

Synchrodyne receiver • Forth for conitrol Compact dise mastering • Loop aerial

 Rohot electronics interfaceAustralia
Denmark
Germany
Grece
Netherlancts
Italy
New Zerlarif
Spain
Switzarlarid
Singapori:
USA

AS	315
DK,	3800
Drn	$7 \mathrm{b0}$
Dria	360 ()0
DFI	978
L	4100
N/8	480
Prs	420 ()0
St 1	8 ()
MS	$18(1)$
\$	400

GRUNDIG OSCILLOSCOPES

M020: 20MHz DUAL-CHANNEL

 OSCILLOSCOPE- 20 MHz Dual channel oscilloscope
- $2 \mathrm{mV} / \mathrm{cm}$ with full bandwidth
- Automatic peak-value trigger
- $T V$ line and field triggering
- Add and invert (Both channels invertable)
- Internal graticule and X - Y operation

This 20 MHz dual-channel oscilloscope has advanced facilities, making it easy-to-use, with all the ruggedness and reliability to meet your go-anywhere testing needs. Included is a peak-value trigger to ensure stationary displays. Triggering facilities allow clear display of even complex signal shapes.
£275

VIDEO GENERATOR VG 1000

- Professional video generator
- Comprehensive range of test patterns
- Includes VTR head adjustment signal
- Excellent signal quality
- External sync. facility
- RGB output

A professional broadcast-quality pattern generator to meet the highest professional standards. Its special test card allows full visual assessment of the video system, including a special output for
precision testing of VTRs
£1650

M022: 20MHz DUAL-CHANNEL

 OSCILLOSCOPE WITH AUTOMATIC TIME
RANGE

- 20 MHz Dual channel oscilloscope
- Automatic time base selection
- Soft tuning for fast manual adjustment
- Triggerable 2nd time-base, guarantees error free 'zooming-in'
- Hold-off control and Z modulation
- Plus all the advanced engineering of the M020

Now, the world's first low cost 'scope with automatic time-base selection. Dual-range 20 MHz capabilities also include'soft tuning' in manual mode, so the 'scope leaves you free to carry out the measurement.
$£ 395$ GRUNDIG TV/VIDEO TEST EQUIPMENT

COLOUR GENERATOR FG 7

- PAL pattern generator
- 15 test patterns
- Multiburst facility to measure frequency response
- 8 memories for rapid station store/recall
- Suitable for TV sets, monitors or VTRs
- Compact and versatile for field or laboratory

Versatile enough to check-out TV receivers, monitors and VTRs, this compact generator is at home in the field as it is in the lab or workshop. In addition to 15 monochrome and colour image signals, further picture patterns can be achieved bysuperimposition. Eight station frequencies can be recalled from memory for rapid test capability - even for special bands
and the IF output
£545

FIELD STRENGTH METER ME9O

- Fully automated field strength measurement - LF radio to UHF TV in a single unit
- Versatile test result selection

Storage of received signal frequencies, for rapid testing

- Alpha numeric display for station checks
- Unattended monitoring with built-in results printer
- Stereo decoding

Fully portable: integral battery and charger Microprocessor controlled for push-button operation in all transmitter checks. The ME90 allows fast and accurate measurements in radio and TV bands, long wave to UHF. Versatile print capabilities provide hard-copy confidence whether routine or continuous monitoring.

For further information and a colour brochure contact our Sales Office.
All ricies exclusive of carriage and vat pir

February 1986 Volume 93
Number 1600

FEATURES

Naiad robot trainer - 4 by R.H. Becker Interfacing the robot arm with Apple, BBC, Commodore and IBM computers.	Forth in control by David N. Sands The computer language Forth is, argues D.N. Sands, particularly suited to the control of machinery. He explains how.
Data conversion by M.E. Eccles Listing, by manufacturers, of a-to-d and d-to-a converter i.c.s and modules	
	Timing by remote control 63 by Peter Ferris This versatile self-contained $Z 80$ timer controls eight appliances with 100 on-off settings using coded r.f. bursts injected in the mains supply.
Short-wave loop aerial by G. Wareham Using Mukherjee's April 1985 design with clomestic receivers.	
	68000 hoard - 5 by R.F. Coates Guided tour of the Kaybug monitor software's 26 system calls.
Compact disc mastering by J.R. Watkinson The confusion about p.c.m. adapters and video recorders is explained, together with the formats.	
	D.b.s. - a plan in search of 75 some users by Tom Ivall An element of confusion still attends plans for satellite television, in spite of two international conferences. Tom Ivall explains.
Synchrodyne a.m. receiver 53 by J.L. Linsley Hood Circuit details and setting-up procedure for the phase-locked oscillator.	

REGULARS

News commentary
Alvey's flagship.
H.d.tv.

Prize-winning aids for disabled.

Communications 25 commentary

Antennas.
Philips embrace MAC.
Early radio.
Amateur awards.

Feedback

Add-on current dumper. Indoor loop aerial. Maxwell.

Circuit ideas
 33

Power watchdog. Simple AA battery charger.
New approach to instrumentation amplifier design.
Shaft encoder counting.

83, 87

New products

Super-fast floppy Speech recognition. New 6800 with MMU. Super-fast 16/32-bit processor.

Editor
PHILIP DARRINGTON
Deputy Editor
GEOFFREY SHORTER. B.Sc 01-661 8639
Technical Editor
MARTIN ECCLES
01-661 8638
Projects Editor
RICHARD LAMBLEY 01-661 3039 or 8637 (lab.)
News Editor
DAVID SCOBIE
01.6618632

Drawing Office Manager ROGER GOOIDMAN
$01-6618690$
BETTY PALMER
Advertisement Manager
BOB NIBBS, A.C.I.I.
$01-6613130$
MICHAEL DOWNING
01-6618640
ASHLEY WALLIS
01-661 8641
Northern and Midland Sales BASIL McGOW AN 021-356 4838

Classified Executive
SUSAN PLATTS
01-661 3033
Advertising Production RRIAN BANNISTER
(Make-up and copv) $01-6618648$

Current issue price 95 p. back issucs (if available) \& 1.06 . at Retail and Trade Counter, Units 1\&2. Bankside Industrial Centre, Hopton Street, London SE 1 Tel. 01-928 3567.
Available on microfilm; contact editor: By post, curtent issue $£ 1.30$. back issues (if available) \&1. 40 . order and payments to EEP' Sundry Sales Dept. Quadramt House, The Quadrant, Sutton, Surrey SM2 5AS. Tel. 01-661 3378
Editorial \& Idvertising offices: Quadrant House. The Quadrant. Sutton, Surrey SM2 5AS.
Telephones: Editorial 01-661 3614.
Advertising 01-661 3130.
Telex: 892084 BISPRS G (EEP)
Facsimile: 01-661 2071 (Groups II \& 1II)
Beeline (300 baud): 01-6618978.

CIRCLE 60 FOR FURTHER IDETAILS

Z80 ■ CONTROL \quad Z80

CARDMASTER CPU
-46 Mhz 280 CPU

- CP/M compatible
- User transparent mULTI-TASKING
- Up to 32K EPROM \& 16K RAM
- Watchdog crash protection
- RS232 \& RS422 Comms
- 2• 280a PIO (one uncommitted)
- On board bus buffering
- Power-on jump hardware
- Euro-card constuction

The CPU card is supplied with a powerful three-way operating system. MCP - The Mult-tasking Control Program MONITORIDEBUG - An entanced version of the MCV monitors Commands include Single-Step and Break-point setting.
MIRROR - MIRROR connects the CPU Card to your C/PM coinguter, va thelink, to such a way as to give ine ulus on oiC PM running on the CARDMASTER CPU Card. MIAROA itsell is a two parl program which effectively gives CAROMASTEP direct access to your disk drive. (DISCS WITHOUT DISCS!)
Only £178.00 built and tested including the soltware subsystem,

CARDMASTER I/O

- 2280 PIO's
- 32 lio lines
- 50% + PCB free for prototyping
- Onboard port mapping
- Eurocard construction
- Customising service available

CUB MICROCONTROLLER

- 280 CPU
- 4×280 a PIO's ($64 \mathrm{I} / \mathrm{O}$ lines)
- 280a CTC
- 4K Battery backed RAM 2 K sup.
- 4K EPROM (2K MCV2.0 sup.)
- Powertul monitor (MCV2.0)
- Eurocard construction

ery popiar CUB mictoconirolet is the ideal solution wnere a stand atone controiler is requred. The CU8 fully support

PRICES: Bult \& Tested $£ 104.95$ Manual only $£ 450$
Prices include carriage - Please add VAT ī̀ 15%
GNC ELECTRONICS Little Lodge. Hopton Road, Theinetham, Diss. Norfolk 1 P22 1 JN Telephone: Diss (0379) 898313

CIRCIE 48 FOR FURTHER IDETAILS.

Sowter Transformers
 With over 45 years' experience in the design and manufacture of several hundred thousand transformers we can supply:
 AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE YOU NAME IT! WE MAKE IT! OUR RANGE INCLUDES

Microphone transformers (all types), Microphone Splitter/Combiner transformers Input and Output transformers, Direct Injection transformers for Guitars, Multi-Secon dary output transformers, Bridging transformers, Line transformers, Line transformers to B.T. Isolating Test Specification, Tapped impedance matching transformers, Gramo phone Pickup transformers, Audio Mixing Desk transformers (all types), Miniature transformers, Microminiature transformers for PCB mounting, Experimental transfor mers, Ultra low frequency transformers, Ultra linear and other transformers for Tran sistor and Valve Amplifiers up to 500 watts, Inductive Loop Transformers, Smoothing Chokes, Filter. Inductors, Amplifier to 100 volt line transformers (from a few watts up to 9,000 watts), 100 volt line transformers to speakers, Speaker matching transformers (all powers), Column Loudspeaker transformers up to 300 watts or more

We can design for RECORDING QUALITY, STUDIO QUALITY, HI-FI QUALITY OR P.A QUALITY. OUR PRICES ARE HIGHLY COMPETITIVE AND WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS. Many standard types are in stock and normal dispatch times are short and sensible.
Stock and normal dispatch times are short and sensible. DESK MANUFACTURERS, RECORDING STUDIOS, HI-FI ENTHUS!ASTS, BAND GROUPS, AND PUBLIC ADDRESS FIRMS. Export is a speciality and we have overseas ciients in the COMMONWEALTH, E.E.C., USA, MIDDLE EAST, etc. Send for our ques tionnaire which, when completed, enables us to post quotations by return

E.A. Sowter Ltd.
 Manufacturers and Designers

E.A. SOWTER LTD. (Established 1941): Reg.No. England 303990 The Boat Yard, Cullingham Road, Ipswich IP1 2EG, Suffolk
P.O. Box 36, Ipswich. IP1 2EL, England

Phone: 047352794 and 0473219390
Telex 987703G Sowter

COUNTERS \& OSCILLATORS

LEVELL COUNTERS MET100/600/1000 £99/126/175 8 digit $05^{\prime \prime}$ LED display. 5 Hz to $100600^{\prime} 1000 \mathrm{MHz}$ Resolves 0.1 Hz . Sensitivity 5 mV up to 10 MHz . Low pass filter. Mains/rechargeable battery powered

LEVELL FUNCTION GENERATORS TG302/3 £156/236 0.02 Hz 2 MHz in 7 ranges. Sine, square, trangle, pulse and ramp 20 mV to 20 Vpp from 50 O . DC offset $\mathrm{O}=10 \mathrm{~V}$. TL output. TG303 also has a CMOS output and 6 digi 1 MHz counter with INT EXT switch.

LEVELL RC OSCILLATORS TG152D/DM £95/120 $3 \mathrm{~Hz} \cdot 300 \mathrm{kHz}$. 5 ranges, acc $2 \%+0.1 \mathrm{~Hz}$ up to 100 kHz 3% at 300 kHz Sine or square $<20 \mathrm{qu}$ to 2.5 Vms . Distn $<02 \% 50 \mathrm{~Hz} .50 \mathrm{kHz}$ DM has an output meter.

LEVELL RC OSCHLLATORS TG200D/DMP £130/165 $1 \mathrm{~Hz} \dagger \mathrm{MHz}$. 12 ranges, acc $1.5 \%+0.01 \mathrm{~Hz}$ to 100 kHz 2% at 1 MHz . Sine or square outputs $<20 \mathrm{q}_{1} \mathrm{~V} \cdot 7 \mathrm{Vms}$ Distortion $<0.05 \% 50 \mathrm{~Hz}-15 \mathrm{kHz}$. Sync output $>1 \mathrm{~V}$. DMP has output meter and fine frequency control.

LEVELL DECADE OSCILLATOR TG66A
$£ 330$ $0.2 \mathrm{~Hz}-1.22 \mathrm{MHz}$. 5 ranges. 4 digıts, acc 0.3% $6 \mathrm{~Hz}-100 \mathrm{kHz}$. Sine output $<3 \mathrm{q}_{\mathrm{N}} \mathrm{V}-5 \mathrm{Vmms} .-2 \mathrm{~dB} /+4 \mathrm{~dB}$ and V scales. Distn.<0.15\% 15 Hz -150kHz. Mans/battery

ANALOGUE METERS

LEVELL AC MICROVOLTMETERS TM3A/B £150/170 16 ranges $15 \mu \mathrm{Vfs} / 500 \mathrm{~V} f \mathrm{~s}$, accuracy $1 \%+1 \% \mathrm{fs}+1 \mu \mathrm{~V}$ $20 \mathrm{~dB}+6 \mathrm{~dB}$ scale. $\pm 3 \mathrm{~dB} 1 \mathrm{~Hz} \cdot 3 \mathrm{MHz} .150 \mathrm{mV}$ fs output TM3A: 83 mm scale. TM3B: 123 mm scale and LF filter.

LEVELL BROADBAND VOLTMETERS TMGA/B
£235/265 16 LF ranges as $\mathrm{TM} 3 \mathrm{~A} / \mathrm{B}+8 \mathrm{HF}$ ranges $1 \mathrm{mVfs} / 3 \mathrm{Vfs}$, accuracy $4 \%+1 \%$ fs at $30 \mathrm{MHz} . \pm 3 \mathrm{~dB} 300 \mathrm{kHz} 400 \mathrm{MHz}$.

LEVELL DC MICROVOLTMETER TM8
£130
23 linear ranges $\pm 3 \mu \mathrm{~V} 4300 \mathrm{~V}$ and $\pm 3 \mathrm{pA} \pm 300 \mathrm{nA}$ plus 2 \log ranges for nulling. Output $\pm 300 \mathrm{mV}$ at fs.

LEVELL DC MULTIMETERS TM9A/BP £199/235 18 voltage ranges $3 \mu \mathrm{~V} / 1 \mathrm{kV} f$ s. Current ranges 3 pA to 1 A (TM9A 1 mA). Linear R ranges 3Ω to $1 \mathrm{G} \Omega$

LEVELL MULTTTESTER TM11
£175
$5 q^{2} \mathrm{~V} / 500 \mathrm{~V}$ fs ac, $50 \mathrm{pA} / 500 \mathrm{mAfs}$ ac. $15 \mathrm{qu}_{\mathrm{V}} / 500 \mathrm{Vfs}$ dc, $150 \mathrm{pA} A^{\prime} 500 \mathrm{mAts}$ dc, 0.2Ω to $100 \mathrm{G} \Omega$. lin'log null. Diode/LED test. Optional RF, HV and Temperature.

LEVELL TRANSISTOR TESTER TM 12
¢195
Transistor, diode and zener leakage to $0.5 n A$ at 2 V .150 V Breakdown to 100 V at $1 \mathrm{quA}, 10 \mathrm{quA}, 1 \mathrm{~mA}$. Gain at $1 \mu \mathrm{~A} \cdot 100 \mathrm{~mA}$. Vsat and Vie at 1 mA 100 mA .

LEVELL INSULATON TESTER TM14

E210 Log scale covers 6 decades $10 \mathrm{M} \Omega 10 \mathrm{~T} \Omega$ at 250 V , $500 \mathrm{~V}, 750 \mathrm{~V}, 1 \mathrm{kV} ; 1 \mathrm{M}-1 \mathrm{~T} \Omega$ at $25 \mathrm{~V} \cdot 100 \mathrm{~V} ; 100 \mathrm{k} \cdot 100 \mathrm{G} \Omega$ at $2.5 \mathrm{~V} 10 \mathrm{~V} ; 10 \mathrm{k} 10 \mathrm{G} \Omega$ at 1 V . Current 100 pA 10 Gu A.

DICITAL METERS

LEVELL DIGITAL THERMOMETER DT1K E44 $120^{\circ} \mathrm{C}+820^{\circ} \mathrm{C}$, acc $0.2 \% \pm 1^{\circ} \mathrm{C} .3$ digit 8.5 mm LCD. A standard Type K thermocouple socket is fitted. Bead couple is supplied. Battery life $>3000 \mathrm{hrs}$

THURLBY DIGIT AL CAPACITANCE METER CM200 £89 1 pF to 250 MF , acc 0.2%. $4^{1 / 2}$ digit 9 mm LCD. Fast settling. 3 readings per second. Mains/battery.

THURLBY DMMs 1503/1503HA/1504 £169/185/199 $4^{3 / 4}$ digit LCD. Up to $1.2 \mathrm{kVdc}, 750 \mathrm{Vac}, 10 \mathrm{~A} .32 \mathrm{MO}$. 4 MHz Resoln. $10 \mathrm{~V}, 10 \mathrm{nA}, 10 \mathrm{~m} \Omega$. Mans battery 1503: dcV 0.05\%. 1503HA: 0.03\%. 1504: True mis ac THURLBY INTELLIGENT MULTIMETER 1905a £349 $5^{\prime} z$ digit LED. Up to $1.1 \mathrm{kVdc}, 750 \mathrm{Vac}, 5 \mathrm{~A}, 21 \mathrm{M} \Omega$. Resoln. $1 \mu \mathrm{~V}, 1 \mathrm{nA}, 1 \mathrm{~m} \Omega$. dcV 0.015%. Computing and storage functions. RS232/IEEE interface optons.

LEVELL

for INSTRUMENTS

LOGIC ANALYSERS

THURLBY LOGIC ANALYSERS LA 160A/B £395/495 16 data channels. Clock DC- $10 \mathrm{MHz} \quad 120 \mathrm{MHz}$ for B) Binary, octal, decimal, or hex. formats. $2 K$ word acquisition memory. Non volatile ref. memory.

BENCH POWER SUPPLIES

THURLBY SINGLES PL154/310/320 £159/125/155 LED digital displays with resolution $10 \mathrm{mV} .1 \mathrm{~mA} .<0.01 \%$ change for 50% load change. Remote sense. 154: 0-15V 0-4A. 310: 0-30V 01 A . 320: O-30V 02 A

THURLBY DUALS PL3100MD/3200MD £269/339 Two O.30V O-1A (2A on 320) with isolated, seres tracking, series or parallel modes of operation.

THURLBY TRIPLES PL310K/320K E275/345 $310 \mathrm{~K}: 0.30 \mathrm{~V}$ at $01 \mathrm{~A}, 0.30 \mathrm{~V}$ at $1 / 2 \mathrm{~A} \& 4 \mathrm{~V}-6 \mathrm{~V}$ at $31 / \mathrm{A}$. $320 \mathrm{~K}: 0.30 \mathrm{~V}$ at $02 \mathrm{~A}, 0.30 \mathrm{~V}$ at $1 \mathrm{~A} \& 4 \mathrm{~V} 6 \mathrm{~V}$ at 7 A .

OSCILLOSCOPES

CROTECH SINGLE TRACE 2OMHz 3031/36 £195/216 2 mV 10 V div $40 \mathrm{~ns}-0.2 \mathrm{~s}$ div. Component tester 3031: CRT $1.5 \mathrm{kV} \mathrm{5} \mathrm{\times 7cm} \mathrm{} .\mathrm{3036} \mathrm{:} \mathrm{CRT} \mathrm{2kV8} \mathrm{\times 10cm.40}$
CROTECH DUAL TRACE 2OMHz (@2mV) 3132 £295 $2 \mathrm{mV} \cdot 10 \mathrm{~V} \mathrm{~cm} . \mathrm{Ch} 1 \pm \mathrm{Ch} 2 . \mathrm{X}-\mathrm{Y}$ mode. Cal 0.2 V 1 kHz sq . 40 ns 02 s cm . Auto, normal or TV trig. Component comparator. DC outputs. Z input. CRT $2 \mathrm{kV} 8 \times 10 \mathrm{~cm}$

CROTECH DUAL TRACE 30MHz (@5mV) 3337/39
£425/570 $5 \mathrm{mV} \cdot 50 \mathrm{~V} / \mathrm{cm}$. Ch $1 \pm \mathrm{Ch} 2$. Signal delay. $X Y$ mode 40 ns 1 s cm . Auto, normal or single shot trigger. Cal $O 2 \mathrm{~V}$ 1 kHz square. Z mput. CRT $10 \mathrm{kV} 8 \times 10 \mathrm{~cm}$
3339: VDU mode. Component tester. DC outputs.
HAMEG DUAL TRACE 20MHz (@2mV) HM203-5£270 $2 \mathrm{mV} 20 \mathrm{~V} / \mathrm{cm}$. Ch $2+\mathrm{Ch} 1$. X-Y Cal 0.2 V 2 V 1 kHz sq. $20 \mathrm{~ns}-0.2 \mathrm{~s} / \mathrm{cm}$. Auto, normal or TV trig. Component test CRT $2 \mathrm{kV} 8 \times 10 \mathrm{~cm}$. Long decay CRT E 25 extra.

HAMEG DUAL TRACE 20MHz (@5mV) HM204-2 £365 $1 \mathrm{mV}-50 \mathrm{~V} / \mathrm{cm}$. Ch2 2 Ch 1 . Sig delay. $X Y$ mode. Y out $10 \mathrm{~ns} \cdot 1.25 \mathrm{~s} / \mathrm{cm}$. Sweep delay 100 ns 1 s . Cal 0.2 V 2 V $1 \mathrm{kHz}, 1 \mathrm{MHz}$. Z input. Comp. test. CRT $2 \mathrm{kV} 8 \times 40 \mathrm{~cm}$.

HAMEG DUAL TRACE 60MHz (@5mV) HM605 £515 $1 \mathrm{mV}-50 \mathrm{~V} / \mathrm{cm}$. Ch $2 \pm \mathrm{Ch} 1$. Sig delay, $X \cdot Y$ mode Y out. 5 ns 2.5 s cm . Sweep delay 100 ns 1 s . Cal 0.2 V 2 V 1 kHz 1 MHz . Z input Comp. test. CRT $14 \mathrm{kV} 8 \times 10 \mathrm{~cm}$.

HAMEG DIGITAL STORAGE 20MHz HM208 £1300 1 mV 50 V cm . Ch $2+\mathrm{Ch} 1$. Single shot and $X Y$ modes $20 \mathrm{~ns}-0.25 \mathrm{~s} / \mathrm{cm}$. 20 MHz sampling. Two 2 K memores Plotter output $0.1 \mathrm{~V} / \mathrm{cm}, 10 \mathrm{~s} / \mathrm{cm}$. CRT $14 \mathrm{kV} 8 \times 10 \mathrm{~cm}$.

HITACHI BATTERY DUAL 20MHz (@5mV) V209 £680 1 mV 12 V div. Ch1 $1 \pm \mathrm{Ch} 2 . X Y$ mode. Cal 0.5 V 1 kHz . $50 \mathrm{~ns}-0.5 \mathrm{~s} \mathrm{~cm}$. Auto, normal or TV triq. Internal rechargeable batt. or mains. CRT $1.5 \mathrm{kV} 5 \times 6.3 \mathrm{~cm}$.

HITACHI DUAL 2OMHz V212/22/23 £299/395/450 1 mV -12V cm. 20MHz@5mV. Ch1 $\pm \mathrm{Ch} 2$. X-Y. Ch1 output. $100 \mathrm{~ns} 0.5 \mathrm{~s} / \mathrm{cm}$. Auto, normal or TV trigger Cal 0.5 V 1 kHz square. Z input. CRT $2 \mathrm{kV} 8 \times 10 \mathrm{~cm}$. $\vee 222 N 223$: DC offset and alternate magnify. $\vee 223$ Sweep delav $1 \mu \mathrm{~s}-100 \mathrm{~ms}$.

HITACHI DUAL 40MHz (@5mV) V422/23 £580/650 As V222 V 223 but $40 \mathrm{MHz}, 20 \mathrm{~ns} \mathrm{~cm}$ and 12 kV on CRT

HITACHI QUAD $100 \mathrm{MHz}(@ 5 \mathrm{mV}$) V1050F £ 1095 Ch1/Ch2: $0.5 \mathrm{mV}-12 \mathrm{~V} / \mathrm{cm}$. Trigger Ch3 Ch4: $0.2 \mathrm{~V} / \mathrm{cm}$ Dual time bases $2 \mathrm{~ns}-0.5 \mathrm{~s}^{\prime} \mathrm{cm}$ and 2 ns 50 ms cm . Signal and sweep delay. CRT $20 \mathrm{kV} 8 \times 10 \mathrm{~cm}$.

HITACHI QUAD 100MHz V1070/1100A £ $1580 / 2390$ Ch1/Ch2: $1 \mathrm{mV}-12 \mathrm{~V} / \mathrm{cm} . \mathrm{CH} 3 \mathrm{Ch} 4: \quad 0.1 \mathrm{~V}-0.5 \mathrm{~V} / \mathrm{cm}$ Dual time bases $2 \mathrm{~ns}-0.5 \mathrm{sicm}$ and $2 \mathrm{~ns}-50 \mathrm{~ms} \mathrm{~cm}$ Digital display of set values. CRT $18 \mathrm{kV} 8 \times 10 \mathrm{~cm}$ V1100A: Digital display of ACV. DCV. frequency

HITACHI DIGITAL STORAGE 10MHz VC6015 £1350 $5 \mathrm{mV}-12 \mathrm{~V} \mathrm{~cm}$. Ch $1 \pm \mathrm{Ch} 2$. Single shot and $X-Y$ modes. lOOns 05 scm .1 MHz sampling. Two 1 K memories Plotter output $1 \mathrm{~V} \mathrm{~cm}, 510 \mathrm{~s} / \mathrm{cm}$. CRT $2 \mathrm{kV} 8 \times 10 \mathrm{~cm}$

HITACHI DIGITAL STORAGE 40 MHz VC6041 £3850 $1 \mathrm{mV} \cdot 12 \mathrm{~V} / \mathrm{cm}$. Ch $1 \pm \mathrm{Ch} 2$. Single shot and $X \cdot Y$ modes. $20 \mathrm{~ns} 0.5 \mathrm{~s} / \mathrm{cm}$. 40 MHz sampling. Two 4 K memories. Plotter output $1 \mathrm{~V} \mathrm{~cm}, 210 \mathrm{scm}$ CRT $12 \mathrm{kV} 8 \times 10 \mathrm{~cm}$.

THURLBY 8 CHANNEL MULTIPLEXER OM358 £179 Increases any oscilloscope to 8 channels. Choice of trigger from any channel. Response DC- 35 MHz .

LEVELL DECADE BOXES

C410: 10pF to 111.110 pF . acc $1 \% \pm 2 \mathrm{pF}$. £45 R401 (410): 4 decades. $1(10 \Omega$ steps, acc 1% £45 R601 (610): 6 decades. $1(10$) Ω steps, acc 1% £58 R601S : 6 decades. 1Ω steps, acc 0.3% £69 R701 : 7 decades. 1Ω steps, acc 1% £66

Frequency range 900 to 1300 MHz . impedance 50 ohms, power range forward $5 / 20 \mathrm{~W}$, reflected $1.6 / 6.6 \mathrm{~W}$, connections N type.

NS448 cross needle power/swr meter..... £60 inc vat, carriage £2.50.

TRIO pmr equipment

TK702R TK802R

* Compact control head with remote mount transceiver for flexibility and ease of installation
- Scan and priority channel scan, for either carrier or tone, utilizing microprocessor control
* Up to 32 synthesised channels
* Rugged die-cast chassis contruction

High performance receive/transmit circuitry
Large selection of accessories.
High quality external speaker
Professional quality microphone
(TYPE APPROVAL PENDING.)

LOWE ELECTRONICS
 Chesterfield Road, Matlock, Derbyshire DE45LE

Telephone 06292817, 2430,4057,4995 Telex 377482 LOWLEC G
CIRCLE 68 FOR FURTHER DETIILS.
AFFORDABLE ACCURACY
QUALITY MULTIMETERS FROM ARMON

ANALOGUE
 HM-102B

 9 measuring ranges
HM-102R
Low end vol
20 measuring range
HM- 101
Auged
Augged. Pockel sized meter for general purpose
16 measuring ranges Battery. Test Leads and Manual included with each mode!

DIGITAL
HC. 703001% Accuracy Standard Model HC-6010 0.25\% Accuracy. Standard Mode HC. 501010 T 25% Accuracy TR Test Fab E39.50 DM-105 0.5% Acccuracy Pocketable $\quad £ 21.50$ Al moders have full functions and ranges and
feature: $3 \stackrel{\text { digit } 0.50^{\prime}}{ }$ LCD display

32 diait 0.5" LCD display Low battery indication
 Auto zero and Auto polarity
 ABS Plastic Casing

DC AC 10amp Range (not DM-105)
£39.50 £ 33.50 £39.50 £ 21.50
ful detall on application from:-
VISA
ELEPHONE 1 He2
TELEPHONE 01-902 4321 TELEX 923985
order for VAT. P\&P Free of charge. Payment by cheque with order Offer applicable to mainland UK only

NEW DISCO ELECTRONIC CENTRE

famous loudspeakers special prices

120 WATTDISCO TWII Dacks
300 WATTOISCO Twin Decks
Twin Speakers

KESTREL ELECTRONIC COMPONENTS LTD.
All items guaranteed to manufacturers spec

* Many otheritems available.
*For 50 + prices contact sales office.
'Exclusive of V.A.T. and Post and Package'

178 Brighton Road,
Purley, Surrey CR2 4HA
Tel: 01.6687522

DATAMAN

Lombard House, Cornwall Road, DORCHESTER, Dorset DT1 1RX phone 030568066 telex 418442

Dhagnoses bus troubles Helps mend micro boards Z80, 6502, 6800, 8085 All covered by one product: Disassemblers included Plugs into micro socket Hand-held probe identifies ADDRESS, DATA and CDNTRDL lines at a touch.

Prints a memory map of an unknown system showing R[MM, RAM, I/D and EMPTY ADDRESSING SPACE

LDGS all tests and responses on PRINTER and ALPHA ICD Non-volatlle memory
retains test sequences CHECKSUMS, RAMTESTS, READS/WRITES MEMDRY \& I/D Reports location of SHDRTS on ADDRESS and DATA busses Prints out memory contents in ASCII, HEX or SQURCE CDDE
You cannot expect to mend microprocessor products with a meter and a scope. How many repairs would pay for your SuperDOC?
SuperDOC. £ 395

EPROM EDITOR

Displays HEX on standard TV with text-editing facilities inserts and deletes shifts and copies bytes and blocks of code EMULATES EPRDM in circult using romulator lead supplied

Uploads and downloads using serial and parallel routines - RS232, Centronics

PROGRAMS \& EMULATES $2716 \quad 2732 \quad 2532$
Useful for development particularly for piggy-back single-chip micros

Adaptor is available to program 2764 \& 27128
"Our expensive equipment stays on the shelf
for weeks - but SOFTY is used every day" says big-budget customer

Copies eight EPRDMS at a pass
all 25 and 27 series up to 27256
EPRDM type is set by switches
erasure is checked automatically
control is simple - two keys Alpho !iquid crystal display checksum facility 6 hex diglts FAST or NDRMAL programming PLUS VERSIDN also has: serial RS232 program \& check CTS or DSR handshake ASCII, SIMPLE HEX, INTELHEX MUTURILA S or TEKHEX $G A N G-O F-E I G H T \& 395$ GANG-OF-EIGHT plus \&445

$\angle 80$ TTTOR

Designed for Schools Counct to teach Z80 machine code MENTA uses TV for display shows STACK \& PRDGRAM in HEX

Editing facility includes direct keyboard ASSEMBLER RS232-output DISASSEMBLER

Used to write \& dekug short machine-code routines MENTA is a complete controller with 24 bits of I/C used for ROBOTICS
'TEACHER'S GUIDE, PUPIL READER MUDUL.ES (e.g. A to D) availabie MENAA

COMPUTRE BABGAINS

-ring for our BEST DFFER
OLIVETTI M21, M24 with $10 M B$ hard disk if req. AUTO-CAD \& M24 created this AD also EPSON PX8 EPROM ERASERS from $£ 39$.

less postal expenses. if goods returned intact within 14 days PRODUCT IS USUALLY IN STOCK TODAY DESPATCH IS POSSIBLE PHONE FOR A LITERATURE PACK

VISA VAT must be added to prices

The price of entertainment

Possibly one or two well-heeled readers may have received satellite dishes in their Christmas stockings. If so, they will probably be too busy watching Mirrorvision,
Teleclub, RAIuno and the rest to worry much about the future of tv: no doubt they think they already have it.
The mushrooming satellite tv industry is installing small 12 GHz terminals as fast as it can get them and already there are many in private hands. But even though the high-street rental chains can now offer you a system on monthly instalments, satellite tv is likely to stay very much a rich man's toy.

Of course, true d.b.s.
television for all has yet to arrive in Europe. But when it does, it is hard to believe that the price of terminals will fall to the levels which the public is willing to pay for conventional aerial installations (which is to say, pratically nothing).

And now the prospect of still greater expense is on the horizon for satellite tvwatchers, with the introduction of high-definition tv. Satellite transmission gives the perfect opportunity to introduce new
technical standards which can by-pass the shortcomings of our present system. In Japan, an 1125 -line, 60 -field standard, devised by Sony and adopted by the Japanese broadcasting corporation NHK has already been chosen for the d.b.s. service to come into operation there in 1988.
The CCIR has so far shown no taste for this system. But there will be pressure from other 60 Hz countries, notably the US, to adopt it as a de-facto world standard.
This pressure ought to be resisted. For all its qualities and the pictures and sound it gives are all that could be desired - the Sony system is quite unsuitable for a public service.

For one thing, it breaches the cardinal principle of technical innovation in broadcasting, which is that you launch a new development only when you have found a way of making it compatible with existing equipment. This principle made possible stereo sound, colour tv, teletext and many other improvements of which the casual viewer is unaware.

Certainly there has to be
major change sometimes. In Britain, the last occasion came with the introduction of u.h.f. tv and the closure of the v.h.f. stations. Though costly for the broadcasters, it went virtually unnoticed by the public.
But high-definition tv is a different matter all round. At a stroke, the Sony system makes all existing equipment obsolete, both in the studio and the viewer's home. This would not necessarily matter but for the enormous cost of its replacement.

The audience for the new service will have to find simultaneously the price of a satellite terminal (the wrong side of $£ 1000$ at current prices), the cost of a special tv set, plus a contribution, somehow or other, to the huge expense of making the programmes. The specialtv set is perhaps the most daunting part. Imagine the cost of a super-high resolution c.r.t. or projection tv with a 5:3 aspect ratio, plus the special processor needed to recover the compressed video signal!
Costs at the transmission end are just as dizzying. Camera, telecines, v.t.rs, production desks, distribution equipment,
all will have to be thrown out. And simultaneous transmission of the new programmes on existing channels will be possible only via complex standards converters (at a quarter-of-a-million pounds a time, according to one source). We can expect few viewers or broadcasters to show much enthusiasm.
Surely a much better solution is that proposed in Britain by the IBA and outlined elsewhere in this issue. The IBA has charted a coherent hierarchy of improvements to the existing standard, a ladder which viewers and broadcasters could ascend each at their own pace.

The biggest step is still the first one, the adoption of C-mac in place of Pal. But with the move towards modular tv receivers and the development of special C-mac i.cs, there is no reason why it should add significantly to the viewer's costs. And the EBU has already declared its support for C-mac.
The goal at the top of the IBA's ladder is just the same, true high-definition tv. But reached this way, it could be affordable.

Steve Webb developed a system for receiving data from the two UOSAT satellites to keep his daughter Jenny, and his two other children, amused. The system, known as Astrid (see WW New Products Oct. 1985), is now being marketed worldwide and has found many enthusiastic users in schools, receiving news and data from space as well as pictures of the earth and cloud formations; useful for amateur weather forecasters.

World's largest satellite network

Linking 93 locations in 52 countries for Explo 85, an international congress of 15 million Christians, BT International claim that this was the biggest link-up of its type ever. They have organized global satellite links before, for events such as the Olympics, the World Cup, and the recent Live Aid concert. For the congress BT booked broadcast quality tv channels on three Intelsat vehicles, two over the Atlantic
and one over the Indian ocean. Similar channels have been booked on the European regional satellite and on domestic satellite systems over N. America and the Caribbean, Brazil and the Indian subcontinent. The major satellites transmit signals between continents; the signals were then retransmitted to local satellites for reception on locally-sited small-dish anntennae.

Enhanced C-mac

In the wake of Sony's demonstrations of the 1125 -line tv system chosen for the forthcoming d.b.s. service in Japan, Britain's Independent Broadcasting Authority has been showing the results of its own work on improved television standards.
'Evolution not revolution' is the slogan adopted by the IBA. For whilst the Sony-NHK system (December issue, page 5) represents a major break with existing transmission systems, the IBA aims to reach a high-definition standard gradually, through a series of orderly enhancements to the present
European standard. And in demonstrations staged at their London headquarters in December, IBA engineers showed a transitional highdefinition system based on modified 625 -line equipment and their C-mac transmission system.
Tom Robson, the IBA's director of engineering, while saluting the achievement of the Japanese engineers, stressed the drawbacks of their approach."The 1125/60 system is not satisfactory to Europe and should not be accepted as a worldwide system", he said.
A major problem was the 60 Hz field rate, since threequarters of the world used 50 Hz . And although standards conversion was possible, good conversion was very expensive. According to another IBA engineer, Sony's own h.d.t.v. converter was rumoured to have cost over half a million pounds. And standards conversion could not cope with the 10 Hz beat which arose when 60 Hz equipment was used under 50 Hz studio lights.
But one of the most serious objections, according to Mr Robson, was that direct change to any new system such as Sony's would mean making all existing equipment obsolete
overnight. He said that hroadcasters would find it difficult to finance such a changeover; a high-definition service would be an expensive luxury in its early days and revenues would take a long time to build up.
In the IBA demonstration, live pictures came from a Link Electronics 625 -line camera modified to give the extra width
were impressively realistic, though they still looked like television - in contrast to Sony's, which have the appearance of a superior kind of cinema picture. Even so, the film grain on 35 mm telecine was noticeable at close quarters. Yet the option to enhance resolution later on by increasing the number of lines still remains open under the IBA's scheme.
For comparison, two conventional colour monitors
showed the same pictures
market, which seemed likely to adopt the NHK standard, appeared to see it mainly as a medium for electronic production for the cinema rather than as a broadcast system in its own right.

Describing the IBA system in more detail, Dr Gary Tonge outlined the changes which would take place, both at the studio and in the viewer's home. First, PAL pictures would give way to C -mac as d.b.s.
transmissions were introduced. MAC had been shown to fit well into a satellite channel, and C-mac decoders (which would use chips now at an advanced stage of development) would not add greatly to the cost of a receiving terminal. Then the system could be enhanced by stages to give a wider image, more lines displayed per field and reduced flicker.
So enhanced Cmac would reach the same targets as Sony'sh.d.t.v., but by an evolutionary route rather than
This off-screen photograph shows the $5: 3$ aspect ratio of the IBA's system. When the camera moved closer, the Debussy arabesque on the music-stand could be read clearly enough to be played.
demanded by the $5: 3$ picture aspect ratio, and there were inserts from video recordings and telecine. All signals, with accompanying stereo sound, were coded in the enhanced C mac system (by which the analogue luminance and colour signals are combined by timedivision multiplexing, with a separate time-slot given over to data and digital sound).

Display equipment included a fairly ordinary, though modified, American-made projection ty (which cost, as the engineers gleefully pointed out, about a tenth of the price of Sony's); and a Barco shadowmask monitor fitted with a Japanese tube and some special electronics, which gave a sequential scan of all 625 lines at a 50 Hz repetition rate (twice the normal rate) simulating the linestructure of a 1250 -line picture.

The large-format pictures
through an ordinary C-mac decoder and in PAL form after transcoding. And it could be seen that the double scan of the wide-screen monitor reduced field-rate flicker very effectively, disposing of one of the major advantages claimed for the 60 Hz system.

Mr Robson said that the Japanese approach was based on 12-year-old technology and did not take account of recent developments in tv equipment design - such as the field-store in the wide-screen monitor. (And indeed the charge-coupled delay-line i.cs recently developed by Philips mean that field stores should be appearing in 625-line domestic sets very soon.) Yet it might take years for domestic receiver technology to match the quality which had been shown in h.d.t.v. demonstrations.

And he indicated that the US

Prize-winning aids for the disabled

Cedric the computer allows the user to select words, letters or symbols from a video screen by sensing the direction of eye movement. It was designed for use by those with high-level paralysis and loss of speech and was a winner of the IEE Prize for helping disabled people. The other joint winner was a device for bladder control for
paraplegics.
The Cedric computer uses very low intensity red light to reflect off either ese and detects the point on a video screen to which the user is looking. Selection is accomplished by eye fixation on the desired word or control can contain more than 1,500
words and there is also a visual keyboard to "type" out letters and words. There is no attachment to the user but a headrest is recommended for comfort and stability. Small head movements are allowed for, as is eye blinking. If the eye moves out of range the screen display tells the user and waits for realignment. Each time the computer is switched on, it is automatically calibrated to the user's eye. The computer can be linked through an RS232 port to a printer or other peripheral and can be used as a remote control system for environmental control, to switch lights or appliances on and off, for example. The joint

Robert Hum is about to test a v.l.s.i. telecommunications circuit in a GenRAD GR 18 i.c. tester. The tester, claimed to be the most advanced in the world, is capable of performing 11520000000 tests per second. So it would have completed about 170 billion tests in the time it takes to read this paragraph. Mr Hum works for BellNorthern Research in Canada on the development of v.l.s.i. circuits for Northern Telecom. The manufacture of reliable chips depends on the ability of the research centre in understanding how and why chips fail and then on the ability to prevent such occurances.

Open technology

A technical college equivalent of the Open University las been launched bs Telford College Edinburgh.called Teltec. Each course consists of practicalkits. audio and videotapes and texts and coverssuchareas as control and instrumentation, electronics, microelectronics, pneumatics and hydraulics, electrical skills and computer appreciation. Tutorial
centres are located throughout the country so that students can have expert guidance when needed.
Tutors can also work under contract to individual companies to provide in-house training.
If Teltec does not offer a course required they can trace and request a suitable package from another participant in the Open Tech scheme.
prizewinner was Cedric's inventor, Andrew Downing, senior lecturer in electrical and electronic engineering at Adelaide University

The other prizewinner was Peter Donaldson, chief engineer at the MRC neurological prosthesis unit. The bladder controller treats incontinence by electrical stimulation of the sacral anterior roots in the spine. A receiver unit is planted beneath the ribs and is controlled by a transmitter held adjacent to it outside the body

Signals from the receiver are connected by implanted cables to the nerves in the spinal column.

Alvey's Flagship

Flagship is the major demonstration model for the Alvey advanced computer research programme. Much accent is placed on the need for parallel processing and also on 'declarative' programming languages which improve the computer interface and enable the user to tell the computer what to do in plain language.
The project is the joint responsibility of Plessey, ICL, Manchester University and Imperial College, London. Manchester University has developed a data-flow computer and Imperial College are working on Alice, a graph reduction machine which uses about 200 Inmos Tranputers.
Plessey's contribution will be in speech recognition and synthesis and in v.l.s.i. design, under the leadership of Dr. Keith Warren.
We suggested to Dr. Warren that task-specific transputers would be the next logical step in speeding up the processing, and he agreed but said that they were already progressing beyond the Transputer and were looking at bit-slice processors, some of which may be task-specific.
The computers produced by this research are not aimed at replacing existing systems but at doing tasks not previously possible on a computer, especially in the areas of artificial intelligence and in user/computer interfacing,

As has been predicted for some time, the compact disc can be used to store computer data and used like a rom. Hitachi have produced CD-Rom. Each disc has a read-only memory capacity of 552 Mbits and the data transfer rate is $176 \mathrm{Kbit} / \mathrm{s}$.

Dr David Wright was awarded an Honorary Fellowship of the Royal Television Society. He is a specialist in colour and worked in optics when he became involved in the early development of television. The colour system adopted by the NTSC was based largely on Dr Wright's researches. He was Professor of Technical Optics at Imperial College, and has published many papers and a standard reference work: The measurement of colour.

The next generation of mobile telephone systems in Europe is under consideration at Ericsson. Basing their researches on the existing Nordic cellular system and on experiences in other areas of the world, Ericsson will present the results of their deliberations to the European
Telecommunications Administration during this year.

A better deal for disabled and elderly telephone users is called for by DIEL, an independent advisory committee on telecommunications for the disabled and elderly. They are particularly concerned that the research into low data-rate visual phone system should continue at Essex University and that such users should be relieved from paying vat on equipment and services.

THE WAY TO CONTROL . . .

... switching, relays, heat, temperature, flow, alarm systems, lift control systems, management systems, refrigeration plants, kilns, furnaces, boilers, spray driers, production lines, bakery control, banking systems, plant \& machinery, analysis, data acquisition.

THE BBC BASIC* INDUSTRIAL CONTROLLER

ENABLE EVERY

- ENABLE WHENEVER.
- Full MULTI-TASKING with up to 8 background tasks running concurrent with the main program
- BBC BASIC CONTROL powerfully enhanced.
- 19 Industrial Network Commands - Control of INPUT/OUTPUT.
- Five real-time COUNTER TIMERS
- The ability to run REAL TIME PROGRAMS.
- Eight real-time TASK INTERVAL TIMERS.

A full range of Eurocards for use in target applications.

- Fully BUS compatible.

Hep ahead with UM/S
 Licensed by Acorn Computers Limited.

CIRCLE 62 FOR FURTHER DETAILS.

TYPE	LIST	TYPE	LIST:
	£		£
2N3375	10.90	2SC1978	6.40
2N3553	1.60	2 SC 2053	080
2N3632	12.95	2 SC 2237	13.00
2N3733	12.95	2SC2287	9.60
2N3866	1.20	2 CC2290	2400
2N4416	075	MRF240	20.70
2N4427	140	MRF245	33.00
2N5090	1090	MRF247	3330
2N5109	1.95	MRF433	9.00
2N5160	300	MRF449A	10.15
2N5589	760	MRF450	14.95
2N5590	790	MRF450A	14.95
2N5591	950	MRF454	17.25
2N5641	6.95	MRF454A	17.25
2N5642	9.30	MRF455	16.50
2N5643	1185	MRF458	17.20
2N5913	2.50	MRF475	2.30
2N5944	785	MRF476	2.15
2N5945	10.10	MRF644	22.50
2N5946	10.80	MRF646	27.00
2N6080	665	MRF648	32.70
2N6081	840	MRF901	2.75
2N6082	10.50	SD1013	9.75
2N6083	11.20	SD1019-STUD	23.10
2N6084	1200	SD1019-5	22.80
2SC1729	15.50	SD1127	3.10
2SC1945	3.45	SD1134-1	2.25
2SC1946A	16.00	SD1136	11.90
2SC1947	850	SD1143	9.40
2SC1969	2.10	SD1219	14.70
2SC1970	1.40	SD1272	10.95
2SC1971	3.50	SD1278	1375
2SC1972	9.50		

CROFTON ELECTRONICS

ARE YOU SICK OF THE SIGHT OF YOUR MONITOR?

Many are, for unless it displays the capability of your equipment, you are losing out.
Our range is comprehensive - both open frame and cased, as well as monochrome and colour-sizes from $5^{\prime \prime}$ upwards Ring or write for details.
Pictured above is the Thomson CM31311S1 professional 12" High resolution colour

Technical Sales and Service
P.O. Box 6, Kington,

Herefordshire HR5 3SX
Telephone: (05448) 557

also at

35 Grosvenor Road, Twickenham, Middlesex. TW1 4AD Telephone: 01-891 1923

Toroidal Transformers

as manufacturers we are able to
offer a range of quality Toroidal Transformers at highly competitive prices and fast delivery.

Mail Order Price List

15VA 6.92. 30VA 7.18. 50VA 8 86. 80VA 9.92. 120VA 10.59. 160VA 12.10. 22VA 13.69. 300VA 14.77. 500VA 19.20. 625VA 22.09. 750VA 26.17. 1KVA 42.22. 1.2KVA 46.79. 1.5KVA 52.06 . 2 KVA 68.95 . price inchudes $p+\rho \&$ vat.

Avallable from stock in the following voltages: $-6-0-6,9-0-9,12-0-12,15-0-15$ 18-0-18,22-0-22. 25-0-25, 30-0-30,35-0-35, 40-0-40, 45-0-45,50-0$50,110,220,240$ (max. 10 amp). Primary 240 volt.

Quantity Prices and delivery on request
(we also manufacture conventional E1 type transformers)

CIRCLE 25 FOR FURTHER DETAILS.

ATTENTION ALL CIRCUIT DESIGNERS!! LOW COST ELECTRONICS C.A.D.

I.B.M. PCIXT, BBC MODEL B and SPECTRUM 48K

 and PHASE, INPUT IMPEDANCE. OUTPUT IMPEDANCE and GROUP DELAY except Spectrum version are caiculated over the frequency range requirea. The eftects on pertmance MODIFICAevaluated
Circuits containing resistors. CAPACITORS. INDUCTORS, TRANSFORMERS, BIPOLAR and EIELD EFFECT TRANSISTORS and OPERATIONAL AMPLIFIERS can be simulated - up to 150 components (IBM version]
Ideal for the analy sis of ACTIVE and PASSIVE FILTER CIRCUITS. AUDIO AMPLiFIERS LOUDSPEAKER CROSS-OVER NETWORKS. WIDE-BAND AMPLIFIERS. TUNED R.F. AMPLIFIERS. AERIAL MAAICHING NETWORKS. TVIF. And CHROMA FFLTER CIRCUITS. LINEAR
NTEGRATED CIRCUITS etc etc.
ANALSL Used by INDUSTRIAL R \& D DEPARTMENTS And UNIVERSITIES WOrIdWIde VERY EASY TO ar
For further details and example computation or he details on OUR NEW DRAUGHTING
NUMBER ONE SYSTEMS LIMITED
TELEPHONE: O48061778
DEPARTMENT WNW
STIVES
HUNTINGDON
CAMBS. UK PE17 4EB

Electronic Brokers Test \& Measurement Instrument Distribution Disvision

AUTHORISED DISTRIBUTO For the Leading Brands of Electronic Test \& Measurement Equipment

From Philips, Floke, Hameg, CEE, Thandar,
 Thurlby, GP Industrial, Claude Iyons, Coline, Compact Instruments

OSCILLOSCOPES

Philips PM 3206 sensitivity, auto and TV triggering, variable time base speed. Z modulation.

Hameg HN 2O3-5
OMHz dual trace, add and invert, maximum sensitivity $2 m \mathrm{~V}$, automatic and normal
triggering. X-Y operation, component tes Thandar SC 110A
10 MHz , battery powered portable , £175 and economy triggering for battery const line TV frame and line triggering. Sensitivity 10 mV
BENCH \& HANDHELD DMMs

Philips PM 2519/01 E299 $41 / 2$ digit. LCD with analogue bar graph, auto/manual ranging, requency to 1 MHz , true RMS. dB rehition PM
hilips PM 2518x/11 E199 4 digit. LCD with electroluminescent display auto/manual ranging, true to 20 A PM 2518 reference. curr to 20A, PM $2518 \times / 01$ without Fluke 8010 A
$£ 243$
Fluke 80104

l/e digit, LCD, 10A current range, seven | RMS. DC accuracy 0.1%, BO10. 0 Niode test. true |
| :--- | version E279.

Fluke 8060A
41/2 digit. LCD, ten functions include £306 onductance, equency, true RMS. DC
Fluke 80624
$4^{1 / 2}$ digit, LCD, seven functions include est and continuity, relative reference. DC accuracy 0.05%, true RMS. self diagnosis test. Fluke 80248 31/2 digit. LCD, eleven functions include peak hold on voltage and current. audible and visual logic

Fluke 8026B
$3{ }^{1 / 2}$ digit. LCD, eight functions include
$£ 172$ accuracy 0 , audible continuity true RMS. DC accurany
warranty.

Fluke 8020B

 OB

 OB}C173
$3^{11 / 2}$ digit. LCD. eight functions include conductance, dioded test, audible continuity, DC
accuracy 01%, extensive over-load protection. Fluke 8021B
$3^{11} 2$ digit. LCD, seven functions include diode test and high speed audible continuity. DC accuracy 0.25%, safety test leads provided
Fluke 8022B
1114
${ }^{111 / 2}$ digit, LCD, six functions include diode test. OC accuracy O. 25%, optional accessories available to enhance all DMM measuring capabilities
Fluke JF 77
3 la digit. LCD with analogue bar graph, 2110 auto/manual ranging, DC accuracy 0.3%, touch Flute fF 75 suppled whinger.
Fluke JF 75
$31 / 2$ digit. LCD with analogue bar graph, auto/manual ranging, DC accuracy 0.5%, seven continuity
fude diode test and audible
Fluk JF
Fluke JF 73
31/2 digit. LCD with analoque bar graph, autic
£72 31/2 digit. LCD with analoque bar graph, auto
ranging, DC accuracy 0.7%, six functions include diode test, all 70 series OMMs have 3 year warranty.
Fluke JF 25
3^{112} digit. LCO with analogue bar graph £193 ruggedized construction. auto ranging. DC accuracy 0.1%, touch-hold facility, extensive

Fluke JF 27 E216 $3^{11 / 2}$ digit. LCD with bar graph, ruggedized 19 construction, auto ranging. DC accuracy
touch-hold facility, min-max and relative mode operation.
Thandar TM 351
3^{112} digit. LCD. 29 ranges of measurement. DC accuracy 0.1%, diode test, battery life typically leads.
Thandar TM 451
$£ 195$
4/e digit. LCD display with function legends
auto/manual ranping auto/manual ranging. DC accuracy 0.03%.
samp e/nold facility on all ranges, audible continuity.
Thandar TM 355
EB5
3'le digit, 0.5 bright LED. 29 ranges of mains operation, diode check. supplied with test leads.

