

Semiconductor buyer's guide

-

BBC micro Mimicontroller

XY plotter update

Mobile radio

Digital feedback
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Australia</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">AS</td>
<td style="text-align: right; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">3.00</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Norway</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Nkr</td>
<td style="text-align: right; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">29.20</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Denmark</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">DKr</td>
<td style="text-align: right; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">34.50</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Singapore</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Ms</td>
<td style="text-align: right; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">5.50</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Eermany</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Dm</td>
<td style="text-align: right; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">7.00</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Spain</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Pts</td>
<td style="text-align: right; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">340.00</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Greece</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Dra</td>
<td style="text-align: right; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">220.00</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Switzerland</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">SFr</td>
<td style="text-align: right; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">7.00</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Holland</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">DFL</td>
<td style="text-align: right; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">8.50</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">U.S.A.</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$\$$</td>
<td style="text-align: right; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">3.75</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Italy</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">L</td>
<td style="text-align: right; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">3800</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: right; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| Australia | AS | 3.00 | Norway | Nkr | 29.20 |
| :--- | :--- | ---: | :--- | :--- | ---: |
| Denmark | DKr | 34.50 | Singapore | Ms | 5.50 |
| Eermany | Dm | 7.00 | Spain | Pts | 340.00 |
| Greece | Dra | 220.00 | Switzerland | SFr | 7.00 |
| Holland | DFL | 8.50 | U.S.A. | $\$$ | 3.75 |
| Italy | L | 3800 | | | |</table-markdown></div>

©
 finnall

bench power supplies

THE D RANGE . . .

- Digital meters
-1mA resolution of current
- 10 turn voltage control
- Measure external voltages
- Output on/off switch
- CV or CI operation

Four models:
D30-2 $0-30$ volts at 2 amps single
D30-2T $0-30$ volts at 2 amps twin
D30-4 $0-30$ volts at 4 amps single
D100-1 0-100 volts at 1 amp single

Send for new colour leaflet now to:

FARNELL INSTRUMENTS LIMITED - SANDBECK WAY. WETHERBY. WEST YORKSHIRE LS22 4DH TEL. (0937) 61961. TELEX 557294 OR HARPENDEN TEL. (05827) 66123

The Archer-single Board Computer

The SDS ARCHER - The Z80 based single board computer chosen by professionals and OEM users.

FEATURES

* High quality double sided plated through PCB
* 4 Bytewide memory sockets - upto 64 k
* Power-fail and watchdog timer circuits
* 4 Parallel ports with handshaking
* Bus expansion connector
* CMOS battery back-up
* Counter-timer chip
* 2 serial ports
* 4 MHz Z 80 A

Telephone or write for full technical description
 and price information.

OPTIONS * SDS BASIC with autostart and "user program in ROM" facility

* SDS DEBUG MONITOR: a powerful 8 k byte development aid
* On board 120/240 volt mains power supply
* Attractive two tone instrument case

CIRCLE 31 FOR FURTHER DETAILS.

FIELD ELECTRIC LTD.

3 SHENLEY ROAD, BOREHAMWOOD, HERTS. Telephone: 01-953 6009 OPEN SIX DAYS A WEEK. $9.00 \mathrm{am}-5.00 \mathrm{pm}$ THURSDAY 9.00am - 1.00 pm

Wirelesswordd

 over 70 years in independent electronics publishingDecember 1984
Volume 90 number 1586
EATURES

17
 Music keys for the BBC microcomputer
 by R.M. Adelson Software for the polyphonic keyboard interface described earlier.
 37
 HDTV or EDTV?
 by Tom Ivall IBC 84 exposed some investigations into methods of obtaining higher-definition television pictures.

21

Multiplexing liquid-crystal displays
by T. Segaran
A short description of the 'black art' of led driving.

23

Speed of light

by Roy Hodges An attempt to explain its constancy, even when the light source is in relative motion.

31

Mimi-controller
by Peter Nicholls A dedicated controller, using the 6502 , frees a microcomputer for other duties.

43

Hand-held multimeters
Price and performance data.

46

Multi-standard modem
by Richard Lambley
Modifications for line-drop problems, and BBC computer connections.

51

Intelligenteprom programmer
by John Adams
Computer control software and construction.

56

Semiconductor suppliers
Who deals in the components you need? And which companies will accept private orders?.

69
Mobile radio systems and techniques
by N.S. Cawthorne Report from the York IEE conference.

74

More on the XY plotter

by P.N.C. Hill
Further information on construction, and software.

78
Digital derivative feedback at l.f. by J. Rush
Hybrid digital-analogue rate-information extraction is more effective than a RC circuit.

REGULARS

6
Comment and News Comal versus Basic: BBC engineering designs: Acorn business computer: Voicemail.

25

Communications Optical power: microwave landing: 405-line tv:
IARU locator: costly h.f.

64

Letters

Energy transfer: relativity: Baird:
d.c. supplies.

71

Circuit ideas
One led shows six modes: combination lock: audio differential line transformer uses op-amps.

82

New Products
Flat-bed plotter: personal logic analyser: multi-tasking Forth: picoammeter.

Cirkit．Making it

Cirkit stock all the

 components，accessories and tools and the kits you＇re looking for． Designed and selected to offer the best possible standards at the best possible price．Cirkit＇s always well stocked．

As soon as new products are available， Cirkit has them．

When it comes to kits， Cirkit＇s got the lot．At the price you want to pay．

Just send for our catalogue or visit one of our three outlets at：

200 North Service Road， Brentwood，Essex．CM14 4SG； 53 Burrields Road，
Portsmouth，Hampshire．PO3 5EB；Park Lane，Broxbourne， Hertfordshire．EN10 7NQ．

Please add 15\％VAT to all advertised prices and 60 p post and packing． Minimum order value $£ 5$ please． We reserve the right to vary prices in accordance with market fluctuation．

Cirkit Kits

CIRKIT ELECTRONICS TOOL KIT
Contains：15W Soldering Iron 2 spare
bits，heat shunt，solder．pliers．cutters，
$\begin{array}{lll}\text { and screwdriver } & 40-00007 & 15.56\end{array}$
AUDIOFUNCTIONGENERATOR
Versatile waveform generator with
sine，triangular and square wave outputs
On board mains PSU
41－01302 27.00
STEREO 40W AMPLIFIER
Single board 40 W per channel stereo amplifier

41－01301 38．00
STEREO VUMETER
5 LED per channel stereo VU meter for
use with stereo amplifiers
$41-01401 \quad 11.50$
5W AUDIO AMP
A very compact audio output stage for use
in a wide range of equipment $\quad 41-01406 \quad 4.60$ UNIVERSAL AMP
A universal audio pre－amp with a
gain of 10
MONOREVERBERATION UNIT
Single channel，spring line reverb unit to add echo $\begin{array}{lll}\text { effects to tape recording etc．} & 41-01602 \quad 10.00\end{array}$
TONE GENERATOR AND DETECTOR
Very low distortion tone generator and signal
detector for circuit fault finding
10 MHz DFM
$41-01603 \quad 10.45$
8 Digit LED digital frequency meter
$\begin{array}{llll}\text { and period measurement } & 41-01500 & 54.10\end{array}$
50 MHz PRESCALER
Extend the range of the 10 MHz DFM
to 50 MHz
$41-01501 \quad 8.55$
$1-5 \mathrm{MHz}$ PRE AMP
Low frequency pre－amp and waveform
shaper for the 10 MHz DFM $41-01502 \quad 5.13$
$1-30 \mathrm{~V} 1 \mathrm{~mA}-2 \mathrm{~A}$ PSU
Adjustable 1－30V Power supply with pre－setable current limit from 1mA－2A $41-01600 \quad 37.4$

To：Cirkit Holdings PLC，Park Lane，Broxbourne，Hertfordshire．EN10 7NQ． I enclose 85 p．Please send me your latest catalogue and 3 x \＆ 1 discount vouchers！ If you have any enquiries please telephone us on Hoddesdon（0992） 444111.
Name
Address

Telephone

Area of Special Interest
Cirkit
5－12V IAPSU
Adjustable PSU from $5-12 \mathrm{~V}$ with current
protection， $1 \mathrm{amp} \max$ output 41－01504 6.45 $1-30 \mathrm{~V} 1.5 \mathrm{~A}$ PSU
I－30 volt adjustable PSU with protected output up to 1.5 Amps 41－01402 10.45 3 DIGIT LED DVM
DVM to read up to 99.9 volts or configured as an ammeter to read up to $9.99 \mathrm{amps} \quad 41-01403 \quad 17.00$

INFRA RED LINK
Single chanmel IR Link
with relay output
41－01300 $\quad 9.60$
TEMPERATURE SENSOR
Thermistor based temperature sensor
with relay output 41－01303
6.20

LOCOMOTIVE SOUND GENERATOR
Realistic steam sound and whistle for
model railways
41－01304 9.20
LAMPDIMMER
Control lamps and drill speed 41－01305 5．70
WATER LEVEL ALARM
Alarm to indicate high water level or
flooding
41－01601 2.70
3 NOTE CHIME
$\begin{array}{ll}\text { Doorbell chime with adjustable } & 41.01503 \quad 7.00\end{array}$
2M PRE AMP
Miniature low－noise MOSFET pre－amp
for the 2 m amateur band $\quad 41-01307 \quad 3.91$
2M CONVERTER
Low noise $144 \mathrm{MHz}-28 \mathrm{MHz}$ amateur
band converter
41－01306 $\quad 17.35$
2M POWER AMP
20W－10dB gain－power amplifier for the
2mband Automatic TX switch over，RX
$\begin{array}{lll}\text { pre－amp，robust construction } & 41-01404 & 32.87\end{array}$ 70 cm PRE AMP
Low noise，miniature pre－amp for the
70 cm amateur band
41－01506 $\quad 4.78$
70 cm CONVERTER
70 cm to 144 MHz low noise converter
featuring pre－aligned helical filter，
schottky diode mixer and low noise
transistors
$41-01405 \quad 21.50$
70 cm PA
10W Power amp to boost the output of
handheld and portable 70 cm
transceivers
41－01505 33.82
CRYSTAL CALIBRATOR
Crystal reference calibrator for alignment
of receivers，outputs at $4,2,1 \mathrm{MHZ}$
100,50 AND 10 KHz
$41-00801 \quad 4.32$
CB NOISE SQUELCH
Improves to mute performance of the
majority of CB rigs
41－01605 $\quad 540$
CENTRONICS INTERFACE
Connect your personal computer to the outside world via the Centronics
printer output
41－01406 22.50
EWW 1284

109 N

bigger and better.

Nicad Batteries \& Chargers
High quality nickel cadmium rechargeable batteries. Equivalent in size with popular Dry Cell sizes e.g. HP7 (AA), HP1 I (C), and HP2 (D). Minimum life 600 (300 PP3 size) full charge/discharge cycles. Batteries must be charged from a constant current source only All batteries are supplied only with a residual charge and should be charged before used.

DATA \& PRICES
$\begin{array}{llll}\text { Type } & V(n o m) & \text { Capacity Stock No. } & 1-9 \\ 10-49\end{array}$ $\begin{array}{llllll}\text { AA } & 1.2 \mathrm{~V} & 500 \mathrm{mAH} & 01-12004 & 0.80 & 0.74\end{array}$ $\begin{array}{llllll}\mathrm{C} & 1.2 \mathrm{~V} & 1.2 \mathrm{AH} & 01-12024 & 2.35 & 1.99 \\ \mathrm{D} & 1.2 \mathrm{~V} & 1.2 \mathrm{AH} & 01-12044 & 2.00 & 2.00 \\ \mathrm{P} & 8.2 \mathrm{~V} & 1.2 & 0.12 & 3 . & \end{array}$ $\begin{array}{llllll}\mathrm{PP} 3 & 8.4 \mathrm{~V} & 110 \mathrm{mAH} & 01.84054 & 3.70 & 3.50\end{array}$

CH/4/50

To recharge up to 4 AA size NiCads .
Size; $112 \times 71 \times 37 \mathrm{~mm}$
01-00409 4.95

CH1/22

To charge PP3 type NiCads.
Size; $70 \times 50 \times 32 \mathrm{~mm}$
$01-00159 \quad 4.30$

CH8/RX

Will recharge $A A, C, D$ and $P P 3$ size cells with automatic voltage selection. Will recharge following combinations: $4 \times \mathrm{xD}, 4 \mathrm{xAA}, 4 \times \mathrm{C}, 2 \times \mathrm{PP} 3,2 \mathrm{xD}+2 \mathrm{xC}$, $2 \mathrm{xD}+2 \mathrm{xAA} 2 \times \mathrm{D}+1 \times \mathrm{PP} 3,2 \mathrm{xC}+2 \mathrm{xAA}, 2 \mathrm{xC}+$ $1 \times P P 3,2 \times A A+1 \times P P 3$. Charge rate: 11 mA for PP3, 45 mA for AA size, 120 mA for C and D size, for 16 hrs. Power: 240 V 50 Hz . Output Voltage: 2.9 V for $\mathrm{AA}_{\text {, }}$ C and D size, 11.0 V for PP3 size. Weight: 0.475 kg . Size: $199 \times 109 \times 55 \mathrm{~mm}$

01-02204 9.45

HT320

High quality, high specification meter at a reasonable price. In addition to the usual ranges. facilities are provided for measuring transistor parameters such as Iceo and Hie.
Meter movement fully protected against overloads. 3 -colour mirrored scale in robust case. Supplied complete with comprehensive instructions, test leads, transistor test leads and batteries ($2 \times \mathrm{HP} .7$. $1 \times P P 3$).
DC Volts: $0.1 \mathrm{~V}, 0.5 \mathrm{~V}, 2.5 \mathrm{~V}, 10 \mathrm{~V}, 50 \mathrm{~V}, 250 \mathrm{~V}, 1 \mathrm{kV}$ ($20 \mathrm{k} \Omega N$). AC Volts: $10 \mathrm{~V}, 50 \mathrm{~V}, 250 \mathrm{~V}, 1 \mathrm{kV}(18 \mathrm{k} \Omega N)$ DC current: $50 \mu \mathrm{~A}, 2.5 \mathrm{~mA}, 25 \mathrm{~mA}, 250 \mathrm{~mA}$. Resistance: $2 \mathrm{k}, 20 \mathrm{k}, 2 \mathrm{M}, 20 \mathrm{Mz}$. AF Output: -10 dB to +22 dB for $10 \mathrm{VAC}(0 \mathrm{~dB} / 0.775 \mathrm{~V}, 600 \Omega)$. Leakage (Iceo) $15 \mu \mathrm{~A}, 15 \mathrm{~mA}, 150 \mathrm{~mA}$. Hee: $0 \cdot 1000$ (Lc Tb). Weight: 410 gms .

RF Generator LSG17

A stable wide-range generator for the hobbyist service technician, schools, colleges, etc. Frequency range: $A 100 \mathrm{kHz}-300 \mathrm{kHz}, \mathrm{B} / 300 \mathrm{kHz}$ to 1 MHz (Harmonics $96-450 \mathrm{MHz}$) C/1MHz-3.5MHz, D $3.0 \mathrm{MHz}-11 \mathrm{MHz}$, E/ $10 \mathrm{MHz}-35 \mathrm{MHz}$, $\mathrm{F} / 32 \mathrm{MHz}-150 \mathrm{MHz}$. Accuracy $\mathrm{k} 1.5 \%$. Output greater than 100 mV (no load). Ext. xtal osc for 1 to 15 MHz crytal. Power required: $\mathrm{AC} 100,115$ or 230 V 3 VA . Size \& Weight: $150(\mathrm{H}) \times 238$ (W) $\times 130$ (D) $\mathrm{mm}, 2.5 \mathrm{Kg}$ approx.

Linear ICs

LF351 Bi-FET op amp LF353 Dual version of LF351 LM380N IW AF power amp LM381 Stereo pre-ampIC NE544 14 pin DKL servo driver IC NE555N Multi-purposelow cost timer
uA741CN DIL low cost op-amp TDA1 662 RF ocillator and mixer system for $1-200 \mathrm{MHz}$ TDA1083 Portable radio AM FM audio in one IC HA1388 18W PA from 14 V MC1496P Double balanced mixer/ modulator
TDAZ002 8 W into 2 ohms
power amp
ULN2283 1W max 3-12V
power amp
CA3089 FM iF amp, detector. mute, AFC, AGC system
CA3130E BIMOS op amp
CA3140E BIMOS version of 741
MC3359 Low current dual conversion NBFMIF and det LM3900 Quad norton amp LM3909N 8-pin DIL LED flasher
KB4412 Two balanced mixers iF amp with AGC for AMSSB ICM7555 Low power CMOSversion of 55 timer
HAll225 Low noise FMIF
HA12017 83dBS/N phono preamp 0.001% THD
MC1 4412300 baud MODEM controller
(EuroUS specs)
Stock No. Price 61-03510 0.49 $61-03530 \quad 0.81$ $61-00380 \quad 1.45$ $61-00381 \quad 3.27$ $61-00544 \quad 1.80$ $61-05550 \quad 0.21$ 61-07411 0.42
$61-01062 \quad 1.95$

61-01083 1.95 61-01388 2.75 $61-01496 \quad 1.25$ $61-02002 \quad 1.25$ $61-022831.00$ $61-03089 \quad 2.84$ 61-31300 $\quad 0.80$ $61-31400 \quad 0.46$

61-03859 2.95 61-39000 1.20 61-39090 0.68 $61-94412 \quad 1.95$ $61.75550 \quad 0.98$ 61-11225 1.45 $61 \cdot 12017 \quad 0.80$

Selected Lines

PB2720	80 dB Piezo Buzzer
10M15A	10.7 Filter
10M08AA	10.695 Filter
FC177	LCD Freq. Meter
CM161	Min LCD Clock
BBC to Centronics Cable	
Dragon to Centronics Connect Cable	
8×0.3 "	IC socket
14×0.3 "	IC socket
16×0.3 "	IC socket
6 V	KUIT-ARelay
9 V	KUIT-A Relay
12 V	KUIT-A Relay
CX120P	COAXRelay
CX520D	COAXRelay
CX540D	COAXRelay (BNC)

Books

Beginners Guide to Amateur Radio Beginners Guide to Electronics Active Filter Cookbook CMOS Cookbook
TTLCookbook
Design of Active Filters
Design of Op-amp Circuits with experiments
Effectively Using the Oscilloscope The ZX Spectrum
Practical Design of Digital Circuits Electronic Projects for Home Security
Electronic Telephone Projects 55 Timer Applications Sourcebook Television Engineers Pocket Book 7 thed
Electronics Pocket Book 99 Practical Electronic Projects More Electronic Projects in the Home
The Radio Amateurs Question and
Answer Reference Manual Basic Programming on the BBC Microcomputer
Using Microprocessors and
Microcomputers:
The 6800 Family
Z-80 Microcomputer Design
Projects
Z8000 Microprocessor:
A Design Handbook

68000: Principles and
Programming
02-21853 12.70 8085A Cookbook
Handbook of Electronic Tables Formulas
Popular Circuits: Ready
Reference
Smmiconductor Data Book
11thEdition

02-21697 $\quad 13.55$ $02-21532 \quad 11.00$ 02-04585 13.95 02-04797 900 CIRCLE 16 FOR FURTHER DETAIIS.

GOTO Sweden

The new computer for Swedish schools described in these pages last month must have whetted quite a few appetities (ours included), pointing the way as it undoubtedly does towards the next-generation educational computer over here.

The fetchingly-named Compis is a 16 -bit job with 128 K of memory plus a separate graphics processor giving a 1280 by 800 pixel display, with word-processing and communications facilities thrown in, all for a price of around $£ 1,000$. Set beside that, the BBC Micro, for all its qualities, begins to look a little old fashioned.

One interesting feature of the new machine is the decision by its makers to adopt a version of Comal- 80 as the standard language in preference to Basic. Comal is an interpreting language which provides a bridge between Basic and the highly structured compiling language Pascal.

Basic has long been the subject of criticism by programming purists on the ground that it puts no premium on tidy thought. And a quick glance at the contributions from readers in some of the home computing magazines provides a good deal of support for that argument: everywhere you see listings festooned with Goto statements and peppered with peeks and pokes. Short of laboriously tracing each program through line by line, it's impossible to discover
what is going on
With one or two honourable exceptions, the Basic on most home computers is indeed pretty awful. And it seems to be the untidiest features of the language that the average schoolboy learns first. Walk into your local computer store, and like as not you'll find a group of 12 -year-olds working on a program which says

10 PRINT "KEVIN IS A WALLY"

20 GOTO 10

Only one home computer has been offered in Britain with a standard language other than Basic: the late lamented Jupiter Ace, which came with Forth.
In its several versions, Forth is probably the next most popular language after Basic. But how useful is it to the average keyboard hacker? It's fine for what it's good at - real-time hardware control and whatnot - but as a general-purpose medium for duties such as drawing pictures and processing text strings, it's nothing like as convenient as Basic.
So now that computer studies have taken the place of the classics as a discipline for the brain, it will be interesting to see what benefits Scandinavia obtains from switching to Comal. For when the eventual replacement for the BBC Micro comes along, perhaps we shall want to do the same.

Robots in the lab

Those interested in using small robots in laboratories are invited to join the Laboratory Robotics Club. The Club has been formed by representatives from the Laboratory of the Government Chemist and from other industrial and academic laboratories.

At the Laboratory of the Government Chemist, the Automation and Instrument Development Group is developing an automated work station based on a small robot arm. This will be capable of such operations as weighing, homogenizing, dispensing and transfer of liquids, centrifuging, filtering, stirring and heating.

A digital PAL decoder designed by the BBC was one of a number of new developments shown at a series of open days staged recently by the Corporation's designs department.

Unlike a conventional colour tv decoder, which uses bandpass and notch filters to separate the colour information from the luminance signal, the digital decoder uses comb filtering. By making use of the spectral separation between the brightness information and the colour sidebands, comb filtering makes it possible to retain high frequencies which would otherwise have to be thrown away to prevent unacceptable patterning. The result is a sharp picture almost free of the usual twinkling dots on colour boundaries.
Good quality PAL encoding and decoding is of importance in broadcasting, for until the day when the 'islands' of digital processing within the broadcasting chain finally coalesce into an all-digital whole, a signal may have to be decoded and recorded many times before it reaches the public. And any defects in the process will be compounded
The new unit uses 8 -bit conversion, with 12 -bit internal processing to avoid rounding errors. The comb filter which separates chrominance from luminance operates in both the horizontal (line-by-line) and temporal dimensions. The results are very impressive, even on very demanding test signals such as the 'zone plate' pattern of concentric rings and the BBC's new SLUG test signal. SLUG, which stands for saturation and line-up generator (and this equipment was on

BBC design

display too), produces a lurid multi-coloured chequerboard designed to reveal maladjustments of phase and saturation in colour monitors

BBC engineers pointed out that the digital decoding process adopted in their new decoder is not the same as that used in the new digital television sets from ITT: in those, decoding is by the conventional method, although in the digital domain.
Also in the television field was a range of new u.h.f. receivers. BBC engineers have found that most commercially produced receivers perform little better than domestic television sets. For one thing, they adopt (for reasons of cost) the intercarrier sound technique, which necessitates sacrifice of the higher vision frequencies to avoid sound-on vision interference.

The BBC's own receivers are necessarily much more complex. At the top of the range is a synthesized receiver designed to provide a programme feed for television relay stations. This features an interdigital filter tuned to the wanted channel at its front end, an image-cancelling mixer, an exalted-carrier detector and some specially manufactured surface acoustic wave filters to ensure a good amplitude and group-delay response. In the mixer, the signal is fed in quadrature to a pair of schottky diode ring mixers, the output of which is combined so as to cancel the unwanted image. Provision has been made for a digital stereo sound output.

For less demanding applications another u.h.f. receiver is available: this comes in synthesized or voltage tuned versions with local or remote tuning and it too features a lowdistortion demodulator and special s.a.w.fs.

The BBC has for some years been using a digital sound-insyncs technique for distributing tv sound: besides saving the cost of separate music lines this ensures that the sound cannot get lost in transit. But now the technique has been taken a step further to provide stereo sound. The system uses a sampling rate of approximately 32 kHz (twice line frequency) with 14

s on show

bits per sample. The data stream is transmitted during the line sync. pulse and burst of four-level pulses. Before transmission to the public this signal would, of course, be stripped off.
One development aimed at making life easier for television production staff is a new timecode converter. To help in identifying edit points, an 80 -bit time signal is distributed around the studios and is recorded by the v.t.r. on an audio track. But when the producer goes way with a cassette of the day's takes, this signal is usually left behind, since most domestic v.c.rs have only one sound channel. The new equipment inserts the time code into the vision signal on a suitable line in the vertical interval. The data can then later be extracted and displayed, even at slow-motion or in stop-frame. Having chosen his edit points off-line, the user can store the codes on a floppy disc from which they can be recovered back at the studio.
maintenace staff have a small telemetry receiver fitted with a dot-matrix text display.
The same system is being used for safety monitoring of men working alone on isolated sites. The engineer has to push a button every so-often - and if he forgets, the rescue team is dispatched!

With the introduction of 24hour broadcasting on Radio 2 it has become more difficult for the engineers to ensure good transmission quality, since there is now no time at which they can test the equipment. However, they believe they have now obtained a tacit agreement from the programme controllers for an occasional half-minute of engineering tests. These would no doubt have to be carried out during the small hours of the morning, since there is as yet no way of disguising a frequency sweep as programme material.
But Designs Department have now constructed some equipment for making short tests of this sort, based (like several other items on display) on a BBC Microcomputer. This low-cost system scans the network for a signal to start the test, which consists of a

BBC Television and the domestic radio services now have a very large number of transmitting stations dotted about the country, and the great majority of these now are unattended. Maintenance of the networks is carried out by a small number of crews operating from regional centres; and these crews need immediate warning of any mishaps at the transmiitter sites.
Such warnings are sent by automatic reporting equipment which dials up the local monitoring centre and sends a code number corresponding to the fault. To alert the crews, this information can now be broadcast as a data signal on one of the v.h.f. radio networks. The code number is converted into Ascii text and sent as a low-rate d.p.s.k. signal on a 76 kHz subcarrier. For a read-out device,
frequency run and a 15 s period of silence for noise measurements. Afterwards it displays the results.

For distributing radio programs a new radio link operating in the $1487-1492 \mathrm{MHz}$ band was shown. The BBC has been allocated four of the ten 500 kHz channels in this band and is using the 'tamed f.m.' technique developed by Philips to squeeze in a $676 \mathrm{kbit} / \mathrm{s}$ digital stereo signal. This system, like one or two other exhibits, has now been licensed to a commercial manufacturer

Developments in studio equipment, both in radio and television, have been proceeding rapidly with the growth of digital processing and the evolution of new EBU interfacing standards. But analogue equipment, which still comprises the bulk of the broadcasting chain, has not been forgotten.

Acorn means business

Acorn Computer, manufacturers of the BBC and Electron micros are about to launch a series of business computers. There will be eight models in the series At the lower end is a word-anddata processor with a specification similar to that of a BBC micro with the View and Viewsheet programs and a built-in disc drive, capacity 640 Kbyte . The 'flagship' of the series will be the ABC 300 . Software compatible with the IBM PC, It offers a desk-top manager with icons. For those unfamilar with the terminology, the screen is arranged like the surface of desk so that in order to write a memo, instead of reaching for a memo pad, you point an arrow on the screen to the picture (or icon) of a memo pad. The program then invites
you to write, i.e. type the memo. The model 300 uses the Intel 80286 16-bit processor, and the Digital Research Concurrent operating system supports applications written for PC DOS, MS DOS and CP/ M 86, ensuring that there will be a wide range of software already available. The system can also perform several tasks at the same time and is suitable for the development of integrated, multi-function software packages. The computer has twin floppy drives and a monochrome monitor, while model 310 adds a 10MByte hard disc and colour. All the ABC models can be networked through the Econet system and can have built-in modems. Prices are yet to be announced.

Voices in the computer
 selected sales staff at $10 \mathrm{a} . \mathrm{m}$.

Electronic mail is all very well but each user needs to have a computer to operate it. Now BT Merlin have come up with a system very similar to electronic mail but using digitized recorded speech. It can be used from any remote telephone, almost anywhere in the world. Messages can be made available to all who contact the base station or may be given passwords so that only those for whom they are intended can receive them. Messages can alsn be coded so that they are not made available before a specified time. So it is possible for a sales director, for example, to record a message which will be deljvered to
next Tuesday. The p.c.m. digitized speech is recorded onto a Winchester disc which has sufficient capacity for a large number of messages and further disc drives can be added to increase the capacity. Our impression was that the messages were perfectly clear and much better than any synthetic speech which we suppose could be an alternative One minor problem is that the system requires a dedicated minicomputer and this makes the system quite expensive, though claimed by Merlin to be very 'cost-effective'. The entire package is devised and manufactured by Ferranti.

Space station Columbus

Discussions are currently taking place for the possible extension of the European Spacelab project into some form of orbiting space station. One project, called Columbus, was originally proposed by Germany and Italy. A preparatory programme has been initiated by the European Space Agency. Columbus is being thought of as three modules: a manned pressurized module which would provide a working environment for scientists; a payload carrier or space platform to act as a base for unmanned experiments; and a resource module which would provide power and propulsion for the whole system. Details and even which ESA member states will participate have yet
to be settled.
Meanwhile the American at NASA are forging ahead with similar plans but on a very grand scale. The same threepart system is envisaged but with possibly several manned modules and unmanned platforms. Assembled in spce, the Nasa space station could expand to accommodate a crew of 18 by the year 2010 . NASA is also investigating the part that robotics could play in the running of the station. The platforms would be re-useable carriers for experiments, sensors etc. NASA has invited participation from other space agencies including ESA and it is possible that Columbus could be developed as a European contribution to the NASA
station. Other possibilities for collaboration are also being looked at. The potential practical use for such space stations falls into four categories: those which take advantage of the microgravity and vacuum environment for experimental or commercial purposes; the use of the station as a permanent statellite; the testing of technologies for later use in space; and the servicing of satellites. Microgravity research has already indicated that it is possible to produce highly pure pharmaceutical chemicals by electrophoresis Metallurgy and electronics are though to be other areas where high-value products could benefit from processing in space.

RFI and computers

The British Standard Institution have published a new standard, BS 6527 covering a Specification for limits and measurements of spurious signals generated by data processing and electronic office equipment. Such equipment can cause interference bourne through the mains cables or direct radiation causing interference to radio reception.
The new standard is the first to specify limits for the levels of these spurious signals in order to reduce to an acceptable level the probability of the incidence of radio interference from sources in both domestic and commercial areas. Measurement of limits is at mains terminals in the frequency range 150 kHz to 30 MHz and of field strength from 30 to 1000 MHz .
The limits and methods of measuring them are based on work currently in progress within the International Committee on Radio Interference (CISPR).
This Standard will help to overcome the anomoly of British computer manufacturer making equipment without any protection suitable for the domestic market and then having to substantially alter the designs in order to comply with the standards in other countries, for example the FCC regulations in the United States. At present there is no agreed international
standard specifying the limits of permitted r.f. interference caused by computer in either the domestic or commercial area, but as such equipment becomes more widespread, the standard
will meet a current and increasing need.

Copies are available from the BSI Sales Department, Linford Wood, Milton Keynes MK14 6LE, price $£ 10.20$.

TV news from anywhere

No sooner had we got used to the idea of e.n.g. (electronic news gathering), then GECMcMichael come up with another idea, s.n.g. or satellite news gathering. This consists of a small, portable satellite earth terminal which may be flown in a light aircraft to anywhere in the world and transmit news back via any handy communicationd satellite which can receive the up-link frequency of 14 to 14.5 GHz . The s.n.g. terminal can also receive narrow-band signals for audio and so can be given instructions by the home broadcasting station. The whole system is powered by a 12 V battery or local mains, if available.
The compactness of the system has been achieved by the design of an elliptical antenna which combines small
size with high efficiency and a radiation pattern meeting the 2 degree satellite-spacing requirement. The dish measures one metre high by two metres wide with an offset feed, all held in a universal frame enabling the dish to be aimed at the satellite. The transmitted 14 GHz signal is boosted by a fet amplifier to 4.8 W , carried to conical horn feed of the antenna by a waveguide. Another contribution to the small size of the unit is the use of a coder similar to those used in teleconferencing which only transmits the changing information in a tv picture and thus allows a much narrower bandwidth. This can give a blurred image to any fastmoving part of the picture but it is though that this is acceptable in situations where the events would normally be inaccessible.

TOGET DIGITAL CAPACITANCE MEASUREMENT

 IN THE PALM OF
YOUR HAND.

The NEW Model 3000 digital capacitance meter makes it easy to lay your hands on a precision test instrument.
Our battery-operated portable meter has the features you expect from a larger meter - with a $3 \frac{1}{2}$ digit resolution, accuracy to 0.2% of reading, capacitance measurements of 1 pF to $2000 \mu \mathrm{~F}$ and switch selection of capacitance range.

You get a large, easy-to-read LCD with 'early warning' display to tell you when the battery is low or if there is excessive compensation of stray capacitance.

Stray and incidental capacitance is then easily nullified by the frontpanel zero ADJUST control.

You get the convenience and low cost of a portable meter! Hardly bigger than the palm of your hand, the Model 3000 runs on an ordinary 9 V battery and comes with a tilt stand for easy positioning.
Send for a specialist! Order your 3000 Digital Capacitance Meter today! If you're not completely satisfied, simply return the meter within 14 days and we'll refund your payments.

YOU NEED TO SEE A SPECIALIST!

G

[^0]

No other cleaner has all these advantages:-

1. Only 100% pure. natural diamond grains are utilised
2. Blades are treated with hard chrome to reinforce the setting of the diamond grains. to Blades are ine the process also prevents clogging of the obviate loosening or breakaway during use. $\mathrm{mis} p$.
3. All diamonded blades are rectified to ensure an absolutety smooth surface by etiminating diamond grains which may rise above the surface. This eliminates all excessive scratching during use.
4. All diamond grain
. The chrome gives a very weak co-efficient of triction and the rigidiy of the nyton hande is calculated to permit proper utilisation and yet pliant enough to avoid undue pressures on highly delicate relays

- Grain sıze 200 thickness $55 / 100 \mathrm{~mm}$. both faces diamonded. For quick cleaning of industrial relays and switching equipment. etc.
- Grain size 300 , thickness $55 / 100 \mathrm{~mm}$. both faces diamonded. For smaller equipments. like telephone relays, computer relays. etc
- Grain size 400 thickness $25 / 100 \mathrm{~mm}$. one face diamonded. For sensitive relays and tin contacts. Two close contacts facing each other can be individually cleaned. because only one face of the spatula is abrasive.

Sole Distributors for the United Kingdorn SPECIAL PRODUCTS (DISTRIBUTORS) LTD
81 Piccadilly, London W1V OHL. Phone: 01-629 9556
A. aupplid to the MOD UMAEA C.EGB Britith Rail and othar Public Authorities also major industrial end eloctronic uevers throughout the United Kingdom.

CIRCLE 70 FOR FURTHER DETAILS.

Marconi A.F. wattmeter CT44, 200 microwatts to 6 watts in 10 ranges switched2150 ohms. $£ 30$. P\&P paid. Marconi H. F. wattmeter CT 211 , high power 70 ohms 25 watts, low power $52 \mathrm{ohms}, 1$ watt. £25. P\&P paid. Ex-Gov. 27 ft telescopic aerial close to 5 ft . Good condition, complete with all base \& fittings $\mathbf{£ 4 5}$. P\&P paid. Callers welcome £25. Pye Pocketfone Nightcall for PF1/TX/RX. New boxed $£ 17.00$. Whip aerial Ex-Gov. 4 ft collapsible $£ 1.00$. Steel 2 in. Interlocking Mast sections 4 ft . Price £4 each p\&p paid min. 5. Crystals HC6U Ex. Equip. $5,000 \mathrm{mc} / \mathrm{s}, 7.000 \mathrm{mc} / \mathrm{s}, 8.000$ I.M.C. $\mathrm{mc} / \mathrm{s}, 9.000 \mathrm{mc} / \mathrm{s}$. Also Glass Crystal $100 \mathrm{Kc} / \mathrm{s}$, to fit B7G base. All at $£ 3 \mathrm{p} \& \mathrm{p}$ paid. Marconi. A.M. Signal Generator CT 452A $10 \mathrm{kc} / \mathrm{s}$ to $72 \mathrm{MC} / \mathrm{S}$ £100 p.p paid. Fibre - Glass Aerial Sections $3 \mathrm{ft} \times 1 \frac{1}{2}$ in dia. Push in type $\mathbf{£ 2} .50$ per section min 5
A.p. 62 headsets boom mike 300 ohms as new $£ 20$ p.p. paid. Ni-Cad batteries for Pye PF1 RX 5 for $£ 2$ p\&p paid. Min. order 5. All these batteries are ex-eq. but good Condition Bargain Parcels 14 lbs at $£ 10,28$ lbs at $£ 20$ and 56 lbs at $£ 40$. p\&p paid. condition. Bargain Parcels 1 bs anct 2 Als Contains pots, res., diodes, tagboards, caps., chassis, valve hold 40 . Opening times: Monday-friday 8.30am-5.00pm, Saturday 8.30am-12noon

Please allow 14 days for delivery. Mainland only
A. H. THACKER \& SONS LTD
high street, Cheslyn hay near walsall, staffs.

CIRCLE 53 FOR FURTHER DE'TAILS

Andelos 68000 SYSTEM

Powerful 6800 runs at 10 MHz without wait states. Up to 32 KB EPROM and 4 or 16KB fast static RAM. 24 line programmable parallel I/O port. RS232 programmable serial port. Comprehensive monitor in 2764 Eproms Optional plug-in Eprom programmer card. Cross Assemblers for Z80 based microcomputers. Code can be developed, downline loaded to 68000, debugged, and then written into Eprom.

* 10MHz 68000 CPUBoard.............................. $\mathbf{£ 9 5 + V A T}+$ VAT
* EPROMPROGRAMMER card
* CROSS ASSEMBLER for Z80 hosts ... from£55+VAT

Andelos Systems
 Telephane: (0635) 201150

Solina, Buckley Alley, Cold Ash, Newbury, Berkshire RG16 9NN

The Microvalue Group dealers shown below represent part of the Gemini network

For expert advice and full details on the Gemini System, contact your nearest dealer today.

AMERSHAM COMPUTER CENTRE LTD

18 Woodside Road, Amersham, Bucks HP7 0BH
Tel: 0240322307 Telex: 837788

BUSINESS \& LEISURE LTD

16 The Square, Kenilworth, Warwickshire CV8 1ED Tel: 0926512127

CENTIFLEX MICROSYSTEMS LTD

Unit 6, Perry Road, Staple Tye, Harlow,
Essex CM 18 7NW
Tel: 0279442233

ELECTROVALUE LTD

28 St. Judes Road, Englefield Green, Egham,
Surrey TW20 OHB
Tel: 078433603 Telex: 264475

E.V. COMPUTING

700 Burnage Lane, Manchester M19 INA
Tel: 061-431 4866

HENRYS RADIO

404 Edgware Road, London W2
Tel: 01-402 6822

LEEDS COMPUTER CENTRE

55 Wade Lane, Merrion Centre, Leeds LS2 8NG
Tel: 0532458877

OFF RECORDS LTD

Computer House, 58 Battersea Rise,
Clapham Junction, London SW 11 iHH
Tel: 01-223 7730
SKYTRONICS LTD
357 Derby Road, Nottingham NG7 2DZ
Tel: 0602781742
NEWBURN ELECTRONICS LTD
58 Manse Road, Ballycarry, Carrickfergus,
N. Ireland BT38 9 LF

Tel: 0960378330

GM813 CPU/64K RAM BOARD - This card provides system 4 $\mathrm{MHz}, \mathrm{Z} 80 \mathrm{CPU}, 64 \mathrm{~K}$ user RAM and both serial and parallel I/O.
GM811 CPU BOARD - An industrial standard $4 \mathrm{MHz}, Z 80$ controller board with parallel and serial I/O together wilh a variable Bytewide memory capacity.
GM888 CPU BOARD - A new card featuring the Intel 8088 processor to provide a dual processor system.
GM832 SVC BOARD - Provides conventional 80×25 or 40×25 screen format together with graphics capability. Includes full keyboard support and overseas character sets.
GM862 256K RAM BOARD - Supports both page mode and extended addressing facilities and can be used with all of the Gemini CPU cards.
GM833 512K RAM-DISK BOARD - Provides 'psuedo disk' facility in a MultiBoard system.
GM829 FDC/SASI BOARD - Combines floppy disk controller and SASI board supports up to four floppy disk drives pius Winchester controller cards.

GM837 COLOUR GRAPHICS BOARD -256×256 sixteen colour graphics display. Output to either PAL UHF or RGB.
GM816 MULTI I/O BOARD - Provides three Z80A PIO devices plus CTC and battery backed Real Time Clock.
GM848 SERIAL I/O BOARD - Uililises two Z80A SIO chips providing four synchronous/asynchronous serial channels with software selectable baud rates.
GM836 NETWORK INTERFACE BOARD - Provides RS422 communication protocol for networking CPU boards.

The dealer's choice

Gemini Microcomputers Ltd., 18 Woodside Road, Amersham, Bucks, England HP6 0BH. Tel: (02403) 28321. Telex: 837788

CIRCLE 11 FOR FUR'THER DETAILS.

1.5GHz testing problems?

Use a TECHTEST Model 260 1.5GHz Up-Converter

- it works with any 240-350 $\mathbf{~ M H z}$ generator

The Model 260 has been designed to provide a very economical signal source for testing 1.5 GHz communication equipment. It is a linear heterodyne up-converter that employs advanced techniques to generate very clean and stable signals in the $1440-1550 \mathrm{MHz}$ band from signal generator inputs 1200 MHz lower. Since it has zero insertion loss the input signal generator controls are used directly to set the output signal level and all modulation conditions. Full accuracy and stability is ensured by phase-locking the internal 1200 MHz local oscillator to the signal generator standard. Find out more from:

Techtest Ltd, Street Court, Kingsland, Leominister, Herefordshire HR6 9QA England.
Telephone: KINGSLAND (056881) 744 Telex 837264.
CIRCLE 33 FOR FURTHER DE'TAILS.

Sowter Transformers
 With 40 years experience in the design and manufacture of several hundred

 thousand transformers we can supply
AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE YOU NAME IT! WE MAKE IT! OUR RANGE INCLUDES

Microphone transformers (ail rypes), Microphone Spliter/Combiner transfor. mers. Input and Output transformers, Direct Injection transformers for Guitars, Multi-Secondary output transformers. Bridging transformers, Line transformers, Line transformers to G.P.O. Isolating Test Specification. Tapped impedance
matching transformers, Gramophone Pickup transformers, Audio Mixing Desk matching transtormers, Gramophone Pickup transformers, Audio Mixing Desk
transformers (all types), Miniature transformers, Microminiature transformers for PCB mounting. Experimental transformers, Ulira low frequency transformers, Uitra linear and other transformers for Transistor and Valve Amplifiers up to 500 watts, Inductive Loop Transformers, Smoothing Chokes, Filter, Inductors, Amplifier to 100 volt line transformers (from a few watts up to 1,000 watts). 100 volt line transformers to speakers, Speaker matching transformers (all powers). Column
Loudspeaker transformers up to 300 watts or more.
We can design for RECOROING QUALITY, STUDIO QUALITY, 'HI-FI QUALITY OR P.A. QUALITY OUR PRICES ARE HIGHLY COMPETITIVE AND WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS. Many standard types are in stock and normal dispatch times are short and sensible. OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES MIXING DESK MANUFACTURERS, RECORDING STUDIOS. HI-FI ENTHUSIASTS, BAND GROUPS, AND PUBLIC ADORESS FIRMS. Export is a speciality and we Send for our questionnare which, when completed, enables us to post quotations by return.

E. A. Sowter Ltd.

E. A. SOWTER LTD. (Established 1941) : Reg. No. England 303990 The Boat Yerd, Cullinghem Road, Ipawich IP1 2EG, Suffotk Phone: 047352794 and 0473219390

Telex 987703G Sowter

LANCRGX SUPPIESLD
 RST
 min Tel:01-677 2424 Telexa946708

Elechnonic enaliens have moved intothe futune.

SCOPES
PHILIPS
PM3267 100 MHz T T Sweep

51250
PM3256 75 MHz
Ruggedised DT Sweep
PM321750MHz Sweep
£1325

PM3206 15 MHz - $\mathbf{8 7 0}$
PM321950MHz Storage
DTSweep E2675
PM3302 20MHz Digital Storage D T £1395
HAMEG
HM203-5 20MHz DT £264 HM204-2 20MHz DT Sweep
HM208 20MHz Digital
Storage DT
HM605 50MHz DT Sweep
£365 5515

CANALYSERS

THANDAR

TA 2160 20MHz 16 Channel
£3450
DMMS
PHILIPS
PM2518×/01 4 digit True
RMS £165
PM2519/01 4112 digit + Counter

C285
FLUKE
8060A $4^{1 / 2}$ digit True RMS
8062A 41/2 digit True RMS
$£ 289$
£231
JF73 $3^{11 / 2}$ digit Handheld $\mathbf{E} 68$
JF75 $3^{1 / 2}$ digit Handheld $£ 83$
JF77 ${ }^{11 / 2}$ digit Handheld £104
THURLBY
1905A 5\% 2 digit
$1 \mu \mathrm{~V} \quad £ 325$
SIGNAL SOURCES

PHILIPS

PM5712 Pulse Gen 50 MHz
$£ 895$
PM5326 AM/FM Generator $125 \mathrm{MHz} \quad £ 1129$
PM5134 Function Generator $20 \mathrm{MHz} \quad \mathrm{E} 1415$
PM5131 Function Generator 2MHz £395
PM55191 Pattern Generator
£785
PM5503 Pattern Generator
$\mathbf{E 1 4 5}$

THANDAR

TG102 Function Generator 2 MHz
TG502 Funct
Generator 5 MHz £495
POWER SUPPLIES
THURLBY
PL154 0-15V 0-4A Digital $E 145$

ELECTRONIC BROKERS HAVE MOVED TO SPACIOUS NEW PREMISES AT 140-146 CAMDEN STREET LONDON NW1 OPENING UP A NEW ERA IN THE DISTRIBUTION OF ELECTRONIC TEST AND MEASURING INSTRUMENTS AND THE SUPPLY OF SECOND USER TEST AND MEASUREMENT EQUIPMENT AND DEC COMPUTERS TELEPHONE 01-2677070

PL320 0-30V 0-2A Digital
PL310 0-30V 0-1A E118

RECORDERS

PHILIPS

PM8154 X-Y Graphics Plotter
IEEE or RS232 £1025 PM8043 X-Y A4
f 1075

EPROM

PROGRAMMERS

G P ELECTRONICS

P 9030 Programmer $£ 1295$ P9020 Programmer $£ 995$ UV 141 Eprom Eraser £78

MISCELLANEOUS

PRODUCTS

PHILIPS
PM6303 Digital Automatic
Bridge
£695
THURLBY
OM 358 Scope Multiplexer
CM 200 Digital Capacitanc
Meter

HEWLETT PACKARD

141 T Mainframe
(MLP £4359) £2650 1715A opt. 001
Scope. 200MHz
(MLP E3705) £2450 3575A-01 Gain/Phase Meter (MLP £4334) £2450 3585A Spectrum Analyser
[MLP E20069) £16650 4204 A Decade Oscillator
(MINT) (MLP E1801) £760
4815A Vector Impedance

8013B Pulse Generator
$50 \mathrm{MHz}(\mathrm{MLP} £ 1280) £ 750$ 85A Computer £1250 8552B IF Section
(MLP £4526) £3500 8555A RF Section (MLP £9304) £6500 8601A Sweeper. 110 MHz (MLP E4502) £1950 8620C Sweeper Mainframe (MLP £3180) £2100 86222B Plug In
$0.01-2.4 \mathrm{GHz}$
(MLP E5741) £4850 86240 B Plug in. 2-8.4GHz (MLP E6360) £4200 86260A Plug In. 12.4-18GHz (MLP E4675) £3600
9825A Desk Top
Cal/Computer £2950 RACAL
Store 4DS FM Taperecorder
£3950
Store 7DS FM Taperecorder
$£ 6150$

TEKTRONIX

1503 TDR
(MLP £5911) £3000
464 DM44 opt. 04,05
Storage Scope 100 MHz
(Unused Cond)
(MLP £7615) £4650
465 opt. 04,07. Scope
$100 \mathrm{MHz}(\mathrm{M} \mid \mathrm{NT}) \quad £ 1650$ 475A Scope. 250 MHz
(MLP E4453) £3300 491 Spectrum Analyser.
$1.5 \mathrm{GHz}-12.4 \mathrm{GHz} £ 3000$ 491 Spectrum Analyser.
$1.5 \mathrm{GHz}-18 \mathrm{GHz} £ 3500$ 491 Spectrum Analyser
$1.5 \mathrm{GHz}-26.5 \mathrm{GHz} £ 4000$
491 Spectrum Analyser
$1.5 \mathrm{GHz}-40 \mathrm{GHz} \quad £ 4500$ 521A Vectorscope
(MLP £7914) £4500 5223 Mainframe
[MLP E5605] £3600
576 Curve Tracer c/w 172

577/D1 Curve Tracer
(MLP £7272) £4000
7104 opt. 03 Real Time
Mainframe 1 GHz
(MLP £26348) £16500 7704 A Mainframe. 200MHz (MLP E5094) £2950 7904 Mainframe. 500 MHz
(MLP E10371) £6950 AM502 Amplifier
(MLP E1404) £695 FG504 Function Generator. $0.001 \mathrm{~Hz}-40 \mathrm{MHz}$
(MLP £2888) £1650
P6015 HV Probe $£ 450$
P6302 Current Probe $£ 350$ PG502 Pulse Generator
$10 \mathrm{~Hz}-250 \mathrm{MHz}$
(MLP E2831) £1750
PG508 Pulse Generator
$5 \mathrm{~Hz}-50 \mathrm{MHz}$
[MLP £2384) £1250

PROCESSORS

PDP11/70, PDP11/44, PDP11/34A, PDP11/45, PDP11/40, PDP11/23, PDP11/03, PDP8E, PDP8A

MEMORY

MS750CA, MS780DA
MJ11AM, MJ11BM
MK11CE, MK11CF, MM11DP,
MM11L MM11UP MS11JP, MS11KE, MS11LB, MS11LD, MS11MB, MS11PB, MM8AA MM8AB, MM8E, MM8EJ MS8CA, MS8CB MS8DJ MSV11DC, MSV11DD MSV11LK, MSV11PL

DISC DRIVES

R80, RA80, RK05, RK06 RKO7, RLO1, RLO2, RMO2 RMO3, RMO'5, RM80, RPÓ5, RP06, RP07, RX01, RX02 MAGNETIC TAPE
TE16, TS11, TU10, TU58, TU77

CONTROLLERS

RH11, RH70, RH750,
RH780, RK611, RK711
RK8E, RK11D, RL8A, RL11, RLV11, RLV12, RX8E, RX28,
RXV11, RXV211, RX11
RX211, TM8E, TM11, TMB11 SC71

VDUS

VR17. VT05, VT52, VT55 VT62 VT78 VT100 VT102 VT103, VT110, VT125 VT180, VT278

PRINTERS

LA30, LA34, LA35, LA36,
LA180, LP04, LPO5, LPO7
LP25, LP200, LS120, LXY01
OPTION MODULES
Too numerous to list

Listed above is just a very small selection from our huge inventory. Whatever your requirements in test equipment or DEC computers please call us
We are sure that we will be able to help

MICROBOX II

A NEW MICRO CONCEPT

Do you remember the days when people built their own computers? Well they are back with a vengeance. MICROBOX, the most advanced design ever offered as a build-it-yourself system, offers every facility imaginable to the home constructor. Just look at the amazing specification of this easy-to-build project:

- MC68B09E 8-/16-bit microprocessor
* 64 K main system ram + 128 K alpha/graphic/simulated disc ram
* Alpha display of 108 colums by 24 rows of 128 columns by 72 rows
* True high-resolution graphics with 768×576 resolution High-speed hardware vector generation using NEC 7220 graphics controller. Point, line, rectangle, circle, arc and area fill facilities.
\star High-speed ram disc for fast data access
\star Up to 256 K silicon disc eprom on plug-in eprom carrier
\& 8 K system I / O support monitor plus added utility and boot commands
' Integral eprom programmer
* Floppy disc controller for two 5.25 -inch 40 - or 80 -track drives
* Battery backed realtime clock/calendar
\star Battery backed ram for storing system startup parameters
* Two serial RS232 I/O ports. 50-19200 baud under software control
* Centronics compatible printer output port
* Parallel keyboard input port
- Composite video and separate video/sync outputs
* Buffered expansion buss for user added enhancements
* Auto configuring 'FLEX' disc operating system boot program in monitor
$* 12 \times 9.5 \mathrm{in}$. through hole plated main PCB; $3 \times 4 \mathrm{in}$. eprom board.
'FLEX', which is supported by MICROBOX, is a well-proven, industry standard, disc operating system with a wealth of available software packages. Basic, Forth, Pascal, PL9 and C high-level languages as well as assemblers, word processors and electronic spreadsheet are currently available. Clever programming techniques have permitted the inclusion in the system monitor of a boot program that automatically loads and configures the operating system to the MICROBOX hardware requirements

The on-board ram and eprom discs are seen by the operating system as conventional disc drives. The ram disc has the capacity of a 40 -track single-density disc but with an access time 10 times that of a floppy disc. Eprom discs are supported by way of a plug-in eprom carrier which has provision for four 8, 16, 32 or 64 K eproms into which can be programmed the operating system and any other often used programs by way of the built-in programmer. 'FLEX' supports up to four disc drives which in MICROBOX can each be allocated as floppy, ram or eprom types so providing, if required, a completely silicon configuration

A startup kit for the advanced MICROBOX system is available and consists of: Bare PCBs, 8 K system support monitor, 'FLEX' system support disc, constructional notes, system documentation, component supplier list.

