Directional power meter TM10

For colour brochure contact:

FARNELL INSTRUMENTS LIMITED WETHERBY LS22 4DH TELEPHONE (0937) 61961 TELEX 557294 FARIST G

- Single detector head covers wide frequency and power band
■ 25 MHz to 1 GHz 20 mW to 100 W and VSWR from 1 to 3
- Head can be used 1.5 m from meter (e.g. inside clased car boot)
- Fully portable - works from internal battery or vericle battery
- Mains adaptor/charger and rechargeable battery availa כle
- Manufactured, tested and inspected to Min. Def. Std. 0524.

RADIOCODE CLDCKS LTD
 SPECIALISTS IN ATOMIC TIME, FREQUENCY AND SYNCHRONISATION EQUIPMENT

Off-air frequency standards

- Intelligent time systems
- Caesium/Rubidium based clocks \& oscillators
- Master/slave systems
- Time code generators/readers
- Record/replay systems
- Intelligent display systems
- Precision ovened oscillators
- Time/frequency distribution systems

NEW PRODUCTS

- MINIATURE RUBIDIUM OSCILLATOR MODULE Lower power, fast warm up, optional output trequencies, programmable frequency offsets.

- RUBIDIUM FREQUENCY

 STANDARDHigh performance, compact and rugged instrument. $2 U$ rack or $1 / 4$ ATR case options.

- INTELLIGENT OFF-AIR FREQUENCY STANDARDS Microcomputer controlled instruments, directly traceable to N.P.L., precision ovened local oscillator, comprehensive monitoring and status information, real time synchronisation.
- LOW COST MSF

FREQUENCY STANDARD Instant operation, directly traceable to N.P.L., self-contained portable unit, no scheduled frequency changes, 24 hr transmission, real time synchronisation

Radiocode Clocks Ltd*

Unit 19, Parkengue,
Kernick Road Industrial Estate, Penryn, Falmouth, Cornwall. Tel: Falmouth (0326) 76007 (*A Circuit Services Associate Co.)

CIRCLE $2 G$ FOR FURTHER DETAILS.

Unit 19, Wick Industrial Estate, Gore Road New Milton, Hants BH25 6SJ Tel: New Milton 0425621195

LATEST DESIGN

Pre-amp Kit (complete) £98 + VAT
100W Power-amp Kit (complete) $£ 135+$ VAT

$$
\mathrm{P} \& \mathrm{P} £ 2 \text { per order }
$$

Send S.A.E. for details and prices of part kits. Conversion hardware for fitting both units into a $\mathrm{Hi}-\mathrm{Fi}$ tower system and also 19" Rack mounting options.

FIELD ELECTRIC LTD

3 SHENLEY ROAD, BOREHAMWOOD, HERTS.
Telephone: 01-953 6009
OPEN SIX DAYS A WEEK. $9.00 \mathrm{am}-5.00 \mathrm{pm}$ THURSDAY $9.00 \mathrm{am}-1.00 \mathrm{pm}$

CALLERS WELCOME

Wirelessworld

over 70 years in independent electronics publishing

FEATURES

17

British invention, innovation and electronics
by R.E. Young Background to new series

25

Floppy discs
by David March
Continuing the survey of disc storage in microcomputers

Sampled-data servos

The second part of Dr Taub's new analysis outlining the sampling and aliasing processes is held over to the next issue

43

The new logic symbols
by Ian Kampel
The new standard explained

49

 GPIBAn introduction to the bus accompanied by our equipment survey

31

Aesthetic sub-woofer system
by M. Bronzite
Analysis of path-length difference leads to an unconventional crossover design

Alarmphone

by Per Andersen This final part details the circuitry for the d.t.m.f. emergency autodialler, requiring no line connection

70

Principles of optical storage

by J.R. Watkinson
This second article in our definitive compact disc series details the physics of the readout process

REGULARS

6
 Comment and News

Electro-reductionist challenge, World telephones, CB Snafu, Neutrons probe structures

37

Communications
New-look spectrum management?, External voices, Midgley's inventions, Cable \& DBS

61

Circuit ideas

Vmos squelch for pulse receivers, Bit-rate generator, Z80 instruction counter, Strobe probe

72

Letters

Current dumping, Causality, IT education

78
 New products

Computer music, Low-cost
modem, Image frame store

British invention, innovation electronics |by R.E. Young B.SC.E.E.
 This senies is designed to show that BritainThis ser unique technological ste as ever of makin with heaple as global level: over the years is ase fields at the gol contributions in and is doing so. cis Th hate cexsint ove
 F.E.E.E
 Front cover, designed by Philip Brooker and photographed by Kenneth Crook, illustrates R.E.
 Young's piece on British invention, which starts on page 17.

Sone thry

NEXT MONTH

Quartz crystals are by no means as simple as they might appear. Gordon Hulyer of Cathodeon explains their
characteristics and usage.
Current followers were discussed by F.J. Lidgey in February 1984. He now joins forces with
Christofer Toumazou to describe an accurate current follower design, which is used in a universal voltage amplifier.

In "How long is a piece of wire?", John Wiseman looks at electrically short transmitting aerials those less than a quarter wavelength - which he describes as the no-mans' land of aerial design.

Current issue price 85 p, back issues (if available) $\mathcal{L} 1.06$, at Retail and Trade Counter, Units $1 \& 2$, Bankside Industrial Centre, Hopion Street, London SE 1. Available on microfilm; please contact editor.
By post, current issue $\{1.30$, back issues (if available) $\mathcal{L} 1.40$, order and payments to EEPSundry Sales Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS Tel.: 01-661 3378.
Editorial \& Advertising offices: Quadrant House, The Quadrant, Sutton Surrey SM2 5AS
Telephones: Editorial 01-661 3614 Advertising 01-661 3130.
Telex: 892084 13ISPRSG (EEP)
Subscription rates: 1 years $£ 15$ UK and £ 19 outside UK.
Student rates: 1 year $£ 10$ UK and $£ 12.70$ outside Uk.
Distribution: Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Telephone 01-661 3248.
Subscriptions: Oakfield House,
Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone: 04444 59188. Please notify a change of address USA: $\$ 49.40$ surface mail, $\$ 102.60$ airmail. Business Press International (USA). Subscriptions Office, 205 E. 42 nd Street, NY 10017.
USA mailing agents: Expediters of the Printed World Ltd, 527 Madison Avenue, Suite 1217, New York, NY 10022, 2nd class postage paid at New York.
(c) Business Press International Ltd 1985. ISSN 00436062.

Editor
PHILIP DARRINGTON
01-661 3128
Deputy Editor
GEOFFREYSHORTER, B.Sc.
01-661 8639
Tectnical Editor
MARTIN ECCLES
01-661 8638
Projects Editor
RICHARD LAMBLEY
01-661 3039
News Editor
DAVID SCOBIE
01-661 8632
Drawing Office Manager ROGER GOODMAN
01-661 8690

Technical Illustrator BETTY PALMER

Advertisement Manager
BOB NIBBS, A.C.I.I.
01-661 3130
MICHAEL DOWNING
01-661 8640
ASHLEY WALLIS
01-661 8641
Northern Sales
HAFRY AIKEN
061-872 8861

Midiland Sales

BASL McGOWAN
021-356 4838

Classified Manager

 BRIAN DURRANT01-661 3106

IAN FAUX

01-661 3033
Production
BRIAN BANNISTER
(Make-up and copy)
01-661 8648
Publishing Director
DAVID MONTGOMERY
01-661 3241

International Agents and the Advertisers Index appear at the back of this issue.

-IAMEE MORE THAN JUST ONE STEP UP

HM208 £1200

Dual Trace, Digital Storage $2 \mathrm{mV}-20 \mathrm{~V} / \mathrm{cm}$ 2 CMHz Bandwidth Algebraic Add, Invert X - Y, Component Tester $4 \times \mathbb{k}$ Stores, 20 MHz Clock, Roll, Refresh, Pre-trigger

HM605 $£ 515$

Dual Trace $1 \mathrm{mV}-20 \mathrm{~V} / \mathrm{cm}$
60 MHz Bandwidth Algebraic Add, Invert
X - Y; Single Shot Delay Sweep,
Var Hold-off Component Tester, 14 kV CRT
HM204-2 $£ 365$.
Dual Trace $1 \mathrm{mV}-20 \mathrm{~V} / \mathrm{cm}$
20 MHz Bandwidth Algebraic Add, Invert $X-Y$; Single Shot Delay Sweep, Var Hold-off Component Tester
HM203-5 £264.
Dual Trace $2 \mathrm{mV}-20 \mathrm{~V} / \mathrm{cm}$
20 MHz Bandwidth Algebraic Add. Invert $X-Y \quad$ Component Tester

2 Year Warranty

HPMEE
FOR THOSE WHO COMPARE
74-78 Collingdon St. Luton, Beds, LU1 1RX
Tel: (0582) 413174 Telex 825484

CIRCLE 121 FOR FURTHER DETAILS.

Philips Portable Computer P2000C . . . an efficient IEC-Bus Controller with several advantages

- IEC-625/IEEE-488 protocol fully implemented
- IEC/IEEE programming made easy with extended MBASIC and CP/M supplied with system
- bus analyser program included
- for commercial use: Word processing, spreadsheet and information management programs also included
the P2000C is a full-function, easy-to-use, inexpensive personal computer.

Distributor in Great Britain: Kingsway Data Systems, 30 Guildford Street,
Chertsev Surrev. United Kingdom. Tel.: (093 28) 68911
CIRCLE 125 FOR FURTHER DETAILS.

PHILIPS

CIRCLE G\& FOR FIURTHER DETAILS

Audio Measuring Instruments, Audio Amplifiers, Loudspeakers and Loudspeaker Components for the professional and enthusiast

RADFORD AUDIO LTD.
10 BEACH ROAD
WESTON-S-MARE, AVON BS23 1AU
TEL. 0934416033
CIRCLE 49 FOR FURTHER DETAIIS.
ELECTRONICS \& WIRELESS WORLD MARCH 1985

GANG-OF-EIGHT is our FAST EPROM PROGRAMMMER which handles CMOS or NMOS EPROMS from

 2716 to 27256 ($25 \times X$ too) using FAST or NOFMAL programming methods FAST programming 27128 s takes 2 minutes, NORMAL programming takes 14. All possible levels of Vpp are covered including 25,21 and 12.5 volts. G8 has an LCD which tells you what you're doing - or doing wrong. BLANK CHECK, VERIFY and CHECKSUM facilities are included Good value. GANG-OF-EIGHT-PLUS is now available. PLUS what? Well, PLUS an RS232 INTERFACE which download in INTELHEX, MOTOROLA S. TEKHEX., ASCII, SIMPLE HEX etc. Oh, yes, PLUS 50 quid too, but you might think it's worth it

SOFTY 2, our intelligent EPRDM PROGRAMMER/EMULATOR, plugs into a TV, shows you memory and lets you TEXT-EDIT in HEX (INSERT, DELETE, SHIFT BLOCKS without overwriting or rewriting etc). It also calculates ADDRESS-OFFSE ${ }^{-}$S in hex, UPLOADS and DOWNLOADS in SERIAL and PARALLEL, saves programs on TAPE, and PROGRAMS, COPIES and EMULATES EPROMS 2716, 2732 ánd 2532. Great DEVELOPMENT TOOL for PIGGY-BACK SINGLE-CHIPPERS and other small microsystems. TV lead, ROMULATOR-cable with 24 pin DIL Plug and power supply included, ready to plug-in and use
£195
2764 and 27128 ADAPTOR lets SOFTY 2 handle larger EPROMS for
£25.00

Z80 DEVELOPMENT TOOLS

MENTA is a 280 development system designed by DATAMAN for the SCHOOLS COUNCIL. MENTA has a built in ASSEMBLER and TV hex display: it lets you enter program in hex or mnemonics and execute them FULL SPEED or A STEP AT A TIME. All the REGISTERS and the STACK are displayed on-screen and you can SEE MEMORY CONTENTS CHANGING as instructions are executed. MENTA is a microsystem with 24 bits I/O - it can be used as a controller for ROBOTS and intelligent machines. MENTA appears in GCE syllabusses; a TEACHER'S GUIDE, PUPIL READER and WORKSHEETS are available - also CONTROL MODULES - UNIVERSAL I/O, A to D, D to A, MOTOR and VARIABLE SWITCHED INPUT for less than $£ 20$ each. A MENTA with TV flylead and power-supply costs
£99
MICRODOCTOR is for DIAGNOSIS, finding troubles in microsystems. You fust plug into the microprocessor socket, READ and WRITE to the MEMDRY and I/O. MD does CHECKSUMS, RAMTESTS on memory, checks for SHORTS on the bus, and prints memory in HEX or ASCII. You can also DISASSEMBLE and print the SOURCECODE in Z80, 6502, 6803 or 8085 mnemonics.
When your SCOPE or MULTIMETER can't find the problem - consult the MD. When you order say which processor or ask about multiprocessor MD
£295

CONNECTIVITY TESTERS

I.C.T. (Inteiligent Connectivity Tester) is the project name for a 40 pin dual-in-line CUSTOM-CHIP developed by DATAMAN
The chip is called the MT72017 and it will appear soon in BARE-BOARD TESTERS, IDC CABLE TESTERS and LOOM ASSEMBLY EQUIPMENT all over the world. An EVALUATION-SYSTEM/CONTROLLER for the MT72017 is available on a EUROCARD and you can BUILD YOUR OWN custom connection-pattern tester for

モ295
The controller has full documentation, source-code, circuit diagram, parts-list and a description of operation. Each MT72017 tests 26 points and a single controller will handle hundreds of 'em - thousands of test-points.
MT72017 chip prices: $£ 12.50$ (1 to 99) $£ 11.25$ (100-999) $£ 10.25$ (1000 up). We do not sell samples of the MT72017 vithout a controller.

LOGIC ANALYSER TA2080 by THANDAR witt SPECIAL MODS by DATAMAN which gives RS232 interface and prints TIMING and STATE diagrams - and DISASSEMBLES Z80, 6502, 6800 code on the screen or printer.
THANDAR TA2080
£1950 DATAMAN RETROFIT
EPSON AND NEC COMPUTERS $Q \times 10, H \times 20$ ard PX8, PC8800. ALL COMPUTERS are sold with a free bundle of useful software written bv DATAMAN
OLIVETTI TYPEWRITER INTERFACES designec by DATAMAN for ET1 21 and 221 - cheaper than a DAISYWHEEL printer RS232, HPIB (IEEE) and FARALLEL including fitting EPROM ERASERS from.

MICROSYSTEM
tiESTERS

Electro-reductionist challenge

This journal has more than once ' commented on the threat to human life and ways of life posed by certain applications of electronics. There is now another, different kind of threat from this technology. It takes the form of a challenge to our understanding of what it is to be a human being.
Through a remarkable ability to simulate natural phenomena and processes as well as manmade systems, electronics technology is providing powerful support for the reductionist view of living beings. Reductionism, put crudely, is 'nothing but-ery.' We are arrangements of atoms and molecules - machines functioning according to physical laws (which most of us accept) and 'nothing but' machines (which many of us vehemently reject).
This is not a doctrine to be easily dismissed. The philosopher John Searle in his 1984 BBC Reith Lectures admitted: "I just cannot square my conviction that I am a free agent with my conviction that. . . the surface features of phenomena are explained by the behaviour of micro-elements."
The first electronic simulators were analogue computers, and electronic analogues are still used to model living processes such as the electrical activity in tissues. Now, digital computer programs are taking over some
of this biological modelling. Apart from these specially designed models, set up as aids to research, there are the analogies suggested by existing artefacts. At one time the brain and central nervous system was likened to a telephone exchange. Now it's a computer.

Of course, these popular analogies are simplistic and misleading if pressed too far. But they have nevertheless entered the folklore by their emotional effect, especially when more and more human tasks are being performed by electronically controlled machines. Current discussions on whether such machines 'think' and have 'consciousness' are largely exercises in semantics. But the very fact of such discussions by professionals, like those on nuclear war, makes the subject thinkable.

At the lowest level, although brains don't actually work like computers, "the union of nerve fibres by synapses into systems with given overall properties" are realistically comparable with man-made "nets containing cycles" (quoting from Norbert Wiener's Cybernetics). But now that the fifth generation of computers is almost here, the model becomes more sophisticated. Aided by cognitive psychology, it moves a step nearer to the living processes. According to

"We're hoping to get rid of the dongle when it goes into production"

Professor Donald Michie, a researcher in machine intelligence, these new machines will function at "a higher level of conceptualization" than is possible with the existing Turing/von Neumann type computers. As an example, research is being done on distributed associative memories modelled on what is known of human memory processes.
Electro-reductionism, as it might be called, supports the instrumental view of human life epitomised by behaviourism and the technological fix. It is a challenge that must be met. It puts us on our mettle to defend and reaffirm our inner experiences, beliefs and values Faced with the blind determinism of our own
biological mechanisms, we must assert, like Kierkegaard's 'leap of faith', that it is equally valid to describe human life in subjective terms consciousness, mind, intention, volition etc. - with the freedom of moral choice that these entail.

Community radio

The Home Secretary has given the go-ahead for the establishment of a number of low-powered v.h.f. local radio stations, serving the community. There is to be an inquiry into the ways of implementing such a service. At the same time, there is to be a clamp-down on pirate radio stations which are using frequencies likely to be allocated to community radio. We published an article by Norman McLeod, which described a method for the best utilization of wavebands for community radio, in our July 1983 issue

The world needs more telephones

There is a gross imbalance in the distribution of telecommunications across the world. Three-quarters of the 600 M telephones in the world are concentrated in only nine countries. Half the world's population live in countries with less than one telephone for every 100 persons and in such countries these are predominantly concentrated in urban areas, in many rural and remote areas there are no telecommunications at all. There are more telephones in Tokyo than in the whole of Africa. One can only speculate on the extent to which the absence of telecommunications has contributed to the disastrous famine in Ethiopia.

These are some of the startling facts which come from the findings of the Independent Commission for World Wide Telecommunication Development, set up by the International Telecomminications Union. In their newly published Report the Commission has made several recommendations to the ITU. The Commission's members came from India, the USA, Kuwait, Japan, Federal

Germany, Morocco, France, Tanzania, Venezuela, Gabon, Senegal, Romania, Indonesia, the USSR, Costa Rica and Saudi Arabia and was chaired by Sir Donald Maitland, the UK representative.
Their chief conclusion is that the industrial nations and telecommunications industries should aid the poorer nations in the development of their telecommunications. This will promote the shared interest in that a more comprehensive world network will increase international traffic and generate funds for investment; trade and other contracts would be stimulated and the standard and quality of life of countless millions would be raised to the general good. The high technology and other industries will then find new markets in the developing world for their products and their expertise. If this common interest is recognised and if higher prionty is given to investment in telecommunications as an integral part of the process of development, there is no good reason, in the Commission's view, why be the early part of
the next century all mankind should not be within easy reach of a telephone. This is the objective set by the Commission.

In practical terms the Commission proposes the setting up of a Centre for Telecommunications Development. It would have three components: a Development Policy Unit, to collect and disseminate information about telecommunications policies and experience; a
Telecommunications Development Service which would offer developing
countries disinterested advice of the highest quality on every aspect of creating and operating an effective system; and an Operations Support Group which would provide specific assistance and complement the work of the Technical Cooperation Department of the ITU.

Although the Commission accepts that there is no instant solution, if their recommendations were to be accepted and implemented with vigour, the world wide situation could be transformed within 20 years.

UK's the place for US hi-tech

Geoffrey Pattie, who took over the Ministry for Information Technology has been exhorting Americans to locate their high technology industry in Britain. Addressing the annual meeting of the American Friends of Wilton Park, in Los Angeles, he pointed out that the UK consumption of integrated circuits alone grew 50% last year, to $£ 450 \mathrm{M}$. "The UK is now the largest European market for i.cs. It is also the fastest growing and uses a higher proportion of integrated circuits in its products than any other European country."

He outlined the Governments' work in telecommunications and particularly the development of the TACS cellular radio system which should give 90% of the UK population the opportunity of making telephone calls from their cars by 1990 . In another

In another part of his speech he decried the US restriction om the dissemination of unclassified technical data and scientific information. "Such moves have included the withdrawal of scientific and technical papers from open circulation; limitation on the attendance of non-US citizens at scientific conferences; restrictions on US scientists wishing to attend international conferences; and restrictions on the access of foreign students to US laboratories.

If these restrictions are allowed to grow unchecked, the long-term effect could well be a decline in the quality and a decrease in speed of scientific and technoligical progress; and the increased risk of duplication of effort.

A source for neutrons

What is claimed to be the world's most powerful pulsed neutron source is to be fully commissioned in April. The Spallation Neutron Source (SNS) is at the SERC Rutherford Appleton Laboratory. Initial tests have found it to be a very useful tool and a small but significant discovery has been made in the distortion of the structure of nickel oxide
The initial test consisted of accellerating protons to 550 MeV in a sychrotron (800 MeV will be used eventually). The protons are extracted from the synchrotron in high intesity bursts, 50 times a second, and are focused on a target of non-fissile Uranium 238 where 25 to 30 neutrons are released for each incident proton. The pulsed structure allows the measurement of neutron wavelength and energy The neutrons so generated are too energetic and are therefore slowed down by 'moderators' of which the SNS has four: two of water at room temperature, one of liquid methane at 100 K and one of hydrogen at 25 K . The
pulses of neutrons emerging from the moderators, now comparatively slow in particle terms, are used for experimental purposes.

Neutrons carry no electrical charge and can penetrate an atom and interact with the neucleus. Because they have wavelengths which range from less than the dimensions of an atom to that of large molecules, the neutron beams can be used to probe the structure of molecules and the arrangement of atoms and molecules in crystals, liquids, glasses and plastics. One example is investigate the structure of viruses. Neutrons are very penetrating and can be used to probe the internal structure of bulk materials, for example studying the setting of cement and internal strains in metals. Neutrons have relatively low engergy; about 10^{-5} times less than that of X-rays of comparable wavelength. This allows the investigation of atomic and molecular motion within substances which in turn give information about the atomic-scale forces which

control the structure and properties of matter. They also provide the basis for the newly developing technique of neutron radiography. Each neutron has magnetic moment; it behaves like a tiny magnet, and may be used in the study of the
magnetic properties of materials.
This combination of all the various properties of the neutron make it a powerful and unique tool for a wide range of studies in chemistry, physics, biology and materials science.

Ten-four breakers?

It appears that the old illegal CB radio rigs will soon become legal but the new legal sets will at the same time become illegal. The Radio Regulatory Division or their masters at the DTI have agreed to adopt the frequencies recommended by the CEPT for use in Europe. These are the same as the American FCC allocated frequencies for CB and were used illegally in this country until parliamentary lobbying, and widespread flouting of the law, forced the Government into making CB legal. The official reason given is that the frequencies allocated on legalization were the only ones useable in the short time-span then available. The CEPT recommendation allows for a 40-channel service operating between 26.96 and 27.40 MHz with four watts power and using f.m. only. There is to be a gradual changeover with the final plans and dates not yet
fixed. Some channels at the bottom of the band are still occupied by such services as hospital paging systems and most of these have been allocated new channels in Band III following the demise of the 405 -line tv service. But eventually CB users will have to get new equipment or have their rigs modified to remain legal. The 934 MHz band is to be moved down by 12.5 kHz with the channels spacing reduced in order to get 40 channels on this band. After all this has happened breakers will be able to use their sets all over Europe and it is presumed that as they all seem to communicate in their own weird language they should have few linguistic problems there. Perhaps that is what Orwell meant by Newspeak? Our thanks to Reg Moore, G3GZT/ VS6CD, for pointing out this addition to the CB snafu saga.

In brief

STC think they can find a niche in the market by providing a connector service. With this in mind they have set up a new company; Five Star Connectors, and have invested several million in buying stock, so that they can offer a same-day, off-the-shelf service for a wide variety of connectors from a number of leading
manufacturers. Coinciding with the launch of the new company is the first issue of their catalogue; 104 pages long and seemingly covering any connector that one could imagine.

- Since the poison gas disaster in Bhopal, India, the Ever Ready battery company wish it to be known that they have no connection with Eveready batteries marketed in several countries (though not in the UK) by Union Carbide.

Engineers at the IBA
Engineering Centre have successfully received from Norway the first operational service to use the C-MAC/ packet d.b.s. system. The pictures are being transmitted by NRK, the Norwegian broadcastine corporation for reception in the Svalbard Islands off the northern coast of Norway, well within the Arctic Circle. This is the first service to use the C-MAC/packet system proposed by the EBU and based largely on the MAC system developed by the IBA. The Norwegians are using the eight sound channel capacity available in the specification to provide two stereo radio channels in addition to the sound accompanying the picture. IBA engineers are currently working on an experimental enhanced form of wide-screen MAC transmission.

The first? Not by a long chalk

Whenever we take the words of a press release for granted, we are invariably wrong. Philips told us that their slow-scan tv system was the first to get BT approval (January News). Not so, says Ibsonmain of Uxbridge. They had approval back in 1978 when BT was still part of the GPO. They claim that they were the first and know of at least three other companies in the same field with official approval. Ibsoscan II is a transceiver that will also autodial, autoanswer, provide remote control of cameras, alarm systems etc. Its built-in line monitoring ensures privacy and there is no limit to the length of time a transmission will take. Moreover the product is British designed, British made and built almost entirely of British components.

Automatic telephone fault-finding

British Telecom are installing automatic line testing equipment to speed telephone fault detection and repair. Beginning in March the equipment will be installed in about 100 of BT's 360 repair service controls. It will automatically test customers' lines and equipment overnight to spot any degradation before it develops into a fault which could affect telephone service. It can also be operated by officers at the control centres in reply to faulty line calls by users dialling 151. Eventually the records and automatic test computers will be integrated so that if a fault is reported, the customer service operator can call up the line's previous fault record, initiate the automatic test and read the results displayed on a screen. This will usually provide enough information to estimate the time needed to effect the repair and organize an engineer's visit.

Communications for the deaf

A profoundly deaf young mother from Leeds has called on the Government to provide financial assistance to enable similarly handicapped people to benefit from electronic mail. Doreen Naylor, deaf from birth, has contributed to a book, Micros for the Handicapped. She runs a network linking deaf families in Leeds and Bradford and is particularly pleased with the Commstar rom from Pace which she uses in her BBC micro, along with a Pace modem. Doreen is one of several handicapped people who have written first-hand accounts of their experiences in the book, published in Whitby by Helena Press.

Alvey looks at wafers

A major project for developing fault-tolerant design techniques for wafer-scale integration. Plessey, GEC and ICL are to collaborate with Brunel University, Middlesex Polytechnic and King's College, London in the project. It is planned to take three and a half years and involve a total of 50 years' effort for one person.
The objective is to create circuits which can be reconfigured to avoid defects on the wafer. Several approaches have been proposed, but few tested in practive. Such a selfrepair system has been described by Ivor Catt in this journal. For the Alvey project it is planned to produce two circuits, one will have a regular array structure while the other being a non-regular cell-based type. C.mos technology is to be used for these demonstration wafers. The project part of the overall VLSI architecture programme of Alvey which aims to produce a variety of methods for exploiting the possibilities of parallel processing offered by VLSI. The WSI project should produce manufacturing techniques of value to all designers of VLSI circuits.
The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to I. L.P., PRICE.
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 14 DAYS together with a short lead time on quantity orders which can be programmed
to vour requirements with no price penalty.

 order.

CIRCLE 41 FOR FURTHER DETAILS.

Please phone for brochure: 026450093 West Portway Industrial Estate, Andover SP10 3WW. .aplieations A private and independent company giving prompt. - - pplications personal service

A GENUINE OPPORTUNITY TO PURCHASE THE AUDIO DISTRIBUTION CONSOLE

DISTRIBUTION FACILITIES

The following distribution tacilities are provided

1. Single channel radio distribution from integral variable AM/FM tuner.
2. Single channel cassette tape distribution from integral cassette player.
3. Four channel mixed speech distribution from any standard 200 ohm impedance microphones.

Note that the output of all tacilities can be mixed if required and that bass and treble control is provided on the mixed output.
RECORD FACIUTY
The integral cassette tape recorder can be used to record the mixed output of the tour microphone channels and the radio distribution channel.
CONSOLE
DIMENSIONS: $\quad 465 \mathrm{~mm}$ High $\times 435 \mathrm{~mm}$ wide $\times 330 \mathrm{~mm}$ deep approximately
POWER SUPPLY
AMPLIFIER: $200 / 250$ Volts A.C. 50 Hz
100 Watts RMS
100 Watts RMS
100 Volt ine output
PRICE E556 inc VAT and Delivery (Mainland only)
Weight: 28 Kilos Nett, approx.
TERMS C.W.O export enquines welcome. We find it impossible to advertise all we stock. Please telephone, write or telex for further enquiries. Personai callers always welcome.

Electronic Equipment Co.
 SPRINGFIELD HOUSE,
 TYSSEN STREET,
 LONDON E.8. 2ND
 TEL NO. 01-249 5217 G

Mectronic Brokers Test \& Measure
 CHECIS OUR

Thander TM 355
 £85 $3^{1 / 2}$ digit. 0.5 bright $L E D, 29$ ranges of measurement. DC accuracy 25% battery or

 measurement. DC accuracy 025% battery ormains operation diode check supplied with test

Thurlby 1905A $5^{1 / 2}$ digit, bright LED, $1 \mu \mathrm{~V}, 1 \mathrm{mR}$. 1 nA sensitivis 5lp digit, bright $L E D, 1 \mu V, 1 \mathrm{ma}$. 1 nA sensitivity
DC accuracy 0.015%, null and hold functions, computing functions. true RMS and IEEE interface options.

ANALOGUE MULTIMETERS
Philips PM 2505
£151
62 measuring ranges, 10 Ma input impedanc autor resistance ranges. audible continuity indication, low power
I.C.E. G8aR

C32

I.C.E. 680G

C25 48 measuring ranges, sensitivity 20Kı2/V.
accuracy $2 \%, 10 \mathrm{~cm}$ mirror scale, overload i.c.E. M80

40 measuring ranges, sensitivity $20 K \cap / V$. DC
accuracy 2%, wide range of accessories extend accuracy 2%, wide rang
measuring capabilities.

PULSE, FUNCTION PATTERN GENERATORS

Philips PM 5712

 1 Hz to 50 MHz , 4 nS , amplitude 200 mV to 10 V pulse duration and delay ons to 100 mS . double normal arinverted puise Philips PM 5326RF generator 100 kHz to 125 MHz , AM/FM modulation, 5 digit counter displays RF carrier marker and
output at 75

Philips PM 5134 £1415 Function generator 0.001 Hz to 20 MHz . frequency display, sine, square, triangle, TTL, int
or ext sweep, AM/FM modulation, output 2OVpp Philips PM $5133 \quad$ £1085 function generator 01 Hz to 2 VMHz , frequency display, sine, square, triangle, TTL, int or ext
sweep, log or lin, output 20Vpp, selectable 50 n Philips PM 5132

THEN

Electronic Brokers are leading suppliers of electronic test and measuring equipment. Our distribution division handles the major names in the industry: Philips, Fluke, Hameg, ICE, Thandar,

Thurlby, GP Industrial, Claude Lyons, Coline, Compact Instruments

These products are stocked in depth in our
spacious new premises at Camden Town, ready for

ment Instrament Distribution Division INVENTORY:

Philips PM 5131 C395|Philips PM 6671/01 £719 Function generator 01 Hz to 2 MHz , sine. square, tri-angle, TTL, int or ext sweep
3ovpp into 50 n , stepped and variable
attenuation.

Philips PM 55191 Pattern generator. 20 combination test patterns, full RF coverage electronic tuning with 5 preset channels, video and sound mod. comp Philips PM 5503 Pattern generator 5 test patterns for $£ 145$ colour. video output for CCTV and monitors, RF output in VHF and UHF range, 1 kHz tone for Thandar TG 10 Function generator 0.02 Hz to $200 \mathrm{kH} \quad \mathrm{£} 110$ square triangle, variable DC offset, TTL output external sweep. $10 \mathrm{~V} p \mathrm{p}$ output into variable Thandar TG 102 F160 square, triangle. TTL output, variable DC offset Thandar TG 105 Pulse generator 5 Hz to 5 MHz , 10 nS , amplitude 0.1 V to 10 V into 50 n . free-run, gated or
triggered modes. TTL output. pulse width triggered modes. TTL outpu
variable 100 nS to 100 ms Thandar TG 501
Thandar TG 501 C295 square, triangle, ramp, pulse. TTL variable DC square, triangle, ramp, pulse. variable 50NG 502 sine, square, triangle, TTL, internal sweeplog or
lin, variable sweep rate and marker duration, lin, variable sweep rate and
sweep and pen lift, outputs.

Thandar TG 503
¢495 sine, square, triangle, ramp. TL, normal, double or delayed pulses, variable pulse width and delay COUNTERS \&
COUNTER/TIMER

Philips PM 6670/01

Counter/timer. 0.1 Hz to 120 MHz , period puls width, single and average time interval. count. phase, RP
sensitivity

Counter/timer. D. 1 Hz to 120 MHz , as PM 6670 with LED trigger indicators, trigger level outputs
burst frequency average, arm ng, ext burst requency average, arm ng. ex
reset/start, gate open monito-

Philips PM 6672/01 width, single and averag 1 GHz . period, pulse width, single and average time interva, cou
phase, ROM, ratio, high resolution, 10 mV Sensitivity to 70 MHz .
Philips PM 6668/01 Counter, 10 Hz to 1 GHz , digit 446 auta triggering on all waveforms 15 mV . ensitivity, hegh stability crystal oscillators Philips PM 6667/01 C30 Counter, 10 Hz to 120 MHz . 7 digit L.CD displa
self diagnosis routine auto tringering 15 mv sensitivity, high stability oscillator.

Thandar TF 200
Counter. 10 Hz to $200 \mathrm{MHz}, 8$ digit LCD. battery powered, 10 mV sensitivity, time average period 060 MHz avallable at C Thandar PFM 2004 C76 battery powered, 10 mV sensitivity, resolution TP 600 pre-scaler available.

OUR

prompt despatch to all parts of the country. Electronic Brokers offer full technical support and expert advice on all aspects of electronic test and measuring.

MISCELLANEOUS
PRODUCTS

LINE CONDITIONERS

Philips PM 6303
Philiss automatic RCL bridge. 4 digit LCO display
formeasuredvalue and electric dimension,

Prilips automatic RCL bridge. 4 digit LCO display
formeasured value and electric dimension, accuracy 0.25%, automatic or stepping parameter menu selection. Philips PM 6307 Philips wow \& flutter meter cryst \quad ¢457
 accuracy and stability, separate drift and fiutter
indication.
 and ${ }^{\circ}{ }^{\circ}$ arange $-40^{\circ} \mathrm{C}$ to $1100^{\circ} \mathrm{C}$, resolution
$0 \mathrm{H}^{\circ} \mathrm{H}^{\circ}$ and ${ }^{\circ}$, for use with type K probes bead
supplied)

Thurlby OM 358
£169
Thurlby multiplexer expands any oscilloscope to
8 channels. displays analogue or digital signals triggering from any channel, band width 35 MH Hz , precision calibrated attenuator.

GP Electronics P 9030 - 1 C1295 EPROM programmer, 16 charactier fluorescent message display, menu selection programmes all EPROMS, powerful editor. RS232C interface, GP Electronics P 9020

C995
EPROM programmer, 16 character display, menu device:mode selection programmes all
single rail PROMM. RS232C. indvidual device

$\check{5256}$
Claude Lyons LVC 250
ner. 2.5A. 600 VA rating, line voltage conditioner input/out put. compact and portable for easy Claude Lyons LVC 65 0.65A. 156VA rating, line voltage conditioner, unaffected by frequency variations. transient and noise suppression. All LVC units have 2 year
warrantly

EPROM PROGRAMMERS

GP Electronics MFL $373 \quad$ C695 Microsystem fault locator, range functions
include Bus test ROM test. dynamic and static include Bus test, ROM test. dyyamic and static GP Electronics UV 147 Sill EPROM eraser variable electranic timer convenient tray loading with safety interlock

Full specifications on any products distributed by Electronic Brokers are available on request.

Electronic Brokers Ltd 140-146 Camden Street London NW1 9PB Telephone 01-267 7070 Telex 298694
 All prices exclusive of VAT. Carriaoe and dacking charges extra an alititems unless otherwise stated. A copy of our trading conditions is avallabe on request. arices correct at Prices carrect at time of gaing to press

ROBOT ENTHUSIASTS

The following iwo Motors are ideally
this field.

1. ESCAP
1 ESCAP precision Swis mat MOtor with $70-1$ gearbox. $6 \mathrm{VDC}-16$ r.p.m. $3 \mathrm{~V}-8 \mathrm{~F} . \mathrm{D} . \mathrm{m}$, gmazing power: no load current; only 10 ma approx. Size $4 \times 2 \times 1 / 2 \mathrm{~cm}$ Ex-
equipment, tested and guaranteed. ONLY $44.50+50 \mathrm{p}$ p\&p (total inc. VAT £5.75).
2. $12 / 24 \mathrm{~V}$ D.C. Reversible Precision built motor manufactured by Escap-will operate from 24 V down to 2 VDC -Current consump
tion negligible. A range of speeds between 2 to $36 \mathrm{r} . \mathrm{p} . \mathrm{m}$
 gearbox $90 \mathrm{M} / \mathrm{M}$. Max. Dia $42 \mathrm{M} / \mathrm{M}$. Shaft lengith $15 \mathrm{M} / \mathrm{M}$ Shaf Dia 6 MM . Approx. half manufacturers price: $\mathbf{£ 1 5 . 0 0} \mathrm{p} \& \mathrm{p} £ 2.00$ - total
inclusive of VAT $£ 19.55$.
VBL4 CENTRIFUGAL BLOWER
 12/24V DC Centrifggal Btower 0.4A producing 30 cu. 1 . $\mathbf{~} 7.50+£ 1.00$
p\&p (Totat inc. VAT 99.78) N.M.S. COOLING or EXTRACTOR FAN Quier smooth running. Size $4^{3 / 4} 44^{3 / 4} \times 1^{1 / 2}$. Supplied
for 240 V a.c. Operation. Price $\mathbf{4} 4.75+£ 1$ p $\&$ (Jotai for 240 V a.c. operation
inc. VAT 66.62) N.M.S.
$240 V$ A.C. SOLENOID VALVE

Ample parking space Showroom open Monday-Friday

SERVICE TRADING CO

VARIABLE VOLTAGE TRANSFORMERS

3-PHASE VARIA

- VOLTAGE TRANSFORMERS
 10 KVA 16 amp per phase max f345.45 plus carriage Comprehensive range of TRANSFORMERS L.T. ISOLATION \& AUTO
$(110-240 \mathrm{~V})$. Either cased with American socket and mains lead open trame ivpe available for immediate delivery Leatlet on request 12V D.C. BILGE PUMPS
400 G.P.H. 15ft. head. 3amp. $\mathbf{\varepsilon 8} 00+\varepsilon 1.00 \mathrm{p} \& \mathrm{D}$ 700 G.P. H. 10 ft , head, $3.5 \mathrm{mpp}, \mathbf{£ 1 1 . 5 0 + £ 1 . 5 0 \mathrm { p } \& \mathrm { p }}$ 1750 G.P.H. 15tt. head, $9 \mathrm{amp}, \mathbf{5 1 5 . 0 0}+\mathbf{£ 1 . 7 5 \rho \& \mathrm { p }}$ (f19.26 inc. VAT)

2

SINGLE DIAPHRAGM COMPRESSOR NMS

EPROM ERASURE KIT

Why waste money? 日uild your own EPROM ERASURE for a fraction of the price of a made up unnt. Complefe kit of parts less case to inctude 12, 8 watt 2537 Angst. Tube. Byllast unit, pair of
bi-pin leads, Neon indicator, safety microswitch. oniott swith and circuit
LESS CASE Price $£ 13.60+75 p$ p $\&$ (Total inc VAT $£ 16.50$) Warning: Tube used in this circus is highly dangerous to the

SOLID STATE E.H.T. UNIT
Inpu: 230V A.C. Approx. 15 KV . Producing 10 mm spark. Built-in 10 sec
timer. Easily modifed for $20 \mathrm{sec}, 30 \mathrm{sec}$, to continuous. Designed for boiler ignition. Dozens of uses in the field of physics and electronics, e.g. supplying neen or argon tubes etc. $£ 6.50+70 \mathrm{p}$ p\&p (Total inc

FROM STOCK AT PRICES	
THAT DEFY COMPETMTION	
AC GEARED MOTORS	

57 BRIDGMAN ROAD, CHISWICK, LONDON W4 5BB. Tel: 01-995 1560
ACCOUNT CUSTOMERS MIN. ORDER £10

Superior Quality Precision Made NEW POWER RHEOSTATS

New ceramic construction, heavy duty brush
assembly. continuously rated. 2 assembly. continuously rated. $20 / 20 / 50 / 1 \mathrm{kM}$
$1.5 \mathrm{kQ} £ 4.25+30 \mathrm{p} 8 \mathrm{P}$. ($55.23 \mathrm{incl} . \mathrm{VAT}$).

100 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / / \mathrm{kS} 2 / 1.5 \mathrm{k} \mathrm{K} / 2.5 \mathrm{kQ} / 3.5 \mathrm{k} \mathrm{K}$
$\varepsilon 10.25+75 \mathrm{p}$ p $\mathrm{p}(12.65$ inct VAT $)$ $\varepsilon 10.25+75 \mathrm{p}$ p 8 p (12.65 inct VAT)
Black Silver,Skirted Knob calibrated in Nos $1-9,1 / 2 \mathrm{in}$, dia. brass bush
Ideal for above Rheostas 30 p ea. + VAT.

INSULATED TESTERS NEW! Test to l.E.E. Secc. Rugged metal construction
suitable for bench of tied work onstant speed
clutch. Size

GEARED MOTORS

 VAT 577.601 N M.S

 TTotal inc VAT E7 59). N.M.
38 J rom GEARED MOT
383 ram GEARED MOTOR. Torque 35 ib in revers ble 115 V AC inc stan capacin Price f11.55 + p\&e ITotal inc. VAT f15.58) NM
 CROWN 37 ipm 20001 b , in. approx
p\&ip $£ 4.50$ ($£ 45.42$ inc. VAI) NMS

$57 \mathrm{rpm} 240 \mathrm{~V} .1 / 22 \mathrm{~h} . \mathrm{p}$ cont rnuously rated REVERSIBLE 501b.in manuf. by
 p\&plincl. VAT $\mathbf{E 1 6}$.101, inclusive capacitor
71 rpm Torque lilibin reversible 170th h.p 110 V AC motor. Pice: $£ 9.50$ € 180 p\&p (Tozal nic VAT f12.99)
Sultable TRANSFORMER
 24 VOC 200 rem 10 ib N M.
inc. VAT $£ 10.93$).
 D\&P (rolal inc VAT E6. 10
CHECK METER

SANGAMO WESTON TIME SWITCH

 $\begin{array}{cc}\text { N.M.S. } & \text { New Manufacturers' Surplus } \\ \text { R\&, }\end{array}$ R8IT Reconditioned and tested R8i Reconditioned and tested
Goods normally despaiched win 9 Little Newport Street London WC2H 7JJ Tel: 01-437 0576

CIRCLE 18 FOR FURTHER DETAILS.

ELECTRONICS C.A.D. "ANALYSER"

PERFORMANCE ANALYSIS of LINEAR CIRCUITS using the BBC MODEL B AND SINCLAIR SPECTRUM 48K MICROS

Simulates Resistors, Capacitors, Inductors, Transformers, Bipolar and Field effect Transistors and Operational Amplifiers in any circuit configuration.

Performs FREOUENCY RESPONSE ANALYSIS on Circuits with up to 30 Nodes and 100 Components, for Phase and Gain/Loss, Input Impedance and Output Impedance.

Ideal for theanalysis of ACTIVE and PASSIVE FILTERS, AUDIO, WIDEBAND and R.F. AMPLIFIERS, LINEAR INTEGRATED CIRCUITS etc, etc.
"ANALYSER" can greatly reduce or even eliminate the need to breadboard new designs.

USED BY INDUSTRIAL AND UNIVERSITY R\&D
DEPARTMENTS WORLD WIDE.
VERY EASY TO USE. PRICES FROM £20
PAYMENT BY ACCESS OR AMERICAN EXPRESS WELCOME.
For further details write or phone NUMBER ONE SYSTEMS DEPARTMENT WNW
9A CROWN STREET, ST IVES
HUNTINGDON
TEL: 048061778
CAMBS. UK. PE 17 4EB.
TELEX: 32339
CIRCLE 88FOR FURTHER DETAILS.

