

-

a small, lightweight

 synthesized signal generator for field or bench useColour brochure available.
Send for yours now.

100 kHz to 520MHz
Runs from clip-on NiCd battery pack, external 12Vd.c. (vehicle battery via cigar lighter socket) or, from any standard a.c. mains supply
Reverse power protection to 50W (standard)
Excellent specification and features

from

AF \& RF MICROVOLTMETERS

LEVELL A.C. MICROVOLTMETERS AND BFOADBAND VOLTMETERS are part of our comprehensive range of test and measuring instruments. They are housed in robust steel cases and are powered by long life batteries. These voltmeters give accurate readings over a wide range of frequencies. Mains power units and leather carrying cases are optional extras

A.C. MICROVOLTMETERS

voltage q dB RANGES

RESPONSE

INPUT IMPEDANCE
$15 \mu \mathrm{~V}, 50 \mu \mathrm{~V}, 150 \mu \mathrm{~V}, 500 \mathrm{~V}$ fsd Acc. $\pm 1 \% \pm 1 \%$ fsd $\pm 1 \mu \vee$ at 1 kHz . $-100,-90 \ldots+50 \mathrm{~dB}$. Scale $-20 \mathrm{~dB} /+6 \mathrm{~dB}$ ref. $1 \mathrm{~mW} / 600 \Omega$.
$\pm 3 \mathrm{~dB}$ from 1 Hz to 3 MHz , $\pm 0.3 \mathrm{~dB}$ from 4 Hz to 1 MHz above $500 \mu \mathrm{~V}$.
TM3B filter switch; LF cut 10 Hz . TM3B filter switch; LF cut 10 Hz .
HF cut $100 \mathrm{kHz} \quad 10 \mathrm{kHz}$ or 350 Hz HF cut $100 \mathrm{kHz}, 10 \mathrm{kHz}$, or 35
Above $50 \mathrm{mV}: 10 \mathrm{M} \Omega<20 \mathrm{pF}$. Above $50 \mathrm{mV}: 10 \mathrm{M} \Omega<20 \mathrm{pF}$
On $50 \mu \mathrm{~V}$ to $50 \mathrm{mV}:>5 \mathrm{M} \Omega<50 \mathrm{pF}$

BROADBAND VOLTMETERS

L.F. RANGES
H.F. VOLTAGE \& dBRANGES

As A.C. Microvoltmeters.
$1 \mathrm{mV}, 3 \mathrm{mV}, 10 \mathrm{mV} \ldots 3 \mathrm{fsd}$. Acc. $\pm 4 \% \pm 1 \%$ fsd at 30 MHz . $-50,-40 \ldots+20 \mathrm{~dB}$. Scale $-10 \mathrm{~dB} /+3 \mathrm{~dB}$ ref. $1 \mathrm{~mW} / 50 \Omega$.
type
TM6A
£235
type
TM3A
$\pm 3 \mathrm{~dB}$ from 300 kHz to 400 MHz
$\pm 0.7 \mathrm{~dB}$ from 1 MHz to 50 MHz .
H.F. RESPONSE

Prices exclude VAT. FREE DELIVERY in the UK. QUANTITY DISCOUNTS available.
We supply many other instruments including: OSCILLATORS, COUNTERS, OSCILLOSCOPES, MULTITESTERS \& FUNCTION GENERATORS.

LEVELL ELECTRONICS LTD.
 Moxon Sireet, Barnet, Herts. EN5 5SD, England. Telephone: 01-4408686/4495028.

CIRCLE 13 FOR FURTHER DETAILS.

CIRCLE 6 FOR FURTHER DETAILS.

Wireless Wiórld

 over 70 years in independent electronics publishing
19

Air-track-to-computer

 interfaceDigital stereophony with televisionby H.B.Fielding A computer used in conjunction with an air-track in experiments on . Switched power supply physics of motion.

25

D.c. supplies froma.c. sources
by K.L. Smith A short series on the techniques of modern p.s.u. design.

33

Stage lighting system

by lan Kemp
Forty circuits controlled by a $Z 80$ over one cable, with scene storate, timed fades and other features.

37

Books
by John Adams Though designed for the SC84 computer, this unit is well suited for general use.

48

Fundamentals of energy transter
by lvor Catt
The interconnection of gates in logic circuits has pointed up misapprehensions in basic theory. Catt proposes a new approach.

51

SC84 microcomputer
by John Adams The series continues with a section on construction.

61

Micro-controlled cassette recorder by A.J. Ewins

67

Variable-speed video

by J.R. Watkinson
This section deals with the problems of timebase correction.