PRICE: $\mathbf{£ 9 5}+\mathbf{V} . \mathbf{A . T}$.
FLEX' disc operating system for MICROBOX, including editor and assembler: $£ 75+$ V.A.T.
Send cheque to

CIRCLE 69 FOR FURTHER DETAILS.

pantechnic

design manufacture and supply

POWER AMPLIFIERS HIGH POWER ASSEMBLIES CONTROL CIRCUITRY

for application in

INDUSTRY PUBLIC ADDRESS
$\mathrm{HI}-\mathrm{FI}$

available

OFF THE SHELF CUSTOMISED C A D DESIGNED

Wrelessivitid EDITORIAL FEATURES 1885

ISSUE
DATE
Jan. 1985
PUBLICATION DATE
Dec. 19th
Single Board Computers
Mar. 1985
Feb. 16th
IEEE Instruments
May. 1985
July. 1985
Sept. 1985

April. 19th June.21st

Aug. 16th

Power Supplies
VDU's
Communication Receivers

For more details regarding advertising Contact Bob Nibbs 01-661 3130

Music keysfor the BBC microcomputer

Two programs - one for playing music using the BBC computer sound generator supplement this discussion of software for the economical polyphonic keyboard interface. Hardware was presented in the July issue.

As described in the July issue, the keyboard communicates with the computer by sending an interrupt through the handshake line CB_{1} on the user port. This initiates a routine which reads the keyboard in bit-mapped form into eight memory locations, in accordance with the flow diagram given previously. Details are given in List 1. This is a keyboard-read utility which can be used on its own to check functioning of the keyboard hardware, or as part of a more elaborate program (e.g. List 2) designed to exploit the interface more fully.

The main part of List 1 is written in assembly language which is
both the natural way to deal with interrupts and is efficient in memory usage and speed. The default setting of HIMEM in MODE 7 is 7C00 (hexadecimal). Line 440 sets aside 256 bytes for the assembled code. The interrupt routine is in two sections, the first (lines 520 to 750) being assembled at HIMEM, the second (lines 760 to 1060) at HIMEM +30 . A short initialising procedure which configures the versatile interface adaptor, v.i.a., and tells the computer where to find the interruptservicing routine is assembled at HIMEM +70 . The variable FLAG1 (line 470) is used as a message to the display routine
(lines 1270 to 1320) that an interrupt has been received and serviced and that there is therefore something new to display. Data read in from the keyboard is stored in eight bytes starting at $M^{1 \%}$ (line 450). These eight bytes are initially set to zero by lines 480 to 500 . By referring all these variables to HIMEM, the assembled code is easily relocated should, for example, the user wish to use a different MODE (illustrated in List 2).

I assume that the reader has some familiarity with the BBC assembler and the IRQ vector system. The subroutine SETUP (lines 1070 to 1210) which is

Ronald Adelson is with the Centre for Research into Applications of Computers to Music, University of Lancaster.

List 1. Basic with assembly-language program for the BBC microcomputer music keyboard interface stores key information in
bit-mapped form in eight bytes
at HIMEM.
List 2. This program for the
BBC microcomputer uses key information from List 1 to play the computer's internal sound generator and display a map of
the keyboard status.
called at line 1250 , sets the registers of the 6522 v.i.a. (B) (which is memory-mapped from FE60 to FE6F) as follows
-data-direction register B
(FE62) all inputs
-auxiliary-control register
(FE6B) to give single-shot interrupts from timer 1
-peripheral-control register
(FE6C) to give interrupts on positive-going edges of CB_{1} and set CB_{2} high
-the interrupt-flag register
(FE6D) cleared
-interrupt-enable register
(FE6E) has CB_{1} and timer
1 interrupts enabled.
This routine also stores the location (HIMEM) of the user interrupt service vector (IRQ2V) in locations 206/7 (note that the coding assumes that the low byte of HIMEM is 00).

On receipt of an interrupt request on CB_{1}, the code at HIMEM is entered (line 520). This stores the $6502 \mathrm{~A}, \mathrm{X}$ and Y registers on the stack and disrupts further interrupts on CB_{1} (lines 590 - 600). Timer 1 coun-

960	STA \& 206
970	STA FLAG1
980	LDA \#\&50
990	STA \&FE6D
1000	PLA
1010	TAY
1020	PLA
1030	TAX
1040	PLA
1050	RTI
1060	J
1070	P\%=SETUP
1080	COPT 1\%
1090	LDA \#O
1100	STA \&FE62
1110	STA \&FE6B
1120	STA \&206
1130	LDA *\&FO
1140	STA \&FE6C
1150	LDA \#\&7F
1160	STA \%FE6D
1170	LDA \#\&DO
1180	STA \&FEGE
1190	LDA *HIMEM DIV256
1200	STA \&207
1210	RTS
1220	J
1230	NEXT 1\%
1240	e\%=2
1250	CALL SETUP
1260	CLS: PRINT: PRINT: PRINT: PRINT
1270	REPEAT : UNT IL ?FLAG1 $=0$
1280	FOR 1\%=0 TD 7
1290	PRINT~M\%?I\%; " ";
1300	NEXT
1310	?FLAG1 = $1:$ PRINT
1320	GOTO1 270
Li	stz
100	Made7
110	\#FX9, 10
120	\#FX10,10
130	INPUT"VOLUME 0-15 (ppp-ff) "V\%
140	IF (V\%) 150RV\%<0) G0TO130
150 M	MODES
160	H M $M E M=\$ 5500$
170	FLAG3=HIMEM+26C
180	VOL\% $=$ HIMEM + K 69 : COU=HIMEM + \% 68
190	DISPLAY=HIMEM+\&AO
200	T I BLE\%=HIMEM+\&200: TUBLE\%=HIMEM+\&280
210	?VOL\%=15-V\%
220	VDU23; $0202 ; 0 ; 0 ; 01$

230 VDU19,2,8,0,0,0: VDU19, 1,0,0,0,0 240 DIMA\% (11)
250 FORI\% OOTO11: READAY (I\%) : NEXT
260 DATA $88,422, \& 22,488,488,222,422,488,488,222$,
$288,489,26 \mathrm{C} 30,26 \mathrm{BOB}, 26 \mathrm{AFO}, 26 \mathrm{C} 50,26 \mathrm{C} 38,26 \mathrm{B1O}, 26 \mathrm{AFB}$
\& $6 \mathrm{C} 58, \& 6 \mathrm{C} 40, \& 6 \mathrm{~B} 1 \mathrm{~B}, \& 6 \mathrm{C} 4 \mathrm{~B}, 86 \mathrm{C} 60$
$270 \mathrm{~A}=\mathrm{L} N(1760)$: $\mathrm{B}=\mathrm{L} \mathrm{L} N(2) / 12$
280 FORK\%=OTOS
290 FORJ\%=0TO
300 READ PAXY
310 FORI\%=0T03:FORPAT\%=0TO7
320 PAXX? ${ }^{2}$ PAT $=$ =A\% ($2 * K \%+J \%$) : NEXT
$33011 \%=4 * I \%+2 * J \%+16 * K \%$
340 ? (TIBLE\%+11\%) =PAX\%MOD256: ? (TIBLEK+11\%+1) =PAXZ DIV256

350 PAX\%=PAX\% $+838(A+(K \%+6 * J \%+12 * 1 \%-45) * B))$
370 I1\%=INT (X+5)
380 TUBLEY ? $(4 * I \%+2 * J \%+16 * K K)=11 \%$ MOD 16
390 TUBLEK? $(4 * I \%+2 * J Y+16 * K Y+1)=11 \%$ IVIV16:NEXT,
490 TUBLEX? $(4 * 1 \%+2 \# J \%+16 \# K X+1)=11$ KDI
410 FOR PAT $\%=0 T 07: ?($ PAT $\%+\% 6 D 10)=\$ 8 B:$ NEXT
$420 X=125000 /(E X P(A+3 * B))$
430 I $1 \%=$ INT $(x+.5)$
440 TUBLEX?\&60=11 \%MOD 16 :TUBLE \% ? \& $1=11$ \%DIV1 6
445 REM Lines 450 to 1220 inclusive
446 REM are the corresponding lines of List 1
1230 PKㅍDISPLAY 1980 .CH1 LDA TUBLEX, x

1240 [OPTI\% 1980 .CH1 LDA
1250 LDA \#\&15 1990 ORA \#\&CO
1260 LDX *7
1270 JSR \&FFF4
1280 DEX
1290 JSR \&FFF4
1300 DEX
1310 JSR \&FFF4
1320 LDA \#3
1330 STA FLAG3
1340 LDA \#\&FF:STA \&FE43
1350 LDA *O
1360 STA COU
1370 INC FLAG1
1380 - STI SEI
1390 LDX COU
1410 BEQ LASTA
1420 LDA M\% +1,
1430 LDY \#O
1440 .SHIFT ASL A
1450 PHA:STY \& 70^{A}
1460 BCC RST
1460 BCC RST
1470 JSR SET
1480 JMP OVER 1490 . RST JSR RESET
1490 - RST JSR RESET
1500 . OVER PLA:LDY \& 70
1510 INYE INY
510 INY:INY
530 CPY Wa10
540 BMP SLEIT
1540 JMP SHIFT
1550 . CLEI CLI
1560 LDA FLAG1
1570 BEQ DISPLAY
1570 BEQ DISPLAY
1580 INC CDU
1580 INC CDU
1590 JMP STI
1600 . LASTA NOP: JMP LAST
1610 . SET TXA
1620 ASLA: ASLA: ASLA : ASLA
1630 CLC
1640 ADC 870
1650 TAX
1660 LDA FLAG3
1670 BEQ FLASHA
1680 JSR PLAY
1690 JMP FLASH
1700 . PLAY CMP *3
1710 BNE CH2
1720 LDA TUBLE\%, x
1730 DRA *\&BO
1740 STA \&FE4F
1750 JSR SEND
1760 LDA TUBLEK+1, x
1770 STA \&FE4F
1780 JSR SEND
1780 JSR SEND
1790 LDA
1790 LDA *890
1800 DRA VOL\%.
1820 JSR SEND
1820 JSR SEND
1830 JMP NECH
1840 . CH2 CMP
1850 BNE CH1
1860 LDA TUBLE\%, X
1870 ORA \#\&AO
1880 STA \&FE4F
1890 JSR GEND
1900 LDA TUBLE\%+1, X
1910 STA \&FE4F
1920 JSR GEND
1930 LDA \#\&BO
1940 ORA VOL\%
1950 STA \&FE4F 1960 JSR GEND 1970 JMP NECH

2000 STA \&FE4
2010 JSR SEND
2020 LDA TUBLEY+1, X
2030 STA \&FE4F
2040 JSR SEND
2050 LDA $2 \& 0$
2060 ORA VOLX.
$20 B 0$ JSR SEND
2090 . NECH DEC FLAB3
2100 RTS
2110 . FLASHA NOP:JMP FLASH
2120 . SEND LDA \#O
2130 STA \&FE4O
2140 LDY \#\&A
2150 . ROU DEY
2160 BNE ROU
2170 LDA *B
2180 STA \&FE4O
2190 RTS
2200 . FLASH LDA TIBLEZ, x
2210 STA \&71
2220 LDA TIBLEZ $\%$, , X
2230 STA \&72
2240 LDY *日
2250 . COY DEY
2260 LDA \#\&FO
2270 AND ($\& 71$), Y
2270 AND ($\& 71), Y$
2290 TYA
2300 BNE COY
2310 LDX COU
2320 RTS
2330 . RESET TXA
2340 ASLA: ASLA: ASLA: ASLA
2350 CLC
2360 ADC \& 70
2370 TAX
2380 LDA TIBLE\%, X
2390 STA $\$ 71$
2400 LDA TIBLE\%+1, X
2410 STA \&72
2420 LDY \#B
2430 . COY 1 DEY
2440 LDA *\&F
2450 DRA ($\& 71$), Y
2460 STA (271), Y
2470 TYA
2480 BNE COY
2490 LDX COU
2500 RTS
2510 . LAST LDA *\&FF
2520 CMP M\%+7
2530 BED FL
2540 LDA *\&日B
2550 JMP DOWN
2560 . FL LDA FLAG3
2570 BED FLA
2580 LDX *\&60
2590 JSR PLAY
2600 .FLA LDA \#\&80
2610 . DOWN LDY 7
2620 . RDUND ETA \& $6 D 10, Y$ 2630 DEY
2640 BPL ROUND
2650 CLI:RTS:
2660 NEXTI\%.
2670 CALL EETUP
2680 REPEATIUNTIL?FLAG1 $1=0$
2690 IFPM\% < >\&FF PRINT "EYNC
ERROR" 1 END
2700 CALL DIBPLAY
2710 GOTO 2680
ters are then loaded to give a time-out after 20 ms (lines 610 to 640). These latter two actions give a 20 ms delay for residual switch-bounce to die out and to allow for slight differences in the closing times of switches if more than one note is altered at a time. This amount of delay seems to be about right, but it is easily altered (up to about 65 ms without any significant change in the coding) by changing the bytes loaded at lines 610 and 630, noting that 4 E 20 is the equivalent of 20 ms (decimal).

The low byte of IRQ2V is altered to point to HIMEM +30 (lines $650-660$) and the CB interrupt flag cleared (lines 670-680) before the A, X and Y registers are restored from the stack and the return-from-interrupt is performed. Thus interrupts are reenabled during the 20 ms delay to allow the computer to go about its housekeeping duties.

When timer 1 times out, code at HIMEM +30 is entered (line 760). Again, the registers are saved, and port B of the v.i.a. is read and stored in the l.s.b. of $\mathrm{M} \% . \mathrm{CB}_{2}$ is then brought low (lines $870-880$) and high again (lines 890-900) thus clocking IC_{10} in the interface. Lines 840 and 920 are looped eight times in all, the bytes being read into consecutive memory locations by the offset X (lines $850-860$). CB_{1} interrupts are enabled again (lines 930-940); IRQ2V is restored to its previous value (lines 950-960); FLAG1 is reset to zero as a signal to the display routine that the keyboard has been read again; the interrupt flags are cleared and the interrupt routine terminated. The Basic display routine at lines 1270 to 1320 simply loops in line 1270 until advised by FLAGl that its attention is required. It then prints the values of the eight-bytes from M $\%$ in two-digit (line 1240) hexadecimal fields.

To test the interface, run this program and press the bottom note on the keyboard. This should cause the line

FF 8000000 FE

to be displayed (bytes 0-7). Byte zero should always be FF as explained in the July issue. If the FF appears elsewhere (or not at all) then the interface is out of syuchronization and the reasons for this need to be explored. Circuit IC_{10} not resetting to zero on switch-on is a possibility, as is
spurious pick-up of electrical noise. However, since sorting out some teething troubles with the prototype, synchronization problems have been rare. Some suggestions for dealing with any that do arise are given later.

Assuming all is well at this point, releasing the key should produce

FF000000FE

Pressing the lowest $\mathrm{C} \#$ should produce

FF 0800000 FE

and so on. Notice that the lowest six notes (C to F) are taken to bit seven of bytes one to six respectively, the next six notes ($\mathrm{F} \#$ to B) are taken to bit six of these bytes, etc. This is to avoid a large number of p.c.b. wire crossings. Thus byte one contains the bits for the four $\mathrm{F} \#$ s interleaved with those of the first four Cs, byte two contains the Gs interleaved with the C\#s, etc. Top C(the 49th note) is
taken to bit zero of byte seven, so playing top C should produce

FF00000FF

Playing several notes at once should, of course, affect all the relevant bits and thus will be reflected in the values of the bytes displayed. The system responds quickly despite the 20 ms delay it is easy to obtain multiple readings when playing chords unless one very carefully presses the notes evenly. In practice this is not likely to be of consequence since such spurious responses can be rejected by software if necessary. To terminate this program press ESCAPE.

List 1 is all that is necessary to read data from the keyboard into the computer, which can then be used as desired. As an illustration, the program in List 2 uses the data to play the computer's three-channel sound generator. It also displays a representation of the keyboard on the screen. The

Circuit boards for this project will be available from Lancaster ITEC for around £10. Please send an s.a.e. to the ITEC at St Leonard's House, St Leonardsgate, Lancaster, Lancashire, LA1 1NN for further information.

Computers and Music at Lancaster

The University's Music Department is interested in all aspects of computers as a musician's aid but not so much with synthesizers. Our main current interest is in the potential of the computer as a teaching aid for music theory and aural training, right through from beginners to university/college level. The biggest problem until now has been the lack of a satisfactory means of student feedback to the computer, the typewriter keyboard being unsuitable for this, except at a rudimentary level.

We have now successfully designed two economical accessories which go a long way toward solving the music-input problem - the four-octave music keyboard and a 'rhythm box'. Keyboard software packages for the BBC microcomputer currently under development include
o Keyboard familiarity, in which the computer displays a note on the stave and the pupil has to identify the note on the keyboard.

- Major and minor thirds, in which the computer plays a major and replaying them at different or minor third at random and dis- speeds. These phrases can be plays the lower note on the stave. stored on disc or tape which offers The pupil has to identify major or the possibility for pupils learning,
minor and play the pair of notes on the keyboard after which the computer displays its version. A score of successes is kept.
- Interval recognition plays and displays a random note from anywhere on the keyboard then selects and plays another random note from the same octave but doesn't display it. The pupil has to recognize the interval and play the second note. Again a score is kept.

- Triad recognition plays a tonic

 triad in close position (any key, root position or an inversion). The computer displays the key name but not whether it is major or minor and the pupil has to play the correct chord on the keyboard. Both the computer's and the pupil's versions are then displayed.Further teaching software envisaged includes recognition of cadences, musical dictation and transposition.

We also have software for playing musical phrases into the omputer through the keyboard
say, the violin to have an accompaniment which is gradually speeded up as the pupil's proficiency increases.

The 'rhythm box' allows rhythm information to be accurately fed into the computer by tapping on the box with a pencil. Its main purpose is to use the computer to give feedback on the type of rhythm exercises normally carried out by hand clapping. It also has some interesting recreational (and perhaps compositional) possibilities. For example, a tune can be played into the computer through the keyboard and its rhythm altered by tapping out a new rhythm on the box.

Our next hardware project is to enhance the computer's sound capability. Direct musical input to the computer from voice or musical instrument is also a possibility. In the more distant future we envisage small computers being used for music transcription, editing, printing, etc. The centre has expertise in music, computing, engineering and other disciplines and is well placed to make real contributions in this field.

by T. Segaran.

Fig. 1. Use of d.c. enables simple method of multiplexing leds.

Fig. 2. Without multiplexing, 1.c.d. drive simply requires a line for each segment and a common lead, which carries a 1:1 square wave, as in (b). Segment drives are either in phase or antiphase with common line waveform.

Multiplexing Liquid Crystal Displays

A short description of the 'black art' of driving l.c.ds.

Although I.c.ds are finding their uses in various products, driving them seems to be a bit of a black art. Many users tend to connect the appropriate driver chips and the displays together, without fully appreciating the intricacies of multiplexing the driver. Below is presented an explanation of various levels of multiplexing.

It is best to start by drawing an analogy with driving leds, which
need a direct current to light them. Multiplexing leds is therefore a relatively simple matter Fig. 1 shows a suitable arrangement. The segment lines (8) and the digit-enable lines define the particular segments that need to be lit up. As long as each digit is addressed about 50 times per second, no flicker will be visible to the human eye.
L.c.ds, however, can be
 tages and have slower response times than leds. Because of this, the multiplexing scheme for l.c.ds is rather more complex. When no multiplexing is needed (because few digits are being driven, say 4) the arrangement shown in Fig. 2(a) is adopted. Each segment of each digit has a unique line running to it from the driver. The backplanes of all the digits are commoned and are also connected to the driver. Hence, a four-digit display will have 32 segment connections and a common connection, which carries square wave of equal mark: space ratio, as in Fig. 2(b). All segments that need to be lit have a waveform which is 180 deg . out of phase with the common, as at (c), while those that do not have a waveform in phase with the common. Figure 2(d) shows the resulting polarizing waveforms across the segments that are selected. The non-selected segments have no net voltage across them.

When two-way multiplexing is needed, the scheme in Fig. 3(a) is adopted. There is a connection from the driver to a pair of segments and there are two backplane connections to each digit.

Thus, for example, in an 8 digit display there would be 32 segment lines and 2 common lines. Notice that the common 2 waveform shown at (b) lags behind the common 1 waveform by 90 degrees. When segment ' a ' needs to be lit up and segment 'b' must be off, then the waveform shown at (c), is impressed on the segment 1 line. The first half of the waveform is 180 deg . out of phase with common one thus lighting up segment ' a ' and the latter half of the waveform is in phase with common two, thus switching off segment ' b '. A similar waveform at (d) on segment 2 lights up segment ' e ' and keeps segment ' d ' switched off. Thus, although one reduces the number of lines by a factor of two, an additional complexity of a special waveform with three voltage levels is needed, to implement two-way multiplexing.

Three-way multiplexing is not commonly used, but four-way multiplexing can be discussed. In this scheme, shown in Fig. 4(a) each segment line from the driver is connected to four segments in each digit. There are four common connections (backplanes) to each digit, each common line connecting to two segments in each digit. Each waveform on the common lines in (b) is 45 degrees out of phase with the previous one. If all four segments connected to the segment 1 line (a, d, e and f) need to be lit, then the waveform shown at (c), is output on that

Fig. 3. Two-way multiplexing requires two common lines.

Group of 4-digit Lucid l.c.ds from EE Valve Company
line. Note that this waveform is 180 degrees out of phase with each of the peaks in the common waveforms, resulting in a large polarizing voltage across the four segments, as at (d). If segments ' b ' and ' c ' must be lit, while ' g ' and
' h ' are off, then the waveform shown in Fig. 4(d) is applied to the segment 2 line, resulting in the appropriate polarizing voltage. Figure 4(f) shows the voltage across a non-selected segment. Four-way multiplexing, although reducing the interconnection between the driver and I.c.d. considerably, requires still more complex drive circuitry and four voltage levels. Another disadvantage is that the difference in voltage applied to a selected segment compared to that applied to a non-selected segment is less than in other cases. Table 1 summarizes the drive volts.

Multiplex drive of alphanumeric and graphics l.c.ds follows the same principle used in driving

Table 1.

	Static	2 -way	4 -way
Voltage levels required	$0, V_{\mathrm{icd}}$	$0, \mathrm{~V}_{\mathrm{icd}} / 2$	$0, \mathrm{~V}_{\mathrm{icd}} / 3,2 \mathrm{~V}_{\mathrm{icd}} / 3, \mathrm{~V}_{\mathrm{icd}}$
Selected segment	$\mathrm{V}_{\text {icd }}$	$\frac{3}{4} \mathrm{~V}_{\mathrm{icd}}$	$\mathrm{V}_{\mathrm{icd}} / 2$
Non-selected segment voltage (r.m.s.)	0		

LIQUID CRYSTAL DISPLAY

Fig. 4. Four-way multiplexing, needing four common lines.

numenc displays. The number of common lines used can get as high as 8,16 or 32 : the limiting factors are how closely the thresholds on the displays can be determind and how well the refer-
ence voltages for the steps can be defined. For example, when 16 common lines are used, the voltage across a selected segment is $1 / 4 V_{1 . c . d}$ and the voltage across a non-selected segment is $11 / 80$
$V_{1 . c . d}$ The threshold for an I.c.d. segment must be between these two levels and the tolerance on the reference levels must be an order of magnitude better than those levels, i.e. about 0.1%.

SPEED OF LIGHT
 Light may, or may not travel at constant speed in vacuo, but it must do when it meets matter.

The human mind possesses a strong urge to seek after the truth; but is it perhaps a feeling of pseudo-religious fervour which allows us to accept theories and phenomena which are not easily comprehensible or are even paradoxical? One rather perplexing concept falling within this category is the constancy of the speed of light notwithstanding any velocity the light source may have relative to that of the observer.

When my own study of elementary physics brought this seemingly illogical concept into focus, I recall being rather more intrigued than bewildered. And when this concept was linked to relativistic notions and dramatized by the story of a frail old man being greeted by his very young twin brother on his return from a trip round Andromeda, I became fascinated by the possible credibility of such mystical ideas. The
last thing I wanted was anyone to destroy this illusion - and in any case, all the loose ends appeared to be well taken care of by the Special Theory of Relativity. I therefore became very sceptical about articles I read which dared to suggest that some aspects of the theory were perhaps a little suspect. I voiced, rather than seriously considered the point that if the theory were not as stated there appeared to be no other satisfactory explanation of the peculiar way which light seemed to behave. Certainly all experiments appeared to show that the speed of light is constant. And it also appeared logical that the speed of light should be constant everywhere in the universe.

Although I accepted the usefulness of considering the photon in some circumstances, the model I built up in my mind to visualize and explain, say, the prop-
agation of radio waves, was a very electromagnetic one. It seemed so natural that the magnetic field created by the accelerating electrons in an antenna, should combine with the electric field across various parts of it to send forth an electromagnetic wave. Despite these views, however, I was very uneasy about the classical concept of electromagnetic propagation. It was not until I took courage and seriously questioned my electromagnetic model that some rationality dawned.

Although it is often convenient to reason in terms of electromagnetic fields, the important part that matter plays in their propagation can easily be overlooked and forgotten. This, of course, is not the case when one considers the quantum model and that photons actually emanate from within the atomic structure as a whole. Well, the stuff that light is made of
either does emanate from within an atom or it doesn't. If it doesn't then the present most popular electromagnetic theory may suffice, though continue to be confused by the existence of photons. But if it does emanate from within an atom, one must at least try to satisfy the concept of duality by modelling the photon on say a toroidal package of electric and magnetic fields in quadrature. If, however, this makes one nervous, better forget duality and concentrate only on photons.

Whatever forces exist within an atom, there is one inviolate law which states that the initial velocity of photons propagated from an atom is constant, i.e. our accepted value of approximately $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$. It is, of course, fairly well understood that atoms can absorb and generate radiation at very specific frequencies. And, due possibly to the various transition times of photons within an atom's sphere of influence, it is also a fact that the speed of light in air is markedly different from that in, say, water. It is adequately demonstrated, therefore, that all photons are profoundly affected by atoms irrespective of any signature frequencies or densities, when, during their flight through the universe, they enter the space governed by these particles. There may even be room for argument that such photons leaving an atom's influence are not the same ones which entered it. Whether or not this is the case, photons which leave the field of an atom, must surely be subject to the same law which governs photons actually generated by the atoms.

If this postulate can be accepted - and it doesn't exactly violate any existing laws, it becomes quite evident that the speed of light measured by a stationary observer must always be constant, because the relatively dense air through which the photons have been travelling is also more or less stationary with respect to the observer. In fact, every encounter between a photon and an atom, ensures the maintenance of this constant velocity.

Consider now what happens to light emitted by a body moving towards the Earth at say 0.2 of the speed of light. Depending on one's 'faith' (and let's face it, most students, if not mature people, will believe what they are told if the argument is made to look plausible enough), light will either leave the moving source at
1.2 times our accepted value (with respect to Earth) or at exactly our accepted value with all the Lorentz modifications to the source in order to balance the books. The latter value, of course, lands us right in the middle of our present jungle of controversy - espcially with respect to the supposed time dilation. As there are many persuasive and intelligent people of great experience who cannot digest this principle, is it not logical, despite all the rhetoric against their arguments, to conceive that this same principle is not proven beyond all shadow of doubt. If we can tolerate the suggestion that there is just a tiny shred of logic in this view, let us ignore (for a few minutes) the Lorentz complications and consider what happens if we assume that the light from our moving object commences its travel towards Earth at 1.2 times our accepted value.

First choose to imagine that a perfect vacuum exists between the moving body and the outer reaches of the Earth's atmosphere. With no atomic encounters on their journey, the ejected photons would be entering the atmosphere at the same enhanced speed. However, on their very first encounter with an atom of its gas, the velocity of a photon entering the particle will be immediately reduced to the velocity of light with respect to that atom, i.e. our accepted value. To maintain the frequency (increased in this case by what might be confused with the Doppler effect), this lower but normal velocity would produce light of a shorter wavelength and of course, blue shift. This also implies that the light would be of greater energy to compensate for the reduced velocity of the photons.

But a perfect vacuum, of course, does not exist and matter appears to be present in the order of several atoms per cubic centimetre of interstellar space. If one considers that only a single atom exists per cubic centimetre, then to a first approximation, the mean free path of the gas would be in the region of $10^{10} \mathrm{~km}$. Therefore, a photon travelling through space, would, on average, encounter an atom approximately every $10^{10} \mathrm{~km}$. Even by astronomical standards, this is a fair distance - about the same as the diameter of our solar system but is eaten up in about nine hours by the travelling photon. However, if we then consider just the
nearest star, whose distance is more conveniently measured in light years, a mean free path of $10^{10} \mathrm{~km}$ is quite insignificant. This means that light would hardly have left a star before its velocity is changed to that prevailing for the interstellar gas. Moreover, it means that the velocity of its emitted light may have changed thousands of times before it reaches Earth. Another interesting thought is that any two photons leaving the souce at the same time are each likely to encounter their first interstellar atom in anything from a few minutes to a few days after departure. For this reason there would be no defined frontal system. It is true that after several thousand possible changes in velocity, nearby photons should keep roughly abreast; however, there is bound to be some random grouping giving the effect of well how does the nursery rhyme go? twinkle, twinkle....?

Even if any of the famous experiments to determine the speed of light could have been carried out in deepest space, the results would have been just the same as they are on Earth. Photons may well arrive to within one atomic diameter of the apparatus at a velocity substantially different to the speed of light on Earth but the velocity would be immediately changed relative to that of the apparatus on encountering the first material interface.

Any satisfactory measurement of the speed of light in a near vacuum, would, of course, be rather difficult. One possible way would be to pass the light emitted from a star through a segmented glass disk rotating at high speed and noting whether the light passing through the glass overtakes or falls behind the light which travels directly. For accurate results, the disk would have to be an inconvenient distance from the measuring device - perhaps on the next Moon visit we may know. There would, however, be no way of actually measuring the initial velocity of, say, light emitted from stars with a pronounced red or blue shift due to the levelling out process mentioned above.

I am not saying that Lorentz contractions and quirks of time are just fantasy - interpretation of some phenomena suggest they are quite real. However, do we really need them to explain away a universal constancy of light which may not exist. Could not the tail, in fact, be wagging the dog?

The author
After his college studies were inter rupted in 1943 by wartime circumstances, Roy Hodges commenced a career in Broadcasting Engineering by joining the B.B.C. at their Brookman's Park transmitting station. Being only 15 years old at the time, he naturally feit himself a little at the deepend; however, he later transferred to the television service and after 10 years with the Corporation, he joined the Ghana Broadcasting Service and spent 8 years as Engineer in Charge of various departments.

For the next 2 years he was a stu dent at the Brighton College of Technology studying electrical and electronic engineering and within the following year obtained Corporate membership of the IEE. Since then, he has worked extensively in Africa and the Far East with various international organisations in the tields of broadcasting, electronics, produc management and education.

Optical power

That strange genius Nikola Tesla used to believe that communication by radio waas simple: the real problem was to transmit power. In practice it was not until the 1960s that it was shown possible to keep a model helicopter flying by beaming up microwave power from the ground. Even today it is doubtful whether any practical use is made of power transmission - though at IBC82 it was suggested that DBS sound radio transmitters on 26 MHz could be so powered in what seemed largely an engineering pipe-dream.
Now the idea has spread to optical fibres with their extremely low potential attenuation but with thin fibres limited in power-transmission capability. Japanese engineers have reported (Electronic Letters, September 27, 1984, pp811-2) transmitting 39 watts over 420 cm of $1000 \mu \mathrm{~m}-$ diameter fibre and believe that with this diameter fibre the limit would be about 80 watts. Using a CO_{2} laser with a wavelength of about $5.3 \mu \mathrm{~m}$ the transmissions loss is about $0.3 \mathrm{~dB} / \mathrm{m}$.
It is suggested that the ability to transmit 40 watts "enables us to use this fibre for some practical applications" but the writers do not expand on these.
Meanwhile, the international rivalry to transmit high-speed data over long lengths of optical fibre, using coherent systems, continues. At a recent Open Day at British Telecom Research, Martlesham, the claim was made that the adoption of superheterodyne principles for reception combined with the ability to obtain a narrow-band coherent output from semiconductor lasers has enabled BT to establish a world record by transmitting a $140 \mathrm{Mbit} / \mathrm{s}$ (the BT notes gave $140 \mathrm{kbit} / \mathrm{s}$ but I am assured this was in error) along 200 km of fibre without intermediate regeneration. A long external-cavity laser being studied at Martlesham has a linewidth of only 10 kHz and can be tuned over a $13,000 \mathrm{GHz}$ range, so opening the way for frequency multiplexing a series of independent transmissions over a single fibre.

However, on the "anything you can do I can do better" principle, I note that Japanese
engineers have reported (Electronic Letters, September 13, 1984) on optical link of 216 km with a total attenuation of 46.3 dB at $1.55 \mu \mathrm{~m}$, using 107 splices.

Interscan or TRSB?

A distinctly aggrieved piece by Philip Watson in Electronics Australia (July 1984) complains that the microwave instrument landing system,, generally known as TRSB' (time reference scanning beamı, chosen in 1978 by the International Civil Aviation Organization and now in production, although of CSIRO origin, is seldom credited to Australia. As the Interscan system it was first field tested at Melbourne.
According to Philip Watson, the system should rank as one of Australia's most significant scientific achievenients, adopted as a world standard in preference to competing designs from the UK, continental Europe and the USA. Yet, he adds, "it is both surprising and disturbing to find that
Australia's role in this development has been completely ignored overseas."
Interscan TRSB operates on 5 GHz with a range of about 37 km and, among its advantages over still-current v.h.f., ILS can handle several aircraft at the same time. The system, as a world standard and including developmdents introduced in the USA, is not subject to basic patent restrictions but the Aussies are clearly sore that its origins and the early work at CSIRO are being overlooked

Farewell 405

During the first week of January, 1985 405-1lne television (System A) will finally disappear into history - where for the vast majority of viewers it has been for the past decade. Announced as a British television standard (competing with Baird's 240 -line sequential system) during 1935, it has narrowly failed to make 50 years. The long-lasting Blumlein waveform, with positive modulation (excellent apart from susceptibility to ignition interference) and a.m.
sound might have been a 243 line system if the EMI team had not tried the effect of changing one divide-by-three multivibrator into a divide-byfive ($243 \times 5 / 3=405$). The system which gave Britain a significant lead in world television will be remembered with affection by all who were not unduly worried by the often audible 10.125 Hz line-whistle. In association with 4.5 in image orthicon tube cameras it gave really excellent black-and-white pictures - and even the visible line-structure could have been alleviated if the public had taken kindly to spot-wobble techniques.

It was interesting to learn at IBC84 that there is a revival of interest in the USA in synchronized spot-wobble as an aid to high-definition television - a technique oyiginated by Alan Blumlein but which Leslie Jesty strove to introduce for so many years. It was fitting that he was in the audience at IBC84, though describing himself as "an unemployed engineer".

IBC84 provided further evidence of the very impressive results that are possible with the 1125-line (60 Hz) NHK and the proposed 1249 -line (80 Hz) BBC systems. The pictures on Sony's excellent 6 ft winde projection system could not be faulted, though both standards require over 20 MHz of video bandwidth and may never be possible in Europe for terrestrial or 12 GHz satellite broadcasting, although suitable for electronic cinematography and closed-circuit working.

Single-tube colour cameras are still finding it difficult to compete with three tubes. For display, the principle of the single-gun beam-indexing tube has been around for a very long time. On several occasions it has been hailed as the coming thing in brighter colour displays. One of the few such tubes actually in production is a 1 in tube made by Hitachi for camera viewfinders. Sony Corporation, however, has recently announced a new beam-index projection tube with a 5.25 inch faceplate and ethylene glycol-water cooling, claimed to have a peak brightness of about 1600 lumen, roughly seven times more than with good shadowmask tubes. The tube is being put into a home video
projection unit, with built-in v.c.r. and cable tv tuner, marketed in the USA at about $\$ 3000$.
Sony are also to provide a giant mosaic-type display (160 ft diagonal) for Expo 85 near Tokyo. visible at distances up to 1 km . This uses light sources having fluorescent-type cells with three electron flood sources, one for each primary colour, with a common cathode to provide a 40 m wide by 25 m high screen with a 400 by 378 array.

Amateur Radio

New IARU "locator"

From January 1985, a new IARU locator system will come into use with the UK and possibly throughout the world. It will enable v.h.f. and u.h.f. operators to pass, in a single six-character coded group, information on the location of their stations to within a couple of kilometres. It replaces a European-only "squares" locator system and was originally devised by John Morris, G4ANB as the "Maidenhead" system.
In the new system the world is divided first into 324 "fields" each covering 20° of longitude and 10° of latitude. Each field is labelled by two letters between " A " and " R ", the first letter indicating the longitude starting from 180° West; the second, latitude starting from 90° South. Thus most of the UK west of the Greenwhich meridian is in the field " 10 ", but the Channel Isles, Isles of Scilly and Lizard Point, Cornwall are in field "IN", most of the Shetlands in "IP", and those parts of England east of Greenwich in "JO"
Each field is then divided into 100 "squares" arranged as a 10 by 10 grid, each covering 1° of latitude and 2° of longitude, each designated by a digit " 0 " to " 9 ", the first indicating longitude, starting from the west, and the second the latitude starting from the south. Finally each square is divided into a 24 by 24 grid of subsquares, each covering 5
minutes of longitude and 2.5 minutes of latitude, labelled by two letters, each in the range A to X starting from the Southwest corner. Thus the location of Edinburgh Castle using the new system is 1085 JW . There is however no truth in the rumour that anyone working out their locator group correctly at the first attempt will be excused from taking the Radio Amateur's Examination.

Costly h.f.?

Exchange rates and inflation continue to push up the cost of imported top-of-the-range amateur radio transceivers, leading to a revival of interest in "economy" designs and home construction, though a flexible, full-specification design is not a matter to be tackled lightly, on the kitchen table.

As an example of rising prices, one notes that the basic Yaesu FT-ONE h.f. transceiver is currently being offered at about $£ 1570$ compared with $£ 1450$ in October 1983 and $£ 1295$ in October 1982. The absence of UK production or assembly makes the imported equipment very vulnerable to changes in exchange rates. Japanese domination of the world market for such equipment is challenged only by a few American firms with, for example, the innovative Drake firm now increasingly concentrating on "professional" markets, and with some of the remaining American firms relying on assembly in the Far East.
Nevertheless, it still remains possible for newcomers, who do not aim too high initially, to assemble a complete h.f. transmitting station for less than $£ 100$ by using secondhand equipment and aerial based on wire suspended from trees or houses rather than aluminium tubing arrays mounted on towers.

At the other extreme one notes aerial tuning units, for which many of us still use just an odd coil and capacitor, priced at around $£ 350$!

More use now appears to be made by both newcomers and long-established amateur h.f. stations of the lower h.f. bands, including $1.8,3.5$ and 7 MHz , reflecting the recent rapid decline in sun-spot activity, including a period in September
of almost a fortnight during which no spots were visible on the face of the Sun. We now face a period of two or three years of sunspot minimum, with the consequent lowering of the maximum usable frequencies, difficulty of working across the day/night barrier, and the virtual fade out of the 14 MHz and higher bands at night.

It will be interesting to see if the IARU Region 1
recommendation of no s.s.b. on 10.1 MHz remains unchallenged for long, with numbers of amateurs in Region 3 (Asia, Oceania) already operating phone in this narrow band. Currently in Europe, c.w. activity on 10.1 MHz is at only a moderate level.

Back to batteries

It has long been a truism that for portable operation it is relatively simple to convert electric power into r.f.: the difficult part is finding an economic source of the basic electric power. With most modern amateur transceivers designed for operation from 1214 volts d.c. as mobile units, many amateurs are finding that the home construction of reliable regulated mains power supply units, fully protected against delivering an overvoltage output, and capable of supplying peak outputs for s.s.b. operation of over 30 A , is by no means as simple as it may appear at first sight. Lowcost, series-pass transistors, such as the 2 N 3155 , although nominally rated at 10 A , often prove to have "worst case" ratings of around 5 A , and their failure, invariably a shortcircuit, can typically put a damaging $18-20$ volts into an expensive transceiver.
"Crowbar" protection can similarly present unanticipated design problems, even though nominally fail-safe.

There is thus a growing belief that the simplest, most reliable and usually most economical solution for base operation of 12 V transceivers is the use of a float-charged car battery. The introduction of fully-sealed "maintenance-free" lead-acid batteries help to overcome the former fear of causing domestic damage to carpets etc. due to acid spillage. Standard car-battery chargers can be used with 4 A or 8 A rating.

The conventional lead-acid battery still tends to survive only a limited number of charge/discharge cycles without the plates buckling, shedding active material (which can short-circuit the cell) or suffering from sulphation. New Zealand amateurs, in particular, seem prepared to tackle the problem of regenerating cells by such techniques as washing out the shed material, or by using Glauber's salt solutions to counter sulphation, in a manner originally described in 1912 and also in Wireless World in 1941!

Here and there

By October the sequence of G4Z Class A licences was almost exhausted and GO callsigns may begin to be issued late in 1984 or early 1985.

The Channel 4 play "CQ" took pains to provide an authentic portrayal of amateur radio operating. No so TV Times which must have upset some amateurs by saying that "peppered throughout the entertaining script is the freaky language of Citizens' Band radio"!

Pierre Lorain, F2WL's definitive book on the weapons, radios and techniques of SOE published in France in 1972 has been published in the USA and UK in an English-text adaptation by David Kahn as "Secret Warfare" (UK, Orbis Publishing Ltd., 185pp £7.00 hard covers). It includes clear drawings of about 15 different suitcase and pocket transmitterreceivers used for clandestine communications, 1941-45.

While the recent excellent BBC documentary series on SOE included sequences with John Brown, G3EUR showing the use of radio equipment, it seemed odd that a later episode gave the impression that Captain Hudson, the first SOE man with the Yugoslav Resistance, sent out his own radio messages. In face he was accompanied by H.W. King, who now lives near Oban, as radio operator, burdened down by a heavy Mark 3 transmitter supplied to SOE by Intelligence.
Australian amateurs will benefit - but possibly not for many years - from the decision of the Department of Communication to phase out some of the anomalies in Australian television frequency
allocations. Channel 5 A , adjacent to the 144 MHz band, will disappear, along with television usage of three channels in the v.h.f. boardcast band (Band 2) which 20 years ago was made available to Australian television but are now required for the expansion of v.h.f./f.m. radio. But it may be years before these decisions can be implementated.

PAT HAWKER, G3VA

In brief

The September "Commentary" noted the Government's proposed transfer of the 22 high-power broadcast transmitters belonging to the Foreign \& Commonwealth Office's Communications and Broadcast Department to the BBC. Four months after this became known, no final decision has been made, with various committees examining the proposals which are bitterly opposed by many of the engineering staff. Though FCO still seems to hope to push these changes through, they are cagey about suggesting any possible timetable.
New battery technology is claimed as a key factor in the new Peugot Electric 205 car with a claimed operating range of between 100 and 140 miles at average speeds of 45 and 27 mph and to speed of 60 mph . The 12 nickel-iron 6 volt batteries have cells not completely separated, and each can be filled from a single opening; they provide about twice the energy of standard cells of similar size with 1500 recharge cycles possible. Battery recharging however takes 10 hours and the cost of the batteries is very high, reflecting the use of expensive materials.

Phone-in radio programmes can be dangerous work in the USA. Alan Berg, a controversial host on KOA Denver was shot dead last summer, after having been threatened several times - by no means the first American broadcaster to be gunned down apparently by angry listeners.

PAT HAWKER, G3VA

TOROIDALS

The toroidal transformer is now accepted as the standard in industry overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to I.L.P., PRICE
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 14 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.

CIRCLE 27 FOR FUR'THER DE'TAILS.

Affordable Accuracy - Low Cost Multimeters from Armon

Heron House, 109 Wembley Hill Road, Wembley, Middlesex HA9 8AG Telephone: 01-902 4321 (3 lines). TELEX No. 923985

Please add 15\% to your order for VAT. P\&P free of charge. Payment by cheque
with orcer. Offer applicable to mainland UK only. with orcer. Offer applicable to mainland UK only

CIRCLE 36 FOR FURTHER DETAILS.

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

R.Henson Ltd.

21 Lodge Lane, N. Finchley, London, N.12. 5 mins. from Tally Ho corner

[^1]
PRINTED CIRCUIT BOARDS FOR ELECTRONIC \& WIRELESS WORLD PROJECTS

PROJECT	DATE	No. of BOARDS	PRICE
NICD FAST CHARGER	(NOV 83 ISSUE)	1 -	¢7.00
R.F GENERATOR	(JAN 84 ISSUE)	2	£6.00
SC84 COMPUTER	(MAY 84 ISSUE)	3***	§39.00
MODEM	(JUN 84 ISSUE)	1*	£16.00
SC84 POWER SUPPLY	(SEP 84 ISSUE)	$1 \bullet$	£5.00
EPROM PROGRAMMER	(OCT 84 ISSUE)	2**	£17.00

BOARD CODE:- \star PLATED THROUGH HOLE ©SINGLE SIDED

All P.C.B.'s are supplied with component insertion diagrams. Prices are inclusive of inland and Overseas Postage, Packing and V.A.T.

KING STREET, COMBE MARTIN, NORTH DEVON EX34 OAD TEL:- 0271882346
CIRCLE 42 FOR FURTHER DETAILS.

HERRY'S , HENRY'S COMPUTER Glectronics

DIGITAL MULTIMETERS

UK'S NO. 1 FOR TEST EQUIPMENT• ELECTRONIC EQUIPMENT•ACCESSORIES

ACCESSORIES AND OEM STOCKS • SOFTWARE • PERIPHERALS • MULTI-BOARDS

Hand Held Models IUK C/P 65 p]

HAND HELO mODELS
Controls $S=$ Sidide $R=$ Rotar
PB $=$ Push button
All
All tealure $A C / D C$ volts.
DC amps Imany with $A C$

 *K025C 12 range 0.2 A OC2 2 meg ohmis) $£ 24.30$ *K0305 (range 10AC/ Meg onmis *KDEX 3500 30 range IOA AC/OC 20 Meg
oh \quad m m [R$]$

* METEX 3510. 30 range 10A AC/OC. 20 meg ohm Plus Hite tester plus cont. Lester (R) $£ 40.45$ 601028 range 10 A AC/ OC 20 Meg ohmIPBI $£ 37.83$ * K055C 28 range 10A AC/aC 20 Meg onm|R|E $\mathbf{E} 38.70$ * KD615 I8 range 10A DC 2 Meg onm plus Hie tester
 HC 501031 rango 10A AC/DC Conl buzzer 20M

 * 0 M2350 Mini autorange plus cont. tester 19 range
 * 3100 Pen type auto ranging $A C / D C \vee 20 \mathrm{Meg}$. 4.54
$*{ }_{\text {ohm }}+$ buzzer
SOAR ME540 Manual/Autoranging plus cont buzzer 19 range 10A AC/DC 20 Meg ohm (h) E41.54
METRIX HAND//BENCH PORTABLES (ITt
[Size $188 \times 86 \times 50 \mathrm{~mm}$ Rolary controls]

 Mea ohm Ba sic $0.2^{\circ} \%$ Plus continuity tester |fl| $\mathbf{E 9 5} .00$ m $\times 563$ True AMS $31 /$ digit 30 ranges $10 \mathrm{ACA} / 0 \mathrm{CO}$

EDUCATIONAL;
MIXED OUANTITY
\& EXPORTDISCOUNTS
We woull be
406 , oflices.
AUDIO AND RF GENERATORS
JUK C/P £1.00
AUDIO

LEADER LAG27 5 band 8 ine/square 0/P O/5V AMS Dist $0.05 \% 20 \mathrm{HZ}$ to 1 MHZ LEADER LAG120A 5 band IOHZ 10 IMHZ $\mathbf{~} 93.00$ RMS into 600 ohm 05° dist LEADER LAG125 5 tand 10 Hz to IMHz 153 V RMS into 600 ohm sine/square/burst signals $0.033^{\%}$
 dist
TRIO AG202A 4 band 20 HZ to 200 KHZ 10 V RMS
E89.00 0/P 0.5% dist CR OSC $0 / 10 \mathrm{~V}$ pp $0 / \mathrm{P}$ E89.00 TRIO A G203 5 band IOHZ to IMHZ 0.1% dist $0 / 70$
RMS $0 / P$
£ 139.00 RMS 0/P

RF
TR10

TAIO SG4026 range 100 KHZ to 30 MHZ AF 0.1 IV
RMS Int/ext mod
LEADER LSG172.00 76 band 100KHZ to I50MHZ 196 to LEADER LSG 176 band IOOKHZ to I50MHZ I96 to 1 KHZ I volt |IMMZ X Xal optional $£ 3.001 \quad £ 115.00$

PROBE KITS

In wallits with adapiors, etc 8 NC littings for
$\begin{array}{llll}\text { scopes } / \text { counters } / \text { generators. etc. } \\ \times 1 & £ 8.90 \quad \times 10 & £ 8.26 \quad \times 100 \quad £ 16.00\end{array}$ XI
$\times 1 / \times 10$ Switchatle $£ 10.00$ Clemodulator $£ 16.00$ [UK C/P Iree with other itams 65 p per 1 to 3 kits)

AC CLAMPMETER
 0/300A. 0/600V AC O/I ohm. Tolal
 9 ranges with carry cas ST300. UUK C/P 65 pl

HIGH VOLTAGE METER
Direct meter reading
IUKC/P £1.00) $£ 28.00$
DIGITAL
CAPACITANCE
METER
OM6013 Oirrect read LCO 8 range Q 1 pt
to $200 \mathrm{mid} .3 / 2 / \mathrm{digilit} 0.5 \%$ basic
[UK C/P 65p]

TV TEST EQUIPMENT

MC32 Series TV colour Patern Gen.
8 coiours Video
MC321 PAL [UK]
MC328 PAL B
SECAM YERSIONS AYAILABLE 8229.00

SECAM YERSIONS AVAILABLE
TC40 Portable FM \& VHF / UHF TV Find strength meter BI to BIV with carry case. 45-862:My?
[UK C/P £1.00] $\quad £ 189.00$ LHC 909 Series
LHC 9098 Beta.
LCT 910A CRT [UK C/P 85p) LGK 910A CR
(UKC/P£1.50)

DIGITAL THERMOMETERS

Pocket size LCO thermometers comptete
with tattery. Accept any type K probe
[UK C/P 65pl
TH3O1 LCO-50 C to $750 \mathrm{C} .1^{\circ} \mathrm{C}$ resolution
with thermocouple. $£ 59.50$
TH302 LC0-40 C10 1100 CC Cent/Fahrenheit 0.1° and 1° resolution with thermocouple. $\quad £ 79.50$
Range od various probes in stock Range of various probes in stock. $£ 17.50$ to $£ 25.00$

VARIABLE POWER
 SUPPLIES

PP241 single meter. A/V switch, $0 / 30 \mathrm{~V}$

$£ 33.00$
PP243 3 amp version
230M Twin meter $0 / 30 \mathrm{n}$
$£ 52.13$
$£ 97.00$
$£ 97.00$
$£ 175.00$
2302 Dual $0 / 30 \mathrm{~V} 0 / 2 \mathrm{~A}$ iwin meter plus fixed 5 V 1 A
also pulse generator.
£230.00

ANALOGUE MULTIMETERS

 General range [*mirror scalelluuk C/P 65plHC1015 15 range pocket $10 K / W_{0}$ HC1015 15 range pocket 10K/ Nolt
1 meg ohm

OC plus cont. Buzzer 10 Meg ohm ETU3000 20 range $30 \mathrm{~K} / \mathrm{V}$
2A DC 12 meg ohm NH56R 22 range $10 \mathrm{~K} /$ Voll 6 Meg ohm $830 A^{*} 26$ range $30 \mathrm{~K} / \mathrm{Volt}$ IOAC/OC 10 Meg

360TR 23 range bench 100 OC plus Hie tester. 10 Meg ohm $£ 39.13$
OAAVOC plus Mie lester. IO Meg ohm 10 E3S.
100 Meg ohm $\quad £ 30.39$
AT $1020^{*} 18$ range de luxe $20 \mathrm{~K} /$ Volt plus Hite
$£ 19.57$ lester. 5. Meg ohm
YM360TR 19 range $20 \mathrm{~K} /$ Voh plus Hie tester f 13.87
1 Meg ohm
1 Meg onm

KRTS001* Range doubler 35 range total $10 \mathrm{~K} /$ Volt
10A 19.09
10 Meg ohm

OC I Men ohm range 20K/Volt plus Hie tester 12 A
Meirix (ITT) P
iessional seri

COMPONENTS ${ }^{\circ}$

ACCESSORIES ${ }^{\circ}$ TOOLS
Large range in stock semiconductors, relays, tools.
Plus millions ol capacitors, resistors, presets, controls, plugs milions ol capse por bulk export users controls Tel: 01-723 1008 with enquiries.

