

Compact. lightweight and efficient switch mode power supplies
for bench or rack mounling in manual or systems applicalions

| Fast remote programming speed |
| :--- |
| Autoranging output |
| Constant voltage, constant current |

Operaling modes:
Local or bus control
Remote programming
Remote sensing
Auto parallel
Auto series
Aulo tracking

Ten turn voltage and current controls
Digital display of voliage, current, over vollage selting and status flags

Bar graph indication of vollage/current capacily

Front panel adjustable over vollage limit

Front panel oulput enable switch

Current monitoring output

GPIB option provides:
Bus control of voltage and current
Bus measurement of voliage and current
Clear LED indication of bus conirol, listen, talk, SRQ

## The Programmable APSeries



# Two Great Ideas From A.B.I. 

NUMBER 1

* OUR UNIQUE DIGITAL IC TESTER WILL TEST OVER 1000 DEVICES FROM TTL, CMOS, MEMORY AND INTERFACE FAMILIES.
* SIMPLE KEYPAD OPERATION MEANS NO NO COMPLEX PROGRAMMING OR SETTING UP.
* "CHIP-SEARCH" FEATURE ALLOWS IDENTIFICATION OF UNKNOWN, UNMARKED OR HOUSE CODED DEVICES.
* PRICES FROM £573.00.


## The A.B.I. Digital IC Tester

NUMBER 2

## SEE US ON <br> * 16 CHANNELS, 10 MHZ .

## STAND 446 AT THE $*$ external or interval clock with all ELECTRONICS TWO QUALIFIER INPUTS.

 SHOW, OLYMPIAAPRIL 30,
MAY 1,2 FOR
THE LAUNCH
OF THIS NEW PRODUCT

* 16 BIT TRUE/FALSE LEVEL/EDGE TRIGGER PATTERN SELECTION.
* VARIABLE TRIGGER POSITION.
* STATE (HEXADECIMAL) AND TIMING DISPLAY MODES.
* PRICE, COMPLETE WITH ALL PROBES AND CLIPS - £439.00.
The A.B.I. 16 Channel Logic Analyser
A.B.I. ELECTRONICS LTD.,
UNIT 21,
ALDHAM INDUSTRIAL ESTATE,
WOMBWELL,
BARNSLEY,
SOUTH YORKSHIRE S73 8HA

TELEPHONE: (0226) 751639

TELEX:
547376 CEAG G (FOR A.B.I.)
CIRCLE 72 FOR FURTHER DETAILS.


# Wireless World 

 over 70 years in independent electronics publishing
## FEATURES

## 21 <br> Printer buffer <br> 37 <br> Electronic altimeter

by M. Catherwood
General-purpose computer board can be programmed to hold text for printing so that your microcomputer can be freed for other tasks.

## 27

Channel code and disc format
by J.R. Watkinson This installment in our Compact Disc series is the first of two covering eight-to-fourteen modulation, eye patterns, sub-codes and error correction.

## 31

The post-war stride into aerospace
by R.E. Young
Third in an eight-part series that sets out to probe the hidden strengths of Britain's 'total engineering power.'
by Frank Ogden
Design uses pressure
transducer to act as vertical speed indicator as well as altimeter.

## 43

Automatic enlarger timer
by J.L. Linsley Hood Time-consuming use of contact strips is avoided by sensing reflected light from bromide surface.

## 47

The new logic symbols
by lan Kampel
Practical aspects of implementing new international standard for logic symbols. Third and final article gives practical.

## 59

Look after your sealed nickel-cadmium cells by Rod Cooper

A rigorous discussion of failure modes with suggestions for avoidance tactics, in two parts.

## 63 <br> Sampled-data servos - a new analysis by D.M. Taub Prior to computing servo performance Dr Taub considers the reverse of the sampling process: conversion from a sampled-data signal to a continuous signal.

## 67

DC supplies from ac sources
by K.L. Smith
Constructing a stabilized power supply

## 73

## Power supplies

An introduction to benchtype units, with tips for the first-time buyer and a tabulation of what's available.

## REGULARS

## 6

News commentary
A standard for lans?
Alice through the cash nexus
Automatic route planning uses CD
ITEC for the blind In brief. . .

13
Communications commentary

## 17

Feedback
Logic symbols Campaign for real a.m. Liquid crystals
DC supplies
Basic physics

## 24

## Events

Round-up of lectures, colloquia, and conferences during May

53
Circuit ideas
Shaft encoder interface Divide-by-n clock circuit 6800 peripherals with $\mathbf{Z 8 0}$ One-in-n way latch

83
New products
GPIB for Apricot Low-cost logic analysers 8088 trainer Bug hunter


Printer buffer


David Stonebanks shows how to improve performance of cassette recorders with the BBC micro and details an alternative method.
Design for a video camera and computer interface stores eight picture elements from each scan line at a time, reducing the time for storing a picture by a factor of eight.
High-performance helical antenna covers the whole 70 cm amateur band though it can be readily adapted for other bands. Using easy-to-obtain parts, it forgives minor inaccuracies and gives true circular polarization.

Circuit ideas include automatic inverter switchon, easy-to-read hexadecimal display, and over-current trip circuit.

Cument issue price $85 p$. back issues (if
available) $\mathbb{L} 1.06$, at Retail and Trade
Counter, Units $1 \& 2$, Bankside Industrial Centre, Hopion Street, London SE1, Tel 01-928 3567. Available on microfilm please contact editor
By post, current issue $\mathfrak{L} 1,30$. back issues (if available) $\mathbb{Z} 1.40$. order and payments to FEも'Sundry Sales I lept. (Quadrant House The Quadrant. Sutton, Surrev SM2 5AS. Tel.: 01-661 3378.
Editorial \& Advertising offices Quadrant House. The Quadrant. Sution, Surrey SM25AS.
Telephones: Editorial 01-6613614 Advertising 01-6613130.
Telex: 892084 BISPRSG (LtH')
Facsimile: 01-651 2071 (Groups II \& III) Beeline ( 300 baud): 01-6618978 (Type EWW to start, NNNN to end) Subscription rates: 1 years $\mathcal{L} 15 \mathrm{UK}$ and £ 19 outside ['h
Student rates: 1 year $\mathcal{L} 10$ UK and $£ 12.70$ outside UK.
Distribution: Quadrant House, The Quadrant. Sutton, Surrey SM25AS. Telephone 01-6it1 3248
Subscriptions: ()akfield House Perrmount Road. Haywards Heath, Sussex RH163DH. Telephone: 04444 59188. Hease notify a change of address USA: $\$ 49.40$ surface mail, $\$ 102.60$ aimail. Business Press International (USA). Subscriptions Office, 205 E. . 42nd Streel, NY 10017
USA mailing agents: Expediters of the Printed World Ltd, 527 Madison Avenue, Suite 1217. New York, NY 10022. 2nd class postage paid at New York.

Editor
PHILIP DARRINGTON 01-661 3128

## Deputy Editor

GEOFFREYSHORTER, B.Sc.
01-661 8639
Technical Editor
MARTINECCLES
01-661 8638

## Projects Editor

RICHARD LAMBLEY
01-6613039 OR 8637
News Editor
DAVIDSCOBIE
01-661 8632
Drawing Office Manager
ROGER GOODMAN
01-661 8690
Technical Illustrator
BETTY PALMER
Advertisement Manager
BOB NIBBS, A.C.I.I.
01-661 3130
MICHAEL DOWNING
01-661 8640
ASHLEY WALLIS
01-661 8641
Northern Sales
HARRY AIKEN
061-872 8861
Midland Sales
BASIL McGOWAN
021-356 4838
Classified Manager
BRIAN DURRAINT
01-6613106
IAN FAUX
01-6613033
Production
BRIAN BANNISTER
(Make-up and copy)
01-6618648
Publishing Director
DAVID MONTGOMERY
01-661 3241

International Agents and the Advertisers Index appear at the back of this issue.

## 01-208 1177 Technomatic Lid 01-208 1177

# BBC Micro Computer System BBC Computer \& Econet Referral Centre BBC Computers: 

Model B: £299 (a) B+DFS: £346 (a)
Model B+Econet: £335 (a) B+Econet+DFS £399 (a)
ACORN 10 Mbyte Hard Disc $£ 1300$ (a)
ACORN 2nd Processors: 6502: £175 (a) Z80: £352 (a)
TORCH UNICORN: Z80 Card: £275 (a) Z80 Disc Pack: $£ 650$ (a)
UNICOMM Communications Package: £159 (b)
20 Mbyte Hard Disc+400K Floppy: £1950 (a)
We stock the full range of ACORN hardware and firmware and a very wide range of other peripherals and firmware for the BBC. For detailed specifications and pricing please send for our leaflet.

## PRINTERS

EPSON: RX80T £210 (a); RX80FT £220 (a); RX100 £345 (a); FX80 £315 (a); FX100 £430 (a); KAGA TAXAN: KP810 £255 (a); KP910 £359 (a) BROTHER: HR15 £340 (a); JUKI 6100 £340 (a). GRAPHICS PLOTTER WORKSTATION Complete £490 (a) Basic Plotter £270 (a); HI-Plotter £399 (a)

## ACCESSORIES

EPSON Serial Interface: 8143 £28 (b); 8148 with 2 K butter $£ 57$ (b)
EPSON Paper Roli Holder $£ 17$ (b); FX80 Tractor Attach $£ 37$ (b); RX/FX80 Dust Cover $£ 4.50$ (d) EPSON Ribbons: MX/RX/FX80 £5.00; MX/RX/FX100 10 (d). JUKI: Serial Interface £65 (c); Tractor Attach, $£ 99$ (a); Sheet Feeder $£ 182$ (a); Ribbon $\mathbf{£ 2 . 5 0}$ (a) BROTHER HR15: Sheet Feeder $£ 199$; Ribbons - Carbonor Nylon $£ 4.50$; Multistrike $£ 5.50$ (d); 2000 Sheets Fantold with extra fine pert. $9.5 \mathrm{in} .-£ 13.50 ; 14.5 \mathrm{in} . £ 18.50$ (b)
BBC Parallel Lead £8; Serial Lead $\mathbf{5 7}$ (d).

## BT Approved Modems

## MIRACLE WS2000:

The ultimate world standard modem covering all common BELL and CCITT standards up to 1200 Baud. Allows communication with virtually any computer system in the worid. The optional AUTO DIAL and AUTO ANSWER boards enhance the considerable facilities already provided on the modem. Mains powered. £129 (c) Auto Dial Board/Auto Answer Board £30 (d) each (awaiting BABT approval). Software lead $\mathbf{\Sigma 4 . 5 0}$
TELEMOD 2
Complies with CCITT V23 1200/75 Duplex and 1200/1200 half Duplex standards that allow communications with VIEWDATA services like PRESTEL, MICRONET etc. as well as user to user communications. Mains powered. $\mathbf{C 6 2}$ (b)
BUZZBOX BUZZBOX:
This pocket sized modem complies with V21 300/300 Baud and provides an ideal solution for communications between users, with main frame computers and bulletin boards at a very economic cost. Battery or mains operated. $£ 52$ (c) Mains Adaptor $£ 8$ (d) BBC to Modem data lead $£ 7$

## SOFTY II

This low cost intelligent eprom programmer can program 2716. 2516 2532 2732 and with an adaptor, 2564 and 2764 Displays 512 byte page on TV - has a serial and par alle $1 / 0$ routines. Can be used as an emulator, cas sette interface
Softyll £195.00(b) Adaptor for $2764 /$ 2564.
£25.00

These drives, fitted with high quality JAPANESE mechanisms are supplied in attractive stee: cases painted in BBC colour. The drives are fully Shuggart A4000 compatible. All versions of drives are offered with or without integral power supplies. Power supplies for dual drives are of switch mode type and generously rated. All drives come complete with data \& power cables, manual and BBC formatting disc.
Single Drives:
$1 \times 100 \mathrm{~K} 40 \mathrm{~T}$ SS: TS $100 £ 85$ (b); PS 100 with psu $£ 125$ (b)
$1 \times 400 \mathrm{~K} 80 / 40$ T DS: TS 400 £ 125 (b); PS 400 with $\operatorname{psu}$ £ 149 (b)
Dual Drives
Stacked Version:
$2 \times 100 \mathrm{~K} 40 \mathrm{~T}$ SS: TD200 £175 (a); PD200 with psu $\mathbb{2} 200$ (a)
$2 \times 400 \mathrm{~K} 80 / 40$ DS: TD800 £275 (a); PD800 with pSu £300 (a)
Plinth Version:
$2 \times 100 \mathrm{~K} 40 \mathrm{~T}$ SS: TD200P £195 (a); PD200P with psu £220 (a)
$2 \times 400 \mathrm{~K} 80 \mathrm{~T}$ DS: TD800P £295 (a); PD800P with psu £315 (a)
Authorised Distributor
Data Recording Products
Industry Standard floppy discs with a lifetime guarantee Discs in packs of 10
40 Track SS DD
£15 (c)
40 Track DS DD
£18 (c)
80 Track SS DD £22 (c) 80 Track DS DD £24 (c)

DRIVE ACCESSORIES
FLOPPICLENE Disc Head Cleaning Kit with 28 disposable cleaning discs ensures continued optimum performance of the drives. $£ 14.50$ (c)

Single Disc Cable $\mathbf{£ 6}$ (d) 30/40 Disc Lockable Box $£ 14$ (c)

Dual Disc Cable $£ 8.50$ (d)
30 Disc Storage Box $£ 6$ (c)
100 Disc Lockable Box £19 (c)

## MONITORS

MICROVITEC 14 in. \& 20 in RGB
1431 Std Res $£ 165$ (a); 1431 Ap std Res PAL/Audio $£ 205$ (a); 1451 Med Res $£ 240$ (a); 1441 Hi Res $£ 389$ (a); 2030CS Std Red $£ 380$ (a); 2040 CS HiRes $£ 685{ }^{\prime}(\mathrm{a})$ Plinth for 14 in. Monitors $£ 8.50$.
Microvitec Monitors with TTL/Linear Inputs also available
KAGATAXAN 12in. RGB
Vision II Hi Res £225 (a); Vision III Super Hi Res £325 (a) Green Screens; KAGA 12G £99 (a); SANYO DM811112CX £90 (a); Swivel Stand for Kaga Green £21 (c) BBC Leads: KAGA RGB £5 Microvitec $£ 3.50$; Monochrome $£ 3.50$ (d) SANYO CD 3125 NB 14 in . RGB Std Res $£ 169$ (a)

## UV ERASERS

UVIT Eraser with buitt-in timer and mains indicator Buitt-in salety interlock to avoid accidental exposure to the harmful UV rays
It can handle up to 5 eproms at a time with an averag erasing time of about $20 \mathrm{mins} . \Sigma 59+£ 2 \mathrm{p} \& \mathrm{p}$. UV1 as above but without the timer $£ 47+\varepsilon 2 p \& p$. For Industrial Users, we offer UV140 \& UV141 erasers with handing capacity of 14 eproms. UV141 has a built in timer Both offer full buitit in satety features UV 140 £61, UV141 £79, p\& p £2.50.

## PRINTER BUFFER

This printer sharer/butter provides a simple way to upgrade a multiple computer system by providing greater utilisation of available resources. The buffer Offers a storage of 64 K . Data from three computers can be loaded into the buffer which will continue accepting data until it is full. The bufter will automatihat computer has dumped all its data. The computer then is available for other uses LED bargraph indicates memory usage. Simple push button control provides. REPEAT, PAUSE and RESET functions. ntegral power supply. £245 (a). Cable set $£ 30$.

## ATTENTION

All prices in this double page advertisment are subject to change without notice
ALL PRICES EXCLUDE VAT
Please add carriage 50D unless indicated as follows:
(a) $£ 8$ (b) $£ 2.50$ (c) $£ 1.50$ (d) $£ 1.00$ ACORN IEEE INTERFACE
A full implementation of the IEEE-488 standard, providing computer control of compatible scientific \& technical equipment, at a lower price than other systems. Typical applications are in experimental work in academic and industrial laboratories. The interface can support a network of up to 14 other compatible devices, and would typically link several items of test equipment allowing them to run with the optimum of efficiency. The LEEE Filing System ROM is supplied £282.

## INDUSTRIAL PROGRAMMER

 EP8000.This CPU controlled Emulator Programmer is a powerful tool for both Eprom programming and development work. EP8000 can emulate and program all eproms up to BKX8 bytes, can be used as stand alone unit for editing and duplicating EPROMS, as a slave programmer or as an eprom emulator $£ 695(\mathrm{a})$

## CONNECTOR SYSTEMS



\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{74 seairs} \& \[
\begin{aligned}
\& 74273 \\
\& \hline \\
\& 74876 \\
\& 74278
\end{aligned}
\] \& \multirow[t]{2}{*}{} \& 7ac series \& \multirow[t]{2}{*}{} \& \multicolumn{3}{|c|}{LINEARICs} \& \multicolumn{4}{|l|}{COMPUTER COMPONENTS} \& \multirow{3}{*}{кevboand ENCOOER} \\
\hline \({ }_{7}^{7400}\) \& 0.30
0.30 \&  \& \& 74000
74004 \& \& \multirow[t]{2}{*}{－ 11.1} \&  \& 1.00 \& \multirow[t]{2}{*}{\({ }^{1802 C E V}{ }^{\text {cen }}\) ．50} \& \multirow[t]{2}{*}{8287
8288 D} \& ¢ряom \& \multirow[t]{2}{*}{\begin{tabular}{l}
\(\begin{array}{ll}\text { MC144411 } \& 9.00 \\ \text { MC14412 } \& 7.50\end{array}\) \\
\(75107 \quad 0.90\)
\end{tabular}} \& \\
\hline 7402 \& 0.30 \& \begin{tabular}{ll}
\({ }_{74}^{74279} 3\) \& 0.90 \\
\hline 1.05
\end{tabular} \& \& \(\begin{array}{ll}74 C 04 \& 0.501 \\ 4069\end{array}\) \& \& \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \& \& \(2516+5 \mathrm{~V}\) \& \& \\
\hline \& 0.30 \&  \& 7415290 \& 0.70 \& \({ }_{4508}\) \&  \& \& \& \(265514 \quad 10.50\) \& \({ }_{88585}^{8880} 116.00\) \& 2516 \& \(75107 \quad 0.90\) \& AY52376 11.50 \\
\hline \& \& 742900.90 \& \({ }^{74452929} 9.00\) \& \(74 C 10 \quad 0.70\) \& \({ }_{4}^{4517}\) \&  \& 0 \& 1220 \& 6500212.00 \& TMS9911 18.00 \& \(2532 \quad 4.50\) \& 751 \& \\
\hline \& \& 2930.90 \& \({ }^{744 \text { LSS293 }}\) \& \({ }^{74} 14140.50\) \％ \& 4512 \& Ar 388010 \& ［M／4 \& 50 \& \(6502 \mathrm{~A} \quad 5.50\) \& TMS991 \& \(2532 \quad 5.50\) \& \& \\
\hline \& \& \(298 \quad 1.80\) \& （74LS2955 \({ }^{1.40}\) \& 4584 \& 4513 \& \& \& \& \(65028 \quad 8.00\) \& \& \& \& \\
\hline \& \& \(1351 \quad 2.00\) \& 7442972900 \& 20.70 \& 速 \& \& \({ }_{\text {a }}\) \& 1020 \& \(6800 \quad 2.50\) \& \({ }_{2809} 280\) \& 27084.00 \& \& \\
\hline 7409 \& 30 \& 365A \& LS299 2.20 \& 1.00 \& 8516 \& \({ }_{\text {case }}\) \& M18 \& T0A1024 \& \& 280 CTC \& 2716＋15V 3.50 \& \(75114 \quad 1.40\) \& A \(7 \times\) \\
\hline \({ }_{7409}\) \& 30 \& 仡 \& \({ }_{7415321}{ }^{3}\) \& 1.50 \& 220 \& 0.70 \& －mis \({ }^{3}\) \& tonalizos 3.00 \& \({ }^{6809}\) 6．50 \& Z80ACTC 2.75 \& 271 \& \& MC．14411 7.50 \\
\hline 7410 \& \({ }_{0} 0.30\) \& \begin{tabular}{ll}
743678 \\
74368 A \& 0.70 \\
\hline 0.70
\end{tabular} \& 744L3322A 3.90 \& \begin{tabular}{lll}
\(74 C 48\) \\
774673 \& 1.50 \\
\hline 700
\end{tabular} \& 4519 \&  \& \({ }_{0 \times \infty}\) \&  \& \& 6． 50 \& \& \& （1） \\
\hline 7411 \& 0.30 \& \(\begin{array}{ll}743688 \\ 77368 \& 0.60 \\ 1.60\end{array}\) \& \({ }^{7} 74.532323 .300\) \& \begin{tabular}{ll}
\(74 C 73\) \\
\(74 C 74\) \& 1.00 \\
\hline 1.20
\end{tabular} \&  \& coser \&  \&  \& \(\begin{array}{ll}68809 \\ 68809 \mathrm{E} \& 12.00 \\ 16.00\end{array}\) \& Z88AOART 7.00 \& \(2732 A-2\)
\(2732 A-300\)
2.00 \& \(\begin{array}{ll}75122 \\ 75150 \mathrm{p} \& 1.40 \\ 1.20\end{array}\) \& \({ }^{47028} \quad 7.50\) \\
\hline \& 0.50 \& 7439081.10 \&  \& \(74 C 7681.00\) \&  \& Cansoest \& \({ }^{\text {LH3302 }}\) \& － \& 68000－L8 36．00 \& TMS 4500014.00 \& 2732A．35 5.00 \& \(75154 \quad 1.20\) \& \\
\hline 7413
7414 \& － 0.50 \& 74393 \& \({ }_{7} 74.15353581 .20\) \& 4c93 2.00 \& 45266
4527 \&  \& ［43300 \&  \& 3.50 \& TMS9901 5.00 \& \(2764 \cdot 25 \quad 4.50\) \& \(75159 \quad 2.20\) \& \multirow[t]{2}{*}{} \\
\hline 7714
7415 \& \({ }_{0}^{0.70}\) \& 74490 \& \({ }_{7} 74.53553531 .20\) \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{（istis} \& \multirow[t]{4}{*}{} \& （43099 \& \& \& \& 27256－30 54．00 \& \multirow[t]{2}{*}{\(\begin{array}{ll}75160 \\ 75161 \& 5.00 \\ 3.50\end{array}\)} \& \\
\hline 7417 \& 0.40 \& pats \& \({ }^{74}\) \& \& \& \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \&  \& \multirow[t]{2}{*}{7289002 7.5000} \& \(27256-2560\) \& \& \multirow[t]{2}{*}{\begin{tabular}{l}
AY31015P 3.00 \\
AY51013F 3.00 \\
\begin{tabular}{ll} 
COMBO17 \\
IM6402 \\
\hline
\end{tabular}
\end{tabular}} \\
\hline \& 0.30
0.60 \& 74.5000 .24 \& 7445363 \& 74.90 \& \& \& \& \& \multirow[t]{2}{*}{} \& \& \multirow[t]{2}{*}{27182－25
27128.30} \&  \& \\
\hline 7422 \& \({ }_{0.36}\) \& \({ }_{741501}\) \& \({ }_{74}^{74 L 536454}\) \& \begin{tabular}{ll}
\(74 C 93\) \& 1.50 \\
\hline \(74 C 95\) \& 1.50
\end{tabular} \& \({ }_{4}^{4535}\) \& \&  \& \[
\begin{aligned}
\& T 1066 \\
\& H 1064 \\
\& \hline 1064
\end{aligned}
\] \& \& memories \& \& \multirow[t]{2}{*}{\begin{tabular}{ll}
75182 \\
7588 \\
75189 \& 0.90 \\
7 \& 0.60 \\
\hline 7549
\end{tabular}} \& \\
\hline 7423 \& 0.36 \&  \&  \&  \& \({ }_{653}\) \&  \&  \& Thior
Hor2 \& \({ }_{8748}^{878} 18.18 .00\) \& \({ }^{2016-1504.00} 4.00\) \& 27256－25 36．00 TMS2716 5.00 \& \&  \\
\hline 7425
7426 \& 0.40
0.40 \& \({ }_{7} 71450450.24\) \& \begin{tabular}{l} 
7445367 \\
7453568 \\
\hline 0.50
\end{tabular} \& \(\begin{array}{ll}74 C 150 \& 5.00 \\ { }_{74 C 151} \& 200\end{array}\) \& \multirow[t]{2}{*}{465} \&  \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \begin{tabular}{l} 
TMS 1800 12.00 \\
TMS9980 \\
\hline 12.00
\end{tabular} \& \(2102 \quad 2.50\) \& \& \begin{tabular}{ll}
75365 \& 1.500 \\
7450 \\
\hline
\end{tabular} \&  \\
\hline 7427 \& 0.32 \& \({ }^{0.24}\) \&  \& \(\begin{array}{lll}74 C 157 \& 2.50\end{array}\) \& \&  \& \& \& TMS9995 12.00 \& \({ }_{2111}^{21078}{ }^{21085} 5.000\) \& ontholler \& \begin{tabular}{ll}
75450 \\
75451 \& 0.8 \\
\hline 0.50
\end{tabular} \& BMAZ \(\quad 4.50\) \\
\hline 7428
7430 \& 0.43
0.30 \& So9 \({ }_{\text {Sor }}\) \& \begin{tabular}{l}
7445374 \\
744375 \\
\hline 0.75
\end{tabular} \& \begin{tabular}{ll}
\(74 C 160\) \\
\(74 C 161\) \\
\hline 7.80 \\
\hline
\end{tabular} \& \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \(\xrightarrow{\text { THe3s }}\) \& \begin{tabular}{ll} 
W8055 \& \\
\hline 80
\end{tabular} \& 2.50 \& \begin{tabular}{l} 
CRT5027 18.00 \\
CTT5037 \\
\hline 12.00
\end{tabular} \& \begin{tabular}{ll}
75451 \\
755453 \\
78453 \& 0.50 \\
\hline 7070
\end{tabular} \& \multirow[t]{2}{*}{} \\
\hline \({ }_{7432}\) \& 0.36 \& 74LS 10

741511 0.248 \&  \& $74 C 1621.80$ \& 3500 \& \& \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& | 2147 |  |
| :--- | :--- |
| $4027-3$ | 3.20 |
| 3.00 |  | \& T6545 9.00 \& ${ }_{75454}{ }^{5453}$ \& <br>

\hline 7733
7437 \& 0.30

0.30 \& ${ }^{74 L 512} 10.24$ \& ${ }_{7445379}$ \& | 74C163 |
| :--- |
| $74 C 173$ |
| 1.800 | \& 5866

566 \& （eace \&  \& \& \& 4116－15 2.00 \& ${ }_{\text {Ef9365 }}$ \& 75480
75491 \& ${ }^{32.7686 K H z 1.00}$ <br>
\hline 7438 \& 0.40 \& 74LS13 0.34 \& 7445381 4.50 \& 4076 \& \& \multirow[t]{2}{*}{cicle} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{cincter} \& 边 \& $\begin{array}{ll}4116-20 & 1.50 \\ 4118-3 & 500\end{array}$ \& EF9366 25.00 \& $\begin{array}{ll}75491 & 0.65 \\ 75492\end{array}$ \& ${ }^{2 / 2} 27.70$ <br>

\hline 7439 \& | 0.40 |
| :--- |
| 0.40 | \& ${ }_{0}^{0.24}$ \& | 744LS390 |
| :--- |
| 74393 |
| 0.950 | \& $\begin{array}{llll}74 C 74 & 1.50\end{array}$ \& ${ }_{0583} 0.0 .90$ \& \& \& \& 32428.00 \& ${ }_{61256-20} 515.00$ \&  \& ${ }^{\text {B726 }} 1.20$ \& 2.000 MHz 2.25 <br>


\hline ${ }_{7441}$ \& 0.90 \& 0.24 \& 741533540.60 \& | $74 C 1755$ |
| :--- | :--- |
| $74 C 192$ |
| 1.50 |
| 1.50 | \&  \& \multirow[t]{2}{*}{（1）} \& \multirow[t]{2}{*}{（Mese} \&  \& $3345 \quad 4.50$ \& 4164.15715 .00 \& MC6845SP 6.50 \& ${ }^{8128}$ \& 2．45760MHZ（L） <br>


\hline ${ }^{7} 74424$ \& －0，70 \& | 744S521 | 0.24 |
| :--- | :--- |
| 744522 | 0.24 | \& 744153999 \& 50 \& \multirow[b]{2}{*}{50} \& \& \&  \& | 6520 |  |
| :--- | :--- |
| 6522 | 3.00 | \& ${ }_{4164-20} \quad 3.20$ \&  \& ${ }_{8796}{ }^{\text {B79 }}$ \& 2.45780472 .200 <br>

\hline 7444 \& 1.10 \& ${ }_{74 L 524} 70.50$ \& ${ }_{7745465} 71.20$ \& $74 C 194$

$74 C 195$ 1.50 \& \&  \&  \&  \& $\begin{array}{ll}6522 \\ 6522 A & 3.50 \\ 5.50\end{array}$ \& | 4.416 .15 |
| :--- | :--- |
| 4532.20 | \& TMS9918 15.00 \&  \& Hz $\begin{array}{r}250 \\ 250 \\ \hline\end{array}$ <br>


\hline | 7445 |
| :--- |
| 7446 | \& | 1.00 |
| :--- |
| 1.00 | \& － 0.24 \& |  |  |
| :--- | :--- |
| 7445467 | 1.20 |
| 7445490 | 1.50 | \& | $74 C 221$ |
| :--- | :--- |
|  |
|  |
| 74.5240 | \& \％ \&  \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{| c551A | 5.25 |
| :--- | :--- |
| 68821 | 5.20 |
| 68 |  |} \& 4816AP－3 2.00 \& TMS9928 10.00 \& 1.4 \& | 12 |
| :--- | :--- |
| M |
| 2 |
| 2 |
| 1.75 | <br>


\hline 744 \& 1.00 \& 7415288 \& 74155401.00 \& |  |  |
| :--- | :--- |
|  |  |
| $744 C 244245$ |  |
|  | 2.00 |
|  | 2.25 | \& ${ }^{104959}$ \& \multirow[b]{2}{*}{} \& \& \& \&  \& TMS9929 10.00 \& 81LS97 1．40 \& \multirow[t]{2}{*}{} <br>

\hline 7448
7450 \& 1.00
0.36 \& ［14L322 \& ${ }_{7} 744$ LS564 \&  \& ${ }_{200}$ \& \&  \&  \& $\begin{array}{ll}6829 & 12.50 \\ 6840 & \\ 3.75\end{array}$ \& ${ }_{5}{ }^{551}$ \& nterface \& ${ }^{8151598} 1.1 .40$ \& <br>

\hline 7451 \& 0.35 \& 7445338 \& 74.56 \&  \& （is0 \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{（emer} \&  \& 688406.00 \& \& \& | 8885120 |  |
| :--- | :--- |
| 9602 | 5.00 |
| 3.00 |  | \& ${ }^{4} 4.9094 \mathrm{Mzz}$ <br>


\hline | 745 |
| :--- |
| 745 | \& | 0.36 |
| :--- |
| 0.38 |
| 0.38 | \& $\begin{array}{lll}744538 & 0.24 \\ 7\end{array}$ \&  \& 74 79911 9.00 \& 0.60 \& \& \&  \& 6850

68850 \& 迷 \& ADC0808 12.00 \& ${ }^{96364} 1.1 .60$ \& 4．568MHZ 2.50 <br>

\hline 7460 \& \& | 744540 |
| :--- | :--- |
|  |
| 74545 |
| 0.24 |
| 0.24 | \& 74.562682 .25 \& | 744992 |  |
| :--- | :--- |
| 74692 | 4.50 |
| 6.00 |  | \& | 1.20 |
| :--- |
| 0.36 |
| 1 | \&  \&  \&  \& ${ }^{6852} \quad 2.50$ \& 2648 －15 \& AM25510 3.50 \& 9637AP

9638 \& S2MHz2．50 <br>

\hline 744 \& －0．45 \& ${ }^{744543} 400$ \& 744L6529 \& | 744923 | 6.50 |
| :--- | :--- |
| 74 |  | \&  \&  \&  \&  \& $\begin{array}{ll}\text { 68584 } & 6.50 \\ 68854 & 8.00\end{array}$ \& 1.60 \& AM252LS2521 3 30 \& \& $68 \quad 1.75$ <br>

\hline ${ }_{7474} 77$ \& 0.45 \& $\begin{array}{ll}\text { 744S47 } & 0.80 \\ 744548 \\ 0.90\end{array}$ \& 7445640

$74.15640-13.000$ \& ${ }_{744926} \quad 7.50$ \&  \&  \& （is \&  \& 6875 \& ${ }_{745201}^{7.50}$ \& AM26LS312 1.20 \& ${ }_{\text {The }}$ \& | 6．00MHz |
| :--- |
| 6.144 MHz I |
| 1.40 |
| 1.40 | <br>

\hline 7475 \& 0.60 \& 7415510.24 \& 74 LS641 2.00 \& Thals series \& ${ }_{40103}^{40103}$ \&  \& oo \&  \& ${ }_{8155}^{8154}{ }^{\text {a }}$ 3．80 \& 7452892.25 \& AM26LS32 1.20 \& \& $7.00 \mathrm{MHz} \quad 1.50$ <br>
\hline 7476 \& 0.45 \& ${ }^{74 L 5554} 00.24$ \& ${ }^{7} 4455642 \quad 2.50$ \& \& （130 \&  \&  \&  \& 8.566 \& ${ }_{9341422}{ }^{\text {934，5 }}$ \& DACBO－ \& ${ }_{8271}^{684}$ P． 0.4. \&  <br>
\hline 7480
7881 \& ${ }^{1.80}$ \&  \&  \& ${ }_{7} 74 \mathrm{ALSLSO} 02000.45$ \&  \& $\underbrace{\text { Luse }}_{\text {Cusa3s }}$ \& com \& cosk \&  \& $93425 \quad 6.00$ \&  \& ${ }^{8272}{ }^{1} 16.00$ \& 8.867 MHZ 1.75 <br>

\hline ${ }_{7}^{748}$ \& ${ }^{1.05}$ \& | 744574A | 0.35 |
| :--- | :--- | :--- |
| 774575 | 0.45 |
| 0 |  | \& ${ }^{7445643-1} 3$ \&  \& ${ }_{1}^{120}$ \& ${ }_{\text {Lumas }}$ \& SAD \& 2N \& ${ }^{8236} \times 1.60$ \& proms \& DP6304 3.50 \& FDT791 20.00 \&  <br>


\hline 748 \& ${ }_{1}^{1.10}$ \& 74.5 \& 74 ［5645 2.00 \& ${ }_{7}^{74 \mathrm{ALS10}} \mathbf{0} 0.45$ \&  \& （1）33887 \& ${ }_{\text {Stas }}$ \& ${ }^{\text {STM SSCCL }}$ \& ${ }_{8226} 824.4 .25$ \& ${ }^{28122} 4.400$ \& | DS3691 | 5.00 |
| :--- | :--- |
| DS8830 | 1.40 | \& ${ }^{\text {FDO }} 793320.00$ \& 10.70 MHz 2.50 <br>


\hline \& 0.42 \& $\begin{array}{lll}74.578 & 0.42\end{array}$ \& $74.545-14.00$ \& | 74ALS20 |
| :--- |
| 74455 |
| 0.45 | \& ${ }^{2060} 5$ \& Luscon． 8 \&  \&  \& 88288 \& ${ }_{185030}{ }^{24.00}$ \& ${ }_{\text {DS88831 }} 1.50$ \& ${ }_{\text {FDIT97 }} 22.00$ \& ${ }^{11.0004 \mathrm{Mz}} \mathrm{l}$ <br>


\hline ${ }_{749} 749$ \& | 2.10 |
| :--- |
| 0.55 | \& ${ }_{7445855} 0$ \& ${ }_{7415669} 70.90$ \& 74ALS32

74A \&  \& ， \& $\substack{\text { Sn\％} \\ \text { SN\％}}$ \&  \& 8823
8250 \& $\begin{array}{ll}185 A 3030 & 2.00\end{array}$ \& 058332
0.1 .50
088833 \& WD2793 36.00 \& ${ }^{14.000 \mathrm{MHz}} \quad 1.75$ <br>

\hline ${ }_{7}^{7491}$ \& \&  \& | 74.56870 |
| :--- |
| 74.58882 .50 |
| 2.50 | \& ${ }^{\text {74ALS }} 138$ \& ${ }^{201929}$ \& ${ }_{\text {ckser }}$ \& SN76650 \& \& $88514 \quad 3.25$ \& ${ }_{745287} \quad 2.25$ \& DS8836 1.50 \& W01691 15.90 \& 756\％ <br>

\hline 7993 A \& 0.55 \& ${ }^{74 L 591} 00.90$ \& 74156843.50 \& 74 ALS224 4.00 \& ${ }^{401093}$ \& ${ }_{\text {Lu333 }}$ \& TA \& \& ${ }_{82554 C}{ }^{3} .80$ \&  \& 2．25 \& W02143 8.00 \& 15.00 MHz 2.00 <br>

\hline ${ }_{749} 74$ \& 1.10 \& | 744－592 |  |
| :--- | :--- |
| 741593 | 0.35 |
| 0.54 |  | \& ${ }^{7} 74 \leq 56873.50$ \& ${ }^{7} 74 \mathrm{ALS2455} 4.75$ \& 1.50 \& ${ }_{\text {Lims3 }}$ \& IA \& \& 8856 \& ${ }_{82523} 1.50$ \& | MC14888 |
| :--- | :--- |
| MC1489 |
| 0.60 | \& characte \& 177734 MHz 2.00 <br>

\hline ${ }_{7496}$ \& －0．80 \& ${ }^{74} 4159580.75$ \& ${ }^{74 L 57883} 21.00$ \& 7 7ALLS574 4．50 \&  \&  \& （tarzes \& \& 8857C－5 ${ }^{814.00}$ \& $825123 \quad 1.50$ \& МС 344462.50 \& generatoas \& 70 <br>
\hline 7497
74100 \& ${ }_{1}^{2} .1 .90$ \&  \& 74s semies \& \& \&  \&  \& \& ${ }_{8}^{825971-5}{ }^{8250.00}$ \& \& MC3459 ${ }^{\text {MCS } 3470} 4.50$ \& R092513UC 7.50 \& <br>
\hline 7411
7419 \& 0.50
0.75 \& $\begin{array}{ll}\text { 744S } 109 & 0.40 \\ 74.1512\end{array}$ \& 74500 \& \& bech

E0C98 \&  \&  \& \&  \& \& | MC3480 | 8.50 |
| :--- | :--- |
| MC 3486 |  | \&  \& ${ }_{20}^{20.00000 \mathrm{MHz} \mathbf{2} 1.75}$ <br>

\hline ${ }_{74110}$ \& ${ }_{0}^{0.75}$ \& 74 SS113 0.45 \& $\begin{array}{ll}74502 \\ 74504 & 0.50 \\ 0.50\end{array}$ \&  \& \& \& \& \& \& \& | M 3487 | 2.25 |
| :--- | :--- | \& \& 48.000 MHzz 1.75 <br>

\hline 74111
74116 \& － 0.75 \& $\begin{array}{ll}\text { 74LS } 114 \\ \\ 744 S 122 & 0.45 \\ 0.70\end{array}$ \& $\begin{array}{ll}774504 & 0.50 \\ 77505 \\ 0.50\end{array}$ \&  \& \& REGUL \& TORS \& Lock \& 4.50
4.00 \& \&  \& \&  <br>

\hline ${ }_{741118}$ \& 1.10 \& 74151230.80 \& | 745088 |  |
| :--- | :--- |
| 74510 | 0.50 |
| 7050 |  | \& ${ }^{2008}$ \& \& FIIED Voltac \& Plastic \& C6818P 4.50 \& \& \& \& \& <br>

\hline 741 \& 1.70 \& ${ }^{1.40}$ \& ${ }^{7} 7511000$ \& （4090 \& \& \& \& ${ }^{1 M 5817 \text { AN }}{ }^{8.50}$ \& LOW P \& Socke \& \& WIRE WRAP \& ETS 8y 11 <br>

\hline 7412 \& 0.55 \& ${ }^{7415126} 00.50$ \& | 0.50 |
| :--- |
| 1.00 | \&  \& \& \& \& \& \& \& \& \& <br>


\hline \& － 0.70 \& | 74415132 |
| :--- |
| 745133 |
| 0．50 | \& | 74330 | 0.50 |
| :--- | :--- |
| 74532 | 0.50 |
| 7 |  | \&  \& \& 7812 \& \& Coder \& \[

$$
\begin{aligned}
& 40 \mathrm{pon} 100 \\
& \hline 16 \text { pin } \\
& 110
\end{aligned}
$$

\] \& \[

$$
\begin{array}{ll}
20 \text { pint } & 18 p \\
22 \text { pin } & 22 p
\end{array}
$$

\] \& \& \[

$$
\begin{array}{ll}
42 p & 20 \mathrm{pin} \\
42 \mathrm{pin} \\
45 \mathrm{p}
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 28 \mathrm{pm} 100 \mathrm{p} \\
& 40 \mathrm{pm} 130 \mathrm{p}
\end{aligned}
$$
\] <br>

\hline 741 \& 0.65 \& | 744LS 366 |
| :--- | :--- |
| 7415138 |
| 0 | \& $\begin{array}{ll}{ }_{74537}^{74532} & 0.50 \\ 0.50\end{array}$ \& ${ }^{2015}$ \& \&  \& \& \& \& \& \& \& <br>

\hline 74 \& －0．55 \& ${ }^{744 S S 138989} 00.55$ \& ${ }^{74538} \quad 0.75$ \&  \& FNO357 1.00 \& a fixed voltac \& PLISTIC \& \& TUANPD PNAL \& $$
\begin{aligned}
& 8 \mathrm{pmom} \\
& 25 \mathrm{p}
\end{aligned}
$$ \& 6 p in \& pin \& 8 pin 40 p <br>

\hline 74132 \& 0.75 \& 74LS：45 0.95 \& | 74540 |  |
| :--- | :--- |
| 74551 | 0.50 |
| 0.45 |  | \& －4019 \& FNOS50\％ \& 析 \& \& SAA5050 9.00 \& \& \& \& \& <br>

\hline ${ }_{7} 743136$ \& $0 \cdot 9$ \&  \& 745640.45 \& 6021
0022 \& fNO507／ \&  \& （1） \& TRANS \& TORS \& \& \& \& <br>
\hline 7 74142 \& 250 \& 74LS15151 0.65 \& $\begin{array}{ll}74574 \\ 74585 & 0.75 \\ 4.50\end{array}$ \& 4023
4024
4023 \& THA29 \& 12488418
157815 \& \& \& \& ${ }_{35}^{400}$ \&  \& 2N6107 65p \& 1A A 000 V （ 350 <br>

\hline 741 \& | 1.30 |
| :--- |
| 270 |
| 170 | \& ${ }_{744 \mathrm{LS} 153} 7.65$ \& ${ }^{74586} \quad 1.00$ \& （2025 \& 0L704 \& \& \&  \& Bfx30 45p \&  \&  \&  \&  <br>

\hline 74 \& 1.10 \& 74L15154 1.65 \& $\begin{array}{lll}74.512 \\ 748113 & 1.50 \\ 1.20\end{array}$ \& $c400740284020$ \& Man71．
OL707 \& AECUI \& Tons \&  \&  \&  \&  \& ${ }^{2 N 6290} 65 \mathrm{p}$ \& ${ }^{24} 4000{ }^{\text {a }}$ <br>

\hline 74 \& | 1.70 |
| :--- |
| 1.40 |
| 1 | \& ${ }_{74 \text { LIS156 }}$ \& 745114 \& ${ }_{4029}$ \& MAN3640 \& Firad fegulo \& \& c \& 30 p \& T1P32A 45p \& 2N2369A 30p \&  \&  <br>

\hline 74150 \& 1.75 \& 74 LS157 0.50 \& $\begin{array}{ll}745124 & 5.50 \\ 74153\end{array}$ \&  \& MAN4640 2.00 \&  \& \& BC17\％ 8 300 \& \& ${ }_{\text {t1P32C }}$ \&  \& 2SC1957 900 \& 4 A 100 V 85 <br>
\hline 741514 \& 0.70 \& ${ }^{7} 74.4158810 .65$ \& $745133{ }^{0.60}$ \& ${ }_{\text {4033 }}^{4032}{ }^{1 / 20}$ \& MSE65881 5 \&  \&  \&  \&  \& H1P33C 80p \& 2N2904 530 p \&  \&  <br>

\hline ${ }_{74} 7$ \& 1．40 \& ${ }_{74} 7$ LSIL61A 0.75 \& | 745138 |
| :--- | :--- |
| 74189 |
| 780 |
| 180 | \& | 4034 |
| :---: | :---: |
| 4035 |
| 005 | \& TLI311 6.50 \& ${ }^{7} \mathrm{P}$ Pos \& ${ }_{9}^{6.00}$ \&  \& 88F56 33p \& TiP3

TIP 3 AC \&  \& ${ }^{25 C 2029200 p}$ \& $6 A^{100 V} 1000$ <br>
\hline 74 \& 0.80 \& 744L162A 0.75 \& ${ }_{745140}^{7.1500}$ \& $\underset{\substack{4035 \\ 2037}}{\substack{2035 \\ \hline}}$ \& $\begin{array}{ll}\text { Til } 2729 \\ \text { TH730 } & 1.00 \\ 1.00\end{array}$ \& ¢ \& \& － \& $\begin{array}{ll}\text { Brr90 } \\ 88439 & \text { 90p } \\ 450\end{array}$ \& TIP35A ${ }^{\text {20，}}$ \& 2N2907A
2N2926

20p \& 2SC2078 $1800{ }^{\text {2S }}$ \& | $64.00 V 1208$ |
| :--- |
| 6A400V 200 p | <br>

\hline 741 \& 0.80 \&  \& | 745151 | 1.50 |
| :--- | :--- |
| 745153 |  |
| 1.50 |  | \& $\underset{\substack{\text { cis3 } \\ \text { 4039 }}}{\substack{\text { c3，}}}$ \& Man8910 ${ }^{\text {i }}$ ， 50 \&  \&  \& ${ }_{16 \mathrm{p}}^{16 \mathrm{p}}$ \&  \& ${ }^{1400}$ \& | 3053 | 36 p |
| :--- | :--- | :--- |
| 054 |  |
| 600 |  | \& 2200 p \& 25A400V 400\％ <br>

\hline 74 \& ${ }^{1.75}$ \&  \& $\begin{array}{ll}{ }_{745157}^{75153} & 1.150 \\ 2.10\end{array}$ \& ${ }_{\text {cisem }}^{\text {4039 }}$ \& Mang940 2.50 \& ${ }_{\text {LM3330 }}$ \& coiz \& ${ }_{169}$ \& Bu105 ${ }^{250}$ \& ， 150 ¢ \& ${ }^{2 N 3055} 5$ 55p \& 3N140 200 c \& PEIACS <br>

\hline ${ }_{7}^{741}$ \& －${ }^{1.80}$ \& 74 LS $168{ }^{\text {Pr }}$ \& | 745158 | 2.00 |
| :--- | :--- |
| 7508 |  | \& ${ }_{\substack{2097 \\ 6042}}^{\text {en }}$ \& \& im3396 \& 15．00 \& － \& B4108 2500 \& Hipala 50p \& 421400 \& $3{ }^{\text {N14 }} 11^{2009}$ \& <br>


\hline ${ }_{74162}$ \& 1.10 \& 74LL169 1.00 \& | 745163 |  |
| :--- | :--- |
| 7 |  |
| 745169 | 4.00 | \& ${ }^{4033}$ \& Disivars \&  \& 5，90 \&  \&  \&  \& ${ }_{250}^{240}$ \& 3N201 ${ }^{\text {300p }}$ \& oov sop <br>

\hline 746
74 \& 1.10 \& 74LS173A 1.00 \& ${ }^{7451744}$ \& ${ }^{1.00}$ \& $9358 \quad 4.50$ \&  \& （100 \&  \& BU205 200p \& 659
160
160 \& （1） \& 40390 250p \& 6 6asouv ${ }^{\text {B8P }}$ <br>

\hline 741 \& 1.10 \& $\begin{array}{lll} \\ 7445174 \\ \\ 745175 & 0.75 \\ 0.75\end{array}$ \& | 745188 |
| :--- | :--- |
| 7488 |
| 1.80 | \& ${ }^{10047} \begin{aligned} & \text { 4048 } \\ & 40\end{aligned}$ \& ${ }_{9370} 9380$ \& cois \& ${ }_{2}{ }^{7} 5$ \& | BCS47 |
| :--- | :--- |
| 100 |
| 100 | \& ${ }^{\text {Bu20 }} 2000$ \& ${ }_{\text {ITP55 }}$ \& ${ }_{\text {2N37724／5 }}$ \&  \& ${ }^{844000} 80$ <br>

\hline ${ }_{7} 7146$ \& 4 \& 74 ［S181 2.00 \& ${ }^{2.25}$ \& ${ }_{4049} \quad 0.35$ \&  \& SWWITCHING AEGU \& \& BCSLAC ${ }^{\text {Brab }}$ \& $\begin{array}{ll}\text { BU406 } & 1459 \\ 80 \times 80\end{array}$ \& T1P120 75p \&  \&  \& $12 \mathrm{AmO} \mathrm{V}^{85}$ <br>
\hline 7470 \& 2.00 \& 74LS183 1.90 \& 194 ${ }^{195}$ \& ${ }_{4055}^{4050}$ \& LM3916 ${ }^{\text {L }}$ S0 \& Stasse \& \％ \& BC5578 \& Bur69C 350 p \&  \&  \& \& ${ }^{1050}$ <br>
\hline 74172

74173 \& ${ }_{1}^{4.20}$ \&  \& | 745195 | 3.50 |
| :--- | :--- | \& ${ }^{4052}$ \& $\begin{array}{ll}\text { URN61188 } \\ \text { UON6184 } \\ & 3.20 \\ 3.20\end{array}$ \&  \& \&  \&  \&  \&  \& Ooers \& ${ }^{64500 V} 130 \mathrm{p}$ <br>

\hline 74774 \& 1.10 \& ${ }^{74415192}$ \& $\begin{array}{ll}745200 \\ 745201 & 4.50 \\ 3.20\end{array}$ \&  \& U1／N2003 0.90 \& RC495 \& 1.50 \& BCra ${ }^{\text {abp }}$ \& ${ }^{4000}$ \& T1P142 ${ }^{1200}$ \& 2N3666 900 \& ${ }^{\text {BY127 }}$ \& H28000 ${ }^{130}$ <br>
\hline 76 \& $1{ }_{1}^{1.00}$ \& 74 LSS 194400.75 \& ${ }_{7}^{745225} 58.20$ \& ${ }_{\text {a }}^{\substack{4056 \\ 0.59}}$ \&  \& OpTOIS \& tors \& ${ }^{80132}$ \&  \& （1ip2955 \& \& 0447 \&  <br>
\hline 7478 \& 1.50 \& ${ }^{74451954} 00.75$ \& 745240
745241
4.00

4.00 \& ${ }_{\substack{4060}}^{4063}$ \&  \& 12074 \& 0.70 \&  \& \begin{tabular}{ll}
M 33001 \& 2250 <br>
M 4502 <br>
\hline 0000

 \& 

1193055 \& 700 <br>
<br>
\hline 1593 <br>
\& 300
\end{tabular} \& $2 \times 3906$

276036 \&  \& <br>
\hline 74179

74180 \& 1 \& ${ }^{7445197}$ \& \begin{tabular}{ll}
745244 <br>
745251 <br>
\hline

 \& （1065 \& ULN28204 \&  \& 

Thl1 <br>
TLL 13 \& 0.70 <br>
\hline 0.70
\end{tabular} \& ${ }^{80140} 40{ }^{40}$ \& MJE340 600 \& UNTOMM 50p \& （1） \& $9{ }_{90}$ \& tMYeIstors <br>

\hline 74181 \& 3.40 \& 74 LS221 1.00 \& |  |  |
| :--- | :--- |
| 745525 | 2.50 |
|  | 2.50 | \& ${ }^{20068}$ \& 0.70 \& MCS2400 1.50 \& TLL116 0.70 \& $\begin{array}{ll}80189 \\ 80232 & 609 \\ 600\end{array}$ \& 1509 \& ${ }^{90 p}$ \&  \&  \& 3 3a0 <br>

\hline ${ }_{7}^{74182}$ \& 1.40 \& 744S220

7415241
0 \& ${ }_{745258} \quad 2.50$ \& ${ }_{\text {40070 }}^{400} 5$ \& $75492 \quad 0.70$ \& M0С3320 1.50 \& 6N1 137
$6 \times 139$ \& ${ }^{80233}{ }^{\text {750 }}$ \& MPF102 40p \& ${ }_{\text {ZTX108 }}{ }^{16 \mathrm{p}}$ \& CNN25－ $27{ }^{\text {a }}$ \& －N916 ${ }_{\text {P0 }}$ \&  <br>
\hline ${ }_{7418}$ \& 1.80 \& 74LS242 0.90 \& $\begin{array}{ll}745260 \\ 7 & 1.00 \\ 775261\end{array}$ \& ${ }^{2077} \times 10.024$ \& OTHERS \& \& \％nis9 1.15 \&  \& MPF 1034 400 \& 21 $\times 300{ }^{\text {a }}$ 18p \& 2Na427 900 \&  \&  <br>

\hline 7419 \& 1.30 \& ${ }^{74 L 5243} 0.90$ \& | 745261 |
| :--- | :--- |
| 745283 |
| 2.00 |
| 2.0 | \& ${ }^{4073}$ \& \& \& \& BD：42 60p \& ${ }_{\text {MPS }}^{\text {MPOS }}$ \&  \&  \&  \& 16 acoov 180p <br>


\hline 74192 \& 1.1 .30 \& ${ }_{74}^{74 L 524545} 51.00$ \& | 744287 |
| :--- |
|  |
| 74288 | \& ${ }^{2976} 80$ \&  \& ${ }^{0.125 *}$ \& 0．2＂ \&  \&  \& $71 \times 502$

$717 \times 00$ \& 2N5089 270 \& 1N4005 ${ }^{\text {ind }}$ \&  <br>
\hline 74 \& 1.15 \&  \& 7445288
745289 ${ }^{2.200}$ \& 0.23 \& 2.80 \& RRN TLL211 0.1 L \&  \& ${ }^{80675}{ }^{80}{ }^{\text {80，}}$ \& 50p \&  \&  \& 1N5401／2 12 P \& ${ }^{2 \times 3525}$ <br>
\hline 74194
74195 \& ${ }^{1.10}$ \& ${ }_{74} \mathbf{4}$ L2499 ${ }^{\text {a }}$ \& ${ }_{745299} 5.50$ \& ${ }^{20092}$ \& 1.20 \& T122120．20 \& T1．226 0.22 \&  \& MpSAAz Sop \& ${ }_{60 p}$ \& ${ }^{2} 52454000$ \& （1NSAO3／4 ${ }^{140}$ \& ${ }^{\text {300 }}$ <br>

\hline \& 1.30 \& ${ }^{744} 525510.75$ \& | 748373 |
| :--- | :--- |
|  |
| 745374 | \& ${ }^{2065}$ \& 9P50 1．20 \&  \& \& 862578400 \& 50p \&  \& ${ }_{30 \mathrm{p}}^{60 \mathrm{p}}$ \& 1 15404／7 180 \& $\begin{array}{lll}\text { 2N5061 } \\ \text { 2N5064 } & 320 \\ 350\end{array}$ <br>

\hline 74197 \& ${ }^{1.10}$ \& ${ }^{7}$ \& ${ }_{745387} 225$ \& ${ }^{4093}$ \& ${ }_{\text {SFH205 }}$ \& Cxo（Bi Colurr） \& COUNTERS \&  \& \& 2N698 45p \& ${ }^{2 N 5460} 600$ \& \& <br>
\hline 74198
74199 \& ${ }_{2}^{2.20}$ \& ， \& \& 9094 \& ${ }^{17132}$［1．38 0.55 \& \&  \&  \& MPSLO6 ${ }^{\text {M63 }}$ \& ${ }^{360}$ \&  \& Bandee \& zeners <br>
\hline 74 \& 1.10 \& 70 \& \& \％096\％ \& $\begin{array}{ll}\text { Ti．} 318 \\ \text { Ti．} 318 & 0.55 \\ 1.20\end{array}$ \& \& （74C926 6.50 \&  \& MPSU07 ${ }^{\text {cop }}$ \& 45 \& 3750 \& Recrivers \& <br>
\hline 74251

7459 \& 1.00 \& \begin{tabular}{ll}
74.5259 \& 1.20 <br>
745260 <br>
\hline 7.75

 \& \& ¢ \& TiL81 ${ }^{1.20}$ \& 

fed <br>
Gin \& 225 <br>
\hline 2.25
\end{tabular} \&  \&  \& ${ }_{\text {MPSU65 }}^{\text {MPSU4 }}$ \&  \&  \&  \& ${ }_{\text {in }}^{\text {ancmw }}$ <br>

\hline 74265 \& \& 744．S261 1.20 \& \& \& L100 0.75 \& \& \& \& \& \& \& \& <br>
\hline
\end{tabular}

# Alice through the cash nexus 

Money is extremely useful as a measure of market value in the exchange of goods and services but becomes tyrannical when used to exert power over people. The present UK government has raised the power of money to a new height, both in their technical use of monetarist economics and in the way they seem to attribute an almost mystical essence to that rationale of human greed known as market forces.

