Microprocessor speodometer

Auto telephone dialler alarm

Developments in cable television

Sampled data servo analysis

Demister aerial for car radios

OPEN 6 DAYS A WEEK
ALL STOCKS ON DISPLAY

HEARY＇s AUDIO ELECTRONICS

EQUIPMENT • COMMUNICATIONS • COMPUTERS • COMPONENTS

SCOPES
 or £18．00 Securico
 HITACHI
 2 year warranty
 2PROBES（Not V212） V212 Dual 20 MHZ 6 CRI
 Probes see beiow．
 V222 as 212 plus OC oflset．elc $\mathbf{£ 3 9 5 . 0 0}$
 V223F Oual 20MHZ Sweep delay 5 All other modets available．

HAMEG

 2 yearswarranty HM 103 S $10 \mathrm{MHZ} 6 \times 7 \mathrm{~cm}$ display componen tester $£ 167.00$
$\mathrm{HM} 203 / 5$ Oual $20 \mathrm{MHz} 8 \times 10 \mathrm{~cm}$
display component tester．etc．etc． $\mathbf{2} 264.00$ HM204－2 Oual ZOMHZ．sweep delay ImV．componenl lester．etc． £365．00 Also hmbos Dual gomhz £515．00
SCOPE PROBES

CROTECH

3030 Single frace
15 MHz comgonent

tester $91 / 2 \mathrm{~cm}$ display
3035 Single trace 15 M MZ 13 cm
£179．00
｜5＂｜display component tester
£198．00
3132 Oual 20 MHZ trig to $40 \mathrm{MHz} .2 \mathrm{mV} / \mathrm{div} 130 \mathrm{~mm} / 5^{\prime \prime}$
display，alobebraical ad $/$／sub Reg OC B／P＇s－ 5 AV AO \pm 12v．Built－in component comparator $£ 297.00$

F6 As above plus fitted
0．2HZ 10200 KHZ Function Generator $£ 425.00$

THANDAR 気药

SC 110 10A 10 MHZ battery
portable $32 \times 26 \mathrm{~mm}$ displav
with batteries $\mathbf{£} \mathbf{1 6 5 . 0 0}$ IUK post，etc．£1．50］
OPTIDNS Carrycase es． 9
AC adaptor／charger $£ 6.95$ Nicad pack $£ 11.00$

ASC11

KEYBOARDS

69505 Compact， 64 key
elfect keyboard with
reprogrammable（2716）ASCII oulput decoder
EPROM Steet key frame for good rigidily．Megailiv going strobe．Requires $\cdot 5$ volt +12 voll supplies．
IUK $[/ P £ 1.001$

2070 COMPACT 58 KEY ASC 11 KEYBDARO Contacliass capacillve high rallability keys．Full 12B
ASCII codes．Steel key frame for positive rigidily ImS a irobe，single +5 voll supply．Repaal key conirol
and caps．lock £28．26［UK C／P £1．00）

ITT 2020 CABINET

Protess sional computer case
with keyboard culout $18 \times$
with keyboard cultout． 18 ．
15.5×4.5｜front 5 lopes！
．
$15.5^{\circ} \times 4.5^{\prime}$｜front slopes
computers like the Nascom or Gemini Multiboard 13
cards．elc．Very heavy gauge 1.251 p pastic
metal base．Attractive silver grey finish
IUK C／P £ ¢ 7 78）．

DIGITAL MULTIMETERS

hano helo models

 $\mathrm{Controls} \mathrm{S}=$ Slide$\mathrm{P}=\mathrm{P}=\mathrm{P}$ Sh bution
All leature $A C / O C$ volts．
AC amps［many with AC

ampsl ohms etc．UK C／P 65pl＊WITH CARAY CAS

 Onm $/ \mathrm{R} \mid$
＊MEIEX 3510.30 range 10A AC／DC． 20 meg onm
plus Hfe tester plus cont．tester（ B ） 601028 range 10 A AC／OC 20 Meg onm／PBI $£ 378$ ＊KDS5C 28 range 10 A AC／OC 20 Meg ohm $|\mathrm{R}| \mathrm{E} 38.70$ ＊K0615 18 range 10A OC 2 Meg ohm plus He tester
 HC 501031 range 10A AC／OC Cont buzzer 20 M ohm｜月1 1 （ $\mathrm{£43.43}$ 10 A AC／0C 2 Meg ohm $|\mathrm{A}|$（ OM2350 Mini autorange plus conl．tester 19 range 10A AC／OC L20A Max） 2 Meg ohm $|\mathrm{PB}| \underset{100}{ } \mathrm{£} 60.83$ ohm + buzzer
Ohm • buzzer
SOAR ME540 Manual／Autoranging nus
E4．54 19 range 1DA AC／DC 20 Meg ohm（ R ）$E 41.54$ METRIX HAND／BENCH PORTABLES（ITT） （Size $188 \times 86 \times 50 \mathrm{~mm}$ Rotary controls）

 MX 575 4／／2digil True RMSm 21 ranges $10 A$ AC／OC

ANALOGUE MULTIMETERS General range［＂mirror scalelfUK C／P 65pl HC1015 15 range pocket lok／Volt 1 meg ohm
HM102BZ 22 range $20 \mathrm{KK} / \mathrm{Voll} 10 \mathrm{AOC}$ plus cont．Buzzer 10 Mep ohm $£ 12.61$ ETu3000 20 range $30 \mathrm{~K} / \mathrm{N}$
2A OC 12 meg ohm NH56R＇ 22 range loK／Voll 6 Meg ohm $£ 11.26$ 830A＊ 26 range $30 \mathrm{~K} /$ Volt 10AC／0C 10 Meg 360TR• 23 range bench $100 \mathrm{~K} /$ Volt，large scale． 10A AV／OC plus He tester． 10 Meg ohm $£ 39.13$ AT2100＊31 range de luxe $100 \mathrm{~K} / \mathrm{Volt} 10 \mathrm{~A}$ AC／OC． 100 meg onm AT1020＊ 18 range de luxe $20 \mathrm{~K} /$ Volt plus Hile
tester． 5 Meg ohm
£19．57 tester． 5 Meg ohm
YN3GOTR＇ 19 ra
1）Mep ohm
KRT5001• Range doubler 35 rane total 10 K （Vill 1OA DC 20 Meo onm $£ 19.09$
 Metrix｜IIT｜Protessional series in stock，ask lor lealle

COMPUTER POWER SUPPLY

Swilched mode．Stabilised．Sall protecling S／C
protected． etc ． $220 / 240 \mathrm{VAC}+5 \mathrm{~V} 3.3 \mathrm{~B}+12 \mathrm{~V} 24 \mathrm{~A}$
40% cycle $-5 V$ V． 5 A－12V $0.5 A$ ．Suitable Apple replacement（UK C／P $\{1.50$ ）Sull $£ 50.00$

COMPONENTS TOOLS TI ACCESSORIES LARGE RAMGE IN STOCK Tel：01－723 1008 lor smail or large quantities．

LCD COUNTERS IUкcip\＆ins 65pp

THANDAR batiery portable 8 digit LCO counters．
Size $255 \times 150 \times 50 \mathrm{~mm}$ ．Complete with batteries．
Optional：Carry case $£ 5.95$ AC adaotor $£ 6.95$ TF040 10 HZ to 40 MHZ ．I HZ Res． 49 mV sensitivity $\mathbf{£ 1 2 0 . 0 0}$ TF200 10 Hz to 200MHZ．Ippm res 10 mV sensitivily． many features A $\& 8$ inputs．etc． TP600 600MHZ prescater｜Powered by computer）$£ 165.00$ TP1 0001000 Mhz IIGHz｜Prescaler with power supply $\mathbf{f 6 5 . 0 0}$ PFM200A Pockel 20HZ to 200M HZ LE 0 counter 0.1 HZ res．
10 mV sensitivily
$\begin{array}{ll}\text { NEW TF600 LED } 600 \mathrm{MHZ} \text { counter } & \mathbf{£ 1 3 9 . 5 0} \\ & \mathbf{£ 1 3 2 . 5 0}\end{array}$

GENERATORS

Function and Pulse｜UK C／P 65p｜ THANDAR bench mains poriable．Size $255 \times 150 \times 50 \mathrm{~mm}$ Options：Carry case
e．Size $255 \times 150 \times 50 \mathrm{~mm}$

$\begin{array}{ll}\text { onm } \\ & 105.00\end{array}$ TG102 0.2 Hz to 2 MHZ lunction．Sine．square．triangle．
Variable OC otlset．TTL $0 / \mathrm{P}$ Ext．sweep mode variable 600 Variable OC oflset．TTL O／P．Ext．sweep mode variable 600
ohm $0 / P$ iOV PP
TG105 5HZ to 5 MHZ pulse．TTL and Sync D／P．Variable 50 ohm $0 / \mathrm{P}$ ．Free run．gated or rig．modes．$\quad \mathbf{£ 1 0 5 . 0 0}$ T500 series in stock．

LCD \＆LED MULTIMETERS
 ［UK C／P 650］

THANDAR BENCH PDRTABLES SIZ $255 \times 150 \times$
50 mm Oplion：Carry case $£ 6.84$
TM355 $31 / 2$ digit LEO． 29 ranges． 0.25% basic．
100 mV res． 10 A AC／0C． 20 M ohm （AC adaptor option $£ 6.95$｜
TM356 3）digit LCO 29 ranges as TM355． 3000 hour battery lile（supplied） E 95.00
TM351 $31 / 2$ digit LCO． 29 ranges． 0.1% basic．Ranges as above
2000 hour battery lile．
$£ 115.00$

LED COUNTERS
 （UEC／P 65pl EDN
 WE TEOR mains or baltery portable 8 digit LEO counters．
 1005 HZ to $100 \mathrm{MHZ} \begin{aligned} & \mathrm{E} \% 5.00\end{aligned}$
 6005 HZ to 600 MHZ A\＆ 8 inputs $\quad \mathbf{£ 1 2 5 . 0 0}$
 10005 Hz to 1000 mHz ｜IGHz｜A\＆B inpuls $£ 165.00$
 options：6wICAOS £10．60
 AF pickup Aorial $£ 7.75$（AC adapior included）

FUNCTION GENERATOR NIT

JUPITE 500 Function generator 0.1 HZ to 500 KHZ or better Sine．square．triangle $0 / P$ to ± 30 volts．TTL $0 / P$ ．OC olfset $=$ 15 V variable．Ext AM and sweep lacilities $220 / 240 \mathrm{~V}$ AC
operated．
E 110.00

DIGITAL CAPACITANCE
 METER
 DM6013 0.1 pt to 2000 mid LCD 8 ranges $31 / 2$ digit．\quad E60．43（UK C／P 65p） CM200 Bench version $41 / 2$ digit LCD 1 pf to 2500 mid 6 range $£ 89.00$（UK C／P $£ 1.00$ ）

AC CLAMPMETER
 otal 9 ranges with carry case a

$\begin{array}{ll}\text { lead } \\ \mathbf{S T 3 0 0} & \mathbf{£ 3 0 . 8 7} \text {［UK C／P 65p］}\end{array}$
YF501 Electric insulation tester $£ 71.74$

DIGITAL THERMOMETER

Pocker size LC Other mometers comptete with ［UK C／P 65p］
TH301 LCO－50 $10+750 \mathrm{C} 1{ }^{\circ} \mathrm{C}$
resolution with thermocouple $£ 59.50$
LEAFLETS AVAILABLE FDR MOST ITEMS SEND
LARGE SAE（UK 25p）for latest catarogue．

AUDIO AND RF GENERATORS UKKC／P £1．00）

AUOIO

EA DER LAG275 band sine MS Dis $0.05 \% 20 \mathrm{HZ}$ to 1 MHZ EADER LAG120A 5 Dand IOHZ IO IMHZ $£ 93.00$ RMS into 600 ohm 0.05% dist sine／square $£ 155.00$ LEAOER LAG 1255 band IOHZ 10 imhz 1003 V ist
into 600 ohm sine／square／burst signals 0.03%
$\mathbf{5 3 3 0 . 0 0}$ TRIO A G202A 4 band 20 HZ to 200 KHZ IOV AMS O／P 0.5 ． 0 dist CR OSC $0 / 10 \mathrm{LPD} 0 / \mathrm{P} \quad £ 89.00$ TMS D／P RMS 0／P
TRIO SG4026 range l00Khz 10 30MHz aFo 1 V AMS Int／ext mod E72．00 LEA DER LSG 176 band 1OOKHZ Io ISON HZ 196 to 450 MHZ to Harmonics）RF D．IV RMS Int／axt Mod A
I KHZ I volt（I MHZ X tal optional $£ 3.00$ ）$£ 115.00$

TR OIP METER ［UK C／P 65 pl
£48．70

ORDER BY POST OR PHONE

Up to $£ 1000$ insiant credi
Available Ihrough Lomoard Tricily Finance
CALL IN AND SEE FOR
301 Edoware Road．London．W2
Test Equipment．Audio．Communications 01－7243564
404 Edgware Road．London．W2
Computers $01-4026822$ • Equipment $01-7240323$－Components 01.7231008
All mail to Cubegate Ltd，1st Floor，406 Edgware Road，Londen W2 1ED

COUNTERS

TF600
Bench/Portable: large 8 digit L.E D display: Frequency range 5 Hz to 600 MHz : Resolution 01 Hz . Sensitivity 10 mV rms. Timebase accuracy 2ppm; Battery or mains: Complete with mains adaptor TF200
Bench/Portable: 8-digit Liquid Crystal Display: Frequency range $10 \mathrm{~Hz}-200 \mathrm{MHz}$. Resolution better than 1 ppm: Sensitivity fypically 10 mV rms Timebase accuracy 03ppm: Battery life 200 hours: Frequency time average period, totalize \& reset, 2 ranges, 5 gate times: External clock facility: Complete with batteries
TF040
Bench/Portable: 8 -digit Liquid Crystal Display, Frequency range
$10 \mathrm{~Hz}-40 \mathrm{MHz}$: Resolution 1 Hz , Sensitivity 40 mV rms: Timebase accuracy 0.5ppm; Battery life 80 hours. Frequency totalize and reset 2 gate times: Complete with batteries

PFM200A

Pocket size: 8-digit L.E.D. display, Frequency range $20 \mathrm{~Hz}-200 \mathrm{MHz}$. Resolution 0.1 Hz ; Sensitivity typically 10 mV rms ; Timebase accuracy 2ppm: Battery life 10 hours. Frequency: 2 ranges 4 gate times TP600 PRESCALER
Frequency range $40 \mathrm{MHz}-600 \mathrm{MHz}$, Sensitivity 10 mV ms : Powered direct by TF200 or TF040 (leads supplied) TP1000 PRESCALER
Frequency range $100 \mathrm{MHz}-1000 \mathrm{MHz}$: Sensitivity 25 mv rms; Will extend TF200 and PFM200A capability beyond 1 GHz .
For further intormation contact
Thandar Electronics Ltd. London Road Si Ives. Huntingdon. Cambs PE17 aHJ Telephone (0480) 64646 Telex 32250

$\xlongequal{\wedge} \rightarrow$ thandar

CIRCLE 17 FOR FURTHER DE'TAILS.

MIETER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days' delivery. Other Ranges and special scales can be made to order.
Full Information from
HARR\|S ELECTRONICS (London)
138 GRAY'S INN ROAD, W.C. 1
Phone: 01-837 7937 Telex: 892301

CIRCLE 12 FOR FURTHER DETAILS.

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

R.Henson Ltd.

21 Lodge Lane, N. Finchley, London, N.12. 5 mins. from Tally Ho corner
Telephone 01445 2713/0749
CIRCLE 56 FOR FURTHER DETAILS.

E.M.S. POWER SYSTEMS

Solve all your Power Problems by contacting E.M.S.
E.M.S. specialise in systems to eliminate your power problems
Products range from 35VA switched square wave Power Packs to 1 KVA fully uninterruptible sine wave systems.
E.M.S. also manufacture chargers which range up to 60 amps .

For further details please contact:

E.M.S. Manufacturing Limited Chairborough Road
High Wycombe
Bucks
Tel: (0494) 448484

CIRCLE 47 FOR FURTHER DE'TAILS.

FEATURES

18

Cable and satellite tv come together by Nigel Cawthorne German-speaking 3-SAT service gets under way

24

D.c. supplies from a.c. sources by K.L. Smith Straighten out your power - rectification and smoothing

29

Sampled-data servo analysis
by D.M. Taub
New method of analysis specially suitable for use with computers

33
 Intelligent eprom programmer

by John Adams
Developing program routines for devices outside current range

40

Alarmphone

by Per Andersen Telephoned warning calls without direct connection to the telephone

47
 Microprocessor speedometer

 by Leycester Whewell Homebuilt design for bicycles is programmed to read distance, speed, top speed and time
51

 Indexby David Scobie Centre-section index for volume 89 may be detached for binding

55
 Another 400 MHz
 by Roy Hartkopf

A mixer and filter double the range of Hartkopf's spectrum analyser

59

Floppy discs

by D. March

Continues the survey of disc storage in micros

64 End of the coathanger era

by B. Easter and J.D. Last
Combined car window demister and aerial thwarts vandals

69

Video playback
by J.R. Watkinson
D-to-a conversion, colour processing and dropout compensation

The information society
by A.E. Cawkell How society is changing - or is it?

REGULARS

6
 News Commentary Causality

Sub-micron v.l.s.i. High-speed wide-area net Medical school tv net Largest amateur station (page 75)

11
Communications Commentary Microwave landing Time dispersal Amateur radio news

42

Circuit ideas
8035/39 single step
RS232 from printer port
Audio switch
Adjustable switching supply

77

Feedback
Energy transfer Charge from a wave Baird television
Einstein's trains (page 93)

83

New products

PCB CAD
Colour-change l.c.d. 8085 development system Micro Winchester

94

Literature received A curtailed selection this month

27, 61
Addresses
Suppliers of computer boards

Front cover, designed by Richard Newport and photographed by Chris Stevens, illustrates Leycester Whewell's Microspeedo.

NEXT MONTH

Invention is the theme of a new series from R.E. Young, who argues that not only are the British good at invention but can, in spite of widespread belief to the contrary, develop and apply.

Logic symbols will soon change to conform to the new international standard. Ian Kampel explains the new symbols, which take a new approach to logic representation.

Sub-woofer speaker design differs from that of stereo speakers because of path differences. An unusual filter design allows rear or floor-facing enclosures which can be made unobtrusive.

Current issue price 85 p. back issues (it available) $£ 1.06$, at Retail and Trade Counter, Units 1 \& 2, Bankside Industrial Centre. Hopton Street, London SE1. Available on microfilm: please contact editor.
By post, current issue $\mathcal{L} 1.30$. back issues (if available) $\mathcal{L} 1.40$, order and payments to EEP Sundry Sales Dept . . Quadrant House. The Quadrant, Sutton, Surrey SM2 5AS.
l’el.: 01-6613378
Editorial \& Advertising offices: Quadrant House, The Quadrant. Sution. Surrey SM2 5AS.
Telephones: Editorial 01-661 3614. Advertising 01-6613130.
Telex: 892084 BISI'KS G (EEP)
Subscription rates: 1 years $\mathcal{L} 15$ UK and S19 outside UK
Student rates: 1 year $\mathcal{L} 10 \mathrm{UK}$ and $£ 12.70$ outside UK.
Distribution: Quadrant House. The Quadrant, Sutton, Surrey SM2 5AS. Telephone 01-661 3248.
Subscriptions: Oakfield House.
Perrymount Road, Haywards Heath, Sussex RH 16 3DH. Telephone: 04444 59188. Please notify a change of address. USA: $\$ 49.40$ surface mail, $\$ 102.60$ airmail. Business Press International (USA). Subscriptions Office, 205E. 42nd Strect. NY 10017.
USA mailing agents: Expediters of the Printed World Lid, 527 Madison Arenue. Suite 1217, New York, NY 10022, 2nd class postage paid at New York
© Business Press International Lid 1985 . ISSN 00.436062

Editor

PHILIP DARRINGTON 01-661 3128

Deputy Editor
GEOFFREY SHORTER, B.Sc.
01-661 8639

Technical Editor
MARTIN ECCLES
01-661 8638

Projects Editor

RICHARD LAMBLEY
01-661 3039

News Editor
DAVID SCOBIE
01-661 8632
Drawing Office Manager
ROGER GOODMAN
01-661 8690

Technical Illustrator BETTY PALMER

Advertisement Manager
BOB NIBBS, A.C.I.I.
01-661 3130
MICHAEL DOWNING
01-661 8640
ASHLEY WALLIS
01-661 8641
Northern Sales
HARRY AIKEN
061-872 8861
Midland Sales
BASIL McGOWAN
021-356 4838

Classified Manager
BRIAN DURRANT
01-661.3106

IAN FAUX
01-661 3033

Production

BRIAN BANNISTER
(Make-up and copy)
01-6618648

Publishing Director
DAVID MONTGOMERY
01-6613241

International Agents and the Advertisers Index appear at the back of this issue.

［

PHONE 0474813225 3 LINES MEOPHAM GREEN，MEOPHAM，KENT DABBOQY

TELEX 966371 PM COMP

$\begin{array}{ll}\text { SN76660N } 0.80 \\ \text { STK014 } & 7.95 \\ \text { STK015 } & \text { ST．}\end{array}$

SEMICONDUCTORS

DIODES

AA119 BAA15 BA145

が
BA156
BA157
BAX13
BAX16

BAX 16
B8105B
BT151
8127

によう
8 B 16
8 B 176
8 Y 179
BT 182
BY 18
8 Y 19

PHONE

\begin{tabular}{|c|c|c|c|}
\hline A1714 \& 18.50 \& E8C81 \& EL519 6．95 \\
\hline A1834 \& 50 \& E8C90－0．90 \& EL802 \({ }^{\text {c．65 }}\) \\
\hline A1998 \& 11.50 \& E8C91 0.90 \& ELB2 \\
\hline A2087 \& 11.50 \& EBF80 0．65 \& EL822 \\
\hline A2134 \& 14.95 \& E8F83 0．65 \& EM \\
\hline A2293 \& 6.50 \& EBF85 0.95 \& EM4 9.00 \\
\hline A2599 \& 37.50 \& EBF89 0.70 \& EM80 0.70 \\
\hline A2792 \& 27.50 \& EBF93 0．95 \& EM81 0.70 \\
\hline A 2900 \& 11.50 \& EBL1 2.50 \& EM84 1．65 \\
\hline A3042 \& 24.00 \& EBL21 2.00 \& EM85 \\
\hline A3283 \& 24.00 \& EC52 0.75 \& EM87 2.50 \\
\hline AC／HL／D \& DD 4.00 \& EC70 1.75 \& EN10 8.00 \\
\hline AC／T \& 4.00 \& EC80 9.50 \& EN32 13.50 \\
\hline ACT22 \& 59.75 \& EC81 7.95 \& EN91 1.10 \\
\hline AH221 \& 39.00 \& EC86 1.00 \& EN92 4.50 \\
\hline AH238 \& 39.00 \& EC88 1.00 \& ESU150 14.95 \\
\hline AL60 \& 6.00 \& EC90 1.10 \& ESU872 25.00 \\
\hline AN1 \& 14.00 \& EC9\％\(\quad 1.50\) \& EY51 0．80 \\
\hline ARP12 \& 0.70 \& EC92 1.175 \& EY31 2.35 \\
\hline \({ }_{\text {ARP34 }}\) \& 1.25
200
2 \& \begin{tabular}{ll}
EC93 \\
EC95 \& 7.50 \\
\hline 1.00
\end{tabular} \& EY83 \(\quad 1.50\) \\
\hline \({ }_{\text {ATP4 }}\) \& 2.00
2.50 \& E¢97 \& EY84 \\
\hline A \(\times 50\) \& 5.50 \& ECBO10 12.00 \& EY88 0.55 \\
\hline AZ11 \& 4.50 \& \begin{tabular}{ll}
ECC32 \\
EC33 \& 3.50 \\
\hline 1.50
\end{tabular} \& EY91 5.50 \\
\hline AZ31 \& 2.50 \& \begin{tabular}{ll}
ECC35 \& 3.50 \\
\hline 1.50
\end{tabular} \& EY500A
EYB02 \\
\hline \({ }^{\text {BLL63 }}\) \& 2.00 \& \multirow[t]{2}{*}{ECC81 Soecial} \& EZ35 0.75 \\
\hline BS450
BS810 \& 67.00 \& \& EZ40 2.75 \\
\hline \({ }_{8}^{\text {BS810 }}\) \& 55.00
55.00 \& ECccit Soecial \& E241 2.75 \\
\hline CIK \& 19.00 \& \multirow[b]{2}{*}{ECC82 Philips} \& Ez80 \\
\hline C3JA \& 21.00 \& \& E287
E790 \\
\hline \({ }_{\text {C6A }}{ }_{\text {C1108 }}\) \& 9.00
54.95 \& \(\begin{array}{ll}\text { есС83 } \& 1.95 \\ 0.65\end{array}\) \& F6064 2.95 \\
\hline \({ }_{C 112} 1\) \& 77.00 \& \({ }_{\text {ECCCB3 }} 0.65\) \& FW4／800 2.95 \\
\hline \({ }^{\text {C1134 }}\) \& 32.00 \& ECCB3 Brimar 1.35 \& \\
\hline C1148A \& 115.00 \& \multirow[t]{2}{*}{ECC83 Philips} \& \multirow[t]{2}{*}{G232 Mullard \({ }_{3}\)} \\
\hline C1149／1 \& 130.00 \& \& \\
\hline \({ }^{C 1150}\) \& 135.00
3200 \& 0.50 \& G240／20 9 \\
\hline \({ }_{\text {C C }}\) C154 \& 32.00
2.60 \& 0.60 \& 6400／1K 14.00 \\
\hline 31 \& 0.90 \& ECC8B 0.85 \& GC108 17.50 \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{CV Nos Prices}} \& \multirow[t]{2}{*}{\(\begin{array}{ll}\text { ECC } 180 \& 0.72 \\ \text { ECC }\end{array}\)} \& GC10／48 17.50 \\
\hline \& \& \& GC10／4E 17．50 \\
\hline \(6{ }^{6}\) \& 1.20 \& \& GC12／48 17．50 \\
\hline DAA1 \& 22.50 \& \multirow[t]{2}{*}{\[
\begin{array}{ll}
\text { ECC803S } \& 3.50 \\
\text { ECC804 } \& 0.60
\end{array}
\]} \& GD86W \({ }^{\text {che }}\) \\
\hline A42 \& 17.50 \& \& GE10 9.00 \\
\hline Da90 \& 4.50 \& \multirow[t]{2}{*}{\[
\begin{array}{lr}
\text { ECC804 } \& 0.60 \\
\text { ECC2000 } \& \mathbf{1 2 . 0 0}
\end{array}
\]} \& \\
\hline DA100 \& 125.00 \& \& \\
\hline Daf91 \& 0.70
0.65 \& ECF82 \& GR10G 4.00 \\
\hline DAF96
DC70 \& 0.65
1.75 \& \begin{tabular}{ll}
ECF86 \\
ECF200 \& 1.70 \\
\hline 1.85 \\
\hline
\end{tabular} \& GS10C 16.50 \\
\hline OC90 \& \& \multirow[t]{2}{*}{\(\begin{array}{ll}\text { ECF202 } \& 1.85 \\ \text { ECF801 } \& 0.85 \\ \& 0.85\end{array}\)} \& GS10H 12.00 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
DCX4－1000 \\
12.00
\end{tabular}}} \& \& GS12D 12.000 \\
\hline \& \& \multirow[t]{2}{*}{\(\begin{array}{ll}\text { ECF804 } \& 6.00 \\ \text { ECFB05 } \& 2.50\end{array}\)} \& \\
\hline \multicolumn{2}{|l|}{DCX4．5000} \& \& \multirow[t]{2}{*}{} \\
\hline \& 25.00
28.50 \& \(\begin{array}{ll}\text { ECRFB05 } \& 10.50 \\ \text { ECBO6 } \& 10.25 \\ \text { ECH3 }\end{array}\) \& \\
\hline DET16 \& 28.50
28.50 \& \begin{tabular}{ll}
ECH3 \\
ECH4 \& \\
\hline 1.500 \\
\hline 1.50
\end{tabular} \& GTR150W 1.00 \\
\hline DET23 \& 35.00 \& \({ }_{\text {ECH35 }}{ }^{\text {ECH3 }}\) \& GU50 17.50 \\
\hline \& 39.00 \& \multirow[t]{2}{*}{\(\begin{array}{ll}\text { ECH42 } \& 1.00 \\ \text { ECH81 } \& 0.65\end{array}\)} \& GXU \\
\hline ET25 \& 22.00 \& \& \multirow[t]{2}{*}{GXU50SS \({ }_{14.50}\)} \\
\hline OET29 \& 32.00 \& \multirow[t]{2}{*}{\(\begin{array}{ll}\text { ECH83 } \& 0.78 \\ \text { ECH84 } \& 0.89\end{array}\)} \& \\
\hline \& 0.70 \& \& \\
\hline DF92 \& 0.60 \& \(\begin{array}{ll}\text { ECH84 } \& 0.89 \\ \text { ECH2000 } \& 1.50\end{array}\) \& GY501 \({ }_{\text {GY802 }} 1.200\) \\
\hline DF96 \& 0.65
1.00 \& ECL80 0.6 \& GZ30 \({ }^{\text {GY802 }}\) \\
\hline DH63 \& 1.20 \& \begin{tabular}{ll}
ECL82 \\
ECL83 \& 0.505 \\
\hline 2.50
\end{tabular} \& GZ31 1.00 \\
\hline \& 0.90 \& \(\begin{array}{ll}\text { ECL83 } \\ \text { ECL84 } \& 2.50 \\ 0.74\end{array}\) \& Gz32 1.00 \\
\hline DH79 \& 0.56 \& \multirow[t]{2}{*}{\(\begin{array}{ll}\text { ECL85 } \& 0.69 \\ \text { ECL86 } \& 0.80\end{array}\)} \& G233 \({ }_{\text {G734 }}\) \\
\hline DK149 \& 2.00 \& \& G234 2.15 \\
\hline OK91 \& 0.90 \& \multirow[t]{2}{*}{ECLI805 0.69} \& Gz34 U L 3.95 \\
\hline 0K92 \& 1.20 \& \& G237 \({ }^{\text {che }}\) \\
\hline DK96 \& 2.50 \& \(\begin{array}{ll}\text { EFF37A } \& \\ \text { EF39 }\end{array}\) \& Hasal \\
\hline DL35 \& 2.50 \& EF4 3.50 \& HABC80 0.90 \\
\hline D．63 \& 1.00 \& \multirow[t]{2}{*}{\begin{tabular}{ll}
EF42 \\
EF50 \& \(\mathbf{3}\) \\
\(\mathbf{2} .50\) \\
\hline 50
\end{tabular}} \& HBC90 0.75 \\
\hline DL70 \& 2.50 \& \& H8C91 0.80 \\
\hline \({ }^{\text {DL7 }}\) \& 2.50 \& \(\begin{array}{ll}\text { EF55 } \& 4.95 \\ \text { EF71 } \& 1.50\end{array}\) \& \begin{tabular}{ll}
HF93 \\
HF94 \\
\\
\hline
\end{tabular} \\
\hline DL92 \& 0.95 \& \multirow[t]{2}{*}{\begin{tabular}{ll}
EF72 \& 1.20 \\
EF73 \& 1.00 \\
\hline 180
\end{tabular}} \& HK90 1.05 \\
\hline DL93 \& 1.10 \& \& HL2K 3.50 \\
\hline Dt94 \& 2.50 \& \begin{tabular}{ll}
EF73 \\
EF80 \& \(\mathbf{1 . 0 0}\) \\
EF83 \& \(\mathbf{0 . 5 5}\) \\
\hline
\end{tabular} \& HL23DD 4.00 \\
\hline DL96 \& 2.50 \& \multirow[t]{2}{*}{\begin{tabular}{ll}
Er83 \& 3.50 \\
EF85 \& 0.50 \\
EFF6 \& \\
\hline 2.25
\end{tabular}} \& HL41 3.50 \\
\hline DLS10 \& 13.50 \& \& HL42DD 3.50 \\
\hline DLS16 \& \(\begin{array}{r}10.00 \\ 1.95 \\ \hline 1\end{array}\) \& \multirow[t]{2}{*}{EF86 Special} \& \\
\hline DM160 \& 2.75 \& \& HL133／DD 3.50 \\
\hline DY54 \& 1.50 \& \& HR2 \(4 \times 00\) \\
\hline DY86／87 \& 0.65 \& \multirow[t]{2}{*}{\begin{tabular}{ll}
EF91 \& 1.50 \\
EF92 \& 2.15 \\
\hline
\end{tabular}} \& HY90 1.00 \\
\hline DY802 \& 0.72 \& \& HVR2 3.00 \\
\hline E55L \& 42.00 \& \multirow[t]{2}{*}{\(\begin{array}{ll}\text { EF93 } \& 0.95 \\ \text { F994 } \& 0.95 \\ \text { Fe95 }\end{array}\)} \& \({ }^{\text {Jpg．}} \mathrm{FA}\) \％ 60.0 \\
\hline E80F \& ． 50 \& \& \begin{tabular}{ll}
K3178 \\
KR6／3 \& 85.00 \\
\hline
\end{tabular} \\
\hline \& 12.00 \& EF97 \& KT8C 7.00 \\
\hline E82CC \& 3．50 \& EF98 \& KT33C \(\quad 3.50\) \\
\hline E83F \& 3．50 \& EF183
EF184

0 \& KT36 2.00

\hline E86C \& 9.50 \& | EFF184 | |
| :--- | :--- |
| F730 | 0.65 |
| 1.80 | |
| 185 | | \& KT45 ${ }^{\text {K．00 }}$

\hline E8BC \& 7.95 \& EF731 3 3．50 \& KT61 4.00

\hline E90C \& 3.50 \& \multirow[t]{2}{*}{| EF732 | 3.50 |
| :--- | ---: |
| EF800 | 11.00 |} \& \multirow[t]{2}{*}{$\begin{array}{ll}K T 63 & 2.00\end{array}$}

\hline E990 \& 7.95 \& \&

\hline E91\％ \& 7.95 \& | EF800 | 11.00 |
| :--- | :--- |
| E805S | 13.50 |
| | 10.50 | \& KT66 OSRAM ${ }^{10.50}$

\hline E92CC \& 3.95 \& $\begin{array}{ll}\text { EF806S } & 14.50 \\ \text { EF812 } & \\ 0.65\end{array}$ \& KT66USA
KT66 GEC 14.95

\hline E99F \& 6.99 \& EFL200 1.50 \& KT77 Gold Lion

\hline E130L \& 19.95 \& \multirow[t]{2}{*}{EH90
EK90
E} \& \multirow[t]{2}{*}{KT81 $\quad \begin{array}{r}\text { 9．50 } \\ 7.00\end{array}$}

\hline E180CC \& 6.50 \& \&

\hline ${ }_{\text {E180 }}^{\text {E1820 }}$ \& 9.00 \& EL32 0.95 \& \multirow[t]{2}{*}{KT88USA 9.00}

\hline E186F \& 8.50

8.50 \& $$
\begin{array}{ll}
\text { EL33 } & \mathbf{4 . 0 0} \\
\text { EL34 } & 2.25
\end{array}
$$ \&

\hline E188CC \& 7.50 \& ${ }^{\text {ELI34 }}$ EL34 Mulard／${ }^{2.25}$ \& \multirow[t]{2}{*}{}

\hline EIT \& 15.00 \& Philips 4.50 \&

\hline E280F \& 19.50 \& \multirow[t]{2}{*}{$\begin{array}{ll}\text { EL36 } & 1.50 \\ \mathrm{EL37} & 9.00 \\ \mathrm{El3} & 9.0\end{array}$} \& \multirow[t]{2}{*}{| KTW63 | 2.00 |
| :--- | :--- |
| KT763 | 2.50 |
| 153 | |}

\hline E288C \& | 10.00 |
| :--- |
| 13.50 | \& \&

\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{E88CCSIemans}} \& EL41 3．5 \&

\hline \& \& \&

\hline Special \& 5.95 \& \multirow[t]{2}{*}{} \& $\begin{array}{lll}\text { L87．20 } & 95.00\end{array}$

\hline E1148 \& 1.00 \& \& \multirow[t]{2}{*}{M502A $\quad 60.00$}

\hline ${ }_{\text {EA5 }}^{\text {E15 }}$ \& 6.95

100 \& | EL84 |
| :--- | :--- | \&

\hline EA76 \& 1.95 \& \& $$
\begin{array}{ll}
\text { Mover } & 00.00 \\
\text { M537A } & 60.00
\end{array}
$$

\hline EA79 \& 1.95 \& $\begin{array}{ll}\text { L86 } & 0.85 \\ 1.50\end{array}$ \& $\begin{array}{ll}\text { M5143 } & 155.00 \\ \text { M8079 } & 6.00\end{array}$

\hline EABCBO \& 0 \& EL91 6.00 \& M8082 $\quad 7.50$

\hline EAF42 \& 2.50

1.20 \& | EL95 | |
| :--- | :--- |
| EL153 | 0.70 |
| 12.15 | |
| 1595 | | \& M8083

\hline EAF80 \& | 3.50 |
| :--- |
150	\& \multirow[t]{4}{*}{	$E L 183 E$	3.50	
$E L 18 P$	3.50			
$E L 360$	6.75			
$E L 500$	1.40			
$E L 504$	1.40			
$E L 509$	5.25	} \& \multirow[t]{4}{*}{	M8096	3.00
:---	:---			
$M 899$	5.50			
$M 8909$	5500			
$M 8100$	5.50			
$M 8136$	7.00			
$M 8137$	5.50	} 		

\hline EB34 \& 1.50 \& \&

\hline E891 \& 3．85
0.50 \& \&

\hline EBC33
EBC41 \& 2.50
1.95 \& \&

\hline
\end{tabular}

6AR8	3.95	6H6GT
6AS5		
1.50	6HG	

6AS6
6AS7G
6AT6
6AT8
6AU4
6AU6
6AV6
6AWBA

 No
CALLERS WELCOME
50 YDS SOUTH OF MEOPHAM GREEN CAR：PARKING AVAILABLE
\qquad
\qquad

THERMISTORS

Causality in energy transfer

A contributor to our December 1984 letters is right to criticise naive ideas of causality in energy transfer processes. N.C. Hawkes says it is meaningless to ask whether the field causes the current, or vice versa: they just happen together and "are related by the physics of the situation."
Any engineer who is stoutly confident he knows what is a cause and what is an effect should read David Hume's famous and penetrating study of causality published as long ago as 1739 (in A Treatise of Human Nature). If the engineer is honest he will certainly end up much less sure of himself.
Hume rigorously analyses examples of causality and comes to the conclusion that the only certain thing relating causes and effects is their "constant conjunction" in all past observations: objects or events "always existing in like relations of contiguity and succession." This is what the modern scientist would describe as observed regularities. We also nowadays tend to think in lemms of correlations between variable quantities, but are careful to distinguish between those correlations which are just statistical and seem to have no plausible explanation and those which seem to indicate a casual relationship.
In fact Hume points out that we strongly feel in many instances there must be something more than just "constant conjunction": that there is a "necessary connexion" between causes and effects. But he concludes that the "necessity" here exists only in the human mind (e.g. as in laws of logic) and that there is nothing inherent in the objects or events themselves to account for it.

Time has not weakened Hume's philosophical analysis, and today there are scientific theorists who still firmly hold this empiricist view, that we can only be sure of the observed regularities in nature. The contemporary philosopher A.J. Ayer also agrees with Hume and says: "In nature one thing just happens after another. Cause and effect have their place only in our imaginative arrangements and
extensions of these primary facts." (In The Central Questions of Philosophy.)

Of course, one must be careful to distinguish between causality in natural phenomena and causality in man-made devices. The engineer has no difficulty in thinking about causes and effects in the systems he or other engineers create because he is like God in deciding what is what. The input to a device is implicitly the cause and the resulting output implicitly the effect. Mere definition prevents it from being the other way round. And, of course, a definition is purely a mental thing.

It would be interesting to know if there are readers of this
journal who can see a way round the strongly held view that the "necessary connexion" exists only in the human mind, As a concrete example to work on, take the simple instance that for a current to flow in a circuit there must be some kind of force present (field or e.m.f.). Here the concept behind "must" is necessity. If one puts it in a different way, that the current would not flow if the force were not present, this entails the same necessity in its negative form.

It would seem that, to be truly objective, one cannot go beyond the observed fact that the flow of current and the presence of the force are a "constant conjunction."

Philips joins sub-micron race

Several companies have announced recently their research projects into producing integrated circuits with internal structures smaller than one micron, in order to produce i.cs that are more complex but also smaller and cheaper. Philips is to set up a new centre at Eindhoven for fundamental and applied research. Philips, Valvo, their German subsidiary and Siemens are to cooperate in the research with financial backing from the Dutch and West German Governments.
A one megabit static ram will be used by Philips as a carrier for the new technology, Siemens are to concentrate on a 4 Mbit dynamic ram. These are to be developed by intensive use of computers in c.a.d. and in manufacturing techniques. The project is expected to have a knock-on effect in promoting related developments in other areas.
Some bottlenecks to the production of such i.cs have already been identified; it is not known whether the local oxidisation of silicon, used to isolate elements will work in conditions of such fine detail; the structure of the transistor itself will need to be altered in order to fit into such a small space. Electrical magnitudes are very dependent on the geometry
of the device; as elements get smaller the electrical field become proportionally larger and it is possible for high-energy electrons to be formed which endanger the stability of the circuit. As conductors get thinner, their resistance increases proportionally. It is possible that the use of metal silicides may be a solution to this problen. Yet another problem is the very hilly nature of the terrain to be connected. As with road planning a raised structure might offer a solution. Efforts will also be made to find a method of making the surface flatter.

At the design stage, computer facilities need to be able to cope with something in the order of 50 million geometric details which are incorporated in the drawings and in the masks. The masks need thorough checking to ensure that they are fault free. The programmes must also be capable of checking whether a long list of layout rules have been obeyed. The electrical performance of the chip is calculated in advance on a computer with a circuit-analysis program. It needs to be fed with a list of all the elements and interconnections and with the layout design. Present c.a.d.
tools are not sufficient to these tasks and so there is a need for advanced programming. Similar programs are needed for the automatic testing of the finished devices. The memory chips are to be designed with extra cells which can be connected with the aid of a laser, if any of the memory cells are found to be
defective. Similar advances are needed in all the production equipment which will need to be operated in super clean, dust-free environments. A pilot plant is to be built in Eindhoven but production plants will be at Philips/Valvo and Siemens factories.

Today's hacker is tomorrow's expert

Breaking into computer data bases has become the hobby of those who, we suspect, have taken the place of the phone freaks of a few years ago. 'Hacker' was used to describe those who seemed to be permanently attached to their video screens, hacking away at a new program. The word is now used to describe people who 'break into' computers when a system has been entered it is said to have been 'hacked'. There are also criminals who break software programs or find a way into databases for persoral gain, but the majority of hackers do it for the fun of it; because it's there. Software manufacturers try more and more soplisticated methods to protect their precious programs and the hackers use equally clever methods to break into them. On the principle that if you can't beat them, join them, the
manufacturers are now employing those same hackers to devise even more complex protection devices.
A row has now broken out between Timefame International and Prestel. Timefame operate a bulletin-board system for business information. Because of a major security alert at Prestel, when some important electronic mailboxes including that of the Duke of Edinburgh, had been hacked, there was a complete revision of the password codes. Very soon after, Timefame was hacked again and suggested that the only way it could have been done so rapidly was that some inside person from Prestel, a mole, must be divulging the passwords. Prestel say that they have evidence that this was not possible and have taken great exception to the accusation. Consequently, they slammed the door to Timefame and made
their pages no longer available. We think that both sides are underestimating the ingenuity of the fanatical hacker, who will go to extraordinary lengths to take on the challenge of a seal to be broken. While we cannot condone their activities, we can admire the skills which they apply and hope that they will go on to use them productively. At a recent hackers' conference in California, a prominent participant was Steve Wozniak, the co-founder of Apple Computers, who still enjoys bending over a keyboard.
A further issue arises as to whether Prestel is a publisher and can exercise editorial rights, such as denying access to a major information provider like Timefame, or is purely a medium for use by anyone.

Office publishing is a new concept. With the development of high-quality laser printers it is possible to combine the facilities of a word processor with those of a typesetting machine and provide camera-ready copy of both text and graphics. Such a system has been launched by a German company, PCS Cadmus. It incorporates a 32 -bit computer, 80 Mbytes of Winchester storage. Prices start at $£ 40,000$ which includes a very high-resolution display, laser printer and a mouse. It is thought to be especially useful to those users who produce documentation and manuals needing regular up-dating and rapid printing in smaller batches.

221 a

 fect, as the small intrusion shown here demonstrates. The let ter z, we're informed is not a misprint but the visiting card of a hacker - though evi dently one who bore no real ill will towards British Telecom or the railways.The incident occurred in December soon after Prestel's precipitate excommunication of Timefame Intemational, said to Intermational, said have been the sys. tem's second most popular information provider. Timefame had accused l'restel of leaking its passwords. The page has since been corrected

The PC－16 16－bit computer provides PERFECT COMPATIBILITY with the IBM PC／XT range．The motherboard can be supplied in two versions for stereoscopic conveneince．The＇N＇version has no memory on board and the＇B＇version with space for 64 to 256K RAM．Addition of the Memory Expansion Card provides a further 64 to 512 KB of RAM．BASIC FEATURES INCLUDE
＊ 8088 CPU operating at 4.77 MHz
＊Provision for 8087 co－processor
＊Four DMA channels
＊Three TIMER channels on board
＊ 8 EXPANSION SLOTS
SYSTEM－5 PC16（B／3）－PRICE E1599－Main computer employing＇B＇board with 128K on board（upgradeable to 256 K on board）PLUS Colour／Graphics adaptor providing signal capable of running monochrome displays on RGB output for full colour．Multi I／O card，providing floppy drive controller for two drives，one parallel port，one serial port，one games port with batter backed clock calander．RAM extension card for 512 K ．Two DS／DD floppy drives．83－key keyboard All complete，built \＆tested in case with power supply together with Concurrent（multiuser， multitasking）CP／M，CCP／M manual，Basic manual and computer operations manual－ready to run

MOTHERBOARD＇B＇，8－slot，

128K ．．． $\mathbf{~} 449$ MOTHERBOARD＇N＇，8－slot ．．．．．．．．．$£ 329$ MULTIFUNCTION card with 128 K （expandable to 256 K ）one PLL－port， one SER－port（2nd option）Clock／ Calendar with backup ． MONOCHROME adaptor with MONOCHROME adaptor with
printer port．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $\mathbf{2 3 9}$ MULTII／O CARD－one pll，one serial port，one games port，floppy drive controller，clock calender with battery backup

14in RGB HI－RES MONITOR（640dots $\times 300$ lines） 12 in HI－RES GREEN MON ．．．．．．．．．．．．． 89 64K RAM EXTEND MODULE ．．．．．．$£ 59$ DSIDD FLOPPY DRIVE（ 500 KB unformatted d．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 175 WINCHESTER DRIVE CONTROLLER \qquad 512K RAM BOARD－comes with 128 K RAM installed fully IBM compatible．

WINCHESTER DRIVE 12 MB ．．．．．．．． $\mathbf{£ 8 1 5}$
IBM COMPATIBLE KEYBOARD（83 key） KEy）．． 5150 KEYTRONIC 5150 K／BOARD ．．．．．．£ 175 KEYTRONIC 5151 K／BOARD ．．．．．．£210 SWITCHING POWER SUPPLY ．．．．£105 ADD SERIAL PORT KIT ．．．．．．．．．．．．．．．．．．．モ23 FLOPPY DRIVE CONTROLLER ．．．£109

DRIVES－MEGABYTES FOR MICROPOUNDS！
5．＂Half height $500 \mathrm{kB} 40 / 80$ ．．．．．．．．£119 5：＂Half height 1 MB 40／48 ．．．．．．．．£125 5＊＊Half height 1．6 MB 40／80 ．．．．．．$£ 159$ 5ㄴ．Half height 2 MB 40／80 ．．．．．．．．．£199 3＂Half height 500 kB 3^{*} Half height 1 MB ． $8^{\prime \prime}$ Full size 1.6 MB ． 8＊Half size 1.6 MB 1．6 MB ．．．．．．．．．．．．．．．．．．．．．£309 R2 Hal height 12．75 MB Hard Disk unformatted．

All brand new，boxed，with built in controller standard power requirments．Full documentation and technical details．

Add 15% VAT to all prices given．Remember，VAT is also applicable on carriage at 15% ．Terms CWO．DEALER ENQUIRES WELCOME．FOREIGN enquiries if possible by telex please However，French \＆German speaking staff at your disposal．MONEY BACK GUARANTEE．SEND E1．00 for our latest catalogue of over 3000 items，computers，peripherals，consurnables，robotics，etc etc．

Vabradio

Wrelesswith EDITORIAL FEATURIES 1985

ISSUE PUBLICATION DATE

DATE
FEATURE
Mar． 1985 Feb．16th IEEE Instruments
May． 1985 April．19th Power Supplies
July． 1985 June．21st VDU＇s
Sept． 1985 Aug．16th Communication Receivers

For more details regarding advertising
Contact Bob Nibbs 01－661 3130

Admiral of the high-speed network

Research into advarced data communications is being set up in a three-year, $£ 5 \mathrm{M}$ joint venture, sponsored by the Alvey Directorate and to be carried out by the GEC Research Laboratories. The plan is to provide instant and direct communication between computers, work stations and other peripherals, regardless of location and type, for applications such as computer-aided design, software engineering and office automation.

ADMIRAL (Advanced Mega Internet Research for Alvey) will be a joint effort between GEC/Marconi, BT Research Laboratories, University College, London and the University of London Computer Centre. A high-speed wide area network is already being set up using the BT MegaStream service, with 2Mbit/s links. Admiral will use this network to link together a number of 1.a.ns. UCL has been recognised as one of the leading research centres for computer networks and their protocols.

ULCC has had considerable experience in in providing large-scale computer facilities accessible from all over the country through communications networks. Special attention is to be paid to the protocol system to enable high-performance interconnection between heterogeneous devices. Aspects of network management will be looked into as multiple administrations need both automony and coordination. Another field for attention is distributed computing, including the use of remote workstations, program structuring tools such as remote procedure calls are important in this aspect. Although based around the BT/Alvey high-speed w.a.n., the aim of the research is that the results should be generally applicable to any large network. The first stage will be the linking together of all the participant in the research on five sites UCL, ULCC, BTRL at Martlesham, Marconi Research Centre at Baddow and the GEC RL Hirst Research Centre in

India PM radio ham

Rajiv Gandhi, who succeeded his mother as Prime Minister of India, is a keen radio amateur and home electronics enthusiast. He passed the radio amateurs' exam over ten years ago and has the call sign VU2RG. He built his own h.f. ssb/cw transceiver and a two-element cubical quad antenna. He is insta.lling the first amateur relay station in his country as well as looking at amateur radio computer networking and digitally coded squelch systems.
Since being elected to Parliament in 1981, he has constantly worked for the development of electronics and aviation in his country. There have been a number of concessions to the electronics trade and industry and the Government of India is easing the import restrictions on computers. Rajiv Gandhi is
keen to have computer training taught in school. As an amateur he participated in, and organised, emergency communications when all civil communications had failed during cyclone and flood emergencies on the west coast of India. He persuaded the government to allow the duty-free importation of amateur equipment, accessories and components. This concession will last until the end of March.
Mr Gandhi retained the post of Minister for the Department of Electronics when he became Prime Minister. His enthusiasm has been transmitted to other members of the family. Mrs Sonia Gandhi is also a licenced amateur. His 14 -year-old son, Rahul and his 12 -year-old daughter, Priyanka, are studying for the radio amateurs' exams.

Wembley. As the network progresses, other types of l.a.n. and local switched networks are to be included. Wherever it is possible without affecting the performance of the system, OSI standard protocol will be used. Devices connected to the network will include Unix-based systems, workstations and a Cray-1S computer.

In brief

Free software packs are to be made available by the Department of Education for use with children who have special educational needs, particularly those with learning difficulties. The packs are aimed at 14 to 16 -year-olds and as the programs can be altered to meet individual needs, they can also be used with younger children and with the physically handicapped. 25 programs in each pack were developed by the Scottish Council for Educational Technology. The programme focus mainly on life and social skills such as managing money, a healthy diet and achieving independance by, for example being able to read a railway timetable and planning a route. The pack has versions to run of the Acom/BBC and RML computers.

- Impartial advice and training on the purchase of computers and software is available from the Federation of Microsystem Centres. They have come to an agreement with the Computer Retailers Association to provide a full service to computer users The agreement was implemented on a pilot basis at a meeting in Sheffield with representatives of both parties and the DTI IT coordinator. The centres will undertake training the CRA members may be unable to handle themselves and care has been taken to preserve the impartiality of the centres.
- The Maritime Rescue Coordination Centre at Falmouth, Cornwall has installed a satellite earth station so that it can communicate directly with other rescue organisations and with ships at sea. They will be able to pass on emergency information to the nearest agency or ship. Two other coordination centres in Argentina and Bulgaria are also equipped to communicate
through the Inmarsat satellite communication system. Others are expected to get similar facilities soon.

Welsh Basic

As a pilot for translating Basic into a number of different tongues, Xitan have developed their XBasic in Welsh. The version is sytactically the same as in English but all the keyboards and messages are in Welsh. For example the equivalent of 'Load' and 'Llwyth' and 'Run' is 'Rhedeg'. One of the main reasons for choosing Welsh was that the product could be tested locally and there was a potential for high levels of real use in the Welsh academic community. XBasic was developed specifically for scientific and educational applications and runs on CP / M and MP/M systems. It is described as a semi-compiler and incorporates syntax checking and error trapping before a program is run - sorry, rhedeg.

Pirate navigation interference overcome

Helicopter pilots flying to the North Sea oil rigs have found it increasingly difficult to use their navigational aids to locate the rigs. This is caused by pirate radio stations operating at frequencies in the medium waveband used by standard non-directional beacons. Racal Avionics have solved the problem by designing (within a month) a new non-directional beacon with a much increased frequency range. The new beacon conforms to the new CAA frequency allocation for such devices and has already been installed on one rig. The transmitters are used as landing site locators or as route markers and the new design incorporates power semiconductor circuits which allow adjustable, reduced power outputs to be used from 100W stepping down to 20 W . Because of the reduced power consumption, the beacon can be operated by solar, gas or wind generators at remote locations.

TV network for medical school

Eight lecture theatres are linked by a tv network covering the six capitals in the Charing Cross and Westminster Medical School Group in West London. The system is, to use this year's current in word, interactive. This means that any of the hospitals can put out the teaching session to all or any of the others and that students at the distant sites can ask questions or make contributions and may be seen and heard at all the other sites.

Most of the system is connected through fibre-optic cables though one site is joined up by a microwave link. The cables are routed through London underground railway tunnels, Electricity Board ducts and disused tramway channels.

Fibre-optic cable was chosen as the medium for the transmission of video and audio signal as this was considered to offer the best fidelity for the transmission of, for example, microscope images and the audio signals used in aural diagnosis. In addition to live images there will be slides, recorded video and direct microscope and radiographic images. A microwave link was used between Charing Cross Hospital and St. Mary's Hospital, Roehampton. This was the only site south of the Thames and ducting was not available.

The main control room and switching centre is at the Charing Cross Hospital. Lecturers at the main lecture theatres of the two principal hospitals will have electronic consoles to control the use of the audio-visual facilities incorporated into the system. All proceedings can be recorded for subsequent editing and re-use but the real value of the system, as seen by the teaching staff, is the 'real time' contact between teacher and student. The teachers have been given familiarisation courses by staff from the Open University, who are also undertaking the adjudication of overall effectiveness of the system.

The list of credits is almost as long as those in Hollywood movies. Telefusion were the main contractors and were responsible for coordinating the whole project, as well as
providing the video equipment and the main switching/editing centre. The 22 km of fibre-optic cable was manufactured and installed by Pirelli General. Some individual lengths were over 2 km . The London Transport tramway ducts, originally used to carry power and signals to the trams were found to be in a relatively good condition although they had not been used for thirty years or more. The London Electricity Board's ducts presented more of a problem as they were frequently interrupted to supply power to individual properties along the route. Considerable engineering work had to be undertaken to by-pass these blockages. Work carried out by Pirelli and the L.E.B. was completed on schedule and the L.E.B. are now considering the possibility of using their ducts in other similar projects. The central 10 km section of cable was laid in the tunnels of the District Line of London's Underground by London Transport engineers. Multi-core cables were used, each circuit capable of carrying two tv clannels and two sound/ signalling channels without any intermediate amplification.