75

Digital tunercontrol

by J.N. Darlington Low-cost control of f.m. timing, with readout and memory.

REGULARS

7

News
Sinclair superchips, Thorn buys Inmos, engineering get-together, magnetic pole change imminent?

14
Communications DBS problems, Tribroken-line dipoles, hand-held mikes, novice licence,
satellite-to-satellite.

37

Books

[^0]

AIS-TRACSINIERFACE

Interfacinga
 computer to a linear air track.

$\underset{\substack{\text { by } \\ \text { Fielding }}}{\text { H.B. }}$
front cover illustrates Ken Smith's series on the design of power supplies. Photograph by courtesy of Weir Electronics, design by Richard Newport.

NEXT MONTH

Following his recent modem design, Richard Lambley describes a software solution to the problem of autodialling.
John Wilson relates his experiences of lightning strike, which destroyed electronic equipment in a church, in spite of a 'good' lightning conductor.
A.E. Cawkell continues his appraisal of the Information Society and J.R. Watkinson's series on variable-speed video playback continues.

Current issue price 85 p , back issues (if available) $£ 1.06$, at Retail and Trade Counter, Units 182 , Bankside Industrial Centre, Hopton Street, London SE1. Available on microfilm; please contact editor. By post, current issue $£ 1.30$, back issues (if available) $£ 1.40$, order and payments to EEP Sundry Sales Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Tel.: 01-661 3378.
Editorial \& Advertising offices: Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.
Telephones: Editorial 01-661 3614. Advertising 01-661 3130. See leader page. Telex: 892084 BISPRSG (EEP)
Subscription rates: 1 years $£ 15$ UK and $£ 19$ outside UK.
Student rates: 1 year $£ 10$ UK and $£ 12.70$ outside UK.
Distribution: Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Telephone 01-661 3248.
Subscriptions: Oakfield House, Perrymount Road, Haywards heath, Sussex RH16 3DH. Telephone: 04444 459188. Please notify a change of address. USA: \$49.40 surface mail, \$102.60 airmail. Business Press International (USA). Subscriptions Office, 205 E. 42nd Street, NY 10017.
USA mailing agents: Expediters of the Printed World Ltd, 527 Madison Avenue, Suite 1217, New York, NY 10022, 2nd class postage paid at New York. © Business Press International Ltd 1984. ISBN 00436062.

Editor
PHILIP DARRINGTON 01-661 3128

Deputy Editor

 GEOFFREY SHORTER, B.Sc. 01-661 8639Technical Editor
MARTIN ECCLES
01-6618638
Projects Editor RICHARD LAMBLEY 01-661 3039

News Editor
DAVID SCOBIE
01-6618632
Drawing Office Manager
ROGER GOODMAN
01-661 8690
Technical Illustrator BETTY PALMER

Advertisement Manager
BOB NIBBS, A.C.I.I.
01-661 3130
MICHAEL DOWNING 01-6618640

ASHLEY WALLIS
01-6618641
Northern Sales
HARRY AIKEN
061-8728861
Midland Sales
BASIL McGOWAN
021-3564838
Classified Manager BRIAN DURRENT
01-661 3106
IANFAUX
01-661 3033

Production

BRIAN BANNISTER
(Make-up and copy)
01-661 8648
Publishing Director DAVID MONTGOMERY 01-6613241

International Agents and the Advertisers Index appear at the back of this issue.

XIXIN DISCDRIVES SETTHE STANDARD

Low cost, reliable mass storage media. Cased and powered for rack mounting or free standing applications.

Compact $3{ }_{2}^{\frac{1}{1 \prime}}$ micro-floppy drives
\square High performance - low cost.

- Up to 1 MB unformatted data storage.
- Single or double sided: single or double density.
■ Standard $5^{1 \text { ² }}$ interface to simplify system building.

High speed $3{ }_{2}^{1^{\prime \prime}}$ hard disc modules

- Reliable Winchester technology.
- Massive 5 or 10MB formatted capacity.
- Interchangeable microprocessor board needs no special setting equipment.
- Standard ST506 interface.

