

GANG-OF-EIGHT is our FAST EPROM PROGRAMMER which handles CMOS or NMOS EPROMS from 2716 to 27256 ($25 \times X$ too) using FAST or NORMAL programming methods. FAST programming 27128 s takes 2 minutes, NORMAL programming takes 14 . All possible levels of Vpp are covered including 25,21 and 12.5 volts. G8 has an LCD which tells you what you're doing - or doing wrong. BLANK CHECK, VERIFY and CHECKSUM facilities are included. Good value. GANG-OF-EIGHT-PLUS is now available. PLUS what? Well, PLUS an RS232 INTERFACE which le download in INTELHEX, MOTOROLA S, TEKHEX, ASCII, SIMPLE HEX etc. Oh, yes, PLUS 50 quid too, but you might think it's worth it

EMULATOR/

 EDITORS EDITORSSOFTY 2, our intelligent EPROM PROGRAMMER EMULATOR, plugs into a TV, shows you memory and
lets you TEXT-EDIT in HEX (INSERT, DELETE, SHIFT BLOCKS without overwriting or rewriting etc). It also
calculates ADDRESS-OFFSETS in hex, UPLOADS and DOWNLOADS in SERIAL and PARALLEL, saves
programs on TAPE, and PROGRAMS, COPIES and EMULATES EPROMS 2716, 2732 and 2532. Great
DEVELOPMENT TOOL for PIGGY-BACK SINGLE-CHIPPERS and other small microsystems. TV lead,
ROMULATOR-cable with 24 pin DIL Plug and power supply included, ready to plug-in and use
2764 and 27128 ADAPTOR lets SOFTY 2 handle larger EPROMS for
£195

Z80 DEVELOPMENT TOOLS

MENTA is a 280 development system designed by DATAMAN for the SCHOOLS COUNCIL. MENTA has a built in ASSEMBLER and TV hex display: it lets you enter program in hex or mnemonics and execute them FULL SPEED or A STEP AT A TIME. All the REGISTERS and the STACK are displayed on-screen and you can SEE MEMORY CONTENTS CHANGING as instructions are executed. MENTA is a microsystem with 24 bits I/O - it can be used as a controller for ROBOTS and intelligent machines. MENTA appears in GCE syllabusses; a TEACHER'S GUIDE, PUPIL READER and WORKSHEETS are available - also CONTROL MODULES - UNIVERSAL $/ / O$, A to D, D to A, MOTOR and VARIABLE SWITCHED INPUT for less than $£ 20$ each. A MENTA with TV flylead and power-supply costs

MICRODOCTOR is for DIAGNOSIS, finding troubles in microsystems. You just plug into the microprocessor socket, READ and WRITE to the MEMORY and I/O. MD does CHECKSUMS, RAMTESTS on memory, checks for SHORTS on the bus, and prints memory in HEX or ASCII. You can also DISASSEMBLE and print the SOURCECODE In Z80, 6502, 6800 or 8085 mnemonics.
When your SCOPE or MULTIMETER can't find the problem - consult the MD. When you order say which processor or ask about multiprocessor MD

CONNECTIVITY TESTERS
I.C.T. (Intelligent Connectivity Tester) is the project name for a 40 pin dual-in-line CUSTOM-CHIP developed by DATAMAN.
The chip is called the MT72017 and it will appear soon in BARE-BOARD TESTERS, IDC CABLE TESTERS and LOOM ASSEMBLY EQUIPMENT all over the world. An EVALUATION-SYSTEM/CONTROLLER for the MT72017 is available on a EUROCARD and you can BUILD YOUR OWN custom connection-pattern
€295
The controller has full documentation, source-code, circuit diagram, parts-list and a description of operation. Each MT72017 tests 26 points and a single controller will handle hundreds of 'em - thousands of

MT72017 chip prices: $\mathbf{£ 1 2 . 5 0}$ (1 to 99) $\mathbf{£ 1 1 . 2 5}$ (100-999) $\mathbf{£ 1 0 . 2 5}$ (1000 up). We do not sell samples of the MT72017 without a controller.

LOGIC ANALYSER TA2080 by THANDAR with SPECIAL MODS by DATAMAN which gives RS232 interface and prints TIMING and STATE diagrams - and DISASSEMBLES Z80, 6502, 6800 code on the
£1950 DATAMAN RETROFIT.
£295
EPSON AND NEC COMPUTERS $Q \times 10, H \times 20$ and $P \times 8, ~ P C 8800$. ALL COMPUTERS are sold with a free bundle of useful software written by DATAMAN.
OLIVETTI TYPEWRITER INTERFACES designed by DATAMAN for ET12 1 and 221 - cheaper than a DAISYWHEEL printer RS232; HPIB (IEEE) and PARALLEL including fitting.
£195
$£ 39.00$

tester for test-points. screen or printer.
THANDAR TA2080

EPROM ERASERS from

EROM ERASERS Trom.

LOGIC

 ANALYSERSCP/M COMPUTERS

OLIVETT INTERFACES

If you need more data send for a FREE LIT-PACK and an ORDER FORM or, better still, JUST BUY THE PRODUCT AND EXAMINE IT - you may return any item within 14 days for A FULL REFUND (we deduct only postal charges). Add $£ 2.50$ for carriage to orders below $£ 100$. ADD VAT TO ALL UK ORDERS. Terms: cheque with order. Dealers who mean business welcome. Goods normally in stock - TODAY DESPATCHIS POSSIBLE - please phone us DATAMAN DESIGNS, LOMBARD HOUSE, DORCHESTER, DORSET DT1 1 RX. TELEX: 418442 . PHONE (0305) 68066.

RADIOCODE CLDCKS LTD
 SPECIALISTS IN ATOMIC TIME, FREQUENCY AND SYNCHRONISATION EQUIPMENT

Off-air frequency

 standards- Intelligent time systems
- Caesium/Rubidium based clocks \& oscillators
- Master/slave systems
- Time code generators/readers
- Record/replay systems
- Intelligent display systems
- Precision ovened oscillators
- Time/frequency distribution systems

NEW PRODUCTS
 - MINIATURE RUBIDIUM OSCILLATOR MODULE

 Lower power, fast warm up, optional output frequencies, programmable frequency offsets.- RUBIDIUM FREQUENCY STANDARD
High performance, compact and rugged instrument. $2 U$ rack or $1 / 4$ ATR case options.
- INTELLIGENT OFF-AIR FREQUENCY STANDARDS Microcomputer controlled instruments, directly traceable to N.P.L., precision ovened local oscillator, comprehensive monitoring and status information, real time synchronisation.
- LOW COST MSF FREQUENCY STANDARD Instant operation, directly traceable to N.P.L., self-contained portable unit, no scheduled frequency changes, 24 hr transmission, real time synchronisation

Radiocode Clocks Ltd*

Unit 19, Parkengue,
Kernick Road Industrial Estate, Penryn Falmouth, Cornwall. Tel: Falmouth (0326) 76007
(*A Circuit Services Associate Co.)
CIRCLE 37 FOR FURTHER DETAILS.

pantechnic

design manufacture and supply POWER AMPLIFIERS HIGH POWER ASSEMBLIES CONTROL CIRCUITRY
for application in

INDUSTRY PUBLIC ADDRESS $\mathrm{HI}-\mathrm{FI}$

available

OFF THE SHELF CUSTOMISED C A D DESIGNED
tel. 01.361.8715 132 High Road telex 266873 New Southgate PANTEC G LONDON N11 1PG.

Abstract

BERG LOW PROFILE 14 PIN DUAL IN LINE I.C. SOCKET manufactured from glass filled polyester 10 $£ 3700$ for 100,000 . Sample 10 sent for $£ 1.20+30 \mathrm{p}$ p\&p ($£ 1.73$ inc VAT BERG LOW PROFILE 16 PIN DUAL IN LINE I.C SOCKET as above $£ 8$ for $100, \mathrm{f} 36$ to 500 . $\mathrm{f65}$ for 1000 . $£ 295$ for $5000, £ 530$ for $10,000, £ 2390$ for 50,000 , $£ 4300$ for 100,000 . Sample 10 sent for $£ 1.40$ WIRE CUTTER AN VAT) WIRE CUTTER AND STRIPPER tempered steel blades spring loaded with moulded red P.V.C. handles. Cutting and stripping adjustable up to $6.0 \mathrm{~mm}_{2}$. Overall length 135 mm , weight $64 \mathrm{grms}, 10$ to $£ 15,25$ for $£ 34,50$ for $£ 63,100$ for $£ 116,500$ for $£ 525,1000$ for $£ 1000$ Sample pair sent for $£ 1.75+25 \mathrm{p}$ p \& (2.30 inc VAT). INTERNATIONAL POWER ONE' regulated D output 5 volt at 16.2 amp with $+1-.05 \%$ regulation ty unit A. C. input $100 / 120 / 220 / 240$ voli - D.C standard on satin tinish aluminium open chassis $14^{\prime \prime}$ (W) $\times 5^{\prime \prime}$ (H) $\times 2 \mathrm{~A}^{\prime}$ (D) WT 5.5 kg . (Brand new REGULATED D. C. SUPPLY UNIT BY GRESHAM LION. Input 220 volts $+1-10 \%$ or 240 volt $+1-10 \%$ 125 W . Outputs 5 voit/ $25 \mathrm{amp}, 12$ volt $/ 10 \mathrm{amp}, 15$ volt $/ 10$ amp, 24 volts $/ 5 \mathrm{amp}, 30$ volt $/ 4 \mathrm{amp}$. (set at 5 book. Price $£ 130+E 4.00$ p\&p ($£ 154.10$ inc VAT) WIRE WOUND RESISTORS manufactured by E.R. nominal resistance value. All values in stock. 3 watt series $f 3.50$ per 100 any one value $+f 1$ p \& ($£ 5.17$ inc VAT) 6 watt series $£ 6.50$ per 100 any one value $+£ 1$ p\&P ($£ 8.63$ inc VAT) 10 watt series $£ 10.50$ wer 100 any one value $+\mathrm{f} 1 \mathrm{p} \&_{\mathrm{p}}$ ($£ 13.23$ inc VAT) ALUMINIUM FOIL CAPACITORS manufactured by iskra 225 MFD 385 V A.C. WKG axial type. Body length $40 \mathrm{~mm} \times 23 \mathrm{~mm} £ 25$ per 100 pcs, $£ 115$ per 500 pcs, f 212 per 1000 pcs, f 980 per 5000 pcs, E 1800 per 10,000 pcs, f 4165 per 25,000 ucs. Sample 10 sent for $£ 3.00+\mathrm{p} \& \mathrm{p}(\mathrm{f} 4.60$ inc VAT) BRITISH MADE TRANSFORMER input 240 V a 50 Hz . BRITISH MADE TRANSFORMER input 240 V at 50 Hz , output 120 V - $\mathrm{O}-\mathrm{VV} 1 / 2$ amp with built in ther- mal overioad cutout. P.C. mounting f 25 for $10+\mathrm{VAT}$, E 115 for $50-\mathrm{VAT}$. E 210 for $100+$ VAT f 950 for $500+$ VAT, $£ 1700$ for $1000+$ VAT Sample sent for $£ 3+75$ p p\&p ($£ 4.31$ inc VAT). PAIR OF MATCHED SPEAKERS 4 ohm 3 watts in team finish cabinets with black/chrome facia 7 $1 / 2^{\prime \prime} \times 12^{\prime \prime} \times 5^{\prime \prime}$ depth -1 sample pack (2 spks) $£ 10.00+£ 2 \mathrm{p} \& \mathrm{p}$ ($£ 13.80$ inc VAT) 10 packs $£ 9.00$ each $+£ 20$ p\&p ($£ 12.65$ inc VAT) 12" VIDEO DISPLAY UNIT (green) complete with frame and P.C.B. incorporating time bases/EHT, etc but minus case and simple power supply unit Originally designed to be basically compatible with BBC Micro and Commodore computers. Circuit diagram supplied. Price per sample unit $£ 35.00+£ 3$ p ${ }^{\text {a }}$ ($£ 43.70$ inc VAT) Quantity prices OPEN FRAME AND SHADED POLE MOTORS m\&ny uses - brive per sal p\& 2.30 inc VAT each $)$ ULTRASONIC BURGLAR ALARM - portable - wooden finish with internal arm - easil installed - mains/battery option. Provision for window contacts - pressure mat external horn and bell unit. Sample units $£ 39.00+£ 2 p \& p=£ 47.13$ inc VAT each, 5 units $£ 35.00+£ 2 p \& p-£ 42.55$ inc VAT each, 10 units $£ 33.00+£ 2 p \&_{p}=£ 40.25$ inc VAT each EXTERNAL HORN Sample unit $£ 7.50+£ 1.50 p \& p=£ 10.35$ inc VAT each. 5 unit $f 6.75+£ 1.50 p \& p-$ TERMSC.W.O. export enquiries welcome We find it impossible to advertise all we stock. Please telephone, write or telex for further enquiries. Personal callers always welcome

Wireless wiorld

 over 70 years in independent electronics publishingVolume 91 number 1587
FEATURES

17
The information society
by A.E. Cawkell
An overview of telecommunications techniques.

31
Symmetry in audio amplifiers
by J.L. Linsley Hood An investigation of the sound of full symmetry in amplifier design.

37

Variable-speed video playback
by J.R. Watkinson
High-speed playback.

47

More on the XY plotter by P.N.C. Hill A description of the software.

49
Computer boards
brief descriptions of boards and Eurocards.

59

Choosing a board by C Nabavi
Ten hints on choosing a single-board computer.

69
Compact disc system byJ.R. Watkinson
The Philips/Sony digital audio disc.

72

Micro-controlled cassette recorder
by A.J. Ewins
Further software description.

76

Eprom duplicator
by H. Bender
Reading and copying 2716 eproms on the WW emulator.

78

Data exchange between micros by G.A.M. Labib Combined method of data exchange.

79

Countdown to cellular radio
by N.S. Cawthorne
Report of the Comex 84 conference.

REGULARS

6 6	63	85
Comment and News	Letters See-through computers News from Sweden Famine relief by satellite Domesday Project.	Friendly sets.

NEXT MONTH

Nigel Cawthorne on the latest international developments in cable television as reported to a Swiss cable and satellite tv conference.

Award-winning design of a combined car window demister and v.h.f. aerial for h.f. reception is detailed by J.D. Last and B. Easter, its developers.

A tutorial series on sampled-data systems - a subject many engineers find difficult - by D.M. Taub presents the theory in a completely new way, specially suitable for use with computers.

An automatic warning device is designed for sending an alarm signal by telephone. Per Anderson gets round the problem of direct connection to telephone lines.

Current issue price 85 p, back issues (if available) $£ 1.06$, at Retail and Trade Counter, Units $1 \& 2$, Bankside Industrial Centre, Hopton Street, London SE1. Available on microfilm; please contact editor.
By post, current issue $£ 1.30$, back issues (if available) $£ 1.40$, order and payments to EEP Sundry Sales Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. lel.: 01-6613378.
Editorial \& Advertising offices: Quadrant House, The Quadrant, Sutton, Surrey SM2 5AD.
Telephones: Editorial 01-6613614 Advertising 01-661 3130. See leader page. Telex: 892084 BISPRSG (EEP)
Subscription rates: 1 year $£ 15$ UK and £21 outside UK.
Student rates: 1 year $£ 10$ UK and $£ 14$ outside UK.
Distribution: Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Telephone 01-661 3248.
Subscriptions: Oakfield House, Perrymount Road, Haywards heath, Sussex RH16 31DH. telephone: 04444 459188. Please notify a change of address USA: S102.70 airmail. Business Press International (USA). Subscriptions Office, 205 E. 42nd Street, NY 10017.
USA mailing agents: Expediters of the Printed World Ltd, 527 Madison Avenue, Suite 1217, New York, NY 10022, 2nd class postage paid at New York
© Business Press International Ltd 1983. ISBN 00436062

Editor
PHILIP DARRINGTON 01-661 3128

Deputy Editor GEOFFREY SHORTER, B.Sc. 01-661 8639

Technical Editor MARTIN ECCLES 01-661 8638

Projects Editor RICHARD LAMBLEY 01-661 3039

News Editor
DAVID SCOBIE
01-661 8632
Drawing Office Manager ROGER GOODMAN
01-661 8690
Technical Illustrator
BETTY PALMER
Advertisement Manager BOB NIBBS, A.C.I.I. 01-6613130

MICHAELDOWNING
01-661 8640

ASHLEY WALLIS

01-661 8641
Northern Sales
HARRY AIKEN
061-8728861
Midland Sales
BASIL McGOWAN
021-356 4838
Classified Manager
BRIAN DURRANT
01-661 3106
IAN FAUX
01-661 3033
Production
BRIAN BANNISTER
(Make-up and copy)
01-661 8648
Publishing Director DAVID MONTGOMERY
01-661 3241

International Agents and the Advertisers Index appear at the back of this issue.

01-208 1177 Trechomatic Lid 01-208 1177

BBC Micro Computer System BBC Computer \& Econet Referral Centre BBCComputers:

Model B: £320(a'; B+DFS: £409 (a) Model B+NFS: $£ 389$ (a) B+NFS+DFS $£ 450$ (a) ACORN 2nd Processors: 6502: £175 (a) Z80: £352 (a) TORCH UNICORN: Z80 Card: £299 (a) Z80 Disc Pack: $£ 699$ (a) UNICOMM Communications Package: $£ 159$ (b) 20 Mbyte Hard Disc+400K Floppy: £1995 (a)
We stock the full range of ACORN hardware and firmware and a very wide range of other peripherals and firmware for the BBC . For detailed specifications and pricing please send for our leaflet.

PRINTERS

EPSON: RX80FT £225(a); FX80 £315(a) FX100 £435(a);RX100 £345(a) KAGA TAXAN:KP810 £249(a); KP910 £359 (a) BROTHER:HR15 £340 (a);.

ACCESSORIES

EPSON Serial Interface: $8143 £ 28$ (b); 8148 with 2 K buffer $£ 57$ (b)
EPSON Paper Roll Holder $£ 17$ (b); FX80 Tractor Attach $£ 37$ (b); RX/FX80 Dust Cover $£ 4.50$ (d) EPSONRibbons; MX/RX/FX80 £5.00; MX/RX/FX 100 £10 (d)
JUKI: Serial Interface $\mathbf{£ 6 5}$ (c); Tractor Attach, $£ 99$ (a); Sheet Feeder $£ 199$ (a); Ribbon $£ 2.50$ (a) BROTHER HR 5 : Sheet Feeder £199; Ribbons - Carbonor Nylon $£ 4.50$; Multistrike $£ 5.50$ (d) 2000 Sheets Fanfold with extra fine perf. 9.5 in - $£ 13.50,14.5 \mathrm{in} . £ 18.50$ (b).
BBC Parallel Lead £8: Serial Lead $£ 7$ (d).

BT Approved Modems

MIRACLE WS2000
The ultimate world standard modem covering ali common BELL and CCITT standards up to 1200 Baud. Allows communi cation with virtually any computer system in the workd, The optional AUTO DIAL and AUTO ANSWER boards enhance the considerable facilities al ready provided on the modem. Mains powered. £129(c) Auto DialBoard/Auto Answer Board £30 (d) each. Software lead $£ 4.50$
TELEMOD 2
Complies with CCITT V23 1200/75 Duplex and 1200/1200 half Duplex standards that allow communications with VIEWDATA services like PRESTEL, MOCRONET etc as well as user to user communications. Mains powered. £62(b)
BUZZ BOX:
This pocket sized modem complies with V21 300/300 Baud and provides and ideal solution for communications between users, with main frame computers and bulletin boards at a very economic cost. Battery or mains operated. $£ 52$ (c) Mains Adaptor E 8 (d)
BBC to Modem data lead £7

DISCDRIVES

These drives, fitted with high quality JAPANESE mechanisms are supplied in attractive stee cases painted in BBC colour. The drives are fully Shuggart A4000 compatible. All dual drives are supplied with integral power supply whilst singles are supplied with or without power supply All drives come complete with data \& power cables, manual and BBC formatting disc
$1 \times 100 \mathrm{~K}$ (250 KDD unformatted $1 \times 400 \mathrm{~K}$ (1 MbDD unformatted) $2 \times 400 \mathrm{~K}$ (5 MbDD unformatted) 2×400 (2MbDD unformatted) CS 100 TEC with psu CS200 TEC with psu CS 400 MITS with psu

40TSS TS55A TEAC
80TDS TS55F TEAC 40/80
40TSS TD55A TEAC
80TDS TD55F Mitsubishi 40/80
£125(a) 40/80T Switch Modul
£165(a) $\quad 3$ in. Hitachi 100K 40T E195(a)
£100(a) £155(a) E155(a)
E250(a) E360(a) c105(b)

Authorised Distributor
Data Recording Products
3M FLOPPY DISCS
Industry Standard floppy discs with a lifetime guaranteeDiscs in packs of 10
40 Track SSDD
£15(c)
40 Track DS DD
E18(c)

80 Track SS DD
£22(c)
80 Track DS DD
£24 (c)

DRIVE ACCESSORIES

FLOPPICLENE Disc Head Cleaning Kit with 28 disposable cleaning discs ensures continued optimum performance of the drives. $£ 14.50$ (c)

Single Disc Cable $£ 6$ (d)
Dual Disc Cable $£ 8.50$ (d)
10 Disc Library Case $£ 1.80$ (d)
30 Disc Storage Box £6(C)
100 Disc Lockable Box £19(c)

MONITORS

MICROVITEC 14in. RGB

1431 Std Res $£ 165$ (a): 1431 AD sta Res PAL/Audio $210(\mathrm{a}$) 451 Med Res $£ 255$ (a); ; 1441 Hi Res $£ 399$ (a) 2031 20in. Std Res $£ 260$ (a): Plinth for 14in. Monitors $£ 8.50$ Microvitec Monitors with TTLLLinear Inputs also available.

KAGA VISIONIII
Hi Res 12in. RGB £345(a);
Green Screens; KAGA 12G£99(a); SANYO DM 811 112CX £90(a);
Swivel Stand for Kaga Green £22.50 (b);
BBC Leads: KAGA RGB $£ 5$ Microvitec $£ 3.50$; Monochrome $£\} .50$ (d)

UV ERASERS

UV1T Eraser with built-in timer and mains indicator Built-in satety interlock to avoid accidental exposure to the harmfui UV rays.
It can handle up to 5 eproms at a time with an average erasing time of about 20 mins. $£ 59+£ 2$ p\&p. UV1 as above but without the timer, £47+£2 p\&p For Industrial Users. we ofter UV 140 \& UV 141 erasers with handling capacity of 14 eproms. UV141 has a
built in timer Both offer full built in safely features UV140 £61, UV 141 ¢79, p\&p $£ 50$.

PRINTER BUFFER

This printer sharer/buffer provides a simple way to upgrade a multiple computer system by providing otters a storage of 64 K . Data from three computers can be loaded into the buffer which will continue accepting data until it is full. The butfer will automatically switch from one computer to next as soon as hat computer has dumped allits data. The computer then is available for other uses. LED bargraph indicates memory usage. Simple push button contro provides. REPEAT, PAUSE and RESET functions. Integral power supply. £245 (a).

All prices in this double page advertisment are subject to change without notice.
ALL PRICES EXCLUDE VAT
Please add carriage 50 p unless indicated as follows:
(a) $£ 8$ (b) $£ 2.50$ (c) $£ 1.50$ (d) $£ 1.00$ ACORN IEEE INTERFACE
A full implementation of the IEEE-488 standard, providing computer control of compatible scientific \& technical equipment, at a lower price than other systems. Typical applications are in experimental work in academic and industrial laboratories. The interface can support a network of up to 14 other compatiface can supponta networko uptl 14 oher compatible devices, and would rypically ink several the sot mum of efficiency. The IEEE Filing System ROM is supplied £282.

INDUSTRIAL PROGRAMMER

EP8000.

This CPU controlled Emulator Programmer is a pow erful tool for both Eprom programming and development work EP8000 can emulate and program all eproms up to $8 \mathrm{~K} \times 8$ bytes, can be used as stand alone unit for editing and duplicating EPROMS, as a slave programmer or as an eprom emulator $£ 695(\mathrm{a})$

CONNECTOR SYSTEMS

I.D. CONNECTORS

 EURO CONNECTORS

DIN 41612

2×32 way St Pin 230p 275p
2×32 way Ang Pin 275p 320p 3×32 way St Pin 260 p 300 p
3×32 way Ang Pin 375 p 400 p IOC Skt A + B $\quad 275 \mathrm{p}$ IDC Skt $A+C \quad 350$ p
For 2×32 way please specify spacing ($A+B, A+C$)

AMPHENOL CONNECTORS

 36-way plug CentronParallel|Solder $£ 5.25$ 36 -way socket Centronic Paralle||Solder $£ 5.50$ 24. way plug IEEE Solder \& 24-way socket IEEE SOIder. 55 IDC E4.75 PCB Mtg Sk
Any Pin 24 way Solder 600 p 36 way ZOC 650p

RS 232 JUMPERS

- Single end Male ${ }^{(25}$ way D) Single end Male
Female Fem
". Male Male

TEST CLIPS

14-pin 375p 40 -pin £ 10.30 -pin 400p

RIBBON CABLE

DIL

HEADERS

Solder I IDC

14 pin	40 p	100 p
16 pin	50 p	110 p
24 pin	100 p	150 p
28 pin	200 p	-

28 pin 200p -
40 pin
225p

See-through computers

Our future is quite obviously going to be computer-shaped. Those of us who are not comfortable with computers will clearly be at a considerable disadvantage in the day-to-day business of living: not only engineers and workers in much of industry will need an easy familiarity with computers, but those of us whose involvement is only tenuous also need to cultivate some kind of entente with them.

But, relatively speaking, personal computers are in their infancy and are unlikely to remain for long in their present form. In a few years - it would take a reckless man to specify how many - writing Basic programs on a qwerty keyboard will, one hopes, be a thing of the past, like the quill pen. Computers will be unnoticed
aids to life, as is the telephone. With that in mind, it does seem that the style of introduction of computers into schools has been somewhat illconsidered. Computing ought not, surely, to be a subject in isolation from the rest of education. Computing is a nonsense unless it is seen in relation to the other facets of a full education. Admittedly, until computers are made "userfriendly" to an as yet unseen extent, or a pupil is intent on pursuing a career in the computer field, the fundamentals have to be learned. But they should not get in the way of the studies, displacing and obscuring them and causing the purely mechanical business of operating the machine to be the object.

A number of schools do regard the computer as a means, rather than the end. One teacher who is in charge of computing in his school says "I'd rather not have that particular job. Until computers are about as obtrusive and obstructive as a blackboard, they're nothing but a damn nuisance". One hesitates to cite McLuhan yet again as a source, but his remark about media and messages is certainly on target in this context.
It may be that one is unduly pessimistic. Perhaps some pupils can adapt to the use of computers and will accommodate developing types of machine as they occur with no more thought than they apply to the use of a new ballpoint, but indications are that a great number become either
mesmerized or bogged down when faced with a keyboard and v.d.u.

In the early stages of education, perhaps it would be more effective to present computed results as a fait accompli, the computing having been done by a teacher - the computer then becomes an aid to teaching rather than learning. Pupils' interest in the classroom computer could then be allowed to evolve naturally and become a consuming passion, without having been a barrier to the learning of
mathematics, chemistry or geography.
It is inevitable that computers will eventually play their proper role and be 'transparent' to teacher and taught, and the quicker that state of affairs comes about, the better.

DOMESDAY DISCS

To celebrate the 900th anniversary of the Domesday Book, The BBC are to compile a new book which will be published on interactive videodisc. Two LaserVision discs will contain the equivalent of two million pages of facts, figures, text and maps as well as some 85000 photographs. This is claimed to be he equivalent of two full sets of the Encyclopaedia Britannica.
The $\{2.5 \mathrm{M}$ project is being financed by BBC Enterprises, the DTI and Philips Electronics who will be working with the BBC to produce a new player, able to cope with the discs which will be marketed under the BBC name.
The information is to be collected by channeling all text and pictures from every community in the country through a local volunteer school. An editorial board of experts will also guide the selection of data from national sources. There is to be a national photographic competition to allow anyone to submit pictures.

The project was the idea of BBC producer Peter Armstrong, who is planning a series of tv programmes to celebrate the ninth centenary of the Book. He
decided that a modern equivalent was needed for comparison and that the latest technology should be used. Out of this came the idea of a "peoples' database", where the local communities would be able to build their own portrait of life in their areas. The 10000 schools will enter the information on their computers and store it on floppy discs which will be sent to the BBC. There will be plenty of facts and figures but it was thought to be important that there was also freely written text to give more feeling to the project. The local information will be supplemented by data from national sources, Ordnance Survey maps, graphics and collections of photo graphs on various general topics.
Peter Armstrong commented on the choice of videodisc as a medium: "As an alternative to tape or cassette recorders, the videodisc has not caught on because you can't record on the disc. However, in its interactive form it offers a more exciting prospect.
"I believe that interactive video is an important aspect of the BBC's future and that in the 1990s people will want to interact with
their tv screens. If the $B B C$ is to remain true to its Charter obligation to educate and inform then it must pioneer these new forms of technology."

The discs, and players, are to be ready by Michaelmas (September 29th) 1986, the anniversary of the completion of the original Domesday Book.
-At Compec, Acom were demonstration their interactive videodisc system which also uses the Philips LaserVision discs. Such systems use a constant angular velocity to the disc to allow the laser pick-up to access the information at random under computer control. For sequential showing of a continuous programme the system uses a constant linear velocity so that the disc spins faster when pick-up is nearer the centre. The programme on display at Compec was about railways and with text and moving pictures demonstrated how a token interchange system was used on a single track railway. Questions to the pupil were answered through the computer keyboard.

Satellite link for famine convoy

A communications link to the Sahel 84 convoy was provided by Inmarsat. The convoy, consisting of 26 trucks and support vehicles travelled 5000 km through north-west Africa from Nouadhibou, Mauritania to Agades, Niger, visiting areas of drought and famine-stricken populations.
The mission was organized by French and Luxembourg tv networks, supported by the French and International Red Cross, Unicef and other aid organizations. Protein tablets, medical supplies and other emergency aid was distributed. As there were no communications links in the areas crossed and because of the humanitarian nature of the mission, Inmarsat provided access to their Marecs A satellite, designed for shipping communications in the Atlantic.

As well as transmitting the day-to-day arrangements and logistics for the convoy, the satellite link was used for news reports by journalists.

This extension to the Allen Clarke Research Centre at Caswell will house Plessey's microelectronics research laboratory. It will be used to extend the company's research in silicon integrated circuits towards the sub-micron architecture and in computeraided design for v.l.s.i.

Some news from Sweden

The Swedish government is to invest 40% of the $£ 4.5 \mathrm{M}$ needed to develop gallium arsenide semiconductor integrated circuits. The research is the responsibility of Rifa, an Ericsson company who have already produced GaAs transistors and diodes and believe there is a great future in the four-times-faster-than-silicon chips. Ericsson-Rifa will be supplying the rest of the funds.

Protection of information

The Swedes have a 'personnummer', similar to the British National Health number or Driving Licence number which is based on the owner's date of birth. The number is required in indentification for almost any transaction; cashing a cheque, borrowing library books, medical treatment or even enrolling as a student or club member. As many of these processes are increasingly computerized, there has grown increasingly unease on the possibility of invasion of privacy. A parliamentary committee has been set up to investigate the conflict between public access to information and the need for national security of public records.

Computerized football pools
 Esselte Security systems in

 Stockholm has developed a micro-controlled system for checking and handling football pools and lottery coupons. Coupons may be read into the system from remote terminals. The total bets and number of coupons arecalculated and the system can calculate immediately the total amounts due to winners and commissions to agents etc. Electronic transfer of cash will provide 'instant prizes'. Sweden has a daily numbers game as well as weekly and bi-weekly pools which can be dealt with by the new system. Its modular design allows it to be adapted for any other game or betting system that may arise.

Talking document reader

A multi-language system has been developed by Infovox in

Danderyd, Sweden, which can read computer texts and automatically convert them into speech; synthesized, but natural sounding, they claim. The language may be selected from English, French, Spanish, Italian, German and Swedish and plain or phonetic text can be entered directly. The rate of delivery of speech may be controlled and also the pitch. The hardware includes two serial interfaces with buffers, a control program independent of any language, a lan-guage-specific program, a user lexicon with battery back-up, synthesizer circuits, amplifiers

and loudspeakers and a real-time clock. There is a large pronunciation dictionary and further words, abbreviations or irregular words can be programmed in by the user. The system may also be used for reading telex messages and proof reading. In telecommunications it can form an information service between telex, teletex, videotex and other electronic message services. It may also be used to provide spoken commentary to computer-aided learning and for training in speech, reading and writing. It can provide a voice to those unable to speak and can read texts or provide a talking computer to the visually handicapped.

Nordic DBS chooses C-MAC

The Nordic Council of Ministers (Finland, Iceland, Norway and Sweden) have decided to go ahead with a direct broadcasting by satellite tv and radio service using the C-MAC/Packet system, developed in the UK by the IBA. Broadcasting will start in 1987 using an experimental satellite, Tele-X. The initial phase will be for two or three satellite channels each of which will accomodate a tv picture, tv stereo sound, commentator channels and two radio channels in stereo. At the same time, a committee of representatives from the four countries have recommended a system with two Nordsat satellites relaying and four tv channels to be launched in 1989 and fully operational in 1990. The C-MAC system has been selected for use by the EBU, but only the UK and now the Nordic states have officially adopted

B.T.G.- link between research and manufacture

Following on from the demise of the National Enterprise Board, which is being stripped of all its assets, the BTG has outlined its future role; to act as a broker between public-sector and academic research and the commercial exploitation of the technologies developed. To achieve this they will offer to take responsibility for patenting or otherwise protecting advances in technology from the public sector sources and provide finance for the development of the technology to the point where it may be taken up by industry. They will also provide a licencing scheme for the transfer of that technology to commercial industry and offer project finance to help licencees launch their products on the market. They will take a share of the licence fees which will be the BTG's source of income for future investment. Their traditional role of financing new developements in industry and the launching of new companies, especially in the areas of new technology, will continue but on a strictly commercial basis so that the BTG will be, as it has been hitherto, self-financing and profit making.
In order to fulfil its aims, the BTG plans to invest some $£ 15 \mathrm{M}$ a year. The role of technology transfer will be augmented by supporting university contract research and development or consultancy work. 'Campus Investments' will specialise in providing finance for academic spin-off and start-up companies. With this in mind, a second Academic Enterprise Competition has been set up for academic researchers who are involved in setting up companies to exploit their research results. 42 Universities have agreed that the leaders of BTG-funded research will be designated BTG Research Fellows. All this will be backed up by a computer database of current research and companies seeking solutions to technological problems in the hope that some of these will find mutual agreement.

Eprom programmer listings

Readers requesting the eprom programmer list have received copies of the SC84 charactergenerator instead. Those who sent us their names and addresses on a separate slip will receive the correct listing as soon as we have it; would other readers please write to us again?

TV by telephone

A system for transmitting slowscan tv pictures over the telephone has received approval for connection to the BT telephone network. The Philips Slow Rate Transmission (SRT) system is thus the first to offer long-range remote video transmissions for security, surveillance and many other applications. The system features auto-dial, auto answer and line-status monitoring and overcomes the drawback of previous systems when the line connection drops out after three
minutes. In a typical application, an alarm triggers the system which will then dial the remote control centre and transmit digitized pictures. This can, of course prevent the mobilization of security procedures in the case of false alarm. Alternatively the system may be dialled by a controller, calling up pictures from the camera on site. There are facilities for dividing the monitor screen into four and viewing complete pictures from four different cameras.

Interim approvals for telecom equipment

Prompted, no doubt, by the everincreasing back-log of apparatus waiting to be approved by the BABT, the DTI has announced that an interim approvals scheme has been adopted. Those wishing to take advantage of the scheme must still apply for approval in the normal manner. At the same time they may indicate that they also wish to apply for interim approval. Apparatus will then given the essential safety tests and, if the complexity warrants it, limited field trials. The manufacturing facilities will need to be inspected for safety aspects unless the maker is already producing
approved equipment. Then the applicant must sign a declaration that the apparatus will conform to all the necessary standards. Having been granted interim approval, the supplier will be allowed to release a limited quantity of the equipment on to the market and further batches may be released as the full approval testing is proceeding. If, however, any of the subsequent test indicate a failure all the supplied apparatus will need to be modified, free of charge to the user. The interim scheme will cost about $£ 520$ in addition to the existing approval charges.

PHONE 0474813225 SELECTRON HOUSE, WROTHAMROAD
3 LINES MEOPHAMGREEN,MEOPHAM, KENT DABOOY PMCOMP

PHONE
 0474813225 3 LINES MEOPHAM GREEN, MEOPHAM, KENT DABOOY

 A SELECTION FROM OURSTOCK OF BRANDED VALVES

\begin{tabular}{|c|c|c|c|}
\hline A1714 \& . 50 \& EBC81 \& EL519 6.95 \\
\hline \({ }^{\text {A } 1834}\) \& 7.50 \& EBC90 0.90 \& EL802 3.65 \\
\hline \({ }_{\text {A } 2087}\) \& 11.50 \& E8F80 \({ }^{\text {E.85 }}\) \& \\
\hline A2134 \& 14.95 \& \({ }_{\text {EBF83 }}{ }^{\text {ER8, }}\) \& \\
\hline \({ }^{4} 2293\) \& 6.50 \& E8F85 0.95 \& EM4 9.00 \\
\hline A2599 \& 37.50 \& E8F89 0.70 \& EM80 0.70 \\
\hline A2792 \& 27.50 \& E8F93 0.95 \& EM81 0.70 \\
\hline A2900 \& 11.50 \& EBL1 2.50 \& EM84 1.65 \\
\hline \({ }^{\text {A } 3042}\) \& 24.00 \& ERL21 2.00 \& EM85 3.95 \\
\hline \({ }^{\text {A }} 3283\) \& 24.00 \& EC52 0.75 \& EM87 \(\quad 2.50\) \\
\hline AC/HL/D \& /00 4.00 \& EC70 1.75 \& EN10 8.00 \\
\hline AC/THI \& 4.00 \& EC80 9.50 \& EN32 13.50 \\
\hline \& 59.75
39.00 \& \begin{tabular}{ll}
EC81 \& 7.95 \\
EC86 \& 1.00 \\
\hline 100
\end{tabular} \& \begin{tabular}{ll}
EN91 \\
EN92 \& 1.10 \\
\hline 150
\end{tabular} \\
\hline AH238 \& 39.00 \& EC88 1.00 \& ESU150 \({ }^{\text {P/ }}\) \\
\hline Al60 \& \({ }^{6.00}\) \& EC90 1.10 \& ESU872 25.00 \\
\hline \({ }_{\text {ARP }}^{\text {AR }} 1\) \& 14.00
0.70 \& \(\begin{array}{ll}\text { EC91 } \& \mathbf{5 . 5 0} \\ \text { EC92 } \& 1.75\end{array}\) \& \begin{tabular}{ll}
EY51 \& 0.80 \\
EY91 \& 0.35 \\
\hline
\end{tabular} \\
\hline ARP34 \& 1.25 \& EC93 1.50 \& \(\begin{array}{ll}\text { EY91 } \& 2.35 \\ \text { EY83 } \& 1.50\end{array}\) \\
\hline ARP35 \& 2.00 \& EC95 7.00 \& EY84 5.95 \\
\hline ATP4 \& 2.50 \& EC97 1.10 \& EY86/87 0.50 \\
\hline AX50 \& 5.50 \& \& EY88 0.55 \\
\hline A211 \& 4.50 \& \(\begin{array}{ll}\text { ECC32 } \& 3.50 \\ \mathrm{ECC} 33 \& 3.50\end{array}\) \& \(\begin{array}{ll}\text { EY91 } \& 5.50 \\ \text { EY500A } \& 1.50\end{array}\) \\
\hline Az31 \& 2.50 \& EСС35 3.50 \& \(\begin{array}{ll}\text { EYSOOA } \& 1.50 \\ \text { EYYO }\end{array}\) \\
\hline \({ }_{8 S}^{\text {BL63 }}\) \& 2.00
6700 \& \(\begin{array}{ll}\text { ECC81 } \& \mathbf{1 . 1 5}\end{array}\) \& \(\begin{array}{ll}\text { EV302 } \& 0.70 \\ \text { EZ35 } \& 0.75\end{array}\) \\
\hline BS810 \& 55.00 \& ECC81 Special \& E240 \\
\hline \({ }^{\text {BS814 }}\) \& 55.00 \& Quality
ECC82 \& EZ80 0.75 \\
\hline \({ }_{\text {CIK }}^{\text {CJJA }}\) \& 19.00
21.00 \& \({ }_{\text {ECC882 }}{ }^{\text {ECClilips }}\) \& EZ81 0.75 \\
\hline c6a \& \& 1.95 \& E290 \(\quad 1.50\) \\
\hline C1108 \& 54.95 \& ECC83 0.65 \& F6064 \({ }_{\text {FW/800 }}\) \\
\hline \(\mathrm{Cl12G}\)
\(C 1134\) \& 70.00
32.00 \& ECC83 Brimar \& 655/1K \({ }^{\text {a }}\) \\
\hline C1148A \& 115.00 \& c83 Philips \({ }^{1.35}\) \& 6180/2M 9.00 \\
\hline C1149/1 \& 130.00 \& 1.95 \& \(\mathrm{G}^{2} 232\) Mullard 3.95 \\
\hline C1150/1 \& 135.00
32.00 \& \(\begin{array}{ll}\text { ECC84 } \& 0.50 \\ \text { ECC85 } \& 0.60 \\ 0.60\end{array}\) \& 6240/20 9.00 \\
\hline CCA \& 2.60 \& \& \(\mathrm{G}^{\text {G400/1K }} 11.000\) \\
\hline \& 0.90
2.00 \& ECC88 \& \(\begin{array}{ll}\text { GC108 } \& 17.50\end{array}\) \\
\hline CV Nos P \& Prices \& ECC91
ECC7

0.0 .72 \& GC10/48 17.50

\hline on requ \& ques \& ECC189 0.78 \& GC10/4E 17.50

\hline D63 \& 1.20 \& ECCB01S \& - 68648

\hline DA41 \& 22.50
7750 \& ECC803S 3.50 \& GOT120M 5

\hline DA42 \& 17.50
4
4 \& ECC804 ${ }^{0.60}$ \& ${ }_{\text {GE } 10}{ }^{\text {cosem }}$

\hline ${ }^{\text {DA }} 1000{ }^{\circ}$ \& - 425.50 \& ECC2000 12.00 \& GN4 6.00

\hline DAF91 \& 0.70 \& | ECF80 | |
| :--- | :--- |
| ECF82 | |
| | 1.1 .15 |
| 1.15 | | \& GN10 $\quad 15.00$

\hline DAF96 \& 0.65 \& ECF86 170 \& ${ }^{\text {GR10G }} 4.00$

\hline DC70 \& 1.75 \& ECF200 1.85 \& ${ }_{\text {GS }}$

\hline -C90 \& 1.20 \& ECF202 1.85 \& GS120 12.00

\hline $0 \mathrm{C} \times 4.100$ \& 1 \& | ECF801 | |
| :--- | :--- |
| ECE804 | |
| | 0.85 |
| .00 | | \& GT1C 14.00

\hline DCX4-500 \& \& ECF805 ${ }^{\text {E.50 }}$ \& GT1C S/S 13.00

\hline \& 25.00 \& ECF806 $\quad 10.25$ \& GTE175M 8.00

\hline DETTB \& ${ }_{28.50}$ \& | ECH3 | |
| :--- | :--- |
| ECH4 | |
| | 3.00 |
| 1.00 | | \& GU20 35.00

\hline DET23 \& 35.00 \& ECH35 ${ }^{\text {E }}$ \& Gu50 17.50

\hline DET24 \& 39.00 \& ECH42 1.00 \& GXU1 ${ }^{13.5}$

\hline OET25 \& 22.00 \& ECH81 0.65 \& $\mathrm{GXU3}^{\text {GXU5ss }}$

\hline DET29 \& 32.00 \& ECH83 0.78 \& Gxu50ss

\hline DF97 \& 0.70 \& ECH84 0.69 \&

\hline OF92 \& 0.60 \& ECH2000 1.50 \& GY501

\hline DF96 \& 0.65 \& ECL80 0.60 \& GY802 1.00

\hline DF97 \& 1.00 \& ECL82 0.65 \& ${ }_{6} \mathrm{GZ31}$

\hline OH63 \& 1. \& ECL83 2.50 \& | G237 | |
| :--- | :--- |
| $\mathrm{Gz32}$ | 1.00 |
| 100 | |

\hline OH77 \& 0.90 \& ECL84 0.74 \& ${ }_{\text {G733 }} \quad 1.00$

\hline סH799 \& 0.56 \& ECL85 \& $\begin{array}{ll}\text { G233 } & 1.50 \\ \mathrm{GZ34} & 2.15\end{array}$

\hline - \& 2.00 \& $\begin{array}{ll}\text { ECL86 } & 0.80\end{array}$ \&

\hline OK91 \& 0.90 \& ECL805 0.69 \& G734 U 3.95

\hline OK92 \& 1.20 \& EF37A 2.00 \& Gz37 4.50

\hline DK96 \& 2.50 \& EF39 $\quad 1.10$ \& HAA91 1.00

\hline DL35 \& 2.50 \& EF41 3.50 \& HABC80 0.90

\hline D163 \& 1.00 \& EF42 3.50 \& H8C90 0.75

\hline D170 \& 2.50 \& EF50 2.50 \& H8C91 0.80

\hline D73 \& 2.50 \& EF55 4.95 \& HF93 0.75

\hline Di92 \& 1.50

0.95 \& \begin{tabular}{ll}
EF7\% \& 1.50

EF7\% \& 1.20

\hline

 \&

HF94

HK90

\hline
\end{tabular}

\hline D.93 \& 1.10 \& EF73 $\quad 1.00$ \& HL2K 3.50

\hline L94 \& 2.50 \& EF80 0.55 \& HL23DD 4.00

\hline \& 2.50 \& EF83 3.50 \& HL41 $\mathbf{3 . 5 0}$

\hline bis10 \& 13.50 \& EF85 \& ML42DD 3.50

\hline LS16 \& ${ }^{10.00}$ \& ${ }_{\text {EF86 }}^{\text {EF86 }}$ \&

\hline M160 \& 1.95 \& EF86 Special \& ${ }^{\text {HL92 }}$

\hline P51 \& 2.50 \& $\begin{array}{ll}\text { Qubality } & 3.15 \\ \text { E.85 }\end{array}$ \& ${ }_{\text {HR2 }}{ }^{\text {Hen }}$

\hline DY86/87 \& 0.65 \& EF9) 1.50 \& HY90 1.00

\hline DY802 \& 0.72 \& EF92 2.15 \& HVR2 3.00

\hline 55 L \& 42.00 \& EF93 \& JP9.7A
$\mathbf{k} 118$

\hline E8OF \& 18.50 \& | EF94 | $\mathbf{0 . 9 5}$ |
| :--- | :--- |
| EFF5 | $\mathbf{1 . 5 0}$ |
| | | \& | KR6/3 | | 85.00 |
| :--- | :--- | :--- |
| 85.00 | | |

\hline 8iL \& 12.00 \& EF957 \& KTBC ${ }^{\text {K }}$

\hline 88 CC \& 3.50 \& EF98 0.90 \& ${ }^{\text {KT3 }} 3 \mathrm{C} \quad 3.50$

\hline 83CC \& 3.50 \& EF983 0.65 \& KT36 $\quad 2.00$

\hline ${ }^{865}$ \& 5.50
9.50 \& EF134 0.65 \& KT44 $\quad 4.00$

\hline 88 C \& 7.95 \& \& KT61

\hline 88CC \& 3.50 \& EF732 3.50 \& KT63 2.00

\hline 90-C \& 7.95 \& EF800 11.00 \& KT66 OSRAM

\hline 91H \& 7.95 \& $\begin{array}{ll}\text { EF805S } \\ \text { ERO6S } \\ & 13.50 \\ 18.50\end{array}$ \& 10.50

\hline 92 CC \& 3.95 \& $\begin{array}{ll}\text { EF800s } & 14.50 \\ \text { EF812 } & 0.65\end{array}$ \& KT66USA 6.90
KT66 GEC 14.95

\hline 99F \& 6.99 \& EFL200 1.50 \& KT77 Gold Lion

\hline 130 L \& 19.95 \& EH90 0.72 \& 9.50

\hline 180CC \& 6.50 \& EK90 0.72 \& K781 7.00

\hline 182 C \& 9.00 \& EL32 0.95 \& KT88USA 9.00

\hline 86F \& 6.50 \& EL33 4.00 \& KT88 Gold

\hline 188 CC \& 8.50
7.50 \& ${ }_{\text {ELI34 }}^{\text {EL34 }}$ \& K167, 9.00

\hline 17 \& 15.00 \& Philips ${ }^{\text {a }}$ \&

\hline 280F \& \& EL36 ${ }^{\text {d }}$ 50 \& KN62 2.50

\hline $283 C C$ \& 10.00 \& EL37 9.00 \& $\begin{array}{ll}\text { KT263 } & 2.50 \\ 2.50\end{array}$

\hline 288CC \& 13.50 \& EL38 4.75 \& L63 1.50

\hline 寿 \& 18.50 \& EL41 $\quad 3.50$ \& L102/2K 6.95

\hline 88 CCS \& mans \& EL42 $\quad 2.00$ \& L120/2K 12.00

\hline pecial \& 5.95 \& EL81 $\begin{array}{r}6.95 \\ 5\end{array}$ \&

\hline 148 \& 1.00 \& 5.95 \& M5024 6.95

\hline 1524 \& 6.95 \& EL84 0.75 \& M502A 60.00

\hline \& 1.00
1.95 \& \&

\hline A79 \& 1.95 \& | EL86 | |
| :--- | :--- |
| EL90 | $\mathbf{0} 8.55$ |
| 1.50 | | \& M5 43155.00

\hline ABC80 \& 0.70 \& EL91 6.00 \& M8079 68.00

\hline AC91 \& 2.50 \& EL95 0.70 \& M8083 ${ }^{\text {c/25 }}$

\hline AF42 \& 1.20 \& EL153 12.15 \& м8099 ${ }^{7.50}$

\hline EB34 \& 3.50 \& | ELI 183 E | $\mathbf{3 . 5 0}$ |
| :--- | :--- |
| E18P | 3.50 |
| 185 | | \& M8096 3.00

\hline 841 \& 3.95 \& $\begin{array}{ll}\text { EL360 } & 6.75\end{array}$ \& M8098 $\quad 5.50$

\hline 891 \& ${ }_{0}^{0.60}$ \& | EL500 | 1.40 |
| :--- | :--- |
| 150 | | \& | M8100 | 5.50 |
| :--- | :--- |
| .50 | |

\hline BC41 \& ${ }^{2.95}$ \& | EL509 | $\mathbf{1 . 2 5}$ |
| :--- | :--- | \& $\begin{array}{ll}\text { M8136 } & 7.00 \\ M 8137 & 5.50\end{array}$

\hline
\end{tabular}

CALLERS WELCOME

- ENTRANCE ON A227

50 YDS SOUTH OF MEOPHAM GREEN
CAR PARKING AVAILABLE
Open Mon-Thurs 9am-5.30pm Fridays $9 a m-5.00 \mathrm{pm}$ CCESS AND BARCLAYCARD ORDERS WELCOME - MANY OTHER ITEMS AVAILABLE *

UK ORDERS P\&P 50p PLEASE ADD V.A.T. AT 15\%

EXPORT ORDERS WELCOME. CARRIAGE/POST AT COST

LOCIGANALYSERS

TA2080

8 channels 20 MHz timing and state 252 byte data and reference memories. 23 bit triggering with trigger delay by events and/or clocks Compare and search facilities. Composite video output. Microprocessor disassembly (Z80, 6800 and 6502) and RS232 option.

