2}$ from the 6522 to the three-to-eight decoder IC_{10}. Note that pin 10/3 (i.e. pin 3 of $\left.\mid \mathrm{C}_{10}\right)$ is low after the reset signal on pin $34 / 5$. The sequence is c_{2} and c_{2}, low, then 10/15 low: CA_{2} high and CB_{2} low, then 10/14 low: C_{2}, low and car high, then $10 / 13$ low.
The three signals $10 / 15,10 / 14$, and $10 / 13$ are all Ored and trigger the two monostables of IC_{29}. The first monostable triggers. giving an output at pin 13. the second one after about $420 \mu \mathrm{~s}$. The second monostable's output at pin 12 is connected to all three clock inputs of the flip-flops $I \mathrm{C}_{33}$ and $I \mathrm{C}_{34}$. If C_{2} and CB_{2} are both low, then $10 / 15$ will keep $33 / 3(\mathrm{k})$ low and the clock pulse on $33 / 4$ will make $33 / 7$ (0) go high ($33 / 7$, after the reset signal on $33 / 5$. was low). The positive signal on $33 / 7$ clocks data in the port B bus. into the register IC_{3} and triggers the monostable IC_{35} so the output pulse of $35 / 4$ loads the data from the internal registers into the eight bit hinary counter IC C_{3}. If IC IC_{29} is triggered by a false pulse. e.g. noise. then $33 / 3$ will he high and $33 / 7$ stays low. In the same way, the outputs of the flip-flops $33 / 9$ (CA_{2} high. Cl_{2} low) and $34 / 7$ ($\mathrm{Cl}_{2} 2$ low, CB_{2} high) clock the data from the port B bus into registers $I C_{4}$ and IC_{5}.

The same strobing system generates the reset signal ($(32 / 3)$ for the t.a., the clock signal for the binary counters $\mathrm{IC}_{7,8,9}$ from $32 / 6$. the output from $32 / 8$ to clock the memory address on to the port A bus via ${ }^{1 C_{16}}$. 17 and furthermore, negative-going and positive-going trigger signals from 32/ 11 and $30 / 13$ respect ively. This trigger signal makes it possible to start or stop any external signal source under sottware control. The four output signals from $1 C_{32}$ are derived from the four-bit word from the port B bus, which is connected via the three-to-eight decoder IC6.

A further strobing system is used to move data from the port B bus into the counters. $\mathrm{IC}_{7 \times \times 9}$. This is accomplished by IC_{27} and C_{301}. This data makes it possible to load any address into the memory ($/ \mathrm{C}_{19}$).

INTERRUPTS

L.et us first look what happens before an input signal reaches the a-to-d $\left(\mid \mathrm{C}_{37}\right)$. The 20 MHz oscillator IC_{24} drives a frequency division chain $\mid \mathrm{C}_{11-14}$. The output of this chain. pin 14/13, goes to the clock input of $1 C_{20}$ (pin 1). Inputs J and n of C_{201} are both high. because pin $25 / 7$ is high after the general reset pulse from pin $32 / 3$ to pin $25 / 14$. The output of IC_{20}. pin 5 . drives the output enable ($\overline{O E}$ of the memory $\left(1 \mathrm{C}_{19}\right)$. When $\overline{O E}$ is high, the write enable $\overline{W E}$ goes low and so any data appearing on the input. D_{10} to D_{7}, is written into memory. This means the memory circuitry $\left(\mathrm{IC}_{1 \times}\right.$ and $\left.I C_{36}\right)$ continuously updates the memory contents. The output from the a-to-d is fed through an octal buffer $\left(1 C_{36}\right)$ to the input of the d-to-a. so that the input signal on pin $37 / 21$ can be monitored on pin $37 / 2$. Memory updating can be stopped by applving a positive-going pulse on pin $23 / 12$. Pin $23 / 10$ goes high and enables the s input of flip-flop IC_{25}. The output of $1 \mathrm{C}_{25}$. pin 5. goes high after a negative-going transition on the clock imput of C_{25}. When pin 25/5 goes high. it will, via pin $28 / 6$. clock the memory address into the octal latches IC_{16} and $1 C_{17}$. This is called the trigger address. Simultaneously pin 25/6 goes low, enabling the divide-by-eight counter $1 C_{26}$. For every eight output pulses of the divider chain $\mathrm{IC}_{11-1 \mathrm{f}}$, orie 30 ns pulse will appear on pin 3/13.

Each clock pulse on pin 13 increments the counter IC_{3} until an overflow (i.e. a count of FF_{16}) occurs on pin 11. The output of IC_{25} (pin 7) goes low, inhibiting ${ } \mathrm{C}_{20}$. stopping any further data intake into the memory and setting an interrupt flag on the 6522 (pin 40). The program will first read the trigger address and then load an address into the three counters $1 C_{7.8 .9}$ (a pre-triggered address). and will start transferring data from memory on to the port A bus and into computer memory.

This new pre-trigger address is transierred via port B bus, as two bytes. The lower bute is loaded into $\mid \mathrm{C}_{7.8}$ when pin 10/11 goes low ($\mathrm{CA}_{2}, \mathrm{Cl}_{2}$ low): the high byte is loaded into IC C_{4} when pin 10/10 goes low (cala high. CB3 low).

Note that when loading the four-bit counter 74 Fl 61 the clock input must go high when u.1), pin 9. is low. The program now steps the counters by loading the same four-bit word into IC_{6} via the port B bus. When pin $6 / 10$ goes low ($\mathrm{PI}_{0}, \mathrm{~PB}_{2}, \mathrm{~PB}_{3}$, high); PB_{1} low) then a counting pulse will appear on pin $32 / 6$ if after $400 \mu \mathrm{~s}$. the output of monostable $I C_{29}$ goes low while pin $6 / 10$ is

Features of the transient analyser

Analogue input range: +10 V to -10 V .
Preamplifier bandwidth: about 3 MHz (can be increased).
Output (from monitor d-to-a): 2 V via 50 ? driver.
Resolving power: $50 \mathrm{~ns}-3276.8 \mu \mathrm{~s}$ steps (eight bits).
Usable time base range: $10 \mu \mathrm{~s}-6.7 \mathrm{~s}$ (on computer monitor).
Pre-trigger facility.
Data storage on floppy disc.
Memory size: 2 K .byte or mare.
still low. For each memory address a unique word is transferred via the buffer IC_{18} on to the port A bus. Strobing of this data is done by a second four-bit word from the port B bus to IC_{6}. When pin 6/11 is low ($\mathrm{P}_{\mathrm{B}_{0}}$, PB_{1} low, $\mathrm{PB}_{2}, \mathrm{~PB}_{3}$ high) the data is st robed via IC_{13} into the bus system.

SAMPLING FREQUENCY

The sampling frequency depends on the output of the frequency divider, IC $_{11-14}$. If this divider is set to zero, i.e. the 16 outputs of $\mathrm{KC}_{4.5}$ are all low, then the output frequency. pin 14/13, will be the same as the oscillator frequency, 20 MHz . Hence sampling will he in steps of 50 ns . If pin $4 / 2$ is hig and the other fifteen outputs are low, sampling will be in steps of 100 ns . If all sixleen outputs are high, sampling will occur in $3276.8 \mu \mathrm{~s}$ steps. This gives this particular t.a. a wide range. By using a 2048 $\times 8$ memory $\left(\mathrm{IC}_{19}\right)$ the minimum timebase will be $2048 \times 50 \mathrm{~ns}$, or $102.4 \mu \mathrm{~s}$, and the maximum 6.7108864 s . Both values can be doubled by using a 4096×8 memory by connecting pin $9 / 11$ to the m.s.b. memory address line.

ACTION OF THE T.A.

1. Memory counters $\mathrm{IC}_{7,8.9}$ continuously step the memory address lines. These counters are clocked by the same signal as the write-enable of the memory. via $22 / 5$ and 22/1.
2. Any analogue signal between 0 and 2 V is converted by I_{37} and stored in memory: This digital signal is fed back to the d-to-a pant of IC_{37} : hence on pin $37 / 2$ there appears the same signal as on pin 37/21. Data in memory is continuously overwritten as long as $\mathrm{IC}_{7 \times \mathrm{x}}$ are enabled.
3. This carries on as long as pin $25 / 7$ is high. But if a trigger pulse is applied on pin 23/12. the memory will be disabled after the overflow pulse on pin $3 / 11$. Note that pin $21 / 8$ is high (IIE of the memory, pin 19/21, is disabled) and pin 20/5 is low (oE of memory. pin 19/20 is enabled). The time that passes between the trigger pulse on pin $23 / 12$ and the overllow pulse on pin $3 / 11$ is proportional to that amount of data in memory one is interested in.
4. If the trigger pulse applied to pin 23/12 occurs at the same time as the rising edge of the signal under study. one needs a facility to display the signal in such a way that the rising edge is also clearly visible. This is done by loading a pre-trigger address into the memory address counters (see Interrupts above).
5. After a pre-trigger address has been loaded into $\mathrm{IC}_{7.8 .9 .}$ program control takes over the stepping of the memory-address counter by loading a four-bit word on the port B bus. A stepping pulse is generated via IC_{6}. pin 10. For each memory address a unique data word is transferred via the octal buffer IC_{18} into the port A bus.

TRIGGER SOURCES

Several triggering modes are available:

1. A positive-going pulse from an external source can be applied to pin 23/12.

Fig.3. Oscillator and trigger circuitry.

Fig.4. Register system

The Complete reference work for anyone interested in electronics...

Make sure that you are always one step ahead in the fast moving world of electronics by ordering your copy of The Modern Amateur Electronics Manual today. Now you can have all the essential information you need complete in one single easy-to-use reference work.
No more searching through endless magazines, books and pamphlets simply open your copy of this practical manual to find detailed coverage of:

- consumer electronics
- measuring technology
- digital technology
a. micro-computer technology

A major new reference work on all a the equipment, the service

Always up-to-date with its special
looseleaf format!

Resistance and

Capacitors
 13.3 Collsinductance

Sturdy ring-binder

Automatic updating service!

This looseleaf work never lets you become out-of-date. Several times a year, our editors send you updating supplements covering the very latest developments and ideass. You simply insent the pages at the correct place on your file!

spects of electronics - the techniques, 5 and much much more ...

You can assemble your own circuit boards
Amateur electronics enthusiasts who want to assemble their own circuil boards will find a whole range of praclical designs even for double-sided PCBs.

A number of ready-to-use PCB layouts are provided on film for immediate transfer onto copperclad boards one of the manual's most popular items.

Repairing equipment

If you enjoy repairing appliances yoursell you will find
comprehensive repair instructions and fault finding guides for your radio, T.V. and hi-fi. Simple to follow instructions guide you to the fault and then help you to correct it

Assemble interesting devices yourself

This up-to-date reference work includes a whole eries of assembly instructions for radios, synthesizers, micro-computers, loud speakers or amplifiers. And if you want to build a circuit for an electronic time switch or construct a direct currenthigh frequency calibration generator THE MODERN AMATEUR ELECTRONICS MANUAL shows you how. Full

Learn all about the BBC Master series

You can update your knowledge of the BBC Master Series and learn all about the enhancements and new facilities supplied as standard with this series including VIEW, Viewsheet, EDIT, Terminal, ADFS, CMOS real-time clock and RAM, Sideways RAM, Shadow RAM.

Amateur radio is fun

The manual also provides the amateur radio enthusiast with all possible information on equipment, regulations, data, addresses, etc
construction details are given logether with diagrams and printed circuit boards

Program your own home computer

 This modern guide contains practically orientated instructions for programming your BBC Micro in Basic.

You keep on the right The latest data sheets side of the law
The manual explains all of the amateur radio regulations that are currently in force, and which wave bands you can use privately. Your legal position is clearly explained.

compiled for you

Your looseleaf guide also includes comprehensive dala sheets which are essential for your hobby. No more endless searches all the information is there compiled for you bv experts. Everi the latest components, semiconductors and ICs are presented in full technical detail.

SEND TODAY FOR THIS UNIQUE AND PRACTICAL GUIDE - A MUST FOR ALL SERIOUS ELECIRONICS ENTHUSIASTS

Six good reasons for ordering this practical manual without delay:

1) Your MODERN AMATEUR

ELECTRONICS MANUAL supplies you with all the information you require systematically and in a well-organized form.
2) The comprehensive information it provides means that you can do without a lot of expensive publications and trade journals and buy components for your hobby instead!

Simply complete and return the order form opposite together with payment and we will send you a copy of the MODERN AMATEUR ELECTRONICS MANUAL plus a handy 13 piece collapsible ratche \dagger screwdriver set as a FREE gift. This neat, pocket-sized set includes everything you need for those last minute repairs.

MONEY-BACK GUARANTEE

You risk nothing by ordering today - as this title is covered by WEKA Publishing Money Back Guarantee of satisfaction. If it daes not meet your needs simply return it within 10 days of receipt in good condition for a full refund.
3) The automatic up-dating service guarantees that you are ALWAYS up-todate in all aspects of your hobby.
4) The handy looseleaf format of the manual means that you can file the latest information and assembly instructions, neatly and easily.
5) The sturdy and practical binder keeps all your information together in one place.
6) The complete sets of data sheets enable you to come to a decision independently of manufacturers so that you can make your own objective choice!

THE MODERN AMATEUR ELECTRONICS MANUAL

Volume: Basic Edition currently over 800 pages.

Plus Updating

Supplements: forwarded to you immediately on publication. Can be discontinued at any time. Presentation: looseleaf system in sturdy large A4 format ($297 \mathrm{~mm} \times 210 \mathrm{~mm}$). Price for the Basic work: $£ 29.95+£ 4.00$ p\&p.

Guarantee

This manual is edited only by experienced specialists. Our editors, Günter Hoarmann, Roger Dorey, Debora Roche and John Wedderburn, guarantee the quality, topicality, practical orientation and objectivity of all articles and information in your manual. WEKA Publishing is independent of any manufacturer and this ensures objective and fair information on all of the numerous and interesting new developments appearing on the market.

Cut out coupon and forward IMMEDIATELY to:
WEKA Publishing limited, The Forum, 74-80 Camden Street, London NWI OEG. Tel: 01-3888400

YES

 please send me immediately THE MODERN AMATEUR ELECTRONICS MANUAL, (Order No. 12000).I enclose payment of $£ 33.95$ which includes postage \& packing charges. I shall receive the appropriate Updating Supplements several times a year. These can be discontinued at any time.

FULL NAME
 (PLEASE PRINT)

ADDRESS

POST CODE

SIGNATURE \qquad AGE (if under 18)
\square Cheque/P.O. enclosed (pay WEKA Publishing Ltd) £ \qquad
\square Please debit my Credit Card (Tick as appropriate)

Card Number \square
Card Holder
Expiry Date \qquad Signoture

Overseas Orders
All averseas orders have to be prepaid but will be supplied under a Money-Back Guarantee of Satisfaction. If you are an averseas customer, send no money at this stage, but return the completed order form. Upan receipt of this we will issue a pro forma invoice for you to pay against. Payment must be made in sterling.
2. The input signal to the a-to-d can he started or stopped by a timing pulse generated under program control and appearing on pin 32/11 (negative-going) and on pin 30/13 (positive-going) simultaneously.
3. If a free-running or intermittent input signal is applied to the a-to-d. it is better to use the a-to-d's output data lines. Use is made of two 74 F 125 . of which all eight three-state outputs are connected to pin $23 / 12$ and via a pull-up register to the 5 V rail. Each gate input of the bulfers is connected to an outpin pin of IC_{35}. With the three-state control input one can enable or disable a particular buffer. With all control inputs high. then the eight common outputs are all high. and there is no trigger pulse. If the bulfer connected to the m.s.t. (pin 37/27) is enabled (its control input low). then only when pin $37 / 27$ goes high will the common output go high and trigger IC_{23}. With 256 possible combinations. one can set the trigger pulse at pin 23/12 at a very precise level.

A PRACTICAL EXIMPLE

L.et the signal under study be a pulse with a width of $10 \mu \mathrm{~s}$ and an amplitude of 2 V . Because we are working here with shortduration phenomena, we select a 50 nanosecond step and for the display on the monitor a timebase of $20 \mu \mathrm{~s}$. To give a clear view of the rising edge of the pulse. a pre-trigger address is chosen to give a 20% clearance hetween the start of the sweep and the pulse under study. For a timehase of $20 \mu \mathrm{~s}$, this calls for 400 memory locations. because the memory counter steps at 20 locations per microsecond: 20% of 400 is 80 memory locations. Let the trigger pulse applied to pin 23/12 be derived from the (fast) rising edge of the pulse under study. Atter the trigger pulse has been applied to pin $23 / 12$. the memory address will be latched into $I_{16,17}$ and a flag set on pin $1 / 40$. This flag will be acknowledged by the p.ia. 6522 and program cont rol will take over.
If the memory address latched into $\mathrm{IC}_{16.17}$ is 1666 . the pre-trigger address is then 1666 $-80=1586$. which is the start address now in $\mathrm{IC}_{-\times, \mathrm{s.}}$. Program control steps the memory counters a dotal of 399 times until the address 1985 has heen reached. This means that the horizontal line in the monitor the timebase) starts at address 1586 and ends at 1985. a total of 400 memory locations. Using the program TRFD the user can find the minimum and maximum value of the signal under study and also the value corresponding to addresses 1586 up to 1985. Three markers are included in the display, for the trigger address and minimum and max imum value addresses.

PRACTICAL NOTES

It is not advisable to buikd the two amplifiers together on one single p.c.b, hoard. because the t.t.1.e.e.l. converters of C_{37} tend to produce noise which is picked up by the input of the first amplifier. The supply tines leating to the combined a-to- $\mathrm{d} / \mathrm{d}-\mathrm{to}-\mathrm{a}$ ought to be very well decoupled. Connect the analogue ground pins (pins 24 and 37) directly to the amplifier's ground.

For IC IC_{19}. use SSM6116. 25 nanosecond (Saratoga) and for IC 37 . (VC 3101 (STC).

This program retrieves stored data from the disc and generates the basic functions of a transient analyser.

10 REM MODULE 1 (DATA FROM DISC)
20 REM: PROGRAM NAME IS TRFD
30 REM: DATA(TRANS.ANALYSER)FROM DISC
40 CLS:MODE 4
50 PRINTTAB $(0,0)$ "DATA FROM DISC"
SO INPUTTAB $(0,1)$ "NAME FILE=". AS
70 PRINTIAB(0,2)"
80 CD=OPENIN AS
90 If CD=0 THEN 200
100 INPUT\#CD,U:INPUT\#CD,B
110 INPUTFCD, N:INPUT\#CD,F
120 INPUT \#CD, $T:$ INPUT \#CD, $Q:$ INPUT\#CD, E
130 PRINTTAB $(0,2)$ "LOADING DATA $=" ;$ N
140 DIM $A(N):$ REM DATA INTO ARRAY
150 FOR $\mathrm{I}=0$ TO N-1
$160 \operatorname{PRINTIAB}(21,2) ; 1$
170 INPUT\#CD,A(I):NEXT I
180 CLOSE\#CD:CLS
190 If CD<>0 THEN 220
200 Printtab $(0,2)$ "File not found"
210 IF CD=0 THEN 60
220 REM MODULE 2(PRINT,PLCT GRAPH)
230 GCOL 0,3:REM WHITE
240 PRINTIAB $(0,0)$ "TIME BASE (mS) $=$ "; U $250 \operatorname{PRINTIAB}(0,1) " S A M P L E \quad f R(m m s)=" ; B$
260 PRINTYAB(0,2)"MEM.LOCATICNS="; ${ }^{(1)}$
270 PRINTIAB $(0,3)$ "PRETRIGGER $(\%)=" ;$;
280 PRINTIAB(21,0)"ADO.TRIGGER="; \boldsymbol{T}
290 PRINTIAB $(21,1)$ "START ADDRESS="; 0
300 PRINTIAB(21,2)"END ADDRESS="; E
310 INPUTIAB $(21,4)$ "PLOT MULTP. $==1, G$
$320 \mathrm{X}=(1279 /(\mathrm{N}-1)):$ REM GRAPH
330 PLOT $4, X,(A(O) * G)+40$
340 FOR $1=0$ TO (N-1)
350 PLOT S, X* $1,(A(1) * G)+40$: NEXT I
$360 \quad Y=T-0: 1 F \quad Y<0$ THEN $Y=T-0+2048$
370 PLOT 4, $X^{*} Y, 20:$ REM TRIGG.MARKER
380 PLOT $5, X * Y,(A(Y) * G)+20$
390 REM MOOULE 3(EXPAND)
400 1=0:P=0:J=0:L=-99:REM SPACEBAR
410 PRINTTAB $(21,4)$ "HIT SPACEGAR $=$ STOP"
420 INPUTTAB(21,3)"MARKER STEP=", D
$430 \mathrm{D}=\mathrm{D}+\mathrm{N}$ DIV 200:1F $\mathrm{D}=0$ THEN $\mathrm{D}=5$
440 GCOL 0,3:REM WHITE
450 PLOT 4, X * 1,0 : PLOT $5, X^{*} 1, A(1) * G$
$460 \mathrm{C}=0+1$: if $\mathrm{C} \ll=2047$ THEN 490
$470 \mathrm{C}=\mathrm{O}+\mathrm{I}: \mathrm{IF} \mathrm{C}$ C 2047 THEN $\mathrm{C}=0+1 \cdot 2048$
480 PRINTTAB(21,5)"
490 PRINTTAB(21,5)"CH.COUNTER="; C
500 H=20: if I=0 THEN $H=150$
510 keynumber $=1 \operatorname{NKEY}(H): M=1 \operatorname{NKEY}(L)$
520 IF $M=-1$ AND $P=0$ THEN $P=1: G O T O \quad 600$
530 If $\mathrm{M}=-1$ AND $\mathrm{P}=1$ THEN 670
540 GCOL 0,0:REM BLACK
550 PLOT $4, X * 1,0:$ PLOT $5, X * 1, A(1) * G$
560 1=1+D:REM CHANNEL COUNTER
570 IF $1>=N$ AND $P=0$ THEN CLS:GOTO 230
580 1F $1>=N$ AND $P=1$ THENI $=\mathrm{N}-1:$ GOTO670
590 GOTO 440
$600 \mathrm{~J}=1: \mathrm{R}=0+\mathrm{J}: 1$ FR>2047THEN $\mathrm{R}=0+\mathrm{J} \cdot 2048$
$610 \operatorname{PRINTIAB}(0,4)$ "CHANNEL (L) $=" ;$;
620 PRINTTAB $(0,5)$ "CH(L)VALUE $=1 ; A(J)$
630 PRINTTAB $(21,3)^{\prime \prime}$
640 INPUTTAB(21,3)"MARKER STEP=", D
$650 \mathrm{D}=\mathrm{D}+\mathrm{N}$ DIV 200:IF $\mathrm{D}=0$ THEN $\mathrm{D}=5$
660 СотO 560
$670 K=1: S=0+1: 1$ FS 2047 THEN $S=0+1 \cdot 2048$
680 PRINTTAB $(0,6)$ "CHANNEL $(R)={ }^{\circ}$; S
690 PRINTTAB $(0,7)$ "CH(R)VALUE $=" ; A(K)$
$700 \mathrm{~W}=\mathrm{S} \cdot \mathrm{R}:$ IF $\mathrm{W}<0$ THEN $\mathrm{W}=\mathrm{S} \cdot \mathrm{R}+2048$
$710 \mathrm{~V}=(\mathrm{S} \cdot \mathrm{R})+1:$ IF $\mathrm{V}<0$ THEN $\quad \mathrm{V}=\mathrm{S} \cdot \mathrm{R}+2049$
720 IF W $<=0$ THEN 230
730 PRINTTAB(21,5)" (START-END)CHS="; V
740 finishtime $=$ TIME 200 :REPEAT
750 UNTIL TIME>=finishtime:REM DELAY

760 KEM:MODULE 4 (EXPANDED DISPLAY)
770 GCOL 0,3:REM WHITE
780 CLS: $\mathrm{X}=1279 / \mathrm{W}:$ REM EX.GRAPH
790 PLOT $4, \mathrm{X},(\mathrm{A}(\mathrm{J}) * \mathrm{G})+40$
800 FOR $1=0$ 10 W
810 PLOT $5, X$. $1,(A(J+1) * G)+40$: NEXT I
820 =(V*U)/N:REM IIMEBASE EXP.GRAPH
830 PRINTTAB $(0,0)$ "CHANNEL $(L)=" ; R$
840 PRINTTAB $(0,1)$ "CH(L)VALUE $=" ;$ ($\mathrm{A}(\mathrm{J})$
850 PRINTTAB $(0,2)$ "CHANNEL $(R)=" ;$ S
860 PRINTTAB $(0,3)$ " $C H(R) V A L U E=" ; A(K)$
$870 \operatorname{PRINTTAB}(21,0) י \Gamma B . E X P(m s)=" ; D$
880 PRINTTAB(21,1)"(START-END)CHS="; V
890 REM:MODULE 5(MIN MAX VALUES)
900 [NPUTTAB(21,2)"MINIM.VALUE=",L
910 IF L=9999 THEN CLS:GOTO 230
920 FOR $1=0$ TO W
930 PRINTTAB (21, 2)"MINIM.VALUE $=" ; 1$
940 IF $A(J+1)=1$ THEN 970
950 NEXT I
$960 \mathrm{~L}=\mathrm{L}+1$: GOTO 920
$970 \mathrm{C}=I+\mathrm{R}:$ IF $\mathrm{C}>2047$ THEN $\mathrm{C}=1+\mathrm{R} \cdot 2048$
980 PRINTTAB (21,3)"CHN.WITH MIN. ="; C
990 PLOT $4, X^{*} 1,0:$ REM MARKER(MIN)
1000 \& LOT $5, X^{*}!,\left(A(J+1){ }^{*} G\right)+40$
1010 INPUTTAB(21,4)"MAXIM.VALUE=", M
1020 IF $M=9999$ THEN CLS:GOTO 230
1030 FOR $1=0$ TO W
1040 FRINTTAB $(21,4)$ "MAXIM.VALUE $=" ;$ M
1050 IF $A(J+1)=M$ THEN 1080
1060 NEXT I
1070 M=M-1:GOTO 1030
$1080 \quad z=1+R$: 1 F $\quad 2>2047$ THEN $\quad z=1+R-2048$
1090 FRINTTAB $(21,5)^{\prime \prime} \mathrm{CHN}$.WITHMAX. $=1 ; 2$
1100 FLOT $4, X$ 1, $0:$ REM MARKER (MAX)
1110 FLOT 5, $\mathrm{X}^{\star} \mathrm{I},\left(\mathrm{A}(\mathrm{J}+\mathrm{I})^{*} \mathrm{G}\right)+40: \mathrm{K}=0$
1120 REM:MODULE 6 (SELECT CHANNEL)
1130 INPUTTAB $(0,4) " G O$ TO CHAN $(X)=" D$
1140 if $D=9999$ THEN CLS:GOTO 230
1150 IF $D>2047$ THEN 1400
1160 If K $<>0$ THEN 1280
1170 If $S>R$ THEN 1210:REM CH(L),CH(R)
1180 IF $S<R$ THEN 1190
1190 IF $D>=R$ OR $D<=S$ THEN 1250
1200 COTO 1400
1210 IF D<R OR D>S THEN 1400
1220 FRINTTAB $(0,4){ }^{\prime \prime}$
1230 FRINTTAB $(0,5)$ *
1240 PRINTTAB $(0,4)$ "GO TO $\operatorname{CHAN}(X)="$; $\hat{0}$
1250 I=D-R:IF $I<0$ THEN $I=D \cdot R+2048$
$1260 \mathrm{~J}=0 \cdot 0:$ IF $J<0$ THEN $J=0-Q+2048$
1270 COTO 1340
1280 CCOL 0,0:REM BLACK
1290 PLOT 4,X*I,0:REM MARKER CH(X)
1300 PLOT $5, X * i,(A(J) * G)+40$
1310 сОТО 1170
1320 Í=D-R:IF I<0 THEN I=D•R+2048
$1330 \mathrm{~J}=\mathrm{D}-0: 1 F \quad \mathrm{~J}<0$ THEN $\mathrm{J}=\mathrm{D}-0+2048: \mathrm{K}=0$
1340 CCOL O,3:REM WHITE
1350 PRINTTAB $(0,5)$ "
1360 PRINTTAB $(0,5)$ " $C H(X) V A L U E=" ; A(J)$
1370 PLOT $4, X \pm 1,0:$ REM PLOT MARKER (X)
1380 PLOT $5, X{ }^{*} I,(A(J) * G)+40$
$1390 \mathrm{~K}=\mathrm{K}+1$: GOTO 1130
1400 FRINTTAB $(0,5)$ "CH(X) OUT OF RANGE"
1410 GOTO 1130
1420 END

If so, we have the complete solution.

- State of the art technology!

If you are familiar with other microprocessors, within 24 hours of study and experimentation you will understand the fundamentals of the incredibly powerful transputer.

- Saves your time

Unpack, plug in and start learning. Everything you need including self teach manuals in one package.

Saves your money

The complete system costs just £995.00 + VAT and uses any IBM Compatible PC with 640K RAM and hard disk as the host computer

Now with $1 / 2$ price course option
Attend our special 3 day course for just $£ 200$ extra if order with the system. Normal price of course is $£ 400$

The unique Transputer Training System has been designed specifically for education and is therefore ideal for use in colleges and universities. The excellent self-teach manuals, included with the package, mean that it can also be used by engineers to rapidly evaluate the transputer and utilise its amazing power in real time applications.

The system is supplied with everything you need including

- Interface card - takes a 'short slot' in the PC and provides link in/out ard control lines.
- Cable - links the interface card to the Transputer Module.
- Transputer Module - complete T414 based subsystem, supplied in its own sturdy case.
- Power supply - independant power to transputer if required.
- Development Software - folding editor, OCCAM compiler, downloader, "erminal emulator and utilities, hosted on the PC
- Example programs - no less thon 28 fully worked examples
- On Screen Tutorials - learn how to use the system 'on-screen
- Hardware Manual - full circuit diagrams, timing diagrams and circuit descriptions
- TDS User Guide - self contained futorial guide to using the development software.
- TDS User Manual - the reference manual for the development sotware.
- Introduction to OCCAM - a complete self-teach course in OCCAM.
- OCCAM Programming Manual - the definitive guide to OCCAM.
- T4 14 Engineering Data - full specifications for the Transputer
- C012 Engineering Data - full specifications for the Link Adapter.
The Transputer Module houses a 15 MHz T 414 with 256 K RAM and is external to the PC, so that the hardware is fully accessable. The module includes a wealth of test points, 14 status LEDs, $16 \mathrm{I} / \mathrm{O}$ lines, EVENT input, independant power supply, prototyping area and four 15 :way D connectors, which allow access to the 10 M bits $/ \mathrm{sec}$ links and control signals.

Full hardware and software support is provided for multi-fransputer applications. Simply plug additional Transputer Modules into the spare link connectors using the cables supplied. In this way networks of any configuration using any number of fransputers may be realised! Each module can run one or more concurrent processes and has access to its own local $1 / 4 \mathrm{Mb}$ RAM and I/O system.

The I/O connector links directly to our Applications Board, which enables the Transputer to control DC motor speed, temperature, analog input/output, and much more!

FLIGHT ELECTRONICS LTD.

Flight House, Ascupart St, Southampton, SO1 ILU. Telex: 477389 FLIGHT G Fax: 0703330039

Call 0703227721 today
for a free full colour catalogue.

Kalman filtering noise-corrupted signal processing

The Kalman filter can out-perform a first-order 1.p. filter and will provide an element of state prediction.

G.F.STEVEN

TThe Kalman filter is now over 25 years old, hut has only achieved wider application in recent years because of more accessible, faster and cheaper means for its computation. The term "filter" applies hecause of its ability to reduce the effects of noise on a signal, hut the Kalman filter is more correctly called a State Estimator. the term "state" being used to describe an attribute of a system. Thus, if we consider an aircraft being tracked by radar. the aircraft states of interest might be its course. height and speed: these states would need to be correctly assessed. say, for the purposes of air traffic control. In this case a Kalman filter might he used to estimate the "states" of the aircraft, based on radar measurements.

This example is deliherately chosen. not only because it is a texthook example of Kalman filter application, but also because it underscores the fact that such techniques, at least until recently, have been associated predominantely with the space. defence and communications industries.

NOISE ASPECTS

Kalman filtering is used to process signals which are corrupted by noise. which can be interpreted here not only in its conventional sense of "unwanted signal" but also to express the idea of uncertainty. Thus, fluctuations in the Financial Times Index or changes in national unemployment figures could both be considered as examples of uncertainty or noise superimposed on an underlying trend or signal.

Such noise may arise within the system itself and is variously known as process. plant or system noise. It is associated with uncertainty in the dynamics of the system (such as in weather forecasting). Alternatively, noise may arise within the observation mechanism or sensor, when it is known as observation or measurement noise. It can arise for a variety of reasons: for example. electrical and/or mechanical inaccuracies in the sensor such as training misalignment and backlash in the radar tracking example above: or because of arithmetic resolution in the computing elements, rounding off errors and limitations inherent in the computing algorithms. However, to simplify the mathematics, fundamental assumptions are made concerning both process and observation noise which have a bearing on the development and application of the Kalman filter.

Fig.1. System diagram of a Kalman state estimator.

Fig.2. Model representing ideal and noisy behaviour of airflow, providing an input to the Kalman filter.

CENERAL FEATURES

The Kalman filtering operation is generally concerned with discrete-time or sampleddata systems. The filter output at any particular instant is a weighted combination of two elements: a prediction of the correct output at that instant, hased on carlier data: and a noisy observation made at that instant.

The weighting of each element depends on whether the filter places greater faith in its own prediction or on the observation. bearing in mind that both are subject to uncertainty. Thus, the composite output is an intuitively acceptable combination of prediction and observation. in which the error in the combination is less than either of the errors in the components taken separately.

KALMAN FILTER FORMULATION

Consider the simple case where a singleinput. single-output system is subject to process and observation noise as referred to previously. We are concerned with the state of that system and can write in standard state space form:

$$
\begin{align*}
& x(k+1)=A x(k)+B u(k)+w(k) \\
& y(k)=C x(k)+v(k)
\end{align*}
$$

(observation equation)
where $y(k)$ is an observation at time $k . x(k)$ is the system state at time k. A and C are linear scaling factors. $w(k)$ and $v(k)$ are process and observation noise components respectively. These equations can be expressed diagrammatically as in Fig. 1.

We assume that the noise sequences $w(1)$. $w(2) \ldots w(k)$ and $v(1), v(2) \ldots v(k)$ have zero mean, that each successive value of noise is independent of previous values and that $w(k)$ and $v(k)$ sequences are independent of each other. Further, we assume that the state $x(k)$ is similarly independent of either of the noise values $w(k)$ and $v(k)$. These assumptions need to be borne in mind and checked for validity when any particular application of Kalman filter is being considered. Extensions to the theory do exist to cater for departure from these assumptions. but are not considered here.

We now make three further fundamental assertions in the formulation of the Kalman filter.
(1) On average, the difference between estimated state and actual state at time k is zero. This is expressed notationally as:

$$
E[\bar{x}(k)]=E|\dot{x}(k)-x(k)|=0
$$

Where E is the expectation, or "averaging", operator and $\dot{x}(k)$ the estimated value of $x(k)$. This is termed an unbiassed estimate.
(2) The expected value of the square of the previously mentioned error is a minimum. This is the "minimum mean square error" (m.m.s.e.) criterion and is expressed notationally as:

$$
\min E|\hat{x}(k)-x(k)|^{2} \text { or } \min E|\bar{x}(k)|^{2}
$$

The estimate of state at time k is a linear combination of observation at time k and prediction of the state at time k based on previous data thus:

$$
\begin{equation*}
\hat{\mathrm{x}}(\mathrm{k} / \mathrm{k})=J(\mathrm{k}) \hat{\mathrm{x}}(\mathrm{k} / k-1)+\mathrm{K}(\mathrm{k}) \mathrm{y}(\mathrm{k}) \tag{3}
\end{equation*}
$$

where notationally $\hat{x}(k / k)=$ estimate of state based on data up to present time k and $\hat{x}(k / k-1)$ is an estimate of state at time k based on data up to time $(k-1)$: i.e. a one-step-ahead prediction. $\nu(k)$. of course, is an observation at time k. $J(k)$ and $K(k)$ are both weighting factors which may be time-varying and are therefore shown as functions of k.
We now have all the required information to formulate a Kalman filter. Making substitution into (3) from the observation equation for $y(k)$:
$\hat{\mathbf{x}}(k / k)=J(k) \hat{x}(k / k-1)+K(k)|C x(k)+v(k)|$
Taking expectations (strictly. unconditional expectations)

Fig.3. Variation of error, showing that prop. er choice of plant and observation noise setting can reduce estimate error.
$E|\hat{x}(k)|=J(k) E|x(k)|+K(k)$.

$$
\begin{equation*}
\mathrm{CE}|x(k)|+K(k) E|v(k)| \tag{4}
\end{equation*}
$$

Note that the last term on the r.h.s. is zero. from the assumption that the noise is zero mean. Now, referring to the requirement for unbiassedness. $E|\hat{x}(k)-x(k)|=0$ implies that $E[\hat{x}(k)]=E[x(k) \mid$.

Therefore expression (4) reduces to
$J(k)=1-$ CK (k)
Substituting (5) into (3).

$$
\begin{gather*}
\hat{x}(k / k)=\hat{x}(k / k-1)+k(k) \mid y(k)- \\
C \hat{x}(k / k-1) \mid \tag{6}
\end{gather*}
$$

Equation (6) embodies the idea of filter output consisting of a combination of predicted and obsenced data. We now wish to evaluate $K(k)$. commonly, known as the Kalman gain. Examining the m.m.s.e. requirement. repeat ($61 \hat{\mathrm{x}}(\mathrm{k} / \mathrm{k})=\hat{\mathrm{x}}(\mathrm{k} / \mathrm{k}-1)+$ $K(k)|y(k)-C \hat{x}(k / k-1)|$
subtracting $x(k)$
$\hat{x}(k / k)-x(k)=$ "error"
$=\hat{x}(k / k-1)+k(k)|C x(k)+v(k)-C \hat{x}(k / k-1)|$ $-x(k)$
$=|1-\hat{k}(k) C| \hat{x}(k / k-1)-x(k)+K(k) w(k)$
Squaring and taking expectations.
$E|x(k / k)-x(k)|^{2}="$ mean square error
$=E|(1-k(k) C)(\hat{x}(k / k-1)-x(k))+(k) v(k)|^{2}$
Fig.4. Plot of estimates against true airflow after choosing combination of noise values, to be compared with Fig. 2.

6. Repeat from step l, at new sample instant. The necessary expressions used in such filtering are summarized below for reference. They are shown in the order in which they might he used in a pract ical situation:

$$
\begin{equation*}
\text { Kalmangain } K(k)=\frac{C P(k / k-1)}{C^{2} P(k / k-1)+\sigma_{v}{ }^{2}} \tag{7}
\end{equation*}
$$

Current state estimate $\hat{\mathbf{x}}(\mathrm{k} / \mathrm{k})=\hat{\mathrm{x}}(\mathrm{k} / \mathrm{k}-1)+\mathrm{K}(\mathrm{k}) \mid \mathrm{y}(\mathrm{k})-\mathrm{C} \hat{\mathrm{x}}(\mathrm{k} / \mathrm{k}-1)(6)$ Current m.m.s.e.estimate
$P(k / k)=P(k / k-1)|1-C K(k)|$
New state prediction
$x(k+1)=A x(k)+B u(k)+w(k)$
New m.m.s.e. prediction
$P(k+1 / k)=A^{2} P(k / k)+\sigma_{w}$
To start the computational sequence, initial values need to be chosen for $\mathrm{P}(\mathrm{k} / \mathrm{k}-1)$ and $\hat{x}(k / k-1)$. that is, $P(1 / 0)$ and $\hat{x}(1 / 0)$ respectively. Values for noise variances are assumed to he known.

AN EXAMPILE

The application of a simple. scalar Kalman filter can be illustrated in a real example where ai:flow within an industrial dryer was to he estimated using a single anemometer. Airflow distribution in such an application is complex and measured airlow is subject both to actual disturbances in the dryer and to inaccuracies within the anemometer.

To cope with the degree of uncertainty in airflow measurement it was decided to pass the anemometer output through a Kalman filter in order to make optimal estimates of actual airflow. As already stated. noise variances for the plant and sensor needed to be quantified beforehand, and some value for $\mathrm{m} . \mathrm{m} . \mathrm{s} . e$. and state estimates were required to start off the filter algorithm. These values

Fig.5. Plot of estimate error against timeconstant of first-order filter, showing that its best performance is poorer than that of Fig. 4.
were found by experiment: a simple mathematical model of the plants behaviour was determined following a series of step response lests carried out on the dryer and from which process and observation equation parameters were evaluated. This model was run on a hand-held calculator with a value of noise superimposed on the noisefree model output. sufficient for its performance to represent that of the actual plant. Thus a record of true airllow and noisy airllow measurements were available for feeding into a Kalman filter. A plot of such values appears in Fig. 2.

The filter algorithm was based on the filter equations quoted earlier and run on the same hand-held calculator. The airllow measurement record was applied to the filter for a variety of plant and observation noise settings and error between filter output and
true airflow were determined: a simple statistical analysis was then carried out to find the values of plant and observation noise that yielded the best estimate of airflow, ie: minimum standard deviation (S.D.) in estimate error.

The variation of estimate error - accuracy - with plant and observation noise settings is shown in Fig.3. This figure shows that estimate error can be minimized by judicious selection of plant and observation noise figures. The Kalman filter was again run with the hest combination of noise values and a plot of filter airlow estimates against true airflow is shown in Fig. 4.

PASSIVEFILTERING

The airflow measurement record was also passed through a simple first-order filter for comparison purposes. A plot of estimate error against lilter time constant is shown in Fig. 5 which shows that the most accurate perfomance is not as good as that in Fig.4: a short time constant fails to filter out system noise and a long time constant degrades the filter's tracking performance. Against this, a simple Kalman filter provides reasonable steady state and tracking performance combined with a facility for state prediction. albeit at greater computation cost. In this application however, where a computer was to he used for airflow datalogging at slow sample rates, the inclusion of Kalman filtering to improve airflow measurements in the face of extremely noisy data would be considered to be a significant and worthwhile improvement.
Graham Steven. M.Sc. B.Sc., MIEE, is a Principal Engineer with EASAMS Ltd. Camberley. Surrey.