M \& B RADIO (LEEDS)

THE NORTHS LEADING USED TEST-EQUIPMENT DEALER

OSCILLOSCOPES. Tektronix 465100 MHZ Dual-Trace Delay	Fluke 9318 \quad RMS Differential $\begin{array}{r}\text { Voltmeter } \\ 450.00\end{array}$
Sweep Tektronix 7403 N Main-Frame $\quad .900 .00$	HEWLETT-PACKARD.
Hewlett-Packard 182A Main-Frame550.00	4318 Power Meter 75
Hewlett-Packard 182C Main-Frame395.00	8052A Impulse Sound Level Meter 200.00
Hewlett-Packard 182A 4 Channel Plug-In	3406A Broadband Sampling
and 1825A Time-Base and Delay	Voltmeter 250.00
Generator 1000.00	3480A Digital Voltmeter $\quad 135.00$
Telequipment D83 50MHZ	1900A Pulse Generator 1925A Word
Dual-Trace 450.00	Generator TF144H/4 Standard
ANALYSERS	Generator $\quad 150.00$
Hewlett-Packard Fourier Analyser 54518 with 7900A Disk-Drive and Low-Pass	Marconi 801D Signal-Generator 100.00 Radiometer SMG1 Stereo
Filters A to D Converters Etc 2,500:00	Generator 250.00
RHODE-SCHWARZ	Racal 9908 Counter Timer 1.1GHZ 500.00
SHF Signal-Generator 1.7 to 5.0	Racal Universal Counter 9835
GHZ 850.00	Wayne Kerr Logarithmic LCR Bridge
VHF Signal-Generator 25 to 480 MHZ	Marconi Electronic Voltmeter
Sweep Signal-Generator 400 to 1200 MHZ	2604 (125.00
SWU 225.00	Marconi X-Y Displays TF $2212 \quad 100.00$
UHF Signal-Generator 300 to $1,000 \mathrm{MHZ}$	Marconi X-Y Displays TF2213/1 250.00
SDR 145.00	HEWLETT-PACKARD PSU.
UHF Test Receivers 280 to 4600 MHZ	64338 Power Supply 0-36v 10A 195.00
USVD 175.00	6448 B Power Supply 0-600v $1.5 \quad 195.00$
Selentomat Type USWV 225.00	6453A Power Supply 0-15v 200A 275.00
Stereodecoder Standard MSDC 225.00	Bradley Pulse Generator 1768 195.00
UHF Power Signal-Generator SCRD 275 to	CCTV Video Cameras $2 / 3$ Vidicon 75.00
2750 MHZ .05 to 50 watts $\quad 400.00$	Hewlett-Packard Time Interval Probes
Frequency Synthesiser XUA 30 HZ to 30	5363A 400
MHZ 400.00	
Transmission Measuring Line 75 to	Eddystone 830/7 300Kcs to 30 Mhz 250.00
$\begin{array}{ll}305 \mathrm{MHZ} \\ \text { Refloktometer } & 300\end{array}$	Eddystone 830/7 300Kcs to 30Mhz250.00
ZDB 150.00	Receivers 300.00
Unbalanced Standard Attenuator DPU	Mercer 155 Electronic/Pneumatic
$0-1500 \mathrm{MHZ} \mathrm{50ohms} 50.00$	Gauging System 175.00
MISCELLANEOUS	General Radio Capacitane Bridge
Avo RM215F/3 Ac Breakdown	A
Tester 195.00	
Avo Universal Bridge 8150 MK2 95.00	Test Equipment, Recolvers, Valves,
Advance X-Y Recorder HR96 65.00	Test Equipment, Recolvers, Valves, Components, Cable, PCB's Etc Top
Clare Multiple Earth Loop-Tester	Components, Cable, PCB's Etc Top Prices Paid.

86 Bishopgate Street, LEEDS LS1 4BB. 0532-435649
CIRCLE 87 FOR FURTHER DETAILS.

E.M.S. POWER SYSTEMS

Solve all your Power Problems by contacting E.M.S.
E.M.S. specialise in systems to eliminate your power problems.

Products range from 35VA switched square wave Power Packs to 1KVA fully uninterruptible sine wave systems.
E.M.S. also manufacture chargers which range up to 60 amps .

For further details please contact:

E.M.S. Manufacturing Limited Chairborough Road
 High Wycombe Bucks
 Tel: (0494) 448484

FREOUENGY COUNTERS
 HIGH PERFORMANCE HIGH RELIABILITY LOW COST

The brand new Meteor series of 8 -digit Frequency Counters offer the lowest cost professional performance available anywhere.