THE SOURCE OFALI GOOD USED TEST EQUIPMENT

OSCILLOSCOPES

TEKTRONIX 7000 SERIES

7313 opt 0125 MHz Bistable
Storage Oscilloscope Mainframe
$4.9 \mathrm{~cm} / \mu \mathrm{S}$ Stored Writing Speed
(MLP £4,932) £2,225
7603100 MHz Oscilloscope
Mainframe (MLP £2, 712) £1,950
7633100 MHz Storage Mainframe
(MLPC7,794) ©4,950 7704 A 200 MHz Oscilloscope
Mainframe (MLP $£ 4,278$) $\mathbf{~ © ~} 2,950$
904500 MHz 7904500 MHz Oscilloscope
Mainframe
7000 SERIES PGU4A E8,709) ©6,950 7000 SERIES PLUG INS
7A19601 (MLPE2.669) £1,600 $7 A 19600 \mathrm{MHz}$ ST Amplifer
7 A 26200 MHz D TAmplifier
(MLP £1,917) £1,325
7B53A $0.05 \mu \mathrm{SD}$ Timebase
$7 B 80$ 10nS Timebase
$7 B 85$ 10nS (M) (MLP £1,405) $\mathbf{C 9 6 0}$
PHILIPS (MLP £1,609) 995

PM3232 10MHz True Dual Beam Oscilloscope

TEKTRONIX

212 Miniature 500 KHz D T Battery
Oscilloscope (MLP £1,746) £650
434 opt 0125 MHz D Storage
Oscilloscope (MLP E5,459) £2,000
475200 MHz T Dscilloscope
(MLP E4,104) £2,250

LOGIC ANALYSERS

FLUKE

3010A Programmable PCB Logic
Tester (MLP £19,153) £8,000

HEWLETT PACKARD

1615A 20 MHz
¢3,000
TEKTRONIX
7002 opt 01 Microprocessor
Analyser. Up to 52 Channels
(MLP £7,144) £3,950

SIGNAL ANALYSERS

HEWLETT PACKARD
$141 T+8552 B+8555$ A Spectrum Analyser $10 \mathrm{MHz}-18 \mathrm{GHz}$
(MLPE16,562) £12,650

TEKTRONIX

491 Spectrum Analyser $1.5 \mathrm{GHz}-12.4 \mathrm{GHz}$ $1.5 \mathrm{GHz}-18 \mathrm{GHz}$ $1.5 \mathrm{GHz}-66 \mathrm{GHz}$
$1.5 \mathrm{GHz}-40 \mathrm{GHz}$ £3,000
$£ 3,500$ £4,000
£4,500

TR502 Tracking Generator for 7L12, 7L13, 7L14

TR503 Tracking Generator for 492 or 496 (MLP £6,332) £4,250 TEKTRONIX TM500 \&
TM5000 SERIES
20501 Digital Delay Delay to 99,999 EG501 Low Frequency Eunction) Generator, 0001 Hz to 1 MHz sine square, triangle, pulse and ramp
FG502 F
GSO2 Function Generator 0.1 Hz to
11 MHz sine, square, triangle
Pulse and ramp to 1.1 MHz (MLP C773) ©565
FG503 Function Generator 0.1 Hz to
3 MHz sine, square and triangle
(MLP E528) $\mathbf{~ 4 0 0}$
PG505 Pulse Generator 10 Hz to
100 KHz pulse width 5 nsecto
0.5 sec
PG508Pulse Generator 5 Hz to

50 MHz pulse width 10 nsec to
msec (MLP E1,904) £1,250 RG501 Ramp Generator $10 \mu \mathrm{~s}$ to
10 s ramp duration 10 V gate out, $\mathbf{~} \mathbf{1} 350$ TTL compatible
SC501 5 MHz Single Channel Plug-in Oscilloscope 10 mV sensitivity. occupies single TM5OO series compartment (MLP £1, 166) £500 SC502 15 MHz Dual Channel Plug-in Oscilloscope $1 \mathrm{mV} /$ div sensitivity. $20 \mathrm{~ns} /$ div calibrated sweep Occupies two TM500 series compartments (MLP E2,131)£900 SC504 80 MHz Dual Channel Plug-in Oscilloscope 5 mV /div sensitivity,
5 ns/div calibrated sweep, true $X-Y$ capability (MLP £2,690) £995 SG502 Low Distortion Signal Generator $5 \mathrm{~Hz}-500 \mathrm{KHz}$
(MLP E776) £525
SG504 Signal Generator
$245 \mathrm{MHz}-1050 \mathrm{MHz}$
(MLP £3.197) £2,100
SG505 Dscillator 10 Hz to 100 KHz Sinewave Ultra-low distortion--
00008% THD (MLP E696) £400 TG501 opt 01 Time Mark Generator (MLP £2,213) 1,450

TEKTRONIX TV TEST

EQUIPMENT
380 Portable NTSC Vector/
Waveform/Scope 521A Vectorscope

〔2,750 DISPLAYS

HEWLETT PACKARD

1332A High Resolution X-Y Display $9.6 \times 11.9 \mathrm{~cm}$ Display Area option 216 (TTL Blanking and Analog Z Mod) and option 330 (covers Feet etc. to Medical Standards) (MLP E2 190) £1,250

SIGNAL SOURCES

HEWLETT PACKARD

14A Pulse Generator to 1 MHz
Double Pulse Mode 100V,
200 watts output
c950
612A UHF Signal Generator
©1,100

4204A Digital Oscillator.
 $10 \mathrm{~Hz}-1 \mathrm{MHz}$

NEW CONDITION
¢760
8011 A opt 001 Pulse Generator
20 MHz with Pulse Burst 16 V
output (MLP $£ 1,079$) $\mathbf{C 6}$
84034 Modulator with option 004
8732 B Pin Modulator $1.8-4.5 \mathrm{GHz}$
(MLP E1,902) ©1,000
8620C Sweeper Mainframe
(MLP £3.076) £2,495
86240B Sweeper Plutg in 2-84 4GHz
(MLP E6.152) £4,200
$12.4-18 \mathrm{GHz}$
12.4-186Hz (MLP E4, 195) £3,600

8640 A A/FM Signal Generator $0.5-512 \mathrm{MHz}$
(MLP E7,191) $\mathbf{~ 2 , 2 5 0}$ 86908 Sweeper Mainframe $\mathbf{E 2 , 0 0 0}$ 8698 B Sweeper Plug in $\quad £ 1,000$. $4-110 \mathrm{MHz}$
8010 K Hz-110MHz
ع1,950

MARCONI

TF2015 AM/FM $10-520 \mathrm{MHz}$
(MLP £2,175) £1,450
TF2120 Waveform Generator Sine.
TF2120 Waveform Generator Sis $0 / \mathrm{p}$ Waveforms $0.0008 \mathrm{~Hz}-100 \mathrm{KHz}$
$C 750$
TF2169 Pulse Modulator $10-520 \mathrm{MHz}$
for use with TF2015, TF2016 and
other generators
E500
TF2173 Synchronizer for TF2016 ${ }_{\text {C600 }}$
6058 Signal Generator $7-12.5 \mathrm{GHz}$

GENERAL EQUIPMENT

AVO
Model 8 (various versions) C80-¢85 BIRD
4311 Peak Fower Meter
BRYANS SOUTHERN

29300 A4 Size

$X-Y$ Ranges: 0.25 mV to $10 \mathrm{~V} / \mathrm{cm}$ in 10 Ranges
Slew Speed: $70 \mathrm{~cm} /$ second
Timebase: 0.1 to $50 \mathrm{sec} / \mathrm{cm}$ in 9 Ranges
(MLP £1,637) ¢1,000

26001 with 2×26116 Amplifiers

 and 26201Timebase
A4 Size
$X-Y$ Ranges: $50 \mu \vee$ to $10 \mathrm{~V} / \mathrm{cm}$ in 17 Ranges
Slew Speed: $150 \mathrm{~cm} /$ second Timebase: 0.05 to $50 \mathrm{sec} / \mathrm{cm}$ in 9 Ranges
26001 with 3 MLP EL,661) £1,400 and 26202 Power Unit instead of Timebase
(MLP £2.443) £1,250

FLUKE

887AB AC/DC Differential Voltmeter (MLP £3,044) £1,750
8921A DVM Wideband, autoranging True RMS Readout in volts or dB. Bandwidth 10Hz-20Mhz
(MLP E1,326) $\mathbf{C 6 9 5}$ 893A AC/DC Differential Voltmeter $\mathbf{~} 750$
931 B Differential Voltmeter. $\quad \mathbf{~ 1 , 0 0 0}$ TRUE RMS

KARD

427A Analogue AC/DC/Ohm Meter
(MLP E810) £495
467A Power Amplifer DC-1MHz
7040A X-Y Recorder 1V/Inch
HEWLETT PACKARD
MICROWAVE ACCESSORIES
P382A Attenuator $12.4-18.0 \mathrm{GHz}$
P382A Attenuator $12.4-18.0 \mathrm{GHz}$
X382A Attenuator $8.2-12.4 \mathrm{GHz}$
(MLP E1,100) $£ 425$
1752C Directional Coupler
$5.85-8.2 \mathrm{GHz}$
c600
J910A Termination 5.3-8.2GHz
£175
116920 Dual-Directional Coupler 2-18GHz (MLP £2,025) £1,500 11720 A Pulse Modulator 2-18GHz (MLP £2.650) £1,950

MARCONI

CT596 (6460/1) Wattmeter
$10 \mathrm{MHz}-18 \mathrm{GHz} .0 .3 \mu \mathrm{~W}-10 \mathrm{~mW}$.
Extended to 1 W with
$6534 / 4$ 20db attenuator $\mathrm{C1,500}$ TF1313A LCR Bridge 0.1\%
(MLP $£ 1,470) £ 775$
TF2333 MF Trans Test Set $\mathrm{CB50}$ 2438 Counter/Timer DC-520MHz
(MLP E908) C795

RACAL

Store 4DS FM Taperecorder $\mathbf{\text { E3,950 }}$ TEKTRONIX
1503 TDR Cable Tester
(MLP £4,931) £3,000
2701 Attenuator 50 n 7 gab in 1 db steps (MLP £590) £295

SAVE up to 50\%

Electronic Brokers are Europe's largest specialists in quality second user test equipment. Established 17 years ago, we have pioneered the second user concept in Britain, and many overseas territories. To support our growth we have a skilled team. This includes trained sales staff, whose role is not only to sell, but provide a helpful information service to our many customers. Backing this team is our own service laboratory where technicians monitor each item of equipment we sell. Our maxim is service, and those who have dealt with us will know that we endeavour to always live up to our reputation.

Electronic Brokers Guarantee
Unless otherwise stated, all test equipment sold by us carries a 12 month warranty. When you buy from Electronic Brokers you know the equipment is in 'top notch' condition. It is refurbished in our own service laboratories and checked to meet the original manufacturer's sales specifications. And it's serviced by our own highly qualified technicians

All prices exclusive of VAT. Carriage and packing charges extra on all items unless otherwise stated

A copy of our trading conditions is available on request.

The Northern Amateur Radio Societies Association

will be holding their

23RD ANNUAL RADIO \& ELECTRONICS EXHIBITION AND MOBILE RALLY

in The Central Hall Belle Vue, Redgate Lane, Longsight, Manchester on Sunday 10th March 1985 commencing at $11.00 \mathrm{a} . \mathrm{m}$.

Admission will be $£ 1.00$ to the exhibition. OAP's and Children 50p
-
Car Park facilities (80 p) will be available as will be restaurant \& bar.

Contests and a raffle will take place.
There will be a play area for children.
Talk in will be on S22, SU8, or any other clear frequency.

LOOK AHEAD!

WITH MONOLITH MAGNETIC TAPE HEADS

 VIDEO HEAD REPLACEMENT KITdoes your vir give washed out noisy pictures - IT's PROBABLY IN NEED OF A NEW HEAD - FAST FROM OUR EX-STOCK DELIVERIES.
SAVE fffs On REPAIR CHARGES
OUR UNIVERSAL REPLACEMENT VIDEO HEADS FIT ALL MODELS OF VHS OR BETAMAX VCRs. FOLLOWING OUR REPLACEMENT GUIDE AND WITH A PRACTICAL ABILITY, YOU CAN DO THE WHOLE JOB IN YOUR OWN HOME WITH OUR HEAD REPLACEMENTKIT.

r.IT CONTAINS - NEW VIDEO HEAD, 5 CLEANING TOOLS, HEAD CLEANING FLUID, CAN OF AIR BLAST, INSPECTION MIRROR, ANTISTATIC CLOTH, VHS/BETAMAX MAIŃTENANCE MANUAL, CROSS HEAD SCREWDRIVER, HANDLING GLOVES, MOTOR SPEED DISC, SERVICE LABEL, HEAD REPLACEMENT GUIDE.
VHS KITS $£ 63.25$, BETAMAX KIT $£ 75.25$. Prices include P\&P and VAT HOW TO ORDER: PLEASE STATE CLEARLY THE MAKE AND MODEL OF YOUR RECORDER. THERE ARE TWO VERSIONS OF THE VHS HEAD AND YOUR ORDER CAN BE PROCESSED FASTER IF YOU CHECK THE SIZE OF THE CENTRE HOLE OF THE HEAD WHICH WILL EE EITHER 5 mm OR 15 mm DIAMETER
CATALOGUE: For our full Catalogue of Replacement Video and Audio Cassette/Reel to Reel Heads, Motors, Mechanisms, etc. Please forward 50p P\&P.
THE MONOLITH ELECTRONICS CO. LTD.
5-7 Church Street, Crewkerne, Somerset TA18 7HR, England Telephone: Crewkerne (0460) 74321 Telex: 46306 MONLTH G

CIRCLE 81 FOR FURTHER DETAILS.

MITSUBISHI

MGF-1400
MGF-1402
MGF-1412

GaAs FETs

FROM STOCK

Aspen Electronics Limited

UK representative for Mitsubishi Electric
2/3 Kildare Close, Eastcote, Ruislip Middlesex HA4 9UR
Tel: 01-868 1188 Tlx: 8812727

280A MICRO-GONTROLLERS

Designed to meet the power and flexibility of today's stand - alone micro-confrolsers, the GNC CLBB makes full use of the powerfiul Z80 family IC's. Micro-controllers are availabie with up to 64 K RAM, 8K EPROM, RS232 etc. Mainuals include circuit diagrams and assembly language listings. No ULA's, PAL's or other funnies. Write, phone or circle to flid out more about our powertul range of Z80A micro-controllers and multi - tasking software.
PBICES
PBICES
CIJB (built \& tested)
£103.44
£103. 44
£2
Manual (tree with CUB/board) $\quad \$ 3.50$
Please add $£ 1.00$ for $P \& P$ plus V A. T.

GNC ELECTRONICS
Little Lodge, Hopton Road Thelnetham, Diss, Norfolk. IP22 1.JN Tel; Diss (0379) 898313

Add 8 channals to your oscilloscope New Thurlby OM358multiplexer $£ 169 \cdot$ vat

The new Thurlby OM358 enables any oscilloscope to display 8 channels of information simultaneously.

The OM358 is ideally suited to analysing digital waveforms (in many cases it can be used to solve problems that would otherwise need a high speed logic analyser) but, unlike dedicated logic test equipment, it is equally suited to the display of analogue waveforms.

The ability to simultaneously observe 8 waveforms is an invaluable aid in analysing the complex relationships that exist between signals in today's increasingly sophisticated equipment. Typical application areas include microprocessor based products, data transmission systems, analogue to digital converters, phase locked loops, frequency dividers etc.

The OM358 is a professionally specified instrument with a 3% calibration accuracy and a bandwidth of 35 MHz . Each input has an impedance of $1 \mathrm{M} \Omega$-20p \dagger and accepts signals up to $\pm 6 \mathrm{~V}$. A mode switch allows an 8 channel, 4 channel or single channel display, and triggering can be selected from any input.
OM358 multiplexer complete with two off BNC cables for connection to oscilloscope $£ 197.80$ (incl P + P and V.A.T.)
designed and built in Britain

Full colour data sheet available from
Thurlby Electronics Ltd, New Road, St. Ives, Huntingdon, Cambs. PE17 4BG Tel: (0480) 63570.

CIRCLE 62 FOR FURTHER DETAILS.

The world's most advanced low-cost bench multimeter! Thurlby 1905a £325+VAT

A complete high performance bench DMM

- $51 / 2$ digits; 0.015% acc; $1 \mu \mathrm{~V}, 1 \mathrm{~m} \Omega$, 1 nA .

Wull ac and current functions as standard
A sophisticated computing and logging DMM

- Linear scaling with offset; null/relative
- Percentage deviation; running average
- dBV, dBm general logarithmic calculations
- Limits comparison; min and max storage
- 100 reading timed data logging
- RS232 and IEEE-488 interface options

Thurlby Electronics Ltd
New Road, St. Ives, Cambs, PE17 4BG
$\|$ Thurlby
Tel: (0480) 63570
designed and built in Britain
CIRCLE 63 FOR FURTHER DETAILS

(O) Hitachi Oscilloscopes

the highest quality

Hitachi Oscilloscopes provide the quality and performance that you'd expect from such a famous name, with a newly-exended range that represents the best value for money available anywhere.
V. $212 \quad 20 \mathrm{MHz}$ Dual Trace \quad V. $209 \quad 20 \mathrm{MHz}$ Mini-Portable (illustrated) V-509 50 MHz Mini-Portable V-222 20 MHz Dual Trace \quad V-1050F 100 MHz Quad Trace V-203F $20 \mathrm{MHz}_{z}$ Sweep Delay \quad V- $1100 \quad 100 \mathrm{MHz}$ DMM/counter V.353F 35 MHz Sweep Delay \quad V-134 10 MHz Tube Storage V-422 40 MHz Dual Trace VC-6015 10 MHz Digital Storage V-650F 60 MHz Dual Timebase VC-6041 40 MHz Digital Storage
Prices start at $£ 299$ plus vat (model illustrated) including a 2 vear warranty. We hold the complete range in stock for immediate delivery
For colour brochure giving specifications and prices ring (0480) 63570 Thurlby-Reltech, 46 High Street. Solihull, W. Midlands, B91.37B

British invention, innovation and electronics

This series is designed to show that Britain with her unique technological strengths built up over the years - is as capable as ever of making contributions in these fields at the global level; and is doing so.

Some thirty years ago, Great Britain seemed poised to leap ahead in a technological world centred on electronics and electronicallybased systems and techniques. Much of the lead that this country possessed came out of the developments of World War II, notably from radar ${ }^{1}$ and - equally important - from parallel peacetime work on UK high-definition television ${ }^{2}$.

A comparable position had also been reached with British computers by this time; and this is examined in more detail in later articles. Suffice to say at this stage that the world's first stored-program digital computer (program and data held in the same store) - first operated successfully in Manchester University in June, 1948.

This series is intended to show that Britain - with her unique technological strengths built up over the years - is as capable as ever of making contributions in these fields at this global level; and is, in fact, doing so.

This is, of course, in direct conflict with the adverse criticism which has been voiced in recent years, especially with regard to Britain's alleged failure to keep up with modern technological developments, not only in the high technology of electronics, but also in their application to the older, traditional industries. The key word here is developments - most critics agree that the British are still a nation of inventors, but that their record for bringing their new ideas to fruition is increasingly open to question.

Exceptions to this reading of
the situation will immediately spring to mind, one of the most outstanding being British compu-ter-based process and similar control. Other major examples are to be found in aerospace and over the full range of medical electronics.
Nevertheless, it has to be accepted that since the late 1950s, a significant number of projects, potentially of world standing, have not reached their target. In extreme cases they have been abandoned; in others the project time scale has become so extended and the overall cost so high that the further development, which it would have been uneconomic to have carried out, has been completely blocked.

The unsuccessful project is not by any means confined to the British.

However, although the declared aim of this series is to give a considered account of the positive contribution that the UK can make to technology, it is just a vital to safeguard these contributions by indicating where "It can go wrong" as, for example, when the impression is given, falsely, of drive and impetus having been lost.

Education - the concealed but crucial factor

Thus part of this first article will consist of a short review of the changes that have taken place in education in Britain over the period in question, and which have affected engineering policy, 'engineering' being taken in its widest sense.
With the amount of public comment and debate which has been
devoted to higher education in Britain it has been possible to see how attitudes to technology have been reflected in the educational field. Perhaps the most significant instance of this is that the Robbins Report, with its farreaching recommendations, was first published in 1963, i.e. at the beginning of the period.
The Robbins Report, basically concerned with the provision of graduate education in the UK, called for an unprecedented increase in the places available in universities and polytechnics. This expansion was to be achieved by literally increasing the numbers of both; the former objective being attained largely by bringing the old Colleges of Advanced Technology to University status, and the latter involved the setting-up of 30 new polytechnics.
The Robbins Report and its implications have continued to receive attention in a number of connections; particularly with regard to the demand which developed following the Report to reduce specialization in degree courses. As recently as May 8th, 1984 two letters in The Times clearly advocated a change away from "our over-specialized and over-academic upper secondary and higher education."
Possible consequences, such as 'dilution' and inadequate course duration (two years proposed for the initial undergraduate course) are clear; but in general academics in the UK seem to have agreed that there were advantages in pursuing the proposals, and that the implied "mass attack" principle was acceptable.

Distribution of UK National Inventive Capacity
 Electronics and electronically-based systems engineering

	Individual inventor	Independent small team	large industrial company	University department	Government establishment
Initial personnel	Typically inventor joined later by one or more associates, often no formal arrangement	often 'known' already; otherwise recruited on a highly selective basis.	Usually available within the company. may be recruited from outside if entirely new type of project	Probably 'mix' of staff (at appropriate levels) and selected Postgraduate students	From this and other Government Establishments; secondment often determined during initial planning.
'start-up' development resources	'Domestic' facilities e.g. in garage	Often combination of laboratory and modelshop facilities	Area and equipment made available in existing buildings	Separtated areas and equipment, some shared with other departments	Probably wide-ranging facilities already available
Project commencement	Depends on establishing contacts; some form of demonstration essential	Backing, organisation assumed; forward planning for at least a year aimed at obtaining contracts	Coordinate where possible with other activities of company for economic use of resources	Determine with sponsors (assumed) ratio of academic involvement allowed relative to their work	Project control organization brought into action for coordination and liaison
Project support assurance	Demands firm interest by outside organisation including local industry	Consolidation and extension of range of contracts	Subject to usual commercial hazards, guaranteed by form of contract	Virtual guarantee exists in academic base	For maximum effectiveness, especially with staff, future should be secure

Fig. 1 Distribution of UK national inventive capacity

More recently they have been able to cite Japan as well as the United States and France as providing this kind of two-year course.

In contrast, the outcome of the Robbins Report has been somewhat different for UK engineering and invention. The two major issues which have arisen lie in two areas.
'H.N.C.' In the past Higher National Certificate, with its specialist endorsements, had provided a route to Chartered Engineer status through a combination of part-time study and 'real job' working. This represented an element in the technical education which has been described as being the envy of the world.

In fact the H.N.C. - superficially 'down' in academic content - has been seen to provide a unique form of broad technical education which has served the country well in the past. Surprising though it may seem, this has applied with special force to engineering research and development, where much of the actual innovative contribution to the 'small team' approach came from H.N.C. members, particularly where systems engineering was concerned. Also the H.N.C. approach provides a reference base for broad technical (engi-
neering) education. There are, of course, other ways of achieving such education. One proposal already tried out quite comprehensively - is to introduce advanced graduate-apprenticeshiptype schemes as a main part of career structures, enabling innovative ability to be recognized and built up under real-life conditions.
Early education and technological thinking.
Similar but less noticeable changes have appeared over this period in conventional education in the UK where the trend has been to reduce the attention given to basic subjects ('the 3 Rs ' in English parlance). That the effect of these changes should enter into later life - particularly where engineering is concerned - may seem unlikely. Nevertheless, analysis shows that what can be regarded as a change in policy has had repercussions extending over the whole range of technological thinking.
As will be shown in this and subsequent atticles, these basic subjects become, if anything, increasingly vital with progress up the career ladder, and with the corresponding demands placed on technical grasp. Thus, representative examples of this spread can be quoted in terms of the abil-
ity to write clear unambiguous English. In the ultimate, this ability can make all the difference between a patent application being accepted or being rejected, or between success and failure in bringing an invention (or any new equipment for that matter) into production, where the hand-over between development and the manufacturing side must be complete. This aspect is examined in more detail later, especially with regard to maintaining continuity of design during this critical, and often lengthy, transfer.
The need for precise English almost certainly becomes most apparent in the preparation of software. This need remains, in fact, until any computer-based scheme is completed; and as seen in the production of the 'system facilities statement' and in the design and development into which it leads and which is consequent upon it ${ }^{3}$.

It is, however, in the process of 'setting to work' that one fully realises how necessary it is to go back to first principles whenever an obscure (effectively intangible) problem arises; and how clear it becomes that these principles and the way of thinking that goes with them have been absorbed during early education.

Examples which can be quoted
in this general connection include the radar installation which appears to be working, and yet is actually 'blind', and the large control complex where a fault on a critical piece of instrumentation is literally hidden by its failure to provide information ${ }^{4}$ - and can lead to a complete system breakdown

Workers in this and comparable fields will be well aware that in these cases the solution is usually simple in the extreme; but they will be equally aware that the process of reaching that solution is not only long and involved, but is almost invariably underestimated. In summarizing, it has to be stated that one cannot put staff of too high a calibre on clearing troubles at this level and the parallel with systems R and D is almost total; while 'sub-inventions', for instance, will be generated as spin-off from the primary investigations.

The inventor, the team and 'high technology'

$\overline{\text { While still at school, the writer }}$ was privileged to see the inventor's model of a mechanical system for removing impurities from brick clay; and made before electronics had taken over. The equivalent of a low-speed centrifuge was represented by concentric circles drawn on paper covering a table top. From there on, however, the model was a scale replica of the final scheme. With much of the operating mechanism made from black strip iron, including the 'signal-box' type controls, the final assembly was a tribute to the friend who had built it from the inventor's design. The large brick-making company for which they both worked provided the greater part of the favourable circumstances and environment which are so necessary for the inventor to have; and which are set out in the 'individual inventor' column of the distribution table.

In this instance, the company providing a connected employment base and potential interest -- had pioneered new techniques in the industry, notably in electrification; and formed part of that type of diversified engineering area which seems to favour British invention and original thinking generally.

In the present instance, the area was that of Peterborough where Sir Henry Royce was an apprentice in "the (then) Great Northern Railway Works" ${ }^{5}$. Here he gained an insight into classical engineering and the "painstaking
workmanship" it requires, and in the climate mentioned above. It is felt to be more than apposite to quote the example of Sir Henry Royce in the present context. His technological flexibility in moving from mechanical, through electrical, to automobile and earonautical engineering, combined with his technical insight, match up to all the demands of 'high technology'.
'The career and technological achievements of Sir Henry Royce are well documented. Outstandingly he was 'there' when high technology, defined as advanced engineering permeated by electronics, took its shape in Great Britain. The developments of this time are seen, for example, in World War II, when radar became an integral part of aircraft operation.
In this and in a wider connection. the use of 'high technology'; as with R and D , is inescapable; but unfortunate in that both these terms fail to convey anything like the breadth of the fields they cover. Also, and particularly in the UK, high technology is all but synonymous with the silicon chip, and, with this, as only having appeared some two years ago; and there is no doubt that this view has added indirectly but significantly to forming the criticism of British ability to bring ideas to fruition.

To give perspective, it is possible to quote an article ${ }^{6}$ published in the first, October 1962, issue of Industrial Electronics on 'Microminiaturization in Electronics' which could almost be a 1984 description of the chip and its manufacture - "to produce active and passive components in a silicon block" (the word 'chip' came later)".
In the light of the opening to this series this original publication is of special significance, not least that it marks the firm establishment of 'big-system' control in the UK: the cover picture shows the assembly on site of a mainframe computer used for process and similar control. There is no need to stress the date - but in view of the criticism of the post- 1970 period, it is worth recording that British computer based control systems continue to hold their place internationally.

As a more general and broad picture, it may be pointed out that Britain had built up a major presence in this technology at the beginning of this decade, A UK newspaper report (September

15,1980) can be quoted with regard to the basic manufacture of "semi-conductor processing equipment" in the Bristol area, when it was said that "Much of their products are exported to the main chip-making centres in Japan and the US".

'Cluster’ areas

This somewhat cryptic heading covers areas exemplfied by Bristol and Peterborough, where a number of diversified, adaptable, industries are grouped together to produce a powerful cluster with wide-ranging technological facilities and experience; and providing that climate so necessary for the inventor and for innovation generally.

Such areas can be seen to have existed, e.g. in the Midlands and in the North of England, for many years; and, within the experience of many, can be identified even in the smaller centres of population in the country. All have the key feature of adaptability and the ability to move into new technology which can almost be called a national characteristic.
Instances of this have already, in effect, been given, as for example, with the computer work in Manchester with its heritage of the original innovative cotton (and other) industries of the Industrial Revolution.

A justifiable digression here is that when the new electronic and instrument industries moved into the erstwhile cotton mills of the North West, they found ample evidence of the existance of flowline and other modern production techniques in the buildings they

Fig. 2 Frequency output transducer - Electromechanical assembly mounted in standard 2 in (5 cm) case

References

1. CROWTHER, J.G. and

WHIDDINGTON, R.: Science at War, His Majesty's Stationery Office, London 1947
2. YOUNG, R.E.: Radar and Television - Interchange and Spin-Off, Wireless World, to be published.
3. YOUNG, R.E.: Control in Hazardous Environments, Peter Peregrinus,
Stevenage 1982
4. YOUNG, R.E.: Crisis Control,

Wireless World, June and July 1982
5. NOCKOLDS, H.: The Magic of a

Name, G.T. Foulis \& Co. Ltd., London 1949
6. JEFFRIES, P.: Microminiaturization in Electronics, Industrial Electronics, Vol. 1 no. 1 October 1962
had taken over.
Reverting to the pure electronics semiconductor, processing equipment made in Bristol, it is not invidious in the present context to point out that the work carried out in this area on the Anglo-French Concorde airliner is representative of the capabilities of this cluster.
The joint achievement of the two national teams in evolving this unique successfulsupersonic aircraft will be used in a later article to bring out the complexity of such systems engineering. Contrary to virtually all stated opinion, it will be submitted that this project was kept under remarkable R and D management control, with false trail and other sources of development crisis peaks contained.
One of the main elements in the back-up potential of these areas is obviously suitable skilled labour; and it has to be admitted that increasing numbers of announcements of shortages of such labour in the UK represent a threat to any future expansion. However, it is possible to give a specific example showing that these skills are still not far below the surface. The frequency-output transducer in the photograph was built earlier this year by an ex-Polytechnic student working, in this instance, under conditions corresponding with those of the graduate-apprentice type of scheme mentioned earlier. The craftmanship who have contributed much more than is usually realised to British engineering; and who have constituted one of the country's hidden strengths.

Inventive observation and analysis

To complete this extremely brief survey of British inventive capability, two widely separated case histories will be given which show how native talent for inventive observation and analysis can be fostered and brought into coordinated R and D .
The first example is taken from the aerospace/electronics world with a piece of test equipment centred on a calibrated measurement display. As originally envisaged, the calibration facility was to be provided as an electronic graticule with its spaced horizontal lines representing specified measurement ordinates. At the first planning meeting, following closely on initial briefing, the suggestion was made that the graticule should be replaced by a single calibration line which could be selected from a stepped set of
chosen frequencies or be made continuously variable. This suggestion - although it demanded no basic changes to the original concept - went far to transforming the whole project, not least with regard to the facility it gave for clear 'At-a-glance' reading ${ }^{3}$. A consequent advantage was that the speed of development was increased markedly with the more definite - simplified design criteria which came out of the change, and which applied to most of the sub-system modules.
That it proved possible to improve project flow in this and other ways owed much to the coordinated team attitude, with its full interchange, adopted almost automatically by the six engineers concerned. It may be noted that their technical qualifications were H.N.C. or the equivalent; and that their experience of manufacturing methods and techniques contributed in great measure to the process of finalizing the product as development proceeded.
In comparison with the first example, the case history for the second may appear mundane at first sight in that it can be summed up as being the clearance of a fault, actually put on in manufacture. The steps leading up to its clearance, however, cannot be dismissed in this manner, following as they did the long and involved pattern described earlier; and where suspicion of trouble is more a matter of intuitive awareness than of 'solid' detection.
In this instance, slightly high standing-wave ratios on the open wire feeders of a multi-element radar aerial array were eventually traced to incorrect connection in phase - of one pair of dipoles out of a total of sixteen, arranged in four stacks of four. With horizontal polarization, it will be appreciated that it was extremely difficult to pick up the mis-connection on the individual vertical stack feeder by visual inspection, with fifteen out of sixteen being correct.
In the event, and bearing in mind all the possible explanations of high standing-wave ratio, especially when small, it was clearly necessary to bring in some independent check method ${ }^{3}$, which could be relied on to eliminate or preferably confirm one of the unknowns. That the latter was made possible by an ingenious adaptation of the radar set itself to display the aerial radiation polar diagram on the (plan
position indicator), with the bearing known and the amplitude of the radial time base made proportional to radiated signal. Bringing in this method showed that 'kinks' did indeed exist in the polar diagram; and the clearance of that fault became a matter of visual checking of the array.

This example is of interest in its own right; but is quoted with this amount of detail to show how the experience and know-how built up during World War II is still relevant in today's thinking.

First of all, this testing method, with all the neatness of a good invention, had been evolved in a small station in the national radar network. That the circumstances existed for this to take place, and for the information to be made available throughout the network, was a tribute to the flexible management attitude adopted both at immediate and at upper levels of authority. This formed part of a unified national effort concentrated on radar, typically British, with much of the coordination and organization developing almost automatically. It would appear that the bringing together of technological effort on this scale has not really been seen in the UK since that time; but there are grounds for suggesting that - as with the instrument making quoted earlier the potential is even now not far below the surface.

The other main aspect is that the basic methods of gathering evidence and data generally, which were developed at that time, do not have to be rediscovered, and are being, and will continue to be, applied in the future. For instance, the gathering and sifting of technological anecdotal evidence developed in analysing obscure radar faults, have been applied to Human Communications. This forms the subject of a later article in this series, and has been generously described as a new discipline by accepted authorities.

Further articles in this series are as follows:

- Radar and television-interchange and spin-off
- Aerospace
- R and D management and economics
- 'Big-system' automation and telemetry
- Vehicle instrumentation
- Human communications
- The future

Keithleys 175.

Anew benchmork for portable DTMLS.
 MIn/Max Readling Hold stores both highest and lowest

The Kelthley 175 Autorangling DMM - sets new standards in bench/portable technolosy.
It out-performs every other unit in its class and has all the features you'd expect of a full function multimeter $-4 \frac{1}{2}$ digits, $10 \mu \mathrm{~V}, 10 \mathrm{nA}, 10 \mathrm{~m} \Omega$, TRMS AC-as well as many more you wouldn't expect even on some meters costing twice as much. For instance .
Fast Autoranging on $D C$ volts, ohms, $A C$ voits and $d B$. Manual range selection too.
100-PoInt Data Logser stores readings at six different rates from three per second to one every hour.
Disital Callbration for increased reliability and ease of calibration. All calibration constants are stored digitally. readings - over lunch, overnight, over weekends. dB/Relative dB makes direct dB readings over a wide dynamic range and frequency spectrum.
Relative Reference used to null or zero the displayideal for monitoring small changes in input signal. Add IEEE bus and battery options and see for yourself how well the 175 comes up to the mark on your own bench - phone our hotline now for further information.
 3 LINES MEOPHAM GREEN, MEOPHAM, KENT DABOQY

INTEGRATED CIRCUITS

AAY 12 AC12 AC127 AC

DIODES

-000 응․

BY206	0.14
BY208-800	
BY210-800	0.33
BY23	

\section*{| | |
| :---: | :---: |
| | |
| 2 | |
| 들 | |
| |
 |
| | |
| d | |
 AN714

AN715
BA5}

TBA53 T8A5 TBA54 T8A5 TBA5500 TBA560C TBA5600 TBA500

NEW BRANDED CATHODE RAY TUBES

65.00	F31-10GM	65.00		
25.00	F31-10GR	85.00	M50.120GV	85.00
19.00	F31-10LC	65.00	M50-120LC	85.00
25.00	F31.90LD	85.00	M61-1201C	75.00
45.00	F31-12LC	65.00	M61.120W	75.00
39.00	F31-12LD	85.00	S6AB	45.00
39.00	F31-13GR	85.00	SE4/0/P7	45.00
39.00	F31.13LD	65.00	SE42bP31al	55.00
39.00	F31.13LG	85.00	SE42BP31	55.00
39.00	F41.123LC	160.00	SE52AP31AL	55.00
45.00	F41-1411G	160.00	SE5FP31	55.00
45.00	F41-142LC	185.00	T937	65.00
45.00	M7-120W	19.00	T948N	65.00
45.00	M14.100GM	45.00	T948H	65.00
45.00	M14-100KA	55.00	V3191	59.00
45.00	M14-100LC	45.00	V4150LC	55.00
45.00	M17-151GVR	175.00	$\checkmark 42548$	65.00
45.00	M17-151GR	175.00	V4274GH	85.00
25.00	Mi9-100GY	55.00	V4283W	65.00
89.00	M19-100W	45.00	V5002LD	65.00
35.00	M19.101GR	55.00	V5004GR	59.00
19.00	M19 ${ }^{\text {103W }}$	55.00	V5004LD	59.00
15.00	M23-10GH	55.00	V6001GH	65.00
19.00	M23-111W	55.00	V6006GH	85.00
15.00	M23-111GH	55.00	V6007DP31	59.00
85.00	M23-111LD	55.00	V6007GW	65.00
85.00	M23-112GM	55.00	$\checkmark 6008 \mathrm{GW}$	59.00
55.00	M23-112GV	55.00	V6008W	65.00
39.50	M23-112GW	55.00	V6034WA	59.00
45.00	M23.112KA	55.00	V6048CLA	59.00
45.00	M23-12LD	55.00	V6048F	65.00
65.00	M23-112W	55.00	$\checkmark 6048 \mathrm{~J}$	49.00
65.00	M24-120GM	59.00	V6052GH	65.00
35.00	M24.120GR	59.00 59.00	V6052GR	85.00
35.00	M24.120LC	59.00	V6064BLA	65.00
55.00	M24-120WAR	59.00	$\checkmark 60648 \mathrm{P} 31$	55.00
49.50	M 24.121 GH	55.00	V6064CLA	55.00
49.00	M24.121LC	59.00	V6069GH	55.00
55.00	M24-121 Wa	59.00	V6070P31	49.00
55.00	M 28 -12GH	55.00	V7016A	85.00
85.00	M28-12LC	55.00	$\checkmark 7030$	59.00
85.00	M28-13LC	49.00	V 7031 GH	59.00
55.00	M28-13LG	49.00	V7031/67A	59.00
55.00	M28-13GR	49.00	V7035A	49.00
${ }^{65.00}$	M28-131GR	55.00	V7037GH	45.00
59.00	M 28.132 GM	55.00	V8004GR	65.00
59.00	M28-133GH	55.00	V8006GH	65.00
59.00	M 31.100 GH	55.00 55.00	V8010A	65.00
59.00 59.00	M31-101GH	55.00 5500	28 P 1	9.00
59.00	M 31.182 GV	53.00	4EPI	30.00
65.00	M 31.183 W	55.00	$3 W P 1$	18.50
75.00	M31-184W	65.00 65.00	3 HYOBM	55.00
75.00	M31-184GH	65.00 65.00	${ }^{58 P 1}$	9.00
59.00	M31-184P31 M31-185GH/VR			30.00
55.00	M31-185GH/VR	69.00 69.00	${ }_{58 \mathrm{HHP} 1 \mathrm{FF}}$	30.00
55.00	M $31-190 \mathrm{GH}$	55.00	58P931	30.00 10.00
53.00	M31-190GR	55.00	6EP7/S	39.00
55.00	M31-190LA	55.00	13891	13.50
65.00	M31-190W	59.00	138 P 4	17.50
65.00	M31-191GH	59.00	$17 \mathrm{DWP4}$	25.00
55.00	M31-191GR $\mathrm{M} 31-191 \mathrm{GV}$		$32 \mathrm{~J} / 1085$	69.00
53.00	M31-191GV	55.00 59.00	88D/898/89D/89L	15.00
59.00	M31-1916	59.00	1273	39.00
59.00	M31-192W	59.00	1564	39.00
65.00	M31-195GH	59.00	1844	45.00
89.00	M31. 210 GH	59.00	9442 E 1	B0.00
85.00	M31.220W	59.00	95447GM	75.00
75.00	M31-270GY	65.00 65.00	95449GM	75.00
75.00 7500	M31.271GW	65.00	7709631	78.50
110.00	M31.271W	65.00		
85.00	M36-12W	75.00	TAPE HEA	
85.00	M36 141LA	75.00	MONO HEAD	1.50
45.00	M36-141LG	75.00	AUTO REVERSE	3.50
45.00	M36.14IW	75.00	STEREO HEAD	2.95

8F597	0.25	LNE OUTPUT TRANSFORMERS	
IN23WEIN4001	$\begin{aligned} & 5.00 \\ & 0.04 \end{aligned}$		
		DECCCA 100	7.95
in4004	O.04		9.95
in4005	0.05		8.95
in4007	0.06	$\text { DECCA } 2230$	8.25
IN4148	0.02	GEC 2040 GRUNDIG 1500	8.95 15.45
IN4448	0.10		
[N5401	0.12		
in5402	0.14	$17 \mathrm{CVC20}$	8.208.25
in5403	0.12	$1 T \mathrm{CVC3O}$ PHILIPS G8	
1N5406	0.13		8.508.99
iN5407	0.18	PHILIPS G11 PYE 725	
\| N 5408	0.16		13.39
$17 T 44$	0.04	PYE 725	10.9512.40
${ }_{1 T 2002}$	0.15		
	0.10	TANDBERGE 90°	11.15
		TELEFUNK	11.159.50
ZENER DIODES		THORN 1590 THORN 8000	
		THORN 9000THORN 9800	$\begin{array}{r}9.95 \\ \hline 22\end{array}$
8 ZX 61 Ser	es 0.15		
BZY88 Ser	0.10	THORN MAIN TRAN	

RS	EHT MULTIPLIERS	
7.95	ITT CVC20	6.35
9.95	ITT CVC30	6.35
8.95	PHILIPS G8550	6.96
8.25	RANK T20A	6.91
8.95	THORN 3000/3500	7.57
5.45	THORN 8500	5.80
3.45	THORN 9000	8.00
8.20	UNIVERSAL TRIPLER	5.45
$\begin{aligned} & 8.50 \\ & 8.99 \\ & 13.39 \end{aligned}$	REPLACEMENT ELECTROLYTIC CAPACITORS	
	DECCA $30(400-400 / 350 \mathrm{~V})$	2.85
11.15	DECCA $80 / 100$ ($400 / 350 \mathrm{~V}$)	2.99
, 5	DECCA 1700	
9.50	(200-200-400-350V)	3.55
. 20	GEC 2110 (600/300V)	2.25
5	1 IT CVC20 (200/400V)	1.80
40	PHILIPS G8 (600/300V)	2.25
	PHILIPS G9 (2200/63V)	1.19
. 70	PHILIPS G11 (470/250V)	2.35

PHONE
 P. M. COMPONENTS LTD SELECTRON HOUSE, WROTHAMROAD
 TELEX 966371 3 INES 3 LINES MEOPHAM GREEN, MEOPHAM, KENT DABOOY

A SELECTION FROM OUR STOCK OF BRANDED VALVES

EXPORT ORDERS WELCOME. CARRIAGE/POST AT COS

UK ORDERS P\&P 50p PLEASE ADD V.A.T. AT 15\%
n

CALLERS WELCOME
\star ENTRANCE ON A227
50 YDS SOUTH OF MEOPHAM GREEN CAR PARKING AVAILABLE

$$
\text { Open Mon-Thurs } 9 \mathrm{am}-5.30 \text { pm Fridays } 9 \mathrm{am}-5.00 \mathrm{pm}
$$

$\star 24$ HOUR ANSWERPHONE SERVICE
CESS AND BARCLAYCARD ORDERS WELCOME
THERMISTORS

HYTRAK 100D SHORTS LOCATOR

The HY-TRAK 100D is the most sophisticated short-circuit locator available. To locate a solder bridge on a printed circuit board (or any other electronic assembly) you merely have to select the range - super sensitive HY-TRAK bange for shorts between voltage planes - $200 \mathrm{M} \Omega$ range for power tracks etc., place the two probes across the shorted tracks and slide the probes along the track until you either obtain the highest pitch or the lowest meter reading.

STOP PRESS:
Now available a new ultra low. resistance HY-TRAK ($20 \mathrm{~m} \Omega-20 \Omega$)

CIRCLE 78FOR FURTHER DETAILS.

Floppy discs

David March concludes his survey of disc storage systems for microcomputers with a look at the subtleties of Tandy's TRS-DOS

The original TRS- 80 Model I supported up to four external 5 in disc drives daisy-chained together, each of single-density, single-sided type. Later the TRS80 Model III was developed with up to two built-in $5 \frac{1}{4}$ in drives operating in double-density, single-sided mode. Subsequently an upgrade for the Model I was issued which incorporated many of the features of the Model III operating system including double density.

Both operating systems, known as TRS-DOS, provide many facilities beyond straight forward file handling. Overlays are used extensively, making a resident system disc essential; but in single-drive systems, there is the drawback that space for user files is considerably reduced.

The TRS-80 Model II was a much more expensive business computer using 8in drives.

On start-up the Model I loads and executes a bootstrap program from track 0 , sector 0 . This track is always recorded in single-density and so allows the upgraded Model I to run either operating system. The bootstrap loads in further TRS-DOS programs which remain in memory and provide the core of the operating system.

Directory structure

The directory occupies the whole of track 17. This track was chosen because it is half-way across a 35 track disc and so minimises head movement when TRS-DOS accesses the directory. This is very important because even system files are accessed via the directory.

The allocation of a whole track to the directory seems at first sight extravagant but it does provide two significant advantages. The f.d.c. used in the Model I supports at least two distinct synchronizing patterns for data fields. By applying one pattern exclusively to the directory track a
major benefit ensues: the directory cannot be accessed by normal read/write commands and so is protected from inadvertent access or corruption. Each directory entry is quite generous, allowing comprehensive file security to be implemented.

Two sectors of the directory track contain ancillary information about the disc in general as well as an index to the actual directory entries.

The first sector holds three separate sets of information. First, a bit map indicating which granules are in use, known as the granule allocation table (Gat). Second, a map indicating any faulty tracks. Both tables use one byte per track and are sized to allow up to 96 tracks. Lastly, the remainder of the sector contains the disc name and password, creation date and an auto start-up command.
The second sector contains an index to the directory entries in the remaining sectors of the track. Known as the hash index table (Hit), this uses one byte per directory entry. The value of each byte is derived from the file name plus extension by a hashing algorithm whilst its position in the Hit defines the sector and slot within sector where the corresponding directory entry may be found.

The cost of these two sectors is justified by several benefits:
(a) any granule can be allocated to any file

- redundant space in a file is limited to less than one granule.
- files can be freely extended or reduced in size at any time.
- by allocating different files to separate areas of the disc, any extension will (probably) be achieved in physically adjacent sectors and so will keep access time short.
(b)the characteristics of a disc are recorded on the disc itself -
- thus TRS-DOS can handle mixed drives of 35,40 and

80 tracks in any combination.

- a disc with minor damage can be salvaged and the unusable tracks locked out.
- even the use of track 17 for the directory is not sacrosanct as the directory track number is held as a parameter in the bootstrap sector of track 0 .

	TRS-DOS directory details: Hit sector		
1	$0-127$	Hash index table	Whole sector used for 64 entries in single density TRS-DOS
2 $128-207$ - Not used Only in double density TRS-DOS	$208-255$ System file table		

Further reading

An introduction to microcomputers vol. 3: Some Real Support Devices, by Jerry Kane and Adam Obsorne, Osborne Associates Incorporated.

Computer Peripherals for minicomputers, microprocessors and personal computers, by Louis Hohenstein, McGraw-Hilf Book Company.

Data sheet on FD1771-01 floppy disc formatter-controller, Western Digital Corporation.

Data sheet on SAB179x floppy disc formatter-controller family, Siemens Aktiengesellschaft.

Data sheet on WD 1691 floppy support logic, Western Digital Corporation.

Data sheet on WD2143-01 four phase clock generator, Western Digital Corporation.

BBC disc system user guide, Acom Computers Ltd, Cambridge.

The CP/M handbook (with MP/M), by Rodnay Zaks, Sybex Corporation.

TRS-DOS \& Disk Basic Reference Manual, Tandy Corporation.

TRS-80 Model I double-density disk system owner's manual, Tandy Corporation.

Microsoft Basic decoded and other mysteries, JG Computer Services.

TRS-DOS 2.3 decoded and other mysteries, JG Computer Services.

Super Utility Plus user's manual, Breeze/QSD Incorporated.
(c) within the limits of the hashing algorithm, search time for a particular directory entry is minimised -

- unallocated file names will be detected by a single search of the Hit.
- allocated file entries will be accessed directly via the Hit.

System files
In single-density TRS-DOS, the system files (limited to 16) used the reserved file extension/SYS and occupy the first two slots in each of the remaining directory sectors. This limits the number of user files to 48 but enables the same access mechanism to be used for all files.

In double-density TRS-DOS, a separate system file table holds abbreviated file location information. This minimises access time since no searching is needed, protects system files from unauthorised access and allows up to 128 user files. Each system file entry occupies two bytes and stores file position and length.

In double density, fields 7-9 of each primary entry contain the creation date of the file. This is held in binary with the month in byte 1 and the year in byte 2 .

File protection

Fields 1, 14 and 15 provide a high measure of security for files but their use is entirely optional.

Security is invoked in the first instance by quoting a password (up to 8 characters) when a file is created. Subsequent access will be available only if the password is correctly appended to the file name.

The introduction of a second password allows separation of the updating and access security facilities. The update password allows complete freedom to load, run, modify, rename or even delete the file. Operations available via the access password are limited by the value of field 1 (access control). For example, consider a Basic program file having the following particulars -

File name
File Extension
$=$ TARDIS = BAS
Access control =EXECUTE Update password =PRIVATE Access password $=$ PUBLIC
The normal user will be privy to all particulars except the update password. The only valid reference by this user will be

RUN "TARDIS/BAS.PUBLIC"

Any attempt to access the file for reading, writing, loading or whatever is inhibited unless the update password is quoted. In the above example the access password could equally well have been blank, making the whole security mechanism invisible to the normal user. The user simply enters

RUN "TARDIS/BAS"

In double-density TRS-DOS, the system monitors the running of protected programs and wipes the memory clear on normal or abnormal end of the program.
Each granule assignment pair can take one of three meanings:
(a) first byte less than 254 (this byte is the track number and the next byte defines the position within the track and length of the segment);
(b)first byte $=254$ (this indicates that the second byte holds a pointer to an overflow entry);
(c) first byte $=255$ (this is a flag to indicate that the end of the file has been reached).
As a Gap holds only the starting position and length of a segment of a file, additional Gaps are needed whenever the storage ceases to be contiguous. Up to four separate segments can be addressed via the primary entry (the fifth Gap is needed to indicate the end of the file).
For any file which is segmented more, an overflow entry is created. In this case Gap5 is used to point to the overflow entry and subsequent file segments are addressed via the Gaps in the overflow entry. This can be carried on indefinitely, but each overflow entry reduces by one the maximum number of user files available.
Access to multi-segment files is slow because of repeated references to the directory. The only way to coalesce such a file is by copying it to a fresh disc since the physical position of storage areas on the disc is not available via TRS-DOS.

EVENTS

February 26

Electromagnetic aspects of optical devices; IEE
Colloquium. IEE, Savoy Place,
London WC2. Tel: 01-240 1871
Ext. 269.
February 26 to 28
H.f. communication systems
and techniques; IEE (and
others) Conference at Savoy
Place, as above.
March 4
Future communications
satellites; IEE lecture. Details as above.
March 6

Software reliability;

IEE Colloquium, Details as above.