Two recent proposals illustrate the fact that almost anything can be sold. In the past men have traded their wives, their children and their honour. Now, in the field of radio communication we are facing the prospect of two new commodities being brought out of the grocer's store-cupboard to be added to the list of things available over the counter. One is a natural resource, the
electromagnetic spectrum; the other a mass-medium, public service broadcasting.

Recent debates on financing the BBC have made it quite clear that a good many politicians are willing to abandon the central principle of public service broadcasting. They are saying it would make good sense for the BBC to obtain at least some of its income be taking advertising.

Most of the discussion around this possibility seems only to have considered matters of expediency. It has largely ignored a central point about public service broadcasting. If we agree that sound and television broadcasting in the UK has reached a level of proficiency in all departments (news, entertainment, arts, education etc.) that makes it a really valuable contributor to our culture, then we should do it the honour of being ready to
pay for a substantial part of it directly - like books, music, theatre, films - either through licence fees or equivalent methods.

Commercial broadcasting, though capable of producing excellent programmes, is vitiated by its dual function. It cannot escape the fact that advertisers are only interested in it as a medium for selling. And unquestionably this pressure distorts its general character. Ask Michael Grade, for example, the new Controller of BBC 1, who used to work in commercial television.

As for the electromagnetic spectrum, the Government has commissioned a firm of management consultants to do a feasibility study of pricing the spectrum. They have made no policy decision yet, but want a technical and economic analysis of what would be the effects of pricing if used as a means of
assigning frequencies when demand exceeds supply.

The mere fact that the Government is even considering such a measure must be thoroughly condemned, on two counts. Both are matters of principle. First, the e-m spectrum is a free natural resource, not a property owned by anybody, even the state, and is therefore not available for sale. To commandeer this resource would be an offensive and dictatorial action, not worthy of a government which is always prating about freedom.
Secondly, the expedient of leaving the distribution of spectrum space to the mechanism of market forces is a cop-out. It avoids the responsibility of having to make difficult political decisions on the relative social worth of different claims for frequencies. One cannot respect a government which even entertains the notion that technical expediency could be a substitute for political responsibility.

## British lan agreement

A number of Britisi computer manufacturers have agreed on a standard for local area networks and many others seem likely to follow suit. This follows a feasibility study commissioned by the British Microcomputer Manufacturing Group in conjunction with the DTI and in consultation with the BSI.

Concerned about the existence of a great number of micro network designs in the market, the BMMG were afraid that the lack of common standards and the resulting confusion of incompatible systems would discourage potential users and undermine their own credibility. Another danger was the possibility of one major manufacturer (IBM) producing a design which would dominate the market to the disadvantage of both users and other manufacturers. A year ago they set out a programme to identify, design, specify and encourage the adoption of a local area network standard that would be accepted by UK manufacturers and users, and
promoted as a British and International Standard.
The report was undertaken by Dr Chris Shelton, a member of BMMG, acting as consultant and involved interviewing all the manufacturing members of BMMG as well as a number of users to identify their needs. He needed to define a 'local area network' and define its functional parameters and their compatibility with the Open System Interconnection (OSI) protocol standard of the ISO.
The report, which took ten months in preparation, has now been published. The recommendations are presented in an ordered sequence for implementation. The main point is the adoption of a low-cost scheme that would lead to the final goal of a full OSI environment. The implementation of each phase "creates the opportunity to advance to the next."
Phase one is concerned with the hardware and is the easiest part of the scheme to implement. Existing l.a.ns were
varied chiefly because there was no standard when their development started and off the shelf systems were too expensive. One system Arcnet was preferred by many because of its high degree of integration; just two i.cs and a hybrid that includes medium access control (m.a.c.) firmware. However the report rejects all existing l.a.ns because of the high licence fees associated with proprietary designs; the components may not be multi-sourced; may not be readily applied to different microprocessor bus systems; the proprietary interest may preclude the adoption of a system as a standard and the originator may not be prepared to publish sufficient detail to enable the l.a.n. to be specified as a standard.

The hardware recommendations derived from a study of existing systems and the needs of users are: compatible speed options of $250,500,1000$, and $2000 \mathrm{~Kb} / \mathrm{s}$; operation over a distance of 1 km . To be connected through low-cost $75 \Omega$ coaxial cable. Connectors should be BNC (or DIN for the slowest speed); interconnection should be bus based though this could be arranged in a star; no
repeaters or active elements in the cable which is to be isolated through transformers. RS422 signal level. The signal can be modulated using m.f.m. or Manchester to take advantage of new l.s.i. devices such as the AMD 7960. Various options are presented for the implementation of the interface hardware.
The cheapest, at $£ 10$-worth of semiconductors consists of an h.d.l.c. device with in the clock, modem and driver receiver circuits. This puts the 1.a.n. with the budget of the low-cost microcomputers but the software responses of such devices may limit the line speed to $250 \mathrm{~Kb} / \mathrm{s}$. For a silicon price of about $£ 25$, it would be possible to offload the l.a.n. support onto a co-processor and the l.a.n. could operate at up to $1 \mathrm{Mb} / \mathrm{s}$. For $£ 10$ more, a direct memory access chip could be added and the performance could be extended to $2 \mathrm{Mb} / \mathrm{s}$. At the conclusion of phase 1 manufacturers would have plugcompatible hardware. The report recommends the adoption of these hardware standards or find an existing system, such as V-Net or Strathnet, neither of which are adequately documented, which are potentially available for
unrestricted use.
Phase two is the adoption of an interim software standard so that a useful product can be achieved as soon as possible. The report suggests that the Digital Research DR-Net which will communicate with concurrent DOS is suitable because of its wide use, this incorporates a m.a.c. layer, though for the low-cost micros the m.a.c. layer could be implemented through their own schemes. It is hoped that at the conclusion of this phase different manufacturers' equipment will operate together as a multi-user computer.
Phase three recommends that DR-Net be replaced by OSI protocol to enable different operating systems to be used. Dr Shelton admits that the remaining three phases are more tentative and should be taken as suggestions. They are:

4 - To extend the system to a number of other operating systems to ensure its widest use, while also providing the widest scope for software developments to adhere to the standards. 5 - To organize, within this compatible environment, a gateway for connecting this standard of 1.a.n. to other standards that may exist, and a gateway to the package switched network. 6 - To cover the longer term of ensuring that application software is developed which can work under this l.a.n. standard.
The BMMG has accepted the report wholeheartedly and at least ten manufacturers have agreed to implement its recommendations. It is thought that with such a kernel many other manufacturers will join the bandwaggon to make it a de facto British standard and ultimately a world standard.


[^0]
## Cable news

Geoffrey Pattie, the IT Minister was full of praise for Swindon Cable at a recent visit. Swindon Cable is the first cable operator to offer new services on a wideband system and they have just scored another first with the introduction of a French tv channel, TVS, to their choice of programmes.
"There have of course been setbacks but this system has demonstrated that they can be overcome. I believe that the cable industry can make a very positive contribution to the prosperity of the country. Cable means investment in new technology and new jobs. It will give this country an advanced broadband infrastructure offering not only entertainment bus also new interactive services for bisinesses and domestic customers.
"We have always taken the view that cable is an industry which should be privately financed but that the Government still has an active
role to play in the future of the industry. We have created the right legal framework and the Cable Authority has announced the first five areas for which it is seeking new applications."

Swindon Cable is a wholly owned subsidiary of Thom EMI and was one of the eleven initial pilot projects. The five new areas under consideration are Bolton, Cheltenham and Gloucester, West Surrey, and Wandsworth and Tower Hamlets, both in London. - BT has announced that it has clinched a deal that will allow the direct reception of the American cable tv channel, Cable News Network. The channel will be available to British broadcasting companies from September. Cable news network will be beamed from the headquarters of Turner Broadcasting Systems, in Atlanta to an Intelsat $V$ satellite which is also used to disttribute cable ty channels to networks within the UK. British Telecom International also hope to be able to distribute the network to other European countries.

## Electronic co-pilot for cars

An electronic system is being developed to provide cars with automatic route planning it knows the position of the car and can specify it at any moment, and can also provide a number of details about the environment or the destination of the journey. The Carin (car information and navigation) project is the brainchild of the Geldrop Project Centre of Philips Research Laboratories. It is planned that the system is coupled to dashboard functions and a speech synthesiser to inform the driver of any problems, such as low petrol or oil, battery faults or high engine temperature. The system could also be linked to traffic warnings received over the car radio and thus avoid areas of heavy congestion, or road works.

At the heart of the computerized system is a modified compact disc player which could not only play compact discs but also read road information stored on
discs, for example a complete road map of the country, street maps of a town etc. A compact disc is a read-only memory with a capacity of about 5 Gbit . The CD system was modified to extend its error correction so that the chance of an error on an undamaged disc was better then 1 in $10^{18}$. If the capacity is increased to the equivalent of a playing time of 66 minutes, then the capacity of the disc excluding any redundant information required by the error correcting algorithm, is 600 Mbytes . As an example of the capacity a $1: 15000$ coloured map of the area around Eindhoven and Geldorp in Holland (where the research is being carried out) would require a memory of about 375 Mbits , or $8 \%$ of the capacity of the disc. However by a system of identifying and coding intersections in a road by node points and angles, adding the road name information, a road map of the same area would only require 1.5 Mbits , or $0.03 \%$

## EIECTRONIC KITS

## for beginners and experienced kit-builders

Velleman electronic kits have gained respect for their high quality and the varied range which covers many applications in the vast field of electronics. All kits are designed and developed using the latest technology, giving them appeal, not only to the hobbyist and enthusiast but also to the experienced engineer.
. . . and remember, we have a 'rescue service' for instances where enthusiasm exceeds ability!

## THE VELLEMAN KIT RANGE

KIT No. DESCRIPTION
K607 PRICE \& (INCL. VAT)
K610 VU-LED MONO
K611 7W LF-AMPLIFIER
K612 DIMMER (SUPPRESSED VERSION)
K613 DIMMER DEPARASITE
K1682 MICRO PROCESSOR UNIVERSAL TIMER
B1682H WOODEN HOUSING FOR UP TIMER
K1771 FM OSCILLATOR
K1798 STEREO VU-LED
K1803 PRE-AMPLIFIER UNIVERSAL MONO

## K1804 60 WATT LF AMPLIFIER

K1823 1A POWER SUPPLY WITH LM317
K1861 POWER SUPPLY FOR 60 WATT STEREO
K1874 RUNNING LIGHT (4 CHANNEL)
K2032 LOW COST DIGITAL PANELMETER
K2543 ELECTRONIC TRANSISTOR IGNITION
K2545 UNIVERSAL CRYSTAL 50HZ TIMEBASE
K2547 4-CHANNEL INFRA-RED TRANSMITTER
K2548 4-CHANNEL INFRA-RED RECEIVER
K2549 INFRA-RED DETECTOR TRANSMITTER (ALA
K2550 INFRA-RED DETECTOR RECEIVER (ALARM)
K2551 CENTRAL ALARM UNIT
K2553 STEREO DECODER WITH 19KC FILTER
K2554 FM TUNER
K2557 DIGITAL PRECIS 10 N THERMOMETER
K2565 TAPE/SLIDE SYNCHRONIZER
K2567 20 CM DISPLAY ANODE
K2568 20 CM DISPLAY CATHODE
K2569 3-TONE CHIME
K2570 POWER SUPPLY 5-14V DC 1A
K2572 STEREO PRE-AMPLI
K2573 STEREO RIAA PRE-AMPLI
K2574 UP DOWN COUNTER (4 DIGITS)
K2575 UP DOORBELL
K2576 40 WATT AMPLIFIER
K2577 UNIVERSAL AC MOTOR CONTROL
K2579 UNIVERSAL START/STOP TIMER
K2580 POWER SWITCH/DIMMER
K2581 DC CONTROLLED STEREO TONE CONTROL
K2582 STEREO AUDIO INPUT SELECTOR
K2584 DIGITAL PRECISION TIMER
K2585 CODE-LOCK ( $40 \times 6$ DIGITS NUMBERS)
K2587 240W AUDH POWER AMP (POWER SUPPLY INCL)
K2588 3 CHANNEL SOUND TO LIGHT WITH PREAMPLIFIER
168.00

## K2590 LIGHT COMPUTER

K2591 PROGRAMMABLE CONTROLLER MODULE
K2592 20 WATT LF AMPLIFIER KIT
$K 2594$ ZERO CROSS PROGRAMMABLE TIMER
K2595 PRECISION TIMER MODULE K2595
K2598 CAR BOOSTER 15-30 WATT
K2599 SCREEN WIPER ROBOT
K2600 2A DIMMER
K2601 STROBOSCOPE
K2602 4 CHANNEL RUNNING LIGHT WITH MODULATOR
6.20
18.95
9.95
19.90 26.55
9.20
21.15
8.50
6.95
6.90

K2604
$10.40 \quad$ K2606
$5.40 \quad$ K2607
6.00 K2620
$9.60 \quad \mathrm{~K} 2622$
47.50 K2623
26.10 K2625
3.95 KIT No. DESCRIPTION PRICE \& (INCL. VAT)
18.00 VELLEMAN INTERFACE SYSTEM - KITS
6.95 K2615 INTERFACE MOTHERBOARD SPRECTRUM 26.40 18.65 K2616 INTERFACE MOTHERBOARD ZX81 27.15 17.95 K2628 INTERFACE MOTHERBOARD COM-64 39.25 17.95 K2609 OC OUTPUT BOARD INTERFACE FOR HOME-
14.15 k 2610

COMPUTER 31.30
24.15 K2633
7.80 VELLEMAN INTERFACE SYSTEM - BUILT AND TESTED

M2615 INTERFACE MOTHERBOARD SPECTRUM -
MOUNTED
MM2616 INTERFACE MOTHERBOARD ZX81 - MOUNTED
M2628 INTERFACE MOTHERBOARD COM-64- 48.90
M2628 INTERFACE MOTHERBOARD COM-64 - $\mathbf{6 0 . 6 5}$
M2609 OC OUTPUT BOARD INTER. FOR HOME-COMP.

- MOUNTED 22.65

M2610 A/D CONVERTER INTTERF. FOR HOME-COMP. - MOUNTED 31.70

M2611 OPTO INPUT BOARD INTERF. FOR HOME-COMP. - MOUNTED 30.40

M2614 ZX81-SPECTRUM CENTRONICS INTERFACE MOUNTED
M2618 D/A CONVERTER INTERF. FOR HOME-COMP. - MOUNTED
27.90 M2629S REAL TIME CLOCK INTERF. (SPECTRUM) MOUNTED
M2629U REAL TIME CLOCK INTERF. (UNIVERSAL) -
$\begin{array}{ll}\text { M2633 RELAY CARD - MOUNTED } & \mathbf{4 6 . 3 0}\end{array}$
M2634 QUAD TRIAC SWITCH CARD - MOUNTED 17.55 M2635 8 T0 1 ANALOG MULTIPLEXER INTERF MOUNTED

LISTS OF STOCKISTS Road, Bath. Tel: 022524811

Reading. Tel: 073455449
Green, Poulton-le-Fylde. Tel: 0253885107
DEVON: $\quad$ S'\& R Brewster 86-88 Union Street, Plymouth. Tel: 0752 665011
CHESHIRE: Douglas Components 90 Wellington Street, Stockport. Tel: 0614808971
ESSEX: R. Jones Electronics 267 Rectory Road, Grays. Tel: 037533158 Hemmings Electronics 16 Brand Street, Hitchin. Tel: 046233031 Kennedy Electronics 3 Sudell Close, Blackburn. Tel: 025456917 Kennedy Electronics 43 Cannon Street, Preston.
Progressive Radio 93 Dale Street, Liverpool. Tel: 051236 0982
LONDON: Bradley Marshall 325 Edgware
Road, London W2. Tel: 01723 4242
Bonex Limited 102 Churchfield
Road, Acton W3. Tel: 019927748
Servio Radio $156 / 158$ Merton
Road, Wimbledon SW9. Tel: 01 6222757
MANCHESTER: Spectron Electronics 7 Oidfield NORTHANTS: M.W.Associates 10 Crown Street, Kettering NN16 8QE. Tel: 0536520359
WILTS: Camlab Electronics 27 Faringdon SCOTLAND: Marshall's Electronics 86 West Regent Street, Glasgow G2. Tel: 0413324133
IRELAND: Baxol Tele Exports Ballinaclash, post Rathdrum, Co. Wicklow. Tel: 04046278
Frank Mozer 5 Angel Corner
Parade, Edmonton N18. Tel: 01 8072784
TK Electronics 11 -13 Boston Road, W7. Tel: 015678910 MIDDLESEX: LB Electronics 11 Hercies Road, YORKSHIRE:

Hillingdon. Tel: 089555399 Harrogate Electronic Services 24 Regent Parade, Harrogate. Tel: 042364353

SEND FOR NEW FULL COLOUR SHEET DETAILING COMPLETE RANGE available free from:
VELLEMAN UK...
P.O. Box 30, St. Leonärds-on-Sea, East Sussex TN37 7NL, England.
Telephone: (0424) 753246

$\qquad$
of the disc capacity.
The system also needs to know where the car is. The first solution is the inclusion of an electronic compass linked to the odometer that will use the car's computer to correct any errors caused by magnetic disturbance such as other vehicles and the massive ironwork in reinforced concrete. Error correction can be carried out by constant reference to the map held in memory. A longerterm solution is the possibility of satellite navigation using the Navstar global positioning system. The 18 American satellites will provide signals that enable a ground receiver to locate itself to within 10 m , Including height, and provide the time, accurate to that of an atomic clock.

The system requires a video screen, but from the safety point of view it is deemed to be important that the screen can only be consulted when the car is standing still. A typical journey could have the driver insert the disc for the local area, indicate the cars present position and the destination. The computer will store the information and the disc player can then be used for playing music. The system will guide the driver through the speech module. In future the necessary keyboard may be replaced by a touch screen.

Philips emphasize that the system is not a dream of the future but that all the technology already exists and a practical system will be available quite soon.


The elements, CD player, dashboard data, electronic compass and computer, that go together to make the Carin route information system, under development by Philips.

## Fears about tape levy

BREMA, the Radio and Electronic Manufacturers Association, has deplored the Government's support for some sort of levy on blank video and audio tapes as expressed in the Green Paper (Cmnd 9445). The Green Paper accepts that the proposals will involve some element of rough justice but it is unable to think of any realistic alternative.

The Association is particularly worried because the levy implies that at some future date it could be extended to recording equipment and to any future recording medium that may be developed. Any such levy would be disccriminatory
as it could not apply to the millions of pieces of recording equipment already in use. The Association is further apprehensive that once the idea of a levy is accepted, then future Governments could increase the levy over the years, just like any other tax. The one redeeming feature they see in the paper is that it admits that the levy could not be used to compensate for lost revenue by copyright holders.
Finally the Association voiced its fears that once having paid a levy, users could feel licensed to copy freely and that this could lead to more piracy, rather than less.

## In brief

- The UK f.m. Group (western) of the RSGB has put its thirteenth amateur radio repeater station on the air. In contrast to the other repeaters, this one is a data and r.t.t.y. unit. It operates on the 432 MHz band on Channel RB12 from Winter Hill, near Bolton, Lancs. Slant aerial polarization is used. Operation is on 50 baud Murray code but ASCII operation at 1200 baud is to be implemented. With RSGB approval, the Group hope to attach a 'mailbox' service to allow radio amateurs to leave messages tor each other; similar to the telephone bulletin boards.
- BT is to make and sell a 16 bit microcomputer. An agreement has been signed with Bleasdale Computers to produce the Bleasedale 68000 Unix computer. The computers are to be assembled at BT's own plant in Birmingham. Intended chiefly for BT's own use, the computer is also to be marketed outside the company. Unix is an 'open' operating system developed at Bell Labs, and offers multi-user, multi-tasking facilities.
- STC Components are now making development quantities of a range of GaAs i.cs. Employing one-micron
geometry gates, and using ion implantation techniques, the range will include standard products as well as custom and semi-custom designs. Full production of Gbit/s logic circuits is to start later in the year. Typical of the range is variable modules prescaler and a 4bit synchronous counter, both of which can operate at 900 MHz .
- BBC External Services is to install a massive computer which will act as a news source of reports picked up by the monitoring service at
Caversham. It needs to have a
storage capacity of about 28 bn characters to hold the teleprinter material emanating from international new agencies and monitoring units abroad. It will have $174 \mathrm{v} . \mathrm{d} . \mathrm{u}$. input stations and be connected to 100 printers. Monitors will be able to key their transcripts straight into the computer. Journalist who prepare the External Service's news file and daily summary will be able to draw directly on this information and feed their own stories into the system. Bids for contracts to install the computer have been invited from 40 computer companies.


## Anti-piracy law

The Government has expressed its support for William Powell's Private Member's Bill to extend the copyright laws to include computer programs. John Butcher, Secretary for Industry, said: "The Government is anxious that this important measure should become law as soon as possible to help the UK
software industry combat the growing threat of software piracy." It is hoped that penalties imposed by the act will deter software pirates as successfully as the reduction of the level of video piracy since similar Bills were passed in 1982 and 83.

## Transputer on the way

Inmos are now producing their super microprocessor, the Transputer in test quantities and hope to have evaluation samples available for customers by the middle of the year. Volume production of the fas 64 K static ram and of the 256 K dynamic ram is also expected during the year. Static rams
manufactured in Colorado Springs, California and dynamic rams from Newport, Gwent are now being produced in millions and the company, after many years of Government investment is now making a profit. It was sold to ThomEMI last September.


## Marc Z80

Based on a powerful Z80 CPU this new single board microcomputer teaching system features:-

- 56K RAM/EPROM facilities
- On-board switched faults
- CP/M loading facility
- On-board software includes:Monitor, Machine code display and Modify,Z80 ASSEMBLER/ DISASSEMBLER,Light-pen routines, program de-bugging routines


## To find out more about these and other

 items in the complete $L J$ range send for our new 1985 catalogue
## L J Electronics Ltd

## Francis Way,Bowthorpe Industrial

 Estate,Norwich NR5 9JA.Telephone: (0603) 748001.
Telex: 975504.


## Toroidal Transformers

as manufacturers we are able to offer a range of quality Toroidal Transformers at highly competitive prices and fast delivery.

## Mail Order Price List



15VA 6.92 30VA 7.18. 50VA 8.86. 80VA 9.92. 120VA 10.59. 160VA 12.10. 225VA 13.69 300VA 14.77. 500VA 19.20. 625VA 22.09. 750VA 26.17. 1KVA 38.82. 1.2KVA 44.06 price includes $p+p$ \& vat.
Available from stock in the following voltages: $-6-0-6,9-0-9,12-0-12,15-0-15$ 18-0-18,22-0-22. 25-0-25, 30-0-30,35-0-35,40-0-40,45-0-45,50-0$50,110,220,240$ (max 10 amp ). Primary 240 volt.

Quantity Prices and delivery on request
(we also manufacture conventional E1 type transformers)

# TURN YOUR BBC MICRO INTO A PROFESSIONAL MICROPROCESSOR DEVELOPMENT SYSTEM 

## THE OPERATING SYSTEM

- FLEX-The Professional Operating System
- Versatile, Flexible \& Powerful, the ideal operating system for industrial control
- Provides the power, sophistication and ease of development, previously only offered by larger, more expensive systems


## THE HARDWARE

## - 6809 Advanced 16 Bit Processor

- Choice of Industrial Interfaces for Target Applications:
- High Resolution Colour Graphics
- Industrial input/output boards
- IEEE communications
- and many more


## THE TOOLS

- PL9 - A fast, efficient control language
- CMS FORTH Interpreter \& Compiler
- Cross Assemblers for most 8 bit \& 16 bit micro's
- "C", BCPL, PASCAL



## THE SUPPORT

- Top rate after sales technical support
- Systems/Hardware Design

Cambridge Microprocessor Systems Limited

## R.WITHERS $\boldsymbol{\nabla}$ COMMUNICATIONS <br> 

If you have not heard of ( $R$. Withers Communications) we are main distributors or agents for the following, Yaesu, Icom, Kenwood, M.Modules. Jaybeam, Toevna, Revco Antennas. Cleartone, Mutek, Drae, F.D.K. Tonna. Welz, Zycomm, Neve Radiotelephones.

We are also stockist (British Telecom Approved) of a wide range of cordless telephones and telephone systems. We are also agents for hundreds of other radio communications equipment known the world over, we also manufacture our own range of VHF - UHF beam antennas which are also used by leading broadcast companies for wireless mic applications. We supply a large range of power transistors \& modules to the trade. These we import ourselves directly from Japan. Listed below are just some of the many services we offer.

* Supply \& repar of all amateur \& business radio equipment
* Complete check of your transiever on a spectrum analyser (with comprehensive report) for the all in price of $£ 12.50 \mathrm{subject}$ to an appointment being made
$\star$ Supply \& complete installations of business radio systems including
competitive maintainance contracts, local authorities included
* Supply of 10 metre converted radios LCL. DNT, ICOM
* Only supplier of modified Revco RS $200050-520 \mathrm{MHz}$ continuous
* Only supplier of modified Revco RS 200 . Withers Comms)
* Probably the largest seller of second hand radio equipment in the
* Probably the largest seller of second hand radio equipment in the country because of our commission sale agreement ( 3 month warranty) plus equipment facility
* The fastest growing retail \& wholesale company in the British Isles. Send for details of any of the equipment or services we offer whether you are in the profession of just an interested party an s.a.e. will speed up your enquiry * For all your communication needs give R.W.C. a try we promise you will not be disappointed.
*The largest selection of radio allied services offered under one roof, with no expense spared on test equipment and qualified staff.


## 584 Hagley Road West, Oldbury, Warley B68 0BS (Quinton, Birmingham) <br> Tel: 021-421 8201/2 ( 24 hr answerphone)

Overseas customers welcome. We speak German \& Japanese. Import/Export no problem. Ple'ase telephone during working hours or TELEX 334303 TXAGWM-G

## AUDIO DISTRIBUTION CONSOLE MODEL RTM4-100

The tollowing distribution tacilities are provided

1. Single channel radio distribution from integral variable AM/FM turer.
2. Single channel cassette tape distribution from integral cassette player
3. Four channel mixed speech distribution from any standard 200 ohm mpedance microphones

Note that the output of al facilities can be mixed if required and that bass and treole control is provided on the mixed output.

## RECORO FACILITY

The integral cassette tape recorder can be used to record the mixed output of the four microphone channels and the radio distribution chanrel

## CDNSOLE

DIMENSIONS:
POWER SUPPLY
AMPLIFIER:
465 mm High $\times 435 \mathrm{~mm}$ wide $\times 330 \mathrm{~mm}$ deep approximately
200/250 Volts A.C. 50 Hz
100 Watts RMS
100 volt line output
PRICE $£ 556$ inc VAT and Detivery (Mainiand only)

## Ultrasonic Burglar Alarm

Portable - wooden finish with internal alarm - easily installed - mains/ battery option. Provision for window contacts - pressure mat. External horn and bell unit. Sample units $£ 39.00+£ 2.00 \mathrm{pp}$ ( $£ 47.13$ inc. VAT each) 5 units $£ 35.00+£ 2.00$ pp $£ 42.55$ inc. VAT each, 10 units $£ 33.00+£ 2.00$ pp $£ 40.25$ inc. VAT each.
External Horn
Sample unit $£ 7.50+£ 2.00$ pp $£ 10.93$ inc. VAT each, 5 units $£ 6.75+£ 1.50$ pp $£ 9.49$ inc VAT each, 10 units $£ 6.37+£ 1.50 \mathrm{pp} £ 9.05$ inc. VAT each.

## Burgess E61

Sub-miniature microswitch with common NO-NC contacts. Rated at 5 amps on 125-250V AC. Internal heavy duty contact gold plated for long life. £ 15 .
For $100+$ VAT, $£ 67.50$ for $500+V A T, £ 125$ for $1,000+$ VAT. $£ 550$ for
$5.000+$ VAT. Sample 10 sent for $£ 2.00+50 \mathrm{ppp}$ ( $£ 2.88$ inc VAT).
TERMS C.W.O export enquinies weicome. We find it impossible to advertise all we stock. Please telephone, write or telex for turther enquiries. Personal caliers always welcome.

SPRINGFIELD HOUSE
SPRINGFIELD HOUSE
TYSSEN STREET,
LONDON E.8. 2 ND
TEL NO. 01-249 5217
TEL NO. 01-249 52939

## AMPLIFIERS <br> WHY ILP? Years of experience in audio, unique designs, world wide sales and outlets, reliable delivery and friendly service........



## PREAMPLIFIER MODULES

All modules are supplied with in line connectors but require potentiometers, switches etc. If used with our power amps they are powered from the appropriate Power Supply.

| Type | Application | Functions Pric |
| :---: | :---: | :---: |
| HY6 | Mono Pre Amp. | Full Hi Fi facilities. ............... $\mathbf{£ 7 . 9}$ |
| HY66 | Stereo Pre-Amp. | Full Hi Fi facilites ................. $£ 14.9$ |
| HY73 | Guitar Pre-Amp | Two Guitars plus Microphone . £15.9 |
| HY78 | Stereo Pre-Amp | As HY66 less tone controls..... £14.4 |

.£14.45
of construction we recommend the 86 for
HY6 $£ 0.95$ B66 for HY66-78 $£ 1.45$.

BIPOLAR MODULES
Ideal for Hi Fi, Full load line protection integral Heatsink, slew rate 15v/ $\mu \mathrm{s}$


## MOSFET MODULES

Ideal for Disco's, public address and applications with complex loads (line transformers etc.). Integral Heatsink slew rate 20v/ $\mu$ s distortion less than $0.01 \%$


## POWER SUPPLY UNITS



FOR FREE DATA PACK PLEASE WRITE TO OUR SALES DEPT.
Post to: ILP Electronics Ltd., Dept. 6
Graham Bell House, Roper Close, Canterbury, Kent. CT2 7EP
Tel: (0227),454778Telex :965780

| BAKER LOUDSPEAKERS |  |  |  | Post c2 each |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MODEL | INCHES | Oнms | wams | TYPE | Phice |
| Disco/Group | 10 | 8-16 | 50 | IPA | £18 |
| Midrange | 10 | 8 | 100 | MID | £25 |
| Major | 12 | 4-8-16 | 30 | H-F\| | £16 |
| Supero | 12 | 8 8-16 | 30 | H1-F\| | £26 |
| Wooter | 12 | 8 | 80 | Hi-F\| | £25 |
| Auditorium | 15 | 8.16 | 60 | Bass | £37 |
| Disco/Group | 12 | 4-8-16 | 45 | PA | £16 |
| Disco/Group | 12 | 4-8-16 | 75 | PA | 120 |
| Disco/Group | 12 | 8 -16 | 100 | PA | £26 |
| Disco/Group | 15 | 8-16 | 100 | PA | £3.5 |

PA. 150 Watt MICROPHONE VOCAL and GROUP AMPLIFIER £129
4 channel mixing, 8 inputs, dual impedance, $50 \mathrm{~K}-600$ ohm, volume, treble, bass. Presence controls on each channel. Master volume control, echo, send return socket. Slave sockets. Post £3. 150 Watt MIXER AMPLIFIER 4 Inputs $£ 99$
Discotheque, Vocal, Public Address. Speaker outlets for 4,8 or 16 ohms. Four inputs, $20 \mathrm{mv}, 50 \mathrm{~K}$ ohm. Individual volume controls "Four channel" mixing control. 240V A.C. Post §2.
100 Volt Line Model, 150 watt $£ 114$
MONO SLAVE. 150 watt $£ 80$
Baker Stereo Slave $150+150$ watt per channel ( 300 watt Mono) Heavy Duty Model £125. Post £4.
BAKER MOBILE PA AMPLIFIER. All transistor, 60 watt RMS, 12v DC \& 240v AC, 4 inputs 50 k Aux +2 mics +1 phono loudspeaker. Output 4-8-15 ohms +100 volt line. $\quad$ \&89 Post £2
PA systems - amplifier, mike + two speakers
Mobile 60w, 240v AC + battery $12 v £ 199$ carr. $£ 20$
Mkil $150 \mathrm{w}, 240 \mathrm{v}$ AC, complete $£ 249$ carr. $£ 20$
150 WATT DISCO iwin deck system £360 carr £30
120 WATT DISCO + twin speakers $£ 300$ carr. $£ 30$

Console only, £145, 120 watt, £199, carr.E10

PA CABINET SPEAKERS. 4 or 8 or 16 ohm 75 watt $20 \times 15 \times 9$ in. $£ 54.90$ watt 32×15×11in. $£ 73.150$ watt $£ 82$. Carr. £ 10 Black vinyl covered with handles.
RCS SOUND LIGHT. Ready Buill Deluxe 4 Channel 4,000 watl with chaser speed + programme controls $£ 69$. Post £2. New Model MkII with special 16 programmes: 4 channel 4,000 watt 889. Posi 12.
DELUXE STEREO DISCO MIXER/ EQUALISER as above but L.E.D. V.U. displays 5 band graphic equaliser, left/ right fader, switchable inputs for phono/ line, mike/line. Recording Output £124. PROJECT CASES Black vinyl top and sides
$6 \times 4 \times 1 \mathrm{~m} £ 3.608 \times 5 \times 2 \mathrm{in} £ 4.11 \times 6 \times 5$ £9. $9 \times 5 \times 2$ in $£ 4.80 \quad 11 \times 6 \times 3 \quad £ 5.50$ $13 \times 8 \times 4$ £ 11 .
ALUMINIUM BOXES. $4 \times 4 \times 1$ £1.20; $4 \times 2 \times 2$ £ $1.20 ; 3 \times 2 \times 1$ £1.20; $6 \times 4 \times 2$ £1.90; $7 \times 5 \times 2$ £2.90; $8 \times 6 \times 3$ £3; $10 \times 7 \times 3 \quad £ 3.60 ; 12 \times 5 \times 3 \quad £ 3.60$; $12 \times 8 \times 3$ £4.30; $9 \times 4 \times 4$ £3; $6 \times 4 \times 3$ £2.20; $4 \times 4 \times 2$ £1.60.

## "STOP PRESS"

$\mathrm{H}+\mathrm{H}$
1000w mono, 500 w stereo quality 500 amplifiers
conditioned, guaranteed £275, p.p. £5

## RADIO COMPONENT SPECIALISTS

337 WHITEHORSE ROAD CROYDON, SURREY, U.K.
ACCESS TEL 01-684 1665 VISA Same Day Despatch. Closed Wed. Lists 34p

## DON'T GO DOWN WITH YOUR SCOPE! It never was designed to float


volts/div $\begin{array}{cc}\text { 2. }{ }^{1} .50 \\ & 20^{m u} \\ & 10\end{array}$

Wearigh
Power

$100 \mathrm{mv} / \mathrm{div}$


The Waugh Instruments Isolation Amplifier enables you to keep your scope earthed and still make measurements up to 1500 V from earth, this together with over 100 dB rejection at 50 Hz means that you can now observe small signals superimposed on 350 V sine waves so often encountered in switch mode power supplies, thyristor and triac firing circuits. For details of this and other oscilloscopes accessories contact:- Peter Waugh at Waugh Instruments, Otter House, Weston Underwood, Olney, Bucks MK46 5JS (0234) 712445.

SSB LINEARITY
At least one idea that could reduce some of the spurious emissions that tend to be increased by broadband systems is the work that has been going on for several years at Bath University on the application of cartesian (polar) feedback. V. Petrovic described a 100 -watt p.e.p. transmitter with cartesian-loop phasingtype s.s.b. generation having third-order intermodulation products some 67 dB below the tones of a two-tone test, with image sidebands suppressed by 68 dB .

A coordinated presentation of five papers from the US Naval Research Laboratory described a new wide-band h.f. system with frequency-hopping capability being developed for the US Navy and resulting in studies similar to those that led some 15 years ago to the development of the ICS-3 system for the Royal Navy. The Americans, however, plan to use v.mos field effect devices for power amplification, with negative feedback and feedforward linearizing techniques. In all complex shipbome installations the major problem is the proximity of several transmmitters and receivers. NRL are developing fast-tuned narrow-band filters for both antenna couplers and for preselection filters for receiver protection, together with the use of adaptive interference cancellation by phasing techniques. They are also developing new broadband h.f. antennas for ship installations.

It was interesting to note that some professional systems designers are at last recognizing that conventional receiver a.g.c. systems designed for analogue s.s.b. voice signals tend to degrade performance on morse and narrow-band data transmission, due to the finite attack time which means that the instantaneous dynamic range of a receiver is significantly less than the claimed 140 dB or so available when the a.g.c. range is added. There is also the problem that the a.g.c. bandwidth may be considerably greater than that of a narrowband transmission, particularly where a receiver depends on audio filtering for r.t.t.y. or data reception. The problem arose when "hang
a.g.c." systems were introduced and the ability to switch out the a.g.c. circuits dropped from most h.f. communication receivers.

HF RESURGENT?
A three-day international conference at Savoy Place "HF communications systems and techniques" underlined the resurgence of interest in the application of advanced technology to h.f. Less happily it emphasised that this interest, although spilling over into university and commercial research projects, is primarily centred on Defence communications. For these the trend is firmly towards fast frequency hopping at rates between several hundred and several thousand per second yet capable of providing secure digital speech and data at rates of about $2400 \mathrm{bits} /$ second. For other users such technology, unfortunately, offers the prospect of ever increasing spectrum pollution.

The current sunspotminimum is already leading, particularly after dark in Europe, to excessive overcrowding of h.f. with some users employing spectrum analysers to seek out the few relatively clear channels and then to occupy these whether or not registered with the International Frequency Registration Board. At the conference a number of papers were presented on built-in systems of real-time channelevaluation which could formalise this type of operation.

Of the 235 delegates from almost 20 countries the vast majority were connected with, funded by or manufacturing for Defence with few from traditional h.f. user organizations such as British Telecom and Cable \& Wireless. In the often lively discussion periods it was left to J. Clarke of British Airways and radio amateurs to question the effect of the spread-spectrum techniques on frequencies still required for civilian communications.

Frequency-hopping on h.f. poses state-of-the-art challenges to designers if the problems of multipath, fast switched antenna couplers and digital synthesizers are to be oversome.

ENERGY-SAVING
ON U.H.F.TV
For the past decade the major klystron and transmitter manufacturers have been striving to out-do each other in reducing the appalling waste of power in high-power u.h.f. television transmitters. Pulsers, variable couplers, depressed collectors, annular gridded cathode techniques have all been developed with the aim of improving the conversion efficiency of kylstron amplifiers that conventionally require constant power, set by the peak sync pulses. Even when referenced to peak sync, conversion efficiency has often been only of the order of $20-25$ per cent. When defined in relation to the vision waveform, efficiency drops to just a few per cent. About half a megawatt of electricity is consumed for the 110 kW transmitters commonly used in the USA and some broadcasters have complained that electric power costs them more than off-peak programming.

A promising development is the Varian "klystrode" that combines the efficiency of a tetrode with gain and long-life of a klystron and will be capable of true Class B operation - but there will first need to be a new generation of transmitters for this device.

Meanwhile klystron manufacturers are continuing their development of techniques that enable u.h.f. klystrons to match the efficiency of v.h.f. tetrodes. Marconi, with their new American associates Comark, are claiming to have achieved at WITE-TV, Channel 28, Columbus, Ohio a klystron beam efficiency of no less than 77 per cent, with an Amperex (Philips/Valvo) YK1265 klystron vision amplifier, a Comark high energy CTM-20 pulser and the new Marconi B7500 modulator unit.

## DIGITAL TRANSCEIVERS

The opening address at the h.f. conference was given by Dr Ulrich Rohde who for many years was the representative of Rohde \& Schwarz in the USA but is now a consultant to RCA Govermment Communications Division and part of a design
team seeking advanced technological solutions for US military communication. He emphasised that "in order to meet communication goals for 1984 and beyond, modern h.f. equipment has to be adaptive, frequency agile and capable of supporting secure, digital voice communication, operating on a point-to-point, and a networked basis as well". His keynote paper explored solutions aimed at an all-digital h.f. transceiver for which there is currently an American defence requirement. For voice encryption, the Americans have chosen linear predictive coding, a technique not unlike that used in children's "speaking toys" and capable of compressing 3 kHz analogue speech into an encrypted $2.4 \mathrm{~Kb} / \mathrm{s}$ data stream. He also surveyed work on direct digital synthesizers, PIN-diode switched antenna couplers and digital processing in receivers using linear equalization techniques with a time-gated feedback equalizer to minimise multipath problems.
D.T. Anderson of RockwellCollins described the new hybrid analogue/digital receiver type HF2050 (see
Communications Commentary, October 1984) now being delivered - as the first production h.f. receiver to use digital signal processing - to Canada. In this the signal is digitized at the 2nd i.f. of 3 MHz .

But as B.M. Sosin of Marconi pointed out, digitization at signal frequency, as required for an all-digital receiver, throughout the entire range of 2 to 30 MHz and for a signal dynamic range of 140 dB would require something like 23 -bit "words" at a sampling rate of over 60 MHz , resulting in bit rates still well beyond device capability.

## TWTs FOR DBS

The still unproven reliability of 220-watt travelling wave tubes and amplifiers for high-power direct broadcasting from satellite is one of the factors that are contributing to the uncertainty that still surrounds the early implementation of operational services. The French are still hoping to have a four-channel satellite in operation next year, possibly with two channels leased to the

## The Archer Z80 SBC

The SDS ARCHER - The Z80 based single board computer chosen by professionals and OEM users.
$\star$ High quality double sided plated through PCB
$\star 4$ Bytewide memory sockets - upto 64 k

* Power-fail and watchdog timer circuits
$\star 2$ Serial ports with full flow control
* 4 Parallel ports with handshaking
$\star$ Bus expansion connector
$\star$ CMOS battery back-up
$\star$ Counter-timer chip
$\star 4 \mathrm{MHz} . \mathrm{Z80A}$


## OPTIONS:

* SDS BASIC with ROMable autostarting user code
* The powerful 8 k byte SDS DEBUG MONITOR
* On board 120 / 240 volt MAINS POWER SUPPLY
* Attractive INSTRUMENT CASE - see photo.
* $64 \mathrm{k} / 128 \mathrm{k}$ byte DYNAMIC RAM card * NEW *
* 4 socket RAM - ROM EXPANSION card $\star$ NEW $\star$
$\star$ DISC INTERFACE card * NEW *

Sherwood Data systems Ltd

Sherwood House, The Avenue, Farnham Common, Slough SL2 3JX.Tel. 02814-5067

CIRCLE 75 FOR FURTHER DETALL

## WE HAVE INCREASED THE RANGE OF OUR SUCCESSFUL NM40 ENCLOSURES




CIRCLE 63 FOR FURTHER DETAILS
commercial broadcasting services of Luxembourg. Telefunken also have a highpower Ku-band (12GHz) TWT in an advanced stage of development but not yet tested in orbit. A TWT amplifier capable of 240 W of c.w. output with an efficiency of over 40 per cent is being developed by Hughes Aircraft with a target life of seven years and with focussing by temperaturecompensated samarium-cobalt magnets. Meanwhile RCA Laboratories are developing solid-state Ku-band active arrays using large numbers of GaAs f.e.t. devices with individual phase shifters which could be used to change the radiation pattern of a d.b.s. satellite in orbit.

But several of the d.b.s. systems registered with the FCC are finding it increasingly difficult tto attract investors and few expect earlier implementation of high-power satellites. One American consultant has suggested: "The would-be d.b.s. operators should be blaming themselves, not Wall Street, for their difficulties. Most have been technology-orientated. The easiest part of the d.b.s. puzzle is to put a satellite up there and to put a signal across the USA. The toughest part is to market the service nationally, and to maintain your customers over à period of time."

## WIDE C-MAC

In the UK, IBA engineers have been privately demonstrating on closed-circuit an experimental system capable of providing high-definition, wide-screen pictures (up to $5: 3$ aspect ratio and a subjective definition of almost 1000 lines) when the receiver contains digital processing memory. The system is fully compatible with the standard C-MAC/packet system but with extra time allocated for wide screen pictures from the sound/data and frame flyback periods. The system also allows the $4: 3$ aspect ratio picture to be panned anywhere within the wider $5: 3$ picture. The stillexperimental equipment is currently being re-jigged into a prototype demonstration unit when it is hoped that public demonstrations will be given. No problems are expected in
putting enhanced C-MAC through a single 27 MHz satellite channel.

## Amateur Radio

## EARS OR MODEMS?

With the spread of personal computers, a rapidly increasing number of amateurs are using various forms of electronic r.t.t.y., data transmission, including "packet radio", automatic request for repetition (ARQ) in the Amtor system, and high speed automatic morse etc.

In implementing any systems involving automatic reception, the greater vulnerability of such systems, compared with the human operator, to interference, multipath and fading becomes a major problem. The mechanical teleprinter, developed for line communication, was never intended to cope with adverse channel conditions and led to the use of space, frequency and polarization diversity systems. In the absence of diversity, it has long been recognized that two-tone and multitone systems are capable of better performance than f.s.k. but advantage has seldom been taken of this by amateurs on h.f. Parallel multi-tone systems such as Piccolo, with inherent signal integration, can produce clean copy at very low signal strengths but demand more complex modems, a very high degree of frequency stability and greater bandwidth than either manual morse or narrowshift f.s.k. For all these reasons, manual morse has remained the optimum system under adverse conditions not only for amateurs but also in the maritime services.
At the recent h.f. conference, Peter Chapman of the Admiralty Research Establishment (formerly ASWE) described laboratory and field trials of a low-speed modem with inherent frequency and time diversity designed to provide reliable communication under the most adverse conditions. The objective is a fall-back system
capable of performing better than morse and eventually to eliminate the cost of morseoperator training in the Royal Navy.