* Measuring typically $2 \mathrm{~Hz}-1.2 \mathrm{GHz}$ * Low Pass Filter
\star Sensitivity $<50 \mathrm{mV}$ at $1 \mathrm{GHz} \quad \star$ Battery or Mains
* Setability 0.5ppm * Factory Calibrated
* High Accuracy * 1-Year Guarantee
* 3 Gate Times * 0.5" easy to read L.E.D. Display PRICES (Inc. adaptor/charger, P \& P and VAT) NOW AVAILABLE WITH METEOR $100 \quad(100 \mathrm{MHz}) \quad £ 111.55 \quad$ T.C.X.O. OPTION METEOR $600 \quad(600 \mathrm{MHz}) \quad £ 141.45$ with technical specification METEOR $1000 \quad(1 \mathrm{GHz}) £ 192.05$ and prices available on reques

Black责Star

BLACK STAR LTD, Dept. WW, sA Grown Street, St Ives Muntingdon, Cambs PE17 4EB, England Muntingdon, Cambs PE17 458, CIRCLE 30 FOR FURTHER DETAILS.

What the competition hasn't been waiting for:

 Latest version of Forth for the BBC(Is not rehashed Forth 79 Code) Unique Stack Display Utility

Multi-tasking operating system

Here's the Forth Eprom for the BBC Micro that makes all others out of date.

It's Multi-Forth 83 from David Husband who has built his reputation for Quality Forth products with his ZX81-Forth ROM, Spectrum Forth-l/O Cartridge and now New Multi-Forth 83 for the BBC Micro. This is not rehashed Forth 79 Code, but a completely new version of the Forth 83 Standard. It's unique in that it Multi-tasks, and therefore the user can have a number of Forth programs executing simultaneously and transparently of each other.

Multi-Forth 83 sits in the sideways ROM area of the BBC along with any other ROMs in use. It is compatible with the MOS, and specially vectored to enable a system to be reconfigured. It contains a Standard 6502 Assembler, a Standard Screen Editor, and a Unique Stack Display Utility.

With this Forth, David Husband has provided the BBC Micro with capabilities never before realised. And being 16 K rather than 8 K is twice the size of other versions. Multi-Forth 83 is supplied with an
extensive Manual (170 pages plus) and at $£ 45+$ VAT it is superb value. Order it using the coupon adding $£ 2.30 \mathrm{p} \& \mathrm{p}$ ($£ 5$ for Europe, $£ 10$ outside) or if you want more information, tick that box instead. Either way, it will put you one step ahead of the competition.

Warfare hardware

An ex-civil servant who used to design weapon systems for the Ministry of Defence recently asserted that modern aircraft, ships and tanks are so stuffed with extremely complicated equipment that it is quite difficult to get them to work at all, even during exercises, let alone in circumstances for which they are intended - killing people. The electronics become more involved as new requirements are imposed on the designers, the natural result of overcomplexity, as always, being unreliability. Equipment is well hardened to magnetic pulse, but when a plug is dirty or a power supply designed ten years ago finds life too much for it when yet another micro is crammed into the last available corner, then the system will fail, probably when it is most needed.

All this runs completely contrary to the lessons learned years ago in industry, when it became clearer than ever before that one cannot continue to add bits of circuitry or even more units to a system without sacrifices in overall reliability. Not many electronic circuits or systems could, in truth, be called simple, but the simpler the better
has always been the required attitude.

It may be that designers cannot keep up with Service requirements. It is unlikely that the electronic systems designed for a new aircraft will survive in their original form for long, since the users continually ask for more facilities. Modifications and extras pile up and the original, bird's-eye view of the system is obscured. There is no chance to call a halt and have a complete, integrated redesign because, even if the system were not needed urgently - and it always is - by the time the redesign was complete, another backlog of extras would have built up.

It is, of course, fairly harmless, except for the obscene cost of it all. There is not much chance of the weaponry being
needed and, if it is, not much hope of its being effective in preventing total devastation, but at least it keeps a large number of people in employment. Of course, they would be far better occupied in using their skills to make something useful medical, educational, industrial or purely scientific - or simply stop doing what they are doing and let us have the money for the railways or a new lot of sewers for London's crumbling drainage system.

Some apologists among us may have thought that 'defence' money was well spent if it would protect us from attack. Since it appears that it will probably be in the maintenance bay or have the engineers poking about inside it when the sirens sound, maybe the spending ought to be re-examined.

Free phones?

Much as we are opposed to the privatization of British Telecom, considering it to be a public resource and asset, there may be a way of capitalizing (pun intended) on the situation. Mr Norman Tebbit announced that individual subscribers will have special arrangements to enable them to acquire shares in BT plc. If every single individual subscriber were to buy shares
then the whole system would remain 'public property'. If we look at the massive profits of $B T$, most of which come from the services to business and industry, then isn't it conceivable that there could be enough for us all to get a share of the profit, to about the value of our phone bills? At the same time we should not buy too many shares; don't forget that the Labour Party are committed to re-nationalizing at the first opportunity, whenever they may be returned to power.