ANALOGUE

MULTIMETERS
Philips PM 2505 \qquad
62 measuring ranges. 10 Ma input $£ 165$ inear resistance ranges, audible continuity. automatic polarity indication, low power
I.C.E. 680R

80 measuring ranges. sensitivity $20 \mathrm{Kn} / V$. DC accuracy
protection.

Electronic Brokers are leading suppliers of electronic test \& measurement equipment. Our Distribution Division handles the major names in the industry and all product's are stocked in depth in our spacious new premises at Camden Town, ready for prompt despatch to all parts of the country
Electronic Brokers offer full technical support and expert advice on all aspects of electronic test and measuring.
 Electronic Brokers ${ }^{1}$
I.C.E. 6806
 ccuracy $2 \%_{0}, 10 \mathrm{~cm}$ mirror scale. overioad PRODUCTS

I.C.E. M80

E19
accuracy 2%, wide range of accessories extend measuring capabilities.
PULSE, FUNCTION,

PATTERN GENERATORS

Philips PM 5503

Pattern generator, 5 test pattems for mono 155 colcur, video output for CCTV and monitors, RF colcur, video output for CCTV and monitors,
output in VHF and UHF range, 1 kHz tone for Sound checks.
Thandar TG 101
Function generator 0.02 Hz to 200 kHz £ 110 square, triangle, variable DC offset, TTi sine. xternal sweep, 10 Vpp output into variable

Thandar TG 102
E160
Function generator O .2 Hz to 2 MHz , sine,
square, triangle. TL output, variable DC offset, external sweep. 20Vpp output into variable 50 n Thandar TG 105
Pulse generator 5 Hz to 5 MHz . 10 nS . amplitude 0.1 V to 10 V into 50 n . free-run. gated or
triggered modes. Th output. pulse width triggered modes. TL output.
variable 100 nS to 100 ms .
Thandar TG 501
Function generator 0.005 Hz to 5 MHz £295 square. triangle, ramp, pulse. TTL variable DC offset, variable start/stop phase. $20 \mathrm{~V} p \mathrm{p}$ into
COUNTERS \&
COUNTER/TIMER

Thandar TF 200 £175 Counter. 10 Hz to 200 MHz , 8 digit LCD. battery powered. 10 mV sensitivity, time average period to 600 MHz available at $£ 45$. Thandar PFM 200A 8 digit bright 576 1 Hz powered. 10 mV sensitivity resolution. P 6 z. selectable gate times, mains adaptor and - ONEP SUPPI

Thurlby PL 154

to 15 V . 0 to 4A, bench power supply $£ 15$ LED displays meter voltage and current. high stability and resolution, remote sense facility

Thurlby PL 320
ᄃ155 Ot to 30 V . 0 to 2A, bench power supply. constant control and monitor system, ripple and noise Thurlby PL 310

Thandar TH 302 C80
Thandar digital the and ${ }^{\circ} \mathrm{F}$, range $-40^{\circ} \mathrm{C}$ to $1100^{\circ} \mathrm{C}$, resolution
0.1° and $1{ }^{\circ}$, for use with type K probes (bead

Thurlby OM 358
$£ 179$
Thurlby multiplexer expands any oscilloscope to 8 channels, displays analogue or digital signals.
triggering from any channe, band width 35 MHz . precision calibrated attenuator.

Thurlby CM 200 C89 Thurlby digital capacitance meter, $4^{1 / 2}$ digit LCD. settling, battery or mains operation.

LINE CONDITIONERS

Clauda Lyons LVC 250
C271
2.5A. 600 VA rating, line voltage conditioner. apt response typhealy in cycles), isolated installation. Clauda Lyons LVC 65 E186 unaffected by frequency variations, transient and noise suppression. All LVC units have 2 year warrantly.
EPRDM PROGRAMMERS
GP Elactronics UV 141
588
EPROM Eraser, variable electronic timer. powertulu source, up to 14 device capacity.

Visitors are welcome to our showrooms where all products are on display and demonstration. For customers wishing to order by phone, we offer a 24 hour answering service.
All prices are exclusive of VAT and correct at time of going to press.
Carriage and packing charges extra on all items unless otherwise stated. A copy of our trading conditions is available on request.

Electronic Brokers Ltd 140-146 Camden Street London NW1 9PB Telephone 01-267 7070 Telex 298694

CONGUIN SOFTWARE LTD Low Cost IBM PC Based CAD Systems

VUTRAX

The compre'hensive PCB design system

* Schematic capture
* Auto placement
* Auto routing
* Technical drawing facilities
* $32^{\prime \prime}$ by $32^{\prime \prime}$ drawing size
* Upto 8 layers
* Upto 8000 pads
* Supports various graphics options
* Plots artwork on Epson printers or a range of pen plotters.
* Runs on Apricot, Sirius, IBM PC/AT/XT and most compatiables.
Software from $£ 1200$.
Demo system $£ 70.00$

smARTWORK

The PCB Artwork Editor for the engineer in a hurry. It understands electrical connections and is therefore easier to use than AutoCad.

* Auto routing
* Plots artwork on Epson printers or HP and Houston plotters.
* Upto $10^{\prime \prime}$ by $16^{\prime \prime}$ artwork
* Single or double sided
* Powerfull, but easy to use
* Runs on IBM PC
* Can interface with AutoCad
smARTWORK requires IBM PC, 192K RAM, dual disk drives, COLOUR graphics card.
The smart buy at only $£ 895.00$ ($+£ 15$ P\&P) Demo disk $£ 25.00$

르르르르를
A range of three IBM PERSONAL COMPUTERS Prices from $£ 1,599$
RSD CONNECTIONS LTD

75p P\&PIN UK. Access a Vise accoptad. Add 15% VAT to all orders
Cheques made payable to:
RSD Connections Ltd, Dept WW2
PO Box 1, Ware, Herts.
Tel: 0920 5285/66284
CIRCLE 10 FOR FURTHER DETAILS.

R. WITHERS AGENT TO THE STARS!

RWC are main agents/distributors for Yaesu, Icom,
Kenwood, M.Modules, Jaybeam, Tonna, Revco Antennas, Cleartone, Mutek, AKD, Drae, FDK, Welz, Tait and Neve Radiotelephones to name but a few! We also stock a wide range of B.T. approved cordless telephone and telephone systems!

TUNE INTO OUR SPECIALIST SERVICE!

- We manufacture our own range of VHF/UHF beam antennas
- We're the only company in the UK that produces modular VHF/UHF Raycom power amplifiers (15-50 watts output)
- We supply a large range of power transistors/modules imported directly from Japan.
- We supply/repair amateur/business radio systems
- We check transceivers on our spectrum analyser $£ 12.50$ for a comprehensive report
- Only supplier of modified Revco RS $200060-520 \mathrm{MHz}$ extended coverage scanning receiver modified by RWC
- Probably the UK's largest seller of used radio equipment
- We offer the largest selection of radio allied services under one roof Please contact us for details
R. WITHERS, 584, Hagley Rd West, Oldbury,

Warley, West Midlands B68 OBS.
Tel: 021.4218201 (24hrs) Telex: 334303-TXAGWM-G

THE SOURCE OFALL GOOD USED

TEST EQUIPMENT

＊NEW LOW PRTCES

This is just a sample of our huge inventory－contact us with your requirements

OSCILLOSCOPES		
Hewlett Packard		
1821	Scope Mainframe	¢1850
19808	Storage Scope	¢2450
	Scope System	¢4950
V1100	Scope	¢1050
Tektronix		
－465B／DM44	Scope 100MHz	c2100
475A	Scope 250MHz	¢2500
485	Scope 350MHz	14950
634／1／20	Monitor（As New）	$¢ 950$
465 B	Scope 100MHz	¢1650
	25 MHz Storage Scope	from 19550
2445	150 MHz Scope	¢2475
5223	Scope Mainframe	¢3600
5403／D41	Scope Mainframe	¢1950
TEKMAOTIX 7OOOSERIES		
7603	Scope M／F	¢1950
R7603	Scope M／F（Mint）	¢2650
7623A	Storage Scope M／F	¢3750
7633	Storage Scope M／F	$¢ 7850$
7704A	Scope Mainframe	c3200
7904	Scope M／F	56850
7 A 11	FETP／In	¢1600
7419	600 MHz Amp	¢1600
7 726	口TP／In	$¢ 1650$
7850A	Timebase	¢575
7853A	Timebase	¢585－¢985
7885	Timebase	¢925
＊7011	Digital Delay	¢1200
7014	525 MHz Ditigal Counter	¢850
7 M 11	Delay Line	¢750
7 S 11	Sampling Plug In	$¢ 1850$
7 S 14	TOR Sampler	c4500
7 T 11	Sampling Timebase	¢4000
S1	Sampling Head	¢950
554	Pulse Generator Head	¢600
ATALYEARE		
Hewlett Packard		
	Distortion Analyser	£750
	Logic Analyser	¢2200
＊8558日	Spectrum Analyser Plug－in	¢，4000
－8559A 8903A	Spectrum Analyser Plug－in	¢7500 c4800
8903A Tektronix	Modulation Analyser	
$\begin{aligned} & \text { Tektronix } \\ & .308 \\ & .391 \end{aligned}$	Data Analyser	¢2000
	Spectrum Analyser	
	$10 \mathrm{MHz}-40 \mathrm{GHz}$	¢7500
7－701／DF2	Logic Analyser	£1900
	Tracking Generator	¢2500
＊ 7002 ppt 01	Logic Analyser	¢2000
	Personality Module	$¢ 500$
PM108	Personality Module	c850
HLabs		

Farnell SSG $520+$ SSG	Trans．Test Set	¢4250
Hewlett P		
214A	Pulse Generator 100V	¢750
8011A	Pulse Generator	c625
80078	Pulse Generator 100 MHz	$¢ 1650$
8015A	Pulse Generator Dual 50 MHz	¢1950
80184	Serial Word Generator	¢1650
8601A	Sweep Generator	¢1950
8600A	Digital Marker	¢950
8616A	Signal Generator 1．8－4．5GHz	¢4000
Marconi TF2002AS	AM／FM Signal Generator	c950
TF2002B	AM／FM Signal Generator	c950

AFGODFGES Hewlett Packard

Hewlett Packard
$4204 A$
Decade Osc（New）

Wavetek Decade Osc（New）
Sweep Generator
$\begin{array}{lll}185 & \text { Sweep Generator } & \text { S650 } \\ 184 & \text { Sweep／Function Generator } 5 \mathrm{MHz} & \text { ¢750 } \\ .164 & \text { Pulse／Function Generator } 50 \mathrm{MHz} & \text { £ } 7550\end{array}$

 $\begin{array}{ll}\text { OM501 } & \text { DMM Function Generator }\end{array}$
 1 MHz Function Generator 11 MHz Function Generator
 3 MHz Function Generator
 40 MHz Function Generator
 Pulse Generator
 Pulse Generator
 Pulse Generator
 Pulse Generator
 Ramp Generator
 － 5900

 Time Mark Generator
 Mainframe
 \＆ 1750 C 275 C 275

Fuke
7220
7220 A Communications Cou 13 GHz
1900 A Counter 80 MHz
Hewlett Packard
Hewlett Packard
$5341 A$
Micro
$5341 \mathrm{~A}+\quad$ Microwave Counter $10 \mathrm{~Hz}-4.5 \mathrm{GHz}$ £1250 $53008+$
5305 －
Marconi \quad Counter 1.3 GHz
$\begin{array}{ll}\text { Marconi } & 100 \mathrm{MHz} \text { Counter／Timer } \\ 2437 A & 5\end{array}$
Systron Donner
520 MHz Counter／Timer
$\stackrel{4}{〔} 65{ }^{2}$
6054800

ERIDGES

Hewlett Packard

2950
82100

Marconi	＇Q＇Meter	C1200
TF1246	Oscillator	C650
TF1247	Oscillator	¢650
TF1313A	LCR Bridge	¢775
＊TF2702	Inductor Analyser	¢1000
TVTESTEतUPMENT		
Tektronix 64400		
R148	PAL TV Generator	¢4400
149A	NTSC Generator	C2950
520A	NTSC Vectorscope	C3750
5214	PaL Vectorscope	C4400
690SR	TV Colour Monitor	C1950
1485R	TV Waveform Monitor	¢3500
GEणन：		
luke		
515A	Calibrator	¢1450
${ }^{887 A B}$	Diff．Voltmeter	¢1500
9318	Diff．Voltmeter	
Hewlett Packard		
－3437A	Systems DMM	¢1500
3456 A	DMM	¢1950
3465A	DMM	¢350
3468A	DMM	¢495
3406A	Sampling Voltmeter	¢1500
3497A	Data Aquisition Unit	C1950
6940B	Multiprogrammer	¢1500
8405A	Vector Voltmeter	¢2000
8746 B	＇S＇Parameter T／set	¢7650
467 A A Amplifer6410004		
	M．D．S．Terminal	¢9000
Marconi		
	RF Power Meter	¢1500
＊TF2603	RF Millivaltmeter	$¢ 550$
	TV Pulse Generator	$¢ 750$
TF2807a	PCM Tester	¢1350
TF2809	Data Line Analyser	$¢ 950$
TF2日28	Simulator	¢1250
TF2829	Digital Analyser	£1250
TF2915	Data Monitor	£1200
Tektronix		
178	Curve Tracer Fixture	¢9500
A6901	Ground Isolation Monitor	¢275
HEMEEIPIGKAROCOMDUNERS		
26248		
005－013	Terminal	¢1300
26318	Printer	¢1250
72218	Plotter	¢1200
＊9825A	Desktop	£2000
9862A	Plotter	¢750
98855	Disk Drive	¢500

URGENT－We need to

 purchase modern Tektronix and Hewlett Packard T \＆M Equipment －For the best price contact us．Electronic Brokers are Europe＇s largest specialists in quality second user test equipment．Established 17 years ago，we have pioneered the second user concept in Britain，and many overseas territories．To support our growth we have a skilled team．This includes trained sales staff，whose role is not only to seill，but provide a helpful information service to our many customers．Backing this team is our own service laboratory where technicians monitor each item of equipment we sell．Our maxim is service，and those who have dealt with us will know that we endeavour to always live up to our reputation．

Electronic Brokers Guarantee

Unless otherwise stated，all test equipment sold by us carries a 12 month warranty．When you buy from Electronic Brokers you know the equipment is in＇top notch＇condition．It is refurbished in our own service laboratories and checked to meet the original manufacturer＇s sales specifications．And it＇s serviced by our own highly qualified technicians．

All prices exclusive of VAT．Carriage and packing charges extra on all items unless otherwise stated

A copy of our trading conditions is available on request．

Electronic Brokers Ltd $[-1-$ 140－146 Camden Street London NW1 9PB Electronic Brokers Telephone 01－267 7070 Telex 298694

CIRCLE 79 FOR FURTHER DETAILS．

01-208 1177 Technomatic Lid 01-208 1177

BBC Computer \& Econet Referral Centre

BBC B Plus with DFS $£ \mathbf{~} \mathbf{3 6 9}$ (a) BBC B Plus with 128 K kit £389(a); BBC B Plus Econet (no DFS) £360(a);
BBC B Plus Econet \& DFS $£$ 399(a); BBC Dust Cover £450(d);
1770 DFS Upgrade for Model B $£ 43.50$ (d)
Acorn 2nd Processors: 6502: £169(a); Z80: £299(a)
TORCH UNICORN: Z80 Card: $£ 199(\mathrm{a})$; $Z 80$ Disc Pack: £499(a)
TORCH Graduate G800/2 £699(a)
META-ASSEMBLER. Both an editor and Macro-Assembler. Meta can assemble most $65 \mathrm{xx}, 68 \mathrm{xx}, 6804,6805 / 6305,6809,8048,8080 / 8085, \mathrm{Z80}$, 1802 and more. (Free updates due very soon - 68000 series, $8088 / 8086$, Z8000 etc.) Many advanced features including Macros, conditional assembly, Global/selective search etc. etc. Includes 16 K Eprom, disc, function key card, and comprehensive manual. Please phone for comprehensive leaflet. MetaAssembler $£ 126$ (c)
We stock the full range of ACORN hardware and firmware and a very wide range of other peripherals for the BBC. For detailed specifications and pricing please send for our leaflet.

PRINTERS

EPSON: RX80T $£ 169(a)$; LX80 £210(a); FX80 £245(a); FX80 + £299(a); NEW
FX105 +inc| NLQ \& IBM mode $£ 449(a)$: JX80 4 colour printer $£ 435(a)$; LO1500 Printer $£ 899$ (a).
TAXAN KAGA: KP810 80 Col NLO £229(a); KP910 156 Col NLO $£ 339$ (a): JUKI 6100 Daisy Wheel $£ 279(\mathrm{a})$.
BROTHER: HR15(P) Daisy Wheel £285(a); HR15LX (Serial) £365(a) PLOTTERS
Epson H180: A4 4 colour Plotter f345(a); Hitachi 672: A3 4 colour Plotter £ 465(a)

ACCESSORIES

We hold a wide range of printer attachments (sheet feeders, tractor feeds etc) in stock. Serial, parallel, IEEE and other interfaces also available. Ribbons available for all above plotters. Pens with a variety of tips and colours also available. Please phone for details and prices.
Plain Fanfold Paper with extra fine perforation (Clean Edge):
2000 sheets $9.5^{\circ} \times 11^{\prime \prime} £ 13$ (b) 2000 sheets $14.5^{\prime \prime} \times 11^{\prime \prime} £ 18.50$ (b)
Labels per 1000s: Single Row $3_{2^{\prime \prime}} \times 17 / 16^{\prime \prime} £ 5.25$ (d) Triple Row 2-7/16" $\times 17 / 16^{n} £ 5.00$ (d)

MODEMS

BUZZ BOX

This pocket sized BT approved modem complies with V21 300/300 baud and provides an ideal solution for communications between users, with mainframe computers and bulletin boards. Suitable for use with Open University computer Battery/mains powered
BUZZ BOX $£ 55$ (c) mains Adaptor $£ 10$ (d) BBC Data Lead $£ 8$ (d) MIRACLE WS 2000
The world standard BT approved modem covering all standard CCITT and BELL (outside UK only) standards upto 1200 baud. Allows communication with virtually any computer system in the world. Expandability to Auto Dial and Auto Answer with full software control enhance the considerable features already provided on the modem. Mains powered. WS $2000 £ 125$ (c) Auto Dial Board/ Auto Answer Board (awaiting BABT approved) £ $\mathbf{3 0}$ (d) Software Control Kit £10 (d)

NEW WS-3000 RANGE - the new professional series. All are intelligent and 'Hayes' compatible, allowing simply 'English commands to control its many features. All models feature Auto-Dial with 10 number memory, Auto-Answer, Speed Buffering, printer port, data security option etc. All models are factory upgradeable.
WS3000 V2123 (V21 \& V23 + Bell) £295 (a) WS3000 V22 (as above plus 1200 baud full duplex) £495 (a)
WS3000 V22bis (as above plus 2400 baud full duplex) $£ 650$ (a)
The WS3000 range all have BT approval.
SOFTY II

SOFTY		MALE				
This low cost inteligent eprom progra	er can program 2716. 2516.	Ang Pins	120	180	230	350
2532. 2732. and with an adapor, 2566	nd 2764 Displays 512 byte	Solder	60	85	125	170
			175	275	325	
Sotyly		FEMALE:	100		210	
Adaplor for	2764!	Ang Pins	160	210	275	440
2564	£25.00	Solder	90	130		-
SPECIAL			195	325	375	
2764-25 £ 2 :	O(d).	St Hood	. 90	95	100	120
27128-25 £	O(d):	$\begin{aligned} & \text { Screw } \\ & \text { Lock } \end{aligned}$				
6264 LP-15 £	00(d);					
ACORN IEEE INTERFACE£278(a)	industrial programmer EP8000〔695 (a)	SOCKETS 28-pin 99.00			$\begin{aligned} & 24-\mathrm{p} \\ & 40 \text { pr } \end{aligned}$	$\begin{gathered} n \in 7.50 \\ \varepsilon \in 12.00 \end{gathered}$

DISC DRIVES
TECHNOMATIC drives are fitted with high quality slimline mechanisms and are available with or without integral mains power supply. The dual drive power supplies are switch mode type and are generously rated. All drives with integral power supply are fitted with a mains indicator
and are generously rated. All drives with integral power supply are fitted with a mains indicator.
All drives are supplied with all the necessary cables, manual and a formatting disc. All drives
Al drives are supplied with all the necessary cables, manual
Single Drives: PD800 $2 \times 400 \mathrm{~K} 40 / 80 \mathrm{~T}$ DS
$1 \times 400 \mathrm{~K} 40 / 80 \mathrm{~T}$ DS: TS400£99(b) £199(a)
PS400 with psu $£ 120$ (b)
Dual Drives: (with integral psu)
Stacked Versions
PD200 $2 \times 100 \mathrm{~K} 40 \mathrm{~T}$ SS £ 195 (a)
3.5' Drives

TS35 $1 \times 400 \mathrm{~K} 80 \mathrm{~T}$ DS $£ 99$ (b)
TD35 $2 \times 400 \mathrm{~K} 80 \mathrm{~T}$ DS $£ 172$ (b)

3M FLOPPY DISCS

Industry Standard floppy discs with a lifetime guarantee Discs in packs of 10. $5 \frac{1}{4}$ " DISCS
40 TSS DD £13(d) 40 TDSDD £18(d) 80 TSSDD £30(d) 80 TSS DD £22(d) 80 TDS DD £24(d) 80 TDSDD £38(d)

FLOPPICLENE DRIVEHEAD CLEANING KIT

FLOPPICLENE Disc Head Cleaning Kit with 28 disposable cleaning discs ensures continued optimum performance of the drives. $£ 14.50$ (b) DRIVE ACCESSORIES

Single Disc Cable $\mathbf{£ 6}$ (d)
10 Disc Library Case $\mathbf{£ 1 . 8 0}$ (d) 30/40 Disc Lockable Box $£ 14$ (c)

Dual DISC Cable $£ 8.50$ (d)
30 Disc Storage Box $\mathbb{E 6}$ (c)
100 Disc Lockable Box £16(c)

MONITORS

All $14^{\prime \prime}$ monitors now avilable in plastic or metal cases, please specify your $14^{\prime \prime}$ RGB 1431 Std Res £ 185 (a); 1451 Med Res $£ 225$ (a); 1441 Hi Res $£ 385$ (a). $14^{\prime \prime}$ RGB with PAL \& Audio 1431 AP Std Res $£ 199$ (a) 1451 AP Med Res $£ 275$ (a) Swivel Base for Plastic 14" Microvitecs $£ 20$ (c) $20^{\prime \prime}$ RGB with PAL \& Audio 2030cS Std Res $£ 380$ (a); 2040CS Hi Res $£ 685$ (a). KAGA TAXAN $12^{\prime \prime}$ RGB
VISION II Hi Res $£ 210$ (a): VISION III Plus $£ 330$ (a)
MITSUBISHI 14" SGB Med RES IBM \& BBC Compatible $£ 229$ (a)
MONOCHROME MONITORS:
SANYO DM8112CX Hi Res $12^{\prime \prime}$ Green Screen $£ 86$ (a)
KAGA KX1201G HiRes $12^{\prime \prime}$ Etched Green Screen $£ 92$ (a) KAGA KX1203A Hi Res $12^{\prime \prime}$ Etched Amber screen $£ 105$ (a) PHILIPS BM $750212^{\prime \prime}$ Hi Res Green Screen $£ 75$ (a) PHILIPS BM7522 $12^{\prime \prime}$ Hi Res Amber Screen $£ 79$ (a)
BBC Leads RGB $£ 5$ (d) Microvitec $£ 3.50 \mathrm{~m}$ (d) Monochrome $£ 3.50$ (d)

UVERASERS

UV1T Eraser with built-in timer and mains indicator.
Buitt-in safety interiock to avoid accidental exposure Buit-in safety interlock to avoid accidental exposure
to the harmtul UV rays. If can handle up 105 eproms al a time with an average erasing time of about 20 mins. $£ 59+£ 2$ p\&p. UV1 as above but without the timer. $£ 47+£ 2 p \& p$. For Industrial Users, we offer UV140 \& UV141 erasers with handling capacity of 14 eproms. UV141 has UV140 £69, UV 141 §85, p\&p $£ 2.50$.

PRINTER BUFFER

The buffer ofters a storage of 64 K . Data from three
computers can be loaded into the buffer which will computers can be loaded into the buffer which will continue accepting data until it is full. The buffer will soon as that computer has dumped all its data. The computer then is available for other uses. LED bargraph indicates memory usage. Simple push button control provides. REPEAT, PAUSE and RESET functions. Integral power supply $\mathbf{£ 1 9 9}$ (a). BBC Cable Set $£ 30$.

Serial Mini Patch Box Allows an easy method to reconfigure pin functions assay jumpers can cable and reused and reused

Serial Mini Test Monitors RS232C and CCITT V24 Transmissions, indicating status with dual colour LEDs on 7 most significant lines. Connects in
Line.
$£ 22.50$ (d)
$£ 22.50$ (d)

RIBBON CABLE			
(grey/metre)			
$10-$ way	$40 p$	34 -way	$160 p$
16 -way	$60 p$	40 way	$180 p$
20 -way	85p	50 -way	200 p
26 -way	$120 p$	64 -way	$280 p$

DIL HEADERS		
14 pin	Solder	10 C
16 pin	50 p	100 p
18 pin	60 p	110 p
20 pin	75 p	-
24 pin	100 p	150 p
28 pin	160 p	200 p
40 pin	200 p	225 p

ATTENTION

All prices in this double page advertisment are subject to change without notice. ALL PRICES EXCLUDE VAT Please add carriage 50p unless indicated as follows. (a) $£ 8$ (b) $£ 2.50$ (c) $£ 1.50$ (d) £1.00

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{74 Series} \& \& 7415273125 \& tac Series \& \multirow[t]{2}{*}{\begin{tabular}{ll}
4076 \& 0.65 \\
4077 \& 0.25 \\
4078 \& 0.25 \\
\hline
\end{tabular}} \& \multicolumn{3}{|c|}{LINEARICs} \& \multicolumn{5}{|c|}{COMPUTER COMPONENTS} \\
\hline 7400 \& 0.30 \& \begin{tabular}{ll}
74276 \\
78278 \\
\hline 7.190
\end{tabular} \& \({ }_{7} 74\) LS5289 01.90 \& \& \& AD7581 12.00 \& LM710 0.48 \& PBA64t8X1 4.00 \& \& TMS 450014.00 \& epron \& \& xeyboamd \\
\hline 7401 \& 0.30 \& 7427980.90 \& \({ }^{744582330.80}\) \& 74000
7400 \& \(4082 \quad 0.25\) \& \({ }^{\text {ADCCOBOB }} 1.1 .90\) \& LM711100 \& \& \& \({ }^{\text {ITS S } 59009}\) \& \& \({ }_{75159}\) \& Encoosp \\
\hline 74 \& \({ }^{0.30}\) \& \begin{tabular}{ll}
74283 \\
74792 \& 1.05 \\
\hline
\end{tabular} \& 74452900.80 \& \(\begin{array}{ll}74 \mathrm{CO}^{4} \& 0.50 \\ 74008 \\ 0.70\end{array}\) \& （1082 \begin{tabular}{ll}
4082 \\
4085 \\
0.60 \\
0.25 \\
\hline
\end{tabular} \& \({ }^{\text {A A P79，900 } 25.000}\) \& \& \begin{tabular}{ll}
TAAB30 \\
TBA80 \& 0.80 \\
0.90 \\
\hline
\end{tabular} \& \begin{tabular}{ll}
\(1802 C E\) \\
26504 \\
\hline 2.50 \\
\hline 10.50 \\
\hline
\end{tabular} \& TMS9902 \({ }^{\text {S }}\) \& 2566＋5V 3．50 \& \({ }^{75160}\) \& \\
\hline 77404 \& 0.36 \& \(74290 \quad 0.90\) \& 7742930.80 \& \begin{tabular}{l}
74410 \\
\hline 0.70
\end{tabular} \& \({ }^{4086} 80.75\) \& AY－3．1350 3.50 \& LM 733 \& TB420 0.80 \& \({ }_{6502}^{2054.50}\) \& －MS9914 14.00 \& \({ }^{2536}{ }^{2516-35} 5\) \& 751624.00 \& AS53600 7.50 \\
\hline 7440 \& \({ }_{0}^{0.30}\) \& \begin{tabular}{ll}
74293 \& 0.90 \\
74298 \& 1.80 \\
\hline
\end{tabular} \& 744S295 1.40 \& \(\begin{array}{ll}74 C 14 \& 0.50 \\ 74 C 20 \& 0.70\end{array}\) \& \(\begin{array}{ll}4089 \& 1.25 \\ 4093 \& 0.35\end{array}\) \& AY－3．9910 4.900 \& \begin{tabular}{lll}
LM 741 \\
LM747 \& 0.722 \\
\hline
\end{tabular} \& \begin{tabular}{l}
TBAB20M \\
TBA920 \\
\hline 2.00 \\
\hline 0.75 \\
\hline
\end{tabular} \& \({ }^{65 C 02-2 M H 2}\) \& \& 2532－30 5.50
2564 \& 7517 \& \begin{tabular}{l}
\(74 C 922\) \\
\(74 C 923\) \\
\hline
\end{tabular} \\
\hline 7407 \& 0.40 \& \(74351 \quad 2.00\) \& 74152981.00 \& \({ }^{74432} 1.00\) \& \begin{tabular}{ll}
4094 \\
4095 \& 0.90 \\
\hline 0.95
\end{tabular} \& CA3019A 1.00 \& LM748 0.30 \& \& \({ }^{6502 A} 6.500\) \& Z80APIO 2.75 \& \& \(\begin{array}{ll}75182 \\ \\ 75188 \\ \& 0.90 \\ 0.60\end{array}\) \& \\
\hline \({ }_{7409} 7\) \& \({ }_{0.30}\) \& \begin{tabular}{l}
743654 \\
74368 \\
\hline 0.80
\end{tabular} \& \({ }_{74455321} 7.70\) \& \begin{tabular}{ll}
74448 \\
7448 \\
\hline 1.50 \\
\hline
\end{tabular} \& \({ }^{40965}\) \& CA3028A 1.10 \& \& TCA210 3.50 \& \begin{tabular}{ll}
65828 \\
6800 \& 8.50 \\
\hline 8.50
\end{tabular} \& \begin{tabular}{l}
z80CrC \\
Z80aCTC \\
2.505 \\
\hline 2.75
\end{tabular} \& \({ }_{2}^{27716+5 V^{4}} \mathbf{4} 5.50\) \& \(\begin{array}{ll}75189 \& 0.60 \\ 75365 \& 1.50\end{array}\) \& \\
\hline 7410 \& 0.30 \& \(743674 \quad 0.80\) \& \({ }^{7} 44.5332243 .90\) \& \(74 C 731.00\) \& \begin{tabular}{lll}
4097 \& 2.70 \\
\hline 098 \\
0.75
\end{tabular} \& CA3046 0.70 \& LM18013 3.00 \& TCA220 3.50 \& \({ }^{6802} 33.00\) \& R800AAPT 6.50 \& \({ }^{2716-35} 5.50\) \& \({ }_{75450} \quad 0.80\) \& ditaraios \\
\hline \& 0.3 \& 74376 \& \({ }_{7}^{7445323} 3.00\) \& \begin{tabular}{ll}
\(74 C 74\) \& 1.20 \\
74767 \& 100 \\
\hline
\end{tabular} \& \begin{tabular}{ll}
4098 \\
4099 \& 0.75 \\
\hline 0.99
\end{tabular} \& \begin{tabular}{l}
CA3359 \\
CA3060 \\
\hline 3．50
\end{tabular} \& \begin{tabular}{l}
LM1830 \\
\hline 18.50 \\
\hline M1871 \\
3
\end{tabular} \& TCA940 1.75 \& \& \& 4．50 \& \& \\
\hline 7413 \& 0.50 \& 743931.20 \& 74 L53982 200 \& \(\begin{array}{ll}74 C 83 \& 2.00\end{array}\) \& \& CA3080E 0.70 \& LM1872 3.00 \& TDA 1004 A 5.00 \& \({ }^{6809 E} 10.00\) \& 00 \& \& \begin{tabular}{lll}
75452 \\
75453 \\
\hline 7.70
\end{tabular} \& M81166．50 \\
\hline 74 \& 0.70 \& \& 744 \& \begin{tabular}{ll}
744685 \& 2.25 \\
\(74 C 868\) \& 0.50 \\
\hline 74
\end{tabular} \& \({ }_{4503}{ }^{4502} \begin{array}{ll}0.36\end{array}\) \& CA3085 1.50 \& LM18866 6.00 \& TDA1022 4.50 \& 6880910.00
68809 E 12.00 \& \& 2732A－30 6.00 \& \(\begin{array}{ll}75454 \& 0.70\end{array}\) \& \\
\hline 7417
7420 \& 0.40 \& \multirow[t]{2}{*}{Tus senit} \& \multirow[t]{2}{*}{7445356
74 LS 363
1.180 74L．S364 1.80} \& \begin{tabular}{ll}
\(74 C 90\) \\
\hline \(74 C 93\) \& 1.90 \\
\hline
\end{tabular} \& \({ }_{4504}^{4504}\) \& \multirow[t]{2}{*}{CA3089E2．50} \& \multirow[t]{2}{*}{\begin{tabular}{l}
LM 2917 \\
LM3302 \\
\hline 0.90 \\
\hline 1000
\end{tabular}} \& \& 68800－LB 36，00 \& 5100／2／9 7.00 \& \multirow[t]{2}{*}{2764－25 2.00 \(27 \mathrm{C} 64-2510.00\)} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 75490 \\
\& 7599 \\
\& 75992
\end{aligned}
\]} \& \multirow[t]{2}{*}{UARTs} \\
\hline 742 \& 0.60 \& \& \& \({ }_{74 C 95} 1.56\) \& \begin{tabular}{ll}
4506 \\
4509 \\
\hline 0.95
\end{tabular} \& \& \& TDA2002 3.25 \& \& 2808P10 5.00 \& \& \& \\
\hline \& －0．36 \& 7415000024 \& \[
\begin{aligned}
\& 74 L .5364 \\
\& 74 L S 5650.80 \\
\& \hline
\end{aligned}
\] \& \begin{tabular}{l}
\(74 C 107\) \\
740150 \\
\hline 1000
\end{tabular} \& \(4508 \quad 1.20\) \& CA3140 \& \& TDA2003 1．90 \& \(\begin{array}{ll}80 C 35 \& 6.00 \\ 8039\end{array}\) \& 2808CTC 5 5000 \& \multirow[t]{5}{*}{27128－25 3．00 27128－257．50 27256－25 20.00 \(27256-30 \quad 12.00\)
17258 27512 P．O．A
TMS2716 5.00} \& \({ }^{8126} \quad 120\) \& \multirow[t]{4}{*}{\begin{tabular}{l}
AY310．5P 3.00 \\
AY51013P 3.0 \\
\begin{tabular}{ll}
\\
M6402 \& 4.50 \\
\hline
\end{tabular}
\end{tabular}} \\
\hline \& 0.40 \& \& \& \({ }^{744151512.00}\) \& \begin{tabular}{ll}
4510 \& 0.55 \\
4511 \& 0.55 \\
\hline
\end{tabular} \& CA3140才 1.00 \& LM3914 3.50 \& \begin{tabular}{l}
TDA2006 3.20 \\
TDA2020 3.20 \\
\hline
\end{tabular} \& \({ }^{80 C 39} 77.00\) \& \& \& \({ }^{81795} 11.20\) \& \\
\hline 7427 \& 0.32 \& 74450310.24 \& \({ }_{7} 74.543730 .90\) \& \begin{tabular}{l}
744160 \\
\hline 1.80 \\
\hline 14
\end{tabular} \& \begin{tabular}{ll}
4512 \& 0.55 \\
4513 \\
\hline 150 \\
\hline
\end{tabular} \& \multirow[t]{2}{*}{CA3360E 1.50
CA3615 2.00
Ca3162E 6.00} \& LM3916 3.40 \& TDAZOO30 2.50 \& \({ }^{80885 A} \quad 3.00\) \& \multirow[t]{2}{*}{vemonies} \& \& \(\begin{array}{ll}8796 \\ 8197 \\ 8 \& 1.20 \\ 1.20\end{array}\) \& \\
\hline \& 0.43 \& 741504 0.24 \& 7445374 0 \& \({ }_{74 C 16151.80}\) \& \({ }_{4513}^{4513}\) \& \& LM39600 1.50 \& \({ }^{\text {TOA } 259395.00 ~}\) \& \begin{tabular}{l}
800854 \\
8086 \\
\hline 8.50 \\
22.00
\end{tabular} \& \& \& \[
\begin{array}{ll}
8797 \& 1.20 \\
8198 \& 120
\end{array}
\] \& \\
\hline 7432 \& 0.36 \& 744508080 \& \({ }_{7} 7453771.30\) \& \({ }_{744163} 1.800\) \& \begin{tabular}{ll}
4515 \\
\hline 516 \& 1.10 \\
\hline 055
\end{tabular} \& \multirow[t]{2}{*}{CA3189E 2.70
CA3240 1.50
CA3280G
3．00} \& M51513L 2.30 \& TDA35607．50 \& \& \multirow[t]{2}{*}{\begin{tabular}{ll}
\(216-150\) \& 4.00 \\
2101 \& 4.00 \\
2102 \& 2.50 \\
\(2107 B\) \& 5.00 \\
\&
\end{tabular}} \& \& \multirow[t]{2}{*}{\[
\begin{array}{lr}
81 L S 95 \& 1.40 \\
81 L S 96 \\
81.40 \\
81 L S 97 \& 1.40
\end{array}
\]} \& modulions \\
\hline 7433
743 \& 0.30 \& \& \begin{tabular}{l}
7445378 \\
7415379 \\
\hline 1.95 \\
\hline 180
\end{tabular} \& \begin{tabular}{l}
74C173 \\
\hline \(74 C 174\) \\
\hline 1.50 \\
\hline
\end{tabular} \& \& \& \& \& \(8741 \quad 15.00\) \& \& \multirow[t]{2}{*}{COWITRTLER} \& \& \\
\hline 7438 \& 0.40 \& \(\begin{array}{llll}74 L 511 \& 0.24\end{array}\) \& \multirow[t]{2}{*}{74453814.50
74 S 3855
3.25} \& 7441751.50 \& \& 07002 6.000 \& 1413 0．75 \& TEA 10027.00 \& \(8748 \quad 16.00\) \& 2111 A－35 4.00 \& \& \begin{tabular}{l}
\(\begin{array}{ll}81 \text { LS97 } \& 1.40 \\ 81 \text { LS98 } \& 1.40\end{array}\) \\
88 LS 1203.00
\end{tabular} \& \multirow[t]{2}{*}{\(\begin{array}{ll}\text { 6MH2 } \& 3.75 \\ 8 \mathrm{MHz} \& 4.50\end{array}\)} \\
\hline 77440 \& \({ }_{0}^{0.40}\) \& 74LS 14.0 .50 \& \& \begin{tabular}{l}
744C193 \\
\(74 C 194\) \\
\hline 1.50 \\
\hline 740
\end{tabular} \& \(4520 \quad 0.60\) \& DACO8003．00 \& MC1495 3.00 \& \({ }^{\text {TLO62 }}\) \& \multirow[t]{3}{*}{\[
\begin{array}{ll}
\text { TMS: } 1601 \& 12.00 \\
\text { TMS99980 } 14.50 \\
\text { TMS9995 } \& 12.00
\end{array}
\]} \& \begin{tabular}{lll}
2114 \\
\(214-2\) \& \& 3.50 \\
\hline 2.50
\end{tabular} \& RT5027 18.00 \& \& \\
\hline 744 \& 0.90 \& 74LS15 0.24 \& \({ }^{7} 745353391\) \& \begin{tabular}{l}
\(74 C 195\) \\
\hline 74505
\end{tabular} \& \begin{tabular}{ll}
4521 \\
4522 \& 1.15 \\
\hline 0.80
\end{tabular} \& DACO8083．00 \& MC149660．70 \& TLO64 0.90 \& \& \& \multirow[t]{2}{*}{EF9364 8.00} \& \multirow[t]{2}{*}{\[
\begin{array}{ll}
9602 \& 3.00 \\
9636 A \\
9637 A P \& 1.60 \\
\hline 9.60
\end{array}
\]} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { sound a } \\
\& \text { viskow }
\end{aligned}
\]} \\
\hline \begin{tabular}{l}
744 \\
744 \\
\hline
\end{tabular} \& 1.00 \& 74LS21 \& \({ }_{74 L 5399} 1.40\) \& \& \({ }_{4526} \quad 0.70\) \& HA1366 1.90 \& мСЗ 34010 \& TLO72 0.70 \& \& \& \& \& \\
\hline 744 \& \({ }^{1.10}\) \& 744－S22
7
\(74 L S 24\)
0.24
0.50 \& \multirow[t]{2}{*}{\({ }^{744.5465} 1.120\)} \& \begin{tabular}{l}
74C245 \\
\(74 C 373\) \\
\hline 2.25 \\
\hline 2.25 \\
\hline
\end{tabular} \& \begin{tabular}{ll}
4527 \\
4588 \& 0.80 \\
\hline 585
\end{tabular} \& \({ }^{\text {ICLITO66 }}\) \& \begin{tabular}{l}
MC3401 0.65 \\
MF 100 N \\
\hline 0.10
\end{tabular} \& \multirow[t]{2}{*}{\[
\begin{array}{ll}
\mathrm{TLO81} \& 0.35 \\
\mathrm{TLLO82} \& 0.55 \\
\mathrm{TLO} \& 0.75
\end{array}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{ll}
\(z 80\) \& 2.50 \\
\(z 80\) \& 2.90 \\
\(z 808\) \& 5.50 \\
7804 \& 750 \\
\hline 8
\end{tabular}} \& \(\begin{array}{ll}4116 \\ 4116-20 \& 2.00 \\ 1.50\end{array}\) \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { EF9366 } 2.00 \\
\& \text { EFF9367 } 36.00 \\
\& M C 6845 \\
\& \hline 6.50
\end{aligned}
\]} \& 9637AP 1.60 \& 12 MHz 22.00 \\
\hline 7446 \& 1.00 \& 744－S26 0.26 \& \& \begin{tabular}{l}
744374 \\
\hline 2.25 \\
\hline
\end{tabular} \& \multirow[t]{2}{*}{\(\begin{array}{ll}4529 \\ 453 \\ 453 \& 1.00 \\ 0 \& 0.75\end{array}\)} \& \multirow[t]{2}{*}{} \& MK502409．00 \& \& \& \multirow[t]{3}{*}{\[
\begin{array}{ll}
{ }_{41256-207}^{41256} \& 0.50 \\
\hline 0.50
\end{array}
\]} \& \& \& crustas \\
\hline \({ }_{7448} 7\) \& 1.00 \& \(\begin{array}{ll}\text { 744528 } \& 0.24\end{array}\) \& \multirow[t]{2}{*}{\(74 L 5540\)
74.554
7} \& \begin{tabular}{l}
744992 \\
\(74 C 911\) \\
\hline 9.00 \\
\hline
\end{tabular} \& \& \& \begin{tabular}{l}
ML50398 \\
ML．902 \\
50.00 \\
\hline 1000
\end{tabular} \& \multirow[t]{2}{*}{\[
\begin{array}{ll}
\& 0.75 \\
\text { TLOBS } \& 0.75 \\
\text { TLOB4 } \& 1.00 \\
\text { TLO94 } \& 2.00
\end{array}
\]} \& \& \& \multirow[t]{2}{*}{MC6845SP 6.50 MC6847 6.50} \& \multirow[t]{2}{*}{COMISGLER} \& \multirow[t]{2}{*}{crystals} \\
\hline \({ }^{7450}\) \& \({ }^{0.36}\) \& 74LS300 0.2 .24 \& \& \multirow[t]{2}{*}{\(74 C 922\)
76.00
74993
76.50} \& \multirow[t]{2}{*}{\begin{tabular}{ll}
4536 \\
\hline 538 \& 2.50 \\
\hline 855 \\
\hline 8.75
\end{tabular}} \& \multirow[t]{2}{*}{（1CM2168 22.00} \& \& \& Sulpres \& \& \& \& \\
\hline 745 \& 0.38 \& 744532 0.24 \& \& \& \& \& \(\begin{array}{ll}\text { M } 4622^{1 / 4} \& 3.00 \\ \text { NE } 529 \\ 2.20\end{array}\) \& \[
\begin{aligned}
\& \mathrm{TLI7O} \\
\& \mathrm{CL} 430 \mathrm{CO} \\
\& 120
\end{aligned}
\] \& \& \[
\begin{array}{ll}
4164.15 T 1 \& 3.00 \\
4164 \\
4
\end{array}
\] \& SFF96364 8.00 MS9918 15.00 MMS9928 10.00 \& \& \begin{tabular}{l}
00 MHz 2.70 \\
1.6432 MHz 2.25
\end{tabular} \\
\hline 7454
7460 \& \({ }_{0}^{0.55}\) \& \begin{tabular}{l}
744LS33 \\
744537 \\
\hline 0.24 \\
0.24
\end{tabular} \& \({ }^{7} 74.561819 .9000\) \& \multirow[t]{2}{*}{\(74 \mathrm{C926} 7.50\)} \& \(\begin{array}{lll}4541 \& 0.75 \\ 454\end{array}\) \& \& \multirow[t]{2}{*}{\begin{tabular}{ll}
NE534 \& 1.20 \\
NE5 \\
NE555 \& 1.92 \\
\hline
\end{tabular}} \& \[
\begin{aligned}
\& \text { UAA } 1003-3.9 .35 \\
\& \text { UAF59 }
\end{aligned}
\] \& \& \multirow[t]{2}{*}{\(\begin{array}{ll}4164-20 \& 2.00 \\ 4416-15 \\ 3.50 \\ 4532-20 \& 2.50\end{array}\)} \& \& \multirow[t]{2}{*}{\[
\begin{array}{rr}
765 A \& 13.00 \\
6843 \& 8.00 \\
8271 \& \text { P.O.A }
\end{array}
\]} \& \[
\begin{aligned}
\& 1.6432 \mathrm{MHR} 2.25 \\
\& 200 \mathrm{MHz} 2.25 \\
\& 2.45760 \mathrm{MH}(\mathrm{~L}) \\
\& 200
\end{aligned}
\] \\
\hline 7470
7472 \& 0.50 \& \begin{tabular}{l}
\(74 L 5388\) \\
\hline 7454
\end{tabular} \& \begin{tabular}{l}
74LS6626 2.25 \\
74.5628 \\
\hline 2.25 \\
\hline
\end{tabular} \& \& \(\begin{array}{lll}4541 \\ 4543 \& 0.97 \\ 0.70\end{array}\) \& －LC7730 \({ }^{\text {L }}\) \& \& \[
\begin{array}{ll}
\text { UAZ240 } \\
\text { UAA } 170 \\
\hline 170
\end{array}
\] \& \begin{tabular}{ll}
32450 \\
6552 \\
6522 \& 3.00 \\
3 \& 3.50 \\
\hline
\end{tabular} \& \& wTERFACE IC \& \& \[
\begin{array}{r}
2.00 \\
2.45760 \mathrm{MHz}(\mathrm{~S})
\end{array}
\] \\
\hline 7473 \& 0.45 \& 7445420.50 \& \multirow[t]{2}{*}{\begin{tabular}{l}
7445629 \\
\(74 L 5640\) \\
\hline 1.00
\end{tabular}} \& \multirow[t]{2}{*}{74als series} \& \begin{tabular}{ll}
4553 \& 2.40 \\
\hline 155 \& 0.46 \\
\hline
\end{tabular} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{\begin{tabular}{ll}
NE556 \\
NE54 \& 4.00 \\
NE565 \& 1.20 \\
\\
\hline
\end{tabular}} \& UAA170 1.70 UCNABOIA 4.00 ULN200：A 0.75 \& \multirow[t]{2}{*}{\begin{tabular}{ll}
65222 \& 3.50 \\
6522 A \& 5.50 \\
6532 \\
6551 A \& 6.80 \\
\hline 680
\end{tabular}} \& \& \& \multirow[t]{3}{*}{FD1771 20.00 FO1791 20.00 FD1797 22.00} \& 2．45760MHz（S） \\
\hline 7474 \& \({ }^{0.50}\) \& \& \& \& \multirow[t]{2}{*}{\begin{tabular}{ll}
4556 \\
4557 \& 0.50 \\
\hline 2.40 \\
\hline
\end{tabular}} \& \& \& \multirow[t]{2}{*}{－N20024 0.75 ULN2002A 0.75} \& \& \multirow[t]{2}{*}{5101／1／501 4.00
\(5551 / 51144.00\)
5516} \& \multirow[t]{6}{*}{} \& \& \multirow[t]{2}{*}{\(\begin{array}{ll}2.5 \mathrm{MHz} \& 2.50 \\ 2662 \mathrm{MHz} \& 1.75\end{array}\)} \\
\hline 7476 \& 0.45 \& 74 LS49 1.00 \& \& \& \& \[
\begin{array}{ll}
\text { LF351 } \& 0.60 \\
\text { LF353 } \& 0.90 \\
\hline
\end{array}
\] \& \& \& \[
\begin{array}{ll}
6532 \\
6551 \mathrm{~A} \& 4.80 \\
6.00
\end{array}
\] \& \& \& \& \\
\hline \({ }_{7}^{7480}\) \& \({ }_{1}^{0.65}\) \& \& \multirow[t]{2}{*}{（74LS642－13．00} \& \({ }^{744 \mathrm{LS} \text { SO2 }} 0.45\) \& \({ }_{4566} \quad 1.40\) \& \[
\begin{array}{l|l}
\text { ĽF355 } \& 0.90 \\
\text { LF356N } \& 1.10
\end{array}
\] \& \[
\begin{array}{ll}
\text { NE567 } \& 1.25 \\
\text { NE570 } \& 4.00
\end{array}
\] \& ULN2003A 0.75 ULN2004A 0.75 \& \& \[
\begin{aligned}
\& 5516 \\
\& 5517 \mathrm{AP}
\end{aligned} \begin{aligned}
\& 6.00 \\
\& 6.00
\end{aligned}
\] \& \& \multirow[t]{3}{*}{WD 169115.00 WO2143 12.00 WD2793
WD2797
27.00 W02797 27.00} \& \\
\hline \({ }_{7}^{748}\) \& \({ }_{1}^{1.25}\) \& 74LS555 00.24 \& \& \multirow[t]{2}{*}{} \& \begin{tabular}{ll}
45668 \\
4569 \& 2.40 \\
4.70 \\
\hline 4.
\end{tabular} \& \multirow[t]{2}{*}{（LF357 10.00} \& \[
\begin{array}{ll}
\text { NEST1 } \& 3.00 \\
\text { NE592 } \& 0.90 \\
\text { NE5532P } \& 1.50
\end{array}
\] \& ULN2068 2.90 ULN2802 1.90 \& \multirow[t]{2}{*}{\[
\begin{array}{lc}
688621 \& 1.50 \\
6820 \\
6890 \& 12.50 \\
6840 \& \\
\hline
\end{array}
\]} \& \({ }_{61,165-3} \mathbf{3}\) 3．50 \& \& \& \(\begin{array}{ll}3.579 \mathrm{MHz} \\ 4.1 .50 \\ 4.194 \mathrm{MHz} \& 1.50 \\ 2.00\end{array}\) \\
\hline \& 0.4 \& \& 74456433 1.500
7415644
73.50 \& \& \begin{tabular}{ll}
4572 \& 0.45 \\
4583 \& 0.90 \\
\hline
\end{tabular} \& \& NE5533P 1.50 \& U－N2804 1.90 \& \& \& \& \& \({ }^{4} 9.952 \mathrm{MHz} 2.50\) \\
\hline \({ }_{7489}\) \& 2.10 \& \(744576 \wedge 0.36\) \& \& \({ }^{74 \text { PALS32 }} 0.45\) \& \& LM M 307 0.0 .45 \& NEE5534P 1.20 \& UPC5923 2.00 \& 6850
68850 \& \(6264 \mathrm{P}-15750\) 6264 LP － 154.0 O 0 \& \& \& \({ }_{\text {a }}^{5.00 \mathrm{MHz}} \mathbf{1} \mathbf{1 . 5 0}\) \\
\hline 7491
7 \& 0．70 \& 744578
\(74 . S 83 A\)
0.42
0.70 \& \({ }^{744566688909090}\) \& （eatsis 1.50 \& \(4724 \quad 1.50\) \& \& OP－07EP 3.50 \& UPCC1156H
UPC1185
3．000 \& \& \& \& \& O0MHz 1．40 \\
\hline 74923 \& 0.70 \& \({ }^{74 L \text { LS85 }} 00.75\) \& 74 S5670 1.70 \& \& \(\begin{array}{ll}14411 \\ 14412 \& 7.50 \\ \& 7.50\end{array}\) \& LM311 0.60 \& \({ }^{\text {PLC44，}}\) \& \(\times \mathrm{R} 2104.00\) \& 688854
688.00 \& \(6810-45\)
6810 \& \begin{tabular}{ll}
OMB131 \\
OP8304 \& 6.50 \\
\hline 1.50
\end{tabular} \& ceenervion \& \({ }^{6.144 \mathrm{MHz} 1.40} \mathrm{f}\) \\
\hline 749 \& ． 10 \& \begin{tabular}{l}
744.5866 \\
74.590 \\
\hline 0.38 \\
\hline 0.458
\end{tabular} \& \({ }_{7}^{74 L 566883} 3.500\) \& \& 14416 \& \begin{tabular}{ll}
LM318 \\
LM319 \& 1.80 \\
\hline 1.80
\end{tabular} \& \& \begin{tabular}{l}
XR2206 \\
\(\times R 22074.75\) \\
\hline 3.50 \\
\hline
\end{tabular} \& \(6875 \quad 5.00\) \& \& \(\mathrm{OS}^{\text {S3691 }}\) \& 13047.50 \& \({ }^{7} 1.160 \mathrm{Hzz} 1.75\) \\
\hline 749 \& 0.60 \& \({ }^{744591} 0\) \& \({ }^{7445684} 3.50\) \& 7 74ALS574 4.50 \& （14499 \(\begin{array}{ll}14.60 \\ 14490\end{array}\) \& \& \& \begin{tabular}{l}
XR2211 \\
\hline
\end{tabular} \& \(8154 \quad 8.50\) \& \& 058831 1.50 \& \& \({ }_{8}^{8.867 \mathrm{MHz} \mathrm{I}^{1.75}}\) \\
\hline \& 2.10 \& 74L593 \& \({ }_{74}\) \& 74ALS5880 2.60 \& 14495 \& Lм3352 1.30 \& S50280

