Intelligent
eprom
programmer

The PGe-h201

CIRCLE 11 FOR FURTHER DETAILS.

Wireless World

 over 70 years in independent electronics publishingNovember 1984

> DEFENCE SCIENTIFIC ESTABUSHMENT

Volume 90 number 1585
FEATURES
9 JAN1985

17
 Micro controller cassette recorder

by A. J. Ewins
The series concludes with a description of the software construction to control the deck 25
Information society
by A. E. Cawkell
Telecommunications: techno-commercial politics protocals and standards

31

Variable-speed video
by J.R. Watkinson
Fourth part of John Watkinsons' series describes video analogue to digital conversion and memory organisation

> Designer Richard Newport's front cover is the intelligent eprom programmer appropriately superimposed on electronically-typeset machine code from the SC84 microcomputer monitor.

NEXT MONTH

Dr Baert of Ghent University describes a method of transformer design that improves on conventional methods as well as touching on some little-known facts.

Hand-held multimeters are analysed in our final table of digital multimeter specifications being a listing of those models currently available in the UK.

Peter Nicholls of the MEP describes his
minicontroller - a 6502 -
based general-purpose controller that runs software developed on the BBC microcomputer and emulates its i/o.

Current issue price 85 p, back issues (if available) $£ 1.06$, at Retail and Trade
Counter, Units 1 \& 2, Bankside Industrial
Centre, Hopton Street, London SE1.
Available on microfilm;please contact editor. By post, current issue $£ 1.30$, back issues (if available) $£ 1.40$, order and payments to EEP Sundry Sales Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.
Tel.: 01-661 3378
Editorial \& Advertising offices:
Quadrant House, The Quadrant, Sutton, Surrey SM25AS.
Telephones: Editonial 01-661 3614 Advertising 01-661 3130. See leader page.
Telex: 892084 BISPRS G (EEP)
Subscription rates: 1 years $£ 15$ UK and £19 outside UK.
Student rates: 1 year $£ 10$ UK and $£ 12.70$ outside UK.
Distribution: Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Telephone 01-661 3248.
Subscriptions: Oakfield House,
Perrymount Road, Haywards heath, Sussex RH16 3DH. Telephone: 04444 59188. Please notify a change of address USA: $\$ 49.40$ surface mail, $\$ 102.60$ airmail. Business Press International (USA). Subscriptions Office, 205 E. 42nd Street, NY 10017.
USA mailing agents: Expediters of the Printed World Ltd, 527 Madison Avenue Suite 1217, New York, NY 10022, 2nd class postage paid at New York
© Business Press International Ltd 1984. ISBN 00436062.

Editor
PHILIP DARRINGTON 01-6613128

Deputy Editor
GEOFFREY SHORTER, B.Sc. 01-661 8639

Technical Editor MARTINECCLES 01-6618638

Projects Editor

RICHARD LAMBLEY
01-661 3039

News Editor
DAVID SCOBIE
01-661 8632

Drawing Office Manager
ROGER GOODMAN
01-661 8690

Technical Illustrator
BETTY PALMER
Advertisement Manager BOB NIBBS, A.C.I.I. 01-661 3130

MICHAEL DOWNING 01-661 8640

ASHLEY WALLIS
01-661 8641

Northern Sales
HARRY AIKEN
061-872 8861

Midland Sales
BASIL McGOWAN
021-356 4838
Classified Manager
BRIAN DURRANT
01-661 3106
IAN FAUX
01-661 3033
Production
BRIAN BANNISTER
(Make-up and copy)
01-6618648

Publishing Director DAVID MONTGOMERY
01-661 3241
International Agents and the Advertisers Index appear at the back of this issue.

Cirkit stock all the components, accessories and tools and the kits you're looking for.

Designed and selected to offer the best possible standards at the best possible price.

Cirkit's always well stocked.

As soon as new products are available, Cirkit has them.

When it comes to kits, Cirkit's got the lot. At the price you want to pay.

Just send for our catalogue or visit one of our three outlets at:

200 North Service Road, Brentwood, Essex. CM14 4SG; 53 Burrields Road,
Portsmouth, Hampshire. PO3 5EB; Park Lane, Broxbourne, Hertfordshire. EN10 7NQ.

Please add 15% VAT to all advertised prices and 60 p post and packing. Minimum order value $£ 5$ please. We reserve the right to vary prices in accordance with market fluctuation.

Cirkit Kits
CIRKIT ELECTRONICS TOOLKIT Contains: 15W Soldering Iron 2 spare bits, heat shunt, solder, pliers, cutters, and screwdriver AUDIOFUNCTIONGENERATOR Versatile waveform generator with sine, triangular and square wave outputs. On board mains PSU STEREO 40W AMPLIFIER Single board 40 W per channel stereo amplifier STEREO VUMETER 5 LED per channel stereo VU meter for $\begin{array}{llll}\text { use with stereo amplifiers } & 41-01401 & 11.50\end{array}$ 5W AUDIO AMP A very compact audio output stage for use $\begin{array}{lll}\text { in a wide range of equipment } & 41-01406 & 4.60\end{array}$ UNIVERSAL AMP $\begin{array}{lll}\text { A universal audio pre-amp with a } & & \\ \text { gain of } 10 & 41-01604 & 6.45\end{array} l$ MONO MONOREVERBERATIONUNIT $\begin{array}{ll}\text { effects to tape recording etc. } & 41-01602 \quad 10.00\end{array}$ TONE GENERATOR AND DETECTOR Very low distortion tone generator and signal detector for circuit fault finding 10MHz DFM 8 Digit LED digital frequency meter $\begin{array}{lll}\text { and period measurement } & 41-01500 & 54.10\end{array}$ 50MHz PRESCALER
Extend the range of the 10 MHz DFM
to 50 MHz
$1-5 \mathrm{MHz}$ PRE AMP

Low frequency pre-amp and waveform $\begin{array}{lll}\text { shaper for the } 10 \mathrm{MHz} \text { DFM } & 41-01502 & 5.13\end{array}$ $1-30 \mathrm{~V}$ ImA-2A PSU Adjustable 1-30V Power supply with pre-setable $\begin{array}{lll}\text { current limit from } 1 \mathrm{~mA}-2 \mathrm{~A} & 41-01600 & 37.46\end{array}$

To: Cirkit Holdings PLC, Park Lane, Broxbourne, Hertfordshire. EN10 7NQ. I enclose 85 p. Please send me your latest catalogue and $3 \times \$ 1$ discount vouchers! If you have any enquiries please telephone us on Hoddesdon (0992) 444111.
Name \qquad
Address \qquad
\qquad

EWW11

Cirkit

m

5-12V 1 A PSU
Adjustable PSU from 5-12V with current
protection, 1 amp max output 41-01504 6.45 1-30V 1.5A PSU
$1-30$ volt adjustablePSU with protected $\begin{array}{lll}\text { output up to } 1.5 \mathrm{Amps} & 41-01402 & 10.45\end{array}$ 3DIGIT LED DVM
DVM to read up to 99.9 volts or configured as an ammeter to read up to $9.99 \mathrm{amps} \quad 41-01403 \quad 17.00$

INFRA RED LINK
Single channel IRLink with relay output
TEMPERATURE SENSOR
Thermistor based temperature sensor
with relay output
LOCOMOTIVE SOUND GENERATOR
Realistic steam sound and whistle for
model railways
LAMP DIMMER
Control lamps and drill speed
WATER LEVEL ALARM
Alarm to indicate high water level or
flooding
3 NOTECHIME
Doorbell chime with adjustable tones
2M PRE AMP
Miniature low-noise MOSFET pre-amp
for the 2 m amateur band $\quad 41-01307 \quad 3.91$ 2MCONVERTER
Low noise $144 \mathrm{MHz}-28 \mathrm{MHz}$ amateur band converter 2M POWERAMP
20W - 10dB gain - power amplifier for the 2 m band. Au tomatic TX switch over, RX pre-amp, robust construction
$41.01404 \quad 32.87$ 70 cm PRE AMP
Low noise, miniature pre-amp for the
70 cm amateur band
$41-01506 \quad 4.78$ 70 cm CONVERTER
70 cm to 144 MHz low noise converter featuring pre-aligned helical filter, schottky diode mixer and low noise transistors
$41.01405 \quad 21.50$ 70 cm PA
10W Power amp to boost the output of handheld and portable 70 cm transceivers CRYSTAL CALIBRATOR
Crystal reference calibrator for alignment of receivers, outputs at $4,2,1 \mathrm{MHZ}$, 100,50 AND 10 KHz CBNOISE SQUELCH Improves to mute performance of the majority of CB rigs CENTRONICS INTERFACE
Connect your personal computer to the outside world via the Centronics printer output

7.

bigger and

 \therefore 囚Nicad Batteries \& Chargers
High quality nickel cadmium rechargeable batteries. Equivalent in size with popular Dry Cell sizes egg. HP7 (AA), HP1 1 (C), and HP2 (D). Minimum life 600 (300 PP3 size) full charge/discharge cycles. Batteries must be charged from a constant current source only. All batteries are supplied only with a residual charge and should be charged before used.

DATA \& PRICES
$\begin{array}{llll}\text { Type } V \text { (nom) Capacity Stock No. } & 1-9 & 10-49\end{array}$ $\begin{array}{llllll}\text { AA } & 1.2 \mathrm{~V} & 500 \mathrm{mAH} & 01-12004 & 0.80 & 0.74\end{array}$ $\begin{array}{llllll}\mathrm{C} & 1.2 \mathrm{~V} & 1.2 \mathrm{AH} & 01-12024 & 2.35 & 1.99 \\ \mathrm{D} & 1.2 \mathrm{~V} & 1.2 \mathrm{AH} & 01-12044 & 2.00 & 2.00\end{array}$ $\begin{array}{llllll}\text { PPS } & 8.4 \mathrm{~V} & 110 \mathrm{mAH} & 01-84054 & 3.70 & 3.50\end{array}$

CH/4/50

To recharge up to 4 AA size NiCads
Size; $112 \times 71 \times 37 \mathrm{~mm}$
$01.00409 \quad 4.95$

CH $1 / 22$

To charge PP3 type NiCads.
Size; $70 \times 50 \times 32 \mathrm{~mm}$
$01-00159 \quad 4.30$

CH8/RX

Will recharge $A A, C, D$ and $P P 3$ size cells with automatic voltage selection. Will recharge following combinations: $4 \mathrm{xD}, 4 \mathrm{xAA}, 4 \mathrm{xC}, 2 \mathrm{xPP} 3,2 \mathrm{xD}+2 \mathrm{xC}$ $2 x D+2 x A A .2 x D+1 x P P 3,2 x C+2 x A A, 2 x C+$ $1 \times P P 3,2 x A A+1 \times P P 3$. Charge rate: 11 mA for PP3, 45 mA for AA size, 120 mA for C and D size, for 16 hrs. Power: 240 V 50 Hz . Output Voltage: 2.9 V for AA, C and D size, 11.0 V for PP 3 size. Weight 0.475 kg . Size: $199 \times 109 \times 55 \mathrm{~mm}$

01-02204

HT320

High quality, high specification meter at a reasonable price. In addition to the usual ranges, facilities are provided for measuring transistor parameters such as Iceo and Hie.
Meter movement fully protected against overloads. 3 -colour mirrored scale in robust case. Supplied complete with comprehensive instructions, test leads, transistor test leads and batteries ($2 \times \mathrm{HP}-7$. $1 \times P P 3$).
DC Volts: $0.1 \mathrm{~V}, 0.5 \mathrm{~V}, 2.5 \mathrm{~V}, 10 \mathrm{~V}, 50 \mathrm{~V}, 250 \mathrm{~V}, 1 \mathrm{kV}$ ($20 \mathrm{k} \Omega \mathrm{N}$). AC Volts: $10 \mathrm{~V}, 50 \mathrm{~V}, 250 \mathrm{~V}, 1 \mathrm{kV}(18 \mathrm{k} \Omega \mathrm{N})$ DC current: $50 \mu \mathrm{~A}, 2.5 \mathrm{~mA}, 25 \mathrm{~mA}, 250 \mathrm{~mA}$. Resistance: $2 \mathrm{k}, 20 \mathrm{k}, 2 \mathrm{M}, 20 \mathrm{Mz}$. AF Output: -10 dB to +22 dB for $10 \mathrm{VAC}(0 \mathrm{~dB} / 0.775 \mathrm{~V}, 600 \Omega)$. Leakage (leo) $15 \mu \mathrm{~A}, 15 \mathrm{~mA}, 150 \mathrm{~mA}$. Hfe:0-1000 (Lc/Tb). Weight: 410 gms .
$56-83201 \quad 14.00$

RF Generator LSG17

A stable wide-range generator for the hobbyist, service technician, schools, colleges, etc. Frequency range: $\mathrm{A} / 100 \mathrm{kHz}-300 \mathrm{kHz}, \mathrm{B} / 300 \mathrm{kHz}$ to 1 MHz (Harmonics $96-450 \mathrm{MHz}$) C/ $\mathrm{MHz}-3.5 \mathrm{MHz}$, $\mathrm{D} / 3.0 \mathrm{MHz}-11 \mathrm{MHz}, \mathrm{E} / 10 \mathrm{MHz}-35 \mathrm{MHz}$
F/32MHz-150MHz.Accuracy: k1.5\%. Output greater than 100 mV (no load) Ext. ital sc for 1 to 15 MHz crytal. Power required: AC 100, 115 or 230 V 3 VA
Size \& Weight: $150(\mathrm{H}) \times 238$ (W) $\times 130$ (D) $\mathrm{mm}, 2.5 \mathrm{Kg}$ approx.

Linear JCs

LF351 Bi-FET op amp LF353 Dual version of LF35I LM 380N IW AF power amp LM381 Stereo pre-ampIC NE544 14 pinDlL servo driver IC NE 555N Multi-purpose low cost timer
uA74ICN PILlow cost op-amp TDA1062 RFocillator and mixer system for $1-200 \mathrm{MHz}$
TDA1083 Portable radio AM FM audio in one IC HA 1388 18W PA from 14V
MC1496P Double balanced mixer/ modulator
TDA2002 8 Winton 2 ohms power amp

Stock No. Price 61-03510 0.49 $61-03530 \quad 0.81$ $61-00380 \quad 1.45$ $61-00381 \quad 3.27$ $61-00544 \quad 1.80$
$61-05550 \quad 0.21$ $61-07411 \quad 0.42$

61-01062 $\quad 1.95$
61-01083 1.95 $61-01388 \quad 2.75$ $61-01496 \quad 1.25$ $61-02002 \quad 1.25$ ULN2283 1W max 3-12V power amp
CA3089 FM IF amp, detector, mute, AFC, AGC system
CA3130E BIMOS op amp
CA 3140E BIMOS version of 741
MC3359 Low current dual conversion NBFM IF and deft
LM3900 Quad norton amp
LM3909N 8-pin DILLED flasher
KB4412 Two balanced mixers IF amp with AGC for AM/SSB
ICM7555 Low power CMOS version of 55 timer
HAl 1225 Low noise FM IF
HA12017 83dBS/N phon preamp $0.00 \mathrm{~J} \% \mathrm{THD}$ MC14412 300 baud MODEM controller (Eur oMS specs)

56-90017 115.00

Using Microprocessors and Microcomputers:
The 6800 Family
Z-80 Microcomputer Design Projects
Z8000 Microprocessor:
ADesignHandbook

68000: Principles and
Programming
02-21853 12.70 8085A Cookbook
Handbook of Electronic Tables
Formulas
Popular Circuits: Ready Reference
Semiconductor Data Book 11thEdition
$02-21697 \quad 13.55$ 02-21532 11.00 02-04585 13.95 $02.04797 \quad 9.00$

43-27201 0.55 20-10152 2.10 $20-11152 \quad 3.49$ $39.17700 \quad 20.00$ 40 -80161 $\quad 8.25$ 03-10019 7.25 03-10017 $\quad 725$ $21-00012 \quad 0.55$ | $28-00800$ | 0.12 |
| :--- | :--- | 28-14000 $\quad 0.13$ 28 -16000 $\quad 0.13$ $46-80000 \quad 0.48$ 46-80001 0.48 $46-80002 \quad 0.48$ 46-90120 11.96 $46-90520 \quad 26.98$ $46-90540 \quad 26.98$

Books

Beginners Guide to Amateur Radio Beginners Guide to Electronics Active Filter Cookbook
CMOS Cookbook
TTLCookbook
Design of Active Filters
Design of Op-amp Circuits with experiments
Effectively Using the Oscilloscope
The ZX Spectrum
Practical Design of Digital Circuits
Electronic Projects for Home
Security
Electronic Telephone Projects 55 Timer Applications Sourcebook Television Engineers Pocket Book Fth Ed
Electronics Pocket Book 99 Practical Electronic Projects
More Electronic Projects in the Home
The Radio Amateurs Question and Answer Reference Manual Basic Programming on the BBC Microcomputer

-11262 4.50 \begin{tabular}{ll}
$02-11262$ \& 4.50

02.04134 \& 4.50

\hline

 02-21168 12.70 02-21398 1185 02-10358 11.00 02-21539 10.15

$02-21537$ \& 9.30

$02-21794$ \& 9.30

\hline
\end{tabular} $\begin{array}{ll}02-21794 & 9.30 \\ 02-00100 & 5.95\end{array}$ 02-11831 10.45

02-05351 $\quad 3.80$ 02-21618 $\quad 7.60$ 02-21538 6.40

02-21313 8.50 02-21309 $\quad 7.50$ 02-21635 $\quad 5.90$

02-21307 $\quad 3.80$
02-02157 5.95
02-06640 $\quad 5.95$

02-98728 11.05

- 02-21682 12.70
$02.37345 \quad 16.10$

CIRCLE 26 FOR FURTHER DETAILS

Selected Lines

Calculating leaps.

In panic at the signs of economic decline towards the end of the '70s, Britain's main error was to put aside its reputation for individuality, eccentricity and quality. Instead we regeared our industry to compete with countries already efficiently producing mechanical/electrical/electronic goods in high volume and of acceptable quality, the best example of which is Japan. Something obviously had to be done, but to try and emulate countries with healthy economies was an oversimplified solution, certainly in the long term.
Our workforce's complex mentality - potentially a great asset - should have been a main factor in devising a solution to economic decline. But this factor, apparently complex and unpredictable, was misjudged. Mentality could, conceivably, have been ignored, but it is more likely that Government decided upon a material solution to combat economic decline and considered that the remainder of the problem was simply a matter of conveying the urgency of the problem to those responsible for implementing the solution.
Much of our mainstay, a core of highly skilled craftsmen, professional engineers and scientists, disappeared during this phase; remember the brain drain? On many counts we appear to be just about keeping our heads above water in productivity, on others we have failed disastrously. But now, the relatively sudden switch of emphasis (further panic?) to 'high technology' is causing greater problems. Trained, imaginative and intelligent workers required for the new fields are scarce, so much so that recruitment advertisements for UK high-technology employees are appearing as far afield as New Zealand, despite our own unemployment problems.
To illustrate why the decision to compete directly was a mistake, Japanese people, obviously capable of producing goods at a very high rate, work together. Each member of the team works to benefit the team rather than the individual -
and is capable of working to inflexible schedules. Nothing short of self glorification suits the equivalent British worker, who is trained to try and do more than is asked for in a given time rather than to simply reach a goal before a deadline. In our education system, initiative, a term closely related to inventiveness, is all important. Tight deadlines may increase productivity in the short term, but they also inhibit creativity over a longer period. Frequent tight schedules cause the British worker, not trained to be content with being a cog in a well oiled machine, to lose will, to become resentful and eventually counter productive. Not so workers in countries renowned for productivity.

Our intrinsic desire for self glorification obviously has to be tamed but it has its advantages, especially in exploiting new concepts, as should have been clear from our now waning recognition as leaders in software and applications development. As a country faced with the prospects of economic decline, we should have put our resources into this business much earlier, rather than trying to compete with highly productive countries. We can build the machines to compete but we cannot so easily reprogram our workforce to blindly operate these machines. Short of reconditioning a large proportion of the population within a few months, we now have no alternative but to recognize and use this desire for self glorification and inventiveness which, after all, has served us well in the past.
But are we already too late again? Our prowess in software and applications development was clear all along but Government has had to wait to see other countries exploiting these resources before it decided to make a move with its belated rush into new technology. Let us hope that inventiveness suppressed in the high-productivity phase can be recovered, and more importantly that jobs created by and for new technology don't turn out to be as soul destroying as their counterparts in our production industry.

Computer for Swedish schools

A new computer, designed specifically for them, has come into use in schools in Sweden and it is expected in other nordic countries as well. Computers in School (Compis) is the Swedish equivalent of the British Micros in Schools Project but, with nordic thoroughness, they have not selected any commercially available computer but have developed one to specification drafted by the Swedish Board for Technical Development. The tender selected was submitted by Esselte Stadium, a supplier of educational materials, and is manufactured by Teli AB, the industrial division of the Swedish Telecommunication Administration, who have formed a new company for the development and marketing of the computer.
The result is the Compis, which has an impressive specification. A 16 -bit computer based on the Intel iAPX 186, it can be used as a stand-alone but has been designed for multiuser networking. The eprom operating system is controlled by a separate processor. Another processor controls the graphics, independantly of the central processor. In the basic version the computer has a 128 Kbyte primary memory (ram), a separate 128 Kbyte video memory, 16 K and 64 Kbytes of eprom for system software and 16 Kbytes of rom for the operating system. Total memory capacity is 1 MByte and in the basic version memory is arranged as a "solid-state disc" for the storage of files without the need to access external memory. When a disc drive is fitted this section is automatically returned to normal use.

The operation system selected for school use is CP/M 86 , a 16 -bit version of CP / M 80. This is provided on the eprom incorporated into the 80130 (third) processor. It has the advantage of a vast supply of ready-made software. Many other operating systems can be downloaded from disc and the
computer is compatible with a side range including PC-DOS, MS-DOS, Unix and Xenix, and UCSD-p which is also offered as an alternative resident operating system. UCSD-p is claimed to be a more advanced operating system primarily intended for use with the Pascal programming language but without such an extensibe base of available software as CP / M.
An interesting choice has been made for the resident computing language, Comal. It uses many of the same words and functions as Basic, but in a structured fashion similar to Pascal. It thus offers a bridge between Basic and Pascal. Comal is included in rom and is therefore instantly available. A wide range of other languages may be downloaded from disc.

All this is available to Swedish schools at a price of 10 000 Krone, equivalent to $\$ 1200$ US or, even at the current rate of exchange under $£ 1000$. At that price and with that specification we doubt that it will stay within Sweden for long. Norway are planning to supply it to their schools and sales are expected to other nordic nations. It is possible that it could reach a Europewide or even a world market.
External memory can be provided on 5.25 in. floppy disc, up to two double-sided double density drives, or by hard disc with 10 Mbytes , expandable to 30 Mbytes . This can, of course be shared through the network
system. Communication both to the outside world and to peripheral equipment is well catered for. There is an optical interface for a multi-user network system with a data transmission rate programmable up to $880 \mathrm{Kbit} / \mathrm{s}$; two V24 (RS232) interfaces, one for a serial printer and the other for a modem; a Centronics parallel printer interface; two analogue interfaces, one for a tape recorder and the other for analogue measuring devices; and connections for the disc drives.

The Intel iAPX 186 processor is one of a new generation which incorporates functions that would normally fill a large p.c.b. Not content with an improved version of the 8086 processor there is also an 8 MHz clock generator; two independent direct memory access (d.m.a.) channels; A communications channel operating at $880 \mathrm{Kbit} / \mathrm{s}$; programmable interrupt controls; three programmable timers; programmable logic for memory selection which can also detect the peripheral units connected and adapt the processor signalling patterns accordingly; logic to control the internal $7 \mathrm{Mbyte} / \mathrm{s}$ bus; and an expansion output for co-
processors, graphics and mathematics. The clock frequency of the processor is 8 MHz and a real time clock is incorporated to record year, month, day, hour, minute and second with battery back-up to maintain it.

The central proessor is supported by an 82270 graphics processor which can provide colour graphics and high or ultra-high resolution monochrome graphics memory it is possible to shuttle screen images between that and the main computer memory and create high-speed animation. Each of 128 characters is displayed in a 8 by 16 or 8 by 8 dots matrix. 25 or 50 lines may be displayed and, in the ultrahigh resolution mode, it is possible to show 100 lines of 160 characters; they are not very legible but the function is useful in checking the layout of a document. Text and graphics may be magnified from two to sixteen times and the magnified image can be moved in any direction with a panning function. Graphics functions include lines, arcs, circles, rectangles etc. Text and graphics may be freely mixed and the text can be written on the screen in eight different directions.

Electronic mail

A rise in postal charges has bumped up once again the cost of keeping in touch with friends and business colleagues. And even those of us who've been dozing at the back of the class are beginning to wake up, somewhat belatedly, to the possibilities of that latest wonder of the information age, electronic mail.

At the recent Personal Computer World show, Cable and Wireless treated us to a smoothly efficient demonstration of their Easylink service. "But what happens", I asked, still taking it all in, "if the people I want to talk to are not on Easylink, but on some other electronic mail system instead - Telecom Gold, for instance?"

The temperature fell noticeably. "Well, said the demonstrator, "I'm sure you'll be able to, eventually." [Inspiration!] "When they get the computer standards sorted out."
We'd always imagined that the aim of a mail service was that you could communicate with anyone. Other outfits seem to manage: British Telecom and Mercury Communications have had no problems of compatability, not as far as technical matters are concerned. And with the new cellular radio systems, people who buy 'phones from Racal or their rival Securicor will be free to use them over either network. So why the difficulty with electronic mail?

The history of technology is full of good ideas which might have been twice as good for a bit of standardization. And now, if you'll excuse us, this writer is going out for a book of stamps.

Oftel born out of POUNC

When BT became a public limited company a new watchdog body was formed, the Office of Telecommunications or Oftel, which has taken over the duties of the Post Office Users National Council (POUNC) in so far as they relate to telecommunications. It is a Government department established under a DirectorGeneral, who is independent of ministerial control and free, it is said, from political pressures.
The first Director-General, Professor Bryan Carsberg, is an economist and accountant. He was appointed by the Secretary of State for Trade and Industry, whom he had previously advised on the liberalization of the telecommunication industry and the privatization of BT.

Professor Carsberg said recently that he would persue an active and vigilant campaign to promote the development of the telecomms industry and "enhance the effectiveness of contribution to the UK economy. I intend to be active in looking for indications of
compliance with licence conditions rather than passively waiting for problems to become visible."
"In the field of consumer protection, the most effective weapon is competition. However until competition has had time to develop, we have some specific responsibilities to protect the interests of customers. We are ready to consider any dispute between BT (or any other operator) and its customers, and unlike POUNC we can take strong action to resolve an issue if the circumstances warrant it."
"Special conditions exist to protect the interests of the elderly and disabled, to prevent discrimination against rural customers, and to limit the closure of public call boxes. I expect that BT will respond to these and other conditions in positive spirit, recognising the importance of good performance to their public image; but I intend to be energetic in enforcing the conditions if necessary."

Licence- exemption proposals

Some low-power radio equipment is likely to receive exemption from radiotransmission licences according to a consultative document published by the DTI. In 1980 radio-controlled models and metal detectors were exempted, later cordless telephones. Now four other areas are to be considered; Telemetry and telecontrol for general purposes, some speech communications equipment, Doppler and field disturbance devices, and emergency alarms for the elderly.

The first category includes remote control by radio (e.g. for opening garage doors), remote relaying of measurements, nonspeech communication and devices incorporating transponders, such as animal tracking devices.
Low power speech communications include radiomicrophones for use in lectures and in entertainment, radio aids for the deaf and all speech devices using induction systems (e.g. for paging and for simultaneous translation at international conferences). However talk-back paging at

161 MHz would still need licencing.

The third category encompasses devices which detect the presence, movement, speed or passage of people or object. These include intruder alarms, production-line counters and traffic controls, or which detect the presence of resonant circuits as are used in anti-shoplifting tags and to access control equipment.
In most cases the equipment would still be subject to Government type approval, and it is proposed that there should be a standard mark to indicate that the type approval requirements had been met and to incorporate the approval number.
The Government would also retain the right to inspect the equipment to ensure that it is correctly used and maintained, that it complies with radio regulatory specifications and to close it down in the case of undue interference.
Copies of the booklet are available from the DTI Radio Regulatory Division, Room 613 (LPD), Waterloo Bridge House, Waterloo Road, London SE1 8UA.

Simple solutions to complex problems

It may be that in some areas of endeavour, when we are looking for a complex solution to some problem, the answer is staring us in the face all the time.

Take the local area network. T.T. Farrow of Software Sciences suggested at conference that in comparison with various ring and star systems, the humble p.b.x used to switch both voice and data signals through the office extension system is as good as any. Connecting a terminal to a telephone extension through a small data/voice unit, permits
both to be used and transmitted simultaneously in analogue form down the existing pairs of wires. At the p.b.x the two are separated by a similar device, with the data being routed to the host computer and the voice transmissions allowed to enter the exchange as usual. All the systems have the disadvantage of needing re-cabling.

Such a simple and elegant solution 'feels' right. It makes one wonder how often we might be looking too hard to find a simple answer.

New licence schedule

A new schedule to the amateur radio licence has been introduced, resulting from discussions between the DTI and the RSGB. The schedule is the technical supplement to the licence which lists the frequencies amateurs may use. It has now been produced in a single format to cover both Class A and Class B licencees and has been made easier to understand. Operators can see easily the frequencies they may use and their status (i.e. primary/secondary), the maximum power and the type of transmission permitted. There
have been a couple of minor changes in the licence; the first reflects the transfer to the Radio Interference Service to the DTI from British Telecom, the other removes the clause referring to RTTY transmissions as these are referred to elsewhere in the schedule.
Licences are available to those who have passed the Radio Amateur Examination, Class B permits transmissions at frequencies above 144 MHz . To get Class A, the operator must also pass a morse test and can then transmit on any amateur band.

In brief

A coals-to-Newcastle story is provided by the sale of power semiconductors to the Japanese Meidensha Electric
Manufacturing company who are constructing a rapid-transit electric railway in Singapore. The rectifiers and thyristors to be used in the system's substations are manufactured by Westcode Semiconductors, in Chippenham, Wilts.

- The end of an era has been marked by the decision of the M-O Valve Company to cease manufacture of the Golden Lion KT88 tetrode valve. The KT77 will also be "phased out". The valves have been extensively used for many years in highquality valve amplifiers.
- Siliconix are building a new factory in Silicon Valley for the fabrication of 6 in silicon wafers. The production line will use many new techniques in the manufacture of mos i.cs including steppers to gibe accurate registration of masks, ion implantation and plasma etching. This is expected to give a much lower rejection rate and thus a higher yield.
- A new and revised edition of the Handbook for Television Subtitlers, prepared by the IBA Engineering Division jointly with Oracle Teletext Ltd, and the University of Southampton. About 12 hours of subtitles are available to ITV viewers each week and the book has
expanded on previous editions in the light of further research and practical experience. The text has been extended with particular reference to subtitling for deaf children and to incorporate the results of experiments in the difficult area of real-time subtitling of 'live' programmes. The book is available free to broadcast organizations and to those actively concemed with film or educational applications of captions, from IBA Engineering Information Service, Crawley Court, Winchester Hants. - BT's Research Laboratories at Martlesham Heath are involved in 14 projects which have been awarded $£ 21 \mathrm{~m}$ by the Alvey Directorate as part of its programme to promote new integrated-circuit technology. One goal is the production of microchips with the equivalent of a million components on each. The overall programme has been designed to research the new materials and processing techniques needed to reduce the size of individual components in i.cs and develop techniques for their interconnection on the chip. Among the methods used in getting things even smaller and consequently faster is multilevel interconnect, like a multilayer p.c.b. but of electronmicroscopic size.

CABLE T.V. HEAD END AND REPEATER AMPLIFIERS

CHANNEL CONVERTERS
UHF-UHF Single channel converter, Gain adjustable $+2 \mathrm{~dB}-16 \mathrm{cB}$. Maximum output +26 dBmV . Crystal controlled oscillator. Power recuirement
TCUV As TCUU except UHF to VHF converter. (Quote Channels required TCVU As TCUU except VHF to UHF converter (Quote Channels required

SINGLE CHANNEL AUYOMATIC GAIN CONTROL AMPLIFIERS
TAG4863 Gain 48dB , maximum output 63 dBmV Regulator + or -8 dB . Power requirement 14 V 210 mA .
Gain 40 dB , maximum output 64 dBmV . Regulator + or -16 dB . Power Gain 40 dB , maximum

SINGLE CHANNEL AMPLIFIERS
TSS4663 Gain 28-46dB adjustable. Maximum output 63 dBmV . Power requirement
TS\$3062 Gain 12-30d日
Gain $12-30 \mathrm{~dB}$ adjustable. Maximum output 62 dBmV . Power requirement
14 V 26 mA .

DRIVER AMPLIFIERS

TS1030FM FM driver amplifier. 10dB Gain. Maximum output 30 dBmV . Power require-
TS1030B3 Bent I4V IOmA. Band III driver amplfier. 10dB gain, Maximum output 30dBmV Power
TSTo30UHF $\begin{aligned} & \text { requirement } 14 \mathrm{~V} \text { 10mA. } \\ & \text { UHF driver amplifier. } 10 \mathrm{~dB} \text { gain. Maximum output } 30 \mathrm{dBmV} \text {. Power require }\end{aligned}$ UHF driver amplifier. 10 dB gain. Maximum output 30 dBmV . Power require
ment 14 V 10 mA Single channel UHF driver amplifier. 10 dB gain. Maximum output 40 dBmV . Power requirement 14 V 10 mA . (Quote channel required).

DISTRIBUYION AMPLIFIERS

TE2042 Domestic distribution amplifier. 1 input, 1 output. Gain 20dB. Maximum
TE1638 output 42 dBmV .
TE1638 Domestic distribution amplifier. 1 input, 2 outputs. Gain 16dB. Maximum
TS2046 40 - 86 MHz .
TS2046 $\quad 40-860 \mathrm{MHz}$. Gaın 20dB UHF. 18 dB VHF Maximum output 46 dBmV
TS2846 $\quad 40.860 \mathrm{MHz}$. Gain 28 dB UHF, 22 dB VHF. Maximum output 46 dBmV
TS2845 Separate UHF/JHF inputs. Gain 28 dB UHF, 22 dB VHF. Maximum output
TS2060 40-860MHz Gain 20dB UHF, 18 dB VHF, Maximum output 54 dBm
TS5565 $\quad 40-860 \mathrm{MHz}$. Gaı 20dB UHF, 18dB VHF Maximum output 60 dBm

REPEATER AMPLIFIERS

TSC3660 Repeater. Gain 16-36dB UHF, 10-30dB VHF Maximum output 60dBmV
TSC3665 Repeater. Gain $16-36 \mathrm{~dB}$ UHF, $10-30 \mathrm{~dB}$ VHF. Maximum output 65 dBmV TSC 3060 Repeater. Gain $10-30 \mathrm{~dB}$ VHF. Maximum output 60 dBmV .

QUALITY AT LOW COST TAYLOR BROS (OLDHAM) LTD LEE STREET, OLDHAM - TEL. 061-652 3221 - TELEX 669911

CIRCLE 80 FOR FURTHER DETAILS.

Tele-Set is a self-contained instrument comprising a colour measuring system, a waveform generator and a UHF modulator for setting all CRT circuits in 625 line colour receivers.
Send for details
H.C. TAYLOR, 45 Apsley Way, Peterborough PE3 6NY

SINE WAVEINVERTERS 200 to 1000 VA

CARACAL'S new range of pulse width modulated inverters are now even better than ever compared to older tuned-type inverters - with even higher efficiency, lower standby current and lower weight than before

CARACAL inverters have been in use around the world for many years wherever a reliable and stable source of backup or standby AC power is needed for computers communications, instrumentation, and for mobile, field or marine applications.

```
    ASK ABOUTOUR CUSTOM/OEM
    SERVICE - THE U.K.'S BEST
INVERTERS TO SUIT YOUR DESIGN -
        FROM 50 TO 1000 VA
```

CARACAL POWER PRODUCTS LTD.
42-44 SHORTMEAD ST., BIGGLESWADE, BEDS.
Tel: $0767-260997$

ENCLOSURE COSTS CLOBBERED!

Due to stock re-organisation, we must clear a variety of electronic and computer enclosures, designed and built for the professional market. This is a wonderful opportunity to catch us with our prices down!
SMALL CASES
In sheet steel, finished light grey. Many sizes from $101 \times 201 \times 110 \mathrm{~mm}$ (deep) to $201 \times 201 \times 210$ (deep).

FROM £11.75

19" CASES

In sheet steel, with protruding edge for protection. Sizes 2,3,4,5 \& 6U in depths from 275 to 575 mm .

$$
\text { FROM } £ 44.05
$$

SYSCON CASES

A neat desktop unit with sloping front. Various sizes.

FROM £31.28

ALSO AVAILABLE:

POCKET-SIZED MULTIMETER
Measures Voltage, Current \& Resistance.
3 digit display. 2 readings persec.
Includes test probe, 750 mm of cable, contact clamps, 2 x LR44 batteries and case.
$£ 49.00$

13A SOCKET STRIPS
Built to industrial standards $3,4,5$ or 8 -way models

FROM £24.35

Add 15\% V.A.T. to all prices, plus post \& packing. For full details contact:

TDS900
 $F O R T H \quad C O M P U T E R$

Build the TD S900 into
your products, program it with a VDU and your forecasts become fact.
\& Single board computer. 12k RAM and 8k ROM (expandable).
~ All C-MOS for lower power. language. Compiled and fast. On-board screen-editor, compiler and debug facilities.
ش Easy connection with serial and parallel channels, A/D, D/A converters, triacs, printers, keyboards and displays.

CIRCLE 64 FOR FURTHER DETAILS

Full Colour Catalogue Send for your free copy now.

FOR
 Philips • Fluke Hameg * Ice Test Equipment

Philips PM3207 15 MHz Oscilloscope $£ \mathbf{3 2 5}$ Compact, portable, lightweight oscilloscope designed for field and workshop use. 15MHz bandwidth with 5 mV sensitivity. TV and auto triggering from either channel, with adjustable level. Add and invert facilitie and X - Y mode. Large screen with internal graticule

Phitips PM321750MH Oscilioscope $\mathbf{£ 8 7 0}$
Oscilioscope
High 2 mV sensitivity dual trace,$~ 日 \times 10 \mathrm{~cm}$ display with small spot size, high light output and illuminated graticule, auto trigger mode. TV triggering on line and frame. Full X-Y display facilities. Comprehensive second time base facility. Compact dimensions and low weight.
Philips PM $\mathbf{3 2 1 5}$ Single time base $\mathbf{f 6 9 5}$

Hameg HM103 10MHz Oscilloscope £167 This small oscilloscope has been designed specifically for field service personnel and 10 MHz bandwidth with 2 mV sensitivity. TV and auto triggering with adjustable level. internal graticule and -built component tester

Hameg HM204 20HMz Oscilioscope $\mathbf{£ 3 6 5}$ High performance scope with peak value triggering up to 0 Nhz Versatie wrigering facilities and vode Z modulation X-Y operation, internal llminated araticule and component tester the attractive specification

Hameg HM605 60MMz Oscilloscope $£ 515$ Outstanding performance with versatile triggering to 80 MHz . Sensitivity 1 mV to 30 MHz Switchable $1 \mathrm{kHz} / 1 \mathrm{MHz}$ probe calibrator. Dual trace, delayed sweep, X-Y operation, Z modulation, internal illuminated
graticule and component
tester

Hameg HM705 70MHz Oscilloscope $£ 588$
General purpose scope with multitude of operatiing modes and trigger facilities. Extremely bright and well defined displays, with $8 \times 10 \mathrm{~cm}$. screen and internailinaly
graticule. TV triggering. Z modulation, $X-Y$ dispaly graticule. TV triggering. Z modulation, X-Y disp

ADO 15\% VAT TO ALL PRICES Carriage and Pack ing extra

LondonN-1Tel 2677070 Telex 29869

Philips PM3256 75MHz
Oscilloscope E1325
Tough, light-weight ruggedised unit, with shoulder strap. that can be used in harsh service environments. Fest trigger circuits to over
100 MHz . TTL triggering is standard. Trigger view third channel and fuil X - Y display. Dual trace with $2 m V$ sensitivity and delayed time base. Philips PM3254 Single time base $\mathbf{£ 1 2 1 8}$

Philips PM3267 100MH
Oscilloscope $£ 1250$
versatile and economic instrument designed for advanced electronic environments. Separat omprehensive triggering facilities and trit iew third channel Dual trace, 2 mV sensitivity full X-Y display, Z modulation and internal illuminated graticule

TWO NEW BOARDS FROM SEE

Introducing the CB 69 and DCB 69 two new microprocessor boards

CB69
A single board microcomputer for a variety of applications

Features include:-
6809 Microprocessor
Three serial communication ports
Real Time Clock
64K Dynamic RAM
Battery Back-up on RTC
2 Mhz Operation
DCB 69
Single board disk controller

Features include:Support for 4 5" Mini Floppy drives Single or Double density Single or Double Sided S.A.S.I. Interface for Winchesters

Parallel interface

Software support includes:-

OS9 Level One
Editor, Assembler, Debugger
Word Processor, Basic 09, Pascal
C, Electronic Spreadsheet etc.

DOS 69

Editor, Assembler, Basic
The CB 69 and DCB 69 can be plugged toget her to form a small compact unit for under $£ 500$

For further information contact:-
SEED
Portland House
Coppice Side
Brownhills
Walsall
West Midlands WS8 7EX

SAVE up to 50\％
 ON SUPERLATIVE USED TEST EQUIPMENT Calibrated to Original Specs

OSCILLOSCOPES

TEK TRONIX 7000 SERIES

7104 1GHz Oscilloscope Mainframe
$10 \mathrm{mV} / \mathrm{div} 350$ ps Risetime
MLP £21．135）£16．500
7313 apt 0125 MHz Bistable Storage Oscilloscope Mainframe $4,9 \mathrm{~cm} / \mu \mathrm{s}$ Stored Writing Speed
（MLPEx，
7603100 MHz Oscilloscope Mainframe （MLP $£ 2,712) £ 1,950$
7633100 MHz Storage Mainframe （MLP $£ 7,794$ ） $\mathbb{4}, 950$
7704 A 200 MHz Oscilloscope Mainframe （MLP £． $4,27 \theta$ ）£2，950
7834400 MHz Fast Multimode Storage
Oscilloscope Mainframe
$2500 \mathrm{~cm} / \mu \mathrm{s}$ Stored Writing Speed （MLP $£ 12,273$ ）£9，850
7904500 MHz Oscilloscope Mainframe
（MLP 7904A £8，709）£6，950
7000 SERIES PLUG INS
7 All Fet 250 MHz Amp （MLP £2，669）\＆ 1,600 7A 19600 MHz S T Amplifer （MLP £2，4Z2）\＆1，600
AA26 200 MHz D T Amplifier
（MLP£1，917） 1,325
7B53A 0.05μ S D Timebase
（MLPf51，434）$£ 985$
B80 $10 n S$ Timebase（MLP $£ 1,405$ ）$£ 960$ 7885 10nS Delay Timebase
（MLP 57,609$) € 925$
7992A 0．5nS D Timebas
（MLP © 3,327 ）£2，000

HEWLETT PACKARD

1715A－0 1200 MHz Oscilloscope （MLP £3，568）£ 2，450
1740A 100 MHz Oscilloscope
（MLP £2，028）£1，450
1741 A 100 MHz Storage Oscilloscope （MLP $£ 4,878$ ）£3，250
1744A 100 MHz Storage Oscilloscope （MLP 55,677 ） 13,000

PHILIPS

PM3232 10MHz True Dual Beam
Oscilloscope
PM 324450 MHz 4 Trace Oscilloscope
£495

TEKTRONIX

212 Miniature 500 KHz D T Battery
Oscilloscope
434 opt 0125 MHz D T Storage
Oscilloscope 464 DMM 44－04－05 100 MHz Storage
（Unused）（MLP£5，916）£4，650
475200 MHz D T Oscilloscope
（MLP £4，104）£2，650
475A 250MHz D T Oscilloscope
（MLP $£ 4,453$ ）$\times 3,300$

LOGIC ANALYSERS

FLUKE

3010 A Programmable PCB Logic Tester

HEWLETT PACKARD

1611A Microprocessor Logic Analyser
£2，950
A80 Personality Module for 8080 Microprocessors（for use with 1611A）
£950

TEKTRONIX

7002 opt 01 Microprocessor Analyser
Up to 52 Channels（MLP 57,144 ）£ $\mathbf{3 , 9 5 0}$ DAS 9103 opt 01 \＆ 02 Logic Analyser

32 Channels at 25 MHz or 8 Channels at 100 MHz with 16 Channels Pattern
Generator（MLP $£ 18,0+8) £ 7,500$

SIGNAL ANALYSERS

HEWLETT PACK ARD

$141 T+8552 B+8555 A$ Spectrum Analyser $10 \mathrm{MHz}-18 \mathrm{GHz}$
（MLP£16，5ち2）£12，750
3580A Spectrum Analyser $5 \mathrm{~Hz}-50 \mathrm{KHz}$
£ 3,250
TEKTRONIX
7 L 5 opt 25 and $\mathrm{L} 3-0120 \mathrm{~Hz}-5 \mathrm{MHz}$
Spectrum Analyser with Tracking
Generator（MLP £ $£ 13,07+$ ） $\mathbf{~ 7 , 8 0 0 ~}$
TR502 Tracking Generator for
7L12，7L13，7L14（MLP £6，332）£3，000 TR503 Tracking Generator for 492 or 496
（MLP£6．33z） 44.250

TEKTRONIX TM500 \＆

TM5000 SERIES

DC5009 Programmable counter／timer identical to DC509＋GPIB
（MLP $\{2,0+4$ ） 1 1，500 DD501 Digital Delay Delay to 99,999
events（MLP£さ，155）〔775 FG501 Low Frequency Function Generatar， 0.001 Hz to 1 MHz sine，square，triangle， pulse and ramp
FG 502 Function Generator 0.1 Hz to
11 MHz sine，square，triangle．Pulse and ramp to 1.1 MHz （MLP£77子）£565
FG503 Function Generator 0.1 Hz to 3 MHz sine，square and triangle
（MLP 5528 ）$£ 400$
PG50 1 Pulse Generator 5 Hz to 50 MHz
$20 n s e c$ to msec pulse period
（MLP f639） 1300
PG505 Pulse Generotor 10 Hz to 100 KHz pulse width 5 nsec to 0.5 sec
（MLP．5864） $\mathbf{8 4 5 0}$
PG507 Dual Output Pulse Generator
5 Hz to 50 MHz （MLP £ 1，936）£1，200
PG508 Pulse Generator 5 Hz to 50 MHz
pulse width 10 nsec to msec
（MLP£1，904）£1，250
RG50 1 Ramp Generator 10μ s to
10 s ramp duration 10 V gate out
TTL compatible
£ 400
SC50 15 MHz Single Channel Plug－in Oscilloscope $10 \mathrm{~m}^{2}$ sensitivity，occupies single TM500 series compartment MLP£1，76大）$£ 500$
SC502 15 MHz Dual Channel Plug－in Oscilloscope $1 \mathrm{mV} /$ div sensitivity， 20ns／div calibrated sweep Occupies two TM500 series compartments

MLP £2，＋37）£900
SC504 80 MHz Dual Channel Plug－in
Oscilloscope $5 \mathrm{mV} /$ div sensitivity， $5 \mathrm{~ns} / \mathrm{div}$
calibrated sweep，true X－Y capability
（MLP £2，690）£995
SG502 Low Distortion Signal Generato $5 \mathrm{~Hz}-500 \mathrm{KHz}$（MLP $£ 776$ ） 55
SG503 Signal Generator， 250 KHz to 250 MHz with 3 digit counter
（MLP $£ 1,976) £ 1,250$
SG504 Signal Generator $245 \mathrm{MHz}-105 \mathrm{MHz}$
（MLP£3，797）£1，250 505 Oscillator 10 Hz to 100 KHz sinewave Ultra－low distortion－0．0008\％THD
（MLP£696）£400
TG50 1 opt 01 Time Mark Generator
（MLP \｛ 2,2 273） 1.450
TEKTRONIXTVTEST EQUIPMENT
R148／148 PAL Insertion Test Signal Generator（MLP £6，266）£4，400

DISPLAYS

HEWLETT PACKARD

1332A High Resolution X－Y Display $9.6 \times 11.9 \mathrm{~cm}$ Display Area option 216 （TTL Blanking and Analog Z Mod）and option 330 （covers Feet etc．to Medical Standards）（MLP £2，100）\＆ 1,250

SIGNAL SOURCES

HEWLETT PACKARD
214 A Pulse Generator to 1 MHz Double Pulse Mode 100V， 200 watts output
£950
612A UHF Signal Generator
$450-1250 \mathrm{MHz}$
£1，100
618 C SHF Signal Generator $3.8-7.6 \mathrm{GHz}$
（NEW CONDITION）
（MLP $£ 8,405$ ）£4，000
8004 A Pulse Generator 20 MHz ¢450 8011 A opt 001 Pulse Generator 20 MHz
with Pulse Burst 16 V output
MLP $£ 4,079)$ C695
8013 B Pulse Generator 50 MHz with variable Transition Time
（MLP $£ 1,238$ ） ET 5 O
8403A Modulator with option 004 8732B Pin Modulator $1.8-4.5 \mathrm{GHz}$
（MLP $£+, 902$ ）£ 1,000
8620C Sweeper Mainframe
（MLP £3，07\％）£ 2，100
86240B Sweeper Plug In $2-8.4 \mathrm{GHz}$
（MLP $\mathbf{E} \mathbf{6}+152$ ） $\mathbf{4 , 2 0 0}$
86260A Sweeper Plug In 12.4 － 18 GHz
（MLP £ 4 －195）£ 3,600
8640A AM／FM Signal Generator
$0.5-512 \mathrm{MHz}$（MLP．67，19＋） $\mathbf{2 , 7 5 0}$
8690B Sweeper Mainframe $\quad £ 2,000$ 8698B Sweeper Plug in
$0.4-110 \mathrm{MHz}$
£ 1,000
8601A Sweeper 100 KHz － 110 MHz \＆ 1,950 MARCONI
TF2015 AM／FM $10-520 \mathrm{MHz}$
MLP £ $£ 2,175$ ） 11,450
TF2015／2 AM／FM 10－520MHz
（NEW CONDITION）
（MLP £2，175）£ 1，350
TF2 120 Waveform Generator Sine，Square， Triangular and Ramp o／p Waveforms $0.0008 \mathrm{~Hz}-100 \mathrm{KHz} \quad \mathbf{£ 8 5}$
TF2 169 Pulse Modulator $10-520 \mathrm{MHz}$ to
use with TF20 15，TF2016 and other
generators
$\mathbf{E 2 0 0}$
generators
TF2 170B Synchronizer for TF2002B £500
TF2 171 Synchronizer for TF20 15
（NEW CONDITION）（MLP 5 TF2 173 Synchronizer for TF2016 £600 6058 Signal Generator $7 \cdot 12.5 \mathrm{GHz} \mathbf{~} 850$ TEKTRONIX
284 70pS Pulse Generator
（MLP 51,977 ）$£ 950$

GENERAL EQUIPMENT

AVO

Model 8 （various versions）
c80－£85
BIRD
4311 Peok Power Meter（MLP £540）£300
BRYANS SOUTHERN
29300 A4 Size
X－Y Ranges： 0.25 mV to $10 \mathrm{~V} / \mathrm{cm}$ in 10 Ranges
Slew Speed： $70 \mathrm{~cm} / \mathrm{sec}$ ond
Timebase： 0.1 to $50 \mathrm{sec} / \mathrm{cm}$ in 9 Ranges
（MLP £1，637）£ 1,000

26001 with 2×26116 Amplifiers
and 26201
Timebase
$X \cdot Y$ Ranges： $50 \mu V$ to $10 \mathrm{~V} / \mathrm{cm}$ in 17 Ranges
Slew Speed： $150 \mathrm{~cm} /$ second
Timebase： 0.05 to $50 \mathrm{sec} / \mathrm{cm}$ in 9 Ranges
（MLP £2，66ł）£1，400
26001 with 2×26116 Amplifers and
26202 Power Unit instead of Timebase
（MLP $£ 2,443$ ） $\mathbb{1}, 250$
FLUKE
887 AB AC／DC Differential Voltmeter
（MLP £3，044）£ 1,950
821 A DVM Wideband，autoranging
True RMS Readout in volts or dB．
Bandwidth $10 \mathrm{~Hz}-20 \mathrm{Mhz}$
（MLP£ 1,326 ）$£ 695$
893A AC／DC Differential Voltmeter $£ 750$ 931 D Differential Voltmeter．
TRUE RMS
£1，000

HEWLETT PACKARD

427A Analogue AC／DC／Ohm Meter
（MLP s\＆tOT $£ 495$
467A Power Amplifer DC－1 $1 \mathrm{MHz} \quad £ 725$ 48 15A RF Vector Impedance Meter
£3，850
7040A X－Y Recarder IV／Inch
（MLP £

HEWLETT PACKARD MICROWAVE

ACCESSORIES
P382A Attenuator $12.4-18.0 \mathrm{GHz}$
MLP £L，ЮO）$£ 425$
$\times 382 \mathrm{~A}$ Attenuator $8.2-12.4 \mathrm{GHz}$
（MLP $£ 1,+00) £ 425$
423B Crystal Detector 0．0 1－12．4GHz
（MLP \＆279）\＆165
J752C Directional Coupler
－ $85-8.2 \mathrm{GHz}$
£ 600
J910A Termination 5．3－8．2 $\mathrm{GHz} \quad \mathrm{E} 175$
11692D Dual－Directional Coupler
2．18GHz（MLP £2，025）£1，500 11720A Pulse Modulator 2 －18GHz
（MLP £2，6501 11,950

MARCONI

CT596（6460／1）Wattmeter
$10 \mathrm{MHz}-18 \mathrm{GHz} \cdot 0.3 \mu \mathrm{~W}-10 \mathrm{~mW}$ ．
Extended to 1 W with $6534 / 4,20 \mathrm{db}$
£1，500
TF 1313 A LCR Bridge 0．19
（MLP £ +47 O）£ 775
TF2333 MF Trans Test Set
（MLP．£908） 595

RACAL

Store 4DS FM Taperecorder $\mathbf{~ 3 . 9 5 0}$ Store 7DS FM Taperecorder $£ 6,150$ 9919 opt 04A Counter． 8 digit， $10 \mathrm{~Hz}-1.1 \mathrm{GHz}$
（MLP£870）£525

TEKTRONIX

1503 TDR Cable Tester
（MLP £4，93＋）£3，000
1503 Option 04 TDR Cable Tester with
Recorder
MLP £5，987）£3，500 2701 Attenuator $50 \Omega 0.79 \mathrm{db}$ in 1 db steps
（MLP £59日） $\mathbf{£} 295$
OF 150 Fibre Optik TDR．CRT display
$0.1 \mathrm{~dB} /$ Meter（MLP $5+5,545$ ）£ $\mathbf{1 2 , 0 0 0}$

ADD 15\％VAT TO ALL PRICES
Carriage and Packing extra
Trading Conditions Available on request

Electronic Brokers Ltd．，140／146 Camden Street，London NW1．Tel 01－2677070
CIRCLE 78 FOR FURTHER DETAILS．

Me're as enthusinstic ahout computers as you are.