Performing rights

A notice in the London, Edinburgh and Belfast Gazettes announces that, with effect from June 8, clause 1(1)(c) of the amateur radio licence has been replaced by the following verbal material:
"To use the station as part of the self-training of the Licensee in communication by wireless telegraphy during disaster relief operations conducted by the British Red Cross Society, the St John Ambulance Brigade, the County Emergency Planning Officer, or any police force in the United Kingdom ('The user services'), or during any
exercise relating to such disaster relief operations, or any other operation conducted by the said user services (provided that such other operations shall not exceed 4 in any one calendar month and not more than 12 in any one calendar year) for the purpose of sending to other licensed amateur radio station such messages as the Licensee may be requested by the user service concerned to send and of receiving from any other licensed amateur radio station such messages as the person licensed to use such other
licensed amateur station may be requested by the user service concerned to send."
The Wireless World computer is now busy setting this to music. Something after the style of Mahler strikes us as appropriate, though some have argued forcefully for Havergal Brian. For the first performance, we hope to engage as tenor soloist the man responsible for the piece, MrA. J. Nieduszynski of the Department of Trade and Industry.

A souvenir programme including the text in full will be available shortly from the DTI's usual agents, in exchange for an RAE pass slip and a fee of $£ 12$.

Sinclair's mighty chips

Metalab, The Sinclair Research think tank, is to develop a "fifth generation' super-computer using wafer-scale integrated circuits. Such circuits, described in Wireless World in July 1981 by the inventor, Ivor Catt, involve using a whole slice of silicon to build a computer. Normally integrated circuits are produced on the slice, or wafer, which is then 'diced' into all the separate chips; the chips are encapsulated in plastic and then connected to each other on a p.c.b.
Wafer-scale integation cuts out many of these processes and connects the circuits to each
other actually on the wafer. Not only is there a saving in effort and space but clever use of the internal architecture of the circuitry can enable the computer to repair itself. For example, if a section of the memory is defective the circuit can re-route the incoming data to a new section. The system requires that memory is not at a fixed address; memory blocks are labelled and may be shunted about and called by their label. This in turn leads to the possibility of using parallel processing; working on different sections of data at the same time
to speed up the process.
The particular architecture used in this approach still divides the slice into chip-sized sections and Sinclair Research thinks that there are several advantages to this compared with making a single wafer-sized circuit, the method being adopted in America by Trilogy, under the leadership of Gene Amdahl. Sir Clive Sinclair has said that wafer-scale integration is now a major research effort with which he believes will take his company ahead of the Japanese and American rivals in fifth-generation computer technology. He hopes to obtain funding from the Alvey Committee. Like so many of his products in the past, Sinclair will not be manufacturing the wafers; they are talking to manufacturers who may do it for them. The first wafer-scale memory chip should be produced 'by the end of 1985'.

Magnetic flip

According to Professor Bannerjee of Minnesota University, we might be about to undergo a reversal in the Earth's magnetic polarization. These things happen about every 100000 years or so, says the Professor, who has examined the polarization of rock laid down in Lake Minnesota. Rocks retain the polarization prevalent at the time that they are laid. The imminance of the change is predicted by the current progressive weakness of the Earth's magnetic field which has reduced to a tenth of its power over the last 1000 years. What would happen is that the magnetic north and south poles would reverse but would not

Musing its way past King's

College Chapel, Cambridge is this giant silvery reproduction of Rodin's 'Thinker'. The Thinker has been adopted by Hi-Tek Electronics for their corporate symbol and they had the reproduction made for an exhibition stand. Unlike
Rodin's original, which is only a third of the size, this Thinker is made from fireproof polystyrene, not cast bronze and is pasted all over with metallic foil.
necessarily be in the same places (they tend to wander anyway). The implications of such a switch are of gigantic proportions. All the magnetically based navigation systems would be upset and not only human ones; birds and other migrating animals are thought to use magnetic guidance. Even bees have an internal magnetic compass. The magnetic field around the Earth; the

Magnetosphere, protects us from a lot of solar radiation. If the magnetosphere were to collapse, even for a short period, the Earth would be subject to fierce radiation. One theory about the end of the age of dinosaurs is that it as caused by such a magnetic reversal. However the Professor cannot predict how soon this cataclysm will occur. Sometime in the next 1000 years is his estimate.

Jobs to save energy

Seeking both to provide employment and to work towards methods of saving energy, The London Energy and Employment Network (LEEN) is offering workshop space and expertise for the development of new products in the field of energy efficiency

Given that there is a great potential existing for methods of saving energy in homes, offices, factories and in transport, LEEN

How big is your TV?