550200 \& XR2240 1.20 \& 8155
8156 $\begin{aligned} & 3.80 \\ & 3.80\end{aligned}$ \& $\begin{array}{ll}\text { 933 } \\ \text { 9322 } & 7.50\end{array}$ \& OS8833 \& \& 10．00M Az
10.50 Hzz
2.50

\hline \& \& \& 74L5783 21.00 \& 4000 SEanes \& 14599 \& LM339 ${ }^{\text {L－436 }}$ \& | SAA 9000 |
| :--- |
| SFF96364 |
| 8.0 .00 |
| .00 | \& ZN414 \& \& \& OS8836 \& \& | 10.70 MHz |
| :--- |
| 1100 MHz |

\hline 74 \& 0 \& 74LS1070．0．40 \& \& $4000 \quad 0.20$ \& $\begin{array}{ll}22900 \\ 22101 & 3.50 \\ 7.00\end{array}$ \& LM34888 0.50 \& S．4．900
SN760130
3.000 \& ZN419P \& $\begin{array}{lll}8212 & 2.00 \\ 8215\end{array}$ \& \& －77002 ${ }^{\text {P800 }}$ \& \& 12．000 Hz 1.50

\hline \& \& 74.51120 .45 \& 7as serits \& $4001{ }^{0.24}$ \& | 22102 | |
| :--- | :--- |
| 40014 | 7.00 |
| 0.48 | |
| 0 | | \& LM377 3.00 \& SN76023 \& 2Na24E 1．30 \& ${ }_{8}^{822}$ \& qoms \& MC1488 \& \& | 14.00 MHz |
| :--- |
| 14.31 MHz |
| 1.60 |
| 1.75 |
| 1 |

\hline \& \& 744S113 0.45 \& \& 002 0.25 \& $40085 \quad 1.20$ \& ［m380 \& SN76033 3．00 \& \& $8226 \quad 4.25$ \& \& MC3446 2.50 \& \& 14.756 MHz 2.50

\hline 74 \& 1.70 \& 744512200.70 \& 74500 \& 40070 \& $\begin{array}{ll}40097 \\ 40098 \\ & 0.36 \\ 0.40\end{array}$ \& LM381AN1．70 \& SN76489 4．00 \& ZNa27e86．00 \& ${ }_{82288}^{8228}$

8243 \& \begin{tabular}{ll}
24510

2.50

185030

2.00

\hline 200

 \& MC3459 4.50 \& \&

15.000 MHz

16.00 MHz

2.00

2.00

\hline 100
\end{tabular}

\hline ${ }_{74}$ \& 0.55 \& ${ }^{7} 744 \mathrm{SL123} 20.8080$ \& ${ }_{74504}^{74502}$ \& 4008
4009 \& \& LM384 ${ }^{\text {L }}$ \& SN764954．00 \& \& \& \& MC34808．50 \& \&

\hline 74 \& ${ }_{0}^{0.8}$ \& ${ }^{744 \text { LS } 126} 00.50$ \& $\begin{array}{ll}74405 \\ 74508 & 0.50 \\ 0.50\end{array}$ \& 4010

4011 \& \begin{tabular}{ll}
401002 \& 1.35

\hline

 \& \&

SPO256AL 7.00

SP8515

\hline 7.50
\end{tabular} \& ZN447E 9 9．00 \& \& \& MC3487 2.25 \& \& ${ }_{18} 18.303 \mathrm{MHHz}$

\hline \& 0.65 \& \& 745100.50 \& $4012 \quad 0.25$ \& ${ }^{40103}{ }^{2} 10300$ \& LM389 1.818 \& TA7120 1.20 \& ZNA50E 7.50 \& ${ }_{8}^{8253 C-5}{ }^{8}$ \& \& MC4024 5.50 \& \& 19．9694Hz 1.50

\hline 74126 \& \& \& 74811 \& ${ }^{0.36}$ \& 40105 \& LM391 \& | IA7130 |
| :--- |
| 1.40 |
| 150 | \& ZNa59CP 3.00 \& 8256 18．00 \& $\begin{array}{ll}{ }_{82 S 23} & 1.50\end{array}$ \& MC14411 9.00 \& 00 \& 24.00014 Hz 175

\hline 74132 \& 0.75 \& 74LS139 0.55 \& 745220.50 \& $4015 \quad 0.70$ \& ${ }^{40106}$ \& LM 3930.85 \& IA7205 0.90 \& Zna 10406.60 \& \&	82S123
8825129	
8.75	\& 751070.90 \& SAA5041 16.00 \& $11.6 \mathrm{WHz} \mathrm{F}^{2.5}$

\hline ${ }_{7}^{74136}$ \& 0.70
0.90
0.90 \& 744S1445 0.95 \& ${ }_{7}^{744530}$ \& $\begin{array}{ll}4016 & 0.36 \\ 4017 & 0.55 \\ 0.55\end{array}$ \& 40108
4080 \& LM LM 709 CHe 0.35 \& $\begin{array}{ll}\text { TA7222 } \\ \text { TA7310 } & 1.50 \\ 1.50\end{array}$ \& \& ${ }^{825}$ \& \& $75108 \quad 0.90$ \& SAA50509．00 \& PXO1000 12.00

\hline 74142 \& 2.50 \& 74LS 1481.40 \& 7453780.60 \& 4018 0．60 \& | 40109 | 0.80 |
| :--- | :--- |
| 40110 | 85 |
| 2.05 | | \& \& \& \& \& \& $75110 \quad 0.90$ \& \&

\hline 741

741 \& 2.70 \& 7445151520.60 \& \begin{tabular}{ll}

744538

74540 \& 0.60

\hline 750

 \& $\begin{array}{ll}4019 & 0.60 \\ 4020 & 0.80\end{array}$ \& 40114 \& \& \& \& \& EPR \&

75112

75113 \& 1.60

1.20

\hline
\end{tabular} \& \& 左

\hline 74145
74147 \& 1.10

1.70 \& 7441533 0.65 \& $\begin{array}{ll}74551 \\ 74564 & 0.60 \\ 0.45\end{array}$ \& ${ }^{0.60}$ \& $\begin{array}{ll}414147 \\ 40163 & 1.80 \\ 1.00\end{array}$ \& A \& ED vo \& TIC TO220 \& \& \&	7514
75115	
1.40	\& 11 prices \& subject to

\hline 74 \& ${ }^{1.70} 1.75$ \& ${ }^{744 \text { LS } 155} 00.655$ \& ${ }_{7}^{74574}$ \& $\begin{array}{ll}4023 & 0.30 \\ 4024 & 0.48 \\ 40\end{array}$ \& ［40173 | 40.20 | |
| :--- | :--- |
| 40174 | 1.00 | \& ${ }^{+} \mathrm{VE}$ \& \& VE \& \& \& 75121 1.40 \& ge \& ut notic

\hline 74151 A \& 0.70 \& 74LS $1577^{0.50}$ \& 745861.00 \& $\begin{array}{ll}4025 & 0.24 \\ & 0.2026\end{array}$ \& | 40175 |
| :--- |
| 4090 |
| 1.00 | \& $6 \mathrm{6V} 7806$ \& 0 \& 0．50 \& \& （16x16） 4.50 \& $\begin{array}{ll}75122 \\ 75150 & 1.40 \\ 1.20\end{array}$ \& Only curr \& ime grade

\hline \& 0.80 \& 74.51580 .65 \& 748112 \& 0.90 \& ${ }_{40193}{ }^{401929}$ \& 6V7808 \& 5 \& 0．50 \& OTHERs \& \& \& \&

\hline \& 0.80 \& 74．5．61／A 0.75 \& 7451141.20 \& 4028 0．60 \& $4{ }^{40194}$ \& 15 V 78150.5 \& 50 \& \& \& \& \& \&

\hline ${ }_{74} 7$ \& 0．80 \& ${ }^{74455162 A} 0.753{ }^{0.75}$ \& $\begin{array}{lll}745124 & 1.00 \\ 745132 & 1.00\end{array}$ \& 4029
4030 \& $40245 \quad 1.50$ \& 18V 248784.5 \& $50 \quad 7924$ \& \& $\begin{array}{ll}\text { 2NST77 } & 0.50 \\ \text { BPX25 }\end{array}$ \& 0．125＂ \& 0.2 \& We also \& ck a wide

\hline \& ${ }_{1}^{175}$ \& 744．5164 ${ }^{\text {7 }}$ \& | 744133 | 0.60 |
| :--- | :--- |
| 745138 | |
| 1.80 | | \& $\begin{array}{ll}4031 \\ 4032 & 1.25 \\ 100\end{array}$ \& | 40257 |
| :--- | :--- |
| 40373 |
| 1.80 |
| 1.80 |
| 180 | \& ${ }^{1 A} \mathrm{FIX}$ \& EED VOLTAGE PL \& STIC 1092 \& \& RED TLR290．12

GRN TLL211 0.16 \& | Ti1220 | |
| :--- | :--- |
| T1222 | 0.15 |
| 0.18 | | \& \& of：

\hline 74161 \& 0.80 \& ${ }^{74151566 A} 1.50$ \& ${ }_{745139} 1.80$ \& | 4033 | 1.25 |
| :--- | :--- |
| 403 | | \& | 40374 | 1.80 |
| :--- | :--- |
| 80050 | | \& 5 SV 788060 \& \& 91120.50 \& ORP12 1.20 \& Fil \& TiL226 0.22 \& Trans \& stors，

\hline 74162
74.63 \& ${ }_{1,10}^{1.10}$ \& \& 745140
745151

71.00 \&	4034
4035	
40.50	
0.70	\& 0.75 \& 8V 78L08 \& \& 150．50 \& $\begin{array}{ll}\text { ORP60 } & 1.20 \\ \text { ORP61 } & 1.20\end{array}$ \& （R／G／Y） 0.30 \& courtens \& es \& cs Plastic，

\hline 74164
74165 \& ${ }_{1.10}^{1.20}$ \& ${ }^{\text {744SLITO }} 1.400$ \& $\begin{array}{ll}745153 & 1.50 \\ 745157 & 2.00 \\ \\ 7\end{array}$ \& $\begin{array}{ll}4036 \\ 4037 & 2.50 \\ 40 \\ 10\end{array}$ \& \& 15V 78L15 \& \& \& SFF205 1.00 \& \& \& Bridg \& ectifiers，

\hline 67 \& 1.40

4.00 \& \&		
7445585	2.00	
745163	3.00	\& $\begin{array}{ll}40388 \\ 4040 & 1.00 \\ 40.60\end{array}$ \& \& OTHER F \& cilators \& \& T1L7888．55 \& aph \& $\begin{array}{ll}744 \mathrm{Ca26} & 6.50 \\ 74928 \\ 6.50\end{array}$ \& Thy \& ors and

\hline 170 \& 2.00 \& 74iSisi 2.00 \& ${ }^{745169} 5.50$ \& 4041 \& FIXED \& ators \& \& \& TLLE\％ 1.20 \& Red \& ${ }^{72168} 822.00$ \& \&

\hline 74172

743 \& \& | 7425183 |
| :--- |
| 74 S 190 |
| 0.750 | \& \& 40420.50 \& LM \& 1A 5 SV \& \& ${ }_{3.50}$ \& TL． 10000.75 \& \& \& \& one for

\hline \& \& \& $\begin{array}{ll}745188 \\ 74 S 88 & 1.80 \\ 780\end{array}$ \&	4044
4045	
0.60	
100	\& ${ }_{78 \mathrm{H} 12} 78 \mathrm{HCO}$ \& $5{ }_{5} 5$ A 12 V \& \& 5.40

6.40 \& \& MAN66102．00 \& Lм ${ }^{1914} 3$ \& \&

\hline 74776 \& 1.00 \& ${ }^{7} 741519944040.75$ \& \& $4046 \quad 0.60$ \& 78 P \& 1045 V \& \& 9.00 \& \& TLL311 6.50 \& Lм ${ }^{\text {LM9：6 }}$ 3．50 \& \&

\hline 178 \& ${ }_{1.50}^{1.50}$ \& ${ }^{7} 7441519594060.80$ \& | 745195 |
| :--- |
| 745196 |
| 3.50 |
| 3.50 | \& | 4047 |
| :--- | :--- |
| 4048 |
| 40.00 |
| 0.55 |
| 0.50 | \& AR \& regulators \& \& \& \& T1／729 1.00 \& UON61183．20 \& \&

\hline 180 \& 1.00 \& 74LS1970 0．80 \& 7442000.50 \& $4049 \quad 0.36$ \& LM317T \& то－220 \& \& 1.50 \& FNDSOO／TLT \& MANB910 1.50 \& ULN2003 0.90 \& Optors \& Lator

\hline 74182 \& 1.40 \& 7415240 0．80 \& ${ }_{745225} 5.20$ \& ${ }_{4051}^{4050}{ }^{4.65}$ \& LM31 \& O3 \& \& 2．40 $\begin{array}{r}2.25 \\ 2.25\end{array}$ \& － 0507 TH｜i200 \& Man8990 \& UL 200040.90 \& $1074{ }^{1.30}$ \& ［LL111

\hline 35A \& | 1.80 |
| :--- |
| 1.80 |
| 1 | \& 744．S241

74.5824
0.90

0.90 \& $\begin{array}{ll}742420 & 4.00 \\ 745241 & 4.00\end{array}$ \& | 4052 | |
| :--- | :--- |
| 4053 | 0.60 |
| 0.60 | |
| 0.60 | | \& LM35906 \& $10 A+v a 8$ \& \& 4.00 \& ${ }^{00}$ \& mispuy \& UL N2802 1.90 \& ${ }_{1}^{2.20}$ \&

\hline 74 \& 1.30 \& 74LS243 0.90 \& ${ }^{745244} 4.50$ \& $4054 \quad 0.80$ \& L－M733N \& \& \& 0．50 \& 1.00 \& \& UUN2083 1.80 \& MCS2400 1.90 \& T1． 1116

\hline 74 \& ${ }_{1}^{1.30}$ \& ${ }^{\text {744．S244 }} 0$ \&	745251
745257	
72.50	
750	\& $\begin{array}{ll}4055 \\ 4056 & 0.80 \\ 0.85\end{array}$ \& ${ }_{7} 78 \mathrm{BH} \mathrm{HOSKC}$ \& 5AsV \& \& $\begin{array}{r}5.75 \\ 6.50 \\ \hline\end{array}$ \& MAN3640

MAN6640
2.750 \& 9368

9370 \& 754910.70 \& MOC3020 1.50 \& | SN137 | 3.60 |
| :--- | :--- |
| SN139 | 1.75 |

\hline 74193 \& 1.15 \& 744．5247 1.10 \&	7445258
745250	
750	\& ${ }^{4060} 00.70$ \& ${ }_{78 G \mathrm{GIC}} 78 \mathrm{Cl}$ \& 1AtVAR \& \& 2．25 \& \& \& \& \&

\hline \& 100 \& 744.584981 .10 \& | 745260 |
| :--- |
| 745261 |
| 1.00 | \& | 4063 | |
| :--- | :--- |
| 4066 | 0.85 |
| 0.40 | | \& ${ }_{79 \text { 79HGKC }}$ \& \& \& （e ${ }^{6.75}$ \& LOW PROF \& FILE SOCKETS By \& \& WIFE WRAP SOC \& KETS EY Ti

\hline 74197 \& | 1.30 |
| :--- |
| 1.10 | \& ${ }^{744.5251} 0.75$ \& $\begin{array}{lll}744283 \\ 745887 & 2.70 \\ 72.25\end{array}$ \& | 4067 |
| :--- | :--- |
| 4068 |
| 8.35 |
| 0.25 | \& Switching \& regulation \& \& \& \& \& \& ${ }_{\text {coin }}^{18017}$ \&

\hline 74198 \& | 2.20 |
| :--- |
2.20	\&	744.525650 .90	
74.524540	\& $\begin{array}{lll}7442888 \\ 745289 & 2.00 \\ 72.25\end{array}$ \&	4069	.23
:---	:---		
4070			
40.24			
0.24		\& （Cliz660 \& \& \& 2.50	

3.00 \& 14pin

16pin \& $\begin{array}{lll}20 \mathrm{pan} & 18 \mathrm{p} \\ \text { 22pin } & \\ 200\end{array}$ \& nter $\begin{aligned} & \text { nep } \\ & \text { 30p }\end{aligned}$ \& \& $$
\begin{aligned}
& 28 \mathrm{pin} \quad 80 \mathrm{p} \\
& 40 \mathrm{pin} 100 \mathrm{p}
\end{aligned}
$$

\hline 921 \& ${ }_{1}^{2.20} 1.10$ \& ${ }^{744152525258 A}$ 0．70 0.70 \& \&	40070	
4071	0.24	
0.24		\& TL．494 \& \& \& 3.00 \& \& \& \& \&

\hline 74251 \& 100 \& | 744．5259 1.20 |
| :--- |
| $7 / 51560$ | \& 7453373

7457300 \&	4072	0.24
4073		
0.24		\& ${ }_{78540}^{71.497}$ \& \& \& ＋3．00 \& 析 \& \& ${ }^{16 \mathrm{pom}}$ \& in \& in

\hline ${ }_{74265}^{74459}$ \& ${ }^{1.50}$ \& ${ }^{744 \text { SS266 }} 00.75$ \& | 7443384 |
| :--- |
| 74538 |
| 2.00 | \& $\begin{array}{ll}4073 \\ 4075 & 0.24 \\ & 0.24\end{array}$ \& ${ }_{\text {RC4 }}$ \& \& \& 1.50 \& \& \& \& \& in 90p

\hline \& \& IL ORD

SHO \& \[
$$
\begin{aligned}
& \text { RS TO: } 17 \\
& \text { AT: } 178 \\
& \text { 3: } 01-208 \\
& 305 \text { EDGN }
\end{aligned}
$$

\] \& BURNLE RNLEY 11774 li ARE ROA \& | ROAD，L |
| :--- |
| OAD．LO |
| es．Telex： |
| D．LOND | \& | NDON NV $\text { : } 922800$ |
| :--- |
| ON W2 | \& WW10 IED \& \& | PLEASE |
| :--- |
| from |
| Stock | \& | ADD 50p |
| :--- |
| aport：no VAT |
| ernment Dep |
| etailed Price L |
| ms are norma |
| inimum Ticlep | \& p\＆p \＆ 15 pap a Cost s．\＆College st on request． y by return o hne Order $\& 5$ \& $\%$ VAT erc．wel post． \&

\hline
\end{tabular}

VARIABLE VOLTAGE TRANSFORMERS

	$£ 22.00$	
tKVA 5A Max.	£31.00	
2KVA 10A Max	£45.00	
3KVA 15A Max.	¢59.00	
5KVA 25a Max	£105.00	
10KVA 50A Max.	¢190.00 £285.00	-
15KVA 75A Max.	E285.00	

3-PHASE VARIABLE VOLTAGE TRANSFORMERS Duat input 200240 V or 380415 V . Star connected
3 KVA .6 KVA .10 KVA a avalable Phone for details
Comprehenslve range of TRANSFORMERS L.T. ISOLATION \& AUTO $(110-240 \mathrm{~V})$. Either cased with American socket and mains lead or
frame type available for immediate delivefy Leatlet on request
SPECIAL OFFER: Brand new Satety Isolation SPECIAL OFFER: Brand new Satety Isolation
Transformers. Primary 0-104-11-129-V. Transformers. Primary 0-104-11-129.V
$0.104-110-120 \mathrm{~V}$ Secondary $0-104-110-120 \mathrm{~V}$. 0-104-110-120V.2KVA @ £40.00.3KVA@£60.00. 4KVA with $0-110 \mathrm{~V}$, Secondary only @ $\mathrm{E} 80.00+\mathrm{Car}$ riage and VAT. 'Phone for further details.
SINGLE DIAPHRAGM COMPRESSOR NMS
Max 20 PSI. One CFM . ppprox. 240 volis AC. $£ 18+£ 2$ p\&p 123 inc.

EPROM ERASURE KIT

Why waste money? Build your own EPROM ERASURE traction of the price of a made-up unnt Complete kit of pans less
case to nclude 12.8 watl 2537 Angst. Tube Ballast unit, par of bi pin leads. Neon indicator, satery microswitch, onioff switch
LESS CASE. Price $£ 13.60,75 \mathrm{p}$ p\& (Tolal inc. VAT £16.50) Warning: Tube used in this circuti is highly dangerous to the
eves. Unit must be fited in sultable case

12V D.C. BILGE PUMPS
400 G.P. H. 15ht, head, Зamp. ©8.00 $+\mathbb{1 . 0 0}$ p\& 700 G.PH 10 At head, 3.5 amp. $£ 11.50, £ 1.50 \mathrm{p} \& \mathrm{p}$ (£14.95.inc VAT).
1750 G.P.H. 15t head 9 amp, $£ 15.00 \cdot f 1.75 \mathrm{p} \& \mathrm{p}$

A.C. CAPACITOR. 16 U GOOV. A.C. $50 / 60 \mathrm{~Hz}$. Ideal power factor correction, etc. $9 \frac{1}{4} \times 6 \times 4 \frac{3}{4}$ ins. Wt. $7 \frac{1}{2} \mathrm{Kg}$

Superior Quality Precision Made
NEW POWER RHEOSTATS NEW POWER RHEOSTATS

assembly continuously rated 25 waTT $5 / 10 / 25 / 50 / 00 / 150,250 / 300 / 500 / 1 \mathrm{k} \Omega$

 $15 \mathrm{kQ} £ 4.25+30 \mathrm{p}$ p\&p (E 5.23 Incl VAT). 50 WATT $2502 \mathrm{E6} 50+50 \mathrm{p}$ p8p ($\mathbf{5 8 . 0 5}$ incl VAT) 100 WATT Black Silver Skirted Knob calibrated in Nos $1-9,1 / 2 \mathrm{ln}$, dia trass bus
Ideal lor above Rhmostas 30 p ead. VAT
INSULATED TESTERS NEW
 sest to E.E Spec. Rugged metal construction

T TRANSFORMERS
 GEARED MOTORS

 (Total inc VAT E7.59) NMS
38.8 rpm GEARED MDTORS Torque 351 in reversible 115 V AC inc. Sta
capacty Price $£ 11.55$. $\$$ \& $£ 2.00$ (Total inc. VAT $\$ 15.58$). N. M.
 1007 ppm 651 lb in revers Total inc. VAT $£ 39.68$ Sulable TRANSFORMER lor above $£ 10 \mathrm{p} 8 \mathrm{p} \mathrm{f} \mid 50$ | $£ 13.22$ Iuc VA

Sultabte TRANSFORMER
24VOC200 rom 10.59 / NMS inc VAT $£ 1093$).
 CHECK METER
CHECK METER

SANGAMO WESTON TIME SWITCH
 p\&p). Also available with solar dia R\&T. Other types avallable trom siock

R\&T Reconditioned and tested
R8I Reconditioned and tested
Personal callers only. Open Saturdays
9 Little Newport Street London WC2H 7JJ
Tel: 01-437 0576

Newnes Technical Books

Naiad training rohot

Robot arm interfaces with Apple, BBC, Commodore and IBM computers. Design by Peter Wells and Dick Becker

The control electronics of Naiad are split between the three printed-circuit boards: computer interface, solenoid driver and power supply. The computer interface shown below, communicates with the host computer bus, provides the power for the d.c. motor, generates 5 V signals for the solenoid driver board, and processes signals for return to the computer. There are also a number of inputs and outputs for interfacing to additional equipment such as sensors,
conveyor belt, indexing table and so on.
The robot works with parallel data from the computer and the fastest way of interchanging data is by connecting straight onto the bus of the computer. Computer manufacturers provide a variety of means of gaining access to the bus and there are two edge connectors on the interface board. The first connector is specifically for the BBC computer and the second one for other machines. Leads terminated with suitable plug-in
cards for the Commodore 64, Apple IIe and IBM computers are available. Connection is made to the 1 MHz bus connector, expansion port (rom games socket) and expansion slots respectively.

The signals required for the computer interface are: eight data lines, the five leastsignificant address lines, the read/write signal, a block decode of a minimum of 32 addresses, and the clock. For
continues on page 20
by R.H.Becker

the IBM the generation of a block decode and the combination of signals i/o write and i/o read to read/write takes place on the IBM plug-in card. Although only four computer types have been mentioned, almost any computer or microprocessor system will control the Naiad providing there is access to the bus and a 20 -way cable is made.

Operation of the interface, pp: $18 \& 19$, follows. Circuits IC_{1} and IC_{2} gate together A_{4}, the clock, read/write and a linkselectable choice of block decodes (Jim and Fred) to generate valid write and valid read signals defining the conditions that data is being sent to the robot, and is required from it, respectively. Circuits IC_{3} and IC_{4} act similarly for computers other than the BBC. Only one computer can be connected at any one time and a slide switch shown, positioned between the edge connectors, selecting which interface is operative, and this is shown by led indicators D_{1} and D_{2}. The switch selects directly the clock and indirectly, by data selector IC_{5}, the valid write and valid reads signals.
To avoid loading heavily the bus of the host computer the data bus is buffered by IC_{12} which is a transceiver meaning
that it will work in either direction. This is necessary as data needs to be received back from the robot as well as sent and there is a direction signal on pin 1. Normally this signal is low and the computer data is passed to the data bus of the robot, but when the analogue to digital converter signals are read, the direction signal goes high and data on the bus of the robot is transferred to the bus on the computer.
The lowest four address lines are also buffered with half of IC_{10} and the addresses decoded by IC_{9} and $\mathrm{IC}_{11} \cdot \mathrm{IC}_{9}$ decodes the addresses to give the signals 'output-enable learn' and 'output-enable feedback' for the two a-to-d converters and 'end-of-conversion test' which is used for checking that the converters are ready to be read. IC_{11} decodes the addresses to give a write-clocks signal for the three data latches $\mathrm{IC}_{13}, \mathrm{IC}_{15}$ and IC_{16} and to give the signals 'address, latch enable' and 'output enable' for the converters. The unused outputs of the decoders function as external outputs for operating peripheral equipment.
Data latch IC_{13} is the one written to, for defining the next position of axis 3, the d.c. motordriven wrist elevation. The data, which is held on the latch until written to again, is
transferred to the digital-toanalogue converter IC_{11}. The output of the d-to-a converter is buffered by $\mathrm{IC}_{60 \mathrm{GIT}}$ providing a 0 to +5 V signal. Being an eightbit system there are 2^{8} i.e. 256 possible levels, therefore for each bit data change there is an output change of 20 mV .
The reference voltage for the d-to-a converter is +10 V and is derived from the +5 V rail by $\mathrm{IC}_{6 \mathrm{a}}$. With +5 V on pin 3 , the output settles at the voltage which also gives +5 V on pin 2 . As R_{46} and R_{47} are equal the output is twice the , input. $\mathrm{IC}_{6 \mathrm{~b}}$ inverts the +10 V to provide a -10 V rail. As the -10 V rail is used for powering the various potentiometers used for position sensing of the robot and the simulator, the current output capability of the operational amplifier is boosted by Tr_{2}.
Axis 3 feedback (position sensing) potentiometer output is buffered by $\mathrm{IC}_{18 \mathrm{~b}}$. The potentiometer nulls out the offset voltage which is the voltage on the potentiometer at the zero (lowest) position. The gain of the stage is less than unity to give an output range of 0 to +5 V for the 250° of movement of the axis. The circuit has around it two diodes and a transistor to limit the output to no more than 5 V , which is the maximum
permitted on the input of the a-to-d converter.
The feedback signal from $\mathrm{IC}_{18 \mathrm{~b}}$ is compared with the dac output by $\mathrm{IC}_{18 \mathrm{a}}$ to give an error signal in the range of -5 to +5 V and this then passes through $\mathrm{IC}_{19 \mathrm{~b}}$ which is a variable gain transconductance amplifier. The current out from pin 12 is proportional to the voltage across its input pins 13, 14 and the gain is proportional to the current entering pin 16.
The gain controlling current comes from voltage-to-current converter $\mathrm{IC}_{19_{a}}$, the voltage to which comes from a discretecomponent d-to-a converter comprising R_{7} to R_{21} and $\mathrm{IC}_{607 \mathrm{~b}}$. Seven out the outputs of data latch IC_{16} feed an $\mathrm{R} / 2 \mathrm{R}$ ladder network giving an output in the range of 0 to 2.5 V which is buffered by $\mathrm{IC}_{607 \mathrm{~b}}$. This type of converter is not as accurate as IC_{14} but although a couple of percent difference in position is very important, this amount of change in the gain of the system is hardly noticeable. Sources of error in the discrete component version are the resistors themselves, which are 1% tolerance, and the differing impedances of t.t.l. outputs in the high and low states. TT logic is intended to sink current rather than supply it and the output impedance is about 200
ohms higher in the high state.
The error signal from $\mathrm{IC}_{19 \mathrm{p}}$ is finally amplified to a level suitable for driving the motor by power operational amplifier IC_{20}. The potentiometer nulls out the input offset so that zero error signal gives zero output. As motors do not start to move until 2 to 3 V is applied to them, the gain of the stage is boosted (by blocking the feedback path with zener diodes D_{5} and D_{6}) so that almost any error will cause an output sufficient to just turn the motor. Once 3 V output is reached, the diodes conduct and the gain of the stage drops to that set by the ratio of R_{37} to R_{36}. Diodes D_{7} and D_{y} indicate the direction of drive to the motor.
Controlling the solenoids is rather simpler than the motor as the aim is simply for the computer to turn them on or off and the eight outputs of data latch $\mathrm{IC}_{1.5}$ together with one of the outputs of IC_{16} set the states of the nine solenoids. To prevent a programming error from simultaneously turning on both valves of an axis, thereby causing a hydraulic short circuit, gates 601 to 604 are used to disallow this condition.
The solenoids are 24 V types meaning that 24 V should be
applied to turn them on. However once turned on, they will stay on until the voltage drops below about 8 V . A continuous 24 V is therefore a waste of energy which causes unnecessary heating inside the robot base and the solenoid driver board is used to supply more appropriate voltages to the solenoids. The board takes the 5 V control signals from the interface board and briefly applies over 30 V to the appropriate solenoid turning it on very rapidly. This surge is then followed by a steady 17 V to give a holding current which causes only 50% of the heat resulting from the use of a steady 24 V

The solenoid drive circuitry, (page 20) is repeated for the nine valves. Taking solenoid S_{0} : when the input signal is at 0 V , which represents the off condition, Tr_{1013} is off and its collector high turning on Tr_{10}. The voltage across D_{104} and R_{109} is insufficient to turn on D_{101} hence Tr_{102} is off. C_{101} charges almost to supply voltage, from current flowing along the path $D_{104}-C_{101}-R_{103}-\operatorname{Tr}_{101}$. When the input signal switches to $+5 \mathrm{~V}, \mathrm{D}_{145}$ glows indicating this condition and Tr_{103}
saturates, turning off Tr_{101} and also turning on Tr_{102}. This places the charged capacitor across D_{104}. The voltage on the solenoid is now equal to the supply rail plus the charge on the capacitor (less the small drops across $D_{10.4}$ and Tr_{103}). The solenoid has a resistance of about 100 ohms so the time constant of the capacitor discharge is 22 ms which is more than adequate for turning on the valve which normally has a turnon time of about 5 ms .

To enable the computer to read the positions of the axes of the robot and of the simulator there are two a-to-d converters. IC_{7} reads the feedback from the robot whilst IC_{8} is for the learn axes of the simulator. Spare inputs are used as external inputs from any peripheral equipment. The ADC0809 is an 8 bit, 8 channel multiplexed converter.
First the converters are written to, to define the axis to be read. Buffered data lines 0,1 , 2 are used to define the learn axis and data lines $4,5,6$ to define the feedback axis. Next they are written to again to start the conversions, which occur simultaneously on the two converters. The data sent in this
write operation is irrelevant but in the examples given later, zero is always used. Finally a read operation takes data from one of the converters. Conversion takes about $100 \mu \mathrm{~s}$ so if in doubt as to whether sufficient time has elapsed for the conversion (little doubt when using Basic!) the state can be checked by reading the end-of-conversion signals.
Although there is no mention of it in the data book, a-to-d converters can catch out the unwary with a phenomenom known as s.c.r. breakdown. If this occurs heavy current is drawn leading to overheating and eventual destruction. This can be triggered by voltage spikes on the bus or overvoltage on the inputs. To avoid any chance of breakdown, the converters are connected to the buffered bus of the robot rather than straight onto the computer bus. There are also resistor network on the converter inputs and voltage limiters on the amplifiers feeding them.
Each signal from the potentiometers passes through a buffer (IC_{101}, up to IC_{5044}). similar to that of axis 3 , providing offset adjustment and limiting for the converter.
The power supply, below

provides regulated supply rails of $+5 \mathrm{~V},+15 \mathrm{~V},-15 \mathrm{~V}$ for the computer interface board, +18 V unregulated for the solenoid driver board and 240 V for the pump.
The Naiad is memory mapped (i/o mapped when used on the IBM) meaning that the computer treats the robot as if it were part of its memory (i/o space on the IBM) and can be written to or read from. Table 1 gives the addresses used by the robot. Operation is most simply shown by examples and for these, BBC Basic will be used. In BBC Basic both poke and peek are represented by?.

To:
define address of start of block decode JIM
rotate axis 0 clockwise turn on solenoid S_{0}) set all bits low except D_{0}
rotate axis 0 anticlockwise turn on solenoid S_{1}) set
all bits low except D_{1}
raise axis 2 (turn on solenoid S_{4}) set all bits low except D_{4}
raise axis 2 and rotate axis 0 clockwise set all bits low except D_{0}, D_{4}
close the gripper set D_{0} of next latch high (G is an even integer defining the gain of axis 3 amplifier)
open gripper again
send axis 3 to lowest position
send axis 3 to centre position
set amplifier gain to $1 / 2$ of maximum
read axis 0 feedback(set data lines low on multiplexer)
read axis 3 feedback (set D_{4}, D_{5} high on multiplexer)
read axis 3 learn (set D_{0}, D_{1} high on multiplexer)
read analogue input EXIP5
enable external device on EXOP1 read end-of-conversion feedback
read external digital input EXIP1

You can see that very simple statements will operate the axes of the Naiad together with external devices. Data back from the robot and external devices is also easily obtained by the host computer, and programs performing servoing and interacting with peripheral devices are readily accomplished. A large amount of software has already been written for the Naiad and will be supplied with it. Even more is being written and peripheral equipment is under development. The first devices to be available will be an indexing
$A=\& F D 00$
$?(A+1)=1$
$?(A+1)=2$
$?(A+1)=16$
$?(A+1)=17$
$?(A+2)=G+1$
$?(\mathrm{~A}+2)=\mathrm{G}$
? $A=0$
? $\mathrm{A}=128$
$?(A+2)=128$
? $(A+6)=0$
? $\mathrm{A}+7)=0$
$\mathrm{F} 0=$? $(\mathrm{A}+17)$
$?(A+6)=48$
$?(A+7)=0$
$\mathrm{F} 3=$? $(\mathrm{A}+17)$
$?(A+6)=3$
$?(\mathrm{~A}+7)=0$
$\mathrm{L} 3=$? $(\mathrm{A}+16)$
$?(A+6)=7$
$?(A+7)=0$
EXIP5 $=$? $(A+16)$
? $(A+3)=0$
EOCF =? ($\mathrm{A}+18$) AND 1
$B=?(A+18): E X-$ $1 \mathrm{P} 1=$ (B AND 8)DIV8
table, a conveyor system using a stepper motor for position incrementing and a range of sensors.

The Naiad is manufactured by Cybernetic Applications, West Portway Industrial Estte, Andover, Hants SP10 3WW, Tel 0264 50093, and is available either ready-built or as a selfassembly kit.

THE CO-STAR COMPATIBLE

OUR CS-2000 SERIES SINGLE BOARD COMPUTER AND PERIPHERALS IS FULLY IBM PCIXT* COMPATIBLE AND IS ONE OF THE MOST ADVANCED AND HIGHLY INTEGRATED SYSTEMS AVAILABLE.

OUR CS-2000 MOTHER BOARD FEATURES STATE OF THE ART DESIGN, A UNIQUE SOFTWARE CONTROLLED DUAL PROCESSOR SPEED SYSTEM, ALLOWING SOFTWARE TO BE RUN UNINTERRUPTED AT VERY HIGH SPEEDS.

CO-STAR 2000 STANDARD FEATURES

*8088-CPU, 7MHZ14.77 MHZ
Software Toggle Control
*8087 Co-processor optional
*8K Custom BIOS in ROM
*6 EPROM SOCKETS
*8 Expansion SLOTS
*Hardware Reset
*PC|XT Form, Fit \& Functions

MULTI FUNCTION 2015 STANDARD FEATURES

*Floppy Disk Controller
*Tape Back up Port
*Real Time Clock with battery back up
*Dual Serial Port, one optional
*CENTRONICS Parallel Printer Port
*RAMDISK Software
*Printer SPOOL Software
*Optional Game Port
*Optional 384K DRAM

USED WITH THE CS-2000 MULTI FUNCTION CARD GIVES A VERY ADVANCED COMPACT SYSTEM WITH ALL FACILITIES OF FULLY EXPANDED PCIXT.

OTHER PRODUCTS AVAILABLE

*Display Cards (Mono \& Color)
*Hard Disk Controller
*1 $\frac{1}{4}$ " Tape Controller
*Z80B Single Board Computer with IEE 488
*2 MEG RAM Expansions
*IEE 488 Interface
*AD/DA (12 bit resolution) *Floppy Disk Controller *Dual Serial Card

ALL BOARDS ARE FULLY FACTORY ASSEMBLED BURNED IN AND TESTED GOODS DESPATCHED FROM STOCK NORMALLY WITHIN 48 HOURS

18 MONTH WARRANTY

The stringent production quality controls and high reliability of our boards enables us to give an 18 month warranty and 6 month exchange program for defective units.

NO RISK TRIAL OFFER

If after purchasing one of our boards you are not satisfied we will refund your money (minus P\&P) if the board is returned intact within 15 days of shipment.
*registered trade mark of IBM Corporation

CO-STAR LTD
321 BRIDGEGATE HOUSE, IRVINE, AYRSHIRE, KA12 8BD
Telephone (0294) 311555

Please include

CIRCLE 37 FOR FLRTHER DETAILS

CIRCLE 63 FOR FURTHER DETAILS

Burroughs MT710: Intelligent Green $12^{\prime \prime}$ VDU with 3 micros and 64 K store. RS232. Programmable. Only 149 new + £15 P\&P
12" Open chassis Video Monitor: by Hitachi standard composite Video and $12 v$ input. Green screen, wide band width. f40.00 + E7.00P.
Cased Video Monitors : $12^{\prime \prime}$ or $15^{\prime \prime}$ Green Screens standard composite video \& mains $£ 60.00+£ 7.00$ P\&P
Centronics 306 Line Printers: Professional fast (120 cps) superb quality 80 column printer. Parallet i/f. ONLY $£ 99$ £ $15.00 \mathrm{P}+\mathrm{P}$.
Texas Silent 700 Printers: Whisper quiet 80 col matrix printer with RS232 interface. ONLY $£ 99.00+£ 7.00$ P\&P
Diablo 630 Daisywheel printer: OEM i/f NEW $£ 599+£ 15$ P\&P
Calcomp 565 Drum Plotter: OEF £ $450+£ 10$ P + P.
Many more bargains. Phone for your requirements. WE ALSO BUY

CIRCLE 55 FOR FURTHER DETAILS
ELECTRONICS \& WIRELESS WORLD FEBRUARY 1986

Antennas - more width

The bandwidth of many current receiving antennas for u.h.f. television and v.h.f. radio is barely adequate and can produce problems. The performance towards the limits of the various "groups" tends to fall off, particularly at the high-frequency end, for example, when rainwater collects on the elements. For Band 2 radio, many of the multi-element beams in use to improve stereo reception were designed with an upper limit of 100 MHz and are becoming far less efficient as the band extends up to 108 MHz . The problem also occurs on some of the older transmitting antennas which, for local radio, were designed for use below 100 MHz and are now having to be changed to accommodate the new Geneva Plan 1984 frequencies.

However, the design of antennas having broader bandwidth is making progress. At the 1985 International Conference on Antennas and Propagation (ICAP85) several papers were published on wideband u.h.f. antennas suitable for television applications. A Polish paper by R.J. Katulski of Gdansk University, Poland, analysed the log. pyramidal periodic (l.p.p.) antenna which comprises two log.-periodic structures mounted in diverging planes. His design was claimed as suitable for television reception throughout the range 150 to $900 \mathrm{MH} z$ with more gain than a comparable log.-periodic array.

A BBC paper on antennas for outside broadcast links included log.-periodic arrays, parabolic dish reflectors with log.-periodic feeds and a conical logarithmic-spiral antenna that forms a "rove" antenna with circular polarization for mobile links, with all three types suitable for use from 580 to 950 MHz Conical logarithmic-spiral antennas are also attracting increasing interest for communications applications.
Jimmy Wong and Howard King of the Aerospace Corporation have show (IEEE
Trans on Ant. \& Prop., Vol
AP-33, No 8, August 1985)
that by using an "open-sleeve" dipole as the feed element, the bandwidth of a Kraus corner reflector antenna can effectively cover 240 to 400 MHz , a bandwidth ratio of 1:1.7. Incidentally earlier work by King and Wong was used by James Miller in the design of his helical antennas for 435 MHz ($E \& W W$, June 1985, pp. 43-6).
A new end-fire radiator antenna, the corrugated surface plane (c.s.p.) system, has been reported by C.A. King and D.A. Downs, based on work carried out at the US Naval Research Laboratory, Washington DC (Electronics Letters. Vol 21, No 24, 21 November 1985).
They note that many applications require the use of narrow-beam endfire radiators. A popular microwave approach is the polyrod antenna comprising a dielectric rod fed by a short section of waveguide. However, at u.h.f. such antennas become heavy and cumbersome due to the weight of the dielectric. They have evolved an antenna consisting of a pair of corrugated surfaces mounted back-to-back with a dipole feed element perpendicular to the surface with its mid-point in the plane of the surfaces. Each of the 21 -inch corrugated surfaces has 42 slots, $1.5-\mathrm{in}$ wide and $1.5-\mathrm{in}$ deep. The antenna weighs 151 b compared to an estimated 601b for a comparable polyrod.
Measurements at 500, 750 and 1000 MHz show half-power beamwidths of $50^{\circ}, 31^{\circ}$ and 25° respectively. Sidelobe levels are 20 dB down. considered low in comparison with previously-reported surface-wave antennas.

Philips embrace MAC

There was a piquant flavour to the 1985 Shoenberg memorial Lecture of the Royal Television Society. Given by C.J. van der Klugt, vicepresident of Philips, it argued very strongly in favour of "evolutionary MAC" and - at least for the 75 per cent of the world with 50 Hz mains supplies and 50-field television systems - strongly against
acceptance of "revolutionary" 1125 -line, 60 Hz , h.d.tv systems.

His almost wickedly provocative attack on the widely-promoted NHK/Sony production standard was presented under the urbane chairmanship of recently retired Stuart Sansom who. only a few weeks before, had been arguing equally strongly in favour of the NHK production standard as one of the founder-members of Sony Broadcast.

Mr van der Klugt confirmed that Philips expect to begin marketing first-generation MAC receivers in 1987, though he did not elaborate on whether these would be suitable for D2-MAC or CMAC or both.

The 60 Hz proposals, formulated by Japan with support from the USA and Canada, attracted much opposition at the recent CCIR meeting. It failed to achieve the clesired status of a draft recommendation, and remains simply a proposal. With so much opposition from 50 Hz countries, it would appear to have little chance of being formally approved as definite recommendation at the pleanary assembly of the CCIR next May. It could be, of course, possible for countries to go ahead without CCIR endorsement.

In his lecture, Mr van der Klugt said: "Philips anticipates a technical solution, concerning the $50 / 60 \mathrm{~Hz}$ impasse. If we achieve what we now believe is possible, an umbrella standard for studio production for conversion to both 50 Hz and 60 Hz , one of the stumbling blocks will be removed. It would seem obvious that major modifications to the Japanese h.d.tv system will be required before it can adequately meet the test of providing the best service for the most people. " We have an important not-to-be-missed opportunity to create an orderly videocompatible world . . . but if fear of no decision drives us to making a decision that puts more than half the world at a disadvantage, then we have failed to use the opportunity now available to good advantage.'

To obtain agreement on world standards he believes it
essential for people to get together before taking up a firm stand and quotes as a valuable precedent the successful adoption of the Compact Disc standard following early discussions between Philips and Sony.

Early radio

Dr Geoffrey Phillips resolutely tackled the near-impossible in attempting to cover "the history of sound broadcasting' from Faraday in 1831 to current re-engineering by the BBC of the v.h.f. network for circular polarization, all in the course of a single IEE lecture. nevertheless he succeeded in spotlighting, if only briefly, surprisingly large number of the landmarks in radio broadcasting.

He noted the early work in Belgium in 1914, interrupted by the Great War and then succeeded by the famous Hague Concerts of 1919 to about 1922 to which UK listeners were invited to subscribe and which were also sponsored for a year by the Daily Mail. The Melba broadcast from Chelmsford in 1920 was followed by the procrastinations of the British government, finally resolved by the building of 2 LO London, 2ZY Manchester, 5IT
Birmingham, the long-wave transmitter at Daventry (5XX) in the era of the British Broadcasting company (19221926), and the old Savoy Hill studios in the IEE building in which he was speaking, with their "meat safe"
microphones. Steel tape recording was a feature of the 'thirties, first with the Blattnerphone and later the Marconi-Stille machines.

He acknowledged the early "Empire" broadcasts in 1927 and 1928 by Gerald Marcuse on 31 metres with 1.5 kW , followed by the BBC from G5SW at Chelmsford and finally the official start of BBC external services in 1932.

The progression from crystal sets to valve sets with their "reaction" whistles to upset the neighbours gave Dr Phillips the opportunity to stress the advantages for medium-wave reception of the old-fashioned "frame" and modern "ferrite-rod" aerials
that can help to reject interference, including local electrical interference. He also highlighted the anti-fading properties of the two-section 725 -ft mast radiator on which the old "Third Programme" used to go out from Droitwich.
He admitted that the UK had been slow to adopt v.h.f. radio. The classic paper by Howard Armstrong had been published in 1936 but it was not until 1954 that the service began from Wrotham, although this followed exhaustive tests not only of f.m./a.m. but also a.m.l. in which a very broad receiver response permitted the use of very effective noise limiters on pulses that had not been sharpened by a narrow i.f. This system, he considered, came very close to f.m. in performance.

PCGG

The mention by Dr Phillips of the Hague Concerts deserves to be elaborated upon. These were organized by 35 -year-old Hanso Steringa Idzerda after he obtained a licence to transmit music and voice on PCGG in The Hague. His first transmission was on November 6, 1919 after the programme of his "Radio Soiree-Musicale" had been advertised the day before in a Dutch newspaper, and the station remained in service until October, 1924. It preceded KDKA in 1920. Wireless World drew attention to these broadcasts in June 1920 and special concerts for

Simplified circuit of the

 PCGG transmitter. The carbon microphone in series with coil L2 effects frequency modulation

The original PCGG transmitter as it was displayed in the Nederlands Postmuseum at The Hague, Netherlands. Not visible are the huge aerial loading coil and the rotary machines used for powering the transmitter. PCGG operated on a wavelength of 670 meters.

English listeners were introduced.
In 1917 Idzerda, as manager of Nederlandse RadioIndustrie, had persuaded Philips to begin manufacturing radio valves which they agreed to do if he would agree to buy at least 180 valves per year. So began, early 1918, production of Philips-Ideezet "soft" valves. In the first year he sold 1200 of them. His broadcasts were intended to promote the sale of his receivers. Later it is believed he quarrelled with Philips, though he had initiated their entry into valve manufacture.
The Dutch claim PCGG as the world's first broadcast transmitter, though this tends to be disputed by the Belgians, and there was also Prof. Fessenden's Christmas Eve "broadcast" in 1906.
PCGG actually employed a form of narrowband frequency modulation on 670 metres, being received best with the receiver slightly detuned.
In 1940 the original transmitter was donated to the Dutch Postmuseum where for many years it was regularly demonstrated on dummy load and is still located.
Hanso Idzerda, unhappily, was arrested by the Germans on 3 November 1944, found in possession of radio equipment, (and may have been involved in the clandestine Dutch radio service) and shot without trial at Wassenar.
My thanks to Dick Rollema, PAOSE, for much of this information.

CH radar

Adding to the excellent series of papers presented last year at the three-day IEE seminar to mark the 50th anniversary of British radar, readers may wish to note several special articles in The GEC Journal of Research (Vol 3, No 2, 1985). These include a detailed account by B.T. Neale "CH the first operational radar" providing technical and operational details of the 25 MHz Chain Home with its transmitters built by Metropolitan-Vickers and receivers by A.C. Cossor Ltd to TRE specification.
W.E. Willshaw describes the evolution of the microwave magnetrons to which Eric Megaw of the GEC Research laboratories and Gutton of SFR, Paris contributed significantly. The account by Willshaw is one of the most detailed accounts of this major UK development by Boot and Randall.

Amateur Radio

Awards

RSGB awards this year did reflect some genuine experimental work. Roy Jones, G3NKL received the Mullard Award for some careful observations of 10 GHz signals
over obstructed paths in which he found interesting signal enhancements just after sunset and just before dawn.
Ray Cracknell, G2AHU (former ZE2JV) received the Wortley Talbot trophy and an ARRL award for technical excellence. As one of the pioneers whose detailed observations led to a better understanding of transequatorial propagation, since his return to the UK he has continued his studies of 50 MHz propagation. It may be recalled that he had the greatest difficulty in persuading the Radio Regulatory Department to renew his British licence without having to retake the examinations!
There appears to be a good chance that the new 50.0 to 50.5 MHz band will be released on a 24 -hour basis to UK amateurs about February 1986. It is clear, however, that DTI are undertaking a major revision of the terms of the amateur licence.
A Raynet Trophy was presented to Staffordshire amateurs who had helped organize emergency communications with Mexico after the recent earthquake.

In brief

Arthur Watts, G6UN, who died recently aged 91 was a World War I member of the Royal Navy Intelligence Department and, as president of the RSGB in 1939, was responsible for the recruitment of several hundred pre-war radio amateurs as Voluntary Interceptors of the Radio Security Service (MI5) working under Lord Sandhurst

During June 1985 a new world record for a tropospheric contact on 430 MHz was established between KH6HME, Hawaii and a station near San Francisco. On 1296 MHz KH6HME worked N6CA in Los Angeles. Both distances exceed 4000 km over the Pacific path that appears to support v.h.f. and u.h.f. signals at intervals of several years. . The ARRL has proposed a band plan for 24 MHz as follows: 24.89 to 24.92 MHz c.w. only. 24.92 to 24.93 c.w./digital. 24.93 to 24.99 MHz s.s.b./s.s.tv.

Data conversion

This supplement to January's data conversion feature contains the first part of a comprehensive list of d-to-a and a-to-d converter i.cs and modules.

Digital-to-analogue converters are given in the first part of the table and analogue-to-digital devices in the second. There's news of a new molybdenum i.c. process on page 29 and an example of converter grounding on page 32 .
An extra column is included in the a-to-d converter section to
show the conversion method used. With the aid of last month's glossary, the abbreviations used should be clear.
Speed is given as seconds for conversion. With most of the devices, we have given typical parameters. Where the typical value is unclear we have given a worst-case figure.