TA2160

16 channels, 20 MHz , timing and state 252 word data and reference memories. Can be configured as two independent or linked 8 channel analysers with separate clocks and independently set parameters. 34 bit triggering on two levels with trigger delay by events and/or clocks. Powerful compare and search facilities. RS232 interface, composite video output. Microprocessor disassembler options for Z80, 8085, 6809 and 6502
Both analysers can display data either as any 8 channels in timing diagram format, with cursor, window and expansion facilities, or in state format with cursor memory compare and word search features. All inputs are high impedance and variable threshold.
Optional accessories include the TA232P serial data (RS232) pod and
TP55 video printer.

For further information contact
Thandar Electronics Lid, London Road, St lves,
Huntingdon, Cambridgeshire PE17 4HJ
Telephone: (0480) 64646. Telex: 32250.

\Rightarrow thandar ELECTRONICS LIMITED

CIRCLE 86 FOR FURTHER DETAILS

HF ANTENNAS
 * MODE; Full half wave operation.
 * BANDS; Up to 4 spot
 frequencies.
 * POWER; Receive to 800W (PEP).
 \star SWR; Better than 1.5:1 on channel

 has been developed to satisty the needs of commerical and military users. It is capable of operation between 2 and 30 MHz on as many as four spot frequencies - each capable of accommodating many channels. Excellent matching and efticiency with a single coaxial full halt wave design. NB: Power absorbing terminating resistors are not emploved. The antenna may be deployed using one or two suppoit masts, installation fincorporating SMC light duty portable masts) can be easily effected by two people in halt an hour

HF SSB TRAISCEIVER

TM180 ""PIONEER" HF SSB TRANSCEIVER. $1.8 .18 \mathrm{MHz}, 6$ channels 100 watts RF output $\times 310$ (Dimm and weighing 6 kg May be operated as a base or mobile transceiver, complementing our trap dipole and HW4 mobile aerials. Prices start at f700, making this unis not only very attractive but highly comperitive.

SOUTH MIDLANDS COMMUNICATIONS LTD.

SM HOUSE
Telex: 477351 SMCOMM G Tel: Totton (0703) 867333

DansBURY

POCOMTOR AFR 2000 RTTY ALL MODE

special features

- Fully automatic recognizing of ARO, FEC-Collective and FEC Selective ISITOR/ANTOR.
- Fully automatic searching and synchronizing in Baudot mode according to Baud rate and phase; indication of baud rate and phase
- Manual preselecting of all Baudot and ASClI speeds
- Optimum microprocessor controlled signal reception with ${ }^{16} 6^{\prime} 000$ |sixteen thousandl samples per second and steady re phasing on forward and backward run of signal

840

CHECTRONICS

NOW AVAILABLE FOR f427 inc. VAT

- Special narrow band quadrature discnminator for all used LF shifis from 50 to 1000 Hz
- Simple and quick turing with 16 line LEO bar indication
- Extremely simple operating
- Curtent-saving 8 bt C.Mos microprocessor

FEATURES AND APPLICATION
The POCOMTOR AFR 2000 RTTY ALL MODE DECODER allows the simple and easy writing of the usual teletype codes as BAUOOT, ASCIl lincluding 200 baud press service), ARO, FEC-Collective, FEC CCIR recommendation 4762 The POCOMTOR AFR- ZOOO Sce a complete, telefvpe ders for the usual new quadrature discriminator for automatic adapting and processing of the normal shitt offsets of 50 Hz to 1000 Hz . The POCOMTOR AFR. 2000 is the first RTTY reception device on the consume area that huly automatically determines the received baud rate and synchronizes thereon, without being way, It is now only required to call up the automatique routine and after a short time for the signal reception of about 101015 seconds the symchronization is reached and the text can be written. n the mode $\mathrm{ARO} / \mathrm{FEC}$, i.e. during synchronous character transter iw whout start and stoo bit the butt-in inteligency finds out by it self whether it is an ARQ or FEC signal. wherebyit is additionally differentiated etween FEC Collective and FEC-Selective. To balance signal phase moves there is a steady adaption of the microprocessor controlled sam.pling. as to prerunning characters and to atterrumning
The tecthology of the POCOMTOR AFR-2000 RTTY ALL MODEDECODER Corresponds to the hightes requirements. Its extraordinary prize/penfornance ratio will not be reached in near fiture on the easy tos for that you receive more and have to tune less. thas never been thus easy to receive radio teletype.

Dewsbury Electronics offer a full range of Trio Equipment always in stock
We are also stockists of DAIWA-WELTZ-DAVTREND-TASCO TELEREADERS-MICROWAVE MODULES ICS AMTOR-AEA PRODUCTS-DRAE-BNOS
Dewsbury Electronics, 176 Lower High Street, Stourbridge, West Midlands Telephone:Stourbridge (0384) 390063/371228. Open Monday thru Saturday Instant H.P. subject to status, Access, Barclaycard and real money.

CIRCLE 82 FOR FURTHER DETAILS

NEW NEW NEW NEW NEW NEW NEW NEW」

CIRCLE 81 FOR FURTHER DETAILS

CIRCLE 40 FOR FURTHER DETAILS
\therefore mectronic erohens have moved infothe future..

CBIE

SCOPES

PHILIPS
PM3267 100 MHz D T
Sweep £1250
PM3256 75MHz
Ruggedised DT
PM 3217
PM321750MHzDT $£ 1325$
Sweep
¢870
PM3206 15MHzDT £275
PM321950MHz Storage
DTSweep 〔2675
PM3302 20MHz Digital
Storage DT £1395
HAMEG
HM203－5 20MHz DT ¢264 HM204－2 20MHzDT Sweep
HM208 20MHz Digital
Storage DT
HM605 50MHz DT Sweep
£365

LOGIC ANALYSERS
THANDAR
TA 216020 MHz 16 Channel $£ 3450$

DMMS

PHILIPS
PM2518X／01 4 digit True
RMS £165
PM2519／01 4^{1112} digit + Counter
£285
FLUKE
8060A $41 / 2$ digit True RMS
£289
8062A $4^{11 / 2}$ digit True RMS
£231
JF73 $3^{11 / 2}$ digit Handheld $\mathbf{E 6 8}$
JF75 $3^{11 / 2}$ digit Handheld $\mathbf{5 8 3}$
JF77 31／2 digit Handheld £104
THURLBY
1905A $511 / 2$ digit $1 \mu \mathrm{~V}$
SIGNAL SOURCES

PHILIPS

PM5712 Pulse Gen． $50 \mathrm{MHz} \quad £ 895$
PM5326 AM／FM Generator
125 MHz ¢1129
PM5134 Function
PM5134 Function Generator
PM5131 Function Generator
\qquad PM55191 Pattern Generator $£ 785$
PM5503 Pattern Generator

THANDAR

TG102 Function Generator 2MHz E155
TG502 Funct／Sweep Generator 5 MHz £495
POWER SUPPLIES
THURLBY
PL154 0－15V 0－4A Digital

> ELECTRONIC BROKERS HAVE MOVED TO SPACIOUS NEW PREMISES AT 140－146 CAMDEN STREET LONDON NW1 OPENING UP A NEW ERA IN THE DISTRIBUTION OF ELECTRONIC TEST AND MEASURING INSTRUMENTS AND THE SUPPLY OF SECOND USER TEST AND MEASUREMENT EQUIPMENT AND DEC COMPUTERS TELEPHONE 01．2677070

PL320 0－30V 0－2A Digital
PL310 O－30V 0－1A £145

RECORDERS

PHILIPS

PM8154 X－Y Graphics Plotter IEEE or RS232 £1025 PM8043 X－YA4 £1075 EPROM

PROGRAMMERS

G P ELECTRONICS

P 9030 Programmer $£ 1295$ P9020 Programmer £995 UV 141 Eprom Eraser $£ 78$
MISCELLANEOUS
PRODUCTS
PHILIPS
PM6303 Digital Automatic
Bridge
THURLBY
OM 358 Scope Multiplexer
$£ 169$
CM 200 Digital Capacitance
Meter

HEWLETT PACKARD

141T Mainframe
（MLP £4359）£2650 1715A opt． 001
Scope．200MHz
（MLP £3705）£2450
3575A－01 Gain／Phase Meter （MLP £4334）£2450 3585A Spectrum Analyser
（MLP E20069）£16650 4204A Decade Oscillator
（MINT）（MLP E1801）£760 4815A Vector Impedance Meter

80138 Pulse Generator
$50 \mathrm{MHz}(\mathrm{MLP}$ E1280） $\mathbf{5 7 5 0}$ 85A Computer £1250 8552B IF Section
（MLP £4526）£3500 8555A RF Section
（MLP £9304） 56500
8601A Sweeper． 110 MHz
（MLP £4502）£1950
8620C Sweeper Mainframe
（MLP E3180）£2100
862228 Plug In
$0.01-2.4 \mathrm{GHz}$
（MLP £5741）£4850 86240 B Plug $\mathrm{In} .2-8.4 \mathrm{GHz}$ （MLP E6360）£4200 86260A Plug In．12．4－18GHz （MLP E4675）£3600 9825A Desk Top
Cal／Computer $£ 2950$ RACAL
Store 4DS FM Taperecorder
£3950
Store 7DS FM Taperecorder
£6150

TEKTRONIX

1503 TDR
（MLP E5911）£ 3000
464 DM44 opt． 04.05
Storage Scope 100 MHz
（Unused Cond）
（MLP $£ 7615$ ）$£ 4650$
465 opt．04．07．Scope
$100 \mathrm{MHz}(\mathrm{MINT}) \mathrm{E} 1650$ 475A Scope． 250 MHz
（MLP E4453）§3300 491 Spectrum Analyser
$1.5 \mathrm{GHz}-12.4 \mathrm{GHz} £ 3000$ 491 Spectrum Analyser． $1.5 \mathrm{GHz}-18 \mathrm{GHz} £ 3500$ 491 Spectrum Analyser．
$1.5 \mathrm{GHz}-26.5 \mathrm{GHz} \mathrm{E} 4000$ 491 Spectrum Analyser． $1.5 \mathrm{GHz}-40 \mathrm{GHz} \quad £ 4500$ 521A Vectorscope （MLP E7914）£4500
5223 Mainframe
（MLP £5605）£3600
576 Curve Tracer c／w 172

577／D1 Curve Tracer
（MLP £7272）£4000
7104 opt． 03 Real Time
Mainframe 1GHz
（MLP £26348）£16500 7704 A Mainframe． 200 MHz
（MLP E5094）£2950
7904 Mainframe． 500 MHz
（MLP £10371）£6950 AM502 Amplifier
（MLP E1404）£695
FG504 Function Generator． $0.001 \mathrm{~Hz}-40 \mathrm{MHz}$
（MLP $£ 2888)$ £1650
P6015 HV Probe $£ 450$
P6302 Current Probe £350 PG502 Pulse Generator． $10 \mathrm{~Hz}-250 \mathrm{MHz}$
（MLP E2831）£1750 PG508 Pulse Generator
$5 \mathrm{~Hz}-50 \mathrm{MHz}$
（MLP E2384）£1250

PROCESSORS

PDP11／70，PDP11／44 PDP11／34A，PDP11／45 PDP11／40，PDP11／23， PDP11／03，PDP8E，PDP8A

MEMORY

MS750CA，MS780DA
MJ11AM，MJ11BM
MK11CE，MK11CF，MM11DP． MM11L，MM11UP，MS11JP． MS11KE，MS11LB，MS11LD MS11MB，MS11PB，MM8AA MM8AB，MMBE，MMBEJ． MS8CA，MS8CB MS8DJ MSV11DC，MSV11DD． MSV11LK，MSV11PL

DISC DRIVES

R80，RA80，RK05，RK06， RK07，RLO1，RLO2，RMOZ RMO3，RMO5，RM80，RPO5 RP06，RPO7，RX01，RX02
MAGNETIC TAPE
TE16，TS11，TU10，TU58 TU77

CONTROLLERS

RH11，RH70，RH750
RH780，RKG11，RK711
RK8E，RK11D，RL8A，RL11． RLV11，RLV12，RX8E，RX28 RXV11，RXV211．RX11 RX211，TM8E，TM11，TMB11 SC71

VDUS

VR17．VT05，VT52，VT55
VT62，VT78，VT100，VT102 VT103，VT110，VT125，
VT180，VT278
PRINTERS
LA30，LA34：LA35，LA36，
LA180，LP04，LP05，LP07． LP25，LP200，LS120，LXY01
OPTION MODULES

Too numerous to list

Listed above is just a very small selection from our huge inventory．
Whatever your requirements in test equipment or DEC computers
please call us．
We are sure that we will be able to help

Electronic Brokers

新纽 Electronic Brokers Ltd．，140－146 Camden Street， London NW1 9PB．Telephone 01－267 7070．Telex 298694. CIRCLE 80 FOR FURTHER DETAILS．

The PC-16 16-bit computer provides PERFECT COMPATIBILITY with the IBM PC/XT range. The motherboard can be supplied in two versions for stereoscopic conveneince. The ' N ' version has no memory on board and the ' B ' version with space for 64 to 256 K RAM. Addition of the Memory Expansion Card provides a further 64 to 512 KB of RAM. BASIC FEATURES INCLUDE

* 8088 CPU operating at 4.77 MHz
* Provision for 8087 co-processor
* Four DMA channels
* Three TIMER channels on board * 8 EXPANSION SLOTS SYSTEM-5 PC16 (B/3) - PRICE E1599 - Main computer employing 'B' board with 128 K on board (upgradeable to 256 K on board) PLUS Colour/Graphics adaptor providing signal capable of running monochrome displays on RGB output for full colour. Multi I/O card, providing floppy drive controller for two drives, one parallel port, one serial port, one games port with batter backed clock calander. RAM extension card for 512K. Two DS/DD floppy drives. 83-key keyboard All complete, built \& tested in case with power supply together with Concurrent (multiuser, multitasking) CP/M, CCP/M manual, Basic manual and computer operations manual - ready to run!

MOTHERBOARD 'B', 8-slot 128K .. £449 MOTHERBOARD ' N ', 8-slot ….... £329 MULTIFUNCTION carc with 128K (expandable to 256 K ;one PLL-port, one SER-port (2nd option) Clock/ Calendar with backup MONOCHROME adaptor with printer port.............................. MULTI I/O CARD - one pll, one serial port, one games port, floppy battery backup $£ 299$

14in RGB HI-RES MONITOR $\times 300$ lines)	$. £ 389$
12in HI-RES GREEN MON	$\underline{189}$
64K RAM EXTEND MODULE	¢59
DS/DD FLOPPY DRIVE (500 KB	
unformatted	£175
WINCHESTER DRIVE	
CONTROLLER	¢425
512K RAM BOARD	
K RAM installed fu	
compatible	£299

WINCHESTER DRIVE 12MB...... £8
IBM COMPATIBLE KEYBOARD (83
key)
KEYTRONIC 5150 K/BOARD £175
KEYTRONIC 5151 K/BOARD...... $£ 210$
KEYTRONG SIOWER SUPPLY $£ 105$
SWITCHING POW
ADD SERIAL PORTKIT................. $£ 23$
FLOPPY DRIVE CONTROLLER ...£109

DRIVES - MEGABYTES FOR MICROPOUNDS!

$5^{\frac{1}{4} \text { " }}$ Half height $500 \mathrm{kB} 40 / 80 \ldots \ldots \mathrm{E} 119$
 $5^{\frac{1}{4} \pi}$ Half height 1.6 MB 40/80E159 5:" Half height 2 MB 40/80 $£ 199$
 $3^{\prime \prime}$ Half height 1 MB $£ 125$ $8^{\text {² }}$ Full size 1.6 MB $£ 282$ HR521 Half height 12.75 MB Hard Disk unformatted £492

Allbranónew, bo standard power requirments. Full documentation and technical details

Add 15% VAT to all prices igiven. Remember, VAT is also applicable on carriage at 15%. Terms CWO. DEALER ENQUIRES WELCOME. FOREIGN enquiries if pOSsible by telex please However, French \& German speaking staff at your disposal. MONEY BACK GUARANTEE. SENE 1.00 tor our latest catalogue of over 3000 items, computers. per pherals, consumables, robotics, etc etc.

CIRCLE 87 IOOR FURTHER DE'IAILS.

CIRCLE 25 FOR FUKTHER DETAILS.

CIRCLE 22 FOR FURTHER DETAILS.
ELECTRONICS \& WIRELESS WORLD JANUARY 1985

The Information Society-4

Overview of telecommunication techniques

If the telephone instrument itself generated digital output when spoken into, and the line, the exchange, and the remainder of the network could handle digital signals, then either the telephone or any other device generating a digital output could be used as the source - limited to some data rate according to the design of the systems. This, or something resembling it, is currently the objective of many major PTTs.

To convert the world's telephone/data system to an ISDN (integrated service digital network) is a mammoth task which has to be done without interrupting existing facilities. For example British Telecom is changing the UK system to an ISDN by overlaying ${ }^{51,52}$ and gradual substitution. Ultimately all subscribers will be able to use digital data or voice equipment from their home or business at up to $140 \mathrm{kbit} / \mathrm{s}$ (System X).

It turns out that the existing pair running from the telephone to the local exchange has a much higher bandwidth than the 2.5 kHz that is used for telephone speech. Existing cables are quite capable of handling the higher speeds. Subscribers will be able to use equipment running at various bit rates up to the permitted maximum the ISDN must be able to work at a range of speeds and pack the data into lines up to the limits of their capacity to minimise costs. This will entail modifications - hence the word 'overlay'. For example at exchanges, variable bit-rate switches will be required. Initially they will run in parallel with existing equipment. Eventually all subscribers will be provided with the new facilities and at that time the old equipment can be removed.

Packet switching

The essence of packet switching is the breaking up of messages
into short packages, each containing the address of the destination, and then collecting up packets from numerous sources and sending them down a channel in a continuous stream as fast as the channel's bandwidth allows. At the remote end they are sorted out, all the packets being reformed into a complete message at each remote address. The benefit is maximized when there is sufficient traffic to fill expensive long distance channels - hence the widespread adoption of packet switching for public data networks.'

LANs and PABXs

Local area networks (lans) are intended primarily for the interconnection of office machines like word processors, printers, central files etc., within a single site ${ }^{53}$. Some networks, such as Ethernet and Cambridge Ring, use baseband transmission that is digital data are transmitted as generated round a singlechannel system with special measures to control collisions between inter-station messages. With broadband systems, mutual interference is avoided by using modulated carriers of different frequencies with bandpass filters for channel separation.

In more elaborate systems the bandwidth may be 'carved up' according to requirements - for example into a hundred dedicated channels for 1200 band terminals, an Ethernet channel, a television channel, channels for digitized voice etc. The major lan suppliers are listed in ref. 53 together with much other information.

Methods for long distance transmission are different packet switching for example so, to interconnect lans at a distance from each other via national or international networks, protocol translation problems must be solved. One

way of doing it will be by 'gateways' at interconnection points.

When wideband cables and longer range lans become generally available, businesses, homes, and workers-at-home could be interconnected with online access to remote databases provided over the same cable ${ }^{54}$. In 1981 the Viacom San Francisco cable network and the Manhattan New York network were connected in an experiment conducted with SBS and Tymnet. The cable tv circuits were used as a local network for data distribution.

At present it is easier to connect local traffic to the outside world with a p.a.b.x. (private automatic branch exchange) which can also be used to connect any digital or analogue device to any other internally. These exchanges are well proven for reliability and ease of expansion, and could be connected to a lan in order to gateway at least the slower of the lan terminals to a public network ${ }^{55}$.

Modems

A modem is a device used to enable data to be exchanged between digital devices interconnected by an analogue communication channel such as a telephone line. For example, twolevel 0,1 signals can be used to modulate two carriers of different frequencies within the voice band, with the remote modem demodulating, or vice versa.

Part of A.C.Clarke's prophetic article.

Fig.5.0 $\cdot 9 \mathrm{~m}$ aerial DBS tv service areas.

References

51. Hughes, C.J.

In Williams, M.B., (Ed). Pathways to the information Society. Proc, bith Int. Conf on Computer Communication London Sept. 7th 1982. Published by North-Hol land 1982. Page 13.
The long term future of circuit and non-circuit switching in multi-service networks. 2. Hardy, J.H.M., Hoppitt. C.E In Pathways (see ref.51) Page 43 53. Cheong, V.E., Hirschheim, R.A. John 'Wiley. 1983.
Local Area Networks: issues, products, and 'developments
54. Anon.

International Kesource Development Inc. report 193, March 1982. Published by IRD, 30 High Street, Norwaik, Conn 06851, USA.
Local networks and home information systems: the cable connection. 55.I Pitt, D.A.

In Williams, M.B. (Ed), (See Ref.51). Page 351.

Alternatives in the use of circuit switching for local-area data networks. 56 Anon.

A modem can be purchased in the US for $\$ 100$, and an autodialling/auto answer modem for around $\$ 250^{56}$. Texas Instruments offer a modem chip for $\$ 30$ to form the heart of simple plug-in modem-on-a-p.c.board. Devices like the Hayes Micromodem 100 have been available for some time ${ }^{57}$, and comes on a board ready to plug into the S 100 standard microcomputer socket within a machine, includes programmable auto-dialling and answering and may be directly connected to the telephone system.

The only auto-dialling modem known to me which is available from a UK manufacturer is supplied by Case ${ }^{58}$ and costs $£ 695$. The simplest modem available costs around $£ 200$. The stranglehold exerted until recently by BT's modem monopoly has inhibited the growth of competitive manufacturers.

If transmission proceeds at one bit per baud and, as is normally the case, there are eight bits per character, the bit rate will be at least eight times the character rate. In fact it is usually about ten times for technical reasons so that 300 baud is 30 characters $/ \mathrm{s}$, and 1200 baud is $120 \mathrm{ch} / \mathrm{s}$. These are the speeds in most common use. At higher speeds special modulation techniques and several bits per baud are used in order to send information at a faster rate within the same bandwidth. 9600 baud modems are now available for use on the p.s.t.n., and these employ adaptive equalising - that is circuit elements in the modem are used to improve the effective characteristics of the line.

Optical communications

Fibre-optic communication is
achieved by modulating a light source with electrical signals using a light-emitting diode (low power), or laser (higher power). the light is propagated along a fibre and detected at the other end by a photodiode which produces electrical voltages when light falls on it. With monomode fibres the subject of intense development work - propagation is better explained in terms of waveguide mathematics. The core diameter is reduced to about $5 \mu \mathrm{~m}$ and light with a wavelength of around 1.3 to $1.5 \mu \mathrm{~m}$ is used. This dimensional/wavelength relationship permits the propagation of only one 'ray' or mode. Interference between rays is minimised, and dispersion in the material is also at a minimum at these wavelengths so that minimum attenuation occurs together with inherently high bandwidth ${ }^{59}$.

British Telecom, Bell, and KDD research in Tokyo all claim very high bit rates over long distances without repeaters (amplifiers) using monomode optical fibres. Speeds of 200 or $300 \mathrm{Mbit} / \mathrm{s}$ in 100 km fibres are typical. These improvements have prompted the adoption of fibre optics for the next transatlantic cable - TAT-8 - operating at about $600 \mathrm{Mbit} / \mathrm{s}$. This is a classic example of the 'sailing ship' effect which occurred at the onset of steam propulsion when improved design enabled sail to hold out against steam for much longer than was expected. Cables are holding their own against those upstart satellites.

Over shorter distances fibreoptic cables may well be used for cable television networks, arranged 'star' fashion. They are physically much less cumbersome than coaxial cable, can be used without repeaters, are immune to interference, and will soon be cost-competitive. Thirty fibres, each carrying several tv channels, can be accommodated in an armoured polythene protected cable only 11 mm in diameter.

For yet shorter distances - as in local area networks - fibreoptics are likely to be increasingly adopted and systems are now commercially available from Western Electric, Hewlett-Packard and others ${ }^{60}$.

Cellular radio

People in cars may well be able to connect to the communications infrastructure. The range of Citizen's Band (CB) radio is only 5 to 15 miles depending on the effects
of line-of-sight obstacles on the low power 27 MHz radio waves. In the US, much more space is available - particularly in the newly allocated 900 MHz band - but this is still not enough; wavebands available below about 1 GHz are at a premium. In the UK the mobile business radio-telephone is not widely used - there are less than 4000 such telephones in the Greater London area, using BT's systems.

In a cellular radio system an area is divided into small cells, each with a low-power station, for handling telephone calls from mobiles - mainly cars - in its area. As the user moves out of range a central control system detects this, and the radio link is automatically transferred to the station handling users in the next cell. The beauty of the idea is that if the number of mobiles exceeds the number that each or any cell can handle, you simply decrease the size of the cell or cells, which is rather easily done.

Toward the end of 1982, the UK government decided to licence two competitive networks, one to be run by British Telecom/ Securicor, the other to be decided ${ }^{61}$. In December 1982 the other was awarded to Racal/ Hambros Bank/Millicom, who defeated a Ferranti-led consortium and Cable \& Wireless/Telephone Rentals. Several technical alternatives were considered, particularly AMPS and MATS-E developed by Philips. In the event, TACS, a UK manufactured version of AMPS, will be used by both UK services. This version will conform to what is expected to become the European standard, provided up to 1000 channels separated by 25 kHz in the 890 960 MHz band.

The Racal award provoked a response from Philips ${ }^{62}$ who suggested that an opportunity to create a European system had been lost, and Europe would end up once again as a good market for US exports. However, optimistic forecasts about job creation in the UK followed, in the expectation that there would be a demand for cellular radio in the hundreds of thousands ${ }^{63}$. We will be unable to see what happens until 1986 the earliest date by which sets will be available in any volume.

Satellite communications

Satellite communications have come a long way since Clarke's 1945 prediction 7, mentioned earlier. A portion of Clarke's famous article is shown in Fig.4. The
available bandwidth for satellite communications lies between about 700 MHz and 30 GHz . A digitized telephone circuit occupies about 32 kHz , and a digital tv channel at least 36 MHz , so this bandwidth, if occupied by isotropic transmitters, could accommodate about 900,000 telephone channels or 800 tv channels without mutual interference.

However satellite transmitters are not isotropic - that is they do not radiate in all directions. The energy is beamed, and one beam need not interfere with another. Consequently the available bandwidth is much greater since a number of transmitters can use beams on the same frequency without mutual interference. But satellites require to be spaced in orbital 'slots' and for geosynchronous satellites there are only so many slots available in positions for optimum coverage of the areas of greatest demand. Thus in spite of the huge bandwidths potentially available, the slot limitation offsets the beam advantage, and slot positions are at a premium. The allocation of slots is a matter for intense international hagg ling.

Typically, signals are beamed up from a narrow-beam ground station to a satellite transponder, changed into a different frequency, and beamed down using a beam designed to cover a specific area of the earth. A transponder may be designed to receive signals from more than one ground station, and may re-transmit a signal singly, or with others spaced out over a frequency band from one aerial, or may re-transmit one or several signals from several different aerials beamed to cover particular areas. The latest satellites embody on-board switching to arrange for various combinations of signals and aerials for particular areas of the earth.

A one-hop up-down signal to and from a transponder on a satellite at a height of 22,282 miles takes about half a second to make the round trip. The adverse effects of this delay have been much less than expected, and provided the design and application of a system using a satellite link takes proper account of it, it is unlikely to present much of a problem. For general informatipn, see reference ${ }^{64}$; an overview of current general developments is provided in refs ${ }^{6568}$.

The Comsat Corporation was set up in 1963 to manage the Intelsat satellites for interna-
tional telecommunications on behalf of participating countries. Their impact on the public has been the increasing coverage and falling costs of long distance telephone calls, and the relaying of tv programmes of high quality in real time. Later, commercial satellites started operating in the US with ground stations scattered round the country. For example the WESTAR satellite had 12 transponders each capable of handling $60 \mathrm{Mbit} / \mathrm{s}$. they were hired for a variety of purposes including remote publication of the Wall Street Journal, oil rig communications, Sports tv links, telegrams and telex. More recently, Satellite Business Systems became fully operational with the addition of its third satellite earlier this year. It offers digital intra-organisation communication services (CNS) using a network of ground station and leased lines ${ }^{69}$.

Transponders, usually one per channel, have been in high demand for cable tv programme distribution, nearly a hundred now being used on seven different satellites. Their use on RCA's Satcom 1 were shown in Table 1. These transponders are used for distributing programmes to cable tv ground stations for further distribution through terrestrial cable networks. A new journal caters for the 'satellite freak' demand by providing a 'guide to satellites' with a schedule of all the programmes which can be intercepted if you have the right gear.

Direct broadcast satellites, expected to be functioning by 1986 in the US, are a more recent development for programme distribution direct to homes. The probable cost of the dish and receiving adaptor seems to be fairly clear. Technical details are discussed in ref. ${ }^{70}$ with an estimated volume production cost of $\mathfrak{£} 200$ in the UK. However, the expectations of the companies getting into the business are far from clear.

The European space industry was a joke for some years. Then it grew gradually, characterised by grudging co-operation delayed by national aspirations and national/ commercial jockeying for leadership as the importance of the communications potential became evident. Currently the major actors are the European Space Agency which supports the Ariane rocket launcher and a later more powerful version, and also supplies hardware for use by EUTELSAT, a consortium of

European telecommunication administrations.

The Orbital Test Satellite was launched in 1978 as a Telecomms testbed. It is being followed by the European Communication Satellite series of five satellites from 1983 onwards. Another larger multi-purpose satellite was started - the H-SAT, supported particularly by the Germans, but was stopped in 1978 apparently because the Germans wanted to jump to an operational phase more quickly. In addition to these ESA activities, France is launching a series of three TELECOM satellites for its own communication purposes, starting in 1984. Satellite television activities also rely on ESA services, but national and commercial forces seem to take over at the operational stage.

The work on H-SAT spawned three successors. L-SAT is a large multi-purpose satellite - the first to have spot beams with onboard switching - to be launched in 1986. Under the aegis of ESA, it is of particular UK interest, with British Aerospace as the prime contractor. It will be used for Italian tv and may be used for direct tv broadcasting. Two other satellites followed H-SAT - the Telediffusion de France (TDF), and the German TV-SAT, with transponders for at least three channels on each, possibly to be used for direct broadcasting. They will be operational in 1985.

Apart from these ESA-based activities various national activities are in progress. A UK consortium of British Aerospace/Marconi/GEC/Brit. Telecom with some US participation as well, called UNISAT, has contracted to make three satellites for BBC DBS ready in 1985/6. There is some doubt about the activities of Luxembourg RTL which at one time was contemplating private tv broadcasting over central Europe. This would upset the control of content maintained by the state monopolies.

In the 1977 World Administrative Radio Conference the UK was allocated a position at 31 degrees West for a satellite operating in the 12 GHz band with provision for five tv channels radiated with a specified power, polarisation, and earth footprint. A report was published in May 1981 setting out options in the UK, ref.71. The service area for reception using a 0.9 metre aerial dish in a satellite to the WARC specification is shown in Fig.5. Following the UNISAT proposal a decision was
needed about upgrading the picture quality to take advantage of the wider bandwidth available the major restriction on the quality of terrestrial tv.

During 1982 discussions started about the virtues of the BBC's improved system, extended PAL, or a system claimed to be better in several respects, developed by the Independent Broadcasting Authority and called C-MAC, the C designating the type of sound and the MAC meaning multiple analogue component. At the end of 1982 the government accepted the recommendations of the Part committee and decided on C-MAC. Attempts were made in 1983 to convince other European countries, through the European Broadcasting Union (EBU), that C-MAC should be the European standard. Agreement could not be reached.

In August 1983 IBA asked for channels on Unisat for a service competing with the BBC. It was also reported that the BBC was wavering in view of increasing costs, and was worried about its large borrowing requirement with attendant risk. The final form of UK DBS has yet to be decided.

In the context of telecommunication infrastructures, satellites may simply play a technical role - that is they are a communications relay to be used when economic, technical, and political considerations are favourable. However they have the unique property of potentially providing $\mathrm{n}(\mathrm{n}-1) / 2$ two way circuits the equivalent of a universal multi-port network over the surface of the earth. Experiments are in progress lasting until 1984 to interconnect lans via the OTS satellite and terrestrial networks ${ }^{72}$. The extra dimensions of satellite communications are technically available to produce a profound effect on networking. The pace will be determined yet again by the art of the politically possible.

[^0]
Telemetry decoder for Oscar-10

Aligning the decoder without test equipment

Several constructors have asked for a method of aligning the decoder without test instruments. It is possible to manage without an audio generator or oscilloscope, but you need a good ear and headphones. This method will not enable you to fault-find. It assumes that the decoder is electrically all right, and that only the phase-locked loops need setting-up correctly.
These instructions should help you align the decoder itself though the p.1.1. dynamic characteristics will not have been checked. For maximum performance it is necessary to optimise receiver and p.1.1. bandwidths. To do this you will still have to follow the procedure given in the article; however, very good results may be obtained this way.
The method makes use of the
fact that there are crystal-controlled 2400 and 1200 Hz reference signals available from the serialiser clock, IC_{19} pins 11 and 12. Make up a simple audio mixer using two resistors (try $2.2 \mathrm{k} \Omega$ to start with) to the live terminal of the headphones, the common connection going to the 0 V rail. One resistor connects to the reference tone, and the other is a test probe. With this probe connected to signals in the decoder two tones will be audible, and with care the frequency of the tested signal can be gauged by ear.

Main p.I.I.

The range offered by the main tuning pontentiometer VR_{3} should be from about 1200 Hz to 2400 Hz . Tune to the low-frequency end. Connect the refer-
ence probe to IC_{19} pin 12 and the test probe to IC_{4} pin 11 Adjust trimmer VR_{2} until zero beat is heard. Make sure that you have matched 1200 Hz to 1200 Hz , and not harmonics this is why you need a careful ear. Now move the reference probe to IC_{19} pin $11(2400 \mathrm{~Hz})$. Retune VR_{3} to maximum frequency and confirm that you hear about 2400 Hz .

Clock p.l.I.

This loop should run at 400 Hz exactly. Connect the reference probe to $1200 \mathrm{~Hz}\left(\mathrm{IC}_{19}\right.$ pin 12), and the test probe to TP4. Adjust VR_{4} until you hear zero beat between the reference and the third harmonic of the 400 Hz clock. The mixture is particularly sonorous. Now connect noise to the system audio input (J2 pin 1). Re-adjust VR_{4}
carefully for zero beat. The 6 V supply should be adjusted as described in the article. Apply noise to the input, connect an analogue voltmeter between IC_{12} pins 1 and 2 , and adjust VR_{1} for an average reading of zero volts

Corrections

In the main circuit diagram in the October issue the numbering of pins 1 and 2 of link LKY should be transposed. The p.c.b. is correct

On the first page in the paragraph headed Y Block, the date reference should read ($0=$ January 1 1978). In the caption to Fig. 4 the second 'would' should be omitted. Finally, in parts 1 and 2, in Table A the bracket 'to S^{\prime} ' should embrace J2 pins $3,4,5$ and 6 .

Griffin \& George, Ealing Road, Wembley HA0 1HJ. Tel 01-997 3344
Harris Electronics, 138 Grays Inn Road, London, WCIX 8AX. Tel 01-837 7937
Hewlett Packard Ltd, King Street Lane, Winnersh, Wokingham, Bucks. Tel 0734784774
House of Instruments Ltd, Clifton Chambers, 62 High Street, Saffron Walden, Essex CB10 1EE. Tel 079924922
Iskra Ltd, Redlands, Coulsdon, Surrey, CR3 2HT. Tel 6687141
JMI Ltd, 137 Sandgate Road, Folkestone, Kent CT20 2DE Tel 030354002
Keithley Instruments Ltd, 1 Boulton Road, Reading, Berks RG0 NL. Tel 0734861287
Kelgray Marketing Ltd, Kelgray House, Sandy lane, Crawley Down, W. Sussex RH10 4HS. Tel 0342715066
Lascar Electronics Ltd, Module House, Whiteparish, Salisbury, Wilts SP5 2SJ. Tel 07948567
MIC - see House of Instruments
Pantec (Carlo Gavazzi UK Ltd), 162 Upper Richmond Road, London SW15 2SL. Tel 01-785 9022
Philips Measuring Instruments (Pye Unicam Ltd), York Street, Cambridge CB1 2PX Tel 0223 358866
Racal Dana Instruments Ltd, Duke Street, Windsor, Berkshire SL4 1SB. Tel 0753569811

Robin Electronics Ltd, Wembley Commercial Centre, Unit 3.2 East Lane, North Wembley, HA9 7YA. Tel 01-908 5446
Rohde \& Schwarz (UK) Ltd, Rohde \& Schwarz House, Roebuck Road, Chessington, Surrey KT9 1LP 01-397 8771
Ross Electronics (Ross Marks Ltd), 49 Pancras Road, London NW1 2QB. Tel 012786371
Servo \& Electronics Ltd, 24 High Street, Lydd, Kent. Tel 0679 20252
Siemens (UK) Ltd, Windmill Lane, Sunbury on Thames. Tel 09327 85691
Sifam Ltd, Woodland Road
Torquay Road, Devon TQ2 7AY. Tel 080363822
Solartron Electronic Group Ltd,
Farnborough, Hampshire GU14
7PW. Tel 025244433
STC Instrument Services
Edinburgh Way, Harlow, Essex
CM20 2DF, Tel 027929522
Telonic Instruments, 2 Castle Hill Terrace, Maidenhead, Berks SL6 4JR Tel 062873933
Thandar Electronics Ltd, London Road, St Ives, Huntingdon, Cambridgeshire PE17 4HJ. Tel 048064646
Thorn EMI Instruments Ltd,
Archcliffe Road, Dover, Kent
CT17 9EN. Tel 0304202620
Thurlby-Reltech (Thurlby
Electronics Ltd), New Road,
St Ives, Huntingdon,
Cambridgeshire PE17 4BG. Tel 048063570

TOROIDALS

CIRCLE 13 FOR FURTHER DETAILS

CARACAL SINE WAVE INVERTERS 200 to 1000 VA

CARACAL'S new range of pulse width modulated inverters are now even better than ever compared to older tuned-type inverters - with even higher efficiency, lower standby current and lower weight than before

CARACAL inverters have been in use around the world for many years wherever a reliable and stable source of backup or standby AC power is needed for computers, communications, instrumentation, and for mobile, field or marine applications.

> ASK ABOUT OUR CUSTOM/OEM
> SERVICE - THE U.K.'sBEST INVERTERS TO SUIT YOUR DESIGN FROM 50 TO 1000 VA

CARACAL POWER PRODUCTS LTD. 42-44 SHORTMEAD ST., BIGGLESWADE, BEDS. Tel: 0767 - 260997

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order
Full Information from:
HARRIS ELECTRONICS (London)
138 GRAY'S INN ROAD. W.C. 1
Phone: 01-837 7937
Telex: 892301
CIRCLE 34 FOR FURTHER DETAILS

VIDEOTERMINALBOARD
 خ 80 characters $\times 24$ lines \rightarrow

Requires ASCll encoded keyboard and monitor to make fully configurable intelligent terminal. Uses 6802 micro and 6845 controller. Program and character generator (7×9 matrix with descenders) in two 2716 EPROMs. Full scrolling at 9600 baud with 8 switch selectable rates. RS232 interface.
Bare board with 2 EPROMS and program listing £48 plus VAT. Assembled and tested - £II8 Send for details or CWO to:

A M Electronics
Wood Farm, Leiston, Suffolk IP16 4HT
Tel: 0728831131

MICROPROCESSOR CONTROLLED RECEIVERS

Type SR 530 USB/CW/AM/Telex - 10 Hz Steps (Marine)
Type SR 532 USB/LSB/AM/CW - 10 Hz Steps (Static/Transportable)
Type SR 531 USB/LSB/AM/CW - 100 Hz Steps (Static/Transportable)

DESIGNED AND MANUFACTURED TO HIGHEST INTERNATIONAL SPECS

NOW AVAILABLE AT HIGHLY COMPETITIVE PRICES

Send for Technical Brochure to:
Tel: (0344) 885656
Vigilant Communications Ltd. Telex: 849769 Vigcom G Unit 5, Pontiac Works, Fernbank Road, Ascot, Berks SL5 8JH, England

CIRCLE 44 FOR FURTHER DETAILS.

FREQUENGY COUNTERS

HIGH PERFORMANCE

 HIGH RELIABILITY LOW COSTThe brand new Meteor series of 8-digit Frequency Counters offer the lowest cost professional performance available anywhere

* Measuring typically $2 \mathrm{~Hz}-1.2 \mathrm{GHz} \quad \star$ Low Pass Filter
* Sensitivity $<50 \mathrm{mV}$ at 1 GHz
* Setability 0.5 ppm
* High Accuracy
* 3 Gate Times
* Battery or Mains
* Factory Calibrated
* 1 -Year Guarantee
* $0.5^{\prime \prime}$ easy to read L.E. D. Display NOW AVAILABLE WITH
$\begin{array}{llll}\text { PRICES (Inc. adaptor/charger, P \& P and VAT) } & \text { NOW AVAILABLE WITH } \\ \text { METEOR } 100 & (100 \mathrm{MHz}) & £ 111.55 & \text { T.C.X.O. OPTION } \\ \text { METEOR } 600 & (600 \mathrm{MHz}) & £ 141.45 & \text { withated colour brochure } \\ \text { METEOR } 1000 & (1 \mathrm{GHz}) & £ 192.05 & \text { and prices available on request. }\end{array}$
$\begin{array}{llll}\text { PRICES (Inc. adaptor/charger, P \& P and VAT) } & \text { NOW AVAILABLE WITH } \\ \text { METEOR } 100 & (100 \mathrm{MHz}) & £ 111.55 & \text { T.C.X.O. OPTION } \\ \text { METEOR } 600 & (600 \mathrm{MHz}) & £ 141.45 & \text { llustrated colour brochure } \\ \text { METEOR } 1000 & (1 \mathrm{GHz}) & £ 192.05 & \text { with technical specification } \\ \text { MErices available on request. }\end{array}$
$\begin{array}{llll}\text { PRICES (Inc. adaptor/charger, P \& P and VAT) } & \text { NOW AVAILABLE WITH } \\ \text { METEOR } 100 & (100 \mathrm{MHz}) & £ 111.55 & \text { T.C.X.O. OPTION } \\ \text { METEOR } 600 & (600 \mathrm{MHz}) & £ 141.45 & \text { llustrated colour brochure } \\ \text { METEOR } 1000 & (1 \mathrm{GHz}) & £ 192.05 & \text { with technical specification } \\ \text { MErices available on request. }\end{array}$
$\begin{array}{llll}\text { PRICES (Inc. adaptor/charger, P \& P and VAT) } & \text { NOW AVAILABLE WITH } \\ \text { METEOR } 100 & (100 \mathrm{MHz}) & £ 111.55 & \text { T.C.X.O. OPTION } \\ \text { METEOR } 600 & (600 \mathrm{MHz}) & £ 141.45 & \text { lilustrated colour brochure } \\ \text { METEOR } 1000 & (1 \mathrm{GHz}) & £ 192.05 & \text { with technical specification } \\ \text { MErices available on request. }\end{array}$
METEOR $1000 \quad(1 \mathrm{GHz}) \quad £ 192.05$

Huntingdon, Cambs PE17 4WJ, England. Tet: (0480) 62440 Telex: 32339

CIRCLE 26 FOR FURTHER DETAILS.

\section*{| ${ }^{\circ}$ | RADFORD |
| :--- | :--- |}

Audio Measuring Instruments, Audio Amplifiers, Loudspeakers and Loudspeaker Components for the professional and enthusiast

RADFORD AUDIO LTD.
10 BEACH ROAD
WESTON-S-MARE, AVON BS23 1AU
TEL. 0934416033

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

R.Henson Ltd.

21 Lodge Lane, N. Finchley, London, N.12. 5 mins. from Tally Ho corner
Telephone 01445 2713/0749

CIRCLE 30 FOR FURTHER DETAILS.
ELECTRONICS \& WIRELESS WORLD JANUARY 1985

CIRCLE 31 FOR FURTHER DE'TAILS.

RESEARCH COMMUNICATIONS LTD. UNIT 3, DANE JOHN WORKS, GORDON ROAD, CANTERBURY, KENT CT1 3PP PLEASE ONTOTAL TELEPHONE: CANTERBURY (0227) 456489

neptune real-life robotics The advanced der
industriai robot. It is electro-hydraulically powered. using a revolutionary water based it performs 7 servo-controlled axis than any other robot under $\mathbf{E} 10,000$. Its program length is limited oriy by the memory of your compute
Think what that can do for your BASiC programming skills! And It's British designed, British made.
Other teaures monlude,
Leakp cool. tricticriess rolling diaphragm seals

Reck and prrizon cylimeer couplings tor wide angular movements
Reck and prrizon cylimeer couplings tor wide angular movements
Automatcictuple speed controt on Neptune 2 for accurate nomme in
Automatcictuple speed controt on Neptune 2 for accurate nomme in
Easy aciess lor servicing and verenng of worknyy parts
Powertul -lits 2.5 kg with ease
Easy aciess lor servicing and verenng of worknyy parts
Powertul -lits 2.5 kg with ease

Nepture 1 sumulator
Neptune 2 robot kil itinc power wipply
Nepture 1 sumulator
Neptune 2 robot kil itinc power wipply
Neptune 2 robot kit (tirx power rupply)
Neptune 2 control lectronks (letady buint)
Neptune 2 robot kit (tirx power rupply)
Neptune 2 control lectronks (letady buint)
Neptune 2 simulator
Neptune 2 simulator
Gnpper sensox
Gnpper sensox
Gnpper sensox
Gnpper sensox
Sinclar $Z x$ spee 20 conirector lead and
E37.50
E51.00

12.50
E37.50
E51.00

12.50
E37.50
E51.00

12.50
614.50
$\mathbf{E 1 5 . 0 0}$
614.50
$\mathbf{E 1 5 . 0 0}$
614.50
$\mathbf{E 1 5 . 0 0}$
metitor
metitor
desk-top robot
desk-top robot
Ints compact, eleceric zaly povered 4 aning
IoDos nas 6 axes of movernent simulanecoush
Ints compact, eleceric zaly povered 4 aning
IoDos nas 6 axes of movernent simulanecoush
arvo-coniro ited It gnes smooth operation,
arvo-coniro ited It gnes smooth operation,

beannes. integral conitol electronics and
beannes. integral conitol electronics and

Lke Nepurine Mentuors spogiam lingerit
Lke Nepurine Mentuors spogiam lingerit

Fybarmpic
CYBERNETIC APPLICATIONS LIMITED CHI- 0264150093 Telex 477019 OVER, HANTS SPIO 3PR

E.M.S. POWER SYSTEMS

Solve all your Power Problems by contacting E.M.S.
E.M.S. specialise in systems to eliminate your power problems.
Products range from 35VA switched square wave Power Packs to 1KVA fully uninterruptible sine wave systems.
E.M.S. also manufacture chargers which range up to 60 amps .

For further details please contact:

E.M.S. Manufacturing Limited Chairborough Road High Wycombe
Bucks Tel: (0494) 448484

CIRCLE 66 FOR FURTHER DETAILS.
ELECTRONICS \& WIRELESS WORLD JANUARY 1985

Marconi 84

The recent 'Marconi 84' exhibition/symposium at the Penta Hotel, Heathrow made an effort to show that the Marconi group of companies retains a large foot in the civil telecommunications market, but the clear impression was of Defence in the driving seat. For example while a new Marconi civilian maritime satellite terminal "Oceanway" sells at "under $£ 20,000$ ", Marconi Defence Systems announced receipt of "the largest order ever placed with a European company for satellite terminals" - a $£ 40$-million order for 19 of the latest "Scot" terminals for frigates of the Royal Navy. These digital, all-weather systems are far more complex than those for Marisat. The cost-differential of some 100 times is an indication of the attractiveness of Defence contracts.

Marconi 84, however, provided a good example of the continued need for rapid improvisation with the story of the company's 15 -day development of the "Blue Eric" Sea Harrier radar jammer at the time of the 1982 Falklands campaign. The full story is told in "Harrier and Sea Harrier at War" by Alfred Price.

In the technical presentations, Marconi engineers placed emphasis on future needs for v.l.s.i. design skills, system understanding, software engineering, ergonomics, improved reliability and better man-machine interface under adverse environmental conditions, spectrum enhancement by more use of millimetric and optical frequencies, intelligent knowledge based systems, Bragg-cell spectrum analysers, reduced vulnerability to e.m.p. and r.f.i. and the need for improved batteries. But the emphasis throughout seemed to be on "management of complexity" and the handling of more and more information, made possible by "enabling technology". I felt so out-ofstep when I raised the question of "disabling technology" that I refrained from expressing my feeling that the military mind should be thinking far more on how to reduce dependence on continuous communications links from command posts
which could be destroyed by a single accurately-directed missile. There is still a lot to be said, if only in a whisper, for "kiss".

Military paramount

The British radio communications industry has become increasingly locked into the Defence scene, despite occasional attempts to break out of what could prove a restrictive if profitable yoke. The hardfought Whitehall battle to establish communications as a "force multiplier" rather than concentrate on weapons systems appears to have been won. A major role has been assigned to complex battlefield systems for $\mathrm{C}^{3} \mathrm{I}$ (command, control, communications and intelligence) though some still warn of the dangers of abandoning "kiss" (keep it simple, stupid).

Satellite systems, for example, can provide superb 24-hour coverage, free of distance or major propagation problems. Yet nobody can be sure that in a major war they would not become a casualty to jamming and/or anti-satellite weaponry. So you still need h.f. and v.h.f. terrestrial systems.

Here again, v.h.f. is excellent for $\mathrm{C}^{3} \mathrm{I}$ in Europe bu far less effective in steamy jungles, while h.f. propagation is unreliable in the Artic.
Frequency hopping and unconditionally secure digital encryption for telephony and data are available to all major powers and seem capable of rendering much of the equally elaborate SIGINT surveillance systems of limited value. Electronic counter measures produce counter-counter measures and so ad infinitum.
The problem for Defence planners is age-old: one can never assume that a future conflict will follow any of the foreseen patterns - if military history teaches us anything it is that history seldom repeats itself. It does teach us that reliability, flexibility and improvisation, with minimal central control, are more important that planning to move enormous number of digits in star networks.

Electromagnetic compatibility

More and more designers are recognizing the immense importance of minimising the vulnerability of their equipment to r.f.i., lightning or nuclear e.m.p. or just plain cross-talk. A process that should also involve consideration of how similarly to minimise the generation or radiation of unwanted r.f. The rushing about of high-speed digital pulses, the use of plastic rather than metal enclosures, the vulnerability of c.m.o.s. devices to r.f., all combine to make it necessary to take e.m.c. into account right from the initial stages of design rather than hoping that problems can be all cleaned up later with a few filters, a little conductive paint and adhesive copper tape - useful though these may be.
The high-technology of e.m.c. gets another airing at Zurich on March 5-7, 1985 at the 6th Symposium \& Technical Exhibition on "Electromagnetic compatibility", though I notice that of some 120 papers listed in the provisional programme only six are from the U.K., none of them from British industry. There is still a wide gap between e.m.c. reserach and the shopfloor.
It is no secret that the prospects for switched-star cable-television networks have not been improved by the greater-than-expected difficulty of producing video switches free of cross-talk.