The microwave link was installed by Mercury
direct line-of-sight link operating at 22 to 23 GHz . Plessey are responsibe for the video transmission system. The optical signal is transmitted using a high radiance led operating nominally at 1300 mm , in the near infra-red region. This was selected in preference to laser as it oftered more reliability, eliminated the need for complex control circuitry, was easy to modulate and could operate over a wide temperature range. To receive, a p-i-n diode is used in conjunction with an f.e.t. amplifier both incorporated into an i.c. package. F.m. is used and the system conforms to the CCIR recommended standards for broadcast quality signals.

Each transmitter consumes only two watts and the receiver eight watts.

The sound system comes from Audix and consists of a amplifier/conference system for each site along with all the associated mixers, microphones and loudspeakers. At two of the sites separate smaller conferencing rooms are fitted with table-top microphone/loudspeaker units to add versatility to the conference facilities.
The project has been paid for by the Department of Trade and Industry and is intended as a showcase for British advanced technology. The Government has made a virtue out of necessity as the original medical schools of Charing Cross and Westminster hospitals were merged, following education and health service cuts. The school is expected to buy the $£ 940000$ system from the D.T.I.

Background to MLS

A reader, with vivid memories of the bitter struggle in the 1970s that preceded the selection by the International Civil Aviation Organization of the microwave landing system TRSB, is not altogether surprised that the Americans are reluctant to credit the Australians for their part in its development (see December 'Communications
Commentary'). The whole selection process, he recalls, was conducted in a manner that threw great doubt on whether or not TRSB had any, or at most marginal, technical advantages over the rival microwave Doppler system, supported by the UK, or even the West German DLS system. Study work on these and other systems was contracted to American industry but once they had decided to back TRSB, what amounted to a "dirty tricks" campaign was launched against Doppler, reminiscent of the campaign waged 25 years earlier to back VOR against Decca.

This reader points out that international electronics standardization, not only in the aviation field, often has less to do with technical merit than with short-term commercial interests. In international aviation, the record of some of the large American corporations has demonstrably included bribery, corruption and deliberate misdirection. International standardization is frequently a battleground for vested interests and it is not always the technically superior system that wins. Doppler m.l.s. was installed and tested successfully at Brussels, Stansted, Gatwick, Manchester and in Norway.

Nevertheless, the introduction of the TRSB (which started life as Interscan) microwave landing system will bring significant advantages. Existing i.l.s. systems are capable of handling more than one aircraft at a time, though constrained by aircraft separation of the order of three miles, and the speed of clearing the runways. The main advantages of m.l.s., in the view of this reader, are: fewer site restrictions, choice of glide-slope angle and choice of
approach path within a $\pm 40^{\circ}$ sector. Despite his misgivings about the way TRSB was selected, the new system is capable of giving very impressive results as he found during recent flights in the UK.

Jaw, Jaw

Sir Frank Cooper, formerly Permanent Secretary of the Ministry of Defence, in the 1984 annual lecture of the Royal Signals Institution advocated an approach to the management of international crises in which strategic communications would play a central role.

He believes that communications technology has far outstripped the ability of governments, politicians and military planners to comprehend and control crises and prevent them from escalating into both nuclear and conventional warfare.

Instead of the usual assumption that a first military aim should be to disrupt both strategic and tactical communications of an enemy, Sir Frank believes that maintenance of effective strategic communications should be given high priority, including, for example, clear agreement not to disrupt satellite communications.

West and East each need to understand the security policies of the other, and European countries should recognise more fully that the nuclear threat may not arise from direct confrontation along the East-West boundaries.

He dismissed the "controlled escalation" theories of the 1960s as "nonsense"; even greater nonsense was that politicians could sit down and take finely tuned decisions. His experience suggested that crises were times of confusion and uncertainty.
The dual capability of weapons such as Cruise that can carry either nuclear or non-nuclear warheads makes it impossible for the remote sensors and defence radars to determine the form of an attack unless some trusted and pre-arranged procedures and effective communications exist.
The greatest progress in the concept of keeping communications open has been made in the management of terrorist and hostage crises, while "war games" have
increased understanding of tactical $\mathrm{C}^{3} \mathrm{I}$. It is recognised that electronic communication systems have a high degree of vulnerability. Nobody is sure of the secondary effects of nuclear weapons, including the nuclear electromagnetic pulse. The aim is to make tactical communications "survivable", yet, Sir Frank stressed, tactical systems are not central to crisis management.

The vast growth and increase in speed of communications and information technology has not been matched by the ability of humans to communicate in a real sense. The social divisions between East and West are substantial, with very different life styles. It was not a question of making judgements between these but recognising the differences in attitudes, and developing the "hot line" concepts beyond the stage of technical agreements. Improved communications between European capitals were needed: the setting up of crisis control centres; advance notification of ballistic tests; treaties to protect strategic communications, including space communications; agreement not to deploy weapons in space.

Political barriers to change were great. Science and technology are not answers in themselves. NAT(channels of real communication are getting slower. In any reorganisation of information technology, it was important to eliminate the need to have graduate engineers pressing the buttons, but to allow the "managers" to "talk" from their desks via v.d.us. Since going into industry he had begun using his own word processor and office copying machines. Nobody spends eight hours a day thinking. The real crux of any IT system was to make people do their own thing.
Sir Frank's lecture underlined Churchill's dictum: "Jaw, jaw is better than war, war," while in discussion it was suggested that C.C.I.S. (Control \& Command Information Systems) might be redesignated: "Control and Cooling of Imminent Scares"

Although Sir Frank did not refer to the Falkland Campaign of 1982, the evidence to the Parliamentary Select Committee has made clear that Northwood was bringing this to the boil while Downing Street was still committed to negotiation. A crisis in crisis management that
was jaw, jaw and war, war, not helped by delayed
communications.

Space sale

The two communications satellites recovered by the shuttle on behalf of insurers are not the only satellites going for a song. Telesat of Canada is trying to find a buyer for Anik C1, a 16 -transponder Ku-band bird, due for launching this February. With two other Anik-C birds still singing, and demand for leased transponders slowing down, on to the market goes C1 (a Hughes HS376 design) priced at about \$65-million, which includes cost of launch and launch insurance. If no buyers turn up, Telesat plan to keep Cl as an in-orbit spare, representing a lot of capital tied up in a non-revenue producing spare.

Time-dispersal

Considerable attention has been paid recently to the use of radio links within buildings for the short-distance transmission of speech and data. During the past two years, British Telecom Research engineers have published a number of reports on their investigations into radio propagation at 900 MHz within buildings for cordless telephones. They have also shown their work on leaky co-axial cable systems as a means of distributing longer-range v.h.f. signals within a building to provide higher levels of field strength to reduce the aerial requirement on cordless telephones.

American firms have similarly developed short-range 900 MHz radio-links as an integral part of computer systems. This, however, poses the question of how well or how badly 900 MHz propagation within buildings or building-complexes behaves at high digital data rates.
Recent work by Bell Communications Research at Holmdel (Electronics Letters, November 8, 1965, pp.950-1) at 850 MHz shows that multiple reflections tend to result in significant time-dispersal of the signals and hence severe intersymbol distortion at high data rates. In many cases the strongest transmission path occurred up to almost one microsecond after the first arrival. No significant

PLTEK PROTHETS

Introduce their new range of Test Equipment:PORTABLE DIGITAL THERMOMETER

DIGITAL A/C CLAMP METER

Special versions
available on request.
Range
$-50+$
$1000^{\circ} \mathrm{C}$
with
general
purpose
probe
Acc $0.3 /$
± 1 Digit
Range
$-50+$
$1000^{\circ} \mathrm{C}$
with
general
purpose
probe
Acc $0.3 /$
± 1 Digit
Range
$-50+$
$1000^{\circ} \mathrm{C}$
with
general
purpose
probe
Acc $0.3 /$
± 1 Digit
Range
$-50+$
$1000^{\circ} \mathrm{C}$
with
general
purpose
probe
Acc $0.3 /$
± 1 Digit
Range
$-50+$
$1000^{\circ} \mathrm{C}$
with
general
purpose
probe
Acc $0.3 /$
± 1 Digit
Range
$-50+$
$1000^{\circ} \mathrm{C}$
with
general
purpose
probe
Acc $0.3 /$
± 1 Digit
Range
$-50+$
$1000^{\circ} \mathrm{C}$
with
general
purpose
probe
Acc $0.3 /$
± 1 Digit
Range
$-50+$
$1000^{\circ} \mathrm{C}$
with
general
purpose
probe
Acc $0.3 /$
± 1 Digit
Range
$-50+$
$1000^{\circ} \mathrm{C}$
with
general
purpose
probe
Acc $0.3 /$
± 1 Digit

LIGHT METER

$0-5000$ \&
0-50,000
Lux.
Weighs
only
200 g
with case.
Low cost
For full range of products and price list inc. quantity discounts contact:-

RLTEK PRODULTS

48-56 BAYHAM PLACE, LONDON NW1 OEU Tel: 01-388 7171 Telex: 27364

$\sqrt{A} \square \sqrt{C B}$			Minimum Order £1			*SPECIAL QUALITY		VAT PAID PRICES MAY VARY		
A10	1.40	EF	L36	10	1 A	1.4	6BW			0.90
A2293	8.80	EF92 2.90	PL8	85	114	. 80	6 BW	1.80		0.70
A290	13.75	EF95 0.95	PL82	. 70	185	0.80	6C4	0.70	24	0
A	0.75	EF96 0.60	PL83	0.60	154	0.45	$6 \mathrm{C6}$	1.20	906	9
	0.70	EF183 0.80	PL84	. 95	is5	0.45	6CH	8.20	1 E 2	. 50
ATP	. 60	EF184 0.80	PL504	00	$1{ }^{1} 4$	0.45	6 CL 6	2.75	246	1.00
B12H	90	EF812 0.75	PL508	2.40	144	0.80	6CW	3. 50	12AT6	0.70
CY31	1.40	EFL200 1.85	PL509	5.85	1×2	1.40	${ }_{6 C \times}$	380	2 AT	0.85
DAF9	25	EH90 0.85	PL519	5.85	$2 \times$	2.50	6C	15	12AU7	
DET2	28.50	EL32 1.10	PL8021S) 2.95	3A4	0.70	60	0.95	12AU6	
DF	0.80	EL34	PY80	0.70	3AT	3.40		1.60	$2 \mathrm{AX7}$	
DF	0.70	55^{*}	PY81/8	0.8	3 B 2	12.00		1.10	$2 \mathrm{PA6}$	0.90
DH76	0.75	EL37 $\quad 5.20$	PY82					. 85		
DL92	0.60	EL82 0.70	PY88	0.60	306	0.50	6 68	0.85	12BH7	
DY86/8	0.65	El84 0.80			3E2	19.00	6F 1	115		
DY802	0.70	EL86 $\quad 0.95$	Qov03/10	7 3.20	35	0.70	6 F 14	1.15	12J5G	
E92C	2.80	EL90 E191 1.00 6.50			${ }^{4832}$	18.25 2.20	6F17	1.30 3.20		80
E180C	8.25	$\begin{array}{ll}\text { EL91 } & 6.50 \\ \text { EL95 } & 0.80\end{array}$	Qov03-20	21.5	5UAG	1.40	6F23	0.75	1207G	0.60
EABC	. 80	EL504 2.70	Qov03	25A	5 V 4 G	. 75	6F24	1.75	$12 \mathrm{SC7}$	0.65
EB91	60	El509 5.75		36.5	5Y3G	0.95	6F 33	10.50	12SH7	
EBC33	1.15	Et519 6.90			573	2.80	6 FH	17.80	$12 \mathrm{SJ7}$	
	0.90	E1821 8.20	22.	45.50	524 G	0.75	6GA	95	12 S	
EBF8	0.60	E1822 9.995	V03-1	4.20	$5 Z 4 \mathrm{G}$	1.05	6 G +	1.95		
EBF8	0.60	ELL80\SE) 2.80	SP6	1.80	6/30	0.90	${ }_{6}^{6 H}$	1.60	12 Y 4	
EBF8	0.80	Em80 0.85	TT2	32.20	6AB	0.70	6 JU			
EC52	0.65	EM87 $\quad 1.30$	$\pi 2$	9.50	6AC	1.15	6.34		13D5	
EC91	4.40	EY51 0.95	UABC80	. 35	6AG	0.60				
EC92	0.85	EY81 0.65	UAFA2	1.38	6AH6	1.15				
		y86/		0.70	6AK5	0.65	${ }_{6}^{6 J 5} 6$			
E	0.60	Y88	U8F89	0.70	6AK8	0.60			2001	
			UCC85	0.85			6 JE	4.85	20 E 1	
ECC8	0.6	$\begin{array}{ll}\text { EZ81 } & 0.70 \\ \text { GM4 } & 5.90\end{array}$	UCFRO	1.30		4.20	6JS6	4.85	-	
EC	0.60	GM4 GY501 5.90 1.30	UCH	65	6AM6	1.50		0.80	25L6G	1.6
ECC	0.80 0.95	$\begin{array}{ll}\text { GY501 } & 1.30 \\ \text { GZ32 } & 1.05\end{array}$	UCH8	${ }^{1} 0.75$	6ANBA	2.50	6KD		25Z4G	
ECC80	0.90	GZ33 4.20	UCL82	0.95	6AO4	4.40	$6 \mathrm{KD6}$	4.30	35W4	$8{ }^{8}$
ECF80	0.85	G734 $\quad 2.75$	UF41	1.35	6 605	1.00			85421	-2.550.
			UF80	0.95	6AOS	1.80	6L6G	3.80 1.80	807160	21.80
ECF80	1.05	$\begin{array}{ll}\text { KT66 } & 14.50 \\ \text { KT31 }\end{array}$. 95	6AS6	1.15 4.95		0.70		
		00		0.90	6AS 6		6LD20			
42	1.20	KT88 23.00 ML4 2.80	UM84	0.70	baub	0.90	6 626	4.85	8298	4.00
EC	0.80	$\begin{array}{ll}\text { ML4 } & 2.80 \\ \text { ML6 } & 2.80\end{array}$	UY82	0.70	6AV6	0.35	607G	1.30	832A	90
ECL80	0.70	N78 $\quad 9.90$	UY85	0.85	6AX4GT	T 1.30	6SA7	1.80	866A	5.05
ECL82	0.75	OA2 0.70	VR105/30	1.25	6AX5GT	T	${ }_{6 S}{ }^{\text {ch }}$	1.50	866	9.80
ECL85	0.80	OB2 0.80	VR150/30	1.35		A60	6SK	1.50	931	9.80
-86	0.90	PCL82 0.95	$\times 66$	1.80		1.20^{*}	6	1.40	95	20
EF37A	2.15	PCL84 0.90	$\times 61 \mathrm{M}$	1.70			6SNT		95	20
EF39	1.50	PCL86 0.75	2759	19.00	68 E		${ }^{\text {6SN7 }}$	5	956	20
80	0.65	CL86 0.75	2749	. 45				0.95 4.60	576	83
83	3.10	L805/85 0.95	28000	3.45	BG60	1.60 1.30	$\begin{aligned} & \text { 6SR } \\ & \text { 6V } \end{aligned}$	1.50	6060	1.95
EF85	0.60		$\begin{aligned} & 28010 \\ & Z 8034 \end{aligned}$	3.75 16.00						5.30
EF86	0.75 1.60	2.80	$\begin{aligned} & 28030 \\ & 2900 \mathrm{~T} \end{aligned}$	16.00 2.45	$\begin{aligned} & 6 \mathrm{BQ7} \\ & 68 \mathrm{R} 7 \end{aligned}$			1.30 1.50 0	$\begin{aligned} & 6201 \\ & 6146 \end{aligned}$	5.20 9.50
FIELD TELEPHONES TYPE ' J '. Troptcal, in metal cases: 10-Hne MAGNETO SWITCH-8OARD COn work with every type of magneto telephones hanness "A" \& "B" control units "A" "h "31" "J2." Microphones No 5, 6, 7 connectors, trames, carrier sets, etc \qquad 										

COLOMOR (ELECTRONICS LTD. 1170 Goldhawk Rd, LondonW12 Tel. 01-743 0899 or 01-749 3934.Open Monday to Friday 9 a.m.-5.30 p.m. CIRCLE 31 FOR FUR'THER DETAILS.

It's easy to complain about an advertisement. Once you know how.

One of the ways we keep a check on the advertising that appears in the press, on posters and in the cinema is by responding to consumers' complaints.

Any complaint sent to us is considered carefully and, if there's a case to answer, a full investigation is made.

If you think you've got good reason to complain about an advertisement, send off for a copy of our free leaflet.

It will tell you all you need to know to help us process your

complaint as quickly as possible.
 The Advertising Standards Authority. If an advertisement is wrong, we're here to put it right.

differences were noted between vertically and horizontally polarized signals. The BCR engineers conclude that the detailed measurements made at Holmdel indicate that signalling rates in excess of 400 kilobits/second may not be feasible for an error probability of 0.001 or less, and that the multipath characteristics of u.h.f. signals within buildings are a major factor to be considered in wideband systems design.

From all over

Engineering "Emmy" awards of the National Academy of Television Arts and Sciences, presented in New York, included a posthumous "Trustees Award" to the late Vladimir Zworykin, inventor of the iconoscope electronic camera, and "Emmys" to Stefan Kudelski for the Swiss firm's development of the portable C-format video tape recorder and to Ampex who clistribute it; to Sony for their work on single-frame recording on stationary videotape (BVH2500); RCA for work on circularly polarized television aerials; Lexicon for the firm's 1200 audio time compressor/expander; and to Tektronix for continued work on television test and measuring standards.

A recent survey of world colour television standards listed 59 using PAL, 36 using SECAM, 32 with NTSC and 3 with both PAL and SECAM. But one suspects that in terms of receivers. NTSC would go to the top of the table.
A planned replacement for the unhappy Yuri 2 (BS-2A) Japanese direct broadcasting satellite, which has malfunctions on two of its three 100 -watt transponders planned for summer 1985 may be delayed. The world still awaits its first operational high-power DBS service at Ku-band (12 GHz) and the chances of one arriving in 1985 seem slim.
I have yet to puzzle out the logic behind a recent job advert for telecommunications engineers: "The day of the 'old fashioned' phone and exchange is over. The communications era is with us . . . to discover the full extent of these opportunities contact Mr. X on 01-XXX XXX or write."

Amateur Radio

resonant aerials present such a low s.w.r. throughout an h.f. band without the use of an a.t.u.

Space packet

Although for h.f. high-power amplification, either linear or Class C , thermionic valves continue to be the most cost-effective, often with improved linearity compared with transistors, it is becoming possible to put together 50-100-watt solid-state amplifiers at relatively low cost, based on "surplus" transistors available from component firms. But a key factor is the use of devices intended for operation from 25-30volt, or more, supplies.
Most amateur transceivers, h.f. and v.h.f., are intended to work directly from 12 V car batteries, yet linearity performance is improved and very high peak currents reduced by using high-voltage devices such as those produced for airborne equipment used on 28 V supplies. Power mosfet devices are available for use on 150 V supplies, but these still tend to be much more costly than surplus 30 V bipolar transistors selling at under $£ 5$.

I was reminded of this recently during a 3.5 MHz contact with Art Radcliffe, GD3FXN, on the Isle of Man who has an 80 -watt all-band, all-solid state h.f. transceiver partly, based on a Plessey design by James Bryant, G4CLF, but with 30 V across the final amplifier and using power transistors that he bought for $£ 3$, and with no requirement for 30 ampere supplies!
Modern high-power valves now being used in amateur linear amplifiers can cost several hundred pounds, although many make do with ex-equipment or consumer type devices costing less than $£ 10$, but components for high-voltage, $1000-2000 \mathrm{~V}$, power units are becoming scarce and expensive at the 400 -watt p.e.p. output level.

The use of tunable or broad-band solid-state amplifiers incorporating protection against mismatched loads has brought about an increased requirement for aerial tuning units. Output power now often begins to be reduced at an s.w.r. of about 1.8 or more.

The FCC has recently granted permission, for a limited period, for a small number of American amateurs to engage in
"Teleport" operation, acting as automatic relay stations between terrestrial amateur stations transmitting "packet" data and the amateur satellites. The Russian amateur satellite RS6 ceased operation during October 1984, possibly due to battery failure. This leaves three Russian satellites carrying transponders still active: RS5, RS7 and RS8 with beacon transmissions still occasionally received from early satellites, where the beacon transmitter is powered directly from solar cells. AMSAT-UK has circulated a questionnaire to members seeking views on whether an attempt should be made to set up another UK satellite project.

R.A.E. decline

The next two dates for the Radio Amateur's Examination are Monday, March 18 and Monday, May 13. The examination can be taken at any of about 400 centres recognized by the City \& Guilds of London Institute. Closing date for applications January 15 and February 15 , or possibly earlier at some local centres. Figures issued by CG\&I show that the number of candidates completing the examination dropped from the peak figure of 8176 in 1982 to 7542 in 1983 and 5922 in 1984. Percentage of candidates qualifying for the RAE certificate dropped to 66.3 in 1984 from 70.5 in 1983 and 67.0 in 1982. The very high number of candidates in 1982 is thought to reflect the interest surrounding the introduction into the UK of legalized Citizen's Band operation, now largely evaporated.
City \& Guilds have installed a computer system that enables a multichoice examination paper to be quickly assembled from a bank of questions. While this system should reduce the possibility of the printing errors, etc. the occurred a few years ago, one can hope that
before putting them into the bank, the questions are carefully screened and brought up to date. It would also seem sensible for candidates to be given the choice of five rather than the present four answers, two of which including the "correct" one are usually deliberately ambiguous.
60 additional experimental 50 MHz permits have now been issued to British amateurs, plus another five to fill gaps in the ranks of the original 40 . Of these, five are in Scotland, two in Northern Ireland, one each in Guernsey and Wales and 56 in England.
The closing of v.h.f. television at the beginning of January has removed the "out of television hours" restriction. Norwegian authorities are issuing 25 experimental 50 MHz permits for use in non-tv hours. Norway is likely to discontinue the use of Band 1 for tv in 1985-86.
British amateurs have already found that 50 MHz is particularly suitable for meteor-scatter communications.

In brief

Amateur radio operation under the callsign GB4DIS/MM is expected during some stages of current voyage of the RRS
"Discovery" to the Scotia and Weddell Seas in the Antarctic. Three amateur operators, GW4SBB, GW4JAD and GW3RNP, are joining the ship at Punta Arenas and are expected to be active until the Discovery returns to Brazil next April, mainly on the 14 and 21 MHz bands. The ship is carrying a geophysical research team from the University of Birmingham.

The RSGB's committee on electromagnetic compatibility has been co-operating with the Consumers' Association in an effort to determine vulnerability to radio-frequency interference of current television receivers. Radio-frequency interference to video cassette recorders and some of electronic telephones that incorporate amplifiers and electronic memory is proving an unwelcome e.m.c. problem, not only in the UK.

The Wireless Institute of Australia, doyen of the national amateur radio societies, founded in 1910, reaches its 75th anniversary during 1985. PAT HAWKER, G3VA

SCOPES
PHILIPS
PM3267 100MHz DT Sweep

C 1250
PM3256 75MHz
Ruggedised DT Sweep
PM321750MHzDT
$C 1325$
Sweep $£ 870$
PM3206 15MHz DT $\mathbf{5 2 7 5}$
PM321950 MHz Storage
DTSweep
£2675
PM3302 20MHz Digital
Storage DT
£1395
Storage D
¢1395

HAMEG

HM203-5 20MHz D T $\mathbf{~} 264$
HM204-2 2OMHzDT $\mathbf{C 3 6 5}$
Sweep
HM208 20 MHz Digital
Storage DT \quad £1200
HM605 50M
Swzep
Sw
O515

LOGIC ANALYSERS

THANDAR
TA 216020 MHz 16 Channel $£ 3450$

DMMS

PHILIPS
PM2518×/01 4 digit True
RMS E165
PM2519/01 $4^{11 / 2}$ digit + Counter
$£ 285$
FLUKE
8060A $4^{11 / 2}$ digit True RMS

ᄃ289
8062A 4 $4^{1 / 2}$ digit True RMS
£231
JF73 ${ }^{1 / 12}$ digit Handheld $\mathbf{5 6 8}$
JF75 $3^{1 / 2}$ digit Handheld $\mathbf{5 8}$ JF77 3 la digit Handheld £104 THURLBY
1905A $51 / 2$ digit

SIGNAL SOURCES

PHILIPS

PM5712 Pulse Gen 50 MHz
PM5326 AM/FMGen 895 125 MHz Generator PM5134 Function Generator $20 \mathrm{MHz} \quad \Sigma 1415$
PM5131 Function Generator
$2 \mathrm{MHz} £ \mathbf{~} 395$
PM55191 Pattern Generator
c785
PM5503 Pattern Generator

THANDAR

TG102 Function Generator
$2 \mathrm{MHz} \quad £ 155$
TG502 Funct/Sweep
Generator 5 MHz £495
POWER SUPPLIES
THURLBY
PL1540-15V 0-4A Oigital
£145

ELECTRONIC BROKERS HAVE MOVED TO SPACIOUS NEW PREMISES AT 140-146 CAMDEN STREET LONDON NW1 OPENING UP A NEW ERA IN THE DISTRIBUTION OF ELECTRONIC TEST AND MEASURING INSTRUMENTS AND THE SUPPLY OF SECOND USER TEST AND MEASUREMENT EQUIPMENT AND DEC COMPUTERS TELEPHONE 01-267 7070

PL3200-30V 0-2A Digital
PL310 0-30V 0-1A \quad E118
RECORDERS
PHILIPS
PM8154 X-Y Graphics Plotter
IEEE or RS232 £1025
PM8043 X-YA4 $\mathbf{£ 1 0 7 5}$
EPROM
PROGRAMMERS
G P ELECTRONICS
P9030 Programmer £1295 P9020 Programmer 5995 UV 141 Eprom Eraser $\mathbf{5 7 8}$
MISCELLANEOUS
PRODUCTS
PHILIPS
PM6303 Digital Automatic Bridge

E695

THURLBY

OM 358 Scope Multiplexer
£169
CM 200 Digital Capacitance Meter
$£ 89$

HEWLETT PACKARD

141 T Mainframe
(MLPE4359) £2650
1715A opt. 001
Scope 200NMHz
(MLP £3705) £2450
3575A-01 Gain/Phase Meter (MLP E4334) £2450
3585A Spectrum Analyser
(MLP E20069) $1 \mathbf{1 6 6 5 0}$
4204A Decade Oscillator
(MINT) (MLP E1801) £760
4815 Vector Impedance
Meter $\mathbf{~} 3950$

8013B Pulse Generator
$50 \mathrm{MHz}(\mathrm{MLPE1280)} \mathbf{£ 7 5 0}$
85 A Computer $£ 1250$
8552B IF Section
(MLP £4526) £3500
8555A RF Section
(MLP E9304) $\mathbf{E 6 5 0 0}$
8601A Sweeper. 110 MHz (MLP E4502) £1950
8620C Sweeper Mainframe (MLPE3180) £2100 86222B Plug in.
$0.01-24 \mathrm{GHz}$
(VLP E5741) $\mathbf{C 4 8 5 0}$
86240 B Plug in. 2-8.4GHz
(MLP £6360) C4200 86260A Plug In $12.4-18 \mathrm{GHz}$ (MLP £4675) £3600
9825A Desk Top

Cal/Computer

$£ 2950$

RACAL

Store 4DS FM Taperecorder £3950
Store 7DS FM Taperecorder
£6150

TEKTRONIX

1503 TDR
(MLP E5911) £3000 464 DM 44 opt. 04,05
Storage Scope 100 MHz
(Unused Cond)
(MLP E7615) £4650
465 opt. O4,07. Scope $\mathbf{~} 1650$
$100 \mathrm{MHz}(\mathrm{MINT}) \mathrm{E} 650$ 475A Scope. 250MHz
[MLP E4453) с3300 491 Spectrum Analyser
$15 \mathrm{GHz}-12.4 \mathrm{GHz} \quad$ E3000 $1.5 \mathrm{GHz}-12.4 \mathrm{GHz} \mathbf{~} \mathbf{3 0 0 0}$
491 Spectrum Analyser. $1.5 \mathrm{GHz}-18 \mathrm{GHz} \quad \mathbf{5 5 0 0}$ 491 Spectrum Analyser
$15 \mathrm{GHz}-26.5 \mathrm{GHz} \mathrm{£4000}$ 1. $5 \mathrm{GHz}-26.5 \mathrm{GHz} \mathrm{E} \mathbf{~} \mathbf{G O O O}$
491 Spectrum Analyser. $1.5 \mathrm{GHz}-40 \mathrm{GHz} \quad \mathbf{5 4 0 0}$ 521 A Vectorscope
(MLP E7914) £4500 5223 Mainframe
(MLP £5605) $\mathbf{5 6 0 0}$
576 Curve Tracer c/w 172

577/01 Curve Tracer
(MLP £7272) $\mathbf{5 4 0 0 0}$ 7104 opt. 03 Real Time
Mainframe 1 GHz
(MLP £26348) £16500 7704 A Mainframe. 200MHz (MLP £5094) £2950 7904 Mainframe. 500 MHz (MLP E10371) £6950 AM502 Amplifier
(MLP E1404) £695
FG504 Function Generator $0.001 \mathrm{~Hz}-40 \mathrm{MHz}$ (MLP E2888) £1650 P6015 HV Probe £450 P6302 Current Probe $\mathbf{E 3 5 0}$ PG502 Pulse Generator 10 Hz 250 MHz
(MLP E2831) £1750
PG508 Puise Generator
$5 \mathrm{~Hz}-50 \mathrm{MHz}$

PROCESSORS

PDP11/70. PDP11/44
PDP11/34A, PDP11/45
PDP11/40, PDP11/23
PDP11/03 PDP8E PDP8A
MEMORY
MS750CA, MS780DA
MJ11AM MJ11BM
MK11CE MK11CF MM11DP MM11L. MM11UP, MS11JP MS11KE, MS11LB, MS11LD MS11MB, MS11PB, MM8AA MMBAB MMBE MM8EJ MS8CA, MS8CB, MS8DJ. MSV11DC, MSV11DD MSV11LK, MSV11PL
DISC DRIVES
R80, RA80, RK05, RK06, RKO7, RLO1, RLO己, RMO2 RMO3. RMOS, RM80, RP05 RPO6, RPO7,RX01, RX02

MAGNETIC TAPE

TE16, TS11, TU10, TU58 TU77

CONTROLLERS

RH11, RH70. RH750
RH780 RK611, RK711 RK8E RK11D, RL8A RL11 RLV11, RLV12, RX8E RX28 RXV11, RXV211, RX11 RX211, TM8E, TM11, TMB11 SC71

VDUS

VR17. VT05, VT52 VT55
VT62, VT78, VT100, VT102 VT103, VT110, VT125, VT180 VT278

PRINTERS

LA30, LA34, LA35 LA36, LA180, LP04, LP05, LPO7 LP25, LP200, LS120, LXYO1
OPTION MODULES
Too numerous to list

Listed above is just a very small selection from our huge inventory. Whatever your requirements in test equipment or DEC computers
please call us.
We are sure that we will be able to help.

Electronic Brokers Ltd., 140-146 Camden Street, London NW/1 9PB. Telephone 01-267 7070. Telex 298694.

A low-cost professional Logic Analyser the new Thurlby LA-160 from $£ 395$-vat

- 16 data channels, expandable up to 32
- 2,000 word data acquisition memory

■ Non-volatile reference memory

- Powerful search and compare facilities
- Clock rates up to 20 MHz
- Data state and logic timing displays
- Binary, octal, decimal or hex formats
- Hard-copy data print-out option

An essential instrument for today's electronics

An oscillioscope and logic probe are not enough to unravel the complexities of today's electronic equipment. A logic analyser is now the essential tool for digital electronics work both hardware and software. With prices measured in $£ 1,000$ s, however, many engineers have been denied the use of one. Until now!

Innovative design and high volume production using the latest component technology provide the

Thurlby LA- 160 with performance exceeding many high-cost analysers but at a price measured in $£ 100$ s

The LA- 160 enables digital information to be precisely recorded and then examined in detail either as a data state display or as a logic timing diagram (via the user's own oscilloscope).

Contact us now for a full colour technical data sheet.

Thurlby N

Thurlby Electronics L.td., New Rd. St.Ives, Huntingdon, Cambs. PE17 4BG
designed and built in Britain Tel: (0480) 63570 Tlx: 32475
CIRCLE 24 FOR FURTHER DETAILS.

The world's most advanced low-cost bench multimeter! Thurlby 1905a £325+VAT

A complete high performance bench DMM

- $5 \frac{1}{2}$ digits; 0.015% acc; $1 \mu \mathrm{~V}, 1 \mathrm{~m} \Omega, 1 \mathrm{nA}$.
- Full ac and current functions as standard

A sophisticated computing and logging DMM

- Linear scaling with offset; null/relative
- Percentage deviation; running average
- dBV, dBm general logarithmic calculations
- Limits comparison; min and max storage
- 100 reading timed data logging
- RS232 and IEEE-488 interface options

Thurlby Electronics Ltd
New Road, St.lves, Cambs. PE17 4BG
Tel: (0480) 63570
\int Thurlby
CIRCLE 26 FOR FURTHER DETAILS.

TOROIDALS

The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to I.L.P., PRICE.
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service with in 14 DA YS together with a short lead time on quantity orders which can be programmed with a short lead time on quantity orders whic
to your requirements with no price penalty.

Regulation 19\%			Reguiation 13\%		
SERTES	CONDARY	RMS	2×010	$6+6$	416
No	Vohts	Current	2×011	9+9	277
0×010	$6+5$	125	2×012	$12+12$	208
0×011	9+9	083	2×014	-18	
0×012	$12+12$	063	2x015	$22+22$	113
0x013	$15+15$	050	2×016	$25+25$	100
0x014	$18+18$	042	2×017	30+30	083
0×015	22+22	034	2×028	110	045
0×016	$25+25$	030	2×029	220	022
0×017	30+30	025	2×030	240	020
(encased in ABS plastic)			80 VA		
30 VA			$\underset{\substack{90 \times 30 \mathrm{~mm} \\ \text { Regulation } 12 \%}}{ } 1 \mathrm{Kg}$		
$70 \times \underset{\text { Regulation } 18 \%}{30 \mathrm{~mm}}$					
			3×010	$\begin{aligned} & 6+6 \\ & 9+9 \end{aligned}$	
1×010	6+6	250	3×011		444
1×011	$9+9$	166	3×012	$12+12$	333
1×012	$12 \cdot 12$	125	3×013	$15+15$	266
1×013	$15+15$	100	3×014	$18+18$	222
1×014	$18+18$	083	3×015	$22+22$	181
1×015	$22 \cdot 22$	068	3×016	25-25	160
1×016	$25+25$	060	3×017	30 +30	133
1×017	$30+30$	050	3×028	110	\bigcirc
				220 240	036 033

$$
\begin{aligned}
& \text { Regulation } 19 \% \\
& \text { SERIES SECONDARY } \\
& \text { No } \begin{array}{l}
\text { ROMS } \\
\text { Vourrent }
\end{array}
\end{aligned}
$$

$\begin{gathered} 90 \times 40 \mathrm{~mm} \\ \text { Regulation } 11 \% \end{gathered}$		
4×010	$6+6$	1000
9×011	9-9	666
$4 \times 0: 2$	12+12	500
4×013	$15 \cdot 15$	400
4×0.14	18+18	333
4×015	$22+22$	272
4×016	$25+25$	240
4×017	30-30	2.00
4×018	$35+35$	171
4×028	110	109
4×029	220	054
1×030	24 D	0.50
160 VA		
110×4	umation	
5×011	$9+9$	889
5×012	$12+12$	666
5×013	$15+15$	533
5×014	$18+9$	444
5×015	$22+32$	363
5×016	$25+25$	320
5×017	30. 30	266
5×018	$35+15$	228
5×026	$40+40$	200
5×028	110	145
5×029	220	072
5×030	240	066

$\underset{\substack{225 \mathrm{VA} \\ 110 \times 45 \mathrm{~mm} \\ \text { Requlation } 7 \%}}{2.2 \mathrm{Kg}}$			$\xrightarrow{140 \times 60 \mathrm{~mm}} \underset{\text { Regulation } 4 \%}{500 \mathrm{VA}} 4 \mathrm{Kg}$		
6×012	$12+12$	938	8×016	$25+25$	1000
6×013	$15+15$	750	8×017	30 +30	833
6×014	18+18	625	8×018	$35+35$	714
6×015	$22+22$	511	8×026	$40+40$	625
6×016	$25+25$	450	8×025	$45+45$	555
6×017	30+30	375	8×033	50+50	500
6×018	$35+35$	321	8×042	55+55	454
6×026	$40+40$	281	8×028	110	454
6×025	$45+45$	250	8×029	220	227
6×033	$50+50$	225	8×030	240	208
6×028 6×029	110 220	204 102		625 VA	
6×029 6×030	220 240	102 093	$140 \times$	5mm	5 Kg
300 VA			Regulation 4\%		
$110 \times 50 \mathrm{~mm}$			9×017 9×018	$\begin{aligned} & 30+30 \\ & 35+35 \end{aligned}$	1041 892 7
7×013	$15+15$	1000	9×026 9×025	$40+40$ 45.45	6984
7×014	$18+18$	a 33	9×033	50-50	625
7×015	$22+22$	682	9×042	55+55	568
7×016	$25+25$	600	9×028	110	568
7×017	30-30	500	9×029	220	284
7×018	35+35	428	9×030	240	260
7×026	$40+40$	375			
7×025	45.45	333			
7×033	$50+50$	300			
7×028	110	272			
7×029	220	136			
7×030	240	125			

Why a Toroid? * Smaller size \& weight to meet modern 'slimline' requirements. * Low electrically induced noise demanded by compac equipment.
High efficiency enabling conservative rating whilst maintaining size advantages. Lower operating temperature.

Why ILP?
Ex stock delivery for standard 240 V range
Fast prototype service available 3 weeks despatch for special orders
2 year no quibble quarantee No price penalty for call-oft order

Prices including P \& P and Vat					
VA	Size	Σ	VA	Size	¢
15	0	706	160		1217
30	1	767	225	6	13.75
	2	8.90	300	7	14.97
	3	11.06	500	8	19.60
120	4	10.65	625	9	22.30

Mail Order - Please make your crossed cheques or postal orders payable to ILP Electronics Ltd
rade - We will open your credit account mmediately upon receipt of your first

Post to: ILP Electronics Ltd., Dept, 3 Graham Bell House, Roper Close, Canterbury, Kent. CT 2 7EP Tel: (0227) 454778 Telex: 965780

For 110 V primary insert " O " in place of " X " in type number
 For 240 V primary (UK) inser " 2 " in place of " X " in type number.
MPORTANT: Aegulation - All voltages quoted are FULL LOAD. please add regulation figure to secondary voltage to obtain oft load voltage

VIDEO TERMINAL BOARD
 $\star 80$ characters $\times 24$ lines \star
 Requires ASCll encoded keyboard and monitor to make fully configurable intelligent terminal. Uses 6802 micro and 6845 controller. Program and character generator (7×9 matrix with descenders) in two 2716 EPROMs. Full scrolling at 9600 baud with 8 switch selectable rates. RS232 interface.
 Bare board with 2 EPROMS and program listing £48 plus VAT. Assembled and tested - £ 118 Send for details or CWO to:

A M Electronics

Wood Farm, Leiston, Suffolk IP16 4HT Tel: 0728831131 CIRCLE 52 FOR FURTHER DETAILS.

Cable and satellite tv come together
 Nigel Cawthorne reports from Catcom 84 in Switzerland

 Organised by the Swiss Cable-TV association, the catcom '84 conference and exhibition held in Luzern inNovember 1984, brought together international experts in the fields of cable and satellite TV.

Switzerland, with its mountainous terrain, is one of the most "cabled" countries in the world. Over 50% of Swiss households are connected to cable tv and there are over 110 independent cable operators in this, one of Europe's smaller countries. Luzern, right in the centre of Switzerland was thus an appropriate location for the first "Catcom" cable tv and communications exhibition and conference.

Cable television is both a new science and an old one. Originally cable tv was the means of bringing pictures to viewers who were unable to receive signals directly from the broadcasters own transmitters. Cable tv in its early days was a "fill-in" service and was very limited in its objectives and services, whereas the cable tv systems being planned today are a major component of the communications and information revolution.

In the UK, the arrival of new franchise cable tv companies, such as Swindon Cable which in September 1984 was the first to
come on-air, brings the possibility of a completely new range of services into the home which will soon go far beyond the retransmission of a handful of tv signals.

The cable that carries tv pictures into the home will also be the means by which the viewer receives a wide range of information services and through which he will be able to communicate out from his home and procure services. Interactive services will allow the viewer to do shopping, banking, obtain information as well as receive large numbers of TV and radio programmes all from his armchair.

Cable bandwidths

In modern cable tv systems, coaxial cable is used to bring the signals from the head-end into the viewers home. The bandwidth of current systems extends up to 450 or 500 MHz . The lower frequency end of the new cable tv systems for outward transmission is around 50 MHz . In the UK, certain frequencies have to be

Using analogue modulation techniques, today's fibre optics are yielding impressive results. Using an f.m. tv carrier, one channel has been transmitted repeaterless over 90 km . However in the future, it is p.c.m. that is likely to become the preferred mode for transmission of tv signals through fibre optics.

Low cost digital v.l.s.i. codecs, which code and decode the video signal into p.c.m. format, are the key to this important next step in cable television transmission. Developments in this field are currently taking place in several companies.

Digitally modulated video requires a comparatively large bandwidth, but yields a high picture quality which is practically uneffected by the use of successive repeaters, provided that sufficient levels of quantization steps are used in the codecs.

New monomode fibres as described at Catcom ' 84 by speakers from the Institute for Applied Physics in Zurich, would have a capacity of 1 to $2 \mathrm{Gbit} / \mathrm{s}$, and be capable of repeaterless operation over tens of kilometres. Such capacity would be enough to accommodate several tv signals per fibre.

Although coaxial cable will undoubtedly be used for many years to come in cable tv and communications networks, the potential of fibre optics as a distortionless trunk carrier of several broadband tv signals will begin to be fully realised just as soon as low-cost codecs become readily available.

Satellite signals

The first satellite television channels are currently operating on the ECS and Intelsat communication satellites, transmitting signals towards the Earth which need relatively large dishes (e.g. about 3 m or 4 m) for reception. By the end of 1985 there will be several dozen television programmes available for the cable tv operator to provide to his subscribers. This number will increase further as direct broadcasting satellites are introduced. DBS transmissions will be higher powered than those coming from the communications satellites and they will be receivable with smaller dishes (less than 1 m).

3SAT comes on air

Hailed as a new concept in satellite broadcasting, the German
speaking 3SAT programme started transmissions on December 1, 1984 and carries a combined programming from Austria, Switzerland and West Germany.
Programmes are prepared in a central studio complex in Mainz, and are transmitted up to the ECS-1 satellite from the West German earth station at Usingen. Transmission of 3SAT programmes is made on ECSI's East Spotbeam. As well as covering the three programme supplying countries, the East Spot footprint also covers large parts of Yugoslavia, Hungary, and Czechoslovakia. Where cable tv systems exist in these eastern countries, 3SAT organisers believe that there may be a demand for their programming. The main purpose of the programming is to cover Austria, West Germany and the German speaking parts of Switzerland. The three broadcasting authorities: Germany's ZDF, Austria ORF and Switzerland's SRG will each be providing about equal amounts of programme material.
Leo Schurmann, Director General of the Swiss Broadcasting Corporation, used the occasion of Catcom ' 84 to introduce the 3SAT project to both the Swiss and international cable tv professionals attending the conference. Catcom '84 also brought together specialists from the fields of both cable tv and satellite communications. The papers presented at the conference were divided into two streams: media-political and technical. There were a total of over 40 papers presented by speakers from Europe as well as the US and Canada.

North American cable tv

North American cable tv is now described as a "mature industry" whereas for most European countries cable tv is still relatively new. New European cable operations need to look at the experience gained in North America in cable tv to avoid possibly making some of the same mistakes.

One area where direct comparisons cannot be made between North American and European cable tv relates to picture quality. The North American viewer suffers from a poor off-air picture quality, which cable operators seek to improve. Cable operators also offer additional programming. Because colour tv in Europe started later than in North America and could therefore take advantage of improvements in
\qquad
techniques over the NTSC colour coding system, picture quality, or lack of it, has never been such a critical problem in Europe as in North America.

As described by one Catcom '84 speaker: "The American cable systems business has evolved in a market environment in which variety, i.e. the number of signals, is more important than the image quality." Unlike in the UK where alternate channels are commonly used for the transmission of tv through cables, US cable systems operate with adjacent channels to pack the most signals into the least bandwidth.
Canadian catv consultant Israel Switzer proposed that a higher quality picture service be made available on North American cable networks for premium programming by using three 6 MHz channels together to transmit frequency modulated tv signals requiring a bandwidth of 18 MHz . Higher quality tv receivers would be used to demodulate the f.m. signal directly.

FM tv signals would be transmitted on channels within the normal $5-500 \mathrm{MHz}$ range of US cable tv systems. This would be a method of bringing a professional grade of broadcast tv picture to the viewer on existing
the household back to the central computer will operate on the cable in the range 10 -
16 MHz .

525-line standards, before high definition tv is introduced. The same modulation techniques would be used to obtain professional grade transmission as is used for the transmission of tv signals from satellites. The tv receiver in the home would be receiving at cable tv frequencies rather than at the 12 GHz used in satellite transmissions. Switzer described this as a method of bringing the tvro into the living room!
The four foot-prints (Spot West, Spot Atlantic, Spot East and Eurobeam) of the ECS-1 communications satellite that is also used for the transmission of television signals to cable head-ends. 3SAT, the new German language satellite based programme that started transmissions on 1 December 1984 using the East Spotbeam, is produced as a cooperative venture between German ZDF, Australian ORF and Swiss SRG.
Bottom: Wiring up the first of the UK's new franchise cable-TV networks, Swindon Cable. From the kiosk, the $50-440 \mathrm{MHz}$ bandwidth signals are distributed to households. Interactive services, that will eventually need to return a signal from RLD FEBRUARY 1985

CIRCLE 37 FOR FURTHER DETAILS.

SATELLITE TV RECEIVING EQUIPMENT

1.9M, 2.5M and 5M Dishes Receivers, Downconverters, Low Noise Amplifiers, Feed Horns available. Complete systems installed anywhere in the world. A full report on reception feasibilities at any location is available - price $£ 25.00$. Please state Longitude and Latitude.

For further details contact
 HARRISON ELECTRONICS
 22 MLLTON ROAD, WESTCLIF-CN-SEA, ESSEX SSO 7JX Tel: (0702) 332338

CIRCLE 55 FOR FURTHER DETAILS.

ELECTRONICS C.A.D.
 "ANALYSER"

PERFORMANCE ANALYSIS of LINEAR CIRCUITS Using the BBC MODEL B AND

 SINCLAIR SPECTRUM 48K MICRO'SSimulates Resistors, Capacitors, Inductors. Transformers, Bipolar and Field effect Transistors, and Operatoral Amplifiers in any circuit configuration
Performs FREOUENCY RESPONSE ANALYSIS on Circuits with up to 16 Nodes and 60 Components, for Phase and Gain/Loss. Input Impedance and Output impedance. Ideal for the analysis of AcTIVE and PASSIVE FITERS. AUDIO, WIDEBAND and R.F. AMPIIIERS UNEAR INTEGRATEDCIRCUITS etc etc
"ANALYSER" can greaty reduce or even eliminate the need to Dreadboard new designs USED BY INDUSTRIALAND UNIVERSITY R\&D DEPARTMENTS WORLDWIDE.
VERY EASY TO USE. PRICES FROM £20 ACCESS OR AMERICAN EXPRESS
WELCOME.
For further details write or phone NUMBER ONE SYSTEMS
DEPARTMENT WW
9A CROWN STREET, ST IVES
HUNTINGDON
CAMBS. U.K.PE17 4EB
TEL: 048061778 TELEX: 32339

CIRCLE 20 FOR FURTHER DETAILS.

01-208 1177 Technomatic Lid 01-208 1177

BBC Micro Computer System BBC Computer \& Econet Referral Centre BBC Computers:

Model B: £320(a) B+DFS: £409 (a) Model B+NFS: $£ 389$ (a) B+NFS+DFS £450 (a) ACORN 2nd Processors: 6502: £175 (a) Z80: £352 (a) TORCH UNICORN: 280 Card: $£ 275$ (a) Z80 Disc Pack: $£ 675$ (a) UNICOMM Communications Package: £159 (b) 20 Mbyte Hard Disc+400K Floppy: $£ 1995$ (a)
We stock the full range of ACORN hardware and firmware and a very wide range of other peripherals and firmware for the BBC. For detailed specifications and pricing please send for our leaflet

PRINTERS

EPSON: RX80FT £225(a); FX80 £315(a) FX100 £435(a);RX100 £345(a) KAGA TAXAN:KP810 £249(a); KP910 £359 (a) BROTHER:HR15 £340 (a);. JUK1 61001340 (a).

ACCESSORIES

EPSON Serial Interface: 8143 £ 28 (b) ; 8148 with 2 K buffer $£ 57$ (b EPSON Paper Roll Holder $£ 17$ (b): FX80 Tractor Attach $£ 37$ (b): RX/FX80 Dust Cover $£ 4.50$ (d) EPSONRibbons; MX/RX/FX80 E5.00:MX/RX/FX 100 § 10 (d) JUKI: Serial Interface $£ 65$ (C); Tractor Attach, $\mathbf{£ 9 9}$ (a); Sheet Feeder $£ 199$ (a): RIbbon $£ 2.50$ (a)
BROTHERHR15: SheetFeeder $£ 199 ;$ Ribbons-Carbor BROTHER HR15: SheetFeeder $£ 199$; Ribbons - Carbonor Nylon $£ 4.50$; Multistrike $£ 5.50$ (d) 2000 Sheets Fanfold with extra tine pert. 9.5 in . $£ 13.50,14.5 \mathrm{in}$. $£ 18.50$ (b)
BBC Parallel Lead $£ 8$; Serial Lead $£ 7$ (d).

BT Approved Modems

MIRACLE WS2000
The ultimate world standard modem covering ail common BELL and CCITT standards up to 1200 Baud. Allows commun cation with virtually any computer system in the workd. The optional AUTO DIAL and AUTO ANSWER boards enhance the considerable facilities already provided on the modem. Mains powered. £129(c) Auto Dial Board/Auto Answer Board £30 (d) each. Software lead E4.50
TELEMOD 2
Complies with CCITT V23 1200/75 Duplex and 1200/1200 half Duplex standards that allow communicatıons with VIEWDATA services like PRESTEL, MOCRONET etc as well as user to user communications. Mains powered. £62(b)
BUZZBOX:
This pocket sized modem complies with V21 300/300 Baud and provides and ideal solution for communications between users, with main frame computers and bulletin boards at a very economic cost. Battery or mains operated. $£ 52$ (c) Mains Adaptor $\mathrm{E8}$ (d)
BBC to Modem data lead $\mathbb{C} 7$

SOFTY II

This low cost inteligent eprom programmer can program 2716. 2516, 2532, 2732, and with an adaptor, 2564 and 2764 Displays 512 byte page on TV - has a serial and parallee l/o routines. Can be used as an emulator, cassette interface SoftyII …... £195.00(b) Adaptor for 2764 / 2564
£25.00

DISCDRIVES

These drives, fitted with high quality JAPANESE mechanisms are supplied in attractive stee cases painted in BBC colour. The drives are fully Shuggart A4000 compatible. Alt dual drives are supplied with integral power supply whilst singles are supptied with or without power supply All drives come complete with data \& power cables, manual and BBC formatting disC
$1 \times 100 \mathrm{~K}$ (250 KDD unformatted) $1 \times 400 \mathrm{~K}$ (1 MbDD unformatted) $2 \times 100 \mathrm{~K}$ (5 MbDD unformatted) 2×400 (2MbDD unformatted)
CS100 TEC with psu
CS200 TEC with psu
CS400 MITS with psu

40TSS TS55A TEAC
80TDS TS55F TEAC 40/80 40TSS TD55A TEAC
80TDS TD55F Mitsubishi 40/80
£125 (a) 40/80T Switch Module £165(a) 3in. Hitachi 100K 40T E195(a)

Authorised Distributor

Data Recording Products

En

3M FLOPPY DISCS
Industry Standard floppy discs with a lifetime guarantee Discs in packs of 10
40 Track SS DD
£15(c)
40 Track DS DD
£18(c) 80 Track SS DD £22 (c) 80 Track DS DD £24 (c)

DRIVE ACCESSORIES

FLOPPICLENE Disc Head Cleaning Kit with 28 disposable cleaning discs ensures continued optimum performance of the drives. $£ 14.50$ (c)

Single Disc Cable $£ 6$ (d)
10 Disc Library Case $£ 1.80$ (d)
30/40 Disc Lockable Box £14(c)

Dual Disc Cable $£ 8.50$ (d)
30 Disc Storage Box $£ 6$ (c)
100 Disc Lockable Box £19(c)

MONITORS

MICROVITEC 14in. RGB
431 Std Res £165(a); 1431 Ap std Res PAL/Audio £210(a); 1451 Med Res $£ 240$ (a); ; 1441 Hi Res $£ 399$ (a): 2031 20in. Std Res $£ 260$ (a); Plinth for 14in. Monitors $£ 8.50$ Microvitec Monitors with TTL/Linear Inputs also available.

KAGA TAXAN 12 in RGB
Vision II Hi Res $£ 240$ (a); Vision III Super Hi Res $£ 340$ (a) Green Screens; KAGA 12G £99 (a); SANYO DM 811 112CX £90(a);

Swivel Stand for Kaga Green $\mathbb{E} 1$ (c)
BBCLeads: KAGA RGB £5 Microvitec $£ 3.50$; Monochrome $£ 3.50$ (d)

UV ERASERS

JV1T Eraser with built-in timer and mains indicator. Built-in satety interlock to avoid accidental exposure It can handle up to 5 eproms at a time with an average erasing time of about 20 mins. $£ 59+£ 2 \boldsymbol{p \&} \mathbf{p}$. UV1 as above but without the limer $£ 47+£ 2$ p\&p For Industrial Users, we offer UV 140 \& UV 141 erasers with handing capacily of 14 eproms. UV141 has a UV140 £61. UV141 £79, p\&o £250.

PRINTER BUFFER

This printer sharer/buffer provides a simple way io upgrade a multiple computer system by providing greater utilisation of available resources. The buffer can be loaded into the butfer which will continue accepting data until it is fuil. The buffer will automatically switch from one computer to next as soon as that computer has dumped allits data. The computer then is available for other uses. LED bargraph indicates memory usage. Simple push button control provides. REPEAT, PAUSE and RESET functions Integral power supply $£ 245$ (a).
£ 100 (a) £145(a) £250 (a) £260 (a) E30 (c) £105(b)

All prices in this TENTON

 subject to change without notice.
ALL PRICES EXCLUDE VAT

Please add carriage 500 unless indicated as follows
(a) $\Sigma 8$ (b) $£ 2.50$ (c) $£ 1.50$ (d) $£ 1,00$ ACORN IEEE INTERFACE A full implementation of the IEEE-488 standard, providing computer control of compatible scientific \& technical equipment, at a lower price than other systems. Typical applications are in experimental work in academic and industrial laboratories. The interlace cansupport a network of up to 14 other compatible devices, and would typically link several items of test equipment allowing them to run with the optimum of efficiency. The IEEE Filing System ROM is supplied £282

INDUSTRIAL PROGRAMMER

P600

This CPU controlled Emulator Programmer is a powerful tool for both Eprom programming and development work. EP8000 can emulate and program all eproms up to $8 \mathrm{~K} \times 8$ bytes, can be used as stand alone unit for editing and dupticating EPROMS as a slave programmer or as an eprom emulator $£ 695(a)$

CONNECTOR SYSTEMS

TEXTOOL ZIF SOCKETS
28 pin 88.00

24-pin 55.75

EDGE	AMPHENOL CONNECTORS 36 way plug Centronics	TELEPHONE CONNECTORS		
CONNECTORS				
	(solder 500 p (IDC) $475 p$ 36 way sk! Centronics solder) 550 p (IDC) 500 p	4-way plug 6 way plug.........10p 6 way tt ang.ski		
	24 way plug IEEE (solder) 475 p (IDC) 475 p	Flexible cable 4-way 50p/m		
	24 way Ski leEx (solder)	6 -way		2p/m
	PCB Mto Skt Ang			
2×28.way (Spectium) 2000	24 way 700 p 36 way 750 p	RIBBON CABLE (greyimetre)		
2×22 way 1900	GENDER CHANGER	10 way	40 D 34.way	${ }^{1600}$
2×43 way 3959	25 way D			
		20.way		
	Male to Male Male to Female Female to Female			
EURO CONNECTORS		DILIHEADERS		
			Solder	100
DIN 41612	RS 232 JUMPERS	14 pin	40 p	100 p
2×32 way St Pin 230 p 275 p	(25 way D)	16 16 pin	50p	110 p
2×32 way Ang Pin 275p 320p	${ }^{24}$. Singie end Male 55.00		${ }_{750}$	
3×32 way St Pin 2600 p 300 p		24 pin	100p	150p
		28 pin	200p	150p
$\begin{array}{ll}\text { IDC SkI A }+\mathrm{B} & 275 \mathrm{p} \\ \text { IDC Skt A }+\mathrm{C} & 350 \mathrm{p}\end{array}$		40 pin	200 p	225p
For 2×32 way please specify spacing ($A+B, A+C$).	DIL SWITCHES	ISC CONN		
	4-way 90p 6-way 105p		Scart Connector	
	8 -way 120p 10-way 150p	8 pin	video Conneclor	200 p

by K.L. Smith, ${ }^{*}$ Ph.D.
 D.c. supplies from a.c. sources-3

*University of hent at Canterbury.