LEGO LOGO

Engineering training can now hegin as early as primary school age, with the help of the Lego Control package. Using materials in the package. seven to 13 -year-olds can construct simple machines from technical Lego pieces and then learn how to control them. Parts provided include motors. lamps and an optical sensor. all of which can be connected to a BBC microcomputer by an interface module.

High-level software is Logotron Logo (the most popular Logo in British schools) with control extensions. A special feature of these is the Setpower command, which can prevent tearful mishaps of the hind that occur when a newly-completed motorized buggy careers off the tahle at full throttle on its first outing. (Tip for parents, from Lego's splendidy-produced accompanying literature: for more shock-proof models, you can stick Lego bricks together temporarily with p.v.a. wood glue. Warm water and gentle scraping should remove the glue afterwards). Among the possibilities of the kit are a traffic light, a washing machine. a lift and a merry-go-round.

Several schools have heen trying the system over the last two years and all are
enthusiastic about it, says Lego - even ones which had little or no computer experience. And the company stresses that the package has proved helpful right across the curriculum. not just in the mathematical area. Themes for broader projects are described in one of the six booklets in the comprehensive information package. Lego Control Logo

Moving literature

We're at it again. Every so often. someone here decides that we've all been in our offices too long and that we ought really to be moved a bit. The trouble is that people keep being given new jobs with an office to themselves, which means that everyone else has to shuffle up like a lot of cab-horses to make space.

It doesn't usually matter too much, but in our case there is the library to consider. We (I, actually) have just finished packing everything up in bright orange boxes for the move to a cleverly selected position where we can't get at it so easily. All the junk had to be tossed out. because the new location is too small to take all the stuff we had, and that naturally meant that it all had to be scanned and, occasionally, given the "thumbs down". You do come across some interesting reading this way, though.

For instance, the very first issue of The Wireless World from 1913, bound volumes of Experimental Hireless and more issues of IEEE Transactions than most libraries could boast all saw the light of day for the first time in eight years. The problem lies in knowing which to keep: masses of information on Quantum Theory do not seem to be highly relevant, but, as I have said before, the day after it is given the chop one article from about 1947 is inevitably needed in a great hurry.

One set of boxes I came across had in them the binders for six issues of the journal in its stapled period of a few years ago. If anyone would like them, they can have a pair for $£ 2$. I hope someone will have them, because we're running out of space.

Acronymics Anonymous

After many years of research, I am forced to the inescapable conclusion that there lurks. in some remote and heavily guarded cell in a Western capital, a grey-faced, shabby. single-minded former crossword addict. who was kidnapped several years ago by a consortium of p.r. companies and made to earn his single daily meal of left-overs from press receptions by composing acronyms for new products.

What does slightly worry me is that there might be a temptation to tailor the product to fit the acronym. For example, it is not widely known that first-in, first-out registers were originally designed as first-in. Heaven-knows-when-out registers, but had to be modified because filkw didn't seem to flow too well.

I now have a data sheet from Motorola on their MC3419-1L telephone line-feed circuit, which provides BORSHT functions. This, it is said, provides (Battery), Overvoltage protection. Supervision. two-wire to

Don't fence me in

The only captions I could come up with for this picture involved concepts which, I am sure, are foreign to the nature of $E W W$ readers. It shows a BT engineer mending a telephone cable right in the middle of the Dee estuary and illustrates the length that BT will go to keep its subscribers happy; there is, apparently,
only one telephone on the end of this cable - on an island in the river. This area is normally several feet deep in Irish Sea.
I feel sure that someone will be able to contribute a caption which treats the subject in the proper spirit, whatever that is, and will arrange a year's subscription to $E W W$ for the best one sent in.
four-wire conversion (Hybrid), Ring trip detection and Testing. Everything else it does doesn't fit into the acronym. But think of the temptation, when faced by this elliptic BORSHT, to change the chip so that it does something elese starting with \mathbf{C} and to ditch the Testing bit so that it could be called a BORSCH. It might be arranged to Cut out obscene 'phone calls or to Control something. It might even be necessary to alter the whole thing to Supervision and Overvoltage protection while Under Power and hang the rest -it's probably unnecessary anyway.

Driver's mate

I seem to have seen a good deal about car navigation systems recently. There are the inertial kind, the radio kind and several others the hang of which I have not yet got. But, however they work. I can hardly wait to have one insinuated into my car - 1 have never fully understood why car designers start with the radio and build the car round it. thereby making it necessary to train intelligent octopuses to senvice it, or to change the installation.
Thing is, my wife is a first-class navigator who labours under the delusion that I am clairoyant. Her idea of a direction to the driver is something along the lines of "Turn left before you get to the little side road leading to the Shell garage". Or she will say "Turn here" and when we finish up in someone's garden "No, the next one", So I am hoping that the new electronic ones won't assume that I am able to see into the future to quite that extent.
What I would like to have, please, is
something that will tell me "You need to bear right in 300 yards. but watch the dreadful pothole five feet from the kerb as you turn and ease off on the loud pedal because there's a speed trap in half a mile." Or, in my case, "Speed up a bit because you're getting to a 30 mile/h area".
If it could also be arranged that the device would be able to flash rude messages to people flashing at me from behind, that would be most gratifying.

Fly-by-committee

I heard an A320 test pilot describing the control system to a television interviewer last week. The A320 is a "fly-by-wire" aircraft, which means that the pilot does not move the control surfaces and engine controls directly, but via computers. This means that the aeroplane is never asked to perform outside its designed flight envelope and that the engines burn fuel more economically. Flight management, it's called.
But I did wonder when the test pilot said that four computers out of seven on the aircraft were concerned with the flight controls. I would have thought that an odd number would have been needed to avoid deadlock between computers. If one of them disagrees with the others - no problem; it's outvoted. But if two disagree with the other two, there's a "Yes it is, no it isn't," condition which could very easily lead to tears. I expect the Airbus people have it all well worked out, but I do remember the old Trident, which had three computers for that very reason, having three engines and therefore three power supplies.

Magnets

Principles, uses and current status of permanent magnets - often taken far too much for granted

JOULES WATT

If you remember the time during your early days when you placed various objects in a magnetic field, the most notable observation pointed to the fact that some of the bits and pieces became strongly affected. These belong to the ferromagnetic group. You noticed others not affected - the non-magnetics, or if examined closely, more properly called the para and diamagnetic materials, which form by far the largest group. They have no further interest if we go on now to talk about magnets. The ferro and ferrimagnetic groups show fascinating properties, which we well and truly exploit in a wide range of technological devices.

You might have experimented with a piece of iron (ferromagnetic) and thereby established that placing it in a given magnetic field appears to enhance the field strength. In earlier discussions, 1 have said that, from one point of view. a magnetic force field vector (H amperes per metre) sets up a proportional flux vector which streams through unit area (B webers per square metre, or tes/as). In empty space.

$$
\mathbf{B}=\mu_{0} \mathbf{H}
$$

where μ_{1}, is a kind of magnetic modulus of "elasticity" of space, which we call the permeahility (henries per metre). In our present SI units $\mu_{\text {, }}$, has the value $4 \pi \times 10^{-\overline{4}}$ $1 \mathrm{Im}^{-1}$.

If you place a ferromagnetic substance in a given force field H , the flux density $\mu_{,}, \mathrm{H}$ still exists as in empty space*. hut in addition you find that a sometimes vast increase in flux appears due to some power in the elementary particles of the ferromagnetic to produce magnetization. We know that magnetic fields arise from circulating electric currents, so in the ferromagnetic material. some kind of current must turn on. or existing currents line up in some way under the externally applied \mathbf{H}. thus augmenting the riagnetic effects.

These "currents" themselves produce two effects - a total magnetic flux field linking them. together with a magnetic force field driving the flux.

From the first viewpoint, some authors denote the extra flux density generated by the material as the polarization. J tesla. This J sometimes acquires another name - the magnetic moment per unit volume. You can see the meaning of this hy writing tesla in its more descriptive form of weber per square meter. Multiplying top and hottom of this by metres gives weher. metres per cubic metre. which agrees dimensionally with moment
"The magnetic sample has to be very long. or in the form of a tornd so that "free polles" at the ends have liftle effect at the point of interest.

Fig.1. The relation between B and H in ferromagnetic materials is very non-linear. The various slopes from the origin give the permeabilities under different conditions. One of them, the incremental permeability, arises from the shallow slope Q-T as H oscillates along this path.

Fig.2. Looking at (a), moving back from saturation near S, a negative value of H eventually reduces the flux density to zero. The path from B_{r} to $-H_{c}$ carries the title demagnetization curve. The full curve in (b), obtained by going right through a complete magnetization cycle, shows the familiar hysteresis curve of a ferromagnetic material.

per unit volume. Thought about either way. the total flux in the region becomes

$$
\mathbf{B}=\mu_{0} \mathbf{H}+\mathbf{J}
$$

Alternatively. you can account for the increased magnetic effects by writing $\mathbf{M A m}^{-1}$ for the magnetization taken up by the material. so that

$$
\mathbf{B}=\mu_{1}(\mathbf{H}+\mathbf{M})
$$

Like J, M has a "moment" meaning, sometimes called the area moment. These quantities relate according to $\mathbf{J}=\mu_{0}, \mathbf{M}$. Notice that \mathbf{J} (or M) measures the amount by which the magnetic properties of a volume of space is altered by the presence of the material.

If you continued to experiment with the iron bar, placing it inside a coil passing a current to set up the magnetization. together with something to measure the flux density B-in other words a fluxmeter-then as Fig. 1 shows, you could draw the initial magnetization curve for the sample. As 1 mentioned in the footnote, you would use a very long bar or a toroidal shape to get away from the effects of poles on nearhy ends.
A number of points arise from the results. The non-linear relationship between \mathbf{H} and B shows up straight away. B rises slowly at first. rapidly builds up. then tails off towards a saturated value. A very close look shows that \mathbf{B} rises in small jumps as you increase the iield H. We call this the Barkhausen effect.
Another point concerns the effective permeability, μ. In space \mathbf{B} and \mathbf{H} lie in the same direction and we can take the quotient of their magnitudes to get $\mu_{0}=B / H$. a constant as we have seen. The question arises concerning how we handle the appropriate quotient $B / I I$ in the iron? Assume for the moment that \mathbf{B} and \mathbf{H} lie in the same direction again. Divide $\mathrm{B}=\mu_{1} \mathrm{II}+\mathrm{J}$ or $\mathrm{B}=$ $\mu_{0}(H+M)$ right through by II so obtaining either

$$
\frac{B}{H}=\mu_{11}+\frac{J}{H} \text { or } \frac{B}{H}=\mu_{1}\left(1+\frac{M}{H}\right)
$$

Various authors call either J / H or M / H the magnetic susceptibility according to the convention they adopt. I have discussed both. so to clear up confusion we must distinguish between these two possibilities. We should call $\mathrm{J} / \mathrm{H}=\mathrm{K}_{\mathrm{a}}$ the absolute susceptibility, while $M / H=K_{r}$ carries the term relative susceptihility. The relation between them is $\mathrm{K}_{\mathrm{a}}=\mu_{1} \mathrm{~K}_{\mathrm{r}}$.

From either equation for B / H you can write $\mu_{r}=1+\mathrm{M} / \mathrm{H}$ or $1+\mathrm{J} / \mu_{1} \mathrm{HI}$, so that B / H $=\mu_{r}, \mu_{r}=\mu$: therefore μ_{r} turns out to be the common or garden relative permeability of
the ferromagnetic material, which. by the way, has no physical dimensions.
Although I have called μ_{r} the common or garden permeability of the iron. a quantity we all tend to take for granted. you should beware of doing so, because it is anything but simple. From Fig. 1 you can see that μ_{r} and therefore μ vany greatly. So complication number one arises: we do not have one permeability for a magnetic material, but many.

The slope of the magnetization curve. $B_{1} /$ II, right down near the origin. gives the initial permeability: μ_{1}. Then as we increase the force H (more current in the coil), B grows until B / H reaches the greatest slope at R. The maximum permeability occurs at this point. Further increases in magnetization cause μ to fall - the ferromagnetic material approaches saturation, at S.
It might he tempting (I know someone who tried) to find $\mathrm{dB} / \mathrm{dII}$ at a point Q near the middle of the steep rise between P and R and claim that you had found the greatest incremental permeahility: This would be erroneous, because immediately you would notice perculiar behaviour in trying to wobble the value of II up and down at Q. The value of B does not follow the initial magnetization curve at all. hut moses along a small path such as QT, so that an incremental permeability does exist. but it is the slope of the considerably flatter line (or little loop in reality) (QT.
Such peculiar behaviour always attracts much more interest. so investigating a little further shows that wherever we reverse 11 on the curve (after point P) the path of the magnetization moves off in a different direction. In particular, moving back from saturation follows a path such as $\mathrm{S} \rightarrow \mathrm{U}$ in Fig. 2(a), so that even when H reaches zero, there remains a flux density of B_{r} teslas in the iron. We call this the remanance. To get the flux density down to zero. you must apply a reverse field. minus H_{c}, termed the coercive force. Some authors call the maximum remanance - obtained by coming back from a saturating field strength the retentinity, and the corresponding maximum coercive force, the coercivity: so you have to keep your wits about you when considering who is using what term in this work. If you continue back with a reverse magnetizing field beyond the coercivity, the sample magnetizes to saturation in the other direction, so that cycling back and forth with a large peak 11 generates the lagging B locus moving round and round the familiar hysteresis loop. $-\mathrm{S} .-\mathrm{B}_{\mathrm{r}}+\mathrm{HI}_{\mathrm{c}}+\mathrm{S},+\mathrm{B}_{\mathrm{r}}-\mathrm{H}_{\mathrm{c}}$ and hack to -S. as shown in Fig. 2(b).

DOMAINS OF EXPLANATION

When anyone arrives at an interesting stage in a set of obsenations such as these. the question of a satisfactory explanation arises.

In the case of ferromagnetism. the cristal structure and entities called domains crop up early in the theory. Some time ago. Wireless World carried a series of articles about magnetic materials ${ }^{3}$. so I will avoid going into great detail about them here and refer you to these articles and others ${ }^{4}$ for further details.

But a brief word shows how successful the

Fig.3. Magnets in an external field experience a torque or turning moment trying to align them a long the direction of the field lines. Hence the function of the magnetic compass. You can see the two ways of looking at this in (a) and (b). The relation between the elementary loop moments and the total moment should become clear from (c).
domain theory of ferromagnetism has been in explaining the initial magnetization cunce, saturation, the Barkhausen effect and hysteresis. In the case of iron atoms, it all starts with four electrons spinning in phase so that each looks like a small current loop generating a magnetic field.
We can draw upon the two "moment" quantities. \mathbf{J} and \mathbf{M} to delve a little into the meaning of these small elementary currents and the moments of force acting on magnetized bodies. First look at J. Since this means the total moment per cubic metre in the magnetized sample, we can divide by the number of atoms per unit volume to get the average atomic moment; in other words.
magnetic dipole moment per atom

$$
\mathrm{j}=\frac{\mathrm{J}}{\mathrm{~N}}=\frac{\mathrm{N}}{\mathrm{~N}}
$$

Where $N=n / N$ and n is the total number of atoms in the volume 1 :

Now volume $V^{\prime}=\mathrm{Sl}$ for a bar of cross section S and length 1 .

$$
\mathrm{J}=\frac{\mathrm{nj}}{\mathrm{Sl}}
$$

so that the total flux (1) issuing from the end of such a bar magnetized to saturation is

$$
\mathbf{W}=\mathbf{J S}=\frac{\mathrm{nj}}{\mathrm{l}}
$$

At last we arrive at the result. You find that the total magnetic moment of the sample. 中 multiplied by l, works out as

$$
\mathrm{d}|=\mathrm{JS}|=\mathrm{JV}=\mathrm{nj}
$$

so that the total moment of any magnetized sample depends only on its volume and vector J, hut not on the shape. The actual torque you will get acting on your bar by placing it in a uniform external force-field \mathbf{H} is $\mathbf{T}=\mathbf{V J X H}$ newton-metres, as in Fig. 3(a) (vectors needed, of course). By the way, this result shows that you shouldwork a compass needle as near to B_{r} as possible (maximum J). for a given amount of material in the needle.

The alternative of magnetic moment - the area moment I mentioned above - uses the "electric current" approach. Suppose a loop

Fig.4. Iron has the cubic crystal structure with preferred directions of easy magnetization, as the graph shows.

of area A has a current lamps flowing round the perimeter, as in Fig. 3(b). The product of I and A gives the area moment M ampere metres ${ }^{2}$. If you place this into an external field written $\mu_{0} \mathbf{H}$ this time, in other words flux density, then the torque trying to turn the loop is $\mathbf{T}=\mathbf{M} \boldsymbol{x}_{\mathbf{0}} \mathbf{H}$ newton. metres.
Looking at each atom as a small circulating current shows that the area moment per atom $m=$ ia. so from Figure $3(\mathrm{c}$) you can write.

$$
n_{s} i a \times n_{1}=\left(n_{1} i\right)\left(n_{s} a\right)=I A=M=m n
$$

where $n=n_{s} n_{1}$ the total number of atoms in the sample.

Pinally on this point. the torque calculated from either viewpoint must be equal because we are describing the same bar. so that

$$
\begin{gathered}
\mathbf{T}=V \mathbf{J} \mathbf{x H}=\mathbf{M} \times \mu_{0} \mathbf{H} \\
\mathbf{n j} \mathbf{X H}=\mathbf{m} \mathbf{n} \times \mu_{0} \mathbf{H}
\end{gathered}
$$

$\mathbf{j}=\mu_{0} \mathbf{m}$ at the atomic level.

BOHR MAGNETONS

The atomic physicists handed down a convenient unit for measuring the magnetic moment per atom, named after one of their notables. Niels Bohr. Earlier we saw that the saturation magnetic moment $\mathbf{J}=\mathbf{N j}$. Further, we can write the magnitude of j as $\mathrm{n}_{\mathrm{efij}} \mathrm{B}$. in which $\mathrm{n}_{\text {eff }}$ stands for the average number of Bolir magnetons of value j_{B} in each atom of the ferromagnetic.

To find out something about j_{B}. you require a small amount of physics. The equivalent current i of an electron going round at 2π radians per second in its classical orbit amounts to

$$
\mathrm{i}=-\frac{\mathrm{e}_{(1)}}{2 \pi} \mathrm{amps}
$$

The electronic charge $-\mathrm{e}=1.602 \times 10^{-19}$ coulombs. The area of the orbit $a=\pi r^{2}$. where r is the classical Bohr radius.

$$
j_{B}=\mu_{0}, i a=-\frac{\mu_{1} e \omega \pi r^{2}}{2 \pi}=-\frac{\mu_{0} e(\omega) r^{2}}{2}
$$

Subsequently, quantum mechanics entered the picture and required the classical result to be modified by introducing quantized angular momentum in units of $h / 2 \pi$, where h_{h} is Planck's constant. Ordinary angutar momentum $p=\operatorname{rxp}=m r(w$, where $p=m$ $=m r \omega$ is the ordinary linear momentum. Writing the Bohr Magneton as

$$
\mathrm{j}_{\mathbb{B}}=-\frac{\mu_{\mathrm{W}}}{2 \mathrm{~m}} \cdot \mathrm{mr}^{2} \omega
$$

puts us in a position to replace the classical momentum with the quantum mechanical expression.

$$
\mathrm{jB}=-\mu_{0} \frac{\mathrm{e}}{2 \mathrm{~m}} \cdot \frac{\mathrm{~h}}{2 \pi}
$$

so that by putting in all the fundamental physical constants (try it yourself...) the value of the Bohr magneton (itself a fundamental constant) hecomes

$$
\mathrm{j}_{13}=1.1653 \times 10^{-29} \mathrm{~Wb} \mathrm{~m}
$$

Fig.5. This sequence of steps gives a simple picture of domain formation. From the single magnetized rectangular block in (a) the final domain structure in (d) has minimized the energy. "Walls" between the domains must exist, of course, and the more of these there are, the greater the local energy again.

Fig.6. The Bloch Walls mark a region where the direction of magnetization has to change by 180°.

Fig.7. This shows my attempt to illustrate that an optimum number/size of domains will appear in any given sample.

As in all good physics discussions, I now inform you that no magnetic moments arise from orbital motion in ferromagnetic substances. The moments come from electron spin. Each electron has a spin of either $+1 / 2$ or $-1 / 2.2$ giving rise to one Bohr magneton. In most atoms. the magnetic moments of the electron spins cancel in pairs. but in tron four inner electrons add their moments and

Fig.8. The magnetization curve of Fig 1 reappears in (a). with suggestions about what is happening to the magnetic directions and domain boundaries as the magnetization proceeds. You reach the final saturation value, shown in (b), very slowly.

you would. therefore. expect each iron atom to contribute aj of $4 j_{13}$. In practice, because of crystal lattice coupling, the magnetic moment turns out to be $2.22 \mathrm{ij}_{13}$, which is in good agreement with experiment. Other ferromagnetics include cobalt and nickel which have appropriate unpaired electrons.

Iron forms a cubic crystal structure, as in Fig.4. The magnetic contributions from the atoms line up so that the cubic crystallites in the iron spontaneously magnetize to saturation along the cube edges. The least energy occurs along these edges. Free poles appear on the faces at the ends though, as in Fig. 4(a). From these. demagnetizing field lines thread back through the crystallite, and this means considerable energy stored.

The block might split into two oppositely magnetized regions (notice. the magnetization still directed along cube edges). see Fig. 5(b). A wall appears between these regions. now renamed Weiss domains. The much reduced external field means less surface pole formation and less energy. If no free poles exist at all. demagnetizing field energy falls off to zero. And as L. Neel predicted, the domain wall production obligingly continues until closure domains occur at the ends. as in Fig. 5(c). so that no external field appears at all.
The trouble is that strain energy appears as the rectangular crystallite distorts under the magnetic forces by magnetostrictive effects. The domains continue to subdivide with smaller and smaller closure domains reducing the strains at the ends. resulting in something like Fig. 5(d). H.J. Williams actually obsenved such domains and their walls. and they had a characteristic width of about 0.14 mm . The energy decreases as the lamellar domain houndaries form.
But these Bloch Walls themselves contain a wall energy per unit area. stored by the work done to turn round the elementary magnet ic vectors through the required 180°. Fig.6. I have made an attempt in Fig. 7 to show that all these contlicting energy conditions result in a minimum size for the domains corresponding to the minimum energy in any one crystallite

BULK MAGNETIZATION

If vou apply the external field as betore something like the following seems to occur. First. the domain walts shift reversibly through small distances. At this stage of proceedings we are at the initial permeability point near the origin on Fig.8. Then the first few "jumps" of the Barkhausen effect begin to occur as the domain walls shitt irreversibly.

This jump-like movement of the domain boundaries occurs because of such inclusions as impurities. strain and dislocations of the crystal structure the presence of alloving elements, and of prior heat and mechanical working of the material - in other words, because of the presence of a vast number of possibilities, which presages that ferromagnetic materials will differ markedly in their properties. Figure 9 summarizes what might happen at an inclusion as the Bloch wall tries to move away from it. The wall jumps to the inclusion to minimize the local energy, then holds back

Fig.9. As the Walls move, they might encounter inclusions of various types. I have shown one here as a rectangle. The sequence shows what might occur as the Wall "snaps" away from the inclusion. leaving the "spikes" that people have actually seen.

Fig.10. This illustrates the narrow hysteresis curve characteristic of a "soft" magnetic material. Notice the small magnetizing force required for a rapid rise in flux density. Fig. 11 (right). A "hard" material has a wide hysteresis loop with a large coercivity, H_{c}.
until the force has grown sufficiently for it to suddenly snap away. This explains the Barkháusen jump in flux density. Peculiar "Néel spikes". which minimize the dislocation energy at the inclusion site, remain there. Neel predicted these ${ }^{5}$, and people have
actually seen them. They are small local triangular domains.

Narrow loops: broad loops. It your ferromagnetic specimen has a very pure, nearly single crystal structure. then a relatively

Fig.12. If you open a magnetic circuit, the operating point moves away from B_{r} to some point P on the demagnetization curve. The actual position of P depends on how wide you make the gap, the cross section of the magnetic sample and its length.

small magnetizing force \mathbf{H} will rapidly line up all the domain magnetization directions into the cube edge directions aligned most favourably to the applied field direction. While this is occurring, you are on the fast rise past of the curve at Q on Figure 1 or 8 . At the knee in the curve. the magnetization vectors begin to be wrenched round into less favourably directions, thus the rise becomes slower. When all the vectors become aligned, saturation occurs and you will have a powerfully magnetized material, but which will lose its magnetization very easily when you remove the external field. Such a "soft" magnetic material has a tall, thin hysteresis loop such as that in Fig. 10.

If you try the same thing with hard steel. full of inclusions. strained, and with all the other effects that make domain boundary movement difficult, then you will have to apply a large field to get the flux density up to saturation. But having done so, you will then find an equal difficulty in demagnetizing the sample, so that a large coercive force arises for this "hard" magnetic material. This results in a relatively stable magnetization. which has a stubhy open type of hyteresis loop as shown in Fig. 11.

PERMANENT REQUIREMENTS

By exploiting all these possibilities you can "doctor" your material by various treatments to yield the tall thin liysteresis curves with very small enclosed areas of the type in Fig.10, or you can arrange for the production of the shorter, hut much more stocky ones in Fig. 11.

The first type describes the soft materials of high permeability, easy to magnetize and demagnetize. You would choose these for transformer cores, relays. r.f. inductors and other electro-magnetic devices employing alternating or on/off fields. The lowerpermeability. broad-hysteresis-loop materials possess the characteristics needed for permanent magnets. I shall concentrate on these for the remainder of the discussion.

Look at Fig. 11 again. This shows a typical hysteresis loop from saturation to saturation of what we would regard as a "good" material for a permanent magnet. You only obtain the maximum remanence B_{r} at the centre of a very long har, or hetter, by arranging the flux to go round a toroidal sample. The large coercive force $-\mathrm{H}_{6}$ shows that you would find it difficult to demagnetize this material. Of course, all the flux remains inside the toroidal core so that you obseve nothing outside. which makes it rather uninteresting as a permanent magnet.

Interesting things happen when you cut a slot in the toroid. or as we would say, open the magnetic circuit. Doing this drives the operating point down the demagnetizing curve, so that the flux density weakens to a value B_{m} and a reverse, or demagnetizing force, $-\mathrm{H}_{\mathrm{m}}$, appears in the material. corresponding to point P'on Fig. 12. We now get a useful external field in the air gap.

Driving the flux across. When you cut a slot through the toroidal magnet, the flux has to leave the iron, cross the high-resistance air region, and then re-enter the iron again. The flux lines ahways thread round a loop and do

Fig.13. The continuous flux lines shown in (a), concentrate towards the remanent value in the centre of a bar, while the H field strength drops off towards zero at the same position. The field lines proceed in different directions to the flux lines. In general they go in opposite directions inside the material. The graph shows qualitatively how the field strength and the flux density varies from point to point in the material and nearby space.

Fig.14. Very rarely do magnets possess a single operating point such as that on Fig.12. Different parts of the material operate on different sections of the demagnetization curve as shown here.
not appear or disappear on anything. In other words as "magnetic charges" do not exist. B lines start and end on themselves. Ii you remember, this means divB $=0^{2}$, But the magnetic force \mathbf{H} does notionally end on the surface poles set up when you cut the magnet. Lines of \mathbf{H} appear across the air gap and account for the flux density in it via $\mathbf{B}=$ $\mu_{n} \mathrm{H}$. Internal H lines also start and end or the surface poles, hut go backwards through the iron - this is the demagnetizing field already mentioned. Thus the Bfield weakens hut does goacross the gap, and you can think
of the \mathbf{H} field in the iron setting up a magneto-motive force (m.m.f.) equal to $\mathrm{H}_{\mathrm{m}} \mathrm{I}_{\mathrm{s}}$ driving a total flux 0 through the magnet, together with an equal but opposite m.m.f. across the air gap maintaining the same flux there.

You can see that this follows from the argument that the total m.m.f. adds to zero round a closed path when no electric current threads it.

$$
\oint \mathrm{HdI}=0
$$

From the flux continuity

$$
B_{k} A_{k}=B_{n n} A_{m}
$$

for the magnet and gap. But. $\mu_{r}=1$ in air.

$$
\int H \mathrm{dl}=\int \frac{\mathrm{B}_{\mathrm{s}}}{\mu_{0}} \mathrm{dl}
$$

for the gap. And as I said above.

$$
\begin{aligned}
& \int_{\text {magnef }}^{\mathrm{Hd}} \mathrm{~m} \cdot \mathrm{~m} \cdot \mathrm{r}_{\cdot(\text { Kap })}=0 \text {). }
\end{aligned}
$$

so that H in the magnet is opposite to B in the magnet and to H in the gap. Figure 13(a) shows the lines of B in a fairly short uniformly magnetized har magnet. They are most dense near the centre. and in fact approach the saturation value. B_{r}. Figure 13(h) illustrates what happens to the H field in the bar. The reverse H nearly falls to zero at the centre and the lines start and end on the surface poles at the ends. The directions of \mathbf{B} and \mathbf{H} clearly do not lie in the same direction inside the bar.
After the rude shock of the likely complexity just mentioned regarding bar magnets with their extremely large air paths, we can hurriedly revert to the ring magnet with small gap. This simpler situation leaves the fields much more uniform in the material*. The operating point occurs somewhere down on the demagnetizing curve in the fourth quadrant of the B,II plot and the question arises as to whether an optimum position $\mathrm{P}_{\text {tupt }}$ exists. Now the flux in a gap Φ $=B A=\mu_{n}, H \mathrm{HA}$. If for argument's sake, the m.m.f. arises from a current I amps going round a coil of n turns then. m.m.f. $=\mathrm{Hl}=$ nt . mmpere turns. This force drives Φ across the gap, as we have seen, and by analogy with Ohm's law in the electromagnetive force case, we have
$R=\frac{\text { m.m.f. }}{\Psi}=\frac{\mathrm{HII}}{\mu_{0} \mathrm{HA}}=\frac{1}{\mu_{1} \mathrm{~A}}$ Henries $_{-1}$ (for air),
where R is the magnetic resistance, which we now rename reluctance.
The reluctance has dimensions H^{-1} and we know that the energy stored in henries of inductance equals $\mathrm{II} \mathrm{I}^{2} / 2$

$$
\mathrm{E}=\frac{1}{2} \mathrm{~L} \mathrm{LI}^{2}=\frac{\left|\mathrm{A}^{2}\right|^{2}}{2 \mathrm{R}}=\frac{1}{2} \mu_{0}, \frac{\left.\mathrm{AH}^{2}\right|^{2}}{1} \text { joules }
$$

$\operatorname{BuI} \mathrm{Al}=$ the volume of the region.

- By placing soit uron puile shoes on the magnet ends. a much more uniform internal field can the arransed. as the uron amoments to hemes an extremely low reluctance path futhe Dux

$$
\frac{\text { energy stored }}{\text { volume }}=\frac{B H}{2} \text { joules } \mathrm{m}^{-3}
$$

This reasoning shows that the concentration of energy in a volume of magnetic material goes as the product of the flux density and the magnetic force-field strength. It looks as if we will obtain the smallest and lightest magnets for a given flux in an air gap, if we use materials with large values of B_{m} and H_{m} and position the operating point for the greatest BH product. In fact. you will find $\mathrm{BH}_{\text {max }}$ quoted as the figure of merit for a magnetic material and this figure governs the geometrical design of actual permanent magnets. A cunce of the product BH , showing the $\mathrm{BH}_{\text {max }}$ point, appears on the right hand side of Fig. 12 .

Long and thin, or short and fat? Suppose you possess a material with a rather high maximum remanence but with a limited coercive force. The $\mathrm{BH}_{(\max)}$ point occurs high up on the demagnetizing curve and although the large B_{m} means you can set up a considerable flux Φ in a certain air gap. your magnet will have to be a long one to give sufficient m.m.if to drive it across.

On the other hand, if a low-retentivity ferrite, say. with a vast coercivity, turns up for use in a certain magnet design, then you might expect a $\mathrm{BH}_{(\text {max })}$ point far along the H axis, but not very high up. I will point out later that your naive expectation on this point gets confounded somewhat by a mechanism yet to be considered. If you make magnets from high coercivity material, you need large area pole faces to generate the total flux from the usually low B_{m}. On the other hand, the magnet lengths remain very short for the required m.m.f. because of the large H_{m}. You might have to concentrate the flux into a gap of smaller cross sectional area by employing shaped soft iron pole pieces.

Fig.15. Whether or not the crystals of the material possess a preferred direction affects the shape of the demagnetization curve noticeably. The vector diagrams show a simplified picture of the likely effect on the remanence.

Fig.16. Although the two hypothetical materials shown here possess the same coercivity and remanence, the BH product differs. Material A has a larger "fullness factor" than B.

DESIGNING A MAGNET

Suppose you want to set up a tlux ϕ in an air gap of length l_{g} and area A_{g}. Assume a uniorm flux density B_{m} in the magnet, so that $B_{m} A_{m}=B_{g} A_{d}$ webers. If your magnet ring has a magnetic path length l_{m}, then the $\mathrm{m} . \mathrm{m} . \mathrm{f} .=-\mathrm{H}_{\mathrm{m}} \mathrm{I}_{\mathrm{m}}=\mathrm{B}_{\mathrm{g}} \mathrm{I}_{\mathrm{s}} / \mu_{\text {o }}$ from earifer reasoning.

$$
\begin{aligned}
\frac{B_{m}}{H_{m}} & =-\frac{\mu_{\mathrm{c}} A_{k} I_{m}}{A_{m} I_{k}} \\
& =-\frac{\Phi}{m \cdot m \cdot f \cdot f} \cdot \frac{I m}{A_{m}} \text { henries } \mathrm{m}^{-1}
\end{aligned}
$$

From the first of these equations. dividing through by μ_{0}. we get the slope of the load line. Not ice the slope clearly depends only on the geometry of the situation, in other words, the areas and lengths involved.
Of further interest, relating energies
d.m.m.f. $=-B_{m} H_{n i} A_{m} 1_{m}=-B_{m} H_{m} V_{m}$

$$
=\frac{B_{8}{ }^{2} V_{18}}{\mu_{0}} \text { Joules }
$$

where V_{m} is the magnet volume. which if we divide right through by 2 , yields the energy in the magnet.

Finally, from the m.m.f. and total flux expressions, assuming you have arrived at the optimum B and H point, the area of the magnet is.

$$
A_{m}=\frac{B_{\mathrm{B}} A_{\mathrm{s}}}{B_{\mathrm{opt}}}=\frac{\Phi}{B_{\text {opt }}}
$$

and its length.

$$
I_{\mathrm{m}}=-\frac{B_{\mathrm{g}} \mathrm{l}_{\mathrm{g}}}{\mu_{\mathrm{o}} \mathrm{H}_{\mathrm{opt}}}=-\frac{\mathrm{m} . \mathrm{m} \cdot \mathrm{f} .}{\mathrm{H}_{\mathrm{opt}}}
$$

The product of these two vields the volume

Fig.17. Once dominating the market, and still forming a sizeable slice of it, we have the AI-Ni-Co materials, some demagnetization curves for which are shown here.

Fig. 18 (right). The enormous coercivity, but considerably lower remanence of the ferrite materials produce an interesting effect. The axes can now be plotted to the same scale, as I have done here. The B-H curve now has a maximum slope of minus unity, whereas the J.H curve has a large horizontal section. B can reverse, even while J is still near the saturation value.
of the magnet material you require. Knowing the density of the material, you also have the weight of the magnet.

LEAKAGE

All this looks fine. I hear you say. And it is fine for a fairly long magnet with a very small gap and with little fringing flux. or what amounts to saying the same thing. a small leakage flux.

You will. however, notice a problem if you make the air gap wider. Not all the flux passes hetween the poles; some fringes out, bulging round the gap. Yet more passes across the magnet geometry from poles on the surface that form elsewhere than in the gap. This means your design from the above equations becomes too conservative, and a more ample magnet size invariably arises in practical situations.

The trouble in dealing with leakage flux turns up from all the guesswork involved. That explains why good magnet design becomes a case of looking up data from previous successes and by drawing on ex perience. Some general rules of thumb do exist. and empirical methods, such as working with analogues in an electrolytic tank can give an indication of what is required. Such wide-gap magnet designs move nearer to the open, or bar magnet situation. and we saw how complex that can be.

You will notice one effect immediately: different parts of the material in the magnet begin to work at different points on the demagnetizing curve, as in Fig. 14. The area of operation might even push into the forward (first quadrant) region and force some of the precious material to drive a flux density greater than B_{r} through a portion of itself, which, if replaced by soft iron. would work hetter. Of course, you would have a very bad magnet design if this happened.

The flux density in the magnet weakens towards the ends of poles, in the extended-air-space designs. You would be correct to assume that such magnets ought to taper towards the poles, so that the larger girth in the centre can support the greater total flux required to supply the gap flux and the increasing leakage. Doing this yields approximately the same B in all parts of the material. As a matter of fact. the ideal shape for uniform flux density in the material turns out to be an ellipsoid of revolution, and such shapes receive the lion's share of discussion in texts on theoretical magnetism.

Practical designs exploiting the approximation to an ellipsoid include the magnetron magnet in radar systems. One way of looking at the fattening of the centre of these magnets is to imagine the "sheath" supplying the leakage flux. while the core supplies the (uniform) gap field.
Once you have arrised at the required gap flux together with an estimate of the leakage. the sum of these will give you the total magnet flux. From knowing this. you can insert a correction factor. k_{1}. given by

$$
k_{l}=\frac{\text { magnet flux }}{\text { gap flux }}
$$

into the design equations. Your problem is arriving at a good estimate of $\mathbf{k}_{\text {. }}$. The

Fig.19. The B-H and J.H curves for various grades of ferrite material all show the characteristics mentioned in Fig. 19.

Fig. 20. This curve applies to the largest energy product achieved in a sample of permanent magnet material. The picture also illustrates that the optimum operating point yields a load line slope of 45° in these materials.
situation is exacerbated somewhat by another effect: some of the m.m.f. might be "used up" in driving the flux across other gaps, such as junctions between the magnet and pole pieces, and so on. The only way out is another "k"factor, k_{2}.

$$
\mathrm{k}_{2}=\frac{\text { Magnet m.m.t. }}{\text { gap m.m.f. }}
$$

According to A. Edwards ${ }^{\top}$. k rarely falls below 2 and might reach 20 or more for large magnets with long air gaps. The factor k_{2}, usually much smaller. ranges from about 1.05 to 1.45. E. Megaw ${ }^{\text {s }}$ offered empirical estimates for these factors: $k_{1}=1+71_{\mathrm{g}} / \mathrm{D}_{\mathrm{m}}$ for air gaps of length l_{g} between circular pole-faces of diameter I_{m} : and $\mathrm{k}_{2}=1+$ $1 . / 5 \mathrm{D}_{\mathrm{m}}$ for similar geometry.
Therefore if from these, or otherwise. you have a shrewd knowledge of k_{1}, k_{2}, then by using the modified design equations.

$$
\begin{gathered}
\frac{B_{m}}{\mu_{0} H_{m}}=\tan H=-\frac{k_{1} A_{k} l_{m}}{k_{2} A_{m} l_{\mathrm{g}}} \\
V_{\mathrm{m}}=-\frac{k_{1} k_{2} B_{k}{ }^{2} V_{k}}{\mu_{0}(B H)_{\max }} m^{3} \\
A_{m 1}=\frac{k_{1} B_{k} A_{s}}{B_{10 n t}} m^{2} \\
I_{m}=-\frac{k_{2} B_{k} I_{k}}{\mu_{0} H_{10 n t}} m
\end{gathered}
$$

a fairly economical design should result. A.E.Falkus discussed loudspeaker magnet designs with estimated leakage factors in an interesting article some time ago ${ }^{9}$.

SOME REAL BH CURVES

A final word or two on what we have at our disposal rounds off this interesting subject. First, you will find the actual shapes of BH loops depend on a number of factors I have not yet mentioned. The value of B_{r} in many curves seems to be near one half to the saturation value. This most nearly applies to rardom polycrystalline materials that magnetize equally in all directions. You can understand the reasons for this by considering the unmagnetized material in which $\mathbf{J}=$ () and $\mathbf{H}=0$. All the internal domains cancel as in Fig. 15(a).
If you now take the material to saturation, it becomes totally magnetized along the \mathbf{H} direction, as in Fig. 15(b). When you remove the H field. the old preferred directions reassert themselves, but as direction \rightarrow is identical to \leftarrow the result appears as in Fig. $15(c)$. Therefore a remanent magnetization of \mathbf{J}_{r} remains. equal to $1 / 2 \mathbf{J}_{s}$.

On the other hand, if you have lined up your crystals by special treatment during manufacture so that you have a preferred direction then. in this anisotropic material. magnetization will be very good in one direction, but will be poor in others. If only crystal anisotrophy remains to be dealt with. then the diagonal angle amount to 58° in a cune predicts that a remanent value for J of $0.78 \mathrm{~J}_{\mathrm{s}}$ should result, as shown in Fig. 15 (d).

The above discussion shows that the shape of the BII curve may differ - even though materials might have the same coercivity and remanence. The material with the largest "fullness factor" will have the greatest (BH) max $^{\text {ax }}$ product. Fig. 16.

The qualities of permanent magnet materials just before, during, and after the second world war. rested upon the properties of the $\mathrm{Al}-\mathrm{Ni}-\mathrm{Co}$ alloys. some demagnetization curves of which appear in Fig.17. The many grades of Alnico and the anisotropic versions (Alcomax. Columax), which would take a whole article to describe fully. still figure in the economics of permanent magnet production.