Throughput of traffic is at the slow rate of $10 \mathrm{bits} /$ second ( 10 baud) although the signalling rate is around 100 bits/second. The modem transmits ten discrete audio tones in a 3 kHz s.s.b. channel, one set of five representing "mark" and the second interleaved set for "space". The tones in each set are sequentially transmitted for 10 milliseconds each, with 10 millisecond gaps so that each symbol is transmitted five times during a 100 millisecond period. It thus differs radically from the parallel multitones of Piccolo.
Propagation trials last September between ARE Portsdown and Wick in the north of Scotland used 25 -watts p.e.p. and ran throughout 24 hour periods on two frequencies about 4.88 MHz . The frequencies were repeated interchanged between morse and the new modem.

While the results undoubtedly suggest that the modem can outperform morse, at least some of the delegates, who included a significant numer of licensed amateurs, felt the scales had been heavily weighted against morse. For example, it was recorded on tape, then brought to the laboratory for transcription by the operators, giving them no chance of adjusting selectivity, notch filter, audio beat tone etc., all of which could have significantly improved the copy, and allowed them to take full advantage of the remarkable characteristics of the human ear.

A truly narrowband c.w. receiver, preferably without a.g.c. and bandwidth adjustable down to under 100 Hz and controllable front-end gain etc., with an operator at the controls and preferably the ability to change transmission frequency even by a modest amount would have produced very different results.
The low-cost, low-complexity and reliability of a "kiss" morse system under adverse and emergency conditions should encourage the Royal Navy and other organizations to think very carefully before finally phasing out morse telegraphists in favour of keyboard-only

## operators.

But perhaps it is a sign of the times to prefer the inanimate to the animate. Electronic "petsters" - stuffed, furry creatures with built-in microcomputers - are being marketed in the USA "to replace biological animals as pets and companions" by Axlon Inc. Simulated moods - from contentment to anguish, from a lazy response to bouncing enthusiasm, are software controlled by a 4 -bit microprocessor with 4 K bytes of memory. How soon before they begin to automate the owners?

## FROM ALL QUARTERS

The number of new amateur radio licences issued in 1984 in the USA dropped by over 10 per cent compared with 1983. 30 per cent fewer amateurs upgraded their licences and about a quarter of licencees are currently not renewing, according to Ham Radio. For the first time in 10 years the year finished with a net loss in licence totals.

British Telecom "Ambassador" telephones and some of the other electronic models are proving a source of interference on the 144 MHz band, showing a tendency to radiate wideband hash-like signals. Among the increasing number of domestic appliances showing susceptibility to strong local r.f. signals are domestic burglar alarms and smoke detectors.

The UK F.M. Group (Western) recently brought into operation its thirteenth repeater, GB3MT, at the IBA Winter Hill site (mounted on a Granada Television OB link platform) near Bolton, Lancashire. This 432 MHz band, slant-polarized ( $45^{\circ}$ ), RB12 repeater is for r.t.t.y. and data and the first of its type in the North West. Initially only $50-$ baud five-unit Murray code is suitable but it is hoped to add ASCII operation at 1200 -baud shortly, and approval is being sought to add an "electronic mailbox" for store and collection operation.
Membership details of UKFMG(W) from Mr A. Baker, G4NYP, 26 Brooklands Drive, Goostrey, Crewe, Cheshire.

Pat Hawker, G3VA.

## EDR editor for DEC - £350



* Keypad editor similar to KED and EDT
* Uses no host time or memory when editing
* Fast Response
* Edits PDP-11, LSI-11 and VAX files

Why burden your overworked DEC computer with the task of editing files? You can now use the new EDR front end processor from Andelos Systems to do your editing - for a mere $£ 350$. The EDR unit sits behind your VT100 (or compatible) terminal, initially in transparent mode allowing direct communication with the host. Whenn you activate the editor, the file is loaded into the EDR unit, and you can quickly and easily edit, while the host is free to serve other users. Being a dedicated unit, response is very fast. On exit the file is returned to the host, and saved to disk, while the EDR processor returns to transparent mode. A unique feature allows you to return to edit mode, using the file still held in local memory.
Andelos Systems
(0635) 201150

Solina, Bucklebury Alley, Cold Ash, Newbury, Berkshire RG16 9NN DEC, PDP-11, LSI-11, KED, EDT, BT 100 are trademarks of Digital Equipment

EDR, ENDELOS are trademarks of Andelos Systems
CIRCLE 93 FOR FURTHER DETAILS.

reliable high performance \& practical controls. individually powered modulesmains or dc option single cases and up to 17 modules in standard 19" crates small size-low weight-realistic prices.


Fylde Electronic Laboratories Limited.

49/51 Fylde Road Preston PR1 $2 \times 0$

PINEAPPLE SOFTWARE
Programs for the BBC model 'B' with disc drive with FREE updating service on all software

## DIAGRAM

- A program which allows you to store very large diagiams up to 39 mode 0 screens and view or edit them by SCROLLING the computer screen around over any part of the diagram



## FEATURES

- Draw diagrams, schematics, olans etc in any aspect ratio, e.g. $10 \cdot 3,2 \cdot 12$ screens.
- Access any part of the diagram rapidy by entering an index name, e.g. TR6, R5 etc., to display a specfic section of the diagram, and then scroll around to any other part of the diagram using the cursor keys.
- up to 128 icons may be predefined for each diagram, e.g. Transistors, resistors etc. in full mode 0 definition, up to 32 pixels horizontally by 24 vertically
£25
incluaing P \& $P$
Supplied only on
disc - 40T/80T
compatible
All orders
sent by return
of post.
- hard copy printours in varying print sizes up to 9 mode 0 screens on an A4 size sheet, compatible with most dot matrix printers.
- Many other features including, selectable dispiay colours, comprenensive line drawing facilties, TAB settings, etc
- Disc contains sample diagrams and two verstons of the program, one of which will work from a 16 k sideways RAM - Comprehensive instruction manual.


## PINEAPPLE SOFTW ARE, 39 Brownlea Gdns. Seven Kings, Ilford, Essex IG3 9NL

CIRCLE 91 FOR FURTHER DETAILS.

| OSCILLOSCOPES | NEW EQUIPMEN |
| :---: | :---: |
| duld os4000 digital storage Dual | hameg oscilloscope 605. Dual trace 60Mhz |
| Lo oss3008, Dual Trace sonizz Delay | Deiay Smeep Component Tester |
| ¢ 8400 | Component Tester ............. 2264 |
|  |  |
| Ps |  |
| S0B |  |
| sor couso bual trace ssmhz delay | 175 |
| S.E. LABSSM111 Dual Trace 18MHZ AC or external | GENERATDR Sine/Squareltriangle 0.1HZ - |
| DC OINSTRYCT436Dual Beam6MHZ | 500KHZ.P\&P£4................... $£ 110$ |
| SIGNAL GENERATORS |  |
|  |  |
| HEWIETT PACKARO 620A. 7 -11GHZ <br> CTTPACKARD61883.8-7.6GHZ MARCONITF1060/2 $450-1250 \mathrm{MHZ}$ |  |
|  |  |
| MAACONI TF2008 AM/FM 10 KHZ |  |
|  |  |
| MARCO NITF1066B/1 AM/FM $10-470 \mathrm{MHZ}$ Z $£ 300$ MARCONITF995A/2. AM/FM 1.5-220 MHZ £200 MARCONITF144H/4 10KHZ-72MHZ |  |
| ULTIMETERS | Single Sided Souble Density |
|  |  |
| PHILIPS DMM2517. 4 digit. Autorangingetc Complete with Batteries Leads (Un-used) P8P E55 |  |
| 8 Mk5. Complete with Batteries, leads \& ying case. $P \& P$ \& 7 | TEPPER MOTORS |
| Complete with Batteries, leads $\&$ carrying case P\& $\mathrm{P}\{7$ |  |
|  |  |
| AVO MULTIMINOR. Complete with Batteries, teads \& carrying case. P \& $\mathrm{P} £ 3$ |  |
|  |  |
| MARCONI TF2600 VALVE VOLTMETER 12 ranges 1 mV - 300 VFSD <br> - KINGSHILL STABLILSED PSU Model 500 . O- |  |
|  |  |
|  | ${ }^{\text {dia }}$ \& $P_{\text {and }}$ VAT extr |
| $60 \mathrm{~V}, 0-0.5 A m p s . C u r r e n t ~ L i m i t i n g . ~ M e t e r e d . ~ P \& P ~$ $£ 40$ |  |
| - VARIAC 5 AMP. Input 240V: Output 0-265V. <br> Cased. P\&PET <br> CROYONRES -1111 Onms ( 4 decade) Un-used. P\&P $\mathrm{E} 7 \ldots$ E25 <br> , |  |
|  |  |
|  |  |
| All ahove Instruments in Working Order and Supplied with Manual (* - No Manuall |  |

## STEWART OF READING 110 WYKEHAM ROAD, READING, BERKS RG6 1PL Telephone: 073468041 <br> Callers welcome $9 \mathrm{a} . \mathrm{m}$, to 5.30 p.m. Monday to Saturday inclusive

CIRCLE 87 FOR FURTHER DETAILS.
ELECTRONICS \& WIRELESS WORLD MAY 1985

## LIQUID <br> CRYSTALS

I would like to draw your readers' attention to a discovery made in 1964 that liquid crystals mentioned in a number of your articles are not related to the liquid phase at all. These useful materials are anisotropic organic molecules which form a special phase of crystallites just below the freezing point of the liquid phase. Their correct description should be fluid crystals or fluid crystallites. The term liquid is entirely misleading; the term crystal or crystallite is correct and it shows that the properties of these materials are closely associated with the more familiar crystallites of the solid phase, especially when close to the melting point. It is well known that many solids are very plastic near the melting point and the fluid crystallites used in electronic displays exhibit these properties of fluidity and crystallinity which are not found in the liquid phase. This misleading term of liquid crystals should be replaced by the correct term FLUID CRYSTALS.
W.P. Holland

British Nuclear Fuels Ltd Sellafield
Cumbria

## LOGIC SYMBOLS

I awaited with interest your informative article dealing with new logic symbols. It eventually confirmed my worst misgivings.

For years the government has tried to foist B.S. (British Silly) symbols upon the industry with a delightful lack of success except upon those unfortunate enough to be working on government cotracts, where it was made a condition of contract. One is tempted to be alarmed however, when normally rational people such as the Americans endorse such symbols as the ones reported in the article. The author states that international agreement has been reached, consultations have been held, etc. Whoever asks the opinion of the average engineer? There is far too much government time and money spent on these committees who are clearly out of touch with real life, and seek to impose new methods regardless of
consequence.
There is a growing madness to symbolize everything today, even when a plain English indentifier is much clearer, and frequently takes less space. An excellent example being any modern car. Try looking for a switch marked "heater", and I guarantee failure. You may however find drawings of palm trees, wavy lines, a perspiring brow, or whatever silly idea came into the designer's head at the time!
Your author states that there is no point in "sticking one's head in the sand". I quite agree. We must resist this nonsense NOW!
L. Hayward

Wareham
Dorset

## MOBILE RADIO

I pity the communications of your nationalized power industries who will be forced to work on Band 3 (your issue Dec. 1984)

Also noticeable in your article on mobile radio systems is the lack of mention on 'Trunking' or the use of higher frequencies for public utilities.

Poor old 'Blighty', always
behind the times.
P. Hirschmaun

Haifa
Israel

## CAMPAIGN FOR REAL A.M.

The article about the heated rear window car aerial ( $E \& W W$ Feb. 1985) covered the questions of sensitivity and directivity in some detail but did not mention the inevitable degradation of the strong signal performance of receivers resulting from the use of untuned r.f. amplifiers.

It would be a pity if the widespread use of demister aerials became one more nail in the coffin of 1.f./m.f. broadcasting, but it seems that each new development leads to lower quality I.f./m.f. reception.

Even the unity gain voltage follower used in the demister aerial is likely to cause significant degradation when used with a good quality receiver near powerful m.f. transmitters. Regrettably however few good quality m.f./
1.f. car receivers exist.

The replacement of valves by semiconductors in r.f., mixer, i.f. and especially detector stages has done much to increase distortion and generate spurious whistles.
Developments in linear i.cs have resulted in considerable improvements, particularly in a.m. detectors but another new development - varicap diode tuning on m.f./l.f. - has definitely been a retrograde step in areas where 1.f./m.f. signals are strong.
I have heard one expensive frequency synthesized car radio/cassette player which uses an untuned buffer amplifier on m.f./l.f. between its aerial input and its first varicap diode tuned circuit and which produces severe distortion on m.f. BBC Radios 1, 2 , and 3 within a 15 km radius of the Brookmans Park transmitters. This only goes to show that microprocessor controlled wizardry with 18 preset stations ( 6 on l.f.!) is no substitute for good r.f. design!

On most commercially produced receivers, m.f./l.f. is something of a token gesture with excessive harmonic distortion and an audio bandwidth of 2 kHz or so. This leads to the mistaken belief among many listeners that the resulting poor sound quality is an inherent limitation of m.f./ l.f. broadcasting, and exaggerates the advantages of v.h.f. M.f./l.f. still has a place, particularly in vehicles and particularly in Britain where certain programmes are not available on v.h.f.
This sad state of affairs prompted me to construct an m.f./l.f. car receiver which did not suffer from the shortcomings of commercially available models in the strong signal area where I live. The design which uses a Mullard TDA1072 a.m. receiver i.c. with permeability tuning and ceramic i.f. filter gives remarkably good sound quality but suffers from one annoying spurious response which is confined to the Barnet area. When receiving BBC Radio 1 on 1089 kHz from Brookmans Park, the signal from IBA
Capital Radio on 1548 kHz from Saffron Green near Barnet causes a 459 kHz beat frequency to be generated within the i.c. With either a 455
or 465 kHz i.f. this results in an annoying whistle. Beat notes are also audible on weak stations at the l.f. end of the m.f. band. Within the receiver the problem appears to be due to the lack of provision for an r.f. tuned circuit between the r.f. amplifier and mixer stages of the TDA1072, but it is a pity that frequency planning has led to two closely sited m.f. transmitters with a frequency difference of 459 kHz .
To sum up, the requirements for an m.f./l.f. car receiver with good handling of strong signals appear to be as follows:

- Permeability, not varicap tuning.
- R.f. amplifier with tuned input and output and NO untuned pre-amplifier stage.
- Good dynamic range in r.f., mixer and i.f. stages coupled with wide a.g.c. range and good detector linearity.
Unfortunately no such receiver appears to exist commercially, presumably because the majority of listeners do not live close to powerful m.f. transmitters or because they believe whistles which CHANGE their pitch when tuning to be an inherent limitation of m.f./l.f.
broadcasting, which they are not.
Have any other readers in South Herts found a solution? D.M. Lauder

Barnet
Hertfordshire

## THE CATT ANOMALY

I feel I must assert that I really exist. I was in no position to protest when my parents devised my ridiculous name.
Now, following Ouida Dogg, who turned up again in January, we find Weaver-Mowes joining the act in February. This latest joker purports to be supporting me strongly.

The storm-troopers for the Establishment are happy to be identified, but dissidents tend to feel they need some camouflage. It's short-sighted, because, looking through back numbers, I find that the mean-free-path of the Establishment running-dogs is frighteningly short.
Referring to the W-M letter in February, p.77, I think the most convincing approach to
the "Catt anomaly" ( $W W$ Sept. $84, p .48$ ) is to concentrate on the electric charge on the bottom wire. W-M discusses an associated anomaly; the problem of how the electric current can come up to scratch. I want people to be forced to face up to the more glaring problem of charge. I suggest that the problem of current be termed the "Mouse anomaly".
When referring to the problem more generally, one would call it the "Catt and Mouse anomaly". In Feb 85 you published a letter from $G$. Berzins which demonstrates a failure of comprehension which may be widespread, and so merits discussion. He thinks it is possible for the energy in a TEM wave guided by two conductors, to be transferred by some mechanism within the dielectric. This notion leads to a reductio ad absurdum.
Consider a parallel plate transmission line of characteristic impedance 10 ohms. A TEM step of amplitude 100 volts is travelling down between the conductors. Power is being transferred at the rate of 1,000 watts. According to Theories N or H , electric current and electric charge exist in/on the two conductors.

Now consider a similar parallel plate transmission line lying immediately beneath the lower conductor. Again, it has a characteristic impedance of 10 ohms and a TEM step of 100 volts is travelling down between the conductors. Electric current and charge exist in/on the two conductors. The current and charge in the new upper conductor is exactly equal and opposite to that in the lower conductor of the original transmission line, immediately above it. Now all theories will claim that the activity in each of the four conductors is similar. If this activity is the mechanism for energy transfer, then total energy transfer, 2,000 watts, is made up from four contributions.
Now supposing the middle two conductors are very close together, and they become closer. Still we have four contributions to the energy transfer. Now reduce the middle two conductors to wafer thin, and then remove them. (During this process, the activity in top and bottom conductors will not change). Hey, presto! Current and
charge in the two middle conductors cancel to zero, and the same activity in the surviving top and bottom conductors, previously responsible for the transfer of only 1,000 watts, now transfers 2,000 watts!
Ivor Catt
St Albans
Hertfordshire

## D.C. SUPPLIES

Having read Dr K.L. Smith's article on D.C. Supplies from AC Sources (Oct. 1984 p.63), if would appear that some very important omissions have been made.
There seems to be an implicit assumption that there is a direct, linear relationship between d.c. load current and secondary winding current and the losses which arise therefrom.
Surely, if d.c. supplies are being considered, then these supplies would embody output filtering (unless the end object is, say, a very crude battery charger). That being the case, then the effects of the output filter must be considered in the design calculations for the transformer. This is particularly so in relation to the magnitude of the conduction angle of the rectifiers and the resulting size of the peak current flowing in the rectifier/secondary winding It is the size of this peak current (very much larger than the mean current) which dictates the cross-sectional area of the wire to be employed for the winding and the consequent losses.
It is my experience that, unless this consideration is 'built' into the design and then worked backwards toward the primary winding requirements, then a poor design is inevitable. A.M. Wheeler West Mersea Essex

## BASIC PHYSICS

A connecting thread seems to join this month's (January 1985) correspondence items under the headings "Displacement
Current", "Roots of Relativity", "Energy Transfer", and "Electric Charge from a Radio Wave"; they all present arguments over the uncertainties of the fundamental principles of physics.

I wonder, is it possible that
some of our doubts arise because of over-eagerness at the outset to seize upon the first plausible explanation we happen upon, just as a panicstricken shipwreck victim grasps at anything? Indeed our gratification in being able to grasp an idea seems to cause us to clutch it as if drowning would result from losing it!
Perhaps I may be allowed to offer a couple of remarks on specific points; first, from Chris Parton; "there is a law of physics to the effect that the velocity of light is the same for all observers, and I believe that the conclusion of Michelson's and Morley's celebrated experiment. . . that the velocity of the propagating medium. . . does not affect the observed velocity of light." This assertion by Chris Parton seems to have many fearful souls desperately hanging on to it, yet can we say that the second postulate of relativity theory, which was casually "promoted" to this status from that of a conjecture by Albert Einstein in his apparently little-read paper (ref.1), can be further elevated to a law, to stand with, for example, the Laws of Motion as annunciated with unqualified assurance by Isaac Newton? Chris Parton "believes" the conclusion generally held for the ether-drift experiment; others could just as well believe a contrary or alternative conclusion can be drawn, for it is not difficult to discern the inherent weaknesses in the experiment's design (ref.3), Michelson's interferometer, for one instance, was rigidly spaced from the emitter used, which means that if every emitter is absolutely immobile in its dedicated ethereal medium for dispersal of its individual radiation, then the obtained results are simply accounted for. It is true the Einstein discounted this possibility, but he gave no grounds for his judgement; does no-one consider he would have removed one cause for doubt had he done so?
And second, in his letter A.J. Clayton took great pains with his detailed discussion of the "imaginary experiment" with which Einstein endowed his "Popular Exposition" (ref.2.), featuring a train hit by synchronized lightning-strikes. Speaking for myself however, I think it would have been quite
sufficient for him to simply draw our attention to Einstein's failure to allocate the radiation from the electrostatic discharges to a medium, which would have a status of motion with respect to all the other elements of the model - train, track, electric fields, etc. If the radiation were not to be propagated in accordance with the regulating characteristics of a medium, either substantial or ethereal, then how was the energy to be transferred possibly in association with a material displacement in accordance with the Laws of Motion? Since Einstein left us with this problem, the explanatory value of his treatise is in some doubt. Incidentally, there are other serious problems elsewhere within this book, which was intended for the "layman's" edification!

All such concepts as displacement current, electric and magnetic force fields, energy transportation across a vacuum, ethereal media, time with properties of substance and all such terms of an allembracing theoretical schema - are ideally inter-related in a mode which reflects precisely action in the physical universe; so when a disturbing lack of correspondence becomes obvious, it is surely the result of human ineptitude? To what extent to our knowledge then to be advanced by ingeneous attempts at the obscuration of our misinnterpretations?

The late Prof. Herbert Dingle suggested in "Science at the Crossroads", that Einstein created his much-admired theories to cover the defects of another theory, that of Clerk Maxwell; these in turn may well be covering other misconceptions (vide Ivor Catt in the pages of this journal).
It seems possible that modern physics is based on a schema which was put together without proper circumspection, just about the turn of the century, when instruments were penetrating facets of phenomena which revealed embarrassing shortcomings in the accepted wisdom; this at the very time when public attention was turning to science for guidance in a rapidly developing world of technological innovation. Perhaps "panic" would be too strong a word to introduce here, but now as the "dust of
the old cosmology" begins to settle, should we not be attempting to gain a deeper, wider perspective over the universe?
C.B.V. Francksen

Farnborough
Hampshire

## References

1. "On the Electrodynamics of Moving Bodies", Albert Einstein, Annaten der Physik 17, 1905 (Translation available in "The Principle of Relativity", Dover Publications Inc., 1952). 2. "Relativity, the Special and the General Theory, A Popular Exposition", Albert Einstein, Methuen \& Co., London, 1920. 3. "Michelson Morley Experiement", R.S. Shankland, Case Institute of Technology, Cleveland, Ohio, 1963.

## RELATIVITY

Had A.H. Winterflood ${ }^{1}$ read my letter ${ }^{2}$ on the M.M. experiment, and understood it like Osinga ${ }^{3}$, he would have found no need for his proposed measurement for it was done in 1887. Science does accept the M.M. experiment which enshrines the additive theory doesn't it?
If he can prove that this experiment does not rely on the additive theory then we should be told about it for science will be turned on its head. My earlier letter should also relieve Theocharis's mental
indigestion! ${ }^{4}$
Alex Jones
Swanage
Dorset

## References

1. Letters Feb. 1985.
2. Jones, Letters April 1984.
3. Osinga, Letters July 1984.
4. Theocharis, Letters Feb. 1985.

Simultaneity refers to events having the same time but not necessarily the same place: if they also happen to have the same place, such a 'double event', at a single point in space-time, would be recorded as such by all observers, whatever their position and velocity (rest assured, Mr Marquis). But when two events are separated in space or time, the measurement of that separation depends on the velocity of the observer; no one observer can be 'right', not even the one that is 'at rest', for how can one be at rest with
an event that has only one place and one time? The confusion over this point has been further confused by Dr Scott-Murray's change of concepts in midstream, even though his diagrams are excellent examples of explanatory geometry. The trouble with his argument is that it is not clear whether he means simultaneity by $\Delta t=0$ or by $t_{A}=t_{B}$. This leads to my second point. Figs 2 and 3 purport to show the same sequence of events as observed by M and $\mathrm{M}^{\prime}$ respectively, given that c is invariant. But they cannot show the same experiement because the delay between either obser 'er's receipt of the two flashes is zero in one diagram and nonzero in the other.

The only conformal transformation from M to $\mathrm{M}^{\prime}$ is shown by Fig. 5, where the events, and the invariance of $c$, are preserved, at the cost of a distortion of space-time that is perfectly 'real' to each observer.

Scott-Murray suggests that it would be easier to accept Fig. 4 and assume a ballistic theory of light, presumably explaining the negative result of the $\mathrm{M}-\mathrm{M}$ experiement by postulating (with Messrs Winterflood, Aspden et al) that photons adjust to $c$ only near an observer, having approached from a moving source with a dispersion of velocities. Such a dispersion would easily have been spotted from observing rotating systems like distant galaxies and binary stars. The transformation shown in Fig. 5 (or 6 ) is the only one that fits the facts - until some new facts turn up.
R.V. Harvey

Grasmere
Cumbria

With reference to the article "Einstein's Trains" by W.A. Scott Murray in Feedback column of Wireless World, February 85 issue, I have the following observation to make.
Einstein had taken pains to establish the 'relativity of simultaneity' by showing that events which are simultaneous to the observer in one frame are not simultaneous to another observer in another frame, and hence time is relative. However, even in the same reference frame, events which appear as simultaneous to one observer, need not appear as
simultaneous to another observer situated at a different point closer to one of the places from where light originates. For instance, in the example discussed by Einstein, if an observer is situated closer to A between $\mathrm{A} \& \mathrm{M}$, he is bound to observe the lightning at A earlier than the lightning at B . Thus what appears to be simultaneous to the observer at M does not appear as simultaneous to another observer even in the same frame. Thus it is not at all necessary to establish the relativity of simultaneity by introducing another observer $\mathrm{M}^{\prime}$ in a running train. As time is constant in a particular reference frame, the fact that an event appearing as simultaneous to one observer is not simultaneous to another observer in the same frame does not establish the relativity of time.
Time is a universal phenomenon and the relativity of time is abhorrent to the common sense, as rightly pointed out by W.A. Scott Murray in his articles in the 'Heretics Guide' series. The Michelson-Morley experiment, which was the forerunner for these mind-boggling theories of space contraction and time contraction, had only established the non-existence of an ether medium for the propagation of light, as the velocity of light was found to be the same in all directions as observed on earth. It should be possible for physicists to establish that it is not necessary to accept length contraction and time contraction in order to explain the observed constancy of the velocity of light. As light is a form of energy and is not matter, a moving light source cannot add its velocity to that of light. The Newtonian laws of addition of velocities apply only to objects of matter having mass and cannot apply to light which is a form of energy always in motion and not having a definite mass.

## K. Ganesh

Director, Transmission Project Madras
India
I thoroughly enjoyed Dr Murray's series "Heretic's Guide to Modern Physics" (WW Jun 82 to Jun 83); challenge and provocation are, I believe, important to the evolution of

Scientific Theory. I was disappointed, however, to read Dr Murray's later article "The Roots of Relativity" (May 84), since his good intentions were spoiled by a flaw in his reasoning. Although this error was pointed out by A.J. Clayton (Feedback Jan 85). I therefore feel moved to comment myself.

In "Einstein's Trains", Dr Murray deduces from a consideration of the Second Postulate that ". . . the situation observed by $\mathrm{M}^{\prime}$ in his own coordinates must be as shown in Fig. 3. where the two flashes arrive at the same instant. . ." But WHY? The Second Postulate implies only that the light approaching $\mathrm{M}^{\prime}$ from both flashes must be c in his own frame of reference, as shown correctly in the diagram. What logic does Dr Murray use to show in addition that flashes $A$ and $B$ both occur at time $t^{\prime}=0$ ? The very purpose of the 'trains experiment' was to illustrate that one's intuitive notion of simultaneity is inconsistent with the consequences of the Second Postulate. Just because Dr Murray makes an intuitive assumption about simultaneity, it does not follow that Einstein's 'trains experiment' is inconsistent with his Second Postulate.

The view from $M$ is that while the light from the two flashes is propagating through space, $\mathrm{M}^{\prime}$ will edge a little closer to $B$ and a little farther from $A$. $M$ will DEDUCE therefore that the flash from B will be received by $\mathrm{M}^{\prime}$ before the flash from A, arguing purely from a consideration of the path lengths involved, and without making any presumption about the velocity of light relative to $\mathrm{M}^{\prime}$. Now by applying the logic of causality, we argue that $\mathrm{M}^{\prime}$ must agree, at least qualitatively, that the flash from $B$ is seen before that from $A$. The situation is not therefore as shown in Dr Murray's Fig. 3.

Life would indeed be much simpler if we had transformations which did not involve square-roots, but what is wrong with challenging our pedestrian notions of space and time, and developing a theory which is really provocative. I feel Einstein may already have done so.
G.P. Clark

Castle Donington
Derbyshire


## Happy Memories

| Part type | 1 off | 25-99 | 100 up |
| :---: | :---: | :---: | :---: |
| 4116 200ns | . 1.25 | 1.15 | 1.10 |
| 4164 150ns Not Texas | 2.65 | 2.45 | 2.35 |
| 2114 200ns Low Power | . 1.75 | 1.60 | 1.55 |
| 2016 150ns Like 6116 | 3.65 | 3.35 | 3.10 |
| 6116 200ns Low power | . 7.75 | Call | Call |
| 6264 150ns Low power | . 14.85 | 13.75 | 13.20 |
| 2716 450ns 5 volt | . 3.85 | 3.45 | 3.30 |
| 2732 450ns Intel type | . 4.75 | 4.25 | 4.10 |
| 2732A 350ns ..... | . 5.25 | 4.69 | 4.50 |
| 2532 450ns Texas type | . 3.85 | 3.45 | 3.30 |
| 2764 300ns Suit BBC | . 5.40 | 5.00 | 4.80 |
| 27128 300ns Suit BBC | 10.50 | 9.50 | 8.65 |

Low profile IC sockets: Pins 814161820242840 Pence 1213141618242738
Available now - The ROAM BOARD for the BBC Micro. Reads
Roms via a Low Insertion Force Socket and saves their contents as files, then reloads a file into its sideways Ram as required. Full details on request.

74LS series TTL, wide stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or 'phone for list.

Please add 50p post \& packing to orders under $£ 15$ and VAT to total
Access orders by 'phone or mail welcome.
Non-Military Government \& Educational orders welcome., $£ 15$ minimum.

> HAPPY MEMORIES (WW), Newchurch, Kington, Herefordsire HR5 3QR. Tel: (054 422) 618

CIRCLE 25 FOR FURTHER DETAILS

## VIDEO TERMINAL BOARD

## 80 characters $\times 24$ lines $\star$

Requires ASCll encoded keyboard and monitor to make fully configurable intelligent terminal. Uses 6802 micro and 6845 controller. Program and character generator ( $7 \times 9$ matrix with descenders) in two 2716
EPROMs. Full scrolling at 9600 baud with 8 switch selectable rates. RS232 interface.
Bare board with 2 EPROMS and program listing -
£48 plus VAT. Assembled and tested - $£ 118$ Send for details or CWO to:

## M

A M Electronics
Wood Farm, Leiston, Suffolk IP16 4HT Tel: 0728831131

CIRCLE 45 FOR FURTHER DETAILS

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

## R.Henson Ltd.

21 Lodge Lane, N. Finchley, London, N.12. 5 mins. from Tally Ho corner

## Telephone 01445 2713/0749

## Printer buffer

> By taking characters from a microcomputer at high speed and sending them to a printer at its leisure, this buffer reduces waiting time from minutes to seconds. It has parallel and serial ports and holds enough text for around twenty A4 sheets.

An annoying quirk of single-user computers which do not boast multi-tasking operation is that when communicating with slow peripherals, their through-put drops to that of the peripheral. Waiting for such a computer to finish working with a typical lowcost printer can seem like an eternity.
The printer buffer alleviates this problem by appearing to the host computer as a high-speed printer. It stores data from the computer in its memory (dynamic ram) as quickly as possible which reduces the waiting time from possibly several minutes to seconds. It then proceeds to send the stored information to the printer at normal speed.

## Features

The buffer is built around the Motorola MC6803 eight-bit microprocessor which contains an enhanced 6800 processor with 128 bytes of ram, a 16 -bit timer, a serial-communications interface (s.c.i.) and $\mathrm{i} / \mathrm{o}$ lines. This processor is a rom-less version of the high-density n-mos M6801 family.
Storage capacity of up to 64 432 bytes - the equivalent of approximately twenty A4 pages - is provided by 64 K -byte dynamic rams (d-rams). Centronics parallel interfaces and a serial interface using XON/XOFF protocols are used to allow para-llel-to-parallel, parallel-to-serial, serial-to-parallel and serial-toserial data transfers. Only one serial interface has been included, to simplify the design and keep costs low, so concurrent transmission and reception is only possible with the first three modes.

Since the serial port is configured as a terminal, it may be
necessary to exchange the receive and transmit lines in either the printer or printer cable to allow the buffer to operate correctly in serial-to-serial and para-llel-to-serial modes. The serialinterface data rate may be switched between 300 and 9600 baud (using $\mathrm{S}_{1}$ ) but is the same for transmit and receive lines. It is possible to switch the data rate during serial-to-serial transfers so that data may be loaded from the computer at one rate and unloaded to the printer at another. Computer and printer interfaces can therefore operate at different rates.
Buffer-ready and error leds indicte when the buffer has space available and that a serial communication fault has occurred. An abort key is also included to allow one to prematurely terminate printing in an orderly fashion. The Centronics interface PRIME signal is used to clear the buffer within the printer during an abort sequence.
The software is interrupt driven with separate input, out-

## Specification

Two Centronics parallel ports
and one serial
Modes
Parallel-to-parallel
Parallel-to-serial
Serial-to-serial
Serial-to-parallel
Serial RS232 port
Transmit/receive using
XON/XOFF protocols
300 or 9600 baud
One start, one stop and
eight data bits
Parallel Centronics interfaces
Eight-bit parallel
DS/ACK handshaking
Busy and prime lines supported
64 K -byte circular buffer
6803 microprocessor/6821 p.i.a.

Abort and multiply copy functions
Error and busy indicators
put and memory-refresh tasks. These will appear concurrent, i.e., printing will commence before data input is complete. Furthermore, subsequent files may be sent to the buffer before the current buffer content has been sent out.

Being general purpose, the design could be used as the basis of a variety of microcomputer applications. The address is easily changed and more i/o, eprom space, etc., could be added. The M6803 processor operates in mode three in this application so its internal ram is not available. However, the 6803 can be made to operate in mode two for applications requiring standby ram, see Motorola MC6801 Reference Manual/ MC6801RM(AD2).

## Interfaces

Centronics interfaces are handled by an MC6821 peripheral interface adapter (p.i.a.). Use is made of the 6821 automatic handshaking features to generate host acknowledge, ACK, and printer data strobe, DS, pulses. A BUSY signal is produced at port one, line four (P14) of the 6803 to


Mike Catherwood graduated from Heriot Watt University in 1980 with an Honours Degree in electrical and electronic engineering, and has since been working with Motorola in East Kilbride. He is currently Systems Engineering Section Manager for single-chip microcontroller products and guides a small team of engineers giving technical advice to potential and existing customers. Mike loves music, hill walking, badminton, good food and real ale although not always in that order, he points out.

Fig. 1. 6821 Centronics handshake timing applies to both printer output and computer input. Timing with this type of interface is rarely critical.

Fig. 2. In the serial interface, each character sent consists of one start bit, eight data bits and one stop bit. Data rates are determined by a programmable timer within the 6803 microprocessor.



Fig. 3. Multiplexed data/ address signal timings for the 6803 microprocessor. Lines are usually multiplexed in this way to make the most of pins on the i.c. package.

Fig. 4. Circuit of the 64 K byte printer buffer (r.h. page). Multiple copies of the buffer content may be made by keeping one's finger on the abort button. When using parallel-to-serial mode, data is actually àvailable on the parallel output port, but the handshake timing may not be used.

Using a microprocessor with built-in serial data facilities and a parallel interface adapter with handshaking, this 64 K -byte printer buffer operates with any Centronics or RS232 compatible computer and printer. Software handshaking (XON/ XOFF protocol) is used on the serial port.
indicate to the host computer that the buffer is full. Some computers may not use this line. A PRIME line is also provided (P15) to reset the printer.
Figure 1 shows the 6821 handshake timing. Once set up, the data is transferred by pulsing the data strobe signal DS. Data must remain stable while DS is low. There are also associated set-up and hold times to be considered, but timing with this type of interface is rarely critical. Data transfer is acknowledged by the receiver some time later by pulsing the ACK line; some interfaces define a time-out period for this. The interface is now ready for further transfers.

If you intend using very long cables then the p.i.a. lines should be buffered using line drivers. Unbuffered, the 6821 will drive up to around 2 m of ribbon cable. It is wise to interleave ground with the signals to remove any coupling effects.

The serial interface uses the full-duplex s.c.i. within the 6803, which operates using a
standard mark/space (n.r.z.) form. It can also support a biphase mode of communication, although not in this application. Each character sent consists of one start bit, eight data bits and one stop bit, Fig. 2, and uses the on-chip programmable timer as a data-rate generator. The buffer operates at either 300 at 9600 baud but data rates of between 150 and 76800 baud are possible using different crystal frequencies and software-selectable prescaler values.
To generate common data rates, a bus frequency of 1.225 MHz is necessary (equivalent to a 4.91 MHz crystal) which requires the use of a 1.25 MHz bus version of the MC6803. Consequently a 1.5 MHz MC68A21 is also theoretically required, although it is unlikely that a standard 1 MHz part will not do the job if you have one available. If the serial interface is not required, you can use a 4 MHz crystal and the slightly cheaper 1 MHz bus version of the 6803 . The RS232 interface buffer could then also be omitted.
Use of XON/XOFF protocol on the serial port removes the need for any active handshaking lines. It would be relatively easy to add an asynchronous communication interface adapter like the MC6850 to the system to provide an additional serial interface with hardware handshake facility if required.

The XON/XOFF protocol uses

Ascii codes DCl and DC3 to provide the transmitting device with receiver buffer empty/full status. When the receiver buffer is within a predetermined number of characters of being full ( 64 characters in this design) the receiver sends Ascii code DC3 to the transmitting system, indicating that transmission should stop fairly soon (XOFF). After a while, the buffer will empty and when sufficient space becomes available ( 256 characters in this case), the receiver sends Ascii character DCl to the transmitting system, indicating that it may resume transmission (XON).

## Hardware

All members of the 6801 family have a multiplexed address/data bus when in their expanded mode, Fig. 3. Address lines $\mathrm{A}_{0 \rightarrow 7}$ are multiplexed with data lines $\mathrm{D}_{0-7}$ on port three. An addressstrobe pulse occurs during the low phase of enable signal $E$. The address is only guaranteed to be valid on port three during the falling edge of AS, at which time it is frozen by an LS373 latch i.c., Fig. 4. Address lines $\mathrm{A}_{8-15}$ produced by port four are not multiplexed and are valid throughout most of the enable cycle.

During the E-clock high phase, port three either presents data for writing or expects to see data for reading. Read/write line $R / \bar{W}$ should only be lowered during the positive E phase to prevent

entronics inter taces


$\overbrace{}^{\text {SOOH }}$
Jajuld




Fig. 5. Printer buffer timing required for dynamic rams.

An address must be multiplexed into the rams in two halves on eight lines. Half of the address is latched by the row-address strobe, RAS, and the second half by the column-address strobe, CAS.

Silk-screened plated-through p.c.bs for the buffer, currently being manufactured, will cost $£ 14$ including vat and UK or overseas postage from Combe Martin Electronics, King Street, Combe Martin, North Devon EX34 OAD. A complete kit of parts, excluding p.c.b. and case, is available from Technomatic Ltd, see advertisers' index.
erroneous writing. Data is read by the processor during the E-signal falling edge. As with all multiplexed bus systems, care must be taken to ensure that all device output buffers are disabled during the E-signal low phase, otherwise bus contention will result. Having obtained essentially separate address and data buses, connection of the 2716 eprom and 6821 p.i.a. is easy.

Memory decoding is arranged to keep as much of the 64 K -byte address space as possible free for buffer ram while using a minimum of i.cs. As the software is less than 1 K -byte long, only half of the 2716 is used; address line $\mathrm{A}_{10}$ is tied low.

Most systems using dynamic ram have d-ram controllers to generate timing signals and to refresh the memory independently. These controllers tend to be costly and as their performance is not essential in this application I chose to use a software refresh technique (described later). As a bonus, the hardware required to implement this is minimal.
To reduce the number of pins used, 64 K -bit dynamic rams multiplex address lines $\mathrm{A}_{0 \rightarrow 7}$ with lines $\mathrm{A}_{8-15}$ using two signals called row-address strobe, RAS, and column address strobe, CAS, Fig. 5. Referring to Fig. 4, the address bus is multiplexed with the E signal using two LS157 quad two-to-one-line multiplexers. The timing of AS allows it to
be used directly as RAS during the low E-signal phase.
Generating CAS is a little more difficult. When the ram is accessed the RAMEN signal is clocked through two D-type latches by the microprocessor input clock. The E signal is derived from the processor clock and is one quarter of its frequency. The D-type devices are however held clear during the E-signal low phase (CAS is held high). In order to meet data set-up times for the processor and d-rams, CAS is also conditioned by the $\mathrm{R} / \overline{\mathrm{W}}$ signal. Hence, CAS will only fall if RAMEN is true and the latches have been clocked twice during the high E phase for a write and once for a read.
Propagation delay through the 6803 internal dividers has not been characterized as it is intended that the device is used with its on-chip oscillator, i.e. with a crystal connected between pins one and two. Using the internal oscillator makes the relationship between pins three (EXTAL) and 40 (E) of little consequence. For an injected clock, however, values are typically less than 50 ns over the standard temperature range of 0 to $70^{\circ} \mathrm{C}$, which is well within the specification for this design using 200 ns rams even though it almost unforgivably violates worst-case design practice!
Software, construction and operation will be discussed in a subsequent article.

## EVENTS

April 30 to May 2
British Electronic Week. incorporating the All-Electronics Show, Fibre Optics \& Electronic Product Design. Olympia,
London.
Your Generation, IEE Faraday Lecture. Dominion Theatre,
London.
Tickets free on receipt of ann s.a.e. by the Farada Officer, IEE, Station House, Nightingale Road, Hitchin, Herts. SG5 1RJ.

## May 1

Personal and Domestic
Robots IEE colloquium at the
IEE Savoy Place. London WC2R
OBL. Tel: 01-240 1871 Ext. 269
May 2
NDT in undergraduate engineering. IEE discussion meeting. Phone as above

## May 3

Image restoration and two-
dimensional filtering. IEE
colloquium. As above
May 6 to 9
Radar 85. International IEEE/ IEE conference in Washington, D.C. Details from Radar 85, 1331 Pennsyivania Avenue NW, Washington DC 20004, USA May 7
Fault-tolerant
microprocessor control
systems. IEE Lecture.
Telephone as above. The human
contribution to technology: IEE
Lecture in Edinburgh. As above.

## May 8

Vision modelling. IEE
colloquium. As above.
The UK 5000 project. IC design made easy. IEE lecture.

## As above.

May 13
Software, does it enhance
accuracy? IEE discussion meeting. As above.
May 15
Applications of CAD
packages to the design of control systems: IEE colloquium. As above.
GTO devices and their
applications. IEE colloquium.
As above.
May 16
Microwave acoustics and acousto-optics. IEE colloquium. As above.
Intelligent knowledge based
systems and Alvey. IEE
lecture in Oxford. As above.
May 17
Optical mass data storage.
IEE colloquium. As above.
May 20
Applications of MAC to
cable. IEE lecture. As above.
May 21 to 23
Sensor 85. Transducer exhibition and conference, Karlsruhe Exibition Centre, FRG. Network Events Ltd., Tel. 0280 815226.


The Oryx name means a range of soldering tools and accessories designed to meet any modern requirement. Our comprehensive range includes lightweight, cordless rechargeable soldering irons, the famous "Super" and "Viking" standard designs and lightweight and temperature - controlled models. All with a wide selection of tip designs and sizes. The unique Portasol butane gas soldering iron completes the range. Oryx also supply the largest range of SR desoldering tools, including the new anti-static pump, power supply units, safety stands and solder pots.

(1) 5 -advanced design at an ordinary price

GREENWOOD ELECTRONICS DISTRIBUTORS
Toolrange 073422245 Reading. S.T.C. Electronic Services 027926777 Harlow. Verospeed 0703641111 Eastleigh. Electroplan 076341171 Royston. Engineering and Electronic Supplies 063954162 Wales. Cobbies 01-699 2282 London: Buck \& Hickman U.K. Anglia Components 094563281 Cambridge. E.IC. Ltd. 072736311 St. Albans. Willowvole Electronics 0734860158 U.K. Anglia Components 09456328
Reading. Longs 0932861241 Surrey.

Please telephone or write for further information to:
Greenwood Electronics Porman Road, Reading. Berishire, AG3 NE Tel: Reading 0734 595844. Telex: 848659

CIRCLE 54 FOR FURTHER DETAILS.

## FREOUENGY COUNTERS <br> HIGH PERFORMANCE HIGH RELIABILITY LOW COST

The brand new Meteor series of 8-digit Frequency Counters offer the lowest cost professional performance available anywhere

* Measuring typically $2 \mathrm{~Hz}-1.2 \mathrm{GHz} \quad \star$ Low Pass Filter
* Sensitivity $<50 \mathrm{mV}$ at $1 \mathrm{GHz} \quad$ * Battery or Mains
$\star$ Setability 0.5ppm * Factory Calibrated
* High Accuracy
* 1-Year Guarantee
* 3 Gate Times
* $0.5^{* \prime}$ easy to read L.E.D. Display PRICES (Inc. adaptor/charger, P \& P and VAT) NOW AVAILABLE WITH METEOR $100 \quad(100 \mathrm{MHz}) £ 116.72 \quad$ T.C.X.O. OPTION METEOR $600 \quad(600 \mathrm{MHz}) £ 147.77 \quad$ llustrated colour brochure

METEOR $1000 \quad(1 \mathrm{GHz}) \quad £ 204.12$
with technical specification and prices available on request


## Z80A MICRD-CONTROLIERS



## 4MHz 280A CPL

- 4 K EPROM -2 K supplied with MCV2.0 - 4 K Battery backed RAM - 2 K supplied - $4 \times 280 \mathrm{~A}$ PIO's ( $641 / 0$ lines) - Z80ACTC
- Standard $100 \mathrm{~mm} \times 160 \mathrm{~mm}$ Eurocard - Cost effective prices ( $\mathbf{\$ 9 4 . 0 4 - 1 0 ~ o t f ) ~}$ includes all connectors, manual etc

Designed to meet the power and fiexibility of today's stand - alone micro-controllers, the GNC CUB makes full use of the powerfui $Z 80$ family IC's. Micro-controllers are availabie with up 1064 K RAM, 8 K EPROM, RS232 etc. Mantals include circuit diagrams and assembly language listings. No ULA's, PAL's or other funnies
Write , phone or circle to find out more about our poweriul range of Z80A micro-controllers and multi - tasking Stware
 Manus (ree with CU8/board) $\quad \$ 3.50$ Please add $£ 1.00$ tor P\&P plus V.A.I. Thelnetham, Diss, Norfolk,

CIRCLE 47 FOR FURTHER DETAILS.

## RUCBY TIME?

## MSF CLOCK is EXACT

8 DIGIT display of Date, Hours, Minutes and Seconds.
SELF SETTING at switch-on, never gains or loses, automatic GMT/ BST and leap year, and leap seconds.
EXPANDABLE to Years, Months, Weekday and Millieseconds and use as a STOPCLOCK to show an event time.
COMPUTER or ALARM output also, paralleI BCD (including Weekday) and audio to record and show time on playback.
DECODES Rugby 60 KHz atomic time signals, superhet reciever (available separately), built-in antenna, 1000 Km range.
LOW COST, fun-to-build kit only $£ 79-70$ (ready-made to order) includes ALL parts, $5 \times 8 \times 15 \mathrm{~cm}$ case, pcb, by-return postage and list of other kits, GET the TIME RIGHT.

# Channel code and disc format - 1 

## Eight-to-fourteen modulation, eye patterns, subcodes, flags and error correction.

The channel code used in the Compact Disc has to operate within a number of constraints. o First, the d.c. content of the code should be as small as possible for several reasons. Disc runout and contamination cause low frequency noise in the replay signal which can be filtered out if there is no information content at those frequencies. The code d.c. content will also appear as noise in the tracking and focus servo systems. Finally, a d.c.-free code simplifies the design of the data separator.

- The efficiency of the code, which is the relationship of bit rate to channel bandwidth, should be high as this has a major influence on the playing time. High-density run-length-limited codes are usually selected by balancing the maximum run length against d.c. content. Fortunately the jitter of a non-contact rigid medium such as CD is relatively low, permitting the use of a long maximum-run length ${ }^{1}$.
- The CD system depends heavily on error correction and a channel code that uses symbols of the same size as those in the error correction will reduce the possibility of error propagation ${ }^{2}$.
- The bit rate is lower than those used in computer discs, thus no simplification is necessary to achieve the necessary operating speed. A complex encoding process is acceptable because relatively few encoders are necessary.
The March and April articles 'Principles of Optical Storage', parts $1 \& 2$ ) showed that there is a cut-off frequency due to the n.a. of the optical system. All recorded frequencies must be below this cut-off by a sensible margin to allow for disc warp and focus errors. This determines the minimum time between transitions. It is fundamental to the
channel code that the period between successive transitions is an integral multiple of one-third the minimum period. The basic time period T is one cycle of 4.3218 MHz or 231.4 ns . Fig. 1 shows that the minimum wavelength allowable is 6 T and that this corresponds to 720 kHz . The minimum period between transitions is 3 T , but it can also be 4 T , 5 T etc. To retain a reasonable clock content, the maximum period between transitions (the run-length limit) is 11 T , corresponding to a frequency of 196 kHz . There are consequently time periods used in all CD recording.
The basic clock period is three times smaller than the minimum transition spacing, so the resolution of the medium has apparently been increased by a factor of three. This gain cannot be fully realised because some data patterns cannot be recorded it the 3 T spacing rule is to be obeyed. Data to be recorded must be converted to a form which accepts the restriction.
The basic period T is assembled into symbols of 14 T length. Examining all the possible combinations of a 14 T symbol $\left(2^{14}\right)$, there are 267 patterns where the run length is neither less than 3 T nor more than 11T. From these, 256 patterns are selected to uniquely determine all possible combinations of an eight-bit data symbol. Fig. 2 shows some actual patterns and some invalid patterns for comparison. This conversion process gave rise to the name of e.f.m. (eight-to-
fourteen modulation) for the CD channel code.
To prevent violation of the rules by certain 14 T patterns following others, and to control the d.c. content of the code, three packing periods are placed between each symbol. Each eight-bit data symbol therefore requires 17 T to be recorded. This coding is $8 / 17$ efficient, and when multiplied by the resolution improvement of three times, yields the actual efficiency

$$
\frac{3 \times 8}{17} \times 100 \%=141 \%
$$

Although the highest frequency in the channel code is 720 kHz , or 1.44 million transitions per second, the bit rate is
$4.3218 \times \frac{8}{17} \mathrm{Mbit} / \mathrm{s}=2.0 \mathrm{Mbit} / \mathrm{s}$

This series is outlined in an introductory article which appeared in January's issue. The second article in the series, entitled 'Principles of optical storage', is in two parts and appeared in the March and April issues. A second part of this present article will be provided next month.

Fig. 2. Part of the code block for E.F.M. code showing examples of various run lengths from 3T to 11T.
Fig. 1. Limit frequencies of CD channel code: master clock frequency of $4.3218 \mathrm{MHz}, \mathrm{T}=231.4 \mathrm{~ns}$ (a), highest recorded frequency with transition 3T apart, frequency 720 kHz (b), and lowest recorded frequency with transitions 11T apart, frequency 196 kHz , (c).