Swinton and Baird

The recent unveiling of a memorial inscription at 9 Albyn Place, Edinburgh, birthplace in 1863 of Alan Archibald Campbell Swinton, by Lord Thomson of Monifieth, IBA Chairman and Vice President of the Royal Television Society, was a welcome if belated tribute to the first man to propose an all-electronic system of television. Although he never succeeded in putting together a working model - and died without ever seeing highdefinition television - he undoubtedly inspired the efforts of the Marconi-EMI research
team. There is evidence that V.K. Zworykin, who developed the iconoscope picture tube in the USA, was aware of and used some of Campbell Swinton's ideas.
Campbell Swinton was one of the earliest and most persistent critics of Baird's 30 -line mechanical system which he regarded as totally inadequate for reception by the general public and of the frenzied efforts of the Baird Company to suggest otherwise. His views were so strong on this that the editor of The Times removed from one of his letters his more outspoken comments for fear of a libel action. This is not to disparage the undoubted breakthrough made by Baird in 1926.
In the November 1984
"Feedback" Douglas Pitt, chairman of the Narrow Bandwidth TV Association, took strong exception to my suggestion (June 1984) that one reason why Baird's 30 -line 12.5 -frame system, as reluctantly transmitted by the BBC , was blatantly futile from the outset, was the lack of effective synchronization. This was not intended as a reflection on Baird's ingenuity or his established role as the first person to demonstrate however crudely and with whatever degree of subsequent press manipulation, images of a living person. Nor have I been any part of a conspiracy by Wireless World! Its columns have reflected both sides of the argument, if sometimes showing scepticism on some of the 'over-the-top' claims made on behalf of Baird's early work.
There can be little doubt that Baird tried a variety of systems to achieve some sort of synchronisation, ranging from the the effective, but hardly "television", technique of a common rotor shaft to the use of synchronous motors fed over a pair of wires. Synchronism using the 50 Hz a.c. mains was of limited value in the 1920s, in advance of the National Grid. For some of early demonstrations, when at last these included a radio link, there seems little doubt that sync. was a matter of manual adjustment of the receiving motor with little or no hope of holding pictures steady over any length of time.

The 'cogged wheel' system, about which Doug Pit waxes so

COMMUNICATIONS COMMENTARY

enthusiastic, was at best incapable of providing truly automatic synchronisation, but rather semi-automatic isosynchronism (requiring manual 'framing' by rotating the motor physically). With no distinctive pulses it was prone to produce double images. At its best the pictures floated up and down to some degree, as it was in effect a flywheel system based on the frame rate of 750 r.p.m. and not, as implied, strictly compared to later linefrequency flywheel systems.

To work effectively the blackedge signals needed amplification separately from the vision signals, yet the "Televisor" was sold, if only in small numbers, as suitable for use with a standard radio receiver. A more realistic design was the later Baird-Bush mirror-drum receiver, though this was not marketed until after the BBC had sought to cancel their agreement to provide the experimental 30 line service.

There is plenty of evidence to show that this was futile from the start, at least as a television service for the public. It was, admittedly, of interest to hobbyists and experimenters. Nor should one disparage mechanical television as such. But had large numbers of $30-$ line Televisors been sold it would have been virtually impossible for the BBC to have launched an effective highdefinition service in 1936.

One can admire Baird's innovative work, particularly his wartime work on high-definition colour and his development of the Telechrome display tube, without condoning the way in which in the late 1920s the Baird company bamboozled politicians, the press, the Patent Office, investors and the public into believing that he alone held the key to television.
Investors heavily subscribed to the Baird companies. The concept of Baird (after 1928) as a lone pioneer fighting big and powerful organizations is just one of many myths.

By strange coincidence the current Newsletter of the N.B.T.A. of which Doug Pitt is editor contains an article "Baird or Jenkins" which disputes that Baird was the first to demonstrate "true television", favouring the claims of C.F Jenkins!

Amateur Radio

Using up v.h.f.

The introduction by Marconi Communications Systems of a new family (7500 series) of Band 3 v.h.f. transmitters, all-solid-state up to 2 kW rating and thereafter incorporating Philips cavity-tetrodes, brought home once again the lonely path of the UK in finally forcing all broadcasters out of v.h.f. by January 6, 1985, instead of retaining at least some frequencies for a re-engineered 625 -line service as originally intended.
One or two encrypted subscription channels on v.h.f. would have avoided the financial questions that still hang over the UK 12 GHz direct broadcasting from satellite project. Mobile radio will gain much-needed spectrum space but even those who lobbied on its behalf never expected to inherit all of Band 1 and 3, and indeed will probably never be given so much extra spectrum. Was it all part of the great Information Technology euphoria that has dominated official thinking in the 1980s? D.T.I. justify early allotment of Band 3 to mobile radio on the prediction of almost 2 -million mobile users by the end of the century. But what happened to the "millions" who wanted c.b.?
The feasibility of using envelope demodulation of s.s.b. for mobile and other communications is argued by M.A.M.A. Zeid of Bell Northern Research and Canada and G.B. Lockhart of Leeds University in Electronics Letters (October 28, 1984). They believe that the problems of coherent detection, with its need for precise tuning, could be overcome by partial correction of the distortion produced by envelope demodulation based on a development of proposals made by H. Voelcker in 1966, but requiring only a narrow-band rather than a wideband Hilbert transformer. For mobile systems with pilot carrier this could permit 5 kHz channelling.

Lost memory

Attention has been drawn recently to the problems that may arise with some current amateur transceivers having factory-programmed r.a.m. devices to control basic functions, rather than just for users to store frequently-used channels, etc. Such equipment usually have a soldered-in lithium battery to form a nonvolatile memory. If for any reason the battery or its connections fail, or it reaches the end of its useful life, the entire equipment, or the board involved, has to be returned to the makers for re-programming and replacement of the battery.
This sounds fine in theory, and is common practice with some modern professional equipment. But for some amateurs it is sounding a warning of future problems. What guarantee can there be that the manufacturer or distributor will still be around or serving the amateur radio market in say 7 years or so, the normal operational life of a lithium battery in such an application? Or that they will be prepared to service a model that may have been bought secondhand or from someone other than the manufacturer's authorised dealers? Or that the same size and type of battery will still be available, in view of the still developing lithium battery technology?

Radio amateurs expect considerably more than seven years operational life from a top-of-the-line transceiver; some have clocked up more than 40 years use of vintage h.f. valve communications receivers. It may be advisable to think a long way ahead when "investing" in models which, no matter how well they perform, could prove to have a form a built-in obsolescence.

Sir Martin Ryle, G3CY

With the death of the former Astronomer Royal, Professor Sir Martin Ryle, G3CY, British amateur radio has lost one of its most distinguished licence holders. Martin Ryle was licensed in 1937 while still at university and was active on h.f. bands, using Morse, in the
period before the outbreak of war. I have a QSL card from him for a 19397 MHz contact to prove it! Although, in the postwar period he does not appear to have been particularly active as a radio amateur, he retained his licence and callsign and his interest. With a gift for improvisation, his early radioastronomy work at Cambridge in the 1940s depended largely on British and German radar equipment that he managed to scrounge. His wartime work on airborne radar at T.R.E. disillusioned him of any wish to continue working in the military field. In the 1971 Mullard publication "Search and Research" edited by John P. Wilson, GW3BGP, he wrote: "By the end of the war we were all very tired... I was very tense and if I barely knew what I wanted to do, I certainly knew what I didn't want to do. I did not wish to remain in the Civil Service and I wanted nothing more to do with military equipment. I was not one of those who would be content to go on designing bigger and better radars in preparation for the next war." In recent years he was an outspoken critic of the use of nuclear energy for either military or civil purposes. His fundamental contributions to the science of radioastronomy, of which he was one of the great pioneers, included the use of aperture synthesis interferometers and the classic mapping of the sky for radio sources in the Cambridge surveys. As a lecturer he had the ability to infect his listeners with a little of his own enthusiam for radioastronomy, delivering to the R.S.G.B. one of the first public lectures on the subject when in 1948 he spoke on the subject of "Signals from the Sun".

In brief

The DTI has issued the additional 60 permits for restricted operation inthe 50 MHz band although there is still no information on when and whether this band will be open to other stations, including Class B, after the final 405 -line v.h.f. stations close down by January 6, 1985... Class A licences with the GO prefix began to be issued during November 1984. PAT HAWKER.

The "Eleven-Q" puts you in control

The "Eleven-Q" is a high performance microcomputer with features optimised for control applications Whether your requirement is to control machines, processes or to log data, the "Eleven-Q" will provide the short design cycle, low unit cost and flexibility you need.
The "Eleven-Q" is based on the powerful R6511Q (6502 compatible) microcomputer, which means that a "single chip" solution is only a small step away, making dramatic cost savings possible.

Features include:

* Extensive I/O \qquad 44 user available lines
* Communications. \qquad
* Built-in clear bright display
* Battery Backed CMOS RAM \qquad VIA RS232 port

User available ROM space.
4K Bytes
*

* De-bug monitor with auto-start for turnkey systems
* Fast I/O Operation
* Flexible interrupt system
* FORTH high level language option available

A number of low cost personal computers, including Rockwell's AIM 65, Acorn's BBC microcomputer, Apple and Commodore 64, are suitable as development systems for the "Eleven-Q".

R.C.S. MICROSYSTEMS LIMITED, THE KINGS ARMS, 141, UXBRIDGE ROAD, HAMPTON HILL, MIDDLESEX. TW 12 1BL

Tel No. 01-979-2204
Telex: 8951470 RCS MIC

CIRCLE 73 FOR FURTHER DETAILS.

CIRCLE 68 FOR FURTHER DETAILS.

CIRCLE 14 FOR FURTHER DETAILS.

CIRCLE 32 FOR FURTHER DETAILS.

SOME IDEAS NEVER SELL... but our new innovations do!
 Crotech 'scopes are chosen for use throughout the electronics industry and in education for their reliability and ease of use. . . . and they're affordable too!!
 LIKE THE 3132 DUAL TRACE 'SCOPE

 The innovations.
 * Component Comparator
 * Triple Output DC Source
 plus. .
 * 20 MHz Bandwidth
 * 2 mV /div Sensitivity
 * 40ns/div Timebase
 * TV Frame and Line Trigger
 * Add and Subtract
 * X - Y mode
 and very affordable at $£ 297.00^{*}$
 For free details call:
 Cratech instruments Limited
 2 Stephenson Road, St. Ives, Huntingdon, Cambs. PE17 4WJ
 Telephone: (0480) 301818

CIRCLE 71 FOR FURTHER DE'TAILS.

COMPUTER PRODUCTS OFFER

We offer the following items whilst stocks last:-

MITSUBISHI M4853 5.25 half-height disc drive chassis 1 Mb
80 track DS DD
MICROVITEC CUB $14^{\prime \prime}$ high-res colour monitor chassis
125.00

74LS series TTL intergrated circuits, including;

LS00	$£ 0.25$	LS04	$£ 0.25$	LS74	$£ 0.30$
LS138	$£ 0.55$	LS244	$£ 0.80$	LS245	$£ 0.99$
Z80A CPU	$£ 2.50$	68B09	$£ 7.95$	$68 B 54$	$£ 6.95$
6522 VIA	$£ 3.80$	6551 A	$£ 4.50$	D4164	150 NS $£ 3.75$

SCOTCHFLEX ribbon Connectors
$\begin{array}{lllll}\text { IDC } 34 \text { way female } & £ 1.50 & \text { male } & £ 2.25 \\ 50 \text { way female } & £ 2.05 & \text { male } & £ 3.50\end{array}$
90 'latched male header
20 way £.1.15 34 way £1.50 50 way $£ 2.15$
ROBINSON \& NUGENT IC Sockets
8pin £0.04 14 pin £0.08
16pin $£ 0.09$
28 pin $£ 0.15$
40pin £0.23
Plus 2 " speakers, reed-relays, capacitors, etc.
LIMITED OFFER
Now out of production, we have a few only TIGER Microcomputers:-
CP/M, 64k RAM, 96k video RAM, $Z 80+6809+7220$ microprocessors, internal modem, 2 off 1 Mb 5.25 drives, $14^{\prime \prime}$ high-res colour monitor. RRP was $£ 3000+$, but as we are able to offer only a limited service facility, we offer at £850.00

All prices are ex-VAT.
Please telephone 0223-893073 for stock, or write to
PO Box 6, Balsham, Cambridge, CB1 6EX

CIRCLE 72 FOR FURTHER DETAILS.

The MPF1 PLUS
incorporates the Z80 - the most widely used 8-bit microprocessor in the world, to form a Single Board Computer (SBC). Packed in a plastic bookcase together with three comprehensive manuals and power supply (to BS3651 standard), the MPF1 PLUS is a microprocessor learning tool for every application.

FLIGHT
 ElectronicsLtd.

Teaching you in a step-bystep method the MPF1 PLUS helps the user fully understand the Software and Hardware of a microprocessor easily and conveniently - as opposed to micro-computers that aim to teach high-level languages instead of microprocessor systems fundamentals.

Not only is the MPF1 PLUS a teaching tool but with the available accessories it can also be used as a low-cost development tool or simply for OEMs.

AMPLIFIERS

PREAMPLIFIER MODULES

All modules are supplied with in line connectors but require potentiometers, switches etc. If used with our power amps they are powered from the appropriate Power Supply.
Type Application
Hfo Mono Pre Amp............... Full Hi Fi facilities................... $£ 7.95$
HVB Stereo Pre-Amp Full Hi Fi facilites $\mathbf{£ 1 4 . 9 5}$
HY78 Guitar Pre-Amp Two Guitars plus Microphone . 1515.95
MOUNTING BOARDS: For ease of construction we recommend the B6 for
HY6 $£ 0.95$ B66 for HY66-78 $£ 1.45$.

WHY ILP? Years of experience in audio, unique designs, world wide sales and outlets, reliable delivery and friendly service........

FOR FREE DATA PACK PLEASE WRITE TO OUR SALES DEPT.

Post to: ILP Electronics Ltd., Dept. 6
Graham Bell House, Roper Close.
Canterbury, Kent. CT2 7EP
Tel:(0227)454778Telex:965780

BIPOLAR MODULES
Ideal for Hi Fi, Full load line protection integral Heatsink, slew rate $15 \mathrm{v} / \mu \mathrm{s}$
Distortion less than 0.01\%

Type	Outpurt Power Watts (ms)	Load Impedance Q	Price	Type	Output Power Watts (ms)	Load Impedance Q	Price
HY30...	15.	4-8......f	£8.45	HY244	120.	4	126.95
HY60...	30.	4-8.....	£9.95	HY248	120	8	126.95
HY6060.	$30+30$	4-8......	£19.45	HY364	180	4	£39.95
HY124...	60.	4	f20.95	HY368	180	8	f39.95

MOSFET MODULES

Ideal for Disco's, public address and applications with complex loads (line transformers etc.). Integral Heatsink slew rate $20 \mathrm{~N} / \mu \mathrm{s}$ distortion less than 0.01%
 MOS248.120.......4-8....... $\mathbf{E} 30.45$

MOS364 180. (ms) MOS248.120........4-8....... £39.95

POWER SUPPLY UNITS

All the above are for 240 v operation.

Symmetry in audio amplifier circuitry.

A description is given of two fully symmetrical circuit blocks, for use in audio amplification applications, where it is thought by some designers in this field that this type of circuit 'architecture' may convey audible benefits.

As an electronic circuit designer I have been involved on the fringes of the 'hi-fi' field for a number of years, mainly because of a personal interest in the potential for improvement in the reproduction of music in my own home environment. but also because it seems that an inevitable outcome of publishing any original circuitry for this purpose is a degree of entanglement in external commercial activity - if only in answering queries from those whose business is in this field.
This latter involvement generates perplexities which an electronics engineer developing designs to a normal engineering specification would hope to be spared. In particular, the question of 'sound quality' differences betweeen different design approaches, which lead to an apparently identical performance specification, is inevitably raised.
There are three possible responses to this query. The first of these is simply to deny that there are any differences, since all electrical measurements indicate
an identity in characteristics. The second is to try to develop new test methods, or increase the sensitivity of existing tests to try to uncover small differences between otherwise identical units. The third approach, and the least elegant, is to try to discover whether, between apparently identically specified units, there is any consistent user preference for the one or the other.
My own conclusions, which have gradually formed over a number of years, is that the human ear - and that of domestic pets, too!* is astonishingly adept at observing small differ ences in sound quality, even in the presence of substantial amounts of distortion and other unwanted artefacts.
The question which cannot easily be answered, in the absence of instrumental confirmation, is which direction is 'better'.
*I once shared my horne with a Siamese cat, which had an apparent liking for Bach organ music. It demonstrated a keen awareness of changes which I had made to awareness of changes which I had made to down if it disapproved.

The difference may be observed, but it then becomes a matter of opinion or taste whether it is preferable or 'more natural', or even more dramatic in its quality.
These, then, are the difficulties in relying on one's own or on other listeners' ears for quality assessments in audio circuitry. However, it is possible to form opinions on the nature of circuit structures which lead to favourable audience responses, and of these the most readily defined is that of symmetry in the circuit architecture.
Of course, one must accept that true symmetry, as between $\mathrm{n}-\mathrm{p}-\mathrm{n}$. and $\mathrm{p}-\mathrm{n}-\mathrm{p}$ devices, or between those of n-channel or p -channel construction, is not really practicable, simply because of mobility of electrons and holes is so dissimilar. Nevertheless, at low frequencies, some measure of mirror-image symmetry is feasible, and this seems sometimes to be preferred by listeners when two otherwise similar circuit structures are compared.

Fig. 1. Assymetrical (a) and symmetrical (b) driver systems.

Fig. 2. Response of assymetrical (a) and symmetrical (b) systems with stray load capacitance when driven by a fast square wave.

In contemplating this observation, it is tempting to rationalize this preference as a consequence of the sensitivity of the ear to any slew-rate limiting effects, since it can be argued that in a truly sym-
metrical structure the inevitable stray load capacitances will be driven in both polarity directions. and will, in consequence, have better slewing characteristics than a single-ended driver system.

I surmise that it is for these reasons that there has been a growing interest among audio designers in fully symmetrical audio circuit configurations, in spite of the relative inconvenience of this type of circuit structure in comparison with the more conventional amplifier device acting into a high-impedance or constantcurrent load. I have illustrated this comparison, in simple form. in Fig. 1(a) and (b), with the normal step-function response of such circuits as shown in Fig. 2(a) and (b).

A problem with the circuit of Fig. 1(b) is that of maintaining a constant mean current through the amplifying device, a problem which does not arise when the load, as in (a), is itself a constantcurrent source, and some external feedback network is employed to stabilize the d.c. working point, whereas some other circuitry must be used for this purpose with the layout of (b).

To explore the sound characteristics of such symmetrical circuit layouts, without the added

Fig. 3. Simplified circuit layout of a moving-coil head amplifier.
problems associated with changes in the structure of the audio output stages, I have experimented with two small-signal gain blocks of symmetrical form, of which the first is employed as a very-low-noise head amplifier, for use with low-output, movingcoil, gramophone pick-up cartridges; the second is used as a high-gain linear amplifier stage - which could be looked at as a fully symmetrical, discrete-component substitute for an operational amplifier.

Moving-coil p.u. head amplifier.

The basic circuit layout of this is as shown in Fig. 3. in which a complementary pair of bipolar junction transistors is driven by a signal applied to both bases simultaneously, and in which overall negative feedback is applied jointly to the emitter circuits.
The requirements to employ complementary input devices rules out the otherwise very attractive possibility of using one of the monolithic multiple parallel transistor arrays such as the NS LM394, which feature very low input noise resistance values, but are, at present, only available as n -p-n devices. Similarly, the need for very low input-circuit impedances, in the interests of low thermal noise, argues against the use of junction or mos field-effect transistors.
I have, therefore, as the input devices in the circuit of Fig.3. used small power junction transistors, of 3-4A maximum collector current levels which give an adequate gain and noise performance. Some measure of selection needs to be employed to avoid occasional poor devices in this application, but having investigated this requirement, using mainly Motorola transistors, the proportion of unsatisfactory transistors was small, among over a hundred transistors of different types tried in this position. The complete circuit is shown in Fig. 4, in a form which allows it to be powered from a pair of 1.5 V dry cells, though, of course, an alternative power source would work as well if it has an adequately low noise and ripple content.
Since the input devices are effectively in parallel, so far as their base-emitter noise resistances are concerned, the effective input noise is reduced by 2 in comparison with either transistor on its own. Also, since the bases
are indeed directly connected, it is necessary to generate the required forward bias by an appropriate potential developed at their emitters, because of current flow through R_{3} and R_{4}.

The second amplifier stage is conventional, as a pair of symmetrically driven small-signal transistors, each of which sees the other as its collector load.
D.c. negative feedback to the emitters of the two input devices Tr_{1} and Tr_{2}, through R_{7} and R_{9}, stabilizes the output potential at a level within the differential $\mathrm{V}_{\mathrm{b}-\mathrm{e}}$ offsets of these transistors, and the collector currents through Tr_{4} and Tr_{6} are controlled by the actions of Tr_{3} and Tr_{5} in their base circuits, which diminish the drive to the output transistor bases if the emitter currents, through R_{12} and R_{13} force Tr_{3} and Tr_{5} further into conduction. The trimmer pot. R_{17} can then be used as a 'fine' control of the d.c. output level of the amplifier, to set it to $\pm 1-2 \mathrm{mV}$, if needed, by modifying the control characteristics of Tr_{3}.
The gain of this unit is determined by a.c. negative feedback through R_{7} and R_{9}, which are effectively in parallel, developed across R_{8} and R_{14}. Two switched gain levels, of $20 \times$ and $40 \times$ are available, controlled by $\mathrm{S}_{2(\mathrm{a})}$.

It is found, in practice, to be helpful to reduce, somewhat, the h.f. bandwidth of this type of unit, and this is done in the case of the circuit described by an output h.f. roll-off network, R_{11} and C_{11}, which has a pole frequency of 480 kHz , and by h.f. negative feedback through C_{5} which has a pole at 220 kHz .

It is also good practice to bypass all polar decoupling capacitors in the signal-handling positions by smaller value non-polar units, to reduce the equivalent series resistance of the combination over as wide a bandwidth as possible, within reason.

The spare contact of the d.p.d.t. battery on/off switch is used as a battery voltage indicator by using a switch biased to a 'cen-tre-off' position, with a led in series with resistor and diode across the positive and negative supply lines.

Each half of the amplifier circuit (two are needed for a stereo signal) draws 2.2 mA . For reasons of convenience in the board layout, the d.c. offset trim pots. (R_{17} and its equivalent) are positioned on opposite supply lines on the RH and LH channels, since this is immaterial in their actual mode of operation.

The performance of this head amplifier, in sound terms, is very good, and preferable, in my opinion, to an assymmetrical design which I had used prior to this. The maximum output level, at the onset of clipping, is approximately 0.5 V r.m.s. and the t.h.d. at 100 mV output, is less than 0.01% at 1 kHz . The input and output impedances are 50 and 600 ohms, respectively, though the input impedance can be increased to several hundred ohms, if necessary, by increasing the value of R_{1}.
The equivalent input noise resistance, on several prototypes, now in the hands of frields, was less than 30 ohms , measured at $25^{\circ} \mathrm{C}$, with the input short-circuited, and with a 100 kHz meter bandwidth, in the $\times 40$ gain position. Although the current consumption may seem relatively high for battery use, the intermittent nature of its employment allows a battery life of a year or more from a pair of HP7 type alkaline cells.

General purpose symmetrical gain block

The stimulus behind the development of this circuit was the realisation, about eighteen months ago, following a most impressive demonstration of digitally encoded music set up by a friend of mine, recorded via a Sony

PCM.F1 encoder/decoder and a Sony Betamax video recorder, of the substantial improvements in sound quality now available.
My friend, who has an active interest in sound recording and disc manufacture, had staged this demonstration for me at a time when he was trying to decide whether such a digital recording system would be an acceptable, or perhaps preferable, alternative to his existing $15 \mathrm{in} / \mathrm{s}$ twin-track analogue recorder system.

The conclusion that we both came to was that there was a very slight difference between these two systems, which we felt we could identify if we listened carefully to the one or the other for a prolonged period. However, when the test was run so that the two competitive methods, which had been employed to record the same performance with identical microphone types, in closely similar positions, were performing in synchronism at the same signal level so that a 'click-less' switch over could be made from one to the other, and back again, we could neither of us identify which was which, so that our guesses became effectively quite random and, indeed, we sometimes supposed that a change over had occurred when none had happened, and vice-versa.

The effect of this - to me magnificent demonstration of the present state of the sound record-
ing art, was to make me consider the ways in which these signals were handled in the subsequent audio circuitry, to see whether there were practicable improvements which could be incorporated in the electronics, the argument being that it was necessary for the circuit designer to ensure that the performance of his designs was sufficiently good, in relation to the quality of the incoming programme signal, that it would not cause a significant degradation of this.
While I could be satisfied that this criterion would be met, in relation to existing material from radio, tape or disc, I was no longer so sure that future improvements in the quality of the incoming signal might not call for equal improvements in subsequent circuitry.
The regions in which such performance improvments might be sought, apart from the symmetrical drive systems discussed

Fig. 4. Symmetrical, directcoupled, moving-coil head amplifier.

Fig. 5. Typical drain-current/ drain-voltage characteristics of junction fet.

Fig. 6. Use of junction fet as 'tail' load in long-tailed pair.
above, which could reasonably be expect to offer an improved slewing characteristic in comparison with the more conventional assymmetrical layouts of existing op-amp circuitry lie in improved rejection of supply-line signal breakthrough, improved openloop linearity, and improved com-mon-mode rejection, in respect of a signal applied equally to the inverting and non-inverting signal inputs.
Consideration of these aspects led to the thought that junction fets, with their very flat V_{d} / I_{d} characteristics, shown typically in Fig.5. would offer both improved supply-line signal rejection, when used, for example, as a 'tail' of a long-tailed pair, as in Fig.6, but would also make very good amplifying devices, for

the same reason, with good rejection of drain-potential signal breakthrough, and good com-mon-mode rejection.
A further thought was that, since a junction fet will normally require a gate potential which is negatively offset in relation to that of its source, it would be possible to combine a pair of fet longtailed pairs so that each acted as the 'tail' of the other, as shown in Fig.7. An attractive feature of this arrangement is that the 'tail' in such circuit provides an entry route for unwanted signal components into the input of the amplifier. If this can be removed, this would lessen such unwanted breakthrough.

The practical embodiment of this design is shown in Fig. 8. In this a pair of junction transistor 'current mirrors' ($\mathrm{Tr}_{5}, \mathrm{Tr}_{6}, \mathrm{Tr}_{7}$ and Tr_{8}) in the drain circuits of the fets combine the output currents, and generate a drive signal for the output transistor pairs.
These are connected in 'cascode' form, in the interests of high output impedance (desirable to minimize supply-line signal breakthrough) and good linearity.
The output resistor chain, ($\mathrm{R}_{10}, \mathrm{R}_{12}$ and R_{13}) provides the necessary forward bias for the cascade 'followers', and the resistors R_{8} and R_{9} cause the output current to be routed through the sensor half of the 'current mirror' to provide a measure of d.c. negative feedback to stabilize the cur-

Fig. 7. Symmetrical fet input stage.

Fig. 8. Symmetrical, lowdistortion gain block.

Layouts for the two printed-circuit boards can be obtained from this office. Please enclose a stamped, addressed envelope and mark your letter 'symmetrical amps'.
 NEWRAD INSTRUMENT CASES LTD
Unit 19, Wick Industrial Estate, Gore Road, New Milton, Hants BH25 6SJ. Tel: New Milton 615774/621195
WE MANUFACTURE BEAUTIFUL ENCLOSURES, AND THEY ARE NOT EXPENSIVE.

PLUG-INMODULE SYSTEM

RECESSED CONTROL PANEL
FLAT CONTROL PANEL

$$
\text { Where can you buy a fully enclosed } 2 \mathrm{U} \text { height } 19^{\prime \prime} \text { rack mounted enclosure } 300 \mathrm{~mm} \text { depth for }
$$ £18, that has a recessed front panel and high quality extrusions?

LET US PUT 10 YEARS EXPERIENCE AT YOUR DISPOSAL. ASK FOR OUR CATALOGUE.

 CIRCLE' 57 FOR FURTHER DETAILS.
TIME WRONG?

MSFCLOCK is EXACT

8 DIGIT display of Date, Hours, Minutes and Seconds,
SELF SETTING at switch-on, never gains or loses, automatic GMT/ BST and leap year, even leap seconds,
EXPANDABLE to Years, Months, Weekday and Millieseconds and use as a STOPCLOCK to show when something happened, COMPUTER or ALARM output also, parallel BCD (including weekday) and audio to record and show time on playback,
THE SECRET? MSF Clock receives and decodes Rugby 60 KHz atomic time signals, has builtin antenna, 1000 Km range,
LOW COST, fun-to-build kit only $£ 79-70$ (ready made to order) includes $5 \times 8 \times 15 \mathrm{~cm}$ case, pcb , ALL parts, by-return postage and list of other kits, GET the RIGHT TIME.

CAMBRIDGE KITS

45 (WN) Old School Lane, Milton, Cambridge. Tel 860150.

STEPPING MOTOR ENGRAVING MACHINE - 2' square bed. Complete with microprocessor controller and programmed software. incorporates most of the features found in more expensive computerised engravers, e.g. Digitiser, auto-serialing, repeat engrave. Easy-program facility means shapes and logos can be produced quickly. Qwerty keyboard, 24 character Liquid crystal display. PRICE: $\$ 4,500$
Special XYZ machines - wood profiles, contour moulding, lathe controllers - made to order. GRAPHICS
70 Leek Road, Congleton, Cheshire CW12 3HU - 026025127

CIRCLE 33 FOR FURTHER DETAILS. What the competition
has nt been waiting for.
Latest version of Forth for the BBC (Is not rehashed Forth 79 Code)

Unique Stack Display Utility

Here's the Forth Eprom for the BBC Micro that makes all others out of date.

It's Multi-Forth 83 from David Husband who has built his reputation for Quality Forth products with his ZX81-Forth ROM, Spectrum Forth-l/O Cartridge and now New Multi-Forth 83 for the BBC Micro. This is not rehashed Forth 79 Code, but a completely new version of the Forth 83 Standard. It's unique in that it Multi-tasks, and therefore the user can have a number of Forth programs executing simultaneously and transparently of each other.

Multi-Forth 83 sits in the sideways ROM area of the BBC along with any other ROM in use. It is compatible with the MOS, and specially vectored to enable a system to be reconfigured. It contains a Standard 6502 Assembler, a Standard Screen Editor, and a Unique Stack Display Utility.

With this Forth, David Husband has provided the BBC Micro with capabilities never before realised. And being 16 K rather than 8 K is twice the size of other versions. Multi-Forth 83 is supplied with an
extensive Manual (170 pages plus) and at $£ 45+$ VAT it is superb value. Order it using the coupon adding $£ 3.45$ p\&p ($£ 6$ for Europe, $£ 12$ outside) or if you want more information, tick that box instead. Either way, it will put you one step ahead of the competition

CIRCLE 21 FOR FURTHER DETAILS.

CABLE T.V. HEAD END AND REPEATER AMPLIFIERS

CHANNEL CONVERTIRS
TCUU UHF-UHF Single channel converter. Gain adjustable $+2 \mathrm{~dB}-16 \mathrm{~dB}$. Maximum output +26 dBmV . Crystal controlled oscillator. Power requirement 14V 25 mA . (Quote Channels required).
TCUV As TCUU except UHF to VHF converter (Ouote Channels required)
TCVU As TCJU except VHF to UHF converter (Quote Channels required).

SINGLE CHANNEL AUTOMATIC GAIN CONTROL AMPLIFIERS
TAG4863 Gain 48dB, maximum output 63dBmV. Regulator + or - 8dB. Power
equirement 14 V 210 mA
Gain 40 dB , maximum output 64 dBmV . Regulator + or -16 dB . Power requirement 14 V 210 mA .

SINGLE CHANNEL AMPLIFIERS
TSS4663 Gain $28-46 \mathrm{~dB}$ adjustable. Maximum output 63 dBm V. Power requirement
TSS3062 Gain $12-30 \mathrm{~dB}$ adjustable. Maximum output 62 dBmV . Power requirement 14 V 26 mA

DRIVER AMPLIFIERS
TS1030FM FM driver amplifier 10dB Gain. Maximum output 30 dBmV . Power require
TS1030B3 Band III driver amplfier. 10 dB gain. Maximum output 30 dBmV . Power TS1030UHF requirement I4V 1OmA. ment 14 V 10 mA
Single channe! UHF driver amplifier 10 dB ga $п$. Maximum output 40 dBmV Power requirement 14 V 10 mA . (Quote channe required)

DISTRIBUTION AMPLIFIERS
TE2042 Domestic distribution amplifier. 1 input, 1 output. Gain 20dB. Maximum TF1638 output 42 dBmV . Domestic distributio
$\begin{array}{ll}\text { TS2046 } & 40-860 \mathrm{MHz} \text {. Gain 20dB UHF. 18dB VHF. Maximum output } 46 \mathrm{dBmV} \\ \text { TS2846 } & 40-860 \mathrm{MHz} \text { Gain 28dB UHF, 22dB VHF. Maximum output } 46 \mathrm{dBmV}\end{array}$
TS2846 40-860MHz. Gain 28B UHF, 22dB VHF. Maximum output 46dBmV
TS2845 Separate UHF/UHF inputs. Gain 28dB UHF, 22dB VHF, Maximum output
TS2054 - 40dBmV.
S2060 $\quad 40-860 \mathrm{MHz}$. Gain 20dB UHF, 18dB VHF. Maximum output 54 dBmV
TS2060 $\quad 40-860 \mathrm{MHz}$. Gain 20dB UHF, 18dB VHF. Maximum output 60 dB .

REPEATER AMPLIFIERS

TSC3660 Repeater. Gain 16-36dB UHF, 10-30dB VHF. Maximum output 60 dBmV
$\begin{array}{ll}\text { TSC3665 } & \text { Repeater, Gain } 166.36 \mathrm{~dB} \text { UHF, } 10-30 \mathrm{~dB} \text { VHF, Maximum output } 65 \mathrm{dBmV} \\ \text { TSC3060 } & \text { Repeater. Gain } 10-30 \mathrm{~dB} \text { VHF. Maximum output } 60 \mathrm{dBmV}\end{array}$

CIRCLE 70 FOR FURTHER DETAILS.

Happy Memories

Part type	1 off	25-99	100 up
4116 200ns	.1.25	1.15	1.10
4164 200ns Not Texas	3.75	3.45	3.30
2016 150ns	4.75	4.25	4.10
6116 200ns Low power	7.75	Call	Call
6264 150ns Low power	. 31.50	Call	Call
2716 450ns 5 volt	3.85	3.45	3.30
2732 450ns Intel type	4.75	4.25	4.10
2732 A 350 ns .	5.25	4.69	4.50
2532 450ns Texas type.	. 3.85	3.45	3.30
2764 300ns Suit BBC	.6.65	Call	Call
27128 300ns Suit BBC	18.95	Call	Call
280A-CPU...£3.75	Z80A-PIO...£4. 20	Z80A-CTC...£4.85	
Low profile IC sockets:	Pins 814	61820	2840
	Pence 1213	41618	2738

Soft-sectored floppy discs per 10 in plastic library case: 5 inch SSSD $£ 17.005$ inch SSDD $£ 19.255$ inch DSDD $£ 21.00$ 5 inch SSQD £23.95 5 inch DSQD $£ 26.35$

74LS series TTL, wide stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or 'phone for list.

Please add 50 p post \& packing to orders under $£ 15$ and VAT to total Access welcome, 24 hr 'phone service on (054 422) 618
Non-Military Government \& Educational orders weicome, $£ 15$ minimum.

> HAPPY MEMORIES (WW) Gladestry, Kington Herefordshire HR5 3NY Tel: (054 422) 618 or 628

CIRCLE 45 FOR FURTHER DETAILS.
ELECTRONICS \& WIRELESS WORLD JANUARY 1985

Variable-speed video playback

Vertical lock at high speeds

At a speed of $+3 \times$, the VTR plays back every third field by performing a 2 track jump every drum revolution. The head ramps up the drum as the track is followed, causing a steady rate of timing advance, and jumps down, giving a step delay of 7 lines. Figure 10 shows the offtape timing relative to drum timing. The field begins $3 \frac{1}{2}$ lines late, but because of the high head to tape speed, finishes $3 \frac{1}{2}$ lines early. As the field proceeds, the write address gets closer to the read address.

The amount of timing variation that a t.b.c. can correct is known as the window size, expressed in lines, and this will always be smaller than the memory size. Some r.a.m.-based t.b.cs arrange the memory to store pairs of lines, such that read and write addresses must be kept apart by two, causing the window to be four lines less than the memory capacity. Second-order velocity compensation requires at least two lines delay between writing and reading, so that two velocity errors are available, and where this is used, the window will be two lines less than the memory size. Figure 11 shows a typical window timing diagram which illustrates the need to advance the drum by one half of the window to achieve a symmetrical correction range.

Vertical locking is necessary to ensure that the first line of an offtape field becomes the first line of a reference field despite the arbitrary relative timing caused by varispeed operation. This is necessary to avoid vertical picture movement.

Consider the relationship of read and write addresses in the memory. At normal speed, they will both increment at the same speed and will remain opposed in the memory. At non-normal speeds, this is no longer true.
At higher speeds, the field is compressed, and the write add-
ress changes faster than the read address. The write address commences a field delayed, and finishes it advanced relative to the drum phase. Since drum phase is the same as window centre, the read and write relationship of Fi. 12(a) follows. In reverse, the field is extended, and the write address changes slower than the read address. The write address commences the field advanced relative to window centre, and finishes it delayed as in Fig. 12(b).

The write address of the first line in a field is remembered by the vertical lock circuit, whenever it occurs, and the memory read will begin at that address when the field is subsequently read out. A temporary V-lock address latch is necessary, as in

Figure 12(c). The write address at offtape vertical time is latched in, and at reference vertical time, the V-lock address is jammed into the read address counter. Since the C -format does not necessarily store all of the vertical interval, the beginning of an offtape field is harder to establish in the presence of jumps, and it has been explained how the VTR derives a verticle signal in varispeed.
The action of vertical lock on read addresses is to make them jump by the same amount (in lines) as the timing shifts owing to head jumps. Figure 12(d) shows that at high speed, the write address starts the field late and ends early, close to the read address. V-lock causes the read address to jump forward to find the first add-

Fig. 10. Composite timing diangram for v.t.r. and
L.b.c. running at $+3 X$ npeed. t.b.c. has 24 line
t.b.c. running at $+3 \times$ apeed. t.b.c. has 24 line memory, requiring 12 -line v.t.r. advance. office tape timing, bince these are directly related (seee Fig. 9). At $3 X$, the v.t.r. head performs is two track jump every drum revolution, playing every
third field (oee Part 1, Fig. 8). Line 2 hows the third field (oee Part 1, Fig. 8). Line 2 shows the time
compreasion of the ofthape fields owing to the raised hemp/tape speed.
Line 3 shows the $t . b, c$. output which has restored The fielda to reference timing address relationshlps in not not thow absoulte addresses.
Example A. At the the beginning of a field, head ie
deflected 1 track down, and offtape deflected 1 track down, and offtape timing in 3iH
behind drum timing (lines 1 and 2). Since reference is 12 lines behind drumes timing, the $1 . b .{ }^{2}$. requires a delay of $12-3,-8+$ lines, and line 4 shows the memory read address $8 \$$ lines behind the writ
Example B, Midfield, with no hend deflection timing error the t.b.c. delay of 12 lines matches the drum advance.
Example \mathbf{C}, End of field N, head deflected 1 track up, offupe timing is 31 H a head of drum timing (lines 1 and 2) e.b.c. requies a delay of $12+3 t=15$ lines. During the field. the raised head/tape speed
has caused the write address to awing from an 8$\}$ line advance to a $15 ;$ line advance. At the end of the field, the write address stops advancing, and the
head jumps to find field N +3 . However, Read head jumps to find field $N+3$. However, Read address keeps advancing an to.c. completes the addreas will be at RN +3 , coincident with the start of
offcape field $\mathrm{N}+3$, thus the new field is commenced off tape field $\mathrm{N}+3$, thus the new field is commenced
with the same addreas relationship as example A Whe Write address begine to advance agnin. and the first write addrese of the new field is atored in the V lock memory.
$8+$ limes later,
where the firg, the read address will have advanced to where the first line was stored, coincident with recrence vertical, and coincidence is ensured write address in the V-lock memory. Example D is as for B. and E is as for C Note that this example has assumed optimum iming. In real life, there would be an uncert ainty of
31 H in the othape timing, owing to the random tepe 34 H in the ofthape timing, owing to the random tap
drum phase with an unlocked capptan. Note alwo that the format dropout has been neglected for simplicity.

ress of the next field, which in relative terms, makes the write address late again so that it can advance during the field.
In reverse the opposite happens. The write address starts the field early and ends late, and the effect of V-lock is to make the read address jump back to find the first line in the next field, which also permits the write address to lag again during the field.
When the VTR is not playing or recording, it will default to $\mathrm{E}-\mathrm{E}$ (Electronics-to Electronics)
mode where video is modulated and demodulated in the usual way, but the heads and tape are bypassed. In this case no advance will be possible, since the VTR input has reference timing. The t.b.c. resorts to a 4 line delay, which is the smallest delay which will not disturb the 4 line sequence, and a 4 line vertical shift, 8 lines with interlace, has to be accepted on the monitor. Similarly, in confidence playback, the VTR record head is locked to reference, and the confidence replay
head, which is 120° away around the drum will give an output which has a one-third-field timing shift. Since this is in excess of 100 lines, the t.b.c. cannot correct the timing error. Instead, the t.b.c. generates composite video which is one third of a field out from reference, to which a monitor can synchronize to view the confidence picture. These compromises in F-F and confidence are of no real consequence since neither signal is needed for broadcast.

The window size of the t.b.c. is determined by the speed range to be covered at broadcast quality, aand by an added amount to cater for inertial error on tapes. Where these come from portable recorders, the timing errors due to inertial error may be of the same order as those due to variable speed play.

There is, however, a requirement to view pictures at speeds beyond the designed broadcast quality range, since this facilitates editing. In this case, timing errors can exceed the correction
window of the $t . b . c$. The effect at high forward speed is that the write address catches up with the read address before the end of the field. Since simultaneous write and read is impossible, this condition, known as a write overload, must be avoided. An equivalent condition occurs in reverse when the slowly advancing write address is caught up by the read address, causing a read overload.
The condition is handled with varying degrees of sophistication. The simplest approach is to blank the video until the addresses have moved apart again, a procedure which results in momentary black bars appearing in the picture.
A more complex approach is to cross couple the read and write generators such that each knows if it will create an address the same as the other by incrementing. In this case the increment cannot be performed. Clearly an interruption of the address sequencing of this kind could destroy the 4 line sequence in the memory. The solution is to subtract three from the line address instead of adding one, which will point to a line having the same position in the four line sequence. In some t.b.cs a subtraction of one line can be made, which causes a chroma inversion. Chroma inverted lines will then be Y/C seperated, and the chroma can then be inverted for the addition to the luminance.

The effect of write overloads is to cause memory locations to be overwritte, causing a vertical contraction of the scene within the raster. The effect of read overloads is to repeat certain lines, causing a vertical expansion of the scene.
The final part will cover dropout compensation and colour in t.b.cs.

Fig. 12. Read and write relationship at higher speeds. At high forward speed (a) the write address starts one field delayed and finishes advanced in relation to drum phase. In reverse (b) write address starts advanced. V-lock in (c) emembers write address of first time and (d) shows that, at high speed, write starts late, ending early, close to read. V -lock causes read to find first address of next field.

etectronks HERY $\mathrm{S}_{\text {Shop }}$

UK'S NO. 1 FOR TEST EQUIPMENT •

 ELECTRONIC EQUIPMENT •ACCESSORIESACCESSORIES AND OEM STOCKS • SOFTWARE • PERIPHERALS • MULTI-BOARDS

Abstract

DIGITAL MULTIMETERS Hand Held Models IUK C/P 55 pl hand helo mooels Conirols $\mathrm{S}=$ Slide PB= Push butlon PB P Push bution All l tature AC $/ 00$ All talure $\mathrm{AC} / \mathrm{OC}$ volis. amps| ohms elc. UK C/P 65pl * WITH CARYY CASE ohm [R^{2} plus Hif tes. 30 range $10 \mathrm{AC} / \mathrm{DC} .20$ meg ohm * KDS5C 28 range 10A AC/OC 20 Meg ohm $/ \mathrm{R} \mid £ 38.70$ * KD615 1B range IOA OC 2 Meg ohm plus He lester $\begin{array}{lll}\text { (R) } \\ 7030 \text { As } 5010 \text { but } 0 & 1 \% \text { basic (PB) } & £ 34.74 \\ & £ 45.91\end{array}$ HC 501031 range 10 A AC/DC Cont buzzer 20 M Hh ohm (h) R OM 3350 Autor nnge plust cont. tester 18 range. $£ 43$ $10 \mathrm{~A} \mathbf{A C} / 0 \mathrm{C} 2 \mathrm{Meg}$ ohm [R$]$ OM2350 Mini autor ange plus con lester 18 E43.44 10A AC/OC |20A Max 2 Meg ohm $|P B|$ E $£ 60.83$ ohm + buzzer 19 range 10A AC/OC 20 Meg onm (A) E41.54 metrixhand/bench portables (ITt) Size $188 \times 86 \times 50 \mathrm{~mm}$ Rolary controls 2 Mog ohm Bazic 0.5% (h$)$ E67.00 OC 20 Mep hhm Basic 02% P Plus continuity tester. [R| E 95.00 | meg | |
| :--- | :--- |
| $\times 563$ True | RMS 3% digit 30 ranges $10 A A C / O C$ |

\section*{EDUCATIONAL;}

MIXED OUANTITY 8. EXPORT DISCOUNTS

We would be pleased to quote. Contact sales office at AUDIO AND RF GENERATORS

IUK C/P £1.00| AUDIO EADER LAG275 band sine H2 $£ 93.00$ LEADER LAG120A 5 band IOHZ to IMHZ to 0.3 V AMS inlo 600 ohm 005% dist sine / square $£ 155.00$ LEADER LAGG125 5 band $10 H Z$ io IMHZ to 0.3 V RMS into 600 ohm sine/square/bursi signals 0.03% dist $\mathbf{c 3 3 0 . 0 0}$ $0 / P 0.5 \%$ d/sI CR OSC O/10V pp D/P 889.00 RMS D/P RMS D/P TRIO SG402 6 range 100 KHz to 30 MHz RF 0.1 V RMS Int/extmod $\quad £ 72.00$ LEADER LS 6176 band IOOKHZ to 150MHZ 196 to

PROBE KITS

In waliets with adtaptors. etc. 8N C fittings for
$\times 1 \quad £ 8.90 \quad \times 10 \quad £ 8.26 \quad \times 100 \quad £ 16.00$ $\mathrm{x} 1 / \mathrm{x} 10$ Switchable $£ 10.00$ Demodulator $£ 16.00$ \{UK C/P Irse with other Items 65 p per 1 to 3 kits)

HIGH VOLTAGE METER
Oirrect metor reading LHM80A O/40KV UK C/P£1.00] $£ 28.00$

DIGITAL
CAPACITANCE

METER

DNEOI 3 Oir rect read LCO 8 range 0.1 pf to 200 mid . $31 / 2 \mathrm{dig} \mathrm{gil} 0.5 \%$ has
(UK C/P 65p)

TV TEST EQUIPMENT

MC32 Saries TV colour Pattern Gen

8 colours Video camp 0/P [UK C/P £1.00
MC321 PAL (UK)
MC32B PAL B
MC32B PAL B
SECAM VERSIOMS AVAILABLE
$£ 229.00$ TC 40 portable FM \& VHF/ UHF TV Find stren
meter BI to BlV with carry case. $45-862$ MHy
 LHC 909 Serias
$\left.\begin{array}{l}\text { LHC } 909 \text { V VHS [UK C/P 85p) }\end{array}\right\}$ E45.00 each LCT 910 CRT tester/rejuvenator. $\quad £ 175.00$
[UK C/P $£ 1.50$
£175.00

DIGITALTMERMOMETERS
 Pockel size LCO hermometers complete

with battery.
TH301 LCO $50^{\circ} \mathrm{C}$ to $7500^{\circ} \mathrm{C} .1^{\circ} \mathrm{C}$ resolution
with thermocouple.
f.59.50 TH302 LCO-40 0° to $1100^{\circ} \mathrm{C}$ Cent/Fahrenheit 0.1

$220 / 240 \mathrm{~V}$ AC inpul (UK C/P £I 00 PP241 single meter. A/V δ witch. $0 / 30 \mathrm{~V}$

 PP 2433 amp version 230N Twin meter D/30V 1A \quad| |
| :---: |
| E97.00 | 330 3amp version $\quad 5175.00$ 2302 Dual 0/30V 0/2A twin meter plus fixed 5V 1 A

also puise generator. £230.00

ANALOGUE

MULTIMETERS
General range ${ }^{*}$ *mirror scaiel(UK C/P 65p HC1015 15 range pocket lok/Volt
1 meg ohm 1 meg ohm
HM $1028 Z^{*} 22$ range $20 \mathrm{~K} /$ Volt $10 \mathrm{~A}^{\mathrm{C}}$
OC plus cont. Buzzer 10 Meg ohm $£ 12.61$
OC plus coni. Buzzer 10 Meg ohm
12A DC 12 meg ohm hhm £18.26
NH56R: 22 range $10 \mathrm{~K} /$ Vot 6 Meg ohm
830A. 26 range $30 \mathrm{~K} /$ Volt $10 \mathrm{AC} / 0 \mathrm{C} 10 \mathrm{M}$ $830 A^{*} 26$ range $30 \mathrm{~K} / \mathrm{ll}$.
ohm
$360 \mathrm{TR} \cdot 23$ range bench $100 \mathrm{k} / \mathrm{Volt}$. large se $360 \mathrm{TR} \cdot 23$ range bench $100 \mathrm{~K} / \mathrm{Volt}$. lar
10A AV/OC plus He lestro. 10 Meg otm T2100* 31 rane luw 100K Wir $\mathbf{2 3 9 . 1 3}$ 100 Meg ohm

AT 1020* 18 range de luxe 20K/Volt plus $£ \mathbf{~} \mathbf{~} 30.39$ lester. 5 Meg ohm YN360TR 19 range 20K/Voll plus Hib lesier $£$ 1 Meg ohm yner 13.87 | 10 A |
| :--- |
| OC 20 Meg ohm | ST303TR* 22 ranga $20 \mathrm{~K} /$ Volt plus Hie tester 12 A OCI Meg ohm £18.26

COMPONENTS

ACCESSORIES • TOOLS
Large range in slock semiconductors. relays, to Plus millions of capactiors, resisiors. presets, controls. plugs/80ckets, elc. etc: For bulk oxport Us
Tel: $01-7231008$ with enquiries.

TRANSISTOR

TESTER

Oirect reading PMP/WPN and diodes.
Hle. Iegkage, etc. General purpose TC (UK C/P 65p)
£24.30

ELECTRONIC

INSULATION TESTER
500v/0. 100 Meg ohm with carry case.

LOGIC PROBES

 DP70 30MHZ E25.00. DP71 $50 \mathrm{MHZ} \quad$ E52.0 OP70 30MHZ
[UK Post © 8tc. 65p]

PICK A CARD - ANY CARD buico a cusiom system FROM SCRATCH or expand your GAl axy or Mascom.