March 6

Cellular mobile radio -
Splitting for growth? IEE Lecture.
Details as above.
March 7
Design = Quality; IEE/Design
Council Colloquium. Savoy Place. Details as above.
To measure is to know. IEE
Lecture. Details as above.
March 10
Components Fair
Pontefract Amateur Radio
Society
Carleton Community Centre,
Pontefract.
March 11
Vision Systems in robotic and industrial control; IEE
Colloquium. Details as above.
March 12
Radiological protection
aspects of microwave
radiation; IEE lecture. Details as above.
March 12 to 14
Scottish Computer Show
and Conference; Anderston
Exhibition Centre, Edinburgh.
Cahners Exhibitions, Tel: 01-891 5051
March 14
ICs above 1GHz; IEE
Colloquium. Details as above.
March 14
Engineering of the human
brain; IEE 76th Kelvin Lectuure
Details as above.
March 18 to 21
Telecommunication
transmission; IEE (and others) international conference at Savoy Place. Details as above.

March 20

Connectors 85
Symposium and Exhibition. Post House Hotel, Leicester. Details from Robert Allen. Tel: 0789 204116.

March 24 to 27
VIDTEL 85, Video and tv techniques exhibition. NEC Birmingham. Details from NEC. Tel: 021780 4141. Ext 710
March 26 to 28
Interconnection
Technology; Exhibition,
Olympia, London.

TNEW NEW NEW NEW NEW NEW NEW NEW

APPLICATION EXAMPLES

* REMOTE INTELLIGENT DISPLAY
* ROBOT CONTROLLER
* PASSWORD SECURITY APPLICATIONS
* SMALL SYSTEM PROCESS CONTROL
* LEARNING TOOL FOR ASSEMBLY LANGUAGE
* WATCHDOG MONITORING
* PRINTER INTERFACE

NEW NEW NEW NEW NEW NEW NEW NEW

Aufomation and Control TechnologY

FIBRE-OPTICS EDUCATOR

A New Concept in Optical Equipment

The Fibre-Optics Educator is a low-cost, versatile instrument designed primarily for organisations involved in or about to enter the field of fibre-optics. It can function as.
TEST EQUIPMENT e.g. for accurate fibre attenuation measurements to a range of 50 dB , optical level measurements, and for testing out analogue and digital optical transmitters and receivers. Also, it may be set to give an audible indication of low level infra-red radiation using the analogue loudspeaker output or the digital buzzer output, with a length of optical cable acting as a probe. TRANSMISSION EQUIPMENT for both analogue and digital data, over free-space as well as optical fibres. It is also ideal for:
TRAINING engineers, technicians and executives in the growing field of fibre-optics. Suitable for industry, colleges and technology training centres
The Fibre-Optics Educator comprises fully portable optical transmitter and receiver units, optical cables, together with numerous accessories, a comprehensive manual, and carrying case

Designed and Manufactured in the U.K
For further details contact:
ELLMAX Electronics LId
Unit 29, Leyton Business Centre,
Etloe Road, Leyton. London, E10 7BT
ELLMAX
ELECTRONICS
pocket portable (173 mm) and independent of any external energy source. PORTASOL is powered by ordinary cigarette fuel and one filling lasts for 60 minutes continuous use.

ORYX - market leaders in soldering irons and accessories introduce the revolutionary PORTASOL. This new approach to catalylic soldering iron technology is truly

01-208 1177 Technomatic Lid 01-208 1177

BBC Micro Computer System BBC Computer \& Econet Referral Centre BBC Computers:
Model B: £348 (a) B+DFS: $£ 400$ (a)
Model B+NFS: $£ 389$ (a) B+NFS+DFS $£ 450$ (a)
ACORN 10 Mbyte Hard Disc $£ 1300$ (a)
ACORN 2nd Processors: 6502: £175 (a) Z80: £352 (a)
TORCH UNICORN: Z80 Card: £275 (a) Z80 Disc Pack: $£ 650$ (a) UNICOMM Communications Package: £159 (b) 20 Mbyte Hard Disc+400K Floppy: £1950 (a)
We stock the full range of ACORN hardware and firmware and a very wide range of other peripherals and firmware for the BBC. For detailed specifications and pricing please send for our leaflet.

PRINTERS

EPSON: RX80FT £225 (a); FX80 £315 (a) FX100 £435 (a); RX100 £345 (a) RX80T £215 (a) KAGA TAXAN: KP810 £255 (a); KP910 £359 (a) BROTHER: HR15 £340 (a); JUKI 6100 £340 (a).

ACCESSORIES

EPSON Serial Interface: 8143 £28 (b); 8148 with 2 K buffer $£ 57$ (b)
EPSON Paper Roll Holder £17 (b); FX80 Tractor Attach £37 (b); RX/FX80 Dust Cover $£ 4.50$ (d) EPSON Ribbons: MX/RX/FX80 £5.00; MX/RX/FX100 £10 (d)
JUKI: Serial Interface £65 (c); Tractor Attach, $\mathbf{£ 9 9}$ (a); Sheet Feeder $£ 199$ (a); Ribbon $£ 2.50$ (a) BROTHER HR15: Sheet Feeder $£ 199$; Ribbons - Carbonor Nylon $£ 4.50$; Multistrike $£ 5.50$ (d): 2000 Sheets Fanfold with extra fine perf. $9.5 \mathrm{in} .-£ 13.50 ; 14.5 \mathrm{in}$. $£ 18.50$ (b).
88C Parallel Lead $£ 8$; Serial Lead $£ 7$ (d).

BT Approved Modems

MIRACLE WS2000
The ultimate world standard modem covering all common BELL and CCITT standards up to 1200 Baud. Allows communication with virtually any computer system in the workd, The optional AUTO DIAL and AUTO ANSWER boards enhance the considerable facilities afready provided on the modem. Mains powered. $£ 129$ (c) Auto Dial Board/Auto Answer Board $£ 30$ (d) each. Sotware lead $£ 4.50$
TELEMOD2:
Complies with CCITT V23 1200/75 Duplex and 1200/1200 half Duplex standards that allow communications with VIEWDATA services like PRESTEL, MOCRONET etc as well as user to user communications. Mains powered. $£ 62$ (b)
BUZZ BOX:
This pocket sized modem complies with V21 300/300 Baud and provides and ideal solution for communications between users, with main frame computers and bulletin boards at a very economic cost. Battery or mains operated. $\mathbb{£ 5}$ (c) Mains Adaptor $£ 8$ (d)
BBC to Modem data lead $£ 7$

SOFTY II

This low cost inteligent eprom programmer can program 2716, 2516, 2532, 2732, and with an adaptor, 2564 and 2764. Displays 512 byte page on TV - has a serial and parallel I/O routines. Can be used as an emulator, cassette interface. Softyll $£ 195.00$ (b) Adaptor for 2764 $2564 \ldots \quad £ 25.00$

ATTENTION

All prices in this double page advertisment are subject to change without notice. ALL PRICES EXCLUDE VAT
Please add carriage 50 p unless indicated as follows:
(a) $£ 8$ (b) $£ 2.50$ (c) $£ 1.50$ (d) $£ 1.00$ ACORN IEEE INTERFACE
A full implementation of the IEEE-488 standard, providing computer control of compatible scientific \& technicalequipment, at a lower price than other systems. Typical applications are in experimental work in academic and industrial laboratories. The interin academic and industrial laboratories. The interface can support a network of up to 4 other compati-
ble devices, and would typically link several items of test equipment allowing them to run with the optimum of efficiency. The IEEE Filing System ROM is mum of efficiency
supplied $£ 282$.

INDUSTRIAL PROGRAMMER

EP8000.

This CPU controlled Emulator Programmer is a powerful tool tor both Eprom programming and development work. EP8000 can emulate and program all eproms up to $8 \mathrm{~K} \times 8$ bytes, can be used as stand alone unit for editing and duplicating EPROMS, as a slave programmer or as an eprom emulator $£ 695$ (a)
CONNECTOR SYSTEMS

EDGE CONNECTORS

AMPHENOL CONNECTORS
36 way plug Centronics 36 way plug Centronics
(solder 500 p (IDC) 475 p 36 way skt Centronics (solder) 550 p (IDC) 500 p 24 way plug IEEE (solder) 475 p (IDC) 475 p . 24 way skt IEEE (solder) 500 p (IDC) 500 p 24 way 700 p 36 way 750 p

GENDER CHANGERS

Male to Male.
Male to Female
Female to Female

RS 232 JUMPERS

(25 way D)	
24 "Single end Male	£5.00
24"Single end Female	¢5. 25
$24^{\prime \prime \prime}$ Female Female	£10.00
$24^{\prime \prime}$ Male Male	¢9.50
24"Male Female	¢9.50

DIL SWITCHES $\begin{array}{lrll}\text { 4-way } & 90 p & 6 \text {-way } & 105 p \\ 8 \text {-way } & 120 p & 10 \text {-way } & 150 p\end{array}$

DISC DRIVES

These drives, fitted with high quality JAPANESE mechanisms are supplied in attractive steel cases painted in BBC colour. The drives are fully Shuggart A4000 compatible. All dual drives are supplied with integral power supply whilst singles are supplied with or without power supply All drives come complete with data \& power cables, manual and BBC formatting disc $1 \times 100 \mathrm{~K}$ (250 KDD unformatted) 1×400K (1MbDD unformatted) $2 \times 100 \mathrm{~K}$ (. 5 MbDD unformatted) 2×400 (2MbDD unformatted) CS100 TEC with psu CS200 TEC with psu CS400 MITS with psu

40TSS TS55A TEAC 80TDS TS55F TEAC

£100 (a)
§145 (a)
40TSS TD55A TEAC
80TDS TD55F Mitsubishi 40/80

£195 (a)
$1 \times 200 \mathrm{~K} 40 \mathrm{TDS}$
\&115 (a)

Authorised Dístributor
Data Recording Products

8

3M FLOPPY DISCS
Industry Standard floppy discs with a lifetime guarantee Discs in packs of 10
40 Track SS DD
E15 (c)
40 Track DS DD
£18(c)

80 Track SS DD \quad E22 (c) 80 Track DS DD $\mathbf{£ 2 4 (c)}$

DRIVE ACCESSORIES

FLOPPICLENE Disc Head Cleaning Kit with 28 disposable cleaning discs ensures continued optimum performance of the drives $£ 14.50$ (c)

Single Disc Cable $\mathbf{£ 6}$ (d)
10 Disc Library Case $\mathbf{£ 1 . 8 0}$ (d)
30/40 Disc Lockable Box £14 (c)

Dual Disc Cable $\mathbf{E 8 . 5 0}$ (d)
30 Disc Storage Box $£ 6$ (c)
100 Disc Lockable Box £19 (c)

MONITORS

MICROVITEC 14in. RGB

1431 Std Res $£ 165$ (a); 1431 Ap std Res PAL/Audio $£ 210$ (a); 1451 Med Res $£ 280$ (a); 1441 Hi Res $£ 399$ (a); 2031 20in. Std Res $£ 260$ (a); Plinth for 14 in. Monitors $£ 8.50$. Microvitec Monitors with TTL/Linear Inputs also available.

KAGA TAXAN 12in. RGB

Vision II Hi Res $£ 240$ (a); Vision III Super Hi Res $£ 340$ (a) Green Screens; KAGA 12G £99 (a); SANYO DM811 112CX £90 (a); Swivel Stand for Kaga Green $\mathbf{\Sigma 2 1}$ (c)
BBC Leads: KAGA RGB $£ 5$ Microvitec $£ 3.50$; Monochrome $£ 3.50$ (d) SANYO CD 3125 NB 14 in . RGB Std Res $£ 179$ (a)

Abstract

\section*{UV ERASERS
 UV1T Eraser with built-in timer and mains indicator.} Built-in safety interlock to avoid accidental exposure to the harmiul UV rays. It can handle up to 5 eproms at a time with an average erasing time of about 20 mins. $\mathbf{\Sigma 5 9}+\mathbf{\Sigma 2} \mathbf{p \& p}$. UV1 as above but without the timer. $£ 47+£ 2$ p\&p. For Industrial Users, we otier UV 140 \& UV 141 p\&a. sers with handling capacity of 14 eproms UV141 has sers will in timer Both ofter full buit in saty toat has a built in UV140 £61, UV141 £79 p\&p \&2.50 (

\section*{PRINTER BUFFER}

This printer sharer/buffer provides a simple way to upgrade a multiple computer system by providing greater utilisation of available resources. The butfer offers a storage of 64 K . Data from three computers can be loaded into the butier which will continue accepting data until it is full. The buffer will automatithat computer has dumped all its data. The computer then is available for other uses. LED bargraph indicates memory usage. Simple push button contro provides. REPEAT, PAUSE and RESET functions. Integral power supply. £245 (a). Cable set $£ 30$.

\qquad

Not only in height is the range of Clark Masts wide but also in the field of application. Every model, mechanical or air-operated, has been created in response to customer requirement and proved in service; for over 25 years. Major users in the Communications Industry, Broadcasting, Civil Authorities and Military Commands worldwide, have all contributed and benefited from Clark Masts

VIDEO NASTIES?

Pictures that wobble, won't lock or suffer from noise bars? - mp? - our pages won't latch, lace or light VCR servicing are full of guidance onopper, colour problems. TV too-choppevery sort. and linearity probinformation on technical developments.
March issue features...
ELECTRONIC SPEECH FOR TVS AND VCRS The theory of synthesised speech and a practical circuit that gives clear speech.

in view of the extremely rapid change taking PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

R.Henson Ltd.

21 Lodge Lane, N. Finchley, London, N. 12.5 mins from Tally Ho corner
Telephone 01445 2713/0749
CIRCLE 52 FOR FURTHER DETAILS

[^0]
Aesthetic subwoofer system

 Practical guidance with particular reference to

 Practical guidance with particular reference to filter design

 filter design}

With the latest improvements in recording techniques and with the potential use of compact discs in mind, I felt that it was time to extend the low frequency capability of my current speakers. Initial discussions with a higher authority indicated a certain lack of enthusiasm for adding 'useless clutter' to her living room, but agreement was ultimately reached that a coffee table could be added to the room at any convenient wall location. The usual constraints of low cost and small size completed the somewhat unorthodox specification for the design, and the notes which follow indicate one approach to providing such a product.

Much like impending motherhood, the functional status of a loudspeaker is reasonably selfevident at one glance, and, again like i.m., has always been so. So the first problem was to find some basis of operation where the actual loudspeaker could be hidden, and this is supplied by data given in ref.1. Copied directly from Figs 5 and 6 of ref.1, Fig. 1 shows that up to about 250 Hz there is little difference in performance between a front-facing or rear-facing speaker of reasonable dimensions. Above this frequency there is a 10 dB lift which makes the approach unacceptable for a full-range system. However, if the incoming signal is limited with a suitable low-pass filter, then a rear or floor-facing speaker becomes feasible for sub-woofer application, and the speaker, vent, control panel and wires can all be hidden from critical gaze.

Path-length effects

The central problem of subwoofer application lies in the fact that it almost certainly will not be at the same distance from the ear as the other two speakers. It may be placed adjacent to a different wall and path differences may
extend to one or more wavelengths of the filter crossover frequency, i.e. one or two metres Thus it became necessary to generate a model for examining the impact of gross path differences between two speakers on the phase of the signals involved, and from this to evaluate the variation of the overall amplitude of received signal.
This model is outlined in Appendix 1 which shows how the filtered performance of one speaker can be modified to include path difference effects, and then sum the resultant outputs. With the aid of some standard filter coefficients and a somewhat userphobic computer and using the model already mentioned, the curves for two filters are given for different normalized frequencies in Fig. 2. The results are interesting. Having ignored the direct effect of distance on received signal ($=1 / \mathrm{d}$) for clarity, the curves also indicate the effect of any phase change (lead inversion, loudspeaker inductive effects) as equivalent to path difference. Thus, $\mathrm{A}=0.5$ (path separation $0.5 \lambda_{0}$) is the same as phi $=180^{\circ}$ in the speaker coil at the crossover frequency. One could go on, but the main conclusions are clear: (a) for any filter, there will always be a null at crossover frequency at some path separation, and (b) the higher the order of filter, the narrower the frequency band of response perturbation due to path differences.
If, as a consequence, a highorder filter is selected then another problem is introduced -that of phase distortion. This is related to the passage of a nonsinusoidal signal, say a drum beat, through a signal-processing circuit where the phase of the harmonics has been changed in the reconstituted signal with respect to the original. With a steep filter system such phase changes will be severe. Fortu-
nately, while detectable in an anechoic chamber, these phase effects are very difficult to hear in a reverberant environment such as a normal living room - see page 593 of ref.2. Similarly, the problem of signal-null will also be minimized in such an environment due to the multiple reflections that will be generated. In any case I felt that by restricting the possible amplitude effects to a narrow frequency band it would be more difficult to detect any degradation to the total music or speech signal.

Filter implementation

Recall that application of a rearfacing speaker requires that the high frequency response of the woofer shall be well attenuated by 250 Hz . Conversely, with currently available small speaker systems, the low frequency rolloff occurs at about 100 Hz which ideally should not affect the overall system performance. Thus a high-order symmetrical filter centred at about 160 Hz will be required, which is fully in line with the discussion on unequal path length aspects. The selection of a fourth-order 0.5 dB ripple Tchebycheff filter appeared to reasonably satisfy all the imposed constraints.

The design was carried out by way of a nostalgic trip back to the classic Sallen and Key format using ref. 3 as a basis. The 3 dB frequency was selected to be 155.2 Hz simply to optimize the resistor values (on an E24 grid) for the high-pass filter, while the low-pass equations were modified to allow the use of standard value capacitors and to generate gain in the low frequency path.

The last-mentioned - about 10 dB - is required to take up the 6 dB attenuation introduced by the resistive summing of the two input signals, and to ensure that an adequate signal level is presented to the woofer power

Fig. 1. There is little difference in performance between front and rear-facing loudspeakers provided input is limited to 250 Hz .

A sub-woofer is normally required to work over a restricted frequency range operating in a reverberant environment. With these assumptions, the problems of phase distortion and path difference signal-null were taken as less important, which allowed the use of an unusually high-slope filter network. It is this filter which acts to restrict the overall impact of path difference effects and to permit speaker locations which can meet some decorative as well as technical demands. The design allows the filter to be embedded in virtually any amplifier configuration and the system to work with any existing stereo speakers. The Active Coffee Table seems to have proved a viable concept.

Fig. 2. To investigate effects of path-length difference between two speakers, on amplitude response, one speaker's performance was modified to include the consequent phase effects and the two outputs added (modelled as in Appendix 1). Fig. 3. Fourth-order symmetrical Tchebycheff filter centred on 160 Hz is designed according to Appendix 2. 3dB frequency of 155.2 Hz was chosen to allow E24 resistor values.
amplifier. The design approach is given in Appendix 2, while the circuit detail is shown in Fig.3, the summing resistors also serve as the first l.p. filter resistor.
One of the drawbacks of the format adopted is the relatively high sensitivity in the crossover region to the component tolerances and subsequent variation with age, and the effect of varying capacitor and gain values is illustrated for the low pass filter in

Fig. 4. Effect of varying capcitor and gain values in crossover region dictates use of $\mathbf{1} \%$ resistors and 2% capacitors.

Fig.4. On this basis, 1\% resistors and 2% capacitors are used throughout.

Loudspeaker box design

In the first place it is necessary to define the speaker requirements and it seemed reasonable to aim for a 3dB-down frequency of about 40 Hz , with a 1 watt acoustic capability at that frequency. With a typical 1% efficiency, this is equivalent to a driver amplifier and speaker capability of about 100 watts. In addition, to meet the 1 watt $/ 40 \mathrm{~Hz}$ criterion the speaker linear displacement volume $\left(V_{D}\right)$ will need to be about

$400 \mathrm{~cm}^{3}$ (Fig.19, page 314, ref.4). In effect, a long-throw, 30 cm diameter, 100 watt speaker is needed with suitable parameters to match a low-volume box, and the Philips type AD12250/ W8 was selected as a low-cost component for use with a ventedbox approach.
Box design was carried out by means of equations provided in ref. 5 and repeated in Appendix 3 along with the required calculations. These equations effectively define the box and vent requirements for a ducted system provided that the Theile-Small parameters for the speaker are known i.e. $\mathrm{V}_{\mathrm{as}}, \mathrm{f}_{\mathrm{s}}$, and Q_{T} (see Appendix for definition). Equation 1 includes a function of the negative ripple that may be used to extend the frequency response at the expense of a larger box requirement and a dip in the response curve. If not required put $\mathrm{R}_{\mathrm{H}}=0$.

Practical details

Once the required internal box volume is know, the actual design, style and dimensioning of the layout is open to personal choice. In this case an upright box was built using the customary glue, screw and silicone sealant. The selected amplifier and power supply (types HY248 and PSU54X from ILP of Canterbury) were mounted inside the box using rubber washers or gaskets to minimize vibration, while the
box vibration itself was reduced using an aluminium L-beam attached to the wall behind the speaker and a 25 mm diameter rod about 1 mm longer than required forced between the speaker wall and the back wall close to the speaker aperture. These box strengthening techniques were taken from page 93 of ref. 6 . The vent, comprising a flanged plastics tube was found in the plumbing department of a hardware shop.
The box is fully sealed (vent apart) and entry is via the speaker opening. For this reason wiring was done with connection boxes for ease of maintenance, with fuses and the level adjustment potentiometer brought to a small aluminium panel below the speaker. To avoid potential earth loops, the power lines are twoterminal only while the signal input is provided by a two-wire screened cable (about five metres long), where the screen is attached to the aluminium panel and the rectified power ground within the speaker cabinet. Constructional details are illustrated in Fig.5.

The filter was designed to take minimum additional power from the existing amplifier supply rails using two TL074 quad op-amps, and the supply circuits are shown in Fig.6. The anti-thump circuit also shown is not technically necessary but subjectively reassuring.
The total cost including speaker, electronics, chipboard and veneer came to about $£ 120$.

Results

The test equipment comprised the UREI model 200 automatic plotting system used in conjunction with an AKG type C451EB microphone. With this equipment, the filter responses (suitably adjusted for gain differ-

Fig. 7. Though not quite up to the design objectives, measured filter response is adequate at 18 dB down at 100 and 250 Hz .

ences) are given in Fig.7. While location and the other speakers the responses do not fully match by providing a continuous input the design objectives, they are tone at the crossover frequency. probably adequate - being The level pot. is adjusted until about 18 dB down at 100 Hz and the sound coming from the 250 Hz respectively.

The woofer is matched to its

Fig. 5. Vented enclosure is designed according to equations of Appendix 3, given the Thiele-Small parameters for the speaker. Top and bottom of enclosure, not shown, are fashioned for decorative appeal.

Fig. 6. Filter circuits of Fig. 3 using TL074 quad op-amps take a minimum of power from the amplifiers used (IPP types, see text). This antithump circuit is optional.

Fig. 8. Third-octave warbler measurements show response in room is 3 dB down at 43 Hz . Upper curve is for woofer plus one existing speaker, lower curve is for woofer only.
degradation was discemible at any location in the room.
Thanks to D.L. Hermans and H. Wiims for their forthright assistance and particularly to J. P. Vanderreydt for his iolerant and comprehensive guidance. - M.B.

REFERENCES

1. Influence of Room Boundaries on Loud speaker Power Output Loudspeakers by Roy F. Allison - Anthology of Articles inJ Audio Eng. Soc. 1953-77 p. 339
2. 'On the audibility of midrange phase distortion in audio systems' by Stanley P Lipshitz, Mark Pocock and John Vanderkooy. J. Audio Eng. Soc. vol. 30 no. 91982 September p. 580
3. Simple active filters - design procedure by M. Bronzite, Wireless World March 1970 p. 117
4. Vented-box loudspeaker system by Richard H. Small Loudspeakers - Anthology of Articles in J. Audio Eng. Soc. 195377 p. 302
5. Personal calculator programs for appro ximate vented box design by Gerry Margolis and Richard H. Small Joumal Audio Eng. Soc. vol. 29 no. 6 June 1981 p .421
6. Loudspeaker enclosure walls by Peter W. Tappan Loudspeakers - Anthology of Articles in J. Audio Eng. Soc. 1953-77 p. 88

Appendix 1

Phase effects of path length
Consider two speakers distant 1 and $l_{\text {, from }}$ a receiver with a planned cross-over frequency of f_{c} corresponding to a wavelength of λ_{0}. Then let
$1_{1}-l_{2}=A \lambda_{0}$
where A is a multiplier. Then
$\left(\mathrm{l}_{1}-\mathrm{l}_{2}\right)=\mathrm{Ac} / \mathrm{f}_{0}=\mathrm{Ac} .2 \pi / \omega_{0}$
where c is the velocity of sound. For the furthest speaker at some frequency ω. wavelength λ, the phase at the receiver is
$\boldsymbol{\varphi}_{1}=1_{1} / \lambda \cdot 2 \pi-1_{1} \boldsymbol{\omega} / \mathrm{c}$
and for the nearer source

$$
\omega_{2}=1_{2} \cdot \boldsymbol{\omega} / \mathbf{c}
$$

$$
\begin{aligned}
& \left(\varphi_{1}-\varphi_{2}\right)=\left(l_{1}-l_{2}\right) \omega / \mathrm{c} \\
& =A . c \cdot 2 \pi / \omega_{0} \cdot \omega / \mathrm{c} \\
& -\mathrm{A}\left(\omega / \omega_{\omega}\right) 2 \pi
\end{aligned}
$$

This relative phase shift can be represented by multiplying the signal from the fur hest source by $(a+j b)$ where
$a=\cos \left[A\left(\omega / \omega_{0}\right) 2 \pi\right]$
$\mathrm{b}=\sin \left|\mathrm{A}\left(\omega / \omega_{0}\right) 2 \pi\right|$
which will not affect the amplitude but will add $\left(\varphi_{1}-\varphi_{2}\right)$ to the phase of the original signal. Further, any filter can be represented as a straightforward complex expression. As an example:

$$
\begin{aligned}
\frac{B}{s^{2}+A s+B} & =\frac{B(B-\omega)}{\left(B-\omega^{2}\right)^{2}+(A \omega)^{2}} \\
& +j\left[\frac{-A B}{\left(B-\omega^{2}\right)^{2}+(A \omega)^{2}}\right]
\end{aligned}
$$

since $s=j \omega$. Thus, if the far speaker has say a low-pass filter response, and the near speaker has a corresponding high-pass response. then these may be expressed as
1.p. $=\mathbf{C}+\mathrm{j}$)
h.p. $-E+j f$
and the effect of path length will modify the 1.p. response to
$(C+j D)(a+j b)=G+j H$
where a and b are values defined by equation 3. Finally the tolal received signal X will be
$\mathrm{X}=$ output $1+$ output 2

$$
=\mathrm{E}+\mathrm{jF}+\mathrm{G}+\mathrm{jH}
$$

i.e. $X_{\text {rms }}=\sqrt{(\mathrm{E}+\mathrm{G})^{2}+\left(\overline{\mathrm{F}+\mathrm{H})^{2}}\right.}$
and in Fig. 2 this function in dB has been plotted against variation in normalised frequency and path difference. illus:rating the response variation at any frequency as one moves across the room (roing from $-\lambda$, to $+\lambda$ path difference)

Appendix 2

Filter design (based on ref.3)

1. High-pass filler

Select suitable value of C, then
$R_{1}=T_{1} / 2 C \beta f_{3 d 13}$
$\mathrm{R}_{2}=2 \mathrm{~T}_{2} / \mathcal{C} \beta \mathrm{f}_{3 \mathrm{di}}$
and $\mathrm{f}_{\text {3di }}=155.2 \mathrm{~Hz}$ (selected)
$\beta=1.093$
$\mathrm{T}_{1}-0.05582$ first dual element
$\mathrm{T}_{2}=0.48264$ first dual eiement
$\mathrm{T}_{1}=0.13475$ second dual element
$\mathrm{T}_{2}=0.06700$ second dual element
(values taken from tables 2 and 3 ref.3)
2. Low-pass filher

The expressions which follow are based on the transfer function

$$
G=\frac{\frac{N}{t_{1} t_{2}}}{s^{2}+s\left[\frac{1}{t_{1}}-(N-1) \frac{1}{t_{2}}+\frac{t_{3}}{t_{1} t_{2}}\right]+\frac{1}{t_{1} t_{2}}}
$$

where $\mathrm{N}=\left(1+\mathrm{R}_{3} / \mathrm{R}_{4}\right), 1_{1}=\mathrm{R}_{1} \mathrm{C}_{1}, t_{2}=$ $\mathrm{R}_{2} \mathrm{C}_{2}, \mathrm{I}_{3}=\mathrm{R}_{1} \mathrm{C}_{2}$.
a) Assuming equal resistors select suitable value for C_{1}, then
$\mathrm{C}_{2}=\mathrm{C}_{1}\left(\mathrm{~T}_{2} / 4 \mathrm{~T}_{1}\right) \mathrm{m}^{2}$
where $m=\frac{1}{2}\left(1+\sqrt{\left.1+8(N-1) T_{1} / T_{2}\right)}\right.$
b) Select standard value $\mathrm{C}_{2}<\mathrm{C}_{2}$
then $K_{1}=2 \mathrm{~T}_{1}^{1} \beta / \mathrm{C}_{1} \mathrm{f}_{\text {radib }} n$
and $\mathrm{K}_{2}=\mathrm{n} \mathrm{T}_{2} \beta / 2 \mathrm{C}_{2} \mathrm{f}_{\text {to }}$
where ${ }_{\mathrm{n}}=$
$1+\sqrt{1-\frac{4 \mathrm{C}_{2}^{\prime}}{\mathrm{C}_{1}} \cdot \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}\left\{1-\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}(\mathrm{~N}-1)\right\}}$
The above values are obtained using selected values of N and taking Table 1 of ref. 3:
$T_{1}=0.45381$
$\mathrm{T}_{2}=0.05248$
first dual element
$N=1.846$
$T=0.18798$
$\left.\mathrm{T}_{2}=0.37808\right\}$ second dual element
$\mathrm{N}=1.83333$
Example With $f_{\text {di }}=155.2$ and $\beta=1.093$ then for the second 'dual' of the low-pass filter let $\mathrm{C}_{1}=220 \mathrm{nF}$, and $\mathrm{N}=1.83333$: (a) Then $\mathrm{m}=1.5386$, and $\mathrm{C}_{2}=262 \mathrm{nF}$. (b) l.et $\mathrm{C}_{2}=220 \mathrm{nF}$, then $\mathrm{n}=1.8176$ and $\mathrm{K}_{1}=$ 6 K 621 and $\mathrm{R}_{2}=10 \mathrm{~K} 999$

Appendix 3

Box design (taken from ref.5)
A. Equations
$V_{\mathrm{b}}=20.6 \mathrm{~V}_{15}\left(\mathrm{Q}_{\mathrm{T}}\right)^{3.3}(10)^{k^{\prime \prime} / 6}$
$a=V_{\Delta s} / V_{n} \quad 2$
$\mathrm{f}_{3}=\mathrm{f} \cdot \mathrm{a}^{114} \quad 3$
$\mathrm{I}_{\mathrm{b}}=\mathrm{t}_{5} \cdot \mathrm{a}^{1131} \quad 4$
$1=2350 \mathrm{dv}^{2} / \mathrm{t}_{\mathrm{b}}^{2} \mathrm{~V}_{\mathrm{b}}-0.73 \mathrm{~d}_{\mathrm{v}} \quad 5$
with V_{b} internal box volume (litres)
$V_{\text {Is }}$ etriver suspension compliance (iitres)
$f_{3} 3 \mathrm{~d}$ f frequency of system (Hz)
f_{b} box resonant frequency (Hz)
f ioudspeaker resonant frequency (Hz)
Q quality factor
K_{H} negative pass-band ripple (dB)
d_{s} internal vent diameter (mm)
I, total length of vent (mm)
N.B. $V_{A S}$, $f_{\text {a }}$ and $Q_{\text {e }}$ obtained from loudspeaker specification and in this case $=$ 202, 27 andi 0.29 respectively.
13. Design process

- Establish value of R_{H} to meet required f_{3}. A value of 0.42 dB was selected which gave $\mathrm{V}_{\mathrm{b}}=82$ litres and $\mathrm{f}_{3}=40 \mathrm{H} z$ from equations 1. 2 and 3.
- Establish vent length and volume. With a pipe whose internal diameter was 96 mm . equation 5 gave the required length of 137 mm . With an external diameler of 100 mm the vent volume $=1.08$ litres.
- Calculate the total inner box volume.
$V_{b}=821$
Box losses (taken to be $8 \% \mathrm{~V}_{\mathrm{b}}$) $=6.61$
Vent volume -1.08
Amplifier + supply $=0.941$
Speaker volume
(approx. truncated cone) $=3.201$
$\underline{\underline{\text { i.e. Total internal volune }}=93.81}$

LEADER OSCILLOSCOPES

The Leader range of high performance oscilloscopes are designed to suit most equirements, offering comprehensive specification and long term reliability, yet remaining low cost
LBO-514A is a dual trace. 15 MHz bandwidth. 1 mV sensitivity low cost general purpose oscilloscope LBO-522 s a dual trace 20 MHz bandwidth $500 \mu \mathrm{~V}$ sensitivity oscilloscope teaturing $X Y$ variable hoid off plus tull TV iriggering

BO-523 is a dual trace 35 MHz oscilloscope ottering similar features to the LBO 522 plus internal graticule dome-mesh tube with 7 kV acceleration (pda) LBO-524 is a 35 MHz dual trace oscilloscope similar to the LBO-523 plus the added facility of delayed sweep umebase
LBO-525L is a 50 MHz dual trace oscilloscope offering comprehensive triggering and timebase facilities

BO-516 is a 100 MHz dual trace oscilloscope offering optimum oerformance at a compeitive price
LBO-518 is a 100 MHz quad channel oscilloscope with eight trace capabilties, offering comprehensive riggering and timebase options
LBO-5825 is a digital storage oscithoscope with a real ime speed of 35 MHz
LBO-308S is a battery/mains dual trace 20 MHz smal compact oscilloscope offerng all the features formally found in a bench scove

CIRCLE 5 FOR FURTHER DETAILS.
For further information contact
Thandar Electronics Limited
London Road. St. Ives. Huntingdon.
Cambridgeshire PE17 4HJ. England Telephone (0480) 64646 Telex 32250 Test
THE LOGICAL CHOICE \qquad

AMPLIFIERS
WHY ILP? Years of experience in audio, unique designs, world wide sales and outlets, reliable delivery and friendly service........

PREAMPLIFIER MODULES

All modules are supplied with in line connectors but require potentiometers, switches etc. If used with our power amps they are powered from the appropriate Power Supply.

Type Application

HY6 Mono Pre Amp.
HY66 . . . Stereo Pre-Amp
HY73 ..Guitar Pre-Amp
HY/8 Stereo Pre-Amp.

Functions
full Hi Fi tacilities ull Hi Fifacilites
Two Guitars plus Microphone 14.95 As HY66 less tone controls $\mathbf{1 4 . 4 5}$
MOUNTING BOARDS: For ease of construction we recommend the $B 6$ for HY6 $£ 0.95$ B66 for HY66-78 $£ 1.45$
BIPOLAR MODULES
Ideal for Hi Fi, Full load line protection integral Heatsink, slew rate $15 \mathrm{v} / \mu \mathrm{s}$
Distortion less than 0.01\%

Type	Output Power Watts (ms)	Load Impedance ,	Price	Type	Output Power Watts (mms)	Load Impedance Q	Price
HY30.	154	4-8...	f8.45	HY244	12014	4	f26.95
HY60.	30.	4-8.	f9.95	HY248	120	8.	£26.95
HY6060.	$30+30$	4-8.	f19.45	HY364	180	4	E39.95
HY124.	60	4	£20.95	HY368	180.	8.	E39.95
HY128.			£20.95				

MOSFET MODULES

Ideal for Disco's, public address and applications with complex loads lline transformers etc.). Integral Heatsink slew rate 20v/ μ s distortion less than 0.01\%

FOR FREE DATA PACK PLEASE WRITE TO OUR SALES DEPT.

Post to: ILP Electronics Ltd., Dept. 6
Graham Bell House, Roper Close,
Canterbury, Kent. CT2 7EP
Tel:(0227)454778 Telex:965780

CIRCLE: 2X FOR FURTHER DETAILS

Three new names from IODthe leaders in DTMF equipment.

CODEFAL

IQD offers the most advanced DTMF signalling equipment on the market. IQD Codepad: the best in portable tone diallers, available in three models.
IQD Micropad: a microphone with not only the standard

nicnofac

functions, but many additional features including an illuminated keyboard version.
IQD Selcall: a superior DTMF signalling unit with an extensive program facility giving you selective access to 99 sub-stations.

Telephone (0460) 74433 for further information.

North Street Crewkerne Somerset tal 8 7ar England
Facsimile ($\mathbf{O H}_{4} 60$) 72578 Telex 4_{6283}

R.WITHERS COMMUNICATIONS

If you have not heard of (R. Withers Communications) we are main distributors or agents for the following, Yaesu, Icom, Kenwood, M.Miodules, Jaybeam, Toevna, Revco Antennas. Cleartone, Mutek, Drae, F.D.K. Tonna, Welz, Zycomm, Neve Radiotelephones.

We are also stockist (British Telecom Approved) of a wide range of cordless telephones and telephone systems. We are also agents for hundreds of other radio communications equipment known the world over, we also manufacture our own range of VHF-UHF beam antennas which are also used by leading broadcast companies for wireless mic applications. We supply a large range of power transistors \& modules to the trade. These we import ourselves directly from Japan. Listed below are just some of the many services we offer.

* Supply \& repair of all amateur \& business radio equipment
* Complete check of your transiever on a spectrum analyser (with
comprehensive report) for the all in price of $£ 12.50$ subject to an appointment being made
\star Supply \& complete installations of business radio systems including competitive maintainance contracts, local authorities included
competitive maintainance contracts, local auth orities inclu
\star Supply of 10 metre converted radios LCL. DNT, ICOM.
* Supply of 10 metre converted radios LCL. DNT, ICOM.
* Only supplier of modified Revco RS $200050-520 \mathrm{MHz}$ continuous \star
coverage scanning receiver modified by (R . Withers Comms)
\star Prabably the largest seller of second hand radio equipment in the country because of our commission sale agreement (3 month warranty) plus equipment facility
* The fastest growing retail \& wholesale company in the British Isles. Send for details of any of the equipment or services we offer whether you are in the profession of just an interested party an s.a.e. will speed up your enquiry * For all your communication needs give R.W.C. a try we promise you will not be disappointed.
* The largest selection of radio allied services offered under one roof, with no expense spared on test equipment and qualified staff

584 Hagley Road West, Oldbury, Warley B68 0BS (Quinton, Birmingham)
 Tel: 021-421 8201/2 (24 hr answerphone)

Overseas customers welcome. We speak German \& Japanese. Import/Export no problem. Ple ase telephone during working hours or TELEX 334303 TXAGWM-G

TRANSDUCER and RECORDER
 AMPLIFIERS and SYSTEMS

reliable high performance \& practical controls. individually powered modulesmains or dc option single cases and up to 17 modules in standard 19" crates small size-low weight-realistic prices.

49/51 Fyide Road Preston PR1 2XO
Telephone 077257560

Fylde
Electronic Laboratories Limited.

NEW-LOOK
 SPECTRUM MANAGEMENT?

The report in the Financial Times on December 24 that the Government is already actively pursuing the possibility of charging higher "commercial" fees for the use of the radio spectrum clearly has important implications for all users of radio frequencies. The IDTI has already invited consultants to tender for a feasibility study. Possible changes were foreshadowed in last-minute changes to the British Telecom prospectus, including the warning to investors that the Government was considering "some form of pricing for the radio spectrum in place of, or in addition to the present licence fee basis." The profits of BT as a main user of the spectrum would clearly be adversely affected by what would amount to introducing a new form of revenue collection. It could amount, in effect, to a new tax on communications, broadcasting, radio navigation, amateur radio etc. At present DTI licence fees are intended to cover little more than the cost of administration and the less-than-effective regulation of the spectrum. Government departments, particularly the Defence services, are major users of the spectrum.

The ethics of selling a natural resource such as the radio spectrum to the highest bidders seems questionable, akin to the infamous window tax of history that sought to make
householders pay for access to light. While it might, or might not, encourage more use of spectrum-conservation techniques, it could have a devastating effect on some services. What, for example, would be the cost of a transmitting licence for television transmission with its 8 MHz channel bandwidth? Would licences differentiate between fees payable for Morse, s.s.b., a.m., f.m., broad-band data etc.? Would there be individual DTI licences for cordless telephones, cellular radio etc.?

In the USA, an attempt a few years ago to introduce revenueraising licence fees for the use of the radio spectrum failed, but
there are reports that the FCC are being urged to try again.

Annex M of the Merriman Report of 1983 discussed the use of price mechanisms in spectrum management, based on papers from the Radio Regulatory Department (then part of the Home Office) and two other Government bodies. The Committee itself recommended the progressive development of more general techniques in costing spectrum use to encourage more use of the less congested frequency bands and to encourage the use of less congested frequency bands and to encourage the use of less bandwidth-demanding equipment. While few would quarrel with such aims, the fact remains that increased charges could be used in pursuit of Government policies having little to do with efficient spectrum management.

EXTERNAL VOICES

Bert Gallon, chief engineer, BBC external broadcasting, interviewed on the weekly "Waveguide" programme, has stated that construction of new overseas relay transmitter complexes at Hong Kong and at Mahe in the Seychelles is due to begin shortly. The stations should become operational in 1987 and 1988 respectively. This will give the Hong Kong base a life of only ten years before the return of the colony to China, though the BBC are hopeful that it may prove possible to continue to use the transmitters, when Hong Kong becomes Chinese territory.

The two new 500 kW . Telefunken h.f. transmitters at Rampisham, Dorset - the highest power h.f. transmitters so far commissioned by the BBC are now in full operation. This follows severe delays while the manufacturers investigated problems with the high-power valves and aerial switching.

Search for a successor to the wartime h.f. transmitter complex at Skelton, Cumbria is now divided between Bearley, near Stratford-on-Avon and Orfordness, Sussex.

Seven new studios have been completed at Bush House where the BBC has taken over the entire building.
These are acoustically suitable
for stereo recording and the BBC contemplate producing music and drama programmes in stereo, for rebroadcasting on their v.h.f. outlets in Berlin and Singapore and by the increasing number of overseas broadcasters who relay some BBC programmes on their domestic services. Relay bases are now served by high-quality digital feeds using the Intelsat Indian Ocean and Atlantic Ocean satellites.

Bert Gallon sees no prospects of any early use of direct broadcasting of sound radio from satellites, pointing both to international agreements that rule out the use of d.b.s. for programmes deliberately targeted at other countries, lack of any suitable frequency allocation and the high cost of transmission and reception. He forecast that there would be little reduction in the use of h.f. for external broadcasting during the next ten years.
Although BBC World Service is carried on m.f. and l.f. for many hours each day - and attracts a roughly 4 per cent share of the UK radio audience - there seems little prospect of any formal recognition of its domestic audience, as this would require the renegotiation of performers fees and, more importantly, might affect the Foreign \& Commonwealth Grant-in-Aid on which all external broadcasting depends.

MIDGLEY'S INVENTIONS

Increasing specialization, even within the electronics discipline with its growing barriers of mutual incomprehension between the users of advanced analogue and digital techniques, has led inevitably to the phasing out of the general-purpose inventor/entrepreneur prepared to use mechanical, electrical and electronic techniques in his search for product innovation.
Already it is being forgotten how much electronics owes to the ingenuity of those who trained as mechanical or electrical engineers but turned their fertile minds to radio reception in the 1920 's. So prolific were some of the pioneers in a variety of disciplines that it is very difficult, even for those interested in the history of
technology, to assess their contributions.
I suspect that relatively few readers could immediately place A.H. Midgley (1881-1961). Yet as a recent exhibition, "A British genius - the inventions of Albert Midgley" at the enterprising Watford Museum, amply demonstrated, Midgley made a lasting mark in a string of inventions (212 UK patents) including starting motors and lighting systems for vehicles; timing mechanisms and fuses for weapons in two World Wars; the pioneering of multielectrode thermionic valves made to his design by Captain S.R. Mullard in 1927 for his "One-Det" "one-valve" loudspeaker receiver; a 1931 master patent for the production of musical tones by electrical means; the Kinestron cinema organs: the development of high-quality loudspeakers and amplifiers for electronic organs and domestic hi-fi systems; the electronic guitar; even the first British tape recorder marketed by Boosey \& Hawkes and based on the German wartime development of h.f. biasing. His often tempestuous career included work with C.A. Vandervell and a string of enterprises that bought him into conflict with powerful industrial rivals and former associates, yet the evidence that he had a remarkably fertile and truly inventive mind seems overwhelming. In the early 1920s he was awarded the then substantial sum of $£ 14,000$ "Award to Inventors" for the Allways Fuse used in bombs and Mills grenades. But little other professional recognition seems to have come his way until now, 24 years after his death, with the Watford exibition. Perhaps this was because is work was firmly directed towards the invention and development of saleable products rather then "pure" research.

CABLE \& DBS

American cable-television penetration at mid-1984 has been estimated at about 42 per cent of television households, representing about 35.7 -million homes. The providers of premium subscription channels, such as Home Box Office, continue to complain of large
numbers of illegal viewers by means of unauthorised cable taps, reception of microwave (2.5 GHz) multiplex distribution systems, and 4 GHz reception from distribution satellites. There appears to be a significant market in decoders that overcome the relatively crude encryption systems in use in the USA. HBO however is supplying some 10,000 descrambler units for the Video Cipher 2 system for satellite distribution to cable network operators.

An experimental optical fibre network is operational in Biarritz, France, providing 15 channels and a videophone service to some 1500 subscribers. TDF is increasing the amount of subtitling for the hearing-impaired to about 12 hours per week, and has placed a bulk order for 30,000 Antiope decoders. The UK, however, would appear to remain well ahead in the field of broadcast teletext with decoders still significantly below the cost of the comparable Antiope units. The launch of the preoperational French directbroadcasting satellite has been put back to allow more time to develop the high-power travelling-wave-tube package following the problems when it was used in the Japanese satellite launched in January, 1984. The altemative German t.w.t. has still to be tested in orbit.

Amateur Radio

STUCK WITH IT!

In the December issue I drew attention to the effect of the falling pound/yen and pound/ dollar exchange rates on the cost of amateur radio equipment in the UK - indeed costs have gone up still further since then. The policy of the major Japanese firms in appointing in the UK "authorised distributors" capable of servicing and maintaining their equipment has also tended to maintain retail prices, without the many
"special offers" and discounts found on similar equipments of the USA. One result has been that a significant number of British amateurs have found it cheaper to buy equipment overseas and then bring it into the UK as a personal import. Then, if necessary, modifying it to suit UK standards, regulations or practices.
What could prove a major disincentive to this practice and which also has implications for the more experimentallyminded amateur is arising from the new forms of hybrid construction, including the use of chip-type, surface-mounted assemblies, now in growing use for this class of equipment. This follows its successful use in recent years for consumer electronics such as the Sony "Walkman" etc.
For the customer, the use of these techniques has the advantage of countering the rising cost in Japan of conventional printed-board assembly, offering consistent performance and excellent reliability as well as the possibility of packing even more complexity into very compact units.
There is little doubt that the new forms of automatic assembly and hybrid microelectronics have come to stay. But equally there is no doubt at all that it is no longer a simple matter to introduce any modifications, or to troubleshoot and repair such equipment without access to specialised techmiques.

For example, the chip components no longer carry any identification; the parts are held in place not only by dip soldering but by epoxy adhesives which are subsequently oven-hardened and then further hardened by the heat from the dip soldering. There is thus virtually no way in which an owner can himself remove or change components, even for what has in the past been the relatively simple modification of v.h.f./u.h.f. channel spacings etc. In some equipments not even the factory can modify equipment once it has been dip soldered.

Thus are thus, as Kjell W. Strom, SM6CP1, the Yaesu European manager based in Italy, points out, both advantages in better value for money, higher reliability etc. in the manufacturing techniques
but also some significant loss in flexibiity - and possible disappointment for those importing their own equipment. It means that the "black boxes" no longer can form the basis of an experimental ris.
The rush to counter rising costs by adopting new manufacturing processes is also leading to a succession of new models, rather than progressive modification of established models. The Yaesu FT101 transceiver and FRG7 receiver for example were marketed for many years in various versions staying on the assembly lines "until their metal stamping tools were completely worn down" to quote Kjell Strom.