TRANSISTOR

TESTER

Oirect reading PNP/MPN and diodes.	Hite, leakage. etc. General
(UK C/P 65 pl	
$\mathbf{2 4 . 3 0}$	

ELECTRONIC
 INSULATION TESTER

$500 \mathrm{~V} / 0.100 \mathrm{Meg}$ ohm with carry case.

LOGIC P

 |UK Post. etc. 65 pl|

PICK A CARD ANY CARD BUILO A CUSIOM SYSTEM your GALAXY or MASCOM

GM811 C月U

GM832 SVC
GM829 FOC/SASI
G813 CPU/6GK RAM
GV14 IEEE 488 CONTROLLER
GM 82787 KEY KEYBCARD
GM827 87 KEY KEYBDARD
MP826 SIALIC RAM
10828 SUPER PLUTO COLDUR GRAPHI
PROCESSOR 192K RAM
GM833 RAM-OISK 512 K
GM888 CPU/INTEK 8088
GM862 256K RAM

IUK C/P \& export extra al cosil
FULL LEAFLETS/ DETAILS OF SUIT ABLE
PERMUTATIOMS AMO PRICE LISTS - SEMO Large
We can advise also with terminals and complete
Galaxy computers wilh monitors and Disks ready to use

NASCOM-2

Available in both kit and buill torm. Featuring
Mlcrosolt Basic. NAS.SYS monitor. Lull OWER
keytooard of the highest quality 4 MHz 280A
proces sor, iuilitle computer cards around. expansion capabilities are impressive using the NASBUS and compatiole 80-8US expansion cards. Expansion includes hi.res colour grapnics lull CP/M disk
system and much more. Send SAE for lull leaflets. NASCOM 2 kit $\quad £ 225.00$ NASCOM 2 built £265.87
ITT 2020 CABINET
Protes sional computer case

ideat lor single board
computers like the Nascom or Gemini Multitoard 13
cards, etc|. Very heavy gauge |.25"। plastic with
melal base. Atractive silver grey finish.
|UK C/P £1.78|.
TOROIDAL
TRANSFORMERS
100 watl isolations 230/240v
AC plus $8-0-8 V 4 A 15-0.15 \mathrm{~V}$
$0.645 A 30 \mathrm{~V} 0.16 \mathrm{~A}$ size
approx $4^{1 / 2}$ dia $\times 1^{3 / 4}$
UKK C/P 75pl E6.91
STC NOVATEL
PRESTEL
TERMINAL
FEATUAES
7 diag green screen
240 AC atins operated
delachatle key paed. robust
case $14 \times 12 \times 1$ casset
recorder data stored lacility
viden output for other
monitors. securit
 UK C/P £3.00)
ASC11
KEYBOARD
695 D5 Compact. 64 k
+5 lunction keys. Hal
elfect keyboard with
reprogrammable $|2716|$ ASCII outpul decoder
EPROM. Steel key Irame tor good rigidity. Negative going sirobe, Requires +5 volt +12 volt supplies. |UK C/P $£ 1.00 \mid$ COMPACT 58 KEY ASCII

KEYBOARD

Contaciless capacitive high reliability keys. Full 128 ASCII codes. Steel key irame for positive rlgidity, ImS strobe single 55 voll supply. Repeat key control and caps. lock. $£ 28.26$ JUK $C / P £ 1.00$ ।

ALWAYSKEYBOARO AND POWER SUPPLY BARGAINS FOR CALLERS

SOFTWARE

MOIS (C) INTELLIGENT
DISASSE MBLER
For all CP/M based machines
IVC HI-RES (C) For Gemini and others [please enquire). Provide Pseudo high resolution
graphics. $\mathrm{E15.00}$
OISKPEN ICO version 3. Low cost word processor
lor Gemini and others |please enquire)
$\mathbf{5 5 0 . 0 0}$
maxifile overlay
HENRY'S CP/M UTILITIES DISK [C]
51 Programs lor the GP/M Systams programmer
$\begin{array}{ll}8^{\prime \prime} \text { format } & £ 15.00 \\ \text { £17.35 }\end{array}$
Alloisc
Variable disc format utility for Gemini and Mascom
AP/M's $£ 150.00$
BDOSZANO CCPZ $£ 10.00$ each
All above - Please state formal required

COMPUTER POWER

SUPPLY

Switched mode. Stabilised. Selt protecting S/C
protected. etc. $220 / 240 \mathrm{VAC}+5 \mathrm{~V} 3.3 \mathrm{~A}+12 \mathrm{~V} 2.4 \mathrm{~A}$ $\mathbf{4 0 \%} \%$ cycle $-5 V 0.5 A-12 V 0.5 A$. Suitable Apple
repiacement (UK C/P £1.50)
£ 50.00

COMPUTER FANS

QUANTITY DISCOUNTS

avallable

43/4. 220/230V AC Brand new . $114^{\prime \prime} / 115$ V AC Brand new
220/240V AC Ex-unlts
£6.52 each $44 / 420 / 240 \mathrm{VAC}$ EX-unlis
$43 / 4^{1} 110 / 115 V$ AC Ex-units
$£ 7.61$ each E4.78 each

Complete with fult handtook
(UKG/PE1.00)
$£ 43.43$
SUITABLE FDR:TANOY • BBC • O

- GEMINI - ACORN - ORAGON elc

IInterlace units with leads $£ 13.00-$ state model)
IYour enquiries invited) (Your enquiries invited).

CHERRYKEYPADS
IG button xey pads mod.
encoded
HEXAOECIMALIG
E5.17
keypad Irequires IC's| $\mathbf{6 . 5 2}$

MODEM CARDS

COUPLER
Brand new. tested, answer and originate 300 BAUD uncased acoustic modern card by lamous
manulacturer. R\$232 input/output. Power supply $1-12 \mathrm{~V}$ at 180 mA . Requires 2 magnetic earpieces. 2 switches. 2 LEDs and connectors to complete. Circuits and connection data supplied. Card only.
£26.04
Cari and remainder ol smail components \quad £29.09 Telephone Direct Line coupler type LTU 11 MK11. Suitable for direct coupling PRESTEL adaptors and the above acousitic modems. Integral Line select and connection data supplied LTU 11 Coupler $£ 13.00$ 12008 AUO receive 75 BAUD send direct coupled modem for PRESTEL Requires $+5 V$ supply with TTL inpuls for data. line select and autodial. LTU II direct coupler required. See above. Connection data
supplied. PRESTEL modem card.
f 13.00
STOCXISTS FOR Printerz. Paper. Thermal. Daizy Wheels. Disk Drivas Boxad. Chassis also Whinchastar. plugs blank oliscs \& tapes. software tooks. etc.

Prices excludeVAT (15\%UKorders only) Export please allow adequate CIF Let us quote for your requirements
CAIINANDSEE FORYOURSELFORORDERBYPOSTORPHONE

[^2]
'ATLAS' - The complete Robotics Teaching System

By combining basic robotic control and sequence design with full test and diagnosis, L.J. Electronics have produced 'ATLAS', a unique Robotic Teaching System.

Based around a well engineered polar type robot, the ATLAS system features:

- Full test and diagnosis
- Sophisticated software that can be implemented on a remote L.J. microcomputer, including mimic and co-ordinate programming and 'CLARE' a robotic programming language.
The ATLAS Robot has -
- On-board microcomputer
- 5 degrees of freedom, plus one supplementary function
- Stepper motor control
- Teaching console with full editing functions

Send for details of the 'ATLAS' system and find out
for yourself why its so unique.

* New Work-Cell System available early 1985

CIRCLE 25 FOR FURTHER DETAILS.

M \& B RADIO THE NORTH'S LEADING USED TEST EQUIPMENT DEALER

```
c
*)
45350Mh2 Dual Trace? ITGase
lol
MEWLETPCKARD
% 182A Man-FFrame 
```



```
\M,
M,
```



```
SELEKTOMAT TYP USWY
*)
FrequentsyynhessseruluA 3OHz-30Mh
l
COLLINS 390/A Communications Receive:
L
HEWLETT PACKAAD
```



```
*)
*)
$
```



```
ADVAMCEX-Y Peorcuer Tesier
M,
```



```
TEKTHONIK SOuare Wave Generaroc 106
- Disk. Dive Data Recoramg
M,
```


CIRCLE 28 FOR FURTHER DETAILS ELECTRONICS \& WIRELESS WORLD DECEMBER 1984

Mimicontroller

Given the i/o and assembly-language facilities of a BBC model B microcomputer, developing a controller is no great problem but to have the computer permanently running say a central heating system is a waste. The economical 6502 Mimicontroller takes over such applications.

Many secondary schools and an increasing number of primary schools are realising that the microcomputer is a powerful controller. They are also discovering that young people are strongly motivated by design tasks which challenge them to use electronics to control hardware ranging from model-maker's motors and N -gauge railways to mock-ups of c.n.c. drilling machines. Interface units allowing a microcomputer to drive motors, lamps, loudspeakers, etc., from an input/output port are now produced by a number of companies and various attempts have been made to produce control languages which make it easy for children of all abilities to, for example, switch a bit on or off.

At the other end of the spectrum there are microprocessor systems whose primary function

[^3]may be to teach machine-code programming but which are easily turned into controllers. Microprofessor is perhaps the bestknown currently available unit; Kim, Acorn System One and MK14 have all come and gone.

For the teacher, the choice is not an easy one. Microcomputers offer high-level language which may in fact be no easier than machine code for the complete novice - but cost much more than 'minimal' systems. Microprocessor controllers run only machine code but they come at a price that is much more likely to allow a whole class to have hands-on experience.

Since 1979 I have been exploring the possibility of using minimal dedicated machine-code controllers in the classroom and trials with a small three-chip design at Belper High School in Derbyshire have proved successful. Briefly, code for the controller was developed on either the Sinclair Radionics' MK14 or a purpose-built

2716 emulator* and programmed into an eprom for insertion into the three-chip controller. The other two i.cs in the controller are an INS8060 microprocessor and INS8154 ram/p.i.o. device. Cost of this board was about $£ 30$.
As the cost of the main i.cs on this original board has risen so the cost of 65 -family processors has fallen, and more schools have experience of 6502 machine code than hitherto. The need to redesign the controller was clear. At the same time I felt that being able to somehow make use of the BBC microcomputer assembler would be a significant advantage (this computer outnumbers others in schools). As well as the obvious advantage for the enthusiast who has outgrown handassembly of machine code, there is the possibility of tempting teachers to have a go at machine

[^4]

Mimicontroller is designed to emulate BBC microcomputer i/o in control applications. Software is developed and tested using the computer's assembly-language and i / o facilities then transferred to a 2716 eprom for use in Mimicontroller. Ports A and B and control lines of the 6522 v.i.a., top left, act as those on the BBC microcomputer.
code control using a computer that they are already familiar with.

Using the assembler to help people write their first bytes of machine code bridges a conceptual gap which may otherwise be too large; thus Mimicontroller was developed.

The circuit

Simplicity of the controller can be seen in the circuit diagram components, including zero-insertion-force socket for the eprom but excluding p.c.b., cost less than $\mathfrak{£ 2 0}$ which makes it attractive for school use. More relevant to most readers though is that Mimicontroller opens up the possibility of using the BBC microcomputer as a development tool for all sorts of applications from central-heating control upwards but without committing the computer to the actual job of controlling the application. Once the code has been developed, it is programmed into a 2716 eprom,
using one of the several eprom programmers available for the computer, and transferred to Mimicontroller.

The crystal, $\mathrm{IC}_{7}, \mathrm{R}_{4}$ and C_{4} and part of the 6502 produce inverted clock signal $\overline{\mathrm{CK}}$ and $\mathrm{IC}_{7 \mathrm{c}}$ a noninverted clock for the 6522 timers. The BBC microcomputer has a 2 MHz clock whose frequency is halved through a complex system when certain memory devices are accessed. Because of this it is virtually impossible to design a simple controller that will mimic the computer in respect of software timing. Memory i.cs rated at 350 ns are significantly cheaper than faster ones - a further reason for not attempting to clock the Mimicontroller above 1 MHz .

The 6522 versatile interface adapter, v.i.a., has elaborate timing facilities, however, and Mimicontroller's 1 MHz clock is the same as the microcomputer's 6522 clock. If software timing/ delay loops are avoided and the v.i.a. used instead on both com-
puter and controller, there should be no problems.
To prevent bus contention between the different memory devices, it is preferable to stobe memories with the CK clock. By feeding $\overline{\mathrm{CK}}$ into or gates $\mathrm{IC}_{8 \mathrm{za}, \mathrm{c}}$, the chip-select signals to $\mathrm{IC}_{5,6 \mathrm{c} 4}$ respectively are only allowed low when CK is high, provided of course that $\mathrm{IC}_{3 / 9 \mathrm{c}}$ have selected the device in question. In a similar way, $\mathrm{IC}_{8 b}$ strobes read/write line R/W using CK.
Gate $\mathrm{IC}_{7 \mathrm{a}}, \mathrm{C}_{1}$ and K_{1} form the power-on reset circuit; 74LS14 Schmitt inverters are used solely to give a short rise time to the reset signal. Time constant of R_{1}, C_{1} should not be shortened.
The rest of the circuit produces the address map. It would be possible to assemble code for any 6502 system using the BBC microcomputer, but it's a significant advantage to be able to test the software by running it on the computer, modifying it if necessary, before committing it to eprom for use with Mimicon-
troller. Relevant addresses within the microcomputer are
$0070-008 \mathrm{~F}$ page-zero ram (reserved for user)
$0100-01$ FF 6502 stack
$0200-27 \mathrm{FF}$ area chosen for program

FE60-FE6F 6522 v.i.a.
One other point to bear in mind is that the processor loads its reset vector and interrupt vectors from FFFA-FFFF in memory. Since the programmer needs to be able to store these vectors in the top six bytes of eprom, address-bus states FFFA-F must be decoded into the eprom area $27 \mathrm{FA}-\mathrm{F}$.

Three-to-eight-line decoder IC_{8} and gate $\mathrm{IC}_{7 \mathrm{~d}}$ select the 6522 for exactly half of the possible 16 byte blocks between E00x and FFFx. In this way the 6522 is selected for FE60-F but inhibited for FFF0-F when the processor is loading a vector.

Output Y_{1} of IC_{3} is low for all addresses between 2000 and 3FFF thus selecting the eprom, IC_{4}. In other words when assembling via the BBC computer, the eprom can be considered as residing in any of four 2Kbyte blocks, $2000-27 \mathrm{FF}, 2800-2 \mathrm{FFF}$, $3000-37 \mathrm{FF}$ or $3800-3 \mathrm{FFF}$, chosen by the user.
Gates $\mathrm{IC}_{9 \mathrm{a}, \mathrm{b}, \mathrm{d}}$ and $\mathrm{IC}_{7 \mathrm{f}}$ cause IC_{4} to be selected when the most significant byte of the address is F9, FB, FD or FF. Unless there is an error in the software, this can only occur when the processor is trying to load a vector. In this way FFFC, for example, on the address bus will cause the contents of 27 FC to be placed on the data bus. Vectors may therefore be located so
27FD reset high-byte
27FC reset low-byte
27FB NMI high-byte
27FA NMI low-byte
27FF IRQ high-byte
27FE IRQ low byte
Interrupt use on the BBC microcomputer is complex, but it is possible to use the normal facilities of the 6522, interruptig through IRQ, as long as the interrupt vector is loaded into the computer at 0206 (low byte) and 0207.

Mimcry is likely, but not certain, to be exact as the servicing of an interrupt - even from the v.i.a. in an assembly-language program - will bring the microcomputer's operating system into action, which may interface with the user's routine (see Lists). Using NMI (non-maskable interrupt) is substantially more difficult, not least because one does
not have access to the terminal, and is discouraged in the User Guide.
Mimicontoller's board (details later) carries 1 Kbyte of ram ($\mathrm{IC}_{5,6}$) selected by the Y_{0} output of IC_{3}, giving 256 bytes of page-zero ram. A control program can of course use all of this and the gen-eral-purpose ram area of 512 bytes between 0200 and 03 FF but the BBC microcomputer only guarantees not to tamper with 32 user bytes ($0070-008 \mathrm{~F}$). By the time the control routine is called, the computer will have appropriated some of the stack for its own use. In other words, fewer than 256 bytes will be available in the computer but this is more than enough for most amateur control software.

Testing

To test the board List 1 , a simple timing/clock program, can be run with a pair of seven-segment displays connected to port B (the user port) through two 74LS47 i.cs and current-limiting resistors. If this program is run on the BBC computer by a call to location 2000 (CALL\&2000) the seven segment display will count seconds (approximately). Load the reset vector into the computer by
$? \& 27 \mathrm{FC}=\& 00$
$? \& 27 \mathrm{FD}=\& 20$
and transfer the code to eprom. The software should give an identical count rate on Mimicontroller.

List 2, a variation of List 1, illustrates interrupt use. The program is put into an endless loop until an interrupt occurs, i.e. when timer one times out after 10 ms . The loop count in the index register (X) is decremented in the interrupt routine at location 2100 , and the display on the port changed if necessary. Lines 200 and 210 load the interrupt vector into the IRQ2V locations in the microcomputer and line 220 runs the program. To transfer the program to eprom, first set up the IRQ vector using

$$
\begin{aligned}
& ? \& 27 \mathrm{FF}=\& 21 \\
& ? \& 27 \mathrm{FE}=\& 00
\end{aligned}
$$

Again, identical operation should be seen on Mimicontroller.

When the software is run on the microcomputer, the sound generator comes into action after about 25 s - one illustration of the interaction of interrupts with the system. Secondly, the SED

List 1. Simple clock program counting seconds on two seven-segment displays may be used to test Mimicontroller.

10 DDRB=\&FE62:ACR=\&FE6B:PB=FE60
 20 IER=\&FE6E:INFR=\&FE6D
 $30 \mathrm{~T} 1 \mathrm{CL}=\& \mathrm{FE} 64: \mathrm{T} 1 \mathrm{CH}=\& \mathrm{FE} 65$
 40 FOR PASS $=0$ to 3 STEP 3:P\%=\&2000
 50 [OPT PASS
 60 SED:LDA\# \&FF:STA DDRB
 70 LDA\# \&00:STA ACR:STA IER
 80 .JOE:STA PB
 90 LDX\# \& 64
 100 .BILL:LDA\# \& 10:STA T1CL
 110 LDA \# \& 27:STA T1CH
 120 .SAM:LDA INFR:BEQ SAM
 130 DEX:BNE BILL
 140 CLC:LDA PB:ADC \# \& 01:JMP JOE

List 2. This variation of List 1 illustrates interrupt use.

10 DDRB=\&FE62:ACR=\&FE6B:PB=FE60
 20 IER=\&FE6E:T1CL=\&FE64:T1CH=FE65
 30 FOR PASS $=0$ TO 3 STEP 3: $P \%=\& 2000$
 40 [OPT PASS
 50 LDA\#\&FF:STA DDRB
 60 LDA\#\&CO:STA IER
 70 LDA \# \&40:STA ACR
 80 LDA\# \& 10:STA T1CL
 90 LDA\# \&27:STA T1CH
 100 CLI:LDX\#\&64
 110 .WATT:JMP WAIT:JMP WAIT
 $120{ }^{130}{ }^{1} \%=2100$
 140 IOPT PASS
 150 LDA T1CL:DEX:BNE SKIP
 160 LDA PB:SED:CLC:ADC \#\&01:STA PB
 170 LDX\#\&64
 180 SKIP RTI
 190 jNEXT
 200 ? $\& 206=00$
 210 ?\&207=\&21
 220 CALL\&2000

instruction at line $160\left(2109_{16}\right.$ in assembled code) would be more economically placed in the first block of code at, say, 201C or line 45. In the microcomputer it is rendered ineffective by the operating system, which tampers with the processor status register when the interrupt is serviced.

In summary, use the assembler and board with abandon when no interrupts are involved. The computer will not only assemble the code but also run it so it can be tested. Be aware though of the extent to which the computer uses interrupt and do not be surprised if it will not run code which involves interrupts. Software using interrupts can of course be assembled and transferred to eprom for testing directly on Mimicontroller.

The controller has been made on a p.c.b. measuring 160 by 100 mm . Careful design allows a single-sided board with a manageable number of links. Current drawn by the circuit is about 350 mA so it can be driven by NiCd batteries and used on a 'buggy' for example. Use of $65 \mathrm{C} 02,65 \mathrm{Cl} 6$ and 2114 L devices reduces power consumption by a factor of four, but increases cost.

Continued from Page 20

rently programs logical colour two to actual colour eight (flashing black/white). Removing it will leave logical colour two at its default actual colour, yellow, in any case leave the second half of this instruction intact. This sets logical colour one to black. Curious effects will occur without it.

Line 2690 checks input for a synchronization error which, if found, causes printing of a message and stops the program. One way of dealing with this is to add these lines.

245 CLS

$90^{*} \mathrm{KEY1}$? \&FE6C= \&D01M
?\&FE6C $=\& \mathrm{~F} 01 \mathrm{MGOTO} 2451 \mathrm{M}$
then if the message 'SYNC ERROR' appears, press function key one. This sends a pulse through CB_{2} to step IC_{10} so press the key as many times as is necessary to regain synchronization. Alternatively, a hardware reset can be instituted by including a push switch to connect pin two of IC_{10} to V_{cc} through a $1 \mathrm{k} \Omega$ resistor.

Software synchronization could be made completely automatic by a subroutine that sent a pulse through CB_{2} whenever the first byte read was not FF. Some synchronization problems were experienced initially with the prototype due to switching transients. This was cured by inclu-
sion of a low-pass filter consisting of a $1 \mathrm{k} \Omega$ resistor and 68 pF capacitor in the output of one of the multiplexers.

Once the program has been run, the assembler section can be removed if the assembled version is saved as machine code using *SAVE. After running the program press the escape key then type *SAVE <filename> 5500 +300 . Lines $270,360-380$, $420-$ 440 and $510-2660$ can then be deleted from the program and the shorter version saved. Line 390 must be then changed to NEXT:NEXT:NEXT and the instruction 165 *LOAD <filename $>$ added. This speeds up
initialization of the program considerably since it no longer has to calculate frequencies of the equal-tempered scale.

No attempt has been made to make the program 'tube' compatible, the main reason being that the software is still of an experimental nature.

There would be no difficulty in making the program compatible with OSBYTE calls, though these appear to operate some 20 times slower than direct addressing of the devices. Whether this would be of any significance depends on the application.

Twin-T filters

These band-pass and all-pass filters use twin-T networks.
Transfer function of the band-
pass circuit is
$\frac{V_{\text {sut }}}{V_{\text {in }}}=\frac{\left(1+4 s C R+s^{2} C^{2} R^{2}\right)}{\left(1+4 s k C R+s^{2} C^{2} R^{2}\right)}$
where $k=R_{1} /\left(R_{1}+R_{2}\right)$.

Attentuation of the filter depends on the choice of k. For example, at the resonant frequency ω_{f}, attenuation is 26.02 dB for $\mathrm{k}=1 / 10,32.04 \mathrm{~dB}$

Voltage controlled duty cycle

Forming part of an automatic voltage regulator for an alternator, this simple circuit gives a rectangular output waveform with a duty cycle between 0 and 100% depending on the control voltage. Frequency is determined by R_{1} and C_{1} and is independent of the mark/space ratio.

The 555 is configured as an astable circuit, Tr_{1} providing a constant current charge for C_{1}. This results in a linear ramp at the input of the voltage comparator which varies
between about one and twothirds of the supply voltage. Varying the control at the comparator's non-inverting input causes the output duty
cycle to vary between 0 and 100%.
E.H. Rice

Exeter
Devon

for $\mathrm{k}=1 / 20,40 \mathrm{~dB}$ for $\mathrm{k}=1 / 50$ and 46 dB for $\mathrm{k}=1 / 100$. It is pointless to choose a value for k smaller than about $1 / 50$.

Transfer function of the allpass filter is
$\mathrm{V}_{\text {out }}$ $\frac{\left(1-4 s C R+s^{2} C^{2} R^{2}\right)}{\left(1+s C R+s^{2} C^{2} R^{2}\right)}$

At the resonant frequency ω_{0}, output voltage of the twin-T network is zero and output of the op-amp is $-\mathrm{V}_{\text {in }}$. The twin- T network with fixed capacitance values is suitable for direct implementation as an i.c. with many useful applications.
Kamil Kraus
Rokycany
Czechoslovakia

Further equations relating to this idea can be obtained by sending an s.a.e. marked TwinT filters to E\&WW's Editorial offices.

CIRCLE 26 FOR FURTHER DETAILS.

What the competition hasn't been waiting for.
 Latest version of Forth for the BBC
 16k Eprom type 27128

(Is not rehashed Forth 79 Code)

Unique Stack Display Utility

Multi-tasking operating system Hor Real-Time use.
for

Here's the Forth Eprom for the BBC Micro that makes all others out of date.

It's Muiti-Forth 83 from David Husband who has built his reputation for Quality Forth products with his ZX81-Forth ROM, Spectrum Forth-I/O Cartridge and now New Multi-Forth 83 for the BBC Micro. This is not rehashed Forth 79 Code, but a completely new version of the Forth 83 Standard. It's unique in that it Multi-tasks, and therefore the user can have a number of Forth programs executing simultaneously and transparently of each other.

Multi-Forth 83 sits in the sideways ROM area of the BBC along with any other ROMs in use. It is compatible with the MOS, and specially vectored to enable a system to be reconfigured. It contains a Standard 6502 Assembler, a Standard Screen Editor, and a Unique Stack Display Utility.

With this Forth, David Husband has provided the BBC Micro with capabilities never before realised. And being 16 K rather than 8 K is twice the size of other versions. Multi-Forth 83 is supplied with an
extensive Manual (170 pages plus) and at $£ 45+$ VAT it is superb value
Order it using the coupon adding $£ 3.45 \mathrm{p} \& \mathrm{p}$ ($£ 6$ for Europe, $£ 12$ outside) or if you want more information, tick that box instead. Either way, it will put you one step ahead of the competition.

MULTI-FORTH 83 FOR THE BBC MICRO

CIRCLE 48 FOR FURTHER DETAILS

ZBOA MGRO-CONTROLLERS

- 4MHz Z80A CPU
- 4 K EPROM - 2 K supplied with MCV2.0
- $4 K$ Battery backed RAM - $2 K$ supplied
- $4 \times 280 \mathrm{~A}$ PIO's ($641 / 0$ lines)
- Z8OA CTC
- Standard $100 \mathrm{~mm} \times 160 \mathrm{~mm}$ Eurocard Cost effective prices ($£ 94.04-10$ off) includes all connectors, manual etc.

Designed to meet the power and flexibility of today's stand - alone micro-controllers, the GNC CUB makes full use of the powertul Z80 family IC's. Micro-controllers are available with up to 64 K RAM, 8 K EPROM, RS232 etc Manuals include circuit diagrams and assembly language listings. No ULA's, PAL's or other funnies. Write, phone or circle to find out more about our powerful range of 780 A micro-controllers and multi - tasking software.

PRICES		
CUB (built \& tested)	£1103.44	GNC ELECTRONICS
Bare board	¢2:00	Little Lodge, Hopton Road.
Manual (free with CUB/board)	£3.50	Theinetham, Diss, Nortokk. IP22 1JN
Please add \&1.00 tor P \& P plus		Tel; Diss (0379) 898313.

${ }^{〔}$ £.50 Thelnetham, Diss, Norfoik. IP22 IJN Tel; Diss (0379) 898313

CIRCLE 65 FOR F'UR'THER DETAILS

Toroidal Transformers
 as manufacturers we are able to

offer a range of quality Toroidal
Transformers at high competitive prices and fast delivery.

Mail Order Price List

30VA 6.54. 50VA 8.36. 80VA 9.15. 120VA 10.55. 160VA 11.98. 225VA 15.61. 300VA 17.19 500VA 2733.625 VA 27.96 .750 VA 31.05 .1 KVA 4140 . Available from stock in the following voltages: - 6-0-6, 9-0-9, 12-0-12, 15-0-15. 18-0-18, 22-0-22. 25-0-25, 30-0-30, 35-0-35, 40-0-40, 45-0-45, $50-0-50,110,220,240$ (max. 10 amp). Primaries $240,220,120$ volt please state which

Quantity Prices and delivery on request (we also manufacture conventional E1 type transformers)
\qquad

HDTV or EDTV?

Extended definition television - building up picture resolution gradually, flexibly and compatibly - is being considered as an alternative to all-out high-definition television on completely new standards. This report outlines some of the current investigations into ways of achieving higher definition pictures, as described in papers at IBC 84, the 10th international Broadcasting Convention at Brighton.

As long as the broadcasters continue to produce a succession of technical innovations, like rabbits out of a hat, to add to their systems, they will be relatively safe from the rival methods of distributing television programmes. Transmission standards, colour, additional channels, teletext, stereo sound, have all in their turn provided new opportunities for selling more consumer equipment and advertising time.

To judge from papers and demonstrations presented at the recent International Broadcasting Convention, the transmission standards, and other related standards, are now coming round for another rejuvenating pick-me-up. "High definition" is on everyone's lips again - as it was once before, in 1936, when used to distinguish the UK's then new 405 -line tv service from earlier $30-$, 150 - and 240 -line experimental systems.

The previous WWreport on the biennial IBC (December 1982 issue) focussed on the great significance to tv broadcasters of the then newly established CCIR digital coding standard for studio equipment. Many realised that this internationally agreed standard, based on luminance and chrominance components rather than on the composite colour signal, would open up all kinds of extra possibilities for improving picture quanlity.

Using the latest digital processing and storage technology, video information could be 'preprocessed' at the studio and 'post-processed' at the receiver without any constraint from the nature of the composite transmis-
sion standard. Picture-source and receiver-display standards need not be the same as the standard used for transmission over the air. Some of the proposals for 'enhancing' picture quality in this way were outlined.

Since 1982 several things have happened which have brought these proposed enhancement much closer to reality. In 1983, for example, a number of European broadcasters showed their involvement by putting on demonstrations of HDTV at the Montreux television symposium. Then in January 1984 the Japanese launched an operational direct broadcasting satellite (DBS) which was intended eventually to carry experimental transmission derived from NHK's provisional 1125-line HDTV standard. (In the meantime this satellite has had transponder faults - see September issue, p.14.)

And during this two-year period the European Broadcasting Union (EBU) has officially recommended a DBS transmission standard. Based on a proposal from the IBA and called C-MAC/packets, it is expressly designed to allow future compatible higher definition transmission.

All the work now being done by broadcasters and manufacturers seems to be based on certain assumptions. The first is that higher definition services will be provided through 12 GHz DBS transmissions in 27 MHz or 24 MHz f.m. channels. Another is that sufficient money will be available to meet the considerable costs.

It is also assumed there will be available large-screen displays of at least 1 metre diagonal, with a wider aspect ratio than that of existing tv receiver screens probably about $5: 3$. This wider display, according to K.H. Powers of RCA Laboratories, has proved to be more pleasing to viewers than $4: 3$, increasing their feeling of involvement with the programme material.
Beyond this common ground there are differences of engineering opinion on how higher definition services should be introduced. As pointed out by K.H. Powers, there are several options available for utilising the extra bandwidth offered by DBS channels - increasing the horizontal resolution and/or the vertical resolution and/or the aspect ratio, and the possibility of using time multiplexed analogue components to avoid the cross-colour, cross-luminance and noise impairments experienced with composite signals.
But the main difference of approach seems to be: 'straight' HDTV versus 'extended definition' television (EDTV). Is it bet-

Lines per picture	Fields per second	Interlace factor	Line scan frequency kHz	Improvements or cures			
				Large area flicker	Interline twitter	$\begin{aligned} & \text { Line } \\ & \text { crowl } \end{aligned}$	Static raster
625	50	2:1	15.625	NO	NO	NO	NO
625	50	$1: 1$	31.25	NO	YES**	YES	NO ${ }^{+}$
1250	50	21	31.25	NO	YES*	YES	YES
625	100	$2+2.1$	31. 25	YES	NO	NO	NO
625	100	$2 \cdot 1$	31:25	YES	YES *	YES	NO
1250	100	$4: 1$	31.25	YES	YES*	NO	NO
625	100	11	62.5	YES	YES	YES	NO ${ }^{+}$
1250	100	2.1	62.5	YES	YES	YES	YES

[^5]

Fig.1. IBA's compatible approach to higher definition television using extended
MAC in a C-MAC/packets
DBS channel. Other
researchers think there is further benefit to be obtained by starting with a high linenumber HDTV picture source and down-converting to 625
lines for transmission.
ter to establish a new high-resolution system in one go, or gradually to extend the resolution capabilities of existing 625 -line and 525 -line systems while preserving compatibility?

As an example of the 'straight' HDTV approach, E. Kimura and Y. Ninomiya of NHK Research Laboratories, Japan, described the NHK system intended for HDTV transmission through the Japanese DBS satellite. It has 1125 scanning lines, $2: 1$ interlaced, a field frequency of 60 Hz and a $5: 3$ aspect ratio.

In each line, the relevant luminance and chrominance signals are sent as time multiplexed components, with $\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ chrominance information on sequential lines. This means that these two components have to be time compressed so that they can be contained within the line period. With the initial video bandwidths (e.g. 20 MHz luminance) this results in a baseband width too large for the normal DBS channel. So the signals are bandwidth-reduced by subNyquist sampling over a 4 -field sequence and thus transmitted in analogue form. Two companded digital audio signals are multiplexed in the field blanking
period. The baseband for transmission via the satellite is then 8 MHz wide.

In the receiver a 4 -field memory is necessary to store the subNyquist samples distributed over the 4 fields at the transmitting end. Pictures are reconstructed by interpolation from these to give a bandwidth of 25 MHz for stationary parts of the scene and 15 MHz for moving parts. Because the basic process introduces unacceptable blurring on slow, uniform movements in the scene, a motion compensation technique is added. This uses inter-frame comparisons at the transmitting end to produce a signal which is used at the receiver to shift the read-out address of the 4-field memory accordingly.

The NHK transmission standard is broadly comparable with the EBU-recommended DBS standard in that they both use time-multiplexed analogue components, time compression of these components and digital audio. But, as is well known, C-MAC/packets fits into the normal time frame of the existing 625 -line standard for compatibility purposes, and video information is time multiplexed with 751bit packets of digital data which can be used as required for digital audio channels or other data. The ' C ' in the name is simply a code letter for the particular method chosen for multiplexing the analogue video components and the digital audio and data.

But in another paper, M.D. Windram and R. Morcom of the IBA showed how C-MAC can become E-MAC - extended MAC - to carry higher definition pictures on the gradualist EDTV principle discussed above. This provides a wide aspect ratio, extended resolution, and MAC's
complete separation between luminance and chrominance components that overcomes the cross-chrominance, crossluminance and noise problems of composite transmission signals.

To provide the 25% extra picture information need for a $5: 3$ aspect ratio over a $4: 3$ ratio, some additional line time is obtained from the field blanking interval and some from the data period, still leaving enough audio data for two sound channels. But extra time compression is needed at the edges of the picture to achieve the full $5: 3$ ratio.

To increase the vertical resolution, the display at the receiver is up-converted to sequential 625line scanning (non-interlaced), thus providing an apparent 40% increase in this resolution. But moving parts of the picture need a motion-adaptive conversion technique to avoid blurring (described by T.J. Long and G.J. Tonge in another paper). Horizontal resolution is increased by using a greater than normal baseband bandwidth of about 11 MHz , which allows an uncompressed luminance bandwidth of over 7 MHz .

Figure. 1 shows how E-MAC would be used in compatible approach to high definition. The viewer can use either a conventional C-MAC/packets decoder and ordinary televison set or an E-MAC decoder with scan upconversion and a large, wideaspect display screen. The conventions C-MAC/packets receiving equipment simply ignores the extra information provided by the E-MAC system and decodes the signal as a normal 4:3 picture.

Philips Research Laboratories have also been considering various MAC type methods of coding for EDTV based on the 625-line time frame. These all assume a horizontal band width of 8.4 MHz . In one method, as described by S.L. Tan and R.W. Jackson, the luminance and chrominance information is interleaved vertically rather than horizontally. Chrominance signals are line sequential and time compressed by $4: 1$. This had the advantage of allowing the full 8.4 MHz channel bandwidth to be used for the luminance signal, now uncompressed.

In another method the $B-Y$ chrominance signal is inserted in the field blanking interval and the $\mathrm{K}-\mathrm{Y}$ signal is time multiplexed horizontally with the luminance information. Here, one advantage is that the $\mathrm{R}-\mathrm{Y}$ information
is no longer line-sequential, thus improving the vertical chrominance resolution.

The Philips researchers claim that, in conjunction with oversampling and non-interlaced display scanning, such coding systems allow transmission of signals with up to 390,000 picture elements in an 8.4 MHz channel. This compares with conventional PAL resolution of 147,000 pixels. A further system being investigated, using two DBS channels, offers an overall resolution of 780,000 pixels.
As part of an international research effort on world-wide standards for HDTV picture sources, the BBC has been studying the large-screen display at the receiver - a logical starting point for investigating HDTV signal parameters. I. Childs and A. Roberts of the BBC Research Department described how they have used a conventional picture tube to simulate one quarter of a large-screen display.

To test the belief that 625 -line pictures can be significantly improved by display processing alone, regardless of the transmission standard, they tried a number of scan up-conversions with different line numbers, scanning frequencies and interlacing factors (including $1: 1$, or sequential scan). The results obtained are shown in the table.

The authors conclude that display up-conversion can substantially remove the major limitations of 625 -line displays (righthand column headings in table). But there is a problem with scene movement when extra lines are generated. To get optimum results a suitable algorithm is needed to calculate the right information to go in these lines, and probably an adaptive technique will be needed.

Similar work on up-converted displays was described by D.W. Parker and L.J. van de Polder of Philips Research Laboratories. Their systems include: 625-line sequential displays at 50 Hz field frequency using one-line, onefield and and two-field stores for interpolating the extra information required; 1249-line displays with $2: 1$ interlace; and up-conversions with 100 Hz field frequency to overcome large-area flicker.

These researchers say that, if a free choice of display standard were available, they would plump for a system with about 800 lines sequentially scanned at a field rate of about 60 Hz .

CIRCLE 47 FOR FURTHER DETAILS.

E.M.S. POWER SYSTEMS

Solve all your Power Problems by contacting E.M.S.
E.M.S. specialise in systems to eliminate your power problems.
Products range from 35VA switched square wave Power Packs to 1KVA fully uninterruptible sine wave systems.
E.M.S. also manufacture chargers which range up to 60 amps .

For further details please contact:
E.M.S. Manufacturing Limited Chairborough Road High Wycombe Bucks Tel: (0494) 448484

CIRCLE 5 FOR FURTHER DETAIIS.

CIRCLE 34 FOR FURTHER DETAILS.

01-208 1177 Technomatic Lid 01-208 1177

BBC Micro Computer System BBC Computer \& Econet Referral Centre BBCComputers:

Model B: $£ 320$ (a) B+DFS: $£ 400$ (a) Model B+NFS: $£ 389$ (a) B+NFS +DFS £450 (a) ACORN 2nd Processors: 6502: £175 (a) Z80: £352 (a) TORCH UNICORN: Z80 Card: £299 (a) Z80 Disc Pack: $£ 699$ (a) UNICOMM Communications Package: £159 (b) 20 Mbyte Hard Disc+400K Floppy: £1995 (a)
We stock the full range of ACORN hardware and firmware and a very wide range of other peripherals and firmware for the BBC. For detailed specifications and pricing please send for our leaflet

PRINTERS

EPSON: RX80FT £225(a); FX80 £318(a) FX100 £435(a)
KAGA TAXAN:KP 810 £249(a); KP 910 £369 (a) BROTHER: HR15 £350(a);
JUKI6100£340 (a)

ACCESSORIES

EPSON Serial Interface: $8143 £ 28$ (b); 8148 with 2 K buffer $£ 58$ (b)
EPSON Paper Roll Holder $£ 17$ (b); FX80 Tractor Attach $£ 37$ (b); RX/FX80 Dust Cover $£ 4.50$ (d) EPSONRibbons, MX/RX/FX80 55.00 MX/RX/FX 100 £ 10 (d)
JUKI: Serial Interface £60 (a); Tractor Attach, $£ 99$ (a): Sheet Feeder £199 (a); Ribbon £2.50 (a) BROTHERHR15: Sheet Feed £199; Ribbons - Carbonor Nyion $£ 4.75$; Multistrike $£ 5.50$ (d) 2000 Sheets Fanfold with extra fine perf. 9.5 in - $\mathbf{£ 1 3 . 5 0 ; ~} 15$ in $\mathbf{£ 1 7 . 5 0 ~ (b) ~}$
BBC Paraliel Lead £8: Serial Lead £7 (d).

BT Approved Modems

MIRACLE WS2000
The ultimate world standard modem covering all common BELL and CCITT standards up to 1200 Baud. Allows communi cation with virtually any computer system in the workd. The optional AUTO DIAL and AUTO ANSWER boards enhance the considerable facilities aiready provided on the modem. Mains powered. £129 (b) Auto Dial Board/Auto Answer Board £30(c) each. Soltware lead $£ 4.50$
TELEMOD 2
Complies with CCITT V23 1200/75 Duplex and 1200/1200 half Duplex standards that allow communications with VIEWDATA services like PRESTEL, MOCRONET etc as well as user to user communications. Mains powered. $\mathbf{〔} 37$ (b)
BUZZBOX
This pocket sized modem complies with V21 300/300 Baud and provides and ideal solution for communications between users, with main frame computers and bulletin boards at a very economic cost. Battery or mains operated. $£ 52$ (c) Mains Adaptor $£ 8$ (d)
BBC to Modem data lead $£ 7$

SOFTY II

This low cost intelligent eprom programmer can program 2716, 2516 2532,2732 , and with an adaptor, 2564 and 2764 Displays 512 byte page on TV - has a serial and parallel l/0 routines. Can be used as an emulator, cassette interface. Sotty II …... $£ 195.00$ (b) Adaptor for 2764/ 2564 $£ 25.00$

DISCDRIVES
These drives, fitted with high quality JAPANESE mechanisms are supplied in attractive steel cases painted in BBC colour. The drives are fully Shuggart A4000 compatible. All dual drives are supplied with integral power supply whilst singles are supplied with or withoul power supply. All drives come complete with data \& power cables, manual and BBC formatting disc.

1×100K (250KDD unformatted) $1 \times 400 \mathrm{~K}$ (1 MbDD unformated) $2 \times 400 \mathrm{~K}$ (5 MDDDD unformatted) 2×400 (2MbDD unformatted) CS 100 TEC with psu CS 200 TEC with psu CS400 MITS with psu

80TDS TS55F TEAC 40/80
$40 T S S$ TD55A TEAC
80TDS TD55F TEAC 40/80 £135(a) 40/80T Switch Module £165(a) 3in. Hitachi 100 K 40 T £195(a)

TD55M Mitsubishi
£100(a)
£165(a) E165(a) £280 (a) E420(a) £30(c) c105(b)
£ $400(\mathrm{a})$

Authorised Distributor

Data Recording Products

3MFLOPPY DISCS

Industry Standard floppy discs with a lifetime guarantee Discs in packs of 10

40 Track SS DD	$£ 15(\mathrm{c})$	40 TrackDSDD	$£ 18(\mathrm{c})$
80 Track SS DD	$£ 22(\mathbf{c})$	80 TrackDSDD	$\mathbf{£ 2 4 (\mathbf { c })}$

DRIVE ACCESSORIES

FLOPPICLENE Disc Head Cleaning Kit with 28 disposable cleaning discs ensures continued optimum performance of the drives. $\mathbb{£ 1 4 . 5 0 (c)}$

Single Disç Cable $£ 6(\mathrm{~d})$
10 Disc Library Case £1.95(c)
30/40 Disc Lockable Box £14(c)
Dual Disc Cable $£ 8.50$ (d)
30 Disc Storage Box £6(c)
100 Disc Lockable Box 119 (b)

MONITORS

MICROVITEC 14in. RGB
1431 Std Res £ 195 (a); 1431 Ap std Res PAL/Audio £215 (a); 1451 Med Res $£ 295$ (a); 1441 Hi Res $£ 399$ (a) 2031 20in. Std Res $£ 360$ (a); Plinth for 14in. Monitors £8.50. Microvitec Monitors with TTL/Linear Inputs also available.

KAGA VISIONIII

HiRes 12in. RGB £345(a);
Green Screens; KAGA 12G £106(a); SANYO DM 811 112CX £99(a);
Swivel Stand for Kaga Green £22.50(b);
BBC Leads: KAGA RGB £5 Microvitec £3.50; Monochrome $£ 3.50$ (d)

UVERASERS

UV1T Eraser with built-in timer and mains indicator Bult-In sately interlock to avoid accidental exposure to the harmiful UV rays.
It can handie up to 5 eproms at a time with an average erasing time of about 20 mins. $£ 59+£ 2$ p\&p. UV1 as above but without the timer. $£ 47+£ 2$ p\&p For Indusirial Users, we offer UV140\& UV141 erasers with handling capacity of 14 eproms. UV141 has a built in

PRINTER BUFFER

This printer sharer/buffer provides a simple way to upgrade a multiple computer system by providing greater utilisation of available resources. The buffer ens and accepting data until it is full The buffer will automatically switch from one computer to next as soon as hat computer has dumped all its data. The computer then is available for other uses. LED bargraph indicates memory usage. Simple push button control provides. REPEAT, PAUSE and RESET functions. integral power supply. £245 (a).

ATTENTION

All. prices in this double page advertisment are subject to change without notice.
ALL PRICES EXCLUDE VAT
Please add carriage 500 unless indicated as follows:
(a) $£ 8$ (b) $£ 2.50$ (c) $£ 1.50$ (d) $£ 1.00$ ACORN IEEE INTERFACE
A fullimplementation of the IEEE-488 standard protviding computer control of compatible scientific \& technical equipment, at a lower price than other systems. Typical applications are in experimental work in academic and industrial laboratories. The interface can support a network of up to 14 other compatible devices, and would typically link several items of test equipment allowing them to run with the optimum of efficiency. The IEEE Filing System ROM is supplied $\mathbf{E 2 8 2}$.

INDUSTRIAL PROGRAMMER

EP8000

This CPU controlled Emulator Programmer is a pow erful tool for both Eprom programming and development work. EP8000 can emulate and program all eproms up to $8 \mathrm{~K} \times 8$ bytes, can be used as stand alone unit for editing and duplicating EPROMS, as a slave programmer or as an eprom emulator £695(a)
CONNECTOR SYSTEMS

RIBBON CABLE
 (grey/metre)

to-way	$40 p$
16-way	$60 p$
20-way	$85 p$
26.way	$120 p$
34-way	160 p
40 -way	180 p
50-way	200 p
64-way	$280 p$

DIL

HEADERS

Solder | IDC
14 pin 40p 100p $\begin{array}{rrr}16 \text { pin } & 50 \mathrm{p} & \text { 110p } \\ 24 & \text { pin } & 100 \mathrm{p} \\ \text { 150p }\end{array}$ 40 pin 200p $\quad 225$ p

CIRCLE 43 FOR FURTHER DE'I'AIL
ELECTRONICS \& WIRELESS WORLD DECEMBER 1984

FIBRE-OPTICS EDUCATOR

A New Concept in

Optical Equipment

The Fibre-Optics Educator is a low-cost, versatile instrument designed primarily for organisations involved in or about to enter the field of fibre-optics.
It can function as test equipment and transmission equipment, and is also ideal for training personnel in the growing field of fibre-optics.
The Fibre-Optics Educator comprises fully portable optical transmitter and receiver units, optical cables, together with numerous accessories, a comprehensive manual, and carrying case.
Included in the features of the transmitter and receiver units are:
TRANSMITTER: infra-red l.e.d., red I.e.d., variable output control; variable frequency pseudo-random and square wave generators; TTL, CMOS and RS232 voltage levels and manual digital inputs: high and low impedance analogue inputs, variable analogue gain.
RECEIVER: loudspeaker analogue output, and high and low impedance analogue outputs, variable analogue gain; buzzer digital output, and TTL, CMOS, and RS232 voltage levels digital outputs, variable digital sensitivity.
Power for each unit is from an internal battery, or single external dc power supply (9 V to 75 V). A mains adaptor socket is also provided.

Examples of Applications.