GM811 CPU

GM832 SVC
GM829 FOC/SASI
GM813 CPU/64K RAM
EV8 14 IEEE 488 CONTROLLER
GM802 $64 K$ OYNAMIC RAM
GM80264K DYMAMIC RAM
GM827 87 KEYKEYBOARD
MP826 STATIC RAM
GM816 MULTI.1/0
IO 828A SUPER PLUTO COLOUR GRAPhic
PROCESSOR 192K RAM
GM833 RAM-DISK 512 K
GM888 CPU/INTEK B088
GM888 CPU/INTEK B088
GM862 256K RAM
GM837 COLOUR GRAPHICS OISPLAY
fuk C/P \& export exira at cos
FULL LEAFLETS/ DETAILS OF SUITABLE
PERMUTATIOMS AMO PRICE LISTS - SEMO LARG
SAE
SAE
We can advise also wilh terminals and compleie
Galaxy compulers wilh monitors and

NASCOM-2

Avaliable in both kit and buill form. Featuring
Microsoft Basic. NAS.SYS monitor full OWER
keyboard of the highest qualily. 4 MHz 280 A
processor, lull RS232 1/0 and paraliel 1/0. One.of
the most flexible computer cards around. expansion the most flexible compuler cards around. expansion
capabilities are impressive using the NASBUS and compatible 80 BUS expanslon cards Expansion compatibie $80-B$ US expanslon caros Expansion syslem and much more. Send SAE lor lull leallets. $\begin{array}{ll}\text { NASCOM } 2 \text { kit } & £ 225.00 \\ \text { NASCOM } 2 \text { bullil } & £ 265.87\end{array}$

ITT 2020 CABINET

Prolessional computer case
with kpvog ard culout. 18
$15.5, ~$
4.5 (1ront slopes).
15.5. 4.5 Ilront slopes

Ideal for single board
computers like the Nascom or Gemini Multiboard 13
cards. etc. Very heavy gauge $\mid .25$ "| piaslic with [UK C/P £ 1.7B].

TOROIDAL

TRA NSFORMERS
100 wall $180121010 n 5$ 230/200v
 20prox. $4 / 2 \mathrm{dia} \times 13$

STC NOVATEL

PRESTEL

TERMINAL

features

7 diag green screen
240 AC mains operated delachable key pad. robust case $14^{\prime \prime} \times 12 \times 7 /{ }_{2}$ cas se
recorder data stored facility video oulput for other monilors. 8 ecurity lock. et (UK C/P £3.00)

ASC11
 KEYBOARD

69505 Compact. 64 key

- 5 tunction keys. Hall
ereprogram mable (2716) ASCII output decoder
ren EPROM. Steel key Irame tor good rigidity. Negative going sirobe. Requires +5 voli +12 volt supplies. (UK C/P£1.00:
COMPT 58 KEY ASCII KEYBOARD
Contaciless capacitive high reliability keys. Full 12 ASCII codes. Steel key trame for positive rigidity 1 ms strobe. single +5 volt supply. Repeat key. controf and caps. lock. £28.26 |UK C/P £1.00|

pus
 £125.00
$\varepsilon 195.00$

ALWAYS KEYBOARO AND POWER SUPPLY BARGAINS FOR CALLERS

Complete with Iull handbook (UK C/P £1.00)

SOFTWARE
MDIS (C) IMTELLIGENT DISASSEMBLER

For all CP/M based machines
$\mathbf{E 5 0 . 0 0}$
IVC HI-AES |C) For Geminiand others (pleas enquirel. Provida Pseudo high resolution
raphics. £15.00
ISKPEN (CO Versian 3. Low cast word processor
maXifile overlay
Pooler overlay
$£ 20.00$
HENRY'S CP/M UTILITIES DISK|C|
41 Programs for the CP/M Systems programme

51/4 format

£15.00
8^{8} " lormat
$£ 17.35$
alldisc
Variable disc formal utillity Ior Geminl and Nascom
$\begin{aligned} & \text { CP/Mis } \\ & £ 150.00\end{aligned}$
BDOSZANO CCPZ £10.00 eac
BDOSZA NO CCPZ
All ahove - Please state format required.

COMPUTER POWER

SUPPLY

Swlithed mode. Stabilised. Sell proteciling S/C
protected. atc. $220 / 240 \mathrm{VAC}+5 \mathrm{~V} 33 \mathrm{~A}+12 \mathrm{~V} 2.4 \mathrm{~A}$ 40\% cycia $-5 V 0.5 A-12 V 0.5 A$. Suitable Apple
replacemant (UK C/P $£ 1.50$)
$£ 50$

COMPUTER FANS

UK C/P 50p each 85p pair QUANTITY DISCOUNTS AVAILABLE
43/4" 220/230V AC Brand new
$33 /{ }^{\prime \prime} 113 /{ }^{* / 115 V}$ AC Brand new
$43 / 220 / 240 \mathrm{VAC}$ Ex-units $43 / 4110 / 115 v$ AC Ex-units
$\frac{\text { E6.52 each }}{\substack{87.61 \\ \text { Each } \\ \text { E4.78 each } \\ \text { E4.35 each }}}$

\& 23.43
SUITABLE FOR: TANOY - BRC • D
$-G E M I N-A C O R N \cdot O R A G O N$
linterlace units with leads $£ 13.00$-state model) |Your enquiries invited).

CHERRYKEYPADS

IUK C/P 40 p either model
16 bution key pads non-
ancoded
£5.17
ancoded
keypad |requires IC's| E6. 52

MODEM CARDS

COUPLER
Brand new. lesied. answer and originate 300 BAUO uncased acoustic modern card by lamous manulacturer. RS232 input/output Power supply
$/-12 \mathrm{~K}$ at 180 mA Renuirgs 2 magnetic earpleces switches, 2 LEDs and connectors to complete. Swircults, and connection data supplied.
$\begin{array}{ll}\text { Card and remainder ol small components } & \mathbf{£ 2 6 . 0 4} \\ & \mathbf{2 9 . 0 9}\end{array}$ Telephone Oirect Line couplar iype LTU 11 MK11. Sultable for direct coupling PRESTEL adaptors and the above acoustic modems. Integral Line select and autodail relays requiring TTL inputs. Circuits and connection data supplied. LTU 11 Coupler $£ 13.00$ 1200 BAUO recelve 75 BAUO send direct couplad modem Ior PRESTEL. Requires +5 V supply with T
inputs ior data. line seligct and autodial. LTU 11 nirect enuplar required See ahoue Connection supplled. PRESTEL modem card. $£ 13.00$
STOCXISTS FOR Printerz, Papar, Thermal. Daisy Wheela. Oitur Drives Boxed, Chassis aiso Winc hestar. Monitors. Micros, BBC, Elsctron, Nazcom, also Cables. plugs blank disce \& ta pes, software, books, etc.

Not only in height is the range of Clark Masts wide but also in the field of application. Every model, mechanical or air-operated, has been created in response to customer requirement and proved in service; for over 25 years. Major users in the Communications Industry, Broadcasting, Civil Authorities and Military Commands worldwide, have all contributed and benefited from Clark Masts' reliability and ceaseless engineering improvement.

Write for your copy of Clark Masts Fast Selection" and see what we meon.

CLARKMASTS

UK CLARK MASTS Ltd. (WW). Binstead Isle af Wight, England. Tel: (0983) 63691. Telex: 86686

3600 Genk, Belgium. Tel. $011 / 38.0831$. Telex: 39354

CIRCLE 41 FOR FUR'THER DE'TAILS.

ALSO AVAILABLE:

A COMPLETE RANGE OF INDUSTRIAL AEROSOL SPRAYS
SK10 Soldering Lacquer, <75 Cold Spray, K70 Plastic Spray, K88 Oil Spray, K701 Vaseline Spray, K90 Video Spray, K33 Graphite Spray, K100 Antistatic Spray K101 Fluid Spray and, of course, Positiv 20 positive photo resist for printed circuits.

CIRCLE 29 FOR FURTHER DE'IAILS.
ELECTRONICS \& WIRELESS WORLD JANUARY 1985

Floppy discs

Floppy discs provide a cheap and convenient replaceable storage medium for use with microcomputers. David March explains how discs and disc operating systems work.

A floppy disc is a thin flexible disc coated with magnetic material inside a square sleeve. Inside, the sleeve is coated to provide a smooth, low friction surface. In operation the sleeve remains stationary whilst the disc spins within it.

The sleeve has various apertures and notches to allow access to the magnetic coating, to allow a drive cone to engage and for mechanical/photo-electrical sensors.

The write protection notch allows the user to ensure that valuable information is not inadvertently overwritten. The disc drive will sense when a protected disc is present and will only allow reading of data from the disc. Unfortunately, two standards exist for the different floppy disc sizes: on 5 in. floppy discs the notch is covered to protect the contents, whilst on 8 in floppy discs the reverse is the case.
For detecting the rotational position of the disc two different methods are available. Both use a single index hole in the magnetic disc to determine the start of each revolution. This is sensed photoelectrically. Subdivision of each revolution is provided for either by a further set of index holes (in hard sectored discs) or by magnetically recording a special identity pattern at the required intervals around the disc (soft sectored discs). The two systems are not compatible.

The remainder of this article deals solely with 5 in soft-sectored floppy discs.
Originally only one side of the magnetic disc was used for recording information (the reverse of the side shown in Fig.1) but modern drives may have two read/write heads and use both sides of the disc. The disc is rotated at $300 \mathrm{rev} / \mathrm{min}$, clockwise as viewed in Fig. 1.
On double sided discs, each face is usually treated separately.

The sides are numbers 0 and 1 , side 1 being the side with the label; however, some manufacturers prefer to number the sides 1 and 2.
The read/write head is moved radially in discrete steps, dividing the magnetic disc into a set of concentric data storage areas. Each area, known as a track, is one bit wide. For reference purposes these are numbered: the outermost track on side 1 is track zero, the next, track 1 and so on. Side 2 again starts with the outermost track - depending on the implementation this may be known as track zero or continue numbering after the whole of side 1.

The number of tracks on a side is determined by the mechanical precision of the disc drive. The tracks are spaced either 48 or 96 to the inch. The total movement of the head is restricted to rather less than one inch, giving 40 or 80 usable tracks.
The rate at which data is read or written is determined by the floppy disc controller (f.d.c.). It is necessary for the f.d.c. to remain in synchronism with the data being transferred. Originally this was achieved by interposing a clock pulse between each data pulse but with modern techniques the clocking information may be recovered from the data pulses. This allows a higher packing density for data. The transfer rate at the lower density (single density) is 125000 bits per second whilst at the higher density (double density) it is twice this.
Each track, which can hold about 3100 or 6200 bytes of data depending on the density, is divided into sectors. This provides a more manageable unit of storage, one sector being the minimum amount of user information which can be transferred. Typical sector sizes are 256 or 512 bytes of user information.
The sectors are numbered and each one begins with a series of

synchronizing bytes followed by a set of seven bytes known as the address field. These contain information used by the f.d.c. to determine the sector number and data type and to confirm the track number. Further synchronizing bytes precede the user data in each sector and then two bytes of checking information complete the sector. Taken together these housekeeping bytes add an overhed of at least 40 bytes per sector. In addition, there are synchronizing and padding bytes at the beginning and end of each track.
Thus there is a trade-off between sector size and usable storage capacity. For example, with double density ten 512 -byte sectors give 5120 usable bytes, whilst eighteen 256 -byte sectors give only 4608 usable bytes. Yet both occupy the full track.

Formatting

The user establishes the sector structure by formatting the disc. This process uses special commands to the f.d.c. to create the appropriate synchronizing, add-

Fig. 1. Features of a $5^{\frac{1}{4} \mathrm{in} \text {. }}$ soft-sectored floppy disc.

David March, C.Eng., M.I.E.E., was born 1941. He began dabbling in electronics at an early age when a $Z 80$ was the size and shape of a light bulb and produced rather lumpy d.c.! He practised as an electrical power engineer until he was introduced to programming in 1968 on an ICL mainframe computer using Cobol and Fortran. He moved via assembly language programming on a mini computer to system design, and latterly system procurement, for real-time supervisory systems. he stIII dabbles in electronics: His interests centre on a 280 -based microcomputer and electronic organ. He is married with two daughters.

Fig. 2. On a soft-sectored disc the index hole marks the start of the first sector in each track.

Fig. 3. In each sector, the data field is preceded by bytes which specify the sector and track numbers and the size of the sector. At the end of the field comes a cyclic redundancy check to protect against error.

signals from the f.d.c. An independent power supply may be incorporated or the low voltage requirements may be derived from the attached microcomputer.
The main feature of the drive mechanism is a robust frame, typically made of cast aluminium, to which are attached the main drive shaft and its motor. The drive shaft is supported so that when the floppy disc is placed within its slot, the disc rests against one end of the shaft.

When the door or latch is closed a free-running cone passes through the major hole in the centre of the disc and locates in a recess in the end of the drive shaft. This centralises and grips the disc ensuring that it is held in precisely the same position each time it is mounted.
The shaft may be driven directly by a flat (pancake) motor, for example in a low profile disc drive, or via a belt from a motor mounted clear of the disc. According to characteristics of the drive the disc may be rotated continuously or only when sending or receiving information.

Behind the drive shaft and mounted in some form of slide is the read/write head assembly. This consists of a single head and a corresponding pressure pad or, for double-sided operation, a pair of heads one either side of the disc. When the drive is quiescent these do not touch the disc. When the drive is active for reading or writing a solenoid presses the head and pad (or both heads) into contact with the magnetic surface of the disc to allow the transfer of information.

A further motor, invariably a stepper motor, connected by some form of linkage to the head assembly, allows the head to be positioned precisely above any track. The linkage may be a helical screw, a cam track or a flexible steel band. Good design in this area and a robust frame are essential to allow the head to be positioned repeatably on tracks with a spacing of about 0.3 mm (in an 80 track drive). When the door or latch is opened the head assembly is moved well clear to allow the floppy disc to be withdrawn or replaced.

Also mounted on the frame are the sensors for the index hole and for the write protection notch. On some drives these may additionally serve to detect when a floppy disc is being inserted. This permits the drive shaft to be rotated as the floppy disc is gripped by the
cone and improves the precision with which the disc is located.
The electronic logic receives signals from the f.d.c. to activate the motors and solenoid and return status information to the f.d.c. The logic carries out various timing and interlocking functions to rotate the disc at a constant speed, to isolate the writing circuits when write protection is activated and to amplify and shape the reading and writing data pulses.
A photo-electric sensor enables the computer to synchronize reading and writing with the physical position of the magnetic disc. In most drives, the read/ write head is pressed into contact with the disc only when read or write commands are issued from the computer. A sensor detects the presence of the write protection notch. When a write protected disc is present, the electronics associated with writing are inhibited within the drive itself and the write protected status is passed to the computer.

Disc interface

Most disc drives pass data pulses to and from the f.d.c. through a standard electrical and physical interface. Known as the Shugart interface after the disc drive manufacturer, this consists of a 34-way edge connector for a printed circuit board carrying t.t.l. compatible signals.

The drive select signals allow several disc drives to be connected in daisy chain fashion to a single f.d.c. which will then activate only one drive at a time, causing the read/write head to be loaded in the selected drive.
Motor on causes the discs to be spun in all drives irrespective of which drive is selected. This minimises the time taken to switch from drive to drive.
Other commands are inhibited except when the drive is selected.
R/W head direction presets the head movement inwards or outwards.
R/W head step causes the head to move one track in the preset direction.

Write data and clock receives the pulse steam from the f.d.c. for writing to the disc.
Write gate activates the writing amplifier to allow the pulse stream through to the read/write head.

Side select chooses side 0 or 1 in a drive equipped for double sided use.
Index pulse is triggered by the index hole at the start of the track.

Track zero is active when the read/write head is positioned at the outermost track.

Write protection is active when a protected disc is placed in the drive.

Read data and clock sends the amplified and shaped pulses to the f.d.c.

The BBC microcomputer interface supports only Drive Select 0 and 1 (pin 14 left unconnected) and uses the spare pins 2 and 4 as an alternative Side Select and Index Pulse respectively. The TRS-80 Model 1 allocates Side Select (pin 32) as an additional Drive Select to allow a fourth drive to be connected. These inconsistencies are generally benign.

Floppy disc controller

Most of the logic to control the disc interface is provided by a single 1.s.i. chip. This handles timing and synchronization, par-allel-to-serial conversion and vice versa, track and sector positioning and error detection and reporting.

Other discrete logic provides drive and side selection, address decoding and primary clocking information. All this logic is closely coupled to the microcomputer through the control, data and address buses for receiving commands and returning status signals and user data.

The f.d.c. operates under the control of the attached microcomputer. The commands (and parametric data) are placed in registers internal to the f.d.c. wich initiates the commands by signalling to the disc drive and advising the microcomputer when data is required or available. When the command is complete it provides a status report.
Typically the command and parametric data registers are allocated adjacent addresses in the microcomputer input/output memory space or i/o ports. The f.d.c. will provide additional internal registers for its own use. It may also be connected into the interrupt hierarchy and d.m.a. interface if these are provided.
On initialization of the disc system the microcomputer loads any basic parameters which the FDC

Basic disc controller commands provide the following functions:

- reset all logic and terminate any active command - reset head to track zero
- activate drive motor and time out if no commands for an appropriate time - typi-
cally about five seconds
- select drive and side
- move head to specified track
- read user data from speci-
fied sector
- write user data to specified sector
- verify user data in speci-
fied sector
- format track
- terminate current command.

Basic disc controller status signals include the following:

- disc ready to receive next command.
- controller ready to receive next command.
- disc write protected.
- requested track/sector not found.
- ready to send/receive next data byte or direct memory access ready/acknowledge.
- head at track zero.
- various failure conditions.
requires for normal operation, for example disc drive selection and head stepping intervals, and then issues a command to reset the head to track zero. The f.d.c. sets the Head Direction signal to outwards and pulses Head Step until it recognises from the Track Zero signal that the head is at track zero. The f.d.c. then clears the track register, sets the Disc Controller Ready status indication and triggers the interrupt signal. The microcomputer is now free to issue further commands to the f.d.c.

Other commands operate in a similar way, the microcomputer loading the track and sector numbers as parameters into the f.d.c. registers before issuing the appropriate code to the command register.

During normal read/write operations, the microcomputer specifies which track and sector are to be used for the transfer. The f.d.c. determines whether

head movement is required and in which direction by comparing the value in the track register with the requested track number. It then issues the appropriate number of step pulses.
Normally the f.d.c. will ready the address fields to confirm that the correct track has been found and will update the track register. Either or both of these supplementary actions can be suppressed to allow processing of discs which have inconsistent physical and logical track numbering schemes. For example, an 80 -track drive can handle a 40 track disc if the head is always moved in two track increments from track zero. The physical track number will always be twice the logical track number.

Data synchronization

The pulse stream to and from the disc contains both data and synchronizing information. At the most primitive level, information is needed to enable individual data bits to be recognised. It is at this level that the differences between single and double density arise.
In single density working, a regular clock pulse stream is interleaved with data pulses whose presence or absence indicates a data bit value of 1 or 0 . For example, a data pattern of 1011001 looks like this:

Fig. 4. Edge connector details of a 5 i in. disc drive. Direction in denotes a signal towards the disc drive, out a signal from the disc drive. Evennumbered pins 16 to 24 inclusive require 150Ω pullup resistors at the end of the cable remote from the f.d.c. Odd-numbered pins are all signal ground.

In the second part of his article, David March will describe some practical disc operating systems.
clock pulses. This has the effect of producing a frequency modulated (f.m.) signal which switches between 125 kHz and 250 kHz .

Data bits are zero when the frequency is low and one when the frequency is high. Each pulse is recorded on the disc as a pair of magnetic flux changes. The minimum distance between pairs of flux changes occurs on the innermost track between data pulses representing a bit value of 1 and the adjacent clock pulses and is less than 0.005 mm . This is the limiting factor for reliable magnetic storage.
In double density working, the clock pulses are suppressed except between successive data bit values of 0 . The same data pattern as in the single density example above reveals the significant reduction in pairs of magne-

Fig. 5. Block diagram of a floppy disc controller i.c.
tic flux changes for the same data pattern. The worst case occurs when adjacent data bit values are 1. A comparison with the single density case gives a time interval of $8 \mu \mathrm{~s}$ for $101,4 \mu$ s between two 1 s and $6 \mu \mathrm{~s}$ at the beginning and end of 1001 .
The result is a modified frequency modulated (m.f.m.) signal switching among 125 kHz , 250 kHz and 167 kHz . Thus the data storage density is doubled
with no increase the proximity of magnetic flux changes, but at the expense of additional complexity in generating and recovering the data stream.

Field synchronization

At a higher level the f.d.c. must be able to recognise the address and data fields. This it achieves by placing a unique bit pattern at the front of each field. The de facto standard for the original 8 in . floppy disc was the IBM 3740 , which established the address and data field structure. In a slightly modified form this has been retained for 51/4in. floppy discs. Since all 256 possible values of an eight-bit byte must be available for use within the data field, the unique bit pattern is created by suppressing further clock pulses.
To ensure that the f.d.c. is in a stable condition, the bit pattern commences with a minimu of $400 \mu \mathrm{~s}$ of data value zero, i.e.
uninterrupted clock pulses. In single density, a single byte in the range $\mathrm{F} 8_{16}$ to FE_{16} with three missing clock pulses follows. In double density, three bytes of A1 or C 2 with one further clock pulse missing are followed by a single byte in the range F8 to FE. F8 to FB precede the data field, FC indicates the index hole and FE precedes the address field (FD is unallocated).

Track structure

The purpose of the track structure is to allow the data within individual sectors to be read into the microcomputer and to enable new data to be written from the microcomputer without interfering eith data in other sectors. The f.d.c. recognises the field synchronization information and presents or requests data. When the specified sector has been found. Small gaps are left between the various fields to allow time for this response.

Field synchronization: F8 (above) and A1 (below), both with missing plot pulses (see text).

The start of each track is determined by the index hole but may also be indicated magnetically by a field synchronization pattern with a coding of FC. This magnetic encoding appears to be redundant. Each track begins with padding bytes to leave a gap.

Each sector begins with a synchronization pattern with a coding of FE followed by four bytes which specify the track number, side, sector number and coded sector size. These four bytes are processed to generate a 16 -bit cyclic redundancy check which is held in the next two bytes. Furter padding bytes are succeeded by a field synchronisation pattern with a coding of F8, F9, FA or FB and the by the data bytes themselves. The data bytes are also processed to generate a cyclic redundancy check which is held in the succeeding two bytes.

Each sector is completed by a small gap of padding bytes and finally the track is filled up with padding bytes until the index hole recurs.

More on the XY plotter

Concludes the up-dating article on this versatile design by P.N.C. Hill

If both options yield the same deviation then both stepper motors could be stepped simultaneously to give a true 45 degree step. However, the extra time involved in checking for this condition is probably not justified, as performance seems to be more or less unaffected (although this may differ from one plotter to another).

The above method only caters for lines in the first quadrant (lines from bottom left towards top right). The movement in the X direction can either be left or right whilst the Y direction can either be up or down. This is calculated before the start of the actual drawing and made note of so that when say MOVE IN X DIRECTION is executed the motor is moved either left or right as noted. From then on X1 and Y1 are only important in magnitude and not sign. This generalizes the algorithm for any line.

The last important point to consider is a step repetition rate. This is best done by experiment. A delay routine is added to ensure that neither motor receives pulses too quickly to respond. If a gently sloping line is to be drawn (gradient less than one) then a delay need only be inserted each time the X motor is stepped. No delay need be inserted after a Y step as no two consecutive Y steps are ever issued without interposing X steps which serve as the delay. The situation is conversly true for lines with gradients greater than one.

Improved performance can also be achieved by accelerating the motors at the start of a line and decelerating them to standstill at the end. Overall plotting speed may be improved by this technique as the main limitation appears to be the overshoot obtained when the pen suddenly changes direction. This would naturally be reduced with the more gradual changes.
Complete vector generator. A complete line drawing procedure written in Pascal is shown in Listing 1 , which is fairly self-explanatory, even to those not familar
forms all the above mentioned tasks and need only be given the coordinates of the endpoint of the line to be drawn.
In addition, the routine is able to draw dashed lines. The underlined section controls this function. Setting the variables DASH SIZE and GAP SIZE controls the mark-space ratio of the resulting line.
The delay procedure will naturally depend on the speed of the computer on which the program is run.
Drawing circles. Once the line drawing routine has been perfected everything follows onwards from it. Drawing circles can be done in a number of ways.
A circle can be drawn parametrically by making the X component proportional to a sinusoid and the Y component proportional to a cosinusoid. Changing the relative phases of the functions results in an elipse. This is just a simple form of Lissajous figure.
As the circle is one of the basic shapes required for drawing diagrams, an integer-based routine which yields an optimun step approximation of a true circle is obviously desirable. This can be done in four parts; one for each quadrant. In each quadrant there are only two possible directions in which the pen can be moved, as Fig. 9 indicates. The technique is similar to that used in the DRAW procedure. Each of the two solutions are tried and the distances of the pen from the origin of the circle are then calculated for each by a simple application of Pythagoras. The solution which leads to the smallest deviation from the required radius is chosen for the actual movement of the pen. The resulting circle drawing procedure should use the DRAW procedure for actually moving the pen even though only one step at a time is moved. This enables dashed circles to be drawn in

FOOTNOTE

*Listings referred to in this article can be obtained by sending a stamped, addressed envelope to this office. Please mark your letter XY PLOTTER'.
the same way as for straight lines so maintaining compatibility. Figure 10 shows how this technique performs.
Although the above technique will give the best results possible, it is not so easy to adapt it for drawing arcs, which form another of the important building blocks required for drawing larger diagrams. This can be done more easily with the parametric technique.
Use as a stencil and drafting aid. The technique for drawing alphanumerics was mentioned in the previous article. Each character is defined on a 16×16 grid in much the same as with a matrix printer except more points are used. The sequence of coordinates is then processed by the program which simply moves the pen from one point to the next. The actual active area of this grid that is used for normal characters is shown in Fig. 11. Rows 0,1,2 are reserved for descenders.and graphics, underline etc. Columns 11-15 are also not usually used to provide for extra-long symbols to join with the following characters.
Listing 2 gives the data for the full ASCII character set in both upper- and lower-case. FEH is used as a pen drop code, EFH is used as a pen lift code and FFH is used to terminate the data for each character. The data table is accessed by scanning from the

Fig. 9. Demonstrates the smoothness with which circles can be drawn.

Fig. 10. Grid system used to define alpha-numerics and simple graphics. The data representing the letter K is given in listing 2.

characters (ASCII 1-26) are used for this purpose then these can be embedded in text prepared using a word-processor such as Wordstar. Figure 12 shows the various options available in the interactive control program mentioned. Sub-scripts, super-scripts, overprints, underlines, half-spaces etc. may all be inserted as control characters. The cylindrical coordinate version of Laplace's equation was written out using this program and is shown in Fig. 13. This took only a few minutes to enter at the keyboard but the results would take much longer to achieve by using stencils.
Picture with depth. The X/Y plotter is naturally limited to expressing diagrams and pictures in two dimensions. There are a large number of instances, in engineering particularly, that

Fig 11. With suitable software the plotter is a useful aid in preparing artwork.

Fig. 12. A clear indication of the effectiveness of the hidden line removal algorithm described.

Fig. 13. Hidden line removal. The area marked as hidden in (a) is lower than the peak to the right.

beginning for FFH. When this code is found, the following byte contains the character code. When the correct character code is found, the following bytes as far as the next FFH form that character's data.
The data as given produces a standard 'Elite' character set. Other types faces can be produced by manipulating the coordinates. They can be scaled (enlarged or reduced), the aspect ratio can be altered, they can be 'tipped' forwards for italics or leant backwards as shown in the text at the end of Listing 2. Characters can be over-written to thicken the lines and produce print with apparent depth. All this can be supported in the control program by using control characters embedded in the text which is to be drawn. If control
benefit from analysis in three dimensions. The plotter can be made to express such threedimensional drawings on the twodimensional sheet of paper. A technique which can be used in general applicatiions is simply a trick to fool the eye. The diagrams in Fig 14 and 16 illustrate this. It shows the interaction of two circular wavefronts on a membrane. The result is naturally an interference pattern. The program required to draw such figures is suprisingly simple and short.

The three dimensional effect is a result of hidden-line removal, which is particularly evident in Fig. 16. This is simply the removal of any lines that would be hidden from direct view if the object was truly three-dimensional. Figure 15 shows this. Viewing
from the right side, all points to the left of and lower than the right hand peak are hidden. If the shape is drawn in front projection (Fig. 15(b)) the drawing is done from the 'near' side backwards. When the pen drops below the highest line drawn on the paper so far at that current X coordinate then it is lifted from the paper. It is only put back in contact with the paper when the pen moves above the level of the highest line drawn so far. We must therefore keep a continually updated record of the highest point (greatest Y coordinate) reached on the paper at all corresponding values of X . This horizon is stored in an array equal in length to the number of steps acros the page (left to right). The draw procedure is modified such that if the Y coordinate of the current pen position is less than that held in the corresponding element of the array, then the pen is lifted. If the converse is true, then the pen is dropped onto the paper and the element of the array updated with the current Y coordinate of the pen position.
As mentioned, a modified draw command performs all this. The actual program which generates the ripple patterns is shown in listing 3: the version shown only produces a single peak rather than the double peak as shown in Figs. 14 and 16 . The program is easily understood if it is imagined that the height of the surface above the floor is given by the trig. function whose argument is the horizontal distance from a fixed point on the floor. The height is calculated at regular intervals and then projected as if viewed from an angle to the horizontal. Altering the various parameters at the start of the program allows an almost limitless selection of patterns to be drawn. Other uses. The plotter is also useful for drawing graphs and histograms: Fig. 17 is an example. Labelling was added using the separate interactive program described. The graph shows a frequency response simulation of the digital filter whose impulse response is shown top right. Phase and pulse responses and output sequences resulting from any specified input can also be calculated and shown graphically. Graphs are accurately drawn so relative measurements can be taken from them, although absolute measurements can be obtained in tabulated form from the program.

Computer boards

 This starting point for potential buyers of

 This starting point for potential buyers of computer boards includes products in all price ranges for everyone from enthusiast to equipment manufacturer.

One thing that all buyers of computer boards have in common is the need for i / o other than just a v.d.u. and keyboard. Ideally, a board conforms to a bus system for which there are add-on boards from more than one manufacturer. These buses include STD, IEEE696 (S100), Multibus, 80 -bus, Q -bus, Versabus and more recently, VME, STE, G64, Futurebus, etc. (and IEEE488 for readers thinking of interfacing measuring instruments). Ideally, the board also complies with standard 19in rack equipment but not all popular bus specifications allow that, especially the older ones.
A drawback of compatibility with 19 in rack equipment and standard buses though is that it tends to make the end product expensive. Boards with edge connectors are often used to save costs, but to conform with 19 in rack Eurocard backplanes, DIN 41612 connectors must be used. Complete computer boards reduce the need for connectors and hence reduce cost, but often at the expense of flexiblity. With boards designed for rack mounting, one invariably has ready access to the microprocessor bus; this is not necessarily so with complete computer boards.
As the first decision you will have to make is whether or not you want a rack-mounting board, these descriptions have been divided into two sections computer boards, and Eurocards for rack mounting. A Eurocard sized p.c.b. measures 100 by 160 mm , a double Eurocard measures 233 by 160 mm . Note that there is equipment for mounting boards conforming to other standards in 19in racks (inc. Multibus and S100).

Board descriptions

Designed primarily for program development and o.e.m. applications, CA901/2 boards from Costgold Research Ltd support

CP/M86 (concurrent version due this month) and MP/M86 and use vectored interrupts. The optional CP/M86 operating system with utilities is $£ 199$. Prices include hardware manual with circuit details and a user guide for program development/debugging using the inbuilt monitor program. A real-time clock is standard on the 902 . Three variations on these boards are available as are v.d.u., floppy and hard disc, colour graphics, i/o and IEEE488 interfaces. Software is also supplied by the company.

E\&WW 301
For use as a general-purpose computer or development system, Maggot 09 requires a keyboard, disc drives, video monitor, supply and either Flex or OS9 operating system. Manufacturer Deephaven says that the product is intended for professional and o.e.m. applications, but may be of interest to the 'serious home user'. A bare board with roms, programmable logic array for address decoding and data is $£ 70$ (ex. v.a.t.).
One of four d.m.a. channels is used for disc interfacing, for 8 $51 / 4$ or $31 / 2$ in drives (mixed type and density if need be); the three remaining channels are spare. Serial data rates are selectable and the versatile interface adapater used for parallel i / o with handshaking has two interrupting timer counters. A battery-backed r.t.c. is included. Peripheral boards are planned for hard discs, eprom programming, printer, analogue input and colour graphics. E\&WW 302
Over 30 single board computers and processor units are supplied by Fulcrum. There are some 200 products in the short-form catalogue including memory, video controller and i / o boards, hard/floppy disc drive controllers, development systems and software. The company specialises in IEEE696 bus (S100) systems for professional use and sells a technical manual describ-
ing these products - over 150 of them - for $£ 15$.

Prices of processing units range from $£ 320$ for a 6 MHz Z 80 board with vectored interrupts and capable of addressing up to 1 Mbyte , to $£ 3300$ for a complete $80186 / 8 \mathrm{MHz}$ single-board computer with 128 Kbyte ram, d.m.a., disc interface and serial/ parallel ports. The 80186 computer board is $\mathrm{CP} / \mathrm{M} 86$, TurboDOS and MSDOS compatible. Three boards use the 68000 , one uses the 16032 and one a 6809; all others have either a $Z 80$ or 8086like processor. Computer board manufacturers represented are CCS, Compupro, Macrotech, Dual Systems, LDP, ADC, IAC, SD Systems, Teletek, Ackerman and Sierra Data Sciences.

E\&WW 303
The Eleven-Q microcomputer from RCS Microsystems runs Forth using a 6500 -family processor and can be developed by attaching a keyboard and 5 V supply, or on a higher level using Rockwell development systems. With its 20 -character display, a keyboard and full source listing of the monitor program the board costs $£ 299$; Eleven-Q Forth with manual is $£ 48$. The 4 Kbyte of cmos ram is battery backed and the board accepts Rockwell peripherals and other i/o cards. Three 11 -bit timers are available to the user.
Development boards for the Rockwell single-chip Forth system are also available. The Essex Forth Microboard at $£ 125$ and a Eurocard single-board computer, the SBM-CO2, using the cmos R65C02 (to be anounced, around $£ 250$), are new products from the company. E\&WW 304
Interfacing and monitor software on Deltek's IQ200 computer accommodate floppy and harddisc drives. The board uses a SASI interface for hard discs and d.m.a. to speed up data handling. CP / M bios is included in the price, but not the system disc,

These double Eurocard boards (above) all look different and use different microprocessors, but they all have a similar specification. (Sirius Microtech).

Late details

Products not listed in the tables but included in the text section are Fulcrum, Sirius Microtech, L.J. Electronics, Siemens Flight Electronics, Quant Systems, Pelco, GNC Electronics and Thomson CSF. Macro Marketing for National Semiconductor, NEC, RCA, Texas Instruments and Zilog, (E\&WW 305) and MEDL Distribution for Intel, Microtek, Di-An Microsystems, Zitel and Advanced Micro Support (E\&WW 306) produce comprehensive and straightforward product guides. S100-bus boards from High-Technology Electronics are distributed by Verospeed. (E\&WW 307) Microprocessor manufacturers invariably produce evaluation boards for their products.
and the company is currently working on software modifications to use recent Kodak $2.6 \mathrm{Mbyte}, 51 / 4$ in drives with the same data rate as 8 in drives. Ports are included for v.d.u. (with graphics), keyboard and a serial printer. A Centronics interface is available.

E\&WW 308
Two solely educational computer boards, Marc with a 280 and Tina with a 6502 , are produced by by L.J.Electronics. Both boards have a keyboard, selectable faults (for diagnosis teaching) and are compatible with other educational products from the same company.

Marc includes assembly/disassembly software, a monitor and routines for a light-pen and debugging. On-board facilities include system monitoring points and direct connection for the company's SA2 logic analyser. Memory limits are up to 16 Kbyte of battery-backed ram and 40 Kbyte eprom. Tina, intended for advanced applications control programming, has colour graphics, 'user-friendly' software and an on-board eprom programmer. Interfaces include RS232, IEEE488 and Centronics.

E\&WW 309
Dedicated output for a 640 by 576 -row colour-graphics board is provided on the Delvex 801806 computer, one of three boards from Country Computers. It also has input for an auxiliary keyboard, mouse or digitizer and supports $31 / 2,51 / 4$ or 8in floppy disc drives, and hard drives through an SCSI port. Memory may be expanded to 32 Kbyte of rom and 1 Mbyte of ram, on the

An educational board on which

 faults are programmable helps students learn fault diagnosis (L.J. Electronics).
board, using 256 Kbyte devices. Interrupts are handled by an Intel 8259 controller, there's one spare d.m.a. channel, and an r.t.c. provides additional timing support. Buffered address, data and control lines are accessible.

Two other boards from the company use 4 MHz Z80's - in fact the PCB04 uses five of them, each with its own bank of 64 Kbyte ram, counter/timer i.c and serial i/o device. Sections of the board communicate with each other through a 'letterbox'. Applications suggested are concurrent sequential processing, data acquisition and processing highspeed, asynchronous, serial data for sending to a mainframe computer through the board's synchronous serial interface. The last board, also with a 'letterbox' and compatible with the PCB04, is said to be of interest to developers of file servers, networks, etc, due to facilities like three serial ports, one of them high-speed RS422, d.m.a. and a QIC-02 streaming-tape interface. This board, Masterboard 5, has a hard-disc interface that can be adjusted to suit either SASI or Western Digital controllers, a floppy-disc interface and a realtime clock/calender. E\&WW 310
As a bare board with monitor rom, fuse-logic chip set and documentation only the 68008 -based Micronix ESB-1 computer board costs $£ 199$. Fully built, the board runs Microware's OS9/68000 operating system (extra) using $51 / 4,31 / 2,31 / 4$ or 3 in drives. For compatibility with much existing software, single-user $\mathrm{CP} / \mathrm{M} 68 \mathrm{~K}$ is also supported. The 16 Kbyte monitor includes debug facilities, i/o control, single-line assembler and disc read/write routines. Software selectable data rates from 50 baud to 32 kilobaud are provided for the serial
ports. Address, data and control lines are brought to a connecter for use with peripherals and the company's 128 Kbyte ram expansion board ($£ 199$). Micronix supplies operating-system/language software.

E\&WW 311
Boards conforming to the STDbus standard and IBM PC compatible add-ons are supplied by Altek. The Pulsar 6000 microcomputer is a small Australian import that includes a 64 Kbyte ram, 2Kbyte monitor prom, floppy-disc controller, r.t.c. and software-selectable serial data rates from 50 to $19200 \mathrm{bit} / \mathrm{s}$. Its Cl / M bios, supporting 'type ahead' and time of day, switches automatically between single/ double density (512byte sectors). The CP/M operating system has six utility programs; other operating systems are planned. Utility program/bios source listings and circuit diagrams are included in the manuals. Input/ output is through STD-bus connectors.
STD cards from Pan-Asia are also supplied by Altek. These include a 4 MHz Z 80 -based processor with counter/timer device (the B-CPU2), a 192 Kbyte ram expansion board, floppy disc controller, eprom programmer, analogue i / o, relay output, isolated i / o and a printer card. Among the IBM PC add-ons from Multitech are colour graphics, memory expansion, display adaptor, harddisc controller and serial communications boards. A multifunction peripheral board comprising memory expansion, communications port, printer output, r.t.c., disc emulator and spooler is also available. E\&WW 312
Possibly the cheapest 10 MHz 68000 board with memory and i / o is the Andelos Systems' 68000, which sells mainly to universities and technical colleges. Its monitor, in two 2764 eproms, has 16 basic commands and allows input in binary, octal, decimal or hexadecimal form. There is 12 Kbyte of eprom spare, but if more is needed, the 2764 s can be replaced by larger devices. Similarly, the static rams can be replaced by larger ones to give 16Kbyte. Eight data rates from 110 to 9600 baud are slectable on the programmable serial interface, which includes modem control lines and an interrupt facility. Two decoded select signals and all address, data and control lines are brought to i / o connectors. Monitor listings, circuit diagrams
and an eprom programmer that plugs directly into the main board are available as are cross assemblers.

E\&WW 313
Simultaneous text and high-resolution graphics on separate c.r.ts is possible on the Microkey 4500. Three processor options are 6502 with Forth 79 (Poly Forth optional), 6809 with Flex, and the Werstern Design Centre 16 -bit 6502, the W65SC816, which is capable of addressing 512 Kbyte of memory in two banks; 128 Kbyte in two banks is used with the eight-bit processors. Eprom, in the form of two 2764 s or 128 s (27256s using the 16-bit processor), can be switched out of the address space. Floppy-disc interfacing for $31 / 2$ or $51 / 4$ in discs is standard and 16 -colour 640×200 pixel colour graphics is optional. Modem signals are incorporated in the 16 data rate serial interface. Bus signals, including a d.m.a. channel for the 6809 version are brought to a 50 -way connector.

E\&WW 314
Since our mention of Rade in the January 1984 computer board survey, the company has brought out a version of its 150 board without video and disc interface sections, but with serial and parallel interfaces added. This board, the Rade 50, has space for up to 16 Kbyte eprom, independent data rate selection for each serial channel and memory bank switching in 16Kbyte increments. Applications include a Z80 add-on (with CP/M using optional floppy-disc board/ operating system) for any computer or RS232-compatible device, and turning a dumb terminal into an intelligent one.

The company's 150 board includes floppy-disc, d.m.a. and video controllers. It also has a keyboard port, eight expansion connectors and a light-pen input. Optional boards are available for parallel, serial, analogue, IEEE488, printer i/o and memory expansion, hard disc, highresolution colour graphics, r.t.c. and tracker-ball connection.

E\&WW 315
With an IEEE488 interface, four parallel channels, two eight-bit switch inputs and RS232 ports, the IBS 750 is intended for industrial and scientific applications where i / o facilities and ease of use are important. A keyboard port with 80 character by 24 -line v.d.u. output provide

CIRCLE 43 FOR FURTHER DETAILS.

CIRCLE 49 FOR FUR'THER DETAILS.

MAGGOT 09 IS HERE!

THE 6809 SINGLE BOARD COMPUTER — JUST ADD DRIVES KEYBOARD AND VIDEO MONITOR FOR A COMPLETE SYSTEM

* 2 MHz Operation

Supports any mix of 4 floppy drives up to 8 in D. Density

* Built in 80×24 Memory Mapped VDU
$\star 64 \mathrm{~K}$ Bytes of on-board RAM
* Real-Time Clock with battery backup
* 16 Bit Parallel plus 2 Serial I/O ports
* Supports FLEX and 0S-9 Operating Systems
- Supports FLEX and OS-9
* On-board DMA Controter Complete with Monitor/Debug/Bootstrap EPROM
* Fully Buffered Bus Expansion connector

Fully assembled and tested $£ 420+$ VAT (Add $£ 5$ P\&P)
Bare Board with ROMS, PAL and data. £70 + VAT (Add £1 P\&P)

CIRCLE 8 FOR FURTHER DETAILS.

© DELTEK ${ }_{\text {atecraness }}$
 IQ 200
 syisterns fonsadeation bowsc
 the firm footing for cheative construction
 GEIEK ELECTRONICS CENTRAL HIGH ETREET GTADLEHMPET KENT TNT2 OEH
 Tolophone: Beaplohurat (O5BO) Be3E29

CIRCLE 18 FOR FURTHER DETAILS.

The Microvalue Group dealers shown below represent part of the Gemini network.

For expert advice and full details on the Gemini System, contact your nearest dealer today.

AMERSHAM COMPUTER CENTRE LTD

18 Woodside Road, Amersham, Bucks HP7 0BH Tel: 0240322307 Telex: 837788

BUSINESS \& LEISURE LTD

16 The Square, Kenilworth, Warwickshire CV8 IED Tel: 0926512127

CENTIFLEX MICROSYSTEMS LTD

Unit 6, Perry Road, Staple Tye, Harlow,
Essex CM 18 7NW
Tel: 0279442233

ELECTROVALUE LTD

28 St. Judes Road, Englefield Green, Egham, Surrey TW20 0HB
Tel: 078433603 Telex: 264475

E.V. COMPUTING

700 Burnage Lane, Manchester M19 1NA
Tel: 061-431 4866

HENRYS RADIO

404 Edgware Road, London W2
Tel: 01-402 6822

LEEDS COMPUTER CENTRE

55 Wade Lane, Merrion Centre, Leeds LS2 8 NG
Tel: 0532458877

OFF RECORDS LTD

Computer House, 58 Battersea Rise,
Clapham Junction, London SW 11 iHH
Tel: 01-223 7730

SKYTRONICS LTD

357 Derby Road, Nottingham NG7 2DZ
Tel: 0602781742

CI RCLE 55 FOR FURTHER DE'TAILS.
ELECTRONICS \& WIRELESS WORLD JANUARY 1985

GM813 CPU/64K RAM BOARD - This card provides system 4 $\mathrm{MHz}, Z 80 \mathrm{CPU}, 64 \mathrm{~K}$ user RAM and both serial and parallel I/O.

GM811 CPU BOARD - An índustrial standard 4 MHz , Z80 controller board with parallel and serial I/O together with a variable Bytewide memory capacity.
GM888 CPU BOARD - A new card featuring the Intel 8088 processor to provide a dual processor system.
GM832 SVC BOARD - Provides conventional 80×25 or 40×25 screen format together with graphics capability. Includes full keyboard support and overseas character sets.
GM862 256K RAM BOARD - Supports both page mode and extended addressing facilities and can be used with all of the Gemini CPU cards.

GM833 512K RAM-DISK BOARD - Provides 'psuedo disk' facility in a MultiBoard system.
GM829 FDC/SASI BOARD - Combines floppy disk controller and SASI board supports up to four floppy disk drives plus Winchester controller cards.

GM837 COLOUR GRAPHICS BOARD -256×256 sixteen colour graphics display. Output to either PAL UHF or RGB.
GM816 MULTI I/O BOARD - Provides three Z80A PIO devices plus CTC and battery backed Real Time Clock.
GM848 SERIAL I/O BOARD - Utilises two Z80A SIO chips providing four synchronous/asynchronous serial channels with software selectable baud rates.
GM836 NETWORK INTERFACE BOARD - Provides RS422 communication protocol for networking CPU boards

The dealer's choice

Gemini Microcomputers Ltd., 18 Woodside Road, Amersham, Bucks, England HP6 0BH. Tel: (02403) 28321. Telex: 837788

TDS900 C-MOS FORTH COMPUTER

Single board Eurocard FORTH computer. Entirely C-MOS, consumes typically 16 mA . Uses $63038 / 16$-bit processor with hardware multiply, timer, and serial interface. Unused op-code trap forces processor back to FORTH. Has 12 K RAM and an additional 8 K spare socket. Most memory can use EPROM in place of RAM for dedicated applications. Fig-FORTH language with many other useful real-time words added. Connector is 64 -pin with 5.04 mm spacing and has full data and address bus, as well as control lines and several decoded chip selects. System is expandable off the card by use of 6800,6300 or 6500 series peripherals.

TDS901-X NON-VOLATLE FORTH COMPUTER

A TDS900 incorporating non-volatile RAM and modified FORTH system. FORTH applications and/or stored data are retained in NV-RAM when power is removed. Invaluable while developing software. Substitute the following in place of -X to get the order code:- $-2 \mathrm{~K},-4 \mathrm{~K},-6 \mathrm{~K},-8 \mathrm{~K},-10 \mathrm{~K}$. This refers to the amount of non-volatile memory. The rest, up to 12 K , is normal C-MOS RAM.

TDS902 64K C-MOS FORTH COMPUTER

Although the 64 K memory space is almost full the card takes only 25 mA typical because of its all C-MOS design.

TDS900-BBCSOFT DEVELOPMENT OPTION

Software for the BBC microcomputer allowing it to communicate by the serial link with a TDS900. It is programmed through the BBC keyboard and BBC dises store the source and object code.

TDS950 COMBINATION CARD

Cassette interface Eurocard containing 1200 baud audio to RS232C converter, mains transformer/power supply for itself and a TDS 900 computer, and $200 \mathrm{~mA}-\mathrm{Hr}$ of back-up battery to make a TDS900/TDS950 combination self-contained and portable. This is an ideal starting system. FORTH software for cassette load and dump of both source screens and binary data is provided.

TDS971 COMMUNICATIONS CARD

Contains an IEEE-488 Talker/Listener interface and two RS232C ports. Complete with ribbon cable and IEEE-488 flying socket.

TDS972 PARALLEL/SERIAL/A-D CARD

Peripheral card for the TDS900 series of FORTH computers. Contains an 8 -bit parallel input/output, four status lines, serial RS232C communications port and an 8-bit A-D converter.

Computer boards

Type	Application	Proc.	$\mathrm{MHz}^{\text {che }}$	RAM/ROM(K)	OS/Language	Bus	$1 / 0$	Size mm	Price 295
Andelos	Dev., ed., o.e.m.	68000	10	4/16	Mon.	$-$	RS232, 24 par., exp. bus $2 \times$ RS232 32 par	$\overline{208} \times 204$	$\begin{aligned} & 295 \\ & 185 \end{aligned}$
Archer	Dev., o.e.m.	Z80	4	(64)	(Mon., Basic)	-	2×RS232, 32 par., 8 control, exp. bus	208×204	
B-CPU2	Dev., o.e.m.	280	4	(2/8)	-	STD			-
CA901	Dev., o.e.m.	8088	8	128/8	Mon. (CP/M86)	80-bus	Exp. bus	203×203	375
CA902	Dev., o.e.m.	8088	8	256/8	Mon. (CP/M86)	80-bus	Exp. bus, RS232	203×203	525
Delvex186	Dev., o.e.m.	80186	8	128/(4-32)	Mon.	(Multibus)	$4 \times R S 232$	310×325	
DSTD101	Dev., o.e.m.	Z80	2.5 (4)	(5×28-pin)	(Mon.)	STD-bus	2×8-bits, $10-$ pin c.t.c. channel	165×115	\$297
DSTD102	Dev., o.e.m.	Z80	2.5 (4)	($3 \times 28-\mathrm{pin}$)	(Mon.)	STD-bus	$2 \times$ RS232	165×115	- 882
DSTD187	Dev., o.e.m.	8088	5 (8)	(1×28-pin)	(Mon.)	STD-bus	2×RS232	165×115	\$822
DSTD168	Dev., o.e.m.	68008	8 (10)	($2 \times 28-\mathrm{pin}$)	(Mon.)	STD-bus	$2 \times$ RS232	165×115	\$619
Eleven-Q	Dev., o.e.m.	R6511Q		4/(8)	Mon./(Forth)	-	RS232, 44 par. lines	228×153	225
ESB1	Dev., o.e.m., ed.	68008	8	128/16	Mon.	$\overline{-}$	$2 \times$ RS232, 2×8-bit ports	203×146	499
GM813	Dev., o.e.m.	Z80	4	64/2	Mon., (CP/M)	80-bus	$2 \times$ RS232, $2 \times 1 / 0$ ports	-	-
IBS750	Dev., o.e.m.	$2 \times$ Z80	4	64/(32)	Mon., (CP/M)	IEEE488	$2 \times$ RS232, $4 \times i / 0$ ports 16 inputs, exp. bus	-	-
1Q200	Dev., o.e.m.	Z80	4	$64 / 8$	Mon./(CP/M)	-	60 -way exp. bus, $2 \times$ ser.	384×277	360
Maggot	Dev., o.e.m., am.	6809	2	64/2(32)	Mon. (OS9, Flex)	-	Exp. bus, d.m.a., RS232×2, 16 par. lines	305×234	420
Master05	OEM	Z80	4	192/4	- 70	-	$2 \times R S 232, R S 422$, d.m.a.	-	-
Microkey	Dev., o.e.m., ed.	6502	1.85	128/32	-/Forth 79	-	RS232, 10 par., exp. bus	342×145	$\stackrel{-}{+}$
Microkey	Dev., o.e.m., ed.	6809	1.85	128/32	Flex/-	-	RS232, 10 par., exp. bus	342×145	-
PCB04	OEM	5×Z80	4	64/(4) each	-	-	$1 \times R S 422,5 \times$ ser., 1 sync. ser., d.m.a.	$\overline{-115}$	-
Pulsar	Dev., o.e.m.	Z80	4	64/2	Mon., CP/M	STD	$2 \times \mathrm{RS} 232$	204×115	-
Rade 50	Dev., o.e.m.	Z80	4	$64 / 4$	Mon.	-	$2 \times R S 232,2$ exp. ports	-	185
Rade 150	Dev., o.e.m.	280	4	64/(16)	-	$\overline{\text { Multibus }}$	DMA, 2 exp. ports		350
SGSZ8003	Dev., o.e.m.	Z8003	4 (10)	(4/16)	Mon.	Multibus	$2 \times \mathrm{RS} 232,12 \mathrm{par}$.	305×171	-

user i/o. The monitor prom contains 22 commands for writing and debugging low-level programs. Software options are proms containing languages such as XTAL Basic with IEEE drivers and an editor/assembler, or discbased languages running under $\mathrm{CP} / \mathrm{M} 2.2$. The board has a bat-tery-backed r.t.c. and can be obtained in a number of partiallybuilt forms.