Manufacturer	Device	Bits	Speed	Interface	Tech.	Features
AMD	DAC08	8	85 n	Par.	Bip.	Mult., 0.1\% linearity, differential I o/p
	Aml408	8	$250 n$	Par.	Bip.	Mult., 0.2% linearity, $157 \mathrm{~mW}, \mathrm{I} \mathrm{o} / \mathrm{p}$
	Am 1508	8	250n	Par.	Bip.	Mult., 0.2% linearity, 157 mW I o/p
	Am6012	12	$250 n$	Par.	Bip.	Mult., 4 mA diff. $\mathrm{o} / \mathrm{p}, 230 \mathrm{~mW}$
	Am6022	12	75 n	Par.	Bip.	Mult., 4 mA diff. $0 / \mathrm{p}, 500 \mathrm{~mW}$
	Am6070	12	300 n	Par.	Bip.	Companding for control systems, 72dB
	Am6080	8	160 n	Proc.	Bip.	Mult., 0.1% linearity, $5 \mathrm{pmm} /{ }^{\circ} \mathrm{C}, \mathrm{I} \mathrm{o} / \mathrm{p}$
	Am6081	8	$200 n$	Proc.	Bip.	Mult., 0.1% lin., range mpx, diff. I $0 / p$
Analog Devices	AD390	4×12	8μ	Proc.	Hyb.	Quad, $\pm 1 / 2 \mathrm{l}$.s.b. linearity
	AD558	8	1μ	Proc.	Hyb.	2 range, 5 V supply, 75 mW
	AD561	10	$250 n$	Par.	Bip.	$\pm 1 / 4$ l.s.b. error
	AD562	12	1.5μ	Par.	Bip.	Mult., \pm /ilsls.b. error, $10 / p$
	AD563	12	1.5μ	Par.	Bip.	Mult., $\pm 1 / 4 \mathrm{l}$. s.b. error, $10 / p$, int. ref.
	AD565	12	250n	Par.	Bip.	$225 \mathrm{~mW}, \mathrm{I} \alpha / \mathrm{p}$, internal reference
	AD566	12	350 n	Par.	Bip.	$180 \mathrm{~mW}, \mathrm{Io} / \mathrm{p}$
	AD567	12	500 n	Proc.	Bip.	500 ns to $\pm 1 / \mathrm{bit}, 1 \%$ loV reference
	AD569	16	6μ	Proc.	$\mathrm{Bi} / \mathrm{mos}$	Ratiom., 0.02\% linearity, V o/p, 150 mW
	AD667	12	4μ	Proc.	Bip.	$4 \mu \mathrm{~s}$ to $0.01 \%, 1 \% 10 \mathrm{~V}$ ref., 300 mW
	AD1408	8	250n	Par.	Bip.	Mult., 0.1% linearity, $157 \mathrm{~mW}, \mathrm{I} / \mathrm{p}$
	AD1508	8	$250 n$	Par.	Bip.	Mult., 0.1% linearity, 157 mW , I o/p
	AD3860	12	5μ	Proc.	Hyb.	o/p. amp., $\pm \frac{1}{2} \mathrm{l} . \mathrm{s} . \mathrm{b}$. linearity, int. ref.
	AD6012	12	250 n	Par.	Bip.	Mult., $\pm 1 / 21 . s . b$ linearity, I o/p, 230 mW
	AD7110	6	150 kHz	Par.	$\mathrm{C}-\mathrm{mos}$	Log. 0 to $-88 \mathrm{~dB}, 1.5 \mathrm{~dB}$ res., $100 \mathrm{~dB} \mathrm{~s} / \mathrm{n}$
	AD7111	8	3μ	Proc.	$\mathrm{C}-\mathrm{mos}$	Log. 0 to $-88 \mathrm{~dB}, 0.375 \mathrm{~dB}$ res., 5 V supply
	AD7115	9/12	5μ	Proc.	C -mos	Log. 0 to $-19.9 \mathrm{~dB}, 0.1 \mathrm{~dB}$ res., b.c.d. i/p
	AD7118	6/17	0.4μ	Par.	$\mathrm{C}-\mathrm{mos}$	Log. 0 to $-85 \mathrm{~dB}, 1.5 \mathrm{~dB}$ res., 5 V supply
	AD7224	8	7μ	Proc.	$\mathrm{C}-\mathrm{mos}$	$10 \mathrm{~V} / \mathrm{o} / \mathrm{p}, 2 \mathrm{i} / \mathrm{p}$ regs, + ve supply
	AD7225	4×8	5μ	Proc.	C-mos	4 sep. refs, + or \pm rails, V o/p
	AD7226	4×8	7μ	Proc.	$\mathrm{C}-\mathrm{mos}$	4×8 bit, positive supply, V o/p
	AD7240	12	550n	Par.	$\mathrm{C}-\mathrm{mos}$	± 1 l.s.b. error, 30 mW , +ve supply, V o/p
	AD7520	10	500 n	Par.	C-mos	Mult., 20mW, 2ppm f.s. $/{ }^{\circ} \mathrm{C}$, 5 V supp., $10 / p$
	AD7521	12	500 n	Par.	$\mathrm{C}-\mathrm{mos}$	
	AD7522	10	500n	Ser/par.	$\mathrm{C}-\mathrm{mos}$	Mult., positive supplies, I o/p
	AD7523	8	100n	Par.	$\mathrm{C}-\mathrm{mos}$	Mult., I o/p
	AD7524	8	150 n	Proc.	$\mathrm{C}-\mathrm{mos}$	Mult., \pm 1/bl.s.b. acc., 5 V rail, 10 mW , $1 \mathrm{o} / \mathrm{p}$
	AD7525	12	1μ	Par.	$\mathrm{C}-\mathrm{mos}$	$3 y_{1}$-digit b.c.d. i/p pot., $\pm \frac{1}{2} 1 . s . b$. lin.
	AD7528	2x8	$350 n$	Proc.	$\mathrm{C}-\mathrm{mos}$	Mult., dual latches, I o/ps matched to 1\%
	AD7530	10	500n	Par.	$\mathrm{C}-\mathrm{mos}$	Mult., I o/p, 20mW, 5 to 15 V supply
	AD7531	12	500n	Par.	$\mathrm{C}-\mathrm{mos}$	Mult., I o/p, 20mW, 5 to 15V supply
	AD7533	10	600 n	Par.	$\mathrm{C}-\mathrm{mos}$	Mult., I o/p, 5 to 15 V supply
	AD7334	14	1.5μ	Proc.	$\mathrm{C}-\mathrm{mos}$	Mult., 8bit bus, $0.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ gain co., I o/p
	AD7535	14	1.5μ	Proc.	$\mathrm{C}-\mathrm{mos}$	Mult., o.5ppm $/{ }^{\circ} \mathrm{C}$ gain co., <20nA o/p leak.
	AD7541	12	600 n	Par.	$\mathrm{C}-\mathrm{mos}$	Mult., I o/p, ± 1 l.s.b. gain error
	AD7542	12	2μ	Proc.	$\mathrm{C}-\mathrm{mos}$	Mult., 40mW, \pm bit linearity, 4 bit bus
	AD7543	12	2μ	Ser.	$\mathrm{C}-\mathrm{mos}$	Mult., $40 \mathrm{~mW}, \pm$ bit linearity
	AD7545	12	2μ	Proc.	$\mathrm{C}-\mathrm{mos}$	2ppm $/{ }^{\circ} \mathrm{C}$ gain coeff., 5V supply, 0.5 mW
	AD7546	16	4-10ر	Proc.	C -mos	$\mathrm{V} 0 / \mathrm{p}, 50 \mathrm{~mW}, 16 \mathrm{bit}$ bus/latch
	AD7548	12	1.5μ	Proc.	$\mathrm{C}-\mathrm{mos}$	8 bit bus, mult., 5ppm $/{ }^{\circ} \mathrm{C}$ gain co., + ve supp.
	AD7549	2×12	1.5μ	Proc.	$\mathrm{C}-\mathrm{mos}$	Mult., 4 bit bus, 3 l.s.b. f.s. error, $10 / p$
	AD9700	8	$10 n$	Latch	Bip.	125 MHz samp. vid. + sync, -5V supp., int. ref.
	AD9702	3×4	5 n	Par.	Bip.	RGB channels, 125 MHz samp., e.c.l./t.t.l. i/p
	AD9768	8	5 n	Par.	Bip.	Vid. 100 MHz samp., $20 \mathrm{~mA} \mathrm{o} / \mathrm{p}$, int. ref.
	DAC08	8	85 n	Par.	Bip.	Mult., 0.1\% linearity, I o/p
	DAC71	16	5 μ	Par.	Hyb.	0.003\% lin., $7 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ gain co., V or I o/p
	DAC72	16	5μ	Par.	Hyb.	0.003\% lin., $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ gain co., V or I o/p
	DAC80	12	2μ	Par.	Bip.	$\pm 1 / 41.8 . b$ linearity, int. ref., I or V o/p
	DAC83	12	2μ	Par.	Bip.	$\pm k_{4} 1.8 . b$ linearity, int. ref., I or V o/p
	DAC87	12	2μ	Par.	Bip.	\pm thl.s.b. linearity, int. ref., I or V o/p
	DACl00	10	375 n	Par.	Bip.	t.t.l./d.t.l. i/p, I $0 / \mathrm{p}$, int. ref.
	DACll36	16	6μ	Par.		\pm thl.s.b. linearity

Manufacturer	Device	Bits	Speed	Interface	Tech.	Features
Analogic	DACl158	18	10μ	Par.	Hyb.	\pm ml.s.b. linearity
	DAC1146	18	64	Par.	Hyb.	lppm $/{ }^{\circ} \mathrm{C}$, high linearity
	HDD0810	8	10 n	Par.	Hyb.	Vid., $75 \Omega \mathrm{o}$ p, sync i / p, int. ref.
	HDD1015	10	$15 n$	Par.	Hyb.	Vid., $75 \Omega \mathrm{o} / \mathrm{p}$, sync i / p, int. ref.
	HDD1206	12	2μ	Par.	Hyb.	I / p register, 6 MHz update, o/p. buff.
	HDD1409	14	5μ	Par.	Hyb.	200kHz sample rate, o/p buffer
	HDG805	8	8 n	Par.	Hyb.	Video, -5.2 V supply, sync i / p
	HDG605	6	6 n	Par.	Hyb.	Video, -5.2 V supply, sync i / p
	HDG403	4	4 n	Par.	Hyb.	Video, -5.2V supply, sync i/p
	HDH0802	8	200n	Par.	Hyb.	$10 \mathrm{~V} o / \mathrm{p}$, video, i/p buffer
	HDS0820	8	$20 n$	Par.	Hyb.	$10 \mathrm{~mA} o / p$, video, i/p buffer
	HDH1003	10	300 n	Par.	Hyb.	$10 \mathrm{~V} 0 / \mathrm{p}$, video, i/p buffer
	HDH1205	12	500n	Par.	Hyb.	$10 \mathrm{~V} 0 / \mathrm{p}$, video, i/p buffer
	HDM1210	12	175 n	Par.	-	Mult., 10 mA o/p, 10 MHz 3 dB analogue b.w.
	HDS0810	8	10 n	Par.	Hyb.	-5.2V rail, $75 \Omega \mathrm{o} / \mathrm{p}$, e.c.l. i / p
	HDS0820	8	$20 n$	Par.	Hyb.	$10 \mathrm{~mA} 0 / \mathrm{p}$, video, int. ref., i/p buff.
	HDS1015	10	$15 n$	Par.	Hyb.	$-5.2 V$ rail, $75 \Omega \mathrm{o} / \mathrm{p}$, e.c.l. i/p
	HDS1025	10	25n	Par.	Hyb.	$10 \mathrm{~mA} \alpha / p$, video, e.c.l. i / p, int. ref.
	HDS1240	12	40 n	Par.	Hyb.	$16 \mathrm{~mA} 0 / \mathrm{p}$, e.c.l. buff., int. ref.
	HDS1250	12	35 n	Par.	Hyb.	$10 \mathrm{~mA} / \mathrm{o} / \mathrm{p}$, video, e.c.l. i / p, int. ref.
	AH8304TC	4x3	$10 n$	Latch	Hyb.	IV RGB 0/ps, t.t.l., synchronous blanking
	AH8304TM	4×3	50 n	Latch	Hyb.	As TC but with 32 word colour mem.
	AH8S08E	8	7 n	Latch	Hyb.	IV comp. vid. o/p, 5V supply, t.t.l. i/p
	AH8308T	8	$15.5 n$	Latch	Hyb.	IV comp. vid. o/p, 5V supply, t.t.l. i/p
	AH8308TC	8×3	10 n	Latch	Hyb	RGB IV o/p, t.t.l. i/p, synch. blanking
	AH8404TC	4x3	$40 n$	Latch	Hyb.	RGB IV o/p, t.t.l. i/p, o.6W.
	AH8404TM	4×3	30n	Latch	Hyb.	As 8404TC but with 32 word mem., 0.8 W
	MP1480	12	10μ	Proc.	Mod.	4-20mA current loopo/p, bin. or b.c.d. opts
	MP1814	14	<15	Par.	Mod.	$\mathrm{V} 0 / \mathrm{p} 4$ rngs, int. ref., $\pm 0.003 \%$ f.s. lin.
	MP1913A	13	1μ	Latch	Mod.	I or $V \mathrm{o} / \mathrm{p}$, int. ref., $\pm 0.006 \%$ f.s. lin
	MP1914A	14	1μ	Latch	Mod.	I or V o/p, int. ref., $\pm 0.003 \%$ f.s. lin.
	MP1914TC	14	1μ	Latch	Mod.	As A vers. but lppm/ ${ }^{\circ} \mathrm{C}$ stab. not 2ppm
	MP1915A	15	1.2μ	Latch	Mod.	I or V o/p, int. ref., $\pm 0.0015 \%$ f.s. lin.
	MP1915TC	15	1.2μ	Latch	Mod.	As A vers. but lppm/ ${ }^{\circ} \mathrm{C}$ stab. not 2ppm
	MP1916A	16	1.5μ	Latch	Mod.	I or V o/p, int. ref., $\pm 0.001 \%$ f.s. lin.
	MP1916TC	16	1.5μ	Latch	Mod.	As A vers. but lppm/* ${ }^{\circ} \mathrm{C}$ stab. not 2 ppm
	MP1926A	16	$<3 \mu$	Par.	Mod.	Audio 0.005\% h. dist., int. ref., V o/p, 0.25 W
	MP1926S	16	<40]	Par.	Mod.	Audio 0.005\% h. dist., int. ref., V o/p, 0.25 W
	MP1936	16	6μ	Par.	Mod.	Audio -110dB noise, <-86dB f.s. h.dist., V o/p
	MP8116	16	25μ	Latch	Mod.	± 0.25 bit lin., 3 V \& 2 I o/p rngs, $0.25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ stab.
	MP8308ECL	8	10 n	Latch	Mod.	Video o/p, sync./blank i/ps, $\pm 5 \mathrm{~V}$ supplies
	MP8308TTL	8	25n	Latch	Mod.	Video o/p, sync./blank i/ps, $\pm 5 \mathrm{~V}$ supplies
	MP8318ECL	8	$10 n$	Latch	Mod.	Video o/p, $\pm 5 \mathrm{~V}$ supplies
	MP8318TTL	8	25n	Latch	Mod.	Video 0/p, $\pm 5 \mathrm{~V}$ supplies
Brooktree		8×3	20n	Par.	C -mos	50 MHz samp. RGB $19 \mathrm{~mA} / \mathrm{p}, 500 \mathrm{~mW}$, latches, 5 V
	BT102*	8	$14 n$	Par.	C -mos	75 MHz 8 mp . vid., $28 \mathrm{~mA} 0 / \mathrm{p}, 500 \mathrm{~mW}$, latch, 5 V
	BTl03*	4×3	14 n	Par.	C -mos	75 MHz samp. RGB $26 \mathrm{~mA} 0 / \mathrm{p}, 500 \mathrm{~mW}$, latches, 5 V
	BT444*	4×3	25n	Par.	C -mos	40 MHz samp. RGB vid. $0 / \mathrm{p}, 600 \mathrm{~mW}$, latches
Burr-Brown	DAClOHT	12	200n	Par.	Hyb.	Int. ref., -55 to $200^{\circ} \mathrm{C}, \pm 1 / 4$ bit linearity, I o/p
	DAC60-12	12	$150 n$	Par.	Mod.	Int. ref., $\pm 1 /$ bit linearity, I o/p, lobit vers av.
	DAC63	12	35n	Par.	Hyb.	Int. ref., $\pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ gain drift, I o/p
	DAC70	16	50μ	Par.	Hyb.	Int. ref., I o/p, $\pm 0.003 \%$ f.s. linearity
	DAC71/I	16	1μ	Par.	Hyb.	Int. ref., I o/p, $\pm 0.003 \%$ f.s. linearit.y
	DAC $71 / \mathrm{V}$	16	10μ	Par.	Hyb.	Int. ref., $\mathrm{V} 0 / \mathrm{p}, \pm 0.003 \%$ f.s. linearity
	DAC72/I	16	1μ	Par.	Hyb.	Int. ref., $\pm 0.003 \%$ f.s. linearity, 2 I o/p ranges
	DAC72 N	16	10μ	Par.	Hyb.	Int. ref., $\pm 0.003 \%$ f.s. linearity, $2 \mathrm{~V} 0 / \mathrm{p}$ ranges
	DAC73	16	50μ	Latch	Mod.	Int. ref., I or V o/p $(\mathrm{V}=50 \mu \mathrm{~s})$, $\pm 0.00015 \% \mathrm{f.s}$. lin.
	DAC74	16	20μ	Latch	Mod.	Self cal., $\pm 0.0015 \%$ total error, 10 or $\pm 10 \mathrm{~V} 0 / \mathrm{p}$
	DAC80/I	12	300 n	Par.	Hyb.	Int. ref., 2 I 0/p rngs, $\pm 0.012 \%$ f.s. lin., 3 dig. vers
	DAC80/V	12	3μ	Par.	Hyb.	Int. ref., $5 \mathrm{~V} 0 / \mathrm{p}$ rngs, $\pm 0.012 \%$ f.s. lin., 3 dig. vers
	DAC82	8	2.5μ	Par.	Hyb.	Mult., int. ref., 5 V \& 2 I o/p rnges, $\pm 0.16 \%$ f.s. lin.
	DACB5/I	12	$300 n$	Par.	Hyb.	Int. ref., 2 I o/p rngs, $\pm \frac{1}{2}$ bit f.s. lin. error
	DAC85 N	12	5μ	Par.	Hyb.	Int. ref., 5 V o/p rngs, $\pm 1 / 2 \mathrm{bit} \mathrm{f} . \mathrm{s}$. lin. error
	DAC90	8	200n	Par.	Monol.	Int. ref., 2 I o/p rngs, \pm thbit $\mathrm{f} . \mathrm{s}$. lin error
	DAC700	16	$350 n$	Par.	Monol.	Int. ref., -2mA o/p, $< \pm 0.003 \%$ f.s. lin. error
	DACr701	16	$<8 \mu$	Par.	Monol.	Int. ref., $10 \mathrm{~V} 0 / \mathrm{p},< \pm 0.003 \%$ f.s. lin. error
	DAC702	16	$350 n$	Par.	Monol.	Int. ref. $\pm 1 \mathrm{~mA} 0 / \mathrm{p},< \pm 0.003 \%$ f.s. lin. error
	DAC703 DAC706	16 16	$<8 \mu$ $350 n$	Par.	Monol.	Int. ref., $\pm 10 \mathrm{~V} / \mathrm{p},< \pm 0.003 \%$ f.s. lin. error
	DAC706 DAC707	16 16	$350 n$ $<8 \mu$	Proc.	Hyb. Hyb.	Int. ref., $\pm 1 \mathrm{~mA} 0 / \mathrm{p},< \pm 0.003 \%$ f.s. linearity Int. ref., $\pm 10 \mathrm{~V} 0 / \mathrm{p},< \pm 0.003 \%$ f.s. linearity
	DAC708	16	350 n	Proc.	Hyb.	Int. ref., $-2 \mathrm{~mA} 0 / \mathrm{p},< \pm 0.003 \%$ f.s. lin., ser. i / p
	DAC709	16	< 8μ	Proc.	Hyb.	Int. ref., $10 \mathrm{~V} 0 / \mathrm{p},< \pm 0.003 \%$ f.s. lin., ser. i / p
	DAC800/I	12	300 n	Par.	Monol.	Int. ref., 2 I 0/p rngs, \pm \% bit linearity
Data Trans.	DT214	12×4	35μ	Par.	Mod.	
	DT214H	12×4	8μ	Par.	Mod.	Mult., quad 10 V or $4-20 \mathrm{~mA} 0 / \mathrm{p}, \mathrm{c}-\mathrm{mos}$ opt.
	DT215	8×4	35μ	Par.	Mod.	Mult., quad lov or 4-20mA o/p, c-mos opt.
	DT215H	8×4	8μ	Par.	Mod.	Mult., quad 10 V or 4-20mA o/p, c-mos opt.
	DT212	12×2	1μ	Par.	Mod.	2 ch . XY point plot, $50 \mathrm{~mA} 0 / \mathrm{ps}$, latches
Ferranti	2N425	8/6	1μ	Par./ck	Bip.	Int. reference \& ramp count., V o/p, 5 V supply
	2N426	8/6	1μ	Par.	Bip.	Int. reference, $V o / p, 5 V$ supply
	2N428	8	800n	Proc.	Bip.	Int. reference, 5V supply, V o/p
	2N429	8	1μ	Par.	Bip.	5V supply, V o/p, 25mW
	2N434	4	300n	Par.	Bip.	5 V supply, ext. reference or int. $5 \mathrm{~V} / 2, \mathrm{~V} 0 / \mathrm{p}$
	2N435	8	800 n	Par.,'ck	Bip.	Int. reference, ck \& u/d ramp count., V o/p, 5V

New molybdenum- gate c-mos technique increases converter speed and accuracy

A newly developed c-mos i.c. process involving the use of molybdenum is now being used to manufacture a highspeed and accurate flash converter which, it is claimed, outperforms much more expensive hybrid devices.

Sampling at up to 2 MHz with $\pm \frac{1}{2}$ bit accuracy, the 11-bit monolithic flash converter costs significantly less than equivalent hybrid products says manufacturer and developer Micropower Systems.

Two-step conversion is used (see subranging converter under 'Converter terms'), one step for the five mostsignificant bits and one for the six least significant. Through use of an 'overflow' bit, two devices can easily be connected in series to give 12bit resolution. Alternatively, two devices can be connected in paratlel to give a 4 MHz sampling rate.

Refractory molybdenum gate metal with a low resistance of 0.5Ω per square resulting in very short delays of 0.5 ps over $10 \mu \mathrm{~m}$ at $3 \mu \mathrm{~m}$ width is the main feature of the patented c-mos process.

This speed compares with 10 to 20ps delays for silicon. Consumption of the device is 150 mW .

Not only speed is improved. Using molybdenum also allows more accurate and stable capacitors and resistors to be made on the chip. Dry plasma etching is used for the molybdenum pattern which gives precision matched resistors. Molybdenum with the second layer of aluminium is also used to produce 'auto-zero'

capacitors

Direct ion implantation greatly improves parasitic input capacitance. The process is implemented using what is claimed to be a unique reduced-width molybdenum gate which does not overlap at the edges of the source and drain regions. The metal acts as a mask for ion implantation which brings the source and drain regions back to the edge of the gate as the diagram shows.

A non-critical self-aligned
process with low gate overlap capacitance results. Effective gate length of $2 \mu \mathrm{~m}$ with 0.1 pF overlap gate capacitor and less than 1ns gate delay are achieved.

Molybdenum is also used as a first layer metal interconnect to further improve circuit density and speed without other disadvantages, claims Micropower. Typical molybdenum interconnect time delay is less than 0.5 ps for each $10 \mu \mathrm{~m}$ length.
Moreover the molybdenum, with its low resistivity of 0.5Ω per square and ability to make good contact, is easily plasma etched to fine tolerances to make the precision resistors needed for quantizing voltage levels in a flash converter.

Second layer interconnect aluminium at 0.025Ω per square with silicon nitride dielectric between defines a reliable high-value capacitor of $0.8 \mathrm{pF} / 25 \mu \mathrm{~m}^{2}$. This further reduces parasitics associated with the capacitor bottom plate due to its much reduced size and increases dynamic range of the input signal.

Manufacturer	Device	Bits	Speed	Interface	Tech.	Features
	ZN436	6	1μ	Par.	Bip.	V o/p, 5V supply
	ZN454	4×3	8 n	Par.	Bip.	$\mathrm{RGB} 0 / \mathrm{ps}$, syncs, int. reference, ext. gain set
	ZN558	8	800 n	Par.	Bip.	Int. reference, latches, 5 V supply, V o/p
Honeywell (S. P. Tech.)	CAL24010	12				Calibrator, 1 to 0.001 decade attenuator
	DAC805	8	5 n	Par.	Hyb.	200 MHz samp. vid. + sync, int. ref./latch, HDG805 compat.
	DAC9700	8	5 n	Par.	Bip.	200 MHz semp. vid. + sync, int. ref./latch, AD9700 compat.
	DAC34010	4×3	5 n	Par.	Bip.	200 MHz samp. RGB + sync, int. ref./latches, -5 V supply
	DAC34020	4×3	10 n	Par.	Bip.	100 MHz samp. RGB + sync, int. reference/latches
Intech	DAC3400	4×3	$15 n$	Par.	C -mos	40 MHz samp. RGB + sync, 5 V 250 mW , latches
	DAC3405S	4×3	15 n	Par.	$\mathrm{C}-\mathrm{mos}$	40 MHz samp . RGB + sync, int. ram, 5 V
	DAC3800	8×3	-	Par.	Hyb.	40 MHz samp. RGB + sync, latches, 500 mW
	DAC3808	8×3	-	Par.	Hyb.	40 MHz samp. RGB + sync, memory, 1.5 W
	DACS150	4×3	$13 n$	Par.	E.c.l.	80 MHz samp. RGB + sync, int. reference/ram
	DAC5151	4×3	7 n	Par.	E.c.l.	150 MHz samp. RGB + sync, int. ref., latches
	DAC1840	8	15 n	Com. bin.	C -mos	40 MHz samp., vid./sync o/p, latches, -5 V supply
	DACl842	8	15 n	Bin.	C-mos	40 MHz samp., vid./sync o/p, latches, -5 V supply
Intersil	AD7520	10	500 n	Par.	C -mos	Mult., 5V 20mW supply, Io/p, 200na o/p leakage.
	AD7521	12	500 n	Par.	C-mos	Mult., 5V 20mW supply, I o/p, 200nA o/p leakage.
	AD7323	8	100n	Par.	C -mos	Mult., 5V supply, 8/9/10bit lin. opts., I o/p
	AD7530	10	500n	Par.	C -mos	Mult., 5V 20mW supply, Io/p, 300nA o/p leakage.
	AD7531	12	$500 n$	Par.	C -mos	Mult., 5V 20mW supply, I o/p, 300nA o/p leakage.
	AD7533	10	600 n	Par.	C -mos	Mult., 5V supply, 8/9/10bit lin. opts., I o/p
	AD7541	12	1μ	Par.	C-mos	Mult., 5V supply, 11/l2bit lin. vers., I o/p
	ICL7112	12	500 n	Par.	C-mos	Mult., 5V supply, $\pm 0.02 / 0.01 \%$ lin., I o/p
	ICL7113	3dig.	500n	Par.	C-mos	Mult., 5V supply, b.c.d. i/p, I o/p
	ICL7134	14	3μ	Proc.	C -mos	Mult., + or +/-o/p, preliminary
	ICL7520	10	$500 n$	Par.	C -mos	Mult., $20 \mathrm{~mW}, 8,9$ or 10 bit
Micro Networks	DAC71/I	16	1μ	Par.	Hyb.	-2 or $\pm 1 \mathrm{~mA}$ o/p, int. ref., $\pm 0.003 \%$ f.s. linearity
	DAC71/V	16	10μ	Par.	Hyb.	10 or $\pm 10 \mathrm{~V} 0 / \mathrm{p}$, int. ref., $\pm 0.003 \%$ f.s. linearity
	DAC80/I	12	300n	Par.	Hyb.	-2 or $\pm 1 \mathrm{~mA} 0 / \mathrm{p}$, int. ref., comp. bin./b.c.d. opts
	DAC80/V	12	3μ	Par.	Hyb.	5 V //p ranges, int. ref., comp. bin./b.c.d. opts
	DAC85/I	12	300 n	Par.	Hyb.	-2 or $\pm \operatorname{lmA}$ o/p, int. ref., $\pm t_{2}$ or $1 / 4$ bit lin. opts
	DAC85/V	12	3μ	Par.	Hyb.	$5 \mathrm{~V} 0 / \mathrm{p}$ ranges, int. ref., $\pm \frac{1}{2}$ or $1 / 4$ bit lin. opts
	DAC87	12	3μ	Par.	Hyb.	$5 \mathrm{~V} 0 / \mathrm{p}$ ranges, int. ref., < $\pm 1 / \mathrm{b}$ bit linearity, 0.9 W
	DAC88	12	<10ر	Latch	Hyb.	$3 \mathrm{~V} 0 / \mathrm{p}$ ranges, int. ref., < \pm /2bit linearity, 0.76 W

* Preliminary data only; these devices do not use $\mathrm{R}-2 \mathrm{R}$ ladder.

Manufacturer	Device	Bits	Speed	Interface	Tech.	Meth.	Features
AMDAnalog Devices	Am6108	8	1μ	Proc.	Bip.	-	Int. ref., 0.1* lin., ratiom.
	Am6112	12	7μ	Proc.	Bip.	S.a.	Prog. modes, 15 mA ref. o/p, 8 bit bus, lbit lin.
	Am6148	8	1μ	Proc.	Bip.	-	Int. ref., 0.1\% lin., ratiom.
	Am6688	4	5 n	Par.	Bip.	Samp.	100 MHz rate, 50 MHz b.w., e.c.l.
	AD376	8	15μ	-	Hyb.		Ref.
	AD570	8	25μ	Par. 38	Bip.	S.a.	Ref. \& int. ck, 10 or \pm SV i/p
	AD571	10	25	Par. 38	Bip.	S.a.	Ref. \& int. ck, 10 or $\pm 5 \mathrm{Vi} / \mathrm{p}$
	AD572	12	<25 μ	Ser/par	Hyb.	S.a.	0.012\% lin., long termstab., 900 mW
	AD573	10	204	Proc.	Bip.	S.a.	Ref. \& clock, 10 or $\pm 5 \mathrm{~V} \mathrm{i} / \mathrm{p}$
	AD574	12	25\%	Proc.	Hyb.	S.e.	l2bit bus, $250 n s$ access, 4 range i/p
	AD575	10	304	Ser.	Bip.	S.a.	Ref. \& int/ext ck, 4 range i/p
	AD578	12	3μ	Par/ber	Hyb.	S.e.	0.012% lin., long term stab., 4 range
	AD579	10	1.8μ	Par. 38	Hyb.	S.a.	0.05\% lin., long term stab., 4 range
	AD670	8	10μ	Proc.	Bip.	S.a.	Sig. cond. i/p, 5V supp., int. ref.
	AD675	8	20ر	Proc.	Bip.	S.a.	Ref. \& clock, 10 or $\pm 5 \mathrm{~V} \mathrm{i} / \mathrm{p}$
	AD5010	6	10 n	Par.	Bip.	Flash	$100 \mathrm{MHz}, 450 \mathrm{~mW}$, e.c.l. $0 / \mathrm{p}$, $1 / 4$ bit lin.
	AD5200	12	50M	Ser/par	Hyb.	S.a.	No adj., $0.4 \times$ f.s. abs. acc.
	AD5210	12	13μ	Ser/par	Hyb.	S.a.	No adj., 0.1\% f.s. abs. acc.
	AD5240	12	5μ	Ser/par	Hyb.	S.a.	0.012% lin., long term stab.
	AD6020	6	20 n	Par.	Bip.	Flarh	$50 \mathrm{MHz}, 450 \mathrm{~mW}$, e.c.l. o / p
	AD7550	13	40 m	Proc.	$\mathrm{C}-\mathrm{mos}$	Q.slo.	Ratiom., lppm/ ${ }^{\circ} \mathrm{C}$, \%bit rel. acc.
	AD7552	12	160 m	Proc.	$\mathrm{C}-\mathrm{mos}$	Q.slo.	Ratiom., l lis.b. error
	AD7571	10	80μ	Ser/par	$\mathrm{C}-\mathrm{mos}$	s.a.	Diff. i/p, int. ck., lobit + sign
	AD7574	8	15μ	Par. 38	C -mos	S.a.	Ratiom., SV supp., diff. i/p, 30 mW
	AD7576	8	104	Proc.	$\mathrm{C}-\mathrm{mos}$	S.a.	15mW, 5 V supp., high i/p imp.
	AD7578	12	100 μ	Proc.	$\mathrm{C}-\mathrm{mos}$	S.a.	8 bit bus, auto-zero, 75 mW
	AD7581	8×8	66,	Proc.	$\mathrm{C}-\mathrm{mos}$	S.a.	8-i/p mpx, 64-bit mem., ratiometric
	AD7582	12	1004	Proc.	$\mathrm{C}-\mathrm{mos}$	S.a.	4-i/p mpx, 8bit bus, auto-zero
	AD7820	8	1.4μ	Proc.	$\mathrm{C}-\mathrm{mos}$	Subrng	Ratiometric, 5V supp., 75 mW
	AD9000	6	13 n	Par.	Bip.	Flash	75 MHz , e.c.l. $0 / \mathrm{p}$
	ADC71	16	45,	Ser/par	Hyb.	S.a.	$45 \mu \mathrm{~s}$ for $14 \mathrm{bit}, 0.003 \%$ lin., 850 mW
	ADC72	16	45μ	Ser/par	Hyb.	S.a.	$45 \mu \mathrm{~s}$ for 14 bit , $0.003 \% \mathrm{lin} ., 850 \mathrm{~mW}$
	ADC80	12	25μ	Ser/par	Hyb.	S.a.	0.012% lin., ref. $0 / \mathrm{p}, 5 \mathrm{i} / \mathrm{p}$ ranges
	ADC84	10	6μ	Ser/par	Hyb.	S.a.	0.048\% lin., ref. o/p, 5 i/p ranges
	ADC85	12	104	Ser/par	Hyb.	S.a.	0.012\% lin., ref. o/p, $5 \mathrm{i} / \mathrm{p}$ ranges
	ADC816	10	800 n	Ser/par	Hyb.	S.a.	thit lin., $6 \mathrm{i} / \mathrm{p}$ ranges, 15 V supp.
	ADCl131	14	12μ	Ser/par		S.a.	$10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ gain drift, 14 bit acc./res.
	ADC1140	16	55	Par.	Hyb.	S.a.	0.003% lin.
	ADCl143	16	70μ	Ser/par		S.a.	to 0.003% diff. lin., lppm/ ${ }^{\circ} \mathrm{C}, 150 \mathrm{~mW}$
	CAV0920	9	50 n	Par.	P.c.	Subrng	20MHz, e.c.l. $0 / \mathrm{p}$
	CAV1040	10	$25 n$	Par.	P.c.	Subring	40 MHz , e.c.l. o/p, range select
	CAV1210	12	100 n	Par.	P.c.	Subrng	10 MHz , e.c.l. o/p
	HAS0802	8	1.2μ	Par. 3 s	Hyb.	S.a.	0.05\% f.s. error, low power
	HAS1002	10	1.7μ	Par. 3s	Hyb.	S.a.	0.025\% f.s. error, low power
	HASI201	12	1μ	Par. 3 s	Hyb.	-	Track \& hold, 1 MHz word rate
	HAS1202	12	2.8μ	Par. 3s	Hyb.	S.a.	0.012\% f.s. error, low power
	HAS1204	12	2μ	Ser/par	Hyb.	Sample	500 kHz word rate, 4 MHz bandwidth
	HAS1409	14	8μ	Par. 3s	Hyb.	Subring	Track \& hold, 125 kHz rate, for $\mathrm{f} / \mathrm{t} . \mathrm{d} . \mathrm{m}$.
	MATV811	8	90 n	Par.	P.c.	Subrng	Small llMHz vid., $743 \mathrm{o} / \mathrm{p}$, buff. i/p
	MatV816	8	$63 n$	Par.	P.c.	Subrng	Small 16 MHz vid., 74S o/p, buff. i/p
	MATV 820	8	50 n	Par.	P.c.	Flash	Small 20 MHz vid., buff. i/p
	MOD1005	10	200n	Par.	P.c.	Subring	20MHz analogue b.w., t.t.1. o/p
	MOD1020	10	50 n	Par.	P.c.	Subrng	20MHz word rate, e.c.l. o / p
	MOD1205	12	200n	Par.	P.c.	Subrng	5 MHz word rate, t.t.l. $0 / \mathrm{p}$
Analogic	ADAM724	14	6.8μ	Par. 3 s	Mod.	S.a.	Int. ref., s-s-h, p.g.a., $\pm 0.003 \%$ lin.
	ADAM812	12×2	19.5μ	Par.	Mod.	S.a.	Int. ref., s- $8-\mathrm{h}, \pm 0.025 \%$ f.s. error
	ADAM822	12×2	39	Par.	Mod.	S.a.	Int. ref., s-8 $-\mathrm{h}, \pm 0.025 \%$ f.s. error
	ADAM824	14	50μ	Par. 3s	Mod.	S.a.	Abs. acc. $\pm 0.006 \%$ f.s., 20 kHz rate, 0.9 W
	ADAM825	15	59	Par. 3s	Mod.	S.a.	As 824 but 18 kHz rate, both have s-8-h
	ADAM826-1	16	2.3μ	Par. 3s	Mod.	S.a.	Int. s-s-h, 10 or $\pm 10 \mathrm{~V} \mathrm{i} / \mathrm{p}$ options
	ADAM826-2	16	2μ	Par. 3s	Mod.	S.a.	Int. s- $8-\mathrm{h}, 10$ or $\pm 10 \mathrm{~V} \mathbf{i} / \mathrm{p}$
	ADAM826-3	16	1.5μ	Par. ${ }^{\text {Ps}}$	Mod.	S.a.	Unbuffered i/p
	ADAM834	14	63μ	Par. 3s	Mod.	S.a.	Int. s-8-h, wide temp. rng, $0.9 \mathrm{~W}, 50 \mu \mathrm{~V}$ noise
	ADAM835	15	63μ	Par. 38	Mod.	S.a.	As ADAM834 but l5bit, better lin. \& temp. co.
	MP2S16	16	27 m	Pulse	Mod.	2 sl .	Isolated with supply, p.g.a. \& reference
	MP2321	3.5d	10 m	Par.	Mod.	Int.	Ratiom., isol. b.c.d. o/p, int. supp. \& ref.
	MP2522	12	10 m	Par.	Mod.	Int.	Retiom., isol. bin. $/$ /p, int. supp. \& ref.
	MP2712	12	5μ	Par/ser	Mod.	S.a.	Int. ck/ref., $4 \mathrm{i} / \mathrm{p}$ ranges, $\pm 0.015 \%$ abs. acc.
	MP2715	15	10,	Par/ser	Mod.	S.a.	Int. ck/ref., $4 \mathrm{i} / \mathrm{p}$ ranges, $\pm 0.009 \%$ abs. acc.
	MP2714	14	10μ	Par/ser	Mod.	S.a.	Int. ck/ref., $4 \mathrm{i} / \mathrm{p}$ ranges. $\pm 0.007 \% \mathrm{abs}$ acc.
	MP2734	14	6.8μ	Par. 38	Mod.	-	Int. ck/ref., $4 \mathrm{i} / \mathrm{p}$ ranges, $\pm 0.007 \%$ abs. acc.
	MP2735-1	15	5μ	Par.	Mod.	Subring	Audio $\pm 0.005 \%$ t.h.d., int. ref., 3dB idle noise
	MP2735-2	15	54,	Par.	Mod.	Subrng	2735-1 with no $8-8 \mathrm{c}-\mathrm{h}, 200 \mathrm{kHz}$ not 125 kHz rate
	MP8008R	8	3u	Par. 3 s	Mod.	Samp.	0.02% differential linearity, $\pm 5 \mathrm{~V} \mathrm{i} / \mathrm{p}$
	MP8014	14	10μ	Par/ser	Mod.	S.a.	Int. ck/ref., $\pm 0.006 \%$ abs. acc., 10 or $\pm 10 \mathrm{~V} \mathrm{i} / \mathrm{p}$
	MP8015	15	15μ	Par/ser	Mod.	S.a.	Int. ck/ref., $\pm 0.006 \%$ abs. acc., 10 or $\pm 10 \mathrm{~V} \mathrm{i} / \mathrm{p}$
	MP8016	16	32μ	Par/ser	Mod.	S.e.	Int. ck/ref., $\pm 0.003 \% \mathrm{abs}$. acc., 10 or $\pm 10 \mathrm{~V} \mathrm{i} / \mathrm{p}$
	MP8037	17	4 ms	Par.	Mod.	Subrng	Ratiom., int. ck/ref., $\pm 0.005 \%$ abs. acc., 10 V i/p
	SHADZA	16×2	17.5μ	Par/ber	Mod.	3-s1.	Audio 150 kHz samp. sing. ch., -86 dB distortion
Burr-Brown	ADClOHT	12	50¢	Par/ber	Hyb.	S.a.	Ck/ref., -55 to $200^{\circ} \mathrm{C}, \pm 0.012 \% \mathrm{f.s}$. lin., 0.25 W
	ADC60-12	12	3.5μ	Par/ber	Mod.	S.a.	Int. ck/ref., $6 \mathrm{i} / \mathrm{p}$ ranges, $\pm 0.195 \%$ f.s. lin .
	ADC60-10	10	1.88μ	Par/ber	Mod.	S.a.	Int. ck/ref., $6 \mathrm{i} / \mathrm{p}$ ranges, $\pm 0.0488 \%$ f.s. lin.
	ADC60-8	8	0.884	Par/ser	Mod.	S.a.	Int. ck/ref., $6 \mathrm{i} / \mathrm{p}$ ranges, $\pm 0.0244 \% \mathrm{f.s}$. lin.
	ADC71	16	50μ	Par.	Hyb.	S.a.	Int. ck/ref., $6 \mathrm{i} / \mathrm{p}$ ranges, $\pm 0.003 \%$ f.s. lin.
	ADC72	16	50,	Pars	Hyb.	S.a.	Int. ck/ref., $6 \mathrm{i} / \mathrm{p}$ ranges, $\pm 0.003 \%$ f.s. lin.
	ADC73	16	-170	Par/ser	Mod.	S.a.	Int. ck/ref., $4 \mathrm{i} / \mathrm{p}$ ranges, $\pm 0.00075 \%$ f.s. lin.
	ADC76	16	15μ	Par.	Hyb.	S.a.	Int. ck/ref., $6 \mathrm{i} / \mathrm{p}$ ranges, $\pm 0.003 \% \mathrm{f.s}. \mathrm{lin}$.
	ADC $80-10$	10	21ر	Par/ser	Hyb.	S.e.	Int. ck/ref., $5 \mathrm{i} / \mathrm{p}$ ranges, $\pm 0.048 \%$ f.s. lin.
	ADC80-12	12	25μ	Par/ser	Hyb.	s.a.	Int. ck/ref., $5 \mathrm{i} / \mathrm{p}$ ranges, $\pm 0.012 \%$ f.s. lin.

Manufacturer	Device	Bits	Speed	Interface	Tech.	Meth.	Features
Data Trans.**	ADC82	8	2.8μ	Par/ser	Hyb.	S.a.	Int. ck/ref., $6 \mathrm{i} / \mathrm{p}$ ranges, $\pm 0.2 \%$ f.s. lin.
	ADC84-10	10	6μ	Par/ser	Hyb.	S.a.	Int. ck/ref., $5 \mathrm{i} / \mathrm{p}$ ranges, $\pm 0.048 \% \mathrm{f.s}$. lin.
	ADC84-12	12	104	Par/ser	Hyb.	S.a.	Int. ck/ref., $3 \mathrm{i} / \mathrm{p}$ ranges, $\pm 0.012 \%$ f.s. lin.
	ADC85	10/12	6/10ر	Par/ser	Hyb.	S.a.	As ADC84 10 \& l2bit, but better temp. co.
	ADCl00	16	200m	Par/ser	Mod.	Int.	Ck/ref., 0.005\% lin., models for bin. \& b.c.d. o/p
	ADC731	16	170μ	Par/ser	Mod.	s.a.	ADC73 with instrumentation amplifier i/p
	ADC803	12	1.5μ	Par.	Hyb.	s.a.	Int. ck/ref., $3 \mathrm{i} / \mathrm{p}$ ranges, $\pm 0.012 \%$ f.s. lin.
	ADC804	12	17μ	Ser.	Hyb.	S.a.	$\pm 0.012 \%$ f.s. lin., $<500 \mathrm{~mW}$
	PCM75	16	174	Par.	Hyb.	S.a.	Audio, 0.004\% f.s. t.h.d., int. ck/ref.
	DT5701	12	19μ	Par.	Mod.	-	$16 \mathrm{ch}$. mpx, 4 ranges, ser. $0 / \mathrm{p}$ opt.
	DT5710	12	6μ	Par.	Mod.	-	$16 \mathrm{ch} . \mathrm{mpx}, 4$ ranges, ser. o/p opt.
	DT5703	12	-	Par.	Mod.	-	$4 \mathrm{ch} . \mathrm{mpx}, 10 \mathrm{mV}$ to $10 \mathrm{~V} \mathrm{i} / \mathrm{p}$, isolated
	DT5704	12	10μ	Par.	Mod.	-	$4 \mathrm{ch} . \mathrm{s} / \mathrm{h} \mathrm{mpx} 10 \mathrm{~V} \mathrm{i} /$,
	DT5712	12	25μ	Par.	Mod.	-	$16 \mathrm{ch} . \mathrm{mpx}, 10 \mathrm{mV}$ to $10 \mathrm{~V} \mathrm{i} / \mathrm{p}$
	DT5714	14	70μ	Par.	Mod.	-	$16 \mathrm{ch} . \mathrm{mpx}, 5 \mathrm{mV}$ to $10 \mathrm{~V} \mathrm{i} / \mathrm{p}$
	DT5716	16	350μ	Par.	Mod.	-	$16 \mathrm{ch} . \mathrm{mpx}, 5 \mathrm{mV}$ to $10 \mathrm{~V} \mathrm{i} / \mathrm{p}$
	DT3722	12	2.5μ	Par.	Mnd.	-	$16 \mathrm{ch} . \mathrm{mpx}$, opt. p.g.a., 3 range i / p
	DT5726	16	6μ	Par.	Mod.	-	$4 \mathrm{ch} . \mathrm{mpx}, \pm 10 \mathrm{~V} \mathrm{i} / \mathrm{p}$
Ferranti	2N425	8/6	1 m	Par.	Bip.	Ramp	Internal reference \& counter, 5 V supply
	ZN427	8	10μ	Proc.	Bip.	S.a.	Internal reference, ratiometric
	2N432	10/8	15μ	Par/8er	Bip.	S.a.	Int. ref. \& amplifier
	2N433	10/8	1μ	Par/ser	Bip.	Track.	Int. ref. \& amplifier,
	2N435	8	800μ	Par.	Bip.	Ramp	Int. ck, ref. \& count., 5 V supp.
	2N439	8	5μ	Proc.	Bip.	S.a.	Int. ref., ck, $1 / 4$, $/$ or or lbit lin. options
	2N440	6	60 n	Par.	Bip.	Flash	16 MHz rate, \pm kbit lin., t.t.l., 0.7 W
	ZN447	8/6	9μ	Proc.	Bip.	S.a.	Int. clock \& ref., $\pm 1 / 4$ bit linearity
	2N448	8/6	9μ	Proc.	Bip.	S.a.	Int. clock \& ref., \pm \% bit linearity
	2N449	8/6	9μ	Proc.	Bip.	S.a.	Int. clock \& ref., \pm lbit linearity
	2NSOI	10	15μ	Proc.	Bip.	S.a.	Int. ref., l or 2 byte read, $\pm \%_{2}$ bit lin.
	ZN502	10	15μ	Proc.	Bip.	S.a.	Int. ref., 1 or 2 byte read, \pm lbit lin.
Intersil	ADC0801	8	$<100 \mu$	Proc.	C-mos	S.a.	Diff. 5V i/pp., 5V supp., $\pm 1 / 4$ bit lin.
	ADC0802	8	<100]	Proc.	C -mos	S.a.	Diff. 5V i/p, 5V supp., \pm \%bit linearity
	ADC0803	8	<100]	Proc.	C-mos	S.a.	Diff. 5V i/p, 5V supp., \pm /2bit linearity
	ADC0804	8	$<100 \mu$	Proc.	C-mos	S.a.	Diff. 5V i/p, 5V supp., \pm lbit linearity
	ICL7109	12	0.03	Proc.	C-mos	2-sl.	Xtal i/p ck, diff. i/p, $15 \mu \mathrm{~V}$ noise
	8052/7104	14-16	-	Proc./ser.	-	2-81.	2 i.c., ratiom., int. ck, ref., auto zero
	8068/7104	14-16	-	Proc. ser.	-	2-sl.	As above but 2 not 1 MHz analogue bandwidth
Micro Networks	ADC80	12	25μ	Par/ser	Hyb.	S.a.	İnt. ck/ref., $5 \mathrm{i} / \mathrm{p}$ ranges, $10 / 12 \mathrm{bit}$ opts
	ADC84	12	8μ	Par/ber	Hyb.	S.a.	Int. ck/ref., $5 \mathrm{i} / \mathrm{p}$ ranges, $10 / 12 \mathrm{bit}$ opts
	ADC85	12	8μ	Par/ber	Hyb.	S.a.	As ADC84 but 15 not 30ppm/C gain drift
	ADC87	12	8μ	Par/ber	Hyb.	S.a.	As ADC85 but for -55 to $125^{\circ} \mathrm{C}$
	MN574A	12	25μ	Proc.	Hyb.	S.a.	8/16bit read, $\pm 0.012 \%$ f.s. err. int. ck/ref.
	MN5065	8	100M	Par/ser	Hyb.	S.a.	Int. ref., 12 V 70 mW supp., $\pm 5 \mathrm{~V} \mathrm{i} / \mathrm{p}$
	MNS066	8	100μ	Par/ber	Hyb.	S.a.	Int. ref., 12 V 70 mW supp., $10 \mathrm{~V} \mathrm{i} / \mathrm{p}$
	MN5100	8	1.5μ	Par/ber	Hyb.	S.a.	Int. ref., $9 \mathrm{i} / \mathrm{p}$ ranges, \pm \% lis.b. lin.
	MNS101	8	900 n	Par/ser	Hyb.	S.a.	Int. ref., $9 \mathrm{i} / \mathrm{p}$ ranges, \pm ¢ $1.8 . \mathrm{b}$. lin.
	MN3120	8	6 4	Par/ber	Hyb.	S.a.	Int. ref., $4 \mathrm{i} / \mathrm{p}$ range options
	MN5130	8	2.54	Par/ber	Hyb.	S.a.	Int. ref., $4 \mathrm{i} / \mathrm{p}$ range options
	MN5140	8	2.5μ	Par/ber	Hyb.	S.a.	As 5130 but $\pm 12 \mathrm{~V}$ not $\pm 15 \mathrm{~V}$ supply
	MN5150	8	2.5μ	Proc/ser	Hyb.	S.a.	Int. ref., \pm t/ l.s.b. linearity
	MN5200	12	50μ	Par/ser	Hyb.	S.a.	0.05% f.s. err., 0.9 W , int. ref. opt.
	MN5210	12	13μ	Par/ber	Hyb.	S.a.	0.05\% f.s. err., 0.9W, int. ref. opt.
	MN5240	12	5μ	Par/ser	Hyb.	S.a.	Int. ck \& ref., 5 buffered i/p ranges
	MN5243	12	2μ	Par/ser	Hyb	S.a.	Int. ck \& ref., $6 \mathrm{i} / \mathrm{p}$ ranges, $10 / 12 \mathrm{bit}$ opts
	MN5244	12	2μ	Par/ber	Hyb	S.a.	Int. ref., $6 \mathrm{i} / \mathrm{p}$ ranges, $10 / 12 \mathrm{bit}$ opts
	MN5245	12	900 n	Par.	Hyb.	Subrng	Int. ref., 0.024* f.s. err., 5 V i/p
	MN5243A	12	900 n	Par. 3s	Hyb.	Subring	Int. ref., 0.024* f.s. err., $5 \mathrm{~V} \mathrm{i} / \mathrm{p}$
	MN5246	12	900 n	Par.	Hyb.	Subrng	Int. ref., 0.024* f.s. err., $\pm 2.5 \mathrm{~V}$ i/p
	MN5246A	12	900 n	Par. 3s	Hyb.	Subrng	Int. ref., 0.024* f.s. err., $\pm 2.5 \mathrm{~V}$ i/p
	MN5247	12	450 n	Par. 3s	Hyb.	Subrng	Int. ref., 12 bit monot., 5 V i/p
	MN5248	12	450 n	Par. 3s	Hyb.	Subrng	Int. ref., l2bit monot., $\pm 2.5 \mathrm{~V}$ i/p
	MN5250	12	173μ	Par/ser	Hyb.	S.e.	0.1% f.s. abs. err., $80 \mathrm{~mW}, 4 \mathrm{i} / \mathrm{p}$ range opts
	MN5260	14	250M	Par/ser	Hyb	S.e.	0.05% f.s. err., 500 mW , $\pm 10 \mathrm{~V} \mathrm{i} / \mathrm{p}$
	MN5280	16	100μ	Par/ser	Hyb.	S.e.	0.006% f.s. linearity, $6 \mathrm{i} / \mathrm{p}$ rags, int. ref.
	MN5282	16	50μ	Par/aer	Hyb.	S.e.	0.006% f.s. linearity, $6 \mathrm{i} / \mathrm{p}$ rngs, int. ref.
	MN5284	16	${ }^{50 \mu}$	Par/ser	Hyb.	S.e.	15 bit monot., $7 \mathrm{i} / \mathrm{p}$ rngs, 300mW
	MN5290	16	\$5 μ	Par/ser	Hyb.	s.a.	0.003% f.s. lin., $6 \mathrm{i} / \mathrm{p}$ ranges, int. ck/ref.
	MN5291	16	354	Par/ser	Hyb.	S.a.	As 3290 but 13 not 14 bit mon. over temp. range
	MN5420	$12+4$	3.1μ	Par.	Mod.	-	Float. pt., $120 \mathrm{~dB}-10 \mu \mathrm{~V}$ in $10 \mathrm{~V}, 320 \mathrm{kHz}$ rate
	MN5810	12	13μ	Par/ser	Hyb.	S.a.	\%/.s.b. lin., 915 mW , four range options
	MN5700	12	250μ	Parlser	Hyb.	S.a.	1\% f.s. err. at $200^{\circ} \mathrm{C}$, int. ref., $4 \mathrm{i} / \mathrm{p}$ rngs
	MN5815	8	700 n	Par/ser	Hyb.	S.a.	Int. ck/ref., 6 rngs, log. sel. + or $\pm \mathrm{i} / \mathrm{p}$
	MN5825	8	1μ	Par/ser	Hyb.	S.e.	Int. ck/ref., 6 rngs, log. sel. + or $\pm \mathrm{i} / \mathrm{p}$
	MN7120	8	7μ	Parsis/ser	Hyb.	-	$8 \mathrm{ch} . \mathrm{mpx}, 75 \mathrm{kch} / \mathrm{s}$, int. $\mathrm{ck}, \pm \mathrm{L}_{2} \mathrm{bit} \mathrm{lin}$.
	MN7140	12	401.	Par.	Hyb.	S.a.	$8 \mathrm{ch} . \mathrm{mpx}$., int. ck/ref., 0.1% f.s. abs. err.
	MN7150-8	12	9μ	Proc.	Hyb.	-	$8 \mathrm{ch} . \mathrm{mpx}$ diff. hich-Z i/p, int. ck/ref.
	MN7180-16	12	9μ	Proc.	Hyb.	-	$16 \mathrm{ch} . \mathrm{mpx}$ high-z i/p, int. $\mathrm{ck} / \mathrm{ref}$. . $50 \mathrm{k} \mathrm{ch} / \mathrm{s}$
	Company produces expanders for some listed devices and a large number of analosua input/output modules for specific computer buses and applications.						