C 3
 ELECTRONIC KITS

Hi -Fi amplifiers \& preamp, power suppliers Linear \& switching, alarm systems of all kinds \& types, RF preamp. TV/Radio with thick film modules, radio receivers varicap tuned, am/fm/ssb receivers and transceivers, walkies talkies, frequency counters, cap. counters and much more!!

LOWEST PRICES SEND FOR FREE CATALOGUE/PRICE LIST. EXPORT TRADE AND QUANTITY DISCOUNTS GIVEN

C \& A ELECTRONIC O.E.
PO Box 25070 Athens 10026
GREECE Tel: 5242867. TIx: 210798 CAGR

CIRCLE 59 FOR FUR'THER DETAAILS.

Our latest DEC stocks available now for fast delivery at LOW LOW PRICES processons ano sstem reaty

 MEMORYPDP11/70, PDP11/44, PDP11/34A, PDP11/45, PDP11/40, PDP11/23. PDP11/03, PDP8E, PDP8A DISK DRIVES AND CONTROLLERS
R80, RA80, RK05, RKO6 RK07, RLO1, RLO2, RMO2 RMO3, RMO5, RM80 RP06, RX01, RX02

VDUS

VR17, VT05, VT50, VT52 VT55, VT62, VT78, VT100 VT101, VT102. VT103 VT110, VT125, VT180' VT278 configured from stock c.g. 11170 with iw03s from 840,000 . 11144 with RM02s from 527,000 11134 with RL 025 from 97,750 . 1123 with RX02s from $\mathrm{S4}, 250$;

MAGNETIC TAPE
TE16, TS11, TU10, TU58,TU77 PRINTERS LA30, LA34, LA35, LA36, LA180, LP04, LP05, LP200, LS120
OPTION MODULES Too numerous to list.

TEKTRONDK

COLOUR GRAPHICS

Ex-Demonstration Stock
in Original Manufacturer's Packaging
Colour Graphics Terminal Model 4027A
Providing full colour graphics and alphanumerics. Plot 10 compatible 8 displayable colours from pallette of 64 . Full screen crosshair cursor 34×80 display (2720 characters) 120 user-defined patterns
RS232 Interface with up to 9600 baud transmission
Original List Price $£ 9,500$
Our Amazing Price| 1,995
Other Tektronix Graphic Equipment in stock includes:
$606 \cdot 611 \cdot 4006-1 \cdot 4010-1 \cdot 4015-1 \cdot 4052 \cdot 4114 \cdot 4952$

NEW CATALDIE NOW OUT

Covering our large stocks of Systems, Peripherals, Modules, Terminals and Graphics equipment.

[^0]
Ang ia Industrial Auctions
 Specialist Auctioneers to the Radio and Electronic Industry
 NEXT SALE OF OVER 700 LOTS WILL BE HELD ON OCT. 17th 1984
 THELOTS BELOW WILL BE OFFERED FOR SALE UNLESS PREYIOUSLY SOLD

NEXT SALE OF OVER 700 LOTS WILL BE HELD ON NOV. 21st 1984 THE LOTS BELOW WILL BE OFFERED FOR SALE

Including: 35 Tektronix Oscilloscopes Type RM45, 130 Valves Type 4CX300A with Bases, 6 Tektronix Oscilloscopes Type 545, 50 Tektronix Plug-ins, 6 Tektronix Oscilloscopes Type 585, 7 Tektronix Oscilloscopes Type 551, 7 Telequipment Oscilloscopes Type S 54 B, Tektronix Storage Display Unit Type 661, Tektronix Hard Copy Unit Type 4601, 5 Roband Oscilloscopes Type R050A, 16 Tektronix Calculators Type 31, 12 Airmec Modulation Meters Type 210, 6 Radiometer AM/FM Signal Generators Type MS27g, 3 Marconi FM Signal Generators Type TF 1066B, 4 Marconi RC Oscillators Type TF1101, Eddystone Receiver Type 770 S, 7 Electrohome Video Monitors, 5 Pye Base Stations Type F27 AM, 42 Pye Vanguards Type AM25, 15 Pye UHF Signal Generators, 8 19" Video Monitors, 8 Marconi Signal Generators Type TF 995 B/5, 30 Marconi Signal Generators Type TF 995 A/5, 27 Pye Aerial Tuner Units Type ATU 4, 38 Marconi Signal Generators Type TF 1064, 20 Marconi Tx \& Tx Output test Sets Type TF 1065, 60 Grundig Stenorettes, 350 Pye PF1 UHF Receivers, 350 Garrard Car Cassette Player Mechanisms, 450 2ft. Dexion Shelves, Rank Xerox 1385 Photocopier Camera with spares \& Service Manuals (This is the original Xerox Machine), 500 Kg Scrap Printed Circuit Boards (Gold Plated).

5 STATION.ROAD, LITTLEPORT, CAMBS. CB6 IQE. Phone ELY (0353) 860185

CIRCLE 46 FOR FURTHER DETAILS.

COMPUTER APPRECIATION

16 Walton Street, Oxford OX1 2HQ -
Tel: Oxford (0865) 55163
IBMPERSONAL COMPUTER Model XT. With single floppy \& 10 MB Winchester. AS NE W......... $£ 2950.00$ UNITRON Moder 200 microcomputer. APPLE II/e \& CP/M compatible machine with 6502 \& 280 processors. E4kbyte memory, detached keyboard with numeric pad \& floppy disc interface. BRAND NEW \&
BOXED
SHARP MOdeI PC3201 MICROCOMPUTER SYSTEM comprising, 8085-based processor with 64bytes, moni
tor, dual 5 - ${ }^{\prime \prime}$ disc drives, Model CE322P (Epsom) printer \& operating system.650.00
MICRO \vee Model Microstar I microcomputer system. 8085 based with 64 kbytes, dual double sided, double
density 8 in disc drives, 3 serial interfaces \& LEARSIE GLER ModeI ADM 31 VDU 5550.00
fock well AIM $65 / 40$ single board 6502 development system with display, keyboard, power supply \& cas-
 PERTEC Model PCC 2000 COMPUTER/WORD PROCESSING SYSTEM COMTH 6410 Cessor with green 24×80 display, detached keyboard with numeric $\&$ function keypads twin 8° double single density floppy disc drives (IBM compatible), RS232 \& Centronics interfaces. NEC Model 5500 Spinw riter ($\mathbf{5 5} 5 \mathrm{cps}$ daisy wheel printer). Software included in the price - CP/M, WORDSTAR, BASIC, DATASTA etc. BRAND NEW
. $\mathbf{£ 1 , 1 0 0 . 0 0}$
DICOLL LSI11 SYSTEM comprising, processor with 64bytes, BA11 backplane \& PSU (DEC manufactured) D:V11J quad serial interface, dual PERTEC double density floppy disc drives. Contained in compact, attractive portable box. Software includes RT-11 \& many interesting bits \& pieces $\mathbf{7 7 5 0 . 0 0}$ OLYMPI $5 f^{\circ}$ floppy disc drives, HONE ory, twin 5$\}^{*}$ floppy disc drives, HONE YWELL Model L32 120 cps mattix printer

TRANSAM 'TUSCAN' S100 MICROCOMPUTER 280 based machine with 64kbytes of static RAM, twin $5 t$ floppy disc drives, NEC green phosphor monitor, RS232 \& 8 bit parallel interfaces. S 100 software includes
CP/M etc VISUAL MOdel 200 VDU $24 \times 80,9600$ Baud etc, with slow scrolling. Externally ac. $\mathbf{f 7 5 0 . 0 0}$ gure for VT52 ADM 3 A ADD S520 HAZELTINE 1500 COmp scroling. Externaly accessible switches conit gure for 512, ADM3A, ADD S520 or HAZELTINE 1500 compatibitity. Currently listed at $£ 850 \ldots$..... $£ 250.00$
PHILIPS Model P2121 daisy wheel printer (TEC 'Starwriter'). RS232 interface bidirectional printing. In good ex-demo condition.. CBM Model 8027 daisy wheel printer (Olympia 'Scripta') for PET. 25cps, IEEE interface. BRAND
 CBM Model 8024 high speed matrix printer (Tally 1200) for PET. IEEE interiace. BRAND NEW......... $\mathbf{£ 2 5 0 . 0 0}$ MANNESMANN/TALLY Model M80MC matrix printer. With microprocessor control, 200 cps bidirectiona CENTRONICS M CENTRONICS Model 302 marix printer

16 col .165 cps bidirectional pring with self ti...... $\mathbf{£ 9 5 . 0 0}$

DEC boxes \& Model 779 matrix printer. Similar to above but 80 col
ing or easily modified \& with various optional processors etc
IT Model 3510 TELEFAX Facsimile transmitter/receiver. Microprocessor controlled (8085) CCITT Group machine for transmitting documents over an ordinary phone line. BRAND NEW \& BOXED...... £350.00 or BM Golfball printer with 280 controlled IEEE interface for PET 15 pss \& \quad E600.00 per pair Complete with head) Complete with head
$f 120.00$
EKTRONIX Model 4601 hard copy unit for 400 series graphics iescope.
TEKTRONIX Model 611 graphics storage display. For use with any DAC co
FACIT Model 4020 high speed paper tape reader. Parallel TTL interface
available from us for many items stocked

CIRCLE 70 FOR FURTHER DETAILS.

VIDEO TERMINALBOARD
 $\star 80$ characters $\times 24$ lines \star
 Requires ASCll encoded keyboard and monitor to make fully configurable intelligent terminal. Uses 6802 micro and 6845 controller. Program and character generator (7×9 matrix with descenders) in two 2716 EPROMs. Full scrolling at 9600 baud with 8 switch selectable rates. RS232 interface.
 Bare board with 2 EPROMS and program listing £48 plus VAT. Assembled and tested - £118 Send for details or CWO to:

A M Electronics
Wood Farm, Leiston, Suffolk IP16 4HT Tel: 0728831131

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order
Full Information from
HARRIS ELECTRONICS (London)
138 GRAY'S INN ROAD, W.C. 1
Phone: 01-837 7937
Telex: 892301

Microcomputercontrolled cassette recorder

The series concludes with two articles describing software structure

In this part, I propose to outline the overall structure of the software developed to control the solenoid-operated cassette deck. I have developed a machine-code program to run on my own 6502 based computer. Using a number of new Basic words the routines of my m / c program are accessed and carried out, always returning to Basic upon completion of the routine. In addition to describing the overall program in general terms I shall discuss, in detail, a number of the subroutines designed to control the mechanical operation of the cassette deck.
My UK101 microcomputer has been considerably modified and augmented, using various enhancements produced by Premier Publications. In particular it uses their CIGMON X monitor chip, improved versions of the Basic 1, 3 and 4 chips and their new Basic 5. Most importantly, from their 6502 assimbler disassembler chip, ENCODER, which enables me to write m / c programs in a form of simplified assembly language, greatly simplifying the compilation of a m / c program, The various subroutines presented are written in ENCODER'S assembly language There are differences fro the more normal type of assembly language and where these need explanation I do so.

Interlacing the program to Basic

The ease with which the operation of the cassette deck can be controlled by the microcomputer depends very much upon how the Basic list of command words can be extended. Fortunately, in the UK101, all inputs from the keyboard are handled by the Basic interpreter through an input routine which is accessed via a vectored address held in ram. The input routine is peculiar to the
type of computer and is therefore handled by the Monitor chip. However, instead of jumping from Basic direct to the Monitor chip, the instruction given is an indirect one, i.e. JUMP to the address location stored at another address location. In the UK101, the instruction given is JMP ($\$ 0218$), where $\$ 0218$ is a location in ram which, together with the next memory address, $\$ 0219$, normally contains the address of the Monitor chip's input routine $\$$ FB46. Because the address of the input routine is contained in a ram address the computer programmer is quite at liberty to modify the values contained at those locations, substituting the address of his own 'input' routine. Using this technique I can arrange for the computer to look and check for four new Basic words, AUSAVE, AULOAD, FILIST, and ERLIST when a Basic command is typedin from the keyboard. If none are found, the control is handed back to Basic interpreter which then checks its own list of command names. If, however, one of the new words is found, then the computer jumps to a routine to handle that command.
The overall structure of the program is shown in Fig. 1. An initial m / c routine is accessed, which sets up initial conditions and includes writing the address of the 'new input routine' at the input vector addresses. The initial routine then exists to Basic (UK101, warm start). Subsequent keyboafe entries from Basic are handled by the 'new input routine'. Upon receipt of a carriage-return the 'new input routine' looks for one of the four new Basic words, accessing one of the four new routines, if found. Each of the four has access to various subroutines which control the mechanical functions of the
cassette deck among other things. Each may 'return' to Basic through the new input routine, or 'jump' directly back to Basic.

New input routine

I have listed, in ENCODER's assembly form, the m / c program of the new input routine (:INPR) and its subroutine 'Find' (:FIND). The old input routine at SFB46 is a subroutine which accepts the character written from the keyboard and stores it in the Basic buffer line, and also retains it in the accumulator (the A-register) of the 6502 . The new input routine thus first uses the old routine, then checking whether the character stored in the accumulator is a carriagereturn. If not, it returns the program control to the Basic interpreter which awaits another character to be input from the keyboard, If the character is a carri-age-return, then the value of the X-register is temporarily stored at address \$02FF and a 'space' character is added to the end of the Basic buffer line which, in the UK101, starts at $\$ 13$ and is indexed by the X-register. The value of X is thus an indication of the length of the buffer line and the program jumps to the subroutine

Fig.1. Block diagram of program to control cassette deck.

Fig.2. AUSAVE routine logic
flow-chart
:FIND. Upon returning from :FIND the temporarily stored value of X is returned to the X -register, the accumulator reloaded with carriage-return and the program returned to the Basic interpreter.
The subroutine :FIND compares the word in Basic's buffer line with a list of new words stored in the subroutine :FIND at the location labeled :WORD. Inverted commas are used to indicate to ENCODER to, 'sore the ASCII values of the following text in the immediately following memory locations'. The address locations of the four routines associated with the four new words are stored in the routine starting at the location labelled :JUMP. To the ENCODER, \#:LOAD means, ‘store the address of the routine labelled
‘:JUMP; list must be in the same order as the new BASIC words separated from the next by the 'asterisk' character and the list is terminated by the 'hash' character. The list may contain any number of words of any length (up to that of the buffer line!) and the list of :JUMP addresses may be added-to, but, remember, there must be a :JUMP address for every new word.
The subroutine :FIND works by comparing the word stored in Basic's buffer line with the list of new words, starting at the begining. A 'jump index' is given the initial value of zero and is incremented by two every time a new word 'fails' the comparison. If a comparison is found then the 'jump index' is transferred to the X-register. The JUMP address of the routine selected is deter-
mined by indexing the list of JUMP addresses from the :JUMP label with the X-register. The high and low bytes of the JUMP address are transferred to zeropage addresses, SEE \& SEF, and the routine is finally accessed by the statement JMP (SEE).

New routines

The four routines, AUSAVE, AULOAD, FILIST and ERLIST are shown only as flow-diagrams in Figs 2 to 5. In the UK101, using the new Basic 4 chip supplied by Premier Publications, it is possible to SAVE and LOAD named files using the following formats:

1. SAVE
2. SAVE "program name"
3. SAVE"
4. LOAD
5. LOAD "program name
6. LOAD "program name"
7. LOAD""
8. LOAD"
9. LOAD?"

1 Formats 1 and 4 are the same as normal SAVE and LOAD commands; they are not used in the automatic mode;
2 saves the program to tape with the specified program name, which may be up to 32 characters long;
3 saves the program in a format designed to prevent illegal use by another computer user (it can only be loaded using the syntax LOAD"");
5 loads, but does not automatically run the named program from

tape;

6 loads and automatically runs named program from tape;
7 loads and runs the first program found;
8 loads but does not run the first program found;
9 compares a program on tape with that currently in the computer's memory. The resident program is retained. The command is used to verify a program on tape directly after it has been saved.

In writing routines to handle the new words AUSAVE and AULOAD, I have allowed only some of the above formats:

AUSAVE "program name"
AULOAD "program name"
AULOAD "program name"
AULOAD?
AULOAD""
If AUSAVE, AULOAD, AUSAVE" or AULOAD" are typed, the new routines have been designed to return a syntax error. However,
in the case of AUSAVE "program name", it does not seem to matter whether the last set of inverted commas are included or not.

Although the length of the program name, using the UK101's new Basic 4 chip, may be as long as 32 characters, under automatic control I have limited it to 6 characters. This results in a much tidier format when the directory (or File List) is displayed on the screen.
Apart from AUSAVE and AULOAD, two other Basic words are used in the control program, FILIST and ERLIST. The FILIST command is used to display the directory on the screen so that the list of programs (held in the directory) may be viewed. The format produced by the FILIST command is a row of four program names (together with electronic counter values indicating their location on the tape cassette) with each row separated by a blank row. ERLIST is similar to the FILIST command in that it also display the list of stored programs, but in this case the format is simply a column of program names. Having listed out the program names, the operator is invited to, 'Erase last Program?'. Any reply other than ' Y ' from the keyboard exists from the routine back to the Basic interpreter. If ' Y ' is typed, the programs are relisted as before but with the last program erased from the list. The
invitation to 'Erase last Program?' is repeated. The program whose name has been erased from the list is not irrecoverably lost until the directory is saved anew on the tape. Reloading the directory, stored at the beginning of the cassette tape, will reinstate the 'erased' program or programs. All that the ERLIST command does is to reassign the position of the 'next free space' on the tape to the position immeniately before the 'erased' program. Using this technique, the last recorded program may be effectively erased from the directory and a new one recorded in its place.

To be able to save and load programs to and from a tape cassette automatically, it is essential to know what programs are stored on the tape. The information is held in the directory which is always stored at the beginning of the cassette. In order that the directory can be loaded from and saved to the tape cassette without interfering with the Basic program held in the computer's memory, I have written a special m / c routine. When loaded from the tape, the directory is placed in a reserved area of ram not used by the computer's program. Ten characters are required to store a program name, together with its electronic counter value. Thus 512 bytes of ram can hold up to 51 program details, which should be
more than enough record space for a C60 cassette.
No specific command is required to load the directory when a new cassette placed in the tape deck. By linking the 'cas-sette-in-position' microswitch on the tape deck to the CB1 input of a 6522 v.i.a. chip (see Fig. 2 of first part of the article), the computer is able to determine when a cassette is removed and a new one placed into the tape deck. When either of the four new basic commands are entered from the keyboard, each of the four routines checks to see whether the directory has been loaded. If it has not, it is immediately loaded into its reserved ram location. Unless the cassette is subsequently removed or replaced with another, there is no further need to reload it.

Ausave

Figure 2 is a flow-diagram of the logic of the AUSAVE routine. The command AUSAVE 'program name' enters the routine as previously described, the first check merely establishing the correct syntax to ensure that the program name is read correctly. The next check determines whether the directory is already loaded or not and loads it if not. The characters 'AU' are now from the command held in Basic's buffer line, so that

Fig.3. Second half of AUSAVE routine hand back to Basic when deck is in record mode. Fig.4. Flow-diagram of AULOAD routine.

when control is handed back to the interpreter, Basic sees the command, SAVE 'program name’ in the buffer line. When SAVEing a program under automatic control it is obviously important not to use the same name twice. The next check prevents this from happening. However, if the program name has already been used, the opportunity is given to overwrite the existing program (no matter where it is located) by the new one of the same name. This technique can be useful in updating an old program, but care must be taken to ensure that the length of the new program is not greater than the old one, or the program following it on the tape may be corrupted. If the program name has not been used before, then it is added to the directory together with the electronic counter value of the 'next free space' on tape: the tape is then wound to this position.

Before placing the tape deck into its RECORD mode the address of the start of the second half of the AUSAVE routine shown in Fig. 3 is placed into the input routines vector location. With the tape-recorder running in its RECORD mode, this half of the AUSAVE routine hands control back to the basic interpreter, which sees the command SAVE 'program name' in its buffer line and therefore SAVEs the named program in the normal way. Once the program has been saved the Basic interpreter returns to its 'input routine'. As a result, it is immediately vectored to the second half of the AUSAVE routine. The first function of this half is to stop the tape-recorder. If an old program has been overwritten, then there is nothing more to do but reassign the address of the 'new input routine' to the input
Fig.5. Second half of AULOAD

routine vectors and return to the Basic interpreter. If, however, a new program has been SAVEd then the 'next free space' value must be updated. This is done by reading the current value of the electronic counter and adding a little to its value so as to clear the end of the last program by a comfortable margin. The details of the directory stored on tape must also be updated as follows.

The tape is rewound to the beginning, the tape counter reset and the tape advanced to the start of the directory location. The directory is then saved anew, overwriting the old, but with the additional information concerning the new program. By always rewinding to the beginning of the tape and resetting the tape counter, before advancing to the beginning of the directory, the 'load directory' routine is designed to exit from its program after the tape has incremented beyond the expected directory start location by a reasonable amount. In my program I have arranged for the words, 'Directory Not Found' and to wait for confirmation from the operator via the keyboard, since a misread of the directory will produce the same result and an immediate attempt to SAVE the required program could result in a disastrous corrupting of the existing programs.

AULOAD routine

The flow-diagram of the AULOAD routine is shown in Fig. 4 In the case of AULOAD there are a number of syntaxes to support as described earlier and the first four checks sort out the various possibilities, exiting from the routine if none of the four allowed are found. In such an event, upon return to Basic, a syntax error will be indicated. The first check determines whether the first character after the command, AULOAD, (other than a 'space' character) is a set of inverted commas or a question mark, the next one determining whether the second character is a set of inverted commas, or not. If it is, the program jumps to the steps prior to exiting the routine. This procedure is designed to handle the AULOAD?" syntax. If immediately prior to this command AUSAVE "program name" has been carried out, then appropriate temporary stores contain information about the start location of the SAVEd program. The tape is thus wound to this position
and the SAVEd program compared with the program remaining in the computer's memory. The previously SAVEd program can thus be verified. The syntax, AULOAD"", will produce a similar result: however, in this case, the program recently SAVEd is LOADed into the computer, erasing that held in memory.

If the second character is not a set of inverted commas, then it should be the start of the program name, 'spaces' not being allowed: the third step performs this check. The fourth check determines whether the program name is terminated with inverted commas. If it is, then the program is required to be RUN immediately after LOADing. However, the RUN command must not be carried out until the second half of the AULOAD routine has been performed. The second set of inverted commas are thus replaced with a 'space' character and a RUN flag set for subsequent attention by the second half of the routine.

With the directory loaded, the next step searches the directory for the desired program in order to determine where it may be found on tape. If the program name is not found the routine is exited. The reason for 'jumping' to Basic this time, rather than 'returning' through the :FIND and :INPR routine is really for nicety. To avoid a 'syntax error' being printed to the screen, the buffer line is erased (i.e replaced with 'space' characters). Jumping, then, to warm start Basic produces the 'READY' comment, whereas returning does not. (Remember, when JUMPing rather than RETURNing to Basic, the unused 'return from subroutine 'addresses must be pulled off the stack by two PLA statements.)
Having found the desired program, the characters ' AU ' are replaced with 'space' characters to leave the command LOAD "program name" in the buffer line. The address of the start of the second half of the AULOAD routine is loaded into the 'input routine' vectors after having wound the tape to the location of the start of the program. The taperecorder is then put into its PLAY mode and the first half of the routine exited. The BASIC interpreter now sees the command LOAD "program name" and therefore loads the program in the normal way. Once loading is complete, the basic interpreter

Continued on page 58

A 7^{1} last

 $\frac{\text { àruly compatible }}{\text { eurocard. }}$ STE compatible Eurocards.A compatible Eurocard standard is now available from Arcom that will make other Eurocards obsolete. A growing range of boards is now available which use the new STE bus interface (IEEE P1000).

The Z80A ${ }^{\text {® }}$ based CPU board offers 64 K DRAM, up to 32 K EPROM and two RS 232 serial ports. Four extra I/O lines are provided plus a parallel keyboard port and the board can address 192 K bytes of off board memory. The on board floppy disk controller can handle up to four drives from 3 inch to 8 inch in all formats, and the software package provided as standard is CP/M Plus ${ }^{\text {® }}$ (version 3). A complete system on a single Eurocard, compatible with other STE bus systems, and all for only £580, including CP/M Plus ${ }^{\oplus}$.

It has the all-new STE bus, easily expandable architecture, with a growing range of peripheral boards and full support from a young company which is rapidly establishing itself as one of Europe's leading innovators in control and processing.

It isn't just new, it's unique. Showing the way ahead for 8-bit computers.

- STE bus compatible board family.
- Fully asynchronous processor independent bus.
- Intermodule compatibility between manufacturers.
- The STE bus is multimaster, allowing up to three masters, CPU's or DMA's to use the same bus.
- 20 memory address lines allowing 1 Mb of external addressing.
- 12 1/O oddress lines allowing up to 4096 1/O devices.
- Flexible scheme for interrupts.
- Single Eurocard mechanical format.

CIRCLE 13 FOR FURTHER DETAILS.

01-208 1177 Technomatic Lid 01-208 1177

BBC Micro Computer System BBC Computer \& Econet Referral Centre BBC Computers:

Model B: $£ 320$ (a) B+DFS: $£ 409$ (a)
Model B+NFS: $£ 389$ (a) B+NFS +DFS $£ 450$ (a)
ACORN 2nd Processors: 6502: £175(a) Z80: £352(a)
TORCH UNICORN: Z80 Card: £299(a) Z80 Disc Pack: £699(a)
UNICOMM Communications Package: $£ 160(b)$
20 Mbyte Hard Disc+400K Floppy: $£ 1995(\mathrm{a})$
We stock the full range of ACORN hardware and firmware and a very wide range of other peripheral's and firmware for the BBC For detailed specifications and pricing please send for our leaflet.

PRINTERS

EPSON: RX80FT £225 (a); FX80 £318 (a); FX 100 £460 (a):
KAGA TAXAN:KP 810£249(a); BROTHER: HR15 £350 (a); EP44 £199 (a): JUKI 6100 £359 (a)

ACCESSORIES

EPSON Serial Interface: 8143 £ 35 (b); 8148 with 2 K buffer $\mathbf{5 0} \mathbf{5 0}$ (b)
EPSON Paper Roll Holder $£ 17$ (b); FX80 Tractor Attach $\mathbf{~} 37$ (b); RX/FX80 Dust Cover $£ 4.50$ (d) EPSON Ribbons: MX/RX/FX80 £6.50; MX/RX/FX $100 £ 12.50$ (d).
JUKI: Serial Interface $\mathbf{£ 6}$ (a); Tractor Attach. £99 (a); Sheet Feeder £199 (a); Ribbon £2.50 (a), BROTHER HR15: Sheet Feed $£ 199$; Ribbons - Carbonor Nylon £3; Multistrike $£ 5.50$ (d); 2000 Sheets Fanfold with extra fine pert. $9.5^{\prime \prime}-£ 13.50 ; 15^{\prime \prime} £ 17.50$ (b) BBC Parallel Lead 88 ; Serial Lead 17 (d)

MODEMS

Our range of modems include: TELEMOD-2, a BT approved V23 1200/75 and 1200/1200 modem, ideal for PRESTEL use. £65(b). BBC cable £3-50. BUZZBOX, a very compact BT approved V21 300/300 Baud, battery operated modem ideal for inter-computer communication, bulletin boards etc. $£ 65(\mathrm{c})$. BBC lead $£ 3.50$. External PSU £8. MINOR MIRACLES WS-2000- the ultimate multi-standard modem, covering all common BELL and CCITT standards up to 1200 baud. The optional 'auto-answer' and 'autodial' boards gives this modem the greatest potential of all- £129. Please phone for details of accessories and our comprehensive range of communication softwäre.

SOFTY II

This low cost intelligent eprom programmer can program 2716, 2516, 2532, 2732, and with an 2532, 2732, and with an adisplays 512 byte page on Displays 512 byte page on TV - has a serial and par-
allel I/O routines. Can be allel I/O routines. Can be
used as an emulator, casused as an emu
sette interface. sette interface. \quad S195.00(b) Adaptor for $2764 /$ 2564.
£25.00

DISC DRIVES

These drives, fitted with high quality Japanese mechanisms are supplied in attractive stee cases painted in BBC colour. The drives are fully Suggart A400 compatible. All dual drives are supplied with integral power supply whilst singles are supplied with or without power supply. All drives come complete with data \& power cables, manual and BBC formatting disc

$1 \times 100 \mathrm{~K}$ (250 KDD unformatted)	40TSS TS55A TEAC		[100(a)
$1 \times 200 \mathrm{~K}$ (5 MbDD unformatted)	80TS	TEAC 40/80	£145(a)
$1 \times 400 \mathrm{~K}$ (1 MbDD unformatted)	80TDS	TEAC 40/80	£155(a)
$2 \times 100 \mathrm{~K}$ (5 MbDD unformatted)	40TS	TEAC	E280(a)
$2 \times 200 \mathrm{~K}$ (1 MbDD unformatted)	80TS	TEAC 40/80	£360(a)
$2 \times 400 \mathrm{~K}$ (2 MbDD unformatted)	80TD	TEAC 40/80	£420(a)
CS100 TEC with psu	[135(a)	40/80T Switch Module	£30(c)
CS200 TEC with psu	E165(a)	3" Hitachi 100K 40T	£115(b)
CS400 MITS with psu	E195(a)	TD55M Mitsubishi	£400(a)

SCOTCH 3M DISCS

This month we are offering these high performance $5.25^{\prime \prime}$ discs at a bumper bargain price for a limited period. The prices will be valid for orders received before 15 th October. These industry standard discs have been manufactured with advanced techniques are of such high quality that their error free merformance is guaranteed for life. If ever there is a disc failure, the disc is replaced without question Discs in packs of 10

40 Track SSDD £12.50(c)
40 Track DSDD £17(c)
80 Track SSDD £21(c) 80 Track DSDD £22(c)

DRIVE ACCESSORIES

FLOPPICLENE Disc Head Cleaning Kit with 28 disposable cleaning discs ensures continued optimum performance of the drives. $£ 14.50$ (c)
Single Disc Cable $\mathbf{I} 6(\mathrm{~d})$
10 Disc Library Case £1.95(c)
30/40 Disc Lockable Box £14(c)
Dual Disc Cable $\mathbf{\Sigma 8 . 5 0 (d)}$
30 DIsc Storage Box £6(c)
$70 / 80$ Disc Lockable Box £19(b)

MONITORS

MICROVITEC 14" RGB
1431 Std Res $£ 195$ (a); 1431Ap std Res PAL/Audio £215 (a);
1451 Med Res £295 (a); 1441 Hi Res £399 (a);
$203120^{\prime \prime}$ Std Res $£ 360$ (a) ; Plinth for $14^{\prime \prime}$ Monitors $\mathbf{\Sigma 8 . 5 0}$
Microvitec Monitors with TTL/Linear Inputs àlso available
KAGA VISION III
Hi Res 12" RGB $£ 358$ (a)
Green Screens: KAGA 12G £106 (a); SANYO DM811 112CX $£ 99$ (a),
Swivel Stand for Kaga Green £22.50 (b)
BBC Leads: KAGA RGB £5 Microvitec £3.50; Monochrome £3.50 (d)

UV ERASERS

UV1T Eraser with built-in timer and mains indicator.
Built-in safety interlock to avoid accidenta Buitt-in safety interlock to avoid
exposure to the harmful UV rays.
exposure to the harmful UV rays
It can handle up to 5 eproms at a time with an average erasing time of about 20 mins $£ 59+$ E2p\&p
UV1 as above but without the timer. $\mathbf{\Sigma 4 7}+\boldsymbol{\Sigma} 2$ p\&p.
For Industrial Users, we offer UV 140 \& UV 141 erasers with handling capacity of 14 eproms UV141 has a built in timer. Bother offer ful built in safety features UV140 £61, UV 141 £79, p\&p £2.50.

All prices it ATENTION
 All prices in this double page advertisment are subject to change without notice.
 ALL PRICES EXCLUDE VAT
 Please add carriaqe 50d unless indicated as follows:
 (a) E 8 (b) $£ 2.50$ (c) $£ 1.50$ (d) $£ 1.00$

ACORN IEEE INTERFACE

A full implementation of the IEEE-488 standard, providing computer control of compatible scientific \& technical equipment, at a lower price than other systems. Typical applications are in experimental work in academic and industrial laboratories. The interin academic and industrial laboratories. The inter lace can suppor a weuld typically link several items of ble devices, and would typically ank several items of test equipmil all mum of efficiency. The IEEE Filing System ROM is supplied £282

INDUSTRIAL PROGRAMMER

EP8000

This CPU controlled Emulator Programmer is a pow erful tool for both Eprom programming and develop ment work. EP8000 can emulate and program a eproms up to $8 K \times 8$ bytes, can be used as stand alone unit for editing and duplicating EPROMS, as a slave programmer or as an eprom emulator £695(a)

PRINTER BUFFER

This printer sharer/buffer provides a simple way to upgrade a muttiple computer system by providing otiers a storage of 64 K . Data from three computers can be loaded into the butfer which with continue accepting data until it is full. The buffer will automatically switch from one computer to nexi as soon as then is available for other uses. IED bargraph indicates memory usage Simple push button control provides REPEAT PAUSE and RESET functions. integral power supply. £245 (a)

CONNECTOR SYSTEMS

XIXIN MICRO MAINFRAMES SET THE STANDARD

四 Sarel's XIXIN Micro Mainframes are versatile and easy to use allowing the user to tailor make his own systems.
Two versions are available ex-stock, 3U S100/VME and 6U VME.

3U Rack Mount Chassis:

- Equipped with 5 slot Sl00 motherboard or 5 slot VME bus.
. Takes up to two $3{ }_{2}^{1 "}$ " floppy or hard disc drives.
. Bus power supply and cooling fan are integral within the rigid aluminium chassis.
6U VME Rack Mount Chassis:
- The plain chassis is available with either 120 watt or 300 watt supplies and will take a full 21 slot backplane.
- When the optional rack mounted disc drives are required then backplanes of up to 16 slots may be specified.
 SarelLimited」
Cosgrove Way, Luton. Beds Telephone: Luton 20121

reliable high performance \& practical controls. individually powered modulesmains or dc option single cases and up to 17 modules in standard 19" crates small size-low weight-realistic prices.

49/51 Fylde Road Preston PR1 2X0

Fylde Electronic Laboratories Limited.

Telephone 077257560

CIRCLE 31 FOR FUR'HER DETAILS.
 frequencies. the ICOM IC. H 6 is a tried and tested handportable capable of excellent and reliable performance

The H6 is a synthesized, high-band FM radio that is rugged yet lightweight. Any split is available as the transmit and receive sections can be programmed separately. If you require frequencies between $154-174 \mathrm{MHz}$ then the IC-H6GL and IC-H6GH are the sets to look for An option soon to be available is CTCSS fitted as standard. This applies to the H 6 and its/fixed-split partner the IC-H2
Contact us or your local ICOM dealer for more information about these and other radios available which include:
IC-100E, High-band FM with optional CTCSS. IC-125TF4, High-band synthesized FM 25 Watts IC-125TF4, as above with SELCALL factory fitted. IC-410A, UHF 10 Watt FM

CDICOM The World System

Thanet Electronics Ltd.
Suppliers of Communication Equipment to the Ministry of Defence
143 Reculver Road, Herne Bay, Kent.
Tel(O2273) 63859/63850 Telex 965179
CIRCLE 49 FOR FURTHER DETAILS.
ELECTRONICS \& WIRELESS WORLD NOVEMBER 1984

The Information Society-3

Telecommunications: techno-commercial politics, protocols and standards

The big users whose traffic justifies a nationwide or international private telecommunications network can employ managers responsible for ensuring reliable service. These people lease lines, purchase equipment, organise software etc., and can control the whole system and purchase equipment in such a way that protocol and equipment incompatibility problems are avoided. These are the people who use the 'private networks' of Fig. 1 (May issue) for intra-organisational communications and who are likely also to use the facilities offered by v.a.n. vendors on 'commercial networks'. However, when it comes to inter-organisation or inter-person communications they are no better off than the rest of us.

A coalescence of networks transparent to the user - that is which enable him to send and receive data on any machine as easily as he now direct dials and talks to a friend in Hong Kong, may well be 20 years away. Incidentally the politics, technicalities, and investment needed to establish direct dial communications between users with one simple standard instrument - the telephone - took many years to complete.

Communication between machines brings in another team of players - the commercial suppliers - active in the technocommercial political arena which is somewhat different from the 'higher level' politics discussed in the previous section. Each player is trying to so well establish his own rules (protocols) for running a system using machines of his
own manufacture that other suppliers will have to play by those rules if they want to join the game (a de facto standard). At the same time he co-operates with his competitiors in hammering out a consensus standard for the general benefit of the community, but without trying too hard.

Commercial suppliers have less inertia than PTTs and some are more enterprising than others. If one supplier jumps in with a system while the PTTs are still thinking about it, penetrates the market, and the system is seen to work, he can hope that the others won't re-invent the wheel and will adjust to his fait accompli. Other suppliers and PTTs can, of course, think of all kinds of reasons for ignoring this pushiness. The system may be geared to the proposer's own data processing equipment, it may be considered to be too complex or already out of date, it may give the proposer an unacceptable commercial advantage, or it may be incompatible with such standards as already exist.

The development of machines for inputting, storing, processing, and retrieving information, and methods for transferring data from one machine to another has been carried out in a very short time in a highly competitive environment with the larger companies introducing major advanced systems incompatible with others. The sale of a number of systems is followed by the introduction of add-on compatible bits and pieces, the whole being controlled by proprietary software. faced with the option of writing off their first investment and starting
afresh with another supplier, or buying and using the new compatible offerings from the same supplier more or less painlessly, suppliers hope that customers will choose the second course.

After briefly introducing the subject of protocols the author of a useful booklet ${ }^{43}$ continues 'Topic understood - but why should I switch off my yawns about it?'. The answer is that once established, standard protocols will enable you to buy the most suitable items of equipment from different sources knowing that they will work together and with other people's equipment, systems will be able to communicate with each other, numbers of devices needed will be reduced, obsolescence will be minimized because up-grading will be easier, and costs will come down - always assuming, of course, that the 'right' standard is adopted in the first place.

Standardization in a rapidly changing field requires the wis-

Present problems will partly be resolved by network unification, but it will still be necessary to arrange for one machine to 'talk' to another without the intervention of compatibility problems for their users.

43. User View of Communications Standards, 2nd edition March 1983, published by NCC Ltd., Oxford Road, Manchester M1 7ED, England, (On behalf of the IT Standards Committee for Private Users, Depatment of Industry).
44. Pouzin, Louis; Zimmerman, H

Proceedings of the IEEE vol.66, November 1978, pp. 1346-70.
A tutorial on protocols.
45. Tanenbaum, Andrew S. Computing Surveys, vol.13, December 1981, pp.45389.

Network protocols.
46. Schindler, S. Computer Networks vol.6, 1982, pp.291-8. The new ISO standards for communcations and office automation.
47. Mier, Edwin E. Data Communications, July 1982, pp.71-101.
High-level protocols, standards, and the OSI reference model
48. Jones, Thomas C. Data Communications, July 1982, pp.123-31.
Paving the way for universal document interchange
49. von Studnitz, Peter. Computer Networks, vol.7, 1983, pp. 27-35.
Transport protocols: their performance and status in international standardization (July 1982).
50 . Focus IT Information Sheet, Issue 1 , April 1983. IT Standards Unit, DOI, 66-77 Victoria St., London SW 1E 6SJ. Intercept strategy announcement
dom of Solomon. What may seem sensible today may be obsolete tomorrow. However, the general chaos has prompted the OSI seven-layer reference model agreement, arrived at under the auspices of the International Standards Organisation (ISO), Comite Consultatif Internationale de Telegraphie et Telephone (CCITT), the Institute of Electrical and Electronics Engineers (IEEE), the European Computer Manufacturers Association (ECMA) and others.

The OSI model brings together certain existing and proposed CCITT standards in an orderly and logical manager in contrast to present piecemeal useage. The majority of CCITT members are from the PTTs, so the standards are backed by the power of these monopolies seeking to maximize the use of their enormous investment in cables and equipment. CCITT includes some computer/ data processing manufacturer members and the operation of most of the equipment made by industry follows CCITT recommendations. IBM goes its own way.

The problem which the OSI model seeks to solve is this. Mr Dupont has an MBI machine connected to a local area network (lan) and he wants to send some information to Mr Singh, say, in another country - for example the message 'Gone to lunch; back at 2 pm GMT'. Mr Singh has a Faxo machine, accessible via a telephone line with its own number. Dupont types Singh's address on the message and the system is required to transmit, route, and present the message to Singh exactly as Dupont typed it.

To do this, a set of instructions must be automatically appended to Dupont's message to establish a path through a complex set of networks to Singh's machine, and to ensure that the arriving bit stream is presented on a screen or on paper, exactly as composed, regardless of the different characteristics of the sending and receiving machines. Various devices en route will read that part of the instructions intended for them and will act to carry out these functions.

A very large body of mainly incomprehensible literature exists about the OSI model. A major article appeared ${ }^{44}$ at an early stage which is heavy going perhaps because it is aimed at the already knowledgeable, and its title is a misnomer. Another
equally authoritative article appeared later which also fails to provide a picture ${ }^{45}$. A selection of articles, mainly with self-evident titles, are listed in references 4649.

The OSI model is usually presented as an abstraction in the form shown in Fig.3. Seven functions are recognized in the model. Dupont's message will require instructions so that each function can be performed en route, once a set of standards devised to deal with these functions are complete. For instance the 'application layer' box will only recognise and execute 'application' instructions. Dupont's message - an 'electronic mail' application, will have a mail code attached by the application layer at the sending end. The remote application layer box will recognise mail and know that it must be read into a file called mail in Singh's machine.

At another level, say the transport layer - the layer responsible for selecting a route of the required quality for the information being conveyed and checking and correcting it - a device installed somewhere along the way, triggered by the appropriate code will be standardized with a set of "transport expectations". In other words it will be able to take action only by reference to a set of codes, any one of which it may receive, to take care of a designated sub-function. For example, if it receives an error checking code that is wrong it will automatically ask for the retransmission of a block of message symbols.

Until the OSI model starts to be implemented, attempts to establish de facto standards will continue. This approach more or less succeeded in another area microcomputer operating systems (CP / M). It came somewhere near to succeeding in telecommunications when IBM introduced Binary Synchronous Communications and then Systems Network Architecture in 1974. This was an advanced concept, since further developed, with application programs running on host computers and remote terminals or complete devices. Other IBM 'document interchange' software enables the exchange of files between all devices. Once adopted, a customer would probably be lockedin to IBM for future requirements.

Of course there are many other communication require-
ments besides inter-computer and distributed processing; moreover many IBM users have stayed with BSC because of the cost of installing SNA. SNA required all messages to embody a nine byte code - the instructions to the en route devices to take the necessary action, as will be required when OSI is in place. On the other hand, the apparent success of the IBM Personal Computer, obviously also seen by IBM as the intelligent terminal for use with its mainframes, the existence of companies making IBM-like equipment to deal with the special communications problems of IBM users, and IBM's juggernaut approach with SNA used in its DIOSS office system coupled to high-powered advertising, indicated that SNA is a long way from being displaced by thoughts of OSI.

Currently IBM is placing full page SNA advertisements containing diagrams which look like the OSI model, claiming 10,000 large system installations. Closer inspection reveals that the seven layers are there with different names. IBM has been forced to acknowledge the existence of the PTT-sponsored X25 interface to public and other networks and now advertises the fact that an SNA network can be connected to them. This means that there is SNA-to-other-network compatibility by standardization at the bottom three layers of the OSI model concerned with interconnection and the reliable transport of data - but that is all. The way in which the data is handled in terms of encypherment, flow control, formatting, and file interchange is another matter.

It is probably true to say that the OSI model owes a good deal to SNA, but the standards finally adopted for the component parts of the model require to look sufficiently different for it to be evident that IBM is not calling the tune. IBM will presumably pursue an opportunist policy according to the relative success of SNA and its successors, and competitive OSI-compatible offerings.

Anticipating that OSI or something very like it, will be adopted the UK National Computer Centre, acting on behalf of the Department of Industry, have announced an 'Intercept Strategy ${ }^{50}$.

Further articles review telecommunication techniques and discuss social aspects of the Information Society.

 Clearance Sale of

 Clearance Sale of Display Monitors

 Display Monitors}
- New \& Demonstration Units • Monochrome \& Colour

Model	Description	Price (Exc. VAT)
$\begin{aligned} & \text { X6 } \\ & \text { X9A } \\ & \times 9 B \\ & \times 9 \mathrm{C} \\ & \text { X12A } \\ & \text { X12B } \\ & \text { X12C } \\ & \text { X12D } \\ & \text { X12E } \\ & \text { X12F } \\ & \text { X12G } \\ & \text { X12H } \\ & \text { X12J } \\ & \text { X12K } \\ & \text { X17 } \\ & \text { X20A } \\ & \text { X24A } \\ & \text { X24B } \end{aligned}$	Monochrome Monitors 6" P4 metal case $2 \times$ BNC 9" P31 metal case $2 \times$ BNC $2 \times 9^{*}$ twin rack mounted P 4 front controls 9" P31 TTL for Apple 12" P4 metal case 12^{*} P4 TTL input, metal case, $2 \times$ BNC 12" P4 metal case $2 \times$ BNC $12^{\prime \prime}$ rack mounted P4 front controls 12^{*} P4 plastic case 12" P31 plastic case 12" P31 blue plastic case 12" P31 TLL for Apple 12" P31 for IBM PC 12" Amber 17" P31 plastic case 20" P31 metal case 24" P4 std res, teak cabinet with silver bezel 24" P31 professional non-glare panelled CRT $2 \times$ BNC	$£ 79.50^{*}$ $£ 44.00^{*}$ $£ 139.00^{*}$ $£ 44.00^{*}$ $£ 44.00^{*}$ $£ 49.00^{*}$ $£ 47.00^{*}$ $£ 74.00^{*}$ $£ 44.00^{*}$ $£ 54.00^{*}$ $£ 44.00^{*}$ $£ 44.00^{*}$ $£ 74.00^{*}$ $£ 35.00$ $£ 60.00$ $£ 69.00$ $£ 60.00^{*}$ $£ 260.00^{*}$
$\begin{aligned} & \text { X14A } \\ & \times 14 B \\ & \times 14 C \\ & \times 14 D \\ & \times 14 E \\ & \text { X20B } \end{aligned}$	Colour Monitors $14^{\prime \prime}$ colour std res (. 65 mm) RGB $14^{\prime \prime}$ colour std res composite video $14^{\prime \prime}$ colour std res NTSC composite video $14^{\prime \prime}$ colour med res RGB 14^{*} colour high res RGB 20* colour std res RGB	$\begin{array}{r} £ 98.00 \\ £ 95.00 \\ £ 89.00 \\ £ 149.00 \\ £ 199.00 \\ £ 198.00^{*} \end{array}$
X14F	Colour Graphics Terminal 14" high res VTC8001	£490.00
K1 K2 K3 K4 K5 K6 K7 K8	Kits $9^{\prime \prime} / 12^{\prime \prime}$ scan card \& deflection coil (with CRT $+£ 13$) 9* P31 open-frame 12 V non-glare comp video $9^{9 *}$ scan card \& deflection coil (with CRT $+£ 13$) TTL 9^{*} scan card \& deflection coil (with CRT $+£ 13$) comp video 12^{*} scan card \& deflection coil (with CRT $+£ 13$) TTL 12 * scan card \& deflection coil (with CRT $+\Sigma 13$) comp video $15^{* \prime}$ scan card \& deflection coil (with CRT $+£ 19$) TL $15^{\prime \prime}$ scan card \& deflection coil (with CRT $+£ 19$) comp video	$\begin{aligned} & £ 16.00 \\ & £ 20.00 \\ & £ 20.00 \\ & £ 20.00 \\ & £ 20.00 \\ & £ 20.00 \\ & £ 20.00 \\ & £ 20.00 \end{aligned}$
$\begin{aligned} & \text { L1 } \\ & \text { L2 } \\ & \text { L3 } \\ & \text { L4 } \end{aligned}$	Leads BNC/6-pin DIN lead Phono/phono coax lead (1m) BNC/UHF lead (1m) Coaxial cable (100 m)	$\begin{array}{r} £ 1.90 \\ £ 1.25 \\ £ 1.90 \\ £ 19.00 \end{array}$
- subject to availability. All products are with composite video input except where otherwise stated. P4 phosphor is white, P31 is green. Minimum order $£ 10$. A delivery charge of $£ 5+50$ p per monitor will be added to all orders. * Includes 1 year labour and parts warranty. Other products are sold in working order but without warranty. Britain's largest suppliers of data CRT's Emco Electronics Ltd., 129/131 Coldharbour Lane, London SE5 9NY Telephone: 01-737 3333		

CIRCLE 14 FOR FURTHER DETAILS.

