

Waveform recorder interface • Memories
 Pulse generator • NAB-Dallas Heat transfer • Frequency hopping

 THSLUMEISS OF THFFUIURE

GRUNDIG OSCILLOSCOPES
 RANGE free 'zooming-in' M020

- PAL pattern generator
- 15 test patterns response use - even for special bands and the IF output.

M022: 20MHz DUAL-CHANNEL OSCILLOSCOPE WITH AUTOMATIC TIME
-20MHz Dual channel oscilloscope

- Automatic time base selection
- Soft tuning for fast manual adjustment
- Triggerable 2nd time-base, guarantees error
- Hold-off control and Z modulation
- Plus all the advanced engineering of the
 GRUNDIG TV/VIDEO TEST EQUIPMENT
COLOUR GENERATOR FG 7
- Multiburst facility to measure frequency
- 8 memories for rapid station store/recall
- Suitable for TV sets, monitors or VTRs
- Compact and versatile for field or laboratory

Versatile enough to check-out TV receivers, monitors and VTRs, this compact generator is at home in the field as it is in the lab or workshop. In addition to 15 monochrome and colour image signals, further picture patterns can be achieved by superimposition. Eight station frequenciescan be recalled from memory for rapid test capability

For further information and a colour brochure contact our Sales Office, London NW1 9PB Telephone: 01-267 7070 Telex 298694 Fax 01-267 7363 fukther detal.s.

Wireless Wiorld

 over 70 years in independent electronics publishing

August 1986
Volume 92
Number 1606
FEATURES

Designing with dynamic 17 memory by Alan Clements How dynamic memory works and how to	64th NAB－Dallas by N．Cawthorne The h．d．tv debate，new Voice of America transmitters and the klystrode are among the subjects discussed．
Frequency hopping in r．f． 24 energy－transfer links	Simple pulse generator by B．J．Frost Two i．cs and four power transistors provide 15 V pulses at 1 A ，with rise times of less than 10 ns ．
	Interface special offer Control and measurement interfaces－a special offer to readers of this journal
by P．B．Unstead and A．Blunden	S5／8－the technical details by A．Hardie A universal serial interface offering a simple solution to computer interconnection problems．
Analogue interface for the Apple II and other 6502 machines，which can also be used as a waveform generator	
Heat transfer in electronic 33 equipment by K．L．Smith Removing heat from electronic equipment is not always fully understood by engineers．	64180 computer board by J．H．Adams Circuits and operation of a high－ performance c．p．u．on Eurocard for use on its own or with SC84．

REGULARS

News commentary 6
Awards for pioneers in optoelectronics
IT and the managers European engineers

Communications 22 commentary
 Digital signal processing Ultra－fast data
 Polarization diversity Cryptology

Books 21， 26
Feedback 27

Frequency allocations
Altimeter
BBC cutbacks
XY plotter
Electrolytics

Applications 54

Longer battery life 32bit computer Bell 103 modem Contact surfaces

Circuit ideas 56

256 K memory for QL Cassette mechanism control logic
Fast Schnitt trigger Telephone patch circuit Logic isolator

Literature received	63

New	64,66
products	68,70

Editor
1＇HILII＇DARKINGTON
Deputy Editor
GEOFFREY SHORTER．B．SC
01－661 86.39
Technical Editor
martin Ec＇Cles
$01-6618638$
Projects Editor RICHARD LAMBLEY 01－661 30：39 or 86：37（lab．）
News Editor
I）AVID SCOBIE．
$01-6618632$
Art Editor
ALAN KERK
Drawing Office Manager ROGER（IOODMAN
01－6618690
BETTY PALMER
Advertisement Manager
ASHLEY WALLIS
$01-6613130$
MICHAEL DOWNIN（：
01－6618640
Classified Executive
SLSAN PLATTS
$01-661303.3$
Ad．Production Controllers BRIAN BANNIS＇TER
01－6618648
．JACKIE PERRY
01－661 8649
Eldetronto \＆Witrless Wiatd
 C＇urrent issue price $\mathbf{1 2}: 25$ ，back issuce if as ailahle！ 1.106 at Retail and Trade
Counter．Unit．1\＆2．Bankside Industmal Centre．Hopton Street．London SE 1
Telephone：01－924：3567．
By posit．current issue［1． 30 ，butek inouter if a a alablel 1 ．40．Order and pasment： to 301 Ehertromes and Witeless Wiond． Quadrant House，The（Quadrant．Suthon． surrey tint 5As．（Cheques should the payable to Business Press Intermational Litd．
Editorial \＆Advertising offices： Quadrant House．The Quadrant．Sution． surreysime 5As
Telephones：Editorial（11－661：3614．
Advertising 01－661 3130 $01-6618.469$ Telex：x9eng BISPRSG EEP： Facsimile：01－6ifl 2071（Group 11 \＆ 111
 300 baud． 7 data bis．even parity one stop－byt．TYpe control－Q．then EWW to start：NNNN to sign of Subscription rates： 1 year £ 18 したK and Student rates： 1 year $\$ 11.40$ UK and \＄14．10 rutside L1K．
Distribution：（Quadramt House＇The Quadrant．Sutton．Surrey SM2．5AS Telephone 01－66i1 32．45．
Subscriptions：Gaktield House Perymount Road，Hawwards Heath． Sussex RHI6：31）H．Telephone 0．4．4．4 59188．Please notify a change of address USA： 8.49 .40 surtace mal． 2102 60 airmail．Business Press International じ心A，Subscriptions（Office．205 E．42nd Street．NY 10117.
Overseas advertising agents： France and Belgium：Pierre Musard． 18－24 Place do la Madeleine．Paris T50， United States of America：Jay Femman．Business Press International Letd． 205 East 42 nd Street．New York． NY 10017．Telephone 2121867－20180 Trlex 23827 ．
USA mailing agents：Expediters of the Fronted World Latd． 5 Lis Madson Avenue Suite 917．New York，NY 10012 ？2nd Class postage paid at New York．
Postmaster－send address．to the albove
© Busmess Press internatman Litd 1986. ISB．N 004：36462 RAEDEK ELECTRONICS

Tel 021-4746000 Telex No 312242

SERVING THE COMMUNICATIONS AND ELECTRONICS INDUSTRIES

TYPE	LIST												
	\boldsymbol{f}		\pm		${ }^{\boldsymbol{t}}$		f		f		f		¢
2N3375	10.90	2SC1978	640	AH211A	13750	EF94	200	OA3	250	6AU5GT	370	813	3000
2N3553	160	2SC2053	080	AH2511	9000	EF95	160	Q 82	250	6 628	380	934	1800
2N3632	1295	2SC2237	6.00	AH2532	3150	EF183	190	083	250	6BA6	150	935	4120
2N3733	1295	2SC2287	9.60	815	5250	EF184	180	OC3	250	6BE6	195	2050	480
2N3866	120	2SC2290	20.00	BT5 ${ }^{\text {P }}$	5250	EK90	140	2¢39A	3990	$6 \mathrm{6H} 46$	215	2050 A	480
2N4416	0.75	MRF240	20.70	BT17 ${ }_{\text {BT1 }}$	142.00	EL34	390	2C39WA	4200	68.16	200	5544	8100
2N4427	140	MRF245	33.00	BT17A QT95	13000 12500	EL36	230 160	2 D 21	200 750	6BK4C	450	55.45	9500
2N5090	1090	MRF247	28.00	C3J	3000	EL86	210	2K25	11400	68 CZ 8	350 250	5557 5559	2450 5250
2N5109	195	MRF433	9.00	C3JA	30.00	EL519	710	3 3.4002	7800	6 CA 4	195	5727	5250 295
2N5160	3.00	MRF 449A	1015	E55L	56.00	EL803S	995	3.5002	8500	6CB6A	180	5867 A	14000
2N5589	760	MRF450	1150	EBOCC	19.00	EL821	1375	3828	1500	6CJ3	230	5879	615
2N5590	7.90	MRF450A	1380	E80L	21.00	EN32	1625	3 C 45	2450	6 CW 4	630	5965	220
2N5591	9.50	MRF454	1725	E88CC	390	EN91	200	3C×100A5	3500	60C6	245	5991	3200
2N5641	6.95	MRF454A	17.25	E90CC	750	E280	160	4 65A	5250	$6 E 5$	420	6130	24.50
2N5642	9.30	MRF455	16.50	E130L	2125	E281	! 50	4.125A	6000	6EA8	225	6146A	9.40
2N5643	11.85	MRF458	17.20	E891	135	E290	+ 250	4250 A	7600	$6 G \mathrm{~K} 6$	250	61468	940
2N5913	2.50	MRF475	2.30	EBC91	110 135	FG 17	2450 16000 1500	4.400A	8000	6 6HF5	425	6360 A	4.95
2N5944	785	MRF476	2.15	EC90	135 125	FG105	16000 1500	${ }^{4.4008}$	8000 80	6HS6	395	6550A	725
2N5945	10.10	MRF644	22.50	ECC32	325	GXU4	4500	${ }_{4832}$	8000 3050	6JB6A 6JE6C	420 625	${ }_{6}^{68838} \mathbf{6 9 3}$	870 395
2N5946	10.80	MRF646	27.00	ECC81	1.60	G234	2.10	4 C 35 A	13500	6JS6C	470	7027 A	650
2N6080	6.65	MRF648	3270	ECC82	160	K166	9.50	$4 \mathrm{C} \times 250 \mathrm{~B}$	13500	EK7 7	250	7199	4 4 4
2N6081	8.40	MRF901	2.75	ECC83	160	KT77	10.95	EIM AMP	5500	6K11	225	7247	320
2N6082	10.50	SD1013	9.75	ECC85	185	KTB8	24.95	$4 \mathrm{C} \times 2508$		$6 \mathrm{KD6}$	590	7262 A	26.00
2N6083	1120	SD1019-STUD	23.10	ECC88	2.00	ML8536	27500	NAT	4800	$6 \mathrm{KD8}$	2.00	7360	13.20
2N6084	12.00	SO1019-5	2280	ECC91	200	ML874 1	26500	$4 \mathrm{C} \times 350 \mathrm{~A}$	8700	6lfig	4.45	7586	$\$ 1.50$
2SC1729	9.00	SD1127	3.10	ECC189	200	NL SERIES		$4 \times 150 \mathrm{~A}$	3370	$6 \mathrm{LO6}$	6.25	7587	35.00
2SC1945	345	SD1134-1	2.25	ECF80	1.50 165	Qovoz-6	2200 5.30	5AR4 5ASAA	210 210	${ }^{6011}$	225	7591 A	4.65
2SC1946A	16.00	SD1136	11.90	ECF801	180	Qvo3 12	5.30 700	5R4GYA B		6SLIGI	225	7815 AL	48.00
2SC1947	8.50	SD1143	940	ECH81	230	OY3.65	5750	5 U 4 GE	210	648A	200	8122	53.00
2SC1969	1.80	SD1219	14.70	ECL82	1.90	OY3-125	6300	5 V 4 GA	250°	12AT6	150	8906 AL	55.00
2SC1970	1.40	SD1272	10.95	ECL86	160	OY4-250	69.80	6AH6	230	12AU6	170	15082	6.50
2SC1971	3.50	SD1278	13.75	EF80	170	RG1 240 A	1000	6 AK5W	250	12 avg	200	5728	52.00
2SC1972	6.00			EF85	300	RG4 3000	9000	6AK6	195	12 BA 6	180	807	9.00
INDUCTION AND DIELECTRIC HEATING SPARES				EF86	230 230	XG1.2500 $\times 65.500$	5250 24.50	6AL.5W	180 175	12847	235	810	75.00
*NCL.				Ef91	295	XR1.3200	7250	6 6A05W	1.80	$128 Y 7 \mathrm{~A}$	270		
				EF92	220	XR 1.6400	12000	6AS6	2.40	$12 \mathrm{BZ6}$	370	WE ALSO SUPPLY	
CERAMIC CAPACITORS		SOLID STATE RECTIFIERS		EF93	150	OA2	200	6AS7G	5.00	12DW7	375	EIMAC	S AND
VACUUM CAPACITORS GRID LAMPS		RECTIFIER VALVES		1000 S of VALVES/TRANSISTORS/IC'S IN STOCK. PLEASE ENOUIRE ON TYPES NOT LISTED.								AC	
		OSCILLATOR VALVES		BACKWARD WAVE OSCILL.		KLYSTRONS		SOLID STATE REPLACEMENTS			PRICES - CORRECT AT TIME		
CARBON FREE HOSE WATER FLOW SWITCHES		COOLING FANS/FILTERS				MAGNETRONS		THYRATRONS					
		etc. etc.		IGNITRONS		RECEIVING TUBES		TRANSMITTING TUBES			TERMS - PLEASE ADD £ 1.00 P\&PANDVAT @ 15% to orders.		

CIRCLE 45 FOR FURTHER DETAILS

This is just a sample of our huge inventory - contact us with your requirements

All prices are exclusive of VAT and correct at time of going to press Q Carriage and packing charges extra \bullet A copy of our trading conditions is available on request
 Eoctionikerowers: 总i

The Archer Z8O 8BC

The SDS ARCHER - The Z80 based single board computer chosen by professionals and OEM users. \star Top quality board with 4 parallel and 2 serial ports, counter-timers, power-fail interrupt, watchdog timer, EPROM \& battery backed RAM.

* OPTIONS: on board power supply, smart case, ROMable BASIC, Debug Monitor, wide range of I/O \& memory extension cards.
from $£ 185+$ VAT
CIRCLE 29 FOR FURTHER DETAILS

The Bowman 68000 \&BC

The SDS BOWMAN - The 68000 based single board computer for advanced high speed applications.
\star Extended double Eurocard with 2 parallel \& 2 serial ports, battery backed CMOS RAM, EPROM, 2 countertimers, watchdog timer, powerfail interrupt, $\&$ an optional zero wait state half megabyte D-RAM.
\star Extended width versions with on board power supply and case
from $£ 295+$ VAT
CIRCLE 53 FOR FURTHER DETAILS

Sherwood Data סystems Ltd
Sherwood House, The Avenue, Farnham Common, Slough SL2 3JX. Tel. 02814-5067

STEWART OF READING Telephone: 073468041

 110 WYKEHAM ROAD, READING, BERKS RG6 IPLCallers welcome 9 am to 5.30 pm . MON-FRI. (UNTIL 8pm. THURS) CIRCLE 51 FOR FURTHER DETAILS

Opto-pioneers rewarded

Eleven scientists who have made outstanding contributions to the science of optoelectronics' have been awarded cash prizes by the Rank Prize Funds.

Optical discs

Three of them; Dr Pieter Kramer, Gijs Bouwhuis, and Dr Klaas Compaan, were given the prize for their work on optical-digital dises at Philips Research which led to LaserVision and the Compact Disc. They devised the complete opto-electronic system and electronic techniques to enable the recording of images and/or sound to be played without contact using laser light.
The prototype for LaserVision was first demonstrated as early as 1972, and, after considerable research and product development was launched in the USA in 1978. The rise of the video cassette recorder limited the appeal of the optical disc, which is now being revived by its use in interactive video systems, such as the Domesday project. The compact disc, launched three years ago, has had no such restraints and has taken off dramatically. Interactive use of these discs is also under development and they have found uses in data storage for computers. The Philips team are researching ways of producing an optical disc that can be recorded on as well as played back by the user. They are studying materials for eraseable discs that can be reused.

Liquid-crystal light valve

Four scientists from the Hughes Corporation in the US; Dr Jan Grinberg, Dr Williams Bleha, Dr Alex Jacobson and Terry Beard, were involved in the development of a low-cost, large-area projection displays of tv. At the heart of the system is the liquid-crystal light valve (l.c.l.v.) which is an optical-tooptical image transducer capable of accepting a lowintensity light image and converting it into a bright output
image with light from another source. The device works by reflecting the light source, so the input and output light beams are completely separate and non-interfering. When used for large screen displays, the light valve accepts an image from a c.r.t. and transmits it by modulating the beam of a xenon-arc lamp. Thus the light-valve projector acts as a 'real-time slide projector' to give a very bright and greatly enlarged reproduction of the tube image. The system has been used in sports fields and at pop concerts, for conferences and in flight simulators.

Hot spotters

Two researchers from the Royal Signals and Radar Establishment; Dr Ernest Putley and Rex Watton, and two others; William Wreathall and Dr Alan Goss, from the English Electric Valve Co. received their prize for their work on thermal-imaging cameras. Infrared tv camera tubes can "see" through smoke and locate hidden obstacles, such as a burning stairs which present danger. They are now widely used in fire-fighting equipment. They have also found use in the location of people and were used in Mexico City to search out those trapped in collapsed buildings after the earthquake. In medicine, similar cameras can locate disease in the body at an early stage by detecting and locating 'hot spots', often the first sign of the disease.
The Rank Prize Funds were established by the late Lord (J. Arthur) Rank, shortly before his death in 1972. He selected two areas which he believed to be of special benefit to mankind: opto-electronics and animal nutrition. In addition to the prizes (these optoelectronics awards totalled some £115 000) the Funds sponsor research projects, international symposia and other meetings particularly for young scientists in these two areas.

One of two 13 m C-band antennae being installed by Mar. con m t Whiehill,
Oxon as part of an Inmarsat earth station for Mercury Com. munications.

European passport for engineers

A new title: "European Engineer" is to be introduced by FEANI (International Federation of National Engineers Associations). It will be open to Europe's one million professional engineers, including the 200000 Chartered Engineers in the UK. An agreement, reached after several years of negotiations at FEANI, offers Europe-wide professional standards by providing for mutual recognition of qualifications. The British National Committee took an initiative by embodying training and experience along with academic qualifications as part of the formula now accepted by the 20 countries represented at FEANI.
The new title will be granted

Don't cut us off-aged and infirm

BT has few procedures for checking that a telephone user is elderly or disabled before disconnecting them if they do not pay their bills. The Advisory Council on Telecommunications for Disabled and Elderly People (DIEL) called on BT to make a concerted effort to ensure that this did not happen. DIEL is aware of concern that some people may be cut off during illness or
to engineers who have successfully completed an approved degree, training and experience of not less than seven years in total. UK chartered engineers will generally be recognized as possessing qualifications satisfying the requirements of the new title. These minimum requirements will act as an incentive to individual improvement and as a lever for raising standards; a crucial objective if the European industrial base is to compete with the USA and Japan, according to FEANI.
The title should become a passport for working at professional engineer level throughout Europe. A similar scheme is planned for technician engineers.
hospitalization. The risk of disconnection could be avoided if BT's billing and follow-up system were more flexible.

BT have said that improvements can be expected once fully computerized systems come into operation, but DIEL demands more immediate action to adjust the procedures where the old and infirm are concerned.

Technology training in Sheffield

A joint venture between Sheffield City Polytechnic and the Manpower Services Commission Sheffield Skillcentre has resulted in the launching of an Centre for Advanced Manufactur:ng Technology in the city.
It offers a complete training package for all levels of company personnel from shop-floor to boardroom, and includes a consultancy and advisory service. The centre is provided with a mainframe computer but also has a data link to the Polytechnic's computer, effectively doubling its capacity. The facilities were demonstrated at the opening ceremony by designing a component on the computer, obtaining the manufacturing instructions and then actually
making the part on a c.n.c. machine tool. The Prime Computer with eight workstations has a comprehensive range of software including Cad/cam, manufacturing systems simulation, and production control. The Centre's facilities include a number of c.n.c. machine tools, materials handling equipment and robot systems. "The computer and robot are no longer 'new technology' said Bryan Nicholson, chair of the Manpower Services Commission at the opening ceremony; "They are tools to be used in the same way we use conventional tools."
The centre can also offer impartial advice on the selection of equipment, free from the pressure of sales reps.

IT still puzzles managers

Despite recognizing that it is important, many managers are not using information technology as well as they might. So says John Butcher, Undersecretary for Industry. He pointed out that a DTI survey showed that very few companies had achieved more that 80% of the potential usage of IT; the average is about 55% and a third of the companies surveyed were below 40%. He put the blame on management training: "It is widely agreed that our managers are on average less well trained for their jobs than the managers of our international competitors.
"Fewer than 10% of the 2.5 M managers hava a degree. A further seven percent have membership of a professional body as their highest qualification. Only two percent can boast of any kind of business degree or management qualification. Worse still, 70% of the managers get no training at all for their management role at any time during their careers. But with the introduction of new technology, the need for continuing training can only increase.
"Of course the picture is not all gloom. Many of Britain's
best run companies operate highly developed management and staff training programmes. We need to see this best practice being adopted by many more companies."

Mr Butcher warned that organizations which chose not to take advantage of the simple cost saving that IT made possible should bear in mind that competitors at home and abroad certainly will.

This unfrocked church at Feltham, Middlesex is now in secular hands as a temple of information technology. Siemens Ltd have remodelled it extensively as a training and consultancy centre, a base for expanding the company's activities in the UK telecommunications and computer markets. Picture was produced on one of Siemens' new laser printers, which can churn out 100 pages $/ \mathrm{min}$.

Optical cable across the Atlantic

Telecommunications authorities in the UK, USA, Canada, France and Spain have agreed on the construction of an optical-fibre cable that will be

This Magnavox satellite receiver can tell exactly where it is to within a few metres, using the signals from the US Navstar satellites. The US Defence department are likely to scramble the P -codes used to obtain the more accurate positioning and will only licence those who are friendly to the US. However if an MX4400 is used in a fixed, known position it can unscramble the codes and transmit a correction signal to another mobile unit which can then fix its position more accurately than if it had access to the codes. The Navstar program has been delayed by the Challenger tragedy.
ready for service in 1991 and will have land terminals in each of the five countries. Other countries are to be invited to become joint owners of the $\$ 400 \mathrm{M}$ cable which will be known as TAT9.

Already planned is a shift from the more usual transmission wave-length of $1.3 \mu \mathrm{~m}$ to $1.55 \mu \mathrm{~m}$ which is more efficient and would require fewer amplifiers. The transmission rate of $565 \mathrm{Mbit} / \mathrm{s}$ will double that planned for earlier cables. The main transatlantic section and the UK and USA branches will have two operational fibre pairs. A submerged multiplex branching unit is planned to provide flexible routing for signals between the countries with landing points. All the landing points are to linked to the local networks and so the French and Spanish branches, for instance, could link a major part of Europe to the cable.

There must be something fuoлм! This? for This?

+ VAT
BRAND NEW - UNUSED
MONTH GUARANTEE
Stock Purchase
Hurry while
stocks

£295

No! Nothing wrong, just superb value! The Samleco Director- DY 40
A 'letter quality' 40 cps 132 column Daisy Wheel Printer

- High quality professional standard construction.
- Diablo compatible daisy wheel printer.
- Friction feed. (Tractor feed £20 extra)
- Cut sheet feeders also available.
- Supplied with either Centronics parallel or V24/RS232 serial interface.
- Maintenance contract available, at extra cost.

Carston
 201-943 4477

3 Park Road, Teddington, Middlesex TW11 OAF Telex: 938120

Computer Appreciation

111 Northgate, Canterbury, Kent CT1 1BH
Tel: Canterbury (0227) 470512. Telex: 966134 COMPAP

TEKTRONIXM
dual time base
dual time base. TEKRONIXM 7 TEKTRONIX Model 5103 N oscilloscope with D15 single beam storage 5 A 18 N dual trace amplifier \& 5B10N time base/amplifier ...
TEKTRONIX Model 5103 N oscilloscope with D 15.25 A48 \& 5B42 delaying time base $£ 1250.00$ TEKTRONIX Model 5403 oscilloscope with 5A18N \& 5B10N $\quad £ 750.00$ TEKTRONIX Model 5403 oscilloscope with 2×5.48 $+5842 \ldots \ldots .$. TEKTRONIX Model 466 portable storage 100 MHz oscil oscope
TEKTRONIX Model 7D12 A/D converter with M2 sample/hoid module 2850000 HEWLETT PACKARD 20MHz pulse generator Model 8011 A 5400.00 HEWLETT PACKARD Model 59307A VHF switch HEWLETT PACKARD Model 5045A digital IC tester. With IEEE interface \& print out of test results. Complete with substantial library of mag. card test programs for 74 series TTL $£ 1500.00$ HEWLETT PACKARD desktop computer Model 9825 A with 24 K \& various plug-ins $£ 275.00$ HEWLETT PACKARD Model 7225B plotter. IEEE interface ……… $£ 350.00$ TIME ELECTRONICS Model 9809 dual IEEE power supply TIME ELECTRONICS Model $98 \geqslant 0$ programmable power supply $£ 250.00$ TIME ELECTRONICS Model 505 DC current source. 0.05% RICOH Model GP11 graph plotter. Continuous feed intelligent graph plotter with RS232
£75.00

RICOH Model GP15 graph plotter. As above, but with 15° paper width. self test \& three pens BRAND NEW
£195.00
SAMURAI Model S 16 computer. With twIn 8 NEC floppy disc drives (total 2.5 Mb). 8086 processor with 128 K . monochrome monitor \& MSDOS Originally cost over £2000. BRAND etc) (Way MATMOS PC Available without disc drives only. $64 \mathrm{~Kb} Z 80$ based machine with RGB composite video \& UHF outputs: serial. parallel \& cassette interfaces; BASIC in ROM, BRAND NEW $\mathbf{£ 6 9 . 0 0}$ HITACHI $3^{\prime \prime}$ disc dives. With SHUGART compatible interface as for $5^{1}{ }^{\prime \prime}{ }^{\prime \prime}$ drives. Uncased These drives have been tested by us on the BBC with DFS and on the AMSTRAD 6128. The same drive is used in the TATUNG Einstein. Single sided. 250 Kb unformatted. BRAND NEW
$\Sigma 29.00$
AS ABOVE but double sided
$\Sigma 39.00$
HITACHI Model $\uparrow 480 \mathrm{P}$ colour monitor. High resolution 14 monitor with separated RGB input at
TTL levels. Resolution is 640 dots $\times 200$ lines. BRAND NEW $\ldots \ldots \ldots$.
PHILIPS Model 3234 storage oscilloscope, 10 MHz
BRYAN S Model 45000 UV recorder with 6×45001 amplifiers
£ 225.00
$£ 450.00$
BRYANS Model 45000 UV recorder with 6×45001 mamplitiers \quad E450.00 MINISCRIBE III hall height 5/a Winchester disc drive, together with hat neigh Stiver case and power supply These attractive units are supplied BRAND NEW and tested (except for controller) power supply, These attractive units are supplied BRAND NEW and tested except for controller)
with manual for Winchester.
Please note: *VAT \& carriage extra for all items. *Visitors by appointment, please.
CIRCLE 55 FOR FURTHER DETAILS

RF POWER

U.S. supplier of RF POWER DEVICES. Prices LOWER than current domestic prices. Query us for immediate needs.
A quality source for a complete range of RF POWER devices - From 2 30 MHz , SSE 12.5 V 728 V transistors $-14-30 \mathrm{MHz}$ CB/AMATEUR 27-50 MHz . low band $\mathrm{FM}-66-88 \mathrm{MHz}$, mid band $F M-66-88 \mathrm{MHz}$, mid band FM $-156-162 \mathrm{MHz}$ VHF MARINE RADIO FM $-130-175 \mathrm{MHz} \mathrm{HI-BAND}$ VHF FM - 108-152MHz VHF AIRCRAFT AM - 22540 MHZ UHF 28 V 407 - 512 UHF CATV/MATV CLASS A linear transistors - A SMALL indication of types are listed below. SEND FOR OUR FREE BROCHURE AND/OR CONTACT FOR IMMEDIATE QUOTES.

MRF 450 MF 453 MRF646 BLY88A BLY90 BLY93A 2N3553 2N4933 .2N5109 .2N3375 .2N5016 -j89 2N4128 .2N5070 2N5591 .2N6080 .2N4427 .2N5090 2N5634 .2N6083 2N4431 2N5102 .2N5918 .2N6084

TIC Semiconductarinc. CIRCLE 7 FOR FURTHER DETAILS

LOW COST UNIVERSAL PROGRAMMER EPROMS EEPROMS MICROS

- Completely self contained unis
- No personality modules required
- Controlled via RS232 serial interface
- Supports intel Motorola and Asci
hex data formats
- Easily controlled by most computers
- Fast and standard programming modes
- Low and high byte programming for 16 bl data

Price uncased £295 plus VAT
Micro Concepts
2508.16.32/64

2758
2716 32/32A/64,64A, 128
2716 32/32A/64.
128 A/256/512/513
27C16/32/64/128/256/512
6873264/66

- Eeproms
$8748 / 48 \mathrm{H} / 49 / 49 \mathrm{H}$

2 Si Stephens Road Cheltenham Glow GL 5: 5AA
CIRCLE 25 FOR FURTHER DETAILS

CIRCLE 34 FOR FURTHER DETAILS

Z80 雷 CONTROL 280

CARDMASTER CPU

- 4.6 MHz Z80 CPU
- CPM compatible
- User transparent MULTITTASKING
- Up to 32K EPROM \& 16K RAM
- Watchdog crash protection
- RS232 \& RS422 Comms
- $2 \cdot 280 \mathrm{a}$ P10 (one uncommitted)
- On board bus buffering
- Power-on jump hardware
- Euro-card construction

NOW FROM $£ 99+$ VAT
CUB MICROCONTROLLER

- 280 CPU
- $4 \times 280 \mathrm{PPIO} \mathrm{s}(64 / 10$ lines)
-280a CTC
- 4K Battery backed RAM (2K sup.)
- 4K EPROM (2K MCV2.0 sup.)
- Powerful monitor (MCV2.0)
- Eurocard construction

NOW FROM £86 + VAT

STARBURST V1.31

A CROSS ASSEMBLER FOR
CP/M80 covers four major families of single chip uP's and uC's

* 8048 inc. $8741 / 28748 / 9 / 50$
* 8051 inc. $8031 / 287518744$
* 6801 inc. 6800/1/2/3 68701
* 6805 inc. 6870563705

Supplied with a complete set of demonstration files.
STARBURST V1.31 £95.00

+ VAT
Requires $\mathrm{Z80} \mathrm{CPU}$

CMR16 NOW FROM		
£165.00		
Bare PCB's Available		
C/M CPU	$1+$	$10+$
C/M I/O	28.50	25.65
CUB	23.50	25.65
CMR16	40.00	21.15
CM	36.00	

Manuals on request

GNC ELECTRONICS

Little Lodge, Hopton Road, Thelnetham, DISS IP22 1JN Tel: 0379898313

IN-CIRCUIT EMULATION

Real-time, full speed emulation with 2048 cycle 40 bit trace and 256 cycle 32 byte register trace Conditional emulation control by hardware pointers.
Range of $8 / 16$ bit processors and controllers supported by probe replacement.

FULLY INTEGRATED SYSTEMS

IDS-7000 for 8 Bit Universal
IDS-7400-8 for 8 Bit Universal
IDS -7400-86 for 8086/7/8
STAND - ALONE EMULATION
ICE-ENGINE/BX-8
ICE-ENGINE/BX-86 for 8086/7/8

For further information contact:
Thandar Electronics Lid., London Road, St. Ives, Huntingdon, Cambridgeshire PE17 4HJ. Telephone: 0480-64646. Telex: 32250.

ELECTRONICS \& WIRELESS WORLD AUGUST 1986

01-208 1177 Technomatic Lid 01-208 1177

BBC Computer \& Econet Referral Centre

AMB15 BBCMASTER Foundation computer 128K
 $\begin{array}{lllll}\text { AMC06 } & \text { Turbo (65C-02) Expansion Module } & & \text { Econet Module } & \text { £102 (b) } \\ \text { ADF13 } & \text { Rom Cartndge } & \text { \&13 (b) ADF10 } & \text { Econ }\end{array}$
 ADJ24 Advanced Ref Manual 14.95 ADJ23 \quad E19.50 (c) BBC Dust Cover 5450 (d) ADFS ROM (for B with 1770 DFS \& B Plus) $\mathrm{E26}$ (d) ACORN 280 2nd Processors $£ 329$ (a) MUL TIFORM 280 2nd Processor $£ 299$ (b) TORCH Z80 2nd Processor ZEP 100 1770 DFS Upgrade lor Model $\mathrm{B} £ 43.50$ (d) 61 K Upgrade Kit for B plus $£ 35$ (d) ACORN 6502 2nd Processor § 162 (b) IZDP 240 META-ASSEMBLER. Both an editor and Macro-Assembler. Meta can assemble most 65xx, 68xx, 6804, 6805/6305, 6809, 8048, 8080/8085, 280. 1802 and more. Please phone for comprehensive leaflet. Meta-Assembler f126(c)
We stock the full range of ACORN hardware and firmware and a very wide range of other peripherals for the BBC. For detailed specifications and pricing please send for our leaflet

PRINTERS \& PLOTTERS

EPSON
EPSON LX-80 NLO
Optional Tractor Feed
FX85 (80 col)
FX105 (136 col)
LQ800 (80 col)
LQ1000
TAXAN
KP810 (80 col).
JUKI
5510 (dot matrix).
5510 (dot matrix).
6100 (daisy wheel)
BROTHER
HR15 (Daisy Wheel)
M1409 (Dot Matix)

¢195 (a)
$\underline{20}$ (c)
¢315 (a)
[449 (a)
$\underline{179}$ (a)
1729 (a)
£230 (a)
£379 (a)
¢229 (a)
L249 (a)
¢315 (a)
£299 (a)
¢399 (a)

COLOUR PRINTERS	
Epson J×80	£420 (a)
Integrex Jet Printer	L549 (a)
Canon PJ1080A	L369 (a)
Dotprint Plus for FX/RX compatibles.	$\underline{288(d)}$
Dotprint Dual for MX range	$\underline{288(d)}$
PLOTTERS	
Epson H1-80	¢325 (a)
Hitacti 672	¢465 (a)
Graphics Plotter	$\underline{5629(a)}$
Plotmate A4	£299 (a)
A4M.	L399 (a)
A3M.	L549 (a)

PRINTER ACCESSORIES

We hold a wide range of printer attachments (sheet feeders, tractor feeds etc in stock. Serial, paralle, IEEE and other interfaces also available. Ribbons available for all above plotters. Pens with a variety of tips and colours also available. Please phone for details and prices
Plain Fanfold Paper with extra fine perforation (Clean Edge):
2000 sheets $9.5^{\prime \prime} \times 11^{\prime \prime}$ [13(b) 2000 sheets 14.5×17 E18.50(b)
Labels per 1000 s: Single Row $3_{2}^{\prime \prime} \times 17 / 16^{\prime \prime}$ £5.25(d) Triple Row $2-7 / 16^{*} \times 17 / 16^{*} \mathrm{E5.00}(\mathrm{~d})$

MODEMS

MIRACLE WS 2000 - The world standard BT approved modem covering all standard CCITT and BELL (outside UK only) standards up to 1200 baud. Allows communication with virtually any computer system in the world. Expandability to eatures already provided on the modem. Mains powered WS 2000 c102 (c) Data Cable $£ 7$ (d).
WS 3000 RANGE - the new professional series. All are intelligent and Hayes ompatible, allowing simply English' commands to control its many features. Al models feature Auto-Dial with 10 number memory. Auto-Answer, Speed buffering printer port, data security option etc. All modeis are factory upgradeable.
WS3000 V2123 (V21 \& V23 + Be!l £295 (a). WS3000 V22 (as above plus 1200 baud full duplex $£ 495$ (a). WS3000 V22bis (as above plus 2400 baud full duplex) L650 (b).
BBC Data Cable for WS3000 £6 (d). Data Cables for other micros available. The WS3000 range all have BT approval NEW WS 4000 'SCHOOLS' MODEM new low-cost high performance Hayes intelligent modem with ADial and A Answer and V21/23 £149 (a).
A V22 upgrade can be added at £250 and V22 bis at $£ 405$. Other options available. please send for details
GEC DATACHAT 1223 - An
economically priced BABT approved modem complying with CCITT V23 standard capable of operating at 1200 / 75 bps and $75 / 1200 \mathrm{bps}$ and $1200 / 1200 \mathrm{bps}$ pseudo full duplex It is line powered, does not require external power source it is supplied with software suitable for connecting to PRESTEL, Micronet 800 Telecom Gold and a host of bulleting boards $£ 75$ (b).

SOFTY II
This low cost inteligent eprom programmer can program 2716, 2516, 2532. 2732 . and with an adaptor. 2564 and 2764 . Displays 512 byt
page on TV as a serial and pat page on TV - has a serial and par
allello rouines. Can be used as an emulator casselte interface Sotlyll
Adaptor

$$
\begin{array}{r}
{[195.00(\mathrm{~b})} \\
2764 /
\end{array}
$$

SPECIAL OFFER 2764-25 £2:00(d): 27128-25 f2:50(d); 6264 LP-15 £3:40(d);

PD800P $(2 \times 400 \mathrm{~K} / 2 \times 640 \mathrm{~K} 40 / 80 \mathrm{D}$ DSC DRIVES PD800 ($2 \times 400 / \mathrm{K} 2 \times 640 \mathrm{~K} 40 / 80 \mathrm{TDS}$) 2×1 £249 (a)

TD800 (as PD800 but without the psu) ᄃ209 (a)
TS $4001 \times 400 \mathrm{~K} / 1 \times 640 \mathrm{~K} 40 / 80 \mathrm{TDS}$ £109 (b)
PS 400 with psu $1 \times 400 \mathrm{~K} 40 / 80 \mathrm{~T}$ DS £129 (b)

3.5 Drive

$1 \times 400 \mathrm{~K} / 1 \times 640 \mathrm{~K} 80 \mathrm{TDS}$
 TD352.
.... 1109 (b)
PS35 1 with psu
PD35 2 with psu.
$\Sigma 124$ (b)

3M FLOPPY DISCS

industry Standard floppy discs with a lifetime guarantee Discs in packs of 10
5 $/_{4}$ " DISCS
40 T SS DD $£ 11.00$ (d)
40 T DS DD $\quad £ 14.00$ (d)
80 T SS DD $£ 16.50$ (d)
80 T DS DD $£ 18.50$ (d)
80 T DS DD $£ 18.00$ (d)
$3 /{ }^{*}$ DISCS

FLOPPICLENE DRIVEHEAD CLEANING KIT

FLOPPICLENE Disc Head Cleaning Kit with 28 disposable cleaning discs ensures continued optimum performance of the drives. $5 \frac{1_{4}^{\prime \prime}}{} £ 14.50$ (d) DRIVE ACCESSORIES
Single Disc Cable $\mathfrak{£}$ (d) 10 Disc Library Case $\mathbb{£ 1 . 8 0 \text { (d) }}$ 30/40 Disc Lockable Box $£ 14$ (c)

Dual Disc Cable $\mathbf{£ 8 . 5 0}$ (d)
30 Disc Storage Box $\mathbb{E} 6$ (c)
100 Disc Lockable Box £16(c)

MONITORS

RGB 14
1431 Std Res
1451 Med Res
1441 Hi Res
MICROVITEC 14" RGB/PAL/Audio
1431 AP Std Res
1451AP Std Res
All above monitors available in plastic or
metal case
TAXAN 12" RGB
K12SV3-Hi Res with amber/green options
IBM compatible
MITSUBISHI
MITSUBISHI
XC1404 $14^{\prime \prime}$ Med Res RGB. IBM \& BBC compatible

UVERASERS

UV1T Eraser with built-in timer and mains indicator Built-in safety interlock to avoid accidental exposure to the harmful UV rays.
It can handle up to 5 eproms at a time with an average crasing time of about 20 mins. $£ 59+£ 2$ p\&p. UV1 as above but without the timer $\mathbb{\Sigma 4 7 + £ 2 \text { p\&p. }}$ For Industrial Users, we offer UV 140 \& UV 141 erasers with hand ling capacity of 14 eproms. UV 141 has a buill in limer. Both offer full built in satety features UV140 £69, UV141 £85, p\&p £2.50.
Serial Test Cable
Serial Cable switchable at both

Serial Cable switchable at both ends allowing pin options to be re-routed or linked at either end - making it possible to produce almost any cable Available as M / M or M

MONOCHROME
£179 (a) TAXAN $12^{\prime \prime}$ HI-RES
£229 (a) KX1201G green screen
£375 (a) KX1203A amber screen PHILIPS 12 "HI-RES
£199 (a) BM7502 green screen
£275 (a) BM7522 amber screen.

ACCESSORIES

 Microvitec Swivel Base Taxan Mono Swivel Base withChilips Swivel Base BBC RGB Cable.. Microvitec..
219 (a) Touchtec - 50
Monochrome
[255

CONNECTOR SYSTEMS

Serial Mini Patch Box

 Allows an easy method to reconfigure pin functionswithout rewiring the cable assay. Jumpers can be used assay. Jumpers can be used
and reused
E22 (d) BBC Cable Set $£ \mathbf{} \mathbf{3 0}$.

PRINTER BUFFER

The buffer offers a storage of 64K. Data from three computers can be loaded into the buffer which wi continue accepting data unth it is ful. The buffer wil soon as that computer has dumped all its data. The computer then is available for other uses. LED bar graph indicates memory usage. Simple push butto control provides. REPEAT, PAUSE and RESET functions. Integral power supply. £199 (a).