Fig. 3. Digital sum value example calculated from e.f.m. waveform (a). Two successive 14 T symbols without d.c. control (upper) give d.s.v. of -16 , (b). Additional transition ( ${ }^{*}$ ) results in d.s.v. of +2 .

Fig. 4. Characteristic eye pattern of e.f.m. observed by oscilloscope. The only information of interest is the time when the signal crosses zero. Notice reduction in amplitude of the higher frequency components.
Fig. 5. One CD data block begins with a unique sync. pattern and one subcode byte
followed by 24 audio bytes and eight redundancy bytes.

Each byte requires 14T in e.f.m., with $3 T$ packing.

The choice of packing bits for d.c. control is determined as follows. The digital sum value (d.s.v.) of the channel patterns is derived as shown in Fig, 3(a). If the channel code is true during a T period, one is added to the d.s.v., if the code is false, one is subtracted. Clearly if the channel code is to be d.c.-free, the average d.s.v. must be zero. In Fig. 3(b), two successive 14 T symbols are shown, both of which have a positive d.s.v. By adding a transition in the packing period, the second symbol is inverted, and the overall d.s.v. is reduced ${ }^{3}$. As the only parameter of interest is the time $(3-11 \mathrm{~T})$ between transitions, this inversion has no effect on the data.
The interference read-out process causes the reflected light to

increase and decrease about some average value, which superposes a d.c. level on the readout signal, in addition to a component at the rotational frequency of the disc ( 3.3 to 9.5 Hz ) and harmonics thereof. Because the code is d.c.-free, a simple coupling capacitor can be used to remove these effects.
If a typical read-out signal is observed on an oscilloscope that triggers on a positive zero-crossing, the next zero-crossing could be 3T, 4T etc later, as shown in Fig. 4. The 'scope superposes all of these waveforms to give the characteristic eye pattern of CD .
Notice that the amplitude of $3 \mathrm{~T}, 4 \mathrm{~T}$ and 5 T period signals is less than the othes becuase they are closer to the optical cut-off frequency (see March and April articles).
The quality of the optics and focus servo can be assessed by comparing the 3 T amplitude with maximum amplitude.

The first step in data seperation is to locate the zero crossing in the waveform and to produce a transition in a binary signal at these points. Since the code is d.c.-free, the threshold or slicing level can be obtained by integrating the signal itself. This recreates the channel code. Every read-out transition is used to phase-lock a data seperator clock of period T. The clock is used to establish the number of T periods between transitions and thus recreate the 14 T symbols. These are converted back to data bytes using either a rom or gate array. The truth table, known as the code book, has been optimized to
permit decoding with minimum $\operatorname{logic}^{4}$.
Like most r.l.1. codes, e.f.m. requires a preamable to synchronize the phase-locked loop before data can be read. This unique preamble consists of three transitions separated by 11 T .

Each of the data blocks shown in Fig. 5 consists of 33 symbols of 17 T each, following the preamble, making a total of 588 T or 136 $\mu \mathrm{s}$. Each symbol represents eight data bits: the first symbol in each data block is used for subcode, the remaining 32 bytes represent 24 audio bytes and 8 bytes of redundancy for the error correction system.

The subcode byte forms part of a subcode block that is built up a byte at a time from 98 successive data blocks. The start of a subcode block is denoted by the presence of $S_{0}$ and $S_{1}$ synchronizing patterns in the first symbol positions of two successive data blocks. These are two of the (267-256) patterns which are not in the code book and can be uniquely identified. The presence of these two sync. patterns reduces the size of the subcode block to 96 bytes. A future article of the series is devoted to subcode.

[^1] Recording, Southampton, April 1982.

## TOROIDALS

The toroidal transformer is now accepted as the standard in industry overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weigh $t$, lower radiated field and, thanks to I.L.P., PRICE.
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 14 DA YS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty



CIRCLE 31 FOR FURTHER DETAILS

## BRAND NEW ELECTRONIC COMPONENTS

QUALITY .25W CARBON FILM RESISTORS

| Oty | $1-9 \mathrm{~K}$ | $10-24 \mathrm{~K}$ | $25-49 \mathrm{~K}$ | $50-99 \mathrm{~K}$ | $100 \mathrm{~K}+$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Price | $4-25$ | $3-95$ | $3-70$ | $3-45$ | $3-25$ |

Price per 1000. Sold in multiples of 1000 . Small quantity prices available.

## LEAD-FORMING SERVICE AVAILABLE

Save assembly time and money with pre-formed leads. Size setting £2-00 plus £1-50 per 1000

## Write or Phone for full Details

HARRISON ELECTRONICS
22 MILTON ROAD, WESTCLIFF-ON-SEA, ESSEX SS0 7JX TeI: (0702) 332338

## ELECTRONIC POWER UNITS

FOR XENON ARC AND MERCURY ARC LAMPS UNITS AVAILABLE FOR LAMPS RANGING FROM 75 TO 6500 WATTS.
Lamp housings and lens systems manufactured as standard off the shelf models or to specific design

## CARACAL SINE WAVEINVERTERS 200 to 1000 VA



CARACAL'S new range of pulse width modulated inverters are now even better than ever compared to older tuned-type inverters - with even higher efficiency, lower standby current and lower weight than before

CARACAL inverters have been in use around the world for many years wherever a reliable and stable source of backup or standby AC power is needed for computers, communications, instrumentation, and for mobile, field or marine applications.

```
    ASK ABOUTOURCUSTOM/OEM
    SERVICE - THE U.K.'sBEST
INVERTERS TO SUIT YOUR DESIGN -
        FROM 50 TO 1000 VA
```

CARACAL POWER PRODUCTS LTD. 42-44 SHORTMEADST., BIGGLESWADE, BEDS.

Tel: $0767-260997$


CIRCLE 19 FOR FURTHER DETAILS.

# The post-war stride into aerospace. 

# R.E. Young continues the story of British electronic invention. The notorious delays and overspending which beset industry are not the whole picture 

During the movement of the aircraft industryfrom'ordinary'aeroplanes into the new world of rockets and supersonic travel, the role of British electronics changed from being a supplier of the proverbial 'Black Boxes' to that of an equal partner with extensive technical responsibilities varying from instrumentation to project coordination.
Both industries already had what was probably unequalled experience of dealing with fresh areas of technology. During the greater part of World War II, and during the period immediately after it, the aircraft industry handled intensive power-plant development, and especially the jet engine. In the electronics connection, they had encountered various forms of airborne radar such as AI (Air-Interception) and the (largely) radar-based navigational aids. Over the same period, radar had over-shadowed all other electronics developments; and the R \& D effort alone had been on a scale which had not been seen in the country before, with the possible exception of nuclear research. In parenthesis it may be added that it has been stated that at this time, the British radio industry - essentially based on radar - reached a "- war figure exceeding $£ 100,000,000 \quad$ annually" ${ }^{1}$. Allowing a conservative factor of 10 , the modern equivalent becomes $£ 1$ billion a year, which by any standards, and especially for a 'light' industry, represents an outstanding total.

## Early aerospace/electronics projects

In the introduction to this series it was pointed out that "- - since the
late 1950 s, a significant number of technological projects - - have not reached their target" and that "In extreme cases they have been abandoned; in others the project time scale has become so extended and the overall cost so high that the further development, which it would have been uneconomic to have carried out, has been completely blocked".
This statement, based on the performance of the United Kingdom as a whole, is pessimistic in that a large proportion of British aerospace projects did reach their target; but often - it must be admitted - after delays and consequent increase in costs which were several orders higher than the original 'worst-case' predictions.
The late 1950s are particularly significant for these aerospace projects because, by this time, the publication of details of programme delays and 'huge' increases in R \& D expenditure had given rise to a great deal of critical comment. This was, of course, added to the general criticism which, as noted in the introduction, was being directed against the alleged failure of the British to keep up - in terms of successful development - with modern technology.
Part of this criticism, which has been maintained until the present day, concerned itself with the scale of the resources that had been made available for the individual projects. The general conclusion reached was that these resources - both human and material - had been totally inadequate; and that, in any case, the scale of effort required for this new technological world in which
aerospace and electronics were involved had not even been glimpsed.

Like all such generalised statements, it contained an element of truth in seizing on this 'world' being new; but it did not get anywhere near analysing the root cause of the trouble - the almost interminable delays which individually could stop progress on the project as a whole, until they had been cleared. Thus, on the face of it, this was a matter of insufficient resources.
Clearly it is not possible evento survey briefly all the ways in which such delays could, and did,

by R.E. Young, B.Sc. (Eng.) F.I.E.E., M.R.Ae.s.



2. Final descent on to the runway with 'derived information' landing system in use.
arise with so many interacting mutually dependent - factors combining to obscure completely the real sources of technical failure.

Nevertheless, not only were such intractable - frequently intermittent - 'fault clearance' problems tackled much more quickly than is usually realised; but new techniques and basic principles of attack were evolved which broke new ground for a much wider field than 'aerospace/ electronics'. The latter can be illustrated by looking at the concept of data marshalling which has been taken into a number of fields exemplified by 'Crisis Control' ${ }^{2}$ with its original background lying in aerospace instrumentation and aircraft testing. Further instances of this spread into other fields will be given in this series.

Data marshalling, with its definition as 'the separation, streaming and systematic presentation, of "masses of data", has been chosen in this instance to bring out one of the far-reaching and fuundamental problems of aerospace development: to obtain measurement (including 'binary' state) information which can be relied on, and then to interpret it correctly.

## Flight trials - dual problem

'Trials' uncertainty and hence delay have two main causes. The first is associated with the success of actual flight trials where the testing and proving of the
aero- space systems is obviously utterly dependent upon the 'goodness' of the derived information. There is no need to stress the virtually insurmountable difficulty of identifying (at best) trouble in, say, the main rocket control system when the telemetry (instrumentation) equipment is suspect. It will also be realised that, with unmanned vehicles in particular, there is always an element of doubt when the data coming from an isolated (inaccessible) source cannot be verified. Means for reducing these uncertainties to an acceptable minimum - particularly 'independent check' techniques ${ }^{2}$ - are discussed later in this article, where an example will be given of how full advantage was taken of 'having an aircraft available' to investigate and develop telemetry systems, using tv techniques.
The second aspect - associated with interpretation in its widest sense - is concerned with:
(a) the mode of presentation of measurement information so that it is unambiguous and can be read out with the minimum of error; and
(b) the direct data marshalling function of separating out information vital to a specific section of an investigation from an accumulation of data which is so varied in form and so large in amount that it saturates conventional methods of extraction. By the very nature of trials work, these difficulties are particularly great during the early stages of
the project; and where the design of the elements in the various systems is far from being finalised.

When these main-system uncertainties are compounded by additional possibilities of error in the instrumentation chain, it is clear that - as noted in connection with 'setting to work' in the first article - the process of reaching a satisfactory solution is extremely lengthy. In turn this means almost invariably that the main project is held up until a final overall solution has been arrived at and found acceptable. From talks with engineers in several countries, it can be said that they find it almost inevitable that "at least one crisis" will appear in an R \& D programme; and that their main difficulty was to extract the data they needed from the nearinfinite amount available to them, if they were to avoid 'shut-down' scale delays. Although extensive theoretical investigation and simulation work had been carried out throughout design and prototype manufacture, both the main and the instrumentation systems were untried in terms of being 'put together' for flight trials and some 'unknowns' were almost certain to be encountered. Also, this was a new world, certainly as far as detailed engineering practivce was concerned.

Thus it says much for the teams themselves and their powers of adaptability that they were able to take advantage of earlier experience and 'know-how' and apply them successfully in this new world. This flexibility in
approach was shown to the full in the way in which equipment, e.g. a specific telemetry installation, was, in effect, developed during use and the fresh unknowns thus introduced, were anticipated.

## Reducing uncertainties - key divisions

Environmental testing. One of the outstanding features of aerospace development has been the growth of environmental testing, first for individual components, then for, say, a control or telemetry system assembly, and finally for whole rockets or satellites. The range of 'environments' that were simulated grew correspondingly, beginning with variablefrequency vibration, steady acceleration forces (by centrifuge methods), and, - found imperative for telemetry installations, - high values of shock. These various 'mechanical' conditions were then supplemented by three main kinds of climatic - environmental - chamber in which controlled temperature, air pressure and humidity testing could be carried out; in addition, these tests could be made on a long term or cyclic basis ${ }^{34}$.

It may be noted that the wind tunnel may be regarded as the earliest form of environmental chamber, but also as providing mechanical-type testing by virtue of the air flow; while one of the largest electronic firms in the UK carried out prolonged vibration tests on radio sets, as mechanical assemblies, well before World War II, by means of an oscillating platform on which the sets were mounted.

## Research rocket - the 'Flutter

Dart'. It will be appreciated that the cost of setting up a complex wind tunnel testing programme - especially to include supersonic flow - is extremely large; and, in practical terms, can become prohibitive when a number of entirely new testing techniques have to be evolved. Thus if, as with the 'Flutter Dart', a relatively cheap rocket can be equipped with suitable electronically (telemetry) based instrumentation to give the required research information, then testing under 'real' conditions becomes possible; and the need for complex simulation and largescale facilities generally is eliminated.
Briefly, the Flutter Dart ${ }^{5}$ was a five-inch ( 13 cm dia.) solid-fuel
rocket with special attachment points enabling wings (and control surfaces) of various configurations to be fitted for testing under accepted flight trials procedures. As the name implies, the rocket and its instrumentation were designed to yield research information on aerodynamic 'flutter' of different wing forms at airspeeds going through the transonic barrier to supersonic values. Flutter, 'divergence' and control surface characteristics were obtained from sampled information telemetered over a time division system with up to 24 channels available. Data sources included accelerometers, strain gauges and a specially designed transducer giving aileron movement, crucial for the flutter measurements.

That this special transducer was developed and built in-house is a telling illustration of how the joint team operated, with - in this case - electronics providing instrumentation required by aerodynamics; and of how, it will be realised, close liaison was maintained throughout between all members of the design and development manufacturing groups. The adaptability shown and the coordination achieved both within the organisation and outside will be brought into the next article.
'Independent check' television development. For this work ${ }^{6}$ associated with aerospace telemetry, the primary research task was to take advantage of being able to monitor and control the operation of airborne teleme-try-type equipment which normally would be 'inaccessible to human agency'. Also, at the same time as information was being gathered on the specific communication (sender-plus-receiver) channel, it was possible to obtain data on individual telemetry components and sub-systems inserted in the main installation and this included evaluation of television not only as an instrumentation technique in itself, but
also as an independent check method for 'difficult' remote measurements. The importance of this last aspect is, if anything, greater now than it was at the time, especially for the emergency conditions of crisis control ${ }^{2,4}$, while the wideband information capacity which was provided means that the results obtained have equal relevance today.

Amongst other practical points, flying-spot scanning was employed for the airborne camera chain. This enabled a compact and low-cost assembly to be designed where no external source of illumination was required for the conventional dial instruments being viewed. It should be noted that the data transmitted from them was, in essence, in digital form; while once the data had been, in effect, ‘encoded’ (brought into video form), no further degradation in its accuracy could take place ${ }^{4}$.

Landing systems for 'zero zero' operation. In 1967 it was possible to write that "Stemming from the original work of the Blind Landing Experimental Unit (B.L.E.U.) of the Royal Aircraft Establishment, and developed under their aegis, the Autoland system has now over 20,000 aircraft landings to its credit".

This quotation, taken from a Wireless World article ${ }^{7}$, stands on its own as a statement of the success of the development of this automatic landing system. The development programme itself was also a model of its kind with full interchange obviously maintained between the operational side and the system designers, and, in turn, between them and the development teams.

The blind-landing system was based on 'leader-cable' azimuth guidance, and final 'flare-out' descent to the runway under radio altimeter control; in 1967 this general principle was being retained with further development effort largely being given to improvement rather than to

Articles in this series

- British invention, innovation and electronics (March)
- Radar and television interchange and spin-off (April)
- The post war stride into aerospace (May)
$\lambda \bullet R \& D$ management and economics
- 'Big system automation and telemetry
- Vehicle instrumentation
- Human communications
- The future

3. 'Flying-Spot' tv telemetering - schematic.


## References

1. Rowe, A.P.: One Story of Radar. The University Press, Cambridge, 1948
2. Young, R.E.: Crisis Control, Wireless

World, June and July 1982
3. Charlish, G.: 'Making sure the
product will always work', Financial
Times, London, Friday March 6, 1964 p. 15.
4. Young, R.E.: Control in Hazardous Environments, Peter Peregrinus Ltd. Stevenage, England, 1982
5. Poole, S., Potton, A., and Titley, C.O., 'Analogue Telemetry Equipment and Systems - Pt. 2', Electron. Eng. London, Vol. 33, No. 396, February 1961.
6. Young, R.E.: 'Analogue Telemetry Equipment and Systems - Pt. 1', Electron. Eng., London, Vol. 33, No 395, January 1961.
7. Young, R.E.: 'Automatic Landing in Airline Service', Wireless World, November 1967.
8. Young, R.E.: 'Aircraft Landing Techniques. . . and the Future', Electron. Eng. London, Vol. 33, No 402, August 1961.
change of principle. These improvements were, of course, of a major character, especially with regard to replacement of the leader-cable by radio methods

As indicated in the $W W$ article, the problems with leader-cable were essentially those of physical installation, particularly with regard to the need to extend azimuth guidance - and hence the leader cables - to at least a mile beyond the approach end of the runway. In practical terms, this problem becomes insuperable where the runway is built close to the sea or even, in some cases, when access cannot be gained to areas surrounding the airport. In fairness it must be pointed out that radio guidance can suffer from reflections from buildings and imperfections of the site; and the discussion of these aspects was taken further in the 'state of the art' sections of the Wireless World article.
Finally, the role of the pilot as a 'systems manager' will be reviewed in the light of suggestions put forward at the end of the 1950s. Some details of these suggestions were given in the article, largely without comment; but they take on a new significance in relation to e.g. control under emergency conditions and to accurate 'at-a-glance' presentation of information. With regard to the article itself, it may be added that it had attracted considerable interest not only in the UK but also internationally, giving, as it did, a comparatively wide picture of British achievement during the pre-1970 period.

Reverting to the question of the suggestions introduced above, they were concerned with
presenting to the pilot instantaneous information (as far as possible without ambiguity) of this position relative to the runway and the path of his descent to it.

Two basic systems were put forward ${ }^{8}$. The first employed a primary radar in the nose of the aircraft which, with televisiontype scanning of passive reflector runway markers, gave a picture to the pilot corresponding to what he would see with ordinary runway lighting and clear weather conditions. One of the main advantages of this system is that it is virtually independent of ground installations - particularly telling in remote areas where maintenance of complex equipment may be difficult.

The second scheme - a 'der-ived-information' system - was somewhat different in that it presented ground-derived (radar) guidance intelligence to the pilot in two ways. For the vertical plane, the display of a pulse height-finding radar - as used in GCA
(Ground-Conttrolled Approach) - was sent to the pilot over a television-capacity radio link; and without delay or transfer errors being introduced.

Azimuth guidance was transmitted to the aircraft in audible "dot-dash" or similar form, being derived either from a static radiated twin-beam pattern or a microwave radar system strobing in azimuth ${ }^{7,8}$.

The conduct of the research design studies lying behind these two schemes will be examined in the next article in the context of $R$ \& D management. An anecdotal illustration of the interchange that took place is afforded by the
remark of the test pilot who, on seeing the GCA type height display shown, said that he liked the speed and 'clarity' of the system, but that he "did not think that he would like to see himself sideways on"
This was one of the pieces of evidence which pointed - as one would expect - to the greater acceptability of the primary radar system; although it must be noted that the derived information scheme would enable a monitoring GCA controller to keep in touch with the descent, and to intervene in an emergency with speech superimposed on the 'dotdash' channel.
These considerations lead to the crux of the pilot's role in automatic landing - the assumption of control in an emergency. The fundamental point at issue is the degree to which the pilot should "surrender his direct authority" during an automatic landing in anticipation of a low-probability emergency ${ }^{7}$.
As treated in the next article, this question can clearly be approached in several ways; but in the present context it does appear from the more recent parallel work on crisis control that the primary radar system, in particular, would provide an 'innstantaneous' and accurate independent check on the auto-matic-landing process. This means that the guidance control data supplied to the pilot should be in such a form that time is not required for analysis and interpretation, so that he can act without delay - due to distraction in an emergency.

## BOOKS

## Creative Animation and

 Graphics on the BBC Micro by Mike James: Collins, 212 pages, soft covers, $£ 7.95$, ISBN 000 383007 1. Covers animation, sprites, two-dimensional technical graphics (though not graphs and charts), three-dimensional graphics and painting. Examples are in BBC Basic. Many useful tips.Colour and Mono Television: volume 2 , display tubes, timebases, synchronising and power supply circuits, by K.J. Bohlman. Dickson Price Publishers Ltd., 235 pages, soft covers, $£ 8.95$, ISBN 085380155 X. Textbook for tv receiver technicians. Many of the circuit
examples relate to older sets, perhaps inevitably: there is little enough to see inside the latest ones. For those who collect spellings of 'Schmitt' (as in trigger), there is a novel one here. Schmidtt. Volume 1 deals with the tuner, i.f., video and audio stages; volume 3 , to follow, will describe colour decoders and digital circuitry.

## The Commodore 64 Roms

 Revealed by Nick Hampshire with Richard Franklin and Carl Graham: Collins, 215 pages, £8.95, ISBN 000383087 X. The bulk of the book consists of a reconstructed source-code listing of the Commodore roms, with extensive explanatory notes.Other chapters describe memory usage and list main entry points. Essential for the serious programmer

Commodore 64 Wargaming by Owen Bishop and Audrey Bishop: Collins, 252 pages, soft covers, £8.95, ISBN 0003830101. Programming techniques and listings for war games in a variety of settings from ancient times to the distant future, and how to adapt and extend them.

CP/M Techniques by Ken
Barbier: Prentice-Hall International, 224 pages, soft covers, $£ 19.35$, ISBN 013 1878573 (PBK). For the programmer with some knowledge
of assembly language. Covers programming techniques, $\mathrm{i} / \mathrm{o}$, tricks with discs (both floppy and hard) and customizing your Bios. Good clear explanations.

The Dandy Dipole by Daniel Bostick (WA2ZYR) and Donald Shatraw: Unadilla/Microwave Filter Company Inc. (6743 Kinne Street, East Syracuse, NY13057, U.S.A.), 24 A4 pages, soft covers, $\$ 3.95$. Good pactical guide for the radio amateur, although rather expensive. Discusses layout, matching, s.w.r., baluns and traps for dipoles from 1.8 to 28 MHz , with tables, illustrations and technical details of Unadilla products.


Triangle Digital Services Limited 100) Wood ST. Walthamstow, London ET7. England
Telephone. $01-520042$ Telex. 262284 (Ret. 775 )

CIRCLE 57 FOR FURTHER DETAILS.


ELECTRONICS \& WIRELESS WORLD MAY 1985


CIRCLE 55 FOR FURTHER DETAILS.


CIRCLE 69 FOR FURTHER DETAILS

## ELECTRONICS C.A.D.

## "ANALYSER"

PERFORMANCE ANALYSIS of LINEAR CIRCUITS using the BBC MODEL B AND SINCIAIR SPECTRUM 48K MICRO'S
Simulates Resistors. Capacitors, Inductors, Transformers, Bipolar and Fiedd effect Transistors, and Operational Amplifiers in any circuit confiquration.
Performs FREQUENCY RESPONSE ANALYSIS on Circuits with up to 30 Nodes and 100 Components, for Phase and Gain/Loss. Input Impedance and Output impedance.
ideal for the analysis of ACTME and PASSNE FHTERS, AUDIO, WIDEBAND and R.F AMPUFIERS, UNEAR INTEGRATED CIRCUITS etc., etc.
"ANAIISER" can greaty reduce or even eliminate the need to breadboard new designs. USED BY INDUSTRLAL AND UNIVERSTY R\&D DEPARTMENTS WORID WIDE.
VERY EASY TO USE. PRICES FROM £2O ACCESS OR AMERICAN EXPRESS WELCOME...
For further details write or phone NUMBER ONE.SYSEMS
DEPARTMENT WW
9A CROWN STREET, ST IVES
HUNTINGDON
CAMBS UK PE17
TEL 048061778 TELEX: 32339


Audio Measuring Instruments, Audio Amplifiers, Loudspeakers and Loudspeaker Components for the professional and enthusiast

RADFORD AUDIO LTD.
10 BEACH ROAD
WESTON-S-MARE, AVON BS23 IAU
TEL. 0934416033

Electronic altimeter rate of climb or descent. Groundlings can use it as a barometer. i

The author's version is fitted with straps for fixing to the pilot's knee. To the right of the altimeter display is the variometer, which is sensitive enough to reach almost to full-scale deflection in the lifts at Quadrant House. The black insulating tape is for vibration-proofing.

Froper aircoat instruments are hideously expensive because they have guaranteed accuracy over a wide range of environmental conditions. I fly a microlight aircraft and find little need for instruments which read way beyond the peformance limits of the machine. The design outlined here is a combined altimeter and pariometer (vertical speed indicator) which provides accurate and reliable readings to transition altitude ( 3000 ft ).

Naturally I have optimised the design to my own requirements, but selection of other resistor values would allow the circuit to be used as a weather barometer - there is enough long term stability - or as a straight altimeter reading to 20000 ft and beyond. It would be more difficult to incorporate a vario function on
the extended height scale, though.

The design is a true aneroid barometer. The pressure transducer, an MPX 100 manufactured by Motorola, was intended as a cheap and cheerful unit to measure the vacuum in an induction tract for automotive fuel injection systems. Designed to read over the range 0 to 15 p.s.i., it comprises a silicon strain-gauge configured as a Wheatstone bridge with an in-built vacuum chamber under the silicon die. Variations in air pressure cause flexing of the gauge resistors. This leads to a voltage change across the bridge of roughly $1 \mathrm{mV} / 1000 \mathrm{ft}$ ( 30 mbar ).
$\mathrm{IC}_{1}$ is a chopper-stabilised opamp connected in the differential mode with a gain of about 50. Thus the output at the
est poirt (pin 10
would show a 1 V
positive change for an increase in height of 20000 ft
Anyone who wishes to make a large-range altimeter should note this. A digital voltmeter module with a scaled f.s.d. of IV (reading 1999) connected to this point would make a very effective digital altimeter with a resolution of 10 ft . Note however, that liquid crystal displays tend to fade at the low temperatures associated with this altitude.
$\mathrm{IC}_{2}$ provides further voltage gain, abont 20 times with the resistor values shown, and also acts as a buffer for $\mathrm{IC}_{1}$. This is important because the current output of the 7650 chopper amplifier is very limited. The voltage change at pin 6 of $\mathrm{IC}_{2}$ is about

The pressure transducer can be ordered through Motorola distributors, including Hawke Electronics (45 Hamworth Road, Sunbury on Thames, Middlesex), who list it at £11.50 plus v.a.t. An equivalent device is the Sensym SPX100A, stocked by Farnell Electronic Components (Canal Road, Leeds LS12 2 TU ) at $£ 20.35$ plus v.a.t.


Pressure transducer is a low-cost device intended for the motor industry.
Temperature compensation is achieved by the 7650
chopping op-amp and a Wheatstone bridge circuit.
$1 \mathrm{~V} / 1000 \mathrm{ft}$, which is available to drive a meter movement for altitude indication. The resistor and preset associated with the meter movement are for altimeter calibration purposes. The original design used a 1 mA instrument; other movements could be used provided that a suitable scaling resistor chain is provided.


The altimeter was designed for low cost flying such as microlighting. Here the author prepares to get airborne in a 40hp Striker, G-MJPJ.

The main reason for wanting a large voltage change with height is that the vario circuit can then be very simple. $\mathrm{IC}_{3}$ is a transconductance op-amp (voltage in, current out) connected directly to a centre-zero meter movement.
A low-leakage tantalum bead capacitor couples the voltage changes at pin 6 of $\mathrm{IC}_{2}$ to the input of $\mathrm{IC}_{3}$. This translates any chang ing voltage into a static output current proportional to the rate of change of the voltage and deflects the centre zero meter, giving an accurate indication of rate of climb or descent
As shown, the circuit is sensitive enough to produce deflection by just running up or down a flight of stairs. In keeping with the requirements of hang gliders and microlights, it is much more sensitive than standard aircraft varios. Maximum output current from $\mathrm{IC}_{3}$ is controlled by the single programming resistor attached to pin 5.
Power is provided by a couple of PP3 batteries: total current drain is about 18 mA . The cascaded voltage regulator chain ensures that the 5 V supply which powers the transducer and other components is of extreme stability over the life of the batteries. The circuit will operate down to a combined battery voltage of
about 11V
My original was built on Veroboard and housed in a small ABS box. Layout is uncritical but care should be taken to avoid voltage gradients around the front-end components. Leakage through the board around the input pins to $\mathrm{IC}_{1}$ can cause 'noise' to affect the vario. A good soaking with Damp Start or other proprietary waterrepellent silcone compound is a good idea. Guard bands around the input circuitry may also be useful. The keener contructor not me - would want to make a proper p.c.b. using glass epoxy material, finally passivating with some sort of conformal coating.
Setting up the circuit is a little bit involved because most of the adjustments are interactive. Preset $\mathrm{R}_{1}$ controls temperature compensation. $\mathrm{R}_{2}$ provides coarse adjustment of output voltage. $\mathrm{R}_{3}$, instrument calibration, should initially be set to its minimum value.
The most pressing design problem with any electronic altimeter circuit is the removal of temperature drift. The silicon strain-gauge resistors in the transducer possess an extremely large temperature coefficient. The Wheatstone bridge connec-

# The new logic symbols - 3 

## This third and final part considers the practical aspects of implementing the standard.

Part 1 of this series gave a preview of a complex symbol in Fig. 8. This figure will now be explained in detail, and for convenience, is repeated as Fig. 27. It depicts what amounts to three separate logic functions in one symbol, and this is achieved by embedding common control boxes, as may be seen. This is, in fact, the 74690 device. An outer multiplexer (MUX) block has embedded within it a 4-bit register; the register block has embedded within it a 4 -bit synchronous counter.
For the moment let us leave aside why one should want to condense all these functions into one symbol and instead consider the meaning of the symbol, for in so doing, we shall also see how the same logic functions may be represented at different levels by means of the new logic symbols.

The easiest way to explain the logic symbol shown in Fig. 27 is to show a simplified lower-level representation of the same logic functions in Fig. 28. Here may be seen the three primary logic functions, and suddenly the whole thing becomes much more simple.

The following explanation of the device's function is applicable to either figure since identical labels have been employed. The counter/divider is a decade counter ( signified by the ' 10 ' after the 'CTRDIV' portion of the general qualifyiing symbol. The input on pin 13 selects mode (high for count or low for load). Pin 1 is an active-low counter-clear, and the ripple-carry output on pin 19 goes high at a count of $9(C T=9)$, subject to Anding with input ENT Parallel loading is performed at the $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ inputs when pin 13 is low (Mode 1), in response to a clock pulse at pin 2. Pin 2 has an alternative function signified by
that portion of the label to the right of the solidi: the counter is clocked by a pulse at pin 2 provided that pin 13 is high (Mode 2) and both enables (G3 and G4) are high. The ' + ' sign signifies an 'up' counter.
The 4 -bit D -type register is used to staticise the output from the counter when clocked by a positive-going pulse applied to pin 9 . This register may be independently cleared by a low on pin 8.

The output multiplexer selects either the output from the register if the select input on pin 11 is high (dependency label 21 true), or the output from the counter if the same pin is low (dependency label 21 false). Three-state outputs (signified by the inverted triangle on the four outputs) is enabled by a low on pin 12 (EN dependency labelled 23).
The above is readily followed with respect to Fig. 28, and if this is firstly understood, the explanation of the symbol in Fig. 27 follows by comparison. Note that Fig. 27 divides the three separate functions into what amounts to three vertical columns, and the inputs to each segment of the common control blocks correspond to those taken to the different common control blocks in Fig. 28. Because of the need to take an output from the inner (CTRDIV10) common control block (to pin 19) it has been necessary to introduce interconnection dependency in Fig. 27 (Z22). Particular note should also be taken of the two horizontal sections of the upper element of the array portion of the symbol; this enables the two alternative inputs to the multiplexer to be shown with their respective dependency labels; as explained previously, it is implied that the same rules apply for the lower
elements in the array (i.e. all bits feed a register and an output multiplexer)

## Getting the level right

I would now like to consider the practical aspects of different levels of representation. The forgoing example has clearly demonstrated two important points about the new logic symbology:
(a) the form is dependent upon the originator;
(b) the level of representation is variable for complex functions.

I believe that the level of representation should be selected with the purpose in mind. If the simplest representation for understanding the logic furction is required, then this must be a merit judgement. If the most compact form of representation is required. (say on a compact circuit diagram) then a complex condensed symbol may be used.

Let us consider the two alternatives shown in Figs 27 and 28. The device manufacturer may choose to use the complex symbol given in Fig. 27 because it takes less space on his data sheet. To the newcomer to the symbology it is more difficult to understand this than the expanded version given in Fig. 28 , but with regular use and familiarity, it is perfectly adequate. The device manufacturer could also legitimately argue that this complex symbol is an alternative to the simple and uninformative rectangle which would have been used prior to the new symbology, and that as such, it is a great improvement, since the full logic functions are represented (for those who can understand it).

On the other hand, if the purpose is to explain the purpose of the device to someone not

## Further reading

IEC Publication 617:12, Graphical Symbols for Diagranıs: Binary Logic Elements. (This is the international standard which has resulted from discussion by all participating countries, and this forms the basis for all complying national standards). Internationa Electrotechnical Commission, 1 Rue de Varembe, Geneva, Switzerland. British Standard 3939: Section 21,
Graphical Symbols for Electrical Power Telecommunications and Electronics Diagrams: Binary Logic Elements. (This is the relevant British Standard. At the time of writing, Issue 3 is expected to be published in the Spring of 1985, and should be identical in detail to the IEC publication mentioned above). British Standards Institution, British Standards House, 2 Park Street, London W1A 2BS (Telephone: 01-629 9000)
A Practical Introduction to the New Logic Symbols by Ian Kampel. (Butterworth Scientific Ltd)

Acknowledgements
The author is greatly indebted to the following: D.B.J. Hicks of the British Standards Institution,
C.J. Stanford and L. van Rooij, General Secretary and Deputy General Secretary of the International Electrotechnical Commission, for their invaluable assistance in the research work for my book, N. Warnock-Smith of Butterworth Scientific Ltd., for his kind co-operation in the use of illustrations from my book for this article, and J. Molyneaux, who penned the excellent illustrations.
(27)


## 29


(31)


Fig. 27 Example of a more complex symbol - a 4-bit synchronous counter with output registers and multiplexed 3 -state outputs (74690)
Fig. 28 Simplified representation of Fig. 27.
Fig. 29. Block diagram showing all the interface signals for a circuit.
Fig. 30. Pure logic diagram of Fig. 29.
Fig. 31. Logic diagram version of Fig. 30.
Fig. 32. Circuit diagram version of Fig. 31.

28


RCLR
RCK
expected to understand such a complex symbol as that shown in Fig. 27, then undoubtably the version shown in Fig. 28 should be used.
During the transitional period when old and new symbols will exist side by side (as they presently do in a single Texas Instruments data book), I think that manufacturers should provide both versions for a complex device such as that considered here. The compact form can then be used accurately by engineers on logic circuit diagrams, yet the simpler equivalent version is available in the data sheet to aid understanding (for them and the end-user). As time passes, the simpler circuits could gradually be phased out.

## Beware of academics

The new logic symbology is a sitting target for those academicallyminded persons who might get a kick out of purposely creating over-complex symbols. If the new logic symbols are to be a success, let no one take this particular path, for it will bring forth wrath! Understanding is the thing, especially over the next few years when so many are required to learn so much so quickly.

## Practical implemention in design groups

I shall finish this series with an example of how the new logic symbology might be used to good advantage in a design group where system engineers, equipment engineers and board designers have to work hand-inhand. To do this I have taken a portion of a more complex example given in my book on this subject (see Chapter 18 of the book).

Figure 29 shows part of a design requirement at the level that a system designer may wish to consider matters. He wants to multiplex two 8 -bit parallel data streams (DATA A and DATA B) and apply the output to a shift register (true, this is too simple for a system but a simple example is necessary - this represents a small portion of a much larger design requirement). The block diagram is how he might initially present the requirement. Figure 30 , on the other hand, is a representation of the same thing as he can now present the requirement employing the new logic symbols. Where the block diagram
left certain aspects in an ambiguous form (e.g. the polarity of the SELECT DATA, SHIFT, LOAD, and enable signals, not to mention the form of clock and direction of shift), the pure logic diagram makes everything clear. It also enables him to show the requirement for an end-around capability controlled by the EAEN input; the block diagram requires many words to make all this clear, whereas the logic diagram using the new symbols specifies everything.
Where the pure logic diagram given in Fig. 30 depicts the logic functions in the simplest manner without specific reference to methods of physical implementation, an equipment engineer might turn this into a more detailed logic diagram as shown in Fig. 31. This shows the detail of all logical relationships but does not, in this case, show the point-to-point wiring. It provides sufficient detail, however, for him to place a specific design requirement for a board designer to follow.

The design engineer receiving the logic diagram shown in Fig. 31 might then produce a circuit diagram such as that shown in Fig. 32. (This might be far from an optimum implementation of the design requirement, but does serve to show how a logic diagram and a circuit diagram can greatly differ in form). We can see here that for reasons best known to himself, he prefers to use two 4 -bit shift registers than a single 8 -bit shift register, and perhaps for economic, supply, or a host of other practical reasons, he prefers to build his own multiplexer with And or Or gates than use multiplexer devices.

## Improved clarity

The rather pathetic design implementation shown in Fig. 32 is really chosen to illustrate one of the tremendous advantages of the new logic symbology. Let us now consider the problem in reverse, and assume that we are stuck with this circuit diagram and wish to clearly represent this in a handbook. Figure 31 does just that, in a much simpler form, yet still provides all the necessary information about overall functions including all input and output lines; all that is missing is implementation detail. Figure 30, on the other hand, provides an even simpler representation of the overall function if individual
lines need not be shown. Now whilst words may be aded to complement either the logic diagram or the pure logic diagram to explain it more simply, they cannot convey any extra information about logic function.

## Conclusion

These final examples show the great features of the new logic symbology. It is both concise and precise. Amazingly, this statement holds true no matter what the level of representation chosen.

This article can only scratch the surface of the new symbology, and as you will have seen, this is far from a standard for drawing office personnel - it is for engineers.

## Electronic altimeter

from page 38
tion cancels much of the temperature drift, but the bridge is essentially unbalanced towards the high end of the pressure range.

The full drift voltage with temperature is developed as a large common-mode variation on the input to the differential amplifier. The basic 7650 chop-amp has an exceptional common mode rejection ratio. This is artificially reduced by unbalancing the input circuit through adjustment of $\mathrm{R}_{1}$, the temperature compensation trimmer, in a direction which cancels any change in the differential voltage across the transducer with temperature. The standing voltage on pins 2 and 4 of the transducer is about 1 V : this changes with temperature at the rate of (roughly) $1 \mathrm{mV} / \mathrm{K}$.

Having checked that the standing current of the assembled unit is in the region 15 to 20 mA , connect a voltmeter to the test point on $\mathrm{IC}_{1}$. This should read in the region of 0.5 to 2.5 V with $R_{1}$ at mid-setting. Adjust $\mathrm{R}_{2}$ such that the output voltage of $\mathrm{IC}_{2}(\operatorname{pin} 6)$ is around 2 V . Warm the transducer gently with a hair-dryer and note the direction of any change in output voltage from $\mathrm{IC}_{2}$. Adjust $\mathrm{R}_{1}$, noting the direction of adjustment. This will alter the standing output voltage from $\mathrm{IC}_{2}$. Readjust $\mathrm{R}_{2}$ to bring the output voltage back to 2 V .

Allow the transducer to cool back to room temperature. Warm (gently!) the transducer once more and note if temperature drift is increased, reduced,
reversed or eliminated. Repeat the process until any sensitivity to temperature is eliminated. Make sure that the voltage on the IC, test point (pin 10) does not go outside the range 0.5 to 2.5 V .

With temperature stabilization achieved, calibrate the instrument using $R_{3}$. This is best done by comparing readings with that of a certified instrument. Set $R_{5}$ to mid position. Set $\mathrm{R}_{3}$ to minimum. Adjust $\mathrm{R}_{2}$ such that the readings on both instruments are the same at ground or airfield level. If the airfield has an altitude of above 100 ft , readjust both instruments such that both ground level readings are just under this figure.

Fly both instruments up to 1500 ft or more. The electronic instrument should considerably over-read. Note the reading of both instruments accurately.

On the ground once more, use $\mathrm{R}_{2}$ to reproduce the meter deflection achieved at the known altitude. Back off $\mathrm{R}_{3}$ so that the instrument now reads the same as the certified instrument did at that altitude. Re-adjust $\mathrm{R}_{2}$ to bring instrument within the normal adjustment range of $R_{5}$, the 'altimeter set' control. Finally, carry out a flight check of the instrument against the certified altimeter.
$\mathrm{R}_{4}$ zeroes the vario. If a less sensitive rate of climb/descent indicator is required, simply reduce the value of the capacitor connected between $\mathrm{IC}_{2}, \operatorname{pin} 6$ and $\mathrm{IC}_{3}$. Happy flying.

Not only in height is the range of Clark Masts wide but also in the field of application. Every model, mechanical or air-operated, has been created in response to customer requirement and proved in service; for over 25 years. Major users in the Communications Industry, Broadcosting, Civil Authorities and Military Commonds world wide, have all contributed and benefited from Clark Masts reliability and ceaseless engineering improvement.


## LOOK AHEAD!

## WITH MONOLITH MAGNETIC TAPE HEADS

 VIDEO HEAD REPLACEMENT KIT DOES YOUR VCR GIVE WASHED OUT NOISY PICTURES - IT'SPROBABLY IN NEED OF A NEW HEAD - FAST FROM OUR EX-STOCK PROBABLYIN
DELIVERIES.
SAVE fffs ON REPAIR CHARGES
OUR UNIVERSAL REPLACEMENT VIDEO HEADS FIT ALL MODELS OF OUR UNIVERSAL REPLACEMENT VIDEO HEADS FIT ALL MODELS OF
VHS OR BETAMAX VCRs. FOLLOWING OUR REPLACEMENT GUIDE AND WITH A PRACTICAL ABILITY, YOU CAN DO THE WHOLE JOB IN YOUR OWN HOME WITH OUR HEAD REPLACEMENT KIT.


KIT CONTAINS - NEW VIDEO HEAD, 5 CLEANING TOOLS, HEAD CLEANING FLUID, CAN OF AIR BLAST, INSPECTION MIRROR, ANTISTATIC CLOTH, VHS/BETAMAX MAINTENANCE MANUAL, CROSS HEAD SCREWDRIVER, HANDLING GLOVES, MOTOR SPEED DISC, SERVICE LABEL, HEAD REPLACEMENT GUIDE.
VHS KITS $£ 63.25$, BETAMAX KIT $£ 75.25$. Prices include P\&P and VAT HOW TO ORDER: PLEASE STATE CLEARLY THE MAKE AND MODEL OF YOUR RECORDER THERE ARE TWO VERSIONS OF THE VHS OF YOUR RECORDER. THERE ARE WO VERSIONS OF THE VHS HEAD AND YOUR ORDER CAN BE PROCESSED FASTER IF YOU CHECK THE SIZE OF THE CENTRE HOL
BE EITHER 5 mm OR 15 mm DIAMETER.
CATALOGUE: For our full Cataloque of Replacement CATALOGUE: For our full Catalogue of Replacement
Video and Audio Cassette/Reel to Reel Heads, Motors, Video and Audio Cassette/Reel to Reel
Mechanisms, etc. Please forward 50p P\&P.


THE MONOLITH ELECTRONICS CO. LTD. 5-7 Church Street, Crewkerne, Somerset TA18 7HR, England Telephone: Crewkerne (0460) 74321

Telex: 46306 MONLTH G


CIRCLE 37 FOR FURTHER DETAILS.

| TEKDUAL TRACE THE ANSWER <br> OSCILLOSCOPES BY ANY MEAS m |
| :--- | :--- |

## Now! Tek quality and expert advice are just a free phone callaway...

Our National Order Desk line gets you fast delivery of the industry's leading value/performance portables... and technical advice from experts!

The 60MHz 2213A, 2215A and the 100 MHz 2235 and 2236 offer unprecedented reliability and affordability, plus the industry's first 3 year warranty on labour and parts, CRT included

All 2200 series scopes have the bandwidth for digital circuits and sensitivity for low signal analogue measurement The sweep speeds for fast logic families, and delayed sweep for fast, accurate timing measurement. The top of the range 2236 combines a counter/timer/DMM with the scope to provide fast, easy measurements for voltage, resistance and temperature


Gould ...Innovation and Quality in Oscilloscopes

ELECTRONICS APPLICATIONS


## Dual-Purpose Storage...

The Gould 1421 Digital Storage
Oscilloscope (DSO).
A Dual-Purpose DSO for Electronics and Transducer applications. Compare the benefits of the low-cost 1421 and its suitability for two diverse application areas, with the performance of our competitors. The 1421 has a storage bandwidth up to 20 MHz - in single and dualchannel modes.
Take a look at the heavyweight performance details of this compact, lightweight DSO

- No trace degradation with time.
- Storage of pre-trigger information.
- 2 MHz 8 -bit ADC for transient capture.
- 20 MHz repetitive signal storage.
- 1k store per channel.
- $\times 10$ post-storage expansion
- Pen recorder output.
- Single channel trace hold for waveform
comparison.
- Conventional 'scope operation up to 20 MHz .

And all the usual benefits of a Gould Digital
Storage 'Scope.
Ask for more details now from
Gould Instruments Ltd., Roebuck Road, Hainault, Iford, Essex IG6 3UE.
Telephone: 01-500 1000. Telex 263785.


Electronics

CIRCLE 56 FOR FURTHER DETAILS

that there is a real difference at Cricklewood Electronics
That's why you should never be without the FREE CRICKLEWOOD ELECTRONICS COMPONENTS CATALOGUE, for sheer varety. competitive prices and service from the U.K. 's number one $100 \%$ component shop. No gimmicks, no gadgets or computers, just components. millions of them, all easily available by matl order calling or credit card telephone orders. Just pick up the phone (or a pen) 10 get you FREE copy now (ino SAE required) You have nothing to lose

## CRICKLEWOOD ELECTRONICS LIMITED

40 Cricklewood Broadway, London NW2 3ET
Tel: 01.450 0995/01-452 0161
Telex: 914977



> This instrument is intended as a labour saving device in the photographic darkroom in the preparation of enlargements on bromide or similar (black and white) printing paper.
by J.L. Linsley Hood

Fig. 1. Layout of reflex automatic photoelectric enlarger timer system

In conventional photographic practice, it is necessary to determine the required exposure of the paper to compensate for variations in the density of the negative, the light output of the enlarger, the aperture of the enlarging lens, and the activity of the print developer, and this is normally done by making a series of test strips having graded exposures, so that the most satisfactory exposure can be determined subsequently by inspection.
The only snag with this practice is that it is time consuming, and if a large number of prints is to be made from negatives having differing optical densities, a large part of the darkroom time may be occupied in making test strips for each negative.
Techniques which have been evolved for minimising this
wasted time, determining the required exposure by optical or photoelectric techniques, have relied in general upon the use of some device which could be moved into the region of the projected image so that the enlarger exposure timer could be set, prior to the exposure, to give an appropriate exposure duration. My own thoughts, however, had turned to the possibility of a system which measured the light scattered back from the surface of the printing paper so that the printing exposure could be controlled 'in real time', as contemporary phraseology would have it.

This has the advantage of being much quicker in use, since all that is necessary, when the negative is in place and correctly focussed, is to place a piece of printing



Fig. 2. Basic circuit of timer

Fig. 3. Complete circuit of enlarger timer
paper in the correct situation, and press the 'on' button. The enlarger then switches on for a suitable period, and when the photoelectric sensor judges that an adequate exposure has been given, switches the lamp off again.
I have had such a system in use in my own darkroom for very may years, since I tend to use a 35 mm camera as a photographic diary,
and I like to print the majority of the resultant negatives to somewhat larger than contact print size. My earliest model used a photomultiplier tube/lens assembly, but this was delicate and prone to damage, and I have, in consequence, revised and updated the system over a period of many years to take advantage of improvements in electronic and photocell technology.
Although a similar system could be evolved for colour printing, there are additional problems there, associated with the colour sensitivity of the photocell in use, and I have not sought to confront these, since my own interests lie mainly in the field of monochrome photography.

## Practical problems

The use of any reflected-light photoelectric system obviously leads to the possibility of exposure errors due to variations in the amount of light reflected from the surface of the bromide paper sheet, in the general layout shown in Fig.1, depending on whether the paper is glossy or
matt in surface finish. However, provided that one is consistent in the use of a particular paper type in the making of a series of prints, differences of this kind are merely reflected in apparent differences in paper sensitivity - which will, in any case, probably vary from one batch of paper to another.

A more basic snag, assuming that the photocell viewing system has been chosen so that it 'sees' the whole of the desired printing area, is that the system operates by averaging the print to a notional 'grey' tone.

While this averaging effect, in determining the exposure which is required by the sensitive paper, works surprisingly well with the majority of 'normal' subjects, where the amount of dark tone is balanced by a similar quantity of ligher area, there are, clearly, occasions when the expected appearance of the picture will be light - such as where the bulk of the picture area is occupied by sky, or other lighttoned objects. There will also be occasions when the overall tone of the picture will be very dark,

and again the exposure determining system cannot be expected to give an exposure which will produce this effect.

It is therefore necessary to build into the circuitry some control, at the disposal of the user, which will allow him to decide whether he wishes an overall light, or overall dark result. Fortunately, most enlarging papers allow some measure of latitude in printing exposure, which can be compensated for by adjustment to the developing time of the print, where complete development is usually assessed visually, so complete precision in exposure is not normally imperative. Experience suggests that with printing papers of normal contrast an exposure error of $\pm 30 \%$, relative to an ideally correct exposure is tolerable.
In the contemporary version of this instrument, a cadmium selenide photocell is employed, as $\mathrm{R}_{24}$ in Fig. 1, housed in a simple tubular holder, which permits a field of view of about $30^{\circ}$, mounted on a bracket on the enlarger column below the enlarger lens. It should be remembered in this context, though, that although it is desirable for the photocell to 'see' the whole of the required exposure area, in order properly to average the subject matter, this metering function also requires the photocell to sit at a constant distance from the printing area.
So, while it is convenient, in practice, for the photocell to move up or down with the enlarger head, if one is making different sizes of prints, in this case it is necessary to recalibrate for each working size. If, on the other hand, it is merely desired to make a similar sized print with the head in another position, thereby giving differing effective enlargements, it is desirable that the photocell should remain in the same position relative to the sensitive paper, when the instrument calibration will remain constant.
To avoid difficulties due to ambient light during the exposure of the paper, the switching circuit in the timer is arranged to switch off the darkroom safelight during the time that the enlarger light is switched on, though if the enlarger is situated in a position where the safelight does not shine very strongly on the enlarger easel, this provision may be omitted.
The effectiveness of the system may be judged from the observation that a series of
prints, with the enlarger head in a constant position, and with the enlarger lens head in a constant position, and with the enlarger lens aperture adjusted between $\mathrm{f} / 2.8-\mathrm{f} / 16$, (an exposure range of $64: 1$ ), could be made which were identical in density and contrast, merely by allowing the timer to adjust the exposure duration in response to the light reflected to the photocell.
Since there are occasions when a manual timing facility would be

## Circuit design

The basic circuit is shown, in very simplified form in Fig. 2. In this, a capacitor $\left(C_{1}\right)$ is charged through either a variable resistor $\left(R_{1}\right)$ to give a manually set time exposure, or through a photocell to give an automatically determined one. The positive-going voltage change, through $\mathrm{IC}_{1 \mathrm{a}}$ and $\mathrm{IC}_{1 \mathrm{~b}}$ is used to trigger a resettable thyristor and actuate the switching relay RLA1, which is normally energised in the 'lamp off condition. A switch in series with the relay allows the enlarger lamp to be switched on for the purposes of inspection of the negative or for focussing.