Addresses

Adretta	Analog Devices North St.
Centrai Avenue	
Wellington	East Molesley
Somerset TA21 8LZ	Surrey KT8 05N
AMD (UK)	
AMD House	Analogic
Goldsworth Rd	The Centre
Woking	68 HIgh St.
Surrey GU21 1JT	Weybridge KT13 8BN
AMI Microsystems	Burr Brown
Crinces House	11 Station Rd
Princes St.	Watford WD1 1EA
Swindon	
Wilts SN1 2HU	Coole Marketing
	26 Pamber Heath Rd
Amplicon Electronics	Pamber Heath
Richmond Road	Basingstoke
Brighton BN2 3RL	Hants RG26 6TG

Data Translation The Business Centre Molly Millar's Lane Molly Millar's Lane
Wokingham Berks RG11 2Qz

DDC

128 High St
Hungerford
Berks RG17 0DL
DI-AN Systems
Mersey House Battersea Rd Heaton Mersey Stockport SK4 3EA

Electrovalue
28 St Judes Rd
Engelfield Green
Engelfield
Egham
Surrey TW20 0BH
Fairchild
230 High Street
Potters Bar
Herts EN6 5BU
Ferranti Electronics
Fields New Road
Chadderton
Oldham
Lancs OL9 8NP
Ginsbury, Sylvan
108 High'St.
Stroud
Rochester
Kent ME2 4TR
Harris Semiconductor
PO Box 27
145 Farnham Rd
Slough SL1 4XD

Hewlett Packard Components Group Components Group
Miller House
The Ring
Berks RG12 1XN
Intel
Pipers Way
Swindon
Wilts SN3 1RJ
Intelligent Artefacts
Cambridge Rd
Orwell
Royston
Kent SG8 5QD
Intersil
Semicon. Div

9th Floor
Snamprogetti Hse
Basing View
Basingstoke
Hants RG21 2 YS
MCP Electronics
38 Rosemount Rd
Alperton
Middx HAO 4PE

The rest of this list of i.cs and modules, logether wilh relevant addresses, will appear next month.

New approach to instrumentation amplifier design

This idea deals with two new concepts, leading to a programmable amplifier design.
The first circuit uses theoretical results by Sun, according to which effective resistance $\mathrm{R}_{\text {eff }}$ of a resistor and switch in series is
approximately proportional to

$$
\left(\mathrm{R}+\mathrm{R}_{\mathrm{on}}\right) \mathrm{T}_{5} \mathrm{~d}=\mathrm{R}_{0} \mathrm{~T}_{5} / \mathrm{d}
$$

where $R_{\text {on }}$ is the on resistance of the switch, T_{s} is the switching period and d is the on time in a period. Circuit gain A is given by

$$
\left(1+2 \frac{R_{1}}{R_{n}}\right) \frac{d}{T_{5}}
$$

Gain of this instrumentation amplifier nay be programmed by choosing the ratio of $\mathrm{d} / \mathrm{T}_{\mathrm{s}}$, where $f_{s}=1 / T_{s}$, is the subaudio switching frequency. To obtain a positive output voltage, a fourth op-amp with feedback diode is applied to give the albsolute value of the output signal.
Two voltage op-amps at the input of the instrumentation amplifier are used in the second design. The difference amplifier is replaced by a transconductance op-amp with two linearizing diodes. For a transconductance op-amp, between the output current and input voltage $I_{\text {out }}=\mathrm{gV}_{\text {in }}$ is

thetransconductance of the op-amp where g is $1_{c} / 2 \mathrm{~V}_{\mathrm{T}}$ which is 19.231_{c}; control current $I_{c} \leqq 2 m A$.
Gain of the instrumentation amplifier shown in the second figure is given by

$$
A=19.23\left(1+2 \mathrm{R}_{\mathrm{t}} / \mathrm{R}_{2}\right) \mathrm{RI}_{\mathrm{C}} .
$$

Supposing ($1+2 R_{1} / R_{2}$) is constant. gain A may be programned either by resistance R or more simply bycontrol current $l_{\text {c }}$.

K. Kraus

Rokycany
Czechoslovakia
Sun Y. and Frisch 5., Resistance Multiplication by Means of
Switching. IEEE transactions on
Circuit Theory, Vol. CT-15, Sept. 1968 No.3. pp. 184-192.

Pulses for medical use

We needed a device capabled of producing $30-100 \mathrm{~V}$ at 50 mA from 5 V pulses for use as a stimulator for diagnosing nerve palsy. The 5 V pulses come from a medical computer. Initially we used a pulse amplifer with a regulated power supply to compensate for fluctuating mains voltages, but this later approach is much simpler.

Transistor Tr_{1} is saturated by each positive pulse from the pulse transformer. This transistor's collector current pulses are applied to a shunt regulator, so output-pulse amplitude depends solely on the potentiometer setting.
provide additional safety is in case the mains transformer primary and secondary short.
José I. Crakovski
Buenos Aires

Argentina

Output voltage is independent of mains voltage variations. Resistors $\mathrm{R}_{1.2}$

Economical long- time-constant integrator

Long time-constant integrators can be built if output of a voltage-to-frequency converter is connected to a counter feeding a d-to-a converter (block diagram). Resulting output is the integral of input because each v-to-f converter
may be taken as an integrator. Using a programmable timer, the design is similar and cheaper(r.h.diagram). Duration of timing cycle T is given as NRC where N is an integer in the range $1 \leqq N \leqq 225$. When resistor R is

(b)
replaced by a current source, frequency

$$
\mathrm{f}=\mathrm{V}_{\mathrm{in}} / \mathrm{NCR}_{\mathrm{E}} \mathrm{~V}_{\mathrm{K}}
$$

where V_{K} is 3.8 V for BC 252 C .
Output is the integral of input voltage with a time constant
between 1μ sand 5 days.
Cascading timers gives
extremely long time constants.
Kamil Kraus
Rokycancy
Czechoslovakia
 interference.

Power watchdog

Pulses from a computer port keep this power watchdog circuit activated by holding the p-channel power fet on. The dual fet network provides negative resistance. When the network is unbiased, current equal to the lower of the two $I_{\text {DDs }}$ can flow, keeping the p-channel device off even in the presence of considerable

Once current supplied by the 2N7000 exceeds zero, the j-fets soon pinch off. If the watchdog pulses fail, the RC network
discharges until voltage across it is less than the combined pinch-off voltage, when the transistor turns off rapidly.

Devices with from 3-7V pinch-off voltage are suitable for this arrangement. Oider dmos devices with gate zener diodes or less than 40 V drainsource voltage should not be used.
Components R and C are chosen to suit the application. Leakage of the fet is typically less than lnA in the pinchedoff condition.
M.D. Bacon

Taunton
Somerset
ELECTRONICS \& WIRELESS WORLD FEBRUARY 1986

Burglar alarm

In spite of the simple appearance of this circuit. it has many features - keypad lock/unlock, arm delay, alarm delay, 15 min alarm timeout, eight sensor loops and an anti-tamper interlock. There are four mat and four loop sensors.

The keypad is straightforward and may be replaced by a key switch. Heart of the circuit is a 4060 oscillator and divider which provides timing.
In safe mode, the oscillator and bistable devices are reset. On arming, the first 60s cycle elapses and inhibits the clock but enables the sensor latch. When triggering occurs, the clock is enabled and after 60s the alarm is set for a further $7.5,15$ or 30 min depending on the circuit setting. After this period, the circuit returns to the initial armed mode ready for the next break-in.

Switching the keypad to safe at any time resets the control circuit. Affected zones are indicated by leds. Use a lead-acid accumulator and not an NiCd battery - it is more reliable. Cutting the keypad wire does not stop the alarm.

Quentin Rice

Lower Kingswood Surrey

Simple charger for AA cells

Constant current of 50 mA for $14-16$ hours is usually needed for AA NiCd cells.
Overcharging at the correct current does not harm the batteries so an overnight charge is possible using a constant-current charger.

Up to six cells can be charged at once using this simple circuit. Besides indicating that the cells are properly conncected and being charged, the led forms a constant-voltage source. When the cells are not connected, the led is off.

Resistor R determines
charge current.
V. Mehra

Chandigarh
India

Shaft encoder counting

Croft's circuit for shaft encoder counting in the November issue is effective in many applications but it can miscount if repeated reversals occur.
As the first timing diagram shows, if the shaft is repeatedly reversed over a fraction of a cycle it is possible to produce a unidirectional count even though no net motion has occurred. This can happen in practice if there is mechanical bounce on starting or stopping the shaft.
To solve this problem, a onebit longer counter is needed; twice the number of counts are
generated compared with Croft's system. The first Or gate produces a transition at every transition of either of the quadrature lines.
A brief negative transition is produced by the second Or gate at every transition from the first gate because the signal on one of its inputs is inverted and delayed compared with the other one. Trailing edges of these pulses clock the counter, after the up/down line has had plenty of time to settle.
M. Winder

Reading University
Berkshire

Analogue voltage multiplier

Suitable for low-frequency applications, this circuit was designed for use in measurement of patients' breathing patterns. Differential inputs A are provided, and A_{+} must always be positive with respect to A_{-}. Input B can be positive or negative, as the 4016 analogue switch is at a virtual earth. The circuit can be rearranged as shown to form a divider.

Remaining i.c. elements were used in sample-and-hold circuits.
G.G.R. Rutter

London

multiplexer during refresh, and A_{14} during read/write cycles.
Row-address strobe RAS is produced by the MREG memory request signal. Switch signal MUX is provided by the next clock cycle after MREQ goes low provided that RFSH is high, therefore not switching during refresh. Columnaddress stobe $\overline{\mathrm{CAS}}$ is produced from $\overline{\text { MUX }}$ after delay and inversion.
Using this circuit and simple wire links on the p.c.b., 16 K drams can be exchanged for 64 K types using the same sockets and p.c.b.
R.J. McClelland

Liverpool
Merseyside

Delay to allow time for the multiplexer to settle MAO to MA7 before producing [AS

Multiplexer for 16 or 64 K d-rams

In designing a 280 -based computer, I produced this circuit allowing simple switching between 16 and 64 K d-rams.
For 16 K rams, the usual multiplexed addresses are produced as MA_{0-6}. A further multiplexed address is needed for 64 K devices, for which I used the remaining top two bits of the address bus $\mathrm{A}_{14.15}$ to provide multiplexed addresses for 16 and 64 K d-rams during write/read cycles.
A problem with 64 K rams is that during refresh they need A_{7} on MA_{7}, not A_{14} as it would be on the system described so far. To overcome this I use the $\overline{\text { RFSH }}$ signal to gate A_{7} to the

IOD-
 The world shrinkers

IQD's state-of-the-art DTMF signalling technology now brings you Smartpatch 5700, which allows you to dial direct into the telephone network while you are on the IDD
IQD Limited
North Street, Crewkerne Somerset TA18 7AR, England
Telephone: (0460) 74433
Telex: 46283 move, and to accept incoming calls regardless of your location

Smartpatch 5700 is the only intelligent telecommunications interconnect system with British Telecom approval.

Smartpatch 5700 complements IQD's extensive range of DTMF products, which includes the Codepad, Micropad and Selcall devices.

IQD keeps you in touch.

IQD CONMUNICATION DEVICES

CIRCLE 16 FOR FURTHER DETAILS.

TDS 900 FORTH

 You've heard that* Industries fram brewing ta oerospoce use FORTH
* It is easy ta learn and apply
* It is interactive, yet is compiled for speed
* Assembler code con be included
* Development is done on the torget system
* Yaur VDU, IBM compotibie or BBC pragrams the TDS900
* TDS900 series computers have a full-screen editar
* TDS900 series hos both N-channel and C -MOS versions
* TDS902 cansumes 25 mA and has 62 K bytes memory
* Execution times in microseconds can be meosured
* TDS900 cards hove hardware multiply and 16 bit timer
* They hove interrupts, both internal and external
* Some hove non-volatile memory, some 9.8 MHz clocks
* TDS971 offers RS232 and IEEE-488 expansion
* TDS972 adds RS232, A to D ond parallel ports
* TDS973A gives opta-isolation an 32 input/outputs

FORTH computers start at $£ 99$

∇Triangle Digital Services Ltd 100a Wood Street, London E17 3HX Telephone 01-520-0442 Telex 262284 (Ref m0775)

CIRCLE 72 FOR FURTHER DETAILS.

A SELECTION FROM OUR STOCK OF BRANDED VALVES

The Archer Z80 8BC

The SDS ARCHER - The Z80 based single board computer chosen by professionals and OEM users

* High quality double sided plated through PCB
$\star 4$ Bytewide memory sockets - upto 64 k
\star Power-fail and watchdog timer circuits
* 2 Serial ports with full flow control
$\star 4$ Parallel ports with handshaking
\star Bus expansion connector
\star CMOS battery back-up
\star Counter-timer chip
$\star 4 \mathrm{MHz}$ Z80A

OPTIONS:

* SDS BASIC with ROMable autostarting user code
* The powerful 8 k byte SDS DEBUG MONITOR
* On board 120 / 240 volt MAINS POWER SUPPLY
\star Attractive INSTRUMENT CASE - see photo.
* $64 \mathrm{k} / 128 \mathrm{k}$ byte DYNAMIC RAM card
* 4 socket RAM - ROM EXPANSION card
* DISC INTERFACE card

Sherwood Data cystems Ltd

Sherwood House, The Avenue, Farnham Common, Slough SL2 3JX.Tel. 02814-5067
circle 38 for further detal.s

RF U.S. supplier of RF POWER DEVICES. POWER Prices LOWER than current domestic prices. Query us for immediate needs.

A quality source for a complete range of RF POWER devices - From 230 MHz , SSB 12.5 V 728 V transistors - $14-30 \mathrm{MHz}$ CB/AMATEUR 27-50 MHz , low band $F M-66-88 \mathrm{MHz}$, mid band $F M-66-88 \mathrm{MHz}$, mid band FM - 156-162MHz VHF MARINE RADIOFM $-130-175 \mathrm{MHzHI}$-BAND VHF FM - 108-152MHz VHF AIRCRAFT AM - 22540 MHZ UHF 28V 407 - 512 UHF CATV/MATV CLASS A linear transistors - A SMALL indication of types are listed below. SEND FOR OUR FREE BROCHURE AND/OR CONTACT FOR IMMEDIATE QUOTES.

MRF450 MRF453 MRF646 BLY88A BLY90 BLY93A .2N3553 .2N4933 .2N5109.2N3375 .2N5016 .2N5589 .2N4128 2N5070.2N5591.2N6080.2N4427.2N5090 .2N5634 .2N6083 .2N4431.2N5102 .2N5918 .2N6084

TIL Semiconductorinc.

18 WEST 21 st STREET NEW YORK, N.Y. 10010 U.S.A TEL: (212) - 6756722 TELEX: 284564 TICS UR
CIRCIE 40 FOR FURTHER DETAILS.

RACKMOUNT CASES

19"Self Assembly Rack Mounting Case with lift off Covers Front Panel 10 gauge Brushed Anodised Alumin!um, Case 18 gauge. Plated Steel with Removeable Rear $\&$ Side Panels In 1 U \& 2 U Types, a Subplate Chassis is Mounted to Bottom Cover In $3 \cup$ Type the Subplate is located on two Ralls Mounted Between The Side Plates
$1 \mathrm{U}\left(1^{3} /\right)$ height, 230 m depth............. $\mathbf{f 2 7 . 0 0}$
$2 \mathrm{U}\left(3^{1 / 2}\right)$ height, 308 m depth.............. $£ 32.00$ $3 \mathrm{U}(51 / 4)$ height, 230 m depth.............. $\mathbf{£} 39.00$
Width Behind Front Panel. 437 m (All Tvpes).
All Prices include Postage \& V A.T Cheques, Postal Orders Payable to:
J. D. R. Sheetmetal, 131 Grenfell Road, Maidenhead, Berks. SL6 1EX. Maidenhead 29450.

Short-wave loop aerial

Modifications to the earlier designs enable the aerial to be used with domestic receivers

In April 1985, S. Mukherjee described a useful indoor short-wave aerial for use with well-screened receivers. His design is not very suited to ordinary domestic receivers because their lack of screening allows signals to bypass the loop. The result is loss of directionality and, at the same time, trouble from local interference of the kind which a magnetic aerial rejects.
Some relatively simple changes can avoid these problems. The first requirement is to provide the receiver with some sort of screening enclosure to exclude direct pickup. A complete screening box is impracticable since it would prevent access to the controls. Experiment shows that an open-fronted box will work, provided that it is deep enough for the receiver to be pushed well inside.
My tests indicate that a cardboard box covered with aluminium kitchen foil makes an adequate short-wave screen. On long and medium waves the amount of screening provided by the thin foil is reduced, enabling the receiver's ferrite aerial to function on these bands.

Having eliminated direct pickup of short-wave signals, the next job is to deal with pickup by the downlead. This is done in two steps. First, an unscreened, unearthed loop is substituted for the original design. Any thick, insulated wire (such as mains flex) can be used for the loop, the signals being extracted via a transformer. The primary is formed by passing one or two turns of the loop conductor round a ferrite rod (a). (An aerial rod from an old m.w. receiver is adequate.) Coupling to the unscreened twin downlead is effected by a secondary winding: two or three turns will generally be optimum, but the user can easily experiment with different numbers. For reasons explained below it is useful to make the secondary detachable.
Although considerations of symmetry suggest an arrangement like (a), where the loop can float above earth in a balanced fashion, practical use is eased by putting the tuning capacitor at the bottom (b) where it is easily reached. I have not noticed any impairment in performance from the assymmetry which results.

The aerial and clownlead are balanced, but the receiver input circuit is not. A balun is needed, and this can take the form of a centre-tapped autotransformer (c), made with a bifilar winding of hookup wire on a magnetic core. Possible core materials are pieces of ferrite aerial rod, ferrite toroids, and tuning slugs of the throughhole type, which can be used as toroids. In general, the number of turns needed is $5-10$, connected as shown. The balun is placed either just outside or just inside the screening box, with its centre tap connected to the foil by a short lead (fold its end into the foil or staple it to the foil). Coupling to the receiver is by wrapping a few turns of insulated wire round the end of the built-in telescopic aerial. (I find that this is still the best method, even in a receiver which also has proper aerial and earth terminals. It is not necessary to earth the screening box except when power supply considerations require it as explained later.
Check for downlead pickup by slipping the secondary coil off the transformer rod. Signals

P42

Fig. 1 (a) shows the one or two-turn primary on ferrite rod and, at (b), the recommended capacitor position. At (c) is the balun to match aerial and downlead to receiver and (d) shows the method of avoiding signal injection from the power-supply lead.

continued from $p 46$
should vanish or at least become very noisy.

If a receiver is mains operated, the mains lead brings unwanted signals into the screening box. A power-supply filter is then required. My own receiver is a battery-powered one which can be mains-driven via an external adapter (trans-former-rectifier unit) which supplies the required low-voltage d.c. via a long lead. In this case, the appropriate side of the d.c. supply is connected to the screening foil and the 'live' side taken to the receiver via a three-terminal capacitor-type filter (d). A lead from the earthy battery terminal of the receiver is connected to the foil to complete the circuit. A conventional pi-section LC filter can also be used: I had good results from a home-made filter where the series L was a tv frame coil on a ferrite ring core and the Cs were 100 nF polyester film capacitors. Whatever arrangement is used it is essential to keep the connections between capacitors and screening foil very short - a centimetre or less. If longer, their inductance impairs filtering. The case of my feed-through filter is the earth terminal and contact with the foil is made by bolting the filter unit to the screening box. The earth connections are made by trapping the bared ends of the earthy d.c. leads between filter and foil.
I have not so far attempted a filter for a receiver with a builtin mains power unit. A balanced filter would presumably be needed, with the earth line connected to the foil and to mains earth. Safety considerations suggest that the screening box should itself be enclosed in an insulating box to avoid contact with the foil.
If the receiver can be battery operated it is useful, when testing power-supply filters, to set up the receiver with the filter in situ but the mains power off. If the receiver is now battery operated it can be seen if signals are getting into the box via the filter.
When operating a wellscreened receiver, bringing one's hand to the controls introduces stray signals. This can be an advantage since it allows the receiver to be pretuned to the required frequency before tuning in the loop.

INDOOR LOOP
 AERIAL

If you happen to live near a powerful radio transmitter you will find that short-wave reception is marred by breakthrough by the local transmission. This can occur even when the wanted station is far removed in frequency from the local transmission, through such mechanisms as intermodulation.
In principle, the directional properties of a loop aerial can be utilized to null the local
transmission but, in practice, a simple loop oriented in the vertical plane does not give a complete null. The reason is that the ground wave from the local transmitter is not quite vertically polarized but tilted by wave drag.
The loop null can be intproved by tilting the loop away from the vertical to match the interference. Readers who suffer from localstation interference might find it useful to construct short-wave loops in a way which permits some adjustments of tilt. For most cases a tilt range of $0-30^{\circ}$ will be sufficient.
R. Jones

Dorchester
Dorset

FFT

Your contributors Larsen and Dyrik express the hope that their article will inspire readers to experiement with machine code f.f.ts and spectral analysis.

We took this path some years ago and can report that indeed many happy hours can be spent optimising an implementation of the f.f.t. algorithm, and one dicovers many subtle issues that do not seem to be covered in the standard literature.
Starting from the Basic program given, the main decision to be made in preparing a machine-code version is how to represent the data arrays D and E. If floating point is used, execution will be little faster than in Basic. With fixed point, however, optimizing the dynamic range is a non-trivial problem, since the data values grow in a way which cannot reasonably be predicted at the outset. Automatic rescaling is thus usual and desirable, but this raises yet another level of subtlety if the rounding or truncation inherent in a rescaling is not to contribute further errors. Welch ${ }^{1}$ considers three strategies, none of which is optimal.
For those who are more interested in the finished article than the joys and frustrations of development, we have made our BBC spectrum analyser commercially available through

Structured Softare, and will be pleased to supply full details on request.
P.G. Craven
J.C. Davies

Bromborough
Wirral
Merseyside

Reference

1. Welch, P.D., A Fixed-Point Fast Fourier Transform Error Analysis. IEEE Trans Audio \&
Electroacoustics AU-17, 2, 151-157 (JUne 1969).

ADD-ON CURRENT DUMPER

I was very interested to read Erik Margan's add-on circuit to convert a conventional Class B amplifier output into a non-switching type. I have, in the past, tried to develop such a circuit, but have never been fully satisfied with my efforts. Mr Margan's circuit appear to be a very competent solution.
Mr Margan gives no clue regarding the value of R_{e}. However, analysis of the circuit indicates that if R_{c} is less than about one fifth of the value of R_{e}, the circuit current limiting will come into operation before Tr_{3} or Tr_{4} are turned off.
I would be very interested to know of the effect of Mr Margan's modifications on the distortion figures of a typical Class B amplifier and the extent to which an improvement in sound quality may be heard.
Graham Nalty
Borrowash
Derby

ENERGY
 TRANSFER

P. L. Taylor (Wireless World, p. 15 October 1985) likes the choice between e.m. wave energy transfer through space, as required by the Poynting vector, or through wires, as required by the Slepian vector. There is, in fact, a third choice advocated by Cambridge Professor G. H. Livens. Writing 'On the flux of energy in radiation fields' at p. 313 of his 1926 book 'The Theory of Electricity', published by Cambridge University Press, he argued in favour of an alternative to Poynting's theory. Waves do not need to carry energy at their speed of propagation. Their generation merely adds energy to a common pool of energy in the field medium at the locality of the transmitter and their absorption draws on that pool in the locality of the receiver. I like this third alternative, because it is easier for me to picture
creation a a big splash in an existing smooth pool of energy than as a big bang appearing from nowhere in a complete void.
J.N. Kidman

Southampton

NAVAL MARCONI

In the November issue you had an article by Nigel Cawthorne, which I am happy to say was complimentary to Marconi in most respects, but did rather belittle the Marconi Fast Tune (MFT) range of equipment. I would like to point out that in addition to the drive and 10 kW amplifiers we also have a 50 kW i.s.b. amplifier, a 1 kW amplifier and a transceiver based on the drive/receiver in
development. But by far the most important part of MFT2 is the remote computer control system that goes along with the basic hardware; this system allows for automation in service selection which includes frequency, mode, audio source and antenna selection, along with any other aspect that needs controlling.
I would also take this
opportunity to point out that our new Swordfish transceiver is not, as depicted in the picture caption Redifon's R800 v.l.f. receiver.
P.A.T. Turrall,

Publicity Manager,
Marconi Communication Systems, Chelmsford

RELATIVELY BORING

H. Morgan complains in your July issue that relativity is boring. This view will be shared by many physicists, but they do not seem to have noticed that one cause of the confusions and contradictions is that it is not a scientific theory. This Einstein made quite clear when he said that the "real basis of the special relativity theory" was the Lorentz equations (Bull. Amer. Math. Soc., 41, 1935). Physics is based on matter, motion and force: equations in physics are only relations between terms that represent numbers obtained by measurement; and these are put into Nature by ourselves. They can never tell us, just as Einstein could not, whether an ether was a necessary physical assumption or not: at one time he had said not; and then later "space without ether is unthinkable'". Moreover, Lorentz's times were dates and these do not enter into physical laws.
Many other confusions are caused by lack of linguistic care. If we think carefully about light, for example, we realise that we never
see light, or anything moving, and that beams and rays cannot be found in highly evacuated regions, so that reflection may be reradiation. One fact about light has, however, been verified sufficiently to give us considerable confidence in its truth; this that if we have a source and a receiver at a fixed distance from one another on a rigid body, the time delay of interaction between them is always d / c where c is a universal constant. I have suggested that c should be called the constant of interaction: no hypothetical element is then involved (such as ether, waves, photons and the rest) and action at a distance is not ruled out (as Maxwell admitted long ago). This one fact allows us to settle the thought experiment involving a train passing an embankment, which relativists use to 'prove' the supposed relatively of simultaneity.

The train and the embankment are said to be struck by lighting at two places a distance apart. An observer on the embankment, halfway between the two flashes, is said to find them both simultaneous, but the observer on the train is said not to agree. In this case there are two rigid bodies - the embankment and the train and both observers are at a distance $\mathrm{d} / 2$ from both flashes. The time for interaction is thus the same for both flashes so that both observers should find simultaneity. If the sources are said to be moving with respect to the observer on the train, this should cause no difference, since the 'velocity of light' is held to be independent of the motion of the source.

As length-contraction is 'proved' in thought experiments by founding it in the supposed relativity of simultaneity, is clear that length contraction is also delusory.

A note of interest is a recent statement from a colleague of Einstein's who says that in his later years Einstein abandoned material consequences implied by relativity, which included his thought experiment purporting to show that people can get younger by rushing about - the Twins Paradox (Foundations of Physics, 15, 9, 1985).
G. Burniston Brown

Padstow
Cornwall

ELECTROLYTICS AND DISTORTION

Since both Mr Curl and Mr Armstrong (Letters, November 1985) are writing on the same topic, it seems logical to try to answer their complaints in the same letter.

I hoped that by now I had made it clear that I am perfectly well aware that it is possible to use electrolytic capacitors in such a way as to generate disturbances in an applied audio signal; the point I wish to make is that there is nothing new or mysterious about this. The effect (low-frequency harmonic distortion when an electrolytic is allowed to cyclically depolarize) is logical and predictable, and therefore avoidable. It should not arise in a properly-executed audio design.

To recapitulate, the important point is simply to ensure that there is no significant a.c. voltage across the capacitor in question. When an electrolytic is used as a coupling or dc-blocking component there is no reason why there should be; if there is then you have, accidentally or otherwise, made a high-pass filter of dubious accuracy due to the wide tolerance of electrolytics. The a.c. voltage across the capacitor can then give rise to unpleasant effects, of which depolarization is probably the worst, as it has depressing implications for the longevity of the component.

Figure 1 shows my own, simpler, method of demonstrating that capacitors generate distortion when misused. This is a simple high-pass filter; below it is shown a table of the distortion produced, against input frequency.

Harmonic distortion is unmeasurable from 20 kHz down to 30 Hz , where things suddenly start to go wrong. Under these conditions, it is at this point that the peak voltage across the capacitor reaches 1.4 V . This seems to be the threshold at which the capacitor dielectric film starts to come undone, though dielectric absorption effects could be playing a part. Perhaps a capacitor manufacturer would like to contribute some information on this point.

Experimenting with different values of R and C confirms that the crucial factor is the peak a.c. voltage across the capacitor. The conclusion to be drawn is simply

that you must avoid using electrolytics (including tantalums) as filter elements, for which purpose they are quite unsuitable anyway, due to their wide tolerances, and confine them to coupling duties, where it is easy to arrange for there to be no significant signal voltage across them. Simply ensuring that there is no premature l.f. roll-off is normally sufficient to take care of this point.
The use of unbiased electrolytics for coupling purposes has a history of at least twelve years, going back to the introduction of the first really practical op-amps. It was clear that the use of $+/$ - power rails, while giving designs a greatly appreciated freedom from d.c. standing currents flowing down signal earths, would demand the use of electrolytics operating under zero-bias conditions.

There were many hasty consultations with capacitor manufacturers before it became clear that reliability would not normally be a problem. This is attributable to the absence of signal voltage across the capacitors in a well-designed coupling arrangement.

Having studied the test-circuit provided by Mr Curl, I can confirm that a non-nullable pulse residual is indeed produced; my own test assembly produced waveforms similar to those accompanying Mr Curl's letter in HiFi News ${ }^{1}$. It is not necessary to use exotic and
expensive devices such as the AD524 - a conventional instrumentation-amplifier arrangement using TL072s gives exactly the same results in this case, providing close attention is paid to trimming the c.m.r.r. My arrangement is shown in Fig. 2. However, I am inclined to think this is just a complicated way of demonstrating the same effect that Fig. 1 produces. Taking, for example, a 10 ms input pulse at point A, the change in voltage across the capacitor under test (c.u.t.) is 5.8 volts peak to peak, the c.u.t. being reverse-biased by about 2 volts for part of the cycle; the capacitor is not being treated kindly. This voltage is measured using A7,8,9, which forms a second instrumentation-amp. across the c.u.t. However, I submit that this ingenious test has no relevance to properly-designed audio coupling networks, as I have explained above. The lifetime of a capacitor used in such a way will be very uncertain.
Consider in what the circumstances this effect could constitute a real problem; the most obvious is the case of a warped record feeding its signal through to a preamplifier. However, it is normally considered that even a badly warped disc is unlikely to produce subsonic levels greater than -20 dB below the general levels in the audio band, ${ }^{2}$ and it will be noted that in Fig. 1 it is necessary to use signal levels only
just inside op-amp headroom to induce the lf distortion.
Nevertheless, it is always good practice to place the subsonic filtering as early as possible in the audio chain. The preamplifier design that opened this audio can of worms has its subsonic filter immediately after the disc preamp. stage, ${ }^{3}$ and in fact the only electrolytic capacitor the signal has passed through before it is the one at the very input, where signal levels average 5 mV rms. I would suggest there will be no problems there.

One criticism that may well be levelled at my reasoning is that sinewave-and-analyser testing is hopelessly unhip, and that there are all sorts of degradation phenomena that ignore sinusoids but mangle music. I have yet to see proposed any plausible mechanism that could ignore single sinewaves anywhere in the audio band, and yet still affect complex signals.

In the course of writing this reply, I re-read the reference Mr Curl cited. In some ways the articles by Jung and Marsh ${ }^{4}$ are impressive, including as they do a comprehensive survey of capacitor theory and construction,
culminating in some pictures of distortion residuals very similar to those I obtained with the circuit of Fig.1, though they nowhere make the point that no-one in their senses would make a high-pass filter with electrolytics. From this they go on to state that "When music is the a.c. signal, the sonic degradation is one of compression or a restriction of the dynamic range." I find this statement remarkable, if not actually frightening, as it implies that the capacitor is either turning up the gain in the presence of a low signal, or turning it down in the presence of a high one. I do not believe that any such effect could be measured with any type of capacitor, and I fear that this is another example of an unjustified conceptual leap beteen a known physical phenomenon, and an extremely speculative conclusion. I regret to say that such conceptual pole-vaulting is common in the hi-fi press, and is in danger of making the whole field an object of ridicule to those involved in serious engineering.
I cannot believe that I am the only one who finds it disturbing that people make such extraordinary claims without any attempt to explain how such a mechanism could conceivably operate, or making even the roughest numerical estimate of its magnitude.

I should like to say that I agree whole-heartedly with the views expressed by Mr Peter Baxandall in the correspondence columns of

HiFi News. It has become the accepted norm to pay a quite undue amount of attention to people simply asserting that such-and-such an effect occurs (it really does sound better . . .) without any sort of objective evidence. Any "new effects" allegedly discovered need the following before becoming even slightly respectable.
a) A set of double-blind, properly-conducted (no easy matter) listening tests to show that the effect really does exist, verified by a rigorous statistical analysis
b) A theoretical mechanism for the operation of the effect that is at least logically consistent, if not actually plausible.
This second condition in particular is almost always lacking in the wilder statements made about audio design.
If I can now address Mr Armstrong in particular, I must say the gold flashing on his telephone leaves me unmoved. I assume it is there to enhance reliability in unfriendly environments, as given the millions of telephones installed their reliability is of great importance. I would suggest that it is unlikely that his 'phone company are attempting to scale the higher pinnacles of hi-fi reproduction.
Secondly, I am also unimpressed by the wire-crushing thumb-wheels (or was it thumb-crushing wirewheels?) on his electricity meter. These are to ensure an accurate absolute measurement under highcurrent conditions, whereas in audio a gain variation of a few tenths of a dB are quite unimportant, always assuming that they are not level-dependent, of course.
As for Mr Armstrong's defective head amp., miraculously taking up its p.c.b. and walking after a shot of expensive capacitors, all I can say is that as far as I am concerned this kind of anecdotal evidence is worse than useless. If Mr Armtrong really has found a new psychoacoustic effect, then I would dearly like to know how it works, so I can use it. However, my own suspicion is that it's one more case of "experimenter effect".
One more thing. I try not to take all of this too seriously, but I think must decline to be labelled a pendant just because I insist that science and engineering are about reality and repeatable measurements rather than unsupported assertions. I am an engineer, and I hope that my approach to engineering is scientific, because I cannot think of any other that would work.
You might as well accuse an accountant of pedantry when he fails to embezzle his client's money.
D.R.G. Self

Bow
London WC

References

J. Curl, Letter, 'Front End', HFN/RR

Aug, 1985, p15.
2. T. Holman "Dynamic Range

Requirements of Phonographic
Preamplifiers."', AUDIO July, 1977.
pp72-79.
3. D.R.G. Self, "A Precision

Preamplifier.", Wireless World Oct, 1983.
4. Jung \& Marsh, "Picking Capacitors" ACDIO Feb, 1980, pp52-62.
5. P. Baxandall, "Views" HFN/RR July, 1985. pp15-17.

PRECISION
 PRGAMPLIFIER

I agree with Mr Armstrong
(November, 1985 Letters) that Mr Self does appear pedantic, even didactic, in print, but think that Mr Self has a point in which, however, there is confusion of engineering and other factors.

Ultimately, uncontrollable variations in manufacture result in what are, on a scale of perfection, gross differences between individual items of components, let alone the differences to which Mr Curl draws attention ($E W W$.Nov, 1985) for capacitors. On this scale of perfection every item within auditoria and studios, performance, recording or transmission, including links, and reproduction, including rooms, has a similarly highly variable effect on what we can hear, as well as undoubted variations in our own biological systems on different social and emotional levels and time scales.
In the mid-fifties I knew several professional musicians and as I got to know them it became plain that, despite acute musical appreciation of the 'sound' of auditoria and of different performers' effects on performances, when it came to radio and record reproduction they were largely indifferent to sound quality. What, it seems, they had been taught to look for were the minds and emotions of the composer and performer(s) at work and it was these that they were listening for and identifying with. As with language, it was 'the meaning' rather than detailed syntax and sound that they responded to.
So for those who like realistic quality of sound (in other than live performances), whether we put into any new system any capacitors at all or even specially selected ones may perhaps produce the ultimate of what can be heard, but each single system will have an individual sound, unlikely to be perfect reproduction of the original. But if we can accept this sound then we can relax and enjoy as many as possible of the subtleties of performance rather than be obsessed with those of the sound alone. Particularly, we have to beware of a psychological
readiness increased by highly personal criticism and advertising to accept new and expensive techniques and attitudes as inevitably better, rather than just different!

Far more insidious is the overall rise in basal and transient redundant sound, as well as greatly increased radio and mains-borne noise and interference, even with competent filtering.
David White
Llangefni
Gwynedd

MAXWELL

The consistence of Ivor Catt's misrepresentation of Maxwell's laws is remarkable. Whatever deficiency they do contain, if any, it is certainly not at the elementary level claimed in the issue of November 1985. ('The Hidden Message in Maxwell's Equations').

The basic problem remains apparent ignorance of vectors and the role they play in Maxwellian theory. Ivor Catt seems to think that Maxwell's laws are some kind of elaborate hoax supported by an establishment conspiracy to suppress 'alternative' theories. He also believes that equations (9) and (10) in his latest diatribe represent the views of the conspirators. If they did, he would indeed have a point. But, sad to say, the windmills that this exuberant knight errant is tilting at are significantly different from the reality of Maxwell!

The mistake he makes is fundamental and disastrous. It is entirely necessary to modern em theory that the E field vector is perpendicular to the H vector. Why, then, do equations (9) and (10) not show this? Without the direction property of a vector, em theory would fail to account for such simple phenomena as reflection. Ivor Catt attaches some mystical importance to Z_{0}; anyone who was properly conversant with EM theory would not. Z_{0} is derived from the magnitude of the E and H vectors; their directional property is eliminated and most that is useful in the theory with it. Z_{0} is not a 'primitive': it lacks
directional information.
Ivor Catt's difficulties with the expression of physical concepts in mathematical form do not seem to be confined to electrical matters. True enough, if he walks along the plank far enough in the direction (hooray for direction!) ' v ', ' h ' does indeed decrease but so does ' x '. Sorry, Ivor old son, but you are wrong again, as you walk along the plank it is because it is going backwards underneath you that it leads to that sinking feeling.
Dermod O'Reilly
Antwerp
Belgium

Teylor instruments represent outstanding value for money with a range of digital instruments built to our uncompromising standards to meet BS requirements and spanning a complete range of usage. From the compact, probe-style volt-ohm meter to the 31/2 digit TD23, you'll find the Taylor range lives up to our reputation for simplicity and performance.
The choicest instruments are ours. The choice of them is yours.

TELESCOPIC MASTS

Pneumatically operated telescopic masts, 25 Standard models, ranging from 5 metres to $\mathbf{3 0}$ metres.

Hilomast Ltd

THE STREET HEYBRIDGE - MALDON ESSEX CM9 7NB ENGLAND Tel. MALDON (0621) 56480 Telex No. 995855

PINEAPPLE SOFTWARE

Programs for the BBC model 'B' with dlsc drive with FREE updating service on all software

ARE YOU GETTING THE MOST FROM YOUR

 DOT MATRIX PRINTER AND DISC DRIVE?DIAGRAM is a new program which realiy exploits the full potential of the BBC micro and will enable you to obtain printouts of a size and quality previously unobtainable from your system

£25
supplied only on disc 40/80T. Please specify printer type when
+VAT p\&p free
ordering

MARCONI
 TRACKER BALL
 $£ 51.50$
 + VAT D\&p free

inciudes ICON art master software
All orders sent by return of post

FEATURES

- Draw diagrams, schematics. plans etc in any aspect ration, e.g. $10 * 3,2 * 12$ screens.
- Access any part of the diagram radidy by entering an index name, e.g TRG, RS etc. to display a specific section of the diagram, and then scroll around to any other part of the diagram using the Cursor kevs
- Up to 128 cons may de predefinea for each diagram, eg. Transistors, resistors etc.. in full mode o definition, up to 32 Dixels horizontally by 24 verticaly.
- Hard copy printouts in varying print sizes up to 18 mode 0 screens on an Ad sze sheet. comparible with most dot matrix printers.
- many other features including, selectable display colours, comorenensive line drawing facalities, TAB setungs, etc
- The latest version of diacram s now fulliy compatible with the Marconi Tracker Ball. which allows 'scrolling' of the screen and many of the editing features to be carried out using the tracker ball.
- DIACRAM is suppled in an attractive hara backed disc wallet with keystrio and comprehensive instruction manual.

39 Brownlea Gardens, Seven Kings, Ifford, Essex 163 9NL Tel:01-5991476.

CIRCLE 7 FOR FURTHER DETAILS
METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days' delivery. Other Ranges and special scales can be made to order
Full Information from
HARRIS ELECTRONICS (London)
138 GRAY'S INN ROAD, W.C. 1
Phone: 01-837 7937
Telex: 892301
CIRCLE 47 FOR FURTHER DETAILS

FOR S100 USERS FULCRUM
 (EUROPE) LTD

Distribute \& technically support over 160 different S100 products Select from manufacturers like:
MACROTECH INT - ADVANCED DIGITAL CORP. ACKERMAN DIGITAL SYSTEMS • INNER ACCESS CORP. LOMAS DATA PRODUCTS - COMPUPRO - CALIFORNIA COMPUTER SYSTEMS - DUAL SYSTEMS - TELETEK - INTERCONTINENTAL MICRO - SYSTEMS SEMIDISK SYSTEMS INC © HIGH TECH. ELEC. LTO - I/O TECH. INC. - SD SYSTEMS • SOLID STATE MUSIC - KONAN CORPORATION - JADE COMPUTER PRODUCTS - MULLEN COMPUTER PRODUCTS INC • DATA SYSTEMS CONSULTANTS • ILLUM. TECH. INC. • ZENITH DATA SYSTEMS - BICC-VERO CALL US ON (0621) 828763

VALLEY HOUSE, PURLEIGH, ESSEX CM3 6QH. ENGLAND
TELEX 946240 C WEASY G - Easylink I.D. 19010455
CIRCLE 24 FOR FURTHER DETAILS.
ELECTRONICS \& WIRELESS WORLD FEBRUARY 1986

Compact disc mastering

> John Watkinson explains away the confusion of p.c.m. adapters for use with video recorders, contrasting three different formats and detailing the more advanced codes of convolutional interleaving used in the smaller v.c.rs.

To cut a Compact Disc a digital recording must be made which contains exactly the same sample values as will appear on the disc. Unlike vinyl disc cutting, where the cutter operator has control over level, the Compact Disc cutter faithfully transfers every digit from the master tape. The disc mastering recorder is designed to produce that tape.
There are currently less than ten places in the world where Compact Discs are cut for duplication, so it is usually necessary to send the master tape to the disc plant. The robustness and convenience of a tape cassette are ideal for this journey.
The bandwidth of a digital stereo signal is about $2 \mathrm{Mb} / \mathrm{s}$, and some years ago the only devices able to record this bandwidth economically were video recorders. Digital data were encoded to resemble a tv waveform sufficiently well to fool an unmodified v.t.r. Originally, video recorders were open-reel devices, but once the U-matic cassette and its smaller relatives Betamax and VHS came into being they were soon adopted for digital audio recording. Digital mastering recorders for CD work today on the same principle.
A digital audio recorder which uses a video cassette recorder is depicted in Fig.1, in which the digital audio unit is often referred to as a p.c.m. adaptor. The unit has five main sections. Central to operation is sync and timing generation, which produces sync pulses for control of the video waveform generator and locking the video recorder, in

addition to producing sampling rate clocks and time code.
An analogue to digital converter allows a conventional analogue signal to be recorded, but this can be bypassed if a direct digital input is available. Similarly, a d-to-a converter is provided to monitor recordings and this too can be bypassed by the direct digital output. Also visible in Fig. 1 are encoder and decoder units that convert between digital data and the videolike signal known as pseudovideo or composite digital.
A typical line of pseudo video is shown in Fig.2. The line is divided into bit cells, and within them black level represents a binary zero and about 60% of peak white represents a binary one. The restriction to 60% is because most video cassette recorders use non-linear preemphasis misinterpreting the pseudo video. Clearly the bit rate must be an integer multiple
of line rate, and the sampling rate used will be derived from the frequencies in the tv standard. Thus the sampling rate of the disc was determined by video standards even though the disc itself has no video signal structure. The frequency of 44.1 kHz is derived as follows.

In the 525/60 monochrome tv standard there are about 245 useful (i.e. not blanked) lines in each field, giving a line rate of $245 \times 60=14,700$ lines per second. If three samples per channel (left and right) are stored in one video line the rate of $3 \times$ $14,700=44,100 \mathrm{~Hz}$ is obtained. This sampling rate may also be obtained on the $625 / 50$ tv standard by using 294 lines in each field, since $294 \times 50=14,700$.

Our Compact Disc series, introduced in the January 1985 issue, has so far featured:

- Principles of optical storage,

March \& April 1985

- Channel code and disc for-
mat, May \& June 1985
- Compact Disc players,

August \& November 1985.

Fig. 1. Block diagram of p.c.m. adaptor. Note the dub connection needed for producing a digital copy between two v.c.r.s.

Fig. 2. Typical video signal from p.c.m. adaptor. Data swings over only 0.3 volts to avoid activating pre-emphasis. Peak white pulse prevents a.l.c. increasing gain.

Fig. 3. Video line from PCM1610 has control bit that determines the use of pre-emphasis and selection of 44.1 or 44.0559 kHz (a). Note peak white ref. In video line from PCM-F1 in 16bit mode (b) and address at beginning of video line from JVC unit (c).

Fig. 4. In the PCM1610/1630 format, error correction is via an exclusive-or term computed from the two samples shown. c.r.c. character detects errors, parity term corrects. Redundancy is 100%.

Diversity of standards

Unfortunately the diversity of television standards has led to a complex situation for p.c.m. adaptors. The Compact Disc is a world wide standard, and it would be a desirable goal for mastering recorders to record also to a standard format.
The official CD mastering format is that produced by the Sony PCM1610, and this only exists in one version, which uses the $525 / 60$ monochrome standard because of its Japanese origin. Thus even in Europe, discs are mastered on 525/60 video recorders so that master
cassettes recorded in the USA or Japan can be cut in Europe and vice versa.
The first problem arises with the introduction of NTSC colour broadcasts. The field rate was reduced to 59.94 Hz to move harmonics of the new colour subcarrier away from the sound subcarrier inherited from the monochrome standard.
If a p.c.m. adaptor is slaved to an NTSC generator, the sampling rate falls to $44100 \times$ $59.94 / 60=44055.9 \mathrm{~Hz}$ and the timecode generator enters a mode called 'drop frame' whereby the timecode can continue to read real seconds and minutes even though there are no longer a whole number of fields in a second.
The CD sampling rate and timecode are irrevocably locked, ${ }^{2}$ and therefore a master tape with 44055.9 Hz sampling rate and drop-frame time code will be rejected by the disc cutting machine. Compact Disc and NTSC audio are incompatible. But digital sound tracks from PAL-synchronized broadcasts are compatible because the precise 50 Hz field rate of PAL can be locked to the 44100 Hz rate by a ratio of 882:1.
The position is further complicated by the existence of further standards. One of these is the EIAJ standard for consumer p.c.m. adaptors. These devices were originally intended for the top end of the hi-fi market place and enable a domestic v.c.r. to become a digital stereo

Fig. 5. In this one $35-l i n e$ interleave block of 1610/1630 format, block is divided into three sections of $11 \frac{2}{3}$ lines each, two data, one parity. Three passes through the interleave memory are needed to create the signal structure (1, 2, 3). Large L / R interleave allows interpolation if dropout exceeds $11 \frac{2}{3}$ lines.
recorder. The consumer would, however, expect to be able to use the v.c.r. for regular tv recording as well. Thus the EIAJ format is in fact two incompatible formats: the first a sampling rate of 44055.9 Hz using the 525/59.94 NTSC timing, and the second 44.1 kHz sampling with $625 / 50$ timing. Both are intended for use with Betamax or VHS recorders.
The consumer division of Sony sold the EIAJ-format PCM-F1. Built with custom 1.s.i. chips made economic by volume sales, and with battery capability, it cost only a few hundred pounds. With a matching portable Betamax v.c.r., the

SL-F1, digital audio recordings could be made on location.
By contrast, the PCM1610 was intended for professional use, and relatively small volume production meant it was implemented with s.s.i. chips, which made it large and heavy and very expensive. Sales were somewhat damaged by the PCM-F1: a peculiar situation for Sony since they made both!
As a consumer product, the PCM-F1 was not ideally suited for Compact Disc mastering. There are no direct digital outputs, only an analogue output, and for this reason not too much trouble was taken with d.c. offsets in the converters. There is also an $11 \mu \mathrm{~s}$ timing error between channels, as a result of using single converters multiplexed between left and right.

These problems have been overcome in adaptor units supplied by independent companies such as RTW and Harmonia Mundi Acustica. 'They modify the PCM-F1 to give a direct digital output and use digital filters to remove offsets and timing errors, and then produce a direct digital output that is compatible with the 1610 and/or with the AES/EBU digital interconnect standard.

To add to the confusion, Sony then introduced the PCM701, a semi-professional version of the F 1 , which is rack mounting and non-portable. They then dropped the F1 which provoked such an outcry that they had to reintroduce it.
In addition to the 1610/Umatic and the F1/701/Betamax rivalry, there is a third contender from JVC for mastering , which uses industrial VHS transports. Some disc pressing plants accept the JVC cassettes.

Formats contrasted

All three p.c.m. adaptors use the video waveform on a binary channel, with black representing zero and 50 or 60% of peak white representing 1 . However, consümer recorders with a.l.c. would increase the gain of such a signal, and so to prevent this the JVC system uses a peak white pulse once per field. The PCM-F1 uses a peak white pulse once per line. The PCM1610 is intended for use with semi-professional U-matic recorders which have no a.l.c. and has no peak white pulses.

Typical waveforms are shown in Fig.3.
All three systems use extensive interleaving to combat burst errors caused by tape dropouts. The PCM1610 has the most basic interleave/correction system which subdivides each field into seven blocks of 35 lines each, and interleaves within the blocks. The error correction method is a cross-word code. The PCM-F1 and the JVC system both use the convolutional interleave approach and more advanced codes.
The cross-word code of the PCM1610 is shown in Fig.4. Input samples 1 to 3 form a code word at (1) with a c.r.c. character. Samples 4 to 6 form a second code word at (c) with a c.r.c. character. The exclusiveor terms of the sample pairs shown form a third code word with a c.r.c.c. at (b). In the case of an error, the c.r.c. fails, but does not locate the error. All samples in the codeword are presumed faulty. For example 4,5 and 6 are declared faulty. Sample 4 is obtained from the exclusive-or of the first symbols in codewords (a) and (b) (10 $(1 O 4)=4)$, and so on. The system is not very efficient and the amount of redundancy is equal to the amount of data.

The interleave over a 35 -line period includes a left/right channel interleave (Fig.5). Dropouts up to $11 \frac{2}{3}$ lines long are fully correctable, since this magnitude will not destroy more than one of the three related code words. For example if line 0 is

corrupt, P1, P2 and P3 from the end of line 11 and L1, R2, L3 from the middle of line 23 are used to correct R1, L2 and R3, and so on. If the dropout continues up to $13 \frac{1}{3}$ lines, two code words of the related three will be destroyed and correction is impossible. Interpolation will then be used.

For example, if lines 0 to 12 are destroyed, L4, R5 and L6 will be uncorrectable (amongst others) but because of the interleave in line 23, L3 and L5 can be used to recreate L4, R4 and R6 can be used to recreate R5, and L5 and L7 can be used to recreate L6.

If the corruption is more severe, previous samples can be

Fig. 6. In 16 bit mode, 14 of the bits of each sample are stored as words (L, R) and the extra two bits of each sample stored as 12 bits of another word. Parity is generated on the 16 bit data, and 14 of the parity bits are stored in the P-word. Kemaining two bits are added to the 12 bits of sample data to complete the S -word.

Fig. 7. Interleave diagram of JVC format showing parity generated before and after an interleave to produce crossinterleaving.

Fig. 8. De-interleave and correction diagram for JVC format. Depending upon distribution of errors, it may be better to correct with either P1 first or P2 first: multiple re-interleave and deinterleave allows both choices. See text.
held to substitute current samples, but eventually the machine has to mute to prevent noise. In practice, dropouts are usually much smaller than $11 \frac{2}{3}$ lines, but the system has to interpolate if a random error occurs near a burst. The simple code of the PCM1610 relies on the relatively large trackwidth of the U-matic format to give good SNR. It is not suitable for VHS or Betamax video cassette recorders even if the a.l.c. is defeated.

Convolutlonal interleave

Both the PCM-F1 and the JVC system use a much more sophisticated approach to allow the use of smaller-format v.c.rs. They use convolutional interleaving which spreads the effect of burst errors more evenly.
The PCM-F1 works in two modes. In 14 bit wordlength mode, the machine uses both Badjacent error correction and erasure (pointer) correction, and this is very powerful against random errors near to burst errors. In this mode the PCM-F1 conforms to the EIAJ standard for 14 bit consumer p.c.m. adaptors. However, in 16bit mode, which is necessary for mastering, the 14bit format is retained and the extra two bits in each of six samples and one parity word are stored in place of the 14bit B-adjacent redundancy. Thus
the power of the error correction system is reduced. The Badjacent decoding system will not be discussed further here as it does not apply to Compact Disc mastering. In 16 bit mode the PCM-F1 reverts to a system shown in Fig. 6.
Simple exclusive-or parity produces a P word from six samples. After interleave, a c.r.c. character is added to the end of each line. If the c.r.c. fails for a given line, all samples on the line are flagged bad. After de-interleave, this results in single errors with flags in many different P-code words, and correction is possible. However, the presence of a random error due to noise in the vicinity of a burst error due to dropout may cause two error flags in one Pcode word, which is uncorrectable. Interpolation will then be necessary.
The most advanced system is that of the JVC machine ${ }^{2}$, which uses cross interleaving. The cross-interleave is formed with simple parity only, and with c.r.c.c. after interleave to act as a pointer. In this respect the interleave resembles that of the DASH format ${ }^{3}$ more than the cross interleave of the Compact Disc, which uses Reed-Solomon redundancy without an additional c.r.c.c.. The arguments for cross-interleaving given in the June article ${ }^{4}$ on Compact Disc format still apply.
Fig. 7 shows the interleave continued on page 62

REAL WORLD CONTROL with BBC BASIC

Double Density Disk Controller
Hi-Res Colour and Teletext Video
Printer, LCD and Keyboard Interfaces
IEEE Interface

The CUBE EuroBEEB System
A simple, efficient way to cut development costs in industrial and laboratory applications

SOFTWARE SUPPORT

- Simple BASIC commands drive our extensive range of industrial Eurocards directly, e.g. ADVAL, DAC, TURNON, SAMPLE, CLOCK\$, NET, etc.
- Real-Time extension to BBC BASIC allows multi-tasking and event-driven PROCedures
- Multi-Tasking CONTROL FORTH is available for higher speed applications

HARDWARE SUPPORT

- I/O Expansion to 256 Digital/128 Analog/ 5 Serial channels/8 timers under BASIC
- Low-cost Industrial Network for distributed control and data capture
- Development Workstation for BBC Micro from $£ 475$

TECHNICAL SUPPORT

\square Our experienced team of internal and regional sales engineers are ready discuss your application

Evaluate Real-Time BASIC: Sideways ROM for BBC Micro

Control Universal Ltd, 137 Ditton Walk, Cambridge CB5 8QF. Tel (0223) 244447

CIRCLE 8 FOR FURTHER DETAILS.