RSGB INFIGHTING

The 1984 annual general meeting of the RSGB proved, in some ways, a rather disheartening occasion with an undue amount of the time taken up with procedural wrangles over matters that never became clear to the majority of those present. Simmering bencath the surface was a split between Council members over the election of Mrs Joan Heathershaw, G4CHH as the 1985 President, reversing an earlier (disputed) appointment "by acclamation" of Ingemar Lundegard, G3GJW, to the post. This all rather overshadowed the news that the RSGB has obtained from the I)TI the concession (for one year from April 1, 1985) that Class B licensees may apply to the societ y for a letter of variation to their licence permitting the use of Morse code on frequencies above 144 MHz with a view to on-air training, etc. The AGM also saw an award presented by LARU Region 1 and the RSGB's "Calcutta Key" to C.E. Godsmark, G5CO

The Marconi Medal was awarded to a group of West German amateurs, who as DFOEME, have specialized in 2.3 GHz "moon-bounce" work using an impressive 10 -metre diameter parabolic reflector dish aerial. The RSGB has changed the name of its headquarters building at Potters Bar from Alma House to Lambda House.

IN BRIEF

The New Year's Honours List brought a well-deserved British Empire Medal to Mrs Frances Woolley, G3LWY, for her services to the Radio Amateur Invalid and Blind Club of which she has been honorary Secretary for many years. . . British amateurs continue to encounter difficulties that appear to be due more to interference problems than to questions of environment when applying for planning permission to erect masts and towers, though in several cases recently local authority refusals have been overturned on appeal. . . The "Sir Walter Raleigh" which will circumnavigate the world during the next four years for
"Operation Raleigh" will operate on the amateur bands as GB2SWR/MM. . . The Post Office is now providing amateurs, as they renew their licences, with a new "Amateur Radio Validation Document" to provide a wallet-sized means of proving current validity of the licence and for notifying the Post Office of any change of address, etc. . NASA has confirmed that Tony England, W0ORE, will operate from the Space Shuttle during the 51-F mission now tentatively scheduled for July 1985. . . The West Kent Amateur Radio Society is planning an expedition this summer with a view to attempt to make a 144 MHz direct two-way contact across the Atlantic, a feat that has so far defeated the efforts of many amateurs.

An attempt is to be made to revive the meetings of the Radio Amateurs 'Old Timers' Association. Although the weekly 3.5 MHz on-air net (3570 kHz , Tuesday, $11 \mathrm{a} . \mathrm{m}$.) continues there have been no meetings since the death of "Uncle Vic" Corsham, G2UV. The possibility of a meeting in the Midlands this Spring is being mooted. . . The three remaining operational Russian amateur satellites in orbit, TS5, RS7 and RS8 are each active on only two days of the week in order to limit the now failing power sub-systems. One satellite is switched on each day except Wednesday when there is no operation. .

PAT HAWKER. G3VA

[^1] The capability and effect o TENSION 67 efficiently removes dust and deposits from electronic components electronic and electrical appara tus, microscopes, medical
equipment, cabinets, etc. Abso equipment, cabinets, etc. Abso
lutely no spray residues. No compressed airline needed With plug-in nozzle even blows around corners. Ready for use in the service kit.
Kontakt 60
Dissolves oxides and sulphides, re moves dirt, oil, resin and traces of metal abrasion. Protects against erosion. En sures perfect contacts.

Kontakt 61

Special cleaning, lubricating and anti corrosion fluid for NEW (non oxidised) and specially sensitive contacts. An ex cellent lubricant for all electrical and electro-mechanical systems.

Spray Wash WL
A rapid cleaner for reliable washing and degreasing of electrical equipment and components. For removal of dirt, grease, oil, soldering residues and other impurities

ALSO AVAILABLE:

A COMPLETE RANGE OF INDUSTRIAL AEROSOL SPRAYS
SK10 Soldering Lacquer, K75 Cold Spray, K70 Plastic Spray, K88 Oil Spray, K70 K101 circuits.

Details from:
Special Products Distributors Ltd.
81 Piccadilly, London, W1V OHL
Tel: 01-629 9556. Telex: 265200 (answerback RACEN). Cables: Speciprod, London, W1

CIRCLE 7 FOR FURTHER DETAILS.

CIRCLE 15 FOR FURTHER DETAILS.

The Microvalue Group dealers shown below represent part of the Gemini network For expert advice and full details on the Gemini System, contact your nearest dealer today.

AMERSHAM COMPUTER CENTRE LTD

18 Woodside Road, Amersham, Bucks HP7 0BH
Tel: 0240322307 Telex: 837788

BUSINESS \& LEISURE LTD

16 The Square, Kenilworth, Warwickshire CV8 IED Tel: 0926512127

CENTIFLEX MICROSYSTEMS LTD

Unit 6, Perry Road, Staple Tye, Harlow,
Essex CM 18 7NW
Tel: 0279442233

ELECTROVALUE LTD

28 St. Judes Road, Englefield Green, Egham,
Surrey TW20 0HB
Tel: 078433603 Telex: 264475

E.V. COMPUTING

700 Burnage Lane, Manchester M19 INA Tel: 061-4314866

HENRYS RADIO

404 Edgware Road, London W2
Tel: 01-402 6822

LEEDS COMPUTER CENTRE

55 Wade Lane, Merrion Centre, Leeds LS2 8NG
Tel: 0532458877

OFF RECORDS LTD

Computer House, 58 Battersea Rise,
Clapham Junction, London SW 11 1HH Tel: 01-223 7730

SKYTRONICS LTD

357 Derby Road, Nottingham NG7 2DZ
Tel: 0602781742
SPARTACODE LIMITED
69 London Road, Bognor Regis
West Sussex, PO21 IDE
Tel: (0243) 826161

GM813 CPU/64K RAM BOARD - This card provides system 4 $\mathrm{MHz}, Z 80 \mathrm{CPU}, 64 \mathrm{~K}$ user RAM and both serial and parallel $1 / \mathrm{O}$.

GM811 CPU BOARD - An industrial standard $4 \mathrm{MHz}, Z 80$ controller board with parallel ond serial I/O together with a variable Bytewide memory copacity.
GM888 CPU BOARD - A new card featuring the Intel 8088 processor to provide a dual processor system.
GM832 SVC BOARD - Provides conventional 80×25 or 40×25 screen format together with graphics capability. Includes full keyboard support and overseas character sets.

GM862 256K RAM BOARD - Supports both page mode and extended addressing facilifies and can be used with all of the Gemini CPU cards.
GM833 512K RAM-DISK BOARD - Provides 'psuedo disk' facility in a MultiBoard system.
GM829 FDC/SASI BOARD - Combines floppy disk controller and SASI board supports up to four floppy disk drives plus Winchester controller cards.

GM837 COLOUR GRAPHICS BOARD -256×256 sixteen colour graphics display. Output to either PAL UHF or RGB.
GM816 MULTI I/O BOARD - Provides three Z80A PIO devices plus CTC and battery backed Real Time Clock.
GM848 SERIAL I/O BOARD - Utilises two Z80A SIO chips providing four synchronous/asynchronous serial channels with software selectable baud rates.

GM836 NETWORK INTERFACE BOARD - Provides RS422 communication protocol for networking CPU boards.

The dealer's choice

Vigilant MicOn HF Communications Receivers MICROPROCESSOR CONTROLLED RECEIVERS

Type SR 530 USB/CW/AM/Telex -10 Hz Steps (Marine)
Type SR 532 USB/LSB/AM/CW - 10 Hz Steps (Static/Transportable)
Type SR 531 USB/LSB/AM/CW - 100 Hz Steps (Static/Transportable)

DESIGNED AND MANUFACTURED TO HIGHEST INTERNATIONAL SPECS

Freq. Range
Increments Stability Tuning
Keypad and Spin Wheel
Power Supplies: $110 / 240 \mathrm{~V}$ AC and 24V DC
FULLY MODULAR 'PLUG IN' CONSTRUCTION

Memory : 200 Channels Freq/Mode/Filter Scanning Full memory or discreet parts

Automatic or Manual Stop Manual step on or Reverse Dwell : Variable from Keypad 1 to 9 seconds
KEYPAD FUNCTIONS INDICATED BY DISPLAYS

NOW AVAILABLE AT HIGHLY COMPETITIVE PRICES
Send for Technical Brochure to: Vigilant Communications Ltd.

Tel: (0344) 885656
Telex: 849769 Vigcom G Unit 5, Pontiac Works, Fernbank Road, Ascot, Berks SL5 8JH, England

CIRCLE 27 FOR FURTHER DETAILS

MARTIN ASSOCIATES

Parthia Beckhampton,
Nr. Marlborough, Wilts.
Tel. Avebury (067 23) 219
£995.00 $\mathbf{2} 995.00$
$\$ 145.00$
$\mathbf{~} 160.00$ $£ 225.00$
£450.00
£350.00

\qquad OVENS
Gatlenkamp Gatlenkam \& Mercer

$$
\begin{aligned}
& \text { ANALYSERS } \\
& \text { Dymar }
\end{aligned}
$$

meters		
Fluke	8100A	3) DigitD.M.M
H-P	3406A	R.F. Voltmeter Fseq. $10 \mathrm{kHz}-1.2 \mathrm{GHz}$
		Sample Hold
Keithley	135	4t digithandheld DMM Almost new
Morconi	TF2604	Electronic Voltmeter 20Hz-1.5GHz

THE ABOVE IS A SAMPLE OF OUR STOCK SEND S.A.E. FOR CURRENT LIST ALL ITEMS SUBJECT TO AVAILABILITY, CARRIAGE \& V.A.T.

OSCILLOSCOPES

Solartion A
Dual trace DC-100MHz. $10 \mathrm{mV} /$ div
Tektronix 1400 Dual Beam DC-15MHz
422 Dual Trace DC- 15 MHz Portable c/w
Tektronix 454 A Duai Trace $\mathrm{DC}-150 \mathrm{MHz}$ Delayed
Tektronix $\quad 549 \quad \begin{aligned} & \text { Sweep } 5 \text { mV/div } \\ & \text { Storage Bistable Split Screen Max }\end{aligned}$
$\$ 50.00$
£6500.00
£4895.00
£4895.00
£850.00

BRIDGES MARCONI TF868B UniversalLCRBridge $1 \% 1810 \mathrm{kHz} \quad £ 150.00$ Wayne Kerr
S261/R261 Source and
Seter 250 MHz

 MISCELLANEOUS
DEC

Disa $\quad 55005 \begin{aligned} & \text { ACcartridges } \\ & \text { Digital Anenometer for fluid mea- } \\ & \text { surementetc. }\end{aligned}$
$\$ 145.00$
Coulter $\quad 550 / 551 \begin{aligned} & \text { Surementetc. } \\ & \text { Digita! Contamination Monitor } \& \\ & \text { Pit }\end{aligned}$
$\$ 120.00$ Probe for determining particle in the
£250.00

CIRCLE 57 FOR FURTHER DETAILS.

Andelos 68000 SYSTEM

Powerful 68000 runs at 10 MHz without wait states. Up to 32 KB EPROM and 4 or 16 KB fast static RAM. 24 line programmable parallel I/O port. RS232 programmable serial port. Comprehensive monitor in 2764 Eproms. Optional plug-in Eprom programmer card. Cross Assemblers for Z80 based microcomputers. Code can be developed, downline loaded to 68000, debugged, and then written into Eprom.

* 10MHz 68000 CPUBoard. \qquad ..from £295+VAT
* EPROM PROGRAMMER card £95+VAT
* CROSS ASSEMBLER for Z80 hosts ... from£55+VAT

Andelos Systems
 Telephone: (0635) 201150
 Solina, Bucklebury Alley, Cold Ash, Newbury, Berkshire RG16 9NN

CIRCLE 114 FOR FURTHER DETAILS.

STEREO STABILIZER

The new logic symbols - 1

> The national standards of all major technological countries are changing to comply with a new international standard. This new standard will affect everyone concerned with digital electronics, and the implications of the change should not be underestimated - especially if digital electronics is your profession. Be warned: the new logic symbols are far more than mere substitutions for existing symbols - they take an entirely new approach to representing logic circuitry. Is it all for the better or for the worse? Read on!

This is the first of three articles intended to make readers aware of the new logic symbols. This first part concentrates on explaining why the symbols are to change, indicating the advantages and disadvantages, and explaining the basic principles. The second part will explain some of the more complex symbols and features such as the commoncontrol box and dependency notation, and the third part will discuss trends and the way ahead using the new symbology.

The background

My own interest in what I here term the 'new' logic symbols stems from documentation work undertaken on Concorde many years ago for American use. These particular handbooks were written to the American ANSI Y32. 14-1973 Specification (equivalent to IEEE Std 911973), and although I had been in the field of technical documentation for some time, nevertheless they then represented a major deviation from any previous understanding I or my colleagues had of logic symbols. I must confess it did serve to baffle us initially.
In more recent years I have been involved in documentation work for Army Equipment Ser-
vice Publications (AESPs) to British Standard 3939: Section 21 (Issue 2), Binary Logic Symbols, which went part way to conforming to the previously mentioned American standard, but led us into all kinds of difficulties because it was not a full specification: too many symbols were missing for it to be rigidly applied. If I say here that this British Standard uses rectangular symbols, I know that many will imagine they are familiar with it, assuming that it simply substitutes rectangular symbols for previously existing characteristically shaped curved symbols. In fact, this notion harks back to a still earlier standard, for Issue 2 of BS3939, Section 21, is far more sophisticated than that: it was, in fact, a half-way house towards the standard that I now wish to talk about, the standard that BS3939 is due to conform to very shortly.

The fact of the matter is that for over a decade there has been international co-operation in an active attempt to develop an internationally acceptable standard for logic symbols that would be recognised throughout the world and would be versatile enough to cope with the ever increasing complexity of modern digital circuits.

France, Germany, Netherlands, Japan, the UK and USA and many more now intend to bring their own national standards fully or broadly in line, which stresses the importance of this subject to every digital engineer. There are other countries actively involved in the discussions whose intentions are less well known, but in due course, may well also conform.

Anyone working for a large company has seen from personal experience that committees generally design camels with surplus humps and that international committees can never see beyond the humps. It is therefore no mean feat for a body to have reached the stage where all these countries are in broad agreement on a new standard. Such a body is the International Electrotechnical Commission (IEC), based in Geneva.
After a decade of discussion, a document entitled IEC Publication 617:12, Binary Logic Elements, has been published, and it is this document which is to be the basis of numerous revised national standards. Like the United Kingdom, many countries intend to publish 'Chinese copies' of this source document. The digital engineer is therefore probably the first in the field to get

Acknowledgements

The author is greatly indebted to Mr D.B.J. Hicks of the British Standards Institution, Messrs C.J. Stanford and L. van Rooij, General Secretary and Deputy General Secretary of the International Electrotechnical Commission, for their invaluable assistance in the research work for my book, Mr N Warnock-Smith of Butterworth Scientific Ltd, for his kind cooperation in the use of illustrations from my book for this article, and Ms J. Molyneaux, who penned the excellent illustrations.
Mr Kampel has produced a book on this subject, entitled A Practical Introduction to the New Logic Symbols" (Butterworth Scientific, 1985). It is based on IEC Publication 617:12-Ed.

Fig.1. Symbol composition. Length/width ratio is arbitrary.

Fig.2. Binary logic element - a Nand gate with one negated input.
Fig.3. Combination of symbols. Logic connections must only pass edges in direction of signal flow.

Fig.4. Embedded symbols.
Fig.5. Illegal (a) and legal (b) mixtures of polarity indicators and negation symbols.
what amounts to his own international language.

I use the term 'language' advisedly, for the new logic symbols are really just that. Admittedly it is a sign-language, but like any true language, it does allow the user freedom of expression. That is where it differs so greatly from anything that has gone before.

New frontiers

The new logic symbols open up new frontiers and new levels of sophistication. They enable diagrams of complex logic circuits employing similar circuitry to be dramatically reduced in size and complexity, without any loss of detail. Furthermore, as I intend to show in the third article of this series, it enables circuits to be represented at different levels of detail with each and every level accurately depicting the overall logic functions. This can be usefully employed in industry, for a systems engineer can design a high-level circuit and pass this on to a project or equipment engineer; he, in his turn, can create a medium-level design showing more precisely the methods of implementation which he can pass down to a design engineer; the latter can then produce a component-level design. In all cases the new logic symbols may be employed, and in each level conversion, there can be no doubt as to what is required. All this can be achieved without words or even block diagrams!

Good news or bad news?
At this juncture you will no doubt have mixed reactions if all this is news to you. Is it good news or bad news for the profession? What was wrong with the popular 'curvy' (MIL-STD-806B) logic symbols which have proliferated so much in recent years? And before someone else points it out, I did prefer to use the latter standard (also to be seen in this journal), in my recent book: Practical Design of Digital Circuits (Newnes Technical Books, 1983). The reason for that choice, as explained in an appendix, was simply that these symbols were so familiar. Had Iintroduced the new logic symbols, it would have completely detracted from the principal aim of the book: to teach design principles. For do not underestimate the complexity of the new logic symbols: learning to use them is a subject in its own right.
Let me give you the bad news first. Yes, you do need to put your thinking cap on again in order to learn to use and interpret the new logic symbols, for unfortunately, complexity is the price you have to pay for sophistication. Military projects will increasingly call for the latest standard on circuit diagrams and in technical handbooks. Commercial products will increasingly require use of the new symbols to give the documentation immediate international status. But even more significant to any 'digital practi-
tioner' is the fact that the American manufacturers of digital components are well embroiled in the transfer to the new symbols on their data sheets, and even the most determined ostrich will therefore be forced to learn the new language - or take early retirement on a reduced pension!
I was a design engineer for many years and I know such a change will not be popular. I am presently involved with design engineers on a day-to-day basis, and I still know the change is not popular. How could it be when such persons are already overworked, underpaid, and unappreciated? But that is where the argument must end, for I am talking of a fait accompli. It is here and it will stay. There has been too much commitment for retraction now. Your only concern should be how long it will be before it affects you. So far ás the international committees are concerned, it is too bad that we're still trying to get to grips with decimalisation in Great Britain.

There is more bad news. From my own researches, it is plain that this matter will come as somewhat of a bombshell to the majority of engineers in this country, not to mention lecturers, whose duty it will be to educate themselves before their students take them to task. I say again, the new logic symbols are not mere substitutions for presently known alternative symbols - except at the simplest level.

To my mind, they represent the need for a new endorsement subject for those studying digital electronics.
Now for the good news. The new logic symbols are logical! They also offer a very clever means of simplifying circuitry in order that a circuit function can be more easily comprehended. Where a present-day block diagram and associated text is needed to explain a circuit function, the new logic symbols equally straighforwardly represent and fully define the circuit function without the absolute need for words. Where a complex device was previously represented by an annotated rectangle which required further reference to a data sheet to explain it, many such devices may now be fully defined by their symbol. There is also another great bonus. The new logic symbols can even remove problems associated with positive or negative logic conventions. What more could an engineer ask for? - save something simple!

The learning curve

Because of my involvement in the technical documentation industry, I have been aware of the forthcoming problem for some time. Apart from an engineer's revised national standard, there seems nowhere for him to turn to for practical help in this situation for, with the best will in the world, a standard cannot be regarded as bedtime (or even cof-fee-time) reading. Not that this is in any way meant to detract from the value of any given standard, for such is needed to clearly define requirements. By virtue of the need to unambiguously define, however, such works cannot be informal in their approach and are inherently different from the ideal teaching document which takes one idea at a time and develops it.

Brief notes on the new standard may be found in such publications as The TTL Data Book for Design Engineers (Texas Instruments), but when it is taken into account that such a treatise is far shorter than the actual standard, it is clear that it is far from exhaustive. It really does need a full-length book to do the subject justice.

Since the standards are weighty tomes, it might be supposed that I cannot tell all in three magazine articles. The aim here is therefore to give you a taste of the new logic symbols - to whet
your appetite as it were - and, hopefully, to convince you that this is not something that can be ignored.

Symbol composition

Symbols are used to represent binary logic elements. As depicted in Fig. 1, a symbol comprises: an outline, a general qualifying symbol denoting the function of the binary logic element, and input and output lines. The outline is rectangular and the length: width ratio is arbitrary. The preferred location of the general qualifying symbol is at top centre of the outline, although a central location is also acceptable.

It is preferred to have input lines on the left of an outline and outputs on the right of an outline, so maintaining left-to-right flow. Unless otherwise unavoidable, inputs and outputs should be placed on opposite sides of an outline. In special cases where a horizontal symbol is approved (e.g. counters and shift registers - although vertical orientation is still preferable if possible), a top-to-bottom data flow is preferred.
Whilst a general qualifying symbol is normally required within an outline in order to specify the function of that element, there are circumstances
where the function is completely defined by the qualifying symbols associated with inputs and outputs, thereby making a general qualifying symbol redundant.
Figure 2 depicts an example of a simple binary logic element: in a positive logic convention this represents a Nand gate with one negated input (the familiar circular qualifying symbol indicates negation - or inversion).
In order to reduce the space requirements on diagrams, separate symbols for basic functions may be abutted provided that there is no logic connection between logic elements where the common side/s of their outlines is in the direction of signal flow, and that there is at least one logic connection between the elements where the common side/s of their outline is perpendicular to the direction of signal flow.
This is made plain by the example given in Fig.3. It will be seen that there is 'at least one' logic connection between element d and each of elements a, b and c, although there is no logic connection between elements a and b or b and c.

Another way employed of gaining space is to embed one symbol inside another, as shown in

Fig.6. Examples of combinative devices - 7400 and 7437.

Fig.7. Example of a more

 exotic symbol - octal flipflop with common enable, the 74 LS377.Fig.8. Even more information in one symbol - the $\mathbf{7 4 6 9 0}$ 4-bit synchronous counter with output registers and multiplexed tri-state outputs.

Fig.4. Any symbol may be placed inside another providing that the result is unambiguous and the relationship between the two is clearly defined either by position or by internal connection lines.

Logic convention

I think it fair to say that today there is a general preference for a positive-logic convention, which implies that the H (high) level of a physical quantity - such as voltage - represents the logic 1 -state of a binary variable, and the L (low) level represents the logic 0 -state. A negative-logic convention is the converse of this. Because the physical aspects of a circuit vary according to the convention being applied, it is essential that the convention is always clearly defined. Ideally it should be stated on every diagram, but in practical terms, it should be sufficient to state the convention in use within a single document or working environment. The only real justification for using a negative-logic convention is where a negative supply is used for logic devices.

Providing that the logic convention has been defined, the conventional circle may be used as a qualifying symbol to indicate negation. If the situation arises where both logic conventions are mixed - say at the interface between two manufacturers' equipments - then a more complex situation arises: one that causes endless confusion with previous methods of logic representation.

The new logic symbology overcomes this problem in a very elegant fashion by the use of polarity indicators.

A polarity indicater is a triangularly shaped qualifying symbol placed on an input or output line such that the apex points in the direction of signal flow. The polarity indicator on an input or output implies that the internal 1 -state corresponds to an external L-level (i.e. low level). Thus the polarity indicator effectively converts between external physical voltage levels and internal logic states.

If the decision is taken to employ polarity indicators on a circuit diagram then logic conventions become superfluous they no longer apply. By implication, if this is undertaken, there should be no negation symbols on any inputs or outputs, since their presence demands a logic convention.
The use of polarity indicators does not mean that negation symbols are a total anathema on diagrams, and this is a potential source of confusion. It must be remembered that you are dealing with pure logic within a binary logic element, and here polarity has no significance! So negation symbols are always employed within elements to indicate negation, even if polarity indicators are employed externally.

Figure 5 depicts legal and illegal use of polarity indicators. To the left of the diagram (a) a mixture of polarity indicator and negation qualifying symbols are shown: the presence of so much as a single polarity indicator on a diagram bans the use of the negation symbol on any inputs or outputs, since it implies no logic convention in use. To the right of the figure (b) is shown a legal mixture of the symbols: external polarity
indicators show that a low voltage is required on the top two imputs to produce corresponding internal 1 -states, whereas the two lower inputs require high levels on their inputs to produce internal logic 1 -states. The internal negation symbols have their customary logic significance with respect to the common element, and the final output produces a high level for a logic 1 -state.

Combinative devices

Figure 6 depicts two simple combinative devices, and serves to illustrate a number of points. Firstly it serves to show that the lowest level of representation with the new logic symbols is at device level: here are depicted the 7400 and 7437 devices, referred to as quad 2 -input positive Nand gates and quad Nand buffer driver respectively. Note that the symbol for the 7400 employs external negation symbols and therefore this means that it is necessary to qualify the logic convention as positive for in the negative logic convention we would have an Or gate with negated inputs. On the other hand, the 7437 is shown with polarity indicators on the outputs, signifying that two high inputs on any gate input produces a low on the output. The gates in both devices perform identical logic functions and are here represented in two different ways. It is necessary to become accustomed to interpretting diagrams of either form, and both will therefore be used in this series.

To avoid any confusion, it may be assumed that throughout this series, a positive logic convention is used when such is applic-
able (i.e. when no polarity indicators are used).

The next point to note about Fig. 6 is that it is unnecessary to repeat a general qualifying symbol in an array of identical elements. The ' $\&$ ' general qualifying symbol in the upper element of the 7400 device is taken to apply to all four elements. The same applies for the 7437, but here the buffer general qualifying symbol is included in the upper element to signify its driving capabilities.

This is also a useful point to highlight the fact that the polarity indicator has the inherent property to indicate signal flow. As such, its presence on a particular signal line can make the need for a directional arrow (required to indicate non-preferred directional signal flow) superfluous.

Conclusion

That concludes this basic introduction to the new logic symbols. in the next article I shall consider some of the more complex aspects including dependency notation and the common control block, but in order to illustrate the fact that the more complex logic symbols are far from direct substitutions of existing symbols, I leave you with a foretaste of two of the symbols to be discussed in future parts. Figure 7 depicts an octal flip-flop with common enable and Figure 8 shows a 4 -bit synchronous counter with output registers and multiplexed three-state outputs. These symbols employ both dependency notation and the common-control box, but more of that in due course!

LITERATURE RECEIVED

'The biggest variety of semiconductors in any retail shop' is the proud boast of Cricklewood Electronics. It certainly seems to be bourne out in their stock list/ catalogue which also lists the passive components, hardware, tools and other equipment that they stock. Telephone, mail-order and credit-card purchases are acceptable as well as callers to the retail shop at Cricklewood Electronics Ltd., 40 Cricklewood Broadway, London NW2 3ET. EWW 259
surface-mounting transistors and diodes is available from Ferranti Electronics Ltd., Fields New Road, Chadderton, Oldham. OL9 0NP. EWW 259

A state-of-the-art home built preamplifier is available as a kit from B\&J sound. The design is modular and may be tailored to meet specific requirements or for matching existing equipment. Kit lists are available along with details of a power supply and a guide t ρ the selection components. Full constructional details are available
for $£ 6.90$. B\&J Sound. Kirkby Lane, Tattershall, Lincoln. LN4 4PI). EWW 260

A new series of Unix-based computers, built around National Semiconductors' 32000 family of processors and peripherals, is described in a brochure. The N932032 is a 3 -bit processor which is combined with a N932082 memory management unit to give 'Virtual memory', a method of dividing the available memory into pages.

Individual pages may be retained in the computer's internal memory or on disc and may be called as required. Using this system, the virual and phesical address spaces are divided into 32769 pages each of fixed size, 512 bytes. The series also includes the N932091 floating point unitto provide 32 and 64-bit floating point operations. The three chips are really a single unit and as v.l.s.i. methods improve, they could be combined into a single circuit. The brochure-also discusses the implementation of Genix a super-set of Unix. National Semiconductor (UK) Ltd., 301 Harpur Centre, Home Lane, Bedford MK40 1TR. EWW 257

IT WON'T COST YOU A PENNY.

BEING WITHOUT ONE COULD COST YOU DEARLY.

The 1985 Midwich catalogue is now available, absolutely free.

It's the most comprehensive catalogue yet, containing many of the latest and very best computer components on the market, at highly competitive Midwich prices and a service that is second to none.

Which means it will provide your organisation with a vital source of information including numerous
technical specifications and pin-out diagrams.
Fill in the coupon and send for your copy today.
You'll soon discover why no Gilray Road, Diss, Norfolk IP22 3EU organisation can afford to be without one.
MIDWICH

Name
Organisation/Company
Position
Address
\qquad
Tel. No.

Gould ...Innovation and Quality in Oscilloscopes

Dual-Purpose Storage...

The Gould 1421 Digital Storage Oscilloscope (DSO).
A Dual-Purpose DSO for Electronics and Transducer applications. Compare the benefitş of the low-cost 1421 and its suitability for two diverse application areas, with the performance of our competitors. The 1421 has a storage bandwidth up to 20 MHz - in single and dualchannel modes.
Take a look at the heavyweight performance details of this compact, lightweight DSO:

- No trace degradation with time.
- Storage of pre-trigger information.
- 2 MHz 8 -bit ADC for transient capture.
- 20 MHz repetitive signal storage.
- 1k store per channel.
- $\times 10$ post-storage expansion
- Pen recorder output.
- Single channel trace hold for waveform comparison.
- Conventional 'scope operation up to 20 MHz .

And all the usual benefits of a Gould Digital
Storage 'Scope.
Ask for more details now from
Gould Instruments Ltd., Roebuck Road,
Hainault, IIford, Essex IG6 3UE.
Telephone: 01-500 1000. Telex 263785.

Electronics

CIRCLE 46 FOR FURTHER DETAILS.

BRAND NEW ELECTRONIC COMPONENTS

- RESISTORS
- CAPACITORS
- TRANSISTORS
- POTENTIOMETERS
- PLUGS
- MULTIMETERS
- VOLTAGE REGULATORS
- IC SOCKETS
- DIODES
- PRESETS
- LEDS
- SOCKETS
- SWITCHES
- INTEGRATED

CIRCUITS

Write or Phone for full Trade Catalogue HARRISON ELECTRONICS

 22 MILTON ROAD, WESTCLIFF-ON-SEA, ESSEX SSO 7JX Tel: (0702) 332338SEMI-CUSTOM INSTRUMENTATION \& CONTROL SYSTEM FOR AUTOMATION, RESEARCH \& EDUCATION.

[^2]
Introducing GPIB

Having first been considered some 20 years ago, GPIB could probably be improved upon but it is so well established that it is likely to remain the foremost standard for connecting instruments to computers for many years yet.

General-purpose interface bus, GPIB, is a method used throughout the world for linking instruments and computers. Providing a means for both setting up instruments and reading information from them directly back into a computer ready for processing, the bus's main applications are in research and development and in automatic testing, measurement and quality control systems. Controlling instrumentation by computer means

- faster processing
- reduced risk of human error - increased accuracy through computer correction techniques - elimination of tedious repetitive tasks
- convenient data storage and hard copy

Internationally, GPIB is defined by the IEC625-1 standard and in America by ANSI MC1.1 and IEEE4881978. It is often misnamed the
'IEEE bus' and called HPIB by its designers, Hewlett Packard who started its development in 1965. The bus is also covered by a British standard, BS 6146 Carrying eight-bit parallel data and using eight control/ handshaking signals, GPIB is generally much faster than a serial link and, being designed for a specific task, it has an edge over other common microcomputer buses where computer-controlled instrumentation is concerned But as with all such standards, it is not the ideal solution for all applications; the main reason for using it now, some 20 years after its conception, is the large number of GPIB-compatible instruments and controllers available.

Cost of implementing the bus is high. One short-cut is to use a microcomputer with an addon interface such as those available for the BBC microcomputer, QL, Apple, IBM PC and DEC Rainbow.

Alt rough still too expensive for most enthusiasts, these relatively cheap add-ons bring automatic measurement and quality control - or at least the bus to provide them - within the reach of even the smallest of organizations. Equally cheap instruments and software, not to mention cables, may be a little harder to come by.
There are a few generalpurpose microcomputers like the Conmodore Pet, 64, 4000 8000 700, RML Link 480Z, Sharp MZ80K and IBS750 that have built-in GPIB interfaces and there are some mainly for design and research, like the HP Technical Computers range, that are designed with GPIB control in mind. Lastly, there are computers and controllers whose hardware and software is designed solely for use in GPIB applications.

GPIB-compatible instruments, ranging from tape drives to communications
reseivers and logie analysers, are also expensive. Besides having the digital control and interface circuits necessary for computer control, the majority of bus-controllable instruments also have manual controls and readouts which increase their cost. We are still at the stage where most instruments are designed for manual use with GPIB compatibility available as an add-on.

Incompatibility

The standards mentioned above only specify electrical and mechanical parameters for linking units together - they don't say what data passing through the bus should look like. Sadly, this means that there is no guarantee that a system happily controlling a GPIB instrument from one manufacturer will work with a similar instrument from another source. Suggestions tor code and format convention - like

GPIB control signals

Signal Description

DAV Data valid, talker tells listener that data is available
NRFD Not ready for data, from unready listener
NDAC Not data accepted, from listener while getting data
IFC Interface clear, from controller to set all devices to a known state ATN Attention, from controller to alert bus devices before handstake of a message on the data bus
SRQ Service request, from any
device needing service from the controller
REN Remote enable from controller to put devices under bus control
EOI End or identify, from talker to indicate that current data byte is the last one

Datron's Autocal precision multimeters

IEEE 728, BS6146 part 2 and IEC 625-2 have only recently appeared.
On the brighter side, GPIB signal functions are defined, which means that one should be able to resolve compatibility problems by rewriting the programs used to control the instruments. Because of these incompatibilities, many GPIB product manufacturers freely provide documentation and application notes relating to their own protocols and data formats. There are no active elements in the bus itself, i.e. all signals passing along the bus are produced within the instrument or a computer with a GPIB controller, which makes the task easier

The bus

There are three terms used to describe devices connected to the GPIB - talkers, listeners and controllers. Instruments are either talkers or listeners or both. Because these terms are normally associated with humans, you may find it a little unfriendly that GPIB talkers and listeners do so to the bus and not to the user.

A controller talks and listens
but it also dictates what goes where on the bus. There may be more than one controller on a bus but only one is allowed to act at a time. Controllers vary from a dedicated piece of apparatus with special software, in which case the user will need to know little of how the bus works, to a microcomputer with a GPIB interface which the user has to program in a high or lowlevel language.

In the most basic system there may be just a talker and a listener. At the other end of the scale, although the standard only allows for 15 devices to be connected to the bus on a cable of $u p$ to 20 m , there are products called bus extenders and multiplexers which share out an allocation. Not all devices connected to the bus need be measuring instruments; there are converters, for say RS232 to GPIB, floppy-disc drives and printers to mention but a few.

Essentially, the bus carries an eight-bit parallel data word, three data-transfer control signals and five interface management signals. All control signals are at t.t.l. level and active low. The bidirectional
data bus not only carries data bus also address and status information at rates of up to 250 kbyte /s (higher rates are possible under certain circumstances). Incompatibilities between products from different manufacturers - and, according to Tektronix even between different instruments from the same manufacturer arise through differences in the form of the data. For example, some systems may use Ascii and others hexadecimal-form data. The table gives some idea of what the bus control signals are.

There are large-scale integrated circuits, such as the Texas 9914, which reduce the complexity of implementing GPIB and are gradually bringing down the price of both instruments and controllers. Using such an i.c., the GPIB section of a computer need only consist of three i.cs, two of which are bus drivers. Software and the cost of instruments for use on the bus are the biggest headaches for most.

Finally, note that two types of connector are found on GPIB instruments, a 24 -way type on IEEE488-based equipment or a 25 -way type defined in the IEC standard.

GPIB Instruments

Prices are given here only as a guide and should be checked with suppliers. Value-added tax is not included.

Adret Electronique make several GPIB instruments for use in telecommunications: two signal generators, models 730A and 740A, covering $300 \mathrm{~Hz}-180 \mathrm{MHz}$ and 100 kHz to 1.12 GHz respectively; a universal r.f. generator of high spectral purity for up to 1.3 GHz with pulse modulation capability, for use with radionavigation systems; a $15-200 \mathrm{kHz}$ standard frequency receiver; a $2 \mathrm{kHz}-18 \mathrm{GHz}$ signal source attenuation calibrator, with a dynamic range of -130 dBm to +20 dBm ; and a programmable voltage and current reference standard. Racal-Dana Instruments Ltd., Duke Street, Windsor, Berkshire SL4 1SB. EWW210

Aim Instruments offer at present just one GPIB model, a low-distortion sine-wave oscillator covering 9 Hz to 330 kHz . The LD0501 (£985) has ten non-volatile memories, a quadrature output and a liquid crystal display. It can also be controlled from an RS232 interface. Aim Instruments, Edison Road Industrial Estate, St Ives, Huntingdon, Cambridgeshire PE17 4NF. EWW211

Amplicon's $4 \frac{1}{2}$-digit panel meter is claimed to be the first to have an integral IEEE interface. Features of the model 87 include led display,

160 dB common mode rejection and 0.01% accuracy. With the interface included the basic price is $£ 210$. Other models offer $3 \frac{1}{2}$-digit display and liquid crystal display. Amplicon Electronics Ltd., Richmond Road, Brighton, East Sussex BN2 3RL. EWW212

Ando make instruments for use in optical fibre communications. Model AQ-1301 is a light source which can be swept from 0.6 to 1.6 micrometres and is intended for measuring characteristics of optical transmission systems. There is a choice of three optical power meters of differing sensitivities, all of them suitable for normal or laser light. Other models include an optical wavelength meter for measuring the centre-wavelengths of emission devices, an optical fibre reflectometer (model AQ-1720), an optical spectrum analyzer (AQ1417B) and two optical loss measurement systems. Aspen Electronics Ltd., 2-3 Kildare Close, Eastcote, Ruislip, Middlesex HA4 9UR. EWW213

Bird: the model 4381-832 RF Power Analyst digital wattmeter is available with a GPIB interface from Aspen Electronics Ltd., 2-3 Kildare Close, Eastcote, Ruislip, Middlesex HA4 9UR. EWW214

Boonton produce several instruments suitable for GPIB control. For radio frequencies, there is an autoranging
millivoltmeter covering 10 kHz to 1.2 GHz and giving readings in mV , dBmV and dBm ; a single or dualchannel microwattmeter for $100 \mathrm{kHz}-50 \mathrm{GHz}$ which stores calibration data for up to eight sensors; and an f.m./a.m. modulation meter. Also available: a 1 MHz automatic bridge and an adaptor for interfacing any Boonton digital meter to GPIB. Euro Electronics Ltd., Lancaster Gate House, 319 Pinner Road, Harrow, Middlesex HA1 4HF. EWW215

Brown-Boveri make a microprocessor-controlled portable multimeter (model M2110-01) with ${ }^{*}$ a 4_{4}^{3}-digit liquid crystal display. It has seven operating modes, including one for testing capacitors between 10 pF and 3 mF ; it handles direct current measurements up to 20 A and on a.c. ranges it measures true r.m.s. values. British BrownBoveri Ltd., Normelec Division, Grovelands House, Longford Road, Exhall, Coventry CV7 9ND.

EWW216

Brüel \& Kjær's catalogue lists some 16 instruments equipped with a GPIB interface and several others which can be connected via a special adaptor. The instruments include audio spectrum analyzers, fast Fourier transform analyzers, a filter set, a digital graphics recorder, an X-Y plotter, a digital cassette recorder, a portable thermal printer and diagnostic

I PUSH-BUTTON PERFECTION

The great thing about the IC-M5 is the quick and easy access to its functions

This is made possible thanks to the 16 button keyboard entry to all international and U.S.A. channels, semi-duplex, memories, memory scan and priority functions. Private channels can be easily installed.

This VHF 5 watt marine transceiver is water-resistant and boasts features found on no other unit, they include: all U.K. channels plus ten weather channels (U.S.A. only), and ten owner-programmable memories with intemal lithium memory backup. Three built-in scanning systems for memories, all channel and weather channel scanning

Dual watch enables you to simultaneously monitor channel 16 and communicate one other channel of your choice.

Easy-to-read digital readout, day or night. Ready to go with the accessories needed to get you operational.

The IC-M2 and M12 handheld marine transceivers will still be available

The World System

Thanet Electronics Ltd.

Suppliers of Radio Communication Equipment to the Ministry of Defence 143 Reculver Road, Herne Bay, Kent, England
Tel (O2273) 63859/63850. Telex 965179 .

CIRCIE 85 FOR FURTHER DETAIIS.

TURT YOUR GOMPUTER ITIO AREAL TMEIMAEE PROCESSOR WIH THETMLEEDIFRMMESTORE

IMAGE III is a high resolution Frame Store which can capture and display pictures in real time from any 625/5\%5 line video source. Once captured in the 512×512 frame memory, the computer can access the stored image for processing or manipulation. The store utilizes 6 bit A / D and D / A converters to give up.to 64 grey levels per pixel. A major fealure of this store is that if a lower resolution picture is selected then the store can be partitioned to store multiple pictures, e.g. for $256 \times$ 256 resolution, four pictures can be stored. This allows the computer to compare two or more pictures captured from the same or different video sources.
The IMAGE III Frame Store turns your computer into a low cost image processing system and opens up a range of possibilities such as Robotic Vision, Medical Imaging, Factory Inspection etc. Alternatively the store can be used in applications where picture data is arriving slowly e.g. weather satellite transmissions, ultrasonic imaging, enabling the user to have a steady display without the need for long persistence display devices.
IMAGE III is available for the IBM PC, Apple and BBC computers. The interface cardconnects directly to the expansion ports of the computer and software is supplied which demonstrates the features of the store.

The TV Picture Store Board used in IMAGE III was developed by British Telecom Research Laboratories and is manufactured under licence by Eltime Ltd. This board can be purchased separately for OEM applications.
Tel: 06215950

CIRCLE 30 FOR FURTHER DETAILS
 stores up to 100 input channels on a standard tape cartridge
ultrasound equipment. Brüel \& Kjær (U.K.) Ltd., Cross Lances Road, Hounslow, Middlesex TW2 2AE. EWW217

Burleigh Instruments make a

 meter which can measure the wavelength of any c.w. laser operating between 0.4 and 4 micrometres. Lambda Photometrics Ltd., Lambda House, Batford Mill. Harpenden, Hertfordshire AL5 5BZ EWW218CEC make a GPIB-compatible signal conditioning system which, they say, can improve test sysyems and save the user money. The PSC8000 is of modular construction, with up to 12 channels per 19 in . mainframe. Each channel has plugin modules for interfacing to strain gauges, thermocouples or other sensors. CEC Instrumentation Ltd. Lennox Road, Basingstoke Hampshire RG22 4AW. EWW219
Chase offer a pair of high performance receivers covering 25300 MHz and $25-1000 \mathrm{MHz}$, for applications such as field-strength measuring, interference measuring and radio monitoring. The sets can be used as selective r.f. voltmeters, even in the presence of strong r.f fields. Accessories include dipole, log-periodic and biconical aerials. Chase also supply a controller for r.f.i. and e.m.c.-measuring equipment, model EC5000. This has a 6 in. monochrome display monitor and one or two $3_{2}^{1} 1$ in disc drives. The operating system and Basic language are compatible with the BBC Micro. Chase Electrics Ltd., St Leonard's House, St Leonard's Road, London SW14 7LY. EWW220

CIL produce a variety of instruments with GPIB capability. The Multi-Monitor TA880 is a voltmeter, millivolt source, temperature indicator, thermocouple simulator and strain indicator all rolled into one. Other models include multi-channel a-to-d converters with 12 and 16 bit accuracy (prices from £475), a thermocouple converter, a multifunction control and measurement interface and a GPIB bus analyzer. CIL also offer a GPIB interface card for the Apple computer ($£ 130$). CIL Microsystems Ltd., Decoy Road, Worthing, Sussex BN14 8ND. EWW221

Clarke-Hess's wideband volt-ampere-watt meters provide true r.m.s. measurements independent of wave-shape and power factor. Model 255, the cheapest, costs $£ 1,885$ with GPIB interface. Lyons Instruments Ltd., Ware Road, Hoddesdon, Hertfordshire EN 11 9DX. EWW222
Cushman make an automatic test set for mobile radio equipment, model CE6488. Racal-Dana Instruments Ltd. Duke Street, Windsor, Berkshire SL4 1SB.

EWW223

Datacapture offer a compact portable time-related measurement system. The Datablock DB4000 accepts a variety of sensor inputs, can memorise hundreds of thousands of measurements to an accuracy of 0.025% and can store data indefinitely on plug-in exchangeable memory boards. It can measure and display up to 16 inputs at once. Prices start at $£ 3,385$, including GPIB interface and software. Datacapture 1984, 21 Bridge Street, Hemel Hempstead, Hertfordshire HP1 1EG. EWW224

Datalab have developed a range of filters especially suited to highspeed data acquisition and waveform analysis systems. The DLF-100 is a series of finite impulse response decimating filters, which the company say will make new data acquisition architectures possible and will improve performance of existing systems. Also available is a range of waveform recorders. Model 912 (about $£ 5,000$ with GPIB interface) has two channels, a split timebase mode, signal capture at up to 5 MHz , a 4 Kbyte memory, expansion possibilities and an output to drive an X-Y plotter. Accessories are available. The modular 2000 series offers up to 30 channels with wide dynamic range and sampling rates of up to 50 kHz : prices depend on facilities, typical systems costing $£ 60,000$ or more. Data Laboratories Ltd., 28 Wates Way, Mitcham, Surrey CR4 4HR. EWW225

Data Proof produce a scanner for comparing standard cells using the method recommended by the U.S. National Bureau of Standards. Model 160A (for up to 16 cells) costs $£ 4,280$ and model 320A (up
to 32 cells) $\{7,340$. Lyons Instruments Ltd., Ware Road Hoddesdon, Hertfordshire EN 11 9DX. EWW226
Datron's Autocal digital multimeters feature bus control of almost every function except mains on/off. Prices range from $£ 1,095$ to about $£ 3,000$ according to the optional extras fitted. These meters can be calibrated in situ using Datron's two automatic calibrators, which are claimed to provide levels of accuracy previously obtainable only in temperature-controlled laboratories. The 4000 (d.c.) costs from $£ 8,495$ and the 4200 (а.с.) from $£ 15,995$. Datron Instruments Ltd., Hurricane Way, Norwich Airport, Norwich NR6 6JB. EWW227

DI-AN Microsystems provide through their DMS550 system a way of interfacing GPIB controllers to sensors and actuators both digital and analogue. Data transfer is possible at up to 250 kHz . A mother-board accommodates the user-configurable i/o modules: there is a range of ten at present. DI-AN Microsystems Ltd., Mersey House, Battersea Road, Heaton Mersey, Stockport, Cheshire SK4 3EA. EWW228
Difa's Sicos signal conditioning system is built up of modules such as programmable filters and precision amplifiers. A choice of ilter characteristics is available and the frame can house up to 64 channels. If only two channels are required, there is a lower-priced alternative in the PDF3700 (from $£ 1,900$). Telonic Instruments Ltd. Boyn Valley Road, Maidenhead, Berkshire, SL6 4EG. EWW229

Dolch make a series of GPIBcontrollable logic analyzers having up to 64 channels and covering frequencies to 300 MHz .
Accessories include a probe for tracing and recording GPIB activity Dolch Logic Instruments Ltd., Foresters House, 4 London Street, Andover, Hampshire SP10 2PA. EWW230
E.D.A. expect to launch in May or June a 10 Mbyte Winchester disc drive which will allow any computer with a GPIB interface to access the disc without the need for a separate interface card or operating system.