Serial Mini Test Monitors RS232C and CCIT V24 Transmissions. V24 Transmissions,
indicating status with dual indicating stalus with dua

colour LEDs on 7 most | significant lines Connects in |
| :--- |
| Line |
| $\$ 22.50$ |

I.D. CONNECTORS 		
D CONNECTORS		
		DIL SWITCHES

TECHNOLINE VIEWDATA SYSTEM. TEL: 01-450 9764

RADIOCODE CLOCKS LTD
 SPECIALISTS IN ATOMIC TIME, FREQUENCY AND SYNCHRONISATION EQUIPMENT

- Off-air frequency standards
- Intelligent time systems
- Caesium/Rubidium based clocks \& oscillators
- Master/slave systems
- Time code generators/readers - Record/replay systems - Intelligent display systems - Precision ovened oscillators - Time/frequency distribution systems

CIRCLE 13 FOR FURTHER DETAILS

Valradio

TACKLING POWER SUPPLY PROBLEMS SINCE 1937
\square DC-AC Inverters (Transvertors)

SINE/SQUARE WAVE INVERTERS 30 to 1000
watts, 50 (or 60) $\mathrm{Hz}, 115 / 230 \mathrm{~V}$, single phase
AC. From 12, 24, 50,110 or 220 Volts DC.

DC-DC Converters

AC-DC Power Supplies \square AC-AC Frequency Changers

Battery Chargers Standby/UPS Systems Line Conditioners
For details:
VALRADIO POWER LTD
LAWRENCE ESTATE, GREEN LANE, HOUNSLOW TW4 6DN, UK Tel: 01-570 5622

CIRCLE 41 FOR FURTHER DETAILS

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

R.Henson Ltd.

21 Lodge Lane, N. Finchley, London, N. 12.5 mins. from Tally Ho corner
Telephone 01445 2713/0749

CIRCLE 8 FOR FURTHER DETAILS

Professional grade, Synthesised, Full coverage Solid state, Self-contained Field Portable

- Up to 10 W multimode (5w on AM)
- Frequency synthesised tuning (100 kHz steps)
- 2-30 MHz (reception down to 500 kHz)
- Ideal for marine, commercial, industrial, military and amateur use
- SSB (USB and LSB) CW and AM modes.

Major advances in microprocessor and semiconductor technology by engineers at YAESU have produced these remarkable state-of-the-art HF full coverage solid-state self contained portables - the FT 70F

These highly sensitive stable and versatile 'backpack' transceivers are designed to provide reliable, convenient medium range communications under rugged field conditions, and are particularly suited to a wide range of applications such as marine, amateur, commercial, industrial and military uses.
The frequency synthesised, all solid state circuitry with 10 watts (5 w on AM) multimode transmitter covers between 2 and 30 MHz , and reception down to 500 kHz .
The unit is built into a die cast anodized aluminium front panel with combined battery pack which makes a highly portable, and virtually weatherproof station.
Send for more details and full specification to:

HOURS: 9:30-5:00
closed mondars.

373 Uxbridge Road, London W3 9RN. Tel: 01-992 5765/6. Telex: 334312 504 Alum Rock Road, Alum Rock, Birmingham B8 3HX Tel: 021327 1497/6313 CIRCLE 35 FOR FURTHER DETAILS

ERS - PRINTERS - PRINTERS - PRINTERS

SUPER DEAL? NO - SUPER STEAL THE FABULOUS 25 CPS "TEC STARWRITER"
 P1500-25 leatures a very heavy duty die ca
chassis and DIABLO type print mechanism giving superb
registration and print
quality. Micro-processo
electronics offer tur
DIABLO/QUME command compatability and tull controt via CPM WORDSTAR ETC. Many other teatures include bi-ditectional printing, switchable 10 or 12 pitch rollers for single sheet or conting wous paper, internal buffer, standard RS232 seria intertace with handshake Suppled absolutely BRAND NEW with 90 day guarantee and FREE daisy wheel and dust cover. Order NOW or contact sales office for more intormation. Optional extras RS232 data cable $£ 10.00$. Tech manual $£ 7.50$. Tract
Feed $\mathbf{1 1 4 0} 00$ Spare daisy wheel $£ 3.50$ Carriage $\&$ Ins. (UK Mainlandi $£ 10.00$.

NOW ONLY £499 + VAT

DIV PRINTER MECH

 outstanding opportunity for the Student, Hobbyist or Robotics constructor to build a printer - plotter - digitiser etc, entirely to their own specitication. The printer mechanism is supplied ready built aligned and pre tested but WITHOUT electronics. Many teatures include all metal chassis, phosphor bronze bearings, 132 characte optical shaft position encoder, NINE needie head, $2 \times$ two phase 12 V stepper motors for carriage and paper control, $9.5^{\prime \prime}$ Paper platten etc etc. Even a manufacturer's print sample to show the unit's capabilities! Overall dimensions $40 \mathrm{~cm} \times 12 \mathrm{~cm} \times 21 \mathrm{~cm}$.
Sold BRAND NEW at a FRACTION of cost ONLY £49.50 + pp £4.50.

TELETYPE ASR33
 DATA I/O TERMINALS

Industry standard, combined ASCII 110 baud printer, keyboard and 8 hole paper tape punch and reade Standard RS232 serial interface. deal as cheap hard copy unit or tape prep. for CNC and NC
machines. TESTED and in good machines. TESTED and in good stand £10.00 Carr \& Ins. £ 15.00

EX NEWS SERVICE PRINTERS

Compact ultra rehable quality buit un made by the USA EXTEL Corporation Often seen in major Hotels printing up to ation, the unit operates on 5 UNIT ation, the unit operates on 5 Curent loop RS232 or TTL serial interface. May be RS232 or TTL serial interface. May be printer or via a simple interface and filter printer or via a simple intertace and filte enable printing of worldwide NEWS TELEX and RTTY services.
Supplied TESTED in second hand 75 baud complals and with DATA, 50 and 75 baud xtals and large paper roll TYPE AE1 1
50 Column ONLY £49.95 Spare paper roll tor AE 11 E4.50 TYPE AF1 1 R 72 Col . $\varepsilon 65.00$
TYPE AH11R 80 Col £185.00
Carriage and Insurance $£ 750$

20,000 FEET OF ELECTRONIC AND COMPUTER GOODIES

 ENGLAND'S LARGEST SURPLUS STORE - SEEING IS BELIEVING!!
DEC CORNER

PDP 1140 System comprising of CPU, 124k memory \& MMU 15 line RS232 intertace TU10 9 M track 800 BP drive track system. VT52 VDU Mag tape drive, dual running. ${ }^{\circ}$ BA11-MB 3.5° Box, PSU, LTC $£ 3,750.00$ BA11-MB 3.5 BOX, PSU, LTC
DH11-AD $16^{\circ} \times$ RS232 DMA DH11-AD
DLV11-J4 \times EIA interface DUP11 Eynch Serial data DUP11 Synch. Serial data i/o
DQ200 Dilog - multi RK controile DZ11-B 8 line RS232 mux board KDF11-B M8189 PDP 1123 PLUS
LA30 P LA30 Printer and Keyboard 20 mA loop
MS11-JP Unibus 32kb Ram MS11-LB Unibus 128 kb Ram MS11-LD Unibus 256kb Ram PDP11 105 Cpu Ram, i/o etc PDP11/40 Cpu. 124 kMMU RT11 ver 3B documentation
RKO5-J 2.5 Mb RKO5-J 2.5 Mb disk drives M18E PDP 8 Bootstrap option VT50 VDU and Keyboard
VT52 V
VT52 VDU and RS232 interface

£ 395.00

1900.00

 £350.00 $£ 190.00$$£ 650.00$ | £ 4950.00 |
| :--- | £650.00

£1,100.00 , 880.00 £270.00 $£ 80.00$

$\varepsilon 450.00$ | £ 850.00 |
| :--- |
| 850.00 | £ 850.00

$£ 450.00$ £1,850.00 $£ 70.00$
$\varepsilon 650.00$ £650.00 $£ 175.00$
$\boxed{5} 5.00$ £175.00 £1 250.00

Give your VT100 a Birthday"! Brand New VT100 Keyboards 1000's OF EX STOCK spares for PDP8, PDP8A PDP11, PD P1134 etc. SAE. for list. or CALL ALL TYPES OF COMPUTER EQUIPMENT AND SPARES WANTED FOR PROMPT CASH

MAG TAPE DRIVES

Many EX STOCK computer tape drives and spares by PERTEC, CIPHER, WANGO, DIGIDATA, KENNEDY etc. Special ofter this month on DEI Cartridge tape drives ONLY $£ 450.00$ each.

CALL FOR DETAILS

COMPUTER/SYSTEM CABINET \& PSU

witched qualiy computer cabinet with integral

 cooling. Originally made tor the tamous DEC PDP8 computer system costing thousands of pounds Made to run 24 hours per day the psu is fully screened and will deliver a massive $+5 v$ DC at $17 \mathrm{amps},+15 \mathrm{vDC}$ 1 amp and $-15 v$ DC at 5 amps. The complete unit is fully enclosed with removable top lid, filtering, trip switch, power and run leds mounted on ali front panel, rear cable entries, etc. etc. Units are in good but used condition - supplied for 240 V operation complete with ull circuit and tech. man Give your system that professional finish or only £49.95 + carr. $19^{\prime \prime}$ wide $16^{\prime \prime}$ deep $10.5^{\prime \prime}$ high. Useable area $16^{\prime \prime}$ w $10.5^{\prime \prime} h 11.5^{\prime \prime} d$.Also available less psu, with fans etc. Internal dim. $19^{\prime \prime} w, 16^{\prime \prime} d, 10.5^{\prime \prime} \mathrm{h}$. £19.95. Carriage E8. 75

66\% DISGOUNT on

ELECTRONIC COMPONENTS best possible bargains pu have thousands of ICs. Transistors. Relays. Caps. PCB Sub-assemblies. Switches etc eic. Surplus to OUR requirements. Because we don have sufficient stocks o any one item to include in our ads we are packing all thes ems into the BARGAI perhaps one of the most consistently useful items you will every buy'l! Sold by perhap
weight.
$2.5 \mathrm{kls} £ 5.25+\rho p £ 1.25$
$10 \mathrm{kls} £ 11.25+\mathrm{pp} £ 2.25$
$5 \mathrm{kls} £ 6.90+£ 1.80$
$20 \mathrm{kIs} £ 19.50+\mathrm{po}$
 printer terminals enables us to offer you
these quality 30 or 120 cps printers at a SUPER LOW PRICE against the original cost of over £1000 comprises of full QWERTY. eiectron race similar to correspondence quality enables full widih
column paper, upper - lower case standard RS232 serial intertace. interna vertical and horizontal tab seltings standard ribbon, adjustable baud features Supplied complete with manua Guranteed working GE30 £130.00 GE1200 120 cps £ 175.00
stand £12.50 Carr $\&$ ins $\mathrm{E}, 10.00$.

SEMICONDUCTOR 'GRAB BAGS

Mixed Semis amazing value contents

 include transistors digital linear IC's triacs diodes bridge spec with manutacturer's mafkings full $50+\varepsilon 2.95100+\varepsilon 5.15$TL 74 Series A gigantic purchase of a IC's enables us to offer $100+$ mixed "mostly TTL" grab bags at a price which normally cost to buy. Fully
IC's full spec $100+\mathbf{E} 6.90$

MAINS FILTERS

CURE those glitches caused by mains interterence with box size up to 1000 watt 240 V Load SIze Up ONL $E 5.95$. L12127 compact completely cased unit with 3 pin
socket up to 750 watts ONLY $£ 9.99$

EPROM COPIERS

The amazing SOFTY 2 The Complete Tookit for copying, writing. modifying and
listing EPROMS of the $\mathbf{2 5 1 6 . 2 7 1 6 .}$ listing EPROMS of the 2516 . 2716.
2532,2732 range Many other functions 2532. 2732 range Many other include integral keyboard cassette interface serial and parallel $1 / 0$ UHF modutator ZIF socket etc.
ONLY £195.00 + pp $£ 2.50$
"GANG OF EIGHT" intelfigent 780 controlled 8 gang programmer for ALL
single 5 v rail EPROMS up to 27128 . Will copy 827128 In ONLY 3 MINUTES. Internal LCD display and checking routines for IDIOT PROOF opera -
"GANG OF EIGHT PLUS" Same spec as above but with additional RS232 serial interface for down line loading data from

COOLING FANS

Koup yout hot parts COOL and RELIABLE with our range

1000's of other EX STOCK items including POWER SUPPLIES, RACKS, RELAYS, TRANSFORMERS, TEST EQUIPMENT, CABLE, CONNECTORS, HARDWARE, MODEMS, TELEPHONES, VARIACS, VDU'S, PRINTERS. POWER SUPPLIES, OPTICS, KEYBOARDS etc. etc. Give us a call for your spare part requirements. Stock changes almost daily.
 Don't forget, ALL TYPES and QUANTITIES of electronic surplus purchased for CASH

FIELD ELECTRIC LTD.
3 Shenley Road, Borehamwood, Herts WD6 1AA. 01-953 6009
shown. All prices inc. 15% VAT unless stated.

CIRCLE 44 FOR FURTHER DETAILS

CIRCLE 38 FOR FURTHER DETAILS

HIGH QUALITY - LOW PRICES

$4+11 \mathrm{GHz}$ SATELLITE TV RECEIVING EQUIPMENT RECEIVERS, LNB'S, LNC's, FEED HORNS, ANTENNAS, ANTENNA POSITIONERS, POLOROTORS, LINE AMPLIFIERS, ETC.

HARRISON ELECTRONICS

Designing with dynamic memory

How dynamic memory works and how to interface it with 68000 systems.

D
ynamic memory is a form of low-cost, random access memory usually associated with memory arrays larger than about 64 Kbytes; smaller arrays are frequently implemented as static ram. Like its static counterpart, dynamic read/write ram (d-ram for short) is available in a number of different formats. At the moment the preferred dynamic memory is organized as 256 K by 1 bits. The older 16 K part is still being sold to support existing systems, and the $1 \mathrm{M} \times 1$ part is finding its way into some applications of microprocessors, but this article is about the 64 K device because of its low-
cost and popularity.
Dynamic memory stores information as charge on a capacitor forming the interelectrode capacitance of a metal oxide field-effect transistor. The capacitor is leaky, and its charge gradually lost, so some mechanism is needed to periodically restore it. This refreshing is performed at least once every 2 ms .
Manufacturers argue, quite rightly, that it is irrational to put very high density memory chips in physically large packages; this defeats the object of producing compact memory modules. A dynamic ram of $64 \mathrm{~K} \times 1$ might be expected to have 16 address pins, two for
power, one each for chip select, R / W and data pin, at least 21 pins in all, which would require a 24 -pin package, taking up a nominal $1.2 \times 0.6=0.72$ i^{2} of board space.

The majority of dynamic memories have multiplexed address buses, so that for a 64 K chip a 16 -bit address is fed in as two separate 8 -bit values. This reduces the address bus requirement to eight pins, but needs two strobes to latch the address. The $\overline{\text { RAS }}$ (row address strobe) latches the 8 -bit row address, and then the $\overline{C A S}$ (column address strobe) latches the 8 -bit column address. The address multiplexing and the control of $\overline{R A S}$ and $\overline{C A S}$ strobes

by Alan Clements
 Teesside Polytechnic

Alan Clements is senior lecturer in computer sclence at Teesside Palytechnic: He became interested in microprocessors white working for his doctorate on an iterative approach to adaptive detection of orthogonal groups, which involved the design of high speed digitial equalizers. This aricle is based on a fortheoming book - his third-on the 58000 .

Fig. 1. Internal arrangement of a typical 64 K dynamic ram.

Fig. 2. Pinout of HM4864-2 64K dymamic ram.

Fig. 3. Basic read cycle timing diagram of a dynamic ram in which the falling edge of the row address strobe latches the row address into the d-ram.
Falling edge of the column address strobe latches the column address to complete the caputre of a 16-bit address. Read cycle is terminated when the first of $\overline{\text { CAS }}$ or $\overline{\text { RAS }}$ goes high.

Fig. 4. A minimal d-ram module contains three elements: array itself,
address multiplexer and timing control circuit which controls the multiplexer and generates $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ from the processor's own timing signals.
are done off-chip with logic supplied by the user. Consequently a 64 K dynamic ram can now fit into a 16 -pin dual in-line package, taking up a board space of $0.8 \times 0.3=0.24$ in ${ }^{2}$.

Figure 1 gives the internal arrangement of a typical 64 K dynamic memory and Fig. 2 its pinout. Data are stored in one of eight arrays, each of 8192 bits. There is not enough space here to delve into the internal operation of the dynamic mem-
ory, as its circuitry is so complex. Early dynamic rams required three power supplies, at $+12 \mathrm{~V},+5 \mathrm{~V}$ and -5 V , the +12 V to provide clock pulses of adequate amplitude within the chip and the -5 V the substrate bias. Fortunately for the system designer, current 16 K and larger chips operate from the system $+5 \mathrm{~V} \mathrm{~V}_{\mathrm{cc}}$ supply alone. Dynamic memories still need a negative V_{bb} supply, but it is now derived on-chip from an internal generator.

A difficulty associated with dynamic memory is the alphaparticle problem. As the capacitance on which each bit of data is stored is exceedingly tiny an alpha particle, i.e. a helium ion, passing through a memory cell can cause sufficient ionization to corrupt the stored data, creating a 'soft error' (so called as the cell has not been permanently damaged, but has lost its stored data). The alpha-particle contamination comes largely from the encapsulating material, and through manufacturers attempt to minimize the problem by careful quality control of the encapsuation material it is impossible to reduce the softerror rate to zero.
An approach to soft error control is to build special memory arrays that can detect, or even detect and correct, softerrors. As long as soft errors are relatively infrequent, this approach yields a very large mean time between undetected soft errors. Error detection and correction is not yet done inside the memory components: it must be provided by the memory systems designer.

There are few things in the known universe more terrifying than the timing diagrams of a dynamic ram. Not only do they look hopelessly complex, there are 35 or more parameters associated with them. The best way of approaching the dynamic ram timing diagram is to strip it of all but its basic features, and add the fine detail when the simplified model has been digested.
Figure 3 gives an outline of the basic dynamic memory timing diagram during a read cycle. To put this diagram into context, look at the arrangement of a 64 K word by 16 -bit memory based on the $64 \mathrm{~K} \times 1$ chip, Fig. 4. Each memory component has its eight address inputs (labelled A_{0} to A_{7}) connected to the eight ouputs of the address multiplexer, MPLX. The inputs to the address multiplexer are A_{01} to A_{08} (the row address) and A_{09} to A_{16} (the column address) from the 68000. Assume that when mplX is low the row address is selected, and when high the column address is selected. Note that the 23 address lines from the $68000, \mathrm{~A}_{01}-\mathrm{A}_{23}$, select one of 2^{23} word (i.e. 16-
bit) addresses. The two data strobes, $\overline{\mathrm{LDS}}$ and $\overline{\mathrm{UDS}}$, select the lower or upper or both bytes of the word addressed by $\mathrm{A}_{01}-\mathrm{A}_{23}$.

The data-in and out pins of each memory component in Fig. 4 are strapped together in this application, and are connected to the system data bus after suitable buffering. Four signals, mplx, $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$, and \bar{w}, control the operation of the memory system. The timing control module must furnish these signals from the available system control signals. In other words, the design of the timing control module will vary from one microprocessor system to another, as each processor has its own unique timing signals. Note that Fig. 4 is simplified in two ways. We have not provided the byte/ word control required by the 68000 , and no facilities for refreshing the dynamic memory are yet available. A read cycle in Fig. 3 lasts from A to E, and has a minimum duration of $t_{R C}$, the read cycle time. For convenience, this section illustrates the dynamic memory timing diagram with the HM4864-2, a 150 ns component. The minimum value for t_{Rc} is given as 270 ns . Note that dynamic memory has a cycle time much greater (270 ns) than its access time (150 ns), unlike static memory which has equal access and cycle times. The designer of a dynamic memory system cannot, therefore, begin the next access as soon as the current one has been completed. This is because the dynamic memory performs an internal operation, known as pre-charging between accesses.

The first step in a read cycle is to provide the chip with the lower-order bits of the address on its eight address inputs, A_{0} to A_{7}. Then, at point A, the row address strobe, $\overline{\mathrm{RAS}}$, is brought active-low to strobe the row address into the chip's internal latches.

Once this has been done, the low-order address is redundant and is not needed for the rest of the cycle. Contrast this with the static ram, where the address must be stable for the entire read or write cycle.
The eight higher-order address bits are then applied to the address inputs of the memory, and the column address
strobe ($\overline{\mathrm{CAS}}$) brought activelow at point B to latch the column address. Now the entire 16 -bit address has been acquired by the memory and the contents of the system address bus can change.

Once $\overline{\text { cas }}$ has gone low, the addressed memory cell responds by placing data on its data-output terminal, allowing the processor to read it. At the end of the read cycle, $\overline{\text { CAS }}$ returns inactive-high and the data bus drivers are turned off, floating the data bus. $\overline{\mathrm{RAS}}$ and $\overline{C A S}$ may both go high together, or in any order. It does not matter as long as all other timing requirements are satisfied.

To make explanation of the dram more tractable, we break it up into its component parts, beginning with a discussion of the role of the address pins.

Address timing

Details of the address timing requirements shown in Fig. 5, an enlargement of the address bus timing in Fig. 3, are effectively the same as those of a typical latch. The row address must be stable for a minimum of $t_{\text {Asp }}$ seconds before the falling edge of the $\overline{\mathrm{RAS}}$ strobe. As the minimum value of $t_{\text {ASR }}$ is quoted as zero, the address has a zero setup time and does not have to be valid prior to the falling edge of $\overline{\mathrm{RAS}}$. In the worst case, it must be valid coincident with the falling edge of $\overline{\mathrm{RAS}}$. Once $\overline{\mathrm{RAS}}$ is low, the row address must be stable for $\mathrm{t}_{\mathrm{RAH}}$, the row address hold time, before it can change. The hold time is 20 ns minimum, which restricts the time before which the column address may be multiplexed onto the chip's address pins.

Once the row address hold time has been satisfied and the column address multiplexed onto the memory's address pins, $\overline{\text { CAS }}$ may go low. The column address setup time, $\mathrm{t}_{\mathrm{ASC}}$, is quoted as -10 ns minimum, so that $\overline{\mathrm{CAS}}$ may go low up to 10 ns before the column address has stabilized. After cas has gone low, the column address must be stable for a further $\mathrm{t}_{\mathrm{CAH}}$ seconds, the column address hold time, before it may change. Once $t_{\text {CAI }}$ (45ns minimum) has been satisfied, the address bus plays no further role in the current access.

An important parameter in

Fig. 5 is $\mathrm{t}_{\mathrm{RCD}}$, the row to column strobe lead time. For the HM4864-2 the minimum value of $\mathrm{t}_{\mathrm{RCD}}$ is quoted as 20 ns , and the maximum value as 50 ns . These limiting values are not fundamental parameters of the memory - they are derived from other parameters. The minimum value is determined by the row address hold time plus the time taken for the address from the multiplexer to settle. The maximum value is a pseudo-maximum. It is not a maximum determined

> My favourite apocryphal comment on dynamic memory is "What's the difference between static ram and dynamic ram? Static ram works and dynamic ram doesn't"(L.T. Hauck, Byte, July 1978), though perhaps the answer should have been "Static memory works on its owndynamic memory has to be made to work for you".
by the device, but a maximum which, if exceeded operationally, extends the access time of the memory (see later).
Timing parameters vary between nominally equivalent devices from different manufacturers. This variation is sometimes larger than that in the parameters of static memory components. Table 1 provides some indication of the variations. A consequence is that dynamic memory components of equal size and nominally equivalent access times are not necessarily inter-

Fig. 5. In the address timing of a d-ram, the row address must be valid from $\mathrm{t}_{\mathrm{ASR}}$ seconds before the falling edge of the row address strobe and $\mathrm{t}_{\mathrm{RAH}}$ seconds after it. Column address must be valid $\mathrm{t}_{\mathrm{Asc}}$ seconds before, and $\mathrm{t}_{\mathrm{CAH}}$ seconds after, the falling edge of the column address strobe.

Fig. 6. In a read cycle, data becomes valid not more than $\mathrm{t}_{\mathrm{CAC}}$ seconds after the falling edge of $\overline{\text { CAS }}$ and not more than $\mathrm{t}_{\mathrm{RAC}}$ seconds after the falling edge of $\overline{\mathrm{ras}}$. At the end of the cycle, the data bus buffer is turned off no later than toff $_{\text {of }}$ seconds after the rising edge of the first of $\overline{\mathrm{RAS}}$ or Cas.

Fig. 7. In a read cycle, there are no complex restrictions on the \bar{w} (write enable) input. It must be high at least $t_{\text {res }}$ seconds before the falling edge of $\overline{\mathrm{CAS}}$ and remain high until after the rising edge of cas.

Typical time values (ns)	
lass coladdress hold	20-50
tasp rowaddress setup	0
Lack accesstime from cas	100
$t_{\text {CAR }}$ coladdresshold	W4
tcas coladdress strobepulse width	$\begin{aligned} & 100 \text {. } \\ & 10 \mu \mathrm{~s} \end{aligned}$
t:RP col-to-row strobe precharge time	-20
Cesh cis hold time	150
torf outputbufter tum-ofttime	$0-40$
$\mathrm{t}_{\text {Bif }}$ access time fromRas	150
that sowaddress hold	20
$t_{\text {fas }}$ fow address strobe pulse width	$\begin{aligned} & 150 \\ & 10, \end{aligned}$
TRC. randomaccess cycle	270^{*}
tace row-to-colstrobelead time	20-50
Tacs read command setup	0
$t_{\text {ach }}$ sead command hold	0
thp row address strobe precharge time	100
$i_{\text {RaH }}$ ALSholdtime	100.

changeable in any particular memory system

Data timing

Having latched an address in the chip, data appears at the data-out pin as depicted in Fig. 6 , in which only $\overline{\text { RAS }}, \overline{C A S}$ and the data-out signals have been included for clarity. It is assumed that the address set up and hold times, and all other relevant parameters have been satisfied.

Data at D-out is valid no later than $\mathrm{t}_{\text {RAC, }}$, the access time from row address strobe, following the falling edge of $\overline{\text { RAS. }}$ This is, of course, the quoted access time of the chip and is 150 ns for a HM4864-2. However, in the world of the dynamic ram, all is not so simple. The row access time is achieved only if other conditions are met, as we shall see.

The column address strobe has two functions: it latches the column address which interrogates the appropriate column of the memory array, and turns on the data output buffers. For these reasons, data is not available for at least $t_{\text {CAC }}$, the access time from $\overline{\mathrm{CAS}}$ low, after the falling edge of $\overline{\mathrm{CAS}}$. The maximum value of $t_{C A C}$ is 100 ns . In other words, reading
Fig. 8. Timing diagram of $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ strobes.

data is a two-part process: accessing the memory cell and placing the data on the chip's D-out pin. The following two examples should make this distinction clear.

Suppose $\overline{C A S}$ goes low at the minimum time after the falling edge of $\overline{\text { RAS }}$ (ie $t_{\text {RCD }}=$ 20 ns), data will appear at the data-out pin no later than $t_{\text {RCD }}$ $+\mathrm{t}_{\mathrm{CAC}}=20 \mathrm{~ns}+100 \mathrm{~ns}=$ 120 ns later. At this time, the data is not guaranteed to be valid, as the minimum value of $\mathrm{t}_{\text {RaC }}$ (ie 150 ns) has not been met. However, once $t_{\text {ric }}$ has been satisfied, the data will be valid.
Now suppose the falling edge of CAS is delayed beyond the maximum quoted value of $\mathrm{t}_{\text {RCD }}$. Say that $\overline{\mathrm{CAS}}$ is asserted 100 ns after $\overline{\text { RAS. The data will }}$ not be valid until $\mathrm{t}_{\mathrm{RCD}}+\mathrm{t}_{\mathrm{CAC}}=$ $100+200 \mathrm{~ns}=200 \mathrm{~ns}$ later, which value exceeds $t_{\text {RAC }}$ by 50 ns

Now you can see why the maximum value of $t_{\text {RCD }}$ given in the data sheets of dynamic rams is pseudomaximum. It is not a maximum determined by the memory, but a limit which if it is exceeded operationally throws away access time. There is little point in buying and expensive 150 ns chip and then limiting its access time to 250 ns by a careless design which exceeds $\mathrm{t}_{\mathrm{RC}(\mathrm{D}(\max) \text {. The }}$ relationship between $\mathrm{t}_{\text {RCDImax })}$, $t_{\text {RAC }}$ and $t_{\text {CAC }}$ is:

$$
t_{R C D(\text { max })}=t_{R A C}-t_{C A C} .
$$

At the end of a read cycle when $\overline{\mathrm{CAS}}$ goes high, the data bus drivers are turned off and the bus floats $\mathrm{t}_{\text {OFF }}$ (output buffer turn-off delay) seconds later. The maximum value of $\mathrm{t}_{\text {OFF }}$ is 40 ns . Note that $\overline{\text { RAS }}$ does not play any part in the ending of a read (or write) cycle. $\overline{\text { RAS }}$ may be negated before or after $\overline{\mathrm{CAS}}$, as long as its timing requirements are met.
$\overline{\mathbf{w}}$ timing. The Diagram of the \bar{w} input to the dynamic memory, Fig. 7, is very simple and shows that \bar{w} must be high at least $t_{\text {RCS }}$ seconds before the falling edge of $\overline{\text { CAS }}$ and remain high until at least $\mathrm{t}_{\mathrm{RCH}}$ seconds after the rising edge of $\overline{\mathrm{CAS}}$. Both $\mathrm{t}_{\mathrm{RCS}}$ and $\mathrm{t}_{\mathrm{RCH}}$ are quoted as zero minimum, which means that \bar{w} must be high for a read cycle the entire time that $\overline{\mathrm{CAS}}$ is low.
$\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ timing. The final part of the read cycle timing diagram, given in Fig. 8, concerns the timing requirements of the row and column address strobes. The $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ clocks are responsible for controlling several internal operations within the chip, as well as the more mundane tasks of latching addresses and controlling tri-state buffers. Although Fig. 8 looks relatively complex with its eight timing parameters, it is entirely straightforward, and there are no critical parameters leading to engineering difficulties, as in the case of the $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$ and address multiplex timing in Fig. 5. Basically, Fig. 8 illustrates the maximum and minimum times for which $\overline{\mathrm{RAS}}$ and $\overline{\text { CAS }}$ must be high and low, and the relationship between them.

A fundamental parameter of Fig. 8 is the read cycle time, the minimum time which must elapse between successive memory cycles. This is quoted as 270ns for the HM4864-2, which has a 150 ns read access time. The corollary of these figures is that the cycle time must be taken into account when designing memory systems. For example, if a microprocessor had a 250 ns cycle time, this dynamic ram could not be relied upon, even if its 150 ns read access time were more than adequate. Interestingly, the value of 270 ns for t_{RC} is the minimum value necessary for reliable operation over the device's full temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. If the ambient temperatures were guaranteed to be always lower than $70^{\circ} \mathrm{C}$, the value of t_{RC} would be improved as the device slows with increasing temperature

The $\overline{\text { RAS }}$ clock must be asserted for at least $t_{\text {RAS }}$ seconds the row address strobe pulse width) during each read access. This has a minimum value of 150 ns and a maximum value of $10 \mu \mathrm{~s}$. The maximum value is related to the need to refresh the device and creates no problems, as it is many times longer than a processor read cycle. The only danger in a 68000 system would arise if DTACK were not asserted in a read cycle, and the processor hung-up with $\overline{\text { RAS }}$ held low. This situation is normally avoided by asserting $\overline{B E R R}$ after a suitable time-out.

TABLE 1. Address timing parameters of three $150 \mathrm{~ns} \mathbf{6 4 K} \times 1$ drams

Parameter	MCM6665A-15		TMS4164-15		MB 8264-15	
Row address setup time	$\mathrm{t}_{\text {ASR }}$	Ons min	tsu(RA)	0	$\mathrm{t}_{\text {ASR }}$	Ons min
Row address hold time	$t_{\text {RAM }}$	20ns min	th(RA)	20	$\mathrm{t}_{\text {RAH }}$	15ns min
Column address setup time	$\mathrm{t}_{\text {ASC }}$	Onsmin	tsu(CA)	-5	$\mathrm{t}_{\text {ASC }}$	Ons min
Column address hold time	$t_{\text {cah }}$	35 ns min	th(CLCA)	45	$t_{\text {caH }}$	45ns min
$\overline{\text { RAS }}$ to CAS delay	$t_{\text {RCD }}$	30-75ns	$\mathrm{t}_{\text {RLCL }}$	20-50	$\mathrm{t}_{\mathrm{RCD}}$	25-50ns

After $\overline{\text { RAS }}$ has been negated, it must remain high for at least t_{RP} seconds, the row address strobe precharge time. The precharge time is a characteristic of dynamic memories and relates to an operation internal to the chip. The minimum value of $t_{R P}$ is 100 ns and no maximum value is specified, subject to the constraint that the memory needs periodically refreshing. The final constraint on the timing of $\overline{\mathrm{RAS}}$ is its hold time with respect to $\overline{\mathrm{CAS}}, \mathrm{t}_{\text {RSH }} \cdot \overline{\mathrm{RAS}}$ must remain low for at least $t_{\text {RSH }}$ seconds after $\overline{\mathrm{CAS}}$ has been asserted. The $\overline{\mathrm{RAS}}$ hold time is quoted as a minimum of 100 ns .

The column address strobe timing requirements are analagous to those of the row address strobe. $\overline{\mathrm{CAS}}$ must be asserted for no less than $t_{\text {CAS }}$ seconds (100 ns), it must be negated for at least $\mathrm{t}_{\mathrm{CRP}}$ seconds (-20 ns) before the falling edge of the next $\overline{\mathrm{RAS}}$ clock, and it must be asserted for at least $\mathrm{t}_{\mathrm{CSH}}$ seconds (150 ns) measured from the falling edge of the

Fig. 9. Full timing diagram of a dymanic rame in a read cycle.
current $\overline{\mathrm{RAS}}$ clock. (-20 ns for $\mathrm{t}_{\text {CR }}$ indicates that $\overline{C_{A S}}$ may rise up to 20 ns after $\overline{\mathrm{RAS}}$ has fallen in the next cycle).

The full timing diagram of a

HM4864-2 dynamic memory is given in Fig. 9 so that all the points discussed so far may be related to each other.

To be continued

Low-pass filters

In Tom Scharfs June article three drawings became detached from page 22, Figs 9, 10 and 13:

On page 21, in the formula for attenuation, the frequency term should be raised to the power 2 n .

Relativity simplified

We greatly regret the transposition of text that occured in M.H. Butterfield's article in June's issue, page 41. The section starting with equation 2 through equation 6 to the paragraph ending "It is not the case that clocks are going both faster and slower" should appear prior to the third paragraph in column 2, following "According to Newton. force is rate of change of momentum, so . .." (Incidentally, equations 3 are referred to as 3a and $3 b$ in the text.) Readers are welcome to a photocopy of a correctly laid out version.

Books

Spread Specirum in Communication by R Skaugand J F Hi Helmatan: Peter Peregrinus Ltd on behalf of the Institution of Electrical Engineers, $\{28$ in the LK, £32 elsewhere, 201 pages, hard covers. Frequency-hopping radio techniques: haw they work, their pros and cons, and how to put thegether a systent. Emphasis is Jargely on milstary syaberns, reflecting the background of the Norwerinn authors.

Introducing Cby Boris Allan. Colling, 184 pages, saft covers, 49.95. C is the most widely-used lanyuage for writing systems software. Using many practical examples, the author looks at both programming technique and the workings of the language itself.

Appendices deal with BCPL 6 the precursar of Cland the Unix operating system.

A First Class Jshby Joan Tong: Fublished by the author, 210 pages, soft covers, ISBN0 55112080 8: available hy mail at ± 5.95 plus 50 p inland postage from Greenleas, 5 c Weybmurne Road, Sheringham, Norfolk NR268HF. Biography by his daughter of Frank Mirphy-radigpioneer, industrialist and self tanght phifosopher, whuafter adramaitic cice to fame hetween the wars was to die in obscurity abrosd. This unustul manis story has plency to imkerest the vintage radio enthusiast the book reproduces many of Murphy's famous advertisements, bui thereis much else for art and social histortans: It's probably risky to draw parallels, but the man comes over
as very muth the Clise Sinclair of tris day.

Choosing and Vsing CMOS edited by MJ. Watsh. Collins: hard covers. 904 pages. 225 . Contributions from a variety of authors imostly Britishlexamine e-mos technology from both the manufacturer's and the user's. point of view, Chaptore covers.si. design, gate arrays, analogre techniques, microprocessors and. fulure prospects for e-mos. Two practical esise studien, i yate arrey and a customic. are included.

Videotex Guropa - Basel 85 . Proceedings of last September's internal conterence; from Alphaville AG. Basel. Swizethand. Nearly 70 papers and other contributions, mainly in Cerman, on all aspects of yiewdata and teletext technology.

Oseilloscopes: how to use them, how they work (second edition! by lan Hickman. Newnes Technical Books, 124 pages, soth covers, 55.50 . Up ro-date guide for the atudent. hodbyistur technician. Very readable. Text and pictures cover the latest and cleverest'scopes as well as basic types, An appendix lists sources of models on the UK market.

Industrial Control Handhook,

 volume 1 (of 3)-Transtucers by E.A. Parr Collins, 286 pases, hirrd covers, 220 . Texthook with; practical slant, for the stadent or workingengineer, Author hias. amed to keep the mathstona minimum in the interests of readability, with attractive results. The first volume deals with measurement of quantities and examines some of the commercial devices available.
Digital signal processing

A further endorsement of the attractions of using generalpurpose, consumer-type, signal-processing integrated circuits in high-grade h.f. communications receiverscan be found in a report by A.P. Cheer of Plessey. Using a current PRS2280 receiver with digital interface, channel filtering and demodulation boards, using Texas
Instruments TMS 32010 d.s.p. devices, the work has shown that two boards of digital electronics with a component cost tone off, quantity price) of $£ 250$, can replace $£ 400$ of analogue components (including crystal filters) yet providing essentially the same performance.

Although Rockwell-Collins began production of an h.f. receiver using d.s.p. last year (Model HF 2050) there have been no previous reports of UK companies in a position to put a digital radio into the production cycle, although it is clear that a lot of $R \& D$ is going on in this area.
A.P. Cheer claims that Plessey is "already in a position to develop a costeffectivestandard i.f. transceiver i.c. module which could have wide application in a variety of fields. But the real competitive edge will be achieved in the future with the realisation of a full custom chipset which would give an ultimately lower unit price and increase the performance to a level where the complete all-digital transceiver system would become a reality."

The experimental model digitizes the signal at an i.f. of 1.4 MHz with data reduction to $40 \mathrm{Kw} / \mathrm{s}$. With 12 -bit d-a converters the dynamic range of the processors is limited to about 72 dB . To cater for the various modes, the demodulatorand filters act under software control.

Ultra fast data

The failure of the first launch of the new Ariane 2 rocket carrying Intelsat V, F-14, due apparently to a failure of the liquid hydrogen/liquid oxygen third stage motor, follows hard on the Shuttle disaster and the failures of Titan and Delta
launches. While the technical problems may be solved in a matter of weeks or months the effects on launch and payload insurance could prove of longer term consequence. It is already impossible to obtain full cover for a launch and payload, and premiums for partial coverage can be as high as 20 to 30 per cent compared to around 10 per cent before the 1984 crop of mishaps. It will add to the interest in the trans-atlantic optical-fibre "cables" TAT8 $(1.3 \mu \mathrm{~m})$ due in mid- 1988 and the proposed TAT9 ($1.5 \mu \mathrm{~m}$) for 1991. Satellites, despite their time-delay problems for twoway telephones, are operationally much more flexible in providing many possible routes via a single satellite. But optical fibres could emerge as the most reliable and cost-effective broadband system for linking main traffic centres, though the long-term reliability of submerged laser repeaters remains something of an unknown quantity.

The fantastic capacity of optical fibres is underlined by the recent successful experiment by AT\&T Bell Laboratories in demonstrating for the first time digital transmission at a rate of no less than $8 \mathrm{Gbit} / \mathrm{s}$ through a single-mode optical fibre over a distance of 30 km , using a directly modulated $1.31 \mu \mathrm{~m}$ multi-longitudinal-mode laser. This is over a thousand times faster than the data rate of broadcast teletext.

C.F. Jenkins and early television

A detailed account of the early work of film and mechanical television pioneer Charles Francis Jenkins has been published in the SMPTE Journal (February 1986) by Albert Abramson, who has previously published a number of books on the development of electronic television.
Abramson believes that Jenkins, who founded the Society of Motion Picture Engineers 70 years ago in July 1916, was responsible for many advances in the early days of television for which he is seldom given credit. In the early 1920 s he was the only
person seriously working on tv development in the USA. Although his early work provided little more than crude silhouettes there can be little doubt that his experimental apparatus was constructed to a standard far superior to that of J.L. Baird who appears, in effect, to have been following in the footsteps of Jenkins' "radiovision". While Abramson is careful to avoid entering into the controversy surrounding Baird's claims and demonstrations, there can be little doubt that as early as June 14, 1925 Jenkins publicly demonstrated his ability to transmit his low-definition images over a distance of five miles by radio transmission. Although Baird tried to convey the impression that he used a radiolink, even between adjacent rooms, and later used his experimental licences 2TV and 2 TW , all the evidence suggests that the first time Baird's signals were actually transmitted by radio was about July 1927 when he persuaded H.L. Kirke of the BBC to let him use, unofficially, a BBC mediumwave transmitter. This was soon stopped, following Post Office intervention. It was not until about February 1928 that Baird's signals were radiated on about 7 MHz from Ben Clapp's amateurexperimental station 2 KZ at Coulsdon, leading to the muchpublicized transatlantic tests.