HOME OFFICE APPROVAL TO MPT 1309

* RANGE LINE OF SIGHT
* TRANSMISSION RATE 1200 BAUD
* SERIAL INPUT/OUTPUT
* ROBUST WEATHERPROOF HOUSINGS (IP65)
* OPERATES FROM 12 VOLT D.C
* LOW POWER DRAIN 250 mA
* OPTIONAL BASE INTERFACE UNITS
- LINK COMPUTER/COMPUTER/PERIPHERAL/INSTRUMENTATION -- COST EFFECTIVE UHF RADIO MODEM -

MICROMAKE ELECTRONICS

1 THE HOLT. HARE HATCH, UPPER WARGRAVE BERKS RG10 9 TG
TEL: 0735223255 TLX: 849462 TELFAC G FAX: 062874928

Applicatlon other than Cable T.V. includes C.C.T.V. (up to 26 Channels 8 MHz wide on V.H.F. Repeaters, and up to 65 Channels 8 MHz wide on U.H.F./ V.H.F. Repeaters). Sultable for outdoor mounting.

Trate	FREQUENCY faNGE MHz	GAN dE ADJUSTABLE	MAXIMUMOUTPUT वffov	FREO RESPONSEFLATNESS		INTERNAL SLOPE ADJUSTMENT	POWER REQUIREMENT
TSC3060	40.300	1030	eode (1000	+ or - 508		58 B	27-42V 10VA-
Tscancosm	40-300	1030	sode (1000 miv)			5 de	25-45V TVA
TSC3660	$\begin{array}{r} 40-3000 \\ 470.060 \end{array}$	10.30 HFF $16-36 \mathrm{UHF}$	sode (1000 mv)	+ or-5d8		$\begin{aligned} & \text { S } \mathrm{S} 8 \mathrm{VHF} \\ & \hline \text { UHF } \end{aligned}$	27.42 V 18Va -
Tscabeosm	$\begin{gathered} 470.3050 \\ 47050 \end{gathered}$	10.30 VHF 16-36UHF	6008 (1000mv)	+ or- 508		50 V VHF - UHF	25-45V 13VA
TSC3605	$\begin{array}{r} 40.300 \\ 470-860 \\ \hline \end{array}$	$\begin{aligned} & 10.30 \mathrm{WF} \\ & 16.36 \mathrm{HF} \end{aligned}$	60dB (1000 mv) MAF 65dB (1800 mviUuF	- $\mathrm{Or}-50 \mathrm{~B}$		$\begin{aligned} & 5 \mathrm{~dB} \text { WHF } \\ & -\mathrm{UHF} \end{aligned}$	24.4VV24VA-
TSC36es5M	$\begin{array}{r} 40.300 \\ 470-860 \\ \hline \end{array}$	$\begin{aligned} & 10.30 \mathrm{VHF} \\ & 16.36 \mathrm{UHF} \end{aligned}$	60dB 11000 mviva . 65 d (1800 T TV) UHF	+ or - 5 SdB		$\begin{aligned} & \text { SOBVHF } \\ & \hline-U H F \end{aligned}$	25-45V 19VA-
Vartations of the sbowe are avalable on request, io 240 V moins powered; $54-89 \mathrm{~V}$ line powered: trunk ditibution amplifier wath ore trunk line and one d stinbution line out							
INTERNAL PLUG INEOUALISE RS IOPTONAL!							
TYPE	frequency range mht	$\begin{aligned} & \text { ATTENUATION } \\ & \text { AOMAH? } \\ & \hline \end{aligned}$	ATTENUATION 300 HHz	TYPE	FREOUENCY RANGEMHz	Cl_{2} ATTENUATON 470 MHz	$\begin{gathered} \text { ATTENUANON } \\ \text { BSOMMHZ } \\ \hline \end{gathered}$
EzV6	40.300	Code	108	Ezue	470.800	SAB	108
ELv9	40.300	908	108	Ezu9	470060	908	108
E2V12	40.300	1208	1 dg	EzU1?	470.660	1298	168

	TYPE	COAXIAL CABLE CONNECTORS
A	SCP14	Screw-on coaxial piug for immm Outside Diameler cable.
B	SCP10	Screw-on coaxial plug for 10 mm Outside Diameter cable
c	SCP	Screw-on coaxial plug for 5 -9mm Dutside Diameter cable
0	SAC	Screw-on night angled connector
E	SFC	Screw-onfemale line connector
F	SMC	Scrow on mais line connector
	HS $1 / 14$	Hear shrink sleeve for SCP14
	HS 1.10	Hest shrink sleeve for SCP10

TAYLOR BROS (OLDHAM) LTD BISLEY STREET WORKS, LEE STREET, OLDHAM, ENGLAND. TELEPHONE: 0616523221 TELEX: 669911

CIRCLE 23 FOR FURTHER DETAILS.

MANUFACTURERS OF:
Superb performance equipment including: Precision Spun Aluminium Dishes, Scalar Horns, Transitions, Video Devices, etc.

> COMPLETE SYSTEMS

FULL BAND

FULL BAND PROFESSIONAL SYSTEM
1.8m MK II SPUN

ALUMINIUM DISH complete with base structure and feed Full band, low noise L.N.B. Including choice of high specification Tuneable Demodulators
1.8m MK I SPUN

ALUMINIUM DISH complete with base structure and feed. "Maspro" L.N.B. <2.3 dB noise figure.
Fully Tuneable, 800 MHz wide, Rack Mount Professional Receiver quantity discounts avaliable on systems and components avallablityex stock

ESP SERVICES LTD. $\quad \begin{gathered}\text { UNIT M22, STANNINGLEY INDUSTRIAL CENTRE } \\ \text { VALEE STRET PUDEY, LEEDS LS28 } \\ \text { TKG }\end{gathered}$ VARLEY STREET, PUDSEY, LEEDS LS28 $7 \times G$
TEL: 0532 S5555 (EXT. 222) TELEX: 557296 CABEXG

Solve all your Power Problems by contacting E.M.S.
E.M.S. specialise in systems to eliminate your power problems.
Products range from 35VA switched square wave Power Packs to 1 KVA fully uninterruptible sine wave systems.
E.M.S. also manufacture chargers which range up to 60 amps .

For further details please contact:

E.M.S. Manufacturing Limited Chairborough Road High Wycombe Bucks Tel: (0494) 448484

Synchrodyne a.m. receiver

2 - Oscillator circuit, construction and commissioning

In the first part of this article, I discussed the design requirements for a high quality a.m. radio receiver, having good sensitivity, low demodulator distortion, freedom from whistles and with adjacent-channel selectivity which is user-adjustable.
One of the most satisfactory ways of achieving these design requirements is the use of a 'synchrodyne' (direct-conversion) receiver, of the form shown in Fig. 1, in which the incoming signal is heterodyned with a local oscillator held in frequency and phase synchronism with the incoming carrier. This allows direct recovery of the modulation imposed on that carrier, and renders adjacent-channel signals as higher-pitched audio tones - depending on the frequency separation between the wanted and unwanted carriers - which can be removed by appropriate post-demodulator audio filtering.
The essential feature of this kind of receiver system is the maintenance of a local oscillator in synchronism with the incoming carrier: this is achieved by a phase-locked loop consisting of phase sensitive detector 2 , the voltage-controlled oscillator (v.c.o.), and the 90° phaseshifting arrangement, shown in the lower part of Fig. 1.
This p.1.1. function can be achieved economically, in a manner which is usable over a wide frequency range, by the use of high speed c.mos integrated circuits, as shown in Fig. 2. In this an oscillator, of which the output frequency is voltage controllable to some extent, for example by the use of a variable-capacitance diode in parallel with an LC tuned circuit, is fed to a divide-by-two stage, and thence to an exclu-

Fig. 1. Basics of directconversion process

Fig. 2. Phase-locked loop using practical devices
sive-or gate, whose logic (voltage/time) sequence is shown in ${ }^{\text {. }}$ Figs. 3 (a), (b) and (c).

This circuit arrangement generates two outputs, in quadrature, both of which are at half the frequency of the controlled oscillator. If one of these, say the output from the exclusive-or gate, is taken to one of the inputs of a suitable phase-sensitive detector, and this is used to provide an amplified and filtered control voltage to the voltage-controlled oscillator, then the other output from the circuit of Fig. 2, will, when the loop is in lock, be in accurate phase and frequency

(c) Exclusive OR output Q 090

(d) Fault condition which can arise due to uncompensated time delays $m \div 2$ stage

Fig. 4. Phase-locked local oscillator
synchronism with the incoming signal.
The circuit employed for the oscillator, and which uses a 74HC04 high speed c.mos hex. inverter, is shown in Fig. 4, and the quadrature-generating layout of divide-by-two stage and exclusive-or gate is shown in Fig. 5.
There is, unfortunately, an inherent snag in this type of
system, due to the unavoidable time delay introduced into the second input fed to the exclu-sive-or, as a result of propagation delay in the divide-bytwo stage (a 74 HC 74 dual flipflop). This can impair the simultaneity of the rising and falling edges of the waveforms of Fig. 3(a) and 3(b), and lead to the type of fault waveform shown in Fig. 3(d). Compensation for this small, unwanted, time delay is provided by the use of the small sequential propagation delays of the three unused inverter stages of the 74 HC 04 . This gives a clean quadrature output waveform, without unexpected glitches.

The use of the 74 HC 04 hex. inverter as an oscillator is very satisfactory from the point of frequency stability, and, although I have not sought to discover how high an output frequency is possible with this kind of circuit, it will certainly work at frequencies well above 10 MHz , which is more than adequate for present needs, where the required operating frequency range of 3.2 MHz 1100 kHz will give, following frequency division, a tuning range of $1.6 \mathrm{MHz}-550 \mathrm{kHz}$.

A point which should be
noted, as a possible pitfall for the unwary, into which I walked myself, is that the pin connections for the 74 HC 86 quad. exclusive-or are not the same as those for the $74 \mathrm{C} 86 / \mathrm{CD} 4070$. I have shown the required pin connections in Figs. 4 and 5.
There is a wide range of possible phase detectors usable in the phase-locked loop shown in Fig. 2. I have chosen the LM/MC1496P (14-pin, d.i.1.) double balanced modulator/demodulator for this purpose, because it is relatively inexpensive, widely available, and designed specifically for this type of application. There are some constraints in its use, particularly when employed as a synchronous demodulator for radio signals, which I will discuss later. However, in the p.1.1. application, its performance is quite trouble free.
I have shown the complete circuit of the phase locked oscillator, having a synchronous output in phase with the incoming signal, in Fig. 7. Since phase-opposed outputs are available from the 74 HC 74 , these have been used to generate push-pull drive signals to the 1496 demodulator, since symmetrical operation of this

Fig. 7. Complete phase-locked oscillator
i.c. helps preserve lock symmetry in the loop.
Considering this circuit in detail, the first inverting gate of IC_{1} is biassed into its linear region by R_{1}, and positive feedback is applied via C_{3}. 'Squegging' in the oscillator, which can happen with the ' HC ' series inverters in this circuit, though not with the lower speed c.mos, is prevented by the small resistor R_{2}.

The operation of the LM/MC1496 can be explained with reference to the internal circuit diagram of the i.c. shown in Fig. 6. In this, a longtailed pair of transistors, Tr_{1} and Tr_{2}, are fed from separate, high dynamic impedance, constant current sources CC_{1} and CC_{2}. This allows the conversion gain, and internal balance to be controlled by the external resistor ' R_{x} ' which will normally be very low in comparison with the source impedances, $\left(\mathrm{CC}_{1}\right.$ and CC_{2}), but high in comparison with the dynamic emitter output impedances of Tr_{1} and Tr_{2}.
Effectively, therefore, a signal applied to the E input will appear, because of long-tailed pair action, as two equal but opposite amplified current outputs at the collectors of Tr_{1} and Tr_{2}, where it will be equally
divided by the matched transistor pairs, $\mathrm{Tr}_{3 / 4}$ and $\mathrm{Tr}_{5 / 6}$, before being recombined at the output pins 6 and 12 .

Because of the high degree of matching which is possible in transistors manufactured in i.cs, in the absence of any inputs to pins 8 and 10 , any signal applied at the E input will be combined with an equal and opposite signal due to longtailed pair action of $\mathrm{Tr}_{1} / \mathrm{Tr}_{2}$, and will result in a null output at pins 6 or 12. Similarly, in the absence of any input to E or $\overline{\mathrm{E}}$, any signal applied to the oscillator inputs Q or $\overline{\mathrm{Q}}$ will be nulled at the output pins.

However, if signals are applied simultaneously to the signal and oscillator inputs, the output at pins 6 or 12 will be the sum and difference frequencies of these two, and in the particular case of applied signals which are in phase, the output will be a d.c. shift, superimposed on the frequency sum component.
The particular circuit layout required for the use of the 1496 is shown in Fig. 8(a), in the case of a single supply line operation, with the required d.c. input biassing obtained from a simple potential divider chain across the d.c. supply line.

Range	Losc	L $_{\text {RF }}$	Approx. pri. $/ \mathrm{sec}$ coupling ratio
MW $(0.5$ to 1.65 MHz$)$	$66 \mu \mathrm{H}$	$266 \mu \mathrm{H}$	$20 \mathrm{~T}: 100 \mathrm{~T}(20 \%)$
$\frac{\mathrm{LW}}{}$ 100 to 350 kHz	1.5 mH	5.9 mH	$80 \mathrm{~T}: 700 \mathrm{~T}(12 \%)$

Complete symmetry of operation, where this is desirable, can be obtained by small adjustment to the forward bias applied to Tr_{1} and Tr_{2}, using the type of circuit shown in Fig. 8(b). This is unnecessary in the case of the p.l.l. circuit of Fig. 7, where the normal internal balance of the 1496 i.c. is quite adequate.

The output of IC_{5}, in Fig. 7., is taken via a pair of unity-gain buffer stages, $\mathrm{IC}_{6 \mathrm{Ga} / \mathrm{b}}$, to a variable-gain amplifier stage, IC_{7}, of which the h.f. response is rolled off by C_{13}. A d.c. offset pot., VR_{2}, is used to set the output of IC_{7}, (TP6), initially, to half the supply line voltage $(+10 \mathrm{~V})$, with the gain control pot. VR_{3} approximately at the mid-point position.

Fig. 5. Quadrature waveforms generator

Fig. 6. Internal layout of LM/MC 1496 balanced modulator

Fig. 8. Use of MC
1496/1596 as double balanced demodulator, with single-supply operation is shown at (a). Method of nulling spurious responses is at (b).

The next article will deal with the receiver's
r.f. and demodulator stages

The potentiometer VR_{4} is used to set the proportion of the output control voltage applied to the $2-10 \mathrm{pF}$ Varicap diode, (VC_{3}), and initially this pot. can be set to maximum output. The particular type of diode employed, provided that it has a suitable capacitance range, is unlikely to be particularly important. I used BB105B units, simply because they were to hand.
The circuit, with the exception of the 'HC' c.mos i.cs, is not particularly critical in respect of the d.c. supply voltage, but it is suggested that a +20 volt line shold be used. However, since the high speed c.mos i.cs are very critical in respect of applied voltage, especially if a high degree of local oscillator stability is desired, the d.c. supply to these three i.cs is separately stabilized by a low-power voltage regulator i.c., $\mathrm{IC}_{4}(78 \mathrm{~L} 05)$.

Commissioning the p.l.I.

Since the correct operation of the p.l.l. is crucial to the satisfactory performance of the receiver, it is suggested that, if a suitable oscilloscope and signal generator is available, the circuit should be tested, before the remainder of the circuit is put into operation, by tuning the oscillator into synchronism with an unmodul-
ated r.f. output from a signal generator, of some $2-20 \mathrm{mV}$ amplitude, injected into pin 4 of IC_{5} and small adjustments made to VR_{2} and VR_{3} until the best phase coincidence is obtained, on lock, between the signal input and the frequency divided oscillator output, as monitored at TP2.
In the absence of an oscilloscope, correct performance, while in lock, can be seen if a voltmeter is connected between TP6 and the 0V line, when a voltage excursion of $1-2$ volts, on either side of the mean output potential - depending on the signal generator output - should be observed as the signal generator, or oscillator tuning, is swung a few hundred Hertz on either side of the central lock frequency.
A modulated signal may then be applied and $V R_{1}$ adjusted to give the least audio output signal present at TP6. If an oscilloscope is not available, this adjustment could be made with a pair of high impedance headphones connected between TP4 and TP5. Similarly, small adjustments could be made to VR_{2} and VR_{3} using the same technique, since phase coincidence at TP2 implies phase quadrature (with minimum a.f. output) in the switching waveform applied to IC_{5}.
As a final step, when the receiver is complete, and working satisfactorily, the values of VR_{2} and VR_{3} may be 'tweaked' to give the maximum signal strength indication on a signal, somewhere near the middle of the m.w. band, with the aerial sensitivity control adjusted to give about a half-scale reading, since the greatest value of the a.g.c. indication, other things being equal, will indicate the best phase coincidence at the MC1496 signal demodulator (IC_{8}).

Again, when the receiver is finally complete, the maximum output setting of VR_{4} may probably be determined by the need to avoid too great a difficulty in locking on to a strong signal at the top (low tuning capacitance) end of the m.w. band.

Hart Electronics, Ltd., of Penylan Mill, Oswestry, Shropshire, have offered to make available a kit of parts for the assembly of this receiver.

Windows and performance monitoring

On a desk top, you can have access to many information sources and work aids at the same time. 'At first, having a computer only meant that the number of items on the desk were reduced. The computer could only run one program and its screen was only useful for displaying text and simple diagrams.
Displays such as the one on our front cover mean that the whole desk can be cleared. The Sun workstation used to produce this display - a typical mixture of windows, 'icons' and 'pop-up menus' runs as part of a network, giving access to many different programs and data bases, apparently all at the same time.
Modern v.d.us such as this one give very high resolution colour displays, without flicker, that can be viewed for long periods. Using windows in this way makes managing tasks much easier so the user is soon familiar enough with the system to take on more and more activities.
As the number of tasks increases, it becomes more and more important for the user to understand how the system is handling the load. With this in mind, the workstation has built-in performance monitoring giving a graph-type display, as on the right of the picture, or an analogue meter display as shown in the top left.

Processor and memory use can be displayed, but equally importantly, information about the network linking the workstation to other systems. Monitoring of Ethernet data packets and network load is possible and to make efficient use of the network, the number of collisions can be indicated.
The Sun-2 series
workstations use a 68010 processor and the Sun-3, used to produce our cover, can run some two million instructions each second using a 68020 16.67 MHz processor with 68881 co-processor for floating-point operations.
ANGR \bar{x} SUPPLIESLTD
chron RST Tel: 01-677 2424 Telex: 946708 RST
SEMICONDUCTORS

Terms of business: CWO. Postage and packing valves and semiconductors 50 p per order. CRTs $£ 1.50$. Prices excluding VAT, add 15% Price ruling at time of despatch. In some cases prices of Mullard and USA valves will be higher than those advertised. Prices correct when going to press. Account facilities available to approved companies with minimum order charge $£ 10$. Carriage and packing $£ 1.50$ on credit orders.	Telephone 01-677 2424/7	
	Telex 946708	
	E. \& O.E.	
	Open to callers Monday -Friday 9 a .m.-5 p.m	ww

CP/M Plus (vers 3)

For NASCOM and Gemini computers
Features:
CP/M 2.2 file compatibility
Banked memory system
Fast warm boot from banked memory
Faster disk access:-
Directory hashing, memory cashing, multi sector I/O
Better implementation of USER levels
Greatly extended and user friendly utility commands
20 transient utility commands
Includes MAC the DRI assembler
Multi command entry on single line
Multiple drive searching facility
Console redirection
Password file protection
Date and time file stamping
Larger disk and file handling
29 additional BDOS calls
Extended BDOS capability by easily attached RSXs
Winchester, floppy and virtual disk
Mixed drive/formats
Full source code of BIOS supplied
PLUS PLUS PLUS !!!!!!!!!!!!

Now Only £199
 Excluding post and packing and VAT

Developing Systems

Consider our modular approach Nasbus/80 Bus compatible

CPU card

$Z 80$ CPU incorporating memory mapping
64k RAM on board (expandable)
280 S 10 providing two RS232 channels
CTC providing programmable baud rates
P10 providing parallel/centronics NO
Parallel keyboard port
VIDEO card (VFC)
80 by 25 line output
Fast memory mapped display
On board floppy disk controller
Can be used with CPU card under CP/M
Available in kit or built and tested

DISK card (MPI)

Mixed $3^{\prime \prime}, 3.5^{\prime \prime}, 5.25^{\prime \prime}, 8^{\prime \prime}$ drives supported
SASI Winchester interface
Z80 S 10 providing two serial channels
CTC providing programmable baud rates

RAM card

64 k to 256 k (in 64 k steps)
Supports $64 / 32 \mathrm{k}$ paging 4 k mapping
Available in kit or built and tested

CLOCK card (RTC)

Attaches to any 880 P10
Retains Centronics parallel output
Battery backup

PRICES

$\begin{array}{llll}\text { CPU } & £ 230 & \text { MPI } & £ 185 \\ \text { VFC } & £ 199 & \text { RAM (64k) } & £ 150 \\ \text { RTC } & £ 35 & \text { RAM (256k) } & \text { £285 }\end{array}$
RTC
All prices exclude carriage and VAT
£285

For further information contact:

SMALL SELECTION ONLY LISTED RING US FOR YOUR
REQUIREMENTS WHICH MAY BE

Portable Battery or Mains Dscilloscope. SE Laborato ries 111 Oscilloscope - Solid State - General pur pose - Bandwidth OC to $18 / 20 \mathrm{MC} / \mathrm{S}$ at $20 \mathrm{MV} / \mathrm{CM}$ Dual Channel
Rise ume 19 NS - Calibrated Sweep - Calibrator -
Display $10 \mathrm{CMS} \times \mathrm{BCMS}$ - Power AC - 95 voits to 190 volts to 260 or 24 Volt DC battery -25 Volt to $100-$ W.25.5.CM - H25.5CCMS DC 56 CMS P Deep WT11.4KGS - Carrying handle - Tested in fair condıtion with operating instructions $£ 120.00$.

Latest Bulk Government Release - Cotsor Dscillo scope COU150 (CT531/3) 150 only. Solid state general putpose bandwidth DC to 35 MHz at $5 \mathrm{MV} / \mathrm{CM}$ - Dual Channel - High brightness displiy ($8 \times 10 \mathrm{~cm}$) Full
delayed time base with gated mode - Illuminated graticule - Beam inder - Calibrator 1 KHz squartwave - Power $100-120 \mathrm{~V} .200 \mathrm{~V}-250$ volis AC - Size W 26 CM - $\mathbf{4 1 \mathrm { CM }}$ deep-WT 12.5 K.G. carrying handle - colour blue - protection cover front containing polarized viewer and camera adaptor plate operating instructions - $£ 150.00$.

Communication Recievers. Racal $500 \mathrm{KC} / \mathrm{S}$ to $30 \mathrm{MC} / \mathrm{S}$ in 30 bands $1 \mathrm{MC/SWIDE}$ - RA17 MK11 £ 125. RA17L above £25. All receivers are air tesied and calibrated in our workshop - supplied with dust cover - operation instructions - circuit - in fair used condition. Aacal Synthesisers (0ecade frequency generators) MA350B Solid State lor use with - MA79 - RA217 - RA1218

Etc $£ 100$ to § 150 . MA250- $1.6 \mathrm{mC} / \mathrm{S}$ to $31.6 \mathrm{mC} / \mathrm{S}$ 100. MA1350 tor use with RA17 receiver f 100 $1 \mathrm{mC} / \mathrm{S}$ - 100 KHz โ 100 to £ 150 . Panoramic Adaptor RA66 §150. RA137 and RA37 440 to $£ 75$ LF convertors 10 to $980 \mathrm{KC} / \mathrm{S}$. RA218 Independent SSB unit 550 RA98 SSB-ISM Covertor 550 . RA 121 SSB-ISB convertor $\mathrm{C75}$. EC964/7K Solid state - single channel - S8B £100 with manual Ples sey PR155G Solid State 60KC/S - 30MC/S $\mathbf{5 4 0 0}$. Creed 75 Teleprinters - Fitted tape punch and gearbox lor 50 and 75 bauds - 110 volts AC supply - in original transport tray sealed in polythene - lik new 1 L15EA. Rediton TT11 Audlo TBleprinter conMade for use with above lelepinter enabling print-out of messagas recievad from audio input of communicalion recelver $£ 15$ with circult tested. Rediton TT10 Con vertor as above but includes transmit tacilitios $£ 20$ scilloscopes - stocks always changing Terrronix
$465-100 \mathrm{MC} / \mathrm{S}$
F 750 . FM Recorder Sanghmd Sabre 11114 channels $£ 350$. Transtel Matrix printers AF11R - 5 level Baudot Code - up to 3.00 Bauds - 10 print out on plain teleprinter paper $£ 50$ to $£ 100$. Trans IAh11R - As above butalso level ASCl (Cilt and CCIIT No. 5) Like new £100. Army lield tele8 10 £ 15 depending on type and quantity P.O.R. Don 10 rerephone cable - half mile canvas containers £20. Wight viewing intra-red AFV periscopes - Twin Eyepisce - 24 volt dc supply $£ 100 \mathrm{ea}$. Driginat cost to government over $£ 11,000 e a$. Static invertors - 12 or
24 volt input -240 volt AC sinewave output - various wattages P.0.R. XY Ploters and pen recorders various - P.O.R. Ferrograph series 7 Tape recorders mono £100. Stereo $£ 150$. Signal Generators various TF144H/A4 590 TF1060/2 TF144H/AA £90. TF 1060/2 £60. HP606A - $£ 90$ £ 140 Marconi TF 10648/5 $£ 100$ TF791 Deviation meter $£ 100$ TF893A Power meter $£ 50$ Aerial mast assembly $301 t$ nigh complete with 16 ft whip aerial to mount on top guyropes - in sulators - Base and Spikes etc., in heavy Type $836 \$ 50$ Tektronlx plugs-ins - 1A1 $£ 50,1$ A2 $£ 40$ 1 A4 $£ 100 \mathrm{M} £ 50$. All items are bought direct from H.M. Government being surplus equipment: Price is Ex works. S.A.E. Ior enquiries. Phone for appointment tor demonstration of any items. Also availabilty or
price change. V.A T. and carriage extra.

EXPORT TRADE AND QUANTITY
DISCOUNTS GIVEN
JOHNS RADIO (O274) 684007 WHITEHALL WORKS,
84 WHITEHALL ROAD
EAST BIRKENSHAW, BRADFORD BD11 2ER

WANTED: REDUNDANT TEST EQUIPMENT -
RECEIVING AND TRANSMITTING EOUIPMENTVALVES - PLUGS - SOCKETS SYNCHROS

THRULINE ${ }^{\circledR}{ }^{\circledR}$ Directional Wattmeters
TERMALINE ${ }^{\circledR}$ RF Coaxial Load Resistors
TENULINE ${ }^{\circledR}$ Attenuators and accessories from stock
Aspen Electronics Limited
The exclusive UK representative for Bird Electronic 1/3 Kildare Close, Eastcote, Ruislip Middlesex HA4 9UR
Tel: 01-868 1311 Tix: 8812727

Forth in control

The computer language Forth is particularly suited to the control of machinery, argues David Sands, who explains how it may be implemented in control applications.

People tend to adopt languages and then defend them fervently. For example, Pascal enthusiasts expounds its virtues and ignore the drawbacks such as tedious de-bugging and editing. Basic, the single most popular language in the world, is not standardised, suffers from a multitude of dialects and is slow, unstructured and messy. A favourite target for scholars of better languages it nevertheless is arguably more efficient in terms of returns on programming effort, especially for shorter calculating programs.
The truth is, of course, that there are "horses for courses"; different languages are suited to different tasks. Forth is particularly suited to the control of machinery. It has some shortcomings, which I accept but which become less important once the full power of Forth is realised.

What is Forth?

Without wishing to embark on a tutorial of Forth, I would just like to outline the fundamentals for the benefit of readers not acquainted with the languages. Note: In all my examples of exchanges between man and machines I will underline text typed in by the user. I won't keep mentioning the need for the return key. The computer's response will be in upper case but not underlined. My comments will be in lower case.
There are probably four fundamental principles.

1 - Command line

Commands numbers are typed in by the user, separated by spaces, finișhing with return.

Forth then scans the user's line acting on each word, and if everything works out OK then Forth types OK.

2 - the stack

All arguments are passed between procedures on a data stack. You can have variables, but they are not used much. Part of the reason for this is to maximise the performance of the system. Almost any language will first convert a formula to items on a stack. Because Forth users are interested in speed of execution they are prepared to keep account of the stack themselves. Suppose you wish to add 3 and 4 together and print the result:

$$
\geq 45+\text { (return) } 9 \text { OK }
$$

Forth scans the user's input line and first puts 4 on the stack, then puts 5 . The Forth word ' + ', then takes two values off the stack (5 and 4). adds them together and puts the answer on the stack, the value 9 . The Forth abbreviation ' ' then prints it. There is now nothing on the stack. If we try to print again we get:

>. O STACK UNDERFLOW!

which is not ok.

But the Forth data stack doesn't exist to make everyone think like a machine. At worst post-fix notation is an unfortunate sideeffect. Imagine that we wish to calculate the total content of two tanks of chemical. Each tank has a transducer in it with quite a complicated service routine, as follows:

1 Select transducer and energise.
2 Allows filters to settle.
3 Command the analogue-
to-digital converter

4 Wait for the ADC to complete.
5 Read the ADC.
6 Scale the result according to the calibration factor of the transducer.
7 Leave the scales result on the stack.
Each tank has it's own service routine, called LEFT-TANK and RIGHT-TANK. The total of both tanks is given by:-
LEFT-TANK RIGHT-TANK +
Now LEFT-TANK and RIGHT-TANK are not values! Nor variables. We are not doing PRINT X + Y. They are whole procedures which leave their results on the stack. There can even be other words between LEFT-TANK and RIGHT. TANK as long as they don't take off or put on extra items on the stack for example:

LEFT-TANK BLA-BLA RHUBARB RIGHT-TANK +

3 - the dictionary.
Instead of a handful of keywords as in Basic, there are about 150 or more words, which are organised in a "dictionary". Forth interprets a user's word by searching down the dictionary until it finds it, then carries out the activity which is in the "definition" of the word. If the word isn't in the dictionary then Forth tries to convert it as a number. If it isn't a valid number either, then Forth rejects it as an error. Most low level words in Forth tend to be abbreviations, or single characters, for example the Forth word for "print" is just a full-stop (.) whereas higher level procedures have highly descriptive names.

4-definitions.

This principle is fundamental to Forth users. It is the building-

David Sands is a consultant in industrial automation and software, with a small company, Sands Technology, in Cambridge. In 1979 he was one of the first to import personal computers from the USA. In the same year he designed a low-cost speech synthesizer for personal computers. Two years later he designed a talking dashboard for a car. He has also worked on naturallanguage translation using speech input and output, and on low-cost robot arms.

The Forth word " + " takes the two top numbers from the stack and replaces them with their sum.

Summary

Forth is a highly productive language in terms of programming effort. Communication between programmer and machine is improved by the development of a vocabulary specific to the application. Programs produced with Forth have higher integrity and are more efficient than programs produced with other methods. Data types are few but highly suited to digital hardware. The use of the stack is an efficient way of passing arguments. In fact there are now single chip microcomputers available with Forth built in, such as the 65RF11. New microprocessors are being developed with stack oriented archi-tecture.

The heart of a statistical process control circuit which can be controlled by Forth, as described in the text.
block approach to programming.
Forth, straight off the disk, consists of a "kernel" of some 150 or more "words" or commands, most of which execute machine code whenever they are used. The programmer must define new words in terms of words in terms of words he/she has already define plus words from the kernel as necessary. These new words are added to the existing dictionary. Hence the programmer begins by defining short concise procedures which can be tested individually. In this way the programmer builds up a range of fully tested modules which are then used to construct more powerful procedures, and so on until the final application programme is complete, which can be just one word. The modular approach imparts a very high degree of confidence to the final application.

New procedures are created
using a colon sign, followed by the name of the procedure, then the definition ending with a semi-colon:

: TANKS?
 LEFT-TANK RIGHT-TANK $+$

Now all you have to do is type TANKS? to yield the total in both tanks, or alternatively TANKS? can be included in the definition of some grander procedure.

Control applications

To illustrate the above principles more fully I can outline part of a genuine application. The system being programmed is a dedicated computer which reads from linear displacement transducers checking tolerances on motor components. Deviations from tolerance are displayed on a colour screen in bar graph form and are later analysed statis-

tically for trends, machine performance etc. This is known as Statistical Process Control or 'SPC'.
A number of transducers are connected to a multiplexer and analog-to-digital converter. The ADC is an Analog Devices AD574 used in 12 -bit mode on an 8 -bit microprocessor bus (actually a Z80), on I/O ports O and 1 . The read/convert input of the $A D C$ is driven from bit 0 of port 4. Now, suppose we are not just starting on the software but that the hardware is not proven either, being a bread-board prototype.

Hardware development

Assuming that sufficient of the system is running to support Forth, or that a processor emulator is being used which is running Forth, then things can be typed in at the keyboard during debugging of the hardware. Checking of a prototype module or circuit addition might proceed as follows:

$$
>04 \text { OUT OK }
$$

This sends the value O out through port 4 to set the ADC to convert mode. (check with logic probe).

>4 OUT OK

This sets the ADC back to read mode. (check with logic probe) Suppose there are problems with the wiring. We can therefore define a word to keep writing to port 4 while we look for the missing signal with an oscilloscope. You can't do this with an ordinary monitor program. You can't do it nearly as quickly by writing a test routine in any other language. Bear in mind that you might need to devise many test routines during the development of some hardware. To check the above read/convert line you might enter:

$$
\begin{aligned}
& >: \text { TEST1 } 10000 \text { DO } 04 \text { OUT } 1 \\
& \frac{4 \text { OUT LOOP; OK }}{>\text { TEST } 1}
\end{aligned}
$$

Luckily Forth is fast enough to issue the OUT signals with sufficient regularity to be visible on an oscilloscope. If Basic were used you might be trying to view a 10 microsecond trace generated every 10 milliseconds by BASIC. This would dim the
trace by a factor of 1000 making it invisible. Forth is therefore a powerful engineer's tool.

Hardware service modules

Hardware devices are best programmed in stages or modules. In the case of my example of the Analog Devices AD574 Analog-to-Digital converter first let's get control of the read/convert line:-
(Note in practice, programs are entered on to disk, and edited, before being compiled by Forth).

: CONVERT

14 OUT (SET CONVERT
MODE)
00 OUT (START
CONVERSION)

When the ADC has converted a value, the 12 -bit result is available in two parts: the upper 8 bits on port address 0 and the lower 4 bits with trailing zeros on port address 1 . In my application I wired ADC data bits 0 to 3 to my bus on bits 4-7, and ADC bits $4-7$ to bus bits $0-3$. The code to read the ADC was therefore as follows. Note that hexadecimal numbering is preferred in the context of hardware:-

```
READ
04 OUT (SET READ MODE)
0 IN (GET HIGH BYTE)
OF AND (MASK LH NIBBLE
WHICH IS THE MOST
SIGNIFICANT 4 BITS)
100 * (SHIFT LEFT TO BITS
8-11)
O IN (GET HIGH BYTE
AGAIN)
FO AND (MASK RH NIBBLE
WHICH IS BITS 4-7)
OR (LOGICAL OR WITH BITS
8-11)
1 IN (GET LOW BYTE WHICH
IS BITS 0-3 PLUS 4 ZEROS)
OR (LOGICAL OR WITH BITS
4-11)
7FF - (APPLY OFFSET SO
READINGS FALL
BETWEEN +2048& - 2047)
```

The ADC is fed from a TESA signal conditioner which converts the transducer outputs into a DC voltage in the range $+\&-10$ volts. The amplifier in the signal conditioner has a choice of two gains, which I select by outputting on bit 1 of port 4, bit 0 of which is already in use. It is necessary, therefore to add, the value of this bit to the output whenever selecting read or convert modes of the ADC.

To do this we need a variable to hold a value of 0 or 2 . When the variable's name is used its address is put into the stack. The Forth word '!' stores a value into the address, i.e. into the variable. The Forth word @ fetches a value from the variable and leaves it on the stack.

VARIABLE SCALE

The rest of the code is then modified so:
:CONVERT
SCALE @ 4 OUT (SET
CONVERT)
00 OUT (START
CONVERSION)
: READ
SCALE @ 1 OR 4 OUT (SET
READ)
0 IN OF AND 100 *
0 IN FO AND OR
1 IN OR
7FF -

Finally, before using the ADC I must set up the multiplexer in the signal conditioner by outpouring the required channel on port 2. e.g. 22 OUT selects channel 2.
If the amplifier needs a settling time the signal conditioner issues a busy signal which I input on port 6 bit 0 . Servicing the signal conditioner is coded like this:

> : CHAN
> 2 OUT
> BEGIN
> 6 IN 1 AND
> $0=$ UNTLL

The BEGIN-UNTIL loop traps UNTIL bit 0 of port 6 changes to 0 (false). Now I can build a 'bigger' word thus:-

```
: ADC
CHAN
CONVERT
READ
```

Note that the line: 2 OUT is not complete. It requires a further item from the stack and this is presumed to be on the stack before ADC is invoked. To select and read channel 2 we would therefore write

2 ADC

ADC contains the word READ which leaves the value of channel 2 on the stack. ADC is therefore a word which requires one value on the stack and leaves one value behind on the stack. To demonstrate the
usefulness of this we could have a condition whereby a value of, say, more than 800 on channel 4 is an alarm condition.
Suppose the diameter of a certain component were being checked by two transducers mounted each side of the component. The two transducers are required so that if the shaft were not straight then any reading produced by one transducer due to nonstraightness would cancel in the other. Suppose the transducers are on channel 5 and 6 . Then we could define a single word for diameter to read both transducers and add them together thus:

: DIAMETER 5 ADC 6 ADC + ;

From now on whenever we want diameter we need only use the name; e.g.:

$$
>\text { DIAMETER . } 500 \text { OK }
$$

An associated word might be:-

: TOOLARGE

```
800 >
```

This leaves a 1 (true) on the stack if the argument is more than 800 units, or a 0 (false) if not. In a later definition yhou might enter

DIAMETER TOOLARGE IF ABORT THEN.
What is now happening is that Forth statements are taking on the readability of an English sentence and becoming less cryptic. At the same time we are beginning to forget the complexities of the lower levels. We can afford to! They are fully tested and reliable.

Machine control

Out-put to a machine is most commonly achieved with the following devices:
Triacs - used to switch contactors and solenoids e.g. solenoid valves.
Digital-to-analog converters used to issue a varying voltage to control such things as DC motors.
Transistors (e.g. hexfets) used to switch low voltage DC devices such as stepping motors and bright lamps on the machine front.
In an application a few years ago I designed and programmed a dedicated system to check the performance of hydraulic control valves as fitted to cars with power assisted steering.

The machine had a hydraulic pump from which oil was fed to the steering valve via solenoid valves controlled by my system. One problem with output ports is that although they latch (i.e. memorise) what you send to them, their contents cannot be read back. They are therefore a kind of write-only memory (wom?). If you wish to change the state of one bit on a particular port without altering any of the other bits then ideally you read the port, after a bit, then write it back. Because you can't do this it is necessary to keep account of each port in a variable. My application used an 8 -bit microprocessor, a Z-80. I had port 7 controlling 8 triacs, ports 8 and 9 controlling 16 DC lamps. The triacs were programmed thus:

VARIABLE TRIACS

:ACOUT
DUP TRIACS!
7 OUT

Any argument to ACOUT is first DUPlicated. One copy is stored in the variable TRIACS and the other is output on port 7 . Various descriptive commands can now be defined:
: OILON
TRIACS @ 1OR (SET
BIT 0 TO 1)
ACOUT (OUTPUT
AND SAVE IN
TRIACS AGAIN)
;
: OILOFF
TRIACS @ FE AND
(SET BIT 0 TO 0
MASKING IT
OUT)
ACOUT
: CLAMPON
TRIACS@4 OR
ACOUT
: CLAMPOFF
TRIACS@FB AND
ACOUT
: AIRON
TRIACS @ OR ACOUT
: AIROFF
TRIACS @ F7 AND
ACOUT
etc. etc.
The DC outputs on parts 8 and 9 can be handled 16 bits at a time to suit Forth's 16 bit standard data size. Simply split the 16 -bit value into high and low bytes and output separately on each port.

Compact disc mastering
 continued from page 50

Fig. 9. The DMR4000 has extra rotary heads for confidence replay. If an additional decoder is installed in PCM1630, the machine can continue to play with a clogged head. Error status will switch output to the error-free decoder, whether playback or confidence head. Delay compensates for displacement heads.

The PCM-F1 has no timecode functions and for Compact Disc cutting F1/701 tapes have to be digitally dubbed to PCM1610 format using the RTW or Harmonia Mundi Acustica interfaces.
The JVC system buries the timecode and user bits in the pseudo-video waveform, so the poor analogue bandwidth of VHS audio tracks ceases to be a problem. An adaptor is available to produce timecode from the JVC p.c.m. adaptor.

Two of the greatest drawbacks of the use of v.c.rs for digital audio have been the lack of confidence replay, i.e. offtape monitoring during record, and the tendency of heads to clog due to a combination of inaccessibility and repeated passes during edit operations.
In the replacement for the venerable PCM1610 and VO5850 U-matic system, Sony have solved both problems. The U-matic recorder is no longer an industrial v.c.r. with the chroma

circuits and dropout compensator disabled, but a purposebuilt machine with extra replay heads in the drum for confidence replay, and an automatic head-cleaning mechanism (DMR4000). The PCM1630 generates the same tape format as the PCM1610, but can switch the replay section to the confidence output of the DMR4000. As an option a second replay channel can be fitted to the PCM1630 as shown in Fig.9.
During replay, the record/ playback heads drive one replay channel, and the confidence heads drive the second channel. Should one head become clogged, error detection circuits will choose data from the other heads. Significantly, the d.-to-a. converter of the 1630 uses oversampling by a factor of two to improve phase linearity.

In the next two parts of the series we discuss problems and techniques in editing digital recordings on rotary head machines.

References

1. See Fig. 6 of ref. 4 .
2. Professional-use PCM audio processor with high efficiency error correction system, Yamada, Fujii, Mariyama \& Saitoh. AES Convention, Los Angeles 1980.
3. The DASH Format, J.R. Watkinson. Broadcast Systems Engineering October 1985.
4. Channel code and disc format, J.R. Watkinson, Electronics \& Wireless World, June 1985, pp.80-2.

HDTV Camera

A television camera, which sets new standards in picture recording quality, has been developed by Robert Bosch GmbH , on behalf of the Heinrich Hertz Institute for Telecommunications Technology in Berlin. The development work was sponsored by the Federal Ministry for Research and Technology. To date five of the experimental cameras have been delivered, namely to the Heinrich Hertz Institute, the University of Dortmund, Braunschweig Technical University, the
Telecommunications Research 62
and Development Centre of the German PTT in Darmstadt. HDTV (high definition television) is a new television standard which aims to achieve even better picture resolution, that is, even clearer television pictures, on larger screens with a width/height ration of $5: 3$ (previously $4: 3$). When this improvement in quality will reach domestic television screens, however, remains to be seen, as it would require not only further development of all the equipment required in the television studio but also the allocation of new frequencies for transmission of the programmes, by satellite for example.
Nevertheless, the new technology could soon find its way into production studios

because HDTV productions unlike those from other systems - can be used in a "multimedial" way, which means that as well as being broadcast they can also be
transferred to video discs or 35 mm film. HDTV technology would therefore enable production studios and television stations to become considerably more competitive.

Timing by remote control

This versatile self-contained Z80 timer controls eight appliances with 100 on-off settings using coded r.f. bursts injected in the mains supply.

TThis project was originally conceived as a simple electronic replacement for an electromechanical immersion-heater timer, which had finally siezed after years of unreliable service. Then I decided that, to be really useful, the timer should be capable of controlling more than just an immersion heater; it should have a timing resolution of one minute; it should be able to store several different switching times for each appliance; and above all it should be self-contained (some advertised controllers need to be hooked up to a home computer).

It was clear to me that a microprocessor was the only economical way of achieving these requirements. I first considered using a single-chip microcomputer, to cut down construction time. One such device, Texas TMS1601A, is mask-programmed to operate as a four-channel timer, but unfortunately it doesn't lend itself easily to remote control with the operating program supplied. Also, it only provides a four-digit display (I wanted to display on and off times together) and can only control four appliances.
Single-chip microcomputers containing eprom, such as Intel's 8748 series, are still more expensive than multi-chip systems, and difficult for home constructors to find. I therefore settled for a general-purpose microprocessor with external memory, since eight-bit processors are widely available at very low prices. Standard eproms are also cheap and they can easily be programmed using a home computer with a suitable attachment.

Having to write the software myself gave me the chance to
define the operating procedure to suit my own whims. The software will be described in sufficient detail for changes to be made by constructors with different ideas of how a timer should operate.

The final design is based on a Z80 processor and has several features not usually found in commercially made timers.

- One appliance is plugged into a 13A mains socket mounted on the control unit. A further seven may be remotely controlled by means of coded r.f. bursts injected into the mains wiring ${ }^{1}$.
- Up to 100 on-and-off settings may be stored. Each
setting can control any combination of appliances, and will operate on any combination of days of the week. It may either repeat the weekly cycle indefinitely, or stop automatically on any specified last day.
- Settings are suspended rather than cancelled on the last day, and may be reactivated without being reentered from scratch. They may also be suspended or cancelled manually at any time.
- All the stored settings, or just those for a particular channel or a particular day, or all repeated settings, may be examined and altered in

by Peter Ferris

The author developed an early interest in electronics, building his first radio at the age of 12 and going on to maintain all the school's many television sets. Having dropped out of a B.Sc. course at London University, he worked his way up through industry, testing, fault-finding and then designing analogue control systems and test equipment. He taught himself about
microprocessors the hard way, be designing and building a $Z 80$ development system from scratch, and is now employed as a senior design engineer with Dowty Electronics, where he is working on $\mathbf{Z 8 0 0 0}$-based contro systems.

turn. The display in this mode shows on and off times, day, channel and either active or suspended. For non-repeated settings the last day flashes.

- Settings are entered and altered step by step, with the relevant part of the display flashing at each stage as a prompt. A 'backstep' key allows mistakes to be corrected without having to start again.
- Individual digits of the on and off times are altered with 'up' and 'down' keys. The numbers wrap-round when zero or the upper limit is reached; impossible times such as 27 hours cannot be entered.
- Each channel has an output on/off key and a timer enable/disable key, with leds to indicate status.
- Like most digital watches but unlike most timers, the clock may be corrected in two steps if it is within half a minute of the right time.
Most of these features are provided by the software and incur no additional cost. Those that need extra hardware, such as the remote control, could simply be left out if not required.
The control unit is constructed on three printed-circuit boards: the first contains the processor and memory and most of the logic; the second holds the keyswitches, displays and display drivers; and the third is shared by the optically coupled triac switch, the power supply and the remote-control transmitter.

Processor board

The circuit of the processor board is shown opposite. Circuit $\mathrm{IC}_{2 \mathrm{a}}$ decodes the upper two address lines to divide the processor memory map into four parts, of which two are used for the eprom and ram. The eprom may be either a 2716 (2Kbyte) or a $2732 / 2732 \mathrm{~A}$ (4Kbyte). The timer program fits into 2 Kbyte , but as the processor spends much of its time in the halt state, it could be given additional tasks such as a program for decoding the Rugby time-code radio transmissions. ${ }^{2,3}$.

Circuit IC_{7}, a standard Z 80 peripheral device, is a fourchannel programmable coun-
ter/timer circuit (c.t.c.). Channel 0 divides the system clock down to 500 Hz , which is further divided by channel 2 to provide a 20 Hz interrupt for the timekeeping function and the display flasher. Channel 1 generates a 601 Hz interrupt for display multiplexing; it is also used as a clock for shift register IC_{13}. Channel 3 is spare. CPU address line A_{2} is used directly as a chip enable for the c.t.c, which therefore occupies every address in the i/o map which has A_{2} zero.
Circuitry $\mathrm{IC}_{5}, \quad \mathrm{IC}_{8 \mathrm{a}, \mathrm{b}}, \mathrm{IC}_{2 \mathrm{~b}}$ decode addresses for the other four i/o ports. The decoder is inhibited when A_{2} is low to avoid bus contention with the c.t.c. Lines A_{3} and A_{4} were arbitrarily chosen for the select inputs. Signal $\overline{I O R Q}$ is used as a data strobe in both directions; it is not necessary to use $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$, because the software will never try to write to the input port (IC_{6}) or read from the output ports (IC10, 11 and 13). However, signal M, is gated through $\mathrm{IC}_{8 \mathrm{a}}$ to inhibit the decoder during the interrupt acknowledge cycles, when $\overline{\mathrm{M}}$, and $\overline{\mathrm{IORQ}}$ are both low and the address bus retains the program counter contents.
The key matrix is driven by $\mathrm{IC}_{5 c \text {.f }}$, their open-collector outputs avoiding the possibility of damage if keys in different rows are pressed together.

The parallel-to-serial data converter is IC_{13}, clocked continuously at 601 Hz , but as the serial input on pin 10 is tied low the output is normally a stream of zeros. When the processor is required to switch an appliance on or off, it writes a byte into the parallel inputs. Each bit from D_{1} to D_{7} represents the required state of one of the remotely-controlled appliances (1 for on, 0 for off). The H input of IC_{13} is tied high to provide a start bit, so D_{0} is latched by $\mathrm{IC}_{12 \mathrm{~b}}$ to control the eighth (or zeroth) appliance directly. The write strobe pulse also triggers the monostable $\mathrm{IC}_{9 \mathrm{~b}}$, which enables the transmitter for the time required to transmit one byte.
The other half of IC_{9} is used as a pulse-width modulator to control the display brightness. It is retriggered at 1.66 ms intervals when the multiplexing software moves on from one digit to the next. With the control at maximum the pulse is
slightly shorter than the trigger interval. The \bar{Q} output is therefore low, and the display enabled, for most of the time. As the control resistance is reduced the pulse becomes shorter, reducing the display duty cycle and hence the apparent brightness. To match the response of the eye, a logarithmic potentiometer is used with the wiper tied to the clockwise end
This arrangement also protects the display leds if a fault occurs which stops the display being multiplexed. Under fault conditions, $\mathrm{IC}_{9 \mathrm{a}}$ is no longer triggered. Its Q output stays high, disabling both the segment driver $\left(\mathrm{IC}_{11}\right)$ and the digit decoder on the display board. Without this protection, the 60 mA segment current would flow continuously in one digit or group of leds, instead of being time-shared between the eight digits and four groups of leds.
Oscillator frequency is halved by $\mathrm{IC}_{12 \mathrm{a}}$ to provide a 1 MHz clock for the c.p.u. and c.t.c. The normal t.t.l. high level is insufficient for the c.p.u. So R_{5} pulls the logic 1 level up to +5 V . The halt indicator and R_{1} are optional. If fitted, the led appears to glow dimly most of the time (it actually flashes at a rate too fast to see), but it visibly blinks off when the clock minute increments, and sometimes when a key is pressed.

Dlsplay and keyboard

The circuit of the display/keyboard is on page 66. External connections are numbered to correspond with the processor board circuit.
Integrated circuits 101 and 102 decode the four-bit digit number and drive one digit or group of leds at a time, via transistors 101 to 112 . The choice of transistor used is important; a d.c. gain of at least 100 is required at a collector current of 500 mA . Power disipation is low because each transistor is only conducting for one twelfth of the time.
Transistors 113 to 120 each drive one segment or discrete led of the digit or group of leds selected by the digit decoder. Resistors 125 to 132 set the current to about 60 mA peak (5 mA average), which gives an accep-
tably bright display without resorting to Darlington drivers, especially if high-efficiency leds are used. Although the colon between the hour and minute digits is always on, its leds are pulsed via Tr_{101} so that the colon brightness tracks the rest of the display.
The 32 keystrokes are connected as a four by eight matrix, which is scanned by pulling each row line low in turn, and then reading the eight column lines together. Column lines with no keys pressed are pulled high by resistors on the processor board. Debouncing the keys is left to the software (to be described later).

Power supply

The power supply is of conventional design (shown on p. 67 with the optocoupled switch and remote-control transmitter). The five volt regulator, IC_{203}, should be firmly bolted to the metal box for heatsinking. It should not be insulated from the box because the 0 V line, which is connected to the metal surface of the i.c., needs to be earthed as a return path for the transmitted r.f. signal. The 7805 is available either in a TO3 metal can, or in a TO220 plastic package with a metal tab. Either type is suitable.
A voltage doubler generates a raw 20 V supply for the transmitter output stage. From this, IC_{202} derives a stable 12 V rail for the oscillator and driver stage.

The mains filter unit is optional, and various types may be suitable depending on the environment. The prototype timer operated correctly for several weeks without a filter, but then consistently went haywire when an electric drill was plugged into the other half of the double power point where the timer was plugged in. (The timer behaved itself when the drill was moved to the next power point on the ring main.) Fitting a filter as shown in the circuit completely cured the problem.
The fuse in the mains plug has to be rated according to the largest appliance likely to be plugged into the control unit (i.e. probably a 13 A fuse), and this would not protect the mains transformer if, for example, D_{204} or D_{205} went shortcircuit. The separate low-

current fuse (F1) is therefore essential, particularly because the unit will be left on and unattended for long periods. A slow-burning fuse is required, to cater for the relatively high surge current at power-up.

Optocoupled switch

An optically-coupled triac driver, IC_{204}, also contains a zero-voltage-crossing circuit. The output stage is itself a small triac and for loads of less than 20 watts, such as a portable radio, the external triac and R_{221} may be omitted. (Connect pins 6 and 4 of IC_{304} directly to the live input and output lines respectively).
Remember that high-current triacs can have significant off-state leakage currents, especially when hot; a 5 watt load connected to a 15 A triac may still have several tens of
volts across it when the triac is off. Ideally, the triac's r.m.s. current rating should be about 50% higher than the maximum load current, but in practice it is possible to use, say, 15A triacs for most receivers, with one or two lower-current ones for appliances such as radios or electric blankets.
Snubber components C_{211} and R_{220} are included to limit the rate of rise of voltage across the triac when an inductive load is switched off, which could otherwise retrigger the triac as soon as it is switched off. Their optimum values depend on the maximum load current and the critical dV/dT rating of the particular triac used, though 1 $\mathrm{k} \Omega$ and $47 \mathrm{nF} / 500 \mathrm{~V}$ is a widelyused combination. They may be omitted if only resistive loads are to be controlled, or if the phase difference between voltage and current is only a few degrees.