Price is likely to be $£ 1,800$. Already available is E.D.A.'s GPIB interface for the Apple II computer ($£ 250$). E.D.A. (Software) Ltd., 10 Victory Road, Chertsey, Surrey. EWW231
E.I.P. specialize in microwave test and measurement instruments. The model 928 is a combined sweeper and microwave source covering $1-18 \mathrm{GHz}$, with a c.r.t display. Model 545 is a microprocessor-based $10 \mathrm{~Hz}-18 \mathrm{GHz}$ counter with 12 -digit led display; and model 548 A is similar, but with an upper limit of 110 GHz . The source locking counters model 575 (up to 18 GHz) and model 578 (up to 110 GHz) can convert any conventional swept-frequency signal source into a synthesizer. Also available is the model 451925 MHz 18 GHz pulse counter. Racal-Dana Instruments Ltd., Duke Street, Windsor, Berkshire SL4 1SB. EWW232
Electronic Development Corporation manufacture an a.c. calibrator covering 10 Hz to 111 kHz with amplitudes from 0.1 mV to 111 V (model $4500, \mathfrak{£} 7,245$) and a companion d.c. calibrator (model $520 \AA, £ 3,410$). Lyons Instruments Ltd., Ware Road, Hoddesdon, Hertfordshire EN11 9DX. EWW233

Exact Electronics produce a 20 MHz programmable pulse and function generator with a very wide selection of waveforms and operating modes. It also has a selfcalibration facility and non-volatile memory capable of storing 20 complete front panel settings. Racal-Dana Instruments Ltd., Duke Street, Windsor, Berkshire SL4 1SB. EWW234
Farnell Instruments: items with GPIB control include the low-cost DTS-12B two-channel 12 MHz digital storage oscilloscope ($£ 980$); a programmable auto-ranging bench power supply providing more than 1 kW at up to 60 V and ud to 50 A (AP60/50, £1,700); auto-ranging signal generators for 10 Hz to 1 GHz or 2 GHz (from $£ 4,300$); the SSG520 $10-520 \mathrm{MHz}$ synthesized signal generator, designed especially for maintenance of mobile communications equipment (from $\mathfrak{£} 3,000$); and a test set for radio transmitters of up to 100 W output (model TTS20, from about $£ 3,900$). Farnell Instruments Ltd.,

THE ANSWER TO LOW COST IEEE 488 BUS CONTROL

The EDA Instrument Controller combines low cost with flexibility.

Based on the Apple lle computer, the EDAJC is fitted as standard with an IEEE 488 bus controller, clock/ calendar, 80 column $\times 24$ line VDU, 128 k user RAM, floppy disk storage, and 80 column printer. Optional extras include 5 mByte Winchester disk drive, A3 plotter, and a range of parallel and serial interface ports.

Programming is in BASIC or PASCAL and the IEEE 488 bus can be controlled with simple to use high level commands.

The EDAJC is ideal for use in factories and laboratories for test and process control work.
 Prices:

EDA Instrument Controller $£ 1950.00$ + VAT 5 mByte Winchester Disk p.o.a. A3 Plotter p.o.a. IEEE 488 Controller Card (Apple BASIC version) $£ 250.00$ + VAT
(SSM PASCAL version) $£ 350.00$ + VAT

Available now from:

(Software) Ltd.
10 Victory Road, Chertsey, Surrey KT16 8BL Telephone: 0932863758 Trade inquiries welcome.

Agents in: Australia, Austria, Belguim, Canada, Finland, France, Germany Greece, Holland, Hong Kong, Ireland, Italy, Japan, New Zealand, Norway Scotland, South Africa, Sweden, Switzerland, Taiwan.

The CM1600 Measurement and Control Interface from IMS Electronics

Unique construction allows flexibility Four module positions, each with four channels
Each module may be selected from an ever increasing list including
± 10 volt outputs, 16 bit resolution

- $\pm 10 \mathrm{~V}, 1 \mathrm{~V}, 100 \mathrm{mV}$ (Software Selectable) inputs,

16 bit resolution

- Thermocouple inputs (linearised)
- Single pole change over relays (mains rated) CHOICE OF IEEE-488 or RS 232C INTERFACE Z80 MICROPROCESSOR BASED

Optional extras include.

Dot matrix panel printer (as illustrated)
$32 K$ RAM for assistance in data acquisition

IMS Electronics
Unit R6, Riverside Industrial Estate, Bridge Road, Littiehampton, West Sussex BN17 5DF
SALES TELEPHONE (0903) 723492

Sandbeck Way, Wetherby, West Yorkshire LS22 4DH. EWW235

Fluke's large catalogue includes some 80 instruments with GPIB control. Among these are power sources, thermometers, signal generators, counters, calibrators, p.c.b. testers, data loggers, instrument controllers, disc drives, printers and an X-Y plotter. A recent addition to the range is the 8840A digital multimeter (from $£ 735$ with GPIB interface fitted): this has a 5_{2}^{1}-digit vacuum fluorescent display, fast autoranging and a built-in self-test routine. Fluke (GB) Ltd., Colonial Way, Watford, Hertfordshire WD2 4TT. EWW236

Frequency Devices' model 9016 programmable multi-channel filter system is a 19 in . enclosure with a vacuum fluorescent digital display and space for up to 16 filter cards. At present cards are available in a choice of three low-pass transfer functions. Price is $£ 4,690$. Lyons Instruments Ltd., Ware Road Hoddesdon, Hertfordshire EN11 9DX. EWW237
GenRad produce a range of automatic test equipment, among which are systems for board testing and for examining and sorting digital and linear components. GenRad Ltd., Norreys Drive, Maidenhead, Berkshire SL6 4BP EWW238
Giga Instrumentation manufacture a pair of $1-18 \mathrm{GHz}$ microwave generators (models GR1100/1300) for testing radar sets. The YIG tuned oscillator can be set to within 100 kHz and the internal pulse modulator provides 60 dB of carrier suppression. Other products are the GUl'200/1300 signal generators for 10 MHz 26.5 GHz , also featuring a YIG oscillator, and the GP2000 programmable sweep generator for the same range. Racal-Dana Instruments Ltd., Duke Street, Windsor, Berkshire SL4 1SB. EWW239

Global Specialties make a ninedigit, two-channel 225 MHz computing counter-timer with a 1.2 GHz prescaler (model 6007/T); an eight-digit counter-timer with direct input to 520 MHz (model 6006 T); a universal $4_{2}^{\frac{1}{2}}$-digit wattmeter (model UDW4501) for up to 50 kHz , with a dynamic range of 100 nW to 7.5 kW ; and a family of low-cost true-r.m.s. digital multimeters. All are available with

GPIB interface. Global Specialties Corporation, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ. EWW240

Gould have a range of digital storage oscilloscopes with prices beginning at $£ 2,950$. For this you get a dual-trace oscilloscope (model 4035) with 20 MHz bandwidth, a 1 K word store on each channel, a plotter interface and a cursor measurement facility with alphanumeric readout of time and voltage. An optional keypad ($£ 340$) allows further manipulation of stored traces. At $£ 4,995$ is model 5110 which gives 100 MHz bandwidth, keyboard menu control and battery-backed memory for eight panel settings and 16 waveforms. These instruments can act as talkers as well as listeners and can transmit waveforms to the bus for analysis or for data acquisition. Gould Instruments Ltd., 2-8 Roebuck Road, Hainault, Ilford, Essex IG6 3UE. EWW241

Guildline make a digital platinum resistance thermometer covering $-200^{\circ} \mathrm{C}$ to $+240^{\circ} \mathrm{C}$ with a resolution of 0.001° and an accuracy of $0.01^{\circ} \mathrm{C}$. The model 9540 costs $£ 2,760$. A digital wattmeter, model 7200 , gives direct digital measurement of power, voltage, current and energy, with 50 p.p.m. accuracy at all power levels, for $£ 22,870$. Lyons Instruments Ltd., Ware Road, Hoddesdon, Hertfordshire EN11 9DX. EWW242

Gulton's Computrak 6100 programmable recorder plots as many as six channels at once on its built-in thermal printer, adding chart grids, time and text annotations automatically. A data summary print-out gives a permanent record of the system configuration. Also available are three free-standing thermal printers. Gulton Ltd., Maple Works, Old Shoreham Road, Hove, East Sussex BN3 7EY. EWW243

Harlyn Automation manufacture instrumentation and control peripherals for use in automated data logging. The 3700 series MAPS data logger system includes three mainframes (all with integral GPIB interface) and an extensive choice of plug-in modules. The R6B mainframe, a 19 in rack-mountable unit for up to six modules, with 1 MHz clock, costs $£ 650$. Modules include a 10 -channel 2 -pole scanner with reed relays at around $£ 295$, and an eight-decade battery-backed
event counter for $£ 350$. Harlyn Automation (Congleton) Ltd., 27 North Street, Congleton, Cheshire CW12 1HF. EWW244

Hendry Electronics specialize in programmable variable power supplies. Units in their range can handle maximum loads of up to 2000 VA . Prices begin at $£ 473$ for a basic plug-in 30VA card, with GPIB control costing $£ 591$ extra for a single-channel interface. There is also a high-power mil. spec. range Hendry Electronics Ltd., 2 Fitzalan Road, Arundel, West Sussex BN18 9JS. EWW245
Hewlett-Packard invented the GPIB (or rather, HPIB) and their instrumentation range is accordingly all-embracing. Their 688 -page catalogue lists more than 180 instruments with bus capability, plus 27 ready-made HPIB measurement systems applications of which include data logging, data acquisition and control, network analysis, spectrum analysis, frequency stability measurement, signal generator calibration, transceiver testing, testing of circuits and components, pressure recording and telecommunications network surveillance. Hewlett-Packard Ltd., Nine Mile Ride, Easthamstead Wokingham, Berkshire RG11 3LL. EWW246

Hitachi's range of oscilloscopes includes the VC-6041, which costs $\mathcal{£} 4,897$ with GPIB interface and can store 40 MHz waveforms with its two 4000 -word digital storage channels. A time-axis averaging function allows the user to average out noise on input signals. An instrument with a more specialized purpose is the MF-68 automatic telecomparator system. Linked to a television camera and an optical microscope, this uses the tv signa to make line-width measurements on i.c. wafers and masks, magnetic heads and so on. Hitachi Denshi (U.K.) Ltd., Garrick Industrial Centre, Garrick Road, London NW9 9AP. EWW247

ICS offer a speech synthesizer The standard vocabulary includes nearly 300 entries which are spoken in what the makers describe as a natural masculine voice. Manual and automatic controls are provided for editing and formatting the spoken messages. Other products are bus switches and expanders and a variety of bus input and output modules; for example, a low-cost
bus interface for programmable power supplies. Amplicon Electronics, Ltd., Richmond Road, Brighton, East Sussex BN2 3RL EWW248
Infratek produce a three-phase volt-ampere-watt meter which gives true r.m.s. measurements from 0 to 10 kHz to an accuracy of 0.5%. Ranging is automatic or manual and extends to $1 \mathrm{kV}, 30 \mathrm{~A}$ and 90 kVA (optional accessories push the current limit even further). Seltek Instruments Ltd., The Old Pied Bull, High Street, Stanstead Abbotts, Hertfordshire SG12 8AB EWW249
Intepro Systems' instruments for the automatic testing of regulated power supplies incorporate modular hardware and software and can be configured and reconfigured easily by the user. Units are available to suit power supplies of 100 W to lkW and more Omnitest Ltd., Highcliffe House, 411-413 Lymington Road, Highcliffe, Christchurch, Dorset BH23 5EN. EWW250

Interface Technology make a range of digital testing equipment, among which is the model 488 IEEE bus monitor and controller (around $£ 6200$). This can be triggered on a specific device address and can record up to 511 transactions. including data and control line status. Microsystem Services, P.O Box 37, Lincoln Road, Cressex Industrial Estate, High Wycombe, Buckinghamshire HP12 3XJ. EWW251
Itronic-Fuchs manufacture a GPIB-controlled pneumatic switch system. Eight switch modules are housed in a compact unit, providing up to 64 lines of control. Expansion to 256 lines is possible. A typical application is the testing of computer keyboards using pneumatically-controlled artificial fingers. Omnitest Ltd., Highcliffe House, 411-413 Lymington Road Highcliffe, Christchurch, Dorset BH23 5EN. EWW252

Iwatsu's range includes the SAS8130 and SM2100B high-speed waveform analyzers, with sampling heads available for frequencies up to 12.4 GHz ; the SS5802 triple-trace 10 MHz digital storage oscilloscope; a 100 MHz storage oscilloscope (TS 8123) incorporating a special scan converter tube and having equivalent clock rate of 25 GHz ; the SC7501 12-channel data-logging

This waveform acquisition and processing package from Tektronix is aimed at applications such as fibre optic testing

Our cards take the gamble out of systems integration!

Take a look at our cards for LSI-II QBus, VME Bus, DEC Unibus, STD Bus, IEEE 488 Bus, VERSA Bus, Multibus, IBM PC and Digital Rainbow.

You'll find we give more value or more functions, or save you money or space in your backplane.

Our technical support is by people who really know computer buses, our sales and service engineers are factory trained to know our products.

Whether its serial I/O, analog I/O, digital I/O, comms, bubble memory, system fault analysis or bus conversion, our board level products give you more, to help you build a better system.

For the best deal in cards call us, we'll see that YOU WIN.

LSI-II SERIAL I/O
Model 304 four channel serial I/O port for interfacing Q Bus to asynchronous serial data channeis. A direct replacement for the DLV1 1-J, totally software compatible. Each port may be independently configured for RS232C, RS422 or RS423, at nine jumper selectable data rates from 150 to 38.4 K baud generated by an on board clock. An external clock may be provided for up to 250 K baud data rate
Four level vector interrupt structure capability for multi user environments with the possibility to configure channel four as the system consul. All this on a standard $8.9^{\prime \prime} \times 5.2^{\prime \prime}$ card with despatch the same day you order.

Amplicon Electronics Limited Richmond Road Brighton East Sussex BN2 3RL UK CIRCLE 94 FOR FURTHER DETAILS:

CILSHE CHOICE

TA 880

Multi monitor IEEE RS232 for temperature, voltage, strain. indicator and simulator .

$$
\text { circle no } 96
$$

DTR 1681
IEEE and RS232 digital voltmeter with 16 K BASIC option for AC and $D C$ to $\pm 0.01 \%$
cícle no 97

MFI 1010

Programmed to become a* specified instrument or system via RS232 for industry
circle no 98

DTR 1000
Up to 10 sec . at 20 KHz audio transient recorder for analysis and playback - IEEE RS232 cirćle no 92

SGA 1100
Multi purpose signal conditioning system for strain and temperature measurements circle no 102

DTR 1680°
Dual IEEE and RS232 digital voltmeter with 16K BASIC option * for $A C$ and DC to $\pm 0.01 \%$
\therefore circle no 100

DTR 1682

Front panel programmable 16 K * BASIC 64 K RAM IEEE and RS232 digital voltmeter : çirćle nơ 103

DTR 3000

Signal processing computer with data acquisition and audio large scale storage

FOR THE FUTURE

CIIL

PCI 6380

Intelligent IEEE or RS232 intertace with 8 analogue inputs. 4 outputs, 4 relay contacts

PCI 1280
High speed 16 bit A-D cenversion for computers with IEEE or RS232 links ${ }^{\circ}$
circe no 108

PCI 2080

8 channel relay closure unit to operate from the IEEE or RS232 links
circle no 111

CH ©0...................

PCI 1002

12.chánnel IEEE compatible thermocouple converter based on the PCI 1000 .
circle no 109

PCI 3080 .

8 chaninel D-A converter designed to operate from the IEEE or RSZ32 links
circle no 106

PCI 5080
IEEE-488 Bus analyzer record/ playback facilities and transparent to BUS
circlẹ no 107

DTR 1580

High speed ($20 \mu \mathrm{~S}$) large storage intelligent 16 bit A-D for IEEE and RS232

PCI 1000
Low cost 16 channel 12 bit IEEE analogue to digital converter
circle no 112

PUPPI \& PUSSI
Low cost multifunction interfaces for Commodore 20 to 80 series and SX64

VERSATILE INTERFACE BOARD FOR USE WITH OUR 6809 OR 6502 CONTROLLERS

- Program in BBC BASIC, FORTH, PASCAL
- 100 Digital I/O Lines
- Real Time Calendar Clock
- RS422/423 Serial Channel
- Centronics Printer Port
- 8 Programmable Timers
- Full Technical Support
- 6502 and 6809 Development Systems
- Add:

High Resolution colour graphics
12 Bit ADC
IEEE Talker listener controller
Eprom Programmer
Industrial Racking System

CIRCLE 79 FOR FURTHER DETAILS.

SE 2650 BUS CONTROLLER THE IEEE 488 BUS CONTROLLER

MEETS ALL THE DEMANDS OF TODAY'S MEASUREMENT AND CONTROL SYSTEMS

- PLUS DESK TOP COMPUTING POWER AS AN ADDED BONUS.

JUMPONTHEIEEE BUS

SE 2750 INTERFACE CONVERTER
A COMPLETE SOLUTIONTO YOUR INTERFACING
PROBLEMS BETWEEN THE IEEE BUS, SERIAL,
8/16 BIT PARALLEL AND BCD DATA SYSTEMS.

Phone or send for details of the range of lEEE Bus compatible instruments from THORN EMI Datatech:

SE 2650	- IEEE Bus Controller
SE 2450	- Frequency Response Analyser
SE 1700	- Programmable Digital Filter System
SE 2550/60	- Transient Recorders
SE 2750	- Interface Converter
SE 3000/	
SE 64000	- Instrumentation Tape Recorders

multimeter with built-in thermal printer; and an A3-size graphics plotter (SR6602) with one pen or six. STC Instrument Services, Edinburgh Way, Harlow, Essex CM20 2DF. EWW253

Keithley offer a large choice of GPIB instruments: among them are the model 195A six-function programmable multimeter (ranges include temperature in ${ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{C}$) at £895; a programmable electrometer and voltage source which can handle over 14 decades of current measurements and 17 of resistance (model 617); a nanovoltmeter (model 181, £3,395), an autoranging picoammeter (485, $\mathcal{£} 1,020$) and a microvolt multimeter (197, upwards of $£ 700$); a multifunction programmable current and voltage source which can source or sink up to 100 W (model 228); the 705 and 706 system scanners with 50 and 100 -channel capacity and a range of seven switching cards; and the DAS Series 500 workstation for data acquisition and control. Keithley Instruments Ltd., 1 Boulton Road, Reading, Berkshire RG2 0NL. EWW254

Kemo claim to offer the widest range of variable filters manufactured in Europe, with cut off frequencies between 0.001 Hz and 1 MHz and bandpass response down to d.c. In most instruments each filter channel may be switched into either high-pass or low-pass mode. Many models are now available with Cauer response for anti-aliasing applications in digital systems. Kemo Ltd., 9-12 Goodwood Parade, Elmers End, Beckenham, Kent BR3 3QZ. EWW255

Kikusui's products include storage oscilloscopes, programmable a.t.e. power sources and high-reliability power supplies. Oscilloscope prices begin at around $£ 1,700$ (including GPIB interface). The DSS6522 two-channel model $(£ 2,845)$, with a conversion speed of 500 ns , offers post-storage expansion, an analogue $\mathrm{X}-\mathrm{Y}$ output and a four-trace display. Telonic Instruments Ltd., Boyn Valley Road, Maidenhead, Berkshire SL6 4EG. EWW256

LeCroy Research specialize in instruments for use in scientific research, in high-energy physics especially. Available in modular form, these units include fast data loggers, amplifiers, triggering units, memory modules and transient waveform recorders capable of sampling at up to 200 million samples per second. GPIB software is available. LeCroy Research Systems Ltd., Elms Court, Botley, Oxford OX2 9LP. EWW257

Marconi Instruments. Products

 from Marconi with GPIB compatibility as standard or as an option are the following: a.m./ f.m. r.f. generators for up to 1040 MHz ; a modulation meter for up to 2 GHz (model 2305); a radio communication test set (model 2955); four d.f.ms for frequencies up to 2 GHz ; a $10 \mathrm{~Hz}-20 \mathrm{GHz}$ microwave counter with 0.1 Hz resolution (model 2440); several items of p.c.m. test equipment; a true r.m.s. voltmeter; and the 6500 automatic microwave amplitude analyzer, to which new firmware and hardware enhancements havebeen added. Marconi Instruments Ltd., Longacres, St Albans, Hertfordshire AL4 0JN. EWW258 Microdata offer a variety of data acquisition and logging systems. These can be housed in racks or laboratory instrument cabinets, in portable cases or in sealed suitcasestyle enclosures for harsh environments. Plug-in input cards accept signals from any commonlyused analogue or digital transducer. Up to 100 input channels are possible with some models. Microdata Ltd., Monitor House, Station Road, Radlett, Hertfordshire WD7 8JX. EWW259

MS (Mess + System Technik) produce a comprehensive system for data acquisition, logging and process control. The ADP65 is capable of handling 1000 analogue and 320 bitwise digital inputs, 30 analogue and 160 digital outputs plus 100 counter channels. Also available: the MDP82 series of signal and data i/o modules, an intelligent data recorder using standard audio cassettes and a high speed cassette recorder capable of data rates up to 9600 baud. Seltek Instruments Ltd., The Old Pied Bull, High Street, Stanstead Abbotts, Hertfordshire SG12 8AB EWW260

National Instruments specialize in computer-to-GPIB interfaces. Cards and software are available for the IBM p.c. and DEC Rainbow, for VME bus, Multibus, S-100, STD and SBX buses and for DEC Q-bus and Unibus. The company also makes a GPIB tester, controller and extenders. Amplicon Electronics Ltd., Richmond Road, Brighton, East Sussex BN2 3RL. EWW261

Norma Messtechnik: products include a 120 MHz five-mode counter (D3655) and the System 4000 family, comprising a precision digital multimeter, a true r.m.s. multimeter, a twin channel meter, a precision wattmeter and a metallized-paper data printer with built-in timer. STC Instrument Services, Edinburgh Way, Harlow, Essex CM20 2DF. EWW262
Panasonic Industrial's principal GPIB products are a 50 MHz dualtrace storage oscilloscope with linear interpolation, a yes/no decision mode and a 2 K memory (model VP-5730P), a fast Fourier transform analyzer covering 0 40 kHz and with a data memory of 64 Kwords (VS-3310P) and a $32-$ channel logic analyzer for microprocessor development, with clock speeds of up to 20 MHz or 100 MHz (VP-3620P and VP3662 P). There are two graphics plotters: a six-colour A4-size model (VP-6801P40) and an eight-colour A3 version with a plotting speed of $450 \mathrm{~mm} / \mathrm{s}$ (VP-6802). Panasonic Industrial U.K. Ltd., 280-290 Bath Road, Slough, Berkshire SL1 6JG. EWW263

Philips have an extensive range of GPIB instruments. Examples are timers, counters and r.f.
synthesizers for frequencies up to 1 GHz ; an l.f. synthesizer (PM5190, £1,495); automatic digital multimeters (from $£ 495$ for the $4 \frac{1}{2}$ digit PM2519/51); storage oscilloscopes (from $\{3,250$ for the PM3305C); a video generator (PM5549); a digital cassette

Testing mobile radio equipment with intruments by Racal-Dana
recorder (PM4202, £740); an eightpen intelligent plotter (PM8151, from $£ 3,255$), and a programmable power supply (PM1367, £905). Pye Unicam Ltd., York Street,
Cambridge CB1 2PX. EWW264
Photodyne produce a fibre optic multimeter and other fibre-probing instruments. Several can be interfaced to the GPIB through a special adapter. Lambda Photometrics Ltd., Lambda House, Batford Mill, Harpenden,
Hertfordshire AL5 5BZ. EWW265
Photon Kinetics manufacture an automatic optical fibre analysis system (model FOA-2000) for production and research. Lambda Photometrics Ltd., Lambda House, Batford Mill, Harpenden
Hertfordshire AL5 5BZ. EWW266
PPM make some versatile switching systems for calibration, data logging and process control. These can be supplied as individual units or as complete systems. Bus commands can be executed immediately or held as stored sequences. Chassis units are fitted with modules selected from a wide range of input and output devices. Software is available too. The company also imports instruments by Rotek, Ballantine and Valhalla, some of which it incorporates into its own systems. A typical automatic calibration set-up costs $£ 15,000$ to $£ 20,000$. PPM Ltd., Hermitage Road, St John's, Woking, Surrey GU21 1TZ. EWW267 EWW267

Racal-Dana have a full range of GPIB components, which currently include $4 \frac{1}{2}$ and 5_{2}^{1}-digit multimeters; a $6 \frac{1}{2}$-digit true r.m.s. a.c. measurement system; a 10 kHz 2 GHz r.f. level meter; countertimers for frequencies up to 3 GHz , some computing versions among them; r.f. generators covering $10 \mathrm{kHz}-104 \mathrm{MHz}$ or 3 GHz ; 48 channel spectrum analyzers; function and pulse generators; a timing generator with real-time clock; a series of switching systems with driver and relay modules covering signal levels up to 1 kW and frequencies to 18 GHz ; a GPIB analyzer; and two 20 -column thermal printer-plotters, one with a built-in clock. Racal-Dana Instruments Ltd., Duke Street, Windsor, Berkshire SL4 1SB. EWW268

Rohde \& Schwarz issue a measuring equipment catalogue which this year runs to over 430 pages and includes signal generators for frequencies up to 2.7 GHz , test receivers and modulation analyzers, radiotelephone test sets, a set-up for testing r.f. cables, r.f. step attenuators, sweep generators, vector and network analyzers, logic analyzers, a group-delay measunng set, meters of all kinds, relay matrices for audio and r.f., a digital thermometer, a temperature controller, a dot-matrix printer and a 16 -function pneumatic interface. Rohde \& Schwarz U.K. Ltd.,

Fluke's 8840A autoranging multimeter

The PM3305 35MHz storage oscilloscope from Philips

Roebuck Road, Chessington, Surrey KT9 1LP. EWW269
Scientific Atlanta have introduced a signal analyzer (model SD380) based on a mainframe which accomodates expansion up to four channels and options such as data storage on $3_{2}^{\frac{1}{2}} \mathrm{in}$. disc, speed compensation for easy interpretation of machine signatures. Features include realtime digital zoom, 3-D cascaded waterfall display. Scientific Atlanta Ltd., Horton Manor, Stanwell Road, Horton, Slough SL3 9PA. EWW270
Siemens manufacture a large family of instruments: a choice of three multimeters and four power meters, pulse and function generators, a generator-comparator for waveform curves storing up to 512×1024 points, a digital word generator/comparator operating at up to 2 MHz , transient recorders with up to 64 channels, two frequency counters, a data line analyzer for telephony, a fibre-optic reflectometer for locating fibre breaks and measuring the loss of splices, d.c. voltage calibrators and programmable power supplies, a 30 -channel chart recorder, two X-Y plotters and a thermal printer Siemens Ltd., Windmill Road, Sunbury-on-Thames, Middlesex TW 16 7HS. EWW271
Solartron make many GPIB instruments. Digital multimeters and precision voltmeters are available with displays of up to $8 \frac{1}{2}$ digits. A logic analyzer (7610 series) has up to 48 channels with a 1 Kbit memory for each, multiple timebases and the option of a 400 MHz input module. The model 1200 signal processor is an advanced spectrum analyzer offering a logarithmic display format and a
cepstrum analysis function. A data logger, the Orion Delta 3530D, can run eight tasks with different levels of priority, handles up to 200 channels (600 with slaves) and has a powerful data processing ability The 4040 communications test set is designed to meet all radiotelephone test requirements from audio to u.h.f. For radio testing and surveillance monitoring the Minilock measuring receiver can sweep and measure in the range 10 kHz to 1 GHz . Also in the range are storage oscilloscopes, signal generators, a five-colour plotter and a p.c.m. data transmission test set. Solartron Instruments, Victoria Road, Famborough, Hampshire GU14 7PW. EWW272
Systron-Donner's extensive range of instruments includes many with GPIB control as standard or as an option. Among these are a modular optical communications system capable of handling video, an MSF-synchronized clock, counter-timers and signal generators covering frequencies from 100 Hz or so to 26 GHz , pulse generators, waveform analyzers and programmable power supplies for laboratory or stystems applications. Systron-Donner Ltd., St Mary's Road, Leamington Spa,
Warwickshire CV3 1QN. EWW273
Takeda Riken produce a range of spectrum analyzers, from fast Fourier transform analyzers for acoustic and servo-system applications to portable r.f. analyzers covering frequencies up to 20 GHz . Also available are a floppydisc digital data recorder, some microwave frequency counters and signal generators for audio and radio frequencies. Chase Electrics Ltd, St Leonard's House, St Leonard's Road, London SW14 7LY. EWW274

PPM's model 8000 bus switching system

Technical Projects manufacture a versatile test set for rapid audio measurements. The 401D, which is aimed especially at the broadcast industry, measures level, noise, frequency, harmonic distortion and spurious signals and there are addons for phase measurement, rumble, wow and flutter and so on. Display is on a fast-acting analogue peak programme meter. The optional GPIB interface controls all front-panel fuunctions and provides a digital output of the analogue meter reading. Technical Projects Ltd., Unit 2, Samuel White's Industrial Estate, Medina Road, Cowes, Isle of Wight PO3 7LP. EWW275

Tektronix: this manufacturer's GPIB range is very broad, with components or ready-packaged systems covering virtually every need in testing, measurement or signal acquisition. A special feature is consistency of command and data formats to make configuring and debugging simpler. One recent addition is the TM5000 family, built around two mainframes which can be fitted with any of seven intruments - counter-timers, a multimeter, a function generator and so on. For setting up a system the EZ-Test software generator package (about $£ 1,000$) enables the user quickly to create his own test software without having to leam a special programming language. Tektronix U.K. Ltd., P.O. Box 69 , Harpenden, Hertfordshire AL5 4UP. EWW276

Telonic-Berkeley have recently introduced their TCD series tunable bandpass filters. These are available in three or five section versions covering any one octave in the range 32 MHz to 3 GHz . Telonic Instruments Ltd., Boyn Valley Road, Maidenhead, Berkshire SL6 4EG. EWW277
Thorn EMI Datatech make several GPIB-compatible instruments: a frequency response analyzer (model SE2450) with a graphics option giving Nicholls, Nyquist or Bode plots on the screen; a programmable transient recording system (BE256) with a choice of memory sizes and sampling rates of up to 50 MHz ; an eight-channel transient recorder with built-in screen display and menu control (SE2550); and a signal conditioner (SE1700) with a capacity of up to 256 channels. A pair of converter units make it possible to link GPIB to other interface systems (SE2750) or to analogue signals (2A-488). Thom EMI Datatech Ltd., Spur Road, Feltham, Middlesex TW14 0TD. EWW278

Thurlby Electronics are to launch in April a range of programmable bench power supplies with high-resolution control: prices start at $£ 395$ for a 0 $30 \mathrm{~V}, 0-2 \mathrm{~A}$ supply. Already available is a digital multimeter with computing and data storage functions, model 1905a, which with IEEE interface costs $£ 495$. The IEEE bus itself can be examined with Thurlby's LA-160 logic analyzer, which is usable with any conventional oscilloscope, comes with 16 or 32 data channels and has a 2000 word data acquisition memory with powerful search-and-
compare fäcilities. The 10 MHz version is priced very competitively at $£ 395$ plus $£ 45$ for the LC-03 GPIB connector. Thurlby Electronics Ltd., New Road, St Ives, Huntingdon, Cambridgeshire PE17 4BG. EWW279

Tri-Phenix manufacture a programmable pulse generator offering repetition rates of up to 20 MHz and pulse widths down to 100 ps. Price is $£ 5,755$. Also available is a radar range simulator for testing radar systems, model PX219, at $£ 9,855$: this generates a return pulse capable of being dynamically controlled to simulate movement of the target. Lyons Instruments Ltd., Ware Road, Hoddesdon, Hertfordshire EN11 9DX. EWW280

Wandel \& Goltermann describe their large range of instruments for the telecommunications industry in a catalogue of nearly 400 pages. GPIB-compatible units include signal generators, level meters and spectrum and network analyzers; sets for measuring noise and distortion on radio links and satellite systems; a data line test set; p.c.m. digital signal generators, analysers and test sets; a harmonic analyzer for a.c. power lines; and a remote switching system for frequencies up to 160 MHz . W \& G Instruments Ltd. Progress House, 412 Greenford Road, Greenford, Middlesex UB6 9AH. EWW281

Wavetek: most items in the current range are GPIB-compatible. Examples are spectrum analyzers with up to four channels, one of them with built-in disc storage and even an integral word-processor; function and waveform generators for frequencies up to 50 MHz ; a.m./ f.m. r.f. generators; signal processing filters; signal switchers for up to 26.5 GHz ; microwave generators and measurement systems. Wavetek Electronics Ltd., Tag Lane, Reading, Berkshire RG10 9LT. EWW282

Wayne Kerr manufacture several GPIB-controllable instruments for testing components. The 4210 automatic LCR meter, with a basic accuracy of 0.1%, has percentagedeviation and binning facilities for automatic component grading, is able to polarize capacitors and can identify the type of component plugged into it. The B905 automatic precision bridge has auto-ranging, auto-trimming and displays results on two five-digit l.c.ds. The 6425 precision component analyzer has six-figure resolution and features a display screen with softwarelabelled function keys for use when manual control is required. Wayne Kerr Instruments Ltd., Durban Road, Bognor Regis, Sussex PO22 9RL. EWW283

Zehntel produce a range of systems for production testing of analogue and digital printed circuit boards. Two of these, the 810 and the low-cost 310 , can be enhanced by interfacing to GPIB instruments which then have access to the systems' test points. Zehntel Ltd., Sentry House, 500 Avebury Boulevard, Saxon Gate West, Central Milton Keynes MK9 2NJ. EWW284

VMOS squelch for pulse receivers

This circuit uses the baseband p.p.m. (pulse-position modulation) output of a batterypowered v.h.f. a.m.
telecommand receiver to switch on high current post-detector stages. Design requirements call for fast attack on receipt of the first 50 ms pulse in a five-bit sequence, followed by a hold time of at least 1.5 s to permit command activation.
Using a cmos op-amp with buffer transistor gives low standby current drain while allowing up to 250 mA to be switched. Time between a high output from the comparator and the buffer transistor switching on is determined by R_{1} and gate capacitance of the transistor. A fully-on gate threshold of 2.5 V and gate capacitance of 100 pF give an attack time of 0.13 ms .

Capacitor C_{1}, isolated from the gate by D_{1} during turn on. is charged towards the supply rail through K_{2} and D_{2}, for the pulse duration. When the comparator outpit goes low at the end of a received pulse, C_{1} discharges throuzh R_{1} and D_{1}, with the time constant $\mathrm{R}_{1} \mathrm{C}_{1}$ determining time elapsed before load power dowe (around 1.8s).

If D_{1} is replaced by a shortcircuit. attack time is increased to around 2.4 ms . In this case a lower drive-pulse slew rate can be tolerated so the op-amp quiescent current may be reduced to $10 \mu \mathrm{~A}$ for low-power applications.
N.E. Evans

Ulster Polytechnic
Co. Antrim

Bit-rate generator

Originally designed for use with a 6850 a.c.i.a., this circuit provides a cheap programmable bit-rate generator for most uarts with $\times 16$ or $\times 64$ clock inputs.

Two four-bit counters in the LS393 are cascaded to form an eight-bit counter for dividing the crystal frequency down to those shown in the table. The seven lowest frequencies from the counter are fed to the
LS151 eight-input data selector whose D_{i} input may be used for an alternative clock signal. Data select inputs of this i.c. can either be connected to switches or to a computer i/o port for software control of the data rate.
P.J. Griffiths

Uppingham
Leicestershire

Inputs \mathbf{C}							\mathbf{B}	\mathbf{A}	Frequency (Hz$)$ $\mathbf{f / 1}$				$\mathbf{f / 1 6}$	$\mathbf{f / 6 4}$
0	0	0	9600	600	150									
0	0	1	19.2 k	1200	300									
0	1	0	38.4 k	2400	600									
0	1	1	76.8 k	4800	1200									
1	0	0	353.6 k	9600	2400									
1	0	1	307.2 k	19.2 k	4800									
1	1	0	614.4 k	38.4 k	9600									
1	1	1	external clock											

Instruction counter for $Z 80$ simulator

One function of a microprocessor simulator is to run a preset number of instructions of a program being debugged and then stop so that register and memory contents may be examined using a monitor program. In Z80 systems, the breakpoint is often implemented in software by replacing an instruction in the test program with a Restart instruction (a single-byte Call to a fixed address).

For this approach. the test program needs to be in ram and working out exactly where to place the Restart code is complicated by the varying length of $\mathbf{Z 8 0}$ instructions. Also, a bug in the test program could prevent the restart code from being reached. In this design, the test program does not need to be tampered with, so that routines in rom may also be single-stepped for demonstration purposes. (The usual wait-state generation technique for single-stepping precludes the use of dynamic rams.)

A programmable counter provides the breakpoint by counting M1 (op-code fetch) cycles and generating a nonmaskable interrupt (NMI) when the preset number of
instructions has been executed. Correction is automatically made for two-byte op-codes those beginning with CB, DD, ED or FD - which have two M1 cycles. Counting is suspended during interrupt servicing so that, for example, display handling interrupts can be allowed to run without affecting the test.
Sixteen op-codes are decoded by $\mathrm{IC}_{1.3}$. If $\mathrm{CB}, \mathrm{DD}, \mathrm{ED}$ or FD is detected on the data bus at the end of an M1 cycle, the \bar{Q} output of $\mathrm{IC}_{5 \text { a }}$ is clocked low by the trailing edge of the $\overline{\mathrm{RD}}$ pulse. The RFSH refresh pulse, which always occurs after an M1 cycle, clocks $\mathrm{IC}_{\text {is }}$ whose Q output goes high and prevents the second $\overline{M 1}$ pulse from reaching the CTC (counter/ timer circuit). Output Q is fed back through $\mathrm{IC}_{\mathrm{Ta}_{\mathrm{a}}}$ to ensure that the next instruction is not also inhibited should the second byte be $\mathrm{CB}, \mathrm{DI}, \mathrm{ED}$ or FD .
When the CTC down-counter reaches zero. it sends a short positive pulse on its $\mathrm{ZC} / \mathrm{T} 0$ pin. This pulse is inverted to provide the c.p.u. NMI signal. It also sets the Q output of $I C_{8_{8}}$ high which in turn sets the Q output of $\mathrm{IC}_{5 \mathrm{~b}}$ high to inhibit further counting. Using the nonmaskable interrupt means that the circuit works whatever bugs there may be in the test program. The CTC channel used has its normal interrupts disabled.
The NMI service routine
dumps all the register contents into a reserved ram area and then enters the monitor program which allows ram to be examined and altered as required. A continue command to the monitor reloads the CTC and copies the register storage ram back into the registers. A normally unused instruction, LD L, L (op-code 6D), is executed to clear $\mathrm{IC}_{8_{4}}$ and hence remove SET from $\mathrm{IC}_{5 b}$.

Finally, a retum instruction is executed. This retrieves the address of the next instruction from the stack, where it was placed when the NMI was recognized, and the test program continues from the point where it was interrupted. The RET op-code is counted by the CTC, but the monitor allows for this by adding one to the number of instructions to be run. Up to 255 instructions miay be run.

Instruction counting is prevented during interrupt servicing by $\mathrm{IC}_{\mathrm{x} \text {, }}$, whose Q output is set high when an interrupt acknowledge cycle is detected (M1 and IORQ both low). Output Q of $\mathrm{IC}_{\text {bia }}$ goes low when op-code ED is detected, and if the second byte is 4D, i.e. if the instruction is RETI, then $\mathrm{IC}_{\mathrm{xb}}$ is toggled, the SET signal is removed from $\mathrm{IC}_{5 \mathrm{~b}}$ and counting continues from the next op-code.

Clearing of the two JK bistable elements of IC_{8} occurs whenever the processor is

c.p.u. may insert memory or i/o cycles between op-code fetch cycles, depending on the instructions

(c)
reset. Connections from Q to J ensure that the devices remain cleared until forced to change state by a low on the SET input.

Circuit IC_{61}, is cleared by a CB op-code. The low Q output inhibits latching of a following ED byte by $\mathrm{IC}_{6_{\mathrm{i}}}$ and hence prevents IC_{80} from being toggled to its clear state by a SET 5, L instruction followed by LD) C, L (op-codes CB ED, 4D). Similarly, the high \bar{Q} output of IC_{60}, keeps the \bar{K} input of IC xata high after a CB byte so that $\mathrm{IC}_{8 \mathrm{da}}$ is not cleared by the
second byte of the instruction BIT 5. L (op-code CB 6I).

In the timing diagram. (a) shows removal of the second op-code byte, (b) resumption of counting after a RETI instruction and (c) resumption of counting after an LD L.L instruction.

If no use can be found for the three remaining CTC chamels, this device can be replaced by a chain of any desired number of LS163 presettable four-bit counters.
Peter Ferris
London

Strobe probe

This probe has proved invaluable in tracing relationships between read, write and chip-select lines on microprocessor-based circuit boards. It has two channels. Section A is the window input and its led lights to indicate that a window has occurred. Probe input is fed to section B. The
led in this section pulses on if a signal at the B input occurs during the window at A .
Polarity of the window and probe inputs is selected by the respective switches. When a switch is high, its associated circuit responds to active-high inputs and vice versa.
D.J. Ford

Welwyn Garden City Hertfordshire

4-20mA indicator

Output from industrial process instruments is often a constantcurrent signal in the range 4 20 mA d.c. This simple device is a monitor for such signals. Its accuracy depends largely on the meter used and with careful calibration, an ertor of ± 1 学 f.s. is possible.

Presence of a signal is
indicated by the led. The threeterminal i.c. provides a 4 mA offset which is set using the potentiometer to the left of it. Voltage drop provided by the zener diode ensures that there is sufficient voltage to operate the led and i.c. The second potentiometer is for setting to full-scale deflection at 20 mA . M.C. Polgreen Binningham

FREOUENCY COUNTERS high reliability LOW COST

The brand new Meteor series of 8 -digit Frequency Counters offer the lowest cost professional performance available anywhere

* Measuring typıcally $2 \mathrm{~Hz}-1.2 \mathrm{GHz}$
* Sensitivity $<50 \mathrm{mV}$ at $1 \mathrm{GHz} \quad \star$ Battery or Mains
* Setability 0.5ppm
* Factory Calibrated
* High Accuracy
* 1 Year Guarantee
* 3 Gate Times
* $0.5^{\prime \prime}$ easy to read L.E.D. Display PRICES (Inc. adaptor/charger, P \& P and VAT) NOW AVAILABLE WITH METEOR 100 T.C.X.O. OPTION METEOR Illustrated colour brochure METEOR $600 \quad(600 \mathrm{MHz})$ £147.77 with technical specification METEOR $1000 \quad(1 \mathrm{GHz}) \quad £ 204.12$ and prices available on request

TIME WRONG?

MSF CLOCK is EXACT

8 DIGIT display of Date, Hours, Minutes and Seconds.
SELF SETTING at switch-on, never gains or loses, automatic GMT/ BST and leap year, and leap seconds.
EXPANDABLE to Years, Months, Weekday and Millieseconds and use as a STOPCLOCK to show when something happened. COMPUTER or ALARM output also, parallel BCD (including Weekday) and audio to record and show time on playback.
THE SECRET? MSF Clock receives and decodes Rugby 60 KHz atomic time signals, has built-in antenna, 1000 Km range.
LOW COST, fun-to-build kit only $£ 79-70$ (ready-made to order) includes $5 \times 8 \times 15 \mathrm{~cm}$ case, pcb, ALL parts, by-return postage and list of other kits, GET the TIME RIGHT.

CAMBRIDGE KITS
45(WQ) Old School Lane, Milton, Cambridge, Tel 860150.

CIRCLE EO FOR FURTHER DETAILS.
ELECTRONICS \& WIRELESS WORLI MARCH 1985

DIGITAL MULTIMETERS

Test \& Measuring Instruments

CIRCLE 118 FOR FURTHER DETAILS.

Two views to aid construction of Mr Andersen's design. Potential constructors should read the note on page 69.

Block diagram shows how circuits on the opposite page and on page 68 relate.

Alarmphone

This second part of Per Andersen's article details the circuitry for the emergency autodialler that requires no line connection

When the motor is running, the L_{1} coil in the pump monitor detects the magnetic field around it. Comparator IC_{22} converts this signal to a square wave that is rectified and taken through a couple of Schmitt trigger inverters to generate the stop signal ($\overline{\mathrm{STOP}}$). This is 'or-ed' to the fail signal providing the term $\mathrm{H}_{\text {aff }}$. Under normal conditions STOP is high, and therefore the solenoid is not
activated. When $\mathrm{H}_{\text {off }}$ is low, $\mathrm{IC}_{13 \mathrm{a}}$ is constantly triggered supporting a low fail signal to the line and pump monitors. On switch-on $\overline{\text { RESET }}$ set $\overline{\text { RFD }}$ high. However, when the motor stops, $\mathrm{H}_{\text {off }}$ goes high activating the solenoid and releasing $\mathrm{IC}_{13 \mathrm{a}}$: The ready-tone is picked up and amplified around 70 dB by $\mathrm{IC}_{18 \mathrm{a}, \mathrm{b}}$ presenting a signal of $1.5 \mathrm{~V} \mathrm{r.m.s}$. the tone decoder, IC_{19}. The band-

width and output delay values chosen require a steady signal for at least two seconds before the output of IC_{19} goes low. Circuit $\mathrm{IC}_{18 \mathrm{c}}$ is coupled as an inverter triggering the reset input of the bistable flip-flop $\mathrm{IC}_{18 \mathrm{~d}}$. Line $\overline{\mathrm{RFD}}$ now goes low preventing $\mathrm{IC}_{13 \mathrm{a}}$ from generating the fail signal and triggering the set input of the dial latch. If the ready tone is not detected within six seconds, the not-ready timer runs out supplying the fail signal to $\mathrm{IC}_{18 \mathrm{~d}}$, forcing its output to stay high whatever happens at the resent input, and deactivation the solenoid.

The high output of the dial latch starts the 1.2 Hz generator, $\mathrm{IC}_{13 \mathrm{~b}}$, which controls the memory output buffer and address counter. The buffered signal is taken to the b.c.d.-to-d.t.m.f. tone converter consisting of $\mathrm{IC}_{4}, \mathrm{IC}_{5}$ and $\mathrm{D}_{2}-\mathrm{D}_{21}$, then to the driver stage and the transmitter/loudspeaker.

Comparator IC_{12} compares the outputs of the memory and display address counters and upon equality, which means when the encoded number is dialled, the output goes low triggering the dial latch to stop the 1.2 Hz oscillator. The $\overline{E O D}$ and $\overline{\mathrm{RFD}}$ signals are now 'and-ed' for starting the alarm generator, which will run $1 \frac{1}{2}$ minutes determined by IC_{23}. At the end of the period the ALST signal takes the reset input of the

Circuitry requires a solenoid supply as well as 5 V supplies; a battery charger is included in this version.

Waveforms at various points in circuit are identified in circuit above and on page 67 by encircled numbers.

not-ready timer low which generates the fail signal which sets the machine in the stand-by mode.

The alarm generator produces a sound similar to certain police sirens. This was chosen so that whoever answers the call, probably not you, is able to distinguish it from all the other telphone signals. The tone is easily made by taking the output of the first section of IC_{24} to the control voltage input of the second section thereby modulating it with this lower frequency.

To write the telephone number, which can have up to 16 digits, into the memory you simply take S_{1} to the write position and key the number at the keyboard. As a control the number is read out on the display. On completion S_{1} is taken to the read position. Keyboard data goes from IC ${ }_{1}$ (10 -to-4 line converter) via $\mathrm{IC}_{2}(4$-bit latch) to the memory, IC_{3}. Each time a key is depressed, a strobe pulse of around 1 ms is generated from the outputs of IC_{9}. The negative strobe is used for the write signal to memory and for unblanking of used digits at the display. The positive strobe increments the memory and display address, counters for each depression of a key. When S_{1} is taken back to the 'read' position the memory address counter is reset because of the capacitor C_{3}. The display address counter remains at the number of digits that previously was entered. A read cycle therefore goes on until equality of the two counters.

On switching on the machine the necessary reset pulses, which have a duration of about 200 ms , are generated from IC_{6} and IC_{10}. The reason for designing a display for the machine was the ability to control the number to be encoded. On a normal telephone you simply hang on and make a re-try if you get the wrong connection. In this case, you wouldn't know if the right number was dialled, because the connection was made when you were not at home. This is where the display comes in. As it was the most expensive unit in this construction, it is designed in a way that makes it easy to leave out if not wanted. Or it could very easily be reduced to eight* digits, if

[^3]
Signal Explanation

To the line monitor from the alarm generator to notify that all functions were completed, and to generate the FAlL sign.
BLNK From the keyboard logic to the display to shift the blanking registers each time a key is depressed
rom the keyboard logic to the dial latch to let it know that all digits from the encoded number were dialed.
DTMF Tones from the tone dialer to the output stage.
$\overline{E O D}$ The end-of-dial signal goes from the dial logic to the alarm generator to provide the alarm signal for the transmitter, when the dial sequence is finished.
FAIL From the line monitor to the pump monitor to deactivate the solenoid, when all functions are completed, or when the ready-tone did not occur within six seconds from the point where the receiver was lifted off the hook.
HOFF From the pump monitor to the line monitor to
this is enough for local telephone numbers. It was designed with 16 digits to make it fit to the memory capacity of the machine, and to allow viewing of the number dialled at any time.