Abramson lists some 90 US (patents for tv developments filed by Jenk ins between March 1922 and March 1928 including US Patent No. 1,544,156 "Transmitting pictures by wireless", filed March 13. 1922 and issued June 30, 1925, which was based on scanning using two rotating prismatic rings. As Abramson puts it: "His contribution to the infant art of television is on the record. He was the first American television pioneer. He not only dreamed up a workable system, he designed, built and operated it. This the true test of a genius".

But-Jenkins suffered from the fact that pioneering seldom pays. His company ran into financial difficulties in the American depression of 1929. He also stubbornly believed too long in the value of silhouettes when others had
followed Baird into half-tone images. Jenkins Television, like De Forest Radio, went bankrupt. Many of Jenkin's pending patents were acquired in 1930 by RCA, who had by then embarked on an ambitious programme to develop electronic tv under Dr V.K. Zworykin. That Jenkins was much more than just a crude experimenter is amply illustrated in the SMPTE paper, showing early apparatus beautifully constructed.

Creativity

A study carried out in the USA by Teresa Amabile and the Center for Creative Leadership, based on more than 100 interviews with engineers and middle managers (reported in IEEE Spectrum/ suggests that in a working environment there are five majorstimulants to technical creativity, in descending order
(1) freedom in deciding how to conduct one's work.
(2) good project management, including the setting of clear project goals, matching talents and interests to the task, protecting employees from unnecessary distractions and timewasting activities, and maintaining clear channels of formal and informal communication within and among work groups.
(3) sufficient resources including funding and equipment.
(4) management enthusiasm for, and commitment to, a research idea and the encouragement of risk taking.
(5) A supportive organization.
Teresa Amabile similarly lists obstacles to successful creativity. Most important: "restriction of freedom and lack of autonomy, choice and self-direction". Other disincentives include excessive red tape, poor internal communication, lack of organizational commitment to innovation, lack of resources, undue pressure due to extremely tight deadlines involving too much work in too short a time.
The problem, she suggests,
is to persuade managers to let people work on things they are enthusiastic about, and challenged by, rather than just letting people drift, and then to allow them freedom in deciding how to tackle the project.

One wonders just how well UK electronic firms and organizations would score in such a survey.

Polarization diversity

Experiments at Bell
Communications Research Laboratories in New Jersey have shown that shortdistance communications links at frequencies around 800 MHz can be usefully protected against multipath reflection and handset orientation by the use of polarization diversity. The work included paths within, or partly within buildings, and also mobile operation.
To measure the correlation coefficient of two orthogonally polarized signals, the two ouputs from a dual-polarized microstrip patch antenna were fed to two spectrum analyzers used as tunable recivers. It was found that under non-line-of-sight conditions, where deep fading occurs with a portable communications, signal impairments can be usefully mitigated by polarization diversity. This avoids the use of multiple frequencies for frequency diversity and the separation distance of space diversity. The cross-
polarization antennas can be positioned directly on top of one another.

Loop applicator

The June C.C. described the use of the inductively-fed h.f transmitting antennas based on the "miniloop" system originally patented by J.H. Dunlay.
A basically similar system has been developed by R.H. Johnson of the Wolfson R.F Engineering Centre, Royal Military College of Science, as a diathermy applicator ("New type of compact
electromagnetic applicator for hyperthermia in the treatment
of cancer", Electronic Letters, Vol.22, No. 11, 22 May 1986, pp.591-3). In effect, a tunable resonant loop, with variable tuning capacitor, inductively fed from a smaller loop, is formed from flat plates, the entire assembly being contained in screening box having one side, placed on the patient, covered with a lowloss dielectric. This form of applicator (patent applied for) can be used at $22,27,200,400$ and 900 MHz , with a physical dimension for 22 MHz being reduced by filling the unit with liquid having a relative permittivity of 2.3. It is claimed that this form of lightweight low-cost applicator has dimensions which can be made virtually independent of frequency, enabling the heated area of tissue to coincide with the treatment site. Field penetration is comparable with conventional, heavier applications of the same aperture dimensions.
The major problems for hyperthermia treatment appears to lie in concentrating power on deep-seated tumours without overheating tissue near the skin. R.H. Johnson claims that his design should also be effective in multiple arrays and could be useful in physiotherapy.

Amateur cryptology

The UK amateur transmitting licence makes it clear that all messages must be in plain language and refer to matters of a personal nature, in which the licensee or the person with whom he or she is in contact has been directly concerned and use signals (i.e. procedure signals) not in secret code or cipher. Anything resembling private codes and ciphers is expressly forbidden.
Nevertheless an increasing number of amateur and personal computer ent husiasts have become interested in the subject of cryptography and cryptanalysis. While initially much of the interest has been concentrated on devising software programs for enciphering and deciphering relatively simple systems. some enthusiasts, particularly in North America, seem prepared to tackle anything
less than "computationally secure" ciphers.

Mike Barlow, ex-G3CVO, a founder member of the British Amateur Television Club but for many years resident in Canada as a tv engineer with CBC, has recently launched a "Computer Supplement" newsletter is association with The Cryptogram bulletin of the American Cryptogram Association with the first issue including his "TRS80
programs for grille encipherment and decipherment" and with an extensive bibliography on the use of computers in cryptography. The supplement is sent to all members of ACA. (Annual subscription $\$ 15$ ACA, 12317 Dalewood Drive, Wheaton, MD 20902, USA
Mike Barlow mentions that several British amateurs are known to be actively interested in computer cryptography and have shown their ability to solve problems set in issues of The
Crytopgram. He acts as the computer specialist for the ACA, most members of which still tack le ciphers with pencil and paper rather than with computers. His address is 5052 Chestnut Avenue,
Pierrefonds, Quebec, H8Z 2A8, Canada.
The professionals in this field still seem to be locked in debate about the security of such systems as the Americans DES and British B-Crypt. In the USA the National Security Agency (counterpart of British GCHQ) has begun taking a more active role in developing inproved systems for commercial users as well as for the Armed Services, partly to offset the many recorded "successes" of the "hackers" equipped with microcomputers. NAS no longer approve the use of DES with its ten-year old IBMdeveloped 64-bit "key" but instead licences approved companies to manufacture and market chips for NSA's own "Comsec" systems. While manufacturing companies can supply information on chips and modules, to obtain applications information and sample chips needs NSA prior approval. A problem is that the market for specialized encryption chips is relatively small, with some 80,000 DES i.cs sold in 1984. The cost of
providing good
communications security to a personal computer can amount to $\$ 1000$.

Although some forms of "public key" cryptosystems (which remove many of the problems of key managment) have been shown to be vulnerable, the RSA (Rivest, Shamir and Adelman) system of the late 1970s still appears to be entirely secure against any imaginable computer attack. Its use however has been limited by the relatively slow speed of encipherment and decipherment, ruling out its use for speech. A new quadratic form of public key cryptosystem, much faster than RSA, but which similarly derives its security from the inability of computers of factorize rapidly, has been proposed by T. Okamoto of NTT, Japan. (Electronics Letters, 22 May 1986). Publickey cryptosystems offer the added advantage of providing "authentication" (electronic "signature") to messages. But although enciperment can protect data and messages during transmission, it provides no protection against "humint" (human intelligence) - and it is often cheaper to suborn those who handle messages in "plaintext" than to attack enciphered traffic with large mainframe computers.

In brief

In some remote areas, illegal "high-power" cordless telephones are being increasingly used over distances of several miles.

A detailed synopsis, data sheet for Si8901 ring demodulator/balanced mixer and an application note for Ed Oxner's new commutation double-balanced mosfet mixer of high dynamic range (using resonant-gate drive) is available as a 16 -page publication "Designing a super-high dynamic range double-balanced mixer" from Siliconix Ltd, Publicity Department, Morriston, Swansea SA6 6NE

PAT HAWKER, G3VA

by P.E.K. Donaldson

P.E.K. Donaldson was born in 1927 and educated at the Royal Naval College, Dartmouth and Cambridge University. He served in the Royal Navy from 1941 to 1952 and was Technical Officer at the Physiological Laboratory, Cambridge University between 1953 and 1967. He has been on the engineering staff of the Medical Research Council Neurological Prostheses Unit since 1968, and has contributed occasionally to Wireless World since 1963.

Fig. 1. Radio-frequency link in the form of a loosely coupled transformer

Fig. 2. Much of the inductance in Fig. 1 is leakage-uncoupledinductance.

Fig. 3. Fig. 2, with capacitors to tune out the leakage inductance, and a resistive load.

Frequency-hopping in r.f. energy-transfer links

The effect of coupling coefficient on frequency in self-oscillating transmitters

Radio frequency links, in which a receiver coil operates in the near magnetic field of an opposed transmitting coil, provide a useful technique for 'throwing' energy across a physical gap. In our Unit their application is in powering microelectronic implants from a transmitter attached to the surface of a patient's body ${ }^{1,2,3}$. More familiar uses include d.c.-d.c. transformers for voltage-changing, d.c.-d.c. transformers for level shifting, and couplers of radio transmitters to their resonant aerials.
Starting from the simple circuit of Fig. 1, for which the equation is just $\mathrm{E}_{2}=\omega \mathrm{MI}_{1}$, we see at once the value of using radio frequency: by making ω large enough, we can obtain a useful output E_{2} with small M; and since $\mathrm{M}=\mathrm{k}\left(\mathrm{L}_{1} \mathrm{~L}_{2}\right)^{0.5}$, this means we can have both small coupling coefficient k (large 'throw') and robust windings of a few thick turns for L_{1} and L_{2}.
Because the coupling is loose, most of L_{1} and L_{2} will be leakage inductance, rather than coupled. The arrangement is more realistically portrayed in Fig.2. We might as well place capacitors in series with L_{1} and L_{2} to tune out most or all of that useless leakage inductance. Adding a load, we arrive at Fig. 3; and transforming the series-resonant circuits to their shunt equivalents, adding some rectification and filtering in the secondary circuit, and putting in a Hartley set-up for the generator, we
come to the familiar arrangement of Fig. 4, in which a self-oscillating transmitter is used rather than the more complicated master oscillator/ power amplifier.
Anyone who has ever experimented with this arrangement, or its valve equivalent, knows that it behaves quite sensibly so long as k remains small. Beyond a certain degree of coupling, however, strange things begin to happen. V_{0} may change discontinuously to a new value with varying k, or with varying V_{1}, or with the passage of time. If the reserve loop gain of the oscillator is insufficient, oscillation may cease altogether. Since the efficiency of energy transfer rises as the coupling is made tighter, it is important to understand what sets an upper limit to k. The subject was of great interest 50 or 60 years ago, when amateurs had to get the maximum power into the aerials of one-valve transmitters. More recently, little or nothing seems to have been written about it. A morning spent browsing in the IEE library turned up one terse mathematical treatment ${ }^{4}$ dating from 1972. It seemed to me, therefore, that the subject could stand reiteration.

Stable oscillation

Consider first a seriesresonant self-oscillating circuit, represented in essentials in Fig. 5. Above resonance, the tuned circuit looks inductive

and so the current lags the voltage. At resonance the tuned circuit will look like a small resistance; current will be in phase with the voltage. Below resonance it will look capacitative and the current will lead the voltage. If the circuit is oscillating and the frequency were for some reason to try to rise, the phase of the feedback signal, which is the phase of the current, would become lagging, lowering the frequency of oscillation again. And vice-versa. We see that the condition for stable oscillation in a series oscillator is that the tuned circuit reactance becomes increasingly inductive with rising frequency; or, taking inductive reactance as positive, $d X / d \omega$ is positive when $\mathrm{X}=0$.

Consider now the shuntresonant self-oscillating circuit (Fig. 6). Above resonance, the tuned circuit looks capacitative, and the voltage therefore lags the current. At resonance, the tuned circuit looks like a high resistance and the voltage will be in phase with the current. Below resonance, it will look inductive and the voltage will lead the current. If the circuit is oscillating and the frequency were for some reason to try to rise, the phase of the feedback, which is the phase of the voltage, would become lagging, lowering the frequency of oscillation again. And vice-versa. We see that the condition for stable oscillation in a shunt oscillator is that the tuned circuit reactance becomes increasingly negative with rising frequency; or, that $D x / d \omega$ is negative when $X=0$.
Introduction of secondary circuit: series oscillator.
Suppose now a secondary circuit, tuned to the same frequency as the primary, is brought up to the series oscilla-
tor (Fig. 7). To the primary impedance

$$
\mathrm{Z}=\mathrm{R}_{1}+\mathrm{j} \mathrm{X}=\mathrm{R}+\mathrm{j}\left(\mathrm{X}_{\mathrm{L} 1}-\mathrm{X}_{\mathrm{C} 1}\right)
$$

must be added the coupled impedance

$$
\frac{\omega^{2} \mathrm{M}^{2}}{\mathrm{j}\left(\mathrm{X}_{\mathrm{L} 2}-\mathrm{X}_{\mathrm{C} 2}\right)+\mathrm{R}_{2}}
$$

To simplify things a bit, let $\mathrm{L}_{1}=\mathrm{L}_{2}=\mathrm{L}, \mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}$. Then

$$
\omega^{2} \mathbf{M}^{2}=\mathrm{k}^{2} \times \mathrm{X}_{\mathrm{L}}{ }^{2}
$$

and
$\mathrm{X}=\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)-\frac{\mathrm{k}^{2} \mathrm{X}_{\mathrm{L}}{ }^{2}\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)}{\mathrm{R}_{2}{ }^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}} \mathbf{(}^{2}\right.}(1)$
$\mathrm{dX} / \mathrm{d} \omega$ is obviously positive for small k . To find where, if anywhere, it ceases to be positive, differentiate (1) with respect to ω and equate to zero. At the frequency ω_{0} where $X_{L}=X_{C}$,

$$
\left(\mathrm{L}+\frac{1}{\mathrm{C} \omega^{2}}\right)\left(1-\frac{\mathrm{k}^{2} \mathrm{X}_{\mathrm{L}}^{2}}{\mathrm{R}_{2}^{2}}\right)=\mathrm{O}
$$

and writing Q_{2} for X_{L} / R_{2}, $\mathrm{k} \cdot \mathrm{Q}_{2}=1$, an important result. Figure 8 sketches the way X varies with ω for three values of k. When $k=0, d X / d \omega$ is everywhere positive and the ascillator runs stably. When k reaches $1 / Q_{2}, d X / d \omega=0$ when $\mathrm{X}=0$ and the stability is neutral. When $\mathrm{k}>1 / \mathrm{Q}_{2}$, oscillation at ω_{0} is in unstable equilibrium. The slightest perturbation in ω will lead, not to restoration to ω_{0}, but to movement away from ω_{0}. The frequency will 'hop' to one of two new stable values ω_{1}, ω_{2}.

Introduction of secondary circuit: shunt oscillator.

We assume again that $\mathrm{L}_{1}=\mathrm{L}_{2}=\mathrm{L}$ and $\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}$. In the absence of the secondary circuit, the primary reactance is
$\mathbf{X}=-\frac{\mathrm{L}}{\mathbf{C}}\left\{\frac{\mathrm{R}_{1}{ }^{2} / \mathrm{X}_{\mathrm{L}}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)}{\mathrm{R}_{\mathbf{1}}{ }^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}}\right\}(2)$
On bringing up the secondary circuit (Fig. 9), equation (2) tas to be modified by subtracting from X_{L}, in two of the three places where it occurs, the coupled reactance term. That is, replace X_{L} by
$\mathrm{X}_{\mathrm{L}}-\frac{\mathrm{k}^{2} \mathrm{X}_{\mathrm{L}}{ }^{2}\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)}{\left(\mathrm{X}_{\mathrm{L}} / \mathrm{Q}_{2}\right)^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}}$
There is little point in battling to substitute (3) into (2). X is easily evaluated, for a few interesting cases, on a microcomputer, and varies as is sketched in Fig. 10. At $\mathrm{k}=0$, $d X / d \omega$ is negative in the region

of ω_{0} and oscillation is stable. As in the series case, $\mathrm{dX} / \mathrm{d} \omega$ becomes zero at ω_{0} when $\mathrm{k}=1$ / Q_{2} but in theory, oscillation is still stable because there is still one frequency only, ω_{3}, where $\mathrm{X}=0$, and at $\omega_{3}, \mathrm{dX} / \mathrm{d} \omega$ is still negative. Marginal stability is reached at $k=k_{2}$, and at $k=k_{3}$ frequency hops become possible, between ω_{1} and ω_{2}.
In practice, the phase shift in the rest of the oscillator may not be exactly π :, oscillation will still occur, but at some frequency at which X is not equal to zero, so that some of the total 2π loop phase shift of the oscillator has to come from the tuned circuit. So, although it is strictly possible to have stable shunt oscillation when $k>1 / Q_{2}$, it is probably unwise to try to achieve it. It is safer to keep $\mathrm{k}<1 / \mathrm{Q}_{2}$ as a criterion for the avoidance of frequencyhopping in both shunt and series configurations.

Implications for link design

When r.f. links are used to 'throw' energy to a surgicallyimplanted device, there is often some uncertainty about the working distance between transmitting and receiving coil. The former may not be attached to the skin in quite the right place. Even if it is, there may be a good deal of relative movement between the external and the implanted device with the patient's body movements. It is helpful if the

Fig. 4. Fig. 3 developed into a self-oscillating transmitter/receiver with a direct-current output.

Fig. 5. Skeleton seriesresonant self-oscillator in one possible form. The resistor would be a very low-value component, just enough to develop a useful feedback signal in phase with the current.

Fig. 6. Skeleton shuntresonant self-oscillator in Hartley form.

Fig. 7. Coupled circuits, series-resonant primary. R_{1} and R_{2} are the r.f. resistance of L_{1} and L_{2} respectively.

Fig. 9. Coupled circuits, Shunt-resonant primary. \mathbf{R}_{1} and R_{2} are the r.f. resistance of L_{1} and L_{2} respectively.

Fig. 8. Reactive part of the impedance seen looking in at the terminals in Fig. 7. In this example, $\mathrm{L}=1 \mu \mathrm{H} ; \mathrm{C}=1$ $n F . Q_{1}=10 ; Q_{2}=20 ; k_{1}=0.05 ;$ $\mathrm{k}_{2}=0.1$

Fig. 10. Reactive part of the impedance seen looking in at the terminals in Fig. 9.
Ls, Cs and Qs as for Fig. 8.
$k_{1}=0.05 ; \mathrm{K}_{2}=0.065 ; \mathrm{k}_{3}=0.1$.
gain of the link can be made insensitive to changes in coupling coefficient, and a good way to achieve this is to seek to work at critical coupling ${ }^{5}$. At critical coupling the gain of the link is at a maximum, so that the rate of change of gain with coupling is zero.
A straightforward way to build a vice-free and rational r.f. link is to use a mopa transmitter, as described in reference 5 . Vis-a-vis a simple Hartley or Colpitts, a mopa is more complicated, so more faultprone and more expensive; it has two, possibly three, tuning adjustments to set up; power must be provided for the m.o. and, where present, buffer stages; it is probably bulkier and therefore, if worn continuously under clothes, harder to conceal and less comfortable to wear. There is therefore good reason to use simple selfoscillating transmitters if frequency-hopping can be avoided.

Hop-free working

As we increase k from zero, we want to reach $\mathrm{k}_{\text {crit }}$, where the link behaves well, before we reach $\mathrm{k}_{\text {closest }}=1 / \mathrm{Q}_{2}$, at which the link begins to behave badly. From the well-known expression $\mathrm{k}^{2}{ }_{\text {crit }} \mathrm{Q}_{1} \cdot \mathrm{Q}_{2}=1$,

$$
\frac{1}{\sqrt{\mathrm{Q}_{1} \mathrm{Q}_{2}}}<\frac{1}{\mathrm{Q}_{2}}
$$

where Q_{1} is the unloaded circuit Q of the transmitter tuned circuit. Hence $\mathbf{Q}_{1}>\mathbf{Q}_{2}$.
If frequency-selectivity is unimportant, this inequality is easily met by damping the receiver tuned circuit, but the link gain and the 'throw' will be poor. Where selectivity is important, or where a good 'throw' (e.g. one coil diameter) is essential, there is no option but to make Q_{2} about 30 , and to make Q_{1} even greater. These are circuit Q's, not device Q's; an interesting challenge for circuit designers.

References
. Anon: "Artificial vision": Wireless World, May 1971:214-217.
2. T.E. lvall: "Artificial vision progresses": Wireless World. April 1975 156-158.
3. T.E. Ivall: "Kadio-activated implant for bladder control": Electronices and Wireless World. January 1984:61-64.
4. J.H. Reyner and P.J. Reyner: Radio Communication. Chapter 2: 3rd edition, Pitman, London. 1972.
5. N. de N. Donaldson and T.E. Perkins:" Analysis of resonant coupled coils in the design of radio frequen cy links": Med. Biol. Eng. \& Compt. 21612-617(1983).

BOOKS
1985 Satellite Directory, 7th annual edition. Phillips Publishing Inc., 7811 Montrose Road, Potomac, Maryland 20854, USA: 936 A4 pages, soft covers. Price to UK readers is $\$ 197$ plus $\$ 25$ for carriage; orders must be prepaid. Business guide to satellite communications, with the emphasis on the US domestic market. Extensive directory sections list (among others) system operators, equipment suppliers, trade associations, launch services, transponder brokers, research groups and educational institutions, technical and financial services and even communications lawyers. Tables show orbital positions of existing and planned US and Canadian satellites and summarize their technical characteristics.

Making Computers Talk by lan H. Witten. Prentice-Hall, 150 pages, soft covers, $£ 17.95$. Introduction to speech synthesis, pitched at the technically-minded lay reader. Chapters explain how speech works and examine the various methods of producing it artificially, with their problems and pitfalls. An especially interesting section covers some commercial applications of speech synthesizers, among them the Kurzweil reading machine for the blind and a telephone enquiry service which responds to tones from a keypad. Clearly written and free of unecessary jargon.

Solar-Terrestrial Disturbances of June-September 1982: special issue of Journal of the Radio Research Laboratory. Ministry of Posts and Telecommunications, Nukui-Kitamachi, 4-chome, Koganei-shi, Tokyo 184, Japan; 315 pages. Fourteen papers covering aspects of this period, in which some remarkable solar events occurred during the descending phase of the cycle. Topics include geomagnetic disturbances, magnetospheric v.l.f. emissions, transequatorial ion whistlers, h.f. propagation disturbances, ionospheric scintillations of geostationary satellite waves, 50 MHz auroral observations and more.

The Complete Wordwise Plus Handbook by Paul Beverley. Norwich Computer Services, 420 A5 pages, ring-bound. Available by post at $£ 17.50$ from NCS, Freepost, 31 Cattle Market Street, Norwich NR1 3BR. Wordwise Plus, the word-processor for the BBC microcomputer, is unusual in that it comes with a built-in Basiclike language for manipulating text. This book, based on material
from the author's earlier publications but with much new information (and now with the imprimatur of Computer Concepts, producers of Wordwise Plus), offers a detailed guide to the possibilities of this powerful language. A mong the many program listings are indexers, document formatters, sorters, a mail-merge program and a logger for recording scientific data. Other chapters provide solutions to a variety of common wordprocessing problems. Major programs are offered on disc at $£ 7.50$ extra.

Linear ICs (Thomson

Semiconductors data book I. From Hawke Electronics Distribution, 45 Hanworth Road, Sunbury-onThames, Middlesex TW165DA: 1006 A5 pages, soft covers, $£ 12$. Data sheets on most of Thomson's industrial and consumer i.cs, including second-sourced types. There are some useful crossreference tables

Microprocessor Sourcebook

by George Loveday. Pitman Publishing, 247 large-format pages, soft covers, $£ 9.95$ Attractive handbook of microprocessor lore, presented in easy-to-scan A-Z format Especially useful for the newcomer. Entries cover applications of microprocessors as well as their anatomy and physiology and include many useful tables and diagrams. Under M , the author lists principal families of microprocessors with their instruction sets and supplies an informative rundown on each.

Wallchart of frequency allocations

Corrections to the wallehart frist issued in func 1986

6Trcolumn 1, 14-14,35MHz is an amateur allocation and should have beer woloured pink

Tneolumin $8,8184 \mathrm{MHz}$ should have included a red band. These frequenciss are not yet allocated in the UK out are esrmarked by the ITE for the fixed, mobile, fixed-satellite and mobile-satelite services.
*The $1632-179 \mathrm{Z}$ assignment for cordless telephosses in paired with $47.44-47.55 \mathrm{MHz}$
${ }^{+}$Cruss-hatched sections of the chart represent Government allocations.

FREQUENCY ALLOCATIONS

I was rather alarmed to note from the wallchart of frequency allocations provided with your June edition that it is proposed to move the 200 kHz BBC
Droitwich Service to 198 on 1st February, 1988.

Many people like myself use off-air frequency standards based on the 200 kHz transmission, and these devices will become useless in 1988 . I really wonder if the decision to move from 200 kHz has taken the widespread use of the transmission as a frequency standard into account.
H.D. Ford,

Richmond,
Surrey.

ALTIMETER

I read with interest MrF Ogden's altimeter article (June, 1986) in which he uses one of our DPM 200 panel meters. I would like to make some comments which may be of interest.

The temperature-stable supply can be improved by using the redundant band-gap reference diode on the meter. This device has a temperature coefficient of typically $50 \mathrm{ppm} /$
${ }^{\circ} \mathrm{C}$. Fig. 1 shows such an application.

The voltage between Ref BG and $\operatorname{Ref}-$ is 1.22 V nominal. Resistors R_{1} and R_{2} should be low-drift types. The advantage of this circuit is that it avoids the temperature coefficient of D_{5} and the V_{be} and H_{fe} coefficient of the BC212 transistor.

My second comment refers to the analogue inputs of the meter. The ground of the analogue section is COM (Pin 4) This is held by the meter at
approximately 2.7 volts below $\mathrm{V}+$. The common-mode rejection ratio of the inputs is 86 dB (or $50 \mu \mathrm{~V}$ per volt of common-mode voltage.) With In Lo at 5 V below $\mathrm{V}+$ there will exist 2.3 V of common mode. This can cause $100 \mu \mathrm{~V}$ or one count offset. To remove this, simply connect COM to 0V as in Fig. 2.

Although COM will sink a large amount of current to maintain its level below $\mathrm{V}+$, it cannot source more than $10-$ $20 \mu \mathrm{~A}$ and can easily be pulled down to the lower potential.

My final comment concerns the use of silicone grease. Avoid grease coming into contact with the l.c.d., especially the conductive rubber connectors inside, as this may cause open circuits and thus missing segments.
Simon Wyre,
Technical Manager,
Lascar Electronics.

The author replies:

Mr Wyre's comments are most helpful. I fully endorse the circuit changes he suggests but would add that the slight improvement in temperature stability they produce is less than the inherent errors of silicon pressure transducers: hysteresis, scaling error, etc. This means that if you've built the original, there is little point in changing anything.
The point about silicone grease hadn't occurred to me. I used the heavy heatsink type which doesn't migrate. Silicone sprays might well give trouble.

BBCCUTBACKS

The silly season in the $B B C$ seems to havestarted earlier than usual. In recent weeks there have been advertisements in the trade and national press for technical operators in the BBC's Engineering
Department: recruitment is being done by an independent consultancy. At the same time this union is negotiating with
the BBC on the Corporation's "priorities for the future" proposals. Those proposals, as originally tabled, included the decimation of the BBC's engineering specialists departments, the abolition of consultancy and cut backs in its central appointments and publicity departments. Substantial opposition to these proposals by this union means that the BBC have been forced to rethink their cuts strategy and as yet there have been no compulsory redundancies in the engineering specialists However the future for at least 60 staff is still not secure. It is nonsensical that an organisation seeking to make cuts on the grounds of so-called efficiency should be negotiating post closures and voluntary redundancies at the same time as it seeks to recruit new staff.
Laura Vincent,
Asst. General Secretary,
Broadcasting and
Entertainment Trades Alliance

XYPLOTTER

J. Jardine in his letter in May 1986 gives a line generation program for the XY plotter previously featured in this magazine.

If the motor control circuitry were to allow simultaneous movements in both X and Y directions, then we would have four possible diagonal movements as well as the four axial ones. Thus a combination of axial and diagonal steps would give a closer
approximation to the true line.
I reproduce below another method of generating the next best step when plotting a straight line on a device capable of diagonal motion. It has the advantage of being more efficient than the previous method (a factor of 3 in Basic) and is very amenable to conversion to machine code. The program shown works in the first octant and outputs an 'A' when the next step is axial and ' D ' when it is diagonal.
10 INPUT"INPUT X"; A 20 INPUT "INPUT Y"; B $30 \mathrm{~S}=-\mathrm{A}$
$40 \mathrm{BMA} 2=\mathrm{B}-\mathrm{A}+\mathrm{B}-\mathrm{A}: \mathrm{B} 2=\mathrm{B}+\mathrm{B}$

50 FOR I = 1 TO A
60 IF S < 0 THEN INC = B2
PRINT"A"; ELSE INC = BMA2
: PRINT"D";
$70 \mathrm{~S}=\mathrm{S}+\mathrm{INC}$
80 NEXT
I claim no credit for the method used; it is actually based on the Bresenham line generation algorithm ${ }^{1}$ which has been around since 1965 and has been used by many commercially produced plotting devices. It is of course well suited to raster devices as well as incremental plotters.
Reference.
1.IBM Systems Journal, Vol. 4, No 1,1965 .
M. Eggleston,

University of Leeds

RELATIVITY

Professor Butterfield's analogy explaining time dilation (June issue) neglects the force accelerating the clock balance wheel round. If this were to decrease as $\mathrm{f}=\mathrm{f} \times\left(1-\mathrm{v}^{2} / \mathrm{c}^{2}\right)^{1 / 2}$ the clock would mark the table along which it travels at intervals predicted by $t=t /\left(1-v^{2} / c^{2}\right)^{1 / 2}$ An observer of these marks assumes that time dilates for an accelerated observer, when in fact clock rotation had slowed down for all observers, accelerated or not. Of course, Professor Butterfield will argue that table recoil due to its acceleration of the clock indicates an increase of mass; therefore a variable force with velocity cannot be true. In reality, as opposed to analogy, the table is an electron accelerator 1 mile long and rather massive regarding a relativistic recoil of 40000 electron rest mass. It hardly moves at all, while electrons accelerate to velocity: thus ambiguous equations describe experimental effects. The best example of a velocity-dependent force is the precession of the DI Herculis orbits. Multiply the predicted result by a reciprocal of the "discrepancy" and you get the observed result (New Scientist 29 August 1985 "Double-star system defies relativity"). These stars have nearly equal mass, therefore transfer detectable relativistic mass, if any, one to the other Apparently there is none by an
exact amount namely ($2.34^{\circ}+$
$\left.1.93^{\circ}\right) \times 0.15=0.64^{\circ}$
Michael Dobson,
Hampton,
Middlesex.

Professor Butterfield has set himself an impossible task. Relativity cannot be simplified; one of its basic postulates is wrong!

This wrong postulate that the speed of light is the same to all
Toms, Dicks a nd Harrys) leads to a famous but wrong conclusion that mass is energy.
Why, then, does Professor Butterfield begin his article with this crazy conclusion? By working backwards, you merely end up with Einstein's wrong postulate!
Physicists have had their minds boggled for decades by Einstein's nonsense; it's high time for de-boggling! It's bad enough having the old, old story of Einstein's nonsense dished out to us, forward-wise. Please don't give us the old, old story backwards.
A.H. Winterflood,

Muswell Hill,
London, N10.

Ezekiel had a vision of wheels arguing circularly around an axle of presumption, and so do I. Inertia is a quality of mass which prevents instantaneous change and causes it to happen through time.

Is it then a reasonable proposition to combine trad Newton with a new law that energy has inertia mass, and then to derive a spatially distributed single event which must be inertial mass?

Sorry, Prof.: back to the drawing board and invent the LSM, but please remember that you were not the first because it inhabits the space which Albert could not conceive to be empty.

While you are busy, accept the fact that we do not see what happens, but rather see a distorted vision of what happens which our dirty great egos presume to be the truth. When things move extremely quickly, the quickness of the hand deceives the eye and any other massive sensor.

Nor, Mr Burniston Brown, do I like Sachs'belief that Albert changed his mind: further evolution of the thing changed him. That is why I like Albert: he demonstrated an active
intelligence.
James A. MacHarg,

Wooler,

Northumberland.

ELECTROLYTICS
I would like to answer both Mr Self and Mr Hall in order to remove any confusion about the capacitor test referred to in my previous letter. First, Mr. Hall is correct in asserting that the test is primarily measuring linear distortion. I have found the magnitude of the linear distortion in an electrolytic capacitor to be typically 500 times larger than the harmonic distortion measured under similar conditions. Should we just ignore the linear component, or should we at least consider it as a potential aberration that deserves closer scrutiny?

Mr Self's allegation that what is primarily measured in the capacitor differential test is due to film breakdown is inaccurate, as he is referring to non-linear distortion. It can also be shown that d.c. biasing a polar aluminium capacitor will not improve its measurement in this test.

Dielectric absorption (d.a.) in a capacitor can be simulated by adding parallel branches of series RC components ${ }^{3}$. This extended capacitor model can be shown to closely approximate the actual dielectric absorption. Therefore, one can add the appropriate RC branches to a nearly ideal capacitor and obtain an almost complete null when paired against a typical electrolytic capacitor in the differential capacitor test. Alternatively, in a computer simulation of the different capacitor test, one ca n model a non-ideal capacitor (with d.a.), paired against an ideal capacitor, and note the similarity of the output waveform to what is typically measured with the differential capacitor tester.

Inconclusion, I again invite those who are interested, to try the test themselves. There is much more to be learnt about capacitor differences tha n has been published thus far. I still recommend the AD524 or equivalent IN-AMP for serious measurements in order to head off any potential criticism of measurement accuracy.

John Curl,

Lineage Corporation,
New York,

USA.

References

1. J.J. Curl, WW. "Letters", Nov., 1985
2. W. Jung and J. Curl, "If the Cap Fits", Hi-FiNEWS \&

Record Review, April, 1986
3. R.A. Pease, National Semiconductor Corp., "Understand capacitor soakage to optimize analog systems", EDN Oct., 13, 1982.

I am sorry to have to disagree with Ben Duncan in public as I usually find his writings most entertaining. However, I found his views on The Great
Capacitor Crisis more than a little obscure, and I fail to see how any of his points clarify the vexed question of whether or not a capacitor in normal audio use cancause audible problems.

It is obviously true that music signals are made up of
harmonics, but these are in themselves sinusoidal, because that is how Fourier transforms work. Fourier transforms work that way because they are a mathematical expression of the behaviour of things in the real world. How Mr Duncan takes the next step in his reasoning, which is to say that musical waveforms are therefore accompanied by a varying d.c. component, I do not understand. No one denies that real waveforms are often markedly assymmetrical, but this is an assymmetry of the peak value of the signal, which is why professional peak - reading level meters invariably use fullwave rectification. The positive and negative peaks can vary by 8 dB or more, particularily on speech. However, this has nothing whatsoever to do with the mean level of the signal, which almost by definition is centred on zero volts. This is always the case, unless ad.c. error exists in the circuitry, or some sort of really gross slew limiting, clipping, or suchlike is taking place.

A moment's thought will show that this must be true, because the bandwidth of the audio chain does not reach down to d.c. I submit that the barometic pressure in the recording studio is not a parameter that needs to be reproduced for the best subjective effect. In reality any acoustic signal will lose its d.c. level on encountering either the microphone, the guitar pickup, the tape machine, or the phono cartridge, all of which are quite incapable of passing on d.c. levels. As for the ill-fated bass driver, I suggest that simply excessive level or an amplifier d.c. fault accounts for its demise. Occam's razor is still as sharp as it ever was.

I resignedly repeat I accept that some capacitors, such as
electrolytics, object strongly to having voltage changes impressed on them. In fact I demonstrated it myself in a previous letter, ${ }^{1}$ though I pointed out at the time that the effect would never intrude on a properly designed circuit. I much appreciate Mr Duncan's invitation to 'offer my skills to the work' but I thought I already had, even if the results were not convenient for everyone; I do wish that someone else would join in on the problem from the measurement side. In fact, I suggest it is up to Mr. Duncan to show us exactly how his mysterious d.c. waverings are generated, specifying circuitry that does it and showing us diagrams of the relevant waveforms.

As for Mr Curl's capacitor tester, once again there seems to be a logical step missing. Nobody would deny that all capacitors possess series resistance and leakage to some degree, but the question is, how does this affect signals passing through it? The subjective effect has often been described, though sadly the reports contradict each other. Sometimes it is called 'compression', sometimes a 'a delayed echo of the original signal'. In no case can anyone provide a model of how such effects could be induced by any amount of e.s.r. or other defect. I can only hope that someone will produce an objectively testable hypothesis, so that the matter can be laid to a well-earned rest one way or the other.

Finally, back to the furtive practice of gold flashing. If I interpret Mr Duncan's position on this one correctly, it is that non-noble contacts suffer a sort of continuous high-speed unreliability of connection, rather like drop-outs on poor quality tape. This one can surely be simply checked with a storage oscilloscope; I could find no trace of such an effect with the grottiest connectors I could lay my hands on. For readers having a distortion analyser handy, it is instructive to try all sorts of duff contacts in an attempt to induce even tiny levels of distortion into the signal. It is quite surprisingly difficult. Am I really the only one that actually tries this sort of thing, as opposed to theorising about it? D.R.G. Self,

Bow,

London E3.

Reference

1. Self, D. 'Feedback', Wireless World, February 1986, p43.

Waveform recorder interface

This analogue interface, suitable for the Apple II and other 6502 machines, can also act as a waveform generator.

THis interface allows measurements to be made with rapidly varying input signals whose bandwidth requirements are in excess of the ranges available with the data logger described in the July issue.
The hardware features control logic which allows samples to be aquired and converted in approximately $15 \mu \mathrm{~s}$. The d-toa converter also provides a programmable trigger level when the a.d.c. is used for recording transients.
Via a block of ram, the interface can output or input up to 2816 values at intervals from $15 \mu \mathrm{~s}$ to $1290 \mu \mathrm{~s}$. The output may be retriggered to generate continuous waveforms at a selected frequency; inputs are displayed on a high-resolution screen simulating anioscilloscope with a sweep time of 4 ms to 3.6 s .

Circuit and software details are for the Apple II but it should be a simple matter to adapt the interface to other 6502-based machines.

Hardware

The hardware makes use of the Ferranti chips ZN447 and ZN428 for a-to-d and d-to-a conversion. The 447 is an eight bit, successive-approximation device with a conversion time of less than nine clock cycles. With a 100 pF capacitor connected between pin 3 and ground, the internal clock operates at about 1 MHz . Resolution is 1 part in 256 , giving a dynamic range of 48 dB .
The input range, 0 to $V_{\text {ref }}$, is essentially 0 to 2.5 V but the input network extends it to $\pm 5 \mathrm{~V}$.

The analogue input circuitry also includes four cascaded unity gain double-pole filter stages preceded by an input buffer and a non-inverting
amplifier with a gain variable up to 90 . For the filter stages the overall cut-off frequency is about 10 kHz and the gain roll off 48 dB per octave.
The input buffer can be switched to a.c. or d.c. coupling. When the signal is direct-coupled, the input resistance is about $4 \mathrm{M} \Omega$; when it is a.c.-coupled, the cut-off frequency is less than 1 Hz . Input and output amplifiers are dual fet operational amplifiers TL082. The digital to analogue converter includes an input data latch and has a settling time of 800 ns .
The output is buffered and level shifted with gain to cover the range $\pm 5 \mathrm{~V}$, allowing the complete system to be operational with the same gain on input and output. The output of the buffer is filtered through a four-pole, unity-gain filter with a cut-off frequency equal to twice that of the input filter, that it about 20 kHz .
In constructing the circuit, take care to use a good quality hold capacitor between pin 11 of the sample-and-hold chip and ground. The three most suitable types in order of preference are polystyrene (below $+85^{\circ} \mathrm{C}$), Teflon and Parlene. Drift in the hold mode can be minimized by surrounding pin 11 with a guard ring of track which links pins 7,10 and 12. The offset potentiometer between pins 3 and 4 produces a change in the output of the order of two l.s.bs.
A-tod and d-to-a operations are controlled through the signals $\overline{\mathrm{SC}}$ (start conversion), $\frac{\mathrm{RAD}}{}$ (read a to d) and $\overline{\text { WDA }}$ (write to d to a). A further signal $\overline{\text { wad }}$ (write to a to d) is required to initiate an interrupt-driven data acquisition sequence. The address of the chips in the memory map of the Apple II is determined by the strobe sig-
nals $\overline{\mathrm{DEV} \text { SEL }}$ and $\overline{1 / O}$ available in the Apple slots.
The interface is designed to operate in slot 1 for which $\overline{\mathrm{DEV}}$ $\overline{\text { SEL }}$ goes low in the ϕ_{2} part of the clock cycle of the processor, when the address is in the range $\mathrm{C} 090_{16}$ to C 09 F . In the second half of the clock cycle I / O goes low when the bus holds an address in the range C800 to C8FF. Both signals therefore have a duration of approximately 400 ns and could, if required for other machines, be produced by address bus decoding as described in the third article. The address bus decoded signal could then be logically anded with ϕ_{2} to produce a pulse of the required duration.