VORTEX BLOWER \& SUCTION UNIT
Powerful multi-stage dynamically balanced, totally enclosed 9 dia
Rotators. $3.500 \mathrm{pm} .1 / 21.0$ inlet and outlet 110 V A C. Price $£ 30$ Sutable transtormer tor 240 V A.C. $£ 10+£ 4.50 \mathrm{p} \mathrm{\& p}$ (total inc VAT £51.18)N M.S.
COOLING or EX
COOLING or EXTRACTOR FAN Quet
smooth funning Size $4^{3} / \times 4^{3} / \times 1 / 2$

240V A.C. SOLENOID VALVE

VARIABLE VOLTAGE TRANSFORMERS INPUT 230, 240V a.c. $50 / 60$ OUTPUT $0-260 \mathrm{~V}$ 0.5 KVA I $/$ AMa 1KVA 5A Max
2KVA 10A Max
3KVA 15 A Max 2KVA 10A Max
3KVA 1 AMax
5KVA5 5 Max $\varepsilon 15.00$
$\varepsilon 19.00$
$\varepsilon 27.00$ £ 27.00
$£ 4.00$ E41.00
£54.00
ع 10.100
$\varepsilon 101.00$
$\varepsilon 10.100$
$\varepsilon 275.00$

3-PHASE VARIABLE VOLTAGE TRANSFORMERS Dual input $200-240 \mathrm{~V}$ or 380415 V Star connected
3 KVA 5 amp
 6KVA 10 ampper phase max
10 KVA 16 amp per phase max
$\mathbf{1} 13.40$
$\mathbf{\varepsilon 1 7 0 . 1 0}$
$\mathbf{6} 35.45$
Comprehensive range of TRANSFORMERSL.T $\quad \begin{gathered}\text { carriage } \\ \text { and VAT }\end{gathered}$ Comprehensive range of TRANSFORMERS LT T ISOLATION \& AUTO
(110-240V) Either cased with American sockee and mains lead or open
frame type available for immectate delinery Leatlet on request 12V.D.C. BILGE PUNAPS

D 8 P($£ 10.35$ inc VAT)
$700 \mathrm{G} . \mathrm{P} . \mathrm{H} .10 \mathrm{th}$ head. 35 amp . $£ 11.50+\varepsilon 1.50$ p 8 P(E14.95inc VAT
 SINGLE DIAPHRAGM COMPRESSOR Max 20 PS One CFM approx 240 volts A.C.
$\varepsilon 18+\varepsilon 2 \rho \& p(\varepsilon 23$ inc VAT)N. M.

EPROM ERASURE KIT Why waste money? Build your own EPROM ERASURE for a traction of the price of a made-up unit Complete kit ot parts less case to include 12.8 watt 2537 Angst Tutie. Ballast unit, par of bi pin leads. Neon indicator, salety microswitch, on/oft switch and circuit LESSCASE Price $£ 13.60 \cdot 75 p$ p\&p (Total incl VAT $£ 16.50$ Warning. Tube used int this circuit is highly dangerous to the eves Unit must be fifted in Suitable case

FROM STOCK AT PRICES THAT DEFY COMPETITION!

ac geared motors
DC MOTORS MICROSWITCHES RELAYS REED SWITCHES SOLENOIDS A.C. or D.C PROGRAMME TIMERS Phone in your enquiries

Superior Quality Procision Made Mive pown rilicsinis
New cera mic construction, heavy duty brush Newcely continuous'y rated
asembly
25 watt $5 / 10,250 / 50 / 100 / 150 / 250 / 300 / 500 / 1 \mathrm{~kg}$

 $\varepsilon 9.50+75 p p \& p(\varepsilon 11.78$ inc VAT),
Black Silver Skirted Knob calior
Black Silver Skirted Knobcalibratec in Nos $1.91 / \frac{1}{3}$ in. dia brass bush
INSULATED TESTERS NEW! Test toIE E. Spec Ruggedmetal construction suitable for bench or field work,
constant speed clutch. Size $L 8$ in. W $41 n H 6$ in weight 61 lb 500 V .300 meg 0 hms £49. p\&p $£ 2$
 ($\mathbf{6} 65.55$ inc VAT) SAE for leaflet

SPECIAL OFFER

AUTO TRANSFORMER tapped 90260 V 3.5 KVA 1 phase totally enclosed in metal case m! Wooden Price $\mathbf{~} \mathbf{6 0 . 0 0}+$ carsfage at cost + VAT. N.

 GEARED MOTORS E1.80(total incl VAT £12.99). Sutable TRANSFORMER tor 230240 V AC operation. Price $£ 5.20+$ p 38.3 p 1.40 (total incl VEARED MOTOR. Torque 35. capacty. Price $£ 11.55+p \&$. capacity. Price $£ 11.55+p \& p$ (totat inc. VAT $£ 15.58$ in. M. S. Suitable
TRANSFORMER 230 V AC operation. Price $£ 4.50+50$ p p\& (total incl
VAT $£ 5.75$) VAT E5.75)
CROWN 37 rpm 20001 b in approx 110 V AC. reversible geared motor.

 E1.80 p\& p t totajincl. VAT $\{12.99$) Sutabie TRANSFORMER tol 230240 V AC operation. Price $£ 5.20+$
D $\$ \mathrm{P} £ .40$ (total Inc). VAT $£ 7.95$) N.M.S. p $\& \mathrm{p}$ £ 1.40 (total Inct. VAT $£ 7.95$) N.M.S. 57 RPM $240 \mathrm{~V} 1 / 22 \mathrm{hp}$ continuously rated REVERSIBLE 501 b in manut. by Wynstruments. New. Ideal for garage doors. Curtains etc
ONLY $£ 12.00+£ 2.00$ p. Ap. (incl. VAT $\mathcal{C 1 6 . 1 0}$) inclusive capacitor. CHECK METER
2000-240VA.C. 50 amp fulify reconditioned $£ 7.50 .+\varepsilon 1.75 p \&$ p (total inci
VAT $£ 10.64$) SANGAMO WESTON TIME SWITCH Type S251200/250 A.C. 2 on/2 off every 24 hours 20 amps contacts
 Other types avaitabie from slock
N.m.S. New Manufacturers Surplus N.M.S. New Manufacturers Surplus
R\&T Reconditioned and tested

Goods normally despated

Ample parking space
Showroom open
Monday-Friday

Personalcallersonly Open Saturdays 9 Little Newport Street London WC2H 7JJ
Tel: 01-437 0576

BERG LOW PROFILE 14 PIN DUAL IN LINE I.C. SOCKET manufactured from glass filled polyester to UL94V-0. $£ 7$ for 100, $£ 31$ for $500, £ 56$ for $1000, £ 256$ for 5000 , $£ 460$ tor 10,000, $£ 2100$ for 50,000 . $£ 2,700$ for 100,000 . Sample 10 sent for $£ 1.20+30 \mathrm{p} \& \mathrm{p}$ ($£ 1.73$ BERG LOW PROFILE 16 PIN DUAL IN LINE I.C. SOCKET as above $£ 8100, £ 36$ for 500 . $£ 65$ tor $1000, £ 295$ for $5000, £ 530$ for $10,000, £ 2390$ for $50,000, £ 4300$ for 100,000 Sample 10 sent for $£ 1.40+30 \mathrm{p} p \mathrm{p}$ ($£ 1.96$ inc VAT)
WIRE CUTTER AND STRIPPER Tempered steel blades spring loaded with moulded red P.V.C. handles. Cutting and stripping adjustable up to $6.0 \mathrm{~mm}^{2}$. Overall length 135 mm ,
weight 64 grms, 10 for $£ 15,25$ for $£ 34,50$ for $£ 63100$ for $£ 116$, weight 64 grms, 10 for $£ 15,25$ for $£ 34,50$ for $£ 63100$ for $£ 116$,
500 for $£ 525,1000$ for $£ 1000$. Sample pair sent for $£ 1.75+$ 500 for $£ 525,1000$ for $£$

METAL FILM RESISTORS FZ4 manufactured by C.G.S. semi-precision with a standard tolerance of $+-2 \%$ and a temperature co-efficient of better than $100 \mathrm{pmm} / \mathrm{oc}$. We have a full range in stock from 100R to 1 MO . All bandoliered. $£ 2.50$ per 1000 any one value. WIRE WOUND RESISTORS. manufactured by E.R.G. Type 16 ES with a standard toler
ance $+-5 \%$ of nominal resistance value. All values in siock
3 watt series $£ 3.50$ per 100 any one value $+£ 1 \mathrm{p} \& \mathrm{p}$ ($£ 5.17 \mathrm{inc}$ VAT)
6 watt series $£ 6.50$ per 100 any one value $+£ p \& p$ ($£ 8.63$ inc VAT)
10 watt series $£ 10.50$ per any one value $+£ 1$ p $\& p$ ($£ 13.23$ inc VAT)
ALUMINIUM FOIL CAPACITORS manufactured by Iskra 2.25 MRD 385V A. C. WKG axial tupe. Body length $40 \mathrm{~mm} \times 23 \mathrm{~mm} £ 25$ per 100 pcs, $£ 115$ per 500 pcs. $£ 212$ per 100 pcs $£ 980$ per 5000 pcs, $£ 1800$ per 10,000 pcs, $£ 4,165$ per 25,000 pcs. Sample 10 sent for
BRITISH MADE TRANSFORMER. input 240 V at 50 HA , output $12 \mathrm{~V}-0-12 \mathrm{~V} 1 / 2 \mathrm{amp}$ with buittin thermal overload circuit. P.C. mounting $£ 25$ for $10+$ VAT $£ 115$ for $50+$ VAT $£ 210$ for $100+$ VAT $£ 950$ for $500+$ VAT $£ 1700$ for $1000+$ VAT. Sample sent for $£ 3+75 p$ p $\& p$ ($£ 4.31$ inc VAT)
PAIR OF MATCHED SPEAKERS 4 ohm 3 watts in teak finish cabinets with black/chrome facia $71 / 2^{\prime \prime} \times 12^{\prime \prime} \times 5$ " depth -1 sample pack (2 spks) $£ 10.00+£ 2$ p\&p($£ 13.80$ inc VAT) 10 packs $£ 9.00$ each $+£ 2$ p \& p ($£ 12.65$ inc VAT)
12" VIDEO DISPLAY UNIT (green) complete with frame and P.C.B. incorporating time bases/EHT, etc but minus case and simple power supply unit. Originally designed to be plied Price per sample unit $£ 60.00+£ 3$ p $\& p$ ($£ 72.45$ inc VAT) Quantity prices on application
OPEN FRAME AND SHADED POLE MOTORS by well known manufacturers, 240 volta c - many uses - Price per sample $£ 1.50+75$ p p\& ($£ 2.59$ inc VAT). Price per 10 motors $£ 1.25+75 p p \& p$ ($£ 2.30$ inc VAT) each.
ULTRASONIC BURGLAR ALAM - portable - wooden finish with internal alarm - easily installed - mains/battery option - provision for window contacts and pressure mat extended horn and bell unit.
Sample units $£ 39.00+£ 2 p \& p=£ 47.15$ inc VAT each, 5 units $£ 35.00+£ 2 p \& p=£ 42.55$ inc VAT each, 10 units $£ 33.00+£ 2 p \& p=£ 40.25$ inc VAT each. $p \& p=£ 949$ inc VAT each, 10 units $£ 6.37+£ 1.50 p \& p=£ 9.05$ inc

TERMS C.W.O. export enquiries welcome. We find it impossible to advertise all we stock Please telephone, write or telex for further enquiries. Personal callers always welcome

SATELLITE RECEIVING EQUIPMENT

$1.9 \mathrm{M}, 2.5 \mathrm{M}$ and 5M Dishes. Receivers,
Downconverters, Low Noise Amplifiers, Feed Horns available.
Complete systems installed anywhere in the world.
A full report on reception feasibilities at any location is available - price $£ 25.00$.
Please state Longitude and Latitude.
For further details contact: Harrison Electronics, 22 Milton Road, Westcliff-on-Sea, Essex SSO 7JX. Telephone: Southend (0702) 332338.

VIDEO NASTIES?

Pictures that wobble, won't lock or suffer from noise bars?-machines that won't latch, lace or light up? -our pages are full of guidance on VCR servicing problems. IV too-chopper, colour and linearity problems of every sort. Plus news and information on fechnical developments. November issue features:
COLOUR MONITORS The design of the tube
makes a great difference to the resolution achieved with a colour monitor. An account of different tube types and their characteristics, plus details of standard computer video output signals and connections.

FREE VIDEO INFO CARD-2

Second of two cards providing data, in tabular form for easy reference, on audio/video VCR/TV links. Covers the majority of VCRs that have been sold in the UK.

CIRCLE 56 FOR FURTHER DETAILS.
 CIRCLE 61 FOR FURTHER DETAILS.

CIRCLE 52 FOR FURTHER DETAILS.

UNBEATABLE VALUE TANDON $5 I^{\prime}$ THINLINE FLOPPY DISK DRIVES SINGLE SIDED DOUBLE DENSITY £100 DOUBLE SIDED OOUBLE OENSITY \&130 BRANDNEW. DON'TDELAYORDERTODAY!	
H.P. SPECTRUM ANALYSER 8551A $10 \mathrm{MHZ}-12.46 \mathrm{HZ}$ with P.O.A. 851 B display	125 MARCON: ELECTRONIC VOLTMETER TF260420HZ. 1500 MHZ AC/DC/Ohms AC300mV-300V FSO OC 200 mV
	1 KV FSD .
G0uLD OS 3500 Dual Trase 60MHz Detay Sweep $£ 600$	144 AVO MULTIMETER Model 7 P P P ¢ 71520
oscilloscopes	146 AVO MULTIMETER Model 8 P8P ¢7. ¢45
2 IEK 454 Dual Trace 150 MHZ Delay Sweep . . $\quad 5700$	Comple with leads \& battery. Brand New. One year guarantee
6 IELEQUIPMENT D83 Dual Trace 50MHZ Delay Sweep ¢ ¢ 000	P\&P¢4 £16
7 Iel 453 Duai Trace 50 MHZ Detay Sweep. . . . $£ 375$	160 FARNELL STAB PSU TSV30/5 0-30V 5A. Current limuting
9 COSSOR 4100 Duat Trace 75 NH 2 Delay 5 weep	Metered ¢65
10 SOLARTRON CD1740 Oual Trace 50MHz Oual TB	161 Farnell Stab PSU TSV30/2 0-30V 24
14 TEK 585A Dual Trace 85mHz Dual TB Delay Swead	nelered
15 COSSOR CDU 150 Dual Trace 35NH2 Detay TB	163 ROBAND VARECO PSU ${ }^{\text {type }}$ 33-2 0 -33V 2 Ca Current limititing
17 SELABS SM111 Dal Irace 20MHZ £200	metered (in current production) $£ 100$
	169 KINGSHILL STAB PSU Model 500 0-60V 0.5A Current limiting Metered P\& ${ }^{\text {P }}$ ¢ 7
33 TELEOUIPMENT DM64 Qual Trace 10MMz. . . 5350	180 BRANDENBURGH PHOTOMULTIPLIER PSU 47R $10-2100 \mathrm{~V}$ SmA Metered $£ 280$
36 TEK 564 Dual Trace tom Mz Delay Sweep 37 TEK Spectrum Analyser 50HZ-1MHZ. 547 Maintrame with	190 VOLTEX PSU Mose $82-635-1-5 \mathrm{~V},+12 \mathrm{~V},-24 \mathrm{H}$ High
	cuirent un-used 191 AC/OC ELECTRONICS PSU MODULE $2515 \mathrm{~V} 2 \mathrm{~A}-1-12 \mathrm{~V} 0.4 \mathrm{~A}$
42 H.P. SHF SIG GEN 620B 7-11GHZ	Un-used P\&P¢3 $¢ 15$
46 H.P. UHF SIG GEN 612A 450-1230MHZ £200	206 B8K LEVEL AECORDEA 2305
50 MARCONI AM/FM Sig Gen TF2008 10KH-510MHz	209 B8K MEASURING AMPLIFIER 2606 2HZ-200KHz ... 5600
52 MARCONI AM/FM Sig Gen TF10668/6 $10-470 \mathrm{MHZ}$	
59 MARCONI AM/FM Sig Ger TF995A/21.5-220MHZ ... $£ 250$	211 B8K OIGITAL EVENT RECORDER 7502 \% 1 (1,500
62 MAACONI VHF Sig Gen TF10648/5M 68-108; 118-185:450470 MHz \&110	225 DAWE OCTAVE BAND SOUND LEVEL METER TyPe 6449C $\leqslant 150$
63 MARCONI OUTPUT TEST SEI TF 1065 Ior use with TF 1064 \&	281 HP LOGICSTATIC ANAI YSER 1602A
${ }_{\text {IF995 range Sig Gens }}$	286 AVO VALUE CHARACTERISTIC METER VCM $163 \ldots$ ¢ 275
66 ADVANCE AM Sig Gen E2 100kHZ-100MHz _ ¢ ¢	293 MARCONI AF POWER METER TFP93A
72 TEK Constant Amplitude Sig Gen 190B 350KHz/50MHZ. ¢100	$\begin{aligned} & 7 \text { MARCONI DIFFERENTIAL DC VOLIMETER TF2606 } \\ & 0-1100 \mathrm{~V} \end{aligned}$
74 MARCON WIDE RANGE OSC IF1370A ¢MM Hz (Squate wave	
to 100KHZ) 595	Also in stock NEW OSCILLDSCOPES. MULIIMETERS etc.
87 HP Pulse Gen 214 A 10hZ-1 MMZ	a very Small sam
89 EH PULSE GEN 139 L 1KHZ-20MMZ Single/Double Puilse $£ 200$	
99 tek time mark gen 180 \%	se check availability betore order
102 BONTOON O METER 260A 50 KHZ -50MHz £250	[10 wat io be asded to Total al Gooes \& Carilage.
STEWART 1.10 WYKEHAM ROAD, Telephone Callers welcome 9 a.m. to 5.30	F READING NDING, BERKS RG6 1PL 73468041 Monday to Saturday inclusive

\& MITSUBISHI

MGF-1400
MGF-1402
MGF-1412
 GaAs FETs

FROM STOCK

Aspen Electronics Limited

UK representative for Mitsubishi Electric
2/3 Kildare Close, Eastcote, Ruislip Middlesex HA4 9UR
Tel: 01-868 1188 Tlx: 8812727

CIRCLE 45 FOR FURTHER DETAILS.

Lynwood GD1 VDUs: Intelligent Green micro controlled, RS232, printer port, 101 key k/b. Full Video enhancements.ONLY £149 + £15 P\&P(S/H)	
Burroughs MT686/7/TD710: Intelligent Green $12^{\prime \prime}$ VDU with 3 micros and 64 K store. RS232. Programmable. . Only $\mathbf{\Sigma 1 9 9}$ new or $£ 149 \mathrm{~S} / \mathrm{H}+£ 15 \mathrm{P} \& \mathrm{P}$	
Videcom Apolio VDUs: Stylish 15^{*} Green Z80 controlled VDU with printer port and lots of very advanced features. Only £399new or £249S/H£15 P\&P	
Centronics 306 Line printers: Professional fast (120 cps), superbquality 80 column printer. Parallel i / f. ONLY £99 + £ $15.00 \mathrm{P} \& \mathrm{P}$	
Computhink Act 800 Computer system. Dual floppies (2.4N business software Diablo 630 Daisywheel printer. OEM $1 / f$. \qquad NEWE Diablo Hitype 2 Daisywheel, Tractor unit, \qquad S/HE Calcomp 565 Drum Plotter, 10 thou steps. ONLY	b) and lots of ONLY E1200 $99+£ 15$ P \& P $399+£ 15$ P\&P $50+£ 10 \mathrm{P} \& \mathrm{P}$
	SAE for LIST and enquiries

CIRCLE 36 FOR FURTHER DETAILS.
ELECTRONICS \& WIRELESS WORLD NOVEMBER 1984

Variable-speed video playback

Analogue to digital conversion and memory organization

Sampling the signal and storing it in a memory provides the varialbe delay necessary to correct timebase errors, the time between writing and reading representing the delay. Using sample storage is the only feasible method of correcting the large timing errors resulting from variable speed operation.

A-to-d conversion

Figure 1 shows the essential elements of \mathbf{t}.b.c.video input processing.Amplitude variations resulting from varispeed operation have been described, and prior to entering the convertor proper, the signal amplitude has to be returned to normal. Since the playback signal level is proportional to offtape line rate, a frequency-to-voltage convertor running from offtape H -sync. can be used to control a v.c.a. in the video signal path: the level will now be independent of speed. For the broadcastable speed range (typically $-1 \times$ to $+3 \times$) the amplitude range is so small that the v.c.a. can be bypassed or omitted. For speeds between around $-10 \times$ and $+10 \times$, the signal spectrum is sufficiently similar to normal that the standard anti-aliasing filter can be used. Beyond these speeds, the sampling rate changes so much that different cut-off frequencies are needed, one of about 7 MHz for high forward speed, and one of about 2 MHz for high reverse. Filter selection is done by comparing offtape H -rate with references.
In a c.c.d. based t.b.c., the filtered signal requires a sample/ hold circuit to take a near-instantaneous voltage sample and hold it for transfer to the storage device. As the c.c.d. is analogue, it will exhibit no quantizing error, but the sampling process will suf-
fer from the aperture effect, which will require equalization as in Fig. 2.

In a digital t.b.c., the filtered signal is fed to the a-to-d conver-tor.Sample-hold is not always necessary in video a-to-d cs for reasons which will be explained.

The a-to-d convertor serves to quantize an analogue voltage into a finite range of integers. Since the storage medium will be binary, the number range will be an integer power of two. In practice 8 bit resolution, having 256 quantizing intervals, is almost universal, although some units work with 9 bit accuracy.
Figure 3 shows how the vídeo signal, in this case colour bars, is embraced by an 8 bit quantizing structure. The fact that sync. tip

goes below zero is of no consequence provided that new syncs will be applied after timing correction. Two precautions are necessary to keep the video within the convertor range: firstly, the input will be pedestal-clamped to prevent level shift due to picture content changes; and secondly, the input level is above or below standard. A manual gain adjustment is provided for use in conjunction with these level lights.

The a-to-d convertor is a critical component of the t.b.c. because of the high operating speed needed. Many of the well known a-to-d techniques, such as
ramp conversion and successive approximation, are ruled out because they cannot run fast enough. The preferred approach is the flash convertor which can work at very high speeds owing to its inherent simplicity. Figure 4 shows that each quantizing level has its own binary comparator. A resistor chain and current source produce one reference voltage for every quantizing level. The input signal is fed to the other input of the comparators: there will thus be one binary output for every quantizing level, and a priority encoder is necessary to give a digital output. No sample-hold is

Fig.1. Input video processing system returns signal amplitude to reference with H-locked Voltage Controlled Amplifier. Following the antialiasing filter, video signal can be sent to flash convertor directly. CCDs and half-flash converter require sample/ hold (see text).

Fig2. Response due to aperture effect for various aperture ratios. Horizontal axis is fraction of Nyquist limit frequency, e.g. for $\mathbf{4 f}_{\mathrm{sc}}$ sampling, Nyquist limit is $2 \mathrm{f}_{\mathrm{sc}}$, hence horizontal scale would be $0-2 f_{\mathrm{sc}}$. The equaliser needs an inverse response to the above to give flat overall response.

(b)

Fig.4. Flash convertor has one reference voltage for ach quantizing level with which the input signal is compared. Representative waveforms (a), typical circuit.

Fig.5. In monolithic flash convertor, exclusive-or gates facilitate generation of complemented output for some applications. Device shown in TRW1007.

Fig. 3. How the composite video signal fits the quantizing structure. The important range is the total excursion of subcarrier. One quantizing interval is 5 mV in this example.
necessary with such an approach, since all the comparators see the input at the same time.

The simplicity of the flash convertor is offset by the need for one comparator for each quantizing interval, 256 being needed in an 8 bit system. This is a natural application for an integrated circuit, and single chip flash convertors are available. Figure 5 shows the TRW device used in the Ampex TBC-2.
A 256 level flash convertor in discrete component or s.s.i. form is not practicable, and before the single chip device became avail-
able, a variation on the flash convertor was used. In the half-flash convertor of the Sony BVT-2000 shown in Figure 6, the input signal is fed to a 16 level flash convertor, which produces a 4 bit resolution output. This is fed to a d-to-a convertor which produces a 4 bit, accurate analogue output. The d-to-a output is subtracted in the analogue domain from the input signal, to produce the quantizing error due to 4 bit conversion. This error is sent to a further 4 bit flash convertor, whose output is appended to the original 4 bits to produce an 8 bit output. Note that there are only 32 comparators, as opposed to 256, which makes the approach feasible with discrete components.

Drawbacks of the half-flash convertor are that the two-stage conversion requires sample hold, with consequent compensation for aperture effect, and that careful adjustment is necessary to minimize non-monotonicity at 16 level intervals.

Memory. The memory can take the form of either RAM or shift registers.As c.c.ds are analogue relatives of the shift register, the description of the latter will serve both.
Memory addressing is split into two distinct subsystems, one controlling the sample address within the line, and one controlling the line address within the available memory.
Owing to the high sampling rates used, interleaving is necessary to permit available memory devices to work within their speed specifications. The degree of interleaving is affected by the chosen sampling rate. Figure 7 shows two examples of current practice: in the Ampex TBC-2, bipolar shift registers are used with $3 \times \mathrm{f}_{\mathrm{SC}}$ sampling, requiring 6 way interleaving whereas the Sony BVT-2000 uses r.a.m. and $4 \times \mathrm{f}_{\text {SC }}$ sampling, requiring an 8 way interleave. Individual storage chips are thus working at the same speed in these two machines.
Since all available chips have capacities which are a power of two, interleaving can also be used to increase the choice of the number of samples stored in a line without sacrificing elegant addressing methods or wasting chip capacity. For example, the six-way interleave of Figure 7(a) stores 768 samples per line ($6 \times$ 128), which at $3 \times \mathrm{f}_{\mathrm{SC}}$ (75 ns) stores $768 \times 75 \mathrm{~ns}=57.6 \mathrm{mic}$ roseconds from each line. Clearly the $4 \times \mathrm{f}_{\mathrm{Sc}}$ device will need 1 K samples to store the same portion of a line. The full 64 microseconds is not needed since syncs are replaced.
A counter is needed for both shift register and r.a.m. storage. In the case of r.a.m. the counter generates the r.a.m. address, whereas with shift registers, the counter determines the correct number of clocks needed to shift data in and out. When memory is written, the counter can vary, whereas when the memory is read, the clock will come from reference, and the only variation will be due to the action of the velocity compensator. A selector is needed for the appropriate clock, and clearly write and read cannot be simultaneous.

Memory line addressing. The functions of the memory line addressing system can be summarised as follows:
a) updates write line address at offtape H -rate, and read line add-

Fig.6. In the half flash convetor, the input is quantised to 4 bits accuracy, then reconverted to analog and subtracted from the input. The signal at A cannot exceed 16 levels in amplitude for the high order A/D would increment, subtracting a further 16 levels. Signal at A can thus be quantised by a futher 4 bit A/D to give overall 8 bit signal. Sample/ Hold is necessary because signal A cannot be determined until after A/D and D / A have operated.

Fig.7a. Shift register memory of Ampex TBC-2 was 3 to 1 bit rate reduction in shift register and further 2 to 1 reduction by interleaving dual register with two phase clock.
ress at reference H -rate.
b) ensures that the four kinds of PAL line* are never interchanged.
c) ensures that the first line of an offtape field becomes the first line of a reference field irrespective of the time difference between these events. This is known as verticle locking.
d) caters for other modes of the v.t.r. such as E-E and confidence playback.
Figure 8 shows that the memory address overflows from the highest back to zero, giving the memory the structure of a ring. The addresses are combined into stes of four to preserve the PAL four line sequence. For this reason PAL C-format t.b.cs always have a line capacity which is a multiple of four. The two least significant bits of the memory address, 2^{0}, which determines the state of Vswitch at 7.8 kHz and 2^{1}, which determines normal or inverted burst at 3.9 kHz are controlled independently of the other address bits. At normal speeds, the correct four line sequence will be
*See Appendix on PAL system

(b)
assured by resetting these bits during the vertical interval once every four frames, when a colour frame pulse will appear in the VTR control track. This follows from the fact that the 4 line sequence reaches the same phase after four frames since 4 does not divide 625 .
At variable speeds, the track jumps executed by the track following head will break the 4 line sequence. However, it is possible

Fig.7b RAM memory of Sony BVT-2000 uses one stage 8 to 1 bit rate reduction. 256 location RAMs store bits for a pair of lines - good for storage density, but has a side effect of making the window smaller. Note that a and b are repeated 8 times to store 8 bit A/D output.

Fig.8. Ring memory structure of 24 line TBC. Note the subdivision into 4 line blocks in order to cater for the PAL 4 line sequence. $\mathrm{N}=$ Normal Burst $\mathrm{I}=$ Inverted Burst (3.9KHz) O/E=odd/Even V switch. (7.8 KHz).

Fig.9. PAL C-Format tape has 85 parallel tracks at any one perpendicular, with a 3.5 H timing shift between each. The 0.5 H term cancels the effect of interlace and H pulses in all tracks are aligned. The timing error in variable speed will be obtained by multiplying the head deflection (in tracks) by 3.5 H. Eg. $+1 / 2$ track deflection $=1.75 \mathrm{H}$ advance.
to calculate the discontinuity from the number of tracks jumped, and the direction, so the VTR sends this information to the TBC in addition to the video. These precautions are necessary because losing the phase of the four line sequence prevents any subsequent colour difference decoding.
As stated, the read address and write address increment at different rates in varispeed. To quantify this phenomenon, it is necessary to return to the fundamentals of the C-format which are responsible for it. Figure 9 shows a view across a C-format tape. Owing to the chosen geometry, a line perpendicular to the tracks will intersect precisely 85 tracks at points which are successively $3 \frac{1}{2}$ lines further along. Upward movement of the track following head is the equivalent of an advance, and downward movement is the equivalent of a delay, rela-
tive to drum phase, which the VTR will hold constant relative to reference. When the tape is moving at non-normal speed, the head must follow a ramp in order to stay on track, which causes a steady growth in timing error, until a jump takes place, causing a step timing shift.Clearly the step caused by jumping must be equal and opposite to the gradual timing change caused by deflecting the head to stay on track.

To take some examples, at just below normal speed, the head will repeat one field occasionally by performing a one track reverse jump. This has the effect of suddenly advancing offtape video by $3 \frac{1}{2}$ lines relative to drum (and thus relative to reference) timing. ©Over the next few fields, the slow tape speed will cause timing to slip back gradually until it is again corrected by a jump. Conversely at just above normal speed, a field will be skipped occasionally, and in this case the $3 \frac{1}{2}$ line step delay will balance the gradual advance caused by the increased tape speed. In both cases the timing errors stay within $3 \frac{1}{2}$ lines, giving an indication of the amount of memory required for correction.

To be continued.

October 30 to November 1

Itame

Intermational test and measurement exhibition, Olympia 2, London.
Network Events Ltd. 0280815226

October 30

Applying the 68000 Family.

Conference at the City Conference
Centre, London. Organised by
Microprocessors and Microsystems,
048331261 , ex. 258.

November 1 to 2

Fibre optic gyroscopes
and monomode optional
components, University of Strathclyde colloquim at Scottish Business School, Glasgow. Details from IEE 01-836 3357.

November 6

Magnetic thin-film coating for the recording media. Meeting at the Institute of Physics, 01-2356111.

November 6

Tolerance design and
electronic circuits.
IEE seminar at the Cafe Royal, London. 01-246 1871 ex. 308.

November 6
 Systems aspects of robotics.
 IEE colloquium. As above.

November 6 to 8

Custom electronics and

design show.

Exhibition, Heathrow Penta Hotel. Prodox Ltd, 089030664.

November 6 to 7
 Custom v.l.s.i.

for control IERE/IEE Conference IERE 01-388 3071.

November 7
Nextrevolution in
electronics,
GaAs chips, IEE Lecture, as above

November 8

Communications systems

for Band III,

IEE Colloquium, as above.

November 8 to 11

Leisuretronics,

home entertainment exhibition, Horticultural Hall, London, Trident 082246711.

November 9

CCITT assembly review. IEE Colloquium, as above

November 13

Opto-electronics
and high-speed devices. IEE
colloquium, as above.

November 13 to 16

Compec 84

Professional computer exhibition
Olympia 2, London. Reed
Exhibitions 01-643 8040.

November 13 to 17

Electronica 84. Electronics trade fair, Munich. Details from Montbuilt 01-486 1951.

November 15

Comms Satellites
on-board processing. IEE colloquim, as above.

Non-linear systems. IEE control theory colloquium, as above.

CONTROL SOFTWARE

THE CUBE SOLUTION

UNIVERSAL HARDWARE

BBC BASIC

Control Universal Limited CUBE Industrial Microcomputers
Andersons Court, Newnham Road,
Cambridge CB3 9EZ. TeI. (0223) 358757

CIRCLE 40 FOR FURTHER DETAILS.

HF ANTENNAS

- MODE; Full half wave operation.
\star BANDS; Up to 4 spot frequencies.
- POWER; Receive to 800W (PEP).
\star SWR;'Better than 1.5:1
 on channel

CIRCLE 63 FOR FURTHER DETAILS.

Happy Memories

Part type	1 off	25-99	100 up
4116200 ns	.1.25	1.15	1.10
4164 200ns Not Texas	. 4.75	4.25	4.10
2016 150ns	. 4.75	4.25	4.10
6116 200ns Low power	7.75	Call	Call
6264 150ns Low power	. 31.50	Call	Call
2716 450ns 5 volt ..	. 3.85	3.45	3.30
2732 450ns Intel type	. 4.75	4.25	4.10
2732A 350ns 5.25	4.69	4.50
2532 450ns Texas type	. 3.85	3.45	3.30
2764 300ns Suit BBC.	. 6.65	Call	Call
27128 300ns Suit BBC	. 18.95	Call	Call
Z80A-CPU...£3.75	Z80A-PIO...£4.20	Z80A-CTC...£4.85	
Low profile IC sockets	Pins 8 14 16 18 20 24 28 40 Pence 12 13 14 16 18 24 27 38		

Soft-sectored floppy discs per 10 in plastic library case 5 inch SSSD $£ 17.005$ inch SSDD $£ 19.255$ inch DSDD $£ 21.00$ 5 inch SSQD £23.95 5 inch DSOD £26.35

74LS series TTL, wide stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or 'phone for list.

Please add 50p post \& packing to orders under $£ 15$ and VAT to total
Access \& Visa welcome, 24hr 'phone service on (054 422) 618
Non-Military Govermment \& Educational orders welcome, $£ 15$ minimum.

> HAPPY MEMORIES (WW) Gladestry, Kington Herefordshire HR5 3NY Tel: (054422) 618 or 628

CIRCLE 28 FOR FURTHER DETAILS

EEEGTROVALIE

Your

for SWITCHPS

Out of a very wide range of types, we show some of the more popularly demanded ones. in our latest free A-Z price $\&$ products list. Piease mention this journal when contacting Electrovalue

MINIATURE TOGGLES, 7000 Series $250 \mathrm{~V} / 2 \mathrm{~A}, 120 \mathrm{~V} / 5 \mathrm{~A}$. Single, double, three and four pole configurations inc. Centre Off/On and biased.

CK WAVECHANGE with adjustable stops. $1 \mathrm{P} / 12$ way, $2 \mathrm{P} / 6 \mathrm{~W}, 3 \mathrm{P} / 4 \mathrm{~W}$, 4P/3W, 6P/2W.

SWITCH KITS
RA Shaft Assemblies up to 6 wafers
DP Mains switch. Screens; Spacers

PUSH BUTTON

Single and Double Pole Changeove Standard
Latching and momentary
SLIDERS
Miniature \& Standard. SP and DP in 1,2 or 3 positions.
Many other types such as for timing and other special applications.

BaITAINS LEADNG qUALITY GOMPONEXT

 SUPPLIERS-SEND FOR FREE 40 PAGE A-Z LIST

EEEGTROVALIE LTD

28 St. Jude's Road Englefield Green Egham, Sur
TW20 OHB
Tel: (0784) 33603. Telex: 264475. North: 680 Burnage Lane, Manchester (061-432 4945). EV Computing Shop, 700 Munchester
Burnage Lane, Manchester (061-431 4866)

Telemetry decoder for Oscar-10

James Miller concludes his desigh with a look at the software requirements and an alternative decoding technique

by J. R. Miller, B. Sc.

Once the system has been adjusted it may be checked out live or with a test tape. The waveforms obtained should be as shown in Figs.6,7 and 8 (October issue).A number of features of the satellite data make this easier. The padding character hex 50 and <space> both occur in longish bursts. In addition, the sync code tester will obviously not work unless everything else is going properly, and so illumination of the 'block' led once every 14 seconds for 10 sec onds provides a quick, comprehensive overall check.
The design of the software to decode and display the data is straightforward enough, but it is outside the scope of this article to present it in full.

The computer should examine the block flag until it is asserted, then wait for a byte strobe. It should then read in the byte, place it into a 512 -byte buffer and await the next strobe. Alternatively, bits may read in serially and packed away.

When all 512 bytes have been read, decoding can begin. In realtime there are four seconds in which to do this. Check that first two bytes are recognisable identifiers, e.g. Q <space>. Then all that remains is to pick out the items of interest such as volts, amperes and temperatures and to display them on a printer or screen in an appropriate format.

Alternatively it is possible to dump the lot, or selected bytes, to storage for later processing, perhaps to monitor specific parameters or to plot graphs.

A simple program for display using the BBC microcomputer is available from Amsat-UK ${ }^{1}$, and is suitable as a basis for experimentation.

A useful indicator of performance is given by the bit error rate.

REFERENCES

1. Amsat-UK, London E12 5EQ, England. Oscar-10 Operating Manual, $£ 3$; The Satellite Experimenter's Handbook $£ 9.90$ Satellite Experimenters Handbook $\mathcal{L} 9.90$ (members $£ 8.50$); Oscar-10 telemetry test
data tape, $£ 6$ (members $£ 5$); telemetry data tape, $\mathcal{L} 6$ (members $\mathcal{K} 5$); telemetry
decoding software for the BBC microcomputer, on cassette $£ 6$ (members $£ 5$); p.c.b. $£ 15$. Prices include packing and UK postage; overseas postage costs extra. A stamped addressed envelope should accompany all enquiries. Amsat-UK depends on donations.

If we define a reasonable rate as less than 1 in 10000 bits, i.e. an average of one error every other block, the theoretical channel sig-nal-to-noise ratio (s.n.r.) should be 2.4 dB in 1600 Hz bandwidth. Allowing for the signal amplitude modulation and the limiter, the practical figure is actually about 6.2 dB , peak signal power to noise power, or $2: 1$ in voltage. With care this can be verified experimentally - the signal sounds and looks pretty ragged.

An s.n.r. of 6.2 dB is represented in the lab by the surprisingly small figure of 52 nV $(-133 \mathrm{dBm})$ at the input of a receiver having a 3 dB noise figure. Now, the 2 m general bea-

Table A. connection details

J_{2} - inputs	J_{3} - outputs
1 Audio in $16+12 \mathrm{~V}$	$1+5 \mathrm{~V}$ in/out $\quad 16+12 \mathrm{~V}$
$2 \mathrm{OV} 15 \mathrm{TP1}$	2 OV 15 Led+
3 Car. lock ${ }^{14}$ TP2	3 Block 14 Led-
4 Tune $\}$ tos, 13 TP3	4 Ser.data $13-$
5 Clk lock 12 Tuning, VR ${ }_{3}$	5 Ser.clock 12-
$\begin{array}{ll}6 \text { Meter amp. } & 11 \text { Tuning, } \mathrm{VR}_{3} \\ 7 \mathrm{TP4/Clk} & 10 \text { Meter }\end{array}$	6- 11-
80 V 99 Meter +	8 OV 9-

con transmits about 1 W $(+30 \mathrm{dBm})$; the space loss over a 40000 km path is 168 dB , so the received signal at a unit gain antenna is roughly -138 dBm . Thus an antenna gain of 138 $133=+5 \mathrm{dBi}$ is needed, plus a margin for fading, cable losses, wider bandwidth, higher receiver noise figure and so on.

In practice this means that for satisfactory reception a modest Yagi or equivalent is needed, pointed at the satellite.

It is worth noting that it is typical of optimal demodulators that they exhibit a marked performance threshold effect. In our ' 6.2 dB ' example above, a reduction in the s.n.r. of only 1 dB results in a dramatic tenfold error rate increase. This is most apparent where there is a rapid fading (usually induced by the satellite's $50 \mathrm{rev} / \mathrm{min} \mathrm{spin}$): what appears to be a healthy signal actually results in bursts of errors at s.n.r. minima. Spin fading occurs most strongly a few hours each side of apogee, when the spacecraft's antennas are not pointing directly towards Earth.

Another point concerning errors: because of the differential decoding scheme, a single bit error leaving the integrate-anddump section results in two adja-
cent bit errors at the system output. This should be remembered if any software error checking is to be attempted,

A further decoding method

Finally, there is another method of decoding the signals. There is a distinctive relationship between the message bits (as opposed to data bits), and the encoded stream $\mathrm{D}^{*} \mathrm{Clk}$ signal with missing inter-bit transitions, whereas a message 0 does not (see Fig.3, October issue).

So an alternative decoding method is to treat $\mathrm{D}^{*} \mathrm{Clk}$ as a stream of $800 \mathrm{bit} / \mathrm{s}$ half-bits, grouped in pairs. Two similar successive half-bits are decoded to a logic 1 output, and two differing half-bits to a 0 .

This can be implemented most simply by feeding the integrator with $\mathrm{D}^{*} \mathrm{Clk}$, clocking the integr-ate-and-dump and differential decoder with I: 800 , and inverting the data output sense! Links X, Y and Z are provided to enable experimenters to evaluate this.

The error properties of this arrangement are interesting:

- because the signal energy per dump decision has halved, the half-bits' intrinsic error rate is much higher than a whole bit's, but
- it is now possible for single message bits to be corrupted.
- The presence of a mid half-bit-pair transition for zeros implies that the carrier energy per bit for a 0 is about two-thirds of that of a 1 . So message 0 s are more easily corrupted than 1 s .
- This contrasts with the whole-bit decoder, where 0 or 1 data bit errors are equally likely but two message bits are always corrupted together (though less frequently).

Acknowledgements

My thanks are due to friends Trevor Stockill for encouragement, p.c.b. layout facilities, instant hardware and BBC computer software advice; Philip Howarth for criticism of the manuscript; Andy Kerr for being the constructors' guinea-pig; to Ron Broadbent of Amsat-UK; Janet for letting me hog our home computer, and to Cambridge Consultants Ltd for the free use of facilities.

Three new names from IODthe leaders in DIMF equipment.

IQD offers the most advanced DTMF signalling equipment on the market. IQD Codepad: the best in portable tone diallers, available in three models.
IQD Micropad: a microphone with not only the standard
functions, but many additional features including an illuminated keyboard version.
IQD Selcall: a superior DTMF signalling unit with an extensive program facility giving you selective access to 99 sub-stations.

CIRCLE 25 FOR FURTHER DETAILS.
Telephone (0460) 74433 for further information.

What the competition hasn't been waiting for.
 Latest version of Forth for the $B B C$

 (Is not rehashed Forth 79 Code)

Here's the Forth Eprom for the BBC Micro that makes all others out of date

It's Multi-Forth 83 from David Husband who has built his ${ }^{\circ}$ reputation for Quality Forth products with his ZX81-Forth ROM, Spectrum Forth-I/O Cartridge and now New Multi-Forth 83 for the BBC Micro. This is not rehashed Forth 79 Code, but a completely new version of the Forth 83 Standard. It's unique in that it Multi-tasks, and therefore the user can have a number of Forth programs executing simultaneously and transparently of each other.

Multi-Forth 83 sits in the sideways ROM area of the BBC along with any other ROMs in use. It is compatible with the MOS, and specially vectored to enable a system to be reconfigured. It contains a Standard 6502 Assembler, a Standard Screen Editor, and a Unique Stack Display Utility.

With this Forth, David Husband has provided the BBC Micro with capabilities never before realised. And being 16 K rather than 8 K is twice the size of other versions. Multi-Forth 83 is supplied with an
extensive Manual (170 pages plus) and at $£ 45+$ VAT it is superb value Order it using the coupon adding $£ 2.30$ p\&p ($£ 5$ for Europe, $£ 10$ outside) or if you want more information, tick that box instead. Either way, it will put you one step ahead of the competition.
 MULTI-FORTH 83 FOR THE BBC MICRO

HEnRY'S an Eiseral heniry GOMPUTEB SHOP

DIGITAL MULTIMETERS
Hand he id models (UK C/P 65pl HAND HELD MODELS Controls S =Slide $R=$ Rotar PB =Push button All lealure $A C$ / $O C$ volls OC amps Imany with A

amps] ohms efc. UK C/P 65pl * WITH CARRY CASE
 *KD305 14 ranqe $10 A D C 2 \mathrm{Meg}$ ohm $|\mathrm{S}| \quad £ 24.30$
 * ME TEX 3500 30 range IOA AC/OC 20 Meg
ohm [R] * METEX $\mathbf{3 5 1 0 .} 30$ range $10 \mathrm{~A} A C / O C 20$ meg onm plus the tester plus cont tester (R) $\mathbf{8 3 8 . 0 0}$ 601028 range $10 \mathrm{~A} A \mathrm{C} / \mathrm{OC} 20 \mathrm{Meg}$ ohmIPBI $£ 30.39$ * KD55C 28 range 10 A AC/OC 20 Meg ohm \mid (R) $£ \mathbf{~} \mathbf{3 4} .74$ KD615 18 range IOA OC 2 Meg ohm plus Hie lester
 HC 501031 range 10A AC/OC Cont buzzer 20M Thm [8]
DM3350 Autor ange plust cont tester 18 range 10A AC/OC 2 Meg onm |R|

* DM2350 Mini autoranqe plus cont tester 19 range $10 \mathrm{AC} / \mathrm{CC}$ (20A Max) 2 Meg ohm (PB) E54.73 * 3100 Pen type auto ranging AC/DC V 20 Meg
ohm - buzzer
£ 39.00 SOAR ME540 Manual/Autoranging plus cont buzze 19 range 10A AC/0C 20 Meg ohf (h) Size $18 B \times 86 \times 50 \mathrm{~mm}$ Rolary controls)
Mx522 3 2 digit LEO 21 ranges 10 AC/OC
 MX5623 digll LEO 29 ranges 1OA AC/OC 20 Mer ohm Basic 0.2° o Plus contlnuity tester [R] $£ 95.00$

 up to $50 \mathrm{KHZ} 0.05^{\circ}$ obas ic $|\mathrm{R}| \quad \mathrm{E} \mid 75.00$
EDUCATIONAL:
MIXED QUANTITY
\& EXPORT DISCOUNTS

AUDIO AND RF generators

AUDID
EADER LAG275 5 band sine/squar OPO AMS Dis1 $0.05^{\circ} 020 \mathrm{HZ}$ to 1 MHZ E93.00 AMS into 600 ohm Q O O5 odisi sine/ square £ 155.00 LEADER LAG 1255 band IOHZ to IMMZ to O 3 V RMS into 600 ohm sine/square/burst signals 00 $\begin{array}{ll}\text { dist } \\ \text { TRIO A G202A } 4 \text { band } 20 H 2 ~ 10 ~ 200 K H Z ~ & \text { OV RMS }\end{array}$ O/P 0.5 © dist CR OSC O/OUV DD 0/P E89.00 TRID AG2035 band IOHZ to $1 \mathrm{MHZ} 0.1^{\circ}$ odist O/7V
RMS E / P
RF 139.00
RF
TRIO
RM
RIO SG402 6 range 100KHz to 30MHZ RF 0.1 IV
 LEAOER LSG176 band IOOKHZ 10 I 50 MHZ I 9610 1 KHZ I voli 11 MHZX Xal oplional $\mathrm{C} 3.00 \mid \quad £ 1 \$ 5.00$

PROBE KITS

In wallets with adaptors. etc. BNC fittings to
$\times 1 \quad £ 8.90 \times 10 \quad £ 8.26 \quad \times 100 \quad £ 16.00$ $\mathrm{X} 1 / \times 10$ Switchable $£ 10.00$ Oemodulator $£ 16.00$ fUK C/P tree with other liems 65 p per 1 to 3 kits)

HIGH VOLTAGE METER

DIGITAL

CAPACI

METERS

OMGOI 3 Direct read LCOB range 0.1 pf 10 200mid. $3 / 2 / 2$.
(UK C/P 65 p)

TV TEST EQUIPMENT

MC32 Series TV colour Pattern Gen
8 colours Video comp $0 / P$ [UK C/P © $£ 1.00$]
MC321 PAL IUK
SECAM MERSIOMS AYAIL
TC 40 Portable FM \& VHF/UHF TV Find sirengin meter 81 to BIV with carry case. $45-862 \mathrm{MH7}$ (UK C/P 11.00)
LHC 909 Series Video head checker $£ 189.00$ LHC 9098 8eta
LHC 909 V VHS [UK C/P 85p] \} £45.00 each
LCT 910A CRT lester/rejuvenator £45.00 each
$£ 175.00$

DIGITAL THERMOMETERS

Pockel size LCO thermorneters complet
with battery. Acceplany lype K prabe
TH301 LCO-50 C to 750 C. 1 C resolulion TH302 $150-40$ - 101100 Cent/Fa.50 and ! resolution with thermocouple. $£ 79.50$ Range of various probes in stock. $£ 17.50$ to $£ 25.00$

1 amp	£30.43
PP243 3 amp version	152.13
230N Twin meter 0/30V I	¢97.00

330N 3 amp version 652.13
697

ANALOGUE MULTIMETERS

 OC plus coni Buzzer 10 Meg ohm $£ 11.74$ TMK500' 23 range bench. $30 \mathrm{~K} /$ $\begin{array}{ll}\text { plus conl. buzzer. } 20 \text { Meg ohm } \\ \text { NH56R: } 22 \text { ranqe } 10 \mathrm{~K} / \text { Nott } 6 \text { Meg ohm } & £ 20.83 \\ \mathbf{£ 1 0 . 3 9}\end{array}$ NH56. 26 range $30 \mathrm{k} / \mathrm{Volf}$ LOAC $/ 0 \mathrm{Cl} 10 \mathrm{Meg} \mathrm{E} 0.39$
 360 TR 23 range bench $100 \mathrm{k} /$ Volt large scale. 10A AV/OC plus HIe lester, 10 Meg ohm $£ 34.74$
AT $2100^{-} 31$ range de luxe $100 \mathrm{~K} / \mathrm{Volt} 10 \mathrm{AC} / \mathrm{OC}$. AT $2100^{\circ} 31$ range de luxe lOOK/Volt 10 AC AC/OC.
$\mathbf{E 2 9 . 1 3}$ 100 meg ohm
AT $1020 * 18$ range de luxe $20 \mathrm{~K} /$ Wolt plus Hie
Iester. 5 Meg ohm
E18.26 YN360TR 19 1 Meg ohm KRT5001' Range doubler 35 range total $10 \mathrm{E} / 2.13$ 1OA OC 20 Meg ohm
ST303TR.
£ 17.35 ST303TR. 22 range $20 \mathrm{~K} /$ Wolt plus Mite tester 12A Metrix (ITT) Pro

COMPONENTS ${ }^{\circ}$

ACCESSORIES •TOOLS
Large range in stock semiconductors. relays, tools Plus millions of capacitors, resistors, presets. Controls
plugs /sockets, etc eic. For buik expart users Tel: 0i-723 1008 with enquiries.

TRANSISTOR

TESTER

Direct reading PNP/NPN and diodes Hfe, leakage, etc. General purpose IC

ELECTRONIC

 INSULATION TESTER500V/0 100 Meg onm win cary cas

LOGIC PROBES \rightarrow

 $\begin{array}{lll} & \text { LP2 } 1 / 2 \mathrm{MHZ} & \text { £21.0. } \\ \text { DP70 30MHZ } & \text { £25.00. } & \text { DP71 } 50 \mathrm{MHZ} \\ \text { \&52. }\end{array}$ [UK Post. etc. 65p]

PICK A CARD ANY CARD
BUHLD A CUSTOM SYSTEM rour Galaxy or mascom Demonstrations lor callers

GM8 11 CPU GM832 SVC

125.00

GM829 FOC/SAS
GM813 CPU/64K RAM
EV814 IEEE 488 CONTROLLER
GM802 64K OYNAMIC RAM
$\$ 145.00$
E145.00
$\quad £ 140.00$ GM827 B7KEYKEYBRARO £125.00 MP826 STATIC PAM c85.00 MP826 STATIC RAM $\quad £ 185.00$
 IO 828A SUPER PLUIO COLOUR GRAPHICS GM833 RAM-OISK 512 K £499.00 GM833 RAM-OISK 512K $\quad £ 450.00$ GM888 CPU/NTEK BO88 POA GM837 COLOURGRAPHICS OISPLAY £165.00 fUK C/P \& expor! extralal cos!