A new standard is to be adopted by tv manufacturers to describe the size of a tv picture. Up to now the phrase $22^{* \prime}$ tube is often used to describe a tube where the diagonal of the visible part of the display can be less than 21 inches. As this can be misleading
is inviting individual and small firms who have any original ideas to apply. They will be provided with machine-shop and electronic facilities for research and development which they could otherwise not afford. Technical assistance is available and on the development of a product help with marketing and financing is also at hand. LEEN was formed last year as a division of the Greater London Enterprise Board. It is based at 6 Avonmouth Street, London SE1 6NX.
and may actually contravene the Trades Descriptions Act, the new method will be to give the length of the visible diagonal and as the method is to be adopted internationally, it will be in cm . The system is to be used on all the recently introduced 'flat square' tubes. Existing tubes may use such designation as 22^{*} $(53 \mathrm{~cm}, V)$ where the V stands for visible. Visible may also be spelled out

Space network success

Project Universe was an attempt to provide a high-speed, high-reliability communications network to a wide area, via satellite. The experiment was a joint industry/academic project
and included contributions from GEC, BT, Universities of Cambridge and Loughborough, University College London, and the Rutherford Appleton Laboratory as well as software contributions from Logica Ltd. Logica applied encryption to data transmission in a way that required no changes to user software. They did this by combining the key handling of Public Key cryptography with the
higher speed of Data Encryption Standard.

They also managed to write the software for a Teletext system entirely in the C development language. Also successfully demonstrated over the satellite network was a distributed software development system which enabled any member of a development team from a remote site to use any other computer in the system as easily as their own.

Don'tforget to enrol!

Readers are reminded that the season of mists and mellow fruitfulness is also the time for enrolling in evening classes. We have been sent reminders by a number of schools and colleges for enrolment in early September
for students wishing to take the Radio Amateurs' Examination; however many adult education institutions do courses in all manner of subjects which can be work or hobby-related or just plain fun like flower arranging, or learning Early English or Icelandic, or playing a musical instrument. Now is the chance to bind all those back numbers of WW at a bookbinding class!

This pocket radio from Panasonic is only 3.9 mm thick and measures 91 by 55 m , slightly larger than a credit card. It receives a.m. and f.m. stereo transmissions which it plays through miniature headphones. The built-in NiCd battery can last for about five hours of playing time but takes about the same time to re-charge, using the charger stand provided.
The minuscule size has been made possible by the development of what Panasonic call radio high-density circuits (RHCs) four of which are used in the set. Many components have been redesigned including the variable tuning capacitor, volume potentiometer, tantalum capacitos i.f.t. and the a.m. aerial, each of these being less than 2.8 mm thick.

The printed wiring is incorporated into the back panel of the case. The sets are likely to be on sale in the UK at the end of the year.

Engineers jamboree

The first ever national assembly of registered engineers will be held next year. Instigated by the Engineering Council, the assembly will provide a platform for 'grass roots' engineers to voice their views to the Engineering Council and also act as a forum to which the Council
will report on its activities.
A detailed plan for the Engineering Assembly and a linked regional structure has been published by the Council. 300000 engineers comprising chartered engineers, technican engineers and engineering technicians throughout the UK will have the chance to elect representatives to attend the annual assembly. The
representatives will be grouped locally in some 20
'constituencies' throughout the
country. They will also belong to regional committees established in each constituency, and the committees will initiate local activities which will slot together with the policies of the Council and include the co-ordination of information about the profession to schools together with the cultivation of links with local communities, employers, trades unions, industry academic institutions and local government.

Thorn buys Inmos

Thorn-EMI are to pay $£ 95 \mathrm{M}$ in cash for a 76% share of Inmos, the British semiconductor manufacturer. Inmos was originally financed by public funds through the National Enterprise Board. It has developed a manufacturing facility forl.s.i. microcircuits, particularly c.mos memory circuits, and is working towards fifth-generation computers with the development of the Transputer, a microprocessor of advanced design. It has taken over $£ 100 \mathrm{M}$ to get the company fully operative and into a position when it is actually profitable. It was perhaps the jewel in the

NEB's crown, but has been made subject to the Government's policy of moving as many as possible publicly owned enterprises into the private sector.

The remaining 24% of the shares are all owned by Inmos staff and it is thought that Thorn-EMI are willing to make them 'offers that they cannot refuse'.