E\&WW 316
Specialising in 80 -bus 280 systems running CP / M, and quite happy not to move away from them, Gemini Microcomputers has recently produced a 16 -bit co-processor board for running CP/M86, Concurrent CP/M and MSDOS on existing systems. The company's main Z80 computer board, the GM813, uses paged memory and extended addressing for up to 2 Mbyte ram. A further $Z 80$ board with more limited capabilities is available for use as a controller. The 8 MHz 8088 coprocessor with battery-backed r.t.c. has a socket for an 8087 arithmetic board.

A Z 80 processor $(6 \mathrm{MHz})$ is also used on the GM832 256×256 pixel video card that can display 25 lines of 80 -column text (includes foreign character sets). Colour graphics is possible using a separate board, the GM837, or the Pluto high-resolution system. Other products include serial/parallel i/o, networking and hard and floppy disc drive interfaces. Ram expansion boards, and ram boards that
look like very fast disc drives to CP / M are also produced. Gemini supplies a range of software.

E\&WW 317
Components used in Sherwood Data Systems' Archer board with optional built-in power supply are a 4 MHz Z 80 processor, a fourchannel counter/timer, two par-allel-interface devices giving 32 i/o lines with handshaking, and an asynchronous receiver/transmitter for two-port serial communications at up to 9600 baud. Four sockets that can be moved about in the memory map accept 24 or 28 -pin rams with battery back-up, 2716-27128 eproms, or a mixture of both
A 'watchdog' circuit resets the system if the software loses control; other circuits protect data from transient interference and shut down and restart the system tidily if power is interrupted. Processor bus lines and other signals including power supply (if appropriate) are brought to a 50 -way connector for expansion. SDS Basic (£45) designed for use with this board includes special commands for input/output control. The SDS debugging monitor with 18 commands is $£ 35 \mathrm{E} \& \mathrm{WW} 318$
Some 20 boards conforming to the STD-bus standard are manufactured by DY-4 systems and distributed through Dage. Three of these are $Z 80$ processor units, DSTD101/2/3, the first of which is a 'stand-alone' board with five sockets for 1 to 8 K
eproms or rams, and a four-channel counter/timer with on-board connectors. The 102, also with four counter/timers, has three sockets for rams or 1 to 16 K eproms and a programmable serial interface with modem controls. Connectors for two eightbit parallel ports are provided on the DSTD 103 with five memory sockets. This board, called an intelligent slave processor, can access all external ram and i / o on the STD bus.

E\&WW
Remaining processor boards are the 8088 -based DSTD187 and 188. The 187 board differs from the 188 board in having an 80130 real-time executive processor and in being able to support MSDOS. The DSTD168 has three counter/timer channels. All three 16 -bit processor boards have dual RS232 channels with programmable data rates, and transparent dynamic ram i.c.
refresh. Some 15 peripheral STD boards are manufactured, four for memory expansion, five mainly for RS232 and serial or modem communications, and the remainder for disc interfacing, v.d.u. control, d.m.a., parallel i/o etc.

E\&WW 319
A Multibus system consisting of a Z8003 processor board and 128 K to 2 Mbyte ram board is produced by SGS chiefly for evaluation purposes. With separate 'SAM' bus for connecting other SGS modules, the processor unit has sockets for up to 16 Kbyte rom and 4 Kbyte of static ram and

Example of a single board computer. This one even has an auxiliary input for a mouse or digitizer and a special port for connecting a high-resolution colourgraphics card.

uses an 8003 16-bit virtual-memory processor, 8015 paged mem-ory-management unit, 8016 d.m.a. controller, 8030 communications controller and 8036 counter/timer and i/o device. Development systems, monitor source listings and technical information is available. Prices of SGS 16 -bit c.p.u. boards start at around £929.

E\&WW 320
Education computer boards with display facilities, keyboard and input/output ports are distributed by Flight Electronics. Of the four main boards, two have Z80 microprocessors, one has an 8088 (16-bit) and one a 6502. Educational i/o boards and books support the range.

With printer/cassette interfaces and monitor with line assembler/disassembler, the 8088-based MPF1/88 takes optional roms with Forth, Basic

These Eurocards in an enclosure with disc drives use all high-speed cmos i.cs and have a bus specially designed for use with these devices (Ctronix).
or a two-pass assembler. It has 2 Kbyte of ram, expandable up to 24 Kbyte , and 16 Kbyte of rom expandable up to 48 Kbyte . Expansion is through a 62 -way edge connector.
The 6502-based MPF1/65 with colour graphics has 64 Kbyte of dram and 16 Kbyte of rom based monitor routines for software writing/debugging, screen editing, disassembly and printer driving. Expansion is through a 50 -way connector.
Two Z80 based boards are the MPF1B/P, the B version with a 2 Kbyte machine-code monitor, cassette interface, 2 Kbyte ram and 6 -digit $/ 7$-segment display and the P version with 4 Kbyte battery-backed ram, a 2 Kbyte monitor rom and a 20 -character/ 14 -segment display. Rom/ram
expansion is possible on both these boards and Basic/Forth roms are available for the P version. Sixteen i / o pins and four counter/timer channels are provided on the B version. Expansion on the P version is through a c.p.u.-bus connector.

E\&WW 321
Possibly the smallest CP / M computer board with serial, parallel, printer and floppy-disc $1 / 0$ is the Omega distributed by Quant systems. With 64 Kbyte ram and 2732 system eprom, the board measurers 196.85 by 146 by 19 mm and costs around $£ 580$ with disc drive and CP / M operating system with utility programs. One of the two serial ports runs from 75 to 384 kb baud. An SCSI hard-disc/tape-controller with software support and i/o expansion lines is available for $£ 99$.

E\&WW 322
A low-cost 4 MHz 280 Eurocardsized board with 4 Kbyte eprom and battery-backed ram space, the Cub, is supplied by GNC Electronics. It includes a 2 Kbyte monitor eprom, 2Kbyte ram, assembly-language listings and circuit diagrams for $£ 104$. The Cub, which can also be supplied as a bare board for $£ 20$, has $64 \mathrm{i} / \mathrm{o}$ lines. Other boards are available with up to 64 Kbyte ram, 8 Kbyte eprom, RS232, etc.

E\&WW 323
Boards supplementing the Rockwell range from Dynatem, and the Rockwell range itself, are available through Pelco Electronics. The Dynatem range includes cmos, memory, p.s.u. and Aim65 look-alike cards. Recently, this company has started distributing a Scandinavian singleboard computer from Micronor, the SBC6511Q, which can be developed using optional monitor software with terminal communication routines or Forth. This small development board has two serial ports, one of which can be split into two.

E\&WW 324

Eurocards for rack mounting

The EuroCube range of $6502 /$ 6089 rack-mounting and singleboard computers for industrial/ laboratory applications are manufactured by Control Universal. EuroCube65 and 09 boards can be developed at low cost through a serial link using a terminal or BBC computer.
The EuroBeeb board supports BBC Basic/VDU calls and is sup-
plied with Control Basic, Control Net for multiprocessor use and a battery r.t.c. Applications can be written using Forth, Pascal, BCPL or assembler. EuroCube09, also with r.t.c., supports the Flex disc-operating system and can be developed using TSC Basic, Forth, Pascal, BCPL, C or assembly language. There are some 30 products in the range and development systems are available for both 6809 and 6502 processors.

E\&WW 325
Three main cards from CMS are a 6809 second processor for the BBC microcomputer with 64 Kbyte ram, a 6809-based single-board computer also with 64 Kbyte ram, and a universal controller using either the 6809 or 6502 and fitted with an r.t.c. All three are said to be Acorn-bus compatible and have batterybacked cmos ram either as standard or optional. The 6809 card has its own machine operating system and allows Flex operat-ing-system discs to run on the BBC computer through an interface board (extra). The second processor also allows Flex use. Other products in the range include 12 -bit a-to-d cards, IEEE488 and high-resolution graphics controllers, input/output modules and development aids. CMS supplies sof tware.

Late news is that the CMS 6502 universal controller can now be supplied with operating system for BBC Basic, 8Kbyte of cmos rom, an r.t.c. and v.i.a. for £199. It communicates with a BBC computer through the 'tube' using an optional adaptor ($£ 59$) which allows many languages to be used for development.

E\&WW 326
Some 20 products in the Modular 96 range from Measurement Systems include the $\mathbf{9 6 0 0}$ processor, ram (up to 1 Mbyte using bank switching), rom, floppydisc, communications, analogue/ digital i/o, colour graphics, eprom programming and fre-quency-counter boards. Networking and multi-tasking are possible and program development is done on the system, itself using languages running on the OS9 disc-operating system such as Basic, Pascal, C, Cobol and assembler. Two analogue cards are for eight-channel 12 -bit in and output. A hard disc option is available. The company supplies software.

E\&WW 327

Recently introduced eight and 16-bit single-board computers from Sirius Microtech are for industrial and educational applications. Processors used are Z80, 8085, 6502, 68000 and 8086 and the units are all double Eurocard. They look different physically but all have the same features - buffered c.p.u., buses 32 Kbyte rom, 32 Kbyte ram, d.m.a. and eight or 16 led output and switch input lines. Each also has two uncommitted parallel and serial i/o devices (inc. RS232 drivers) and a counter/timer; what these devices are depends on the processor family. Typical prices are $£ 580$ for 8 -bit boards and $£ 790$ for 16 -bit ones.
Polestar, a CP/M-based development system for these boards, allows dynamic program modification in real-time control applications.

E\&WW 328
With a power supply and terminal, the Essex Tiny Basic Eurocard becoms a small low-cost computer cum development system. Software is written using the National Semiconductor 8073 Tiny Basic interpreter on the board. While under development, a program is stored in either ram or battery-backed rom; when complete, it is programmed into up to 8 Kbyte of eprom using the board's own programmer. Apart from peripheral boards for mains switching, speech, analogue/digital i/o, etc., there are options available for writing software in assembly language and for compiling Basic programs. The assembler and compiler on a separate board with two additional eprom sockets are currently on special offer at $£ 98$. Under development are an 80 by 100 mm Forth card designed using the same philosophy as for the Tiny Basic board but with the Rockwell R65F12 processor, and a 16 -bit computer board with Basic interpreter. E\&WW 329
Consuming typically 16 mA when working, 9 mA when idle, the TDS900 from Triangle Digital Services is a Fig-Forth computer board with all cmos i.cs that can be developed from a simple terminal. It uses a 6303 processor and Forth is in an 8 Kbyte rom. A free socket holds a further 8 Kbyte rom. Using optional software on tape, the board can be programmed by a BBC microcomputer through a serial link. Forth 'screens ' may then be saved on the BBC computer disc system.

L J Electronics Ltd

Francis Way,Bowthorpe Industrial Estate.Norwich NR5 9JA.
Telephone: (0603) 748001.
Telex: 975504.

To find out more about these and other items in the complete LJ range send for our new 1985 catalogue

Wivenhoe Park, Colchester, Essex CO4 3SQ Telephone Colchester (0206) 865089

CIRCLE 74 FOR FURTHER DETAILS.

The Archer--single Board Computer

The SDS ARCHER - The Z80 based single board computer chosen by professionals and OEM users.

FEATURES

* High quality double sided plated through PCB
* 4 Bytewide memory sockets - upto 64 k
* Power-fail and watchdog timer circuits
* 4 Parallel ports with handshaking
* Bus expansion connector
* CMOS battery back-up
* Counter-timer chip
* 2 serial ports
* 4 MHz Z 80 A

Telephone or write for full technical description and price information.

OPTIONS * SDS BASIC with autostart and "user program in ROM" facility

* SDS DEBUG MONITOR: a powerful 8 k byte development aid
* On board 120/240 volt mains power supply
* Attractive two tone instrument case

Eurocard boards for rack mounting

Type ARC40	Application Dev., o.e.m.	Proc. 8671	MHz	$\begin{aligned} & \text { RAM/ROM (K) } \\ & 4(16 \mathrm{j} / 4(32) \end{aligned}$	Operating system Mon.	Language Basic	$\begin{aligned} & \text { User i/o } \\ & \text { RS232, } 40 \text { par., } \\ & \text { Arcbus** } \end{aligned}$	Price 169
ARC8000	Dev., o.e.m.	28001	4(10)	8/16	Mon.	-	2×RS232, 34 par., VME, Arcbus*	874
CLZ80S	Dev., o.e.m.	280	4	64/(16)	-	-	$\begin{gathered} \text { 2×RS232, } 34 \text { par., } \\ \text { Gammabus* } \end{gathered}$	-
CMS 09sp	Dev., s.p.	6809	-	64/4	Mon. (Flex via BBC comp.)	-	-	249
CMS09sb	Dev., o.e.m.	6809	-	64/4 (32)	Mon. (Flex via BBC comp.)	-	20 par.	229
CMS09un	Dev., o.e.m.	6809	-	(32/128)	-	-	20 par.	119
CMS 02un	Dev., o.e.m.	6502	-	(32/128)	$\overline{\text { - }}$	-	20 par.	119
CPU01	Dev., o.e.m.	68000	8	128/(64)	Mon.	-	3×RS232, 23 par, VME	1075
DVME102	Dev., o.e.m.	68000	8(12)	256/(32)	(Mon., Unix)	-	$2 \times R S 232$, VME	\$2803
DVME105	Dev., o.e.m.	68000	8(12)	(14×28)	(Mon.)		2×RS232, VME	\$1668
Essex TB	Dev., o.e.m. ed, am.	8073	-	2/(16)	(Mon.)	Basic (Ass.)	Ser., 48 par.	198
Eurobeeb	Dev., o.e.m.	6502	-	(64)	Mon.	(via BBC comp.)	Ser., 16 par.	269
Euro05	Dev., o.e.m.	6502	-	(64)	Mon.	(via BBC comp.)	Ser., 16 par.	175
Eur009	Dev., o.e.m.	6809	-	(64)	Mon. (Flex)		Ser., 16 par.	175
HC120	Dev., o.e.m.	68008	8	(256)	(Mon.)	(Forth)	$2 \times$ ser., 20 par.	490
MP09	Dev., o.e.m.	6809	1(2)	(32)	(Mon.)	-	RS232/422	153.15
MP19	Dev., o.e.m.	6809	1(2)	(64)	(Mon.)	-	2×RS232/422	261.05
SCPUA	Dev., o.e.m.	Z80	4	64/(32)	CP/M+	$\overline{-}$	2×RS232, 5 par., STE	580
SCPUB	Dev., o.e.m.	Z80	4	4/(32)	(Mon.)	(Basic)	2×RS232, 6 par., STE	157
SYN68K8	Dev., o.e.m.	68008	. 8	(128)	(Mon.)	-	RS232, 8 par.	356.07
TDS900 9600	Dev., o.e.m. OEM	6303 6809	2	$12 / 8$ $-/(14)$	Mon. (OS9)	Forth	Ser., 11 par. 4 ch d.m.a.	162 295

* Peculiar to manufacturer Brackets indicate non-standard features
Board links reconfigure some 10 Kbytes of the 12 Kbyte area normally holding cmos ram for 2716 eproms. Memory limits are 160 Kbyte ram, 640 Kbyte prom, using expansion. Peripheral boards include 20 Kbyte ram expansion, cassette, RS232, eprom programming, IEEE488 talker/listener, parallel i/o and analogue input interfaces. Variations on the basic board include ones with higher speed, non-volatile ram and cheaper nmos i.cs.

$$
\text { E\&WW } 330
$$

By starting afresh using only high-speed cmos i.cs, a 68008 processor and a bus designed specially for this combination -HC-bus - Ctronix claims to have drastically reduced power consumption, simplified back-plane requirements and reduced the number of decoding components required over processor independent buses like VME and STE. In defence of this adventurous approach, Director Godfrey Suckling says "One could argue that independent buses will be suitable for a new generation of super processors, but who knows whether current buses will be fast enough to support the new breeds, when they arrive."
HC-bus products include floppy-disc controller, eightcolour video, isolated parallel i / o, analogue \mathbf{i} / o, power supply and eprom programmer cards. With the HC -bug monitor and multitasking HC Forth, the c.p.u. board with battery-backed r.t.c. costs $£ 650$ (the monitor includes
a 'full-line' assembler/disassembler). The bus allows addressing of up to 1Mbyte. E\&WW 331
Three main processor cards from Syntel, two 6809 based and one 68008, are G64-bus compatible. On-board prom/ram up to 128 K may be mixed on the 68008 processor, the $68 \mathrm{K8}$, whose RS232 interface is synchronous or asynchronous. Four programmable timer/counters are included and options allow cheaper, slower memory devices to be used.

MP09/MP19 boards have 6809 processors, bipolar mem-ory-mapping proms (to allow memory allocation to match existing software/hardware) and a G64 bus but are otherwise quite different. The MP09 has 32Kbyte prom/ram sockets, a 6840 triple counter/timer i.c. and serial port for either RS422 or 232 . The MP19, allowing up to 64 Kbyte of memory devices, is built on a four-layer p.c.b. and has two serial ports, eight counter/timers and eight $50 \mathrm{~V}, 500 \mathrm{~mA} \mathrm{i} / \mathrm{o}$ lines. Numerous peripheral boards, including IEEE488 controllers, and over 40 software products are available as are versions of these boards with different clock speeds and with or without monitor/ram.

E\&WW 332
A range of VME, STD and STEbus products (see also Arcom for STE) are stocked by Dage. The VME-based CPU01 from MicroSys, whose ram is expandable up to 256 Kbytes , includes four timer/counters and an r.t.c. There is also a CPU02, at $£ 886$, with three timers, optional r.t.c. and fixed on-board memory of

128Kbyte. This board caters for up to 32 Kbyte of static ram. Other VME products from MicroSys include memory expansion boards, a floppy-disc controller, a universal i /o board and an assembler/disassembler.
Both VME and a wide range of STD-bus boards (see Computer boards) are manufactured by DY-4 systems. The company's main VME 68000 processor board (for 8,10 or 12.5 MHz devices), the DVME102, holds an optional 68451 memorymanagement unit. It has three counter/timer channels, paritychecked dram and independent data rate selection on its synchronous/asynchronous RS232C serial channels. Monitor eproms, technical manuals and a Unix development system can be ordered separately. The DVME105 is more a singleboard computer than a processor card, with fourteen sockets for eprom, ram and eprom, but no dram bank. Its serial interface/ timer-counter specifications are similar to those of the ${ }^{102}$. Other boards in the range are for memory expansion, floppy-disc control (Z80-based), i/o and colour graphics. Recent additions include a 68000 -based Winchester disc controller and a stream-ing-tape adapter.
Other Dage VME products are the Performance Technologies PT-VME100 with 68010 processor, 68451 memory-management device and 4 Kbyte high-speed cache memory (\$4211) and, from Lynx Business Machines, ram, i/o and $20 \mathrm{Mbit} / \mathrm{s}$ disc/tape controller boards. Performance

Technologies also manufacture a VME expansion interface.
STE-compatible cards from GMT include 6809 and 68008 processing units, ram/rom expanders and disc interface. Other boards cater for serial, parallel, isolated parallel, analogue i/o and parallel i/o with display and keypad input. E\&WW 333
The only Z8001-based VME board is manufactured by Arcom (distributors, Dage, Gothic-Crellon). It uses an 8030 high-speed communications controller, an 8036 parallel i/o and counter/ timer i.c. and programmablelogic address decoding. Monitor software in two 4Kbyte eproms can be replaced by 16 K byte devices for more rom. Similarly, the eight 2 Kbyte cmos static rams can be replaced by 8 Kbyte ones. Arcom's Arcbus-compatible boards can also be used to provide i/o at low cost and a cheaper version of this board without VME is available ($£ 650$).

Products conforming to the STE-bus standard - currently in its final stages of approval by the IEEE as IEEE P1000 - are also manufactured by this company. They include a $64 \mathrm{Kbyte} \mathrm{CP} / \mathrm{M}$ microcomputer, the SCPUA, with floppy-disc controller, highspeed serial interface and keyboard port. A low-cost STE processor board, the SCPUB, has no on-board dram (up to 1Mbyte addressing through STE) or floppy-disc interface but includes four counter/timers and can be used with an optional Basic interpreter or monitor software. Six

Continued on 73

MICROKEY 4500
 A PROFESSIONAL polyFORTH COMPUTER SYSTEM

TECFHNCAL FYCDHWNCE IN A SINCLE-BOARD COMPUIER FOR SYSTEMS DEVELOPMIENT, O.E.M., OR APPLCATMONS.
BY USHYG THI SAME BOARD LY YOUR TARGET SYSIFM AS YOUR DEVITLOPMINNT SYSHEM, FOU CAN SAVE THMZ AND MONSY!
FUL TIECENICAL SUPPORT AVAILABLE.

UKEY Features

6809/2MHz PROCESSOR WITH 128K RAM AS STANDARD (6502/FORTH 79 OPTION AVAILABLE.)

- polyFORTH or FLEX OPERATING SYSTEM AVAILABLE.

4 $31 / 2$ and $5 \frac{1}{4} \mathrm{in}$. DISK DRIVES CAN BE MIXED.

- 16 COLOR, HIGH RESOLUTION GRAPHICS.
- NORMAL, ULTRA-HIGH RES. AND

PAGE FORMAT MONOCHROME MODES.

- TWO INDEPENDENT VIDEO OUTPUTS.
- MULTI-TASKING
- INTERLACE MODE
- BASIC, PASCAL, 'C' AND DEVELOPMENT SOFTWARE AVAILABLE.
- FIBRE OPTIC PLUG-IN AVAILABLE. ORDERS AND ENQUIRIES TO: MICROKEY LTD., 98a St. James's Street, Brighton, Sussex. England. Tel: 0273-672911

MICROKEY is a division of Advanced Text Systems Ltd, leaders in typesetting and telecommunications equipment, single board computers and video technology.

CIRCLE 67 FOR FURTHER DE'TAILS.

16 BIT SCSs
 A range of 5 cards each with

 the following 2 running at 8 MHz , a debug monitor EPROM, RS232 serial port and full expansion facilities. CA901 : plus 182k of RAM expandable to 256 k , optional Real Time Clock.CA902 : plus 256k of RAM and RTC.
CA903 : plus 8 k of RAM expandable to 128 k and 3 uncommitted RAM/EPROM sites, optional RTC.
CA904 : plus 64 k of RAM expandable to 128 k and 4 uncommitteed RAM/EPROM sites, optional RTC
CA905 : plus 128k of RAM and 4 uncommitteed RAM/ EPROM sites, optional RTC.
Also full range of video, floppy/hard disc and I/O cards with operating systems and support software.
PRICES: CA901 £375, CA902 £525, CA903 £325,
CA904 £375, CA905 £425, battery RTC £30. all prices include UK P\&P but exclude VAT. OEM enquiries welcome.
COSTGOLD RESEARCH Ltd.
The Old School High Street
Stretham Ely CAMBS. Tel No. 022366734

Z80A MICRO-GONTHOLLERS

4MHz Z80A CPU

- 4K EPROM - 2 K supplied with MCV2.0 - 4K Battery backed RAM - 2 K supplied - $4 \times 280 \mathrm{~A}$ PIO's (64 I/O lines) - 280A CTC
- Standard $100 \mathrm{~mm} \times 160 \mathrm{~mm}$ Eurocard Cost effective prices (£94.04-10 off) Cost effective prices (194.04-10 ofl)
includes all connectors, manual eic.

Designed to meet the power and flexibility of today's stand - atone micro-controllers, the GNC CUB makes full use of the powerful 280 family C s s. Micro-controliers are available with up to 64 K RAM, 8 K EPROM, RS232 etc Manuals include circuit diagrams and assembly language listings. No ULA's, PAL's or other funnies. Write, phone or circle to find out more about our powerful range of Z80A micro-controllers and multi - lasking software.
PRICES
CUB (built \& tested) \quad GNC ELECTRONICS
Bare board Litlle Lodge, Hopton Road, Manual (free with CUB/board) $£ 3.50$ Theinetham, Diss, Norfolk. IP Please add E1.00 for P\&P plus V.A.T. Tel; Diss (0379) 898313

CIRCLE 64 FOR FURTHER DETAILS

Andelos 68000 SYSTEM

Powerful 68000 runs at 10 MHz without wait states. Up to 32KB EPROM and 4 or 16KB fast static RAM. 24 line programmable parallel I/O port. RS232 programmable serial port. Comprehensive monitor in 2764 Eproms. Optional plug-in Eprom programmer card. Cross Assemblers for $Z 80$ based microcomputers. Code can be developed, downline loaded to 68000, debugged, and then written into Eprom.

* 10MHz 68000 CPUBoard.
from £295+VAT
* EPROMPROGRAMMER card \qquad £95+VAT
* CROSS ASSEMBLER for Z80 hosts ... from£55+VAT

Andelos Systems

Telephone: (0635) 201150
Solina, Bucklebury 'Alley, Cold Ash, Newbury, Berkshire RG16 9NN
CIRCLE 51 FOR FURTHER DE'TAILS.

Choosing a computer board

 Ten tips for first-time buyers ofsingle-board computers. Chris Nabavi argues
that complete computer boards offer
advantages over rack systems with industry
standard buses, especially for users requiring
an economical small system for use with
non-standard interfaces.

The microcomputer board market has changed drastically over the past few years. Whereas five years ago one could select from a wide variety of different products, the choice now is much more limited. This is particularly due to standards which have emerged recently, and partly due to the fact that many of the original manufacturers have moved up into the personal computer field. As any intending purchaser will know, this has left quite a large gap.

Microcomputer boards now available fall into four main categories,

- Hobby computers

- Personal computer
enhancements
- Rack-based systems
o Single-board computers

Hobby computers

The object of most technical hobbies is to have fun constructing a model aeroplane, boat, wireless, etc. Once the object is ready, it is time to move to the next project. The same is true in the computer field; the computer enthusiast revels in the problems of getting a machine to work with devices for which no proper interface exists. Hours will be spent trying to get a computer board to work with the largest and most up-to-date ram devices, but the final product is rarely used in earnest.

Professional users however want a product to do a specific job with the minimum amount - if any - of constructional work.

For instance, they do not want to have to add special cables to convert the serial interface connector on the board to a standard form. For this reason it is important to discover the intended market for a particular board before buying it.

Personal-computer enhancements

These boards probably represent the fastest growing area at the moment. They include a wide range of plug-compatible peripheral and memory cards for popular microcomputers as well as a selection of second-processor options. While of great importance in wider terms, these boards are of no interest to the originalequipment manufacturer who wants to implement a particular system, unless the rest of the personal computer involved can be made use of.

Rack-based systems

Recent standards such as the IEEE S100 bus and various European introductions have had most impact on rack-based systems. It is now possible to buy almost every conceivable type of interface, processor or memory board for the more popular standard buses. These standards allow powerful computer systems to be assembled for a variety of complicated applications but often, for simpler applications, the expense of card frames and bus-interface circuits cannot be justified.

Single-board computers
There exists a large number of straightforward control, monitoring and instrumentation applications for which a single-board computer is ideally suited. In many such applications, the two most important considerations are cost and ease of use. These factors often rule out both the rack-based approach and hobby boards. Many single-board computer users are not computer engineers; they may even be pro-cess-control or mechanical engineers, which makes ease of use even more important.

These ten guide lines are for potential single-board computer users. They are not in any particular order and how you weight them will depend on your application.

How complete is the board?

Find out what needs to be added to the board to make it usable. Typical items that may need to be added are a power supply, memory i.cs, connectors and sometimes even input/output i.cs. It is, for example, quite common for reasons of cost or board space to terminate RS232 serial ports using non-standard connectors (insulation-displacement types for example). Adding a ribbon cable with appropriate connectors at each end can increase overall cost considerably.

Chris Nabavi is Director of Sherwood Data Systems.
Here (and over) are products from manufacturers and distributors mentioned throughout our computer board feature (starting on p. 49).

Is extra i/o easy to add?

Facilities offered on a board always represent a compromise. Some users will bemoan the lack of an extra input/output port while others would prefer a simpler and cheaper board. While the flexibility of a rack system cannot be achieved with a single-board computer, it should at least be possible to add one or two 'daughter' boards, particularly when one considers that many users require non-standard interfaces. The main board should have some means of supporting such boards both physically and electrically.

Are the main i.cs all from the same family?

Designers of general-purpose single-board computers are often tempted for reasons of cost to mix different chip families. For example, the microprocessor may be from one family and the uart (universal asynchronous receiver/ transmitter) from a totally unconnected family. This can destroy the coherent nature of the design and ruin such things as interrupt structures. It also usually increases component count, leading to reduced reliability. It is better to have a few large-scale integration i.cs than many more small-scale ones.

What happens when the power fails?

A well designed board will have protection circuits which prevent information in memory from being corrupted by switching transients or by the microprocessor itself as its supply rail collapses (assuming battery backup). A power-fail interrupt circuit may also be available. This causes an interrupt signal when the mains supply fails which can be used to close the system down in a controlled manner before the supply capacitors run out of charge. The system can then be programmed to shut down dangerous machinery or to save the microprocessor status to enable it to continue when the power returns.

Is maintenance easy?

It is important that any system should be easy to maintain in the field, preferably without too much reliance on any other single organization. This means that as far as possible, all components should be available from a second source and that no special devices should be used unless their continued availability can be guaran-
teed. While programmable logic arrays and the like are an excellent way of implementing a design, their use in this type of single-board computer should be treated with caution since it can place unwary users at the mercy of the original board manufacturer.

How versatile is the board?

Versatility is a two-edged sword. Too much versatility can make a system very difficult to work with, as users of some of the larger rack-based systems will already know. It can however be useful to be able to configure the board for various popular memory i.cs and to activate various other clearly defined options. This is normally done by jumper links or wire-wrapping options. Straightforward designs which are easy to understand and set up are often the best option.

How rugged is the design?

This is probably the most difficult question of all to answer without buying the board concerned. For the design to be rugged, and hence reliable, several criteria must be met. Firstly the components must be conservatively rated, which is not too difficult to achieve nowadays. The board must have a clean layout with sensible tracking, particularly for the ground lines. Pull-up resistors should be used on any mos signals that leave the board and adequate decoupling capacitors should be used. This last point is particularly important when one considers where such boards are likely to be installed. Timing must not be critical - something which is easier to achieve if the designer sticks to one device family.

What about software?

Applications software is usually the responsibility of the purchaser. As a starting point, boards based on popular and proven microprocessor families are much more likely to result in a successful end product. Choose a board which uses a microprocessor whose quirks are well understood by the average programmer and for which suitable software development tools are available.

Emulators simplify the program development considerably and the owner of a good development system with an emulator and associated software will generally not need any support from the board supplier. This approach is however expensive in terms of capital investment.

Users without such facilities are much more dependent on the board supplier. They can use software support from the board manufacturer in the form of say a debug monitor, preferably used in conjunction with a personal computer. Alternatively, a high-level language such as Basic, if available, may be used to write applications software. In either case, it is important to check how much support software is available and what it does, since without it the board is not much use.

How is the board installed?

Practicalities of installing an off-the-shelf board into one's own system are often overlooked. Boards vary enormously in their physical size, power requirements, connector positions, etc. Generally speaking, boards designed for rack mounting are more difficult to install in a non rack-based system than boards specifically designed for more independent mounting.

Boards are now available with built-in mains power supplies. These are ideal where no other electronic circuits are required. Even if other circuits are required, the supply on the main board may be capable of powering them. Positions of connectors and switches can make a great deal of difference to the convenience with which a board can be installed. Finally, look at overall heat dissipation since this can ruin an otherwise attractive design.

How useful is the documentation?

Since the board is a subassembly intended to be used as part of a larger system, how it works and what it does must be crystal clear. This means that documentation must be complete and accurate. A full circuit diagram is of course mandatory as is a description of how the circuit works. When the board offers various options to be selected by say jumper links, the function of each should be fully described.

It is useful to describe the operation of such links on two levels; firstly at a simple recipe level, for example 'for an 8 K ram install jumper link seven...' and secondly on a more technical level such as 'jumper link 7 selects the signal on the ram pin 23...' This approach can be adopted in other areas too. It allows the more enterprising user to apply the board in ways not forseen by the designer.

FRIENDLY SETS

"The UK plans" (those of the BBC ?) mentioned in
Communications Commentary, EWW, Nov, 1984 for segmentation of the band by function are superficially elegant - but they are grossly wasteful of the spectrum as perceived at the listening end. Surely Britain is the only developed country with as much as 2.2 MHz (11 channels) interval between three different main channels and nothing (officially) in between them even in metropolitan areas?.
Is it necessary to remind the BBC that when they started broadcasting three programmes on this plan, the transistor let alone the i.c. - was unheard of in v.h.f. receivers? The typical f.m. receiver of that time had a broad-band fixedtuned r.f. stage followed by one i.f. stage (two in sets described as "fringe area models") and one final stage to a ratio detector, the i.f. transformers being broadly tuned with a view to low distortion and commonchannel rejection and often working in the anode circuit of the same valves as the m.f./l.f. i.f. transformers. Adjacent and even altemate channel selectivity was... negligible..., image rejection poor. The r.f. performance of even cheap portables of today is several orders of magnitude superior and it is simply not arguable that frequency allocation for the '80s and ' 90 s should resemble that of the ' 50 s .
It is arguable that a wider perceived choice of programmes (a "full dial" - even if most listeners may in fact stay most of the time with one of two favourite stations) could help bring about the desirable resurgence of interest in listening to sound radio and the long-overdue (in UK) swing to f.m. listening, and in this respect the following story in your pages, "F.m. for the young", reporting American trends, is suggestive.

It is unlikely that many of the young Americans have as few choices, or as much f.m. repetition of programmes perceived as more easily tunable on m.f./a.m., as British ones. On a recent visit to Toronto I counted 38 different programmes clearly receivable on the f.m. dial of a very
ordinary portable.
I believe that the BBC could easily, at the very least, provide a separate v.h.f. network for R1, making four national services, simply by reducing the spacing of the existing three. Then the pirates have shown that relatively low-power transmitters can operate between the frequencies of the national network. This is a desirable arrangement if real variety of listening is to be promoted: it is by being "found" when a listener tunes manually from one main station to another that the smaller, less publicised ones will get heard. Ian Leslie
London

PREFERRED VALUES

I would like to add to recent discussions on preferred values series for electronic components. In the early period after World War II, when the existing series was proposed, manufacturing techniques were generally of limited prescision. Thus the over-riding consideration was to provide a series of numbers for labelling bins into which products could be stored. Applications were mostly for analogue circuits where relatively large tolerances were permissible Precision components, needed for instruments, were made by special low-run techniques and binary circuit applications were non-existent. Modern technology has modified considerably the scenario.

A more desirable set of numbers can be constructed by taking advantage of the close approximations between suitably chosen, regularly spaced powers of 2 and 10 , derived from the fact that $2^{10 / 3}$ $=10.079 \approx 10$. Thus regular integral powers of $2^{1 / 6}$ approximately match integral powers $2^{1 / 20}$. We can thus set up a series which includes integral powers of 2 and at the same time can be adjusted to merge into a scale including integral powers of 10 .
The table shows a proposed series of such numbers. Simple integral values 1 to 10 are represented, apart from 3,6,7.

					Number series
10^{0}	1	2^{0}	Powers of 2	1	0
$10^{.05}$	1.122	$2^{1 / 6}$	1.122	1	1.12
$10^{.1}$	1.259	$2^{2 / 6}$	1.260	2	1.25
$10^{.15}$	1.413	$2^{3 / 6}$	1.414	3	1.4
$10^{.2}$	1.585	$2^{4 / 6}$	1.587	4	1.6
$10^{.25}$	1.778	$2^{5 / 6}$	1.782	5	1.8
10^{3}	1.995	2^{1}	2	6	2
$10^{.35}$	2.239	$2^{7 / 6}$	2.245	7	2.25
$10^{.4}$	2.512	$2^{8 / 6}$	2.520	8	2.5
$10^{.45}$	2.818	$2^{9 / 6}$	2.828	9	2.8
$10^{.5}$	3.162	$2^{10 / 6}$	3.175	10	3.2
$10^{.55}$	3.548	$2^{11 / 6}$	3.564	11	3.6
$10^{.6}$	3.981	2^{2}	4	12	4
$10^{.65}$	4.668	$2^{13 / 6}$	4.49	13	4.5
10^{7}	5.012	$2^{14 / 6}$	5.04	14	5
$10^{.75}$	5.623	$2^{15 / 6}$	5.657	15	5.6
$10^{.8}$	6.31	$2^{16 / 6}$	6.35	16	6.4
$10^{.85}$	7.08	$2^{17 / 6}$	7.127	17	7.2
$10^{.9}$	7.943	2^{3}	8	18	8
$10^{.95}$	8.913	$2^{19 / 6}$	8.98	19	9.
10^{1}	10	$2^{20 / 6}$	10.079	20	10

These can each be implemented by combinations of pairs of numbers selected from the series. Ranges of 9 successive doublings are available. The numbers $1,2,4,5$ and 10 are useful for scale multipliers and the 9.1 and 8.2 combinations would be useful for potentiometric applications.
H.W. Holdaway

Coogee
N.S.W.

Australia

DISPLACEMENT CURRENT

Maxwell's displacement current provides a physical mechanism for the thermodynamic concept of entropy.

When a capacitor is connected across (strongly coupled with) an e.m.f. the microscopic electronic configuration of the circuit changes as charges are redistributed around the circuit, The 'information' that any changes in (relative) position of the microscopic elements has occurred propagates out at a finite speed to ('communicates with') distant space (entropy losses), which constitutes the loosely coupled environment (Mach's principle). In other words, the circuit scatters energy to space when it is closely coupled to the e.m.f.
Consider the problem of bucket charge fransfer from a virtually infinite source to a finite reservoir

On each cycle of the changeover switch $\mathrm{C}_{\text {ref }}$ charges to a constant

voltage \mathbf{E} then shares its charge with the (unknown, say) capacitance C_{x}, On each switching contact there is energy loss (or 'taxation') from the circuit. It is elementary to calculate the voltage on C_{x} after n switchings and obtain the assymptotic solution (sent to WW Editor in 1982, I believe, and dramatically forgotten as of no significance to the theoretical real world).

How does Mr Catt's theory, based on its fundamental causal concept of 'energy' (whatever that really is), and, no doubt, on the principle of its conservation within any electrical system, account for entropy losses?
P.J. Ratcliffe

Stevenage
Herts

ROOTS OF RELATIVITY

Strangely enough, it is often the exponents of the theory of Special Relativity, in their enthusiasm to expound and defend the theory, who do it more harm by their inadequate presentations than is ever done by the theory's opponents. An example is N.B. Taylor's letter in October 1984. In discussing Dr Murray's Roots of Relativity (May 1984) N.B. Taylor begins by stating that "AM" is not equal to $\mathrm{BM}^{\prime \prime}$ " and then not only misses the point of the discussion but also misses Dr Murray's glaring error. To obtain a paradoxical conclusion by applying a deductive process to a set of premises, then either the premises are inconsistent or the deductive logic is faulty and possibly both. The error in Dr Murray's analysis is a purely logical error which has nothing to do with relativity or, for that matter, with much of the discussion preceding the error. During his discussion, Dr Murray concludes that the passage times for the light travelling from A to M^{\prime} and B to M^{\prime} are the same. Whether or not this is a valid deduction is incidental to the logical flaw that then appears: Hence the light from both sources must reach M^{\prime} at the same time, ...". Quite simply, for this conclusion to be valid given the equality of passage times, an implicit assumption has been
made that the two beams of light started their journeys at the same time. Naturally, Dr Murray is discussing time as measured by M^{\prime} with a view to showing that M^{\prime} will conclude that the lightning flashes are simultaneous. Given the implicit assumption few would experience an problem demonstrating such simultaneity!
The absurdity of the conclusion is obvious: the flashes were chosen to meet each other at M and during flight the observer M^{\prime} simply moves on towards B from M. This, of course, is true no matter how the light propagates, so that the absurdity is not caused by any premise concerning the velocity of light and one is left with little choice but to look for a logical error.

Another flaw, which introduces the same assumption, is easy to find in Roots of Relativity. This time there is the misuse of the word instant in: "But at the 'instant' when the flashes occur..." when analysing what M^{\prime} observes. Since there are two flashes they can only occur at an instant if, in some sense, they occur simultaneously and as far as M^{\prime} is concerned this would be an assumption. The gradual disappearance of qualifiers such as "relative to" or "as observed by", in articles of this type is a strong pointer to the intent to introduce such misuse!

When Dr Murray concludes that the distances AM^{\prime} and BM^{\prime} are equal, he is intending to establish that the passage times for the light to travel to M^{\prime} are the same, as observed by M^{\prime} in a co-ordinate measuring system travelling with M^{\prime} and the train. This is done by using the assumption made in the theory of relativity that an observer such as M^{\prime} will measure and observe the velocity of light to be a constant which is independent of the direction of the light or the state of motion of its source. Thus if A' is the point on the train that coincides with A as A is struck by lightning then the distance $\mathrm{A}^{\prime} \mathrm{M}^{\prime}$ as measured by M^{\prime} is the passage time measured by clocks at A^{\prime} and M^{\prime} multiplied by the velocity of light. Similarly, B' is the point on the train which coincides with B
when it is struck and the passage times are equal if the distances A'M' and B'M' are equal. Clearly $A^{\prime} \mathrm{M}^{\prime}$ and $\mathrm{B}^{\prime} \mathrm{M}^{\prime}$ are the distances between fixed points $\mathrm{A}^{\prime}, \mathrm{M}^{\prime}, \mathrm{B}^{\prime}$ in the system moving with the train and AM, BM are distances between fixed points A, M, B on the railway embankment, the choice of M ensuring that distances AM and BM are equal. But $\mathrm{A}^{\prime} \mathrm{M}^{\prime}$ is the distance, measured in the system moving with the train, of the interval AM: M' was chosen to coincide with M, just as A' coincides with A, at the same time, at least as far as the observer M on the embankment is concerned. An identical statement can be made concerning B'M' as a measurement of the interval BM. Now the theory of special relativity requires space to be homogeneous so that where such measurements are has no effect on the result and we must conclude that A'M' equals $\mathrm{B}^{\prime} \mathrm{M}^{\prime}$.
By not defining the spatial origin of the co-ordinate system he uses on the train, N.B. Taylor continues the longstanding tradition of contributors to these pages by avoiding explicitness and engaging in undefined and therefore meaningless symbolism. From his statement, "their signals reach him simultaneously at $\mathrm{t}^{\prime}=0$ ", where "him" refers to M", one might conclude that the definition of M' has been completely misunderstood. As has been shown there is no question of the light from the flashes ever reaching M' simultaneously. The real point is that the introduction of the Lorentz transformation is wholly inappropriate at this point: Dr Murray's presentation is basically that of Einstein in his book "Relativity The Special and the General Theory" and is discussing the foundations of the theory and the need to revise the concept of simultaneity. Of course the Lorentz transformation, if used carefully, will give a consistent picture! It was designed to! A.J. Clayton.

Stoneygate
Leicester

TV CAMERAS

May I comment on Mr Stocks' letter in the October issue.

He is quite correct in summarising the BBC's equipment buying policy as aimed at acquiring what is most suitable for the job:'suitable' of course covers many factors including technical and ergonomic performance, cost, manufacturers support, and others. We are very conscious of where our money comes from - the licence payers - and our policy is directed to giving them the best value for their money.
As a national organisation we have of course the desire to buy British where possible. We fulfil this, not by settling for second best where foreign equipment is superior, but by encouraging and assisting British manufacturers in any way we can, so that what is British is in fact the best.

No doubt Mr Stocks will understand that I cannot detail the comparisons which led to our choice of Fernseh for the news studio cameras, but I can assure him that the principle outlined above was very much in mind.
D.P. Leggatt

Head of Engineering
Information Department
BBC

ENERGY
 TRANSFER

My article in Wireless World, September 1984, entitled Fundamentals of Electromagnetic Energy Transfer led to a large number of comments being published in the November issue.
D.J.O'Reilly complained about my confusing impedance and resistance, "...leaving (my) transmission line analysis without value."
I have for long thought that use of the term "characteristic impedance' for a transmission line is misleading - it certainly is for a lossless line, because the word "impedance" implies a combination of resistance and reactance, (see for instance "Advanced Physics" by S.M. Geddes, pub. Macmillan 1981,
page 189 ,) whereas a lossless transmission line contains no reactance. It is for this reason that for many years I have wanted to use the term 'characteristic resistance'. (Also note in Wireless World Oct, 1984, page 50 , the criticism of the repeated LC model for a transmission line. The idea that a transmission line contains alternate L and C is false and destructive.)

When O'Reilly writes, "It is rubbish to say that modern physics ignores the impedance of free space, antenna theory and practice is based on it," he ignores the distinction made earlier in the article between 'modern physics' and digital electronics. Under such classification, antenna theory would certainly not fall within modern physics. Ask modern physics pundits, for instance Professor Paul Davies of Newcastle University or Nobel Prizewinner A.Salam of Imperial College whether they have studied antenna theory. O'Reilly is surely not disputing my point, that modern science is seriously fragmented.
No comment on Messrs. Potter and Morton. Whatever lecturer or text book taught P.L. Taylor that "...the wavefront is bowed outwards, convex...", i.e. that a TEM wave is not TEM? Certainly not Heaviside, see refs. 2 and 3 in my September article.

I agree with Alan Robinson that if a conductor were filled with a row of rigid electrons touching each other, simulating a rigid rod, then an effect could travel at infinite speed even if the electrons (= rigid rod) travelled slowly. This has nothing to do with the theory of the TEM wave, at least as discussed heretofore. Is Robinson inventing the 25 mm - 26 mm scenario, or will he give us its pedigree?

Referring to Robinson's final point. At the diameter of the wires entering the capacitor, the characteristic impedance of the pair of parallel plates is already very small, and is resistive not inductive. Any reflections resulting from the mechanism he mentions, of a semi-circular flowing out from the entry point to the two plates, can only serve to reduce an already low resistance. This effect does not correlate with the traditional values of series inductance
alleged to be contained within capacitors, (and which are actually a function of something outside the capacitor - its legs;) which are orders of magnitude larger. Robinson has introduced a high quality red herring.
Ivor Catt
St Albans
Hertfordshire

ELECTRIC CHARGE FROM A RADIO WAVE

Your November correspondent M.G.T Hewlett makes several points that should be answered. I believe he is quite wrong in saying that a field built from time-varying but spatially-static vectors is not a rotating one in the true sense, but this point is not pertinent to the main argument, so I shall let it pass.

Mr Hewlett should read again the original article (Aug, 1983). There, Professor Jennison told us of his theory, and
demonstrated in the laboratory what was happening. That machine, which was illustrated in colour on the Wireless World cover, was a 32 -stage cyclic oscillator, or a $32-\mathrm{ph}$ generator. I have no objection to the machine as such, and it may have a valuable role in demonstrating rotating fields. My objection is simply that it does not model the theory advanced, so nothing of that theory can be deduced from it.

Consider Professor Jennison's postulates. Basic to his development is that in principle we can have dielectric with a propagation velocity so low that we can achieve it in mechanical drives. Let us suppose that we have such a material and that it is transparent to light, which it will similarly slow. Suppose now that we make a vehicle windshield from such a material and drive it towards a source of light. The light will approach the front surface of the window with the velocity of light in air, but in the material will be retarded. If Professor Jennison's theory is right, an observer stationary on the road would see at a certain vehicle speed, the light arrested within the glass. In other words the glass
would be opaque to him if the vehicle approached the source at the propagation velocity. On the other hand, the driver would get a different picture, for he would note the reduction in velocity in the glass, but nevertheless the light would emerge from the rear surface and resume its normal velocity. It would indeed be a curious and complex law of physics that could explain the opacity to one observer and the transparancy to another. There is a law of physics to the effect that the velocity of light is the same for all observers, and I believe that the conclusion of Michelson and Morley's celebrated experiment of 100 years ago, is that the velocity of the propagation medium, if there be such a medium, does not affect the observed velocity of light.

If Professor Jennison is right, what are we to make of the condition where we drive the machine faster than the speed required to arrest the light pattern? Are we to conclude from that that it would be possible to reverse the direction of propagation of electromagnetic energy by mechanical means, without reversing either the E or H vector? What new and exciting vistas in physics that would open.
Chris Parton
Dept of Electrical and Electronic Engineering
Bell College of Technology Hamilton
Scotland

In considering what Ivor Catt has to say, one has, I think, on the one hand to be aware of the situation that existed between the Church and Galileo. Although his findings were of the utmost significance to the world in the end, he was a heretic for propounding them. But on the other hand one is tempted to think that it is just possible that Mr Catt is learning as he goes; that I shall not condemn. After all, this was the great genius of Michael Faraday, noticing happenings he was not in the process of seeking, and then following them up. But one has to be so careful of mistaking what one is learning as one goes, for discovery.

I have been poking pulses out of sources to distant destinations since 1924,
whether on wires, down tubes, or just plain flying off into space. And thought processes that have occurred on the way are related to the most incredible mental gymnastics. As early as 1919 , when I constructed my first radio set having a valve, a huge affair with massive oak ends for the loose coupler (about 2 ft long) at a time of relatively lowfrequency operation, I wondered what would happen if wavelengths ever became shorter than the dimension of the tuning condenser. Would the charge get to the outer edge of the plate, before reversal took place and it was on its way out again. I now know that in fact it would have been an unterminated line of non-classic shape. This was to help me in later life, when it came to the contriving of broad-band aerial systems.

Then again, in my mind I would slow down the velocity of a dot on its way over the singlewire telegraph poles, in imagination keeping up with in on my bicycle, waiting for the other dot which had just left the other end. What, I thought, is to be the nature of the collision if the dots are of like polarity? Or the merger if they are unlike? Now that I am very old, using this slowed down technique, I now have a very fair non-mathematical mental image of what goes on.