Because the possible range of illumination levels of the photocell is low, since it is only actuated by light scattered back from the surface of the sensitive paper, and this itself may be relatively dimly lit, it is necessary to use a very sensitive cell. Cadmium selenide photoconductive cells, such as those manufactured by Silonex (formerly 'NSL'), offer an adequate low-level light sensitivity, coupled with an adequate speed of response at these levels to permit a timely cut off of enlarger illumination.
Unfortunately, the penalty paid is that the total current flow through the photo-conductive cell is relatively low, even at moderately high voltages applied to the cell, so the timing circuit must operate at a fairly high impedance. This requirement is easily satisfied by the use of fet input op-amps and polycarbonate timing capacitors.
The desired linearity of the RC charging circuit is attained, even with a simple variable resistor, such as $\mathrm{R}_{1}$ in Fig. 2, by using $\mathrm{IC}_{1(\text { a })}$ as an active integrator. In this configuration, although the potential across the capacitor continues to increase, as it charges, the actual potential drop across the photocell or $\mathrm{R}_{1}$ remains constant, leading to a linear charging

rate.
The 'gain' of the system; in the sense of the magnitude of the voltage required to be developed across $C_{1}$ before the thyristor is triggered; is set by the ratio of $\mathrm{R}_{3}: \mathrm{R}_{2}$, a value which is determined by the user, and the system is 'reset' following a timing cycle by switches which discharge $\mathrm{C}_{1}$, and return the thyristor to its formerly non-conducting state.
Many photographic timer systems, devised by electronic engineers for the use of photographers, go to considerable lengths to ensure that the precision of the timing cycle is as high as present circuit technology allows. While I would not wish to decry this attempt, it is apparent that accuracy in timing is usually both more costly to achieve, and more elaborate in its method, than that necessary in a less precise system, and if one is thinking of the cost to oneself, in time and money, of such an exercise, the question inevitably arises as to whether it is really worth all the effort.
I make this point as a photographer, since it is very clear to me that changes, of only a few volts, in the supply voltage to the enlarger lamp, or of a few degrees in the temperature of the developer bath, or of the oxidation of the developer solution, or of the quantity of accumulated bromides in the solution as a consequence of its repeated use, from one print to another, or even of the duration of the print development, can all bring about variations in the print density which greatly exceed those likely to arise through inaccuracies in the timing circuit.
With this reservation in mind, I

Fig. 4. Author's prototype unit, which can be mounted on a wall. Leads connect to sockets below panel.


Fig. 5. Tubular holder for photosensitive cell giving a 30 degree viewing angle. Terry clip fixes to enlarger column.
have chosen to employ a circuit which is adequate for the purpose in hand, and with no greater complexity or cost than is demanded by its specification, and I have shown the final circuit employed in Fig. 3.
This follows the circuit layout shown in Fig. 3, but with a few additional adjustments being provided. In order to obtain a reasonable operational stability, I have derived a $\pm 15 \mathrm{~V}$ stabilised power supply from the mains by the use of a pair of 15 V i.c. stabilisers, $\mathrm{IC}_{2}$ and $\mathrm{IC}_{3}$, while a simple voltage doubler circuit, driving a pair of Zener diodes ( $\mathrm{D}_{8}, \mathrm{D}_{9}, \mathrm{D}_{14}$ and $\mathrm{D}_{15}$ ) generates the highervoltage, very low-current supply for the photo-conductive cell.
'Subject control' (light, normal or dark) and 'Auto/Manual Timing' is controlled by the input switch $S_{2 a, b, c,}$ of which the first positions effect only the automatic (photocell controlled) circuit operation. I have chosen the timing capacitors in these positions to give exposures in the range $1: 3.3: 10$, as offering, in practice, a reasonable approximation to the average print density of a high-key, normal, or lowkey presentation.
In the manual timing position of this switch, a chain of resistors, connected across the poles of switch $\mathrm{S}_{4}$, $\left(\mathrm{R}_{2}-\mathrm{R}_{12}\right)$, provide a sequence of timing durations in the ratio $1: 1.4: 2$, etc., which offers the practical convenience that each step will allow a comparable, and useful increment in print density, and a two-step movement, up or down, will double or halve the given exposure.
A preset control, $\mathrm{R}_{25}$, allows the timing period to be adjusted

[^2]to the correct seconds value, with the 'Trim' pot. $\mathrm{R}_{26}$ set in the middle of its travel. In the other limb of switch $S_{2 c}, R_{27}$ gives a 'Paper Speed' control. I will discuss the functions of these controls later, when I describe its method of use.
The diode chain $D_{1}-D_{3}$ prevents the input voltage applied to the input of $\mathrm{IC}_{\mathrm{la}}$ from becoming too positive when the timing cycle continues beyond the normal time of completion, and the diode chain $D_{5}-D_{7}$ sets a $2 V$ nominal trip level for the 'resettable thyristor' $\mathrm{Tr}_{1}, \mathrm{Tr}_{2}$ returned to its non-conducting state by $\mathrm{Sl}_{\mathbf{c}}$.
A minor snag which arises when transistors are coupled, in the manner shown, to simulate thyristor action, is that, because of the high current gains and high transition frequencies of the devices which must be used, the transistor pair is very sensitive to inadvertent triggering by short duration, fortuitously arising voltage spikes at either its input or its output connections.
The capacitors $\mathrm{C}_{6}, \mathrm{C}_{9}$ and $\mathrm{C}_{12}$, which should be non-polar types, are included to avoid this possibility. Resistors $\mathrm{R}_{17}$ and $\mathrm{R}_{19}$ are included to discharge the supply line capacitors following switch off. The photocell $\mathrm{R}_{24}$ normally performs this function for the +57 V line and $\mathrm{R}_{20}$ limits the possible current flow through $\mathrm{R}_{24}$ and $\mathrm{D}_{1}-\mathrm{D}_{3}$ under strong illumination conditions.
As mentioned earlier, the darkroom safelight is switched off during the time that the enlarger lamp is 'on'. This function is accomplished by the relay RLA1.
The whole unit is mounted in a small sloping panel earthed metal box, fixed to the darkroom wall, close to the enlarger, to prevent actuation of the switches causing undesired enlarger vibration, and is shown in Fig. 4.

## Method of use

Over the years I have experimented with various photocell housings, and have ended up with the very simple layout shown in Fig. 5. This is held on the enlarger column with a 'Terry' clip - since it is very light, strong fixing is unnecessary - so that it can be positioned as I have sketched in Fig. 1 and receive light from the desired printing area.

Stray light around the edges of the negative, which would give misleading results, is masked off at the negative stage - this is, in
any case, good photographic practice if the worker wishes to preserve the highest degree of brilliance and sparkle in his prints.
Setting up the 'manual timing' chain to give time intervals reasonably close to the specified values should not be too difficult if one chooses a time duration position of, say, 16 or $22 \mathrm{sec}-$ onds, and then adjusts $R_{25}$ to give the best fit. The 'Trim' control, which should be positioned in the centre of its travel for this purpose, is then used, in practice, if, for example, a print exposure duration of 8 seconds is thought to give slightly too light a result, and 11 seconds is thought to be over-generous in exposure.
The use of the 'Automatic' function, may, however, call for a little more experimentation, since the light falling on the photocell is very dependent on the geometrical layout of the enlarger easel and photocell mounting. Ideally, a 'normal' type of print, which will, again depend on the photographers typical subject preference, should be rendered to its best advantage with $\mathrm{S}_{2}$ in the position which gives $\mathrm{C}_{3}$ as the timing capacitor, and with the 'Paper Speed' control in the middle of its travel for a normal paper/developer combination. This will then allow some scope for compensation for print variables in normal use.
If it is found that $\mathrm{C}_{2}$ or $\mathrm{C}_{4}$ give better 'normal print' results, with the photocell assembly employed, the values of $\mathrm{C}_{2}, \mathrm{C}_{3}$ and $\mathrm{C}_{4}$ can be modified in the light of these experimental results. It should be remembered that papers do vary quite a bit in effective speed, from one to another, with modern 'resin-coated' bromide papers being the fastest, fibre-based chlorobromides being the slowest, and with variable contrast papers (relying on light filtration for change in contrast) lying somewhere between these extremes.
It is also useful to remember that papers will have a higher effective speed in a 'PQ' than in an 'MQ' developer, and with a warm developer, as compared with a colder one, and with developer which is fresh, as the beginning of the print session, as compared with the rather more tired solution of an hour or two later, so too hasty a judgment of component value modifications for $\mathrm{C}_{2}-\mathrm{C}_{4}$ or $\mathrm{R}_{27}$ should not be made.

## OSCILLOSCOPES

## Ifit wasnit Philips you might thinkit was a trick

With a price-tag of just £286*, Philips new high-performance dual-trace PM 3206 oscilloscope won't make your money do a disappearing act.

But its remarkable specification migh: make you think it had been pulled from a magician's hat. In fact, the only trick Philips has up its sleeve is the ability to conjure up modern design and production techniques to keep costs down without compromising quality.

The formula of features for the 15 MHz PM 3206 includes:

- Easy-to-use, reliable triggering, even on complex waveforms
- Wide sensitivity range $5 \mathrm{mV}-20 \mathrm{~V}$
- Bright CRT with excellent display
- Rcbust construction, tested to withstand the harshest environments
Circle the magic number today and we'll send you further details.


Authorised distributors:
Electronic Brokers (01-267 7070)
Philips Service (01-686 0505)
Philips Test and Measuring
Pye Unicam Ltd
York Street Cambridge CB1 2PX Tel (0223) 358866 Telex 817331

OS14

## The new PM 3206-it's magic!

## XIXIN VME BACKPLANES SETTHE STANDARD

XIXIN VME Backplanes from Sarel are available to meet two functions. The XJI Backpanel is the main VME Bus, the XJ2 is the I/O Expansion Bus.
The 6 layer XJI VME Bus is designed and manufactured to conform with the highest VME and IEEE Specifications.Plug-in method of termination allows designers freedom to integrate VME with the P896 and P1000 IEEE standards.

- Full width use of $19^{\prime \prime}$ sub-rack means no loss of card positions, allowing a full 21 slots and the system can be made to conform to standard European architecture.
- The XJ2 3 layer I/O Expansion Bus has been designed to allow a controlled characteristic impedance of approximately 100 ohms unterminated.Both backplanes available in standard slot capacities, 4, 5, 7, 9 and 21 .


range of ICOM marine radio-telephone equipment, from left to right: the M700 HF SSB transceiver offers long-range capability at a sensible price. The M5 VHF hand-portable, quick channel access with its push-button keyboard. M12 and M2 VHF handportables, 12 and 56 channels respectively using knobs or thumbwheels. Finally the M80 VHF radio-telephone, a wide range of options are available for this and all other ICOM marine radios.

ICOM radios are versatile, rugged, water-resistant and most important of all - reliable.

More detailed information is readily available from your local ICOM dealer or direct from Thanet Electronics LId.

## Thanet Electronics Ltd <br> Suppliers of Radto Communication Equiprnent to the Ministry of Defence.

143 Reculver Road. Herne Bay. Kent. England. Tel(O227) 363859/363850. CIRCLE 48 FOR FURTHER DETAILS.


Micro-tel is a system of integrated UHF radio/modems ruggedly constructed and suitable for a wide range of 'line of sight' data communications applications

Features:

- UHF Home Office type approved radio (MPT 1309)
- 5 Radio Channels
- 1200 BAUD Modem/Demodem
- 12 Volts/250 m Amps Power
- RS232 Data Input/Output
- Small size $145 \times 210 \times 60 \mathrm{~mm}$

Micro-tel offers a simple and reliable solution for:

- Building to building computer comms
- Instrument to computer data links
- Industrial systems data links

Dealer and OEM enquiries welcome.

## MEASUREMENT DEVICES LIMITED

Silverburn Crescent, Bridge of Don Industrial Estate, Aberdeen, AB2 8EW Telephone: (0224) 824141 Telex: 739506 (MDLAB) CIRCLE 15 FOR FURTHER DETAILS.

## IT WON’T COST YOU A PENNY.

## BEING WITHOUT ONE COULD COST YOU DEARLY.

The 1985 Midwich catalogue is now available,
absolutely free
It's the most comprehensive catalogue yet, containing many of the latest and very best computer components on the market, at highly competitive Midwich prices and a service that is second to none.

Which means it will provide your organisation with a vital source of information including numerous
technical specifications and pin-out diagrams
Fill in the coupon and send for your copy today
You'll soon discover why no organisation can afford to be without one
$\qquad$
Reply to Dept Eww 6 Midwich Computer Company Limited Giray Road, Diss, Norfolk IP22 3EU

Organisation/Comoany
Position

Postcode
Tel. No


CIRCLE 33 FOR FURTHER DETAILS.

## MICRO ENGRAVER <br> MICROPROCESSOR-CONTROLLED ENGRAVING MACHINE



STEPPING MOTOR XYZ MACHINE. Complete with microprocessor controller and software programmed ro engrave alphabet and numbers. Also features easy operator programmable XYZ sequence to engrave, drill or cut out special shapes and logos. XY axis travel $400 / 400 \mathrm{~mm}, Z 50 \mathrm{~mm}$ with 90 watt spindle drive motor. Qwerty touch-keyboard, liquid crystal display. Machine supplied complete and ready to manufacture labels.

70 Leek Road, Congleton, Cheshire CW 12 3HU - 0260275127

## 2. MITSUBISHI



GaAs FETs
FROM STOCK
Aspen Electronics Limited
UK representative for Mitsubishi Electric
2/3 Kildare Close, Eastcote, Ruislip Middlesex HA4 9UR
Tel: 01-868 1188 Tlx: 8812727

## Pulsed hot-strip measurements

The origin of a metallic resistor's non-linearity lies in its temperature coefficient and the thermal properties of the substrate, which is usually an insulator. Thermal properties of the insulator, such as thermal conductivity and thermal diffusivity, are determined by the circuit shown inthe small diagram.
A train of pulses of a fixed period and duty cycle is applied to the non-linear resistor, $\mathrm{R}_{\mathrm{s}}$, through a suitable blocking capacitor. Average voltage across $\mathrm{R}_{\mathrm{s}}$ is then measured with a digital voltmeter after filtering. This average voltage should be zero if there is no non-linearity as the capacitor causes a base-line shift to ensure that no net charge can flow over a complete period.
Measurements of this kind at low frequencies (large duty cycle and long period) are however made impossible owing to the need of a prohibitively large capacitor, especially if the sample resistance $\mathrm{R}_{\mathrm{s}}$ is small.
We designed a new circuit to overcome this difficulty. It

simulates the action of the blocking capacitor, irrespective of period length or duty cycle. Essentially, the circuit consists of two current sources, one positive, the other negative, and so generates a base-line shifted waveform of the type shown in the small diagram.

The positive and negative current sources are switched on alternately. Linear resistor R has a value equal to coldsample resistance $R_{s}$. Amplitudes of the current pulses are adjusted using R, the variable power supplies and the $10 \mathrm{ks} \mathbf{I}^{\prime}$ potentiometer so that the
voltmeter reads zero. The required average voltage across $\mathrm{R}_{\mathrm{s}}$ is then obtained using the switch to bring $\mathrm{R}_{\mathrm{s}}$ into the circuit. Transistors $\mathrm{Tr}_{1,2}$ are power devices.
Ijaz-ur-Rahman
Quaid-I-Azam University
Pakistan


## NiCd charger

An indicator on this simple 45 mA charger for AA cells shows whether or not charge current is flowing and not just that the charger is switched on. Two further diodes protect the i.c. and led against reverse bias when power is removed.
A.R. Walker

Brighouse
Yorkshire

## Cheapest ZX81 memory expansion

Owners of a ZX81 with a 64 K memory expansion can use this tip to increase the amount of memory available for machinecode programs by 16 K . Hardware required is just a resistor and diode.

Machine-code programs cannot be run above 32 K because of the way in which the tv-display output is produced. Each time the u.l.a. senses that address line $\mathrm{A}_{15}$ is high and $\overline{\mathrm{M1}}$ is low, indicating that the processor is looking for an instruction op-code fetch in the 32 to 64 K area, it starts working on the display.

My solution is to change the circuit so that the u.l.a. $\mathrm{A}_{15}$ input only goes high when both $\mathrm{A}_{15}$ and $\mathrm{A}_{14}$ from the processor are high. The modification requires cutting the track carrying $\mathrm{A}_{15}$ close to the u.l.a. and adding a resistor and diode.


On an issue three computer, the most convenient position for these components is in the u.l.a. socket under the i.c.

This change makes it possible to run machine-code programs all the way up to 48 K . The disadvantage is that Basic programs have to be shorter than 16467 bytes, excluding variables, to keep the display file below 32 K . Is there a ZX81 program that doesn't fit in that space?
Christofer Tolis
Stockholm
Sweden


## One-in-n-way latch

Contact debounce, a predetermined power-up setting and simplicity are features of this one-in-n-way push-button latch. When any button is pressed, its corresponding button line is taken low, forcing all others high. Only one line can be low at a time.
Resistors are included to prevent shorting of the gate outputs and an optional RC element makes sure that the first line is selected at power up. Further gates and button lines may be added following the same principle, i.e., each gate must have inputs connected to every button line except its own.

A Nor-gate version with active-high output is shown in the second diagram. The circuit seems suitable for monolithic implementation since the inputs and outputs can share the same pin if necessary as shown in the third diagran. Using this method, a 14-pin dil package could provide latching and debounce for a 12 -way switch. Power-up setting would be achieved as in the first diagram using an external RC element. Louis D. Thomas
Comdial Comms Systems
Pentwyn
Cardiff

## Resistance-indicating continuity tester

Continuity testers giving simple on/off indications have always been useful for circuit checking. There are many occasions though when a continuity indicator will give a short-circuit indication despite a significant
resistance between its terminals. This instrument gives an audible indication of residual resistance of the nominal short circuit and its open-circuit probe voltage is only 10 mV .

Two TL062 i.cs form a simple oscillator whose input frequency is determined by the small input voltage fed to it by the 3140 through $100 \mathrm{k} \Omega$ resistor.

Input to the 3140

comes through a resistive bridge.

When the probes are open circuit, the bridge is in balance (set by a $500 \Omega$, ten-turn potentiometer) and no output occurs. When the probes are shorted, the bridge becomes totally unbalanced and there is a high-pitched sound from the piezoelectric buzzer. Any small resistance between the probes moves the bridge toward its balanced condition and reduces the pitch of the note.

Residual resistance ranges other than $10 \Omega$ are produced by changing the $10 \Omega$ resistor. We found that using two resistors of 1 and $10 \Omega$ and selecting them by a switch is most useful.
T. Lavin and R.T. Irish

Royal Military College of
Science
Swindon
Wiltshire

## Shaft encoder interface

This is an interface between an optical incremental shaft encoder and a counter, designed as a finite-state machine. Although finite-state machines have been used for a number of years to implement sequential logic functions, the cost and complexity of designs using standard logic gates and bistable i.cs has restricted their range of applications. However, availability of read-only memory (rom) at reasonable cost makes the state machine an attractive solution to sequential logic design.

This interface drives 74190/ 191-type synchronous counters and asynchronous 74192/193 types. It uses a 74S288 32-byte prom programmed with the data shown later. Five outputs are provided: COUNTUP and COUNTDOWN, which may be used with 192/193 counters, and ENABLE and UP/DOWN for use with 190/191 counters. Outputs for asynchronous

counters are taken through latches since the rom outputs are strictly speaking only valid on the clock edge.
For 190/191 counters, the clock input must be connected
to the system clock. The two outputs from the shaft encoder (must be t.t.l. compatible) are connected to the $A$ and $B$ inputs of the interface. A further input, $F$, allows the circuit to

Data for shaft encoder prom.

## Address Data

| 00-07 | 1 C 10 |
| :---: | :---: |
| 08-0F | 1F 1F 1F 1F 1E 1E 1E 1E |
| 10-17 | 1 C 101 C 08091 l 11 |
| 18-20 | 13 1F OB IF IE OA 1E |

respond to either a single edge of one input ( F low) or to both edges of both inputs ( F high), giving approximately four times greater resolution.

In certain applications, it may be important to have each count representing exactly the same amount of shaft rotation and this will not be achieved if counting is performed on every edge since the output edges will not be evenly spaced. The system clock runs at roughly 5 MHz , which allows the interface to operate correctly with a 1000 -line shaft encoder rotating at up to $150000 \mathrm{rev} /$ min . The design is easily modified for use with eproms, but the speed advantage is then lost.
M.H.S. Winder Dept of Engineering University of Reading

## Divide-by-clock circuit

Besides being relatively simple, this circuit has the advantage that it does not require changing of passive components when the division ratio is altered.
In the phase-locked loop circuit, a clock-controlled voltage-to-frequency converter, VFC100, is used instead of the internal voltage-controlled oscillator. Due to this converter, input frequency in the lock state is

$$
\mathrm{f}_{\mathrm{in}}=\mathrm{V}_{\mathrm{d}} \mathrm{f}_{\mathrm{cl}} / 20 \mathrm{~V}_{\mathrm{cc}}
$$


where $f_{c l}$ is the applied clock frequency. The internal v.c.o is connected to the output of the system so that the ouput frequency, $f_{\text {out }}$, yields

$$
\mathrm{f}_{\text {out }}-\mathrm{V}_{\mathrm{d}} / \mathrm{R}_{1} \mathrm{C}_{1} \mathrm{~V}_{\mathrm{cc}} .
$$

Eliminating the ratio $V_{d} / V_{c c}$ from both expressions gives
$\mathrm{f}_{\text {out }}=20 \mathrm{f}_{\text {in }} / \mathrm{R}_{1} \mathrm{C}_{1} \mathrm{f}_{\mathrm{c}}=$ const $\times \mathrm{f}_{\text {in }} / \mathrm{f}_{\mathrm{cl}}$.
Output frequency may be set to a required value by the choice of clock frequency only.
Kamil Kraus
Rokycany
Czechoslovakia


## Eight-phase clock

Eight 1 MHz square waves, each separated by $\pi / 4$ radians in phase, are useful for running eight processors in parallel.
The 7493 is a negative-edge triggered counter arranged to divide by eight. The 74164 shift register, being positive-edge
riggered, shifts the 1 MHz output half way between changes of the counter to avoid uncertainties in the output condition on each negative transition of the 8 MHz clock. Square waves of up to 32 MHz could be produced by a different clock circuit.
G.A. Hardy

Nottingham

## Running 68xx peripherals with 280

While expanding my 280 computer system I had to interface a disc drive using an MC6843 controller since I could not find a device directly compatible with the $\mathrm{Z80}$ at the time. The resulting circuit could
be useful for connecting other 68 -series peripherals to the Z80.

The only thing that prevents direct connection between the 280 and 6843 is the latter device's enable input. This signal is essential for correct operation, especially its negative edge which latches data into the chip. When the 280 fetches a memory or i/o instruction, both D-type
bistable i.cs are set by the $\mathrm{Z80}$ clock positive edge. The next clock positive edge resets the first bistable circuit and enables reset of the second on the clock negative edge. Output of the second bistable i.c. is the required enable signal.
M. Darko

Zagreb
Yugoslavia


## Marker processor for sweep measurements

I have been using this circuit in a network analyser for up to 100 MHz . It produces clear rectangular marks, actually a burst of pulses, which can be summed to the detector or $\log$. amplifier output and fed to the Y channel of the display device One half of $\mathrm{IC}_{2}$ is taking samples at the mark rate from the incoming t.t.1.-level sweep signal. Looked at in the frequency domain only the lower sideband of the mixing products of the sweeping frequency and the nearest marking oscillator harmonic exist at the 74S74 output. Unlike with conventional mixers, the reference input does not have to be an impulse train. A t.t.l. input signal will suffice because the 74S74 is an edge-triggered bistable D-type device.

Retriggereble monostable circuit $\mathrm{IC}_{3}$ (a 74LS122 may be used) serves as a digital lowpass filter, delivering output pulses only while its pulse width remains shorter than the cycle time of the incoming beat.

Circuit $\mathrm{IC}_{\mathrm{i}}$ is a peak detector, $\mathrm{IC}_{\mathrm{bb}}$ is a unity-gain buffer and the circuit around $\mathrm{IC}_{1 \mathrm{c}}$ translates the detected amplitude into current.
An essential feature of a good mark system is that the mark width on the screen does not depend on the frequency band
swept. This is accomplished by making current to the LS123 pulse width determining circuit a linear function of the amplitude of the sawtooth voltage deviating the v.c.o. Hence the low-pass cut-off frequency is made a linear function of sweep bandwidth.

The mark width regulating circuit has proved effective with sweep bandwidths ranging from 100 to 1 MHz . Faster logic i.cs should allow use of higher frequencies. Jouni Verronen Oulu Finland


#  

GANG-OF-EIGHT is our FAST EPROM PROGRAMMER which handles CMOS or NMOS EPROMS from 2716 to 27256 ( 25 XX too) using FAST or NORMAL programming methods.
FAST programming 27128 s takes 2 minutes, NORMAL programming takes 14 . All possible levels of Vpp are covered including 25, 21 and 12.5 volts. G8 has an LCD which tells you what you're doing - or doing wrong. BLANK CHECK, VERIFY and CHECKSUM facilities are included. Good value...... $£ 395$ GANG-OF-EIGHT-PLUS is now available. PLUS what? Well, PLUS an RS232 INTERFACE which lets you download in INTELHEX, MOTOROLA S, TEKHEX, ASCII, SIMPLE HEX etc.
Oh, yes, PLUS 50 quid too, but you might think it's worth it
£445


## EMULATOR/

 EDITORS

SOFTY 2, our intelligent EFROM PROGRAMMER EMULATOR, plugs into a TV, shows you memory and lets you TEXT-EDIT in HEXIINSERT, DELETE, SHIFT BLOCKS without overwriting or rewriting etc). It also calculates ADDRESS-OFFSETS in hex, UPLOADS and DOWNLOADS in SERIAL and PARALLEL, saves programs on TAPE, and PROGRAMS, COPIES and EMULATES EPROMS 2716, 2732 and 2532. Great DEVELOPMENT TOOL for PIGGY-BACK SINGLE-CHIPPERS and other small microsystems. TV lead, ROMULATOR-cable with 24 pin DIL Plug and power supply included, ready to plug-in and use
£195
2764 and 27128 ADAPTOR lets SOFTY 2 handle larger EPROMS for
£25.00

## Z80 DEVELOPMENT TOOLS

MENTA is a $Z 80$ development system desijned by DATAMAN for the SCHOOLS COUNCIL. MENTA has a built in ASSEMBLER and TV hex display: it lets you enter program in hex or mnemonics and execute them FULL SPEED or A STEP AT A TIME. All the REGISTERS and the STACK are displayed on-screen and you can SEE MEMORY CONTENTS CHANGING as instructions are executed. MENTA is a microsystem with 24 bits I/O - it can be used as a controller for ROBOTS and intelligent machines. MENTA appears in GCE syllabusses; a TEACHER'S GUIDE, PUPIL READER and WORKSHEETS are available - also CONTRCL MODULES - UNIVERSAL I/O, A to D, D to A, MOTOR and VARIABLE SWITCHED INPUT for less than $£ 20$ each. A MENTA with TV flylead and power-supply costs
€99

## MICRODOCTOR is for DIAGNOSIS, finding troubles in microsystems. You just plug into the microprocessor socket, READ and WRITE to the ME VORY and I/O. MD does CHECKSUMS, RAMTESTS on memory, checks for SHORTS on the bus, and prints memory in HEX or ASCII. You can also DISASSEMBLE and print the SOURCECODE In 280, 6502, 6800 or 8085 mnemonics. <br> When your SCOPE or MULTIMETER can't find the problem - consult the MD. When you order say which

 processor or ask about multiprocessor MD£295


CONNECTIVITY TESTERS
I.C.T. (Intelligent Connectivity Tester) is the project name for a 40 pin dual-in-line CUSTOM-CHIP developed by DATAMAN
The chip is called the MT72017 and it will appear soon in BARE-BOARD TESTERS, IDC CABLE TESTERS and LOOM ASSEMBLY EQUIPMENT all over the world. An EVALUATION-SYSTEM/CONTROLLER for the MT72017 is available on a EUROCARD and you can BUILD YOUR OWN custom connection-pattern tester for
£295
The controller has full documentation, source-code, circuit diagram, parts-list and a description of operation. Each MT72017 tests 26 points and a single controller will handle hundreds of em - thousands of test-points
MT72017 chip prices: $£ 12.50$ (1 to 99) $£ 11.25(100-999) £ 10.25$ (1000 up). We do not sell samples of the MT72017 without a controller.

LOGIC ANALYSER TA2080 by THANDAR with SPECIAL MODS by DATAMAN which gives RS232 interface and prints TIMING and STATE diagrams - and DISASSEMBLES Z80, 6502, 6800 code on the screen or printer.
THANDAR TA2080

## £1950 DATAMAN RETROFIT

£295
EPSON AND NEC COMPUTERS OX10, HX20 and PX8, PC8800. ALL COMPUTERS are sold with a free bundle of useful software written by DATAMAN.
OLIVETTI TYPEWRITER INTERFACES designed by DATAMAN for ET1 21 and 221 - cheaper than a DAISYWHEEL printer RS232, HPIB (IEEE) and PARALLEL including fitting.
EPROM ERASERS from.


If you need more data send for a FREE LIT-PACK and an ORDER FORM or, better still, JUST BUY THE PRODUCT AND EXAMINE IT - you may return any item within 14 days for A FULL REFUND (we deduct only postal charges). Add $£ 2.50$ for carriage to orders below $£ 100$. ADD VAT TO ALL UK ORDERS. Terms: cheque with order. Dealers who mean business welcome. Goods normally in stock - TODAY DESPATCH IS POSSIBLE - please phone us DATAMAN DESIGNS, LOMBARD HOUSE, DORCHESTER, DORSET DT1 1 RX. TELEX: 418442 . PHONE (0305) 68066

## CABLE T.V. HEAD END AND REPEATER AMPLIFIERS



CHANNEL CONVERTERS
TCUU UHF-UHF Single channel converter Gain adjustable $+2 \mathrm{~dB}-16 \mathrm{~dB}$. Maximum output +26 dBmV . Crystal controlled oscillator. Power requirement 14 V 25 mA . (Quote Channels required).
er (Cuote Channels required)

INGLE CHANNEL AUTOMATIC GAIN CONTROL AMPLIFIERS
TAG4863 Gain 48dB, maximum output 63 dBmV . Regulator + or -8 dB . Power
 requirement 14 V 210 mA .

## INGLE CHANNEL AMPLIFIERS

TSS4663 Gain $28-45 \mathrm{~dB}$ adjustable. Maximum autput 63 dBmV . Power requirement
 DRIVER AMPLIFIERS
TS 1030 FM FM driver amplifier. 10 dB Gain. Maximum output 30 dB mV . Power require-
TS1030B3 Band III driver ampifier. 10dB gain. Maximum output 30 dBmV . Power TS1030UHF UHF driver amplifier. Single chanol
Single channel UHF driver amplifier. 10 dB gain. Maximum output 40 dBmV Power requirement 14 V 10 mA . \{uote channel required)

OISTRIBUTION AMPLIFIERS
TE2042 Domestic distribution amplifier 1 input, 1 output. Gain 20dB. Maximum
output 42 dBmV
Domestic distributio
TS2046 $\quad 40-860 M H z$. Gain 20 dB UHF, 18 dB VHF, Maximum output 46 dB mV
TS2846 $\quad 40-860 \mathrm{MHz}$ Gain 28dB UHF, 22dB VHF Maximum output 46 dB mV
TS2845 Separate UHF/UHF inputs. Gain 28dB UHF, 22dB VHF. Maximum output
$40-860 \mathrm{MHz}$. Gain 20 dB UHF, 18 dB VHF. Maximum output 54 dBmV
TS2060 $40-860 \mathrm{MHz}$. Gain 20dB UHF, 18 dB VHF. Maximum output 60 dBm
REPEATER AMPLIFIERS

$\begin{array}{ll}\text { TSC3665 Repeater. Gain } 16-36 \mathrm{~dB} \text { UHF, } 10-30 \mathrm{~dB} \text { VHF. Maximum output } 65 \mathrm{dBmV} \text {. } \\ \text { TSC3060 } & \text { Repeater. Gain } 10-30 \mathrm{~dB} \text { VHF. Maximum output } 60 \mathrm{dBmV} \text {. }\end{array}$

QUALITY AT LOW COST TAYLOR BROS (OLDHAM) LTD
LEE STREET, OLDHAM - TEL. 061-652 3221 - TELEX 669911

CIRCLE 34 FOR FURTHER DETAILS.


CIRCLE 40 FOR FURTHER DETAILS.

METER PROBLEMS?


137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.
Full Information from
HARRIS ELECTRONICS (London)
138 GRAY'S INN ROAD, W.C. 1 Phone: 01-837 7937
Telex: 892301 HARTRO G
CIRCLE 44 FOR FURTHER DETAILS.


# Your product? <br> One superb product deserves another. 

You know your product is the best you can make but today's electronic products are crammed full of components any one of which could damage your reputation.

In the wound magnetics world, more and more electronics manufacturers are turning to Weyrad because they find the expertise, quality and reliability they need.

They also find the flexibility in manufacture, the pricing they want and the dedication they need to help them make a better product. And they find a company determined to keep its lead in the market.

Weyrad have been in the business of high technology wound mechanics for over 30 years and now with massive resources have a fully equipped factory and an experienced staff of designers and engineers capable of making the
smallest to the largest components; capable of making simple windings or the most complex; capable of designing and manufacturing Our product custom assemblies including voltage generation and power modules.

Weyrad's products are found in TVs and audio equipment with household names. In aircraft, ships and fighting vehicles. In industrial and commercial machinery around the world. In telecommunications equipment and in the automotive industry.

Weyrad were Britain's first wound electronics company to win the coveted standard BSI BS 5750 for its quality control, which gives Weyrad customers unrivalled assurance of manufacturing standards. But then, when you make an outstanding product, it's important to make sure it stays the best, isn't it?

For more details of how Weyrad can help you improve your products contact our Marketing Department.

## IESTISSTRUMUENTS

A wide range of high performance instruments that put professional test capability on your bench.


COUNTERS - TF600 5 Hz to 600 MHz TF200 10 Hz to 200 MHz . TF040 10 Hz to 40 MHz PFM200A 20 Hz to 200 MHz (hand-held model). TP600 prescales to 600 MHz . TP1000 prescales to 1000 MHz
MULTIMETERS - TM351 010\% 31/2 digit LCD. TM356 $025 \% 31 / 2$ digil LCD. TM355 0250\% 31 a digit LED TM354075\% 31/2 digtt LCD (nand held model), TM $4510.030 \% 4^{1 / 2}$ digit LCD with autoranging and sample hold. TM452 0.05\%
$11 / 2$ digit LCD with built-in frequency counter (hand held model) OSCILLOSCOPE SC110A 10 MHz .10 mV sensitivity. 40 mm CRT with 6 mm graticule divisions
THERMOMETERS TH301 $-50^{\circ} \mathrm{C}$ to $+750^{\circ} \mathrm{C}$ resolution, TH302 $-40^{\circ} \mathrm{C}$ to $+1100^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{F}$ io $+2000^{\circ} \mathrm{F} 01^{\circ}$ and $1^{\circ}$ resolution Both accept any yoe Ktnermocouple
GENERATORS - TG101 002 Hz to 200 kHz Funcuion Generator. TG1020.2 Hz to 2 MHz Function Generator. TG105 5 Hz to 5 MHz Pulse Generator. TG501 Function Generator $T G 5030005 \mathrm{~Hz}$ to 5 MHz Pulse Function Generator. LOGIC ANALYSERS - TA2080 8 channel 20MHz. TA2160 16 channel 20 MHz ACCESSORIES - Bench rack test leads carrying cases, mains adaptors probes thermocouple probes, microprocessor disassembly options
For further information contact
Thandar Electronics Ltd. London Road. St Ives, Huntingdon Cambs PE17 4HJ
Telephone ( 0480 ) 64646 Telex 32250

## Richardson <br>  6

Electronics(Europe)Ltd.

We are the leading suppliers of R.F.Power Transistors and Electronic Tubes for the communications and industrial markets. With our parent company we represent all the major manufacturers and from our nine million pounds worth of stock we can supply virtually any form of tube or RF.Transistor of American manufacture or its European equivalent. We can normally dispatch your requirements on a same day service.

Send for further information to

Dean Road, Outer Circle Road Industrial Estate Lincoln, England LN2 4DV Tel: 0522-42631 Telex: 56175 REEL UK

# Avoiding failure of sealed nickelcadmium cells 


#### Abstract

Despite using the same basic materials, the life expectancy of sealed nickel-cadmium cells is in stark contrast to that of the traditional open or vented type, which have been known to give in excess of 20 years of service life. Premature failure is often a complete mystery to the user, who may see no tangible reason for their demise. Rod Cooper throws light on the many failure modes, proposes avoidance tactics and suggests experimental cures.


To understand the main failure mechanisms of sealed nickelcadmium cells it is necessary to have a grasp of the chemistry of the basic reactions taking place inside the NiCd cell and the chemical properties of the materials used in cell construction. The basic reaction is well known:
$2 \mathrm{NiOOH}+\mathrm{Cd}+\mathrm{H}_{2} \mathrm{O} \simeq 2 \mathrm{Ni}(\mathrm{OH})_{2}+\mathrm{Cd}(\mathrm{OH})_{2}$

| $\downarrow$ | 1 | 1 |
| :---: | :---: | :---: |
| pos | neg | electrolyte |

Charged state Discharged state
Notice that water is essential to the reaction, not just a means of dissolving the chemicals used in the electrolyte. This important point is raised later - no water, no reaction!

It is the reaction during overcharge that is significant. In a vented cell, overcharge results in the electrolysis of water, hydrogen and oxygen being released as gases at the negative and positive plates respectively. This loss of water is replaced by topping up. In a sealed cell a different reaction takes place. It is sometimes stated (even in the august pages of WW!) that hydrogen combines with oxygen to re-form water, but this is not strictly true. Oxygen is indeed formed but instead diffuses over the cadmium negative plate where the following reaction takes place, shown in three steps for clarity.

Step $12 \mathrm{Cd}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Cd}(\mathrm{OH})_{2}+$ heat


Step $22 \mathrm{Cd}(\mathrm{OH})_{2}+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cd}+4(0 \mathrm{H})^{-}$

> charge
> current

The cadmium that is oxidized to the hydroxide reverts back to cadmium metal, the net result of steps 1 and 2 being the evolution of heat and excess hydroxyl $(\mathrm{OH})^{-}$radicals. At the nickel positive plate:

Step $34(0 \mathrm{H})^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}+4 \mathrm{e}^{-}$
Oxygen produced at the positive has to find its way back to the negative plate for step 1 to take place. This it does by diffusing across the gap between the two plates.

Of course, these reactions do not occur as three steps, but as a circulatory reaction, an equilibrium existing between $\mathrm{Cd}(\mathrm{OH})_{2}$ in the discharged state and Cd in the charged state. The position of equilibrium is determined by pressure, temperature, physical layout of the cell, and the amount of cadmium available for reaction. To enable this reaction to take place, excess cadmium is provided by the manufacturer at the negative plate, and the nickel positive plate is brought as close as possible to the cadmium negative to enable oxygen to diffuse
from one to the other without too much difficulty. Unfortunately the close proximity of the two plates brings problems - see failure mode 3 (part 2).

The overall result of overcharge is the evolution of heat. No hydrogen is involved; it has, in the manufacturers parlance, been 'designed out'. If hydrogen combined directly with oxygen there would be no need to provide excess cadmium at the negative plate, and the two plates could be made equal. But this is not so. Naturally, a liquid electrolyte barrier between the two plates would impede the diffusion of oxygen, so the bare minimum of electrolyte is used. However, water is vital to the basic reaction. In a vented cell the amount of water used in reaction is a negligible part of the electrolyte, and no problent exists, but in a sealed

by Rod Cooper

Fig. 1. Complete discharge graph for a sealed cell, showing what happens when the cell is reverse-charged in a battery. Electrolyte decomposition occurs in both phases A and B, and results in permanent reduction of the cell capacity, so batteries are to be avoided where possible - see text for methods of doing this.



Fig. 2. Low-voltage cut-out circuit is turned on by pressing push-button $\mathrm{PB}_{2}$. Relay closes, but $\mathrm{Tr}_{1}$ clamps base of $\mathrm{Tr}_{2}$ and holds off the coil $L_{1}$ of the relay. If voltage falls below that set by pre-set pot $R_{1}$ and zener, $\operatorname{Tr}_{1}$ releases $\mathrm{Tr}_{2}$, the turn-off coil $\mathrm{L}_{1}$ opens the relay and the load and circuit are switched off. Alternatively, the load may be turned off by pressing push-button $\mathrm{PB}_{1}$.

Fig. 3. Reverse-charge damage illustrated in Fig. 1 can be ameliorated but not eliminated completely by adding reverse-biased Schottky diodes to a battery. This type of protection is not needed if cells are discharged singly, using either a dc/dc converter to step the voltage up to a usable level, or lowvoltage components which work from 1.25 V like those suggested.

cell the water of reaction is a large part of what little electrolyte is present.

It follows that removal of what to the uninitiated may seem to be very small amounts of water from the cell results in a large reduction in cell capacity. The ways in which water can be removed are discussed in failure modes 1 and 2.

The material separating the plates is usually either nylon or polypropylene, both of which have good resistance to potassium hydroxide solution used as electrolyte, while the outer case is generally nickel-plated steel. These materials are involved in failure mechanisms of their own, as shown in part 2.

## Failure mode 1: loss of electrolyte water due to reverse charging

When cells are connected together to form a battery, there is bound to be a cell of lesser capacity that the rest; it is impossible in manufacture to produce cells of exactly equal capacity, even if they are all of one type. In any case even if a good balance was possible, unbalance is likely after a period of operation for reasons which are detailed later.
If such a battery is discharged fully, the cell or cells of slightly less capacity than their neighbours will be discharged first and then driven in reverse until the rest of the battery is also exhausted. This causes permanent damage to sealed cells. The following explanation refers to the discharge graph of Fig. 1.
Readers will be familiar with the upper part of the curve, the one most often published by makers to show their cell characteristics. It is the lower part of the curve which is of interest here. When current is passed in the wrong direction, oxygen is evolved at the cadmium electrode which oxidizes any remaining cadmium to the discharged state:
$2 \mathrm{Cd}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Cd}(\mathrm{OH})_{2}+$ heat.
This reaction takes place during phase A. At the nickel electrode, hydrogen is evolved as gas, increasing the internal cell pressure. Eventually, the cadmium available for oxidation runs out and phase B is entered, where oxygen is evolved as well as hydrogen. The pressure in the cell rises rapidly and in due course the pressure-release valve will open to vent gases to atmosphere. During phases A and $B$ it is the water of the electrolyte that is consumed. With a conventional vented cell this is of no great importance because of the large excess of water, but in a sealed cell there is no great amount of water and the water of reaction is encroached upon quite early on during the reverse charging process. A permanent reduction in cell capacity results.
Moreover, this process is a vicious circle - it is the cell that has been reverse charged which will be the prime candidate for more reverse charging next time the battery is discharged, because its capacity will have been marginally further reduced in relation to the other cells in the battery. The end result is often a battery of, say, six good cells and one completely dead cell. With encapsulated batteries like the PP3 and PP9 types this is disastrous because the whole battery has to be scrapped, there being no really practicable way of dismantling and reassembling the battery to service the dead cell. In any case, putting a new cell into a partly-used battery is asking for more trouble for the very reasons under discussion.

## Avoidance tactics

Clearly it is possible to prevent reverse charging by stopping short of $100 \%$ discharge. Unfortunately there are difficulties. Deciding where to halt is one. It is not feasible to monitor the remaining capacity in individual. cells, so the usual method is to monitor the total battery and operate a cut-out at, say, 1 volt per cell. Thus a seven-cell battery of nominal 8.75 V would be halted at 7 V . Such a voltagesensing unit cannot distinguish between a battery of six healthy cells at 1.25 V each and one completely dead cell being reverse charged at -0.4 V ; and is of limited value. One could raise the threshold of the cut-out to 1.1 or
1.2 V but this means discarding a significant part of the battery capacity. But the technique is worth considering if capacity is not all that important to the application.
This problem with voltagesensing increases with the number of cells in the battery and cutouts of this kind are most effective with just two to five cells. Neither are cut-outs universally applicable; it is no consolation to know that the battery in your NiCd -powered handlamp is being protected against reverse charge if the cut-out abruptly plunges you into pitch dark, nor if your radio transmitter stops working half-way up a mountainside. These are cases where half a loaf is better than no bread!
Of course, extra features could be built-in, such as a pre-cut-out alarm or a manual overide, but human nature being what it is, the last-mentioned would be selfdefeating and both would increase the size, complexity and cost of the cut-out, all these things being at a premium in portable battery powered equipment. Some voltage sensors introduce a small voltage drop in the circuit which may be unacceptable. This need not be so if a latching relay is used as the cut-out switch. Such a relay uses no power in the on or off-state and introduces virtually no voltage drop for all practical purposes. I have used the circuit shown in Fig. 2.
Prevention diodes. This method of avoiding damage from reversecharging consists of a reversebiased diode connected across each cell in a battery, Fig.3. If a current attempts to pass in the wrong direction through any given cell it is provided with an alternative path through the diode. Referring to Fig.1, such diodes would have to exhibit a $\mathrm{V}_{\mathrm{t}}$ lower than that of phase A to avoid electrolyte decomposition at the rated current of the load. At a load current of, say, $0.5 \mathrm{amp}, \mathrm{V}_{\mathrm{f}}$ would have to lie in the region of 0.3 to 0.4 V . This is a tall order for most diodes.

Schottky diodes can present a practical proposition, although they are on the expensive side. A graph of $V_{f}$ versus current is shown in Fig. 4 for a 1 amp wireended Schottky but this is only a typical graph and I have found it necessary to select for low $\mathrm{V}_{\mathrm{f}}$ from a batch of devices to get the best results. Care is also required in selecting the type of device because they are primarily
intended for use in s.m.p.s. and low $\mathrm{V}_{\mathrm{i}}$ types tend to have high leakage currents, low leakage typpes tend to have high $\mathrm{V}_{\mathrm{f}}$. Leakage current is obviously important as it must be kept small in relation to the internal self-discharge of the cell. For a standard D-cell this self-discharge current may be of the order of several hundred $\mu \mathrm{A}$ so the $10 \mu \mathrm{~A}$ of this particular diode at $20^{\circ} \mathrm{C}$ can be disregarded.

Having experimented with deliberate reverse charging, I found diodes to be most effective at higher currents. For example a C-cell reverse-charged at 0.5 amp can have this current reduced by a factor of between 5 to 10 with a Schottky diode but only by a factor of two at 100 mA . So although it is not a perfect method it does help to delay cell destruction.

The difficulty with this technique lies in its practical implemenation. Where batteries are made up using cylindrical cells in the strapped-together arrangement, the diodes may be inserted in the gaps between cells. In the type of battery where the cells are connected end-on in a common plastics sleeve it may be necessary to slit the sleeve to make the connection, weakening the assembly in the process. In either case the presence of soldered joints where there is the possibility of electrolyte leakage may be unacceptable for some applications. With encapsulated batteries like the PP3 and PP9 it is wellnigh impossible to incorporate these diodes. However, it is very easy to do so where the battery consists of cells housed in individual holders, so it is worthwhile paying some attention to the battery compartment when considering reverse-charge protection with diodes.

## Avoid batteries

By far the best method of avoiding reverse-charge failure is not to use batteries at all! One way of doing this is to use a single cell in conjunction with a d.c./d.c. converter to step the voltage up to a reasonable level where most of the present generation of semiconductor devices operate. Clearly such a system has no reverse-charge failure mechanism, and so does away with voltage cut-outs and protection diodes. Needless to say, the reliability of the NiCd power source is greatly improved.

Taking a closer look at this technique reveals several other important benefits of both technical and economic nature. Firstly, there is only one set of rubber seals to go wrong with a singlecell system, whereas there are many sets of seals on a battery, so the probability of electrolyte leakage - which will be shown later as a failure mode - is very much reduced. Secondly, single cells of equivalent capacity tend to be more physically robust than strings of interconected small cells. This is important in hand-carried equipment or in vehicle-mounted applications which can be subjected to very rough treatment, like being dropped! Thirdly, by standardizing on one type of cell and using a range of converters giving appropriate working voltages for different pieces of equipment, it is possible to reduce the inventory of battery types. This could be of interest if you have several items of equipment and are faced with stocking a miscellany of batteries. Also, it follows that recharging requirements are much simplified. Lastly, a single-cell system can work out to be cheaper in the long run, stemming from the fact that the cost per watt-hour for a single cell is less than for a battery of equivalent capacity. For example, a PP9 of 10.4 Wh costs $£ 12$ but a super-F cell of 12.5 Wh costs only $£ 9$. Allowing for converter losses, these two systems give about the same amount of useful engergy, but the single cell costs $25 \%$ less. Of course, the initial cost of the converter must be taken into account, but since a well designed device is likely to outlive several NiCd cells the real cost spread over a period of time will be small in comparison.

The lower cost of single cells makes the carrying of a spare cell with portable equipment a more attractive proposition than for batteries - $£ 24$ in the above for a PP9 and spare, only $£ 18$ for a super-F and spare. Also, if you are unlucky in having a recharging accident, a random or premature failure due to one of the modes under examination, it is not then such a hard financial blow to replace a single cell. The same argument applies when the time comes to replace the NiCd power source due to old age.
Against these benefits must be set the inefficiency of conversion from such a low starting voltage as 1.25 V . The voltage drop
across typical switching transistors and diodes is not so much less than this figure, so it is notoriously difficult to design a converter with a respectable efficiency specification. However, it can be done using special techniques. The Texas Instruments TL496 is a switching regulator i.c. which can be used as the basis for such a converter, Fig.5. Although it is more efficient operated from two cells, when it can give 80 mA and 8.6 V and about $55 \%$ efficiency, it can also operate from a single cell to give 40 mA at about 7 V . The inductance should have a value of it 40 to $50 \mu \mathrm{H}$ and as low a d.c. resistance as possible - less than $0.15 \Omega$. Achieving this is not difficult considering the comprehensive data now provided by the ferrite manufacturers. An RM5 or RM6 core is satisfactory. Working frequency is about 10 kHz . Some designers may consider it a disadvantage to have to provide their own wound component for L , not being an off-the-shelf item. For those wishing to avoid coil-winding, the Verkon V9-a provides a solution as it is selfcontained dc/dc converter, providing nominal 9 V d.c. output at currents up to 80 mA . The V9-a is specifically designed to operate from a single NiCd or other lowimpedance cell, is small enough to be p.c.b.- mounted, and has a quoted conversion efficiency of around $75 \%$.