Earlier. I remarked that modern ferrite permanent-magnet materials might possess a huge coercivity but not much retentivity. Ferrites yield smaller BH products, but they figure prominently in the market for magnets because of low material density and cheapness. Table 1 compares the market pattern c. $1986^{1 \prime \prime}$. The ferrite materials often show strongly anisotropic properties, which predicts that the JH loops (notice I have used

R.S.I. LANGREX R.s.T. SUPPLIES LTD

One of the largest stockists and distributors of electronic valves, tubes and semiconductors in this country.
Over 5 million items in stock covering more than 6,000 different types, including CRT's, camera tubes, diodes, ignitrons, image intensifiers, IC's, klystrons, magnetrons, microwave devices, opto electronics, photomultipliers, receiving tubes, rectifiers, tetrodes, thryatons, transistors, transmitting tubes, triodes, vidicons.
All from major UK \& USA manufacturers. Obsolete items a speciality. Quotations by return. Telephone/telex or fax despatch within 24 hours on stock items. Accounts to approved customers. Mail order service available

LANGREX SUPPLIES LTD

1 Mayo Road, Croydon, Surrey CR0 2QP. Tel: 01-684 1166
Telex: 946708
Fax: 01-684 3066

Toroidal \& E.I.

 TransformersAs manufacturers we are able to offer a range of quality toroidal and laminated transformers at highly competitive prices.

Toroidal Mail Order Price List

prices inclusive of VAT \& Postage
$15 \mathrm{va} 9.12,30 \mathrm{va} 9.48,50 \mathrm{va} 10.16,80 \mathrm{va} 11.02,120 \mathrm{va}$ $12.23,160 \mathrm{va} 14.44,225 \mathrm{va} 16.37,300 \mathrm{va} 18.05,500 \mathrm{va}$ $26.46,625 \mathrm{va} 30.66,750 \mathrm{va} 34.14,1000 \mathrm{va} 49.40$ Also available $1 k 2,1 k 5,2 k, 2 k 5,3 k$. Prices on request. Available from stock in the following voltages: 6-0-6, 9-0-9, 12-0-12, 15-0-15, 18-0-18, 22-0-22, 25-0-25, 30-0-30, 35-0-35, 40-0-40, 45-0-45, 50-0-50, 110, 220 , 240. Primary 240 volt.

Quantity prices and delivery on request
 Air Link Transformers
Unit 6, The Maltings, Station Road, Sawbridgeworth, Herts. Tel: 0279724425

NEW 8051 DEVELOPMENT CARD

The new Cavendish Automation development card carries a full symbolic Assembler and text editor as well as the MCS-BASIC 52 package. It will allow the user to write applications programmes in either BASIC or Assembler.
The text editor supports ORG, LOC, HIGH and LOW directives as well as the current location (\$) and the + and - operators. Full source text editing is included, and the source file as well as assembled code may be blown into PROM/E ${ }^{2}$ PROM on-card. A powerful feature of the system is that a function library of over 60 routines within the interpreter may be accessed using assembly language CALL instructions, enabling simple negotiation of floating point, logical operations, relational testing and many other routines.

FEATURES:

- Only requires +5 V supply and dumb terminal
- Save assembled code or source text in PROM on-card
- Card I/O includes 9×8-bit ports and 2 serial lines.
- Very fast interpreter specifically written to access capabilities of '51 Family
- 32K user RAM, 16 K user PROM (RAM jumpered to access code or data space)
- Card supported by over 50 other types of CA I/O and CPU target cards

So, for professional implementations at super-low cost, call us on (0480) 219457.
Cavendish Automation, 45, High St., St. Neots, Huntingdon, Cambs PE19 1BN. Tel: 0480 219457. Telex: 32681 CAVCOM G.

Table 1 Market share of modern materials

Magnet material	Percent market value
Al-Ni-Co	15
Baand Srferrites	70
Rare-carth	15

J here) will have very flat tops and bottoms. Now $\mathbf{B}=\mu_{1}, \mathbf{H}+\mathbf{J}$ so that the $\mathbf{B H}$ loop differs from the JH loop according to this. You will find this especially noticeable with low B_{r} values and the surprising fact emerges that B might very well reverse as we move back along the negative \mathbf{H} axis, even though \mathbf{J} stays constant. Figure 18 illustrates this. together with the obvious result that $(\mathrm{BH})_{\text {max }}$ is obtained from the mid-point of the straight demagnetization line. Figure 19 gives a few JH and BH curves for ferrite materials.

Finally. the most recent developments of all involve rare-earth materials ${ }^{11}$. The largest BH product of any magnet turned up recently in a NdFel3 rare-earth sample (Sagawa et al ${ }^{\text {l2, }}$). Its demagnetization curves shown in Fig. 20 indicate that the $(\mathrm{BH})_{\text {max }}$ product reached the enormous value of 405 kJm^{-3}.

References

1. 'Joules Watt', "Maxwell's EM theory revisited" Ed llil July, 1987.
2. I.IH. Martin. "Magnetism in materials" Hireless World Jan. Feh. Mar.. April 1958.
3. As you would expect. a considerable literature exists. If you have access to Wireless World, vol. 36 (1935), a series of articles by the Permanent Magnet Association is still most interesting. Various issues of the Philips Technical Review contain much information about ALNICO ("Ticonal") and the development of the ferrites.
4. L. Néel, Ann. Univ. Grenoble, 22,229, (1946)
5. I. I Iadfield. "Permanent Magnets and Magnetism". Ch. I. Iliffe Books. (1962)
6. A. Edwards, et.al. Electrical Review. 135. 165. (1944)
7. E. Megaw, J. Inst. Elec. Engrs., Pt. IIIA, 93, 939 (1946)
8. A.E. Falkus, "Loudspeaker Magnet, Design". Wïreless World. January. 1960.
9. M. McCraig. "Permanent Magnets in Theory and Practice". L.ondon. (1987)
11.. International Workshops on Rare earth Magnets. proceedings from University of Dayton.
10. M. Sagawa, et.al. IEEE Trans. Magn.. Mag-22. 910. (1986).

Events

11-13 October. Wembley Exhibition Centre, London: Computer Graphics 88.
26-28 Octoher. Dublin: Intron 88, lrish Electronics Exhibition. SDL Exhibitions Ltd. Dublin. 01-900600.
3-6 November. Hydro Hotel, Windermere: Reproduced Sound, fourth annual weekend conference organized by the Institute of Acoustics (1)31-225 2143) in collaboration with AES. APRS and other professional bodies. Up to 35 contributed papers.
15-17 November. Kensington Exhibition Centre. London: Image Processing 88 .

Satcoms on the move

Spare satellite capacity, and the availability of a new frequency allocation in L-band (around 1.6 GHz) have enabled Inmarsat. the international maritime satelfite organization, to press ahead with a new communications service for land mobiles.
Live demonstrations of the preoperational service through Inmarsat's Atlantic Ocean satellite were given this summer in seven countries of Eastern Europe, by members of an Inmarsat team who drove some 3600 miles in their specially equipped Ford van. On the tour, which took them as far as Red Square in Moscow (pictured). they dispatched 200 test messages: and position reports were sent every 15 minutes by the vehicle whilst it was on the move. The area covered by the Atlantic satellite extends as far as the Middle East, and to the"eastern side of the Americas: but other Inmarsat satellites could expand the service worldwide by the end of next year. Future demonstrations are planned in North America. Asia and Australia.

The land mobile service, which is awaiting approval by Inmarsat's council. is based on the compact Inmarsat Standard C terminal. Standard C is a low-cost store-and-forward two-way messaging service based on a small non-directional, non-stabilized antenna fitted to the vehicle - no dish is required. Data rate is $600 \mathrm{hit} / \mathrm{s}$, with three levels of coding to eliminate errors: the channel is transparent and can accept non-text information too. Sending a 1000 -bit message (about 100 characters) costs about $\$ 1$ on Standard C. Efficiency of the system is high: a single 5 kHz carrier on the satellite can accommodate some 10000 mohiles: and a secondgeneration satellite could support several hundred carriers.

Inmarsat believes the system could satisfy a widespread need for global communications. Lorry drivers on international routes would be able to keep in contact with their offices by means of a terminal in the cab. and
even clear their customs documentation in advance. Their costs could fall. too: a Swiss company has developed a long-distance theft alarm for lorries, and insurance companies are said to be interested enough to be offering discounted premiums on the strength of it. Other users could be railways. which apprently have enormous difficulty in keeping track of their rolling stock: fitting an automatic position-reporting device to stock could enable managers to reduce the number of vehicles they need by as much as 30 per cent. Portable terminals could also be of use to groups such as journalists and disaster relief teams: the breakdown in communications in Sudan which accompanied the August floods emphasizes the need for communications which do not depend on fixed lines.

Two-way voice communications are still , some way off. though Inmarsat plans to evaluate three possible systems at the end of this year. Decisions to be made include the chaice of voice coding scheme. But a bigger. steerable antenna would be required la prototype will be ready in November), and ${ }^{*}$ more power (25 W instead of 10 W). Such a system could, by the early 1990s, bring radiotelephone communications to areas which otherwise would be out of reach. But it would not be cost-effective in huilt-up areas. because satellite systems cannot reuse frequencies as ground-based trunked networks can.

In front of the Cathedral of St Basil the

 Blissful, and the Kremlin's Spassky Tower (centre), is Inmarsat's converted Ford mobile home. Fitted inside the vehicle are a Racal Standard C terminal, a GPS/Loran receiver and a Magnavox terrain navigator. Inmarsat, an international co-operative supported by 54 member countries, provides global communications for some 7000 ships: now it is moving into land mobile radio.

What is happening to RDS?

With the launch of Radio Data System on all BBC f.m. radio transmitters in England, set-makers can now offer receivers with automatic tuning and other novel features. In this article, the BBC's RDS Project Manager summarizes the current situation.

BEV MARKS

Here in the UK both the BBC and the IBA have been working on RDS transmitter equipment installations for the last three or four years, and something like 75 percent of the population are within reach of an f.m. transmitter which is already transmitting some RDS features ${ }^{1.2}$. Well over 150 BBC transmitters are radiating RDS and work is progressing to complete the necessary installation throughout the UK. Fortunately a fairly high proportion of the remaining transmitters are relays of others and so they will start as soon as their mother station is on air with RDS.
Across Europe, all major European Broadcasting Union members have now said they will provide RDS over the next few years. Several countries, like the UK, are well ahead with installing RDS encoders, notably Sweden. France and West Germany, All hroadcasters are conforming to the EBU specifications described in document Tech.

BBC Radio's central RDS computer at Broadcasting House, London. From left to right: the logging console printers; the DEC MIRA Micro PDP11 computers; and the radio clock with, below it the limiteddistance modems which connect the com. puter into the Nicam programme distribution system.
3244. creating a large receiver market to make it worthwhile developing the technology to take advan tage of RDS.
It is interesting to note the differing features that broadcasters have chosen to implement at the initial stages. In Sweden. for example, they have a similar network and local radio structure to the UK's. and have
chosen similar features apart from the addition of Radio Paging (RP). which in the UK is already served. France has started RDS with RP as a major consideration, because it can bring revenue to enable the long tern. expansion of other RDS features.

BBC Radio felt that RDS was of major importance in helping the listener to find the programmes - high in both editorial and technical quality - which it already offered. So the prime objective was to find features which would meet this criterion, yet cost relatively little to provide: it was not desirable or possible to arrange for RDS to be charged to the listener by an increased licence fee.

FEATURES OF RDS

At this stage it is worth briefly describing the features and introducing the concept of static and dynamic RDS. All BBC f.m. trans-

© KELECTRONIC ${ }^{\text {Kí }}$ COMPONENTS LTD.

* All items guaranteed to manufacturers spec.
* Many other items available.
'Exclusive of V.A.T. and post and package'

74LS125

74LS244
74LS245
74LS373
6809
$1+50+$

6821

		$1+$	$50+$	
0.15	0.12	8 Meg	0.45	0.35
0.30	0.21	16 Meg	0.45	0.35
0.30	0.21	ILQ-74	1.50	1.35
0.30	0.21	1488	0.25	0.16
2.50	2.20	1489	0.25	0.16
1.25	0.95	LM2901	0.80	0.60
2.50	2.20	LM2917-8	1.50	0.75
1.60	1.40	$2732-A$	2.50	2.30
2.80	1.90	$2764 A \cdot 25$	2.20	2.00
2.80	1.85	$27 C 64 \cdot 20$	3.00	2.60
2.80	1.70	$27128-25$	3.70	3.40
1.60	0.95	$27 C 128 A-25$	3.40	3.10
1.90	1.30	$27128 A$	2.98	2.72
0.50	0.40	$27256-25$	3.30	3.12
0.25	0.16	$27 C 256-25$	3.50	3.22
095	0.70	43256C12L	10.00	9.00
0.75	0.65	ICL8211CPA	0.80	0.60
0.50	0.35	TLO84CN	$0.5 C$	0.45
0.45	0.35	Z80ACPU	100	0.80
0.45	0.35	Z80ACTC	1.00	0.65
0.45	0.35	Z80AP10	1.00	0.65

6845
6850
6502
6522 P
8031
8085
8255-5
LM319N
32 768khz Crystal
1.8432 MHz
2.4576 MHz
3.5795 MVHz

4 Meg
4.194304

6 Meg
 \section*{\section*{STEREO
 \section*{\section*{STEREO STABILIZER 5 STABILIZER 5

 - Rack mounting frequency shifter for

 - Rack mounting frequency shifter for howl reduction in public address howl reduction in public address and sound reinforcement. and sound reinforcement.

 - Mono versicn, box types and 5 Hz

 - Mono versicn, box types and 5 Hz fixed shift boards also available. fixed shift boards also available.

 }

 SURREY ELECTRONICS

 SURREY ELECTRONICS LTD. LTD.

 The Forge, Lucks Green, Cranleigh,

 The Forge, Lucks Green, Cranleigh, Surrey GU6 7BG Surrey GU6 7BG Telephone: 0483275997} Telephone: 0483275997}

178 Brighton Road,
Purley, Surrey CR2 4HA
Tel: 01-668 7522. Fax: 01-6684190

COUNTERS \& OSCILLATORS

COUNTERS MET 100/600/1000/1500
8 digit $0.5^{\prime \prime}$ LED. 5 Hz up to $100 / 600 / 1000 / 1500 \mathrm{MHz}$. Resolves 0.1 Hz . Sensitivity 5 mV up to 10 MHz . Low pass fiter. Mains/rechargeable battery powered.

LEVEL AC OSCHLATORS TG1520/OM
$3 \mathrm{~Hz}-300 \mathrm{kHz}$. 5 ranges, acc $2 \%+0.1 \mathrm{~Hz}$ up to 100 kHz , 3% at 300 kHz . Sine or square $<200 \mathrm{~V}$ to 2.5 Vms . Distn. $<0.2 \% 50 \mathrm{~Hz}-50 \mathrm{kHz}$. TG 1520 M has an outpur meter.

LEVELL RC OSCMLATORS TG2000/DMP
$1 \mathrm{~Hz}-1 \mathrm{MHz}$. 12 ranges, acc $1.5 \%+0.01 \mathrm{~Hz}$ to $100 \mathrm{kHz}, 2 \%$ at 1 MHz . Sine or square ourputs $<200 \mu \mathrm{~V} \cdot \mathrm{TVms}$. Distortion $<0.05 \% \quad 50 \mathrm{~Hz}-15 \mathrm{kHz}$. Sync output $>1 \mathrm{~V}$ TG2000MP has ounput meter and fine frequency control

LEVEL FUNCTION GENERATORS TG302/3
$0.02 \mathrm{~Hz}-2 \mathrm{MHz}$ in 7 ranges. Sine. square, triangle, pulse and ramp 20 mV to 20 Vpp from 50Ω. DC offset $0 / \pm 10 \mathrm{~V}$. TTL output. TG303 also has a CMOS ourput and 6 digit 10 MHz counter with $\operatorname{INT} / E X T$ switch.

TEST METERS

LEVELL AC MICROVOLTMETER TM3B
16 ranges $15 \mu \mathrm{Vfs} / 500 \mathrm{Vfs}$, accuracy $1 \%+1 \%$ fs $+1 \mu \mathrm{~V}$ $-20 \mathrm{~dB} /+6 \mathrm{~dB}$ scale. $\pm 3 \mathrm{~dB} 1 \mathrm{~Hz} \cdot 3 \mathrm{MHz} .150 \mathrm{mV}$ fs outpui

LEVELL
 for INSTRUMENTS

* REDUCED PRICES *

DIGITAL MULTIMETERS

```
HC5040T£32
HC4510£52
```


FUNCTION GENERATORS

TG302
 £112
 TG303
 £185

FREE UK DELIVERY VAT EXTRA
LEVELL BROADBAND VOLTME:ERS TM6B
16 LF ranges as $\mathrm{TM} 3 \mathrm{~B}+8 \mathrm{HF}$ ranges $1 \mathrm{mVfs} / 3 \mathrm{Vfs}$. accuracy $4 \%+1 \%$ fs at $30 \mathrm{MHz} . \pm 3 \mathrm{~dB} 300 \mathrm{kHz}-400 \mathrm{MHz}$

HC DGGTAL MULTMMETERS HC5040/5040T $31 / 2$ digit 12.7 mm LCD. Up to $1 \mathrm{kVdc}, 750 \mathrm{Vac}$, $10 \mathrm{~A}, 20 \mathrm{M} \Omega$. Resolution $100 \mu \mathrm{~V}$. 100nA. $10 \mathrm{~m} \Omega$ 5040T: $100 \mathrm{~m} \Omega$). Buzzer. dcV 0.25\% Battery life 2000\%rs. 5040T: has a TR test
HC DIGITAL MULTIMETER HC4510
4% digit 11 mm LCD Up to $1 \mathrm{kVcc} .750 \mathrm{Vac}, 10 \mathrm{~A}, 20 \mathrm{M} \Omega$. Resoln. 10 VV .100 nA . $10 \mathrm{~m} \Omega$ Buzzer. dcV 005%
LeVELL digrtal Capactrance meter 7705
$01 \mathrm{pF} \cdot 2000 \mu \mathrm{~F}$, acc 0.5%. $3^{1 / 2}$ dignt 127 mm LCD
LEVELL INSULATION TESTER TM14
Log scale covers 6 decades $10 \mathrm{M} \Omega-10 \mathrm{~T}$? at $250 \mathrm{~V}, 500 \mathrm{~V}$.
750 V . $1 \mathrm{kV}: 1 \mathrm{M} \cdot 1 \mathrm{~T} \Omega$ at $25 \mathrm{~V} \cdot 100 \mathrm{~V} ; 100 \mathrm{k} 100 \mathrm{G} \Omega$ at 25 V 10V: $10 \mathrm{k} \cdot 10 \mathrm{G} \Omega$ at 1 V Current 100 pA 100 mA

OSCILLOSCOPES

CROTECH SINGLE TRACE $20 \mathrm{NHz} 3031 / 36$ $2 \mathrm{mV}-10 \mathrm{~V} / \mathrm{div}$. $40 \mathrm{~ns}-0.2 \mathrm{~s} / \mathrm{div}$ Cal 0.2 V . Component test 3031: CRT $1.5 \mathrm{kV} 5 \times 7 \mathrm{~cm}$. 3036: CRT $1.8 \mathrm{kV} 8 \times 10 \mathrm{~cm}$ HAMEG DUAL TRACE 2OMHz (@2mV) HM203-6 $2 \mathrm{mV} \cdot 20 \mathrm{~V} / \mathrm{cm} \mathrm{Ch} 2 \pm \mathrm{Ch} 1 \quad \mathrm{X} \cdot \mathrm{Y}$ Cal $0.2 \mathrm{~V} / 2 \mathrm{~V} 1 \mathrm{kHz}$ sa $20 \mathrm{~ns}-0.2 \mathrm{~s} / \mathrm{cm}$. Auto, normal or TV trig. Component test HAMEG DIGITAL STORAGE 2OMHz HM205-2
$2 \mathrm{mV} 20 \mathrm{Vcm} \mathrm{Ch} 1 \pm \mathrm{Ch} 2$ Single shot and $X-Y$ modes 20 ns .0 .2 s cm Auto, normal of TV trig Component test Cal 02 V 2 V 1 kHz .5 MHz sampling Two 1 K memories Dal Joining feature Y out. CRT $2 \mathrm{kV} 8 \times 10 \mathrm{~cm}$

HITACHI DUAL 2OMHz V212/222/223
$1 \mathrm{mV}-12 \mathrm{~V} / \mathrm{cm}$. 2 CMHz at 5 mV . Ch $1 \pm \mathrm{Ch} 2 \quad X \cdot Y$ Ch output. $100 \mathrm{~ns}-0.5 \mathrm{~s} / \mathrm{cm}$. Auto, normal or TV trigger Cal 05 V 1 kHz square. Z input. CRT $2 \mathrm{kV} 8 \times 10 \mathrm{~cm}$
V222: Plus DC offset and ahemate magnify function V223: As V222 plus sweep delay $1 \mu \mathrm{~s}$-100ms

LEVELL DECADE BOXES

CB410/610:4/6 decs. 10pF steps. acc 1\% ± 2 pF. R401/410: 4 decs. 1Ω or 10 steps. acc 1\%, 2.5W R601/610: 6 decs. 1Ω or 10Ω steps, acc 1\%, 2.5 W R601S : 6 decades. 1Ω steps, acc 0.3\%, 2.5W R701 : 7 decades. 1Ω steps, acc 1%. 2.5W

"WE CAN TONE YOU UP FAST.:

RETROFIT TONE SIGNALIING SYSTEMS

 forRADIOTELEPHONES - CICSS //s 0 5/6 Tone

- Selective Calling - ANM Microphones - Control \& Display

FOR ANY GENERATION \& MAKE OF EQUIPMENT DESIGNED, BUILT \& FITTED

Private Mobile Rentals Limited
Industrial Estate, Gwaelod-Y-Garth Cardiff, CF4 8JN, United Kingdom. Telephone: 0222810999 Telex: 497244 NOVCDF G
Fax: 0222813369

ENTER 7 ON REPLY CARD

CONQUERING NEW HEIGHTS

Yes its 25 MHz for $£ 319$

* Component Comparator * Variable Hold Off * Triple DC Source * DC -25 MHz * $40 \mathrm{~ns} / \mathrm{div}$ $\star 2 \mathrm{mV} / \mathrm{div}$ * Low Cost £ 319 To scale the heights, just call us for your FREE copy of our catalogue
*(Ex VAT \& Delivery)

Crotech instruments Limited

2 Stephenson Road, St. Ives, Huntingdon, Cambs. PE17 4WJ Telephone: (0480) 301818 \qquad

mitters with RDS provide the following static features:

Programme Service name (PS)
Programme Identification code (Pl)
Alternative Frequencies list (AF)
Other Networks information (ON)
Clock Time (CT)

Straight away it will be obvious that CT cannot be totally static! In fact is is transmitted in a special group on the minute edge: the RDS encoder has this function built into its software and no external command is required to put this group into the data stream. In the BBC system, CT is synchronized by off-air reception of MSF from Rugby to give the accuracy considered essential for these days of digital timepieces. The other features are all derived from data held in prom in the encoder, which will continue cycling around to provide the necessary groups in a pre-determined sequence. Hence the description, static RDS.

Dynamic RIS, on the other hand, requires information to be sent to the encoder to change the normal cycle of transmitted groups. The following features are included in this catgory:
Travel Programme (TP)
Travel Announcement (TA)
Programme Type (PTY)
Programme Item Number (PIN)
Radio Text (RT)
And there are a good number of further RDS features which the broadcasters can implement in the future. RDS is already well standardized ${ }^{3.4}$ but it has been designed to be upwardly mobile. allowing the broadcaster to add features when the demand develops.

RDSANI) THE MANUFACTURER

So far we have not talked about the vital ingredient in the development of RDS, the receiver manufacturer. Across the world many companies are developing RDS receivers. Initially, car radio manufacturers are deeply involved - probably every one is developing a receiver simply because of the enormous advantage that the automatic tuning aspect gives to these products. At the least they have to decode Pl and AF to

One of the first hi-fi tuners with RDS: this model from Grundig's Fine Arts 9000 series will be available in the spring. Two further hi.fi tuners with RDS are being introduced by Revox.
achieve automatic tuning and most also provide station names from the PS.

A number of different implementations are possible for displaying the PS: some receivers use dot matrix displays, some use starburst displays, some are back-lit for increased visibility. For the user, dot matrix displays have the added advantage that upper and lower-case characters can be displayed. This aids recognition of the station name if the broadcaster is using both. BBC Radio has studied display recognition and uses uppercase for the national network stations, but finds that a mixture is best for local radio where the slight limitation of only eight characters is easily overcome: for example, BBC Radie Cambridgeshire is identified as "Cambrdge".
The display features of RDS are very important, but the receiver manufacturer must use RDS for control functions if automatic tuning is to be implemented. Processing of the incoming data stream demands considerable complexity, to decode with enough accuracy to be useful and then to act

Clarion's first car radio with RDS is a radio-tape combination unit, with the op. tion of a separate display for the station name. Thus can be mounted on the top of the car's instrument panel.

on the data in a logical way. A great amount of development is necessary to achieve sensible responses from the receiver in the variable reception conditions that will exist as it is moved about. The car radio manufacturer has a further challenge, to pack all the extra electronics into a very small DIN/ISO case which cannot be increased in size to accommodate RDS technology. Thus large scale integration has been a must from the start: committing to silicon is a big step which has been necessary in the development of RDS for the listener.

TRANSMITTING RDS SIGNALS

At the BBC's national network transmitter sites, such as Sutton Coldfield in the midlands. pairs of f.m. transmitters are installed

in a parallel configuration so that if one fails there is only a reduction in power. Each transmitter drive has to be modulated by a data stream from an RDS encoder which is connected to a data channel fed with update information from the central RDS computer situated in Broadcasting House, London. It is from here that dynamic RDS information is derived in accordance with a network schedule and any changes initiated from many locations in the BBC studios around the UK.

Network transmitters can provide these dynamic RDS features because the data links are provided within the BBC Nicam digital distribution system. But it is important to note here that local radio transmitters cannot vet provide dynamic RDS: only static RIDS is possible hecause they simply have a programme circuit from the local studio to the transmitter and no data connection with London.

It is possible to assume that any of the static RDS features could also hecome dynamic on a network transmitter: and this is just what we are doing. But why? Well. again, we can give the listener even more information very easily. In the crowded $1 . \mathrm{m}$. band. the BBC has been forced to make maximum use of the allocation over the years by pulting different programmes on f.m. from those on medium and long wave at various times of the day. Perhaps one of the best known examples is the schools broadcasts which during school term time are carried on Radio 4 f.m. whilst Radio 4 long wave carries other programmes. So with RIDS it is possible for us to give the listener who has perhaps just tuned to Radio 4 f.m. in the middle of a schools broadcast a good clue to what is going on by changing the PS name from "BBC R4" to "BBC R4Ed" - for Education. This example is but one. there are many more: and over the coming years there will be quite a bit of change as the f.m. hand expands and as other changes occur to the broadcasting scene. But RDS through dynamic PS names will keep the listener in touch.

RDS is a complex subject for the manufacturer and the broadcaster and so it must be treated very seriously by them if the listener is to rely upon the automatic responses which have suddenly become possible in his receiver. In a way we each have half an operating system under our control and each half must work perfectly with the other. Maintaining perfect sympathy between the twu halves has been a vital objective of the EBU and the BBC has given strong support to that ideal.

But for the listener RDS must be very simple. Our complex discussions have eventually to be distilled into a very easily used product. Indeed, with the first-generation RDDS receivers we are finding that it really is quite boring if all you want to do is listen to Radio 2 all the way from Newcastle to Newquay - for "BBC R2/l" is all you will see on the front of the receiver. yet unobtrusively it will have retuned as many as six or seven times on the way.

If. however. you want to retune to another BBC service after 150 miles or so, then the likelihood of your knowing the appropriate frequency for BBC Radio 3. say. is quite slim.

RDS car radio from Grundig. Other manufacturers who have produced RDS car radios in prototype or production form Alpine, Ford, Panasoic, Philips, Pioneer and Sharp. Below: specimen Radiotext message.

CBSO Conducted by David Atherton

Vaughan Williams-London Symphony

But RDS can come to your aid with the ON feature. This has been telling your receiver as a background routine all about the other $B B C$ services. so the receiver will already know what frequency BBC Radio 3 is available on in that area.

"OTHER NETWORK" INFORMATION

Alternatively you may like local radio. and already have your BBC local station preprogrammed on a memory button on the receiver. If so, then by another method being pioneered by the BBC and known as generically linked PI codes. second-generation receivers will build up knowledge about other BBC local services and load then into the memon behind your local radio button. Once you are out of range of your first choice you can then press the button again and the receiver will retune to an adjacent BBC local radio service.

An application of the ON feature which has caused much interest is the ability to cross-reference other networks to allow a very refined travel service to be constructed - so that, whatever service you are tuned to. you can hear the local travel information from the nearest $B B C$ local radio senvice. Any basic RDS travel senvice must be based upon a method of signalling to the receiver to tell it firstly that this is a service carrying travel information at some time (in RDS this is signalled by the TP flag): and then, when a travel announcement is actually being spoken. to tell the receiver (in RDS. by putting on the TA flag) that it should perform one of several possible actions: increase volume, wake up from a quiescent state, or even stop cassette replay and revert to off-air reception.
If you want to listen to BBC Radio 2 , however, andalso want to benefit from travel information from the nearest BBC local radio service, then RDS can help. By using the ON feature on the national networks which are under dynamic control it is possible to reference all the other BBC services and inform the receiver about TA flags being switched on for BBC local radio services.

This way. while one is listening to a national network service, the receiver may find a travel message from the nearest BBC local radio station, giving relevant, timely and accurate information about the local travel conditions.

Buried in this process is a lot of data communication between the local radio studio, the central RDS computer in London, the national network transmitters and the local radio transmitters. Again the BBC is pioneering methods of effecting this at low cost to the broadcaster. This is achieved by the use of update data lahelled with a service number so that RDS data can be received off the air at the local radio transmitters to command them to switch their flags.

RDS IN PRACTICE

Where does all this get us? Many manufacturers are making receivers, especially car receivers, but having many other features such as cassette decks these are complex and inevitably quite expensive. As with all technological developments we expect prices to fall progressively. Already some tuners are about and it seems likely that RDS will be incorporated into more in the future. Clearly Radio Text would be particularly useful on a tuner if for example it could be used to give the phone-in number for a particular programme, or the address to write to for further information. When c-mos technology becomes available then portable receivers can be expected to take advantage of RDS too.

The author is indebted to the Director of Engineering of the $B B C$ for permission to publish this article.

References

1. Radiodata to begin next year. Electronics \& Wireless World. May 1986. p.6.
2. Towards the intelligent radio, by Simon Shute (BBC). Electronics \& Wireless World, October 1987, pp. 1023-1026.
3. European Broadcasting Union Doc. Tech. 3244.
4. CCIR Rec. 643 (I)ubrovnik. 1986).

Pioneers

23. Walter Bruch (born 1908): a night at the opera

W.A.ATHERTON

Telefunken's 180 -line television camera at the 1936 Olympic Games in Berlin. The operator is Walter Bruch (also pictured below), who helped develop it. Photographs by courtesy of AEG (UK) Ltd.

TThe first telegrams arrived at $6.45 \mathrm{a} . \mathrm{m}$. Newspaper reporters and the television cameras followed. Even on his eightieth birthday. Walter Bruch observed. he could not eat his breakfast in peace. At least the cameras were no problem. Bruch has been captivated by television since he first saw a flickering image on a screen when he was seventeen years old.
He is known as Mr PAL, after the colour television system he conceived in 1958 as an improvement of the American NTSC standard. Ilis wife. Ruth, has even been nicknamed "PaLina". Prof. Dr-Ing.E.h. Walter Bruch. to give him his full title, was 80 years old on 2 March this year. He has seen television through from the age of spinning Nipkow dises to the time compression of MAC. Whilst he knows technical improvements can still be made, he believes it more important to improve the programmes. Television, he advises, should be used with discretion.
"Mr. PAL" was born in Neustadt in the Haardt region of Germany in 1908. He says he inherited an iron will from his forbears. As a small boy he was fascinated by technology and preferred using his hands to learning at school. Playing truant gave him time to

spend in the Deutsche Museum in Munich His school, it is said. "departed from him". Did any of his teachers, 1 wonder. live to see the portrait of their strong-willed pupil which now hangs in a place of honour in that same museum:
After a three-year apprenticeship as a "machinist" and some time in a shoe factory. he entered an engineering school to study electrical engineering. But the turning point in his life came in 1925 when, at a com munications exhibition in Munich, he saw a primitive television for the first time. This was probably a mechanical Nipkow disc machine exhibited by Max Dieckmann. The

1920s was a time of great experimentation and excitement in several countries as the dream of television seemed to be approaching reality in the work of J.L. Baird. C.F. Jenkins, II.E. Ives and others. The nlickering pictures fired the 17-year old Bruch with an unquenchable ambition to work with television. It was a dream he cherished through his remaining education and apprenticeship.

Three years later at the Berlin Radio Exhibition of 1928, he salw another example of television. This one was exhibited by the exled Hungarian inventor Denes von Mihaly. In 1933. Bruch began his career in television engineering at Mihály's Berlin latzoratories

ICONOSCOPE CAMERA

Within two years, however, he had moved on. Electronics was challenging the Nipkow discs and spinning drums which had fostered the dream of television and gained many notable firsts. When the radio firm Telefunken offered him a position in its department of television and physics. he tookit.

So began in 19:35 his long career with

Telefunken. With others Bruch was soon helping to develop the first German electronic television camera. This iconoscope camera was one of three used at the famous 1936 Berlin Olympics. On 1 August, live transmissions were begun to some 25 television rooms and two television theatres in Berlin. In all, around 150000 visitors are said to have seen the 180 -line pictures'.
Later Bruch was involved in developing the first German television studios. "Already in 1939 television should have been introduced in several towns", says Bruch. Plans for constructing 10000 receivers for the 441-line standard were dropped, an early casualty of the second world war. The Berlin transmitter was bombed in November 1943^{1}.

WAR WORK

As the war progressed. Bruch found himself working on military tasks hut still made time to continue developing television. His knowledge and skills in this sphere were soon in demand. The Air Ministry became interested in his moonlighting and he was summoned to Peenemunde where the V land V 2 rockets were being tested.

In 1941 he led a team at Peenemünde developing and installing a closed-circuit television system to give low-risk monitoring of the rocket launches. A two-camera system was installed at the launch pad to relay live pictures along a cable to a control room 2.5 km away. One of the compact cameras had a telephoto lens and the other a wide-angle lens, and one of them had to be replaced after being destroyed when the first V2 rocket blew up².

After the war Bruch set up a private laboratory in Berlin to undertake independent research. In 1954, however, he rejoined Telefunken. He was appointed director of research and allowed to work on colour television and develop television reception.
In the 1950)s work on colour television intensified in several countries. Black-andwhite television had just been able to whet people's appetites before the war although, as Bruch describes it, it was an exclusive toy of the rich. "When we started with television I didn't imagine it would become a medium, more than a programme". he reminisced on his 80th birthday. "Such thoughts were not considered. Each evening, two hours. Saturdays and Sundays free."

ADDING COLOUR

By the early 1950)s television broadcasting was becoming established and researchers were vying to produce reasonably inexpensive but worthwhile colour television which could be compatible with the existing black and white broadcasts.
In the United States CBS began broadcasts in June 1951 in New York City with a colour television system which was totally incompatible with the existing black and white service. RCA had been to the Supreme Court to try to get it stopped, but had failed. But after two years it came to an end anyway when the Federal Communications Commission reversed its earlier decision in favour of CBS and instead approved an RCA
system which was compatible with the black-and-white system, and which had been recommended by the National Television Standards Committee (NTSC). This NTSC system, as it is known, became the basis of the world's colour television.
Europe was not yet ready for colour and time could still be devoted to improving the NTSC standard. The first to do this was Henri de France in Paris in 1957 with what was developed into the SECAM system, as now used in France, the USSR and some fifty other countries.
Bruch pondered the problems, mainly that of the need with NTSC transmission to adjust the colour control frequently - the evening keep-fit exercises, as he terms it. It was a cruel wit who renamed NTSC Never Twice the Same Colour. The breakthrough came one night in 1958 when Bruch and his wife were relaxing at the opera.
One of Bruch's favourite themes is the link between relaxation (including dreams and day-dreams) and the germination of ideas. He has described how despite struggling for years with the problems of colour television this had not led him to any suggestion of changing the NTSC system. He had even experimented with alternating the phase of the chrominance sub-carrier, the technique which became the crux of his successful invention. The crucial improvment was to use a delay line, invented during the war by a colleague, Fritz Kruze, to split the received signal into its two original components in the receiver. This thought occurred to him spontaneously "one evening as I was dreamily watching an opera" ${ }^{3.3}$. He has described himself using two fingers of each hand "graphically adding, subtracting or multiplying pointers and vectors" with "an annoyed wife beside me". The next morning it was his assistants' turn to be annoyed as they learned that demonstrations carefully prepared over two months had to be changed to accommodate the new idea - over the Christmas holiday.

Years of development work followed as Bruch and his companions at Telefunken turned the idea into reality. It took seven years, says Bruch, "to reach the point where the technique could be said to speak for itself". Edison's famous observation that genius is 1% inspiration and 99% perspiration underestimates the amount of hard work involved, says Bruch.

Much time was devoted to showing and explaining PAL to others. Invention is one thing, he says, acceptance another. On 3 January, 1963, the PAL system was demonstrated to the European Broadcasting Union in the "cellar" of the Telefunken laboratories in Hanover. Subsequently it was demonstrated in over 20 countries, with Bruch and his colleagues often working through the night to get the demonstrations ready on time. "Those magical evenings will not be forgotten by those who were there."

Four years later PAL was officially introduced in Cermany and also in Britain (on $\mathrm{BBC})$, after long and acrimonious political fighting. In particular, the President of France, Ceneral de Caulle, wanted the whole of Europe to standardize on one system - the French SECAM of course. It was not to be.
though the widespread adoption of PAL (now in over 90 countries) earned it the nickname Peace At Last. Bruch, meanwhile, demonstrated the first SECAM/PAL standards converter.
Although Walter Bruch retired in 1974. his last years of employment were just as active as those that had gone before. In the mid-1960s he worked on the problems of component television, with the specific aim of producing colour video recorders. Even though the PAL system has been eminently successful, Bruch is well aware of its limitations and has sought to improve it. In 1970 he played an important role in the development of future television systems when he introduced to television the concept of time compression, as now used in the MAC family.
Walter and Ruth Bruch, who celebrated their golden wedding anniversary this year. still live in Hanover, the home of Telefunken. He has acquired a reputation as a perfectionist and is of course renowned in many countries as the inventor of PAL. But as we have seen here, he has contributed more to television than that one great invention, and he holds about 200 patents in all. In his seventies he turned historian, delving through archives in Cermany, Britain and America to unearth the technical history of the television he has loved for so long. The treasures he uncovered have produced many booklets.

Walter Bruch has received many honours including an honorary doctorate from the Technical University in Hanover and an honorary professorship from the University of Saarland in 1968, as well as honorary membership of institutions and awards from many countries.

A BRICHT IDEA

Bruch has stressed the need to inspire and train young people as researchers. The Emperor Constantine the Great, he notes, showed how to train young engineers. In the year 334, apparently, Constantine issued a decree to the governor of Africa to train engineers; and, as an encouragement, freed them and their parents from personal taxes. Ten years later, a further decree freed teachers of engineering and their parents from personal taxation as well. Unfortunately. Bruch remarks, the decree was issued 1640 years too early for his own tax assessment.

References

1. J. Kniestedt. Historical background of television in Cermany. IEE Conference on the history of television, 13-15 November, 1986.
2. A. Emmerson, Pioneers of uhf television. Wireless World, Fehruary 1983, 62-6i3.
3. W. Bruch. Researchers, developers, constructors - aspects of an engineer. Universitas, vol.16. No 3. 235-241. 1974.
The photograph at the top of page 1041 (last month) showed one of the relics of James Clerk Maxwell's apparatus held by the Cavendish Laboratory at Cambridge: its purpose was to demonstrate the inertia of electric currents.

Next in this series of pioneers of electrical communication: G.S. Ohm.

PCB Manufacturers Which to choose?

With scores of PCB manufacturers falling over themselves to make your conventional boards, it can be very difficult to choose the right one.
You could however, choose a PCB manufacturer with more to offer. Such as assembly, panel printing, final build and design.

Slee Electro Products can provide you with these services and will still offer you competitive prices on your PCB's.
"We're hot on quality and delivery too. And being a member of the Printed Circuit Association, means we have to try harder."