FULL LEAFLETS/ OETAILS OF SUITABLE

permutations amo pícel lisis send large
We can advise aiso with lerminals and compleie
Galaxy computers with monitors and Disks ready 10 us

NASCOM-2

Avaitabte in both klt and buifl lorm. Featur ing
Microsoll Basic NAS. SYS monitor full OWFATY keyboard of the highest quality 4 MHz ZAOA processor full RS232 I/0 and parallel 1/0 One of the mosi flexible computer cards around. expansion capabililies are impres sive using the NASBUS and compatible 80-8US expansion cards. Expansion includes hi.res colour graphics full CP/M disk system and much more Send SAE for full leaflets.
NASCOM 2 kit
K225.00
NASCOM 2 buil NASCOM 2 kil

ITT 2020 CABINET

 5.5×4.5 |riont slopes ideal for single board
computers like the Nascom or Gemini Multiboard 13 cards eic| Very heavy gauge | 25] plastic with melal base Allractive silver grey linish (UK C/P £1.78)

TOROIDAL
TRANSFORMERS
too wat 1 isolations $230 / 240 \mathrm{~V}$
AC plus $8-0.8 \mathrm{~V} 4 \mathrm{~A} 15-0-15 \mathrm{~V}$ 0.645A 30V 016 a size

£6.91
STC NOVATEI PRESTEL TERMINAL

features

7 diag green scieen 240 V AC mains operaled delachable key pad robus! ase $14 \times 12 \times 7$
cassente recorder data stored lacilin ar other monitors. securily lack et
£130.39

ASC11

KEYBOARD
 69505 Compact 64

- 5 lunction keys. Hal
etlect keyboard
reprogrammable i2716| ASC |l output decoder EPROM Steel key Irame lor good rigidity. Negative going strabe. hequires * 5 voli * 12 volf supplies COMPACT 58 KEY ASCII KEYBOARD
Contactiess capactive high reliability keys. Full 128 ASCII codes. Steel key frame tor positive rigudity Ims sirobe. single +5 volt supply. Repeal key, control and caps. lock. £28.26 |UK C/P $£ 1.00$

——SOFTWARE
MDIS [C]INTELLIGEM OISASSEMBLER For all CP/M based machines E5C HI-RES ICI For Gemini and others enquirel. Provide Pseudo high resolution
graphics

E15.00 | for Gemini and others (please enquire) | $£ 50.00$ |
| :--- | :--- |

maxifile overlay C20.00 SPOOLER OVERLAY HENRY'S CP/M UTILITIES DISK (C) 41 Programs lor the CP/M Systems programmer 5/4 Iormat f15.00
$\mathbf{5} 17.35$
ALLDISC £17.35
Variable disc lormat utility lor Cemini and Nascom
CP / M 's
E 150.00
BDOSZANO CCPZ £10.00 each
All above - Please state formal required.

COMPUTER POWER

SUPPLY

Switched mode. Stabilised. Sell protecting S/C
protected, etc. $220 / 240 \mathrm{VAC}+5 \mathrm{~V} 33 \mathrm{~A}+12 \mathrm{~V} 2.4$

COMPUTER FANS

UK L/P S. 5 peach B5 pala
RUANTITY
ISCOUNTS AVAILABLE
$220 / 230 \mathrm{~V}$ AC Brand new
220/240V AC Ex-untis
6.52 each
$110 / 115 \mathrm{~V}$ AC Ex-units
$\mathbf{E 4 . 7 8}$ each

THERMAL PRINTER

Complete with lull handbook
UK C/P 1 . 00 |
643.43

SUITABLE FOR: TANOY • BBC ORIC

- GEMINI - ACORK - ORAGON eic.
(Interlace units with leads £ 13.00 -s sate model)
[Your enquiries invited].

CHERRY KEY PADS

IUK C/P 40p either model)
encoded
Encoded
HEXAOECIMAL encoded 17
xeypad |requires IC's| £6.52

MODEM CARDS

COUPLER
Brand new. tested. answer and originate 300 BALO uncased acoustic modern card by lamous
manulačurer. RS 232 input/output. Power supply
$/-12 \mathrm{~V}$ at 180 mA Requires 2 magnetic earpieces. witches. 2 LEDS and connectors to compiete. Circuils and connection data supplied.
Card only.
Card and remainder of small components $\begin{aligned} & \mathbf{£ 2 6 . 0 4} \\ & \mathbf{£ 2 9 . 0 9}\end{aligned}$ Telephone Direct Line coupler type LTU 11 MK11 Suitable lor direci coupling PRESTEL adaplors and the above acoustic modems. Integral Line select and autodial relays requiring IIL inputs. Circuits and ZOO BAUO receive 75 BAUO send direct COupled nodem Ior PRESTEL. Requires $\rightarrow 5 \mathrm{~V}$ supply with IT mputs lor data, line select and autodial. LYU 11 direct coupler required. See above. Connection dat supplied. PRESTEL modem card.

Wheels Dia Forlver Printers. Paper. Thermal. Daiz Wheels. Disk Drlves Boxed. Chassis also Winchester. Moniturs. Micros. BRC. Flectron. Nascom. also Cable

Prices excludeVAT (15\%UK orders only) Export please allow adequateCIF Let us quote for your requirements
CAILNANDSEEFORYOURSELFORORDERBYYOSTORPHONE

SCOPES

All models on display for callers
(UK C/P $£ 5.00$ + VAT or Securicor $£ 15.00$ - VAT)

HITACHI

 va22 Dual 40 MHZ with delay line and tacilities of the fritures.
vz22 pius many olte teat

elay line
V353F Dual 36 MHZ version ol V203F with dela
V650F Oual 60 MHZ with delay line
V1050F Quad 100 MHZ -loads ol leatures
V299 Dual 20 MHZ batery/mains
V509 Dual 50 MHZ ballery/mains, delay, etc.
V134 Storage scope dual 10 MHZ
V6015 Diglial storage 2ch 1000 words/CH
V 098 PAL TV Waveform monitor
V 088 PAL TV Vector scope
£580.00

E850.00
$\varepsilon 1200.00$

£ 1200.00
$£ 595.00$ $\mathbf{£} 595.00$
£ 1170.00 $\begin{array}{r}1950.00 \\ \\ \hline\end{array}$ $£ 1295.00$ K 880.00
f 1230.00

CROTECH

 THANDAR batiery portable 8 digit LCD counlers. Size 255 x $150 \times 50 \mathrm{~mm}$. Complete with batteries. Opilonal: Carry case $£ 5.95$ AC adaptor $\mathbf{£ 6 . 9 5}$ TF 04010 Hz to 40 MHZ . I HZ Res
49 mV sensilivily. TF200 10 Hz to 0200 MHz lppm res 10 mV \&16500 TP600 600MHZ prescaler |Powered by computer\} $£ 45.00$ TP 1000 1000M Hz IIGHZ| Prescaler
with power supaly $\mathbf{£ 6 5 . 0 0}$
 NEW TF600 LED 600 MHZ counter. P.O.A.

GENERATORS MVE

Funcion and Pulse uk ins portable, Size $255 \times 150 \times 50 \mathrm{~mm}$ Options: Carry case $£ 5.95$ 101/102/105
TG 010.02 HZ to 200K HZ funclion. sine. square. triangle. Variabie DC oftsel. TTL O/P ExI sweep mode. Variable 600 £105.00 TTL O/P. Ex1. sweep mode variable $600 \mathrm{ohm} \mathrm{O} / \mathrm{P}$. 10 V PP TG 1055 HZ to 5 MHZ pulse TTL and Sync $0 / \mathrm{P}$ Variable 50 ohm 0/P. Free run. gated or trig modes $£ 105.00$ TG501 0.005HZ to 5 MHZ Iunction. $£ \mathbf{£ 2 9 5 . 0 0}$ TG502 Sweep/function versionof above TG503 AS TG501 plus pulse generator £495.00 $£ 495.00$

LCD \& LED MULTIMETERS
THANDAR BENCH PORTABLES SIze $255 \times \ldots 5.95$
$150 \times 50 \mathrm{~mm}$ Option: Carry case
TM 3553 3 digit LEO. 29 ranges. 0.25% basic
100 mV res. 10 A AC/DC. 20 M ohm
(Optional: AC adaptor $\mathbf{\Sigma 6 . 9 5 \text {) }}$
TM356 3' digillLCO 29 ranges as IM355.
3000 hour battery lile |supplied] $\quad \mathbf{9 5} 00$
TM351 a digit LCo. 29 ranges. or 15 Aanges as above. 2000 hour battery lile. $£ 115.00$

LED COUNTERS $[U K C / P 650]$ D/

METEOR mains or battery portable B digit LED Counlers. Size
$219 \times 240 \times 98 \mathrm{~mm} .5 \mathrm{mV}$ sensitivity 0.1 HZ resolution
1005 Hz to $100 \mathrm{mHz} \quad \mathbf{£ 9 5 . 0 0}$
6005 HZ 10 600MHZ A\&B inpuls $E 121.00$
10005 HZ to 1000 MHZ |IGHZ A\&B inputs E 165.00
Options: 6 NICAOS $£ 10.60$ AF pickup Aerial $\mathbf{£ 7 . 7 5}$
FUNGTION GENERATOR BN IUK C/P 65p]
JUPITER 500 Function generator 0.1 HZ to 500 kHZ or better
Sine square, triangle $0 / P$ to $=30$ volts. TTL $0 / P$. OC Ollset $=$
15V variable. Ext AM and sweep lacilities
$220 / 240 \mathrm{~V}$ AG operated.

THURLBY EOUIPMENT NEA

$4^{\frac{3}{4}}$ DIGIT LCD

MULTIMETERS

28 range 10 mV Res $10 \mathrm{~A} A C / \mathrm{OC} 32 \mathrm{Meg}$
measurement funclion.

[UK $\mathrm{C} / \mathrm{P} £ 100]$ $\begin{array}{ll}15030 .{ }^{\circ} \text { basic } & \text { £159.00 } \\ 1503 \mathrm{HA} \mathrm{O} .03^{\circ}{ }^{\circ} \text { basic } & \text { \& } 175.00\end{array}$ $15040.08^{\circ}{ }^{\circ}$ basic. True RMS \quad\begin{tabular}{l}
£ 185.00

\hline

 Options: Carry case \quad E18.00 1905A $5{ }_{2}{ }_{2}$ digit intelligent multimeter 29 ranges

1 mV . $0.015^{2}{ }^{\circ}$, basic. Auto storage. Computing

functions. elc.

£ 325.00

\hline
\end{tabular}

EIGHT CHANNEL

SCOPE MULTIPLEXER

ORDER BY POST OR PHONE

Up to 1000 instant credit
Available through Lombard Tricily Finance

301 Edyware Road, London. W2 Test Equipment. Audio, Communications 01-724 3564
404 Edgware Road, London, W2 Computers $01-4026822 \bullet$ Equipment $01-7240323 \bullet$ Components $01-7231003<$

Vigilant MiCOn hFCommunications Receivers MICROPROCESSOR CONTROLLED RECEIVERS

Type SR 530 USB/CW/AM/Telex -10 Hz Steps (Marine)
Type SR 532 USB/LSB/AM/CW - 10 Hz Steps (Static/Transportable)
Type SR 531 USB/LSB/AM/CW - 100 Hz Steps (Static/Transportable)

DESIGNED AND MANUFACTURED TO HIGHEST INTERNATIONAL SPECS

Freq. Range
Increments Stability Tuning Power Supplies
FULLY MODULAR
: 50 KHz to 30 MHz
10 Hz or 100 Hz Steps ± 1 Part in $10^{7} /{ }^{\circ} \mathrm{C}$ Keypad and Spin Wheel 110/240V AC and 24V DC
IN CUINS IRUCIIU IN

Memory Scanning

200 Channels Freq/Mode/Filter Full memory or discreet parts Automatic or Manual Stop Manual step on or Reverse
Dwell KEYPAD FUNCTIONS INDICATED BY ISPPLAYS

NOW AVAILABLE AT HIGHLY COMPETITIVE PRICES

Send for Technical Brochure to:
Tel: (0344) 885656
Vigilant Communications Ltd.
Telex: 849769 Vigcom G Unit 5, Pontiac Works, Fernbank Road, Ascot, Berks SL5 8JH, England

CIRCLE 20 FOR FURTHER DETAILS.

CIRCLE 23 FOR FURTHER DETAILS.

> TO BE CRYSTAL CLEAR Tel. O29-34-5353 Telex 87itio Aero G mOD approved \quad CAA approved
 AT SPEED

CIRCLE 37 FOR FURTHER DE'TAILS

ELECTRONIC POWER UNITS

FOR XENON ARC AND MERCURY ARC LAMPS UNTTS AVAILABLE FOR LAMPS RANGING FROM 75 TO 6500 WATTS. Lamp housings and lens systems manufactured as standard off the shelf models or to specific design.

Intelligent eprom programmer

On its own, this microprocessor-controlled programmer can copy a range of eproms up to the 27512 and send contents to a serial printer - under computer control it can do much more, including the programming of single-chip microcomputers. 'Intelligent' algorithms are used to greatly reduce programming time.

The gamut of eprom programmers available today ranges from simple extensions for a specific computer to completely independent units which are effectively computers in their own right. Simple ones don't even offer verification. Complex ones are often bulky, very expensive and, even when they cost thousands of pounds, need another computer for loading data from a disc file into an eprom - typically the last step in producing eprom firmware.
This eprom programmer designed for SC84* is a generalpurpose unit which may be operated by any computer through an RS232 link. When acting as a computer peripheral it can be used to check eproms, load their contents into a disc file, program the contents of a disc file into an eprom and directly copy eproms. On its own the programmer can copy eproms, check their erasure and send the contents of an eprom to a printer in formatted hexadecimal and ascii. Printing eprom content is useful for identifying an eprom, checking an erasure or just listing device content. Four common serial printers data rates are selectable on the programmer front panel.

All currently available singlesupply 27 -type eproms, from the 2716 to the 27512 , can be programmed by the instrument as can proposed 12.5 V A-series devices. Where applicable, the programmer makes use of 'intelligent' or 'interactive' programming algorithms devised by eprom manufacturers to speed up the
programming of larger dèvices. This, together with some built-in features, typically reduces the nominal programming time for such devices by 75% - and all for under $£ 100$.
One of my daily tasks is designing embedded microprocessor systems using so-called one-chip microcomputers. With this in mind, the solution to this quite complicated specification seemed obvious - use a microcomputer. Probably the most popular one-chip microcomputer family is the 8048 series by by Intel, Philips and many Japanese manufacturers. These processors are primarily intended as 'one-chip' systems, the microcomputer containing program rom, read/write memory, clock generator and input/output facilities. Not widely known though is that there are versions for use with an external program rom, and with such devices powerful 'three-chip' systems can be made. While the program addressing capability may seem limited and the instruction set rather small, what instructions there are are very effective when the microcomputer is being used in a system like this one with many control lines.

The programmer requires 43 control lines, some input, some output and some bidirectional, which is beyond even the 40 -pin 8048 processors, but special i.cs called i / o expanders are available for just such requirements. These i.cs offer between 12 and 16 extra individual i/o lines each and are specifically designed for
use with the 8048 which has a set of instructions for addressing external expanders. There are various members of the 8048 family, the differences being in the amount and type of internal memory. The one chosen for this programmer is the simplest, the 8035. This processor has no internal rom, an external addressing range of 4 Kbyte of program rom and 32bytes of
by J.H. Adams, M.Sc.
*SC84 was described in the May, June, July, September and October issues of

Programmer specitication
Eprom types 2715, 2732, 3732A, 2764, 2764A, 27128, 27128A, programmed $27256,27512,8741,8746,8749$

Modes Computer peripheral
Programmer-control functions and eprom data i/o through 9600 baud serial link. Eprom reading, copying and programming under computer control. Disc-file to eprom and vice versa, sum-check master or slave and copy master to slave using SC64 software. Manual controls are inhibited.

Stand alone
Manual controls, verified by sounder, for eprom copying, erasure verificationand sending contents of eprom to a serial printer, etc, in formatted hexadecimal and ascil form at one of four data rates.
Interface RS232C bidirectional with hardware handshake Eight-bit data, , l.s.b. first, no parity, two stop bits send, one or two stop bits receive.
Printer $\quad 9600,2400,1200$ and 300 baud
data rates
Controls Four push controls,
PROG - programs selected master to slave eprom
LIST - lists master eprom via RS232 port UP - increment selection pointer DOWN - decrement selection pointer

Processor 8048 microprocessor with i/o extenders controls above functions and uses 'intelligent' programming algorithms where applicable to reduce programming time by at least 75%.
internal general-purpose read/ write memory. Together with two $8243 \mathrm{i} / \mathrm{o}$ expanders, the program eprom, a latch to catch the eprom address, a counter to generate the programming address, RS232 buffers, relays, switches, leds, and p.s.u., it makes a powerful and versatile program.
The problem with eproms is that their manufacturers implement an eprom, such as the 2704 , in a 24 -pin package and then immediately start work on the next device. As each new eprom is introduced, its doubled memory capacity demands an extra address pin - the 2732's 24 -pin package is bursting at the seams. Data and address pins cannot be omitted and as a result, the number of control pins decreases and hence their use gets more complicated. When the 2732's successor was introduced, it had to be in a larger 28pin package and this gave the luxury of three separate control lines (chip-enable, data-output enable and program), a separate pro-gramming-voltage pin and one to spare. The spare pin disappeared in the 27128 and by the time the 27512 was designed, the eprom was back in the same straitjacket. What will happen next, according to one maker at least, is a 30 -pin i.c.

Running concurrently with the development of 27 -series eproms has been the 25 series with a different pin configuration, which mercifully died out at the 2564 level, and the odd maverick such as a 24 -pin version of the 2764 from Motorola. The standard is now the 27 series and, learning from mistakes made with 24 -pin devices, the pin configuration of 28 -pin devices was agreed and registered with JEDEC early on, resulting in easier circuit design and later expansion.

The only headache left is for the eprom programmer designer. High voltage needed to program 27-type eproms has proliferated from the original 25 V to include 21 and 12.5 V . Also, 'intelligent' programming algorithms introduced to reduce programming times of larger devices involve such unorthodoxies as stepping $\mathrm{V}_{\text {cc }}$ from 5 to 6 V and using modes specified to function only between 20 and $30^{\circ} \mathrm{C}$.

Intelligent programming

Intelligent or interactive programming algorithms are techniques which eprom manufactur-
ers have developed to speed up the programming of eproms without compromising data integrity. The programming technique in use since the introduction of the first single-supply eproms has been to apply the specified programming address and data and then to apply a 50 ms programming pulse. This was brute-force programming to a certain extent, the pulse length being long enough to definitely program eproms whatever their characteristics. Using short pulses, the problem has been in checking that an eprom location is programmed sufficiently to retain data on a long-term basis and not just enough to scrape through a verificiation. Pulse shortening is necessary though - it would take about an hour to program 27512 using 50 ms pulses.

The solution adopted by manufacturers (with slight variations) is to raise the supply by 1 V during programming and verification. Increased sensing thresholds within the eprom mean that even a marginal verfication at 6 V will ensure correct operation at 5 V . In outline, the algorithm repeatedly programs the eprom with 1 ms pulses and checks it during an interactive period. Next an extra programming section is carried out for safety and finally the eprom is checked at a 5 V supply. Typical programming times are reduced by a factor of four or five using this algorithm. Further increase in speed in this and conventional programming (for 24 -pin devices) is achieved by checking whether or not a location actually needs programming before attempting to program it. After erasure, an eprom contains all FF bytes (hexadecimal) so for speedy programming, all unused data bytes to be sent to the eprom should be set to this value (hence FILL and NEW commands in MCOS). To illustrate the advantage of this technique, the programming time for a 2764 is reduced from seven minutes to just one.

Programmer hardware

Most of the design effort went into the 8035 control program and the SC84 program for controlling the programmer as a peripheral. These will be described later - first the circuit.

All devices in the 8048 family can all be forced to access external memory by wiring a specific pin to +5 V . This even applies to
the preprogrammed variety so the 8048 and 8049 are suitable. At least one supplier of 8035 i.cs is supplying 8048 devices to overcome the present shortages. In its 'one-chip mode', the 8048 offers three eight-bit ports. When external program storage is used, port zero forms a multiplexed data and lower-address bus and the lower four lines of port two form the upper four address lines. An address-latching signal ALE (address-latch enable) and a rom-enabling signal PSEN (program-source) are used to control the fetching of instructions. As data regularly appears on these 12 lines, the three-chip solution restricts the use of ports zero and two compared with a true one-chip circuit. However, port zero may still be used as a conventional data bus. The 8048 has $Z 80$-like read and write signals which can be used to access i/o devices connected to port zero or, in conjunction with the latched address and special MOVX (move external) instructions in the processor, external read/write memory.

To compensate for the loss of i/o capability, the lower four lines of port two, as well as providing rom addresses, act in conjuncton with another control line called PROG to pass data between the processor and i/o expander i.cs. A typical three-chip solution the one used here - would therefore use port zero to access the program rom, half of port two to supply rom addresses and the expander interface and the other half of port two to provide general i/o or, when more than one expander is fitted, act as an expander selector. Port one becomes an uncommitted eightbit port.

As suggested above, the 8.048 can only address one expander at a time. To simplify the software design it is important that the system does not keep switching between expanders and so the allocation of lines has been split so that one expander, EXP0, is concerned with the programmer's controls and display and the second, EXP1, with control of the programming process. Each expander consists of four, fourbit ports. These ports may all be used for both input and output although all four lines each port must be either inputs or outputs. As well as being able to transfer data between the processor accumulator and the ports, the processor can AND and OR patterns into the ports to set individual
lines high or low.
The ports are numbered four to seven in the processor instruction set. In expander zero, ports four and five are used for the led display, port six to drive the three status leds and an optional sounder which gives an audible indication of keypad use, and port seven to sense the four keys. In expander one, port four controls $V_{\text {cc }}$ and V_{pp} supplies, port five provides control signals for the eproms and address counter, port six energises relays used for power control and port seven controls those eprom lines which can act as higher-order address lines,

Expander zero is activated while the programmer is being set up, either from the key-pad or the computer. Once given a command, expander one is selected, the lines are set to suit the selected eprom and the command is executed. The only exception to this is during the list operation when the processor switches back to expander zero after each printed line to make sure that you are not trying to interrupt the listing by pressing one of the keys.

Serial i / o is performed through lines on the microcomputer as, under computer control, the system must be able to sue serial i/o at all points in the program. The asynchronous receiver/transmitter for reception and transmission of serial data is all in software, the data format being eight bit with no parity, with one start bit and two stop bits on send, one or two stop bits on receive. When listing an eprom the most significant bit is alway zero. Data rates of 300 , 1200,2400 and 9600 baud are provided for the listing port so that the programmer may be used with a variety of printers, electronic and mechanical. The data rate for the computer link is set at 9600 baud, which is also the default rate for the listing port. Other data rates are easily established by modifying the control eprom. The RS232 lines are buffered directly in and out of the processor. The two output lines (data and handshake) come from the two spare lines of port two; the two inputs feed in through one of the 8048 T (test) inputs and the external interrupt line. This leaves port one as the bi-directional eprom data bus.

The lower 12 address bits are produced by a 4040 cmos counter, this being a cheaper solution for providing another $12 \mathrm{i} / \mathrm{o}$ lines than fitting another i / o expander. This i.c. is cleared by a control line from expander one but, as

Power supply and setting-up procedures are subjects of the next article. Software and an adaptor for programming eprom versions of the 8048 microprocessor will be described later. Components and software are available from John Adams at 5 The Close, Radlett, Hertfordshire, telephone Radlett 5723. Printed circuit boards, currently under manufacture, will be available from Combe Martin Electronics, King Street, Combe Martin, North Devon EX34 0AD. An enhanced version of SciDOS the CP/M2.2-compatible disk operating system for SC84 - has recently been introduced. Users of SciDOS can obtain an updated disk for $£ 5$ including postage. Details of this can be obtained from John Adams by sending an s.a.e.

A hexadecimal listing of the programmer software can be obtained from our editorial offices at Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Again, please send an s.a.e.
there are no other lines to spare on this expander, it is clocked using the 8048 WR signal, this and RD being general-purpose strobes when there is only program memory on port zero.

Using the programmer

When the system is switched on or reset, the indicator leds point to 2716 (i.e. 2716 programming is selected), the high-voltage supply is turned off, a printer rate of 9600 baud is selected and the link to the computer is enabled. The system then loops, waiting for either a press of one of the four keys on the programmer or for a character from the computer. If a command key is pressed, the link to the computer is disabled until the selected operation, list or program, is completed. If a byte is received over the link first, the system is placed under computer control and keys on the programmer are ignored until a command has been received and executed.

While in stand-alone mode, repeated pressing of the up or down keys moves the led pointer through the various eprom types and data rates. When the led pointer is in the eprom area of the selection table, pressing PROG initiates programming and LIST listing of the indicated eprom type. When the pointer is in the data rate area of the table, pressing prog has no effect but pressing LIST selects the indicated rate for the printer interface. The programmer acknowleges valid key presses by a single 'beep' and valid commands by a double one. Note that if an eprom which doesn't match the type selected is put into the slave socket, you may damage both the eprom and the programmer (depending on how the eprom fails) when you operate the programmer. No damage will occur to an eprom in the master socket (providing it is not put into the socket the wrong way around), nor are there any programming voltages present on the master socket. As the behaviour of the programmer is uncertain at the moment of switch-on or off, it should not be turned on or off with an eprom in the slave socket.

In listing mode, the eprom is listed as for the SC84 MCOS LIST command, i.e. the address of the first byte on line followed by the contents of 16 consecutive eprom locations in spaced hexadecimal, grouped in clumps or four bytes.

At the end of the line, the same 16 bytes are repeated as either their ascii representations if they are valid ascii characters, or as periods. Note that, to save $1 / 0$ lines, the lower 12 address lines for the eprom addresses are generated by a 12 -bit ripple counter. As this address cannot be stepped backwards, as would be possible with a software address counter, the 16 bytes are stored in the 8035 internal memory as they are accessed for hexadecimal listing so that they are available for the ascii section of the listing. Listing mode can be interrupted by holding down either the up or down key.

In programming mode, a 16 bit address counter is maintained in parallel with the external counter so that the system can decide when the programming operation is complete and, when larger eproms are being programmed, set up the higher-order address lines as required. A 24 -bit data sum check is maintained for each eprom. The least-significant byte of each sum check is compared during programming operations after each byte is programmed and the operation terminated if they are found to differ. At the end of the programming session, one of the status leds is set, OK or ERROR.If the programming is under computer control, an eight byte result frame consisting of the programming address value, the master sum check and the slave sum check is sent back to the computer. From this information the computer is able to deduce if the programming was successful and if not, at which address the error occurred and which bit(s) in the slave eprom failed to program. When under computer control the progress of the operation is indicated by the steady conversion of the last message displayed into reverse video. Do not expect the programming to take place at a steady rate, especially when a 2764 or larger eprom is being used as the programming algorithm is data-dependent.

The circuit, as with much modern digital equipment, is just a collection of interconnected i.cs. The originality is really in the software. The resistor and diode arrangement feeding pins 1 and 23 of the master eprom socket allow the slave and master pins to be driven from the same source. Depending on the eprom type these pins may be address lines or programming voltage
pins. In the latter mode the slave socket will need to receive the programming voltage and the master socket +5 V at between 5 and 15 mA depending upon the eprom. As a cmos device cannot supply this current without some voltage-drop, the master socket is not permanently driven by the relevant signal line set high but is driven from the high-voltage supply to the matching slave pin with a diode to clamp the voltage to no more than one diode drop above 5 V , and a resistor to limit current. Pin one is $V_{p p}$ on 2764, 27128 and 27256 devices, but A_{15} on the 27512s. Pin 23 is A_{11} on all eproms except for the 2716 where it is $V_{p p}$. In fact, both of the pins on the master socket could be set to their respective $V_{p p}$ levels and the master eprom read normally as this is the mode described as program verify in the data sheet. I decided for safety's sake however to keep all voltage over +5 V off the master socket though so that should the wrong eprom for the selection made be put into the master socket there would be no chance of it being damaged or reprogrammed. Naturally, when an address line is supplied to this and the slave's pin 1 or 23 , the diode stays off and the extremely high input impedance of the eprom makes the resistor's effect negligible.

Relays were used to switch eprom pins which alternate between signal and power pins depending on the eprom (pins 1 , 22,23 and 26) for simplicity and to avoid variable voltage drops which could affect the programming voltage. Levels of $V_{p p}$ are critical during intelligent programming, where using a 2764 as an example, a $V_{p p}$ of $20 \mathrm{com}-$ pletely negates the potential speed up while a potential of over 22 V will destroy the device. Power to pin 28 of the slave eprom is switched electronically between +5 and +6 V .

The power supply provides unregulated lines at approximately +12 V and -12 V for the slave power, relays and the RS232 interface, and a regulated 5 V rail for the logic. It also provides a programmable high-voltage supply which the programmer can set to zero and up to three other voltages up to 30 V at up to 50 mA .

To be continued

Past, reliable and 1ow-cost rPROM programming

|||||||||||||||||||||||||||||||||||||||

Dur new EPROM/EEPROM programmers give you unmatched eff.ciency and value for money. They're desigred to handle the latest high-density devices, and offer simple and reliable operation. Look at the features:

Production programming:

For production applications, there are three models in the 9000 series, all offering:

* programs up to 8 devices simultaneously
(aevices to 512-kbit density
- all major fast-programming algorithms
$\square_{\text {software selection - no }}$ adapters
16-character alphanumeric display
- auto self-test and fault detection
- simple menu-driven operation
- simple keys for operation/ editing

And these options:

■ powerful editor with 8/16-bit programming

- serial and parallel interfaces
- label printing, codelock, remote control
- add-on emulation

You can buy our model P9010 duplicator for just $£ 795$ or opt for some sophisticated exra facilities:
P9020 provides a high speed RS232C interface, capable of operating to 19.2 kbaud with 16 built-in I/O formats and costs £995.
The £1295 model P9030 offers both serial and parallel interfaces. Using its printing facility you can produce labels on UV-opaque foil. It also provides a sophisticated editor plus a RAM buffer of up to 32 kbytes. All are available ex-stock

General-purpose use:

For lab and general-purpose use, the XP640 emulator/ programmer provides
all you need for the latest devices:

- 5l2-kbits RAM buffer
- EPROMs/EEPROMs to 512-kbit density
- multipage video output and line display
- all major fast-programming algorithms
- software selection - no adapters
- supports JEDEC electronic identifiers
- auto self-test and fault detection
- powerful editing for $8 / 16$-bit operation
- handles single-chip microcomputers
- serial and parallel interfaces
- add-on emulation system
remote control

Our XP640 provides all the flexibility you need for design and development EPROM/EEPROM programming. Its unique video output and 16 -character display enhance the built-in editing facilities. The RS232C interface supports 16 formats with transmission rates to 19.2 kbaud. You can expand the system to handle both Intel and NEC single-chip micros, or add on 128-, 256-or 512-kbit emulation modules. The XP640 costs just £795; the XA64 single-chip microcomputer programming option adds £225, emulation modules start at £395 for 128 -kbits. Ex-stock delivery. CIRCLE 41 FOR FURTHER DETAILS.

GP Industrial

GP Industrial Electronics Ltd

Unit E, Huxley Close
Newnham Industrial Estate
Plympton, Plymouth PL7 4JN
Tel: (0752) 342961 Telex: 42513

INTEGRATED CIRCUITS

AN124	2.50	MC1330P 1.10
AN2140	2.50	MC1349P 1.20
AN612	2.15	
AN7140	3.50	MC：
AN7145	3.50	MC1358 ${ }^{1.58}$
AN7150	2．95	MC1495 3.00
CA1352E	1.75	
САЗ3086	0.46	MC1
CA3123E	1.50	MC3357 ${ }^{\text {a }}$
ETT6016	${ }^{2} \mathbf{2} 50$	ML2318 1.75
HA1156W	1.50	
HA 1339A	2.95	
HA1551	＋2．95	SAAS00A 3.50
LA1230		SAA1025 7.25
LA4031P	1．95	SAA5010 6.35
LAA 02	295	SAS560S 1.75
LAA140	${ }^{2} 295$	SAS570S 1.75
LA44500	${ }_{4}^{2.15}$	SAS580
LA4420	1.95	$\begin{array}{ll}\text { SL9018 } & 4.85 \\ \text { SL917B } & 6.65\end{array}$
L44422	2.50	SLI310 ${ }^{\text {Stig }}$
Latalic	2.50	SL1327 1.10
LC7120	${ }^{3.25}$	SL13270 1.10
［107131	5．50	SN／6003N 1.95
LC7137	5.50	SN76023N 1.95
LM324N	0.45	SN76033N 1.95
LM380N	${ }^{0.95}$	SN76110N 0.89
	2.95	SN76115N 1．25
M51515L	2．95	SN762260 2.25
M51521L	1.50	SN76227N 1.05
	2.00	SN76533N 1.65
MC1310P	1.50	SN7644N 1.95
MC1327	0.95	SN76650N 1.15
MC13270	0.95	SN76660N 0.80

SEMICONDUCTORS

DIODES

BD2
$\quad \mathrm{BD2} 2$
$\mathrm{BY2}$

 かo
$\underset{\substack{0.09 \\ 0.09}}{0.095}$

STK014	7.95
STK015	5.95
STK043	9.50
STK415	7.95
STK433	5.95
STK435	7.95
STK437	7.95
STK439	7.95
STK461	11.50
TA7061AP	3.95
TA7108P	1.50
TA7120P	1.65
TA7130P	1.50
TA7：46	3.95
TA7176AP	2.95
TA7203	2.95
TA 7204P	2.15
TA7205AP	1.15
TA7222AP	1.80
TA7227P	4.25
TA7310P	1.80
TA7313AP	2.95
TA7321P	2.25
TA7609P	3.15
TA761tap	2.95
TAA550	0.25
TAA570	1.95
TAA661B	1.20
TAA700	1.70
TBA120AS／	／B／C／
SA／SB／T／U	1.00
TBA231	1.25
TBA395	1.50
TBA396	0.75
TBAA40N	2.55
TBA4800	1.25
TBA510	2.50
TBA5100	2.50
TBA520	1.10
TBA5200	1.10
TBA530	1.10
TBA5300	1.10

5.95	TB
9.50	TB
7.95	TB
5.95	TB
7.95	TB
7.95	TBA
7.95	TB
11.50	TB
3.95	TB
1.50	TE
1.65	TB
1.50	18
3.95	TB
2.95	rB
2.95	\uparrow
2.15	TBA
1.15	TB
1.80	TBA
4.25	
1.80	TBA
2.95	TB
2.25	TC
3.15	TC
2.95	TC
0.25	CA
1.95	TD
1.20	TD
1.70	TDA
B／C／	T0
1.00	TD
1.25	TDA
1.50	TDA
0.75	TDA
2.55	TDA
1.25	TDA
2.50	TDA
2.50	TD
1.10	TD
1.10	TD
1.10	T0
1.10	

 PA
TBA560
TBA560
TBA57
TBA6
TBA
TCA
TCA
TCA
TCA
TDA
莐岗莐幽

> BD204
BD222
BD223

NEW BRANDED CATHODE RAY TUBES

LINE OUTPUT TRANSFORMERS
EHTMULTIPLIER

ULTIPLIERS
VARICAP TUNER
PUSH BUTTON UNITS

EHTMULTIPL		VARICAP TUNERS		PUSH BUT			
	6.35 6.35	ELC1043／05 MULLARD					
	6.35 6.96						
	6.9		${ }_{8.25}$				
	7.57 5.80	POTENTIOMETERS		20MM QUICK BLOW FUSES			
	8.00			OMA	8peach 5p each		
AEPLACEMENT ELECTROLYTIC CAPACITORS				OMM ANTI SURGE FUSE			
		$1 A-5 A M$	15p each 12peach				
DECCA $30(400-400 / 350 \mathrm{~V})$ DECCA $80 / 100(400 / 350 \mathrm{~V})$ DECCA 1700 （200－200．400－350V） GEC 2110 （6000300V） PHIIPS $6(200 / 400 \mathrm{~V})$ PHILIPS G8（600／300V） PHILPS G9 $2200 / 63 \mathrm{~V})$ PHILIPS G11（470／250V）				SPARES \＆AIDS			
	${ }^{2.25}$						
	1.80 2.25	FREEZEIT	0.8	${ }_{\text {ET }}$			
	1：19	SWITCHCLEANER	0.64 0.79	PYEIF GAIN MODU			
			1.25	an			

PHONE 0474813225

A SELECTION FROM OUR STOCK OF BRANDED VALVES

3
3
3
3
3
 $3 \mathrm{~A} / 110 \mathrm{~B}$
3A／41K
3A／47
3A／ 167 M $3 A 2$
$3 A$
$3 A$
$3 A$
38

$3 B$ $\begin{array}{lr}384 & 7.00 \\ 3824 & 40.50 \\ 3826 & 24.00 \\ 3828 & 12 .\end{array}$ | 3 C45 | 24. |
| :--- | ---: |
| 3CB6 | 1. |
| CN3A | 2. |
| 3CS6 | 0. |本机我

TELESCOPIC MASTS

Pneumatically operated telescopic masts. 25 Standard models, ranging from 5 metres to $\mathbf{3 0}$ metres.

Hilomast Ltd

THE STFEET HEYERIDEE - MALDON ESSEX CMS TNB ENGLAND Tel. MALDON (9621) 56480 Teley Nc. 995355

E.M.S. POWER SYSTEMS

Solve all your Power Problems by contacting E.M.S.
E.M.S specialise in systems to eliminate your powel problems.

Prodl.its range from 35VA switched square wave Power Packs to 1KVA fully uninterruptible sine wave systems.
E.M.S. also manufacture chargers which range up to 60 amps .

For further details please contact:
E.M.S. Manufacturing Limited Chairborough Road

High Wycombe
Bucks Tel: (0494) 448484

CIRCLE 34 FOR FURTHER DETAILS.

VRIATIONS ONANEW THEME RIES8000

Whiteley

AUDIO SYSTEMS
over half a century of sound experience

CIRCLE 21 FOR FURTHER DETAILS.
ELECTRONICS \& WIRELESS WORLD NOVEMBER 1984

Continuity indicator

This circuit indicates impedances lower than 20Ω between the probes by lighting a led - and from a $3 V$ supply. When built using E-line transistors, miniature resistors and HP17-type batteries, it is small enough to fit inside a pen-sized probe.
Low leakage is important for
Tr_{1} as it acts as a power switch.

The two 330Ω resistors are selected to ensure that this transistor doesn't turn on until probe resistance is less than a few hundred ohms. The left-hand transistor acts as a voltage-reference source which inhibits Tr_{3} until the probe voltage is higher than about 50 mV . This means that diode junctions will not indicate continuity.
K. Wood

Ipswich
Suffolk

8085 systems run Z80 software

Many users of 8085-based microcomputers are unhappy about the processor's limited instruction set. Because of this I developed an easy to use adaptor which replaces this processor by an NSC800 (National Semiconductor). The NSC800 instruction set is fully compatible with the Z80's so this modification allows you to use 280 software on 8085 systems.

My adaptor, which fits into the 8085 socket, simply crosses a few pins and inverts one or two inputs and outputs. Internally, the NSC800 (cmos) is very similar to the 280 , but its bus structure is similar to that of the 8085 , the only main differences being that STD and SOD (serial input/output data) are not available. In applications where SID and SOD are required by your system, this modification cannot be used.

One or two points worth noting are that the 8085 non-maskable interrupt (TRAP) causes a jump to location 0024_{16} and the NSC800 NMI causes a jump to 0066; however, both processors address input/output ports in the same manner and divide the crys-tal-clock frequency by two. On the NSC800, the interrupt-control register is located at address BB (on-chip) and this address must be free. Execution times of the two processors also differ so watch out when using software delay loops. One version of the NSC800 runs at 4 MHz .
Franz Braunschmid
Vienna
normal operation and
short circuit respectively and the primary fuse is a slow one.
Salvador Espin
Balearic Islands
Spain

Protectionfora.c. loads

Transformer short circuit protection is given by this circuiit designed for an application where tv distribution amplifiers were driven through coaxial cable. The top transformer winding biases the transistor (with heatsink) and resistor R sets the current limit. Green and red leds indicate

Dynamic binary-to-b.c.d. converter and display

This circuit converts eight-bit binary data for a decimal display without using static decoders. Parallel data at D_{0-7} is loaded into up/down counters $\mathrm{IC}_{1,2}$ by DATA STROBE. This signal also produces control pulses at gates $\mathrm{IC}_{4 \mathrm{c}, 4 \mathrm{~d}, 5 \mathrm{c}}$. Content of the b.c.d. counter IC_{6} is latched at the device's output by DATA TRANSFER, RESET clears the counter section of IC_{6} to zero, UPDATE causes the output of IC_{6} to be latched into b.c.d. seven-segment decoder IC 4 and START sets the bistable circuit formed by $\mathrm{IC}_{3 \mathrm{c}, \mathrm{d}}$.

Pulses from the display-multiplex oscillator (in IC_{6}) are now used to simultaneously increment IC_{6} and decrement $\mathrm{IC}_{1.2}$. When $\mathrm{IC}_{1.2}$ reach zero, clock pulses are inhibited by gates $\mathrm{IC}_{5 \mathrm{a}, \mathrm{b}, 3 \mathrm{a}}$ a and bistable circuit $\mathrm{IC}_{3 \mathrm{Bc}, \mathrm{d}}$. The sequence repeats on each DATA STROBE pulse.

Addition of uarts and current-loop signalling allows the circuit to provide a remote indication and since conversion is carried out in the remote unit the uarts need only continuously transmit one eight-bit word.
D.W.Cooper

Rochester
Kent

$1 C_{4 b}$ output

Data strobe

Stage lighting system -2

More circuitry and some practical advice

In the September issue, the equipment was described in outline, with some circuit details. The rest of the circuit information follows, and the article concludes with constructional information.

Control desk power supply. This is a relatively standard circuit, and is shown in Fig. 9. The mains input is filtered in the same way as the power box supply, and the rectified output is smoothed by two $4700 \mu \mathrm{~F}$ capacitors and then fed via a 2.5 A fuse to three 5 V regulators. This system was adopted in preference to a single $3 \mathrm{~A}, 5 \mathrm{~V}$ regulator so that there would be greater isolation between the various sub-sections. Outputs were monitored by three 5V6 Zener diodes connected to the base of a TIP3055: any excess voltage is reduced if it is a pulse, or if a regulator fails, the fuse blows.

The negative 5 V regulator is standard and provides bias for the
a/d convertors. Originally, 2708 eproms were used and this supply provided these memory chips with bias. The positive 12v supply is obtained from a voltage doubler and powers the modulator and the original 2708 eproms. The 0V line is connected to the mains earth and the control desk case.

Control desk keyboard. The keyboard is a hexadecimal key pad and the electronics, shown in Fig. 10, was designed and built by pupils. A diode matrix provides 16-to-4-line encoding and a separate key is used to control whether the first or second digit is entered. The information is stored in two 74LS75 latches and is connected to the data bus via two 74LS367 buffers. The buffer is enabled on input port 01 H .

Microprocessor board. A separate microprocessor was used rather than a commercial computer so that it could handle the very fast and frequent interrupts from
the uart and also to give pupils the opportunity to program a microprocessor rather than a computer. In Fig. 11, of the relevant I/0 lines of the m.p.u. are buffered and the clock is provided by another tv crystal. The software is stored in a 2 k eprom (2716) and ram is provided by a 6116 . This memory chip was used so that battery back-up could be provided at some time in the future. Reset is provided by two push switches wired in series, so that the system could not be reset accidently.
V.d.u. and modulator. The simple v.d.u. gives a display of 32 characters by 16 lines - an adaption of the v.d.u. used in the WW computer which was published some years ago. In Fig. 12; there are essentially three divider chains running from a 4 MHz crystal oscillator (8 MHz divided by two). The first divider chain, consisting of two 74LS93s, produces the line sync. pulses. Each line is $64 \mu \mathrm{~s}$ long and is divided

Fig.9. Control-desk power supply.

Fig.10. Control-desk keyboard circuit.

Fig.11. Control-desk microprocessor board.
into a 48μ s display, a 8μ a pause, a 4μ s sync. pulse and a further $4 \mu \mathrm{~s}$ pause, as in the original design.

Each character is 6 pixels wide and the second divider chain performs character line count. It consists of a divide-by-six counter (74LS92) followed by a divide by 32 counter ($2 \times 74 \mathrm{LS} 93$), which are only enabled during the $48 \mu \mathrm{~s}$ display. The output of these counters is fed to the video ram (7×2102) via two-way selectors (74LS157). Line count is performed by the third divider chain of two 74LS93s. Each character consists of eight pixels down, each pixel consisting of two lines: the outputs of the first 74LS93 feed the row-select inputs of the character generator and the outputs of the second 74LS93 are fed to the video ram, via the two-way selectors.

This uses a total of 256 lines out of a possible $312 \frac{1}{2}$ lines. The others are blanked out by a monostable (74121) which also provides the frame sync. pulse. A 74S262 teletext character generator was used because one was available: other character generators would be suitable. The video information is changed into serial form by the 74LS165, which is mixed with the video blanking (during synchronization) and then fed to the modulator.

The video ram is simply decoded to appear at 8000 H of the computer memory. Some noise on the display is experienced, but since the up-date rate of the v.d.u. is user-controllable (via software) a satisfactory compromise between noise/up-date rate can be achieved. The modulator was adapted from a video game published some years ago and could probably be replaced, with advantage, by a commercial modulator. However, the circuit did provide useful experience to some pupils in u.h.f. work (i.e. the need for short wires!).

Uart, master a/d, enter latch. The uart for transmitting the information to the power box controls the microprocessor via the INT line as shown in Fig. 13, and is serviced as soon as the INT line is taken low, i.e. when the uart transmitter buffer register is empty. The uart is clocked by another tv crystal, suitably divided to produce a clock rate of approximately 140 kHz . The output from the uart is taken to the transistor complementary Darlington amplifier before being sent to the power box.

Fig.13. Control-desk uart, a/d converter and enter latch.

Fig. 14. Control-desk fader and relay unit.

The master fader has its own a/d convertor (ZN427) which is frequently interrogated by the microprocessor. The circuitry is based on the ZN427 data sheet.

When a keyboard entry is required, the Enter key is pressed, which sets a bistable (4011). When the uart has been serviced, a check is made to see if
a keyboard entry has occured, before returning to the main program. Full details of this and the I/0 ports used will be in the software section.

Faders and relay unit. The design of the system required that the faders could be plugged directly into the dimmers. Since

power box 0 V is neutral-referenced and the computer 0 V is earth-referenced, care had to be taken to ensure that these 0 V lines could not be connected together. This is achieved by the circuit of Fig. 14.

When used without the computer, the faders are powered from the power box power supply via a 50 -way cable, which is only connected to the faders if the multiplexer and uart circuit boards are removed from their edge connectors. There are also wire links on these boards which make relay A operate, so ensuring that the supply remains disconnected. With these boards removed, relay B operates and connects the supply to the master fader circuit, which in turn supplies power to all the faders. This ensures that the master fader still controls the brightness of all of the lamps. The master fader circuit essentially consists of an emitter follower. The diode at the 0 V end of the master fader offsets some of the base emitter voltage drop of the emitter follower.

Multiplexer and fader a/d. The circuit in Fig. 15 stores the number of the fader to be converted in the 74LS373 octal latch. Num-

bers $0-15$ are stored as $60 \mathrm{H}-$ $6 \mathrm{FH}, 16-31$ as $50 \mathrm{H}-5 \mathrm{FH}$, and $32-39$ as $30 \mathrm{H}-37 \mathrm{H}$. Input/ output port decoding is achieved using the 74LS138, the decoded ports being $80 \mathrm{H}-87 \mathrm{H}$. The output from the octal latch is fed to the 7 -to-40 line decoder, consisting of three 4514 s , whose outputs operate the 40 analogue switches (4016), so enabling the output of each fader to be connected to the a/d convertor (ZN427). The circuit of this a/d convertor is the same as the master a/d convertor.

Construction

The lighting system was built in many modules to enable as many pupils as possible to work on the project. Many of the circuits were fabricated on Veroboard, using traditional wiring techniques.

Control desk. The circuits for the control desk were built on veroboard, with 43 -way edge connectors. Four of these boards were used and the circuits were divided up as follows: V.d.u.; microprocessor and memory; general input/output including uart and master a/d converter; fader multiplexer and a / d converter. The remaining circuits (modulator, p.s.u. keyboard, etc) were built on ordinary pieces of Veroboard.

The four edge-connectors were soldered onto the copper strips of another piece of Veroboard. The fader multiplexer and a/d converter board was double sided, which enabled one side of the edge-connector to be joined to the 'computer bus' while the other side was used to carry the inputs from the faders to the analogue switches. The remaining terminals on this side of the con-
nector were used to arrange the switching of the safety relays for when the power box is connected directly to the control desk.

Power box. The circuits for the power box, with the exception of the dimmer boards, were constructed on Veroboard, and were divided into the following modules: power supply and mains filter; regulators for the dimmer boards and the ramp generator; demultiplexer and d/a converter. Each of these modules was housed in its own die cast box and the three boxes were stacked together at the right hand end of the power box.

The mother boards for the two diminer racks were made from Veroboard again, reinforced by a metal and wood frame. The copper strips only carry the low-voltage supplies to the dimmer

Fig.15. Multiplexer and fader a/d converter.

Fig.16. Dimmer printed circuit board.

Details of the software and operating procedure and the eprom listing are too extensive to reproduce here. Interested readers can obtain them from this office by sending a stamped, addressed envelope, marked 'stage lighting'.

Fig.6. FILIST and ERLIST routines to display list of stored programs - the
directory.
board: They were broken either side of the dimmer board plug for the live and 0 V line., i.e. mains neutral, and 6A wire was used to connect to the main neutral wire for each mother board, which was a piece of 6 mm square brass bar, carefully insulted on Perspex supports. The mains live wire was also treated in a similar way, being distributed on each mother board by a 6 mm brass bar. Connections are made to each lighting circuit by 6A terminal blocks at the rear of each mother board.

Since the dimmer boards had to be mass produced (a total of 40 were required) it was decided to make printed circuit boards. The component lay out and foil pattern are shown in the diagrams and photographs. To make these boards, a mask was cut out of a piece of thin s.r.b.p. board, held in place over the cleaned copper board and sprayed with ordinary car paint. Two or three thin layers of paint made an effective etch resist. Since Iron (III) Chloride was not plentiful, the circuit boards were first electrolysed in copper sulphate, the circuit board being made the anode and
another piece of copper the cathode. This removed much of the copper and the remainder was removed in Iron (III) Chloride solution. The paint, after etching, was then removed with a suitable solvent.
R.S. 10 -way circuit-board plugs and sockets were used for the dimmer board connectors, rated at 250 V a.c. 2.5 A per way. Three ways were paralleled together for the neutral/ 0 V line and two were used for the connection to the lamp circuit.

Safety. Obviously, safety is very important when dealing with a 100 A mains supply. I was very conscious of this during the whole project and so carried out many tests on all the mains connected parts of the circuits to satisfy myself of their reliability. All of the mains wiring has been deliberately overloaded for both current and voltage and it survived satisfactorily. In normal use the whole of the power box remains cool during operation, even after many hours of operation.

The power box enclosure was made from square section steel
tubing, brazed together to form a frame, which was then covered in Aluminium sheeting. The dimmer boards and all live connections are normally behind aluminium mesh, although this has been removed for the photograph of the box. When in normal use there is a lockable door enclosing all the electronics and a small panel to the right gives access to the input sockets. This ensures that no unauthorized person has opportunity to gain access to the mains circuits.

Acknowledgement. I am indebted to many people for their assistance and encouragement during this project. In particular I owe thanks to the following peo-ple:-
A very tolerant wife.
Malvern Hall Parents' Association who financed the project. Mr H.K. Greenhalgh, Headmaster.
Mr A. Martin and Mr K. Hickinbottom who built the enclosures and cases. G. Tomkins, A. Perkins, K. Sollis and R. Manton., pupils of the school.