Fig. 1. The simple assumption of a sawtooth ripple in a smoothing filter is shown. The peak voltage change across the capacitor is a half-wave rectifier circuit has an amplitude of V. equal to I / fC. This an r.m.s. ripple estimate given by $\mathrm{V}_{\mathrm{r}}=\mathrm{I}_{\mathrm{dc}} / 2 \sqrt{3} \mathrm{fC} . \mathrm{A}$ rough value for the d.c. voltage output is given by the simple expression, $V_{d}=\hat{V}-$ $\mathrm{I}_{\text {d }} / 2 \mathrm{fC}$. (For a full-wave circuit, '4' appears in place of the ' $2 s$ '.) Although rough. these estimates give an idea of performance.

Straighten out your power - rectifiers and smoothing

Straightening out a.c. back to d.c. is a requirement in every power supply for the applications lam discussing. The rectification of single-phase sinusoidal sources by diodes is rather poorly carried out from the point of view of efficiency of conversion to d.c.: the efficiency of half-wave rectification, defined as the amount of the power in the load dissipated by the d.c. component, is only 40.6%. The rest is dissipated by the ripple current made up from remnants of the fundamental a.c. and its harmonics. The efficiency of single-phase full-wave rectification is better: 81.2% of the load power is now in the d.c. component. Because of this, you will hardly ever see half wave rectifiers in modern equipment.

If you rectify polyphase supplies, then as the number of phases increases, there is a large rise in efficiency of a.c. to d.c. conversion. That is why motorcar alternators are three-phase, full-wave rectified systems. For a three-phase, half-wave rectifier circuit, the efficiency of conversion is already 97%. For a fullwave rectifier circuit, it reaches 99.3% - without any smoothing! Your motor car battery is charged by virtually pure d.c. However, in the home there are not many of who would instal 440 volt three phase mains - just to save on smoothing capacitors in the hi-fi system! This means single-phase rectifier operation remains of interest, complete with the need for large smoothing or reservoir capacitors.

Eliminating the ripple

When the diodes have converted the a.c. line to pulsating d.c. the ripple component must be pre-

vented from reaching the load. Traditionally this was done with bypass capacitors (smoothers) and a series choke, but in modern, low-voltage semiconductor supplies, the choke has all but disappeared. Only a single, large reservoir capacitor is used to do the job. This component must pass a considerable ripple current, so an important parameter is how it handles this.
The analysis of how a capacitor input filter operates remains quite complex and many authors have made attempts to reach some kind of approximation to reality in their calculations. The first use of the terms 'cut-in' and 'cut-out' for the moments when the rectifiers switch on and off, appears to have been made in the paper by M.B. Stout ${ }^{1}$ who assumed that the diodes acted as perfect switches. By 1941 D.L. Waidelich ${ }^{2}$ was writing a rather complicated analysis where he distinguished between a hard vacuum valve and a mercury-vapour rectifier. The hard valve had a high 'on' resistance, R_{d} and the mercury-vapour tube dropped a fairly large constant forward voltage, V_{d}, but had negligible resistance. But the article that has become the 'source paper' on this topic was written in 1943 by O.H. Schade ${ }^{3}$. He developed a large number of design curves and these continue to appear in contemporary literature when smoothing filters are discussed. Thomas Roddam used some of Schade's curves in his 'Battery charging.,' article some time ago ${ }^{1}$.

Subsequently, textbook writers and students' course notes settled down to a standard simplified 'model' which assumed a sawtooth ripple and peak value charging, as in Fig. 1. This not very good approximation was used, for example in Samuel Seely's book ${ }^{5}$ after he outlined how a discussion of the full exponentially shaped discharge curve of the smoothing capacitor might be approached. Grey ${ }^{6}$ gives a detailed analysis including an 'exponential' treatment, but assumes a charge to the peak value, i.e no R_{d}. Parker 7 uses the
same approach, but shows (with practical example using 'valve'level voltages and typical component values) how the linear discharge assumption is a good approximation. His section on this is still worth reading, if you would like to follow how the assumption of a 'peak charging' circuit works.
I have not found that peak charging is necessarily the nom in high-current, low-voltage rectifiers with capacitor input filters. In practice, a peak current limiting resistor K_{l}, is often required to protect the diodes. This means that however large the reservoir capacitor, the circuit voltage does not reach charging peaks at the crest of the sine-wave input when supplying the rated load, as seen in Fig. 2. It will do so, however, off load and the capacitor must be rated for voltage working accordingly. The old 'sawtooth wave approximation' (Fig.1) fails to give the conduction time, peak value of the (narrow) diode current pulses, or the r.m.s. value of these currents. Some kind of analysis that does, would be very useful. It would enable the VA ratings of the transformer windings to be est imated. These depend on the r.m.s. value of the winding current. The ratings of the diodes could also be estimated, since they are dependent on the peak value \hat{I}, of the current pulses, as well as on the mean current I.the mean current is of course, the value of the d.c. output, I_{d}.
A search through the literature for the treatment of the 'nonpeak' clarging case, turned up an analysis by A. Lieders ${ }^{8}$. He assumed linear rises and falls of voltage during the capacitor charge and discharge periods. But as Parker had shown earlier, this assumption is alright for fairly well smoothed supplies. Yet Lieders' approach produced some terrible integrals - one requiring nearly two pages in an appendix to evaluate! His nomograms and graphs offered as design aids are
well up in quantity to Schades and the approach is daunting...

Developing a simpler model

As linear charge/discharge approximations had already been made by Lieders, et al., I considered there ought to be a more compact (simpler) approach that would still yield good design predictions. You might find the following treatment useful. It has been used to design a few low voltage supplies with considerable success and it helps explain some of the mystique in other articles on power supplies ${ }^{9} 10$
The symbols and geometry shown in Fig. 2 are drawn upon to build the model. From Fig. 2(a):
the d.c. output voltage,
$V_{\mathrm{dc}}=\frac{\mathrm{V}_{\mathrm{c} 1}+\mathrm{V}_{\mathrm{c} 2}}{2}=\hat{\mathrm{V}} \cos \frac{\pi \mathrm{T}_{\mathrm{c}}}{\mathrm{T}}$
the instantaneous a.c. voltage,
$v=V \cos \omega t=V \cos \frac{2 \pi t}{T}$
and the peak ripple voltage,
$\hat{v}_{\mathrm{r}}=\frac{\mathrm{V}_{\mathrm{c} 2}-\mathrm{V}_{\mathrm{c} 1}}{2}$
The meaning of the load resistance K_{1}, and the total series resistance in the rectifier path R_{i}, ($R_{i}=R_{s}+R_{d}+R_{t}$) is shown in Fig. 2(b).

The current pulse through the rectifiers and therefore through the transformer secondary winding, flows in the interval between cut-in and cut-out, and this is labelled $\boldsymbol{\tau}_{c}$ in Fig. 2(a). $\boldsymbol{\tau}_{c}$ is the conduction time. The current pulse is very nearly given by v V_{dc} acting across R_{t} during the conduction time interval. The d.c. current $i_{d d}$, is the average of these charging pulses over the period T / p, where p is 1 for halfwave rectification and 2 for fullwave circuits.
$I_{\text {tc }}=\frac{p}{T R_{i}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(v-V_{d r}\right) d t$
and by substituting from equs 1

$$
\begin{aligned}
& \text { and } 2: \\
& \mathrm{L}_{\mathrm{dc}}-\frac{\mathrm{p} \hat{\mathrm{~V}}}{\mathrm{TR}} \int_{\frac{\mathrm{T}}{2}}^{\frac{\pi}{2}}\left(\cos \frac{2 \pi \mathrm{t}}{\mathrm{~T}}-\cos \frac{\pi \tau_{\mathrm{c}}}{\mathrm{~T}}\right) \mathrm{dt}
\end{aligned}
$$

Carrying out this simple integration, you can see that:

$$
I_{d c}=\frac{p V}{\pi R_{i}}\left(\sin \frac{\pi \tau_{c}}{T}-\frac{\pi \tau_{c}}{T} \cos \frac{\pi \tau_{c}}{T}\right)
$$

But we have eqn. 1 again to enable substitution for \hat{V} :
$\mathrm{I}_{\mathrm{dc}}=\frac{\mathrm{p} V_{\mathrm{dc}}}{\pi \mathrm{R}}\left(\tan \frac{\pi \tau_{\mathrm{c}}}{\mathrm{T}}-\frac{\pi \tau_{\mathrm{c}}}{\mathrm{T}}\right)$
Finally, by Ohm's Law:
$\frac{I_{d c}}{V_{d c}}=\frac{1}{R_{L}}$

$$
\therefore \frac{\pi R_{\mathrm{L}}}{\mathrm{p} R_{\mathrm{L}}}=\tan \frac{\pi \tau_{\mathrm{c}}}{\mathrm{~T}}-\frac{\pi \tau_{\mathrm{c}}}{\mathrm{~T}}
$$

This is an interesting result. It gives the conduction time for half-wave ($\mathrm{p}=1$) or full-wave (p $=2$) rectifiers, in terms of R_{i} and R_{L}. Notice that the value of the smoothing capacitor doesn't appear. The approximation must therefore breakdown somewhere. The answer is; for a sufficiently large capacitor, the value of τ_{C} on a pocket calculator and moving into an accurate solution by trial and error. Figure 3 is a useful curve giving τ_{c} / T as a function of $R / p R$.
The constancy of τ_{c} (but not with load current, as that implies a changing R_{1}) does not mean that the ripple amplitude is constant. With changing capacitance, the linear charge/discharge curves 'tilt' at different angles on Fig. 2a. There is also a 'phase shift' in the current pulse - as the capacitor is made smaller, the pulse moves to an earlier part of the half cycle. Even at high tilts on the charge curve approximation, the current pulse during this time is very close to a sine wave cap. This 'cap' has a time width of τ of course. It also has a peak value of

Fig. 3. This curve is a plot of equation 4 in the text. It yeilds values of τ_{c} if the ratio of R_{i} to R_{1} is known.

Fig. 4. The r.m.s. currents in the transformer windings of (a) (half-wave), (b) (fullwave bridge), (c) (full-wave biphase) standard circuits can be calculated easily, using equations 9,10 and 11 .

i, and an r.m.s. value I.
Another derivation for the mean current $I_{d c}$, can be argued from this sinusoidal cap comprising the current pulse. By averaging it over the time period ${ }^{\mathrm{T}}$, we obtain:
$I_{d c}=\frac{\hat{I} p}{T} \int_{0}^{t} \sin \frac{\pi t}{\tau_{c}} d t=\frac{2 \hat{\imath}}{\pi} \frac{\tau_{c}}{T} p \ldots 5$
Or transposing for $\hat{\mathbf{I}}$:

Fig. 2. The voltage shown in (a) where the capacitor voltage ramps up and down in a charge period τ_{c}, and a discharge time of $T-\tau_{c}$, more nearly models the actual variations observed across the smoothing capacitor in a practical circuit.

(b)

(c)

Fig. 5. These oscillograms were taken with the circuuit conditions described in the text and in Table 1. The current waveforms especially show the degree of approximation assumed when taking the pulses in (c) and (d) as sine wave 'caps'.

Fig. 6. These results were taken exactly as in Fig. 5, but with a full-wave circuit.
$\mathrm{l}=\mathrm{I}_{\mathrm{dc}} \frac{\pi}{2 \mathrm{p}} \frac{\mathrm{T}}{\tau_{c}}$... 6
The root mean square value of the current pulses per diode, is found as usual by intergrating the square of the pulse values, averaging, and taking the square root:
$I=1 / \frac{1}{T} \int_{0} \sin ^{2} \frac{\pi t}{T} d t=1 \sqrt{\frac{\tau_{c}}{2 T}}$
... 7
(As this value is per diode, p doesnot come into the picture at this stage.) On substituting for I :
$I=\frac{I_{c c}}{p} \sqrt{\frac{\pi^{2}}{8} \cdot \frac{T}{\tau c}}$
This is the r.m.s. current in each diode arm, therefore we can find the r.m.s. currents in the transformer windings. For the circuits shown in Fig. 4:
a. half-wave:
$I_{(l \mid w)}=I_{d e} \sqrt{\frac{\pi^{2} \mathrm{~T}}{8 \tau_{\text {dhaw) }}}}$
b. full-wave bridge:

c. full-wave, centre-tap (biphase rectifier):

(per half winding)
Thē electrical engineers define a form factor for a repetitive

$k=\frac{1}{p} \sqrt{\frac{\pi^{2} T}{8 \tau_{c}}}$

Smoothing capacitor

As we have seen, as long as the capacitor is large, the peak current, conduction time and the r.m.s. quantities are all independent of the actual capacitor value. But the ripple amplitude across the load is strongly dependent upon it.
The capacitor has a fraction of the peridic time interval to discharge given by $(T / p)-\tau_{c}$

$$
\therefore\left(\frac{T}{\mathrm{p}}-\tau_{\mathrm{c}}\right) \mathrm{I}_{\mathrm{dc}}=2 \hat{\mathrm{~V}} \mathrm{C}
$$

where \hat{V}_{r} is thepeak ripple voltage.
For any sawtooth waveform, if \hat{V} is the peak value, then the r.m.s. value is given by $V_{r}=\frac{8}{3}$.
$C=\frac{\mathrm{I}_{\mathrm{tc}}\left(\frac{\mathrm{T}}{\mathrm{p}}-\mathrm{t}_{\mathrm{c}}\right)}{2 \sqrt{3 \cdot \mathrm{~V}_{\mathrm{r}}}}$
Therefore if you know the type of rectifier (p), the d.c. load current $\left(\mathrm{I}_{\mathrm{dc}}\right)$, the conduction time (τ_{c}), together with the maximum r.m.s. ripple voltage (V_{f}), the size of the required smoothing capacitor can be calculated.
You will come across a good deal of empirical comment regarding the smoothers required for this and that in power supplies. For example, E.J. Hatch ${ }^{9}$ stated in his article that he had 'seen the rule of thumb, use $2000 \mu \mathrm{~F}$ per amp of d.c. load - for a peak to peak ripple voltage of 3.5 volts'. How does this compare? Substituting 1 amp and 1.75 volts peak ripple into equation 13 with τ_{c} about 3 ms on 50 Hz mains ($\mathrm{T}=20 \mathrm{~ms}$) gives in a full-wave rectifier circuit:
$\mathrm{C}=\frac{1 \times(10-3) \times 10^{-3}}{2 \times 1.75}=2000 \mu \mathrm{~F}$
A good approximation to the required r.m.s. secondary voltage on the transformer can be found from equation 1 , taing account of the forward voltage
drop across n diodes in the rectifier arm. This gives:
$V_{\text {r.m. } \mathrm{s}}=\frac{\mathrm{V}_{\mathrm{dc}}+\mathrm{nV} V_{\mathrm{d}}}{\sqrt{2 \cos \pi \mathrm{cc} / \mathrm{T}}}$

How accurate?

No model is worth much if the results are so wide of the mark that 'guessing' say, could do better! One check on these results was to use Lieders' practical measurements and his calculations, to compare results. Lieders used a full-wave bridge circuit with the following values

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{i}}=19.7 \Omega \\
& \mathrm{R}_{\mathrm{L}}=497 \Omega \\
& \mathrm{C}=37.5 \mu \mathrm{~F}
\end{aligned}
$$

$$
\text { Diodes BAX } 13 \mathrm{~V}_{\mathrm{d}}=0.77 \mathrm{~V}
$$

$$
\mathrm{V}_{\mathrm{tc}}=10 \mathrm{~V} \text { on load, }
$$

$$
\mathrm{I}_{\mathrm{dc}}=\frac{\sqrt{\mathrm{dc}}}{197}=20.1 \mathrm{~mA}
$$

The measured and calculated values given by Lieders and the present results are:

measured	alculated	ts
$-26.7 \mathrm{~mA}$	26.3 mA	26.75 mA from 8
$-9.5 \mathrm{~V}$	9.65 V	9.5 V from 14
$\mathrm{r}=0.089$	0.086	0.084
$2 \alpha=68^{\circ}(1.187$	1.148 rad	1.096 rads via 4

 $2 \alpha=68^{\circ}(1.187 \mathrm{rad}) 1.148 \mathrm{rad} 1.096 \mathrm{rans}$ via 4 (r is the ripple factor, 2α is the conduction angle used
by Lieder and relaled by $\tau=\alpha \mathrm{T} / \pi$
These results appear to be in good agreement. Not to be outdone, a colleague suggested, "It might be a coincidence!" As a final check, measurements on half-wave and full-wave bridge rectifier circuits using one of the toroidal mains transformers mentioned in part 2, gave further experimental results.

Practical rectifier

The 'peak charging' condition was attempted in both circuits, by minimising R_{i}. Another set of results was obtained for the 'sawtooth' approximation, by using a relatively large R_{1}. Figure 5(a) and (b) shows the voltages obtained in the half-wave examples, while the current pulses through the
diode are shown in c and d . Figure 6(a) and (b,c) and (d) illustrate the corresponding results for the full-wave bridge circuit. The current pulse profiles can now be 'blown up' on squared paper, say, and the area under them calculated. This will give the mean current I_{dc}. The peak value \hat{I}, and 'on' time τ_{c}, can be read off the scales on the oscillograms. Squaring the ordinates yields data for the squared area value, and thus the r.m.s. current. Table 1 lists the various quantities I measured, together with the calculated values from the various formulae derived earlier. A reasonable result has been obtained

Whatever the detailed results of the calculations we all attempt using our various approximate 'models' of the rectifier-smoother situation, one or two important generalisations emerge. One is the fact that because of the peaky nature of the current pulses, the r.m.s. values are rather greater than the average, or d.c. levels. The transformer rating is based on the r.m.s. currents in its windings because the heating effect rests on that. Most power supply transformers must, therefore be

	HALF WAVE RECTIFIER				FULL WAVE RECTIFIER			
	LOW Ri		HIGHRi		LOW Ri_{i}		HIGH Ri	
Parameter	Meosured	Catr.	Measured	Colc.	Measured	Colc.	Measured	Calc.
$\frac{t_{c}}{T}$	0.15	0.17	0.245	0.25	0.16	0.138	0.2	0.2
t_{c}	3 ms	338 ms	4.9 ms	5 ms	$3 \cdot 2 \mathrm{~ms}$	2.75 ms	4015	4 ms
1	420 ma	489 mA	260 mA	25 mA	220 mA	2285 mA	150mA	153 mA
1 rns.	114.3 mA	1147 mA	1013 mA	972 mA	883 mA	84.7 mA	729 mA	694 mA
Vens.	$13-8 \mathrm{~V}$	13.2V	16.6 V	17.3 V	12.73 V	12.9 V	$16 \cdot 1 \mathrm{~V}$	14.7 V
C	110 N	95μ	110 j	1075μ	55μ	58μ	55μ	52μ
\hat{V}_{f}	3.5 V		3 V		25 V		2.25 V	
Ri	$6 \cap$		$24 \cap$		90		27』	
\hat{V}	19 V		24 V		18 V		20 V	

rated at a somewhat larger VA Table 1, for example the fullthan the output power would seem to predict. A discussion of this point was offered by E.J. Hatch ${ }^{9}$.
Taking just one example from the measurements reported in
wave, low R_{i} case

Power out $=\mathrm{i}_{\mathrm{dc}} \times \mathrm{V}_{\mathrm{dc}}=40 \times$ $10^{-3} \times 15=600 \mathrm{~mW}$
$\mathrm{VA}(\mathrm{sec})=\mathrm{i}_{\mathrm{r} \text {.m. } \mathrm{s}} \times \mathrm{V}_{\mathrm{r} \text {. } \mathrm{m} \text { s }}=$
 ... a ratio of $1: 1.8$

References

1. M. B. Stout, "Analysis of rectifer filter circuits," Trans. AIEE. Vol. 54, pp. 977 984, Sept. 1935
2 D.L. Waidelicl, "The full-wave voltage doubling rectifier circuit." Proc: IRE. Vol. 29, pp. 554-558. Oct 1941
30.H. Schade, "Analysis of rectifier opera tion," Proc. IRE, vol. 31, pp. 343-361. July 1943
2. Thomas Roddam, "Designing battery chargers," Wireless World, Dec. 1976, pp. 37-40
3. Samuel Scely, Electronic Engineering. McGraw Hill. 1956, Chapter 12.
4. T.S. Gray. Applied Electronics, M.I.T.
5. T.S. Gray. Applied Electronics,
Press, 2nd Edn. 1954, Ch. VI

7 Press, Parker, Electronics, Edward Arnold. 1950, Chapter 14
8. A. Lieders, "Single-phase rectifier circaits with CR filters," Electronic Components and Applications, Vol. 1, No. 3, pp. 153-163 (Part 1.) May 1979. Pan 2, Vol. 1. No. 4. pp. 216-230, Augusi 1979. 9. E.J, Hatch, 13.8 V Power units - an amateur's approach, Radio Communicatıons, Vol. 59, pp 590-595, July 1983
10. Voltage Kegulator Handbook, National Semiconductor, Section 8, 1982

This list supplements last month's computer-board article. Addresses of microprocessor manufacturers, most of whom produce computer boards for produce computer boards for evaluation and experimentation purposes, can be found in S.A. Money's Microprocessor Dat
Book published by Granada.

Aitek Microcomputers Ltd
22 Market Place
Wokingham
Berkshire RG11 1AP
Andelos Systems
Solina
Bucklebury Alley
Cold Ash
Newbury
Bershire RG18 9NN
Arcom Control Systems Ltd
Unit 8
Clifton Road
Cambridge CB1 4BW
(Dist. Dage)
CMS 44a Hobson Street
Cambridge CB1 1NL
Control Universal Ltd
Andersons Court
Newnham Road
Cambridge CB3 9EZ
Costgold Research Ltd
The Old School
Stretham
Cambs CB6 3LD
Country Computers Ltd
Pipers Road
1ark Farm Ind. Est.
Redditch B98 OHU
Crellon Microsystems (Motorola, Zilog)

380 Bath Road

Slough
Berkshire SL1 6JE
Ctronics
39 High Street
Cowbridge
South Glamorgan CF7 70E

Dage Eurosem
Rabans Lane
Aylesbury
Buckinghamshire HP19 3RG
Deephaven Ltd
9a High Street
Andover
Hampshire SP10 1LU
Deltak Electronics
Central High Street
Staplehurst
Kent TN12 0BH
Dicoll Electronics Ltd
Bond Close
Kingsland Estate
Basingstoke
Hampshire
Essex Electronics Centre (dist.
RCS)
Wivenhoe Park
Colchester
Essex CO4 3SQ
Flight Electronics
Flight House
Quayside Road
Bitterne Manor
Southampton
Hampshire SO2 4AD
Fulcrum (Europe) Ltd
Valley House
Purleigh
Essex CM3 8BH
Gemini Microcumputers Ltd
18 Woodside Road
Amersham
Bucks HP7 0BH
GNC Electonics
Little Lodge
Hopton Road
Theinetham
Diss
Norfolk IP22 1JN
IBS (Irvine Business Systems)
1 Montgomery Place
Irvine
Ayrshire KA12 8PN

Intel
MEDL Distribution (Marconi)
East Lane
Wembley
Middiesex HA9 7PP
L.J. Electronics Ltd

Francis Way
Bowthorpe Ind. Est
Norwich NR5 9JA
Macro Marketing Ltd.
Burnham Lane
Slough SL1 6LN
Measurement Systems Ltd
7B Faraday Road
Newbury
Berkshire RG13 2AD
Mercatek Marketing
Springmead House
Bradcutts Lane
Cookham Dean
Berkshire SL6 9AA
Microkey Ltd
88a St James's Street
Brighton
East Sussex BN2 1TP
Micronix Computers Ltd
1 Grangeway
London NW6
National Semiconductor, See
Macro Marketing
Pelco Electronics
London Road
Spring Gardens
Romford
Essex RM7 9LP
Pronto Electronic Systems Ltd
446-478 Cranbrook Road
Gants Hill
liford
Essex 1G2 6LE
Quant Systems
111 Thorpe Road
London E7 9DE

Rade Systems Ltd
Rade Systems L
209a High Road
London NW10 2EU
RCS Microsystems Ltd
141 Uxbridge Road
Hampton Hill
Middlesex TN12 1BL
Rockwell, see Pelco, RCS
SGS-ATES (UK) Ltd
Planier House
Walton Street
Aylesbury
Bucks HP21 7QJ
Sherwood Data Systems Ltd
Sherwood House
The Avenue
Farnham Common
Slough SL2 3JX
Slemens Ltd
Slemens House
Windmill Road
Sunbury-on-Thames
Middlesex TW16 7HS
Sirius Microtech Ltd
15 Alexandra Way
Ashehurch Ind. Est.
Tewkesbury GL20 8NB
Syntel Microsystems Ltd
Queens Mill Road
Huddersfield HD1 3PG
TDS (Triangle Digital
Services Ltd)
100a Wood Street
London E17 3HX
Thomson-CSF Components
Ringway House
Bell Road
Daneshill
Basingstoke
Hampshire
Veraspeed
Stanstead Road
Boyatt Wood
Eastleigh
Hants SO5 4ZY

IF YOU FIND SOLDERING ONTO BREADBOAROS

 A PAIN IN THE NECK.

 A PAIN IN THE NECK.}

YOU NEED TO SEE A SPECIALIST!

Global Specialties are the world leaders in the manufacture of solderless breadboards. Now the Global range is wider and more comprehensive than ever, and represents better value than ever. And remember - all Global breadboard sockets are unconditionally guaranteed for life. Just some of the high quality Global Breadboard range are:-

EXP 300

Offers unlimited expansion. Replaceable nickelsilver spring clip contacts. Combines quick-test socket and bus strip to provide modular breadboard. Ideal for all training applications.

UBS 100/UBS 500

UBS 100 offers 64 pairs of 5 common spring contacts, and 8 bus strips of 25 common contacts. 840 contact points in total. UBS 500 has all the same features and quality but is slightly smaller - 430 points in all. Its compact size makes the UBS 500 ideal for many locations, for example, rack mounted cards.

CDA 1
The Global CDA 1 represents an improved specification and lower price than OT59S/OT59B
Quick Test solderless socket strips, moulded from high quality flame retardant plastics. Unique moulded tab and keyway feature permits simple interlocking of several boards to make larger, more versatile arrays. Accepts virtually all modern active and passive components. already successful 203A. A complete modular package for the designer. CDA 1 accepts up to 2714 pin IC's. Fuse protected. Voltage is adjustable by a potentiometer in the side panel. Available completely assembled, or in kit form.

Telephone TODAY for new low prices! Telephone orders are accepted with major credit cards.
CIRCLE 19 FOR FURTHER DETAILS.

Shire Hill Industrial Estate, Saffron Waiden, Essex CB11 3AO. Telephone: $10799 \mid 21682$ Telex: 817477 GSC LTD

TO GLOBAL SPECIALTIES CORPORATION (UK) LTD. DEPT 7H
Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB 11 3AO.
Please send me further information on (TICK AS REQUIRED)
$\square \operatorname{Exp} 300$
\square UBS 100/UBS 500OT 595/59B
Name
\square CDA 1
Company address

Telephone

28

Sampled-data servos a new analysis

Sampled-data feedback control systems frequently a topic many engineers find difficult - are analysed in a new way, specially suitable for use with computers

The subject of sampled-data servos is one that many engineers find difficult, and this series is offered in the hope that these. difficulties will be lessened.

Sampled-data servos have been the subject of several textbooks over the past few decades, notably those by Ragazzini and Franklin, Kuo, Jury, and Franklin and Powell. This series therefore makes no claim to present new knowledge. What it sets out to do is to present existing knowledge in a new and simpler way; it is strongly computer-oriented, which has made it possible to avoid some of the complexities of the earlier presentations. Some of the features of this treatment are as follows:

- Instead of sampling with unit impulses, impulses of weight T (the sampling interval) are used. This simplifies many of the expressions by eliminating the factor T , but in particular it allows one to express simply in words the relationship between the gain of a network and the gain of the same network followed by a sampler (parts 4 and 5).
- For calculating the sampled gain of the continuous-signal portion of the servo loop, i.e. the portion from the hold circuit to the sampler at the plant output, an iterative procedure is used which avoids the use of z-transform tables. All time delays in the loop, whether in the sampler itself or in the sampled-data compensator are considered to lie in the continuous signal portion, and the procedure used allows them to be included without having to use modified z-transforms. - Modified z-transforms, and the alternative of multiple-rate sampling, are also avoided in calculating the plant stimulus and output between sampling inter-
vals. The calculation is done instead by straightforward application of the Laplace transform, using numerical integration in the complex-frequency plane.

As a background, the reader is assumed to be familiar with Fourier and Laplace transforms, and to have an elementary knowledge of z-transforms. Linear systems are assumed throughout, but they can have arbitrarily-high complexity.

Introduction to the series

Feedback control systems are an essential feature of animal and plant life. They have been used in engineering for at least two hundred years and are generally described today by the term 'servo-system' or simply 'servos'. Their objective is to keep the value of some variable in the system, representing perhaps the position or velocity of part of a mechanism, as close as possible to a reference value applied externally. In general, this reference value will vary with time.

The principle on which a servo works is shown in Fig. 1. The value of the variable being controlled, Y, is subtracted from the reference value R to produce an error signal V. This drives the system in such a sense that the error is reduced. Unfortunately the characteristics of most systems are such that if the error signal were used directly as the drive signal, instability would result. To avoid this, the error signal is first passed through a signal-processing network whose characteristics have to be carefully chosen. This network is generally known as the 'compensator', and the system being controlled, as the 'plant'.
In classical servos the various
signals, including in particular the error signal, are continuous functions of time. Therefore, provided that the plant itself is linear, the compensator can be designed using the established theory of linear systems. Many books have been written explaining the procedure, for example references 1 and 2 .
Today, however, there is increasing use of systems in which the error signal takes the form of a sampled-data signal; that is to say, its value is finite only at certain regularly-spaced instants of time called the sampling instants. At all other times it is zero. The difference between continuous and sampled-data signals is illustrated in Fig. 2.
There are two reasons for the development of sampled-data servos. One is that all but very simple compensators can be most cheaply built today as digital circuits, and these, by their very nature, handle signals in sam-pled-data form, i.e. as a succession of values. The other reason is that in some modern systems the error signal has to be a sam-pled-data signal because of the nature of the system.

By D.M. Taub

Since 1950, Mathew Taub has been continuous ly engaged in development work on digital electronics. After five years with Encsson Telephones L id now part of the Plessey (iroup), where he worked on electronic switching in telephone exchanges. he
l.eo Computers Ld now part of ICL). contributing to the development of the mercury delay-line store alld input/output section of the LEE 2 computer. He joined IBM I'K L.aboratories L.d in 1957 and is now a Senior
Technical Staff Member. Areas of work at IBM Technical Staff Member. Areas of work at iB. H
included magnetic core losic circuits, computer ancluded magnetic core logic circuits. comp
architecture. read-only and magnetic disc architecture. read-only and magnetic dise
storase, peripheral-device control using 1 . storage, sernpheraldevice for c.r.t displays.
techniques, and circtits for buring the past two sears he's been active on the working group developing Futurethus (1EEE P8 866) for use in high-performanne multimicroprocessor systems. He has 2 ? publications in joumals, a further 26 in the IBM Technical lisclosure Bulleting
and is named as inventor or co-inventor on 27 and is named as inventor or co-inventor on 27 degree from Cambridge I niversity in 1982 Previously, hed studied clectrical enginecring at University College, Nottingham, gaining the B.Sc. iEngh degree with Ferranti went on to carry out pescarch into noise phenomena in electron tubes at the Cambridge University Engineering Laboratory, for which he received the M.Sc. degree in 1950 .
le has served as joint honorary editor of the IEE Procerdings on Computers and Digital
Techniques $(1977-81)$ and is a Fellow of th IEF and the British Compuler Society, aud a Strior Member of the IEEE

Fig. 1. Essential features of a feedback control system or 'servo'.

Fig. 2. Comparison between continuous and sampled-data signals. The sampled-data signal is zero except at regu-larly-spaced discrete instants of time. (a) continuous signal, (b) sampled-data signal corresponding to (a).

Fig. 3. Low-density magneticdisc store in which one disc surface carries only servo information.

An example is the track-following servo in some recent magne-tic-disc stores. As the name implies, its purpose is to keep the

Fig. 4. In today's high-density disc stores servo information is interleaved with the data on every disc surface.

read/write head accurately centred over the desired track. In the stores being built up to a few years ago the track pitch was never less than about $250 \mu \mathrm{~m}$ and so one could use the scheme shown in Fig. 3. In this, one of the disc surfaces carries only servo information, and the signal from the corresponding head, the servo head, gives a measure of how far it is displaced from the centre of its assigned track. The heads are rigidly joined to one another, and so as long as the servo head is correctly positioned, one can take it that the data heads are correctly positioned as well.
The trend today, however, is to use much smaller values of track pitch, $60 \mu \mathrm{~m}$ or less, and it becomes difficult to avoid movement of the data heads relative to the servo head caused by vibration and differential thermal expansion. The way out of the difficulty is to combine servo information and data on the same track, and there are two ways of doing so. One, which has so far been used only experimentally, is to use frequency-division multiplexing: the servo information is confined to low frequencies and is separated from the data by means of frequency-selective filters 3,4.
The alternative is to use spacedivision multiplexing as shown in Fig. 4. Here each disc surface consists of a number of sectors for storing the data, and between data sectors there are narrow sectors containing servo information. As the disc rotates, the data sectors and servo sectors pass under the head alternately, and the servo information is extracted by straiglttforward strobing. The signal indicating the error in the head position thus exists only during the short intervals when the head is over the servo sectors; nowhere does it exist as a contin-
uous signal
The purpose of this series is to present the mathematics of sam-pled-data servos and show how their performance can be computed. Part 2 describes the sampling process and explains the phenomenon of 'aliasing'. Part 3 considers the reverse process, i.e. converting a signal back from sampled-data form to a continuous function of time. In part 4 the servo loop is examined in some detail; its response to a sinusoidal input is calculated and stability margins are determined. Following this, part 5 shows how to find the various signals in the loop for any arbitrary input. First, the various sampled-data signals are considered, and then
the signals which are continuous functions of time. Examples are included at appropriate points. The mathematical methods developed are embodied in a set of programs presented in a companion paper ${ }^{9}$.
To understand part 2, the only background needed is an understanding of Fourier series. Part 3 requires some familiarity with Laplace transforms, and part 4 brings in z-transforms, but only in a very elementary way. Both these transforms are used again in part 5 . The necessary material is covered in many textbooks, but specially recommended is reference 5 , in which the relevant material is to be found in chapters $2,3,4,8$ and 9 .

REFERENCES

1. J.J. Distefano, A. R. Stubberud and I.J. Willians; Feedback and Control Systems (Schaum's Outline Series, McGraw-Hill. New York, 1976).
2. M. Healey. 'Principles of automatic control', (Hodder and Stoughton, London 1975).
3. M.K. Haynes. 'Magnetic recording tech niques for buried servos'. IEEE Transac tions on Magnetics, Vol. Mag 17, 1981 pp 2730-4.
4. N.H. Hansen. 'Head-positioning system using buried servo', ibid pp 2735-8.
5. P.A. Lynn. 'Introduction to the analysis and processing of signals' (Macmilian, London. 1973).

List of principal symbols

$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ points in the servo loop at which signals are continuous functions of time (Fig. 21)
$\mathrm{A}(\mathrm{s})$ to signals at points $\mathrm{A}, \mathrm{B}, \mathrm{C}$
$\mathrm{D}(\mathrm{s}) \quad$ and D respectively as functions of complex frequency
$a(t)$ to - ditto - as functions of $d(t) \quad$ time
$\mathrm{f}_{\mathrm{s}} \quad$ sampling frequency
H gain; subscripts indicate points between which the gain applies
j $\quad \sqrt{-1}$
$\mathrm{K} \quad$ multiplication constant in expressions where gain is expressed in terms of poles and zeros
$k \quad$ integer
$L \quad H_{X Y}(j \omega) \sum_{k=0}^{m} \zeta_{k} \mathrm{e}^{j k T \omega}$
m integer; also highest power in general polynominal expressions
M highest power of z in numerator and denominator polynomials of $\mathrm{H}_{\mathrm{UY}}(\mathrm{z})$ sample number
$p(t) \quad$ sampling waveform
s complex frequency
6. B.C. Kuo. Analysis and synthesis of sampled-data control systems' (PrenticeHall. Englewood Cliffs, NJ, 1963)
7. A.M. Tropper. 'Matrix theory for electrical engineering students' (Harrap, London, 1962).
8. S. Goldman. () Transformation calculus and eiectrical transients. (Prentice-Hall, New York, 1949).
9. D.M. Taub. ()'Programs for computing sampled-data servo performance' IBM Technical Report no.12.199. (IBM United Kingdom Laboratories. Hursley, May 1982).

T	sampling interval
	time
U,V,X,Y	points in the servo loop carrying sampled-data signals (Fig. 21)
$\mathrm{U}(\mathrm{z})$ to	2 -transforms of signals at
$\mathrm{Y}(\mathrm{z})$	$\mathrm{U}, \mathrm{V}, \mathrm{X}$ and Y
$\begin{aligned} & \mathrm{u}(\mathrm{n}) \text { to } \\ & \mathrm{y}(\mathrm{n}) \end{aligned}$	sample values at $\mathrm{U}, \mathrm{V}, \mathrm{X}$ and Y
2	$\mathrm{e}^{\text {Ts }}$
α	hold-circuit proportionality
β_{k}	coefficient of z^{k} in numera
	tor polynomial of $\mathrm{H}_{\mathrm{vx}}\left(z^{\prime}\right)$
γ_{k}	coefficient of z^{k} in denom
$\delta(\mathrm{t}$	inator polynomial of $\mathrm{H}_{\mathrm{VX}}(z)$ Dirac function
$\Delta \tau$	time delay between
	B (Fig. 21)
ζ	coefficient of z^{k} in numerator polynomial of $\mathrm{H}_{\mathrm{UY}}(\mathrm{z})$
η_{k}	coefficient of z^{k} in denominator polynomial of $\mathrm{H}_{\mathrm{UY}}(z)$
λ_{1}, λ_{2},	zeros of $\mathrm{H}_{\text {xD }}$ (s)
μ_{1}, μ_{2}, \ldots	poles of H_{xD} (s)
	coefficient of z^{k} in numerator polynomial of $\mathrm{H}(z)$
ξ	coefficient of z^{k} in denominator polynomial of $\mathrm{H}_{\mathrm{xy}}(2)$
$\psi_{1} \cdot \psi_{2}$,	poles of $\mathrm{H}_{\mathbf{X Y}}(z)$
	angular frequency
φ	phase angle

Improving colour televisiondecoding
 Guidance through the series, with some useful addresses.

A series of articles which started in December 1983 and ended in July 1984 investigated many of the problems associated with PAL decoding. The eight articles particularly contained many illustratiors - a total of 102 drawings and photographs - which detailed suggested solutions to these problems. The series was, in effect, a fairly comprehensive survey of the subject, but judging from reader's response, some found the wide range of treat ment confusing; the perspective of the various explanations was not fully appreciated. So to help pinpoint the many aspects covered, the following digest is offered

The first article (WW Dec. 1983) explained the basics of the PAL coding system, considering how the luminance and chromin ance components are spectrally interleaved. Methods of separating these components by comb filter were discussed and Fig. 11 on page 77 illustrated the principle of sum-and-difference filtering using the input and output of a delay (a form of transverse filter). The article described how the frequency spacing of the comb filter 'reeth' was determind by the delay value and gave examples of typical spacings ranging from $64 \mu \mathrm{~s}(15.625 \mathrm{kHz})$ for a 1-line delay up 1040 ms (25 Hz) for a two-field delay, i.e. picture store. Further explanation showed that, although this closer frequency spacing (of comb teeth) resulted in virtually perfect component separation, the temporal element of (moving) television pictures precludes the use of this degree of selection.

Part 2, in the January 1984 WW issue, explained the operation of the PAL modifier circuit, showing how the chrominance coding in adjacent (television) lines can be V axis switched so that lines can be electrically subtracted on to give chrominance cancellation and luminance enhancement. The description mentioned how this was a particularly suitable method for domestic television receivers whicl operate with only one (tv) line delay ($64 \mu \mathrm{~s}$).

The distortions caused by the use of shadow-mask colour display
tubes were discussed in Part 3 (February issue). This type of component was investigated and its particular form of operation analysed. The conclusion reached was that 25 in (standard receiver) tubes or small, high-resolution tubes were those most suitable for deriving benefits from the application of the extended-PAL decoding techniques explained in the preceeding two articles. With other types, the improvement to be gained from the modification would be limited such that, for example dot crawl on the display would be eliminated from vertical chroma transients but there would not be any evident increase of high-frequency luminance.

Part 4 of the series (March issue) described in detail the hardware required to realise the modifier and 1 -line-delay circuits previously outlined and included typical waveforms illustrating the operation of these circuits. Some reservations as to the possible improvements to be derived were given. In particular, this section explained that any improvement had to be paid for by the need for better aerial provision, for better RGB drive amplifier performance (specifically, this was needed to reduce the visibility of slew-rate distortion) and the acceptance of an apparent increase in noise interference.

Two modern domestic receivers the Ferguson/Thorn TX10 and the Phillips/Mullard circuits were reviewed in Part 5 (May issue) with particular consideration given to the perfonnance of those circuit elements most affected by application of the modifying techniques, and to how the altenative circuitry could noticeably improve on that performance.

Part 6 dealt with the operation of the comb-filter board in some detail. The amplitude and groupdelay responses as well as the 'pulse-and-step' performance figures were compared with the same characteristic of the passive filters in the TX10 and Phillips receivers. This was done to show the degree of improvement which could be obtained from the modifications.

In the final article (Part 7, July
1984), additional help is offered to prospective builders of the combfilter circuit by way of further description, parts list, location diagrams, photographs etc. One further point to be mentioned in respect of the picture improvement which may be gained from the modifications is that, when viewing good quality pictures, the sharpness and general 'cleanliness' (absence of luminance 'ringing' and chroma dot crawl) is particularly pleasing. But the observable fact is this improvement might be questioned when inspecting a Test Card F display because visible disturbances in the region of the $4,4.5$ and 5.25 MHz gratings show the very effects which the modifications are intended to overcome. This occurs because the high-band luminance passing through the PAL modifier produces aliasing and cross-colour components generated by the aldition of the chrominance luminance. Also, with a test-card input, the adaptive notch will be operated thus removing luminance in the fre quency range sampled by the 4.5 MHz grating - and will leave only the spurious colour from the U and V channels. The immediate reaction to such a display is that the modifications seem to have produced very little improvement in performance. However, the testcard display is, in this instance, giving a false impression. With real pictures (i.e. television programmes), the chance of considerable luminance detail occuring at exactly 4.5 MHz is statistically rare; the transients which would provide such picture detail would, in any event, contain only a small amount of energy and would not be sufficient to trigger the adaptive notch. Thus, although aliasing components from the modifier can sometimes produce some business around picture-edge detail, this would only be detected on close inspection and would not be visible at normal viewing distances. A / B comparison of the notch and comb decoder would indicate that with good signals, noise level low etc., the comb gives picture improvement especially on large screen and high resolution monitors.

Two corrections: on page 41 July issue the 500 ms in the left column should be 500 ns for the chroma. The top left figures on page 38 of the July issue is Fig.60. This is the correct figure for page 58 of the June issue.

Some extra useful addresses: STP Video Ltd (for high-grade receiver IF/tuner)
Unit 1, Heybridge Industrial Estate Holloway Road
Heybridge
Maldon
Essex CM9 7XS (Tel. 0621
54633)
'Television’ Readers PCBs Services Ltd (for the board shown in Fig. 91) Fleet House
Welbeck Street
Whitwell
Worksop
Notts
(Quote ref. D077 at $\$ 9.50$.
Includes P\&P and VAT) or
Manor Supplies (address shown in July issue page 40) for a small board only housing the
TDA3561A and its components.
M.Sagin (for the comb filter board, shown on the cover July, Fig. 34. 36 circuit)
Nancarras Mill
Constantine
Falmouth (Tel. 0326 40687)
76007)

What the competition hasn't been waiting for:
 Latest version of Forth for the BBC (Is not rehashed Forth 79 Code)

Here's the Forth Eprom for the BBC Micro that makes all others out of date

It's Multi-Forth 83 from David Husband who has built his reputation for Quality Forth products with his ZX81-Forth ROM, Spectrum Forth-1/O Cartridge and now New Multi-Forth 83 for the BBC Micro. This is not rehashed Forth 79 Code, but a completely new version of the Forth 83 Standard. It's unique in that it Multi-tasks, and therefore the user can have a number of Forth programs executing simultaneously and transparently of each other

Multi-Forth 83 sits in the sideways ROM area of the BBC along with any other ROMs in use. It is compatible with the MOS, and specially vectored to enable a system to be reconfigured. It contains a Standard 6502 Assembler, a Standard Screen Editor, and a Unique Stack Display Utility.

With this Forth, David Husband has provided the BBC Micro with capabilities never before realised. And being 16 K rather than 8 K is twice the size of other versions. Multi-Forth 83 is supplied with an
extensive Manual (170 pages plus) and at $£ 45+$ VAT it is superb value. Order it using the coupon adding $£ 3.45$ p\&p ($£ 6$ for Europe, $£ 12$ outside) or if you want more information, tick that box instead. Either way, it will put you one step ahead of the competition.

Neptune I robot kit firc. power supply	E1250.00	ADC optron [comporenens in to man control board)	E95.00
Neptune 1 contro leectronis iready bunt\|	E295.00	Hydravic power pack \|reaty assembled)	¢435.00
Neptune i smulator	\$45.00	Gripper sensor	637.50
Nepture 2 rooot krti\|nk power supply	E1725.00	Optional extra three tingered grpper BEC connector lead	E75.00
Nepture 2 conirol tectronks ireacy buile)	\$475.00	Commudore VIC 20 connector lead and plug-in board	£14.50
Neptune 2 smmular	£52.00	Sinclar PX Spectrum connector lead	£15.00

mentor
 desk-top robot

robot has 6 axes of movement, simultaneousty and its rugged congsiruction makes it ideal ior

CIRCLE 22 FOR FURTHER DETAILS.
CIRCLE 64 FOR FURTHER DETAILS
ELECTRONICS \& WIRELESS WORLD FEBRUARY 1985

Intelligent eprom programmer

These software notes are a guide for developing programming routines for eproms and single-chip microprocessors outside the current range.

Since the first article* I have improved the soft ware so that it is now possible to produce a printed listing of $8741 / 8$ and 8749 devices. Also, if the LIST key is pressed when no printer is connected, the programmer ignores the command. This eliminates the risk of the system freezing while high voltage is applied to an eprom in the slave socket.

Setting up for the high voltages is now slightly different. During adjustment of these voltages, a link should be fitted between pin 20 of the $25-$ pin D connector and pin 17 of IC_{7}. This convinces the programmer that a printer is connected and it switches on the high-voltage supply.

When setting and checking the slave socket $V_{\text {cc }}$ supply to 6 V , make sure that the ends of the wires of the 120Ω resistor fitted between pins 14 and 28 of the slave socket do not foul adjacent pins in the zif socket. Before taking any measurements, select 2764 and execute a PROG operation. There is no insulation between pin sockets within the zif socket body. For this reason the high-voltage supplies must be tested and calibrated as described with the 680Ω resistor connected across C_{7}.
Software controlling the programmer has been kept as general purpose as possible. Special software techniques are used to select device-specific routines for operations such as setting up the programmer, getting a byte from the master device and pro-
*The main eprom programmer circuit was detailed in last November's issue, pp. 43 46, and its power supply, an adaptor for programming single-chip microcomputers and 8048 charactoristics in the ilecember issue, pp. 51-55.
gramming a byte in the slave device. Table 1 lists commands which the computer can give to the programmer and Fig. 1 charts the general-purpose algorithm used for all commands. During the algorithm the command, stored in register R2, is interrogated to see which sections should be skipped and which executed. Remaining flow diagrams illustrate the controlling program structure.

Device-specific routines

Within the programmer's operations some sections are specific to individual devices and others relate to groups of devices such as single-chip microcomputers. The key to selecting these functions within the overall structure of a device-independent algorithm is the content of register R3, the register pointing to the currently indicated device or baud setting.
In setting up initial conditions for the programmer once a device has been selected, the value in R3 is used as a pointer to one of a series of of consecutive threebyte entries at the beginning of the program-eprom data page, page three. The first of these three bytes, the number of pages to be programmed, is transferred to register R 5 and used as an end-of-operation marker against the current address every time that address is incremented in the INCADD routine.
The remaining two bytes form 16 bits for sending to the four ports of EXP0 to set up $V_{p p}, V_{c i}$, the relay-selectable pins and control pins on both master and slave devices. Content of R3 is also

Table 1. Commands and device-selection codes for a computer to the programmer.

Code	Commarid	Device
0	LIST	2716
1	SUMCHK	2732
2	FEAD M	2732 A
3	FEAD	2764
4	COFY	2769 A
5	FROG S	27128
6	-	27128 A
7	-	27256
8	-	27512
10	-	$8741 / 8$
11	-	$8742 / 9$
-		
Note: M represents master, S, slave.		

interrogated during setting up to see if extra initialization is required for pins associated with putting 8048 devices in program mode.

The general-purpose nature of register-conditional program execution is illustrated when it is time to program a device. Relevant extracts from the program source code are shown in List 1. Prior to programming, the master byte stored in register R7 is added to the master check sum referenced as SC1. After programming, the result is expected to be in R6 ready to be added to the slave check sum SC2 and possibly to be compared with the content of register R 7 to establish whether or not programming was successful.

To execute the programming operation, a call is made to PROG. In this routine, the content of device-pointer register R3 is offset by the base address of a table of data bytes beginning at location PROGTAB in the same eprom page as the PROG routine. This A register will now contain a value equal to the lower eight bits of the eprom address PRGTAB plus a number in the range 0 to 11.

Operation JMPP @A is a single instruction It gets the byte from the PRGTAB table pointed to by the contents of the A register and uses it as the lower eight bits of the next instruction to be executed. In register terms, the instruction puts the byte extracted from the table into the

Mainso:	MOV	A, R7	
	MOV	Ro, \#SCl	
	CALL	SUMCHK.	;add to SC1
	CALL	FROG	; else possible prog, definite verify
	MOV	A, Fi	; slave byte to R6
	MOV	Ro, \#SC2	;add to SC2
	Call	SUMCHK	
-			
.			
.			
PROG:	MOV	A, \#LOW Prgtae	
	ADD	A, R3	
	JMFP	Ə ${ }^{\text {A }}$	
PRGTAE:			
	DE	LOW J2716	
	DE	LOW J2732	
	DB	LOW J2732	
	DE	LOW J2764	
	DB	LOW 32764	
	DE	LOw J27128	
	D8	LOW J27128	
	DE	LOW J27256	
	DB	LOW J27512	
	DE	LOW J27512	
	DE	LOW J8748	
	DB	LOW 38748	List 1. Extracts from the
j ${ }^{\text {2716: }}$	JMP	P2716	eprom programmer source
J2732:	JMF	P2732	code to illustrate the general-
J2764:	JMP	F2764	purpose nature of register-
J27128:	JMF	P2764	conditional program
J27256:	JMP	F27256	execution.
J27512:	JMP	P27512	
J8748:	JMP	P8748	

lower eight bits of the program counter.
Now the 12 bytes in the PRGTAB table are each the lower eight bits of eprom address locations holding the starts of several jump instructions within the current page. One can see that the content of register R 3 has been used to direct execution to the jump instruction selected by register R3 and thus on to the particular routine for the device to be programmed.

As the level of execution is already within a subroutine, each jumped-to routine needs only end with a return instruction, RET, to pass control back to the original calling program. There are 12 bytes defined in the PRGTAB table, each related to one of the twelve possible devices and thus twelve possible R3 register values, but there are only seven JMP instructions. This is because
for several devices, e.g. 2732/ 32A, 2764/64A and 27128/ 128 A , only the initial conditions vary and so the same programming algorithm may be used more than once.
Obtaining a byte from the master device during listing, copying or device reading is carried out in the same way. There are only two jumps, one representing a routine for all ordinary eproms and one returning the content of the 8048 device in the adaptor as though it were a master device (i.e. in register R7), even though it is in the slave socket. Note that this will not affect copy operations attempted on 8048 i.cs, nor will printer data rates cause erroneous JMPP executions as register R3 is strictly qualified during early sections of the main program to filter out illegal operations.

Table of device details

This table contains threebyte entries detailing each device. The first byte is the page count (zero means 256 pages) and the other two are set-up conditions of $\mathrm{P}_{4.7}$ on the expander. For $874 x$ devices. $A_{12.15}$ control RESET, $V_{d d}$, EA and T0 respectively; slave line S20 controls the PROG signal and S22 supplies V_{pp}. In these devices, a low on the control line activates the high-voltage supply.

Programmer specification

Eprom types programmed 2716, 2732, 2732A, 2764, $2764 \mathrm{~A}, 27128,27128 \mathrm{~A}, 27256$ $27512,8741,8748,8749,8742$

Modes

Computer peripheral
Programmer-control functions and eprom data i/o through 9600 baud serial link. Eprom reading, copying and programming under computer control. Disc-file to eprom and vice versa, sum-check master or slave and copy master to slave using SC84 software. Manual controls are inhibited.

Stand alone
Manual controls verified by sounder for eprom copying, erasure verification and sending contents of eprom to a serial printer, etc, in formatted hexadecimal and ascii form at one of four data rates.

Interface

RS232C bidirectional with hardware handshake.
Eight-bit data, l.s.b. first, no parity, two stop bits send. one or two stop bits receive.

Printer data rates
$9600,2400,1200$ and 300 baud.

Controls

Four push controls,

PROG - programs selected master to slave eprom
LIST -- lists master eprom via RS232 port
UP - increment selection pointer
DOWN - decrement selection pointer

Processor

8048 microprocessor with i/o extenders controls above functions and uses 'intelligent' programming algorithms where applicable to reduce programming time by at least 75%.

Notes: (1) $A_{12,15}$ are pins 2, 26. 27 and 1 respectively. (2) $A_{12,15}$ irrelevant. (3) Highvoltages on. Lagical low and high are represented by L and H .

CIRCLE 63 FOR FURTHER DETAILS.

CIRCLE 45 FOR FURTHER DETAILS.

FIBRE-OPTICS EDUCATOR

A New Concept in Optical Equipment

The Fibre-Optics Educator is a low-cost, versatile instrument designed primarily for organisations involved in or about to enter the field of fibre-optics. It can function as:
TEST EQUIPMENT e.g. for accurate fibre attenuation measurements to a range of 50 dB , optical level measurements, and for testing out analogue and digital optical transmitters and receivers. Also, it may be set to give an audible indication of low level infra-red radiation using the analogue loudspeaker output or the digital buzzer output, with a length of optical cable acting as a probe. TRANSMISSION EQUIPMENT for both analogue and digital data, over free-space as well as optical fibres. It is also ideal for:
TRAINING engineers, technicians and executives in the growing field of fibre-optics. Suitable for industry, colleges and technology training cenfres.
The Fibre-Optics Educator comprises fully portable optical transmitter and receiver units, optical cables, together with numerous accessories, a comprehensive manual, and carrying case.

> Designed and Manufactured in the U.K.

For turther details contact:
For further details contact
ELLMAX Electronics Ltd.
Unit 29, Leyton Business Centre
Etloe Road, Leyton, London, E10 7BT
Etloe Road, Leyton,
ELLMAX
ELECTRONICS
CIRCLE 33 FOR FURTHER DETAILS.

TELESCOPIC MASTS

Pneumatically operated t Elesccpic masts. 25 Standard models. -anging from 5 metres to 30 metres.