Another way of avoiding batteries is to design circuitry so that operation from one cell is possible. There are several suitable c -mos op-amps on the market which can work perfectly well from 1.25 V , such as TLC251, ICL7611, ICL7622 and also audio amps like LD502. Although very useful for certain applications, the limitations are severe - e.g. driving relays, meters, leds is difficult. Nevertheless too many circuits for portable instruments are designed for 6 or 9 V operation when they could work from a
single cell equally well, simply through lack of imagination on the part of the designer.


Fig. 4. Graph of $I_{f}$ versus $V_{f}$ for wire-ended Schottky rated at 1 amp .

## Sources of components

Texas switching regulator i.c. TL496. Quarndon Electronics Ltd, Slack Lane, Derby. Osmor latching relay CLA-5. Electrovalue, St. Judes Road, Egham, Surrey.
Verkon V9-ad.c./d.c. converter and wire-ended 1A Schottky diodes. J. Biles Engineering, 120 Castle Lane, Solihull, West Midlands.

Fig. 5. Circuit to step up 1.25 V to about 7 V at 40 mA using the TLA96 as a step-up dc/dc converter. See text for inductor details.


## CIRCUIT MODELLER for CP/M \& MS DOS

## avalubie id SIX WEEXS TRAISIENT ANALYSS MODEIIER


by Harcourt Systems
An engineering package for $C P / M^{*}$ and $M S$ DOS* microcomputers to carry out accurate, fast designs of linear circuits. CIRCUIT MODELLER can find voltage gain, phase shift, $Z_{\text {in }}$ and $Z_{\text {out }}$ for most linear electrical and electronic circuits. The limits of capacity are set by the microcomputer RAM, which must be at least 60 KBytes. This gives a capacity of 32 nodes 101 resistors, 101 capacitors, 101 inductors, 31 mutual inductors, 31 simple operational amplifiers and 31 controlled sources.
Features include:
ADD \& EDIT to construct and alter circuit
LOAD \& SAVE to save and recover circuit from disk
GAIN to display gain and phase to display input and output impedances
BW to find centre frequency and - 3 dB Av points of circuit
SEARCH to find frequency corresponding to given gain
to print synopsis of circuit diagram sufficient for its precise reproduction.
Operating Speed
CIRCUIT MODELLER is an all-compiled package with seven overlays in which the inner two loops of pivotal condensation are written in 280 assembler. This means that whereas microcomputer CAD is usually slow, CIRCUIT MODELLER can solve a four hybrid-pi amplifier in a few seconds Graphics
PLOT is an extension to CIRCUIT MODELLER enabling an ordinary 132 column printer to plot both dB gain and phase angle against frequency for the circuit. A log/log plot is obtained with automatic axis scaling.
Themselves designers of high performance electronic equipment, Seasim Controls have recognised the importance of CIRCUIT MODELLER which they are making available in association with Harcourt Systems.
Prices: CP/M 80 version - $£ 160+p \& p+$ VAT,
MS DOS \& PC DOS versions - £214 + p\&p + VAT. Order, or send for more details from SEASIM CONTROLS LIMITED

The Paddocks, Frith Lane, Mill Hill, London NW7 1PS
Telephone: (01) 3469271 - Telex: 21189
"CP/M is a trademark of Digital Research
*MS DOS is a trade mark of Microsoft
CIRCLE 16 FOR FURTHER DETAILS.

## HAMEE MORE THAN JUST ONE STEP UP

## HM208 $£ 1200$.

Dual Trace, Digital Storage $2 \mathrm{mV}-20 \mathrm{~V} / \mathrm{cm}$ 2 CMHz Bandwidth Algebraic Add, Invert X - Y, Component Tester $4 \times \mathrm{lk}$ Stores, 20 MHz Clock, Roll, Refresh, Pre-trigger.

HM605 E 515.
Dual Trace $1 \mathrm{mV}-20 \mathrm{~V} / \mathrm{cm}$ 60 MHz Bandwidth Algebraic Add, Invert $X-Y$; Single Shot Delay Sweep.
Var Hold-off Component Tester, 14 kV CRT
HM204-2 E365.
Dual Trace $1 \mathrm{mV}-20 \mathrm{~V} / \mathrm{cm}$
20 MHz Bandwidth Algebraic Add. Invert $X-Y$ : Single Shot Delay Sweep. Var Hold-off Component Tester

HM203-5 E264.
Dual Trace $2 \mathrm{mV}-20 \mathrm{~V} / \mathrm{cm}$
20 MHz Bandwidth Algebraic Add. Invert $X-Y \quad$ Component Tester

2 Year Warranty

## -HPMEE

FOR THOSE WHO COMPARE
74-78 Collingdon St. Luton, Beds, LU1 1RX Tel : (0582) 413174 Telex 825484


# Sampled-data servos - a new analysis <br> by D.M. Taub M.Sc., Ph.D. 

## Prior to computing servo performance Dr Taub considers the reverse of sampling: conversion from a sampled-data signal to a continuous signal

When the error signal in a servo loop is of sampled-data form, then at some point before it can be used to drive the plant it has to be converted back to continuous form. The point at which this conversion takes place depends on the type of compensator used. In the case of a compensator designed to work with sampleddata signals e.g. one using digital ${ }^{*}$, charge-coupled device or
*Compensators based on digital techniques are often called 'controllers'.
switched-capacitor techniques, it is done at the compensator output, whereas with compensators designed to work with continuous signals it is done in two stages, a sampled-data stage followed by a continuous-signal stage, in which case conversion is carried out at the interface between the two.
The circuit which carries out the conversion is generally known as a 'hold' circuit, and various types exist. In the simplest and most widely used type, the output between one sample and


Fig. 17. Gain characteristics of various hold circuits, amplitude above, phase below.
the next is held constant at a value proportional to the weight of the sample most recently received. Typical input and output signals are shown in Fig. 15 (a) and (b). In mathematical terms one can say that the output between one sampling instant and the next is described by a polynominal equation of zero order; hence the circuit is known as a 'zero-order hold' circuit.
In a more complicated arrangement the output immediately after the sampling instant is proportional to the weight of sample just received, but it then changes at a uniform rate proportional to the difference between that sam-

Fig.15. Input and output signals of zero-order hold circuits: the hold circuit converts a sampled-data signal back to a continuous signal. Input at (a), output of zeroorder hold (b), and output of first-order hold (c).

Fig.16. Response of a hold circuit to a unit-impulse input.



ELECTRONICS \& WIRELESS WORLD MAY 1985


Since 1950, Matthew Taub has been continuously engaged in development work on digital electronics. After five years with Ericsson Telephones Ltd now part of the Plessey Group), where he worked on electronic switching in telephone exchanges, he went to Leo Computers Ltd (now part of ICL), contributing to the development of the mercury delay-line store and input/output section of the LEO 2 computer. He joined IBM UK Laboratories Ltd in 1957 and is now a Senior Technical Staff member. Areas of work at IBM included magnetic core logic circuits, computer architecture, read-only and magnetic disc techniques, and circuits for c.r.t. displays. During the past two years he's been active on the working group developing Futurebus multiprocessor systems.

He has 22 publications in journals, a further 26 in the IBM Technical Disclosure Bulletin, and is named as inventor or coinventor on 27 patents. The published work earned him a PhD degree from Cambridge University in 1982. Previously he'd studied electrical engineering at University College, Nottingham, gaining the B.Sc (Eng) degree in 1945, and after a short period with Ferranti went on to carry/out research into noise phenomena in electron tubes at the Cambridge University Engineering Laboratory, for which he received the M.Sc. degree.
ple and its predecessor. The input signal of Fig.15(a) then produces an output as shown in Fig.15(c). In this case the output the output between sampling instants is described by a firstorder equation, giving this circuit the name of 'first-order hold'.

The zero-order hold can be regarded as a limiting case of the first-orderhold, in which the constant of proportionality governing the rate of change of output is zero. Higher-order hold circuits are possible, but are not important in practice.

## Gain characteristics of hold circuits

The gain of zero and first-order circuits can be covered in a single analysis. To produce the output described above, the response $a(t)$ to a unit impulse at the input (i.e. a sample of unit value) must be as shown in Fig. 16. The factor of $1 / T$ in the amplitude is necessary for consistency with the sampling process assumed in the (April issue): a continous signal of unit value gives rise to samples of weight T , which on reconversion to a continuous signal, produces unit value again. Positive values of $\alpha$ represent the firstorder case, and $\alpha=0$ the zeroorde case.*
The gain characteristic is found by taking the Laplace transform of $a(t)$, as follows (see ref. 5 , section 3.4).

$$
H_{1}(s)=\int_{0}^{\infty} a(t) e^{-s t} d t
$$

$$
=\frac{1}{\mathrm{~T}}\left\{\int_{0}^{\mathrm{T}}\left(1+\frac{\alpha \mathrm{t}}{\mathrm{~T}}\right) \mathrm{e}^{-\mathrm{st}} \mathrm{dt}+\right.
$$

$$
\left.+\alpha \int_{7}^{2 T}\left(1-\frac{t}{T}\right) e^{-s t} d t \right\rvert\,
$$

$$
\left.=\frac{1-e^{-T s}}{T s} \right\rvert\, 1+
$$

$$
\left.+\alpha\left[\frac{1-\mathrm{e}^{-\mathrm{Ts}}}{\mathrm{Ts}}-\mathrm{e}^{-\mathrm{Ts}_{\mathrm{s}}}\right] \right\rvert\,
$$

The gain at real frequencies is found by setting $s=j \omega$, which gives

$$
\begin{aligned}
H_{1}(j \omega)= & \left.\frac{1-e^{-i T \omega}}{j T \omega} \right\rvert\, 1+ \\
& \left.+\alpha\left[\frac{1-e^{-j T \omega}}{j T \omega}-e^{-i T \omega}\right]\right\}
\end{aligned}
$$

* Textbooks generally restrict the term 'first-order hold' to the case where $\alpha-1$, and Kuo'(ref.6) describes circuits in which $0<\alpha<1$ as 'fractional-order', but this is a misnomer.


The modulus and phase angle of this function are plotted in Fig. 17.

In the zero-order case where $\alpha$
$=0$ this last equation reduces to
$H_{0}(j \omega)=\frac{1-e^{-\mathrm{jT} \omega}}{\mathrm{jT} \omega}$
and using equations 2.1 and $T$ $=2 \pi / \omega_{\mathrm{s}}$ this becomes
$H_{0}(j \omega)=\mathrm{e}^{-\mathrm{j} \frac{\omega}{\omega} \pi} \frac{\sin \stackrel{\omega}{\omega} \pi}{\frac{\omega}{\omega} \pi}$
text but with the prefix $U$ to indicate unit-weight impulses.
Gain of first-order hold circuit:

$$
\begin{aligned}
\mathrm{H}_{1}(\mathrm{~s})= & \left.\frac{1-\mathrm{e}^{-T_{\mathrm{s}}}}{\mathrm{~s}} \right\rvert\, 1+ \\
& \left.+\alpha\left[\frac{1-\mathrm{e}^{-T_{s}}}{T_{s}}-\mathrm{e}^{-T_{\mathrm{s}}}\right]\right\}
\end{aligned}
$$

...U3.1
Gain of zero-order hold circuit:
$H_{v}(s)=e^{-j \frac{\omega}{\omega} \pi} \mathrm{~T} \frac{\sin \frac{\omega}{\omega} \pi}{\frac{\omega}{\omega} \pi}$

## REFERENCES

1. J.J. Distefano, A.K. Stubberud and I.J. Williams, 'Feedback and Control Systems' (Schaum's Outline Series, McGraw-Hill, New York, 1976).
2. M. Healey. 'Principles of automatic control'. (Hodder and Stoughton, London, 1975).
3. M.K. Haynes 'Magnetic recording techniques for buried servos'. IEEE Transac tions on Magnetics. Vol. MiAG 17, 1981 pp 2730-4.
4. N.H. Hansen. "Head-positioning system using buried servo, ibid pp 2735-8. 5. P.A. Lynn. 'Introduction to the analysis and processing of signals (Macmilian, London, 1973).
5. B.C. Kuo. Inalysis and synthesis of sampled-data control systems' (PrenticeHall. Englewood Cliffs. NJ, 1963)
7.A.M. Tropper. Matrix theory for electrical engineering studenis' (Harrap, London, cal engin
1962 ).
6. S. Goldnan. 'Transformation calculus and electrical transients', (Prentice-Hall, New York, 1949)
7. D.M. Taub. 'Programs for computing sampled-data servo performance'. IBM Technical Report no 12.199, (IBM United Kingdom Laboratories, Hursley, May 1982).

# D.c. supplies from a.c. sources - 4 

## Constructing a stabilized power supply

An important step in studying a topic is when the experimenter puts theory into practice. And as lab. or bench type power supply designs seem to be unendingly popular, here is another, which can supply some 80 watts at 13.8 V .

There is a "chicken and egg" situation in such designs as that shown in block form in Fig. 1. For example, what transformer rating (in VA) is required, when we do not yet know the r.m.s. secondary currents? These currents through the rectifiers are known and these depend on the source resistance $R_{i}$. $R_{i}$ will only become known when the size, and therefore wire gauge and turns on the transformer windings, are known. . . !
'From experience' (an expression nearly as famous as 'it can be shown') an $R_{i}$ of about one ohm is common for such power levels as used here.
$\mathrm{R}_{\mathrm{L}}$ will be $\frac{21 \text { volts }}{6 \mathrm{amps}}=3.5 \Omega$
on full load. Therefore $\tau_{\mathrm{c}}$ will be about 5.6 ms from Fig. 3 (part 3). Equation 11 (part 3) then yields $\mathrm{I}_{\mathrm{rns}}=6.3 \mathrm{~A}$ for one half, therefore the total r.m.s. current is $\sqrt{2} \times$ $6.3=9 \mathrm{amps}$. This, together with the total r.m.s. voltage of 40 V across the secondary gives a required rating for the transformer amounting to 360 VA. (Equation 10 would give this directly, because from the transformer's point of view, it is feeding a bridge rectifier).

Now the d.c. power in the load plus dissipative pass elements is $40 \mathrm{~V} \times 6 \mathrm{~A}=240$ watts. Therefore the transformer utilisation factor is $360 / 240=1.5$, meaning that it has to be about one and a half times bigger than you'd
think. The iron in the transformer used for the practical design had a centre limb area of 2.9 square inches, so that it can handle ( 2.9 $\times 6.9)^{2}=395 \mathrm{VA}$, which is comfortably within the requirements.
You would expect the peak voltage (no load) across the smoothing capacitors with a 20 volt half winding secondary to be $20 \times$ $1.414=28$ volts. With $R_{i} \sim 1$ ohm we would lose about 6 volts at full load, so the mean d.c. level at the input to the series regulators would be $\sim 22 \mathrm{~V}$. Then we have the peak ripple voltage to consider. Using equation 12 (part 3)

$$
\begin{aligned}
\hat{\mathrm{V}}_{\mathrm{T}} & =\frac{6(10-5.6) \times 10^{-3}}{2 \times 10^{-2}} \\
& =1.32 \mathrm{volts}
\end{aligned}
$$

This shows that the troughs in the supply to the regulators will reach a low of $22-1.32=20$ volts, say. Therefore with the $20-$ $0-20 \mathrm{r} . \mathrm{m} . \mathrm{s}$. transformer we will not be able to reach the full $\pm 20 \mathrm{~V}$ output on full load of 6A. Hence the 'spec.' judiciously says 'reduced load at the top end'.

The completed unit yielded transformer secondary voltages of 20.3 V and rectified d.c. voltages on the smoothing capacitors of 27.3 V with no output load current drawn. When 6A was taken, the capacitor voltages dropped to 21.2 V and the peak ripple voltage was measured as 1.25 volts.

There are many integrated blocks from the i.c. designers that give excellent performance, including thermal shut down and current limiting. The three-terminal adjustable type, such as the 317, are particularly versatile. The 317 is already dated, but is still very popular.
The design shown in Fig. 2
uses it to control the positive supply, together with shunt booster transistors to up the current to 5-6 amps. The common 2N3055 is used for this. In effect, the 2N3047 plus the 2N3055 act as one much larger p.n.p. device but is overall cheaper for the power handling capability. The 'current division' resistors (lohm and 0.25 ohm ) at the input share out the current to the 317/ 2N3055 in the ratio 1:4. The 317 limits at just over an amp, so the whole control leg limits at approx 5 to 6 amps if the output is short circuited.

The single variable resistor ( 4.7 k ) on the 'var' terminal of the 317 can reduce the output to 1.4 volts minimum. To reduce the output to zero requires a bias of -1.4 volts on its tail end. This -1.4 volts is obtained across the two forward biased silicon diodes as shown in Fig. 2. The 6A diode gives one junction drop to compensate for the base-emitter drop in the 2N3047, and is generously rated. The other components around the 317 comply with the maker's recommendations (1).

Once the positive line is stabilised, it can be used as a reference level for the negative line. Any change in this line's output voltage is divided down and tapped off the wiper of the lk 'balance' potentiometer, amplified, inverted by the operational amplifier and (with lots of current gain) fed back via the compound emitter follower to 'cancel' most of the original change.

By the time we have 6 amps going through the 2 N 3055 s , the $\mathrm{h}_{\mathrm{FE}}$ is reducing. This point was offered as criticism to E.J. Hatch with his very high demand on the 2N3055. I agree with this and the result is an increasing demand on the driver transistor, the 2N3054

by K.L Smith Ph.D.*

## FIELD ELECTRIC LTD

3 SHENLEY RD, BOREHAMWOOD, HERTS.
TELEPHONE 01-953-6009
区/OFFICLAL ORDERS/OVERSEAS ENOUIRIES WELCOME OPEN 6 DAY'S A WEEK $9.00 \mathrm{am} / 5.00 \mathrm{pm}$ THUR. $9.00 \mathrm{am} / 1.00 \mathrm{pm}$

| ALL TRANSFORMERS 250 PRIMARIES |  |  |
| :--- | :--- | ---: |
| LAMBDA $9-0-9 \mathrm{~V}$ | 60AMP | $\mathbf{£ 2 5 . 0 0}$ |
| C LYONS 250V | 10AMP ISOLATING | 46.00 |
| 12-0-12V | 80AMP | 30.00 |
| WODEN 11 V | 80AMP | $\mathbf{3 5 . 0 0}$ |
| WODEN 7.6 V | 120AMP | $\mathbf{4 0 . 0 0}$ |
| WODEN 27 V | 30AMP | $\mathbf{2 5 . 0 0}$ |
| WODEN 60-0-60V | 60AMP ISOLATING | $\mathbf{1 1 5 . 0 0}$ |
| GOODYEAR 115V | 50AMP ISOLATING |  |

PLEASE RING FOR C/P
50AMP ISOLATING
ALL P.S.U. 200-250 V.A.C. INPUTS
SWITCH MODE P.S.U. C/P 2.00 UNLESS STATED
3.5V 10AMP D.C

ADVANCE 5V 20AMP D.C
$5 V$ 30AMP DC
19.95
$5 V$ 40AMP D.C
40.00
$5 V$ 60AMP D. C
20.00

FARNELL 6V 5AMP D.C. $145 \times 87 \times 32 \mathrm{M} / \mathrm{M}$
20.00

FARNELL 5V 20AMP D.C
6V 40AMP D.C.
FARNELL $24 V 5 \mathrm{AMP}$
20.00

FARNELL $24 V$ 5AMP
40.00

ARNELL 12 CAN COOL ED MULT-RAll SWITCH MODE 35.00
$+15 V$ AT 15AMP - 5 V AT 1 AMP + 12 V AT 4 AMP - 12 V AT IAMP 28.00 GOULD MULTI-RAIL SWITCH MODE NEW
$5 \mathrm{~V} 40 \mathrm{AMP}-12 \mathrm{~V} 4 \mathrm{AMP}+15 \mathrm{~V} 11$ AMP C/P 6.00
7500
GOULD NEW \& BOXED 6 V 40AMP
60.00

GOULD PMA47 12 V 3AMP DC LINEAR
COUTANT 0-7V 7AMP D.C. LINEAR NEW \& BOXED
COUTANT ESM LINEAR MULTI-RAII
5 V 13AMP D.C. $\pm 12 \mathrm{~V} 1.5 \mathrm{AMP}$ OR $\pm 15 \mathrm{~V} 1.5 \mathrm{AMP}$
$12 V$ OR $24 V 2 A M P$ UNREGULATED COMPLETE BOOK CIRCUIT DIA. NEW BOXED CIP 600 40.00

VOLTEX LINEAR MULTI-RAIL + 12V 600M/A + 5V IAMP D.C. 11.25
P.C. SUPPLY +5 V 1AMP D.C. TOROIDAL T/X REGULATED 6.95

WE ALSO BUY EQUIPMENT SURPLUS TO REQUIREMENT SEND LIST OR PHONE
ALL PRICES INC VAT 15\% UNLESS STATED
COLOUR MONITORS RGB INPUT 230 V.A.C. 19" SCREEN MEDIUM RESOLUTION £55.00 INC. VAT RING FOR DETAILS

> Wirelessiworld
> Any Production Queries
> Please phone Brian Bannister on 01-661 8648 or Jackie Perry on 01-661 8649


The latest version of this est-seller from the RSGB. An up-to-date and comprehensive guide to all UK and Eire callsigns and all in one book. There are more then 53,000 callsigns listed in this expanded edition, and more efficient production techniques have allowed us to keep the cover price to a very acceptable level. The Call Book includes lists of RSGB affiliated societies, groups, and special callsigns, plus the latest RSGB repeaters list Most addresses given are the locations of the stations, thereby giving the VHF/UHF enthusiast an easy reference for beam directions. The Call Book first appeared at the NEC

Exhibition, and is now

## NOW IN STOCK: <br> Amateur Radio Software

"Written especially for the RSGB, this extremely useful new book will have immediate appeal to all amateurs who want to make use of their home computers. There are many programs, listings and full instructions on how to make the best of both worlds.
Author Dr John Morris G4ANB says there is hardly an activity in amateur radio where a computer cannot be used Many subjects covered include vhf contests, scoring, component values, propagation predictions, where to point your antenna for moonbounce or satellite working, cw , and much more besides! How to write your own programs, and use the sottware to its best advantage is what this book is all about.


Fig. 1. The diagram shows how positive and negative lines can be obtained from a centre tapped transformer secondary in conjunction with a bridge rectifier. The negative line is referenced to the stabilised positive supply. Simple volt-amp meter switching to monitor the output is illustrated.

Fig. 2. the practical circuit shows all the design points discussed in the text.
here. If the $\mathrm{h}_{\mathrm{FE}}$ drops to $\sim 10$ (as it might with $\left.I_{c} \sim 10 \mathrm{~A}\right)$ - then the poor old 2N3054 could be called on to deliver more than an amp! (Therefore this could be the device to fail first). The circuit will manage 6A fairly well, as the $\mathrm{h}_{\mathrm{FE}}$ for the 2N3055 is still well over 20 and the base drive therefore $\sim 300 \mathrm{~mA}$. The 2 N 3054 can supply this and its own $\mathrm{h}_{\mathrm{FE}}$ should be $\sim 70$. Therefore the base drive from the BC 177 collector is required to be about 4 mA - well within the capability. Finally there is no difficulty driving the BC 177 from the 741.

One other point is that we fall into the habit of saying 'an on silicon junction drops about 0.7 volts'. This is not necessarily true for the power devices used here. For example, the $V_{\text {be }}$ given for a

2 N 3055 at $\mathrm{I}_{\mathrm{c}}=6 \mathrm{~A}$ is 1.7 volts. The 2N3054 might very well drop a further 0.9 volts at $\sim 300 \mathrm{~mA}$. Finally there is the $V_{\text {ce(sat) }}$ for the BC 177 , which is about 0.6 volts. There is one more junction drop at 6 amps - that across the resistor labelled ' R ' on Fig. 2. At 6 amps , ' $R$ ' is chosen to drop just one small signal silicon 'on' voltage to turn on the BC 109 current limited transistor. Therefore the minimum voltage differential from source to output terminal must be, $1.7+0.9+0.6+0.7 \sim$ 4 volts at 6 amps . The differential available in the practical design operating at 13.8 volts output is $21.2-13.8=7.4$ volts. Which, on the above argument, is sufficient.

When the current limit transistor turns on, current is shunted away from the base of the 2N3054. The output voltage rapidly collapses and the op-amp rapidly saturates. The current remains at 6 A . However, all the available supply voltage is across the 2 N 3055 , whose resistance has been raised, and maximum dissipation is occurring in it. In fact the thermal lag will safeguard the devices for a time, but the dissipation is actually greater than $\mathrm{P}_{\mathrm{c}(\max )}$ for them, so prolonged sharting would probably result in failure. .

## Power dissipation and heat sinking

As I stated in article 1, the series regulator is a dissipator of surplus power and plenty of heat will be generated. The 2N3055 can dissipate 117 watts absolute maximum, but the mounting base temperature $\mathrm{T}_{\mathrm{mb}}$, for this must be $25^{\circ} \mathrm{C}$. In practice, the mounting base temperature will be greater and power derating must be applied. The derating must reduce the dissipation to zero at a junction temperature $\mathrm{T}_{\mathrm{j}}$ of $200^{\circ} \mathrm{C}$. This is the absolute maximum junction temperature allowable.
In order to remove the heat from the base-collector junction, it has to flow through the thermal resistance of the path, junction to mounting base. The IEC 148 symbol convention for this is $\mathrm{R}_{\mathrm{th}, \mathrm{j} \text {-mb }}$ which is rather heavy on subscript use, but descriptive. . .

The mounting base (which is in effect, the case) then warms up. Further heat removal must be arranged from the mounting base to the heat sink. This has a resistance, $\mathrm{R}_{\mathrm{th} \mathrm{mb}-\mathrm{h}}$. Finally, the heat sink must dissipate the heat arriving, into the ambient surroundings. This resistance is written $\mathrm{R}_{\mathrm{th} \mathrm{h} \text {-amb }}$.

Thus the total thermal resistance from the junction to ambient is,


$$
\begin{aligned}
& R_{t h} \cdot \mathrm{amb}= \\
& R_{t h \mathrm{l}, \mathrm{mb}}+R_{\mathrm{th} \mathrm{~m} \cdot \mathrm{~h}}+ \\
& R_{\mathrm{th} \cdot \mathrm{amb}}
\end{aligned}
$$

The direct heat loss from the mounting base to the surroundings has been ignored in my argument, so has the (much smaller) contribution to the heat production by the dissipation at emitterbase junction-
The TO3 package 2 N 3055 has an $R_{\text {th }-\mathrm{mb}}$ of $1.5^{\circ} \mathrm{C}$ per watt. If a mica washer with thermal grease is used between it and the heatsink, then an $\mathrm{R}_{\text {th } \mathrm{m} \cdot \mathrm{b} \text {. of }} 0.5^{\circ} \mathrm{C}$ per watt should be obtainedc. It only remains to establish a value of $\mathrm{R}_{\mathrm{th} \mathrm{h}-\mathrm{a}}$ for a suitable heatsink to be chosen, by an argument like the following.
If you remember your basic physics, then a TO3 case on a mica washer and heat sink is simply a Lee's disc situation, except that the shape is far from a disc. If $\mathrm{P}_{10}$ is the power dissipated by the 2N3055, then the temperature of the mounting base, the junction and the thermal resistance is related by

$$
R_{t h j-m b}=\frac{T_{\mathrm{j}}-T_{m b}}{P_{t o t}}
$$

Similarly the flow of heat to the ambient surroundings is given by

$$
\begin{aligned}
\mathrm{R}_{\mathrm{th} \mathrm{j}-\mathrm{mb}} & +\mathrm{R}_{\mathrm{th} m \mathrm{bb}}+\mathrm{R}_{\mathrm{th} \mathrm{~h}-\mathrm{amb}} \\
= & \frac{\mathrm{T}_{\mathrm{j}}-\mathrm{T}_{\mathrm{amb}}}{\mathrm{P}_{\mathrm{tot}}}
\end{aligned}
$$

Therefore as all the numbers are, known except $\mathrm{R}_{\text {th h-amb }}$, this can be calculated. As an example, if the present power supply is intended to operate continuously at 13.8 volts at 6 amps output (although in a communications system there will be an "on/off" diversity factor), then the 2N3055 on that side must dissipate (21.313.8) $\times 6=45$ watts. Therefore

$$
\begin{aligned}
\mathrm{R}_{\mathrm{th} \mathrm{~h}-\mathrm{amb}} & =\frac{200-20}{45}-2 \\
& =2^{\circ} \mathrm{C} \text { per watt }
\end{aligned}
$$

I chose a 110 mm length of extrusion 30D. The thermal resistance of this sink is $1.3^{\circ} \mathrm{C}$ per watt at 45 watts dissipation. Therefore the $\mathrm{T}_{\mathrm{mb}}$ and $\mathrm{T}_{\mathrm{j}}$ values reached at a $\mathrm{T}_{\text {amb }}$ of $20^{\circ} \mathrm{C}$ are $100^{\circ} \mathrm{C}$ and $168^{\circ} \mathrm{C}$ respectively. On a 6 A at 13.8 V soak test, the case of the 'negative' 2 N 3055 reached $\sim 90^{\circ} \mathrm{C}$.
The above calculation does show up the fact that the heat dissipation is not sufficient for sustained short-circuit conditions or a continous maximum current drain at low output voltages (less than 8 volts. . . ). A larger heat

sink would alleviate these limitations.

## Construction

The circuit details and printedcircuit layout are shown in Fig. 2 and Fig. 3 (a) and (b). Each heat sink has the dimensions mentioned above. In my unit, simple voltmeter and ammeter switching was incorporated to indicate the output quantities, (see Fig. 1).

## Performance

Figure 4 shows the results obtained under load for the two outputs. The ranges over which good stability is obtained is clearly seen. The limitations predicted for the high output ( 20 V ) shows up. The negative line regulation (given a constant positive line) is

$$
\begin{aligned}
\begin{array}{l}
\text { Load } \\
\text { regulation }
\end{array} & =\frac{\Delta V_{0}}{V_{0} \Delta I_{0}} \times 100 \\
& =\frac{13.86-13.79}{13.8 \times 6} \\
& =0.08 \%
\end{aligned}
$$

Fig. 3. The printed circuit design is show at (a), with component layout at (b).

This is better than the positive side, which is $0.57 \%$. For the test "to extremum" the current limit resistor ' $R$ ' was shorted.


## .Electronic technology improvesevery year. Electrical power does not.

 Sola power protectors are the simplest, most effective and economical way to eliminatelthese problems by cleaning and stabilizing your power just before you use it. The Minicomputer Regulator provides ultra-isolation and regulates voltage for small microprocessor based systems such as

CRT terminals and POS systems. CVS. a sinusoidal constant voltage transformer. blocks out brownouts, transients and voltage spikes for instrumentation applications. Solatron/ Acuvolt conditions power and regulates voltage for large computers and industrial equipment. All these products are UL listed Guard today's technology against yesterday's electricity with Sola

| Gs | power roriectis |
| :---: | :---: |
| SOLA-BANNEP | The Power |
|  |  |

## TRANSFORMERS EX-STOCK

|  |  |  |  |  |  |  |  |  |  |  |  |  | ivER VDC | RS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | NS | lat |  | 50/2 | 25 V or | 25-0-25 |  |  | 15 V or | 15-0-1 |  | 100W |  | ¢65.15 |
|  | $\mathrm{i} / \mathrm{Sec}^{2}$ | V |  | $2 \times 25 \mathrm{~V}$ | $V$ Tap | Secs Vo |  | 2×15 | Tap |  | Volts | 250W | . | $£ 172.70$ |
|  |  | Tap |  | availab | be 5, | 7.8, 10, | 13, |  | ble 3, | , 5, 6 , | , 9 . | 500 W |  | £196.19 |
| VA |  | rice | P\&P | 15, 17, | 20, 25 | 30, 33 | . 40. |  | 15, 18 | 20,24 | 25, 27 | 1000W |  | £396.72 |
| 20 |  | 11 | 1.70 | 20-0-20 | or | 25-0 | -25V |  | 5-0-15 |  |  | 2000W |  | ¢779,90 |
| 40 |  | 96 | 1.89 |  | 25 V |  |  | 30 V | 15 V | Price | P\&P | 4000 W |  | ¢1160.00 |
| 100 |  | . 63 | 2.10 | 0.5 |  | ${ }_{4}$ | ${ }_{1} 147$ |  | 1 | 3.35 |  |  |  |  |
| 200 |  | . 47 | 2.36 |  | 2 |  |  | 1 | 2 | 4.64 734 | $\begin{aligned} & 1.48 \\ & 169 \end{aligned}$ | TRAN | TANT VO | $\begin{aligned} & \text { LLTAGE } \\ & \text { AS1\% } \end{aligned}$ |
| 250 |  | . 92 | 2.77 | 2 | 4 | 9.12 | $\begin{aligned} & 1.50 \\ & 1.94 \end{aligned}$ | 2 | 4 | 7.34 | 1.69 | TRAN | FORM | S $1 \%$ |
| 350 |  | . 64 | 2.84 | 3 | 6 | 10.36 | 1.96 | 3 | 6 | ${ }^{8.50}$ |  | spike- | ree stab | e mains |
| 500 |  | . 64 | 3.10 |  |  | 14.80 | 2.22 | 4 5 | 10 | 10.15 | 1.99 | $250 \mathrm{VA}$ | $\ldots$ | $£ 172.40$ |
| 1000 |  | . 65 | 4.70 | 6 |  | $18.91$ | $\begin{aligned} & 2.22 \\ & 2.30 \end{aligned}$ | 6 | 10 | 12.55 14.20 | $\begin{aligned} & 2.10 \\ & 2.30 \end{aligned}$ | 500VA |  | £196.69 |
| $\begin{aligned} & 1500 \\ & 2000 \end{aligned}$ |  | . 79 | $\begin{aligned} & 595 \\ & 6.35 \end{aligned}$ | 8 | 16 | 26.75 | 2.86 |  | 12 | 14.20 19.00 | $\begin{array}{r} 2.30 \\ 2.36 \end{array}$ | 1KVA |  | ¢338.40 $\mathbf{5} 94.50$ |
| 3000 |  | . 12 | OA | 12 | 20 | 31.43 | $3.20$ | 10 | 20 | 21.92 | 2.46 | 3KVA |  |  |
|  |  |  |  |  |  |  |  | 12 | 24 | 24.36 | 2.63 | $\begin{aligned} & 3 \mathrm{KVA} \\ & 4 \mathrm{KVA} \end{aligned}$ |  | $\begin{array}{r} £ 840.00 \\ ؟ 1266.00 \end{array}$ |
|  |  |  |  |  |  |  |  | 15 | 30 | 27.96 | 3.20 | 5 SVA |  | ¢1266.00 |
| 400 | 440 to | 200/240 |  |  |  |  |  |  | 40 |  | 5.14 | 6KVA |  | £1743.00 |
| VA |  | rice | P\&P |  |  |  |  |  | AU |  |  | 7.5KVA |  | £2073.00 |
| 60 |  | . 98 | 1.90 2.10 |  |  |  |  |  | 15, 22 | 230, |  | 10KVA |  | ¢3347.00 |
| 100 200 |  | . 88 | 2.10 2.36 |  | 30 or | 30-0-30 |  |  | step-u | or do |  | AVO | 8 ME | GGERs |
| 200 |  | . 97 | 2.36 2.52 | Pri $2 \times 1$ | 20v. 2 | $\times 30 \mathrm{~T}$ |  | VA |  | ice | P\& P | 8Mk6 (1) | test) | ¢138.70 |
| 350 |  | . 64 | 2.84 | Secs. | Volts a | railable |  | 20 |  | 08 | 1.49 | DA211 |  | £68.40 |
| 500 |  | . 69 | 3.10 | 6, 8, 10 | 0, 12. | 15, 18, |  | 150 |  | 31 | 1.69 | DA2000 | LCD | ¢72.80 |
| 1000 |  | . 65 | 4.20 | 20, 24, | 30, 36 | , 40, 48 | 60, | 250 |  | 96 | 1.76 | DA117 | UTO | £157.00 |
| 2000 |  | . 38 | 5.50 | 24-0-24 | 4 or 30 | -0-30V. | . 60. | 500 |  | 96 | 2.34 | Megger | Gen | £116.40 |
| 3000 |  | 14 | 0 A |  | 30 V | Price |  | 1000 1500 |  | 84 |  | Batt M | gger | £85.50 |
| 6000 |  | . 19 | OA |  |  |  |  | $\begin{aligned} & 1500 \\ & 2000 \end{aligned}$ |  |  |  | T169 | ransist | r Tester |
|  |  |  |  | $0.5$ | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ | $\begin{aligned} & 4.93 \\ & 7.51 \end{aligned}$ | $\begin{aligned} & 1.58 \\ & 1.60 \end{aligned}$ | $\begin{aligned} & 2000 \\ & 3000 \end{aligned}$ |  | 34 | $\begin{aligned} & 4.20 \\ & 5.10 \end{aligned}$ |  |  | £61.30 |
|  |  |  |  | 2 | 4 |  | 2.00 | 5000 |  |  | OA |  | £2 VA | 5\% |
|  | 12 V or | 12-0-1 |  | 3 | 6 | 13.96 | 2.10 |  |  |  |  |  |  |  |
| $2 \times 1$ | 2 Sec | Pri. 2 | 40 V |  | 8 | 15.91 | 2.31 | CASE | Auto | S 240 V | cable | WW M | ODEM P | ROJECT |
| 12v | 24 V | Price | P\&P | 5 | 10 | 20.11 | 2.36 | I/P 1 | U US | sht 0 | lets | Tran | former | T1, T2 |
| 0.3A | 15 | 2.53 | . 90 | 6 | 12 | 22.95 | 2.78 | va |  | ice | P\&p | £6.90 | pair ine | VAT, PdP |
| 1 | 05 | 3.45 | 1.30 | 8 |  | 32.26 | 3.20 | 20 |  | . 57 | 1.59 | MEI | AL DXID | \% $1 /$ W |
| 2 | 1 | 4.46 | 1.36 | 10 | 20 | 37.55 | 3.47 | 80 |  | . 81 | 1.69 | $5 \%$ HE | SISTOR | £1/100 |
| 4 | 2 | 5.15 | 1.70 | 12 | 24 | 43.28 | 3.68 | 150 |  | . 70 | 1.99 | 12 \% | 47 |  |
| 6 | 3 | 8.07 | 1.76 |  |  |  |  | 250 |  | . 47 | 2.78 | 12, 20,3 | , 47, 7 | 390, 430. |
| 8 | 4 | 9.43 | 1.82 |  |  |  |  | 500 |  | . 38 | 2.90 | $510 \Omega 2$ | 560, 1k. | 1k1, 1k3. |
| 10 | 5 | 10.31 | 2.05 |  |  |  |  | 1000 |  | . 43 | 3.97 | $1 \mathrm{k6}, 1 \mathrm{~kg}$ | $2 \mathrm{k}, 3 \mathrm{k}$, | 3k9, 15k, |
| 12 | 6 | 11.43 | 2.15 |  |  |  |  | 2000 |  | . 49 | 4.76 | 16k, 24 | 27k | 39k, 56k, |
| 16 | 8 | 13.62 | 2.33 |  |  |  |  | 3000 |  | . 14 | OA | 82k, 1 | Ok, 110 | k, 120k, |
| 20 30 | 10 |  | 2.66 2.85 |  |  |  |  |  |  |  |  | 130k. | Ok, 20 | k, 220k, |
| $\begin{aligned} & 30 \\ & 60 \end{aligned}$ |  | $\begin{aligned} & 22.79 \\ & 46.67 \end{aligned}$ | $\begin{aligned} & 2.85 \\ & 4.50 \end{aligned}$ | Sec V | $\begin{aligned} & \text { MINIAT } \\ & \text { Amp } \end{aligned}$ | Price | P\&P | EDU | tinger | L METE |  | 270k, 30 | k. P \& |  |
| 83 | 41 |  | 550 | 3-0-3V | 0.2 |  | . 96 |  | nals 7 | screw |  | BRIDGE | RECTIF | ERS |
|  |  |  |  | $6 \times 2$ | $14 \times$ | 2312 | 1.30 |  |  |  |  | 1 A | 400 V | . 32 |
|  |  |  |  | 0-0-9 | 0.1 | 2.72 | . 96 |  |  |  |  | 2 A | 200 V | . 45 |
|  | 48V. P | P1 $2 \times 1$ |  | ${ }_{8 \times 2}^{9 \times 2}$ | 0.33 | 3 22.53 | . 96 | 0-30 | DC - £ |  |  | 35A | 100 V | 52.60 |
|  | Secs 2 | $\times 36 / 48$ |  | $8.9 \times 2$ $8.9 \times 2$ | ${ }_{1} 5 \times 2$ | 2.53 | 1.30 |  |  |  |  | 50A | 100 V | ¢ 3.20 |
|  | 2.84,9 | 6.36-0 |  | ${ }_{15 \times 2}^{8.9 \times 2}$ | $14 \times$ | 2 2.48 | 2.31 |  | EMS A | TER P8 |  | 12.5A | 500 V | \$3.40 |
|  | or 48-1 | 0.48 V |  | 12-0-12 | 05 | 3.11 |  |  |  |  |  |  |  |  |
| 72/96 | 36/48V | Price | P\&P | $20 \times 2$ | . $15 \times$ | 23.55 | 1.30 |  | , | - |  | , |  |  |
| 0.5 | 1 | 5.64 | 1.27 | 20x12 |  |  |  |  |  |  |  |  |  |  |
| 2 | 4 | 9.38 | 1.52 | 15-20×2 | 2 9 9 | 4.34 | 1.70 |  |  |  |  | W | S1 |  |
| 3 5 | 6 | 18.68 | 2.52 | 15-27×2 |  | 5.88 | 1.70 |  |  |  |  |  |  |  |
| 5 | 10 | 33.24 | 3.36 | 15-27×2 | 1A | 7.66 |  |  |  |  |  |  |  |  |
| 6 | 12 | 42.38 | 3.68 | $0-\mathrm{Cl} \times 15$ | 5 V .5 | 2.66 | . 96 |  | 01 | , | 22 | ( 8 | 35) |  |
| 8 | 16 | 46.23 | 3.98 | 0-CT-15 | V 4A |  | 1.08 |  |  |  |  |  |  | WW-6 |

CIRCLE 41 FOR FURTHER DETAILS.


[^3]

## Power supplies

# Our brief introduction to supply technology is followed by information on a wide range of current bench supplies. 

On hearing the words power supply, one immediately forms an image of a box containing a mains transformer, bridge cell and capacitor. After all, the majority of instruments and appliances still use this well-worked formula albeit with a few enhancements like a three-terminal regulator i.c. - the conventional linear power supply.

But a power supply need not necessarily supply d.c. More importantly, other techinques for converting mains power have progressed significantly in recent years because of the need for smaller units and higher efficiency. These efficient power supplies vary considerably in design, but they all use power switching of one kind or another. Despite what some designers might say to obscure the issue, being regulated by switching circuits they are all | switch-regul ated supplies.

The two basic types of switch-
ing regulator are primary switching types, in which mains voltage to the primary winding of a transformer is switched, and secondary types which switch output from a transformer secondary winding. Unlike linear regulators, which are essentially power dividers, a switching circuit designed as a power converter can give an output voltage which is higher than its input voltage.

Primary switch-regulated supplies are smaller and more efficient than secondary types, mainly because they only need a small high-frequency isolating transformer. Their drawbacks are the need for high-voltage medium-frequency switching power transistors and the fact that a large part of the circuit is at mains potential. Regulation is obtained by feeding back output voltage to the mains switching circuit so mains isolation is required between the transfor-
mer primary and secondary and in the feedback circuit.

Switching regulators are not a new concept, but they have not been common until recently. Component prices have had something to do with this but the components concerned are now widely available and reasonably priced. Good switching regulators require fast power transistors and diodes, highquality smoothing inductors and high-frequency capacitors. The main reason for the switching regulator's slow appearance is probably complexity. A reliable, electrically quiet switch-regulator is difficult to design.

Television sets have had switching regulators in them for some years now. Our tv-repair expert calls them 'the service engineer's nightmare', which helps to confirm their complexity. They took over from a most inefficient power source - a potential divider - and power
consumption in large colour tv sets has quartered. Obviously using semiconductors instead of valves has allowed this power reduction, but comparing like with like, a potential divider supplying 12 V at 1 A in a modern set would waste more power than one supplying 200 V at 1 A in an older valve tv. Efficiencies of around $90 \%$ are possible using switching regulators.

There are applications though where switching regulators will not be seen for a few years yet. High-fidelity power amplifiers are possibly the best argument for linear power supplies. A switching regulator here would cause switching noise directly in the amplifier, it could cause r.f. noise problems, and its regulation would be worse than that of a linear supply because of the amplifier's widely varying current demand, especially during music transients.

Linear supplies have a wide dynamic range and their inefficiency is not so much of a problem with modern push-pull power amplifiers. They are also more able to withstand abuse than switching regulators and there are numerous ways of protecting linear supplies against short circuits.
When a switching regulator starts up, extremely high currents must be switched by the



## First Castle Power

FOR PRICE FOR QUALITY FOR SERVICE

MAINS ADAPTORS
POWER SUPPLES - LINEAR/SWITCHMODE DC/DC CONVERTERS - BATTERY CHARGERS

Manby Electronics ltd, a subsidiary of FIRST CASTLE ELECTRONICS PLC, From simple plug in Mains Adaptors to complex multi-output Switch Mode types

## RING (050782) 8031 TELEX 56268

for a 24 HOUR quotation
(slightly longer for unusual designs)
7 DAY SAMPLE SERVICE FREE OF CHARGE
MANBY ELECTRONICS LTD.
MANBY PARK,
LOUTH, LINCS,
TEL (0507 82) 8031
TELEX 56268

## Further reading

Regulated Power Supplies by Irving M. Gottlieb, Sams, $£ 18.50$. The third edition of this book contains information about switching and linear supplies and includes plenty of applications ideas.
power device until the output filter capacitor is charged. At switch on, input to the switching circuit climbs from zero and the pass transistor can cope with charging the output capacitor (some switching regulators have a 'soft-start' circuit which allows the capacitor to charge slowly at switch on). If the output is shorted however and the pass transistor survives, it will almost surely fail when the short is removed as the power circuit has to charge the output capacitor from zero with a fully-on input voltage. Any protection circuit included must be very fast as the switching rate of most supplies is between 20 and 40 kHz .
Linear regulated power supplies are also more practical in applications requiring variable voltage and current, such as a low-voltage bench power supply. Switch-regulators, although tolerant of input fluctuations, do not lend themselves to variable output. Efficiency in a switchregulated supply can fall rapidly when the load falls outside design parameters or when one circuit is used to give different output voltages.

So far only linear and switching power supplies have been mentioned. An often overlooked form of power supply (possibly because of its price) is the ferroresonant transformer, which has been around for 50 years. It offers around $1 \%$ regulation, between 80 and $90 \%$ efficiency, inherent short-circuit protection and transient filtering, and an almost square-wave output which requires little smoothing when rectified. The so-called constantvoltage transformer makes for a low component-count supply and lends itself to computer power applications because of its rejection of mains faults.