TEST EQUIPMENT

Accurate fibre attenuation measurements to 50 dB ; optical level measurements testing out analogue and digital optical transmitters and receivers; giving an au dible indication of low level visible and infra-red radiation using the analogue loudspeaker output or the digital buzzer output, with a length of optical cable act ing as a probe; measuring rotational or vibrational frequency using light reflection or transmission.

TRANSMISSION EQUIPMENT

Both digital and analogue transmission over free-space and optical fibres, using a variety of electrical interfaces.

TRAINING

All the fundamental concepts of optical communications can be shown in a constructive and convincing way. Ideal for training engineers, technicians and executives. Suitable for industry, colleges and technology training centres.

Designed and Manufactured in the U.K.
For further details contact:
ELLMAX Electronics Lidd.
Unit 29, Leyton Business Centre,
Etloe Road, Leyton, London, E10 7BT
Tel: (01) 5390136

FUNCTION GENERATOR $0.1 \mathrm{~Hz}-500 \mathrm{kHz}$

* Sine, Square, Triangle, TTL output
* Typically $0.02 \mathrm{~Hz}-700 \mathrm{kHz}$
* 7 switched ranges with coarse and fine frequency controls
* $\pm 30 \mathrm{~V}$ output capability
* Accuracy typically 1% of range
* Variable DC offset
* External A.M. facility
* External sweep facility
* Short circuit protection all outputs

JUPITER 500 (inc. P \& P and VAT) £128.80
Colour leaflet with specifications and prices available from: BLACK STAR LTD, (Dept.WW) 4 Stephenson Road, St. Ives, Huntingdon, Cambs. PE17 4WJ, England. Tel: (0480) 62440 Telex: 32339

NT
Designed and manufactured in Britain

Black来Star

CIRCLE 9 FOR FURTHER DETAILS.

VIDEO TERMINAL BOARD

人 80 characters $\times 24$ lines

Requires ASCII encoded keyboard and monitor to make fully configurable intelligent terminal. Uses 6802 micro and 6845 controller. Program and character generator (7×9 matrix with descenders) in two 2716 EPROMs. Full scrolling at 9600 baud with 8 switch selectable rates. RS232 interface.
Bare board with 2 EPROMS and program listing $£ 48$ plus VAT. Assembled and tested - $£ 118$ Send for details or CWO to:

A M Electronics

Wood Farm, Leiston, Suffolk IP 16 4HT Tel: 0728831131

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.
Full information from:
HARRIS ELECTRONICS (London)
138 GRAY'S INN ROAD, W.C. 1
CIRCLE 49 FOR FURTHER DETTAILS.

Hand-held multimeters

We found many more hand-held digital multimeters than we initially thought were on the market. The large number found over 160 - is partly due to the widespread practice of 'ownlabel' branding of products made in the Far East, chiefly in Korea and Japan but also in Taiwan, which results in many instruments having identical or very similar functions, ranges, errors and construction. We summarize their data in this month's table.

As with last month's tables for bench and systems multimeters, we have singled out the basic direct voltage range as being the most telling in terms of sensitivity and error; the function converters invariably degrade error specification. October's issue gave the errors that would arise in using non-sinusoidal waveforms on alternating ranges without the use of a 'true r.m.s.' converter, although if the crest factor of the waveshape being measured is known corrections can often be applied. (A rectangular wave with a pulse duty cycle of 40% can be measured without correction, provided adequate bandwidth is available, as the table on page 74 of that issue hints.) Those meters that measure the mean value but display a scaled r.m.s. value for sine waves will give the reading in column two of October's table for a one-volt peak input. So column one is what is sensed, col. two what is indicated, and col. three the heating equivalent value, with the error in col. six. Crest factor, usually taken as a measure of deviation from a sine shape, is peak value divided by r.m.s. value (form factor, less often used, is r.m.s. value divided by mean value). In the table the second row refers to both triangle and sawtooth waveforms, and the fourth row to both rectified and 90°-chopped sine waves

As well as Intel devices comprising analogue-to-digital con-

Third and final article in our digital multimeter series brings together price and performance data for hand-held d.m.ms on the UK market.

verter and display drive on one chip listed on page 76 of October's article, a number of others are available, some as original approaches to the application, some as exclusive customdesigned chips jealously guarded, and some simply on a second-source basis.

National Semiconductor's four c-mos circuits are of the pulse modulation kind requiring no external reference components, though a voltage reference is needed. Linearity is within $\pm 0.05 \%$ of full scale, typically 0.025%. Two are microprocessor compatible, with bcd outputs for $3_{2}^{\frac{1}{2}}$ or $3_{\frac{3}{3}}^{3}$-digit operation, while two others offer $3_{2}^{\frac{1}{2}}$ or 3_{4}^{3}-dagit multiplexed seven-segment outputs with a reading speed of either 5 or 2.5 per second, respectively.

Of Ferranti's interestingly wide range of converters that includes ramp, successive approximation, tracking, flash, charge balancing and dual-slope types, the 3_{2}^{1}-digit dual-slope chips are most applicable to voltmeter design. ZNA116 and 216 both drive multiplexed sevensegment l.e.d. displays, consume about 50 mW but require additional analogue circuitry for the integrator and comparator sections.

The latest device ZN 451 is the most useful. Not only is it a single chip circuit requiring only passive external components (for a basic voltmeter), but because it uses a digital auto-zero mode it obviates the need for the capacitor to store error voltage. And additional signal, conditioning circuitry andded to the main circuit can be included within the auto-zero loop to guarantee zero reading for zero input. A voltmeter evaluation kit which includes p.c.b., display and conditioning i.cs, is available ($£ 29.50$), though the chip is equally suitable for applications such as thermometry and transducer bridge interfacing.

Multimeters built into test probes are no longer new but perhaps a pen-style one that clips into the pocket will be. Middle photo: Japan's Soar 3200 (from HI); lower photo: another Japan-made probe sold under various names (Anders, Pantec, Beckman, Häwa, Hioki, Taylor); upper photo: not yet available.

Bench digital multimeters in addition to page $61 / 2$ table, November issue.

Maker	Digits	Model	Basic price	Sens. d.v.	$\begin{array}{ll} \hline \text { Basic } \\ \text { error(1) } & f_{\text {max }} \\ \text { a.v.(2) } \end{array}$	Crest factor	Res. (3)	$\underset{(4)}{\mu \mathrm{P}}$	Other (5)
$\begin{aligned} & \text { AOIP } \\ & \text { (Danesbury) } \end{aligned}$	$4{ }^{\frac{1}{2}}$	$\begin{aligned} & 5120 \\ & 5121 \\ & 5122 \end{aligned}$	$\begin{aligned} & 338 \\ & 474 \end{aligned}$	$\begin{aligned} & 100 \mu \mathrm{~V} \\ & 10 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.05 \%+120 \mathrm{kHz} \\ & 0.03 \%+1400 \\ & 0.03 \%+1400 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & v \\ & 4 \end{aligned}$		diode test G£261 dB, G£255
Delnstor	$4 \frac{1}{2}$	Exis 200	850	$10 \mu \mathrm{~V}$	$0.03 \%+120 \mathrm{kHz}$	3	\checkmark		Safety cert.
Hioki (Doran Smith)	$\begin{aligned} & 3 \frac{1}{2} \\ & 4 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 3209 \\ & 3222 \end{aligned}$	$\begin{aligned} & 342 \\ & 874 \end{aligned}$	$\begin{aligned} & 100 \mu \mathrm{~V} \\ & 10 \end{aligned}$	$\begin{aligned} & .2+1 \%+120 \mathrm{kHz} \\ & .04 \%+2200 \mathrm{k} \end{aligned}$	$\bar{?}$	\checkmark	2,4,7,12	C, battery f, G.
 Schwarz	$4{ }_{2}^{1}$	UDL4	365	$10 \mu \mathrm{~V}$	$0.03 \%+220 \mathrm{kHz}$	5	\checkmark		charges

[^6]

Hand-held digital multimeters

Notes. 1: B button, R rotary, S slide. 2 Basic (d.v.) error is \pm (reading $\%+1$ digit), or \pm (rdg + f.s.) $\%$, unless shown otherwise. $3 f_{\text {max }}$ (a.v.) limits may differ. 4: Minimum range shown for d.v. upper range typically $100 \mathrm{~d} . \mathrm{v}$. and 750 a.v. Ranges for I, R are decades except for top I, normally limited to 10A. 5: Normally scaled to read forward voltage. R means maker suggests $2 \mathrm{k} \Omega$ range. 6: Audible signal for continuity, maximum resistance value given where known. 7: Crest factor (cf) given for true rms meters. G conductance range, C capacitance, T temperature. hi/lo R switch gives $>0.7 \mathrm{~V}$ or $<0.3 \mathrm{~V}$ for in-circuit resistance measurement. For cmos devices battery life is quoted as $500-2000 \mathrm{~h}$

For under $£ 30$ this evaluation kit provides a dvm with f.s. range of 2 mV .

Correction. Because of a last-minute breakdown in facsimile reception of proofs certain pages of the November issue went unchecked. Readers will have spotted the most embarrassing errors (e.g. zero 'ironings' instead of crossings in the caption to Datron's Autocal multimeter on page 65) but those in the tables are less obvious. Please correct Brown Boveri's 2110 basic error to $0.05 \%+1$, and Farnell's 141 error to $0.03 \%+2$. A zero slipped in the R \& S UDS5 error but its best figure over 12 months is $0.009 \%+1$, and its rated a.v. max is 200 kHz with a crest factor of 5.5 for true r.m.s. readings.
$4_{\frac{1}{2}}^{\frac{1}{2}}$ digit meters are usually set to display their maximum value for photography but this Fluke display could be misleading in suggesting full fivedigit capability.

by Richard Lambley

Multi-standard modem
 Connections and modifications

Fig.1. Using the RS423 port of a BBC Micro. At the modem. it is cheaper to fit a six-pin DIN socket rather than the p.c.-mounting D -
connector: connections
shown are those found on certain commercial modems.

Several readers have asked for fuller information about connecting the modem to the BBC Micro, which lacks a full RS232 interface. Figure 1 shows pin details of the computer's RS423 connector and the corresponding terminals on the modem. The polarizing

notch in the five-pin domino connector goes in on the side nearer the cassette port.

Notice that the RTS line from the computer is not used: this is to avoid the risk of line drop when the computer turns its attention to other matters, as it does during disc or tape filing operations. RTS is best tied high at the modem either by linking RTS to DSR, or (if IC7 has been omitted, as it may be when a full. RS232 interface is not required) by linking pins 13 and 14 on IC_{5}.
Figure 2 shows a modification to take care of the opposite problem, a possible failure by the modem to disconnect the line when the user logs-off a viewdata system. This may occur if a noise on the line is interpreted by the modem as a burst of carrier.
The two inverters form a monostable which triggers when the line-seize relay drops out. Until

Fig. 2 . An additional monostable ensures that the line is dropped cleanly after a Viewdata call.

Fig.3. An extra mode for file exchange at 1200 baud.
the monostable times out (its period is a second or two) RL cannot close again. The purpose of the diode pump circuit is to trigger the monostable if a succession of rapid transitions occurs on IC_{8} 's carrier-detect output: this will make sure that the modem does not try to demodulate dialling tone.

Several spare inverters are to be found on the p.c.b. though

BBC Micro users who have added the interface for the autodialler may find it less untidy to use spare inverters in that.

However, there are times when you may want to hold on to the line regardless; for example, when exchanging files at 1200 baud with someone else. Reversing the direction of transmission can be made less hazardous by means of two diodes and the use of a spare contact on S_{1}. This provides an extra 1200/75 mode in which the modem will continue to hold the line even when there is no carrier (Fig.3).

To insure against possible instability in the auto-answer circuit, it is worth adding a high value resistor between pin 7 of IC_{11} and the 0 V rail. The value is not critical; anything between 1 and $10 \mathrm{M} \Omega$ seems to work successfully.

A further small addition to the board may be needed if you have been supplied with a 40147 for IC_{1}. This device is not a direct replacement for the 74 HC 147 since it has a connection to pin 15. If you fit a 40147, be sure to tie pin 15 to the 0 V rail. Failure to do this may produce puzzling effects. One such modem I have seen appeared to be working all right except in the Bell 103 originate mode (for which all inputs to IC_{1} are pulled high): it turned out then that IC_{1} was driving the mode-select inputs of the Am7910 with 2 MHz square waves.

Auto-dialler

An enhanced version of the autodialler (October issue) can be downloaded free of charge from the Microweb bulletin board in Stockport on 061-456 4157 (300 baud CCITT). The file is stored as Asciitext: when you have saved it you should reload it using *EXEC rather than CHAIN. The program includes one or two improvements, among them a facility for inserting pauses between digits to give time for a further dialling tone to appear.

Fastreliable and low-cost 파POM programming

Our new EPROM/EEPROM programmers give you unmatched efficiency and value for money. They're designed to handle the latest high-density devices, and offer simple and reliable operation. Look at the features:

Production programming:

For production applications, there are three models in the 9000 series, all cffering
(10 programs up to 8 devices simultaneously

- devices to 512-kbit density
- all major fast-programming algorithms
$\square_{\text {software selection - no }}$ adapters
- 16-character alphanumeric display
留 auto self-test and fault detection
- simple menu-driven operation
© simple keys for operation/ editing

Find these options:

■ powerful editor with 8/16-bit programming

- serial and parallel interfaces
- label printing, codelock, remote control
- add-on emulation

You can buy our model P9010 duplicator for just £ 795 or opt Zor some sophisticated extra facilities:
P9020 provides a h:gh speed RS232C interface, capable of operating to 19.2 kbaud with 16 built-in I/O formats and costs £995.
The £ 1295 model P9030 offers both serial and parallel interfaces. Using its printing facility you can produce labels on UV-opaque foil. It aiso provides a sophisticated editor plus a RAM buffer of up to 32 kbytes. All are available ex-stock

General-purpose use:

For lab and general-purpose use, the XP640 emulator/ programmer provides all you need for the latest devices:

- 512-kbits RAM buffer

■ EPROMs/EEPROMs to 512-kbit density

- muitipage video output and line display
- all major fast-programming algorithms
- software selection - no adapters
- supports JEDEC electronic identifiers
- auto self-test and fault detection
- powerful editing for $8 / 16$-bit operation
- handles single-chip microcomputers
- serial and parallel interfaces
add-on emulation system
\square remote control

Our XP640 provides all the flexibility you need for design and development EPROM/EEPROM programming. Its unique video output and 16 -character display enhance the built-in editing facilities. The RS232C interface supports 16 formats with transmission rates to 19.2 kbaud. You can expand the system to handle both Intel and NEC single-chip micros, or add on 128-, 256-or 512-kbit emulation modules. The XP640 costs just £795; the XA64 single-chip microcomputer programming option adds $£ 225$, emulation modules start at £395 for 128 -kbits. Ex-stock delivery. CIRCLE 24 FOR FURTHER DETAILS.

GP Industrial

GP Industrial Electronics Ltd

Unit E Huxley Close

Newnham Industrial Estate
Plympton, Plymouth PL7 4/N
Tel: (0752) 342961 Telex: 42513

PHONE

P.M. COMPONENTSLTD SELECTRON HOUSE, WROTHAM ROAD 3 LINES MEOPHAM GREEN, MEOPHAM, KENT DABOQY PMCOMP

INTEGRATED CIRCUITS					NEW BRANDED C RAY TUBES		
	MC1330P MC 1349 P						
	$\mathrm{MCl}^{\mathrm{Mc} 1358}$						
							M40.120
	${ }^{7323}$						das
	15807 6						0.20
	25 ${ }^{2}$						
	10 \%						
	S						
	-						
	71						
	SL13270						
							(task
							V550220 V500ach
							V550040
SEMICONDUCTORS		TBA5300 1.10 BD204 0.70					
	77				D13.27GH Di3-30GH		
	砋1635						
	- ${ }^{\text {Clizal8 }}$				$\begin{aligned} & 85.00 \\ & \mathbf{8 5 5 0 0} \\ & 55.00 \end{aligned}$		
					65.00		
					$\begin{aligned} & 9.00 \\ & 9.000 \\ & 9,000 \end{aligned}$		
$\begin{aligned} & \text { ADI43 } \\ & \text { ADO } \\ & \text { ADP } \end{aligned}$					59.00		
${ }_{\substack{\text { AD } \\ \text { AD } 1491 \\ \hline 151}}$ AD162					${ }_{65.00}^{59.00}$		
$A F 12$					${ }_{75}^{75.00}$		
					55:00		
					55.00 5500		
					$\begin{aligned} & 55.00 \\ & 65.00 \end{aligned}$		
					65.00 55.00		
				2×3 2×3			
$\begin{aligned} & \text { Aution } \\ & \text { Aution } \\ & \text { Aution } \end{aligned}$					$\begin{aligned} & \text { 5.00 } \\ & \hline, 00 \\ & 5.00 \\ & 50.0 \end{aligned}$		
					$\begin{aligned} & \text { cos.00 } \\ & 8550 \end{aligned}$		
$\begin{aligned} & \text { BC108A } \\ & \text { BC108B } \\ & \text { BC109 } \end{aligned}$					$\begin{aligned} & 85.00 \\ & 755000 \end{aligned}$		
							${ }^{\text {95099963 }}$
			${ }_{M}^{\prime} \leq 353$		D14.340KA		ELECTRO-OPTICAL
	${ }^{\text {BCOH}} 15$		Me5ciele	cistio6			
					D16.1006G		
	$\begin{aligned} & \mathrm{B}_{8013} \mathrm{BO} 13 \end{aligned}$				$\begin{aligned} & 016.6 \\ & 0.616 \\ & \hline 0.6 \end{aligned}$		WIREWOUND RESISTOR
			MrF555		${ }^{1021}$		
							R47-22K 0.20
			2.50$i .50$0.55				17 Watt 18-15k $\quad 0.30$
	80139				.00		
		${ }_{8}{ }_{85422}$	${ }^{\circ} \mathrm{C} 7$		$\begin{aligned} & 45.00 \\ & 95500 \\ & 05000 \end{aligned}$		
							0.70
			${ }_{\text {coser }}^{\text {R2323 }}$	3N21) 3SK45			0.40 4×5
		$\begin{aligned} & 8569595959 \\ & 8.5597 \end{aligned}$			${ }^{45.00}$		- ${ }^{1}$
DIODES			LNE OUTPUT TRANSFORMERS		EHTMULTIPLIERS	VARICAP TUNERS	PUSHBUTTONUNITS
						POTENTIOMETERS	20Mm Quick blow fuses
							${ }_{2000 \mathrm{MA}}^{10} 5$-5AMP
					REPLACEMENT electrolytic capacitors		20MM ANTI SURGE FUSES
			RBM T TANDEA				
					SPARES \& AIDS		
	2.95 2.95 2.05	B2X61 Series 0.15 BZY88 Series 0.10	THORN MA$3000 / 3500$		EANSER $\begin{aligned} & 0.79 \\ & 0.82\end{aligned}$	PUSHPULMANSSSWITCH	
	R 2.9			$\begin{array}{lr} \text { FORMER } & 22.40 \\ & 9.70 \\ \hline \end{array}$	SOLAMOP		

PHONE
 0474813225

號

$\mathrm{O}_{442} \quad 2$ OA90 0
DA100
DAF91
DAF96 무우웅
 Now

NEW DISCO ELECTRONIC CENTRE
 U.K. and EXPORT RETURN OF POST MAIL ORDER

				ost	
Disco/Group	${ }_{10} 10$	${ }_{8} \mathbf{8} 16$	50	${ }_{\text {PA }}^{\text {PTE }}$	PRICE
Midange	10	8	100	MID	E25
Major	12	4.8.16	30	H.F\|	f16
Supert	12	8.16	30	H1.FI	£26
Wooter	12	8	80	HIFFI	£25
Auditorivm	15	8.16	60	B8ss	[37
Disco/Group	12	4.8 .16	45.	PA	$f 16$
Disco/Group	12	4.8 .16	75	PA	¢20
Disco/Groud	12	8.15	100	PA	£26
Disco/Group	15	8.16	100	PA	¢35
REPAIR service	10s	oudsp			Lis: Price

PEAKER CABINET Designs manual $₹ 350$
MOTOROLA PIEZO ELECTRIC HORN TWEETER, $\mathbf{f 6 .} 76 \times 3$ tin. Flared Horn $\mathbf{£} 10$ HORN BOXES complete 200 watt 4.8 ohms. 300 watt $£ 35$. Slack vinyl covered with handle

CROSSOVERS. TWO-WAY 300040 watt $£ 4$
OW E5. 100 W f 6
60 watl 6.100 W f 10
OUDSPEAKERBAR
OUDSPEAKE
in $20 \mathrm{~W} \mathbf{f} 7.50,8 \mathrm{in} .50 ; 63 \mathrm{in} .8 \times 5 \mathrm{in}, \mathbf{f} 3$: $8 \mathrm{in}, \mathbf{£} 3.50$

 $15 \mathrm{ohm}, 2 \mathrm{in}, 3 \mathrm{in}, 5 \times 3 \mathrm{in}$, $6 \times 4 \mathrm{in}, \mathbf{£} 2.50 .6 \mathrm{in} 10 \mathrm{~W} \mathbf{f} 5$. $\sin \mathrm{f} 4$. 10 in f 7
25 ohm, 3 in. $\mathbf{£ 2} 2 ; 5 \times 3$ in, 6×4 in 7×4 in. $\mathbf{£ 2 . 5 0 .}$

FAMOUS LOUDSPEAKERS						
maxE	model	Sl2E	WatTs	OHMS	PRICE	POST
aubax	WOOFER	54in	25	8	f1050	$f 1$
GOODMANS	H/IFAX	7180:	100	8	130	12
GOODMANS	нв	8 in	80	8	$[13.50$	¢
Wharfedale	WOOFER	8 in		8	[9.50	20
CELESTION	01500	roin	5	816	[21	2
GOODMANS	HP6	12 in	120	815	f30.	12
GOODMANS	HPS	12 in	120	8115	f30.	12
GOODMANS	H	15 m	250	8	f72	${ }^{4}$
GOODMANS	HPD	18 in	230	8	184	14
Many others please telephone your enquiry.						
RCS STEREO PRE-AMP KIT. Inputs for high, medium or low imp voiume control and PC Board. Can be ganged for multi-channelf3.50						
	Post $£ 2$.					
GARR	6200					
8SR	P182	Ceramic 126				
8SA	P232					
BSR	P201	Ceramic Ezo				
BSR 12 DC	P257		Ceran			¢24
AUTOCHANGERS 240 VOLT AC						
BSR	Delux		Ceram			¢20
BSR	Delux		Magn	netic		¢26
GARRARD	Delux		Ceram			2

decca teak veneered plinth
uperior nish with space and panel for smal
Board cut for BSR or Garrard 18 in $\times 14 \frac{1}{1}$ in. \times Ain. $\mathbf{f 5}$ TINTED PLASTIC COVERS for Decks, Music Centres, 5 each. Post f1.

THE "INSTANT" BULK TAPE Hand held. Compact unit ires of for cassettes and all iso demagnetise hol . Tape Head Demagnetiser $\mathbf{E} 5$

ROJECT CASES
$\times 4 \times 11 \mathrm{mf}{ }^{6} 60 \quad 8 \times 5 \times 2$ inf 4 .
$9 \times 5 \times 2$ in $£ 4.80 \quad 11 \times 6 \times 3$ £5.50
LUMINIUM PANELS. $6 \times 455 \mathrm{p}: 8 \times 690 \mathrm{p} ; 14 \times 3$ $\mathrm{E} 1.75 ; 12 \times 12 \mathrm{f} 1.80 ; 16 \times 10 £ 2.10$: LUMINIUM BOXES $4 \times 4 \times 1,10$; $\mathbf{2 \times 1} \mathbf{£ 1 . 2 0 ; 6 \times 4 \times 2 £ 1 . 9 0 ; 7 \times 5 \times 2 , \mathbf { £ 2 } , 9 0 ; 8 \times 6 \times 3}$ £3; $10 \times 7 \times 3 £ 3.60 ; 12 \times 5 \times 3 £ 3.60 ; 12 \times 8 \times 3 £ 4.30 ;$
$9 \times 4 \times 4 £ 3: 6 \times 4 \times 3 £ 2.20 ; 4 \times 4 \times 21 \mathrm{f} .60$.

POTENTIOMETERS $5 \mathrm{k} / 2 \mathrm{meg}$ LOG or LIN. L7S 50 p DP 90p. Stereo L/S $£ 1.10$. DP 1.30

DISCO MIXER 240 V , a channels, 2 magnetic. eramic/tape, 1 mono mic channel, twin $v u$. meters, desk mounting, .grained aluminlum facia. Tape
f51 deluxe stereo disco mixer/equaliser as bove but L.E.D. V.U. displays 5 band graphi equaliser, left/right fader, switchable inputs for
phone/line, mike/line. Recording Output.
f124
Headphone Monitor, Mike Talkover Swinch

ELECTRONIC REVERB UNIT inputs for MIC + LINE
All slide controls $9 v$ Battery operated $\mathbf{f} 34$ Post \mathbf{f}.

PA. 150 Watt MICROPHONE VOCAL and GROUP AMPLIFIER £129
channel mixing, 8 inputs, dual impedance, $50 \mathrm{~K}-600$ each channel. Master volume control, echo, send 50W socke MIave sockers. Post E3. 50Watt MIXER AMPLIFIER 4 Inputs $\mathbf{£ 9 9}$ Discotheque, Vocal, Public Address. Speaker outlets
or 4.8 or 16 ohms. Four inputs. 20 mv 50 K ohm ndividual volume conrols "Four channel" mixing. Slave output 16° 00 Volt Line Model, 150 watt f114 MONO SLAVE. 150 watt f80
Baker Stereo Slave $150+150$ watt per channel
300 watı monc Heavy Duty Model f125. Post $£ 4$.
BAKER MOBILE PA AMPLIFIER. All vansistor, 60
watt RMS, $12 v$ DC \& $240 v$ AC 4 inputs 50 k Aux +2
watt RMS, $12 \vee \mathrm{DC} \& 240 \mathrm{vAC}, 4$ inputs 50 k Aux +2
mics +1 phono loudspeaker. Output
489 Post $\mathbf{f} 2$
60 WATT VALVE AMPLIFIER £69 cart £3
Inputs 3 mike -1 aux. -1 phono
Outputs $4-8-16 \mathrm{ohm}+100$ voht lin
WATERPROOF HORNS 8 ohms, 25 watt 10 in . $\mathbf{f 2 2}$

BAKER PORTABLE DISCO 150 watt. Twin console + amplifier + mike and headphones + twin speak
$£ 360$. Carr. $£ 30$. Consoie only $£ 145$ Carr $£ 10$
PA CABINET SPEAKERS. Complete. 8 ohm 60 watt $17 \times 15 \times 9$ in. $£ 27$. Post $\mathrm{f4} 4$ or 8 or 16 ohm 75 watt
$20 \times 15 \times 9$ in $£ 52.90$ watt $32 \times 15 \times 11$ in. $\mathbf{E} 73.150$ wat
 MAINS TRANSFORMERS

20 V 45 ma 6V 2 Am
Post
$\mathbf{£} 7.00 £ 2$
$£ 2$

Step-Down 240 V to 115 V 150 w £9. 250 W £ 12
GENERAL PURPOSE LOW VOLTAGE

OW VOITAGEEIECTROLVTICS
OW VOLTAGE ELECTROLYTICS
$500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 63 \mathrm{~V} 40 \mathrm{p}, 1200 \mathrm{mF} 76 \mathrm{~V} 80 \mathrm{P}$
$000 \mathrm{mF} 12 \mathrm{~V} 20 \mathrm{p} ; 25 \mathrm{~V} 35 ; 50 \mathrm{~V} 50 \mathrm{p} ; 100 \mathrm{~V} \mathbf{f 1 . 2 0 .}$ $2200 / 63 \mathrm{vf} 1.30$
2000 mF 30 V 42 p
$2000 \mathrm{mF} 30 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} 60 \mathrm{p} ; 100 \mathrm{~V} \mathrm{f} 1.40$
500 mF 100 V .
2500 mF 50 V 70 p .3000 mF 50 V 65 p : 4700

$$
\begin{aligned}
& 22 \mathrm{MF} 350 \mathrm{~V} 12 \mathrm{p} .600 \mathrm{~V} 20 \mathrm{p} .1000 \mathrm{~V} 30 \mathrm{p} .1750 \mathrm{~V} 60 \mathrm{~d} \\
& 47 \mathrm{MF} 150 \mathrm{p} 10.400 \mathrm{p} 250 \mathrm{~V} 30 \mathrm{p} .
\end{aligned}
$$

HIGH VOLTAGE ELECTROLYTICS

$\mathbf{8} .50$ OSt 50 p MIN -MUTITESTER moving coil 4000 o.p. $v .11$ instant anges measure. $10,50,500,1000$. 250 volts $0-250 \mu \mathrm{a}$; DC $0-250 \mathrm{ma}$. DC R 0 to 600 K ohms. De-Luxe Range Doubler Meter. 20 meg in 5 ranges. Current 50 . 10 A volts $0.25 / 1000 \mathrm{vDC}$. E 25 post

PANEL METERS $50 \mu \mathrm{a}, 500 \mu \mathrm{a}, 1 \mathrm{ma}, 5 \mathrm{ma}, 50 \mathrm{ma}$ $100 \mathrm{ma}, 500 \mathrm{ma}, 1 \mathrm{amp}, 2 \mathrm{amp}, 5 \mathrm{amp}, 25$ volt, VU
$59 \times 53 \times 34 \mathrm{~mm}$. Stereo VU $82 \times 41 \times 25 \mathrm{~mm} \mathrm{f5} .50$ RCS SOUND TO LIGHT CONTROLLERKIT E19 Printed circuit. Cabinet. 3 channels. 1,000 watts each Will operate from Hi-Fi or Disco. Post $£ 1$. + speed + programme controls 669 . Dost $f 2$ New Model Mkll with special 16 programmes 4 channel 4.000 watt $£ 89$ post £2 Pair of 4 channel Light Boxes Complete with 8 coloured bulbs. The pair clip BATTERY ELIMINATOR Mains to 9 volt D. C. 400 MA
Stabilised, safety cutout, $5 \times 3 i \times 2$ in $£ 5$. Post $£ 1$.

RADIO COMPONENT SPECIALISTS

CIRCLE 6 FOR FURTHER DETAILS

1.9M, 2.5M and 5M Dishes. Receivers,

Downconverters, Low Noise Amplifiers, Feed Horns available.
Complete systems installed anywhere in the world A full report on reception feasibilities at any location is available - price $£ 25.00$
Please state Longitude and Latitude
For further details contact: Harrison Electronics, 22 Milton Road, Westcliff-on-Sea, Essex SSO 7JX. Telephone: Southend (0702) 332338.

CIRCLE 13 FOR FURTHER DETAILS.

RACKMOUNT CASES

19"Self Assembly Rack Mounting Case with lift off Covers. Front Panel 10 gauge Brushed Anodised Aluminium, Case 18 gauge, Plated Steel with Removeable Rea \& Side Panels. In 1 U \& 2 Types, a Subplate Chassis is Mounted to Bottom Cover In $3 \cup$ Type the Subplate is located on two Rails Mounted Between The Side Plates.

/4)
$2 \mathrm{U}(31 / 2)$ height, 308 m depth
$3 \mathrm{U}\left(5^{1 / 4}\right)$ height, 230 m depth.

Width Behind Front Pane 437 m (All Tvpes
 Alt

J. R She
J. D. R. Sheetmetal, 131 Grenfell Road, Maidenhead, Berks. SL6 1EX. Maidenhead 29450.

CIRCLE 41 FOR FURTHER DE'TAIIS.
ELECTRONICS \& WIRELESS WORLD DECEMBER 1984

Intelligent eprom programmer

> Having its own processor, this intelligent programmer can quickly copy eproms up to the 27512 and list eprom data on a serial printer - under computer control it programs one-chip microcomputers. Part two discusses computer control software and construction.

My control program for $\mathrm{SC} 84^{*}$ is written in assembly language but a program written in a high-level language could be used at the expense of speed. The SC84 program uses CP/M-compatible system calls so it should be possible to adapt it for other CP/M computers. The only 'non-standard' requirement is that the program needs to know the serial-port status, i.e., whether it is ready to be sent a character or whether there is a character in its receive buffer. Software for the eprom programmer is in an eprom provided with the kit. The SC84 control program is available separately on disc (details later).

Computer software for remotely controlling the eprom programmer needs to display eprom types and programming commands available, and to input and validate the user's selection If the operation involves a disc file, the program has to receive and validate the file identification. It must also react if a file for passing data to the programmer doesn't exist, or a file for receiving data from the programmer already exists.

When the eprom type has been established, the program must draw the length of the eprom from a table for use during file transfer. Communication between the computer and programmer is outlined in the flow diagram. The A6 ${ }_{16}$ byte sent before each operation is an arbitrary code signalling the start of the operation. It is used so that the programmer is not put off by any odd character
*SC84 was described in the May, June July, September and October issues of E\&WW
that the computer might have waiting in its transmit buffer when the two are connected.

At the end of the transfer, the program must examine eight bytes returned by the programmer. These bytes consist of a 24bit check sum of data read from the master socket, a 24 -bit check

source of information after a 'sum-check only' command is ended.

These are minimum require-
ment for the program. Other almost essential elements are some form of progress indicator and a routine that recognizes files

Fig.1. Displays presented by John Adams' SC84 software for controlling the eprom programmer. The first of these, (a), shows a sum check of two erased 2716 eproms. An attempt to read data from a 2732 in the slave socket into a disc file in which the file EPROM.COM already exists is shown at (b).

Screen (c) is a simulation of a bad-programming error produced by attempting to copy a 2732 to an empty slave socket and (d) shows a successful attempt reading an eprom's content into a disc file.

SC 84 Eprom Programmer Control Program Version 1.00

Enter your EPROM choice, A to L, now...A
A - ABORT session
B - SUMCHECK only
D Read SLAVE to COMPUTER
F - PROGRAM SLLVE
from COMPUTER
Enter your COMMAND choice, A to F, now... B
SUMCHECK of MASTER EPROM is 07F800
SUMCHECK of SLAVE EPROM is 07F800

$\mathrm{A}-2716$	$\mathrm{~B}-2732$	$\mathrm{C}-2732 \mathrm{~A}$	$\mathrm{D}-2764$
$\mathrm{E}=2764 \mathrm{~A}$	$\mathrm{~F}=27128$	$\mathrm{G}=27128 \mathrm{~A}$	$\mathrm{H}=27256$
$\mathrm{I}-27512$	$\mathrm{~J}-27513$	$\mathrm{~K}-8741 / 8$	$\mathrm{~L}-8749$

Enter your EPROM choice, A to L, now...B

A - ABORT session
C - Read MASTER to COMPUTER
E - COPY MASTER TO SLAVE

B - SUMCHECK only
D - Read SLAVE to COMPUTER
F - PROGRAM SLAVE
Enter your COMMAND choice, A to F, now...D
ENTER the name of the DATA FILE ... EPROM.COM
This FILE does ALREADY EXISTS. Do you want toA - INPUT a NEW FILE NAME, or,
B - OVER-WRITE the FILE
Enter your choice, A or B, now...

A -2716	B -2732	C $-2732 A$	D -2764
E 2764 A	F $=27128$	G -27128 A	H -27256
$\mathrm{I}-27512$	$\mathrm{~J}-27513$	K $-8741 / 8$	$\mathrm{~L}-8749$

Enter your EPROM choice, A to L, now... B

A - ABORT session
 C - Read MASTER to COMPUTER
 E - COPY MASTER TO SLAVE

B - SUMCHECK only
D - Read SLAVE to COMPUTER
F - PROGRAM SLIVE from COMPUTER

Enter your COMMAND choice, A to F, now...E
SUMCHECK of MASTER EPROM is 0000 E 9
SUMCHECK of SLAVE EPROM is 0000 FF
ERROR Pattern is 16
PROGRAMMING ADDRESS is 0000

$A-2716$	$B-2732$	$C-2732 A$	D -2764
$E=2764 A$	$F=27128$	$G-27128 A$	H -27256
$I-27512$	$J-27513$	K $-8741 / 8$	L -8749

Enter your EPROM choice, A to L, now... B

A - ABORT session
A - ABORT SeSsion
C - Read MASTR To COMPUTER
E - COPY MASTER TO SLAVE

B - SUMCHECK only
D - Read SLAVE to COMPUTER
F - PROGRAM SLAVE
from COMPUTER

Enter your COMMAND choice, A to F, now...C
ENTER the name of the DATA FILE... B: F8086. OBJ
SUMCHECK of MASTER EPROM is 078200
SUMCHECK of DISC FILE is 078200
containing Intel hexadecimal code (a standard form for assembler or linker output files) and translates it into hexadicimal form before it is sent to the programmer. My program for the SC84 includes these features and more.

Typical screen displays are shown in Fig. 1(a-d) You are first prompted for the eprom type and then for the operation required. In each case, only a single letter is entered. If commands A or B are chosen, they execute immediately. Any other command results in a prompt for a file name to be used for the destination or source of data. Invalid file names of more than eight characters or invalid file types of more than three characters are rejected.

The file is searched for on the disc and extra prompting occurs, Fig. 1(b), if the destination file already exists (commands C to E) or cannot be found (command F). Once a correct file specification has been entered and initiated, the message 'programming now' appears on the screen and progressively tuns into reverse video as programming proceeds. Previously entered information about the eprom type is used by the software to work out how to scale the progress of this operation so that there are always the same number of changes. The rate of change varies faithfully in terms of bytes programmed as the programming algorithms skip or shorten programming time.

Programming ends when all locations are programmed or an error occurs. After successful programming, check sums of the eprom and disc file are displayed. One of these is derived by the computer, the other by the programmer, so they provide additional cross-checking of the programming. If an error occurs, both check sums are displayed together with an error pattern consisting of a hexadecimal byte in which logic ones represent faulty bit positions in the eprom location, and the address location of the error. Status leds on the programmer are set to reflect the result of the programming.

An extra option is available when using command F. If the file specification given as the data source is a .HEX type, the file is assumed to contain code in Intel hex. form and is compiled accordingly, with the starting address assumed to be the first location in the eprom. Data in the file is all ascii which makes the transfer of
data between computers much easier. Actual data in an Intel hex. file consists of lines or 'records' of ascii characters each consisting of a colon, the count of the number of data bytes in the line, a null byte, the data bytes, a check sum of the characters in the line followed by carriagereturn and line-feed characters. The last record in the file has a zero data count and holds the program start address as its starting address.

Construction

These notes assume that you are using the kit and p.c.bs mentioned at the end of this article. The main board has components mounted on both sides. All of the components on side two of the board, i.e. all but the leds, push buttons and zero-insertion-force (zif) sockets, should be mounted and soldered first. Then mount the zif sockets by setting the lever to its lock position and working the socket carefully into the relatively tight-fitting holes on the p.c.b.

Push buttons and leds should be mounted next, but not yet soldered. Make sure that the leds are the right way round, with their anodes connected to the adjacent resistor. Fit the p.c.b. to the top panel of the case using the M3 nuts, screws and spacers. With the board centralized against the top panel and the nuts tightened, adjust the switches so that they are square within their cut-outs before soldering them in. Next, align the leds so that they stand vetically and square in their panel holes and solder them. The 6 MHz crystal stand upright and can be swathed in silicone compound to strengthen its mounting if required.
The cable linking the main board and power-supply p.c.b. should be between 16 and 17 cm of the ribbon cable stripped of the black wire. The 9 -way plug should be fitted to the main p.c.b. and a 9 -way connector fitted at one end of the cable with the gap in the connector between the violet and grey wires. Solder the cable at the power-supply p.c.b. with the wires in the same order as at the connector. To link the transformer and power-supply board, a short length of ribbon cable is soldered to the transformer at one end and fitted to a fiveway connector with pins two and four removed at the other.

A 20 cm length of 5 -way ribbon
cable with a 5 -way connector at one end and soldered to a 25 -way female D-type connector at the other forms the serial data connection, Fig 2. The D-type connector conforms to the standard 'output-to-peripheral' configuration for an RS232 port and can be connected to a printer using a direct pin-for-pin printer cable. For communications with a computer, a special cable will be needed to suit the computer's socket. For SC84, the serial port of which is wired exactly as the programmer's, this consists of a cable terminated with male connectors and with its data and hand-shake lines crossed over as shown in Fig. 3.
A 2732 eprom is supplied with the programmer control program; for this device LK1 (the long one) should be made. The other link is allows a 2716 to be used.
Both the 8035 and 8243 are available in cmos as the 80 C 35 and 82 C 43 and a version of the programmer has been constructed using them. There are no problems in doing so as the cmos versions have the same current sinking capabilities and interface levels as equivalent nmos parts. Using cmos devices saves power, but the three cmos i.cs cost two to three times more than three equivalent nmos devices - which together can cost less than just one of the 28pin zero-insertion-force sockets.

Setting up

After carefully checking the construction, connect just the transformer to the power supply and test this part of the circuit, Fig. 4, before connecting the main
board. Your voltmeter must be accurate to 250 mV and cover the range 0 to 30 V . Check that the 5 V line is correct and that the +12 and -12 V rails are within 2 V of their nominal values. Check that V_{pp} is zero then temporarily link PSU ON to +5 V and check that V_{pp} rises to somewhere between +12 and 30 V and falls back to zero when the link is removed.
When the supply is operating as described switch off, connect the programmer board and switch back on again. The two leds indicating 2716 and the OK led should light. If not, check the supply rails, wiring of the leds (especially if one or two of those expected to light do light) and general construction.
Next press the UP button to test all of the eprom indicator leds. With the indicator again set to 2716, press and release the PROGRAM button. A relay should operate and the OK led should go out and the PROGRAM led light for around 1 to 2 s . If this happens press and release the UP button, checking that the indicator reads 2732. Press the PROGRAM button. One relay should release and another activate followed by about 4 s of attempted programming.
To set the progamming V_{cc} supply, switch the programmer off then on again. Insert a 120Ω resistor in pins 14 and 28 of the slave socket, lock the socket, and measure the voltage on pen 28. It should be between 4.75 V and 5.25 V . Short of the base of Tr_{1} to its emitter and adjust VR_{1} on the main board until the reading is 6 V . Remove the short and the resistor.

To set the programming voltages, connect a $1 W, 680 \Omega$ resis-

tor between $V_{p p}$ and 0 V (e.g. in parallel with C_{7}) and connect the voltmeter across it. Switch the programmer on, press the LIST button, and adjust R_{108} on the power supply board to set $V_{p p}$ to 25 V .
Switch the programmer off, pause, then switch it back on again. Select 2732A programming using the UP button then press LIST. Adjust R_{109} on the supply board to set $V_{p p}$ to 21 V . Switch off, pause then switch on again, select 27256 press list, and adjust R_{110} on the power supply to set $V_{p p}$ to +12.5 V . Switch off and remove the 680Ω resistor. Note that R_{108} affects all voltages and so the programming voltages must be set up in this order.

To test the listing function connect a printer and, if it is set for one of the available data rates

Main circuit correction. The circuit around pin 1 of the master and slave sockets shown last month is revised as shown.

other than 9600 baud, use the UP or DOWN buttons to move the pointer to the desired rate and press the LIST button to select that rate. Move the pointer to 2716 and press the LIST button, whereupon the printer should

Fig. 2. The serial interface D connector on the programmer used for computer connection or printer driving, left.
Fig. 3. Cable connections for connecting the programmer
to SC84. These crossovers are required as the computer and programmer have the same pin numbering.
Normally, connection to a printer wil be pin for pin.

Fig.4. Multi-rail power supply for the intelligent eprom programmer. Programming voltage $V_{p p}$ is determined by the processor through input/output expander EXPO pins 2, 3 and 4.

Fig.5. 8741/8/9 microcomputer programming adaptor. Numbers in circles refer to pins on the eprom programmer slave socket into which this adaptor is plugged.
These extra components are needed to drive the processor clock and switch voltage levels.

A complete kit of parts for the eprom programming unit including transformer, zif sockets, unpunched case, connectors, hardware and programmed eprom but not p.c.bs and parts for the
microcomputer adaptor can be obtained by sending $£ 77.50$ including postage but exclusive of vat to John Adams at 5 The Close, Radlett, Hertfordshire, telephone Radlett 5723. Parts for
the adaptor excluding p.c.b. but including sockets are an extra £15.00. A disc with the SC84 control program is $£ 5.50$ excluding vat but including postage - please state disc size, etc. A set of p.c.bs including a plated-through and silk-screened
main circuit board are available
from Combe Martin Electronics, King Street, Combe Martin, North Devon EX34 OAD for $£ 17$ including UK/overseas postage.

The microcomputer
programming board is an extra £4 including postage.
start to list memory as a series of FFs. Note that as yet, no eproms have been inserted into either the master or slave sockets.
When using the programmer, do not remove or insert eproms from or into the slave socket unless the OK or ERROR leds are lit since the $V_{p p}$ programming voltage will be present on the slave socket. During listing, all three status leds stay off until the end of the operation. When programming, the end of the operation is indicated by the PROGRAM led going out and either the OK or ERROR leds lighting to indicate good or unsuccessful programming respectively.

At the end of each line printed during listing, the programmer checks the keyboard so that a listing may be interrupted by pressing and releasing the UP or DOWN key. If LIST is selected and a printer is not connected, the system will need to be switched off and then on again to regain control.

Programming one-chip processors

Design of this programmer is flexible enough to be adapted to virtually any eprom device, due primarily to the general-purpose
nature of most of the signal connections to the programming socket. One example of an unusual programming task is to program microcomputers with built-in eprom.
Several such microcomputers - including the one used in this programmer - are available with built-in eprom. The idea of such a device with eprom is that it more closely emulates the final rom version of a one-chip microcomputer during development of a circuit. Using external memory as the program store means that signal lines have to act as data and address lines which severely restricts their use as general i/o lines. Further, as anything up to 16 pins are freed to act as i/o lines, use of the eprom version reduces the need for peripheral i.cs.

Rather as with eproms, manufacturers saw the eprom microcomputer as a development tool and thus a small-volume product. Just as with eproms, mánufacturers appear to have been caught out by their massive use in production as a means of maintaining product flexibility. Main suppliers of eprom microcomputers are Intel and NEC, types offered being the 8741A, 8748,8749 and the more advanced 8751 and 8744.

Being 40 -pin i.cs the programmer requires an adapter, which comes in the form of a small p.c.b. with a few components, a 40 -pin zif socket and a 28 -pin plug. One adapter is suitable for programming $8741 \mathrm{~A}, 8748$ and 8749 i.cs, Fig.5. Devices in the 8748 series are more difficult ot program, needing three controlled high voltages and multiplexed addresses and data. The programmer provides all of the control signals and even scrambles data to and from the 40 -pin socket in order to made p.c.b. layout simpler.
As the adaptor only has one socket, direct copying of one 40pin device to another is not possible. A bigger p.c.b. would be needed for this. Direct copying of these devices is not frequently required so I opted for the cheaper solution - one zif socket costs more than the rest of the adapter put together. The adapter always fits into the slave socket as it needs high voltages for both reading and writing. When the adaptor is used, the programmer should be controlled by computer, whence all operations except direct copying are possible. Copying can of course
be carried out by reading the master device into a disc file and then programming other devices using the file

The address for the 8748 programming operation is not generated by the programmer's CD4040 as it is for eproms, but from a count kept in one of the 8035 ram locations. This counter is incremented after each location programmed and the 4040 is clocked every time the eight-bit counter passes through zero. Thus low-order address lines on the 28 -pin socketlact as the higher-order address lines on the 40 -pin one. Four such lines have been laid to the socket so that the adapter has the potential to program devices with up 4Kbyte of eprom. These don't exist yet but if an 8750 is produced, the system is ready to program it.

As mentioned earlier, the data lines are scrambled. This illustrates one of advantages of programmable over discrete logic. There are many occasions when a little soft ware saves a lot of p.c.b. design effort. Perhaps too few electronic designers have to design their own p.c.bs as well! In this case, the top five lines are reversed, D_{7} going to $\mathrm{D}_{3}, \mathrm{D}_{3}$ to $\mathrm{D}_{7}, \mathrm{D}_{6}$ to D, and D_{4} to D_{6}. As well as being the optimum solution to p.c.b. layout, this mirror transposition allows the same software routine to both scramble the data prior to programming and unscrable data read back for verification.

To set up the adapter fit it to the programmer, select 8749 and press the LIST button without a printer connected. Resistor R_{209} is adjusted to set the voltage on pin 7 of the 40 -pin socket to 18 V . Short of base of Tr_{202} to its emitter and set $\mathrm{R}_{2 \text { nfon }}$ to give 18 V on pin 25 of the 40 -pin socket. Finally, short the base of Tr_{201} to its emmitter and set R_{203} to give 21V on pin 26 of the 40 -pin socket. After completing this procedure, switch the programmer off to clear the list instruction. Don't forget to remove the shorts.

Working of the programmer and the software controlling it are subjects of the next article

The 8048

There are five types in this family of one-chip microcomputer, namely the 8035,8039 , 8049 and 8748 , each with varying memory type/capacity, see table. All can address up to 4 Kbyte of external program rom, 256 byte ram and have 32 bytes of dedicated ram.

1/0 facilities

Port zero is an eight-bit port which may be used for parallel i/o. When accessing external memory, this port multiplexes the lower eight bits of the memory address and data read from or written to memory. Separate WR, RD and $\overline{\text { PSEN }}$ signals are available to strobe data to and from external memory and from program memory respectively.

On eight-bit port one, the lines may be used as individual inputs or outputs. The output structure of these lines is interesting. When set high, only a weak pull-up resistance of about $50 \mathrm{k} \Omega$ holds the line high but during the actual transition from low to high, a strong pull up is temporarily applied to ensure speedy action. In its high state, as well as being a high output, the line may also be used as an input.

On port two, also eight bits, the upper four lines act in the same way as those of port one. The lower four lines are available for i/o but also output the higher-order memory address lines during external program memory access, and act as a four-bit command and data bus between the microcomputer and any expanders fitted to the system.
Test inputs T_{0} and T_{1} can be used as subjects of conditional jumps in the program. A special instruction sets T_{0} and T_{1} can be used as subjects of conditional jumps in the program. A special instruction sets T_{0} as a clock output running at one third of the crystal frequency. Test line T_{1} may also be used as the input to the event counter. An active low maskable interrupt input, $\overline{\text { INT, }}$, may also act as a test input for conditional jumps.
Other pins are a strobe for

8048 family characteristics, values in bytes

Type		
	Internal rom Other ram	
8035	None	32
8039	None	96
8048	1K	32
8049	2K	96
8748	1K (eprom)	$\mathbf{3 2}$

the expanders, $\overline{\text { PROG, an }}$ address-catching latch, ALE, a single-stepping input, SS , and an input forcing the processor to access external memory, whatever its type.
The microprocessor accesses external memory automatically when a pro-gram-counter address exceeds the limit of the internal rom. The incrementing section of the 8048 program counter is actually only an 11bit register. To access 4 Kbyte , an extra address line is required so the contents of the memory bank flag (MBF) form the twelfth bit of the address. This bit is set or cleared by the instructions SEL MB0 and SEL MB1 and transferred into the program counter on the next jump or call operation.

Programmer control lines

Line	$\mathbf{8 0 3 5}$
P_{10-17}	Data bus to eproms
INT $^{\prime}$	Serial data input
\mathbf{T}_{0}	Serial hand-shake input
P_{24}	Select EXPO
\mathbf{P}_{25}	Select EXP1
P_{26}	Serial handshake output
P_{27}	Serial data output

Internal facilities

An eight-bit counter/timer capable of interrupting the system is provided. When used as a timer it is clocked at $1 / 480$ of the crystal frequency; it can set a flag and interrupt the system when the count passes through zero. The processor's built-in clock generator requires only a crystal and two capacitors externally. Only one capacitor is required by the power-on reset circuit.
Crystal frequencies for the 8048 may be as high 11 MHz , this being divided by 15 to give the basic instruction rate. A typical crystal frequency is 6 MHz giving a cycle time of $2.5 \mu \mathrm{~s}$ and a basic timer unit of $80 \mu \mathrm{~s}$. Some 60% of the instructions execute within one cycle. The remainder, mostly immediate instructions where a second byte of data has to be fetched as part of the instruction, take two cycles.
Two identical banks of eight 8 -bit registers which may be alternated between are used (similar to the Z80's). Two registers in each bank, R_{0} and R_{1}, may be used as pointers to ram for indirect operation, the others are solely general purpose. Lastly, the 8048 has two settable and testable flags, one of which is automatically preserved during an interrupt.