In the interface $\overline{\mathrm{I} / \mathrm{O}}$ is combined with R / w to produce the required active low write strobe to the d-to-a whilst $\overline{\mathrm{DEV}}$ $\overline{\text { SEL }}$ is combined with R / w to produce the required $\overline{\text { sc }}$ and $\overline{\text { RAD }}$ signals for a to d .

The relative timings required, shown in diagram 2 , are achieved using two dual monostables, 74 LS 123 , which are triggered by the falling edge of a start signal which can be produced in one of two ways.

As can be seen from page 30 the output of the Schmitt nand, gate 1 , will go high when either $\overline{\mathrm{RAD}}$, a read of the a.d.c. or $\overline{\mathrm{IQ} Q}$, an interrupt request, is taken low. When either strobe returns high start will go low producing the negative-going trigger input to the two monostables.
Assuming that $\overline{\mathrm{RAD}}$ initiates the sequence, the timing is as follows. The $\overline{\mathrm{RAD}}$ strobe takes about 400 ns and coincides almost exactly with start. One half of monostable 1 is triggered by start's falling edge to produce a time, delay of approximately $0.5 \mu \mathrm{~s}$ (Fig. 2).

by P.B. Unstead and A. Blunden North East London Polytechnic

An assembly language list. ing of the software for this design is avallable from the editorial affice. Please enclose a stamped addressed envelope and mark your covering envelope 'Apple waveform recorder'.

The rear edge of delay is used to produce $\overline{\mathrm{SC}}$ which is also about $0.5 \mu \mathrm{~s}$ long (100 ns is all that is required).
One half of monostable 2 is also triggered by start's falling edge and produces a $9 \mu \mathrm{~s}$ long hold signal at pin 14 of the sample and hold circuit. Conversion takes place during this hold period; at the end of the conversion, about $8.5 \mu \mathrm{~s}$ after $\overline{\mathrm{sC}}$ goes high, data is available for reading.
The sample-and-hold circuit acquires the next sample in the $5 \mu \mathrm{~s}$ which elapses before the data is read thus taking $\overline{\text { RAD }}$ low again to repeat the sequence. This sequence is used when the a-to-d interface is operated without a trigger level.
Writing to the d.a.c. can be used to set (or reset) the trigger level at the input of one TL082 connected as a comparator. A write to the a.d.c. produces the strobe $\overline{\mathrm{WAD}}$ which causes the output of the Schmitt nand, gate 2 ($\overline{\mathrm{ENABL}})$, to go low.

If the output $\overline{\text { INT }}$ from the remaining half of monostable 1 is also low then an interrupt request, $\overline{\mathrm{IRQ}}$, will be generated at the output of gate 2 of the quad or gate. If at this time the processor is engaged in servicing a previous interrupt the request will be masked out in software since the I bit will be set in the service routine. It is the level change at the output of the comparator which trig-
gers monostable 1 to produce $\overline{\mathrm{IRQ}}$ pulse of about $7 \mu \mathrm{~s}$ when ENABLis low.
Whilst the output of or gate 2 is low the output of nand gate 1 is high. But when the output of the or gate returns high, both inputs to the nand gate are high and the output goes low. This produces the trailing edge of START which is required to initiate the sequence. Since the $\overline{\mathrm{IRQ}}$ input to the processor is level-sensitive the line must be held low for sufficient time for the processor to finish execution of its current instruction, about $7 \mu \mathrm{~s}$.
The ENABL output of the R-S flip flop, made from nand gates 2 and 3, must be set high if further interrupts are to be hardware-disabled. This is achieved by the first read of the data from the conversion. When $\overline{\mathrm{RAD}}$ goes low further interrupts can only be enabled by rewriting to the a.d.c. to produce a further $\overline{\text { Wan }}$ strobe.
Both start possibilities are illustrated in the timing diagram Fig. 2 which also illustrates how the interrupts may be controlled.
The interval between successive reads of the a.d.c. can be about 15μ s; the actual time will depend largely upon the choice of timing components for the monostables. The corresponding sampling rate of about 66 kHz allows signals with a bandwidth of 10 kHz to be sampled and displayed.

Each write to the d.a.c. produces the strobe $\overline{\mathrm{WAD}}$ and can be used to set or reset the trigger level to the a.d.c.; each output l.s.b. represents 10 mV . After passing through the buffer with gain the trigger increments are $\pm 40 \mathrm{mV}$.

Waveforms can be output through the d.a.c. by writing data successively to the port. The data may have been acquired from the analogue input or may have been stored previously, after calculations, in a reserved block of memory. A measure of synchronization can be achieved in this application by using the trigger on the a.d.c. input. This technique is described later.

Software

A hex code listing of the software is given in the Table. For a-to-d operation, call 51456; and for d-to-a operation call 51460. The first part of the firmware writes a program in ram at 9600_{16} to input or output a chosen number of values at selected intervals. The number of values is selected by keying in a hex number between 1 and B to give 100_{16} to $B 00_{16}$ bytes.

The interval is selected by keying in a hex number between 0 and FF ; its length in microseconds is equal to five times this value plus 15 . All interrupts are disabled and the $\overline{\mathrm{IRQ}}$ vector is set to $9600_{16} ;$ a

Fig. 2. Timing diagram for the interface. Samples can be acquired and processed in just $15 \mu \mathrm{~s}$.

data buffer is reserved at frequency square-wave pro8000_{16}.

For d-to-a operation the firmware clears interrupts and then repeatedly calls the subroutine at 9603_{16} (the first three bytes, clearing the stack, are omitted). Call. 51627 , after resetting the machine, provides continuous playback of the data.

Since the period of repetition may not exactly equal the playback time some form of synchronization is required. This can be achieved by providing an interrupt on input of an a.c. signal or a trigger level through the a-to-d interface. The firmware causes the playback to restart, from the beginning of the data buffer, at each interrupt event. A variable-
appear. Vectors are then altered so that the next trigger causes the graph to be plotted on the other page, and so forth, giving a continuous display.
Whilst the processor is waiting for an interrupt it continuously polls the keyboard. If a key is pressed, execution jumps to the trigger input phase so that the trigger level may be re-set. If a trigger level of zero is input, the trigger level is not re-set and the interrupt is not cleared after data acquisition so that one-shot oscilloscope operation rather than a continuous mode is achieved.
If the return key is pressed, execution returns to the operating system, with all interrupts disabled. The digital oscilloscope displays only 256 data points, equally spaced over the whole acquisition period, and has only half the full 8-bit vertical resolution.

Calibration

The gain can be adjusted up to about 90 using the 500 k potentiometer. The optimum gain is that which gives an input signal in the range $\pm 5 \mathrm{~V}$. The d.a.c. may be calibrated by writing 3_{16} to the chip and adjusting the offset potentiometer in the output buffer until the output signal is -5 V . Writing FD_{16} to the d.a.c. and adjusting the gain potentiometer until the output is $\pm 5 \mathrm{~V}$ completes the calibration with one l.s.b. equivalent to $\pm 40 \mathrm{mV}$.
To calibrate the a-to-d interface the two potentiometers connected to its input should be adjusted as follows. Input an a.c. signal near to the full range value. Call the a-to-d program and set the trigger to 0 . Reset the trigger continually until the trigger operates and a trace appears on the screen. Press return and inspect the memory buffer; the smallest stored value should be that of the trigger level. Adjust the offset potentiometer and repeat until successful.

Now set the trigger level to FF_{16} and continually reset the trigger to a lower value until a trace appears. The largest value stored in the buffer should be that of the trigger level. Adjust the gain potentiometer until this is so.

INOURNEXTISSUE

What makes a good oscillator?
 K Levis discusses the parameters to consider when defining the performance of an oscillator and attempls to remove some of the contusion which can prevent a better understanding of the subject.

Ringing the changes on bels Jules Walt begins a series on subjects which allengineers consider basic, but which often contain elements of misunderstanding, leading to error This aricle is on decibels. which have been used to indicate ratios of almost anything from salaries to horsepower.

Thames televisionlogo player The opening sequence of Thames programmes, the view of St Paul's and Tower Bridge, is notoblained from a film, but solid-slate memory I.G. Brown describesils production and the equipment used.

8085 development on the BBC computer
J.L. Gordon describes hardware, firmware and soliware which enablea Beeb owner to develop applications from the 8080 series of microprocessors. The system consists of a single 8085 controlier board.

Applying a single-chip microcomputer Mike Catherwood demonstrates the capabilities of Motorota's 'S2' 28-pin single-chip microcomputer with ato-d converte, using a pulse burst generator and frequency meter as apolication examples.

Heat transfer in electronic equipment

The generation of heat in active devices is a frequent cause of failure. Dr Smith shows that removal of the heat is not quite as straightforward as one might suppose.

Active devices in electronic systems handle energy flows at various rates. In these processes, the efficiencies of power conversion into the wanted form never reach 100% and the "losses" appear as low-grade heat energy. Efficiency can be defined in these systems as the fraction of the power input appearing in the wanted form at the output.

This was well illustrated in an application I discussed recently ${ }^{(1,2)}$. In those articles, I pointed out how engineers attempt to raise the efficiency by using switching methods in power supplies, instead of dissipative control in the linear versions.

Whichever design techniques are employed, either those used to increase the efficiency, as in switchers, Class B or Class C amplifiers and so on; or whether dissipation is deliberately tolerated, as in series-pass designs, Class A amplifiers and similar, getting rid of the thermal energy produced is important. If heat is not removed quickly, the associated temperature rise could soon destroy the devices. In any event, increases in the operating temperature, or even high storage temperatures, will reduce the reliability of components, although they are below the burn-out point. A typical reliability curve as a function of temperature is shown in Fig. 1. In high power systems, the rate of heat production is considerable.

Heat sinks

There are only three ways available to remove heat energy. You can conduct it away through a substantial block of material (usually metallic). A fluid can be passed by or through, the hot region, warmed and thus bear away the surplus heat. This is cooling by convection which can be classified into two 'regimes'. One is cooling by natural convection; the other by forced fluid flow. Either is notoriously difficult to analyse Finally, energy radiates away from the hot region at the speed of light. The ease with which it radiates depends on the physical nature of the hot surface.

The important rule from thermodynamics which cannot be avoided is that heat energy will not flow by any of the mechanisms just mentioned unless there is a temperature difference. It is absolutely no good spending a lot of money on a heat dissipating system if you want to keep your transistor at $75^{\circ} \mathrm{C}$ in surroundings also at $75^{\circ} \mathrm{C}$

Fig. 1. There is a rapid rise in the failure rate of electronic components as the temperature goes up. This is the same as saying that the reliability worsens. Even at temperatures considerably lower than the absolute maximum allowed, the lifetimes may be much reduced.

Fig. 2. These typical finned heatsinks and coolers found in electronic equipment show the diversity of design shapes and sizes, according to the duty expected of them.

Fig. 3. The assumption that a linear temperature gradient occurs under steady state heat flow
normal to the surface of conducting wall is illustrated. The slope of the gradient is directly related to the thermal conductivity of the wall.

The heat will only pass from hot to colder regions and the answer to the old joke question about how long will it take to boil a kettle on a block of ice is, 'a very long time indeed'*. Therefore in cooling requirements of any kind you must have a cool heat sink or lowtemperature reservoir. Strictly speaking, the metal plate, or block with fins on it, is not the heat sink proper. The ultimate sink is the fluid - usually air - into which the heat finally passes, there to be borne away. But it has become universal with electronic design people to call the block upon which the active devices are mounted, a heat sink. If the dissipator block is so small that it is mounted onto the device instead, it is often called a cooler. Some of the sinks and coolers in current use are illustrated in Fig. 2.

Thermal conduction

The quickest and easiest method to remove heat energy from a concentrated point is to conduct it away in all directions. To do this, a good conducting solid material must be in intimate contact all round the source. This is not always convenient in the case of electronic components and the heat transport approximates to flow across an area normal to one direction into the heat sink.

After switching on the power and beginning to dissipate heat, the thermal energy spreads out in the larger volume of the sink, raising its temperatures according to its thermal capacity. This is the transient phase. When the steady state is reached, the temperatures become stable, only altering if the dissipation and/or the temperature of the surroundings changes.

Fourier ${ }^{(3)}$ proposed that the rate at which heat flows through a solid is proportional to the area A, normal to the flow and to the temperature gradient dT/dx,

$$
q=-k A \frac{d T}{d x} \text { watts }
$$

The minus sign tells us that the heat is going from the high to the low temperature along the x direction. The proportionality constant k (watts per metre per ${ }^{\circ} \mathrm{C}$), is the thermal conductivity. In many instances, the temperature gradient is uniform. An example might be the insulating washer under a transistor on a heat sink, as in Fig. 3. Therefore q across an area A, through thickness d, is,

$$
\begin{equation*}
\mathrm{q}=\frac{\mathrm{kA}}{\mathrm{~d}}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right) \text { watts } \tag{1}
\end{equation*}
$$

The thermal conductivity is not often used

[^0] absolutely impossible!

directly in electronic cooling problems, but transposing equation (1) gives,
$$
\frac{\mathrm{T}_{1}-\mathrm{T}_{2}}{\mathrm{q}}=\frac{\mathrm{d}}{\mathrm{kA}}=\mathrm{R}_{\mathrm{th}}{ }^{\circ} \mathrm{CW}^{-1}
$$
where R_{th} is the thermal resistance.
As the heat flows from the hot spot to the surroundings, it passes across various interfaces, goes through various materials and otherwise models closely a series electrical circuit. The temperature corresponds to the potential difference, with the heat flow analogous to the current. The electrical resistance corresponds to the thermal resistance and thermal capacity corresponds to electrical capacitors in shunt. This is summarised in Table 1 and Fig. 4. The major job in heat sink design is to determine the thermal resistance and use a thermal version of Ohm's Law to solve the design problem.

Convection

The end stage dissipation from the heat sink to the surroundings is a surface phenomenon, as already mentioned. By attaching fins to the surface, a large increase in area is obtained which assists this convection process. Radiation is not helped much by fins, as their surfaces 'look at' each other.
Natural convection appears to rely on a stationary boundary layer of the fluid 'stuck' to the surface, as it were. The heat has to flow through this layer by conduction. The layers further out receive the heat, expand, and the resulting lower density increases the buoyancy of these layers and the fluid rises, thus drawing in more cool fluid from the bottom.
A few points arise concerning this mechanism. The fins must be vertical, or little smooth flow can be established. Restrictions in the path of the fluid flow should be avoided and finning is of little use if the fin spacing is less than the sum of the two boundary layer thicknesses. Of course, in weightless conditions, there is no natural convection.
On the other hand, forced convection with a fan or blower tends to break up the boundary layer, or at least make it much thinner, as well as removing the fluid much more quickly. The forced process is obviously much more efficient at removing the heat. The fins, or channels can follow any geometry, as gravity is no longer relevant.
The ideas just expressed are reminiscent of some elementary physics most engineers must have met in their schooldays. Forced convection has some connection with Newton's Law of Cooling. It was Sir Isaac ${ }^{(4)}$ who gave us the empirical expression for this,

$$
\begin{equation*}
\mathrm{q}=\mathrm{h}_{\mathrm{c}} \mathrm{~A}\left(\mathrm{~T}_{\mathrm{s}}-\mathrm{T}_{\mathrm{f}}\right) \tag{2}
\end{equation*}
$$

where q , the heat loss rate is proportional to the surface area A, (which explains the finning) and to the difference between the surface temperatures T_{s}, and fluid temperature T_{f}. The proportionality 'constant' h_{c} is called the heat transfer coefficient, in this case, for convection. Equation (2) is very similar to equation (1). Over the years equations of this type have become generalized expressions describing any heat flow process. The difficulty in using equa-

TABLE 1	TABLE 2	
electrical Thermal	Device Package	$\mathrm{R}_{\mathbf{t h (i - m b)}}$
current generator heat generator resistance R, ohms ohmere capacitance $C, \frac{\text { amp sec }}{\text { volt }}$ thermal resistance $R_{t h},\left(\frac{C}{W}\right)$ potential diff, thermal capacity $C_{t h} \frac{\text { watt sec }}{C}$ $\left(V_{1}-V_{2}\right.$, volts temperature diff, current (charge flow), amps $\left(T_{1}-T_{2}\right) C$ heat flow. watts	$\begin{gathered} \text { TO5/TO39 } \\ \text { TO3 } \\ \text { TO220 } \\ \text { TO202 } \end{gathered}$	$\begin{gathered} 15^{\circ} \mathrm{CW}^{-1} \\ 1.5 \text { to } 2.5^{\circ} \mathrm{CW}^{-1} \\ 4^{\circ} \mathrm{CW}^{-1} \\ 12^{\circ} \mathrm{CW}^{-1} \end{gathered}$

tion (2) in convection calculations is connected with finding h_{c}. This coefficient is anything but a constant and the equation is hardly a physical 'law'. Using equation (2) amounts to an empirical approach, considering the guesses that must be made to determine h_{c}. The heat transfer coefficient depends on shape and geometry of the surfaces and the properties of the fluid. It even depends on the temperature difference, so calling it a proportionality constant is certainly a misnomer.

If you had gone on to study a little more physics of convection, a bewildering array of 'numbers' would have arisen. A student soon finds that dimensionless quantities called Nusselt numbers, Grashof numbers, the Prandtl number and so on, all arise. There is no space to go into this rather involved area here ${ }^{5}$ but the approach boils down to writing,

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{u}}=\mathrm{C}\left(\mathrm{G}_{\mathrm{r}}\right)^{\alpha}\left(\mathrm{P}_{\mathrm{r}}\right)^{\beta} \\
& \text { where } \mathrm{N}_{\mathrm{u}}\left(=\frac{h^{2} \mathrm{~L}}{\mathrm{k}}\right) \text { is the Nusselt number, } \mathrm{G}_{\mathrm{r}} \\
& \\
& \left(=\frac{\operatorname{g\gamma p}^{2} \mathrm{~L}^{3}\left(\mathrm{~T}_{\mathrm{h}}-\mathrm{T}_{\mathrm{c}}\right)}{\mu^{2}}\right)
\end{aligned}
$$

is the Grashof number and P_{r} ($=\mathrm{C}_{\mathrm{p}} \mu / \mathrm{k}$) the Prandtl number.
In these expressions, the quantities involve viscosity, density, thermal conductivity and thermal cubic expansion of the fluid. The gravitational acceleration g comes into the picture and the temperature difference, together with a 'characteristic length' L describing the geometry of the cooling object. The problem is to determine the indices and. This is done experimentally. Once the Nusselt number and L are found, so is h_{c}.

Saunders ${ }^{6}$ found that and were 0.25 for smooth natural fluid flow and 0.33 for turbulent flow. On a large heatsink there is the likelihood of laminar and turbulent flow occurring over different parts at the same time. A flat plate fin might develop a flow pattern as shown in Fig. 5.

The outcome of these investigations is a working value of h_{c} which, for simple vertical plates cooling in normal air, is given by,

$$
\begin{equation*}
\mathrm{h}_{\mathrm{c}}=1.37\left(\frac{\mathrm{~T}_{\mathrm{s}}+\mathrm{T}_{\mathrm{A}}}{\mathrm{~L}}\right)^{0.25} \mathrm{Wm}^{-2{ }^{\circ} \mathrm{C}^{-1}} \tag{3}
\end{equation*}
$$

where T_{S} is the plate temperature and T_{A} is that of the ambient or surrounding air. This shows that h_{c} is itself a function of the temperature difference. L is the vertical height of the plate in metres.

Another complication arises in that the met-
al of the plate or fin has a finite conductivity. Therefore temperature differences to the ambient vary over the surface of the fin, being greatest near the dissipating device. This means that the cooling performance of practical plates is a little less than what at first sight might have been expected. This lowering from the ideal is taken into account by using fin effectiveness factor. Fin effectiveness (for a given amount of heatsink material) is improved if the cross section of the fin is triangular instead of rectangular. Putting it another way, the same heat dissipation requires only about 70% of the heatsink material ${ }^{7}$ if a triangular cross section is used for the fins.

The fin cross sectional area, and hence fin volume, increases as the cube of the heat flow. So if you want to double the heat dissipation for the same temperature difference, a fin eight times as large would be required. On the other hand, a second fin, identical to the first, would do the job. Therefore in heatsink design the use of many stubby fins is much better than one or two large ones. But there is a limit to how close fins can be, as I mentioned above regarding fluid boundary layer thickness.

Radiant heat loss

At first sight, because thermal radiation is such a strong function of the temperature, one might think that calculations would be even more intractable than for convection. Fortunately this is not so, as the Stefan - Boltzmann Law is quite rigorous. The only slightly vague factor is the emissivity of a surface, which varies with its colour, texture and so on.

According to Stefan - Boltzmann, for a body at absolute temperature $\mathrm{T}_{\mathrm{S}}{ }^{\circ} \mathrm{K}$, with surface area A and emissivity E , the rate of heat loss is,

eq

where σ is Stefan's Constant $=5.67 \times 10^{-8}$ $\mathrm{Wm}^{-2} \mathrm{~K}^{-4}$
If the body is immersed in surroundings at temperature T_{A}, it receives heat at a rate of,

$$
\begin{align*}
\mathrm{q}^{\mathrm{A}} & =\mathrm{EA} \sigma_{\mathrm{A}}{ }^{4} \\
\therefore \mathrm{q} & =\mathrm{q}_{\mathrm{S}}-\mathrm{q}_{\mathrm{A}}=\mathrm{EA}\left(\mathrm{~T}_{\mathrm{S}}{ }^{4}-\mathrm{T}_{\mathrm{A}}{ }^{4}\right) \text { watts } \tag{4}
\end{align*}
$$

Now if the hot body's temperature (T_{S}) is not too great, we can write the average temperature as $\left(T_{S}+T_{A}\right) / 2$. Half the difference between the temperatures, $\left(\mathrm{T}_{\mathrm{S}}+\mathrm{T}_{\mathrm{A}}\right) / 2$, represents how far T_{S} is above, and T_{A} is below the average temperature. Substituting these in equation (4) and simplifying by neglecting small quantities, we have,
$q_{S}=$ EAcT $\left._{S}{ }^{4} \quad \underline{\mathrm{~L}^{\prime} \mathrm{T}_{\mathrm{A}}+273}\right)^{3}\left(\mathrm{~T}_{\mathrm{S}}-\mathrm{T}_{\mathrm{A}}\right)$

Fig. 5. The flow along a vertical plate or fin is often complex. There is a region of laminar flow - and the building up to this at the bottom. Further up the fin, if it is long enough, the flow breaks up into turbulent region. The removal of heat per unit area of fin differs in the two regions.

Fig. 6. Simple flat plates, either rectangular or circular, are sometimes used for light-duty heat removal. They should nevertheless be designed or estimated by using similar theory to that discussed here.

where T_{S} and T_{A} are now in ${ }^{\circ} \mathrm{C}$.
Comparing this result with the 'rate' equation (2), a value for the heat transfer coefficient for radiation h_{r}, can be picked out as the factor multiplying the temperature difference,

$$
\begin{equation*}
\mathrm{h}_{\mathrm{r}}=4 \mathrm{Er}\left(\frac{\mathrm{~T}_{\mathrm{S}}+\mathrm{T}_{\mathrm{A}}}{2}+273\right)^{3} \tag{5}
\end{equation*}
$$

Some emissivities are given in Table 1.

Overallheat transfer coefficient

The discussion appears reasonably satisfying in spite of the difficulties regarding convection. Heat transfer coefficients have been found for the three modes of heat transport.

$$
\begin{aligned}
& h_{\mathrm{c}}-\text { convection } \\
& \mathrm{h}_{\mathrm{r}}-\text { radiation } \\
& \mathrm{h}_{\mathrm{k}}-\left(=\frac{k}{d}\right) \text { for conduction }
\end{aligned}
$$

The first two are appropriate for heat-sink design, as they are 'final surface' quantities. Thermal conductivity is an 'internal' quantity determining the flows to arrive at the final surfaces.

If a square or circular heat-sink plate is operated vertically, as shown in Fig. 6, the thermal resistance to the ambient is found from the overall heat transfer coefficient by,

$$
\begin{equation*}
\mathrm{R}_{\mathrm{th}(\mathrm{~h}-\mathrm{amb})}=\frac{1}{2 \mathrm{~L}^{2} \eta\left(\mathrm{~h}_{\mathrm{c}}-\mathrm{h}_{\mathrm{r}}\right)}{ }^{\circ} \mathrm{CW}^{-1} \tag{6}
\end{equation*}
$$

where η is the fin effectiveness factor mentioned earlier. The evaluation of η is not easy, but I have used an average value of about 85% (0.85) without introducing significant errors for simple heat sinks. Nomographs have been published that yield more precise values of $\eta^{8,9}$.
As an example, consider that you have been asked to design a square, black, anodizedaluminium heat dissipator, 1.6 mm thick, where $\mathrm{T}_{\mathrm{S}}=90^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{A}}=60^{\circ} \mathrm{C}$. If it is to have a thermal resistance of $4^{\circ} \mathrm{CW}^{-1}$, we could proceed as follows, assuming to be 0.85 as the plate is reasonably thick.

$$
\therefore \mathrm{h}_{\mathrm{c}}=1.37\left(\frac{90-60}{\mathrm{~L}}\right)^{0.25}
$$

from equation (3),

$$
\text { and } h_{r}=2.27 \times 10^{-7}\left(\frac{90+60}{2}+273\right)^{3} \times 0.9
$$

from equation (5).

Fig. 7. These profiles are typical of commercially available extrusions for duty as finned heat sinks. The curves are used as design aids to select an appropriate sink and length. The dissipation in watts is given as a function of temperature rise above ambient, with the length as a running parameter on the curves. (With acknowledgements and thanks to Messrs. Marston Ltd., Wolverhampton.)

Dimensions in mm

Substituting into (6),

$$
4=\frac{1}{2 \mathrm{~L}^{2} \times 0.85\left[1.37\left(\frac{90-60}{\mathrm{~L}}\right)^{0.25}+1.45 \times 10^{-10}\left(\frac{90+60}{2}+273\right)^{3}\right]}
$$

The only unknown is L , which we want. But how is this equation solved, containing as it does L^{2} and $\mathrm{L}^{0.25}$, without a high-powered computer program?
The usual procedure is to guess an initial value for L 'from experience', substitute and see what result is obtained.
Guess a value $\mathrm{L}=10 \mathrm{~cm}$

$$
\mathrm{h}_{\mathrm{c}}=1.37\left(\frac{90+60}{0.1}\right)^{0.25}=5.7 \mathrm{Wm}^{-2{ }^{\circ} \mathrm{C}^{-1} .}
$$

and $\mathrm{h}_{\mathrm{r}}=0.9 \times 2.27 \times 10^{-7}\left(\frac{90+60}{2}+273\right)^{3}=8.6 \mathrm{Wm}^{-20} \mathrm{C}^{-1}$

$$
\therefore \mathrm{R}_{\mathrm{th}(\mathrm{amb})}=\frac{1}{2 \times 0.10 \times 0.85 \times 14.3}=4.1^{\circ} \mathrm{CW}^{-1}
$$

This result is reasonably satisfactory; the plate could be made just a little larger. If an unsatisfactory value had been obtained, try a new size - larger or smaller as required.

What is worth noting here is the large contribution by radiation. Also worth noting is that the area A , for insertion into the formulae to calculate h_{c} and h_{r}, would differ for more complex (finned) geometries.

Commercial heat sinks

All the basic work has been done by the manufacturer who publishes $\mathrm{R}_{\mathrm{th}(\mathrm{h} \text {-ambl) }}$, or curves describing the performance of various lengths of the standard extrusions. Some of the heat sinks available are illustrated in the photograph. Fig. 7, together with the performance graphs, shows typical heat sink profiles that are available. Of course, the final thermal resistance is only one in a series chain back to the device junction. If the device is poorly mounted, then it could very well burn out even on an infinite heat sink.

The thermal resistance from junction to mounting base $\mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{mb})}$, is set by the manufacturer. Table 2 gives an indication of $\mathrm{R}_{\mathrm{th}(j-\mathrm{mb})}$ for a few common packages.

The mounting base is usually bolted directly to the heat sink, but often an insulating washer is required to electrically isolate the device from the often-grounded heat-sink mass. This tends to isolate the mounting base thermally as well, because electrical insulators are usually thermal insulators also. Table 3 gives typical thermal resistances for various mounting washers and the thermal compounds often met in practice. The bolting down pressure can have a large effect on $R_{t h(m b-h)}$.
The 'thermal drop' ($T_{i}-T_{a m b}$) is easily found by passing the heat flow through $\mathrm{R}_{\mathrm{th} \mid \mathrm{j}-\mathrm{mb}}$, $R_{\text {th/mb-h) }}$ and $R_{\text {th(h amb }}$ in series so that,

$$
T_{j}-T_{a m b}=\frac{R_{t h(j-m b)}+R_{(h(m b-h)}+R_{t h(h-a m b)}}{q}(7
$$

TABLE3				
All mountings have thermal compound on both sides of the washer, or on the mounting base, except the last case.				
Washer Material	Thickness		$\mathrm{R}_{\mathrm{th}(\mathrm{mb}-\mathrm{s})}$	
mica anodized aluminium beryllia	$\begin{aligned} & 0.002 \mathrm{in} . \\ & 0.016 \mathrm{in} . \\ & 0.063 \mathrm{in} . \end{aligned}$		$\begin{gathered} 0.4 \\ 0.35 \\ 0.25 \end{gathered}$	
		hole diameter in heat sink	at bolt torque of:	
			2 lb in.	5 lb in .
mica mica mica mica bare bare (no compounds)	$\begin{gathered} 0.004 \text { in. } \\ 0.004 \text { in. } \\ 0.002 \text { in. } \\ 0.002 \text { in. } \\ - \\ = \end{gathered}$	$\begin{aligned} & 0.25 \mathrm{in} . \\ & 0.113 \mathrm{in} . \\ & 0.25 \mathrm{in} . \\ & 0.113 \mathrm{in} . \\ & 0.14 \mathrm{in} . \\ & 0.14 \mathrm{in} . \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.1 \\ & 1.6 \\ & 1.45 \\ & 0.3 \\ & 1.4 \end{aligned}$	$\begin{gathered} 2.05 \\ 1.9 \\ 1.5 \\ 1.4 \\ 0.2 \\ 1.0 \end{gathered}$

where q is now the thermal power dissipated in service by the junction of the device. T_{j} is the junction temperature laid down by the device manufacturer which must not be exceeded. $\mathrm{T}_{\mathrm{amb}}$ strongly depends on your environment and is an awkward parameter to determine. The thermal resistances are all now well understood, so given the awkward $\mathrm{T}_{\mathrm{amb}}$, the final design is in principle, easy.

Whether you make a custom heat dissipator or buy a standard extrusion after doing the calculations, the final size of the heat sink is determined your by ambient temperature. But enough has been said to show that it is little use tucking away your heat sink in a corner of a closed cabinet, or letting anyone drape their coat over the equipment in a disco - or even backing your hi-fi system onto the central heating radiator. It is salutory to realise from equation (7) that every degree rise in $\mathrm{T}_{\text {amb }}$ is reflected through to just about a degree rise in T_{j}. So, whatever the heat sinking arrangements, your devices will eventually close down in increasingly hot environments.

References

1. K.L. Smith, 'D.c. supplies from a.c. sources', Electronics and Wireless World. 19. P. 67 May 1985 2. K.L. Smith, 'D.c. supplies from a.c. sources', Electronics and Wireless World, 91, P.61, Oct. 1985
3.J.B.J. Fourier, "The analytical theory of heat', trans. A Freeman, Camb. Univ. Press (1878)
2. I. Newton, 'Scala graduum ealoris', Trans. Roy.Soc.22. P.824, (1701)
3. F.A. Holland, et. al. 'Heat Transfer', Heinemann, 1 1970)
4. O.A. Saunders, Proc. Roy. Soc. A157, P.278(1936)
5. A.D. Kraus and A. Bar-Cohen, 'Thermal Analysis and Control of Electronic Equipment', McGraw Hill
6. National Semiconductor 'Voltage Regulator Handbook', P6-3, (1982)
7. V. Martin, 'Ham Radio Magazine', P.33, July 1984

64th NAB - Dallas

NAB, the world's largest broadcast

 engineering show, was held in Dallas. Some 40,000 visitors from all over the world came in search of the latest developments in broadcasting.AIthough there are many stories to be told from this year's NAB, this report will concentrate on just four of them: the HDTV debate, the Voice of America massive short-wave reequipment programme, Radio Data Service (RDS) and the introduction of klystrodes into u.h.f. tv transmitters.

HDTV debate hots up

Less than a month before the opening of the CCIR Plenary in Dubrovnik, that will debate the controversial h.d.t.v. issue, a powerful European team used the occasion of this year's NAB to remind the 60 Hz world that there is a view on the h.d.t.v. studio production standard question other than the proposed NHK 1125 line 60 Hz system.

A paper introduced by France stated bluntly, "there is no question of setting definitive values for h.d.t.v. parameters (at the current CCIR Plenary) as a good deal of research and experimental are still required."

A report produced by a European team concluded that the work accomplished by the CCIR during the 1982-86 research period now provides a good understanding of the requirements that a compatible world h.d.t.v. production standard will have to satisfy. The Europeans proposed that additional h.d.t.v. research should be done during the next fouryear CCIR period ending in 1990, with the objective of agreeing a world standard at the next series of CCIR Final Meetings.

A special h.d.t.v. demonstration area at NAB included equipment from 24 manufacturers, including cameras from Sony and Bosch, a telecine from Rank, a production switcher from Grass Valley, a

Paintbox from Quantel, test equipment and monitors from Sony and a prototype component waveform monitor from Tektronix.
Mr E. William Henry, chairman of the US Advanced Television Systems Committee (ATSC) said, in direct contrast to the European's "let's wait and see" attitude, that "the time to establish a single worldwide h.d.t.v. studio standard is now".

HDTV: terrestial transmission tests

Plans for the experimental terrestial transmission of h.d.t.v. in the Washington area were described in one of the over sixty papers presented at NAB. The first objective of the US experiment is to demons-
trate advanced tv systems to broadcasters through on-air transmissions rather than as laboratory curiosities.
The choice of location, the Washington area, is connected with the second reason for the experiment, which is to inform government decision makers in the US about advanced television systems.
U.h.f. tv channels in the US (unlike in Europe) are continually under threat from the land mobile radio industry, and US broadcasters hope through these experiments in the Washington area to convince Congress and the FCC not to preclude, through changes in the u.h.f. spectrum allocations, the broadcast delivery of advanced television.
For broadcasters in the US
this is an urgent question, because the FCC is currently considering a proposal to allow land mobile services to share parts of the u.h.f. television spectrum with broadcasters.
The site for the experimental h.d.t.v. transmissions is being chosen so that signals could be received directly in both the US Capitol (Senate and Congress offices) and the headquartes of the FCC.

The first system demonstrated will be the MUSE (Multiple Sub-Nyquist Sampling Encoding) system, which was originally developed by the Japanese NHK for satellite distribution of the proposed h.d.t.v. standard. The compression techniques in MUSE allow the reconstruction of an h.d.t.v. picture from a signal about 8 MHz wide.

MUSE has been demonstrated as a working system in Japan using f.m. However, the US experiments will use a.m. to save channel width. The test site will also be used for the experimental transmission (on terrestial u.h.f. tv channels) of MAC systems which are being advocated by the Europeans.
The US paper concluded that it is important that the programming be attractive and interesting for these local experimental h.d.t.v. transmissions, because, as the paper puts it: "Many of the people (congressmen and senators) whose present actions will influence the future of terrestial broadcasting in the US and advanced television development, are non-technical and cannot be expected to spend much time looking at colour bars, resolutions charts or ducks floating on a lake!"

European view

Representing a European view on h.d.t.v., George Walters, technical director of the EBU,
said at NAB that "the problems facing broadcasters in relation to h.d.t.v. must be separated into those relating to production and those relating to transmission".
Waters reminded his audience that the combined Broadcasting Unions' February meeting in Prague had passed a resolution calling for the allocation of spectrum in the 22 GHz band for h.d.t.v. broadcasting in Region 1. Regions 2 and 3 already have this allocation.
Getting a worldwide allocation for h.d.t.v. would present some difficulties and would require careful negotiation. For example, in the UK these frequencies are already allocated to Mercury for their fixed links. However, Waters concluded that a single, worldwide broadcast band would be the best solution for h.d.t.v.

VOA s.w. project

The VOA's massive modernization and expansion programme, which could involve the purchase of over one hundred 500 kW short-wave transmitters, was a major discussion point among transmitter manufacturers at NAB.
Although not selected as one of the four suppliers (Continental, Brown Boveri, Marconi and Telefunken) of single 500 kW transmitters for the VOA's evaluation trials in Greenville, Thomson-CSF from France had on display the control panel from their latest generation of high-power s.w. transmitters. Thomson were reminding visitors that their new second-generation 500 kW short-wave transmitter in Abidjan had recently come on air.
Telefunken, also with an eye on the VOA $\$ 1$ billion project, had a $1 / 72$ scale model of the 500 kW short-wave transmitter. Telefunken's Juergen Graaff told $E \& W W$ that acceptance tests on Telefunken's recently installed 500 kW transmitter were due to start at Greenville the week following NAB. The VOA were expecting acceptance trials to run for about a month.

The VOA then plan to operate the four 500 kW transmitters, each from a different manufacturer, alongside each other for a comparative evaluation period of about four months. The VOA expect to be

issuing the first main transmitter purchase tenders later this year.

The VOA's short-wave reequipment project has been described as the biggest single transmitter project ever. The project involves re-equipping (or building) up to fourteen high-power transmitter sites around the globe.

CCIR/RDS-a US view

One paper at NAB explained for a US audience the effects recent CCIR decisions will have on broadcasting in North America. One area of possible disagreement was the Radio Data System (r.d.s.) proposed by the EBU. Concerns have been raised in the US regarding the compatibility of r.d.s. with other subcarrier services now in use or being tested.
F.m. subcarrier operations are now fully deregulated in the US and it is therefore unclear what regulatory weight, if any, can be given in the US to a CCIR recommendation concerning r.d.s. It is no also unclear exactly what status any CCIR-adopted recommendation enjoys in the US.

In conclusion, the paper showed a thread of hope in what otherwise could be a confused situation, by suggesting that with the current FCC philosophy of not developing or adopting technical standards, but preferring to leave this function to the "market place", a CCIR recommendation itself may be an "alternative
avenue" to the pursuit of technical standards in the US.

Klystrodes

Nat Ostroff, head of the US tv transmitter manufacturer Comark, described the introduction of a klystrode into a high-power u.h.f. tv transmitter as the most significant development in u.h.f. tv transmitter design in the past 35 years.
The traditional battle between the klystron and the tetrode as the amplifying device in u.h.f. tv transmitters has now been joined by the Eimac Varian klystrode, which is a re-incarnation of a pre-war invention referred to then as the IOT (Induction Output Tube).
Today's klystrode has magnetically focussed electron beam, an input cavity and a collector. The electron beam is bunched by an r.f cavitydriven grid and operates as a Class B amplifier with a gain of between 18 and 23 dB .
In this NAB paper Ostroff made a cost-of-ownership comparison between a klystron and a klystrode transmitter, concluding that the klystrode, with its higher efficiency, should provide a five-year cost-of-ownership advantage of $\$ 100,000$ at the 60 kW level. The first operational use of a klystrode in a u.h.f. tv transmitter will be followed with interest by broadcast transmitter engineers around the world.

Klystrons

Not to be outdone in the klystron/klystrode debate, Dr Roy Heppinstall of EEV presented a paper entitled "Klystron operating efficiencies: Is 100% realistic?". Heppinstall warned that care must be taken when comparing the operating efficiency figures quoted for gridded klystrons, klystrodes and multi-staged depressed collector klystrons.
Defending the klystron, Heppinstall said that he expected that the figure of merit for a gridded klystron operating at optimum efficiency in a full-time modulated mode would be comparable with that of a klystrode or multi-staged depressed collector klystron.

New-comer

The NAB is held annually in the US. The two major European broadcast exhibitions (IBC in Brighton and the International TV Symposium in Montreux) are both held biannually on alternate years. This arrangement results in there being one major broadcast show on each side of the Atlantic every year.
This year there is a newcomer to the broadcast exhibition circuit; a new show, "Broadcast ' 86 " is being launched in Frankfurt in late June.

However many broadcast shows there are in Europe, none of them will match NAB: the world's biggest broadcast show.

PHONE 047460521 4 LNES

INTEGRATED CIRCUITS

DIODES

AA119
 BA145 BA148
 BA154 BAR BA157
 BA157 BAX13 BAX16
 BY126 BY BY 127 8
 BY176 BY179 BT132 BY 184
 BT199

8

CATHODE RAY TUBES Please add £3 additional carriage per tube.