CASSETTE RECORDER continued from page 20

returns to its 'input routine' and is immediately vectored to the second half of the AULOAD routine in Fig. 5. The recorder is stopped, the addresses of the new input routine reloaded into the input vectors, and the RUN flag checked. If not 'set', the routine is exited via a JUMP statement to 'warm start' Basic. If the flag is 'set', the command RUN is written into Basic's buffer line, the X-register set to three (the number of characters in the word RUN) and the A-register loaded with 'CR'. The routine is then exited via an RTS statement with the result that the Basic interpreter acts upon the RUN command and runs the program previously loaded.

FILIST and ERLIST routines

The FILIST and ERLIST routines perform functions as previously described, the flow-diagram being shown in Fig. 6. Both routines are simply housekeeping routines which allow details of the programs held in the Directory to be displayed on the screen. The routines are exited via a JUMP to 'warm start' Basic after first erasing the FILIST or ERLIST command from the Basic buffer line.
to be concluded

IF YOUR BASIC SYSTEM IS RUNNING OUT OF SPEED, IT'S TIME YOU LOOKED AT THE PROFESSIONAL MICROPROCESSOR DEVELOPMENT SYSTEM, THE FAST WAY FORWARD,

THE OPERATING SYSTEM

- FLEX - The Professional Operating System
- Versatile, Flexible \& Powerful, the ideal operating system for industrial control
- True portability between machines - FLEX format discs can be read on the BBC
- Gives those on a tight budget the power, sophistication and ease of development that large companies have always enjoyed

THE TOOLS

- PL9 - A fast efficient compiler specifically designed for control applications
- CMS FORTH Interpreter \& Compiler
- Cross Assemblers, Simulators \& Debug for most 8 bit \& 16 bit micro's " $\mathrm{C}^{\prime \prime}$, BCPL, PASCAL, COBOL

THE HARDWARE

- 6809 2nd Processor
- Eprom Programmers
- Choice of industrial interfaces

THE SUPPORT

- Top rate after sales technical support

Systems/Hardware Design

- A full set of eurocards for use in target applications

CIRCLE 62 FOR FURTHER DETAILS.

FREQUENCY COUNTERS Mенम HIGH RELIABILITY LOW COST

* Measuring typically $2 \mathrm{~Hz}-1.2 \mathrm{GHz} \quad \star$ Low Pass Filter
* Sensitivity $<50 \mathrm{mV}$ at 1 GHz
* Setability 0.5ppm
* Battery or Mains
* High Accuracy
- Factory Calibrated
- 3 Gate Times

PRICES (İnc. adaptor/charger, P \& P and VAT)
METEOR $100 \quad(100 \mathrm{MHz}) \quad £ 111.55$
METEOR $600 \quad(600 \mathrm{MHz}) \quad £ 141.45$
METEOR $1000 \quad(1 \mathrm{GHz}) \quad$ £192.05

$\triangle \triangle B E$| Dosigned and |
| :--- |
| manufactured |
| in Eritain |

Black\#Star
BLACK STAR LTD, Dept.ww, 4 Stephenson Road, St Ives, Huntingdon, Cambs PE17 4WJ, England.
Tel: (0480), 62440 Telex: 32339 Tel: (0480) 62440 Telex: 32339

CIRCLE 10 FOR FURTHER DETAILS.

Audio Measuring Instruments, Audio Amplifiers, Loudspeakers and Loudspeaker Components for the professional and enthusiast
RADFORD AUDIO LTD.
10 BEACH ROAD
WESTON-S-MARE, AVON BS23 1AU
TEL. 0934416033
CIRCLE 66 FOR FURTHER DETAILS.
$\left\{\begin{array}{c}\text { STEREO D/SC AMPLIFIER } 4 \\ \text { THE MOST THOROUGHLY RESEARCHED DISC AMPLIFIER THERE Is } \\ \text { for Broadcasting, Disc Monitoring and Transfer }\end{array}\right.$

CIRCLE 5 FOR FUR'THER DETAILS.

CIRCLE 32 FOR FURTHER DETAILS.

Microprocessor multimeters

Bench and systems instruments merge with increasing use of microprocessors

In its more complex form a digital multimeter consists not only of an accurate multifunction measuring instrument but also a high speed one with 'intelligence'. This enables it to control the a-to-d conversion, autoranging and initial zeroing in the analogue department, in addition to permitting autocalibration and self-testing routines, data manipulation and storage, and automatic operation over a data bus. Facilities now available in most microprocessor multimeters include some or almost all of the following
o variable reading rate e.g. one an hour to hundreds or even thousands per second, with resolution trade-off.

- multiplication of readings by entered or stored number
O subtraction of offset values
o ratio calculation (inc power)
o real-time ratio between two inputs
o percentage deviation from entered value
0 averaging
o variance, standard deviation, r.m.s.
\bigcirc maximum and minimum readings stored
- low, pass, high-limit testing
- linearization, sometimes to third order, e.g. for thermcouple use
- logarithmic compression e.g. $\mathrm{dB}, \mathrm{dBm}$,
O storage of hundreds of readings
- measurement uncertainty (24h, 90 day, 1 year) error limits held in rom
O self-testing of display, analogue and digital sections \bigcirc automatic calibration
- measurement timing, elapsed or real

2: Bench digital multimeters

Maker	$\begin{aligned} & \mathrm{Dig} \\ & \mathrm{~A}= \end{aligned}$	Madel	Basic price	Sens. d.v.	Basic error(1)	$\begin{aligned} & f_{\text {max }} \\ & a_{1 . v .(2)} \end{aligned}$	Crest factor	Res note3	$\mu \mathrm{P}$ note4	Other features
Beckman	$31 / 2$	3050	'179	$100 \mu \mathrm{~V}$	0.1\%+1	100 kHz	-	\checkmark		
Industrial		3060	275	100	0.1\% +1	20	5	\checkmark		cont.test
Brown Boveri (HI,JMI)	$31 / 2$	2030	116	$100 \mu \mathrm{~V}$	0.1\%	5kHz	-	hi/lohi/lo		cmos bookstyle G,R,dBC
		2031	143	as abov						
		2032	162	as abov			7			
	$43 / 4$	2110	550	$10 \mu \mathrm{~V}$	$.05^{1} 6+1$	20k	7			
Data Precision (Farnell)	$31 / 2$	1351	180	$100 \mu \mathrm{~V}$	0.1\%+1	10 kHz	-	\checkmark	10	battery
		175	210	as abov		50	-	hi/lo		
	$41 / 2$	255	270	10	0.03\% +2	1	-	\checkmark		battery (model
		258	285	10	0.05\%+1	20	5	\checkmark		
		$2+80 \mathrm{R}$	270	10	0.03\%+2	50	5	\checkmark		248 led)
		3400	720B	10	. $007 \%+1$	20	5	4		GE690 l.e.d. ratio GE165
	51/2	2590R	640	1	. $007 \%+2$	20	5	\checkmark		
		3500	990 B	1	. 005%		-	4		
		3600	655	1	. $007 \%+2$	100	7	(4)		
Datatech (Telonic)	$31 / 2$	30	177	$100 \mu \mathrm{~V}$	0.1\%+1	10kHz	-	\checkmark		led(lcd)
Farnell	4/2	141	345	$10 \mu \mathrm{~V}$	0.63\%+2	20 kHz	5			BE80
Fluke	$31 / 2$	8010	218	$100 \mu V$		$200 \mathrm{kHz}$	3	\checkmark		hold,batt
		8012	291	as 8010	but 2Ω resis	tance ra				
	$\begin{aligned} & 4^{11 / 2} \\ & 51 / 2 \end{aligned}$	8050	328	10	. $003 \%+2$	200	3			dB,batt GE123 $\mu \mathrm{C}:$: 477
		8840	570	1	$.005 \%$	100	£123	4	1	
Hewlett Packard	$31 / 2$	3435	534	$10 \mu \mathrm{~V}$	0.1\%+1	100 kHz	-			
		3466	798	1	0.03\%+1	100	4	\checkmark		diode test HPIL
		3468	664	1	. $018 \%+2$	100	4	4		
Griffin \& George Iwatsu	$3^{1 / 2} \text { Dual input. Pro }$		180		1\% ± 4		-	\checkmark		RS423
			gram m	dules al	ow many va	riables.				
	$41 / 2$	7501	2750	$1 \mu \mathrm{~V}$	0.03\%	100 kHz	3	-	$2,4,5$	12.13G

PM2519 multimeter incorporates Philip two-line inter-i.c. bus ($\mathrm{i}^{2} \mathrm{C}$) to interconnect processor and peripheral chips as well as a GPIB adapter.

Thurlby's $19055^{1 / 2}$ digit microprocessor-controlled multimeter offers exceptance value for money at $£ 325$, as the chart on page 73, October issue, indicated.

Digital multimeter glossery Absolute accuracy. Degree of traceability of a measurement to a national standard.
Accuracy. Measurements are 100% accurate if there are no errors; often, inaccurately, taken to mean inaccuracy or error limits.
Autozero. Residual zero voltage, current or resistance error, automatically detected and compensated.
Common-mode rejection. Ratio of common-mode voltage, i.e. in both inputs relative to chassis, and amount converted to normal mode voltage.
Crest factor. Ratio of peak value to r.m.s. value. Large values require true-r.m.s. converters.
Effective common-mode rejection. Combined effect of simple c.m.r. and guard. Four-terminal measurement. Elimination of lead resistance by separating current source and voltage measurement terminals.
Guard. Electrostatic shield to reduce common-mode currents. Linearity. Ability to convert analogue to digital quantities up to full scale.
Repeatability. Ability to reproduce identical measurements.
Resolution. Degree to which a quantity can be subdivided, usually given in parts per million.
Sensitivity. Smallest amount of a quantity, usually voltage, that can be detected.
Stability. Repeatability.

A multimeter can thus be set up manually using the relevant feature at a suitable reading rate and then left to complete the test cycle. And if the instrument is of the 'systems' type - one that is programmable by a separate controller over a twoway data bus - it may be done completely remotely. Although the general purpose interface bus is now by far the most common form of instrument link some dmms have the serial RS232 or a parallel binary interface as an option. A few bench-type instruments have only a transmit mode and so are not programmable.
A less expensive route to programmability than a full GPIB system is through a wired hand-held controller such as

Fluke introduced to their 8860 a few years ago. As well as. increasing computational power this can also control output to printer and at the same time leave the front panel relatively uncluttered.
The programming concept has been taken a stage further in Hewlett Packard's interface loop, which is a lower cost serial interface bus primarily aimed at the small-system user. On the loop, which supports a controller and a number of transmitter and receivers, messages are sent in eleven-bit groups at $\pm 1.5 \mathrm{~V}$ levels along two wires which can be up to 10 metres long (or 100 m using a shielded twisted pair). The controller could be a
microcomputer but typically

[^1]2. Level limit may vary
3. 4: four-wire measurement, hi/lo: high and low test voltages
4. Microprocessor programs 1: Digital calibration, 2; compute (offset, scale, \% dev.), 3: ratio, 4: max and min hold, high, pass, low limits, 5: averaging, 6: results store, 7: dB, 8: linearizing for temperature, 9: statistics (van. , rms), 10: self test 11: timer, 13: null facility

YOU NEED TO SEE A SPECIALIST!

Send for a Specialist!

Order today - and if you're not completely satisfied, simply return the products within 14 days and we'll refund your payments.
$\begin{array}{ll} \\ & \\ & \\ & \end{array}$
To: GLOBAL SPECIALTIES CORPORATION (UK) LIMITED, DEPT 7 II
Unit 1. Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AO.

Please send me:

- LP-1 at $£ 30.70$ (inc P\&P and VAT)
\square LP-2 at $£ 26.20$ (inc P\&P and VAT) \square LPK-1 at $£ 18.70$ (inc P\&P and VAT) \square LP-3 at $£ 64.00$ (inc P\&P and VAT)

Name
\square DP-1 at E68.00 (inc P\&P and VAT) \square DPK-1 at £25.00 (inc P\&P and VAT) \square Please send me a free catalogue and more information

> Company/Address

LOCICANAYSSERS

TA2080

8 channels, 20 MHz , timing and state 252 byte data and reference memories 23 bit triggering with trigger delay by events and/or clocks Compare and search facilities. Composite video output Microptocessor disassembly (Z80 6800 and 6502) and RS232 option

TA2160

6 channels. 20 MHz , timing and state. 252 word data and reference memories. Can be configured as two independent or inked 8 channel analysers with separate ciocks and independently set parameters. 34 bit triggering on two levels with trigger delay by events and/or clocks Powerful compare and search facilities. RS232 interface composite video output. Microprocessor disassembler options for Z80. 8085. 6809 and 6502
Both analysers can display data either as any 8 channels in timing diagram format. with cursor, window and expansion facilites, or in state format with cursor. memory compare and word search features. All inputs are high impedance and variable threshold.
Optional accessories include the TA232P serial data (RS232) pod and TP55 video printer.

For further information contac
Thandar Electronics Ltd. London Road. St Ives Huntingdon. Cambridgeshire PE17 4H
Telephone (0480) 64646 Telex 32250.

\approx thandar ELECTRONICS LIMITED

CIRCLE 16 FOR FURTHER DETAILS.
 real-life robotics industrial robot It is electro-hydraulically powered. using a revolutionary water based it pertorms 7 senvo-contralied ax than any other robot under $£ 10,000$. 16 on Neptune 11 - more Its program length is limited onif by the memory of your computer Think what that Can do for your BASiC programming skill si

Other feanures inciude

 Butfred and larnned versatue interiace for Ba
 Butfred and larnned versatue interiace for Ba
 12 ot cantrol system 18 on Neptune I

Antomatic triple speed control on Neplune 2 tor accurate horming
E.asy access tod servicing and new
Powerful litus 2.5 kg win ease
Powerful - lith 2.5 kg with ease
Hand nela simularor for processing requites $A D C$ option)

Mtune robuts are sold inkil: form as lolows.
Mtune robuts are sold inkil: form as lolows.
elecironics fready buitl
Nepiune I simulatior \quad E45.00
Neptune 2 rooot kt finc powet supply\
Neptune 2 rooot kt finc powet supply\
Nepume 2 control electroniss {reaply bulty
Nepume 2 control electroniss {reaply bulty
£ 1725.00
$\$ 1725.00$

$\$ 475.00$
1755.00
552.00

prices exclusive of var malld untill the end of

Fybarna $\mathrm{P}_{\text {ic }}$ ppilications
CYBERNETIC APPLICATIONS LIMITED
TEL 0264150093 Testate, An 479 UV. HANTS SPIO3PR
TEL: (0264) 50093 Telex. 477019

FIELD ELECTRIC LTD.

3 SHENLEY ROAD, BOREHAMWOOD. HERTS Telephone: 01-953 6009
OPEN SIX DAYS A WEEK. $9.00 \mathrm{am}-5.00 \mathrm{pm}$ THURSDAY $9.00 \mathrm{am}-1.00 \mathrm{pm}$

[^2]would be the hand-held calculator HP41C, whilst other loop members might be printers, data recorders, modems, measurement devices, terminals, etc. Used in conjunction with the 3468 HPIL volt-ohmmeter, the 41 C is the location for programming tasks requiring computation.

The other in-house bus worthy of mention is $I^{2} \mathrm{C}$ used on last year's introduction by Philips - the PM2519. The inter-i.c. bus is a two-line bus data and clock) that interconnects processor and peripheral chips and is not really intended as an outside world bus. But the GPIB option does rely on this method of interconnection to the instrument by using a second $i^{2} c$ processor (8440). The first $i^{2} c$ chip acts as bus manager between a-d convertor, ram and display driver, the connections only requiring two lines each.

Perhaps the most useful microprocessor function for high-accuracy meters is that of automatic calibration. The precise form this takes, its traceability, and accuracy varies with calibration method maker and model. Some instruments use a calibration module that contains typically a voltage

reference attentuator and standard resistor, and if all ranges are to be calibrated uncertainty factors build up and traceability can be poor on the highest ranges. With a memory, auto calibration can be greatly simplifid, adjusting out offsets and storing values for each range for subsequent adjustment of readings. With a c-mos memory energized by a lithium cell, constants can be stored for as long as five to ten years.
To enable manufacturers to claim a complete 'lids on' calibration some allowance for the source-dependant errors, such as bias current for the

In its high resolution mode, this Datron $6^{1 / 2} / 7^{1 / 2}$ digit Autocol multimeter switches in additional circuitry 10 make a finer determination of zero ironings (Fig. 2e, page 76, October issue).

Solartron's new 7071 computing meter has error limits defined by a square root law which can predict its errors for up to 10 years (3ppm error in 24 h), see text.

High accuracy systems digital multimeters

Maker	Digits	Model	Basic price	Interface Sens. (note 1) dv		Error ppm/yr	Speed rdg/s	Features (notes 2,3)		
Data Precision	$51 / 2$	7500	12950	$\begin{aligned} & 830 \\ & 740 \mathrm{~B} \end{aligned}$	$1 \mu \mathrm{~V}$	70+1d	101000	10	Ratios	4
Datron	$\begin{aligned} & 66^{1 / 2} \\ & 6^{1 / 2 / 71 / 2} \\ & 6^{1 / 2} \\ & \hline \end{aligned}$	$\begin{aligned} & 1061 \\ & 1071 \\ & 1081 \end{aligned}$	$\begin{aligned} & 1595 \\ & 2495 \\ & 2950 \\ & \hline \end{aligned}$	$\begin{aligned} & 200, B \\ & 250 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \mathrm{nV} \\ & 100 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 30+2 d \\ & 20+4 d \\ & 11+2 d \end{aligned}$	$\begin{aligned} & \hline \text { to } 220 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1-4,7,10,11 \\ & 1-5,7,10,11 \\ & 1-4,8 \\ & \hline \end{aligned}$		$\begin{aligned} & 4, \mathrm{t} \\ & 4, \mathrm{t} \\ & 4, \mathrm{t} \end{aligned}$
Fluke	$\begin{aligned} & 66^{1 / 2} \\ & 61 / 21 / 1^{2} \\ & 51 / 2 \end{aligned}$	$\begin{aligned} & 8505 \\ & 8506 \\ & 8520 \\ & 8522 \\ & \hline \end{aligned}$	$\begin{aligned} & 3059 \\ & 4934 \\ & 2867 \\ & 3982 \\ & \hline \end{aligned}$	$406, B, R$ $406, B, R$ B	$\begin{aligned} & 100 \mathrm{nV} \\ & 100 \\ & 1 \mu \end{aligned}$	$\begin{aligned} & 19+8 d \\ & 19+8 d \\ & 90+1 d \\ & \text { data as ab } \end{aligned}$	$\begin{aligned} & \hline \text { to500 } \\ & \text { to } 200 \\ & 200 / 500 \\ & \text { bove } \\ & \hline \end{aligned}$	$\begin{aligned} & \overline{3,5} \\ & 2-11 \end{aligned}$	$\begin{aligned} & \mathrm{t}: 1 \mathrm{MHz} \\ & \mathrm{t}: 10 \mathrm{MHz} \\ & \mathrm{t}: 1 \mathrm{MH}_{1} \end{aligned}$	$\begin{aligned} & \text { Res./d.c. } \\ & \text { Res/d.c. } \\ & B \end{aligned}$
Hewlett Packard	$51 / 2$ $6^{1 / 2} 2$	$\begin{aligned} & 3478 \\ & 3497 \\ & 3455 \\ & 3456 \end{aligned}$	$\begin{aligned} & 1220 \\ & 2646 \\ & 4256 \\ & 3368 \end{aligned}$	$\begin{aligned} & \checkmark \\ & V \\ & V \end{aligned}$	$\begin{aligned} & 1 \mu \mathrm{~V} \\ & 1 \mu \\ & 1 \mu \\ & 100 \mathrm{n} \end{aligned}$	$\begin{aligned} & 19+2 d \\ & 20+1 d \\ & 50+1 d_{90} \\ & 77+2 d \end{aligned}$	$\begin{aligned} & 67 \\ & \text { to260 } \\ & \text { to22 } \\ & \text { to } 290 \end{aligned}$	$\begin{aligned} & 1,10 \\ & 6,8 \\ & 2,3,10 \\ & 2-8 \end{aligned}$	$\begin{aligned} & 4 \mathrm{t}: 300 \mathrm{kHz} \\ & 4, \mathrm{t}: 1 \mathrm{MHz} \\ & 4 \mathrm{t}: 250 \mathrm{k} \end{aligned}$	
Keithley	61/2	192	1355	395	$1 \mu \mathrm{~V}$	$70+1 / \frac{1}{2} \mathrm{~d}$	8	2,4,6	4,1G Ω	
Philips	51/2	2528	1295	\checkmark, B	$1 \mu \mathrm{~V}$	$100 \pm 1 \mathrm{~d}$	to 18	8	4	
Rhode \& Schwarz	61/2	UD56	3118	\checkmark,R	100n	40 ± 6	330	$\begin{aligned} & 1- \\ & 4,7,9,10 \end{aligned}$	4	Scanner
Racal Dana	$\begin{aligned} & 51 / 2 \\ & 6^{1 / 2} \end{aligned}$	$\begin{aligned} & 5900 \\ & 6001 / 2 \\ & 6900 \\ & \hline \end{aligned}$	$\begin{aligned} & 3490 \\ & 4092 \\ & 5375 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{B} \sqrt{2} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \mu V \\ & 100 \mathrm{n} \\ & 100 \mathrm{n} \end{aligned}$	$\begin{aligned} & 30+10 \\ & 30 \pm 1 d \\ & 30 \pm 8 d \end{aligned}$	$\begin{aligned} & \text { to } 33 \\ & \text { to } 6000 \\ & \text { to } 140 \end{aligned}$	$1-7,10,13$	Ratio Ratio, 4 Ratio	$\begin{aligned} & \text { 4,t,R } \\ & \text { h-speed, } \mathrm{t} \\ & \text { 4,t,R } \end{aligned}$
Siemens	6	1050	2606	\checkmark	360 nV	$30+30$	to 12		4,2ch	
Solartron	$\begin{aligned} & 51 / 2 \\ & 6^{1 / 2} \end{aligned}$	$\begin{aligned} & 7055 \\ & 7151 \end{aligned}$	$\begin{aligned} & 1570 \\ & 1250 \end{aligned}$	$\underset{\checkmark, R}{\text { G,R,B }}$	$\begin{aligned} & 1 \mu V \\ & 100 \mathrm{n} \end{aligned}$	$\begin{aligned} & 80+1 d \\ & 80+3 d \end{aligned}$	$\begin{aligned} & 330 \\ & 25 \end{aligned}$	$\begin{aligned} & \hline 1-10,12 \\ & 2- \\ & 4,6,7,9,12 \end{aligned}$	$4, \mathrm{~T}$ $4, \mathrm{~T}$	
	$\begin{aligned} & 51 / 2 / 61 / 2 \\ & 6^{1 / 2} \end{aligned}$	$\begin{aligned} & 7060 \\ & 7065 \\ & 7066 \\ & \hline \end{aligned}$	$\begin{aligned} & 1150 \\ & 1800 \\ & 2090 \end{aligned}$	$\begin{aligned} & \text { G,R,B, } \\ & \text { G,R, } \end{aligned}$	$\begin{aligned} & 1 \mu \\ & 1 \mu \\ & 100 n \end{aligned}$	$\begin{aligned} & 80+5 d \\ & 40+4 d \\ & 40 \end{aligned}$	$\begin{aligned} & 266 \\ & 330 \\ & 330 \end{aligned}$	$\begin{aligned} & 3,5,13 \\ & 1-10 \\ & 6,8,12 \end{aligned}$	$\begin{aligned} & \text { Ratio ,4 } \\ & 4, \mathrm{~T} \\ & 4, \mathrm{~T} \end{aligned}$	Scanner Scanner Scanner
	$71 / 2$	7075	3050	G,B	1μ	$20+8$	200	10	ratio, cf: 5	Scanner
	81/2	7071 7081	3250 3995	\checkmark, R	$10 n$ $10 n$	$20 \sqrt{\mathrm{yr}}$ $11 \sqrt{\mathrm{yr}}$	1100	$1-10$ $1-10,12$	ratio, 1 MHz Ratio, t ,	scanner

Notes. 1. Price of GPIB shown. B, R normally indicate options for bcd/parallel and RS 232 interfaces.
2. Microprocessor program key 1: auto calibration, 2: complete (offset, scale, $\%$ dev)t, 3: ratios, 4: max, min hold, limits, 5 averaging, 6 : memory, $7: \mathrm{dB}, 8$: linearizing, 9 : statistics (var, , r.m.s.), 10: self-test, 11: display of error limit, 12: timer 13:
nulf facility.
3. t: true r.m.s., R resistance, T temperature, G conductance 4: four-wire measurement.

HP3468 is designed to operate with HP's interface loop, a two-wire serial bus for battery-operated instruments, see text.

This Iwatsu instrument is more properly called a 'multilogger' than a multimeter, with its 12 channels and it larger storage capacity.

True r.m.s values up to a crest factor of 8 can be measured with an error of
120ppn in 24 hours with
Fluke's 8506A thermal multimeter.
resistance function and droop in h.f. response, is required which though analogue in nature need to be stored in digital form. In the Datron Autocal instruments, a digital-to-analogue converter provides the corrections during the calibration cycle (to a varicap-compensated attenuator in the a.c. case). To keep additive errors low during measurement of such correction factors, Datron use their averaging mode to give an effective, internal resolution of 1/16 of a display digit by averaging readings taken at $1 / 16$ steps.

Specifications, particularly of error limits, require a knowledge of component behaviour under stress and their drift with time, often hard to come by because of inediquate information from component manufacturers. Solartron's research into long-term drift has shown that components can be selected so that their drift is not random but follows a predictable pattern. In the 7081, and the just announced 7071, drift rate is proportional to the square root of elapsed time, and this allows a simple 'root year' error statement to be used instead of separate error

limit tables for 30 days, 90 days, 6 months, and so on. Providing a single one-year table yields error limits for periods greater and less than by taking the square of that figure. For example the two-year error limit is $\sqrt{ } 2$ times the one-year figure, and the six-month error limit is $\sqrt{ } 0.5$ times the one-year figure. So after, say, nine years without recalibration the 7081 will be within three times its one-year limit (and still be more accurate than most other meters). Its error limit summary table
d.v.
$1.2 \mathrm{ppm} \mathrm{rdg}+0.3 \mathrm{ppm}$ fs (24 h) $11 \mathrm{ppm} \mathrm{rdg}+0.3 \mathrm{ppm}$ is $(\sqrt{\mathrm{yr}})$

a.v.

0% rdg $+0.015 \%$ is (24h)
$0.01 \% \mathrm{rdg}+0.015 \%$ fs $(\sqrt{\mathrm{yr})}$

resistance

$1.5 \mathrm{ppm} \mathrm{rdg}+0.3 \mathrm{ppm}(24 \mathrm{~h})$
$14 \mathrm{ppm} \mathrm{rdg}+0.5 \mathrm{ppm}$ fs $(\sqrt{\mathrm{yr}})$
(For the short-term transfer error only the full-scale term is used.) So a single table not onlu reduces complexity but saves on space, in rom as well as on paper!
Solartron's 7081 precision multimeter is the only meter offering true seven and eightdigit resolution according to its makers. Meters using conversion methods other than the continuous pulse width method offer only six digits, say Solartron, and the seventh is 'invented' (by mathematical means, for example by addition of ten lpV -sensitivity readings and 'inventing' a 0.1 pV answer. A resolution of the order of one
part in 10^{7} is essential to provide a 1 in 10^{6} resolution over the whole measurement range. And, say Solartron, providing for eight-digit operation gives full confidence in the seventh.

An example of such an averaging approach to seven and eight-digit operation occurs in the Datron 1071 multimeter. Normally a $6 \frac{1}{2}$ digit instrument, the display is extended to $7 \frac{1}{2}$ in its 'averaging' mode, the eighth digit appearing after a fivesecond delay. It uses its microprocessor to compute cumulative average, based on taking 16 readings at a speed of three a second each offset from the next by $1 / 16$, finding an average value and displaying an eighth digit after its readings thereafter updating the average after each further reading. The operation performed is the sum of the old average and the difference between the new sample and the old average, divided by the current number of samples. While admitting this is not a true time integral, Datron point out that it does tend to the integral with succesive samples, and argue that the process makes real use of the additional digit by increasing accuracy rather than just averaging the error. With it, they claim a 10 nV resolution on the 100 mV range. Hewlett Packard's 3456 volt-ohmeter also has an averaging mode to reduce the effect of random noise. They claim an improvement in sensitivity by a factor equal to the square root of the number of measurements, so sensitivity can increase from 100 to 10 nV after a hundred measurements.

ع RAEDEK ELECTRONICS

SERVICING THE TELECOMMUNICATIONS AND ELECTRONICS INDUSTRIES
102 PRIORY ROAD, SCRIBERS LANE, HALL GREEN, BIRMINGHAM B28 OTB
TEL: 021-474 6000 TELEX 311033 CHACOM-G Atn: CROSAL

VALVES - National, Varian, Mullard, RCA, ITT

ث\%

2C39A	48.00	6BA6	1.50	6.6A	3.00
2C39WA	39.40	6BABA	2.75	6.35	4.00
2021	2.80	68 E 6	1.90	6. ${ }^{\text {B6A }}$	365
$2 \mathrm{E26}$	7.50	6BH6	200	6u C6A	4.20
2 J 42	95.50	6BJ6	1.85	6. 56 C	4.95
2 J 55	225.00	68K4C	4.15	6. 6.6 A	3.85
2 K 25	114.00	6816	6850	$6 . \mathrm{H} 8$	6.20
3-4002	8200	6BL7GTA	380	${ }_{6}$. ${ }^{\text {k }}$ 6	220
3 -5002	79.50	68L8	2.20	6. M^{6}	3.95
3828	15.00	6BM6	93.95	${ }_{6} \mathrm{~J} 56 \mathrm{C}$	3.95
3BS2A	3.00	68M8	3.60	6K6GT	2.75
3BW2	3.00	6BN8	3.75	6K8	4.85
3 C 23	23.75	6805	2.95	6K11	2.55
$3 \mathrm{C45}$	24.50	68R8A	2.95	$6 \mathrm{KO6}$	590
$3 \mathrm{C} \times 10045$	39.00	$6 \mathrm{BX} \times 6$	2.15	6 KD 8	200
$3 \mathrm{CX100047}$	495.00	$6 \mathrm{B26}$	2.50	${ }_{6} 6$ E8	3.90
3 Cx 150047	398.00	6 CA	1.85	6KG6	6.00
4.65 A	52.50	$6 \mathrm{CA4}$	1.65	6KM8	3.50
4.125A	57.00	${ }_{6 C A}$	3.50	6KN8	5.50
4.250 A	76.00	6CB6A	1.90	$6 \times \times 8$	8.00
4.400 A	80.00	${ }_{6}^{6 C F 6}$	1.90	666 C	3.50
4 400B	73.30	6C67	2.25	6:6 METAL	15.00
4.400 C	66.00	${ }^{6} \mathrm{CHE}$	9.95	6 LF6	4.95
4832	34.50	${ }_{6 C J}$	2.30	$6_{61} 8$	200
4 C 35 A	85.00	${ }_{6 C J 6}$	10.95	$6 \mathrm{LO6}$	4.95
$4 \mathrm{C} \times 250 \mathrm{~B}$		6 CK 6	11.50	6 M 11	4.80
[EIM/AM	P) 49.00	${ }^{6} \mathrm{CL6}$	330	6MJ6	3.50
$4 \mathrm{C} \times 2508$	NAT)	6CM5	230	6011	2.55
	39.50	6CN6	495	6 SA 7	3.00
4C×350A (E1	M1 70.00	${ }_{6} \mathbf{C 0 6}$	220	6SL7GT	1.95
$4 \mathrm{CX350a}$	AMP)	${ }^{6 C W 4}$	6.50	6SNTGTB	2.85
	68.00	6CW5	2.80	6SR7	3.80
$4 \mathrm{C} \times 350 \mathrm{~F}$	1200	${ }_{6} \mathrm{CY} 5$	3.80	6 CL	1.50
$4 \mathrm{C} \times 1500 \mathrm{~A}$	440.00	${ }_{6} 6$ C7 7	300	6UBA	2.00
$4 \mathrm{C} \times 1500 \mathrm{~B}$	37000	$6 \mathrm{CZ5}$	3.15	6 V 4	1.95
$4 \mathrm{C} \times 100000$		6DA6	2.30	GV6GT	1.96
	78500	${ }_{60} \mathrm{Cb}^{6}$	245	6×4	2.00
4021	57.00	60C8	1.50	6x5GT	1.85
4032	64.75	6 CJ 8	2.00	6×8 A	3.00
4 PR60C	250.00	60k6	3.95	6 Y9	2.95
$4 \times 150 \mathrm{~A}$	42.50	6DT5	2.30	7 F	9.50
5.500 A	225.00	60W4B	2.30	7 K 7	10.85
5AB4	3.50	6 E5	420	$8 \mathrm{CG7}$	200
5AS4A	2.50	6EA8	2.45	${ }^{8507}$	200
58254 M	24.00	6EH5	1.65	$9 \mathrm{SP}_{4}$	88.00
5 C 22	128.00	6EH7	2.75	124.6	1.70
$5 \mathrm{C} \times 1500 \mathrm{~A}$	535.00	$6 \mathrm{EJ7}$	200	12 AT7	160
5022	7600	6ELSA	4.15	12 A 46	2.00
5 R 4	6.00	6ESB	2.10	12AU7A	1.60
584GYAB	3.75	6EV7	2.85	$12 \mathrm{AV6}$	2.00
5R4WGB	17.90	6EW6	3.00	124X7	1.60
5SR6	6.00	6FG6	200	12axiwa	4.80
5 J 4 GB	250	6 FHB	16.50	1284 A	2.90
$5 \mathrm{JP1}$	40.00	6 6 07	2.25	12 Ваб	2.00
5V4GA	2.75	6 6F5	2.25	128 A 7	3.00
524 GT	1.90	6GB5	2.30	128E6	3.00
6АН6	3.50	6GE5	290	12 Bm 7 A	2.50
6A.J8	2.50	6GF5	2.10	12BY7A	2.40
6AK5	2.70	6GH8A	1.80	$12 \mathrm{Zz6}$	3.70
6AK5W	2.90	6GJ5A	3.00	$120 \mathrm{K6}$	1.50
6AK6	1.95	6GJ7	1.85	120w7	4.25
6 A L5	1.95	6GK6	1.95	12 El	25.00
6ALSW	1.80	6GW8	3.90	$12 \mathrm{~F} \mathrm{Ca}^{8}$	12.00
6AM5	9.10	${ }_{66 \times 6}$	3.00	12 GN 7 A	4.00
6AM6	2.95	6GY6	300	12 K 7 GT	1.80
6ANBA	270	6H6	3.00	12SLIGT	3.95
6A05A	1.95	${ }_{6} \mathrm{HA6}$	3.05	13 E 1	155.00
6A05W	1.90	${ }^{6 H 86}$	3.05	20 PE 11	25.00
6A08	2.20	6HES	4.00	20PE13A	21.00
6 AR5	12.90	6HF5	3.85	20PE14	25.00
6AS6	550	6HG5	1.95	20PE 15	22000
6ASTG	7.20	6HG8	250	20PE 19	25.00
6A.U5GT	4.50	6HS6	395	20 PE 20	27.50
6Aliba	1.80	6H26	2.75	${ }^{21}$ J26	3.40
6AV6	2.55	6.5	315	$30 \mathrm{KD6}$	5.00
6AWBA	2.65	6. W GT	295	$40 \mathrm{KG6}$	5.50
6A28	3.80	6.16	220	40KG6A	5.75

АN ज
 S21 (GMMP|

R. F. POWER TRANSISTORS

R88888880\%	
	NANA 马 ¢

TERMS: COW POSTAG

WHY ILP? Years of experience in audio, unique designs, world wide sales and outlets, reliable delivery and friendly service........

PREAMPLIFIER MODULES

All modules are supplied with in line connectors but equire potentiometers, switches etc. If used with our power amps they are powered from the appropriate Power Supph.
 HY66 Stereo Pre-Amp. Full Hi Fi facilites $\mathbf{£ 1 4 . 9 5}$ HY73 Guitar Pre-Amp Two Guitars pius Microphone . 1 IV66 less tone contols.... $\mathbf{£ 1 4 . 4 5}$ MOUNTINGBOARDS: For ease of construction we recommend the 86 for HY6 $£ 0.95$ B66 for HY66-78 $£ 1.45$.

BIPOLAR MODULES
Ideal for Hi Fi, Full load line protection integral Heatsink, slew rate $15 \mathrm{v} / \mu \mathrm{s}$
Distortion less than 0.01%

MOSFET MODULES
Ideal for Disco's, public address and applications with complex loads (line transformers etc.). Integral Heatsink slew rate $20 \mathrm{v} / \mu \mathrm{s}$ distortion less than 0.01%
 MOS248.120.......4-8........ 539.45

POWER SUPPLY UNITS

FOR FREE DATA PACK PLEASE WRITE TO OUR SALES DEPT.

Post to: ILP Electronics Ltd., Dept. 6
Graham Bell House, Roper Close,
Canterbury, Kent. CT2 7EP
Tel: (0227) 54778 Telex 965780

CIRCLE 83 FOR FURTHER DETAALS.

CIRCLE 53 FOR FURTHER DETAILS

CIRCLE 12 FOR FURTHER DETAILS.

Megawatt sparks

An item "R.S.C. r.f.i." in the September Wireless World (page 29) drew attention to the long drawn out battle over the building of a new high-power h.f. transmitter complex on the site of the old Post Office receiving site at Bearsley, near Stratford-on-Avon. Although this site is about three miles miles or so from the Royal Shakespeare Theatre, fears have been expressed that r.f. interference would be caused to the theatre's lighting and audio system.

The writer of that note pointed out that such equipment should be built to withstand r.f. and, if not, could readily be 'sorted out' with a few disc ceramics and r.f. stopping resistors (ferrite beads would be better).

Unfortunately, the multiple problems of megawatt radio and radar transmissions deserve to be taken rather more seriously. The hazards of non-ionizing radiation have been studied intensively for many years. Despite the wide gap between the safety recommendations established in the USSR and those current in the West there now seems little reason to fear health hazards at distances beyond those established by the National Radiological Protection Board and B.S.I. standards. There remains however the problems of r.f.i. and also of r.f. sparks at distances that can extend to miles rather than feet.

For many years it has been recognized that metal structures and wires, located well beyond the power flux "safe distance" can act as resonant aerials and pick-up sufficient r.f. to generate small sparks. It is for this reason that mobile radio transmitters should never be used when refuelling or in close proximity to petrol tanks or in locations where explosive charges are detonated electrically. Although in practice the hazard represented by the use of low-power transmitters in hazardous environments can be exaggerated, work a few years ago at the Postgraduate School of Electrical and Electronic Engineering, University of Bradford, did show that spark ignition of flammable substances could not be dismissed in some circumstances.

That sparks could occur at considerable distances from megawatt transmitters became evident during the brief
operational life of the American over-the-horizon radar at Orfordness when trawlermen complained of sparking from masts and rigging.

More recently, constructional workers building a new international sports stadium outside Riyadh in Saudi Arabia have found themselves exposed to high-voltage sparking from virtually every piece of plant and equipment. The sparks raise small blisters and have proved frightening and potentially hazardous to operatives working high-up in the building.

Cause of the sparking was found to be the 1.2 megawatt "Voice of Islam" radio transmitter located some two kilometres from the site. Since the stadium is being fitted with sophisticated electronic scoreboards, computerized security systems with electronic locks, television and radio equipment, it is having to be fitted with costly special screening, screened cable ducts etc. in addition to those ceramic disc capacitors.

Although such problems often seem to come as a surprise to contractors, equipment suppliers etc., it is interesting to note that the Admiralty marine chart for Dubai, United Arab Emirates, identifies a "danger area" that stretches some seven miles along the direction of the main lobe of the directional antenna of this 1480 kHz broadcast radio station which has an output of about two megawatts to a directional antenna array. A note on the chart identifies the danger area as follows: "Within the pecked area $\left(24^{\circ} 58^{\prime} \mathrm{N}, 54^{\circ} 53^{\prime} \mathrm{E}\right.$) a fire hazard to electronic equipment exists owing to radio transmissiona in the 1470 to 1490 kHz frequency band. Masters of vessels are advised to avoid the area. See Admiralty Sailing Directions."

The IBA's Annual Report, 1983-84, notes that: "In Autumn 1983, the m.f. transmitter at Barns Farm in Fife near Edinburgh for Radio Forth was closed down and the service transferred to a new site at Colinswell, a few miles away. This was done in order to reduce the strength of the radio signals at a petrochemical plant adjacent to Barns Farm. The strength of the signals at this plant was considered a safety hazard as any spark might have initiated an explosion."

Yet the radiated power of the ILR transmitter is only about 2.2 kW e.m.r.p.

Section 78 and
 r.f.i.

The susceptibility of many domestic electronic appliances to strong r.f. fields has become notorious. Local transmitters can affect not only radio and television receivers but also audio equipment, modern telephones, video cassette recorders, smoke detectors and virtually any systems using microprocessors etc. Some radio amateurs have found themselves faced with major repair problems resulting from the use of a radio transmitter in vehicles using electronic systems. Some appliances can be affected by very low power transmitters if these are within a matter of a few feet. Similarly, there are strong suspicions that r.f.i. from the powerful transmitters of Radio Free Europe was responsible for the crash in Germany of a $£ 16$ million RAF "Tornado" aircraft by affecting the on-board computers, supposedly "hardened" against r.f.

It is interesting to note that Section 78 of the
Telecommunications Act 1984 for the first time empowers the Secretary of State "to make regulations imposing requirements on wireless telegraphy and related apparatus with respect to their ability to resist interference by rejecting unwanted signals. Sale of noncomplying equipment will be an offence."

It remains to be seen whether DTI will attempt to implement this section of the Act which would appear to raise many legal questions. While Section 78 could clearly be applied to radio and television receivers what is one to make of "related apparatus"?

Is a v.c.r. machine, used with a tv receiver, "related apparatus"? If so, what if it is used with a visual display unit? What about an electronic telephone? How high or low a level of interference? Or will this section prove to be an idle threat, kept in abeyance in view of the difficulties of implementing it?

Friendly sets

There is a strong belief among broadcasters that the ubiquituous radio set needs to become much more 'user-
friendly'. The large number of legal and illegal stations has emphasized how difficult it is for many listeners to tune the average portable or domestic receiver to a specific station.

On m.f., sets are now usually calibrated in 'kilohertz', but many people still think in terms of 'metres' or even 'kilocycles'. On h.f. not everybody understands that 6000 kHz is the same thing as 6.0 MHz . The European 9 kHz spacing results in less memorable figures than the American 10 kHz channels. Calibration is seldom accurate.

But in any case, few modern dials can be 'read' with any degree of accuracy. A few years ago when an attempt was made to discover how listeners tuned to stations it became obvious that most simply remember 'the spot on the dial' with no recollection of either frequency of wavelength. One answer might be 'channel numbers' for m.f.

There are today receivers with digital fequency readout, car radios with auto-search etc; there is the promise of automatic station selection and identification with 'Radio-data', though industry seems in no hurry to implement a system that will inevitably be confined to a few 'top of the range' models, initially car radios for which listeners seem prepared to pay more than for the average 'tranny'. Some listeners compare the inconvenience, and difficulties of radio tuning with the effective push-button selection of television channels but do not recognize that unlike television sets many radios are used in different parts of the country, complicating pushbutton selection.

A few years ago the BBC sought to increase the popularity of v.h.f./f.m. by developing a portable receiver using a ferrite-rod aerial in place of the awkward telescopic rod, but this has had little impact on an industry in which British production is almost non-existent.

The technology surely exists for truly 'user-friendly' radio sets at acceptable costs. With the present currency exchange rates it seems a pity that there is no sign of revival of local manufacture of receivers on which listeners could be sure of listening to the stations they want, whether this be Radio 3 or Laser 558!

The UK plans for the extension of Band 2, eventually up to 108 MHz , are based on the concept of band segments allocated to five national networks, plus sub-sections for local radio. The idea is that the national services should each be tuned in the same recognized order in all parts of the UK so that the exact frequency will be of only minor import. This plan, however, could be upset if the proposed community radio stations are slotted into any empty gaps in advance of the final release of the upper portion of the 100 to 108 MHz allocation, should this be delayed until 1995. There is little doubt that the major problem facing 'community radio' is financial rather than lack of frequency spectrum; but it seems irresponsible of some commentators to suggest that there is no longer any need for effective regulation of the broadcast bands.

F.m. for the young

The swing of American radio listeners to v.h.f./f.m. as opposed to m.f./a.m. listening continues with a recent Radar report putting the f.m. share at 68 per cent of the 183 -million (95.6 per cent) of listeners aged 12 or more who listen to radio during any given week. The cumulative audience figures are 154 million f.m. and 115 million a.m. 88 per cent of the agegroup 12-24 preferred f.m. to a.m. and only in the 50 -plus age group does the balance tip the other way with 56 per cent listening more on a.m. than f.m.

Amateur Radio

Technical incentives?

The steady decline in recent years of home construction among those coming into amateur radio - most newlylicensed amateurs now tend to buy virtually all of their equipment and aerials though some later plunge into constructional work - has
resulted in some decline of any deep interest in the engineering aspects of radio communication. For a significant proportion, the technical Radio Amateur's Examination and (for Class A licences) the morse test are once-and-for-all hurdles, taken with only limited intention of the further theoretical or practical study that traditionally has constituted the 'selftraining' aspects of the hobby. Yet at the same time, there appears to be a continuing resentment that the media often find it difficult to distinguish between 'amateur radio' as now practised and c.b. radio.

Some amateurs believe that the problem would be reduced by making the multichoice-type RAE more difficult to pass, though there is little evidence to support the belief that this examination is any easier to pass than the old written-form of examination. Indeed there is some evidence that the RAE is deliberately made difficult by the ambiguous nature of some of the 'answers'. A more straightforward and fairer examination could be devised, perhaps, if each question had five instead of four possible answers as seems to be the practice in a number of other 'multichoice'-type examinations.

A more logical way of encouraging 'self-training' would be to adopt the technique of 'incentive licensing' used in many overseas countries, including the USA, Japan and the USSR in which progressively more difficult tests bring added operating privileges. It would be difficult and unpopular to try to introduce a full scheme of incentive licensing at this time, although there are a number of ways in which this might be achieved fairly painlessly.

Martin Atherton, G3ZAY has proposed a voluntary 'advanced RAE' rather on the lines of the advanced driving test. Amateurs would be encouraged but not compelled to take this further examination but would suffer no loss of existing operating privileges if they declined to do so.

Whether a voluntary, limited incentive scheme would really work is open to question. The problem basically is that modern, multi-mode factorybuilt equipment tends to use complex technology that bears
little relation to the technical level of the R A E yet it would surely be a retrograde step to bar entry of 'non-professionals' to the hobby by raising its standard. The real answer would seem to lie in a fullyfledged incentive licensing scheme even if this seems unlikely ever to be adopted in the UK.

Here and there

Arthur Milne, G2MI recently celebrated his 'diamond jubilee’ as a radio amateur, having been licensed in 1924. His many contributions to the hobby has been unique including the running with his wife Lucy of the RSGB QSL Bureau for many years and GB2RS newsreader for the London weekly news bulletin (Sundays 9a.m. 3650 kHz) on almost 1300 occasions. To mark his jubilee he staged a fascinating exhibition of equipment, valves and components, spanning six decades. Despite his early start the callsign G2MI has not always been his; initially it was issued about 1921 to the McMichael Company. His son and grandchildren are licensed amateurs.

In April 1982, I made brief reference to these columns to the book 'Armement Clandestine' by Pierre Lorain, F2WL as an excellent source of information on the clandestine radio equipment and techniques used by SOE and British Intelligence, including also the excellent sets made by Polish engineers in England for both these rival organizations. An English adaption and translation of this book, with the collaboration of David Kahn, has now been published in the UK under the title 'Secret Warfare' (Orbis Publishing Ltd, 185 pages, $£ 7,99$). For those following the current eight-part BBC-1 documentary series on SOE this book deserves to be regarded as a classical source of additional technical information. It includes many of the author's painstakingly accurate drawings covering not only radio but also weapons, aircraft and the development of agents' 'onetime' ciphers. While the emphasis is on SOE's work, the book makes it clear that Intelligence similarly had many radio links with occupied Europe, though its procedures
tended to be less complex and technically the equipment was often more crude, than the later designs by John Brown, G3EUR for SOE.

In brief

The DTI on September 10 formally published details of the new 'schecule' to the UK amateur licence, including frequency bands available to the amateur service and the amateur satellite service, their status, carrier and p.e.p. power limits and permitted modes of transmission, together with lengthy series of associated footnotes. However, the details remain basically as announced informally many months ago... 1985 president of the RSGB will be Joan Heathershaw, G4CHH. She will be the Society's first 'xyl' president... One of the few tv plays based on amateur radio, 'CQ' by Paula Milne with technical guidance from Peter Marcham, G3YXZ, was due to be transmitted on Channel 4 on October 11... The British Amateur Television Club has recently published a useful 12-page booklet 'Introducing Amateur Television' by John L. Wood, G3YQC, providing a short guide to fast-scan and slow-scan amateur television, a glossary of terms and abreviations, frequencies and the constitution of the BATC. It was issued to all new members. Membership secretary is Dave Lawton, Grenehurst, Pinewood Road, High Wycombe, Bucks HP12 4DD... The address of Rev. George Dobbs, G3RJV, energetic honarary secretary of the G-QRP Club, devoted to low-power communication, has changed following his appointment as vicar of St Aidan's Church, Sudden: St Aidan's Vicarage, 498 Manchester Road, Rochdale, Lancs 0L11 3HE (Rochdale 31812)... The 'Wireless Museum' (curator Douglas Byrne, G3KPO) at Arreton Manor, near Newport, Isle of Wight, has changed its name to 'The National Wireless and Communications Museum' and is seeking charitable status. An exhibition station, GB2WM, operates regularly on 3.5 and $7 \mathrm{MHz} \ldots$ The DTI has produced special application forms for amateurs wishing to operate between 24.05 and 24.25 GHz ...

Digitaltuner control

Concluding the design of a circuit for digitally tuning Varicap-tuned f.m. modules.

In the first part of the article in September, the digital derivation of the control voltage and preset memory were outlined. The frequency display remains and constructional data is presented.

Digital readout

If it is assumed that the tuner responds linearly to changes in direct control voltage, a cheap digital read out can be accomplished by conversion of the 8 bit binary output from the counters into four digit led display information as follows:

The eight bits of data are fed as addresses $\mathrm{A}_{2}-\mathrm{A}_{9}$ to an eprom. Address A_{0} and A_{1} are derived from the first section of the 14518 counter and will therefore cycle

$$
\begin{array}{ll}
\mathrm{A}_{1} & \mathrm{~A}_{0} \\
0 & 0 \\
0 & 1 \\
1 & 0 \\
1 & 1 \\
\text { etc. }
\end{array}
$$

This has the effect, when combined with the binary output, of addressing four unique locations for each one of the 256 counter steps. The data associated with each of these addresses is split in two. The low four bits $\left(\mathrm{D}_{0}-\mathrm{D}_{3}\right)$ are used as digit select drivers via transistors and cycle as follows

D_{3}	D_{2}	D_{1}	D_{0}
0	0	0	
0	0	1	0
0	1	0	0
1	0	0	0
0	0	0	1
etc.			