Inmos is to be given a degree of autonomy, being allowed to operate as a separate entity. Thorn-EMI will encourage the company to 'continue to fulfil its long term objective of developing a capability to produce standard memory and microprocessor devices and the v.l.s.i. silicon systems which will be a foundation of the electronics industry in the 1990s and
beyond'.
Inmos have announced that they have come to an agreement with the Japanese MNB/Mineba to licence the production of the Inmos 256 K dynamic ram. Up to now NMB have made miniature precision mechanical parts including instrument bearings. Because of the cleanliness required for such manufacture, NMB are familiar with clean-room working and are constructing a wafer fabrication plant. Both companies seem very pleased; NMB because the Inmos design and process technology are 'significantly in advance of the technology available in Japan and elsewhere' and Inmos because NMB can offer the manufacturing expertise and will provide a second source for their product.

RADIOCODE CLOCKS Solve PROBLEMS

ATOMIC TIME, FREQUENCY AND SYNCHRONISATION EQUIPMENT

NEW PHASE-MODULATION SYSTEMS

Until recently, atomic time and date information was only available on v.l.f. ransmissions using amplitude modulation. The RCC 8000AM series of equipment uses these transmissions to offer high noise immunity and high accuracy, particularly at very long range

The new RCC 8000 PM series of equipment uses, for the first time, phase modulated tranmissions with massive radiated powers of up to 2 MegaWatts to offer long range, excellent noise immunity and no scheduled maintenance periods.

NEW PRODUCTS

The AM and PM series of Radiocode Clock equipment has been further expanded to include seven new models (from top) 8000S - combined clock, frequency standard and optional stopclock. Internal standby power supply - with dual rate constant current charger. Time-event log -prints hours, minutes, seconds, milliseconds and day of year, on receipt of a log pulse. Speaking clock - time announcement or audio recording. Slave controller - total control of single-standard master/slave systems ie one pulse/sec. Dual standard slave controller - total control of two different and independent slave systems, ie. one pulse/sec and one pulse/half min. Slave distribution amplifier - maximum flexibility for the larges master/slave installations requiring dual standard operation, multiple circuits and complete master/slave backup.

NEW OPTIONS

A continuously expanding range of fully integrated software and hardware is available for both series of Radiocode Clock equipment. Standard op tions now include.

- IRIG B precision serial o/p Time code generators

RS232/V24 1 mS resolution
General purpose parallel o/p
FSK record/replay system
Keypad entry of time/date
Radiocode Clocks Ltd*
Unit 19, Parkengue, Kernick Road Industrial Estate
Penryn, Falmouth, Cornwall. Tel: Falmouth (0326) 76007

CIRCLE 63 FOR FURTHER DETAILS.

CIRCLE 18 FOR FURTHER DETAILS.

TELESCOPIC MASTS

Pneumatically operated telescopic masts.
25 Stardanc models, rarging from 5 meires
to 3C reares.

Hilomast Ltd

THE STREET HEYB Fidce - MALLON ESSEX CM9 7MB EMGLAND -el. MALDON (062I) 55480 Telek No 995\%55

FIBRE-OPTICS EDUCATOR

A New Concept in Optical Equipment

The Fibre-Optics Educator is a low-cost, versatile instrument designed primarily for organisations involved in or about to enter the field of fibre-optics.
It can function as:
TEST EQUIPMENT e.g. for accurate fibre attenuation measurements to a range of 50 dB , optical level measurements, and for testing out analogue and digital optical transmitters and receivers. Also, it may be set to give an audible indication of low level infra-red radiation using the analogue loudspeaker output or the digital buzzer output, with a length of optical cable acting as a probe.
TRANSMISSION EQUIPMENT for both analogue and digital data, over free-space as well as optical fibres. It is also ideal for:
TRAINING engineers, technicians and executives in the growing field of fibre-optics. Suitable for industry, colieges and technology training centres.
The Fibre-Optics Educator comprises fully portable optical transmitter and receiver units, optical cables, together with numerous accessories, a comprehensive manual, and carrying case.

Designed and Manufactured in the U.K.
For further details contact:
ELLMAX Electronics Ltd.,
Unit 29, Leyton Business Centre,
Etloe Road, Leyton, London, E10 7BT Tel: (01) 5390136

CIRCLE 39 FOR FURTHER DETAILS.