CME822w	19.00	${ }^{\text {DG7 }} 32$	45.00	${ }^{\text {M38 }} 122 \mathrm{~W}$ W	${ }_{65}^{65.00}$
CME822GH	25.00	${ }^{\text {DG }} 132$	45.00 5500	M38-1400A	${ }^{65.00}$
CME 1428GH	45.00 3900	${ }^{\text {OH7 }}$	55.00	M38-341P31	65.00
CME 1523 W	39.00	DP75	35.00	M38-344P39	65.00
CME 1431GH	39.00	DP7. 6	35.00	M40-120W	59.00
CME1431W	39.00	${ }^{\text {ON1 }} 1378$	35.00	M43: $22.6 / 01$	\%5500
CME 2026 H	45.00	F16.019M	75.00	Ma4-1200C	${ }_{65} 65.00$
CME2024W	45.00	$\mathrm{F}^{16-1017 \mathrm{D}}$	75.00	M44-120GR	${ }_{65}^{65.00}$
CME2325w	45.00	F21.130GR	75.00	M50-120GH	${ }_{6500}^{65.00}$
CME3218W	45.00	F21. 306 C	75.00	M50-120G8	${ }_{65.00}$
CME3132GH	45.00	F31-10GM	75.00	M50-120GV	65.00
CME3155W	4500		75.00 7500 1500	M50.120.C	${ }^{65.00} 7$
	25.00 89.00 8		7500 75.00		75.00 35.00
CV1450	35.00	F31.1210	75.00	S6AB	45.00
CV1526	19.00	F37.136R	75.00	SE3AP31	40.00
CV2185	15.00 1900 1000	${ }_{\text {F }}^{\text {F31.1.131 }}$	75.00 75.00	SE40.97	45.00 55.00
CV2191 CV2,93 C2,	19.00 15.00 1		75.00 185.00		55.00
CV5\%19	85.00	F41-141.G	185.00	SE5FP31	55.00
CV5320	85.00	F41-142.CC	185.00	${ }_{T}^{\text {T937 }}$	65.00
CVX389	${ }^{55.00}$	M7-120w	19.00	${ }^{\text {T948N }}$	65.00 6500
	390.50 4500		${ }_{45.00}^{19.00}$		65.00 55.00
${ }_{0} 010.2106 \mathrm{H} 68 \mathrm{~B}$	65.00	M14-100LC	45.00	V5004GR	59.00
D10-230GG	35.00	M17-151GVR	175.00	V5004LD	59.00
010.2306M	(35.00	M17.15GR	$\begin{array}{r}175.00 \\ \hline 45.00 \\ \hline\end{array}$	V660070p31	65.00
${ }_{\text {col }}^{\text {D10233-GY/90 }}$	55.00 49.50	M19-103W	${ }_{55.00}$	V6008GW	59.00
013 -51GL26	85.00	M23.110GH	55.00	v6034WA	59.00
D13-51GM/26	85.00	M23-11110	${ }_{55500}^{5500}$	V60. VCAL	59.00
	55.00 5900	M ${ }_{\text {M } 23.112 \mathrm{I}}^{\text {M }}$	55.00 55.00 5	${ }_{\text {V }}^{\text {V6048 }}$ V6064BP31	49.00 5500 500
Dil 13.6006 M D 13610 GH	59.00 59.00	M23-12GW	55.00	VG06acta	55.00
D13-5116H	59.00	M23-112KA	55.00	V6069GH	55.00
D136116M	59.00	M24.120GM	59.00 5900	V6070031	5.00
D13.630GH	5900	M24.120LC	5900	$\checkmark 7030 \mathrm{CH}$	${ }_{59} 59.00$
${ }^{\text {D }}$	75.00 75.00	M24.1216H	59.00 55.00		59.00
${ }_{014.1626 \% / 84}$	59.00	M28.12GH	5500	$\checkmark 7035 \mathrm{~A}$	49.90
D14-17268	55.00	M28-131C	49.00	$\checkmark 7037 \mathrm{GH}$	45.00
D14-172GV	55.00 5500	${ }^{\mathrm{M} 28.13 \mathrm{LGG}}$	49,00	V8004GR	65.00
Di4, 4736 GH D 441736 M	55.00 53.00		49.00 5500	V8006GH	65.00 65.00
D144736R	55.00	M28-133GH	55.00	VCR139A	${ }^{11.50}$
D14.181GH/98	65.00	M31.1016H	55.00	${ }^{33 \mathrm{P}}$ \|	11.50
${ }^{\text {D }} 14.181616 \mathrm{~J}$	55.00 5300	M31-826R	${ }_{53500}^{55.00}$		11.50 55.00
D14.1816M	53.00 59.00	M31-184W	${ }_{65.00}^{5300}$	${ }_{3}^{\text {3/WPI }}$	55.50 18.50 1000
${ }_{\text {O14-182GH }}$	59.00	M31.184GH	85.00	4 EPP	33.00
D14-2008E	89.30	M31.184P31	${ }^{65.00}$		9.00
	$\begin{array}{r}85.00 \\ 75.00 \\ \hline\end{array}$			${ }_{\text {SBPHP1 }}$	${ }_{30.00}^{30.00}$
D14-210GH	75.00	M 31.1906 R	55.00	$58 \mathrm{HP31}$	30.00
${ }^{\text {D14.270GH/50 }}$	75.00	M31-190LA	${ }_{55}^{5500}$	${ }_{5 C P 1}$	1000
-14.310w	$\begin{array}{r}10.00 \\ 85.00 \\ \hline\end{array}$	M31.1920\%	${ }_{59500}^{55.00}$		15.00 39.00
D14.340GH KM	45.00	M31-270GY	65.00	${ }^{1388 P}$	13.50
D14.340KA	45.00	M31-271.931	65.00	${ }^{138 P 9} 4$	17.50
${ }^{\text {Di6.-100GH }}$	${ }^{65.00}$	M31.2716W	65.00 6500	+70WP4	5
	69.00 65.00	M35-14, W	${ }_{75.00}^{6500}$		15.00
${ }^{\text {D16-100GH/79 }}$	69.00	M36-170LG	75.00	1273	39.00
${ }^{\text {D16-100GH/97 }}$	65.00	M38-10: GH	${ }^{65.00}$	1564	45.00
-	69.00 65.00	M38-120W	${ }_{65.00}^{6500}$	${ }_{94242 \mathrm{E},}$	${ }_{75.00}^{80.00}$
${ }_{067} 0$	55.00	M38-120WA	${ }^{65500}$	95447 GM	75.00
${ }^{\text {OB77 }} 6$	3500 5500		65.00 65.00	${ }_{7709631} 9$	${ }_{78.50}^{7500}$
DB7 36	55.00	M38-121LA		709631	

\qquad 3HSS(H) Sultable for Hilachi
VT5000. VT 8000 , VT 6000, VT 8500 VT5000.
VTOOOO

VIDEO BELT

KITS

Saryo VTC 5500
Sanyo VTC 9300
Sanyo VTC 9300 P

Sharp VC 6300
Shap VC 7300
Sharp VC
Shap VC 8300
Sharp VC 9300

BETAMIX VIDEO HEADS TS3B (1 Pinl Suitable for Son
Toshiba 5000 Series and NEC
\qquad
SANYO ORIGINAL VIDEO PARTS
\qquad VTC930009500
Sanyo Head to Sanyo Head to
$5300 / 5000$
Video Head Cleaning Tape (VHS
Video Head Aerosol Cleaner
Video Copying Lead and Connector

E H T MULTIPLIERS		VARICAP TUNERS		PUSH BUTTON UNITS		
ITT CVC20 ITT CVC30 PHILIPS G8 550 RANK TROA THORN 3000/3500 THORN 8500 THORN 9000 UNIVERSAL TRIPLER	6.35 6.35	ELC 1043/05 MULLARD ELC 104306 MULLARO	8.65 8.65	DECCA IT CVC20 6WAY ITVVV5-7-WAY	7.95 10.19	
	6.96	U321	8.25	PHILIPS G8 (550) 6-WAY	14.49	
	$\begin{aligned} & 6.91 \\ & 7.57 \\ & 8.00 \\ & 8.00 \\ & 5.45 \end{aligned}$	U324 ${ }^{1100}$		200MA QUICK BLOW FUSES		
		THERMISTORS		$\begin{aligned} & 100 \mathrm{MA} \\ & 200 \mathrm{MA}-5 \mathrm{AMP} \end{aligned}$	8p each 5 peach	
REPLACEMENT		VA 1040 VA1056S VA1104 VA 1097	$\begin{aligned} & 0.23 \\ & 0.23 \\ & 0.70 \\ & 0.45 \\ & 0.25 \end{aligned}$	20MM ANTI SURGE FUSES		
ELECTROLYTIC CAPACITORS				100MA-800MA1A-5AMP	15peach 12 peach	
DECCA 30(400-400/350V) DECCA $80 / 100(400 / 305 \mathrm{~V})$ DECCA 1700 (200-200-400-350V) GEC $2110(500 / 300 \mathrm{~V})$ ITT CVC20 (200/400V) PHILIPS G (600/300V) PHILIPS G9 ($2200 \times 53 \mathrm{~V}$) PHILIPS G11 (470/250V)	2.85					
	2.99	SPARE \& AIDS				
	2.25	HEAT SINK COMPOUND FREEZE IT SOLDAMOP SWITCH CLEANER WD40	1.00	PUSH PULL MAINS SWITCH (DECCA. GFC RANK THORN		
	1.80		0.95			
	2.25		0.64	ETC, veif Gain module ODE CAP (27KV)	1.02	
	1.19		0.85		6.99 0.69	
	2.35		1.75		0.69	

P. M. COMPONENTS LTD

SELECTRON HOUSE, SPRINGHEAD ENTERPRISE PARK SPRINGHEAD RD, GRAVESEND, KENT DA11 8HD

A SELECTION FROM OUR STOCK OF BRANDED VALVES

PINEAPPLESOFTWARE

Programs for the BBC models ' B ' with disc drive with FREE updating service on all software

DIAGRAM

Stil the only drawing program available for the BBC micro which gives you the ability to draw really arge diagrams and scroll them smoothly around the screen stopping to edit them at any time if required
Pineapple's unique method of storing the diagram information on disc means that the size of diagrams is imited only by the free space on disc, and not the amount of computer memory you have available. (A blank 80 track disc will allow up to 39 mode 0 screens of diagram
The superb print routines supplied with the program enable large areas of the diagram to be printed in a single print run in a number of different sizes and rotated through 90 deg if required. Full use can also be made of printers which have a wider than normal carriage available.
The program is fully compatible with the Marconi Tracker ball described below
PLEASE STATE 40 or 80 TRACK DISC \& WHETHER STANDARD BBC OR MASTER VERSION ISREQUIRED PRICE $£ 25.00$ + VAT

DIAGRAM UTILITIES

A suite of six utility programs which add additional features to the 'Diagram' drawing program. The utilites include the saving and loading of areas of diagram to and from disc. The ability to display the whole of your large diagram on the screen at one time (In either $4 \star 4$ or $8 \star 8$ screen format) The addition of borders and screen indents to diagrams. and the ability to shift a whole diagram in any direction.

PRICE $£ 10.00$ + VAT

MARCONI TRACKER BALL

This high quality device comes with i's own icon Artmaster drawing program and utilities to enable it to be used in place of keyboard keys, joysticks, or with your own programs

PRICE $£ 60.00$ + VAT p\&p $£ 1.75$
PRICE INCLUDING 'DIAGRAM' SOFTWARE £79.00 + VAT p\&p £ 1.75

TRACKER BALL for MASTER series

The Pointer ROM is supplied instead of the Icon Artmaster disc and enables the Tracker ball to work directly with the MASTER series computers. (e.g. to use with TIMPAINT etc.). Prices are the same as for the directly with the MAS
standard tracker ball

POINTER

The Pointer Rom is avallable separately for people already owning tracker balls, and comes with instructions for use with the MASTER computer

PRICE £12.50 + VAT

PCB

This new release from Pineapple is a printed circuit board draughting aid which is aimed at producing complex double sided PCB's very rapidly using a standard BBC micro and any FX compatible dot-matrix printer
The program is supplied on EPROM and will run with any 32 k BBC micro (including Master series). Also supplied is a disc containing a sample PCB layout to demonstrate the programs features.
By using an EPROM for the program code the maximum amount of RAM is available for storing component ocation and ASCII identification files etc (Up to 500 components and 500 ASCII component descriptions may be stored for a given layout). These is no limit to the number of tracks for a given PCB, although the maximum size of board is restricted to $8^{\prime \prime} \star 56^{\circ}$
Using a mode 1 screen, tracks on the top side of the board are shown in red, while those on the underside are blue. Each side of the board may be shown individually or superimposed. A component placement screen allows component outlines to be drawn for silk screen purposes and component numbers entered on this screen may be displayed during track routing to aid identification of roundels.
The print routines allow separate printouts of each side of the PCB in a very accurate expanded definition 1 scale, enabling direct contact printing to be used on resist covered copper clad board.
This program has too many superb features to describe adequately here, so please write or 'phone for more information and sample prinouts.

PRICE £85.00 + VAT

CONVERTER LEADS

Converter leads to enable the Trackerbal to run mouse sottware and the mouse to run trackerball software inc DIAGRAM). Please state which way round when ordering. PRICE $£ 8.00$ + VAT

BASIC COMPILER

Use our Basic Compler to produce direct 6502 machine code programs and ROMs for your own Basic programs Speed increases of up to 25 times are achieved. PRICE $£ 25.00$ + VAT

ALL ORDERS SENT BY RETURN OF POST

39 Brownlea Gardens, Seven Kings, Iford, Essex 1G3 9NL. 〒 Tel: 01-599 1476

CIRCLE 22 FOR FURTHER DETAILS

MANUFACTURERS OF:
Superb performance equipment including: Precision Spun Aluminium Dishes, Scalar Horns, Transitions, Video Devices, etc.

COMPLETE SYSTEM

FULL BAND

Full band, low noise L.N.B
1.8m MK II SPUN

ALUMINIUM DISH complete with base structure and feed

Including choice of
high specification
Tuneable Demodulators

FULL BAND

PROFESSIONALSYSTEM
1.8 m MK I SPUN ALUMINIUM DISH complete with base structure and feed. "Maspro" L.N.B. $<2.3 \mathrm{~dB}$ noise figure.
Fully Tuneable, 800 MHz wide, Rack Mount Professional Receiver quantitr discounts available on systems and components
availability ex stock

ESP services ltd.

Sowter Transformers

With over 45 years' experience in the design and manufacture of several hundred thousand transformers we can supply:

AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE YOU NAME IT! WE MAKE IT! OUR RANGE INCLUDES

Microphone transformers (all types), Microphone Splitter/ Combiner transformers, Input and Output transformers, Direct Injection transformers for Guitars, Multi-Secondary output transformers, bridging transformers, Line transformers, Line transformers to B.T. Isolating Test Specification, Tapped impedance matching transformers, Gramophone Pickup transformers, Audio Mixing Desk transformers (all types), Miniature transformers, Microminiature transformers for PCB mounting, Experimental transformers, Ultra low frequency transformers, Ultra linear and other transformers for Transistor and Valve Amplifiers up to 500 watts, Inductive Loop Transformers, Smoothing Chokes, Filter, Inductors, Amplifier to 100 volt line transformers (from a few watts up to 1,000 watts), 100 volt line transformers to speakers, Speaker matching transformers (all powers), Column Loudspeaker transformers up to 300 watts or more.
We can design for RECORDING QUALITY, STUDIO QUALITY, HI-FI QUALITY OR P.A. QUALITY. OUR PRICES ARE HIGHLY COMPETITIVE AND WE SUPPLY LARGE OF SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS. Many standard types are in stock and normal dispatch times are short and sensible
OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES. MIXING DESK MANUFACTURERS, RECORDING STUDIOS. HI-FI ENTHUSIASTS,
BAND GROUPS, AND PUBLIC ADDRESS FIRMS. WE ALSO SUPPLY MANY BAND GROUPS, AND PUBLIC ADDRESS FIRMS. WE ALSO SUPPLY MANY
GOVERNMENT DEPARTMENTS, NUMEROUS RESEARCH LABORATORIES, EDUCATION ESTABLISHMENTS AND MEMBERS OF A.P.R.S. Export is a speciality and we have overseas clients in the COMMONWEALTH, E.E.C., USA. MIDDLE EAST, etc. Send for our questionnaire which, when completed, enables us to post quolations by return.

E.A. Sowter Ltd.

Manufacturers and Designers
E.A. SOWTER LTD. (Established 1941): Reg.No. England 303990 The Boat Yard, Cullingham Road, Ipswich IP1 2EG, Suffolk.
P.O. Box 36, Ipswich IP1 2EL, England

Phone: 047352794 and 0473219390
Telex: 987703 G Sowter
CIRCLE 17 FOR FURTHER DETAILS
ELEC'TRONICS\& WIRELESS WORLD AUGUST 1986

Simple pulse generator

Requiring only two i.cs and four power mosfets, this design provides up to 15 V pulses at 1 A , with rise times of less than 10 On .

by B.J. Frost, B.Sc., M.I.E.E.

Apulse generator should be capable of driving a wide variety of loads. This will always require more drive capability than is provided by the pulse generation logic and, as Fig 1 shows, divides the design of a pulse generator into two major sections: the pulse generation circuitry and the output stagers). Within these two functional blocks there are several techniques that can be used.

Pulse generation. It is within this section that there exists probably the greatest number of possible options. Most desig. ners can list at least six ways of generating logic pulses and this number is increased again when one considers the number of logic families available from which to choose actual devices. From this wide choice of circuitry it is necessary to choose a design that provides the pulse generation with the minimum number of components, yet provides the nearest approach to the list of ideals.
Having decided to generate a simple mark'space pulse system with no multiple-pulse or formal delay functions, one can employ any astable circuit that allows independent control of the mark and space time constants. Nevertheless the intended maximum minimum pulse widths must be obtained with realistic components and the output from such circuitry should be interfaced easily to the output stage.
The 555 timer is worthy of first consideration but was ruled out for two reasons. Firstly, the timing capacitor is shared by the charge and discharge time constants, making wide independence between mark and space rather difficult, and secondly because the maximum speed of operation is not much in excess of 1 MHz . This is understandable because of the use of internal analogue comparators for the

Brian Frost graduate \boldsymbol{J} from Bangor University in 1c/4 with a degree in electronir engineering. He recently left Standard Telephones and Cables, where he was in charge of the design of automatic-test and manufacturing equipment and is now with Deltest Systems working on advanced, analogue-specific automatic-test equipment. He is a licensed radio amateur (G6UTN) and has completed a number of constructional projects, including a microprocessor-controlled 2 m synthezised transceiver.

Other interests include an involvement with REMAP, a UKwide network of engineers working voluntarily to make special aids for the disabled. In this field he is working on radio communication aids for the deaf.
threshold detections rather than logic components.

Commerical generators often go down to 10 ns , but this, is: only achievable by using logic families based on 5 V and, as I shall show when considering the output stage, this introduces extra difficulties. If a lower pulse width limit of 50 100 ns is acceptable, the c -mos family offers some worthwhile simplification. It can accept a wide range of power-supply voltages including 9 V for portable use), and since the upper logic level of +15 V always exceeds that of other families, the design of the output stage is very much easier when no there is no voltage step-up to be performed. In this way. the output stage becomes only a buffer and can be kept much simpler than otherwise.
A common device possessing the majority of the required features is the dualmonostable 4528 . This comprises two independent monostables that are able to generate pulse widths from around 50 ns to several seconds and. if they are coupled in tandem, form an adjustable markspace system that can provide any combination of pulse timings.

Features

An output always obtained, irrespective of control settings. Most pulse generators provide a delay function and set a pulse period with a width adjustment within this period. This does tend to cause users to set most generators with the aid of an oscilloscope, since it is very easy to get no, or double, outputs. A guaranteed output would be desirable.

Pulse range from $<1 \mu \mathrm{~s}$ to $>1 \mathrm{~s}$
A generator that exceeds $1 s$ in period is useful in allowing simple switching of relays or very low-speed devices.

Fully adjustable output voltage from 0 V to 15 V p-p
The generator is capable of enough output voltage and current swing to operate such items as relays, power mosfets at full 15 V gate drive), as well as correct operation of c-mos logic at full voltage.

Power output stage capable of 0.5 A sink, $>100 \mathrm{~mA}$ source
It is desirable to have an output that would drive all the logic families, be fast, and also capable of driving small relays and power loads.

Switching times of 20 ns

The ability of a generator to switch fast into capacitive loads allows it to be used with the increasing number of power mosfet devices that operate most efficiently at switching speeds of $<100 \mathrm{~ns}$, but appear as a load often up to several thousand picofarads.

Two complementary, identical outputs.

The provision of two outputs is incidental from the simplicity of the design. In use however the two outputs have proved to be useful for such things as push-pull drive, floating load drive of $30 \mathrm{~V} p-\mathrm{p}$, and pre-trigger functions.

Fig. 1. The generator comprises two functions, generation and power output.

Fig. 2. Power mosfet is one example of a demoding load.

Fig. 3. Simplest output stage, with the effect of output capacitance on waveform.

Fig. 4. TotemPole output offers an improvement, but speed still limited.

Fig. 5. Complementary output provides high speed, but limited voltage swing.

Using two monostables for the pulse generation results in front-panel controls that differ slightly from conventional generators. The usual period and width controls are replaced by two separate, A and B, pulse-width controls. This does not seem to present any problem; indeed it can be a definite advantage, in that it is not possible to set the pulse width greater than the period, as happens on some commercial generators, resulting in no, or double, pulse outputs. With this 'mark/space' technique, there will always be an output, however dissimilar the settings of mark and space.
There is an increased complexity caused by the need to ensure that the tandem connection of monostables always starts up, since it is possible that both monostable can be at rest and so not trigger one another. As will be seen, this can be accommodated within the circuitry that also provides a single-pulse facility. Were it not for this extra logic only the 4528 need be used; during testing, the tandem connection of monostables very rarely failed to start on power-up, but it is prudent to include protection for this eventuality.

Output stage. A good pulse generator should be capable of driving a wide variety of loads. Of these loads, the logic families themselves probably represent the easiest to drive, the most difficult being switching power devices and other reactive loads. Increased use of power-mosfet devices in switch-mode circuitry as in Fig 2 provides a load for which a good pulse-generator is required. The generator has to be capable of both sourcing and sinking currents that can drive the $1-3 \mathrm{nF}$ of input capacitance with 10 V logic signals at transition times well below 100 ns . Simple calculation shows that this requires at least 100 mA .

The problems of designing a good output stage for this generator are the same as those faced by the designers of all the logic families. A decision has to be made as to the relative tradeoffs between output switching speed, output voltage swing and load capacitance capability and ultimately the power consumed by the output stage that results.

Figure 3 shows the simplest output stage, based on one transistor. A pulse drives the base of the transistor, so turning it on and off. It is clear to see that when the transistor turns on, current can be 'pulled' out of the charged capacitive load through the transistor at a high level, certainly high enough to achieve a fast negative-going output transition (1). However, when the transistor is turned off, the positive transition (2) is entirely limited in speed by the load capacitance ($\approx 1000 \mathrm{pF}^{\prime}$) and the value of the pullup resistor ($1 \mathrm{k} \Omega 2$), resulting in a sluggish rise with a time constant (CR) of $1 \mu \mathrm{~s}$. Obviously, this will make nonsense of pulse widths less than this. The situation can be improved by lowering the pullup resistor value but clearly this results in hot resistors and more current through the transistor and cannot improve matters by more than about one order of magnitude.
The circuit can be improved as shown in Fig. 4 by the use of an active load. This is the technique widely used in bipolar logic families and often called the Totem-Pole output stage. It operates by providing a complementary drive to the two output devices, one to sink current from the load during negative transitions and the other to source current to the load during positive transitions. This allows the load to demand almost as much current as it requires, but more importantly it allows the output stage itself to draw very little quiescent current when not actually switching, since both devices are never on at the same time.

Unfortunately this configuration is rather unattractive for our purposes. In using bipolar transistors in this way there are secondary charge storage effects limiting switching speeds, which makes the construction of such an output stage best left 'on-chip' to the logic i.c. designer. To obtain good switching times these transistors need attention to the amount of base drive, to prevention of saturation and operation from a restricted supply rail such as 5 V .

Another solution to output design is shown in Fig. 5 where two complementary transistors can be used in power-
buffer stage without paying these switching penalties. In this connection, both transistors are connected as emitterfollowers, with current taken through either the p-n-p during sink, or the n-p-n during source. This circuit owes its speed to the fact that neither transistor ever saturates, and this circuit is widely used for driving high-capacitance loads at fast switching speeds. Unfortunately for this application, the circuit is restricted in that the output cannot get to within nearer than 0.6 V of either rail, and this limited lower voltage prevents it from interfacing to t.t.l.-type inputs.

C-mos logic uses another, similar, type of 'totem-pole' output stage, shown in Fig. 6. In this case the two devices are complementary mosfets. The drive pulse causes one device to switch off whilst the other switches on. Mosfets have no charge-storage time, thus inherent switching times are fast and assisted by the switching of the other device. As they switch from one to the other there is a short time when momentarily both devices are on, resulting in a current which flows from the supply to ground: the on resistance of the devices limits this current to millamps and it is of very short duration. The devices allow the output voltage to reach the supply rails

In Fig. 7, discrete mosfet devices are used to build an output stage which has the benefits taken from several of the previous configurations. A complementary drive pulse is used to drive two n-channel power mosfet devices (VN10), so avoiding complementary devices. These are connected in the same totem-pole format as the transistors in Fig. 4. Use of the VN10 instead of bipolar transistors removes the speed limitations of saturation and storage time, and their 15 V drive capability offers easy drive from existing c-mos circuits. The VN10 is a device with a 5 ohm on resistance, which makes it a device that combines medium input capacitance, easily driven by c-mos logic, yet which has a low enough on resistance to handle currents of up to 1 A . With the output stage connected as shown, the output voltage is taken down close to
ground and up to within 2-3V of the positive rail. Switching times of the VN10 are fast; measurements show transition times of around 5 ns . An added advantage is that the 4528 monostable can directly provide the required complementary drive waveforms.

One major advantage of using mosfets is that adjustment of the output voltage is very simple. Because the gate voltage may range from -15 V to +15 V irrespective of the drain voltage, it is possible to drive the output stage from the 4528 whilst varying the upper mosfet drain voltage and so varying the output. The switching speed and on resistance remain the same.

This output stage is used for each of the two outputs from the generator with only a few modifications to permit reasonable matching into 50 ohm lines and protection against limited inductive spikes.

Complete generator

Figure 8 shows the complete circuit diagram. IC_{2} is a single 4528 dual-monostable which generates the required mark/ space waveform and directly supplies the output stage. In principle, the falling edge of one monostable pulse triggers the other monostable, thus a square-wave is generated where the 'mark' and 'space' are independently adjusted by the timing settings of each monostable.
The complementary outputs from each monostable are used to drive the output stages, each of which consist of two VN10 mosfets. Supply voltage to the output stages is made variable by the output level adjustment R_{20}. Protection against reasonable inductive overshoot is provided by D_{3} and D_{4}, and R_{16} and R_{17} allow both outputs to reach +15 V to fully drive 15 V c-mos logic with reduced pullup. Resistors $\mathrm{R}_{9}, \mathrm{R}_{15}, \mathrm{R}_{12}$ and R_{14} provide output current limiting and a reasonable match into 50 ohm co-ax. by subjective evaluation on test. (Sorry, trial and error!) Increased output current to more than 1 A can be obtained if these resistors are omitted, but there is increased risk to the mosfets from unlimited load currents.

Fig. 7. N-channel mosfets in final output stage design.

Extra logic is provided by $\mathbf{I C}_{1}$ to provide the 'single pulse' facility and to guard against the monostable outputs starting-up with no pulse from either output. Should this occur, $\mathrm{IC}_{1 \mathrm{la}}$ gates an oscillator ($\mathrm{IC}_{1 \mathrm{~b}}$) which injects an external trigger to the monostable if neither output is producing a pulse. $\mathrm{IC}_{1 \mathrm{c}}$ and $\mathrm{IC}_{1 \mathrm{~d}}$ allow S_{2} to trigger both monostables if a 'single' pulse is required. Closing switch S_{1} disables the oscillator $\mathrm{IC}_{1 \mathrm{~b}}$ via D_{5} and biases the A input of the monostable into a high, untriggered state. Each press of the push button S_{1} causes a negative-going edge to be coupled via C_{10} into the A monostable. This generates a composite output of an A pulse followed by a B pulse, allowing A to be used as a pre-trigger for B as the main output, if required.

Performance

Figure 9(a) shows the performance of the generator unloaded. A 100 kHz 50.50 waveform shows rise and fall times of around 100 ns . Figure 9 (b) shows the effect of loading this same waveform with a $0.1 \mu \mathrm{~F}$ capacitor. The output amplitute is reduced to 9 Vp -p, showing an equivalent ouput impedance of around 50 ohms . This figure is largely due to the 15Ω resistors present in the output stages used to match into coax. lines and to provide some current limiting. If these resis-
tors are removed, the $0.1 \mu \mathrm{~F}$ is now discharged from 9 V in less than 1us, showing the potential current sink capability of just under 1A (Fig. 9(c)).
The minimum pulse widths are $<200 \mathrm{~ns}$, resulting in a square wave $>2 \mathrm{MHz}$. This pulse width can be further reduced to $50-80 \mathrm{~ns}$ if an extra position is provided on the range switch where there is no timing capacitor. At this level though, the calibration is poor.
The generator will operate satisfactorily from any supply voltage from around 5 V to 15 V as shown in Fig. 10. As a mains unit it can be supplied from 15 V , allowing the output voltage to be set from zero to this value. At 15 V , the worst-case supply current is around 35 mA , excluding any current that may be sourced to a load. Alternatively, the unit can be operated from a 9 V battery, when the current falls by a factor of two and is around 5 mA for $100 \mathrm{kHz}, 50: 50$ output. The supply current follows an unusual law and does not change as the pulse width changes unless the duty cycle differs significantly from 50:50, when the current can fall towards half the $50: 50$ value. In principle though, the low level of supply current does allow battery operation to an extent difficult to obtain with conventional pulse generators.
Figure 11 shows the variation of pulse width with supply

Fig. 8. Complete circuit
diagram.

Fig.9. At(a) is a 100 kHz output waveform unloaded, while at (b) is seen the effect of a 1 nF capacitor.
Removing 15』 matching resistors gives waveform at (c), the $9 \mathrm{~V}, 1 \mu$ s fall time indicating a current sink capability of almost 1A.
voltage. The generator is not a precision device and for operation between 15 V and 9 V a change in pulse width of around 15% can be expected. Take the supply to 5 V and the width has increased by 20%. Note, too, that the output stage drive capability will be significantly lower for supplies below $7-8 \mathrm{~V}$, due to the falling gate voltage on the VN10s.

Construction and testing

There should be no particular construction difficulties due to the simplicity of the unit, but there are a few techniques during testing that can avoid possible damage to the output stages.
During construction, leave the VN10s in their packet and do not fit them into the circuit; more about the reasons for this later.
The timing capacitors can most conveniently be mounted on the switch itself. This reduces the wiring between switch and p.c.b. to only two wires per switch. Avoid runs of more than 150 cm (6 in) from either the timing switch or potentiometer, since this intro-
duces extra stray capacitance, which will limit the minimum pulse width obtainable.
Do not omit the decoupling capacitors. Ensure that a 10n100 n capacitor is wired across the 4528 and that the same is wired across each of the output stages. Place a $10-100 \mu \mathrm{~F}$ capacitor anywhere across the supply rails. When the pulse generator output changes state, currents of up to 1 A will flow for times as short as 10 ns . These current pulses must be met from the supply rails without the supply voltage falling or the operation of the unit can easily be unpredictable. At 10 ns pulse widths a piece of wire more than a few centimetres long has enough selfinductance to cause a fall in voltage for more than a few mA of current. The only way of supplying these current pulses is to provide strategically placed 'reservoirs' of charge. It is from these decoupling capacitors - particularly the output stage decoupling - that the short-term pulse output capability of the generator will be met.
Any 15 V or 9 V battery supply will do, depending on the
intended use of the unit: its current consumption is only some $20-30 \mathrm{~mA}$ at 15 V .

Testing

The most annoying damage that can befall the unit is to have the output stage(s) fail. This occurs because one or more VN10s is faulty or is not driven in a complementary manner to its twin. In this situation it is typical for both VN10s in any one output stage and the level adjusting transistor Tr_{1} all to fail. A post mortem is both unpleasant and avoidable by the following test procedure.

The VN10s should still be in their packet. Do not insert the 4093 and temporarily link IC_{2} pin 4 to ground. This connects the monostable to oscillate by itself (assuming it starts) and allows the timing components to be checked without worry about the output stages or the restart circuitry.
Switch the circuit on and check for oscillation at pins $6,7,9$ or 10 . There may be occasions when it does not start, so switch off and then on again. Check that each switch range works, together with its variable control from end to end. A total generator range from around 1 s to under $0.5 \mu \mathrm{~s}$ should be obtained. If there are problems on the longer time ranges, check that the electrolytics are connected with positive to pins 2 and 14 respectively, and be aware that the accuracy of such electrolytics is poor and so may require substitution in some cases.
Remove the link on pin 4. Insert the 4093 and check the operation of the 'single/train' logic. Select pulse widths longer than about 100 ms and switch from 'train', where the unit should happily selfoscillate, to 'single', when it should stop. Press the 'pulse' button, there should be one output pulse, immediately at pin 6 and delayed at pin 10 .

If all is well, insert the first two VN10s. Experience shows that these are more static sensitive than c -mos and if only one is damaged, its twin will almost certainly go with it at switch-on. Immediately on removal from the anti-static packaging, wind some fine copper wire in a figure-of-eight between the leads just under the body. In this way the de-
vices can be handled at will, soldered in, and the wire removed only at the last minute.
Fit the VN10s, Tr_{3} and Tr_{5} with their anti-static wires intact. When in place, remove these wires and apply power. Check that an output is obtained that varies smoothly with the level control from zero to 15 V p-p. Note that faster waveforms will show a slow risetime because the positive edge is being obtained by the pullup resistors R_{16} and R_{17} instead of the upper VN10 devices. Verify that neither VN10 has suffered gate damage by checking that the gate drive voltage from pins 7 and 9 is a full 15 V p-p. Damaged fets can still operate whilst loading the driving stage.
When this is done, fit the remaining VN10s, remove their anti-static wiring and apply power. An output should be obtained from both A and B sides of the generator that can be varied from zero to 15 V p-p and is little changed at 1 MHz by a 100 pF capacitor placed on the output.

Calibration

Calibrating a unit such as this can present a problem. Defining a pulse width on any monostable by an RC time constant is always difficult when accuracies greater than 10% are required. Due to the nature of the 4528 , the wide range of capacitors and the variable potentiometer, an accuracy of around 20% will be quite good. Various attempts have been made to devise a reliable means of calibrating but, to achieve good calibration, work will be necessary to adjust the values of each of the capacitors on the range switches against some known standard until satisfactory. One method of calibration is to find a common scale where several ranges can easily be made to agree within the required amount and then to scale the potentiometer accordingly. It then remains only to adjust the capacitors of the other ranges. All of this work is unpleasant and difficult so perhaps like myself, you may consider that if the unit will be used with an already calibrated oscilloscope, then it is only necessary to ensure that all ranges overlap. This arrangement results in a greatly simplified front-panel

Fig. 10. Power supply current against voltage at 100 kHz .

Fig. 11. Pulse width against supply voltage.

Fig. 12. Timing diagram of the two outputs.
and is much less critical on the values of timing capacitors.

Use

For simple, variable mark/ space waveforms, either the A to B output provides a variable-level, adjustablewidth pulse train when the single/train switch is set to 'train'.

Sometimes, due to their timing relationship, both outputs can be useful. See the timing diagram of Fig. 12, which shows that the two outputs can be considered as anti-phase or complementary at widths $>1 \mu \mathrm{~s}$ but that they are also non-overlapping. There is a fixed delay of around 50 ns between every edge of A to every edge of B. irrespective of the
pulse width set. This allows output A to be used as a pretrigger for the main output taken from B. Triggering the oscilloscope from A will allow the complete positive edge of the output from B to be seen on a slower instrument. This is a useful function and saves having to provide a formal pretrigger output.

With the single/train switch set to single, each press of the button provides one pulse from A followed by one pulse from B. Again, the main output can be taken from B using A simply to delay the output pulse or to provide the previously mentioned pre-trigger facility. Any combination of mark/space settings may be used; for example to generate a 1μ s output pulse (from B) following a 1 s delay from A.

CP/M Plus (vers 3)

For NASCOM and Gemini computers

Features:
CP/M 2.2 file compatibility
Banked memory system
Fast warm boot from banked memory
Faster disk access:-
Directory hashing, memory cashing, multi sector I/O Better implementation of USER levels
Greatly extended and user friendly utility commands
20 transient utility commands
Includes MAC the DRI assembler
Multi command entry on single line
Multiple drive searching facility
Console redirection
Password file protection
Date and time file stamping
Larger disk and file handling
29 additional BDOS calls
Extended BDOS capability by easily attached RSXs
Winchester, floppy and virtual disk
Mixed drive/formats
Full source code of BIOS supplied
PLUS PLUS PLUS !!!!!!!!!!!

Excluding post and packing and VAT

Developing Systems

Consider our modular approach Nasbus/80 Bus compatible
CPU card
Z80 CPU incorporating memory mapping
64k RAM on board (expandable)
Z80 S 10 providing two RS232 channels
CTC providing programmable baud rates
P10 providing parallel/centronics V O
Parallel keyboard port
VIDEO card (VFC)
80 by 25 line output
Fast memory mapped display
On board floppy disk controller
Can be used with CPU card under CP/M
Available in kit or built and tested
DISK card (MPI)
Mixed $3^{\prime \prime}, 3.5^{\prime \prime}, 5.25^{\prime \prime}, 8^{\prime \prime}$ drives supported
SASI Winchester interface
Z80 S 10 providing two serial channels
CTC providing programmable baud rates

RAM card

64k to 256 k (in 64 k steps)
Supports 64/32k paging 4k mapping
Available in kit or built and tested
CLOCK card (RTC)
Attaches to any Z80 P10
Retains Centronics parallel output
Battery backup

PRICES			
CPU	$£ 230$	MPI	$£ 185$
VFC	$£ 199$	RAM (64k)	$£ 150$
RTC	£35	RAM (256k)	$£ 285$
	All prices exclude carriage and VAT		

For further information contact:

EMS Power Systems

EMS manufactures DC Power Supplies and Battery Chargers both linear and switch mode in a range from 5 VA to 3.2 KVA .
Also a complete range of Standby and UPS Systems 35 VA to 1 KVA. EMS specialises in the manufacture of customised products and has a full design and development facility.
EMS (Manufacturing) Limited,
Chairborough Road,
High Wycombe,
Bucks HP12 3HH.
Tel: (0494) 448484

RACKMOUNT CASES

19"Self Assembly Rack Mounting Case with lift off Covers Front Panel 10 gauge Brushed Anodised Aluminıum, Case 18 gauge, Plated Steel with Removeable Rear \& Side Panels In $1 \cup \& 2 U$ Types, a Subplate Chassis is Mounted to Bottom Cover In 30 Type the Subplate is located on two Rails Mounted Beiween The Side Plates

All Prices include Postage \& V A. T Cheques. Postal Orders Payable to
J. D. R. Sheetmetal, 131 Grenfell Road, Maidenhead, Berks. SL6 1EX. Maidenhead 29450.

CIRCLE 16 FOR FURTHER DETAILS
ELECTRONICS \& WIRELESS WORLD AUGUST 1986

RALFE • ELECTRONICS
 10 CHAPEL STREET, LONDON, NW1 TEL: 01-7238753

OSCILLOSCOPES	
TELEQUIPMENT D83 50 MHz	¢375
IELEQUIPMENT D67 25MHz	£225
TELEQUPMENT D66A 15 MHz	£200
TELEOUIPMENT D 1016 15MHz	£200
TELEQUIPMENT O63 15MHz	$\underline{2225}$
TEKTRONIX 4535 Som ${ }^{\text {TRIO }}$	ع400
SEL Labs EM102 15 SMHz battery/mains	¢ $\begin{aligned} & \text { ¢350 } \\ & \text { E250 }\end{aligned}$
PHILIPS PM3262 100мHZ	[675
TEST \& MEASUREMENT EQUIPMENT	
BRUEL \& KJAER Voltmeters 2409	¢60
PHILIPS Wow \& Flutier meler PM6307	
STC Attenuators DC - $1 \mathrm{MHz} 0-100 \mathrm{db}$.	£25
ROHDE \& SCHWARZ Polyscop 1400 MHz	£100
HEWLET-PACKARD Dmm type 3490A	£350
HEWLETT-PACKARD Pin modulators 8733A	¢750
HUGHES spot welding supplies $100 \mathrm{~W} / \mathrm{sec}$	\&125
HEWLET-PACKARD 141I/8554B/8552 Analyser	£350
HEWLEIT-PACKARD 14118554B/8552 Analyser	
HEWLETT-PACKARD 85518/8513 Analyser	£1K
BIRD 43 Watmeter.	
BIRD 4370 Watmeter	£450
MARCON/ TF 144H signal generator	
MARCON TF868 Universal bridge	
MARCONI TF2607 AC/DC Volmeler	$\varepsilon 200$
MARCON TF $10668 / 1$ AM/FM signal generator 470 MHz	£350
MARCONI TF995A5 AM FM signal generator 220 MHz .	£200
MARCON TF 2700 Universal bridge	
TEKTRON:X 576 Curve tracer	
HE WLETT.PACKARD 202H AM. FM signal generator	
MARCONI TF2330 Wave Analyser	£350
MARCONI TF 2002 M Fihf AM signal generator	¢250
MARCONI TF2162 Altenualor	${ }_{8125}$
MARCONI TF2430 80 MHz trequency counter	£150
SYSTRON-DONNER power unit O-50V IA.	£125
SYSTRON-DONNER trequency counters	£150
WAYNE-KERR B221 Universal bridge.	${ }_{4} 40$
POWER SUPPLIES	
-too numerous to list. please phone your requirements.	
MAINS CONDITIONERS	
- constant voltage transiormers	
ZENTHH 240V 240W 235
ZENITH 240V500W	. 860
CLAUDE LYONS 220 V 550 W sine-wave. new	25
Many others in stock. please phone.	
ALL OUR EOUIPMENT IS SOID IN FUIL WORKING CONDITION WARRANTED. PRICES ARE SUBJECT TO 15% VAT BUT FOR ORDERS RECEIVED BEFCR WIL PAY THE VAT. PHONE FOR CARRIAGE QUOTE.	
Many bargains for callers, SALE ON DURING JULY.	