Slee Electro Products

Unit 4. Grange Lane Industrial Estate, Carrwood Road, Barnsley, South Yorkshire S71 5AS, England.
Tel: 0226200717 . Fax: 0226731817
ENTER 35 ON REPLI CARI)

TG101	$\underline{110}+$ VAT
0.02 Hz to 2.00 kHz Function Generator. Sine, square, triangle. DC offiset. 60012 and TTL outputs; ext sweep input.	
TG102	$\underline{160+V A T}$
0.2 Hz to 2 MHz Function Generator. Sine، square, triangle, DC offiset. 50Ω and TL outputs; ext. sweep input.	
TG105	$\underline{110+V A T}$
5 Hz to 5 MHz Pulse Generator. Free-run, gated and triggered modes; squarewave, complement. 50』几, TLL and sync outputs	
TG501	$\underline{£ 325+V A T}$
0.005 Hz to 5 MHz Function Generator. Sine, square, triangle, ramp, pulse, haverwave and DC offset. Continuous, triggered or gated modes. Variable start/stop phase: 19:1 symmetry range: ext. sweep. 50Ω and TTL outputs.	
TG502	¢545 + VAT
All TG501 features plus 1000:1 lin, 10,000:1 log sweep with adjustable sweep rate and marker	
TG503	£545 + VAT
All TG50 double,	e. Normal, e.

thandar
Thandar Electronics Limited 2 Glebe Road. Huntingdon. Cambridgeshire PE187DX Telephone (0480)412451 Telex 32250 Test
THE LOGICAL CHOICE

SMALL SELECTION ONLY LISTED
 RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

Latest bulk Government release - Cossor Oscilloscope CDU150(CT531/3) £150 only. Solid state general purpose bandwidth DC to 35 MHZ at $5 \mathrm{MV} / \mathrm{Cm}$ - Dual Channel - High brightness display $(8-10 \mathrm{~cm})$ full delayed time base with gated mode - risetime 10NS illuminated graticule - Beam finder Calibrator 1 KHZ squarewave power $100-120 \mathrm{~V} 200 \mathrm{~V}-250$ volts AC - size W 26CM - 14CM deep - WT 12.5 KG - carrying handle, colour blue, protection cover front containing polarized viewer and camera adaptor plate - probe (1) - mains lead. Tested in fair condition with operating instructions - $£ 150.00$.
Racal RA17L Communications Receivers. $500 \mathrm{KC} / \mathrm{S}$ to $30 \mathrm{MC} / \mathrm{S}$ in 30 bands $1 \mathrm{MC} / \mathrm{S}$ wide from $£ 175$. All receivers are air tested and calibrated in our workshop supplied with dust cover operation instructions circuit in fair used condition - Racal Ancillary Units for all receivers mostly always in stock - Don 10 Telephone Cable $1 / 2$ mile canvas containers or wooden drum new from $£ 20$ - Army Whip Aerials screw type F sections and bases large qty available now P.O.R. - Test Equipment we hold a large stock of modern and old equipment. RF and AF Signal Generators - Spectrum Analysers - Counters - Power Supplies - Oscilloscopes Chart Recorders all speeds single to multipen - XY Plotters A4 A3 - Racal Modern Encryption Equipment - Racal Modern Morse Readers and Senders - Clark Air Operated Heavy Duty Masts P.O.R. All items are bought direct from H M Government being surplus equipment price is ex-works. S.A.E. for enquiries. Phone for appointment for demonstration of any items, also availability or price change V.A.T. and carriage extra

```
EXPORT TRADE AND QUANTITY DISCOUNIS JOHNS RADIO, WHITEHALL WORKS, 84 WHITEHALL ROAD EAST, BIRKENSHAW, BRADFORD, BDI1 2ER TEL NO. (0274) 684007.
```

WANTED: REDUNDANT TEST EQUIPMENT - VALVES - PLUGS - SUCKETS, SYNCHROS ETC. RECEIVING AND TRANSMITTING EQUIPMENT

ENTER 17 ON REPLY CARD

PERSONAL LOGIC ANALYSER

FLEXIBILITY OF A PERSONAL WORKSTATION PERFORMANCE OF A DEDICATED INSTRUMENT

- 100 MHz CLOCK SIPED
- ITil 32 DATA CHANNELS
- 4 K SAMPLES BUFFER

HIERARCHICAL
-u1) TRIGGER PROCESSOR
This NEW personal logic analyser from M A
INSTRUMENTS combines the flexibility and economy of the PC with a high performance logic analyser on a card.

ENTER 18ON IREPLY CARD

The Archer Z80 \&BC

The SDS ARCHER - The $Z 80$ based single board computer chosen by professionals and OEM users.
\star Top quality board with 4 parallel and 2 serial ports, counter-timers, power-fail interrupt, watchdog timer, EPROM \& battery backed RAM.
ڤ OPTIONS: on board power supply, smart case, ROMable BASIC, Debug Monitor, wide range of I/O \& memory extension cards.
enter 4 on reply Card

The Bowman 68000 \&BC

 The SDS BOWMAN - The 68000 based single board computer for advanced high speed applications.\star Extended double Eurocard with 2 parallel \& 2 serial ports, battery backed CMOS RAM, EPROM, 2 countertimers, watchdog timer, powerfail interrupt, \& an optional zero wait state half megabyte D-RAM
\star Extended width versions with on board power supply and case.
enter 47 on reply card

Sherwood Data dystems Ltd

Sherwood House, The Avenue, Farnham Common, Slough SL2 3JX. Tel. 02814-5067

APPLICATIONS SUMMARY

Designing and using slotted cores for current sensing

Two complementary notes give comprehensive details of how to apply hall-effect sensors and slotted ferrite cores in current measuring and sensing applications. One of these notes. from Salford Electrical Instruments, concentrates on the design of slotted ferrite cores and the other, found in the latest Sprague Hall-effect sensor data book, discusses sensing.

Current sensing using Hall-effect devices is reasonably fast and has the advantage that the conductor being sensed need not be modified. One problem is that for a set up as shown in the first diagram, the field around the conductor is often too small to operate a Hall-effect device; with a radius of about 12 mm for example and a current of 1000 A , flux density at the sensor is about $0.0159 \mathrm{~T}(159 \mathrm{G})$.
For smaller currents. a toroidal or closed magnetic circuit like those shown is needed. One of the circuits has a ferrite toroidal core suitable for higher frequencies. The second circuit has some limitations but it is simpler and it is not necessary to break the conductor to fit it. Here the toroid is simply a piece of sheet mild steel.

Current-transfer decay in optical couplers

In optoelectronic circuits, degradation of current-transfer ratio due to ageing should be taken into account at the circuit design stage. A worst-case design must accommodate the gradual reduction in light emitted from the diode over the life of the circuit.

Factors affecting current transfer and design details for this simple digital isolator are presented in a short note called "Designing for c.t.r. ageing in optoelectronic circuits" from Isocom.

Leaching on s.m.cs

Molten solders, particularly those rich in tin, cause dissolution of silver from terminations of surface-mounting components. This can destroy the termination's metallization layer or affect its bond to the ceramic substrate.

A brochure called "Surface-mount application guide" from Integrated Ceramic Components briefly discusses the leaching of palladium-silver, and the effects on leaching of a nickel barrier layer. Other topics covered are advantages of surface mounting, design criteria and soldering.

Voltage-controlled resistors

Very brief details on using junction fets as v.c.rs are given in a note called "Voltagecontrolled resistors" from Siliconix. The note includes three circuits, - including one for a voltage-controlled video attenuator.

Integrated Ceramic Components
Flint Distribution
Enterprise House
Ashby Road
Coalville
Leicestershire LE6 2LA
Tel: 0530510333
Salfrod Electrical Instruments
Times Mill
Heywood
Lancashire OL10 4NE
070667501
socom Park View Industrial Estate Brenda Road
Hartlepool
Cleveland TS25 1UD
Tel: 0429221431

Siliconix

Andy Fewster
3 London Road
Newbury
Berkshire RG13 1JL
Tel: 063530905

Motorola
Gothic Crellon
3 The Business Centre
Molly Millars Lane
Molly Millars
Wokingham
Berkshire RG11 2 E
Tel: 0734787848

APPLICATIONS SUMMARY

Digital sine wave synthesis

More and more the stable and low-distortion sine waves needed for communications and control applications are produced using high-speed digital signal processors.

Three types of look-up table suitable for d.s.p. sine-wave generation are discussed in "Digital sine-wave synthesis using the DSP56001" from Motorola. Of the three routines described, the first two are compromises. In integer-delta synthesis, values for the sine wave are taken and used directly from the look-up table. As a result, fast. low-distortion sine waves can be produced, but only at frequencies that are multiples of the fundamental table frequency. To produce frequencies at non-integer mutliples of the table fundamental, a d.s.p. routine that estimates values for points falling between table entries can be used, but at the expense of upper frequency limit and t.h.d.

The third section of the note describes how interpolation produces low-distortion sine waves at frequencies that are noninteger multiples of the fundamental.

Each of the three descriptions is accompanied by an assemblylanguage routine in 5600 l code and the note includes look-up table values.

NEXT MONTH

High-definition television. The Eureka HD-MAC transmission, chain, given its first full demonstration at Brighton in September, was one of the many technical developments shown at the international Broadcasting Convention.
Spectrum analyser with d.s.p. Spectrum analysis based on swept heterodyne techniques is the best solution for signals in the megahertz range. Pat Meehan and John Reidy of Analog Devices describe a high-performance design.
Synthesizer for $\mathbf{9 0 0 M H z}$. New mobile communications services in the u.h.f. region have created a growing demand for improved performance. This new c-mos circuit, for use in radios or test instrumentation, overcomes problems encountered with conventional p.l.ls for this frequency range.

> ELECTRONICS \& WIRELESS WORLD

The v.s.w.r. enigma. It is rare, says P.B. Buchan, to find in books or journals a lucid and factual explanation of the phenomenon of standing waves. He ventures out to tame the beast.
Pioneers - Gearg Simon Ohm. A web of naked fancies, with no support in even the most superficial of facts: that was how one contemporary objector described Ohm's Law. W.A. Atherton recounts the story of Ohm's researches, and his riposte to that critic.

Thirty-six nanoseconds faster than relativity. A.G. Obolensky and Dr P.T. Pappas describe experiments which they believe indicate a definite anisotropy of the normal velocity of light. The observed effects are real, they say, and are not generated in the apparatus.

Flight Elestronics Ltd. Flight House, Ascupart St., Southampto

State machines and reliability

This procedure, describing the development of a car theft protection system, is an illustration of sound logic design.

by JEREMY STEVENS

Following a recent attempt by thieves to remove the radio-cassette from my car while it was parked just a few feet from my bedroom window I decided to fit a burglar alarm.
Most of the proprietary systems available loday detect an intruder by infra-red or ultrasonic heams, or by monitoring voltage drop. The first two types are quite expensive and often operated hy a radio key which, with the right equipment, is easy to defeat. Although cheap and easy to fit, the third type is particularly prone to false triggering especially in a dirty r.f. environment.
As I was not happy with either the cost or the reliahility of commercially available systems I decided to design my own based on the following design criteria,

- reliahle operation and immunity to false triggering
- automatic reset after a predetermined time
- built in entry timer with audible warning
- automatic priming of alarm
- visual indication of alarm primed
- protected from vehicle power supply transients
- low stand-hy current consumption
- cheap and easy to build using off-the-shelf components.
I decided to use the existing interior-light door switches to trigger the alarm. Some four-door cars only have switches on the front doors so extra switches may have to be fitted. Most alarms of the non-radiocontrolled type use an extra key-switch to prime and deactivate the alarm.

To avoid drilling the bodywork or adding a hidden switch I decided to use an existing signal from the 'Auxiliany' position on the steering lock/ignition switch for this purpose. Thus the alarm was to be deactivated when the 'Auxiliary' nosition on the ignition switch was selected and was to self prime the first time a door was opened and closed after the key was removed from the ignition switch.

With the input signals to the system defined it was now time to develop the state diagram for the alarm.

Detection of states S.3.3 is required to activate the visual indication that the alarm
is primed and detection of S_{3} is required to trigger alarm timers and sound entry warning. The four states above are selected in the following sequence.
S_{11} - the quiescent state, the alarm is off when in this state.
S_{1} - this state is selected on leaving the vehicle when the door is opened for the first time after removing the key from the ignition switch.
S_{2} - this state is the primed state, selected when all the doors are shut on leaving the vehicle or after the alarm has timed out.
s_{3} - this is the triggered state selected the second time a door is opened after leaving the vehicle.
Note that state $S_{\text {" }}$ is selected from all states ii the encins: signal is true. The four states are defined by two bistable i.cs arbitrarily assigned the references A and B.

By direct reference to the state diagram the set and reset equations are.
$\mathrm{SA}=\mathrm{S} 1 \cdot \overline{\mathrm{DOOR}}=\overline{\mathrm{A}} \cdot \mathrm{B} \cdot \overline{\mathrm{DOOR}}$
$R A=S 3 \cdot E N G I N E+S 2 \cdot E N G I N E=(A \cdot \bar{B}+A \cdot B)$.
ENGINE $=$ A.ENGINE
$\mathrm{SB}=\mathrm{S} 0$. ENGINE $\cdot \mathrm{DOOR}+\mathrm{S} 3$.RESET $=$ Ā. \bar{B}.ENGINE.
DOOR+A.B.RESET
$\mathrm{RB}=\mathrm{S}$ 1.ENGINE + S2.ENGINE + S2.DOOR $=$ ENGINE. $(\bar{A} \cdot B+A \cdot B)+A \cdot B \cdot D O O R$
$=$ B.ENGINE + A.B.DOOR
Fig. 1. State diagram of the alarm system. A and B are two bistable i.c. outputs.

These equations could be implemented either as an event driven circuit or as a clocked sequential circuit.

Arrival at state 3 initiates the alarm timing sequence which consists of an entry period of about 30s which. when elapsed, triggers the main alarm for $1-2 \mathrm{mins}$. When the main alarm period has elapsed the keser signal becomes true and re-arms the alarm.

The above timer sequence could be implemented using a dual monostable but to time such long periods. very large values of capacitance and resistance would have to be used. This is undesirable on the grounds of reliability and size as a good quality timing capacitor would be physically large.

I decided to use a hinary counter running from a low-frequency oscillator to generate both time periods. The main part of the circuit could then he implemented in JK bistable devices using the oscillator as a clock. A low-frequency clock can improve the noise immunity of the circuil hy greatly reducing its response time.

A 12 bit binary counter was chosen. running at a clock frequency of about 10 Hz . The gating signal for the main alarm was tapped off at $Q_{9.10}$. Output Q_{9} becomes true on the 256 th clock pulse, giving an entry time of about 25 s and output Q_{10} becomes false and Q_{11} becomes true on the 1024 th clock pulse. giving an alarm time of about 80s. Output Q_{11} provides the reset signal which is required to re-arm the alarm.

During the entry period it is convenient to keep the interior light on to facilitate finding the ignition switch in the dark. The correct signal to switch a suitable transistor is already available in the form of the trigger signal to the alarm timers generated when in state S_{3}. All that is required is a Darlington driver to switch the interior light and a decoupling diode to prevent latching. These components are optional and are shown enclosed within the dotted lines on the circuit diagram.

Equations for a JK bistable device in terms S and R in the equations above are.
$S A=\bar{A} . J A$
and
$R A=A \cdot K A$

Equations for a JK bistable device implementation become.
$\mathrm{JA}=\mathrm{B} . \overline{\mathrm{DOOR}}$
KA=ENCINE
$\mathrm{JB}=\overline{\mathrm{A}} \cdot \mathrm{ENGINE} \cdot \mathrm{DOOR}+\mathrm{A} \cdot$ RESET
$K B=E N G I N E+A . D O O R$
Requirements of 12 V operation combined with very low current consumption means that c-mos devices could be the only choice. Generally, c-mos devices are only specified to operate up to a maximum supply voltage of 18 V ' so the circuitry must have some kind of power-supply protection network to afford protection from the high-voltage transients that often occur in vehicle electrical systems. I decided to use a simple Zener-diode clipping network for this purpose. A shunt Zener-diode will give reverse polarity protection as well as clipping any transients. Most Zener diodes fail short-circuit (if not grossly overloaded) so the circuit will be protected even under a prolonged fault condition. A 151' Zener-diode was chosen as this would remain non-conducting even when the vehicle battery was at its normal on-charge voltage of 1 亿 V .

Gate input protection is provided by high value input resistors $\mathrm{R}_{1.2}$ in combination with the on chip protection diodes of the integrated circuit.
Input capacitors $C_{1: 2}$ are included to give additional protection from false triggering due to noise spikes and gate-input series resistors R_{3}, are to prevent input currents from destroying the protection diodes of the i.c. Such a condition can occur if the main

Fig. 2. Good design can save components. This reliable alarm has a number of features including automatic reset, entry timer and automatic priming.
power supply line collapses whilst input capacitors $\mathrm{C}_{1: 2}$ are charged.

I built and tested the circuit and it worked first time, proving the benefits of formal design. Component cost for the prototype was under $£ 7.00$ (not including the alarm sounder) thus meeting all the design objectives.

Clearly the circuit as described is not 100% thief proof. but it should deter an opportunist thief like the one that tried to steal my radio-cassette.

Further reading

D. Zissos. Problems and Solutions in logic design. chapter 3. Oxford University Press, ISBN 019 8593481 .
B Illdsworth. Digital logic design, chapter 8 . Butterworth. ISBN 0408005661.

Mechanical laser-beam chopper

In laser cutting, high power beams often need to be chopped at a few thousands of kilohertz in order to produce the desired effect.
With the normal electronic method of beam chopping. the gas mixture within \& CO_{2}, laser has to be adjusted. which wastes power. Mechanical
beans choppers - available in abundance for lower power lasers, but not for larger units allow the beam to be used at full power. Electrox of Hitchin is now manufacturing a chopper for lasers from sow to 2 kW .

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

R. Henson Ltd.

21 Lodge Lane, N. Finchley, London N12 8JG.
5 mins. from Tally Ho Corner
Telephone: 01-445 2713/0749

ELECTRONICS \& WIRELESS WORLD

INDUSTRY INSIEHT

 DECEMBER ISSUETo round off the year, we present the first of a series of annual reports on the state of the electronics industry in Britain.

Each sector is examined in detail, its market analysed and the significant technical advances seen during the year put into perspective.
To advertise contact:
JAMES SHERRINGTON ON 01-661 8640

ENTER IGONREPLY CARD

Enhanced-instruction-set processor

Abstract

While most processor manufacturers are concentrating on reduced instruction sets, Linn has gone completely in the opposite direction with its first product in the digital field.

RUPERT BAINES

Reduced-instruction-set computing, risc, is clearly in fashion, as witnessed by the multitude of risc products. related acronyms and advertisements. But in computing, nothing stands still for long and new chips that could become the next big thing are already under development. These devices are hased upon totally different ideas from risc, and have been designed to function in a very different way.

Everyone knows that risc philosophy is based on having fewer, faster instructions. Streamlining the architecture and removing all the complexities make the processor run very fast indeed. That this approach works is undeniable. Devices in this new generation have triple the raw speed of their conventional complex-instruction-set computing (cisc) rivals. For instance Motorola's new 88100 has a declared speed of 16 Mips , which makes the $3+$ of the 80386 look a little shabby.

While no-one would dispute the speed of these chips, there is a growing debate about their real power. The argument concerns their ability to handle situations that occur in real data processing rather than in advertising copy or in a laboratory bench-test. Perhaps risc, in concentrating so blatantly on raw speed is not quite the right approach. Could it be that these designs are very impressively, very cleverly, solving the wrong problems? We want better perform-

Fig. 1. (a) shows a conventional programming paradigm and (b) object-oriented programming.
ance from a chip so that it can run our programs faster, sort data more quickly and handle blocks of information more efficiently. How well will these aims be met by risc; might they be better met by a different approach?

Processors are planned, designed and manufactured for particular application areas. For example, the four-bit controller in a washing machine is obviously very different from the thirty-two bit processor inside a workstation. The complexity, the instruction set and the hardware are all designed to suit a particular task.

It is now becoming apparent that the architecture and design philosophy should also be chosen to suit the application. To illustrate, Intel has retained the conventional cisc philosophy for the new 80486 (compatible with the 8088/86/286/386 family, with all the architectural complexities required) but adopted a sparse risc design for the 80960 high-speed micro-controller. (By the way, design work has already started on the 80586 , which will also be a cisc device).

This is only the beginning. There are now chips that have been designed from scratch to run particular high-level languages, and to run them very quickly and efficiently. They have large, rich instruction sets, with many specialized registers and an architecture tailored to suit their particular application - a world away from the stark-

Conventional programming schemes view the world as a collection of pieces of data, which are operated upon by procedures and algorithms to produce more data. The object-oriented programming system (Oops) paradigm is different. This sees the world as a number of sophisticated, selfcontained objects that communicate with each other using messages.

The required data structures come first, the control process last. For example a given object within an architectural cad program might be "Building'. This would contain data such as dimensions, shapes, descriptions, costs etc, together with rules to describe how they relate to each other and to incoming messages like 'Show plan', or 'Print front view'. Data within the 'Building' object could thus initiate a whole sequence of actions.

Detailed implementation of an object and
what messages will mean to it are carefully hidden from the rest of the system, with messages being the only interaction between them. Thus objects can be created or modified without causing unexpected side effects.

One of the major benefits of objectoriented programming is that it is flexible, working in a way that is much easier for human beings to cope with. It can be highly expressive, with each message conveying a lot of information to a sophisticated object.

Addtionally because all the objects are communicating, sealed units there are benefits to security (the only way into an object is through a message whose consequences are known) and integration; since interaction can only occur through messages it is irrelevant what language an object has been internally codedin.

This style of programming has been around since the 60 's, but until recently its success has been limited since objectoriented programs execute very slowly on corventional computers. The need for large amounts of memory and serious processing power has confined object-oriented programs to research labs. However, with the ever growing power of processors, the expansion in memories and ideas like the Rekursiv these obstacles are diminishing.

Although $\mathrm{C}++$ and ADA are becoming more popular, the most widely known language of this type is Smalltalk/V. This, along with Ethernet, mice, windows and most things worthwhile in modern computing, was developed at Xerox's Palo Alto Research Centre. If Oops fares as well as its siblings have then there's little doubt over the languages of the future.

Power of each opcode

Fig. 2. Relative merits of reduced, complex and extended instruction set processors, top, and Fig. 3. Words and objects within Rekursiv, right.

31			23	

Bits 33-37 Compact object type field

All objects have the same format whether in memory or on disc. Objects can represent almost arything: a byte stream, a tree, a process etc
ness of risc with its simple design, few op-codes, and general-purpose nature.

Some of these new processors have been well publicized. Hitachi produces the H series, with specialized procedure-call hardware for running C very efficiently. Several companies have produced devices that can run Forth directly (using powerful stack based designs) while both Tl and Symbolics have developed processors that have been planned and optimized to run Lisp applications. These are complex chips with large instruction sets tailored to the commands, addressing modes and structures that are needed for list processing, tree handling and lots of (virtual) memory.

The most recent product in this field is the Rekursiv from the Scottish company Linn. For me, it is the most interesting, and certainly the most innovative of any of these devices. From the beginning the Rekursiv processor has been developed with the aim, not merely of running a given language well, but of solving problems efficiently. And it is designed to handle large and complex data items in the fastest and most powerful manner.

Both Tl and Symbolics have designed processors for running Lisp efficiently. Although Lisp is well established, it does not embody the latest research. The Rekursiv on the other hand takes into account current developments in programming style and languages.
Linn Products is famous for making highquality turntables that play real vinyl records very well. This is not the place to squabble about the relative merits of analogue versus digital sound (suffice it to say that c.ds do make excellent roms), but despite the pre-

Fig. 4. Structure of one of the first products to incorporate the Rekursiv chip set - a single-board computer.

judices of digiphiles the company is anything but old fashioned. The manufacture of the Sondek (as the Linn turntable is called) is highly computerized, with a high level of automation, robot vehicles and advanced electronics. It was this high-technology production process that inspired the Rekursiv.
Unhappy with conventional software, Linn decided that Oops offered the efficient way of meeting its needs. After developing its own language. Lingo, along these lines Linn found that it was far too slow when running on a VAX. Accordingly the company invested in a semi-custom connputer in the form of a specifically micro-coded Orion machine but even this gave disappointing results. Not to be beaten, Limn decided to take the adventurous step of developing its own architecture, recruiting Professor David Harland from Glasgow University and giving him the task of designing a processor that was capable of supporting Lingo while running at an acceptable speed. A daughter company, Linn Smart Computing, was formed and started creating the Rekursiv.

THE REKURSIV IDEAL

One of the major problems with an object oriented language like SmalltalkN, Lingo or C ++ is that it requires data structures (and the associated operations) or arbitrary size and complexity. This requires large amounts of programming to define the necessary primitives, and a huge amount of memory access, which combine to make the system very large and very slow. The aim of the Rekursiv was to overcome these difficulties.

Fig. 5. Lisp procedure to copy CONS.tree structure and the equivalent Rekursiv program that defines a new op-code called MICRO COPYTREE.

[^4]Fig. 6. Performance of several processors executing the code of Fig. 5 (left).
Fig. 7. Projected relative speeds of Rekursiv with microcoded algorithms and an Orion. Example 1 is a linear factorial program (thirty times), example 2 is a recursively coded factorial (fifty times) and example 3 is the tree copy routine from Fig. 5 (270 times). An Orion is roughly equivalent to a mid-range Vax computer.

The chip's designers had the advantage of starting from scratch; unlike other companies already in the field they had no worries about compatibility but were free to design their processor as they saw fit. They decided that conventional processor design had not kept up with research, and that a great many design choices were based on principles and folklore that were no longer relevant. The architects of risc had come to a similar conclusion in choosing their minimalist solution, banishing the majority of functions to become the responsibility of the compiler or the user.
Linn's team has taken totally the opposite tack, extending the processor's instruction set and hardware to such an extent that tasks are directly handled that traditionally were overseen by the compiler, the operating system or even the progranmer! In particular the higher order, more complicated functions like persistent storage and recursion can be expressed from machine code (or below; microcode support for recursion is a unique feature of the device.
The machine core has been planned to closely correspond to the requirements of an object oriented language; for example opcodes exist to search an environment, to exchange messages between processes, or even evaluate a whole tree in one swoop. And the processor has been expressly designed to allow users to enlarge the instruction set by adding their favourite op-codes.
Conventional processors spend a great deal of time and ettort tetching and decoding instructions before they can start to execute them. Processors are featuring nore and more complex pipelines and cache structures in an attempt to minimize this waste (the von Neumann bottleneck). Reduced-instruction-set computing offers one way
out. by streanlining the op codes to such an extent that the fetch/decode overhead is minimal, with every instruction being executed quickly and directly. The Rekursiv is instead an enhanced-instruction-set computer (or e.i.s.c.) whereby the machine supports very high level op-codes which perform a great deal of work for a given instruction. This solution avoids the bottleneck by requiring very few instruction fetch/decodes and getting good value from each one.
One engineer made the interesting analogy, "... if you start from a car and remove all the frills; roof, two wheels, etc., you end up with a motor-bike. That is risc - very fast and very responsive. It is ideal for a courier delivery service but perhaps not so good for big loads. On the other hand if you go the other way and add a powerful engine and a vast boot then you've got an articulated lorry - and that is the Rekursiv. It needn't have the same speed to deliver more". And in the middle? Well in between these two approaches are the conventional cisc devices, Fig. 2.

INSIDE THE REKURSIV

Rekursiv is a processor architecture and Linn has had a chip set made, called the Objectiv, that implements this architecture.

Probably the most fundamental decision that a chip designer makes is choosing the data width. With its 40 bit word length, the Rekursiv is distinctly different from mainstream processors. The bottom thirty two bits are used as data bits, allowing the Rekursiv to be compatible with devices such as the 80386 or 68030 (e.g. using standard IEEE P745 format real floating-point numbers) but the extra eight are very different. This special purpose byte is used by the processor as a tag, to tie extra information to each word. Five bits are used as type field, which allows the processor hardware to know whether a word represents an integer, a real number, a character or up to twentyeight other data types.
New object types can be defined, with their own operations, and the processor can react accordingly; for example an ADD operation applied to an integer would trigger the internal hardware; applied to a real
number it could call the appropriate subroutine, and applied to a character string it could trigger an error sequence - all automatically. Integers. characters, pointers and the like are all scalars, or compact objects simple enough to be stored in one word: the more interesting, more complex objects are stored as packets, with a header number and then a series of data words, Fig. 3. This too is flagged from the tag field, simplifying the work of the processor.
This idea of tagged data, of designing the fundamentals of the hardware around object handling, is not unique, with most Lisp oriented chips (for example the Symbolics Ivory) using a similar scheme. However the Rekursiv takes the idea further. Not only is the data tagged from hardware but so are the addresses. One of the fundamental ideas in Oops is that of 'persistent storage'. All objects have their own unique label (for example thing\#1. thing\#2 etc), and can only be accessed by that label. It is irrelevant whether the object is in memory or on disc.

The labelling remains constant and is used exclusively. This contrasts to conventional systems where the programmer uses addresses to access a structure and has to cope with the address changing as the object moves. Persistent storage means that discs are treated exactly as memory; there is no addressing, there is no filing, there are only objects. This builds on the idea of virtual memory (where pages of memory are "transparently' swapped by the operating system between disc and ran as required) but is considerably more sophisticated.

In a conventional system the working units are addresses or pages, with objects requiring an additional extra layer of software to find them. slowing down the system. If they are to be dealt with independently. every object requires its own page, which is wasteful. Alternatively if objects have to share pages then their independence and security (major attractions of Oops) are compromised.

Supporting a persistent storage system from scratch solves these problems. Of course at some point there have to be physical addresses and real disc control, but these are totally invisible to the programmer, being handled by a dedicated chip called the object-oriented memorymanagement co-processor), Fig. 4. As well as providing direct access to objects this chip also performs boundary and range checking, preventing corruption or inspection of adjacent items. It also handles page-fault and useless-data collection automatically from hardware, rather than from an operating system.

A persistent storage systemı has significant benefits. For instance, because object addressing is transparent, the integration hetween different programs, different languages or even different users is automatic. Similarly the code becomes more portable; for automatic access it is essentially irrelevant whether an object is located within a single-user personal computer, somewhere within a networked system or inside a remotehost.

There are major security advantages too. since a user is removed from direct contact

Fig. 8. Since the article was written, this product mentioned in the article, has become available. Its name is Hades, which is an acronym for hardware accelerator for data-base expert systems. It is available with C or Prolog and runs 18 times faster than a Symbolics 3675 when tree copying.
with memory or disc, whether accidental or malicious. Obviously these benefits apply whatever Oops is used; the Rekursiv's direct implementation is obviously very much faster than the approach of simulating them from sottware within a conventional von Neumann hyte-oriented machine.

This genuine single-level approach (i.e. disc and memory are equivalent) to persistent storage is unique. The decision to have this explicit support for abstract reference to virtual memory, eliminating the role of the operating system, was one of the fundamental design choices of the Rekursiv, and the resultant reversal (from disc operating system to hardware) of the conventional hierarchy of computer design is probably the single most revolutionary concent with in it.

Coordination and organization of the processor is carried out by the second chip in the Objektiv set, the micro-controller. It contains the processor's microcode, the micro-sequencer and the recursive stack controller. Microcode is the internal language of a processor, which translates the op-codes into gate-level strobes and enables of hardware, and it is this microcode that gives a chip its character.

Designers of risc chips abhor microcode.
as they work towards simplicity of design and hence direct execution of op-codes. Contrarily, the Rekursiv is an extended-instruction-set computer with a large and powerful instruction set and an abundance of supporting microcode. Instructions already supported cover typical Oops requirements to create an object of given type or send messages between objects, as well as giving direct support for recursive subroutines.
That is by no means all. This chip can be customized and it allows users to define their own microcode in ram or rom, extending the instruction set as desired. Since these codes are written in the ultimately low-level language they are extremely fast. and allow you to create arbitrarily complex operations that will be carried out as a single machine-code instruction.

DATA PACKAGING

According to Linn a great deal of time is wasted in conventional systems, "packaging data at the end of one instruction only to have it opened out at the start of the next op-code". Consequently, if the desired algorithm is coded directly, with none of this packing/unpacking overhead, the speed gain is at least a factor of ten. As the program hecomes larger, and more sections are coded the speed gains accelerate (especially if they are the recursive, or inner-loop elements).
Figure 5 shows an example; there is a Lisp procedure to copy cons-tree structures and the equivalent recursive program for the Linn that defines a new op-code microscopytree. Some timings are given for

100 kHz to 110 MHz AM/FM Signal Generator
 with stereo modulator, remote control, and 100 memories

The Panasonic VP-8175A and VP-8174A (GP-1B) are broadcast frequency, AM/FM signal generators with builtin FM stereo modulator, and have comprehensive external control facilities and flexible memory modes Separate LED displays are provided for frequency. amplitude, modulation and memory information. Output range is from -19 to $99 \mathrm{dE} \mu(1 \mathrm{~dB}$ step)

Detailed 4 page leaflet available from:
Farnell International

DAYENPORT HOUSE • BOWERS WAY • HARPENDEN • HERTS • AL5 AHX TEL. 0582789071 , FAX 0582769025 • TELEX 826307 FARINT G

ALL THE SCOPE YOU MAY EVER NEED ON PAPER!

We are not decrying today's excellent test instruments but we think you ought to know

1. No longer must you wait unth a circuit is built before you can test it and
2. No longer must you wait until it is in production before you can sample its behaviour statistically

SOFT FERRITES • Second Edition

E C Snelling

Soft Ferrites is concerned with magnetically-soft ferrites, a class of magnetic oxide (ceramic) materials that finds wide application in electronic equipment, particularly as cores for inductors and transformers.

The aim of the book is to provide all the information on ferrite properties and wound component design necessary for the efficient application of these materials. The data are represented by means of extensive use of graphs and tables, and the design procedures are supported by worked examples.
For this Second Edition, all the chapters have been carefully revised to bring them into line with current practice and to relate them to currently available ferrite materials and cores.
This extensive coverage of the properties of ferrites and their use in magnetic circuits is intended for electronics engineers and research workers concerned with the design of inductors, transformers and wound components generally. 1988360 pages approx $246 \times 189 \mathrm{~mm} 0408027606$ Hardcover 300 diagrams $£ 57.50$ approx

LOUDSPEAKER AND HEADPHONE HANDBOOK

Editor J Borwick

The Loudspeaker and Headphone Handbook has been written by an international team of experts to meet the need for a comprehensive technical reference book on the theoretical and practical aspects of loudspeaker and headphone performance, design and operation in domestic, public and professional applications. Data in the form of tables, graphs and diagrams provide convenient reference material for students and design, manufacturing and applications engineers.
1988584 pages $234 \times 156 \mathrm{~mm} 0408013877$ Hardcover 72 photographs/509 diagrams £57.50
For further information on these and related titles please complete and return the form below to Geraldine Hills, Butterworths, PO Box 63, Guildford, Surrey GU2 5BH, UK.

Please send to me information on
\square Soft Ferrites \square Loudspeaker and Headphone Handbook Electrical and Electronic Engineering Books
Name \qquad Address \qquad
other processors running the same Lisp program in Fig. 6. (Support for recursion and the power of the memory control coprocessor allow the microcode to be generalized to a greater extent than is usually the case).
Arithmetic and logical processing is carried out by the third and final chip in the Objectiv set, the a.l.u. This 32 bit device, based on an AMD29023 maths chip, is built up to order from 2903 bit-slice maths processors. It includes a 32×32 multiply instruction and an integrated barrel shift register.

All three processor modules - the objectoriented memory chip, the microcontroller and the a.1. u. - have been fabricated in LSI Logic's "Sea of Gates" technology in 1.5 micron c-mos. These three devices, together with the main object store of 16 Mword of 40 bit dynamic ram (plus disc storage), and 2Mbyte of special-purpose internal memory. will make up a single-board object-oriented processor. The chips are still under manufacture and subject to further testing, and are not due to be released until later this year. Structure of this board is shown in Fig. 4 on page 1112.

PERFORMANCE

Until the chips are available, the best indications of the Rekursiv's performance come from prototypes and simulations (hardware and software). Some idea of the performance can be gained from the graphs in Figs 6. 7. These indicate that the Rekursiv is particularly good at complex tasks.
In addition to using the Rekursiv in its factory, Linn has several plans for the device. The first of these is likely to be an add-on board for Sun workstations (scheduled for release later this year). There are also plans to sell the design to other original equipment manufacturers, so it should not he long before the first PC-compatible addjtions are advertised.
Such add-on boards will act as accelerators; compared with a conventional 32bit system, speed gains of between 100 and 1000 fold have been mentioned. Since most applications are currently written in C. I would imagine that the first few Rekursiv chips have been code optimized for Kernighan and Ritchie's famous creation. The "smart" languages. such as Lisp. Prolog and most 4GLs are simple implementations of an Oops, and as such any programs written in these languages should benefit greatly from such an accelerator.

Some other applications - for instance relational data bases - are ideally suited to an object oriented approach, and these too would gain enormously in speed. With other programs the gains would be far less significant; word processors for example are mostly limited by the user's typing speed.

Linn also plans to produce a complete. stand-alone hoard based on the Objectiv chip-set that will be suitable for work stations. Fig. 8. This includes the complete processor described ahove. a Novix chip for flexible disc access. TI's new graphics processor and the AMD Ethernet chip-set.
Rekursiv's designers have taken a totally different approach from everyone else in the
computer industry. While risc is solving this year's problems. Rekursiv is setting forth the ideas and opportunities for how we can think about the future; the types of problems that we can tackle and the way we go about them. I think that the Rekursiv, coupled with the growing interest in Oops, is going to radically alter the way we program, the way we use computers and the attitudes we have towards them.
My view is that this chip set sounds the beginning of the end for general purpose processors. Today it is considered usual that, for a scientific application you use a computer with a numeric co-processor 18087. 68881 etc). Nobody finds it at all odd to use a different language for a different type of problem. As v.l.s.i. technology advances, as research develops, as needs become more specialized, it is certain that we are going to see more of this kind of chip designed specifically for a language and/or an application.
Application-specific ics are familiar devices: perhaps in five years time the application-specific processor will have become equally common, and you'll select the c.p.u. that best meets your particular needs that day.
To end on a sombre note, the Transputer is another example of a revolutionary British processor. However even now, the future of Inmos is not as secure as it might be, with Thorn still looking for a buyer. The dismal history of British investment and management of high-technology companies does not let me be as optimistic as I'd like to be about the future of the Objectiv chip-set and the Rekursiv architecture. I very much hope I'm wrong and the Rekursiv becomes a roaring success, with the backing it so clearly desenes. But I won't hold my breath.

Rupert Baines is a free-lance hardware en gineer in Hull, tel. 0482219150.

Further reading

Atkinson. M.P.. et al. An Approach to Persistent Computing. The Computer Journal. vol. 26. pp. 360-365. 1983.
Harland. I). M., A Recursively Microcodable Tagged Architecture, ACM S/GiRCII, wol. 14. No 3. pp. 34-40. June 1986.
Itarland. D. M.. Gunn, H. I. E.. Pringle. I. A. and Beloff. B., REKURSIN - An Architecture for Artificial Intelligence Proceeedings. AI Europa. Wiesbaden. Sept 1986.
Harland. I). M.. The Objective Chinset. Proc IEE conference Current Trends In Parallel Processing. Strathclyde. May 1987.
Nojiri, T., Kawasaki, S. and Sadoka, K., Microprogrammable Processor for Object-Oriented Architecture. Computer Architecture News. ACM. vol. 14. No 2, June 1986.
Thatte. S.. Persistent Memory TI Engineering Journal vol. 3. No 1.pp. 151-169, 1986.

Microwave testing complex

Hewlett-Packard and Ferranti Defence Systems have collaborated to produce one of the most complete r.f. and microwave test systems yet seen in Europe, which has recently been augmented by the inclusion of more measurement facility and a greater degree of automatic control.

The equipment uses a selection of H-P bus-controlled standard instrumentation and provides a test station for automatic test: for design and development work: or for computer-assisted design and manufacture. It also keeps a log of results on disc for future reference. Ferranti wrote the specification and Hewlett-Packard has been able to satisfy the requirements by, in the main, catalogue instrumentation, further sections being custom-designed. It was a fixed-price contract and indicates the direction in which $\mathrm{H}-\mathrm{P}$ wishes to proceed, namely towards the provision of complete measuring systems as solutions to specific requirements.

Hewlett-Packard's r.f. and microwave test complex, installed in the Ferranti factory at South Queensferry, Edinburgh.

At the core of the complex is the 8510, an r.f. and microwave vector network analyser, which has built-in error correction and which is capable of displaying up to 801 data points. The instrument employs narrowband. frequency-selective techniques to measure, in conjunction with a synthesized sine source, transfer and impedance functions of linear networks at low noise levels. In addition to the 8510, the simpler 8756 scalar network analyser is included, using broad-band techniques where noise measurements are not of interest and where input and output frequencies differ, as in mixers, for example. Among the other instruments is a 3048 phase-noise measuring set which demodulates the frequency and phase disturbances of a signal, displaying the results spectrally.
The complex is, naturally, installed in a screened room, since the Ferranti factory is in the business of making radar equipment. transmitting in the band of interest.

Telling the driver where togo

A revolution is under way in the manner in which the drivers of London's radio taxis will receive instructions for their duties. 'roice-based systems are about to be replaced with data-despatch. which will not only make more efficient use of the limited number of available radio channels. but will provide a much more efficient sentice overall.
With the voice-based systems currently in use, the taxi despatcher broadcasts abridged details of each joh. Drivers on that radio circuit who are plying for hire listen on their radios for a joh in their vicinity. The first driver to respond is allocated the joh and given all the necessany particulars over a woice channel. Because of the quality of the radio channel and bottlenecks in the system it is not unusual for ten minutes to have elapsed between the phone request for a cab and the driver getting all the details. To this delay must he added the time that it actually takes for the cab to get to the pick-up point

Dial-a-Cab is scheduled to he the first of the London companies whose system will go live. It has already embarked on an installation programme to fit all 1420 of its cabs with data terminals and expects to be fully operational hefore the end of the year. Its system is heing supplied by the Canadian company Mohile Data International (recently taken over by Motorola Communications) which has considerable experience in this field. And if there are no problems to be ironed out, Radio Taxis (London) will follow some six to nine months later with its own MDI system.
When a taxi driver begins work, he will key his location to the specially designed data terminal. The system maintains a queue of all cabs registered in each of the zones into which London is divided. A driver can check at the touch of a hutton how many cabs are queueing in his and adjacent zones. He can then decide whether it would he advantageous to move to another
zone where the queue for jobs appears shorter.

Once a request for a cab is received at the operations centre, the operator keys details into a v.d.u. It only takes seconds for the system to work out which cah is at the head of the queue in the particular zone and send it the details. The pick-up address etc. appears on the 32 character. four-line display of the terminal in that driver's cab. He then hits a button to accept the joh and is removed from the queue of cabs plying for hire. Should he not accept the joh, it is passed to the next driver in the queue.

The data communications system must he designed to survive in a mobile environment where radio signals are subject to deep fades, burst and random errors. and multipath fading. A combination of fonvard error correction (FEC) coding and automatic retransmission (ARQ) techniques must be used to obtain reliable, error-free data transmission.

However, to maximize the throughput. the type of errorcorrecting code must be chosen veny carefully to suit channel characteristics. Burst error correcting codes are better suited to fading channels (in which errors occur in bursts corresponding to the fades) than random error correcting codes.

A code that requires few redundant error-correcting bits offers higher throughput. but may be too weak to correct most errors, and will result in repeated transmission retries. On the other hand. extremely powerful error correction codes require the retransmission of many redundant error correcting bits that in turn reduce overall throughput. There is, therefore. an optimum redundancy that balances protocol efficiency against error-correction power.