NEW DISCO ELECTRONIC CENTRE
U.K. and EXPORT RETURN OF POST MAIL ORDER

RCS STEREO PRE-AMP KIT. Inputs for high, medium or low imp volume control and PC Board Can be
ganged for multi-channel $\mathbf{E} 3.50$

decca teak veneerned plinth

uperior finish with space and panel for small
amplifier and most record decks. $\times 14 \mathrm{in} . \times 4 \mathrm{in} . £ 5$
Board cut for BSR or Garrard $18 \geq$ in $\times 1$.
Bost $£ 1$
TINTED PLASTIC COVERS for Decks, Music Centres, $\begin{aligned} & \text { £5 each. Post } £ 1 . \\ & 17 i \times 13 t \times 3 \mathrm{iin} .\end{aligned} \quad 23 i \times 14 \times 3 \mathrm{in} . \quad 14 i \times 13 i \times 2 \mathrm{in}$.

THE "INSTANT" BULK TAPE ERASER £11.50 Post 95p
Hand-held. Compact unit.
Suitable for cassettes and all
Suitable tor cassettes and all
sizes of tape reels. AC 240 V . Will also demagnetise tools.

PROJECT CASES
Black vinyl covered top and sides
 ALUMINIUM PANELS. 6×455 p; $8 \times 690 \mathrm{p} ; 14 \times 3$ $0 p ; 10 \times 7 \mathrm{f} 1.15 ; 12 \times 8 £ 1.30 ; 16 \times 6 £ .30 ; 14 \times 9$

 $\times 4 \times 4 £ 3 ; 6 \times 4 \times 3 £ 2.20 ; 4 \times 4 \times 2 \ddagger$ £ 1.6
POTENTIOMETERS 5k/2meg LOG or LIN. L/S 50p.
DP 90 p . Stereo L/S $£ 1.10$. DP $£ 1.30$. OP 90 p . Stereo L/S $£ 1.10$. DP $£ 1.30$
Edge Pot 5K. SP 4Sp.
DELUXE STEREO DISCO MIXER/EQUALISER as above but L.E.D. V.U. displays 5 band graphic
equaliser left/right fader, switchable inputs for equaliser, lef//right fader, switchable inputs
phone/line, mike/line. Recording Output.
$£ 124$

ELECTRONIC REVERB UNIT inputs for MIC + LINE All slide controls $9 v$ Battery operated $£ 34$ Post $£ 1$.

ELECTRONIC ECHO UNIT Digital Analogue: No tape or moving parts. Suitable mike or musical

BATTERY ELIMINATOR Mains to 9 volt D.C. 400 MA .
Stabilised, safety cutout, $5 \times 33_{4}^{3} \times 2_{2}^{1} \times$ in. $\mathbf{f 5}$. Post $\mathbf{f 1}$.

RADIO COMPONENT SPECIALISTS		
Dept 1, 337, WHITEHORSE ROAD, CROYDON		
ACCESS	SURREY, U.K. TEL: 01-684 1665 Post 65p Minimum. Callers Welcome Full Lists 34p. Same day despatch. Closed Wed.	VISA

CIRCLE 7 FOR FURTHER DETAILS.

PA. 150 Watt MICROPHONE VOCAL and GROUP AMP LIFIER £ 129
channel mixing, 8 inputs. dual impedance, $50 \mathrm{~K}-600$ each channel. Master volume control. echo send return socket. Slave sockets. Post $£ 3$. iscotheque, Vocal, Public Address. Speaker outlet for 4,8 or 16 ohms. Four inputs, $20 \mathrm{mv}, 50 \mathrm{Kohm}$.
Individual volume controls "Four channel" mixing. Slave output $16^{\circ} \times 8^{\circ} \times 5 \*. Wt -141 lb : Master volume 100 Volt Line Model. 150 wat ${ }^{240 \mathrm{~V}}$. 100 Volt Line Model. 150 watt $£ 114$ Baker Stereo Slave $150+150$ watt per channel (300 watt Mono) Heavy Duty Model £125. Post £4. BAKER MOBILE PA AMPLIFIER. All transistor, 60 watt RMS, 12 v DC \& 240 v AC, 4 inputs 50 k Aux +2 4 mics +15 phono +100 volt line. Outpul $f 89$ post PA systems - mplifier, mike + two spkrs Cair Mobile $60 \mathrm{w}, 240 \mathrm{VAC}+$ battery 12 V
Mkll $150 \mathrm{w}, 240 \mathrm{~V}$ AC, complete
$£ 249$
$£ 20$ WATERPROOF HORNS 8 ohms, 25 watt 10 in . $\mathbf{£ 2 2}$. watt $8 \times 4,4 \mathrm{in}$. $£ 23.40$ watt 12 in. $£ 29.20$ watts 12 in plus 100 volt line $\mathbf{\text { E38. Post }}$ £2.
BAKER PORTABLE DISCO 150 watt. Twin console + amplifier + mike and headphones + twin speake

PACABINET SPEAKERS. Complete. 8 ohm 60 watt $10 \times 15 \times 9$ in. $£ 52.90$ watt $32 \times 15 \times 11$ in. $£ 73$. 150 watt 882. Carr. £10 Black vinyl covered with handles Electret Microphone $\mathbf{£ 2 0 F}$ loor Stand $£ 12.50$ pp $£ 2$ MAINS TRANSFORMERS

MAINS TRANSFORMERS	Post
-50-0-250v 80 mA 63 V 354.	£7.00 £2
$350-0.350 \mathrm{~V} 250 \mathrm{~mA}$. 6.3 V 6 A	£12.00
220 V 25 ma 6 V lamp	£3.00 E1
220 V 45 ma 6 V 2 Amp	£4.00 £1
250 V 60 mA 6V 2A	¢5.0

Step-Down 240 V to 115 V 150 W £9. $250 \mathrm{~W} £ 12$.
TRANSFORMERS LOW VOLTAGE

2 am $5-8 \mathrm{~B}$ 6 V.

LOW VOLTAGE ELECTROLYTICS
500 mF 12 V 15 p : $25 \mathrm{~V} 20 \mathrm{p} ; 63 \mathrm{~V} 40 \mathrm{p}$. 1200 mF 76 V 80 P $1000 \mathrm{mF} 12 \mathrm{~V} 20 \mathrm{p}: 25 \mathrm{~V} 35 \mathrm{p}: 50 \mathrm{~V} 50 \mathrm{p} ; 100 \mathrm{~V} 51.20$.
 $1500 \mathrm{mF} 100 \mathrm{~V} £ 1.20 .2200 / 63 \mathrm{~V} £ 1.30$
$2500 \mathrm{mF} 50 \mathrm{~V} 70 \mathrm{p} .3000 \mathrm{mF} 50 \mathrm{~V} 65 \mathrm{p} ; 4700 \mathrm{mF} 40 \mathrm{~V} £ 1$. CAPACITORS WIRE END High Voltage.
$1.001, .002, .003, .005, .01,02, .03, .05 \mathrm{mfd} 400 \mathrm{~V} 10 \mathrm{p}$. .22 MF 350 V 12 p .600 V 20 p .1000 V 30 p .1750 V 60 p.
.47 MF 150 V 10 p .400 V 25 p .630 V 30 p .1000 V 60 p HIGH VOLTAGE ELECTROLYTICS

L8.50 post 50p MINI-MULTI TESTER ranges measure: DC volts 5, 25, 250 0.250 ua: DC 0.250 ma . DC Resistance 0 to 600 K ohms. De-Luxe Range Doubler Meter 50,000 o.p.w. $7 \times 5 \times 2 \mathrm{in}$. Resistanc 20 meg in 5 ranges. Current $50 \mu \mathrm{~A}$ to
10 A
$10 \mathrm{~V} / 1000 \mathrm{Volfs} \mathrm{AC}$
$0.25 / 1000 \mathrm{DC}$

PANEL METERS $50 \mu \mathrm{a}, 100 \mu \mathrm{a}, 500 \mu \mathrm{a}, 1 \mathrm{ma}, 5 \mathrm{ma}$, $\mathrm{VU} 59 \times 53 \times 34 \mathrm{~mm}$. Stereo VU $82 \times 41 \times 25 \mathrm{~mm} \mathbf{~} \mathbf{5} .00$ RCS SOUND TO LIGHT CONTROLLER KIT $£ 19$ printed circuit, Cabinet. 3 channels. 1,000 watts each Will operate hom 4 Channelo. 1000 watt whe + speed + programme controls. $\mathbf{6 9}$. Post $£ 2$. New Model Mkll with special 16 programmes: channel 4,000 watt $£ 89$ post $£ 2$ Complete Polr of 4 channal Light Boxez
Complete with 8 coloured bulbs. The pair clip
f74. carr. £4.

THE STREET HEYERIDGE - MALDON ESSEX SM9 7NB ENGLAND Tel. MAL JOH (0621) 56480

Telex Na 995855

RADIOCODE CLOCKS LTD

SPECIALISTS IN ATOMIC TIME, FREQUENCY AND SYNCHRONISATION EQUIPMENT

Off-air frequency

 standards- Intelligent time systems Caesium/Rubidium based clocks \& oscillators
- Master/slave systems
- Time code generators/readers - Record/replay systems - Intelligent display systems - Precision ovened oscillators - Time/frequency distribution systems

NEW PRODUCTS

- MINIATURE RUBIDIUM OSCILLATOR MODULE Lower power, fast warm up, optional output frequencies, programmable frequency offsets.

- RUBIDIUM FREQUENCY STANDARD

High performance, compact and rugged instrument. 2 U rack or $1 / 4$ ATR case options.

- INTELLIGENT OFF-AIR FREQUENCY STANDARDS Microcomputer controlled
instruments, directly traceable to N.P.L., precision ovened local oscillator, comprehensive monitoring and status information, real time synchronisation.
- LOW COST MSF

FREQUENCY STANDARD
Instant operation, directly traceable to N.P.L., self-contained portable unit, no scheduled frequency changes, 24 hr transmission, real time synchronisation

Radiocode Clocks Ltd*

Unit 19, Parkengue,
Kernick Road Industrial Estate, Penryn, Falmouth, Cornwall. Tel: Falmouth (0326) 76007 (*A Circuit Services Associate Co.)

CIRCLE 43 FOR FURTHER DETAILS.

Flint ignition system built into the cap.
pocket portable (173 mm) and independent of any external energy source. PORTASOL is powered by ordinary cigarette fuel and one filling lasts for 60 minutes continuous use.

* Portasol makes an ideal and handy present.
* Immediately available for use
anytime anywhere.
* Portasol meets all safety standards
* No problem with statics.
* Adjustable temperature for sensitive components Please send..............(qty.) PORTASOL at $£ 17.25$. I enclose cheque/P.O./cash for £...................... or debit my Barclaycard
no.Access no.......................... Expiry date..
NAME
ADDRESS
 equivalent to electric soldering irons 10 to 60 Watt.

Ease of soldering for engineers, hobbyists, engineers, hobbyists,
repair men etc.

(1) Place telephone beneath the arm so that it holds down the hook switch. Then place the receiver in the two slots on top of the unit. Attach the sense unit to the warning machine.
(2) Turn on power, wait for the ready-lamp to go on, and then dial the number. Verify number if a display is provided.
Switch from dial to run and initiation is completed. The machine now monitors the pump function and whatever other application is chosen.
(4) On failure the device lifts the arm providing the readytone from the telephone. The encoded number is now dialled and at the end the alarm tone is sent to inform of the failure.

by Per Andersen

The second part of this article will include cincuit details, for which a separate components list is available in advance from the editorial office.

Alarmphone

Automatic warning device uses telephone without direct connection

Living on a farm way out in the country, we are occasionally attacked by heavy thunderstorms, most at fall. And during almost every storm we have a breakdown of the electricity mains supply. This is caused by a huge charge of static electricity in the air, which somehow triggers our security relay to break the power, and refrigerators, aquarium pumps, heating units and so on stop working. If we are at home, we simply turn on the relay again and that's it, but if not the accident becomes a lot more serious because of the damage that could be done to food, aquaria, and other things needing a continuous mains supply for proper operation. In my place, our heating unit - a straw-burning type - could be very seriously damaged if the circulating pump
fails or if the power is removed shortly after the unit has been loaded with a couple of strawbails. The water then boils in no time, and everyone knows what could happen to metal exposed to strong heat without the possibilit of being cooled.
The present machine was designed to prevent such damage. Not that it is able to prevent the loss of power but when it happens it lets you know about it, giving you the chance to make the necessary decisions.
The machine monitors the rotation of the circulation pump by means of a sense coil mounted close to the motor. Any stop of the rotation is detected by appropriate circuitry in the device, which then dials a previously encoded telephone number, e.g. the place where you stay or at your neigh-
bours. After dialling the number an alarm tone is sounded for some time, after which the machine returns to the stand-by mode. If the ready-tone does appear within six seconds, the machine hangs on again. The situation where the dialled number is busy is not considered in this version of the warning machine, although it is simple to extend the construction to be able to handle this tod.

In my country one is not allowed to connect any device not sold by the telephone company to the telephone lines, so to awoid conflict the machine had to operate in a way that did not interfere with the law. The principle of the idea is therefore to avoid any galvanic contact with the telephone lines. The receiver is then placed on top of the warning machine, underneath which is located two

small loudspeakers one as the transmitter and one as the receiver. The machine is placed beside the telephone in such a way that permits the solenoid arm to hold the hook switch deactivated.
Upon a pump failure the solenoid arm lifts and activates the hook switch. The receiver/loudspeaker picks up the ready-tone, which is processed in the electronics, providing the memory to support the dial logic with the encoded telephone number. From the dial logic dual-tone multifrequency (d.t.m.f.) signals are sent to the transmitter/loudspeaker via the driver stage. When the number is completed, the alarm tone is sent to the transmitter for about $1 \frac{1}{2}$ minutes to let the person that answers the call know that it's from the automatic warning machine.

In my case the instrument is supported from a 24 V battery, which is recharged every time the machine has been used, but any kind of power-supply can be used as long as the quality is reasonable. If a 12 V battery is used the only thing to change is the type of solenoid.

This version of the warning device doesn't have a display to verify the keyed in number on account of its
expense (though a display circuit is available from the editorial office).

Sense coil for the pump monitor is an old relay coil, but the nature of the pickup will depend on the application.

-

DON'T WASTE GOOD IDEAS
We prefer circuit ideas with neat drawings and widely-spaced typescripts, but we would rather have scribbles on "the back of an envelope" than let good ideas be wasted. Submissions are judged on originality or usefulness not excluding imaginative modifications to existing circuits so these points should be brought to the fore, preferably in the first sentence. Minimum payment of $£ 30$ is made for published circuits, normally early in the month following publication.

Printer port provides RS232 output

Use of a uart not specifically designed for microprocessor interfacing allows a computer's Centronics printer port to be adapted for RS232 serial data output. With this uart, a cmos Harris 6402, internal functions are selected by hardware rather than by programmable registers. Being cmos, the uart only requires about 1 mA ; current requirement of the whole circuit is 17 mA at 5 V so battery power may be used. Parallel data from the Centronics interface connects directly to the 6402 uart through up to 0.6 m of ribbon cable. This data is latched into the uart by the STROBE line and converted into serial form for output at pin 25 . Serial data is fed to the $741 \mathrm{op}-\mathrm{amp}$ acting as an inverting comparator to give output levels of plus and minus 5 V . Negative supply for the comparator is produced by a

7660 voltage converter; minimum RS232 levels are plus and minus 3 V .

When output of serial data is completed, a low-to-high transition of the uart TRE (transmitter-register empty) output causes triggering of the 4047 monstable i.c. to produce an acknowledgement pulse, $\overline{\mathrm{ACK}}$, indicating to the Centronics interface that the uart is ready to receive more data. An inverted TRE signal, high when data is being transmitted, provides the BUSY line, and inverter gates and a 4040 counter generate the uart

| Word
 length Link 2 Link 3
 5 made made
 6 open made
 7 made open
 8 open open |
| :--- | :--- | :--- |

Stop bits	Word length	Link 4
1	$5,6,7,8$	made
$1 \frac{1}{2}$	5	open
2	$6,7,8$	open

Parity	Link 1	Link 5
Inhiblt	-	open
On, even	open	made
On, odd	made	made

$\times 16$ transmit clock. The inverter i.c. is a t.t.l. device to provide correct levels for BUSY and $\overline{\mathrm{ACK}}$ signals. Data rate selection is done by making one of the vertical row of links and data format selection by setting the horizontal row of links according to the tables.
N. Burd Department of Engineering University of Lancaster

Using the MK14 for development

This switch allows me to write programs for an 8039 microprocessor system using my SOC MK14 computer. It selects 1 Kbyte of static ram as either program memory for the 8039 system or 'page one' memory for the MK14.

Cable to the 8039 system is terminated by a 24 -pin dil plug which the 8039 processor sees as a 1 Kbyte rom. Three 157 i.cs select which address bus goes to the ram, depending on the control-logic switch position, and a pair of three-state buffers select the data bus. Leds indicate which mode is selected.

I used a dip prototyping board and Verowire, so that changes could be made easily, and powered the board from the MK14 supply which had spare

8035/39 single step

When testing 8035 microcomputer boards, single-stepping is useful for synchronizing the unit being checked with slower automatic test equipment. The test system can then check each program step for correct operation.
Typical 7474 D-type bistable circuits for this purpose can operate eratically due to delay between the falling of the 8035 address-latch enable, ALE, and single-step signals. Using the 74 LS112 roughly halves this delay to produce trouble-free operation. Decoupling and p.c.b. layout are important.
JJ. Alexander
Dundee

capacity. Decoupling capacitors should be used throughout.
S.J. Churchman 7 Signal Regiment
BFPO 15

Keyboard encoder

In this circuit published in the February issue, bits 0-7 of the encoder i.c. were drawn in reverse order and segments f and g of the led and the function switch common line should be 5 V . Also worthy of note is that the 74148 and 74154 alone encode the keyboard into seven bits and software could be used to provide shift and control functions.

Mixer with gain polarity control

A mixer whose overall gain can be varied continuously between +1 and -1 is invaluable for experimental work in multi-microphone stereo recording. Use of a negative impedance converter constructed around a second op-amp allows the familiar summing amplifier to be configured in a non-inverting form.
John Lawson
Cheltenham
Gloucestershire

Adjustable switching supply

Simple additions to a power switching circuit shown in Leistungstransistoren im Schaltbetrieb (Thomson-CSF, Munich, includes detailed hints and equations) allow output to be varied between 31 to 800 V .

Two separately adjustable monostable i.cs generate switching pulses and are set for optimum on/off times. Regulation is obtained by simply switching the generator on and off using the monostable i.c. reset input. To vary output voltage, the reset switching input is made adjustable, \mathbf{R}_{3}. The whole adjusting and
regulating circuit consists of just R_{1-3} and Tr_{1}. Under no-load conditions, output can be as high as 1500 V so a second identical circuit around Tr_{2} is included to protect against this. A third such circuit might be added for remote control. My circuit is adjustable between 31 and 800 V with a $47 \mathrm{k} \Omega$ load or up to 560 V with a
$10 \mathrm{k} \Omega$ load. Above about 200 V , output varies less than 2 V when a 10 k Sload is removed. Output power depends on L_{1} which should be kept as small as possible so as not to overload the power transistor. H.P. Recktenwald Berlin

Peak indicator

through is reduced by the low impedance drive to the switches, and distortion is kept low by having the switch elements within the feedback loop. Gain of this
circuit is two, but it can be increased by enlarging $R_{f t}$.
Steve Hutton
Wooron Bassett
Wiltshire

Two-wire extension switch

If an extra switch is required for an existing light whose two-conductor cable is difficult to replace with a three-conductor one, this circuit might be of use. When the switches are open, no current flows in the transformer and the light remains off. When one switch is closed, current flows through the capacitors, is
stepped up by the transformer, and turns on the triac to light the lamp. When both switches are closed, there is no net flux in the transformer so the lamp is off.

Transformer primary current is limited by the two capacitors, which should both be rated for mains use. Note that when both switches are closed, about 4 mA flows through the lamp so care must be taken when changing it. S.J. Kearley

Wirral
Merseyside

Measuring low resistance

Using a 199.9 mV f.s. digital meter and a simple four-terminal circuit, low resistance can be measured accurately in 0-2, 2-20 or $20-200 \Omega$ ranges. Test currents are 100,10 and 1 mA respectively. At first glance these may appear high, but worst-case dissipation in the unknown resistor is $20 \mathrm{~mW}(2 \Omega$ and 100 mA).

Point A is kept at a constant voltage by the LM317 regulator i.c. therefore constant current flows through the resistor under test, R_{x}; voltage across this resistor is thus proportional to its resistance. Three pontentiometers set each scale using known values for R_{x}. A.H. Howe Bexleyheath

Kent

CPU/RAMFLOPPY/ card GPROF $80^{\text {¹ }}$

Z80 CPU, 4 or 6 MHz ; 128 KByte RAM; 8KByte EPROM; memory management; sophisticated floppy interface for up to 4 drives (SS/DS; SD/DD; 3.5", 5.25", 8" mixed); buffered system bus (ECB standard); expanded addressing (A16-A19); real time clock; two V24/RS232 interface

GRAPHICS I/O PROCESSOR "CRTP 2"

Graphics resolution 768×280 pixels; text format 80×25 or 96×33; 8 character sets; 6 attributes; subscript/ superscript; Z80A slave CPU; powerful command set; own 30 KByte printer spooler; sound generator; connections for system bus (ECB standard), V24/RS232, serial or parallel keyboard, graphics printer, light pen

SINGLE BOARD ALL PURPOSE COMPUTER "EPAC80"

Z80 CPU, 2.5-6.0 MHz; 2 bidirectional ports with handshake (Z80 PIO); 16 latches, optionally with high current outputs (250 mA); 8 status inputs; watchdog timer; wire wrap field for additional hardware; two "bytewide" RAM/EPROM sockets (216 KByte); system bus connector (ECB standard)

CMOS SINGLE BOARD ALL PURPOSE COMPUTER "CEPAC 80"

NSC800 CPU (Z80 - compatible), 14 MHz ; $46 \mathrm{I} / \mathrm{O}$-lines, 16 of them optionally with high current latches (250 mA); 5 interrupt inputs; two 16 Bit timer; 14-Bit watchdog timer; 128 Byte RAM; two "bytewide" RAM/ EPROM sockets (2-16 KByte); system bus connector (ECB standard)

PRICES
GRIP 2 finished card
......... £282.00
GRIP 2 card, EPROM, handbook
$\Sigma 77.00$
PROF 80 finished card............................... $\mathbf{~} \mathbf{3 1 3 . 6 0}$
PROF 80 card, EPROM, handbook $\mathbf{5 6 . 0 0}$
EPAC 80 finished card \qquad from $\$ 40.60$
EPAC 80 card, handbook. \qquad 540.60
$\Sigma 12.50$

CEPAC 80 finished card \qquad from E78.00
CEPAC 80 card, handbook \qquad $\varepsilon 15.50$
we are still looking for whole sellers, who would be interested in representing our firm and products in their home country. If you are interested, please contact us under the following address:

Out of a very wide range of types, we show some of the more popularly demanded ones. The full range currently stocked will be found in our latest free $A-2$ price $\&$ products list.
Please mention this journal when contacting Electrovalue

MINIA TURE TOGGLES, 7000 Series $250 \mathrm{~V} / 2 \mathrm{~A}, 120 \mathrm{~V} / 5 \mathrm{~A}$. Single, double, three and four pole configurations inc. Centre Off/On and biased.

CK WAVECHANGE with adjustable stops. $1 \mathrm{P} / 12$ way. $2 \mathrm{P} / 6 \mathrm{~W}$. 3P/4W . Stops. 1P/ 12 W
$4 \mathrm{P} / 3 \mathrm{~W} .6 \mathrm{P} / 2 \mathrm{~W}$

SWITCH XITS
RA Shaft Assemblies up to 6 wafers.
DP Mains switch. Screens; Spacers

PUSH BUTTON

Miniature
Single and
Single and Double Pole Changeover Standard
Latching and momentary
SUDERS Standard SP and DP in 1,2 or 3 positions.
Many other types such as for timing Many other types such as for timir
and other special applications.

BRITANS LEADNG QUMLTY COMPONENT SUPPGERS-SEND FOB FREE 4O PAEE A-Z LST

28 St. Jude's Road Englefield Green Egham, Surrey TW 20 OHB
Tel: (0784) 33603. Telex: 264475. North: 680 Burnage Lane, Manchester (061.432 4945). EV Computing Shop, 700 Burnage Lane. Manchester (061-431 4866)

CIRCLE 48 FOR FURTHER DETAILS

t. MITSUBISHI

MGF-1400
MGF-1402
MGF-1412

FROM STOCK

Aspen Electronics Limited

UK representative for Mitsubishi Electric
2/3 Kildare Close, Eastcote, Ruislip Middlesex HA4 9UR
Tel: 01-868 1188 Tlx: 8812727

CIRCLE 51 FOR FURTHER DETAILS.

RACKMOUNT CASES

19"Self Assembly Rack Mounting Case with lift off Covers. Front Panel 10 gauge Brushed Anodised Aluminium, Case 18 gauge, Plated Steel with Removeable Rear \& Side Paneis. In 1 U \& 2 U Types. a Subplate Chassis is Mounted to Bottom Cover In 3U Type the Subplate is located on two Rails Mounted Between The Side Plates
$1 \mathrm{U}\left(1^{3 / 1 / 4)}\right.$ height, 230 m depth............ $£ 27.00$
$2 \mathrm{U}\left(3^{1 / 2}\right)$ height, 308 m depth............ $£ 32.00$
$3 \mathrm{U}\left(5^{1 / 4}\right)$ height, 230 m depth........... $£ 39.00$
Width Behind Front Panel 437 m (All Tvpes).

All Prices include Postage \& V.A.T. Cheques, Postal Orders Payable to:
J. D. R. Sheetmetal, 131 Grenfell Road, Maidenhead, Berks. SL6 1EX. Maidenhead 29450.
CIRCLE 60 FOR FURTHER DETAILS
ELECTRONICS \& WIRELESS WORLD FEBRUARY 1985

Microprocessor speedometer

Home built design gives digital display of distance and time as well as speed

The concept for this speedometer design was originally based on a frequency counter using a set of discrete counters and a display. The sensor would have been an infra-red link periodically broken by a slotted disc mounted near the centre of the front wheel, but it was found to be too influenced by extraneous sunlight and dirt. It was abandoned in favour of a Halleffect switch which could be toggled by a set of magnets mounted on the wheel. A lowpowered c-mos micro processor was later found to be ideally suited to control application and was incorporated in subsequent versions. This gave the advantage of having more than one mode: three others were added - distance, top speed and time.

The 1802 microprocessor made by RCA uses standard eight-bit data bytes. The instruction set is oriented toward control application and as such has four parallel input
lines to sense the state of the outside world, and three output lines which can be activated when writing data. Dynamic variables are held in sixteen 16bit registers labelled R0 to R9, RA to $R F$, one of which is chosen as the program counter. There is also a programmable flip-flop, Q, which has an output that extemal devices can be strobed.

Clock rate may go up to about 3.2 MHz on the 5 V version and takes either 16 or 24 clock cycles to perform an instruction. Power consumption depends linearly on the clock frequency and is $\approx 2.5 \mathrm{~mA}$ when running at 3.2 MHz ; about $1 / 50$ of the amount used in home computer microprocessors. For further details see 'Programming the 1802' by Tom Swan (Hayden).

Hardware

The design needed to be economical on power and space

REGISTER ALLOCATION. Each of the 16 bit registers is allocated as below. Only the upper and lower eight bits of each may be transferred to/from the accumlator at once.
RF Distance counter arranged as four b.c.d. numbers, 100 miles:10 miles:1 mile:1/10 mile.
RE Binary counter of wheel pulses, incrementing RF at a predetermined value
RD Time register as four b.c.d. numbers, hours:10min:1min:1/ 10 min .
RC Counter of interrupt at 1600 Hz . .9600 counter 0.1 min .
RB Top speed as four b.c.d. digits, unused: $10 \mathrm{mile} / \mathrm{h}: 1 \mathrm{mile} / \mathrm{h}: 1 / \mathrm{h}$ $10 \mathrm{mile} / \mathrm{h}$.
R9 Binary counter of interrupt since last wheel pulse was received.
R8 Display register during output roútine, otherwise a division routine work register.
R7 Divisor
R6 Dividend
Registers for division routine.
R5 Quotient
R4 Upper half: Accumulator storage during interrupt.
Lower half: Mode (and carry flag during interrupt)
R3 Program counter.
R2 Address of byte containing register pointers used at the end of an interrupt.
R1 Interrupt program counter.
R0 Subtraction data table pointer.
and a 2 kB read-only memory (a 2716) was all that was required.

A clock frequency of 3.2768 MHz is used since when divided by 2^{11} in a ripple counter a frequency of 1600 Hz is produced, which is used to interrupt the main program and

HEXADECIMAL DUMP The author is willing to program eproms sent to him at 93 Mawson Road, Cambridge.

ensure accurate timing.
The display, a four-digit $\frac{1}{2}$ in liquid crystal, is driven by a single-chip display drive connected to the data bus via a ripple interface. Together they consume less than $\frac{1}{2} \mathrm{~mA}$ which is miniscule relative to a l.e.d. display and offers far higher contrast in daylight hours.

Mode and reset are operate via two small push-to-make switches connected to two of the four parallel inputs. The Hall-effect sensor uses a third and its transistor shaped package is housed in a small plastic tube, weatherproofed with Araldite. A small metal plate supports the tube so that the two oppositely aligned magnets on the wheel pass closely to the sensor, thus changing its state. The wires from the sensor go to a three pin DIN pug which fits into a socket mounted in the speedometer case.

Software

The main program is basically a loop which continually senses the input lines to see if a wheel pulse has been received or a mode advance or reset requested. On receipt of a new wheel pulse the speed is calculated by a constant (whose magnitude varies linearly with wheel diameter) being divided by the time since the last wheel pulse was received. This counter is then reset and the program searches for the top speed before incrementing the distance register.

By choosing suitable constants, the speed and distance may be produced in any set of units by changing the contents of a handful of bytes within the program. This also enables one to use different wheel sizes.

Ordinary lapse time and speed time counter are incremented by the interrupt routine- 1600 Hz is required to produce sufficient accuracy in calculating the speed. A special routine looks after the case when one has stopped and automatically sets the speed to zero.

Accuracy

An error of about $\frac{1}{4}$ in in the diameter of a 27 in wheel may exist due to varying ages and hardness of the tyre and is

To keep all the components within a reasonably sized box, the display and its driver reside on a separate board, and electrical contact between them is through a series of soldered 5 cm ling wires. For compactness, the display is mounted directly above its driver; the height gained as a result allows the display to be placed close to the transparent cover above the slot cut in the lid.
much greater than the 0.02% error generated when the distance register is incremented. Unadjusted crystal oscillators generally work within 1 part in 5000 of their cut frequency and this will produce an error of about 0.1 min over the ten-hour range of the lapse time. Combined distance and time errors are less than the resolution of the speed which is typically 0.1 at 20 and about half that at double the speed. This resolution is still much greater than given by conventional speedometers.

Construction

The case may be of grey ABS plastics as in the 'prototype', or of sheet aluminium as in the model illustrated and has external dimensions of 120 by 65 by 40 mm and contains everything apart from the sensor. All the chips apart from the display drive are mounted on Veroboard at the bottom of the case. The battery is above it, being held in four trimmed cell compartments glued to the
lid of the box. Trimming is necessary to allow enough space for the display, mounted as illustrated. Underneath it are the mode and reset switch bodies, the on/off switch and the three-pin DIN socket. The bracket to the bicycle has been 'cannibalized' from àn old lamp support and in one version two of the four screws that fix the lid to the box.

Improvements

Four NiCd cells will provide power for about seven hours, of which two thirds is consumed by the rom. Hence a cmos version of the rom would greatly assist the longevity of the battery. An alternative would be to provide cmos ram (a 6116 which is 2 Kbyte would be best) and boot up a the program from rom to ram on power-up. This way one could add extra modes at will for example average speed and actual travelling time. However, now the speedometer is operational, I will probably leave it alone and spend more time cycling.

View looking down towards the ground with one magnet opposite sensor

IF YOUR BASIC SYSTEM IS RUNNING OUT OF SPEED, IT'S TIME YOU LOOKED AT THE PROFESSIONAL MICROPROCESSOR DEVELOPMENT SYSTEM, THE FAST WAY FORWARD , zacare

THE OPERATING SYSTEM

- FLEX - The Professional Operating System
- Versatile, Flexible \& Powerful, the ideal operating system for industrial control
- True portability between machines - FLEX format discs can be read on the BBC
- Gives those on a tight budget the power, sophistication and ease of development that large companies have always enjoyed

THE TOOLS

- PL9-A fast efficient compiler specifically designed for control applications
- CMS FORTH Interpreter \& Compiler
- Cross Assemblers, Simulators \& Debug for most 8 bit \& 16 bit micro's
- "C", BCPL, PASCAL, COBOL

THE HARDWARE

- 68092nd Processor
- Eprom Programmers
- Choice of industrial interfaces

THE SUPPORT

- Top rate after sales technical support
- Systems/Hardware Design
- A full set of eurocards for use in target applications

CIRCLE 66 FOR FURTHER DETAILS.

CIRCLE 10 FOR FURTHER DETAILS.

CIRCLE 29 FOR FURTHER DETAILS.

Wireless World INDEX

The General Index has direct references to all individual articles. Letters, News and Communications Commentary are indexed separately. Correspondence and corrections are included in the entries for articles to which they refer, as appropriate.

From October 1983, the words "Electronics \&" appeared above "Wireless World" on our masthead. For convenience it is suggested that this be considered the last complete volume of Wireless World and 1984 be the first year of Electronics \& Wireless World.


```
Behind the Micro, wH survey of eicrocosputers,
Dec. 62 (continued in 1984)
Bicycle lighting, (Circuit idea), R.J. Grover,
    Jan. 55.
    Correction Jan. 36. Letters June 34; Sept
    50.
Binary-to-Ascii converter, (Circuit idea), I.
    Macalinden, Jan. 56.
Boiler control, See Fowberry menergy saver.
BOOKS, Jan. 73; July 48; Aug. 53; Oct. 44.
Cables, See Direct reading cable reflectometer
Cascadable one-bit arithmetic module, (Circuit
    idea), R. Morcoon, May o5
Capacitance-to-voltage converter, (Circuit idea)
    W. B. de Ruyter, June 69.
Collular radio, See Planning for plenty.
Central heating control, See Fowberry energy
    saver.
    Stephenson, Oct. }59
Checking op-amps, B.L. Hart, July 45.
```

Circuit analysis, See Microcomputer analysis of a ladder network; Network design
Thevenin-Norton transient theor mm.
Codes and encryption, See Did Morse get it right? Enigma.
Colour tv, See Improving Colour television
decoding.
Common-mode rejection explained, B.L. Hart, Sept. 36; Nov. 42.
Common-mode rejection, See also High-speed, high-c.m.r. isolator.
COMMUNICATIONS COMMENTARY and AMATEUR RADIO, Pat Hawker, See classified section.
Complementary current mirror, I.M. Filanovsky, Sept, 67.
Constant-current charger, (Circuit idea), Mike Davies, Fob. 70.
Cooling electronic equipment, Michael Young, Apr.
Counter, See State/cycle counter.
Craft and technology, (aesthetic design) K.L. Smith, July 66. Letters Sept. 51.
Current dumping review, Michael McLoughlin, Sept 39; Oct. 35. Letters Oct.77; Dec. 49.
Current loop, See Programmable curront loop
Current mirror, See Complementary current mirror:
Current sensor uses op-amps, (Circuit idea), F.N:H. Robinson, Nov. 59.

Cycle protector, (Circuit idea), J. Ashby, Apr.

Darlington difficulty, (Circuit idea), D. Gray, Mar. 62. Letters Sept. 53
Data acquisition on a Pet, E.D. Harvey and D.A. Hills, Jan. 65.
Data acquisition, See also Analogue recording using digital techniques; Microcomputer interfacing for 12-bit data acquisition Correction Losat, J.R. Miller, May 28. error detection and correction, (fart 9 of Disc drives), J. R. Watkinson, Feb. 44.
Data integrity in disc drives, (Part 8 of Disc Drives), J.R. Watkinson, Jan. 76.
Data rates, See Timing data transfer.
Decade counter, See b-digit data counter.
Design for living (Announcesent of the WH competition, Leeding article, Mar- 27.21 Design competition, (Leading erticle), July 2 Correction in a letter oy Mall Roberts; 53.

Deus ex
ox machina, (Computers and emotions), Leading
article, Feb. 29. Letters Apr. $46 \& 47$. Did Morse get it right? - Statistical background to the code, A.S. Chester, Aug. 62. Correction, Sept. 62.
Differential amplifiers, See Common-mode rejection explained.
Differential direct conversion, (Sept. 1982) Correction, Feb. 54.
Digital filter design procedure, J.t.R. Sylvester Digital filter design techniques,
Digital
Digital filters, see also Tracking digital 67
Digital filters, See also
for servosystems.
Digital logic, See Alterna
computer lanquages; Mixed Louc; Logic and
Digital meters, See Peak-to-paak bar/dot
Digital polyphase sinewaves, (Nov. 1982), correction, Jan. 36 .
Digital ratemeter, See Rapid-update digital
Digital tape clock, Per C. Andersen, Apr. 58. Letters Aug. 49.
Digital-to-analogue converter, See Improving the
Digital volimeter, See Low-cost 3-digit d.v.m;
Diodes, Ser Matching tuning diodes
Diode valve, See Is this year really the
centenary?
Direct broadcasting by satellite, See Satellite
television system.
Direct-reading cable reflectometer, (Circuit idea), J. Andrew Suter, Aug. 39.
Disc Drivers, J.R. Watkineon, icontinued from 1982), Jan. 76; Fob. 44, Mar. 47.

Disc drives, See also Floppy disc drive tester. Dividing by fractione, (Circuit idea), Kamil Kraus, Jan. 55. Conponent details, May 65.
Doctrines of Copenhag., Part of the Heretic's May 34 .
Domestic alarm syetem, Paul
2e.corrections, July 38.
Dot-matrix display, Ser Multicharacter dot-matrix display.

Early link or cemented future? (Part Report on D.B.S.), Leading article, Jan. 27.

Economical [RGB] monitor conversion, (Circuit idea), Richard Norwood, Aug. 40.
Economical multi-channel measurmaent interface, (Circuit idee), R.J. Millburn, Nov. 59.
Edison, TA-A See Is this year really the
Electronic ignition ronic ignition, See Letters. See also
Opto-coupled trigger for iectronic ignition.

Electronic contact breaker, (Circuit idea), M.J. Hooper, Jan. 55.
Electronic mains switching, (Circuit idea), M. Electronice, Apr. 52.
Electronic aids for the disabled See WW Enic Competition; Mental handicap and electronics. a, (German UUZ cipher machine) D.W. Rollema,
June 49. Engineering, not politics, (leading article), Aug. 21.

Eprom development aid. (for use with the Nanocomp and its associated eprow programeser), G.A.C. Bettridge, Jan. 32.
Eprom eraser, See Programmable eprom eraser. Eprom single-chip microcomputers, M.D. Bacon, Apr.

Fast NiCd charger; Richard Lambley, Nov. 26.
Fault location, See Short-circuit locator.
rs, See Digital filters; Low-pass filt design, Tracking digital filters for
555 mark/space control, I.M. Filanovsky and V.A. Piskarev, Sept. 68.
Fixed-to-variable mains frequency converter, See Frequency control of turntable motors. eming, J.A. See Is this year really the centenary?
Floppy-disc drive tester, (Circuit idea), S.J. Evans, Mar. 61.
Forth computer, Brian Woodroffe, May 53; June 55; July 58; Aug. 44; Sept. 64.Letters July 51; Sept. 53; Nov. 57Dec. 53.
(central neating Doiler controll, James A. Macharg, Dec. 26 . concy control of turntable motors, Peter A. Stockwell, July 70.
Funkausstellung, See German radio show.

General-purpose microcomputer Board, Michael Shragai, Sept. 70.
German radio show, Geoffrey Shorter, Nov. 70.

Harmonic locking circuit, (Circuit idea), Kamil Kraus, Feb. 70.
Heretic's guide to Nodern Physics) W.A. Scott Murray, Apr. 60.
Heartbeat measurement
Heretic's Guide to Modern Physics, W.A. Scot Murray, (Continued from 1982) 5.
Quantitization and quantitization, Jan, 58;
6. Waves of improbability, Feb. 68; 7.

Limitations of indeterminacy, Mar. 44; BMaziness and its applications, Apr. 60; 9 Doctrines of Copenhagen, May 34; 10.
Judemene and prognosis, June 74. Let:er 51, 52; Aug. 49, 50; Sept. 52, 53; Oct. 77; Dec. So,51.
High-impedance electronics, R.D. Purves, Mar. 31; Apr. 32.Corrections, July 38.
High-power, high-quality amplifier using mosfets, Erno Eorbely, Mar. 69.
High-speed, high-c.m.r. isolator, (Circuit idea), S.K. Biswas, Dec. 45.

Hobbyist's spectrum analyser, Roy Hartkopf, Aug.
How to make an electric charge from a travelling wave, R.C. Jennison, Aug. 36. Letters Oct.
79 ; Nov. 55 . 79; Nov. 55.

IBM Selectric to TRSBO interface, Anthony T. Scarpelli, Apr. 74; May 36.
EEE696, See Microcomputer bus standard
Imposeible loyalties, Leading erticle, May 27.
Letters Sept. 51.
Improving colour television decoding, David Read, Dec. 74. (Continued in 1984).
Improving stermo at low frequency, Y. Hirata, Oct.
improving the 7132 d-to-a for audio use, (Circuit idea), P.J. Skirrow, Mar. 62.
In praise of software, H.D. Baeker, Apr. 73.
Instability at h.f. in feedtack amplifiers, Philip Ratcliffe, Dec. 33.
Interface intermodulation in amplifiers, Robert Cordell, Fwb. 30.
Introduction to information technology, Philip Barker, Dec. 31.
Introduction to v.d.us, J.E. Tully, Jan. 68 . (Discovery of the Edison Effect) electronics? Franklin, Nov. 54.

Joystick interface, (Circuit idea), D.C. Grindrod, Mar. 63.
Judgement and Prognosis, (Part 10 of the Heretic's Guide to Modern Physics), W.A. Scott Murray, June 74.

Know-how, resource or property? Leading article, Apr. 27. Letters, July 49.

Ladder networks, See Microcomputer analysis of a limitations of indet.

Heretic's Guide to Moder (Part 7 of the

Scott Murray, Mar. 44. LIterature received, Apr. 6B; May 39; July 57; Aug. 38, 73; Oct. 48, 56; Nov. 29.
Local Radio, See Planning for plenty.
Logarithmic dividers using equal resistors, 58 Logic and computer languages, Boris Allen, Jan.

Logic Maps, (Dec. 1982), Letters, Apr. 48.
Loudspeaker measurements simplified, Peter F. Dobbins, Aug. 32.
Loudspeakers, See also Practical sub-woofer desigin.
Low-battery indicator, (Circuit idea), R.D.
Homerstone, Apr. 50.
Low-cost servo accelerometer, Neil Pollock, May

66.

cost 3-digit d.v.m. (Circuit Idea), Francisco J. Herrero, Mar. 61.

Low-harmonic s.c.r. voltage controller, R.T.
Irish, Nov. 51
Cuss filter design, (Circuit idea), D.
Cutler, Dec. 46.
Nov. 60. , Steve Kirby,

Marine communications, See Aerial inefficiency at sea; Some problems of aerials at sea. Matching tuning diodes, A. Maciejewski, Jan. 30. Memory systems, (Continued frow 1982), L. Macari, Jan. 74.
Mental handicap and electronics, R.E. Young, Sept. 27.

Microcomputer analysis of a ladder network, L.E.Weaver, Oct. 45.

Microcomputer bus standard - at last. [IEEE696, S100 bus], P.T.H. Roberts, Dec. 80.
Microcomputer interfacing for 12 -bit dat
Microcomputer organ interface and music editor,
D.R. Easson, June 63 , July 39. Additional
information, Aug. 52.
Microcomputer robot control, M.R. Driels, Dec. 28. Microprocessor voltmeter has eight channels, Nigel MIM tunnel Gordiner, May 48.
I
ljaz ur Rahman, Dec. 44.
Mixed logic, M.B. Butler, July 28 . Correction, Aug. 67. Letters Aug. 52; Oct. BO; Nov. 58.
Hodems See JOObaud full-duplex. Modems See 300baud full-duplex modemModular preamplifier, (Continued from 1982), J.L. Linsley Hood, Jan. 46; Feb. 79. Letters Jan. 64; June 34. Letter with corrections,
June 35. June 35.
Monitor [interface] for $\mathrm{zx日1}$, (Circuit idea), P . Gascoyne, Apr. 51.
Morse code, See Did Morse get it right?
Motor-speed control, See Accurate motor-speed control.
Multi-character dot-matrix display, (Circuit
Multiple-line telephone indicator, (Circuit idea), H.T.Wynne, Jan. 56.

Nanocomp to teletypewriter interface, P.C. Barton, Det. 75. Correction, Dec. 43. Letters Dec. 51.

Nanocomp, Sep also Eprom development aid.
Nascom computer, See RTTY on a Nascom.
Microcomputer analysis of a ladder network. Network design by calculator, Kamil Kraus, June NEW PRODUCTS, Jan. 79; Feb. 82; Mar. 81; Apr. BO; May 79; June 77; July 72; Aug. 74; Sept. 73; Oct. B1; Nov. 76; Dec. 83.
NEWS See classified section.
NiCd charger, See Fast. NiCd charger
Non-binary logic (Dec. 1982) Letters Mar. 54.
Non-volatile ram module, (Circuit idea), A.J.
Notch filter, See R.
Notch filter, See R.f. notch filter.
erical crossword, N. Darwood, Aug. 62.
Solution, Sept. 62.
Soll

One-out-of-seven rom selector [for Acorn Atom], Op-amp tester gives D.C. Grindrod, Oct. S9. idea), D. Baert, Apr. 49.
Op-amps, See also Checking op-amps.
Opto-coupled trigger for electranic ignition, Doto (Circuit idea), P.J. Dinning, Aug. 40. Opto isolator, See High-speed, high-c-m.r. isolator.
Organ, See Microcomputer organ interface.
Oscillator, See Predictable relay oscillator.
oscilloscope; Trigger-pulse generator

PAL colour tv coding, See Improving colour television coding.
Peak-to-peak bar/dot indicator, A.J.Ewins, Apr, 67.

The persuaders, [Sociology of New Technology] phot Leading article, Oct. 23.
Picotutor - See Sound triggered flash. Coates, Jan. 70. (Continued from 1982). See also Assembly-language programming. Pioneers of u.h.f. television, Andrew Emmermon, Planning for plenty, Norman Mclead, July 24.

Positive feedback without hysteresis, (Circuit idea), B. Wilson, July 64.
Power-amplifier testing, (Circuit idea), C Richardson, Apr. 52.
Power supply voltage regulator, See Switching
Preamplifier usinfer design, B.J. Sakol, Dec. 41 idea), George C. Hill, Apr. 50. (Circuit
preamplifiers, See also Modular preamplifier, Precision preamplifier.
Precise single pulses, (Circuit idea), D.A. Haines, Nov. 59. Letters Dec. 49.
Frecision analogue voltmeter, W.J. Hornsby, June 28. Continuation in Resistance measuring unit law... Corrections, Aug. b7
Precision preamplifiem, Douglas Self, Oct. 31 . Predictable relay oscillator, M. McLoughlin, Aug. Prestel, See Viewdata tisplay
Problens in Special Relativity module.

Process control by personal computer, E. Bertran 54 Martinez, J. Miguel and I. Munilla, Sept. Programmable current loop, (Circuit idea), G.R. Nimmo, Dec. 45.
Programmable eprom eraser, H.S. Lynes, June 37. Programmable panpot, (Circuit idea), John Pulse generator, see Precise single pulses.

Quadrature clock generator, (Circuit idea), S . Sondergaard, Apr. 51
Quantitization and quantitization, rpart 5 of the Scott Murray, Jan. 58
Quartz-crystal clocks, See Craft and technology.

RANDOM ECHOES by "Chirp", Jan. 82; Apr. 82; June 80; July 74; Nov. 78.
Rapid-update digital ratemeter ffor heartbeat seasuresent), P.D. Coleridge Smith, Oct. 42. Reflectometer, See Direct-reading reflectometer. Regulator with negligible i/o voltage, (Circuit idea), A. Kerim Fahme, Oct. 57.
R.f. notch filter with wide range, (Circuit idea), A. Achong, Sept. 69.

Resistance measuring unit, roptional add-on for the Precision analogue volteeter), w.J. Mornsby, July 46.
Robotics, See Microcomputer robot control; Tracking digital filters for servosystems; Ultrasonic ranging for robots
Roger blaep for c.b, P.J. Chalmers, Fab. 65. R5232-to current loop RS232-to-current loop interfacing, L. Macari, Feb. RTTY on a Nascom, Ian Wade, Sept. 30.

Sampling synchronous demodulator, (Circuit idea) D.J. Faulkner and P. Anti, Apr. 49.

Satellite tu system has digital-analogue phase modulatio
Satellites, See also Data decoder for Uosat.
Script - or ad lib? (advances in technology),
Leading article, June 27.
Semiconductor noise analyser, Ian Marshall and John Brydon, May 42
Servo systems, See Tracking digital filters for servosystems.
(Circuit locator with navigation aid, cuts in [circuit] analysis, Wesley A. Vincent, Aug. 42.
Shortwave receiver, See Single-frequency shortwave receiver.
Simulating iron-cored components, (Circuit idea), D.H-Rice, Apr. 52.

Simple clock-doubler, (Circuit idea), D.J Greenland, Mar. 63.
Simple low-frequncy oscilloscope, (Sept. 1982), Component details, Jan. 36 .
Simpler combination lock, (Circuit idea), A.F Abbey, Sept. 69.
Simplified battery back-up for cmos rams, (Circuit idea), U.R. Halsall, July 62.
Single board computer, See General-purpose microcomputer board.
68.

Single-frequency shortwave receiver Lfor BBC World Servicel, (Circuit idea), Per Hojlev, July 64.

6-digit decade counter, (Circuit idea), G.A.M. Labib, Oct.58.
16K dynamic ram [for $2 \times$ B1], (Circuit idea), D.G. Jones, May 64.
16-line p.a.b.x. with options, J.H. Kuiper, Nov. 62; Dec. 35. (Continued in 1984).
Some problems of aerials at mea, J.J. Wismman Mar. 64. Letters May 61, July 49, Aug.
nd generator interface for g-bit micro,
Sound generator interface for g-bit micro,
(circuit idea), M. James, May o4.Correction, Aug. 41.
Sound-triggered flash, (Circuit idea), D. DiMario, Feb. 71.
Spectrum analyser, See Hobbyist's spectrum analyser.
Spread-spectrum communications system for civi use, Noman Mahmood, Mar. 76.

Statefcycle counter for BOBO processors, (Circuit idea), G.A.M. Labib, Nov. 60
Static b.c.d.-to-binary converter, (Circuit ves, N.G. de Mattos-Shipley, C. Van Holten, A.J. Ewins, Feb. 73.
Howard Steele, (obituary), Dec. 79.
Stepper motor drive circuits, Adrian D. Bailey Feb. 76. Letters May 59; July 50. Oct. 26. Letters Nov. 55.

Tape recording, See Analogue recording using digital techniques; Digital tape clock.
Technology assessment, (Leading article), Dec. 23 Technology and people, (Leading article), Sept. 21. Letters Dct. 79; Dec. 49
relephone exchange, see 16-line p.a.b.x reletext decoder Enhancements, K. Drew, May 46. Stockman, July 65.
300baud full-duplex modem, Des Richards, July 33 Aug. 46.
Three-phase sequence detector, (Circuit idea), A.L. Eguizabal, July 62.

Thyristor trigger, See High-speed, high c.mor. isolator.
Thunderstorm protection, (Circuit idea), R.G. Young, Dec. 44.
1 iming data transfer, Philip Barker, June 44. ronebursts, See Versatile toneburst gate. Tait, Jan. 52.
racking sateliites with a microcomputer, I. P. Jefferson, Apr. 29.
Trigger pulse generator, (Circuit idea), R. Parfitt, Feb. 72.
T.t-l-to-r.mos converter, (Circuit idea), Paul Thampson, June 67
Tuning diodes, See Matching tuning diodes.
Two-metre transceiver. (continued fros 1982), T.D. Forrester, Jan. 42; Feb. 38; Mar. 39; Apr. 69; Aug. 70. . Aug. 41. Ariter-to-daisywheel interface, Neil Duffy, Aug. 24, Sept. 63.

Ultra-high-density recording, (Supplesent to Disc drives), J.R. Watkinson, Mar. 47.
Ultrasonic ranging for robots, H.W. Gleaves, Aug 54.

Uosat, See Data decoder for Uosat
Using a micro to process 30-line Baird television recordings, D.F. McLean, Oct. 66-
Using the b800日, Andy Barth, Nov. bo. G.A.M. Labib, May 63

Versatile toneburst gate, D.S. Taylor-Lewis, Nov. 34.

Video-dise programming for interactive video, Philip Barker, Nov. 44.
Viewdata display module, Dennis M. Pim, Apr. 3B; May 71.
voltage controller, See Low-harmonic s.c.r. voltage controller.
voltage doubler, See Cheap voltage doubler. voltage fallowers, See High-impedance
voltmeters See
acessor voltmeter,
in space, Ivor Catt, Mar. 43. Letters Sept.
51.
of improbability. (Part 6 of the Heratic's Guide to Nodern Physics), W.A. Scott Murray, Feb. 68 .
Weighing scale, See Strain gauge weighing scale. Hireless Horld Competition, In Herch we launched a Eajor cospetition with the theme Design an
electronic device to aid the disabled. Jhe judging took place in 1984. See Leading judicies, Mar. 27; July 21. Editorial articles, Mar. 27; July 21. Editorial Letters, June 33; July SO; Sept. 50; Dct. 77; Nov. 56; Dec. 49.
Hireless Horld laboratory, (Leading article), Nov. 23.
World timing using h.f. broadcasts, R.C.V. Macario and G.R. Munro, Oct. 54.
z80-based 2516 programmer, (Circuit idea Nov. 1982), Correction, Jan. 57

280 reset mithout memory loss, (Circuit idea), G.K. Dore, Dec. 44.
zBo 16-bit output, (Circuit idea), Javier Cazor July 63.
Zero dot for bargraph, (Circuit idea), P.

NEWS of the MONTH

[^0]Beeb's baby brother [Acorn Electronl, Nov. 31. Beobse baby computer growth -"exponential", Sempt. 61. Brains trust for electronic brain research calvey
programme], Oct. 53.
Businetis software directory, Dec. 39.

Cable tv white paper, June 70.
Charity buys school micros, Mar. 58.
Computer data via satellite CProject Universel, Apr. 55.
Computer display for the partially-sighted, Sapt.
L.H.H. 'Dick' Cooper cobituaryl, July 3 B.

Crack detection in offehore riga Cby ultrasonic probesi, smpt. 60.

Databasi for telecoman, fug 67.
Digital v.c.r. with metal powder tape, July 37.
Direct dial carphanes, June 71.

Electronic breath analyeer, Jan. S4
Electronic mall order for olectronice, Aug. 64.
Electronic shopping must be fair, Nov. 32
End of the Nawbrain? Oct. 52.
Etharnet wink one race, Oct. 52. Letter Dac. 51.
Existing technology to epeed up cable tv, June 69.
Full-page cable telimext, Sapt. 62.

Government money for computer rmeearch, June 70.

Heatless laser etching, Aug. 66.

Illegal transmission clamp-down, Jan. 56.

Language for the new generation [Occam], Feb. 37. Lasers and radiation safety, July 36 .
Leads for cable tv, Jan. 36 .
drystals add colour to monochrome c.r.t. Aug. 65.

Mac [Satellite tv system
Marine plotter, Nov. 33.
Mastering metal for mothers [D+M audio discs], Mar. 60.
Mercury gets green light fram B.R. Nov. 31.
Mercury in Texas, Dec. 40.
Merriman reports Cradio spectrum reviewl, sept.
60.

Microphone on a chip, Aug. 67.
Mobile services CWARC, June 69.
More microt for minors, July 36.
More money for fibre devolopment, Mar. 59.
More us-UK cable bide, Sapt. 61.
Mos power device witi, thyristar
Multifunction multiplexer for light fibres, Oct.

New frequency for Southern Sound, Dec. 40.
New role for BTG. Dec. 39.
New 280, Oct. 41.
No delay for callular radio, Fob. 34.
A nose for ideas Celectronic nowel, Jan. 35.

$$
0
$$

Optical fibres sink [cable to the 1sle of Wightl, Oric springs Forth, Sept. 62.

Part rejects "elegant and ingenious" alternative Payphone for tholytechnic DBS
peaceful electronics front [foundation of
Electronics for Peacel, Jan. 36.
Personal Computer World Show, Nov. 33.
Program development with Occam, Oct. 51.
Proposalw for non-ionizing radiation limits, Apr.
36.
Racal gets 25 years in cells tcollular radiol, July 37.