The four data lines to the display are buffered in IC_{17} and then taken to the display data bus. Position of the digits are determined by the 4 -to- 16 line decoder, which is controlled by the display address lines. The address is incremented by one each time a key is depressed, and this will enable the digits in turn from left to right. To keep unused digits blanked, the two 8-bit shift registers, $\mathrm{IC}_{42}, \mathrm{IC}_{43}$, are coupled as blanking latches controlling the BI-terminal on the displays. The latches are reset during power-up to provide a blank display before entering any digit.

As the instrument is battery powered the supply circuit is simple. Only a couple of voltage regulators with the necessary capacitors at the outputs are used. Of course a regular mains supply could be used to support the power in the stand-by mode, which will reduce the capacity of the battery essentially. In this case the battery is only needed for less than two minutes, which is
enable the six-second timer, whenever a pump malfunction took place.
$\overline{R F D}$ Ready-for-dial goes from the line monitor to the dial latch to indicate that the ready-tone was detected. It also goes to the alarm generator, where it will be used in conjunction with the $\overline{E O D}$ signal, to generate the alarm signal.
RST Clears the memory address counter upon power-up or when the function switch is taken to the read mode.
RESET Clears the display address counter upon power-up.
RESET Sets the line monitor tatch HI after power-up, and causes $\mathrm{IC}_{13 \mathrm{~b}}$ to remain anactive until the RFD signal is received. Clears the display blanking registers during power-up.
STOP Message from the pump monitor to the solenoid driver to let it activate the solenoid and generate the HOFF signal.
the time it takes to make the dial and deliver the alarm tone. Proper switching from mains to battery will in such a case be required to secure storing of the memory contents.

It might be necessary to adjust the machine to different types of telephones, as these could have diverging input/output levels

from the one the machine was developed for. But this will be fairly simple, as it is only a matter of changing the gain of the input amplifier and the driver stage. The only thing to consider is that the tone decoder needs an input of around 1.5 to $2 \mathrm{Vr} . \mathrm{m} . \mathrm{s}$., and that the transmitted d.t.m.f. signal must not suffer from any kind of distortion.

The sense coil is easily made, as it monitors 50 Hz . In my case the coil from a scrapped relay was used with good results, but almost anything will do. Some of the functions in the circuit could be made in a simpler way, but they were designed partly to keep the expenses down, and partly because the components were available.

The d.t.m.f. circuitry is supplied from a separate regulator to secure optimum performance and correct functioning of the dial logic. As there are no adjustments in the machine, it should work immediately after careful assembling.

Author's original 8 or 16digit display can be used to check the stored number; alternatively this sequential single-digit circuit offers a low-cost option. The inverters are type 7407.

Whilst many telephone

 exchanges in Europe will handle dtmf dialling, only a minority of UK public exchanges (unlike private branch exchanges) can at present. British Telecom expect that over two million subscribers will be able to use dtmf dialling by the end of 1986 as a result of continued expansion of System X. As with modem designs, such equipment must have BATB approval to be legal.
by J.R. Watkinson

Fig. 1. Objective lens of a C D pickup has a numerical aperture (n.a.) of 4.5 , so the outermost rays will be inclined at about 27° to the normal, though refraction at the air/disc interface changes this to 17°. Light focused to a spot on the information layer enters the disc through a circle only 0.7 mm dia. giving good resistance to surface contamination.

Fig. 2. Step height is designed to produce a phase reversal in reflected light compared to light which has reflected from the mirror surface so that destructive interference reduces reflected power. Spot size here is symbolic only, the spot being a diffraction pattern.

Principles of optical storage

This second article in our new series details the physics of the readout process

A fundamental goal of the compact disc is that it should not require any special working environment or handling skill. The bandwidth required by digital audio is such that high density storage is mandatory if reasonable playing time is to be obtained, and this implies short wavelengths. The advantage of optical playback is that the readout beam can be focused ontō the medium from a distance, whereas magnetic recording requires intimate contact and implies a wear mechanism, a need for periodic cleaning, and susceptibility to contamination in
the domestic environment of reading
The first article (January issue) introduced the idea through the thickness of the disc. This approach causes the readout beam to enter and leave the disc through the largest possible area of the surface, see Fig. 1, which shows dimensions involved. Despite the minute spot size - around $1.2 \mu \mathrm{~m}$ dia.- light enters through a 0.7 mm dia. circle. Thus surface debris has to be three orders of magnitude larger than the readout spot before the beam is obscured. The size of the entry circle is a function of the refractive index of the disc material, the numerical aperture of the optical system and the thickness of the disc.

Because of readout through the thickness of the disc, surface scratches on the readout side are tolerated very well. In extreme cases of damage, the scratch can often be successfully removed with metal polish. Conversely, the label side of CD is much more vulnerable, as the lacquer coating is only $30 \mu \mathrm{~m}$ thick. For this rea son, writing on the label side is not recommended; pressure from a ballpoint pen could cause mechanical damage to the information layer, and solvents from marker pens have been known to penetrate the lacquer and corrupt the disc. A common party piece is to show off the error correction system by writing on the readout side with a felt tip pen. This is relayively harmless as the disc base material is impervious to most solvents.
The base material of CD is a polycarbonate plastics material produced by Bayer under the trade name of Makrolon. With excellent mechanical and optical stability over a wide temperature range, lends itself to precision moulding and metallization. It is commonly used for automotive
indicator clusters for the same reasons.

An alternative material is polymethylmethacrylate
(p.m.m.a.), one of the first optical plastics, known by the trade names of Perspex and Plexiglas, and which is used extensively in illuminated signs and aircraft canopies. Makrolon is preferred by some manufacturers because it is less hygroscopic than p.m.m.a.

In the readout process the depth of the steps is designed to be $\frac{1}{4}$ wavelength of the light used, Fig. 2, so that light reflected from the mirror surface travels $\lambda / 2$ further than light reflected from the step surface, and so results in destructive interference. The principle is optimized for one wavelength, and so light source must be monochromatic.

The wavelength in the medium is determined by the refractive index; the specified light source has a wavelength in air of 780 nm and the refractive index of 1.55 causes this to become 500 nm within the disc. The step height is about one quarter of this figure at 0.11 to $0.13 \mu \mathrm{~m}$. As the incident light cannot return the way it came because of interference, it will exit at any angle that permits constructive interference as a diffraction pattern along a discradius.

Dimensions of the track structure are closely comparable with those of the Philips Laservision disc, on whose optical technology the compact disc is based. Both are diffraction-limited, i.e. the dimensions involved are as small as permitted by the wave nature of light.

It is not possible to focus light to a point even with a lens free from aberrations. When this is attempted, the result is an Airy disc whose size is a function of the wavelength and the numerical aperture of the objective.

When the master is cut, the effective spot size is about $0.4 \mu \mathrm{~m}$, determined by balancing the power of the cutting laser against the sensitivity of the resist. The resist has two sensitivity levels, a level where etching will just begin, and a level where etching will go through to the glass blank, Fig. 3. Increasing the exposure produces pits with gradually sloping edges, which release from the mould easily but are optically inferior to steeper edges. A compromise is reached by control of the exposure ${ }^{1}$.
To achieve the very small effective spot size needed for cutting, the resist sensitivity is in the area of the half-power level of the Airy disc intensity function, and a krypton laser with the short wavelength of 350 nm is used. This requires an aparture of about 0.7 . It is the thickness of the resist that determines the height of the bumps on the finished disc, which should be $\frac{1}{4}$ the wavelength of the player laser in the disc material.

Optimum size for the playback spot is rather larger than that of the cutting spot: for destructive interference to cause complete cancellation in the reflected beam the energy reflected from the top of a step should equal the antiphase energy reflected from the mirror surface. This simplistic condition is never obtained in practice, and typically the presence of a long bump reduces reflected power to about 25% of that obtained from the mirror surface. A larger spot in the player also eases the task of track following, permits the use of a low-cost visible wavelength laser and a smaller aperture, which in turn improves the depth of focus.
The specified wavelength of 780 nm and n.a. of 0.45 produce an Airy function where the half power level is at a diameter of about $1 \mu \mathrm{~m}$. The first dark ring will be at a diameter of about $1.9 \mu \mathrm{~m}$.
Allowable crosstalk between tracks then determines the track pitch. The first ring outside the central disc carries some 7% of the total power, and limits crosstalk performance. Track spacing is chosen such that with a slightly defocused beam, and a slight tracking error, crosstalk due to the central spot seeing adjacent tracks is no worse than the limit. Since objective aberrations will increase spot size and crosstalk, the CD specification requires that the objective performance shall

Fig. 3. Two levels of exposure sensitivity of the resist determine the size and edge slope of the steps on the disc surface. A large exposure results in large step with gentle slope (a) while less exposure results in smaller bump with steeper and sloped sides (b).

Fig. 4. Amplitude response of laser pickup. Maximum operating frequency is about half of cut-off frequency F_{c}.
be within the Marechal criterion ${ }^{2}$ Clearly the n.a. and wavelength must also be closely specified.
The cutter spot size determines the reader spot size, which in turn controls the shortest wavelength of modulation along the track that can be read. The optical cut-off frequency, where the output falls to zero, is $2 \mathrm{~V} \times$ (n.a.) $/ \lambda$, where V is the linear track velocity. The minimum lin ear velocity of CD is $1.2 \mathrm{~m} / \mathrm{s}$ so the cut-off frequency becomes
$\mathrm{f}_{\mathrm{c}}=2 \times 0.45 \times 1.4 / 780 \times 10^{-9}$ $=1.6 \mathrm{MHz}$

The frequency response of the pickup falls linearly to the cut-off frequency and Fig. 4 that actual measurements are only a little worse. It is necessary to limit the maximum operating frequency to about half the cut-off frequency otherwise immunity to noise and crosstalk is impaired. Maximum frequency is 720 kHz , which represents an absolute minimum wavelength of $1.666 \mu \mathrm{~m}$, or a step length of $0.833 \mu \mathrm{~m}$ when the minimum speed of $1.2 \mathrm{~m} / \mathrm{s}$ is use for a 75 minute disc.

Standard one-hour discs have a minimum step length of $0.972 \mu \mathrm{~m}$ at a track velocity of $1.4 \mathrm{~m} / \mathrm{s}$. The maximum frequency, 720 kHz ,
the bit rate; these are different due to the channel code used and is discussed later.

Fig. 5 shows the structure of a maximum frequency recording and the relationship of the spot intensity function.

The next article deals with the mechanisms necessary for track following and focus.

References

1. Laser beam recording of video master discs. B.A.J. Jacobs Applied Optics July 1978.
2. Principles of Optics. Born and Wolf (Pergamon)

Fig. 5 Structure of a maximum-frequency recording, related to the intensity function of an objective of 0.45 (n.a.) with $780 \mu \mathrm{~m}$ light. Spacing puts adjacent tracks in dark rings, reducing crosstalk. As the spot has an intensity function, it is meaningless to specify spot diameter without some reference, such as an intensity level.

CAUSALITY

The idea of causality as time delayed control is essential to logical reasoning (February Editorial). Reasoning is a process of the mind so it is true that causality, as "a necessary connexion", exists in the mind.
Conversely if the reasoning corresponds to events in reality then causality can be said to exist there just as much. This is the working hypothesis for scientific theorizing, and causality provides the essence inherent in mechanistic 'explanation', conferring a sense of 'understanding' in appreciation of this knowledge.
The problem of whether reality is logical is itself beyond reason: logic deals with relations between things that already have the attribute of 'existence'. When we come to ask how does anything at all exist we have progressed beyond the confined circular structure of logic into the realm of metaphysical speculation.
To demonstrate that causality does exist in reality external to any mental framework consider an idea that occurred to me of using Lenz's law of induction for a system of magnetic braking to support an elevator against free fall.
As the coil falls around the magnet (or vice versa) the motion through the lines of flux induces a current which in turn produces a field tending to oppose the motion.
The important aspect of the interaction in this abstract 'control system' is that the response tends to oppose the stimulus. It can never cancel it exactly simply because of the chain of causality. (There is similar behaviour in a virtual earth feedback amplifier, virtual being the 'operative word'.) So causality demonstrably exists in reality.
In formulating his mechanics, Newton found the need to invent the mathematical

language of 'the calculus' of fluxions' to describe such time delay interactions. In the limit as the interaction time tends to zero we may use exact derivates and formulate our laws using differential equations which then remain valid only for pseudo instantaneous or asymptotic steady state interactions.
Conversely however, some people may be misled into saying that since the time interval tends to zero it is negligible. Then the "constant conjunction" means that the change of flux and induced e.m.f. are so essentially simultaneous as to be impossible to unravel. This is an ingenious erroneousness.

The incorrectness of this argument can be simply explained using a special case as an example so that the truth seems obvious. Consider the 'thought experiment of increasing the size of the coil so its separation from the magnet at its centre is enormous (such as the radial distance to the nearest star, about 4 light years). As an initial condition we may suppose the magnetic field has existed throughout all space for all time upto the (godlike) 'present'. When the coil moves relative to the magnet it cuts lines of flux instaneously in its environment and an e.m.f. is induced. However the information that the coil has moved and produced an e.m.f. and opposing magnetic field propagating out at the speed of light will take a definitely significant time (compared to a human lifetime) to read the magnet and reciprocally for this to react and oppose the relative motion. (With such action at a distance explicitly formulated it also becomes obvious that at each instant (God's point of view) forces cannot possibly be 'equal and opposite' and so we need a system of mechanics even more fundamental than Newton's).

When we can vary the degree of Humes "constant conjunction" then even the most stubborm of anti scientific psychodelic mind-destroyers ought to agree (out of common courtesy) that "there must truly be some causal connection in reality, that is, external to any mind: though as to the mechanism, that needs further elucidation."

For the example suggested in
the editorial of current in a wire connected to an e.m.f., the interaction is too fast for human reaction or contemplation. The initial transient interaction could be time expanded and analysed in detail as it settles down to an assymptote which corresponds to the classical circuit laws.
P.J. Ratcliffe

Stevenage
Herts

CURRENT DUMPING

Mr McLoughlin's replies to the letters regarding his article on current dumping (Letters, 1984 February pp. 46, 49, 50) need a response, since we feel some of our statements have been misinterpreted.

We think that the "incautious comparisons with other arrangements", which "had to be withdrawn on grounds of instability" are important, for the success of an electronic technique such as current dumping often depends on the practicalities of typical circuits.

Should one think of current dumping as dominated by feedback or by feedforward error correction? We think most of us would agree that without feedback the majority of amplifiers would be impractical. However, current dumping establishes a new concept in amplifier design that is clearly different from normal feedback, and is clearly traceable to Black's original feedforward concepts. We have never stated that "feedforward alone is the only correct explanation of current dumping". On the contrary, we have always insisted that current dumping is a blend of both error feedforward and feedback (see our second paragraph), and we feel it is most improper to represent our views in such a biased manner.
It is very clear from our AES article that the inductor characteristics refer to those inductors which we constructed for our model circuit. Thus "this damaging criticism of the Quad 405° is wholly inaccurate. There is nothing wrong with the inductor in the Quad 405. Mr McLoughlin's theoretical analyses of current dumping have descended to unjustified, unsubstantiated criticisms of
the Quad 405 specific design. If he doesn't like the 405, he is at liberty to say so, but he should not say that "it is quite incapable of using the current dumping technique" without some experimental substantiation. Our model circuit does this, and we are convinced that the design does incorporate a feedforward novelty. There is a clearly discernible distortion null in the 405 (albeit not perfect) as the bridge components are varied, and the unmodified amplifier is fairly close to optimum. We are sceptical that a circuit of comparable performance and simplicity (with the dumpers biased off) can be produced without the feedforward technique. Mr McLoughlin states that the 405 operates by relying on the modification of the feedback at h.f. provided by the inductor L. He argues that
"It is left to the usual negative feedback from E (his Fig. 12) to reduce" the dumper distortion. We would claim that there is no usual feedback from E, and that the feedback from before L is meant precisely to correct the signal after L. This is error cancellation and is not associated with normal feedback, although it is used with feedback. The 405 may not embody the technique perfectly, as many of the details show, but the primary claim that it uses an error cancelling technique is in no way compromised. One could insist on sticking to a feedback-only explanation, but once one sees how the concept is clearly traceable to feedforward error correction, then it seems to us only logical that subsequent descriptions are based on the two intertwined techniques.
J. Vanderkooy
S.P. Lipshitz

University of Waterloo Ontario
Canada

MORSEMAKER

After completing a Morsemaker (June, 1985), it was found that some of the 4013 devices did not change state in a reliable manner, and the following modifications were required before the unit would function properly.
An additional 10n capacitor was connected in parallel with

that already existing between pin 3 and earth of i.c. $4013 /$ 2(a), directly to pins 3 and 7 on the underside of the printedcircuit board. Without this capacitor, "nonsense" characters consisting of dots only, appeared.
A 10 n capacitor was connected between pins 11 and 7 of i.c. 4013/3(b) on the underside of the p.c.b. Without this capacitor, a few dots were generated, followed by a continous tone. Both capacitors are of the miniature, lowvoltage ceramic type.
With the two capacitors in place, figures were generated correctly, but letters involving more than one changeover, e.g. CXPQY etc., were not produced, and also the
"blocked" dit-dit-dah-dah frequently occurred. This was cured by removing the 10 n capacitor from pin 3 of the dotdash latch 4013/1(a).
Randomising was also improved on this particular model by shorting-out the diode connected to pins $3,4,5$, of i.c. 4025/5(b) which considerably reduced the number of consecutive 'repeats' in a string of characters.
Switching disturbances on the positive supply line had been previously observed on an oscilloscope, and found to be due to the effect of the series resistance of the safety diode on the supply voltage regulation. Whilst there was no apparent effect on the performance of this unit, it was considered desirable to augment the 2μ and

10n capacitors already incorporated across the supply lines with several $47 \mu 10 \mathrm{~V}$ electrolytic capacitors to provide additional smoothing and de-coupling at various places on the p.c.b., particularly as the device is powered by a battery, which could develop internal resistance in the course of time, adding to that exhibited by the diode.

Finally, a useful addition to the Morsemaker is an adjustable delay between characters which enables the character generation speed to be increased so that rhythm is apparent, yet allows a slow reader respite between characters.

This was achieved by interposing a 'one-shot' between the wiper of the "character-end" switch and the SET pin 8 (previously isolated as described below), of controllatch i.c. 4013/1(b). The pulse from the switch activates the 'one-shot', causing the output to go high, this in turn holds the control-latch in the "character-end" mode for the duration of the 'one-shot' pulse. The 'one-shot' was formed by connecting two elements of a 4001 quad 2 input Norgate as shown in the sketch, the remaining i.c. inputs being connected to pin 7 (0 V). Small portions of the printed-circuit track on either side of pin 8 of i.c. $4013 / 1$ were carefully removed (leaving pin 8 isolated), pin 7 of i.c. $4013 / 2$ being re-connected to pin 7 of
i.c. $4013 / 1$ via a wire link. Pin 8 of i.c. $4013 / 1$ (b) was then connected to pin 4 of the 'oneshot'. The extra i.c. and associated components were mounted on a small p.c.b.,
located near the main board from which is obtained the necessary power supply. The delay-control spindle was brought to the outside of the instrument case, for
convenience.
R.J. Canaway

Maidenhead
Berks.

IT EDUCATION

In November, 1983, the commission of the European Community issued the following facts as part of its official journal no. C321, volume 26. "Some 6\% of the Community's gross domestic product (GDP) is produced by Information Technology (IT) industries. A further 29% of GDP is produced by industries which apply IT in a major way. Another 20% of GDP is derived from other industrial sectors with a high information content". In other words, over half of the GDP of Europe is derived from, or is heavily dependent on, IT. By 1990, IT will be the world's largest manufacturing sector.

The new information technologies will be the key to industrial advance in our lifetime and national (i.e. UK) participation in these advances demands national development of the skills required to provide the labour and intellectual infrastructure to such advances. Trite it may be, but no less true, that we are undergoing a revolution in industrial methodology. Moreover, in parallel, the very fabric of our lives is being irreversibly influenced by IT; our shopping, recreation, home life and education are all affected and will increasingly become more so. These facts and conclusions are not in dispute. It is how we as a nation are addressing this present and future that prompts me to write today.

For I believe that our primary and secondary school education system is not reflecting the importance of IT. IT is not about a computer in every school. IT is about many things, but, primarily:
information processing and manipulation, communications, machine intelligence, manmachine interface, data base networks, citizen's privacy, word recognition and machine speech, software, microelectronics, advanced information processing, expert systems - one could go on and on.
Can it then be right that we as a nation spend more money and skilled resource on teaching French and German in schools than we do on IT? How much is that effort going to contribute to our GDP in five years time?
How can we justify departments of Business Studies in schools but no departments of IT? Has anyone considered whether we should be giving over half of the school curriculum to IT education? Do we really believe that our present curriculum is enabling our children to deal rationally with the world as it is and as it will be? Do we really believe that a child's job prospects could be anything but improved by a far higher understanding of the technologies of the future?

Let us acknowledge that we, in Europe, are engaged in a battle with the Americans and the Japanese for mastery of the high addded-value industries of the future. Some we have lost irrecoverably e.g. mainframe computers. But, on the whole, much of the rest is up for grabs. And if this is true of Europe, how much more is it of the UK, with its tremendous dependency on exports?
It is conceivable that some may regard the repositioning of IT in the curriculum as-a deliberalising move; that the school may become less arts oriented. The latter is inevitable but the former need not be so, with sensitivity and care. One would not recommend the abolition of arts subjects, but rather their de-emphasising.
From my view in one of our advanced technology companies, some of the future can be seen - many others in the IT industries see likewise. Surely it is time for a dialogue to start between the educationalists and the IT industrialists? Our children's part in the future could be at stake.
Ian Bilsland
Graphic Information Systems Limited

CABLE T.V. HEAD END AND REPEATER AMPLIFIERS

CHANNEL CONVERTERS
mum output +26 dBmV . Crystal contralled justable $+2 \mathrm{~dB}-16 \mathrm{~dB}$. Maximum output +26 dBmV . Crystal controlled oscillator. Power requirement
14 V 25 mA . (Quote Channels required)
TCUV
TCVU
As TCUU except UHF to VHF converter. (Quote Channels required).

SINGLE CHANNEL AUTOMATIC GAIN CONTROL AMPLIFIERS
TAG4863 Gain 48dB. maximum output 63 dBmV . Regulator + or - 8dB. Power
Gain 40 dB maximum requirement 14 V 210 mA output 64 dBmV . Regulator + or -16 dB . Power

SINGLE CHANNEL AMPLIFIERS

SSS4663 Gain 28-46dB adjustable. Maximum output 63 dBmV . Power requirement
TSS3062 $\quad \begin{gathered}\text { Gain } 12-30 \mathrm{~dB} \\ \\ \\ 14 \mathrm{~V} 26 \mathrm{~mA} .\end{gathered}$

DRIVER AMPLIFIERS

TS 1030 FM FM driver amplifier. 10 dB Gain. Maximum output 30 dBmV Power require-
S103083 - ment tuV IOmA.
Band dirl Maximum output 30dBmV. Powe
TS103OUHF UHF driver amplitier 10
STO
ment $14 V 10 \mathrm{~mA}$
UHF driver amplifier. 10 dB gain. Maximum output 40 dBmV .

DISTRIBUTION AMPLIFIERS
TE2042 Domestic distribution amplifier, 1 input, 1 output. Gain 20dB. Maximum
output 42 dBmV .
TE1638 Domestic distribution amplifier. I input. 2 outputs. Gain 16dB. Maximum
output: 2 at 38 dBmV
TS2846 $\quad 40-860 \mathrm{MHz}$. Gain 20dB UHF. 18 dB VHF. Maximum output 46 dBmV
TS2845 $40-860 \mathrm{MHz}$. Gain 28dB UHF. 22 dB VHF. Maximum output 46 dBmV
TS2054 $\quad 46 \mathrm{dBmV}$. $40-860 \mathrm{M} \mathbf{H z}$. Gain 20dB UHF, 18 dB VHF Maximum output 54 dBmV
TS2060 $\quad 40-860 \mathrm{MHz}$. Gain 20dB UHF, 18 dB VHF Maximum output 60 dBm

REPEATER AMPLIFIERS

$\begin{array}{ll}\text { TSC3665 } & \text { Repeater. Gain } 16-36 \mathrm{~dB} \text { UHF, } 10-30 \mathrm{~dB} \text { VHF. Maximum output } 65 \mathrm{dBmV} \text {. } \\ \text { TSC3060 } & \text { Repeater. Gain } 10-30 \mathrm{~dB} \text { VHF. Maximum output } 60 \mathrm{dBmV} \text {. }\end{array}$

QUALITY AT LOW COST TAYLOR BROS (OLDHAM) LTD

 LEE STREET, OLDHAM - TEL. 061-652 3221 - TELEX 669911

CIRCLE 24 FOR FURTHER DETAILS.

CIRCUIT ANALYSIS on CBM/PET or COMMODORE 64

An all machine code program for the rapid analysis of linear electronic circuits.
This package evaluates voltage gain, current gain, input impedance and output impedance in magnitude phase angle form.

Program features:
Capacity 30 nodes, 100 passive components, 20 active sources. Uses 32 k RAM
Handles transistors, F.E.T., Op-amp., transformer and transmission line. Cct model may be simple or complex. Simple, rapid, component value or parameter changes. Hardcopy of all results, including graphs.
Graph axes may be LIN/LOG/db as appropriate with automatic scaling.
Maximum or minimum value of all circuit functions.
Unity gain bandwidth and slope of voltage gain characteristic at this frequency.
Bandwidth at 'x'db down on the response at any freq.
Hardcopy of component list and performance summary
Filing of circuit details and last used parameter values for the rapid loading of the circuit.
Comprehensive instructions with many examples.
State model and disc drive number. Cassette to order.
Written by a design engineer for other engineers.
Many satisfied users. In use for two years.
S.J. BRANSON

111 Park Road
Peterborough PE1 2TR
Tel: (0733) 67604

GEN: FiATORS

NEW TG501 FUNCTION GENERATOR

.005 Hz to 5 MHz ; sine, square, triangle, ramp, pulse and haverwave waveforms; free-run, triggered or gated modes; variable startstop phase. $19: 1$ symmetry range; variable DC offset; variable 50Ω output; TLL output; external sweep mode
NEW TG502 SWEEP/FUNCTION GENERATOR
Main generator features as TG501 plus irierrial sweep generator; 1000:1 linear or 10,000:1 log sweep range; precise dial-and-enter setting of sweep limits; marker with variable duration and out-ofrrange indicator; variable sweep rate; single sweep mode; sweep reset and hold; sweep and pen-lift outputs.
NEW TG503 PULSE/FUNCTION GENERATOR
Main generator features as TG501 plus normal, double and delayed puise modes; pulse width variable from 50 ns to 50 ms ; delay variable from 100 ns to $50 \mathrm{~ms} ; 10 \mathrm{MHz}$ capability in double pulse mode; complement mode; symmetrical, positive-going or negative-going outputs with adjustable baseline.
For further information contact:
Thandar Electronics Ltd,
London Road, St. Ives, Huntingdon, Cambridgeshire PE17 4HJ Telephone: (0480) 64646 Telex: 32250

CIRCLE 6 FOR FURTHER DETAILS.

Happy Memories

Part type	1 off	25-99	100 up
4116 200ns	.1.25	1.15	1.10
4164 150ns Not Texas	. 3.35	3.10	2.90
2114 200ns Low Power	. 1.75	1.60	1.55
2016 150ns	. 3.65	3.35	3.10
6116 200ns Low power	. 7.75	Call	Call
6264 150ns Low power	. 19.95	Call	Call
2716 450ns 5 volt.	3.85	3.45	3.30
2732 450ns Intel type	. 4.75	4.25	4.10
2732A 350ns5.25	4.69	4.50
2532 450ns Texas type.	. 3.85	3.45	3.30
2764 300ns Suit BBC	. 5.95	5.50	5.25
27128 300ns Suit BBC.	. 14.20	13.65	12.60

Low profile IC sockets: \quad Pins $\quad 814161820242840$ Pence 1213141618242738
Available now - The ROAM BOARD for the BBC Micro. Reads Roms via a Low Insertion Force Socket and saves their contents as files, then reloads a file into its sideways Ram as required. Full details on request.

74LS series TTL, large stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or phone for list

Please add 50p post \& packing to orders under $£ 15$ and VAT to total Access welcome, 24 hr 'phone service on (054 422) 618
Non-Military Government \& Educational orders weicome., £15 minimum.

HAPPY MEMORIES (WW) Gladestry, Kington Herefordshire HR5 3NY Tel: (054 422) 618 or 628

E.M.S. POWER SYSTEMS

Solve all your Power Problems by contacting E.M.S.
E.M.S. specialise in systems to eliminate your power problems.
Products range from 35VA switched square wave Power Packs to 1KVA fully uninterruptible sine wave systems.
E.M.S. also manufacture chargers which range up to 60 amps.

For further details please contact:

E.M.S. Manufacturing Limited Chairborough Road
 High Wycombe
 Bucks
 Tel: (0494) 448484

CIRCLE 48 FOR FURTHER DETAILS

fom Shure, amicsorhone

Presenting a remarkable breakthrough from Shure - microphones, mixer and logic technology all combined in one totally integrated system of quite astounding aural quality. Each microphone has complete independence within the system eliminating all unwanted sounds

AMS24
outside
a specially tailored
120 acceptance
window And continuously analysing its own local acoustic environment allowing each channel to adapt itself autonomously as audio conditions change In fact, the AMS (Automatic Microphone System) is so simple to use that an operator's only

concern is pre-

 setting the individual volume levels.Its mixers (4-and 8-channel available) can easily be linked to control over 200 separate microphones. Which makes the AMS absolutely ideal for conferences and symposiums (though it performs equally impressively in churches, courtrooms teleconferencing and broadcasting).

And advanced logic terminals provide unprecedented flexibility for including

Sowter

 TransformersWith 40 years' experience in the design and manufacture of several hundred thousand iransformers we can supply

AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE YOU NAME IT!
 WE MAKE IT! OUR RANGE INCLUDES

Microphone transformers (all types), Microphone Splitter/Combiner transfor mers. Input and Output ransformers, Direct Injection transformers for Guitars, Multi-Secondary output transformers, Bridging transformers, Line transformers, Line transformers to G.P.O. Isolating Test Specification, Tapped impedance matching transformers, Gramophone Pickup transformers, Audio Mixing Desk transformers (all fypes). Miniature transformers, Microminiature transformers for PCB mounting, Experimental transformers, Ultra low frequency transformers. Uitra linear and other transformers for Transistor and Vaive Amplifiers up to 500 fier to 100 volt line transformers (from a few watts up to 1,000 watts) 100 yolt line transformers to speakers. Speaker matching transformers (all powers) Column Loudspeaker transformers up to 300 watts or more
We can design for RECORDING QUALITY, STUDIO QUALITY. HI-FI QUALITY OR P.A. QUALITY. OUR PRICES ARE HIGHLY COMPETITIVE ANO WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS. Many standard types are in stock and normal dispatch times are short and sensible OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES, MIXING DESK MANUFACTURERS, RECORDING STUDIOS, HI-FI ENTHUSIASTS, BAND GROUPS, AND PUBLIC ADORESS FIRMS. Export is a speciality and we have overseas clients in the COMMONWEALTH. E.E.C., USA, MIDDLEEAST, etc. Send for our questionnaire which, when completed. enables us to post quota tions by return

E. A. Sowter Ltd.

Manufecturers and Deaigners
E. A. 8OWTER LTD. (Established 1941) : Re9. No. Englend 303990 The Boat Yard, Cullinghom Rood, Ipawich IP; 2EG, 8uffolk Phone: 047352794, iPd $2 E 43$ 219390

Telex 987703G sowter

OSCILLOSCOPES

GOULD OS4000 DIGITAL StDRAGE Dual Trace.
GOULD OS3300B. Dual Trace 50MHZ Delay
E850 Sweep Sweep $\quad £ 400$ PHILIPS PM3370 Dual Trace 150MHZ Delay Sweep COSSOR Coviso dual Trace 35MHz Delay Sweep S. E. LABS SM111 Dual Trace 18MHZ AC or external EX-MINSTRYCT436 Dual Beam 6MHZ

SIGNAL GENERATORS

 MARCONI TF2008 AMIFM TOKHZ 510 MHZ
MARCONI TF1066B/1 AM/FM $10-470 \mathrm{MHZ}$ E $£ 1,200$ MARCONI TF995A/2. AM/FM $1.5-220 \mathrm{MHZ}$ §200 MARCONITF144H/4 $10 \mathrm{KHZ}-72 \mathrm{MHZ}$

MULTIMETERS

PHILIPS DMM 2517 . 4 digit. Autorangingetc, ${ }^{2} 95$ AVO 8 Mk5 Compete with Batteries,
 Complete with Batteries, leads \& carrying case P\&P ${ }^{-1} 7$
AVO MULTIMINOR. Complete with Batteries, leads \& carying case P\&P\&3

MARCON TF2600 VALVE VOLTMETER 12 ranges 1mV-300VFSD $60 \mathrm{~V} ; 0-0.5 \mathrm{Amps}$. Current Limiting. Metered. $P \& P$ ${ }^{-} \underbrace{7}$ VARIAC 5 AMP Input 240 V Output $0-265 \mathrm{~V}$ Cased. P\&P $\& 7$

- CROYDON resistance box - managin 0.1 -11110 hms (4decade) Un-used. P8P£7... £25

All above Instruments in Working Order and Supplied with Manual [0 - Mo Manual)

NEW EQUIPMENT

HAMEG OSCILLOSCOPE 605. Oual Trace 60MHZ Delay Sweep. Component Tester ${ }^{\text {E }}$ E515
HAMEG OSCILLOSCOPE 203.5. Dua Trace 20142 Component Tester

BLACK STAR FREQUENCY COUNTERS. P\&P Meteor 100-100 MHZ
Meteor $600-600 \mathrm{MHZ}$
Meteor $1000-1 \mathrm{GHZ}$
BLACK STAR ${ }^{\mathbf{1} 12}$ GENERATOR SUPITOR 500 FUNCTION 500 KHZ . P\&P P 4

HUNG CHANG DMM 6010. 3 digit. Hand held 28 ranges including 10 Amp AC/DC. Complete with MULITMETER type U4324. 33 ranges. Complet with batteries and leads. P\&P@4E16

OSCILLOSCOPES PROBES. Switched X1; X10. P\&
£2.

TANDON $5^{11},{ }^{n}$ FLOPPY DISC DRIVES $1 / 2$ HEIGHT

 Single sided Double Density $\varepsilon 75$ Double Sided Doubr Dens c5
STEPPER MOTORS

Type 1. 200 Steps 4 Phase (5 wire) $12 / 24 \mathrm{~V} 2502$ Type2. $6 / 12$ Steps 3 Phase $12 / 24 \mathrm{~V}$. 1% dia. $£ 2$ ea 5 Type 3. 24 Steps 4 wire $5 \mathrm{~V} 3.3 A \quad 0-250 \mathrm{rpm} 0$ 200PPs $2 \frac{3 / 4}{}$ dia E10e Type 4. 200 Steps 120 V (3 wire) 250 z inch $2 \frac{3}{6}$ P\&P and VAT extra

This IS A VERY SMALI SAMPLE OF STOCK PAE Or Telephone for LISTS
Please check availability before ordering
VAT to be added to Total of Goods \& Carriage

STEWART OF READING 110 WYKEHAM ROAD, READING, BERKS RG6 1PL Telephone: 073468041

Callers welcome $9 \mathrm{a} . \mathrm{m}$. to $5.30 \mathrm{p} . \mathrm{m}$. Monday to Saturday inclusive CIRCLE 73 FOR FURTHER DETAILS.

[^4]
Music on the BBC Micro

Music 500

A virtually unlimited variety of waveforms and envelopes are available for playing on eight voices arranged over seven stereo positions in the Music 500 , a synthesizer add-on for the BBC Microcomputer. The hardware comes in a metalcased box, roughly the same shape and size as a floppy disc drive. It contains its own power supply. It connects to the computer through a ribbon cable which plugs into the 1 MHz -bus port and has itself a parallel socket for that bus. The audio output is from a 5 -pin DIN socket and a stereo amplifier must be connected to make the output audible.
Supplied with the Music 500 is a cassette which includes AMPLE, a music programming language, some examples of preset waveforms and envelopes and a selection of music produced by the system. There is also a utility to enable the programs to be transferred to disc. Ample works rather like Forth. It enables commands to be defined in terms of existing words and these new words are used in turn within the definitions of other words. Eventually the whole program executes on the command of a single word - 'play'.
There are 16 channels of sound, normally used in pairs to allow a maximum of eight voices. More channels can be assigned to a particular voice at the expense of having fewer voices. Each channel in a pair can have its own waveform and the frequencies may be varied so that one channel will modulate the other.
Programming words are available for frequency modulation, ring modulation and synchronized waveforms. Harmonics up to the 16th can be assigned to a channel, each with its own amplitude. The wave is then converted to its geometrical form for storage; the geometrical form can also be defined directly, without harmonic analysis. A noise channel, to produce percussion sounds, is not directly available but can be simulated by introducing a random element into the waveform generation.

Envelopes for the notes can be defined in several ways from a simple attack-decay-sustainrelease sequence to complex geometrical and pitch-bending envelopes. Waveforms and envelopes are assigned independantly to sound channels and may be used in any combination.

Musically, notes are entered using their letter names, familiar to musicians. The sequence 'CDEFGABC' would play a C major scale. Sharps and flats are entered with a plus or minus sign before the note and key signatures may be defined at the beginning of a piece, after which only accidentals need to be entered. One convention that takes some getting used to is that uppercase letters are used for the next note above the current one but lower-case is used to descend. 'AG' would play A followed by the G above but Ag would be used to play A followed by the G below it. Hence, if we were to enter 'cdefgabc' instead of getting a scale, each note would be followed by the one a seventh below and that sequence would descend about seven octaves! The synthesizer has a pre-set pitch which may be altered to tune it to a different pitch. Numbers are assigned to relative note lengths and the speed of the music is governed by a 'tempo' instruction.

The language is very comprehensive and it is possible to reproduce almost any sound that can be imagined; but it is also quite difficult to leam and use. This
is partly due to the lack of any graphics facilities. Music can only be entered as a computer program through the computer keyboard. Not, for example, as notes on a stave. There are limited facilities to actually hear the waveforms, envelopes or tunes being produced without writing a program and then running it. There is no list of specific waveforms or envelopes so that one could make the output sound like a trombone, a flute or an organ. The preprogrammed examples on the
cassette have very computersounding noises, not too dissimilar to those available on the BBC's own internal sound generator, even when more than three voices and stereo positioning are used. So the synthesizer is not fully demonstrated except by one's own trial and error methods.
The sound output is of high quality and is best transmitted through a good hi-fi system but it could have been easy to install a low-power audio amplifier to give, for example, headphone output. My computer is in a different room from my stereo equipment and initially I recorded the output on a portable stereo cassette player before being able to hear it. The negative aspects of this review might be of a temporary nature; there has been mention of a keyboard add-on for the Music 500 . The present programming language and rather poorlyprinted handbook make no reference to this so both must be updated when the keyboard is issued. The keyboard will also allow the synthesizer to be played 'live'. Music 500 was developed for Acorn by Hybrid Technology Ltd., Acorn Computers Ltd., Fulbourn Road, Cherry Hinton, Cambridge CB1 4 JN . EWW 100

A system for music

By way of contrast, The Music System (TMS) includes no hardware and relies on the BBC's internal sound generator and computer keyboard. For $£ 25$ it offers two discs (also available on cassette) and a handbook. The programs are all inter-linked through a menu page and it is possible to use the Editor for entering music, the Synthesizer module for creating new sounds, the Keyboard programme for playing 'live' music. There is also a printer driver program to enable the printing of music scores and a 'linker' which allows seperately programmed music to be strung together into longer compositions. Each section of the software is menu driven and uses an icon system similar to that of, say the Apple Macintosh, so that there is hardly any need to type at the keyboard at all. Typically a cursor is used to point at an icon, or pictorial representation of the parameter to be altered.

Then two keys are used to increase or decrease the value of that parameter.
The Music Editor section of the software works rather like a word-processor for music. Entering music is by positioning one cursor at the note value and then moving a second cursor to the note position on the stave. Key and time signatures are entered at the beginning of a piece and subsequent notes are . automatically given the correct sharps and flats. As in Music 500 there is automatic bar checking to ensure that the note values given to each bar agree with the time signature. The music editor works on one voice at a time but may be switched instantly to either of the other voices. Music may be entered one voice at a time or in parallel, working on all voices together by rapidly switching between them. The program will position the cursor at the correct place when switching between voices. One facility which illustrates the
thoroughness of the program is the provision for 'first time' and 'second time' bars in a repeated section. Notes may be sounded as they are entered and sections of a piece played at any time during their development.

The Synthesizer module is an envelope generator and again is programmed graphically with a representation of the envelope shape on the screen. Pitch and amplitude parameters can be easily changed at will and elements from one envelope can be transferred to another. Up to 30 envelopes can be stored either in a form to be replayed through the rest of TMS or to be incorporated into a Basic program.
The Keyboard module allows the computer to be used as a 'real time' instrument using the QWERTY keys to play the notes with envelopes previously defined in the Synthesizer module. It is even possible to 'record' one's efforts with a set of keys which will emulate a tape recorder so that it is possible to 'rewind' the memory and play-back or re-record a section. A metronome icon ticks away in the corner of the screen to preserve the tempo. A piece so recorded can be stored on tape or disc as a file Finally the printout module will enable music programmed into the music editor to be printed out on a Epson or Star Delta dot-matrix printer. It is possible to print one voice at a time or all voices together and there is provision for a very high resolution print-out giving superb printed music or medium resolution which prints much faster. Treble and bass
clefs, key and time signatures, accidentals and bar lines appear as they would on conventionally printed music.
All this is documented in the instruction manual which is very well laid out with all functions clearly illustrated.
TMS also has its drawbacks; it only covers a range of four octaves and is restricted to the envelope commands available to the internal sound generator on the BBC computer. The cassette version has fewer facilities than the disc, especially in that it cannot use the fourth (percussion) channel. However the system is under constant revision and there is mention of the extension of the system with a music keyboard and a Midi synthesizer.

So we have two very contrasted systems; the Music 500 has superb but expensive hardware but the programming language without any graphics is quite difficult to use compounded by the poorly produced but, we hope, temporary manual The Music System, at about $£ 25$, is at the opposite end of the scale with excellent software and a manual that is very easy to use but the system is restricted by the hardware available on the computer. Both systems are planned to be extended with live-performance keyboards and TMS may get an external synthesizer add-on. The Music System is based on programs orginally developes by System Software but has been extended and enhanced in cooperation with Island Logic. System, 12 Collegiate Crescent, Sheffield S10 2BA. EWW101

INTERFACE FOR FIBRES

One p.c.b. offers both transmission and reception of serial data along an optical fibre. Although primarily intended for R9232C links, the interface can also be used with t.t.1. levels and R9422/3. Full duplex facilities are available but the board may be used in simplex mode if a separate control signal is needed, such as the 'busy' signal from a printer. Fibres are connected to the board by S.M.A. connectors.

Fibres of the 200 micron

HIGH-SPEED OP-AMP

With the precision necessary for high fidelity audio equipment as well as signal conditioning in instrumentation the Raytheon OP-47 is a low-noise device, available in a TO-99 metal can or an 8 -pin plastic dil package and in military or commercial temperature ranges.
Power-supply rejection and common-node rejection are typically 120 dB with a spectral noise density of $3 \mathrm{nV} / \mathrm{Hz}$. Input
glass graded index type give a transmission distance of at leas 1 km . The company can also provide the optical cables terminated at the required lengths or a termination kit for installation in the field, if required. Applications include installation in areas of high electrical interference, where optical cable can replace RS232C cables. Transmissions are unaffected by r.f.i. and are free from lightning damage and are therefore very suitable for installation in hazardous areas. Arthur Ford Ltd., Park Lane Works, Old Basford, Nottingham NG6 0EU. EWW204
bias and offset currents are as low as 10 nA and offset voltage is guaranteed to be less than $60 \mu \mathrm{~V}$. The gain bandwidth product is 63 MHz and the device is fully output short circuit protected. Typical applications include low impedance microphone amplifiers, professional quality audio amplifiers, spectrum analysers and precision instrumentation amplifiers. Raytheon Semiconductors, Ogilvie Road, High Wycombe, Bucks HP12 3D9. EWW200

ETHERNET NODE ON A CHIPSET

All the logic, protocol and control functions needed to implement the interfacing of a processor to a Ethernet network are incorporated in three chips from AMD. The devices are: 8990 network controller, 7991A serial interface adaptor and 7995 Ethernet transceiver. At the data link level the set supports buffer management, data encapsulation, framing and package control, c.r.c. generation and checking, and serial/deserialization. At the physical level, there is $10 \mathrm{Mbit} / \mathrm{s}$ data rate. carrier-sense multiple access with collision detection and tranceiver interface compatibility. Dage (GB) Ltd, Eurosem Division, RabansLane, Aylesbury, Bucks HP12 3RG. EWW106

16 AMP P.C.B. RELAY

Using Silver Cadmium Oxide contacts for long life, the Zettler A2735 relay is 28 mm high and will switch 16 A at 250 V a.c. Normally supplied with one changeover contact, the relay can handle up to 415 V 3500 VA . 100000 operations are claimed at $250 \mathrm{~V} / 16 \mathrm{~A}$ a.c. with pick-up and drop-out times of 7 ms and 2 ms respectively. High isolation between coils and contact is provided. Direct coil voltages can be selected from a range between 5 and 76 V Normally open contacts can be supplied to special order. Sterling Components Ltd, Sterling Road, Slough, Berks.

Ram Tape-PC has its own power supply, is provided with a host adaptor card and a disc containing the software drivers and utilities to access the various functions. Menu-driven software simplifies the operation for inexperienced users. Euro Electronics Ltd, Lancaster Gate House, 319 Pinner Road Harrow, Middlesex HAl 4HF EWW 109

MULTI-STANDARD TAPE RECORDER

Based on modular technology, the Stellavox TD9 tape recorder can cope with magnetic formats of $0.25 \mathrm{in}, 0.5 \mathrm{in}$ and 16 mm film. All tape transport functions are controlled by a microprocessor with feedback data from optoelectronic tensiometers. The recorder is ergonomically
designed to be easy to use and has claimed for it 'the highest sound quality'. It may be quickly adapted to the required format. Amongst its features are: Synchronization, with, or without time-code for film or video, a locator, pre-view facilities, computer control
through an interface, line and/ or battery supply, will accept reels up to the 14in. NAB standard, six tape speeds and a variation control, inside or outside oxide winding, a monitor speaker and it mạy be rack installed. There is a wide variety of accessories. Future Film Developments, 114 Wardour Street, London W1V 3LP.