In the MDl system, a message consists of a header followed by the text message. Fach header in the transmitted bit stream contains error detection and correction coding information. In addition, three copies of this header are inserted at the front of each transmitted text string. This provides a data redundancy factor of 200 percent. so that the correcting power is 100 percent, and a simple two-out-of-three major-
ity vote at the terminal can be used to perform correction. Capture of a correct header ensures byte synchronization, so that the text message that follows can be decoded even if badly garbled.

The text string is broken into 45 -character blocks, of which there can be a maximum of eight, and an FEC algorithm is applied. This expands each 45character block to 63 characters. The aim is to reconstitute and display the original message. However, in order to mairtain the driver's confidence, it is imperative that erroneous messages are not displayed

The FEC technique used is effective on multi-burst errors and random single-bit errors: it can recover and correct a test string if up to 17 percent is lost or garbled: it reduces retransmission requiremerts to less than five percent of all messages. assuming an average link bit error rate of 1×10^{-2}.

If a message cannot be displayed correctly after the first transmission. up to four retries take place automatically. The number of transmissions needed to regenerate a correct message are reduced by the fact that. as the message is split up and sent as discrete blocks. fonward error correction is performed independently on each of these segments. Consequently, if one or more segments is uncorrectable. valid segments are retained and the terminal waits for a retrans-
mission. Thus there is a high probability that it will be possible to re-assemble the correct message, since it is only looking for "good" segments to replace ones that were previously faulty - it does not need to receive a complete good message. The terminal will acknowledge receipt of the message once it has received it perfectly.

With an effective transmission rate of $4800 \mathrm{bit} / \mathrm{s}$ it takes only about a second to send an entire message. This is obviously much shorter than the time taken for an equivalent amount of information to be handled by voice. Furthermore, such a system offers the potential to automate other functions such as billing.

Transatlantic ISDN chips

National Semiconductor and SGS-Thomson Microelectronics have announced the general availability of their first jointlydeveloped ISDN components. Although ISDN (see Towards ISDN. Telecomms Topics, August p. 774 and September p . 908) does not at present occupy a major segment of the telecommunications industry, it is expected to have grown 40-fold by 199'2. when worldwide turnover is predicted to reach $\$ 6538.2$ million. As some 10% of this will be in ISDN v.l.s.i. devices, the

Predicted worldwide spending on ISDN apparatus.

strategic importance of this partnership can be readily appreciated.

According to Aldo Romano of the monolithic microsystems division of SGS-Thomson, "Both companies have committed significant resources dedicated to the development of these and future ISDN products. We are focussing our attention to both American and European marketplaces." This is an important factor as, according to Detlev Kunz of National Semiconductor, there is a need to align the standards adopted around the world, to achieve economies. For example, even though the 2 B 1 Q line code has been agreed in both the USA and Japan, no such agreement has yet been reached in Europe.

The first chips are an interface transceiver to meet the latest " S " interface and a programmable "combo" for digital terminals. The S interface device, TP3420/ ST5420A, is a monolithic transceiver for ISDN applications. In addition to all the functions specified in the CCITT I. 430 recommendations. it implements all the features needed for TE (terminal equipment), TA (terminal adapter). NT1 and NT2 (network terminations) and $P A B X$ line card applications. It supports links up to 1.5 km in point-topoint and up to 200 metres in point-to-multipoint configurations (where up to eight terminals can be connected).

The device uses a highresolution phase-locked loop in its receiving circuitry which is claimed to provide transmission performance far superior to the minimum requirements of 1.430. Such performance ensures a low bit-error rate throughout the network, regardless of the type of twisted-pair wiring used at the S interface.

In addition, all activation and "D" channel access algorithms are handled automatically without the need to invoke any action from a microprocessor. Other features of the device simplify development of ISDN equipment. For example, it can enter a power-down mode for terminal equipment that receives its power through the ISDN interface. The p.l.l. also allows the chip to synchronize itself with any clock signal, satisfying the require-
ments to synchronize the entire ISDN network.
The TP'3076/ST5075/6 programmable combos for digital terminals are second-generation p.c.m. coder and filter devices optimized for digital switching applications on subscriber line and trunk cards in digital phone applications. Using advanced switched-capacitor techniques, they combine transmit bandpass and receive low-pass channel filters with a companding p.c.m. encoder and decoder.

NS has also developed a version of its IIPC microcontroller core that contains added circuitry to support ISDN system functions. Its HPC16400 communications controller contains specific hardware. such as two full-duplex HDLC (high-level data link control) channels, a serial decoder and a programmable uart. When used to implement ISDN in equipment at the user's premises, the HPCl 6400 can support ISDN standards such as X. 25 LAPB and LAPD (Q.921 and Q.931).

In addition to these chips. which conform to CCITT standards, NS has also announced its TP3401 digital adapter for subscriber loops (DASL). SCSThomson has the right to second-source this device. This is a low-cost, burst-mode transceiver for two-wire PBX and private network loops up to 1.8 km . It uses techniques such as scrambled alternate mark inversion decoding to assure low bit error rates on a wide variety of cable types. While this is a proprietary transmission scheme, it offers single twisted-pair wiring and is available at a lower cost than the S interface which only specifies 1 km (even though the TP3420/ST5420A will support 1.5 km) and so can be usefully employed in PABXs.

Mercury expands Centrex services

Mercun has announced that the capacity of its London Centrex switch has been expanded from 10000 to 28000 lines. The company also plans to provide Centrex senvices, whereby PABX faci-
lities are provided by the local public telephone exchange, in other major cities around the country.

Mercury's is the first digital Centrex senvice in Europe and it has been available for customers on Mercury's London Cable Scheme since April 1987. Charges for the service consist of a one-off connection fee per service line plus monthly rentals.

Centrex is well suited to companies with several separate locations, and also to those that quickly need to alter their internal communications system in response to company growth or relocation.

Benefits to the customer include the elimination of the need for major capital expenditure. Features available on Centrex are enhanced by Mercury on a continuous basis so that customers have the ability to upgrade quickly and simply. External calls are charged but calls between extensions are free.

PTAT-1 installation begins

STC Suhmarine Systems has begun the first stage of the underwater installation of PTAT-1 (the first private transatlantic optical fibre telecommunications systeml, co-owned by Cable and Wireless in the UK and Private Transatlantic Telecommunications System Inc. in the USA.

Three shore ends, at Manasquan. New Jersey in the USA. Brean near Weston-super-Mare in the UK, and Devonshire Bay. Bermuda, have been installed. Laying of the first five deep water sections of the link will begin later this year as part of the overall programme which leads to the provision of the UK-USABermuda section of the system by July 1989 .

The link will comprise three working fibre pairs, two of which will link the UK and the USA direct, the third linking Bermuda and Ireland via branching units. An additional spare fibre pair may he switched into service on a section-by-section basis to enable the system to be maintained in senvice without the need for ship repairs.

The two-fibre pair spur to Courtmacsherry Bay, County Cork in the Republic of Ireland. due for completion in November 1989, will join the main transatlantic link at a branching unit 100 km off the coast.

The fibre pairs will operate at $420 \mathrm{Mbit} / \mathrm{s}$ at a wavelength of 1300 nanometres, giving a capacity of 5670 circuits per fibre pair before the use of circuit multiplication equipment. Ali cable for the system will be protected either hy extra sheathing or by one or more layers of armourwires.

Repeaterless record

STC Submarine Systems is to supply the world's longest underwater cable link without submerged repeaters. The $\$ 10$ million contract for the cable is between STC and the link's coowners Mercury Communications, the Netherlands administration $\mathrm{PT} T$ Telecommunicatie. and British Telecom.

To be known as UKNetherlands 12, the system will link Aldeburgh, Sulfolk, with Domburg in the Netherlands, over a distance of 155 km . Completion is scheduled for summer 1989. It will be the fourth submarine system between these two points, all of which STC has supplied.

The six fibre pair system will operate at a wavelength of $150(0 \mathrm{~nm}$ at $140 \mathrm{Mbit} / \mathrm{s}$ and each fibre pair will be able to carry 1920 telephone circuits. This basic total capacity of 11500 circuits can be further increased by upgrading terminal equipment to operate at $565 \mathrm{Mbi} / \mathrm{s}$.

The system employs 1535 nanometre distributed feedback (DFB) single-line lasers. These have a very narrow spectral width and will be used at this longer wavelength where the fibreattenuation is much lower.

Telecomms Topics is compiled by Adrian Morant.

The new Antex guide to Temperature Controlled Soldering

－New Temperature－Control Products Launched
－＂How to choose the Right Iron＂
Complete the couponor clip toy your compiete the coupon en lip your copy ｜ot＂Precision Soldering＂ section．
－Full technical specifications of range
the whole A ntex

ELECTRONICS
Mayflower House，Armada Way，Plymouth，Devon，PL1 1JX Tel：（0752） 667377 Telex： 45296 Fax：（0752） 220363

INTEL 82786 GRAPHICS ENGINE

－Hardware Windows
－Drawing at 2．5 Million Pixels／sec
－Fill at $30 \mathrm{Mbit} / \mathrm{sec}$
－BitBlt at $24 \mathrm{Mbit} / \mathrm{sec}$

TT786－HARNESS THE POWER．．f395

－IBM PC Add－In
－100\％CGA，EGA，and VGA Compatible
－ 512 Kbyte to 4 Mbyte Memory
－C and BASIC
－Comprehensive Documentation

TEKTITE LTD
PO BOX 5
FELIXSTOWE，IP 11 7LW
SUFFOLK，ENGLAND
0394－672117
TELEX： 987458

ENTER 58 ON REPLY CARI）

Real Time

 In－circuit Emulation 写回行吕司－Connects to any existing development system e．g． IBM PC，VAX etc．
－Universal mainframe design supports many microprocessors through the use of low cost configuration pods．＇To change processor simply change the pod．
－Real time CPU emulation with no wait states， provides powerful debug environment around users target system．
－Fully symbolic operation with local symbol storage．
－Optional $2 k \times 48$ bit real time trace and overlay ram facility（up to 128 K bytes）．
－Use stand alone with dumb terminal or connect using dual RS232 Ports，into development system
－Up to 32 cycle－qualified hardware breakpoints supporting range or wild card with logical connectives （e．g．and，or，then）．

Configuration Pads Available
68010，68000， $68008,6809,6802,6800,8086,8088, ~ V 20$ ， V30，8085，NSC800，Z80，HD64180，65SC816，6．502．

For a FREE literature pack or a no－obligation demonstration PHONE NOW（0254） 691131 ． Designed，manufactured and fully supported in the United Kingdom．

NEW MICROCONTROLLER RANGE WITH PERFORMANCE ANALYSIS

8051：（8052／32／51／31／59）
80515：（80512／515／535）
80C451：ZS8：
8048：（8048／50）
High Level Debug for PLM or＇C＇
FOR FREE DEMO DISK RING NOW ON （0254）691131

ALSO AVAILABLE 68HC11 FOR ONLY £1，995．00

NORAL MICROLOGICS LTD
Unit 6，Scotshaw Brook Industrial Estate，Branch Road， Lower Darwen，Darwen，Lancashire BB30PR．

Tel：（0254） 601131
Telex：635091 ALBION G（Att NORAL） Fax：（0254） 680847

LED GRAPHICS: A NEW WINDOW ON THE WORLD

Large-screen LED video displays

Comvined teat/graphic displays

Arrival and departure boards

Computer-generated displays

News and information displays

Toshiba, the first name in LED modules, opens a new window on graphic display media with the latest breakthrough in LED technology.

As easy to use as conventional CRT displays, Toshiba's new LED dotmatrix modules provide clear, colourful display of letters and graphics for the coming generation of LED televisions.

Each module features an advanced gate array for interfacing with video equipment and personal computers. And with versatile capabilities such as superimposition and stop motion, these modules can handle virtually any computer-generated graphic display.

Toshiba LED modules also boast a powerful, hıgh-speed 20 MHz input clock, and 16-gradient control for improved colour contrast. In addition, we've successfully developed a new flat LED which provides a clear image from any angle of view.

And in putting a system together, you can count on the support of Toshiba engineers with extensive experience in the field.

For new possibilities in LED graphic display, look to Toshiba - the leading light in LED technology.
electronica88 ${ }^{\circ}$
Munich, 8-12 November 1988
Toshiba booth is located in
HALL 25, STAND 25 A9

TLMM504A1U (Now flat LED)

In Touch with Tomorrow

 TOSHIBA
Fast Fourier transforms of sampled waveforms

A procedure for the accurate determination of frequency as low as half the frequency interval and higher than the Nyquist frequency

S.E. GEORCEOURA

Astudy of the results obtained by the FFT algorithm for actual experimental (and precisely known) digitally sampled waveforms has led the author to a better theoretical understanding of how the FFT works. The result is an extrapolation procedure which enables the accurate determination of unknown frequencies - to an accuracy far exceeding that defined by the frequency interval ($F=$ (sampling fireg.) \div number of points). Frequencies can be as low as F/2 for cosine waves. and can be higher than the Nyquist value of $1 / 2$ sampling frequency.

One thesis that is here challenged is that the FFT 'assumes' the waveform to repeat itself betore and after the sampled time window. This is. one would suppose. a hangover from Fourier series. It is suggested that the FFT algorithm considers' the waveform to be precisely limited to what is in the time window - with nothing happening before or after. This is verified in the case of square waves taken as a set of a small number of pulses whose pulse width is equal to the pulse separation.

Several articles have appeared in EdWW dealing with the Fast Fourier Transform ${ }^{1-4}$. In these one finds a 256 point Basic program and a 128 point machine code program, both for the BBC. The waveforms dealt with are simple, theoretically evaluated waveiorms in which nothing of the complications occurring in an experimentally obtained waveform actually appear. Omer gives a brief mention of a "leakage" effect appearing ${ }^{6}$.

Witten ${ }^{5}$ gives a good description of the effect of sampling on the frequency spectrum. The main diagrams are reproduced as Fig. 1 and are self-explanatory. Omer describes the spectrum obtained for sinewaves of frequency greater than the Nyquist limits as "meaningless" ${ }^{\text {b }}$.

Starling with Larsen and Dyvik's 256 point hasic program. the author has extended it to apply to any number of points (powers of 2) using the bit-reversal routine given by Dvorak and Musset ${ }^{7}$. He then followed Omer's example of setting up 'lookup tables - and constructed bit-reversal machine code files and cosine files for 64. 128. 256,512 and 1024 point transforms. Page is moved down to d 1300 in Mode 7 for the FFT calculations, and a lot of juggling in memory locations is done - in fact even saving the final result in an area of memory
 Imaginary and Amplitude which have been stored as integers between -100 and +100 . This is restrictive, but at least enables the use of Mode \downarrow - for high resolution and for printing results on the graph. The data is also plotted. The four chamnels can be plotted singly or in any combination. A shortened version only plots the modulus of amplitude.

Both plotting progranss can expand any section of the graph until a minimum of 32 points is plotted on the screen. In any scale one can view one section after another, so that one can scan the whole graph at high resolution. Using the extended version and a program which can be "chained' from it one

Lastly, the shortened version can display the FFr of two waverorms obtained simul taneously. or concurrently.

EXTENDING THE UPPER LIMIT OF MEASURABLE FREQUENCY

The problem is to get some sense out of a supposedly meaningless spectrum which is obtained with a sampling frequency that is lower than the frequency to be measured. To do this. the author wrote a versatile program which enables one to use the same data to obtain the results that would have been obtained with a smaller sampling frequency. e.g. with sampling frequency f_{s} a given set of data points was obtained. The resulting datapoints with $i_{s} / 2$ will be deduced by skipping every other datapoint. with $i_{s} / 3$ by skipping two data points and taking the third. etc.

By doing this and doing the FFl calculations to note the calculated irequency f every time, the following result was obtained by inspection:
correct frequency $=m \times F_{s} \pm i$
where $m=0.1,2 \ldots$ an integer. F_{s} is the sampling frequency and I is the frequency calculatcd from the FFT spectrum. Sidebands are lamiliar enough so that $F_{s} \pm f$ is understandable. Do the higher orders come because we have modulated pulses? The above equation and the facility for determining a harmonic's order have enabled the determination of a 40 hHz square wave harmonics with $331 / 3 \mathrm{kHz}$ sampling frequency (Fig.2).

FOURIER TRANSFORM OFA DIGITALLYY SAMPLED WAVEFORM

Suppose one is sampling with frequency i and N points are sampled. Consider a cosine wave with amplitude A, frequency f_{0} and phase \propto, when it is first sampled. Since sampling starts at $t=0$ and ends at $\tau=N(1 / 1)$, then these must be the limits of the (sampling) time window.

For the sake of generality. let the cosine function be switched on for a time $t_{0}=n_{0}$ (1/1) which is less than τ as in Fig.5. The frequency interval or the smallest increment in the frequency domain is

$$
\mathrm{F}=1 / \tau=\mathrm{i} / \mathrm{n}
$$

where $\omega_{01}=2 \pi f_{10}, F=i / n_{10}$.
The Fourier transtorm is given by ${ }^{*}$

$$
\begin{aligned}
& G((t))=\int_{i}^{1 / r} i(t) e^{-i \omega t} d t
\end{aligned}
$$

$$
\begin{aligned}
& =\hat{2}_{2}^{A}\left[\frac{\mathrm{e}^{\left.-i \mid(\omega)-\omega_{0}\right) t-(0)}}{-i\left((1)-\omega_{0}\right)}+\frac{\mathrm{e}^{\left.-i \mid(\omega)+\omega_{10}\right) t-(\omega)}}{-i\left(\omega-\omega_{0}\right)}\right]_{0}^{1 / f_{01}}
\end{aligned}
$$

We now write $\quad(1)=2 \pi i=2 \pi \mathrm{FL}$,

$$
\omega_{0}=2 \pi i L_{4} .
$$

(where L is an integer, L_{8}, is not necessarily an integer) and separate real and imaginary parts. giving

It can be easily seen that
$\operatorname{ReC}(-L)=\operatorname{ReC}(L)$
$\operatorname{ImC}(-L)=-\operatorname{lmC}(L)$
which demonstrates the symmetry properties of the Fourier transiorm. Since negative frequencies are unphysical and since the "correct" frequency is $m i+L . F$ then a frequency - LF will correspond to a positive frequency I - LF or NF - LF using the lowest non-zero value of m.

This now makes it possible to write the symmetry propert ies as

$$
\operatorname{ReG}(N-L)=\operatorname{ReC}(L)
$$

$\operatorname{ImG}\left(\mathrm{N}^{-L}\right)=-\operatorname{ImG}(\mathrm{L})$
Thus, for $0 \leqslant L \leqslant N / 2$.

$$
\begin{aligned}
& \operatorname{ReG}(L)=\frac{A}{2 F_{01}}\left[\frac{\sin \frac{2 \pi F\left(L-L_{0}\right)}{F_{0}}}{\frac{2 \pi F\left(L-L_{0}\right)}{F_{01}}} \cos \alpha+\frac{\left(1-\cos \frac{2 \pi F\left(L-L_{01}\right)}{F_{01}} \sin \alpha\right.}{\frac{2 \pi F\left(L-L_{01}\right)}{F_{01}}}\right] \\
& \operatorname{Im} G(1 .)=\frac{1}{2 F_{11}}\left[-\frac{1-\cos \frac{2 \pi F\left(L-L_{-11}\right)}{F_{10}}}{\frac{2 \pi F\left(I-I_{011}\right)}{F_{11}}} \cos \alpha+\sin \frac{2 \pi F\left(L-L_{11}\right)}{F_{10}} \sin \theta\right]
\end{aligned}
$$

$|G(L)|^{2}=|\operatorname{ReG}(L .)|^{2}+|\operatorname{lmG}(L .)|^{2}$

The treatment above gives the frequency spectrum of a cosine wave of amplitude A and frequency $\mathrm{I}_{0}=\mathrm{L}_{0} \mathrm{~F}$. and phase \propto at $\mathrm{t}=0$.

Fig. 2. 40 kHz square wave harmonics when sampled at 33.33 kHz .

No reierence was made to an integer number of cycles in the sampled window. It is easy to see that instead of one single line in the frequency spectrum one has a whole distribution obeying a sinc/cosc function. This is in fact experimentally observed. The fluctuations in the real and imaginary parts are not apparent in the usual case in which $t_{4}=T$ i.e. $F_{0}=F$. This is because with $F=F_{0}$, the argument of sine/cosine is $2 \pi\left(\mathrm{~L}-\mathrm{L}_{0}\right)$ and this is a constant for all L. Thus only the I/(L-L $\left.L_{0}\right)$ behaviour is observed. If, however. F_{o} is equal to $F / 2$ the oscillations are inmediately obvious.

The inverse FFT of the above spectrum

Fig. 33 kHz wave, sampled at 3676 Hz , showing low-frequency alias at 735 Hz (f). Correct frequency $=F_{s}-f$. Harmonics 2 and 3 coincide. Phase and amplitude incorrect. but frequencies are correct.

Fig. 5. Cosine function switched on for a period $t_{0}=n_{0}(1 / f)$ less than Y.

Fig. 4. 3 kHz wave sampled at 29412 Hz . Harmonics 1 and 2 underlined.

Fig. 6. A pure sine wave with $F=F_{0}$, no oscillation in real and imaginary parts visible.

Fig. 7. Pure sine wave with $F_{0}=F / 2$. showing oscillations.

Fig. 8. Inverse FFT. Top waveform is input. Two lower plots show real and imaginary parts of reconstructed waveform.

Fig. 9. 512-point FFT gives $\operatorname{FREQ}==$ 2943.9 Hz (Freq. interval $==57.445 \mathrm{~Hz}$) and phase $=0.068$ radians.

Fig. 10. 64 point FFT of same waveform as in Fig. 9. Freq $=2945 \mathrm{~Hz}$, phase $=-0.068$ radians. Amplitude depends on normalization. Result is almost identical with that from 512-point FFT.

Fig. 11 and 12 show the effect of extending the lower measurable frequency limit. 300 Hz is measured with a frequency interval of 459.56 Hz . Less than one complete wave is sampled. Fig. 12 shows a frequency error of less than 10%.
yields the original waveiorm restricted to the same time interval t_{0}. Should one have expected a repetition of the wavelorms outside the interval t_{0} with discontinuities at the houndaries of the t_{1}, window.... as Omer may seem to suggest? (p.23. EdWW June, 1986).

The equations for $\operatorname{ReG}(L), I m C(L)$ and the symmetry properties at $\mathrm{N}-\mathrm{L}$, relative to L . enable the addition of a frequency component of defined A. $f_{0}, \times(f$, , can be greater than the sampling frequency!) to a frequency spect rum. An inverse FFT will then yield the reconstructed waveform with the added frequency component.

PARAMETRIZATION OF FREQUENCY SPECTRUM

We consider only the case in which $\mathrm{F}_{0}=\mathrm{F}$. For a given $L_{0},\left(=i_{1} / F\right)$. the argument 2π (L.- L_{-1}, is a constant for all L . Since x is also a constant then one can write.
for $L_{n} \neq$ integer.
This is the behaviour expected of a singlefrequency component. if L_{n} is an integer then all terms in $\operatorname{ReG}(1$.$) and \operatorname{ImC}(L)$ will be zero except for the $\mathrm{L}=\mathrm{L}_{\text {, }}$ term because of the denominator

$$
\left(L^{2}-L_{0}\right)\left(\frac{\sin x}{x} \underset{x \rightarrow 0}{\longrightarrow} 1\right)
$$

This corresponds to the case in which the time window contains a whole number of cycles.
One should, however allow for the possibility of some background term which may result from the sampling procedure, rounding off error, experimental error, etc. If this is assumed to vary little over. say. two sampling intervals, then in the neighbourhood of a pole one can assume its effect to be simply the addition of a constant term.
$\left.\operatorname{ReC}\left(L_{1}\right)=A_{1}+\mathrm{i}_{4} /\left(\mathrm{L}-\mathrm{L}_{1}\right): \ln \right) \mathrm{C}(\mathrm{L})=\mathrm{A}_{1}+\mathrm{i}_{(}\left(\mathrm{L}-\mathrm{L}_{1}\right)$ for $L_{10} \neq$ integer.
When $f_{,}, f_{l}$ and l_{6} are determined, then the chosen frequency component can be digitally filtered by subtract ing the pole term from each frequency component.

DE:TERMINATION OFFREQUENCY AND AMPLITTUDE

This is most easily determined from the modulus or (energy part) of the amplitude. If F_{1} is the largest local value of the spectrum corresponding to an integer $\mathrm{l}_{2}=\mathrm{I}_{4}, 1 \%$ and F_{2} is the larger of the two neighbouring values then, using the properties of the sinc function the peak value is a small distance $a_{\text {, }}$, (<1) from L_{0} " $1 /$ given by

$$
\mathrm{a}_{0}=\mathrm{F}_{2} /\left(\mathrm{F}_{1}+\mathrm{F}_{2}\right)
$$

$\mathrm{a}_{10}>0$ if F_{2} is the value of $|\mathrm{G}(\mathrm{L})|$ at $\mathrm{L}=L_{0} \|_{1} /(1)+1$ and
$\mathrm{a}_{11}<0$ if F_{2} is the value of $|\mathrm{C} /(\mathrm{L})|$ at $\mathrm{l} .=\mathrm{L}_{11} 1 \times 1 / 2$

$$
L_{10}=L_{1},{ }_{1}, 10+a_{10}
$$

If one looks at the real and imaginary parts as well then one can set $L_{0} \%$ to to that value for which the functions have a sign at $L_{0}, 1 / 1 /-1$ which is opposite to that at L, " $\%_{0}, a_{0}$ is then always negative i.e. $L_{0}=L_{0}{ }^{\prime \prime} / n-a_{0}$. In each case the frequency is $\mathrm{FRE} Q=1_{0} \mathrm{~F}$.

Since the background terms A_{0} and A_{1} will
affect the answer then only the pole terms in the above parametrization should be used. Moreover, to increase resolution the effect of a nearby 'pole' should also be subtracted before determining a, .
The amplitude $\mathfrak{f}_{\mathrm{a}}$ is determined by remembering that

$$
\left(F_{1}\right)_{\text {currected tur hackground. ale }}=I_{a 1} \frac{\sin \pi a_{11}}{\pi a_{01}}
$$

An outstanding feature of this method is that the value of the FREQ ohtained is almost independent of the number of Fourier points analysed, as seen in Figs 9 and 10.

EXTENIDING THE LOWER LIMIT OF MEASURABLE FREQUENCY

It is usually accepted that one should have at least one whole cycle in the time window. and this corresponds to the smallest frequency reading of f / N.
Using the present theoretical derivation one can measure $\mathrm{a}_{\text {, }}$ for $\mathrm{lo} 0<1$ hy using the "pole" hehaviour for $\mathrm{L}>1$ rather than for values of 1 , on either side of L. . In this case, if F_{1} is the value of $G(L)$ at $L=1$ and F, is the value at $\mathrm{L}=2$ then

$$
\mathrm{a}_{11}=\frac{\mathrm{F}_{2}}{\mathrm{~F}_{1}-\mathrm{F}_{2}} \text {, } \mathrm{FREQ}=\left(1-\mathrm{a}_{1}\right) \mathrm{F}
$$

and f_{a} is still $F_{1}\left(\sin \pi a_{1} / \pi a_{1}\right.$, ,
This cannot be used for less than about half a wave in the sampled window as, for smaller sections of a wave. it becomes difficult to differentiate a sine wave from a straight line. Of course the same extension does not apply for the case of a square wave. as it will he indistinguishable from a pulse. Figs 11 and 12 show the results.

MEASUREMENT OF PIIASE

By dividing ImGi(l) by Reci(l) one obtains. using the previous parametrizations

$$
\begin{aligned}
\left(\frac{I m()) L}{R e c i(L)}\right) & =\frac{i_{1}}{i_{11}} \\
& =-\frac{\left(1-\cos ^{2} 2 \pi\left(L-L_{11}\right) \operatorname{coses}+\sin ^{2} 2 \pi\left(L-L_{11}\right) \sin (x\right.}{\sin ^{2} \pi\left(L-I_{41}\right) \cos \left(x+\left(1-\cos ^{2}-\pi\left(L-l_{11}\right) \sin (x\right.\right.}
\end{aligned}
$$

Since $2 \pi\left(1 .-I_{01}\right)=2 \pi a_{n} \pm$ integer multiple of 2π, then

$$
\frac{f_{1}}{f_{11}}=-\frac{\left(1-\cos ^{2} 2 \pi a_{1}\right) \cos \left(x+\sin 2 a^{2} a_{11} \sin (x\right.}{\sin ^{2} \pi a_{1} \cos ^{2}\left(x+11-\cos ^{2} \pi a_{11} \sin \alpha\right.}
$$

For $L_{L}=L_{1}$, tan $\left(x=i_{1} / i_{1,1}\right.$, hut in general

$$
\tan \left(x=\frac{f_{1} \sin 2 \pi a_{11}+\left(1-\cos 2 \pi a_{1}\right) f_{12}}{f_{1}, \sin 2 \pi a_{11}-\left(1-\cos 2 \pi a_{1}\right) f_{1}}\right.
$$

The BBC gives the answer to arctan as a number between $-\pi / 2$ and $+\pi / 2$. The sign of the numerator (corresponding to the sign of the sine of the phase) then determines which quadrant the angle x is in. The phase printed on the graph is in the form of number $\times \pi$. If a frequency component is added. then the phase is also fed in as a number $=x / \pi \cdot 1 x=$ phase at $t=0$ of the particular frequency component. To calculate relative phases of components see later.)
When a determination of FREQ. f_{a} and x has been made for each frequency component. then one can filter out the individual
components one at a time and analyse the 'residue'. This may give us some data relative to experimental error/accuracy, noise etc. or it may show the discrepancy between the theory developed and experimental results. The error is greatly magnified as the discrepancy is usually of the order of a few percent of maximum amplitude hut is made equal to 100% in the plotted waveform.

NORMALIZATION

In the soitware used $\mathrm{G}(\mathrm{L})_{\text {max. }}$ is set equal to 100%. Three methods of normalization are useful.
(i) Pulse-type - data analysed as it is. This gives a transform with $\mathrm{G}(0)=100 \%$ and hence gives the expected pulse type transform (generally accepted as a sinc function of the form $\sin x / x$.
(ii) Peak-to-peak - useful for repetitive waveforms with the zero value of the data being adjusted as $1 / 2 \times$ (maximum + minimum values of data). G(0) can now be used for confirm the value of x obtained. Since even complete wave will contribute zero to $C(1)$ then only the incomplete wave in the data will he responsible for the value of $\mathrm{G}(\mathrm{O})$ Hence

$$
G\left((1)=\frac{\mathrm{fa}}{4 \pi}\left[\sin (2) \pi L_{10}+\alpha\right)-\sin (\gamma]\right.
$$

(iii) Average - use if $\mathrm{G}(0)$ is much greater than all other values of G(L). By setting $G(1)=0$ all other $G(L)$ sare scaled to a higher value and the spectrum can be moreaccurately analysed.

DIGITALFILTERING

Two examples are shown in Figs 13 and 14 where the 50 Hz mains frequency lappearing because of the use of unscreened leads) have been filtered. In the electro-cardiogram example. add multiples of $50 \mathrm{II} \%$ upto the 9 th

Fig. 13 and 14 show examples of 50 Hz filtering. Fig. 13 shows an electrocardiogram and Fig. 14 is a single pulse with different parts of its spectrum filtered to show the effect of the reconstructed pulse.

Single puise

For the above f(t) in the time window, where ΔT is the sampling interval $\left\{=1 / f_{s}\right.$, the Fourier transform is
$\operatorname{Re}\left(1(1)=\frac{(x a \operatorname{ain}}{2 \mathrm{~F} N} \frac{\sin \left(\frac{\pi L a}{N}\right)}{\left(\frac{\pi L a}{N}\right)} \cos \left[\frac{2 \pi L_{1}(\tau+a / 2)}{N}\right]\right.$
$\operatorname{ImC}(L)=\frac{(\alpha a}{2 F N} \frac{\sin \left(\frac{\pi L a}{\lambda}\right)}{\left(\frac{\pi L a}{N}\right)} \sin \left[\frac{2 \pi L .(\tau+a / 2)}{N}\right]$
where $\mathrm{F}=\mathrm{f}_{s} / \mathrm{N}$, as betore.

for $-\mathrm{N} / 2 \leqslant \mathrm{~L} \leqslant \mathrm{~N} / 2$.
A comparison is made in Fig. 16 of this theoretical. well known transiorm of a single pulse with that obtained by the FFT program. The 'fit' is almost perfect. With the value of $\mathrm{G}(\mathrm{L}$) normalized to 100% at $\mathrm{l}=0$, the difference between the FFT and the sinc prediction varies by at most 1 . Yet notice the difference this 'slight' difference makes to the reconstructed waveforms! The two printouts with filename SP/S'T compare theory with actual FFT. SP/FFT and SP/SINC give the reconstructed (inverse FFT) pulses.

Fig. 16. Comparison of FFT and sinc prediction.

Fig. 17. Double pulse.

SPECIAL CASES

Two pulses. Using the result for one pulse. one obtains
where frequency $=\mathrm{Lx}$ frequency interval and normalizing these amplitudes so that the fundamental has an amplitude of 100 . one oblains a consistent amplitude for each irequency for $64 \rightarrow 1024$ point FFT.
Phase. The phase that has been determined in all the above cases is the phase at $t=0$. Let us suppose that if $\propto=0$ for the fundamental then the $m^{\prime \prime}$ harmonic has a phase value of γ_{m}. When the value of α is not zero. then

$$
\operatorname{ReC}(L)=\frac{\alpha \dot{\alpha} \sin \left(\frac{\pi L a}{N}\right)}{2 F N}\left(\frac{\pi L a}{N}\right)\left[\cos \left(\frac{2 \pi L \cdot(\tau+a / 2)}{N}\right)+\cos \left(\frac{2 \pi L(\tau+a+b+a / 2)}{N}\right)\right]
$$

with $\operatorname{lmC}(\mathrm{L})$ given by a similar expression with sine replacing cosine. The modulus of the amplitude is then

$$
|C(L)|=\frac{\alpha a}{F N}\left|\frac{\sin \frac{\pi L \cdot a}{N}}{\frac{\pi L \cdot a}{N}}\right| \cdot\left|\cos \left(\frac{\pi L(a+b)}{N}\right)\right|
$$

Three pulses. Using the same procedure as above
$\left.|G(L)|=\frac{\alpha a}{2 F N}\left|\frac{\sin (\pi L \cdot a / N}{(\pi L \cdot a / N)}\right| \cdot \right\rvert\, 1+2 \cos \left(\frac{2 \pi L(a+b)}{N}\right)$
One pulse with a $=\mathrm{N} / 2$.

$$
|G(L)|=\frac{\alpha a \sin \left(\frac{\pi L}{2}\right)}{2 \mathrm{FN}\left(\frac{\pi L}{2}\right)}
$$

This is a sinc function with zeros at $\mathrm{L}=2.4 .6$ If one ignores the value of $G(0)$, then the values of $\mathrm{G}(1): \mathrm{C}(3): \mathrm{G}(5) \ldots$ are in the ratio of $1: 1 / 31 / 5: \ldots$ as expected ior a repetitive square wave.

Two pulses with $\mathrm{a}=\mathbf{N} / \mathbf{4}, \mathrm{b}=\mathbf{N} / 4$. Here the sinc function has zeros ior $\mathrm{L}=$ multiples of 4, but the cosine term which multiples it has zeros for odd L . Thus the non zero terms are for $\mathrm{L}=0.2 .6,10,14, \ldots$. Ignoring $\mathrm{L}=0$, then the non-zero terms all odd multiples of 2 , with amplitudes in the expected ratio of $1: 1 / 5: 1 / 7 \ldots$

SQUARE WAVES

Frequency 'The extrapolation method given previously for a cosine waveform gives. still. a very accurate evaluation of frequency. The same irequency (with very small error) is obtained with 128 points as with 1024 points, provided the neighbouring frequencies can be resolved, i.e. their separation is \varangle 5 frequency intervals.
Amplitude. One occasion. a variation fup to ± 5 is noticed in the values of the amplitudes. This can be corrected in the case of a square wave by using the frequencies obtained and by also finding the value of a which is the number of datapoints between two points. By putting the amplitude as

$$
A=100 \cdot \frac{\sin \left(\frac{\pi L a}{N}\right)}{\left(\frac{\pi L a}{N}\right)}
$$

$\omega_{0} t \rightarrow \omega_{0} t+\infty$. This effectively translates $\mathrm{t}=\mathrm{t}+\mathrm{d} / \omega_{0}$

Thus for the $\mathrm{m}^{\text {th }}$ harmonic

$$
\omega_{m} t+\gamma_{m} \rightarrow \omega_{m} t+\frac{\omega_{m} \alpha}{\omega_{0}}+\gamma_{m}
$$

The quantity is the phase obtained in the FFTc calculation.

This phase now has values $\beta_{\mathrm{m}}=\mathrm{m} x+\gamma_{\mathrm{m}}$. Using the results derived earlier: $\propto=-0.49$ $\pi: \gamma_{3}=\beta_{3}-3 \times(-0.49 \pi)=1.02 \pi: \gamma_{5}=2.03 \pi$: $\gamma_{7}=3.03 \Omega$. The βs are the phases printed on the graph. For cosine terms, a phase of π. $3 \pi, \ldots$ corresponds to a minus sign: $2 \pi, 4 \pi \ldots$ to a plus sign. Thus the amplitudes are now. taking the phase into account, 100 (1. $-1 / 3 .+$ $1 / 5,-1 / 2 \ldots$) as is the well known result of a square wave.

Reference and notes

1. T. Larsen and G. Dyvik - Fast Fourier transforms using a microcomputer - EdilW September. 1985 p .80 etc .
2. G.K. Dwvik - Fast Fourier transforms - E\&WW December. 1985 p. 74
3. W.Omer - Faster Fourier transforms - EdUW June. 1986 p .23
4. W. Omer - Faster Fourier transiorms E, WUW July. 1986 p .57.
5. I.H. Witten - Digital storage and analysis of speech: I storing waveforms digitally - HW. July. 1981 p. 45.
6. Omer rei. 4 p .57 3rd column Ist para
7. S. Dvorak \& A. Musset - Basic in action Buttenvorth 1984.
8. The result obtained tor a cosine wave could have been obtained directly by realizing that $f(t)$ is really the product of two functions $f=A \cos \omega t$ and
$\mathrm{f}_{\mathrm{n}}=1 \ldots$ for $0 \leq 1 \leq 1 / F_{\text {. }}$
0... othenvise

From the well known theorems of Fourier integ. rals, the Fourier transform $\mathbf{G}(\omega)=$ the convolution integral of $\mathbf{G}(\omega)$ and $\mathrm{G}_{\mathrm{p}}(\omega)$.

$$
\mathrm{C}(\omega)=\int \mathbf{G}(\omega) \mathrm{G}_{\mathrm{p}}(\omega-y) \mathrm{dy}=\mathbf{G}(\omega) \otimes \mathrm{G}_{\mathrm{p}}(\omega)
$$

w here $\mathbf{G}(\omega)=\delta\left(\omega-\omega_{11}\right)+\delta\left(\omega+\omega_{0}\right)$ and $\mathrm{C}_{\mathrm{p}}(\omega)=\sin \left(\omega_{\mathrm{a}} \mathrm{a} 2\right) /(\omega \mathrm{a} / 2)$.
This immediately gives the result shown earlier. but does not yield all the other details of real and imaginany parts etc.. since these result from the added effect of sampling.
9. M. Rousseau \& J.P. Matthieu - Problems in Optics. Pergamon Press, 1973

SATELLITE SYSTEMS

25 years of geostationary orbits

The first communications satellite to get suciessfully into a geostationary orbit and operate therefrom was Syncom III. laun ched a suarter of a century ago. This spin-stabilized spacecraft and the technique for placing it in the g.s.o. were the work of Dr Harold Rosen (see photograph) and his team at Ilughes Aircraft Company in the CSA.
It was a case of third time lucky. The first attempt to launch a Syncom was made in Februan 1963, but the apogee kick motor exploded and destroyed the satellite. Syncom II was more fortunate and in July of the same year was placed in an orbit which was almost hut not quite geostationary. A few months later syncom III achieved the goal of operating from a true geostationary orbit.
Before that date the use of the g.s.o. was nothing more than a theoretical possibility, proposed hy Arthur C. Clarke in this journal some eighteen years earlier ('Extra-terrestrial Relays', Wireless llorld. October 1945). After the early experimental spacecraft of the late 1950s, the first working communications satellite was Telstar. launched in 1962. But this was not geostationary. being in low Earth orbit, and was only visible to ground stations for about 25 minutes at a time.
It was the success of Syncom III that persuaded Comsat to utilize the geostationan orbit for the planned Intelsat world communications system. Comsat asked Hughes to build another spin-stabilized satellite for full operation in a permanent service. Called Early Bird, this satellite started operation in 1965 (see May and June issues of that year) and was later designated Intelsat 1.
A crucial factor in Harold Rosen's success in pulting a spacecraft into the g.s.o. was his use of a transfer orbit. In general. this is an elliptical path designed to transfer a spacecraft from one. low-altitude, orbit to another. higher-altitude. orbit with the smallest possible expenditure of mechanical energy. Ohviously the less power needed from the launching vehicle the lower will

Pioneer Dr Harold Rosen (left) with the prototype of his Syncom the first geostationary communications satellite. A colleague, Tom Hudspeth, points to one of the fuel tanks of the new Intelsat V which stands behind in the Hughes plant at El Segundo, Cal fornia. Syncom, weighing only 35 kg , would fit inside this tank. Intelsat VI is 120 times heavier at 4240 kg .