Remote conirol transmilter

The principles involved in using domestic mains wiring to carry data signals are discussed in reference 1 , so I will not go into too much detail here. The neutral-earth pair of wires is used for safety.
Frequency-shift keying is used for data transmission, i.e. two carrier frequencies represent logic 0 and logic 1. On page $67, \mathrm{IC}_{201}$ is a voltage-controlled oscillator whose frequency is switched by the serial data. The triangular waveform from pin 4 is filtered by R_{205} and C_{203}, so that the power amplifier delivers a reasonably pure sinewave to the mains wiring. Transistors 203 and 204 keep the output stage biased off except during transmissions.
The choice of carrier frequencies depends on the impedance/frequency characteristic of the mains wiring, which
varies considerably from house to house. Measurements made at several locations suggest that an impedance peak can be expected somewhere between 100 and 500 kHz ; a simple method of finding the peak will be described later, with other tips on testing and setting up the system.

Remate control recelver

A typical f.s.k. receiver might consist of: a bandpass filter with -3 dB points at the two carrier frequencies; a phaselocked loop to recover the original serial data; a serial-toparallel converter (usually a uart chip which can detect transmission errors); and a decoder, to determine whether the received command is intended for this receiver, and if so whether to switch the appliance on or off. If two or

more appliances are to be switched together, a separate data word must be transmitted for each one.
Since a receiver is required for each remotely-controlled appliance, I rejected this approach on the grounds of cost. Instead, I designed a novel receiver circuit which offers good immunity from mains-borne interference at a modest outlay.

The circuit is shown opposite. A Wien-bridge bandpass filter, IC_{3111}, is tuned to the lower (off) carrier frequency.
The comparator $\mathrm{IC}_{3013 \text { a }}$ serves three purposes. First, the base/collector junction of the inverting input transistor acts as a clamp diode, holding the negative peaks of the waveform to about -0.6 V . Secondly, the positive peaks of the shifted waveform are compared with the half-supply-voltage bias on the other input; if the peak-topeak amplitude exceeds the bias, the comparator output switches low. Thirdly, the open-collector output stage acts as a rectifier; C_{307} is charged rapidly by the output transistor, but discharges more slowly through R_{308}.

The output therefore remains low, although with some ripple, when a large enough signal is received. The filter R_{309} and C_{308} is to remove short pulses caused by spikes on the mains wiring.
The higher (on) carrier frequency is detected in the same way by IC_{302} and $\mathrm{IC}_{303 \mathrm{~b}}$. The other two comparators in IC_{303} are not used. (If you're wondering why I didn't use the LM393 dual comparator, which has nearly identical characteristics, check the advertised prices the LM339 quad version is usually cheaper.)
The normal operation of the rest of the circuit is best understood by referring to the waveforms, above. The serial data word always starts with an onbit. The next seven each represent the required state of one of the remotely-controlled appliances. The stop bit is always an 'off'.
The start bit triggers monostable $\mathrm{IC}_{305 \mathrm{a}}$, via $\mathrm{IC}_{304 \mathrm{~b}, \mathrm{c}}$. The Q output of $\mathrm{IC}_{305 \mathrm{a}}$ immediately triggers the second monostable, $\mathrm{IC}_{305 \mathrm{~b}}$ the Q output of which is fed back to prevent retriggering of either monostable during the receive sequence.

The first monostable is adjusted so that its pulse finishes in the middle of the data bit corresponding with the particular receiver (channel 6 in the case of Fig.5). This trailing edge latches the incoming data bit into $\mathrm{IC}_{307 \mathrm{7}}$, from where it is transferred to $\mathrm{IC}_{307 \mathrm{~b}}$ by the trailing edge of the second monostable pulse during the stop bit.
Extra gating circuits are included to provide noise immunity. To trigger the monostables, a burst of mains-borne noise has to be at or very near the on-frequency for a long enough time to discharge C_{316} below the logic 0 threshold. It must have no significant component at the off-frequency, since that would block the onsignal at $\mathrm{IC}_{304 c}$. At the end of the first monostable pulse, the noise must still be present, and at only one of the carrier frequencies; if neither or both are present, the J and K inputs of $\mathrm{IC}_{307 \mathrm{a}}$ would both be low, and the latch would not change state. At the end of the second monostable pulse the noise must still be there, but now only at the 'off' frequency; otherwise, the J and K inputs of $\mathrm{IC}_{307 \mathrm{~b}}$ would be held low via $\mathrm{IC}_{304 \mathrm{~d}}$ and $\mathrm{IC}_{306 \mathrm{c}, \mathrm{d}}$, and the output wouldn't switch. Even if a noise burst managed to get over those three hurdles, there is of course a 50% chance that it would only succeed in switching the output to the state it was in already.
As with the conventional receiver, the output may fail to switch if noise occurs during a signal transmission. To overcome that problem, the control unit repeats each timed transmission, ten seconds after the stored switching time.

Local control

The three-position switch allows the appliance to be switched on and off locally, overriding the remote control. This is not strictly necessary when the appliance is to be powered via a mains socket mounted on the receiver box, as the appliance could be plugged directly into a wall socket or left unplugged. But some appliances, such as an immersion heater or a bathroom heater, must be wired directly into the receiver because power sockets aren't allowed in bath-

rooms. The switch is then the only means of local control (or any control if the transmitter fails). A switch is used rather than a pair of push-buttons because it has the advantage of providing absolute immunity from mains-borne interference - including from mischievous members of the household trying to switch the bathroom heater off when you've just settled down for a long soak! Capacitors C_{319} and C_{320} prevent noise picked up on the switch wires reaching the SET and CLR inputs to the latch. They are connected to opposite supplies to ensure that if a power cut occurs while the switch is set to 'remote', the appliance is switched off when power is restored.

The d.c. supply for the receiver is derived from a miniature mains transformer. The receiver circuit is tolerant of quite wide variations in supply voltage, and no regulator is necessary. Load current is about 17 mA for the receiver itself, plus a further 15 mA through the optocoupler and panel leds when the output is switched on.

To be continued

Postscript. I have been asked several times why the multiplexing interrupt rate is 601 Hz rather than a round figure like 600 Hz . The reason is that the c.t.c. channel has a four-bit prescaler, which divides the 1 MHz c.p.u. clock down to 62.5 kHz . This is further divided by the programmable eight-bit counter. Dividing by 105 (decimal) gives 595.24 Hz ; dividing by 104 gives 600.96 Hz , and that's as close to 600 Hz as it's possible to get.

The serial data word always starts with an onbit; the next seven each represent the required state of one of the remote appliances; the stop bit is always an 'off'.

References

1. The Intelligent Plug, N.McArthur, A. Wingfield and I.Witten, Wireless World. December 1979
2. Micro-controlled radio-code clock, N.E. Sand, Wireless World, June/July 1982
3. Rewbichron 2, J. Robinson, Radio \& Electronics World, April/May 1983

Sarel's Plastic ENCLOSURES SETTHE STANDARD

CIRCLE 78 FOR FURTHER IETAILS

Part type	1 off	25.99	100 up
4116 200ns.	. 1.25	1.15	1.10
4164 150ns Not Texas.	. 1.35	1.15	1.05
41256150 ns	2.95	2.70	2.55
2114 200ns Low Power.	. 1.75	1.60	1.55
6116 150ns..........	. 1.99	1.80	1.65
6264 150ns Low power.	. 3.75	3.45	3.30
2716 450ns 5 volt.........	. 3.85	3.45	3.30
2732 450ns Intel type	. 4.75	4.25	4.10
2764 300ns Suit BBC	.2.15	1.99	1.80
27128 300ns Suit BBC	. 2.95	2.65	2.40
27256 250n	5.95	5.45	5.10

Low profile IC sockets: Pins 814161820242840 Pence 1213141618242738
Available now - The ROAM BOARD for the BBC Micro. Reads
Roms via a Low Insertion Force Socket and saves their
contents as files, then reloads a file into its sideways Ram as required. Full details on request.

74LS series TTL, wide stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or 'phone for list

Please add 50 p post \& packing to orders under $£ 15$ and VAT to total.
Access orders by 'phone or mail welcome.
Non-Military Government \& Educational orders weicome., £15 minimum.

HAPPY MEMORIES (WW), Newchurch, Kington,
Herefordshire HR5 3QR.
Tel: (054 422) 618

CIRCLE 58 FOR FURTHER DETAILS.

SWITCH MODE POWER SUPPLIES

D.S. Electronics 16, Eagle Street, Hanley, Stoke-on-Trent. ST1 3PE Phone (0782) 29898
Fully tested at lowest prices Manufactured by GOULD. FARNELL. \&

CIRCLE 42 FOR FURTHER DETAILS.

Liniplex

HF Broadcast Relay Receivers
". . . less degradation from the effects of fading and interference than is possible with nearly any other receiver available.' - World Radio TV Handbook 1985

Phase Track Ltd.,
132 Queens Road,
Reading, RGI 4DG Tel: 073453933

TDS 900

FORTH COMPUTER

Remember that -

* FORTH is fast
* It is interactive like BASIC
* It contains its own compiler
* You can mix FORTH and assembler code
* You can comment properly without penalty
* Names can be left long or shortened
* TDS900 series computers have a full-screen edito
* TDS900 series has both N-channel and $C-M O S$ versions
* TDS902 consumes 25 mA and has 62 K bytes memory
* Address and data buses take 6800/6500 peripherals
* Many systems are just one TDS900 in a box
* Others may have one extra card for special needs
* All cards have mounting holes, or use a rack
* TDS971 offers RS232 and IEEE-488 expansion
* TDS972 adds RS232, A to D and parallel ports
* TDS973A gives opto-isolation on 32 input/outputs

FORTH computers start at $£ 99$
$\uparrow \begin{aligned} & \text { Triangle Digital Services Ltd } \\ & \begin{array}{l}\text { 100a Wood Street, London E17 } \\ \text { Telephone } 01-520-0442\end{array} \text { Telex 262884 (Ret Mor75) }\end{aligned}$
CIRCLE 71 FOR FURTHER DETAILS

New from Oji'les-PORTASOL Portable Gas Soldering Iron
 ORYX - market leaders in soldering irons and acces-
 pocket portable (173 mm) and independent of any

sories introduce the revolutionary PORTASOL. This new approach to catalylic soldering iron technology is truly
external energy source. PORTASOL is powered by ordinary cigarette fuel and one filling lasts for 60 minutes continuous use

68000 hoard - 5

Bob Coates continues his description of the Kaybug monitor software with a look at its system calls

The monitor offers 26 system calls or subroutines for user programs to draw upon. These handle keyboard input and screen output functions but also include number base conversions and a 32 -bit divide routine.
The calls are invoked by setting up the appropriate entry conditions and then executing a trap \#11 instruction followed by a word-sized number indicating which call is being made.
All calls except renter when completed return to the user program and continue with the next instruction, as if a jsr instruction had been used.
Table 1 lists the calls available in version 1.0 of the monitor along with the number that follows the trap \#11 instruction.
A more detailed description of each call is now given.
renter: this call terminates a users' program and transfers control back to the monitor, giving the monitor prompt.

Entry conditions: none.
Exit conditions: not applicable.
outch: outputs a character in $\mathrm{d}_{0} . \mathrm{b}$, then checks whether 'break' < del> or 'hold' <con-
trol- $\mathrm{S}>$ characters have been received. If 'break' received, does not return to caller but aborts user program and returns to monitor. If 'hold' received, waits until a different character is received before returning to caller.
Entry conditions: $\mathrm{d}_{0} \cdot \mathrm{~b}=$ Ascii character to be output.
Exit conditions: all registers preserved.
sendch: outputs character in then returns to caller without checking for 'break' or 'hold'.
Entry conditions: $\mathrm{d}_{0} \cdot \mathrm{~b}=$ Ascii character to be output.
Exit conditions do.b. undefined, other registers preserved.
outs: outputs a space character. Uses outch (see comments about 'break' and 'hold').
Entry conditions: none.
Exit conditions: all registers preserved.
spaces: outputs a number of space characters as indicated by d_{l}.w. Uses outch.
Entry conditions $\mathrm{d}_{0} . \mathrm{w}=$ number of spaces required. 1 to 65535 .
Exit conditions: all registers preserved.
pdata 1: outputs Ascii string pointed to by a_{56} and terminated by a null byte (00). Sends all bits of each character unmodified. Uses outch.
Entry conditions: $\mathrm{a}_{6}=$ address of start of string
Exit conditions: $d_{0} \cdot b=0$ $a_{5}=$ address of string terminator +1 ; all other registers preserved.
pdatam: As pdata1, but takes account of the display mode currently in use.
Characters with bit 7 clear i.e. normal Ascii characters, are always output. But the outputting of characters with bit 7 set depends upon the display mode selected.
In $80-\mathrm{column}$ mode, characters with bit 7 set are ignored and there is no output. In

40-column mode, characters have bit 7 stripped and are output as normal characters.

Entry conditions: $a_{6}=$ address of start of string.

Exit conditions: $\mathrm{d}_{0} \cdot \mathrm{~b}=0$; $a_{f}=$ address of string terminator +1 ; all other registers preserved.
query: outputs a '?' and sounds bell/buzzer/bleep. Uses outch.

Entry conditions: none
Exit conditions: all registers preserved.
outhex: outputs contents of lowest four bits in d_{0} as an Ascii hex character. Uses outch.

Entry conditions: $\mathrm{d}_{\mathrm{n}}=$ hex value.

Exit conditions: $\mathrm{d}_{0}=$ undefined; other registers preserved.
out2hx: outputs contents of lowest eight bits in d_{0} as two Ascii hex characters. Uses outch.

Entry conditions: $d_{11}=$ hex value.

Exit conditions: $\mathrm{d}_{\mathrm{in}}=$ undefined; other registers preserved.
out 4 hx : outputs contents of lowest 16 bits in d_{0} as four Ascii hex characters. Uses outch.
Entry conditions: $d_{0}=$ hex value.
Exit conditions: $d_{1}=$ undefin ed; other registers preserved.
out 8 hx : outputs contents of d_{0} as eight Ascii hex characters. Uses outch.

Entry conditions: $d_{0}=$ hex value.

Exit conditions: $d_{0}=$ undefin ed; other registers preserved.
crlf: outputs a carriage return and line feed. Uses outch.

Entry conditions: none.
Exit conditions: all registers preserved.
getch: waits for character to be received from input.
When character received, checks whether 'break' or 'hold': if 'break', does not return to caller but aborts user
program and returns to the monitor. If 'hold', waits for another character to be received (other than 'break' or 'hold') before returning to caller. Returns with Ascii character in d_{0}.b, bit 7 forced clear.

Entry conditions: none.
Exit conditions: $\mathrm{d}_{0} . \mathrm{b}=7$-bit Ascii character; all other registers preserved.
readch: waits for character to be received from input and returns with it without checking for 'break' or 'hold'.
Entry conditions: none.
Exit conditions: $\mathrm{d}_{0} \cdot \mathrm{~b}=7$-bit Ascii character; all other registers preserved.
gethex: gets Ascii character and converts it to hex, returning with hex value in d_{0} and ' c ' bit in status register clear. If character was not a hex character, i.e. not $0-9$ or A-F, then returns instead with Ascii code and ' c ' bit set.
Uses getch: see comments about 'break' and 'hold'.

Entry conditions: none.
Exit conditions: (hex character) $d_{0} \cdot b=$ hex equivalent of character, s.r. 'c' bit $=0$; (non-hex character) $\mathrm{d}_{0} . \mathrm{b}=7$-bit Ascii character, s.r. 'c' bit=1. All other registers preserved.
conhex: as gethex, but does not get character from input. Enter instead with Ascii character in d_{0}.b.

Entry conditions: $\mathrm{d}_{0} . \mathrm{b}=7$-bit Ascii character.
Exit conditions: (hex character) $\mathrm{d}_{0} . \mathrm{b}=$ hex equivalent of character, sr ' c ' bit $=0$; (nonhex character) $\mathrm{d}_{0} . \mathrm{b}=7$-bit Ascii character, sr 'c' bit =1. All other registers preserved.
gpch: gets character from input and echoes to output. Returns with it in d_{0}. b ; if lower case, converting it to upper case. Uses getch.
Entry conditions: none.
Exit conditions: $d_{0} . b=7$-bit Ascii character (upper case); all other registers preserved.
get2: gets two Ascii characters. Calls gpch twice and assembles the two characters in d_{0}. w .

Entry conditions: none.
Exit conditions: $\mathrm{d}_{0} \cdot \mathrm{w}, \mathrm{b}_{15}-\mathrm{b}_{8}=$ first Ascii character; $\mathrm{b}_{7}-\mathrm{b}_{0}=$ second Ascii character.
hexin: gets string of characters from keyboard, converting them to hex and
building in d_{1}. Returns after a non-hex character with the last eight hex characters entered in d_{1}, leading zeroes being inserted if necessary. Register d_{0} contains the non-hex terminating character and d_{2} the number of hex digits entered. Uses gpch.

Entry conditions: none.
Exit conditions: $\mathrm{d}_{0} . \mathrm{b}=$ nonhex terminating character; $\mathrm{d}_{1} .1=$ eight hex characters; $\mathrm{d}_{2} . \mathrm{I}=$ number of hex characters entered; all other registers preserved.
getadr: prompts operator to enter an address. Returns with address in a_{0} and number of characters entered in d_{2}. Rejects odd addresses. Uses gpch.

Entry conditions: none.

Exit conditions: $\mathrm{a}_{0}=$ address entered; $\mathrm{d}_{2}=$ number of characters entered.
range: prompts user to enter a beginning and end address, giving the option of re-using the last used values (as used by the $P R$ command). If values entered, updates ram registers begadr and endadr with new values. If just <cr> entered, registers left unmodified.

For Kaybug version 1.0, begadr is at 400000_{16} and endadr at 400004_{16}.

Entry conditions: none.
Exit conditions: begadr and endadr updated if new values entered; all registers preserved.
strend: prompts user to enter block start and end addresses (as used by $L W$ command). Returns with start address in a_{2} and end address in a_{1}.
Entry conditions: none.
Exit conditions: $a_{1} .1=$ end address; $a_{2} . l=$ start address; all other registers preserved.
binbcd: converts a 27-bit binary number in d_{0} to eight packed b.c.d. digits in d_{1}, with ' c ' bit in status register clear.
If input value exceeds maximum allowed (5F5E0FF 16) then d_{1} is undefined and the ' c ' bit is set.
Entry conditions: $\mathrm{d}_{0} . \mathrm{l}=27$-bit binary number.
Exit conditions (valid input): $\mathrm{d}_{1}=8$-digit packed b.c.d. result, s.r. 'c' bit=0; (invalid input) $d_{1}=$ undefined, s.r. ' c ' bit $=1$. All other registers preserved.
bcdbin: converts an 8 -digit packed b.c.d. number in d_{0} to binary equivalent in d_{1}.
Entry conditions: $\mathrm{d}_{0} .1=$

Motorola S-Tormat files

This format provides a means of Ascii-encoding binary object files for transfer between systems.

S
 n

size
address
data

checksum

is simply the Ascii code for the letter S. is the record type: $0=$ header, $1=$ data (16 bit address), $2=$ data (24 -bit address), $9=$ end of file.
indicates the number of bytes (hex) in this record (address, data and checksum). is four or six hex characters for record types 1 and 2 respectively. For types 0 and 9 it is 0000 . is the block of ascii encoded binary data. Each record typically contains a 16 -byte block, but may be more or less. is the one's complement of the sum of the size, address and data.

Each record is followed by carriage return and line feed. This example shows the S-file produced for the object code for example 1 (to be given in the next article).
S0090000657861603120FA
52144004007000720020700000010052800601000445
S208400410558860F670
59030000F:
The header record holds the name of the object file as it was on the development system which produced this, 'EXAM1'.
eight-digit packed b.c.d. number.
Exit conditions: $d_{1} .1=$ binary result; all other registers preserved.
divide: integer-divides the number in d_{0} by the number in d_{1}. Result is in d_{4} with remainder in d_{5}.

All numbers are in 32 -bit two's complement binary. Sign conventions used are:

dividend	divisor	result	remainder
+	+	+	+
+	-	-	-
-	+	-	-
-	-	+	-

Entry conditions: $\mathrm{d}_{0}=$ dividend; $d_{1}=$ divisor.
Exit conditions: $d_{4}=$ result; $d_{5}=$ remainder; all other registers preserved.

Exception handling

The way in which interrupt exceptions are handled by the 68000 is to go to a specified location according to the exception designation, fetch a long

Table 2

Assignment		Ram oddress	
Level	1	400016	
Level	2	40001 C	
Level	3	400022	Autovector
Level	6	400028	$\}$ interrupts
lever	5	40002 E	interrupts
Level	6	400036	
Level	7	40003 A	
trap	\# 0	400040	
trap	* 1	400046	
trap	\# 2	400046	
trap	\# 3	400052	
Trap	\# 4	400058	Trop
Trap	\# 5	40005 E	Pinstructions
trap	* 6	400064	instructions
trap	\# 7	40006 A	
trap	\# 8	400070	
trao	49	400076	
trag	- 10	400076	
Vector	54	400082	
vector	65	400088	
vector	66	40000 E	
vector	67	400094	> User
vector	68	40009 A	< interrupts
vertor	69	400040	
vector	70	400046	
vector	71	4000 AC	

word (four-byte) address from it and re-start processing from that address.
There is a slight problem with the Kaycomp in that these exception vector addresses are in the eprom space and so a user program cannot alter them.
To circumvent this difficulty, for each interrupt vector that may be used on the Kaycomp, a six-byte block of ram is allocated. The exception vector in eprom contains this address and so processing will jump to this location.
The six-byte space allows the user program to insert a 'jump absolute, long' instruction, the jump destination address being that of the user's exception service routine.

The exception processing sequence will thus be

1. Get vector and go to that address.
2. Execute jump instruction at that address.
3. Continue processing at jump destination address.
Ram 'jumpers' are provided for all autovector interrupts and eight user interrupt vectors are also catered for. These are for vector numbers from $64\left(40_{16}\right)$ to $71\left(47_{16}\right)$ and would be used by 68000 peripherals interrupting on IPL_{1}.
Trap instructions with vector numbers from 0 to 10 may also be used in user programs. These are handled in the same manner as interrupts. Trap numbers 11 to 15 are reserved for use by the monitor.

A complete list of these 'jumpers' is given in Table 2.
The remaining assigned system exceptions, such as Bus Error, Address Error etc, cannot be intercepted by the user program but can cause a return into the monitor with an appropriate message displayed.

To be concluded.

The DMS8832 memory module for this project is available under the type number EDH8832C (with the suffix - 15PC for the 150 ns version) from MicroCall, Thame Park Road, Thame, Oxfordshire; tel. 084421-5405.

by Tom Ivall

D.B.S. s

 s David Withers mentioned in the December issue (p .75) the most recent ITU pronouncement on direct broadcasting by satellites came at last year's World Administrative Radio Conference. This meeting, WARC 85, formally approved the d.b.s. plan previously worked out in detail at RARC 83, a regional conference specially convened in 1983 for ITU Region 2, which broadly means the Americas.A similar situation occurred in 1979 when the big WARC 79 world conference formally agreed to the d.b.s. plan put together for ITU Region 1 (Europe, Africa, USSR) and Region 3 (Far East and Australasia) at WARC 77, which had been entirely devoted to satellite broadcasting. As a result we now have a complete world-wide plan - in frequencies, channels, powers, orbital positions etc. all signed and
sealed and just waiting for someone to start using it for full broadcasting operation.
The Japanese came near to starting the first cl.b.s. service in early 1984 when they launched a satellite from their Tanegashima Space Centre and placed it in geostationary orbit in their allocated orbital position of $110^{\circ} \mathrm{E}$. But, as was reported in $E \& W W$, faults rapidly developed in the transponders' travelling-wave tubes and the whole project had to be downgraded to an experimental status.
Meanwhile, we have seen the unexpected development of what has become known as 'semi-d.b.s.' or 'quasi-d.b.s.'. Transmissions from communications satellites, originally intended purely for distribution of television and sound programme feeds within the broadcasters' own networks, have become, willy-nilly, a sort of broadcasting in themselves. When cable tv systems use
these programme feeds the signals are in any case 'broadcast' to a number of widely-spaced head-end receiving stations. And when reception of these transmissions by individuals was legalized, the comsats thereby became broadcasting stations in an even fuller sense, while still doing the job they were originally intended for. D.J. Standen's article in the December 1985 issue describe this 'quasi-d.b.s.' phenomenon in detail.

International planning for satellite systems has actually been under way for two decades or more. The ITU held its first conference on extraterrestrial radio communication as long ago as 1963. This was when comsats were first beginning to establish themselves as practical relay stations. The second World Space Telecommunications Conference followed in 1971. Then came WARC 77 and

RARC 83 as mentioned above. What has emerged, however, has been somewhat confusing. The planning criteria and methods used at WARC 77 and RARC 83 are markedly different from each other. No doubt this is due to the lapse of time between the two events, the development of spacecraft and radio technology during this period, and the different interests and assumptions of the two groups of people concerned.

... the whole situation here is still confused and uncertain and likely to remain so for some years

Both conferences started from the $12-\mathrm{GHz}$ frequency band specifically allocated to satellite broadcasting. Within this, Region 1 is allowed to use 11.7 to 12.5 GHz , Region 2 has 12.2 GHz, while Region 3 can operate in the two sub-bands $11.7-12.2 \mathrm{GHz}$ and $12.5-$ 12.75 GHz . From these allocated blocks of frequencies WARC 77 and RARC 83 worked out frequency channels, wave polarizations, orbital positions, coverage areas or 'footprints' and minimum and maximum radiated powers.

WARC 77 divided up the 800 MHz between 11.7 and 12.5 GHz into 40 channels spaced at equal intervals of 19.8 MHz . Each of these channels is 27 MHz wide, so there is some frequency overlap, but this is taken care of by opposite directions of circular polarization. RARC 83, on the other hand, split up the 500 MHz from 12.2 to 12.7 GHz into 32 channels, each of 24 MHz width. The obvious channel overlapping here is again dealt with by opposite directions of circular polarization. The spacing between transmissions with similar polarizations is 29.16 MHz.
In both plans the channels are grouped into 8 channelfamilies. But in WARC 77 each family consists of five frequencies spaced at four-channel intervals, while in RARC 83 each family has four frequen-
cies spaced at these intervals.
But perhaps the most marked difference between the two regional plans is in the orbital positions, or 'slots', chosen for the satellites in the geostationary orbit. In WARC 77 these slots for Regions 1 and 3 satellites are a regular 6° apart. In RARC 83, however, they are not equally spaced but have a variable spacing which ranges from as close as 1° to as far apart as 11°.

Then in WARC 77 each country in Regions 1 and 3 has been assigned just one orbital position, and it shares this with other countries. An exception is the USSR which has five slots because of its huge geographical area. But in RARC 83 several countries have more than one slot. The L'SA, for example, has eight in all.
Another difference between the two schemes is in the number of channels assigned to each country. WARC 77 gives each country a standard ration of five channels, whereas in RARC 83 there is considerable variation. Some small Region 2 countries have as few as four channels while, for example, the eastern region of the USA alone has as many as 128 .
In the power flux densities specified, however, the two plans are very similar. At the outer edge of each 'footprint' WARC 77 lays down a requirement for a minimum of - 103 $\mathrm{dBW} / \mathrm{m}^{2}$, while RARC 83 specifies a minimum of -107 $\mathrm{dBW} / \mathrm{m}^{2}$ or a little higher in some situations.
The different structures of the two plans are significant in relation to their capacity to deliver programmes and their flexibility of use in different situations. What does this mean in practice? As an illustration, E.R. Reinhart of the Satellite Television Corporation in the USA has anlaysed the differences shown up by projected implementation of WARC 77 in Africa and RARC 83 in Latin America. He concludes that Latin American countries would not only get greater numbers of channels for broadcasting but would also have greater flexibility for system implementation than would be possible for the countries of Africa.
The accompanying diagram gives some idea of what the whole d.b.s. plan looks like in
terms of orbital positions for different countries around the geostationary orbit. Because there are 150 or more countries in the world the diagram does not attempt to show them all it would be very difficult to read. Instead we have arbitrarily selected the fifty or so countries that can be expected to be the first in the field in starting up cl.b.s. services. On the assumption that these are likely to be the richest, most industrialized nations, the broad criterion has been to take those at the top of the league table of Gross National Product per capita. This means roughly the major capitalist and communist countries. An exception to this rule of thumb is Inclia, which has been included because of its outstanding pioneering work in satellite broadcasting. It was the first country in the world to set up an experimental d.b.s. system - the famous Satellite Instructional Television Experiment of 1975 (reported in this journal).*

Television transmission standards used for d.b.s. will depend on decisions outside of those laid down in the ITU world-wide plan. They could be, for example, predominantly NTSC in North America and Japan and predominantly Cmac packets in Western Europe, but the whole situation here is still confused and uncertain and likely to remain so for some years.
Britain, of course, is still a long way from establishing any kind of d.b.s. service. The government-inspired Unisat consortium collapsed last year; a new group called Britsat has put up another proposal and the government is reported to be considering this and other current suggestions. Meanwhile, it looks as though France or Germany may be the first to launch a d.b.s. service in Europe. This would be the outcome of Eurosatellite, a Franco-German manufacturing consortium which is building two similar spacecraft, the TDF-1 for France and the TV-Sat 1 for West Germany. Electronic component manufacturers in Germany have already developed and put on the market various new components for receiver designs intended to work from TV-Sat transmissions.

Satellite TV System
 Satellite TV is now available in the U.K. This

 heralds the start of a new television era. Connexions have now available the first low cost satellite signal receiving system designed for the consumer market.With this equipment up to fourteen new channels of entertainment and information are available to the consumer - whether private home, pub, club, disco, hotel, restaurant or educational establishment.

The channels currently available are broadcasting a wide range of top quality material including current cinema films, national/international and minority sports, pop videos, childrens programmes, news channels and general entertainments.

125 East Barnet Road, New Barnet, Herts. EN4 8RF Telephone: 01-441 1282 (5 lines) Telex: 295181 SMC G
> tel. 01.361.8715 132 High Road telex 266873 New Southgate LONDON N11 1PG.
OFF THE SHELF CUSTOMISED C A D DESIGNED

CIRCLE 21 FOR FURTHER DETAILS.

ERS - PRIWTERS - PRIWTERS - PRIWTERS

SUPER DEAL? NO - SUPER STEAL
THE FABULOUS 25 CPS "TEC STARWRITER"
 registratıon and print electronics offer ful
DIABLO/QUME co ETC. Many full width 381 mm paper handling with up to 163 characters per line, friction feed rollers for single sheet or continuous paper, internal buffer, standard RS232 serial interface with handshake. Supplied absolutely BRAND NEW with 90 day guarantee intormation. Optional extras RS232 data cable E10.OO. Tech manual E7.50. Tractor Feed E140.00. Spare daisy wheel £3.50. Carriage \& Ins. (UK Mainland) £ 10.00

NOW ONLY £499 + VAT

DIY PRINTER MECH

Brand New surplus of this professional printer chassis gives an outstanding opportunity for the Student, Hobbyist or Robotics constructor to build a printer - plotter - digitiser etc, entirely to their own specification. The printer mechanism is supplied ready built, aligned and pre tested but WITHOUT electronics. Many features include all metal chassis, phosphor bronze bearings, 132 character optical shaft position encoder, NINE needle head, $2 \times$ two phase 12 V stepper motors for carriage and paper control, 9.5" Paper platten etc etc. Even a manufacturer's print sample to show the unit's capabilities! Overall dimensions $40 \mathrm{~cm} \times 12 \mathrm{~cm} \times 21 \mathrm{~cm}$ Sold BRAND NEW at a FRACTION of cost ONLY £49.50 + pp £4.50.

TELETYPE ASR33
 DATA I/O TERMINALS

Industry standard, combined ASCII 110 baud printer, keyboard and 8 hole paper tape punch and reader Standard RS232 serial interface. Ideal as cheap hard copy unit or tape prep. for CNC and NC machines. TESTED and in good
condition. Only $£ 250.00$ floor stand £10.00. Carr \& Ins. §15.00.

EX NEWS SERVICE PRINTERS

Compact ultra reliable quality built unit made by the USA EXTEL Corporation Often seen in major Hotels printing up to tion, the unit aperates on 5 UNIT BAUDOT CODE from a Current loop RS232 or TTL seriai interface. May be connected to your micro as a low cosi printer or via a simple interface and filter to any communications receiver to TELEX and RTTY services.
Supplied TESTED in second hand 5 baud xtals and large paper roll TYPE AE11
50 Column ONLY $£ 49.95$ TYPE AF11R 72 for AE $\$ 4.50$ YPE AF11R 72 Col . £65.00
YPE AH11R 80 CO
ASCI/BAUDOT \qquad £185.00
Carriage and Insurance $£ 7.50$

20,000 FEET OF ELECTRONIC AND COMPUTER GOODIES

ENGLAND'S LARGEST SURPLUS STORE - SEEING IS BELIEVING!!

DEC CORNER

PDP 1140 System comprising of CPU, 124 k memory \& MMU 15 line RS232 interace RPO2 40 MB hard disk drive TU10 9 track 800 BPI Mag tape drive, dua £3.750.00
BA11-MB 3.5" Box, PSU, LTC E395.00
DH11-AD 16 " \times RS 232 DMA
OLV11-J4 \times EIA interface
DLV11-E Serial. Modem support OUP1 1 Synch. Serial data i/o DQ200 Dilog - multi RK controile DZ11-B 8 line RS232 mux board KDF11
A30 Printer and Keyboard A36 Decwriter EIA or 20 mA loop
msil.JP Unibus 32 kb Ram MS11-LB Unibus 128 kb Ram MS11-LD Unibus 256 kb Ram PDP1 1/40 Cou Ram, i/o etc T111 ver 3B do 124 k MMU RKO5-J 25 Mb disk drives KL8 JA PDP 8 asyno io M18E PDP 8 Bootstrap optio VT50 VDU and Keyboard VT52 VDU and RS232 interface

ع90.00

£650.00
£ 4950.00
ع1 100.00
£80.00
£270.00
$\AA 80.00$
£450.00
ع850.00
£450.00
1,850.00
E650.00
E 175.00
£75.00
$£ 175.00$
$£ 250.00$

MAG TAPE DRIVES

Many EX STOCK computer tape drives and spares by PERTEC, CIPHER, WANGO, DIGIDATA, KENNEDY etc. Special offer this month on DEI Cartridge tape drives ONLY £450.00 each

CALL FOR DETAILS

COMPUTER/SYSTEM CABINET \& PSU

> Give your VT100 a Birthday!!!
> Brand New VT100 Keyboards

000's OF EX STOCK PDP11 PD P1 134 spares for PDPB PD8 sales office for details. SPARES WANTED FOR PROMPT CASH

All in one quality computer cabinet with integral switched mode PSU, mains filtering, and twin tan cooling. Originally made tor the tamous DEC PDP8 computer system costing thousands of pounds. Made to run 24 hours per day the psu is fully screened and will deliver a massive $+5 v \mathrm{DC}$ at $17 \mathrm{amps},+15 v \mathrm{DC}$ at 1 amp and $-15 v$ DC at 5 amps. The complete unit is fully enclosed with removable top lid, filtering, trip switch, power and run leds mounted on ali front panel, rear cable entries, etc. etc. Units are in good but used condition - supplied for 240 v operation complete with ull circuit and tech. man. Give your system that professional finish or only E 49.95 + carr. $19^{\prime \prime}$ wide $16^{\prime \prime}$ deep $10.5^{\prime \prime}$ high. Useable area

Also available less psu, with fans etc. Internal dim. $19^{\prime \prime} \mathrm{w}, 16^{\prime \prime} \mathrm{d}, 10.5^{\prime \prime} \mathrm{h}$. £19.95. Carriage £8.75

66% DISCOUNT on Nect

Due to our massive bulk purchasing programme, which enables us to bring you the
best possible bargains, we have thousands of ICs. Transistors. Relays, Caps, PCB Sub-assemblies, Switches etc. etc. surplus to OUR requirements Because we don have sufficient stocks of any one item to include in our ads we are packing all the prices. Guaranteed to be worth at least 3 times what you pay Unbeatable value and perhaps ane of the most consistently useful items you will every buyll Sold by weight
$2.5 \mathrm{kIs} £ 5.25+\mathrm{pp} £ 1.25$
10kIs $£ 11.25+\mathrm{pp} £ 2.25$

GE TERMIPRINTER

massive purchase of these desk top A these quality 30 or 120 CDS printe a SUPER LOW PRICE again comprises of full OWERTY. electronic keyboard and printer mech with prin ace simiar to correspondence quality ypewriter variable forms tractor un column paper, upper standard RS232 serial interface internal vertical and horizontal tab settings. standard ribbon adjustable baud ates, quiet operation plus many othe features. Supplied complete with manua Guaranteed working GE30 £130.00 GE1200 120 cps E 175.00 Uniested GE30 E65.00 Optional floor

SEMICONDUCTOR 'GRAB BAGS'

Mixed Semis amazing value contents nclude transistors digital, linear. IC's triacs, diodes bridge recs. etc etc All devices guaranteed brand new full spec with guaranteed.
$50+\varepsilon 2.95100+\varepsilon 5.15$
TL 74 Series. A gigantic purchase of an "across the board" range of 74 TTL series mostly TL"" grab bags at price which wo or three chips in the bag would ormally cost to buy. Fully guaranteed a IC's full spec. $100+\varepsilon 6.90$,
$200+\varepsilon 12.30,300+£ 19.50$

MAINS FILTERS

CURE those unnerving hang ups and data glitches caused by mains in errerence with protessional quality filters. SD5A match Load ONLY £5.95. L12127 compac

EPROM COPIERS

The amazing SOFTY 2 Comple

 Toolkit" for copying, writing. modifying andlisting EPROMS of the 2516,2716 . 2532, 2732 range Many other functions include integral keyboard. cassette inte tace serial and paralle! i/o UHF modulator ZIF socket etc
"GANG OF EIGHT' intelligent 280 controlled 8 gang programme single $5 v$ rail EPROMS up to 27128 Will COpy 827128 in ONLY 3 MINUTES Interna LCD display and checking routines io
IDIOT PROOF operation. Only $£ 395.00+$ IDIOT PR
"GANG OF EIGHT PLUS" Same spec above but with additional RS232 serial computer etc. ONLY £445.00 + pp $£ 3.00$

COOLIIS FANS

 GOULO JB. $3 A R$ Dim. $3 \times 3 \times \times 2.5$ Compact verr quiel
 240 v . 3 or 5 blade, NEW at $£ 10.50$ or tested EX EQUIPMENT
55.50 . Low Voltage DC Fans. BUHLER 69.11 .22 .816 Y DC
 ONLY $£ 13.95$ complete with data. $120 \times 120 \times 38 \mathrm{~mm} 14$
OC fans. PANSNIC FB 12 Cl 12 H 12 VOC 5 blade $£ 18.00$

1000's of other EX STOCK items including POWER SUPPLIES, RACKS, RELAYS, TRANSFORMERS, TEST EQUIPMENT, CABLE, CONNECTORS, HARDWARE, MODEMS, TELEPHONES, VARIACS, VDU'S, PRINTERS. POWER SUPPLIES, OPTICS, KEYBOARDS etc. etc. Give us a call for your spare part requirements. Stock changes almost daily.
Don't forget, ALL TYPES and QUANTITIES of electronic surplus purchased for CASH

Hitachi Oscilloscopes provide the quality and performance that you'd
expect from such a famous name, with a newly-extended 14 model range
that represents the best value for money available anywhere.
V-212/222 20 MHz Dual Trace V-650 60 MHz Dual Timebase $\checkmark-223 \quad 20 \mathrm{MHz}$ Sweep Delay (illustrated) V-209 20 MHz Mini-Portable V-422 40 M 1 Hz Dual Trace V-423 40MHz Sweep Delay V-509 50 MHz Mini-Portable V-1050 $\quad 100 \mathrm{MHz}$ Quad Trace V- $1070 \quad 100 \mathrm{MHz}$ Four Channel V-1100 $\quad 100 \mathrm{MHz}$ DMM/Counter V- $134 \quad 10 \mathrm{MHz}$ Tube Storage VC-6015 10 MHz Digital Storage VC- 604140 MHz Digital Storage
Prices start at $£ 299$ plus vat (20 MHz dual trace) including a 2 yr . warranty. We hold the range in stock for immediate delivery
For colour brochure giving specifications and prices ring (0480) 63570 Thurlby-Reltech, 46 High Street, Solihull, W. Midlands, 3913 TB.
CIRCLE 43 FOR FURTHER DETAILS.

CIRCLE 44 FOR FURTHER DETAILS
The world's most advanced low-cost bench multimeter! Thurlby 1905a £349

A complete high performance bench DMM - $51 / 2$ digits; 0.015% acc; $1 \mu \mathrm{~V}, 1 \mathrm{~m} \Omega, 1 \mathrm{nA}$ - Full ac and current functions as standard A sophisticated computing and logging DMM - Linear scaling with offset; null/relative - Percentage deviation; running average - dBV, dBm general logarithmic calculations - Limits comparison; min and max storage - 100 reading timed data logging

- RS232 and IEEE-488 interface options Thurlby Electronics Lid New Road, St.Ives, Cambs. PE17 4BG Tel: (0480) 63570
||Thurlby
designed and built in Britain
CIRCLE 45 FOR FURTHER DETAILS.

Now Thurlby makes logic analysis affordable! from

 the new Thurlby LA-160
$£ 395$

- 16 channels, expands to 32 - 2 K word acquisition memory - Clock rates up to 20 MHz - Non-volatile reference memory - State and timing displays - Search and compare facilities - Selectable display formats - Hard-copy data print-out

An oscilloscope and logic probe are not enough to unravel the complexities of today's electronic equipment. A logic analyser is as essential for observing digital signals as an oscilloscope is for observing analogue signals, and now Thurlby puts one within every engineer's reach. Contact us now and get the full technical data.

Thurlby Electronics Ltd
New Road, St.Ives, Huntingdon, Cambs. PE17 4BG, England. Tel: (0480) 63570

REPRINTS a ready made sales aid

If you are interested in a particular article or advertisement in this publication why not take advantage of our reprint service. We offer an excellent, reasonably priced service. For further details and a quotation

Ring Peter Baldwick on 01-661 8623

SATELLITE TELEVISION

Buy direct from the manufacturers, low cost full band satellite TV systems.
Write or telephone for details, or call in at our factory showroom.

Agents and Distributors required.
NETWORK SERVICES LTD
Units 7-8
Newburn Bridge Industrial Estate Hartlepool, Cleveland TS25 1UB Tel: 042974239

Quadrant Picture Library
Over a million photographs and transparencies from the turn of the century to the present day; cutaway drawings and illustrations; colour prints of civil and military aircraft; directories from the early 180)os and much more besides for advertising and PR agencies, authors, publishers, TV programmers and solicitors.

Interested? then write or telephone QPL at Quadrant House, "he Quadrant, Sutton, Surrey SM2 5AS ('Tel:01-661 3427/8)

Answering machines are very popular these days and we are pleased to offer a new model - the Betacom LR3 - which features a double tape, one to record your announcement and the other to record the messages. Unlike single tape answering machines, it is necessary to record the outgoing message only once and each caller will hear it repeated.
The outgoing message may be changed by using the inbuilt microphone and the erase facility will clear the incoming message tape. If you are at home, a monitor allows you to hear the caller and if you wish to speak, use your telephone as normal. A fast forward cue search locates the next message and there is a marker sound to indicate the end of the day's messages and also a volume control. The Betacom LR3 is compact and in a smart grey and mushroom plastic. It is extremely good value at the special price of only $£ 79.95$ inc. p\&p and two free tapes.
It is easily connected to the power supply with the lead provided and a BT Approved jack plug is attached. The Betacom LR3 is BT Approved and Betacom offers a 12 month guarantee with a fast and efficient after sales service. If you are not satisfied return within 7 days for a refund to Betacom, D.M. Baylin Ltd., 76 Marylebone High Street, London, WIM 3AR

EI ECTRONICS \& WIRELESS WORLD OFFER, C/O PO BOX 14, No. I WAREHOUSE, HORLEY ROW, HORLEY, SURREY, RH6 8DW

To: Electronics \& Wireless World Offer, c/o PO Box 14, No. I Warehouse, Horley Row, Horley, Surrey, RH68DW
Please send me........Betacom LR3 Telephone Answering Machine(s) at only $£ 79.95$ inc. p\&p and VAT I enclose crossed cheque (with address on back)/PO No(s)............value $£ \ldots \ldots . .$. made payable to Betacom OR please debit my Access/Visa account by the above amount. Telephone orders 0293-776634
My card number is \square DATE SIGNATURE
NAME ADDRESS
\qquad
\qquad
\qquad

Power supplies from Sweden

A range of 32 switch-mode supplies and a made-to-measure service based on a further 19 basic designs has been launched by Rifa. Most of the supplies use a 'flyback' circuit. This has only one switching transistor and one diode.

A transformer with a specific inductance stores energy while the transistor is on. The energy cannot be passed to the secondary output as it is blocked by the diode. When the transistor is cut off, the stored energy is
discharged with opposite polarity allowing the diode on the secondary side to conduct. This technique allows considerable reduction in component-count as is shown by the picture. Both circuits perform the same task.
The standard range includes d.c.-to-d.c. converters in ratings from 20 to 250 W , with up to four outputs; a.c.-to-d.c. power supplies from 60 to 240 W ; customized units from 5 to 250 W .
The range has become available as a result of reorganization within the Ericsson group. Rifa, a subsidiary has taken over the power supply division of its parent which originally produced supplies for Ericsson's own products. Rifa
AB, Market Chambers, Shelton Square, Coventry CV1 1 DJ. EWW 209 on reply card.

CP/M on a PC

For those who have grown fond of their CP/M software and yet want to graduate to a computer running PCDOS or MS-DOS, rescue is at hand from G -Tek, an American company who have produced a CPemulator. This package makes your IBM PC. or similar, think that it is being run by a 280 with CP/M. Two parts are
used: a conversion utility to load CP/M programs onto IBMcompatible discs, and a 'bind" utility that attaches the CPemulator to the programme. All the software developed on a CP/M coniputer can then be run on a PC -IJOS computer without altering a byte. £199(+vat) from Bytron Lid. High Street.
Kirmington, S. Humberside, I)N39 6'Z. EWW 222 on reply card.

Adhesives for electronics

A range of products specifically aimed at the electronics industry have been produced by Loctite. Chipbonder is for the rapid placement of surface mounted components so that they are held in position prior to soldering. The bonds are completely cured after 4 to 5 minutes of heat treatment or in 30 to 45 s when exposure to low intensity u-v light is followed by $120^{\circ} \mathrm{C}$ heat. The resultant bonds are flexible and shock-resistant and can withstand wave soldering. The adhesive is coloured fluorescent pink to aid inspection. Output 384 is a thermallyconductive adhesive for heat dissipation. It may be used to replace tapes, mechanical fasteners and non-conductive adhesives and is claimed to have a better heat-conductivity than zincoxide grease. It sets in 30 s and is fully cured in one to four hours.

Other adhesives are all cyanoacrylate products. Assure

425 seals fasteners and locks adjusting screws against vibration. Ultra-performance Tak Pak 382 is an improved version of an adhesive for wire tacking and bonding smaller components. Black Tak 410 is a toughened cyanoacrylate adhesive used for strain relief and the mounting of large units and covers. It is claimed to have a peel and impact strength superior to many epoxy resins. Further arlditions to the "PCB Assembly Line" range include a silicone sealant that does not tarnish copper or brass and can be used for encapsulating components, a freezer aerosol, a non-conductive solvent for cleaning, a contact lubricant and cleaner and spray-on protection shield for p.c.bs against humidity and environmental pollution. It may be soldered through for spot repairs. Loctite UK, Watchmead, Welwyn Garden City, Herts AL7 1JB. EWW 211 on reply card.

Video effects computer

An instrument from Fairlight, the Australian makers of the Computer Music Instrument, has done to visual images what their synthesizer did to music. It is a very versatile device for manipulating images. It has a wide range of applications but, we suspect, is most likely to be used in providing the weird effects that seem to go with pop music. The Computer Video Instrument (CVI) can take an image from a "live" camera, tape, film, a slide or still picture and manipulate the image in real time. It is also provided with a stylus-sensitive pad that enables drawing or writing to be superimposed on the image. Its
repertoire inclucles a palette of over four thousand colours. Its output can be stored on video-tape and then recalled for further manipulation or combination with other images.

Background and foregrounds can be created and made to move or have live images moving through them. Three planes are used in a single CVI but more than one can be cascaded to provide a number of different planes.

A chroma-key facility enables still images to be panned or zoomed or stretched or a moving sequence can produce the sort of multi-image associated with stroboscope pictures.

Any shape may be used as a 'cut out' or matte to control areas for different foregrounds or backgrounds, patterns or other effects. A live image can be frozen and then manipulated using all the other facilities. An audio input may be used to control an image and this can be combined with freeze effects, 'trails' split or mirror images to produce some spectacular effects.

Using the input pad it is possible to pull an image out of shape and add colours or cletails; Dr Jekyll no longer needs to use a lot of changes in make-up to change into Mr Hyde: it can be done for him on the machine! Lettering or other
static devices can be added to an image using a "cut and paste" technique. Many geometrical functions can be called up for the creation of charts, graphs and diagrams, which can have any of 54 textures applied to them.

All this fits into a 19 in rack mounting box with a remote control console. The unit provides connectors for synchronization input and outputs and has two video inputs which may be composite or RGB. An RS232 communications port enable control from an external computer. $\$ 4950$ (+ tax) from Syco Video, 20 Conduit Place, London W2. EWW 213 on reply card.

LCD oscilloscope

A hand-held, battery powered 3.2 MHz oscilloscope features a dual-trace liquid crystal display. The display consists of a 128 by 160 dot matrix with a display area of about 76 by 95 mm . The internal memory is battery-backed for waveform storage which allows later waveform analysis. Features of the Y-axis operation include a scale of four vertical divisions for each channel, a nine-range sensitivity from 10 mV to $5 \mathrm{~V} /$ division and a frequency accuracy of $\pm 3 \mathrm{~dB}$ or less from d.c. to 200 kHz . The X-axis has 10 divisions with 20 sweep speeds from 5μ s to $\overline{5} / \mathrm{Div}$: there are continuous and single sweep measurement modes and positive, negative and switchable trigger modes. Soar Model 1000 also incorporates a full-function autoranging digital multimeter. Cost just under $£ 1000$, exclusively from Advance House of Instruments, Raynham Road, Bishop's Stortford, Iterts CM23 5PF
EWW 214 on. reply card.

Serial line converter

L'sed one at each end of a data channel, the Serial line converters from CDOS enable data transmission to be established over longer distances than the R8232 ports of the devices to which they are attached. This is achieved by converting the transmission level to RS 422 standards. Full duplex operation is possible, with handshaking in either direction. The converter does not modify protocol or data word format, which are determined by the equipment connected to the channel.

20 mA current-loop send and receive channels can be added by plug-in modules, which provide either active or passive
ransmitter or receiver functions: four modules in all.
RS 422 extends the range of serial communication from the 30 m of RS2 32 to one km . Current loop transmission extends this even further: up to 5 km .

The transmitter and receiver modules can be adapted to cope with data from any serial source RS232, t.t.l. and CCIT'T/EIA levels. The output from a uart or a.c.i.a. can be connected directly The devices come in a case with a mains power supply but the double-sided board may be extracted and built directly into equipnent. C.D.O. Systems Ltd, Unit 65, Corby Workshops, Corby. Northants NN17 IYB. EWW 210

Universal PCM transcoder

For use on North American and European digital transmission telephone lines, the J Iarris HC-5560. The four standard p.c.m. coding schemes can be accommodated: Alternative mark inversion (AMI), High-density bipolar three (IIDB3), Bipolar with six zero substitution (B6ZS) or with eight zero substitution (B8ZS). HDB3 is the recommended CCITT standard The device can be used in most equipment that can communicate with T1, T1C, T2 or
PCM-30/CEPT lines, including
multiplexers, channel service units, echo cancellers, digital cross connects and p.c.m. repeaters.

The device operates from a single 5 V supply with a 100 mA maximum current drain. It can encode and decode simultaneously: includes an alarm signal driver can operate asynchronously with loop-back control and transmission error detection. HC-5560 is priced at $£ 9.29$ in quantities of 100 . Harris MHS Semiconductor Ltd, Eskdale Road, Winnersh, Berks RG115TR. EWW 215 on reply card.

Surge suppressors

A new type of power integrated circuit is capable of diverting dangerous transient energy away from sensitive electronic circuitry. Called a Surgector, this RCA monolithic device is a thyristor with a special diffused gate section which acts as a zener diode. This permits the anode voltage to turn on the device, giving it a very fast voltage rise time; lightning. for example, can rise at $1 \mathrm{kV} / \mathrm{ms}$. The Surgector device clamps the voltage by its zener action until the integral thyristor turns on and shunts the excess voltage away. In most cases, the protected circuitry never sees a voltage greater than 130% of its normal working voltage. 'Twoterminal devices have off-state voltage ratings of 30,58 and 225 V .

They switch in nanoseconds and can handle peak surge currents of 300 A . The three-terminal Surgector adds clirect access to the gate of the s.c.r. which allows the device to be triggered with a user-supplied voltage-level detector. Current devices are uni-directional but a bidirectiona 1225 V device is about to be released. They are specifically designed to protect telephone equipment. However, the small (TO202) size and low cost make then equally suitable for computers, alarm systems, cars, tv, outdoor lighting, c.a.t.v. and many other applications. RCA Solid State. Lincoln Way, Windmill Road, Sunbury on Thames, Middlesex TW 167 HW . EWW 223 on reply card.