But the arrival of Ivor Catt on the scene has set me off again. Take the case of a baterry of steady e.m.f. connected to an unterminated line. Wait for the reflections to be absorbed in line resistance, and of course we then have a charged condenser, but no magnetic field in evidence. Now, attempt to change the state of that charge by any means you care to employ, and what have you while charge value is being changed? Why, a magnetic field as long as the state of change exists. It was not there before, so where has it come from. Having charged and stabilised the line, then close it with it characteristic impedance. How does the sending end discern what has happened. One thing that immediately manifests itself is magnetism. Where has it been lurking? Like the heat in unburned fuel. While I have no difficulty in visualising the changes in (dare I use the word)
current value when one does this sort of thing, I have not yet got the answer to the appearance and vanishing trick that magnetism can perform.
My answer when provided has to be non-mathematical, so visualisation can be communicated. So if Ivor Catt is on the track of this, even by accident, good luck to him.
Ouida Dogg
Hurstpierpoint
West Sussex

May I add to the constructive comments of P.Hesketh (Jan 1984) and M.Hewlett (Nov, 1984) on Professor Jennison's Occam's razor article (Aug, 1983).

In experiments of this type, the wave is guided by the wire, e.g. a coil wound with Litz wire. The length of the wave probably equals the total length of the wires of the inductors connected in series, which may be several hundred metres in Jennison's experiment. The apparatus appears to be acting as one closed winding of a toroidal transformer, a closed coiled coil.
Jennison's ingenious experiment visually confirms and emphasises a fundamental fact established by experiment and ignored by modern theorists: that by whatever means the action-at-a-distance force of attraction and repulsion we call 'electricity' is generated, equal quantities of positive and negative electricity are always produced. In all experiments the sum of positive and negative electricity produced is zero. Current electricity always flows in closed circuits. Both requirements are necessary to satisfy the equation of continuity.

Jennison's red and greed leds are connected to sensitive onoff switches designed to detect the presence of either positive or negative electricity, but not their intensity or phase.
C. Parton's (Oct, 1983)
suggestion that the apparatus is a 32-phase generator was illustrated by a diagram showing only three of his phases detected by three different coloured leds to detect 32 different kinds of electricity.

Art. 763 of Maxwell's Treatise deals with his experiment performed to determine the resistance of a coil measured in e.m.units. "A
circular coil is made to revolve with uniform velocity about a vertical axis. A small magnet is suspended by a silk fibre at the centre of the coil. An electric current is induced in the coil by the earth's magnetism, and also by the suspended magnet. The current is periodic, flowing in opposite directions through the wire of the coil during dirfferent parts of each revolution..."

Maxwell's magnetically induced wave-like current is not flowing in the laboratory's frame of reference. The closed coil is flowing through the induced closed current. The strength and direction of the earth's magnetic field is stationary in the laboratory's frame of reference, and so too is the intensity of the electricity induced at any two diametrically opposite elements of the coil, forming a crest of trough at the two stationary points on the earth's frame where two oppositie elements of the coil cut the earth's magnetic field at right angles, and forming nodes where the motions of two opposite elements of the coil are tagential to the direction of the magnetic field. A wave of equal quanta of positive and negative electricity stationary in the laboratory's frame of reference is the only possible distribution of electricity along the wire of Maxwell's revolving coil.

The magnetic induction of a second quantity of stationary positive and negative electricity in Jennison's torus could be detected by rotating the torus with the power to the amplifiers disconnected. A line joining the crest and trough of the standing or stationary wave may always point in the direction of the earth's magnetic poles, with or without the amplifiers operating, a gyro-compass.

The only equation used by Jennison's is derived from Maxwell's laws and equations of the electromagnetic field. Jennison agrees with Maxwell's assumption that his laws and equations depend on the existence of only two kinds of electricity, positive and negative. According to A. Freeborn (Nov, 1983) Jennison and Maxwell are mistaken. Freeborn assumes the positive and negative electricity existing as alternative half cycles of a wave of electricity dependent on the existance of the conducting matter of Jennison's apparatus.

Hertz agreed with Jennison and Maxwell. In the introduction to his Electric Waves (p.19) he said that the most important "philosophical result" of his experiments was "the fact that the electric forces can disentangle themselves from material bodies and can continue to exist as conditions and changes in the state of space." According to Hertz the only two kinds of electricity, plus and minus, are two equal and opposite charged conditions of the state of only one kind of space. The sum of the equál and opposite charged states of space is always a mathematical zero or unchanged state of space, absolute and at rest, satisfies the equation of continuity.
One of the culprits responsible for the present multiplicity of electricities is not too hard to find. In Jennison's experiment the wave's observed velocity relative to the uniformly moving torus is Newtonian. The velocity of a wave of electricity guided by a wire is indentical to the velocity of a wave of the same kind of electricity in nonconducting free space. Perhaps blue and orange leds would indicate the presence of Einstein's frequency modulated electricity guaranteed to prolong active life.
I have followed the example set by Ivor Catt and assumed that Poynting's Theorem, being a theorem of the exact science of applied mathematics, is beyond philosophical criticism.
M.G. Wellard

Kenley
Surrey

DC SUPPLIES

Having read Dr K.L. Smith's article on d.c. supplies from a.c. sources (Oct. 1984, p. 63 on..), it would appear that some very important omissions have been made.

There seems to be an implicit assumption that there is a direct linear relationship between d.c. load current and secondary winding current and the losses which arise therefrom. Surely, if d.c. supplies are being considered, then these supplies would embody output filtering (unless the end object is, say, a very crude battery charger). That being the case, then the
effects of the output filter must be considered in the design calculations for the transformer. This is particularly so in relation to the magnitude of the conduction angle of the rectifiers and the resulting size of the peak current flowing in the rectifiers/secondary winding. It is the size of this peak current (very much larger than the mean current) which dictates the cross-sectional area of the wire to be employed for the winding and the consequent losses.

It is my experience that, unless this consideration is 'built' into the design and then worked backwards towards the primary winding requirements, then a poor design is inevitable. A.M. Wheeler

Essex
One or two comments on Dr K.L. Smith's interesting article may throw some further light on a much-neglected subject.
Transformer design is an art because the science has to be tempered with all sorts of practical limits, such as the finite gradations of lamination sizes and wire gauges. Also, transformer designers quickly realise that a 'little black book', containing details of successful designs, can dramatically cut design times. At the very least, a list of 240 V primaries for all the common lamination sizes is an obvious asset.
It is surprising to read that the use of electrostatic screens has declined, because the screen can be an integral part of the safety provisions in a transformer for Class I (protection by earthing) equipment. Perhaps the reported decline applies only in some sectors of the market, where Class II (protection by double insulation) is the norm.

The clear and helpful explanation of the advantages of grain-oriented silicon-iron (not steel; there is no carbon) might be extended to point out that bolt-holes in the corners of the laminations are not helpful in avoiding core saturation, and that if through-bolts are used, they must be insulated from the core at one end to avoid circulating currents, which cause excess heating and magnetising current.
'No-waste' laminations are also called "scrapless'. Unfortunately the geometry of scrapless laminations is
incompatible with the loss characteristics of copper and silicon-iron, which is the reason why one does not design for maximum efficiency, with equal fixed (iron) and variable (copper) losses at full-load. Such a design would be much larger than necessary, because for the 'scrapless' geometry, with iron and copper, the ratio of winding area to core area is so small. In order to overcome this some 'semi-scrapless' laminations are available, (which produce 4 I's for each pair of E's at stamping) with twice the winding area.

There is a rather important correction to make concerning clearance and creepage. The relevant British Standard is BS414, not BS800 (which is concerned with r.f.i.); alsorelevant is BS3535. The subject is somewhat convoluted, but construction rules are given in the Standards, and moulded bobbins allowing compliance with the requirements are commercially available. This is an area where a thorough knowledge is essential, and risks are not to be taken.
Finally, some comments on the practical design, since that may be most relevant in reducing the mystery surrounding trasformers.
(1) The standard mains voltage is 240 V . Because of the rapid rise in iron loss as saturation approaches, the assumption of 230 V would not normally be justified.
(2) A current density of $3.1 \mathrm{~A} /$ mm^{2} is $2000 \mathrm{~A} / \mathrm{in}^{2}$. this is a little conservative: $3.6 \mathrm{~A} / \mathrm{mm}^{2}$ is usually tolerable for transformers up to 100 VA , which is helpful with scrapless laminations due to the small winding area.
(3) However, using $3.64 / \mathrm{mm}^{2}$, it would not be satisfactory to use the same sort of approximation as Dr Smith uses to justify 30s.w.g. Professional designers usually have access, if necessary, to 'half-gauges' and, naturally, metric gauges are extensively used now. Actually, 275 mA in 30 s.w.g. is $3.53 \mathrm{~A} /$ mm^{2}, which is quite satisfactory.
I hope these annotations will increase the value of Dr Smith's article.

J.M. Woodgate
 Rayleigh
 Essex

ISOLATED VIDEO DRIVER

Following Mr McLau's design published in the July issue and Mr Bacon's comment in the October issue, it seems appropriate to clarify the situation, and hope that this clarification will help future designers.

For household electronic equipment, the relevant safety standard is BS415(1).
Compliance with this standard is not mandatory, even for highvolume manufactured products, but failure of a design to comply with the standard is evidence that it is probably not safe, either due to risk of fire or of electric shock. Equipment offered for sale is required to comply with the Electrical Equipment (Safety) Regulations (2), and compliance with BS415 is prima facie evidence of a degree of safety acceptable under the Regulations.

Different requirements are given in BS415 for Class 1 equipment, in which protection against electric shock hazard is (partly) obtained by earthing accessible metal parts (and other parts connected to them), and for Class II equipment, in which protection is obtained by insulation of high reliability (socalled 'double insulation').
While BS415 is a long and complex document, the following abbreviated guide indicates the main requirements, and if these are met the equipment should be reasonably safe, even if it is in an experimental 'one-off'.
The requirements for mains switches also give rise to confusion, particularly since the rules have changed in the past. The basic requirement is for a double-pole mains switch but there are several important exceptions. Fuses, clocks, r.f.i. chokes and capacitors can be on the supply side of the switch. Equipment supplied through a mains transformer with separate windings (i.e. not an autotransformer) may have a singlepole mains switch. A switch which appears to turn the equipment on and off (but is not a mains switch) is allowed if the equipment consumes less than 10 W when the switch is off, and an indicator shows that mains power is still applied under these conditions. No switch is

REQUIREMENTS FOR:	CLASSI	CLASS II		
Mains lead	3-core insulated and sheathed	2-core insulated and sheathed		
Soldered joints (and the equivalent) at mains voltage inside the equipment.	may be exposed			*must be covered by
:---				
0.4mm insulation.				

*Practical solutions to the requirements: for more details see the Standard.
** Either special wire or ordinary insulated wire in sleeving.
required if the equipment consumes less than 10 W when fully operational. Mains switches are readily available, although there appears to be no generally-available light-touch approved mains switch. Hint to manufacturers!

Constructional requirements are fairly in accordance with common sense. Housings must be of adequate mechanical strength, and the equipment must not overheat so as to risk harm to the user. Live parts must not be accessible without the use of a tool: there are several different tests for accessibility which must be passed. Mains leads must be either captive or connected by means of an approved connector. 'Captive' means adequate resistance to pulling out, pushing in or twisting.

Naturally, this is only an overview of the contents of the Standard, but it contains most of the major points likely to arise in experimental designs.

Applying these considerations to Mr McLay's design, we see that:
(1) The common rail of the video amplifier circuit must be earthed to mains earth (as implied in the text).
(2) If, as is likely, the circuit is built inside the tv cabinet, it must be enclosed in an insulating box, in case a stray wire from the tv circuit should fall on the isolated circuit. (3) The transformer screen must be earthed directly, not through the rectifier.

It should be noted that, contrary to Mr Bacon's comment, the main risk with this type of equipment is electric shock, rather than fire. J.M. Woodgate

Rayleigh
Essex

[^1]
Fast, reliable and low-cost FPRON programming

Our new EPROM/EEPROM programmers give you unmatched efficiency and value for money, They're designed to handle the latest high-density devices, and offer simple and reliable operation. Look at the features:

Production programming:

For production applications, there are three models in the 9000 series, all offering
mprograms up to 8 devices simultaneously

- devices to 512-kbit density
- all major fast-programming algorithms
- software selection - no adapters
16-character alphanumeric display
- auto self-test and fault detection
- simple menu-driven operation
- simple keys for operation/ editing

And these options:

- powerful editor with 8/16-bit programming
- serial and parallel interfaces
label printing, codelock, remote control
add-on emulation

You can buy our model P9010 duplicator for just $£ 795$ or opt for some sophisticated extra facilities:
P9020 provides a high speed RS232C interface, capable of operating to 19.2 kbaud with 16 built-in I/O formats and costs £995.
The £ 1295 model P9030 offers both serial and parallel interfaces. Using its printing facility you can produce labels on
UV-opaque foil. It also provides a sophisticated editor plus a RAM buffer of up to 32 kbytes. All are available ex-stock

General-purpose use:

For lab and general-purpose use, the XP640 emulator/ programmer provides all you need for the latest devices

- 512-kbits RAM buffer
- EPROMs/EEPROMs to 512 -kbit density
- multipage video output and line display
- all major fast-programming algorithms
- software selection - no adapters
- supports JEDEC electronic identifiers
- auto self-test and fault detection
- powerful editing for $8 / 16$-bit operation
- handles single-chip microcomputers
- serial and parallel interfaces
- add-on emulation system
- remote control

Our XP640 provides all the flexibility ycu need for design and development EPROM/EEPROM programming. Its unique video output and 16 -character display enhance the built-in editing facilities. The RS232C interface supports 16 formats with transmission rates to 19.2 kbaud. You can expand the system to handle both Intel and NEC single-chip micros, or add on 128-, 256-or 512-kbit emulation modules. The XP640 costs just £795; the XA64 single-chip
microcomputer programming option adds $£ 225$, emulation modules start at £395 for 128-kbits. Ex-stock delivery.

GP Industrial

GP Industrial Electronics Ltd

Unit E, Huxley Close
Newnham Industrial Estate
Plympton, Plymouth PL7 4JN
Tel: (0752) 342961 Telex: 42513 CIRCLE 77 FOR FURTHER DETAILS.

The Compact Disc system

CD has delivered the goods and been accepted as a Very Good Thing - history will have to forgive those who claimed otherwise, says John Watkinson in another penetrating and highly illustrated series.

Sufficient time has elapsed since the launch of the compact disc for the world to listen and evaluate. The promises which heralded CD - no pops and crackles, unmeasurable wow etc. - are demonstrably true. The compact disc has delivered the goods and has been accepted as a Very Good Thing, and history will have to forgive those who claimed otherwise.

CD results from a marriage of many disciplines, and yet in each is so close to the current limits of human knowledge that it is little short of a miracle to find it a mass-produced world standard and not a laboratory curiosity. CD is a synergy of laser optics, servomechanisms, error correction techniques and both analogue and digital electronics that was
only realised by the joint efforts of Philips and Sony.
A history of the compact disc should include not only the tech-
nological problems, but also the human problems of coordinating such an enormous research effort and gaining acceptance for the

In readout of a Compact Disc the presence of a layer raised by a quarter wavelength causes destructive interference in the reflected light. Fig. 2.

Fig 1. Main steps in Compact Disc mastering and cutting process. This first article covers the 'cutting' and stamping process, while following parts reveal the detailed operation of the player optics and electronics (lower part of diagram). Later installments describe p.c.m. encoding from stereo mixdown, digital audio editing, and subcoding onto the master cassette (upper part of diagram).

Fig.3. Almost all of these stages in the manufacture of Compact Discs require the utmost cleanliness in processing.

1 results. This series of articles must concentrate on the technolovy of CD and the supporting equipment, and can only acknowledge the other achievements. It is not, then, a history of CD but a detailed description of

CD is one symptom of a trend toward digital audio. The ultimate goal is to digitize the signal at the microphone, and perform all the normal processes of disc production: multi-track recording, mixing down to stereo etc.,
(e)

Laser cutting
 and etch pits
in the digital domain for direct transfer to CD. This goal has not been reached yet, but is remarkably close. As this series is concerned specifically with $C D$, the sequence of events shown in Fig. 1 commences with the production of stereo p.c.m. master tapes mixed in the analogue (or, rarely, digital) domain. Some 'classical' recordings have been made by mixing live down to a CD mastering recorder. The mastering recorder act ually consists of two units. The digital samples are converted to a p.c.m. adaptor into a signal which resembles a video waveform well enough to be stored on a slightly modified U-matic industrial video cassette.

As the final disc may well contain several different pieces of music, an editing process is necessary to assemble a master cassette which contains those pieces in their final order. The duration of pauses between pieces, any crossfades between
pieces, and the setting of levels of one piece relative to another, will all be determined by the master cassette. Every sample on this cassette, number for number, will be transferred to the disc during the cutting process. The term 'cutting' is a misnomer because CD is created photographically, but there are sufficient parallels which vinyl disc cutting for the term to have been adopted.

Following the cutting process, a number of stampers is produced by electroplating, in the same way as for vinyl disc production, but with rather greater precision. These are then used to press discs which, after further processing, can be played in the home. This sequence of events largely defines the parts of the series, which will cover the disc itself, the player, the mastering recorder and the editor.
The information layer of CD is an optically flat mirror upon which microscopic steps are raised. A thin layer of aluminium renders the layer reflective. When a small spot of light is focused on the information layer, the presence of the
(i)
this process in greater detail. Fig. 2 illustrates the very small dimensions involved. For comparisons, about 60 CD tracks can be accommodated in the groove pitch of a vinyl LP disc. These dimensions demand the utmost cleanliness in many stages of CD manufacture.

CD manufacture

The initial step in mass production is to produce a glass blank that is ground and polished to optical flatness. The blank is washed and spun dry, and an adhesive layer applied, followed by a coating of photoresist. The thickness of the resist layer must be accurately controlled, and the resist surface is optically scanned to ensure that there are no defects that could cause data errors or mistracking in the final product. The resist coating is oven cured and then ready for cutting (Fig. 3).
In the cutting process, shown in simplified form in Fig. 4, a continuously operating helium-neon laser is focused on the resist coating as the disc blank revolves, intensity modulated by an acoustic device controlled by the encoder. When in a relaxed state light can pass through the device. but when the surface is excited by high frequency vibrations, light is scattered. The laser is driven from the innermost part of the surface to the outer as the blank revolves. As this is taking place, rotational speed is slowly reduced in such a way that the velocity of the laser beam along the disc surface
remains constant.
(i)
 the way in which the light is reflected back. The height is designed to be a quarter wavelength of the light source used, so that light reflected from the mirror surface will have travelled $\lambda / 2$ further than light reflected from the step, causing cancellation. As a result variations in the reflected light can be detected to produce the readout signal. Part 2 examines

The resist is then developed, a process which hardens the unexposed areas. Etching removes the exposed areas to create pits in the surface of the resist. The surface is then given a coating of silver by evaporation to render it electrically conductive. In a smiliar way to the vinyl record process, a Father is made by electroplating with nickel, itself plated to produce a Mother. From the Mother, a number of Sons can be made which will be the dies used to stamp discs. Stamping transfers the pit structure to the transparent plastics disc material.

Because every step in this process produces a mirror image, the fact that there are an even number of processes-Father-Mother-Son-Disc-means that the disc will be identical to the blank. A thin layer of aluminium is applied to the information layer followed by a protective coating of lacquer. The disc is centred by optically optimizing track runout, the hole punched, and the label printed or fixed to the lacquer surface. The disc will be read from the opposite side to the information layer, so the pits appear as bumps. The quality of the pressing can be checked optically, as any defect which would corrupt data will be visible.

Disc dimensions

Within an overall diameter of 120 mm the programme area occupies a 33 mm -wide band between the diameters of 50 and 116 mm ; lead-in and lead-out areas increase the width of this band to 35.5 mm , the track pitch constant at $1.6 \mu \mathrm{~m}$, there will be $35.5 \times 10^{3} / 1 \cdot 6=22,188$ tracks crossing a radius of the disc. As the track is a continuous spiral, the track length will be the above figure multiplied by the average circumference. So track length is

$$
\begin{gathered}
2 \pi \times \frac{58.5+23}{2} \times 22188 \mathrm{~mm} \\
\approx 5.7 \mathrm{~km}
\end{gathered}
$$

These figures give a good impression of the precision involved in CD manufacture.

Part 2 takes a detailed look at the physics of CD reading.

Advantages of the Compact Disc

Optical readout is a non-contact process, so there is no wear mechanism. The optical system focuses on the information layer below the disc surface in such a way that debris and surface scratches are generally out of focus and their effect reduced. The combination of this and a powerful error correction strategy produces a medium which is highly resistant to handiing.
A disc format permits the use of pressing for mass production, and rapid access to a desired location. Access is further facilitated by codes buried in the data stream that permit the beginnings of items to be precisely located, allowing remote timer control, and making possible the construction of a CD juke box.
The digital sampling system means that the CD process, from cutting through pressing and reading, produces no audio degradation because it simply conveys a series of numbers that are the same as those on the master recording which fed the cutter. The only part of a CD player which can cause subjective differences in sound quality is the digital-to-analogue conversion process.

The use of 16 -bit quantizing permits a wide dyanmic range, not to be confused with the sig-nal-to-noise ratio. Left and right channels are carried by separate
number streans, thus crosstalk due to the disc is zero. Samples are temporarily stored in ram in the player and clocked out by a crystal oscillator giving zero wow and flutter, since disc speed variations only affect the ram writing speed. The small size of the disc permits future development of dashboard and portable players.

Fig.4. Focus subsystem controls the spot size of the main cutting laser on the photosensitive blank. Rotational and travers motors need to be coordinated for constant pitch and velocity.
Fig.5. Dimensional specification of the Compact Disc shown means the spiral track between diameters of 46 and 117 mm is 5.7 km long!

Micro-controlled cassette recorder

 Concludes the series with a description of the

 Concludes the series with a description of the machine-code control software.

M/C subroutines to control deck

I have only briefly described the operation of the programs for automatically SAVEing and LOADing computer programs, because my detailed m / c program could be written for the BBC computer since it, too, has a vectored input routine. In addition to SAVE and LOAD commands, the BBC computer uses a CHAIN command, so that routines would have to be written to handle AUSAVE, AULOAD and AUCHAIN. It is my intention to write a suitable program for the BBC computer as soon as time allows but as the BBC computer is also a 6502 -based machine I describe some of the m / c subroutines for handling the cassette deck.
The first m / c subroutine, :RUTR, is one designed to put the cassette deck into its various modes of operation. I use Port B of a 6522 v.i.a. chip for controlling the deck's functions. The base address of my 6522 is \$F110. Table 1 shows the logic signals required on the outputs of the various bits of the 6522 to put the cassette deck into its various modes of operation. The A-register must be loaded with the desired logic function followed by the command JSR : RUTR.

The second routine, :CHRU is one that determines whether, or not, the tape-recorder is running. It is particularly useful when rewinding the tape to the beginning, and is able to detect when the motion ceases so that the rewind function may be stopped

Function	PA_{7}	PA_{6}	PA_{5}	PA_{4}	PA_{3}	PA_{2}	PA_{1}	PA_{0}	Hex
Stop	0	0	1	0	1	1	1	1	$\$ 2 \mathrm{~F}$
Record	0	0	0	1	0	0	1	0	$\$ 12$
Play	0	0	1	1	0	0	1	0	$\$ 32$
Rewind	0	0	1	1	0	0	1	1	$\$ 33$
Forward	0	0	1	1	0	1	1	0	$\$ 36$
Search forward	0	0	1	1	0	1	0	0	$\$ 34$
Search rewind	0	0	1	1	0	0	0	1	$\$ 31$

and the next function started. The input on bit PB_{6} is derived from the output of the tape-recorder's motion sensor and is continually changing whilst the deck is in motion. Once motion ceases PB_{6} does not change. The program simply checks that the bit, PB_{6}, has changed since it was last read. It is exited after a short delay, determined by the various loops, once PB_{6} is constant. Effectively the program remains within this routine whilst the tape is in motion and exits once motion ceases.

The third subroutine, : REST, uses the previous two to rewind the tape to its beginning and then resets the electronic up/down counter to zero. The up/down counter is addressed via Port A of the 6522 v.i.a. chip.

The fourth and fifth subroutines, :GOED and :GOEP, are very similar and both use the very much longer sixth subroutine, :EDEP, to wind the tape to the required location. I have used a number of temporary stores, from $\$ 02 \mathrm{EE}$ to $\$ 02 \mathrm{FF}$ (which are part of an unused area of ram below the Basic program memory, in the UK101), to hold various values. In the case of the :GOED subroutine, \$02F8 and $\$ 02 \mathrm{~F} 9$ hold the high and low bytes of the electronic counter value for the beginning of the directory on tape. The values are stored in b.c.d. format. For the :GOEP subroutine, memory locations, \$02F6 and \$02F7 hold the high and low bytes of the electronic counter value for the position of the start of the program again in b.c.d. format. (The 'find program name' subroutine loads these stores with the appropriate values of the program's position on tape by looking-up the directory.) The remaining memory locations, $\$ 02 \mathrm{~F} 0$ to $\$ 20 \mathrm{~F} 5$, are working stores for use by the :GOED, :GOEP and :EDEP subroutines. Both the :GOED and :GOEP subroutines merely transfer the appropriate values of the directory's or program's posi-
tion on the tape to the two working stores, $\$ 02 \mathrm{~F} 4$ and $\$ 02 \mathrm{~F} 5$ and then jump to the main subroutine : EDEP.
The first part of :EDEP simply separates the upper and lower nibbles of stores $\$ 02 \mathrm{~F} 4$ and $\$ 02 \mathrm{~F} 5$ and places them in the lower nibble positions of stores $\$ 02 \mathrm{~F} 0$ to $\$ 02 \mathrm{~F} 3$. The second part of the subroutine compares the low nibbles of \$02F0 to \$02F3 with the four digits of the current value of the electronic counter, from the most-significant-digit (m.s.d.) to the least significant digit (l.s.d.). The X register is used to index the base store, $\$ 02 \mathrm{~F} 0$, and also as a means of 'fetching' the appropriate digit of the electronic counter via the :FECV subroutine. As soon as an inequality is found between the value held in \$02F0, X and its associated counter digit, the direction of tape motion can be determined. Having set the tape in motion in the appropriate direction, the comparison is continued with the current value of the X register. However, in this case, the comparison of $\$ 02 \mathrm{~F} 0$, X with its associated counter digit continues until the counter digit reaches the value in $\$ 02 \mathrm{~F} 0$, X. The comparison then continues with the next value of X , and so on, up to X equals 3 . Once the 1.s.d. is equal to the value in $\$ 02 \mathrm{~F} 3$ ($\$ 02 \mathrm{~F} 0, \mathrm{X}$), the required tape position has been found and the tape-recorder is stopped and the subroutine exited.

The seventh subroutine, :FECV, is used by : EDEP and the next subroutine, :UDEP, to load the A-register with the value of the appropriate counter digit. The current value of X is transfered to the A-register and rolled left four times into the upper nibble position. It is then ORed with $\% 10000000$ (remember, bit 7 must be ' 1 ' to prevent the electronic counter from being reset) and stored at $\$ F 111$, which is the Port A i/o address. (Bits PA_{0} to PA_{3} are inputs and PA_{4} to PA_{7} outputs.) Loading the A-register
with the value at $\$ F 111$ reads the four lower bits which is the value of the selected digit.
The eighth subroutine, :UDEP, updates the record of the position of the end of the recorded programs on the tape: it determines the position of the 'next free space' on the tape. The loop of the subroutine effectively does the reverse of :LP1 in the :EDEP subroutine. The four digits of the electronic counter are read and stored as two bytes in stores \$02F6 (high byte) and \$02F7 (low byte). The reading of the counter at the end of SAVEing a program marks its end. In order that the next program to be SAVEed starts in a position some distance further along the tape, a value of 40 (decimal), or 28 (hexadecimal), is added to the tape counters record. Because the values stored in \$02F6 and $\$ 02 \mathrm{~F} 7$ are in b.c.d. format, the 'decimal mode' must be set (SED) before 40 is added to the low-byte (\$02F7) of the counter record. Having added any 'carry' to the high-byte (\$02F6) the decimal mode is cleared by the instruction, CLD.

The final subroutine is :SICO (set initial conditions). I describe it so that some idea of what is required in initialising the overall program may be obtained. The first statement, :DIAD \#\$76, labels and stores the high-byte of the memory location ($\$ 76$) from which the directory will be stored in ram. Although my m/c program for running the cassette deck automatically has been developed and tested, I have not yet decided where to store it in eprom. For the present it is stored in 2 K of non-volatile ram at $\$ 7800$ to $\$ 77 \mathrm{FF}$. Consequently, I have chosen to reserve the space $\$ 7600$ to $\$ 77 \mathrm{FF}$ (512 bytes) for the storage of the directory. The start of the directory, $\$ 7600$, is referred to by several parts of the program. Therefore, to enable me to change my location easily without having to modify several lines of program, I refer to the high-byte address, $\$ 76$, via the label :DIAD. (the low-byte is always assumed to be $\$ 00$.)

I use bit 4 of $\$ 02 \mathrm{FA}$ (part of the temporary storage area) as a flag to indicate whether or not the directory has been loaded into ram. It is thus set to indicate nonloading at the start of the program. Next, the low and high bytes of the start address of the 'new input routine', :INPR, are stored in the input routine's vec-
tor locations, \$0218 and \$0219. The values of the tape counter (low and high bytes) for the start of the directory location (on tape) and the beginning of the program storage space are shown in \$02F9, \$02F8, \$02F7 and $\$ 02 \mathrm{~F} 6$, respectively. The start location of the directory is also stored in \$02F5 and \$02F4 upon initializing.
Stores \$02EE and \$02EF are used to hold the address of the 'next free memory location' for storing the directory in ram. Initially, $\$ 02 \mathrm{EE}$, holds the value of $\$ 00$. As each new program is SAVEd the directory storage space is used up, ten bytes at a time. The address stored in $\$ 02 \mathrm{EE}$ and $\$ 02 \mathrm{EF}$ is thus incremented by 10 (or $\$ 0 \mathrm{~A}$) each time a program is SAVEed.
As a means of determining when a cassette is removed and a new one inserted into the deck, I have coupled the output from the 'cassette-in-position, microswitch (see Figs. 1\&2 of the first part of the article) to the CB1 input of the 6522 v.i.a. chip. Loading SF11C (F110+C. which is the peripheral control register of the 6522) with $\$ 10$ sets bit 4 of the p.c.r. to ' 1 ', with the result that the interrupt-flag register bit 4 is set on a low-to-high transition of CB1. As part of the routine 'check directory loaded', bit 4 of the interrupt-flag register is thus read. If it is set it is assumed that the cassette has been changed and the directory on tape will be (re)loaded into the directory ram store location.
The final lines of the :SICO routine simply zero all the store locations of the ram area where the directory is to be stored.

Concluding comments

In writing this article, I have attempted to give an indication of the sort of m / c program necessary to provide automatic control of the SAVE and LOAD functions of a microcomputer. I recognise that few readers may own a UK101 microcomputer and for that reason I have not given full details of my own m / c program. I am prepared to consider providing details of my m/c program to interested UK101 users if they will first write of their interest to me, via Wireless World, enclosing a stamped-addressed envelope

Continued from 59

parallel i/o expansion, dynamic ram/SASI controlling, eprom programming, analogue i / o and a video output.

There are three processors (single Eurocard) that are normally used with the Arcbus mentioned above, Arc 40,41 and 42, each with 28 Basic/debug in processor rom. They are based on the Zilog Z8671 single-chip microcomputer with uart, two counter/timers 144 bytes of ram, 124 Kbyte addressing range and six maskable vectored interrupts. The Arc 40 is described as a development computer with eprom programmer and buffered i/o lines, the 41 as a board with r.t.c. for control, measurement and data logging, and the 42 is a 'mini-mum-chip' computer with prototyping area. Arcbus compatible boards are available for i/o control (also isolated), IEEE488 interfacing, analogue conversion, video output, eprom programming and cassette output. Assembly/cross assembly software is available.

E\&WW 334
A set of double-Eurocards from SGS form the CLZ80S microcomputer system, intended as an o.e.m. product rather than an evaluation system. The computer board has 64 Kbyte ram (256 K addressing), 16 Kbyte eprom space, two programmable synchronous/asynchronous serial channels with modem control lines and provision for d.m.a. The board's three parallel ports each have two handshaking lines and there is a 16 -bit programmable counter/timer. Memory, i/o, video, eprom-programming and analogue boards are available with the same bus. The system's floppy-disc board interfaces with the WD1000 hard-disc controller.

E\&WW 335
Two board systems are manufactured by Siemens, helpfully named AMS and SMP. The AMS system uses double Eurocard boards and can have more than one bus - Multibus II (standard pending) with a 32 -bit multiplexed data word, and AMS-M bus (same electrical spec. as Multibus) with 16 -bit non-multiplexed data word, and a user's own bus (or Siemens SMP bus with 8 -bit data word, non-multiplexed for SMP-bus cards). SMP products, intended for measurement and control applications but also suitable for general data processing, are single Eurocard and conform to the SMP or SMP-M
(SMP expanded) bus.
There are four AMS c.p.u. boards, the M6 and M61 with 8086 processors, the M5 with an 8085 and the M16 with an 80186 . They all have a timer/counter, interrupt controller and serial i / o in common; only the M16 has no parallel i/o. A coprocessor and intput/output controller are optional on the M6 and M61. There is also a ram board with 128, 256 or 512 Kbyte options.

The choice of SMP boards is wide. There are $15 \mathrm{c} . \mathrm{p} . \mathrm{u}$. boards with processors ranging from the 8080 to the 8088 with maths coprocessor and d.m.a. In addition, there are 23 memory options, 29 i/o boards and 19 peripheral boards, not to mention power supply units. Monitor programs are available with and without floppy-disc functions and there is a wide range of other software/ development aids.

Siemens says of the AMS system, 'its trend-setting multimaster capability and multibus structure enables an adaption to the performance required in the most different applications'.

E\&WW 336
Buses conforming to G64 and VME are used by Thomson CSF for their two main computerboard ranges. In the G64 range, there are eight c.p.u. cards with 6800,6802 or 6809 processors. Variations are in memory capacity (all have a small area for ram and rom) and serial/parallel i/o capabilities. Separate static ram/ eprom cards, parallel/serial/ analogue i/o interfaces, IEEE488 and v.d.u. controllers are also in the range. Other controllers include a floppy disc interface and an arithmetic coprocessor.

The company's latest VME board, the EFD-COMBO running CP/M 68 K , holds 256 K byte ram with parity checking, 128 Kbyte eprom, and has a SASI hard-disc interface. A choice of debugging software is available for the EFD-CPU1 68000 processor board with space for 256 Kbyte rom or 64 Kbyte ram (16Mbyte addressing). Three timer/counters are used. Other boards are for memory expansion, serial and parallel i / o, v.d.u. and disc control. A range of software is available.

E\&WW 337

Line-powered preamplifier

Designed to allow a second microphone to be used in a p.a. system, this preamplifier has advantages over existing designs. It requires no additional wiring between microphone and amplifier; existing screened cable is
used. Further, the preamplifier can be mounted close to the microphone, reducing hum problems, and no local power-supply is required. Based on an LM382 dual low-noise preamplifier and 741 mixer/driver, the prototype operates satisfactorily with over 20 m of screened cable between it and the main amplifier.

Each channel provides 55 or

80 dB gain, depending on which i.c. pin is grounded for a.c., and mixer gain is adjustable between 0 and 25 dB . Output of the LM382 (self-biased to 6 V) sets quiescent current through the 2N3053 transistor. Frequency response is set by the inductors and $\mathrm{C}_{1.5}$, giving -3 dB points of 20 Hz and 20 kHz with a roll off of about -80 dB / decade above 20 kHz . Output is
about 1.5 V r.m.s. Power supply for the preamplifier, at around 30 mA , is obtained by RC smoothing of the main-amplifier supply line. Note that the smoothing capacitor is connected to the common rail at the amplifier input.
A.J. Chadwick

Hull
North Humberside

Simplified modem line interface

Telephone sockets fitted with a bell-feed capacitor allow the line interface of Richard Lambley's multi-standard modem to be simplified. Acting also as a sparkquenching device, the bell capacitor replaces two components in the modem line interface.

Further reduction in components is possible if the telephone line-isolating transformer can take around $120 \mathrm{mAd.c}$. without saturating (e.g. an RS217-826). This allows the gyrator circuit to be left out. Relays $\mathrm{RL}_{2,3}$ are unchanged since they perform such functions as dial-off-normal (DON) and impulsing (IMP). Relays $\mathrm{RL}_{\mathrm{la}, \mathrm{b}}$ operate together to seize the line. An inverted logic signal drives RL_{4} which connects the external telephone line.
T. Segaran

York

IEEE 488 bus monitor

Connected to lines of the transmit-enable inputs tied low IEEE488 bus, this teaching, Single stepping is caused by powdebugging and fault-finding aid allows monitoring and step-bystep examination of bus messages. It uses three 75160 noninverting bus transceivers, two acting as bus receivers with their

Single stepping is caused by powacts as a bus transmitter. Supplycurrent requirement is about 400 mA .
A.H. Howe

Bexleyheath, Kent

Class-A power amplifier

Being low powered, the main application for this class-A circuit is as a tweeter amplifier in highfidelity systems using active crossover networks; it delivers around 1.5 W into 8Ω. Using the circuit as a full-range amplifier driving a Rogers LS3/5A loudspeaker, I find the sound quality very good, though the acoustic level is linited.
Three cmos inverters in series drive a power mosfet. Due to symmetry of the inverter output devices, negative feedback causes output self biasing at about half the supply rail. With a 15 V supply this is 7.5 V , at which point the inverter transfer characteristic is most linear. I have used an RCA 9195 n-channel power mosfet with good results similar devices such as the Hitachi 2SK133 should work equally well.
Assembly is critical. To avoid oscillation, the fet gate resistor should be mounted directly on the gate terminal and the leads at
be kept as short as possible. The 100 nF decoupling capacitor should be mounted as close as possible to pins seven and 14 of the 4069 and the loudspeaker decoupling capacitor as near to the drain terminal as possible. The 4069 contains six inverters so the other three can be used for a second channel; the supply shown feeds two channels easily. Per Hojlev

Copenhagen

by Henk Bender

Fig 1. A printed circuit plan for the eprom duplicator is available from the Wireless World editorial office in return for a stamped adressed envelope or an international reply coupon.

Eprom duplicatingaid

Connected to the WW emulator, this simple circuit can read and copy 2716 eproms

Only three cmos integrated circuits and a few other components are required to build this useful extension to the emulator*.

The emulator was originally intended to work the other way round: that is, an external system was to read the emulator's ram. But it can also be used to load the ram.
The circuit usses a 4049 hex inverting buffer i.c. in three dif-

* Eprom emulator, by Peter Nicholls, Wireless World September 1982 page 83.
ferent ways. Sections 1,2 and 3 form a square-wave oscillator with a frequency of about 1700 Hz . Section 4 acts as an inverter to control the data outputs of the eprom. Sections 5 and 6 buffer the chip select and writeenable inputs of the emulator.
With S_{1} in the Hold position, IC_{1} and IC_{2} are reset and the CE input of IC_{1} is held high, so the ocillator has no effect on the counter. The transistor switches on the led.

Using the duplicator

1. Set the emulator switch to Ext.
2. Set the duplicator to Hold.
3. Insert a programmed eprom in the socket.
4. Connect the duplicator to the emulator: the led will light. 5. Switch the duplicator to Run: the led will go out.
5. The led will light again after 12 seconds.
6. Set the duplicator to Hold. 8. Disconnect the duplicator from the emulator.
7. Switch the emulator to Load.
8. Press Reset to return the starting address to 000 .

The data can be edited, printed, stored on tape or loaded into a new eprom.

Testing

The duplicator may be connected to the emulator via a 31-pin DIN 41617 connector or through a ribbon cable. The only modification needed in the emulator is a wire link from pin 21 (WE) of the 6116 ram to the external connector.

In testing the duplicator, there is no need for an eprom in the socket. Set S_{1} to the Hold position, and the led should light. Now set S_{1} to Run. The led should go out and light again after about 12 seconds.

Fig. 2. Timing diagram: a single write cycle takes about 6 ms , the entire programming operation about 12s.

Data exchange between microcomputers
 by G.A.M.Labib

Combination of interrupt-controlled and programmed I/O enables higher data rate.

This article describes an efficient method for data exchange between microprocessors via I/O ports. It combines the interruptcontrolled and programmed I/O techniques, to achieve a higher data transfer rate than that achieved in the case of applying either one of these techniques separately, or using DMA.

In the combined technique, and prior to data transfer, the sender checks whether interrupts are enabled in the receiver or not. If not, the sender branches to a Fail routine before returning to the main program once again. Otherwise, the sender will interrupt the receiver by executing the OUT PROC1 instruction, causing OutI line to go to the low state, resetting
latch1 whose output is connected to the priority interrupt encoder of the receiver. Thus, an interrupt request is generated, and when this request is processed, the INTE line of the receiver goes to the 'low' state and remains at this state until an EI instruction is executed. The sender checks the state of the INTE line by executing IN PROC1 instruction, causing InI line to go to the 'low' state. At the negative edge transition of $\overline{\operatorname{In} 1}$ line, latch 4 stores the status of the INTE line, and this status is transfered to the accumulator of the sender during the 'low' state of InI line.

Transmission of data takes place when the sender executes the instruction OUT PROC2, causing line Out2 to go 'low', trig-
gering buffer 2,3 to save the contents of the ACC of the sender. The receiver reads the stored data in buffer 2,3 by executing $\mathbb{I N}$ PROC2 instruction, causing line In'2 to go 'low' enabling the output of these buffers to be connected to the data bus of the receiver, and to be stored in its ACC.

At the end of data transfer operation, the sender will issue another interrupt request to the receiver by executing OUT PROC3 instruction. This interrupt will cause the receiver to branch from the data transfer subroutine to either a data processing routine or the main program, according to the user application.

Data transfer rates achieved
by the application of the programmed I/O, the interrupt-controlled I/O, and the direct memory access methods are 7.6, $14.8,34.5 \mathrm{kByte} / \mathrm{s}$ respectively. With the application of this combined technique, a data transfer rate of $42.6 \mathrm{kBytes} / \mathrm{s}$ is achieved.Thus, the ratio of the data transfer rates of the 4 mentioned techniques will come to 1 : $2: 4.5: 5.6$ respectively.

The above calculations are made on the assumption that each machine state has a duration of 500 ns , and that the microprocessor under consideration is the Intel 8080A.

REFERENCES

Bellm, H. and A. Sauer "Methods of data exchange between microcomputers", Euromicro 1977.

SEND	PUSH	PSW	/Save the ACC and the status register contents in stack.
	PUSH	H	/save the contents of H\&L
	PUSH	D	registers in stack.
			registers in stack.
	IN	PROC1	/check the INTE line status of the receiver.
	RAR JNC	FAIL	/if INTE is not set, then branch to FAIL.
	LXI	H,BUFADR	/if INTE is set, then load register pair H-L with data buffer starting address.
	MVI	D,BUFSIZ	/and load register pair D-E with buffer size.
	OUT	PROC1	/interrupt the receiver to execute the data transfer subroutine.
SENSE	IN	PROC1	/check if the receiver has processed the interrupt request, and reset INTE line.
	RAR JC	SENSE	/if INTE is still set, then check it
MOVE	MOV	A, M	again, otherwise, move the byte appointed-to by H-L pair, from memory to the ACC,
	$\begin{aligned} & \text { OUT } \\ & \text { DCR } \end{aligned}$	PROC2 D	/transfer byte to the receiver, /check if it is the last byte to be transferred.
	JZ	END	/if yes, terminate the transfer operation.
	$\begin{aligned} & \text { INX } \\ & \text { JMP } \end{aligned}$	H MOVE	/if not, increment buffer pointer, /and start the transfer of the following byte.
END	OUT	PROC3	/interrupt the receiver to terminate the transfer subroutine.
	POP	D	/retrieve D-E original contents.
	$\begin{aligned} & \text { POP } \\ & \text { POP } \end{aligned}$	H PSW	/retrieve H-L original contents. /retrieve the ACC and status

Figure 1. contains data transfer subroutines for both the sender and the receiver.
Figure 2. contains four cases of the transfer subroutine, demonstrating the mechanism of synchronisation of the sender and the receiver, starting with the best case, and ending with the worst case.
Figure 3. demonstrates the hardware circuitry of both the sender and the receiver interfaces.

sen		receiver side,			receiver side ${ }_{2}$
1					
2					
3					
4					
5					
6	24	RST	11	SUI	7
7	7	1	22	RST	11
8	10	2	10	1	22
		3	4	2	10
	41	4	0	3	4
		5	10	4	0
		57		5	10
					64
9	5	6	7	6	7
10	10	7	5	7	75
11	15	8	25	8	25
7	7	5	10	5	10
8	10	47			47
	47				
sender side		receiver side $_{3}$			receiver side ${ }_{4}$
1					
2					
3					
4					
5					
6	24	LXID	10	XTHL	18
6	24	RST	11	RST	11
7	7	1	22	1	22
8	10	2	10	2	10
		3	4	3	4
	65	4	0	4	0
		5	10	5	10
			67		75
9	5	6	7	6	7
10	10	7	5	7	5
11	15	8	25	8	25
7	7	5	10	5	10
8	10				
			47		47
	47				

			register original contents. /return to Main Program.
	RET		PSW
	RECV	PUSH	/
	PUSH	H	
	LXI	H,BUFADR /	

Note: OUT PROC3 instruction execution by the sender will cause the receiver to branch to TERM subroutine in which the user-defined destination may be specified for the u.p.

Note $_{2}$: This optional delay program segment may be inserted if any expansion in the sender subroutine is made following OUT PROC1 instruction, in order to maintain processors synchronisation.

Countdown to cellular radio

Among the topics discussed at the Comex 84 conference in Northampton were plans for Britain's public cellular radiotelephone service, which opens this month.

Derek Wordley, marketing director of Cellnet and Ken McGeorge of Racal-Vodac both used "Countdown to Cellular Radio" as the titles of their lectures to the Comex 84 conference.
In accordance with their licences, both systems operators, Cellnet and Racal, have to be operational by 1st March 1985 with the first phase of the 900 MHz cellular radio network. The cellular radio public mobile telephone service will start in the London area and spread rapidly along the main trunk routes and major cities of Great Britain.
Both Cellnet and Racal-Vodafone issued detailed network projections in October. By mid-1986 Racal expects to have reached as far north as Aberdeen and to have completed coverage of all the main motorway arteries and cities in the U.K. Cellnet's published plans extend to the end of 1985 , by which time they hope to cover most major cities including the motorway links.
The high level of network planning and installation activity by both systems operators will continue long after the opening of the first phase of the network in the London area in early 1985.
The work of Oftel, the Government's newly created telecommunications watchdog body, was outlined by John Compton, formerly of the Department of Trade and Industry, but now manager of Oftel's general licensing policy and apparatus approvals branch.
Oftel's key functions included keeping under review all activities connected with telecommunications worldwide, collecting information on all telecommunications activities in the U.K., as well as giving advice, information and assistance to the Secretary of State for Trade and Industry and other Government departments.

However, Oftel's main role, he said, was the monitoring and enforcing of compliance with the conditions of licences granted under the 1984 Telecommunications Act. Oftel's staff of about 50, would later increase to 80 but Oftel would also use outside consultants for specialised studies. Oftel was entirely funded by licence fees.
To the surprise of some delegates, Compton announced that Oftel had commissioned a study into the Bands I and III issue. This would be in addition to the Government's own Green Paper activities which were later described by a D.T.I. representative. Oftel's own study of Bands I and III is to be completed before the end of the year.
Asked whether Oftel sees itself
in the role of telecommunications Ombudsman, Compton replied that Oftel was not specifically tasked with looking for cases of maladministration as was the case with the Ombudsman's office, but that it would expect to be in contact with the Office of Fair Trading on telecommunications matters.

Cellular radio for the City of London: Cellnet's first base station is lifted into position above Farringdon Street.

By the end of 1985 Cellnet, the British Telecom-Securicor consortium, plans to provide a cellular radio service covering the largest cities and their connecting motorways. Above right: coverage plans of the rival Racal-Vodafone network.

Further reading

Comex '84 conference papers
(Northampton 16-17 October
1984): Federation of

Communications Services.
Bands I and III Consultative
Document, Her Majesty's
Stationery Office, Cmnd 9241.
Mobile radio system and techniques (IEE conference report) by N.S. Cawthorne, Wireless World December 1984 page 69.

Developments in cellular radio, by Richard Lambley, Wireless Worid June 1984 page 31.

Band III

Ian Jones, head of the licensing branch of the D.T.I. informed delegates that about 60 replies had been received to the Bands I and III Green Paper published last May. This asked for opinions concerning future uses of the 405 -line t.v. transmission frequencies after the close-down of t.v. transmitters in early 1985.

At WARC 79, it had been agreed that the U.K. could use Bands I and III and land mobile services after the t.v. transmissions had been phased out, even though all of the U.K.'s neighbours would be continuing to use Band III for broadcasting. This would inevitably present interference problems, particarly near to t.v. carrier frequencies.

Jones amused delegates by telling them that the 'crumby bits' of Band III, that is, frequencies near the vision carrier frequencies of overseas TV transmitters, could have been sold three times over even though they would not be of any use for conventional mobile radio. Many imaginative applications for these 'bad frequencies' had been proposed.
'Service providers', he said, potentially offered the most efficient use of Band III. Initially the service provider might have five or ten channels.

Where a number of channels were available, trunking systems could be introduced. By means of trunking the mobile user would have access to a group of channels and would be allocated one vacant channel from the group when he made a call.

Trunking achieves additional gain in the grade of service as the number of channels increases, as a consequence of the decreasing probability that all channels will be in use at the same time. Once the number of channels available exceeds three, the gain from trunking becomes significant.
The mobile radio service provider would offer a package of communications services to the user, including perhaps data transmission as well as conventional voice communications.
Criticisms of the concept of service providers for mobile radio (as opposed to individual businesses having their own networks) centred on the range of services provided. The private mobile radio user might require
more services than were being offered by the service provider. Unless there was the facility to move from one service provider to another, mobile radio users might prefer to have their own networks.

A second criticism of the service provider principle came from operators who required national coverage. The A.A. and R.A.C. both required national coverage as did the nationalised power industries. A national network in Band III could not be catered for by smaller service providers.
An alternative proposals was that Band III should use a shared national infrastructure, installed and run by a single operator, but over which other could operate and provide services. In the London area this would require about 300 channels.

This national network could be installed by a national network operator in a similar way to present cellular radio activity at 890 960 MHz . The service provider would then have access to the national network at a much lower cost than if he were to install his own network. The advantages of this national system would be in a more efficient use of the spec-
trum. But with 300 channels, it would mean using about one third of the new channels that became available in Band III.

If the same competitive telecommunications policy were followed as was now the case in cellular radio with BT and Mercury, then there would presumably be need for two competing national networks in Band III rather than one.