Instructions

Data movement between registers, the accumulator and internal/extemal memory

Line	IC, (EXPO)
P_{40}	PSU on
P_{41}	PSU select 12V
${ }_{P 43}$	PSU select 21 V
${ }_{\text {P }}$	S22 through RL ${ }_{2}$
${ }_{P} \mathrm{P}_{51}$	Counter clock, M22
P_{53}	Counter reset
P_{60}	RL ${ }_{\text {, }}$ S23
Pb_{61}	RL_{2}, S^{22}
P_{62}	RL_{3}, S1, M1
P_{63}	RL ${ }_{4}$ S26, M26
${ }^{\mathbf{P}_{71}}$	$A_{12}, ~ M 2, ~$ $A_{13}, ~ M 26, ~ S 26 ~ t h r o ~$
P_{72}	$\mathrm{A}_{14}{ }^{13}, \mathrm{M} 27, \mathrm{~S} 27$
P_{73}	$\mathrm{A}_{15}, \mathrm{M1}^{\text {through }} \mathrm{RL}_{3}$

IC B_{a} (EXP1)

LED row 0
LED row 1
LED row 2
LED row 3
LED column 0
LED column 1
LED column 2
LED column 3
Sounder
OK led
ERROR led
PROG led
S1 UP key
S2 DOWN key
S3 PROG key
S4 LIST key
is fully catered for. In particular there are indexed instructions of the 'get the byte pointed to by the A register from a particular page of rom and put it in the A register' form. This allows a particular page to act as a very efficient area for look-up tables.

There are basic arithmetic and logical commands capable of acting directly on the A register and input/output ports, allowing direct mainipulation of from 1 to 8 bits a port. There are long jumps as well as short ones (i.e. within a page) which can be conditional on zero in the accumulator, the carry bit, any of the accumulator bits, a timer overflow, internal flags, the test lines or the interrupt line.
Z80-style decrement and jump-on-not-zero instructions (DJNZ) are available for all 16 R registers. Of particular interest is a jump of the form - go to the location pointed to by the A register in the current page, get the byte there and put it into the lower byte of the program counter. This allows very efficient transfer of execution to one of many routines depending on the contents of the A register.
Standard call and return mechanisms are used for subroutines although there are no PUSH and POP instructions for storing information on the stack. The stack is within an area of memory devoted to ram and is eight return addresses deep. When a subroutine is called or an interrupt accepted, the 12 -bit program counter and four status flags (carry, half-carry, internal zero and register bank) are pushed on to the stack. There are two types of return instruction. One just reinstates the program counter, the other, designed to make the call operation more transparent, reinstates flag bits too. The latter type is usually used for interrupts.

[^7]
Semiconductor suppliers

An Electronics and Wireless World survey

ABACUS ELECTRONICS,
Kennett House.
Pembroke Road,
Newbury, Berks RG13 1BX
Telephone: 065330680.
Trade. Exclusive distribution of
Scanbe, Holmberg, TEEE.
ACE MAILTRONIX,
3A Commercial Street,
Batley, W. Yorks WF 17 5HJ
Telephone: 0924441129
C.W.O.

ACTIVE ELECTRONICS,
Duke Street,
High Wycombe, Bucks HP13 6EE. Telephone: 0494441129 C.W.O. Speciality: Computer peripherals.

ADD-ON DEVICES,

11 Shield Road,
Ashford Industrial Estate,
Ashford, Middlesex TW15 1AU.
Telephone: 0784247141.
c.w.o. Minimum order £25.

Speciality: Surface-mounted components.

AEROMEL INTERNATIONAL, 17 Harland Way,
Southborough,
Tunbridge Wells, Kent TN4 OTQ.
Telephone: 089237977
Trade. Speciality: Milspec. devices.
ALTEK MICROCOMPONENTS, 22 Market Place,
Wokingham, Berks RG11 1 AP.
Telephone: 0734791579 c.w.o. Speciality: Microprocessors and memories.

AMBAR COMPONENTS, Gatehouse Road,
Aylesbury, Bucks HP19 3ED
Telephone: 029634141 c.w.o. Speciality: Microprocessors etc.

ANGLIA COMPONENTS

Burdett Road,
Wisbech, Cambs PE 132 PS.
Telephone: 094563281
c.w.o. Exclusive distribution. Promax

ARIES ELECTRONICS,
159 Boyn Valley Road,
Maidenhead, Berks SL6 6DT.
Telephone: 062837431
c.w.o.

ARROW ELECTRONICS,
Leader House,
Coptfold Road,
Brentwood, Essex CM14 4BN.
Telephone: 0277219435
Trade.

At EWW we receive a regular stream of enquiries for the sources of components. In order to answer it is often quite a task to wade through suppliers' catalogues to find the information. We have constructed this list in order to provide some clues as to the possible whereabouts of semiconductors. It is not comprehensive but we have tried to identify those companies who do supply the end user rather than representative or agency companies. We hope to publish a list of manufacturers and their UK agents - as a supplement to this survey at a later date.

We have had direct contact with all the companies listed either through their postal answers to our questionnaire or by telephone. One question which we considered of importance was whether the distributors were willing to sell "small quantities to private buyers." We were pleased and a little surprised that a large proportion of them were and we have indicated this by C.W.O. (cheque with order), after their addresses. Others were marked 'trade'. We also asked if any of their lines were exclusive to the individual company and if they specialized in any particular field. Their answer are recorded in each entry. All of them claim to be able to respond to an order on the same day or within 24 hours. Most of them are willing to identify substitutes and provide them as alternatives if the desired components are not available, but only after consulting the customer.

All say that they can provide data sheets for the products they distribute and do not charge if the product is purchased at the same time. Most companies also said that they were abot to offer technical advice on the the applications of components.

Considering the current interest in microcomputers and communications, we thought it would be interesting to see if any of the companies offered data bases and computerized ordering. None of them did, but a few were thinking of it or were installing equipment to do so.

AVIQUIPO OF BRITAIN,
St. Peters Road,
Maidenhead, Berks.
Telephone: 062834555 c.w.o. "We can supply any semiconductor."

BARLEC-RICHFIELD

Foundry Lane,
Horsham, W. Sussex RH13 5PX.
Telephone: 040351881
Trade.

BARRIE ELECTRONICS, Unit 221, Stratford Workshops, Burford Road, London E15 2SP Telephone: 015550228
Retail. Speciality: Transformers.

BETA DEVICES,
6 Sun Street,
Waltham Abbey, Essex.
Telephone: 019716529
c.w.o. Postage "at cost."

BI-PAK SEMICONDUCTORS,
63A High Street,
Ware, Herts SG12 9AG.
Telephone: 09203182
c.w.o.

BOSLEDGE,
27 Church Street,
Manachester, M4 1 PE.
Telephone: 0618347339
Trade.
BOSLEDGE,
27 Church Street,
Manchester, M4 1PE.
Telephone: 0618347339
Trade.
CAMPBELL COLLINS,
162 High Street,
Stevenage, Herts.
Telephone: 043869466
CIRKIT,
Park Lane,
Broxbourne, Herts.

Telephone: 0992444111 c.w.o. Mail-order catalogue.

CONSORT ELECTRONICS,
Rosebank Parade,
Reading Road,
Yateley,
Camberley, Surrey GU17 7RN.
Telephone: 0252871717
c.w.o. Exclusive distribution:

Solitron, Microsemi.
CURZON ELECTRONICS,
17c London Street,
Basingstoke, Hants RS21 1NT
Telephone: 025651841
Trade.
DTV GROUP,
2 Ernest Avenue,
West Norwood, London SE27 ODJ.
Telephone: 016706166
c.w.o. Retail counter.
D.W. ELECTRONICS
(CAMBRIDGE),
Tudor House, High Street,
Fenstanton, Huntingdom PE 18
9JZ.
Telephone: 048067666
c.w.o.

DAGE EUROSEM,
Rabans Lane,
Aylesbury, Bucks
HP19 3RG
Telephone: 029632881
c.w.o. Speciality: Digiral i.cs, Power fets.

DIALOGUE DISTRIBUTION,
Watchmoor Road,
Camberley, Surrey, GW15 3AQ
Telephone: 0276682001
c.w.o. Speciality: Digital i.cs, Power fets.

DISTRIBUTED TECHNOLOGY,
Talboys House,
Oxted, Surrey RH8 9PA
Telephone: 088336161
c.w.o. Exclusive distribution:

Trelec, TIC. Speciality: Power
Semicond, r.f. devices.
ELECTRONIC RESOURCES,
Henlow Trading Estate.
Henlow, Beds SG16 6DS.
Telephone: 0462815555
c.w.o.

ELECTROVALUE,
28 St. Judes Road
Englefield Green,
Egham, Surrey TW20 OHB,
Telephone: 078433603
c.w.o. Retail shop.

FARNELL ELECTRONIC COMPONENTS
Canal Road,
Leeds, Yorks LS 12 2TU.
Telephone: 0532636311
Trade.
G.E. Electronics (London) Ltd.

Earley. House,
182 Campden Hill Road,
London W8 7AS.
Telephone: 017270711
c.w.o.

GAIN ELECTRONICS,
63 High Street,
Prices Risborough,
Aylesbury, Bucks.
Telephone: 084447116
c.w.o. "Visitors welcome."

GOTHIC CRELLON,
380 Bath Road,
Slough, Berks SL1 6JE.
Telephone: 062864300
c.w.o. It is necessary to open an account. Exclusive distribution: Varo, Arifa.

GREENWELD,
443 Millbrook Road,
Southampton $\mathrm{SO}_{1} \mathrm{OHX}$.
Telephone: 0703772501
Retail shop.
HARMSWORTH, TOWNLEY \& CO.
Harehill,
Todmorton, Lancs OL14 5JY. Telephone: 0706814931 c.w.o.

HAWKE ELECTRONICS,
Amotex House
45, Hamworth Road,
Sunbury-on-Thames, Middlesex.
Telephone: 019797799
c.w.o.

HAWNT ELECTRONICS,

Firswood Road,
Garretts Green,
Birmingham B33 0TQ.
Telephone: 0217842485
HB ELECTRONICS,
Lever Street,
Bolton, Lancs BL3 6BJ.
Telephone: 0204386631
HERO ELECTRONICS,
Dunstable Street
Ampthill, Beds MK45 2JS
Telephone: 0525405015
c.w.o. Speciality: Sharp
components, opto-electronics.

HI-TEK DISTRIBUTION

Trafalgar Way,
Bar-Hill, Cambridge CB3 8SQ.
Telephone: 095481996
Trade.
HOUSE OF POWER,
Electron House, Cray Avenue,
Orpington, Kent BR3 3QJ.
Telephone: 016671531
c.w.o It is necessary (but easy to
open an account. Exclusive
distribution: Symbol
HUNTER ELECTRONIC
COMPONENTS,
Unit 3, Central Estate,
Denmark Street,
Maidenhead, Berks SL6 7BN
Telephone: 062875911
Trade.
HY-COMP
11 Shield Road,
Ashford, Middlesex TW15 1AU.

Telephone: 0784246273
Trade.

IMPULSE ELECTRONICS,
Hammond House,
Caterham, Surrey CR3 6XG.
Telephone: 088346433
Trade.
JATA (ELECTRONICS), 9 Heaton Road,
Bradford, W. Yorks BD8 8QK.
Telephone: 072442636
JERMYN DISTRIBUTION
Vestry Estate,
Sevenoaks, Kent 0732450144 Trade.
L.S.W. Components Service,

Wyvern House,
High Street,
Bognor Regis, W. Sussex PO21 1SP.
Telephone: 0234826824

LANGREX SUPPLIES,
Climax House,
Fallsbrook Road
London SW16 6ED.
Telephone: 016772424
c.w.o. Speciality: Obsolete
components.
MCP Electronics,
38 Rosemount Road,
Alperton, Middlesex HAO 4PE
Telephone: 019026941
c.w.o. ($£ 25$ minimum order) Speciality: r.f. and digital signal processing.

MDL COMPONENTS,
10 Cowley Road
Nuffield Industrial Estate,
Poole, Dorset. BH17 7UJ.
Telephone: 0202681331
c.w.o.

MACRO-MARKETING,

Burnham Lane
Slough, Berks SL1 6LN.
Telephone: 062864422
c.w.o. or A/c. Particularly proud of their technical advice department.

MAPLIN ELECTRONIC SUPPLIES
PO Box 3, Rayleigh, Essex SS6
8LR.
Telephone: 0702554155
Mail-order catolgue and retail shop.

MARCO TRADING,
The Maltings,
High Street,
Wem, Shropshire SY4 SEN.
Telephone: 093932763
Mail-order catalogue and retail shop.

MEDL DISTRIBUTION,
East Lane,
Wembley, Middlesex HA6 7PP.
Telephone: 019049303
Trade.

MEMEC,

Thame Park Road,
Thame, Oxon OX9 3XD.
Telephone: 0844214561
c.w.o. Speciality: Microprocessor and memeory i.cs.

MERLIN ELECTRONICS,
Granada House
Gabriels Hill
Maidstone, Kent ME15 6JP.
Telephone: 0622678888
c.w.o.

MICROLOG,
Elizabeth House,
Duke Street, Woking, Surrey GU21 5BA.
Telephone: 0486266771
c.w.o. Speciality: Linear i.cs,
programmable logic arrays.
MICROMARK ELECTRONICS,
157 Boyn Valley Road,
Maidenhead Berks SL6 4DI
Telephone: 062872631
c.W.O.

MS COMPONENTS
Zephyr House
Waring Street,
W. Norwood, London SE27 9LH.

Telephone: 016706166
c.w.o. Trade/retail counter.

MCLELLAND ELECTRONICS,
3a Bankfield Industrial Estate,
Kitson Road, Leeds LS10 3YY.
Telephone: 0532460572
Trade.
NEWTEC DISTRIBUTION,
Beadle Trading Estate,
Ditton Walk,
Cambridge CB5 8QD.
Telephone: 0223211211
c.w.o (formerly Lock Distribution)

NORSEM ELECTRONICS

GROUP,
4 Heron Industrial Estate,
Spencers Wood,
Reading, Berks.
Telephone: 0734884588
Trade.
NEWECO,
Cresto House,
Water Lane,
Wilmsow, Cheshire.
Telephone: 0625529523
Trade.
PHAB ELECTRONICS,
7 Centenary Estate,
Jeffreys Road,
Enfield, Middlesex EN3 7UF
Telephone: 018054060
c.w.o. ($£ 10$ minimum order).

PHILIPS SERVICE,
604 Purley Way,
Whaddon,
Croydon, Surrey CR9 4DR
Telephone: 016860505
(Spares for Philips and Mullard equipment)

POLAR ELECTRONICS
Europa House,
West Street,
Leighton Buzzard, Beds LU7 7ND.
Telephone: 0525377093
c.w.o.

PRONTO ELECTRONIC
SYSTEMS.
466 Cranbrook Road,
Gants Hill,
Ilford, Essex IG2 6LE.
Telephone: 015546222
c.w.o. Speciality: I.cs (no discrete components)

QUARNDON ELECTRONICS
(SEMICONDUCTORS),
Slack Lane,
Derby DE3 3ED.
Telephone: 033232651
Trade.

RS COMPONENTS,

PO Box 427 ,
Epworth Street,
London EC2P 2HA.
Telephone: 012531222
RS components are sold as 'own
brand' and therefore they do not list their manufacturers. Most semiconductors in the RS catalogue are listed as 'similar to' recognised components. Trade only

RASTRA ELECTRONICS,

275 King Street,
Hammersmith, London W6 9NF
Telephone: 017483143.
c.w.o. or credit card. (£10
minimum) Retail counter.
REGISBROOK
215 King Street,
Reading, Berks RG1 4 LS.
Telephone: 0734665955.
Necessary (but easy) to open an account
S.E.M.E. Ltd,

2E Saxby Road Industrial Estate,
Melton Mowbray, Leics LE13 1BS.
Telephone: 066465392
Trade.
SEMELAB,
Bank Street,
Lutterworth, Leics.
Telephone: 045554711
Trade.
SEMI COMPONENTS,
Vine House,
104 Ashley Road,
Walton-on-Thames,
Surrey KT12 1HP.
Telephone: 0932241866
c.w.o. Speciality: Microprocessors
memory and display.

SEMICOMPS

Halifax Road,
Keighley, W. Yorks BD21 5HT.
Telephone: 053565191
Necessary (but easy) to open an account

SEMICONDUCTOR SPECIALISTS,
Carrol House,
159 High Street,
Yewsley,
West Drayton, Middlesex UB7
7XB.
Telephone: 0895445522
Trade.
Continued on page 81 Table on pages $60 \& 61$

CIRCLE 60 FOR FURTHER DETAILS.
 Aeromel International Altak Microcomponents Ambar Components Anglia Components Aries Electronics Arrow Electronics Aviquipo of Britain Barlec-Richfield Barrie Electronics Beta Devices Bi-pak Semicond Bosledge
Campbell Collins
Cirkit
Cirkit
Consort Electronics Curzon Electr
DTV Group
D.W. Electronics D.W. Electronics Dialogue Distribution Distributed Technology Electronic Re
Electrovalue Farnell G.E. Electronics Gain Electronics
Gothic Crellon Greenweld Harmswarth Towniey Hawke Electronics HB Electronics Hero Electronics Hi-Tek Distribution House of Power Hunter
Hy - Comp
Impulse Electronics JATA (Electronics) L.S.W. Components Langrex Supplies MCP Electronics Macro-Marketing Mapl in Marco Trading MEDL Distribution Memec

Mertin Electronics

 MicrologMicromark Electronics MS Components McLelland Electronics Newtec Distribution Norsem
Noweco Phab Electronics Philips Service Polar Electronics Pronto Rastra Electronics Regisbrook S.E.M.E

Semelab
Semi Components Semicomps Semicond. Specialists Semicond Supplies Intl. Solid State Scientific STC Electronic Steatite
Swift Sasco
thame Components Thorp Electronic
Today Electronics Trident Microsystems Verospeed
VSI Electronics (UK) Watford Electronics

Wide range of popular semiconductors Wide range of popular semiconductors

$$
\begin{aligned}
& \text { Mostek } \\
& \text { Motorola } \\
& \text { Mullard } \\
& \text { NEL } \\
& \text { National Semicond } \\
& \text { NAmerican Semicond }
\end{aligned}
$$

Oproa
Opto
Opto
Opron
Plessey
Precision
RCA
Raytheon
Reticon
Rockwell
SGS－Ates
華
은 Semicron
Semiprocesses
Semitron Semitron
Sescosem
Siemens

 x xuounis
部 c
든
兵
0
0

 Synet
TAG
TI
TRW
Teledyne
Thomson

－－• •－
－ Dood 0
puos！uas ubjuauy N Plessey Monolithic Precision Monolithic

BECKMAN

CIRCUITMATE DIVI73
Probe Type
Miniature Multimeter

- Provides 12 ranges - for voltages up to 500 VAC or $D C$ with 0.5% VDC accuracy.
'Touch Hold' facility Touch hold
to freeze a measurement to freeze a measur when Continuity bleeper a short is detected.
£45.50
(incl VAT \& pp)
Allow 14 days delivery

H-SQUARED ELECTRONICS LTD
Garden House, 25 Bedford Road,
Shefford, Bedfordshire SG17 5DJ Tel: (0462) 815115 Telex: 826052

CIRCLE 55 FOR FURTHER DETAILS

TRANSFORMERS EX-STOCK

CIRCLE 54 FOR FURTHER DETAILS.

.

MITSUBISHI

MGF-1400 GaAs FETs
MGF-1402
MGF-1412

FROM STOCK
Aspen Electronics Limited
UK representative for Mitsubishi Electric
2/3 Kildare Close, Eastcote, Ruislip Middlesex HA4 9UR
Tel: 01-868 1188 Tlx: 8812727

ME CONTROL CENTRE	
TOP QUALITY TOP TOPERVICE	CT6000K $£ 39.00$ XK 114. Relay Kit for CT6000 includes PC8, connectors and one relay. Will accept up to 4 relays $3 \mathrm{~A} / 240 \mathrm{~V}$ c/ocontacts $£ 3.90$ $\mathbf{7 0 1 7 1 5 \text { Additional Relays }}$ $£ 1.65$
ELECTRONICS 11.13 Boston Roac London W7 3SJ 01.5792842 TECHNICAL AFTER 3pm	

ELECTRONICS C.A.D. "ANALYSER"

PERFORMANCE ANALYSIS Of LINEAR CIRCUITS using the BBC MODEL B AND SINCLAIR SPECTRUM 48 K MICRO'S
Simulates Resistors, Capacitors, Inductors, Transformers, Bipolar and Field effect Transistors, and Operational Amplifiers in any circuit configuration.
Performs FREQUENCY RESPONSE ANALYSIS on Circuits with up to 16 Nodes and 60 Components, for Phase and Gain/Loss, input Impedance and Output Impedance. Ideal for the analysis of ACTME and PASSME FILTERS, AUDIO, WIDEBAND and R.F. AMPLIFIERS, LINEAR INTEGRATED CIRCUITS etc., etc.
"ANALYSER" can greatly reduce or even eliminate the need to breadboard new designs. USED BY INDUSTRIAL. AND UNJERSITYR\&D DEPARTMENTS WORLDWIDE. LOW COST ... VERY EASY TO USE. Prices from $\mathfrak{E 2 0 . 0 0}$

For further details write or phone NUMBER ONE SYSTEMS
DEPARTMENTWW
9ACROWN STREET, ST IVES
HUNTINGDON
TEL: 048061778 TELEX: 32339

B. BAMBER ELECTRONICS

D.C. SUPPLIES

I got lost in Dr Smith's generally excellent article on "D.c supplies from a.c. sources", October issue, when I got to the Appendix, after the first equation on page 68. That equation indeed applies for a square wave of voltage balanced about zero volts.
"If you drive the winding with a unidirectional pulse train..." starts the next paragraph; ... Of voltage one assumes pro tem. The core will then certainly "be magnetized in one direction only" in the sense that each application of unidirectional voltage will drive the flux in the same direction, in accordance with Faraday's Law cited on the previous page. But this immediately followed with a reference to Fig. A3 and a peak value of flux which seems to be followed by a reversal of flux change. What voltage accounts for this? (There can in practice be several answers but they all seem to introduce factors which have not been included within the stated problem with its unidirectional pulse (voltage) train.)

If the unidirectional pulses are of current there is no perceivable relevance of flux considerations at all unless by some very indirect route involving permeability.
In my experience a circuit diagram always helps, even in the simplest cases. In Fig. A3 there are two graphs for i , the lower of them labelled
"decrease in magnetizing current". Is this shown separately because it is supposed to be in a different winding?
Below A3 a paragraph starts "The usual procedure is to take the ratio of the mean values of flux...". Looking at Fig.A4 and wondering what two or more values of mean flux there might be, I see η used as if it were the ratio between the peak (supposedly equal) positive and negative excursions of flux about the (single unique) mean, at last in the botton part of Fig. A4. But the range of flux change (whether in time T/2 or not depending on unstated assumptions) is then $2 \eta \Phi$ where Φ is the mean flux. But by this time the meaning of the symbols is starting to become obscure. Certainly it is a matter requiring proof, to my mind,
that

$$
\hat{\nabla}=\frac{4 \eta}{1+\eta} \mathrm{NBAf}
$$

which I would be interested to see established.

Finally. I deplore your lapse from the excellent practice, so long maintained after other once-fine journals departed from it, of maintaining a sensible separation between advertising and the rest. I have for years pursued the advertisements thoroughly in $W W$ when it has suited me: I am now wondering for how long I will have the patience to avoid the d...d things when I want to read the rest.
R.S. Taunton

Crowborough
East Surrey

BAIRD

I was very surprised to read in the June issue of Electronics \& Wireless World on page 15 and 16 under the heading 'Communications Commentary' - sub-title 'Baird in history' that ."Baird's low definition television was barely ... true television ... since, even in its final broadcast form, it contained no real sync. signals". It does of course depend upon what meaning one attaches to those last four words.

For two years I have been compiling a chronological history of early mechanical television taken from the pages of technical journals and books of the period 1870 to 1937, including our own Wireless World, Television (\& Short Wave World), The Electrician and many others.

To avoid making this account too long I will confine myself mainly to statements found in text books of the early 1930's when the service was actually in operation and which show that the importance of the synchronizing signals actually transmitted at 375 Hz were well appreciated and were well within the capabilities of all main BBC m.w. broadcast transmitters as explained in the extract from the 1st book.

1. Book of Practical Television edited by G.V. Dowding Publisher: Amalgamated Press, Farringdon St., E.C.1. 1935 Chapter 9, 'Synchronizing a mechanical viewer', p. 106:
"In mechanical systems using one rotating member, the positioning of the lines is a fixed factor using one rotating member, the positioning of the lines is a fixed factor in relation to the rotating disc or mirror drum that produces the number of pictures per second. So long as the device rotates at the right speed the number and positions of the lines is bound to be correct. Centering the picture or avoiding it being split is bound to be correct.
Centering the picture or avoiding it being split vertically is all that has to be adjusted as there are $12 \frac{1}{2}$ pictures per second, each with 30 lines (with the black spacer at the top), the frequency of the synchronizing pulses will be 375 per second - the 'phonic wheel' synchronizer will have 30 teeth with the distance between each tooth being approx twice the width of each tooth".
2. Television for the Amateur Constructor by H.J. Barton Chapple Publisher: Sir Isaac Pitman \& Sons, London. 2nd Edtn 1934

Chapter IX 'Making Vision apparatus', page 194, "- using the 'tuned' synchronising transformer to resonate at 375 c / s to give a strong sync. -" Author's note: This would also enable the sync. signals to be connected in the correct phase, see later explanation.
Television Engineering by J.C. Wilson Publisher: Sir Issac Pitman \& Sons, London. 1937.

Chapter IX 'Synchronizing', pages $340 / 1$, Figs $206,7 \& 8$
'Toothed wheel mechanical synchronizing' - moreover the impulses must be positive in the coils of the synchronizer, they must give rise to an increase in the current passing through the coils and not a decrease. Circuit 207 shows how this can be accomplished for low definition transmissions (a transformer coupled circuit) - the usual resistance of the two coils in series is between 700 to 1000 ohms with an inductance of some 3 to 4 H (page 342).

This book is notable also for the completeness of the various chapter references and for Appendix VII 'Table of early t.v. disclosures' which I have found of great assistance.

In the case of the earlier more 'popular' books, it does not seem to have been appreciated that the
synchronizing signal of the Baird-BBC 30 -line service was derived from a black line at the top of the picture, scanning being carried out from the bottom right hand corner of the vertical upright picture, the spot moving vertically upwards, covering the picture area from right to left, finishing in the top left hand corner. The lines at the centre of the picture were also more narrow than those at the outside edge to improve centre picture definition.

Various accounts emphasise the need for a strong pulse into the sync. coils for a steady picture. However with the Baird disc scanner receiver where most circuits show the sync. coils connected in series with the neon picture lamp, this would result in a negative picture as well as requiring a high h.t. voltage of over 200 volts, usually derived from batteries. To get a positive picture with strong sync. pulses, the circuit on page 106 of the 'Book of Practical Television' would have to be used with the sync. signals via the transformer phased for positive-going with a positive picture from the negative signal, the black sync. line at the top of the picture giving maximum transmitter output.

An example, however, of the good sync. results that could be obtained from a disc-scanning receiver is given on page 386 of the September 1934 issue of 'Television' in which the 'Disc Kit' being supplied by British Television Supplies Ltd., of Bush House is being reviewed. The last paragraph states 'the synchronizing gear was effective in holding the picture steady for long periods. We have every confidence in recommending this kit receiver'. In this version the phonic wheel assembly was mounted on the scanning disc spindle, while the driving motor was fixed to the wooden baseboard at one side connected to the spindle by pulleys and a circular form rubber belt to reduce 'hunting'.

Much correspondence and technical notes appeared in the various technical magazines under the heading 'Reversing Negative Pictures' but regretfully almost no attention was given to the importance of strong positive-going pulses in the phonic wheel synchronizer coils by correct phasing from a postive picture signal. A good
example of a note under the above heading is at the bottom of page 144 of the April 1934 issue of 'Television'.
The apparent general failure to appreciate the above probably accounted for the poor overall reputation of the Baird disc-scanner receiver. The later mirror drum versions were much superior and I can personally remember the whole 30 or so minute transmission (including the ' 8 Step Sisters') without any loss of synchronization and this is confirmed by a Wireless World review of the Bush radio, Baird mirror drum receiver in the Sept. 15th 1933 issue, pages $237 / 8$, where favourable comment was made to the steadiness of the picture. "The synchronizing is really good and during a half hour transmission the apparatus often carries through without going out of sync. even once - . - the lapses from sync. are apparently due more to the transmitter scanner than the receiver, for they invariably occur at the end of an item when the curtain falls to the studio. Apparently this interrupts the sync. impulses". F. Poperwell

Totteridge
London

RELATIVITY

It was delightful to read that Professor McCausland has finally come down in favour of the anti-relativists. His polite, 'bending-over-backwards' approach to see the relativists point of view must have been quite frustrating. I congratulate him for his succinct conclusion that Special Relativity is now too suspect to be regarded as a tenable theory.
It is also delightful to read Dr Murray's views and comments on one of Einstein's mistakes concerning Relativity theory.
Can I now enter the field with a suggestion? Since Wireless World has aggregated an elite band of contributors and letter writers who are dissatisfied with contemporary physics, why not hamess such dissident energy? Such a team could reshape the physics of the world!
I suggest this harnessing could be done by a scheme (produced under the auspices of Wireless World) as follows

- Wireless World to publish a series of articles on the new physics.
- Wireless World to issue printed self-adhesive labels for affixing to the above folders.
- Each article to be classified by the Decimal Bibliographical System.
- Introductory pages to be available giving a list of physicists in sympathy with the London School whether contributors or not.
- Every so often Wireless World should describe an experiment that should be made in order to test theories put forward by contributors.
A.H. Winterflood

Muswell Hill
London N10

I must have written my letter (July) badly, because I was concerned with what kind of factors would lead us to approve or disapprove of a theory, and not with any application to specific points in relativity. Presumably everyone agrees that special relativity works, in the sense that it gives a good quantitative description of phenomena studied in mechanics. (The first cyclotrons only worked with low energy particles because they assumed Newtonian mechanics to be accurate; only after they were re-designed with relativistic mechanics would they work with higher energies.) So if the theory appears to be nonsensical in some particular application, what are we to make of it all?

One guiding principle is "don't throw the baby out with the bath water"; anyone who does that is not a fit person to bath the baby. Do you remember the bell ringers and the clock maker? Look at all relativity's successes as well as its difficulties and then decide if there is something worthwhile and important in it. Einstein won just fame because he wrote the first worlds on relativity, not the last words; as most of its applications are at the frontiers of science the theory has developed since his day. The helpful thing to do is to show how its flaws can be overcome, not merely to snigger and do nothing constructive. Rightly or wrongly, scientists are impressed by a theory which (in its growing stages) does a lot
which is right; they like to work on its rough spots and improve it rather than throwing out the baby.
One thing that I will not do is to give away my own views on the correctness of relativity, so don't try to read between the lines! What I do want people to do is to think about what kind of evidence or arguments are appropriate for use with a theory whose applications are in the frontier districts of science. It has been failure to do this rather than anything to do with relativity which has kept your columns busy.
J.G.D. Pratt

West Horsley
Leatherhead
Surrey

In his article "The Roots of Relativity' in the May issue Dr Scott Murray claims to reveal a crucial mistake in Einstein's early (1905) account of a 'thought experiment' on the failure of simultaneity in special relativity. He states (p.71, col.3) that "at the instant when the flashes occur the position of M^{\prime} coincides with that of $\mathrm{M}^{\prime \prime}$. With this phrase and in what follows he assumes that if M, the observer on the embankment, interprets the lightning strikes at A and B as occurring at the same instant, i.e. as being simultaneous, then so will the observer on the train, M^{\prime}. By so doing he invalidates the whole of his subsequent discussion. In fact if M interprets the two strikes as being simultaneous M^{\prime} will interpret the strike at B, toward which point he is travelling, as occurring before that at A. It is a safe bet that hardly any of the 'scientifically educated people (who) harbour niggling doubts about it (special relativity) have really grasped what the failure of simultaneity entails. The mutually contradictory nature of the various criticisms of special relativity, which Dr Murray himself remarks upon, reflects the different points in the criticisms at which the assumption of universal simultaneity is slipped in, a process of which Dr Murray's analysis of Einstein's crucial mistake' provides a typical example.

Some hypnotist must have been at work on him to account for the way he fails to register the key provisos 'as judged
from' and 'considered with reference to-' 'the railway embankment' which occur in Einstein's exposition. Einstein asserted, not that M^{\prime} was hastening away from or toward a beam of light in any absolute sense, but only that he was doing so relative to the observers stationary with respect to the embankment. Consequently light from the strike at B would certainly reach him before it reached M, a commonsense conclusion which for once special relativity allows to be true. Dr Murray's 'routine reminder that the velocity of light from a moving source - a relatively moving source - has never been measured' has now been overtaken by events. The Open University program 'Maths; Space-Time Geometry' broadcast on BBC2 on June 2nd described a measurement carried out in Paris of the velocity of light emitted by electrons travelling round a storage ring at a speed relative to the lab. of some 95% of the speed of light. The ring consists of alternate straight and curved segments, the electrons being bent to follow the latter by magnetic fields. In the curved segments, because of their enforced centripetal acceleration, the electrons generate electromagnetic radiation. By sending bunches of electrons round the the storage ring one can cause this radiation to be generated in pulses, and the velocity of the pulses can be measured in the laboratory, in any chosen direction relative to the motion of the electrons, using suitable collimation to ensure that the radiation observed comes from the right segment. Within experimental error that velocity was found to be equal to the velocity of light. Even natural philosophers are not entitled to ignore the evidence of experiment.
C.F. Coleman Grove, Nr Wantage Oxfordshire

FUNDAMENTALS OF ENERGY TRANSFER

It is always refreshing to see a contribution from Ivor Catt even if I do not wholly concur with his conclusions. I am well aware
of Heaviside's views that electromagnetic energy leaves a source and enters a load sideways, and he gives an example of a source in London connected by a telegraph wire to a receiver in Edinburgh. Some of the energy from London travels far out into space before converging on the receiver, , but unfortunately I have not been able to find in Heaviside's Electromagnetic Papers any account of how the energy in distant space knows that it is time to start the descent for Edinburgh. However, this is a difficult matter and it is not surprising that the story is incomplete. What is much more difficult to accept is why we should in our theory stumble on the relatively simple matter of a parallel-wire transmission line.
The National Physical Laboratory defines the SI unit of electric current as "The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible cross section, and placed 1 metre apart in vacuum, would produce between these conductors a force equal to 2×10^{-7} newtons per metre of length."

Many text books on electricity, elementary and advanced, use similar wording to define the ampere and indeed the definition is not new. If we substitute centimetre for metre and dyne for newton we have the c.g.s. electrodynamic definition of the ampere that has been used since the beginning of this century, and during this time this piece of scientific nonsense has been for the most part uncritically accepted.

Consider the following relatively short transmission lines:
In diagram (a) the line is open circuit at the distant end hence the conductors experience a mutual electrostatic attraction. In (b) the conductors carry a current and hence mutually repel each other. In (c) we have a combination of electrostatic attraction and electromagnetic repulsion which for some value of R must neutralise each other.

Not very surprisingly the value of R to produce zero resultant force is the characteristic impedance of the line, and that can be achieved by extending the line in diagram (a) infinitely to the right. It seems to have been forgotten

that if a line has $Z_{0}=100 \Omega$
then to establish a current of 1 A in the line we need a supply of 100 V and the electrostatic attraction because of that cannot be ignored.

Forces on the conductors of a transmission line arise from reflections, and the principal characteristic of an infinite line is that it is free of reflections. Now this absence of force on an infinite line follows almost intuitively from the principal of virtual work so it is all the more surprising that the error should have gone undetected for so long. In an infinite line there is equal sharing of the stored energy between the electric and magnetic fields associated with the line. If we increase the separation of the line conductors by a small amount we need a force to overcome the electrostatic attraction, and that can be calculated from $f=d w /$ $d x$ where $d w$ is the increase in stored energy and dx the displacement. Likewise the force associated with increasing the magnetic field energy is $f=$ $d w / d x$ and because of energy sharing equally, dw is the same in each case, as is $d x$, and the forces oppose each other, so there is a net resultant of zero. Mr Catt rightly says that nothing travels sideways across a transmission line in the TEM mode and that includes force. Lateral forces on the conductors of a transmission line always arise because of reflections that upset the balance of electric and magnetic energy storage in the line. That is only possible with a line of finite length.

Of course it may be objected
that the definition does not specify that the two conductors should be the go and return of a single circuit. They could perhaps be the two go conductors of a circuit with a distant common return. Apart from the added complexity due to the third conductor the problem is the same whether the currents in the specified conductors flow in the same or opposite senses. The twinbeam c.r.o. is an example of two parallel conductors carrying current in the same direction. It can be easily shown for this case that for relatively low anode voltages the beams repel each other electrostatically. As the anode voltage is increased the magnetic attraction of the beams becomes greater and would exactly neutralise the repulsion if the electrons in the beams could accelerate to the speed of light and there, as in the case of inifite parallel conductors, the nett force would be zero. Examination questions on this part of c.r.t. science are not uncommon and take the form of "Show that, no matter how the beam electrons are accelerated, the force between beams can never become attractive". The short answer to that is that we can never get the electron velocity up to the energy propagation velocity of the parallel conductors.
It is quite understandable how the definition of the ampere comes to be as it is. A line of finite length has end effects that we do not know how to take into account, so what could be simpler than to remove them to infinity? Unfortuntely this ploy leaves us with a useless line as far as the measurement of force is concerned.

In practice, the SI definition makes no difference for no one pays any attention to it. The ampere is standardised using an Ayrton-Jones current balance in which the conductors are arranged as circular coils and not as straight lines. In the Ayrton-Jones balance we are dealing with equivalent lines finite length short-circuited at the far end so that all the energy is stored in the magnetic field and none in the electric field, so we have no problems.

However, the definition does make a difference of those of us like Mr Catt and me who have some responsiblity for educating the young in fundamentals of our science. How can Mr Catt
persuade his students that nothing traverses a transmission line in the TEM mode sideways, when in all quarters, they see "authoritative" statements to the contrary?
Chris Parton
Bell College of Technology Hamilton
Scotland

Mr Catt's article (September 1984) treads some very shaky ground: I consider many of his statements to be rather questionable but I think I can lay the rest the so called 'Catt Anomaly'.

If I understand Mr Catt correctly he is unwilling to accept that a charge pulse can travel down a transmission line at a speed greater than the speed of light local of the copper of the conductors.
In fact, the speed of light in the conductors (or, for that matter, the electron drift speed of some millimetres a minute) has no bearing at all on the speed of an EM pulse travelling down the transmission line. In 1 nanosecond charge does not have to travel 1 foot down the wire: all that is required is for a drift of charges to occur at the leading edge of the pulse, as it moves, so as to leave a net charge on the wire, in the wake of the pulse.

If this does not seem clear, consider the case of a low amplitude sound pressure pulse, travelling down a pipe: the air in the pipe, behind the wavefront travels very slowly indeed, while the pressure front travels forwards at the speed of sound.

I should like to add that I consider the issue of whether EM fields in a waveguide cause currents in the conductors, or vice versa, to be a meaningless, unanswerable question: field and currents are related by the physics of the situation, one does not preceed the other in time, and no wave or pulse travels without both.

There are a great many statements in Mr Catt's article to which I take exception, but I lack the enthusiasm to describe all the fallacies, or research his reference list to isolate their origins.
N:C. Hawkes
Abingdon
Oxfordshire

PUT BBC BASIC IN CONTROL USE THE 6502 2ND PROCESSOR WITH BIG CONNECTIONS

- Single Eurocard - can stand alone and run BBC BASIC programs.
- Program your control applications in BBC BASIC
. . . FORTH, PASCAL or any other language ROM.
- Adds I/O expansion to your BBC via the 6502 bus connector.
- Tube Interface for fast development.
- Battery backed up Real Time calendar clock.
- Runs BASIC programs in ROM or from battery backed up RAM.
- Complete set of software utility modules available in ROM.
- A full range of Eurocards for use in target applications.
- Ideal for industry, education, research and commerce.

CIRCLE 44 FOR FURTHER DETAILS.

CIRCLE 32 FOR FURTHER DETAILS.
 SSB transceiver. This 150 watt radio is above and beyond the competition and built to operate with confidence when others cannot.

The IC-M700 has 48 fully programmable memory channels and operates in simplex or semi-duplex covering all ship-to-shore, high seas telephone and ship-to-ship SSB channels. Independent transmit and receive programming

A heavy-duty loudspeaker provides 5 watts of receive audio, other features include a wide range clarifier and audio activated squelch (radio remains silent unless a human voice is detected). Interference noise blanker and a heavy-duty mounting bracket are standard. The IC-M700 is a sophisticated but rugged and reliable marine transceiver.
Thanet Electronics Ltd
143 Reculver Road, Herne Bay, Kent. England. Tel:(O2273) 63859/63850. Telex: 965179 CIRCLE 19 FOR FUR'THER DE'IAILS.
ELECTRONICS \& WIRELESS WORLD DECEMBER 1984

Mobile radio system and techniques

Topics discussed at the IEE conference recently held in York.

Efficient use of the radio spectrum was the theme that ran through many of the papers presented at the IEE's September 1984 conference in York on "Mobile Radio Systems and Techniques". The radio spectrum is a natural resource of finite quantity, much of which is subject to an ever increasing demand from spectrum users, including the land mobile radio services.
Mobile radio in the UK today is going through a period of changes. The two new cellular networks at 900 MHz are now being installed by Racal and TSCR in a dramatic race to be first on the air and to be operational by early 1985. At lower frequencies, the UK's Bands I and III tv transmitters are to be turned off for ever at the end of 1984, leaving over 70 MHz of prime spectrum available for other services. Band III $(174-225 \mathrm{MHz})$ has already been ear-marked for land mobile radio use.
Internationally too, mobile radio is seeing many changes with new cellular radio network being planned or installed in several countries. The choice of system to be used (AMPS, TACS, NMT, S-900, MATS-E etc) is still being heatedly discussed in many countries. Consequently, there was no shortage of topics for the 341 delegates from 22 countries to discuss during the four days of conference!

Spectrum efficiency

In his opening address, Mr W.H. Bellchambers, one of the five members of the Geneva-based International Frequency Registration Board, made pleas for a greater awareness of both spectrum engineering and spectrum efficiency. This should include the establishment of research posts into "frequency management" at universities and more standardization on the use of frequencies internationally.

Mr Bellchambers went on to question the wisdom of having two incompatible services operating in the same frequency band in neighbouring countries, as will soon be the case in Band III. The UK will be using these frequencies for new land mobile radio services while the UK's continental neighbours will continue to use these frequencies for tv transmissions.
The planning of the international radio spectrum is currently done through a programme of ITU conferences, starting with the administration conferences, such as the WARC held in 1979, which are followed by a series of detail Planning conferences, spread over a number of years. The time taken for the implementation of new frequency allocations has been up to 20 years. Mr Bellchambers wondered if there was not a better way of managing the spectrum internationally, that could take less time and be more responsive to changes in technology. Mr Bellchambers urged the delegates to start planning now for the next WRAC in five years time, and to
bring to that conference ideas for streamlining the international frequency spectrum management process.

In conclusion, Mr Bellchambers wondered whether the technology of the future would enable today's method of "frequency allocation" which defines specific frequencies, to be replaced by a spectrally more efficient system where a given service would be allocated a "band" of frequencies. The equipment itself would be continuously frequency agile and would allocate itself a frequency within the given band to give optimum performance under the given circumstances. This was a direct challenge to engineers to design more spectrally efficient systems.

Cellular radio

The present phase of cellular radio being planned or installed by European administrations will not be compatible on a truly panEuropean basis. Cellular radio users will have to wait until the next generation of cellular mobile radio equipments are available in

Fig.1. Proposed Skylink America mobile satellite service for coverage of North America from a single geostationary satellite using up and down links in the upper u.h.f. bands. Mobile users would access the satellite directly.

the early 1990 's before they can drive from one country to another and still use their car radio-telephone.
Cellular radio installations in Ireland, Hong Kong and Finland were described at the conference by representatives of the respective administrations.
The Irish PTT earlier this year scrapped plans to use a 450 MHz network and has now opted for a TACS network on 900 MHz that would be compatible with the network currently being installed in the UK.
Delegates heard with interest about the experience gained with the Hong Kong 450 MHz cellular network that operates throughout the colony's tightly packed highrise building areas.
satellite over the North American continent.
A paper describing a proposal for a UK land mobile communications satellite experiment which would use four satellites (3 live and 1 standby) in a Molniya orbit to give 24 hours coverage was presented by a team from the University of Bradford. An extended feasibility study has been undertaken by a number of UK universities and the RutherfordAppleton laboratory. Apart from the super-synchronous, pear shaped Molniya orbit proposed, the other major feature of the study project is the proposed use of on-board microprocessor facilities for signal and message handling to maximize the efficiency of resource usage.

Fig.2. UK land mobile services sub-bands in Band III, planned to avoid vision carriers of the new French fourth channel programme 'Canal Plus'.

Cellular radio users in the four Scandinavian countries using the NMT system on 450 MHz can move across borders within Scandinavia and stil have access to the radio-telephone network. Future development of the NMT system will include the installation of a 900 MHz network. Even though the frequencies used may be the same as other European cellular networks (eg: the UK TACS systems will also be on 900 MHz), the different signalling procedures used make the systems incompatible.

Satellite versus cellular

Papers describing possible future land mobile services in North America described how coverage would be available to mobile radio users in rural and remote areas via satellite. Areas that would never likely be covered by cellular radio networks because of the low user density could be served directly by the propposed satellite land mobile network.
Skylink Corporation of America described their proposal for a mobile, portable and limited fixed services network operating in two 4 MHz sectors ($821-825 \mathrm{MHz}$ receive, $866-870 \mathrm{MHz}$ transmit) from a single geo-stationary

Band III in the UK

Mr K.P. Fisher of the Radio Regulatory Department of the DTI described in detail some of the technical background to the Band III frequency allocation proposals for land mobile services in the UK Government's May 1984 Green Paper on the future uses of Bands I and III after the closedown of 405 -line tv transmissions on at the end of 1984.

The DTI was well aware that any new land mobile service on the band III frequencies would have to be very carefully planned to avoid interference to the services from the transmissions from neighbouring countries that will continue to use band III for the foreseeable future.
In planning the future use of band III for mobile services in the UK, Mr Fisher stated that it is the level of interference caused to continental tv viewers that is the limiting system design contraint rather than the interference caused to the mobile services by the overseas tv signals. Mr Fisher informed the delegates that an agreement had been drawn up with the French administration setting out the highest
permissible signal strengths from UK land mobile services in France.

A large response had been received from industry and interested parties to the Government's Green Paper on the future uses of these frequencies. Mr Fisher informed the conference that the RRD would be making an announcement concerning its preliminary findings at the IEE colloquium to be held on 8th November.

"Relugees from Band II"

The mobile radio networks run by the UK's utilities (Electricity, Gas and Coal) are currently operating on frequencies just above the present f.m. Band II (104-108 MHz). As the f.m. broadcast band limit is to be increased to 108 MHz on an exclusive basis by 1995 at the latest, the radio networks operated by the utilities will have to be relocated. The utilities because of the nature of the services provided, need to have nationwide communications facilities. Units operating in one part of the country might have to be transfered to another to meet a particular local requirement and the communications facility needs to go with them.

Mr C.E. Dadson of the Electricity Council speaking on behalf of the mobile radio services of the nationalized power industries said that they need wide area mobile radio coverage in order to be able to provide communications for essential services. The present proposal is that the utilities should relocate from their Band II frequencies to the new mobile services allocations in Band III.
Mr Dadson expressed fears that, in practice, land mobile services operating in Band III in competition with continental stations might be put out of service for days on end because of interference caused through troposheric propagation and ducting conditions. Coastal areas, where operating restrictions in Band III would be the greatest, were often just those areas where the nationalized power industries needed to have the best communications. In conclusion he asked for special consideration of the national coverage requirements of the "refugees from Band II"!

H.f. radio

Although the majority of the papers related to v.h.f. u.h.f.
systems, there were two papers on h.f. techniques. One by MrN . Gerdes of the School of Signals described a low-cost h.f. propagation prediction method which could be run on a BBC computer. Comparisons between actual and predicted propagation on different h.f. paths are the subject of continued investigation, but so far there appears to be close correlation. The method is intended as a low-cost alternative to the prediction programs run on main-frame computers by bureaux.

The second papers on h.f. described an experiment being carried out at the University of York into improved design for h.f. communication networks involving mobiles. The study centred around a network of sereral interconnected h.f. base stations and a mobile station. The objective was to increase the reliability of communication to and from the mobile station by the interchange of data between the base stations concerning the reception of the mobile. This was described as "geographic diversity". As part of the study a low-power h.f. link is to be set up between York and Canterbury.

Pagers

Paging systems are also users of the radio spectrum and as they develop forward from the basic "bleeper" to carriers of messages, both numeric and alphanumeric, they bring together radio engineering and data transmission technologies. Papers described recent developments in the integration of pagerr receivers. One such paging receiver, described by a team from Philips Research Laboratories had only 12 "off-chip" components (but 13, including the battery!).

The POCSAG paging code originally devised by the UK Post Office has bow become standardized by the CCIR for international use.

Amateur radio experiment

As with any meeting of international mobile radio specialists ther was a good number of amateur radio operators among the delegates. One of the presented papers described an amateur radio experiment which involved using a number of mobiles fitted
with 144 MHz transceivers to build up a propagation map of an area around Birmingham in order to determine the relative performance of different sites for use in a possible emergency communications operation as part of Raynet. Unlike professional propagation analyses which rely on expensive test-gear, this amateur experiment relied more on the enthusiasm of the participants that it did on test gear. (Although presumably the computer required to solve the 300 odd complex simultaneous equations after the event in order to produce the results could have been classified as "expensive test gear"!).

The IEE's Conference on Mobile Radio Systems and Techniques came at a time of unprecedented change and developments in the area of mobile radio in the UK. By the time that the next such conference is held, both cellular radio and the new Bank III mobile services will have been put into operation and it can be expected that there will then be more papers based on actual experience and less on predictive techniques that was the case this year.

References

1. IEE Conference Publication 238 "Mobile Radio Systems and Techniques" 2. HMSO Cmnd 9241, "Bands I and III" Consultative Document

Pulse-width demodulator

Designed as part of an opticalfibre interface between a computer and e.h.t. generator, this pulse-width demodulator uses a 723 voltage regulator and fet as a low-drift constantcurrent sink.
The 723 and fet provide a 4.77 mA reference for a 10 kHz pulse-width demodulator. When the t.t.1. input is low, all of the reference current is supplied from the 5 V rail, but when the input is high, current has to be drawn through the diode from the inverting output stage. The diode and switching transistor must turn off quickly, but their on resistances do not greatly affect performance. Current-tovoltage conversion and two lowpass filter stages are provided by the output circuit. I have followed this arrangement by a 10 kHz notch filter (paralle! T) to remove modulation frequency break through.