Satellite dish in London docks, Dec. 40.
Satellite news, Oct. 63.
Satellite news trial, Aug. 67.
Satellite to observe Halley, Mar. 58.
Satellite tv Standards [Part reporti, Jan. 34. Seeing the light [cable tv systemsi, Mar. 57. Shy computer firm CAlpha Microl comes out of the closet, Oet. 51.
Sinclair's pocket tv, Nov. 30
Software piracy and copyright, Nov. 32.
Solid modelling Lcomputer graphicsi, Feb. 36.
Standardization in gate arrays, smpt. 62. Stolen yacht caught in net [amateur maritime networkl, Dec. 38
Strings for cordless telephones tradio
Submillimetre-wave telescope, Aug. 6b.

Three－terminal superconductor．Apr． 55.
Threetto－one cable［licence］applications，Dec． 30.

Time limit to applications for mobile radio trequencies，Feb． 36.
Torch approved［for connection to PSNI，Feb． 36.

UK robot plant［Unimation］expands，Mar． 5 E． UK telecomms waves the flag at Geneva［Telecom日33，Nov． 30.

Video fiction［computer games］，Nov． 31.
A vaice from above［Uosat］，Apr． 57.

Wheelchair word－processor，Oct． 30.
Zilog 32－bitter，Dec． 40.

3Mbyte micro－floppy within two years，Feb． 35. 4Mbyte micro－floppy，July 38.
934 HHz ［c．b．radio］changed to meet European 15Gbit recordable op

COMMUNICATIONS COMMENTARY and AMATEURRADIO by Pat Hawker

A．m．stereo all ways，Aug． 22.
A．m．Stereo standards，Mar． 67.
Aerial puzzles，Oct． 24.
Amateur satellite［Uosat］，Feb． 43.
Antennas galor $\overline{2}$ ，Aug． 22.
Atlantic and TAT－G，Feb． 42

Eetter batteries，Sept． 22.
Black broadcasting，July 22.
Broadband power banks，Nov． 24.

Cab．market collap＊e，Aug． 22.
Careers in e．ma？Jan． 40.
Cellular satellite，May 40
Chip receivers，June 72.
Code－free in USA［Mor＊e in radio amateura＇exams］， Cold Comy 23.
Cold Comfort Farm？［Hanslope Parkl，Nov． 24.
Cost pluw rof h．f．receiversl，Feb． 42.

DX disamter，July 23.

E．m．c．problems，Nov． 25.
E．M．P．bomb？July 22.
Early digits，May 40.
Flares and wparadic－E，Dec． 25.

Hazard for onlookers［non－ionizing radiation］， Nov． 25.
Hazards？［non－ionizing radiation］，May 41.
Helically－wound loops，Dct． 44.
Higher radar，May． 40.
Hot words［radio propagandal，Dec． 24.

Incentive licensing，Jan． 41.
Interference from c．b．，Apr． 43.
Ionospheric focussing，July 23.
Ionospheric focussing，July 23.

Licence changes，Feb． 43.

Man－made problems［r．f．interferencel，May 41．
Medals for technology，Nov． 24.
Meteor aero－radio，Smpt． 22.
Mercurial thoughts，Aug 23
Mercurial thoughts，Aug． 23.
Microwave or uh．f？May 40.
Microwave or uah．．？May
Military radio，Feb． 42.
Moral permuagion［BBC and Soviet Jamming］，Aug．
22.

Natural energy［solar power］，Mar． 68.
New callsigns，July 23.
No r－m．s．power，Aug． 23.

Old－timers depart［Douglas Johnson，Bill
Browningl，Apr． 44.

Pedal－to－talk［bicycle power］，Mar． 68.
Pedal－to－talk cbicycie power，Mar． 68.
Places，at risk tradio stations during warsl，Mar．
Planning the bands，Aug． 23.
Polarization modulation，Sept． 22.
Predicting succesm，Dec． 24.
Pure and appliad Eeciancel，Oct． 24.

R．f．radiation，Sept． 23.
RSGB move，Jan．41．
Radio in cells，Jan． 40.
Radiation hazards，Mar． 67.
Return to Post Office，Oct． 24

Satellite shuttle，Feb． 43.
Space newe，Nov． 25.
Spectrum battles，July 22
Spectrum saving，Jan 40.
Spiralling up［price of amateur equipment］，Sept．
Super－high superhet，Nov． 24.
Syledis and 432 mHz ［interference］，June 73.

Telecoms history，June 73.
Telecommunications teeth［Telecomms Bill］，Feb． Terman＇s 1
Terman＇s legacy，Apr． 43.
Third method direct－conversion［military radio］， Dec． 24.
those examinations！Apr． 44
Too public a key［encryption］，Jan． 41.
Two vears of Uosat，Dec． 25.

USA and WARC，Feb． 43.
Useful or viable？［radio datal，Dec． 24.
Using millimetres，Oct． 24.
Using the Sun［for power］，June 72.

Which video tape？Nov． 24.
World broadcasting，Apr． 43.
World television？July 22.
III to IV semiconductors，Sept． 22
13th Montreux，June 72.
日5\％of optimum LRussian woodpecker］，Oct． 25.
SOMHz operation，Apr． 44 ．

LETIERS to the EIITOR

Aeretics，W．M．Dalton，Nov．5B．

Aerials at sea，D．Benyon，May 61；D．Parnell， July 49 Jahn Wigeman，Aug． 49.
Amateurs and balloons，G．A．Cockburn，Jan．63． Amateurs and Eand I，D．R．Coomber，Jani 63 Amateurs and cable，J．A．Holmes，Mar．Si． Gregory，M．E．J．Wright，S．Frost，Feb． 5 日． Anything is possible，A．C．Batchelor，Feb． 57. Audio witching，Allen Mornington－West，June 33.

BBC engineering，E．J．Stocks，＇A．W＇，D．P．Leggatt， Feb．59；R．G．Brown，June 33；D．P．Leggatt，

Binaural recordings，Harold Kirkham，June 34；J．H． Buijs，Sept． 50.

Cable and amateurs，J．A．Holmes，May 59
Cable at Milton Keynes，Tim Forrester，June 36 Call sign CZMTJ，Keith Ellis，Oct．Bo．
Cartridge alignment，P．E．Cryer，Jan． 64
Citizens Band，Robert Wilkins
Class S，A．Sandman，Jin． 60 ．
Clock－triggered triangular pulses，Georg
Feb． 81 ．J loops，James A．MacHarg，Nov． 56.
Craft and technology，R．Gill，Sept．Si．
Current dumping，M．G．Scroggie，Oct．77；Peter
Walker，Peter J．Baxandall，Dec． 49.
Darlington deviation，T．Roddam，Sept． 53.
Death of electric current，Ivor Catt．，Feb．56； John P．Marchant，Feb．57；M．G．Wellard，Apr． 45；O．Dogg，Apr．46；M．G．Wellard，Sapt．S2； R．Kennaway，Nov． 57.
Design competition，J．Devereaux，Garry M Robinson，July 50；D．K．Fryer，Aug．50；D． Wattson，E．M．Cohen，Sept．50；Richard Buswell，G．Barnes，Det．77；
Winterfiood，Nov．56；Dec．49．
Design for living，P．Sivers，T．Roddam，June 33. Designing with microprocessors，Neil Roberts，Mar 53.

Deus ex machina，C．W．Hobbs，Paul Thompson，Apr． 46；Dante Vialetto，G．W．Short，Apr．47． Digital tapeclock，M．S．Farmiloe，Aug． 49. Dimensions，E．F．Dawson，May 60.
Discussing relativity，Colin Francksen，June 35.
Dream of objectivity，Peter G．M．Dawe，Jan
James A．Macharg，Feb． 60.
Electric charge from a radio wave，Chris Parton， Det． 79
Electromagnetic Doppler，J．Kennaugh，Mar．52； S Hobson，J，Kennaugh，May S9；D．Hall，June Kminnaugh，Aug．49；S．J．Hobsan，Sept．52；A． Kennaugh，Aug－
Jones，Nov． 55.
actronic ignition，J．M．Osborne，G．Pirie， J．E．Stevenson，Jan．62；Rod Cooper，Mar． 52. Electronic weighing scale，S．P．Wyre，Nov． 55. Ethernet，Ian Wateon，Dec． 51.

Factories of the future，D．P．Howson，Feb．56； D．A．Bell，Apr．46．
4ilure of distress signals at sea，Hans．P ． Faye－Thilesen，Feb．57；John Wiseman，Mar．
Forth computer，J．O＇Cannor，July 52；B． Woodroffe，Nov． 57.
Free satellite tv？Douglas Byrne，Jan．so．
Gate symbols，J．C．Rudgé，July 51.
Gravitational waves，M．Zaman Akil，June 36.
Heretic＇s Guide to Modern Physics，M．G．Wellard， Jan．60；P．Craig，Mar．54；Brian T．Evans Apr．45；P．C．Smethurst，May 51；B．J．C Burrows，C．F．Coleman，M．M．Gleave，Tarry
Stancliffe，May 61；W．A．Scott Murray，May Stanelifte，May ol；W．A．Scott Murray， Macharg，July 51；Ian McCausland，J．S．Hall， July 52；James A．MacHarg，R．T．Lamb，P． Holland，A．＇．Winterflood，Aug．So；W．A． Scott Murray，Sept．52；N．A．de Bruyne，Sept． 53；C．F．Coleman，W．A．Scott Murray，Det．77； C．F．Coleman，Dec．50；David A．Chalmers，A． Jones，Dec． 51.
Ideas forum，Alan Robinson，Jan．60；Simon Sellick，Feb． 56
Impact of the photon，A．H．Winterflood，Jan 61； M．G．T．Hewlett，Jan． 62.
Inadequate mathematics，A．H．Freeborn，Nov． 55 Impossible lovalties，D．P．Leggatt，Sept． 51

Know－how－resource or property？Stephen Coleman， July 49.

Living and partly living，T．Roddam，June 33. Logic and electronic symbol standardization， 6. Beard，Nov． 55.
Logic maps，H．Jennant，Apr． 48.

Memory write protection，P．Hart，Apr． 47. Michelson－Mor ley，A．Jones，Apr．4B；M．Dsinga， July 52.
Mixed Logic，I．Catt，Aug．S2；J．Eyckmans，Dct． BO；M．B．Butler，Nov． 58.
Modular preamplifier，G．Dagnall，J．L．Linsley Hood，Jan．64；P．A．Duval，June 34，J．L．
Linsley Hood，June 35.
Nanocomp／TTY interface，J．C．Rudge，Dec．5l．New Aug．52；D．w．Scott，Det．Bo．
No such thing as magnetic field，A．R．Churchley， Non－binary logic eircuits，I．Catt，Mar． 54.

Orbiting electrons，P．R．Griffiths，Aug． 52.
Phase－locked cavities，H．Aspden，Feb． 56. Phase－shifting oscillator，W．Pleass，June 33 Pick－up geometry，Graeme F．Dennes，Feb． 60.
Precise single pulses，Colin Ramsay，Dec． 49
Preferred values in series and parallel，D．R．
Watson，Nov． 57.
Progress？［telephone exchanges］，Bernard Jones， July 49.

Radio amateurs examination，S．D．Allison，July Rechargeable h．t．battery，W．B．Pash，Sept．53； Recording teletext，N．Gibson，Sept． 51. Red shift，Nicholas K．Kirk，Feb．59；G．Kubba，J． Snowden，June 36.
Right formula，Ivor Catt，Jan．63；0．Balean， RS232／current loop，B．Fisher，Apr． 45.

Satellite tv alignment，J．Emmett，Sept． 53. Satellite tv system，G．R．Miller，May 62. Science and poetic imagination，S．Frost，Feb．60； P．A．Stockwe11，Apr．46．
Seeing red，Gwilym Dann，Mar． 53.
Semiconductor museum，Andrew Wylie，Apr． 45.
Sensitive？［people to electricity］，Michael Shallis，June 36.
Sinewaves，harmonies and sidebands，Roy Hartkopf， tepper motor
Stepper motor drive，B．S．Beddoe，May 59；A．D．
Stereo width control，
Sticky Winchesters，R．C．W．Demmer，Mar． 52

Tape voices，John de Rivas，Jan． 52
Technology and people，J．A．MacHarg，Oct．79；S．C Ellison，Dec． 49.

Underground radio，D．J．R．Martin，Feb． 59.
Waste of a resource［radio epectrum management］， W．Blanchard，Sept．So，
Waves in space，R．T．Lamb，Timothy C．Weob，R．J． Hughes，Aug．51；M．G．T．Hewlett，Sept． 51.
Woodpecker，P．Thompson，Aug． 52.

An index to the authors contribuiting to this volume is available．Please send an s．a．e．to the editorial office，marked＂Index＂．

Another 400 MHz for the hobbyist's spectrum analyser

By adding a mixer and filter, Roy Hartkopf doubles the analyser's range

By now, those who were interested will have completed the first section of the project (Wireless World, August 1983) and will have realised its potential as a piece of test equipment for the experimenter. The basic u.h.f. tuner covers 450 to 850 MHz , varying slightly with different makes. The oscillator and mixer described in this article provides coverage from 0 to 400 MHz , giving, with a small gap in the middle, 0 to 850 MHz .
The block diagram (Fig. 1) shows the two additional sections necessary. The incoming signal is mixed with the output from a 450 MHz oscillator (the frequency is not critical) and the sum of the two frequencies is fed into the u.h.f. tuner. If the tuner will only go to, say, 470 MHz then the oscillator can be set to 470 MHz and so on.

The general principle is much the same as that of the normal superheterodyne receiver; but instead of a tunable oscillator and a fixed frequency output we have a fixed oscillator, which is much easier to build. The difficult job of sweeping the frequency band is done by the u.h.f. tuner.
Those who have not already attempted to build an oscillator
working in the u.h.f. range will be surprised how easy it is. The requirements are some double sided glass-fibre circuit board, copper wire of about 14 gauge, a 2N5245 field effect transistor, trimmers and feedthrough capacitors.

Figure 2 shows a circuit diagram and physical layout of the complete unit. The dimensions are not critical. Because the fet requires no bias voltage between its source and the gate the respective leads can both be soldered to the wire which is in effect a shortened quarter-wave line. The electrical length is controlled by the trimmer capacitor at the end to which the fet is soldered.

There is, however, one precaution which must be observed when working with u.h.f. Use the best quality components you can possibly get. At these frequencies an inch of wire becomes a tuned circuit, normal resistors often look like chokes, capacitors become inductors or worse still the electronic equivalent of blotting paper.
The capacitors used in the prototype were Triko u.h.f. piston trimmers and a Filtercon feedthrough capacitor. These components are useable well into the
gigahertz range.
In the interests of stability it is a good idea to provide the oscillator with its own regulator (they are cheap enough) and mount it on the side of the box. A second feedthrough capacitor connected directly to the output and a capacitor on the input pin also will ensure the supply is clean and stable.

The only other component required is a double-balanced mixer. It is possible to build this but the ready built miniature modules are so much better than anything which can be made with discrete components that there is no practical alternative. As with the tuner there are several makes

Fig. 1. With an additional oscillator-mixer unit, the spectrum analyser covers 0850 MHz with one small gap around 400 MHz .

Fig. 4. (top) 50 MHz comb generator pattern. This tuner had an unusual problem, a spread caused by changing voltage-frequency ratios at the low as well as the high frequency end.
Fig. 5. (lower) Same patter as Fig. 4 with the mixer oscillator placed a few inches away from the tuner.
Fig. 3. (below) parts layout.
available and most of them have a standard eight pin case.

The Cimarron CM2 type I used has a bandwidth of 0 to 1000 MHz and over. It also has excellent rejection of unwanted frequencies and can be used as a modulator, mixer, attenuator or phase detector.

In the present case the module is used to convert the input frequency $(0-400 \mathrm{MHz})$ upwards. For this reason the i.f. and r.f. ports are reversed and the signal is fed into the i.f. port (pins 3 and 4). The output is taken from the r.f. port (pin 1). The local oscillator port (pin 8) is supplied from a pick-up line (see Fig. 2). This line is tuned by a trimmer identical to that used in the oscillator line.

Construction

If the fibreglass board is cut by hand it is necessary to trim the pieces to their final size by careful rubbing with emery paper on a flat plate-glass sheet so that the edges are straight and square. Careful preparation will make it much easier to do a neat job of soldering the pieces together to make the box.

Holes for the feedthrough capacitors and trimmers and particularly the eight holes for the mixer module should be carefully marked and drilled. Holes can also be drilled for locating the grounded ends of the two lines, which can then be soldered to both sides of the board.

It can reduce the possibility of unwanted resonances if a few 1 mm holes are drilled through the board (suggested positions are marked with an X on Fig. 2) and short lengths of hook-up wire pushed through and soldered to both sides of the board.

After the holes for the mixer module have been drilled the copper should be removed from pins 1,8 , and 3 and 4 . All other pins will be soldered to the copper. On the underside it is necessary to countersink the holes to prevent the pins from accidental contact with the copper.

When the mixer module has finally been fitted, its case can be spot soldered in a couple of places to the underside of the circuit board. When all the components have been soldered in place the four sides should be spot soldered to the main board, and then a con-

tinuous solder run may be made along the edges. It helps if all the pieces are cleaned and sprayed with a flux before working on them.
A couple of holes can now be drilled to connect lengths of coaxial cable to the r.f. and i.f. pins. Again it is essential to use top quality miniature p.t.f.e. core cable. With the p.t.f.e. core, it is possible to solder the outer braid to the board without the core melting and causing distortion or short circuits.
The box and low-pass filter shown in the photograph have been soldered to a large piece of circuit board for convenience, but it is not essential to cover the top. If this is done it would be necessary to provide small holes to adjust the trimmers.

Adjustments

Once the oscillator-mixer unit is complete, it is necessary to adjust the frequency and the output level. The part of the spectrum analyser already built provides all the test equipment necessary.
Using a 50 MHz comb generator as described in the earlier article, obtain a pattern on the oscilloscope similar to that shown in Fig. 4. Apply power to the oscilla-tor-mixer module and place it close to the tuner. If the oscillator trimmer is adjusted a spike should appear - possible with others due to overload - near the left hand side of the screen, as shown in Fig. 5. If the spike caused by the oscillator is then shifted to coincide exactly with the first spike from the comb generator, the frequency sweep will be the same for both ranges.

At the same time, move the position of the fet's source lead along the oscillator line to obtain maximum output as indicated by the height of the spike. A fraction of an inch variation can often effect a considerable improvement.
Later on, connect the oscilla-tor-mixer unit to the tuner and inject a signal of about 100 200 MHz into the mixer. Keeping the level well below any overload point, adjust the trimmer on the end of the pick-up line for maximum output. This maximum should be maintained over a wide range. Set the trimmer to the centre of this range.

Those who have access to laboratory test equipment may prefer to use an alternative procedure. The Cimarron mixer, and most others, can be used as
attenuators by putting a direct current into the i.f. port. With 1020 mA they give an attenuation of about 3 dB . With an r.f. microwattmeter connected to the r.f. port the output from the oscillator shown can typically be adjusted to read between 0 and -5 dBm (this includes the 3 dB attenuation). Though most mixers specify about plus $5-8 \mathrm{dBm}$ for maximum conversion efficiency this lower input seems to give quite good results with all mixers so far tested.

Figures 6 and 7 show the results obtained with the mixeroscillator unit connected to the tuner when signals of 100 MHz and 400 MHz respectively were applied. The spike at the lefthand end is the zero-frequency beat marker.

Although the double-balanced mixer modules appear symmetrical, the local oscillator should always be applied to the pin specified. As an experiment the module was reversed and a 100 MHz signal exactly the same level as before was applied. Figure 8 shows the result. Although the 100 MHz signal appeared as before there was also a spurious image 350 MHz . When the input frequency was changed
to 200 MHz the image appeared at 250 MHz and so on.

The tests were done with a laboratory-quality signal generator and a u.h.f. digital microwattmeter. The photographs were taken with the generator set to -30 dBm and the tuner output, using germanium rectifiers, fed to an oscilloscope having a vertical sensitivity of $0.2 \mathrm{~V} / \mathrm{cm}$. In other words the output from the tuner waa a little over half a volt peak.
As a contrast Fig. 9 shows the output from a cheap commercial signal generator at a frequency of about 105 MHz . The second harmonic at 315 MHz is stronger than the fundamental, but at $90 \mathrm{MH} \dot{2}$ this harmonic has disappeared. Without the spectrum analyser it would be almost impossible to discover the limitations of such equipment.

To avoid the possibility of breakthrough or intermodulation from signals above 400 MHz , it is worth while putting a low pass filter in front of the oscillator-mixer unit. Figure 3 and the photographs show a simple layout. The trimmers are $0-15_{\mathrm{p}} \mathrm{F}$ and each inductor consists of about 25 mm of p.t.f.e. miniature cable, the outer braid soldered to the circuit board.

Adjust the filter by putting it in series with the comb generator and tuner, then try to reduce spikes in the $450-850 \mathrm{MHz}$ range as much as possible. Next put it in front of the oscillator mixer unit and make sure it is not also reducing the spikes in the top end of the $0-400 \mathrm{MHz}$ band. Keep on adjusting and altering the filter until it passes all frequencies up to 400 MHz and attenuates anything over that frequency.

LEVELL OFFER AN EVEN BETTER DEAL

LEVELL OSCILLATORS, FUNCTION GENERATORS, AC/DC VOLTMETERS, FREQUENCY COUNTERS, DECADE R/C BOXES, TRANSISTOR and INSULATION TESTERS.

HAMEG OSCILLOSCOPES HITACHI OSCILLOSCOPES

LEVELL DELIVER FREE IN THE UK. CATALOGUE, PRICE LIST and QUANTITY DISCOUNTS ON REQUEST

LEVELL ELECTRONICS LTD.

Moxon Stréer, Barner, Herts.. EN5 5SD. England
Telephone: $01-4408686$ \& 01-449 5028

TDS900
 FORTH
 COMPUTER

Build the TDS 900 into your products, program it with a VDU and your forecasts become fact.
) Single board computer. 12k RAM and 8k ROM (expandable).

* All C-MOS for lower power. FORTH language. Compiled and fast. On-board screen-editor, compiler and debug facilities.
\& Easy connection with serial and parallel channels, A/D, D/A converters, triacs, printers, keyboards and displays.

Triangle Digital Services Limited Triangle Digital Services Limited
tooa wood St Warthamstow London 17 England
Telephone 01.5200442 , Telex 262284 (Ref 775)

CIRCLE 14 FOR FURTHER DETAILS.

CIRCLE 50 FOR FURTHER DETAILS

BRAND NEW ELECTRONIC COMPONENTS

- RESISTORS
- CAPACITORS
- TRANSISTORS
- POTENTIOMETERS
- PLUGS
- MULTIMETERS
- Voltage REGULATORS
- IC SOCKETS
- DIODES
- PRESETS
- LEDS
- SOCKETS
- SWITCHES
- INTEGRATED CIRCUITS

Write or Phone for full Trade Catalogue HARRISON ELECTRONICS
22 MILTON ROAD, WESTCLIFF-ON-SEA, ESSEX SS0 7JX Tel: (0702) 332338
CIRCLE 54 FOR FURTHER DETAILS.

Floppy discs

David March continues his survey of disc storage in microcomputers and looks at some practical disc operating systems

Table 1 shows the track structure of several different filing systems. Each column begins with padding bytes or index hole location. The padding bytes are FF in single density and 4 E in double density. The numbers of padding bytes shown in some cases are uncertain because of limitations of my analysis technique.
Each sector is then defined. There are 10 sectors per track except with Philips and with Tandy's TRS-80 DD which have 18 sectors per track.
The remaining padding bytes are shown and finally the total number of bytes found on the track. Theoretically the total should be 3125 and 6250 for single density and double density respectively. The variations result from departures fromthe nominal $300 \mathrm{rev} / \mathrm{min}$ disc speed in the originating and analysing disc drives.
As sectors are being read or written, the disc rotates continuously and data bytes must be accepted (or made available) by the microcomputer at the rate determined by the combination of disc drives and f.d.c. Generally the time interval between adjacent sectors is inadequate for the microcomputer to process or prepare the next sector of information.

It follows that if the microcomputer is not ready when the start of a particular sector passes the read/write head, then a full revolution time must elapse before reading or writing can continue. With a $300 \mathrm{rev} / \mathrm{min}$ speed of the $5_{4}^{\frac{1}{4}} \mathrm{in}$. floppy disc this amounts to to 0.2 seconds.

Sector interlacing is a way of minimising this dead time. Sectors which are physically adjacent to each other on the disc are not addressed consecutively when sequential read/write operations take place. Thus more time is available to the microcomputer at the end of one sector before th next sectors is required. A typical arrangement is a follows:-

In his concluding article, David March will examine Tandy's TRS-DOS.

Physical
position
0123456789

Logical sector

number
0516273849
Here the microcomputer has one sector time (0.02 seconds) for processing/preparing each sector before the next is required.

If all sectors are to be accessed sequentially starting at sector 0 , only two disc revolutions will be required (sectors 0-4 during the first revolution and sectors 5-9 during the second). This compares with the ten revolutions needed without interlacing. Although sector 9 is physically adjacent to sector 0 this is usually irrelevant as after sector 9 the file will probably continue on another track. The head movement time will then outweigh the processing time.

Sector interlacing can be achieved two ways. When the sectors are being laid out on the disc during formatting, the appropriate logical numbering can be applied. This has the advantage that subsequent file handling operations are not concerned with the interlacing. Alternatively the filing system may carry out a translation as each sector read/write is undertaken.

Disc filing systems

The function of a disc filing system is to protect the user from the intricacies of directly addressing the f.d.c. and to extend the capabilities of the f.d.c. by allowing the user to handle logically related sets of data in a convenient and secure manner.
Each logically related set of data is known as a file which the user accesses by its file name and which consists of a series of records. The size of each record is generally fixed by the filing system but the number of records in any file is determined by the needs of the user. Thus as the user writes information into a file, the number of records will be increased as necessary.

Individual filing systems will impose ultimate size limits but these are quite large: at best one file may occupy the whole disc.
The user generally needs to access information sequentially but may also wish to dip into a file at arbitary positions to read and possibly update the information. Most filing systems support this random access facility in varying degrees.
The filing system deals with the task of allocating physical space on the disc by establishing and maintaining tables of information defining the names of files, their sizes and where on the disc they are stored. These tables, known vaniously as the directory or catalogue, are specific to each disc filing system and frequently contain much more information about the files: for instance creation date, file types, load address, access restrictions etc.
Since the actual storage position of files on the disc is now hidden from the user, the filing system may optimise this allocation to speed up access and minimise unusable disc space.
Typically a filing system will partition the physical disc space into granules which are smaller than one track but larger than a

	TRS-80 SD	TRS-80 DD	BBC 40T	Philips	S/Brain	S/Utility
Padding bytes	$14 \times F F$	$72 ? \times 4 E$	19XFF	104? $\times 4 \mathrm{E}$	59? $\times 4 \mathrm{E}$	$\begin{gathered} 15 ? \times F F \\ 6 \times 00 \\ F C \\ 12 \times F F \end{gathered}$
Sector details	6×00	$\begin{gathered} 12 \times 00 \\ 3 \times A 1 \end{gathered}$	6×00	$\begin{gathered} 12 \times 00 \\ 3 \times A 1 \\ \text { FE } \end{gathered}$	$\begin{gathered} 12 \times 00 \\ 3 \times A 1 \\ F E \end{gathered}$	6×00
	track side	$\begin{aligned} & \text { track } \\ & \text { side } \end{aligned}$	track side	track side	track side	track side
	sector size	sector size	$\begin{aligned} & \text { sector } \\ & \text { size } \end{aligned}$	$\begin{aligned} & \text { sector } \\ & \text { size } \end{aligned}$	$\begin{aligned} & \text { sector } \\ & \text { size } \end{aligned}$	$\begin{aligned} & \text { sector } \\ & \text { size } \end{aligned}$
	$\begin{aligned} & 2 \times c . r . c . \\ & 12 \times F F \end{aligned}$	$\begin{aligned} & 2 \times c . r . c . \\ & 22 \times 4 \mathrm{E} \end{aligned}$	$\begin{aligned} & 2 \times c . r . c . \\ & 11 \times F F . \end{aligned}$	$\begin{aligned} & 2 \times \text { c.r.c. } \\ & 22 \times 4 \mathrm{D} \end{aligned}$	$\begin{aligned} & 2 \times c . r . c . \\ & 22 \times 4 E \end{aligned}$	$\begin{aligned} & 2 \times \text { c.r.c. } \\ & 11 \times F F \end{aligned}$
	$\begin{aligned} & 6 \times 00 \\ & \text { FB/FA } \end{aligned}$	$\begin{aligned} & 12 \times 00 \\ & \text { FB/F8 } \end{aligned}$	$\begin{gathered} 6 \times 00 \\ \mathrm{FB} \end{gathered}$	$\begin{gathered} 12 \times 00 \\ \mathrm{FB} \end{gathered}$	$\begin{gathered} 12 \times 00 \\ \mathrm{FB} \end{gathered}$	$\begin{gathered} 6 \times 00 \\ \mathrm{FB} \end{gathered}$
	256×data $256 \times$ data		$256 \times$ data $256 \times$ data		$512 \times$ data	$256 \times$ data
	$\begin{aligned} & 2 \times \text { с.г.c. } \\ & 12 \times F F \end{aligned}$	$\begin{aligned} & 2 \times \text { c.r.c. } . \\ & 24 \times 4 \mathrm{E} \end{aligned}$	$\begin{aligned} & 2 \times \text { c.r.c. } \\ & 21 \times F F \end{aligned}$	$\begin{aligned} & 2 \times \text { с.r.c. } \\ & 48 ? \times 4 \mathrm{E} \end{aligned}$	$\begin{aligned} & 2 \times c . r . c . \\ & 15 ? \times 4 E \end{aligned}$	$\begin{aligned} & \text { 2×c.r.c. } \\ & 9 ? \times \text { F. } \end{aligned}$
Padding bytes	$134 \times F F$	128×4E	31 ? XFF	$300 ? \times 4 \mathrm{E}$	$376 ? \times 4 E$	109? XFF
Total	3153	6264	3122	6210	6262	3113

single sector. It will maintain a list of granules which are free.

When allocating space for a file, the filing system draws the next available granule from this list and maintains in the directory an ordered list of the granules assigned to each file. This permits individual files to change their sizes within the overall limit of the physical storage space of the disc.
Disc filing systems provide many facilities not directly related to the mechanism used for storing files on the disc. Some functions extend the way in which files are manipulated, e.g. changing files names, modifying access protection or concatenating multiple files; whilst others are quite unrelated to files, e.g. support for real-time clock, program debugging aids and so on.

The Acorn disc filing system

This filing system is installed in the BBC microcomputer in readonly memory. It has the advantage of speed but is more limited than other filing systems. It is thus a good place to start. The following description relates to Acom's DFS; some variations of its derivatives are mentioned later.

The system supports up to four single-density disc surfaces, which may be in 40 or 80 track single or double-sided drives.
The catalogue occupies 512 bytes and resides on the first two sectors on track zero. The remainder of the disc is available for file storage.

The whole of each file is held in consecutive sectors. The first file written to the disc will occupy space from sector 2 upwards. Subsequent files will generally be placed immediately after previous ones, ensuring that no sectors are left unused initially. The granule concept is not implemented although the effect is of a variable granule size equal to the individual file lengths.
The gap left by deleting a file will be used subsequently when a file of length equal to or smaller than the gap is written to the disc. This will either use up the whole gap or leave a smaller one.
Eventually as files are written and deleted a time may arise when a file to be written is larger than any single gap although the sum of the gaps would be adequate. At this stage the user, who is warned of the problem, may choose to invoke a Compact command. This shuffles the files up to leave at the end of the disc a gap equal to the sum of previous gaps into which the required file may be written. The catalogue is adjusted to keep track of the files' new positions.
The catalogue contains 16 bytes describing the disc itself. It holds the disc name (13 characters), the number of files in the catalogue, the start-up option (used when rebooting the system) and the number of physical sectors on the disc. Each file entry in the catalogue also occupies 16 bytes, giving a maximum of 31 files per disc.
Each file name consists of up to seven characters. An additional character is available to allow the user to group files into a set known, confusingly, as a directory. DFS provides commands to allow the user to access files in a directory within the catalogue. Thus files may be grouped by type, e.g. Basic program files, or in whatever manner the user chooses. Individual files may be locked to inhibit the DFS from deleting or over-writing them. This information is carried in the catalogue as a single bit per file.

The remaining eight bytes in a file entry define the file's position on the disc, its size and its loading and execution addresses (if
appropriate). The maximum size of a file is in theory 1023 sectors but in practice is limited by the physical size of the disc (398 sectors on a 40 track single-density disc).

DFS provides 28 user commands and seven entry-points to assembly-language routines giving some 24 additional disc facilities which are generally implemented via the resident highlevel language processor.

Derivatives of Acorn's DFS seek to remove some of its limitations whilst retaining a degree of compatibility for file transfer. For example, the Watford DFS (Watford Electronics) extends support to a larger number of files by doubling the catalogue, which now occupies the first four sectors and allows a maximum of 62 files. This d.f.s. limits the disc name to 12 characters and uses one byte as a cyclic counter of the number of write commands issued to the disc. The counter is used to provide a measure of protection against writing to the wrong disc if the user changes discs in the drive whilst a file is being written.

CP/M and Superbrain

CP/M was developed by Digital Research Corporation as an environment for running application programs which would be independent of the actual microcomputer involved. This they achieved by incorporating all the software which deals directly with the peripheral hardware in CP / M itself and presenting a standard interface to the applications programs. Thus applications programs share the computer memory with the resident CP / M routines.

CP/M handles all the basic input/output messages via a set of predefined routines which are accessed through a fixed memory location. Each host microcomputer is supplied with its own version of CP / M which translates between the standard interface and the particular file structuring of the host system.

When CP/M is started up it loads the basic routines into high memory, then loads and executes a keyboard command processor. The bulk of the memory is available for whatever application program the user initiates from the keyboard.

It is a feature of CP / M that many of the facilities which an operating system typically sup-
ports are provided by application programs which are delivered with the host system but which are essentially separate from CP / M. Thus CP/M itself is very compact
The disc tracks which CP/M occupies are predefined but the remaining formatting and structure is determined by the host system.
Superbrain is one of the many microcomputers which support CP/M. It incorporates two built in 5_{5}^{l} in disc drives. These are $35-$ track double-density and may be single-sided or double-sided.
Tracks 0 and 1 of the system disc contain CP/M and the Directory resides on track 2. Each Directory entry is 32 bytes long and there is a maximum of 64 entries. Each entry comprises seven fields, some of which are not used by current versions of Superbrain.

The name and extension (fields 2 and 3) form the full file-name. On keyboard input the fields are separated by a full stop. Conventionally the extension is used to define the type of file, for example

$$
\begin{aligned}
& \text { BAS - Basic source file } \\
& \text { TXT - text file } \\
& \text { COM - executable } \\
& \text { program }
\end{aligned}
$$

The top bit of each byte of the extension has additional significance. For example, the top bit of byte 9 when set indicates readonly protection. In byte 10 it indi-
cates a file which is normally invisible.
The granule allocation (field 7) in any directory entry is limited to 16 granules each of 2048 bytes, giving a total of 32768 bytes. Should this be insufficient a second directory entry will be generated having the same file name and extension.

The file extent and record count (fields 4 and 6) together define the size of the file. CP / M treats files as a collection of fixed length records, each of 128 bytes. The highest numbered valid record addressed by any directory entry is held in these two bytes in a curious manner.

The length of the file is given loosely by
(file extent $\times 128$) + record count
Loosely, because CP/M permits truly random file access, with only those records which are in use being allocated disc space in granule units. Thus it is perfectly possible to create a file with records $100-110$ and no records numbered $0-99$. The six granules

which would have contained records $0-95$ will not be allocated and only 2048 bytes will be used. The first twelve bytes in the granule allocation field will be left blank, ready for use if the lower numbered records are subsequently needed.

Granules are numbered from zero beginning after the two tracks reserved for CP / M itself. Thus the directory occupies the whole of granule zero (64 entries by 32 bytes).

Files are allocated the lowest available granule and may be extended following their creation. Files which become smaller or are deleted will leave gaps which subsequent files will use.

The directory mechanism is unable to access tracks zero and one, even if the particular disc does not contain a CP/M system; but any file can grow until the remainder of the disc is full.

Superbrain uses a Western Digital 1791 f.d.c. This chip supports both single and double-
density, but in the Superbrain the f.d.c. is permanently selected to double-density mode.
One other curiosity of the Superbrain is its inversion of data bits between the microcomputer and the read/write head. This causes the magnetic encoding on the disc to be inverted with respect to other common microcomputers. Within the Superbrain itself no problems occur since inversion takes place both on reading and writing; but when a Superbrain disc is read on another microcomputer each data bit must be inverted to obtain the correct file data.
Superbrain uses sector interlacing to speed up sequential file access. The interlacing pattern follows the example given earlier. This is carried out in software and each physical sector is 512 bytes long. In other words, each sector contains four 128 -byte CP / M records.

To be contínued.

Semiconductor Suppliers
Some additions to our December list.

Cricklewood Electronics Ltd, 40 Cricklewood Broadway, London NW2 3ET.
Telephone: 01-4520161. A wide range of semiconductors from many sources. c.w.o. and credit/card orders.
Retail shop.
Intel Electronics Components Henlow Trading Estate, Henlow, Bed. SG16 6DS. Telephone: 0462
$812505 \mid C . W . O$. Franchised distributors for Ferranti, Muliard and Signetics.

Raedek Electronics

102 Priory Road, Scribers Lane, Hall Green, Birmingham B28 0TB Telephone: 0214746000 c.w.o Speciality: r.f. power transistors.

Technomatic Ltd, 17 Burnley Road, London NW10.
Telephone: 01-208 1177
Wide range of semiconductors fromimany sources, particularly strong in computer components.

The phone number for Active Electronics in the December issue should read: 0494 41414; Quarndon Electronics not only sell small quantities but also make no charge for post and packing. RS Components headquarters are at PO Box 99, Coby, Northants NN17 9RS, with the telephone number 0436 201234

Some manufacturers who did not get onto the chart, and their distributors. Addresses in the December 1984 issue.

ALCO - Semicond. Specialists ARRAY DEVICES - Consort Electronics
BROWN BOVERI - Norsem
BURR BROWN - Active

Electronics, Merlin Electronics
CTC - Active Electronics,
Merline Electronics
DATEL - Quarndon
DDC - Active Electronics, Merlin
Electronics
EDI - Memec
ELECTROMECH - G.E.
Electronics
ELECTROSIL - Noweco
ESC Electronic - G.E.
Electronics
EUROTECHNIQUE - Active
Electronics, Campbell Collins,
Merlin Electronics
FERKUNTI - Polar Electronics
GREENWICH INSTS - S.T.C
Electronic Services, Steatite
HUA-KO - Memec
IDT - Memec
IMP - Steatite
ISKRA - S.E.M.E.
KVG - G.E. Electronics
LAMBDA - Norsem
LINEAR TECHNOLOGY -
Dialogue Distribution, Microlog
LSI - Trident Microsystems
LUCAS - Langrex, Semicomps
MAXIM - Dialogue Distribution, Memec
MEDL - Distributed Technology
MELCHER - Memec

MICRO.E - Active, Merlin
MICROPAC - Regisbrook
NATIONAL PANASONIC Dialogue
PECOR - Today Electronics
PHILIPS - Semicond. Supplies IntI.
PROMAX - Anglia
RELIABILITY INC - Memec
Thame
RF GAIN - Distributed Tech.
SEMELAB -
Bi-Pak, Consort, DW Electronics
SEMTECH - Distributed Tech.
SHARP - Altek
SILICON POWER CUBE - Today
Electronics
SOLID STATE DEVICES -
Semicond. Supplies IntI.SPI -
Trident Microsystems
STANDARD MICROSYSTEMS -
Rastra
STC - Langrex, STC Services,
VSI Electronics
SYMBOL - House of Power
TAG - Norsem
TECCOR - Today Electronics
TELMOS - Norsem
UNITRODE - Memec
WESTERN - Active Electronics
WESTCODE - Consort,
Distributed Tech.

TERMS OF BUSINESS

* All prices exclude V.A.T. and carriage. Please add carriage to order total before adding V.A. T.
* Carriage charges extra on all orders as follows Components Books/Data/Software Printers, Monitors, Disc drives, etc
Strictly cash with order or credit card (Accer only.
*Delivery is normally from stock but please allow up to 28 days
* Any query or complaint regarding an order should be made in writing within 7 days of receipt of the order. No telephone queries will be entertained

* A V.A.T. receipt will be supplied with all orders
* Prices quoted are correct at the time of going to press but we reserve the right to effect changes without prior notice

HC25iN 1.03	$74 L 522$	0.17	4033

FAIRCHILD FAST
$74 F 00 P C$
$74 F 04 P C$
$74 F 08 P C$
$74 F$
$74 F 119 P C$
$74 F C$
$74 F 138 P C$
$74 F 138 P C$
$74 F$

$745159 P C$ \qquad | $74 H C 257 N$ |
| :--- | :--- | :--- | :--- | :--- |

 | 0.54 | 4082 |
| :--- | :--- | :--- |
| 0.41 | 4085 |管 ? $\begin{array}{ll}0.41 & 4099 \\ 0.43 & 4502\end{array}$

 $\begin{array}{rl}0.43 & 4502 \\ 2.00 & 4507\end{array}$ \begin{tabular}{l|l}
2.00 \& 4507

0.55 \& 4508

 $\begin{array}{ll}0.50 & 45 \\ 0 & 40 \\ 45\end{array}$ 0.4045 0.2945

0.40

0.48

\hline 0515

\hline
\end{tabular} 0.48451

0.50451 | 0.50 | 1.8 |
| :--- | :--- |
| 0.50 | 4518 |
| 1.30 .4 | |
| 0 | 0.25 | 1.30

0.72
0.4519
0.50 0.50
0.60 \qquad
$\begin{array}{ll}0.504526 & 0.8 \\ 0.5\end{array}$
0.50
0.16 0.23 0.23
0.23
0.48
0.23 4556
4.50
2.70

CRYSTALS

1 MHz
1008 MH 1.008 MHz
1.8432 MHz 1.8432 MHz
2.4576 MHz

4 MHz
6 MHz
6 MHz
8 MHz
3.6864 MHZ 9.8304 MHZ
2.70
3.50
2.00
1.25
1.30
1.25
2.00
2.75

TS TIN
 DIL SKTS TIN

$\begin{array}{lllll}34 & 07070802 & 8 \text { PIN } & 1+07 & 100 \\ 0.07 & 0.05\end{array}$

$\begin{array}{lllll}07071402 & 14 \text { PIN } & 0.07 & 0.05\end{array}$ | 07071602 | 16 PIN | 0.09 | 0.07 |
| :--- | :--- | :--- | :--- | :--- | :--- |
07071802	18	0.07			07071802	18 PIN	0.15	0.10	
07072002	20 PIN	0.19	0.14	$\begin{array}{llll}0707202 & 20 & \text { PIN } & 0.19 \\ 0.19 & 0.14 \\ 07072202 & 22 & \text { PIN } & 0.21 \\ 0.15\end{array}$.35	07072402	24 PIN	0.24	0.16
:---	:---	:---	:---	:---					
07072802	28 PIN	0.26	0.17		$7 \begin{array}{llll}107074002 & 40 \text { PIN } & 0.29 & 0.18\end{array}$ DIL SKTS GOLD				

39060608028 PIN

20606140214 PIN
210606160216 PIN

22	06061802	18 PIN
	06062002	20 PIN

0.210606220222 PIN
$.7706062402 \quad 24$ PIN
0606240228 PIN
0606400240 PIN
DIL SKTS W/WRAP
TURNED PIN
0.16
0.20
0.21
0.22
0.28
0.32
0.42
0.46
0.66

16	9090802	8 PIN	0.36
16	9091402	14 PIN	0.75

0.55	9091402	14 PIN	0.75
0.15	9091602	16 PIN	0.86
0.50	9091802	18 PIN	0.96
0.25	9092002	20 PIN	1.08
0.25	9092202	22 PIN	$\mathbf{1 . 1 8}$

mon
Nug

components

- onnecting cables for personal computers

comprehensive range of high quality intefconnecting cables for popular micro computers. All cables

Part numbe

Description
Computer

Video cables

CON100
CON101
Phono plug to phono plug (2M)
Phono plug to BNC piug (2M)
Phono plug to BNC piug (2M) BNC plug to BNC plug (2M) 6 pIn DIN to open end (1 M) Phono plug to coax plug M)
M)路

CON107 CON108

OIN plug to 2 phono plugs
BBC
Dragon

PART NO.	DESCRIPTION	MAIL, ORDER
BBC MICROS AND ACCESSORIES		PRICE
ANB01 ANB02 ANB03 ANB04 ANB21 ANB23 ANB14 ANK01 ANB22 BBC 45 STAND SRE1	BBC Model B Micro BBC Modei B Micro with Econet I/F BBC Model B Micro with Disc $1 / F$ BBC Model B Micro with Disc \& Econet DNFS ROM Disc Interface Kit (Excl DNFS ROM) Speech Interface IEEE488 interface Adaptor Econet I/F Kits 2 BBC Joysticks Monitor Stand Sideways ROM Expansion Board for BBC Micro	
BBC DISC DRIVES		
$\left\{\begin{array}{l} H C 1 \\ H C 1 S \\ H C 1 D \\ B B C 44 \\ B B C 44 S \\ B B C 4 A S W \\ B B C 44 D \end{array}\right.$	Single 100 k 40 track single sided Single 100 k (expandable to dual) 40 track Dual ($2 \times 100 \mathrm{k}$) 40 track single sided Single 400 k 80 track double sided Singie 400k (expandable to duai) 40/80 track switchable double sided Single $400 \mathrm{k} 40 / 80$ track switchable double sided Dual ($2 \times 400 \mathrm{k}$) $40 / 80$ track switchable double sided	
MECHANISMS		
	100k single sided Alps 400k double sided Epson	$\begin{aligned} & £ 70.00 \\ & £ 140.00 \end{aligned}$
FLOPPY DISCS		
MD-1C/B MD-10C/B MD-20C/B MD-2FC/8	Nashua single sided, single density 40 track (10 discs) Nashua single sided, double density 40 track (10 discs) Nashua double sided. double density 40 track (10 discs) Nashua double sided, quad density 80 track (10 discs)	$\begin{aligned} & £ 12.00 \\ & £ 13.00 \\ & £ 15.50 \\ & £ 17.85 \end{aligned}$
SPECIAL OFFER		
BBC40TO	BASF double sided, double density 40 track (10 discs)	£14.00
DISC STORAGE BOXES		
MDT25/3 DT25/5 DT60/5	31. Flip ' N ' file Micro disc box (cap 25) 54.- Flip ' N ' file lockable disc box (cap. 25) 5.' Standard lockable disc box (cap. 60)	$\begin{aligned} & £ 7.75 \\ & £ 18.77 \\ & £ 10.65 \end{aligned}$
MONITORS		
$\begin{aligned} & 9 M O N \\ & 12 \mathrm{MON} \\ & 1431 \\ & 1441 \\ & 1451 \\ & 1431 / \mathrm{AP} / \mathrm{MS} \end{aligned}$	9 inch green screen high resolution NEC high quality monitor 12 inch green screen high resolution NEC high quality monitor Microvitec 14* RGB colour monitor Microvitec $14^{*} \mathrm{RGB}$ colour monitor high resolution Microvitec $14^{-} \mathrm{RGB}$ colour monitor medium resolution Microvitec 1431 PAL \& RGB inputs and sound facility	£125.00 £135.00 £ 175.00 £ 410.00 £295.00 £225.00
EPSON COMPUTERS AND ACCESSORIES		
$\begin{aligned} & \text { PX• } 8 \\ & \text { PX- } 8 / 120 \\ & \text { CX-21 } \\ & \text { PF/10 } \\ & \text { P40 } \\ & H X-20 \end{aligned}$	Epson portable computer (incl. CP/M and s/w) 64k 120k RAM Acoustic coupler Disc drive for $\mathrm{PX}-8$ Thermal printer for PX-8 and HX-20 Epson portable computer	£ 798.00 E160.00 £360.00 £86.91 £ 411.00
MATRIX PRINTERS		
$\begin{aligned} & R \times 80 \\ & R \times 80 F / \pi \\ & F \times 80 \\ & \text { MT80SP } \end{aligned}$	Epson RX80 100cps matrix printer Epson RX80F/T 100 cps matrix. printer friction or tractor feed Epson FX80 150cps matrix printer Mannesmann Tally MT80 marrix printer friction or tractor feed with film ribbon and tear off facility	$\begin{aligned} & £ 204.00 \\ & £ 231.00 \\ & £ 328.50 \\ & £ 217.00 \end{aligned}$
LETTER QUALITY PRINTERS		
HR5 HR15 HR25 UCHIDA	Brother HRS Thermal printer A / C mains or battery Brother HR15 Daisy wheel printer (13 cps) Brother HR25 Daisy wheel printer (23 cps) Uchida DWX305 Daisy wheel printer (20cps)	$\begin{aligned} & £ 130.00 \\ & £ 326.00 \\ & £ 550.00 \\ & £ 227.00 \end{aligned}$
PRINTER SUPPLIES		
11241P160 11241 P 2 Cl 11241 P 3 Cl 11370 R160 11370 R2NC 11370 R 2 Cl 12235P160S HR1R RIB1 19 GP205 M×80 MT80 RIB117 HR5R HR15R HR25R LAB089361C LAB0893615 LAB070363F	11×9 : 1 part plain listing paper $(2,000)$ 11×9 2, 2 part (otc) plain listing paper (1,000) $11 \times 9{ }_{2}^{2} 3$ part (ote) plain listing paper (700) $11 \times 14^{1} 1$ part ruled listing paper $(2,000)$ $11 \times 142 \mathrm{Z}$ part (nc) ruled listing paper (1,000) $11 \times 14: 2$ part (otc) ruled listing paper (1,000) 13×9 ' 1 part piain listing paper with side perts (2.000) Brother HR 1 ribbon Diablo Hytype II Multistrike film ribbon Diablo Hytype 11 fabric ribbon Epson $\mathrm{M} \times 80$, $\mathrm{R} \times 80, \mathrm{FX} 80$, fabric ribbon Mannesmann Tally MT80 film ribbon Uchida DWX305 multistrike film ribbon Brother HRS ribbon Brother HR15 multistrike ribbon Brother HR25 multistrike ribbon Brother daisy wheels Uchida/Qume daisywheels $3, \times 1.7 / 16$ Labels - 1 wide $(8,000)$ 3 31.7/16 Labels - 1 wide (2.000) $2!1.7 / 16$ Labels -3 wide $\left(1 / 10^{\circ}\right)(2,000)$	$\{12.56$ £15.93 $£ 17.86$ E16.20 E22.50 £ 15.00 $E 12.00$ E2.20 E. 75 £2.50 E6:50 ¢2.75 ¢2. 20 £4.00 £4.00 £ 14.00 £4.00 £20.0 $£ 8.00$

Cassette recorder cables

CON109	7 pin DIN to open end	BBC	1.25
CON110	7 pin DIN to $2 \times 35 \mathrm{~mm}+1 \times 25 \mathrm{~mm} /$ /plug	BBC	2.50
CON111	7 pin DIN to 5 pin DIN +25 mm J/plug	BBC	2.50
CON118	5 pin DIN to $2 \times 35 \mathrm{~mm} \mathrm{~J} / \mathrm{plugs}$	Spectrum/2X	2.50
CON117	5 pin DIN to $2 \times 35 \mathrm{~mm}+1 \times 25 \mathrm{~mm} \mathrm{I} / \mathrm{plug}$	Dragon	2.50
Parallel printer cables			
CON130	36 way plug to 36 way plug (2M)	Sirius/Apricot	18.00
CON131	36 way plug to 36 way piug (5M)	Sirius/Aprico:	26.50
CON132	36 way plug to 36 way socket (2M)		18.00
CON133	36 way plug to 36 way socket (5 M)		26.50
CON144	36 way plug to 25 way male D type (2M)	IBM/TI PC	19.00
CON145	36 way plug to 25 way male D type (5M)	IBM/TI PC	27.50
CON134	36 way plug to 25 way male D type (2 M)	RML/Apple	19.00
CON135	36 way plug to 25 way Male D type (5 N)	RML/Apple	27.50
CON142	36 way piug to 20 way (DC sorket (2M)	Dagon	13.95
CON1 39	36 way plug to 26 way IDC sorkei (2M)	BBC	9.95
CON140	36 way plug to 26 way IDC socket (5M)	BBC	22.95
CON141	36 way plug to 34 way Card edge (2M)	TR580 Lev 1	18.50
CON143	36 way plug to 34 way IDC socket (2M)	TR580 Lev. $2 i$	
		Memotech	10.95
RS232 Cables			
CON106	25 way male D type to 5 pin DIN	BBC	5.85
CON128	'Universal' R5232 cable (pins 1-8, 20 connected and 20 jumpered as required) 2 M		15.95
CON164	'Universal' RS232 cable as above but 5M		20.95
CON120	25 way male to male 1.25 connected (2M)		16.95
CON121	25 way male to maie 1-25 connected (5M)		22.50
CON122	25 way male to male $1-25$ connected (10M)		32.50
CON123	25 way male to male 1-25 connected (30M)		68.00
CON124	25 way male to temale 1-25 connected (2M)		15.45
CON125	25 way male to temale 1-25 connected (5M)		21.00
CON126	25 way male to female 1-25 connected (10M)		31.00
CON127	25 way male to female 1-25 connected (30M)		66.50
CON129	25 way maie to 9 way male	Spectrum	15.95
CON162	25 way male to 9 way male	Mackintosh	15.95
CON163	25 way male to 5 pin DIN	RML 480Z	14.95

CIRCLE 36 FOR FURTHER DETAILS.

The end of the coat-hanger era
 Vandal-proof demister aerials for m.f. and v.h.f. reception in cars

Brian Easter and Dr David Last of the University College of North Wales, Bangor, were consultants to Industrial Development Bangor (UCNW) Ltd.
Fig. 1. An early window aerial formed by conductors up the centre and along the edges of the glass of the windscreen, retaining good visibility.

Fig. 2. VHF/f.m. aerial and matching circuit printed in the narrow space above the heater conductors of the rear window.

Whip aerials of about 1m length have been the standard broadcast receiving aerials on cars for many years, yet they have a number of serious disadvantages. They are expensive to fit, requiring the metalwork to be drilled; they corrode so that their performance deteriorates; they injure pedestrians in accidents, and they cause significant aerodynamic drag increasing fuel consumption. From the owner's viewpoint they are a nuisance in garages and car-washes and they present an irresistible temptation to vandals - and a source of profit to coathanger manufacturers!
These snags have stimulated engineers into a long search for satisfactory alternatives. Short 40 cm whips, mounted on the roof or boot, are now widely used in West Germany. Active aerial techniques, employing amplifiers in the base mouldings, compensate for the loss of signal due to their reduced length. But these aerials can still be damaged and corrode.

There has also been a major effort to develop windscreen aerials that are both vandal and corro-
sion-proof and which do not protrude from the vehicle ${ }^{1}$. Fine conductors are inserted between layers or deposited on the surface of the glass. However, any window aerial is limited in size and must be inconspicuous. Conductors are more intrusive on the windscreen than on any other window sodesigners have been obliged to concentrate them towards the edges of the glass, undesirably close to the metal bodywork, Fig. 1. The windscreen aerial is also adjacent to powerful sources of electrical interference - the engine, windscreen wipers and the many accessories concentrated on both sides of the firewall.

Why not put the aerial on the rear window instead of the windscreen where it is less intrusive and further from the engine? Unfortunately the demister has already claimed most of the area of the glass, though it is possible to reduce the size of the demister sufficiently to squeeze in an aerial for the v.h.f. f.m. band above it, Fig. 2. Again the aerial is close to the bodywork and prevents the upper part of the window from
being demisted.
An attractive technique, which we have chosen, is to use a fullsize, no-compromise demister and use it sumultaneously as an aerial. This approach makes the most efficient use of the window aperture to provide an aerial of substantial size.
But, there is a major obstacle: signals received on the demister must be separated from the heater supply - a direct current of typically 15 A which carries electrical interference. This is a difficult problem for medium and long-wave reception (1551605 kHz). The heater current may be passed through ferritecored chokes, Fig. 3(a), but the aerial is a voltage source of high capacitive reactance at these low frequencies so the chokes must be physically small, have high impedance, and also be able to pass heavy currents without saturating.

The solution to these conflicting requirements is to wind bifilar chokes, Fig. 3(b), in which the magnetic fields due to the currents flowing to and from the demister cancel one another ${ }^{2}$. By

maximizing winding efficiency, it is possible to manufacture chokes of 1 mH inductance using ferrite pot-cores of only 25 mm diameter. Their resistance must also be controlled so that they drop less than 500 mV at 15 A heater current.