Fig.1. Principle of elliptical transfer orbit, as used by Harold Rosen to put Syncom into a geostationary orbit and now standard practice. The orbit shown here is an ideal one in the equatorial plane. For simplicity the drift orbit phase is not included.
be the cost of launching the spacecraft and the lower will be the cost of the resulting communications service.
In the g.s.o. case, the transfer orhit is an ellipse which touches a circular low Earth orbit at one point (altitude about 200 km) and the circular geostationary orbit at another point caltitude about $36000 \mathrm{~km})$. The first point becomes the perigee of the transfer orbit while the second point becomes its apogee (see Orbital elements, November 1987 issue. p.1158). Figure 1 shows the general principle with values corresponding roughly to a present-day launching of a comsat by an Ariane-3 rocket.
After lift-off the Ariane rocket climbs almost vertically in an easterly direction, burning out its booster and first and second stages, till it reaches an altitude of just over 200 km . At this point. about six minutes after lift-off, it has travelled approximately 1000 km eastwards round the Earth in a plane fairly close to the equatorial plane. The rocket is now also gradually turning over so that it is travelling more or less horizontally and parallel with the Earth's surface. This trajectory, virtually part of a low Earth orbit. continues for a further 10 minutes and a distance round the Earth of about 50001 km . or 45°.

If the rocket were indeed in a low Earth orbit it would of course continue to travel round indefinitely at a constant altitude of about 2010 km . The equation of motion of such a circular orbit is $v^{2}=g R^{3} / r$, where v is the orhital velocity (here $7.8 \mathrm{~km} / \mathrm{s}$). g is the acceleration due to gravity $\left(9.8 \mathrm{~m} / \mathrm{s}^{-2}\right)$. R is the radius of the Earth and r is the distance between the rocket and the Earth's centre. But in fact, with all three rocket stages now fired. the vehicle has already increased its speed beyond the $7.8 \mathrm{~km} / \mathrm{s}$ necessary to keep it in the circular orbit specified by the above equation. The effect of this acceleration is to throw the rocket outwards. away from the Earth. so that it moves from part of a circular orhit into an elliptical orhit, as shown in Fig. 1. Centripetalacceleration is v^{2} / r.

At about 18 minutes after liftoff and some 60001 km along this new track. the first satellite (if there are several being carried) separates from the rocket and
continues to travel onward in the same elliptical path. Initially it has a velocity in the region of $10 \mathrm{~km} / \mathrm{s}$ but gradually slows down over several hours as it approaches the apogee - rather as a cricket ball thrown upwards slows down as it nears the top of its trajectory. At the apogee the orbital velocity is only about $1.7 \mathrm{~km} / \mathrm{s}$. In this region the spacecraft does not 'need' as much velocity to satisfy the equation of motion for an elliptical orbit (see below) because at this great distance the Earth's gravitational force is so much less. in accordance with the inverse square law.

As the satellite returns towards Earth it speeds up again under the increasing attractive force of the Earth's gravity. Returning to the perigee some $101 / 2$ hours after lift-off, it reaches an orbital velocity of $10.2 \mathrm{~km} / \mathrm{s}$. Here again. this high velocity is 'needed' to balance the very large gravitational force at the low altitude of 200 km .
The satellite is allowed to remain in this elliptical transfer orhit as long as required by the pre-arranged launching procedure. In the case of the recent ECS-5 conssat launch (September issue. p .905) this period was just over 36 hours, or more than three complete orbits. Here the plane of the transfer orbit was not exactly in the equatorial plane as indicated in Fig. 1 hut at a small incination of 7°. The equation of motion of such an elliptical orbit is

$$
\mathrm{v}^{2}=\frac{\mathrm{gR}^{2}(2 a-r)}{r a}
$$

where $v, g . R$ and r are as defined above and a is the semi-major axis of the ellipse (see Fig. 1). The orbital period here is

$$
\mathrm{T}=\frac{2 \pi \mathrm{a}^{3 / 2}}{\sqrt{\mathrm{gR}^{2}}}
$$

and in the example shown in Fig. 1 works out to approximately $10^{1 / 2}$ hours.

To propel the satellite from this elliptical transfer orbit to its final geostationary orbit an apogee kick motor is fired by telecommand at one of the times when the spacecraft is at the 36000 km apogee. With ECS-5 this was done after three complete elliptical orbits. as the satellite reached the apogee for
the fourth time. The resulting acceleration to a higher speed again throws the spacecraft outwards and it now moves into a drift orbit and finally into a circular geostationary orbit (inclination $=\left(0^{\circ}\right)$ at an orbital velocity of $3.1 \mathrm{~km} / \mathrm{s}$. In this way the manoeuvre is completed with the least possible expenditure of energy and propellant fuel in both the launching rocket and the satellite's apogee kick motor.

ECS-5 was launched at 23.13 h UTC on July 21 and the apogee kick motor was fired at 12.23 h UTC on July 23 . using un 3.5 kg of the total 122 kg of hydrazine fuel carried in the spacecraft. The satellite reached its initial position of $16^{\circ} \mathrm{E}$ in the geostationary orbit in mid-August.

- A cursory mention of centrifugal force in an earlier item on celestial mechanics (February 1987, p. 159) gave rise to some lively correspondence with a reader on the question of whether such a force exists in the mechanics of orbiting satellites. I should have added in my piece that it is valid to conceive of centrifugal force as existing within a rotating frame of reference (e.g. as experienced by a particular or person whirling round inside a centrifuge) but not in an inertial frame of reference llooking at the various forces from the larger world outside the system). So it all depends on where the observer is.

Cheaper vehicle insurance

A satellite communications scheme that could reduce insurance costs for the world's road transport industries has been demonstrated in Helsinki, Finland. It was set up experimentally by a manufacturer of anti-theft devices for lorries, Petenvell Finland KY. using the Inmarsat satcoms system. Petenvell's equipment not only sounds an alarm if a vehicle is tampered with but also disables various parts of the lorrys controls and mechanisms.

Insurance firms had already told this company that they would offer substantially reduced premiums if they could be sure that the anti-theft equipment installed was actually in
use. The purpose of the Helsinki demonstration was to show how a satellite scheme could provide that assurance.

The anti-theft equipment. installed in a Volvo truck, was connected to an Inmarsat Standard-C data communications terminal which transmitted a sequence of data each time the equipment was turned on or off. The signal was uplinked to a comsat over the Atlantic Ocean and downlinked to an Earth station in the UK, from which it was sent over normal international telecom channels back to the Petenvell office in Helsinki. Here the data was processed and displayed as a graphical status report on a v.d.u. screen.

Other information was included in the data signal, such as the temperature in the truck's cargo area. It seems possible that this could be expanded to give information on such things as position. mileage. fuel and load statistics.

- Even though its secondgeneration satcom system has not yet begun operation. Inmarsat has already announced plans for Inmarsat-3. This is likely to use more advanced satellites with multiple spot-beams and the international co-operative has asked manufacturers to make proposals for such spacecraft, to be available in orbit by 1994. Meanwhile an arrangement has been made for China to provide tracking, telemetry and command services for the coming lnmarsat-2 satellites in the Pacific Ocean area. These services will require a 24 -hour dedicated tracking station and a separate in-orbit testing station. both to be operated by China Satellite Launch and Tracking Control General.

Tracking Phobos

An interterometric radio telescope with a very long haseline (sce August issuce p. 7 79) will be used by NASA to assist in its current scientific space mission to Phobos one of the two natural satellites or moons of the planet Mars (the other is Deimos). The purpose is to measure the position and movement of Phobos by the radio interferometric technique in conjunction with Doppler and range tracking.

Scientists are interested in Phobos hecause its orbit appears to be decaying. They think that tidal forces - the unequal gravitational altractions between different partsol two hodies - are making the moon spiral reve slowly towards Mans and eventhal destruction. Ontical track ing is not really accurate enough to detect this phenomenom. (only active radio tracking, with a toansmitter actually planted on Phohos, will meastre the orbits rate of decay.

The Soviet linion latunched tho scientitic spacecratt in Joly this year. Phobus 1 and Phohos: 2 . and these are now on theirnay (o) Mars. In about Ipril 19s9. whike orbiting the planet. these spacecratt are intended to put down landers. can ving transmitters. on to the surace of Phobos. CASAS tracking system. part of its deep space network. will also be used to assist in these landings helone heing transierred to the main scientific task.

On liarth. signals from the tander tansmitters sitting on Phohos will be picked up hy widely-spaced antemas for the interferometric system. These are NASids $\quad 0$ metre dish antennas in Catitomia. Spain and Australia, plus a Russitan radiotelesoope in the crime ora. One of the difliculties in meastarement will be that Phohos has a lerey shore whital periond. At an altitude ot bolowkm, it completes an orbit round Mars in only $\overline{7}$ hours :37 minutes. As a result the interterometric and other radiotracking of the lander fansmitters will only be possible for ahout 17 minutes of each orbit round the planet.

From ()etoher until the end of this year the interferometer technique is heing checked under space flight conditions. Scientists and engineers from 14 countries and from ESS hare taken part in dereloping scientific instruments for the two Phobos spacecratt.

Satellite Systems is written by Tom lvall.

NEW PRODUCTS

Polishing machine for optical fibre connectors

A high-yield polishing machine designed to produce optical-fibre connectors has been introduced into the UK by K-Tech.

It can be used with all major connector styles. including FC/PC. $\mathrm{D} \mid \mathrm{N} . \mathrm{ST}$ and SM A . The machine can accommodate up to 12 connectors at a time to make convex or tlat endface finishes. Polishing time is 6.5 min for 12 connectors. K-Tech. 16-18 Barton Road, Bletchley. Milton Keynes MK2 3JH. Tel: 090876353.

Optical signal measurements

Electro-optic engineers can accurately measure optical signals using any conventional oscilloscope in conjunction with the 1103 Tekprobe power supply.
When the unit is used with the P6701 and P6702 optical electrical converters and the P6751 spatial input head all oscilloscopes can perform calibrated optical measurements on both fibie-based
and free-space signals. The Tekprobe sends calibrated voltage signals to the oscilloscope so users can make average and pulse-optical power measurements. It also facilitates the simultaneous display of electrical and optical vaveforms on dualchannel oscilloscopes. Tektronix UK Ltd, Fourth Ivenue. Globe Park. Marlow. Bucks SL7 1YD. Tel: 06:84 6000 .

Custom design service

A free custom design sen ice for Corstat and Corshield static protection packaging products is now available.
The company stocks a number of standard sizes and designs for the three types of containers it manufactures: inplant handlers, bin hoxes for storage and transit packs. Corstat is designed to protect all static-sensitive devices and
components from discharge including p.c.bs. sub-assemblies. i.cs and transistors. Corshield protects against electrostatic discharge but, because of the metal foil inserted into the construction. it also provides protection against electromagnetic and r.f. interference. Conductive Containers Lid. Western Road. Bracknell. Berks RG12 IQY. Tel: 034459911 .

Variable size instrument cases

Flexibility is brought to the design of prototype and production runs by the Powerbox Macro range of rack mounting and tabletop instrument cases.

Radiatron Components supply the cases in flat-pack form to be screwdriver assembled to the required size. Individual full-rack cases can be built in two depths (12.8 and 16.73 mm) in heights from two to eight modtales. The enclosure systems have integral heat sinks and guide channels to hold p.c.bs, and special grooves to hold tapped strips for component mounting. Radiatron Components Litd. Crown Road, Twickenham, Middlesex TWI 3ET. Tel: 01-891 6839 .

Single unit analogue and digital analysis

One PC controlled unit able to perform analogue and digital analysis is announced by Megger Instruments.
OmniLab 9240 combines a 100 MH 2 digital oscilloscope with a time-aligned $200 \mathrm{MS} / \mathrm{s} 48$-channel logic analyser and synchronized analogue and digital stimulus generators. Both analogue and digital traces are time-correlated on to a single display and the stimulus generators allow capture editing and play bach of signals. New select triggering combines the features of oscilloscope and logic analyser techniques with ram truth tahles and min/max time qualifications to simplify the capture of rare events such as missing pulses. bus contentions and buried noise glitches. Megger Instruments Ltd. Archoliffe Road. Dover. Kient CT1i 9EN. Tel: 0304202020

NEW PRODUCTS

Dot matrix replacements for led displays

Designers can improve the performance and appearance of equipment without mechanical or electronic design alterations using a range of replacement displays from Siemens.

The displays are dot-matrix direct drop-in replacements for the Siemens DL1414, DL2416 and DI 3416 four digit modules and the Hewlett-Packard equivalents. They are available with red, highefficiency red or green light outputs The 5×7 matrix format enables the size of the available character set to be doubled to 128 . Siemens Ltd, Siemens House, Windmill Road. Sunbury-on-Thames. Middlesex TW16 7HS. Tel: 0932752323

Telecomm relays

Miniature type 47 relays suitable for a range of telecommunication applications are available from Devlin Electronics following the company's appointment as distributor for Meisei.
The range comprises six different types with nominal coil voltages from 5 to 48 V d.c. and coil resistances of between 45 and 3900 ohm. Power consumption is 0.56 W . The gold clad, silver palladium alloy contacts have a maximum switching voltage and current of 125 V and 1.25 A . The relays offer a mechanical life in excess of 20 million operations. Devlin Electronics Ltd, Unit 1, Sherrington Way. Basingstoke, Hants RG22 4DQ Tel: 0256467367.

Real-time image processing

Real colour and real-time image processing are offered by Oxford Framestore Applications' advanced image analysis system
The system is able to capture real colour images at video rate, and can average images in real time to sixteen bit accuracy. Real time subtraction and video peak hold to eight hits
extends potential applications to low light level and thermal imaging, security, X-ray and electron microscope image noise reduction. scientific data collection and particle tracking. Oxford Framestore Applications L.td, 3 Membury Way. Grovelands Park, Wantage, Oxon OX12 0BP. Tel: 0235766078.

Signal generator

A non-volatile memory capable of storing up to 40 different instrument set-ups is included in the new SMX signal generator available from Feedback Test and Measurement.

The SMX is a modular generator with four fixed frequencies (0.3, 1, 3 and 15 kHz) and offers a frequency range of between 100 kHz and 1000 MHz . The generator's 10 Hz incremental setting makes it suitable for carrying out narrowband testing. A.m., f.m. and pulse modulation are all available. Other features include

IEEE 488 bus interface for remote control which is possible for listener. talker and senvice functions. The standard unit is overload protected up to 30 W . Full self-diagnostic facilities have been included and test points include all essential points of signal generation and r.f. signal levels, without having to open the unit or use external measuring devices. Feedback Instruments l.td, Park Road. Crowborough. East Sussex TN62QR.
Tel: 0892653322.

Airflow sensor protects equipment

Sensitive equipment is protected from damage by using an airflow sensor to monitor the velocity and temperature of cooling airflows to warn of degration or failure in a cooling system.

The solid state device from Cambridge Aeroflow has a fast response time and no moving parts. The sensor has already proved its use in computer systems and other electronic equipment. The output
will drive computer logic or can activate alarms, relays or other circuits. Normally closed versions are available as well as manual reset versions. Supply voltages are 11 to 25 V , and dissipation is less than 0.8 W . The device can either supply or sink up to 100 mA at 30 V and thermal response time is better than 3 s . Cambridge Aeroflow Ltd, Unit 23. Bankside, Kidlington, Oxford OX5 1JE. Tel: 0865841464.

Message mode on data printer

Up to 15 stored messages can be pre-programmed and printed out on demand using the IPP144-40E data printer from ITT Instruments.

Each stock message can be 40 characters long and can include up to six spaces for variable data input. Texts are located or edited from a programmer. terminal or PC through a serial interface, and are stored in a battery maintained c-mos ram. Message mode texts are called up by a number code via a second serial or b.c.d. interface, and can be printed out with the date and time from the built-in clock. The unit can also function as a conventional data printer. ITT Instruments, 346 Edinhurgh Avenue. Slough, Berks SL1 4TU. Tel: 0753824131 .

Signal source, multimeter and thermometer in one unit

A portable d.c. signal source from Universal Instrument which is suitable for adjusting and calibrating industrial instruments, transmission lines, thermocouples for thermometers and recorders can also operate as a four-digit multimeter and thermometer

The Hioki model 7010 is powered by rechargeable batteries or an a.c. adapter and generates voltage and current signals in the range 0 to $\pm 8.1 \mathrm{~V}$ and 0 to $\pm 81 \mathrm{~mA}$. The unit also produces six types of thermoelectric nower output for types K, E, J, T, R and S. It has a I.c.d., rotary function switches and digital step or continuous cont rol of output levels and polarity. Universal Instrument Services Ltd, Unit 62. GEC Site, Cambridge Road Whetstone, Leicester LE8 3LH. Tel: 0533750123.

NEW PRODUCTS

Slim fans for cooling

Fans which are suitable for high density packaging applications including computer disc drive assemblies are available from Dialogue Distribution.
They are designed to operate within a temperature range of -10 to $+70^{\circ} \mathrm{C}^{\circ}$ and have a life expectancy of $40,000 \mathrm{Hhr}$ when operated at $40^{\circ} \mathrm{C}$. They measure 25 mm deep. with a frame size of 120 mm square and have an airflow capacity of $114 \mathrm{~m}^{1} / \mathrm{hr}$. Dialogue Distributionl.td. Wicat I House. fll:3 London Road. Camberley. Surrey Cillisimn. Tel) 1276682001.

Audio-frequency pre-amp for car radios

All the functions for a complete audio-frequency pre-amplifier for car radios - from source selector right through to a quad fader output are included in the Philips TEA630).

The i.c. eliminates the need for manual potentiometers that often require as many as eight to ten wipers and, unlike electronic potentiometers. uses a switched on amp principle which int roduces no audible noise when the controls are activated. The performance of the

TEA A sound fader control circuit is high enough to process signals from compact disc players, a.m./t.m. tuners, and cassette players using Dolhy: Band C noise reduction. An extra mute function is available that can silence all channels while a radio is searching for a station.

The TEA6300 gives 20dB of amplification. and provides a nominal (0.5 V output signal into a 10kohm load resistance. It can connect directly to two of the company's TDAL514 amplifier i.cs:a radio using this arrangement can drive a load of 6 W into each of four channels, or 2uw into each of two channels. Mullard L.td. Mullard 1 house. Torrington Place. Lundon WCIE TIII) Tel: $01-5806633$.

Power meter for broadcast applications

Applications of Marconi Instruments new power meter extend into broadcasting. communications and radar.

These areas have been brought under the domain of the 6960A hy the inclusion of a 3 W : sensor: automatic signal averaging facilities: a kll annunciator: and increased simplicity of operation. The sensor has a measurement range of -1.5 to +35 d 3 m over the frequency range of
lomit\% to 18 Cllz . The maximum hold facility allows users to make unattended measurements on amplifiers, transmitters etc. and to retain the maximum reading obtained. Nine non-volatile memories in the 6960 A incorporate automatic functions which can be chosen by from the front panel keyboard. Marconi Instruments Lud Longacres. St Albans. I Ierts ALA (0)N Tel: 1 I'2 $^{7} 59292$

Ozone-friendly aerosol

An ozone-layer-friendly aerosol for electrical applications has been introduced by Chemtronics UK. I)PL. penetrates, lubricates, displaces water and restores electrical values

It is available in aerosol liquid torm for mass application. Chemtronics UK, 16 Swanscombe Business Centre, London Road. Swanscombe. Kent IAA10 OLII. Tel: 0322 846886

Single axis indexer card

A command lansuage that is specifically for motion control purposes is featured in Digiplan's IFX intelligent single-axis indexer.

The indexer is easily programmed over a standard RSe.3eC link and is equipped with on-card program storage. As many as seven motion control programs, each containings up to 256 characters, can be loaded. For applications that demand

High-speed glue dispenser

Optical correction produces accuracy at high speed in the latest Fuji Il glue dispenser for surface mount p.c.bs. The unit can be integrated into a Fuji automated component placing line or used as a stand alone system. It can take boards sized from $10(1 \times 60 \mathrm{~mm}$ to $475 \times 356 \mathrm{~mm}$. Astro Technology L.td. Astrol Iouse. Little Park Farm Road. Segensworth West. Fareham, Hants PO155TD), Tel; (1489578233.

E.m.i. filters for power supply applications

In power supplyapplications the MTY2e.3NB series of miniature e.m.i rejection filters from EEC Electronics provideshigh attenuation over a wide band of frequencies from 10 to $1000 \mathrm{Ml} / \%$ The filters measure $9 \times 4.2 \times$ $x \mathrm{~mm}$ and are made up of a combination of Melf tubular ceramic capacitors, Cerachips and magnetic ferrites head cores. They are available with capacitances ranging from 270 to 33,000 ()pF. The noise rejection hand is determined by the capacitance value chosen. ECC Electronics (JK) l.td. 9 Blenheim Road. High W'ycombe. [Bucks H1'I? 3RT. Tel: 0494450 Iti.

NEW PRODUCTS

Signal generator

Low distortion and a frequency spect rum down to 1001 iz are offered by the Model 360 at 100 NH \%general purpose signal generator from Quartzlock Instruments.

Harmonic distortion is -40 dBC and modulation distortion is ahout 0.7%. Non-harmonic distortion is -80 dlBc and output level accuracy at 1 NHz is $\pm 2 \mathrm{~dB}$. The unit is also available with enhanced specifications including an harmonic distortion figure of less than
$-50 \mathrm{dl3c}$. The carrier range of this model is $110 \mathrm{MI} / \mathrm{z}$ and the modulation level control has a resolution of ten times that of the general purpose model. Either model is suitahle for use by unskilled personnel and applications include quartz filter testing and $h . f$. receiver and transmittertesting. Quartzlock Instruments. Moor Road. Staverton. Devon TQ9 6PB
Tel: 080426282

Sweep generator for up to 26.5 GHz

Communications, radar systems and components operating above $20 \mathrm{CH} \%$ can be tested by Marconi
Instruments" 6313 programmable sweep generator.

The frequency range covered by this instrument is from 0.01 to 26.5 CHz . The model has a digital sweep capability to provide fast. accurate cont rol of the sweep
frequency via the CIPIB port. This allows sweep repeat ibility and sweeps of 400 points can be achieved in 100 ms . Calihpation is carried out in approximately 17 min and five calibration stores are available for full-band and restricted-frequency calibration. Marconi Instruments Led. Long-acres. St Alhans. Herts ALA01N. Tel: 072759292.

Automated inspection system

Surface defects on silicon wafers can be visually inspected by the Model 9000 in-line process control system from ADE Corporation.

A rohotic arm wafer handler transports the wafer onto a vacuum chuck within the station. The operator is able to rotate and tilt the wafer under a light source. inspect ing for visible faults. The defect code is then entered into a key
pad, routing the wafer to the proper casset te for further processing. The system accommolates five functional stations and is configurable lo meet a variety of applications. It includes a PC controller and an optional SECS 11 communication interface via a RS232 port. ADE Corporation. 77 Rowe Street. Newton. Massachusetts 02166. USA. Tel: 6179690610.

The blur-firee image capture of moving subjects at low light levels hy the Starsight VI. intensified c.c.d. camera improves surveillance and security measures.

This camera the HR60 $/$ /MCP, uses a Philips NX 11011 sensor, fibreoptically coupled to a Mullard $\mathrm{X} \times 1500$ second generation MCP intensifier. The tapered optical fihre coupling
block is bonded to the c.c.d. sensor hut pressure coupled to the interisifier for serviceability. For ultra-fast shutterings times. the intensifier is gated to reduce the image motion blur down to about I $\mu \mathrm{s}$. Prostab International Lid. Boyn Valley Trading Estate, Boon Valley Road. Maidenhead. Berks SLG iEI. Tel: 0628784931 .

Decade resistance boxes

A range of ten precision decade resistance hoxes measures from 110 11 lohm with a choice of $4,5.6$ or 7 decades.

For ease of operat ion H. Tinsley has positioned each decade reading directly above the corresponding decade switch. The instruments are housed in dust proof cases with shielded terminals and give an accuracy to $\pm 0.01 \%$. H. Tinsley \& Co Lid. Standards House, 61 Imperial Way. Croydon. Surrey CR0 4 RR. Tel: 6818431

HIGH QUALITY -LOW PRICES

$4+11 \mathrm{GHz}$ SATELLITE TV RECEIVING EQUIPMENT

RECEIVERS, LNB's, LNC's, FEED HORNS, ANTENNAS, ANTENNA POSITIONERS, POLOROTORS, LINE AMPLIFIERS, ETC.

For further details contact:

HARRISON ELECTRONICS

Century Way, March,
Cambs PE15 8QW
Tel: (0354) 51289

RAYCOM COMMUNICATIONS SYSTEMS LTD
A Man uaciurers. Importers and suppies sol worto tamous communications prod ucis

\square ICOM YAESU FORTHELATEST

100 Khz to 950 MHz IN ONE BOX! RECEIVERS THE YAESU FRG9600 SCANNING RECEIVERS Are you looking for a commerciat grade monitor receiver with optlons to suit your requirements both in cost and performance?

 - Selectable Frequency Stepa - 100 Memoriew Scanning Any rraouency im the tange can oe enteredystored impo a memory and solecled/scanned in also storec on merron

- Clock Function. Clock function atows rme tagging and auto switch onvoll of the receevet

nommai fueld strengith measuremen
隹
 The YAESU Mh2/5 RECEIVFR is only avalathe from Ravcom Earher models can have the exterried bands and HF

Tel: 021-5446757 (24hranswerphane) Export enquiries welcome Telex: 336483 answerback IDENTI-G
FIELD ELECTRIC LTD. 01-953 6009. Fax: 01-207 6375 3 SHENLEY ROAD, BOREHAMWOOD, HERTS WD6 1 AA.

Hoch in stock
$£ 24.00$ p 200
Winchester 8 hard dish drives Q2020 20 ney suppled with data new ex equipment $£ 100.00 \quad \mathrm{p} 600$
SUPER SPECIAL OFFER Ner 12 Green Phos Murntor 75 ! ! comp video mput, high res 240 V AC niput cased $\mathbf{1} 19.95$ © p 450
NEC 9 Greetl Phos Momor $75!1$ comp video input hish res 240 V AC cased with buill in hande. $\$ 19.95 \mathrm{cp} 3.80$ tested
12"75s! Composite Video Input Monitor. 22M4iz bandwidth 240 V AC . new \& boned. in case. siseen phos data ava $\mathbf{5} 59.95$ C 500
Qume Model OVV 102 Montor c with model OVI 102A keyboard, green phus momtor nwenty h/Doand RS232 mput pivot \& the VOU $\{50$ c \& 5.00
Berco Variac 0272 V AC 240 V AC Purnary 15 A cased new $£ 160.00 \mathrm{cip} 650$
240 V primary 110 V sec 3 A isolating transtormen Yellow splash prool case Ideal ste work etr $\mathbf{\Sigma 3 9 . 0 0 \mathrm { c } / \mathrm { p } 5 0 0}$ 240 V Prumary 76 V sec $120 \mathrm{~A} £ 36.50$ c/p 675 240v Prmary IIV sec. $80 \mathrm{~A} £ 44.00$ p 675
Powet supplies Swich node units 240 V AC mput $5 \mathrm{~V} 20 \mathrm{~A} \mathbf{£ 1 8 . 5 0} 5 \mathrm{~V} 40 \mathrm{~A} \mathbf{\Sigma 2 5 . 0 0} 5 \mathrm{~V} 60 \mathrm{~A} £ 2200 \mathrm{Farnell} 6 \mathrm{~V} 5 \mathrm{~A}$ ting we have vad. storks of the PSU
 c/p detars please mine
500
adpl fiche me lens, kales or Nat Pan sealed lead acid cells - 3 . we cannut offer guraminee cells. 6 V 9 watt Quantz thalogen bulb. carryng C ase. Size $8^{1 /}, ~, 7 \%=5$ hard vinyl $\$ 24.95$ new and honed
Cherry TIL Alpha Nume'v ASCII Coded Keyboard includme, 8 colour coded graphic keys. 108 keys lorm X.Y malen full ia control 6 encode keys. 9 graphe control keys. 5 V rall feak \& blach ali case new and toxed $\mathbf{5 2 4 . 9 5} 3$ $\$ 2200 \mathrm{mh}$

MAKING ELECTRONICS C.A.D. AFFORDABLE

ANALYSER II

For BBC B, B+, and Master, and IBM PC/XT/AT -clones inc. Amstrad 1512 and 1640

Analyses circuits for GAIN, PHASE INPUT IMPEDANCE, OUTPUT IMPEDANCE, and GROUP DELAY over a very wide frequency range. Can analyse the frequency performance of complex circuits containing Micro-strip and Coaxial Transmission lines, Bipolar and Field Effect Transistors, Operational Amplifiers, Resistors. Capacitors, and Inductors etc.
BBC range at $£ 130$
PC range at $£ 195$

Z-MATCH

Smith Chart Program for IBM PC/XT/AT and clones inc. Amstrad 1512 and 1640

Takes the drudgery out of matching problems. Includes many more features than the standard Smith Chart. Provides full calculation of al parameters. Allows for line loss Complete with full manual including worked examples of common matching problems
£130, for PC/XT/AT etc. $£ 65.00$ for BBC B, B + , and Master

EASY-PC

PCB layout and schematic design for IBM PC/XT/AT and clones inc. Amstrad 1512 and 1640

EASY-PC must be the best value PCB layout program available, and its also very good for schematics. There's no bells and gongs, but everything else is so quick that you'll still get the job done quicker than the competition. Standard output is to do matrix printer - Pen-plot and Photoplot drivers available.

Price from $\{95.00$

All prices EX VAT

WRITE OR PHONE FOR FULL DETAILS:

REF WW

NUMBER ONE SYSTEMS LIMITED
Harding Way,
St. Ives,
Huntingdon,
Cambs. PE17 4WR
Tel: St. Ives, (0480) 61778
We provide full after-sales support with free telephone "hotline help" service. Software updates are free within 6 months of purchase.

ENTER 53 ON REPLY CARD

High power bench PSUs from KENWOOD

- Current to 30 A , voltage to 110 V
- Wide model range, 22 versions
- Analogue or digital meters, rack mount
- IEEE-488 interface option

The TRIO connection. Trio is a trade name of the giant Kenwood Corporation of Japan. The well known family of Trio test equipment now carries the Kenwood logo.

Let us send you data on the product featured above and update you on the extensive Kenwood instrument range

Thurlby Electronics Ltd, Burrel Road,
Thurlby
St. Ives, Huntingdon,
Cambs PE17 4LE
Tel: (0480) 63570

Digital storage from KENWOOD

- 10 Mega Samples/sec on both channels
- Stored and real-time waveforms on-screen together
- Full cursor measurement facilities

The TRIO connection. Trio is a trade name of the giant Kenwood Corporation of Japan. The well known family of Trio test equipment now carries the Kenwood logo.

Let us send you data on the product featured above and update you on the extensive Kenwood instrument range.

Thurlby Electronics LId, Burrel Road,
Thurlby St. Ives, Huritingdon Cambs PE17 4LE
Tel: (0480) 63570

RADIO COMMUNICATIONS

Meteors in uniform

The resurgence of interest in meteor-scatter burst techniques for medium-distance, point-topoint and ground-to-air communications or the recoven of data fron unattended remote sensors has been reflected in a Royal Signals trial carried out last year between Krefeld and Berlin (a path length of roughly $50(0 \mathrm{~km})$. As described by Major C.I. Whittaker in the Spring 1988 issue of The Journal of The Royal Signals Institution. the trials once again snowed that meteor trials could provide reliable low data rate circuits, resistant to jamming as well as auroral or polar cap ionospheric disturbances at costs sisnificantly below satellite systems suitable for rapid-deployment applications.
bisadvantages include the absence of an instantaneous or speech capability, other than for short voice-synthesized commands, and an average data rate roughly equivalent to manual morsecode.

The 1987 " YCC520" trials used a duplex link on frequencies in the range $40-50 \mathrm{M} 1 \mathrm{I} \%$, bi-phase p.s.k. mode and transmitter powers up to 500 watts. Over a three-day period in one of the least favourable months for meteors an average data rate of 25hit/s was achieved - slightly higher than the 20hit/s reported by R:AE for the 1986"Blossom-A" experiments.

Major Whittaker ascribes the renaissance in the 1980s of commercial and military interest in meteor burst communications (m.b.s.) to the advent of v.l.s.i. and digital techniques and the slow-down in available communication satellites and their increasing cost, at a time when h.f. communications was still in decline for long-distance communications. Meteor trails can provide communications over distances of about 500 to a maximum of 2000 km . Waiting time between usable trails increases significantly for path lengths below about 5010 km . The syistem can use frequencies belween about 20 and 120.9 Hz , but the lower frequencies are subject to ionospheric disturbances and interference while waiting time increases as frequencies rise. In practice about 35 to 55.111% is
optimum. A complete m.h.s. system between two users would cost about $\mathfrak{E B O} 000$.

The scattering geometry of a specific trail is such that the m.h.s. signals are receivable only within a restricted "footprint" of the order of 50 hy 20 km . This permits frequency re-use as well as offering important ddrantages in that interception or jamming is extremely difficult if not impossible from sites outside the footprint. It is also predicted that m.b.s. would be much less affected by high-altitude nuclear explosions than satellite or h.f. circuits. Paths would be partially open within a lew minutes of the explosion and full recovery within about five hours. Bulk encryption of hurst data has been shown to work. Future possibilities might include spread-spectrum techniques and dispersed receiver terminals in different "footprint" areas linked by terrestrial circuits to increase data rate.
Despite the increasing use of high data-rate and burst systems, a Royal Signals training advisory and control team (TACT) study has concluded that there will be a firm requirement for morse radio-lelegraphists extending into the 21 st century. But, the study notes, at present about half of the 1500 Royal Signals telegraphists are overtrained and under-employed as radio-operators and are "very dissatisfied individuals". It has recommended that the total should be reduced to about 800 with morse training to 15 instead of 18 words pet minute (keyboard to 36 w.p.m.) with only a few operators trained to:20

w.p.m.

How secret is secret?

When Proc. IEFE (March 1979) published a 3 3-page tutorial paper "Privacy and authentication: an introduction to cryptography") by Whitfield Diffie and Martin Itellman (supplementing their 1976 "New directions in cryptography" (IEEEE Trans. Information Theors: November 1976), it sparked off a row during which the National Security Agency sought to introduce new restrictions on the publication by American scientists and engineers of defence-sensitive papers. Diffie and Hellman stressed
that the study of creptography. once of interest primarily to military and diplomatic communities, is now of vital importance far beyond these limited areas. Electronic mail, electronic transfer of funds. huge datahases of sensitive medical and personal histories stored in computers with dial-up capabilities. even subscription and pay-as-you-view television. have ensured that eryptography touches almost everyone in society. There is now a vast amount of information available to an eavesdropper, with technology making eavesdropping easier.

Diffie and llellman were particularly concerned to puticize the advantages of the then new public-key ($(w, 0-k e y)$ ciphers. as opposed to the IJata Encryption Standard (1).E.S.) algorithm established for secure commercial use by the US National Bureau of Standards. They showed for the first time in public that secure communication is possible without any transfer of a secret key between sender and receiver, so starting off a decade of controversy that continues unabated to this day.

The I).E.S. algorithm was submitted originally by IBM in response to an invitatoon to indusIny for an encryptior system suitable for government and commercial communications that would remain secure despite the algorithm being made public. 1).E.S. provides only a 64 -hit key although it is recognized to be an extremely good cipher with an unfortunately smal' key. At first NSA denied that it had influenced NBS in adopting a key of only 64 bits, but a US Senate committee in 1977 ascertained that the original submission by IBM included what amounted to a 768 -hit key. There was a general feeling that D.E.S. would have a limited lifetime of about ten years.

In its May 1988 issue. Proc. IEEE devotes 100 pages lo a special section on cryptology. including seven specialist papers. Paradoxically. these show that while nobody has vet revealed publicly any weakness in the I.E.S. algorithm that could be exploited other than by something significantly better than an exhaustive supercomputer attack, several of the public-key proposals have fatal weaknesses. including the Merkle-lfellman
trapdoor-knapsack systems. Only the RSA Rivest. Shamir. Adleman) algorithm. the use of which requires much greater computer power than I).E.S., remains a significant contender. At present the very attractive features of public-key cryptosystems are bought at the expense of speed: RSA chips work at only a few thousands hits per second maximum: D.E.S. chips are available for many million bits per second. But this difference is not theoretically inherent in two-key elphers.

In Electronics Letters (2) July. 19881 Yang Xi Yian of Beijing University of Posts and Telecommunications shows that a public-key system hased on matrix rings, proposed recently by his colleague. Xiao Rong. can be broken. Ile has himself, in 1987 proposed new public key systems (Electronics Letlers, Vol.23. pp560-1. 934-5) which he believes have not been broken and has invited cryptanalysts to attack his systems by any method in order to determine whether they really are secure.

A radically different concept was proposed in 1982 by Brassard, Breidhart and Wiesner, called quantum cryptography and based on the uncertainty principle of quantum physics. This could not be broken by the established principles of cryptanalysis: however, the concept has yet to be translated into a practical cryptosystem.

The need to subject highgrade ciphers to skilled attack by the best available cryptanalysts was proven by the Poles in July 1941. Wladyslaw Kozaczuk in his book "Enigma" relates how, at that time. Marian Rejewski and Henryk Zygalski, the highlyskilled cryptanalysts of the Polish Z team (who earlier had made the original breaks into Enigma) and were then working with Gustave Bertrand at the secret "Cadix" station near Nimes in the unoccupied \%one of France. broke the high-grade Polish Lacinda (L,Cl)) rotor machine in a few hours. This caused consternation because LCD was being used on the important covert radio link to the Polish radio centre at Stanmore, near London. Fortunately L(1) had not been broken by the Cermans.

Radio Communications is writtenhyl Pat llawker.

1:1 (1R RF/video measurement instruments

MEASUREMENTS MADE EASY

UNAOHM FSM5987 T.V. FIELD STRENGTH METER

INPUT

Sensitivity:
Reading:
from 20 dBuV to $110 \mathrm{dBuV}[-40 \mathrm{dBmV}$ to 50 dBmV$]$ or 10 uV to 0.3 V . in eight 10 dB steps.
dB reading proportional to peak value for video signals; proportional to mean value for AM or FM sound signals. For both signals scale calibrated to rms value and expressed in dBuV. Two more scales are available: volt from 0 to 50 , and ohm from 0 to 2000 ohm. Batcery status is also provided.
Accuracy: +/- ЗdB for bands I \& III
+/- 6dB for bands H \& IVN
Impedance:
FREQUENCY
Range:
46 to 860 MHz as follows: Band
46 to $106 \mathrm{MHz}^{2}$
III 106 to 206 VHHz
H 206 to 460 MHz IVN 450 to 860 NHHz

Reading: 4 digit LCD readout. 1.00 KHz resolution.
Price:
$\mathbf{£ 3 7 8 . 0 0}$ exc. VAT and Carriage

TAYLOR BROS (OLDHAM) LTD. BISLEY STREET WORKS, LEE STREET, OLDHAM, ENGLAND.
TEL: 061-652 3221 TELEX: 669911 FAX: 061-626 1736

UNAOHM EP741FMS
FIELD STRENGTH METER/SPECTRUM ANALYZER

Panorama:
Panorama Expansion: Analogue Measurement:
DC/AC Voltmete
Measurement
Range:
Measurement
Indication:
Video Output:
DC Output:
TV Receiver:
Additional
Features:
Price:

Frequency Range:	
Frequency Reading:	TV Bands - 4 digit counter with 100 KHz resolution FM Band -5 digit counter with 10 KHz resolution Reading Accuracy: reference Xtal $+/-1$ digit.
Function: TV Monitor	NORMAL: picture only ZODM : 2 to 1 horizontal magnification of picture ZOOM : 2 ticture + line sync pulse [with chromaburst if $T V$ signal

Continuously adjustable via a geared-down vernier as follows:
46 to 106 MHz
Band III 106 to 290 MHz
Band $\mathrm{H} \quad 290$ to 460 MHz
Band U $\quad 460$ to 860 MHz
TV Bands -4 digit counter with 100 KHz resolution Band - 5 digit counter with 10 KHz resolution

NORMAL: picture only
Ω : picture + line sync pulse [with chromaburst if TV signal
panoramic display of the frequency spectrum within the selected band and of tuning marker.
Adjustable expansion of a portion of the spectrum around the tuned frequency.
20 to 40 dB . Static measurement of received signal. Scale calibrated in dBuV [at top of picture tube] ta rms value of signal level. 5 to 50V.
20 to 130 dBuV in ten 10 dB attenuation steps for all bands: -60 to 130 dBuV in nine 10 dB steps for IF.
ANALOGUE: brightness stripe against calibrated scale superimposed on picture tube. The stripe length is proportiona to the sync peak of the video signal.
BNC connector. 1 Vpp max on 75 ohm .
$+12 \mathrm{~V} / 50 \mathrm{~mA}$ max. Power supply source for boosters \& converter. tunes in and displays CCIR system I TV signals. Other standards upon request.
[1] Video input 750 hm . (2) 12 V input for external car battery. [3] Output connector for stereo earphones.
£1344.00 exc. VAT and Carriage.