CIRCLE 9 FOR FURTHER DETAILS

Applications simple (above) and more complex (below) for the output port of Interpack 1. Examples are from the instruction manual.

Interpack 1 includes an eight-channel a-to-d converter.

To order these units at the special prices arranged for readers of Electronics and Wireless World, turn to the coupon on page 74

Interpack 2 gives six change-over relays and eight switch inputs.

Electronics and Wireless World special offer

Versatile control and measurement interfaces

Microcomputers make excellent data gatherers and controllers for automatic equipment. And many are so cheap now that it is no extravagance to dedicate them full-time even to relatively trivial tasks.
But linking a micro to external equipment is not always straightforward, especially if its i/o facilities are limited. So DCP Microdevelopments' range of interface units, the subject of our special offer this month, looks as if it could fill a widespread need.

Two main interface units are on offer. For simple control applications there is the Interpack 2, which adds to your computer six independent relay outputs for switching small motors or lamps, eight switch inputs and an auxiliary power output of about 4.5 V (for leds, or for biasing opto-couplers). The relays have single-pole changeover contacts capable of handling 1 A at 24 V and their driver circuits are latched.

For more complex applica-
tions, the Interpack 1 has eight analogue inputs for voltage measurement, eight t.t.l. input/output lines, four singlepole relay outputs and four switch inputs: a varied mixture which will satisfy almost every common requirement short of direct mains switching - though of course you could easily add secondary relays to do that. The a-to-d has a 10 ms conversion time and gets its reference from a precision voltage source i.c.
Both Interpacks are fitted with an expansion port for connecting other input or output accessories or even a further Interpack.

A special feature of these interfaces is that the same units can be used with a variety of different computers, including Amstrad, Apple, BBC, Commodore and Sinclair Spectrum (IBM PC to be added to the list soon). Only a small personality board, which DCP call an Intercard, needs to be changed to match.
This card plugs into a recess

in the main interface board and its flying lead connects to the host computer. As the instructions point out, such an arrangement is unlikely to withstand rough or very frequent handling; but it does mean that another Intercard can be substituted quickly and cheaply if the equipment needs to be transferred to a different computer.
All the p.c. boards are of glass-fibre and are compact and well made. A black plastics box supplied with each Interpack houses both it and the associated Intercard and carries a sticker identifying the terminals.
The instruction manuals go into plenty of detail and provide some interesting application ideas. For example, they show how to connect a stepper motor, and how you can sense light: for that, all you need is a light-dependent resistor across the input terminals.
No complete circuit diagram is given with either interface, but there are many smaller illustrations showing the internal connections of each port and typical configurations. Program examples are generalized, since the actual commands used will vary according to the computer: information about these is given in the sheet which accompanies each Intercard and there is space in the main manuals to note them down.

Both modules are priced very reasonably at a level which should find them a place in many laboratories and classrooms, and should encourage ZX81s and other workhorses to emerge from retirement for useful activity once again. Interpack 1 costs just under $£ 40$ and Interpack 2 just under $£ 50$.

S5/8-the technical details

This universal serial interface offers a simple solution to computer interconnection problems.

The $55 / 8$ standard specifies nine signals (eight poles plus screen), as fol-

lows:

DINP DOUT HINP HOUT SINP
sout V+ GROUND signal ground (common)
EARTH earth
The data input and output carry the serial data stream. The handshake signals perform simple hardware flow control and $V+$, ground and earth are self-explanatory. (The subsidiary input and output are not to be used; they may be the basis of a future enhancement.)

Note that the S5/8 interface is defined at the mating face of the eight-pole socket on the d-device, with the input and output referring to the signal flow at that point, i.e. into and out of the D-device.

There is a defined relationship between dout and HINP, with HINP controlling the flow of data transmitted on vour. A logic 1 enables and a logic 0 disables transmission. A similar, but mutually independent, relationship exists betwen Dinp and hout. The Hout signal reflects the state of readiness of the device to receive data on dinp, logic 1 indicating ready and logic 0 indicating not ready.

Such hardware flow control is intended for simple applications and as a backup system. It is intended that more sophisticated configurations will use a software flow control protocol, i.e. using the data channels alone. However, the S5/8 specification insists that the handshake lines must still be present and functional.

Electrical aspects

The electrical characteristics of S5/8 are listed in the accompanying table. They can be satisfied by very simple circuits based upon a single highspeed c-mos logic device, such as an HC14 when operated from a single-rail power supply of $+5 \mathrm{~V} \pm 10 \%$. Power consumption of this arrangement is about 1 mA , considerably less than that required to power an RS-232C interface, especially where the bipolar voltages required have to obtained from a battery using a d.c.-d.c. converter.

High-speed c-mos devices have a symmetrical output impedance which makes them good at driving capacitive loads. Leading and trailing edges are slowed to the same degree so that, when the waveform is recovered at the receiver, it emerges almost identical to the original; it is merely delayed by the time constant of the load capacity and output
impedance. Examples of receive and transmit circuits are shown in Figs $3 \& 4$.

Note that the data input is fitted with a pulldown resistor but the handshake input is fitted with a pullup instead, giving the on condition.
The $\mathrm{V}+$ power supply is an output on a D-device, able to supply up to 20 mA at +5 V $\pm 10 \%$, and an input to an sdevice.

The signal ground is connected to the 0 V (common) of both devices and is distinct from the earth which is used for screening and safety purposes.

Mechanical aspects

The connector specified for S5/ 8 is an eight-pole DIN connector, to the DIN specification 45326 (IEC 20 and IEC 21). The mating face of the socket is shown in Fig. 5. (Note that there is another type of eightpole DIN connector, very similar to, but not inter-mateable with, the 45326 type. It is not

Andrew Hardie is research director of Oval Automation Limited and is a member of a number of standards committees and user bodies, including the BSI committees IST/18/1 (text and office systems) and IST/6/7 (interconnection of equipment), a user group on Integrated Services Digital Networks (ISDN) and a manufacturers' group, the British Office Technology Manufacturers' Alliance.

In his role as technical consultants to the Public Services Working Party he advises on floppy disc standards and was responsible for devising the S5/8 interface.

In last month's raticle Andrew Hardie outlined the drawbacks of the serial and parcllel interfaces commonly used for digital data transfer between compu. ters and peripherals, and pro pased 858 as a replacement.
In an era when warts are cheap and multi-pin comnectors expensive, he explained, S5i8 with its low-cost eight-pole IIN connectors makes better economic sense Its data transfer rabe, fixed at 9600 bits, is fast enough for atmast all ap plications othor than printer buffers. And its sinngles universal design puts an end to the need for reversing casiles and breatout boxes a single type of cable should meet aill interconnection requirements

An early recruit to the S5/8 camp is Gemini's Challenger computer. This 12 MHz 68000 -based machine has two S5/8 ports as standard.

Fig. 3 Line receiver circuit. S5/8's low power requirement makes it especially appropriate for battery portable equipment.

Fig. 4. Line driver circuit.

Fig. 5. Socket pin numbering (mating face view). $55 / 8$ is based on an eight-pole DIN connector, but leads fitted with five-pin plugs will suit most purposes.

Fig. 6. Socket contact assignment. Poles 6 and 7 are reserved for future use.
widespread, but is used on some audio-visual equipment of Far Eastern origin.)
These connectors are now readily available from sources such as RS Components and Verospeed, and will accept either eight-pin plugs or fivepin, 180° plugs. They are cheap, compact, lightweight, widely available in a variety of styles and qualities to suit the application. And they are available screened, a factor of increasing significance.
The assignment of poles is shown in Fig. 6. Input and output signals are paired on opposite sides of the connector, as in audio practice, with the common on pin 2. A five-pin plug connects only to the dinf, DOUT, HINP, HOUT, and GROUND signals.

The peculiar numbering on the DIN connector is historical. It started life with three pins in, out and common. Then someone invented stereo and
an extra input and output had to be added, and the eight-pin just logically follows on from that.
When inter-connecting D devices, the Sinp and sout are not used and the $\mathrm{V}+$ signals must not be connected together as any voltage difference between the regulators at each end will cause a large current to flow. The solution to this is to use five-pin plugs for the D-device to D-device interconnection cable. This cable is illustrated in Fig. 7. It is a plug-to-plug reversing cable, very similar to a mirror audio cable but with a separate screen.
This cable is thus the only type the user needs. Compared with cables using 25 -way Dtypes or 36-way Amphenols and multicore cable, it is cheap, lightweight and compact, of particular importance for portable equipment.

The s-device captive cable is similar, but with the use of the eight-pin plug and the incorporation of the $\mathrm{V}+$ line. It is shown in Fig. 8.
A length of 1.5 metres is suggested for the d -device to D-device free cable and the captive s-device cable, but any convenient length can be used, subject only to the maximum load capacity specification. Since no length is ever right for

every application, extension cables are also specified, as shown in Fig.9. They are nonreversing, six-circuit plug to socket cables. Any number can thus be used between n -devices and s-devices or other D devices.
The $\mathrm{V}+$ connection is preserved in connections from D device to s-device, but is broken by the five-pin plug-toplug cable that must be used to complete the connection between two D-devices. All three cables can use the same type of 6-core screened cable.

Data structure

The data structure is the familiar start-stop (asynchronous) mode serial frame, as used by all uarts, and in the same sense as RS-232C: the line rests low and goes high for the start bit and the transmitted data bits are inverted. However, in contrast to RS-232C, the data structure is standardized as one start bit, eight data bits, no parity bit and one stop bit, giving a 10 -bit frame (Fig. 10). Error detection is more efficiently performed using block methods, such as checksum or c.r.c. The addition of a parity bit slows the effective data transfer rate by 10%.

Signalling rate

The data signalling rate, or bit rate (often referred to incorrectly as the baud rate), yet another variable in the RS232 C equation, is specified at $9600 \mathrm{bit} / \mathrm{s}$. This is the fastest widely-used bit rate and is a de facto standard with many suppliers, such as DEC and Intel.

Flow control

Only the simple hardware flow control provided by hinp and hout is specified in the $55 / 8$ standard. No specification has been produced yet for software line flow-control protocols. These may be the subject of a future related standard
The question of protocols for asynchronous lines has recently been attracting interest and an ad-hoc group has been formed to examine the requirement for such a system, particularly in the context of providing an Open Systems Interconnection (OSI) network service. Readers with strong views on the subject are invited to contact the author, via
the editor. You could have the opportunity to provide a user view on the requirement.

Data coding

Similarly, the S5/8 standard makes no specification about the meaning of the data transferred across the interface. It merely provides transfer of binary octets (bytes) without loss or change of information.
This is perfectly satisfactory for non-imaging devices and applications, but otherwise an agreed meaning for the data must exist. Just specifying Ascii is almost meaningless. Character coding is now much more complex, with considerations such as national variants, graphic characters and control codes for imaging devices all to be taken into account. A major international standard is emerging to encompass all this, and more. It is ISO-6937, it exists in three parts at the moment, with several more parts in the pipeline.

Retro-working

Although it is intended that S5/8 should become a widely used standard on desktop p.cs, portable computers and peripheral devices, perhaps assisted into the market by user pressure for a simple interface scheme, interworking with existing equipment will be required in the transition period.
For interworking with Centronics-type equipment, serial-to-parallel converters (and, occasionally, the reverse) will be required. These can be constructed as s-devices. Two types have already been manufactured, one a simple uartbased device and the other using a c-mos single-chip micro to provide data buffering and flow control conversion.
For interworking with RS232 C it can be seen from the electrical characteristics that an S5/8 output constructed using a 5 V high-speed c-mos gate is not guaranteed to drive an RS-232C input, which has specified thresholds of $\pm 3 \mathrm{~V}$. Accordingly, the $\mathrm{S} 5 / 8$ specification has been written to allow bipolar outputs (up to $\pm 7 \mathrm{~V}$, but $\pm 5 \mathrm{~V}$ preferred), without actually specifying them. With mains powered equipment, the provision of
such bipolar supplies is less of a problem than in battery portable equipment.

An S5/8 input, on the other hand, will safely and correctly receive RS-232C signal levels. Accordingly, manufacturers of existing RS-232C equipment can simply change the connector to an eight-way DIN socket (cheaper, smaller and easier to mount), retain the bipolar output voltages (able to drive both $\mathrm{RS}-232 \mathrm{C}$ and $\mathrm{S} 5 / 8$) and change the input receiver to an HC Schmitt gate (able to receive S5/8 and RS-232C .
True S5/8 devices, particularly battery operated equipment, will then interwork with such hybrid devices and, of course, with each other, but are not guaranteed to interwork with current RS-232C devices. This approach will allow S5/8 to migrate into widespread use. The hybrid bipolar output arrangement will then no longer be required and can be discarded.
Obviously, retro-working with existing RS-232C devices may require support for lower bit-rates than the specified 9600 , but the intention is eventually to have intelligence in all devices with flow control to regulate the data transfer and rate adaptation where necessary, for example, in modems.

Who is using $\mathbf{S 5 / 8}$?

S5/8 arose out of a Government study into the required specifications, including interconnecting, for a portable micro-computer for the Public Service. The machine that emerged as the result of that study, the Thorn-EMI Liberator has two S5/8 interfaces, allowing full benefit to be obtained from the space and power saving offered by S5/8.
Transam Microsystems chose $55 / 8$ for the serial interface on their unique M1 intelli-

S5/B's electrical characteristics

inputs.

Inpou resistance: 47K99
Inputlow threshold: +0.9 V maximum Input high threshold: 3.85 V minimum input protection: 255 V minimum

Outpuis:

Output low voltage: +0.15 V maximum
Outputhigh voltage: +4.35 V minimum
Capacitive load drive capability: $\mathbf{2 5 0 0 p F}$ minimum Shor-circuit protection:
to any other signal on the interface

gent modem for cellular radio.
Gemini computers have adopted the hybrid (bipolar output) approach, also using the space-saving features of S5/8 to provide four serial interfaces on a single card for their Challenger computer.
The latest recruit to the S5/8 interface is British Telecom, whose advanced Qwertyphone loudspeaking feature telephone and terminal incorporates two $\mathrm{S} 5 / 8$ interfaces for connection to printer and desk top computer.
Within my own company, Oval Automation, S5/8 has been incorporated into a number of computer peripheral and add-on products, including c.r.t. display adaptors for portable computers, protocol converters, line adaptor units, intelligent interface converters and serial-interface disc drive units.

S5/8 devices

The relationship between deyices transferring data over an S5is link is equal. There is no master and no slave, nor is there any polarization with one device regarded as the sender and the other as the recelver. But the S60 specification divides devicea into two iatenonje: icceordiny to their inneer supply provision.
An.-device hal no apply of ts own, but may draw up to 20 mA sper thu inferface thrmugh its captive lead. Typical s-devices are mice and joysticks.
Nearly all computers and other peripherals are powered by mains or battery and are classified as in-devices.
| Fig. 7 (left). Standard S5/8 interconnecting cable. This one type will satisfy nearly every requirement.

Fig. 8 (above). S5/8 captive lead for s-devices, which are those with no built-in power supply.

Fig. 9. Extension cable, suitable for insertion at the points labelled X in Figs 1 \& 2 last month.

Fig. 10. Frame composition of S5/8 data. No parity bit is included because errorcorrection is intended to be done block-by-block. Sending rate is normally fixed at $9600 \mathrm{bit} / \mathrm{s}$.

APPLICATIONS SUMMARY

Communications terminal unit

The 65 -series of microprocessors includes a device especially for telephone-line signalling and data-transmission, produced by GTE. Note 3009-04-02 describes using this
microprocessor, the G65SC150 communications terminal unit, as the heart of a Bell 103, 300 baud modem.
General-purpose as well as modem-specific software includes page-zero data assignment, clock-updating, uart parallel/serial data conversion and modeminitialization routines.

Unless you intend communicating with US databases, the Bell standard is not much use in the UK but the software is in assemblylanguage form with comments, so it should be a relatively

Most manufacturers in the electronics industry spend large amounts of time and money on developing and describing applications for their products. To keep you informed, we will be publishing extracts from these notes from time to time. Readers wanting more information about particular notes need only circle the appropriate Reader Enquiry Service number.
simple matter to convert the design for European use. The processor can be used to control either d.t.m.f. or pulse dialling
and is suitable for rates of up to 600 baud.

There is no equivalent modem filter for V21 from

Exar - the company decided that the European market was too small - but there are pinincompatible filters that do the same job, such as the
RM5361AP from E.G. and G.
Reticon.
Exar devices are available from Microcall, via Midwich in small quantities, and Cermetek products are distributed by Dialogue.

EWW300

32-bit computer design

Hardware for a small 68020 computer with a 68881 floating-point coprocessor and 68851 paged memorymanagement unit is described in Motorola application note ANE001/D.

Peripheral devices in the design include a 68681 dual uart, providing two RS232 serial ports, and a 68230 parallel interface/timer for printer control and timing. A random-logic controller interfacing $32,256 \mathrm{Kbit}$ dynamic rams is used, and there is decoding for 64 K byte of firmware eprom.

This circuit (bottom) is the dynamic-ram refresh controller for producing row-to-column changeover signal ads, row and column address strobes $\overline{R A S}$ and $\overline{C A S}$ and
d-ram data-transfer acknowledge/port signals $\overline{\mathrm{DSACK}}_{0,1}$

Whenever the c.p.u. accesses memory, a $\overline{\text { RAS }}$-before- $\overline{\mathrm{CAS}}$ sequence is used: in this mode, ERAML or ERAMH allows a zero logic level to propagate through successive Q_{n} outputs of a 74 F 175 quad D-type bistable device, asserting d-ram control signals on successive postitive-going clock edges.
Refreshing occurs every 15μ s under control of refck. Negative-going edges of this clock signal initiate a $\overline{C A S}-$ before-ras sequence and the order in which the d-ram control signals are generated changes. EWW301

Using discrete contact surfaces

In low and medium-power contacts for high-volume production, contact points can be a separate piece of metal called a 'microprofile' which is welded to the main contact element.
Accurate positioning of the contact point is possible using this approach, so money can be saved on precious-metal coatings. According to a note called "The application of microprofiles for electrical contacts" from Inovan, additional production costs through using microprofiles are nearly always outweighed by savings in precious metal. And profiles can be accurately formed, which allows a further reduction in coating area.
The four-page note briefly discusses contact

When battery voltage is above 7 V , the 630 is disabled and draws only 10nA. Switch current of the 630 is 150 mA and the device can operate from supplies of up to 16.5 V .
Other applications in the note include voltage converters, an uninterruptible 5 V supply and two-rail regulators. EWW302

Cross sections of two contact profiles, one 1 mm wide and the other 0.66 mm wide. Close control of metal layer thickness and contact profile minimizes precious metal use.
requirements, savings in precious metal, production quality and contact design. A list of contact materials and their characteristics is included.
EWW303

Addresses	403 London Rosd Camberley Suriey GE 55 HH .	EG\&Giteticon 34 Markel Place Wokingham Brekshire RG112PP
GTemicpocircuits Montenatrasie 11 8000 Musich 19 West Germany		
	Moterola LidEuropean Literature	
		M
	88 Tarness Drive	Thame
froxay		Oxtortiohirn OX 93
Pechnicsi flements1361 atword lame.	NhpuKeynesNK14 S3P	
Leadoy		Gifray Road Diss Nordolk TP223Ets
Supertiox Dialogue Distribution Wicat flowise	whilhor	
	Victaria Hiuse	
	Tondon We1	
	london Wer	

CIRCUIT IDEAS

Fast, balanced Schmitt trigger

This trigger was developed for use in a voltage-controlled oscillator where the requirements of fast response and stable, well-defined switching levels could not be met by standard i.cs.

Hysteresis is determined by current source Tr_{2} and R_{6} : with values shown, current through the source is 10 mA and hysteresis is 1 V . The potentiometer is adjusted to centre the hysteresis range about $0 V$ so that switching levels at the circuit input are $\pm 5 \mathrm{~V}$.

In the v.c.o. circuit, a second differential pair is driven in parallel with $\mathrm{Tr}_{1,3}$ to generate a triangle wave, and a symmetrical squarewave is taken from the collector of Tr_{3}. Series input capacitance provides frequency compensation to over 5 MHz ; response time is about 10 ns . The second half of the CA3054 providesat.t.1.-compatible squarewave.

D.J. Faulkner

Institute of Opthalmology London

Telephone circuits

Please remember that in the UK, all equipment for connection to the public-switched network must have BABT approval. BABT does not consider circuit diagrams for approval, only complete apparatus, and the approval process is expensive and time consuming.
The approval system is intended to ensure that signals passed down the telephone line are within certain limits so that they do not cause interference on other lines, and to ensure that lethal voltages can never appear on the telephone line.
British standards relating to connection of apparatus are given in the December 1985 issue, page 77.

Electronic telephone-patch circuit

A simple, economical alternative to the transformer hybrid circuit for coupling a telephone line to a transceiver is this time-divisionmultiplexing telephone bridge circuit.
This is a slightly different approach to the familiar circuit used in the past to provide dual-trace displays on single-beam oscilloscopes. Instead of multiplexing two signals into one output, the circuit is used to ensure that output of the transceiver is never connected to the input.
Resistance of the transmission gates in their off state is several megaohms. Each transmission-gate pair, connected as a double-pole single-throw switch, is switched alternately by two clock signals - one true and one inverted. These two
symmetrical clock signals are provided by the 4001.
The transformers are optional. Note that the telephone line is terminated
correctly but the transceiver input and output are not. Marshall P. Brown Dhahran Saudi Arabia

ELECTRONICS \& WIRELESS WORLD AUGUST 1986

256K memoryfor QL

This design adapts the readily available TMS4500 dynamicram controller for interfacing 256 Kbit ram i.cs to the 68008 processor in the QL computer. This controller is intended to drive i.cs of up to 64 Kbitso an extra multiplexed address line must be provided for 256 K devices.

The UPD41256 ram requires a refresh address on only eight of the nine address inputs so an external multiplexer selecting between two address lines is suitable for driving MA_{8}. Multiplexing for this line is controlled from the $\overline{\mathrm{RAS}}$ signal delayed by a D-type bistable i.c. which is clocked by negative edges of the system clock; this ensures that address set-up and hold times relative to $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ are met.

As well as enabling the controller at addresses 40000 to 7FFFF, the 74LS138 disables the internal rom and ram images normally present by pulling up the DSMCL line. Note that the drackl line is driven from an open-collector gate.

The unit plugs into the peripheral expansion socket and requires an on-board 5 V regulator and good powersupply decoupling, especially around the rami.cs
J. Williams

Watford
Hertfordshire

Preamplifier switch-on transient eliminator

Good design and balanced circuitry reduce switch-on transients to insignificant levels in power amplifiers but the switch-on problem in lowlevel audio circuits is not so easily solved.
Besides stopping 'thump' at switch on, an eliminator must not be fooled by repeated on/off switching at short intervals and it must not affect normal operation of the audio circuit. This circuit satisfies these requirements.

When gate/source voltage is zero, the fet acts as a resistor of
typically under 100Ω and keeps regulator output at around 2 V . As V_{Hs} becomes more negative, the fet starts to
turn off and regulator voltage rises. At a $V_{p s}$ of greater than -5 V , the fet is turned fully off and regulator output voltage is

determined by $\mathrm{R}_{1,2}$ alone.
Slow turn on is achieved by charging the $200 \mu \mathrm{~F}$ capacitor through two $33 \mathrm{k} \Omega$ resistors. At turn off, this capacitor is discharged quickly through the BC107 transistor. The $1 \mu \mathrm{~F}$ capacitor makes sure that the $200 \mu \mathrm{~F}$ capacitor is not discharged because of ripple or mains fluctuation and D_{2} protects the transistor against excessive negative $V_{b e}$
Turn on/off times may need changing to suit your needs. Graham Nalty Derby

Cassette mechanism control logic usinga keyboard encoder

Solenoid-operated cassette mechanisms such as the one supplied by Hart Electronics use three solenoids, one for fast forward, one for rewind and one for cue/review. Both fastwind solenoids operate together for play or record. A Hall-effect sensor gives one pulse for each revolution of the take-up spool.
Logic control of these solenoids is easy using a 74C922 16-key encoder i.c. which encodes a matrix of up to four-by-four momentary push switches into a four-bit binary number and provides debouncing.
Two bits of the binary output are used to drive the fast-wind solenoids and one forms a record-flag line. For batteryoperation, the fourth output bit switches the drive motor; in other applications this may not be necessary
By choosing five appropriate matrix positions for play, record, fast-forward, rewind and stop, the binary outputs can be made to switch the solenoids, motor and record flag in the desired combinations. The solenoids are driven satisfactorily from a 12 V supply using a
Darlington-transistor array. One half of a dual retriggerable monostable i.c. stretches pulses from the Halleffect motion sensor and the other half sends a stop pulse to a c-mos switch wired in parallel with the stop button. A further c-mos switch used as an inverter drives the keyboard-encoder outputenable low; subsequently, this line is held low by the pulse stretching monostable i.c. through a diode.
Discrete transistors could be used to save space. The cue/ review facility is not implemented here but spare switches could be used to operate it when either of the fast-wind buttons is held down. Remote or automatic control is possible by connecting additional c-mos switches across appropriate push buttons.
Keith Wootten
Reading
Berkshire

Fast switching opto-coupler

Transition time of this logicsignal isolating circuit is 320 ns using a 4 N 26 optocoupler. Fast switching is obtained by using the phototransistor as a small-signal amplifier and keeping it active.
Negative feedback makes sure that the transistor stays in small-signal mode. The first inverter is a linear amplifier and R_{f} provides feedback and bias.
Schmitt-trigger action is provided by the second
inverter, output of which gives positive feedback through R_{s}. The hysteresis loop prevents typical switching oscillation in the output and provides some noise immunity
To allow the phototransistor tobe biased for maximum inverter amplification, a potentiometer is included. Calibration is done by applying a 5 V squarewave input and setting the potentiometer to give the best switching times.

Using a $5 \mathrm{~V}, 100 \mathrm{kHz}$
squarewave with 40 ns rise and fall times, output rise delay is 200 ns , rise time is 120 ns , fall delay is 120 ns and fall time is 200 ns . This gives a transition time of 320 ns .
An input signal of 2 MHz transferred well, but phase delay was approximately 180°. Replacing the potentiometer with fixed resistors makes the circuit simpler butswitching time is reduced. Hernán Tacca Buenos Aires Argentina

64180 computer board

So many peripheral functions are included in the 64180 microprocessor that this c.p.u. board for SC84 can be used on its own. Operation is discussed this month.

This Eurocard-size 64180 tor C_{3} continues to charge unmicrocomputer board is designed to replace the SC84 microcomputer c.p.u. card. It performs so many peripheral functions though that it is suitable for use as a complete microcomputer or as the basis of other multi-board systems. This second and final article describes operation of the board.
In this design, the timeroutput function is unused and a current-limiting resistor is provided for the CKA_{0} clockoutput line.
Timing problems concerning $\overline{\mathrm{ME}}$ and $\overline{\mathrm{LIR}}$ are easily solved by latching circuits on the peripheral boards if necessary. More serious is the effect of the processor on Z 80 peripherals other than the MK3801. In defence of the HD64180 though, you could argue that the external peripheral functions are unnecessary as they are all included in the processor.

Besides the processor, the computer-board circuit consists of bus buffering, serial i/o buffering, memory, memory decoding and reset circuits

A long pulse at power-up of approximately 50 ms and a shorter pulse on operation of the reset switch are provided by the reset circuit. Length of the power-on reset pulse is determined by the time taken to charge C_{3} through R_{2}.
When power is applied there is no charge in C_{3} and hence no potential difference across it. This means that pin three of IC_{6} is initially high and the RESET line low but as the capacitor charges, voltage at pin three falls. Eventually the gate switches to change the state of the RESET line. Capaci-
til pin three is at ground potential.
When the reset button is pressed, C_{1} is discharged, causing a low-to-high transition at pin six which is differentiated by $\mathrm{C}_{2} / \mathrm{R}_{2}$ to give a short positive pulse at pin three. Diode D_{2} prevents the differentiation from being swamped by the relative size of C_{3}.
During pressing or releasing of the button, the time constant of the circuit prevents bounce in the swutch from triggering several reset pulses. Diode D_{1} ensures that C_{3} discharges rapidly when power is removed so that if the power is turned off then on quickly, the reset circuit operates correctly.
In normal use, the processor will be used with the internal 256 K byte dynamic memory occupying all physical addresses up to 3 FFFF. When resetting of the system occurs, either on application of power or as a result of pressing the reset switch, the system memory is rearranged so that the system eprom appears at all read locations and the dynamic ram appears at all write locations.
Devices that can be used for the system eprom are 2764, 27128 or 27256 . Link one is made for the first two devices and link two for the 27256 . Whichever device is used, the eprom image is repeated throughout the 512 K byte address range.

Contents of the eprom should be the operating system, a routine for copying the operating system to its position in d-ram and any onceonly code for initializing areas of the computer.
Two options are provided for
the operation which disables the eprom and leaves the system completely ram based Link four selects any i/o operation as the remapping pulse while link five selects an external signal as the pulse.
In practice, the eprom should contain code to produce the remapping process at an address that overlaps and leads directly to a jump to the operating system in the d-ram. In the standard eprom, the code
XOR A
OUT (SILTRK),A
JP MCOS
is located at the top of the eprom and at the top of MCOS. A jump to this code in eprom results in the first two instructions being fetched and executed from eprom but the third and subsequent instructions come from d-ram, the eprom then having been switched out of use.
The advantage of this technique is that the computer memory, once remapped, is completely read/write memory so a new operating system can be loaded into what would normally be unalterable rom.
A potential disadvantage is that a rogue program can corrupt the operating system, but the 64180 traps illegal opcodes and so reinstatement of the system after such a corruption requires only a press of the reset button.
The normal sequence of a dynamic memory access is as follows. Half of the access address is applied to the address pins for the memory and this address is latched by a negative-going edge on the $\overline{\overline{\mathrm{RAS}}}$ (row-address strobe) input. The second half of the access

64180-board features

Ula to 32 Khyte eqromen on- hoard 256 K byte zero wait-state rami Decoding for further four 64Kbyte memory blocks. 6.144 Mil 12 zclock

Two bigh h-speed d.m.at channets Two asynchrontws serin channels.
One synuturontus serlal chartel. Fto programinable timerg Eurocard hamemet.

Faddress is then applied to the same address pins and this is latched into the memory by the negative going edge of $\overline{\mathrm{CAS}}$ (col-umn-address strobe).
After the necessary period the selected location is accessed and while $\overline{\mathrm{CAS}}$ remains low, the contents of the location appear at the device's Q output pin. During this $\overline{\mathrm{CAS}}$-low period the write line $\overline{\mathrm{w}}$ may be driven low in which case data on the device's D input pin is written into the location on the falling edge of \bar{w} and consequently appears at the Q output.
That is a basic description of d-ram access, which has not changed since the earliest days of multiplexed devices. Nowa-
days d-ram manufacturers have added several extra modes of operation in order to make the devices more versatile. Increasing the number of pins on an i.c. increases the price and since d-rams are probably the most price-sensitive components made, these additional features all depend on relative timings of $\overline{\text { ras }}, \overline{\mathrm{CAS}}$ and $\overline{\mathrm{w}}$ to minimize the number of pins.
Signal ras not only has the effect of latching half the access address but also of accessing all locations of which that address forms part. Accessing a location also refreshes it and so $\overline{\text { RAS }}$ only cycles can be used for refresh purposes.
This mode of operation is used by the HD64180 to effect transparent d-ram refresh. The HD64180 puts out an 8 bit address during each refreshing cycle that it inserts into the execution sequence. This address is incremented after each refresh and so the entire memory content is kept intact.
Address strobe $\overline{\mathrm{CAS}}$ is only recognized as a memory accessing signal when $\overline{\mathrm{RAS}}$ is low, the normal mode of memory use being $\overline{\text { RAS }}$ before $\overline{\text { CAS. As well }}$ as latching the second half of the address, the falling edge of $\overline{\mathrm{CAS}}$ latches the state of the $\overline{\mathrm{w}}$ line.
If \bar{w} is inactive (high) at this

Control logic for the 64180 computer board. Signals MUX, RAS and CAS are for the d-rams and ROM selects the eprom for reading at switch on or after reset. Link 4 determines whether the rom is switched out of the memory map following an i / o operation or following occurrence of an external signal through connector pin 22c. Part of the gating is shown in intentional logic (top).

point then the cycle continues as a read cycle which could turn into a write cycle as described earlier. If \bar{w} is active (low) when latched then the cycle is taken to be a write one but, more significantly, the Q output remains inactive. This means that, provided that the $\overline{\mathrm{w}}$ signal is active at an early point in the write cycle, the d-rams may be used in the "common i/0" mode as is standard with static and busoriented devices.
Most microprocessors, the HD64180 included, do not produce an "early write" signal as the write signal itself is intended as a writing strobe rather than as an indicator that a write will occur in the current cycle.

The system read signal is however an early-read signal and so the state of this line at the falling edge of $\overline{\mathrm{CAS}}$ reflects whether the cycle it to be a read or not-read one.

There are types of cycle which are neither read nor write. Possible contention is avoided since no $\overline{\mathrm{CAS}}$ signal is produced in this type of cycle. The fact that this system produces a potential early-write cycle every time that there is not a processor $\overline{\mathrm{RD}}$ cycle does not cause any spurious writes to the d-ram as $\overline{\mathrm{CAS}}$ is fully decoded and is only active during memory accesses to the lower half of memory. In this way the d-ram will not even notice $1 / 0$ cycles, interrupt acknowledge signals or accesses to external memory.

Timing diagrams for the memory control were shown last month. There are several types of memory cycle that the HD64180 can execute. As all read/write operations (op-code fetches, processor read/writes and d.m.a. read/writes) have the same cycle length (unless extended by the insertion of wart states) the lower diagram is a composite diagram illustrating the reading or writing of data from/to memory.

The difference between a fetch of an op-code and the fetch of data from memory is that during the op-code fetch LIR is active and data is expected to be stable one half clock cycle earlier. The upper diagram shows a refresh cycle without wart states.

The data bus buffer is turned inward during interrupt ack-

64180 computer board main circuit. Because the microprocessor has integrated peripheral functions, a computer with memory management unit, two d.m.a.channels, three serial channels with programmable bit-rate generator, two-channel
counter/timer, interrupt controller, 256 Kbyte ram and an eprom can be built on one Eurocard board. To simplify the diagram, control logic is shown separately.

Kits and boards

Three kits will be available from John Adams. First is a processor kit containing a 6 MHz 64 B 180 microprocessor, turned-pin socket, 12.288 MHz crystal and manual. This kit is £23.75 tw UK readers and $£ 25.25$ to those in Europe. Secondly, there is a memory kit including eight d-rams and a preprogrammed 2764 at $E 29$ in the UK and $£ 29.50$ in Europe. Finally, a kit of passive parts with resistors, capacitors and connectars but excluding crystal is available for 89.50 in the UH and fl 10 in Eurnpe.

All prices ind hide postage and packing but excludie vas f. For further details and kit prices for cunntries sutside Europe, sond as at:e to Foln at 5 The Close, Radiett, Hertiordishire WVn sidiA.

A Eurocard ps th. hoard far this mieroeomputer will be avallabic toward the end of July at C19 inclusive from Combe Martin Electronics. King Street: Combe Martin, Norths Devon EX340AD.
nowledge cycles and read cycles other than those made to the lower half of the physical memory. The gates used in control circuit are drawn in their logical and positive logic sense. Most signals in the system are active low and hence negative logic is implemented.
The algorithm for the busdirection signal is that the direction is $\overline{\mathrm{NN}}$ when $\overline{\mathrm{LIR}}$ And $\overline{\mathrm{IOE}}$ are active Or when $\overline{\mathrm{RD}}$ And Not ($\overline{\mathrm{ME}}$ And Not A_{18}) are active. Signal ME, the Z80 MREQ signal, is used directly as $\overline{\mathrm{RAS}}$ and, gated with A_{18} and delayed by two gates and the switching time of multiplexer IC_{3}, as the address multiplexer switch. This tight timing is possible as the address hold requirement after the $\overline{\mathrm{RAS}}$ strobe is only 15 ns maximum.

Gating with A_{18} is not strictly necessary for the MUX signal but it provides a useful component for deriving $\overline{\mathrm{CAS}}$, which is produced by gating the new e signal with MUX. This produces a signal indicating a memory operation in the lower half of physical memory which is directed by the rom mapping circuitry to either enable the rom or to act as $\overline{\mathrm{CAS}}$.

Generation of a $\overline{\mathrm{CAS}} / \mathrm{k} \overline{\mathrm{OM}}$ signal at an early stage in the processor cycle allows the use of cheap dynamic rams with-
out the need for any wait states, giving highest-speed operation.

There is not enough time for access of a standard 250 ns eprom without wait states being added but the HD64180 leaves its reset procedure with three wait states programmed into each cycle and a high refresh request rate and so the system automatically runs at low speed while the operating system is copied into the dram. Once control is passed to the d-ram-based code the wait states can be removed and the refresh-request rate reduced to provide maximum execution speed.
After reset read is passed through two inverting gates to IC_{3} where it acts as the select input to what is effectively a one-to-two-line demultiplexer producing either a $\overline{\mathrm{ROM}}$ or a $\overline{\mathrm{CAS}}$ signal for each memory access. When the mapping bistable device is pulsed, the path for READ is closed and the demultiplexer set to permanently supply the CAS signal. The other half of the decoder is used to provide selects for the upper four 64 Kbyte memory segments.
The asynchronous ports require five input and three output RS232 level-shifting buffers. Owing to restricted p.c.b. space only four standard input buffers are available and so an ordinary inverter with an input limiter is provided for the CTS_{1} input.
Construction is straightforward. Points to note are that only the microprocessor and eprom should be mounted in sockets and that the decoupling capacitors are critical components. These capacitors must be good-quality multilayer ceramic types. The crystal is mounted upright and supported by a fillet of silicone rubber.

Full bus buffering is provided, the 64 -way bus now being fully used. Some lines have been redefined since the specification for SC84 was devised but these are restricted to lines which have not yet been used. The current v.d.u. and i / o boards can be used with minimal modification.

On the v.d.u. board the connection to pin 20 c should be broken and made to pin 26 c . The 2N2369 transistor should be removed and the v.d.u.
select switches starting from the 64-way connector set to on, off, on, off.

For the i/o board a wire should be connected from pin 22 c to $\mathrm{IC}_{204}, \mathrm{pin} 7$ and, if fitted, the wire from pin 21c to IC_{205}, pin 5 should be removed.

To modify the i/o board for d.m.a. control of the floppy-disc system connect wires from IC_{211}, pin 38 to IC_{219}, pin 11 and from IC_{219}, pin 10 to pin 19c.

On the silicon-disc board the 2N2369 transistor should be removed, the connection to 21 c should be broken and made to 29a instead and the switches should be set so that all except the one nearest the edge of the board are on.

Connection 25 c should be broken and rerouted to 22c.

There are several advantages to changing to the new processor board. The extra serial i/o largely obviates the need for a separate i/o board, the extra instructions are quite useful, the extra speed is welcome and the extra memory and memory-based features such as the d.m.a. controllers and memory management unit make program development much more interesting. To complement the design of this board new versions of MCOS and SciDOS have been developed.
The machine-code operating system MCOS has been increased in size by 512 bytes, the extra memory being taken from what was the disc-sector buffer. The new system does not need this buffer and so the extra features built into the expanded MCOS are not included at the expense of system memory.
The printer routine has been modified to work through serial channel one on the c.p.u. board, leaving the more versatile serial port on the i / o board free for other applications.
The routine also implements a 48 K byte internal printer buffer. This buffer is located in one of the extra pages of ram on the processor board. Operation of the printer buffer goes largely unnoticed, the serial port working on interrupts.
While the long term printing rate is, of course, controlled by the printer, the use of such a buffer frees the computer for regular use while printing continues as a background
activity.
As an example this complete article, which is just over 42000 characters long, takes as little as 18 seconds to dump to the printer buffer, after which the computer is free for other uses. Without the buffer it would take approximately ten minutes of computer time when printed on a matrix printer or over half an hour on a daisy-wheel printer.
During the balance of time anything may be done with the computer other than immediately using the printer, or switching the computer off. Tests have shown negligible slowing in the computer's rate of working while printing takes place.

All disc handling is performed using d.m.a. control and an extra disc function has been introduced. The three original functions are still provided for the sake of continuity but I recommend that the new single function be used in future software development.