EWW108

FLEXIBLE STORAGE SYSTEM

A multipurpose data storage system is designed for use with the IBM-PC or other compatible computers. The Ram Tape-PC combines a 400 Kbyte ram, organised as a 'silicon disc', with 13.5 Mbytes of storage on a $\frac{1}{4}$-in tape cartridge. The software configures the first part of the ram as a double-sided disc with direct access from the computer. The remaining ram is
available to other disc images More than 30 double-sided, double-density disc images can be stored on the tape cartridge, which can be loaded from the tape onto the electronic disc to provide access speeds up to 50 times faster than with flexible discs. The electronic disc may also be loaded from any other drive in the system to provide the same rapid access. The

PAGED MESSAGES

A radiopager with the ability to display and store messages up to 70 characters long has been launched by British Telecom. Message Master can display names and addresses, telephone numbers, share prices or travel information, and up to ten messages with a total of up to 300 characters may be kept in the internal memory for reference. When a message has been received the pager will bleep and flash a light, though it may be muted if the user so
requires. Messages are transmitted to the pager directly through Teles or Datel, or by telephone to a central radiopaging bureau, which will forward the message through a computerized system. Various options are available depending on whether the user wishes to use the Message Master in a number of the 40 zones which make up the national system. It costs $\mathcal{L} 75$ a quarter and a futher £ 9 to use the bureau.
British Telecom Radiopaging, 4th Floor, 23 Howland Street, London W1P 6HQ.
EWW208

64K EEPROM

Organized as an 8 K byte device the HN58064P is an electrically erasable and programmable rom from Hitachi. It uses a single 5 V supply. Latches are provided on-chip for addresses and data. Depending on the status of the chip enable, output enable and write enable lines, six different modes of operation can be selected: chip erase takes about 20 ms , individual bytes can be writtin
to or read from in 10 ms conventional 'Read' mode is available as are a 'deselected' mode and a low powered 'standby'. Different versions of the device offer access times of 250,300 or 450 ns . The device is housed in a conventional 28 pin plastic package. It is specified to operate for over 10000 erase/write cycles. Hitachi Electronic Components (UK) Ltd., 221 Station Road, Harrow, Middlesex HA1 2XL EWW 209

RESISTANCE BOXES

Two boxes offer decades of resistors selected by dial switches which also indicate the value chosen. The 1065 box offers power resistors over the range 0.1 to $120 \mathrm{~K} \Omega$. while 1066 has precision wire-wound resistors for a range of 1 to $1.2 \mathrm{M} \Omega$ decade and 0.01% for the others. The power resistors in the other box have an overall accuracy of 1% with the 0.1Ω decade at 5%. These are 10 W power rated and the box has a maximum voltage of 500 V d.c.
whereas the precision box uses 350 mW resistors with a maximum total voltage of 150 V . Both are designed for laboratory, industrial and academic use.
They are housed in metal cases and are easily transportable. Switch contact resistance has been kept to a minimum by the user of multi-wafer switches each with four parallel, silverplated, self-wiping contacts. Time Electronics Ltd., Botany Industrial Estate, Tonbridge, Kent TN9 1RH. EWW203

PLUG-IN CIRCUIT BREAKER

Fitting a standard 13A socket and providing in turn a single 13A socket, the Power Breaker20 incorporates an residual current circuit breaker (r.c.c.b.) to provide a high degree of protection against damage and electric shock. The device is built in accordance with the relevant British Standards. It has a 'power on' indicator light, a test button and will cut out automatically if plugged in to an incorrectly wired socket, for example if the live and neutral wires are reversed. It works on $220 / 240 \mathrm{~V}$ a.c. mains, incorporates

fuse and is slim enough to fit two side-by-side in a double socket. The Power Breaker is available at a number of retail shops and hardware stores and at electrical wholesalers. Suggested retail price is just under $£ 20 . \mathrm{B} \& \mathrm{R}$ Electrical Products Ltd., Temple Fields, Harlow, Essex CM20 2BG EWW205

IMAGE FRAME STORE FOR MICRO

A high-resolution video frame store is provided by the Eltime Image III. The single p.c.b may be used in conjunction with a BBC micro, to capture and display pictures in real time from any 625 or 525 -line video source. The highest resolution is 512 by 512 pixels stored in a 64 Kbit dynamic ram. Every pixel can be accessed and altered by the assignment of up to 64 grey-scale levels. If a lower resolution is selected, the store can be partitioned to retain multiple pictures, e.g. for 256 by 256 resolution, four pictures can be stored. Pictures from the same or different sources can be compared

A gated oscillator is used to synchronize incoming frames to the store, this is used in

A 300-Baud modem to plug directly into the user port of either a Commodore 64 or Vic 20 home computer has been developed by Intelnet. It uses power drawn from the computer and requires no external supplies or batteries. Model 2074/V21 uses a 10 -pole switched capacitor filter i.c. to remove noise from the line and frequencies are very stable as they are derived from crystal oscillators. It operates to CCITT V21 recommended tones for data communication at 300 Baud and may be used for intercomputer communication as well as commercial databases (Distel, Maplin, Estelle, for example) which operate the V21 standard. It is not compatible with the V23
processor's memory map. Additional circuitry is needed for use with other processors.

Applications include robotic vision, medical imaging, factory inspection and security surveillance. Additionally the store can be used to capture pictures which arrive slowly such as weather satellite pictures and ultrasonic scan images. Thus a display can be held steady without the need for a long-persistence c.r.t. As well as the BBC micro, versions are available for use with the Apple and IBM PC. Image III costs just under $£ 2000$. It was developed at the BT Research Laboratories and is manufactured under licence from BT by Eltime Ltd., Unit D29, Maldon Industrial Estate, Fullbridge, Maldon, Essex CM9 7LP. EWW EWW202

DIGITAL THERMOMETER

Claimed to be the smallest and cheapest hand-held electronic thermometer on the market. the Vixen is only 103 mm long, costs less than $£ 30$ and is guaranteed for three years. It operates within a range of -120 to 820° with an accuracy of 0.2% and incoporates automatic cold-junction compensation. The thermometer uses $\mathrm{NiCr} /$ NiA1, type K, thermocouples through a standard miniature connector, enabling many standard themocouples from a variety of sources to be used The device has a battery life of 6000 hours which is claimed to be the equivalent of over four years nommal service life. The display indicates low battery and open-circuit thermocouple. A Fahrenheit version is available. Vixen Hytech Ltd. 17 Amberley Road, Bostal Heath, London 9E2 09G. EWW 201

modem is supplied with cassette software which can be adapted to select the character bit lengths, parity bits etc. as required. $\mathfrak{£ 4 9 . 5 0 \text { inclusive from }}$ Intelnet Ltd., Unit C2, Faircharm Trading Estate, Creekside, London 9E8 3IDX. EWW206

QUALITY COMPONENTS FROM CRICKLEWOOD! This list contains only a are for "one-offs"-quantity discounts by nenstantly being updated. Prices quoted Colleges, Goods Dept etc welcomed WE SPECIALISE IN CREDIT CARD PHONE ORDERS. A quick call will check stock position and current prices. Add 60 p p\&

PRICES SUB.JE TO CHANGE
 \qquad
 $\sqrt{9}$
 t
 send for FREE CATALOGUE

The PC-16 16-bit computer provides PERFECT COMPATIBILITY with the IBM PC/XT range. The motherboard can be supplied in two versions for stereoscopic conveneince. The ' N ' version has no memory on board and the ' B ' version with space for 64 to 256K RAM. Addition of the Memory Expansion Card provides a further 64 to 512 KB of RAM. BASIC FEATURES INCLUDE

* 8088 CPU operating at 4.77 MHz
* Provision for 8087 co-processor
* Four DMA channels
* Three TIMER channels on board
* 8 EXPANSION SLOTS

SYSTEM-5 PC16 (B/3) - PRICE £1599 - Main computer employing 'B' board with 128 K on board (upgradeable to 256 K on board) PLUS Colour/Graphics adaptor providing signal capable of running monochrome displays on RGB output for full colour. Multi I/O card, providing floppy drive controller for two drives, one parallel port, one serial port, one games port with batter backed clock calander. RAM extension card for 512 K . Two DS/DD floppy drives. 83-key keyboard. All complete, built \& tested in case with power supply together with Concurrent (multiuser, multitasking) CP/M,CCP/M manual, Basic manual and computer operations manual - ready to run

* RUNS MS/PC-DOS \& CP/M 86
* READS \& WRITES IBM-PC format
* Accepts IBM-PC Peripherals
* Up to 256K RAM ON BUARD

MOTHERBOARD 'B', 8-slot,
128K ... 449 MOTHERBOARD ' N ', 8-slot £329 MULTIFUNCTION card with 128K (expandable to 256 K) one PLL-port, one SER-port (2nd option) Clock/ Calendar with backup $£ 259$ MONOCHROME adaptor with printer port................................... 233 MULTI I/O CARD - one pll, one serial port, one games port, floppy drive controller, clock calender with battery backup

14in RGB HI-RES MONITOR (640dots $\times 300$ lines)389 12 in HI-RES GREEN MON €89 64K RAM EXTEND MODULE $£ 59$ DS/DD FLOPPY DRIVE (500 KB unformatted..

DRIVE
WINCHESTER DRIVE
CONTROLLER........................... $£ 425$
512 K RAM BOARD - comes with
128K RAM installed fully IBM compatible

WINCHESTER DRIVE 12MB complete with controller $£ 915$ IBM COMPATIBLE KEYBOARD (83
 KEYTRONIC 5151 K/BOARD $£ 210$ SWITCHING POWER SUPPLY £105 SWI SERIAL PORTKIT ADD SERIALPORT KT..............E23
FLOPPY DRIVE CONTROLLER ...£109

DRIVES - MEGABYTES FOR
MICROPOUNDS!
$5 \frac{1}{2}$ " Half height $500 \mathrm{kB} 40 / 80$....... $£ 119$ $5 \pi^{*}$ Half height $1 \mathrm{MB} 40 / 48$ 51• Half height 16 MB 40/80 5.w Haff height 4 MB 40/80 5*" Half height 2 MB 40/80 3" Half height 500 kB
3" Half height 1 MB
8^{*} Full size 1.6 MB 159
8^{-}Half size 1.6 MB
MR521 Half height 12.75 $£ 282$ unformatted.
All brand new, boxed, with built in controller standard power requirments. Full documentation

Add 15% VAT to all prices given. Remember, VAT is also applicable on carriage at 15%. Terms CWO. DEALER ENQUIRES WELCOME. FOREIGN enquiries if possible by telex please However, French \& German speaking staff at your disposal. MONEY BACK GUARANTEE. SEND E 1.00 for our latest catalogue of over 3000 items, computers, peripherals, consumables, robotics, etc etc.

TEL:(0342) 313427•24631/2

There are better ways of measuring hum, ripple and other small signals

The Waugh Instruments Micro Amplifier extends the measurement capabilities of your oscilloscope to $100 \mu \mathrm{~V} /$ div from $\mathrm{DC}-2 \mathrm{MHz}$ differential or single ended input. For details of this and other amplifiers contact:-
Peter Waugh at Waugh Instruments, Otter House
Weston Underwood, Olney, Bucks. MK46 5JS
(0234) 712445.

CIRCLE 38 FOR FURTHER DETAILS

Toroidal Transformers

as manufacturers we are able to offer a range of quality Toroidal Transformers at highly competitive prices and fast delivery.

Mail Order Price List

15VA 6.92 30VV 7.18. 50VA 8.86. 80VA 9.92. 120VA 10.59. 160VA 12.10. 225VA 13.69. 300VA 14.77. 500VA 19.20. 625VA 22.09. 750VA 26.17. 1 KVA 38.82, 1.2 KVA 44.06 price inctudes $p+p$ \& vat.
Available from stock in the following voltages:-6-0-6,9-0-9,12-0-12,15-0-15. 18-0-18,22-0-22. 25-0-25, 30-0-30,35-0-35,40-0-40,45-0-45,50-050,110,220,240(max. 10 amp). Primary 240 volt.

Quantity Prices and delivery on request (we also manufacture conventional E1 type transformers)
\qquad Airlink Transformers.
Unit 6, The Maltings, Station Road,
Sawbridgeworth, Herts. Tel: 0279-724425.
CIRCLE 72 FOR FURTHER DETAILS.

VIDEO TERMINAL BOARD

. 80 characters $\times 24$ lines

Requires ASCll encoded keyboard and monitor to make fully configurable intelligent terminal. Uses 6802 micro and 6845 controller. Program and character generator (7×9 matrix with descenders) in two 2716 EPROMs. Full scrolling at 9600 baud with 8 switch selectable rates. RS232 interface.
Bare board with 2 EPROMS and program listing $£ 48$ plus VAT. Assembled and tested - $£ 118$ Send for details or CWO to:

AMElectronics

Wood Farm, Leiston, Suffolk IP164HT Tel: 0728831131

DATA MODEMS

Join the communications revolution with our super range of DATA MODEMS wi prices and types to suit all application Most modems are EX BRITISH standard for continuous use and reliability. RS232 interfaces are standard to all our modems, so will connect to ANY micro et with an RS232 serial interface. DATEL $2 B$ see SPECIAL OFFER centre of this ad.
MODEM $13 A, 300$ baud. Compact unit on
2 nigh and same size as telephone base. 2" high and same size as telephone base
Standard CCITT tones. CALL mode only. Standard CCIT tones. CALL mode only.
Tested with data. owly it.00 $+7 p$ E4. SO. for use as subscriber end to PRESTEL,
MICRONET Or TELECOM GOLD Tested with data. f39. 95 + PD EG .30
bauc f99.00.2, same as $20-1$ but $1200-75$
 coupler. Brand new with RS232 interface.
f9s.00 $~$ DACOM DSL21 23 Multh Standard Modem,
switchable CCITT or USA BELL 103 standard SWitchable CCITT or USA BELL 103 slandard
V21 $300-300, \mathrm{~V} 2375-1200, \mathrm{~V} 231200-75$ or $1200-1200$ half duplex
Auto answer via MODEM or CPU CALL or
ANSWER modes plus LED status indication, ANSWER modes pIUS LED status indication
Dim $2.5^{\circ} \times 85^{\circ} \times 9^{\circ}$ BRAND NEW fully Oimaranteed owhy $268.00+$ PP 54.50 .
OUTEL wo part unit is for synchronious data links at
1200 or 2400 baud using $2780 / 3780$ 1200 or 2400 baud using $2780 / 3780$
protocol Many features include Auto answe 2 or 4 wire working etc. etc. COST OVER
£800. OUR PREE 185.00 . DATEL 4800, RACAL MPS4800 high speed good condition $£ 285.00$ GARR £ 10.00

PRICE BARRIDR SHATTERED ON 16 " RGB CASED COLOUR MONTTORS

A scoop purchase from a major London Hotel enables us 10 offer this special

 converted DECCA 100 COLOUR video TV at a super low price of E99.0011 Low enough to suit any budget!! Solid state modular construction, 16 high detinition PIL lube, which eliminates convergence problems and our own special modification results in $80+$ column text definition and picture quality not seen on monitors costing three times as much!! In fact we guarantee you will be delighted with this product, the quality has to be seen to be believed. Supplied complete and ready plug direct to a BBC MICRO COMPUTER or any other system with a Tikoutput. Other features include internal audio amp and speaker, compact dimensions only. $52 \mathrm{~cm} W \times 34 \mathrm{H} \times 24 \mathrm{D}$, auto degaussing circuit. attractive teak

ONLY $£ 99.00$ + $£ 10.00$ CARR.
£ 12.00 ($E 30.00$.

SPECIAL 300 BAUD MODEM OFFER

Another GIGANTIC purchase of these EX BRITISH TELECOM, NEW or rittle used 28 data modems allows and to make the communications at an UNHEARD OF PRICE OF ONLY £29.95. Made the highest POST OFFICE APPROVED spec at a cost of hundreds of pounds each, the $2 B$ has all the standard requirements for data ba se, business or hobby communications. All this and more!!

- 300 daud full duplex
 - Supplied with full data $\sum £ 29.95$ - 240 v Mains operation - Moduliar construction ${ }^{2}$. 1 year tull guarantie - Direct isolated connection - Just 2 wires to comms. line AVE - 2250

SUPER PRINTER SCOOP BRAND NEW

. CENTRO

HUNDREDS OF PRINTERS
 EX STOCK FROM £49.00. Call Sales Office for Details.

1 only large CALCOMP 1036 AO 3 pen drum plotter and offline 915 magtape controller Good
drum E2500.00.

DISK DRIVE SPECIALS

SIEMENS FDD-100-5 $51 /{ }^{\prime \prime} 40$ track single sided.
SHUGART SA400 51/4" 35 track, single sided, Ex equipment, guaranteed working 555.00
SHUGART SAB00, SA850 8" drives plus spares EX Stock call for prices Hard disk drives.
Large quantities of HARD DISK drives currently EX STOCK including DIABLO 44/DRE $4000 \mathrm{~A}, \mathrm{~B} 5+5 \mathrm{mb}$ cartridge drive
CDC HAWK $5+5 \mathrm{mb}$ cartridge drive as new condition
CDC 978280 mb DEC RMO3 compatible PERTEC D3422 $5+5$ cartridge drive都 FROM $£ 295.00$ FROM £995.00 FROM E795.00 FROM E2900.00

VIDHO MONLTORS

At a price YOU can afford, our range EOUIPMENT vINeo monitors defy

 compatition!! All are for 240 v working with standard composite video input. Units are BEC micro. Even where MINOR screan burns MAY exist - normal data displays ar unaffected. 1000's SOLD TO DATE will display up to 132 columns $\times 25$ lines. Housed in attractive fully enclosedbrushed alloy case. $\beta / 4$ only $\mathbf{E 3 2} .95$ brushed alloy case. B/W
GREEN mereen $\mathbf{B} 9.9$ 24" KGM large screen black 8 white Ifealschools, shops, clubs etc.

DEC CORNER

PDP 1140 System comprising of CPU interface. RPO 240 MB hard disk drive TU109 track 800 BPI Mag tape drive. dua rack system. VT52 VDU etc. etc. Tested
and running
$\mathbf{\&} 3750.00$ BA11-MB 3.5"Box, PSU, LTC $\quad £ 385.00$ DH11.AD $16 \times$ RS232 DMA DLVITRACe $\quad \mathbf{~} 2100.00$ $\begin{array}{ll}\text { DLV11-J } 4 \times \text { E1A interface } & \mathbf{8 1 0 . 0 0} \\ \text { DUP11 Sych. Serial data i/o } & \mathbf{£ 5 5 0 . 0 0}\end{array}$ DQ200 Dilog - multi RK
 LA36 Decwriter EIA or 20 ma loop $£ 270.00$ LAXX-NW LA180 RS232 serial interface
and butfer option
£ 130.00 LAX34-AL LA34 tractorfeed $\quad \mathbf{£ 8 5 . 0 0}$ MS11.JP Unibus 32 kb Ram $\quad \mathbf{8 8 0 . 0 0}$ $\begin{array}{ll}\text { MS11-LB Unibus } 128 \mathrm{~kb} \text { Ram } & \text { ع450.00 } \\ \text { MS11-LD Unibus } 256 \mathrm{~kb} \text { Ram } & £ 850.00\end{array}$ MS11-LD Unibus 256 kb Ram
MSC4804 Qbus (Equiv MSV1 256 kb pol PDP1 1/05 Cpu, Ram, i/O. etc.
PDP1 $1 / 40 \mathrm{Cpu} .124 \mathrm{kMMU}$ RT11 ver. 3 B documentationkit $\quad £ 70.00$
 $\begin{array}{lr}\text { KLBJA PDP } 8 \text { async i/o } & £ 175.00 \\ \text { M18E PDP } 8 \text { Bootstrap option } & £ 75.00\end{array}$ MI8E PDP 8 Bootstrap option
VT50 VDU and Keyboard Current
VT52 VDU with RS232 interiace
$\mathbf{\Sigma 1 7 5 . 0 0}$

1000's of EX STOCK spares for DE peripherals. Call for details. All typ peripherals. Call for details. All types of
Computer equipment and spares wanted
for PROMPT CASH PAYMENT. DATA GENERAL spares and

ADD VAT TO ALL PRICES

GRS - PRINTERS - PRINTERS - PRINTERS PRINTERS - PRINTERS - PRINTERS - PRI

ELECTRONIC COMPONENTS
EQUIPPAENT
Oue to our massive bulk purchasing programme which enables us to tring you the besi possible
bargains, we have thousands of I.C $\$$. Transistors. Relays. Cap s. PC B s, Sub-assemblies bargains, we have thousands of I.C s. Transistors, Relays, Cap s. PC B s, Sub-assemblies.
Switches, etc. etc. surplus to our requirements. Because we don t have sufficent stocks of any LIFET/ME' Thousands of components at giveaway prices' Guaranteed to be worth
$\begin{array}{ll}2.5 \mathrm{kls} £ 4.25+p p £ 1.25 & 5 \mathrm{kls} £ 5.90+£ 1.80 \\ 201\end{array}$
10kls $£ 10.25+$ pp $£ 2.25$

GE MODEL 30

A large purchase of these stand alone terminal units offers an EXTREMELY LOW connection to your micro. The printer has switchable rates baud. Upper and lower case characters ter widths up to 132 columns. Unit accepts standard fan fold sprocket fed paper from $4^{\prime \prime}$ to $9.5^{\prime \prime}$. Many other features such as numeric keypad, electronic keyboard, auto motor on/off and FREE floor stand. Supplied in good S/H working condition complete with manual ONLY E95.00 CARRIAGE GINS. $\mathbf{E} 10.00$

EXTEL PRINTERS

EX NEWS SERVICE compact, quality built 50 column matrix printer, type AE11.
Unit Operates on 5 BIT BAUDOT Code Unit operates on 5 BIT BAUDOT code
from current loop, RS232 or TTL serial interfaces. May be connected direct to micro, or comms receiver via simple filter network to enable printing of most world
wide NEWS TFLEX and RTY services wide NEWS. TELEX and RTIY services. Supplied in tested second hand condition
with 50 and 75 baud xtals, data sheet and large paper roll. ONLYE 49.95 .
CARR $\mathbf{E 6 . 0 0}$ Spare paper rolls $£ 4.50$ each

GE TERMIPRINTER

A massive purchase of these desk top
printer-terminals enables us to offer you these quality 30 cDs printers at a SUPER LOW PRICE against their original cost of electronic keyboard and printer mech with orint face similar to correspondence quality ypewriter. Vanable forms tractor unit enables full with-up to $135^{\prime \prime} 120$ column serial interface, internal vertical and horizontal tab settings, standard ribbon adjustable baud rates, quiet operation plus many other features. Supplied complete with manual. Guaraneed working E F.0.00 o untested E8S.00. optional floor stand $£ 12.50$
Carr 8 ins $£ 10.00$.

TELETYYPE ASBBS

 I/O THRMDATS Fully fledged industry standard ASRB3 data eyboard and printer for data $1 / O$ auto detect circuity RS232 serial interface. 110 baud, 8 bit paper tape punch and reader for off line data preparation and ridiculously cheap and reliable data storage. Supplied in ood condition and in working order Options: Floor stand $\boldsymbol{I} / \mathbf{2 . 5 0}+\mathrm{VAT}$KSR33 with 20 ma loop interface $\boldsymbol{E} \mathbf{1 2 5 . 0 0}+$ KSR33 with 20 ma loop interface $£ 125.00+$ 20,000 FEET OF ELECTRONIC AND COMPUTER GOODIES
ENGLAND'S LARGEST SURPLUS STORE - SEEING IS BELIEVING!!
D.C. POWER SUPPLI SPECIALS

Experimentors PSU Ex-GPO. All silicon electronics. Outputs give +5 V @ 2 amps Dim $160 \times 120 \times 350 \mathrm{~mm}$. All outputs are fully regulated and short circuit proof. Supplied in NEW or little used condition. Complete with circuit.
Only £15.50 +2 £2.50 pD
FARNELL 5 Volt 40 amps. Type number G6-40A. This miniature switching PSU measures only 160 mm wide 175 mm deep and 90 mm nigh, yet delivers a massive 40 amps!" Fully regulated and smoothed with over voltage protecticn etc. 120 or
240 volts AC input. Supplied BRAND NEW and boxed with circuit εt a fraction of 240 volts AC input. Supplied BRAND NEW and boxed w
 amps fu
E29.99
LAMDA LMCC5V 110 VAC input with 5 volts DC at 8 to 10 amps fuily regulated Output. Slightly smoke damaged, hence ONLY $£ 10.95$
supplied hal SYSEM Suply. Runs amost any system. Fuly cased unit $15-17 \mathrm{~V}$ @ 8 amps "-" $15-17 \mathrm{v} @ 8 \mathrm{amps}$ and " + " 24 v @ 4 amps. All outputs are crowbar protected and the 5 volt output is fully regulated. Fan cooled. Supplied 000 's of $+\varepsilon 8.50$ carr.
'S of other POWER SUPPLIES EX STOCK
CALL SALES OFFICE FOR DETAILS

DUAL DISK DRIVE/ WINCHESTER CASES
Very smart, fully enclosed case unit custom made to accept two full height $51 / 4^{\prime \prime}$ floppy disk drives or two $51^{1 / 4} \mathbf{y}^{\prime \prime}$ winchesters such as the RHODIME RO200 or TANDEM series etc. An internal switched mode PSU supplies all the required voltages to enable you to plug in your drives and go!!
Other features include mains filter, internal cables with standard drive connectors, space for internal PCB, standard fan cut out and mounting, air filter. Overall dimensions $28 \mathrm{~cm} \mathrm{~W} \times 30 \mathrm{~cm} \mathrm{D} \times 19 \mathrm{~cm} \mathrm{H}$ OWLY $£ 55.00+£ 6.00$ CARR.

SPMICONDUCTOR 'GRAB BAGS'
 Mixed Semis amazo value contents

 include transistors digital, linear, I. C's striacsdiodes, bridge recs eic etc. All devices guaranteed brand new full spec. with man facturer's markings. fully guaranteed. $50+E 2.95100+E 5$ IS
TTL 74 Series A gigantic purchase of an "across the board" range of $74 \Pi \mathrm{~L}$ series C.s enables us to offer $100+$ mixed
mostly ΠL grab bags at a price which mostly il grab bags at a price which tlo
or three chips in the bag would nnormally cost to buy Fully guaranteed alllC. sfull spec $100+66.90200+E 12.30300+E 19.50$

NORTH STAR HORIZON Pro 5100 system with dual $5^{\prime \prime}$ floppy drives, sottware. manuals etc.
$£ 850.00$ Call sales office for details

ULTRA COMPACT 300 BAUD ACCOUSTIC MODEM - COUPLER

Major manufacturer's over production and a b
special enables us to offer this BRAND NEW special enables us to offer this BRAND NEW
TRANSDATA $307 A$ ultra compact, BT APPROVED. 300 baud full duplex accoustic moder at a fraction manufacturer's list price. The unit operates on the
standard CCITT V21 frequencies with RS232 interface via 25 way 'D' skt.

Combine the adjustable cup sys em, which fits almost any phone with the tienefit of No jacks or phone cables" and a light weight of only 1.2 Kg and you have a truly
portable modem!! Supplied complete with portable modem!! Supplied complete with ONLY £49.95 + £3.00 pp

PEOFESSIONAL 6 FOOT 19" RACK CABINETS
LARGE 19" equipment cabinet. Totaly enclosed with locking front and rear
doors. An internal sub fram 63 high is pre
\qquad driled for standard $19 "$
equipment etc. Other
features include internal
$12 "$ cooling fad

The Archer-סingle Board Computer

The SDS ARCHER - The Z80 based single board computer chosen by professionals and OEM users.

FEATURES

* High quality double sided plated through PCB
* 4 Bytewide memory sockets - upto 64 k
* Power-fail and watchdog timer circuits
* 4 Parallel ports with handshaking
* Bus expansion connector
* CMOS battery back-up
* Counter-timer chip
* 2 serial ports
* 4 MHz. Z80A

Telephone or write for full technical description
 and price information.

OPTIONS * SDS BASIC with autostart and "user program in ROM" facility

* SDS DEBUG MONITOR: a powerful 8 k byte development aid
* On board 120/240 volt mains power supply
* Attractive two tone instrument case

Sherwood Data Systems Ltd
Sherwood House, The Avenue, Farnham Common, Slough SL2 3JX.Tel. 02814-5067
CIRCLE 43 FOR FURTHER DETAILS.

pantechnic

design manufacture and supply
POWER AMPLIFIERS HIGH POWER ASSEMBLIES CONTROL CIRCUITRY
for application in INDUSTRY
PUBLIC ADDRESS
Hl-Fl
available

OFF THE SHELF CUSTOMISED CADDESIGNED

tel. 01.361.8715 132 High Road telex 266873 New Southgate PANTEC G LONDON N11 1PG.

COMPONENT PACKS

All Brand New except where marked
${ }_{5}^{5} \quad \begin{aligned} & 13 \text { amp ring main junction boxes } \\ & 13\end{aligned}$
13 amp tuses for ring mains
surface meunting switches
Hush switches intermediate type
in tlex line s withes
in liex line switches
80 watt brass cased elements
mains transtormers with 6 v 1a secondaries
malns transformers with $12 v$ ta secondaries
malns transformers with 12 v ta secondaries
extension speaker cabinet for $6 i^{*}$ soeaker
octal bases tor relays or values
glass reed switches
OCP 70 photo transistors
as sorted gemanium trans istors OC45 etc
ultra sonic transmitters and 2 dita
5000 mid computer capacitors
1.d.r. similar ORP 1
diff micro switches
25 watt crossover units
40 watt 3 way crossover unit
screws and self tappers
of each water switches - 6 p 2 way: 4 p 3
of each water switches -
way: $2 p 6$ way: $1 p 12$ way
tape deck counters
6 digit counter $12 v$
6 digit counter mains voltage
BOAC in light stereg unit (s.
NICAD battery chargers
key swith with key
humidity switches
aersol cans of ICI Dry Lubricant

Most items available in quantity at good discounts. Access \& Barclay cards welcome

N.B. ELECTRONIC SUPPLIES
34 America Lane, Haywards Heath, Sussex RH16 3QU (24hr phone ordering 0444 454563)

CIRCLE 67 FOR FURTHER DETAILS.

It's OUT - NOW! it's the LATEST, it's the LARGEST and, it is the most
COMPREHENSIVE CATALOGUE of
ELECTRONIC COMPONENTS and SERVICING EQUIPMENT
ever produced by

Mrs
for the
Radio, TV and Video Service Department

for YOUR COPY of the HRS
Spring 1985 Catalogue - call us on 021-771 2525

The stock range: aerial \& audio equipment, batteries, cables, capacitors, cartridges \& styli, cassette recorder spares \& tapes (audio \& video), cathode ray tubes, computer accessories, connectors, domestic appliance spares, ehtrectifiers, fuses, hardware, hobby kits, hoiders, indicators, integrated circuits, loucspeakers, multimeters, oscilloscopes, power supplies, production aids, recorder spares, remote control units, resistors, security equipment, semiconductors, service aids, signal generators, soldering equipment, sound equipment, storage systems, switches, tools, transtormers, tvspares, valves, wound components.

HRS Electronics Limited
Great Barr St., BIRMINGHAM B9 4BB Telephone: 021-771 2525

Telex: 339992
CIRCLE 119 FOR FURTHER DETAILS.

[^5]

* DC -20 MHz Bandwidth. * Component Comparator.
* $2 \mathrm{mV} /$ div Sensitivity. * 14 Trigger Functions. EXTRA FORM.
* Triple DC Output Source.

Starting Price £297*

3030 SINGLE TRACE

* DC -15 MHz Bandwidth. * Component Tester.
* $5 \mathrm{mV} /$ div Sensitivity.
* $200 \mathrm{~ns} / \mathrm{div}$. Sweep Speed.

Starting Price £179*
For the full form on both models, and our complete range, just give us a call.
Cratech onstruments Limited
2 Stephenson Road, St. Ives, Huntingdon, Cambs. PE17 4WJ Telephone: (0480) 301818

SALE BY AUCTION

DAY 1 - 12 March, 85
Electronic Test Equipment including: Tektronix 491 Spectrum Analysers, 7704A, 7313 Oscilloscopes, HP.Logic and Network Analysers, 8640 and other Signal Generators, Oscilloscopes. Telequipment Osciloscopes. Marconi Equipment. Plotters, Power Meters, etc, etc.
Computer Equipment including: Qty. new 14" Colour
Video Monitors, Texas and Motorola Computer Systems, 40MB Disk Drives, Altos Computer systems, Emulators, 5 Portable Andromeda Computer Systems, Printers and I.C's etc.

Components and General Surplus. In all some 500 lots.

DAY 2 - 13 March, 85

Fork Lift Trucks, Bearings, Hardware, Cable and Wire, Motors, Howden Universal Tension Tester, Fry's Flow Soldering Line, believed unused, Optical Test Stations, Gilt PCBs and General surplus, in all some 450 lots.
Suitable entries still accepted for both days.
Closing date for entries 28 February, 85.
Catalogues available from the Auctioneers. Price $£ 1.50$
at:

INDUSTRIAL AUCTIONS LIMITED

Bromyard Road Industrial Estate, Ledbury, Herefordshire.
Telephone Ledbury 5456

Multi-Function Calibrator 9822

- 0-1000V AC/DC VOLTAGE
- 0-10 AMPS AC/DC CURRENT
- 10 ohm-10M ohm RESISTANCE
- BI-POLAR OUTPUT
- 5 ppm RESOLUTION
- 6 AC WAVEFORMS
- 25\% OVER Range ON DC
- ZERO OFFSET MODE

奄
TIME ELECTRONICS
Botany Ind. Est., Tonbridge, Kent, England DIRECT SALES © (0732) 355993 Telex: 95481

Appointments

Advertisements accepted up to 12 noon Tuesday 5 March for April Issue

> DISPLAYED APPOINTMENTS VACANT: $£ 19$ per single col. centimetre (min. 3 cm). LINE advertisements (run on): $£ 4.00$ per line, minimum $£ 25$ (prepayable) BOX NUMBERS: $£ 5$ extra. (Replies shouid be addressed to the Box Number in the advertisement, c/o Quadrant House. The Quadrant, Sutton, Surrey SM2 4AS). PHONE: IAN FAUX, 016613033 (DIRECT LINE)

Cheques and Postal Orders payable to BUSINESSPRESSINTERNATIONALLTD. and crossed.

THE BEST APPROACH

\star Where does your interest lie: Graphics; CAD; Robotics; Simulation; Image and Signal Processing; Medical; Automation; Avionics; Acoustics; Weapons; Comms; Radar; Opto and Laser?
\star Experienced in: VLSI; Microprocessor Hardware or Software: Digital and Analogue circuitry; RF and Microwave techniques?
\star There are hundreds of opportunities in: Design; Test; Sales and Service for Engineers and Managers

* For free professional guidance: Call: 0638742244
(till 8pm most evenings) or write (no stamp needed) to

Blectronics

 Dingineers £10,039 Communications Designin High Tech CountryAt H.M. Government Communications Centre we're using the very latest ideas in electronics technology to design and develop sophisticated communications systems and installations for special Government needs at home and overseas.

With full technical support facilities on hand, it's an environment where you can see your ideas progress from initial concepts through prototype construction, tests and evaluation, to the pre-production phase, with a chance to influence every stage. Working conditions are pleasant, the surroundings are attractive, and the career prospects are excellent.

Ideally we're looking for men and women who have studied electronics to degree level or equivalent and have had some experience of design, whether obtained at work or through hobby activities. Appointments will be made as Higher Scientific Officer ($£ 7435-£ 10,039$) or Scientific Officer ($£ 5909-£ 8153$) according to qualifications and experience.

For further details please write to the address given below. As our careful selection process takes some time, it would be particularly helpful if you could detail your qualifications, your personal fields of interest and practical experience, and describe the type of working environment most suited to your career plans

The Recruitment Officer, HMGCC, Hanslope Park, Buckinghamshire MK19 7BH.
(2448)

UNIVERSITY OF
LIVERPOOL INSTITUTE OF MEDICAL AND DENTAL BIO-ENGINEERING

TECHNICIAN

GRADE 3 (ELECTRONICS)
To assist with circuit design, construction and maintenance of electronic control equipment in a medical research laboratory Candidates must possess O.N.C. Intermediate T.E.C., or appropriate equivalent as minimum qualification plus three years experience which should include general workshop skills.
This post is available for Iwo years.

Salary within range
£5399-£6325 per annum.
Application forms may be obtained from the Registrar, the University. P.O. Box 147, Liverpool, L69 3BX.

Quote Ref: RV/938/EWW

Senior Development Engineer

Granada houses and manages one of a number of small Technical Development Laboratories whose work is funded and directed jointly by all the Independent Television Companies. The function of these laboratories is to investigate new techniques, theories, and equipment in relation to broadcasting in its widest sense.
A vacancy exists for a Senior Development Engineer in the above laboratory. Suitable applicants require basic knowledge of colour television principles and some knowledge of any of the basic technologies encompassed within the general framework of broadcasting. These include colonmetry, optics, magnetic recording and digital and analogue circuit design. Work is undertaken in a purpose-built laboratory and applicants will be responsible for complete projects from specification to final documentation.
This is a specialised appointment providing freedom of expression for men or women of ability. Commencing salary is $£ 12330$, with the usual large company benefits including re-location assistance, contributory pension scheme and free Life Assurance.
Written applications including a full cv together with all other relevant information should be sent by 1st March to

Bob Connell,
Ref: A26,
Granada Television Ltd., Quay Street,
Manchester M60 9EA.

An equal opportunity employer

Analogue Engineers

Required for challenging work in State of the Art Technology AN OPPORTUNITY TO DEVELOP YOUR SKILLS

If you have high frequency circuit design experience relevant to one of the areas listed below, we would be most interested to hear from you.
\star WIDEBAND AMPLIFIERS
\star FAST ADC/DAC

* SEMI/CUSTOM ANALOGUE \star FAST PULSE CIRCUITS

We are located at Hainault which is on the edge of the Green Belt close to all the facilities of London.

Gould designs and builds Europe's leading digital storage oscilloscopes. We offer good working conditions, competitive salary, flexible working hours and assistance with relocation.

Telephone: Mrs. Pat Lawson on
01-500 1000
GOULD INSTRUMENTS LTD.
Electronics

SALES ENGINEER

A small division of a large electronics Group involved in the manufacture and marketing of R.F. Test Equipment requires an enthusiastic selfmotivated Sales Engineer. Existing knowledge/experience of R.F. Test Equipment and advantage. Potential involvement in U.K. and overseas markets.
Write to: Radio Telephony Test Systems
Enterprise House
Central Way
North Feltham Trading Estate
Feltham Middlesex TW14 ORT
or telephone Mr G Varrall
Mr R Belcher 01-844 1811

Teleco is a proven innovative company providing Measurement-While-Drilling (M.W.D.) services to major oil companies worldwide. As a result of highly successful technical advances coupled with increased international growth, we are experiencing a period of expansion. Presently we have vacancies for:-

ELECTRONICS TECHNICIANS

The successful candidates will possess practical experience of digital and analogue systems as well as having formal qualifications such as ONC or equivalent C\& Gqualifications in Electronic Engineering.
Included in the total package of company benefits are competitive salary, contributory pension scheme and good working conditions. Applicants should realise that relocation to the Aberdeen area is essential, and that all positions are shore based. Removal assistance will be provided.
Interested candidates should write enclosing a C.V. stating salary requirements for the attention of:Miss F. Skinner, Assistant Personnel Manager TELECO OILFIELD SERVICES LTD.
Barclayhill Place, Portlethen, Aberdeen AB1 4PF. Agency enquiries are not requested.

Electronic Engineers What you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $\mathbf{£ 6 0 0 0}-\mathbf{£ 2 0 , 0 0 0}$.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL PERSONNEL SERVICES, 12 Mount Ephraim, Tunbridge Wells, Kent. TNA 8AS.

Tel: 089239388

THE UNIVERSITY OF SUSSEX SCHOOL OF BIOLOGICAL SCIENCES Electronics Technician Grade 5
An electronics technician is required to work in the Experimental Psychology Group on an SERC research project on Al and speech recognition. The post is for two years in the first instance. The successful applicant will work with the Laboratory technical staff interfacing audio and digital devices to BBC micros and to a VAX-11/780. Experience with these machines would be an advantage, but some training will be given.
Salary within the scale for
Technicians Grade 5 £6,581.
£7,684 per annum, depending on age and experience.
Closing date for applications:' Fobruary 28th 1985 Applications in writing to the Laboratory Suparintendant,
School of Biological Sciences, University of Sussex, Faimer, Brighton BNT 90G

Imperial Chemical Industries PLC
Agricultural Division : Billingham : Cleveland
Catalysts Group

Micromeritics Technologist

The Catalysts Group of Imperial Chemical Industries PLC, Agricultural Division, requires an Experimental Officer working on the provision and development of micromeritic services for the Division.
The job consists of operating and maintaining manual and automatic equipment for the measurement of surface areas, pore size distributions, mercury and helium densities of pellets and powders. Significant skills are required in the interpretation of the data obtained and in communicating these to the experimental and scientific staff of the Division.
The work will be in a laboratory environment and also involves the use of computers for control, calculation and data presentation.
The successful applicant must be self-motivated and capable of independent work. He/she should have a first degree in physics, physical chemistry or materials science and be interested in the utilisation of computers for improving the efficiency of the service provided. Interpretation of the results with respect to the particular material properties will be needed. Their relevance to the particular system being considered will need to be discussed with the customers of the micromeritics service. Previous experience with computers and electronics would be an advantage.
Remuneration will be commensurate with qualifications and experience. The Company operates house purchase, profit sharing and contributory pension schemes and offers financial assistance towards removal expenses.
Applications giving details of age, qualifications and experience should be sent as soon as possible to:
Mr M AJW Pegg, Personnel Department, Imperial Chemical Industries PLC, Agricultural Division, PO Box No. 1, Billingham, Cleveland TS23 1LB.

DO Dolby Laboratories
 Dolby Laboratories manufacture a range of professional audio noise reduction equipment which is used

 by major recording companies, the cinema industry and broadcasting authorities throughout the world.
TEST DEPARTMENT SUPERVISOR

Reporting to the Production Manager the person appointed will be responsible for planning the flow of products through the department, providing technical support and ensuring high quality. The 17 staff test and trouble-shoot analogue circuits to component level, using ATE where appropriate. The position, which is both demanding and rewarding, would suit a graduate engineer aged 25-40 with supervisory experience in a similar environment.

PRODUCTION ENGINEER (ELECTRONICS)

The person appointed will join a small team which is responsible for technical support to the production department as well as interfacing with sales and design engineers on product improvement and new developments.
The successful applicant - aged between 25 and 35 - will be an electronics engineer with an enthusiastic, practical approach backed up a degree or HNC and several years experience in electronic equipment manufacturing. A keen interest in audio electronics and experience with ATE and CAM would be an advantage.
Salaries will be commensurate with qualifications and experience and assistance towards relocation is given in suitable cases.
The company operates a free life insurance and pension scheme.
For application form write or phone:
Sarah Kennedy, Dolby Laboratories Inc., 346 Clapham Road, London Sw9 9AP. Tel: 01-720 1111

Electronic Engineers and Technicians

They're asking for you in Alexandria.

Voluntary Service Overseas is looking for experienced and qualified Electronic Engineers and Technicianis to work with and help train members of third world communities in Egypt (University of Alexandria Research Centre) and in Sri Lanka (Chilaw Diocesan Industrial Centre).

Applicants should be aged between 20 and 65 , without dependants and willing to accept no more fhan the local rate of pay

If you have the right qualities and experience and you're free to go, please believe you're needed urgently!
(For more information, complete and return the

UNIVERSITY OF SUSSEX
 Electronics Technician

In the Arts and Social Studies Area. Duties In the Arts and Social Sludies Area. Duintenance and repair of will include maintenance and repaiir of computer terminais and printers, instal computers, ordering and keeping stock of spare parts. An interest in computing is desirable.
Salary within Grade $\mathbf{4} \mathbf{£ 6}, 106-£ 7,024$ per annum, according to age and experience. Application form from Susan Cory-Wright, Appilcation form from Susan Cory-
Personnel Otfice, Sussex House,
Personnel Office, Sussex House,
University of Sussex, Falmer, Brighton BN1 9RH. Applications must be received by 10th April, 1985 (2499)
 equivalent. Ground Equipments. training centre.

Applications to:

HARROW HEALTH AUTHORITY Northwick Park Hospital \& Clinical Research Centre, Watford Road, Harrow, Middlesex. Tel: 01-864 5311 ELECTRONICS

TECHNICIAN

(MPT Grade IV)
Technician required to service and calibrate a wide range of equipment used for medical. surgical and engineering purposes. The successful applicant will work closely with medical, nursing and other professional staff. The major part of the work involves basic maintenance of the work involves basic main of the equipment.
O.N.C. or equivalent and three years previous experience is the essential qualification for this post.
Salary: $£ 5404$ - $£ 7104$, plus London Weighting 2623 .
For further details and application form please contact the Personnel Department, Ext. 2001.
Closing date: 6th March 1985
(2491)

Civil Aviation College (Gulf States) DOHA, QATAR Required Soonest:

AVIATION ELECTRONICS INSTRUCTOR

1. University Degree in Electronics or Electrical Engineering or
2. Qualified and Experienced in the Installation and Maintenance of Aeronautical Radio Systems and Electronics Air Navigational Aid
3. Minimum ten (10) years teaching experience in an ICAO recognized
4. Salary and allowance up to U.S. Dollars 3400 per month.

The Principal
Civil Aviation College (Gulf States)
P.O. Box 4050

DOHA
State of Qatar

AGENTS REQUIRED
For London \& South/South East to sell PMR and Radio Telephone Systems.
Phone ARE Communications 01-992 9142

EXPERIENCED MAINTENANCE ENGINEER
Required for
ownhouse Studios
Apply in writing with c.v. 10 Barbara Jeffries, Townhouse Studios.
150 Goldhawk Road, London W12.
[2476)

Carlton Television

Carlton Television, part of Carlton Communications PLC, has vacancies for Broadcast Television
Engineers to work on and maintain our range of state of the art equipment to broadcast standards. Experienced and time-code computer editing systems and C-format one-inch VTR's would be considered an advantage.
Salary by negotiation according to experience.
Applications in writing only to:
Neil Wilson
Carlton Television
St John's Wood Studios
St John's Wood Terrace
LONDON NW8

SENIOR TECHNICAL

INSTRUCTOR

Applications are invited for the above position which will be available from July 1985 . Applicants should have a higher certificate/ diploma/degree qualification and relevant. industrial experience. Preference will be given tocandidates with a teaching qualification and experience in digital communication systems. Salary: Senior Technical Instructor I-K16,820, Senior Technical Instructor II - K17,870, (K1 = Stg. 0.9182). Level of appointment will depend upon qualifications and experience.
The initial contract period is for three years. Other benefits include gratuity of 24% taxed at 2%, appointment and repatriation fares, leave fares for the staff member and iamily after 18 months of service, settling-in and settling-out allowance, six weeks leave per year, education fares and assistance towards school fees, free housing. Salary protection plan and medical benefitt schemes are available.
Detailed applications (two copies) w th curriculum vitae together with the nemes and addresses of three references and indicating earliest availability to take up appointment, should be received by: the Registrar. Papua New Guinea, University of Technology, Pivate Mail Bag, Lae, Papua New Guinea, by 30 March 1985. Applicants resident in United Kingdom shouid also send one copy to the Association of Commonwealth Universities (Appts), 36 Gordon Square, London WC1H OPF, from whom further general information may be obtained. (2520)

Appointments

PICCADILLY RADIO seeks an ENGINEER

Qualified to HNC/HND to perform varied tasks in a friendly and challenging environment. ILR2 salary plus shift allowance.

Apply:- Chief Engineer,
Piccadilly Radio, P.O. Box 261, Manchester M60 1 QU.
Piccadilly Radio - An Equal Opportunities Employer

Broadcast Television Electronic Maintenance Engineer

A vacancy exists in our videotape post-production department for a suitably qualified person The applicant should have an appropriate acacemic qualification and be conversant with modern television post production equipment. MPC has a range of state of the art equipment such as ADO, Mirage and FGS 4000 Shift working is required and remuneration will be based upon qualifications and experience.

Please apply in writing only with full details to John Beedle
The Moving Picture Company

Carlton Television

As a result of continual expansion, Carlton Television has a vacancy for a broadcast Vision Control Engineer, to work on operations both within our 2 studios and on Outside Broadcasts.

Previous experience of broadcast colour cameras and associated equipment is essential.
The salary will be negotiated according to experience.
Applications in writing only to:
Neil Wilson
Carlton Television
St John's Wood Studios
St John's Wood Terrace
LONDON NW8
(2478)

F.W.O. Bauch Limited

Major suppliers of professional audio equipment to the recording and broadcasting industries have vacancies for SERVICE ENGINEERS in their well equipped professional audio laboratory in Boreham Wood.
Relevant electronic experience and an interest in sound recording would be an advantage.
Apply in writing with full C.V. to Christine Melhuish Personnel Department
FW.O. Bauch Limited
49 Theobald Street, Boreham Wood, Hertfordshire WD6 4RZ Telephone 01-953 0091, Telex 27502

EALING HEALTH AUTHORITY
EAMG MOSPTAL - GENEIRL wING
ELECTRONICS

TECHNICIAN I

A vacancy exists far an Electronics Technician in this Acute/Maternity Unit. Accountable to the Unit Works Officer the successful applicant will be able to demonstrate fechnical, supervisory and professional obilitiest and will be responsible for this E.M.E. Department which serves the District. Applicants should possess on H.N.C. or equivalent in Electronic Engineering and will be poid on the following scale: Applicants mus possess a c11489 including E9925 - E11489 including London Weighting.
For an informal discussion contact Mr C H Jones, Unit Works Officer, Tel: 01-574 2444 Ext. 304/5. Job description and opplication forms available from Personnel
Department, Ealing Mospital Genereral Wing, Uxbridge Road, Sonereral Ming,
Tel: 01-5742444Ext. 344.
Closing date for receipt of application
forms 13 th Morch 1985.