The higher four bits $\left(D_{4}-D_{7}\right)$ form the b.c.d. code relevant to that digit and is decoded for a seven segment display. The data is modified to suppress leading zeros on frequencies below 100.0 MHz and to read 108.0 when the counter is between 200 and 255 . Only a sample of the program is given in Fig 4, as the full listing is too long to include.

```
100 PRINT"":INPUT"START ADDRESS";XW
110 DIMAD*(1124)
120 DIMDT$(1124)
130 GDTD440
140 REM**BINARY ROUTINE**
150 IFX-256=>OTHENBE ="1": X=x-256:GOTO1.70
160 B8%="O"
170 IFX-128=>OTHENB7*=" " ": x=x-128:GOTO190
180 B7$="O"
190 IFX-64=>OTHENB6 $="1":X=x-64:GOTO210
200 B6 =="O"
210 IFX-32=>OTHENB5 = ="1": x=x-32:GOTO230
220 B5 ="O"
230 IFX-16=>OTHENB4m="1": x=x-16:GOTO250
240 B4&="O"
250 IFX-8=>OTHENB3 ="1": x=x-8:GOTO270
260 B3 ="O"
270 IFX-4=>OTHENB2*="1": X=x-4:GOTO29O
280 B2&="O"
290 IFX-2=>OTHENB1$="1": X=x-2:GOTO31O
300 B1$="0"
310 IFX-1=>OTHENBO$="1": X=x-1:GOTO330
320 BO末="O"
330 OP$=B8$+B7$+B6$+B5$+B4$+B3$+B2$+B1$+B0$
340 RETURN
350 REM****
360 DEC=O
370 LB=LEN(BIF)
3BO FOR I=1 TO LB
390 LB=LB-1
400 IF MID#(BI#,I,1)="1" THEN DEC=DEC+(2\uparrowLB)
410 NEXT I
420 PRINT DEC
4 3 0 ~ R E T U R N
440 REM**MAIN PROGRAM**
450 A=-1:PRINT"CONVERTING ADDRESSES TO BINARY"
460 FOR I=O TO 255
470 FOR B=O TO 3
480 A=A+1:PRINT"ADDRESS NUMBER ";A,
490 X=1:gOSUB140
SOO ADs(A)=RIGHTE (OPs,B): X=B:GOSUE 140
510 AD$(A)=AD$(A)+RIGHT (OP*,2)
520 PRINTADE (A):NEXT B,I
530 A=-1:PRINT"CONVERTING DATA TO BINARY"
540 FOR I=880 TO 1136
550 1$=STR $(1)
560 IF LEN(IS)<5 THEN I = = O"+I*
570 FOR N=2 TO 5
580 x=VAL(MIDE(I#,N,1))
590 IF I>1080 THEN I =="01080"
600 EOSUB140
610 A=A+1: FRINTA:
620 DT$(A)=RIGHT (OP$,4):PRINTA,DT$(A),
630 X=2\uparrow(N-2)
640 IF I<1000 AND N=2 THEN }\textrm{X}=
650 gOSUB140
660 DT$(A)=DT$(A)+RIGHT$(0P$,4)
670 FRINT FIGHT生(DT (A),4)
6BO NEXT N
690 NEXT I
700 FDRA=0 TO 1023
710 BI$=AD$(A):GOSUB350
7 2 0 ~ P = D E C
730 BI$=DT$(A):GOSUB350
740 Q=DEC
750 FOKEXW+F,0
760 NEXT A
```


by J.N. Darlington

John Darlington joined the RAF in 1961 as a radio apprentice and trained for three years at RAF Locking, followed by a further ten years as a radar technician, during which time he obtained an HNC in electronics.

On leaving the RAF he joined Marconi Radar as a technical author attached to the Sea Wolf missile project. For the last eight years he has held production management posts, having gained a diploma in management studies at the Norwich Management Centre: first with Datron Instruments manufacturing precision digital voltmeters, and lately as works manager of Laserscan Laboratories in Cambridge.

Fig.5. Basic program for production of soft rom.

Table 1.

Linearity of tuning control

$\left.\begin{array}{llll}\begin{array}{l}\text { Tuning } \\ \text { voltage }\end{array} & \begin{array}{l}\text { Measured } \\ \text { (tequency } \\ \text { MHz }\end{array} & \begin{array}{l}\text { Linear } \\ \text { response } \\ \text { MHz }\end{array} & \begin{array}{l}\text { Calculated } \\ \text { response }\end{array} \\ \text { MHz }\end{array}\right\}$

Max error - 0.183% at 96.83 MHz
Table 2.
Frequency meter error

Display frequency	Tuned frequency	$\%$ error
$\mathbf{8 7 . 6}$	88.	$.95 \%$
89.3	89.7	$.44 \%$
90.9	91.2	$.33 \%$
92.2	92.5	$.33 \%$
94.3	94.5	$.2 \%$
95.9	95.97	$.07 \%$
97.6	97.54	$.06 \%$
98.9	98.71	$.2 \%$
99.8	99.6	$.2 \%$
100.9	100.6	$.3 \%$
102.2	101.96	$.23 \%$
103.3	103.2	$.09 \%$
104.0	104.0	0%
105.0	105.5	$.05 \%$
106.1	106.2	$.09 \%$
107.2	107.23	$.03 \%$
107.9	107.8	$.09 \%$

I developed the program using a Commodore 4032, and Fig. 5 gives the Basic listing for the production of a 'soft' rom in one of the empty rom sockets of this machine. The soft rom is then copied on the standard prom copier.

Start address input requires a decimal number response, which may vary from one type of machine to another.

Construction

The layout of the display and control keys is dependent upon individual taste as regards appearance. The main digital section was constructed on a RS Components Eurocard standard board using miniature pvc-covered single strand wire. This method is quick, easy and reliable and ideally suited to one-offs. The display used is another RS component and all keys are singlepole press-to-make except the up/down switch, which is a cen-tre-biased, 2 -pole, 2 -way toggle type.

Both 15 V and 5 V power supplies need to be regulated and the resistors around the 3140 need to be 1% metal film types. The R-2R ladder resistors should also be metal film, 1% or better, expecially in sections 2 to 6 . The overall linearity will depend upon the tolerance and ratio matching of these resistors.

Calibration consists of operating the up/down keys to obtain 88.0 MHz or thereabouts and adjusting RV_{2} for $+2 \mathrm{~V} . \mathrm{RV}_{1}$ is adjusted with a frequency of 108.0 MHz selected to give around 11 volts (assumes tuner range is 2 - 11 V - tuners outside this range may require different value resistors in the op-amp circuit). Finer adjustments are carried out with either a signal generator or on stations at the bottom and top end of the band using RV_{2} and $R V_{1}$ respectively (if a.f.c. is switchable it should be off).

Fig.4. Eprom sample listing for digital readout

Fig.6. Local oscillator tuning linearity of Larsholt 7254 module

Fig.7. Frequency meter performance.

ENERGY
 TRANSFER

Once more Wireless World gives space to Ivor Catt's views. on EM theory. It would help his efforts to overthrow the current position (the 'establishment view') if he showed more evidence that he knew what it was.

His article in the September issue of WW contains at least six major errors, any one of which is sufficient to destroy his thesis.

- Sinusoids and pulses are convenient ways of analysing waves mathematicly, be they electric, water or acoustic. The 'mistake’ attributed Einstein and 'the modern physics community' just cannot exist. - He constantly confuses impedance and resistance, leaving his transmission line analysis without value. EM energy is turned into heat by a resistance. When flowing in a transmission line or free space the energy is not changed into heat by the impedance but can be fully recovered as electrical energy. It is rubbish to say that modern physics ignores the impedance of free space, antenna theory and practice is based on it.
- He persists with his view that modern physics somehow requires electric charge to move with the speed of light in conductors. This is nonsense. It is helpful to regard a conductor as a pipe full of water, water flows in one end and out the other when pressure is applied. Naturally water flow is not the same as charge flow but those 'disciplined in the art' do not think, as Mr Catt would have us believe, that electrons have to rattle down some empty tube of a conductor, filling it up at the speed of light. A conductor already has lots of free electrons in it, all ready to start moving under the influence of a passing wave, it is this that distinguishes it from an insulator.
- He carries his conception of a capacitor as transmission line only so far and fails to complete the analysis. He shows it as an unterminated transmission line, but an open line is always terminated by free space with an approximate impedance of 377 ohms so every time a pulse travels down the line some
energy is radiated and some reflected. Ivor Catt's mistake is to imagine that there can be some sort of permanent wave oscillating back and forth. Capacitors (and inductors) are only approximations, there can be no exact analysis of a capacitor without including inductive, resistive and transmission line effects. It is worth noting that it is a common v.h.f. and u.h.f. technique to use a transmission line to approximate a capacitor or an inductor.
D.J.O. 'Reilly

Antwerp
Belgium

Reference the "Catt Anomaly", there is no anomaly to thoroughgoing Practising Electrician who really believes in charges, currents and fields, since to him it is obvious that a conductor is not just an empty tube. Space does not guide a TEM wave, and intrinsic semiconductors do not either and suffer from space charge effects etc. Conductors are materials that have a high density of mobile carriers, far in excess of the induced charge that moves at "the speed of light". There is no reason why a charge shoukd not move at the speed of light or even more. A charge is a local imbalance between the two polarities of particle. An electric current is the slow drift of the mobile ones. Consequently, where the drift velocity changes, there is a charge build up. The location of a charge can therefore be changed at any geometrical velocity. (A location is neither mass nor signal - thus keeping relativity happy.) Since the drifts are caused by the penetration of the external fields of the TEM wave, the actual velocity with which the drifts rearrange themselves is limited to the phase velocity of the TEM wave with the prevailing boundary conditions. In the case of a step pulse the drifting region elongates at the propagation velocity (nominally c), whilst charge pours into the moving transition region where the drifting carriers "collide" with the stationary ones. As it sweeps along, it leaves the surplus charge behind as a region of enhancement. Where does the charge come from? Nowhere. It was there all the
time. All that has happened is a slight compression of the carrier density, made up at the driving end by the earth return current. D.H. Potter

Axminster
Devon

Ivor Catt implies yet again that it is impossible for those "disciplined in the art" of conventional electromagnetic theory to understand the propagation of a current-voltage pulse or step along a twin conductor transmission line. Specifically he implies that the rapid progress of the two electrically charged zones along the conductors, terminating the electric lines of force looped between them, cannot be accounted for ("the Catt anomaly"), since the drift velocity of conduction electrons in metals is known to be small compared with the speed of light.

The conductors and the surrounding fields represent intimately coupled systems, both essential in the type of transmission system described by Catt. According to the elementary theory of metals the conduction electrons in a circuit behave much as the molecules of a gas contained in a loop of pipe. The current source, such as a cell, behaves as a circulation pump for the gas, sucking electrons in at the positive pole and ejecting them at the negative pole. The metal also contains positive ions, equivalent to obstructions in the pipe, and due to the associated frictional effects (equivalent to resistivity on the metal) the gas can indeed only be circulated at comparatively low speed. Catt continually overlooks the fact that variations in electron gas pressure and density generated by the electron pump may be propagated much faster, in the same way as sound propagates through air or a train of coupled wagons quickly jerk successively into motion when the locomotive pushes or pulls them. The zone with increased density generated, say, by a compression stroke of a pump extends to a range equal to the velocity of sound multiplied by the stroke duration. It is this principle which allows a loudspeaker to generate wavelengths much longer than the amplitude of vibration of the
cone itself. The combination of the rapidly moving fluctuations in electron gas density and the background of positive ion charge yields the necessary, rapidly moving positively or negatively charged zones in the metal. The analogy with sound propagation is not quite exact, since the extra charge prefers to collect on the surface of the metal to reduce energy, much as cream floats to the surface of milk. Also, the electromagnetic interaction between the electrons equivalent to gas pressure or wagons colliding with each other, is transported principally through the surrounding dielectric medium into which the electromagnetic fields penetrate deeply in lines with typical geometry. In the gas filled pipe analogy this is equivalent to the transport of a signal via the material of the pipe itself, which one generally seeks to minimize in practical acoustics. The speed of propagation of electron density variations is accordingly limited by the speed, and in typical lines the relevant speed is that for the dielectric medium. As Catt states, the energy ultimately delivered to the load is most economically regarded as transported by the fields, the conductors acting essentially as a guide for the energy. Contrary to Catt's claim, libraries wellused by "the modern physics community" contain many texts on the transient response of transmission lines. The authors naturally assume that elementary notions of wave generation etc. were wellassimilated by the reader at an early age, and make little reference to very basic ideas. N. Morton Stockport

I would like to make two comments on Mr Catt's article on energy transfer.

First, I remember being taught as an undergraduate about the passage of stepwaves and pulses along a transmission line, as well as sinewaves. That was forty years ago, long before t.t.l. and 气.c.l. were dreamed of. Yet we were interested in pulses even in those days (remember when radar was still called radiolocation?). So perhaps it would be unwise to assume that everybody else has been taught

Fig. 1

as badly as, apparently, was Mr Catt.

Second, the Catt anomaly, the details of what happens when a step-wave passes along a transmission line, need more discussion than perhaps Mr Catt felt able to give them in a short article. The figure shows a stepwave passing from left to right. In (a) it has not yet reached two electrons A and B in the earthy wire, which are still at rest a distance d apart. The electric field at the wavefront is bowed outwards, convex in the direction of motion (remember that "lines of force" are supposed to repel each other sideways). Hence at the surfaces of the wires there are components of the field along the wires. Therefore when the wavefront passes electron A the latter experiences a momentary force (an impulse) which sets it moving relatively slowly drifting - along the wire. In (b) is shown the situation when the wavefront has passed A, but has not yet reached B. On a truly loss-free system A does not need any further force to keep it moving, so behind the wavefront the electric field is strictly normal to the wires. The important point to notice is that the distance between A and B is decreasing.

In (c) the wavefront has passed B also. B has been sét moving, with the same velocity as A, so the pair of electrons drift along together, with a constant but smaller distance d' between them. Applying this result to all electrons in the earthy wire it appears that the moving electrons everywhere behind the wavefront are slightly more crowded together than when they are at rest.

Hence in unit length of the wire there is a larger number of negatively charged electrons than the number of positively charged ions in the parent atoms fixed in the wire. That is, the wire has (as expected) acquired a net negative charge on which the "lines of force" terminate. Conversely, in the live wire the passage of the wavefront causes electrons such as C and D to drift to the left, with an increase in the distance between them. In this wire the mobile (conduction) electrons are less crowded together than normal, and there is a net positive charge from which the "lines of force" originate. To sum up, if in a wire (any wire) the flow of (electron) current is in the same direction as the flow of energy then the electrons are more crowded together than normal; if in the opposite direction, the electrons are less crowded together. This is a detail in the description of the flow of current which admittedly few text books mention.
Nowhere in the foregoing argument has it been demanded that any electron should move with the velocity of light; yet the accumulation of charges, positive and negative, keeps pace with the travelling wavefront. This is because the accumulation are formed by the wavefront itself, from the electrons which are already present at the wavefront. The Catt anomaly does not exist, so any arguments which are adduced to 'explain' it are unnecessary.
In practice the crowding is, relatively, very small. Consider an air-spaced transmission line of characteristic impedance
50Ω, so that its capacitance is (very nearly) $20 \mathrm{pF} / \mathrm{ft}$. For a step wave of amplitude 1 V the net charges, negative and positive, are $20 \mathrm{pC} / \mathrm{ft}$.

Dividing this by the charge on an electron, $1.6 \times 10^{-19} \mathrm{C}$, we find that number of excess electronics (or holes) is $1.25 \times 10^{8} / \mathrm{ft}$. But this is small compared with the number of conduction electrons which in a metal is about 10^{23} per cc. If the wire of which the line is made is 1 mm in diameter its volume is $0.24 \mathrm{cc} / \mathrm{ft}$, so the relative excess or deficit is $\left(1.25 \times 10^{8}\right)$ /
$\left(0.24 \times 10^{23}\right)=5.2 \times 10^{-15}$. This number is so small that Mr Catt, and possibly many other people, may be forgiven for overlooking it.

P.L. Taylor

Marple
Chehire

Ivor Catt seems to have repeated a misconception about what happens in transmission lines.
Fig. 2 shows the state of affairs in a transmission line after a voltage step has been applied to its left end. The switch was closed at time t_{0}, and after a further time t, the wavefront has advanced a distance t, c being the speed of TEM propagation in the dielectric. The left of the wavefront there is an excess of electrons on the lower conductor and a shortage on the top conductor. The right of the wavefront there is no net charge on the conductors.
Concentrating on the lower conductor, Catt wants to know where the excess of electrons came from. "Not from somewhere on the left", he says, "because such charge would have to travel at the speed of light in a vacuum",
and that this "is obvious to the untutored mind." It is fairly obvious to my untutored mind that somewhere on the left is exactly where the charge came from, that there is absolutely no need for it to travel at anything like to speed of light, and that Catt is wrong.

Perhaps I can illustrate by way of analogy. Imagine a row of coins, all 25 mm in diameter, and each separated from the next by 1 mm . I begin to push the leftmost coin to the right at 1 mm per second. After one second it touches the next coin and this begins to move. After another second this bumps into the third coin. This contact happens 26 mm to the right of the first, one second later. After each second elapses, another contact occurs 26 mm to the right of the previous one. We can imagine this sequence of contacts to be a "wavefront" running through the coins at 26 mm per second - that is 26 times the speed of the coins themselves. To the right of the wavefront there is one coin every 26 mm , but to the left there is a higher "coin density" of one every 25 mm .

Returning to the bottom conductor, electrons to the right of the wavefront have the "neutral" density D, but to the left they have a slightly excess density and are drifting slowly to the right. The wavefront itself is moving at the speed of light. Obviously electrons do not "bump into" one another like coins, but the principle is the same. To a first approximation the ratio of c to v is the same as the ratio of D to λ.

In a real transmission line the "neutral" electron density D depends on the geometry of the line and the type of conductor material used. V and λ also depend on these factors, and on

Fig. 2

the size of the voltage step applied as well. The velocity of propagation of the wavefront though, depends only on the dielectric and has something pretty fundamental about it which to my mind gives credence to the idea that energy flows through the "insulator", and not the "conductor" which is in fact a barrier to energy flow. After all, metals are shiny because light bounces off them, and I can't ever remember seeing the wires that carry the sun's energy through space to us. I wish Catt would not discredit such (at least potentially) good ideas by throwing in duds of this own.
One final point. On page 47 Catt says "The fact that parallel voltage planes, when entered at a point, present a resistive, not reactive, impedance, was for me an important breakthrough". Really? If a disturbance is applied at a point in such a pair of planes, a circular wavefront will propagate away from the point. As it moves out, its size will increase, and the impedance of the planes to the wavefront will fall.
As a result of this, energy will be reflected back to the original point of disturbance. This continuous reflection process will present to the disturbance an inductive impedance won't it?
Alan Robinson
London

BAIRD

Once again the old Baird controversy has been set in motion, this time by Pat Hawker, G3VA, in the June Communications. Since its foundation in 1975 the Narrow Bandwidth TV Association has seriously tried to set the record straight by building Baird-style equipment and demonstrating its limitations and possibilities, so that people might judge the issue for themselves rather than be swayed this way or that by rhetoric.
Mr Hawker complains that Baird's 30 -line system contained 'no real sync. signals' and was therefore barely 'true television'. Poor John Baird! Not so long ago his claim to be the first demonstator of 'true television' rested on his fulfilment of the three basic conditions of the 'true' art: it
must show pictures of real subjects (not paper or celluloid images); the pictures must be capable of motion (not 'frozen' as in facsimile); the full scale of grey tones must be present (no mere outlines or silhouettes). No others conditions such as colour or 3D were demanded (these took Baird another two years). Now Mr Hawker introduces a fourth requirement: there must be 'real' sync. signals. Since the 'black bar' employed by Baird was totally independent of the picture content, it is difficult ot understand how its 'unreality' can be shown: certainly an oscilloscope display would favour Baird rather than Hawker. Baird's contract with the BBC demanded a signal of composite video (to use the modern term) and this he supplied to their satisfaction. He was thus, at the time of the Baird Television, well ahead of all his continental and American rivals, none of whom had serious attacked this problem, preferring to synchronize pictures via a land line, a separate carrier frequency, or just a shared a.c. mains supply. It is a flattering tribute to Baird that all the world's present-day tv systems employ this same black bar, albeit intensified to facilitate separation, and extended to swallow up almost a fifth of the picture area against Baird's modest five to ten per cent.
The cog-wheel sync device which Baird employed, and which appears to cause Mr Hawker to frown, was an elegant device without rubbing surfaces, wholly silent in operation, and the only part of a Televisor likely to work perfectly today after fifty years in a cellar. Unlike a phonic wheel it had pointed teeth to provide (by the time-window principle) a degree of immunity to false pulses near the middle of the picture. Baird's early critics "proved" the unfeasability of mechanical tv by showing that, for success, the receiver would have to keep in step with the transmitter to an angular accuracy of better than one part in a thousand over the period of an hour or so, a clearly impossible feat. Baird's success can be judged from the fact that the long time exposures needed to produce photos of the dim neon-lamp
pictures frequently yielded images without any trace of blurring.

In truth, synchronization of the 30 -line pictures was often poor over long transmission distances, but this arose from the primitive state of pulseseparating techniques at the time and not from any fault of the device itself. This remains a landmark in the history of tv technology, demonstrating in a single imaginative leap both the feasibility of the composite video principle and the huge potentialities of motor control through error detection and feedback. As soon as the problems of sync separation were partly solved, mechanical receivers with their built-in 'flywheel' effect were able to show their surperiority over their electronic counterparts, a lead which they maintained up to 1939 and the outbreak of war. The gap was not closed until long after the resumption of transmissions, following the general adoption of 'flywheel sync' an ingenious electronic analogue of the mechanical system.
But Mr Hawker goes further than simply denying that Baird's sync pulses were sync pulses. He claims that if sync pulses of the kind he prefers had been present, they would have been "virtually impossible to transmit on medium waves". Many of our Association members use the $7: 3$ composite video favoured by the present commercial operators. A number of carrier frequencies have been used experimentally for NBTV signals and no difficulties have ever been reported in conveying the xync information. I can't quote them all, but the highest is 440 MHz and the lowest is 10 kHz . Clearly, Mr Hawker knows something special about the medium waves that the rest of us don't!

What is it that animates the Baird debunkers who write from time to time in these pages? He had no public school background, distrusted the rich, used dockland invective when provoked, and acquired the bulk of his technical knowledge informally. Surely these things should count for little nowadays. Like many creative people he tended to abandon his brain-children soon after birth and indulges in an instant new
pregnancy. This must have been hard on his assistants but doesn't explain the wider venom.

The answer may lie in his image as the small man challenging the "superior" knowledge of the broadcasting establishment and the big firms, a dangerous though, perhaps.
Or is it because "real" television must be wholly electronic and mechanical tv was a dead end that wasted everybody's time? If so, then Baird must be condemned, not alone, but in the company of Jenkins, Alexanderson, Mihaly, Bartelemy, Traub, and many others. Besides, the modern spiral-scan video tape recorder, a wonderful example of precision engineering applied to mechanical tv could not be allowed to exist, and the Dwight Canvendish 1250 -line colour tv system currently being developed (with rotating mirrors Baird would have been proud of) must be dismissed as an activity conducted by fools.
Let me end on a constructive note by suggesting a way in which those who regard Baird's 30 -line system as no achievement worthy of mention may do something concrete to prove their point. Let them band together to produce and demonstrate tv pictures of their own (for comparison by a neutral arbiter) with those produced by Baird. They may use any number of scanning lines they wish, and so that the contest may err on the side of generosity, they may make use of an additional fifty years of $t v$ technology. The only strict condition they must observe is that the signal must not exceed 9 kHz in bandwidth, the restriction imposed upon Baird by the broadcasting authorities when they refused him access to any BBC short wave transmitter (with a more generous bandwidth) and so brought about the medium wave experiments.

I look forward eagerly to viewing the offering of any courageous challenger, but secretly fear that this letter will be the prelude to a long and significant silence.
D.B. Pitt

Chairman, NBTVA

ISOLATED VIDEO DRIVER

With reference to Mr Mclay's video driver circuit (page 49,July issue), I feel a warning ought to be issued.
The 6 N 139 is rated at 3000 V d.c. isolation. This is regarded by UL as adequate for 220 V a.c. but as far as I know (and I admit that I may be wrong) this device is not approved for isolation from UK 240 V a.c. mains.
Hewlett Packard describe the device as functioning to 1 Mbit/ s , and 5 MHz sounds a bit optimistic. I would respectfully suggest that the amount of effort and cost required to obtain and fit a suitable isolation transformer to the set would probably be the same or less, and result in no curtailment of bandwidth. It may perhaps be felt that the difference between 220 V a.c. and 240 V is trivial, but an informed insurance company investigator would not take that view if a fire originated in the equipment, however caused. The increasing tendency of manufacturers to offer isolators rated at 7.5 or even 10 kV in the European market also testifies to the importance of the matter.
M.D. Bacon

Taunton
Somerset

ELECTRIC CHARGEFROM A RADIO WAVE

I refer to correspondence concerning the article 'How to make electric charge from a radio wave' ($W W$, August 1983). In this, Professor Jennison contended that e-m energy propagating in a re-entrant slow wave structure (in this case a ring transmission line having an unusually low group velocity), can be brought to rest with reference to the laboratory frame by physical moving (rotating), the transmission line.

Several correspondents, e.g. Chris Paton (WW, May 1984), have likened the system to a polyphase machine stator which is commonly believed to produce a rotating magnetic field. No so. A polyphase stator contrives the vector addition of several time-varying fields produced by
several spatially distributed though static electromagnets. This merely gives the impression and effect of a rotating field but is not the same as a travelling continuum of e-m energy propagating in a transmission line.

Regarding the argument that e-m energy propagating in waveguide is independent of any physical motion of the guide, I suggest that if an open ended, radiating waveguide were moved back and forth, the radiated signal received at a distance would surely exhibit the appropriate Doppler modulation. How then can it be said that the propagation velocity in the guide (relative to the receiver), is unaffected by motion of the guide itself?
M. G. T. Hewlett

Midhurst
West Sussex

PRECISION PREAMPLIFIER

Mr Self's reply (April, 1984) to my earlier letter concerning his precision preamplifier struck me as somewhat overblown, containing as it does some very unsubtle suggestions as to my competence, and I fear, attempting to brand me as that most irrational of species, the hi-fi loonie. Some persons, having been on the receiving end of such as outburst might even regard his remarks as insulting, but I prefer to take a more Christian view.

I note that Mr Self is of the Roger Bacon school of thought, wherein scientific observations take precedence over Aristoteleian dogma. This is a noble trait and much to be revered, although it becomes incumbent upon the experimenter to take such observations as are necessary to define a whole process.
After making these observations, it is of some use when informing others of the results to include the parameters of the tests. Thus, I cannot accept that any old electrolytic capacitor produces less than 0.001% distortion when I am not told of the voltage range this encompasses nor the corresponding frequencies. Let us hope that manufacturers attempting to reduce 3rd harmonic distortion in electrolytic capacitors (such as Blackgate and Nicholson in

Japan) can be persuaded by Mr Self's measurements to abandon their R and D efforts as a complete waste of time and energy. Everything is apparently perfect already!

Dielectric absorption effects and induced bias in capacitors are, I quite realize, low-
frequency effects because of the RC time constants employed for coupling applications. But at I.f. the effects do exist, since a voltage drop does appear across the capacitor, and the d.c. voltages induced then place an envelope delay distortion on the signal as they decay through the net impedance to earth. I would like unwarped records and perfectly set up arm/cartridge combinations as much as the next man, but since l.f. bias is independent of capacitor type and hence unavoidable, I prefer to use film coupling capacitors for their low d.a. (and low tan delta at I.f.). The poor old electrolytic, polar or not, sitting there with its electrolyte molecules in a jumble at zero bias, is a perfect candidate for a good bit of dielectric absorption from the occasional passing l.f. 'transient', and the polar electrolytic will be biased positively, or in reverse, all leading to uncertain characteristics,(1).These effects cannot be detected by audiofrequency sine waves, but do exist in practice.
As for the effects of poor contact resistance, if is a sheer waste of time to band two contacts together and measure the result immediately. Nobody disputes that the initial contact is good. Wait six months and the effect may occur as contact pressures weaken and the surfaces tarnish, silver being an obvious example, which is why a decent switch using silver or silver alloy contacts is made to be self wiping. Tamishing is also the reason why Cromolin and other insulating lubricants were developed to keep out atmospheric pollutants on contacts.
I really feel that Mr Self is deliberately missing the point on contacts and the best of luck to him in his rusty nail world! For the modest extra expense, I once again reiterate my opinion that a gold flashing on RCA phono plugs is more than worthwhile as it simply does not tarnish (And I'm not going to argue about how pure the gold
should be, etc, etc. That point has been laboured over and over again in the press.)
Finally, the hoary old argument about the music signal having been processed 15 ways to Sunday before it ever gets to the record is trotted out by Mr Self. So what? Is this an argument for more processing and switches as a paliative, or do two wrongs magically create a right?
I do not know how involved most readers of Wireless World are in high-fidelity sound reproduction, nor am I aware of their general sensibilities. Consequently, I do not want to appear to be preaching; but a great many of the points in dispute here have been are are being addressed in the hi-fi press. I would particularly commend to WW readers a series of articles running in Hi Fi News, on the design of a preamplifier by one B.J. Duncan, which began in the May 1984 issue. This design, insofar as it has been revealed at present (there are five monthly articles altogether) appears to be a technically tour-de-force, in my opinion, and provides a ready, timely, and detailed approach to the proper selection and use of components for a real world design. This is not to castigate Mr Self's design as such - it is elegant. I just want to have it as nice as possible when I make mine.
W.M.B. Armstrong

Halifax,
N.S.

PAUSAID

I wonder whether you are aware that, with trivial modifications, the 'Pausaid' (May 1984 WW) can become a useful 'DJ Killer'? i.e. a device which will silence the chat in between musical items, and though I don't 'of course' speak from personal experience, could be arranged to provide, via a solenoid recorder, continuous music recordings.
R.G. Young

Newhaven
ESussex

Letters

Letters for publication are always welcome. Those that are short and to the point stand the best chance of publication since space for these columns is limited.

Tape timing circuit

Real-time tape clock, independent of tape-recorder circuitry and needing only mechanical modifications.

This circuit was designed as part of a digital tape clock/counter and can provide the correct 'clock' and 'up/down' signals for several counter i.cs currently on the market. It is completely independent of the tape recorder's own circuitry and the only modification is purely mechanical, when the 'interface' roller, timing disc and two opto switches are attached to the deck near the tape path.

The schmitt triggers of IC_{1} in Fig. 1 provide noise-free pulses with fast rising and falling edges and secure trouble-free operation of both control logic and frequency divider.

When A and B inputs are both low, the circuit is internally reset and pin 10 of IC_{4} goes low. The circuit then detects which input first goes high. If A goes high first, the UP/DOWN output goes high. If B, however, goes high first, the UP/DOWN output goes low. When both A and B go high, a negative clock signal is produced at pin 11 of IC_{2}. The positive clock signal is obtained at pin 10 of IC_{2} and fed to the dual counter IC_{6},
where the clock signal frequency is divided by 3 , by 2 and again by 2 at the appropriate times to produce 1 clock pulse per second, dependent on tape speed. When A or B goes low after both inputs have been high, no change is made at the UP/DOWN output. As long as the tape is moving in the same direction, the UP/ DOWN signal is therefore a direct voltage, changing only if the tape changes direction. The connection to the phototransistors determines which direction is named 'forward' or 'up'. The opto switch feeding input A should in any case be the one changing state first as the timing disc rotates during recording and playback. The truth table is shown in Fig. 2. No RC time constant is included in the circuit, and its performance is not influenced by the rotation speed of the timing disc. I have in vain tried to fool it.

Mr Per C. Andersen in his April, 1983 article has described the near perfect clock-to-tape interface' roller. Because I have no
access to a precision lathe, I had to try the alternative of Fig.3. I bought from Tandberg a spare pressure roller for the TD20A tape recorder. It has an outer diameter of 25.4 mm and requires a 4 mm shaft. (A steel base plate with the 4 mm steel shaft can also be supplied.) By attaching the roller to an electric drill and carefully applying a fine grade sand paper, the diameter was reduced to 25.2 mm (25.1995 mm). With a small hacksaw blade, three parallel grooves were made to improve contact between tape and roller, especially during fast wind/ rewind. The timing disc in Fig. 4, with five black sectors, was attached directly to the roller. A 4 mm shaft and a small p.c.b. carrying the two optical switches were fastened to a base plate.

The roller has a sintered bronze bush bearing, and even though its friction is higher than that of ball bearings, it has appeared to be sufficiently low, and only light pressure against the tape has been necessary.

Fig. 2. Truth table for UP/DOWN and clock output of Fig.1. circuit

Fig.1. Circuit diagram of the timer.

Fig.3. Clock-to-tape 'interface' mechanism.

Fig.6. One form of counting and display circuit, using

CMOS.

Because different i.r. emitters and detectors have different power outputs and sensitivities, it may be necessary to change the value (5 k 6) of R_{2} and R_{3}. The opto switches should be positioned so near each other that one sector of
the timing disc is able to cover both optical paths at the same time. In fact, if discrete emitters and detectors are used, only one i.r. emitter is necessary for the two phototransistors.

The p.c. board shown in Fig. 5 carries all the components except the opto switches and the (optional) 3 -way switch.

The described circuit has been used with two minutes and seconds counters, one with four 4510 cmos b.c.d. counters and four 45117 -segment drivers as in Fig.6, the other being a very simple construction using Intersil's ICM7217C chip shown in Fig. 7. The Intersil device is easy to use and has several optional facilities built in, but it is definitely not cheap, and it may appear to be difficult to find a distributor who has it on stock. The ' 4510 ' counter counts to 9959, while the ICM7217C counts to 5959. (ICM7217 and ICM7217A are decade counters counting to 9999, while ICM7217B (common anode) and ICM7217C (common cathode) are intended for real time counting, counting to 5959.)

Positioning of the two opto switches providing 90° phase difference

Fig.4. Timing disc.

One 4510 and 4511 i.cs, together with 7 -segment display and their associated components were soldered to their small 'counter module' p.c.board, seen in Fig. 8, the 7 -segment display being attached by the aid of another small board. Four counter modules were then attached to a common bus board. The i.cs containing the gates necessary for correct seconds and minutes counting were also soldered to a separate small p.c.b. but could

Fig.5. Printed-circuit board layout for circuit of Fig.1.

just as well be placed on the bus board, which can easily be made from a piece of Veroboard. The diodes and resistor which provide zero blanking of the $10 \times$ minutes counter can be soldered to the copper side of that module. A few additional components on the bus board provide automatic resetting of the counters at power switch-on.

Standard cmos i.cs can operate at power supply voltages from 3 to 15 (or 12) volts and are very flexible to use and not easy to destroy. If supply voltages other than the 5 V indicated are used, the
current limiting resistors to the displays should be chosen so that power dissipation limits of either the 4511 i.cs or the displays are not exceeded and the p.s.u. is not overloaded.

References

1. Wireless World, April 1983, p.58: 'A digital tape clock'
2. Wireless World, August 1983, p.49: 'Letters to the editor'.
3. Intersil Data Book, 1981, pp 6-55 to 6-66: 'ICM7217 Series, ICM7227 Series 4 digit c-mos up/down counter/display driv4. R
4. RCA Cos/Mos Integrated Circuits Databook, p.628: 'ICAN-6346: Applications of the RCA-CD4093B COS/MOS Schmitt the RCA

Fig. 7. Alternative to counter of Fig.4, using intersil chip.

Fig.8. Circuit-board layout for CMOS circuit of Fig.7. Four such boards are needed.

LITERATURE RECEIVED

A new products Update from
Electroplan reflects additions to their ranges of test and measurement equipment. Included are multimeters from Fluke and Avo, a GPIB
Multifunction calibrator from Time, function generators by Wavetek and Wayne Kerr component bridges. Microcomputer equipment is also included with the Hewlett Packard HP-150, data acquisition boards for the IBM PC, and memory expansion cards for the same computer. To these are added communications and interfacing products for
Microcomputers. Electroplan Ltd, POBox 19, Orchard Road, Royston, Herts SG85HH. EWW 250

Not only do Verospeed have a wide range of components, they also supply technical publications and have produced a brochure to prove it. These include the TI Data Books and user guides and the 'Understanding' series from Learning Centre
Publications. Verospeed, Stanstead Road, Boyatt Wood, Eastleigh, Hants SO5 4ZY. EWW 251

For data transmission speeds up to 2400 bit/s the Type 2424 full duplex modem is available from Thom EMI Datatech and is described fully in a brochure. Suitable for two-wire, dialup and leased line applications, the V22-type modem uses a number of microprocessors which enables the inclusion of many 'advanced' features, which include autodialling, an equaliser and a network test system that allows remote testing, even through a multiplexer connection. For telephone lines with poor line quality the modem can automatically reduce its speed to 1200bit/s. Data Communications, Thom EMI Datatech, Spur Road, Feltham, Middlesex. EWW 252

A shortform catalogue has been intoduced by Analog Devices which lists all the products concerned with angular and linear measurement. The catalogue contains enough information to be able to specify a product. In particular it lists the IS60 angular resolver which may be used as an alternative to the absolute shaft encoder. Analog Devices Ltd,

Menory Devices Division, Central Avenue, East Molesey, Surrey KT8 OSN. EWW 253
Copies of the PAL Handbook, from Monolithic Memories, are now available. A comprehensive guide to the use of programmable array logic, the book contains the latest specifications, design concepts and product application together with reprints of articles relating to p.a.l. usage and the testing of p.a.l. circuits. Further information from Microlog Ltd, Elizabeth House, Duke Street, Woking, Surrey GU21 5BA. EWW 254

An extensive range of a.c.-d.c. converters as produced by Gardners who have issued a leaflet describing them. The Dilcon range are in p.c.b.mounting form and significant features include single or dual outputs, minimum e.m.i. low power loss giving efficiencies of up to 70%, regulated and unregulated versions with power ratings up to 1.5 W and physically and electrically interchangable with most rival
imported versions of these British products. Gardners Transformers Ltd, Christchurch, Dorset BH23 3PN. EWW 255

Benchware is the term used by STC to describe their range of production tools and materials which are illustrated in the latest edition of their Benchware Book. Adhesives, heatshrink tubing, cable markers and tapes are included for the first time as are a variety of soldering equipment. Also included is a wide range of batteries. STC Electrical Services, Edinburgh Way, Harlow Essex CM20 2DF. EWW 256

If there is anything measureable in f.m. radio and television equipment then it seems that Rohde and Schwarz has devised an instrument to measure it. A vast range of such equipment is described in a hefty book, Rigs and recipes, which is obtainable from them, Rohde and Schwarz (UK) Ltd, Roebuck Road, Chessington, Surrey KT9 1LP EWW 257

Cad techniques are used in the speedy design of p.c.bs at Circuit Consulants (Norwich) Ltd, Hurricane Way, Norwich NR6 6HU. They have started a 'flexible' system of paying for the designs at different prices depending on the urgency of the job. It is possible to name your own price and then be told when to expect delivery! This is in addition to the company's normal and Superfast services.

EWW 205

LOW COST ACOUSTIC MODEM

At "half the cost of any other modem available", the Protek 1200 is compatible with any RS232/423 computer and provides a $1200 / 75$ baud link to Prestel or similar viewdata systems and a 1200/1200 baud half-duplex link for computer-to-computer communication. The unit is battery-driven and acoustically couped to the telephone handset. Acoustic coupling has been criticised for being subject to interference from external noise, but the Protek device has been designed to exclude such noise. The retail price for this BT approved modem is $£ 59.95$ inclusive but an additional interface pack is necessary for specific computers. For example, the BBC computer pack for $£ 14.95$ includes a hook-up lead and the software provided on cassette; the Sinclair Spectrum needs an RS232 interface box and the interface pack costs $£ 24.95$. Interfaces are ready for these computers and the Commodore 64 and are being prepared for a wide range of other nome micros including the Amstrad, Oric, Sinclair QL and all MSX computers. Available in the High Street stores the Modem is marketed by Cirkit Holdings plc, Park Lane, Broxbourne, Herts EN 10 7NQ. EWW 206

CMOS 6502

Pin-compatible with the bi-polar 6502, Rockwell's 65C02 offers several advantages. Its power consumption at 1 MHz is only 20 mW , about 4% compared with its prodecessor. It has better tolerance to voltage fluctuation and better noise immunity. It can act as a plug-in replacement and use all the same instructions but improvements in internal architecture has allowed the addition of several more instructions. These are principally concerned with zero page addressing and allow indirect addressing and indexing. Zero page memory bits may be set and reset directly rather than through the accumulator. This allows more compact and faster machinecode programming. Versions are available for $1,2,3$ or 4 MHz operation with the suffixes P1 to P4 respectively. So, for example a BBC micro would use an 65C02P2. RCS Microsystems have a special offer to BBC users with the processor and its data sheet along with software to enable the extra instructions to be used in the BBC's assembler, all for $\mathfrak{£} 17.25$ inclusive. They also have details of other members of the 6500 family in c.mos including a PIA and an ACIA, and especially interesting is the advance information on a two-processor chip which can directly address 128 Kbytes of ram.
RCS Microsystems Ltd, 141 Uxbridge Road, Hampton Hill, Middlesex TW12 1BL. EWW 207

THROWAWAY SOLDER SIPPER

A rugged low-static-potential desoldering tool provides sufficient suck for most requirements including the reworking or removal of staticsensitive mos i.c.s Priced at $£ 3.70$ it is easily replaceable. Circuit Plating Equipment Ltd, Newbury, Berks.
EWW 208

FLOPPY-DISC CONTROLLER

Filling the gap created by the world-wide shortage of Intel 7282 and NEC uPD765A integrated circuits, Rockwell have produced the R6765-5 double-density floppy disc controller. A direct replacement for the other controllers, it is IBM compatible in both single and double-density formats and is also compatible with a wide range of 8 and 16 -bit microprocessor buses. The 40pin device can control up to four disc drives and offers programmable data record lengths of $128,256,512$, or 1024byte/sector. Pelco (Electronics) Ltd, Spring Gardens, Romford, Essex RM7 9LP. EWW 209

BUFFERED DELAY LINES

Lumped-constant buffered active delay lines which incorporate Schottky t.t.l. logic elements in the input and output terminals are available from Ashcroft. The modules can be used as t.t.l. elements with a precisely fixed delay time. Any change of delay time due to temperature variations may be compensated by complimentary matching of the delay line and the i.c. Seven types are included in the series, offering delay times from 20 to 250 ns with five tapped outputs available to the user incrementing the delay by 4 to 50 ns with a rise time of 3 or4ns. Significant saving of component count is made by the use of the RHT series of delay lines, making the design of digital circuitry easier and providing highly accurate pulse timing. Ashcroft Components Ltd, 28 Somerford Road, Cirencester, Glos GL17 1TW. EWW 210

FIBRE-OPTIC TESTING

The photon-counting properties of silicon avalanche photodiodes have been used to produce an optical fibre fault locater. Based on techniques developed by BT, the instrument is claimed to have a sensitivity 10000 greater than conventional test devices. The instrument used optical time-domain reflecrometry and can be used to locate cable damage and also to measure attenuation and splice losses along a fibre. The term photoncounting derives from the fact that the diodes can detect individual light particles (photons) which have energies of only $10^{-21} \mathrm{~W}$. Using this property, Cossor have been able to develop an instrument
impedance and gain (magnitude and phase) at linear or logarithmically spaced intervals. Resistors, capacitors, inductors, transformers, op-amps, bipolar transistors and fets can all be simulated by the program and the a.c. performance of circuits containing any combination of these can be evaluated without the need for breadboarding and bench testing. It is easy to alter the values of components in order to assess the circuit's sensitivity to component
tolerances, stray capacitance etc.

The program is particularly suited for frequency response analysis of filter circuits, audio amplifiers, wideband amplifiers, tuned r.f. amplifiers, linear integrated circuits and the like and has been in use as such for two years by the electronics consultants who designed it. £35 inclusive. Number One Systems, 9A Crown Street, St. Ives, Huntingdon, Cambs PE17 4EB. EWW 211

CIRCUIT ANALYSIS ON A MICRO

Versions of the computer program 'Analyser' are available for the Acorn/BBC and the Sinclair ZX Spectrum microcomputers. Analogue circuits with up to 16 nodes and 60 components can be entered into the system to give analyses of input impedance, output

capable of locating defecting cables up to 30 km . away. They hope to be able to use similar techniques in such areas as nuclear instrumentation where
bulky and fragile photomultiplier tubes are used. Cossor Electronics Ltd, The Pinnacles, Elizabeth Way, Harlow, Essex. EWW 212 Reprints of Original'Articles from 'Hi-Fi News'......... \&1 no VAT.

LINSLEY-HOOD 100-WATT MOSFET

 POWER AMPLIFIERGS 001 2-MOTOR CASSETTE DRIVE. Fully solenoid controll cassette mechanism
sutable tor Hi -Fi or digital use. With a logic control boaro the deck
can be operated by can be operated by
lightweight touch conirols or output from a micro. Idiaal for applications under as teletichione answering machines, data loggers, automatit, background music systems. remote control recorders three so enoids control all functions incluoing search in tast orward and rewind.
Standard fittings include reed switch for auto off, 3 digit counter, tereo RiP and erase Head
verall size $176 \mathrm{~mm} \times 130$
DGSool Cassette Mechanism. $\mathbf{£ 3 7 . 2 5}$ Quantity prices on inf 140.

Fuil technical specification and drawings $£ 1$. Stereo cassette deck
Following the runaway sellout of our last cassette deck we have now obtained a small quantity of an even nicer one. Main features are full auto-stop, Chrome/Ferric Switch. Manual record level control (invaluable for computer use), twin Vu meters and 3 -digit counter. Complete with all record and eplay circuitry, control keys and cassette carrier/door. Very
 and Notes 35p.

COMPLETE STEREO TUNER MODULE
Three band LW/MW/FM Stereo Tuner fully assembled on PCB $165 \times 85 \mathrm{~mm}$. Supplied with Ferrite rod aerial and band switch fully wirred. Facility provided to drive tuning meter and stereo
LED. Only needs $12 v$ DC supply. FM sensitivity. 2.5 UV. Price only $\mathbf{E 7 . 9 9}$ inc. VAT and post.
'STEREO AMPLIFIER MODULE'
eady built and tested quality power amplifier module complete nd ready to use. Mains input 220/240v with power to spare to iuner and tape deck. Size $190 \times 110 \times 65 \mathrm{~mm}$

TUNER AND PRE-AMP MODULE
Matching unit to above. Contains Long, medium and short wave AM tuner. Stereo FM tuner and pre-amp with switched inputs fo assembly. Size $400 \times 220 \times 63 \mathrm{~mm}$. Special offer for both items only $£ 16.90$

HIGH QUALITY REPLACEMENT

 CASSETTE HEADS

Do your tapes lack treble? A worn head could be the problem,
Fitting one of our replacement heads could restore performance to better than newl Standerd mountings make fitting easy and our TC1 Test Cassette helps you set the azirmum spot-on. We are prices for prime parts. Compare us with other suppliers and seol The following is a list of our most popular heads, all are suitable for use on Dolby machines and are ex-stock. HC20 Permalloy Stereo Head. This is the standard hiead fitted as
original equioment on most decks HM90 High Beta Permalloy Head. A hard-wearing, higher performance head with metal capability ,........... 88.06
HS16 Sendust Alloy Super Head. Longer life than Permalloy, higher output than Ferrite, fantastic frequency response
Hos51 4-Track Hesd for auto-reverse or quadrophonic use Fill specification record and piayback heal anta............. 69 Please consult our list for technical data on these and other
MA481 Latest version Double Mono (2/2)Record/Play head. ReplacesR484
c8.90
SM166 Standard Mounting $2 / 2$ Erase head. Compatible with above or HQ5514 Track head. H 24 Stan $£ 5.90$ H524 Standard Erase Head. Semi double gap, high e H561 Metal Tape Erase Head. Full double gap

HART TRIPLE-PURPOSE TEST

 CASSETTE TC1One inexpensive test casserte enables you to set up VU level. head azimuth and tape speed. Invaluable when fitting new
heads. Only $£ 4.66$ plus VAT and 50 p posiage. Tape Head De-magnetiser. Handy size mains operated unit
 Curved Pole Type for inaccessibie heads85

Send for your tree copy of our LISTS. Overseas please send 2
IRCs to cover surtace Post or 5 IRCs for Aurmail RCs to cover surtace Post or 5 IRCs for Arrmail.
Please add part cost of post, packing and insurance as follows:
inlano OVERSEAS
Orders up to $£ 10$ - 50 p OVERSEAS
Orders $£ 10$ to $£ 49-£ 1$
Orders over $£ 50-£ 1.50$ Surface or Air Rost as

ALL PRICES EXCLUDE VAT
UNLESS STATED

(O) Hitachi Oscilloscopes

the highest quality from 8299 the most competitive prices

Hitachi Oscilloscopes provide the quality and performance that you'd expect from such a famous name, with a newly-extended range that represents the best value for money available anywhere.

V-212	20 MHz Dual Trace	V- 209	20 MHz Mini-Portable
(illustrated)	V-509	50 MHz Mini-Portable	
V-222	20 MHz Dual Trace	V- 1050 F	100 MHz Quad Trace
V-203F	20 MHz Sweep Delay	V-1100	$1(00 \mathrm{MHz}$ DMM/counter
V-353F	35 MHz Sweep Delay	V-I34	10 MHz Tube Sorage
V-422	40 MHz Dual Trace	VC- 6015	10 MHz Digital Storage
V-650F	60 MHz Dual Timebase	VC- 6041	40 MHz Digital Storage

For colour brochure giving specifications and prices ring (0480) 63570 Thurlby-Reltech, 46 High Street, Solihull, W. Midlands, B91 3TB

CIRCLE 22 FOR FURTHER DETAILS.

WRONG TIME?

MSF CLOCK is ALWAYS CORRECT - never gains or loses, SELF SETTING at switch-on, 8 digits shown Date, Hours, Minutes and Seconds, auto GMT/BST and leap year, larger digit Hours and Minutes for easy QUICK-GLANCE time, can expand to Years, Months, Weekday and Milliseconds or make a second-in-a-month STOPCLOCK, parallel BCD output for computer or alarm and audio to record and show time on playback, receives Rugby 60 KHz atomic time signals, only $5 \times 8 \times 15 \mathrm{~cm}$, built-in antenna, 1000 Km range, $£ 79-70$. GET the TIME absolutely RIGHT.
ANTENNA TUNER, $0.1-30 \mathrm{MHz}, £ 25-20$, ideal for FRG7700 etc Each fun-to-build kit (ready made to order) includes ALL parts,
case etc, by-return postage and list of other kits.
CAMBRIDGE KITS
45 (WL) Old School Lane, Milton, Cambridge. Tel 860150,

Toroidal Transformers

as manufacturers we are able to
offer a range of quality Toroidal Transformers at high competitive prices and fast delivery

Mail Order Price List

30VA 6.54. 50VA 8.36. 80VA 9.15. 120VA 10.55. 160VA 11.98. 225VA 15.61 300VA 17.19. 500VA 22.33. 625VA 27.96. 750VA 31.05. 1KVA 41.40. price includes $p+p$ \& va Available from stock in the following voltages: $-6-0-6,9-0-9,12-0-12$, 15-0-15. 18-0-18, 22-0-22. 25-0-25, 30-0-30, 35-0-35, 40-0-40, 45-0-45 $50-0-50,110,220,240$ (max. 10 amp . Primaries $240,220,120$ volt please state which

Quantity Prices and delivery on request (we also manufacture conventionalE1 type transformers)

Airlink Transformers.
 Unit 6, The Maltings, Station Road,

Sawbridgeworth, Herts. Tel: 0279-724425

SAMSONS (ELECTRONICS) LTD.
9-10 Chapel Street, Marylebone London NW1 5DN
21-23 Bell Street, London, NW1
01-262 5125 \& 01-723 7851

CREDIT CARDS ACCEPTED FOR TELEPHONE TELEPHON ORDERS

SPECLAL OFFER HIGH-GRADE
ISOLATION TRANSFORMERS SPECIAL OFFER HIGH-GRADE
ISOLATION TRANSFORMERS Open frame terminal block connections
E29.50, carr. E4, VAT 55.02 . Pri 240 V Sec E29.50, carr. ©4, VAT $£ 5.02$. Pri 240 V . Sec
$240 \mathrm{~V}, 250$ watts, open frame type tag connec$240 \mathrm{~V}, 250$ watts, open frame type tag connec
tions, £10. P\& P $£ 2$, VAT f 1,80 . Pri $100-110-200-$ lions, £10, P\& P £2, VAT £ 1.80. Pri 100-110-200-210-220-230-240-250V. Sec 220-230-240V
600W: can be used in reversed open frame 600 W , can be used in reversed open frame
type terminal block connections, f15, carr, type terminal ble
£2.80, VAT $£ 2.67$

PARMEKO NEON TRANSFORMERS PRII tapped 200-220-230-240-250V. Size 7000 V

 steel case. Size $91 / 2 \times 81 / 2 \times 41 / 2 \mathrm{in}$E 17.50 inc . VAT and carriage PRI tapped $200-220-230-240-250 \mathrm{~V}$. Size 5000 V $20 \mathrm{M} / \mathrm{A}$. Totally enclosed in wall mounting se. Size $7 \times 6 \times 5$ in.
$\mathbf{f} 12.50$ inc. VAT

COMPUTER GRADE
LT TRANSFORMERS
BY FAMOUS MAKERS
ALL PRIMARIES 220-240V
PRICES INCLUDE POSTAGE AND VAT No 1 Sec 43 V 3 A f6.95. No $2 \mathrm{Sec} \mathbf{4 0 V}$ 3A $\mathbf{6 6 . 9 5}$. No 3 Sec 65 V 1 A and $1824 \mathrm{~V} 1 / 2 \mathrm{~A}$ E5.95. No 4 Sec 25 V 2 A £4.50. No 5 Sec 24 V 2 A £4.50. No 6 Sec 27.5-0-27.5V and 7-0-7V 0.75A E5.25. No 7 Sec 13-0-13 A and 12V A f. No 8 Sec 60 V $11 / 2 \mathrm{~A}$ £4.95. No 9 Sec 40V $1 / 2 \mathrm{~A}$ £4.50. No 10
 12 Sec 24 V 3 A and $110 \mathrm{~V} 1 / 2 \mathrm{~A}$ E7.95 No 13 Sec $12 \mathrm{Vec} 11 / 2 \mathrm{~A}$ and $24 \mathrm{~V} 11 / 2 \mathrm{~A}$ E5.50. No 14 Sec 36 V $1 / 2 \mathrm{~A}$ £3.50. No 15 Sec 20 V 2A E 3.75 . No 16 Sec $12-25 \mathrm{~V} 2 \mathrm{~A} £ 3.75$. No $17 \mathrm{Sec} 24-0-24 \mathrm{~V} 1 \mathrm{~A}$ and 6.3V 1 A £4.95. No 18 Sec 24 V 4 A £5.50. No 19 Sec $12-15 \cdot 20-24.30 \mathrm{~V} 1 \mathrm{~A}$ E4.75. No 20 Sec 4.5 V
5 A twice f4.50.