Basically, this type of transformer has a secondary or tertiary winding (or combination of the two) which, in conjunction with a

## Characteristics of bench power supplies available on the UK market.



| MAKE | TYPE 0 | $0 / \mathrm{PV}$ | $0 / \mathrm{PI}$ | RIPPLE | R-LDAD2 R | R-LINE2 0/P R | FL CL | CV | CC | 4 | 1 C | PRICE | REMAFKS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | TSV 90 | 70 | 5 | <tev | $0.014+1 \mathrm{~N}$ | V.01\%+10v . 05 | + |  |  | * | + | 530 | Switch-selected output. |
|  |  | or |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 35 | 10 |  |  |  |  |  |  |  |  |  | Reaote sensing. |
|  | E350 | 350 | 0.2 | <5. | <0.5\% | <0.1\% | + + | + |  | * | $\pm$ | 333 | Overload protected. |
| HEMLETT <br> PACKARD | Huch too large a range to acconotate |  |  |  | tere. F | Froe 30ll to several kh. |  | Single |  |  | nd | Itiple | outputs. siaple |
|  | bench types and couplex, promer |  |  | progratable instrut |  | ents. Suall part |  | ange | e as |  |  |  |  |
|  | 62148 | 10 | 0.1 | 200 V | 4 aV | 4ay . 005 |  | + | * |  | t |  | 6200 \& 6209 autoseries, auto- |
|  |  |  |  |  | $500 \mu \mathrm{~A}$ | 750 A A |  |  |  |  |  |  | parallel, autotracking, |
|  | 62008 | 20 | 1.5 | - | 4ay | 4 V . 02 | + | * | \% |  | * |  | Single, dual range |
|  |  | or |  |  | $250 \mu \mathrm{~A}$ | $250 \mu \mathrm{~A}$ |  |  |  |  |  |  |  |
|  |  | 40 | 0.75 |  |  |  |  |  |  |  |  |  |  |
|  | 62168 | 25 | 0,4 | - | 4aV/, 5mA | 4aV/.5aA . 02 | * | + | * |  | * |  |  |
|  | 62068 | 30 | , | , | 4 aV | 4 V | * | + |  |  | * |  |  |
|  |  | or |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 60 | 0.5 |  |  |  |  |  |  |  |  |  |  |
|  | 62188 | 50 | 0.2 | - | 4 av | 4av/500uA. 04 |  | * | + |  | + |  | Single.dual range output |
| print | 62128 | 100 | 0.1 | - | BnV | - . 08 |  | $\pm$ | * |  | + |  |  |
|  | 62098 | 320 | 0.1 | nav | 2av | 2aV/200uA . 02 |  | 4 | * |  | $\pm$ |  |  |
|  | 62050 | 20 | 0.6 | $200 \mu \mathrm{~V}$ | 4av | 4aV . 025 |  | + |  |  | \# |  | Prograatable, autotracked |
|  |  | or |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 40 | 0.3 |  |  |  |  |  |  |  |  |  |  |
|  |  | and |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 20 | 0.6 |  |  |  |  |  |  |  |  |  |  |
|  |  | or |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 40 | 0.3 |  |  |  |  |  |  |  |  |  |  |
|  | 6234A | 25 | 0.2 | $200 \mu V$ | lav | lav | + | * |  |  | * |  |  |
|  |  | 25 | 0.2 |  |  |  |  |  |  |  |  |  |  |
| Hunting | Series650d adels | 1-10kto | 0.025 | <0.05\% | <0.05\% | <0.02\% |  |  |  | + | + | 1789 | Switched mode, high valtage |
| Hivolt |  |  |  |  |  |  |  |  |  |  |  | to | resote control, sonitar. |
|  | 6 aodels | 5-50k | 0.005 |  |  |  |  |  |  |  |  | 2025 |  |
|  | Series4000 | 50k | 0.08 | <0.05\% | 12 | 0.02\% |  |  |  | + | + | 8590 | External high voltage |
|  |  | to |  |  |  |  |  |  |  |  |  | to | discs. |
|  |  | 150k | 0.024 |  |  |  |  |  |  |  |  | 11661 |  |
|  | Series | 2.5-25k | 0.08 | <0.02\% | 0.05\% | 0.02\% |  |  |  |  |  | 4467 | Separate h.y.systen |
|  | 2000 | to |  |  |  |  |  |  |  |  |  | to |  |
|  |  | 20-200k | 0.01 |  |  |  |  |  |  |  |  | 8824 |  |
| Keithley | Several progranable current and voltage sources, plus: |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  | + |  |  | Overload protected. |
| Kepco | Very large range of |  | of instrunents--sumarized only |  |  |  |  |  |  |  |  |  |  |
|  | BOP50-2M 12rodels | +/-50 | +/-2 | Is ${ }^{\text {d }}$ | 0.0012 | $0.0005 \% \quad 0.0005$ | + | * | 4 | + | * |  | 6PIB progranable. 4-quadrant |
|  |  | to |  |  | 0.5 A | 0.002\% 50k |  |  |  |  |  |  | volts/current stabilized |
|  | BOP1004M MPS620M | +/-100 | +1-4 | - | - | - ' | * | + | + | $\pm$ | + |  |  |
|  |  | 6 | 5 | 0.10 V | 0.012 | 0.012 | + |  |  | * | * |  | Renote sensing. |
|  |  | 20 | 1 | - | - | $0.05 \%$ |  | + |  | + | * |  | 20V ouputs track. |
|  |  | 20 | 1 | - | - | , | * |  |  | + | + |  |  |
| Kikusui | PADL/LP | 8 | 20 | 0.5aV | $\begin{aligned} & .005 \%+10 v .005 \%+10 V \\ & \text { JaA } \operatorname{laA} \end{aligned}$ |  | + | $\pm$ |  | + | * | 634 | Overload protected. Renote prograning, Series or parallel. |
|  |  |  |  | 51. |  |  | to |  |  |  |  |  |
|  |  | 5 to |  |  |  |  |  |  |  |  |  |  |  |
|  | PADIk-0. 2 | 2 lk | 0.2 | 0.5aV | , 002\% $+5 \mathrm{VV} .002 \%+5 \mathrm{~V}$ |  | * |  |  |  |  | , |  | 1865 |
|  |  |  |  | 0.05 aA | 0.1aA | 0.10 A |  |  |  |  |  |  |  |
|  | PAE35-10 | 35 | 10 | 0.2 VV | lav | 10V |  | $+$ | + + |  | + | 875 | Progranaing speed up to 35V/us |
|  |  |  |  | 1 EA | 2 A | 0.5a ${ }^{\text {a }}$ |  |  |  |  |  |  |
|  | 3 aodels PAE35-30 | to | 30 | $\begin{aligned} & 0.4 \mathrm{aV} \\ & 5 a \mathrm{~A} \end{aligned}$ |  |  |  |  |  |  |  |  |  | to |
|  |  | 35 |  |  | lav | 2av | * | * | * | * | * | 1575 |  |
|  |  |  |  |  | 3aA | 1aA |  |  |  |  |  |  |  |
|  | PaC7-10 | 7 | 10 | 0.5av | $0.03 \%$ | . $0052+1.4$ | * | * | * | * | * | 428 |  |
|  | 8 models | to |  | IeA |  | 1.A |  |  |  |  |  | to |  |
|  | PaCl10-1 | 110 | 1 | - | * | , | + | $\pm$ | + | * | ; | 400 |  |
|  | PAB8-2.517 models | 8 | 2.5 | 0.5 w | . $022 \mathrm{~L}+2 \mathrm{~V}$ | . $02 \mathrm{x}+2 \mathrm{av}$ | * | * | * | * | * | 143 | Sinple bench supplies. |
|  |  |  |  |  |  |  |  |  |  |  |  | to |  |
|  | PAB350-0.2 350 |  | 0.2 | - | - | * | * |  | $\pm$ | $\pm$ | + | 184 |  |
|  | PDRI8-2.5 | +18 | 2.5 | 0.5av | . $005 \%+2 \mathrm{~N}$ | 2V. $005 \%+1.0 V$ | * | * | * | * | ! |  | Dual tracking, and- can be set |
|  |  | -18 |  |  |  |  |  |  |  |  |  |  |  |
|  | 5 aodels | to |  |  |  |  |  |  |  |  |  |  |  |
|  | 7034 | +60 | 0.5 | 0.5 aV | 3 aV | 3.v | * | * | * | ! | + |  |  |
|  |  | -60 |  |  |  |  |  |  |  |  |  |  |  |
| Lambda | LA-200-V | 16.5 | 4 | $60 . \mathrm{V}$ | 20 VV | 20 nv |  | + |  | * | * | 149 | T.t.1, on/off. Protected. |
|  | LA-300-V | 16.5 | 7 | - | - | - |  | + |  | * | + | 173 |  |
|  | LA-250-V | 32.5 | 2 | - | ' | - |  | * |  | + | + | 149 |  |
|  | LA-350-V | 32.5 | 3.5 | - | - | - |  | , |  | * | * | 173 |  |
|  | L8 701 | 7.5 | 270 | 150V | .12+10. ${ }^{\text {V }}$ | . $5 \%+6 \mathrm{CV}$ |  | * | * | * | + | 4450 | Progranable. Rack or bench |
|  |  |  |  | <1/v2 | 12+10aA | $12+6$ m |  |  |  |  |  |  |  |

capacitor, acts as a tank circuit. The core is separated magnetically into two sections by a magnetic shunt; the section with the tank circuit is resonant at the mains frequency and saturates, but the primary section does not. Energy is transferred between the two sections proportionally with input level and output load to provide constant voltage. The resonantor is not strictly an LC one as it involves magnetism in the core, hence the term ferroresonance.

## Glossary

Automatic recovery. Some supplies need resetting after being overloaded. One which returns to normal output when the overload is removed has automatic recovery.
Bipolar supply. Usually used to describe a supply whose output can travel from positive to negative and vice-versa, rather than one with separate positive and negative outputs or one with transistor drivers.
Bridge circuit. This term not only used to describe a diode configuration in a rectifier circuit but also a bridge driver circuit in switch-regulated supplies.
Brown-out. This is an input voltage level at which the supply still functions, but not necessarily within its specification. Derived from the American term for the practice of dropping mains voitage to reduce demand.
Common-mode output. Current through an impedance connected between the ground terminal to which the supply output is returned and a separate ground terminal.
Complementary tracking. Some supplies may be connected together so that the output of one tracks the output tof the other.
Converter. In some applications, a d.c. supply higher than the one availabe is required. Rather than use a separate power supply, a d.c.-to-d.c. converter is used to step up voltage from the existing supply.
Crowbar protection. For expensive circuits sensitive to overvoltage, such as found in a computer, crowbar protection is often used to sense an overvoltage condition and drag down the supply using a shunt element like a thyristor to blow the fuse. Itis a cheap means of protection for situations where overvoltages might occur. If overvoltage will occur, a less terminal means of shutdown is preferred.
Current mode. Some supplies have linear and adjustable current limiting and are designed to run indefinitely with the current limiting on. As load increases, voltage drops proportionally while the current-limit point is exceeded. This mode has numerous applications like zener-diode, led and diode testing, and can even be used to estimate the size of a large capacitor. Such a supply can also be used as a constant-current load for experimentation.

Primary-type switching regulator using p.w.m. and push-pull driving transistors. Being high-frequency components, the mains transformer and filtering elements are much smaller than usual. This type of regulator is highly efficient but mains isolation is required both in the transformer and feedback loop. Some primary switching regulators use a single-ended drive stage.

CVT, constant-voltage transformer, see text.
Digital control. Many supplies are now capable of being controlled digitally either by a dedicated controller or by a computer through say a GPIB interface or a slower RS232 serial link. Digital control is used in automatic testing, process control and in laboratories. Much of the power-control circuit may be digital, even though the supply may actin the same way as a conventional linear one. In this case analogue-to-digital and digi-tal-to-analogue converters are used. Dual tracking supply. A supply with interdependent positive and negative output voltages.
EMI. Electromagnetic interference is generated by switching supplies. Without adequate screening and filtering, this can affect surrounding circuits, the mains supply and the power supply output.
Ferroresonance (see text)
Foldback limiting. Protection circuit which actively reduces current supply as overload increases. This avoids overheating the supply and damaging any circuit connected to it during overload, but unless the supply has a separate linear current regulator, it cannot be used in constantcurrent applications.
GPIB (IEEE488, IEC625-1, HPIB, etc.,). More and more supplies designed for computer control are becoming available. GPIB - for gen-eral-purpose interface bus - is a widely used standard means of connecting instruments to a computer and most manufacturers use it. Its drawbacks are that it is quite expensive to implement and that the standard does not define how the control software should be written (see our March issue).
Inverter. An apparatus for converting d.c. into a.c. Often used for providing mains voltage from a car battery either in remote areas or locally for battery back-up. Unlike the uninterruptible power source, an inverter does not necessarily switch in automatically, and even if it does, at least a few mains cycles will be lost.
Line regulation. Expression of a supply's tolerance to input-voltage fluctuation. Assuming constant load conditions, line regulation is the out-put-voltage maximum deviation measured while varying the load from



# ERS - PRIWTERS - PRIWTERS - PRINTERS PRINTERS - PRINTERS - PRINTERS - PRI 

## SUPER DEAL? NO - SUPER STEAL!!


command compatability
a fraction of its original cost.

Many other features include bi directional
printing, switchable 10 or 12 pitch, full width 381 mm paper handling with upto printing, switchable 10 or 12 pitch, full width 381 mm paper handing with upto
163 characters per line, friction feed rollers for single sheet or continuol paper. internal bufter, standard RS232 serial intertace with handshake.
Supplied absolutly BRAND NEW with 90 day guarantee and FRE Suplied absolutly BRAND NEW with 9 dast cover Order NOW Or contact sales office for more information wheel Optional extras: RS232 data cable $£ 10.00$. Tech manual $£ 7.50$ Tractoifeed £140.00. Spare daisy wheel £ 3.00 . Carriage \& Ins. (UK Mainland) £10.00.

## PROFESSIONAL REYEOARD OFFER

An advantageous purchase of brand now surplus allows à great OWERTY "ulf travel, Chassis keyboard offer at fractions of the ir onginat costs.

DEC LA34 Uncoded keyboard with 67 quality, GOLD
standard $X$ Y matrix. Complete with 3 LED indicators \& i/o cable open switches
conversions etc. pCD DIM $15^{\prime \prime} \times 4.5$ " $\mathrm{E} 24.9 s^{\prime 2}$ Carnage on keyboards $£ 3.00$.

## 66\% DISCOUNT

 ELECTRONIC EQUIPMENTDue to our massive bulk purchasing programme which enables us to tring you the best possible
bargains, we have thousands of TC. Transistors. Relays. Caps. P.C.S.s. S Jb-assemblies Bwiches, etc. etc. surplus to our requirements. Because we donit have sufficier t stocks of any one item to include in our ads. we are packing all thes
LIFETMME. Thousands of components at giveaway nes what you pay Unbearable wall Sold by weinht
2.5 kls E $4.25+\mathrm{pp} £ 1.25$

## GE MODEL 30



A large purchase of these stand alone PRICE for a professional printer for direct connection to your micro. The printer has a standard RS232 serial interface with switchable rates of 110,200 and 300 baud. Upper and lower case characters ter widths up to 132 columns. Unit accepts standard fan fold sprocket fed paper from standard fan fold sprocket fed paper rom numeric keypad, electronic keyboard, auto numeric keypad, electronic keyboard,
motor on/off and FREE floor stand. Supplied in good S/H working cond CARRIAOE E INS, E10.00

## EKKTBL PRINTERS

EX NEWS SERVICE compact, quality built 50 column matrix printer type AE11.
Unit operates on 5 BIT BAUDOT code Unit operates on 5 BIT BAUDOT code from current loop, RS232 or TTL serial interfaces. May be connected direct to micro, or comms receiver via simple filter network to enable printing of most world wide NEWS, TELEX and RTTY services.
Supplied in tested second hand condition with 50 and 75 baud xtals, data sheet and large paper roll. owly $\mathbf{~ 4 9 , 9 5 .}$
CARR $£ 6.00$ Spare paper rolls $£ 4.50$ each

GE TERMIPRINTER


A massive purchase of these desk top printer -terminats enables us to ofter you
these quality 30 cps printers at a SUPER LOW PAICE against their original cost of over £ 1000 . Unit comprises of full OWERTY electronic keyboard and printer mect with
pnnt face similar to correspondence quality typewiter vanable forms tractor unit enables full with - up to $13.5^{\prime \prime} 120$ column paper, upper - lower case, standard. RS232 serial interface, internal vertical and horizontal tab settings, standard ribbon
adjustable baud rates quiet operation plu many other features. Supplied compiete with manual. Guaranteed working EI 30.00 untested Ej5. O0, optional floor stand $£ 12.50$
Carr \& ins $£ 10.00$

## THIFTYP9 ASBB

## I/O ThBMITATS

## FROME19s + CAR. + VA $=$

 erminadged Industry standard ASR33 data keyooard and printer for data I/O auto data detect circuitry. RS232 serial interface 110 baud. 8 bit paper tape punch and reader for oft line data preparation and ridiculously cheap and reliable data storage. Supplied good condition and in working order Options: Floor stand $\mathbf{E} \mathbf{1 2 . 5 0}+$ VAT KSR33 with 20 ma loop interfacef 185.00 Sound proof enclosure $\boldsymbol{\Sigma 8 5 . 0 0}+\mathrm{VAT}^{\top}$
## 20,000 FEET OF ELECTRONIC AND COMPUTER GOODIES ENGLAND'S LARGEST SLIRPLUS STORE - SEEING IS BELIEVING!!

## D.O. POWLR SUPPLY SPDCLALS

ExperImentors PSU Ex-GPO. All silicon. electronics. Outputs give $+5 v$ @ 2 amps Dim $150 \times 120 \times 350 \mathrm{~mm}$. All outputs are tully regulated and short cirvuit proof. Supplied in NEW or littie used condition. Complete with circuit: Only $15.50+2 £ 2.50 \mathrm{pp}$
FARNELL 5 Volt 40 amps. Type number G6.40A. This miniature swith hing PSU measures only 190 mm widd 175 mm deep and 90 mm high yet delive-s a mass sive 40 a mpsll 1 Illy regulated and smoothed with over voltage protection etc. 120 or
240 volts AC in

the current list price. Only $£ 130.00+\varepsilon 3.00$ carv \& ins. 5 vols $D C$ at 3 to 10
AMBDA LMCC $5 V$ BRANO NEW 240 AC in amps ffily regulated output. Completely enclosed unit measures only $9^{\prime \prime} \times 4^{\prime \prime} \times 5^{\prime \prime}$ LAMDA LMCC5V 110 VAC input with 5 volts DC at 8 to 10 amps fult, regulated Output. Slilintity smoke damaged hence ONLY E10.95
PERPHERAL SYSTEM SUPGLY. Auns almost any system. Fully cas ed unit
 $15-17 \vee$ @ 8 amps
crowar protected and the 5 voll output is fully regulated. Fan coolec Supplied crowbar protected and the
tested with circuit. $855.00+8.50$ car

1000'B of other POWER SUPPLIES EX STOCK
CALL SALES OFFICE FORDETAILS

## DUAL DISK DRNE/ WINCHESTER CASES

Very smart, fully enclosed case unit custom made to accept two full height 51/4" floppy disk drives or two $5^{1 / 4}{ }^{\prime \prime}$ winchesters such as the RHODIME RO200 or TANDEM series etc. An internal switched mode PSU supplies all the required voltages to enable you to plug in your drives and go!!

Other features include mains filter internal cables with standard drive connectors, space for internal PCB, standard fan cut out and mounting, air filter. Overall dimensions $28 \mathrm{~cm} W \times 30 \mathrm{~cm} \mathrm{D} \times 19 \mathrm{~cm} \mathrm{H}$ ONLY $£ 55.00+\mathbf{E 6 . 0 0}$ CARR.

## ULTRA COMPACT ACCOUSIIC MODEM - COUPLER

special enables us to offer this BRAND NEW TRANSDATA 307A ultra compact, BT AP JROVED 300 baud full duplex accoustic modem et a fraction anufacturers list price. The unit opertes on the tandard CCITT V21 frequenc
interface via 25 way 'D' skt. interface via 25 way 'D' skt. Combine the adjustable cup system, which "No jacks on phone cables" and E benefit of No jacks or phone cables" and e light
weight of only 1.2 Kg and you have weight of only 1.2 Kg and you have a truly portable modem!! Supplied complete with ONLY £49.95 + £3.00 pp

PROTMSSIORAL 6 FOOT 19" RACK CABIMDTS LARGE $19^{\prime \prime}$ equipment cabinet. Tota enclosed with locking front and rear
doors. An internal sub fram $63{ }^{\prime \prime}$ high is

## SEMICONDUCTOR 'grab bags'

## Hixed Semis amazing value contents

 include ransistors. digital. linear. .C. $s$ triac uaranteed brand new full spec. with manu acturer's markings, fully guaranteed. $50+82.95100+E 5.15$.TL 74 Serles A gigantic purchase of an across the board' range of 74 TL serie mostly TL" grab bags al a price which or three chips in the bag would nnormally cost to buy. Fully guaranteed all I.C. s full spec $100+\kappa 6.90200+E 12.30300+E 19.50$

## NORTH STAR HORIZOH

## Pro \$100 system with dual 5 "

drives, software, manuals et
£850.00 Call sales office for details

LOGICAL KJYBOARD Heavy duty unit in attractive satin alloy case. 55 full trav
logical format of


Making a very useful keyboard ideal fo persons unfamiliar with or confused by the standard OWERTY layout. All keys generate the equivalent ASCII outputs and various
control codes shown in data. A 7 bit latched paralle I TTL output with strobe enables direct connection to any similar micro por etc. Many other features such as internal $240 v$ to $5 v$ PSU, MAINS ON/OFF switch.
Suppled In NEW or little used condition Supplled In NEW or little used condition
With data.

1000's of other EX STOCK items including POWER SUPPLIES, RACKS, RELAYS, TRANSFORMERS, TEST EQUIPMENT, CABLE, CONNECTORS, HARDWARE, MODEMS, TELEPHONES, VARIACS, VDU'S, PRINTERS. POWER SUPPLIES, OPTICS, KEYBOARDS etc. etc. Give us a call for your spare part requirements. Stock changes almost daily.
Bon't forget, ALL TYPES and QUANTITIES of electronic surplus purchased for CASH

35 Watt Complete Kit. Mosfet O/P $\qquad$ 679.50
883.50 Reprints of Origins 'Articles from'Hi-FiNews' f1 no VAT.

## LINSLEY-HOOD 100-WATT MOSFET POWER AMPLIFIER

by very latest amplifier design, pubished in 'Wireless World' by the renowned John Linsfey-Hood. This may now be taken as the standard by which the rest are judged! Our kit, approved by
the designer, has massive heat sinks and power supply and the designer, has massive heat sinks and Power supply and wide, 254 mm deep and 145 mm high. Automatic switched speaker protection is included as standard. Cost of all parts is
over $£ 120$ Our complete stereo kit price f 105.50 .

LINSLEY-HOOD CASSETTE RECORDER CIRCUITS
Complete record and replay circults for very high quality low noise stereo cassette recorder. Circuits are optimised for our
HS16 Super Quality Sendust Alloy Head. Switched bias and equalisation to cater tor chrome end faric tapes. Very easy to assemble on plug-in PC8s. Complete with full instructions.
Complete Stereo Record/Piay Kit..........................25.26 $\vee \cup$ Meters to suit
12. 30 each
$75 \mathrm{p} . \mathrm{No}$ VAT.

## STUART TAPE RECORDER CIRCUITS

Complete Studio quality record/Play electronics to bring that old valve machine back to lite. Full details
in our REPRINT

## PW WINTON STEREO AMP

Super Hifi Mosfet Amplifier Kit giving 50 Watts per channel at $.014 \%$ distortion, housed in attractive SPECIAL OFFER, NOW ONLY f89. Reprint o descriptive articles 85p (NO VAT)

## GGS001 2-MOTOR

 SOLENOID CONT CASSETTE DRIVE. Fulty solenoid controillcassette mechanlsm suitable for Hi -FI or control board the degic an be operated by ightwelght touch controls or output from a micro. Ideal for applications under as telephone answering mathines, data loggers. autornatic background music systems, remote control recorders and microcomputer program and data storage. Two motors and lorward and rewind. Standard fitings include reed switch for avto off. 3 digit counter.

 INF 140 .
F140. Full technical specification and drawings $\varepsilon$ !
AM VARICAP DIODE BARGAIN Super wide range SMV2012 aricap diodes in matched sets to eliminate tracking errors pair only 25p. Matched 4 only 60 p.
ET OF 4 COILS to use with above to make long, medium and
hort wave AM tuner. Normally 30p each. OUR PRICE FOR THE SET ONLY 55p
NF10 Application circuit using coils and matched pair of G8AIFTranicaps. 35p CUA455F2IF Filter Suitable PC Board


HIGH QUALITY REPLACEMENY CASSETTE HEADS

## atar

Do your tapes lack treble? A worn head could be the problem, Fitting one of our replacement heads could restore performance
to better than newl Standard mountings make fitting easy and our TC1 Test Cassette helps you set the azimuth spot-on. We are the actual importers which meens you get the benefit of lower
prices for prime perts. Compare us with other suppliers and seel The following is a list of our most popular heads, all are suitable for use on Dolby machines and are ex-stock.
HC20 Permalloy Stereo Head. This is the standard head fitted as original equipment on most decks.
HM90 High Beta Permalloy Head.
formance head with metal capability. HS 26 Sendust Alloy Super Head, the best head we can find Longer life than Permalloy, higher output than Ferrite, fantastic
frequency response 05514 -Track Head
specification record and playback heed............................ 9.73 Please consult our list for technical date on these and other peciar Purpose Heads.
Matest version Double Mono(2/2)Record/Play head. Reolaces R484
M166 Standard Mounting $2 / 2$ Erase head. Compatible with bove or H0551 4 Track head $£ 5.90$
H524 Standard Erase Head. Semi double gap, high effiH561 Metal Tape Erase Head. Full doubie gap £1.50

Three band LW/MW/FM Steroo TUNer fully assembled on PCB
$165 \times 85 \mathrm{~mm}$. Supplied with Ferrite rod $65 \times 85 \mathrm{~mm}$. Supplied with Ferrite rod aerial and band switch fully wired. Facility provided to drive tuning meter and stereo
LED. Only needs 12 DV D supply. FM sensitiviry. 2.5 uV. Price only $\mathbf{E 7 . 9 9}$ inc. VAT and post.

STEREO 10W POWER AMPLIFIER MODULE Ready built and tested music cenire power amplifier module complete and ready to use. Manns input 220/240v with power to spare tor ture and tape deck. Size $190 \times 110 \times 65 \mathrm{~mm}$. ONLY c8.90 plus Vat and Post.

AUTOMATIC 10-CASSETTE AUTO PLAYERS suitabie for background music systems. Lenco type PAC 10 plays each casette forward and backwards before changing to he next. Any casseme may be rejected at the touch of a button. Mains powered, Wood finish case with perspex top cover, play Hrough any high quality stereo ampifier system. Orinally ove £500 each! Our prlce lor ex-demonstration modeis only £230 One only Brand New $£ 310$

CASSETTE TC1

## HART TRIPLE-PURPOSE TEST

One inexpensive test cassette enables you to set up VU level,
head azimuth and tape speed. Invaluable when fitting new heads. Only $£ 4.66$ plus VAT and 50p postage.
Tape Head De-magnatiser. Handy size mains operated unit prevents build up of residual head magnetisation causing noise

on playback. Curved Pole Type for inaccessible heads $\quad £$| hen |
| :--- |

Send for your free copy of our LiSTS. Overseas please send 2
pese add part cost of post packing and insur
INLAND OVERSEAS
$\begin{array}{ll}\text { Orders up to } £ 10-50 \mathrm{p} & \text { Please send sufficient } \\ \text { Orders } £ 10 \text { to } £ 49-£ 1 & \text { Surface or Air Post as }\end{array}$

## E.M.S. POWER SYSTEMS



Solve all your Power Problems by contacting E.M.S.
E.M.S. specialise in systems to eliminate your power problems.
Products range from 35VA switched square wave Power Packs to 1KVA fully uninterruptible sine wave systems.
E.M.S. also manufacture chargers which range up to 60 amps .

For further details please contact:

# E.M.S. Manufacturing Limited Chairborough Road High Wycombe <br> Bucks Tel: (0494) 448484 

# LYONS INSTRUMENTS LIMITED WARE ROAD, HODDESDEN, HERTS EN11 9DX 

Attention is drawn to the Guildline Digital Platinum Resistance Thermometer the cost of this £1780 and not £2760 as previously, wrongly, stated in Electronics \& Wireless World, March ' 85 issue.

| Lynwood GD1 VDUs: Intelligent Green micro controlled, RS232, printer port, 101 key k/b. Full Video enhancements. ..................ONLY £149+£15 P\&P (S/H) |  |
| :---: | :---: |
| Burroughs MT686/7/TD710: Intelligent Green $12^{\circ}$ VDU with 3 micros and 64 K store. RS232. Programmable. . Only $£ 199$ new or £149 S/H + £15 P\&P <br> Open Chassis Video Monitors from above VDUs |  |
| Multirail Switching PSUs from above $5 v 4 A 12 v+24 v$.$£ 25+£ 1.50$ |  |
| Data General 6012 VDU's very attractive display working RS232 with integral 73 key $\mathrm{k} / \mathrm{b}$ either dumb terminal mode or page buffered <br> Only $£ 120.00+£ 15.00 \mathrm{p} \& \mathrm{p}$ |  |
| Centronics 306 Line printers: Professional fast ( 120 cps ), superb quality 80 column printer. Paralleli/f..... ONLY £99+ £15.00 P\&P |  |
| Osborne Executive Portable CP/M system with oodles of software. Twin floppy drives <br> $\Sigma 900+£ 15 \mathrm{p} \& \mathrm{p}$ <br> Diablo 630Daisywheel printer. OEMi/f. $\qquad$ NEW $599+\varepsilon 15 \mathrm{P} \& \mathrm{P}$ <br> Caicomp 565 Drum Plotter, 10 thou steps. ONLY £450 |  |
|  |  |
|  |  |
| Callers welcome by appointment <br> M-4665382 <br> 34 Rodway Road, Bromley Kent BR1 3JL | we also buy redundant peripherals | CIRCLE 46 FOR FURTHER DETAILS. ELECTRONICS \& WIRELESS WORLD MAY 1985

maximum to minimum. It is expressed as a percentage.
Operating area. Supplies with wide output-voltage ranges can often supply more current at higher voltages because dissipation in the linear regulating circuit is lowest. Rather than giving a fixed rating of, say $0-30 \mathrm{~V}$ at 5 A , some manufacturers provide an operating area graph of current versus voltage.
Regulation, see load/line regulation. Remote sensing. Specifications for power supplies don't take into account the leads connecting the supply to the load. With long leads and high currents, voltage drop can be significant and output impedance of the supply increases. Remote sensing is used to minimize these effects. Normally, voltage is sensed at the supply output terminals and fed back to the control amplifier which provides regulation. Remote sensing involves taking the voltage sensing lines out directly to the load.
Resolution. Smallest voltage or current increment which an adjustable supply can repeatably be set to.
Response time. When subjected to a step or transient load, a supply takes time to respond. It is likely that response times in current and voltage modes will be different.
Ripple rejection. In a regulating circuit, ripple rejection is the ratio of r.m.s. input ripple voltage to r.m.s. output ripple voltage.
Shunt regulation. A shunt regulator, a good example of which is a zener diode, stabilizes voltage by acting as a load whose impedance rises rapidly as voltage falls below a certain level and vice-versa. With no load, a shunt regulator draws high current, and with full load draws very little current. Unless load is constant, shunt regulators are inefficient. Their advantage is that they are unaffected by output short-circuits.
Suppressor. This term is used for any device used to filter out unwanted noise or transients. These include LC mains filters, metal-oxide voltage dependent resistors, which can be found over the mains input or d.c. output, high-speed silicon suppressors, which are like a zener diode but able to withstand extremely high currents in short bursts, and simple capacitor suppressors, which may be found almost anywhere in a supply circuit.
Settling effect. When load on a supply changes, it takes time for the supply to reach thermal equilibrium. This is the settling effect.
Transient response. Like power amplifiers, power supplies take time to respond to transient load variations. A supply's transient response is difficult to quantify and is probably best expressed in an oscillograph. Some manufacturers express transient response in terms of time taken for output voltage to recover to within a certain tolerance for a given step load change.
Zero-crossing switch. Some supplies only allow the mains to switch on at the voltage zero crossing point.


## POCOMTOR AFR 2000 RTTY ALL MODE



## SPECIAL FEATURES

- Fully automatic recognizing of ARO, FEC-Collective and FEC Selective (SITOR/AMTOR)
- Fully automatic seatching and synchronizing in Baudot mode according to Baud rate and phase; indication of baud rate and phase
- Manual preselecting of all Baudol and ASCII speeds
- Optimum microprocessor controlled signal reception with $16^{\circ} 000$ (sixteen thousand) samples per second and steady re phasing on forward and backward run of signal
- Soecial narrow band quadrature discriminator for all used LF stritis from 50 to 1000 Hz
- Simple and quick tuning with 16 line LED bar indication
- Extremely simple operating
- Current-saving 8 bin C-Mos microprocessor
- Deveiopment and manufactured in Switzentand

EATURES AND APPLLCATION
The POCOMTOR AFR-2000 RTTY ALL MODE DECODER allows the simple and easy writing of the usual teletype codes as BAUDOT. ASCll (including 200 baud press service), ARO. FEC-Collective FEC Selective (SIT OR/AMT OR) and the FEC procedure used for secret services, which differs from the usual CCIR recommendation 4762 The POCOMTOR AFR- 2000 is a compete teletvpe decoder with bult in new quadrature discrimnator for automatic adapting and processing of the normal shrt offsets of 50 Hz
to 1000 Hz . The POCOMTOR AFR- 2000 is the first RTTY receotion device on the consume area thai to 1000 Hz . The POCOMTOR AFR- 2000 is the first RTTY reception device on the consume area that necessary as yel usual to test the baud rates and phase (Nornal/Reverse) in question in a troublesome way. It is now only required to call up the automatique routine and after a shon time for the signa eception of about 10 to 15 seconds the synchronization is reached and the text can be written.
In the mode ARQ/FEC. i.e. during synchronous character transter (without start and stop bri) the buit in ntelligency finds out by itself whether it is an ARO or FEC signal. whereby it is addrionally differentiated etween FEC -Colective and crefuning characters and to afterrunning

The tectnology of the POCOMTOR AFR-2000 RTTY ALL MODE DECODER corresponds to the highes equirements. Its extraordinary prize/perfommance ratio will not be reactred in near future on the easy its for that you receive more and have to tume less. It has never been thus easy to recsive radio tedetype.

Dewsbury Electronics offer a full range of $\mathrm{T}_{\text {rio }}$ Equipment always in stock
We are also stockists of DAIWA-WELTZ-DAVTREND-TASCO TELEREADERS-MICROWAVE MODULES ICS AMTOR-AEA PRODUCTS-DRAE-BNOS
Dewsbury Electronics, 176 Lower High Street, Stourbridge, West Midlands. Telephone:Stourbridge (0384) 390063/371228. Open Monday thru Saturday. Instant H.P. subject to status, Access, Barclaycard and real money.


CIRCLE 53 FOR FURTHER DETAILS.



CIRCLE 38 FOR FURTHER DĒTÄILS.

## E.h.t. multiplier

A new design for high-voltage multiplier provides an e.h.t supply up to 30 kV for c.r.ts from an input voltage of between 5 and 5 kV . The unit uses single-cell silicon diodes and is claimed to provide improved regulation when compared with split diode systems. They will operate over a wide temperature range and are rated for continuous operation at an ambient temperature of $55^{\circ} \mathrm{C}$. It is housed in a flame-retardent plastic case with epoxy resin seals and is approved to BS415. Edicron Ltd., 1 Wesley Avenue, London NW 10 7BZ. EWW213

## Static locator

A pocket sized static electricity locator is designed and made in the UK. The EVL9 has three ranges; $1 \mathrm{kV}, 5$ and 25 kV and uses leds to indicate the presence and polarity of static. A simple conversion table is provided to calculate the field

strength. The battery powered instrument may be used in such static-sensitive environments as computer rooms, electronic component assembly areas, hospitals, laboratories etc. It costs $\mathfrak{L} 109.75$ inclusive from Technotrend Ltd., The Town House, High Street, Chobham, Surrey GU24 8AF. EWW218


## Lowest-cost modem

The cheapest multi-standard modem yet is the Demon, which for a v.a.t.-exclusive price of $£ 49.95$ gives access to dial-up databases on both the 300 baud and viewdata standards. And a front-panel push-button allows selection of the corresponding American modes.
Most other controls, however, are implemented in software to avoid the cost of switches. At present the Demon, which was first announced last autumn as the Unicom modem, is available only in a version for the BBC Micro. The software is supplied in eprom at an extra $£ 20$. The data connection to the computer is via the serial port, which doubles as a control line: mode selection is carried out by keying the RTS line.

The software offers a number of attractive facilities: Prestel telesoftware downloading, user-to-user file transfer with the socalled CP/M protocol, autodialling, auto-answer and autoscanning mode selection. One feature of its design is that all functions are controlled by means of 'star' commands. Users can incorporate these in their own software to make do-it-yourself computer bulletin boards.


But a drawback of the software control is that there is no quick way of discovering the status of the modem. And the user cannot check whether a call has succeeded, since the unit has no telephone extension socket. Another problem is that although the rom is said to use 'legal' system calls only, it seems to conflict with certain other packages - for example, Addcomm and the Computer Concepts graphics extension rom.
Versions of the Demon are planned for several other computers, including the Amstrad CPC464, Apple II, ZX Spectrum and Commordore 64 The Demon Modem has not yet received BABT approval.

Demon Electronics Ltd., 182 Royal College Street, London NW1 9NN
EWW210

## GPIB for Apricot

A plug-in card together with a disc library of driver subroutines provides a full implementation of the IEEE-488 interface bus for the ACT Apricot personal computer. The card enables users of the computer to program and access data from such sources as automatic test stations, test and measurement equipment and signal interfaces such as Microlink. The software allows the IEE-port to be used from

Microsoft controller functions, which include: secondary addressing, parallel data transfer in eight bits, serial and parallel polling, status tests from software, remote line control and data transfer at $20 \mathrm{~Kb} / \mathrm{s}$. The p.c.b. plugs directly into the backplane of the computer or may be connected through a lead if required. Electroplan Ltd., PO Box 19, Orchard Road, Royston Herts SG8 5HH. EWW205


## Terminal software for Spectrum

A cassette program, Spacenet, will allow Sinclair Spectrum owners to use their VTX5000 Prestel modems with ASCII services such as Bulletin boards and commercial databases which are not accessed through Prestel. The modem speed is still fixed at $1200 / 75$ but most databases and an increasing number of bulletin boards are providing services at this data rate. Once connected to a service all control characters can be sent for editing or cancelling various functions. Program transfer is possible in both directions using

## Comal for the BBC

Latest in a flurry of recent language releases from Acornsoft is a version of Comal for the BBC Micro. Comal, which has been described as a half-way house between Basic and Pascal, is widely used in educational computing in Scandinavia (where it originated) and the Netherlands. It has also won official approval in Scotland and the Irish republic as the recommended language for secondary schools.

Comal is an interpreted language. For the beginner it is as easy to pick up at the keyboard as Basic, yet it does not share that language's tendency to engender untidy programming habits.

On paper, a Comal listing looks much like its Basic equivalent: most of the keywords are the same (though the tokens used for program storage differ), there are the same variable types and the program lines are numbered.

Comal's practical advantage lies in its powerful control structures. For example, in addition to the Repeat-Until loop (which is executed at least once) it has the useful While-do loop, which is not executed at all if on entry the exit conditions are already met. For decision-making, Comal has Case-when for use where the course to be taken depends on the value of a variable: a neat alternative to complicated Ifthen statements.
String-handling is made exceptionally easy by the sub-

Xmodem principles. Copies of the screen can be saved and reloaded into the computer as can any software received by the system. Local echo is provided as an option.
Another program, Specterm, provides similar functions and allows all known Spectrum RS232 interfaces to be used with a modem and will communicate even with Spectrum-incompatible computers. The software manufacturer tells us that BBC , Tandy and CP/M computers, amongst others, have been used to store Spectrum data. Each program cost $£ 5.95$ from Stephen Adams, 1 Leswin Road, London N16 7NL. EWW207
string specifier, a simple yet strikingly effective device which by-passes the cumbersome Left\$, Mid\$ and Right\$. Filing commands are comprehensive, yet plainer in their meanings than their Basic counterparts.

Each program line entered at the keyboard is checked for syntax errors by the editor, which echoes any faulty line with the error marked. When the program is listed, loops and other features are indented automatically to emphasise the structure, making the flow of control easy to follow. Keywords are displayed in upper case letters, variables and procedure names in lowercase, and the editor inserts certain formal details of syntax where they have been omitted.
Execution speed is a little slower than BBC Basic - by about $15 \%$ according to Acom - though that still makes it faster than most other eight-bit Basics. However, Comal's special features make it possible to write compact code which is also much simpler to de-bug.

Acornsoft's Comal conforms to the Comal-80 standard published in 1982. It includes many extensions specific to the Electron and BBC Micro such as sound and graphics commands, which have the same syntax as their BBC Basic equivalents. The language is supplied in a 16 K rom for £49.85 including v.a.t., together with a clear and wellwritten 440 -page manual, also available separately at $£ 10$. Acornsoft Ltd., Betjeman House, 104 Hills Road, Cambridge CB2.1LQ. EWW211

# AUDIO • VIDEO • DATA 

A superb range of innovative loading and duplicating technology

- Worldwide .


#  the leaders 



# Low-cost logic analyser 

Claimed to be by far the best in price to performance ratio, the Thurlby LA- 160 at $£ 395$ offers 16 data channels, expandable to 32 , and a 2000 -word acquisition memory. The state domain display shows the data in any of five formats: binary, octal, decimal, hex or mixed. A full 16 -channel timing display is available by connection to any conventional oscilloscope. The maximum clock rate is 10 MHz for the LA-160A or 20 MHz for the LA-160B.

Comprehensive trigger facilities include 230bit trigger width, the ability to set the trigger word in any display format, selectable trigger holdoff and a trigger arm input with variable delay. Data can be capture synchronously or asynchronously using the clock of the circuit under test or an internal clock with 16 selectable frequencies. Two clock qualifiers enable data to be captured selectively, e.g. on the read cycle of a processor bus.

The instrument is microprocessor controlled through a front-panel keyboard with all the set-up information being stored in permanent memory. A non-volatile reference memory is also included. This can be loaded from the acquisition memory and allows reference data to be stored for comparison. Extensive software facilities include word search, block memory compare, word-byword comparison and stop on equality or non-equality acquisition modes. A built-in RS232 interface enables the

## 

TRIGGER ENABLES $=1101$
TRIGEER ARM $=1$
ARH DELAY = ON
TRIG HOLD-OFF $=$ OFF


contents of the acquisition memory to be dumped to a computer and printed. Options include high impedance input modules, expansion units, an IEEE488 bus analysis connector and a direct printer interface. The LA-160 is truly portable, weighing less than 1.8 kg .
Thurlby believe that its low cost makes it suitable for each engineer to be allocated one, rather than the usual queue to use the lab's only instrument. The low cost also makes it available to educational establishments and service departments who hitherto have been unable to afford a logic analyser. Thuriby Electronics Ltd., New Road, St. Ives, Huntingdon, PE17 4BG. EWW215

## Glass-less relay

The changeover contacts on the SDS RS family of reed relays can switch $240 \mathrm{~V}, 1 \mathrm{~A}$ and up to 40VA. The relay does not use the conventional glass envelope for the reed element, but instead uses the coil body which is encapsulated inside the relay housing. The coils are polarized and 160 mW of power is sufficient to achieve high contact pressure.

Polarizing also enables latching relays with one or two coils to be produced in a package only 20 by 10 by 10.2 mm . For use in telecommunications, telemetry, instrumentation and control systems. They are sealed and magnetically screened. SDS Relais Ltd., 17 Poters Lane, Kiln Farm, Milton Keynes MKill 3HF. EWW221


## Bug hunter

A device for detecting and locating clandestine radio microphones is the Ranger surveillance receiver. It improves over earlier systems by being able to operate in the presence of strong local radio signals, it can detect power line bugs without being connected to the power line, it can locate a
bug to within a few centimetres and needs no specialist operator skills. An average room can be 'swept' in about two minutes and the sweep covers a frequency range from v.l.f. to several GHz . It also checks all likely modulation methods. The device is portable and operates from rechargeable batteries. Datong Electranics Ltd., Spence Mills Lane, Bramley, Leeds LS13 3HE. EWW217


## Nine-channel tape head

Designed for high speed data storage on 0.25 in tape, the D99RW01 has nine channels designed for eight-bit words and a parity bit. The manufacturers point out that this method eliminated the need to buffer incoming signals before writing to the tape in serial format for subsequent reconversion to parallel on read output. There are also audio applications with the use of NAB audio cartridges
and could be used, for example for the 'jingles' in popular radio The volume production version has a head gap of 100 microns, a nominal inductance of 2.7 mH providing an output of up to 4 mV with a tape speed of 15 ips and a data rate of 3200 Hz . Other versions can be built to meet customer specification. Monolith Electronics Ltd., 5 Church Street, Crewkerne, Somerset TA18 7HR. EWW223

## Tantalum capacitors

Of particular use in timing circuits where high stability, high reliability and low dissipation are important, the Mepco Electra range of metal cased solid tantalum capacitors is available. The $40 S 5$ range can also be used in decoupling, blocking, bypass and filtering applications. They are manufactured using porous sintered tantalum anodes with tantalum oxide dielectric. They feature very low d.c. leakage. Voltage ranges are from 6 to 100 V in preferred capacitance values from 0.1 to $330 \mu \mathrm{~F}$, at $10 \%$ tolerance. Greenwood Electronics, Portman Road, Reading, Berks RG3 1NE. EWW216


## A low－cost professional Logic Analyser the new Thurlby LA－160

－ 16 data channels，expandable up to 32
－2，000 word data acquisition memory
譄 Non－volatile reference memory
－Powerful search and compare facilities
－Clock rates up to 20 MHz
Data state and logic timing displays
－Binary，octal，decimal or hex formats
－Hard－copy data print－out option

## An essential instrument for today＇s electronics

An oscilloscope and logic probe are not enough to unravel the complexities of today＇s electronic equipment．A logic analyser is now the essential tool for digital electronics work both hardware and software．With prices measured in $£ 1,000$ s，however， many engineers have been denied the use of one．Until now！

Innovative design and high volume production using the latest com－ ponent technology provide the

Thurlby LA－ 160 with performance exceeding many high－cost analysers but at a price measured in f 100 s

The LA－160 enables digital infor－ mation to be precisely recorded and then examined in detail either as a data state display or as a logic timing diagram（via the user＇s own oscilloscope）．

Contact us now for a full colour technical data sheet．


CIRCLE 79 FOR FURTHER DETAILS．

## The world＇s most advanced low－cost bench multimeter！ Thurlby 1905a £325＋vat



## A complete high performance bench DMM

－ $51 / 2$ digits； $0.015 \%$ acc； $1 \mu \mathrm{~V}, 1 \mathrm{~m} \Omega, 1 \mathrm{nA}$ ．
－Full ac and current functions as standard
A sophisticated computing and logging DMM
－Linear scaling with offset；null／relative
－Percentage deviation；running average
－dBV，dBm general logarithmic calculations
－Limits comparison；min and max storage
－ 100 reading timed data logging
－RS232 and IEEE－488 interface options
Thurlby Electronics Ltd
New Road，St．Ives，Cambs．PE17 4BG
$\int$ Thurlby
Tel：（0480） 63570
CIRCLE 80 FOR FURTHER DETAILS．

## Digital storage oscilloscopes

## from Hitachi

more speed，more memory，more features


The new Hitachi VC－ 6041 combines a 40 MHz A－D converter with 8 K words of acquisition memory to provide ultra high resolution capture of high speed transient events．
A wealth of state－of－the－art features includes signal averaging，roll mode，variable pretrigger，post storage expansion 10 X 100 ，digital voltage and time readout，pen recorder output，and a GPIB data option． If your application is a little less demanding choose the VC－6015，it＇s the easiest to use digital storage＇scope around．It has dual channel storage at 1 MHz clock rate， 2 K word memory，variable pre－trigger，X 10 post storage magnification and a full pen recorder output，yet it costs only £1，450．
We hold the complete Hitachi＇scope range in stock for immediate availability．Ring us now to get full specifications and prices or to arrange a demonstration on（0480） 63570.
Thurlby－Reltech Instruments， 46 High Street，Solihull，W．Midlands，B91 3TB


CIRCLE 50 FOR FURTHER DETAILS.


## HIGH EFFICIENCY, SWITCH MODE.

| 45 Watts <br> 4 Outputs | $176 \times 108 \times 42 \mathrm{~mm}$ | 1 off <br> $\mathbf{£ 6 6 . 5 0}$ |
| ---: | :---: | :---: |
| 60 Watts <br> 4 Outputs | $197 \times 108 \times 52 \mathrm{~mm}$ | $\mathbf{£ 7 4 . 8 5}$ |
| $\mathbf{1 2 0}$ Watts <br> 5 Outputs <br> (standard) | Eurocard Size | $\mathbf{£ 1 1 0 . 0 0}$ |

(OVP, EMI Filter, Case, Power Fail options avai\$able)

## RUGGED, HIGH PERFORMANCE LINEARS.

| $\mathbf{1 5 - 3 5}$ |  | 1 off |
| :---: | :--- | :---: |
| Watts | Industry Standard Chassis | $£ 29.72$ |
| $\mathbf{3 0 - 7 5}$ |  | 1 off |
| Watts | Industry Standard Chassis | $£ 51.38$ |
| $\mathbf{5 0 - 1 2 0}$ |  | 1 off |
| Watts | Industry Standard Chassis | $£ 76.38$ |

(Dual and Triple Outputs also available)


## BULGIN Power Supplies

The Bulgin Power Supplies range includes both fully designed customised and standard products; including units for BT applications, all available at competitive prices for OEM quantities.
Encapsulated EPS range. Twelve Models, P.C.B. or chassis mounting various input/ output voltages.
Low Cost Switched Mode OSM range. Dual input voltage various output combinations from 30 to 130 W and up to 300 W
DC DC Converters, DC range. P.C.B. mounting, six types, various input/output combinations up to 5 W
Open Frame Linear OFL range, For $31 / 2^{\prime \prime}$ and $51 / 4^{\prime \prime}$ disc drive and general applications.
Eurocard Linear ECPS range. User selectable input/variable output. Conform to DIN mechanical standards.
Eurocard Switched Mode ESM range. Conform to DIN mechanical standards, dual input voltage/multiple outputs. Available for base mounting as TSM range.
Uninterruptible Power Supplies, UPS range. Three models rated $120 \mathrm{vA}, 250 \mathrm{vA}$ or 500 vA giving hold-up time of up to 20 minutes at full load when the mains fail
 Full technical literature on request to the

## Power Conversion Division,

A. F. Bulgin \& Co PLC, Bypass Road, Barking, Essex IG11 OAZ

Telephone: 01-594 5588 Telex: 897255
CIRCLE 94 FOR FURTHER DETAILS.

## COMPONENT PACKS

## All Brand New except where marked Price: £1 per pack

Order 12 you get one extra FREE
Please add $£ 1$ post if order under $£ 20$

> 13 amp ring manp junction boxes
> 13 amp ring main spur boxes
> surface mounting switches
> flush switches intermediate type
> in flex tine switches
> in flox line 5 with cess with noons
80 wott brass cased eloments
> mains transtormers with $6 v$ ta secondaries
> mains transtormers with 12 v ta secondarie
> extension speaker cabinet for $\left.6\right|^{\prime}$ speaker
> octal bases for reiays or valves
> OCP 70 photo transistor
> assorted gemanium transistors OC45 etc.
> tape hadds, 2 rgcord, 2 erase
> ultra sonic transmitters and 2 ditio receivers
15000 mid computer capacitors
> 15000 mid computer capacitors
> difl micro switches
> mains intertesence suppressors
> 25 watt crossover units
> 40 watt 3 way cros sover unit
screws and selt tap:pars
> ol each water switches - $6 p 2$ way; $4 p 3$
> way $2 \rho 5$ way 1012 way
> tape deck counters
> 6 digit counter mains voltage
> BOAC in light stereo unit (s. h .)
> NCAD battery chargers
> key switch with key
numidity switches
> aersol cans of ICI Ory Lubficant
> $\times 1$ metre length coiour-coded wires

Most items available in quantity at good discounts. Access \& Barclay cards welcome

[^4]
## SALE BY AUCTION

Tuesday 30th April 1985

[^5]
## Precision inductors

A range of high stability, high $Q$, presicion inductors has been produced by Oxley. They feature an alumina former on to which is fused a thick, highconductivity silver alloy. The terminations are silver plated copper and are bonded with a high melting point solder which will not melt when normal solder is used in p.c.b. assembly. With values from 0.045 to $1.83 \mu \mathrm{H}$ and a standard
tolerance of $\pm 5 \%$, the inductors may be used as reference standards in instrumentation, to reform clock pulses in highspeed digital communications, precision LC oscillators and many other tank circuit applications where long-term stability is required. Oxley Developments Co. Ltd., Priory
Park, Ulverston, Cumbria LA12 9QG. EWW214


## Upgraded tracker ball

The RB2 computer input tracker ball is now available with improved speed and temperature specification. Known as the RB2/CAD controller, it is available as a standard model, with enhanced specifications or it can be 'customized' with various options for quantity users. The standard tracker ball comes in a case with three user-definable
function keys making it ideal for positional control applications such as c.a.d. word processing, robotics, graphics etc. A version is available with a standard RS232'-interface communications module. The one-off price for the RB2/CAD from Marconi starts at about £70. MEDL Power Division, Carholme Road, Lincoln LN゙1 1SG.