When the 723 is driven from
a stabilized supply, the only drift problems seem to be those due to temperature. After gluing a lump of aluminium to
the device, drift was $+0.02 \%$ in the first 15 minutes, $+0.02 \%$ over the next hour and $\pm 0.02 \%$ thereafter.
Jim Dawson
University of New South Wales Sydney

DON'T WASTE GOOD IDEAS We prefer circuit ideas with neat drawings and widely-spaced typescripts, but we would rather have scribbles on 'the back of an envelope' than let good ideas be wasted. Submissions are judged on originality or usefulness not excluding imaginative modifications to existing circuits so these points should be brought to the fore, preferably in the first sentence. Minimum payment of $£ 30$ is made for published circuits, normally early in the month following publication.

Electronic ignition key

Your car can be made burglar proof if it can only be started by entering a code on a keyboard. With this circuit, the code has to be entered within a time limit and the code cannot be corrected without setting off the
alarm, thwarting even the shrewdest car thief.* When the ignition is first switched on, latches $\mathrm{IC}_{\text {la,b }}$ and monostable circuits $\mathrm{IC}_{2 \mathrm{a}, \mathrm{b}}$ are cleared by RST_{1} and reset signal RST_{2} initiates an 11s period,
during which the alarm is disabled. If any of the systemreset keys is pressed (1,3 or 8) during this period, another 11 s cycle is initiated by $\mathrm{IC}_{3 \text {. }}$. This inhibits further code entry and the alarm is activated at the end of the cycle. When the conrect code is entered during the initial 1ls period, reset keys three
and four are pressed together to release monostables IC $2_{\text {a,b }}$ and latch $\mathrm{IC}_{\mathrm{ta}}$.

Pressing key seven, the first digit of the code, triggers the first monostable device, $\mathrm{IC}_{2 \mathrm{z}}$. The Q output of $\mathrm{IC}_{3 \mathrm{a}}$ will be high, provided that it has not been triggered. As the \bar{Q} output of $\mathrm{IC}_{2 \mathrm{a}}$ goes low the rising edge of $\mathrm{IC}_{2 \mathrm{a}}$'s B input (switch bounce is accounted for), through pressing and releasing key five as the second digit of the code, triggers the second monostable, $\mathrm{IC}_{2 \mathrm{~b}}$. Output Q of this device feeds the D input of latch IC_{12} and pressing and releasing keys two and six together (third and fourth digits of the code) latches $\mathrm{IC}_{1 \mathrm{l}} \mathrm{Q}$ output high. Output \bar{Q} of $\mathrm{IC}_{\mathrm{la}}$, being low, inhibits firing of the s.c.r., even after 11s, and the critical phase is over.
The spare second half of IC_{1} serves as an output latch, the Q output of which energises a t.t.I. relay on whose normallyopen contacts switch a further higher power 9 V relay with normally open and normally closed contacts. The normallyclosed contact releases the

s iort across the ignition contact breaker and the normally-open contact offers a holding path for the 9 V relay, even during reset.

If the correct code is not entered during the 11 s period the ear horn is switched on. Turning off the ignition key does not stop the aiarm but pressing the horn button will Eomentarily inhibit conduction of the s.c.r.

Use of the secondary 9 V relay ensures reliability, even if the tattery is not fully charged and curing the voltage dip caused by starting the engine. Supply cecoupling is not critical as the eircuit only needs to operate properly while the car is stationary. Malfunctions eccurring while the engine is funning are of no consequence ance the 9 V relay only acts Fhen the ignition key is switched off.
G. Varkey Cochin Naval Base
Kerala Endia

- Or a driver uncer the influence of Eleohol - Ed.

Easy to read hexadecimal display

One seven-segment display made to display hexadecimal values is awkward to read. Devices for displaying binaryencoded decimal values don't respond to binary itputs above 1001 but this circui: display a hexadecimal value in decimal form and its most-sgnificant decoder is capable of reading between zero and five. Hr De Smet Willy (onlug Zomergem
Belgiura

One led shows six modes

In my application, this multivibrator driving a 'threecolour' led is used to indicate one of six modes of a cassette recorder but it can be applied to any situation where d.c. switching is used.

Supply to the multivibrator is split so that oscillation at about 1 Hz only occurs when the pause switch is on. The six modes indicated are

- led off, deck disengaged - green, running (play or wind) auto-stop effective
- red, record mode - yellow, running (record) auto-stop effective red/yellow, pause (record) - red/green, pause (play) if winding auto-stop ineffective Comections shown are for the Hart Electronics VFL910 cassette deck. In other applications, green and yellow could be made to flash alternately. J.E. Wilson Leicester

Differential line driver replaces transformer

There are many applications where balanced line driving is required, particularly in audio applications where noise is a problem. Transfonners are expensive and suffer from limited bandwidth and stray magnetic fields so this circuit uses opamps
Output maintains constant amplitude even if one balanced line is earthed, thus simulating
true transformer attion. Devices chosen have low noise figures and can drive 6008 lines directly. The circut has a 22 dB overload margin wien driving 0 dBm into 600Ω, and greater than 60 kHz full power bandwidth can be achieved by sareful choice of resistos. S. Whitt Ipswich Suffolk

by P.N.C. Hill

*The interactive control program can be obtained from this office. Please enclose a large, stamped and addressed envelope and mark your letter 'XY Plotter'.

Fig.1. Simplified 400 step sequencer for controlling stepper motors.

Fig.2. 200 step sequencer for controlling stepper motors with reduced resolution.

More on the XYplotter

Further constructional information and some software

Since the publication of the previous article on the construction of an X / Y plotter in the January edition of WW, I have received a number of enquiries requesting further information. Although the first article was intended only to introduce readers to the idea of constructing such a precision instrument, I hope that this will further encourage any would-be constructors.
The software required to drive the plotter has also been expanded and re-written in Pascal on a CP/M-based system similar to the SC84 computer

Output to motor driver stages

Output sequence $A B, B C, C D, D A$
described in this journal. An interactive control program has been developed to allow diagrams to be drawn from a stock of predefined shapes and then annotated with a wide selection of type sizes and founts*. A graph/histogram package also links a digital filter design program to the plotter so that frequency response and impulse plots can be drawn and labelled.

Driver circuits

The driver circuit described originally might seem excessively complicated to those who wish only to experiment with stepper motors. As mentioned previously the aim was to achieve 400 step-per-revolution accuracy from the motors. To achieve this from the four-pole motors, the sequence of excitation must be as follows:

$\mathrm{A}, \mathrm{AB}, \mathrm{B}, \mathrm{BC}, \mathrm{C}, \mathrm{CD}, \mathrm{D}, \mathrm{DA}, \mathrm{A} \ldots$

The rom sequencer described previously performs this operation for both motors therefore keeping chip count and interconnections to a minimum. However, those constructors unable to gain access to a prom programmer may prefer a more traditional approach in generating the necessary control signals for either 200 or 400 steps.
400 step sequencer. The circuit in Fig. 1 may be used to drive a single stepper motor. The 74LS193 counter maintains the current position in the 8 stage sequence: only the top 3 bits are used for this, the fourth bit being left disconnected. The counter's up/down input serves as a motor direction control, so that pulsing the counter steps the motor forwards or backwards. The binary outputs from the counter are decoded by the Nand gates. The four final outputs marked $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are connected to the power driver circuits, which in turn provide current to the stepper motor windings.

200 step sequencer circuit. A much simpler circuit can be used to generate the sequence: $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DA}, \mathrm{AB} . .$. Although this halves the number of steps per revolution, useful results can still be obtained: the circuit is shown in Fig. 2. Only two D-type flip-flops and two ex-Or gates are required for each motor - the motor direction is controlled by the state of the external input to the ex-Or gates. This simply inverts the feedback around the counter formed from the two flipflops. The step pulse to increment the motor position is applied simultaneously to both clock inputs on the 74LS74 flipflop.

Either of the above methods can be used to generate the logic sequence used to drive the current in the motor windings. The power driving section simply hooks onto the output of the sequencer. The exact design of the driver naturally depends on the type of stepper motors used and also on the loading conditions of the motors.
Driver stages. Various factors must be considered when designing the driver stages. A typical scheme which might be used is as follows. The selected winding(s) is driven hard on as the sequencer output changes to the next state. The rotor accelerates towards its next position, drive current being then reduced to maintain the new rotor position and prevent overshoot. If the motor is driving a predominantly inertial load, then this maintenance current may be only slightly (if at all) lower than the main pulse current. However, if the load is frictional, then the holding current need be only very small; indeed, it may not be required at all, so reducing the power dissipation considerably. In the case of the plotter the motors drive a load which is part frictional and part inertial: a compromise is thus sought. A maximum of 200 mA per phase for the pulse current with a holding cur-

rent of approx 40 mA is found suitable for the $12 / 24 \mathrm{~V}$ motors obtained from Stewarts of Reading. These figures are not critical and optimum choice will depend on the mechanical construction of the plotter.
Motor controller circuit. The common-collector driver circuit originally proposed is ideal for providing the two levels of current in a controlled manner. The fact that the initial circuit was designed for use with several types of motor and transducer contributes to its relative complexity. An alternative (effective) method of driving the motor is shown in Fig. 3. If the discrete transistors are too bulky then transistor arrays can be used, provided the maximum current ratings are observed. Little or no heat sinking is required for the driver transistors if they are used only in the fully on or off states. However, the main regulating transistor will require a heat sink if an appreciable hold current is used.

It is also important to note that the actual measured current in the windings will not be exactly as first predicted due to the very high self inductance and impedance of the wire used in the motors. Large back e.m.fs will
result during the current switching process, most of which the diodes ($\mathrm{D}_{1}-\mathrm{D}_{4}$ in Fig. 3) dissipate harmlessly. Failure to include the diodes will almost certainly lead to blown output transistors.
The on/off sequence is generated by a circuit similar to that in Fig. 2. In addition, logic for providing manual control from two push-buttons is included to allow movement of the pen independently of the computer. This is particularly useful when removing and re-loading paper. The movement rate is also increased after about one second of manual control to speed up the movement of the pen over longer distances whilst still allowing accurate positioning at a lower speed.

The circuit is self-contained (with the exception of the power supply) and so needs to be built once for each motor: Fig. 4 shows a photograph of the completed circuit. The component values shown are suitable for the SLOSYN motors mentioned in the previous article. Resistor R_{5} sets the maintenance or hold current, R_{1} sets current-pulse length, supply voltage sets pulse current. Best results may be obtained with a supply voltage typically higher than the motor's rated voltage. Heating effects are not a problem

as the current remains at the higher level only when the motor is stepped.

The circuit operation is basically straightforward with the possible exception of the modulation of the clock frequency by the output of the 74LS123 monostable via R_{4}. When either button is pressed the mono-stable $\left(\mathrm{M}_{1}\right)$ is triggered, so slowing the clock. After a short-period ($0.3 \times \mathrm{R}_{2} \times \mathrm{C}_{2}$ seconds) the out put returns high,

Fig.3. 200 step, stepper motor controller and driver.

Fig.4. Photograph of completed stepper motor control module. The manual control push buttons can be seen on the front of the board next to the led indicators. The leds turn off when the corresponding coil is being driven to avoid drawing excessive current from the logic.

Fig.5. Serial interface for graphics plotter.

Fig.6. Photographs showing the completed plotter in more detail. Both stepper motors can be seen attached to the pen carriage and the paper carriage.
so increasing the clock frequency by an amount dependent on R_{4}. The clock base frequency is governed by R_{3} and C_{3} which, together with the Schmitt Nand gate, form a gated oscillator.
The 74LS74 flip-flop and the ex-Or gates provide the $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DA}$ sequence
required for coil excitation, the direction being controlled by the state of the DR line.
The 74LS157 is used to route the control signals from either the computer or the logic associated with the manual over-ride buttons to the sequence controller. Pressing either button over-rides
the computer - necessary during software development!

Interfacing to the computer

Any home computer is capable of driving the plotter. Sadly, the interfacing facilities of most of the numerous hobby machines are far from being standard. If parallel outputs are available, then interfacing the plotter is a simple matter. Two wires are required for each motor: direction control and step pulse. One additional wire is required for each pen for the lift control, giving a total of six wires for a two-pen plotter, plus the common earth line (of which several are recommended for safety's sake). One standard eight-bit output port is thus sufficient. Additional input lines can be added for feedback for finding the paper origin etc.

This form of parallel interface requires a multi-core cable and cumbersome connectors, and offers no protection to the microprocessor from external nasties such as 25 V lines etc. An alternative approach is to use a serial interface driven from the RS232/ IEEE 425/426 output of the computer. This is portable and flexible and only requires two wires! Many uart chips are available which perform the basic shifting and timing operations necessary for an asynchronous receiver. The AY 3-1015-D is one such device particularly useful in this application as it can operate without a host microprocessor. It requires a stable clock at a frequency of 16 times the baud rate. This is generated from a crystalcontrolled oscillator and divider circuit. Baud rates of above 4800 are advisable to allow a reasonable plotting speed to be achieved. Figure 5 shows a suitable interface circuit.

ELECTRONICS \& WIRELESS WORLD DECEMBER 1984

The incoming serial data is conditioned and buffered and fed into the RRD input of the device, the parallel output appearing on pins $26-33$. The DR signal on pin 19 indicates a received byte of data and is reset by pulsing low the DRR input on pin 18.
Although the circuit has not been used with the plotter it has been successfully used with other projects. The gates connected to the outputs of the AY 3-1015-D simply route the received data strobe signal to either (or both) of the sequencer circuits used. If the corresponding output bit is set to one then the sequencer is stepped once. If the bit is left low then the sequencer remains in its previous state. eg: Sending 01 H steps the X motor once in one direction whilst 03 H steps it in the opposite direction.

Improvements to the mechanics

Some simple changes have been made to the mechanics which have improved the performance of the plotter. It was initially suggested that button-hole thread was suitable for the traction wires along which the motors run. This does work extremely well; however, plastic coated stranded wire produces better results as it can be tensioned to a greater extent. A source of suitable wire is a fishing tackle shop as it is sold for use in attaching to large hooks to prevent even larger fish from biting through the line. Various thicknesses are available but 40 lb seems the most suitable.
A second improvement is to the pulleys that run along the wire. One pulley is fitted to each of the two motors which are in turn fitted to the pen carriage and to the plotter bed (or paper carriage). These should ideally be made of Brass rather than aluminium alloy, since the latter seems to promote excessive wear on the wire. The pulley diameter should be as small as possible to give the best resolution and smoothest performance of the plotter.

Finally and most importantly, the width of the flat area of the pulley on which the wire runs (see Fig. 13 of original article) must be sufficiently great just to prevent the wire from winding to the ends. This is best done by calculating the number of pulley revolutions that must be made for the appropriate carriage to move from one end of its travel to the other. The pulley width must
therefore be greater than this number times the thickness of the wire. In the case of the 401 b wire the outside diameter is approximately 0.8 mm . A pulley of, say, 7.0 mm diameter requires 14 revolutions to move the 21.2 cm of a sheet of A4 paper, which means that a pulley width of 11.2 mm is required. If the width is smaller than this then the plotter functions satisfactorily except for some long-term slippage.
The completed plotter is shown in the photographs in Fig. 6. Both stepper motors are clearly visible, as are the taut wires along which they run.

Controlling soltware

Once the plotter has been constructed and the electronics built and then interfaced to the computer, the software development can begin. This may, at first glance, appear to be a simple task, but there are a number of problems which can result if a few precautions are not taken.
The first rule is not to use float-ing-point arithmetic for the main line and curve drawing routines, since the inevitable truncation errors lead to inaccuracies which accumulate, as all pen positioning is naturally done relative to the previous pen position. If a positioning error occurs at any point the error remains from then on. These slight error may not be noticable on small diagrams but on larger, more complex drawings the end may not join up with the start.
For simplicity in the description of the software, the pen is assumed to move in both the X and Y direction over the paper. In practice this is not the case as the paper actually moves in the Y direction.
Straight lines. This is the most elementary routine (apart from pen up and pen down). We may specify the endpoint of the line on a cartesian coordinate system, the origin of which is previously defined at a suitable point on the paper. The X and Y coordinates of the endpoint are passed to the routine which then moves the pen from its current position (wherever that is) directly to the endpoint. If the pen is up then no line is actually drawn. If the pen is down then a straight line is drawn on the paper.
It is tempting to perform this function by calculating the gradient of the proposed line. A deci-

mal number is obtained. For each step the pen is moved in the X direction it must be moved by this amount in the Y direction. Obviously the pen can only move in whole steps, so at each point one must calculate the exact position using floating point arithmetic and then move the pen to the nearest actual location. When the end of the line is reached any small error present must be corrected or else it will propagate. The problems mentioned are only the beginning, since we also have to cater for vertical line without a division by zero error in the calculation of the gradient. Doubtless it would be possible to devise routines to perform all these checks, but if they were written in anything such as Basic it would probably take serveral minutes to draw each line. Luckily, an alternative exists.

A glance at Fig. 7 highlights the problem. The central line shows the ideal (unobtainable) solution: The staircase route for the pen is the best approximation. At every point there are two possible directions in which the pen can next be moved: one step in the X direction or one step in the Y direction (the movement is either positive or negative on each axis but this is constant for any given line and so need not be determined at each step). We simply wish to determine which of the two options leads to the pen being positoned closest to the ideal line. If we calculate the distance that each of the two solutions would place the pen from the ideal line we can then choose the best of two.

Fig.7. Drawing straight lines.

Fig.8. Calculation of

 perpendicular distance of point from the required line.The calculation of the deviation from the ideal line is extremely simple, as Mr Griffiths pointed out in his letter published in the February edition of $E \& W W$, and which is illustrated in Fig. 8. Thinking in terms of programming we may call coordinates of the endpoint of the line (X DEST, Y DEST) and the current pen position (XT,YT), both relative to the starting point of the line. The coordinates at which the pen would be positioned after the next step has been issued are calculated for each of the two possible next moves. These would be (XT $+1, \mathrm{YT}$) and (XT,YT+1), the ' 1 ' referring to the one step moved in either of the two directions. We then compare deviations from the ideal line obtained by both solutions, adopting the solution with the smallest deviation. The implementation of this is further simplified as the value of ' 1 ' (the line length) is constant and so need not be included in the comparison. The test may be implemented as follows:

IF ABSIXT*Y DEST

$-(\mathrm{YT}+1) * \mathrm{X}$ DEST]
$<\mathrm{ABS}(\mathrm{XT}+1)^{*} \mathrm{Y}$ DEST]

- YT*X_DEST]

THEN MOVE IN Y DIRECTION ELSE MOVE IN X DIRECTION
ABS indicates absolute value.
*University College, London

Fig.1. Elemental CR circuit produces derivative action, used to obtain rate information

Digital derivative feedback at l.f.

In a proportional-plus-derivative servo system in a model ship, a hybrid digital-analogue circuit gave better results in extracting the rate signal that the more usual lead/lag RC network.

It is well known that a resistance capacitor network such as that shown in Fig. 1 will produce derivative action on any signal injected into it. This effect can be used to produce a 'rate' signal in servo mechanisms, but it has two serious defects. The first of these is that the degree of phase shift depends very much on the frequency being differentiated. The signal emerging from the network, will be a combination of a proportional signal and a derivative signal at $+90^{\circ}$ to it. The ratio of these two determines the phase advance, which unfortunately decreases with decreasing frequency. The second drawback is the size of capacity needed at low frequencies, say 1 Hz , to produce moderate derivative action. The phase angle of the emerging signal depends upon the ratio of the impedances of the resistance
and the capacity. The impedance of the resistance can be taken as the resistance; the impedance of the capacitance X_{c}, is

$$
\mathrm{X}_{\mathrm{c}}=1 / 2 \pi \mathrm{fC} \text { ohms }
$$

for a frequency in hertz and capacitance in farads. The phase angle is then
$\tan ^{-1} \mathrm{X}_{\mathrm{K}} / \mathrm{X}_{\mathrm{c}}$ for X_{R} and X_{c} inohms.
The difficulty with the system is the size and quality of the capacitance needed to produce a reasonable phase shift at low frequencies. In Fig. l the capacitance shown is assumed perfect, with no leakage resistance or self inductance, and this can only be approached in practice with very careful layout and high quality, expensive and bulky capacitors. Suppose, as in this case, we are
working with a model ship, and wish to consider frequencies in the response region of yaw motion, say 0.5 Hz . With careful shielding and f.e.t. amplifiers, X_{r} could be made as high as $10 \mathrm{M} \Omega$, so that to produce a lead angle of 85°, the capacitance need, assuming no loss, is $0.36 \mu \mathrm{~F}$. This is obviously undesirable and a more reasonable value might be $0.01 \mu \mathrm{~F}$, which gives a lead angle of only 17° and has an impedance of $32 \mathrm{M} \Omega$ at this frequency.

Direct rate measurement

It was felt that this problem could be more easily overcome by measuring the rate of change of the incoming gyroscope signal directly. This can be done with the gyro signal charging a capacitance which is discharged at a fixed

Fig.2. Circuit diagram of digital proportional-plusderivative servo.
rate by resistance, but this is really the same as the phase lead network. The solution was to sample the incoming gyroscope signal at fixed small intervals and take the output derivative signal as the consecutive difference between two consecutive samples. This gives a derivative signal which easily works at low frequencies and within noise limits, improves with decreasing frequency.

The incoming gyro signal can be sampled with a 'sample and hold' circuit, which can be obtained as a single i.c., and one would need a minimum of two samples to produce a rate signal for a given time interval. The rate signal is obtained by making the two samples the input to a high gain differential amplifier.

In practice, sample and hold circuits suffer two distinct lags, hold settling time, and acquisition time. The first of these is the time required for the output to settle after a 'hold' has been given. When measuring small differences between consecutive samples this hold error could introduce magnified errors in the output, but for the sample and hold circuits used the hold settling time is of the order of 1 microsecond, and for the frequencies being considered the error can be ignored. The acquisition time is much longer, of the order of 20 microseconds for the capacitor needed at the sample holding times used in this instance, and
prohibits the use of only two sample circuits. The electronics with two circuits is also less straightforward, since each sampling circuit must hold for one clock cycle, sample for sufficient time to acquire the new signal level, and then switch back to hold. During the sample period no rate output is available and one also has to switch both sample circuit outputs between the differential amplifier inputs every other clock cycle.

A better solution is to use three sample and hold circuits, switched so that whilst two are producing the required output the third is acquiring the new signal level prior to switching to the hold mode. For three holding circuits AB and C the required sequence of differences for a continuous positive rate output is:

$$
\begin{aligned}
& \mathrm{B}-\mathrm{A} \\
& \mathrm{C}-\mathrm{B} \\
& \mathrm{~A}-\mathrm{C} \\
& \mathrm{~B}-\mathrm{A}
\end{aligned}
$$

etc.

With samples produced at the correct time from a clock signal, the above may be produced from a dual-channel, analogue demultiplexer driven at the same clock frequency. This would feed the two samples required from the hold circuits to the differential amplifier, and thus produce the rate signal. From the sequence above it can further be seen that each held sample is required for

two thirds of the time, so that the sample and hold needs to be driven by a clock signal which is assymmetric. Furthermore, the clock signals to the three sample circuits should be 120° out of phase with each other.

The outcome of these requirements is the circuit diagram in Fig. 2. This was built from medium and low specification components with a clock rate of 75 Hz , and will produce a derivative signal from a 2 V source from 0.01 Hz to 10 Hz . The phase angle at 0.01 Hz is approximately 89.4°, and the largest capacitors are $1 \mu \mathrm{~F}$, these being low voltage types in the smoothing/lead circuit.

The clock is a conventional 555 timer in a stable mode which produces the 75 Hz square wave. This is then fed to the 74107, which is an assymmetric divide by three, producing two of the driving clocks needed directly. The third clocking signal is produced by 'anding' the comple-

Fig.3. System used to provide velocity feedback.

Fig. 4. Effect of differentiation network at higher input frequencies. At (a), input is one-twentieth of clock frequency, giving little distortion. Higher input frequency at (b) increases distortion.
ments of the two flip-flop outputs in a 7400 Nand gate. The three other gates on the quad 7400 produce inversions of the clock signals, used to help produce the a.c. zeroing of the sample and hold circuits. The latter are LF398Ns, which have a comparatively low specification in terms of a.c. noise, d.c. offset, hold setting time, droop rate, and other important parameters of sample circuits. The signal to be sampled is buffered by an inverting 741, feeding a common signal line. The sampled outputs are fed to three pairs of gates of a DG529, which is a dual quad analogue multiplexer. This is a latching version, but this facility was not needed. The addressing of the 529 which goes $00,10,01,00$ etc. is taken directly from the clock signals driving the second and third sample and hold circuits, and the output feeds the two inputs of a 725 N differential amplifier with a gain of 5.5 . The output at this stage from a pure sinusoidal input will be a stepped sine wave leading in phase by approximately 90°. To reduce instability problems and provide a smoothed output to the autopilot summing function, the signal then passes through a high frequency lag network (with gain) which produces a 90° phase lag at 16 Hz , thus cancelling the derivative feedback above this frequency. The only other item is the unity gain buffer amplifier and the
autopilot summing function. The former prevents direct feedback around the differential circuit, and the high frequency oscillation that this would cause.

Circuit performance

The differential amplifier was tested in isolation and produced excellent results. At this stage the lag network of the final circuit was not used, and a four-pole Butterworth low-pass filter with a breakpoint of 16 Hz was used to attenuate high frequencies and provide a smooth output.

Although not strictly necessary, the differential circuit was then used to provide velocity feedback in the closed-loop rudder circuit, as in Fig. 3. It was then found that at even moderate derivative gains the rudder circuit became unstable, and the rudder, which was driven by a low-inertia motor had a tendency to oscillate at about 16 Hz . Various modifications were tried, including lowering the frequency first to 10 Hz and then to 2 Hz , and the use of Bessel rather than Butterworth filters, but none of these proved to be a solution to the problem. The reason for this is that although these active filters give a rapid attenuation of higher frequencies, they also produce large changes in phase in the region of the filter breakpoint, so that along with the differentiator an overall phase lead of 180° could easily be produced, adding to instability. At this point the active filters were discarded and the phase-lag network used in the final autopilot was introduced.

This network very largely eliminated the instability problem, since it had no inductive action, and produced only a phase lag. The derivative gain could be increased by a factor of about 8 before the onset of instability, compared to the active filter circuits. However, it was found impossible to prevent oscillation of the rudder servo at high derivative gains, despite adjustment of the phase lag network. The answer to this problem lies in the behaviour of the differentiating network as the frequency going through the circuit approaches the clock frequency of the circuit itself. The differentiating effect is shown in Fig. 4(a) and 4(b) for low and high frequencies. In 4(a) the input frequency is $1 / 20$ of the clock frequency, and it can be seen that the resulting signal is a sine wave with very little distortion which leads by a phase angle
of 90° minus half the switching time of the clock. The higher input frequency in 4(b) at about $1 / 5$ of the clock frequency, shows considerable distortion and harmonic content, and the phase lead, although on average being 90° minus half the switching time, varies along the wave train.

From this it is apparent that the differentiality circuit will always produce some harmonic distortion. The constantly changing phase at higher frequencies made it impossible to prevent the oscillation with the simple RC lag described above, and the harmonics produced would maintain oscillation in the absence of sufficient attenuation.

Having examined these waveforms it was then found that the problem could be solved by increasing the clock frequency, thus decreasing the phase distortion and harmonic content of the rudder servo signals to an extent sufficient to prevent oscillation. The limit to which the clock frequency can be increased depends on the noise in the system. With increasing clock frequency, the differential amplifier is amplifying smaller differences in the incoming signals, and will reach a point where the noise in the circuit becomes comparable with the difference in voltage between two consecutive samples. The most important sources of noise in the circuit are d.c. voltage offset in the sample and hold circuits, a.c. feedthrough of the switching signal in the sample and hold circuits and in the multiplexing switch, and noise in the multiplexing switch differential amplifier. The upper limit on input frequency for a given clock frequency will be governed by the degree of frequency and phase distortion that can be accepted. The circuit is actually measuring input voltage slew rate so it must be remembered that for a real circuit there will be a maximum permissable sinusoidal input voltage, at a given frequency beyond which the circuit limits and 'chops' the output.

In practical terms, the results gained from a prototype were very good. This was built using low-cost components with relatively poor electrical characteristics compared with what can be obtained. The prototype was built without a specific printed circuit board and made as compact as possible, and in fact is contained on a single board 10 cm by 10 cm . It will, however, deliver a usable
rate output for input frequencies from 0.01 Hz to 10 Hz , i.e. over a frequency range of $1000: 1$; which is far better than would be achieved with an RC phase lead network. For nonsinusoidal input signals there are further advantages because the circuit does not contain any fixed time constants that are comparable to the frequency that is being differentiated. This is particularly so for a square wave input for which the convention RC circuit gives very poor performance.

If the square wave shown in Fig. 5(a) is put through an RC lead network the output will have the form shown in 5(b), in which the initial spike decays exponentially. The rate of decay depends on the time constant of the circuit and can be increased by making the product of R and C in the lead network smaller. Unfortunately the impedance of the capacitance increases as capacitance decreases, so that this also leads to greater attenuation of the output and a higher proportion of noise in the amplified output. Decreasing the value of R has the same effect. Figure 5(c) shows the output that is obtained taken before the high frequency attenuator in this case, consist of short alternating pulses of 13 milliseconds duration with no tail off. Because there is no synchronization it will sometimes occur that the circuit samples the input during a transition, in which case the pulse will be slightly longer.

A further benefit of this principle of operation is that there is no lower frequency limit, although a change in technique would be called for for frequencies in and below the cycles per hour range. This is because the sample and
hold circuits suffer from voltage droop. The sampled voltage in the sample and hold circuit is held as charge in the holding capacity, and the voltage on it monitored by a buffer amplifier to produce the 'hold' output. The buffer amplifier has a high, but still finite, input impedance, so that the charge in the holdiing capacity will gradually drain away, resulting in a decay or 'droop' of the buffer output. The decay rate obviously depends upon the buffer input impedance and the capacitance size, so that the latter, which is external to the i.c., is chosen according to the sample frequency and hold time expected. The present prototype uses $0.01 \mu \mathrm{~F}$ polycarbonate capacities rated at 250 volt and has a hold time of 26 milliseconds, so there is scope with this analogue system for extending the frequency range downwards by increasing the size of the holding capacitances.

However, a point would be reached where this became impractical, and the solution then is to change over to a latching digital holding circuit. The incoming signal is still sampled with a sample and hold circuit, but the output of this is then fed to an a-to-d convertor. The hold time is thus reduced to the conversion time of the a-to-d which can be very short. Each output line of the converter then feeds a binary latch, thus holding the digital signal indefinitely. The latch is sampled by d-to-a convertors to reproduce the original analogue voltage, and the remainder of the circuit would be unchanged. System clocking frequencies may also be extended downwards by frequency divi-

sion, and there is thus no lower limit to the frequency that may be differentiated.

In the this low-frequency range the system may be compared to differentiation using microprocessors. The results should be very similar in terms of quality of the output signal, and in fact the digital form of this circuit described above is actually a microprocessor with a single programme 'hardwired' into it. A conventional microprocessor, Z80 for example, would be more easily adapted to changing requirements, but would be considerably more expensive. For the frequency range in which the prototype operates, similar considerations apply, with the added provison that the analogue solution will inevitably give a more accurate signal with less noise, then a microprocessor equivalent. The added complexity of the microprocessor and the act that the input and output circuits operate with discrete voltage levels can only degrade the quality of the final output signal.

Fig.5. Ouput of circuit (c) compared with simple CR network.

Continued from page 57

SEMICONDUCTOR SUPPLIES
INTERNATIONAL,
Dawson House.
128 Carshalton Road, Sutton,
Surrey SM1 4RS
Telephone: 016431126
c.w.o. Trade counter.

SOLID STATE SCIENTIFIC,
275 King Street,
London W6 9NF
Telephone: 017483143
c.w.o. or credit card. Retail counter.

STC ELECTRONIC SERVICES, Edinburgh Way,
Harlow, Essex CM20 2DF.
Telephone: 027926777
c.w.o.

STEATITE MICROELECTRONICS
Hagley House,
Hagley Road,
Birmingham B16 8QW.
Telephone: 0214542655.
c.w.o. Exclusive distribution:

Sanken Speciality: Memory I.ts.
SWIFT SASCO,
PO Box 2000
Gatwick Road,
Crawley, Sussex RH10 2RU.
Telephone: 029328700
c.w.o. or Access ($£ 5$ minimum order). Speciality: Mulard suffacemounted components.

THAME COMPONENTS,
Thame Park Road,
Thame, Oxon OX9 3XD.
Telephone: 0844214561

THORP ELECTRONIC

COMPONENTS,
Victoria House,
63 Foregate Street,
Worcester.
Telephone: 090524277

TODAY ELECTRONICS
11 High Street,
Swanley, Kent BR8 8 AE
Telephone: 032260838
c.w.o.Speciality: Power semiconductors.

TRIDENT MICROSYSTEMS, 53 Ormside Way, Redhill, Surrey RH1 2 LS
Telephone: 073769217 c.w.o.

VEROSPEED,

Standsed Road,
Eastieigh, Hants SO5 4ZY.
Telephone: 0703641111
c.w.o. Mail-order catalogue.

VSI ELECTRONICS (UK),
Roydonbruy Industrial Park, Horsecroft Road, Harlow, Essex CM19 5BY.
Telephone: 027935477
c.w.o

WATFORD ELECTRONICS LTD, 33 Cardiff Road,
Watford, Herts.
Telephone: 092340588
Retail Shop.

CARETAKER FOR THE BBC

The Caretaker rom for the BBC Micro is a collection of utilities for Basic programmers. Among these are a search-and-replace facility for editing programs, commands for merging programs and for loading or saving individual sections, a 'bad program' recovery routine and a very comprehensive compactor for saving memory space.
One novel feature offered by the package is single-key is not a strictly accurate description of the process since you have to press the tab key at the same time. A set of stickers is supplied to indicate which key does what. This facility (which
can be switched off) may not save much typing time, but should certainly prove an attraction to refugees from the ZX Spectrum.
Several routines in Caretaker parallel those of Beebugsoft's excellent Toolkit rom: some of them are less easy to use, though they allow rather more flexibility. A useful 'help' page is available to remind the user of the commands and their syntax.

Caretaker comes in an 8 K eprom and costs $£ 133 \cdot 35$ Computer Concepts, Gaddesden Place, Hemel Hempstead, Hertfordshire HP2 6EX, tel 0442-63933.

EWW 205

MICRO TRACKER BALL

Developed from their tracker balls used in military and airtraffic control applications, Marconi have produced a tracker ball control for use with microcomputers. There are advantages of such a device compared with joysticks or mice'; they offer more accurate positioning of the cursor than joysticks and do not require the table-top space needed for mice.

The two-inch diameter ball is in non-slip contact with two shafts accurately positioned at 90° to each other. Each shaft is fitted with a slotted disc; light source and photodetectors measure the rotation of the disc and electronic circuitry translates these into X and Y coordinates. The resin ball rotates freely in any direction and its ease of use makes it suitable for long sessions. With the appropriate software the RB2, as it is called, is capable of moving a cursor one pixel at a time on a computer graphics screen while also being able to

move and change direction very rapidly.

The first issue of the tracker ball has been aimed at users of the BBC micro and is supplied with utilities software. This allows it to replace the cursor keys or be used instead of a joystick. The software allows the user to define the function of the three keys built into the tracker ball housing. Further software in preparation include c.a.d. and graphics programs. Computers with an RS232 input can also use the RB2 by the addition of an interface card fitted inside the control's housing at extra cost. Prices vary according to the distributor but are about $£ 50$. MEDL Power Division, Carholme Road, Lincoln LN1 1SG. EWW 206

FALSE COLOUR SATELLITE WEATHER MAPS

A complete system for receiving Meteosat pictures, which includes everything from the antenna to a colour monitor, is produced by Microwave Modules. The processed image as displayed by the MMS 1690 system is received in segments; 24 in the case of visible pictures and 9 for infra-red. Each image is provided with a caption which gives date, time (GMT), type of image and segment code. Meteosat transmissions include
outlines of the countries, which may be concealed by clouds, and coordinate points at 10 degree spacings. Although Meteorat is stationed above the equator and can monitor about one third of the Earth's surface, as a European satellite it gives performance to the images covering Europe which are updated at least twice an hour.

The receiver is equally suitable for other geosynchronous weather satellites spaced around the

World. With the addition of a suitable antenna, the NOAA and Meteor satellite signals at 137 MHz may be received. However the images may only be captured during their brief fly-past periods unlike Meteosat, which provides continuous data.

The system consists of an easy-to-assemble antenna kit, suitable for mounting on a vertical mast; a 1691 MHz GaAs fet preamplifier which is weather-tight and may be

mounted close to the antenna ensuring the optimum signal strength and picture quality; an s.h.f. down-converter to 137.5 MHz ; the main sixchannel receiver which incorporates the power supply; and a digital scan converter which translates the signals into pictures and can also convert the monochrome images into colour by assigning colour values to different bands of the 64 grey levels obtained. Sequences of weather images can be retained inexpensively by recording the signal onto a good quality cassette recorder. A library of images can be built and replayed through the scan converter to simulate a timelapsed sequence. The system is completed by a colour monitor. Component parts may be purchased separately. The complete system costs $£ 1738$, excluding tax, claimed to be 50% cheaper than any similar system. Microwave Modules Ltd, Brookfield Drive, Aintree, Liverpool L9 7AN. EWW 207

\star - NI-CAD BARGAINS * *

Re-chergeable Nickel cadmium batterias in stock Ex-equip-
 VAT (p\&q 25p) DEAC 6000 KZ Button stacks 3 cells- 3.6 Sge $11 \times 11^{\prime \prime}$ diam. Capacity 0.6 AH f1. 50 inc
Also gveiteble - PCB's trom which these
Aso avaitable - PCB's from which these Transtormer, Diode rectifiers, smoothing capacitors, DPDT Relay, tuses etc, easily dapted to charge arther of the above sacks. DNIY f1.50 each inc. VAT (p8p 750

t STLPPR MOTORS th

Brand new stock of 'ASTROSYN' Type 20PM15 oz-in torque ta 100 PPS BC. 24 steps per rev. diameter $2^{\prime \prime}$, shatt $1 / 4^{\prime \prime}$ diam $\times 41 / 4^{\prime \prime}$ spirally threaded. Weight 1602 . Price each $£ 11.50$ lp\&p 50p) Connections supplied. INC. VA

\star © STEPPER MOTORS \star

in stock - used, but exceilent condition, 4phase steppers. 50 reduction. 6 V DC operated Complete with a diver board requining iust a single 6 V rail and pulse input. Motor measures
diameter, gearbox
22^{*} output shaft $3 / 16^{\prime \prime}$ Sold complete with connections, CCT dagram of motor, CCI detals of half
 stepping etc. All for
bi inc. VAT lio
500

OPTICALISOLATORS

speralion betwac Muta nsuluaino betwe M Mootems and Terminals. 25 way 'D' connecElete with handbook. 16.50 inc vat \&
E
ECKMAN TURNS
COUNTER DIALS Miniature type 122 min diam! Counting
up 1015 turn "Helipots". Brand new with mounting instructions Only £2.50 each Inc VAT \& pR

TELEVISION SERVICE KIT

We have managed to obtain a slock or Labgear IV Service equipment aftording vast savings on new price. All items are
sold in iull working condifion and guaranteed. LABGEAR COLOURMATCH CM600APG UHFTV Pate generators. Grey scale, variable level cross-hatch \& generators. Grey scale,
jot patterns. $£ 35$ inc
LABGEAR COLOURMATCH CM6010RG Gated Rainbow colour pattern generators. Cross.Hatch/dot \& gated rainbow $(R \mathrm{~GB})$ colour bar patterns., $£ 65$ inc. UNAOHM EO684 PAL Colour-bar \& pattern gen. £275KORTING 82512 PAL/NTSC Colour \& patterngen $£ 275+$ Mail Ordercustomer splease add $Q 2.50$ postage ea item

RALIFE ELLECTROONICS 10 CHAPEL STREET, LONDON, NW1 TEL: 01-7238753 7: 0 -

HEWLETT-PACKARD 141A Storage Oscilloscope All these units are so

 HEWLETT-PACKARD 1707A dual trace 75MH2 £750 in full operational EKTRONIX 454A dual trace 150MHz sweep delay $£ 950$ condition and TELEQUIPMENT S 61 - see display below All prices are TELEQUIPMENT DE 7 dual irace 25 MiHz sweep delay $£ 350$ subject to TELEQUPMENT D`5 dual trace 50 MHz sweep delay $£ 450$TELEQUIPMENT Dis c/w dual-trace $\&$ differential units $£ 375 \begin{gathered}\text { additional } \\ \text { VAT \& cartiage } \\ \text { (Securicor) }+£ 10\end{gathered}$ $\star+$ TEST EO.JIPMENT $* *$

MARCON: TFB68 LCR Bridge
MARCONI TF260<Electronic Multi-Meter MARCONI TF893a Audio Power Meters $£ 85$ MARCONN TF2502
1 GHz . 10 w fsd $£ 350$.
MARCONI TF270n in-Situ Universal Com
ponent Bridge f250.
ROHDE \& SCHWARZ SDR AM Signal Generator $0.3-1 \mathrm{GHz}$ TEKTRONIX 2901 Time-mark Generator
ROHDE \& SCHWARZ Resonance Frequency Meter $470 \mathrm{MHz}-2.5 \mathrm{GHz}$. ROHDE \& SCHWARZ Polyscop SWOBII BRUEL \& KJAER Heterodyne Vottmeter $0.5-240 \mathrm{MH}$ AIRMEC Display Oscilloscope 279 4-trace, 14×10 CRT $\mathbf{1} 195$ TELEOUIPMENTGG1 SCOPES POWER CUTS???

A bulk purchase of the se quality them for sale 101 just $=100+$ vat Specilication as follows Bandwidth $\mathrm{OC}-5 \mathrm{MHz}$ Sensitivity $5 \mathrm{mV} / \mathrm{div}$ Sweep speess trom Extergal $\times 82$ mod ir puts. $£ 185$ inic vat 8 ine handbock Zerox. Carriage $£ 10\}$	 change over io charge Ni-cad cells, when mamans supply Alss avalable 12VEC. Ma in 5 SoHz Inverters from roow 100 W .
TEOUEC 2003 System $800-1500 \mathrm{MHZ}$ CE35 TELOMC SMEOOO with $\mathbf{3 0 0}-900 \mathrm{MHz}$ pluy-in I1Ts KNIGHT KG-687 3-¿20MHz $\$ 150$	FILE MANAGER SYSTEM MODEL 4907 Option 31 (Third disc drive). 4051 Graphic System compatible. GPIB (IEEE 488-1975) compatible
PLEASE NOTE All the pre-owned tested in our workshop and recond first-class opera ional condition a guarantee. For our mail order custo Repairs and servicing to all equipm ADO 15\% VAT TO ALL ORICES. EQU	ipment shown has been carefully oned where necessary. It is sold in most items carry a three months' rs we have a money-back scheme t at very reasonable rates. PLEASE MENT WANTED. PLEASE WRITE O

GOmputea peripherals t 1.6 MB 8' FLOPPY OISC DRIVES New Stock

After our recent sell-out of the DRE7100 FDDs. we are pleased to offer another bargain package as follows: BRAND NEW American 'MFE Corp' model M-700 DOUBLE-SIDED 8° Disc Drives Massive storage capability up to 16 MBytes . Full IBM compatability. External power requirements are $\pm 5 \mathrm{~V}$ at 1.2 A and +24 V at 1.1 A Full spares/ back-up available U.K. (Elcomatic's) Current lis is over $£ 315$

8in SHUGART Wype SAB00

Floppy disk drives. We are pleased to say that we have these in stock now after our sell-out a few months ago 800 KB . Few only at the same price $£ 90$ inc VAT \& carriage \& Zerox of user handbook. Also to those too late for our last stock of 19Mbyte Winchester - we now have some coming in ca. $£ 125$, please call.

- SWITCHING POWER SUPPLIES

 The foliowing DC power supplies are avaliable nowfrom stock in limited quantities. All fully tested and guaranteed.

d.			
5 V If 10 Amps	£18		
5 V i. 20 Amps	¢20	5 V (1) 40 Amos	¢ 30
5 V w 60 Amps	¢40	19 V (i) 30 Amps	E40
5V. -12V \&	11	4 A and 40A	

* CENTRIFUGAL BLOWERS * TORIN Type U62B1, 230 V Cap'Start (supplied),
very powerfut (200W. 3,000rpm) centnfugal fans tory large rack cooting or enclosure extraction appli cations. Overall dimensions $20 \times 12 \mathrm{cms}$. outlet 6×4 cms BRAND NFW Surplus stock. $f 15$ each inc
VAT, pp f1.50. ALSO SEE LEFT HAND COLUMN
ROTRON INSTRUNENT
COOLNE FANS

CIRCLE 57 FOR FURTHER DE'TAILS.

CIRCLE 75 FOR FURTHER DETAILS.

EDR editor for DEC

* Keypad editor similar to KED an EDT
* Uses no host time or memory when editing
* Fast Response
* Edits PDP-11, LSI-11, and VAX files

Why burden your overworked DEC computer with the task of editing files? use the new EDR front end processor to do your editing - for a mere $£ 350$. EDR intercepts the serial line between your terminal and DEC computer, and provides a powerful keypad editor with fast response. DEC users familiar with KED or EDT will be instantly at home with with EDR. For more details of this unique device contact:

Andelos Systems Telephone: (0035) 201150
Solina, Bucklebury Ally, Cold Ash, Newbur, Berkshire RG16 9 NN CIRCLE 61 FOR FUR'THER DETAALS.

REQUIREMENT: AMPLIFICATION SOLUTION: CRIMSON!

More than ever, Engineers, Enthusiasts, \& Professionals require a reliable source of quality amplification, crimson continue to meet this demand with a comprehensive range to suit virtually every application and support this with friendly advice and back-up. Our prices have remained stable for 18 months and with two regional distributors and our own mail order system, there has never been a better time to
choose the best.

Power amplifiers bipolar type Incorporating full electronic protection,
integral heatsink bracket, high slew/low distortion circuitry $i<0.01 \%$ THD TYPICAL TYPE MAXO/P SUPPLY (DC) PRICE

CE608	$60 \mathrm{~W} / 8 \mathrm{R}$	$+/-35 \mathrm{~V}$	$£ 21.50$
CE1004	$100 \mathrm{~W} / 4 \mathrm{R}$	$+1-35 \mathrm{~V}$	$£ 25.00$
CE1008	$120 \mathrm{~W} / 8 \mathrm{R}$	$+/=45 \mathrm{~V}$	$£ 28.00$
CE1704	$200 \mathrm{~W} / 4 \mathrm{R}$	$+/=45 \mathrm{~V}$	$£ 35.50$
CE1708	$180 \mathrm{~W} / 8 \mathrm{R}$	$+/-60 \mathrm{~V}$	$£ 35.50$

	200W/4R	$+/-45 \mathrm{~V}$	$£ 35.50$
CE1704	180W/8R	$+1-60 \mathrm{~V}$	$£ 35.50$
CE1708	$320 \mathrm{~W} / 4 \mathrm{R}$	$+/-60 \mathrm{~V}$	$£ 49.50$

WHITMTRWH
CE308 30W/8R
$+/-25 \mathrm{~V}$
£15.90
Power amplifiers Mosfet type. Ideal for heavy duty use - i.e. disco's or
driving line transformers, itegral heatsink bracket, ($<0.02 \%$ THD TYPICAL)

FE908	90W/8R	+/-45V	$£ 30.00$
FE1704	$170 \mathrm{~W} / 4 \mathrm{R}$	+/-45V	$£ 39.00$

Pre-amplifiers stereo modules with R.I.A.A. eq. M.M. \& line input, needs ol and bal pots and input switching. Can be used with MC2 module to allow use of low O/P MC cartridges.
$\begin{array}{llll}\text { CPR1X } & \text { STEREO } & +/-12 \mathrm{~V} / 20 \mathrm{~mA} & £ 33.90 \\ \text { MC2 } & \text { STEREO } & +/-12 \mathrm{~V} & £ 23.00\end{array}$

CPR2
STEREO
$+/-12 V / 20$
¢47.95

Full detaile of our complete range including heatsins, toroida

EITIKIIS

Still the reference kit amplifier! for less than $\mathbf{£ 2 5 0}$ you can own an esoteric pre-power combination with the added pleasure of building it yourself

CK10 10	Stereo pre-amplifier	f9200
CK1040	Stereo P/A 40+40 WPC	£121.00
CK10 0	Stereo P/A $80+80$ WPC	£134.00
CK1100	Stereo P/A 100+100 WPC	£151.00
MC2K	M/C kit for CK 1010	£25.00
PSK		¢20.00

PHOPONAB

A new range of 19^{-}rack mounting power amplifiers are undergoing field trials for launch later this year. Please contact us if you have a particular requirement for this type of amplifier as the final design will depend on your

ITOTMDI

Send cash with order or quote Acces/Mastercharge card no. All prices include VAT, P\&P.