Simply connecting the radio receiver to the aerial via a d.c.blocking capacitor and a cable as in Fig. 3(b) - is inefficient. Car radio receivers are designed to be used with conventional whip aerials fitted with low-capacitance coaxial feeders that offer a source capacitance of approximately 80 pF . The tuning circuits of many radios will not track correctly if the aerial capacitance is outside the limited range of their adjustable compensating capacitors. When using a feeder of too great a capacitance - an extension lead from a rear-mounted aerial, for example - a small series capacitor is fitted which brings the source capacitance at the radio into range. Inevitably, this reduces the signal voltage at the aerial terminals of the radio by potential division.

Rear window demisters normally have capacitance to ground values in the range $75-400 \mathrm{pF}$. With the series capacitor technique, Fig. 4, not only is the potential division between the source and the chokes-plus-series-capacitor substantial but the inductive susceptance of the chokes still leads to imperfect receiver tracking. This arrangement typically gives 20 dB less sensitivity than a wing-mounted whip aerial.
The situation can be greatly improved by isolating the cable from the aerial using a buffer amplifier, even a simple voltage follower. A further improvement results from redesigning the conductor patterns of those demisters that have their terminal busbars buried under rubber mouldings; many of these mouldings are not made of rubber at all, but of plastics so loaded with carbon as to be electrically conductive! Adopting these techniques increases signals at the receiver to a level comparable with those from front-mounted whips - and typically 6 dB stronger than rearmounted ones.

VHF problems are quite different

Isolating the radio signals from the heater current simply requires small chokes and blocking capacitors. But at very high frequencies the performance of demister aerials is found to vary
greatly from vehicle to vehicle. This variability occurs because the lengths of the heaters are of the order of half a wavelength so their performance as aerials depends on the details of the conductor patterns, the window aperture sizes and the connecting leads; a few centimetres can make a big difference.
Ideally the complex frequencydependent impedance of each demister aerial should be matched to the input impedance of the radio across the v.h.f./f.m. broadcasting band - 88 108 MHz . The input impedances of car radio receivers at v.h.f. are typically 100 ohms resistive (although often poorly defined) and the characteristic impedances of the feeder cables are similar. Repeatability of the demister impedance from vehicle to vehicle at v.h.f. can again be greatly improved - and the signal levels increased - by removing the bus-bars from the mouldings. All that remains is to match a complex aerial impedance to a badly-defined load across a broad bandwidth!
The problem is simplified by again interposing a buffer amplifier between the aerial and cable and then matching the aerial to the input impedance of the ampli-

Fig. 3. A demister may be used as an aerial, with the demister isolated from the heater supply circuit by simple chokes (a). In (b), a single bifilar-wound choke ensures that the d.c. magnetization is eliminated. (c) Shows the complete demister aerial system incorporating a vhf matching circuit and pre amplifiers for both a.m. and f.m. bands.

Fig. 4. Equivalent circuit, for medium and long waves, of the demister aerial with isolating chokes and standard car-radio extension cable incorporating series capacitor. Aerial and cable capacitances form a potential divider which reduces the signal voltage at the receiver aerial terminals.

Fig. 6. Smith chart shows feed-point impedance of the Ford Orion demister aerial (a), and impedance presented to the input of the v.h.f. amplifier, (b).

Fig. 5. Ford Orion demister aerial. The folded heater pattern allows both heater connections to be made via a single isolator unit.
fier. Choosing a low-noise amplifier and providing an approximately noise-optimal source impedance should enhance the sensitivity of the receiving system. It would be attractive to load each end of the demister with a susceptance making a symmetrical, resonant system with a current maximum in the centre farthest from the bodywork. But this would mean fitting isolator units at each side of the window.

It is simpler, and very effective, to use a folded demister pattern with one end left open-circuit and the other end loaded and matched in a single unit, Figs 3(c) and 5.
The input impedance of a folded heater of this kind is shown in Fig. 6(a), two connections being common at r.f. Its Q-factor is approximately 20 (others are as high as 50) so the matching must be a compromise over the broad band. Fig. 6(b) shows the source
impedance presented to the grounded-gate fet amplifier; a second-order matching network has been employed. Bode's integral indicates that the most complex possible matching network would give a mismatch loss only some 1dB less than this is so the circuit is a reasonable compromise between quality of match and complexity.
The f.m.-band isolating chokes separate the signals into the two

amplifiers, see outline schematic of the whole demister aerial system, Fig. 3(c). At the output, the signals are recombined and fed from low-impedance sources via the cable to the receiver. The matching and isolating components are in a small unit which is mounted in the roof pillar adjacent to the demister terminals. It also contains protection against reversed and over-voltage supplies and static discharges to the aerial. An external choke and capacitor filter electrical noise from the demister supply.
The need for effective v.h.f. matching dictates that efficient demister aerials must be designed as original equipment and will differ in detail between vehicle models. Their performance will also depend on the design of the vehicle, as does that of a whip aerial. Fig. 7 compares the v.h.f-band sensitivity of the demister aerial system, fitted as original equipment on a Ford Orion saloon, with that of a quar-ter-wave whip aerial mounted in the centre of the roof. When receiving horizontally polarized signals at 98 MHz the demister provides on average 20 dB greater signal voltage at the input terminals of the radio than does the whip. Its sensitivity varies with direction by approximately 3 dB r.m.s.

The whip, of course, is much more sensitive to vertically polarized signals, Fig. 8. The demister aerial still gives an average signal 4 dB stronger than the whip although it is less-uniformly omni directional. Many UK v.h.f./f.m. broadcasting stations either already transmit mixed-polarized signals or are being converted to do s^{3}. In many countries horizontal polarization is employed, so it is important that an car radio aerial is able to receive both planes of polarization effectively.
The gain of the v.h.f. amplifier has been kept low so as to avoid intermodulation problems; 1dB gain compression occurs at an input signal power of -5 dBm , well below the signal received at the base of fairly high-powered transmitter masts ${ }^{1}$. Of course, in designing a complete receiving system for a vehicle the gain of the radio must be adjusted to allow for that of the amplifier if the dynamic range is to be optimized.

The level of medium-wave signals received on the demister is within 1 dB of those from a wingmounted whip and about 6 dB greater than from a rear-mounted one. At the lowest frequency end

Fig. 7: Horizontal polar diagram of Ford Orion demister aerial with horizontally-polarized signals - compared with a quarterwave whip in the centre of the roof. The demister aerial gives substantially greater
signal voltages and less
variation with direction.

Fig. 8. Horizontal polar diagram of Ford Orion demister aerial with vertically-polarized signals. The demister aerial provides a performance comparable to the roof-mounted quarterwave whip which, in this case, is greatly superior to the standard wing-mounted car radio aerial.
of the long-wave band the performance of the demister aerial falls about 8 dB below the whip's because of the limited size of the isolating chokes. To have made them larger however would not have increased the signal-to-ambient-noise ratio which is what generally controls the subjective acceptability of automobile longwave reception.
In hatch-backs or estate cars there is no room to mount the isolator unit at the side of the window so the folded demister pattern shown in Fig. 5 cannot be used. Instead, the bus bars are extended down the sides and along the lower edge of the glass and the isolator is fitted inside the tailgate. This diameter arrangement performs as a radio aerial at least as well as the folded pattern and it can be used on vehicles of all types.
The demister aerial system is not only advantageous to the user but also to the vehicle manufacturer since both labour costs and numbers of parts are reduced. The principal advantage to both parties, however, is the reduction of aerial failures from whatever cause. It is interesting to calculate that the number of car radio aerials manufactured annually world-wide is nearly half the total number of cars in use - and that represents a new aerial for every vehicle each two or three years!
The development of the system described in this article has been the work of a number of people, at BSH Electronics Ltd and Salford Electrical Instruments Ltd, as

well as at the Ford Motor Company.

References

1 Lindenmaier, H.K. and Hopf, J.F., 'Active windshield car aerial for broadcast receivers', IERE Conf. on Radio Receivers and Associated Systems, Leeds, July 1981, p. 137.
2. Kropielnicki, B.E. and Kropielnicki, J.J., 'Electrical device to enable the heating element of an electrically heated motor vehicle window to be used as a radio aerial', UKPatent 1520030, 1978.
3. Taylor, G.H., 'VHF sound broadcasting: a comparison of horizontal and mixed polarization', IEE Conf. on Radio Spectrum Conservation Techniques, Birmingham, Sept 1983, p.3.

Variable-speed video playback

D-a conversion, colour processing and dropout compensation

Most TBC d-to-a convertors follow a conventional layout where switched current sources, one for each bit, feed a resistor ladder. In discrete component d-to-as the current sources will be factory adjusted by presets to the correct binary weighting. A benefit of the adoption of monolithic d.a.cs will be the elimination of these adjustments. Figure 1 shows the essentials of a video d.a.c. Note that all of the current sources are programmed by a single reference, which can be used to set the gain. The current switches are differential, which means that current is either fed into the ladder or sunk. The current sources thus see a more constant load than would be the case with single-pole switching.

The d.a.c. proper is immediately followed by a resampling gate. The function of this gate is twofold. Firstly, skew between data bits will cause transients from the d.a.c., and the gate will be arranged to be open circuit until the d.a.c. settles. This however is not the prime function of resampling. In the absence of resampling, the d.a.c. output frequency response would be that of a zero-order hold sampling system, i.e. the aperture ratio is 100%, which causes the output level to roll off to 64% of maximum at half sampling rate. The resampling process reduces the aperture ratio to the duty cycle of the gate, yielding a corresponding improvement in frequency response. The effect of resampling at various apertures is shown in Fig. 2. The chosen aperture ratio reflects a compromise between the perfect frequency response of an impossible zero aperture, and the reasonable output signal level from a large aperture. A common figure is 50% since this permits the drive to the switch to be transformer coupled. An aperture-effect equalising circuit will be necessary fol-

[^1]lowing resampling. Since the aperture effect causes a $\sin x / x$ response, the natural choice is a cosine filter, but tuned circuits can also be found. A reconstruction filter returns the output of the resampler to a continuous analogue waveform. The frequency response of an ideal filter would be linear up to half the sampling rate, and have infinite attenuation thereafter. However, the use of $3 \times$ or $4 \times$ subcarrier sampling rates allow the use of fil-

Colour processing and dropout compensation

These two TBC subsystems have completely different functions, but are usually found together since common circuitry can be used for both. The necessity for dropout compensation (hereafter abbreviated to DOC) is self evident, and although it has nothing to do with timebase correction per se, it is implemented in TBCs

Fig.1. Typical video d-to-a convertor. Programmed current sources feed resistor ladder. Alternatively, current sorces in power ratios can be summed, or a combination of both used.

Fig.2. Aperture effect in resampling shown at (a) causes h.f. loss dependent on aperture ratio. In (b) the aperture correction required is less for $\mathbf{5 0} \%$ aperture ratio.

Fig.3. Simplified d-to-a and output subsystem converts memory samples to analogue
video and adds reference sync pulses and bursts. For varispeed a colour processor
is necessary and this is
connected at 'CP' if colour processing follows timebase correction.

Fig.4. Variable-speed operation causes infrequent jumps at near-writing speed. This causes a low-frequency alternation between full interlace and field mismatches. In this example, at approx. 10% above normal speed, the head traces nine tracks and then jumps one,
giving a match/mismatch period of 360 ms . At 1% above normal speed, the period is about four seconds.
because it is conveniently done in the digital domain.

Dropout compensation depends on the substitution of information from previous lines, which on typical programme will correlate reasonably well. Owing to the PAL four-line sequence, unaltered video from the previous line would be useless since it would have the wrong V-switch sense and Sc - H phase. Video from four lines back would not correlate well with the missing information. The solution is to separate luminance and chrominance. Luminance from the previous line is used to give good subjective correlation, and inverted chrominance from two lines back is added to it. Chrominance separation and inversion are relatively simple in digital circuits.

The use of variable speed means that fields are repeated or skipped, and the eight-field sequence of broadcastable PAL is broken. The most obvious difficulty is that the odd-even field sequence necessary for interlace will be broken, and the TBC may have to generate an even field from an odd field or vice versa. The greatest problem is, however, the effect of track jumps on $\mathrm{Sc}-\mathrm{H}$ phase.

At normal speed, a TBC locks to offtape bursts to write the memory and to reference bursts to read it. The TBC is essentially using its variable delay to line up offtape subcarrier to reference. If
an out-of-sequence field is presented to a TBC operating in this mode, it will still line up the offtape bursts to reference, but it will do so at the expense of a horizontal picture shift which will be plus or minus 56 or 112 ns , depending upon the way in which the sequence is broken. Variablespeed operation would result in random picture shifts making the programme unviewable.
The only solution to picture shift is to decode the PAL waveform back to Y, U and V using offtape subcarrier, and re-encode using reference subcarrier. This is the function of the colour processor. Further colour processing in some TBCs consists of chroma noise reduction by line averaging, and the provision for use with colour-under-type video cassette recorders.
The creation of odd fields from even and vice versa can be achieved in two different ways. Since the TBC line addressing system is locked to H -pulses, the $\frac{1}{2} \mathrm{H}$ shift relative to vertical timing will be removed by default when the memory is read. An alternative is to interpolate the luminance for one field from adjacent lines above and below in the other field. The lower resolution of chroma renders chroma interpolation superfluous. The process requires Y/C separation, which is also a requirement of the DOC circuit. The luminance interpolator can thus be a part of the dropout compensator, which is why
the two are associated in this description and in real hardware. Furthermore, similar timing signals are required by both, making for a more elegant design if both subsystems are on the same side of the memory.

It is interesting to compare the subjective results with and without interpolation. At a speed close to normal, track jumps will be of one track only, and may be several seconds apart. Figure 4 shows that offtape odd-even timing will change at each jump, spending a roughly equal amount of time matched and mismatched with respect to reference. The default approach simply moves an odd field down the screen by one line to create an even field up a line to create an odd field. The critical eye can perceive these vertical shifts at each track jump. The process of interpolation eliminates the vertical movement, but when there are slowly alternating matches and mismatches, the interpolator can be seen to turn on and off, causing a focus popping effect. One or other of these phenomena has to be accepted due to the fundamental field-per-track layout of C -format.

To overcome these problems in stop motion, most v.t.rs offer the stop-frame facility, where two fields are repeatedly scanned (see Part 1). This gives better results on slowly moving scenes, whereas still-field is to be preferred for rapid movement since adjacent fields will not then correlate well. Some top-of-therange broadcast recorders offer a tape speed offset facility, where the capstan is driven at a small but very precise offset from unity speed. This allows slightly overlength programmes to be squeezed into scheduled times. In this mode the v.t.r. can be set up to lock offtape odd-even fields to reference, and maintain that lock by using only two track jumps. The picture jerks due to two track jumps are clearly twice as great as with single track jumps, but they are infrequent in t.s.o. mode, and the provision of full interlace is to be preferred.

Clearly the combined effects of odd-even field restoration and colour processing must result in a reduction in the resolution of the picture. The colour processor usually restricts luminance bandwidth deliberately, to match horiztonal resolution to the degraded vertical resolution, since anisotropic resolution looks odd. The softness of a varispeed picture

can be discerned, but at low speeds it is masked by blur due to subject movement, and at high speeds the eye is distracted by the rapidly changing scene.

Varispeed operation causes changes in offtape subcarrier frequency, but the colour processor depends upon fixed delays and filters for its operation. Where a colour signal is only necessary over the broadcast speed range (typically $-1 \times$ to $+3 \times$) the change in subcarrier frequency is relatively small, and the colour processor can be installed before the a-to-d convertor. The DOC will then be fitted between the a-to-d and the memory. Such a TBC will resort to monochrome operation in shuttle. Where colour in shuttle is provided, colour processing can only take place after timebase correction, and DOC will then be between memory and the d.a.c. Figure 5 compares these configurations.

Colour processor

Figure 6 shows the block diagram of a typical colour processor. Luminance is separated by a lowpass filter of about 3 MHz to give isotropic resolution. Chrominance is separated by a bandpass filter. Input burst drives a v.c.o. which provides the reference for the U and V detectors. The U and V baseband signals are now re-

encoded at the desired Sc - H relationship, and the resulting chroma is added to the luminance. A small delay in the luminance path compensates for the chroma delay due to decodeencode.
If the colour processor precedes the memory, then this is all that is necessary. The input will be offtape video, and the reference will be advanced to compensate for the TBC delay. Data entering the memory in such a system will therefore be in an eight-fold sequence even in varispeed. Reading the memory is quite straightforward.
If the colour processor follows timebase correction to provide colour in shuttle, there are a number of additional problems. Memory overloads are a normal
event in shuttle, and to reduce the effect on the picture, they are achieved with two-line address jumps. However, in colour, a two-line address jump causes a chroma inversion, and the colour processor needs a compensating inversion circuit and control logic.
Overloads can occur on read or write, but both need compensation. The memory thus has to store a data bit for each line to indicate if a write overload took place until the line is read. The chroma invert memory is used for this purpose. The invertor is driven by an Or function of chroma-invert memory output and read overload. Since write overloads only occur in forward shuttle and read overloads only occur in reverse, simultaneous

Fig.5. Simplest approach to varispeed TBC is at (a). Colour processor and DOC precede the memory. Since colour processor precedes timebase correction, colour is only available over the broadcast speed range. System reverts to monochrome in shuttle.

Fig.6. Colour processor block diagram. Following Y/C separation, optional chroma inversion (for colour shuttle TBCs) and chroma noise reduction, chroma signal is detected input burst derived reference, back to baseband U and V signals.
These feed encoder which produces chroma relative to reference Sc and V switch.

Fig.7. Example of chroma inversion. In reverse shuttle, read overloads occur periodically, causing two memory lines to be re-read ($3,4: 9,10: 15,16$). Owing to the PAL four-line sequence, this causes chroma inversion, decodes of U and V being in error. Chroma invert signal, effectively Overload/2, compensates for overload by inverting chroma before decoder. In forward shuttle, write overloads have similar effect except that overload is stored in chroma invert memory until line is read.

Fig.8. With U-matic type v.c.rs, offtape unstable line rate is multiplied by 282 to give head-to-tape speed proportional to frequency. Colour-under offtape signal is heterodyned with a v.c.o. whose frequency is controlled to make output heterodyne frequency equal to V -Sc input. Up-converted chroma now has same instabilities as luminance, and can be timebase corrected.
write and read overloads, which would mutually cancel, do not occur. Figure 7 shows the timing of a chroma inversion sequence. Optional extras shown in Fig. 6 are now described.

Since the presence of V-switch spectrally separates U and V energy by half-line-rate spectral steps, it follows that a 1 H delay comb filter will separate U and V and line average them. Line averaging degrades vertical chroma resolution by a factor of two to give a 3 dB improvement in chroma s / n. Owing to the fixed 1 H delay, CNR is only possible after timebase correction.

Most C-format TBCs also support the use of ${ }^{3}$ in U-matic cassette recorders. Since these machines do not have ful bandwidth, chroma is down converted to a subcarrier of about 1 MHz which can be accommodated below the f.m. luminance carrier spectrum. On playback this socalled colour-under signal is heterodyned with a local oscillator to return the subcarrier to the
correct frequency. However, if the oscillator frequency is fixed, timebase correction becomes impossible because the upconverted chroma in the presence of jitter will be at a difference frequency which is not proportional to head-to-tape speed. The solution is to use a heterodyne frequency which is locked to playback H-rate, which will follow playback instabilities to produce an upconverted signal, whose instabilities are proportional to head-to-tape speed and can be corrected. The TBC takes offtape H and sends back to the v.c.r. a reference subcarrier with the same instabilities. The v.c.r. controls the local oscillator to make the upconverted chroma the same frequency as the reference. Standard PAL subcarrier frequency is not used, since the relationship to H is so complex: a frequency of 282 fH is commonly used. The v.c.r. chroma will now have the same instabilities as the luminance, but the wrong subcarrier frequency. This is easily
solved since the decode/encode in the colour processor can be used to change subcarrier frequency for U-matic playback just as easily as to change subcarrier phase for varispeed C -format playback. This frequency-changing facility will be built into the colour processor, whereas the 282 fH generator will generally be an option, since it is not needed for C -format only. Figure 8 shows the essentials of a colour-under heterodyne configuration.

Dropout compensation

When the v.t.r. plays over a tape defect, the r.f. level falls, and the signal will be noisy. The v.t.r. detects the loss of r.f. and replaces the noise with black level: a logic level dropout signal is sent to the TBC. An altemative is to send an analogue r.f. level signal so that the TBC can detect dropouts for itself. The use of prior line luminance replacement implies Y/C separation, and this is most conveniently achieved with digital filters, the advantages being that no setting up or tuning is necessary in manufacture, and there is no response drift due to component ageing. The accuracy of Y/C separation for DOC does not have to be very high, since the transient nature of dropouts prevents critical appraisal of the substitution. Provided the replacement video has reasonably well matched luminance, and is roughly the right colour, dropouts will go unnoticed.

The series will conclude with a piece on digital filtering.

wy A.E.camell The information society

 How society is changing . . . or is it?

 How society is changing . . . or is it?}

By focusing on information, we force ourselves to consider the route along a thorny track towards an inevitable outcome - a world where the production of goods and many services are performed by machines provided with the necessary information. The claim has already been made, as stated earlier, that 50% of the US labour force (and by implication a substantial percentage in other countries) is engaged in information processing. What does that imply?
The figures originally generated by Porat, and discussed by Parker \& Porat ${ }^{3}{ }^{233}$, encourage the belief that a very large number of people are generating information, a resource having very different properties from the goods and services on which the economics of many countries are based, with the result that there may be a dramatic change of some kind which justifies the claim that we are moving into an Information Society. The figures were based on 1967 data. They have recently been up-dated to 1972 and give similar results there was little change in that period in the percentage of US labour in information processing^{73}.
About 29.5 million people were engaged in information processing according to Porat. Nearly 80% of this total can be aggregated into the following general occupations from the detailed categories given in the original table:
The other, smaller groups include people like buyers, public administration officials, sales representatives, etc. We can immediately see that nothing dramatic can be expected. This is simply another way of recognising long-term trends in the official records of many countries showing a decline in agricultural employment to about 8%, industrial employment to 40%, and an increase in service employment to over 50%.

What is new is the splitting of services into those with low and
high information-processing content. For example, services with a low content include truck drivers (1.4), waiters (1.1) and, oddly, janitors and sextons (1.2). Figures in brackets are millions of US employees: these are not in the above table. It is not clear why retail sales clerks (2.2M) and miscellaneous sales clerks (1.2M), are excluded from the table. Nothing unexpected is likely to happen because teachers, managers, etc., are now seen to be generating information - a hard-to-evaluate resource which is difficult to handle for economists. There may be more of them but their activities haven't changed much.

The reason why there are no serious evaluation problems is because these people provide labour-intensive information services evidently of determinable value - there seems to be no great difficulty in deciding what the level of their salaries should be.
In this area, the concern of Parker, and Stigler ${ }^{74}$ and other economists, over problems of evaluation seem unfounded. They bring the "problem" with them from economic theory where there is much discussion about demand and price-setting for products in a market where consumers possess imperfect information.

There are, however, other factors to be discussed. First, when the information sector was small, growth in the productivity of other sectors was achieved by more information. But if now higher wages and salaries can be justified by higher productivity in a relatively small industry and other relatively small sectors, and salaries in the much larger information sector follow, the improvements in the smaller sectors will be nullified. In many cases, of course, the "information sector" is an artificial division, previously considered to be part of the overhead. For example, the largest "information sector" in a plastics company would
be its office staff. What is needed is a productivity increase in the information sector.

Information per se - demand and value

Alternatively, or as well, there needs to be an increase in the consumption of information per se- and this is where evaluating information may present problems and the current buzzwords "The Information Industry" or "The Knowledge Industry" must be introduced. Relatively few people in the Porat table are recognisably a part of this industry; about 400,000 - people like authors, editors, librarians, and some computer people - and many of these are working in other "industries". Products of this industry include home computers and software, books and magazines, advisory and consulting services, television and radio programmers, private educational services and "electronic publishing" such as information provided via databases, computer networks, videotex, videotape, television, radio, and cable.
The difficulty here is drawing a line between entertainment and information. Entertainment must be valued highly - witness the popularity of tv and videotape machines, but the evaluation of information is much more difficult for the reasons stated earlier.

The value of timely, relevant information to people with obvious occupational need of it - for example the money market people - can be expressed in monetary terms. At the other end of the scale is the domestic market. People will pay for a daily paper and may subscribe to a magazine - partly, at least, for their information content. They receive a good deal of information without paying for it - for instance magazines and newspapers supported by advertising, train and flight times, citizen's advice bureaux and library services etc. They do not seem to want to pay for very much other information.

In between these extremes lies a grey area composed of professional and business people who may need information but may not want it enough to pay much for it. Evidently the intangibility of the information makes it hard to evaluate. You would imagine that doctors would be prepared to pay for medical information; however physicians in the US, who are certainly not short of money, were provided with a free online computer-based information for six years which was quite widely used. The introduction of a $\$ 5$ charge caused demand to fall by 77%.
I conclude that the information society's demand for information can be summarised in this way. Many people in industry, commerce, and services are now seen as "information workers" - they always have been. There are now more of them and information technology provides them with better tools. They are demanding better communications and machines and use external information services. They mainly handle internally generated and transactional information, and are striving for better productivity. Additionally the information society will consume information and information products, often hard to distinguish from entertainment. The demand will be variable with business information predominating. There is little evidence to suggest that the general public wants more information for which it is prepared to pay.

Social aspects

The many aspects of the widespread dissemination of information by telecommunication and display as it gradually replaces paper-based information may be grouped under the following headings:

- the man-machine mismatch
- the effects on people's behaviour at work and at home
- privacy, secrecy, security, and freedom
- work, leisure, and unemployment
- the differential distribution of information - the "information rich" and the "information poor"
- the generation and distribution of wealth from information
- philosophical implications McLuhan
The effects of technological change on people's lives is much more frequently discussed than the changes bought about by different ways of generating, distributing, and using information, enabled by new technology. It seems to me that information is at the heart of the mattermore often than not.
Consider theman who loses his job on a car production line because painting is done by a jetspraying machine controlled by a program on tape. In machineefficiency terms the correctness of the decision to change cannot be challenged. Why use an incredibly powerful multi-task information-processing machine which can do a million other things and is expensive to maintain, when you can use a singletask machine which simply requires an occasional squirt of oil? Simply represent the information possessed by the man about manipulating the jet as electrical impulses on tape instead of in his brain, thereby releasing a powerful multi-task machine to do a job that really needs that power - in other words match information processing capacity to the job requirement.
One problem which arises when a policy of information transfer from man to machine is widely implemented was succinctly expressed over a century ago by Robert Owen's son "If we can imagine a point at which all the necessaries and comforts of life shall be produced without human labour, are we to suppose that the human labourer is then to be dismissed to be told that he is now a useless encumbrance that we cannot afford to hire?".
The question of unemployment has received very wide discussion. Trends are hard to discern firstly, because the net mediumterm change in consequence of technology introduction is hard to measure in the face of shorter term changes as people are displaced from a job and then, possibly following re-training, settle down in another job, or remain unemployed. Secondly, changes in growth rate, economic conditions generally, import-export policies etc., mask the effects of technology.

What is known is that increas-
ing productivity may not be accompanied by a decrease in unemployment. During the period 1950-1965, an average annual increase of 7% in the industrial output of EEC countries was accompanied by a 1% job increase, but during 19731978 industrial output increased by 1% annually while jobs decreased by $1.8 \%^{76}$.

Unquestionably new technology creates new jobs as anyone who has been to the area between San Jose and San Francisco along the Bay can see, but it seems unlikely that they are enough to balance job losses in other areas. The consensus of opinion seems to be rather pessimistic. A call is made in a well argued article ${ }^{77}$ for far-reaching changes . . .
"We perhaps need to prepare for the coming of a societal structure in which only part of the working population will be needed at any given point in time, to produce all the goods and marketed services -- an extension to the entire economy of a phenomenon which already exists in agriculture. In this light, is it possible that we would accept a dual or a single society structure in which a minority would be at work and the majority condemned to idleness? Or must we learn to share out available work in a different way? Would it not be better to use productivity as a lever to free time and to reduce the working week with a view to enlarging free-time activities? Our answer is clear: we must do away with the single, salaried and full-time job syndrome and promote a society based on a pluriactivity for those involved".
This proposal must be countered with the remark "Is it politically possible to carry through such ideas, and what would be the effects on a particular country if it is out of phase with the others during this period?"

The same counter could be used in response to the answer provided by another author in response to his own very interesting question ${ }^{78}$. "A society which relies so heavily on employment as a means of distributing material and moral resources (respect, prestige, etc.) is gravely shaken by the impact of too little employment. The microprocessor is feared not because it will lead to the production of less wealth but because it will enable wealth to be produced with less employment. Of course that wealth has to be distributed but why do people need to be

References

73. Rubin, Michael Rogers; Taylor, Elizabeth.
Information Processing \& Management 17, 163-194, 1981.
The US information sector and GNP: an input-output study.
74. Stigler, G.J.

In Lamberton, D.M. (Ed). Economics of information and knowledge. Penguin books. 1971. The economics of information.
75. Huston, Mary J.

Library Journal. 1811-1814, Sept. 15th 1979.
Fee or free: the effect of charging on information demand.
76. Rothwell, Roy.

Int. J. Management Sci. 9(3), 229 245, 1981.
Technology, structural change, and manufacturing employment.
77. Godet. Michael.

Futures 15(4),251-263, August 1983. Crisis and opportunity: from technological to social change.
78. Cherns, A.B.

Int. Labour Rev. 119(6), 705-721,
December 1980.
Speculations on the social effects of new microelectronics techinology.
79. Simon, Herbert A.

Computer 14(11), 69,74, November 1981.

Prometheus or Pandora: the influence of automation on society.
80. Weizenbaum, Joseph.

In Forester, 'Tom (Ed). 'The Microelectronics revolution. Basil Blackwell 1980. pps 550-570.

Once more the computer revolution.
81. Mason, Roy; Jennings, Lane.

The Futurist, 16(1), 35-43, February 1982.

The computer home: will tomorrow's housing come alive?
82. Gandy, Oscar J.

Chapter 9 "Information inequality", in Beyond agenda setting. Ablex Publishing Co., Norwood, NJ, 1982.
83. McLuhan, Marshall; Fiore Quentin.

The medium is the message: an inven-
tory of effects.
Bantam Books, New York, 1967.
84. Gronbeck, Bruce E.
J. Communication, 31(3), 117-128,

Summer 1981.
McLuhan as rhetorical theorist.
"employed" for that purpose? At once the litany of objections is recited. "Somebody will have to work: if people can get what they want without working who will want to work? Without everybody at work how is the wealth to be created?" . . "the creation of goods and services will never again require 65,000 hours of everyone's life; we shall need to acquire the values that go with the sequestration of a mere 35,000 or 25,000 hours".
The social pros and cons of advancing technology on people's lives generally are well put by two well known protagonists ${ }^{79,80}$. On the one hand we are told that "computer technology can show man how to live in harmony with nature"; on the other "The use of large-scale computer based information systems induces an extremely poverty-stricken notion of knowledge and fact . . such systems necessarily induce recoding of data into informationrich chunks denuding the original data of the subtleties which accompanied them and determined their meaning while still in ordinary language".

The wider use of communications and information distribution may produce various effects
according to your viewpoint - it may bring with it a Utopian home of the future or widen the knowledge gap between the information rich and the information poor. The author of ref. 81 becomes almost poetic "a home once more will be a place to live, not just a place to stay. The communications revolution will make it increasingly easy to perform many kinds of work from remote locations - including home rather than requiring people to work at a central office or plant. The addition of telecomputing capabilities to radio, tv, photograph, and other home entertainment devices will transform today's family room into a media room. A home computer will tie separate systems together and provide the central focus or "electronic hearth" around which the family will gather for work, play, and fellowship". But more than that, sensors will recognise the mood of the occupants, leading to the introduction of "white noise to mask out street sounds or relaxing raindrop or soft wind noises".
But according to ref. 82, "The popular mythology that sees the avalanche of new information technologies as heralding a new
democratic, egalitarian, age, is little more than a cruel hoax the product of marketing hype or self-delusion . . . the distribution of benefits flowing from the new technologies will widen the information gap between the rich and poor . . . the transformation of information into a commodity traded in an unregulated marketplace will mean that the poor will simply not be able to afford access to most of the new technologies or their software".

Finally, perhaps McLuhan will come into his own. He is remembered primarily for his comment that media are messages in the sense that they determine and embody what is to be considered appropriate social organisation at any time ${ }^{* 3}$. Media are not simply shapers of content; a new media provides human beings with new psychological-structural equipment. In succeeding years the community may "judge him harshly although it never in all probability will be able to forget "the medium is the message" . . . it is perhaps typical of very creative minds that they hit very large nails not quite on the head" ${ }^{84}$.

The biggest amateur station in the World
 Radio Netherlands World

Service is commissioning a new shortwave transmitting centre in Flevoland, a reclaimed polder. Before it starts official transmission on March 31, there is to be an interesting experiment. On the third weekend in February (16th and 17th) two amateur radio transmitters are connected to the vast directional shortwave antennae, using amateur frequencies. There is to be a continuous period of operation from 0600 UTC on Saturday the 16th to 1800 UTC on Sundayy the 17 th. One transmitter will operate on the non-directional antenna, intended for European reception. The second will make full use of the curtain arrays and will be following the beam pattern of the regular English-language transmissions from Radio Netherlands; for example, at 0703 UTC, when Radio Netherlands is on the air to Australia and New Zealand, the amateur station will beam in that direction too, though on a different frequency. The station will be operating in SSB and CW
(morse) modes. The sign PA6FLD will be used, and a special QSL card is to be printed. Radio amateurs are encouraged to make contact with the station but all shortwave listeners are invited to look for the station.

Frequency details will be broadcast on the Media Network programme of Radio Netherlands, on Thursdays, or may be obtained from Radio Nederland Wereldomroep, PO Box 222, 1200 JG Hilversum, The Netherlands.

HOME CONTROL CENTRE

This kit enables you to control up to 16
different appliances by means of coded different appliances by means of coded
pulses in the mains wiring which may be pulses in me mains wring wh may be the house. The transmitter may be controlled manually or by the computer interface enabling your favourite micro to
make your coffee in the morning, switch make your coffee in the morning, switch
lights anywhere in the house, or your lights anywhere in the house. or your
electric blanket in your bedroom. Just electric blanket in your bedroom. Just
think of the possibilities - and no wiring! This kit comprises a transmiter with pe-
drilled box and two receivers. drilled box and
$\times k 112$ Additional Receivers Kk 11
 With hundreds of uses indoors, garages car anti-thert Only the correct equily ment erc Only the correct easily
changed four-digit code will open it' Re quires a $5-15 \mathrm{~V}$ DC supply. Outpu 750 mA . Fits into standard electrical wal box.
Kk101e kit (except front panel)
XK 101
Electric Lock Mechanism for use $£ 11.50$ existing door locks and the above kit. (Requires relay.) 12 V AC/OC coil. (701150)

OUALITY BOTTOM PRICES
> spm Mmo

BT STYLE PHONE CONNECTORS

दg gage mit Line Jack Units Master unit) has bell capacitor and surge arrester Flush or

nectors.
Masler (flush)
Master (surface)
Master (minis surfa
Secondary (flush) Secondary (surface) Secondary mini surt 4 -way tine cord 4 way line cord

MICROPROCESSOR TIMER KIT

Designed to con ind 4 outpu switching on and off at preset times over a ${ }^{7 \text { Pycle. Led }}$ play of time and day easily programmed via 20 -way keyboard Ideal for central heating control lincluding differen back-up circuit includes box
18 tume settings.
CT6000K $£ 39.00$
Xk 114 Relay Kit for CT6000 ncludes PCB. connectors and relays $3 \mathrm{~A} / 240 \mathrm{~V}$ clo contacts

701115 Additional Relays (960 110) $£ 3.00$ (960 112) $£ 3.00$ | $1960113) £ 3.50$ |
| :--- |
| $1960114)$ | (960 114$)$ £2.65

$\mathbf{9 6 0} 116) £ 2.65$ $(9601116) £ 2.65$
$(960$
$117) £ 3.00$ $(960117) £ 3.00$
$(960118) £ 4.20$ (960 118) £4.20 $19601201 £ 2.00$

ELECTRONICS
1-13 Boston Road
London W7 3SJ

ORDERS ENQUIRIES 01.5678910 E1.5799794

$1-5792842$ TECHNICAL AFTER 3pm

CIRCLE 13 FOR FURTHER DETTAILS.

HF WORLD BEATER.
 SSB transceiver. This 150 watt radio is above and beyond the competition and built to operate with confidence when others cannot

The IC-M700 has 48 fully programmable memory channels and operates in simplex or semi-duplex covering all ship-to-shore, high seas telephone and ship-to-ship SSB channels. Independent transmit and receive programming.

A heaw-duty loudspeaker provides 5 watts of receive audio, other features include a wide range clarifier and audio activated squelch (radio remains silent unless a human voice is detected). Interference noise blanker and a heavy-duty mounting bracket are standard. The IC-M700 is a sophisticated but rugged and reliable marine transceiver.

FUNDAMENTALS OF ENERGY transfer

I agree with Chris Parton's attack on the definition of electric current, Wireless World, December, 1984, page 65.
Parton discusses "Forces on conductors guiding a TEM wave." I have a chapter with that title in vol. 2 of my book, Electromagnetic Theory. I feel that these strange forces may guide us to a unified field theory.

Force on conductors guiding a TEM wave
After a TEM wave step has passed by, guided by two parallel conductors, there remain two steady state "fields":
(1) Electric current flows down the wires, and a B field exists in the dielectric right next to the surface of the conductor.
(2) Electric charge remains on the surface of the conductors, and an E field exists in the dielectric right next to the conductor.
The magnetic field exerts a force into the conductor; that is, a force which tends to drive the conductors apart. The electric field exerts a force out of the conductor; that is, a force which tends to pull the two conductors together.

The forces are $\mathrm{F}_{1}=\mathrm{iB}, \mathrm{F}_{2}=\mathrm{qE}$. Now the electric current in the surface of the conductor i and the electric charge in the surface of the conductor q are related by the equation $\mathrm{i}=\mathrm{q}$ ©. That is, the current is equal to the speed with which the charge density travels along the surface of the conductor. Dividing, we find that numerically:
$\frac{F_{1}}{F_{2}}=\frac{i B}{q E}=\frac{\varrho B}{E}=\frac{1(\mu H)}{\sqrt{\mu \cdot E}}=\sqrt{\frac{\mu}{E}} \frac{H}{E}$
But we know that in a TEM wave,
at every point $E / H=\sqrt{\mu / E} \mu$ Therefore $F_{1}=F_{2}$ numencally. We conclude that when a TEM wave (which we call a Heaviside signal) glides along between two conductors at the speed of light, there is no force on the conductors guiding the signal. This very interesting feature of a Heaviside signal was first pointed out by David Walton, and is here proved.
(For the equations giving F_{1} and F_{2}, see for instance P. Hammond, "Electromagnetism for Engineers" Pergamon, 1978, pages 107 and 55.)

It is generally thought that if an electromagnetic wave travels down a coax cable from left to right and passes through another such wave travelling from right to left, then superposition applies. However, this is not true in the very important matter of the forces on the conductors. Where each wave on its own exerts no force, (the electric force and magnetic force cancelling,) when two waves are passing through each other one of the "fields" E or B - cancels, and we are left with a net force resulting from the non-cancelling "field". So superposition does not strictly apply, because when we superpose two TEM waves, something new suddenly appears, a physical force. If the two pulses passing in opposite directions are of the same polarity, another strange thing happens for the short time during which they overlap. That is, there is no electric current in the surface of the conductors. So if the conductors are imperfect, there is no resistive loss during that short period of time. (Similarly, if the pulses have opposite polarity, then if the dielectric is imperfect, there will be no losses due to leakage during the short period of pulse overlap.)
Ivor Catt
St. Albans
Hertfordshire

I am not very surprised to notice that many readers of Wireless World (e.g. N.C. Hawkes, December, 1984) have been finding difficulty in appreciating the contradiction implicit in classical electromagnetic theory pointed out by Ivor Catt (September, 1984).

A slow drift of electrons along a wire may well account for a "steady state" movement of charge, and until recently it seems that this was all that was required.

However, with the growing importance of high-speed logical signals, new problems have been brought into the limelight which are inexplicable purely in terms of classical "electron drift".

I will attempt to explain the "Catt anomaly" from a slightly different angle in the hope that this may serve to shed more light on the contradiction.
(i) Experiment shows that a voltage "step" travels at the speed of light (of the dielectric between the wires)
(ii) Classical theory tells us that electrons cannot travel at the speed of light because they have a finite rest mass. (At normal temperatures the average speed of the free electrons is of the order of $1 / 1000$ of the speed of light). In fact the "drift velocity" of the free electrons turns out be much smaller, (of the order of $1 \mathrm{~cm} /$ second).
(iii) Electrons in a given section of wire will not start to "drift" until they have received the message to do so.
(iv) The signal which tells the electrons to move is the electric field caused by the charge on the electrons which have drifted in another section of the wire. Thus the signal resulting from the change in electric field (the voltage step) travels at the drift velocity of the electrons.

The contradiction and resulting inadequacy of the theory is clear to see.
This, the "Catt anomaly", seems to have fallen on many deaf ears. I am interested to see how the scientific community continues to react to this vitally important breakthrough, which could lead to a revolution in
electromagnetic theory.
F.U. Weaver-Mowes

Sutton
Surrey
With reference to the correspondence concerning the physical mechanism of energy transfer along transmission lines. I believe that Catt is correct in insisting that something much faster than electrons is involved. It seems reasonable to assume that as the electrons in the wires would be continuously entering and leaving the conduction band, there would be a corresponding traffic of the associated quanta, at the velocity of light, and that it is the existence of these quanta that constitutes the basis of the energy transfer mechanism. By considering all the quanta that at any given time travel in one direction along a wire as one energy
current, and the contrary travelling quanta as an opposite current, Catt could justifiably speak of two superimposed slabs of energy and explain the experimental facts in comnection with 1 metre long transmission line reported on page 80 of the December, 1980 issue.

I expect that the above suggestion, if correct, will lead to revised understanding of conduction phenomena generally, including such topics as superconductivity and the action of thermocouples.

G. Berzins

Camberley
Surrey

RELATIVITY

Modern physics assumes Einstein's Special Relativity true. S.R. is based on three postulates, two of which are well known and the third (the unmentionable) ignored. These three postulates are:
(1) Laws observed by añ observer, A, who resides solely in an inertial frame, A_{0}, are the same as those observed by B who resides solely in an inertial frame, B_{0}, both of the observers using the same units. (2) The speed of light produced in an inertial frame, A_{0}, is constant relative to A_{0} and is equal to c. Likewise, the speed of light produced in an inertial frame, B_{o}, is constant relative to B_{o} and is equal to c , the same units being used in both frames.
(3) Before landing on a moving object (in any inertial frame) light magically adjusts its own speed to make its reception speed relative to that object, equal to c .

Postulate (1) is called, "the principle of relativity". Postulate (2) is called, "the constancy of the speed of light". Postulate (3) is, of course, never mentioned, but it is often combined with postulate (2). The resulting, mixed-up postulate, (2/3), is called, "the invariance of the speed of light".

Most physicists today, accept postulates (1) and (2) because experiments confirm both postulates. It is the unmentionable (3) or the mixed-up, unmentionable (2/3) that produces intellectual indigestion.

Your contributor, Roy Hodges, (Wireless World,

December, 1984) has obviously given much thought to the unmentionable and has produced a hypothesis in which photons are pulled by matter into an invariant, reception speed. However, to even think up such an explanation assumes that postulate (3) is true! But no-one has bothered to measure the reception speed of light from a radially-moving star to discover if the unmentionable is true or not!

With today's technology, it should be possible to measure the reception speed of light from a radially-moving star to see if it is c (as invariance dictates) or (c-v) (as constancy dictates).
A.H. Winterflood

London N10
With reference to C.F.
Coleman's comments on Scott
Murray's article "The Roots of Relativity", it seems to me that the situation with regard to Einstein's 1905 'thought experiment' is as follows:

Light from the two flashes A and B arrives at M, the stationary observer, simultaneously. M^{\prime}, on the train, arrives at M at the same time. It therefore seems inescapable to me that the two rays of light, M and M^{\prime} are all together at the same place and at the same time. Hence M^{\prime} must judge the two light flashes to be simultaneous, as does observer M.
D. Marquis

Cudham
Kent
See also page 93

DIFFERENTIAL LINE DRIVER

Since taking up an interest again in electronics, after a lapse of some 20 years, I find so much has changed and I do try to look at the new ideas and designs for positive advantages, rather than just accepting the flavour of the month, as it were. For example, I have been prototyping a balanced line system, using an NE5534, driving a Sowter line output audio transformer type 4652 into a line terminated by a 3678 screened input transformer. The design and layout are perfectly straightforward and hardly worth setting down.
What is interesting is that
switching the signal from direct input, to the altemative path via the NE5534, two transformers and about 10 metres of unscreened figure-of-eight, produces no audible difference when levels are adjusted. My original comparison, between two channels of a stereo pair, one with and one without the extra link, did give significant differences at the top end, which was a bit puzzling, because transformers are supposed to start losing performance at lower frequencies. Which does rather prove that one should compare like with like absolutely.

Your contributor makes the point that transformers are expensive and suffer from limited bandwidth and stray magnetic fields; true up to a point, but the extra cost of an NE5532 dual op-amp, associated components and p.c. board must be getting on towards that of a 4652, and whether a pair of 5534s driving a 600Ω line in push-pull are a good enough match is debatable. At 0 dBm , normal care with layout will eliminate hum pick-up even in an unscreened line-output transformer; dramatic overload capability is not normally needed in a complete balanced line system because somewhere or other in the system there are going to be greater constraints, as for bandwidth, the 4652 is only 0.8 dB down at 100 kHz , and at +20 dBm low frequency distortion at, say, 30 Hz is only 0.25%.

So all in all I am not convinced that the basic simplicity of a transformer is worth sacrificing - and I do hear tell that you can achieve perfectly satisfactory results driving the output transformer with something a lot less expensive than an NE5534.
B.A.L. Morgan

Ledbury
Herefordshire

VELOCITY OF LIGHT

Roy Hodges (December, 1984) made some good arguments in favour of the proposition that the velocity of light c must be always referred to the rest frame of nearby matter, and to this frame only. Mr Hodges and those readers who thought that this hypothesis is sound,
promising, and more reasonable than the incredible relativistic postulate, namely that c can be referred to any frame, might be interested to read further arguments supporting various refinements of the former hypothesis, as well as proposals for experimental tests, in the following works:
H. Aspden, Physics Unified (Sabberton Publications, Southampton) 1980; Chapter 3, pp.47-69.
Z.L. Bourdikis, "Ritz's

Electrodynamics as a
Microscopic Basis for
Maxwell-Lorentz
Electromagnetism", Proc. IREE Australia 29, pp.343-358, 1968.
"Might Electrical Earthing Affect Convention of Light?", Spec. Sci. Techn. 5, pp.171-187, 1982.
T. Theocharis, "On Maxwell's

Ether", Lett. Nuovo Cimento
36, pp.325-332, 1983.
C.A. Zapffe, A Reminder on
$\mathrm{E}=\mathrm{mc}^{2}, \mathrm{~m}=\mathrm{m}_{0}(\mathrm{l}-$
$\left.\mathrm{v}^{2} / \mathrm{c}^{2}\right)^{-1 / 2}, \& \mathrm{~N}=\mathrm{N} . \exp$
($-\mathrm{t}^{\prime} / \gamma \tau_{0}$), (Lakeland Color
Press, Brainerd, Minnesota) 1982.
T. Theocharis

Blackett Laboratory
Imperial College

BAIRD TELEVISION

Referring to the response by Doug Pitt in the November issue to Pat Hawker's comments in the June 'Communications' column, the closest analogy that I can find to the everlasting Baird controversy is a Wimbledon tennis match that has overrun by 50 years. Every so often some pro- or anti-Baird person makes some badly-worded or ill-informed comments about Baird and suddenly we have a rather pathetic slanging match. With due respect to both factions, I would like to make some comments from the relatively unbiased position of having studied one of Baird's achievements from a purely engineering standpoint.
J.L. Baird is considered to be the first of many independent inventors to demonstrate electrical transmission and reception/display of moving pictures with grey tones. At the time this was considered to constitute a demonstration of
'television' (which literally means 'seeing at a distance'). He also explored the engineering possibilities of television which resulted in demonstrations of colour and stereoscopic moving pictures. His electrical recordings of the vision signal in the late 1920's - the first in the world have been the subject of my researches in the past few years (the results of which can be studied in the references).

The main problem for the would-be researcher in assessing Baird's achievements is sifting through the over-enthusiastic claims which resulted both from the media's excitement at Baird's tv demonstrations and from an efficient p.r. department. Today it is clear that these claims exceeded the capabilities of Baird's 30 -line tv system.

To put the situation into context, this over-enthusiasm is reminiscent of the claims (such as control of power stations . . .) surrounding the appearance of the first Sinclair home computer - the ZX80 in the late 1970's. In comparison with home computers today, the best use for the ZX80 (with apologies to Sinclair) is for propping up the leg of a wonky table.

Although we can study the operation and performance of Sinclair's first home computers in detail, Baird's 30 -line system cannot be so appraised since actual performance measurements of the broadcast chain are not available and probably were never made. From this lack of hard evidence, the distinction between myth and truth becomes difficult and therefore is subject to the individual bias of the person intending to 'put the record straight'.
Out of this analogy between Baird and Sinclair comes an interesting point: if Baird had not suffered the business failure in the mid-thirties and had been as successful as Sinclair is now, would he still be the subject of this everlasting tennis match?

References

Wireless World, October, 1983 Using a Micro to process Baird tv recordings.
Royal Television Society Joumal.
Article to be published in 1st quarter 1985 .
Donald F. McLean
Edgware
Middlesex

XY PLOTTER

Having constructed several digital plotters, I read with interest P.N.C. Hill's article in the December issue of your magazine. If I may I would like to comment on the algorithm used to determine the best 'straight line' between two pairs of coordinates.

The statement that: "The staircase route for the pen is the best approximation", and "at any point there are only two directions in which the pen can be stepped", are not necessarily true. If one includes the condition that the X and Y motors are stepped simultaneously, then a third elemental vector can be drawn at 45° (diagonal). A line can then be drawn so that:
(1) Gradient $=45^{\circ}$ composed wholly of diagonals
(2) Gradient $<45^{\circ}$ mixture of diagonals/horizontals
(3) Gradient $>45^{\circ}$ mixture of diagonals/verticals
In many cases this will result in a better approximation to the straight line. The required ratio of diagonals to
horizontals/verticals for any line can be calculated using a digital differential analyser algorithm ${ }^{1}$. A suitable implementation of this algorithm appeared in Practical Computing, May, 1979. Since the method only requires simple arithmetic $(+/-)$ it can readily be implemented in machine code, dramatically reducing the computational time.

At this point I must admit to not having read the original article, and if I am covering old ground I beg your indulgence.

C.E. Turner

Department of Physics
Portsmouth Polytechnic

Reference

1. Newman and Sproull Principles of Interacture Computer Graphics - McGraw Hill.

ELECTRIC CHARGE FROM A RADIO WAVE

Professor Jennison's demonstration of the production of equal quantities of positive and negative electricity whose sum is always zero seems to be refuted by experiments in rarefied gases. Both positive
and negative electricity have the two mutual and reciprocal powers to repel like quanta and attract unlike quanta at one and the same time. The sum of these symmetrical powers is also zero.
In a rarefied gas, negative electricity is transferred from a negatively charged cathode to a positively charged anode by the normal forces of electrical attraction and repulsion. Apparently positive electricity is attracted by a positively charged cathode and repelled by a negatively charged anode, preventing the transfer of positive electricity from cathode to anode. The strange power of a rarefied gas to reverse the actions of electricity is the source of the many action at a distance theories of the electron. If a rarefied gas has the power to reverse one of the symmetrical forces of mutual attraction and repulsion and make their unit sum equal two, the forces of positive electricity must differ in some way from those of negative electricity. The photoelectric effect of negative electricity is probably due to the same cause.
Poynting's Theorem and Hertz's experiments with electric waves of alternate half cycles of positive and negative electricity separated by a node, suggest electricity is transferred in the field and therefore enters and heats a wire from without. It is difficult to reconcile this suggestion with the skin effect of wave electricity. The heating power of a steady current is disproportionately greater than that of a wave current. Tesla's a.c. mains supply to New York proved far superior to Edison's planned d.c. supply for this very reason.

Maxwell defined his displacement current in Art. III of his Treatise. "Any increase in this displacement is equivalent, during the time of increase, to a current of positive electricity from within outwards, and any diminution of the displacement is equivalent to a current in the opposite direction."

In Art. 799 he commented on the inability of his light wave of displacement electricity to decompose a transparent electrolyte. ". . . the electromotive intensity acts for so short a time in one direction that it is unable to effect a
complete separation between the combined molecules. When, during the other half of the vibration, the electromotive intensity acts in the opposite direction it simply reverses what it did during the first half (cycle)."

The success of Jennison's experiment is due to his ingenious use of leds to observe the velocities of closed current wave electricity relative to conducting matter, and also to the close analogy between the symmetrical configurations and actions of the capacitors and coils of the apparatus and those of electricity. The experiment would not take too kindly to a disfiguring modification.

There is, however, a partial analogy between a coaxial capacitor, its rarefied gas equivalent - a thermionic diode valve - and a length of coaxial cable. It may be possible to induce one cycle of a standing wave to fit into one half-cycle length of open circuit coax. By forcing the wave to reflect back on itself at its crest and trough. The temperature difference may reach a maximum at the open ends of the cable. A modification to the experiment of Chute and Vermeulen (August, 1982) using heat sensitive liquid crystal paint might illuminate the reason why the sum of all symmetrical electric actions is always zero, and why the currents of Maxwell's mandatory closed circuits are the sum of the conduction and displacement currents of the same kind of electricity.

One serious reservation. When standing waves are formed by the reflection of water waves from the sides of a ripple tank, the standing waves collapse when the last cycle passes across the tank. A constant passage and constructive interference of two trains of equally spaced crests and troughs moving in opposite directions is the cause of the formation of standing waves. The energy of the crests moving one way must frequently coincide with the equal and opposite energy of the troughs moving the other way without neutralising each other. The sum of their energy at the instant of coincidence is a zero of annihilation to a mere mathematician. This very odd behaviour of interfering waves
actuates the mathematical creation and annihilation of virtual electron-positron pairs and virtual photons.
The closed wave current of a continuous non-annihilating interaction between the equal and opposite energy of crests and troughs is also necessary to maintain a standing electric wave caused by reflection from the open ends of a length of coax. The non-neutralising action of moving electric potentials or pressures is the reason why the suggested temperature difference may not occur, although one may be detected by using a very low frequency wave of say one hertz. The inner and outer conductors of one end of the cable may both be charged with stationary positive wave electricity and those at the other end charged with stationary negative wave electricity, apparently reversing the symmetrical force acting between the inner and outer conductors of the cable's partial analogy, a coaxial capacitor.

The rarefied gas of an unheated diode valve is an open circuit non-conductor of Ohm's conduction current electricity. When a diode's cathode is heated the open circuit is closed by the rarefied gas's conduction of a rectified wave of displacement current electricity in the heat or infra-red spectrum radiated by the cathode.

If one of the suggested effects does occur, the experiment will identify the first half cycle of one full cycle of an
electromagnetic wave as a region of negative electricity, confirm Ivor Catt's revised theory, and give some impetus to A.H. Winterflood's scheme (December Letters), although I would question the location of his school. This is a wireless world in more ways than one. M.G. Wellard

Kenley
Surrey

Letters

Letters for publication are always welcome. Those that are short and to the point stand the best chance of publication since space for these columns is limited.

THiE 'ALADDIFS' CAVE OF COMPUTER AND ELECTROMC EQUIPMERI

SOLID STATE SWITCHES

Matchbox size solid state switch type IR D2402 enables on off control of 240 VAC oads up to $3-32 \mathrm{~V}$ DC input with zero voltage switching. Complete with data E6.99 + pp 250,000 other relays EX STOCK call for details.