EWW227


## Toroidals to order

Adding to their existing facilities for transformer prototyping, MS Components can now offer a similar service for toroidal transformers. Using Micro-controlled winding technology, prototype toroids can now be delivered in seven to ten days from the receipt of an order. Primary/secondary combinations are possible
between 15 and 500 VA with an output tolerance of $\pm 3 \%$ at rated load. Mounting kits are included in the price quoted at the time of ordering. The transformers have a maximum operating temperature of $105^{\circ} \mathrm{C}$ and are flash tested to 4.5 kV . MS Components Ltd, Waring Street, London SE27 9LH. EWW226


## Battery charger for u.p.s.

A modular battery charger for use with uniterruptible power supplies has been developed by Avel-Lindberg. Working with systems that have a nominal supply of 24 V , the charger can supply an inverter with a lowripple d.c. and the necessary float charging current for the batteries to a maximum of 40 A . Phase-control thyristor circuitry can control the float voltage to a preset level, and boost the voltage and output current limit modes of operation. The boost charge facility may be used with vented lead-acid batteries but should be disconnected if
sealed batteries are in use.
Mains input voltage may be selected and the charger can cope with a $10 \%$ voltage variation on the mains. The unit is designed to comply with various r.f.i. and safety standards; the output is short and open-circuit protected, and will operate over a wide ambient temperature range. Matching inverters, static switches and alarm/status inducators are available to complete a u.p.s. system. AvelLindberg Ltd., South Ockendon, Essex RM15 5TD. EWW208

## PHONE 0474813225 3 LINES

## INTEGRATED CIRCUITS



## SEMICONDUCTORS

| 品路路品 <br>  $\circ 0^{\circ} \circ$ |  |
| :---: | :---: |
|  |  |



## NEW BRANDED CATHODE RAY TUBES



## PHONE 0474813225 3 LINES MEOPHAM GREEN, MEOPHAM, KENT DAA3OQY

## A SELECTION FROM OUR




| 3 3AT2 | 3.35 | $68 C 8$ | 1.00 | 6 |
| :--- | :--- | :--- | :--- | :--- |
| 382 | 3.00 | 6804 | 1.05 |  |
| 384 | 3. |  |  |  |





## Sowter Transformers

With 40 vears experience in the design and manufacture of several hundred thousand transformers we can supply

## AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE YOU NAME IT! WE MAKE IT! OUR RANGE INCLUDES <br> Microphone transtormers

mers. Input and Output transformers, Direct Injection transformers for Guttars Multi-Secondary output transformers, Bridging transformers. Line transformers Line transtormers to G.P.O. Isolating Test Specification, Tapped impedance matching transformers, Gramophone Pickup transformers, Audio Mixing Desk transformers \{all types), Miniature transtormers, Microminiature transformers for PCB mounting, Experimental transformers. Ultra low frequency transformers, Ultra linear and other transformers for Transistor and Valve Amplifiers up to 500 fier to 100 volt fine transformers (from a few watts up to 1,000 watts), 100 volt line transformers to speakers Speaker matching transformers (all powers) Column Loudspeaker transformers up to 300 watts or more
We can design for RECORDING QUALITY, STUDIO QUALITY, HI-FI QUALITY OR OR SMALL OUATIIES AND EVEN SNGLE TRANSFORMERS M OR SMALL UUAN rypes are in stock and normaldispatch times are shor and sensible MIXING DESK MANUFACTURERS. RECORDING STUDIOS, HI.FI ENTHUSITIES BAND GROUPS. AND PUBLIC ADORESS FIRMS. Export is a speciality and we have overseas clients in the COMMONWEALTH. E.E.C.. USA, MIDDLE EAST, etc. Send for our questionnaire which, when completed, enables us to post quota tions by return.

## E. A. Sowter Ltd. Manufacturers and Designera

E. A. SOWTER LTD. (Establlshed 1941) : Reg. No. Englend 303990 The Boer Yerd, Cullinghem Road, Ipewich IP1 2EG, Suffolk P.O. Box 36, Ip wich, IP1 2EL, England Phone: 047352794 and 0473219390

Telor 987703G Sowtar

ISSUE
DATE

PUBLICATION
DATE
FEATURE

July. 1985 June. 21st VDU's
Sept. 1985 Aug. 16 th Communication Receivers

For more details regarding advertising Contact Bob Nibbs 01-661 3130

Every week millions of advertisements appear in print on posters or in the cinema.

Most of them comply with the rules contained in the British Code of Advertising Practice.

But some of them break the rules and warrant your complaints.

If you're not sure about which ones they are, however, drop us a line and we'll send you an abridged copy of the Advertising Code.

Then, if an advertisement bothers you, you'll be justified in bothering us.

The Advertising Standards Authority If an advertisement is wrong, we're here to put it right.

ASA Ltd, Dept 2 Brook House, Torrington Place.
London WC1E 7HN

> Advertisements accepted up to 12 noon April 29th for June issue

> DISPL AYED APPOINTMENTS VACANT: $£ 19$ per single col. centimetre (min. 3 cm ). LINE advertisements (run on): $£ 4.00$ per line, minimum $£ 25$ (prepayable). BOX NUMBERS: $£ 5$ extra. (Replies shouid be addressed to the Box Number in the advertisement, c/o Quadrant House. The Quadrant, Sutton, Surrey SM2 4AS). PHONE: LAN FAUX, 016613033 (DIRECT LINE)

Cheques and Postal Orders payable to BUSINESSPRESS INTERNATIONALLTD. and crossed.

$$
£ 7,000-£ 30,000+\text { CAR }
$$

$\star$ Where does your interest lie: Graphics; CAD; Robotics; Simulation:
Image and Signal Processing; Medical; Automation; Avionics;
Acoustics; Weapons; Comms; Radar; Opto and Laser?
\& Experienced in: VLSI; Microprocessor Hardware or Software:
Digital and Analogue circuitry; RF and Microwave techniques?
\& There are hundreds of opportunities in: Design; Test; Sales and
Service for Engineers and Managers
\& For free professional guidance: Call: 0638742244
(till 8pm most evenings) or write (no stamp needed) to

## MEDICAL RESEARCH COUNCIL INSTITUTE OF HEARING RESEARCH <br> SOUTHAMPTON CLINICAL OUTSTATION RESEARCH OFFICER IN ELECTRONICS <br> (RO/SRO)

A vacancy exists for a research officer with experience in electronics at IHR Southampton. The post will be based at the Institute of Sound and Vibration Research at the University, but will also relate to the other half of the team's activities, at the Royal South Hants Hospital.

The research is on clinically applicable aspects of hearing and deafness, advanced testing techniques, and the use of signal averaging equipment by computer for which a very high level of technical support is required. The appointee will be required, with minimal supervision to design and construct new equipment involving transducers and interfaces. There will also be a little general technical support for the research team including calibration, repair and servicing work. A general electronics background is needed and a knowledge of Z80 $\mathrm{CP} / \mathrm{M}$ systems and of digital interface techniques would be advantageous. For further information about the post please contact Dr. A.R.D. Thornton (Tel: 0703 37946).

The appointment will be made on the Research Officer grade ( $\mathbf{£ 6 4 8 3 - 8 4 9 2 )}$ ) or Senior Research Officer grade ( $£ 8574-10,938$ ). The MRC has a pension scheme and generous leave allowances.
(2566)

# CALIBRATION/ SERVICE ENGINEERS 

## c $£ 8,250$ + Overtime + July Review

Bradley Electronics is one of the leading organisations in the electronics industry, We provide a range of advanced electronic equipment and engineering services to MoD. Industry and the Health Care market.

Our Repair and Calibration laboratory, the largest of its type in the UK, provides a comprehensive service for commercial and military organisations, with its full facilities lor maintaining and calibrating all types of electronic equipment.

Opportunities exist for Engineers to work with a wide variety of equipment, including Multimeters. Oscilloscopes, Navigation Systems and Electronic Counter Measure Systems. Ability to trace, diagnosc and rectify faulis in these complex equipments is essential. Education to a minimum of C\&G/TEC or equivalent is required, together with considerable practical knowledge and experience in electronic testing. servicing of radar, and telecommunications equipment. Experience of this nature gatined in the Services will be of particular value.

The Company is located close to the underground bus routes and the North Circular Road/Ml. The salary and conditions package available is consistent with the Company's membership of a large, successful Group with considerable resources.

For full details please call our Personnel Manager, Roger Loughney, on 01-450 7811. Or write to him at Bradley Electronics Limited, Electral House, Neasden Lane, London NW10 1RR.

## Appointments



## CRANLEIGH SCHOOL

An independent HMC board school of 580 pupils requires a teacher of ELECTRONICS and PHYSICS for September 1985.
The successful candidate who should have a degree in Physics or Engineering will join thriving Departments offering courses in both subjects to A Level. There are excellent opportunities for project work. All help will be given to candidates from industry
Accommodation available. Salary above Burnham scale, and other benefits.
Applications, with full c.v. and names of two referees, to The Headmaster, Cranleigh School, Cranleigh, Surrey GU6 800.

Philip Drake Electronics is a successful and growing company that has now established itself as the leading U.K. supplier of studio communications equipment and programme quality sound distribution modules to the Broadcasting industry.
An increasing workload has lead to a requirement for the following personnel:

## PROJECT AND TEST ENGINEERS

Project and test engineers are required to work in the Systems Engineering Group which primarily deals with the custom design, manufacture and test of studio talkback and intercom systems

Project Engineers should have a suitable engineering qualification and at least two years experience of system/project engineering with professional analogue equipment. The work includes detailed system design, liaison with customers, and technical support for production and test.
Test Engineers shold have analogue experience but have the ability to adapt to digital technology. The job entails test custom built equipment from prototype circuit boards to complete studio systems and providing after sales service and support. The post is one which provides excellent opportunities for advancement within the systems group.

## TECHNICIAN/JUNIOR ENGINEER

An opportunity exists for a Technician/Junior Engineer to join our product development team. The successful candidate will be involved in all aspects of design from concept to production. He/she will work primarily with analogue circuits although there will be involvement with digital circuits. An ability to work with minimum supervision is essential and it is expected that the successful candidate will be qualified to TEC or degree level although ability is more important Experience of the professional audio industry would be an advantage.

## SOFTWARE ENGINEER

We are currently looking for two suitably qualified software engineers to strengthen our development team. The successful candidates would be required to write software in PASCAL and ASSEMBLER for the MC68000 family and must be able to work on their own initiative with minimal supervision. The ability to communicate ideas clearly is essential.
In addition to attractive salaries, the company offers a noncontributory pension scheme, BUPA membership and a pleasant working environment in newly constructed premises in Welwyn Garden City.

If any of the above positions appeal to you please apply in writing including your current CV or phone Jenni McCoy on Welwyn Garden City (0707) 333886 for an application form.

Philip Drake Electronics Ltd.,
37 Broadwater Road,
Welwyn Garden City,
Herts AL7 3AX.

(2565)

## Appointments



## ELECTRONICS TECHNICIAN

The electronics and computer services department of
Inco's refinery in North West London is concerned with the construction and installation of process control equipment and the maintenance of bought in hardware.
A vacany now exists for a suitably qualified person with demonstrable practical and logical ability to assist with the work of the department.
Starting salary will be based on qualifications and experience. $£ 8000$ - $£ 9000$. Other benefits include noncontributory pension and life cover scheme. Subsidised canteen, sports and social club, car park, 23 days holiday Please write or telephone for an application form to: D.J. Booker, Personnel Officer.

Inco Europe Ltd., Bashley Road, London NW10 6SN. Tel: (965) 6031
(2567)


> | The Publishers take all |
| :--- |
| reasonable care to ensure that |
| classified advertisements are |
| genuine, but readers must satisfy |
| themselves that they will be |
| obtaining what they require |
| before entering into transactions, |
| particularly if they involve large |
| sums of money. |

## SCOTTISH OFFICE DIRECTORATE OF TELECOMMUNICATIONS WIRELESS TECHNICIAN ( $\mathbf{£ 6 , 5 0 1} \mathbf{-} \mathbf{£ 8 , 8 7 3 )}$

(CURRENTLY UNDER REVIEW)
Applications are invited for 2 posts of Wireless Technician in the Central Services Department of the Scottish Office. The posts are based in East Kilbride and Edinburgh.
Candidates must have a sound theoretical and practical knowledge of radio communications systems both fixed and mobile, in the frequency range H F to 2 GHZ . They must also be able to use test equipment and simple machine tools. A sound basic knowledge of digital techniques would be an advantage They should have a minimum of 3 years appropriate experience and should hold an ordinary National Certificate in Electronic or Electrical Engineering or a City and Guilds of London Institute Certificate in an appropriate subject or a qualification of higher or equivalent standard. Some assistance may be given with re-location expenses.
A valid UK driving licence is essential
Application forms and further information are obtainable from Scottish Office, Personnel Division, Room 110, 16 Waterloo Place, Edinburgh EHI 3DN (Quote Ref PM PTS) 1/4/85 (031-556 8400, Ext. 4317 or 5028).
Closing date for receipt of completed application forms is 10 May, 1985.
THE CIVIL SERVICE IS AN EQUAL OPPORTUNITY EMPLOYER.
(2572)

HAMPSTEAD HEALTH AUTHORITY<br>ROYAL FREE HOSPITAL MEDICAL PHYSICS DEPARTMENT ELECTRONICS TECHNICIAN

Salary: Grade II - £8802 - £10711
or Grade III £7492-£9367 A Senior Technician is required to join a team looking after a wide range of team looking atter a wide range of
sophisticated medical equipment at this sophisticated medical equipment at this
modern hospital near Hampstead Heath The post offers an excellent opportunity to gain experience on equipment such as linear accelerators and computer controlled radiotherapy machines etc. A good knowiedge of electronics is essential and an HNC full Tech or equivalent qualification and 3 years equivalent qualification or the Grade III exper
Experience with the above equipment is not necessary as training will be given. For job description and application form please contact the Personnel
Department, Royal Free Hospital,
Hampstead, London NW3. Telephone 017940500 ext 4286
Closing date: 10 May 1985
(2559)

## Electronics Engineer

Ann Electronics Engineer is required by a small but expanding company manufacturing equipment for the Security Industry. An engineer with practical ability annd both annalogue and digital experience is annaigue and devital experience is
required for development of new required for development of new
products, improving existing products products, improving existing products,
design and building of test equipment design and building of test equipment
occasional assistance with testing and occasional assistance with testing and general technical assistance to the management.

Applicants should have some years experience and possess $\mathrm{HNC} /$ HND minimum qualification. Applicants should write, enclosing full C.V. to:

Mr. D.G. Wills
Aro Dynamics Westmorland Road.
Kingsbury, London NW9 9RR

## MAINTENANCE ENGINEER

## Required by busy London

 Studio complex. Digital and Analogue tape machines + state of the art consuls. We need someone bright, practical and hardworking who responds well to pressure in a creative environment. If you can keep your head when all about you are losing theirs, write to: Box. No. 2571c/o Electronics and Wireless World,
Quadrant House,
The Quadrant, Sutton, Surrey. SM2 5AS


# TECHNOLOGY TRAINING 

## Fundamental to future success

 in advanced electronicsGEC Avionics is one of the world's most innovative and successtul designers of airborne and surface-based electronic and radar systems.

Top quality training is fundamental to fiture success in our competitive industry. We have already invested in a modern technology training centre for technicians. technician engineers, apprentices and graduates and are now investing in the following high-calibre personnel.

## Technology Training Officer

Your task is to develop new course material for specialised fields. Responsibilities include overall planning; programming; course development; day-to-day control of the centre; and some lecturing.

You must have electronics lecturing/training experience in a similar centre, College of Further Education orarmed forces training establishment.

## Apprentice Instructor

Over 100 apprentices undergo instruction in the application of tools and techniques at the centre Your task is to help plan and implement 1 st year Craft and Technician training programmes, recommending the most effective means of developing apprentices' Craft and Electronics skills to TEC standards.

Time-served and with an HNC or equivalent, you must be energetic, resourceful and communicative Lecturing experience is preferred, but training will be provided.
We offer exceptional working conditions, an attractive salary and comprehensive benefits including relocation assistance if appropriate.
GEC AVIONICS


#### Abstract

For turther details please telephone or send your CV to Malcolm Howard, Assistant Personnel Manager, GEC Avionics Limited, FREEPOST, Elstree Way, Borehamwood, Hertfordshire WI)61BR. Telephone 01-9066230. Alternatively telephone our 24-hour answering service on 01-2073455. Please quote reference $\mathrm{GA} / 85-007$


## CAPACITY AVAILABLE

SERVICES
FREE P.T.H. PROTOTYPE of the finest quality with EVERY P.C.B. artwork designed by us. Competitive hourly rates, and high standard of work. Essex Tel (0787) 4774081474551 , Mastead,

VALVES, PROJECTOR Lamps, 6000 types, list 75 p , world wide export. Cox radio (Sussex) Lid., The Parade, East Wittering, Sussex. Phone (0243) 672023


QUICK TURNROUND FOR PCB REPAIRS
Let Jaecrow check-and-repair your boards on ATE, quickly and accurately, UK and overseas. Phone 01-680 9191 for full details, without obligation Jaecrow Systems Services, 29/31 Lower Coombe Street, Croydon, Surrey CR9 1LX. Quote ref: EW585 $\qquad$

# Computers in engineering and broadcasting PROGRAMS FOR PROGRAMMES 

BBC Bush House, London

Bush House is the broadcasting centre of BBC External Services. From 50 studios we broadcast radio programmes in 36 languages, 24 hours a day. Its facilities represent some of the most advanced broadcasting technology currently available.
To support our operations, we make extensive use of computers. Our Electronic Distribution System, comprising a digital processor and over 200 peripheral terminals, is used to collect, edit and distribute the text of News and Current Affairs programmes. The Control Room uses a processor controlled switching system to route programmes to transmitters, throughout the world, via lines and satellites. The Test Room utilises sophisticated Test equipment and microcomputers for the acceptance, modification and repair of the wide range of advanced broadcast equipment used in Bush House studios.
Our increasing involvement with leading-edge technology means we require more Engineers to operate, maintain and develop our electronic systems, both hardware and software, in both EDS and Test Areas.
Qualified to degree level in Electronics or equivalent, you must have good knowledge of electronics, analogue and digital techniques, an understanding of processor concepts and knowledge of programming at assembler level. Normal hearing and colour vision are essential.
Salaries are currently under review - additional allowances are paid for shift work, nights and weekend working together with a London Weighting Allowance.
Applicants with a bias towards digital electronics to work in the EDS area, or those with practical test experience with an interest in professional audio equipment, should write, clearly indicating their preference to:
The Engineering Recruitment Officer, BBC, P.O. Box 2BL, London W1A 2BL, quoting ref: 85.E.4019.
BBG

We are an equal opportunities employer.

* MICROCOMPUTERS * PERIPHERALS
* INSTRUMENTATION

For fastest, best CASH offer, phone,
COMPUTER APPRECIATION Oxford (0865) 55163 Telex 838750

## STEWART OF READING

 110 WYKEHAM ROAD READING RG6 1 PL TEL NO: 073468041 TOP PRICES PAID FOR ALL TYPES OF SURPLUS TEST EOUIPMENT COMPUTER EOUIPMENT. COMPONENTS etc. ANY OUANTITY.When replying to classitied advertisements, readersare recommended to take steps to protect their interests before sending money

SMALL SELECTION ONLY LISTED RING US FOR YOUR REQUIREMENTS WHICH MAY BE in STOCK


Portable Battery or Mains Oscilioscope. SE Laborato ies 111 Dscilloscope - Solid State - General purose - Bandwidth DC to $18 / 20 \mathrm{MC} / \mathrm{S}$ at $20 \mathrm{MV} / \mathrm{CM}$ Dual Channel
Rise time 19 NS - Calibrated Sweep - Calibrator display Volts 025 vis to 260 or 24 Volt DC battery - Size. Wi11.4KGS - H25.5CCMS - 56CMS Deep WT11.4KGS - Carrying handle - Tested in fair cond tion with operating instructions $£ 120.00$.


Latest Rulk Government Retease - Cossor Oscilloscope CDU150 (CT531/3) \& 150 only. Solid state genera purpose bandwidth DC 10 35MHz al $5 M V / C M-D u a l$
Channel - High brightness display $(8 \times 10 \mathrm{~cm})$ Ful delayed time base with gated mode - Risetime 10NS - Illuminated graticule - Beam finder - Calibrator KHz squarewave - Power $100-120 \mathrm{~V} .200 \mathrm{~V}-25$ olts AC - Size W $26 \mathrm{CM}-41 \mathrm{CM}$ deep - WT $12.5 \mathrm{K.G}$. containing polarized viewer and camera adaptor plate - probe (1) - Mains lead. Tested in Fair condition wilh operating instructions - $£ 150.00$
Communication Recievers. Racal $500 \mathrm{kc} / \mathrm{S}$ to $30 \mathrm{mc} / \mathrm{s}$ n 30 bands $1 \mathrm{MC} /$ SWIDE - RA17 MK 11 §125. RA 17 L 150. RA117E £200. New Metal Louvred Cases for bove $£ 25$. Ail receivers are air tested and calibrated in or workshop - supplied with dust cover - operation instructions - circuit - in lair used condition. Raca Synthesisers (Decade frequency generators) MA350B
Solid Stale for use with - MA7 Elc £ 100 to $£ 150$. MA250 - $1.6 \mathrm{MC} / \mathrm{S}$ to $31.6 \mathrm{MC} / \mathrm{S}$ 1.00. MA1350 tor use with RA17 receiver $£ 100$ MA259G Precision trequency slandard 5MC/S $1 \mathrm{MC} / \mathrm{S}-100 \mathrm{KHz} \mathrm{£} 100$ to $£ 150$. Panoramic Adaptor 10 to $980 \mathrm{KK} / \mathrm{S}$. RA218 Inde pendent SSB unit $£ 50$ RA98 SSB-ISM Covertor $£ 50$. RA121 SSB-ISB convertor E 75 . EC964/7K Solid state - single channel - SBB mains or battery - $\mathbf{1 . 6}$ to $27.5 \mathrm{MC} / \mathrm{S}$ and 400 to 535 KH $\$ 100$ with manual Plessey PR155G Solid State $60 \mathrm{KC/S}$
 supply - in original transpont tray sealed in polythene - lik new £15EA. Redifon TT11 Audio Teleprinter convertor receiver solid state - supply f10 or 240AC Made for use with above ieleprinter enabling print-ou of messages recieved from audio input of communica vertor as above but includes transmil facilities $£ 20$ oscilloscopes - stocks always changing Tektronix 465 - $100 \mathrm{MC} / \mathrm{S} £ 750$. FM Recorder Sanghmd Sabre 1114 channels $£ 350$. Transtel Marix printers AF11R-5 level Baudot Code - up to 300 Bauds-For el AH11R - As above Dutalso 8 level ASC11 (CCITT No 2 and CCITT No 5) Like new £100. Army field tele phone sets. Type $F-L$ and $J$ - Largequantity in stock 6 to $£ 15$ depending on type and quantity $P$.OR. Do 10 Telephone Cable - hall mile canvas contaners Eyepiece -24 volt dc supply $£ 100$ ea. Origiral cost to overnment over $£ 11,000 \mathrm{ea}$. Slatic invertors - 12 or 4 volt input - 240 volt $A C$ sinewave output - various wattages P.O.R. XY Ploters and pen recorders various £100. stereo $£ 150$. Signal Generators various IF995/A3 $£ 60$. TF8010/8s - $10 \mathrm{MC} / \mathrm{S}$ to $485 \mathrm{MC} / \mathrm{S} £ 90$ TF 144H/A4 £90. TF 1060/2 £60. HP606A - £90 £140 HP608 £50 HP614A £ 100 HP6 18B $£ 100$ HP620A \& 100 Marconi TF1064B/5 $£ 100$ TF791 Deviation meler $£ 100$ hrigh complete with 1611 whip aerial to mount on top -
nit guyropes - insulators - Base and Spikes etc, in heav duty carrying bag - new £30 Racal frequency counter ype 836 £ 50 Tekironix plugs-ins-1A1 $£ 50,1$ A2 $£ 40$ 1 A4 $£ 100$ ME 50 , All items are bought direct trom H.M. Government Deing surplus equipment: Price is Ex
works SA.E. for enquiries. Phone for appointment for demonstration of any items Also availability or price change. V.A.T. and carriage extra

EXPORT TRADE AND QUANTITY DISCOUNTS GIVEN JOHNS RADIO (0274) 684007 WHITEHALL WORKS, 84 WHITEHALL ROAD EAST BIRKENSHAW, BRADFORD BD11 2ER


## CAPACITY AVAILABLE

| FOR THE BEST PCB SERVICE AVAILABLE |
| :---: |
| *Circuit Design \& Development Digital and Analogue |
| *Artwork Layout <br> PCB artwork layout and mechanical detailing. P.O. approved standard. |
| *Board Manufacture <br> Prototype to semi-production, excelient rates. |
| *Wiring \& Assembly <br> PCB assembly, wiring and cable forming. Flow solder- <br> ing facilities available. |
| *Test <br> Full test facilitias available. |
| One or all services avaitable. Please telephone Cheimsford Electronics. The Industrial Unit $\square$ |
| (1169) |

# DESIGN/ DEVELOPMENT OPPORTUNITIES 

## Cambridgeshire

Cathodeon Crystals Ltd (a member of the CEI Group) is a leading Manufacturer of precision components for the Telecommunications industry.
The Company is currently involved in a number of new projects and is seeking to expand it's Development department as part of it's planned growth.

## Filter Designer

We are looking for an ambitious Electronics Engineer to work on the development of high performance Crystal Filters. We are interested in hearing from persons with practical experience of Filter design who have the drive and ability to see the projects through to the production stage. Those without previous Filter design experience would be considered as trainee engineers provided they have the appropriate skills.

## Graduate Engineer Instrument Development

A Design and Development Engineer is required to be responsible for the development of a range of high precision $X$-ray measurement machines from conception to production stage.
The post is of a multidisciplinary nature and is likely to appeal to those who have an interest in, or experience of, equipment design, precision machines, software development, electronics. Specific experience in these desciplines is less important than an analytical approach to problem solving and the ability to work to strict deadlines. Ideally candidates should be a graduate in a scientific descipline
Being part of a major Group the company is able to offer a range of employment conditions normally associated with a large employer.
Salary will be commensurate with the importance of this position. Relocation assistance is availabe where appropriate. If you are interested in either position, please contact Christina Moon, Personnel Manager, Cathodeon Crystals Ltd, Linton, Cambridge, CB1 6JU. Tel (0223) 891501.

## WANTED

## CIRCOLEC

THE COMPLETE ELECTRONIC SERVICE
Artwork, Circuit Design, PCB Assembly, Test \& Repair Service, O.A. Consultancy, Prototypes, Final Assembly. Full PCB Flow Soldering Service.
Quality workmanship by professionals at economic prices.
Please telephone 01-646 5686 for advice or further details.
TAMWORTH MANOR
302-310 COMMONSIDE EAST, MITCHAM

## WANTED

## SURPLUS

We offer good prices for test equipment, components, pedundant computers. PCB's connectors. Immediate settlement.

TIMEBASE
94 Alfriston Gardens
Sholling, Southampton SO2 8FU
Telephone: (0703) 431323

## WANTED

All types of surplus electronic components and equipment. We specialise in factory clearance. SGS Electronics,
The Vineyard, Bowley Lane, Boddenham, Herefordshire HR1 3LF. Tel (056) 884532
(2541)

## WANTED

SURPLUS ELECTRONIC COMPONENTS AND EQUIPMENT
We also wetcome the opportunity to quote for complete factory clearance B. BAMBER ELECTRONICS

5 STATION ROAD, LITTLEPORT, CAMBS Phone: Ely (0353) 860185

## E C COMPONENTS

We buy large and small parcels of surplus I/C, transistors, capacitors and related electronic stock immediate settlement

Tel: 01-208 0766
Telex: 8814998
(2491)

## WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash. Member of A.R.R.A.

M \& B RADIO
86 Bishopsgate Street Leeds LS1 4BB 0532435649
(9956)

## TO MANUFACTURERS, WHOLESALERS BULK BUYERS. ETC. <br> LARGE QUANTITIES OF RADIO. TV AND ELECTRONIC COMPONENTS FOR DISPOSAL <br> SEMMICONDUCTÖRS, all types, INTEGRATED CIRCUITS, TRANSISTORS, DIODES, RECTIFIERS, THYRISTORS, etc. RESISTORS, C/F, M/F, W/W, etc CAPACITORS, SILVER MICA, POLYSTYRENE, C280, C296, DISC CERAMICS, PLATE CERAMICS, etc. <br> ELĖCTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE, CABLES, SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFOR MERS, etc. <br> ALL AT KNOCKOUT PRICES - Come and pay us a visit ALADDIN'S CAVE <br> TELEPHONE: 445 0749/445 2713 R.HENSON LTD. <br> 21 Lodge Lane, North Finchley, London, N. 12

## SERVISCOPE

EAST STREET, FARNHAM, SURREY. TEL: 0252722666 CONTACT: G.P. SKINNER a SELECTION OF TELEVISION AND ELECTRONIC COMPONENTS FOR DISPOSAL

68 PF Ceramic Cap
470 PF Pulse Ceramic 12K
PYE 731/728 - Mains Switch
TEC - 8000/8500 Therm Cut Out
GEC - 1040/Therm Cut Out
IN4002
BC308B
8D137
BC307
BAX 13
TAA661
PHIL 210 - Brightness Knob
PHIL 210 - Volume Knob
TEC 1500 - Brill/on-off Knob
CATHODE RAY TUBES COLOUR
A51-110X/A51-220X A67-120X A56 - 120X

TEC 1500 Earth Strip UHG Tuner PHIL G8 Focus Control PHIL G8 UHG Tuner VRRistor - E299/DC/p348 TEC 1400 Mains Dropper PHIL 210 Frame Out Put Transformer PHIL G8 AFC Assembly PHIL G8 - Vision Selectivity Assembly PHIL G8 - Vsion Gain Assembly PHIL G8 - Sound Selectivity Assembly PCF80 PCF80
PL36
EF 184

## ALL AT KNOCK DOWN PRICES

- FOR A DETAILED LIST PLEASE APPLY TO

0252-722666

## ARTICLES FOR SALE

QUARTZ CRYSTALS OSCULATORS AND FILTERS of all tyjes. Large stocks of standard items. Specials supplied to order. Personal and export orders welcomed - SAE for lists please. OEM support thru:- design atvice. procotype quantities, production schedules. golledge Electronics. Merriott, Somerset TA16
5 NS : Tel: 016073718

ENCAPSULATING EQUIPMENT FOR.coils $z_{z}$ transformers, components, degassing silicone rubber, resin, epory. Lost wax casting for brass, bronze, silver, etc. Impregnating coils, transformers, components. Vacuum equipment, low cost, used and new. Also for CRT regunning metallising. Research \& Development. Barratts, Mayc

MORSE READING PROGS.Work on clean signals without hardware interface. $2 \times 81 \mathrm{KK}$ UNEX PANDED MEMORY. Translated code with word and line spaces for easy readink Automatic scron
action. $£ 7$ incl.

## CAPACITY AVAILABLE

## TW ELECTRONICS LTD

 THE PCB ASSEMBLERSMore and more companies are investigating the advantages of using a professional subcontractor. Such an undertaking requires certain assurances
TW are able to satisfy all of them quality, competitive pricing, firm delivey and close co-operation with the customer.
Assembled boards at $100 \%$ inspected before flow soldering and reinspected after automatic cropping and cleaning.
Every batch of completed boards is issued with a signed certificate of conformity and quality - our final assurance. For further details, contact us at our new works:

Blonheim Industrial Park Bury St. Edmunds
Suffolk IP33 3UT
Telephonie: 02843931 (1466)

Apollo Sciibemaster X-Y, micrometer calibrated, table $£ 89$. Metals Research Macrotome, diamond cutters, accessories etc., $\mathbf{1 2 7 5}$. Stanton Electronic Balance
single pan f150. Advance Twin Stabilis Power Supplies f59. Wayne-Kerr Universa Bridge f98. Ignition Analvser Unit/ Diagnostic manual $f 39$. Low-voltage Electroplater for rust prevention/ rectification f39. Microscope with stabilised power supplies f18-f45. Avo In Circuit transistor, diode, thyristor tester f25. Philips RM/AM/Sweep generator $£ 89$ Creed Teleprinter $\mathbf{f 7 5}$. High Intensity Fibre Optic Light Supply, twin lamps. twin outputs each $\mathbf{f 3 5}$. Hughes Micro-Spot
Welding Head $\mathbf{f 6 9}$ ditto-Sippicam f35. Welding Head f69, ditto-Sippicam A35. Analyser. Wow/Flutter Meter. Digital Calibration Voltmeter, five digits, DC/AC plug-ins f85. Infra-Red Analyser Heads f30. Four-Phase Signal Generator f85. Pulse generators. Sweep Generators., etc
etc.


040376236

SHEETMETAL FOLDERS vice or bench model. 24* $\times 16 \mathrm{G} £ 45$. Leaflet 01-890 7838 anytime
(2558)

WAVEGULDE, Flanges and dishes. All standard sizes and alloys (new material only) from stock. Special sizes to order. Earth Stations. 01-228

## SERVICES

DESIGN AND MANUFACTURE. Control systems, paging systems, security equipment, etc. Also artwork, prototype PCB's, ment, etc. Also artwork, prototype phass, PCB assembly, procurement, chassis
assembly and wiring. For high quality work assembly and wiring. For high quality work
at competitive prices contact: Phasor Cirat competitive prices contact: Phasor Cir-
cuits, Unit 18, Enterprise Workshop, 76 cuits, Unit 18, Enterprise Workshop, 76
Linden Street, Leicester. Tel. 0533 735825 . Street, Leicester. Tel. (2563)

## ARE YOU MAKING THE MOST OF YOURSELF\}

 WHY NOT EXTEND YOUR TRAINING IN ELECTRONICS? We offer:
## CNAA BSc in ELECTRONIC ENGINEERING

A four year part-time degree course for those working in industry involving attendance for one full day each week of the academic year. The course is based upon modern electronic engineering with a strong computing theme.
Entry qualifications: HTC or equivalent in Electrical and Electronic Engineering or Applied Physics.

## BTEC HND in ELECTRICAL AND ELECTRONIC ENGINEERING

A two year full-time course which combines an up-to-date technological education with a considerable hands on' experience of a wide range of modern equipment and techniques.
Entry qualifications: One pass at 'A' level in an appropriate subject. or a BTEC Certificate or Diploma or equivalent.

For further details contact the Department of Engineering,
Cambridgeshire College of Arts and Technology, Cambridge CB1 1PT
Telephone (0223) 352973 or 352979
CAMBRIDGESHIRE COLLEGE OF ARTS AND TECHNOLOGY

DESIGN AND MANUFACTURE. ANALOGUE, DIGITAL, RF AND MICROWAVE CIRCUTT AND SYSTEM DESIGN. Also PCB design, mechanical design and prototype/small batch production. - Adenmore Limited, 27 Longshot Estate, Bracknell,
Berks. Tel: Brackneil ( 0344 ) 52023 .

TURN YOUR SURPLUS i.cs transistors etc. into cash, immediate settlement. We also welcome the opportunity to quote for complete factory clearance. Contact COLES-HARDING \& CO. 103 South Brink, Wisbech, Cambs. 0945 584188.

SMALL BATCH PCBs, produced from your art work. also DIALS, PANELS, LABELS. Camer work undertaken. FAST TURNAROUND. Details: Winston Promotions, 9 Hatton Piace, London ECIN 8RU. Tel. $01.4054127 / 0960$ ( 9794 )

DESIGN AND DEVELOPMENT SERVICE. RF transmitters and receivers. Telemetery U.H.F. V.H.F. Anologue and digital circuits, control systems. Full manufacturing facilities. RCS Electronics, Wolsey Road. Ashford, Middx. Phone Dr. Eric Falkner on 53661 .

## CLASSIFIED ADVERTISEMENTS Use this Form for your Sales and Wants

## PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

To "Wireless World" Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate 54.00 PER LINE. Average six words per line. Minimum f 25 (prepayable)
- Name and address to be included in charge if used in advertisement

NAME
ADDRESS

- Box No. Allow two words plus $£ 5$
- Cheques, etc., payable to "Business

Press International Ltd." and cross "\& Co."


## COMPUTER APPRECIATION 16 Walton Street, Oxford OX1 2HQ

 Tel: Oxford (0865) 55163 Telex: 838750IBM PERSONAL COMPUTER Model XT, with single iloppy \& 10MB Winchester AS UNITRON Model 2200 microcomputer. APPLE II/e \& CP/M compatible machine with 6502 \& 280 processors, 64 kbyte memory, detached keyboard with numeric pad and floppy disc interface. BRAND NEW \& BOXED f 350.00 COMPAQ PLUS. IBM PC COMPATIBLE portable computer with 10 MB hard disk, single floppy disc, 640 k bytes, graphics, comprehensive software etc. ASNEW £2,900.00 ROCKWELL AIM 65/40 single board 6502 deveiopment system with display, keyboard, powe
 PHILIPS P2000 SYSTEM comprising, 48K Z80 processor with integral tape drive, twin $5 t^{*}$ " floppy disc drives, HONEYWELL Model L32 120cpsmatrix printer. Runs CP/m .........850.00 OLYMPIA BOSS MICROCOMPUTER, sma! $Z 80$ based business system with 80 col screen, 64 k oyte memory, twin 5 t" floppy disc drives, HONEYWELL Model L32 120 cps matrix printer. Run
 MANNESMANN/TALLY Model M80MC matrix printer. With microprocessor control, 200cps bidrectional PRINJING WITH U/L case self test. Compact but heavy duty machine. BRAND NEW \& BOXED
£ 125.00
 CENTRONICS Model 702 matrix printer, 132 col .165 cps , bidirectional printing with selt test.
 DEC boxes \& power supplies Various models available (BA11MF. SB11AA, BA11LX) all with 22 bi addressing or easily mod fied \& various optional processors etc

TT Model 350 TELEFAX Facsimile transmitter/receiver. Microprocessor controlled (8085) CCIT Group 2 machine for transmitting documents over an ordinary phone line. BRAND NEW AN BOXED
350.0

EKTRONIXModel 4601 hard copy unit tor 400 series graphics terminals
£ 95.00
TEKTRONIX Model 611 graphics storage display. For use with any DAC computer output. $£ 150.00$ FACIT Model 4020 high speed paper tape reader. ParalleI TTL interface f 225.00 FACIT Model 4070 PAPER TAPE PUNCH. BRAND NEW £350.00 CAL COMP Model 563 AO drum plotter 0.1 mm step size 650.00

CALCOMP Model 763 AO plotter. As above, but high speed P.O.A.

CALCOMP Model 1036 AO graph plotter. High speed 3 colour plotter with Type 915 magnetic
tape unit for optional off-line use, \& selectable for $7 / 9$ track, $800 / 1600$ b p . etc …........O.A
C.I L. Model 6000,2 pen AO high speed graph plotter

HEWLETT-PACKARD Model 75C portable computer £350.00 HEWLETT PACKARD Model 85 desk top computer with integral graphics display, printer \& rape drive. Includes printer interface (82949A), ROM drawer (82936A). 16K expansion (82903A) \& //O ROM $(15003)$.
GOULD-BRYANS Model 50000 graph plotter. $380 \mathrm{~mm} \times 280 \mathrm{~mm}$ plotting area with 0.1 m resolution and vector plotting speed of $35 \mathrm{~cm} / \mathrm{s}$. With intelligent controller providing 112 character set a 4 of entations RS 232 interface. NEW
985.00

HEWLETT-PACKARD Model 41 C calculator with printer
f125.00
f 150.00
GENERAL DATACOMM (IAL) ModelLDM-1 private line modem £ 150.00

280 controlled. Manufactured 1981
SONY U-matic video recorder with stereo sound .......................................

Please note: VAT \& CARRIAGE extra on all
available from us for many items stocked

## Wrelessiwoind

## Appointments Vacant Advertisements appear on pages 95-103

| PAGE | PAGE | PAGE |
| :---: | :---: | :---: |
| ABI Electronics Ltd ..................................... . 1 | Electronics \& Wireless World Production........... 69 | Pantechchnic ......................................... . 10 |
| Advertising Standard Authority ...................... 94 | E \& WW Editorial Features List . . . . . . . . . . . . . . . . . 94 | Pinapple Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 |
| AEL Crystals ......................................... . . 14 |  | PM Components . . . . . . . . . . . . . . . . . . . . . . . . . . 92/93 |
| AF Bulgin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 | Famell Instruments . . . . . . . . . . . . . . Inside front cover | Pye Unican............................................. . 49 |
| Airlink Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 | Field Electronics ...................................... 69 |  |
| AM Electronics ......................................... . . 20 | Fylde Electronics Labortories . . . . . . . . . . . . . . . . . . . . 16 | Radio Code Clocks ..................................... . . 52 |
| Amplicon Electronics Ltd . . . . . . . . . . . . . . . . . . . . . . . 68 |  | Ralfe Electronics ....................................... . 74 |
| Andelos Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 | GNC Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 | Radford Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . 36 |
| Armon Products Ltd . . . . . . . . . . . . . . . . . . ............. . 58 | Gould Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 | Radio Components Specialists ...................... 12 |
| Aspen Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 | Greendale Electric ................ . . . . . . . . . . . . . . . . 89 | Radio Society of Great Britain ...................... 69 |
| Aspen Electronics .............. 5 | Greenwood Electronics ......................... 26.85 | Richardson Electronics................................ 60 |
| Barrie Electronics Ltd. . . . . . . . . . . . . . . . . . . . . . . . . . . 72 |  | R. Withers Communications ......................... 11 |
| Beckenham Periphal's. . . . . . . . . . . . . . . . . . . . . . . . . . 80 | Hameg Ltd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 | R. Henson ................................................. . 20 |
| Black Star Ltd.............................................. . . 26 | Happy Menories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 |  |
| Bytron Ltd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 | Harris Electronics ..................................... 58 | Sarel Electric Ltd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 |
| Bulgin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 | Harrison Bros ...................................... 10,29 | Seasim Controls ............................... . . . . . . . . 64 |
|  | Hart Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 | Service Trading Co Ltd............................... 35 |
| CA Electronics ........................................... . . . 82 | Henrys/Audio Electronics .......................... . . . . 20 | Sherwood Data Systerns ............................. . 14 |
| Cambridge Kits......................................... . . 26 | Hi Tech Electronics .................................. 25 | Solar Banner (European) Lid ......................... 72 |
| Cambridge Microprocessor Systems ................. 11 |  | Stewart of Reading .................................... 16 |
| Carston Electronics ..................................... . 36 | ILP Electronics.................................... 12/29 | Strumech Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 |
| Caracal Power Products . ................................. . 29 | Industrial Auctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 | Surrey Electronics ................................... 58 |
| Computer Appreciation .............................. 104 |  |  |
| Clark Masts ............................................ 42 | JAF Graphics .................... ....................... . . 52 | Tape Automation Ltd . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 |
| Conquin Software . ................. Inside back cover | J. Bull (Electrical) Lid ................................. 90 | Taylor Bros (Oldham) ................................. . . 58 |
| Cricklewood Electronics................................ . . 44 |  | Technomatic Ltd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $4 / 5$ |
| Crotech Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 | KT Manner's . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 | Tektronix ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 |
| Cybernetic Applications . . . . . . . . . . . . . . . . . . . . . . . . 35 |  | Television . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 |
|  | Langrex Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 | Thandar Electronics ................................... . 60 |
| Dannell Electronics Lid ............................... 72 | LJ Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 | Thanet Electronics Ltd. . . . . . . . . . . . . . . . . . . . . . . . . . . 50 |
| Dataman Design ...................................... . . . 57 | Lexons Instruments' . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 | Thurlby Electronics |
| Dewsbury Electronics ........................... . . . . 82 |  | Triangle Digital Services ............................... . 35 |
| Display Electronics......................... . . . . . . . 78/79 | Manby Electronics ...................................... 74 | Trangle Digital Services ................................ 35 |
|  | Martin Associates (Electronics) .................. . . . . 52 |  |
| EA Sowter Ltd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 | Measurement Devices Ltd . . . . . . . . . . . . . . . . . . . . . . . 50 | Valradio Lid. ........................................... 74 |
| Electronic Equipment Co.............................. 11 | Midwich.............................................. . 51 | Vellerman (UK) Lid |
| Electrovalue Ltd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 | Monolith Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 |  |
| EMS Manufactures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 |  |  |
| Essex Electronic Centre.............................. 36 | Newrad Instrument Cases............................. 14 | W. Waugh Instruments |
| European Electronic Systems ............... Back cover | Number Ones System's .............................. 36 | Waurad Electronics |
| OVERSEAS ADVERTISEMENT AGENTS | Japan: Mr Inatsuki, Trade Media-IBPA (Japan), B. 212 Azabu | Jack Mantel, The Farley Co., Suite 650, Ranna Building, Cleveland, Ohio 4415 - Telephone (216) 6211919. |
| France and Belgium: Pierre Mussard, 18 - 20 Place de la Madelaine, Paris 75008. | Heights, 1.5.10 Roppongi, Minato-ku 106. Telephone: (03) 5850581. | Ray Rickles, Ray Rickles \& Co., P.O Box 2028, Miami Beach. Florida 33140 - Telephone (305) 5327301. |
| Hungary: Ms Edit, Bajusz. Hungexpo Advertising Agency, Budapest XIV Varosliget | United States of America: Jay Feinnan, Business Press International Lid, 205 East 42nd Street, New York, NY 10017 | Tim Parks, Ray Rickles \& Co., 3116 Maple Drive N.E., Atlanta, Georgia 30305. Telephone (404) 2377432 |
| Telephone: 225008 - Telex: Budapest 22-4525 | Telephone (212) 867-2080-Telex: 23827. | Mike Loughlin Business Press International, 15055, memorial |
| INTFOIRE | Jack Farley Jnr., The Farley Coi. Suite 1584, 35 East Waiker Drive, Chicago, illonois 60601 - Telephone (312) 63074. | Ste 119, Houston, Texas - Telephone (713) 7838673. <br> Canada: Colin H. MacCulioch, International Advertising |
| Italy: Sig C. Epis, Etas-Kompass, S.p.a. - Servizio Estero, Via | Victor A. Jauch, Elmatex International, P.O. Box 34607, LoS | Consultants Lid., 915 Carlton Tower, 2 Carlton Street, Toronto |
| Mantegna 6, 20154 Milan. | Angeles, Calif. 90034, USA - Telephone (213) 821.8581 - | - Telephone (416) 3642269 |
| Telephone: 347051 - Telex: 37342 Kompass | Telex: 18-1059. | - Also subscription agents. |
|  <br>  <br>  |  |  |
|  |  |  |
|  |  |  |




# CIRCUIT BOARD DESIGN WITHOUT THE TEDIUM 

smARTWORK lets the design engineer create and revise printed-circuit-board artwork on the IBM PC or compatibles.

Forget tape. Forget ruling. Forget waiting for a technician, draftsman, or the CAD department to get to your project. smARTWORK software turns your IBM PC or compatible into a professional; high quality drafting tool. It gives you complete control over your circuit-board-design - from start to finish.

What makes smARTWORK so smart is that it understands electrical connections. Conductor spacing is always correct, lines do not become too narrow, and connecting lines do not intersect other conductors. smARTWORK can automatically find and draw the shortest route between two conductors. Or you can specify the route

smARIWORK is the only lowcost printed-circuit-board artwork editor with all these important advantages:

- Complete interactive control over placement and routing
- Quick correction and revision
- Production-quality $2 \times$ artwork from pen-and-ink plotter
- Prototype-quality $2 \times$ artwork from dot-matrix printer
- Easy to learn and operate, yet capable of sophisticated layouts
- Single-sided and doublesided printed-circuit boards up to $10 \times 16$ inches
- Multicolour or black and white display
- 32 user selectable colour combinations; coincident points may be displayed in contrasting colours
- Can use optional Microsoft Mouse as pointing device


## System Requirements

- IBM PC, XT or compatible with 192K RAM, 2 disk drives and DOS 2.0
- IBM Colour/Graphics Adapter with RGB monitor or B\& W monitor
- Epson MX-80/MX-100 or FX-80/FX-100 dot-matrix printer
- Houston Instruments DMP-41 pen-and-ink plotter (optional)
- Microsoft Mouse (optional)

The Smart Buy
At $£ 895$ (+VAT) smARTWORK is exceptional value, particularly when compared to conventional engineering workstation costs.

Write to the address below or use the enquiry card for more information on smARTWORK. Or call Richard Lambert on 0524381423 to arrange a FREE demonstration or to discuss your requirements.

Starter kit comprising of: SAM 2001 PC, monochrome monitor, FX-100 dot matrix printer, DOS2.0, smARTWORK, 1 Year on-site maintenance and much more
£3995.00
Starter kit plus 10M hard disk
drive................................. $£ 4995.00$
Colour monitor $\qquad$ $£ 395.00$

Microsoft Mouse
$£ 149.00$
Pen and ink plotters
from
£1795.00
smARTWORK .................... $£ 895.00$
smARTWORK Demo disk.... $\{10.00$

10\% Discount on all Orders processed and paid for
before 28th February 1985.

Note: All prices exclude VAI and are subject to change without notice.
Terms: Strictly CASH WITH ORDER.

## Spot On!

Time has been our business since 1974.
Precision has been our aim. We have experience in display, code generation, off air time, off air frequency and frequency standards.
Single units to the largest system.
Our time is at your disposal.

European Electronic Systems Limited,
Woodham Mortimer Place Maldon, Essex. CM9 6SW Telephone: 024541-5911 Telex: 995917


Made in Engtand
CIRCLE FOR FURTHER INFOHMATION

Time Code Reader.

MSF Rugby Simulator.

Tape Search System.
Padio Clok ( 5 mSec )

Radio Clock ( $500 \mu \mathrm{Sec}$ )


[^0]:    A telephone designed for use in the third world.
    It is solar powered and communicates by radio, with
    battery back-up. The equipment can also act as a relay to
    act as a local link so that remote villages can communicate with each other. Designed by Plessey Radio Systems.

[^1]:    REFERENCES

    1. Channel codings for digital audio record${ }_{83}$ ings, Toshi T. Doi. J. Audio Eng. Soc. April 23.4.

    2,4. EFM - The modulation method for the Compact Disc digital Audio System, Hiroshi Ogawa and Kees A. Schouhamer Immink. AES convention, N.Y. June 1982. 3. Optimization of low frequency properties of eight-to-fourteen modulation, Kees A. Schouhamer Immink ahd Ulrich Gross. IERE Conference on Video and Data

[^2]:    Very low light level linearity in the photoconductive cell response may be assisted if a resistor, in the range 150-300 Megohms, is connected in parallel with the cell. A low level of residual ambient light - from a remote safelight, or from the enlarger lamphouse - may achieve the same result.

[^3]:    CIRCLE 23 FOR FURTHER DETAILS

[^4]:    - N.B. ELECTRONIC SUPPLIES

    34 America Lane, Haywards Heath, Sussex RH16 3QU (24hr phone ordering 0444 454563)

[^5]:    Test equipment including:
    TEK 308 data analvser, leader function and signal generators HV probes. video head checkers. oscilloscope calibrator. FM stereo generator (all new). Fluke 3010 logic tester marconi signal generators. power meters volimeters. HP spectrum analyser TEK 491 spectrum analysers ICE IMMMS bryans and HP recorders.

    Computer equipment including
    53 Anderson Jacobson printers, 80 DEC terminals VT100. VT101. IT102. VT131, VT 125 VT180, DEC LA 34 and 100 printers 7 rainbow 100A + P.C's Modems. Texas, Motorola and Intel development systems. Wayne-Kerr Datum Artworker CAD PCB Design System Honeywell 10128 track tape recorder. MAD-1 256 K computer systems with floppies and hard disk 110 in all. Altos 20 MB and 40 MB computers. HP printers, displays etc. 15 Tally printers. 25 Mellordata terminals. 12 Diablo printers. Zilog 8000 computer system. Olympia scriptwriter. Qume terminals. Superbrain and Osbourne computers. TEK $4662,4112 \mathrm{~A}, 4112 \mathrm{~B}, 4661$ and 4114 B Accoustic couplers. 9 Westward 3219 terminals (new). Professional 350 computer. 43 Newbury data terminals. Altos 8000, 286-10. 5-5. 5-15 computers. Pheonix 12 monitors. DEC RX- 180 dual disk drive (new.) Tallgrass $20+20$ and 12MG. 89 IBM 3178 C10 and C80 terminals (all new) 9 TI terminals (new). Anadex printers. 2 Alcatel paternoster automatic assembly machines. General and surplus components and equipment. L.C's etc.etc.
    Suitable entries still accepted
    Catalogues from the auctioneers below price $\mathfrak{£ 1 . 5 0} \mathrm{inc}$. viewing one week prior and on morning of sale $8 \mathrm{am}-5 \mathrm{pm}$

    Industrial Auctions Limited
    Bromyard Road Industrial Estate
    Ledbury
    Herefordshire
    HR8 1LG
    Telephone 05315456 Telex 35686