DIEHETMTAIS

London: Bradley Marshall Ltd.
North:

325 Edgware Road.

Witmslow Audio,
35/39 Church Street Wilmslow

EXPOTT

No problem, but as postage varies so much please write for a proforma

Abstract

BERG LOW PROFILE 14 PIN OUAL INLINE I.C. SOCKET manufactured from glass fille polyester to UL94V-0 \&7 lor 100 , 31 ior 500 , 56 for 1000 e 266 for 5000 \& 460 in $10,000, £ 2100$ for $50,000, £ 2,700$ for 100,000 . Sample 10 sent for $£ 1.20+30$ p p \&p ($£ 1.73$ Inc VAG LOW PROFHLE 16 PIN DUAL IN LINE I.C. SOCKET as above $£ 8100, £ 36$ for 500 65 for $1000, £ 295$ for $5000, £ 530$ for $10,000, £ 2390$ for $50,000, £ 4300$ for 100,000 . Sam pe 10 sent for $£ 1.40+30 \mathrm{p} p \&$ ($£ 1.96$ inc VAT) loaded with moulded r. P. . C hed stee blades spring loaded with moulded red P.V.C. handles. Culting and weight 64 g gms, 10 for $£ 15$, 25 for $£ 34,50$ for $£ 63$ i00 for $£ 116$. 500 for $£ 525,1000$ for $£ 1000$. Sample pair sent for $£ 1.75+$ $25 \mathrm{p} p \&{ }^{2} \mathrm{D}$ (2.5 inc VAT) METAL FILM RESISTORS F24 manufactured by C.G.S. semi-precision with a standard tolerance of $+-2 \%$ and a temperature co-efficient of better than $100 \mathrm{ppm} / \mathrm{oc}$. We have a full range in stock from 100 R to 1 MO . All bandoliered. $\varsigma 2.50$ per 1000 any one value WIRE WOUND RESISTORS. manufactured by E. R. G. Type 16 ES with a standard toler ance $+5 \%$ of nominal resistance value. All values in stock watt series $£ 6.50$ per 100 any one value $+\varepsilon p \& p(\varepsilon 8.63$ inc VAT) watt series $£ 6.50$ per 100 any one value $+£$ p\&p ($£ 8.63$ inc VAT) 10 watt series $£ 10.50$ per any one value $+£ 1 p \& p$ ($£ 13.23$ inc VAT) ALUMINEIUM FOIL CAPACITORS manulactured Dy Iskra 2.25 MFD 385 V A.C. WKG axial tupe. Body length $40 \mathrm{~mm} \times 23 \mathrm{~mm}$ £ 25 per 100 pcs, $£ 115$ per 500 pcs. $£ 212$ per 100 pcs $£ 980$ per 5000 pcs, $£ 1800$ per 10,000 pcs, $£ 4,165$ per 25,000 pcs. Sample 10 sent for $\varepsilon 3.00+\varepsilon 1$ p\&p ($£ 4.60$ inc VAT) BRITISH MADE TRANSFORMER. input 240 V at 50 HA , output $12 \mathrm{~V}-0-12 \mathrm{~V} 1 / 2 \mathrm{amp}$ with buill in thermal overioad circuit. P.C. mounting $£ 25$ for $10+$ VAT $£ 115$ for $50+$ VAT $£ 210$ for 100 + VAT $£ 950$ for $500+$ VAT $£ 1700$ for $1000+$ VAT. Sample sent for $£ 3+75$ p p $\&$ p PAIR OF MATCHEO SPEAKERS 4 ohm 3 watts in teak finish cabinets with black/chrom facia $71 / 2^{\prime \prime} \times 12^{\prime \prime} \times 5$ " depth - 1 sample pack (2 spks) $£ 10.00+£ 2 p \& p(£ 13.80$ incVAT) 10 packs $£ 9.00$ each $+£ 2$ p $\&$ p ($£ 12.65$ inc VAT) $12^{\prime \prime}$ VIDEO DISPLAY UNIT (green) complete with frame and P.C.B. incorporating time bases/EHT, etc but minus case and simple power supply unit. Originally designed to be basically compatible with BBC Micro and Commodore computers. Circuit diagram supplied. Price per sample unit $£ 60.00+£ 3$ p\&p ($£ 72.45 \mathrm{inc}$ VAT) Quantity prices on application. OPEN FRAME AND SHADED POLE MOTORS by well known manufacturers, 240 volt a/s - many uses - Price per sample $£ 1.50+75 \mathrm{p}$ p $\&$ ($£ 2.59$ inc VAT). Price per 10 motors E1.25+75p p\&p (E2. 30 inc VAT) each installed - mains/battery option - portable - wooden finish with internal alarm - easily extended horn and bell unit. Sample units $£ 39.00+£ 2$ p\&p $=£ 47.15$ inc VAT each, 5 units $£ 35.00+£ 2$ p\&p $=£ 42.55$ inc VAT each. 10 units $£ 33.00+£ 2 \mathrm{p} \& \mathrm{p}=£ 40.25$ inc VAT each EXTERNAL HORN Sample $£ 7.50+£ 1 p \& p=\varepsilon 10.35$ incVAT each, 5 units $£ 6.75+\varepsilon 1.50$ $p \& p=£ 9.49$ inc VAT each, 10 units $£ 6.37+£ 1.50$ p $\& p=\varepsilon 9.05$ inc VAT each. TERMS C.W.O export enquiries welcome. We find it timpossible to advertise âll we stock Please telephone, write or telex for further enquiries. Personal callers always welcome

SPRINGFIELD house, TPSSEN STREET, LONDON E.8. 2ND TEL NO. 01-249-52 rix: 8953906 EECO G

CIRCLE 56 FOR FURTHER DETAILS

LOOK! UNBEATABLE VALUE

Single sided double densitys 100

COUBLESIDED DOUBLE DENSITY \&130

DON'TDELAY-

 ORDER TODAY!
4. P. SPECTRUMA

TEK455 Dual Tray 50,
CouLd OS 3500 Den Th Delay Sweep oscillascopes
TEK 454 Dual Trace 150 MHz Deiay Sweep TELEQUIPMENT 083 Duai Trace 50MHz Delay Swee Tek 453 Dual Trace 50 MHz Delay Sweep 9 COSSOR $4: 00$ Dual Trace 75 MHZ Délay Sweep 10 SOLARTRON CO1740 Dual Trace 50 MHZ Dual 14 TEK 5854 Dual Trace 85 MHz Dual tr Delay Swee 15 cossor col 150 Dual Trace $35 \mathrm{NH2}$ SO 1 BTRON CDual 100 Dual Beam 15 MHz
storage oscilloscopes
35 telequipment om64 Dual Trace 10Mhz
36 TEK 564 Dual Trace 10 MHZ Delay Sweep
37 TEK SPECTRUM ANALYSER 5OHZ - 36 MHZ 547
with 1 L5 and 1110 Plug-in Units
40 IELEOUIPMENT CT7I CURVE TRACER
42 H.P. SHF SIG GEN 620 B 7 H 11 GHZ
6 HP UHF SIG GEN 612A 450-1230MHz
50 MARCONI AM/FM Sig Gen TF2008 10KH-510MHZ. 52 MARCONI AM/FM Sig Gen TF10668/6 $10-470 \mathrm{MHZ}$ 59 MARCONI AM/FM Sig Gen TF995A/21.5-220MMZ 62 MARCON vHF Sig Gen TF $10648 / 5 \mathrm{M}$ 68-108 118 470MHZ.
63 MAACONI OUTPUT TEST SEI TF 1065 lor use with TF 10648 TF995 range Sig Gens
6 AOVANCE AM Sig Gen E2 $100 \mathrm{KHZ}-100 \mathrm{MHz}$
2 TEK Consiant Amplitude Sig Gen 190B 350Khz/50MHz 100 Sine and Soure range osclllator TF1370A 10hz-19MHZ. 30 WAYNE KERR AF SIg Gen S121 10H2-120kHz £95 87 H.P. Pullse Gen 214A 10HZ-1MHZ 89 EH PULSE GEN 139L 1KHZ.
99 TEK TIME MARK GEN 180. 9 TEK TIME MARK GEN 180 102 BONTOON Q METER 260A 50 KHZ -50M HZ
106 MARCON UNIVERSAL BRIDGE TF1313 0.25%
108 MARCON INSITU UNVERSAL BRIDGE TF2701, Batery Operated
114 Wan Cut Adiance Component Bridge 8421 ... $\$ 250$ 114 Wayne Kerr Component Bridge B521 (CT375) L fOOUH $500 \mathrm{H} ;$ C1pF-5F; R1 milliohm-1000MOhm 8 Detector R161 8 Detector R161
T19 MARCONI AM/FM MOd Meter TF2300S 2.400 MHz
124 MARCONI RF MILIIVOLTMETER TF2603 $50 \mathrm{~K}+\mathrm{HZ}$-1500M HZ
12 mV -3VFSD
MARCON ELECTRONC VOLTMETER TF26042OHZ. 1 KV FSD. 44 AVO WULTIMETER Model 7 PAP \& 7
Comple winim leads \& battery. Brand New. Dion yerm per voll
Comple wirim eaas d battery. Brano Ne e. One year guaran $£ 15$
Metered 85
meter STAB PSU TSV30/2 0-30V 2 A Current limiling
163 ROBAND VARECD PSU IYpe $33-20-33 \mathrm{~V}$ 2A Current limiting
metered (in current production)
169 KINGSHILL STAB PSU Model 5000.60 V O.5A. Current

5 ma Metered.
190 VOLTEX PSU Model $82-635+1-5 \mathrm{~V},+12 \mathrm{~V}+2$ 2V High
current un-used.
191 AC'OC ELECTRONICS PSU MOOULE $2515 \mathrm{~V} 2 A+1-12 \mathrm{~V} 0$
Un-USed P\&P \&3
206 B8KLEVEL RECORQER 2305
209 B\&K MEASURING AMPLIFER 2606 2HZ-200KHZ
210 B\&K BAND PASS FIITER SET DCIVE \& 3M OH
Weighing Networks $A B C D$
21 8ak DIGITAL EVENT RECOROER 7502
25 dNE OCTAVE BANO SOUNO LEVEL METER typeg $\& 19$ 281 H. P. LOGICSTATIC ANALYSER 1602A 286 AVO VALUE CHARACTERISTIC METER
297 MARCONI DIFFERENTIAL DC VOLTMETER TF2606 0.1100 V.
300 R\&S POLYSKOP SWOB1 BN 4244/2/50
AISO in slock WEW OSCILLOSCOPES, MULTIMETERS elc.
$\begin{array}{r} \\ 5350 \\ \hline\end{array}$
Please check availabilthy belore ordering. Carriage all o
$\S 10$ VAT to be added to Totat ol Goods \& Carriage
?

300

$$
\begin{aligned}
& \text { THIS IS A VERY SMALL SAMPLE OF STOCK, SAE or Telephone } \\
& \text { for LISTS }
\end{aligned}
$$

STEWART OF READING

110 WYKEHAM ROAD, READING, BERKS RG6 1PL Telephone: 073468041
Callers welcome $9 \mathrm{a} . \mathrm{m}$. to $5.30 \mathrm{p} . \mathrm{m}$. Monday to Saturday inclusive CIRCLE 52 FOR FURTHER DETAILS.

PERSONAL LOGIC ANALYSER

Facilities for the troubleshooting of microprocessor systems are incorporated into the PM3626 logic analyser from Philips. It is used to locate faults in a microprocessor system, both hardware and software. The 32channel instrument can be used for logic state analysis, or up to 12 channels can be used for timing analysis while the rest are used for state. Maximum sampling speed for accurate timing can be set at up to 100 MHz .
For software bug-hunting, the analyser may be fitted with a disassembler for any of the twelve most popular microprocessors. Interactive software de-bugging is also possible by the use of a rom emulation module, plugged into the rom socket of the system under test. Programs may be patched to the target system by
use of front panel controls Specific areas of a program may be explored by the four-level triggering system and the timing delays which can count up to 50 thousand clock cycles to pinpoint a specific action. The instrument is operated through menu selection on the screen and multi-function keys. For example it is even possible to recall the colour coding of the probe leads and thus save a lot of time referring to the instrument's manual. State displays may be chosen to give the information in binary decimal, octal, hexadecimal or ASCII.

The analyser may be extended by adding a nonvolatile setting module which retains up to eight preset configurations for the instrument. Another nonvolatile memory option can hold

reference data and compare with incoming data on the instrument. Each of the 32 channels may be examined to a depth of 1000 samples or four channel to a depth of 8000 . A further option is an RS232C interface card.
The instrument costs $£ 3285$
which, according to Philips, is well below the cost of rival instruments. It is also available for hire from Livingstone Hire and from Instrumental Rentals. Pye Unicam Ltd, York Street, Cambridge CB1 2PX.

EWW 208

MONOLITHIC PREAMPLIFIER

An ultra-low-noise monolithic preamplifier circuit is particularly suited to microphone signal processing, says CMS who are marketing the SSM 2015 from Solid State Micro Technology. The very low voltage noise performance is enhanced by a programmable input stage which allows overall noise to be optimized for source impedances up to $4 \mathrm{k} \Omega$. The circuit has a bandwidth of 700 kHz at a gain of 100 with symmetical slew rates of $6 \mathrm{~V} / \mathrm{us}$ and distortion of 0.007%. True differential inputs and a high common-mode rejection of 100 dB provide easy interfacing to balanced micropphone outputs, tape heads and singleended devices. The SSM2015 is specified for commercial temperature ranges only and has a one-off price of $£ 9.48$. CMS (Distribution) Ltd, 26 Pamber Heath Road, Pamber Heath, Basingstoke, Hants RG26 6TG.
EWW 209

COLOUR GRAPHICS

A high resolution graphics controller combines many of the features usually found on much larger systems into a single Eurocard. It has been specifically designed for industrial environments where the engineer needs reliability, speed, and easy software implementation. The board is based around the Thompson EF9366 grraphics processor i.c. and is especially suitable for process control where the ability to display text mixed from a variety of sizes and colours, combined with graphic symbols makes it easy to represent a diverse range of
industrial processes. The board is compatible with the Acorm bus and includes full address decoding so that it occupies only 32 bytes of the host computer's memory. It includes 64 K of onboard graphic memory. Eight colours with inverse and flashing are available on a screen image 512 by 256 elements with a resolution of 5 to 8 dots. In black and white, 16 levels of grey are available. An internal rom includees a full set of 96

ASCII characters and the highdensity text mode enables the use of 32 rows of 85 characters. Character size and style, including italics are all fully user programmable and characters may be scaled independantly in X and Y directions by up to 16 times. Price? £299. Cambridge Microprocessor Systems Ltd, 44a Hobson Street, Cambridge, CB1 1NL..
EWW 210

POTTING BY ULTRA-VIOLET

Rapid curing is claimed for the structrual adhesives developed by Loctite for the encapsulation of electronic components. The one-part adhesives are cured by exposure to medium or high intensity u.v. light in a matter of seconds. Loctite estimate that in such operations as potting relay switches there is a saying of 26% when compared with epoxy compounds. In addition the u.v. adhesives use no solvents and have an indefinite pot life, making them highly suitable for automation.

A secondary system for curing ensures that even the parts that the u.v. light does not reach are cured by the anaerobic action of the adhesive. Different formulations of the adhesive are suitable for different applications: for example UV365 is recommended for smaller component potting, sealing and encapsulation. It has a medium viscosity and when cured can withstand temperatures from -55 to $175^{\circ} \mathrm{C}$, and is resistant to most kinds of chemical enviroments, retaining full strength under the most stringent of tests. Other adhesives in the series vary
chiefly in their viscosities, making them more suitable for different applications. The lowviscosity UV371 has good penetration properties and is therefore good for coating and shallow potting. Loctite UK, Watchmead, Welwyn Garden City, Herts AL7 1JB. EWW 211

MULTI-TASKING MICRO

The addition of one rom to a
As it stands, the Multi-Forth
BBC microcomputer can change it into quite a different computer; one that runs Forth and is capable of executing several different Forth applications at the same time. Multi-Forth 83 is a 16 K eprom which may be plugged into a spare 'sideways' rom socket within the computer. Depending on its position, it can be given a higher priority than the Basic rom and thus be controlled from Forth with Basic as an addition. The latest version of Forth, Forth 83, is used. This is an improved version of Forth 79 with many additions to the resident dictionary of command words*. In addition, Multi-Forth has been tailored to suit the $B B C$ and has therefore translated many of the Basic commands, for example the graphics and sound commands, into Forth. Many of the operating system commands have been incorporated and all the 'star' commands may be used from within Forth.

Especially suited for control and monitoring applications, multi-tasking enables the user to run a number of programs simultaneously, transparent to each other. Each task is placed in a queue and the total length of the queue can be up to 28 programs. A task has its own 32 -bit clock and can be scheduled to execute at a pre-determined time, controlled directly by the user, or controlled from within other tasks, forming an interactive interdependant suite of programs for such applications as robotics. At the simple level, printer output can be defined as a task which, when run leaves the computer free for normal use. Disc and tape can be run at the same time on different files; very useful in data logging. Up to four files may be open to access at a time and block files greater than 32 K can be maintained on disc.

The system is vectored and features may be redefined or the whole system may be re-configured by redirecting the vectors. In addition, there is a standard 6502 assembler for machine-code definitions and a standard Forth screen editor which is enhanced to allow the use of the cursor keys for full-screen editing.
rom, along with full fitting instructions and an impressive 170 -page manual costs $£ 40$. Despite using the 16 K rom as economically as possible, David Husband, who developed the system, had to leave some of the refinements out.
A $£ 40$ disc added to the rom program provides a de-luxe version which contains many more source-code definitions and a large number of colour and graphics commands. The de-luxe version improves on the already impressive tasking facilities, although the full system is not yet finalized David Husband keeps adding to it. The disc includes a demonstration program which divides the screen in five windows; two are scrolling text independantly, one displays a real-time clock, another an oscilloscope-type display and these all leave the larger window free to enter and run programs exactly as if there were not four other programs running at the same time.

Versions of Forth on rom with multi-tasking facilities are also available for the Electron, The ZX Spectrum, The ZX81 and other computers. Skywave Software, 73 Curzon Street, Boscombe, Bournemouth, BH1 4 PW .
EWW 213

* a full description of the differences between Forth-79 and Forth-83 is in the August edition of Byte.

MOTOR SPEED CONTROLLER

Designed for the control of electric drills, the ZN411E from Ferranti is equally suitable for the control of a number of a.c. motors including other power tools, and domestic equipment. The controller offers 'soft start' capability, precise control and can work in reverse complete with a built-in shunt regulator, the i.c. comes in an 18 -lead dual in-line package and will operate from the a.c. mains supply, though it can be operated on d.c. power as well. Stocked by Celdis Ltd, 37 Loverock Road, Reading, Berks RG3 1ED.
EWW 214

STINAD MIFASUREMIBNT FOR CEHHULAR RADIO

NEW Heiper PML-1 SHADDER with psophometric weighting filter - the ideal instrument for cellular radio SINAD measurement and alignment Includes all the features of the SINADDER Linear 5 automatic SINAD meter:

- True RMS SINAD measurements
- Linear 0-24 dB SINAD scale 12 dB centre scale
- No frequency, null or level adjustments to make: just connect to the audio line and read SINAD directly
- True RMS voltmeter - 9 scales $10 \mathrm{mV}-100 \mathrm{~V}$ is
- Isolated 1 kHz test tone output
- Monitor loudspeaker
- Audio signal tracer mode

Happy Memories

Part type	1 off	25-99	100 up
4116 200ns.	1.25	1.15	1.10
4164 200ns Not Texas	4.45	4.15	3.95
2016 150ns Like 6116	4.75	4.25	4.10
6116 150ns Low power.	. 7.75	Call	Call
6264 150ns Low power.	. 23.65	Call	Call
2716 450ns 5 volt	. 3.85	3.45	3.30
2732 450ns Intel type	4.75	4.25	4.10
2732 A 350 ns	5.25	4.69	4.50
2532 450ns Texas type	3.85	3.45	3.30
2764 300ns Suit BBC .	. 5.95	Call	Call
27128 300ns Suit BBC.	. 16.95	Call	Call
Z80A-CPU...£3.75 Z	£4.20	Z80A-C	.£4.85

Low profile IC sockets: \quad Pins $\quad 814161820242840$ Pence 1213141618242738

Soft-sectored floppy discs per 10 in plastic library case: 5 inch SSSD $£ 17.005$ inch SSDD $£ 19.255$ inch DSDD £21.00 5 inch SSQD £23.95 5 inch DSQD £26.35

74LS series TTL, wide stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or 'phone for list.

Please add 50p post \& packing to orders under £15 and VAT to total Access welcome, 24hr 'phone service on (054 422) 618 Non-Military Government \& Educational orders welcome, $£ 15$ minimum.

HAPPY MEMORIES (WW) Gladestry, Kington Herefordshire HR5 3NY Tel: (054 422) 618 or 628

CIRCLE 17 FOR FUR'THER DETAILS.

CIRCLE 58 FOR FURTHER DETAILS.

DATURR

In the advertisement published in the November issue the Small Cases described as light grey are now being supplied in blue. The 19in Cases described as having 'prodruding edges' are also available without these, other than those advertised at reduced prices.

(ii) DATURR 릉ㅇN

Albany Park, Frimley Road, Camberley, Surrey GU15 2PL. Tel: $0276 \mathbf{6 8 1 2 1 2}$ Telex: 858024

TIME WRONG?

MSF CLOCK is ALWAYS CORRECT - never gains or loses, SELF SETTING at switch-on, 8 digits shown Date, Hours, Minutes and Seconds, auto GMT/BST and leap year, larger digit Hours and Minutes for easy QUICK-GLANCE time, can expand to Years, Months, Weekday and Milliseconds or make a second-in-a-month STOPCLOCK, parallel BCD output for computer or alarm and audio to record and show time on playback, receives Rugby 60 KHz atomic time signals, only $5 \times 8 \times 15 \mathrm{~cm}$, built-in antenna, 1000 Km range, $£ 79-70$. GET the TIME absolutely RIGHT.
60 KHz RUGBY RECEIVER, as in MSF Clock, serial data output for computer, decoding details, Basic listings, £25-80.

Each fun-to-build kit (ready made to order) includes ALL parts,
case, pcb, by-return postage and list of other kits
CAMBRIDGE KITS
45 (WL) Old School Lane, Milton, Cambridge. Tel 860150

Audio Measuring Instruments, Audio Amplifiers, Loudspeakers and Loudspeaker Components for the professional and enthusiast

RADFORD AUDIO LTD.
10 BEACH ROAD
WESTON-S-MARE, AVON BS23 1AU
TEL. 0934416033
CIRCLE 38 FOR FURTHER DETAILS.

BBC BASIC EXTENSION

Other utility and language roms for the BBC Micro provide their special facilities through 'star' commands. But Vine Micros' Addcomm rom is different. The new commands it offers are in the form of additional Basic keywords.

Unlike standard Basic words these are not converted into single-byte tokens by the computer, so some care must be taken in using them. But they give many new facilities, notably in the graphics department: there are commands for drawing circles and ellipses, for filling areas with colour and for scaling the screen co-ordinates. In addition there is a selection of Logo
graphics comınands.
Addcomm also incorporates some Basic editing aids, including a 'bad program' rescuer, a compacter, a character definer and a search-and-replace utility. Other commands give the user a string sorting routine, easier handling of text and graphics windows and (though not for purists) the freedom to jump out of For-Next loops without the usual consequences.

The Addcom rom is competitively priced at $£ 28$ including v.a.t. and carriage; it is also available for the Acorn Electron. Vince Micros,
Marshborough, Sandwich, Kent CT13 0PG, tel. 0304812276. EWW 215

RS232 TO CURRENT-LOOP CONVERTER

A converter to enable noiseimmune communication over long distances with full protocol is available to connect to RS232 parts. It can convert in either direction and so can be used at either or both ends of a communications link. It may be used in half of full duplex and may be operated in passive or active mode; when 'active' the converter supplies the loop
current. The Remark model 65 provides for 20 or 60 mA current loops and can transmit or receive at uup to $9600 \mathrm{bit} / \mathrm{s}$. Supplied with a reference manual the unit costs $£ 100$ or less for bulk buyers. Advanced Technology Maintenance Ltd, 2 Norwich Road, Metropolitan Centre, Greenford, Middlesex UB6 8UB. EWW 216

SWITCHER I.C.S AND LAYOUTS

Switching power supplies operating at high frequencies can be easily adapted to provide power at specific current and voltage values. Siemens produce four control i.cs for such supplies and have now made it even easier to design them by the provision of card layouts with the position of all components marked. The four circuits, TDA4700/14/16/18,
provide power line-hum suppression, dynamic currentlimiting, over and under-voltage protection, soft start for the supply itself, double-pulse suppression, reference overload protection and the facility for external synchronization. Siemens Ltd, Windmill Road, Sunbury-on-Thames, Middlesex TW16 7HS. EWW 217

IC LEG STRAIGHTENER

Simply push the integrated circuit through this device and the rollers will position the legs so that they fit i.c. holders or p.c.b. hole patterns. The machine is adjustable and can cater for different leg thicknesses. This particular model can cope with 0.3 and 0.6 in pitch dual in-line devices but others are availableifor 0.4 and 0.9 in pitches. Low cost and handy for small batches or for those who do not have automatic insertion machinery. Other methods of bending the

pins on i.cs are fraught with dangers and difficulties. Hionics Ltd, Lower Quemerford Mill, Calne, Wilts SN11 8JS. EWW 218

XY PLOTTER

A flat-bed xy plotter has a number of add-on options to make it a versatile instrument. The Parfitt plotter is basically a three-pen plotter that can be instructed by a computer to draw anything from from complex geometric shapes and patterns to graphs and electronic circuit diagrams. It can use any of the three pens during its drawing program to produce colour drawings. The pens can be replaced by a scriber and the plotter can then be used to make scraper board pictures on scribe copper for etching. This in turn can be replaced by a light sensor and the instrument can scan a picture to be displayed on a tv screen. A picture scanned in
this way can be reproduced by the plotter. The light sensor can also be used to negotiate mazes. On top of all this a drill or router can be fitted and used to machine soft materials and drill (e.g.) p.c.bs. These addons come as extras on top of the basic price of $£ 270$, the full kit of plotter, power supply, drill/router, optosensor, scriber and software on disc is $£ 490$. Software on cassette is provided in the lbasicl package. Aimed at schools and colleges, it plugs directly into the user port of a BBC micro and an optional conversion makes it suitagle for the other widely used educational computers, RML 380Zs. Parfitt Electronics Ld, 6 View Road, London N6 4DA. EWW 219

CRYSTAL CLOCKS

A quartz oscillator is combined with a programmable on-chip c. mos divider chain to produce up to 57 different output frequencies up to the crystal's own frequency. A specific frequency is selected by applying logic levels to the six control pins of the 16 -pin d.i.l. package. A selection of oscillators with crystal frequencies in the range 32.768 kHz to 1 MHz are available as standard and a version without the crystal can
be supplied. For applications requiring a data-rate generator, two versions can be provided with base frequencies of 768 and 96 kHz which can produce rates between 50 and 48000 baud. Low power consumption and small size combine with the elimination of much external circuitry make these oscillator/dividers suitable for many applications. Euroquartz Ltd, 5 Church Street, Crewkerne, Somerset TA18 7HR.

EWW 220

GAS-FIRED SOLDERING IRON

A Christmas present for the engineer who has everything is this butane-powered portable soldering iron. The Oryx Portasol works on a different principle from other gaspowered irons. There is no flame during operation, the chemical energy in the gas being converted directly into heat by means of a patented catalytic converter in the iron's tip. The rate of conversion is adjustable up to the maximum setting
catch 10 ns pulses and automatically stretch them to 50 ms . It sets its threshold level automatically as a function of the voltage found at the tip and operates from the supply voltage of the circuit being tested, from 4 to 15 V . Optionally an additional adaptor allows the probe to be used from a supply up to 25 V . OK Industries UK Ltd, Dutton Lane, Eastleigh, Hants SO5 4AA.
EWW 221

A pen-sized, digital logic probe that may be used on d.t.l, t.t.l. and mos circuitry comes from OK Industries. The instrument detects high or low logic levels and can indicate if the level is correct or incorrect. It can also detect open circuit. Such a probe can often be used for testing when the only alternative would be an oscilloscope and/or other bulky test equipment. The probe has a frequency range from d.c. to 50 MHz . The PRB- 1 can also

PSEUDOSTATIC RAM

Low-cost dynamic ram chips can emulate static devices by incorporating refresh counters and nultiplexers within the package. The NEC uPD4168, a 64 K ram arranged as an 8 Kbyte memory, uses the standard 28 . pin package and is pincompatible with static rams,
while internally it refreshes memory at a rate of 128 cycles/ 2 ms . Access time is 200 ns with a cycle time of 330 ns .
Operating from a single supply rail of 5 V , it consumes 330 nW while active and 28 mW on standby. The price is claimed to be 40% cheaper than the equivalent static ram. Available through Impulse Electronics Ltd, Hammond House, Caterham, Surrey CR3 6XG. EWW 222
which gives the equivalent power to a 60 W electric soldering iron. Tip temperature is adjusted to between 250 and $450^{\circ} \mathrm{C}$. The gas resevoir is filled in much the same way as a gas cigarette lighter, and the pensized tool has an igniter (i.e. flint) incorporated in its cap. Apart from its portability the iron offers the elimination of electrical damage to sensitive devices. Costs $£ 17.90$ inclusive Replacement tips are readily available. Greenwood Electronics, Portman Road, Reading, Berks RG3 1NE. EWW 223

DEWSBURY

POCOMTOR AFR 2000 RTTY ALL MODE

SPECIal FEATURES:

- Fully automatic recognizing of ARO, FEC-Collective and FEC Selective ISITOR/AMTOR
- Fully automatic searching and synchronizing in Baudot mode according to Baud rate and phase; indication of baud rate and phase
- Manual preselecting of all Baudot and ASCH speeds
- Optimum microprocessor controlled signal reception with $16^{\prime} 000$ (sixteen thousand) samples per second and steady rephasing on forward and backward run of signal

CLECTRONICS

G4CLX
NOW AVAILABLE FOR £427inc.VAT

- Special nantow band quadrature discriminator for all used LF shifts from 50 to 1000 Hz
- Simple and quick tuning with 16 line LED bar indication
- Extremely simple operating
- Current-saving 8 bit C-Mos microprocessor
- Develooment and manufactured in Switzertand

FEATURES AND APPLCATION
The POCOMTOR AFR-2000 RTTN ALL MODE DECODER allows the sumpte and easy writing of the usual teletype codes as BAUDOT, ASCII (including 200baud press service), ARO, FEC-Colfective, FEC-
Setective ISITOR/AMTORI and the FEC procedure used for secret services, which differs from the usal Setective (SITOR/AMTOR) and the FEC procedure used for secret services, which differs from the usual
CCIR recommendation 476.2 The POCOMTOR AFR- 2000 is a complete tetetvpe decoder with buith in new quadrature discriminator for automatic adapting and processing of the normal shitt offsets of 50 H $t 0 ~$
fully autornatically determines the received baud rate and synctronizes the consume area that necessary as yet usual to test the baud rates and phase (Nomal/Reverse) in question in a troubtesome way. It is now only required to call up the automatique routine and ather a short time for the signal reception of about 10 to 15 seconds the synchronization is reached and the text can be written.
In the mode ARQ/FEC, i.e. during synchronous char acter transfer (without start and stop bit) the buit-in intelligency finds out by it self whether it is an ARO of FEC signal, whereby it is additionally differentiated between FEC-Collective and FEC-Selective. To balance signal phase moves there is a steady adaption of the microprocessor controfled sampling. as to prerunning characters and to afterrunning
The tectrod
The tectriotogy of the POCOMTOR AFR-2000 RTTY ALL MODE DECODER corresponds to the highest requiements. Its extraondinary prize/performance ratio will not be reached in near future on the easy its for that you receive more and have to tune less. It has never been thus easy to receive radio telartype

Dewsbury Electronics offer a full range of Trio Equipment always in stock
We are also stockists of DAIWA-WELTZ-DAVTREND-TASCO TELEREADERS-MICROWAVEMODULES ICS ANTOR-AEA PRODUCTS-DRAE-BNOS

HF ANTENNAS

* MODE; Full half wave operation.
* BANDS; Up to 4 spot frequencies.
\star POWER; Receive to 800W (PEP).
\star SWR; Better than 1.5:1 on channel.

THE SMC TRAPPED DIPOLE ATTENMA

has been developed to satisty the needs of commerical and military users. It is capable of - operation between 2 and 30 MHz on as many as four spot frequencies - each capable of feed is offered by the use of SMC HIO traps and the incorporation of a ferrite balun in a full half wave design. NB: Power absorbing terminating resistors are not employed. The antenna may be deployed using one or two support masts, instahation fincorporating SMC light duty portable masts) can be easily effected by two people in half an hour.

HF SSB TRAMSCEIVER

TM180 "PPIONEER" HF SSB TRANSCEIVER. $1.8-18 \mathrm{MHz}, 6$ channels 100 watts RF output measuring onty $95(\mathrm{H}) \times 240(\mathrm{~W})$ $\times 310$ (D)mm and weighing 6 kg .
May be operated as a base or May be operated as a base or mobile transceiver, comple HW4 mobile aerials. Prices start at $£ 700$, making this unit not only very attractive but highly competitive.

SOUTH MIDLANDS COMMUNICATIONS LTD.

SM HOUSE
Telex: 477351 SMCOMM G
OSBORNE ROAD, TOTTON
SOUTHAMPTON SO 4 4DN
CIRCLE 71 FOR FURTHER DETAILS

SOLID STATE SWITCHES

enables on tt control of $240 \vee$ ACh type IR D2 402

 600 watts, direct from your micro etc. Fully isolated Complete with with zero voltage switching Comple250,000 other relays EX STOCK call for details
EX STOCK INTEGRATED CIRCUITS
2732 EPROM SPECIAL fully guaranteed
$450 \mathrm{~ns} £ 3.75$, $350 \mathrm{~ns} £ 4.00$, 300 ns $£ 4.59$
2732 EPROM SPECIAL fully guaranteed

HOT LINE DATA BASE D) (C)

ThE ORIGINAL FREE OF CHARGE dial

 ONLINE LIOCK Iems and one on bargains word. no parity$01-6791888$ MAINS FILTERS

COMPUTLR 'CAB'

abinet with integral switched
mode PSU. Mains filtering, and twin tan cooling Originally made for the famous DEC PDPB compute system costing thousands of pounds Made to run 2 hours per day the PSU is fully screened and will dend
massive $+5 v D C$ at $17 \mathrm{amps}+15 v \mathrm{DC}$ at 1 amp and massive $+5 v D C$ at 5 amps. The complete unit is fully enclosed w removable top lid, filtering, trip switch. 'Power' and 'Run LEDS mounted on Ali front panel, rear cable entries, etc $240 v$ operation complete with full circuit and tech, man Give your systom that profossional finish tor only $£ 49.95$ + Carr. Dim. $19^{\prime \prime}$ wide $16^{\prime \prime}$ deep $10.5^{\prime \prime}$ high

COOLTB FA. 8

 Miniature $240 \times$ equi
 Gon quiet running 240 vo $\times 3^{\prime \prime} \times 25^{\prime \prime}$ " compact
 miniature reversibite fan Uses a brushless
seno motor for extremely high air llow atmost sient unning held wararnteo 10.000

tan supplied tested EX EQUIPMENT $240 \vee$ at $£ 6.25$ or 110 v at $£ 4.95$ or BRAND NEW 240
at $£ 1050$. 1000 's of other fans Ex Stock at 11050.1000 's of other fans Ex Stock
Call for Detaits Post \& Packing on all fans

EPROM COPIERS

The amazing SOFTY 2 The "Complete Tool-
kif" for copying, writing, moditying and listing
EPROMS of the $2516,2716,2532,2732$ EPROMS of the 2516,2716 , 2532,2732
range. Many other functions include integral
keyboard, cassette intertace. serial and parallel data i/O, UHF modu
etc. ONLYE/95.00 + PP $£ 2.50$.

'GANG OF EIGHT' intelligent Z80 controlled gang programmer for ALL

EPROMS upto 27128 . Will copy 827128 in
typ. ONLY 3 MINUTES!! Internal LCD display operation onity routines for $10101.00+\$ \$ E 3.00$. "GANG OF EIGHT PLUS" same spec.
above but with additional RS232 serial inte

PRICE BARRIER SHATTERED ON $16^{\prime \prime}$ RGB CASED COLOUR MONITORS
A scoop purchase from a major London Hotel enables us to offer this special
converted DECCA 100 COLOUR video TV at a super low price of enough to suit any budget! Solid state modular construction, $16^{\prime \prime}$ high detinition PIL tube, which eliminates convergence problems and our own special modification
results in $80+$ column text definition and picture quality not seen costing three times as much!! In fact we guarantee you will be delighted with this product, the quality has to be seen to be believed. Supplied complete and ready output. Other features include internal aud or any other system with a TIL RGB dimensions only. $52 \mathrm{~cm} W \times 34 \mathrm{H} \times 24 \mathrm{D}$, auto degaussing circuit, attractive teak

ONLY $£ 99.00+£ 10.00$ CARR. £12.00) $£ 80.00$

\section*{SPECIAL 300 BAUD MODEM OFFER
 Another GIGANTIC purchase of these EX BRITISH TELECOM, B NEW or little used 28 data modems allows US to make the

REDUCTION, and for You to join the exciting world of data
 communications at an UNHEARD OF PRICE OF ONLY E29.95. Made to the highest POST OFFICE APPROVED spec at a cost of hundreds of
pounds each, the 28 has all the standard requirements for data base, business or hobby communications. All this and moret

DATA MODEMS

Join the communications revolution with our super range of DATA MODEMS w
prices and types to sult all applications prices and type
and bughets!
and budgets"
TELECOM and afe made to the highest standard for continuous use and reliability RS232 interfaces are standard to all our modems, so will connect to ANY
with an RS232 serial interface. DATEL $2 B$ see SPECIAL OFFER centre of
This ad. 13 . 300 baud. Compact unit only
MODEM 13 A
2" high and same size as telephone base.
Tested with data ONLYE45.00 + PP 54.50 . MODEM 20.1. $75 \cdot 1200$ baud. Compact MICRONET Or TELECO
data $£ 39.95+$ PP $£ 6.50$.
MODEM 20-2 same as 20.1 but 1200.75
MODEM
baud fis. 0.0 . 307 . 300 baud acoustic coupler. Brand new with RS232 interface E85.00 + PPEA.50.
DACCOM DSL2123 Multi Standard Modem
V21 $300-300$, 2375.11 Aulo answer via MOD ANSWER Modes plus LED status indication Dim $25^{\circ} \times 8.5^{\prime \prime} \times 9^{\prime \prime}$ BRAND NEW fully
guaranteed ONLY $268.00+P$ E4. 50 guaranteed owly E268.00 + Pr 6.50 . two parl unit is for synchronious data links a 1200 or 2400 baud using $2780 / 3780$ protocol. Many features include Auto answ
2 or 4 wire working etc. etc. COST OVER
 COndition $E 285.00$ CARRE 10.00

Made in the UK by a subsidiary of the World's largest disk drive manulacturer. This BRAND NEW "end of line" unit offers an outstanding opportunity for the
technicall's Competent computer buff to add a MASSIVE 19 mb OF STORAGE to their computer system. Superbly constructed on a heavy die cast chassis the
ORE 3100 utilises 3×8 plattens in a dust free cavity All drive functions are DRE 3100 utilises 3×8 plattens in a dust free cavity. All drive functions are
controlled by microprocessor electronics using an INTEL 8035 cpu and TTL support logic. Interfacing is via a comprehensive 8 bit TTL level bi directional command / status bus with superb status reporting and individual high speed serial I/o lines for separated clock and data etc. Many other features such as
Average seek time 35 ms , 512 bytes per sector. $+24-24$ and $+5 \vee D C$ supply, Average seek time $35 \mathrm{~ms}, 512$ bytes per sector. $+24-24$ and $+5 \vee \mathrm{DC}$ supply,
piug in card system, and very compact size of $19 \mathrm{~cm} \mathrm{H} \times 21 \mathrm{~cm} W \times 42 \mathrm{~cm} \mathrm{D}$ etc. plug in card system, and very
etc. make this item a real snip
Units are BRAND NEW and BOXED and sold at a FRACTION of original cost - hence unguaranteed. Complete with 150 page manual, circuits and applications guide.

ONLY £225.00 Carriage $£ 10.00$

PROFESSIONAL KEYBOARD OFFER

An advantageous purchase of brand new surplus allows a great OWERTY, full travel. ALPHAMERIC $7204 / 80$ full ASCII 60 key , upper. lower + control key, paralle ITL output plus strobe. Dim $12^{\prime \prime} \times 6^{\prime \prime}+58-12$ DC. EJ9.so. DEC LA34 Uncoded keyboard with 67 quality. GOLD. normatly open Switches on
standard X Y matrix. Complete with 3 LED indicators \& i/o cable - ideal micro

66\% DISCOUNT
 ${ }^{\text {tatempon }}$, mex

BUDGET RANGE VIDEO MONITORS At a price y competition!! Ail are for 2
standard composite vide pre tested and sel for to BBC micro. Even where MINOR screen burns MA

1000's SOLD TO DATE will display up to 132 columns $\times 25$ lines Housed in att ractive fully enclosed
brushed alloy case. B / \mathbf{W} only $\mathbf{\Sigma 3 2 . 9 5}$ GREEN screenE39.95 24" KGM large screen black \& white
monitor fully enclosed in light alloy case Ideal schools.
ONLYE 55.00

14", BRAND NEW Novex COLOUR type NC1414-CL. Many exacting features such
as RGB TML and composite video input, GREEN TEXT key, internal speaker and Matching 8010urs.

SEMICONDUCTOR 'GRAB BAGS'
 Mixed Semis amazing value contents

include transistors digital, linear, I. C's striac quaranteed brand new full spec with ma lacturer's markings, fully guaranteed $50+£ 2.95100+£ 5.15$.
TTL 74 Series Agigantic purchase of an "across the board" range of 74 TL se
IC's enables us to offer $100+$ mixed C. S enables us to offer $100+$ mixed "mostly TTL" grab bags at a price which two
or three chips in the bag would nnormally
cost to buy Fully guaranteed all I.C's full

DEFLAㅁ Etectrably

ERS - PRINTERS - PRINTERS - PRINTERS PRINTERS - PRINTERS - PRINTERS - PRI

SUPER DEAL? NO - SUPER STEAL!!

The FABULOUS 25CPS TEC Starwriter
 print mechanism giving superb registration and processor electron offer full DIABLO/QUME and full controi vatability Many other leatures printing. switchable 10 ternal butter per line internal butfer. standard RS and Optional extras RS232 data cable 110 sales office for more information

Save

GE MODEL 30
 A large purchase of these stand alone
terminal units offers an EXTREMELY LOW PRICE for a professional printer for direct connection to your micro. The printer has a
standard RS232 serial interface with standard RS232 serial interface with
switchable rates of 110 , baud. Upper and lower case characters are printed by a matrix head with characstandard fan fold sprocket fed paper standard fan fold sprocket ted paper from umeric keypad electronic keyboard, auto motor on/off and FREE floor stand. Supplied in good S/H working condition SRIAO W INS E10.00 ONLY E95.00

FXTEL PRINTERS

EX NEWS SERVICE compact, quality built 50 column matrix printer, type AE11. Unit operates on 5 BIT BAUDOT code from current loop, RS232 or TTL serial micro. or comms receiver via simple filter network to enable printing of most world wide NEWS. TELEX and RTTY services. Supplied in tested second hand condition with 50 and 75 baud xtals, data sheet and large paper roll, owly $\mathbf{E 4 9 . 9 5}$
Dimensions $15^{\prime \prime} \mathrm{D} \times 5^{\prime \prime} \mathrm{H} \times 10^{\prime \prime} \mathrm{W}$
CARR $\mathbf{E 6 . 0 0}$ Spare paper rolls $\mathbf{£ 4 . 5 0}$ each

GE TERMIPRINTER

A massive purchase of these desk top these quality 30 cDs printers at a SUPER LOW PMICE against their original cost over £ 1000 Unit comprises of full OWERT electronic keyboard and printer mech with print face similar to correspondence quality ypewriter. Variable forms tractor unit
enables full width -up to $13.5^{\prime \prime} 120$ co paper upper - lower case, standard RS232 serial interface, internal vertical and horizontal tab settings. standard ribbo adjustable baud rates, quiet operation pi
many other features. Supplied complete with manual. Guaranteed working K $^{2} 50.00$ untested $\mathbb{8 5} . \infty$. Optional floor stand $£ 12.50$

TRLETYPR ASRB3

 I/O THRMmitatsrromergs + CaR + var I terminal Many features including ASCI keyboard and printer for data 1/O auto data defeci circuinty. RS232 serial interiace. 110 baud. 8 bit paper tape punch and reader for cheap and reliable dat a storage. Supplied in good condition and in working order Options Floor stand $\boldsymbol{E} 12.50+V A T$ KSR33 with 20 ma loop interface $\mathbf{E} 125.00$ Sound proof enclosure $\mathbf{E 2 5 . 0 0}+$ VA

20,000 FEET OF ELECTRONIC AND COMPUTER GOODIES ENGLAND'S LARGEST SURPLUS STORE - SEEING IS BELIEVING!!

D.C. POWER SUPPLY SPECIALS

Experimentos PSU Ex-GPO. Áll silicon electronics. Ou
Im $160 \times 120 \times 350 \mathrm{~mm}$. All outputs are fully regulated and shot circuit proot Supplied in NEW or little used condition. Complete with circuit. $\mathbf{£ 1 5 . 5 0 + £ 2 . 5 0} \mathrm{PP}$ FARNELL 5 Volt 40 amps . Type number G6-40A. This miniature switching PS measures only 160 mid mps" Fuly regulated and smoothed with over voltage protection Etc. 120 or 240 current list price ONIY E/30.00 + E3.00 CARR \& IMS.
LAMBDA LMCC5V BRAND NEW $240 \vee$ AC input with 5 volts DC a: 8 to 10 amps Hy regula LAMBDA LMCC5V 110 V AC input with 5 volts DC at 8 to 10 amps fully regulated output. Slightly smoke damaged, hence ONLY E10.95.
PERIPHERAL SYSTEM SUPPLY. Runs almost any system. Fully cased unit supplied n a brand new or little used condition. Outputs give $5 v @ 11$ amps " $+24 v @ 4$ amps. All outputs are crowbar protected and the 5 volt output is fully regulated. Fan cooled. Supplied tested with circuit $555.00+$ E8.50 CARR.
1000's of other POWER SUPPLIES EX STOCK - CALL SALES OFFICE FOR

DISK DRIVE SPECIALS

Floppy Disk Drives.
SIEMENS FDD-100-5 51/a" 40 track single sided. Ex new equipment tif sted, guaranteed working. Complete with data $£ 75.00$
SHUGART SA400 $51 / 4^{\prime \prime} 35$ track, single sided, Ex equipment, guaranteed working $£ 55.00$
SHUGART SA800, SA850 8" drives plus spares EX Stock call for prices. Hard disk drives
Large quantities of HARD DISK drives currently EX STOCK includinc DRE series 30 mb Front Load for DEC, NOVA etc
DIABLO 44/DRE 4000 A, B $5+5 \mathrm{mb}$ cartridge drive
CDC HAWK $5+5 \mathrm{mb}$ cartridge drive as new condition
CDC 976280 mb DEC RMO3 compatible
PERTEC D3422 $5+5$ cartridge drive
arge quantites of spares and controllers available for 5100 DEC. HC GENERAL. Call sales office for details.

DUAL DISK DRIVE/ WINCHESTER CASES Very smart, fully enclosed case u ustom made to accept two full height $5^{1 / 4^{\prime \prime}}$ floppy disk drives or
$5^{1 / 4^{\prime \prime}}$ winchesters such as the 5/4 ${ }^{4}$ winchesters such as the
RHODIME RO200 or TANDEM series etc. An internal switched mode PSU supplies all the required voltages to enable you to plug in your drives and go!!
Other features include mains filter internal cables with standard drive connectors, space for internal PCB, standard fan cut out and mounting, air filter. Overall dimensions $28 \mathrm{~cm} \mathrm{~W} \times 30 \mathrm{cmD} \times 19 \mathrm{~cm} \mathrm{H}$ ONLY £55.00 + £6.00 CARR.

AMBASSADOR

Telephone Systems
Limited quantity of these microprocessor controlled 2 line plus 4 extension telephone systems Comprising of compact CPU unit and four special telephones. Via simple push button controls each of the four phones can ORIGINATE, HOLD or TRANSFER calls to and from each
extension. Other features include bell extension. Other features include bell control, internal intercom, redirect,
LED status indication, simple 4 wire connections etc. Supplied in tested little used condition with full data. ONLY $£ 250.00+£ 6.00$ CARR.

DEC CORNER

PDP 1140 System comprising of CPU

 124 K memory +MMU 16 line RS232intertace. RPO2 40 MB hard disk drive Tterface, RPO2 40 MB hard disk drive,
TU10 9 track 800 BPI Mag tape drive, dual rack system, VT52 VDU etc. etc. Tested BA11-MB 3.5" Box, PSU. LTC DH11-AD $16 \times$ RS232 DMA interface £2100.00 DLV11-J4×E|A interface DO200 Dilo Serial RK £310.00 DQ200 Dilog - multi RK £650.00

DZ11-B 8 line RS232 mux $\quad \mathbf{E 4 9 5 . 0 0}$ A36 Decwriter EIA or 20 ma 1000 £270.00 LAXX-NW LA180 RS232 serial interface LAX34-AL LA34 tractor feed \quad £85.00 MS11-JP Unibus 32 kb Ram MS11-LB Unibus 128 kb Ram MS11-LD Unibus 256 kb Ram
MSC4804 Qbus (Equiv MSV1 $£ 80.00$

450.00 256 kb | £ 850.00 |
| :--- |
| 850.00 | PDP11/40 Cpu, $124 \mathrm{kMMU} \quad £ 450.00$ RT11 ver 3B documentationk \quad \&70.00 RKO5-J 2.5 Mb disk drives $\quad \mathbf{£ 5 0 . 0 0}$ KL8JA PDP 8 async i/o $\quad £ 175.00$ I5 E PDP 8 Bootstrap option current loop

T52 VDU with RS232 interface $£ 175.00$
$\mathbf{~} 250.00$

[^8]

The PC-16 16-bit computer provides PERFECT COMPATIBILITY with the IBM PC/XT range. The motherboard can be supplied in two versions for stereoscopic conveneince. The ' N ' version has no memory on board and the ' B ' version with space for 64 to 256K RAM. Addition of the Memory Expansion Card provides a further 64 to 512 KB of RAM. BASIC FEATURES INCLUDE

* 8088 CPU operating at 4.77 MHz
* Provision for 8087 co-processor
* Four DMA channels
* Three TIMER channels on board
* 8 EXPANSION SLOTS

SYSTEM-5 PC16 (B/3) - PRICE £1599 - Main computer emplōying 'B' board with 128 K on board (upgradeable to 256 K on board) PLUS Colour/Graphics adaptor providing signal capable of running monochrome displays on RGB outpüt for full colour. Multi I/O card, providing floppy drive controller for two drives, one parallel port, one serial port, one games port with batter backed clock calander. RAM extension card for 512K. Two DS/DD floppy drives. 83-key keyboard. All complete, built \& tested in case with power supply together with Concurrent (multiuser, multitasking) CP/M, CCP/M manual, Basic manual and computer operations manual - ready to run

* RUNS MS/PC-DOS \& CP/M 86
* READS \& WRITES IBM-PC format
* Accepts IBM-PC Peripherals
* Up to 256K RAM ON BOARD

MOTHERBOARD 'B', 8-slot, 128K ...449 MOTHERBOARD ' ${ }^{\prime}$ ', 8-slot $\mathbf{£ 3 2 9}$ MULTIFUNCTION card with 128 K (expandable to 256 K) one PLL-port, one SER-port (2nd option) Clock/ Calendar with backup ... $£ 259$ MONOCHROME adaptor with printer port $\mathbf{£ 2 3}$ MULTI I/O CARD - one pll, one serial port, one games port, floppy drive controller, clock calender with battery backup............................. 299

14in RGB HI-RES MONITOR (640dots $\times 300$ lines)E389 12in HI-RES GREEN MON $\mathbf{E} 9$ $64 K$ RAM EXTEND MODULE $£ 59$ DS/DD FLOPPY DRIVE (500 KB unformatted WINCHESTER DRIVE
CONTROLLER................................... 425
512K RAM BOARD - comes with 128K RAM installed fully IBM compatible.
\qquad

Appointments

Advertisements accepted up to 12 noon Friday Nov. 30th for Jan. Issue.

subject to space available

DISPLAYED APPOINTMENTS VACANT: $\mathfrak{£} 19$ per single col. centimetre (min .3 cm). LINE advertisements (run on): $£ 4.00$ per line, minimum $£ 25$ (prepayable). BOX NUMBERS: £5 extra. (Replies shouid be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 4AS). PHONE: LUCY O'SULLIVAN, 016613033 (DIRECT LINE)
Cheques and Postal Orders payable to BUSINESSPRESSINTERNATIONALLTD. and crossed.

Freelance Engineers

If you would like to enjoy the very high earning levels and variety of work associated with freelance employment, then talk to us about our highly competitive rates for long and short term contracts with our many clients in the South of England. We are keen to hear from both established Contract Engineers and those contemplating entering this highly lucrative field for the first time where your earnings could exceed Some of the interesting and highly rewarding assignments that we have currently on offer include:

* UHF and VHF Design

for radio communications applications.

* Test Engineering

Development of I.E.E.E. Bus test systems for digital and R.F. measurement.

* Coral 66 Software Design
for message switching applications.
* Trials Engineering

Mathematicians; Analysts; Performance Evaluators Weapons Systems Engineers; all for defence applications

We also have many clients

£30,000pa.

* Technical Writers

Preparing manuals for process control and communications systems etc.

* Power Supply Design

Specialising in Switch-mode or High Power systems.