Appointments

UNIVERSITY OF LIVERPOOL COMPUTER LABORATORY
TECHNICIAN GRADE 5
to undertake installation and repair work. Ability to fault diagnose and repair electronic equipment (both digital and analogue based) to component level expected. Opportunities also exist f participating in work of small team, developing advanced micro-electronic
interfaces includin Ethemet Products. Experience in micro-electronic construction desirable. Successiul candidate will be expected to plan his ow work schedules based on objectives defined by the Section Manager. Progress reporting, indentification of potential delays and record keeping are important aspects of the work
Applicants should possess a current driving licence. O.N.C. or appropriate equivalent is minimum qualification plus seven years relevant experience.
Salary within range $£ 6581$ - $£ 7684$ per annum.
Application forms may be obtained from the Registrar, the University, P.O. Box 147, Liverpool, L69 3BX
Quote Ret: RV/956
(2511)

Remember to look at our "Appointments extra" supplement for four more pages of vacancies.

Telecommunications Engineering Technicians

Openings in Servicing and Maintenance

 Up to $£ 8,873$Our business is to install and maintain the communications equipment used by the Police and Fire Brigades in England and Wales - some of the latest you will find in operation anywhere.

We have a number of vacancies at our Service Centres in various parts of the country, for Telecommunications Engineering Technicians with practical skills in locating and diagnosing faults in a wide range of equipment from computer-based data transmission to $F M$ and $A M$ radio systems.

The work provides excellent opportunities for extending your technical expertise, with specialised courses and training to keep you up to date on developments and new equipment. There are also opportunities for day release to gain higher qualifications.

Applicants, male or female, must be qualified to at least City \& Guilds Intermediate Telecommunications standard and possess a current driving licence. Some

Home Office

travelling will normally be involved. Registered disabled persons can of course apply.

The Home Office is an equal opportunities employer.

Salary will be on a scale $£ 6501$ to $£ 8873$ a year with generous leave allowance and pension scheme.

Good prospects for promotion.
If you are interested in working with us, please write for further details and application forms quoting reference $W W / 1$ to: Miss M Andrews, Home Office, Directorate of Telecommunications, Horseferry House, Dean RyleStreet, LondonSW1P2AW. (2517)

Directorate of

 TelecommunicationsAMPEX is a company at the forefront of magnetic recording technology, which manufactures Professional Video Equipment, Instrumentation Recorders, Disk Drives, Terminals and Magnetic Media.
AMPEX INTERNATIONAL TRAINING, based in Reading, England, is currently expanding and there are several vacancies for Instructors to conduct quality maintenance courses on AMPEX products.
Applicants should be men or women who have experience in one or more of the following areas:
Digital Processing, Professional Video Recording, Digital Magnetic Recording, Microprocessor Based Equipment.
Teaching experience is not essential, as appropriate training will be given.
An attractive salary is offered, together with the usual large company benefits.

INTERNATIONAL For application forms, please contact: Maureen Brake, Personnel Department, or John Watkinson, Training Manager.

First choice for job hunters

Component Development

N Herts
High-technology market leaders, my clients' advanced systems incorporate the very latest component developments, created by themselves and in conjunction with major manufacturers.
\section*{Component Engineers}
To advise designers on applications and evaluate new types. Electronics qualification, knowledge of component systems (BS 9000 , MIL, STDs), experience in electronics test, evaluation or defect analysis. Knowledge of hybrids, packaging, inter connections, material properties, HP45/IEEE bus programming, radiation hardness an advantage.

Team Leader -
 Component Evaluation

To head team dedicated to hybrid evaluation and defect analysis. Qualifications and expertise as for Component Engineer.

Section Leader -
 Electrical Standards

To head laboratory team responsible for calibration of all electrical/ electronic instrumentation, development of new methods, and liaison with external calibration labs. Electrical/electronic apprenticeship, $\mathrm{HNC} / \mathrm{HTC}$ plus knowledge of concepts of traceability and compliance with $\mathrm{MOD} / \mathrm{BCS}$ requirements.
Negotiable salaries and large company benefits, including relocation to North Hertfordshire.
Send full ev stating salary requirements, to Ly nda Bubb, PER, 56-62 Park Sireet, Luton IUI 3JB.

Test Equipment Engineers

To £8,900

Merseyside
Major new contracts at leading electronics manufacturer are creating new key appointments for Test Equipment Engincers. HNC or preferably degrec-qualified in electrical/electronics engineering, you must have had experience of software and hardware application and procurement related to large-scalc computer-controlled test equipment. K nowledge of circuit logic and ATE programming techniques including high level Machine Code and Assembler languages would be an advantage. The company of fers the full range of benefits you would expect of a large, successful organisation, together with excellent working conditions. Generous relocation assistance will be a vailable
Send full cy to Howell Williams, PER, 3rd Floor, Graeme House. Derby Square, Liverpool L 2 7SP.

Systems Engineers

Attractive salary

Lake District area
Leader in design, development, testing and manufacture of advanced electronic systems needs additional Systems Engineers for multi disciplined teams involved in all aspects of systems design and implementation, including move towards hypertechnology programmes. Degree or equivalent in relevant discipline plus two years' practical experience, ideally including top-down structured design. Major international group pack age, with relocation expenses.
Send full cv to Pam James, PER, Victoria House, Ormskirk Road, Presion PR1 2DX.

Test \& Installation Engineers

[^6]
Field Service Engineers

£13,000-£14,500 tax-free

Iraq
W'orld leader in hospital laboratory automation, producing broad range of scientific/medical instrumentation for use in clinical pathology, needs additional Engineers to install systems, attend to routine/emergency maintenance and assist in training. A two-year renewable contract on single status, it demands the expertise of experienced Engineers aged 25-35, qualified to HNC Electronics with a background in the servicing of computer-controlled equipment, ideally medical instrumentation. People with laboratory experience in biochemistry or haematology and k nowledge of electronics also considered. Tax-free salary, bonus, free furnished accommodation, car, medical and life insurance, two months' annual leave, air fares paid. Induction training in France.
Send full ev and passport size photograph to Colin Hodsdon,
PER Overseas, 4 ih Floor, Rev House, 4-12 Regent Street,
LondonSWIY 4PP.

High-Tech Expansion

Neweastle-upon-Tyne
Expansion, consolidation and major market initiative with innovative high-tech product range are together creating a number of new key appointments with this successful Tyneside company, part of a publicly quoted group. assembling electronic and electrical light current control and monitoring devices

Senior Software Development Engineer

To update programs for requirements of computer remote control systems to MINOS standard. Qualifications: experience in real-time data programs using Coral 66 . Knowledge of peripherals an advantage. UK travel.

Microprocessor Hardware Engineer

To develop micro-based equipment for extreme environments. Qualifications: degree in electronics plus D + D of microprocessor equipment for mining industry. Esperience of sof ware writing for 8-bit processorsanadvantage.

Product Manager -
 Control \& Monitoring Devices

To develop remote cont rol and monitoring plant for use in hazardous environments, eg, mining and petrochem industries. Qualifications: degree in electronics plus experience in similar role, knowledge of microprocessor equipment development and applications, ideally including exposure to mining industry needs.
Negotiable salaries, pension/life assurance, generousholiday allowances, excellent prospects.
Phone Aidan I.ynn, PER Neucastle, on (0032)618418, for job description and application form.

JOBHUNTERS

This is a small selection of our current vacancies. For free weekly details of over 450 executive-level appointments, phone (0742) 7(04585, or complete this coupon and send it to PER, Moorfoot, The Moor, Sheffield S 1 4PQ. 24 hour answering service (0742) 750197.

Name:
Address:

Occupation:
Date of Birth:
Salary level:
Ref: E\&WW

Manager, Production Engineering Services

We have established a new management position in the Technical Operations Department at our Nottingham Production Centre - one of the most modern studios in the UK.

The person appointed will be responsible for the CAR, VT and Vision Control sections and for monitoring their technical performance.

We want someone who combines engineering competence with managerial ability - qualified to at least HND or equivalent with a minimum of five years engineering experience with a studio centre or an equipment manufacturer: experience at or above supervisory level is essential, with the skill to organise and control technical resources in a cost-effective manner. An understanding of TV production operations would be an asset. Candidates' likely age range will be 30-40.

The salary and benefits are attractive and reflect the ability and experience required for the position. If you have the necessary qualities, why not send us your CV?

Personnel Department, Central Independent Television plc,
East Midlands Television Centre, Nottingham NG7 2NA.
An equal opportunities employer.

OCENTRAL

£20.00-P/HR.

1) Microwave Amplifier Design Canada. 6 months + E20 P/HR 2) High Frequency Trigger Amplifier Design. 100 MHZ . Essex. 6 months + .
2) RF Designers. M.O.D. Herts/

Essex. 6-12 months. (2516) Phone or write:
ward, C.Eng., M.I.E.E., M.I.E.R.E
CLYEDEN CONSULTANTS 92 The Broadway, Bracknell, Berkshire

THE UNIVERSITY OF LEEDS

ELECTRONICS TECHNICIAN
Dept. of Physiology
Required to assist in the construction of
maintenance of electronic equipment associated with research and teaching of biological studies (under the supervision of
the electronics engineer). Must be capable of the electronics engineer). Must be capable of Applicants should hold ONC or equivalent Applicants should hold O.N.C or equivalen qua.nications and have $3-5$ years relevant experience including traning enad.
Salary will be grade $3 £ 5,399$ - $£ 6,325$ p.a Applications stating age, qualifications and full experience together with the name and address of 2 referees, should be addressed to. Mr. S. Stainthorp. Dept. of Physiology.
Medical and Dental Building, University of Leeds.
Leeds LS2 9 IT
(2515)

BCS LABORATORY DEPUTY HEAD

Due to expansion we have a vacany for on experienced standatds engineer to carry out calibration on DC and LF instrumentation in our laboratory, which is approved by the British Calibration Service.
This position would ideally suit someone in the calibration gield wishing to futher their career prospects. Experience in this type of environment is a necessity.

An attractive salary, pension and BUPA benefits will be offered, also relocation expenses where applicable.

Apply in writing giving details of employment to date:
Mr. J. Macalister
GMR Ltd.,
Unitig,
Salisbury Square, Radford,
Nottingham.

SATELLITE RECEPTION RESEARCH ASSISTANTS
 Monitoring Service

With the advent of satellite communications, broadcasting and news agency organisations are switching from conventional means to satellites for their transmissions. Satellite Reception Research Assistants will be involved in the Monitoring Service's work in this field. Duties include frequency scanning and the compilation of transmission schedules. Extensive experience in communications with C and G Intermediate Telecommunications Technicians Certificate or equivalent qualification and a thorough grasp of satellite communications are essential. Knowledge of major broadcasting systems, familiarity with news agency transmissions and the ability to recognise a range of languages an advantage.
Applicants will be required to take written tests and appointment will be subject to satisfactory hearing tests. Shift work involved.
Salary $£ 7,867-£ 9,761$. Plus 10% shift allowance. Based Caversham Park, Reading. Relocation expenses considered.
Write or telephone immediately for application form (enclosing addressed, foolscap envelope and quote ref. 2037/WW), to Senior Personnel Officer, BBC Monitoring Service, Caversham Park, Reading, Berkshire RG4 8TZ. Tel: (0734) 472742. Ext. 212.

We are an equal opportunities employer
BBG

THE SERVICES SOUND AND VISION CORPORATION BROADCAST AND ELECTRONIC ENGINEERS

Required for Broadcast operations and engineering in the Services Sound and Vision Corporation which provides radio and television services to the British Forces and their dependants abroad. Candidates (preferably aged 22-35) should be educated to HND standard in electrical and electronic engineering and have work experience in the broadcasting or related industry

The work, often overseas, includes the operation, maintenance and instaliation of the full range of professional radio studio equipment and Medium Wave and VHF broadcast transmitters

Good salary and allowances paid together with fringe benefits. There are also prospects of promotion to higher grades and opportunities for training and transfer to Television and other departments of the SSVC.
Please apply in writing to:
Mrs Anna Sive, Personnel Officer
The Services Sound and Vision Corporation,
Chatfont Grove Narcot Lane, Gerrards Cross, Bucks SL9 8TN (2504)

BIO-ENGINEERING OPPORTUNITIESIN SAUDI ARABIA

General Arabian Medical and Allied Services Ltd. are management consultants and agents for the recruitment of staff to the Riyadh Al Khari Hospital Programme inSaudi Arabia. The programme comprises three hospitals including the 600 bed Riyadh Armed Forces Hospital and provides a very high standard of health care to members of the Armed Forces of Saudi Arabia and their families.
The Department of Medical Physics and Bio-Engineering has programmewide responsibilities and with a mainly British staff of more than 40 , is the kargest department of its kind in the Middle East. A very wide range of clinical support and development work is undertaken by our well qualified professionals. Successful candidates will have the opportunity to widen their experience in a busy modern department with excellent facilities allowing them to achieve the high standard of work expected of them. Further expansion of the department's activities, including a commitment to provide technical support for medical equipment on the Kingdom's fleet of Lockheed C-1 30 Hercules "flying hospitals" and air ambulances has created the need for additional qualified bio-engineering technicians

MEDICALELECTRONICS TECHNICIANS

ANAESTHETIC EQUIPMENT MAINTENANCE TECHNICIANS

 SALARY с $£ 16,230$-- $£ 18,234$ pa tax free incl. bonusThe above posts are offered on the Medical Physics Technical Officer (Bio-Engineering) grade, equivalent to the NHS grade III MPT. Qualifications to OTEC or equivalent level is essential; HTEC and/or some years of relevant experience is highly desirable.
There are also Locum positions available for medical physics technical officers for a period of not less than three weeks.

Benefits

Contracts are normally offered for a two-year initial term and include free fully furnished accommodation; four weeks leave after every six months' service; free air fares (including leave flights); free heaith care and extensive recreational facilities. The bonus will be paid on completion of the contract.
Salaries for these single status positions are paid in Saudi Riyals and the sterling salaries quoted are calculated at the current rate of 4.1 Saudi Riyals=£1.

For further information apply with a detailed C.V. or telephone for an application form.
Susan Grice, Recruitment Officer,
GAMA INTERNATIONAL LTD.,
6 Duke of York Street, London SWIY 6LA.
Telephone:01-8396843.

DESIGN AND DEVELOPMENT ENGINEER

Experienced engineer required to join small electronics company involved in design and manufacture of telecomms products for BT and other PeT authorities.
Applicants should have experience in line equalisation equipment, filters, SMPS and automatic testing using microprocessor techniques
Qualifications to degree or HNC with suitable experience. Attractive salary + usual benefits to right person.
Application to include current c.v. to: Kenton Research Ltd. Europe Trading Estate. Erith, Kent DA8 1QL. Telephone: (032 24) 41933
(2519)

When replying to classified
advertisements, readers are
recommended to take steps
to protect their interests
before sending money
(2519)

BUSINESS OPPORTUNITY

SOUTH SHROPSHIRE DISTRICT COUNCIL SWITCHBOARD AND
TELEPHONE INSTALLATION
The Council need to replace their present switchboard arrangements and telephone installation for the Council Offices, Stone Mouse Corve Sireet, Lualow.
 from the undersigned.
Completed forms of tender must be received by not later thon 12 noon on Monday 18 th March 1985.
G. Kellet, Chief $\mathrm{Executive}_{\text {, }}$
Stone Hause, Corve Street, Ludlow, Shropshire Tel: Ludlow 2381 Ext. 22.

ARTICLES FOR SALE

BRIDGES waveform/transistor analysers. Calibrators, Standards. Millivoltmeters. Dynamomenal generators - sweep, low distortion, true RMS, audio, FM, deviation. Tel. $\begin{aligned} & 040 \\ & \mathbf{3 7 6 2 3 6} \text {. }\end{aligned}$ (1627)

QUARTZ CRYSTALS OSCILLATORS AND FILTERS of all types. Large stocks of standard items. Specials supplied to order. Personal and OEM support thru:- design advice prototype OEM Support ihru:- design adre
quantities. production schedules. Guantityse. Electronics. Merriott. Somerset TA16
(2472) 5NS Tel: 0460 /3718

ENCAPSULATING EQUIPMENT FOR_coils, transformers, components, degassing silicone rubber, resin, epoxy. Lost wax casting for brass, bronze, silver, etc. Impregnating coils, transfort,
mers, components. Vacuum equipment, low cost, used and new. Also for CRT regunning metallising. Rescarch A Development. Barratts, Mayo

MORSE READING PROGS. Work on clean signals without hardware interface. ZX81 1K UNEXPANDED MEMORY. Translated code with word and line spaces for easy reading Automatic scroll action. $£ 7$ incl
(2532)

OPTOELECTRONICS DATA BOOK 1984

Price

digital electronic circuits
a SYSTEMS by N.M. Morris
PRICE: $£ 5.45$
MICROELECTRONICS:
A PRACTICAL INTRODUCTION by
SOLDERING IN ELECTRONICS by R.J. Klein Wassin Wassink PRICE: £51.00 OPTICAL FIBER COMMUNICATIONS BY G. Keiser PRICE: £9.50

DIGITAL IMAGE ANALYSIS by S Levialdi PRICE £26.00 SEMI-CUSTOM IC DESIGN 8 VLSI
by P.J. Hicks
PRICE: E 13.50 by P.J. Hicks

INTRODUCTION TO MOS LSI DESIGN by J. Mavor PRICE: $£ 18.50$
HANDBOOK OF BATTERIES \& FUEL CELLS by D. Linden PRICE: $£ 63.00$ THE DESIGN \& DRAFTING OF PRINTED CIRCUITS byD. Lindsey

* all prices include

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST of British and American Technical Books
19-21 PRAED STREET LONDON W2 1NP
Telephone: 01-4029176
Closed Saturday 1 p.m. Please allow 14 days for reply or delivery

VINTAGE VALVE SPARES - Valves, Radios Amplifiers, Service Data. Antique Wireless New sheet sample upon request. Mail Order Only Vintage Wireless Co., Cossham Street, Mangots field, BRISTOL BS 17 3EN. Tel: 0272-565472

CALCOMP FLAT bed plotter $8^{\prime \prime} \times 6^{\prime \prime}$ ex ministry hever beem used since with controller and all cables and plugs day 01-878 2090 eve/w.e. 9481049
(2513)

WAVEGULDE, Flanges and dishes. All standaro sizes and alloys (new material only) from stock. Special sizes to order. Earth Stations, 01-228
7876.22 HowieStreet. London SW11 4AR. (2099)

WANTED

WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash. Member of A.R.R.A

M \& B RADIO
86 Bishopsgate Street Leeds LS1 4BB 0532435649

WANTED SURPLUS ELECTRONIC COMPONENTS AND EQUIPMENT

We also welcome the opportunity to quote for complete factory clearance B. BAMBER ELECTRONICS 5 STATION ROAD, LITTLEPORT, CAMBS Phone: Ely (0353) 860185

* MICROCOMPUTERS * PERIPHERALS
* INSTRUMENTATION

For fastest, best CASH ofter, phone, COMPUTER APPRECIATION Oxford (0865) 55163 Telex 838750 (2492)

ABTICLES FOR SALE

Eurocard Power Supplies

$5 v$ @ 1A 1.5A, 3A and 5A
Options: $\pm 12 \mathrm{v}$ @ 100 mA for RS232,
Crowbar, 12 or 15 v main output, Front Panel with IEC mains SKT. Prices from £15 for 1 A kit ($£ 23$ built) + VAT for details contact
Sleevemain Lid., dept WW, P.O. Box 512, Windsor, Berks SL4 4NU. (2501)
$65 C 02$ CMUS MICROCONTROLLER. Uses BBC Computer as host. Boild standalone controllers simply quickly. Bare boards or built \& tested. Large s.a.e. for details or technical manual $£ 2.50$: Nikam Electronics Ltd 25 Suffolk Irive. Lacey Green. Wilmslow Cheshire SK9 4DE (2512)

> Sullivan Decade capacitor £49, FM/AM Genera tor C89. Sweep Generator (TV) C69. Thermocou ples £2.50 ea. Chart Recorders. 2. 6. 20 channe Data Logger Anemometer. Smallearboxes $£ 5$ lyser $£ 39$. Centrituge. Wow/Flutter meter. W-K Video Oscillator. Large stage, micrometer oper Video Oscilator. Large stage, micrometer oper
ated microscope $\mathbf{\varepsilon 8 9}$. Stereo headsets $\mathbb{6}$. Tek ated microscope $\mathbf{\varepsilon s 9}$. Stereo headsets $£ 6$. Tek
tronix Calibrator/Time Mark Generator $£ 79$. Cali bration Digltal Voitmeter £85. Vibration Analyse E65.FilmProcessor E75. Matrix Programmer C30 Casselle Micro-manometer $£ 49$. Bransom Ulirasonic Generator $£ 29$. Sirett Proportional Temper ature Controller $£ 45$. Colour Distortion Meter $£ 75$. Tron Puilse Analyser E39. Stabilised PSU's Creed Teieprinter Terminal E65. Spot-welding Heads. capacitance, D.C., etc. weiding, thermocouples, circuit connections, dissimilar metats etc. etc £45. General Radio UHF Admittance meter £25, Multiple Battery Substitution PSU £35. Surface Guage (Micro-mches) H^{\top} Supply $\mathbf{E 3 0}$. etc. etc.

> 040376236

SMALL SELECTION ONLY LISTED RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

Portable Battery or Mains Oscilloscope. SE Laboralo
 pose - Bandwidth DC to
Cual
Channel
Rise tume 19NS - Calibrated Sweep - Calibrator -
Display $10 \mathrm{CMS} \times 8 \mathrm{CMS}$ - Powe AC - 95 volt Display $10 \mathrm{CMS} \times 8 \mathrm{CMS}$ - Power AC - 95 volts to 100
 WT11.4KGS - Carrying handie - Tested in fair cond
on with operating instrutions $£ 120.00$

Latest Bulk Government Release - Cossor Oscilloscope CDU150(CT531/3) § 150 only. Solids slate general purpose bandwidth DC to 35 MHz al $5 \mathrm{MV} / \mathrm{CM}$ - Oual delayed time base wilh gated mode - Risetime 10 NS Illuminated graticule - Beam linder - Calibrator 1 KHz squarewave - Power $100-120 \mathrm{~V} .200 \mathrm{~V}-250$ volts AC - Size W 26 CM - 41 CM deep - WT 12.5 K . G. carrying handle - colour biue - protection cover roni
containing polarized viewer and camera adaplor plale - probe (1) - Mains lead. Te sted in Fair condition with operating instructions - $£ 150.00$.
Communication Recievers. Racal $500 \mathrm{KC} / \mathrm{S}$ to $30 \mathrm{mC} / \mathrm{s}$ in 30 bands $1 \mathrm{MC/SWIDE}$ - RA17 MK11 £. 125 . RA17L 150. $\mathbf{~ 2 5}$. All receivers are air tested and calibrated in our workshop - supplied with dusl cover - operation instructions - circuil - in fair used condition. Racal Synthesisers (Decade Irequency generalors) MA350B
Solid Sitate fo Eic $£ 100$ to 5150 MA $250-1.6 \mathrm{MC} / \mathrm{S}$ to $31.6 \mathrm{MC} / \mathrm{S}$ §100. MA1350 lor use with RA17 receiver $£ 100$. MA259G Precision riequency standard 5MC/S $1 \mathrm{MCLS} \rightarrow \mathbf{1 0 0 K H z}$ £100 to $£ 150$. Panoramic Acapto RA66 $£ 150$. RA137 and RA $37 £ 40$ to $£ 75$ LF convertors SSB-ISM Covertor 550 . RA121 SSB-ISB convertor S75. EC964/7K Solid state - single channei - SBB mains or battery - 1.6 to $27.5 \mathrm{MC} / \mathrm{S}$ and 400 to 533 KHz § 100 with manyal Plessey PR 155 G Solid Stale $60 \mathrm{KC/S}$ - 30MC/S 5400 . Creed 75 Teleprinters - Fitted tape punch and gearbox for 50 and 75 bauds - 110 volts $A C$
supply - in original transport tray sealed in polythene - lik new £15EA. Redilon TIt1 Audio Teleprinter convertor receiver solid state - supply 1100 or 240AC Made for use with above teleprinter enabling print-oul of messages recieved trom audio input of communicavertor as above but includes transmit lacilities $\mathbb{£ 2 0}$. 0 scilloscopes - stocks always changing Tektronix $465-100 \mathrm{MC} / \mathrm{S} £ 750$ FM Recorder Sanghmd Sabre 111 14 channels $£ 350$ Transtel Matrix printers -
Aft1R -5 level Baudot Code - up to 300 Bauds - for AF 11 R- 5 levei Baudot Code - up to 300 Bauds - for
print out on plain teleprinter paper $£ 50$ to $£ 100$. Transprint out on plain teeeprinter pablevel ASC 11 (CCITT No
tel AH11R-As above but al so 2 and CCITT No. 5) Like new $£ 100$ Army lield telephone sets. Type $F-L$ and $J-L$ Large quantity in stock $£ 6$ to $£ 15$ depending on type and quantity P.D.R. Don
10 Telephone Cable - half mile canvas containers 10 Telephone Cable - half mile canvas containers
$£ 20$ Night viewing intra-red AFV periscopes - Twin Eyepiece - 24 volt dic supply § 100 ea. Original cost to government over $£ 11,000$ ea. Static invertors - 12 or 24 volt input - 240 volt AC sinewave output - various wattages P. 0 . R. XY Ploters and pen recorders various

- P.0.R. Ferrograph series 7 Tape recorders mono - P.O.R. Ferrograph series 7 Tape recorders mono TF995/A3 £60. TF801D/8s - $10 \mathrm{MC} / \mathrm{S}$ to $485 \mathrm{MC} / \mathrm{S} £ 90$ TF $144 \mathrm{H} / \mathrm{A} 4$ £ 90 . IF $1060 / 2$ £60. HP606A- $£ 90 £ 140$ HP608 £50 HP614A $£ 100$ HP618B $£ 100$ HP620A $£ 100$ Marconi IF1064B/5 1100 P
 guyropes - in sulators - Base and Spikes etc.. in heavy duty carrying bag - new $£ 30$. Racal frequency counter Type $836 £ 50$ Tekironix plugs-ins- 1 A1 $£ 50,1$ A2 $£ 40$.
1A4 100 M $£ 50$. All items are bought direct trom H.M Government being surplus equipment: Price is Ex Government being surplus equipment price is Ex
works. S A. . for enquiries. Phone for appointment tor demonstration of any items. Aiso availability of price change. V.A. T. and carriage extra.

EXPORT TRADE AND QUANTITY JOHNS RADIO (0274) 684007 WHITEHALL WORKS,
84 WHITEHALL ROAD,
EAST BIRKENSHAW, BRADFORD BD11 2ER

> WANTED: REDUNDANT TEST EQUIPMENT RECEIVING AND TRANSMITTING EQUIPMENT
VALVES - PLUGS - SOCKETS SYNCHROS VALVES - PLUGS - SOCKETS SYNCHROS (2743)

SERVICES

PCB Fault Location and

Repair. Jaecrow Systems Services, 29/31 Lower Coombe Street, Croydon, Surrey CR9 1LX Britain's leading maintenance company, now offers a fast board diagnosis and repair service UK and overseas, using the latest ATE. Ask for full details, withou obligation Ring: 01-680 9191 Quote ref: EW385

PROFESSIONAL DESIGN SERVICE. Analogue/RF circuit/System design. Specialising in microwave amplifier, oscillator and network design. MOTOROLA design/development capability All work cessor design/development capability. All work carred out to a high standard by competent profesvices Ltd., Unit 8B, Rose Industrial Est., Bourne End. Bucks 0628528835

TURN YOUR SURPLUS i.cs transistors etc. into cash, immediate settlement. We also welcome the opportunity to quote for complete factory clear-
ance Contact COLES-HARDING $\&$ CO, 103 South Brink Wisbech Cimbs, 0945 584188 . Brik, Wisbech, Cambs. (9509)

DESIGN AND DEVELOPMENT SERVICE. RF transmitters and receivers. Telemetery U.H.F. V.H.F. Anologue and digital circuits, control systems. Full manufacturing facilities. RCS Electronics, Wolsey Road, Ashford, Middx. Phone Dr. Eric
Falkner on 53661 (2637)

FOR THE BEST PCB SERVICE AVAILABLE	
*Circuit Design \& Development Digital and Analogue	
*Artwork Loyout PCB artwork layout and mechanical detailing. P.O. approved standard.	
- Board Manufacture Prototype to semi-production, exceilent rates.	
*Wiring \& Assembly PCB assembly, wiring and cable forming. Flow soddering facilities available.	
- Test Full test facilities available.	
One or all services available. Please telephone Chetmstord (0245) 357935, or write to HCR Electronics. The Industrial Unit, Parker Road, Cheimstord.	

DESIGN AND MANUFACTURE. ANALOGUE DIGTTAL, RF AND MICROWAVE CIRCUIT AND SYSTEM DESIGN. Also PCB design, mechanical design and prototype/small batch production. - Ad Berks. Tel: Bracknell (0344)52023.

SMALL BATCH PCBs, produced from your artwork. also DIALS, PANELS, LABELS. Camera work undertaken. FAST TURNAROUND. DeECIN 8RU. Tel. 01 -4054127/0960. (9794)

VIDEO DESIGN. devekpment and consultants delay lines. fillers. attenuators and amplifier design. developmett and manufacture full tes facilities. Contact Faraday Techology Let. Uni
2. Brampton ndustral istate. Newtast.
(2454)

IMPROVE YOUR PROSPECTS

with skills that employers want - learn

 courses from ideal Schools.MODERN ELECTRONICS Train for success in the fastest eve growing industrial sector COMPUTER PROGRAMMING The demand for Programmers is For tree booklet wrtte today to 1277

IDEAL SCHOOLS (Ref. EW2) 60 St. Enoch Sq Glasgow GI UK.
Tel: $041-2485200$

CIRCOLEC

THE COMPLETE ELECTRONIC SERVICE
Artwork, Circuit Design, PCB Assembly, Test \& Repair Service, Q.A. Consultancy, Prototypes, Final Assembly. Full PCB Flow Soldering Service.
Quality workmanship by professionals at economic prices
Please telephone 01-646 5686 for advice or further details.
TAMWORTH MANOR
302-310 COMMONSIDE EAST, MITCHAM

E C COMPONENTS

We buy large and small parcels of surplus l/C, transistors, capacitors and related electronic stock. Immediate settlement.

Tel: 01-208 0766
Telex: 8814998

SURPLUS

We offer good prices for test equipment, components, redundant computers, PCB's connectors. Immediate settlement.

TIMEBASE

94 Alfriston Gardens Sholling, Southampton SO2 8 AFU Telephone: (0703) 431323 (1832)

WANTED: Ex.-RAF Air - publications, manuals, ect., from 1938 onwards relating to transmitters - receivers, navigation equipment and radar. Excellent price paid M. Gee 29 Studland House Aston Street London E14 7NL. Phone 01-254 9083 evenings.
(2514)

WANTED: Recording Equipment of all ages and variety. Microphones, outboard, etc. Ian Alexander 965 Hilldale Berkeley, Ca. 94708 USA (415) 5271411 (2493)

BUSINESS OPPORTUNTY

PROFITABLE DISTRIBUTORS of specialised electrical and electronic service tools and equipment, catering equipment and hardware for sale. Profits c. $£ 10,000$ p.a. Reply Smallfield, Cody \& Co, 24 Portland Place, London W1N 4AU. (2495)
The Publishers take all
reasonable care to ensure that
classified advertisements are
genuine, but readers must satisfy
themselves that they will be
obtaining what they require
before entering into transactions,
particularly if they involve large
sums of money.

LARGE QUANTITIES OF RADIO. TV AND

 ELECTRONIC COMPONENTS FOR DISPOSALSEMICONDUCTORS, all types, INTEGRATED CIRCUITS, TRANSISTORS, DIODES, RECTIFIERS, THYRISTORS, etc. RESISTORS, C/F, M/F,W/W, etc. CAPACITORS, SILVER MICA, POLYSTYRENE, C280, C296, DISC CERAMICS, PLATE CERAMICS, etc.
ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE, CABLES, SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFOR-
ALL AT KNOCKOUT PAICES - Come and pay us a visit ALADDIN'S CAVE
TELEPHONE: 445 0749/445 2713 R. HENSON LTD.

21 Lodge Lane, North Finchley, London, N. 12 (5 minutes from Tally Ho Corner)

TW ELECTRONICS LTD

THE PCB ASSEMBLERS

More and more companies are investi gating the advantages of using a profes gating the advantages of using a protes
sional subcontractor. Such an undertak ing requires certain assurances.
TW are able to satisfy all of them quality, competitive pricing, firm delivey quality, competitive pricing, firm delivey
and close co-operation with the customer.
Assembled boards at 100% inspected Assembled boards at 100% inspected
before flow soldering and reinspected after automatic cropping and cleaning. Every batch of completed boards is is sued with a signed certificate of conformity and quality - our final assurance. For further details, contact us at our new works:

Blenheim Induatrial Park Bury St. Edmunda
Suffolk IP33 3UT
Telephone: 02843931 (1466)
FREE P.T.H. PROTOTYPE of the finest quality with EVERY P.C.B. artwork designed by us. Competitive hourly rates, and high standard of work.
Halstead Designs Limited, 34 , High St., Halstead, Essex. Tel. (0787) 477408/474554. (2126)
VALVES, PROJECTOR Lamps, 6000 types, list 75p. world wide export. Cox radio (Sussex) Ltd., The Parade, East Wittering, Sussex. Phone (0243) 672023 (1991)
 Use this Form for your Sales and Wants

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

To "Wireless World" Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate £4.00 PER LINE. Average six words per line. Minimum $£ 25$ (prepayable)
- Name and address to be included in charge if used in advertisement
- Box No. Allow two words plus $£ 5$
- Cheques, etc., payable to "Business

Press International Ltd." and cross "\& Co."

NAME.

ADDRESS \qquad

COMPUTER APPRECIATION

16 Walton Street, Oxford OX1 2HQ

Tel: Oxford (0865) 55163 Telex: 838750

IBM PERSONAL COMPUTER Model XT, with single floppy \& 10 MB Winchester AS
 processors 64kbyte memory detached kevhoard with numeric pad and floppy disc intertace BRAND NEW \& BOXED
COMPAQ PLUS. IBM PC COMPATIBLE portable computer with 10 MB hard disk. single \ddagger loppy disc. 640 k bytes, graphics, comprehensive sot tware etc. AS NEW $\mathbf{£ 2 , 9 0 0 . 0 0}$
ROCKWELL AIM $65 / 40$ single board 6502 development system with display, keyboard, power
 disc drives, HONEYWELLModel 32120 cos matrixprinter Runs CP/m $£ 850.00$ OLYMPIA BOSS MICROCOMPUTER, small 280 based business system with 80 col . screen, 64 k byte memory, twin $5 \frac{t}{* " ~}^{\prime \prime}$ floppy disc drives. HONEYWELL Model L32 120cps matrix printer. Runs CP/M MANNE SMANN/TALLY Model M80MC matrix printer. With microprocessor control, 200cps bidrectıonal PRINTING WITH U/L case, self test. Compact but heavy duty machine BRAND NEW \& £ 125.00

CENTRONICS Model 702 matsix printer, 132 col .165 cps , bidirectional printing with self test. In

DEC boxes \& power supplies. Various models available (BA11MF, SB11AA, BA11 LX) all with 22 bit addressing or easily modified \& various optional processors etc.A.

Abstract

TT Model 350 TELEFAX Facsımile transmitter/receiver Microprocessor controlled (8085) CCIT Group 2 machine for transmitting documents over an ord nary phone line. BRAND NEW AND BOXED 350.00

TEKTRONIX Model 4601 hard copy unit for 400 seres graphics terminals $\begin{array}{r}£ 95.00 \\ \hline\end{array}$ TEKTRONIX Model 611 graphics storage display. For use with any DAC computer output $£ 150.00$ FACIT Model 4020 high speed paper tape reader. Paralle| 1 TL interface $£ 150.00$ $£ 22500$ FACIT Model 4070 PAPER TAPE PUNCH. BRAND NEW $£ 225.00$ $£ 350.00$ FACIT Model 4070 PAPER TAPE PUNCH. BRAND NEW CALCOMP Model 563 AO drum plotter. 0.1 mm step size $£ 350.00$ $£ 650.00$ CALCOMP Model 763 AO plotter. As above, but high speed P.O.A. CALCOMP Mode! 1036 AO graph plotter. High speed 3 colour plotter with Type 915 magnetic tape unit for optional off-ine use \& selectable for $7 / 9$ track. $800 / 1600$ b.p.ı etc..........P.A. Mode! 6000.2 pen AO high speed graph plotter P.O.A EWLET-PACKARD Model 85 desk top computer with drive. Includes ROM (15003).

3A) \& $1 / O$ GOULD-BRYANS Model 50000 graph platter $380 \mathrm{~mm} \times 280 \mathrm{~mm}$ plotting area with 01 m resolution and vector plotting speed of $35 \mathrm{~cm} / \mathrm{s}$. With intelligent controller providing 112 character set at 4 orientations RS 232 interface NEW 985.00

HEWLETT-PACKARD Model 41C calculator with printer. £ 125.00 GENERAL DATACOMM (IAL) Model LDM-1 private line modem $\quad £ 150.00$ GENERAL DATACOM ModeI TDM 12404 line statistical mult plexer as used with above modem, 280 controlled Manufactured 1981 ...

DECLSI-11/23 video recorder with stereo sound $\begin{array}{r}£ 150.00 \\ £ \\ \hline\end{array}$ 23 processor with MMU

Please note: VAT \& CARRIAGE extra on all
available from us for many items stocked.

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 92-103

PAGE

PAGE
Farnell Instruments Inside front cover
Field Electric Ltd
Fylde Electronics
.36
Airlink Transformers 84
AM Electronics
84
Amplicon Electronics
Andelos Systems
Gemini Microcomputers 40/41
Antex Ltd... . . . 42
Armon Products Ltd
Gould Instruments .48
GNC Electronics . .14
Aspen Electronics .48

Grandata Ltd .14
.90

Barrie Electronics .. 90
Beckenham Peripherals..................................... . . . 24
Black Star Ltd
Hameg Oscilloscopes
Black Star Ltd
Happy Memories
.4
.75
Harris Electronics
.24
Harrison Bros ... 64
Hart Electronics 91
Henrys/Audio Electronics .39
Hi-tech .15
HRS Electronics 89
HW International . 36
Henson, R. Ltd 30
LP Electronics 9, 35
[MS Electronics 53
Industrial Auctions Ltd 90
Industrial Auctions Ltd 36
Interface Quartz Devices Lid 96
Irvine Business Systems 51
Keithley Instruments 21
Kemo Ltd. 53
Dedjcated Micro Processors 48
Digitask Business Systems 84
Display Electronics $86 / 87$
EDA Software
Electronic Brokers
10/11, 13
Electronic Equipment Company 9
Ellmax Electronics.
Electrovalue
.27
Eltime Ltd.
40
51

Essex Electronics.

Kimberry Lid ... 30 .30

Langrex Supplies 85
Martin Associates 42
Midwich Computer Co . 47
Monolith Electronics 14
Newrad Instruments Case's I
Northern Amateur Radı Society Association....... 14
Number One Systems 12

Omnitest Ltd

Pantechnic..
Philips Personal Computers ... 8$\begin{array}{r}4 \\ \hline\end{array}$
Pye Unicam 65
R. Henson Ltd 30
Radford Electronics 4
Raedek ElectronicsResearch Communications.74
Service Trading Co 12
J. Branson74
88
herwood Data Systems

pecial Products (Distributors)

Stewart of Reading 40
76
Strumech Engineering 64
Sowter, E.A. Ltd 76
Taylor Bros.$\begin{array}{r}74 \\ \hline 8\end{array}$
Technomatic Ltd 28/29
Celevision 30
75
Thandar Electronics 35,75
$\ldots 51$
Thorn EMI Datatech 58
IK Electronics. 74
Triangle Digital Service
Time Electronics 91
Thurlby Electronics. 16
Vigilant Communications Lid 42
Waugh Instruments
84
Withers Communication(R) 36
Jack Mantel, The Farley Co., Suite 650, Ranna Building,Cleveland, Ohio 4415 - Telephone (216) 6211919Ray Rickles, Ray Rickles \& Co., P.O. Box 2028, Miami Beảch,Forida 33140 - Telephone (305) 5327301.
Tim Parks. Ray Rickles \& Co., 3116 Maple DiverGeorgia 30305. Telephone (404) 2377432

Mike Loughlin Business Press International, 15055, memorial Ste 119, Houston, Texas - Telephone (713) 7838673.
Canada: Colin H . MacCulloch, International Advertising

OVERSEAS ADVERTISEMENT AGENTS

France and Belgium: Pierre Mussard, 18 - 20 Place de la
Madelaine, Paris 75008
Hungary: Ms Edit, Bajusz. Hungexpo Advertising Agency Budapest XIV, Varosliget
Telephone: 225008 - Telex: Budapest 22-4525
INTFOIRE
Italy: Sig C. Epis, Etas-Kompass, S.p.a. - Servizio Estero, Via Mantegna 6, 20154 Milan.
Telephone: 347051 - Telex: 37342 Kompass.

awoil

SCLDEAME KIT
Free Thow To Solder booktor and pack of soldis

Tomorrows Solderins Technology Today.

ANTEX has a worldwide reputation fo quality \& service \& for many years has beer one of the best known \& most popular names in soldering. Always at the foreficat of tect nology, ANTEX iscontinually researching new and better ways of achieving more accurate, reliable, and cost effective soldering. On ANTEX syls ering lrons, the advanced design of the interface betweer he alement $\&$ the bit allows mare efficient heat transfer to the bit and impreded stabi ity of the temperature at the point of contact with the wort. nded, experimerts have shown that an XS25 watt iron can be used fortaske where a 40 Natt iron wovid normally have been required.
ANTE Soldaring Irons exh bit exceptionally low leakage currents \& hence ape suitabe for use on Stric Sensitive Devices. Sophisticated temperature centrolke sotering unit have recenty been added to the ANTEX range.

CIRCUIT BOARD DESIGN

 WITHOUT THE TEDIUMsmARTWORK lets the design engineer create and revise printed-circuit-board artwork on the IBM PC or compatibles.

Forget tape. Forget ruling lo get waiting for a technician, draftsman, or the CAD department to get to your project. smARTWORK software turns your IBM PC or compatible info a professional, high quality drafting tool. It gives you complete control over your circuit-board-design $=$ from start to finish.

What makes smARTWORK so smart is that it understands electrical connections. Conductor spacing is always eorrect, lines do not become too narrow, and connecting lines do nof intersedt other conductors. smARTWORK can automatically fihd and draw the shortest route between two conductors. Or you can spécify the route.

smARTWORK is the only lowcost printed-circuit-board artwork editor with all these important advanfages:

- Comple e interactive coñtiol over placement and routing
- Quidk correction and revision
- Production-quality $2 \times$ artwork from pen-and-ink plotter
- Prototype-quality $2 \times$ artwork from dot-matrix printer
- Easy to learn and o erate yet capable of sophisticated layouts
- Single-sided and doublesided printed-circuil boards up to 10×16 inches
- Mulficolour or black and white display
- 32 user selectable colour combinations; coincident points may be displayed in contrasting colours
- Can use optional Microsoft Mouse as pointing device

System Requirements

- IBM PC, XI or compatible with 192 K RAM, 2 disk drlyes and DOS 2.0
- IBM Colour/Graphics Adapter with RGB monitor or B\& W monitor
- Epson MX-80/MX-100 or FX-80/FX-100 dot-matrix printer
- Houston Instruments DM -41 pen-and-ink plotter (optional)
- Microsoft Mouse (optional)

The Smart Buy
At $£ 895$ (+VAT) smARTWORK is exceptional value, particularly when comparea to conventional engineering workstation costs.

Write to the address below or use the enquiny card for more information on smARTWORK. Or call Richard Lambert on 0524381423 to arrange a FREE demonstration or to discuss your requirements.

Starter kit comprising of: SAM 2001 PC monochrome monitor, FX-100 dot matrix printer, DOS2.0, smARTWORK, 1 Year on-site maintenance and much
more
$£ 3995.00$
Starter kif plus 10M nard disk
drive....................... $\$ 4995.00$
Colour monitor $£ 395.00$
Miclosoft Mouse. I.....-3. $£ 149.00$
Pen and ink plotters
from
£ 1795.00
smARTWORK
$£ 895.00$
smARTWORK Demo disk ... $\$ 10.00$

10\% Discount on all Orders processed and paid for betore 28th February 1985.

Note. All prices exclude VAI and are subject to change without notice.
Terms. Strictly CASH WITH ORDER.

Conguin Software, 20 Morecambe Road, Lancaster LA1 5JA Phone: 0524381423

[^0]: MICRO
 CONTROL BOARD
 Designed for computer control, the MTB85-1 high quality board provides - 8085 processor (3 Mhz)

 - $2 \times 2 \mathrm{~K}$ bytes eproms or static RAM
 - 256 bytes of static RAM
 - $2 \times$ programmable 8 bit $1 / O$ ports
 - 1 programmable 6 bit I/O port
 - Single 5 volt supply ($<250 \mathrm{ma}$)
 - $4 \times$ maskable interrupts
 - 1 non-maskable interrupt
 - Reset push button
 - Programmable timer
 - 1 serial input line (SID)
 - 1 serial output line (SOD)
 - Expandable $1 / 0$

 MTB85-1

 ## K85 MICROPROCESSOR DEVELOPMENT SYSTEM

 The complete, low cost, highly test and debus programs and hardware for 8085 based micro boards.- In-circuit emulation
 - Eprom programmer (memory mapped)
 - High speed symbolic assembler High speed symbolic assembler
 (1500 line source code in approx 15 secs)
 - Disassembler
 - Program editor
 - Powerful debus program
 - STD or Euro bus expansion
 - Unique storage/retrieval of library
 source files to and from eprom
 - RS232 link

 K85 (computer, MTB85-1, kybd) £1995

[^1]: CIRCLE 19FOR FURTHER DETALLS

[^2]: Thus system is designed primarily for easy implementation It does not requre special tansmis sion lines, progranmmg or high quality power supphes.
 Any computer equiped with RS232-V24 or RS423 can be used
 Results from measurements are sent to and from the computer in teal unts, using only the PRINT and INPUT statements.
 The semı-custom tacility that we offer. is a new concept which gives you the ability to acquire a unu with the facilities that only you want. from a wide range of tunctions, thus giving you the best value for money tor equipment of this kind. We fit the modules of your choice inside our basic station and we adjust the software of the buit in microprocessor to respond accordingly. The price of the sotrwate is included in the price of the modules making it very easy for you to calculate the cost. The maludrop facility allows lor considerable system expansion
 Modules to choose fiom include Digital volmeter. D / A conventer. AC or DC sense and control. temperature, pressuie strain. liquid flow, medical amplifiers cointers. real ume clock etc.
 The stations are housed in DIN rail and/or surface mourung cabinets and pricesstart from E.250
 DEDICATED MICROPROCESSORS LTD.
 Unit B2, Acton Business
 Centre, School Road. North Acton, London NW10 6TD. Tel.01-965 2841

[^3]: * Or one digit, for that matter, with sequential readout. Mr Anderson has suggested the circuit on page 69 for this lowcost option. The original circuitry for an 8 or 16 digit display is available from the editorial office.-dep.ed.

[^4]: CIRCLE 40 FOR FURTHER DETAILS.

[^5]: C \& A ELECTRONIC O.E. PO Box 25070 Athens 10026 GREECE Tel:5242867. TIx:210798 CAGR

[^6]: Attractive package

 ## Cheshire

 New technological era and expansion are creating k ey appointments with highly successful international leader in analytical instrumentation for earth sciences, nuclear industry, environmental pollution control, high purity metals and semiconductor industries. Role includes test, commissioning, installation and servicing of systems on-site in UK and overseas. HNC Electronic Engineering plus two years' experience as technician, installation engineer, test or electrical engineer or graduate in physics, chemistry or metallurgy with related experience. Knowledge of computer software/applications an asset.
 Send full cv to Dorothy Thompson, PER, 75 Sankey Street.
 Warrington WA1 1SL.