UNAOHM EH 1000 TELETEXT AND VIDEO ANALYZER

Function:
Eye Pattern: display of RF and video-frequency teletext signals by means of eye pattern diagrams both in linear representation and lissajous figures $[0$ and X]. Line selection: display of video signals and line by line selection. Measurement of modulation depth. Teletext: monitoring of teletext pages.
RF Input: Freq. Range: 45 to 860 MHz . Frequency synthesis, 99 channel recall facility, 50 KHz resolution, 30 channel digital memory. Level: 40 to 120 dBuV ; attenuator continuously adjustable. Indication of the minimum level for a correct operation of the instrument. the minimum level for a correct operation
Impedance: 75 ohm . Connector type: BNC.
Video Frequency Minimum Voltage: 1 Vpp . Impedance: 75 ohm or 10 K ohm in case

Input:
Teletext Input:
Teletext Clock
Input: of a through-signal. Connector type: BNC.
Voltage: $1 \mathrm{Vpp} / 75 \mathrm{ohm}$.
Voltage: $1 \mathrm{Vpp} / 75$ ohm. Measurement: Aperture of eye pattern: linear or Lissajous figures, selectable. Indication: directly on the picture tube. A calibrated scale shows percentage of eye pattern picture tube. A calibrated scale shows percentage of eye pattern
aperture. Error: the instrument introduces an error of $\leqslant 5 \%$ with aperture. Error: the instrument introduces an error of $\leqslant 5 \%$ with
video input and 20% with RF input. Jitter on regen'd clock: $\leqslant 25 \mathrm{~ns}$. Line selector: Selection of any TV line between the 2nd and the 625 th scanning cycle by means of a 3 digit thumbwheel switch. VERTICAL CHANNEL: Sensitivity: 0.5 to $2 \mathrm{Vpp} / \mathrm{cm}$. Frequency Response: OC to 10 MHz . Rise time: pre \& overshoot $\leqslant 2 \%$. Input Coupling: AC. Input Impedance: 75 ohm $/ 50 \mathrm{pF}$.
TIME BASE Sweep Range: 20 to 10 ms ($1.1 / 2$ frames); 32 ; 64/192us ($1 / 2 ; 1 ; 3$ lines). Linearity: $+1-3 \%$. Horizontal Width: 10 divisions; $\times 5$ magnification

ENTER 14 ON REPLY CARD

Fifth force - the evidence grows

British and American physicists have recently come up with what looks like sound evidence for a fifth fundamental force of nature. This fifth force, if it really does exist. would add to the long established forces of gravity, electromagnetism and the socalled strong and weak nuclear forces.
The first direct evidence of a fifth force came in 1922 when the Hungarian physicist Roland von Eötvös made accurate measurements of the periodicity of pen dulums made of different materials. Eötvös found apparent discrepancies in the value of g . the gravitational constant. but put them down to experimental errors.
In 1985, a team at Purdue University re-analysed Eötvös's results and concluded that the 'discrepancies' were in fact evidence of a new force that acted against gravity, but over a much shorter range. typically a few hundred metres. Moreover the different effects of the new force on different materials could be explained on the assumption that it acted only on nuclei and not on the whole atoms.
Evidence has continued to accumulate for the fifth force. though none of it has been wholly conclusive. One experiment down a mine in Queensland set out to measure the rate at which gravity decays with depth. As one nears the centre of the earth the pull of gravity should decay progressively hecause there's less earth underneath. But in this experiment it didn't seem to decay nearly fast enough.

Last year the opposite approach was tried up a 600 m television tower in North Carolina when yet further anomalies were obsierved. Could it he, as some physicists had suggested. that there was not only a fifth force but a sixth one as well?

All these experiments, whilst interesting, could he faulted on the grounds of accuracy. In the case of the mine. there was some doubt over the density of the rock: up the television tower there was a distinct possibility of r.f. interference to the equipment! Now, however, a new experiment has been conducted

The final frontier for musical o.c.r. devices: a page of Beethoven, from the sketchbooks for his Pastoral symphony (Additional manuscript 31766, folio 8; by kind permission of the Board of the British Library).
that seems to eliminate these potential sources of error.

Gorman and Cooper of Scott Polar Research Institute at Cambridge working in conjunction with a group at the Los Alamos National Laboratory experimented down a borehole drilled through solid ice in Greenland. Because of the purity of the ice, measurements of gravity could be made with great accuracy and seemed to indicate an extra force equal to about 2% of the downward force of gravity.

If, as now seems likely, one or more extra forces do actually exist. they may turn out to be just what physicists have been yearning for in their attempts to describe gravity in terms of quantum theory. This in turn could lead very neatly to a grand mathematical theory unifying all the forces of nature.

Optical music recognition

Optical character recognition (o.c.r.) is now an established technique. Many commercial systems are available in which printed words are scanned and 'read' off the page. Usually the object of the exercise is to convert the video input signal into a standard form that can be processed by a computer. In the case of printed text the problems are those of unambiguously identifying the complete alphanumeric set when presented in different
character founts at different angles and spacings.

As a variation on this exercise, Richard Bacon and Nicholas Carter of Surrey University's physics and music departments set out to devise a system that would intelligently recognize the essential features of a musical score. In a recent paper (Phys. Bull. 39. 1988) they describe the problems involved and how they are being overcome.

The first obvious difficulty is the huge range of frequentlyused symbols. This, say the Surrey researchers. rules out the use of ordinary o.c.r. programs. Then there's the question of position. Musical pitch is denoted by the position of a note on the stave which consists of five parallel lines. But what if. as is often the case, these stave lines are more or less completely obscured by the notes?

Bacon and Carter have developed an alogorithm which cleverly decides where the stave lines ought to be. This involves searching for pieces of the lines in an original manuscript and trying to join together sections with similar gradients ano intercepts. It then selects five equidistant lines with similar gradients and defines a stave.

Notes and other musical symbols are identified by similat algorthms that look for blobs vertical lines, curved lines etc. and then try to relate them to the nearest valid musical symbols. The greatest problem faced by the Surrey team is in defining
the maximum error allowable, beyond which a valid symbol would go unrecognized. What, for example, does an optical music recognizer do with a notehead that is not precisely placed between two stave lines? Or how does it sort out supposedly parallel semiquaver beams that merge and overlap, a common fault in printed music?

These and other practical difficulties have now been overcome to the extent that the system can recognise most standard musical symbols. It is also resilient enough to cope with good quality handwritten music, for which it was never designed.

Altogether this new development seems set to revolutionize music publishing. as witness the support it has received from Oxford University Press and the Performing Rights Society. But don't ever expect it to turn Beethoven's scribbles into fair copy. Even human readers draw the line there.

Steady grind for silicon carbide

Those of us brought up on valve technology are perhaps understandably inclined to think twice before applying a soldering iron to anything solid-state. Eventually, though, it seems likely that we'll have a range of semiconductors capable of working at temperatures that would easily melt valves. (See Research Notes, March and June 1988).

The materials that have done most to make this possible are boron nitride and silicon carbide, the latter of course being a pure crystalline form of the grit more commonly associated with emery paper.

Over the last three decades various research teams have demonstrated solid state devices based on silicon carbide. These devices have included rectifier diodes, tunnel diodes and fets. Bipolar transistors that depend for their operation on minority carriers came much later because of their need for much greater purity. Silicon carbide has proved almost impossible to process without some contamination because at $1600^{\circ} \mathrm{C}$ even the atoms of the container diffuse into the carbide melt!

This problem has now largely been overcome by a team of physicists working in Leningrad. In their latest report (Electronic: Letters vol. 24 No 161 they describe a container-free liquidphase epitaxy process in which a droplet of molten silicon carbide is suspended in an r.f. field. This techniques which has previously heen used experimentally to produce high temperature fets and blue leds, has now heen applied successfully to a four-layer thyristor-type structure.

This device, which has characteristics similar to those of a conventional silicon p-n-p-n stack. show's considerable promise especially in its switching speed.

With aluminium contacts, noone is of course promising practical devices that will operate at $1600^{\circ} \mathrm{C}$. Nevertheless this latest success demonstrates the potential for commercial devices that will work in environments quite inhospitable to silicon.

Superconductor sandwich

That the transition temperatures below which superconducting materials lose their electrical resistance are determined by their structure is given further support in a report (Nature vol. 334 No 6182) by H. Ihara and nine colleagues at the electrotechnical laboratory at Tsukuba, Japan.

Working on superconducting oxides based on the metal thallium. the researchers extended the previously known relationship between transition temperature and the number of layers of copper in the superconductor's crystalline structure. Ihara's material (a new kind of thallium-barium-calciumcopper oxide) is the first thallium superconductor to he made in bulk that has four copper layers to every one of thallium. It be-
gins to lose its electrical resistance at about $120 \mathrm{~K}\left(-153^{\circ} \mathrm{C}\right)$.

Earlier work on thallium superconductors containing two layers of thallium per unit cell of crystal showed that the transition temperature is related to the amount of copper: 80 K with one layer, 110 K with two. and 120 K with three. The first of these was reported by Z.Z. Sheng and A.M. Hermann earlier this year and was the first superconducting ceramic hased on thallium rather than a rare-earth metal such as lanthanum or yttrium. Since then, researchers have identified two main classes of thallium superconductor, with either one or two layers of thallium in each unit cell.

Ihara's material, with four copper layers and one thallium layer, has about the same transition temperature as the threecopper, two-thallium material. But the clear relationship between copper and transition temperature in materials with a given amount of thallium raises hopes that a two-thallium, fourcopper system might be a superconductor at even higher temperatures.

Chips by X-ray lithography

X-rays, because of their short wavelength, have long held out the promise of fine-line lithography and hence the creation of chips with sub-micron patterns. The problem has alway's been that of generating X-ray beams with sufficient intensity and precision.

IBM researchers using a large scientific electron storage ring at the Brookhaven National Laboratory. New York, have now demonstrated what they helieve to be the most advanced practical X-ray lithographic techniques yet reported. Using new tools and processes they have created experimental half-micron chips that demonstrate the practicability of future 64 Mbit rams.

At the heart of the experiment was a source of X-rays produced by synchrotron radiation within the electron storage ring. Synchrotron radiation occurs when electrons move at high velocities in circular paths in a magnetic field: it is powerful and precise.

On this chip fabricated by X. rays, the bright strips are metal tracks less than a micron wide, crossing over another signal line.

To make practical use of this precision X'ray source the IBM researchers also had to develop a new lithography system for an exposure station connected to the Brookhaven storage ring. In this station, X-rays were passed through a mask with the desired pattern to expose a $6.5 \mathrm{~cm}^{2}$ area of a silicon wafer coated with a photosensitive material. Nine test chips. including two memories. were patterned this way.

Although preliminary work was done using a large experimental storage ring. future work to develop this technology will make use of a smaller. specialized ring being designed and manufactured by the Oxford Instruments Group in Britain.

Ultimately it's hoped that Xray lithography will replace the ultraviolet (u.v.) and optical lithography now used to make I.s.i. chips. Not only can X-rays shape far smaller circuit patterns than u.v. and optical lithography because of the wavelength of X-rays. they can also expose a larger area of silicon at once. Chips made using these techniques could thus be made much larger and so hold more devices. X-ray lithography is also less sensitive to the surface contaminants that plague today's technology because X-rays can pass through small dirt particles.

Rusty bolts exonerated

Readers of this column may recall descriptions of the rusty bolt syndrome and various attempts to cure it. W'hat these
refer to is the tendency for structural components of a transmitting mast to generate transmissions of their own when in the vicinity of two or more transmitters operating on unrelated frequencies. This co-siting is, of course, the norm both in broadcasting and at private hase stations, and can lead to intermodulation products that may interiere with nearby receivers.

The origin of these intermodulation products is of course well known and may lie in any non-linear junction. not just the much-maligned rusty bolt. But whilst the phenomenon has been extensively studied in the field. it hasn't proved easy to make yuantitative comparisons of different types of mechanical fixtures. so as to facilitate good antenna design.

A team from the University of Kent working in conjunction with the llome Office Directorate of Telecommunications (Electronics Letters vol.24 Nol6) has now developed a computer-controlled system that will enable different structures to be tested in the laboratone. It consists of two power amplifiers producing separate signals between 150 and 250 MHz . Aiter combination these two signals are led into a test chamber which can accommodate metal structures up to $1 \mathrm{~m} \times 20 \mathrm{~cm}$ wide. The signals are then terminated and filtered so as to release any intermodulation products into a receiver.

Tests using this highly accurate and fully enclosed system have produced some interesting results. Contrary to popular belief. for example. the archetypal rusty bolt is not the worst offender: if the joint is tight the effect may actually be minimal. Much worse as a generator of intermodulation signals is galvanized mild steel rope. But a whole 35 dB worse still - and to be avoided at all costs - is mild steel chain. Loose joints with small areas of contact appear to be the real horrors while nasty-looking corrosion may be much less important or even incidental.

Research Notes is compiled by John llilson of the BBC World Senvice science unit.

PROFESSIONAL QUALITY PATCHING AND SWITCHING EQUIPMENT

FOR DIGITAL AND ANALOGUE SYSTEMS.
"NORMAL THROUGH" PATCHING AND SWITCHING EQUIPMENT FOR THE FOLLOWING INTERFACE TYPES:
Vll, V24, V35, X2l, X27, G703, RS232, RS422, RS449 VF AND COAXIAL.
NATO, MIL STANDARD AND BABT APPROVED SYSTEMS. DISTRIBUTED MATRIX SYSTEMS FOR UP TO 4000 USER PORTS. FULL CATALOGUES AVAILABLE ON REQUEST. THE SWITCHING SPECIALISTS. . . .

FESHON SYSTEMS

PINDEN, DARTFORD, KENT DA2 8DX. TEL: 04-747 8111 (SIX LINES) FAX: 04-147 8142 TELEX 96395 (FESHON G)

Low-cost Programmable PSUs from

Thurlby

- PL-GP series IEEE-488 controlled PSUs
- $30 \mathrm{~V} / 2 \mathrm{~A}$ and $15 \mathrm{~V} / 4 \mathrm{~A}$ single and twin units
- Series/Parallel connectable for higher output
- Programmable to 10 mV and 10 mA resolution
- Readback of current demand via the bus
- Constant voltage or constant current operation
- Bench mounting or $19^{\text {" rack mounting }}$
- Singles $£ 445$ + vat, Twin units $£ 650$ + vat

Thurlby

Thurlby Electronics Lid., New Rd., St. Ives, Huntingdon, Cambs. PE17 4BG. Tel: (0480) 63570

Low-cost Precision DMMs from

Thurlby

- 1905a $51 / 2$ digit computing DMM £349+ vat
- 0.015% accuracy; $1 \mu \mathrm{~V}, 1 \mathrm{~m} \Omega$, 1 nA sensitivity
- Averaged AC standard, true RMS optional
- Nulling and relative measurements; linear scaling
- Percentage deviation; digital averaging
- dBV, dBm, general logarithmic display
- Limits comparison; min. and max. storage
- 100 reading timed data logging
- RS-232 and IEEE-488 interface options

Thurlby Electronics LId., New Rd. St. Ives, Huntingdon, Cambs. PE17 4BG. Tel: (0480) 63570

TELEVISION BROADCAST

H.d.tv will be price-sensitive

In the 1970s, the Japanese broadcasters, both NHK and commercial, sent innumerable delegations and representatives to the UK to assess the prospects for teletext, a senvice that could never have been launched if the UK had not then believed in public service broadcasting concepts. The Japanese visitors invariably wanted to know how much "market research" had been carried out by the IBA before the decision had been taken to launch the Oracle (and presumably also the BBC Ceefax) service. They politely refrained from expressing open disbelief when it fell to my lot to admit that there had been no prior market research of the type they had in mind. at least by the IBA.
I have no idea as to the extent to which NHK has carried out market research in Japan on its 1125-line, widescreen h.d.tv system. But I feel sure it will have studied carefully the North American survey of 7000 members of the public and special interest groups when these were given their first opportunity to view 1125-line pictures, with the MUSE-E bandwidth-reduction system, as an example of an "advanced television system", in direct comparison with 525 -line NTSC pictures. carefully adjusted to provide optimum picture quality rather than as normally seen in most North American homes. Both were shown at optimum viewing distance.

A report on this research by Dr Stephen Lupker, Dr Natalie Allen (both University of Western Ontario) and Dr Paul Hearty (Canadian Department of Communications) in Combroad (September 1988) indicates that, as might be expected. most viewers preferred the h.d.tv system (even with MUSE) and would be prepared to pay for suitable sets provided that h.d.tv signals were readily available.

But they showed quite clearly that "although there is considerable demand for advanced television, success in introducing a.tv will be highly dependent on factors such as cost of equipment. availability of programme material and quality of reception... when costs are considerable (e.g.
$\$ 1500$) viewers become increasingly demanding, with expressed purchase interest eroded by any factor that promotes dissatisfaction (e.g. motion quality, set size, colour quality. depth portrayal etc). Thus it is possible that the cost of an intermediatequality system would provoke consumer requirements out of proportion to the capacities of the system... although there is a considerable demand, it will prove difficult to satisfy consumers with regard to both videol audio quality and factors such as price, availability and transmission quality... large-scale initial adoption of a.tv is also unlikely if the availability of signals in the appropriate format is severely curtailed... purchase interest drops as availability becomes increasingly constrained."

Expressed purchase interest decreased sharply in most of the five test cities in Canada and the USA from the 74 percent "if sets are in your price range" to about 34 percent if sets were to cost $\$ 1500$ and only 22 percent if sets cost $\$ 2500$.

Viewing habits

According to the EBU. British viewers spent an average of 218 minutes (3 hours 38 minutes) daily in front of a television set during 1987. up 13 minutes since 1984. French viewers averaged 175 minutes, up from 120 minutes in 1982. Italian viewers averaged 178 minutes, up from 145 minutes in 1984. However by placing a camera in the television set to record viewer behaviour, a recent West German experiment found a third of the viewers left the set on without watching. another third were busy doing something else at the same time, and only about one third were found to be paying undivided attention to the programme.

I recall that when. in the mid1970)s (before the development of the hidden camera technique). on the basis of some German research on children's viewing habits. I ventured to suggest in Independent Broadcasting that inattention to the screen was not confined to young children, it provoked a highly indignant letter to my masters from the then managing director of Thames

Television suggesting that I was trying to ruin ITV by discouraging advertisers! Later, hidden camera research in the UK showed only too clearly that family viewing is a highly disjointed, intermittent affair. Unfortunately, it also confirmed the American finding that only violent action seems to gain viewers' undivided attention. Which is why so many American "drama" programmes flit from violence to violence within the short attention-span of many viewers.

Nowadays, commercial television companies have other worries. The German research shows that while commercials were being transmitted. over half of the viewers "zapped" to other channels. Similarly, the majority use "fast forward" on commercials ("zipping") when they watch home videotaped programmes. An Americandeveloped device is claimed to recognize and cut out commercials on recordings. One notices that even in the tightly-regulated UK, the IBA now permits an average of seven minutes of commercials per hour, with a maximum of $71 / 2$ minutes in any one clock hour: this compares with the six minutes average and $61 / 2$ minutes maximum that was rigorously maintained until quite recently. With deregulation we may have commercials interrupted by programmes!

Cable expands slowly

Although broadband cable networks in the UK franchise areas are now expanding at a rate of well over 10000 homes-passed per month, the take-up by viewers remains low and the "churn rate" (percentage of homes ceasing to subscribe) quite high. On April 1 this year. 307453 homes were passed by broadband cable but only 44565 homes were connected, a take-up of 14.5 percent. This compares to 168436 homes passed with 21873 connected (13 percent) a year earlier. The rate of cabling has been rising much faster than the take-up. In view of the high cost of buried cables in the UK. it is not surprising that there has been so much industry agitation for the licens-
ing of microwave video distribution systems. despite the slow growth of m.v.d.s. in the USA and the original Government ruling that all new cable systems must be capable of carrying at least $25-30$ channels.

A large majority of UK cable subscribers are still connected to the old limited-capacity "upgraded" networks, freed from the obligation to carry BBC and ITV channels. These still account for almost 200000 subscribers and help to raise the take-up for both old and new networks to a more respectable 18.7 percent.

- Westminster Cable Television with 6500 subscribers has become the first to link with BT's Prestel service, permitting access to interactive videotex services via existing remote control keypads and television sets with services charged on a pay-peruse basis.

New technology

NHK has developed an experimental super-sensitive h.d.tv camera pick-up tube with a new high-gain avalanche rising amorphous photoconductor (HARP) target which is expected to result in a camera ten times as sensitive as one with an equivalent Saticon picture tube. Currently h.d.tv cameras need to be operated with the iris opened two or three stops wider than cameras for existing tv standards (SMPTE Journal, July 1988).

NEC is developing a new gallium arsenide technology to reduce fabrication costs of d.b.s. and communications/radar receivers for use above 10 CHz . It is claimed that a CaAs/Al-GaAs selfaligned heterojunction bipolar transistor has only about $1 / 300$ th of the phase noise of a CaAs fet oscillator and makes possible the implementation on a chip of a complete d.b.s/communications receiver front-end. The device is roughly tuned by positioning a bonding wire on an aluminium tuning line on the chip, with fine tuning by adjusting the bias voltage. It is claimed the technology offers the possibility of a maximum oscillator frequency above 100 GHz by reducing stray capacitances.

Television Broadcast is written by Pat Hawker.

For wide ranges of top-quality audio components - cost-effectively meeting the most demanding UK and international standards - connect directly to Rendar.

Rendar Limited. a WkR Group Company, Durban Road, South Bersted. Bognor Regis, West Sussex. PO)22 9RL (0243) 8258II

POWER AND AUDIOCOMPONENTS W O R L D W I D E

ENTER 50 ON REPLYCARI)

THE BEST EQUIPMENT FROM THE BEST NAME IN VALUEINSTRUMEX

Here's a small sample of the high quality equipment now available from Instrumex, Europe's leading supplier of second-user equipment. Contact us today.

		MLP \mathbf{f}	OUR SALE PRICE
Hewlett Puckard 700014	System consists of Mainframe, 70205A Display, 70900A Oscillator 70902A VF, 70904A RF Section and 70905A RF Section (total coverage 100 Hz tc 22 GHz)	34,828.00	18,500.00
$\begin{aligned} & \text { Marconi } \\ & 2370-015 \mathrm{~F} \end{aligned}$	Spectrum Analyser, 110 MHz	17,900.00	4,500.00
Hewlett Packard 3582A	Dual Channel Spectrum Analyser 0.02 Hz to $\mathbf{2 5 K H z}$	9,288.00	5,000.00
Tektronix 2235 Tektronix 2445	f00MHz Portable Scope 150MHz four Cha nel 'Scope	$\begin{aligned} & 1,355.00 \\ & 3,461.00 \end{aligned}$	$\begin{array}{r} 800.00 \\ 1,700.00 \end{array}$
Philips PM6669	1.1GHz Counter with GPIB and extendec range	980.00	850.00
Fluke 9010A	Microsystem Troubleshooter, Pods available on request	4,900.00	2,200,00
Hewlett Packard 1630D	Logic Analyser, 43 channels complete with cassette unit	7,795.00	2,750.00
Hewlett Packard 64000	Logic Systems configurable on request	POA	POA
Data I/O 29A-16	PROM P-ogrammer, 16 K RAM serial part, data editing	3,923.00	950.00
Hewlett Packard 4951C-101	Protocal Analyser with 18180A pod, standard with disc drive	4,107.00	3,200.00
Hewlett Packard 4952A	Protoco Analyset with Async terminal application software	6,154.00	4,950.00
IBM PCXT-FD	XT with 10 Mb hard drive, mono monitor and adaptor	2,925.00	925.00
Hewlatt Packard 86B	Desktop Computer, packaged with monitor and disc drive and HPIB interface	2,350.00	450.00
Hewlett Packard 7440A-001	ColorPro 8 Pen Plotter with RS232 interface	995.00	450.00
Hewlett Packard 2671G	Graphie:s Printer	1,536.00	375.00
Dranetz 646-3	Disturbance Analyser, 3 phase operation AC Plus DC channel	5,520.00	4,250.00

[^5]

INSTRUMEX (UK),
DORCAN HOUSE,
MEADFIELD ROAD,
LANGLEY, SLOUGH SL3 8AL
TEL: 075344878

RADIO BROADCAST

Modelling microwave propagation

The extensive programme of work being carried out under the COST 210 project. of importance to d.b.s. as well as to analogue and digital terrestrial microwave links, is now well into its fifth year. COST 210 is a project of the European co-operation in the field of scientific and technical research programme, as set up in 1971 within the OECD and European Community. This project was formally initiated on 7 June. 1984, as a five-year project to determine "the influence of the atmosphere on interference between radio communication systems at frequencies above 1 GHz ". 1 lt is concerned particularly with interference between terrestrial and satellite systems and with mutual intereference between satellite systems using relatively small antennas.
COST 210 has involved 25 organizations in ten countries. UK participants are BTRL. 1BA, Polytechnic of Wales, Portsmouth Polytechnic. RAL, RD/ DT1. RSRE and the universities of Bradford and Essex. Chairman of the management group is M.P.M.Hall (RAL). The three working groups have been investigating (1) interference in clear air; (2) interference due to hydrometeor scatter: and (3) interference reduction techniques.
The work has included a critical assessment of existing CCIR models and interference procedures and the development of more reliable new models. The ultimate aim is a fully selfcontained prediction procedure. including computer source listings for application in European areas. A number of the UK studies have involved 1.3. 11 and 24 CHz transhorizon paths across the North Sea and the English Channel as well as a number of monostatic radar experiments. Clear air studies on 1.3 CHz paths have been mainly centred on BTRL at Martlesham Heath on links subject to considerable tropospheric propagation to Denmark. West Germany. Holland and the Channel Islands. Work at 11 GHz has included study of the paths across the English Channel between Winchester and

Lannion, Brittany: and Winchester and the Cap dAntifer.
Among the many experiments that have been contributing to COST 210 have been a series of flights across the English Channel in a specially equipped Norman 1slander (G-AXJ) to enable RAL's French woman-scientist. Dr M.F. Levy, to obtain a large number of reflector measurements to reveal the fine structure and radiowave coupling mechanisms of transhorizon ducts. Flights have been made from Eastney to Cap d'Antifer (152 km path) with the refractive index measurements automatically correlated with accurate height measurements.

Professor E. Vilar (Portsmouth Polytechnic) has been involved with the investigation of transhorizon propagation on the 11 CHz Winchester-France paths by such mechanisms as scattering by atmospheric turbulence. scattering from hydrometeors (mostly rain), rapid changes in the vertical profile of the refractive index etc. Rain scatter can result in signals as strong as those from ducts but usually over a much briefer period.
The Directorate of Telecommunications of the Home Office, in association with Essex University, designed an experimental system to gather angle-of-arrival data on a 93 km path at 2 GHz to validate a reflecting layer model that takes into account the actual underlying terrain profile. The project, including $B T$ studies on paths from Martlesham, may help resolve some of the problems experienced in digital transmission of audio, video and data signals over long microwave paths.

Outback radio by satellite

Hearings of the Australian Broadcasting Corporation began in August for the award of licences to provide remote commercial radio senvices (RCRS) by means of the Aussat domestic satellite alongside the existing RATS (remote area to service) and the commercial (RCTS) services, both associated with the Australian homestead and community hroadcasting satellite system (HACBSS). A few services may be in operation early 1989.

But, according to Broadcast Engineering News, satellite broadcasting to remote areas has so far been a commercial failure. with the outback markets too small to sustain transmission costs without substantial government or state subsidies. It is claimed that the use of B-MAC, "the most expensive d.b.s. system available". has not made it easier. The experience of RCTS channels has not been encouraging despite State subsidies ranging up to 70 percent of the transponder charges. Leasing a B-MAC channel on Aussat costs $\$(A) 125000$ without subsidy. The B-MAC format, selected in 1984. provides four extra audio channels per to channel, but so far they have been virtually unused.

The commercial Golden West Network (GWN) based in Perth operates a State-subsidized RCTS senvice and has applied to operate a stereo and a mono RCRS service using its existing 96 MHz f.m. service for Perth as the sustaining backbone, for an estimated maximum audience of 55000 listeners. GWN is making effective use of its satellite television channel to distribute programme material to remote terrestrial stations, reaching 100000 people of whom 10000 view on 2000 HACBSS earth terminals.

H.f.audiences

Bert Steinkamp (Radio Nederland Wereldomroep) in considering "The future of external broadcasting" (EBU Reviel: Programmes, Administration. Law, July 1988) suggests that "even if shortwave has its shortcomings as a mode of transportation. the medium is far from defunct". Radio Nederland. following the example of Deutsche Welle, is developing a new audience among the many Dutch holidaymakers who llock to the coasts of southern Europe: "Our publicity has persuaded about a third of these to take a shortwave receiver with them to create an entirely new group of listeners who had never before listened to shortwave at home... External broadcasting should not be identified as shortwave only... My personal feeling is that there might be a gradual vacating of a.m. transmitters for domestic
services in favour of f.m., f.m. stereo and ultimately (digital) satellite. External broadcasters would be well advised to use such seemingly redundant (medium wave) facilities where distances permit. Not to forestall developments in the direction of still more advanced technology but simply to retain audiences.

He notes that there were more than 2200 h.f. transmitters (with another 164 under construction) in 1986, a growth of about 12 percent in the past decade, while very high power transmitters (200kW or more) had increased by more than 40 percent.

IEEE Trans. on Broadcasting (June 1988) is a special issue devoting some 230 pages to short-wave broadcasting.

- BBC External Services has changed its name to BBC World Service.

In brief

The increasing interest of eastern European broadcasters in digital audio, noted several times previously in this column, is underlined by recent sales of Sony digital equipment to Costelradio (USSR). Bulgarian Radio, Polish Radio and Television, Radio Prague. Radio Bratislava, Hungarian Radio. Radio Ljubljana (Yugoslavia) and the Czech CD record firm Supraphon. Costelradio has just taken deliveny of two complete CD mastering systems; it has also bought three PCM3324 digital multitrack recorders and two PCM-2000) recorders. Mike Bennett of Sony Broadcast believes that eastern European radio is entering an exciting new era of digital audio and is making rapid progress in a spirit of glasnost.

RDS data has been broadcast on all transmitters of FranceInter since June 1987 providing automatic programme identification and automatic frequency search. An increasing number of mainland-European f.m. transmitters can now be identified by RIS.

- The BBC claims that "The Daily Service", broadcast since 24 June. 1928, is the world's longest-running radio programme.
Radio Broadcast is written by Pat Hawker.

THE 'ALADDINS' CAVE OF ELECTRONIC \& COMPUTER EOUIPMENT

COLOUR MONITORS

20 " \& 22" AV Specials

MOTOROL M1000-100 5" CRT black \& whit cormact chassls

 Puetappiactions Accents standard Composine video or indwidual andy cased as above, whin antracive mouded, desk slancing. sow (C)

 20 Black $\frac{1}{2}$, White monitors by ATTEK, COTRON \& NATIOONAL All slici stale, fully cased monitors ideal for all types of AV or CCTV

FLOPPY DRIVE SCOOP Drives from Only £39.95

A

 Taces ite conmon sandard 34 way nierace eomnecoin TANDON TM 101-4 FH 80 rack double sided Only $\sum_{\text {Ond }} 39.95$ (
 DISK DRIVE ACCESSORIES
34 Way intertace cable and connector single 5.50 . Dual 58.50 (A) £19.50 (A) Chassis PSU to 2×8 drves $£ 39.95$ (B)

8" DISK DRIVES

COMPUTER SYSTEMS
 IATUNG PCz2000.

 TEAC 5 age full oc dano New irante Orgnal price ZVEE ET1400
 Only £299(E)
 EQUINOX (IMS) S 100 system capable of running either TURBO Standard 12 slot $S 100$ backplane. 8 dual 8 double sided disk drives Two indiwldual $Z 80 \mathrm{cpu}$ boards with 192 k of RAM allow the use o multi user sotware with upto 4 RS 232 serial intertaces Many othe Uatures include battery backed real time clock, all s socketed et at present hence price of only £245.00 (F) S100 PCB's IMS A465 64 K dynamic RAM 255.00 (B) IMS A930 FD controller $£ 85.00$ (B). IMS A862 CPU \& I/o 665.00 (B)

 characters on a single line. Many ofher teatures include Internal characiers on a single line. Many ofher features include interna 15.5 paper. 15 milion character ribbon cartidge Itfe and standard
RS232 serial Interface. Sold in SUPERB tested condition with 90 day guarantee matrix (3 lines per second) printer mechanism for incorporation in directional printhead and integral roll paper teed mech with tuar ba: with data. AFE and tested
EPSON model 542 Same spec as above model, bun designed (C) used as a slip or flatbed printer. Ideal as label, card or ticket printe plete with data RFE and tested Fully DIABLO, QUME, WORDSTAR compatible. Many features in clude full width platten - up to 15 " paper, host of available dalsy wheels single sheet paper handling. supert quality print Suppled complere with user manual \& 90 day guarantee plus FREE dusi cover \& dalsy
whan
BRAN Only $\mathbf{~} 225.00$ (E)

Most of the tems in this Advert, plus a whole range of other
electronic components and goodies can be seen or purchased
at our
t St SOUth LOndOn ShOp t t
Located at 215 Whitehorse Lane, London SE25. The shop is
on the main 68 bus route and only a few miles from the main
A23 and Southcircular roads. Open Monday to Saturday from
9 to 5.30 . parking is unlimited and browsers are most wel-
come. Shop callers also save the cost of cartage.

MODEMS

SPECIAL PURCHASE V22 1200 baud MODEMS ONLY £149!!

MASTER SYSTEMS Iype 212 I2 microproces sor conircolled V22 tull duplex 1200 baud. This eatures or eror free data comms at the stac genth speed of 122 charatiers per second
saang yours5\% of your BT phone bills and data connert time I A Add Inese facist to our

\square

Only £149 ${ }^{(0)}$
CONCORD V22 1200 baud as new $£ 330.00$ (E) CONCORD V22 1200-2400 BIS £399.00 (E) DATEL 4800 / RACAL MPS 4800 EXBT DATEL 4800 / RACAL MPS 4800 EXBT
modem for 4800 baud sync use.
E295.00 (E) Modem for 4800 baud sync use E295.00 (E)
DATEL $24122700 / 37804$ wire modem unit DATEL 24122780

```
EXBT fully tested.
MODEM \(20-175\)
```

\qquad PRESTEL etc EX BT fully lested. \quad T49.00 (E) wh RS232 10 Brand New £49.00 (E) AS 232 DATA CABLES 16 tt long 25 w D plug io 25 way D socket. Brand New Only c9.95 (A) As above but 2 metres long

POWER SUPPLIES paper handling 150 series. A real workhorse Ner Cortinuous use with
CENTRONICS 150.00 (E) 150 cps 4 type fonts and choice of interfaces. Supplied BRAND NEW

Ultra Fast 240 cps NEWBURY DATA NDR 8840 High Speed Printers Only $£ 449$ II

PRINTERS
 \section*{$\begin{array}{ll}150-\text { SN up to } 9.5 " \text { paper handling } & £ 185.00 \\ 150-\mathrm{SW} \text { up to } 14.5 \text { (E) paper handling } & £ 225.00 \\ 150-\mathrm{GR} \text { up to } 14.5 \text { paper plus fit graphics } & £ 245.00 \\ \text { (E) }\end{array}$}

Made to the highest spect for BT this unth gives several fully
protected OC outputs mosis suined to the Electronics Hobbyist$\begin{aligned} & \text { Ideal for school abs etc Quanthy discount avalable } \\ & \text { Fully tested with data } \\ & \text { RFE }\end{aligned}=$ Removed F From Equipmem

The AMAZING TELEBOX Converts your monitorinto a
QUALITY COLOUR TELEVISION

l
te
tu
do
d
te
ca
s
c
c

amige cocoe elic
\square TV SOUND TUNER
£29.95

RECHARGEABLE BATTERIES

COOLING FANS

Maintenance tree sealed longife LEAD ACID Maintenance tree sealed A300 12 v 3 Ah A300 3 V 3 Ah A300 6-0-6 V 1.8 An RFE 8.95 (A) NICKEL CADMIUM Quality 12 V 4 Ah cell pack. Originally made

 his TECHNICOLOUR video company. type cells, conflgured in a smant robustmoulded case with DC outuit connector. Dim $\mathrm{cm} 19.5 \times 4.5 \times 12.5$. Ideal portable equipment
Etc
$12 \mathrm{~V}, 17$ An Uitra NEW 24.95 (B) indestructable refillable NICAD stack by ALCAD. Unit features $10 \times$ individual type XLI 5 cels in wooden crate. Supplied lo the
MOD and made to deliver exceptionally high output currents \& withstand lang periods of
storage in discharged state. Dim cm65 $\times 14 \times$
22 Cost over $£ 250$ Suppled unnsed 8 tested complete with instructions \&95.00 (E)
EX EQUIPMENT NICAD cells by GE
Removed from equipment and believed in Removed from equipment and believed
good but used condition, 'F' size 7 Ah 6 for
I8 (B) Also D' size 4 Ah 4 for $£ 5$ (B)

BRAND NEWN 85 Mb
Disk Drives CNLY $£ 399$

 SPECIAL INTEREST

01－208 1177 Technomatic Lid 01－208 1177

BBC Computer \＆Econet Referral Centre

AMB15 BBC MASTEA E348（a）
AMB12 BBC MASTER E Conel 5315 （a）
AMC06 Turbo（ $65 \mathrm{C}-021$ Expansion Mooule
 ADJ14 Rom Cantidge

BBC MASTER COMPAC B8C Masier Ousi Covel

「41（c）
r14（c）
$514(\mathrm{c})$
$\mathrm{c} .75(\mathrm{O})$

DISC DRIVES
5.25 Single Drives 40.50 switchable．
TS $400400 \mathrm{~K} / 640 \mathrm{~K}$ with integral mains power suoply
pS 400400 K 640 K wither
［114（b）
PS 400400 K 640 K with integral mains power supply ［129（b）
5．25＂Dual Drives $40 / 80$ switchable
TD800 800 K 280K
PD800 800K 1280 K with integral mains power supply
PD800P $5^{\prime \prime}$ BOOK 1280 K with integral mans power supply and manitor stand
3.5801 DS Drives：

PS 351 Single $400 \mathrm{~K} / 640 \mathrm{~K}$ wilh integral mains power supply
TD352 Dual 800K1280K
PD352 Dual $800 \mathrm{~K} 1280<$ with integral mains power supply
PD853 Combo Dual $525 / 35^{\prime \prime}$ drive with ps u．

A free pachet of ten 3 S OS duscs win each Compact
SYSIEM $1128 k$ Single 640 K Oive and pit
SYSTEM 2 System 1 with a 12 Mi Res RGB Monito Sate $£ 385$（a）
SYSIEN． 3 Sysiem 1 witn a 14 Med Aes RGB Monitor §599（a）
Second Drive Kill 599 （c）Eniension Cabie lor ent 25 druve（12
Vrew 3 OUser Guide $£ 10$（d）
1770 DF S Upgrade for Moodel 8 ［43 50 （d）
ADF S ROM（lor B wilh 1770 DFS \＆B Plus）$\{26$（d） ACORN 280 2nd PIOCe ssors $₹ 329$（b）
MUL TIFORM 280 2no Processor $₹ 289$（b）
 ZOP 240 ZEP 100 with ICchnoman PDs00P qual dive winn

META Version III－The only package available in the micro market that will assemble 27 different processors at the price offered．Supplied on two 16 K roms and iwo discs and fully compatible with all BBC models．Please phone for comprehensive leaflet £145（b）．

We stock the fulk range of ACORN hardware and hirmware and a very wode
perto herais for the BBC for delated specilications and pricing please send for our leatlet

PRINTERS \＆PLOTTERS

EPSON	
EPSON LX86	f189（a）
Optional Tractor Feed LX80／86	120 （c）
Sneet Feeder LX8088	（49（c）
FX800	¢319（a）
FX1000	¢449（a）
EX800	£409（a）
LO800（80 col）	£439（a）
LO1000	¢589（a）
TAXAN	
KP815（160 cps）	¢249（a）
KP915（180 cps）	£369（a）
JUKI	
6100 （Dassy Wheel）	£259（a）
NATIONAL PANASONIC KXP1080（80 col）	
KX P1080（80 col）	［149（a）

STAR NLTO（Parallel Interiacel	2209（a）
STAR NLIO（Serial Interiace）	279（a）
STAR Power Type	6229 （a）
BROTHER MR2O	［329（a）
COLOUR PRINTERS	
Dotprint Plus NLO Rom tor Epson versions for FX．RX．MX	
and GLP（B8C only）．	¢28（d）
PLOTTERS	
Hitachi 672	［459（a）
Graphics Workstation （A3 Plotter）	［5999（a）
Plotmate A4SM	［450（a）

PRINTER ACCESSORIES

We hold a wide range of printer atfachments（sheet feeders，tractor feeds etc） in stock．Serial，parallel，IEEE and other interfaces also available．Ribbons available for all above plotters．Pens with a variety of tips and colours also available．Please phone for details and prices．
Plain Fanfold Paper with extra fine pertoration（Clean Edge）：
2000 sheets $9.5^{\circ} \times 11^{\circ}$ 〔13（b） 2000 sheets $14.5^{\circ} \times 11^{\circ}$ 〔18．50（b）
Labels per 1000 s Single Row $3^{\prime \prime} \times 17^{\circ} 16^{\circ} £ 5.25(\mathrm{~d})$ Triple Row $2.7 / 16^{\circ} \times 17 / 16^{\circ} \mathrm{£} 5.00$（d）

MODEMS

All modems carry a full BT approval
MIRACLE TECHNOLOGY WS Range
WS4000 V21／23（Hayes Compatible． Intelligent．Auto Dial／Auto Answer）
WS3000 V21／23 Protessional As WS4000 and with BELL standards and battery back up for memory
［245（b）
WS3000 V22 Prolessional As WS300 V21／23
bul with 1200 baud full duplex ．．．．．．．．．．．．．£450（a）
WS3000 V22 bis Professional As V22 and 2400 baud full duplex \quad E595（a）
WS3022 V22 Prolessional As WS3000 but
with only 1200／1200 ．．．．．．．E
with only $2400 / 2400$
WS2000 V21／V23 Manual M
DATA Cable for WS series／PC or XT
DATATALK Comms Package
If purchased with any of the above
PACE Nightingale Modem V21／V23 Manual
（Otter limited to current stocks）
SOFTY II
Thus hw cost intedigent eprom programmer can program 2716.2516 2532．2732．and win an adaplor． 2564 anc 2764 Displays 512 byle $\begin{array}{lll}\text { Adaptor } \\ 2564 & \text { lor } & {[19500(0)} \\ 2764\end{array}$

PLEASE WRITE OR TELEPHONE FOR CURRENT PRICES

AT256 3 PORT SWITCHOVER SERIAL INTERFACE
 oulpul oaud ales．indepencently
 pancoshake 256 K outler mains
nowered
pole PE BUFFEA
Internal outter lor most Epson
printers Easy to instanl Inst Supplied
PE128 128K
c99（c）

3M FLOPPY DISCS

Indusiry Standard floppy discs with a inletime guarantee Discs in packs of 10
 $\begin{array}{llllll}40 \text { TSSDD } & £ 10.00 \text {（d）} & 40 \text { TDSDD } & £ 12.00 \text {（d）} & 80 \mathrm{TSSDD} & £ 20.00 \text {（d）} \\ 80 T S S D D & £ 14.50 \text {（d）} & 80 \text { TDSDD } & £ 15.50 \text {（d）} & 80 \mathrm{TDSDD} & £ 25.00 \text {（d）}\end{array}$