EX STOCK INTEGRATED CIRCUITS
2732 EPROM SPECIAL fully guaranteed 450 ns £ 3.75 , 350 ns £ 4.00 , 300ns $£ 4.59$ 2732 EPROM SPECIAL fully guaranteed 450ns $£ 3.75,350 \mathrm{~ns}$ £4.00, 300 ns § 4.50

MAINS FILTERS

COMPUTER 'CAB'

All in one quality computer
mode PSU. Mains filtering. and iwin fan cooling Originally made for the famous DEC PDP8 compute system costing thousands of pounds. Made to run 24
hours per day the PSU is tully screened and will delive hours per day the PSU is fully screened and will deliver
massive $+5 v D C$ at $17 \mathrm{amps},+15 v D C$ at 1 amp and -1 massive $+5 v D C$ at 17 amps , $+15 v \mathrm{DC}$ at 1 amp and
$D C$ at 5 amps . The complete unit is fully enclosed with removable top lid. filtering, trip switch. 'Power' and 'Run EDs mounted on Ali front panel. rear cable entries. etc $40 v$ operation complete with full circuit and tech for Give your system that professional finish for only E49.95 + Carr. Dim $19^{\prime \prime}$ wide $16^{\prime \prime}$ deep $10.5^{\prime \prime}$ high. Useable area by mains interterence
SD5A As recommended by $Z \times 81$ news letter matchbox
Size up 101000 watl loat
£5.95 size up to 1000
L2127 compac
fitted

PRICE BARRIER SHATTERED ON 16 " RGB CASED COLOUR MONITORS

A scoop purchase from a major London Hotel enables us to ofter this special

 enough to suit any budget!! Solid state modular construction. $16^{\prime \prime}$ high definition PI tube, which eliminates convergence problems and our own special modification Pesults in $80+$ column text definition and picture quality not seen on monitors product, the quality has to be seen to be believed Supplied complete and ready piug direct to a BBC MICRO COMPUTER or any other system with a TL RGBONLY £99.00 + £ 10.00 CARR. ONLY £99.

SPECIAL 300 BAUD MODEM OFFER
Another GIGANTIC purchase of the Se EX BRITISH TELECOM, B NEW or little used 2B data modems allows
REDUCTION, and for YOU to oion the exciting world ot data
communications at an UNHEARD OF PRICE OF ONLY £29.95. Made to the highest POST OFFICE APPROVED spec at a cost of hundreds of pounds each, the $2 B$ has all the standard requirements for data base business or hobby communications. All this and more!

8" 19MB WINCHESTER DISK DRIVE

DATA MODFMS

Join the communications revolution with
Our super range of DATA MODEMS with our super range of DATA MODEMS wit
prices and types to suit all applications prices and typ
and budgets"
and budgets" Most modems are EX BRITISH
TELECOM and are made to the highest Standard for continuous use and reliability modems, so will connect to ANY micro etc with an FiS232 serial intertace. DATEL 2 - see SPECIAL OFFER centre of this ad.
MODEM $13 \mathrm{~A}, 300$ baud. Compact unit only
2 , $2^{\prime \prime}$ high and same size as telephone bas
Standard CCIT tones. CALL mode only. Tested with data owtyens.00 + Pp eq. 50 .
MODEM $20-1,75-1200$ baud. Compact for use as subscriber end to PRESTEL.
MICRONET or TELECOM GOLD. Tested data. $539.95+$ Pp 56.50 .
baud E99.00.
TRANSDATA 307A. 300 baud acoustic coupler. Brand ne
$\mathbf{E 9 5 . 0 0}+\mathrm{pp} \mathrm{Eq} .50$
DACOM DSL2123 Multi Standard Modem switchable CCITT or USA BELL 103 standar
$1200-1200$ half duptex
Auto answer via MODEM or CPU CALL or Dim $2.5 * \times 8.5^{\prime \prime} \times 9$. BRAND NEW fully guaranteed ow MVE268.00 + PPE4.50. BATEL2412 Made by SE LABS for BT this two part unit is for synchronious data inks at
1200 or 2400 bauu using 27803780 2 or 4 wire working etc. etc. COST OVER
£800. OUR PRICE EIP5.00. CSATEL 4BOO. RACAL MPSA800 high Speed

$$
\begin{aligned}
& \text { output. Other features include internal audio amp and speaker compact } \\
& \text { dimensions only. } 52 \mathrm{~cm} W \times 34 \mathrm{H} \times 24 \mathrm{D} \text {, auto degaussing circuit, attractive teak } \\
& \text { finished case } 30 \text { dav ouarantee }
\end{aligned}
$$

BUDGET RANGE VIDEO MONITORS

 EOUIPMENT Video monitors defy competition" All are for 240 v working with spe tested and set tor up to 80 col use o BBC micro. Even where MINOR screen unaffected 1000's SOLD TO DATE will display up to 132 columns $\times 25$ lines Housed in attractive fully enclusedbrushed alloy case $8 / \mathbf{~} 0$ only $£ 32.95$ brushed alloy case 8 8/w
GREEN screen $\$ 39.95$
24" KGM large screen black \& white ONLYE55.00

" BRAND NEW Novex COLOUR type NC1414-CL. Many exacting teatures such as RGB TTL and composite video input.
GREEN TEXT Key internal speaker and audio amp. Even finished in BBC micro ONCYE 99.00

PROFESSIONAL KEYBOARD OFFER

An advantageous purchase of brand new surplus allows a great OWERTY tull trave Chassis keyboard otter at fractions of their onginal costs.
ALPHAMERIC $7204 / 80$
fuil ASCII 60 key uper lower + control key. parallel TTL Output plus strobe Dim $12^{\prime \prime} \times 6^{\prime \prime}+58-12$ DC. Es9. 50 .
DEC LA34 Uncoded keyboard with 67 . standard X, Y matrix C Complete with 3 LED indicators \& I/o cable - Ideal micro

66\% DISCOUNT

ELECTRONIC
COMPONENTS EQUIPMENT
Due to our massive bulk purchasing programme which enables us to tring you the best possible bargains we have thousands of IC's. Transistors. Relays. Caps. PC S s. Sub-assemblies.
Switches, etc etc surplus to our requirements. Because we don thave sufficient stocks of an one tem to include in our ads. we are packing all these items
UFETIME Thousands of components at giveaway prices'

$10 \mathrm{kls} £ 10.25+p p £ 2.25 \quad 20 \mathrm{kls} £ 17.50+£ 4.75$
AIL PRICES PLUS vat

SEMICONDUCTOR

 'GRAB BAGS'Mixed Semis amaz dodes, bridge recs eif etc All devices guaranteed recs, etc etc All devices facturer's markings, fully guaranteed. $50+\mathbf{E 2 . 9 5} 100+\mathbf{E 5} .15$.

TH 74 Series A gigantic purchase of an s enables us to ofter $100+$ mixed "mostly TL" grab bags at a price which or three chips in the bag would nnormally

Made in the UK by a subsidiary of the World's largest disk drive manufacture This BRAND NEW "end of line" unit offers an outstanding opportunity for the
technically competent computer buff to add a MASSIVE 19 mb OF STORAGE to their computer system. Superbly constructed on a heavy die cast chassis the
DRE 3100 utilises 3×8 plattens in a dust tree cavity. All drive functions are controlled by microprocessor electronics using an INTEL 8035 cpu and TTL support logic. Intertacing is via a comprehensive 8 bit 11 level bi directional serial 1,0 lines or separated clock and data etc. Many other features such as plug in card system, and very compact size of $19 \mathrm{~cm} \mathrm{H} \times 21 \mathrm{cmW} \times 42 \mathrm{~cm}$ D etc etc. make this item a real snip
Units are BRAND NEW and BOXED and sold at a FRACTION of origin
hence unguaranteed. Complete with 150 page manual, circuits and applications guide

ONLY £225.00
 anriage 1000

 All prices quoted are for U.K Mainland, pard cash with order in Pounds Stirling PLUS VAT. Minimumorder valuaE 2. OO. Minimum CreditCard order $\mathbf{£ 1 0 . 0 0}$ Minimum BONA FIDE account orders from Government depts. Schools, Universities and established companies ENA00 Where post and packing not indicated please ADD £1.00. + VAT Warohouse open Mor-Fri 9.30-5.30 Sat. 10.15-5.30
We reserve the right to change prices and specifications without notice. Trader Bulk and Export enquines welcome. 32 Biggin Vay, Upper Norwood, London SE19 3xF Telephone 01-679 4414 Telex 27924

ERS - PRIWTERS - PRINTERS - PRINTERS PRINTERS - PRIWTERS - PRINTERS - PRI

SUPER DEAL? NO - SUPER STEAL!!

The FABULOUS 25CPS TEC Starwriter

and full controtability and full conticl via CPM Wordstar
Many other features printing, switchable 10 or 12 pitch full width 389 mm paper handling with upto internal butter, standard RS232 ser follers tor single sheet or co Supplied absolutly BRAND NEW with 90 day guarantee and FREE daisy wheel and dust cover Optıonal extras RS232 data cable $£ 10.00$. Tech manuat $£ 7.50$. Tractor feed £140.00 Spare daısy wheel £3.00 Carriage \& Ins (UK Mainland £10.OC.

Save

 £250

SUPER PRINTER SCOOP BRAND CENTRONICS 739-2

A large purchase of these stand alone terminal units offers an EXTREMELY LOW PRICE for a protessional printer for direc standard RS232 serial interface with switchable rates of 110,200 and 300 baud Upper and lower case characters are printed by a matrix head with charac
ter widths up to 132 columns. Unit accepts ter widths up to 132 columns. Unit accepts $4^{\prime \prime}$ to $9.5^{\prime \prime}$. Many other features such a numeric keypad, electronic keyboard,
motor Supplied in good S/H working condit complete with manual ONLY $£ 95.00$

EXTEL PRINTERS
EX NEWS SERVICE compact, quality
built 50 column matrix printer, type AE11 built 50 column matrix printer, type AE1 1 .
Unit operates on 5 BIT BAUDOT code from current loop. RS232 or TTL serial interfaces. May be connected direct to micro, or comms receiver via simple filter network to enable printing of most world wide NEWS. TELEX and RTTY services. Supplied in tested second hand condition with 50 and 75 baud \times tals, data sheet and
large paper roil owly 49.95 large paper roil ONL Y E 49.95 .
Dimensions $15^{\prime \prime} \mathrm{D} \times 5^{\prime \prime} \mathrm{H} \times 10^{\prime \prime} \mathrm{W}$
CARR $£ 6.00$ Spare paper rolls $£ 450$ each

GE TERMIPRINTER

A massive purchase of these desk top these quality 30 cDs printers at a SUPER LOW PRICE against their original cost of over £ 1000 U Unit comprises of tull QWERTY electronic keyboard and printer mech with print face similar to correspondence quality enables full width - up to 13.5 " 120 colum paper, upper - lower case, standard AS232 serial interface, internal vertical and
horizontal tab settings horizontal tab settings, standard ribtion adjustable baud rates quiet operation plu
many other features Supplied complete with manual. Guaranteed working $£ 130.00$ untested $\varepsilon 55.00$ optional floor stand $£ 12.5$

TELETYPE ASB3S

I/O TEBMINALS

unylledged industry standard ASR̈33 data keybaal. Many features including ASCII detoardand printer or datal/O auto data bavd 8 bit paper tape punch and reader fo off line data preparation and ridiculously cheap and reliabie data storage Supplied in good condition and in working order
KSR33 with 20 ma loop interface $\mathbf{E} \mathbf{2 5 . 0 0}$ Sound proof enclosure $\boldsymbol{£ 2 5 . 0 0}+$ VAT

20,000 FEET OF ELECTRONIC AND COMPUTER GOODIES ENGLAND'S LARGEST SURPLUS STORE - SEEING IS BELIEVING!!

D.C. POWER SUPPLY SPECLALS

Experimentos PSU Ex-GPO. A!! silicon electronics. Ou
$+12 v @ 800 \mathrm{ma}-12 \mathrm{~V} @ 350 \mathrm{ma}$ and 5 V floating $@ 50 \mathrm{ma}$
$12 v @ 800 \mathrm{ma}-12 v$ @ 350 ma and 5 v floating @ 50 ma . Dim $160 \times 120 \times 350 \mathrm{~mm}$. All outputs are fully requated and short circuit pr
Supplied in NEW or little used condition. Complete with circuit. $\mathbf{E / 5}$. $50+\boldsymbol{E z}$. So Pp FARNELL 5 Volt 40 amps. Type number GG-40A. This miniature sw tching PSU mps" Fully regulated and smoothed with over voltage protection etc. 120 or 240
 current list price owly fl $30.00+£ 3.00$ CARR $\mathcal{I N S}$.
LAMBDA LMCCSV BRAND NEW $240 \vee$ AC input with 5 volts $D C$ at 8 to 10 amps A.ly regulated output. Completely enclosed unit measures only $9^{\prime \prime} \times 4^{\prime \prime} \times 5$ " $£ 29.99$ LAMBDA LMCC5V $110 \vee$ AC input with 5 volts DC
output. Slighty smoke damaged, hence 0 IVI $£ 10.95$.
PERIPHERAL SYSTEM SUPPLY. Runs almost any system. Fully cased Init supplied in a brand new or little used condition. Outputs give $5 v @ 11$ amps " $+24 \mathrm{v} @ 4 \mathrm{amps}$ All outputs are crowbar protected and the 5 volt
Supplied tested with circuit $55.00+68.50$ cARR.
1000's of other POWER SUPPLIES EX STOCK - CALL SALES Office for DETAILS.

DISK DRIVE SPECIALS

Floppy Disk Drives.
SIEMENS FDD-100-55 $1 / \mu^{\prime \prime} 40$ track single sided. Ex new equipment tested, guaranteed SIEMENS FDD- $100-551 / 4{ }^{\prime \prime} 40$ track
working. Complete with data $£ 75.00$
SHUGART SA400 51/4" 35 track, single sided, Ex equipment, guaranteed working £55.00
SHUGART SABOO, SA850 8" drives plus spares EX Stock call for prices Hard disk drives.
Large quantities of HARD DISK drives currently EX STOCK including: DRE series 30 mb Front Load for DEC, NOVA etc
DIABLO $44 /$ DRE 4000 A, B $5+5 \mathrm{mb}$ cartridge drive
CDC HAWK $5+5 \mathrm{mb}$ catridge drive as new condition
CDC 976280 mb DEC RMO3 compatible
PERTEC D $34225+5$ cartridge drive
Large quantities of spares and controller
GENERAL Call sales office for details.

DUAL DISK DRIVE/ WINCHESTER CASES

 Very smart, fully enclosed case un custom made to accept two full height $51 / 4^{\prime \prime}$ floppy disk drives or two $51 / 4$ winchesters such as the RHODIME RO200 or TANDEM series etc. An internal switched mode PSU supplies all the required voltages to enable you to plug in your drives and go!!Other features include mains filter internal cables with standard drive connectors, space for internal PCB standard fan cut out and mounting, alr filter. Overall dimensions ONLY $£ 55.00+£ 6.00$ CARR.

AMBASSADOR
 Telephone Systems

Limited quantity of these micro-
processor controlled 2 line plus 4 processor controlled 2 line plus
extension telephone systems. Comprising of compact CPU unit and four special telephones. Via simple push button controls each of the fou phones can ORIGINATE, HOLD or TRANSFER calls to and from each extension. Other features include bell LED status indication, simple 4 wire connections etc. Supplied in tested ONLY $£ 250.00+£ 6.00$ CARP

DEC CORNER

PDP 1140 System comprising of CPU 124 K memory + MMU 16 line RS232
interface, RPO 240 MB hard disk interface, RPO2 40 MB hard disk drive,
TU10 9 track 800 BPI Mag tape drive, dua rack system, VT52 VDU etc. etc. Tested
and running
$£ 3750.00$ BA11-MB 3.5" BOX, FSU. LTC $£ 385.00$ OH11-AD $16 \times$ RS232 DMA
DLV11-J $4 \times$ EIA interface DUP11 Sych. Serial data Q200 Dilog - multi RK
DZ11.B8 \quad £495.00 LA36 Decwriter ElA or 20 ma loop $£ 270.00$ LAXX-NW LA180 RS232 serial interface LAX34-AL LA34 tractor feed MS11-JP Unibus 32 kb Ram MS11-LB Unibus 128 kb Ram
MS11-LD Unibus 256 kb Ram MS11-LD Unibus 256 kb Ram 256 kb PDP11/40 Cpu, 124 kMMU RT11 ver. 3 B documentation RKO5-J 2.5 Mb disk drives KL8JA PDP 8 async i/o
MI8E PDP 8 Bootstrap option VT5E VDU and Keyboard current loop
VT52 VDU with RS232 interface
1000's of EX STOCK spares for DEC PDP8, PDP8A, PDP11 systems peripherals. Call for details All types of
Compuler equipment and spares wanted for PROMPT CASH PAYMENT.

[^2]
The Archer-סingle Board Computer

The SDS ARCHER - The Z80 based single board computer chosen by professionals and OEM users.

FEATURES

* High quality double sided plated through PCB
* 4 Bytewide memory sockets - upto 64 k
* Power-fail and watchdog timer circuits
* 4 Parallel ports with handshaking
* Bus expansion connector
* CMOS battery back-up
* Counter-timer chip
* 2 serial ports
* 4 MHz Z 80 A

Telephone or write for full technical description and price information.

OPTIONS * SDS BASIC with autostart and "user program in ROM" facility

* SDS DEBUG MONITOR: a powerful 8 k byte development aid
* On board 120/240 volt mains power supply
* Attractive two tone instrument case

Happy Memories

CIRCLE 9 FOR FURTHER DETAILS.

APPROVED MODEM

BATB approval has been granted to the Miracle WS2000 modem. The multi standard unit can cope with both Bell and CCITT systems at $75,300,600$ and 1200 baud. Full telex facilities, through the Easylink system of Cable \& Wireless/ Western Union, are available at a cost well below that of setting up a conventional telex system.

Public services, such as Prestel, Micronet, Telecom Gold and private bulletin boards are available to the user as well as inter-computer communications. Expansion accessories include auto-dial and auto-answer, an added chip-set to provide full computer software control of the modem, battery power, acoustic coupling and t.t.l. RS232 interfacing. The unit costs $£ 150$. Miracle Technology (UK) Ltd, 10 St Peter Street, Ipswich IP1 1XB. EWW 216

POTTING PLASTIC RESISTS FLAMES

A flame retardant polyurethane resin is suitable for potting and encapsulation of electronic components. Dobeckan IF400/ $052 / \mathrm{FR}$ was orginally developed for encapsulation of transformers used in home computers but because of its flame-retardant property it is suitable for a wide range of other applications. Of low viscosity, the material takes only 17 minutes to gel and may
be used for high-volume production with metered dispensing equipment. The cured system is selfextinguishing and offers a high degree of insulation. The makers claim that it is cheaper and easier to use than epoxy compounds as its quick setting time is combined with a low exotherm. Glasurit Beck Ltd, Slinfold, Horsham, W Sussex RH13 75H.

EWW 217

SILENT NIGHT

Although pleasant at times, it can be very annoying to live near to a striking clock especially at night. Now Public Clocks have come to the rescue with a device that will silence the chimes during the night.
The clock mechanism need not be altered in any way. The silencer consists of two pre-set electric timers and an industrial electric actuator from
Portescap, who told us about it. In operation, one timer
energises the actuator and pulls the hammer off the bell. The electric supply is cut off after half an hour. The second timer comes into operation after the pre-determined time lapse and allows the actuator to lower the hammer gently on to the bell. The supply is again cut after 30 minutes. This saves power and also increases the working life of the unit. If the clock also chimes quarters, a second set of timers and actuators would be needed. Public Clocks,
1 Prideaux Place, Lloyd Square, London WC1X 9PR. EWW 229

RS232 TRACKBALL

A new option has been added to the Litton TBSII trackball, an RS232 interface which allows it to be used in a variety of applications. As well as with computers, it may be used in a wide range of medical electronics systems, flight (and other) training simulators and arcade electronics games.
Custom i.cs are used to
implement the RS232 function and the interface is contained within the trackball package, eliminating the need for any other interface in most instances. This can also be provided in non-standard configurations for any special requirements. The TBSII is available for console mounting or as a hand-held unit. The ball diameter is 2.25 in . Litton Precision Products International, 6 First Avenue, Globe Park, Industrial Estate, Marlow, Bucks. EWW 221

CABLE T.V. HEAD END AND REPEATER AMPLIFIERS

CHANNEL CONVERTERS
TCUU UHF-UHF Single channel converter. Gain adjustable $+2 d B-16 d B$. Maxi mum output $+26 d B m V$. Crystal controlled oscillator. Power requirement
TCUV As TCUU except UHF to VHF converter (Quote Channels required)
TCVU As TCUU except VHF to UHF converter (Quote Channels required)

SINGLE CHANNEL AUTOMATIC GAIN CONTROL AMPLIFIERS
TAG4863 Gain 48dB, maximum output 63dBmV. Regulator + or -8 dB . Power
TAG4063 Gain 40 dB , maximum output 64 dBmV . Regulator + or -16 dB . Power requirement 14 V 210 mA .

SINGLE CHANNEL AMPLIFIERS

TSS4663 Gain $28-46 \mathrm{~dB}$ adjustable. Maximum output 63 dBmV . Power requirement
ISS3062 Gain $12-30 \mathrm{~dB}$ adjustable. Maximum output 62 dBmV . Power requitement 14 V 26 mA .

DRIVER AMPLIFIERS

TS1030FM FM driver amplifier. $10 d \mathrm{~B}$ Gain. Maximum output $30 d \mathrm{BmV}$. Power requireTS1030B3 Band III driver amplfier. 10dB gain. Maximum output 30dBmV. Power requirement 14 V 10 mA
TS1030UHF UHF driver amplifier. 10 dB gain. Maximum output 30 dBmV . Power require-
TS1040S \quad Single channel UHF driver amplifier. 10dB gain. Maximum output 40 dBmV . Power requirement 14 V 10 mA . (Quote channel required).

DISTRIBUTION AMPLIFIER

TE2042 Domestic distribution amplifier. 1 input, 1 output. Gain 20dB. Maximum
TE1638 Domestic distribution amplifier. 1 input, 2 outputs. Gain $16 d \mathrm{~dB}$. Maximum
output: 2 at 38 dBmV .
$40-860 \mathrm{MHz}$. Gain 20 dB UHF. 18 dB VHF. Maximum output 45 dBmV
TS2846 $\quad 40-860 \mathrm{MHz}$. Gain 28dB UHF, $22 d \mathrm{~B}$ VHF. Maximum output 46 dBmV
TS2845 Separate UHF/UHF inputs. Gain 28 dB UHF, 22 dB VHF, Maximum output
TS2054 40 860M
$\begin{array}{ll}\text { TS2054 } & 40-860 \mathrm{MHz} \text { Gain 20dB UHF, } 18 d \mathrm{~dB} \text { VHF. Maximum output } 54 \mathrm{dBmiv} \\ \text { TS } 2060 & 40-860 \mathrm{MHz} \text { Gain } 20 \mathrm{~dB} \text { UHF } 18 \mathrm{~dB} \text { VHF Maximum }\end{array}$
TS5565 Gain 55dB UHF, 55 dB VHF, 42 dB FM. Maximum output 65 dBmV .

REPEATER AMPLIFIERS

TSC $3660 \quad$ Repeater. Gain $16-36 \mathrm{~dB}$ UHF, $10-30 \mathrm{~dB}$ VHF. Maximum output 60 dBmV
TSC $3665 \quad$ Repeater, Gain $16-36 d \mathrm{~dB}$ UHF, $10-30 \mathrm{~dB}$ VHF. Maximum output 65 dBmV TSC3060 Repeater. Gain $10-30 d \mathrm{DVHF}$. Maximum output 60 dBmV

QUALITY AT LOW COST TAYLOR BROS (OLDHAM) LTD

 LEE STREET, OLDHAM - TEL. 061-652 3221 - TELEX 669911CIRCLE 59 FOR FURTHER DETAILS.

pantechnic

design manufacture and supply

POWER AMPLIFIERS HIGH POWER ASSEMBLIES CONTROL CIRCUITRY

- for application in

> INDUSTRY PUBLIC ADDRESS HI-FI

- available

OFF THE SHELF
CUSTOMISED
C A D DESIGNED
tel. 01.361.8715 132 High Road telex 266873 New Southgate PANTEC G LONDON N11 1PG.

Keepthase
Contact CLEAN

BY USING A
DIACROM SPATULA

Manufactured in France British Patents applied for

No other cleaner has all these advantages:-

1. Only 100% pure. natural diamond grains are utlised
2. Blades are treated with hard chrome to reinforce the setting of the diamond grains. to obviate loosening or breakaway during use This process also prevents clogging of the diamonded surface by residues resulting from use
3. All diamonded blades ate rectified to ensure an absolutely smooth surface by eliminating diamond grans which may rise above the surface. This eliminates all excessive scratching during use
4. All diamond grains are rigidly calibrated to ensure a perfectly uniform grain size of either 200.300 or 400 .
5. The chrome gives a very weak co-efficient of friction and the rigidity of the nyton handle is calculated to permit proper utilisation and yet pliant enough to avoid undue pressures on highly delicate relays

- Grain size 200 , thickness $55 / 100 \mathrm{~mm}$. both faces diamonded For quick cleaning of industrial relays and switching equipment. etc.
Grain size 300 . thickness $55 / 100 \mathrm{~mm}$. both faces diamonded. For smaller equipments. like. telephone retays computer relays. elc
- Grain size 400 , thickness $25 / 100 \mathrm{~mm}$. one face diamonded. For serisitive relays and tiny contacts. Two close contacts facing each other can be individually cleaned, because only one
face of the spatula is abrasive

Sole Distributors for the United Kingdom
SPECIAL PRODUCTS (DISTRIBUTORS) LTD 81 Piccadilly, London W1V OHL. Phone: 01-629 9556 also major industrial and electronic users throughoun the United Kingdom.

CIRCLE 11 FOR FURTHER DETAILS.

FREQUENCY METER

A frequency-measuring range from 5 Hz to 600 MHz with a sensitivity of better than 10 mV is provided by the Thandar TF600. It is mains or battery operated and has an 8-digit display. There are two inputs; input A has $1 \mathrm{M} \Omega$ input impedance and is used for
frequencies up to 100 MHz , it may be used with the low pass (40 kHz) filter provided; input B is a 50Ω input for the 40 Mhz to 600 MHz range. The display reads out directly in kHz and has indicators to show overflow, time gate and low battery. The decimal point is positioned automatically on all ranges. Thandar Electronics Ltd, London Road, St Ives,
Huntingdon, Cambs PE 17 4HJ.

EWW 218

MULTIPURPOSE MUART

Five different microprocessor peripheral functions are combined in one chip in the Intel 8265. Designed to interface with any of the Inteltype processors, for example 8048, 8085, 8086 and 8088, the multifunction universal asynchronous receiver/ transmitter provides serial communications, parallel i/o, timing, event counting and priority interrupt functions. All of these are fully programmable through nine integral registers.
The five timer/counters and the two paralle i/o ports can be
accessed directly by the processor. Four of the 8 -bit counters may be cascaded to provide two 16 -bit timer/ counters. A prescaler provides for system clocks of $1,2,3$ or 5 times the basic 1.024 MHz clock rate.
The serial asynchronous communications interface is programmable for various bitlength characters, a variable number of stop bits and parity generation. Thirteen different data rates are catered for up to $17.2 \mathrm{Kbit} / \mathrm{s}$ and an external clock may be used to give $1 \mathrm{Mbit} / \mathrm{s}$. Parallel i / o consists of two 8 -bit programmable ports of which port 1 is bit programmable and can be set up to provide
handshake control for port 2 as well as inputs for event counting.

Interrupts are controlled at eight nested levels with programmable priority. Seven of them deal with the muarts own

MOUSE CONTROLLER

Not a pesticide but an i.c. from Sanyo which will accept a signal from a two-wire input as provided by one axis of a computer input mouse and provide 13 control outputs. Comparator output levels range from 1.6 V at output 1 to 6.4 V at output 13 in 0.4 V steps. The
internal operation but the eighth can be used for a specific external function or for chaining with other interrupt controllers.
Futher details from Jermyn Distribution, Vestry Estate,
Sevenoaks, Kent. EWW 220
device includes a one-shot multivibrator for chatter [squeak?] rejection and requires supply voltage between 8 and 16 V . A sequential latching circuit avoids ambiguous inputs. The LB1475 operates over a wide temperature range, has a maximum output current of 30 mA and a maximum disipation of 250 mW . Edicron Ltd, 1-7 Wesley Avenue. London NW10 7BZ. EWW 222

COLOUR-CHANGE DISPLAY

A three-colour digital display may be used to give eye-catching monitor and alarm warnings. The Digiplan 500, with a 12.5 mm high, 3_{2}^{1}-digit liquid crystal display may be used to monitor temperature, pressure, flow, force, current or voltage with a colour sequence, red, yellow and green that changes instantly when preset limits are reached. Accuracy is claimed to be $0.05 \%, \pm 1$ digit. The input range and signal conditioning circuit is selected by the insertion of a plug in card. Displays are supplied with marked units and symbols according to the user's needs. However, by changing the plug-in card the unit may be re-scaled almost instantly. Supply voltage, colour change sequence and decimal point position are all selected on internal switches and the alarm limits are set by simple screwdriver adjustment. TC Ltd, PO Box 130, Uxbridge, Middlesex UBO 2YG. EWW 211

LOW-POWER 68000

A new version of the 6800032 / 16-bit processor reduces the power consumption from 1.5 to 0.7 W at the normal operating frequency of 8 MHz . The Hitachi design, manufactured by their nMOS process, is a direct equivalent of previous versions of the device and is packaged in plastic, without the need for any special heat-dispersing
baseplate
The full-size 64 -pin version is a plug-in replacement for earlier types but the lower power consumption has made it possible to produce another version the same size as a conventional 40 -pin d.i.p. with a pin spacing of 1.78 mm (0.7 in) Hitachi Electronic Components (UK) Ltd, Station Road, Harrow Middlesex HA1 2XL. EWW 214

ELECTRONICS \& WIRELESS WORLD FEBRUARY 1985

CIRCLE 42 FOR FURTHER DETAILS.

ELECTRONIC POWER UNITS

FOR XENON ARC AND MERCURY ARC LAMPS UNTTS AVAILABLE FOR LAMPS RANGING FROM 75 TO 8500 WATTS. Lamp housings and lens systems manufactured as standard off the shelf models or to specific design.
K. T. Manners Dasign Ltd.
P.O. Box 936, London, W4 4NW Telephone: 01-994 7155. Telex: 28604 CIRCLE 65 FOR FUR'THER DETAILS.

> Wirelessworld Any Production Queries Please phone Brian Bannister on 01-661 8648 or Jackie Perry on 01-661 8649

CIRCLE 32 FOR FURTHER DETAILS.
ELECTRONICS \& WIRELESS WORLD FEBRUARY 1985

LITTLE WINNIE

Actually its not called Winnie at all but Penny, but it is a miniature (3.5 in) Winchester disc drive with capacity of 50 MByte . It is planned to go into full production in spring and its makers, Newbury Data, expect it to find a market in original equipment manufacturers of personal and mini-computers. The drive uses four platters stacked to achieve its capacity and offers an access time of 40 ms and a data rate of $5 \mathrm{MBits} / \mathrm{s}$. In addition, Newbury Data are making a two-platter version (half-Penny?) with half the capacity which will be
compatible with current software and allow the time for suitable modifications to driver software to cope with the 50MByte drive. surfacemounted electroncis help to save space and offer better reliability. The drive uses the standard ST506/412 interface. Formatted capacity is 40 (or 20) MBytes. Penny uses a closed loop, adaptive, digital servo driving a brushless d.c. motor. Recording densities of 12685 bits/in. and 980 tracks/ in. are achieved through the use of Whitney head technology in conjunction with plated discs. Newbury Data Recording Ltd, Hawthorne Road, Staines, Middlesex TW18 3BJ. EWW226

LCR BRIDGES

Resistance, inductance and capacitance meters from Wayne Kerr are microprocessor-based to enable a rapid automatic quality assurance check on components. Bridge parameters can also be set manually for more diverse test applications. As well as displaying component values, D or Q terms can be displayed at the touch of a button. The 4225 is an a.c. component bridge with a basic accuracy of 0.25%. It uses three test frequencies. In the limits measurement mode a hi-low-pass statement is displayed when the component is compared to preset limits entered at the keypad.

The 4210 (illustrated) offers an accuracy of 0.1% and is programmable through an

IEEE488 bus. In addition to the features of the 4225 , it has percentage deviation and can indicate into which bin the component should go, sorting the component in absolute or comparative percentage terms. Auto-trim compensation and bin values are stored in non-volatile memory during power off. The IEEE interface gives automatic output of data to a printer for example, and allows full remote control of all functions.
Electroplan Ltd, PO Box 19, Orchard Road, Rovston, Herts 598 5HH.
EWW 224

SPECTRUM OSCILLOSCOPE

The first product of a new company, AWR Technology, the Microview is a digital storage oscilloscope and spectrum analyser used in conjunction with the ZX Spectrum computer. The dual-trace instrument with a maximum sampling rate of 100 kHz is plugged into the Spectrums edge connector and is programmed through the computer. The gain of each channel is independently controlled with displays of from 10 mV to 10 V per division. The timebase is selected by a 12 position switch giving values from 1s to $250 \mu \mathrm{~s}$ per division. It is possible to analyse the spectrum of either channel
using Fourier transformation. The output is displayed on a tv screen on a video-generated graticule and it is possible to display either or both channels, to add them together or to subtract them. X and Y cursor movements permit the reading of amplitude and timing of a waveform. Selected areas of a waveform may be magnified. The signal may be triggered automatically or manually and waveforms can be stored on cassette and played back when required. Output can also be printed on a ZX printer.
The Microview uses machine code routines to enable fast plotting of data and there are comprehensive menu options to
allow extensive analysis of the waveforms. Aimed at the amateur electronics enthusiast and for use in the schoolroom, the Microview costs $£ 140$ inclusive. AWR Technology claim that its features compare favourably with instruments

those who do not have a
Spectrum computer the cost is still low enough to make it worth getting one. Other versions of the instrument are being prepared for the BBC Micro and the Apple. AWR Technology, Simmonds Road, Wincheap, Canterbury, Kent. EWW 219

DEWSBUTY

Efficient monitoring of the complete SW range calls for the use of modern receivers offering operational ease. Recently good receivers such as the ICOM R-70 and JRC NRD-515 have come onto the market, but they tack optimal micropro-cessor-supported operating capacities. These requirements are satisfied by the intelligent POCOM PFC- 100 programmable trequency controller

The basic idea behind this development was got from the analysis of practical experience with different SW receivers Utilizing this experience with technically sophisticated microcomputer hardware gave birth to this versatile frequency controller, indispensable to all ICOM or JRC owners.

Advanced circuit technology contributes to the high quality of this innovation. thus meeting the most stringent demands of all active SW-listeners. Together with either the ICOM or JRC, the PFC-100 permits an unsurpassed degree of operational ease due to the use of a microprocessor and manageable software.

PFC 100 DETAILS ON REQUEST

Much importance was given to ease of handling. Programming individual functions can be carried out quickly and sately with the well-planned editor mode. The alphanumeric liquid crystal display allows dialogue communication with inpu routines to be executed. The PFC- 100 combines all import ant functions, such as keyboard, memory, information dis play, in one piece of equipment, at a very favourable price performance ratio

All the PFC-100 functions and operating routines - data exchange, display unit readout, as well as command recognition entered on the keyboard - are carried out by a Bit CMOS-CPU in conjunction with a 16 kByte operating the programme memory

The microprocessor programme helps the user to avoid erroneous operations, minimises unnecessary operational activity and provides a couple of routines for self-diagnostic purposes.

Easy-to-add options faciltate the increasing of range of applications. Special attention was given to adaptability to new equipment characteristics and formations, such that this can be accomplished merely by changing firmware (2 EPROM 2764) thus avoid ing the need to buy completely new equipment.

Dewsbury Electronics offer a full range of Trio Equipment always in stock
We are also stockists of DAIWA-WELTZ-DAVTREND-TASCO TELEREADERS-MICROWAVE MODULES ICS AMTOR-AEA PRODUCTS-DRAE-BNOS

बताराज्यां Dewsbury Electronics, 176 Lower High Street, Stourbridge, West Midlands. Telephone:Stourbridge (0384) 390063/371228. Open Monday thru Saturday Instant H.P. subject to status, Access, Barclaycard and real money.

CIRCLE 69 FOR FURTHER DETAILS.

Toroidal Transformers
 as manufacturers we are able to

 offer a range of quality Toroidal Transformers at high competitive prices and fast delivery.
Mail Order Price List

30VA 6.54. 50VA 8.36. 80VA 9.15. 120VA 10.55. 160VA 11.98. 225VA 15.61. 300VA 17.19. 500VA 22.33. 625VA 27.96. 750VA 31.05. 1 KVA 41.40. price inciudes $p+p \&$ vat. Available from stock in the following voltages: - $6-0-6,9-0-9,12-0-12$, Available from tock $15-0-15.18-0-18,22-0-22.25-0-25,30-0-30,35-0-35,40-0-40,45-0-45$, $50-0-50,110,220,240(\mathrm{max} .10 \mathrm{amp}$). Primaries $240,220,120$ volt please state

Quantity Prices and delivery on request (we also manufacture conventional E 1 type transformers)

Airlink Transformers.
Unit 6, The Maltings, Station Road,
Sawbridgeworth, Herts. Tel: 0279-724425.

CIRCLE 53 FOR FURTHER DE'TAILS.

SAD:ILDLiA Quick, neat andeasy!

Ir's so easy and tidy with the Easibind binder to file your copies away. Each binder is designed to hold six issues and is attractively bound and blocked with the WIRELESS WORLD logo. Price U.K. $£ 4.30$ including postage, packing and V.A.T.
Overseas orders add 35p per binder.
Nat. Giro No. 515/552
Please allow 3 3/4 weeks for fuffilment of order
Payment by ACCESS/BARCLAYCARDNISA. Send coupon below detailing credit card no and signature.

路

MICROPROCESS-
OR DEVELOPMENT

A system for the development of microprocessor control boards is provided by the K85 from Kimberry. In-circuit emulation, eprom programming, text editing, assembler language programming, disassembling and debugging are all available in the one unit. The system is itself based on a 8085 processor and is used to develop target circuits which also use the same chip. The target board is connected to the K85 through the in-circuit emulator cable. Any userdesigned board can be emulated provided they conform to certain common design rules. Kimberry can also supply a target board, the MTB85-1 which has an 8085 , i/o ports, 4 K eprom or 2 K eprom and 2 K ram, and a programmable timer.

The K85 assembler is fully symbolic and very fast. Assembling a 1500 -line source program takes about 15 seconds. Any error causes the assembler to stop, pass the control back to the text editor and display the error line on the screen. Thus corrections can be made very quickly and the assembler can go back into action. This eliminates the frustration of having a long list of errors at the end of an assembly and makes editing. very easy.

Programs can be stored directly on cassette through the

port provided, or downloaded to another computer through the RS232 link. Text files produced by the K85 are Wordstar compatible and editing may be carried out on the second computer if the K85 is in use for emulation.

The zif socket on the front panel has two uses; to read-in programs or regularly used routines kept on a 'library' eproms. A directory listing the stored files can be produced much as in a disc system and such files can be retrieved virtually instantly by name. The other use for the socket is to program 2, 4, 8 or 16 Kbyte eproms, all memory mapped. Programs can be assembled into an eprom and then 'run' from the same socket. Additional test and utilities programs are provided for this purpose.

The debug monitor makes development and testing very easy. Amongst its facilities are the ability to inspect and change memory; write to or read from
an i/o port; set, clear and list breakpoints; set interrupt status; start a program; inspect and alter 8085 registers. The single-step mode disassembles the object code and displays all registers; a trace mode displays the progress of a program on a screen or outputs it to a printer.
Also provided is an output power supply for the target system, a parallel printer interface, video output, cassette interface at 1200baud and a fully buffered interface bus configurable to STD or Euro buses
The K85 development system cost $£ 1995$ and Kimberry point out that the alternative is a full-scale microprocessor development system costing upwards of $\{7000$. The price includes an 8085 target board Additional target boards are $\{65$.
Kimberry, 29 Thomey Hedge Road, Chiswick, London W4 5SB
EWW 207

To get further information on any of the products. mentioned in these columins, circle the appropriate number on the reply card.

GPIB FOR QL

A full implementation of the international IEEE-488 protocol is available in a plug-in package which fits the expansion slot on the Sinclair QL computer. The device allows the computer to be comnected to, and obtain data from a wide range of scientific and laboratory instruments and such peripherals as printers, plotters and disc drives. The Q-488, as it is known, responds to commands from any high-level language installed in the QL, such as QL SuperBasic, Pascal, C, Forth and also assembly or machine-code instructions. It incorporates an interface with the QDOS operating system and can cope with up to 16 devices connected at the same time. Data can be transferred between devices at a rate of up to 70 Kbytes . It has been designed to be easy to use and incorporates a number of user advice facilities, error checking and a comprehensive user manual. The Q-400 is the second of a number of devices designed to make the QL suitable for serious industrial and research work. The first was a Centronics parallel interface. Cambridge Systems Technology, 30 Regent Street, Cambridge CB2 1DB. EWW 205

FLAT CONVERTERS

A range of six d.c.-to-d.c. are designed with a low profile for p.c.b. mounting. With inputs of 5 and 12 V they have outputs of 5,12 and 15 V , fully regulated with isolation up to 500 V , short-circuit and thermal overload protection. A pi input filter reduces the ripple feedback current to the supply. Fully enclosed aluminium cases allow for a wide operating temperature range. $£ 35$ each from K.E. Developments Ltd, The Mount, Tolt, Cambridge CB3 7RL.
EWW 210

Werre in enthusinstic ahout computers as you are.

PCB DESIGN ON A PC

A complete system for designing p.c.bs is available for running on an IBM-compatible desk-top commputer.

Camera-ready artwork is produced on an ordinary Epson dot-matrix printer although it is possible to get higher precision by using a plotter. The disc-and-handbook combination of the smArtwork (sic) software makes it very easy to position connector pads and join them with traces. Either or both sides of a p.c.b. may be viewed on a screen and there are many options to zoom into an area for precision work and to select contrasting colours on the screen display.

There is a library of standard connector pads for, e.g. dil or sil devices and a single push button will position them at a chosen direction from the cursor. When used with a mouse, the system can be used very quickly to indicate the start and end pads of a connection and the computer will automatically find a route, avoiding other connections and providing sufficient width for reproduction (and for connection). All conductors are automatically made vertical, horizontal or at 45°. It is also possible to specify a specific route and to remove or reposition all or part of a trace. Repetitive traces, when the connections on one dil package are all connected to similar pads on another, can be produced automatically just by a single depression of the mouse button.

The maximum board size is determined in part by the printer or plotter in use, but the program can handle double-sided boards of any complexity up to 10 by 16 in . Conductor size and spacing has been chosen to give optimum results. Thicker traces for power or ground tracks may be chosen as required

The twice-sized artwork produced by a dot-matrix printer is perfectly acceptable for prototyping or small quantities but a plotter is recommended for printing the masters for production runs. A normal sized output is also possible and may be used for checking and for reference purposes.

Artwork produced on an Epson dot-matrix printer. The X2 printout is here reduced to approximate board size.

Complete systems start at £3600. Software for $£ 895$. EuroMicro Ltd, Coleridge Lane, London N8 8ED). EWW 208 Also from Conguin Software, 14

Goodwin Close, Morden, Surrey SM4 5AW, who offer a 10% discount on orders received before 28th February
EWW 249

POWER LINE EXAMINER

power conditioner can be easily checked to test its effectiveness. The Line Viewer 103 operates on all standard mains voltages, it comes in a case with input

TUBE RESTORER

The quality of any television picture tube can be rapidly analysed and restored by using the B\&K Model 467. Digital multiplexing circuits are used to provide many testing capabilities. The test procedure is all laid out on the control panel which guides the user through the sequence. Three meters display the emission from the three guns in a colour tube; they are also used to show the heater, C1 and line voltages. Lealage between all important elements can be checked instantaneously. The heater voltage is continuously variable with all commonly used voltages marked on the meter scale; G1 and G2 voltages are also variable to simulate the use of a tube in a receiver. Colour tracking test circuits allow the easy checking of gun tracking.

Rejuvenation of a tube is carried out simply by pressing the Restore button; each gun is restored independently and a special technique (patent applied for) is employed to ensure the maximum cathode current without damaging the cathode. This involves pre-heating the cathode and then applying the high rejuvenating voltage between G1 and the cathode while at the same time removing the heater current. Function switching between restoring and emission test permits instant evaluation of the effectiveness of the restoration. The removal of a short between the grid and cathocie is indicated instantly by a lamp. B\&K Precision, P() Box 27, 39 Whitby Street,
Hartlepool, Cleveland TS24
7BR.
EWW 209
and output leads at a one-off price of $\mathcal{£} 525$. Oneac Ltd, 6 Eyston Way, Abingdon, Oxon OX14 1TR
EWW 212

It is easy and safe to view a.c. power line waveform on an oscilloscope if you use the Line Viewer 103, says its manufacturer. It is an interface between a power line and the oscilloscope which may be used by a service engineer for the analysis of power problems. Normal-mode or common-mode noise and low-frequency distortion may be seen easily. A

5

 please note that we are closed all day Saturday

DGSOP1 2-MOTOR, SOLENOID CONTROLLED CASSETTE DRIVE. canty solenoid donntrolled mectanism
suitable tor suligate tor Hi-Fil or
dige with control board the deck can be operated b
lightweight touch controls or output micro. IIfeal tor
applications under applications under
automatic control autornatic control such
as teleponhone answering
machin
 automatic background music systems. remote control recorders
and microcomputer program and datia sole and microcomputer program and data storage. TWo motors and
inree solenood sontrol all functions including search in tast lorward and rewind. Iorward and rewind.
Stancard fitings incl stereo R / P and and erase Head Overall size $176 \mathrm{~mm} \times 130 \mathrm{~mm} \times 75 \mathrm{~mm} .25$ Ouantity prices on
OGSOO1 Cassette Mechanism. $\mathbf{C 3 7 . 2 5}$, inf 140. Full technicai specillcation and drawings ε STEREO CASSETTE DECK Following the runaway sellout of our last cassette deck we have now obtained a small quantity of an even nicer one. Main features are full auto-stop, Chrome/Ferric Switch Manual record level control (invaluable for computer use), twin Vu meters and 3 -digit counter. Complete with all record and replay circuirty, contror keys and cassetie carriertyor.
good quality and only $£ 21.80$ inc Vat and Post Circtit dagran good quality and only $£ 21.80 \mathrm{inc}$ Vat and Post. Circuit dragram es
Throe band COMPLETE STEREO TUNER MODULE $165 \times 85 \mathrm{~mm}$. Supplied with Ferrite rod ser ilias and band swith fully wired. Facility provided to drive tuning meter and stareo LED Only needs 12 V DC supply. FM sensitivity. 2.5 JV . Price

STEREO 10 W POWER AMPLIFIER MODULE Ready bult and tested music centre power amplifier module compiete and ready to use. Malns input $220 / 240 \mathrm{v}$ with power to
spare tor tune and tape deck. Size $190 \times 10 \times 65 \mathrm{~mm}$ ONLY ع8.90 plus Val and Post

AUTOMATIC 10-CASSETTE AUTO PLAYERS Suitable for background music systems. Lenco type PAC10 plays each casette forward and backwards before changing to the next. Any cassette may be rejected at the touch of a button Mains powered, Wood frisish case with perspex top cover, play through any high quality stereo ampififier system. Orinally over $\Sigma 500$ each! Our price for ex-demonstration models only $£ 230$. One only Brand New $\mathfrak{\Sigma 3 1 0}$.

HIGH QUALITY REPLACEMENT

 CASSETTE HEADS

Do your tapes lack treble? A worn head could be the problem Fitting one of our replace ment heads could restore performance
to berter than newl Stenderd mountings make fitting easy and to better than now! Standerd mountings make fitting easy and Our TC1 Test Cassette heips you set the azimuth spot-on. We are
the actual importers which means you get the benefit of lower prices for prime parts. Compare us with other suppliers and seel The following is a list of our most popular heads, all are suitable for use on Dolby machines and are ex-stock.
HC20 Permalloy Stereo Head. This is the standard head fitted as original equipment on most decks
HM90 High Beta Permalloy Head.
ormance head with metal capabilitywearing, higher per HS 16 Sendust Alloy Super Head. the best head we can find Longer life than Permalloy, higher output than Ferrite, fantastic HOS55 1 -Track Hoed for auto-reverse or quadrophonic use Fut
specification record and playbackhaad specification record and playback head at.....................73 Please consult our list for technical data on these and other
Special Purpose heads.
MA481 Latest version Double Mono (2/2) Record/Play head
Replaces R484 Sh166 Stan5514 Trackhead. 5.90
H524 Standard Erase head. Semi oouble gap, high efficiency
$£ 1.50$
HART TRIPLE-PURPOSE TEST CASSETTE TC1
One inexpensive test cassette enables you to set up VU level,
head azimuth and tape speed. Invaluabie when fitting new heads. Only $\mathbf{f 4 . 6 6 \text { plus VAT and } 5 0 \text { p postage }}$
Tape Head De-magnetiser. Handy size mains operated unit prevents build up of residual head magnetisation causing noise Curved Pole Type for inaccessibie heads $\mathbf{£ 4}$

Send for your free copy of our LISTS. Overseas please send ics to cover surface Post or 5 IRCs for Airman!
lease add part cost of post, packing and insurance as follows
INLAND OVERSEAS
$\begin{array}{ll}\text { Orders up to } £ 10-50 \mathrm{p} & \text { Please send sulficient } \\ \text { Orders } £ 10 \text { to } £ 49-£ 1 \\ \text { Orders over } £ 50-£ 1.50 & \text { Surface or Air Post as }\end{array}$ Surface o
reaured.

HF ANTENNAS

\star MODE; Full half wave operation.
\star BANDS; Up to 4 spot frequencies

* POWER; Receive to 800W (PEP).
\star SWR; Better than 1.5:1 on channel.

THE SMC TRAPPED DIPOLE ANTEMMA

has been developed to satisty the needs of commetical and military users it is capable of operation between 2 and 30 MHZ on as many as four spot frequencies - each capable of feed is offered by the use of SMC HIC traps and the incorporation of a ferrite balun in a full half wave design. NB Power absorbing terminating resistors are not employed. The antenna may be deployed using one or two support masts, instailation lincorporating SMC light duty portatle masis) can be easily effected by two people in half an hour.

HF SSB TRAMSCEIVER

TM180 "PIONEER" HF SSB TRANSCEIVER. $1.8-18 \mathrm{MHz}, 6$ channels 100 watts RF outpu $\times 310(\mathrm{D}) \mathrm{mm}$ and weighing 6 kg May be operated as a base or mobile transceiver, comple menting our trap dipole and HW4 mobile aerials. Prices start at 6700 , making this unit not only very attractive but highly competitive.

SOUTH MIDLANDS COMMUNICATIONS LTD.

SM HOUSE
OSBORNE ROAD, TOTTON
elex: 477351 SMCOMM G
SOUTHAMPTON SO4 $4 D N$
CIRCLE 46 FOR FURTHER DETAILS.

\section*{| A° | RADDFORD |
| :--- | :--- |}

Audio Measuring Instruments, Audio Amplifiers, Loudspeakers and Loudspeaker Components for the professional and enthusiast

RADFORD AUDIO LTD.

10 BEACH ROAD
WESTON-S-MARE, AVON BS23 1AU
TEL. 0934416033
CIRCLE 49 FOR FURTHER DE'TAILS.

Build Your Own PC

IBM/XT compatible mother board (blank) B \& T with 128 K Bytes of RAM	$¢ 99.95$
	$£ 599.00$
5-1/4 DSDD 40 trk drives only	£109.95
XT compatible units from.	£1499.00
Full range of PC compatible boards available.	
Create your own PCB ARTWORK	
smARTWORK lets you create and revise RAM, colour/graphics adapter, Epson pr ONLY	ires 192K nal).
6801 Micro Co	

Analogue and power control I/O in a single board computer. 6801 Micro Control Sys tem designed for distributed control or standalone use: 6801 or 6870 M outputs. Typical Systems from $\mathbf{\$ 2 5 0 . 0 0}$
*FREE delivery within UK * All prices fully inclusive*
Dealer enquiries welcome
CONGUIN SOFTWARE
14 GOODWOOD CLOSE, MORDEN, SURREY, SM45AW

EINSTEIN'S TRAINS

From W.A. Scott Murray

Consider the situation described by Einstein in his book - "Relativity - the Special and the General Theory", dated 1916/1952. Lighting strikes a railway track at two separated points A and B, while an observer M sits at the trackside half-way between these points. The light signals due to the strikes, travelling from A to B, at velocity c, reach M at the same time. Since the distances AM and MB are equal (by measurement), M concludes that the strikes at A and B were simultaneous (Fig.1); we shall designate their common time (instant) of occurrence, as deduced by M, as $t=0$. this is Einstein, s new definition of simultaneity, superseding the previous conventional definition:
If the observer perceives the two flashes of lightning at the same time, then they are simultaneous."
Einstein next introduces a train, running along this track in the direction $\mathrm{A} \rightarrow \mathrm{B}$ at velocity v . The train carries another observer M^{\prime}, and it happens that just when the lightning strikes the rails at A and B (that is, at $t=0$ as judged by M), M^{\prime} is located exactly opposite M. What does M^{\prime} observe? The quotation is Einstein's version, verbatim:
"Just when the flashes of lightning occur (as judged from the embankment), this point M^{\prime} naturally coincides with the point M, but it moves towards the right in the diagram with the velocity v of the train. If an observer sitting in the position M^{\prime} in the train did not possess this velocity, then he would remain permanently at M , and the light rays emitted by the flashes of lightning A and B would reach him simultaneously, i.e. they would meet where he is situated. Now in reality (considered with reference to the railway embankment) he is hastening towards the beam of light coming from B, whilst he is riding on ahead of the beam of light coming from A. Hence the observer will see the beam of light emitted from B earlier than he will see that emitted from A. Observers who take the railway train as their reference-body must therefore come to the
conclusion that the lightning flash B took place earlier than the lightning flash A."
He then goes on to declare as a Principle the "relativity of simultaneity", saying,
"Unless we are told the refer-ence-body to which the statement of time refers, there is no meaning in a statement of the time of an event."

Einstein's description of M^{\prime} "hastening towards the light coming from B while riding on ahead of the light coming from A , so that he will see the light coming from B earlier than he will see that coming from $A^{\prime \prime}$, is as depicted in Fig.2. That is what the "fixed" observer M would deduce (by common sense) that M^{\prime} would see. However, Einstein's own "second postulate" denies that the velocity of M^{\prime} relative to A or B can have any relevance: the velocity of light approaching M^{\prime} is to be c always, irrespective of the motion of its source. If so, then the situation observed by M^{\prime} in his own coordinates must be as shown in Fig. 3. where the two flashes arrive at the same instant - by Einstein's own definition, "simultaneously".
Einstein's argument as quoted is therefore inconsistent with his own, new postulate of the invariance of c.It is, however, com-

Fig.1. Coordinates of M.
Flashes arrive simultaneously

Fig. 2. Coordinates of M. Newtonian mechanics: what M deduces that M^{\prime} will observe
pletely consistent with Newtonian mechanics and Galilean transformations between the two coordinate systems,

$$
\begin{align*}
& x^{\prime}=x-v t \\
& t^{\prime}=t \text { (of course) } \tag{1}
\end{align*}
$$ which would apply to a ballistic theory of light (in which the photons were radiated at velocity c relative to their source and retained that same velocity indefinitely thereafter whilst in transit in vacuo, in accord with Newton's first law). This situation, which is shown at Fig.4, is that which is actually described by Einstein, and there can be no doubt but that his description is in conflict with his own theory on this point.

In order to view the situation "properly" from the stand-point of Special Relativity theory it is necessary to resort to the nonNewtonian or Minkowski mechanics which corresponds to the Lorentz transformations,

$$
\begin{align*}
& x^{\prime}=\beta(x-v t) \\
& t^{\prime}=\beta\left(t-v x / c^{2}\right) \tag{2}\\
& \text { where } \beta=1 / \sqrt{1-v^{2} / c^{2}}
\end{align*}
$$

Thus numerically, if we choose scales such that, in the coordinate system of M, the point A is at $x=-1, \mathrm{~B}$ is at $X=+1, c=1$, and $v=0.5 c$ (for demonstration) so that $\beta=1.1547$, then by equations 2 we have, for the coordinates (x^{\prime}, t^{\prime}) of A and B in the system of M^{\prime},

$$
\begin{gather*}
\mathrm{A}: x=-1, t=0, \\
\overrightarrow{ } x^{\prime}=-1.1547, \\
t^{\prime}=+0.57735 \\
\mathrm{~B}: x=+1, t=0, \\
\overrightarrow{t^{\prime}}=+1.1547, \\
x^{\prime}=-0.57735 \tag{3}
\end{gather*}
$$

These results are plotted in Fig.5. According to Special Relativity, the coordinates (places and times) of the lightning strikes at A and B are not the same for the "moving observer" M' as they are for his "fixed" colleague M. To maintain the theory's postulate - or fiction - of the invariance of $\mathrm{c}, \mathrm{M}^{\prime}$ must calculate - and perhaps even believe? - that A and B are really located at (x^{\prime}, t^{\prime}) rather than at (x, t). the only justification for adopting this complicated metaphysic is that some (but not all) of the experimen-tally-observed failures of Maxwell's electromagnetic theory are automatically compensated if one does so. Such compensation is achieved at the cost of believing the coordinates of time and space to be distorted, to a different extent for every observer, in accordance with the transformations proposed at equations 2. Is it worth it?