The national network idea was criticized by delegates from outlying parts of the country, which because of their relatively low population and their distance from the main arteries might be left out.
Jones of the D.T.I. was quick to reassure delegates that if the national infrastructure solution were adopted for Band III, then there would not be any question of areas being left out because the national network did not yet or would never reach their area. Separate allocations would be available.
As if to emphasise the continued uncertainty over the exact way in which the new frequencies at Band III would be used for the land mobile service, the thorny old question of s.s.b. (and even i.s.b.) was raised and debated. Single-sideband represents a direct trade-off between spectral efficiency and equipment costs. But what price spectral efficiency?
The current rate of growth in mobile radio of about 8% or 10% per year may be an inadequate indicator of the true demand, because frequency availability and co-channel interference might both make the potential mobile radio user shy away. The release of the new frequencies may show the true demand for mobile services to be much greater than these figures indicate and that the spectral saving gained by the introduction of s.s.b. will be needed if the latent demand is to be adequately catered for.
Dr Fudge of B.T. Radiophone summed up the spectral efficiency argument thus: "Spectrum has to be paid for; and if it's through the equipment, then so be it."
In conclusion, Jones told the delegates that not all decisions concerning Band III would be made immediately. Delegates could expect to hear of some initial decision before the end of the year, but others would follow later. The D.T.I. was still listening to industry, users and all other interested parties.

Pagers: poor man's cellular

Strong assertions by pager manufacturers that pagers would overtake cellular radio were to be heard during the conference. Pager manufacturers believe that the enormous residential market for reliable but cheap radio communication can only be realized with pagers.

Compared with North America, Japan, and Hong Kong, Europe as a whole lags well behind in pager market penetration. The U.K. however, with 0.3% pager penetration is a long way ahead of the European average of 0.1%.
Estimates of the relative equipment costs between cellular radio and pagers show that tone-only pagers work out at about one-fifteenth of the cost of cellular radio. As the underlying costs of paging are much cheaper, service costs could be expected to be of the same order as those of cellular radio.
The cellular radio network would offer direct two-way voice communication from the mobile through the public telephone network, at a price that would be beyond the reach of domestic users for a long time to come. Pagers however would be affordable by domestic users. Pager manufacturers and systems operators saw their services as complementary to cellular radio and they expected to benefit from the enormous growth in the communications market of which both paging and cellular radio were part.

Licensing

On the subject of licensing under the new Telecommunications Act, John Taylor, principal of the telecommunications division of the D.T.I., described the D.T.I's licensing policy.
On cellular radio, Taylor admitted that there had been very considerable problems with the type of approval programmes and that an 'interim interim' approvals procedure would be available so that equipment manufacturers could have their mobile equipment ready by the time the networks start up in early 1985.

Band III problems

Jonathan Clarke, chairman of the Federation of Communicaton Services, listed what he saw as the major problem areas con-
cerning the future use of Bands I and III for land mobile service operators. These included the question of connections to the public telephone network, the special cases (those users who are already operating, but have been unable to grow in their operations because of lack of spectrum), geographical coverage (whether it should be national or local) and the size of the system. A common signalling standard would allow transfer from one service provider to another, but there were those who would rather see a 'preferred' (but not obligatory) signalling system.

Frenzied activity

Land mobile services in the U.K. have never experienced so much concentrated activity at one time: the liberalization of telecommunications, the installation of the two major cellular radio networks and the bringing of all Band III and possibily parts of Band 1 into the land mobile radio service.

Comex 84 was just one small drop in the sea of discussions and meetings. The decisions taken mow will have a direct influence on the quality of the land mobile radio services available in the UK until well into the next century.

These decisions must reflect not only the needs of the telecommunications user and the telecommunications provider, but must also conform with the principles of good spectrum management. It would be unfortunate if decisions taken now were to jeopardize the efficient use of these newly available radio frequencies in years to come.
The Comex 84 conference and exhibition (supported by 42 exhibitors and attended by 800 visitors) came at a time of unprecidented mobile radio activity and discussion in the UK as well as on the eve of the installation and commissioning of the first few cells in the UK's new 900 MHz cellular radio network.

REFERENCES

1. Federation of Communication Services, COMEX ' 84 conference papers. 2. HMSO Cmnd 9241, "Bands I and III" Consulatative Document.

Number of channels	Voice channel traffic (Erlang)	Number of mobiles
1	0.12	22
5	3.22	580
10	7.93	1430
15	12.79	2300
20	17.70	3185

(Source: Bands I and III Green Paper)
Multi-channel trunking: As the number of channels increases in a trunked mobile radio system, so the number of mobiles that can be accommodated on the network increases significantly for a given grade of service. The grade of service for these figures is 5%, and represents the probability of finding congestion within the 'busy hour'. A 20 channel trunked network can accommodate in excess of 3,000 mobiles which is an enormous gain trunked network can accommodate in excess of 3,000 mobiles which is an enormous gain
over the straight multiple of the numbers of channels and the number of mobiles for an over the straight multiple of the numbers of channels and
equivalent grade of service on a single channel system.

The Advanced Basic Rom User Guide for the BBC Micro by Colin Pharo. Ring bound, 182 pages, Cambridge Microcomputer Centre (153-154 East Road, Cambridge CB1 1DD), $£ 7.95$ retail.
Practical machine code programs often rely on mathematical routines, and for speed and compactness it is usually hard to improve on those provided in the BBC Basic rom. This book explains how the programmer can make use of these routines in his own programs. It identifies 69 major subroutines within the Basic 1 and Basic 2 roms, giving call addresses, set-up conditions and typical timings. For many of the routines example programs are given. Also included is a detailed memory map of the Basic workspace.

Basic Rom User Guide for the BBC Microcomputer and Acorn Electron by Mark Plumbley. Soft covers, 359 pages. Adder Publishing, Cambridge, $£ 9.95$
This very comprehensive guide not only covers routines accessible to the user (string handling routines as well as mathematical ones) but gives also a detailed description of how BBC Basic works. Topics covered include memory use, tokenising, the Basic stack, program control mechanisms, errors and methods of recovering from them.
The second part concentrates on ways of expanding Basic by trapping the errors it generates and adding extra code. The author includes listings of a variety of interesting utilities: among these are a selective renumbering routine, a 'bad program' rescuer and a routine which allows dynamic overlaying of procedures or functions from disc, for use with a Basic program which would otherwise be too big for the memory available.

A Hardware Guide for the BBC

 Microcomputer by A.D. Derrick, D.S. Harding, S.D. Middleton and M.P. Smith. Wise Owl Publications, Hull Innovation Centre, Guildhall Road, Queen's Gardens, Kingston-upon-Hull. Soft covers, 116 A4 pages and an appendix,$£ 11.95+95$ p carriage.
Surprisingly, for a hardware guide, this one does not include a full circuit diagram of the computer: for that you have to turn to the Advanced User Guide (Cambridge Microcomputer Centre), which, although concerned mainly with software, covers some of the same ground.
But besides their description of the circuit and instructions for carrying out various upgrades, the authors provide numerous hardware hints and suggest some useful modifications: how to improve the accuracy of the a-to-d converter, for
example, and how to expand the vocabulary of the speech processor.
A special feature of the guide is a 140-page appendix comprising data sheets of the all the computer's principal i.cs, including the 8271 floppy disc controller - information which for many owners might otherwise be hard to obtain

The BBC Microcomputer Disk Companion by Tony Latham. Soft covers, 186 pages, Prentice Hall International, $£ 7,95$.
After surveying magnetic storage systems in general, the author moves on to a description of the Acorn disc filing system. There is an excellent section on file handling (a subject none too well explained elsewhere), with examples in Basic and assembly language.
Less useful, perhaps, are some of the program listings in the book. Most users will have received formatting and verifying programs on a utilities disc when they bought their disc drives and will not need any more. And the word-processor, described as the first such program written for the BBC Micro, must be of little more than historical interest now.
The book touches on doubledensity storage right at the end, but does not mention any of the doubledensity d.f.s. packages now available for the BBC Micro

The Comal Handbook (second edition, Commodore 64 version), by Len Lindsay. Soft covers 467 pages, Prentice Hall International, £18.40.
For those who are tired of Basic but nervous of Pascal, to paraphrase the anonymous Danish student quoted in the foreword. The Comal keywords, from Abs to Zone, are described individually, each with a sample program illustrating its function. There are 19 appendices covering Comal structures, different versions of the language, error handling, disc usage and troubleshooting

Servicing digital circuits in television receivers by R. Fisher. Soft covers, 270 pages. Newnes Technical Books, $£ 13.95$.
The author begins with the basic principles of logic circuits and then examines practical methods of processing, storing, transmitting and display data. In the second part of the book he discusses in detail and with full circuit diagrams how teletext and viewdata work, using as his examples commerciallyavailable decoders by Mullard and Texas Instruments. The final chapters explain the operation of digital tuning systems and an infrared remote control system. The book should interest many people besides televison service technicians.

QL Advanced User Guide by Adrian Dickens. Soft covers, 352 pages. Adder Publishing, Cambridge, $£ 12.95$.
A detailed guide to what goes on inside (and if yours is one of the ones with a dongle, outside). Topics covered include 68008 machine code for the newcomer, QDOS, Super-Basic, i/o, Microdrives and more. The appendices contain much useful reference material for the advanced programmer.

CHILTEN ELECTAONIGE is SURPLUS EQUIPMENT SALE $\}$
 VIDEO MONITORS - NEW SURPLUS
 Brand new professional quality hi-resolution AGC green
 VDU BARGAIN

screen monitors in attractive metal case.
Composite video. Ideal for BBC or other micros.
High definition makes easy viewing for 80 column text.

Bandwidth 10 Mhz to 22 Mhz .

MAINS FILTER UNITS

(BRAND NEW SURPLUS)
These compact units consist of heavy duty 12 amp filter and circuit breaker, and IEC socket. Ex-mainframe system, ideal for protecting TV/Micro etc.
(Cost $\mathrm{f} 60+$!) Our price $\boldsymbol{\mathcal { 4 }}+$ VAT
$\mathrm{p} / \mathrm{p} £ 1$
or 3 or $£ 10$ osastitee

PRESTEL TERMINALS

Brand new STC desk top terminals ready to plug into your telephone for Prestel service.
These beautifully made units have a $6^{\prime \prime}$ green-screen monitor and originally cost over $£ 500$ each.

Our Price NEW only $\mathbf{2 9 9}$
Add VAT and $£ 7$ carriage

FLOPPY DISKS

$8^{\prime \prime}$ inch and $5^{1 / 4^{\prime \prime}}$ standard Shugart interface drives.
New condition ex-equipment.
$279+V A T$
Carriage $£ 6$
Box of 10 BRAND NEW BASF
S/S S/D 5" diskettes.

$£ 9.50$ + vat
$\mathrm{p} / \mathrm{p} £ 1$

SALE 9" HM911 £44
PRICE 12" HM123 £46 Add VAT and £5 carriage

INTERFACE CARDS

FOR *APPLE II \& II E. BRAND NEW BY VARIOUS MANUFACTURERS

Save $\mathbf{5 0 \%}$ or more! !

Printer Card
80 Column Card
PAL Colour Card
RS232 Card
Clock Card
Communications Card Forth Card

All at ONLY 22 each + VAT post free
*Trademark of Apple Computer Inc.

DAISY-WHEEL PRINTERS

Brand new surplus TPI letter quality printers - ideal for your micro.
Made by Smith-Corona - offered at way under usual cost.

Centronics or RS232 interface.

ony $£ 149$
Add VAT and $£ 10$ Carriage

CENTRONICS PRINTERS

These famous printers need no introduction. As used by most large mainframe computers.
Model $_{306}^{\text {mod }} £ 149{ }^{\text {Model }} \mathbf{7 0 1} \mathbf{£ 1 7 9}$
(Used) Add VAT and £15 carriage

MINI-COMPUTER FANS

Brand new $230 \vee 5^{\prime \prime}$ whisper quiet. Offered at $1 / 4$ list price.
$£ 4.60$
Add VAT and $£ 1$ postage

The world-famous ADDS terminals offered at a fraction of original cost!
*RS232 up to 9600 baud
*80 col x24 line display
*Video + printer outputs
Used condition but fully tested.

Only $279+$ VAT
Carriage $£ 12.50$

ASC II KEYBOARDS

Scoop purchase allows us to offer a real professional keyboard (49-key ASCII), with Hall-effect keys and attractive case for a ridiculous price.
Circuits supplied. Used tested.
Original cost $£ 300$ +
Only
£18 + vat
Carriage $£ 1.85$

MICRO-POWER SUPPLIES

We have a large range of surplus power supplies from 1 amp to 120 amps. Please send for list. All at a fraction of list price! !
Examples:
Advance 0-7v 3a f10
Lambda 5 v 5 a s/mode new $\mathbf{2} 0$
Add VAT $+£ 5 \mathrm{p} / \mathrm{p}$

COMPUTER STATIONERY

132 column printout paper at quarter list price! Box of 2000 sheets
Only $\mathbf{E 4 . 9 9}+$ VAT
Add $£ 3$ carriage
We have hundreds more special offers which must be sold by February - phone or send for our list.

HURRY - OFFERS ONLY VALID WHILE STOCKS LAST!

WE ARE EUROPE'S LEADING SUPPLIER OF SECOND-HAND MAINFRAME COMPUTER SYSTEMS. ALL THE ABOVE EQUIPMENT IS GENUINE PROFESSIONAL EQUIPMENT SURPLUS TO OUR REQUIREMENTS.

HIGH STREET, CHALFONT ST. GILES, BUCKINGHAMSHIRE HP8 4QH TEL: 0240771234
Telephone or send your order to TIM READING. We accept personal cheques or telephone your Access Card No. All items despatched within 24 hours

DGSOO1 2-MOTOR, CASSETTE DRIVE. Fully sotenold controll
cassette mechanism suitable for H - Fl or digitial use. With a logic
control board the deck can be ooperated by lightweight touch
controls or outpu controls or or outp
micro. Ideal tor mivero. iciteal or
applicalions under adplications under
automatic control such
as as telephone answering
machines, data loggers.
automatic background music systems, remote control recorders and microcomputer program and diata storage. Two motors and three solenoids control all functions including search in tast forward and rewnd.
Slandard fititines sterea R/P and erase Head Overall size $776 \mathrm{~mm} \times 130 \mathrm{~mm} \times 75 \mathrm{~mm}$ E37.25 Quantity prices on INF 140 . Full technical specification and drawings \AA Stereo cassette deck
Following the runaway sellout of our last cassette deck we have now oblained a small quantity of an even nicer one. Main leatures are full auto-stop. Chrome/Ferric Swich Manual record level control (invaluable for computer use), twin Vu meters and 3 -digit counter Complete with all record and replay circuitry, control keys and cassetite carrier/door. Very good quality and only $£ 21.80$ inc vat and Post. Circuit diagram es 35p
COMPLETE STEREO TUNER MODULE
Three band LWMML/EM SEereo TUner fully fssembied on PCB
$165 \times 85 \mathrm{~mm}$. Supplied with Ferite rod aerial and band switch
 LED Only needs 12 V DC sup
only E7. 9 inc. VAT and post.

STEREO IOW POWER AMPLIFIER MODULE Ready bulit and lested music centre power amplifier module complete and ready to use. Mains input $220 / 240$ w with power to spare for tune and tape deck. Size $190 \times 110 \times 65 \mathrm{~mm}$. ONLY ¢8. 90 plus Vat and Post.

AUTOMATIC 10 -CASSETTE AUTO PLAYERS Suirable for background music systems. Lenco type PAC10 plays each casette forward and backwards belose changing to
the next. Any cassette may be rejected at the touch of a bution. Matns powered, Wood tinish case with perspex top cover, play through any high quality stereo amplifier system. Orinally over £500 each' Our price for ex-demonstration models oniy $£ 230$. One only Brand New $£ 310$

24hr SALES LINE

Personal callers are always very welcome but please note that we are closed all day Saturday

ALL PRICES EXCLUDE VAT
UNLESS STATED UNLESS STATED

DON'T GO DOWN WITH YOUR SCOPE! It never was designed to float

The Waugh Instruments Isolation Amplifier enables you to keep your scope earthed and still make measurements up to 1500 V from earth, this together with over 100 dB rejection at 50 Hz means that you can now observe small signals superimposed on 350 V sine waves so often encountered in switch mode power supplies, thyristor and triac firing circuits. For details of this and other oscilloscopes accessories contact:- Peter Waugh at Waugh Instruments, Otter House, Weston Underwood, Olney, Bucks MK46 5JS (0234) 712445.

W A N T E D

\# POWER TRIODE VALVES (EUROPE) $\mathrm{AD} 1, \mathrm{ED}, \mathrm{LK} 460, \mathrm{LS} 5 \mathrm{~A}, \mathrm{LS} 6 \mathrm{~A}, \mathrm{PX} 4, \mathrm{PP} / 250$, RE 604, PX 25, DA 30, PP5/400, マ 503, DA 60, DA 100 MZ-1-100, TM 100, MC 60, RS 237, 4C $21 \&$ OTHERS. \# general purpose valves (Europe ECC $802 \mathrm{~S}, \mathrm{ECC} 803 \mathrm{~S}, \mathrm{E} 88 \mathrm{CC}, \mathrm{E} 80 \mathrm{CC}, \mathrm{ML} 6$.
\# Rectipier valves (Europe)

4, FW-4-800 \& OTHERS.
\# Valvés manufactured western electric (u.s.a.) or s.t.c.(U. h.) 3A/444A(WE 104), WE 205, 4211D(WE 211), 4242(WE 242), WE 252A, WE 271A, WE 274A/B, WE 275A, 4300A(WE 300A/B), WE 350 B .

* WE PAY TOP PRICE FOR NEW IK ORIGINAL BOX OR USED EXCELLENT COND. \# SOChET FOR ABOVE VALVES...EURO TYPE 4P,5P SIDE CONTACT BP. \# SPEAKERS FOR HI-FI \& THEATRE TANMOY, LOWTHER, \& OTHERS.

TRIAL ELECTRIC PRODUCTS

304 ROSEBAY YOTSUYA BLDG.,21 ARAKICHO SHIMJUKO TOKYO 160 JAPAN
CIRCLE 65 FOR FUR'THER DE'TAILS.

ELECTRONICS C_A.D.
 "ANALYSER"

PERFORMANCE ANALYIIS of LINEAR CIRCUITS using the BBC MODEL B AND SINCLAIR SPECTRUM 48K MICRO'S.
Simulates Resistors, Capacitors, Inductors, Transfomers. Bipolar and Field effect Transistors, and Operational Amplifiers in any circuit configuration.
Performs FREOUENCY RESPONSE ANALYSIS on Circuits with up to 16 Nodes and 60 Components, for Phase and Gain/Loss. Input lmpedance and Output Impedance.
Ideal for the anallysis of ACTME and PASSNE FILTERS, AUDIO, WIDEBAND and R.F. AMPLIFIERS, LINEAR INTEGRATED CIRCUITS etc., etc.
"ANALYSER" can greatly reduce or even eliminate the need to breadboard new designs.
USED BY INDUSTRIAL AND UNVERSITY R\&D DEPARTMENTS WORD WIDE
LOW COST PAYMENT BY ACCESS OR AMERICAN EXPRESS WELCOME...
VERY EASY TO USE. PRICES FROM E2O
For further details write or phone NUMBER ONE SYSTEMS
DEPARTMENT W W
9ACROWN STREET, ST NES
HUNTINGDON
CAMBS UK.PE 17 4EB
TEL: 048061778 TEIEX: 32339
CIRCLE 12 FOR FURTHER DETAILS.

EPROM PROGRAMMER (AND ERASER)

A low cost eprom programmer is available for the BBC micro. It can be used for 2764 and 27128 devices and is provided with rom software to operate it. Called the Uviprom, the unit is available initially in two versions: Uviprom 1 is the basic version with a normal 28 pin i.c. socket and cost $£ 20.95$; Uviprom 2 is provided with a z.i.f. socket for five pounds more. Both are uncased p.c.bs though an Uviprom 3 with case and z.i.f. socket should become available soon and will cost $£ 29.95$. The programmer plugs into the user port of the computer and takes its power direct from the computer. The circuit includes a switch mode power supply to generate the 21V programming supply. The rom with the Uviprom software is available for $£ 8$ and can be used to test an eprom to check that it is black; read an eprom to disc; blow the program into the eprom; view the contents of rom after it has been read onto disc and compare the contents of an eprom with the source.

The programmer is complemented by an ultra-violet eprom eraser which is also available in various versions: the Uvipac TS times 15 minutes from the switch-on and then sounds a warning ($£ 28.95$); Uvipac Thas a timer but no sound ($£ 26.45$) and the Uvipac without timer or sounder is only $£ 21.45$. The eproms may be checked to make sure that they are fully erased by testing in the Uviprom. Prices quoted are applicable to the UK and include v.a.t. and postage. Ground Control, Alfreda Avenue, Hullbridge, Hockleyy, Essex SS5 6LT.
EWW 220

8085 CONTROL SYSTEM

A complete micro-computer system for control applications requiring up to 26 inputs or outputs is mounted on a small p.c.b. Software utilities are available for operating the 32character display and 16 -key pad. The module may also be
supplied without a keyboard so that the designer can use any other pushbutton array. Assembly language programming, software design and eprom programming services are also available. The 83000 system is based around
the 8085 processor and prices vary according to the options selected but work out at about £200. Automation and Control Technology, Cofton Road, Marsh Barton, Exeter EX2 8QW.

EWW 226

VOICE DIGITIZERS

Two very similar products have been produced for the two great rivals in educational computingthe Mynah by Reasearch Machines for the Link 480Z, and Voxbox by Multiplex Computer services for the BBC micro. Both are capable of recording speech in digital form and then replaying it. Such techniques are very greedy in their use of memory and the Mynah, for example can keep 7.5 seconds of speech in the computers Basic ram at one time when used at the highest sampling rate. However both systems can record the speech onto floppy disc or for 'instant' access on to silicon disc, when whole paragraphs may be replayed in quick succession. Voxbox manages to save some space by using delta pulse code modulation, where the size of tthe sample is not recorded, only the difference between the size of each successive sample.Both systems can alter the sampling rate to give better
quality or squeeze more speech into the available space. At the lower rates the speech become less distinct but is always of better quality than that produced by speech synthesizers.

The RML Mynah also includes a Texas music chip and uses the same sound and envelope commands as BBC Basic, it costs $£ 99$. The Voxbox can optionaly have a voice recognition program where words or phrases can be stored on file and accessed from within a user's program. It is claimed that the system can retrieve a word or phrase within a second and the system can be used for voice control of the computer. The Digitiser alone costs $\mathcal{L} 85$, the Voice
Recognition system alone, £75 but both can be combined in a unit for $£ 97$. All prices inclusive and both manufacturers includefull operational software. Research Machine Ltd, Mill Street, Oxford OX2 OBW. Multiplex Computer Services, 250 Eastern Road, Brighton, Sussex BN2 5TA.
EWW 222

LCR METER

This hand-held batter-powered meter is able to measure inductance, capacitance and resistance and is thought to be ideal for use by the field service engineer and quality assurance engineers who wish to check quickly the value of a component. The Avo R183 is easy to use and does not require the careful balancing associated with bridge measurement. There are six inductance ranges from 2 mH to 200 H , seven capacitance ranges from 200 pF to 200 uF and seven resistance ranges from 200Ω to $20 \mathrm{M} \Omega$. All readings are shown to a $3 \frac{1}{2}$-digit l.c.d.
Measurement are made at a frequency of 1 kHz or 100 Hz depending on the range selected on the slide switch. The meter is fuse protected against accidental over-voltage. Test leads, prods and clips are included. Thorn EMI Instruments Ltd, Archcliffe Road, Dover CT17 9EN. EWW 223

MAGNETIC TAPE
 CONTROLLER

A buffered interface for magnetic tape transports is provided by the Kenda B8000. It may be used with any tape drive that conforms to the Pertec micro formatting standard. Input and output are through the 8 -bit parallel Centronics port or through at RS232 or 20 mA current loop serial port with a programmable data rate of up to 19200 baud. Optional interfaces include GPIB. The interface has
been designed to be fitted directly inside Thorn EMI Datatech tape streamers but may also be supplied as a selfcontained boxed unit.

The buffer memory is from 2 K up to 32 Kbytes and may be used in three different modes: in single buffer mode data is transferred in blocks into the buffer and then out again. In Multi-buffer mode, the data buffer is divided into a selectable number of individual buffers which are used in a ring sequence. This means that data
may be transferred into and out of the tape streamer at the same time, offering high-speed operation. The third mode is called transparent; although the data is theoretically being transferred directly between the computer and tape, the buffer still is used to even out any variation in the data transfer rate. In this mode there is no limit to the block size as long as the data rates are matched. The interface can be controlled internally through a built-in prom of up to 32 K , or a mixture
of rom and ram to allow it to be programmed and controlled externally. Internal programming includes a number of fixed commands which makes it very easy to control.
the boxed version of the B8000 enables connection between the tape drive and computer to be made with maximum ease since mainsdriven power supplies are integral with the unit. A 25 way D-type socket at the rear and a pair of edge connectors on flying ribbon cables are all that need to be plugged up for the RS232 model. IEEE and parallel interface models are just as easy. Software interfacing consists of writing a small driver to send the relevent control code sequence in order to set read or write mode, specify tape block length etc.
For the case of a completely dumb piece of equipment or for those who do not wish to write a driver, a set of manual front panel controls forms a useful optional extra. These enable the user to manually control mode and block size, thus converting properly blocked industry standard tape to or from a simple continuous data steam. Kenda Electronic Systems Ltd, Nutsey Lane, Totton, Southampton SO4 3NB.EWW216

THIN LITHIUM BATTERY

By combining several technologies, Toshiba have developed a flat lithium battery that is only 0.5 mm thick. It may be used to power the forthcoming 'smart' credit cards, very thin calculators and electronic watches, and even more compact cameras or radios. The battery sandwiches a non-aqueous electrolyte between a sheet of Manganese
dioxide, the positive electrode, and another of Lithium, the negative. Each electrode is covered by a metal plate which also acts as the contact and the plates are sealed at the edges with a specially developed thermal melt adhesive. The battery is manufactured by a process similar to printing. The nominal voltage is 3 V and the discharge capacity is 17 mAh . Toshiba UK Ltd, Primley Road, Frimley, Camberley, Surrey GU16 5JJ.
EWW 214

NETWORK IN A PLUG

Computer terminals and a range of peripheral devices can be plugged into a ring network by the simple addition of a small box to the RS232 port. The Infaplug, whose largest dimension is 115 mm , contains all the electronics necessary to transfer data to or from the device to which it is connected. Up to 255 devices may be connected to the ring which may itself have a virtually unlimited number of outlet sockets. The plug transmits and receives around the ring at 9600 baud but may be matched to the data rate of the device to which it is attached.
Application for such a ring l.a.n. are many but include time-sharing with a host computer, point-of-sale terminals (i.e. cash registers), laboratory instrumentation, automatic testing, measurement and control.

The Infaplug is opto-isolated from the ring to prevent earth loops and is self-powered from a low-voltage supply on the ring. Each plug can 'hunt' for a connection to any one of the group of other plugs; important when many terminals require access to a central processor.
Infaplug is complemented by Infalink, a software protocol system to enable desk-top computers to link into the network. Full handshaking and error checking is incorporated into the file transfer software. The user purchases a single software licence for each type of computer on the ring. The price is $£ 150$ for each computer type irrespective of the number of computers in use. This reflects the cost of the Infaplug hardware which is under $£ 200$ per connection. Infa Communications Ltd, Castle Moat Chambers, Bath Place, Taunton, Somerset TA1 4EP. EWW 224.

B. BAMBER ELECTRONICS

(0) Hitachi Oscilloscopes

Hitachi Oscilloscopes provide the quality and performance that you'd expect from such a famous name, with a newly-evtended range that represents the best value for money available anyw here
V-212 20MH/Dual Trace V-209 20MHz Mini-Portable
(illustrated)
V-222 20MH/ Dual Trace V-203F $20 \mathrm{MH} z$ Sweep Delay
V-353F 35 MH / Sweep Delay
V-422 40 MHz Dual Trace
V-650F GOMHz Dual limebase

V-509 50MHz Mini-Portable V-1050F 100 MHz Quad Trace V-1100 100 MHz DMM/counte V. $134 \quad 10 \mathrm{MHz}$ Tube Storage VC-6015 10MHz Digital Storage VC-6(4) 40 MHz Digital Storage

Prices start at $£ 299$ plus sat (model illustrated) including a 2 year warranty We hold the complete range in stock for immediate delivery.
For colour brochure giving specifications and prices ring (0480) 63570 Thurlby-Reltech, 46 High Street, Solihull, W. Midlands, 3913113

Toroidal Transformers
 as manufacturers we are able to

 offer a range of quality Toroidal Transformers at high competitive prices and fast delivery.
Mail Order Price List

30VA 6.54. 50VA 8.36. 80VA 9.15. 120VA 10.55. 160VA 11.98. 225VA 15.61. 300VA 17.19. 500 VA 22.33. 625VA 27.96. 750VA 31.05. 1 KVA 41.40. price includes p+p \& vat Available from stock in the following voltages: $-6-0-6,9-0-9,12-0-12$, 15-0-15. 18-0-18, 22-0-22. 25-0-25, 30-0-30, 35-0-35, 40-0-40, 45-0-45, $50-0-50,110,220,240$ (max. 10 amp). Primaries $240,220,120$ volt please state which.

Quantity Prices and delivery on request (we also manufacture conventional E1 type transformers)

Airlink Transformers.

Unit 6, The Maltings, Station Road, Sawbridgeworth, Herts. Tel: 0279-724425. CIRCLE 31 FOR FURTHER DETAILS.

ICOM are proud to present the IC-M700 marine SSB transceiver. This 150 watt radio is above and beyond the competition and built to operate with confidence when others cannot.

The IC-M700 has 48 fully programmable memory channels and operates in simplex or semi-duplex covering all ship-to-shore, high seas telephone and ship-to-ship SSB channeis. Independent transmit and receive programming A heavy-duty loudspeaker provides 5 watts of receive audio, other features include a wide range clarifier and audio activated squelch (radio remains silent unless a human voice is detected). Interference noise blanker and a heavy-duty mounting bracket are standard. The IC-M700 is a sophisticated but rugged and reliable marine transceiver.

CD ICOM

Thanet Electronics Ltd
 Suppliers of Radio Communication Equipment to the Ministry of Defence.

 143 Reculver Road, Herne Bay. Kent. England. Tel'(O2273) 63859/63850. Telex 965179 CIRCLE 36 FOR FURTHER DETAILS.
BRAND NEW ELECTRONIC COMPONENTS

- RESISTORS
- CAPACITORS
- TRANSISTORS
- POTENTIOMETERS
- PLUGS
- MULTIMETERS
- VOLTAGE REGULATORS
- I C SOCKETS - DIODES
- PRESETS
- LEDS
- SOCKETS
- SWITCHES
- INTEGRATED CIRCUITS

Write or Phone for full Trade Catalogue
HARRISON ELECTRONICS
22 MILTON ROAD, WESTCLIFF-ON-SEA, ESSEX SSO 7JX Tel: (0702) 332338
CIRCLE 10 FOR FURTHER DETAILS.

DON'T VAT THE PRESS

There are strong reasons to believe the Chancellor of the Exchequer is planning to impose VAT on your magazine.
Such a move would turn the clock back 130 years - the last tax on newspapers and journals was repealed in 1855. Since then 'No tax on knowledge' has been a principle agreed by all Governments, even in the darkest days of war.
A free Press is a tax-free Press. No Government should be given the power to impose financial pressure on a Press it may not like.
Tell your MP to say 'NO' to any tax on reading.

BRITISH CD PLAYER

Although based around a Philips Model 101, which Meridian consider to be the best of the latest compact disc players, they have used their own expertise to produce a player which they consider to be a major improvement. With their experience in the application of psychoacoustics to audio design and the development of highperformance amplifiers, Mr. Boothroyd and Mr Stuart have extensively modified and rebuilt
the player. It is produced in the grey finish that matches the Meridian range of modular amplifiers and the electronics have been modified to improve the servomechanisms, the error detection and concealment, power supplies, analogue filtering and amplifiers. The result, they claim, is stunning and the sound quality 'equals and in some cases betters the very best analogue signal sources.' The MCD (Meridian Compact Disc) costs $£ 398$ retail. Boothroyd Stuart Ltd, 13 Clifton Road, Huntingdon, Cambs PE18 7BR.
EWW 218

OSCILLOSCOPEMULTIPLEXER

The release of a new multiplexer enables any oscilloscope to displayy eight channels. OM358 has a bandwidth of 35 MHz and a calibration accuracy of 3%. Input impedance is $1 \mathrm{M} \Omega$ and 20 pF and the attentuator has four positions $\times 100, \ll 50, \times 20$ and ground. The trigger signal can
be selected from any of eight input channels and a variable multiplex rate control ensures the multiplexed capture of single-shot events on many channels.
Typical applications include the testing of microprocessorbased products, data transmission systems, a-to-d converters, phase-locked loops and frequency dividers. Level1 Electronics Ltd, Moxon Street, Barnet, Herts EN5 5SD.
EWW 219

ACORN COLLECTION

Just in time for Christmas, Acom have hatched a whole clutch of new products for the BBC and Electron microcomputers.

Pascal

Perhaps pride of place should be given to the new implementation of ISO-Pascal which has passed all the tests and has received the British Standard validation certificate, and is claimed to be the first and only micro-based Pascal system which meets the International Standards Organisation standard.

Pascal was designed by Professor Niklaus Wirth to be both efficient and "suitable for learning programing as a systematic discipline based on certain fundamental concepts." It turns out, however, that the language had attributes far beyond these original goals and found use in the writing of systems and application software. The standard is a response to the increasing commercial interest in Pascal to ensure its portability between differing systems.
Pascal has the advantage of being suitable for large-scale programming. A programme is compiled to a compact intermediate code which is then interpreted to give a high-speep performance. This means that highly complex programs may be run; examples we know of are calculus, solving linear equations, FFT analysis and the like. One difficulty is that Pascal is not easy to get started on and Acornsoft have thoughtfully provided a reprint of the book Pascal from Basic by P.J. Brown as well as an operators manual which includes the full British Standard, BS6192:1982, as a reference, along with a full explanation of the minor deviations of the rom version from that standard. The language has been augmented by the inclusion of $\mathrm{BBC} /$ Electron-specific graphics and sound commands and operating system calls. Pascal is implemented on two roms; the interpreter and the complier and is further added to by a disc which has extensions and examples and includes complete enhanced versions of the interpreter and compiler for use with the second-processor 6502 augmented BBC Micro. The version for the Acorn Electron is on a rom cartridge which plugs into the Plus 1 addon peripheral. Both versions cost $£ 69$ inclusive and may be
purchased mail-order from Vector Marketing Ltd, London Road, Wellingborough, Northants NN8 2RL.

EWW 205

Logo

A full implemenation of the Logo language is also provided on two roms for the BBC at the same price and from the same source as Pascal. This also has an educational purpose, to introduce computing to the very young. Seeing Logo and Pascal side-by-side one can detect similarities between them and the structuring implied in a Logo program seems to be a very good introduction to the higher levels of Pascal, more so than Basic. For example, it is necessary to declare all variables at the start of a program or procedure. Logo has a (false) reputation for being wholly concerned with turtle graphics; directing a cursor around the screen or controlling a robot turle to trundle around the floor. It turns out, at least from this implementation, to be a complete programming language which is at home with maths (including trigonometric functions, natural logarithms, square roots etc.) and with words, especially when organized into lists. Of course it is also very good at graphics and it is possible to 'hatch' a number of turtles and have them doodling all over the screen, producing very intricate patterns as well as painlessly teaching geometry to the pupil. A lot of attention has been paid to making the language easy to understand and use. The error messages do not give a terse 'Error XX' message but simple phrases like 'Logo doesn't know how to XX.' Similarly all the command words have been carefully chosen to be nearest to what the child would naturally use. As with Pascal, Logo has been extended to include some BBC-specific commands, such as changing screen mode to give additional colours and providing sound facilities. Logo comes with a cassette (duplicated on a disc) with demonstration programs, extensions and useful subroutines. Also provided are a reference card and three books; an introduction to Logo, a full users manual and a guide to the contents of the cassette/ disc
EWW 206

Music synthesiser

Acorn has also announced a music synthesiser for the BBC Micro, the Music 500 , which plugs in to the 1 MHz bus port. It does not use the internal square-wave sound generator at all but instead has its own 16 sound generating channels organised as eight voices which can be spread over seven stereophonic positions. There are very comprehensive waveform and envelope generating facilities produced by use of Ample, a music orientated control language. Sound output may be taken through a stereo hi-fi and/or recording system and there is provision for an add-on keyboard for 'live' music. Music 500 is available for $£ 199$ inclusive. We hope to give more details when we have actually tested a Music 500.
EWW 207

Electron discs

A self contained disc interface and 3.5 in . single-sided disc unit incorporates an Acorn advanced disc filing system, ADFS, to provide 300 Kbyte of storage. The unit, called Plus 3 , plugs neatly into the side of the Plus 1 add-on interface so that the whole forms a neat unit without trailing cables. $£ 229$. EWW 208

Winchester discs

The Acorn Winchester disc system has been launched with a choice of 10MBytes (£1449) or 30Mbytes ($£ 2299$). The units are designed to be robust and are capable of automatically memory remapping, hardware
error detection and automatic sector interleaving, with a data transfer rate of $1 \mathrm{Mbit} / \mathrm{s}$, average access time is 85 ms . They are fully compatible with al BBC second processors and with the Econet networking system for which a new Level 3 file server has been designed especially for use with the Acorn Winchesters. EWW 209

Networking

A new start-up kit for the Econet comprises a new precision clock, two unpowered terminators and three double socket boxes. With this system, the network can operate at $200 \mathrm{Kbit} / \mathrm{s}$ even at the maximum distance of 500 m . The new socket boxes do not need any soldering, making the system easy to install. The unpowered terminators reduces the number of power sources required to only one. Available now, the starter pack costs $£ 99$, but this is in addition to the installation of the Econet interface inside each computer. Coming soon is an Econet bridge which will link networks and also extend the networks maximum length. By sectioning the network, bridges optimise data transfer between nets and even if one network fails, the system can remain operational.
EWW 210

32-bit add-on processor

Originally announced as 'coming' when the BBC Micro was originally launched, the 32016 second processor for the BBC will now be available 'early in 1985.' It converts the BBC
micro into a 32 -bit computer system operating at high speed and providing 256 Kbytes of ram. Included in the price of $£ 899$ are the PANOS operating system, designed for low-cost configuration and no less than five languages. BBC Basic, C , Fortran 77, Cambridge Lisp and Pascal. From this list it is obvious that the chief purpose of the device is for software development in a professional, scientific, engineering or educational environment. Further details of all these products are available from Acorn Computers Ltd, Fulbourne Road, Cherry Hinton, Cambridge CB1 4 JN or from the distributors Vector Marketing as mentioned under Pascal. EWW 211

FUNCTION GENERATOR KIT

An intergrated-circuit function generator can produce sine, triangular and square waveforms and can provide other functions such as sweep generation, a.m./f.m. generation, voltage-tofrequency conversion and phase-locked loops. The frequency range is 1 Hz to 100 kHz with 0.5% t.h.d.The Exar i.c. is available in a kit (XR-2206KA) with a socket, a p.c.b. and instruction manual all for $£ 12.15$ inclusive. Rastra Electronics Ltd, 275 King Street, Hammersmith, London W6 9NP.
EWW215

HIGH-POWER OP-AMP

Originally designed for automatic test equipment signal amplification the Teledyne Philbrick TP1460 is a highspeed op amp with $\pm 30 \mathrm{~V}$ output at $\pm 150 \mathrm{~mA}$. The maximum operating frequency is 10 MHz with a $300 \mathrm{~V} / \mu$ s slew rate and a 1 GHz gain bandwidth product. With a differential input, the amplifier is suitable for highspeed applications such as video amplifiers, yoke drivers, ATE pin drivers and inductive or capacitative load driving. The v.mos output stage means that secondary breakdown is almost impossible. The device is house in an 8 -pin TO3 package. MCP Electronics Ltd, 38 Rosemount Road, Alperton, Wembley, Middlesex HA0 4PE.
EWW 213

BLUE LEDs NOW IN PRODUCTION

It is two years since we reported the development of blue-light leds but now Siemens are manufacturing them in large quantities. The leds use silicon carbide (SiC) as the source material and although it has not been able to produce them at prices similar to leds in other colours, the price, still to be announced, will be much lower than that for comparable blue leds made from other materials. Siemens say that the purity and repeatability of the colour (480 nm) of the SiC led biophysical and medical applications and also as a calibration source for tv cameras and photographic equipment. It could also be used for the blue luminous dots in a flat tv screen. The blue led is less suitable as an indicator when compared with red, yellow or green counterparts. Apart from the higher cost, the angle of radiation and the intensity are lower than in conventional leds. They need a forward voltage of 4 V at 20 mA . Siemens Ltd, Windmill Road, Sunbury-on-Thames, Middlesex TW 16 7HS. EWW 217Wredessiwitd EDITORIAL FEATURES 1985

ISSUE
DATE

publication
DATE
FEATURE
Mar. 1985 Feb. 16th IEEEInstruments
May. 1985 April. 19th PowerSupplies
July. 1985 June. 21st VDU's
Sept. 1985 Aug. 16 th Communication Receivers

For more details regarding advertising Contact Bob Nibbs 01-661 3130

ELECTRONIC POWER UNITS

FOR XENON ARC AND MERCURY ARC LAMPS
UNTTS AVAILABLE FOR LAMPS RANGING FROM 75 TO 6500 WATTS.
Lamp housings and lens systems manufactured as standard off the shelf models or to specific design
K. T. Manners Design Ltd.
P.O. Box 936, London, W4 4NW Teléphone: 01-994 7155. Telex: 28604 CIRCLE 75 FOR FURTHER DE'IAILS.

CWIELIDHIS
 Quick, neat and easy!

It's so easy and tidy with the Easibind binder to file your copies away. Each binder is designed to hold six issues and is attrastively bound and blocked with the WIRELESS WORLD logo. Price U.K. $£ 4.30$ including postage, packing and V.A.T.
Overseas orders add 35p per binder
Nat. Giro No. 5157552.
Please allow $3 / 4$ weeks for fulfilment of order
Payment by ACCESS/BARCLAYCARD/VISA. Send coupon below detailing credit card no. and
Why not place your order now? Send the completed coupon below with remittance payable to:
Easibind, 42 Hoxton Square, London N1 6NS
Order Form WIRELESS WORLD
I enclose P.O./cheque value. for ... binders Years required. BLOCK LETTERS PLEASE
Name.. \qquad Address

NEW

R5635 CCITT V. 22 bis, full-duplex Switched-Capacitor Filter I.C. with MUXes.
R5636 Bell 201/CCITT $\downarrow 26$ combo filter I.C.
R5637 Bell 208/CCITT V. 27 combo filter I.C.
R5638 Bell 209/CCITT V. 29 combo filter I.C. (available Dec.'84).
R5630 Bell 103, full-duplex filter I.C. with MUXes.
R5631 CCITT V.21, full-duplex fiter I.C. with MUXes.
R5632 Industry Standard, Bell 212A/CCITT V. 22 full-duplex combo filter I.C.
R5633 selectable filter array I.C. for 103. V.21. DTMF and Videotex applications.
R5626 Mask programmable to your specification.
Contact: EG\&G Reticon 345 Potrero Avenue, Sunnyvale, CA 94086-4197 (408) 738-4266 TWX 910 339-9343; or. Chicago (312) 640-7713; Boston (617) 745-7400; Japan 03-343-4411; England (0734) 788666; Germany (089) 92692-666.

CIRCLE 89 FOR FURTHER DETAILS.

SOLID STATE SWITCHES Maichbox size solid state switch type IR D2402 600 watts, direct from your micro etc. Fully isolat
$3-32 \vee D C$ input with zero voltage switching. Complete with data E6.99 + pp 250,000 other relays EX STOCK call for details.

THE ORIGINAL FREE OF CHARGE dial $\begin{array}{ll}\text { word. no parity } & 01-6791888\end{array}$ MAINS FILTERS

EX STOCK INTEGRATED CIRCUITS

 2732 EPROM SPECIAL fully guaranteed $450 \mathrm{~ns} £ 3.75$, 350 ns £ 4.00 , 300ns £4.592732 EPROM SPECIAL fully guaranteed 450ns $£ 3.75,350$ ns $£ 4.00,300 \mathrm{~ns} £ 4.50$

COOLDTO FA: 8

Koip your ho paris Coil and RELIABLE

 coolingtans Miniature 2400 EqCOULB JB-3AR Din
 BUHLER E9. $11.2 .2 .8 .8 .16 v D C$ micro minialurer reversibie tan Usos a bryshless
senomo motor tor extremely hign air flow

 Current cost 832.00 OUA PRA E12.95 complot with dota

EPROM COPIERS

 5.

PRICE BARRIER SHATTERED ON 16' RGB CASED COLOUR MONITORS

A scoop purchase from a major London Hotel enables us to offer this special convented DECCA 100 COLOUR video TV at a super low price of $£ 99.00!!$ L

 convent d DECA 100 COLOUR video TV at a super low price of $£ 99.00$!! Lo enough to suit any budget!! Solid state modular construction, $16^{\prime \prime}$ high detinitionPIL tube, which eliminates convergence problems and our own special modification results in $80+$ column text definition and picture quality not seen on monitors resting three times as much!! In fact we guarantee you will be delighted with this product. the quality has to be seen to be believed. Supplied complete and ready
plug direct to a BBC MICRO COMPUTER or any other system with a TTL RGB output. Other features include internal audio amp and speaker, compact ONLY £99.00 + £ 10.00 CARR. Also available un modified complete with mod data (Mod costs less than $£ 12.00$) $\mathbf{E g 0 . 0 0}$

SPECIAL 300 BAUD MODEM OFFER

 NEW or little used 2B data modems allows US to make the FINAL REDUCTION, and for YOU to join the exciting world of data communications at an UNHEARD OF PRICE OF ONLY £29.95. Made to the highest POST OFFICE APPROVED spec at a cost of hundreds of pounds each, the 2B has all the standard requirements for data base business or hobby communications. All this and more| | |
| :---: | :---: |
| | |
| | |
| | |
| | |
| | |

8" 19MB WINCHESTER DISK DRIVE

DATA MODEMS

oin prices and types to suit all applications and budgets"
MOst modems are EX BRITISH TELECOM and are made to the highest standard for continuous use and reliability
RS232 interfaces are standard to all our modems, so will connect to ANY micro et DATEL $2 B$ see SPECIAL OFFER centre of MODEM 13A, 300 baud. Compact unit $2^{\prime \prime}$ high and same size as telephone bas
Standard CCITI tones. CALL mode only Tested with data ONLIEA5. $00+$ PP E4.50. MODEM 20.1 .751200 baud.
tor USE as subscriberend to PRESTEL.
MICRONET TELECOM GOLD TE Le data $£ 39.95+$ Pp 66.30 MODEM 20-2 same as 20-1 but 1200-75 TRANSDATA 307 A 300 baud acoustic coupler. Brand
E9.00
DACOM DSL21 23 Multi Standard Modem. SWitchable CCITT or USA BELL 103 standard
$1200-1200$ nalf duplex
Auto answer via MODEM or CPU CALL or ANSWER modes plus LED status indicay
Dim $2.5^{\prime \prime} \times 8.5^{\prime \prime} \times 9^{\prime \prime}$ BRAND NEW fully Guaranted owlyci68.00 + Pp 64.50 . DATEL 2412 Made by SE LABS for BT this 1200 or 2400 baud using $2780 / 3780$ 2 of 4 wire working etc. etc. COST OVER
E800. OUR PRICE $E 185.00$. £800. OUR PRICEE E1SS.O
DATEL 4800 . RACAL

T ecnnically' Competent computer buff to add a MASSIVE 19 mb OF STORAGE DRE 3100 utilises 3×8. Superbly constructed on a heavy die cast chassis the controiled by microprocessor electronics using an INTEL 8035 CDU and TTL support logic. Interfacing is via a comprehensive 8 bit $T T L$ level bi directional command/status bus with superb status reporting and individual high speed Average seek time 35 ms 512 bytes per sector. $+24-24$ and $+5 \vee$ DC supply, plug in card system, and very compact size of $19 \mathrm{~cm} \mathrm{H} \times 21 \mathrm{~cm} \mathrm{~W} \times 42 \mathrm{~cm}$ D etc etc. make this item a real snip.
Units are BRAND NEW and BOXED and sold at a FRACTION of original cost hence unguaranteed. Complete with 150 page manual, circuits and applications guid

ONLY £225.00 Carriage 10.00

PROFESSIONAL KEYBOARD OFFER

An advantageous purchase of brand new surplus allows a great OWERTY. full travel
ALPHAMERIC $7204 / 80$ Iull ASCII 60 key
 DEC LA34 Uncoded keyboard with 67 quality, GOLD, normally open switches
standard $X Y$ matrix. Complete with 3 ED

66\% DISCOUNT
 ELECTRONIC
 EQUIPMENT

BUDGET RANGE VIDIO MONTTORS

At a price inU can afford our rang EQUIPMENT video monitors defy

 competition" All are for 240 v working withstandard composite video input. Units are pre tested and set for up to 80 col use on
BBC micro. Even where MINOR screen burns MAY

1000's SOLD TO DATE
KGM 320-321, high bandwidth inpu Housed in attractive fuly enclused 05 GREEN Screen $\mathbf{Z} \mathbf{3 9 . 9 5}$ monitor fully enclosed in light alloy case Ideal schools she
ONLYE55.00

14" BRAND NEW Novex COLOUR type NC1414-CL. Many exacting features sut,
as RGB TLL and composite video input, as RGB TTL and composite video input,
GREEN TEXT key, internal speaker and ully guaranteed matching 8900 s

SEMICONDUCTOR 'GRAB BAGS'

Mixed Semis amazing value conto include transistors, digital. linea diodes. bridge recs. etc etc. Alf devices facturer's markings, fully guaranteed $50+E 295100+E 515$
TTL 74 Series A gigantic purchase of "across the board" range of 74 TTL series cos enables us to offer $100+$ mixed
mostly TL" grab bags at a price which mostly TL" grab bags at a price which tw
or three chips in the bag would nnormally

ERS - PRIWTERS - PRIWTERS - PRIWTERS PRINTERS - PRINTERS - PRINTERS - PRI

SUPER DEAL? NO - SUPER STEAL!!

command compatability
and fuli controlva CPM
Many other features inc
Many other features in
printing. Switchable 10
163 characters per lin 163 characters per line friction feed rollers for single sh Supplied absolutly BRAND NEW with 90 day guarantind hake
and dust Cover. Order NOW or contact sales oftice for more information whee
Optional extras. RS232 data
Optional extras RS232 data cable £10.00. Tech manual £7.50 Tractor feed
$\mathbf{£ 1 4 0 . 0 0}$ Spare daisy wheel $\mathbf{£ 3 . 0 0}$ Carriage $\&$ ins (UK Mainland) £10.00.
A) 75
£250

SUPER PRINTER SCOOP BRAND CENTRONICS 739-2

GE MODEL 30

A large purchase of these stand alone terminal units offers an EXTR a professional printer for direct connection to your micro. The printer has a standard RS232 serial interface switchable rates of 110,200 and 300
baud. Upper and lower case characters are printed by a matrix head with character widths up to 132 columns. Unit accepts standard fan fold sprocket fed paper from $4^{\prime \prime}$ to $9.5^{\prime \prime}$. Many other features such as numeric keypad, electronic keyboa Supplied in good S/H working condition complete with manual ONLY $£ 95.00$ CARRIAGE \& INS. EIO.OO
EXTEL PRINTERS
EX NEWS SERVICE compact, quality bult 50 column matrix printer, type AE11.
Unit operates on 5 BIT BAUDOT code from current loop, RS232 or TTL serial interfaces. May be connected direct to network to enable printing of simple filter wide NEWS, TELEX and RTTY services Supplied in, TELEX and RTI services. with 50 and 75 baud xals, data sheet and large paper roll. OWLYE49.95.
DImensions
CARR $\mathbf{E 6 . 0 0}$ Spare paper rolls $\mathbf{~} 4.50$ each

GE TERMIPRINTER

A massive purchase of these desk top printer -terminats enables us to otter you
these quality 30 cps printers at a SUPER LOW PRICE against their original cost of over £ 1000 . Unit comprises of full QWERT electronic keyboard and printer mech with
print tace similar to correspondence quality typewriter Variable forms tractor unit enables tull wioth - up to $13.5^{\prime \prime} 120$ colum paper, upper-lower case, standard RS23 serial intertace, internal vertical and adjustable baud rates, quiet operation ph many other teatures. Supplied complete with manual Guaranteed working \& 130.00 or untested $£ 58.00$. optional fl oor stand $£ 12.5$

TELETYPE ASRSS

I/O TERMMINATS
Fullyfledged industry standard ASR̄33 data erminal. Many features including ASCII keyboard and printer for data I/O auto data baud. 8 bit paper tape punch and reader for off line data preparation and ridiculously cheap and reliable data storage. Supplied in good condition and in working order Options: Floor stand $\mathbf{E 1 2 . 5 0}$ + VAT KSR33 with 20 ma loop interface $\mathbf{\$ 1 2 5 . 0 0}+$ Sound proof enclosure $£ 25.00$ +VA

20,000 FEET OF ELECTRONIC AND COMPUTER GOODIES ENGLAND'S LARGEST SURPLUS STORE - SEEING IS BELIEVING!!