＠ゅロFROM JAYTEE

THE SPECIAL DISTRIBUTOR FOR SPECIAL AMPLIFIERS
ILP have long been recognised as manufacturers of top quality amplifiers．
All ILP products are built to extremely high specification for the ultimate in hi－fi performance．They＇re unique in being completely encapsulated with integral heatsinks，and can bolt straight onto the chassis．They＇re also extremely robust，ensuring high levels of reliability as well as performance
ILP Amplifiers are now available through Jaytee．The UK Distributor with the availability and service to match the quality of the amplifiers． POWER BOOSTER AMPUFIERS
The C15 and C1515 are power booster amplifiers designed to increase the output of your exisiting car radio or cassette player to 15 watt rms． C15 ．．．．．．．．．．．．．．．．． 15 watts ．． 10.65

ILP LOUDSPEAKER

power ．．．．．．．．．．．．．．． 350 watt rms size．．．．．．．．．．．．．．．．．．． 12 inches impedance ．．．．．．． 8 ohms range ．．．．．．．．．．．．．．．．．． 20 Hz to 5 KHz for information pack and price．

FOR FREE DATA PACK PLEASE

 WRITE TO OUR SALES DEPT．PREAMPLIFIER MODULES
All modules are supplied with in line connectors but require potentionmeters， switches，etc．If used with our power amps they are powered from the switches，etc．If used with our
appropiate Power Supply
Type Application Functions Price HY6．．．．．Mono PreAmp Full Hi Fifaciltue Full HiFifacilite：
FullHIFifaciltet 1845
$E 11.95$ Full HIFifacilitie： Two Guitarsplu Microphone f 1245 $\begin{array}{lr}\text { HY73 ．．．．．．GuitarPre－Amp } & \text { StereoPre－Amp } \\ \text { HY78．．．．Suitars plis Microphone．．f } 1245 \\ \text { NEWI HY83 Guitar and Special EffectsPre－Amp as HY } 73 \text { Plus Overdrive and }\end{array}$ NEW！HY83 Guitar and Special EffectsPre－Amp as HY 73 Plus Overdrive and Reverb $\mathbf{f 1 8 . 9 5}$
MOUNTING BOARDS：For ease of construction we recommend the B6 for HY6 £0．95．B66 for HY66－78 £1．45

MOSFET MODULES

Ideal for Disco＇s，public address and applications with complex loads（line
MOS248

BIPOLAR MODULES

Ideal for Hi Fi，Full load protection integral Heatsink，slew rate $15 v / \mu \mathrm{s}$

Type	Output Power Watts（rms）	$\begin{aligned} & \text { Load Price } \\ & \text { lmpedence } \\ & \Omega \end{aligned}$
HY30	． 15	4.3 ．．．． 1045
HY60	3.	4B．E10．45
HY6060	（35－30	4．8．E21．95
HY124．．．	．65	$4 \quad E 17.45$
HY128．	．6in	\％E17．45
HY244	． 120	$4 \quad E 22.45$
HY248	． 120	$8 \quad £ 2245$
HY364	． 180	$4 \quad$ E33．45
HY368	． 180	． $\begin{aligned} & \text {（ }\end{aligned}$
Distortion	less inan 0.0	．01\％

Type	Output Power Watts（rms）	Load Impedence Ω	
MOS128	60	$48 \ldots \ldots .93445$	
MOS248	120	$4.8 \ldots$	$\boxed{49} 45$
MOS364	180	4	66445

POWER SUPPLY UNIT

Type	For Use With	Price
PSU30．	PRE AMP	f6．45
PSU212	． 1 or 2 HY30	¢16．45
PSU412	． 1 or $2 \mathrm{HY60.1} \mathrm{HY60}$	$¢ 18.45$
PSU422	1 HY128	¢20．45
PSU432	． 1 MOS 128	¢21．45
PSU512	． 2 HY128． 1 HY244	¢22 45
PSU522	2 HY 124	F22．45
PSU532	2 MOS128	¢22．95
PSU542	．． 1 HY248	¢22．95
PSU552	． 1 MOS248	¢24．95
PSU712	2 HY 244	¢26．45
PSU722	． 2 HY248	£27 45
PSU732	1 HY364	£27 45
PSU742	1 HY368	f29 45
PSU752	2 MOS248，MOS36	C29 45
All the above are for 240V operation		

淮
Jaytee Electronic Services， 143 Reculver Road，Beltinge， Herne Bay，Kent CT6 6PL Telephone：（0227） 375254 All Prices include VAT，Post \＆Packing
CIRCLE 90 FOR FURTHER IUETAILS．

HART－The Firm for QUALITY

For over 20 years Hart Electronics have been specialists in Quality Kits，cassette decks and cassette heads．As the actual manufacturers and importers our range offers the best possible value cassette he

LINSLEY HOOD 300 SERIES AMPLIFIER KITS
Superb，HART designed，integrated amplifier kits derived from Linsley－ Hoods articles in＇HiFi News＇．
Uitra easy assembly and set－up with sound quality to please the most discerning listener．Ideal basis for any domestic sound systerns if quali－ ty matters to you．Buy the complete and save pounds off the individual component price．

K300－35． 35 Watt．Discount price for Complete Kit．£98．79
RLH4\＆5．Reprints of Original Articles from＇Hi－Fi News＇．$£ 1.05$ no Vat．
LINSLEY－HOOD CASSETTE RECORDER CIRCUITS
Complete very high quality low noise signal handling stages tor any stereo cassette recorder． Separate record and replay sections for optimum performance．Switched bias and equalisation to cater for chrome and ferric tapes．Very easy to assemble on plug－om PCBs．Complete with full instructions．

STUART TAPE RECORDER CIRCUITS

Complete stereo record，replay and bias system for reel－to－reel recorders．These circuits will give studio quaity with a good tape deck．Separate sections for record and replay give optimum perfor－ mance and allow a third head monitoring system to be used where the deck has this fitted．Stan－ dard 250 mV input and output levels．
K900W Stereo Kit with Wound Coils and Twin Meter Drive． $\mathbf{5 5 5 . 1 3}$
RJS 1 Reprints of Original Articles， $\mathbf{£ 1 . 3 0}$ no vat．
HIGH QUALITY REPLACEMENT CASSETTE HEADS
Do your tapes lack treble！A worn head could be the problem．Tape heads are constantly improving and fittin gone of our latest replacement heads could restore performance to better than new！Standard moun－
 ： 1 the azimuth spot on．As we are the actual importers you get prime parts at lowest prices．All our heads are suitable for Dolby machines．
HC20 Permalloy Stereo Head．Good quality standard head fitted as original equipment on many decks．£5．11．
HS 16 Sendust Alloy Super Head．Quite simply the best．Longer life than permalloy，higher output than ferrite，fantastic frequency response．$£ 9.91$
H0551 4－Track head for auto－reverse or quadrophonic use．Full specification D730／TXT record and play head．$£ 9.73$
Full data on these and other heads in our range are contained in our free list．
HART TRIPLE－PURPOSE TEST CASSETTE TC1
One inexpensive test cassette enables you to set up VU（Dolby）level，head azimuth and tape One inexpensive test cassette enables you to set up
speed．Vital when fitting new heads．Complete with instructions．$£ 4.66$
Send for your FREE copy of our lists with full details of our complete range of Kits，Components， PCBs，Cassette Heads and Decks．

CIRCLE 59 FOR FURTHER DETAILS．

Write-once proms

Intel argues that the time consumed by extracting a u-v eprom, erasing it and then reprogramming it is too expensive to be worth it. So they have brought out a family of proms without a window so that once programmed they cannot be erased. What's more they have developed a Quick-Pulse programming algorithm that enables the devices to be programmed in 100 th of the time required by u-v eproms - about four seconds. The software is implemented in Intel's own universal programmers as well as those sold by Data I/O. The proms are manufactured in plastic as opposed to the ceramic packaging of their erasable predecessors, which makes them robust and lower cost. The proms are electrically and pincompatible with the eproms and are distinguished by the prefix " P " instead of " D ". The range comprises the P2764A, P27128 and P27256. Intel Corporation (LK) Ltd, Pipers Way, Swindon, Wilts SN3 1RJ. EWW 220 on reply card.

Charge-coupled character reader

A 256-photodiode linear c.c.d. image sensor (TH 7806) is suitable for small optical - character recognition systems and desk-top computer interfacing. Each photoelement is $13 \mu \mathrm{~m}$ square and is optimized for an even response in the 400 to 1100 nm spectral range. The maximum data rate is 2 MHz . A noise dynamic range of $6000: 1$ allows sufficient grey-scale depth to enable the easy and reliable discrimination of smudges, etc, from the printed matter.

The sensor comes in a ten-pin d.i.l. package and can have a guaranteed accuracy to within $50 \mu \mathrm{~m}$. The option of a Z-type epitaxial substrate prevents the deterioration which may be caused by infra-red components in the illumination source and ensures high performance whatever the source Thomson-CSF Components and Materials Lttl, Ringway House, Bell Road, Basingstoke. Hants RG24 0QG. EWW 221 on reply card.

Audio measuring system

The ubiquitous microprocessor can be found lurking within the MJS401D, resulting in fast and accurate audio measurements. Standard functions allow measurement of level, noise, frequency, distortion and crosstalk. Plug-in options include extra filters, IEEE interface, IMD, wow and flutter. The unit incorporates an MD404B twin-tone oscillator, but
this can be omitted in receive-only applications.
The level measurement range is from -110 to +40 dBm with a claimed accuracy of better than 0.1 dB . Distortion measurements is possible down to 0.0008%
(-102 dB). The dual-range meter display enabled rapid calibration of the equipment under test. The meter automatically switches

Torodial transformers and chokes

A range of toroidal transformers includes 87 different standard configurations of from 15 to 990VA. Any other configuration is available to order. The Transduktor range has been designed to maximize the advantages of toroids; lower weight, smaller size, low no-load losses, and less acoustic hum and magnetic interference. Earthed copper foil is used to prevent electrostatic interference and a Mu-metal screen around the outside of the transformer minimizes electromagnetic interference. To reduce this even further the design maintains a constant number of amp-turns per unit circumference of the toroid This requires the placing of Mylar insulation and earthed copper
screen between primary and secondary windings. The range meets the requirements of most international standards. Various options for mounting the transformers are provided.

Computerized design allows the company to respond to almost any request with an optimized transformer design. Samples can be provided very rapidly.

The range is complemented by a set of toroidal chokes for switchmode power supplies. These are designed to run at 40 kHz with a ripple current of 10%. They are wound on powder cores having a distributed air gap and offer similar advantages to the transformer range. Transduktor Ltd, 443B Holloway Road, London N7. EWW 207 on reply card.
between the $\pm 12 \mathrm{~dB}$ range to a $\pm 1.5 \mathrm{~dB}$ range for adjusting the reference level which is set in 1 dB steps from the front panel. The instrument can be programmed externally through the bus to be ranged antomatically, allowing readouts of both frequency and level. Distortion and crosstalk measurements are fully automatic Technical Projects Ltd, Unit 2, Samuel Whites Industrial Estate, Medina Road, Cowes, Isle-of-Wight PO31 7LP. EWW 219 on reply card.

High-resolution monitors

Colour monitors for data and graphics displays are built around a compact c.r.t. driver board only 140 by 178 mm . Miniaturization has been achieved by the use of thick-film hybrid circuits allowing the video amplifiers to be mounted on the c.r.t. baseboard. By separating the power supply, the driver circuit and baseboard are made suitable for use by equipment manufacturers who can obtain the c.r.ts directly and supply their own power supplies.
Kent Modular Electronics have based their marketing on a similar system for o.e.m. monochrome monitors and have found it to be successful; they are now transferring their expertise in thick-film applications to the colour monitor. They also manufacture complete monitors and produce a range of monochrome sets in both landscape and portrait format. They recently launched a 10 in colour monitor for use in such applications as bank dealer rooms where space is at a premium Kent Modular Electronics Ltd, Maidstone Road, Rochester, Kent ME1 3QL. EWW 208 on reply card.

Off-air frequency standard

Computer-aided design has been used for the circuitry of the p.c.b. in the Quartzlock frequency standard. The design will operate on the current frequency transmissions of the BBC as well as those to come into operation in 1988. Outputs of 1 MHz and 10 MHz are accurate to 2 parts in 10^{11} long-term and 1 in 10^{10} in the medium term application. Uses include calibration, audit and
certification of frequency meters, counters, timers, signal sources and generators and radiotelephone test equipment.
The set uses an internal ferrite aerial and a socket for an external aerial is also provided. The p.c.b. can be retro-fitted to earlier Gould Advance and Quartzlock receivers. Dartington Frequency Standards, Moor Road, Staverton, Devon TQ9 6PB. EWW 212.

Speech recognition on chips

A p.c.b. with speech-recognition l.s.i. circuits comes from NEC. The MC4760 analogue interface carries out equalization, amplification and analogue-to-digital conversion.
There is a signal processor which performs spectral analysis of the digitized voice input and systems controller to communicate with a host system. This can receive high level commands and transmit the results. The board is designed for isolated word recognition and is based on the filter-bank technique with dynamic progranming matching. There is a digital attenuator to enable the easy detection of the beginnings and ends of words.

The system features a 'learning and training' mode, whereby extracted features of a voice are stored in a reference memory. When a degree of simularity is established between the input and the stored reference, the results of the comparison are transmitted. A 98% recognition rate is claimed. With a 64 Kbyte memory the system has a vocabulary of 128 words: 512 words can be registered with a 64 K byte memory. The maximum length of utterance is two seconds and the average response time is 0.5 s . Available (appropriately) through Dialogue Distribution Ltd, Watchmoor Road, Camberley, Surrey GU15 3AQ. EWW 217.

New 68000 with MMU

An addition to the 6800 family was introduced at the Paris component show by Philips Known as the SCC68070, the device includes the same central processor as the 68000 but also has a memory management unit (m.m.u.) and direct memory access (d.m.a.) control as well as a serial communications bus (${ }^{2} \mathrm{C}$ bus), RS-232C interface and three counter-timers all on the same chip.
The processor is fully software compatible with the 68000 family and is claimed to be the first processor to include d.m.a. and m.m.u in a single package. The c.mos device is likely to replace the 68000 in many applications where the reduction in component count with the associated lower cost would be advantageous. It also uses less power
Memory management is used to organise the memory during multitasking where the blocks of
memory associated with a specific task are kept separate from any others. Direct memory access allows blocks of memory to be transferred between the on-board memory and peripherals. The inter-i.c. ($\mathrm{I}^{2} \mathrm{C}$) bus relieves the parallel bus from routine communications tasks where speed is not critical; similarly the RS-232C interface reduces the load on the parallel bus as well as reducing the external chip-count.
Internally the single chip has the equivalent of 100000 transistors and is built using 2 -micron geometry. With an internal maximum clock frequency of 10 MHz the device has a surprisingly low power consumption of 1 W .
Designed and manufactured jointly by Philips and Signetics, the SCC68070 is to be marketed in the UK by Mullard Ltd, Mullard House, Torrington Place, London WC1E 7HD. EWW 205.

Superfast 16/32-bit processor

Claimed to be an inexpensive alternative to the multi-chip bit-slice processor, the GI DSP32010 is a second source for the TMS32010. It is said to combine the flexibility of a high-speed controller with the numerical capability of an array processor and can execute five million instruction/s.

The efficiency of this 'single-chip computer' is the result of a "comprehensive and easily programmed instruction set and of highly pipelined architecture.

Special instructions have been included to speed the execution of digital signal processing algorithms. High-speed applications include speech recognition and synthesis, radar and optical sensing, and servoloop computations; particularly in robotics. The device operates from a single +5 V . supply and is housed in a 40-pin d.i.l. package. Available through Campbell Collins Ltd, 162 High Street, Stevenage, Herts. EWW 218 on reply card.

Super-fast floppy

A new flexible-disc drive from Epson has a formatted capacity of 4.8megabytes. BM-5 is a mainsoperated 5.25 in unit operating at a speed comparable to that of a hard disc drive. It can act as a back-up unit for hard discs and has the advantage over tape streamers of random access to the files. It also has an advantage over hard discs by being a removeable medium. It is possible to have an unlimited number of 5 Mbyte floppies compared with a fixed 10 Mbyte disc. Interface cards enable the drive to interface with Epson's own range of computers or the IBM PC and its compatibles.

The storage medium is a special 6 Mbyte double-sided high density 5.25 in floppy disc. The drives internal firmware 'compresses' the data to be stored and expands it
again when retrieved. The drive is in one box and the interface unit in another. The price is quoted as "somewhere in the region of £1,000." Epson(UK)Ltd, Dorland House, High Road, Wembley Middlesex HA96UH. EWW 216 on reply card.

Test sockets

A series of low-insertion-force sockets has been produced by Aries. Called the Eject-a-dip range they are available in $14,16,24$, 28 , and 40 -pin versions. The levers at each end of the socket lock the i.c. into position when inserted and also are used to eject it after the test. Aries Electronics (Europe), Alfred House, Oatlands Drive, Weybridge, Surrey KT13 9LB. EWW 206 on reply card.

COMPLETE SINGLE BOARD COMAPUTER \& SUPRORT. Now you can weald the power of the 8051 using BASIC.

 Based on the Intel 8052AH single component Microcontroller the CPU comes complete with a unique implementation of the BASIC language enabling direct access to the special function registers, timers and interrupts available on the 8051 device.
 The new Cavendish Automation 7030 CPU is one of a complete range of Eurocards providing complete systems capability to OEMs. Support includes static MOS RAM boards (to 128K), Power Down Control boards, Decoder boards, providing further address line decoding, watchdog, real time clock/calendar plus additional output flags and I/O. Mass storage devices. Backplaines. PSU and battery packs. Drive boards offering power output, signal conditioning and externally gated outputs. Multi channel DAC/ADC. Remote switch modules for power switching, sound or ViI.S. of vision
 Comprehensive documention is supplied with each CPU and the 7030 CPU card requires only a +5 v supply and dumb terminal for operation. Many unique features are incorporated and the system allows very fast interactive development of user software for super easy deployment in the target system.
 CPU Card Advantages
 * On card EPROM programming with single instruction \& auto-start option
 * 16 K User EPROM/ROM plus 8K User RAM on card
 * Twin Serial ports independently configurable (300-19,200 baud)
 * 9×8 bit parallel $1 / O$ ports on card
 * Full floating point arithmetic
 * BASIC utilities may be called from Assembler
 * Interrupts handled by BASIC or Assembler
 * Very fast tokenised interpreter drastically reduces software development time
 * 11 MHz operation as standard * low cost * customised options on low quantity
 EOR ROBOTICS. ENVIRONEEENTAL CONTROL. PROCESS CONTROL..
 For further information on the CA 7000 Series Controller contact:
 Cavendish Automation Limited. 45 High Street, St Neots,Cambs, PEI9 1BN. Tele (0480) 219457 Telex 32681 CAVCOM G.

CIRCLE 75 FOR FURTHER DETAILS.

It's easy to complain about an advertisement. Once you know how.

One of the ways we keep a check on the advertising that appears in the press, on posters and in the cinema is by responding to consumers' complaints.

Any complaint sent to us is considered carefully and, if there's a case to answer, a full investigation is made.

If you think you've got good reason to complain about an advertisement, send off for a copy of our free leaflet.

It will tell you all you need to know to help us process your complaint as quickly as possible.

> If an advertisement is wrong, we're here to put it right. The Advertising Standards Authority.

ASA Ltd. Dept 1 Brook House, Torrington Place, London WCIE 7HN
This space is donated in the interests of high standards of advertising.

Appointments

Advertisements accepted up to 12 noon 5 February for March issue

DISPLAYED APPOINTMENTS VACANT: £21 per single col. centimetre (min. 3 cm). LINE advertisements (run on): $£ 4.50$ per line, minimum $£ 30$ (prepayable).
BOX NUMBERS: $£ 10$ extra. (Replies should be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant. Sutton, Surrey SM2 4AS).
PHONE: SUSAN PLATTS, 016613033 (DIRECT LINE)
15\% VALUE ADDED TAX NOT INCLUDED
Cheques and Postal Orders payable to BUSINESSPRESSINTERNATIONAL LTD. and crossed.

THE BEST APPROACH

£7,000-£30,000 + CAR

\star Where does your interest lie: Graphics; CAD; Robotics; Simulation Image and Signal Processing; Medical; Automation; Avionics;
Acoustics; Weapons; Comms; Radar; Opto and Laser?
\star Experienced in: VLSI; Microprocessor Hardware or Software: Digital and Analogue circuitry; RF and Microwave techniques?
\star There are hundreds of opportunities in: Design; Test; Sales and Service for Engineers and Managers
\star For free professional guidance: Call: 0638742244 (till 8pm most evenings) or write (no stamp needed) to

CLIVEDEN

1. SERVICE ENGINEER

Point of sale, multi user microprocessor system. To £ $10,000+$ Car. Herts 2. TECHNICAL SUPPORT ENGINEER
Mini and micro based office automation equipment. c £ $10,000+$ Car. Berks. 3. TEST ENGINEER
3. TEST ENGINEER
Analog and Digital

Analog and Digital experience to work on radar/microwave systems.
£ 10.500 . Essex
4. SERVICE ENGINEER

Repair and fault find a range of mini and micro based information systems.
E8,000 + Hants
TEST ENGINEER
Fault find a range of microwave and electronic assemblies. To E10,000. Surrey. 6. CHIEF TEST ENGINEER

Digital, Analog and microprocessor systems. Test of PCB's for broadcast equipment. £ 11,000 . Berks

Hundreds of other Electronic and Computer vacancies to E15,000
Phone or write
Roger Howard C.Eng. M.I.E.E. M.I.E.R.E
CLIVEDEN RECRUITMENT
92 Broadway, Bracknell, Berkshire RG 12 IAR
Tel: 0344489489 (2598)

Electronic Engineers What you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $\mathbf{£ 6 , 0 0 0}-\mathbf{£ 2 0 , 0 0 0}$.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL PERSONNEL SERVICES, 12 Mount Ephraim, Tunbridge Wells, Kent. TN4 8AS.

Tel: 089239388

Telecommunications Engineering Technicians

Openingsin Servicing and Maintenance Up to $£ 9,317$

Our business is to install and maintain the communications equipment used by the Police and Fire Brigades in England and Wales - some of the latest you will find in operation anywhere

We have a number of vacancies at our Service Centres in various parts of the country for Telecommunications Engineering Technicians with practical skills in locating and diagnosing faults in a wide range of radio equipment including AM, FM and computer based data transmission systems.

The work provides excellent opportunities for extending your technical expertise, with specialised courses and training to keep you up to date on developments and new equipment. There are also opportunities for day release to gain higher qualifications.

Applicants, male or female, must be qualified to at least City \& Guilds Intermediate Telecommunications standard and possess a current driving licence.

Home Office

Directorate of
 Telecommunications

ELECTRONICS

TECHNICIAN GRADE 7
PHYSICSDEPARTMENT
THE CITY OF LONDON POLYTECHNIC invites applications for the above post in its Physics Department, located in Jewry Street, EC3 close to LIVERPOOL STREET and FENCHURCH STREET STATIONS and ALDGATE UNDERGROUND
The successful candidate will assist in the provision of an electronics service to all sections of the Department and will be responsible to the Superintendent of Laboratories for the overall operation and maintenance of electronics services, the design development, construction, modification and repair of electronic equipment and occasional training of other technical experience is expected
Salary on a scale from $£ 10,617$ p.a. to $£ 11,757$ p.a. (including London Weighting of $£ 1,365$ p.a.).

For further particulars and an application form please write, on a postcard, to the Staff Records Officer, City of London Polytechnic, 117 Hounsditch, London EC3, quoting reference no. 86/2

LRT BUS ENGINEERING LIMITED MOBILE RADIO REPAIR PERSON

This vacancy is in the Radio Repair Workshops of our Bus Engineering Works at Chiswick, West London
The successful applicant should have a thorough knowledge of Radio Communications principles, specifically VHF-UHF transmission and reception using AM-FM-PM and Data Modulation Modes and will be required to work on various types of equipment, including hand-held units, and should therefore be well experienced in this field. A good understanding of general electronics is also required. A City and Guilds Certificate or ONC in a relevant discipline is desirable, though not essential.
We offer an attractive benefits package, which includes FREE TRAVEL on LRT bus and underground services and a contributory pension scheme
Interested? The phone Ann Clark on 01-994 3641, Ext 182 or write to the Personnel Director (Bus Engineering Limited), 566 Chiswick High Road, Chiswick, London W4 5RR quoting reference BELW/1/WW.

BRITISH ANTARCTIC SURVEY Electronic Engineer
The Survey requires an Electronic Engineer to operate and maintain a computer and microprocessor controlled HF radar, known as the Advanced lonospheric Sounder. Halley $76^{\circ} \mathrm{S} 27^{\circ} \mathrm{W}$ in the Antarctic. He will be responsible for the system hardware and should be able, with training. to modify the system software necessary
The appointment will be for a period of 38 months, commencing in April 1986 and the successful candidate will sail for Antarctica in October, returning to the UK in May 1989 Qualifications: Degree or equivalent in electronica, electrical engineering or other appropriate subject. Some relevant experience preferred
Applicants, to work mainly overseas, must be physically fit, single, male and aged between 21 and 35
Salary: Grom $\mathbf{6 6 2 5 2}$ per annum plus an allowance of $£ 946$ per annum for periods south of Montevideo

For futher details an an application form, please contact:
The Establishment Officer,
British Antarctic Survey, Madingley Road
Cambridge CB3 OET
Telephone: Cambridge (0223)61188, Ext. 235
Please quote reference: AS 4/86
Closing date for applications: 10 February 1986

Natural
Environment
Research
Council

Field Service Engineer

£NEG

Company Car
SONY BROADCAST LTD is well established as one of the world leaders in the professional broadcast television industry, with branches throughout Europe, the Middle East and Africa. Our wide range of sophisticated products includes Cameras VTRs/VCRs, Camcorders, Editors and the new High Definition Video System. Applications are now invited from experienced engineers to join our Field Service team based at our international headquarters in North Hampshire

Responsibilities will include the commissioning, service and repair of our full range of video products. This will involve overseas travel throughout our market area and extensive customer contact at all levels. Candidates should possess a formal electronics qualification, together with a minimum of 2 years experience gained either in operational television or its allied manufacturing industry.

Full product training will be provided and generous relocation assistance where appropriate We offer an excellent benefits package including an attractive salary, Company car, free private medical cover and a Company Pension/Life Assurance Scheme

If you are interested please write to, or telephone: David Parry, Personnel Officer.

Sony Broadcast Ltd.

AIR TRAFFIC ENGINEER - GRADE 2

Applications are invited from persons aged 25 years or over who hold a minimum of ONC (Eng, City and Guilds Telecommunications Technician (Course 270/271) up to and including T3. TEC Certificate/Diploma in Telecommunications or equivalent technical qualifications, for the post air rafric Eng ineer Grade 2 on he staf of the Isle of Man Ainpors Board. Candidates siould Communications, Radar, Nav. Aids. CCTV or data processing systems
The post is permanent and pensionable on a non-contributory basis (save for a contribution of $1 \frac{1}{2} \%$ towards family benefits) and has a satary scate of $£ 8.070-£ 9.462$ per annum. The post involves shift work including some Saturday and Sunday working for which an additional allowance is payable. A grant of up to $£ 1,500$ towards the cost of removal and relocation expenses is avaitable to applicants not resident in the Isle of Man and arrangements exist for the ransfer of certain pension rights.
The duties of the post include the installation, maintenance, repair and calibration of electronic equipment and systems concerned with Air Traffic Control and Operations at Ronaldsway Airport. Further detais can be obtained from the Airport Director (Tel: 0624823311).
Application forms and further details of the post can be obtained from the Secretary, Civil Sarvica Commission, Central Government Offices, Douglas (Tet: 062426262 Ext. 2835) by whom applications should be received within two weeks of the dete of this advertisement

HUMPHRIES VIDEO SERVICES LTD. Video Engineer

Humphries Video Services is a leading Videocassette duplication and video facilities plant. We currently have a vacancy for a video engineer with experience in the maintenance of all VCR formats, e.g. VMS, BETAMIX etc; and also a working knowledge of 11" cformat, BUVect would be useful. Applicants should ideally be qualified to BTEC ONC level or equivalent. Salary in the range $£ 8000$ to - £10,000 p.a. Please telephone or write for application form.

HUMPHRIES VIDEO SERVICES LTD., 42 Station Road, Merton Abbey, London SW 19 Tel: 01.542 5661

University of Aberdeen DEPARTMENT OF PSYCHOLOGY Departmental Superintendent

 Technician (Grade 8)required for the Department of Physchology to supervise technical staff in various research and teaching laboratories and workshops and be responsible for the design, development and use of electronic instrumentation in the Department's teaching and research programmes. The Department has a range of mini and micro computers as well as video, audio and physiological instrumentation. Experience in computer interfacing and programming and in designing digitai and analogue circuitry is required.
Applicants should have a degree or HNC in electronics and normally have had a minimum of 15 years' relevant experience.
Salary on scale £ 10,315 £11,217 per annum, with appropriate placing.
Application form and further particulars from The Personnel Officer, University Office, Regent Walk, Aberdeen AB9 1FX (Tel 40241 Extn 5351), to whom the completed form should be returned by 31 January 1986. (Ref T437)

Opportunities in Professional Broadcast Engineering

Established 8 years ago as a part of the highly successful Sony Corporation, Sony Broadcast Limited is now recognised as a world leader in the professional broadcast industry. Our Hampshire headquarters and overseas branches provide sales, distribution and engineering support to a marketing area that extends to Europe, the Middle East and Africa. Our innovative product range incorporates state-of-the-art electronics and includes some of the most sophisticated broadcast equipment available, such as Betacam, a High Definition Video System and the Digital audio range. Applications are now invited from experienced engineers who are looking for a fresh challenge in their career.

Principal Project Engineer

The successful candidate will join an engineering team responsible for the design and project management of static studio and mobile television broadcast systems. Aged 30 plus, applicants should possess a formal electronics qualification together with a proven track record in broadcast systems manufacture. Some overseas travel will be required

Senior Sales Engineer

To join our UK sales team, the person appointed will be responsible for our full range of professional video products. UK and some overseas travel will be required. Candidates should have significant sales experience gained in a broadcast environment

Senior Engineer Technical Operations

The successful applicant will be responsible for the technical support of our complex video products, such as the new Sony studio camera. Key activities will also include the optimisation and evaluation of performance, and the conducting of customer acceptance tests. A minimum of 3 years broadcast experience and the ability to effectively maintain customer interface is essential.

Demonstration Equipment Engineer

To join a small engineering team responsible for the provision of a product demonstration facility to our customers in the UK and Overseas. Responsibilities will also include the provision of support at exhibitions. Candidates should have a track record in the broadcast industry, VTR and editing experience would be an advantage, together with a formal electronics qualification. There will be a requirement for overseas travel.

Graduate Engineer

We are looking for a newly qualified graduate electronics engineer to join the Research and Development department within Sony Broadcast Limited. The post requires a good honours degree with a bias towards communication theory. The variety of work
undertaken offers a stimulating challenge with the opportunity to apply recently acquired academic knowledge to practical reality

Senior Engineer Systems Production

The successful candidate will join our Systems Group and supervise a small team responsible for the acceptance of vendor equipment, test and repair of equipment buils in-house and the development of "black box" units - primarily interfaces. Applicants should have experience of sound and television principles together with a recognised electronics qualification. Previous supervisory and microprocessor experience would be an advantage
We offer attractive salaries together with first class conditions of employment, including free private medical cover, and Company Life Assurance/Pension Scheme
If you are interested please write with details of your career to date and current salary to David Parry, Personnel Officer, Sony Broadcast Limited. Belgrave House, Basing View, Basingstoke, RG212LA, or alternatively telephone our 24 hour answerphone for an application form, on 025659583.

Broadcast

Sony Broadcast Ltd.

Belgrave House Basing View, Basingstoke Hampshire RG21 2LA United Kingdom Telephone (0256) 55011

THE START OF SOMETHING NEW

If you are leaving College and planning a career in modern communications or if your present job lacks interest and challenge why not join us in GCHQ? We are recruiting

RADIO OFFICERS

who are after initial training will become members of an organisation that is in the forefront of communications technology. Government Communications Headquarters can offer you a satisfying and rewarding career in the wide field of communications. Training involves a 32 week course (38 weeks if you come straight from Nautical College) which will fit you for appointment to RADIO OFFICER.
Not only will you find the work as an R O extremely interesting but there are also good prospects for promotion opportunities for overseas travel and a good salary. Add to this the security of working for an important Government Department and you could really have the start of something new.
The basic requirement for the job is 2 years radio operating experience or hold a PMG, MPT or MRGC or be about to obtain a MRGC. Registered disabled people are welcome to apply.
Salaries start at $\mathbf{£ 4 , 9 8 8}$ at age 19 to $\mathbf{£ 6 , 0 2 8}$ at age 25 and over during training and then $\mathbf{£ 6 , 8 3 2}$ at 19 to $\mathbf{£ 8 , 9 1 5}$ at 25 and over as a Radio Officer. Increments then follow annually to $£ 12,328$ inclusive of shift and weekend working allowances.
application form phone 0242 32912/3
or write to
 Priors Road
CHELTENHAM
Glos GL52 5AJ

ARTICLES FOR SALE

ToolCases Toolwallets for the Professional

Teloman Products 2/3 Abbotts Ripton Road, Huntingdon, Cambs Telephone: (0480) 57758
WAVEGUIDE, Flanges and dishes. All standard Sizes and alloys (new material only) from stock. 7876, 22 Howie Street, London SW11 4AR.(2099) CLEARANCE SALE - Very good quality mains transformers: 6 V 1 A .9 V quahity mains transtormers: $\frac{1}{2} \mathrm{~A}, 12 \mathrm{~V} \frac{1}{2} \mathrm{~A} 50 \mathrm{p}-12 \mathrm{~V} 1 \mathrm{~A}, 15 \mathrm{~V} 1 \mathrm{~A}, 75 \mathrm{p}$ $\frac{1}{2} \mathrm{~A}, 12 \mathrm{~V} \frac{1}{2} \mathrm{~A} 50 \mathrm{p}-12 \mathrm{~V} 1 \mathrm{~A}, 15 \mathrm{~V} 1 \mathrm{~A}, 75 \mathrm{p}$
$-8+8 \mathrm{~V} \frac{1}{2} \mathrm{~A}, 18 \mathrm{~V} 1 \mathrm{~A}, 24 \mathrm{~V} \frac{3}{4} \mathrm{~A}, £ 1-12 \mathrm{~V}$ $-8+8 \mathrm{~V} \frac{1}{2} \mathrm{~A}, 18 \mathrm{~V} 1 \mathrm{~A} .24 \mathrm{~V} \frac{3}{4} \mathrm{~A}, £ 1-12 \mathrm{~V}$
$5 \mathrm{~A}, 15 \mathrm{~V} 4 \mathrm{~A}, 24 \mathrm{~V} 2 \mathrm{~A}, £ 2-24 \mathrm{~V} 4 \mathrm{~A} 4-$ $24 \mathrm{~V} 10 \mathrm{~A} £ 10-230 / 115 \mathrm{~V} 100 \mathrm{~W}$ auto $£ 2$. Min order $£ 25 \mathrm{~J}$. Bull 34 America Lane Haywards heath, Sussex RH16 3QU Phone 0444454563.

GOLLEDGE

Q UAR TZCRYSTALS OSCILLATORS AND FILTERS of all types. Large stocks of standard items. Specials supplied to order. Personal and export orders welcomed - SAE for lists please. OEM support thru:- design advice prototype quantities, production schedules.
Golledge Electronics. Merriott, Somerset TA16 5NS. Tel: 046073718
(2472)

INFRA-RED REMOTE CONTROL VIF-KI To fit Grundig 2×4 Super Video $£ 5.95$ with Tele Pilot TPY355 $£ 12.95$ P\&P £2. Stan Willets, 37 High Street, West Bromwich. West Midlands. Tel. 0215530186
(40)
G. TEK ELECTRONICS LTD Burrows Chambers, Swansea. SAl IRF Tel: 0792475522 Tlx: 48206 Entlr $\begin{array}{llll}2716 & 3.00 & 8085 & 2.20 \\ 2732 \mathrm{~A}-2 & 3.50 & 80 \mathrm{C} 85 & 3.50 \\ 2764-25 & 2.90 & 8155 & 2.50 \\ 27128-25 & 3.10 & 8251 & 2.70 \\ 27256-25 & 7.10 & 8255 & 2.65 \\ 4164-15 & 0.99 & 780 \mathrm{~A} & 2.10 \\ 6116 \mathrm{LP}-3 & 1.90 & 280 \mathrm{~B} & 5.00 \\ 6264 L P-15 & 4.00 & 74 \mathrm{~L} 500 & 0.20 \\ \text { LM324 } & 0.43 & 4001 & 0.20 \\ \text { LM311 } & 0.50 & \text { NE555 } & 0.20\end{array}$ Please add 50 p post and packaging and V.A.T. to total. Orders from government dept and colleges etc. welcome.

The independent local radio station for South Wales has a vacancy for an Engineer, Grade ILR 2, based in Cardiff.
The successful applicant will enjoy a wide variety of work including project design and development, technical maintenance and Studio and Outside Broadcast operations.
Applicants should be qualified to Degree/HND level in Electronics and have experience in broadcasting or a related field. A clean driving licence is essential.
Salary is in accordance with current ACTT rates. Apply in writing, including a full C.V. to: -

DAVE COCKRAM, CHIEF ENGINEER,

RED ROSE RADIO PLC
P.O. BOX301,

ST
451

On instructions from Roger H. Pearson Esq. Liquidator of Gintel Communications Systems Ltd.

FOR SALE BY TENDER

The stock of Mobile Radios and Spares. Test Equipment Answerphones. Telephone Equipment and Telephones. P.A. Equipment. Telex's, Printers and Facsimile's. $2 \times$ Olivetti M2O Computers etc. (IN LOTS)
Viewing - 23rd and 24th January 1986 Closing date - 28 January 1986
Tender Forms available from the Liquidators Agents

NOEL D. ABEL

32 NORWICH ROAD, WATTON, NORFOLK
TEL. (0953) 881204 TELEX. 975326
Also at HUNTINGDON, CAMBS and ST. ALBANS. HERTS.

Abstract

Marconi continuously variable portable filter $0-10 \mathrm{Kc} / \mathrm{s}$. twelve calibrated points £25.Avo portable valve tester £18. High power lamps, suitable audio modulation, signalling etc., f 15 . Sig-gen 95-180 Mc/s Foster AC Mains Bridge Impedance Test Set f20. IDC Process Timer E20, Set £20. lDC Process $\begin{aligned} & \text { timer } \\ & \text { Chronotron Period Timer } 25 \text {. Marconi }\end{aligned}$ Testmeter, 39 ranges including centre zero (galvol and negative ranges, $A C$ to $1.5 \mathrm{Gc} / \mathrm{s} £ 75$. Tensometer $£ 39$. Hydraulic pump, valves, actuators, pipes $£ 79$. TEL Autograph Transcriber ($X-Y$) $£ 79$. Stabilised Power Supplies, Ignition Analyser £39. Auto/Manual SLR camera f69. Paint for re-finishing vinyl surfaces fencing, cabinets etc) £89. Ratchet stocks/dies $£ 29$. Flow meters. Komag grinder £ 15 . Chart recorders. LCR Bridge. Infra-Red Analyser. Pye Megohhmeter f45. h-P 1750. . dual channel plug-in £35. Film processing machine. Semiconductor Characteristic Curve Tracer £79. 040-376236. (2016)

BRIDGES waveform/transistor analysers. Calibrators, Standards. Millivoltmeters. Dynamometers. KW meters. Oscilloters. Dynamometers. Kw meters. Oscilloscopes. Recorders. Signal generators Rweep, low distortion, true R1ation. Tel. 040376236 ,

STOCK CLEARANCE COPPER WIRE Soft tint .315 mm diameter 300 x 6002 reels. $£ 1$ per reel + vat? Also large quantity of Miltac 230 volt 10 amp micro switches. Tel. 0773760661.
(38)

PAI EPLID FPIA IFI. PROGRAMMIVG SERIICE. Arything from circuit diagram through logic equations 10 fuse ploss accepted to produce programmed 727364 for sample pricing. hostadin Limited, 57 Hardwick Road, Reading Berks RG3 3
41.F. +1.F.
Exporting to U.K.? Send us a sample board and all components to produce to your reuirements here at home base. Wave soldering etc.,same applies to U.K. Mainland companies. Interested? Telephone: Walton-on-Thames (0932) 22061224 hour telephone answering. (39)

QUIARTZ CRYSTALS OSCIILATORS AND FILTERS of ail types. Large stochs of standard items. Spectals suppleed to order. Persmal and export orders weleomed - SAE for lists please. OEM support thru:- desiger advice. protorype ruantuties. production schedules.
 5NS. Tel: 0.46073718
IEIEQUIPMENT SCOPES, spares, manuals, Ochre Mill Technical Service Lid. Stone (0785)
814643.

CIRCOLEC

THE COMPLETE ELECTRONIC SERVICE
Artwork, Circuit Design, PCB Assembly, Test \& Repair Service, Q.A Consultancy, Prototypes, Final Assembly. Full PCB Flow Soldering Service.
Quality workmanship by professionals at economic prices. Please telephone 01-646 5686 for advice or further details

TAMWORTH MANOR
302-310 COMMONSIDE EAST, MITCHAM
TO MANUFACTURERS, WHOLESALERS BULK BUYERS. ETC.
LARGE QUANTITIES OF RADIO. TV AND ELECTRONIC COMPONENTS FOR DISPOSAL
SEMICONDUCTORS, all types, INTEGRATED CIRCUITS TRANSISTORS. DIODES, RECTIFIERS. THYRISTORS, etc. RESISTORS, C/F, M/F, W/W, etc

CAPACITORS, SILVER MICA, POLYSTYRENE, C280, C296, DISC
CERAMICS, PLATE CERAMICS, etc
ELECTROLYTIC CONDENSERS, SPEAKERS CONNECTING WIRE, CABLES, SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFORMERS, etc. ALL AT KNOCKOUT PRICES - Come and pay us a visit ALADDIN'S CAVE TELEPHONE: 445 0749/445 2713 R. HENSON LTD

21 Lodge Lane, North Finchley, London, N. 12 (5 minutes from Tally Ho Corner)

WE USE ONLY 10\% OF OUR MENTAL POTENTIALS

Emster

These are the words of Albert Einstem. the greatest physicist of recent tumes
ert Ein
nstenn. the
Ron Hubbard's discoverres in the freld o
the mind prove today that Einstein was right The mind prove today that Einstern was right
In his book .DIANETICS The Moder In hus book DIANEMCS The Modern
Science of Mental Health A ADo Hubbard
takes one more quant step in this direction Science of Mental Heath in this direction He reveals how anyone can use his
discovertes to isolate the exact bartiers that discoveries to isolate the exact bartiets that
have so far prevented people from using thetr mental potentials to the full More and more people from
use Dianetics techotiony today The many technology today walks of life The many writen reports on their success Find out for yourself Order your copy of this Paice $£ 395$ paperback $£ 1750$ nardback Phice ${ }^{2} 95$ paperback 1750 hardback
Seake cheques and PO payable to 5 HF Send to Church of Scientology Sant Hil
Foundation FREFPOST IWW11 East Grinstead (170

When replying to classified advertisements, readers are recommended to take steps to protect their interest before sending money (2519)
P.C.B.'s produced from your artwork Prototypes, small/large batch produc tion. P.T.H., screen printing; labels, etc. Photography: englargements, reductions. Fast turnaround. Quotations: Orbitechnic, 38 Torquay Gardens, Redbridge, Essex. 01-550 3610.

TURN YOUR SURPLUS i.cs transistors etc. into cash, immediate settlement. We also welcome the opportunity to quote for complete factory clearance. Contact COLES-HARDING \& CO, 103 South Brink, Wisbech, Cambs. 0945 584188

WANTED

E C COMPONENTS

We buy large and small parcels of surplus I/C, transistors, capacitors and related electronic stock. Immediate settlement. Tel: 01-208 0766 Telex: 8814998

IC TESTERS

Two cards to plug into your Apple 1 computer. Type I tests over 50074 TTL and 4000 series, £99. Type 2 tests all common RAM and tests/programs EPROMS, PROMS, £ 129. Add 15\% VAT, \&3 carriage. PEANUT COMPUTER (Tel: 0924 499366) FREEPOST. DEW5BURY WFI3 IBR. (82)

WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash. Member of A.R.R.A.

M \& B RADIO

86 Bishopsgate Street Leeds LS1 4BB 0532435649
(9956)

STEWART OF READING

 110 WYKEHAM ROAD READING RG6 1PL TELNO: 073468041TOP PRICES PAID FOR ALL TYPES OF SURPLUS TEST EOUIPMENT COMPUTEREOUPMÉNT, COMPUTER EOUPMEN COMPONENTS ot

WANTED ELECTRONIC SCRAP

with precious metal content. PCB's Valves, Cable, Plugs and Sockets, Components, Speakers, Chips to complete computers etc.

STEINBECK REFINERIES (UK) LTD Anchor Road, Eastwood, Notts. (0773)760661 ERIC HENDERSON
You will get a better price at Steinbeck!
Telex 377494 MK LEIN.G.

Use this Form for your Sales and Wants

CLASSIFIED ADVERTISEMENTS

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW
To "Wireless World" Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate $£ 4.50$ PER LINE. Average six words per line. Minimum £30 (prepayable)
- Name and address to be included in charge if used in advertisement
- Box No. Allow two words plus £10
- Cheques, etc., payable to "Business

Press International Ltd." and cross "\& Co." 15% VAT to be added

NAME.
ADDRESS

ALL-TIME CP/M MICROCOMPUTER SYSTEM BARGAIN!

Fantastic bulk purchase of a major European manufacturer's entire stock of this top-quality machine enables us to retail it at far below its manufacturing cost. ALL FEATURES LISTED are INCLUDED as STANDARD:

- COMPLETE with EITHER single or double (as illustrated) TEAC half-height $51 / 4^{\prime \prime}$ double-sided double-density floppy disc drives. Formatted capacity: 320 Kb per drive.
- 4 MHz Z80A CPU
- 64 Kb RAM (in 4164 chips)
- 28Kb EPROM containing monitor \& MICROSOFT BASIC
- CP/M Version 2.2
- 80×24 display with colour block-mode graphics
- Exceptionally high quality styled keyboard with numeric keypad \& 6 function keys
- Centronics parallel interface
- RS232N24 serial interface selectable 300-9600 Baud
- UHF Modulator for TV \& composite video output
- ROM port. (A Word-Processor ROM is available at $\mathbf{£ 5 9}+\mathrm{VAT})$
- 6 month full guarantee

PRICES (monitor £69 + VAT) With DUAL floppy: $£ 199.00$ ($\mathbf{£ 2 8 8 . 8 5}$ inc. VAT) With SINGLE floppy: $\mathbf{£ 1 3 5 . 0 0}$ ($\mathbf{£ 1 5 5 . 2 5} \mathbf{i n c l}$. VAT) Carriage: $£ 9.50$ (incl. VAT) Visa \& Access accepted

Available ONLY from:COMPUTER APPRECIATION, 111 Northgate, Canterbury, Kent CT1 1BH. (0227) 470512

CIRCLE 22 FOR FURTHER DETAILS.

Appointments Vacant Advertisements appear on pages 90-95

PAGE
PAGE
Advertising Standards Authority. 89
Airlink Transformers 10
Armon Electronics4
Aspen Electronics. 58
Barrie Electronics Ltd. 71
Beckenham Peripherals 24
Cambridge Microprocessor Systems9
Carston Electronics. Loose Insert
Cavendish Automation. 89
Colomor (Electronics Ltd) 77
Computer Source. 24
Conguin Software 12
Connexions Satellite System.77
Control Universal Ltd.51
Co Star Ltd 23
Crofton Electronics. 10
Dataman Designs 5
Display Electronics 8/79
D S Electronics 70
Electronic Brokers. IFC, 11, 13
Electronics \& Wireless World., .86
40
Electrovalue Ltd 40
EMS Mfg. Ltd52
ESP Services Ltd52
E\&WW Answering Machine Offer.
Field Electric Ltd.. 9
Flight Electronics. .Outside Back Cover
Fulcrum (Europe) Ltd.. 46
GNC Design2
Greenwood Electronics. 71
Happy Memories. 70
Harris Electronics (London). 46
Harrison Electronics 58
Hart Electronic Kits Ltd. 85
Henry's/Audio Electronics. 96
Hilomast Ltd. 46
IQD Ltd. 37
Jay Tee Electronics. 85
JDR Sheetmetal 40
Johns Radio.58
Kestral Electronic Components.

\qquad 4
Langrex Supplies Ltd. 57
Levell Electronics 3
Lowe Electronics. 4
MAP 80 Systems Ltd. 58
Micromake Electronics 51
Monolith Electronics 51
Network Services Ltd.. 81
Newnes Technical Book 16
Number One Systems 10

PAGE
Pantechnic 77
Paxton Instruments 81
Phase Track Ltd 46
Pineapple Software.... 38/39
Quadrant Picture Library. 81
Radiocode Clocks Ltd 2
Radio Components Specialists. 4
Raedek Electronics
24
Ralfe Electronics.
Reprints12
Sarel Ltd. 70
Service Trading Co. Ltd. 16
Sherwood Data Systems 40
Sowter E A Ltd. 2
Stewart of Reading24
Taylor Bros (Oldham) Ltd. 52
Technomatic Ltd. 14/15
Tektronix (UK) Ltd............Inside Back Cover
Thorn EMI Instruments. 45
Thurlby Electronics. 80
TIC Semiconductors 40
TK Electronics 37, 71
Valradio Power Ltd. 37
Withers, R. Communication 12

OVERSEAS ADVERTISEMENT AGENTS

France and Belgium: Pierre Mussard. 18 - 20 Place de la Madelaine, Paris 75008
Hungary: Ms Edit, Bajusz, Hungexpo Advertising Agency, Budapest XIV, Varosliget.
Telephone: 225008 - Telex: Budapest 22-4525
INTFOIRE
Italy: Sig C. Epis, Etas-Kompass, S.p.a. - Servizio Estero, Via Mantegna 6, 20154 Milan
Mantegna 6, 20154 Milan
Telephone: 347051 - Telex: 37342 Kompass

Japan: Mr Inatsukı, Trade Media - IBPA (Japan), B.212. Azabu
Heights, 1.5.10 Roppongi, Minato-ku 106
Telephone: (03) 5850581.
United States of America: Jay Feinnan, Business Press International Lid, 205 East 42 nd Street, New York, NY 10017 Telephone (212) 867-2080 - Telex: 23827
Jack Farley Jnr., The Farley Coi. Suite 1584, 35 East Walker rive, Chicago, llionois 60601 - Telephone (312) 63074 Victor A. Jauch, Elmatex International, P.O. Box 34607, Los
Angeles, Calif. 90034 USA - Telephone (213) 821-8581 Telex: 18-1059.

Jack Mantel, The Farley Co. Suite 650, Ranna Building Cleveland. Ohio 4415 - Telephone (216) 6211919 Ray Rickles, Ray Rickles \& Co., P.O. Box 2028, Miami Beach Florida 33140 - Telephone (305) 5327301.
Tim Parks, Ray Rickles \& Co., 3116 Maple Drive N.E., Atlanta Georgia 30305. Telephone (404) 2377432 . Mike Loughlin Business Press international, 15055, memorial Ste 119, Houston, Texas - Telephone (713) 7838673 Canada: Colin H. MacCulloch, International Advertising Consultants Ltd.. 915 Carlton Tower, 2 Carlton Street, Toronto 2 - Telephone (416) 3642269

Now! Tek quality and expertadvice are justa free phone callaway...

Our National Order Desk line gets you fast delivery of the industry's leading value/ performance portables ... and technical advice from experts!

The 60MHz 2213A, 2215A and the 100 MHz 2235 and 2236 offer unprecedented reliability and affordability, plus the industry's first 3 year warranty on labour and parts, CRT included

All 2200 series scopes have the bandwidth for digital circuits and sensitivity for low signal analogue measurement The sweep speeds for fast logic families, and delayed sweep for fast, accurate timing measurement. The top of the range 2236 combines a counter/timer/DMM with the scope to provide fast, easy measurements for voltage, resistance and temperature.

The Company reserves the right to modify designs, specifications and change prices without notice.

Tektronix

The NEW 16-Bit IBM MPF.188 eosemememen

- Very low cost
 - Suitable as an educational or development package

- Suitable as an IBM PC Target System
- Usable as a low cost powerful 16-Bit controller
- Uses Intel 8088 Microprocessor Highly versatile and expandable - Complete with comprehensive user manuals and firmware listings

The 8088 Microprocessor

The Microprofessor MPF-1/88 microprocessor learning system, teaches you how a 16 -bit microprocessor works. Not just any microprocessor,
but the intel 8088 - the same microprocessor that powers the IBM PC and other popular 16 -bit computers, now widely recognised as an industry standard for 16 -bit processing The MPF- $1 / 88$ is a complete learning system with everything you need to grasp the fundamentals of computer and 16 -bit microprocessor operation. The MPF-1/88's special design allows you to open the case to examine the system components The hardware is designed to be both understandable and expandable. To this end all components used are standard 'off the shelf' parts, rather than the 'black box' approach using highly speciailised or custom-made chips

The firmware is completely transparent to the user.
Comprehensive Documentation
Three informative manuals are included with the MPF-1/88. Their contents range from an introduction for beginners, all the way to complete technical specifications on all aspects of the hardware and firmware. The documentation is simple enough for those just beginning and complete enough to allow the MPF-1/88 to be used to its maximum potential.
The optional Tutorial manual takes you step by step through a hands-on tutorial on all aspects of the MPF 1/88 and the 8088 microprocessor.
Designed For Expansion
The card edge connector at the rear of the MPF-1/88 allows access to all system buses. Through the interface module the user may expand the system to include any combination of IBM style cards or MPF peripherals.
MPF-1/88: What the reviewers say
"The system documentation is very good indeed
"If you temch or want to learn about the 8088 then the MPF-1/88 is á good choice of hardware
Electronics \& Computing Monthly - August, 1985
"All-in-all.the MPF-1/88 can be highly recommended invaluable to those wishing to take their first steps in programming the 8086/8088
Everyday Electronics - August, 1985
"The manuals were a model of clarity and comprehensiveness"
"The MPF-1/88 will give you every opportunity to learn what the thing can do
Electronics Today International- July, 1985
The Technical Director of the Polytechnic Central London Microcomputer Unit says:

The MPF- $1 / 88$ is one of the best, if not the best training microcomputer I have come across. The hardware is good, the firmware is good and the documentation ts excellent Neal Hutchinson - Unirs Technical Director

Send today for the colour brochure giving full information on the Education division's complete range of products.

FLIGHT ELECTRONICS LTD