The new function DODSK is called at address location MCOS $+036_{16}$ and, like the original functions, is entered with the ix register pointing to a disc data block. The difference is in the length of this block which now comprises the onebyte drive code, one-byte track number, one-byte sector number, one-word d.m.a. address, one-byte d.m.a. bank, and finally the count of bytes to be transferred which also takes one word.
When the dodsk function is called the A register must contain the command code for the operation to be executed. This command code is in two four-
bit sections. The upper half of the byte is the command type, value eight meaning read sectors, A meaning write sectors, E meaning read track and F meaning write track.
The lower four bits are function descriptors and have the following significance. Bit zero set implies that the command is to repeat until the number of bytes specified in the count have been processed. Bit one set implies that the operation is to be verified and bit two is set when the operation will involve a data transfer to or from the disc. Bit three is set when the transfer will be a write to the disc.
Examples of commands are 084_{16} for reading a single sector and 085_{16} for reading sequential sectors until the number of sectors on the track is exceeded or until the number of bytes specified in the count value has been reached.
Version 2.2 of SciDOS takes advantage of this new disc function. All disc operations through SciDOS are handled on a multi sector basis, accesses to the magnetic discs being made via a track-sized buffer in one of the HD64180's extra memory pages.

This dramatically speeds up operation of the disc interface, accesses to the disc only being made whenever the system wishes to change track. The SC84 was already a fast computer but these changes make it even faster, a 16 K byte file taking as little as three seconds to save.
All accesses to the silicon disc are made directly rather than via this buffer. This has an important advantage over
the current system. When using programs such as Wordstar from the silicon disc, users have noticed that drive A: regularly starts up. This wastes a small amount of time but, more to the point, it is distracting and means that eight-inch disc users have to keep their mains-powered drives on.
The cause of this in Wordstar, and other packages, is the regular use of logging functions within the DOS which relog the system to drive A : and to the current one, i.e. they put all other drives off-line. Logging involves scanning the directory of a drive and as the entire directory of drive a: can reside in the track buffer while access to the silicon disc is taking place, there is one access to drive A: at the start of the session - and then all is quiet.
One problem with buffered disc systems is that the user has to remember not to strand data in the buffer at the end of a session. The SC84 has always been a buffered system although up to now this has been just for the physical sector being used; avoiding lost data has primarily meant leaving a program in an orderly manner rather then just breaking off by switching off.

With the newer, bigger buffer the need to exit correctly is even more critical and so the system collapses the buffering system whenever data is being written to the track containing the directory. As the directory is the last area accessed when closing a file or leaving a program, this ensures that the disc is always up-to-date at the end of an application.

LITERATURE RECEIVED

An Integrated circuit databook from Exar contains a large nuber of "application-specific" i.cs. Telecommunications circuits include line interface, repeaters, speakerphone and telephone i.cs. There is a section on single-chip modems and filters. Computer interface circuits consists of various read and/or write amplifiers for floppy and hard discs. There is a wide range of operational amplifiers, timer and voltage regulator circuits for industrial applications. Under the heading "instrumentation" there are oscillators and waveform generators, multiplexers,
p.1.1s and tone decoders. There are display drivers and printer hammer drivers and a number of special function circuits. There are also details of the company's semi-custom chips and a very useful section of application notes. Exar Corporation, Moorbridge Road, Maidenhead, Berks SL6 8PL. EWW 250 on the reply card.

Renting test equipment often makes sense for development of products. TechniRent offer a range of processor development systems and emulators, logic analysers, computers and
computer-aided design and test equipment. They also have a list of second-user equipment for sale. TechniRent Ltd, Unit 4, Kings Ride Park, Ascot, Berks SL5 8BP. There is another branch in Warrington, Cheshire. EWW 251 on the reply card.

Connectors, cable, wiring accessories and tools are included in the Catalogue of Argosy Components Ltd, PO Box 137. Beaconsfield, Bucks HP9 1RJ. EWW 252 on the reply card.

AMI make gate arrays and include in their catalogue chapters
on the use of cad/cae tools in their development. Following these sections on custom and semicustom i.cs, AMI's mos products catalogue lists its standard products, including communications products such as station and p.c.m. products, codecs, modems, filters and diallers. Roms range from 16 K to 256 K in n -mos and 256 K in cmos. Consumer products include driver circuits. There are the S6800 and S7720 signal processor AMI Microsystems Ltd, Prosect Place, Swindon, Wilts SN1 3JZ. EWW 253 on the reply card.

The Midwest PTC current protector is made from a special polymeric compound that has a sensitive temperature range and if it gets too hot automatically becomes a very high resistance. Versions are available to respond to current overload or to ambient temperature limits, and they may be used in the protection of d.c. motors, p.c.bs, delicate components, transformer secondary windings, heaters and batteries (against overcharging). Detailed in a data sheet from Elyon Electronics Ltd, Unit J, Charlwoods Business Centre, Charlwoods Road, East Grinstead, W. Sussex RH 19 2HH. EWW 254 on the reply card.
Instruments for the measurement, analysis and recording of data relating to sound, noise, vibration, illumination, thermal environment and medical diagnostics are described in a short-form catalogue from Brüel and Kjaer (UK) Ltd, 92 Uxbridge Road, Harrow, Middlesex HA3 6 BZ . EWW 255 on the reply card
The development and advantages of plastic leaded chip carriers, used in surface-mounted i.cs are detailed in a brochure from MM which also lists the product available in p.l.c.c. packages. Monolithic Memories Ltd, 1 Queens road. Farnborough Hants GU14 6DJ. EWW 256 on the reply card

Frequency control in all its aspects; quartz crystals, oscillators and filters are detailed in a 150-page catalogue from IQD Lid, North Street. Crewkerne, Somerset TA 18 7AR. EWW 257 on the reply card.
Jaybeam make a wide range of antennae, and associated masts and mounting equipment together with splitters, duplexers and filters. These are all detailed in the product information guide of the Antenna and Electronics Division. Jaybeam Ltd, Kettering Road North, Northampton NN3 1EZ. EWW 258 on the reply card.

NEW PRODUCTS

Opticallyisolated logic

A first is claimed for the General Instrument family of optically coupled logic interface gates. Functionally the gates are the same as a t.t.l. or c-mos buffer or inverter, and versions are available to be compatible with t.t.l. and c-mos logic or to interchange between the two. The gates come on three silicon chips in a single package; the first is an input amplifier and led driver the second is the led itself and the third, a photodetector and output amplifier.

The Optologic devices feature a typical propogation delay of 60 ns ; isolation from voltages up to 2500 V r.m.s. (1 minute) for a working voltage of 440 V ; common mode transient immunity of $5000 \mathrm{~V} /$ $\mu \mathrm{s}$, with a typical common mode of $15000 \mathrm{~V} / \mu \mathrm{s}$.
Applications are many but the devices are especially useful in communications equipment and for interfacing between different logic families. General Instrument (UK) Ltd, Optoelectronics Division,
Times House, Station
Approach, Ruislip, Middlesex HA4 8 JG .
EWW 216 on the reply card.

Development system for 6301 X

Application development of the Hitachi HD6301X has been slow and expensive as no simulation device has been available. However Beamen Ltd has produced the Microtrac Simulator which provides in-circuit emulation for both mask and electrically programmable models. It bridges the gap between 'zero turnaround' devices and full emulation systems. It is powered by the target circuit, is compact and "ideal for laboratory and on-site work." Another simulator, for the HD11, is to be available soon. Beamen Ltd, Centaur House, Fairview Road, Cheltenham, Glos GL5 2EX
EWW 213 on the reply card.

Development system for 6800
R.S.C. Microsystems have produced the LCDS which is a software development system for the R6500, R65C00, RM65 and related devices. It incorporates an R65C02 processor and can be used to develop and run code for all processors within the range. A rom-based editor/assembler and de-bug monitor make the system much faster than a comparable disc-based system.

Hardware target systems can also be developed in conjunction with the Rockwell low cost emulator which provides real-time in-circuit emulation at speeds up to 4 MHz . The LCDS can be used with high-level languages for software development of target hardware based on the RM65. RCS Microsystems Ltd, 141 Uxbridge Road, Hampton Hill, Middlesex TW12 1BL.
EWW 222 on the reply card.

Multimeter with r.m.s. and high resolution

A basic accuracy of 0.05% is guaranteed for one year for the 1504 d.m.m. from Thurlby The 4.75-digit display gives a full-scale count of 32000 which provides a 60% greater resolution than 4.5-digit units. Direct voltages up to 1200 V can be measured with alternating voltages up to 750 V with true r.m.s. measurement. Direct and alternating current measurements up to 10A and resistance up to $32 \mathrm{M} \Omega$. The sensitivities for the appropriate ranges are $10 \mu \mathrm{~V}$,

1 nA , and 0.01 s . The resistance ranges provide high accuracy diode test measurements and in-circuit measurements across semiconductors are possible without losing accuracy. Frequency measurement up to 3.9999 MHz is possible with an accuracy of 0.005% and a resolution of 100 Hz . Complete with test leads and manual for £199. Thurlby Electronics Ltd, New Road, St. Ives,
Huntingdon. Cambs PE17 4BG.
EWW 221 on the reply card.

Updated logic probe

The latest version of the LP1 probe is now suitable for e.c. logic as well as t.t.l. and c-mos. It detects, memorizes and displays logic levels, pulses and voltage transients. The instrument, when set to 'pulse' can capture pulses as short as 50 ns . The memory function can store single-shot or slow pulse train events indefinately. High frequency signals, up to 10 MHz , cause the indicator to flash at 3 Hz while The high and low indicators show the duty cycle of the pulse train. The probe is protected against overvoltage and reverse polarity supplies. The $100 \mathrm{k} \Omega$ input impedance ensures low loading of the circuit. Global Specialities Corporation (UK) Ltd, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ. EWW 212 on the reply card.

Electrolytics for audio

The introduction of an additional conductive layer within the paper separator in the BG capacitors has made them particularly low in leakage losses. This resolves the problems of power loss and e.s.r. normally associated with electrolytics and makes them highly suitable for audio applications. The series have a temperature range of -40 to $+85^{\circ} \mathrm{C}$, voltage ratings from 6.3 to 100 V and capacitance range of 0.47 to $4700 \mu \mathrm{~F}$. KCP Electronics Ltd, Unit 7/9 Redburn Industrial Estate, Woodhall Road, Ponders End, Enfield, Middlesex EN3 4NB. EWW 217 on the reply card.

CIRCLE 12 FOR FURTHER DETAILS

PRINTERS-MONTTORS - TERMINALS - PERIPHIERALS

Burroughs MT710: Intelligent Green $12^{\prime \prime}$ VDU with 3 micros and 64K store. RS232. Programmable. Only £149 new + £15 P\&P
$12^{\prime \prime}$ Open Chassis Video Monitor: by Hitachi standard composite video and $12 v$ input. Green screen, wide
Cased Video Monitors: $12^{\prime \prime}$ or $15^{\prime \prime}$ Green Screens Cased vandard composite video \& mains $£ 60.00+£ 7.00 \mathrm{P} \& \mathrm{P}$
Centronics 306 Line Printers: Professional fast (120 Cps), superb quality 80 column printer. Paralifel iff. ONLY $£ 99$ $+£ 15.00 \mathrm{P} \& \mathrm{P}$
Texas Silent 700 Printers: Whisper quiet 80 col matrix printer with RS232 interface. ONLY $£ 50.00+£ 7.00 \mathrm{P} \& \mathrm{P}$
Diablo 630 Daisywheel printer: OEM i/f NEW $£ 599+£ 15$ P\&P Calcomp 565 Drum Plotter: OEF $£ 450+£ 10$ P\&P
Many more bargains. Phone for your requirements. WE ALSO BUY

VALVES				SPECIAL quality		Prices are as at going to press but may fluctuate Please phone for firm quotation V.A.T included					
A1		EF		PCL86		z900T		${ }^{6} \mathrm{CH} 6$			
A22	80	EF	1.25	PCLB05:	95	143	2.75	6CL6	2.75		
A2900	13.75	EF89	1.60	PO500/510	4.30	1L4	0.80	6CW4	8.50		75
AR8	0.75	EF91	1.60	PFL200	1.10	1 P 5	0.80	${ }_{6 C \times 8}$	4.60	${ }^{12} 12417$	
ARP3	0.70	EF92	2.15	PFL200	2.80	154	0.65	6 CY 5	1.50		
ArP4	0.60	EF95	0.95	PL36	1.10	155	0.65	606	2.50		
812 H	3.90	Ef96	0.60	PL81	0.85	$1{ }^{1 T 4}$	0.65	6 F6	1.95	$12 \mathrm{BE6}$	
CY31	1.40	EF183	0.80	PL82	0.70	1 U 4	0.80	6F6GB	1.10	${ }_{\text {¢ } 2818}$	
DAF96	1.25	EF 184	0.80	PL83	0.60	${ }^{2 \times 2 A}$	2.50	677	2.80	12 E 1	19.95
DET22	28.50	EF812	0.75	PL84	0.90	3A4	0.70	${ }^{6}$ F8G	0.85	1255 GT	0.55
DF92	0.80	EFL200	185	PL504	1.15	3AT2	3.40	6F 12	1.50	12k7C	T 1.15
DF9	0.70	EH90	0.85	PL508	2.00	3828	12.00	6F14	1.15	12 KBG	T 1.25
DH76	0.75	EL32	0.85	PL509	5.65	${ }^{3828}{ }^{\circ}$	19.50	$6 F 15$	1.30	1207G	10.75
DL92	1.10	EL34	2.10	PL5'9	5.85	3D6	0.60	6 F 17	3.20	$12 \mathrm{SC7}$	0.80
DY86/87	0.65	EL34.	4.55	PLB02S	3.45	3 E 29	19.00	6 F 23	0.75	$12 \mathrm{SH7}$	0.65
OY802	0.70	EL82	0.70	PY80	0.70	35.1	0.7	66^{64}	1.75		0.70
E92CC	2.80	EL84	0.80	PY81/8	0.85	4832	18.25	$6 F 33$	10.50	12Sk	45
E180CC	11.50	EL86	0.95	PY82	0.75	5R4GY	3.35	6FHB	18.80	12507	r 0.85
E1148	0.58	EL90	1.75	PY88	0.60	544 G	1.85	6GA8	1.95	12 Y 4	
EA76	1.60	EL91	6.50	PY500A	2.10	5 V 4 G	0.75	6GH8A	1.95	1303	80
EABC80	0.80	EL95	1.25	Qovo3/10	5.95	5 536T	0.95	${ }_{6}^{646}$	1.60	${ }^{13 D 6}$	1.95
EB34	0.70	EL504	2.70	Qavo3:10	10.00	523	2.80	6.4	1.95	19 Ca	1.35
EB91	0.60	EL509	5.85	aovo3/20A	27.50	5Z4G	1.25	6.J4WA	3.10		11.50
EBC33	1.85	EL519	7.70	Qavob/40A	28.50	5Z4GT	1.15	6.5	2.30	1975	38.00
EBC90	0.90	EL821	8.45	OOVOG40A	49.50	6/30	0.90	6. 35	0.90	20 D 1	
EBC91	0.90	EL822	9.95	QV03/12	5.75	$6 \mathrm{AB7}$	0.70	6 J 6	0.85	20E1	
EBF30	0.95	ELL80SE	E 4.50	SP61	1.80	6 AC 7	1.15	6.6	2.80	20.1	65
EBF89	0.80	EM80	0.85	T121	43.70	6AG5	0.60	6JE6C	5.90	25L6Gr	r
EC52	0.65	EM87	2.50	TT22	48.30	6AKS	0.95	6us6C	6.40		
EC91	4.40	EY51	0.90	UABCB	0.75	6AK6	6.50	6.46	5.85	35W4	. 80
EC92	1.85	EY81	0.75	UBF80	0.70	6AL5	0.60	$6{ }_{6} 6$	1.45	85A2	0
ECC81	0.95	EY86;87	0.60	UBF89	0.70	6AL5W	0.85	6KD	6.50	85A2.	2.55
ECC82	0.95	EY88	0.65	UCC84	0.85	6AM5	6.50	6L6	4.60	807	
ECC83	0.75	EZ80	0.70	UCC85	0.70	6AM6	1.50	6L6GC	4.20	807	. 40
ECC84	0.60	EZ81	0.70	UCH42	2.50	6ANBA	2.50	6L6G	1.95	812A	44.80
ECC85	0.75	GM4	8.90	UСн81	0.75	6AQ5	1.75	6L18	0.70	8:3	
ECC88	0.80	GY501	1.30	UCL82	0.95	6AO5W	2.30	6 LD 20	0.70	${ }^{813}{ }^{\circ}$	68.50
ECC189	0.95	GZ32	1.05	UF41	1.35	6AS6	1.1	6 LO	5.90	${ }^{8298}$	16.00
ECC804	0.90	GZ33	4.20	UF80	0.95	6AS7G		607 G	1.30	$8298{ }^{\circ}$	24.00
ECF80	0.95	GZ34	1.05	UF85	0.95	6AU6	0.90	6SA7	1.80	866A	5.05
ECF82	0.95	GZ34	3.20	UL84	0.95	6AX4GT	11.30	${ }^{65 G 7}$	1.80		${ }^{95} 90$
ECF809	0.95	GZ37	3.95	UM80	0.90	6AS5GT	11.30		1.80	931A	
ECH42	1.20	KT66 1	15.50	UM84	0.70	6B4G	7.40				
ECH81	0.70	KT77*	16.10	UY82	0.70	6BAG	0.85	6SN7G	1.60	955	1.20
ECH84	0.80	KT88	17.00	UY85	0.85	6BA6	1.50	${ }_{6 S O 7}$	1.60	955	1.20
ECL80	0.70	KT88* 2	23.00	VF105/30	1.45	6BE6	0.65	6 SA	4.60	5763	5.75
ECL82	0.75	ML4	2.80	VR150/30	1.80	6BE6	1.20	6 V 6 G	1.50	6050	1.95
EC:85	0.75	ML6	2.80	$\times 61 \mathrm{M}$	1.70	6BG6G	1.60	$6 \mathrm{V6G}$	1.30	6080	5
ECL86	0.90	M $\times 12001$	129.50	$\times 65$	1.80	6BJ6	1.30	6X	50	613	13.80
EF22	3.90	N78	9.90	2749	0.75	6807A	0.85	6x5Gr	0.65	61468	10.35
EF37A	2.15	OA2	0.70	2759	19.00	6BR7	4.80	6 Y 5	0.90	8058	. 50
EF39	1.10	OB2	0.80	28000	3.45	68W6	6.20	624		9001	0.95
EF80	0.65	PCLB2	0.95	28014	3.75	6 BW 7	. 80	20			95
EF83	3.90	PCL84	0.85	z803U	16.00	60	1.1	906	2.15	9003	
VALVES AND TRANSISTORS Telephone enquifies for valves, transistors, etc Retail 7493934 . Trade and Export 7430899 FIELD TELEPHONE, CABLE TYPE D10 FIELD TELEPHONES TYPE ' J '. Tropical, in metai cases 10-lıne MAGNETO SWITCH-BOARD. Can work with every type of magneto telephones NEW PYE EQUIPMENT \& SPARES HARNESS 'A" \& "B" CONTROL UNITS $\text { A" } A^{\prime \prime}$ Microphones No 5, 6. 7 connectors, frames. carrier sets, etc POSTAGE. $£ 1-£ 350$ p, $£ 3-£ 560$ p, $£ 5-£ 1080$ p $£ 10-£ 15 £ 1.00 £ 15-£ 20 £ 1.50$ Mimumorder $£ 1.00$											
COLOMOR (ELECTRONICS LTD.) 170 Goldhawk Rd, London W 12 Tel: 01-7430899 or 01-749 3934. Open Monday to Friday 9 a.m. -5.30 p.m.											

Modular test equipment

A range of modules enables an engineer to build and configure an automatic testing facility or programmable logic controller. The range is called MATE (modular automatic test equipment) and systems of almost any complexity can be built with these rack-mounted IEC-size cards. A 43-way connector is used and this enables all signals to be routed through the backplane, leaving the front free for servicing and calibration. All connections to the outside world are opto-isolated, or operated through relays to provide robustness and practicality in the sometimes harsh environment of the factory floor.

A simple bus system is used between the modules which is designed to communicate with the eight-bit ports of a 6521 or 6821 p.i.a on a computer.
The module range includes a 16 -way digital input interface; an 8 -relay output; an 8 -way lamp (or solenoid/relay) driver; an auto-ranging voltmeter with an 8 -way input selector; programmable power supply with an 8 -way distribution switch and a special adaptor to accommodate blade connectors. Peter Levesley Consultancy Ltd, 67 Birmingham Road, Aldridge, Walsall, W. Midlands WS9 0AJ. EWW 208 on the reply card.

Ram-disc for G-64

A plug-in ram board has been designed to provide high-level language compilation in development systems, and to speed up hand ling of large data arrays in applications. The SYN-RD512 offer 512Kbytes ofd-ram which can be accessed in the same manner as a disc. The memory is particularly suited to systems based around the 6809 and 68008 processors, running the OS- 9 operating system. The memory slots into the G-64 valid peripheral address space and requires only four bytes of computer address space. Syntel
Microsystems, Queens Mill
Road, Huddersfield, HD1 3PG. EWW 206 on the reply card.

Circuit-board repair system

A method of plating p.c.b. tracks has been developed by Selectrons. It allows the deposition of metal onto selected areas with a minimum of masking and relatively small quantities of the plating solution. The operation is carried out by using a stylus with a suitably shaped graphite tip, (the anode) which is wrapped in absorbent material to hold the solution. This is connected to a d.c. power pack and there is an earth return. A built-in amp-
hour meter monitors the thickness of the deposit. Selectrons provide the solutions as well as the equipment to plate with nickel, gold, rhodium, copper and lead. The system can cope with such areas as plated through holes. It may also be used to plate complete prototype boards. Selectrons Ltd, 38 Walkers Road, Moons Moat North, Redditch, Worcs B989DH.
EWW 207 on the reply card.

Bench/portable d.m.m.

Fluke's new digital multimeter includes a bargraph analogue display for simplifying the detection of peaks and nulls. It has a min/ max mode which allows the retention of minimum and maximum reading over any period, e.g. overnight; and touch-hold mode so that readings can be captured and read when the probes are removed. Adifferential mode displays the difference from a preset value. A continuity bleep is also included.
The meter is provided with comprehensive overload protection. It is powered from a standard 9 V battery which will provide about 1000 h of operation. D.c. accuracy is 0.1% and there is a wide

bandwidth for a.c. measurement.

The case includes a hinged compartment for leads, probes and tools. Model 37 costs $£ 187$. Fluke (GB) Ltd, Colonial Way, Watford, Herts WD2 4TT.
EWW 215 on the reply card.

Interference supressor

A three terminal device combines the functions of a varistor and capacitor and so functions as a by-pass capacitor but also connects any high voltage surges to ground. The addition of ferrite beads to form a ' T ' filter in thedevice means that noise suppression characteristics are better than with capacitors alone and high-frequency noise to above 60 MHz is effectively removed

The DSS710 EMI-Guard operates as a $2200 \mathrm{pF}, 12 \mathrm{~V}$ d.c. capacitor in parallel with a 22 V varistor. The ferrites increase lead inductance to $0.8 \mu \mathrm{H}$ each (at 1 KHz). Rated current for the device is 7 A , and the device in self heating, allowing it to cope with pulses of up to 600 V . Murata Erie Electronics (UK) Ltd, 100 Albert Street, Fleet, Hants GU13 9RN.
EWW 223 on the reply card.

Miniature crystals for low frequencies

A series of quartz crystals has been produced specifically for use in series oscillators. The CX-IH products from ETA is available in a wide range of standard frequencies, together with 10 KHz to 2 MHz leadless versions for direct surface mounting. These are additions to the IQD catalogue of frequency control devices. IQD Ltd, North Street, Crewkerne, Somerset TA187AR
EWW 205 on the reply card.

CIRCUITMATE DM10 MINIATURE DIGITAL MULTIMETERS

Small size, great accuracy, gigantic value.

This $31 / 2$ digit multimeter has a basic DC accuracy of 0.8%, compared with 3% of full scale on most low-cost analogue instruments. For around $£ 32$.

Measuring only $4.75 \times 2.75 \times 0.95$ in, the DM 10 is light in weight and easy to carry in a shirt pocket. It features DCV, ACV, Ohms and diode test, with fuse protection on current ranges.

For an extra $£ 3$, model DM 10B gives you a continuity bleeper, too. It's part of a great range of Circuitmate low-cost test instruments from Beckman Industrial.

Please write for details. Circuitmate by Beckman Industrial. Performance at a practical price.

Beckman Imafugtriat

Beckman Industrial Ltd., Queensway, Glenrothes, Fife, Scotland KY7 SPU. Tel: 0592753811 . Telex: 72135.
CIRCLE 6 FOR FURTHER DETAILS

R. WITHERS AGENT TO THE STARS!

RWC are main agents/distributors for Yaesu. Icom. Kenwood. M. Modules, Jaybeam, Iona, Revco Antennas, Cleartone, Mutek, AKD. Drae, FDK, Welz, Tait and Neve Radiotelephones to name but a few! We are able to supply: Receivers (inc. scanning), Transmitters, and complete communication systems including antennas for all types of location and applications. We specialise in custom systems HF-UHF.

TUNE INTO OUR SPECIALIST SENILE!

* We manufacture our own range of VHF/UHF beam and Raycom mobile antennas and 13.8 V DC PSU's 3-12A.
* We're the only company in the UK that produces modular VHF/UHF Raycom power amplifiers (15-50 watts output).
\star We supply a large range of specialist RF power transistors/modules imported directly from Japan.
* We supply/repair amateur/business radio systems.
* We check transceivers on our spectrum analyser - £12.50 for a comprehensive report while you wait!
\star Only supplier of modified Yaesu FRG $9600 \mathrm{MII}(60-950 \mathrm{MHz})$ and Revco RS 2000E (60-179 and $380-520 \mathrm{MHz}$) scanning receivers.
* Probably the UK's largest seller of used radio equipment.
* We offer the largest selection of radio allied services under one roof. CALL NOW FOR FULL DETAILS.

EXPORT AND TRADE ENQUIRIES INVITED
584 Hagley Road West, Quinton, Birmingham B68 0BS. Tel: 021-421 8201 (2 hrs) Telex: 334303-TXAGWM-G

CIRCLE 42 FOR FURTHER DETAILS

Forthright/

 Targets (each) Targets(each) $\{1$ 68000, 280.8080, 8086.1802, 28 $\underbrace{99 x x x}$
$\sqrt{\text { FORTH } 83 ~ H S / F O R T H ~}$ 1 megabyte programs graphics floating point assembler
 OS
Editor assembler fulisysiem integration. cross compilers available $\quad £ 175$

We are the Forth specialists, we also stock a large range of books, listings and implementations for machines ranging from Amstrad to Atari ST IBM PC to PDP1

Complete with: SCREEN EDITOR MACRO-ASSEMBLER APPLICATION GENERATOR COMPREHENSIVE MANUAL
Out now for:
IBM PC, APRICOT, MSDOS CP 86, CP 80,
AMSTRAD

Extensions:

Floating point $£ 35$
VIEW-TRACE
debugger
Cross-compilers

MicroProcessor

 Engineering Ltd 21 Henley Road, Shirley Southampton SO1 5AP Tet: 0703780084
Single-chip microcontrollers

Based around a fast 16 -bit c.p.u, Intel's MCS-96 family of microcontrollers include five 8 -biti/o ports, a p.w.m. analogue output and a 10 -bit a-to-d converter. The devices will address up to 64 K bytes of memory and have 8 K bytes of rom/eprom plus 232bytes of ram on chip. Also provided on the chip are a full-duplex serial port and a supervisory timer.

The controller chips are available in a variety of packages, with a variety of variations, to suit differing applications. Emulation and development packages are available. Rapid Silicon, Rapid House, Denmark Street, High Wycombe, Bucks HP1 1 2ER. EWW 211 on the reply card.

Tenfold powerfor IBMPC

A plug-in processing board for the IBM PC, AT or compatibles incorporates the 6802032 -bit processor and a megabyte of ram to provide greatly improved speed and ability. An example is provided by the prime number Sieve of Eratosthenes benchmark; a PC took 108 seconds, IBM AT took 34 s and the Software Engine, as it is called, 6.5s. The board is produced by
Intelligent Software in the UK and they claim that a computer fitted with this board has the equivalent power of a multiuser minicomputer.
I.S. see the board being of most use in graphics simultions, computing model simulations, and for artificial intelligence research. Recent demonstrations have been running Lisp, the AI language.

The Engine runs directly under CP/M 68 K software. Assembler, C, Pascal, Fortran, Lisp and Prolog are all available. PC-DOS interface assists in accessing existing PC software. The computer uses to the full the PC's own processor and the 68020 running in parallel and can transfer data at 300 Kby tes/s. The PC acts as an i/o processor for the Software Engine. I.S. Concepts Ltd, 340 High Street, Chadwell Heath, Romford, Essex RM6 6AJ
EWW 219 on the reply card.

Ultrasonic rangefinder

At $£ 299$, the Echo-Monitor is claimed to bring non-contact level monitoring within the reach of those who usually have to put up with mechanical or other contact devices, at a fraction of the cost of similar rival devices. The monitor uses a small, sealed, rugged ultrasonic transducer which communicates with a control box. A temperature sensor is provided to allow compensation for variations of the speed of sound in air. The control box has an analogue or digital meter which can supply a read-out of the distance of the
transducer from the target, or a percentage of the distance between preset maximum and minimum. It is possible to preset three levels and provide relay switching when the levels are reached. The instrument offers an accuracy of 1 mm over a measured distance of $2 m$ with an alternative model with a resolution of 10 mm in a 10 m range. Space Age Electronics (Industrial) Ltd, Spalding Hall, Victoria Road, Hendon, London NW4 2BE.
EWW 209 on the reply card.

Racal expands gate array series

The Racal family of c-mos gate arrays has been expanded by the introduction of a 9500 -gate device using a high-density layout technique. RM19500 uses a double metal process and a 'sea of gates' design system to achieve greater density. This eliminates the routing channels of conventional layouts and reduces the die size while maintaining the high gatecount. Routing channels are created over the top of unused gate areas. Full use of the die
in a well-structured circuit would employ about 80% of the gates. Circuits with large amounts of random logic can still achieve 50 to 60% usage.

Extensive computer-aided design support is available for the new array. The chip has 146 i/o connections available and can be configured into a number of different packages. Racal Microelectronic Systems Ltd, Worton Grange, Worton Drive, Reading, Berks RG2 0SB.
EWW 220 on the reply card.

Improved transistor for tv line output

Thicker pins and mounting base make the BU208A a direct replacement for tv line output transistors. The chip is fully bonded to the base to achieve optimum heat transfer and thus reduce temperature rise. This results in lower failure rates and better performance in high-load conditions. The transistors are all fully tested. Stahnsdorf transistors are available through Edicron Ltd, 1 Wesley Avenue, London NW10 7BZ. EWW 218 on the reply card.

Brick wall filter for video

A pass-band filter from Matthey, for the PAL "I" system allows video signal up to 5.56 MHz to pass unhindered. Above $5,95 \mathrm{MHz}$ however they are offered a $>40 \mathrm{~dB}$ brick wall, which is how the filter gets its name. This represents a sharpness factor of 1.07 . The NTSC version cuts at above 4.2 MHz to reduce the audio sub-carrier at 4.5 MHz by 40 dB . Group delay ripple is adequately controlled.

Other new video products from Matthey include a zero loss delay line for broadcast quality video. This is fully phase equalized and offers switchable steps of 2 ns in ranges up to 1830 ns with 1 ns fine trim.

There is also a range of lowpass filters which are much smaller than their equivalents and offer considerable saving in p.c.b. space. The MHD range of filters, up to 30 MHz , are specifically designed for use in high-definition tv, with $<0.1 \mathrm{~dB}$ pass band ripple and $<10 \mathrm{~ns}$ group delay ripple. Matthey Electronics, Burslem, Stoke-on-Trent ST6 3AT.
EWW 214 on the reply card.

REPRINTS a ready made sales aid

HART - The Firm for QUALITY

LINSLEY HOOD 300 SERIES AMPLIFIER KITS
Superb, HART designed, integrated amplifier kits derived from Linsley-Hoods articles in HIFI News
Ultra easy assembly and set-up with sound quality to please the most discerning listener. Ideal basis for any domestic kit and save pounds off the individual component price.
K300-35, 35 Watt. Discount price for Complete Kit.

K300-45. 45 Watt. Discount price for Complete Kit
RLH4\&5. Reprints of Original Articles from HIFI News
LINSLEY-HOOD SYNCHRODYNE AM RECEIVER
Very high quality kit for this recent design teatured in Wireless World. Advanced construction system, approved by the Author, uses 3 double sided PCBs in a stacked layout lor total stability. ease of construction and minimal wiring. This module will form the AM section of an ultra high quality AM/FM switched bandwidth tuner to match our 300 series K450 JlH. Power supply and tuning gang will be included with the FM section K450 JLH Synchrodyne Kit.

If you are interested in a particular article or advertisement in this publication why not take advantage of our reprint service. We offer an excellent, reasonably priced service. For further details and a quotation

Ring Kaye Locke on 01-661 3779
Complete stereo record, replay and bias system for reel-to-reel recorders. These circuits will give studio quality with a good tape deck. Separate sections for record and replay give optimum performance and aliow a third head monitoring system to be used where the deck has this iitted. Standard 250 mV input and output levels.
K900W Stereo Kit with Wound Coils and Twin Meter Drive
... 165.67
RJS1 Reprints of Original Articles
$£ 1.30$ no VAT

Do your tapes lack treble! A worn head could be the problem.
Tape heads are constantly improving and fitting one of our
latest replacement heads could restore performance to better
than new! Standard mountings fit most decks and our TC1 Test
Cassette will make it easy to set the azımuth spot on. As we are

the actual importers you get prime p
heads are suitable for Dolby machines.
heads are Sutable for Dolby machines.
HC20 Permalloy Stereo Head. Good quality standard head fitted as orignal equipment

output than ferrite, fantastic frequency response ... 59.91
H0551 4-Track head tor auto-reverse or quadrophonic use. Full specification record and play
head...
Special Offer Stereo R/P Heads.
4-Track Auto-Reverse Play Head
§2.49
§3.50
Full data on these and other heads in our range are contained in our free list.
HART TRIPLE-PURPOSE TEST CASSETTE TC1

One inexpensive test cassette enables you to set up VU (Doiby) level, head azimuth and tape speed without test equipment. Vital when fitting new heads. Complete with instructions....
Send for your FREE copy of our lists with full detalls of our complete range of Kits, Components, PCBs, Cassette Heads and Decks: - Overseas please send 5 IACs for Airmail Post.
Please add VAT to all prices. Postage on orders up to $£ 10-50$ p. $£ 10$ to $£ .49-£ 1$. Over $£ 50-£ 1.50$.

BE:
 ELECTRONICKITSLTD
 1. Penylan Mill, Oswestry, Shropshire SY10 GAF 24 hr SALES LINE 106411652894 Please add VAT

UNIVERSAL PROGRAMMER

PROMPRO-XP ${ }^{\prime \prime}$

ALL YOU EVER NEEDED IN A PROGRAMMER FOR

£1,995.00 EXC. VAT

OPT STD

- Programs and Emulates* Sets EE/EPROMs, 2716-27512, 27513 - emulates two 2716-27256
₹ \square Programs Single Chip MICROs
It Programs PALs/PLDs - 20/24 Pins
(1 Programs BIPOLAR PROMs
- \downarrow Built-in EPROM Eraser
- \quad Keypad and Alphanumeric Display
$\square \quad \downarrow$ Sophisticated Command Set
$\square \quad \forall$ Stand-Alone or RS-232 PC Driven
$\square \quad \checkmark$ 512K RAM buffer, 8 bit or 16 bit wide
$\downarrow \quad \pm$ Accepts intel Hex 80,86,ASCII format
$\square \quad \nabla$ Accepts Motorola S1, S2, S3 formats
$-\quad \checkmark$ Accepts Binary format/JEDEC format
- IBM PC communications Software
$\downarrow \square$ PALASM*, CAST*, CUPL*, H.E.L.P.*

CIRCLE 4 FOR FURTHER DETAILS

173MHz FM TELEMETRY RADIO LINK

- Range dependent on environment but typically greater than 100 metres
- Moduiar, Wall Mounting Transmitter + Receiver
- Direct Baseband Inputs + Outputs
- Approved to MPT1309
- Each Module $86 \times 104 \times 45 \mathrm{~mm}+$ requires only 30 mAdc at 7.2 V
- 'Add on' Modules for Remote Switching, Voltage Monitoring + Serial Data Transmission.

ADENMORE LTD

27 Longshot Estate, Bracknell, Berks. RG12 1RL Tel: 034452023 CIRCLE 40 FOR FURTHER DETAILS

SATELLITE TELEVISION

Buy direct from the manufactuers, low cost full band satellite TV systems.
Full band system $£ 650.00+$ VAT \& carriage.
Write of telephone for details, or call in at our factory showroom.

NETWORK SATELLITE

 SYSTEMS LTDUnits 7-8
Newburn Bridge Industrial Estate Hartlepool, Cleveland TS25 1UB Tel: (0429) 274239 or 869366

CIRCLE 10 FOR FURTHER DETAILS

PCB designer for the BBC computer

Artwork for double-sided p.c.bs can be produced by a programme that resides in a rom for the $B B C$ computer. This leaves enough space in ram for a virtually unlimited number of tracks of any complexity for boards up to 200 by 142 mm .
The printing routine significantly enhances what is presented on the screen by automatically rounding corners, straightening diagonals and adjusting the widths of tracks running between 0.1 in-pitch paids. Printers with "quadruple-density" are capable of printing $1: 1$ overlay patterns with a resulotion high enough to allow tracks to be run between i.c. pins, as the example shows. It takes about five minutes to print one side of a Eurocard-size board.

Any size of dil i.c. package or two-pin component can be positioned using a few keystrokes. Rows of 0.1 in pads can be made in one step. Configurations for other components are built by individually placing the pads, normally on a 0.1 in grid. Components may be moved around the board easily before the tracks are routed. The placing
of the components completes the first stage of the design, then the tracks are routed. It is possible to go back and forth between the stages but repositioning a 40 -pin component after its tracks have been routed can leave quite a mess to untangle! Track routes for both sides of a board are displayed simultaneously on the screen, each side being assigned a different colour. Standard track widths are $0.25,0.5$ and 0.75 in but wider tracks are possible by running track side by side. For large copper areas, a fill routine is used. Erasing tracks on one side of the board does not affect tracks on the other side. The reverse side is not printed as a mirror image.

The pattern can be printed onto paper or transparent film (an old printer ribbon is recommended to avoid smudges). Paper images can be copied photographically or sprayed with oil-based liquid to make then translucent for transferring to the copper surface by u-v light.

Pineapple Software, 39 Brownlea Gradens, Seven Kings, Ilford, Essex IF3 9NL. EWW 225 on the reply card

Digital signal processor from Inmos

By taking an analytical look at the functions of a digital signal processor, Inmos identified the multiply/accumulator as the bottleneck to high-speed signal processing. This has resulted in a radical new design, the IMS A100, which incorporates no less than 32 of the 16 by 16 bit multipliers together with registers and control logic arranged to give a fully programmable digital transversal filter. It operates at rates up to 10 MHz . The device is cascade-
able to produce transversal filters of several thousand stages with high numerical accuracy. The processor will find use in communications, control, radar, sonar, image and speech processing. Working devices exist within Inmos, evaluation trials are progressing and the device will be available to cusotmers on October 1. Inmos Ltd, PO Box 424, Bristol BS99 7DD.

EWW 226 on the reply card.

High-output moving coil pick-up

No additional pre-amplifier is matches normal phono inputs needed for the new Ortofon X-series moving coil cartridges. This has been achieved through the use of a specially shaped samarium cobalt magnet and ultra-thin $(18 \mu \mathrm{~m})$ copper wire on the armature which allows many more windings with no increase in mass. The mV output
to amplifiers. Ortophon also claim a new low cost as they are able to automate the production of these cartridges with no degradation in performance. Ortophon Manufacturing A/S, 11B, Mosedalvej, DK-5000 Copenhagen-Valby, Denmark.
EWW 227 on the reply card.

High-voltage d.c. converters

Two units from K.E. Developments are pin-compatible with other similar devices and are offered as replacements. Types B5/180 and C5/180 provide 180 V at 15 mA from a stablised 5 V supply. Operating with an efficiency of about 75% at full load, they are suitable for driv-
ing many types of gas discharge displays. Other input and output voltages are available with isolation up to 500 V . K.E. Developments Ltd, The Mount, Toft, Cambridge CB3 7RL.

EWW 228 on the reply card.

LOW COST C.A.D.

ELECTRONICS

IBM PC (and compatibles), BBC MODEL B, B + and MASTER, AMSTRAD CPC and SPECTRUM 48 K
ANALYSER I and II compute the A.C. FREQUENCY RESPONSE of linear (analogue) circuits. GAIN and PHASE INPUT IMPEDANCE, OUTPUT IMPEDANCE and GROUP RELAY (except Spectrum version) are calculated over any frequency range required. The programs are in use regularly for frequencies between 0.1 Hz to 1.2 GHz . The effects on performance of MODIFICATIONS to both circuit and component values can be speedily
evaluated. evaluated.
Circuits containing any combination of RESISTORS, CAPACITORS INDUCTORS, TRANSFORMERS, BIPOLAR AND FIELD EFFECT TRANSISTORS and OPERATIONAL AMPLIFIERS can be simulated - up to 60 nodes and 180 components (IBM version)
Ideal for the analysis of ACTIVE and PASSIVE FILTER CIRCUITS, AUDIO AMPLIFIERS, LOUDS CAKER CROSS-OVER NETWORKS, WIDE-BAND I.F and CHROMA FIL TER CIRCUITS, LINEAR INTEGRATED CIRCUITS STABILITY CRITERIA AND OSCILLATOR CIRCUITS can be evaluated by "breaking the loop".
Tabular output on Analyser I. Full graphical output, increased circuit size and active component library facilities on Analyser II.
Check out your new designs in minutes rather than days.
ANALYSER can greatly reduce or even eliminate the need to breadbord new designs.
Full AFTER SALES SERVICE with TELEPHONE QUERY HOT LINE and FREE update service
Used by INDUSTRIAL, GOVERNMENT and UNIVERSITY R \& D
DEPARTMENTS worldwide. IDEAL FOR TRAINING COURSES, VERY EASY TO USE. Prices from $£ 20-£ 195$.