PARMEKO HT TRANSFORMERS ALL PRIMARIES 220-240 No $1 \mathrm{Sec} 500-0-500 \mathrm{~V} 120 \mathrm{~m} / \mathrm{a} 6.3 \mathrm{~V} 5 \mathrm{~A} 6.3 \mathrm{~V} 3 \mathrm{~A}$ $5 \mathrm{~V} 3 \mathrm{~A} £ 8.50$, inc postage and VAT. No 2 Sec $300-0-300 \mathrm{~V} 60 \mathrm{~m} / \mathrm{a} 6.3 \mathrm{~V} 2 \mathrm{~A}$ CT 6.3 V 1 A f 6.50 inc postage and VAT. No $3400-0-400 \mathrm{~V} 180$
$\mathrm{~m} / \mathrm{a}$ f6.50 inc postage and VAT No 4 Sec 400 m/a f6.50 inc postage and VAT. No 4 Sec 400 . inc postage and VAT. No 5 Sec 350 m/a $£ 6.50$ inc postage and VAT. No 5 Sec $350-325-0.325-$
$350 \mathrm{~V} 120 \mathrm{~m} / \mathrm{a} 6.50$ inc postage and VAT. Gre$350 \mathrm{~V} 120 \mathrm{~m} / \mathrm{a}$ f6. 50 inc postage and VAT. Gre-
sham Pri $220-240 \mathrm{~V}$, Sec $250 \mathrm{~V} 80 \mathrm{~m} / \mathrm{a} 6.3 \mathrm{~V} 45 \mathrm{~A}$ $15 \mathrm{~V}, .2 \mathrm{~A} 55.95$ inc postage and VAT. Pri 230 .
250 V . Sec tapped $990-210 \mathrm{~V} 24 \mathrm{~T}$. 6 V . E3.95 inc postage and VAT. Pri $220-240 \mathrm{~V}$ Sec
300 V $300 \mathrm{~V} 200 \mathrm{~m} / \mathrm{a} 30 \mathrm{~V} 100 \mathrm{~m} / \mathrm{a} 6.3 \mathrm{~V} 5 \mathrm{~A}$ half
shrouded, sub shrouded, sub chassis mounting f6.50 inc
postage and VAT. Pri $220-240 \mathrm{~V}$ Sec $370-390$ shostage, and VAT. Pri 220.240 V Sec 370 - $390-$
$410 \mathrm{~V} 6 \mathrm{~m} / \mathrm{a} \mathbf{£ 2 . 7 5}$ inc postage and VAT. WW- 16

AUTO STEPDOWN TRANSFORMERS
FOR AMERICAN EQUIPMENT
$240 / 110$ Votis. 802250 warts. Regular stock line. Types $80-1500$ watts are fully
shrouded Fitred with American two or three pin socket outlets and 3 core 240 V mains lead. Types 1750 and 2250 warts are steel cased with rwo American socket outlets. Neon indicator, three core mains lead and carrying handle. Send SAE for
price list and further details. American sockets. plugs, adaptors also available.

R.WITHERS COMMUNICATIONS

If you have not heard of (R. Withers Communications) we are main distributors or agents for the following, Yaesu, Icom, Kenwood, M.Modules, Jaybeam, Toevna, Revco Antennas. Cleartone, Mutek, Drae, F.D.K. Tonna, Welz, Zycomm, Neve Radiotelephones. We are also stockist (British Telecom Approved) of a wide range of cordless telephones and telephone systems. We are also agents for hundreds of other radio communications equipment known the world over, we also manufacture our own range of VHF-UHF beam antennas which are also used by leading broadcast companies for wireless mic applications. We supply a large range of power transistors \& modules to the trade. These we import ourselves directly from Japan. Listed below are just some of the many services we offer.

* Supply \& repair of all amateur \& business radio equipment * Complete check of your transiever on a spectrum analyser (with comprehensive report) for the all in price of $£ 12.50$ subject to an appointment being made
* Supply \& complete installations of business radio systems including competitive maintainance contracts, local authorities included
* Supply of 10 metre converted radios LCL, DNT. ICOM.
* Only supplier of modified Revco RS $200050-520 \mathrm{MHz}$
\star Only supplier of modified Revco RS $200050-520 \mathrm{MHz}$ continuous coverage scanning receiver modified by (R Withers Comms)
* Probably the largest seller of second hand radio equipment in the country because of our commission sale agreement (3 month warranty) plus equipment facility
* The fastest growing retail \& wholesale company in the British Isles. Send for details of any of the equipment or services we offer whether you are in the profession of just an interested party an s.a.e. will speed up your enquiry * For all your communication needs give R.W.C. a try we promise you will not be disappointed.
* The largest selection of radio allied services offered under one roof, with no expense spared on test equipment and qualified staff.

584 Hagley Road West, Oldbury, Warley B68 0BS (Quinton, Birmingham)
 Tel: 021-421 8201/2 (24 hr answerphone)

Overseas customers welcome. We speak German \& Japanese. Import/Export no problem. Please telephone during working hours
or telex 334303 TXAGWM-G

Build Your Own PC

IBM/XT compatible mother board (biank)
c99.95
B \& T with 128 K Bytes of RAM
5-1/4 DSDD 40 trk drive only.
C599.00
5-1/4 DSDD 40 trk drives only
XT compatible units from
£109.95
£1499.00

ull range of PC compatible boards available.

Create your own PCB ARTWORK

smARTWORK lets you create and revise PCB artwork on your IBM. Requires 192K RAM, colour/graphics adapter, Epson printer and Microsoft Mouse (optional).

6801 Micro Control Systems

Analogue and power control I/O in a single board computer. 6801 Micro Control System designed for distributed control or standalone use: 6801 or 68701 MPU with 2 K ROM, 128RAM, timer, 8 12-bit analogue l/Ps, 8 -bit analogue O/P, 8 AC or DC inputs or outputs. Typical Systems from $\mathbf{\Sigma} 250.00$

FREE delivery within UK "All prices fully inclusive Dealer enquiries welcome.
 14 GOODWOOD CLOSE, MORDEN, SURREY, SM4 5AW

 No callers please.Phone 0524381423

CIRCLE 69 FOR FURTHER DETAILS.

ELECTRONICS C.A.D.

"ANALYSER"

PERFORMANCE ANALYSIS of LINEAR CIRCUITS using the BBC MODEL B AND SINCLAIR SPECTRUM 48K MICRO'S.
Simulates Resistors, Capacitors, Inductors, Transformers, Bipolar and Field effect Transistors, and Operational Amplifiers in any circuit configuration.
Ferforms FREQUENCY RESPONSE ANALISIS on Circuits with up to 16 Nodes and 60
Ideal for the analysis of ACTNE and PASSNE FILTERS. AUDIO, WIDEBAND and R.F. Ideal for the analysis of ACTNE and PASSNE FILTERS, AL
AMPUFIERS, LINEAR INTEGRATED CIRCUITS etc., etc.
*ANALYSER" can greatly reduce or even eliminate the need to breadboard new designs.
USED BY INDUSTRIAL AND UNIVERSTTYR\&D DEPARTMENTS WORLD WIDE.
LOW COST ... VERY EASY TO USE.
For further details write or phone NUMBER ONE SYSTEMS
DEPARTMENT WN
9ACROWNSTREET, ST NES
HUNTINGDON
CAMBS UKPEI7 4EB
CAMBS. UK PE 17 4EB
TEL: 048061778 TELEX: 32339

256K EPROM

Two high capacity eproms, including a 256 K device, claimed to be the world's first come from Intel. The 27128 is a $16 \mathrm{~K}, 8$-bit memory and the 27156 a $32 \mathrm{~K}, 8$-bit. Maximum access time for either device is 250 ns which is compatible with high-speed microprocessors without the need for the introduction of 'wait' states. Active power consumption is 100 mA with a standby power
mode of 40 mA . Used with the appropriate programming equipment, the memories incorporate the implementation of 'intelligent programming algorithm' to enable fast and efficient programming of these devices. Complete operating systems, high-level language interpreters or look-up tables can be held in a single memory device which will operate at the full speed of the system. Jermyn Distribution, Vestry Estate, Sevenoaks, Kent. EWW 213

DISC DRIVES SHRINK

All the data formerly stored on an 8in floppy disc can now be squeezed onto a 5.25 in disc using a Mitsubishi M4854 disc drive. The unformatted capacity is 1.6 Mbytes, with 77 tracks and a $500 \mathrm{Kbit} / \mathrm{s}$ transfer rate. Track-to-track access time is 3 ms . Recording density is 9621 bit/in, using the high coercivity recording medium available from many sources (see below). Using the drive to replace 8 in versions gives the benefits or reduced cost, size, weight and power while retaining the investment in software and controller designs. Mitsubishi Electric (UK) Ltd, Herford Place, Maple Cross, Rickmansworth, Herts WD3 2BJ. EWW 214

...and discs to fit them

Memorex have introduced a 5.25 in disc, intended to be completely compatible with 8 in discs of the same capacity (1.6Mbyte). They offer 60% more capacity than 5.25 in
format discs. Memorex claim greater data protection for their discs by using continuous seam sealing for their outer covers. Memorex UK Ltd, 96 to 104 Church Street, Staines, Middlesex TW18 4XU.
EWW 215

MICROPROCESSOR BOARD TESTER

A trouble-shooting instrument is designed to diagnose and locate faults in microprocessor systems. The Antron B2000 simulates the target processor by taking command of the address, data and control buses. The test are performed using the functions programmed into the unit and initiated through the touch-sensitive front-panel keypad.
Fifteen tests with each up to 12 steps can be stored in a non-volatile memory. An alphanumeric display give operator prompts and program use. Faults and results are recorded on the built-in thermal printer. Cards
plugged internally can support Z80, 8085, 6800 or 6502 families of processors and the test features include memory mapping, ram test, rom checksum, bus shorts and i/o tests. The unit can also
disassemble rom programs and decode and print hexadecimal and Ascii characters. Antron Electronics Ltd, Hamilton House, Hamilton House, 39 Kings Road, Haslemere, Surrey GU27 2QA. EWW 216

SATELLITE BEACON FOR AIR-SEA RESCUE

For use with the Marisat series of satellites, three of which are now in operation. A portable beacon has been developed by Graseby Dynamics in Watford. Designed to be stowed aboard lifecraft and to be included in survival packs for aircrew members, the beacons emit signals automatically in an emergency. They operate on a new distress frequency of 406 MHz and transmit a 5 W , 400 ms burst every 50 seconds. The signal data includes the class of user, country of origin, identity and type of emergency.

The system is designed to work with Sarsat (search and rescue satellite aided tracking), an international system which monitors the whole surface of the world continually for distress signals and can locate the new type of beacon to within 2 to 5 km . Rescue services can be launched within three hours of the transmitted signal, compared with days, under former systems. Graseby Dynamics Ltd, Park Avenue, Bushey, Watford, Herts WD2 2BW. EWW 217

16-BIT CONTROLLER

Up to 48 digital or 40 digial and eight analogue inputs, can be accomodated by the Intel MCS96 family of 16 -bit single-chip microcontrollers. Based around the 8096 16-bit processor, i / o and peripheral facilities are built into the same silicon substrate. One version (8396) has 8 K of internal rom and eight different configurations are available. The processor instruction set supports bit, byte, word and 32 -bit double-word operations
and with a 12 MHz input frequency, execution time averages 1 to $2 \mu \mathrm{~s}$ for each instruction.
External event recording is provided by four high-speed trigger inputs. Six trigger pulse generators are available to control external events at preset times and four timers can perform simultaneously through the output unit under software control. The devices are equipped with serial ports, an internal watchdog timer and a p.w.m. output signal. MEDL Distribution, East Lane, Wembley, Middlesex HA9 7PP. EWW 218

AUDIO DAC

A 16-bit monolithic digital-toanalogue converter has been designed for use in professional recording studios and for stereo digital disc playback in the home. The Burr-Brown

PCM53JP-V is fast enough to process both channels of a stereo signal simultaneously and provides 16 -bit resolution with a total harmonic distortion of 0.002% at full-scale input and 0.02% at -20 dB , a settling time of 3μ s and a dynamic range of

96 dB . The low-cost plastics package has had severe environmental tests to reveal a m.t.d.f of about 4.5 years. Burr-brown International, Cassiobury House, Station Road, Watford, Herts WD1 1EA. EWW 219

NIF SOCKETS

No insertion force makes a welcome change from zero welcome change from zero
insertion force, even if its the same thing. Unlike the bulky zif socket with its locking lever, the nif socket from Dage has a hinged base incorporated within it which protrudes by approximately 1.5 mm beyond the i.c. After the i.c. is inserted, a little pressure on the protruding fingers of the base causes the hinge to click over and lock the i.cs legs into place. Versions are available for 24 , f28, 40 or 48 -pin devices. The

sockets are only 5 mm high with contacts of copper-beryllium plated with tin-lead or gold, as required. Dage Eurosem, Rabans Lane, Aylesbury, Bucks HP19 3RG. EWW 220

TV TUNER CHIP

A single i.c. frequency synthesiser has been designed for tv tuning. The SP5000 from Plessey, used with a varicap tuner, forms a complete p.1.1. tuning system. The circuit consists of a divide-by- 16 counter with its own preamplifier and a 14 -bit programmable divider controlled by a serially-loaded data register. Band selection lines can give four switched output combinations. The frequency/ phase comparator has a reference frequency derived from a 4 MHz crystal using an on-chip oscillator. Only one external transistor is required for varicap line driving. The device can select frequencies from 30 MHz up to 1024 MHz in 62.5 kHz steps. The devices can select frequencies from 30 MHz up to 1024 MHz in 62.5 kHz steps. It is controlled from a four or eight-bit microprocessor which is also used to decode the remote control and keyboard inputs and to drive a two-digit display of the channel selected. Versions of the chip are available for up or downconversion of frequencies to connect tv aerial inputs to cable distribution systems. Plessey Semiconductors Ltd, Cheney Manor, Swindon, Wilts SN2 2QW.

HARD DISK DRIVES
Futy fot HOT LINE DATA BASE DISIMT

DIABLO/DRE $44-4000 N B 5+5$ ex Stock

, Plus in house repair, refurbishing service
ER STOCK DITBGRAIED CHACUIY OVER 100,000 TTEMS INCLUDING:
intel D8085AH-2 $£ 25.00$ D8271 $£ 65.00$ 08202 D8257-58255 03002
2732 EPROM SPECIAL fully guaranteed

STILL IN STOCK

FP1 500 Heavy Duty 25 cps daisy wheel

 RS232 interface, bi directional printers, Brand New at E499.00
${ }^{\text {tinger gity }}$
 BUHLER $69.11 .22 .8 .16 \cup 0 C$ micro
miniaiture reversible tan Uses a bushle

 E12.05 complof with deta.

 at E10.50. 1000's of otiner trans Ex Stock
Call 10 Details Rosi \& Packing on all tans

DUAL 5" DISK DRVESS

 major computer company, comprising 2×40 track MPI or Shugart FULLY BBCCOMPATIBLE single sided drives in a Compact attractively styled grey ABS compact. attractively styled grey ABS
structured case with internal switched mode PSU. The PSU was intended to drive both drives and an intelligent Z80 controlle
with over 70 ic's. The controller has been removed leaving ample space and cu our future expansion requirements Supplied tested with 90 day guarantee in
BRAND NEW condition with cable for BBC BRAND NEW condition with cable
micro. EX Stock at only 259.00

GE TERMIPRINTER

A massive purchase of these desk top

 these quality 30 cos printers at a SUPERLOW PqICE against their original cost of LOW PFICE against their original cost of
over $f 1000$. Unit comprises of tull QWERTY evectronic keyboard and pnnter mech with
eleint face similar to correspondence quality print face similar to correspondence quan enables full width - up to $13.5^{\prime \prime} 120$ column paper, upper - lower case. standard
serial interface, internal vertical and seral interface, internal vertical and adjustable baud rates quiet operation plus many other features Supplied complete
with manual Guaranteed working $£ 130.00$ with manual untested o. optional floor stand $£ 1250$

DATA MODEMS

Join the communications revolution with our
range of EX TELECOM data modems. Made to range of EX TELECOM data modems. Made to
mosi sinngent spec and designed to operate CCITT 'rone spec With RS232 /o levels via
a 25 way D skt Units are sold in a tested and working condition with data Permission
may be required for connection to PO lines. may be te MICRONET. PAESTEL OI TELECOM GOLD socket Guaranteed working with data fus os Socke
MODEM $20-2$ same as $20-1$ but 75 bawo
receive 1200 baud !ransmit $£ 130.00$ TRANSDATA 307 A 300 baud acoustic NEW DSL2123 Multi Standard modem selectable V2 $300-300$ bot, V23 $75-1200$
V23 $1200-75$ full duplex. Or $1200-1200$ half duplex modes Full auto answer via modem or CPU. LED status indicators. CALL or ANS
modes Switchable CCITT or BELL 1038 modes Switchable CCITT or BELL 103 \&
202. Housed in ABS case size only $25^{\prime \prime} \times$ K 9 . E286.00+ VAT
For further data or detais on other EX STOCK tact salas office.

COMPOLS: 'CAB'

cabinet with integral switched

mode PSU. Mains tiltering, and twin fan system costing thousands of pounds. Made to run 24 hours per day the PSU is tully screened and will deliver a massive $+5 v$ DC at 17 amps , $+15 v$ DC at 1 amp and -15 DC at 5 amps. The complete unit is fully enclosed with LEDs mounted on Alifront panel, rear cabler and 'Run etc. Units are in good but used condition-supplied for $240 v$ operation complete with full circuit and tech. man Give your system that protessional finish for ont
C $49.95+$ Carr $\operatorname{Dim} 19^{\prime \prime}$ wide $16^{\prime \prime}$ deep 10.5° high Useable area $16^{\prime \prime} w 10.5 " \mathrm{~h} ~ 11.5 " \mathrm{~d}$
Also available LESS PSU, with FANS etc. Internal dim.
 BRAND CENTRONICS 739-2
SUPER PRINTER SCOOP NEW CE The Do Evemhing Pinter at afice thas will NEVER De repeated Standard CENTRONICS parallel interface for direct connection to 8BC,
ORIC. DRAGON etc. Supert pnnt quality with full
 HODE for WORD PROCESSOR applications. 80-132 columns, single sheet sprocket or foll paper handling plus
much more Available ONLY from OISp i A ELECTRONICS at the ridiculous price of owly ilp.00 + VAT Complete with full manual etc. Limited quantity -Huny while slocks last. Options. Interface cable (specity) for BBC, ORtC,
DRAGON or CENTRONICS 36 way plg $£ 12.50$. Spare ribbon DRAGON or CENTRONICS 36 way phg e tility program $£ 8.60$.

SPECIAL 300 BAUD MODEM OFFER

Another GIGANTIC purchase of these EX BRITISH TELECOM, B
NEW or little used 2B data modems allows US to make the FINAL REDUCTION, and for YOU to oion the exciting world of data REDUCTION, and for YOU to ioin the exciting world ot data
communications at an UNHEARD OF PRICE OF ONLY £29.95. Made to the highest POST OFFICE APPROVED spec at a cost of hundreds of pounds each, the 2 B has all the standard requirements for data base, business or hobby communications. All this and more!

8" 19MB WINCHESTER DISK DRIVE

Made in the UK by a subsidiary of the World's largest disk drive manufacturer This BRAND NEW "end of line" unit offers an outstanding opportunity to add MASSIVE 19 mb of storage to your computer system. Superbly constructed on a heavy die cast chassis the DRE 3100 utilises 3×8 "plattens in a dust ree cavity. All drive functions are controlled by microprocessor electronics using an INTEL 8035 cpu and TTL support logic. Data to the outside world is via two comprehensive 8 bit TL level bi directional data busses with full status eporting for ease of interfacing. Many features 512 bytes per sector, $+24,-24$ and $+5 \vee D C$ supply, plug in card system, and
compact size of approx $19 \mathrm{~cm} \mathrm{H} \times 21 \mathrm{~cm} \mathrm{~W}$ and 42 cm D etc, etc, make this item compact siz
Units are BRAND NEW and BOXED and sold at a FRACTION of original cost - hence unguarante

$$
\text { ONLY } £ 225.00 \text { Cariage £ } 1000
$$

PROFESSIONAL KEYBOARD OFFER

An advantageous purchase of brand new surplus allows
chassis keyboard ofter at fractions of their onginal costs
output plus strobe Dim $12^{\prime \prime} \times 6^{\prime \prime}+58-12$ DC. EJ\%so
DEC LA34 Uncoded kerboard with 67 quality GOLD, normally open switches on
standard X Y matrix. Conplete with 3 LED indicators 8 i/o cable -ideal micro

66\% DISCOUNT EOMPONENT

bargains we have thousands of I.C s. Transistors. Relays. Cap s. PCS s. Sub-assemblies.

ATH PRICES PLUS VAT

CEFLAM
 ELEFTEFivf: - 32 Biggin Way, Upper Norwood, London SE19 3XF All pnces quoted are for U.K Mainland, paid cash with order in Pounds Stining PLUS VAT. Minimum order valueE2. CO, Minimum Cre dit Cardorder 100 Where post and packing not indicated please ADD £1.00. + VAT Warehouse open Mor- Fri 9.30-5.30. Sat. 10.15-5.30 Telephone 01-679 4414 Telex 27924

INSULATION TESTER

TYPE TM14 £210
 + VAT

FREE delivery in the UK. QUANTITY DISCOUNTS available. We supply many other instruments including:
OSCILLATORS, COUNTERS, OSCILLOSCOPES, FUNCTION GENERATORS, dB \& MICROVOLTMETERS.

LEVELL ELECTRONICS LTD. Moxon Street, Barmet, Herts. EN5 5SD, England.

CIRCLE 6 FOR FURTHER DETAILS.

Abstract

VIDEO TAPE RECORDERS Philips NI500/1/2 series, colour, int Rx, with two cassettes 8 circs, 665 Ferrograph Series. 6 Audio, single chan 3 speed, int spk, very good cond with book £85 SCOPES Solartron CD523S general purpose bench scope, single beam, with book. 295 MARCONI TF1041B VTM AC/DC volts 300 Mill/V to 300 V FSD in 7 ranges Ohms 50 to 500 Megsin 8 ranges, as DC/Ohms \& RF probe to $1500 \mathrm{Mc} / \mathrm{s}$ tested with book. §48 SIG GENS Marconi TF995/A2 1.5 to 220Mc/s AM/FM with book. £100 TF 144 G 85 Kc to 25 Mc . s AM large bench unit with circ etc $£ 65$. X BAND WAVEMETERS cal 9170 to $9470 \mathrm{Mc} / \mathrm{s}$ with meter ind and var 0 to 100 Db I/P atten. £23 also Tx loads \& Echo Boxes X band. NOISE GEN CT207 $100 / 600 \mathrm{Mc} / \mathrm{s}$ mains, var noise o/p \& int 600 ohm O/P meter with book. £35 DUMMY LOAD WATTMETER CT $21430 / 400 \mathrm{Mc} / \mathrm{s} 50 / 75$ ohms $20 / 200$ watts, with connec. §55. FREC DRIVE UNIT for 240 v provides 12 v at 5 amps or 24 v 2.5 amps stab also FR O/Ps at 10 crvsta controlled freq in range $2 / 8 \mathrm{Mc} / \mathrm{s}$ var $\mathrm{O} / \mathrm{P} \mathrm{O}$ to 2 watts into 50 ohm all transis unit tested. $£ 55$. ELEC CONDS. 2700 Uf at 250 V DC Wk HD type new. $\$ 3.50 \mathrm{H.V}$. INSUL T.S. CT91 O/40kv metered two part unit. £65. ATTEN Muirhead 600 ohm var 0110 Db in $\frac{1}{2}$ Db steps. £28 RACK CASES size int $19 \times 21^{\prime \prime}$ front 18° deep hammer grey. £28 POWER UNITS 200/250v to 28 V DC at 15 amps semi stab size $16 \times 7 \times 7^{\prime \prime}$ ground P.U. for ARC-52. £ 38 AERIALS $70 / 73 \mathrm{Mc} / \mathrm{s}$ Ground Plane new with connec Pye. £10 collect. RACKS 6 ft with doors $19^{\circ} £ 30$ collect.

Gbove prices include carr/postage \& VAT
Goods ex equipment unless stated new. List 35 available on request
A.H. SUPPLIES

122 Handsworth Road, SHEFFIELD S9 4AE
Tel: (0742) 444278

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

R.Henson Ltd.

21 Lodge Lane, N. Finchley, London, N.12. 5 mins. from Tally Ho corner
Telephone 01445 2713/0749

CIRCLE 66 FOR FURTHER DETAILS.
ELECTRONICS \& WIRELESS WORLD NOVEMBER 1984

TWO CHANNEL OSCILLOSCOPE

Two new dual-channel oscilloscopes come from the Hameg stable. HM204-2 is a 20 MHz instrument and Hm605 can measure up to 60 MHz . Both instruments have sensitivities variable from 1 to $50 \mathrm{mV} / \mathrm{cm}$ and there is a signal delay line to view the trigger edge of a waveform. A variable sweep delay enables the expansion of any section of the waveform and the sweep range is variable in the HM204-2 from 10 ns to $1.25 / \mathrm{cm}$ and in the HM605 from 5 ns to $2.5 \mathrm{~s} / \mathrm{cm}$. Both oscilliscopes have built-in component testers for checking components individually in or out of circuit. 1 kHz and 1 MHz square wave calibration outputs are provided as is z modulation. Levell Electronics Ltd, Moxon Street, Barnet, Herts EN5 5SD EWW 222

RGB DRIVER FOR COLOURCRT

A250V bipolar i.c. may be used to drive directly the red-greenblue cathodes of a colour tv tube. The TDA 8150 replaces several discrete components while offering an equivalent or better performance. Inside the chip there are three independant video output amplifiers with a circuit to generate the first grid voltage. Each output stage is protected by an internal clamp diode against flashover discharges in the tube and further protection may be provided by the addition of a low cost spark-gap. The circuit is intended for use in sets that have a sequential cut-off system for adjustment and includes a common sensing output. Typically the chroma processor will drive each input in turn during the frame-blanking interval, adjusting the drive level so that the video black level corresponds to the beam cut-off voltage. The TDA8150 conform to CCIR standards and has a typical bandwidth of 5 MHz (80V peak-to-peak). It operates from a 200 V supply (250 V maximum) and features a 100 ns rise and fall time. Output voltage swing is at least 180 V peak-to-peak with a 200 V supply. SGS, via C. Olivetti 2,20041 Agrate, Brianza, Italy.EWW 223

OPTO RELAYS

A range of optically isolated triac drivers, miniature solidstate relays, can drive small a.c. loads directly. The MCP series from General Instrument have the advantage of 'zero-crossing' circuuitry which only allows the
controlled triac to switch on when the a.c. supply crosses the zero voltage point, reducing interference. Internally they use infra-red leds for high stability and rapid response. The devices may be used to power lamps, motors, solenoids etc. as well as to trigger larger triacs for higher power applications. General Instrument (UK) Ltd, Times House, Ruislip, Middlesex HA4 8LE.
EWW 225

STAND-OFF INSULATORS

To meet a demand for good anchorage and location when multi-point insulator, Jackson Brothers have developed the Type-U Stand-off insulator.It is one of a selection of insulators and terminal strips, all of which are subjected to vigorous quality control and can withstand temperatures from 40 to $100^{\circ} \mathrm{C}$.
Jackson Brother (London) Ltd, Kingway, Waddon, Croydon, Surrey CR9 4DG.
EWW 224

 range of computer peripherals include the Essex analogue board. This can accept up to 16 analogue signals and can measure each with a resolution of 12 -bits. Simple resistor selection at each input allows scaling of the input voltages to take full advantage of the a-to-d converter which reads both positive and negative-going signals. The board also has two analogue output channels and four digital outputs.

Connections are made to screw terminals which can be connected off the board and then simply plugged into it.
Another interface from the same stable is an opto-isolator board which provides the isolation needed in electrically noisy environments. Twelve input and twelve output channels are provided. The v .mos power fets at the output stages are capable of switching 5 to 60 V of 800 mA current while offering over 1 kV of breakdown protection. The isolated digital input circuits will accept 'on' voltages from 2.6 to 40 V thus accommodating a wide range of external supplies. Twopart screw terminals similar to those on the analogue board are used
Both boards are single Eurocard size and are directly compatible with the Essex Tiny Basic computer and its system bus. Essex Electronics Centre, University of Essex, Colchester CO4 3SQ.
EWW 226
unstabilized motor supply voltages of between 10 and 45 V d.c. output currents from 10 mA to 1 A can be selected in steps or varied continuously. Additionally the circuit can operate in step or half-step modes. A built-in time delay ensure that there is never a short circuit in the output stage during a phase shift. Two UC3717s and a few passive components form a complete control and drive system for a microprocessor-controlled stepper motor system. Unitrode (UK) Ltd, 6 Cresswell Park, Blackheath, London SE3 9RD. EWW 227

RADIO MODEM

A u.h.f. pair of a transmitter and a receiver with a modulator and a demodulator respectively constitute the Micro-Tel system. It can receive and transmit data at any rate up to 1200 baud at a line-of sight distance of up to 10 km . Further distances are possible if used on high buildings or from aircraft. The transmitter, powered from 12 V d.c. can accept serial input from t.t.1. level or +12 V (RS232) or anything in between. Inside the transmitter, the received signal is used to generate two audio sinwaves

STEPPER MOTOR CONTROL

A monolithic i.c. can control a wide range of bi-polar stepper motors. The UC3717 from Unitrode is all that is needed between a control computer and the motor being controlled. The circuit is provided with a t.t.1.compatible input, a current sensor and an output stage with built in Schottky protection diodes. The device provides a constant current chopped drive which achieves high efficiency and performance with
supplied with each unit and are suitable for most application although an external aerial can be used. The transmitted power is restricted to the maximum allowed in the U.K, 0.5 W although 3 or 10 W power boosters are available on export models. The units may, of course be used to transmit computer data, but the makers see the units to be of most use in the remote monitoring of instruments used in telemetry and surverying, and in unmanned weather stations. Measurement Devices Ltd, Bennico Centre, 23 Commerce Street, Aberdeen AB2 1BE EWW 228

DAWSBURY

POCOMTOR AFR 2000 RTTY ALL MODE

SPECIAL features:

- Fully automatic recognizing of ARO. FEC-Collective and FEC Selective (SITOR/ANTOR)
- Fully automatic searching and synchronizing in Baudot mode according to Baud rate and phase: indication of baud rate and phase
- Manual preselecting of all Baudot and ASCII speeds
- Optimum microprocessor controlled signal reception with $1^{\prime} 000$ (sixteen thousand) samples per second and steady re phasing on forward and backward run of signal

CLECTRONICS
企 G4CLX

G4USN SHOPS HERE

- Special narrow band quadrature discnminator for all used LF shifts from 50 to 1000 Hz
- Simple and quick tuning with 16 hne LED bar indicanon
- Extremely simple operating
- Current-saving 8 bir C-Mos microprocessor
- Development and manufactured in Swituertand

FEATURES AND APPUICATION:
The POCOMTOA AFA 2000 RTTY ALL MODE DECODER allows the simple and easy writing of the usual teletype codes as BAUDOT, ASCII (including 200 baud press service), ARO, FEC Collective, FEC Selective (SITOR/AMTOR) and the FEC procedure used for secret services, which differs trom the U UUal CCIR recommendation 4762 The POCOMTOR AFR-2000 is a complete tetetype decoder with buit in new quadrature discrminator for automatic adapting and processing of the normal shift offsets of 50 Hz
to 1000 Hz . The POCOMTOR AFR 2000 is to 1000 Hz . The POCOMTOR AFR-2000 is the firsi RTTY reception device on the consume area that fully automatically deternines the received baud rate and synchronizes thereon, without being way. It is now only required to call up the automatique routine and aftel a shor time for the signal reception of about 10 to 15 seconds the synchronization is reached and the text can be written.
In the mode ARO/FEC, ie. during synchronous character transter (without star and stoo bit) the buit- in inteligency finds out by itself whether it is an ARO or FEC signal, whereby it is additonally differentiated between FEC Collective and FEC-Selective. To balance signal phase moves there is a steady adaption of the microprocessor controlled sampling, as to prefunning characters and to afterfunving Characters.
The tectnology of the POCOMTOR AFR 2000RTTV ALL MOOE DECODEA COnresponds to the highest requirements. Its extraordinary prize/parformance ratio will not be reached in near fittre on the easy its for that you receive move and heve to tune less. It has never been thus easy to receive radio teletype.

Dewsbury Electronics offer a full range of Trio Equipment always in stock
We are also stockists of DAIWA-WELTZ-DAVTREND-TASCO TELEREADERS-MICROWAVE MODULES ICS AMTOR-AEA PRODUCTS-DRAE-BNOS
Bacturiand Dewsbury Electronics, 176 Lower High Street, Stourbridge, West Midlands.
VISA Telephone: Stourbridge (0384) 390063. Open Monday thru Saturday. Instant H.P. subject to status, Access, Barclaycard and real money.

CIRCLE 68 FOR FURTHER DETAILS.

PRINTED CIRCUIT BOARDS FOR ELECTRONIC \& WIRELESS WORLD PROJECTS

BOARD CODE: $-*$ PLATED THROUGH HOLE *SINGLE SIDED
All P.C.B.'S are supplied with component insertion diagrams. Prices are inclusive of Inland and Overseas Postage, Packing and V.A.T.

TEL:- 0271882346 KING STREET, COMBE MARTIN, NORTH DEVON EX34 OAD CIRCLE 73 FOR FURTHER DETAILS.

pantechnic

design manufacture and supply
POWER AMPLIFIERS HIGH POWER ASSEMBLIES CONTROL CIRCUITRY

- for application in

INDUSTRY PUBLIC ADDRESS HI-FI

- available

OFF THE SHELF CUSTOMISED CADDESIGNED

tel. 01.361.8715 132 High Road telex 266873 New Southgate PANTEC G LONDON N11 1PG.

CIRCLE 60 FOR FURTHER DETAILS.

TERMS OF BUSINESS

All prices exclude V.A.T. and carriage. Please add carriage to order total before adding V.A.T

* Carriage charges extra on all orders as follows Components Books/Data/Software Printers, Monitors, Disc drives, etc
* Strictly cash with order or credit card (Access or VISA only.
- Delivery is normally from stock but please allow up to 28 days.
* Any query or complaint regarding an order should be made in writing within 7 days of receipt of the

Goods incorrectly ordered cannot be accepted for replacement without our prior agreement. Due to high processing costs, a minimum of 15% handling charge may be levied on any returns or cancelled orders.

* We will issue a full immediate refund, if requested, for out of stock items
* All items carry full manufacturers warranty.
- A V.A.T. receipt will be supplied with all orders.
* Prices quoted are correct at the time of going to press but we reserve the right to effect changes without prior notice

Hi-Tech

HI-TECH COMPONENTS,

FAIRCHILD	74HC251NH. 03	74LS22	0.25	4033	2.40	4078	0.25
FAST 7	74 HC 253 N 1.03	74LS221	1.08	4034	1.00	4081	0.40
	74 HC 257 N 1.03	74LS240	1.40	4035	0.54	4082	0.25
74FOOPC 0.60	74HC266N0.92	74LS241	1.40	4040	0.65	4085	0.66
74FO4PC 0.60	74 HC 273 N 2.24	7415242	1.36	4041	0.36	4086	0.40
74F08PC 0.65	74 HC 27 N 0.80	74LS243	1.36	4042	0.76	4093	0.32
74F109PC 0.65	74 HC 280 N 3.26	74LS244	1.40	4043	0.64	4099	0.50
74F11PC 0.527	$74 \mathrm{HC} 32 \quad 0.40$	74LS245	1.95	4044	0.62	4502	0.86
74F138PC 0.52	74 HC 373 Ni 2.40	74LS248	1.16	4045	2.00	4507	0.47
74F138PC 1.26	74 HC 374 N 2.40	74LS249	1.16	4046	0.77	4508	0.96
74F1 39PC 1.26	74HC 393N 1.78	74LS251	0.78	4047	0.50	4510	0.68
74 F 151	74 HC 40020.64	74L5253	0.78	4048	0.40	4511	0.69
74 F 1531.26	74 HC 40171.16	7445257	0.78	4049	0.50	4512	0.40
7451571.30	74 HC 40201.46	74LS258	0.78	4050	0.49	4514	1.76
7451581.17	74 HC 40241.20	7415259	1.77	4051	0.52	4515	1.84
74F161 $\quad 2.34$	74 HC 40401.46	74LS26	0.30	4052	0.48	4516	0.68
$74 \mathrm{~F} 164 \quad 1.68$	74 HC 40601.46	74LS261	2.60	4053	0.66	4518	0.40
74F175 1.82	74 HC 40750.64	74LS266	0.35	4054	1.30	4519	0.25
$74 \mathrm{~F} 181 \quad 3.90$	$74 \mathrm{HC} 42 \mathrm{~N} \quad 0.90$	$74 \mathrm{LS27}$	0.25	4055	0.72	4520	0.96
$745189 \quad 5.10$	74 HC 45112.51	74L5273	1.35	4060	0.68	4521	1.32
$74 \mathrm{~F} 190 \quad 3.20$	74 HC 45143.76	7415279	0.77	4063	0.60	4522	0.84
$745191 \quad 3.20$	74 HC 45382.36	74LS28	0.25	4066	0.50	4526	0.52
745194 ll	74 HC 45433.04	74L5283	1.00	4068	-0.25	4527	0.52
74F20PC 0.52	$74 \mathrm{HCS} 1 \mathrm{~N} \quad 0.64$	74L5290	0.86	4069	0.40	4528	0.48
$74 \mathrm{~F} 240 \quad 3.16$	$74 \mathrm{HC533N} 2.40$	74L5293	0.86	4070	0.40	4532	0.68
$74 \mathrm{~F} 241 \quad 2.42$	74 HC 534 N 2.40	74L530	0.25	4071	0.40	4541	0.82
$74 \mathrm{~F} 243 \quad 2.80$	74 HCS 89 N 1.72	74L532	0.25	4072	0.40	4543	0.60
$747244 \quad 2.96$	$74 \mathrm{HC58N} 0.64$	74L533	0.30	4073	0.40	4553	2.40
$74 F 2456.08$	74HC595N 1.84	74L5365	0.55	4075	0.46	4555	0.48
$74 F 2511.26$	74HC597N 1.72	74LS366	0.55	4076	0.48	4556	0.44
7472531.26	T4HC73N 0.84	7415367	0.55	4077	0.40	4585	0.48
74 F 2571.26	$74 \mathrm{HC} 74 \mathrm{~N} \quad 0.84$	7415368	0.55				
74 F 2581.34	$74 \mathrm{HC} 75 \mathrm{~N} \quad 0.92$	$74 \leq 537$	0.25	CRYSTALS			
74 F 28001.74	$74 \mathrm{HC} 76 \mathrm{~N} \quad 0.64$	74.5373	1.50		1 MHz		4.50
$745283-1.74$	74 HC 85 N 2.02	$74 L 5374$	1.50	A11			4.00
$74 \mathrm{F32PC} 0.52$	$74 \mathrm{HC} 86 \mathrm{~N} \quad 0.80$	74.5375	0.75	A1		32 MHz	3.50
$\begin{array}{ll}744352 & 1.26 \\ 744353 & 1.26\end{array}$	P4HCU04N 0.80	74.5377	1.50	Al16A	2.457	76 MHz	2.00
$\begin{array}{ll}744353 & 1.26\end{array}$		74.5378	1.22	A120B	4 MHz		1.25
744373	TL	74.5379	1.50	A132A	6 MHz		1.70
745374	74LS00 0.25	74L538	0.25	A140A	8 MHz		1.25
7443791.83	74LSO1 0.25	74.5386	0.50	A169A	3.686	64 MHz	2.00
$74 F 381 \quad 6.62$	$74 \mathrm{LS02} 00.25$	74.5390	1.10	A173A	9.830	9MHz	2.75
74F382 4.4 .22	74 LSO 30.25	7415393	1.10	A182A	19.66	608 MHz	2.50
74539838	74LS04 00.25	74LS40	0.25			㖪	
$745399 \quad 2.70$	74L505 0.25	741542	0.85	DIL SKTS TIN			
$747521 \quad 2.76$	$\begin{array}{ll}74 L 508 & 0.25\end{array}$	74L547	1.00				
7455333	174250980.25	741548	1.00			0.07	100+
$745534 \begin{array}{ll}3.16 \\ 744537\end{array}$	$74 \mathrm{LS10} 000$	741549	1.00	07070802		$\text { N } 0.07$	0.05 0.07
$\begin{array}{ll}7445537 & 6.02 \\ 745538 & 4.38\end{array}$	$74 L 51090.54$	74.551	0.25	07071402	14	$\begin{array}{ll} 0.09 \\ \hline N \end{array}$	0.07 0.07
$74 F 538$ 745539 4.38	$\left\|\begin{array}{ll} 74 L S 109 & 0.54 \\ 74 L 511 & 0.25 \end{array}\right\|$	74.554	0.25	07071602	16	$\begin{array}{ll} 1 N & 0.09 \\ \hline N \end{array}$	0.07 0.10
$74 F 539$ 4.38 $74 F 64 P C$ 0.52	74L5112 0.54	$74 \mathrm{LS55}$	0.25	07071802	18	$\begin{array}{ll} \text { N } & 0.15 \\ \hline \end{array}$	0.10 0.14
$\begin{array}{ll}74 F 64 P C & 0.52 \\ 74574 P C & 0.58\end{array}$	74L5113 0.54	74L5670	2.30	07072002 07072202	22 Pl	$\begin{array}{ll}\text { N } & 0.19 \\ \text { PN }\end{array}$	0.14 0.15
$\begin{array}{ll}74 F 74 P C & 0.58 \\ 74786 P C & 0.77\end{array}$	74LS114 0.44	74L573	0.30 0.35	07072202 07072402	22 Pl	$\begin{array}{ll} \mathbb{N} & 0.21 \\ \operatorname{IN} & 0.21 \end{array}$	0.15 0.16
74F86PC 0.77	74LS12 0.25	741574	0.35	07072402	28 Pl	$\begin{array}{ll} \text { IN } & 0.24 \\ \text { IN } & 0.26 \end{array}$	0.16 0.17
HIGH	74L5122 0.75	74LS75	0.50 0.35	07074002	40 PI	PIN 0.29	0.18
SPEED	$\begin{array}{lll}74 L 5123 & 0.95 \\ 74 L 5124 & 2.30\end{array}$	741578	0.35	SKTS GOLD			
SPEED	74.5124	74L583	0.90				
C		74L585	1.16	06060802	8 P1		0.16
	$74 L S 126$ 74513 0.49	74L586	0.42	06051402	14 PI		0.20
$\left\|\begin{array}{ll} 74 \mathrm{HCOON} & 0.42 \\ 74 \mathrm{HCOON} & 0.42 \end{array}\right\|$		74L590	0.66	06061602	16 PI		0.21
$\left\|\begin{array}{ll} 74 \mathrm{HCO2N} & 0.42 \\ 74 \mathrm{HCO} \mathrm{~N} & 0.64 \end{array}\right\|$		74L591	1.30	06061802	18 PI		0.22
74 HCO 2 N 0.64 $\|74 \mathrm{HCO4N} \quad 0.44\|$	$\begin{array}{lll}74 L S 136 & 0.46 \\ 745138 & 0.77\end{array}$	74.592	0.66	06062002	20 PiN		0.28
$74 \mathrm{HCO8N} \quad 0.42$	74LS139 0.77	74.593	0.66	06062202	22 PI		0.32
74 HC 107 N 0.78	74LS14 0.80	74L59	0.77	06062402	24 Pl		0.42
74 HC 109 N 0.50	74451451.23	CM		$\begin{array}{ll}06064002 ~ 40 ~ P I N ~ & 0.66\end{array}$			
$74 \mathrm{HC10N} \quad 0.64$	47451481.50						
74HC112N 0.86	74LS15 0.25	4000 Series		DIL SKTS W/WRAP			
$74 \mathrm{HC1} 13 \mathrm{~N} 0.86$	74LS151 1.10	4000	0.25				
74 HC 132 N 1.28	7445153 1.10	4001	0.52	TURNED PIN			
74 HC 137 N 1.81	74LS155 0.77	4002	0.25	9090802	P		
$74 \mathrm{HC138N} 1.20$	7415156	4006	0.90	9091402	14 P		0.36 0.75
$74 \mathrm{HC139N} 0.78$	8 74LS157 0.62	4007	0.25	9091602	16 P		0.8
$74 \mathrm{HC151N} 1.16$	674151580.62	4008	0.92	9091802	18 P		0.90
$74 \mathrm{HC153N} 0.90$	074151600.80	4009	0.25	9092002	20 PIN		1.08
$74 \mathrm{HC157N} 1.02$	274551610080	4010	0.25	9092202	22 PIN		1.18
74 HC 158 N 1.02	274551620.80	4011	0.30	9092402	24 P		1.28
74 HC 160 N 0.90	74LS163 0.80	4012	0.25	9092802	28 P		1.50
74 HC 161 N 0.90	74L5164 1.10	4013	0.45	9094002	40 P		1.70
74 HC 162 N 1.51	$174 L 516511.30$	4014	0.50	9034002			$1 . \%$
74 HC 163 N 1.51	$174 L 516611.95$	4015	0.65	ZIF SOCKETS			
74 HC 164 N 0.95	74LS173 1.13	4016	0.46				
74 HC 165 N 2.24	4 74LS174 1.30	4017	0.63	OB082402 $24 \mathrm{PIN} \quad 5.70$			
74 HC 173 N 1.35	$574 L 517500.96$	4018	0.46	0808280228 PIN 6.90			
74 HC 174 N 0.80	74LS181 2.09	4019	0.39	$0808400240 \mathrm{PIN} \quad 8.25$			
74 HC 175 N 0.78	87451900.98	4020	0.45				
74 HC 194 N 1.28	$874 L 51910.75$	4021	0.56				
74 HC 195 N 1.28	874451921.10	4022	0.42				
$74 \mathrm{HC} 20 \mathrm{~N} \quad 0.40$	74LS193 1.10	4023	0.34				
74 HC 237 N 1.80	$074 L 51940.78$	4024	0.66				
74 HC 240 N 1.38	$874 L 51950.78$	4025	0.25				
74 HC 241 N ! 1.34	$474 L 519611.10$	4026	0.74				
74 HC 242 N 2.24	$474 L 51971.10$	4027	0.52				
74 HC 243 N 2.24	474 LS20 0.25	4028	0.34				
$74 \mathrm{HC} 244 \mathrm{~N}, 1.32$	$274 L 521 \quad 0.25$	4031	0.93				

components

Connecting cables for personal computers

A comprehensive range of high quality interconnecting cables for popular micro computers. All cable utilise high quality connectors and are individually tested to ensure trouble free use.

Part number Video cables	Description	Computer
CON100	Phono piug to phono plug (2M)	
CON101	Phono plug to BNC plug (2M)	
CON102	BNC piug to BNC plug (2M)	
CONiO7	6 pin DIN to open end (1M)	
CON108	6 pin DIN to 6 Pin DIN (1M)	BBC
CON160	DIN plug to 2 phono plugs	Dragon

Cassette recorder cables

CON109
CON110
CON191
CON118
CON117

7 pin DIN to open end	
7 pin DiN to $2 \times 3.5 \mathrm{~mm}+1 \times 2.5 \mathrm{~mm}$ J/plug	BBC
7 pin DIN to 5 pin DIN $+2.5 \mathrm{~mm} \mathrm{~J} /$ plug	BBC
5 pin DIN to $2 \times 35 \mathrm{~mm} / /$ plugs	BBC
5 pin DIN to $2 \times 3.5 \mathrm{~mm}+1 \times 25 \mathrm{~mm}$ J/plug	Spectrum $/ 2 X$

Parallel printer cables

CON130	36
CON131	36
CON132	36
CON133	36
CON144	36
CON145	36
CON134	36
CON135	36
CON142	36
CON139	36
CON140	36
CON14	36
CON143	36

RS232 Cable
CON106 CON
CON 1
CON
CON
CON
CO
CON1
CON1
CON127

36 way plug to 36 way piug (2M)	Sirius/Apricot	18.00
36 way plug to 36 way plug (5M)	Sirius/Apricot	26.50
36 way plug to 36 way socket (2M)		18.00
36 way plug to 36 way socket (5 M)		26.50
36 way plug to 25 way maie D type (2M)	\|BM/TIPC	19.00
36 way plug to 25 way male D type (5M)	IBM/TIPC	27.50
36 way plug to 25 way male D type (2M)	RML/Apple	19.00
36 way plug to 25 way Male D type (5M)	RML/Apple	27.50
36 way plug to 20 way IDC socket (2M)	Dragon	13.95
36 way plug to 26 way IDC socket (2M)	BBC	9.95
36 way plug to 26 way IDC socket (5M)	BBC	22.95
36 way plug to 34 way card edge (2M)	TRS80 Lev. 1	18.50
36 way plug to 34 way IDC socket (2M)	TRS80 Lev $2 /$ Memotech	10.95
25 way male D type to 5 pin DIN	BBC	5.85
'Universal' RS232 cable (pins 1-8, 20 connected		
and 20 jumpered as required) 2 M		15.95
'Universal' RS232 cable as above but 5 M		20.95
25 way male to male 1.25 connected (2M)		16.95
25 way maie to male $1-25$ connected (5M)		22.50
25 way male to male 1.25 connected (10M)		32.50
25 way male to male 1-25 connected (30M)		68.00
25 way male to female 1.25 connected (2M)		15.45
25 way male to female 1-25 connected (5M)		21.00
25 way maie to female 1-25 connected (10 M)		31.00
25 way male to female 1.25 connected (30M)		65.50
25 way male to 9 way male	Spectrum	15.95
25 way male to 9 way male	Mackintosh	15.95
25 way male to $5 \mathrm{pin} \mathrm{D/N}$	RML 4802	14.95

> DISPLAYED APPOINTMENTS VACANT: $£ 19$ per single col. centimetre (min. 3 cm). LINE advertisements (run on): $£ 4.00$ per line, minimum $£ 25$ (prepayable). BOX NUMBERS: $£ 5$ extra. (Replies shouid be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 4AS). PHONE: LUCY O'SULLIVAN, $01 \mathbf{6 6 1} \mathbf{3 0 3 3}$ (DIRECT LINE)

Cheques and Postal Orders payable to BUSINESSPRESSINTERNATIONALLTD. and crossed.