* Digita//Analogue Design
of micro processor based hardware.
TO FIND OUT MORE and to obtain an early interview, please telephone JOHN PRODGER in complete confidence on HEMEL HEMPSTEAD (0442) 47311 during office hours or one of our duty consultants on HEMEL HEMPSTEAD (0442) 212650 evenings or weekends (not an answering machine). Alternatively write to him at the address below.

offering excellent career opportunities at all levels of engineering, sales and management.
Executive Recruitment Services
the international specialists in recruitment for the electronics. computing and defence industaies

Appointments

SERVICE INDUSTRIES LIMITED of

Lahore, Pakistan requires for the proposed engineering complex for manufacture of mobile, portable and fixed station communications equipment the services of a Pakistani national post-graduate electronic engineer with at least five years experience. Age less than 35 years. He is expected to advise on the planning, designing and manufacturing of communications equipment. Annual salary will be above Rs. 100,000 along with benefits.
Please send your latest photograph with resume by 15th December 1984 .

SERVICE INDUSTRIES LIMITED
80-E/1, Gulberg-3 Lahore-11 (Pakistan)

TECHNICIANS
 Advanced Telecommunications Technology

Technicians at the Foreign and Commonwealth Office have wide-ranging responsibilities and can make full use of comprehensive and unique facilities. There are also good promotion prospects and the opportunity, in some cases of service overseas
We have vacancies at Hanslope Park, (Near Milton Keynes) for technicians to work on the installation, maintenance and other work associated with HF communication equipment, VHF, UHF and microwave links and associated test equipment; teleprinters, telephone subscribers' apparatus,, PMBXs, PAXs, PABXs, and ancillary equipment including that using analogue and digital techniques and voice frequency telegraph.
Applications should normally have 4 years' relevant experience (7 years for more senior posts).
To be considered you will need to possess ONC in Engineering, Mechanical Engineering, Electrical Engineering or Electronic Engineering, or an equivalent City and Guilds Certificate, or another equipvalent qualification such as an appropriate TEC or SCOTEC certificate.
Ex-service personnel who have had suitable training and at least 3 years' appropriate service (as Staff Sergeant or equivalent) will also be considered
Salary will rise from a minimum of $£ 6512$ pa to a maximum of $£ 9009$ pa for the Junior Grade and from a minimum $£ 8757$ pa to a maximum of $£ 9998$ pa for the Senior Grade. Starting salary in the Junior Grade may be above minimum for those with additional relevant experience.
Annual leave on entry is 4 weeks 2 days
Relocation assistance may be available
Hours: 42 hours per week
The Foreign and Commonwealth Office is an Equal Opportunities Employer Please apply for an application form, quoting reference TT/06/84, and stating the grade you wish to be considered for.
The closing date is 6 January 1985.
Recruitment Section, Foreign and Commonwealth Office,
Hanslope Park, Hanslope, Milton Keynes MK19 7BH Foreign and Commonwealth Office.

AUDIO ENGINEERS

Join a small dynamic team where your contribution will be recognised! Audix design and manufacture professional audio communication systems and equipment for radio/T.V. broadcast studio applications. We are involved in a major and successful development programme which is leading to an increasing demand for our products. We are therefore expanding our Project Engineering, Test and Development sections and have a numbeer of challenging vacancies for young self motivated engineers:

Project Engineering Manager

To manage a small team responsible for ensuring that all major projects are engineered and supplied in accordance with tender specifications. The position involves liaising with customers and production departments, special engineering and occasional supervision of installation and commissioning. Previous experience of professional audio engineering is essential.

Project Engineer

To be responsible for all engineering aspects of major projects from liaison with customers to equipment commissioning. Visits to installation sites both within the U.K. and overseas will occasionally be necessary. Previous experience of professional audio engineering is essential and it would be advantageous to have some knowledge and experience of microprocessors.

Senior Test Engineer

Capable of system test of complex microprocessor based mixing consoles and communication systems. Occasional visits to client's studios and commissioning of systems may be necessary.

Development Engineers

We require both senior and junior engineers who have some digital experience, together with a good appreciation of analogue techniques. Experience with $\mathbf{Z 8 0}$ microprocessors would be an advantage.

Software Engineer/Trainee

This post would ideally suit a young electronic engineer who has a special interest in software design. Experience with $\mathrm{Z80}$ microprocessor would be an advantage however specialist training courses can be provided

Development Technician

Required to assist in the design, assembly and test of breadboards and prototype PCBs. The post would suit a young engineer who has previously worked typically as a test or service engineer. From this position there are opportunities for rapid promotion into other departments within the company. For further information on these appointments please telephone Mrs J. Lawson on 079940888 or write enclosing your C.V. to:-

Audix Limited Station Rd., Wendan Saffron Walden Essex

Appointments

DODolby

Dolby Laboratories Inc. manufacture and market Audio Noise Reduction equipment which is used by major recording companies, recording studios, the film industry and broadcasting authorities throughout the world.
Due to increased sales and the introduction of new products we have the following vacancies:-

Electronic Test Technicans ($£ 135$ pw NEG) We need people educated to HNC level (or equivalent) with the potential to develope test and fault finding skills (to component level) in a semi-automated test environment.

> Electronic Test Engineer ($£ 8000$ pa NEG) We need experienced Test Engineers educated to HND to equivalent level who demonstrate a practical knowledge of Analog testing and rapid "trouble-shooting" to component level.

For further information contact: Sarah Kennedy, Dolby Labcratories Inc. 346 Clapham Road, London SW9 9AP. 01-720 1111

BORED ?

Then change your job!

1) TEST ENGINEERS with good Analogue/Digital experience to test and fault find. Complete automatic test equipment. C. $£ 10,000$ Middx/Bucks/Berks 2) AUDIO/VIDEO EQUIPMENT. Enquiries at all levels required to service sophisticaped TV and related broadcast equipment. To £12,000 + car. Berks/Middx 3) MINIS AND MICROS SYSTEMS repair engineers required for work on $Z 80$ based graphics systems. Field prospects. C. $£ 8,500$. Hants/Essex.
2) DRAFTSMEN - PCB/ Electro mechanical cable forms. Chassis cabinets. All areas. to $£ 12,000$

Hundreds of other Electronic and Computer vacancies to $£ 12,500$ Phone or write

ELECTRONIC TECHNICIAN

INTERESTING WORK
REPAIRING, MANUFACTURING AND DEVELOPING ELECTRONIC FLASH EQUIPMENT FOR A EADING PHOTOGRAPHIC DISTRIBUTOR IN CENTRAL LONDON Applicants should have a knowledge of basic electronics to City \& Guilds standard but experience in this field is not essential. A driving licence would be an advantage., Salary negotiable

Telephone Nigel Fielden on 01.8334737 for an interview. (2768)

```
QUEEN MARY COLLEGE (University of London)
ELECTRONICS TECHNICIAN-
```

The post is available with the Particle Physics Research Group, and is funded by an SERC rolling grant for
an initial period of 3 years. The group an initlal period of 3 years. The group international collaborations at CERN, Geneva, Switzerland.
The person appointed should posses at least an HNC and have had previous practical experience in Electronics. He will be based at Queen Mary College, but will be expected to spend time both at CERN and at the Rutherford Appleton be closely associated with the development of new fast timedigitising and charge sensitive analogue techniques for particle detectors. The data acquisition system is computer controiled. Novel techniques using UV lasers and fibre optics will also be implemented. The successful candidate will be encouraged to pursue original ideas range $£ 6581$ to $£ 9871$ per annum depending on age and experience plus $£ 1250$ London Weighting. Letters of application giving age. experience and qualifications and the names of two referees should be sent as soon as possible to Mr D.R. Stone. Physics Department, Queen Mary College, 4NS.

Closing date: 7 December 1984
(2777)

TOMMMTRNIGUTIOTNSTOTVHITTON Test Engineers microwave communications systems Wells, Somerset

If you have a thorough knowledge of functional testing of microwave electronics sub-assemblies, units and systems, then we can offer attractive career opportunities at Wells in Somerset.
We are the Communications Division of Thorn EMI Electronics Limited and have played a leading role in developing the technologies on which modern communications systems depend.
Working in a development and production environment, you will be involved with microwave systems for civil applications, currently covering frequencies up to 20 GHz .
These opportunities would suit electronics technicians with experience in microwave testing, although college leavers who have received training in microwave systems as part of their course could also be considered for some of the more junior posts.
As a leading high technology company, career development opportunities are excellent with the potential of further developing your knowledge and experience.
Attractive salaries and benefits include an active sports and sociai club and free life assurance.
Please 'phone or write for an application form quoting Ref. EWW/385 to Mr. F. M. Taylor, Assistant Personnel Manager, Thorn EMI Electronics Limited, Communications Division, Wookey Hole Road, Wells, Somerset BA5 1AA. Tel. Wells (0749) 72081. Ext. 227.

THORN EMI Electronics (2776)

Appointments

I.L.E.A.

Learning Resources Branch Television and Publishing Centre Thackeray Rd, London SW8

Television Engineer (MG 10)

Salary range £7470- 59432 plus $\{1347$ London Weighting Allowance, and an irregular hours allowance of $\mathbf{2} 228$. The Mobile Video recording Section, which is equipped to broadcast standard, makes observational classroom recordings for teacher education. A television Engineer is required to join a technical team of 8 for operational and maintenance work involving rigging and driving duties.

Film Camera Assistant (ST1/2)
 Slary Range $55,568-$ - 8,451 plus \& 1347 London Weighting Allowance.

The Centre's Broadcast quality colour programmes use 16 mm sound film and video insert provided by the film camera section in which this vacancy has arisen.
Applicants should have relevant training and experience in servicing the requirements of film and video cameras together with the associated location lighting equipment, in television or documentary film environment.

PRODUCTION DIVISION Television Maintenance Engineer

(ST1/2) [Re-advertised9
Salary Range $\mathbf{~} 7470-\mathbf{8 4 5 1}+\mathbf{~} 1347$ London Weighting Allowance. Plus $£ 192$ shift allowance A maintenance engineer is required to work at the Television and Production Centre which is equipped to professional colour TV broadcasting standards. The engineer will work in a section of four which is responsible for maintaining a high level of performance of a wide range of sound and vision equipmen
Full job description and application forms for all the above posts are available from EO. Estab 1B, Room 366. The County Hall, London SE1 7PB. Please S.A.E. The closing date for completed application forms is the 2nd January 1985 These post are suitable for Job-share.

ILEA is an Equal Opportunities Employer.

YOU'VE BUILTMICROPROCESSOR CONTROLED PRODUCTS:NOW HAVE A HAND IN DESIGNING THEM OPPORTUNITIES FOR YOUNG, QUALIFIED ENGINEERS

South Herts High performance mini computers to $£ 11,000$ pa
Cambs Custom-made CAD systems
c $£ 7,500$
Suffolk Remote TV, video and air reconnaisance systems c $£ 9,000$
Essex Remote controlled Broadcast communications

C $£ 7,500$
SHerts Defence and security equipment C $\mathbf{C 9 , 0 0 0}$
Cambs Digital guaging and read outs for
c $£ 7,000$ inspection equipment

Call Phil Walleron
Bishop's Stortford (0279) 506464,
9 am-6pm, (out of hours answering service)
Forfurther details and a confidential discussion or send your c.v. to:-

A Division of ATA Selection and Management Services Lto
Portiand House. 29 Basbow Lane, Bishop's Stortiord Herts Condon, Lexosn, Manchester, Sirminghem, Edinburg. Briatol, Brackneil, Bus nop's Siortord. Crawley, milton Keynes.

AUDIO DEVELOPMENT ENGINEER

DUE TO EXPANSION, A VACANCY EXISTS IN OUR DEVELOPMENT DEPARTMENT, WHICH WILL INVOLVE ALL ASPECTS OF DESIGN FROM CONCEPT TO PRODUCTION. THE APPLICANT SHOULD BE QUALIFIED TO DEGREE LEVEL, AGED 21-25 AND HAVE A KEEN INTEREST IN MUSIC
Phone in first instance to Mr. Mike Hill.
Jim Marshall (Products) Limited, Denbigh Road, Blecthey, Milton Keynes MK1 IDQ Telephone: Miton Keynes (0908) 75411.

TECHNICIAN Electrical \& Electronic Engineering

Required in the electronics workshop. The workshop staff are responsible for the maintenance of electronic instruments and for the development and construction of electronic equipment for both teaching and research. Applicants should have an appropriate qualification (minimum ONC or equivalent) and considerable experience in electronic engineering, preferably including computers.

Salary will be grade $5 \mathbf{£ 6 , 5 8 1 - \mathbf { E 7 } , 6 8 4}$ p.a. Applications to Mr. W.G. Black,
Department of Electrical \& Electronic Engineering, The University of Leeds, Leeds LS2 9JT. (2779)

Philips Drake Electronics is an expanding company specialising specialising in the design and manufacture of equipment for the Broadcasting Industry. We now require engineers for the following positions:

PROJECT ENGINEER

A vacancy exists in our Projects department for an enthusiastic and self motivated engineer. The department deals primarily with the system design of broadcast communications equipment to customers' requirements and is responsible for the preparation of production and handbook documentation in addition to providing technical support for our sales manufacturing and test department.
A suitable engineering qualification together with some experience in broadcast or the professional audio industry is essential.

ANALOGUE DESIGN ENGINEER

We are looking for an experienced engineer to join our development team. The successful candidate will be involved in all aspects of design from concept to production. He/She will most likely have a relevant degree and must be capable of producing innovative but practical designs with minimum supervision. Experience of the professional audio industry would be an advantage

TEST ENGINEER

We require a test engineer with experience in testing analogue (preferably audio) circuits and fault finding to component level. He /She will become involved in varied testing from small batch produced units to complete studio communications systems and will be required to adapt to digital technology as this is

SOFTWARE ENGINEER

A new position of microprocessor software engineer has been created and we seek a suitable candidate to design software in PASCAL and ASSEMBLER for the MC6800 family. The ability to work on your own initiative and communicate your ideas clearly is essential.
Attractive salaries will be offered to the right people.
It any of the above positions appeal to you please apply in writing including your current CV or phone Jill Humphreys on Welwyn Garden City (07073) 33866 for an application form. Philip Orake Electronics Ltd., 37 Broadwater Road, Welwyn Garden City,

Electronic EngineersWhat you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $£ 5000-£ 15000$.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL

 PERSONNEL SERVICES,12 Mount Ephraim,
Tunbridge Wells,
Kent. TN4 8AS.
Tel: 089239388

(24 Hour Answering Service)

Please send me a TJB Appointments Registration form
Name
Address

Qualifications - ONC, HNC HND final City and Guilds or equivalent, or 2 ' A ' levels plus either 2 years as student or junior technician or 3 years relevant experience. Further details are available from Martin Welch (01) 7940500 ext 3209 Job description and application form available from the Personne Department Royal Free Hospital Pond Street, Hampstead, London NW3 2QG Please quote reference no: 1499

VDU ANALOGUE DESIGN

To £16k Thames Valley

Our client, an international name at the forefront of computer peripheral technology, is seeking an experienced Analogue Electronics Engineer to join its expanding VDU manufacturing division.
This represents an ideal opportunity to become part of a team pioneering the development of VDU's and in telligent terminals. Candidates will therefore need to be able to demonstrate strong innovative flair backed by solid experience in the design of VDU's or TV drive circuits and PSU's. An appropriate qualification, preferably a degree, is essential.
The rewards are high, including a full range of big company benefits, assistance with relocation and very real prospects for career development within a young and extremely successful company.
Please write, enclosing a full C.V. and quoting reference number WW/824 to The Chief Executive, DCM Appointments, 66 Frith Street, London Wl.

DCM APPOINTMENTS

TECHNICAL PROJECTS LIMITED

is a young and rapidly growing company specialising in the development manufacture and marketing of audio products for the professional entertainments industry worldwide. Our customers include the BBC, independent television companies, local radio, hire and production houses, manufacturers, education and MOD etc. We are noted for product quality and customer service. Due to expanding business opportunities the following two vacancies have arisen:

FIELD SALES ENGINEERS

(Audio/Acoustic Measuring Equipment)

1. Wales, Midlands \& East Anglia
2. Northern England and Scotland

Applications are invited from sales engineers ideally in the field of profes sional audio/acoustic measurement and its related test products, possibly working in a large company and wishing to make an impact in a smaller one using their expertise and experience in field sales to promote the company's growth
A combined five figure salary and commission of circa $£ 19.000$ is envisaged in the first year with every opportunity for increase and advance ment into management. Company car provided plus normal benefits. Please write or telephone:
The Sales Manager, TECHNICAL PROJECTS LIMITED,, Unit 2
Samuel Whites Ind. Estate, Medina Road, Cowes, Isle of Wight, PO31 7LP Telephone: (0983) 291553
(2755)

SWISS COMPANY
 LOOKS FOR EXPERIENCED ENGINEER FOR INSTALLATION AND SERVICE OF
 - SSB TRANSCEIVERS 1.6 - 30 MHZ FREQUENCY SYNTHESIZED
 - IN ADDITION 1 KW POWER AMPLIFIERS interesting position with some travelling

Mr. K. Minder
TIG BICORD AG. CH 6331 Huenenberg Zug Switzerland.

Appointments

JOINT EUROPEAN TORUS

Radio Frequency/ Electronic Technician

to join JET, an exciting multi-national scientific and technical project. JET is the largest single project in the European fusion research programme, investigating the feasibility of nuclear fusion as a new energy source.
The project is sited in the attractive countryside of the Thames Valley at Culham Laboratory near Oxford. The modern, purpose built laboratory complex is equipped with large and advanced research facilities supplied by European industry, and offers excellent opportunities to acquire valuable experience in many challenging areas of technological research.
We now seek a Radio Frequency/Electronic Technician to join our team of over 500 staff currently working on the project. He or she will play an important part in the expanding scientific programme which will be carried out during the project operation phase up to the 1990's.
The successful applicant will be involved in the procurement, installation, operation, maintenance and modification of high power radio frequency amplifiers, transmission line equipment and associated control circuitry.
A degree in electrical/electronic engineering or an equivalent qualification is required and several years' relevant experience of RF equipment in broadcast, industrial and scientific use, would be an advantage.
The successful candidate will be offered an appointment within the UKAEA and witl then be assigned to JET.
Salary will be dependent on qualifications, age and experience, in the range £7,990-£13,665.
Excellent working conditions, including restaurant and social facilities, are provided and other benefits include:

- Generous holidays and sick leave allowances
- Transport from many local towns and villages
- Housing or housing assistance in appropriate cases
- Children of staff assigned to the project are entitled to attend the nearby European school
- Tuition in European languages is available to staff assigned to JET.

For an application form and further details please write to Mr. M. Taylor, The Personnel Department, UKAEA, Culham Laboratory, Abingdon, Oxon OX14 3DB, quoting reference J 3225 . Closing date for applications is two weeks from the publication of the advertisement.

HIGHLAND HEALTH BOARD Department of Medical Phvsics and Bio-Engineering, Raigmore Hospital, Inverness

SENIOR TECHNICIAN/ TECHNICLAN -

Electronics Section

A vacancy exists for a Senior Technician/Technician with ONC or high qualifications. The work involves design, construction, repair and maintenance, as well as clinical involvement.
Salary is - Grade III $£ 6408$ - $£ 8283$ Grade IV £5404-£7104 Job description and application form from Area Personnel Officer,
Highland Health Board, 17 Old Edinburgh Road, Inverness. (Tel. 0463239851)
For additional information contact Mr A R Bowley, Deputy Director.
(Tel. 0463234151 ext 276 or 277)
(2786)

HI-TECH SERVICING
 An opportunity exists in a small

 but lively distribution and support company based in central London. We specialise in professional audio products for the broadcast TV and commercial recording industries - many microprocessor based.Applicants should be able to fault find down to component level and must have 3 years experience in analogue and digital circuitry An HND, HNC or C\&G
qualification would be an advantage as would a clean driving licence.

Contact Brandon McHale or
Nicholas Martin on
01-3871262

ELECTRONIC TECHNICIAN

Stage Lighting Control Manufacturing Company require bright Technician for testing/servicing desks and dimmer systems. An/Dig experience necessary; microprocessor experience an advantage; formal qualification not essential.
Contact Richard Nother
01-965 8522
(2785)

If an advertisement is wrong we're here to put it right.

If you see an advertisement in the press, in print, on posters or in the cinema which you find unacceptable, write to us at the address below.

Advanced telecommunications:
 careers with extensive scope at Cheltenham

Join the Government Communications Headquarters, one of the world's foremost centres for R \& D and production in voice/data communications ranging from HF to satellite - and their security. Some of GCHO's facilities are unique and there is substantial emphasis on creative solutions for solving complex communications problems using state-of-the-art techniques including computer/ microprocessor applications. Current opportunities are for:

Telecommunication Technical Officers

Two levels of entry providing two salary scales: £6262-£8580 \& £8420-£9522
Minimum qualifications are TEC/SCOTEC in Electronics/ Telecommunications or a similar discipline or C \& G Part II Telecommunications Technicians Certificate or Part I plus Maths B, Telecommunication Principles B and either Radio Line Transmission B or Computers B or equivalent: ONC in Electrical, Electronics or Telecommunications Engineering or a CIE Part I Pass, or formal approved Service technical training. Additionally, at least four years' (lower level) or seven years' (higher level) appropriate experience is essential in either radio communications or radar, data, computer or similar*electronic systems. At the lower entry level first line technical/supervisory control of technicians involves "hands-on" participation and may involve individual work of a highly technical nature. The higher level involves application of technical knowledge and experience to work planning including implementation of medium to large scale projects.

Radio Technicians -£5485-£7818

To provide all aspects of technical support. Promotion prospects are good and linked with active encouragement to acquire further skills and experience. Minimum qualifications are a TEC Certificate in Telecommunications or equivalent plus two or more years' practical experience. Cheltenham, a handsome Regency town, is finely endowed with cultural, sports and other facilities which are equally available in nearby Gloucester. Close to some of Britain's most magnificent countryside, the area also offers reasonably priced housing. Relocation assistance may be available.

For further information and your application form, please telephone Cheltenham (0242) 32912/3 or write to:

[EHHD

Recruitment Office, Government Communications Headquarters, Oakley, Priors Road, Cheltenham, Gioucestershire, GL52 5AJ.

SIGNAL RADIO
 Require a

BROADCAST ENGINEER
For general duties in the Engineering Department. The successful applicant will have a HNO/Degree qualification or equivalent training in a relevant subject.
Experience in broadcasting and a clean driving licence desirable. Salary: Negotiable depending on experience.
Apply with full C.V. to:
Dave Donahue,
Chief Engineer,
Studio 257,
Stoke Rd., Stoke-on-Trent.
ST42SR

CHALLENGING POST

Dynamic radio service engineer required for Nigeria For HF SSB and VHF/UHF Synthesised equipment
The position is well rewarded.
014447207

LIST OF SURPLUS ICs.
SN74LS 240N 220 @ 1.18 ea SN74LS 08N 220 (b) \&. 28 ea SN74LS 368AN 220 @ \&. 49 ea. SN74LS 138N 879 (G) \& .50 ea 74LS273PC 220 @ $\mathbb{1} .34 \mathrm{ea}$. TC5501P (Toshiba) 176 @ £1.83 ea M5L 5101 (mitsubishi) 270 @ $£ 1.83$ ea UPB 8212C (Nec) 220 (a) $\mathbf{~} 1.55 \mathrm{ea}$ CD 40106 BCN 120 @ £. 50 ea HEF40106 BP 100 (6) \&. 50 ea $\begin{array}{lrrr}\text { D8085AC } & 59 & @ & £ 2.78 \text { ea. } \\ \text { MSM5832RS } & 220 & @ & £ 3.00 \text { ea. }\end{array}$ M58725P 210 @

PRECISION LORDS LTD. Craven House,

Carleton New Road.,

Skipton. BD23 2DE North Yorkshire
Tel: Skipton (0756) 69475

[^9]HEWLETT PACKARD. Spectrum Analyzer $141 \mathrm{~B} / 8553 \mathrm{~L} / 8552 \mathrm{~A} 1 \mathrm{kH} 2-110 \mathrm{MHz}$ B. W. 50 Hz -300 KHz in 9 Ranges. Scan Width 2 Khz 100 MHz in 15 ranges $£ 3,200$ Oscilloscope type
$1712 \mathrm{~A} 200 \mathrm{MHz} \mathrm{B} . \mathrm{W}$ Dual Trace Dual Delayed T.B. Solid State (smali) 11200 Power Meter P.R.D. 6685 Thermo - Electric Thin Film Sensor $3 u \mathrm{~W} 30 \mathrm{~mW} 9$ ranges, $10 \mathrm{mHz}-12.4 \mathrm{Ghz}\{200$ Phone V.H.F. Engineering 01-428 0974 (2773)

VIDEO/TV Test Equipment (PAL) Philips PM5519 pattern generator $\mathcal{4} .180$. Digitei D4060-01
 1EX. Tel: (01) $289-3533$ (2772)

ENCAPSULATING EQUIPMENT FOR cooils, cransformers, components, degassing silicone nubber, resin, epory. Lost wax casting for brass, bronze, silver, etc. Impregnating coils, transfor: mers, components. Vacuum equipment, low cost, used and new. Also for CRT regunning metallising. Research \& Development Barratt, Mayo Road, Croydon CR0 2QP. 01-684 9917. (9678)
 BBC MICRO active filter design program high pass. lowpass, band pass, bandstop. Butterworth Chebyshev to elght order. Includes printer scree Track Disk 9.50 . R. Harrison 20, Wingrove Hill River Dover Kent CT17 ONN (2766)
 THE BEST Electronic Component Audio and Video Accessory shop in East Kent More than oining freehold lock- k ing with 33 prons Two blished 10 years, 5 day week unopposed trade freeholds, goodwill and stock with fixtures and fittings ser. Phone Thanet 594072 Business Hours, not Thursday or Sunday. (2770)

PCB HAND ASSEMBLY - any quantity. Highest quality at sensible prices. INTER-
ESTED? Phone 01-274 3070
(2570)

VALVES, PROJECTOR Lamps, 6000 types, inst 75p, world wide export. Cox radio (Sus ex) Ltd., The Parade, East Wittering. Sussex. Phone
(0243) 672023

ARTICLES FOR SALE

TO MANUFACTURERS, WHOLESALERS BULK BUYERS. ETC.
 LARGE QUANTITIES OFRADIO. TV AND ELECTRONIC COMPONENTS FOR DISPOSAL

SEMICONDUCTORS, all types, INTEGRATED CIRCUITS, TRANSISTORS DIODES, RECTIFIERS, THYRISTORS, etc. RESISTORS, C/F, M/F, W/W, etc. CAPACITORS, SILVER MICA, POLYSTYRENE, C280, C296, DISC CERAMICS, PLATE CERAMICS, etc.
ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE, CAbles, SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFORMERS, etc.
ALL AT KNOCKOUT PRICES - Come and pay us a visit ALADDIN'S CAVE
TELEPHONE: 445 0749/445 2713
R. HENSONLTD.

21 Lodge Lane, North Finchley, London, N. 12
15 minutestrom Tally Hocorner)
(1613)

OPTOELECTRONICS DATA BOOK 1984

Price
digital electronic circuits
8. SYSTEMS by N.M. Morris

PRICE: $£ 5.45$
MICROELECTRONICS:
A PRACTICAL INTRODUCTION by
SOLDERING IN ELECTRONICS by
R. J. Klein Wassin Wassink PRICE: $£ 51.00$

OPTICAL FIBER COMMUNICATIONS BY G. Keiser

PRICE: £9.50
DIGITAL IMAGE ANALYSIS
by S. Leviaidi PRICE E26.00
SEMI-CUSTOM IC DESIGN \& VLSI by P.J. Hicks PRICE: £13.50

INTRODUCTION TO MOS LSI DESIGN by J. Mavor PRICE: $£ 18.50$

HANDBOOK OF BATTERIES \&
FUEL CELLS byD Linden PRICE $£ 63.00$
THE DESIGN \& DRAFTING OF
PRINTED CIRCUITS by D. Lindsey

* all prices include POSTAGE \star

> THE MODERN вооК $\mathbf{C O}$.

BRITAIN'S LARGEST STOCKIST of British and American Technical Books

19-21 PRAED STREET LONDON W2 1NP

Telephone: 01-4029176
Closed Saturday 1 p.m. Please allow 14 days for reply or delivery

```
DRAMS (4164 150NS
PACKS OF B £32.50
TAAM 4027-3 PACK OF 8 &16.00
STATIC RAM 2102 PACK OF 8 &8.00
8080A CHIPSET C/O 1\times8224, 1\times8238, 1\times8255A
```



```
CABLE &4.00 9PIN D MALE IDC CONNECTOR
E2.00 RS 232 LEADS SINGLE ENDED M OR F
4.00 DUAL ENDED MF/MM/FF &7.50
AOD 5OP P&PNO VAT G.WO STOCK SPEC. P
    dustral grade componenets top quality
    CAMTRONICS,28 Perowne St.
        Cambridge
        Tel Cambridge 68990 (2771)
```

MORSE READING PROGS.Work on clean signals without hardware interface. 2X81 1K UNEXPANDED MEMORY. Translated code with word and line spaces for easy reading Automatic scroll
action. $£ 7$ incl. WAVEGUIDE, Flanges and dishes. All standard sizes and alloys (new material only) from stock. Special sizes to order. Earth Stations, 01-228

BRIDGES waveform/transistor analysers. Calibrators, Standards. Millivoltmeters. Dynamome ters. KW meters. Oscilloscopes. Recorders. Signal generators - sweep, low distortion, true ${ }_{376236 \text {. audio, FM, deviation. Tel. (1627) }}$

Ignition Test Adaptor for oscilloscope
$\mathbf{\Sigma 3 9 . 2 0} \mathrm{MHz}$ battery/mains oscilloscope £175. 40 piece socket tool set £6.75. Woatan U.V. lamps $\mathbf{£ 7 . 5 0}$. Self tapping screws Neon Strobe lamps $£ 1.50 \mathrm{ea}$. MIG Welder with continuous and spot weld - chassis \& case manufacture £350. Crypton Tachometer £25. TR cells TRP8 £10ea Fibreoptic light source for microscope endoscope etc., $£ 35$. Large compressor £175. Air drill £15. Ferrograph continuous ator E89. Extension philips generator for same £49. Oscilloscope. Dynamco Digital Voltmeter, LF amplifier, Mean Detector and D.C., calibration system E98. BBC RP3110 cable test generator $60 \mathrm{Kc} / \mathrm{s}-3 \mathrm{MHz} \mathrm{E45}$ Sweep Generator. Oxygen Resuscitato with cylinder and gas £45.Line transformer test equipment $£ 49$. Bendix double-pulse generator £45. Schlumberger Data logger. 4000 v range extender, Avo resistance range extension unit, £10ea. Avo Wattme-
ter attachment £45. etc. etc.
040376235

JAYSOFT MICRODEVELOPMENT Telephone 036-16-458

Designed tor ease of use with no comprise in technical accuracy.
These programs are suitable tor protessional or amateur use.
Oscillator: RC and LC circuits. Includes coil design
Electron 1: Class A bias optimisation. 741 opamp LP HP and BP Active filters Logic: Software simulation of up to 30 logic gates to check design before the hardware stage. Can simulate fault conditions to aid fault analy sis Suitable for BBC Commodore $64{ }^{\text {'PET }}$ * TandyM100
(*non or reduced graphics. Logic not available).

> New programs available every month. Disk £20.00 Tape $£ 17.50$ JAYSOFT MICRODEVELOPMENT2, Wester Row, Greenlaw, Berwickshire.

VERBGATE LTD.

We buy large and small parcels of surplus I/C, transistors, capacitors and related electronic stock. Immediate settlement

Tel: 01-208 0766
Telex: 8814998
(2478)

STEWART OF READING

 110 WYKEHAM ROAD READING RG6 1PL TEL NO: 073468041TOP PRICES PAID FOR
ALL TYPES OF SURPLUS TEST EQUIPMENT, COMPUTER EOUIPMENT, COMPONENTS etc. ANY OUANTITY.

SURPLUS

We offer good prices for test equipment, components, redundant computers ment.

TIMEBASE
94 Alfriston Gardens
Sholling. Southampton SO2 8FU Telephone: (0703) 431323

The Publishers take all reasonable care to ensure that classified advertisements are genuine, but readers must satisfy themselves that they will be obtaining what they require before entering into transactions, particularly if they involve large
sums of money.
(2519)

CAPACITY AVAILABLE

WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash. Member of A.R.R.A.

M \& B RADIO

86 Bishopsgate Street Leeds LS 1 4BB
0532435649
(9956)

WANTED
SURPLUS ELECTRONIC COMPONENTS AND EQUIPMENT
We also welcome the opportunity to quote for omplete factory clearance B. BAMBER ELECTRONICS

Phone: Ely (0353) 860185

CAPACITY AVAILABLE

TW ELECTRONICS LTD

THE PCB ASSEMBLERS

More and more companies are investigating the advantages of using a profesing requires certain assurances.
TW are able to satisfy all of them quality, competitive pricing, firm delivey and close co-operation with the cus tomer.
Assembled boards at 100% inspected before flow soldering and reinspected after automatic cropping and cleaning
Every batch of completed boards is is sued with a signed certificate of confor
mity and quality - our tinal ass urance. mity and quality - our final ass urance. For further details, contact us at our new works:

Blenheim industrial Park Bury St. Edmunds Suffolk IP33 3UT
Telephone: 02843931 (1466)

FREE P.T.H. PROTOTYPE of the finest quality with EVERY P.C.B. artwork designed by us. Competitive hourly rates, and high standard of work. Halstead Designs Limited, 34. High St., Halstead, Essex. Tel. (0787) 477408/474554.

TENDERS

Aerial Mast Space to Let by Tender

1. Kensingston (Kensington Heights)

72 m asl (ref. 38/1/2
2. Shooters Hill (Shooter Hill Water Tower) 150m asl (ref. 687/B03
3. Croydon (Shirley Hills Water Tower)

163m asi (ref. 1/L)
Copies of tender document may be obtained from:
Area Surveyor, Thames Water Authority, 20 Blyth Road, Bromley, Kent. BR1 3UB (Ref. MAS)

Thames Water

(2794)

ELECTRONIC CIRCUIT Design and Development service. Professional engineers with many years experience in the design of analogue, digital and R.F. circuitry (10500 MHz). Also PCB Design and Prototype Production. Memtorport Ltd, 29, 522143 . 522143
(2778)

SMALL BATCH PCBs, produced from your art work. also DIALS, PANELS, LABELS. Camera work tundertaken. FAST TURNAROUND. Details: Winston Promotions, 9 Hatton Place, Londo
ECIN 8RU. Tel. 01 - $4054127 / 0960$.

SCOPES

repaired and recalibrated
All makes, all models Scopex, Safgan Older TEK \& TQ
MENDASCOPE LTD.
Otter House, Weston Underwood Olney, Bucks MK46 5.JS BEDFORD (0234) 712445
valve hi-fi, Quad, Leak, Garrard, Radford, Lowther, Thorens etc., All types of valve equipment considered for purchase. The Vintage Wireless Co., Tudor House, Cossham Street, Mangotsfield, Bristol BSI7 3EN. Tel: 0272-565472 or Telex 437287 Sharet G.

WANTED

VLF
Metal-Detector Circuit diagram required BOX No. 2790

When replying to classified advertisements, readersare recommended to take steps to protect their interests before sending money
(2519)

TURN YOUR SURPLUS i.cs transistors etc. into cash, immediate settlement. We also welcome the cash, immediate settlement. We also welcome the ance. Contact COLES-HARDING \& CO, 103 South Brink, Wisbech, Cambs. 0945 584188 . (9509)

DESIGN AND MANUFACTURE. ANALOGUE, DIGITAL, RF AND MICROWAVE CIRCUIT AND DIGIAL, RF AND MICROWAVE CIRCUIT AND design and prototype/small batch production. - Addesign and prototype/small batch praduction. - Ad-
enmore Limited, 27 Longsbot Estate, Bracknell, Berks. Tel: Bracknell (0344) 52023 .

IMPROVE YOUR PROSPECTS

with skills that employers want - learn the easy way with modern home study courses from ldeal Schools.

MODERN ELECTRONICS
Train for success in the fastest ever growing industrial sector.

COMPUTER PROGRAMMING

The demand for Programmers is increasing constantly - don't miss out! For tree booklet witte loday to

	IDEAL SCHOOLS (Refi. EW2) 60 St. Enoch Sq Glasgow G1 UK. Tel: 041-248 5200

ANALOG COMPUTERS LIMITED chartpak stockist

Design \& Development, Complete Artwork Service, Camera Work, Prototype thru to Production PCB Manufacture/Assy.

5 Cork Street, Eccles, Maidstone, Kent, ME 20 7HG TELEPHONE (0622) 79987 TELEX 965633

PTH BOARDS Fast turnround (24 hour for rush jobs), competitive prices, full inspection, any quantity considered, Kirk, Bridge Works. Cinder-
(2741)

PROFESSIONAL DESIGN SERVICE. Anaogue/RF circuit/System design. Specialising in nicrowave amplifier, oscillator and network design. MOTOROLA 6805/6809 series micropro cessor design/development capability. All work carried out to a high standard by competent profes
sional engineers. Trontech Electronic Design Ser sional engineers. Trontech Electronic Design Ser End, Bucks. 0628528835 (2439)

DESIGN AND DEVELOPMENT SERVICE. RF ransmitters and receivers. Telemetery U.H.F V.H.F. Anologue and digital circuits, control sys ems. Full manufacturing facilities. RCS Electron ics, Wolsey Road, Ashford. Middx. Phone Dr. Eric Faikner on 53661 .

Artwork, Circuit Design, PCB Assembly, Test \& Repair Service, Q.A Consultancy, Prototypes, Final Assembly. Full PCB Flow Soldering Service.
Quality workmanship by professionals at economic prices. Please telephone 01-646 5686 for advice or further details.
(2637)

CIRCOLEC

THE COMPLETE ELECTRONIC SERVICE

TAMWORTH MANOR
302-310 COMMONSIDE EAST, MITCHAM

CLASSIFIED ADVERTISEMENTS Use this Form for your Sales and Wants

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

To "Wireless World" Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate £4.00 PER LINE. Average six words per line. Minimum £25 (prepayable)
- Name and address to be included in charge if used in advertisement
- Box No. Allow two words plus $£ 5$
- Cheques, etc., payable to "IPC Business Press Ltd." and cross "\& Co."

NAME.

ADDRESS

Add 8 channels to your 'scope New Thurlby OM358 multiplexer £169-vat

The Thurlby OM358 gives any oscilloscope an 8 channel display. Observing many waveforms simultaneously can be essential when analysing sophisticated equipment. Application areas include microprocessor based products, data transmission systems, A to D converters, frequency synthesizers etc. The OM358 is ideal for digital equipment (it can often solve problems that would otherwise need a fast logic analyser) but, unlike dedicated logic test instruments, it is equally suited to analogue waveforms.
The OM358 has a bandwidth of 35 MHz and 3% calibration accuracy. Each input has an impedance of $1 \mathrm{M} \Omega-20 \mathrm{pF}$ and accepts signals up to $\pm 6 \mathrm{~V}$. An 8 channel, 4 channel, or single channel display can be selected with triggering from any channel. Colour data sheet with full specifications available
> |Thurlby Na
> Thurlby Electronics Ltd
> OM358 with two BNC New Road, St.Ives, Cambs. PE17 4BG Tel: (0480) 63570 cables $£ 197.80$ designed and built in Britain (inc P \& P and VAT)

CIRCLE 73 FOR FURTHER DETAILS.

Wrelessswoind INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 95-103

PAGE	PAGE	PAGE
Airlink Transformers......................... 36	Electrovalue 91	M + B Radio (Leeds) 30
Andelos systems 1083	Ellmax Electronics 42	Micro Concept '.................................. 16
AM Electronics 42	EMS Manufacturing Ltd 39	
Armon Products Ltd 27	Electronics Wireless World Editorial	Number One Systems 62
Aspen Electronics 62	feature List $16{ }^{\text { }}$	Pantechnic....................................... 16
B. Bamber Electronics 63	Farnell Instruments Inside front cover	PM Components48/49
Barrie Electronics Ltd 62	Field ElectricLtd 1	Radford Electronics 88
Beckenham Peripherals 94		RadiocodeClocks Ltd 39
Black Star Ltd 42	Gemini Micro Computers 10/11	Radio ComponentSpecialities................ 50
88	Global Specialies Corporation 9	Radio Society of Great Britain 68
C Cambridge Kits .. 68	GNC Design	Ralph Electronics 83
Cambridge Micro processor 67	G.P. Industrial Electronics .. 30	Reticon EG\&G 36
Cirkit Holdings PLC......................... 4/5	Greatech Instrumentside back cover	Sherwood Data systems
Colomor Electronics.......................... 35		SkywaveSoftware 35
Combe Martin Electronics 27	Happy Memories 87	South Midland Communications 91
Conguin Software 83	Harris Electronics London 42	SowterLtdEA................................. 12
Crotech Instruments :......................... 88	Harrison Bros 50	Special Products Distribution 10
CrimsonElektrik Stroke 84	Henrys/Audio Electronics28/29	Stewart of Reading 84
Cybernetic Applications 39	Henson Ltd (R) 27	Surrey Electronic Ltd 50
Dataman DesignsOutside back cover	Hi-Tech Components (Midwich) 58/59	Techtest Ltd 12
Datuir... 88	HSquare Electronics 62	Technomatic Ltd40/41
Dewsbury Electronics 91	JDR Sheetmetal................................ 50	Thacker \& SonLTd (AM) 10
Digitask ... 94		Thandar Electronics Ltd 35
Display Electronics92/93	ILPElectronics 27	Thanet Electronics Ltd 68
asibind .tatu............................... 94	Integrex Ltd 12	Thurlby Electronics Ltd 94104
EdicronLtd.. 87	LangrexSupplies 13	TK Electronics 62
Electronics Brokers....................... 14/15	LJElectronics Ltd.............................. 30	
Electronic Equipment Co 84	Lyons Instruments Ltd 87	Valradio Power Ltd 1
OVERSEAS ADVERTISEMENT AGENTS France \& Beiglum: Norbert Hellin, 50 Rue de Chemin Veat, F9100 , Boulogne, Paris	Japan: Mr Inatsuki, Trade Media - IBPA (Japan), B. 212 . Azabu Heights, 1.5.10 Roppongi, Minato-ku 106. Telephone: (03) 5850581	Jack Mantel, The Farley Co., Suite 650, Ranna Building. Cleveland, Ohio 4415 - Telephone (216) 6211919 Ray Rickles, Ray Rickles \& Co., P.O. Box 2028, Miami Beach, Florida 33140 - Telophone (305) 5327301
Hungary: Ms Edit, Bajusz, Hungexpo Advertising Agency, Budapest XIV, Varosliget. Telephone: 225008 - Telex: Budapest 22-4525	United States of America: Jay Feinnan, Business Press International Lto , 205 East 4 2nd Street, New York, NY 10	Tim Parks, Ray Rickles \& Co, 3116 Maple Drive N.E., Atlanta, Georgia 30305. Telephone (404) 2377432 Mike Loughlin Business Press International, 15055, memoria Ste 119, Houston, Texas - Telephone (713) 7838673
	Telephone (212) 867-2080 - Telex: 23827. Jack Fariey Jnr., The Farley Coi. Suite 1584, 35 East Walker	
Italy: Sig C. Epis, Etas-Kompass, S.p.a. - Servizio Estero, Via Mantegna 6, 20154 Milan. Telephone: 347051 - Telex: 37342 Kompass	Drive, Chicago, Illonois 00601 - Telephone ${ }^{\text {a }}$ (312) 63074 .	Canada: Colin H. MacCulloch, International Advertising Consultants Ltd., 915 Cartion Tower, 2 Carlton Street, Toronto 2 - Telephone (416) 3642269.
	Angeles, Calit. 90034,	

[^10]

CIRCLE 3 FOR FURTHER DETAILS.

GANG-OF-EIGHT is our FAST EPROM PROGRAMMER which handles CMOS or NMOS EPROMS from 2716 to 27256 ($25 \times X$ too) using FAST or NORMAL programming methods. FAST programming 27128s takes 2 minutes, NORMAL programming takes 14. All possible levels of Vpp are covered including 25,21 and 12.5 volts. G8 has an LCD which tells you what you're doing - or doing wrong. BLANK CHECK, VERIFY and CHECKSUM facilities are included. Good value. GANG-OF-EIGHT-PLUS is now available. PLUS what? Well, PLUS an RS232 INTERFACE which lets you download in INTELHEX, MOTOROLA S, TEKHEX, ASCII, SIMPLE HEX etc.
Oh, yes, PLUS 50 quid too, but you might think it's worth it
£445

EMULATOF editors

SOFTY 2, our intelligent EPROM PROGRAMMER/EMULATOR, plugs into a TV, shows you memory and lets you TEXT-EDIT in HEX (INSERT, DELETE, SHIFT BLOCKS without overwriting or rewriting etc). It also calculates ADDRESS-OFFSETS in hex, UPLOADS and DOWNLOADS in SERIAL and PARALLEL, saves programs on TAPE, and PROGRAMS, COPIES and EMULATES EPROMS 2716.2732 and 2532. Great DEVELOPMENT TOOL for PIGGY-BACK SINGLE-CHIPPERS and other small microsystems. TV lead, ROMULATOR-cable with 24 pin DIL Plug and power supply included, ready to plug-in and use
£195
2764 and 27128 ADAPTOR lets SOFTY 2 handle larger EPROMS for
£25.00

Z80 DEVELOPMENT TOOLS

MENTA is a 280 development system designed by DATAMAN for the SCHOOLS COUNCIL. MENTA has a built in ASSEMBLER and TV hex display: it lets you enter program in hex or mnemonics and execute them FULL SPEED or A STEP AT A TIME. All the REGISTERS and the STACK are displayed on-screen and you can SEE MEMORY CONTENTS CHANGING as instructions are executed. MENTA is a microsystem with 24 bits I/O - it can be used as a controller for ROBOTS and intelligent machines. MENTA appears in GCE syllabusses; a TEACHER'S GUIDE, PUPIL READER and WORKSHEETS are available - also CONTROL MODULES - UNIVERSAL I/O, A to D, D to A, MOTOR and VARIABLE SWITCHED INPUT for less than $£ 20$ each. A MENTA with TV flylead and power-supply costs
£99
MICRODOCTOR is for DIAGNOSIS, finding troubles in microsystems. You just plug into the microprocessor socket, READ and WRITE to the MEMORY and I/O. MD does CHECKSUMS, RAMTESTS on memory, checks for SHORTS on the bus, and prints memory in HEX or ASCII. You can also DISASSEMBLE and print the SOURCECODE In Z80, 6502, 6800 or 8085 mnemonics. When your SCOPE or MULTIMETER can't find the problem - consult the MD. When you order say which processor or ask about multiprocessor MD
£295

CONNECTIVITY TESTERS
I.C.T. (Intelligent Connectivity Tester) is the project name for a 40 pin dual-in-line CUSTOM-CHIP developed by DATAMAN.
The chip is called the MT72017 and it will appear soon in BARE-BOARD TESTERS, IDC CABLE TESTERS and LOOM ASSEMBLY EQUIPMENT all over the world. An EVALUATION-SYSTEM/CONTROLLER for the MT72017 is available on a EUROCARD and you can BUILD YOUR OWN custom connection-pattern tester for
£295
The controller has full documentation, source-code, circuit diagram, parts-list and a description of operation. Each MT72017 tests 26 points and a single controller will handle hundreds of 'em - thousands of test-points.
MT72017 chip prices: $£ 12.50$ (1 to 99) $£ 11.25$ (100-999) $£ 10.25$ (1000 up). We do not sell samples of the MT72017 without a controller.

LOGIC ANALYSER TA2080 by THANDAR with SPECIAL MODS by DATAMAN which gives RS232 interface and prints TIMING and STATE diagrams - and DISASSEMBLES Z80, 6502,6800 code on the screen or printer.
THANDAR TA2080

£1950 DATAMAN RETROFIT

£295
EPSON AND NEC COMPUTERS QX10, HX20 and PX8, PC8800. ALL COMPUTERS are sold with a free bundle of useful software written by DATAMAN.
OLIVETTI TYPEWRITER INTERFACES designed by DATAMAN for ET1 21 and 221 - cheaper than a DAISYWHEEL printer RS232, HPIB (IEEE) and PARALLEL including fitting.
£195
EPROM ERASERS from.
$£ 39.00$

If you need more data send for a FREE LIT-PACK and an ORDER FORM or, better still, JUST BUY THE PRODUCT AND EXAMINE IT - you may return any item within 14 days for A FULL REFUND (we deduct only postal charges). Add $£ 2.50$ for carriage to orders below $£ 100$. ADD VAT TO ALL UK ORDERS. Terms cheque with order. Dealers who mean business welcome. Goods normally in stock - TODAY DESPATCH IS POSSIBLE - please phone us DATAMAN DESIGNS, LOMBARD HOUSE, DORCHESTER, DORSET DT1 1 RX. TELEX: 418442 . PHONE (0305) 68066.

[^0]: To GLOBAL SPECIALTIES CORPORATION (UK) LIMITED, DEPT 7T

 - Unit 1. Shire Hill Industrial Estate, Saffron Walden, Essex CB 11 3AO.
 - Please send me $\square 3000$ DIGITAL CAPACITANCE ME TER(S) at $£ 105.80$ each (inc P\&P and VAT)
 - \square Please send me a free catalogue and more information!

 Name ...any/Address
 : I enclose PO/Cheque for $£$
 or debit my Barclaycard/Access/

 - American Express No \square exp date
 \qquad

[^1]: Telephone 01445 2713/0749

[^2]: CIRCLE 59 FOR FURTHER DETAILS

[^3]: Peter Nicholls is East Midlands coordinator for Electronics and Control Technology with the Microelectronics Technology with the Microelectronics Education Programme

[^4]: *The author's eprom emulator was
 described in the September, October and described in the September, October and
 November 1982 issues of E\&W pages November 1982 issues of E
 83,73 and 82 respectively.

[^5]: * Subject to interpolation algorithm
 \dagger There is, however. some subjective improvement due to sequential display

[^6]: 1. Figures are direct voltage \pm (reading $\%+$ digits) or \pm (reading + f.s. $) \%$ over 12 months unless otherwise noted.
 2. Level limit may differ e.g.-1dB $, 1 \%, 3 \mathrm{~dB}$
 3. Level limit may differ e.g. $-1 \mathrm{~dB}, 1 \%, 3 \mathrm{~dB}$
 4. 4: four-wire measurement, hi/lo: high and low test voltages
 5. Microprocessor functions, see November table (9 : variance, standard deviation, and r.m.s.)
 6. Microprocessor functions, see November table (9: variance, standard de
 7. G:GPIB interface, B : bod/parallel interface. C: capacitance, dB:decibels
[^7]: Note, abbreviation M refers to pins on the master zif socket, S to pins on the slave socket (last month's circuit diagram).

[^8]: 1000's of EX STOCK spares for D
 PDP8, PDP8A, PDP1 1 systems \&
 PDPG, POPBA, PDP1 systems \& computer equipment and spares wanted or PROMPT CASH PAYMENT.

[^9]: Hewlett Packard Equipment including No. 37028IFF Receiver. No. 3705A Dift. Phase No 3716 ABB Transmitter, No 651 B Test Oscillator.
 Aplab Oscilloscope 3030, Ratel Regulated D.C. Power Supply. Bird Thruline 43 Wattmeier, two Ratel H.P.C. Netzgerav Power ! 'supply
 Further details - Henry Butcher \& Co. 79/83 Colmore Row, Birmingham B3 2AP

[^10]: Printed in Great Britain by Index Pnnters Ltd., Oldhill. Dunstable, and typeset by Legendary Characters, South Street, Lancing, for the proprietors, Business Press International, Quadrant House, The Quadrant, Sutton, Surrey SM2 5 AS. © husiness Press International 1984. Wireless World can be obtained abroad from the following: AUSTRALIA and NEW ZEALAND: Gordon \& Gotch Lid. INDIA: A. H. Wheeler \& Co. CANADA: The Wm. Dawson Subscnption Service Ltd