DRAUGHTING
 BBC MODEL B

"DRAWER I" enables quality drawings to be created, and modified
quickly, easily and with the minimum of hardware. All of the major
program elements are written in machine code giving exceptional speed of operation.

FEATURES
Rubber Banding for drawing lines
\dot{L} Solid or Dotted lines types.
\star Circles, Arcs and partial or complete Ellipses.
Vertical or Horizontal Text
Pan and Zoom
is Merging of drawings and librar symbols from disc
Snap to a user defined grid.
\nRightarrow Absolute or Relative cursor co-
ordinates displayed onstick. Mouse or
Trackerball.
Output to standard dot matrix printer. \downarrow Prices from - $£ 45$ ex VAT.

MINIMUM HARDWARE REQUIRED:
子 BBC Model B.
\& Single or Dual 5.25" Disc Drive
40 or 80 track
$\&$ Games Joystick. Mouse or
Trackerball.
~ Dot Matrix Printer (Epson 80 series or Epson compatible-BBC default mode preferable).

For further details please write or phone quoting Dept W.W.

Number (ome Systems Ltd 1
 Crown Street, St Ives, Huntingdon, Cambs. PE17 4EB.
 Telephone: St Ives (0480)61778 - Telex: 32339

CIRCLE 54 FOR FURTHER DETAILS

PRINTED CIRCUIT BOARDS FORELECTRONICS \& WIRELESS WORLD PROJECTS			
Stast chatg			
Cille			
Combe Martin ELEETRONIES			

Toroidal \& E.I. Transformers

Air Link Transformers.

Unit 6, The Maltings, Station Road,
Sawbridgeworth, Herts. Tel: 0279.724425

CIRCLE 20 FOR FURTHER DETAILS

Hitachi Oseilloscopes provede the quality and performance that verud exped from such a lamon manes, wh a newle- extended $1+$ model range that represens the ber valuc for mone anatable amynhere V-212/222 $20 \mathrm{MH} /$ Dual Irace V-650 60 MH/ Dual I inctrase V-223 20 MHz Sweep Delay $\quad \backslash 1050 \quad 100 \mathrm{MH} /$ Quad Trace

 V-422
 501H/, Mini-Portable V(-60)+1 f(0)N1/, Digital Storage

Prices start at $£ 299$ plus vat (20 MHz dual trace) including a 2 yr , warranty. We hold the range in stock for immediate delivery
For colour hrochute giting apectication and price ring (0480) 6.3570 Thurlby Electronics Lid. New Road, St. Ives, Cambs. PE174BG
CIRCLE 47 FOR FURTHER DETAILS

CIRCLE 48 FOR FURTHER DETAILS

CIRCLE 49 FOR FURTHER DETAILS

Now Thurlby makes logic analysis affordable ! from

 the new Thurlby LA-160

- 16 channels, expands to 32 - 2 K word acquisition memory - Clock rates up to 20 MHz - Non-volatile reference memory - State and timing displays - Search and compare facilities - Selectable display formats - Hard-copy data print-out

An oscilloscope and logic probe are not enough to unravel the complexities of today's electronic equipment. A logic analyser is as essential for observing digital signals as an oscilloscope is for observing analogue signals, and now Thurlby puts one within every engineer's reach
Contact us now and get the full technical data.

[^1]Thurlby Electronics Ltd
New Road, St.Ives, Huntingdon, Cambs. PE 17 4BG, England. Tel: (0480) 63570

Control and measurement interfaces

Put your computer to work with these versatile control and measurement interfaces from DCP Microdevelopments, described in the article on page 50 ,

Each Interpack offers a range of useful i/o functions and can be used with any of a number of common micros: just add the right intercard to match. For a more complex system you can link Interpacks together using the special DCP Bus Intercard

Order an Interpack together with an appropriate Intercard and you will also receive the matching
connectors at no extra cost Connector pack 1 includes two port plugs and a DPC Bus plug; connector pack 2 has ten 2 mm plugs for other inputs and outputs.

These special prices for readers of $E \& W W$ include v.a.t. and delivery within the UK. Goods will normally be sent within seven days, but if any item is out of stock the customer will be notified immediately of the estimated delivery date A v.a.t. invoice/receipt will be supplied automatically.

This offer is available by mail-order only, using the coupon below, from the following address:

Electronics \& Wireless World Offer
DCP Microdevelopments Ltd,
2 Station Close,
Lingwood,
Norwich NR13 4AX.
Terms of the offer are strictly payment with order. Readers outside the UK should contact DCP Microdevelopments for export prices.
Technical enquiries: ring 0480-830997
.. Interpack 1 with manual and free connector packs 1 and 2
... Interpack 2 with manual and free
connector pack 2
(a) $£ 49.95$
. Intercard for Amstrad CPC464/664/61128 computers
£19.95
... Intercard for Apple II and Apple IIe
@ $£ 29.95$
.. Intercard plus power supply for
BBC B/BBC B +/Master 128
(1) $£ 24.95$
.. Intercard for Commordore 64 and 128
(1) 19.95
... ZX Intercard for Sinclair ZX81/Spectrum/
Spectrum +/Spectrum 128
(a) £14.95
.. DCP Bus Intercard for using two
Interpacks together
(a) 14.95

To: E\&WW offer, DCP Microdevelopments Ltd, 2 Station Close, Lingwood, Norwich NR13 4AX.

I enclose my cheque/postal orders, value \mathbb{E}^{2}, payable to DCP
Microdevelopments Ltd.
Name..
Address

Offer expires 31st October, 1986
Regd. in England 15137 BUSINESS PRESS INTERNATIONAL LTD Regd. office: Quadrant House, The Quadrant, Sutton Surrey SM2 5AS.

Happy Memories

Part type	1 off	25-99	100 up
4164 150ns Not Texas.	.. . 95	. 85	. 80
41256150 ns .	. 2.40	2.15	2.05
2114 200ns Low Power	. 1.75	1.60	1.55
6116150 ns .	.. 1.40	1.25	1.20
6264 150ns Low Power	. 2.75	2.45	2.20
2716450 ns 5 volt.	. 2.90	2.60	2.45
2732 450ns Intel type	. 2.70	2.40	2.25
2764 250ns Suit BBC.	..1.90	1.70	1.65
27128 250ns Suit BBC.	..2.45	2.20	2.10
27256 250ns.	. 3.85	3.45	3.30
Low profile IC sockets: Pins	814	1820	2840
Pence	59	1112	1724

Please ask for quote on higher quantities or items not shown.
All memory products Japanese or American manufacture.
74LS series TTL, wide stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or 'phone for list.

Please add 50p post \& packing to orders under $£ 15$ and VAT to total. Access orders by 'phone or mail welcome.

Non-Military Government \& Educational orders welcome for minimum invoice value of $£ 15$ net.

HAPPY MEMORIES (WW),
Newchurch, Kington,
Herefordshire HR5 3QR.
Tel: (054 422) 618
CIRCLE 28 FOR FURTHER DETAILS

DATA GENERAL MINICOMPUTER PARTS AND SYSTEMS

Does your application need those multi-user megabytes but your budget stretch only to a PC? Or is your old DG mini flat on its back? Need an upgrade? Second printer? Hardware support? As traders in commercial systems, we always have stock of older traders in commercial systems, we always have stock of older
(and newer) equipment. We also deal in second-hand and surplus (and newer) equipment. We also deal in se
micro systems. Large SAE for current catalogue.
Sample stock: Eclipse S 130 (CS/60) 8-line mux, 40 MB in 1.5 m rack - £5500; Eclipse S/20 (CS/100) 15MB+1.2MB, 4-line mux in 1 m rack - £3500; CS10 C3, 4-line mux, $12.5+1.2 \mathrm{MB}$, console - $£ 1500 ; 3001 \mathrm{pm}$ drum printers £400; Standard $19^{\prime \prime}$ racks (blue/cream) with 240 V fans, mains breakers, side

SILICDN GLEN LTD
 Moray Street, Blackford, Perthshire, Scotland

Callers \& Overseas Enquirers welcome or Telephone: 076482315 or 464
Telex: 295141 TXLINK G quoting MBX 076482315 on first line Bulletin Board Sales Catalogue (Prestel Standard) on 076482465

CIRCLE 57 FOR FURTHER DETAILS

FOR FURTHER DETAILS SEND S A E TO

MATMOS Ltd., Unit 11. Lindfield
Enterprise Park, Lewes Road, LINDFIELD
West Sussex RH16 2LX Tel 0444-73830

Or Computer Appreciation. 111 Northgate, CANTERBURY Kent CT11BH

Advertisements accepted up to 12 noon August 6 for September issue

DISPLAYED APPOINTMENTS VACANT: $£ 23$ per single col. centimetre (min .3 cm) LINE advertisements (run on): $£ 5$ per line, minimum $£ 40$ (prepayable)
BOX NUMBERS: $£ 11$ extra. (Replies should be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS).
PHONE: SUSAN PLATTS, 01-661 3033 (DIRECT LINE)
Cheques and Postal Orders payable to BUSINESS PRESS INTERNATIONAL LTD. and crossed.

Salaries $\mathbf{\$ 8 , 0 0 0}$ to $\$ 30,000$ p.a.

As the UK's leading specialist sales and technical recruitment consultancy, we provide a FREE service to engineers seeking a career move If you have experience in digital, analogue, microprocessor or communications technologies (either hardware or software), ideally with a recognised qualification, we have hundreds of vacancies throughout the UK in R \& D, Design, Manufacturing, Test, Service and Sales Call your nearest branch for more information or send a comprehensive C.V. (no stamp required) to:-

FIELD SERVICE ENGINEERS

NORTH LONDON / HOME COUNTIES

LKB Instruments, the UK subisidiary of a major international scientific instrument company is further expanding its range of products for the life science and diagnostic clinical chemistry market and as a result a vacancy exists for two Field Service Engineers within their Customer Service Department.
Applicants should have a knowledge of digital and analogue electronics and field service experience in clinical or medical instrumentation diagnostics would be an advantage but not essential.
The work involves the repair and maintenance of instrumentation situated mainly in Hospitals and University Laboratories. Easy access to the motorway system and residence in the North London area would be considered an advantage when choosing between applicants of equal ability.
Conditions of employment are excellent and in addition to a good basic salary and company car, the company have a profit-sharing scheme, BUPA participation and four weeks annual holiday.
Contact Mrs D. Duff for Application Form.

LKB Instruments Limited,
232 Addington Road, Selsdon, South Croydon, Surrey CR2 8 YD. Tel. No. 01-651 5313.

Inner London Education Authority
LEARNING RESOURCES BRANCH
Television \& Publishing Centre, Thackeray Road, SW8.

Studio Sound Assistant

Salary scale $£ 8,238-£ 9,327$ plus $£ 1,494$ London Weighting Allowance.
A Studio Sound Assistant is required to work at the above Centre which is equipped to colour broadcasting standards.
Duties include general studio work, rigging, boom operation etc., and sound recordist duties on location with both film and video recording crews.
Experience or knowledge of sound techniques is required.
This post is suitable for job share.
Application forms and further details from
Personnel Services Division (PER/PS 4a), Room 366,
The County Hall, London SE1 7 PB.
The closing date for completed application forms is
29 August 1986.
Applicants should be aware of and committed to the Authority's Equal Opportunities Policy.
ILEA IS AN EQUAL OPPORTUNITIES EMPLOYER

Appointments

CHIVEDEN

1. TEST ENGINEER

Repair and service computer \&
microprocessor equipment
£9,000+, Berks.
2. SERVICE ENGINEER

Fault find IBM PC's both in house and in the field.
c8,500 + car, Bucks.
3. TEST ENGINEER

Repair analogue tape transports £8,500+, S.W. London.
4. SERVICE ENGINEER

Repair and maintain disc \& tape drives.
£9,000, Berks.
5. SUPPORT ENGINEER

Hard/Software knowledge of
telephony systems.
c. $£ 9,000$, Herts.
6. SERVICE ENGINEER

Datacomms and micro based network systems.
£12,000 + Car, Berks.
Hundreds of other Electronic and Computer vacancies to £15,000
Phone or write:
Roger Howard C.Eng. M.I.E. E. MI.I.E. R.E.
CLIVEDEN RECRUITMENT
92 Broadway, Bracknell, Berkshire RG12 1 AR
Tel: 0344489489

FOR CLASSIFIED ADVERTISEMENTS RING SUSAN PLATTS 6613033

RESEARCH TECHNICIAN ELECTRONICS. A technician required to join a research team in Department of Zoology that designs, develops and uses subminiature blotelemetry devices for use with free range animals Experience in microprocessor programming and data analysis would be an adrantage Starting salary $£ 7,748 \mathrm{pas}$. Ref: 9283 Applications from: Personmel Office, Birmingham University 1 O Box 363. Birmingham B 15 2TT. An equal opportunties employer (287)

SENIOR ENGINEER Outside Broadcast Communications
 (Leeds Based)

We are one of the 5 major Independent Television Companies and have achieved a world wide reputation for producing high quality award winning programmes
An opportunity has arisen for a Senior Engineer to work in our Outside Broadcast Communications Department. Duties include the operation and maintenance of television outside broadcast
microwave/relay links and associated monitoring equipment. The job involves working in remote and isolated areas and applicants should hold a current driving licence.
A wide knowledge of the operation of SHF, UHF, and VHF equipment and sound and vision transmission circuits is essential. A qualification of HNC or equivalent in communications technology and some transmission experience would also be an advantage.
The position is Leeds based and the starting salary will be in the region of $£ 14,000$, with increase pending. Overtime is often available and other conditions of service are attractive.
Please telephone for an application form, or send a full C.V. to:-
The Personnel Department (Recruitment)
Yorkshire Television Limited
The Television Centre
LEEDS LS3 IJS
Telephone: Leeds 438283
YORKSHIRE
Extension: 246/305

Several vacancies now exist within our test and inspection department for
TEST TECHNICIANS
Being responsible for functional testing and inspection of various electronic assemblies and sub assemblies. You will require a sound working knowledge of electronic circuits and the use of proprietary test and measuring equipments. In addition, the preparation of written records of
measurements and results is necessary: experience, or an ability. in fault finding will be considered a distinct advantage.
A completed apprenticeship in electronics engineering with at least ONC or TEC qualificaton and previous experience in similar work is expected. (Some relocation assistance will be paid where appropriate).
If you consider your experience and qualifications match with our requirements, please submit C.V. or telephone for an application form to:
Mrs Terri Houghton, Personnel Officer, Waverley Electronics Limited, 10 Cambridge Road, Granby Industrial Estate, Weymouth DT4 9TJ Tel No: (0305) 784738 Ext. 167

Appointments

Inner London Education Authority

LEARNING RESOURCES BRANCH
Television \& Publishing Centre. Thackeray Road, SW8 3TB

Assistant Vision Engineer
 (Lighting) (ST1/2)

Salary Range £6,222- £9,327
Plus $£ 1,494$ London Weighting Allowance.
An Assistant Vision Engineer (Lighting) is required to work, as part of a team taking responsibility for the quality of television pictures recorded. The assistant vision engineer will be particularly concerned with the rigging, adjustment and maintenance of lamps and operation of telecine.
Candidates should have suitable technical background and qualifications and a good working knowledge of appropriate equipment.
This job is suitable for job-sharing.
Application forms and further details are available from
Personnel Services Division, (PER/PS4A), Room 366. The County Hall, London SE1 7PB.
Closing date is 29th August 1986.
ILEA IS AN EQUAL OPPORTUNITIES EMPLOYER

More Hi-Tech Jobs

£8000-£20,000

As a leading recruitment consultancy we have a wide selection of opportunities for high calibre Design, Development Systems and supporting staff throughout the UK
If you have experience in any of the following then you should be talking to us for your next career move

* ARTIFICIAL INTELLIGENCE - IMAGE PROCESSING
- MICRO HARDWARE \& SOFTWARE - GUIDED WEAPONS
- OPERATIONAL RESEARCH - RF \& MICROWAVE OPTICS
- MATHEMATICAL MODELLING - SIMULATION • C3
- HIGH LEVEL PROGRAMMING - SYSTEMS ENGINEERING
- ACOUSTICS \& SONAR • FLUID DYNAMICS • RADAR
- SATELLITES - AVIONICS - CONTROL - ANTENNA

Opportunities exist with National, International and consultancy companies offering excellent salaries and career advancement
For Free and Confidential career guidance call John Spencer or send a detailed C.V.. Please quote reference $W W / 3$
STS Recruitment, 85 High Street, Winchester, Hampshire SO23 9AP Tel: Winchester (0962) 69478 (24 hours)

THE START OF SOMETHING NEW

If you are leaving College and planning a career in modern communications or if your present job lacks interest and challenge . . . why not join us in GCHQ?

We are recruiting

RADIO OFFICERS

who after initial training will become members of an organisation that is in the forefront of communications technology. Government Communications Headquarters can offer you a satisfying and rewarding career in the wide field of communications. Training involves a 32 week course (38 weeks if you come straight from Nautical College) which will fit you for appointment to RADIO OFFICER.
Not only will you find the work as an RO extremely interesting but there are also good prospects for promotion opportunities for overseas travel and a good salary. Add to this the security of working for an important Government Department and you could really have the start of something new.
The basic requirement for the job is 2 years radio operating experience or hold a PMG, MPT or MRGC or be about to obtain a MRGC. Registered disabled people are welcome to apply.
Salaries start at $£ 5,817$ at age 19 to $£ 6,920$ at age 25 and over during the training and then $£ 7,954$ at 19 to $£ 10,162$ at 25 and over as a Radio Officer. Increments then follow annually to $£ 13,777$ inclusive of shift and week-end working allowances.
application form phone 0242 32912/3
or write to:

[^2]A1108
$280+$

DESIGN ELECTRONIC COMMUNICATIONS EQUIPMENT

Progress from initial concepts through prototype construction, test and evaluation to the pre-production phase using CADMAT techniques. Analogue, digital and microprocessor circuitry is designed and developed by our engineers; in the latter case, there is no dramatic distinction drawn between hardware and software engineering responsibilities.

Working conditions are pleasant, the surroundings are attractive and the support facilities are superb.

We are now looking for young men and women who have electronic engineering degrees and relevant experience (2 years minimum). Appointments will be made on a scale ranging from $£ 9,552$ to $£ 12,020$ per annum but substantial improvements to this scale are in the pipe line resulting from a recent review and will lead to a minimum upper salary limit of $£ 13,801$. The career prospects in the longer term are excellent.

For further details please write to the address given below outlining your personal interests and practical experience of electronics communications equipment and design.

The Recruitment Officer,
Dept JST1, HMGCC, Hanslope Park,
Buckinghamshire MK 197BH.

Electronic Engineers What you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $\mathbf{£ 6 , 0 0 0 -} \mathbf{£ 2 0 , 0 0 0}$.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL PERSONNEL SERVICES
12 Mount Ephraim,
Tunbridge Wells,
Kent. TN4 8AS
Tel 089239388

ARTICLES FOR SALE

WAVEGUIDE, Flanges and dishes All standard sizes and alloys (new material only) from stock. Special sizes material onlytrom stock Special 7876 , 22 Howie St reet. London SW114AR.
(2099)

PCB ARTWORK DESIGN Low Cost 7-Day Turnaround *Prototype PCB's ${ }^{*}$ Circuit Design *Call Systems *PCB hand assembly. Phasor Circuits, 12 Kendal Road, Rushey Mead, Leicester. Tel: 0533830953
(209)

GOLLEDGE

ELECTRONICS
Q U A R T Z CRYSTALS OSCILLATORS AND FILTERS of all types. Large stocks of standard items. Specials supplied to order Personal and export orders welcomed SAE for lists please. OEM support thru design advice, prototype quantities production schedules. Golledge Electronics, Merriott, Somerset YA16 5NS. Tel: 046073718.

BRIDGES waveformn/transistor analysers. Calibrators, Standards. Millivoltmeters Dynamometers, KW Milters Oscilloscopes Recorders meters, Oscilloscopes. Recorders Signal generators - sweep, low distortion, true RMS, audio, RM,
deviation. Tel:040 376236 .
(2616)
NOW AVAILABLE - Bumper Catalogue-170 pages - for collectors of vintage radio, audio \& TV equipment Price: $£ 2.00$ post paid UK, $£ 3.00$ post paid overseas. Vintage Wireless Co Ltd., Cossham Street, Mangotsfield, Bristol BS17 3EN. Phone: 0272565472
(208)

TELEQUIPMENT PHILIPS ,SCOPES, manuals, spares. S54A £125. Also various tests gear. Ochremill Technical, 0785 (Stone) 814643 . (239)

PCB'S MANUFACTURED, prototypes, small/large production runs, single, double-sided, P.T.H screen printing, panels, lables, solder masking \& photography. Orbitechnic Circuits, The Rear of 127 Woodlands Road, Ilford. Essex. Tel:01-5535211.

NEW WINCHESTER 20 MEGABYTE HARD DISC. controller board, IBM PC, host adaptor, $£ 325,10$ megabyte disc controller board, £235. 20 megabyte tape streamer IBM PC host adaptor, £295. Oscilloscope D83, 50 MHz dual trace, £449. IN 5406 12,000 , £295. B.N.C. connectors 1500 , £295. Transformers $30 \mathrm{~V} / 1 \mathrm{~A} 300, ~ £ 149$ $36 \mathrm{~V} / 1^{1 / 2} \mathrm{~A} 160, £ 90.24 \mathrm{~V} / 4 \mathrm{~A} 90$. $£ 199$ Slough (0753) 824027.
(278)

Record Chart Recorder with mains drive unit and clockwork drive for field use $£ 89$. Battery portable signal generator 1 Hz 1 MHz , sine/square. sync $£ 65$. Battery portable DC meter, 18 ranges. 3 microvolt FSD to IKV FSD, pico-amps, nano-amps, micro-amps etc $£ 75$. Calibration standard cell £12. Wayne.Kerr 161 Bridge Source (generator) and Detector $£ 59$ ea. Marconi Universal Bridge $£ 79$. Philips Laboratory Transistor Analyser £85. WES Watt/Amp/Voltmeter 20-2000W FSD, $200-$ 2000 V FSD, $\times 10$ position, monitor output £69, |KV, 240/115 Isolatıon transformer £35, Geger-Muller tube $£ 10$. Vacuum rotary and diffusion pump with switchgear. frame mounted £98. Tins Edwards Silicone Fluid $702 £ 12$ ea. Stroboscope, curve tracer. 'R and 'C' boxes Ni3Cd charger, pulse generator, hygrometer. Alrcraft radıo Test Set £25. LOPT Transformer Test Set £49. Pulse Height Analyser \$35. Shadoweight Industrial Balance £45. 5-decade Digital Calibration Voltmeter £75. W-K 01% Bridge $£ 89$.

040-376236

TO MANUFACTURERS, WHOLESALERS

 BULK BUYERS. ETC.LARGE QUANTITIES OF RADIO. TV AND ELECTRONIC COMPONENTS FOR DISPOSAL
SEMICONDUCTORS, all types, INTEGRATED CIRCUITS, TRANSISTORS, DIODES, RECTIFIERS, THYRISTORS, etc. RESISTORS, C/F, M/F W/W, etc

CAPACITORS, SILVER MICA, POLYSTYRENE, C280, C296, DISC CERAMICS, PLATE CERAMICS, etc.
ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE, CABLES
SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFORMERS, etc.
ALL AT KNOCKOUT PRICES - Come and pay us a visit ALADDIN'S CAVE
TELEPHONE: 445 0749/445 2713
R. HENSON LTD

21 Lodge Lane, North Finchley, London, N. 12
5 minutes from Tally Ho Corner)

MANUFACTURERS SURPLUS STOCKS

Electronic Components, Test Gear, Radiotelephones, Computers, Photographic and Video Equipment. All at knockout prices,
Export and Trade Enquiries Welcome.
Catalogues Available from:
B. BAMBER ELECTRONICS, 5 STATION ROAD, LITTLEPORT, CAMBS. Phone: ELY (0353) 860185

```
G.W.M. RADIO LTD.
40/42 PORTLAND ROAD. WORTHING, SUSSEX Tel: 090334897
```

```
Racal RA17L {200. Marconi
```

Racal RA17L {200. Marconi
4-1024MHz £85 Buyers collect Eddystone EB37 Solid
State Recerver, sumilar to EClO but no BFO 150\textrm{KHz}
H/B FM wowth tattery box and microphone \& \&5 inc. PY,
W15 UHF Westmunsters set only £35 with control gear
550 inc. Fye W25HM mobile units sold state High
power Westmunsters 10 channel, ex car telephone high
band. no control gear (untts only) {40 inc. Eddystone
the range 30-57MHZ, solid state, mams powered, as
new condition 555 inc. Signal generator advance. type
B4B directly calbrated from 30\textrm{KHz}\mathrm{ to 30MHz £35 inc.}
Convette SS" by "Svenska" synthestsed mult, channel
\$ (40 inc.

```

\section*{CIRCOLEC \\ THE COMPLETE ELECTRONIC SERVICE}

Artwork, Circuit Design, PCB Assembly, Test \& Repair Service, O.A. Consultancy, Prototypes, Final Assembly. Full PCB Flow Soldering Service
Quality workmanship by professionals at economic prices
Please telephone 01-646 5686 for advice or further details.
TAMWORTH MANOR
302-310 COMMONSIDE EAST, MITCHAM

DISC COPYING/ FORMAT CONVERSION
We can convert your files to and from most CPIM, MS DOS land look alikel disk formats and sizes. [7.50 + Disks (if required) + VAT
For details contact Clive Waller at Chiatronix Lrd, 238 Old Bedford Road, Luton, Beds U2 7EQ Tel: (0582) 21010
(Callers by appointment please)

\section*{Telephone Susan Platts on 6613033}
if you wish to advertise on these pages

\section*{BILLINGTONVALVES}

SENO TODAY FOR OUR FREE CATALOGUE OF

Wholesale inquirtes welcome: Export inquisies welcon

23 Irwin Drive, Horsham. W. Sussex RH12 INL
Marl Orders Only. Cadlers strictly by appontment only
PCB'S MANUFACTURED Prototype, small/large production runs. Single/double sided, multilayer. PTH all produced to consistently high standards. Screen printing and photography. Full CAD artwork design service from circuit diagram. Prices are competitive, delivery fast \(2,5,14\) days or by agreed schedule. Translab Electronic Services, 38 Matlock Close, Rugby CV21 1LB. Tel enquiries: (0788) 536626.

\section*{ELECTROLOOM (BEDS)}

Competitive rates for a
PCB \& CABLE ASSEMBLIES FULL CHASSIS WIRING SUB \& FINAL ASSY. WELCOMED PLEASE CONTACT 0525-378590 for immediate attention

TURN YOUR SURPLUS i.c transistors etc. into cash, immediate settlement. We also welcome the opportunity to quote for complete actory clearance. Contact COLES HARDING \& CO, 103 South Brink Wisbech, Cambs. 0945584188

THE MIDDLESEX HOSPITAL MEDICAL SCHOOL
(University of London)

\section*{Electronic Technician}
(Senior MLSO)
required for the
Interdepartmental Workshop to modify and/or construct a wide range of electronic equipment used in the various departments of the School.
Salary scale \(£ 8,605-£ 11,129\).
For further details contact: Dr J. W. Tappin, Department of Medical Physics, Windeyer Building, Cleveland Street, London W1P 6DB.
Telephone: 01-380 9323

\section*{RIVERSIDE HEALTH AUTHORITY}

\section*{Electronics Technican} - MPTIV
for the COMMUNICATION AIDS CENTRE in the SPEECH THERAPY DEPARTMENT at CHARING

CROSS HOSPITAL.
The work includes, the maintenance and development of communication aids. Suitable applicants will have practical skills in electronic and Home Computing experience would be an asset.
An ONC or equivalent qualification is essential.
Salary \(£ 6,786-£ 8,564\) pa inclusive
For further details and application forms please contact: Charing Cross Hospital, Unit Personnel Department, Parsons House, Fulham Palace Road, London W6 8RF. Tel: 01-748 2040 ext. 2992

\section*{PLEASE NOTE AS FROM THE SEPTEMBER ISSUE CLASSIFIED RATES ARE:}

Displayed: \(£ 23\) per single column centimetre Linage: \(£ 5\) per line (minimum \(£ 40\) )
INSTRUMENTS GOMPONEN1
ECUPMENT•AcGESSOAIES


OSCILLOSCOPES
Hameg, Crotech, Hitachi
Stockists (UK TNT
delivery \(£ 7.00\) plus VAT)
HAMEG Dual trace
with component testers \(\times 10 \mathrm{~cm}\) green screen 203 Dual 20 MHZ
005 With sweep delay
605 Dual 60 MHZ plus sweep deiay CROTECH with component tester
3031 Single 20 MHZ .9 .5 cm CRT HITACHI V212 Dual trace 20 MHZ \(8 \times 10 \mathrm{~cm}\)
GENERAL OST5m single trace 5 MHZ \(3^{\prime \prime}\) CRT
THANDAR SCIIOA Portable iO MHZ
\(32 \times 26 \mathrm{~mm}\) display
CONNECTORS AND LEADS
Prices each - large discounts. For quantities - see below - PLUGS AND SOCKETS

Goldplaled contacts \([\mathrm{P}=\) pins M =male \(\mathrm{F}=\) temale | GPM £0.65 15PM £0.78 2SPM £1.00 9PF £O.74 15PF £0.87 25PF £. 1.05 COVERS SP £0. 43 15P £O.52 25P £0.61
D' ADAPTORS temale-female. male-fermale |state which| \(\mathbf{£ 4 . 7 8}\) each IDC PLUGS AND SOCKETS \(\begin{array}{lllll}\text { Female cable } & \text { 20P } & \text { £ } 0.87 & \text { 26P } & £ 1.09\end{array}\) \(\begin{array}{lllll}\text { connectors } & \begin{array}{llll}\text { 34P } & £ 1.48 & \text { 40P } & £ 1.83 \\ \text { male PC8 } & 20 \mathrm{P} & £ 0.87 & 26 \mathrm{P} \\ \mathbf{£ 1 . 1 7}\end{array}\end{array}\) mounling header \(\} 34 \mathrm{P} \quad\) £ 1.48 40P E 1.74 COMPUTER EQUIPMENT LEADS way 66.91 15 way \(£ 95224\) way \(£ 1126\) DISCOUNTS - can be mixed for best price. \(10+\) Less \(10 \% \quad 25 \cdot\) Less \(20 \% \quad 50+\) Less \(35 \%\) \(100+\) Less \(50 \%\) (Orders above f 10 posi ifee. below £10 add £1 UK C/PI

\section*{ELECTRONIC INSULATION}

TESTERS Battery operated with case 501500 volt
\(830500 / 1000\) voll \(£ 270.00\)
\(£ 365.00\) \(£ 365.00\)
f 515.00
£195.00 £299.00 \(£ 139.09\)
£89.00


8 digit LED
Gounters 0.1 HZ resolution. 5 mV sensitivity
100M HZ 2 ranges \(£ 99.00\) 100M HZ 2 ranges 600MHZ 3 ranges 1500MHZ 3 rances £199.00 DP10 Slandard model 6219.00 OP100 incl. display hold. elc. stop walch RPM. etc \(£ 285.00\)


\section*{220/240V AC operation}

FUNCTION - sine, sq triangle. TTL O/P \(J 500\) 0. HZ to 500 KHZ TG 1010.02 HZ to 200 KH Z TG102 0.2HZ to 2 MHZ
PULSE Square Complement. IIL 0/P £110.00 PULSE Square Complement. IIL 0/P \(£ 160.00\) TG105 5HZ to 5MHZ TV-VIOEO PAL VHF/UHF. \(5.5 / 6 / 6.5 \mathrm{MHZ}\) sound carriers RGB and SYCC O/P's. AM/FM sound mod Colour. etc f 199.00

\section*{THURLBY}


CM200 Digital capacitance meter \(£ 89.00\) LAIGOA LOMHZ logic analyser \(\quad\) £395.00 LA 160 B 2OMHZ version [Accessories in stock for LA160 series] \(£ 495.00\) 0M358 Convert scopes to 8 Channels £179.00 DIGITAL PSU'S
0/30Y O/1A £ 125.00 0/30Y 0/2A £ 155.00 Qual and triple versions in stock
\(1503 / 1503 \mathrm{HA} / 1504 / 1905\) DMM's in stock


DC POWER SUPPLIES 240V AC input. Stabilised
variable output voltages.
\begin{tabular}{|c|c|}
\hline Direct meter & and amps. \\
\hline \(243 \mathrm{O} / 24\) volis \(0 / 3\) amps DC & f53.25 \\
\hline \(2450 / 24\) volis D/5 amps OC & £63.04 \\
\hline 154 5/15 wilts D/4 amps DC & £43.43 \\
\hline Alsol3.8V DC. 3 amps max. Fixed & 13 \\
\hline
\end{tabular}

\section*{AC CLAMPMETERS}

With cases and leads
300 300amps |5 ranges
\(600 \mathrm{~V}(4\) ranges \(11 \mathrm{~K} \mathrm{OHM} \mathbf{£ 3 0 . 8 7}\)
4300 Autorange Digital 300A:
500 V • conl test \(\quad \mathbf{6 7 5 . 0 0}\)
Insulation testers in stock
COMPUTER DISKS
51/4 40 track DS. DD. 48TPI
3 M Per 10 £ 14.75 Per 100 £ 130.00 TRK Per 10 £ 10.00 Per \(100 \quad £ 90.00\) VERBATIM Per \(10 £ 17.35\) Per \(100 £ 156.00\) TRK \(3 / 2\) OS.DO eacı \(\mathbf{\text { f2. }} 70\)

> [UK C/P £1 per order]

PLEASE ADD 15\% Y.A.T. (UK ORDERS)

\title{
Wreless INDEX TO ADVERTISERS
}

\section*{Appointments Vacant Advertisements appear on pages 75-79}


OVERSEAS ADVERTISEMENT AGENTS
France and Belgium: Pierre Mussard. 18-20 Place de la Madelaine Parıs 75008.
United States of America: Jay Feinman, Business Press International Ltd. 205 East 42nd Street. New York, NY 10017 - Telephone (212) 8672080 - Telex 23827
Printed in Great Britain by Ben Johnson Printers Lid. Oldhill. Dunstable and typeset hy Graphac Trpesetting. Imperial Houne, 108 The Broadway. Wimbledon SW 9 , for the proprietors. Business Press International. Quadiant House The QuadranL. Sution, surrey SNI 5AS Business Press International 1986 . Wirr/est Word can be obtaned from the following: AUSTRALIA and NEW


\section*{MATURE, FRIENDIY EPROM PROCRAMMER}

\section*{gancoratignt
 D.}

\section*{Redesigned to Your Specification}

GANG-OF-EIGHT is a successful product, because of its performance and unbeatable price. Since the launch we have taken careful note of comments made by engineers who have called us. This gave us a wish-list of extra features and revisions to work by. The result is an improved G8 which should suit you even better - it is just what you asked for.

25 and 27 Series to 512K G8 will handle 2516, 2532 and 2564 EPROMS, as well as all 27 series from 2716 to 27512.

\section*{FAST and SLOW}

Programming Method
You can use a FAST, intelligent algorithm to program larger EPROMS, which speeds up the programming operation by a factor of five, at least. G8 will also program the old-fasnioned way, with 50 ms pulses.

\section*{Voltage Selection}

There are three different voltages selectable (by switches) and these are each resettable (by potentiometers) over a wide range. The factory-setting is 25 volts, 21 volts and 12.5 volts.

\section*{Liquid Crystal Display} G8 shows the EPROM type, the Program-Method and the Pro-gram-Voltage and changes the display when you reset the switches. You always know what is happening with G8.

\section*{Two Key operation}

G8 has only two keys - START and RESET - simple to operate, yet it does all the useful things you need. Before every programming cycle it checks thal you have not programmed any of the EPROMS already, reporting any which match the master. Then G8 tells you if any are not blank, so that you can erase them. Only if the EPROMS pass these tests does G8 start programming (but G8 will try to program unerased EPROMS, if you ignore the ERASE message and press START again - something else you asked for).

\section*{Checksum Facility}

G8 will calculate and display a 6digit checksum of your master EPROM, when you press START and RESET at the same time. This helps you to identify EPROMS which are unlabelled, and provides a simple check on the integrity of your dasa.

\section*{Tuneful, too}

G8 provides audible feedback, to avoid the necessity for constant monitoring - that is, it makes noises so you don't need to watch it: rising and falling arpeggios as the program starts and finishes; occasional tones to remind you that your EPROMS are ready. Data is audible when uploading and downloading.

\section*{Option - Steel Case}

G8 normally comes in a plastic case, which is light and durable. However, some of you want your G8 in a steel case, and this option is available now.

\section*{Option - Bidirectional RS232 Serial Interface}

G8 was intended as a fast, lowcost production copier, but frequent enquiries made us think again and design a version which could be used for development purposes, capable of uploading and downloading in a variety of serial formats: INTELHEX, MOTOROLA S, TEKHEX, ASCIIHEX and BINARY. Links on your serial cable select the format.

\section*{Quick delivery}

We know you don't want to wait, so we keep lots of Gang-of-Eight programmers in stock. If you are in a real hurry telephone us - we will save your time and arrange the fastest delivery possible.

\section*{No Risk Trial:}

\section*{Refund Guaranteed}

Without any questions asked, you get your money back if you do not get along with your G8, provided you return the product within 14 days.
(we subtract only carriage expenses).

Terms
Cheque with order or credit-card.
Dataman
Lombard House, Cornwall Road, Dorchester, Dorset DT1 1RX England
Telephone: (0305) 68066
Telex: 418442 DATAMN G add for RS232 option
£50.00 add for steel case option £35.00 to basic
GANG-OF-EIGHT 339500
postage is tree BUT please add VAT in U.K.




2955 Radio Communications Test Set £5,750
- 11 test functions, including full duplex radio test - Revolutionary design: fast and casy to use - High clarity CRT shows all settings plus measurements in digital or analog forms - Toncs encole/decode facilities
- 38 instrument settings in non-volatile memory - Spin-wheel frequency/level control in addition to front panel buttons
- Single and two-port operation.


2305 Modulation Meter 500 kHz to \(2 \mathrm{GHz} £ 5,260\)
500 kHz to 2 GHz frequency range
- Outstanding \(0.5 \%\) basic accuracy

Exceptionally fast auto-tuning, with low noise - Modulation analysis including frequency and power - Non-volatile memory to store user settings Excellent stereo separation - Automatic self-calibration, advanced diagnostics.


2382/80 Spectrum Analyser \(£ 13,150\) and Display \(£ 5,350\)
\(\square\) Audio to LHF coverages: \(1001 \mathrm{~Hz}-100 \mathrm{M} 1 \mathrm{~Hz}\) - Outstanding resolution, with 31 z minimum resolution filter bandwidth
00.025 dB amplitude resolution
- Superblewel accuracy \(\pm \mathrm{Idl}\), with auts calibration - Frequency response better than \(\pm 0\). 4 d 13 - Fully GPIB programmable capability
- Two steerable markers for levels and frequencies - Self calibration for repeatability of measurements.


6960 Option 001 Digital RF Power Meter \(\mathbf{5} 1,900\)
- Sininple purh-button or systems application - Unparalleled accuracy. through sensor correction - Non-volatile storage of frequently-used settings -W or dB readings, plus offset caprability - Single-key auto-zero operation
- Average factorselection to reduce noise or improve
resolution advanced GPIB facilities.s.


2022 AM/FM Signal Generator 10 kHz to \(\mathbf{1 G H z} £ 2,950\)
- Wicle frequency cover: 10 kHz to 1000 MHz - Compact, rugged and lightweight - Comprehensive modulation: AM/FM PhM - Simple push-button operation, large LCD display - Non-volatike memory for 100 settings - The perfect service/maintenance tool.


2440 Microwave Counter 20 GHz s3,650
- Wide frequency coverage: 10 Hz to 20 GHz - High sensitivity and resolution
- Fast acquisition sime: only 200 ms typical - High-stability oven-controllcd crystal oscillator - Overload capability up to 27 dBm \(\square\) High AMFM tolerance
- Built-in GPIB.

\section*{through}

ELECTRONCElectronic Brokers are now distributors for a full range of Marconi Test Instruments including Signal Generators, Microwave Counters, Power Meters, Modulation Meters, The first name in test equipment distribution
 Electronic Brokers 140 -146 Camden Strect, London, NW1 SPB Tet 01-267 7070 Telex: 298694 Fax: 01-267 7363 Electronic Brokers 0 :
```


[^0]: ${ }^{2}$ Although according to statistical thermodynamics, it is not

[^1]: Thurlby
 5

[^2]: The Recruit
 Priors Road
 CHELTENHAM
 Glos GL52 5AJ