FLOPPICLENE DRIVEHEAD CLEANING KIT

FLOPPICLENE Disc Head Cleaning Kit with 28 disposable cleaning discs
ensures continued optimum pertormance of the drives． $5 / 4 \leq 12.50$（d）
DRIVE ACCESSORIES

Single Disc Cable $\boldsymbol{I S}_{6}$（d）
10 Disc Library Case $£ 1.80$（d）
$50 \times 5^{1 / 2}$＂Disc Lockable Box $£ 9.00$（c）
Dual Disc Cable $\mathbf{E 8 . 5 0}$（d）
$30=5^{1 / 2}$ Disc Storage Box $\mathbf{~} 6$（c）
100 － $5^{1 / 2}$ Disc Lockable Box $£ 13$（c）

MONITORS

RGB 14	
1431 Std Res	¢179（a）
1451 Med Res	£225（a）
1441 HiRes	£365（a）
MICROVITEC 14＊RGB：PALAudio	
1431AP Sid Res	¢199（a）
1451 AP Sid Res	§259（a）
All above monitors available in plastic or metal case	
TAXAN SUPERVISION II 12 －Mt Res with amber／green options．	
18 M compalible	¢279（a）
Taxan Supervision III E319（a）	
MITSUBISHI	
XC1404 14 Med Res RGB．IBM \＆BBC	
compatible	E219（a）

MONOCHROME
TAXAN 12 HI．RE

KX1201G green screen	¢90（a）
KX1203A amber screen	$£ 95(\mathrm{a})$

PH）LIPS 12 HI．RES
BM7502 green screen
BM7522
8501 RGB Sid Ses \quad £79（a）

ACCESSORIES

Taxan $£ 5$（d）Monochrome $£ 3.50$（d）

EXT SERIAL／PARALLEL CONVERTERS

Mains powered cunverters

Sertal to Parallel．
Paraliel to Serial．
¢48（c）
Bidirectional Conventer．
£105（b） For industrial Users we ofter UV 140 \＆ 121 p\＆p． sers with handling capacily of 14 eproms UV 141 has a buill in limer Born oher full butt in satety fealures UV140 £69．UV141 £85，p\＆p £2．50．

Serial Test Cable Serial Cable swichable at both ends allowing pin oplions to be re－fouled or linked at ellher end－making il possible to produce almost any cable configuration on sile Avalable as M / M or M / F 〔24．75（d）	Serial Mini Patch Box Allows an easy method io reconfigure pin functions without fewring the cable assay Jumpers can be used and reused E22（d）

Serial Mini Test
Monitors AS232C and CCITT $\checkmark 24$ ransmissions． coloung slatus with dua colour LEDS on 7 mosi sicgnilicant lines Connecis in
Line
$\mathbf{E 2 2 . 5 0}$（d）

CONNECTOR SYSTEMS

I．D．CONNECTORS 	EDGE CONNECTORS	
D CONNECTORS No of Ways MALE	1900	24 way 700 p 36 way 75
		gender changers 25 way D type
$\begin{array}{lrrrr} \text { Ang Pins } & 120 & 180 & 230 & 350 \\ \text { Solder } & 60 & 85 & 125 & 170 \\ \text { IDC } & 175 & 275 & 325 & - \\ \text { FEMALE: } & & & \end{array}$	$\underset{\substack{\text { OIN A1612 } \\ 2 \times 32 \text { way SI Pin }}}{\text { EURO CONNECTORS }}$	
		RS 232 JUMPERS
Screw Lock	For 2×32 way please specity spacing $(A+B, A+C)$ ．	
$\underset{\substack{\text { Sockers } \\ 28.0 .15}}{\text { TEXTOM }}$	MISC CONNS 21 in Scarl Connectior 200p	

RIBBON CABLE			
ar	${ }_{\text {lor }}$	34．ner	1600
V	Sos	${ }_{\text {do may }}$	${ }^{1000}$
，	${ }_{1208}$	64．may	${ }_{2}^{2000}$

DIL HEADERS		
Soldep	10 C	
14 pin	$40 p$	100 p
16 pin	50 p	110 p
18 pin	60 p	-
20 pin	75ρ	-
24 pin	100 p	150 p
28 pin	$160 p$	200 p
40 pin	200 p	225ρ

ATTENTION Al prices in thie double pege sodvertieement are subject to change whthout notice． ALL PRICES EXCLUDE VAT Ploase add carriege 50p unless indicated as follows： （b）£8（b）$£ 2.50$（c）$£ 1.50$（d） £1．00

DIGITAL MULTIMETERS

from $£ 99$ FREQUENCY COUNTERS

100 MHz .600 Mhz .1 GHz .15 GHz MODELS

- 3 GATE TIMES
- RESOLUTION TO 0.1 Hz
- $y^{\prime \prime}$ BRIGHT LED DISPLAY
- mains battery
- TCXO OPTION
- LOW PASS FILTER

UNIVERSAL COUNTER-TIMERS from

- frequency dc - 100 MHz - RESOLUTION TO 0.001 Hz
- ratio
- perioo
- time interval
- COUNT
- STOP WATCH
- RPM
- signal conoitioning

from
 FUNCTION GENERATOR

- 500 KHz and $2 \mathrm{MHz}_{2}$ MODELS
- sine square, triangle til
- external am
- external sweep
- a.30V OUTPUT
- I15V DC OFFSET
- 50 s 2 and 600 SI OP's
- $0.20 \mathrm{~dB}, 40 \mathrm{~dB}$ ATTENUATOR

PAL PATTERN GENERATOR

£199

- full selection patterns - VHFIUHF
- RF, COMP VIDEO, IRGB O/P's - $5.5,6.0,6.5 \mathrm{MHZ}$ SOUND - separate or mixed syncs - iv or Ttl irgb - variable video o/p - intiext sound

MEIEXPRMEESSIONALDMN'S

OPEN 6 DAYS A WEEK - CALLERS WELCOME
AUDIO ELECTRONICS

- TELEPHONE 01.7243564
301 EDGWARE ROAD, LONDON W2 IBN ORDER BY POST OR TELEFHONE
EDUCATION AND QUANTITY PRICES ON REQUEST
$31 / 2$ and $41 / 212 \mathrm{~mm}$ LCD Digital multimeters: 5 ranges AC and DC volts: 6 Resistance Ranges to 20 M ohm: $\mathrm{AC} /$ DC to 20 Amps: He Transistor test: Diode Test. Continuity: Auto polari
and zero: Plus extra yeatures as mm (3800 $172 \times 88 \times 36$): ALL MODELS All with Test Leads: WITH FREE
Fused: Hard carry case HARO CAEE

MODEL	DIGITS	RANGES	EXTRA FEATURES	BASIC	PRICE

ENTER 40 ON REPLY CARD
With 40 years' experience in the design and manufacture of several hundred thousand transtormers we can supply:

IUDIO FREQUENGY TRANSFOBMERS OF EVARY TYPE

YOU NAME IT!
 WE MAKE IT!

OUR RANGE INCLUDES:
Microphone transformers (all types). Microphone Splitter/Combiner transformers. Input and Output transformers. Direct Injection transformers for Guitars Multi-Secondary output transformers. Bridging transformers. Line transformers Line transformers to B. T. Isolating Test Specification. Tapped impedance matching transformers. Gramophone Pickup transformers. Audio Mixing Desk transformers (all types). Niniature transformers. Microminiature transformers for PCB mounting. Experimental transformers. Ultra low frequency transformers. Ulitra linear and other transformers for Valve Amplifiers up to 500 watts. Inductive Loop transformers. Smoothing Chokes. Filter, Inductors, Amplifiers to 100 volt line transformers (from a few watts up to 1,000 watts), 100 volt line transformers 10 speakers. Speaker matching transformers (all powers), Column Loud-speaker transformers up to $\$ 00$ watts or more.
We can design for RECORDING QUALITY, STUDIO QUALITY Hl-FI QUALITY OR P.A. QUALITY. OUR PRICES ARE HIGHLY COMPETITIVE AND WE SUPPLY LAZGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS. Many standard types are in stock and normal dispatch times are short and sensible
OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES, MIXING DESK MANUFACTURERS, RECORDING STUDIOS HI-FI ENTHUSIASTS, BAND GROUPS AND PUBLIC ADDRESS FIRMS. Export is a speciality and we have overseas clients in the COMMONWEALTH EEC, USA, MIDDLE EAST, etc.

Send for our questionnaire which, when completed, enables us to post quotations by return

SOWTER TRANSFORMERS
 Manufacturers and Designers

E. A. SOWTER LTD. (Established 1941). Reg. No. England 303990

The Boat Yard, Cullingham Road, Ipswich IP1 2EG.
Suffolk. PO Box 36, Ipswich IP1 2EL, England. Phone: 047352794 \& 0473 219390Telex: 987703G
ENTER 38 ON REPLY CARD

ApPOINTMENTS

Advertisements accepted up to 12 noon 28th October for December issue.

DISPLAYED APPOINTMENTS VACANT: $£ 27$ per single col. centimetre (min .3 cm). LINE ADVERTISEMENTS (run on): $£ 6.00$ per line, minimum $£ 48$ (prepayable). BOX NUMBERS: $£ 15.00$ extra. (Replies should be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS). PHONE: PETER HAMILTON on 01-661 3033 (Direct Line). Cheques and Postal Orders payable to REED BUSINESS PUBLISHING and crossed.

Leicester Polytechnic

School of Electronic and Electrical Engineering

 and Textile and Knitwear Technology
Senior/Principal Technician

Salary Negotiable up to $£ 9,000$ p.a.
A professional with a minimum qualification of HNC/HND is required to join an established project, to apply machine vision to Automated Inspection in the Apparel Industry.
You will be required to set up a rig for inspecting garments, run tests and evaluate its performance under supervision. Substantial programming (in ' C ' and 6,800 series assembler) will be required.
The appointment will initially be for one year from 1st September 1988, with the possibility for a second year.
Application form and further details available from the Personnel Office, Leicester Polytechnic, P.O. Box 143, Leicester LE1 9BH. Telephone: (0533) 551551 ext. 2303. Closing date 2nd November 1988.

EQUAL OPPORTUNITIES POLICY Applicalions are welcome from people regardless of their race. ethnic origin, religion. sex, marital staius or disability disabled applicants will be quaranteed an interview if suitably qualified and or experienced, and supported by a recognised agency eg a DRO

HARDWARE/SOFTWARE ENGINEERS

We have a large number of local and national clients requiring the following skills at all levels.
haRDWARE: Confact Pefer Dunkley of the software: Contact Richard olfice or (0223) 314229 (home). Microprocessors $68 \times X$ series (in particular 6809)

Design of onolague or digitol circuirry Rodio/Data communications
CAD ond multi/single loyer pcb design Imoge onalysis and video A.D conversion Nefworking, X25, DEC, ICL, HP, IBM moinframes and PCs
Computer systems and peripheral mointenonce
Project/Development Management Soles/Marketing/Applicotions Engineers/ Field Service or Test

SOFTWARE: Contact Richard
Woodward ot the office or (022 Woodword ot the office or (0223)
355480 (home) 355480 (home)
Operating Systems: Unix, VMS, MS. DOS
Longuages: C, Modula 2, Pascal, Fortran, BCPL
Applications: Oracle, DBaselll + , CAD/ CAM/CAE
Assemblers: $680 \times D, 80 \times 86,8085$, 280, 8086
Comms: WANS, LANS, Telecoms. Any combination of the obove skills ore in constant demand.

AMANUENSIS EXECUTIVE SERVICES LIMITED 20 NEWMARKET ROAD CAMBRIDGE CB5 8DT ≈ 0223354978

Wanted urgently Practical people for the Third World.

Many people want to help the Third World. But relatively few can offer the kind of help wanted most: the handing on of skills and professions which lead to self-reliance.
You could make this priceless contribution by working with VSO.
Current requests include:

Electronics $\quad \square$| Ultra-sound |
| :--- |
| Technician |

Studio
Electronic Engineer Hospital Electronics Engineers Lecturers in Power and Refrigeration/ Radio/
\square TVEngineers Electrical Engineers for instruction/ \square installation Maintenance and repair Communication \square Technician For more details, please complete and return to: Enquiries Unit, VSO, 317 Putney Bridge Road, London, SW15 2PN. Tel. 01-780 1331.
Conditions of work: • Pay based on local rates • Posts are for a minimum of 2 years - You should be without dependants • Many employers will grant leave of absence.
I'm interested. I have the following training experience: Address

Helping the Third World help itself.
300 S.A.E. appreciated
Charity No. 313757

COMMUNIQUE (UK) LTD COMMUNICATION HOUSE COMMUNICATION
PURLEY AVENUE PURLEY AVENUE

London Fire Brigade

The Londo Fire and Civil Defence Authority is now responsible for fire and emergency planning services in the Grea:er London area and its responsibilities include the London Fire Brigade

Assistant Radio Officer

£ 11,916-E14,544

You would assist the Brigade Radio Officer in maintaining an efficient and effective radio network. You must have proven experience in the installation, repair and maintenance of fixed and mobile VHF radio telephone e-quipment, and hold a City and Guilds Telecommunications Technicians Certificate or equivalent a ${ }^{\text {d d have GCE "O" level in mathematics }}$ and technical drawing. Good oral and written communicalions skills are essential.
Application forms and further details from the Recruitment Section on 01-587 4860/4875 (ansaphones), Personnel Department, Room 607, Queensboro jgh House, 12-18 Albert Embankment, London SE1 7SD.
Please quote Ref: FB. 210.
Closing date 4th November 1988.
The Authority has a positive equal opportunities policy and weicomes applicants from all sections of the community, Farticularly those presently underrepresented e.g. women, black and ethnic minorities and people with disabilities.
This post is ojen to job sharing unless otherwise stated.

LFCDA

Lcndon Fire \& Civil Defence Authority

Electronic Engineers

If you are an experienced, Support, Design, Development, Production, Test, Quality, Project Engineer or Trainee/Graduate, within the following disciplines: Teleconms, Datacomms, Computers, Electronics, Process Control, Medical Scientific Instrumentation or Broadcast, send your CV to Capital Appointments Ltd, Freeport, 74 Willoughby Lane, London N17 0BR or telephone 01-808 3050 for an application form.

CAPITAL

SALES ENGINEER

An experienced, self-motivating sales engineer, based in the South East of England, is required to develop sales of OEM equipment to the Sound and Communication industry.

AKG is already well established in this area and the position offers the right person considerable potential for advancement.

Salary negotiable. Company car provided. Reply with CV to,
AKG
T. Peacock, AKG Acoustics, Vienna Court, Catteshall Road, Godalming, Surrey GU7 IJG.

Sony has long been acknowledged as the leader in professional video and broadcast markets. It's a status we have achieved and maintained by providing excellent products, backed up by excellent technical support.
Further expansion of our broadcast and industrial video groups has created opportunities for Product Specialists to be part of a small technical support team responsible for product engineering and technical training. You will be assisting in the development, assessment, and support of current and future camera, VTR, Peripheral, business information, and display products for the U.K. non consumer market.
To find out more about the sort of things we can offer you - training, salaries, and career opportunities, why not complete and return this coupon or telephone Linda Burke or Ann White, Sony (UK) Limited, Sony House, South Street, Staines, Middlesex TW18 4PF. Tel. 0784 67257.

ECHI

ALWAYS AHEAD

$$
\begin{aligned}
& \text { IN HARDWARE, SOFTWARE \& SYSTEMS } \\
& \mathbf{£ 1 0 , 0 0 0 - £ \mathbf { 5 0 , 0 0 0 }}
\end{aligned}
$$

With the most successful companies and consultancies - bott large and small - througnolt the UK: Offering firs class salary/benefit packages - several include company car - plus excellent career advancement opportunities
$\mathrm{BSc}, \mathrm{MSc}$ or PhD with interest and experience in any of these fields:
DIGITAL SIGNAL PROCESSIMG; ADVANCED PROCESSOR ARCHITECTURES; LMAGE ANALYSIS; GR YPHICS / SPEECH PROCESSING; LASER / FIBRE OPTICS; PARALLEL PFOCESSORS; REAL-TME CONTROL / C³ SYSTEMS; EADAR; SOMAR; CC.MMUNICATIONS; OSI / X400 NETWORKS; AI E IKB SYSTEMS; ANALOG IE E DIGTTAL VLSI / ASIC EESIGM; SIMCILATION; MILUMEIRIC SYSTEMË; SOFTWARE - C, PASCAL, ADA, OCCAM, 68000 ASM, MODEILA, UNIX VMS; CAD TOOLS.
ECM offers confidential and professional guldance: we will listen to your requirements and identify opportunities to suit your plans. Phone now for your FREE CASSETTE "Jobsearch Te=hnologs" and hear how ECM can he p you to develop your career
Call ECM con $\mathbf{0 6 3 8} \mathbf{7 4 2 2 4 4}$ - unkil 8.00 p.m. most evenings - or send your cv by FAX (0638 743066) or mail to:
ELECTRONIC COMPUTER AND MANAGEMENT APPOINTMENTS LIMITED
THE MAL TINGS, BURWELL. CAM3RDGE, CB5 OHB.

Hardware/ Software/ Systems 89,000- 225,000

As a leading recrultment consultancy we have a wide selection of opportunities for high calibre Design. Development. Systems and supporting staff throughout the U.K. If you have expertence in any of the following then you should be talking to us for your next career move
ARTIFICIAL INTELLIGENCE • IMAGE PROCESSING * ANALOGUE DESIGN - MICRO HARDWARE \& SOPTWARE • GUIDED WEAPONS • C • PASCAL • ADA - RF ह MICROWAVE - ELECTRO-OPTICS • SIMULATION - C ${ }^{3}$ I - REAL TME PROGRAMMING - SYSTEMS ENGINEERING • ACOUSTICS • SONAR • RADAR • SATELLITES • AVIONICS • CONTROL • ANTENNA - VLSI DESIGN

Opportunities exist with National. International and consultancy compantes offering excellent salaries and career advancement
To be considered for these and other requirements contact John Spencer or Stephen Morley or forward a detailed CV in complete confidence quoting Ref. WW/101.

STS Recruitment, Telephone: (0962) 69478 (24hrs). 33 Staple Gardens, Winchester, Hampshire S023 8SR.

UNIVERSITY DATA CENTRE

THE JOHN RADCLIFFE HOSPITAL

COMPUTER ENGINEER

A Service and Installation Engineer is required to be responsible for the communications network at the University Data Centre. Experience with computer switching systems (PACX), and the service and installation of microcomputers or other digital type equipment is essential. Minimum qualifications: ONC in Electrical and Electronic Engineering. Salary on the Whitley Council MPT II Scale, $£ 8,985-£ 11,208$ (under review) according to age and experience. (The University is an equal opportunity employer). Please telephone or write if you are interested in this vacancy, Oxford 817486.
Departmental Administrator,
Nuffield Department of Clinical Medicine, Room 5801, John Radcliffe Hospital, Headington, Oxford OX3 9DU.
Closing date: $\mathbf{2}$ weeks from appearance of this advertisement.

Technical
 instrumentation. Fault finding to
component level. CE10K TEST ENGINEER Bucks Fault finding and repair of a range of electro-optic equipment. $2-3$ years experience required.
PROPOSAL ENGINEER Surrey Write Systems specilications for VHF/UHF comms systems. Extensive customer liaising and travel. CE18K TEST ENGINEER Berks Fault find and repair of digital/audio recording systems. Some staff supervision.
TEST ENGINEER c£10K Analogue/digital experience Berks component level repair of X -ray equipment. up to C£10K BENCH TECHNICIAN Berk
Service and repair to component level of radio and TV equipment. £8.5K + Bens
Hundreds of other Electronic vacancies
Roger Howard, C.Eng, M.I.E.E. MI.E.E.E.
CLIEDEN TCHNCAL
RECRUTTMEN
92 The Broad way, Bracknell, Berks RG12 1AR Tel: 0344489489 (24 hour)

WANTED

VALVES TRANSISTORS I.Cs WANTED) also IC sockets, plugs, con nectors, factory clearance etc. Valves types PX4 PX25 KT66 \& KT88 especially wanted. Billington Valves See left.

ASSEMBLER PROGRAMMERS

Wanted: Career programmers with a good feel for hardware/ firmware, for non-defence microcomputer systems in which code size and efficiency are important. No big teams, minimal paperwork, interest ing work and a manageriallevel salary if you can produce good systems quickly. Relevant C experience abonus. Small, profitable systems/ electronics company.

CV to Bill Dunlop,

Troy Systems Lid, Unit 4, Heron Trading Estate, Alliance Road, London W3 ORA.

WANTED

PLATINUM, GOLI), SILVER SCRAP. Melted assayed and paid for within 24 hours relay contacts, thermo couples, crucibles. Also printed circuit boards, plugs, connectors, palladium, rhodium, tantalum and ruthenium. We have the technology to do the difficult refining jobs that others can't handle. Totally free sampling service. Send samples or parcels (Regd post) or contact Eric Henderson, 0773570141. Steinbeck Refineries (UK) LId, Peasehill Industrial Estate, Ripley, Derbyshire DE5 3JG. No quantity too large or small.

BROADCAST ENGINEERS

Ref: 40/88

Required for work in the Broadcast Engineering and Production Departments of the SSVC, which provides Radio, Television and Training Services for the British Forces and their dependants in the UK and abroad. Candidates (preferably aged 22-35) should be educated to HND standard in electronic and electrical engineering and have had at least three years' work experience in broadcast or related industries
The work, often overseas, includes the operation, maintenance and installation of the full range of professional radio and television studio equipment and, in some areas, medium wave and VHF transmitters.
The salary offered is tax free when on overseas service, plus generous overseas allowances and other fringe benefits. There are promotion prospects to higher grades and opportunities for training and transfer to other departments of the SSVC

For further information and an application form please contact Mrs A. R. Sive. Assistant Personnel Manager Telephone: 02407 4461, ext 221

The Services Sound and Vision Conporation Chaliont Grove, Narcot Lane. Chaliont St Peter Gerrards Cross. Bucks SL9 8 TN.

Broadcast Video/Pro-Audio Service/Test/QA

It is an exciting time in these markets and career opportunities currently exist in the above areas. Applicants should be educated to HTEC/TEC and have several years experience in the electronics industry. A thorough knowledge of audio and video principles is particularly relevant.
Location: Southern England. Salaries in the range £9-15K.

Professional \&
 Technical Appointments ELECTRONICS DIVISIONI

To apply please write or telephone Mike Jones. Professional and Technical Appointments. Studio 3. Intec 2. Wade Road. Basingstoke, Hampshire, RG24 ONE or Telephone Basingstoke 0256470704.

SURPLUS STOCKS

SURPLUS/REDUNDANT STDCKS
WE OFFER CASH for all types of redundant and surplus electronic components. including integrated circuits, transistors many more besides. Top prices paid collection no problem
Please contact us today with your list by
tax, telex. telephone or letter to MARLOW MARKETING 151A Milton Hoad, Gravesend Kent DA12 2RG. Fax: 0474327960. Telex: 94016512 (NWWO G)
Telephone: 0474320062 Also complete factory clearance undertaken

PCB MANUALS

WANTED

STEWART OF READING
110 WYKEHAM ROAD
READING RG6 1PL
TEL: 073468041
FAX: 0734351696
TOP PRICES PAID FOR ALL TYPES OF SURPLUS TEST EQUIPMENT, COMPUTER EQUIPMENT, COMPONENTS etc. ANY QUANTITY.

WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity

Prompt service and cash.
M \& B RADIO
86 Bishopsgate Street Leeds LS1 4BB
0532435649

> For further details on Classified Advertising please contact:
> Peter Hamilton on 6613033

having difficulty obtaining an obsolete VALVE/TRANSISTOR/I.C.?

We try harder to locate rare types! Delivery either ex-stock (1-2) days or from our overseas sources (5-8 days). Magnetrons, Klystrons, C.R.T., frav-wave fubes also verstocked
WE ALSO STOCK ALL POPULAR TYPES - USUALLY THE LOWEST PRICES ANYWHERE (compare our prices listed below!) we'll usually beat any written quote. LARGE DISCOUNTS FOR WHOLESALETRADEJEXPORT
Free advice re equivatents etc (we ve specialised in valves and transistors since 1982) New boxed guaranteed valves. Good quality brands (Mul. Bri. STC etc
2C39A
2C39BA

29.00	12BY7A
38.00	12E1
10.00	13E1
35,00	191/4
74.00	19H5
58.00	85A2
14.00	95A1
19.00	15083
4.30	5728 (USA)
2.30	807
1.95	813 Phillps
0.78	813
0.50	4212 HSTC
1.00	6080
1.90	61468 G.E
1.40	7360 RCA
5.30	A2134
6.75	A2293
2.60	${ }^{\text {A } 2426}$
9.00	C1148
2.20	C1166
1.20	CViypes
1.30	Cx1140
48.00	DET23
1.75	DET24
0.80	DET28
1.75	E55L.Mul
0.80	E88CC.Mul
2.00	EB8CC
0.80	E180F.Mul
3.45	E180CC

3.45	E182CC M
17.00	E188CC
130.00	E81OF.Mul
29.00	EAC91
29.00	E891
1.20	EC90
5.75	EC91
4.50	ECC81 Mul
64.00	ECC81
2.80	ECC82 Mul
34.00	ECC82
24.00	ECC83.Mul
200.00	ECCB3
6.00	ECCBS.Mul
10.75	EEC91
14.75	ECF80
14.00	ECL82
5.00	ECL86
29.80	EF86.Mul
POA	EF86
POA	EF91
POA	EF92
POA	EF95
35.00	El34
25.00	EL38
8.00	Elal
40.00	EL84
4.50	El 360
3.00	Ev84
5.75	G234
9.00	GZ37.Mu

(in) BILLINGTON VALVES
39 Highlands Road, Horsham, Sussex RH13 5LS, Engiand. (Callers welcome but by appointment only). Phone 0403 210729. Fax: 0403 40214. Telex: 87271 Office hours: Mon-Fri 9am-6.30pm.
(Answerphone, telex and fax left on overnight and weekends)

TO MANUFACTURERS, WHOLESALERS BULK BUYERS. ETC. LARGE QUANTITIES OF RADIO. TV AND ELECTRONIC COMPONENTS FOR DISPOSAL
 SEMICONDUCTORS, all types, INTEGRATED CIRCUITS, TRANSISTORS,
 IODES, RECTIFIERS, THYRISTORS, etc. RESISTORS, C/F, M/F, W/W, et CAPACITORS, SILVER MICA, POLYSTYRENE, C280, C296, DISC CERAMICS, PLATE CERAMICS, etc
 ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE, CABLES
 SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFORMERS, etc.
 ALL AT KNOCKOUT PRICES - Come and pay us a visit ALADOIN'S CAVE
 TELEPHONE: 445 0749/445 2713
 R. HENSON LTD
 21 Lodge Lane, North Finchley, London, N. 12
 (5 minules from Tally HO Corner)

MICROWAVE COUNTERS -
IMMACULATE CONDITION!

BANKRUPT STOCK OF HITACHI LM236 640×200 dot matrix LCD displays. Modules include 20 IC drive and interface logic board. Current distributor price $\mathbf{2} 312$ each. Our price for seased cartons of 15 display 45s + AT Samples avalable for Sar send S.A.E. Ior data. .e. 06003715 Specialist semiconductors, Founders
House Redbrook, Monmouth. Gwent.

COMPONENTS 7000 lines: "Monocor" Audio Eq.. Test Eq.. tools: Veuemann" kits: free lists. Send S.A.E or Tel. Dial Electronics, Burnhope Rd, Washington, 'Tyne \& Wear NE38 8H\%. 0914177003 Retail shop: Hawkehusrt Rd. Hartley Kent.

GOLLEDGE

 ELECTRONICSQUARTZ CIRYSTALS OSCILLA TOIS AND FILTERS of all types Large stocks of standard items. Spe cials supplied to order. Personal and export orders welcomed - SAE for lists please. OEM support thru: design advice, prototype quanities, production schedules. Golledge Electronies. Merriott, Somerset TA16 5NS. Tel 046073718.

TANBERG 1S6 installation and ser vice spares including student cassette and reel to reel recorder, student and master control units, student strips, cable etc and also 650 assorted valves The Camera Clinic, Turn Park, Station Durh DH3 3 DY Tel ${ }^{2}$. 091 . 2678.

SERVICES

TOM BROWN DEVELOPMENTS (North West U.K.) A design and development service for the electronics industry. We offer electronic hardware and soft ware for electronic hardware and software for digital, analogue and computing projects. P.C.B.C.A.D

MATMOS LTD, 1 Church Street, Cuckield, West Sussex RH17 5 JJz .
Tel: (0444) 414484/454377.

COMPUTER APPRECIATION, 30/31 Northgate, Canterbury, Kent CT1 1BL

Tel: (0227) 470512.

TRIUMPH ADLER/ROYAL OFFICE MASTER 2000 DAISY WHEEL PRINTERS. 20 cps , FULL IBM AND DIABLO 630 COMPATIBILITY CENTRONICS INTERFACE. Features include underscore, bold, subscripts superscripts, underline etc. 132 column; micro proportional spacing Complete with typewheel and ribbon, manufactured to highest standards in West Germany by Europe's largest typewriter manufacturer and offered elsewhere at over $£ 350.00$. Cables available for most computers, $£ 7.95$
£119.50 (carr. £6.50) - £99.50 each for quantities of $5+$
PANASONIC Model JU-363 $3^{1 ⁄ 21} \mathbf{2}^{\prime \prime}$ floppy disc drives. Double Sided Double Density 80 track 1 megabyte capacity unformatted. Latest low component $1 / 3$ height design. SHUGART compatible interface using 34 way IDC connector Will interface to just about anything. BRAND NEW. (We can offer at least 20% discount for quantities of 10 plus). Current model. We can supply boxes of 10 discs for $£ 15.95$ plus $£ 1.50$ carriage
£59.50 (carr. £3.00)
PLESSEY Model T24 V22/V22 bis 2400 Baud MODEM. Including free software disc for IBM or MATMOS PC. Compact, automatic modem featuring the latest technology and the highest possible data rate over the ordinary phone system. Offers; both V22 and V22 bis compatibility 1200/2400 Baud operation with auto bit rate recognition, operation on both ordinary phone (PSTN) and private circuit (PC), auto call and auto answer. duplex operation allowing simultaneous transmission and reception of data at 2400 Baud in both directions over a single phone line, compact size ($9^{\prime \prime} \times$ $\left.9^{\prime \prime} \times 2^{1 / 2 "}\right)$, BT approved and suitable for new PRESTEL V22bis service Software is included for IBM PC, MATMOS PC, and (including high speed Prestel) for BBC MICRO. BRAND NEW. NEW LOW PRICE
£119.50 (carr. £5.00) - £99.50 each for quantities of $5+$
DUPLEX Model 100 green screen $12^{\prime \prime}$ high resolution monitor with composite video input. With tilt and swivel stand. BRAND NEW
£39.50 (carr. £5.00)
ITT SCRIBE III WORKSTATION. Monitor sized unit with high quality high resolution $12^{\prime \prime}$ green screen monitor (separated video and sync), 5 V and 12 V cased switchmode power supply, processor electronics incorporating TEXAS 9995 and $Z 80 \mathrm{H}$ processors with 128 kbytes and associated suppor chips, all BRAND NEW but with only monitor and power supply guaranteed working. Original cost at least $£ 2,500$.
£29.95 (carr. $£ 5.00$ ITT SCRIBE III KEYBOARD. Low profile keyboard for above with numeric keypad, serial interface. BRAND NEW but untested.......... $£ 8.95$ (carr. $£ 5.00$) TRANSDATA Model 307 ACOUSTIC MODEM. Low cost self-contained modem unit allowing micro or terminal connection to BT lines via telephone
handset. V24 interface, up to 300Baud, originate/answer modes, etc BRAND NEW with manual
£14.95 (carr. £3.00) FUJITSU Model M2230AS $51 / 4^{\prime \prime}$ WINCHESTER disc drive. 6.66 mbyte capacity unformatted, 16/32 sectors, 320 cylinders. With ST506 interface BRAND NEW
£47.50 (carr. £3.00)
DRIVETEC Model 320 high capacity $51 / 4^{\prime \prime}$ disc drives. 3.3 mbyte capacity drive - same manufacturer and same series as KODAK 6.6 mbyte drive. 160 track. No further info at present. BRAND NEW
£25.00 (carr. £3.00) ASTEC SWITCH MODE PSU. 5V (n $8 \mathrm{~A} ;+12 \mathrm{~V}$ (a $3 \mathrm{~A} ;-12 \mathrm{~V}$ (") 0.3 A - to a total 65W. Compact cased unit. Ex-equipment, tested.....£14.50 (carr. £3.00) HEWLETT PACKARD Model 5045A digital IC tester with CONTREL Model H310 automatic handler. With IEEE interface and print out of test results either pass/fail or full diagnostic including pin voltages at point of failure. With full complement of pin driver cards and complete with substantial library of magnetic card test programs for 74 series TTL and other ICs. CONTREL handler allows fully automatic testing of ICs which are sorted into 2 bins. Price includes a second HP5045A (believed fully operational) for maintenance back-up.. $£ 350.00$ ITT PERFECTOR TELEX MACHINE. With $32 k$ memory, screen with slow scrolling etc.
…... $£ 350.00$ HEWLETT PACKARD MODEL 5501A LASER TRANSDUCER. With piezoelectric tuning for precise control of wavelength for measuring applications ….. $£ 350.00$ MICRERS INSTRUMENTS MODEL M17 METALLURGICAL MICROSCOPE with binocular/micrographic head and all eyepieces. With 4 Microplan' objectives and Nomarski interference contrast \qquad . $1,250.00$ KRATOS MS30 DOUBLE BEAM MASS SPECTROMETER. Approximately 8 years old with negative ion capability and fast atom bombardment (FAB). With gas and direct introduction sample probes and with gas chromatograph inlet system. Output spectra are available directly via a HEWLETT PACKARD storage display and a UV recorder. An on-line DATA GENERAL DS60 computer system, which includes a graphics printer and two TEKTRONIX 4014 terminals, analyses output

Price in region of $£ 12,000$ for complete instrument LUMONICS SYSTEM 2000 RUBY LASER with Q-switch and frequency doubler. 0.3 Joule per pulse, 6 ppm . Suitable for holography. A low power $\mathrm{He} / \mathrm{Ne}$ laser for mirror alignment is included
£3,500.00
Please note: "VAT \& carriage (also + VAT) must be added to all prices. * VISA and ACCESS orders accepted.

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 1148-1151

	PAGE
John's Radio	1104
Kestrel Electronic	
Components	1097
Langrex Supplies	1094
Levell Electronics	1097
M A instruments M Q P Electronics..................... 1104 1075	
Noral Micrologics................... 1145Number One Systems 1134	
Private Mobile Rentals 1098	
R Henson 1110	
Raycom Communications 1133	
Systems	1133
Rendar......................	. 1141

PAGE
Sherwood Data Systems 1104
Slee Electro Products 1103
Stewart of Reading.................. 1075
Strumech Engineering 1098
Surrey Electronics 1097

Taylor Bros.
Taylor Bros.
(Oldham).....................1136/IBC

Technomatic...................1146/1147

Tektite 1115
Thandar Electronics 1103
Those Engineers
1119

Thurlby

Electronics1134/1139/OBC
Toshiba
Corporation..... 1050/1120-1121 Triangle Digital Services...... 1110

[^6]R.F. EQUIPMENT MANUFACTURERS

PERFORMANCE \& QUALITY

19" RACK MOUNT CRYSTAL CONTROLLED VESTIGIAL SIDEBAND TELEVISION MODULATOR

PRICES FROM $£ 203.93$ (excluding VAT \& carriage)
Prices CCIR/3 £203.93
CCIR/3-1 £260.64

CCIR/3 SPECIFICATION	
Power requirement Video Input	-240 V 8 Watt (available other voltages) - IV Pk.Pk 75 Ohm
Audio Input	- .8V 600 Ohm
FM Sound Sub-Carier	-6 MHz (avalable 5.5 MHz)
Modulation	- Negative
If Visiol	$-38.9 \mathrm{MHz}$
IF Sounc	- 32.9 MHz (available 33.4 MHz)
Sound Pee-Emphisis	- 50us
Ripple cn If Saw Filter	$-.6 \mathrm{~dB}$
Output cany chamnel 47.86 JMHz)	$-+6 \mathrm{dBmV}(2 \mathrm{mV}) 75 \mathrm{Ohm}$
Vision to Sound Power Rajo	- 10101
Intermodulation	- Equal or less than 60 dB
Spuriou; Harmoric Output	- -40 dB (80 dB if fitted with TCFLl filter or combined via TCFL4 Combiner/Leveller
CCIR/3-1	- Specification as above but output level 60 dBmV 1000 mV Intermodulation 54 dB

WALLMOUNT DOUBLE SIDEBAND

TELEVISION MODULATOR
PRICES FROM ONLY £104.53 (excluding VAT \& carriage)

Prices
CCIR/5-1 1 Modulator $£ 104.53$
CCIR/5-2 2 Modulators £159.99
CCIR/5-3 3 Modulators £226.28
CCIR/5-4 4 Modulators £292.56
CCIR/5-5 5 Modulators $£ 358.85$

TAYLOR BROS (OLDHAM) LTD.
BISLEY STREET WORKS, LEE STREET, OLDHAM, ENGLAND.
TEL: 061-652 3221 TELEX: 669911
FAX: 061-626 1736

Digital Sonage at 5885° What do Thurblor leare our?
 120 megasamples/sec sampling rate?
 2 4K words per channel recording memory?
 335 MHz storage bandwidth for repetifive signals?
 416 non-volatile waveform memories?
 5 On-screen text display and on-screen cursor measurement?
 6 Roll mode down to 200 minutes/div?
 7 Sweep speeds up to $5 \mathrm{~ns} /$ div?
 8 Sensitivity down to $2 \mathrm{mV} /$ div with autoranging capability?
 940 division pretrigger display?
 10 Digital sweep delay system?
 11 Post storage processing including waveform muliplication?
 12 Digital averaging for lower noise?
 13 Digital interpolation using sine or pulse algorithms?
 14 Fully programmable front panel with 50 seting memories?
 15 RS-232C compatible inlerface plus optional IEEE-488 interface?
 16 Full remote control and bidirectional waveform transfer?
 17 Output to a dot-matrix printer, digital plotter or analogue plotter?
 18 A free conventional oscilloscope to connect if to?
 Surprisingly ir's only number 18 but you probably have that already!
 The Thurlby DSA524* links to any standard oscilloscope (using only one cable) and convents it into a highly sophisticated digital storage 'scope with all the features listed above.
 If you want to pay even less, the DSA5 11 has a lew less features but costs only $£ 395$.
 Send for full details nowd

[^0]: ISiMisi540 By post, current issue L2 25. back issues if
 ton surres s'Se SAS (heques should be pruadrant. Suttom. Surrey SME SAS. (hequess should be patyable to Reed Busthes Pubbishme itd Editorial Advertising

 parne one somp-bit Send etrl-< then EWW tostart. NNNN tosikil off Newstrade - (2 uadrant Puhloshing Services No, 01.661 ? 3240) Suhseription ratess 1 vear (normal rate) $[\because: 3.40$ (TK and $[2 \times .5(0$ outsude UK. Subscriptions: (fuad-

[^1]: rant Subscription Lervices, (Gakfield House, Perrymount Road Hiywards Heath. Sussex R1116i3bH Telephone 0444 442،2 Mease notify at chinge of addrems ('SA: $\$ 116.00$ Grmatl Reed Busmess I'ublishong (IS'A) Subscriptions fice. 20\% E. tend Street, NY 10117. Overseas advers Ng agents: France and Belgium: Prerre Mussard, $18-20$ Place de la Madelenne. Parse 7hoos. Enited States of America:din Feinman. Reed Business Publishing Jitd. 205
 freught International Lid. Inc. I ahbi Englehard Ave
 Postmaster - send address to the abose
 (ORerd liusiness Puhlishing latd 14\%א. ISNN (0266-3244

[^2]: -All pins on rows a and c are user defined

[^3]:
 Lombard House, Cornwall Rd,

 ## DORCHESTER, Dorset DT1 IRX

 England
 Phone 030568066
 Telex........... 418442 DATAMN G
 Fax 030564997
 Modem 0305251786
 V21, V22, V23, V22bis N 81 24hr

[^4]: (DEF COPYTREE ITEM
 (COND ((ATOM ITEM) ITEM)
 (T (CONS (CCOPYTREE (CDR ITEM) (COPY'TREE (CAR ITEM))]))
 MICROSCOPYTREE: ent I pagebus d=ustac
 CrIf IDXBADTVPES newtrbe CONS
 MICROSCOPYTREE
 if MICROSCOPYTREE Idustk datgrorr //THE CDR
 m.fo 1 u
 readustk
 pagebus daustack
 idx 2 newsr newbr loadaddr
 idxget nocheck incmsp m.sp" newmptr
 if MICROSCOPYTREE Idustk d=memout //THE CAR
 is RTNSCONS is RTNSCONS

[^5]: Prices are exclusive of VAT and delivery. Prices correct at time of going to print.

[^6]: OVERSEAS ADVERTISEMENT AGENTS
 France and Belgium: Pierre Mussard. 18-20 Place de la Madelaine, Paris 75008.
 United States of America: Jay Feinman. Reed Business Ltd., 205 East 42nd Street. New York, NY 10017 - Telephone (212) 8672080 - Telex 23827.
 Printed in Great lBritain by E.T. Heron IPrint! Led, Crittall Factory. Braintree Road. Witham. Essex CM8 3OGO, and twpeset by Graphac Typesetting, $181 / 191$ Garth Road, Morden. Surrey SM4 $41 . L$. for the proprietors. Reed ISusiness Publishing Lid (Quadrant House. The (Quadrant, Sutton, Surrey SM2 5 AS © Reed Business Publishing Ltd 1988, Electronics and Wireless Worid can he olnained from the followng. AUSTRAIA and NEW ZEALAND, Gordon \& Gotch LAd INDIA. A. H. Wheeler \& Co. CANADA: The Wm Dawson Suhsription Service Ld. Gordon \& Gotch bed SOUTH
 Wireless World $\$ 5.95(74513)$.