Civil Aviation College (Gulf States) DOHA, QATAR
REQUIRED FOR SEPTEMBER 1984:
INSTRUCTOR AVIATIONELECTRONICS

University Degree and Professional Qualifications in Aviation Electronics. Qualified and Experienced in Installation and Maintenance of Modern Radio Systems.
Must have MINIMUM TEN YEARS' EXPERIENCE with Three
Years' Instructional Experience at an ICAO Recognised Training Centre.
Salary and Allowance up to US dollars 3400 Per Month.
Applications to:
THE PRINCIPAL
CIVIL AVIATION COLLEGE (GULF STATES)
P.O. BOX 4050

DOHA
STATEOF QATAR

MOSTEK MK 38P70 DEVELOPMENT PROCESSORS
For sale or rent
£12.50 each in lots of 10
£8.50 each in lots of 100
Rental $£ 2 /$ month each $P+P £ 1.50$
Datex UK Ltd., 101, Acorn Street,
Lelcester 0533-666518

NIMBUS RECORDS LTD

Require a practical person able to build and wire up prototype electronic equipment from given circuits, also preferably able (with some guidance) to undertake faultfinding and maintenance on existing equipment. This is not simply a wireman's job - it needs a high level of general intelligence as well.

Write to: -
Head of Research, Nimbus Records Ltd, Wyastone Leys, Monmouth, Gwent NP5 3SR.

PROJECT ENGINEER

A vacancy exists for in our Projects department for an enthusiastic and self motivated engineer. The department deals primarily with the system design of broadcast communications equipment to customers' requirements and is responsible for the preparation of production and handbook documentation in addition to providing technical support for our sales, manufacturing and test department.
A suitable engineering qualification together with some experience in broadcast or the professional audio industry would be an advantage.

ANALOGUE DESIGN ENGINEER

We are looking for an experienced engineer to join our development team. The successful candidate will be involved in all aspects of design from concept to production. He/She will most likely have a relevant degree and must be capable of producing innovative but practical designs with minimum supervision. Experience of the professional audio industry would be an advantage.

TEST ENGINEER

We require a test engineer with experience in testing analogue (preferably audio) circuit and fault finding to component level He/She will become involved in varied testing from small batch produced units to complete studio communications systems and will be required to adapt to digital technology as this is introduced.

SOFTWARE ENGINEER

A new position of microprocessor software engineer has been created and we seek a suitable candidate to design software in PASCAL and ASSEMBLER for the MC6800 family. The ability to work on your own initiative and communicate your ideas clearly is essential.

Attractive salaries will be offered to the right people
If any of the above positions appeal to you please apply in writing including your current CV or phone Jill Humphreys on Welwyn Garden City (07073) 33866 for an application form. Philip Drake Electronic Ltd. 37 Broadwater Road, Welwyn Garden City Herts AL7 3AX:
 (2744)

YOU'VE BUILTMICROPROCESSOR

 CONTROLLED PRODUCTS:NOW HAVEA HAND IN DESIGNING THEMOPPORTUNITIES FOR YOUNG, QUALIFIED ENGINEERS
South Herts High performance mini computers to $£ 11,000 \mathrm{pa}$ Cambs Custom-made CAD systems
Suffolk Remote TV, video and air reconnaisance systems
Essex Remotecontrolled
Broadcast communications
c $£ 7,500$
S Herts Defence and security equipment c $£ 9,000$
Cambs Digital guaging and read outs for inspection equipment
c $£ 7,000$
Call Phil Walleron
Bishop's Stortford (0279) 506464,
9am-6pm, (out of hours answering service)
For further details and a confidential discussion or send your c.v. to:-

Portland House, 29 Basbow Lane,
Bishop's Stortior, Herts.
London, Leeds, Manchester, Birmingham, Edinburg, Bristol, Bracknell, Bishop's Stortord, Crawley, Miton Keynes

Engineering Recruitment

DESIGNAND
 DEVELOPMENT ENGINEERS

Experienced Engineers are required for the design of TV Studio Products using the very latest analogue techniques. You will have the opportunity to see your designs made in volume production and fulfilling the high technology requirements of the ' 80 's.

We are looking,for engineers minimum age 25, who are qualified to Degree level and who have at least 3 years experience of electronic equipment preferably in television.

> ELECTRONIC TEST ENGINEERS -TELEVISION STUDIO PRODUCTS

Experienced Engineers are required for test and quality assurance duties on our current range of broadcast equipment. You would be involved in fault-finding, testing and checking to spec., sophisticated studio products, including our new range of microprocessor based colour cameras and digital test equipment Preferably qualified to a least HND/Higher TEC/Degree level you should be familiar with modern digital and analogue circiutry. At least three years' experience in a related field would be an advantage for the present level of vacancies.

Salaries offered are competitive and are backed by free life and health insurance plus a contributory Pension Scheme and generous holidays. Assistance with relocation will be given where appropriate to help successful candidates move to this pleasant rural part of Hampshire, which offers easy access to London and major towns in the South of England.

Please phone JEAN SMITH on Andover (0264) 61345 for an application form or, alternatively, let us have full details of your background and experience.

ELECTRONICS

Walworth Industrial Estate, Andover, Hampshire, England Telephone: Andover (0264) 61345

Appointments

Systems Engineers
 Outstanding opportunities for pragmatic Systems Engineers to become Senior Systems Engineers, Technical Managers or Project Managers, dealing from scratch with one of several new, exciting, large high technology projects.

Several unique opportunities affording excellent career prospects with a large, expanding, performance orientated company exist for engineers with a degree or HNC in Physics or Engineering (preferably Electronics or Systems Engineering, but possibly Mechanical Engineering). Candidates should have acquired good systems experience whilst working in the Electronics or Defence Industries and ideally will have practical knowledge of prototype production or trials

Your task will be to assist our client. who has developed an enviably secure base in the development and manufacture of complex weapons systems, to develop new business areas for high technology systems in both the defence and commercial sectors. The number of persons ultimately involved in a project will vary from 20 to 750 and the development costs will range from $£ 20 \mathrm{M}$ to £200M and consequently there will be tremendous opportunities for you to progress to the control of the running of very large projects as well as to higher levels of management. By proposing, developing and evaluating systems and design options, producing prototypes and arranging for all necessary trials and tests, your team's objective will be to produce complete technical and cost proposals for complex. state-of-the-art systems whose technical excellence and competitiveness will ensure that large contracts are
secured. To have acquired the necessary skills and experience to meet this formidable challenge you will probably be at least 30 to 35 years old; have management experience especially of dealing with people outside your direct control; have experience of customer liaison and project planning; and will have developed commercial and business awareness.

These important new positions offer excellent rewards and conditions with first class future prospects in the thriving division of a leading company in the High-Technology and Defence Industries that is part of a highly successful, major international group. The division has an order book which takes them potentially beyond the year 2000, is committed to developing several new business areas, and is poised to move into the world market in a big way.

TO FIND OUT MORE and to obtain an early interview, please telephone JOHN PRODGER in complete confidence on HEMEL HEMPSTEAD (0442) 47311 during office hours or one of our duty consultants on HEMEL HEMPSTEAD (0442) 212650 evenings or weekends (not an answering machine).
Alternatively write to him at the address below.

THE INTERNATIONAL SPECIALISTS IN RECRUITMENT FOR THE ELECTRONICS. COMPUTING AND DEFENCE INDUSTRIES
25-33 Bridge Street, Hemel Hempstead, Herts., HP1 1EG

DODolby

Dolby Laboratories Inc. manufacture and market Audio Noise Reduction equipment which is used by major recording companies, recording studios, the film industry and broadcasting authorities throughout the world.
Due to increased sales and the introduction of new products we have the following vacancies:-
Electronic Test Technicans (£135 pw NEG) We need people educated to HNC level (or equivalent) with the potential to develope test and fault finding skills (to component level) in a semi-automated test environment.

Electronic Test Engineer ($£ 8000$ pa NEG) We need experienced Test Engineers educated to HND to equivalent level who demonstrate a practical knowledge of Analog testing and rapid "trouble-shooting" to component level.

[^3]
BORED? Then change your job!

1) Data Communications Customer service engineer to work on local area networks. To £13,000 + car. Berks.
2) Test Engineer to work on peripheral and printers to component level. To £9,000. Berks/Bucks/Hants.
3) CAD/CAM Field Service Engineers. To work on PDP 11 based graphic display to £12,000 + car. Berks/Bucks
4) Office Automation Systems Technical Support Engineer to work on 280 based systems To $11,000+$ car
Berks/Bucks
Hundreds of other Electronic and Computer vacancies to $£ 12,500$ Phone or write
Roger Howard, C.Eng., M.I.E.E., M.I.E.R.E
CLIEDEN BDNSULTANTS
92 The Broadway, Brecknell, Berkshire Tel: 0344 489489
CLIVEDEN

Dlectronics Dngineers 89561 ,

 Communications Designin High Tech CountryAt H.M. Government Communications Centre we're using the very latest ideas in electronics technology to design and develop sophisticated communications systems and installations for special Government needs at home and overseas.

With full technical support facilities on hand, it's an environment where you can see your ideas progress from initial concepts through prototype construction, tests and evaluation, to the pre-production phase, with a chance to influence every stage. Working conditions are pleasant, the surroundings are attractive, and the career prospects are excellent

Ideally we're looking for men and women who have studied electronics to degree level or equivalent and have had some experience of design, whether obtained at work or through hobby activities. Appointments will be made as Higher Scientific Officer (£7149-£9561) or Scientific Officer (£5682-£7765) according to qualifications and experience.

For further details please write to the address given below. As our careful selection process takes some time, it would be particularly helpful if you could detail your qualifications, your personal fields of interest and practical experience, and describe the type of of working environment most suited to your career plans.

The Recruitment Officer, HMGCC, Hanslope Park, Buckinghamshire MK19 7BH.
(2448)

TECHNICAL PROJECTS LIMITED

is a young and rapidly growing company specialising in the development, manufacture and marketing of audio products for the professional entertianments industry worldwide. Our customers include the BBC, independant television companies, local radio, hire and production houses, manufacturers, education and MOD etc. We are noted for product quality and customer service. Due to expanding business opportuniies the fol lowing two vacancies have arisen

FIELD SALES ENGINEERS

(Audio/Acoustic Measuring Equipment

1. Wales, Midlands \& East Anglia
2. Northern England and Scotland

Applications are invited from sales engineers ideally in the field of professional audio/acoustic measurement and its relted test products, possibly working in a large company and wishing an impact in a smaller one using their expertise and experience in field sales to promote the company's growth.
\AA combined five figure salary and commission of circa $£ 19.000$ is envisaged in the first year with every opportunity for increase and advancement into management. Company car provided plus normal benefits Please write or telephone:
The Sales Manager, TECHNICAL PROJECTS LIMITED,, Unit 2 Samuel Whites Ind. Estate, Medina Road, Cowes, Isle of Wight, P031 7LP Telephone: (0983) 291553

TELEVISION OPERATIONAL ENGINEER

We have a vacancy for a Television Operational Engineer in our Production Division at Chalfont Grove near Gerrards Cross, which provides Training Programmes for the British Forces.
The work includes the installation, operation and maintenance of professional television equipment. The facilities for this comprise C Format VTR's, Flying television equipment. The facilities for this comprise C Format VTR's, Flying
Spot Telecine, Studio and ENG cameras, Graphics and Duplication equipment Candidates should have reach HNC level in Electronics and have a workning Candidates should have reach HNC level in Electronics and have a working
experience of the task and equipment outlined above. Other candidates with experience of the task and equipment outlined above. Other candidates with
limited experience wishing to progress their careers in this field will however be limited exper
considered.
A good salary will be paid. Good Pension Scheme. Assisted travel and free lunches
Apply by letter giving details of experience and present salary to
Mre G Locke
Personnel Officer

The Services Sound and Vision Corporation Chalfont Grove, Gerrards Cross, Bucks SL9 8TN.

> UNIVERSITY OF GLASGOW

Language Centre

RESEARCH TECHNOLOGIST

A key position in Britain's first computer-automated centre for language teaching and related Audio-Visual production. This newly created Department offers a unique opportunity for the creative development of applications software and specialised hardware in a University enironment. It requires staff of vision and enterprise with a keen practical interest in project linking the computer and A/V technologies The person appointed will be responsible to the Director for technical supervision of the Centre and for hardware development in digital audio interactive video, and micro-electronic real-time operations. Candidates will have at least a good honours degree or the equivalent in a relevant discipline. A broad interest in modern languages wil be an asset. Appointment will be within the range $£ 7,190-£ 14,125$ (under review) on Grade $1 \mathrm{~A} / l \mathrm{ll}$ of the scales for Other Related Staff, with placement Grade $1 A / / l$ of the scales for Other Related
according to qualifications and experience.
Further particulars may be obtained from the Academic Personnel Office University of Glasgow, Glasgow, G12 8QQ, where applications (10 copies), giving the names and addresses of not more than three referees, should be lodged on or before 31st October 1984.

Informal enquiries may be made to the Director, The Language Centre, 041-339 8855, Ext. 255. In replay please quote Ref. No. 5341WA

Advanced
 telecommunications:
 careers with extensive scope at Cheltenham

Join the Government Communications Headquarters, one of the world's foremost centres for R \& D and production in voice/data communications ranging from HF to satellite - and their security. Some of GCHO's facilities are unique and there is substantial emphasis on creative solutions for solving complex communications problems using state-of-the-art techniques including computer/ microprocessor applications. Current opportunities are for:

Telecommunication Technical Officers

Two levels of entry providing two salary scales: £6262-£8580 \& £8420-£9522
Minimum qualifications are TEC/SCOTEC in Electronics/ Telecommunications or a similar discipline or C \& G Part II Telecommunications Technicians Certificate or Part I plus Maths B, Telecommunication Principles B and either Radio Line Transmission B or Computers B or equivalent: ONC in Electrical, Electronics or Telecommunications Engineering or a CIE Part I Pass, or formal approved Service technical training. Additionally, at least four years' (lower level) or seven years' (higher level) appropriate experience is essential in either radio communications or radar, data, computer or similar electronic systems. At the lower entry level first line technical/supervisory control of technicians involves "hands-on" participation and may involve individual work of a highly technical nature. The higher level involves application of technical knowledge and experience to work planning including implementation of medium to large scale projects.

Radio Technicians -
 £5485-£7818

To provide all aspects of technical support. Promotion prospects are good and linked with active encouragement to acquire further skills and experience. Minimum qualifications are a TEC Certificate in Telecommunications or equivalent plus two or more years' practical experience.
Cheltenham, a handsome Regency town, is finely endowed with cultural, sports and other facilities which are equally available in nearby Gloucester. Close to some of Britain's most magnificent countryside, the area also offers reasonably priced housing. Relocation assistance may be available.

For further information and your application form, please telephone Cheltenham (0242) 32912/3 or write to:

NEW CAMBRIDGE RESEARCH COMPANY LTD MANAGER

Applications are invited for the post of manager of a new 'venture workshop' in Cambridge. New Cambridge Research is a member of the Newmarket group of international venture capaital investment companies and is onethird owned by King's College, Cambridge. The venture workshop will provide facilities and support for the development, test and appraisal of new inventions to the prototype stage. The prototypes can then be assessed for commercial development.
QUALIFICATIONS: Applicants should have a good degree and research experience in engineering or science. Practical experience in industry is desirable. Initiative, enthusiasm and a technically adventurous mind are essential. The post offers great scope for the successful candidate, probably aged between $28-35$, who will be given the opportunity to widen his experience internationally with the Newmarket Group and will participate in the success of new companies.
SALARY: Negotiable, depending on the experience and suitability of the candidate.
Applications, including full c.v. should be sent by 27 th October to:

Miss S.V. Brinton,
New Cambridge Research Company Ltd
Unit 5, Clifton Industrial Estate, Cherry Hinton Road,
Cambridge. CB14BW.
Telephone: 0223214661

SWISS COMPANY

LOOKS FOR EXPERIENCED ENGINEER FOR INSTALLATION AND SERVICE OF

- SSB TRANSCEIVERS 1.6 - 30 MHZ FREQUENCY SYNTHESIZED
- IN ADDITION 1 KW POWER AMPLIFIERS INTERESTING POSITION WITH SOME TRAVELLING

Mr. K. Minder
TIG BICORD AG. CH 6331 Huenenberg Zug Switzerland.

- DESIGN ENGINEER

Required to design basic VHF FM transmitter circuits on a commission basis. Experience in micro circuit techniques would be an advantage. The ultimate requirement will be the design of micro circuit devices capable of providing up to 5MW output. Applicants should indicate current employment situation and salary together with previous experience in this field.

ALL THESE PRICES INCLUDE VAT
LOW PRICE-HIGH QUALITY BOXES OF 10 disks

40	S/S S/D $£ 12.00$
track	S/S D/D $£ 12.60$
	D/S D/D $£ 14.80$
80	S/S D/D $£ 14.70$
track	D/S D/D $£ 18.40$

Add £1 Post and Packing

ALSO COMPUTER CASSETTES

Boxes of 100
C10 £26.50
C15 £27.50
ADD
C20 £28.75
CARRIAGE

P. V.TUBES

Dept. D
104 ABBEY STREET,
ACCRINGTON, LANCS BB5 $1 E E$
Telephone: (0254)36521 (0254) 32611
Telex: 635562 Griffin G for PV

PHONE IN ACCESS/VISA CARD NO. FOR SAME DAY DISPATCH

ARTICLES FOR SALE
BRIDGES waveform/transistor analysers. Calibrators, Standards. Millivoltmeters. Dynamometers. KW meters. Oscilloscopes. Recorders. SigRMS, audio, FM, deviation. Tel. 040 376236. ${ }^{\text {Rud. }}$, deviation. Tel. 040

WAVEGUIDE, Flanges and dishes. All standard sizes and alloys (new material only) from stock. Special sizes to order. Earth Stations, 01-228 7876. 22 Howie Street, London SWll 4AR.(2099)

When replying to classified advertisements, readersare recommended to take steps to protect their interests before sending money

```
UNIVERSITY OF WARWICK
    Department of
        Psychology
    Electronics
    Technician Grade 5
```

Applications are invited for the post of Elecironics Technician (Grade 5) £6,581-£7,684 in the Psychology Department.
Candidates should be familiar with both hardware aspects of microprocessors and a working knowledge of video systems would be a distinct advantage and maintenance of a wid, construction and maintenance of a wide variety of standard and specialised electronic equipment.
informal and specilised electronic equipment.
Intormal enquiries to C. Wales (0203) 24011, Extension 2611 Application in writing, giving details of qualifications and experience and quoting the names and addresses of Office, University of Wervic Goventry Cv4 741 of Warwick Coventry CV4 7AL, quoting Closing date ist November 1984.

HIGHLAND HEALTH BOARD Department of Medical Physics and Bio-Engineering Raigmore Hospital, Inverness

SENIOR TECHNICIAN/ TECHNICIAN ELECTRONICS SECTIONS
A vacancy exists for a Senior Technician/Technician, with ONC or high qualifications. The work
involves disign, construction, repair and maintenance as well as clinical involvement. Salary is:
Grade III £6132- $\mathbb{7} 792$ Grade IV £5171— 16798 (under review)
Job description and application form from Area Personnel Officer
Highland Health Board, 17 Old
Edinburgh Road, Inverness. (Tel (0163) 239851)

For additional information contact MrAR Bowley, Duputy Director Tel (0163) 234151 Ext 276 or 277.

AMPEX is a company at the forefront of magnetic recording technology, which manufactures Professional Video Equipment, Instrumentation Recorders, Disk Drives, Terminals and Magnetic Media.
AMPEX INTERNATIONAL TRAINING, based in Reading, England, is currently expanding and there are several vacancies for Instructors to conduct quality maintenance courses on AMPEX products.

Applicants should be men or women who have experience in one or more of the following areas:

Digital Processing, Professional Video Recording, Digital Magnetic Recording, Microprocessor Based Equipment.

Teaching experience is not essential, as appropriate training will be given.
An attractive salary is offered, together with the usual large company benefits.

For application forms, please contact:

INTERNATIONAL Maureen Brake, Personnel Department, or John Watkinson, Training Manager.

Technical Author

Sony Broadcast Ltd, one of the world's leaders in the professional broadcast television industry, operates throughout Europe, the Middle East and Africa An excellent opportunity for an experienced Technical Author has now arisen at the Company's international headquarters which are located in Basingstoke.

The successful candidate will be responsible for writing high quality technical manuals on our major products A background in electronic engineering, preferably with experience in the broadcast industry, is required together with the ability to write clear, concise English
This position carries an attractive salary and first class conditions of employment. If you are interested please write to Mike Jones, Senior Personnel Officer or alternatively telephone our 24 hour answering service on Basingstoke 59583.

KING'S COLLEGE SCHOOL OF MEDICINE \& DENTISTRY of KING'S LONDON DENMARK HILL LONDON SE5 8RX ELECTRONICS ENGINEER
Applications are invited for a suitably qualified graduate to join a multi-disciplinary team researching into the design of novel instruusing ultrasound. Applicants should prossess a good degree of electronic or electrical engineering, and industrial experience would be an advantage. Suitable applicants will be given the opportunity to register for a higher degree
The post, which is tenable for a year in the first instance, is funded by the British Technology Group. Salary will be within the range Weighting placement being according to age and experience.
Formal applications, meluding the names and addresses of two reterees, should be sent to
the Secretary at the above address from whom further details of the post may be obtained. Interested applicants may write directly to Professor V. C. Roberts, Department of Medical Engineering \& Physics, Dulwich Hospital, East Dulwich Grove, London SE22.
The closing date for applications will be 7 November 1984

CHALLENGING POST

Dynamic radio service engineer required for Nigena For HF SSB and VHF/UHFSynthesised equipment
The position is well rewarded
014447207

SIGNAL RADIO Require a

 BROADCASTENGINEERFor general duties in the Engineering Department. The successful applicant will have a HND/Degree qualification or equivalent training in a relevant subject.
Experience in broadcasting and clean driving licence desirable. clean driving licence desirable.
Salary: Negotiable depending on Salary: Neg
experience.
experience. Apply with full C.V. to
Dave Donahue,
Chief Engineer
Studio 257,
StokeRd., Stoke-on-Trent.
ST4 2SR

THE UNIVERSITY OF SUSSEX ELECTRONICS TECHNICIAN

A vacancy exists for an electronics technician in the Psychology Laboratory, froms as soon as possible. Applicants soon as possible. Applicants with at least seven years' experence in electronic work are sought. Someone with less experience will also be considered, especially if with an interest in the computer and/or audio/visual fields.
Salary in the Technician Grade 5 range, $\mathbf{2 6 , 2 7 9 - £ 3 , 3 3 2}$ per annum, according to age and experience, but someone with experien seven years' experi ess than se would be appointed on lower grade. ower grade
Send self-addressed envelope (9in $\times 6$ in) for application form Mrs. S. Cory-Wright, Personnel Office, Sussex House, Univers ity of Sussex, Falmer, Brighton BNY 9RH.

Applications must be received by 9 November 1984

Microwave Engineers

low noıse amplitıers power amplitiers multıplexers and antennae
We ofter both challenging work in an innovative environment with full technical support and particularly good career prospects Sularies reflect the levels of senlonty and the attractive benetits package includes assistance with relocation expenses to a pleasant part of Southern England

Space Technology
The market demand tor space communications has resulted in a rapid growth of our salellite projects
The Marconi Space Centre at Portsmouth has been in the
foretront of satellite echnology from its inception We are now looking for experienced degree qualified mucrowave engineers to design satellite muciowave systemis and equipmient covering the frequency range 200 MHz to 50 GHz This will involve a range of comiponents including illters mixers

Telephone Portsmouth (0705) 674019 for an application form Alternatively you can write to Jack Burnie Marconi Space Systerrs Limiled. Browns Lane The Aurport. Portsmouth Hants Quoting Ref BL 221
(All posts are open to mien and women)

NATO HEAD QUARTERS ALLIED FORCES CENTRAL EUROPE

Applications are invited from qualified candidates for the permanent civilian post of:

ONE TELECOMMUNICATIONS ENGINEER (SATCOM) at Landau (GER)

Graduate Engineer or equivalent.
Nato Grade A-3
For systems maintenance and technical engineering functions. Min. 5 yrs. experience in
telecommunications. Knowledge of satellite communication applications and a software language.
Supervisory experience required. The new incumbent has to attend a 15 week SATCOM III course in Latina (Italy).

ONE ASSISTANT TELECOMMUNICATIONS ENGINEER (SATCOM).

Educational level H.N.C. or equivalent.
Nato Grade A-2
Closing date 31 October 1984.
For overall repair and system testing of satellite communications. Knowledge of maintaining telecommunications systems and a software language. Supervisory experience required

ONE ASSISTANT TELECOMMUNICATIONS ENGINEER (TARE/IVSN) ONE ASSISTANT TELECOMMUNICATIONS ENGINEER (TERMINAL \& PERIPHERAL)

Educational level H.N.C. or equivalent.
Nato Grade A-2
Closing date 31 October 1984.
For overall repair and system testing og computerized and digital switching communication systems. Knowledge of repairing computerized equipment and a software language. Supervisory experience required.

ONE PRINCIPAL TECHNICIAN (SWITCHING)

 ONE PRINCIPAL TECHNICIAN (CRYPTOGRAPHIC) ONE PRINCIPAL TECHNICIAN (TERMINAL \& PERIPHERAL)Educational level H.N.C./O.N.C. or equivalent.
Nato Grade B-5
Closing date 31 October 1984.
For repairs and system testing of computerized and digital designed systems. Knowledge of a software language preferred.

TWO PRINCIPAL TECHNICIANS (SATCOM)

Educational level H.N.C./O.N.C. or equivalent.
Nato Grade B-5
Closing date 31 October 1984.
For repairs and system testing of analog/digital satellite communications equipment. Knowledge of a software language preferred.

ONE SENIOR TECHNICAN (CRYPTOGRAPHIC)

Educational level O.N.C. or equivalent.
Nato Grade B-4
Closing date 31 October 1984.
For repairs of computerized and associated analog equipment.
Knowledge of software language preferred.

THREE TECHNICIANS

(HARDWARE AND PRINTED CT BOARD REPAIRS)
Educational level O.N.C. or equivalent.
Nato Grade B-3
Closing date 31 October 1984
For repairs of printed circuit boards with the aid of precision tools and computerized test systems. Knowledge of a software language preferred.
Application forms are available from the Civilian Personnel Section, Headquarters Afcent, Postbox 270, 6440 AG Brunssum, The Netherlands.
 chance of obtaning this tnstfument at lisis price)
Communication Receivers. Racal $500 \mathrm{KC} / \mathrm{S}$ to $30 \mathrm{MC} / \mathrm{S}$ in 30 bands $1 \mathrm{MC/SWIDE}$ - RA17 MK11 $£ 125$ RA17L $£ 150$ RAil7E £200. Hew Metal Louvred Cases lor above £25. Al receivers are air tested and calibrated in our works hop - supp lied with
dust cover - operation instructions - cifcuit - in lair used condition, Racal Synthecisers (Decade frequency penerators)
 MA1350 tor use with RA17 eceiver $£ 100$. MA 259 G Precision trequency standard $5 \mathrm{MC} / \mathrm{S}-1 \mathrm{MC} / \mathrm{S}-100 \mathrm{KH} 2 \mathrm{£} 100$ to $£ 150$. Panoramic Adaplor RA66 £150. RA137 and RA37 〔 40 to $£ 75$ LF convertors 10 to $960 \mathrm{KC} / \mathrm{S}$. RA2 18 independent SSB uni £50 RA98 SSE-ISM Covertor §50. RA121 SSB-ISB convertor ©75. RA152 and RA253 Twin-channel receiver 1 to $30 \mathrm{MC} / \mathrm{S}$
 Communication Receivers EC958 Solid State - High stability - 100 KHz to $30 \mathrm{MC} / \mathrm{S} £ 350$ to $£ 400$. EC96a/7K Solid state single channel - SBB - mains or batlery - 1.6 to $27.5 \mathrm{MC} / \mathrm{S}$ and 400 to 535 KHZ £ 100 with manual Plessey PR155G SOlid
 255 KHz to 525 KHz - mains or battery - complete with SIB adaptor ARU10A $£ 100$ with manual. Creed 75 Teisprinters Fitted tape punch and gearbox for 50 and 75 bauds -180 volts $A C$ supply - in original transport tray sealed in polythene

- like new $£ 15 E A$. Aedilon Π iit Audio Teleprimer convertor receiver solid state - supply 110 or 240 AC - Made for use
 cuit tested. Rediton $\boldsymbol{T} 10$ Convertor as above but includes transmit acilities $£ 20$. Oscilloncopes - stocks always ehanging - Seiah's 111 Solid State - $18 \mathrm{MC} / \mathrm{S} £ 125$ Telequipment $075-50 \mathrm{MC} / \mathrm{S} £ 250$ Textronix $465-100 \mathrm{MC/S} £ 750$. Solatron C01740-50MC/S $£ 200$ Tektronix main trame type $7704 £ 750-7504 £ 600-7704 \mathrm{~A} £ 1000$. FM Recorder Sanghmo Sabre 111 i4 channels $£ 350$. Transiel Malrix printers - AF11R - 5 tevel Baudot Cods - up to 300 Bauds - tor print out on
 P. O. A. Don 10 Telephone Cable - hall mile canvas containgers £20. Night veiwing inita-red AFy periscopes - Twin Eyepiece - 24 volt dc supply $£ 100$ ea. Original cost to government over $£ 11,000 e a$ Stalic invertors - 12 or 24 volt input -240 volt DC supply $£ 100$ ea. Original cost to government over $£ 11.000$ ea. Slatic invertors -12 or 24 volt input input - 240 vol AC sinewave output - various watrapes P.O.R. XY Ploters and pen racorders various - P. . R. Ferrograph series 7 ape

 Sweep G ener ators $(3$ and $L 5$ plug-ins $4 t 075 \mathrm{MC/S} \mathrm{~S} 60$ Telonic Swoep Generators 2003 - 850 to $2150 \mathrm{MC} / \mathrm{S} £ 275 \mathrm{TF} 313$
 aeriai to mount ontop - ouyropes - insulators - Base and Splikes etc. in heavy duty carying bag - new £30. Racailre
 stration of any items. Also avaifabilty or price change. V.A.T. and carriage extra.

> EXPORT TRADE AND QUAMTITY DISCDUNTS GIVEN JOHNS RADID (O274) 684007 WHITEHALL WORKS, 84 WHHITEHALL ROADEAST BIRKENSHAW, BRADFDRD BD11 2ER

WANTED: REDUNDANT TEST EOUIPMENT - RECEIVING AND TRANSMITTING EOUIPMENT - VAIVES - PLUGS SOCKETS SYNCHROS ETC

JAYSOFT MICRODEVELOPMENT Telephone 036-16-458

Designed for ease of use with no comprise in technical accuracy
These programs are suitable for professional or amateur use.
Oscillator: RC and LC circuits Includes coil design
Electron 1: Class A bias optimisation. 741 opamp L.P HP and BP Active filters Logic: Software simulation of up to 30 logic gates to check design
before the hardware stage. Can simulate fault conditions to aid fault analysis Suitable for BBC Commodore 64 *PET *TandyM 100
(*non or reduced graphics. Logic not available).

New programs available every month. Disk £20.00 Tape £17.50
JAYSOFT MICRODEVELOPMENT 2, Wester Row, Greenlaw, Berwickshire.
(2729)

BURROUGHS DISC DRIVES 8 in master and salve, DS/DD excellent condition with documen tation 3 KVA Isolated secondary input 240 v output $240 / 220 \mathrm{v},+1 \%$. £ 135 . MR Eliis, Scunthorpe
$(0724) 782751$ anytime.
(2760)

Outputs, $1 \mathrm{MHz}, 10 \mathrm{MHz}$ Phase locked crystal oscillator. Complete with ferrite rod aerial, usable throughou U.K. Now available in updated version. §185.00
R.C.S. Electronics, Wolsey Road, Ashford, Middx. Phone 53661.

Tommley Times

FREE Mail Order newspaper of Bargains. Relays; Diodes: Thyris tors; Capacitors; Resistors; Bridge Rectifiers: Cable Straps; High Speed Fuses and Mechanical Components.
Herehill, Todmorden, Lancs. OL14 5.jY Tel. Todmorden (\$TD 070 881) 4931
(2530)

RUN 9 VOLT CIRCUIT FROM A SINGLE NICKEL-CADWIUM CELL

with the Verkon V9 miniature p.c.b.mounted dc/dc converter, the reliable alternative to expensive batteries. Send s.a.e. for data sheet listing technical and economic benefits to; J.Biles Engineering, 120 Castle Lane, Solihull, West Midlands.
(2756)

WANTED

VALVES WANTED. PX4, PX25, PP3/250. PP5/400, 12E1, SB/255M, KT66, KT88, GZ32,
PL509-19 PY500A PCL 805 . We will purchase PL509-19, PY500A PCL805. We will purchase complete lots. Billington valves, 23,1 rwin inve,
Horsham, RH 12 NL . Callers by appointment only.

VALVE HI-FI, Quad, Leak, Garrard, Radford, Lowther. Thorens elc., All types of valve equip less Co Tudor House Cosshan Siree Ma less co., Tudor House, Cossham Street, Man-
gotsfield, Bristol BSI7 3 EN . Tel; $0272-565472$) or Telex 437287 Sharet G.

Brandenburg 50Kv EHT supply £50 £89 Mullard High-Speed valve-tester £45. Chart recorder. Contractors. Kent Chromalog 2 £65. Pulse Generator. DML Digital Voltmeter, five digits. Wow/Flutter meter £55. Thickness Guage £20. Oxygen meter. Tinsiey Automatic Current ConAvo Watiage \& Power Factor Unit $£ 30$ Avo Watuage a power fritior © 49 . EHT Meter £30. Large Compressor. MIG Welder. Atomic Absorption Spectrophotometer $£ 90$. Oxygen cyliner, valve, regulator, meter. frame $£ 45$. Weston Electrodynamometer £25. Philips micro/milli/voltmeter, DC, £35. Decade Standard Capacitor £49. Wayne-Kerr Video Oscillator $£ 45$. Reciprocal Ohms Resistance Box. E29. Variable Standard Capaciitor 829 . TueRMS miliv Bridge E39, Micromich Transformer (Precision matching). $£ 40$. Transformer Teedecintision Terminal. Books. Manuals. Miniature spot welding electrodes $£ 2.50$ ea. Wires for spot welding to. thermocouples. $\mathbf{5 3 . 5 0}$ pack. etc. etc.

UNAVAILABLE COMPONENTS? If we can't get them, nobody can. Specialist import is cheap, even for a single item. Orders processed as part of a batch can be on your bench in weeks. Rickman naviday OTkney KW17 2TW Phone 085683 Ronaldsay, Orkney, KW17 2TW Phone $085683-$ 30

TO MANUFACTURERS, WHOLESALERS

 BULK BUYERS. ETC. LARGE QUANTITIES OF RADIO. TV AND ELECTRONIC COMPONENTS FOR DISPOSALSEMICONDUCTORS, all types, INTEGRATED CIRCUITS, TRANSISTORS, DIODES, RECTIFIERS, THYRISTORS, etc. RESISTORS, C/F, M/F, W/W, etc CAPACITORS, SILVER MICA, POLYSTYRENE, C280, C296, DISC CERAMICS, PLATE CERAMICS, etc.
ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE, CABLES, SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFORMERS, etc.
ALL AT KNOCKOUT PRICES - Come and pay us a visit ALADDIN'S CAVE
TELEPHONE: 445 0749/445 2713

R. HENSON LTD.

21 Lodge Lane, North Finchley, London, N. 12

OPTOELECTRONICS
 DATA BOOK 1984

Price
by Texas $£ 6.00$
digital electronic circuits
SYSTEMS by N.M. Morris PRICE: $£ 5.45$
micROELECTRONICS
A PRACTICALINTRODUCTION by
SOLDERING IN ELECTRONICS by
R.J. Klein Wassin Wassink PRICE: $£ 51.00$

OPTICAL FIBER COMMUNICATIONS
BY G. Keiser
PRICE: E9.50
digital image analysis
by S. Levialdi
PRICE: $£ 26.00$
SEMI-CUSTOM IC DESIGN \& VLSI
by P.J. Hicks
PRICE £13.50
INTRODUCTION TO MOS LSI
design by Mavor Price E18.50
HANDBOOK OF BATTERIES \&
FUEL CELLS by D. Linden PRICE: $£ 63.00$
THE DESIGN \& DRAFTING OF
PRINTED CIRCUITS by D. Lindsey

* all prices include

THE MODERN воок $\mathbf{C O}$.
BRITAIN'S LARGEST STOCKIST of British and American Technical Books
19-21 PRAED STREET LONDON W2 1NP
Telephone: 01-4029176
Closed Saturday 1 p.m. Please allow 14 days for reply or delivery

WANTED

WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash. Member of A.R.R.A.

M \& B RADIO
 86 Bishopsgate Street Leeds LS1 4BB
 0532435649

SURPLUS

We offer good prices for test equipment, components, redundant computers ment.

TIMEBASE
94 Alfriston Gardens
Sholling, Southampton SO2 8FU
Telephone: (0703) 431323

STEWART OF READING
110 WYKEHAM ROAD
READING RG6 1PL
TEL NO: 073468041
TOP PRICES PAID FOR
ALL TYPES OF SURPLUS TEST EOUIPMENT,
COMPUTER EOUIPMENT
COMPONENTS etc.
ANY OUANTITY.

WANTED

VERBGATELTD.

We buy large and small parcels of surplus I/C, transistors, capacitors and related electronic stock. Immediate settlement

Tel: 01-208 0766 Telex: 8814998

WANTED

SURPLUS ELECTRONIC COMPONENTS AND EQUIPMENT
We also welcome the opportunity to quote fo complete factory clearance B. BAMEER ELECIRONICS
5 STATION ROAD, LITTEPORT, CAMBS. Phone: Ely (0353) 850185

CAPACITY AVAILABLE

TW ELECTRONICS LTD

THE PCB ASSEMBLERS

More and more companies are investi gating the advantages of using a professional subcontractor. Such an undertaking requires certain assurances.
TW are able to satisfy all of them quality, competitive pricing, firm delivey and close co-operation with the customer.
Assembled boards at 100% inspected after automatic cropping and cleaning. Every Every batch of completed boards is issued with a signed certificate of conformity and quality - our final assurance. For further details, contact us at our new
works: works:

Bienhoim Industrial Park Bury St. Edmunds
Suffolk IP33 3 UT lephone: 0284393
Telephone: 02843931 (1466)

ELECTRICAL \& ELECTRONIC assembly and wiring capacity available. PCB manufacture, artwork, cable forming, etc. Prototype thur to small batch production. For high quality work at low prices contact, Phasor Circuits, Unit 18 , ter. Tel 0533735825

FREE P.T.H. PROTOTYPE of the finest quality with EVERY P.C.B. art work designed by us. Competitive hourly rates, and high standard of work Halstead Designs Limited, 34, High St., Halstead
Essex. Tel. (0787) 477408/474554.

SERVICES

MALL BATCH PCBs, produced from your artwork. also DIALS, PANELS, LABELS. Camera work undertaken. FAST TURNAROUND. De-
tails: Winston Promotions, 9 Hatton Place, London ECIN 8RU. Tel. 01-405 4127/0960. 9 (9794) DESIGN AND MANUFACTURE. ANALOGUE, DIGITAL, RF AND MICROWAVE CIRCUTT AND SYSTEM DESIGN. Also PCB design, mechanical design and prototype/small batch production. - Adenignore Limited, 27 Longshot Estate, Bracknell, Berks. Tel: Bracknell (0344) 52023 . (656)
TURN YOUR SURPLUS i.cs transistors etc. into cash, immediate settlement. We also welcome the opportunity to quote for complete factory clear-
ance. Contact COLES-HARDING $\&$ CO, 103 $\begin{array}{ll}\text { ance. Contact COLES-HARDING \& CO, } \\ \text { South Brink, } & 103 \\ & \text { Wisbech, Cambs. } \\ 0945\end{array}$ 584188 . Brink, Wisbech, Cambs. (9509) PCB HAND ASSEMBLY - any quantity. Highest quality at sensible prices. INTERESTED? Phone 01-274 3070 (2570) SHEETMETAL FOLDERS $18 \% \times 18 \mathrm{G}$, Vice or Bench model. £38. Leaflet, 01-890 7838 Anytime.

BUSINESS OPPORTUNITIES
ELECTRONIC BUSINESS well known established over 20 years complete going concern with $5,500 \mathrm{sq} \mathrm{ft}$. freehold factory 3 miles Heathrow.
owner reting. Box No 2740

ANALOG COMPUTERS LIMITED CAPACITY NOW AVAILABLE FOR:
 chartpak stockist

Design \& Development, Complete Artwork Service, Camera Work, Prototype thru to Production PCB Manufacture/Assy. 5 Cork Street, Eccles, Maidstone, Kent, ME 20 7HG TELEPHONE 10622179987 TELEX 965633

CIRCOLEC

THE COMPLETE ELECTRONIC SERVICE

Artwork, Circuit Design, PCB Assembly, Test \& Repair Service, Q.A Consultancy, Prototypes, Final Assembly. Full PCB Flow Soldering Service.
Quality workmanship by professionals at economic prices.
Please telephone 01-646 5686 for advice or further details.
TAMWORTH MANOR
302-310 COMMONSIDE EAST, MITCHAM
(1391)

VALVES, PROJECTOR Lamps, 6000 types, list 75p, world wide export. Cox radio (Sussex) Ltd., The Parade, East Wittering. Sussex. Phone
(19243) 672023

PTH BOARDS Fast turnround (24 hour for rush jobs). competitive prices, full inspection, any quantity considered, Kirk, Bridge Works, Cinder-

SERVICES

FOR THE BEST PCB SERVICE AVAILABLE		
*Circuit Design \& Development Digital and Analogue *Artwork Layout PCB artwork layout and mechanical detailing. P.O. approved standard.		
*Board Manufecture Prototype to semi-production, excellent rates. *Wiring \& Assombly PCB assembly, wiring and cable forming. Fiow soldering facilities available.		
Full test facilities available. One or all services available. Please telephone Chelmsford (0245) 357935, or write to HCR Electronics, The Industrial Unit, Parker Road, Cheimsford. (30mins from Liverpool Street St.)		

BILLINGTON VALVES

We retail a huge range of top quality valves by Mullard, Mazda G.E.C. etc etc, at competitive prices; and cut price versions of popular type
at very low prices Don't miss 1984 catalogue, available on request (S.A.E please; 2 I.R.C. overseas)
plate (We offer many types of C.R. Tube and a specialise in wholesale of valuves and certain I.Cs. We will gladly quote against customers equirements (2 I.R.C. with overseas inquiries please)
EXPRESS MAIL DRDER SERVICE; CALLER BY APPT ONLY
23 Irvin Dr, Horsham, W.Sussex, RH12 1NL
WORLD WIDE EXPORT SERVICE
2751
PROFESSIONAL DESIGN SERVICE. Analogue/RF circuit/System design. Specialising in microwave amplifier, oscilator and network design. MOTOROLA $6805 / 6809$ series microprocarried out to a high standard by competent professional engineers. Trontech Electronic Design Services Ltd., Unit 8B, Rose Industrial Est., Boume End, Bucks. 0628528835 (2439) DESIGN AND DEVELOPMENT SERVICE. RF transmitters and receivers. Telemetery U.H.F.
V.H.F. Anologue and digital circuits, control sys V.H.F. Anologue and digital circuits, control systems. Full manufacturing facilities. RCS Electron-
ics, Wolsey Road, Ashford, Middx. Phone Dr. Eric ics, Woisey Road, Ashford, Middx. Phone Dr. Enic
Falkner on 53661 . ELECTRONIC DESIGN SERVICES, from concept to finished product. Our unique service includes digital or analogue electronic design, product development, PCB design, manufacture and assembly of prototype or production units. CIRBUIT SOLVE, Denbigh House, Denbigh Road,

CLASSIFIED ADVERTISEMENTS

Use this Form for your Sales and Wants

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

To "Wireless World" Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate $£ 4.00$ PER LINE. Average six words per line. Minimum $£ 25$ (prepayable)
- Name and address to be included in charge if used in advertisement
- Box No. Allow two words plus $£ 5$
- Cheques, ,etc., payable to ""IPC Business Press Ltd." and cross "\& Co."
name.
ADDRESS

PLEASE WRITE IN BLOCK LETTERS. CLASSIFICATION
NUMBER OF INSERTIONS

Crotech Oscilloscopes Nationwide availability local to You

London \& Home Counties

Audio Electronics
Carston Electronics Kentwood Electronics
Precision Instrument Laboratories

Wales \& West
Gievum Instruments

London W2
Teddington
Reading
London SE15 01-639-4461
01-724-3564
01-943-4477 0734-698040

Gloucester 0452-31620

East Anglia
Electronic \& Computer

Workshop

Cirkit

Midlands \& North Northern Instruments Universal Instruments Electronic Measurement Services Radio Telephone Service

Scotland RMR Measurements

Chelmsford Broxbourne

Leeds	$0532-791054$
Leire (Leics)	$0455-202391$
Manchester	$061-273-4653$
Derby	$0332-41235$

0245-262 149
0992.444111

0332-41235

Crotech instruments Limided

Appointments Vacant Advertisements appear on pages 94-103

Pantechnic .. 91
PM Components48/49
PracticalComputing 14
Radford Electronics 59
Radiocode Clocks Ltd 1
Raedek Electronics 67
Research Communication...................... 36
ReticonEG\&G 12
Samson's Electronics 84
Sarel Electric Ltd................................... 23
Seasim Controls Ltd 30
Service Trading Co Ltd 28
Skyave
South Midland Communications 35
Special Products Distribution 42
Strumech Engineering..................... 12, 68
Surrey Electronic Ltd
Taylor HC ... 9
Technomatic Ltd22/23
Television.. 29
Thandar Electronics Ltd 64
Thanet Electronics co 24
Thurlby Electronics Ltd 83
Triangle Digital Services........................ 10
Vigilant Communication........................ 42
Whitely Electronics 50
Withers Communication (R).
84

[^4]

GANG-OF-EIGHT is our FAST EPROM PROGRAMMER which handles CMOS or NMOS EPROMS from 2716 to 27256 ($25 \times X$ too) using FAST or NORMAL programming methods.

FAST programming 27128 's takes 2 minutes, NORMAL programming takes 14. All possible levels of Vpp are covered including 25, 21 and 12.5 volts. G8 has an LCD which tells you what you're doing - or doing wrong. BLANK CHECK, VERIFY and CHECKSUM facilities are included. Good value. GANG-OF-EIGHT-PLUS is now available. PLUS what? Well, PLUS an RS232 INTERFACE which lets you download in INTELHEX, MOTOROLA S, TEKHEX, ASCII, SIMPLE HEX etc.
Oh, yes, PLUS 50 quid too, but you might think it's worth it

EMULATOR/ EDITORS

SOFTY 2, our intelligent EPROM PROGRAMMER/EMULATOR, plugs into a TV, shows you memory and lets you TEXT-EDIT in HEX (INSERT, DELETE, SHIFT BLOCKS without overwriting or rewriting etc). It also calculates ADDRESS-OFFSETS in hex, UPLOADS and DOWNLOADS in SERIAL and PARALLEL, saves programs on TAPE, and PROGRAMS, COPIES and EMULATES EPROMS 2716, 2732 and 2532. Great DEVELOPMENT TOOL for PIGGY-BACK SINGLE-CHIPPERS and other small microsystems. TV lead, ROMULATOR-cable with 24 pin DIL Plug and power supply included, ready to plug-in and use
£195
2764 and 27128 ADAPTOR lets SOFTY 2 handle larger EPROMS for
£25.00

Z80 DEVELOPMENT TOOLS

MENTA is a 280 development system designed by DATAMAN for the SCHOOLS COUNCIL. MENTA has a built in ASSEMBLER and TV hex display: it lets you enter program in hex or mnemonics and execute them FULL SPEED or A STEP AT A TIME. All the REGISTERS and the STACK are displayed on-screen and you can SEE MEMORY CONTENTS CHANGING as instructions are executed. MENTA is a microsystem with 24 bits I/O - it can be used as a controller for ROBOTS and intelligent machines. MENTA appears in GCE syllabusses; a TEACHER'S GUIDE, PUPIL READER and WORKSHEETS are available - also CONTROL MODULES - UNIVERSAL I/O, A to D, D to A, MOTOR and VARIABLE SWITCHED INPUT for less than $£ 20$ each. A MENTA with TV flylead and power-supply costs
£99
MICRODOCTOR is for DIAGNOSIS, finding troubles in microsystems. You just plug into the microprocessor socket, READ and WRITE to the MEMORY and I/O. MD does CHECKSUMS, RAMTESTS on memory, checks for SHORTS on the bus, and prints memory in HEX or ASCII. You can also DISASSEMBLE and print the SOURCECODE In Z80, 6502, 6800 or 8085 mnemonics.
When your SCOPE or MULTIMETER can't find the problem - consult the MD. When you order say which processor or ask about multiprocessor MD
£295

CONNECTIVITY TESTERS

I.C.T. (Intelligent Connectivity Tester) is the project name for a 40 pin duat-in-line CUSTOM-CHIP developed by DATAMAN.
The chip is called the MT72017 and it will appear soon in BARE-BOARD TESTERS, IDC CABLE TESTERS and LOOM ASSEMBLY EQUIPMENT all over the world. An EVALUATION-SYSTEM/CONTROLLER for the MT72017 is available on a EUROCARD and you can BUILD YOUR OWN custom connection-pattern tester for
The controller has full documentation, source-code, circuit diagram, parts-list and description of operation. Each MT72017 tests 26 points and a single controller will handle hundreds of 'em - thousands of test-points. MT72017 chip prices: $£ \mathbf{£ 1 2 . 5 0}$ (1 to 99) $£ 11.25$ (100-999) $£ \mathbf{£ 1 0 . 2 5}$ (1000 up). We do not sell samples of the MT72017 without a controller.

LOGIC ANALYSER TA2080 by THANDAR with SPECIAL MODS by DATAMAN which gives RS232 interface and prints TIMING and STATE diagrams - and DISASSEMBLES Z80, 6502, 6800 code on the screen or printer.
THANDAR TA2080

£1950 DATAMAN RETROFIT

£295
EPSON AND NEC COMPUTERS QX10, HX20 and PX8, PC8800. ALL COMPUTERS are sold with a free bundle of useful software written by DATAMAN.
OLIVETTI TYPEWRITER INTERFACES designed by DATAMAN for ET1 21 and 221 - cheaper than a DAISYWHEEL printer RS232, HPIB (IEEE) and PARALLEL including fitting.
£195
EPROM ERASERS from.
$£ 39.00$

LOGIC

 ANALYSERS
CP/M

COMPUTERS
OLIVETTI
INTERFACES

[^5]
[^0]: All items reconditioned unless otherwise stated. Add 15% to all Prices A copy of our trading conditions can be supplied on request

 Electronic Brokers Ltd 140/146 Camden Street, London NW1. Tel 01-2677070

[^1]: 1. Figures are d.v. \pm (reading $\%+$ digits) or $\pm(\mathrm{rg} \%+\mathrm{f} . \mathrm{s} . \%$) for 12 months, with only one or two noted exceptions.
[^2]: ALL PRICES INCLUDE V. A.T. UNLESS STATED

[^3]: For further information contact: Sarah Kennedy, Dolby Laboratories Inc. 346 Clapham Road, London SW9 9AP. 01-720 1111

[^4]: Jack Mantel, The Farley Co., Suite 650, Ranna Building,
 Clevaland, Ohio 4415 - Telephone (216) 6211919
 Ray Rickles, Ray Rickies \& Co, P.O. Box 2028, Miami Beacn, Timida 33140 - Telephone (305) 5327301. Georgia 30305. Telephone (404) 2377432
 Mike Loughlin Business Press International, 15055, memorial Ste 119, Houston. Texas - Telephone (713) 7838673.

 Consultants Ltd., 915 Cariton Tower, 2 Cariton Street, Toronto 2 Telephone (416) 3642269.
 Also subscription agents

[^5]: If you need more data send for a FREE LIT-PACK and an ORDER FORM or, better still, JUST BUY THE PRODUCT AND EXAMINE IT - you may return any item within 14 days for A FULL REFUND (we deduct only postal charges). Add $£ 2.50$ for carriage to orders below $£ 100$. ADD VAT TO ALL UK ORDERS. Terms: cheque with order. Dealers who mean business welcome. Goods normally in stock - TODAY DESPATCH IS POSSIBLE - please phone us DATAMAN DESIGNS, LOMBARD HOUSE, DORCHESTER, DORSETDT1 1 RX. TELEX: 418442 . PHONE (0305) 68066.