D.C. POWER SUPPLY SPECLALS

Experimentos PSU Ex-GPO. A!l silicon electronics. Outputs give $+5 \mathrm{v} @ 2 \mathrm{amps}$ $+12 v @ 800 \mathrm{ma}-12 v @ 350 \mathrm{ma}$ and 5 v floating @ 50 ma Dim $160 \times 120 \times 350 \mathrm{~mm}$. All outputs are fully regulated and short circuit p
Supplied in NEW or little used condition. Complete with circuit. $£ \mathbf{1 5 . 5 0}+\mathbf{E 2 . 5 0} \mathbf{p p}$ FARNELL 5 Volt 40 amps . Type number G6-40A. This miniature switching PSU measures only 160 mm wide 175 mm deep and 90 mm high yet delivers a massive 40 amps! Fully regulated and smoothed with over voltage protection etc. 120 or 240
volts AC input. Supplied BRAND NEW and boxed with circuit at a fraction of the current list price oNLY£ $130.00+£ 3.00$ CARR δ INS.
LAMBDA LMCC5V BRAND NEW $240 \vee$ AC input with 5 volts $D C$ at 8 to 10 amps ully regulated output. Completely enclosed unit measures only $9^{\prime \prime} \times 4^{\prime \prime} \times 5^{\prime \prime} £ 29.99$ LAMBDA LMCC5V 110 VAC input with 5 volts DC at 8 to 10 amps fully regulated URUR SIghly SME 110 VAC in
PERIPHERAL SYSTEM SUPPLY. Runs almost any system. Fully cased unit supplied in a brand new or little used condition. Outputs give $5 \mathrm{v} @ 11 \mathrm{amps}$ " $+24 \mathrm{v} @ 4 \mathrm{amps}$.
All outputs are crowbar protected and the 5 volt output is fully regulated. Fan cooled. Supplied tested with circuit $£ 55.00+£ 8.50$ CARR.
1000's of other POWER SUPPLIES EX STOCK - CALL SALES OFFICE FOR
DETAIIS. DETAILS.

DISK DRIVE SPECIALS

Floppy Disk Drives.
SIEMENS FDD-100-5 $51 /^{\prime \prime} 40$ track single sided. Ex new equipment tested, guaranteed working. Complete with data $£ 75.00$
SHUGART SA400 51/4" 35 track, single sided, Ex equipment, guaranteed
working $£ 55.00$
SHUGART SAB00, SA850 8"drives plus spares EX Stock call for prices Hard disk drives

Large quantities of HARD DISK drives currently EX STOCK including:
DRE series 30 mb Front Load for DEC, NOVA etc
DIABLO 44/DRE 4000 A, B $5+5 \mathrm{mb}$ cartridge drive
DIABLO 44/DRE FOOO A, B S S S ,
CDC 976280 mb DEC RMO3 compatible
PERTEC D3422 $5+5$ cartridge drive

FROM $£ 295.00$
fROM E995.00
fROM E 795.00
FROM E2900.00
FROM E495.00

Large quantities of spares and controllers available for S100, DEC, HONEYWELL. DATA GENERAL. Call sales office for details.
,

> 1000's of other EX STOCK items including POWER SUPPLIES, RACKS, RELAYS, TRANSFORMERS, TEST EQUIPMENT, CABLE, CONNECTORS, HARDWARE, MODEMS, TELEPHONES, VARIACS, VDU'S, PRINTERS. POWER SUPPLIES, OPTICS, KEYBOARDS etc. etc. Give us a call for your spare part requirements. Stock changes almost daily.
> Don't forget, ALL TYPES and QUANTITIES of electronic surplus purchased for CASH

CIRCLE 85 FOR FURTHER DE'TAILS.

Model $\mathbf{4 0}$ A.F.
Generator
$\mathbf{£ 6 4 . 8 5 ~ + ~ V A T ~}$
$\star 10 \mathrm{~Hz}-100 \mathrm{KHz}$

* Sine and Square

Wave

* Calibrated Output level, stabilised
* Switched \& variable attentuators
* Distortion $<0.2 \%$
* Battery powered

Send for details of the full range of Nombrex battery powered test equipment Export enquiries invited.

Werre us enthusinstic ahout computers is you are.

Appointments

Advertisements accepted up to 12 noon Monday, 31st December for February issue

DISPLAYED APPOINTMENTS VACANT: 19 per single col. centimetre (min .3 cm) LINE advertisements (run on): $£ 4.00$ per line, minimum $£ 25$ (prepayable). BOX NUMBERS: $£ 5$ extra. (Replies shouid be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 4AS). PHONE: LUCY O'SULLIVAN, 016613033 (DIRECT LINE)
Cheques and Postal Orders payable to BUSINESSPRESSINTERNATIONAL LTD. and crossed.

I.L.E.A.

Learning Resources Branch Television and Publishing Centre,

Thackeray Rd, London SW8
Television Engineer (MG 10)
Salary range £7470-£9432 plus £1347 London Weighting Allowance, and an irregular hours allowance of £228.
The Mobile Video recording Section, which is equipped to broadcast standard, makes observational classroom recordings for teacher education. A television Engineer is required to join a technical team of 8 for operational and maintenance work involving rigging and driving duties.

Film Camera Assistant (ST1/2) Slary Range $55,568-58,45\}$
 plus $£ 1347$ London Weighting Allowance.

 The Centre's Broadcast quality colour programmes use 16 mm sound film and video insert provided by the film camera section in which this vacancy has arisen.Applicants should have relevant training and experience in servicing the requirements of film and video cameras together with the associated location lighting equipment, in television or documentary film environment.

PRODUCTION DIVISION Television Maintenance Engineer
(ST1/2) [Re-advertised9
Salary Range £7470-58451+£1347 London Weighting Allowance. Plus £192 shift allowance
A maintenance engineer is required to work at the Television and Production Centre which is equipped to professional colour TV broadcasting standards. The engineer will work in a section of four which is responsible for maintaining a high level of performance of a wide range of sound and vision equipmen.

Full job description and application forms for all the above posts are available from EOI Estab 1B, Room 366, The County Hall, London SE1 7PB Please S.A.E
The closing date for completed application forms is the 2nd January 1985 These post are suitable for Job-share. LEA is an Equal Opportunitues Employer.

BRITISH ANTARCTIC SURVEY

Electronic Technician

Applications are invited from suitably qualified and experienced persons to work as part of a team working on the "design, construction and maintenance of a wide range of electronic equipment.
The successful applicant must be able to build electronic circuits and systems which will be used for scientific research in the Antarctic at the Survey's Stations, in remote field sites, aboard their ships and in their aircraft, and as such will be required to spend periods in Antarctica, sometimes working from tents, operating, maintaining and installing electronic equipment. Resourcefulness and initiative are essential as much of the field work will be unsupervised.

Qualifications: ONC/HNC or equivalent technical training combined with a sound practical electronics background in digital and/or analogue circuitry. The understanding of microprocessor systems with the ability to maintain low level software is an advantage. Academically well qualified younger applicants, but with limited practical experience will be considered and relevant necessary training will be given.
Salary Dependant on qualifications and experience in the scale $£ 6742$ - $£ 7930$ p.a. (Professional and Technology Officer Grade IV)
The vacancy is at Professional and Technology Officer Grade IV for period appointment of 3 years.
Applicants should be physically fit and must be male as Antarctic field work requires successful candidates to share tented accommodation.
For further details and an application form please write to:
The Establishment Officer, British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 OET.
Please quote Ref: BAS 14
Closing date: II January
NATURAL ENVIRONMENT RESEARCH COUNCIL

NEW ZEALAND

TEST TECHNICIANS SHORT TERM CONTRACTS

Test technicians with good factory-based test and QA experience on VHF/UHF communications equipment are required in New Zealand in 1985. Return airfares will be paid and competitive salaries are offered. A position to travel at a few weeks notice.
Apply with full C.V. to:
The Personnel Officer, P.O. Box 50248 , Porirua, Wellington, New Zealand, AWA NZ3839

TECHNICAL CO-ORDINATOR

Mersey Television is looking for a Technical Co-ordinator to manage the technical operation for its twice-weekly drama serial "Brookside"
The successful candidate will be an experienced broadcast engineer with a comprehensive knowledge of vision, camera, sound, electrical and post-production departments. He/she will be responsible for co-ordinating all aspects of these departments. This is an exciting opportunity within a expanding company situated in a pleasant location on Merseyside.
We are an equal opportunities employer. Salary will depend on overall experience. Please send details c.v. to: Personnel Administrator, Brookside Productions Ltd., 43 Brookside, West Derby, Liverpool L12 0BA.

ELECTRONICS/COMPUTERS

- Do you have a sound knowledge of electronics, computer hardware or software, acquired from formal education, job experience or as a serious leisure activity?
- Are you interested in becoming invoived with some of the latest 'state-of-the-art' technology in one or more of these fields? - Do you have the ability to express yourself clearly and concisely in the written word? If you answered 'YES' to these three questions, you could find a career with ETP both challenging and rewarding.
Our company produces user manuals and technical handbooks, to a high standard, for a wide variety of products, from large electronics systems to software for personal computers. This involves liaison with our clients, developing a detailed understanding of the product, organising and writing the handbook and coordinating the production of the finished text and illustrations. We currently require people to train as Technical Authors to produce this documentation. The company offers varied and interesting work, a pleasant working environment, free membership of BUPA and salary commensurate with your knowledge and experience.
Applications from prospective trainees and experienced Technical Authors to:
The Manager, Engineering and Technical
Publications Ltd., 12 Shute End, Wokingham, Berkshire RG11 1BJ Tel: Wokingham (0734) 790123

TECHNICIAN ENGINEER

Cambridge
 c $£ 9,000$

Laser-Scan Laboratories Ltd are leaders in the field of computer controlled precision laser deflection systems with applications in many fields including digital cartography, security printing and CAD.
As part of our expansion programme we require a young technician engineer to play a leading role in our company's future.

The successful applicant will ideally be qualified to at least H.N.C. level in electronic engineering
have worked for a number of years in an electronic environment solving problems at a fundamental level possess specific experience in advanced digifal (principally TTL) and analogue circuitry
be prepared to work closely with Development Engineers in the introductory phase of new products have the enthusiasm and determination to meet the challenges presented by a dynamic company.
In addition to an excellent benefits package we will assist in your relocation to the Cambridge area so please write, in confidence enclosing a full c.v. or ring for more details:-

Cambridge. CB4 4BH
Tel: (0223) 315414

RESEARCH IN SATELLITE COMMUNICATIONS/DIGITAL SIGNAL PROCESSING

Following successful satellite trials in the UK and the USA of the prototype Digital Pseudo Analogue (DPA) Modulation System for DBS, and the placement of a research contract by General Electric (USA), the Department of Communication Engineering is seeking a Research Assistant or Fellow with a background in digital electronics and an interest in digital signal processing.
Candidates must have a good first degree preferably in Electronics or Physics, and/or a post graduate qualification. Initially appointed for a 2 year period, the successful candidate, if not already qualified, will be expected to register for a higher degree
Some travel to the USA/Canada during the project is anticipated.
Starting salary, dependent upon qualifications and experience, will be within the salary range circa $£ 7000$ to $£ 10,000$.
Application form together with further details are available from the Personnel Officer, Plymouth Polytechnic, Drake Circus, Plymouth PL4 8AA. Telephone (0752) 264639.
Closing date for applications 11.1.85.
(2802)

Appointments

Philips Drake Electronics is an expanding company specialising in the design and manufacture of equipment for the Broadcasting industry. We now require engineers for the following positions:
PROJECT ENGINEER
A vacancy exists in our Projects department for an enthusiastic and self motivated engineer. The department deals primarily with the system design of broadcast communications equipment to customers' requirements and is responsible for the preparation of production and handbook documentation in addition to providing technical support for our sales, manufacturing and test department.
A suitable engineering qualification together with some experience in broadcast or the professional audio industry is essential.
ANALOGUE DESIGN ENGINEER
We are looking for an experienced engineer to join our development team. The successful candidate will be involved in all aspects of design from concept to production. He/She will most likely have a relevant degree and must be capable of producing innovative but practical designs with minimum supervision. Experience of the professional audio industry would be an advantage.

SOFTWARE ENGINEER

A new position of microprocessor software engineer has been created and we seek a suitable candidate to design software in PASCAL and ASSEMBLER for the MC68000
family. The ability to work on your own initiative and communicate your ideas clearly is essential. Attractive salaries will be offered to the right people.

If any of the above positions appeal to
you please apply in writing including
your current CV or phone Jili Humphreys
on Welwyn Garden City (07073) 33866
for an application form.
Philip Drake Electronics Ltd., 37 Broadwater Road, Welwyn Garden City, Herts AL7 3AX

If you are leaving College and planning a career in modern communications or if your present job lacks interest and challenge why not join us in GCHQ?

We are recruiting
 RADIO OFFICERS

who are after initial training will become members of an organisation that is in the forefront of communications technology. Government Communications Headquarters can offer you a satisfying and rewarding career in the wide field of communications. Training involves a 32 week course (38 weeks if you come straight from Nautical College) which will fit you for appointment to RADIO OFFICER.
Not only will you find the work as an R O extremely interesting but there are also good prospects for promotion, opportunities for overseas travel and a good salary. Add to this the security of working for an important Government Department and you couid really have the start of something new.
The basic requirement for the job is 2 years radio operating experience or hold a PMG, MPT or MRGC or be about to obtain a MRGC. Registered disabled people are welcome to apply.
Salaries start at $£ 4,762$ at age 19 to $£ 5,755$ at age 25 and over during training and then $£ 6,399$ at 19 to $£ 8,510$ at 25 and over as a Radio Officer. Increments then follow annually to $£ 11,741$ inclusive of shift and weekend working allowances.
For full details and application form phone 0242 32912/3 or write to:

The Recruitment Office A/1108 Priors Road
CHELTENHAM
Glos GL52 5AJ
$(2806$

SENIOR PROJECT LEADER ELECTRONICS

near Bristol circa $£ 14,000$

E.T. Electrotech is an expanding UK based international company successfully designing, manufacturing and selling semiconductor production equipment to a world market. Our continued growth has given rise to a vacancy for a Senior Project Leader at our new R and D laboratory based at corporate headquarters near Bristol.
Responsibilities will include liaison with manufacturing managers to establish systems design of complex microprocessor systems and leading a team of engineers that will be carrying out circuit design. Therefore technical ability should be supplemented by man-management experience.
Applications are invited from engineers with at least five years post graduate industrial experience which should include the design of both analogue and R.F. power circuits.
Opportunities for career
advancement are excellent.
Relocation expenses will be paid
where appropriate. If you think you can meet our high standards please phone or write for an application form or send full career details to:Chris Matthews
E.T. Electrotech,

Whale Wharf,
Littleton-upon-Severn,
Thornbury,
Bristol. BS 12 1NP
Tel: 0454-419008

DODolby

Dolby Laboratories Inc. manufacture and market Audio Noise Reduction equipment which is used by major recording companies, recording studios, the film industry and broadcasting authorities throughout the world.
Due to increased sales and the introduction of new products we have the following vacancies:-

Electronic Test Technicans (£135 pw NEG) We

 need people educated to HNC level (or equivalent) with the potential to develope test and fault finding skills (to component level) in a semi-automated test environment.
Electronic Test Engineer ($£ 8000$ pa NEG) We need

 experienced Test Engineers educated to HND to equivalent level who demonstrate a practical knowledge of Analog testing and rapid "trouble-shooting" to component level.[^2]HAMPSTEAD HEALTH AUTHORITY
ROYAL FREE HOSPTIAL
DEPARTMENT OF MEDICAL PHYSICS
Salary - £5171 - £6798 plus £1042 London Weighting Allowance Electronics technician (Medical
Physics Technician IV) required to join small team responsible for servicing, maintenance and electronic development of radiotherapy units. Principal units are a linear accelerator, two cobalt units (one performing threedimensional treatments) and a treatment simulator. Training will be given in the specialist techniques required; study for further qualifications is encourged. The post gives an opportunity for gaining familiarity with a wide range of radiotherapy and physics equipment and for participating in development projects.
Qualifications - ONC, HNC, HND, final City and Guilds or equivalent or 2 ' A ' levels plus either 2 years as student or junior technician or 3 years relevant experience.
Further details are available from Martin Welch (01) 7940500 ext 3209 Job description and application form available from the Personnel Department Royal Free Hospital, Pond Street, Hampstead, London NW3 2QG
Please quote reference no: 1499

Systems Engineers
 Outstanding opportunities for pragmatic Systems Engineers to become Senior Systems Engineers, Technical Managers or Project Managers, dealing from scratch with one of several new, exciting, large high technology projects.

Several unique opportunities affording excellent career prospects with a large, expanding, performance orientated company exist for engineers with a degree or HNC in Physics or Engineering (preferably Electronics or Systems Engineering. but possibly Mechanical Engineering). Candidates should have acquired good systems experience whilst warking in the Electronics or Defence Industries and ideally will have practical knowledge of prototype production or trials.

Your task will be to assist our client, who has developed an enviably secure base in the development and manufacture of complex weapons systems, to develop new business areas for high technology systems in both the defence and commercial sectors The number of persons ultimately involved in a project will vary from 20 to 750 and the development costs will range from $£ 20 \mathrm{M}$ to £200M and consequently there will be tremendous opportunities for you to progress to the control of the running of very large projects as well as to higher levels of management. By proposing, developing and evaluating systems and design options. producing prototypes and arranging for all necessary trials and tests. your team's objective will be to produce complete technical and cost proposals for complex, state-of-the-art systems whose technical excellence and competitiveness will ensure that large contracts are
secured. To have acquired the necessary skills and experience to meet this formidable challenge you will probably be at least 30 to 35 years old: have management experience especially of dealing with people outside your direct control; have experience of customer liaison and project planning; and will have developed commercial and business awareness.

These important new positions offer excellent rewards and conditions with first class future prospects in the thriving division of a leading company in the High-Technology and Defence Industries that is part of a highly successful, major international group. The division has an order book which takes them potentially beyond the year 2000, is committed to developing several new business areas. and is poised to move into the world market in a big way.

TO FIND OUT MORE and to obtain an early interview, please

 telephone JOHN PRODGER in complete confidence on HEMEL HEMPSTEAD (0442) 47311 during office hours or one of our duty consultants on HEMEL HEMPSTEAD (0442) 212650 evenings or weekends (not an answering machine). Alternatively write to him at the address below.Executive Recruitment Services
THE INTERNATIONAL SPECIALISTS IN RECRUITMENT FOR THE ELECTRONICS, COMPUTING AND DEFENCE INDUSTRIES
25-3.3 Bridge Street, Hemel Hempstead, Herts., HP1 1EG

Electronics Engineers 29561

Communications Design in High Tech Country

At H.M. Government Communications Centre we're using the very latest ideas in electronics technology to design and develop sophisticated communications systems and installations for special Government needs at home and overseas.

With full technical support facilities on hand, it's an environment where you can see your ideas progress from initial concepts through prototype construction, tests and evaluation, to the pre-production phase, with a chance to influence every stage. Working conditions are pleasant the surroundings are attractive, and the career prospects are excellent.

Ideally we're looking for men and women who have studied electronics to degree level or equivalent and have had some experience of design, whether obtained at work or through hobby activities. Appointments will be made as Higher Scientific Officer (£7149-£9561) or Scientific Officer (£5682-£7765) according to qualifications and experience.

For further details please write to the address given below. As our careful selection process takes some time, it would be particularly helpful if you could detail your qualifications, your personal fields of interest and practical experience, and describe the type of of working environment most suited to your career plans.

The Recruitment Officer, HMGCC, Hanslope Park, Buckinghamshire MK19 7BH.
(2448)

 University of WalesMSc/Diploma course in Electronics (With Specialisation in Digital Systems, Communications, Control or Medical Electronics) M Eng Course in Systems Engineering (Automation, Robotics and Information Systems)

Applications are invited for places on the above full-time, one-year courses commencing in October 1985.

Opportunities leading to MSc/M Eng and PhD by research in the topics listed above are also available.

Further details and application forms (returnable as soon as possible) may be obtained from the Assistant Registrar, UWIST, PO Box 68, Cardiff CF1 3XA.

Aerial Mast Space to Let by Tender

1. Kensington (Kensington Heights) 72m asl (ref. 38/1/2)

2. Shooters Hill (Shooters Hill Water Tower) 150m asl (ref. 687/B/3)

3. Croydon (Shirley Hills Water Tower) 163m asl (ref. 1/L)
Copies of tender document may be obtained from:
Area Surveyor, Thames Water Authority, 20 Blyth Road, Bromley, Kent. BR1 3UB (Ref. MAS)
(2796)

SOUNDİ CS

Soundout Laboratories Limited manufacture audio consoles in Surbiton, Surrey. As a reslut of planned expansion we wish to strengthen our $R+D$ team for 1985.
We require a graduate electronics engineer familiar with audio and with experience of digital techniques in audio. Although your experience in audio/digital may be limited, your enthusiasm will be demonstrated by the continuous development of projects at home (i,e. electronic design is also your hobby!!
Soundtracs products are exported worldwide and the R + D effort, assisted by CAD and computer based manufacturing systems,, plays a fundamental role in the Company expansion.
Our team is young, dynamic and ambitious. Are you capable of assisting the team?
Call John Stadius on 013993392 or write to:
Soundout Laboratories Limited
91 Ewell Road Surbiton Surrey KTG 6AH

Microwave/Antenna Research Opportunities

The RF Technology Centre at ERA provides research, development, design and consultancy in antennas, microwaves and radio frequency components. The Centre, offering well equipped laboratories, powerful computers and extensive antenna ranges, is located on an attractive campus, 25 miles south west of London.

We are currently seeking engineers, physicists or mathematicians with appropriate experience to work alongside senior research staff on a number of interesting and challenging projects involving electromagnetic analysis and design. Candidates must offer sound knowledge and/ or practical experience of electromagnetic field theory or numerical techniques as applied to advanced antenna design and development.

Please apply in writing, with career details and area of technical interest, to The Personnel Manager, quoting Reference 50/X, ERA Technology Limited, Cleeve Road, Leatherhead, Surrey, KT22 7SA. Telephone (0372) 375227.

TECHNDLDGY

Trainee Broadcast Engineers

We are responsible for broadcasting the programmes of Independent Television, Cbannel Four and Independent Local Radio. The continuing need to operate and maintain our complex broadcasting equipment means we have a number of vacancies for Trainee Broadcast Engineers. On the successful completion of their training, they will enjoy technically challenging and secure employment in our progressive organisation.
The selected candidates will undergo an 18 month residential training course which commences in June 1985. It will be conducted at our Training College, in Devon, and also at Newcastle upon Tyne Polytechnic. The course is designed to give a training in Broadcast Transmission Engineering that has national recognition. It demands a high standard of attainment and personal commitment from those selected to undertake it. During the course we will pay a salary and in addition, all fees, accommodation and meals.
Applications are invited from men and women who are qualified or about to qualify to First Degree level in Electrical/Electronic Engineering or related disciplines.
Consideration will also be given to applicants holding an HND/HNC/HTEC in Electrical or Electronic Engineering or the City and Guilds Telecommunication Technicians Full Technological Certificate.
The salary whilst training will be $£ 6,992$ per annum. On the satisfactory completion of training, the salary will be $£ 8.835$ and will rise by annual increments to $£ 10.995$ per annum; further progression to $£ 13,628$ per annum is passible.
Employment benefits include a free life assurance and personal accident scheme, a contributory pension scheme, relocation expenses and subsidised mortgage facilities.

INDEPENDENT BROADC:ITTIN: AUTHORITY
An:qual Opportumites F mplower
For a fully illustrated booklet and application form, please write, quoting reference WWIER, to Alan Deboo, Personnel Officer - Engineering Regions, IBA, Crawley Court. Winchester, Hampshire SO21 2QA. Or telephone the Personnel Office between 9am and 4pm Monday to Friday on Winchester 822574 or 822273.
Application forms must be returned by Friday 25th January 1985.

BORFD?

Then change your job!

1) TEST ENGINEERS with good Analogue/Digital experience to test and fault find. Complete automatic test equipment. C. $£ 10,000$ Middx/Bucks/Berks 2) AUDIO/VIDEO

EQUIPMENT. Enquiries at all levels required to service sophisticaped TV and related broadcast equipment. To £12,000 + car. Berks/Middx. 3) MINIS AND MICROS SYSTEMS repair engineers required for work on Z80 based graphics systems. Field prospects. C. $£ 8,500$. Hants/Essex.
4) DRAFTSMEN - PCB/ Electro mechanical cable forms. Chassis cabinets. All areas. to $£ 12,000$.
Hundreds of other Electronic and Computer vacancies to $£ 12,500$ Phone or write:
hoger Howard, C.Eng., m.I.E.E., M.I.E.R.E.
CLIVEDEN CONSULTANTS 32 The Broadway, Bracknell, Berkshire CLIVEDEN

UNIVERSITY OF LIVERPOOL

 DEPARTMENT OF PSYCHOLOGY
TECHNICLAN (ELECTRONICS) GRADE 4

to join small group of workshop staff undertaking construction, modification and repairs of electronic/electromechanical electronic. electramechanical
erfuipment. Preparation of circuit eduipment. Preparation of circuit
diagrams, filing technical data for diagrams, hing techmical data io
future reference and general assistance in electronics as directed
Candidates should possess relevant O.N.C. or C. \& G. qualifications, together with at least seven years experience
Salary within range s6106- $\mathbf{~} 7024$ per annum.
Previous applicants need not apply Application forms may be obtained irom the Registrar, the University P.O. Box 147, Liverpool, L69 3BX
(2799)

```
NS) FUJ TYPE MB8264-15
DTAM 4O27-3 PACK OF 8 &16.00
8OBOA CHIPSET C/O I O8224. }1\times8238.1\times8255A
8080A CHIPSET C/O 1\times8224. 1\times8238. 1\times8255
l/
CABLE £4.009 PIN D MALE IDC CONNECTOR
\2.00 RS 232 LEADS SINGLE ENOED M OR
NOIE, ALLTTEMS LIMITED STOCK. SPEC. PLS
ADD 50p P&P NO VAT C WO top qually
CAMTRONICS,28 Perowne St.,
    Cambridge
    Tel Cambridge 68990
```

FOR SALE, Grant Lumley GL 100A $£ 400$, Shackman Electrostatics pair $£ 100$, Kellar KDB2 dolby unit $£ 65$, Goodnans $301 / 60$ T.C. spkr $£ 40 \mathrm{~m} . \mathrm{pr}$. S 100 cards. ram prom, FDC etc, offers ADM-3A computer terminal $\{125$. Southampton (0703) 584642 .

BRIDGES waveform/transistor analysers. Cali brators, Standards. Millivoltmeters. Dyna mome ters. KW meters. Oscilloscopes. Recorders. Sig nal generators - sweep, low distortion, true RMS,
376236 . audio, FM, deviation. Tel. ${ }_{(1627)}^{040}$

VALVES, PROJECTOR Lamps, 6000 types. list 75p. world wide export. Cox radio (Sussex) Lid.
The Parade. East Wittering Sussex. $(0243) 672023$ (1941)

ENCAPSULATING EQUIPMENT FOR coils, cransformers, components, degassing silicone rubber, resin, epoxy Lost wax casting for brass, bronze, silver, etc. Impregnating coils, transformers, components. Vacuum equipment, low cost, used and new. Also for CRT regunning metalising. Research \& Development. Barratts, Mayo Road, Croydon CR0 2QP 01-684 9917.

MULLARD CONSOLE radio - Believed 50-60 years old - White. 10 Kingswood Close, Bishops Cleeve. Cheltenham, Glos.

OPTOELECTRONICS DATA BOOK 1984

Price

DIGITAL EL
2 SYSTELECTRONIC CIRCUITS
8. SYSTEMS by N.M. Morris PRICE: £5.45

MICROELECTRONICS
A PRACTICALINTRODUCTION by
SOLDERING IN ELECTRONICS by
R.J.Klen Wassí Wassink RICE. Eb1.00 OPTICAL FIBER COMMUNICATIONS BY G Keiser PRICE: $£ 9.50$

DIGITAL IMAGE ANALYSIS
by S. Levialdi PRICE: $£ 26.00$
SEMI-CUSTOM IC DESIGN \& VLSI byP.J HICks PRICE: £13.50

INTRODUCTION TO MOSLSI DESIGN by J. Mavor PRICE: £18.50
HANDBOOK OF BATTERIES \& FUEL CELLS byD Linden PRICE E63.00

THE DESIGN 8 DRAFTING OF YD. Lindsey
PRICE E41.50
\star all prices include POSTAGE \star

> THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST of British and American Technical Books

19-21 PRAED STREET LONDON W2 1NP
Telephone: 01-4029176 Closed Saturday 1 p.m. Please allow 14 days for reply or delivery

DRIOTWICH STANDARD FREQUENCY RECEIVER

Outputs, $1 \mathrm{MHz}, 10 \mathrm{MHz}$
Phase locked crystal oscillator. Complete with ferite rod aerial, usable throughout U.K. Now available in updated version £ 185.00
R.C.S. Electronics, Wolsey Road, Ashford, Middx. Phone 53661.

CUT PRICE COMPONENTS AVAIL ABLE NOW. You have nolhing to lose and everything to gain by comparing our prices. For a free quotation without obligation send a list of your requirements to Doyen Electronics Limited, Freepost (No stamp required). Pewsey, Wiltshire, SN9 5BR.
(2810)
200.A. MIG Welder. Coating thickness Gauge s35. Pressure gauge £4. Reversible \&37. 6V 8 AHH rechargeable, sealed batteries c6. Ignition Analyser adaptor, plugs into scope, generates characteristic waveform. diagnostic manual $£ 39$. Thermopistol hot air gun, up to $425 \mathrm{C}, \mathbf{£ 3 5}$. $1 . \mathrm{hp}$ single-phase capacitor motor £35, 1 inp $£ 45$. Chart recorder. Wow/flutter meter £69 Fibre optic light Supply $£ 36$. Centrifuge $£ 49$. TV Sweep Gen-
erator $£ 69$. W-K Audio Analyser $£ 69$. Digital erator £69. W-K Audio Analyser £69. Digital ometer with flowmeter £35. Oscilloscope Precision level £20. Precision Clinometer £34. Ferrograph continuous loop cassette £10. Pulse Generator 7 -track portable recorder deck, four sets of heads $£ 60$. PCM Generator PCM Decommutator. Meter-
FlowFrequency/DC Converter $£ 30$. etc. etc.

040376236

WAVEGUIDE. Flanges and dishes. All standard sizes and alloys (new material only) from stock. 7876. 22 Howie Street, London SW11 4AR.(2099)

MORSE READING PROGS. Work on clean sig nals without hardware interface. ZX81 IK UNEX and line spaces for easy reading Automatic scroll and line spaces for easy reading Automatic scroll
(2532)
action. $£ 7$ incl.

SERVICES

PROFESSIONAL DESIGN SERVICE. Analogue/RF circuit/System design. Specialising in microwave amplifier, oscillator and network design. MOTOROLA 6805/6809 series microprocessor design/development capability. All work carried out to a high standard by competent profesSional engineers. Trontech Electronic Design Ser-
vices Lid. Unit 8B, Rose Industrial Est. Bourne End, Bucks. Of285 28835 (2439)

DESIGN AND DEVELOPMENT SERVICE. RF transmitters and receivers. Telemetery U.H.F. V.H.F. Anologue and digital circuits. control sysics, Wolsey Road. Ashford, Middx. Phone Dr. Eric Falkner on 53661 . (2637)

TURN YOUR SURPLUS i.cs transistors etc. into cash, immediate settlement. We also welcome the opportunity to quote for complete factory clear-
ance. Contact COLES-HARDING \& CO, 103 South Brink. Wisbech. Cambs. 0945 584188 . (9509)

FOR THE BEST PCB SERVICE AVAILABLE	
*Circuit Design 8 © Development Digital and Analogue	
*Artwork Layout PCB artwork layout and mechanical detailing. P.O. approved standard.	
*Board Manufacture Prototype to semi-production, excellent rates.	
*Wiring \& Assembly PCB assembly, wiring and cable forming. Flow soldering facilities available.	
*Test Full test facilities available.	
One or all services available. Please telephone Chelmsford (0245) 357935, or write to HCR Electronics, The Industrial Unit,	
Parker Road, Chelmstord. (30 mins from Liverpool Street St.)	(1169)

CIRCOLEC

THE COMPLETE ELECTRONIC SERVICE

Artwork, Circuit Design, PCB Assembly, Test \& Repair Service, Q.A Consultancy, Prototypes, Final Assembly. Full PCB Flow Soldering Service.
Quality workmanship by professionals at economic prices
Please telephone 01-646 5686 for advice or further details.
TAMWORTH MANOR
302-310 COMMONSIDE EAST, MITCHAM
(1391)

ARTICLES FOR SALE

Latest Bulk Government Release - Cossor Oscilloscope COU150 (Cr531/3) $£ 150$ onty Solid slate general purpose bandwidh OC to 35 MHz at $5 \mathrm{MV} / \mathrm{CM}$ - Oual Channel - High hrightness display ($8 \times 10 \mathrm{Cm}$) Full detayed time base with gated mode
-Risetime 10 NS - Iliuminated graticule - Beam finder - Calibrator 1 KHz squarewave - Power $100-120 \mathrm{~V} .200 \mathrm{~V}-250$
 volts AC - Size W $26 \mathrm{CM}-\mathrm{H} 26 \mathrm{CM}-41 \mathrm{CM}$ deep - WT 12.5 K . G. carrying handle - colour biue - protection cover front
containing polarized viewer and camera adaplor plate - probe (1) - Mains lead. Tested in Fair condition with operating containing polarized viewe
instrucltons $-\$ 150.00$.
Communication Recelvers. Racal $500 \mathrm{KC} / \mathrm{S}$ 10 $30 \mathrm{MC/S}$ in 30 bands $1 \mathrm{MC} / \mathrm{SWIOE}$ - RA17 MK 11 §125. RA17L §150. RAii7E〔200. New Metal Louvred Cases for above $£ 25$. All receivers are air tested and call brated in our workshop - supplied wilh
 MA 1350 tor use with RA 17 ecelver $£ 100$. MA259G Precision frequency standard $5 \mathrm{MC} / \mathrm{S}-1 \mathrm{MC} / \mathrm{S}-100 \mathrm{KHz}$ £ 100 to $£ 150$.
 RA98 SSB-ISM Covertior $£ 50$. RA121 SSB-ISB convertor $£ 75$. EC964/7K Solid state - SIngle channel - SB8- mains or bat-
tery -1.6 Io $27.5 \mathrm{MC/S}$ and 400 to $535 \mathrm{KHZ} £ 100$ with manual Pessey PR155G SOlid State $60 \mathrm{KC} / \mathrm{S}$ - $30 \mathrm{MC} / \mathrm{S} £ 400$. Creed 75 Teleprinters - Fitted tape punch and gearbox tor 50 and 75 bauds - 110 volts AC supply - in orlginal Iransport lray sealed in polythene - like new $£ 15$ EA. Rediton $\Pi 11$ Audio Teleprinter convertor receiver solid slate - supply 110 or 240 AC - Made lor use wilh above teleprinter enabling print-out of mess ages recelved from audio input of communication receiver £15 with circuil tested. Redifon TT 10 Convertor as above but inclutes transmit tacilities $£ 20$. Oscilloscopes - stocks always changing Teklionix $465-100 \mathrm{MC/S} £ 750 \mathrm{FM}$ Recorder Sanghmd Sabre 1114 channels $£ 350$. Transel Matrix
printers-AF11R - 5 Ievel Baudol Code - up to 300 Bauds - for prini out on plan telepinter paper 50 to 100 . Transtel AH11R - As above butal so 8 level ASC11 (CCITT No 2 and CCITT No. 5) Like new $£ 100$. Army fleld telephone sets. Type F Land J - Large quantity in stock $£ 6$ to $£ 15$ depending on type and quantity P. O.R. Don 10 Telephone Cable - half mile canvas containers $£ 20$. Night vetwing infra-red AFV periscopes - Twin Eyepiece - 24 volt de supply £100ea. Original cost
 TF 1060/2 £60. HP606A - $£ 90 £ 140$ HP608 £50 HP612A £100 HP614A £100 HP618B £100 HP620A £ 100 Marconi TF 10648/5 $£ 100$ TF791 Deviation meler $£ 100$ IF893A Power meter $£ 50$. Aerialmast assembly 30 th high complete with 16 t:
 direct fromit M. Government being surplus equipment: Price is Ex works. S A.E. for enquiries.
demenstration of any items. Aiso avaliab ility or price change. V. . T. and carriage extra.

TO MANUFACTURERS, WHOLESALERS

 BULK BUYERS. ETC.LARGE QUANTITIES OF RADIO. TV AND ELECTRONIC COMPONENTS FOR DISPOSAL
SEMICONDUCTORS all types, INTEGRATED CIRCUITS, TRANSISTORS DIODES, RECTIFIERS, THYRISTORS, etc. RESISTORS, C/F, M/F, W/W, etc CAPACITORS, SILVER MICA, POLYSTYRENE, C280, C296, DISC CERAMICS, PLATE CERAMICS, etc.
ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE, CABLES, SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFOR
ALL AT KNOCKOUT PRICES - Come and pay us a visit ALADDIN'S CAVE

TELEPHONE: 445 0749/445 2713 R.HENSONLTD.

21 Lodge Lane, North Finchley, London, N. 12
$\begin{aligned} & \text { EXPORT TRADE AND QUANTITY OISCOUNTS GIVEN } \\ & \text { JOHNS RADID }\{0274 / 684007\end{aligned}$
JOHNS RADID $\{0274$) 684007
BIRENSHAW. ARADFORO BDO112ER

export trade and quantity discounts given JOHNS RADID \{0274)684007 WHITEHALL WORKS. 84 WHITEHALL ROAD EAST BIRENSHAW. BRADFORO BO112ER

TW ELECTRONICS LTD

THE PCB ASSEMBLERS

More and more companies are investigating the advantages of using a professional subcontractor. Such an undertaking requires certain assurances.
TW are able to satisfy all of them quality, competitive pricing, firm delivey and close co-operation with the customer.
Assembled boards at 100% inspected before flow soldering and reinspected after automatic cropping and cleaning.
Every batch of completed boards is issued with a signed certificate of confor mity and quality - our final assurance.
For further details, contact us at our new works:

> Blenheim Industrial Park
> Bury St. Edmunds Suffolk IP33 3 UT
> Telephone: $02843931 \quad$ (1466)

SERVICES

PCB MANUFACTURE, artwork, assembly, wiring, cableforming, etc. Prototype thru to production. We are a small company offering high quality workmanship at low prices. Phasor Circuits. Unit 18. Enterprise Workshop, 76 Linden Street, Leicester. Tel: 0533735825

The Publishers tate all reasonable care to ensure that classified advertisements are genuine, but readers must satisfy themselves that they will be obtaining what they require beforeentering into transactions, particularly if they involve large sums of money.
(2519)

FREE P.T.H. PROTOTYPE of the finest quality with EVERY P.C.B. artwork designed by us. Com petitive hourly rates, and hish standard of work Essex. Tel. (0787) 477408/474554, (2126

STEWART OF READING

 110 WYKEHAM ROAD READING RG6 1PL. TEL NO: 073468041TOP PRICES PAID FOR
ALL TYPES OF SURPLUS TEST EQUIPMENT, COMPUTER EOUIPMÉNT, COMPONENTS etc. COMPONENTS etc. (260)

SURPLUS

We offer good prices for test equipment, components, redundant computers PCB's connectors. Immediate settle ment.

TIMEBASE
94 Alfriston Gardens
Sholling, Southampton SO2 8FU
Telephone: (0703) 431323
(1832)

SERVICES

 DESIGN AND MANUFACTURE. ANALOGUE, DIGITAL, RF AND MICROWAVE CIRCUTT ANDSYSTEM DESIGN. Also PCB design, mechanical SYSTEM DESIGN. Also PCB design, mechanical
design and prototype/small batch production. - Adenignore Limited, 27 Longshot Estate, Bracknell. Berks. Tel: Bracknell (0344) 52023 . (656)

ELECTRONIC CIRCUIT Design and Development service. Professional engineers with many years experience in the design of analogue, digital and Prototype Production. Memtoroor I.id. 29. Westerings. Romsey. Hampshire. I'hone Romsey 522143 .

WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash. Member of A.R.R.A.

M \& B RADIO

86 Bishopsgate Street
Leeds LS 1 4BB
0532435649
(9956)

WANTED

SURPLUS ELECTRONIC COMPONENTS AND

 EQUIPMENTWe also weicome the opportunity to quote for complete factory clearance B. BAMBER ELECTRONICS 5 SIATION ROAD. LITILEPORT, CAMBS Phone: Ely (0353) 860185

SERVICES

SMALL BATCH PCBs, produced trom your art work. also DIALS, PANELS, LABELS. Camer work undertaken. FAST TIURNAROUND. Details: Winston Promotions, 9 Hatton Piace, London ECIN 8RU. Tel. $014054127 / 0960$. (9794)

CLASSIFIED ADVERTISEMENTS Use this Form for your Sales and Wants

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

To "Wireless World" Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate £4.00 PER LINE. Average six words per line. Minimum $£ 25$ (prepayable)
- Name and address to be included in charge if used in advertisement
- Box No. Allow two words plus $£ 5$
- Cheques, etc., payable to "Business Press International Ltd." and cross "\& Co."

PLEASE WRITE IN BLOCK LETTERS. CLASSIFICATION
NUMBER OF INSERTIONS

ITT Model 350 TELEFAX Facsimile transmitter/receiver. Microprocessor controiled (8085) CCITTGroup 2 machine for transmitting documents over an ordinary phone line. BRAND NEW ANDBOXED
f 350.00
TEKTRONIXModel 4601 hard copy unit for 400 series graphics terminals $£ 95.00$
TEKTRONIX Model 611 graphics storage display. For use with any DAC co
f150.00 FACIT Model 4020 high speed paper tape reader. Paralle TTL interface £225.00 FACIT Model 4070 PAP ER TAPE PUNCH. BRAND NEW f 350.00 CALCOMP Model 563 AO drum plotter. 0.1 mm step size £650.00 CALCOMP Model 763 AO plotter. As above, but high speed P.O.A.
CALCOMP Model 1036 AO graph plotter. High speed 3 colour plotter with Type 915 magnetic
tape unit for optional off-line use, \& selectable for $7 / 9$ track, $800 / 1600$ b.p.i. etc
tape unit for optional off-line use, \& selectable for $7 / 9$ track, $800 / 1600 \mathrm{~b}$. p.i. etc P.O.A
P.O.A.
C.I.L. Model 6000,2 pen AO high speed graph plotter
HEWLETT-PACKARD Model 75 C portable computer

Wrelésiswowind
 INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 95-103

	PAGE
AEL Crystals	42
AirLink Trasformers	88
AM Electronics	21
AndelosSystems	60
Antex	IBC
Aspen Electronics	30
Armon Products .	27
Automation \& Control Technology .	. 13
Black Star Ltd	22
BeckenhamPeripherals	. 27
C\&A Electronics	12
Cambridge Kits	35
Cambridge Microprocessor System	. 51
Caracal Power Products	21
Chiltern Electronics	83
Cirkit Holding Plc	9
Clark Masts	42
Conquin Software	30
Computer Appreciation	104
Costgold Research	. 60
Cricklewood Electronics	39
Crotech Instruments	28
Cybemetic Applications 24
Data man Design	IFC
Deltek	52
Deephaven	52
Dewsbury Electronics	13
Digitask	16
Display Electronics.	.92/93
Easibinders	91
Electronic Brokers	14/15
Electronic Equipment Co.	

AEL Crystals 42
AM Electronics 21
Antex BC
Armon Products 3BlackStar Ltd22
C\&AEc 12
Cambridge Micioprocessor Systems 51
Chiltem Electronics 83
Clark Masts 42
Conquin Software 30
Costgold Research 60
Crotech Instruments 39
Cybemetic Applications 24
Deltek 5
Deephaven 52
Digitaski93
Electronic Brokers14/15

OVERSEAS ADVERTISEMENT AGENTS

France \& Belgium: Norbert Hellin, 50 Rue de Chemin Veat, F9100 , Boulogne, Paris.

Hungary: Ms Edit, Bajusz, Hungexpo Advertising Agency, Budapest XIV, Varosliget
Telephone: 225008 -Telex: Budapest 22-4525
INTFOIRE
INTFOIRE
Italy: Sig C. Epis, Etas-Kompass, S.p.a - Servizio Estero, Via Mantegna 6, 20154 Milan
Telephone: 347051 - Telex: 37342 Kompass

Japan: Mr Inatsuki, Trade Media - IBPA (Japan), B.212. Azabu Heights, 1.5.10 Roppongi, Minato-ku 106.

Telephone: (03) 5850581 .
United States of America: Jay Feinnan, Business Press International Ltd, 205 East 42nd Street, New York, NY 10017 Telephone (212) 867-2080 - Telex: 23827.
Jack Farley Jnr., The Farley Coi. Suite 1584, 35 East Walker
Drive, Chicago, Illonois 60601 - Telephone (312) 63074 Anceles Calif 00034 USA Tenal, P.O. Box 3460 , Los
Angeles, Calif. 90034, USA - Telephone (213) 821-8581

PAGE
PAGE
Electrovalue 94
EMSMfg 24
Essex Electronics 52,58
EWW Editorial feature list 91
Flight Electronics 29
Flyde Electronics 36
Gemini Micro Computers 52/53
GNC Design 60
GPIndust 16
Happy Memories 36
Harris Electronics $\ldots, 81$
Hart Electronics

Henrys Audio Electronics 40/4
Henson Ltd R 22
ILPElectronics 21,30
Irvine Business Systems 57
JAF Graphics 35
LangrexSupplies 23
L.J. Electronics 57
Manners, K.T. Design 91
Microkey Ltd. 60
MSB Designs 28
Newrad Instruments Cases 35
Number One Systems 84
Nombrex 94
Pantechnic
31
31
PM Components
PM Components
88
88
Practical Computing 95
Radford Electronics 22
RadiocodeClocks.
$\dddot{O B C}$
$\dddot{O B C}$ 27
Raedek Electronics
Raedek Electronics
Research Communications 24
Reticon E.G. \& G
91
91
R.S.T. Valves 23
Seasim Controls Ltd 94
Sherwood Data Systems 58
SkywaveSoftware 12
Special Product Distribution 42
Stewart of Reading 13
Strumech Engineering 16
Surrey Electronics
Taylor Bros(Oldham)Ltd 36
Technomatic Ltd 86
Thandar Electronics 86
Thanet Electronics
88
Thurlby Electronics
54
54
Triangle Digital Services
Triangle Digital Services
28
28
Trial Electric 84
Vigilant Communications 22
Waugh Instruments
84
84
Withers Communications (R) 30

[^3]
QWOi

$\left\langle A X X(T X X X\rangle_{\text {SKs }}^{\text {EN }}\right.$

SCLDEAMGKII
Freefhow To Solder'beokfot and pack of solder

Tomorrows Soldering Technology Today.

ANTEX has a worldwide reputation for quality 3 senvice \& for many years has been one of the best known \& most popular rames in soldering. Always at the forefront of technology, ANTEX is contivally researching new and better ways of ach iaving more accurate, relable, and cos- effective soldering. On ANTEX Soldering lrons, the advenced desig.n of the interface between the element \& the bit allows more efficent has transfer to the bit and improved fability of the temperature at the point of contact with the work. Indeed, experiments have shown thet in XSNS watt iron can be used for tasks where a 40 watt iron would nomally heve been required.
ANTEX Soldering lrons exhibit exceptionally bw lealage arrents \& hence are suitable for use on Static Sensitire Devires Sophist cated temperature controlled soldering units have recently been edied to the ANTEX range.

CIRCLE 2 FOR FURTHER INFORMATION

Rs RAEDEK ELECTRONICS

SERVICING THE TELECOMMUNICATIONS AND ELECTRONICS INDUSTRIES
102 PRIORY ROAD，SCRIBERS LANE，HALL GREEN，BIRMINGHAM B28 OTB TEL：021－474 6000 TELEX 311033 CHACOM－G Atn：CROSAL

VALVES－National，Varian，Mullard，RCA，ITT

※ทivin 	
ฟัฒ 	
	ぎき 囍
	穿室

TERMS：C．O．W．POSTAGEPACKING：Add $£ 1$ to order under 50 value．VAT：All prices are excluding VAT，please add 15% to order and postage．GUARANTE

[^0]: References
 References
 67. Churan, G.G., Leavitt, W.E. Comsat Technical Review 11(2), 421-321, Fall 1981. Summary of the SBS satellite communications performance specifications. 68. Bodman, Richard S. Comsat J, 9, 5-18, 1982 . SBS off \& running. 69 Chase, Scott. Comsat J., 9, 12-18, 1982. CNS: communications, advanced, private, intergrated.
 70. Phillips, G.J. Proc. IEE 129(7), 478 484, September 1982. Direct broadcasting from satellites.
 71. Anon. HMSO 1981. Report of a home office study. $£ 4.50$. Direct broadcasting by office stud
 satellite.
 satellite.
 72. Kirstein P. T., Burren J., Daniels R. et al. In Pathways (see ref 51) pps.442-447. The Universe project.

[^1]: References
 References
 1 BS415. 1979. Safety requirements for mains-operated electronic and related apparatus for household and similar general use. British Standards Institution London 1979.
 2. Electrical Equipment (Safety)

 Regulations 1975
 Electrical Equipment (Safety)
 (Amendment) Regulations 1976. HMSO
 London.

[^2]: For further informafion contact: Sarah Kennedy, Dolby Laboratories Inc. 346 Clapham Road, London SW9 9AP. 01-720 1111

[^3]: Printed in Greal Britain by tndex Printers Lid., Oldhill. Dunstabie. and typeset by Legendary Characters, South Sureet, Lancing, for the proprietors, Business Press International, Quadrant House. The (uuadrant, Sutton. Surrey SM2 5AS. ©