Fig. 3. Coordinates of $\mathrm{M}^{\prime} 9$ Newtonian mechanics: effect if c were simply invariant

Fig. 4. Coordinates of M^{\prime}. Newtonian mechanics: effect of c dependent on its source
.
If M^{\prime} opts to adopt this "relativistic" procedure he will indeed generate that time difference Δt^{\prime} $\neq 0$, for the arrival of the two light signals, which Einstein was seeking to induce by his earlier, erroneous argument. By Special Relativity theory proper the time difference in Fig. 5 (a Minkowski diagram) is

$$
\begin{equation*}
\operatorname{MNSK}=\frac{2 v x}{c^{2}} \cdot \frac{1}{\sqrt{1-v^{2} / c^{2}}} \tag{4}
\end{equation*}
$$

On the other hand, if the speed of light should be finite but not invariant, the common-sense condition $\Delta t^{\prime} \neq 0$ required by a ballistic theory is provided with much less complication by Newtonian mechanics; by inspection of Fig. 4 it is, simply,

$$
\begin{equation*}
\Delta t_{\mathrm{NEWT}}^{\prime}=\frac{2 v x}{c^{2}} \cdot \frac{1}{\left(1-v^{2} / c^{2}\right)} \tag{5}
\end{equation*}
$$

Needless to say, this Δt^{\prime} is identical to the Δt in Fig.2. Thus on this hypothesis the two observers remain in complete agreement concerning what each observes and how it should be interpreted; the obvious non-simultaniety of arrival of the light signals at M^{\prime} does not suggest to either of them that the lightning strikes at A and B were not simultaneous.
What are the prospects of putting this issue to practical test? In

Fig. 5. Coordinates of M'. Minkowski diagram: situation in accord with/ Special Relativity theory

Fig.6. Coordinates of M'. Minkowski diagram: plot of N.B. Taylor's equations in Wireless World
the orbits of low-level earth satellites one has, typically, $\mathrm{v} / \mathrm{c}=$ $2 \times 10^{-5}, \mathrm{x} / \mathrm{c}=5 \mathrm{~ms}$, and the term $2 v x / c^{2}$ is consequently of order $0.2 \mu \mathrm{~s}$. Thus to dertermine that Δt does in truth differ from zero in our physical world lies well within the capability of today's technology. Most unfortunately, this "failure of simultaneity" (by Einstein's definition of simultaneity) is insufficient either to confirm or deny Einstein's theory: the difference between equations 4 and 5 amounts to only one part in 2×10^{-10} in the present case, so that an empirical decision between Sir Isaac Newton's mechanics and that of Professor Minkowski continues to elude us.

One's personal decision about whether or not to accept the mystique of Special Relativity (which in its turn demands personal belief in the actual distortions of space and time that are proclaimed in the Lorentz transformations, not just that they seem to be distorted) should not depend solely on faith in one's teacher, nor yet on the internal self-consistency of the theory's mathematical arguments (which are entirely circular), but on firm, physical observations of its correspondence to the workings of the world as it is.
Direct demonstrations of such correspondence remain conspicuously non-existent. The fact that it may make the predictions of another theory (the electromagnetic theory) "come right" for example, in the design of a particle-accelerator such as the synchrotron - concerns only the credibility of the other theory, which has failed already on separate grounds; it can in no way be relevant to the credibility of this
theory, and there is no other reason why one should believe in it. Einstein's argument as quoted here achieved the result he desired by the device of changing over from Galilean rules of light propagation to speed-invariant rules halfway through, which is scarcely a legitimate procedure. Nevertheless, and surprisingly, very many intelligent people have been deceived by it. Indeed there are some who are quite content to remain deceived! Einstein's proposed "relativity of simultaneity" relies on the relevance of the physical world of those same Lorentz transformations, a question that we are at present unable to resolve by physical measurement. The credibility or otherwise of his celebrated "trains" argument is a separate issue, much less difficult for us to judge. Kippford, Galloway
November 1984

Addendum in reply to $N B$ Taylor

It is instructive to change the zero of coordinates so that the instant $t=0$ is defined not by the simultaneous events of the lightning strikes at A and B , but as the time at which, the ensuing light signals simultaneously reach the observer M. Since this is the only time which is actually observed in this thought-experiment, it is perhaps the more natural event to choose for time zero. As far as M is concerned it involves no more than correcting a fixed setting error ($\delta \mathrm{t}=\mathrm{AM} / \mathrm{c}=\mathrm{BM} / \mathrm{c}$) in his observatory clock, and it is clear that it cannot affect his observations of the relative times of events. However, in this system the events A and B, although simultaneous forM, occur for him not at $t=0$ but at $t=-1$ (units of x / c). Thus in the coordinates of M' we now have, by equations 2

$$
\begin{array}{rl}
\mathrm{A}: & x=-1, t=-1 \\
& \overrightarrow{t^{\prime}}=-0.537733 \\
\mathrm{x} \\
\mathrm{~B} & x=+1, t=-1, \\
& \overrightarrow{t^{\prime}}=-1.73205
\end{array}
$$

The outcome of this transformation is plotted in Fig.6. Apparently light leaving points A and B (as defined in these particular space-time coordinates), travelling at invariant velocity c, does indeed reach the observer M^{\prime} simultaneously. The change, from $\Delta t^{\prime} \nLeftarrow 0$ to $\Delta t^{\prime}=0$, seems to have been achieved by observer M by the simple process of resetting his watch before the experiment began!

One need look no further than that last sentence tolocate the fallacy in that argument. The assumption underlying Fig. 5 and its predecessors was that M^{\prime} was coincident with M at the time $t=$ 0 , which was the instant of the strikes as "judged" (not as "observed", see p.93) in the coordinates of M . But M^{\prime} is not coincident with M at the instant newly defined by M as $t=0$. If the world-line of M is backtracked in Fig. 6 it will be found to pass through the mid-point of the line AB . Both the length and the slope of AB are unchanged as between Figs $5 \& 6-\mathrm{M}$ cannot modify the physical events simply by resetting his watch. The mid-point of AB was the origin of coordinates in Fig.5, and it remains (by Einstein's initial choice) the only location at which M and M^{\prime} can be coincident. Thus in Fig. 6 the world-line of M^{\prime} is incorrectly plotted, and the apparent "simultaneity" is false.

LITERATURE RECEIVED

The latest products from Advanced Micro Devices are all described in a Hot New Products catalogue. Included are programmable array logic i.cs. the iAPX 80186 which provides a second source for the Intel device. A number of other microprocessor peripheral chips, including display controllers, nonvolatile menory devices, and telecommunications interfaces. Available through their distributors, Hawke Electronics, 45 Hanworth Road, Sunbury-on-Thanes, Middlesex. EWW 250
Power linear actuators interface micros to a variety of external devices such as stepper motors, power supplies, tachometers etc. SGS-Ates make a variety of such i.cs which can handle voltages up to 100 V or currents up to 4 A . These are detailed in a catalogue with full data and application details. SGS

Semicondictor Ltd, Planar House, Walton Street, Aylesbury. Bucks. EWW 251
Although Ambit retail outlets have been absorbed into the Cirkit organization, they are continuing to offer a service to industry through mail-order with trade counters at Brentwood, Essex, Boxboume, Herts and Portsmouth, Hants. The catalogue, is available through Ambit Industrial Sales, 200 North Service Road, Brentwood, Essex. CM14 "SG. EWW 252
A high-speed information stystem, based on teletext, is described in a folder-full of brochures from MRG Systems. The equipment is compatible with a wide range of main-frame, mini and microcomputers. It acts as a 'page' store and converts the information into a teletext broadcast signal
which can be received by standard teletext tvs or through special terminals. The system can suppont an unlimited number of terminals and, using a whole-channel transmission, can maintain a constant response time of between 0.2 and 3s. MGR Systerns Lid.. Calf-way House, The Camp, Miserden, Glos GL6 7HN. EWW 253

A number of dictionaries of electronics and computer terminology are very useful to lechnical translators as they are published in multi-language editions. Typical is a Dictionary of Microprocessor Systems in English, German, French and Russian.
All detailed in a brochure from Elsevier Science Publishers, PO Box 211, 1000 AE Amsterdam, The Netherlands. EWW 256

Advertisements accepted up to 12 noon Monday, 4 February for March issue

DISPLAYED APPOINTMENTS VACANT: $£ 19$ per single col. centimetre (min. 3 cm). LINE advertisements (run on): $\{4.00$ per line, minimum $£ 25$ (prepayable). BOX NUMBERS: $£ 5$ extra. (Replies shouid be addressed to the Box Number in the advertisement, c/o Quadrant House. The Ouadrant, Sutton, Surrey SM2 4AS). PHONE: IAN FAUX, 016613033 (DIRECT LINE)

Cheques and Postal Orders payable to BUSINESSPRESSINTERNATIONAL LTD . and crossed.

THE BEST APPROACH

£7,000-£30,000 + CAR

\star Where does your interest lie: Graphics; CAD; Robotics; Simulation: Image and Signal Processing; Medical; Automation; Avionics; Acoustics; Weapons; Comms; Radar; Opto and Laser?
 \star Experienced in: VLSI; Microprocessor Hardware or Software Digital and Analogue circuitry; RF and Microwave techniques?
 \star There are hundreds of opportunities in: Design; Test; Sales and Service for Engineers and Managers
 \star For free professional guidance: Call (0638) 742244 (5 lines) (till 8pm most evenings) or send your C.V. (no stamp needed) to:

ELECTRDNIC CDMPUTER AND MANREEMENT RPPOINTRENTS LINITED The Maltings, High St., Burwell, Cambridge. CB5 0MB.

UNIVERSITY OF YORK DEPARTMENT OF ELECTRONICS
Applications are invited from suitably qualified graduates for the following research appointments:

(A) 3-year Research Assistant in Plasma Processing Technology.

This is an opportunity to join mexpanding research team investigating various aspects of Dry Processing Techniques for the fabrication of integrated circuits. This project will investigate phasma enhanced deposition and etching of refractory metals and silicides for device structures in VLSi circuits. The work is supported by the Alvey Directorate for Information Technology and will be carried out in collanoration with Plasma Technology Lidd. Plessey (Research) Lat. British Telecom and S CL. L.td. Applicants should have an interest in semiconductor device theory and modelling, and integrated circuit fabrication technigues: an interest in experimental or practical electronics would be an advanage. A good homours degree for higher qualfication in Electronic Engineering or thysics/Llectronics is required.

(B) One-year Research Assistantship in

 Transistor Oscillator Design.[^3]
REPRESENTATIVE

Canadian Electronic Distributor is looking for Sales/Buying Representative for England. Products distributed are semi-conductors and related products of major US brand. Applicant must be experienced in the field. Please send full particulars to Box No. 2456 or call collect in Canada 414-340 1603.

ENGINEER/TECHNICIAN

Ixpanding indepondent technical Training Company has a vacancy for a confident, self-motivated Engincer/lechnician with a broad based knowledge of analogue/digital/microprocessor equipment, to jom its technical training team. Experience of Broadcasting Video or TV industry would be an adrantage

Please contact: Mr. R. Mercer,
Technical Director,
Trackdown Technology Training Limited,
Ver House,
55 I ondon Road,
MARKYATE,
Herts. Al 38 gI

Tel. (0582) $8409(19 / 840140$

Severn-Trent Water
 Regional Telecommunications Officer

Up to $\mathbf{£ 2 0 , 0 0 0}$ p.a.

Severn-Trent is seeking an experienced telecommunications specialist who will be responsible for overseeing the developmen and rationalisation of communication facilities throughout the region which extends over some 8500 square miles of the Midlands and Wales.
This is a senior post in the Technical Services Department and it offers a rewarding and interesting challenge to a communications professional who has at least 10 years experience of handling a variety of communications projects. Severn-Trent, over the last 4 years, has developed its own extensive radio network consisting years, has developed ifs own eximeint hinks, providing multiprimarily of 1.5 GHz point-to-point hinks, providing multichannel communication highways for speech and daia the region. Consideration is currently being given to throughout the region. Consideration is currentiy being given to the development and enhancement of this network in order to produce
The prime responsibilities will include managing the development of Severn-Trents own network developing policy and plans to cater for future specialist needs; and responsibility for the technical direction of various communication specialists employed by Severn-Trent and those engaged on a contracting or consultancy basis.
The post is based at Sheldon on the eastern outskirts of Birmingham.
Application forms and further details are available from the Head of Manpower Services, Severn-Trent Water, Abelson House, 2297 Coventry Road, Sheldon.
Birmingham B26 3PU
Telephone 0217434222 ext 2076/2077.
Closing date 31st January 1985
Severn Trent is an equal opportunity employer.

The Challenge of Discovery

Develop State of the Art Measurement Instruments and Systems for the Television Industry.

In the competitive field of electronics, the future belongs to those who improve, enhance, and develop new and better products. We are staffing New Product Development Groups that will explore new concepts in test, measurement and control products for television signals, including existing formats and the new analog, digital, and high definition television formats. The following openings are available:

Software Engineers

Develop application software products for analysis and measurement of television signals and consult with customers in developing new test and measurement systems. Contribute to the planning and development of future television signal processing and measurement systems. A B.Sc. or M.Sc. in Computer Science or equivalent combination of experience and training required

Electronic Engineers

Develop precision instrumentation circuits, including wideband amplifiers, filters, phase-lock loops. Design and/or analyze data conversion systems. May work with microcircuit designers on custom IC design. Integrate microprocessor-based control and instrumentation into analog and digital signal generation and processing systems. A B.Sc. or M.Sc. in electronics (or equivalent), with experience in the design of television test and measurement instrumentation involving high precision analog and digital circuitry. Knowledge of hybrid and IC design techniques would be an advantage.
In addition, successful candidates for all positions should have a working knowledge of sampling theory, signal processing techniques, digital interfaces and television production and transmission practices.

Tektronix can provide creative freedom, excellent technical resources, and a highly competitive compensation/benefits program. For prompt consideration for these opportunities located in the state of Oregon, U.S.A., please send your resume to Rex Ferbrache, Tektronix, Ltd., P.O. Box 36, ANM3, Guernsey, Channel Islands. (No agency referrals, please.)

We are an equal opportunity employer $m / f / h$.

Mectronics Dingineers £10,039
 Communications Design in High Tech Country

At H.M. Government Communications Centre we're using the very latest ideas in electronics technology to design and develop sophisticated communications systems and installations for special Government needs at home and overseas.

With full technical support facilities on hand, it's an environment where you can see your ideas progress from initial concepts through prototype construction, tests and evaluation, to the pre-production phase, with a chance to influence every stage. Working conditions are pleasant, the surroundings are attractive, and the career prospects are excellent.

Ideally we're looking for men and women who have studied electronics to degree level or equivalent and have had some experience of design, whether obtained at work or through hobby activities. Appointments will be made as Higher Scientific Officer ($£ 7435-£ 10,039$) or Scientific Officer ($£ 5909-£ 8153$) according to qualifications and experience.

For further details please write to the address given below. As our careful selection process takes some time, it would be particularly helpful if you could detail your qualifications, your personal fields of interest and practical experience, and describe the type of working environment most suited to your career plans.

The Recruitment Officer, HMGCC, Hanslope Park, Buckinghamshire MK19 7BH.
(2448)

UNIVERSITY OF LIVERPOOL
INSTITUTE OF
MEDICAL AND DENTAL BIO-ENGINEERING
TECHNICIAN

GRADE 3

(ELECTRONICS)
to assist with circuit design.
construction and maintenance of electronic control equipment in a medical research
laboratory. Candidates must possess O.N.C., Intermediate
T.E.C., or appropriate
equivaient as minimum
qualification plus three years experience which should include general workshop skills This post is available for two years. Salary withın range $\mathbf{£ 5 3 9 9}$ £6325 per annum.
Application forms may be obtained from the Registrar, the University, P.O. Box 147 , Liverpool, L69 3BX. Quote ref: RV/902/EWW (7458)

OXFORD POLYTECHNIC DEPARTMENT OF BIOLOGY

ELECTRONICS/ PHYSIOLOGY TECHNICIAN

Apprest in Human Physiology and a sound working knowledge of electronic instruments. Knowledge of analogue and digital circuitry will be an advantage. The successful candidate will work mostly in the Physiology section which teaches to degree and HNC level, and which is also actively engaged in a range of research topics. Salary within Scale 4/5 £6264 £ 7896 (under review) according to experience and qualifications. Further details and application form may be obtained from the Staffing Office. Oxford Polytechnic Gipsy Lane, Headington. Oxford OX3 OBP. Telephone Oxford 64777 extension 364 Closing date for completed applications is 31st January 1985. 2469)

Appointments

INNER LONDON EDUCATION AUTHORITY

LEARNING RESOURCES BRANCH, Television and Publishing Centre, Thackeray Rd, Battersea SW8.
Television Engineer
for Master Control Section (Studio Technician 1/2)
This post is involved with the bulk production of colour videocassettes from 1" Ampex submasters. The successful candidate will be expected to operate the 1^{*} machine, cassette machines (VHS, Betamax and Umatic) and label and check the copies. $\mathrm{He} /$ she will have a good working knowledge of colour television principles and suitable experience and/or technical background.
Salary range $£ 5568$ - £8451 plus $£ 1347$ London Weighting Allowance.
Full details and job description from Personnel Services Division (EO/Estab 1b) room 366, The County Hall, London SE 1 7PB. (Please enclose S.A.E.).
The closing date for completed application forms is the 28 February 1985.
This post is suitable for Job-share.
ILEA IS AN EQUAL OPPORTUNITIES EMPLOYER. (2466)

If you are leaving College and planning a career in modern communications or if your present job lacks interest and challenge why not join us in GCHQ? We are recruiting

RADIO OFFICERS

who are after initial training will become members of an organisation that is in the forefront of communications technology. Government Communications Headquarters can offer you a satisfying and rewarding career in the wide field of communications. Training involves a 32 week course (38 weeks if you come straight from Nautical College) which will fit you for appointment to RADIO OFFICER.
Not only will you find the work as an R O extremely interesting but there are also good prospects for promotion opportunities for overseas travel and a good salary. Add to this the security of working for an important Government Department and you could really have the start of something new.
The basic requirement for the job is 2 years radio operating experience or hold a PMG, MPT or MRGC or be about to obtain a MRGC. Registered disabled people are welcome to apply.
Salaries start at $£ 4,762$ at age 19 to $£ 5,755$ at age 25 and over during training and then $£ 6,399$ at 19 to $£ 8,510$ at 25 and over as a Radio Officer Increments then follow annually to $£ 11,741$ inclusive of shift and weekend working allowances.
For full details and application form phone $024232912 / 3$ or write to:

The Recruitment Office A/1108 Priors Road
CHELTENHAM
Glos GL52 5AJ
(2806)

Field Service Engineer

c. $£ 10,000+1.6 \mathrm{~L}$ Car +0 T

Required to commission and repair Computer Controlled machine tools. Experience with machine tools desireable but not necessary. A good electronics qualification (HNC min) is required together with mechanical ability and adaptability.
We are a leading Supplier of CNC Machine Tools and a member of an international Group. We provide a non contributory pension scheme, free life assurance plus other benefits.
Please reply in writing with full C.V. to:-

R. Richardson, Service Manager,

Elgar-PMT Machine Tools Limited.,
BEC House, Victoria Road, London NW10 6NY.

Opportunities in Professional Broadcast Engineering

As one of the market leaders in the broadcast television industry, we provide engineering support for some of the most sophisticated professional equipment in use today. Our wide range includes cameras, VTR's/VCR's, editing control systems and professional audio equipment. Applications are now invited from well qualified engineers for the following challenging positions:

Service Engineers

Appointments will be made at Engineer and Senior Engineer levels. Located at our prestigious engineering complex in North Hampshire, the successful candidates will join an engineering team engaged in the maintenance and repair of our video product range Applicants should have HNC Electronics (or an equivalent qualification) together with a background in professional electronics For senior positions, previous supervisory experience and a significant track record in the broadcast industry is essential.

Full product training will be given, and there are considerable prospects for personal development.

We offer attractive salaries and first class conditions of employment, including free private medical insurance and Company pension/life assurance scheme.

If you are looking for a new career move into a highly successtul and go-ahead Company, please contact: David Parry, Personnel Officer

Appointments

Production Engineer

required by our rapidly expanding and highly innovative, mixer division Responsibilites include supervision of assembly, test \& product development At least two years studio/manufacturing experience are required.
A realistic salary is offered, commensurate with ability \& experience.
Applications will be treated in totil
confidence. Contact Nigel Adams

bandive Itd.

Brent View Road. LONDON NW9 7EI Telephone 01-202 4155
(2462)

ELECTRONIC TECHNICIAN
 INTERESTING WORK

REPAIRING, MANUFACTURING REPAIRING, MANUFACTURING
AND DEVELOPING ELECTRONIC FLASH EQUIPMENT FOR A LEAADING PHOTOGRAPHIC LEADING PHOTOGRAPHIC
DISTRIBUTOR IN CENTRAL LONDON Applicants should have a Applicants should have a
knowledge of basic electronics to kity \& Guilds standard but City \& Guilds standard but essential. A driving licence would be an advantage. Salary negotiable

Telephone Nigel Fielden on
01.8334737 for an interview.
(2768)

BORED ?

Then change your job!

1) BROADCAST SYSTEMS.

Several clients have vacancies for experienced Test Engineers working on digital TV products and related camera equipment. To £10,000Hants, Surrey.
2) DATA COMMS. Test Engineers with experience of A.T.E. and fault finding to component level on digital equipment. To $£ 10,000$ - Hants, Surre 3) MOBILE/CELLULAR RADIO.

Repair and calibration of R.F. and Digital circuitry. To $£ 9,000$. Berks, Surrey and Hants.
4) SWITCHING NETWORKS. Senior

Maintenance and Planning Engineer. Experience of Data Comms required To $£ 18,000$ Bahrain 5) GRAPHICS SYSTEMS

Experienced Service Engineers required for field work on 280 based equipment. To $£ 10,000+$ car. Berks, Bucks and Surrey

Hundreds of ot'ver Electronic and Computer vacancies to $\mathrm{f} 12,500$ Phone or write:
CLINEDEN COHSULTANTS
92 The Broadway, Bracknell, Borkshire Tel: $0344489469 \quad$ (1640)

We can offer some of the best opportunities available to join a prestigious company with unlimited resources who are currently applying the very latest and advanced microprocessor, hybridisation, and miniaturisation techniques to bring battlefield communications and control into the age of chip technology.
One of their major tasks is to design a highly innovative system which will give commanders greater control of battlefield situations. You could join this project at a very exciting stage of its development. Ideas are now being turned into finished products and you would be working for a company which has a reputation for superb engineering and computer facilities and who, wherever necessary, will develop their own technology.
You will work with the most up to date and sophisticated Automatic Test and Measurement Systems available devising procedures to validate advanced circuit designs which make use of the very latest microprocessor techniques

Our Clients provide a first-class salary package, full

To find out more and to obtain an early interview, please telephone $J O H N$ PRODGER in complete confidence on HEMEL HEMPSTEAD (0442) 47311 during office hours or one of our duty consultants on HEMEL HEMPSTEAD (0442) 212650 evenings or weekends (not an answering machine) Alternatively write to him at the address below. company benefits plus five weeks' annual holiday. They are located in a pleasant modern town, that boasts excellent schools, shopping and other amenities. House prices are moderate and the Company will pay the cost of relocation where appropriate.
Executive Recruitment Services
the international specialists in rechuitment for the electaonics computing ano defence inoustries
25-33 Bridge Street, Hemel Hempstead, Herts., HP1 1EG.

Electronic Engineers What you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $£ 5000-£ 15000$
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL PERSONNEL SERVICES,
12 Mount Ephraim,
Tunbridge Wells, Kent. TN4 8AS.
Tel: 089239388 TJB
(24 Hour Answering Service)

Please send me a TJB Appointments Registration form
Name
Address

The Operations Technical Support Group have a vacancy for a Telecommunications Technical Officer Grade III in the Metropolitan Police Forensic Science Laboratory in Central London. The successful candidate must have the ability to assemble, modify and repair electronic circuits employed in analytical instrumentation equipment.
Applicants should possess at least the TEC certificate or equivalent and have spent 4 years or more as an electronics technician working with analogue and digital instruments. An intuitive interest in physics and chemistry would be an advantage.
Salary: $£ 7.812$ p.a. to $£ 10,309$ p.a. inclusive of inner London weighting. Prospects for promotion.
For further details and an application form write to:- The Establishment Officer. E8 Branch Room 213, (WW/FSL) 105 Regency Street, London, SW1P 4AN, or ring 01-230 3122 (24 hour answering service).
The Metropolitan Police Office is an equal opportunities employer.
(2457)

Electronics Technician Grade 5 re quired by the Department of Phonetics and Linguis-
tics in connection with the day-fo-day running of an established speech soiences feaching laboratory Work involvas setting up, mantenance of equipment for sfudent teaching experments as well as heloing slaff and students in field and laboratory work. Applcations in acoustic recording and measurements ranalogue \& digital): microcomputers; digital mechanical workshop experrence an advantage. The Department has an experienced technicalgroup with good facilties.
Salary in range $\mathrm{E7831}$ - 88934 finc. London We ighting) Application form and further panticulars from
Personnel Otficar (Technical Staft BBG/ univers. Personnal Otficer (Technical Staft B86), Univers. ity College London. Gower Street. London WC1E 6BT.
(2468)

UNIVERSITY OF LIVERPOOL DEPARTMENT OF OCEANOGRAPHY
TECHNICIAN GRADE 5 (ELECTRONICS)
to design, construct and maintain equipment for physical and chemical teaching and research, including research at Sea. Candidates must research at S.a. Candidates mus possess H.N.C. or appropriale
equivale,t and minimum of seven equivalem and minimum of seven years experience which must includ
lault diagnosis, repair, testing and lault diagno
calibration.
Salary within range $£ 6581$ £7684 per annum

Application forms may be obtained from the Registrar, the University, P.O. Box 147, Liverpool, L69 3BX.

UNIVERSITY OF LIVERPOOL

 DEPARTMENT OF PSYCHOLOGY
TECHNICIAN

 (ELECTRONICS) GRADE 4to join small group of workshop staff undertaking construction. modification and repairs of electronic/electromechanical equipment. Preparation of circuit diagrams, filing technical data for future reference and general assistance in electronics as directed Candidates should possess relevant O.N.C. or C. \& G. qualifications together with at least seven years experience.
Salary within range £6106 - $\$ 7024$ per annum. Previous applicants need not apply Application forms may be obtained from the Registrar, the University P.O. Box 147, Liverpool, L69 3BX
(2799)

National Heart \& Chest Hospitals Brompton Hospital

Medical Physics Technician

(ELECTRONICS)
A vacancy exists for a junior medical electronics technician to join a small team providing a comprehensive maintenance and user-support service to this busy cardiothoracic hospital.
The technician will be engaged mainly in electronic work but experience in other scientific or engineering skills would be an advantage. In addition to duties within the department, the technician will be required to work in the Intensive Care Unit and other clinical areas, to assist with equipment use. The experience gained will be of value to anyone planning a career in medical electronics.
The post would suit a person holding, or studying for, an OTECH in Electronics. Provision of day release for further study will be available. Salary: Junior Medical Physics Technician, £3787-£4903, plus £1042 London Weighting. For further information, contact Mr. P. Butler, Chief Technician, 01-980 4433 Ext. 340. Job description and application form, available from Mrs. J. Walton, Assistant Personnel Manager, Brompton Hospital, Fulham Road, London SW3 6HP. Tel: 01-352 8121 Ext. 4456 (24 hour answering service).
(2473)

tery - Size. W. $25.5 . \mathrm{CM}$ - H 25.5 CCMS - 56CMS Deep - WT 11.4KGS - Carrying handle - Tested in falr condition with operating instructions $£ 12000$		
rying handle - Tested in falr condition with operating instructions $£ 12000$ Stallc Power Supply Standby Unit. Made by Saunders Electronics. Contans		
Automatic Changeover Swlich in the event of mains supply failure. Also automatic Battery charger for 24 volt battery supply. Dutput $240 \mathrm{AC} 50 \mathrm{c} / \mathrm{s}$ Sine-Wave		
at 15010200 watts Input supply or battery 24 or 28 volts DC. Output short circuvit protected. Size - W $38.3 \mathrm{cms}-23.5 \mathrm{cms}-\mathrm{D} 19.7 \mathrm{cms}$ - WT 21 KGS		
vit protected. Size - W $38.3 \mathrm{cms}-23.5 \mathrm{cms}$ - D 19.7 cms - WT 21 KGS		
Latest Bulk Government Release - Cossor Oscilloscope CDU150 (CT531/3\| £150 only. Solid state general purpose bandwidth DCto 35MHz al $5 \mathrm{MV} / \mathrm{CM}$ - Dual Channel - High brightness display ($8 \times 10 \mathrm{~cm}$) Full delayed time base wilth gated mode - Risellme 10 NS - illuminated graticule - Beam finder-Calibrator 1 KHz squarewave - Power 100 - 120 V . 200V - 250 voits AC - Size W 26 CM - H 26CM - 41CM deep - WT $12.5 \mathrm{~K} . \mathrm{G}$. carrying handle - colour blue - protection cover tront containing polarized viewer and camera adaptor plate - probe (1) - Mains lead. Tested in Fair condition with operating instructions - $£ 150.00$.		
Communication Receivers. Racal $500 \mathrm{KC} / \mathrm{S}$ to $30 \mathrm{MC} / \mathrm{S}$ in 30 bands $1 \mathrm{MC} / \mathrm{SWIDE}$ - RA17 MK 11 £125. RA17L £150. RAili?E £200. New Meial Louvred Cases tor above §25. All receivers are air tested and callbraled in our workshop - supplied with dust cover - operation instrucllons - circuit - in lair used condition Racal Synthesi isers (Decade trequency generators) MA350B Solld State lor use with - MA79 - RA217 - RA1218 Etc $£ 100$ to $£ 150$. MA $250-1.6 \mathrm{mC} / \mathrm{S}$ to $31.6 \mathrm{MC} / \mathrm{S} £ 100$. MA 1350 tor use with RA17 eceiver $£ 100$. MA259G Precision irequency standard $5 \mathrm{MC} / \mathrm{S}-1 \mathrm{MC} / \mathrm{S}$ - 100 KH 2 E 100 to $£ 150$, Panoramic Adaptor RA66 §150. RA 137 and RA37 $£ 40$ to §75 LF convertors 10 to $980 \mathrm{KC/S}$. RA2 18 Independent SSB unili£50 RA98 SSB-ISM Covertor $£ 50$. RA121 SSB-ISB convertor $£ 75$. EC964/7K Solid state - single channel - SBB - mains or battery -1.6 to $27.5 \mathrm{MC} / \mathrm{S}$ and 400 to 535 KHz § 100 with manual Plessey PR155G Solld Stale 60KC/S - 30MC/S E400. Creed 75 Teleprinters - Fitted lape punch and gearbox for 50 and 75 bauds - 110 volts AC supply - in originat Iransport iray seaied in polythene - like new © 15EA. Redilon TT11 Audio Teleprinter convetior receiver solid state - suppiy 110 or 240AC - Made tor use with above leleprimeter enabling print-out ol messages received from audio input ol communication recelver		
£15 with clreuit tested. Redifon TT10 Convertor as above but Includes transmit lac \|litites $£ 20$. Oscilloscopes - stocks always changing Tektronix 465 - 100MC/S $£ 750$. FM Recorder Sanghmd Sabre 11114 channels £350. Transtel Matrix printers - AF 11 R - 5 level Baudot Code - up to 300 Bauds - tor print out on plain tel epprater paper $£ 50$ to $£ 100$. Transtel		
AH11R - AS above but also 8 level ASC 11 (CCITT No 2 and CCITT No. 5) Like new $£ 100$. Army field lelephone sets, Type F L and J - Large quantity in stock $£ 6$ to $£ 15$ depending on type and quantity P 0 . R Don 10 Telephone Cable - half mile canvas containers $£ 20$. Nighl velwing intra-red AFV periscopes - Twin Eyepiece - 24 volidc supply $\varepsilon 100$ ea. Original cost		
government over $£ 19,000$ ea. Slatic inverlors -12 or 24 volt input nput - 240 volit AC sinewave output - various attages P.O.R. XY Ploters and pen recorders various - P. O. R Fefrograph series 7 Tape recorders mono $£ 100$ tereo £150. Signal Gen eralots various - TF995/A3 560 . TFB01D/8s - $10 \mathrm{MC} / \mathrm{S} 10485 \mathrm{MC} / \mathrm{S} £ 90 \mathrm{TF} 144 \mathrm{H} / \mathrm{A4} £ 90$		
TF 1064B/5 £ 100 TF791 Deviation meter £100 TF893A Power meter $£ 50$. Aerial mast assembly 30 it high complete with 16 tt whip aeral to mount on top - guyropes - insulators - Base and Spikes etc in heavy duty carrying bag - new $£ 30$ Racal ifequency counter Type $836 £ 50$ Tektronix plugs-ins - 1Ai $£ 50,1$ A2 $£ 40,1 \mathrm{~A} 4 £ 100 \mathrm{M} £ 50$. All items are bought direct from H.M. Government being surplus equipment: Price is Ex works. S A. . for enquiries Phone for appointment for demonstration of any items. Also availability or price change. V A.T. and caariage extra		

HALL WORKS. 84 WHITEHALL ROAD
BIRENSHAW. BRACFORD BO 11 2ER
(2734)

CAPACITY AVAILABLE

TW ELECTRONICS LTD

THE PCB ASSEMBLERS

More and more companies are investi gating the advantages of using a professional subcontractor. Such an undertak ing requires certain assurances. TW are able to satisfy all of them quality, competitive pricing, firm delivey and close co-operation with the cus-
tomer. tomer.
Assembled boards at 100% inspected before flow soldering and reinspected after automatic cropping and cleaning. Every batch of completed boards is is-
sued with a signed certificate of confor sued with a signed certificate of confor mity and quality - our final assurance. For further details, contact us at our new works:

Blenheim Industrial Park Surf 8t. Edmunds

 Telephone: 02843931 (1466)FREE P.T.H. PROTOTYPE of the finest quality with EVERY P.C.B. art work designed by us. Competitive hourly rates, and high standard of work. Essex Tel (0787) 477408/474554 (2126)

QLARTZ CRYSTALS OSCILLATORS AND Fitems. Specials supplied 10 order. Personal and items. Specials supplied to order. Personat and OEM support thru:- design adrice. prototype quantities. production schedules.
Golledge Electronics. Merriott. Somerset 7 A16
SNS. Tel: 046073718

Eurocard Power Supplies

Crowba, $\overline{12}$ or 15 v main oulput, Front Panel with IEC mains SKT. Prices from
$£ 15$ tar 1 kit ($£ 23$ built) + VAT fo details contact: Sleevemain Ltd., depl
WW, PO Box 512 , Windsor Berks SL $4 \mathrm{NU}^{\prime}$

CUT PRICE COMPONENTS AVAILABLE NOW. You have nothing to lose and everything to gain by comparing our prices. For a free quotation without obligation send a list of your requirements to Doyen Electronics Limited, Freepost (No stamp required), Pewsey, Wiltshire, SN9 5BR.

ENCAPSULATING EQUIPMENT FOR_coils transformers, components, degassing silicone rubber, resin, epozy. Lost was casting for brass, bronze, silver, etc. mpregnating coils, transiorused and new. Also for CRT regunning metallising. Research \& Development. Barratts, Mayo Road, Croydon CR0 2QP. 01-684 9917. (9678)

VALVES, PROJECTOR Lamps, 6000 types, list 75 p, world wide export. Cox radio (Sussex) Ltd.,
The Parade. East Wittering, Sussex. Phone The Parade. East Wittering, Sussex. Phone
(0243) 672023

VINTAGE VALIE SPARES - Valves. Radios Amplifiers, Service Data. Antique Wireles Xewsheet sample upon request. Mail Order Only intage Wireless Co., Cossham Street. Mangols
field, BRISTOL BSI7 3E:. Tel: $0272-565!172$

TO MANUFACTURERS, WHOLESALERS BULK BUYERS. ETC. LARGE QUANTITIES OF RADIO. TV AND ELECTRONIC COMPONENTS FOR DISPOSAL

SEMICONDUCTORS, all types, INTEGRATED CIRCUITS, TRANSISTORS, DIODES, RECTIFIERS, THYRISTORS, etc. RESISTORS, C/F, M/F.W/W, etc CAPACITORS, SILVER MICA, POLYSTYRENE, C280, C296, DISC CERAMICS, PLATE CERAMICS, etc.
ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE, CABLES, SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFORALL AT KNOCKOUT PRICES - Come, etc

TFIEPHONE: Come and pay us a visit ALADDIN'S CAVE
TELEPHONE: 445 0749/445 2713
R. HENSON LTD.

21 Lodge Lane, North Finchley, London, N. 12

BRIDGES waveform/transistor analysers. Calibrators, Standards. Millivoltmeters. Dynamometers. KW meters. Oscilloscopes. Recorders. Signal generators - sweep, low distortion, true
RMS, audio, FM, deviation. Tel. 040 RMS, audio, FM, deviation. Tel. $\begin{aligned} & 040 \\ & \text { 376236. }\end{aligned}$ (1627)
MORSE READING PROGS. Work on clean signals without hardware interface. ZX81 1K UNEX-
PANDED MEMORY. Translated code with PANDED MEMORY. Translated code with word and line spaces for easy reading Automatic scroll
action. $\mathbf{£} 7$ incl. WAVEGUIDE, Flanges and dishes. All standard sizes and alloys (new material only) from stock. Special sizes to order. Earth Stations. 01-228
7876,22 HowieStreet, London SW' 11 AR . (2099)

> The Publishers take all reasonable care to ensure that classified advertisements are genuine, but readers must satisfy themselves that they will be obtaining what they require before entering into transactions, particularly if they involve large sums of money.

THE OUARTZ CRYSTAL CO.LTD.
OCC. WORKS, WELLING TON CRESCENT
NEW MAIDEN. SURREY
O1-9420334 \& 291

SCOPES

repaired and recalibrated
All makes, all models

Scopex, Safgan Older TEK \& TO

MENDASCOPELTD.

Otter House, Weston Underwood Olney, Bucks MK46 5.JS
BEDFORD (0234) 712445

```
Micro spot-welding heads. Sippicar
Hughesi£35. Wayne-Kerr Portable
HF Frequency Standard £65.
Coutant stablised PSU'S £25. IOK
SWR Indicator E49. Coaing
hickness guage £35. Chart
recorders.2 6,20 channel. Ceta IC
ester £60. Hygrometer. Hot-air
Gun 420C Tektronix Waveform
Pulse Generator [50. Micro-match
ranstormer. E35. Sulivan Decade
Generator:FM/AM'Generator E89.
enerator. FA/AMMGenerator £89
Brige E55. Ceninfuge. Tayio
Hobson Talysurf 575. H.D DC
Ammeter.Thermocouple Selecior
Digital Vollmeter £35. Ignition
Analyser Adaptor for Oscilloscope
generates characterisic waveform
with diagnosic manual £39. Bendix
delay £49. MarconI TF IO4IB VTVM
```

£65. etc etc

040376236

OPTOELECTRONICS DATA BOOK 1984

Price

DIGITAL ELECTRONIC CIRCUITS
\& SYSTEMS by N.M. Morris PRICE: $£ 5.45$
MICROELECTRONICS
A PRACTICAL INTRODUCTION by
SOLDERING IN ELECTRONICS by
R.J. Klein Wassin Wassink PRICE: $£ 51.00$

OPTICAL FIBER COMMUNICATIONS

DIGITAL IMAGE ANALYSIS
by S. Levialdi PRICE: $£ 26.00$
SEMH-CUSTOM IC DESIGN \& VLSI by P.J. Hicks PRICE: $£ 13.50$

INTRODUCTION TO MOSLSI DESIGN by J. Mavor PRICE: $£ 18.50$
HANDBOOK OF BATTERIES $\&$
HANDBOOK OF BATTERIES \&
FUEL CELLS by Linden PRICE 663.00
THE DESIGN \& DRAFTING OF
PRINTED CIRCUITS by L Lindsey
PRICE: E41.50

* all prices include

POSTAGE

THE MODERN вооК $\mathbf{C O}$.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books

19-21 PRAED STREET LONDON W2 1NP

Telephone: 01-4029176
Closed Saturday 1 p.m.
Please allow 14 days for reply or delivery

```
    WANTED
SURPLUS ELECTRONIC
    COMPONENTS AND
                EQUIPMENT
We also welcome the opportunity to quote for
    complete factory clearance
    B. BAMBER ELECTRONICS
5 STATION ROAD, LITTLEPORI, CAMBS.
    Phone: Ely (0353) 860185
```


STEWART OF READING

 110 WYKEHAM ROAD READING RG6 1PL TEL NO: 073468041TOP PRICES PAID FOR
ALL TYPES OF SURPLUS TTEST EOUIPMENT
COMPUTEREOUIPMÉNT, COMPONENTS etc. ANY OUANTITY. [2616]

TWO PARTRIDGE CFB4000 3.6/1.7 output transformers also small quantity 1 mfd 600 wol bathtub capacitors. F.S. Thomas 141 Warwich Road, Banbury. Oxem, $029558457 . \quad$ (2455)

WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash. Member of A.R.R.A.

M \& B RADIO

86 Bishopsgate Street Leeds LS 1 4BB 0532435649
(9956)

SURPLUS

We offer good prices for test equipment, components, redundant computers PCB's connectors. immediate settlement.

tIMEBASE

94 Alfriston Gardens
Sholling, Southampton SO2 8 FU
Telephone: (0703) 431323

CIRCOLEC

THE COMPLETE ELECTRONIC SERVICE
Artwork, Circuit Design, PCB Assembly, Test \& Repair Service, Q.A. Consultancy, Prototypes, Final Assembly. Full PCB Flow Soldering Consulta.
Service.
Quality workmanship by professionals at economic prices
Please telephone 01-6465686 for advice or further details.

> TAMWORTH MANOR

302-310 COMMONSIDE EAST, MITCHAM

DESIGN AND DEVELOPMENT SERVICE. RF transmitters and receivers. Telemetery U.H.F V.H.F. Anologue and digital circuits, control systems. Full manufacturing facilities. RCS Electronics. Wolsey Road. Ashford. Middx. Phone Dr. Eric ics, Wolsey Road. Ashford. Middx. Phone Dr. Enc
Falkner on 53661 (2637)

TURN YOUR SURPLUS i ics transistors etc. into cash, immediate settlement. We also weicorne the opportunity to quote for complete factory clearance. Contact COLES-HARDING $\& \mathrm{CO}_{,} 103$
South Brink, Wisbech, Cambs. 0945 South Brink, Wisbech, Cambs. (9509)
584188 .

PROFESSIONAL IDESIGN SERVICE. Analogue/RF circuit/System design. Specialising in microwave amplifier, oscillator and network
desimn. MOTOROLA $6805 / 6809$ series micropro design. MOTOROLA 6805/6809 series microprocaried out to a high standard by competent professional engineers. Trontech Electronic Design Services I.td., Unit 8B, Rose Industrial Est., Roume
(2439)
End, Bucks. 06285,28835

IMPROVE YOUR PROSPECTS
with skills that employers want - learn the easy way with modern home study courses from ldeal Scthools.

MODERN ELECTRONICS

 Train for success in the fastest ever growing industrial sector.COMPUTER PROGRAMMING The demand for Programmers is increasing constantly - don't miss out For tree booklet write today to

VIDEO DESIGN, develomment and consultants delay lines. fiters, attenuators and amplifiers design. development and manufacture fuil test facilities. Contact Faraday Technology Lid.. Unit faclities. Contact Faraday Technology Lid.. Unm
2. Brampton Industrial Estate. Newcastle. Staffordshire. Tel: Newcastle (0782) 6.61 .501.
(2454)

DESIGN AND MANUFACTURE. ANALOGUE DIGITAL, RF AND MICROWAVE CRRCUTT AND SYSTEM DESIGN. Also PCB design, mechanical design and prototype/small batch production. - AdBerks. Tel: Bracknell (0344) 52023 .
SMALL BATCH PCBs, produced from your artwork. also DIALS, PANELS, LABELS. Camera work Ludertaken. FAST 1 RNAROLND. Deteils: Winston Promotions, 9 Hatton Piace, Lond
ECIN 8 RU. Tel $01-4054127 / 0960$.
(9794)

VIDEO DESIGN, development and consultants delay lines, filters, attenuators and amplifiers design. development and manufacture full test facilities. Contact Faradas Technology Ltd., Unil 2. Brampton Incustrial Estate. Newcastle Stafforlshire. Tel: Neweaslle (0782) 661501.
(2454)

Use this Form for your Sales and Wants

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

To "Wireless World" Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate £4.00 PER LINE. Average six words per line. Minimum f25 (prepayable)
- Name and address to be included in charge if used in advertisement
- Box No. Allow two words plus $£ 5$
- Cheques, etc., payable to "Business

Press International Ltd." and cross "\& Co."

PLEASE WRITE IN BLOCK LETTERS. CLASSIFICATION
NUMBER OF INSERTIONS

Wrrelesswoivind
 INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 95-103

PAGE	PAGE	PAGE
Advertising Standard Authority 12	EMS Electronics	Newrad Instrument Cases............ 17
Airlink Transformer Ltd.............. 82	Electronics Wireless World Editorial	Number One Systems 20
Altek Products 12	List ... 8	
AM Electronics.......................... 17	Essex ... 86	Pantechnic................................ 84
Armon Products 50		PM Components $4 / 5$
Aspen Electronics Ltd 46		Practical Computing 90
Audio Electronics 104		Radford Electronics 92
Barne Electronics 20	Greatech ElectronicsInside back	Radford Electronics 92
Beckenham Peripherals 58	cover Greenwood Electronics 39	Radio Component Specialists 38
Black Star Ltd 60	Greenwood Electronics 39	Strumech Engineerin
Cambridge Micro Processor	Happy Memories 82	Samsons Electronics 76
Systems 50	Harris Electronics 1	Sarel Electric 20
Cobmor Electronics 12	Harrison Bros........................20,58	Sherwood Data Systems 82
Conguim Software 92	Hart Electronics 92	Skywave
Conitec 46	Henrys/Audio Electronics	Software 32
Cricklewood Electronics............... 21	Inside front cover	South Midland Communications 92
Cybernetic Applications 32	Henson Ltd (R) 1	Special Products Distribution 84
	Hilomast Ltd 38	Stewart of Reading 86
Dataman Design ..Outside back cover		Surrey Electronics Ltd 17
Dewsbury 88	ILP Electronics Ltd 17	
Digitask Business Systems 8	Integrex Ltd 37	Taylor Bros 84
Display Electronics 80/81		Technomatic Ltd $22 / 23$
	JDR Sheetmetal 46	TK Electronics 76
Easibind 82	Langrex Supplies 68	Thandar Electronics Ltd 1
Edicron Ltd 88	Levell Electronics 58	Thanet Electronics Ltd 76
Electronic Brokers 14/15	L.J. Electronics 88	Thurlby Electronics 16
Electronic Equuipment Co 32		Triangle Digital Service................ 58
Electrovalue 46	Manners KT Design.................... 86	
Ellmax Electronics 37	Midwich Computer Co62/63	Valradio Power Ltd....................... 8
OVERSEAS ADVERTISEMENT AGENTS France \& Belglum: Norbert Hellin, 50 Rue de Chemin Veat, F9100, Boulogne, Paris	Japen: Mr Inatsuki, Trade Media - IBPA (Japan), B.212. Azabu Heights, 1.5.10 Roppongi, Minato-ku 106. Telephone: (03) 5850581	Jack Mantel, The Farley Co., Suite 650, Ranna Building, Cleveland, Ohio 4415 - Tele phone (216) 6211919 Ray Rickles, Ray Rickles \& Co., P.O. Box 2028, Miami Beach Florida 33140 -- Telephone (305) 5327301
Hungary: Ms Edit, Bajusz, Hungexpo Advertising Agency, Budapest XIV, Varosliget. Telephone: 225008 - Telex: Budapest 22-4525 intFoire	United States of America: Jay Feinnan, Business Press International Lid, 205 East 42nd Street, New York, NY 10017 Telephone (212) 867-2080 - Telex: 23827. Jack Farley Jnr., The Farley Coi. Suite 1584, 35 East Walker Drive, Chicago, lllonois 60601 - Telephone (312) 63074. Victor A. Jauch, Elmatex International, P.O. Box 34607, Los Angeles, Calif. 90034, USA - Telephone (213) 821-8581Telex: 18-1059	Tim Parks, Ray Rickles \& Co., 3116 Maple Drive N.E., Atlanta, Georgia 30305. Telephone (404) 2377432.
		Mike Loughlin Business Press International. 15055, memori
		Ste 119, Houston, Texas - Telephone (713) 78388673.
Haly: Sig C. Epis, Etas-Kompass, S.p.a. - Servizio Estero, Via Mantegna 6, 20154 Milan.		Canada: Colin H. MacCulloch, International Advertising Consultants Ltd., 915 Cariton Tower, 2 Cariton Street, Toronto 2 - Telephone (416) 3642269

[^4]Telephone: (0376) 27117 (24-hour Ansaphone Service) Telex: 987911
Hay Lane,
Braintree,
Essex CM7 6ST
DISTRIBUTOR FOR:
RICHARDSONS ELECTRONIC EUROPE LTO

GANG-OF-EIGHT is our FAST EPROM PROGRAMMER which handles CMOS or NMOS EPROMS from 2716 to 27256 ($25 \times X$ too) using FAST or NORMAL programming methods.
FAST programming 27128 s takes 2 minutes, NORMAL programming takes 14 . All possible levels of Vpp are covered including 25, 21 and 12.5 volts. G8 has an LCD which tells you what you're doing - or doing wrong. BLANK CHECK, VERIFY and CHECKSUM facilities are included. Good value. $£ 395$ GANG-OF-EIGHT-PLUS is now available. PLUS what? Well, PLUS an RS232 INTERFACE which lets you download in INTELHEX, MOTOROLA S, TEKHEX, ASCII, SIMPLE HEX etc. Oh, yes. PLUS 50 quid too, but you might think it's worth it

EMULATOR EDITORS

SOFTY 2, our intelligent EPROM PROGRAMMER/EMULATOR, plugs into a TV, shows you memory and lets you TEXT-EDIT in HEX (INSERT, DELETE, SHIFT BLOCKS without overwriting or rewriting etc). It also calculates ADDRESS-OFFSETS in hex, UPLOADS and DOWNLOADS in SERIAL and PARALLEL, saves programs on TAPE, and PROGRAMS, COPIES and EMULATES EPROMS 2716, 2732 ánd 2532. Great DEVELOPMENT TOOL for PIGGY-BACK SINGLE-CHIPPERS and other small microsystems. TV lead, ROMULATOR-cable with 24 pin DIL Plug and power supply included, ready to plug-in and use
£195
2764 and 27128 ADAPTOR lets SOFTY 2 handle larger EPROMS for
$£ 25.00$

Z80 DEVELOPMENT TOOLS

MENTA is a 280 development system designed by DATAMAN for the SCHOOLS COUNCIL. MENTA has a built in ASSEMBBLER and TV hex display: it lets you enter program in hex or mnemonics and execute them FULL SPEED or A STEP AT A TIME. All the REGISTERS and the STACK are displayed on-screen and you can SEE MEMORY CONTENTS CHANGING as instructions are executed. MENTA is a microsystem with 24 bits I/O - it can be used as a controller for ROBOTS and intelligent machines. MENTA appears in GCE syllabusses; a TEACHER'S GUIDE, PUPIL READER and WORKSHEETS are available - also CONTROL MODULES - UNIVERSAL I/O. A to D. D to A, MOTOR and VARIABLE SWITCHED INPUT for less than $£ 20$ each. A MENTA with TV flylead and power-supply costs

MICRODOCTOR is for DIAGNOSIS, finding troubles in microsystems. You just plug into the microprocessor socket, READ and WRITE to the MEMORY and $1 / O$. MD does CHECKSUMS, RAMTESTS on memory, checks for SHORTS on the bus, and prints memory in HEX or ASCII. You can also DISASSEMBLE and print the SOURCECODE In Z80, 6502, 6800 or 8085 mnemonics.
When your SCOPE or MULTIMETER can't find the problem - consult the MD. When you order say which processor or ask about multiprocessor MD
£295

CONNECTIVITY

 TESTERSI.C.T. (Intelligent Connectivity Tester) is the project name for a 40 pin dual-in-line CUSTOM-CHIP developed by DATAMAN.
The chip is called the MT72017 and it will appear soon in BARE-BOARD TESTERS, IDC CABLE TESTERS and LOOM ASSEMBLY EQUIPMENT all over the world. An EVALUATION-SYSTEM/CONTROLLER for the MT72017 is available on a EUROCARD and you can BUILD YOUR OWN custom connection-pattern tester for
£295
The controller has full documentation, source-code, circuit diagram, parts-list and a description of operation. Each MT72017 tests 26 points and a single controller will handle hundreds of em - thousands oz test-points.
MT72017 chip prices: $£ \mathbf{1 2 . 5 0}$ (1 to 99) $£ 11.25$ (100-999) $£ \mathbf{1 0 . 2 5}$ (1000 up). We do not sell samples of the MT72017 without a controller.

LOGIC ANALYSER TA2080 by THANDAR with SPECIAL MODS by DATAMAN which gives RS232 interface and prints TIMING and STATE diagrams - and DISASSEMBLES Z80, 6502,6800 code on the screen or printer.
THANDAR TA2080
£1950 DATAMAN RETROFIT
£295
EPSON AND NEC COMPUTERS $\mathrm{QX10}, \mathrm{H} \times 20$ and PX8, PC8800. ALL COMPUTERS are sold with a free bundle of useful software written by DATAMAN.
OLIVETTI TYPEWRITER INTERFACES designed by DATAMAN for ET121 and 221 - cheaper than a DAISYWHEEL printer RS232, HPIB (IEEE) and PARALLEL including fitting
EPROM ERASERS from.
£195
£39.00

LOGIC ANALYSERS

CP/M COMPUTERS

OLIVETT INTERFACES

If you need more data send for a FREE LIT-PACK and an ORDER FORM or, better still, JUST BUY THE PRODUCT AND EXAMINE IT - you may return any item with in 14 days for A FULL REFUND (we deduct only postal charges). Add $£ 2.50$ for carriage to orders below $£ 100$. ADD VAT TO ALL UK ORDERS. Terms: cheque with order. Deaters who mean business welcome. Goods normally in stock - TODAY DESPATCH IS POSSIBLE - please phone us DATAMAN DESIGNS, LOMBARD HOUSE, DORCHESTER, DORSET DT 1 1RX. TELEX: 418442 . PHONE (0305) 68066.

[^0]: Another Microdrive, [RSR/Entrepol, Nov. 31
 Another million for Sinclair, Apr. 55. Ariane launches new Eatellites, Aug. 66.

[^1]: *Ampex (GB) Ltd.

[^2]: 1000's of other EX STOCK items including POWER SUPPLIES, RACKS, RELAYS, TRANSFORMERS, TEST EQUIPMENT, CABLE, CONNECTORS, HARDWARE, MODEMS, TELEPHONES, VARIACS, VDU'S, PRINTERS. POWER SUPPLIES, OPTICS, KEYBOARDS etc. etc. Give us a call for your spare part requirements. Stock changes almost daily.
 Don't forget, ALL TYPES and QUANTITIES of electronic surplus purchased for CASH

[^3]: This appointment is to study a novel technique for generating RF signals of high purity and at high efficiency. using coupled nonlinear oscillators. The work will concentrate on the non-linear resonance characteristics of transistor oscillators, and reactive couphing techniques to realise the high efficiency radio Irequency oscillators Applicants shoult have a good honours degree for high qualification in Electronic Engineering or a related discipline. and lave an interest in analogue circuit design using CAD techniques.

 The salary for these posts will be in the range $£ 6600-$ 8920, with USS. Three copies of applications with full curriculum vitae and naming two referees. should be sent by 28 January 1985 to Registrar's Department (Appointments), University of York, Heslington, York, YO1 5DDZ. Further details are available on request.
 Please quote reference number 13/6799

[^4]: Proted in Great Britain by Index Printers Lid. Oldhill. Dunstable, and typeset by Legendary Characters. South Street, Lancing, for the proprietors, Business Press International, Quadrant House, The (Quadrant, Sution, Surrey SM2 5AS, O