Happy Memories

Part type	1 off	25-99	100 up
4116 200ns	1.25	1.15	1.10
4164 200ns	4.95	4.45	4.25
2016 150ns	4.75	4.25	4.10
6166 200ns Low	er............ Call	Call	Call
6264150 ns	Call	Call	Call
2716 450ns 5 vol	3.85	3.45	3.30
2732 450ns Intel	e 4.75	4.25	4.10
2732A 350ns	5.25	4.69	4.50
2532 450ns Texa	type............. 3.85	3.45	3.30
2764 300ns.Call	Call	Call
27128300 ns	Call	Call	Call
Z80A-CPU.. £3.75	Z80A-P10... £4.20	Z80A-CTC	£4.85
6522 PIA £3.70	$7805 \mathrm{reg} . . .$. £0.50	7812 reg..	£0.50
Low profile IC sockets:	$\begin{array}{lrlllllll}\text { Pins } & 8 & 14 & 16 & 18 & 20 & 24 & 28 & 40 \\ \text { Pence } & 12 & 13 & 14 & 16 & 18 & 24 & 27 & 38\end{array}$		

Soft-sectored floppy discs per 10 in plastic library case 5 inch SSSD $£ 17.00 \quad 5$ inch SSDD $£ 19.25 \quad 5$ inch DSDD $£ 21.00$ 5 inch SSQD $£ 23.95 \quad 5$ inch DSQD $£ 26.35$

74LS series TTL, large stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or phone for list

Please add 50p post \& packing to orders under $\varepsilon 15$ and Varto total Access \& Visa welcome. 24 hr phone service on (054422) 618 Mon-Military Government \& Educational orders welcome, £15 minimum. Trade accounts operated; 'phone or write for details

> HAPPY MEMORIES (WW) Gladestry, Kington Herefordshire HR5 3NY Tel: (054 422) 618 or 628

on AC voltege/curyent. extended 4 digit cepability, d8/relative reference, and much. much rore. 1 year warranty period.

Ase mailable without Luminescent Display at $\mathbf{5 1 8 5}$

PM2519/O1 Automatic Multimeter

E285 PM2519/51 oMM with IEEE interlace EA95
The new Philips PM2519/01 Digital Multimeter offers analogue bar graph with dipital display and the PM2519/51 Offers IEEE/IEC 625 bus compatibility.

Autoranging for assier operation. dB meesurements on $A C$ end OC volts. 6 b reference resistances between 50 n to 8 K Ω. Reletive measurements with selectable references. Display waminge for confidence and sefety

70 Series Handheld Multimeters trend indication.

Sinde switch selects meesurement functions. All measurg valts, amps, ohms and diode test 3200 count and high speed autorenging. Self diagnosis and eltomatic battery power down. Ruggedised ceses and 3 yeer werrenty period.

Sinde switch selects messurgment unictions. All measurg voits, amps, high speed autoranging. Sell diagnosis and eutomatic bettery power down. Auggedised ceses and 3 year warrenty
period.

DC eccuracy 0.7%, autoranging

Fluke JF75
 OC BCCuracy 0.5%

 auto/menual ranging
CUBE MICROCOMPUTER SYSTEMS

Control Universal Limited

CUBE Industrial MIcrocomputers
Andersons Court, Newnham Road
Cambridge CB3 9EZ. Tel (0223) 358757

The CUBE range of industrial microcomputer modules, with BBC BASIC or FLEX, can provide the complete solution to your microprocessor control application.

Develop your target application with:

- BBC BASIC, using our EuroBEEB 6502 target processor developed with a BBC Microcomputer.
- PL/9, Pascal or 'C', using our Eurorack system or our BeebFLEX 6809 Second Processor for the BBC Microcomputer.

Extend your system with our comprehensive range of peripheral Eurocards which includes memory, high-resolution video, digital, analog and serial I/O, floppy disk controllers, EPROM programmers, and many more.

If you want to know more about CUBE products, please contact our team of sales engineers for an appointment at our premises or yours.

CIRCLE 62 FOR FURTHER DETAILS.

CIRCLE 56 FOR FURTHER DETAILS.

HF ANTENNAS

\star MODE; Full half wave operation.

- BANDS; Up to 4 spot frequencies.
\star POWER; Receive to 800W (PEP).
\star SWR; Better than 1.5:1 on channel.

THE SMC TRAPPED DIPOLE ANTENHA

has been developed to satisty the needs of commerical and military users. It is capable of operation between 2 and 30 MHz on as many as four spot frequencies - each capable of accommodating many channels. Excellent matching and efficiency with a single coaxial feed is offered by the use of SMC HID traps and the incorporation of a ferrite balun in a full half wave design. NB: Power absorbing terminating resistors are not employed The antenna may be deployed using one or wo support masts, installation (incorporating SMC light duty portable masts) can be easily effected by wo people in half an hour.

HF SSB TRANSCEIVER

TM180 "PIONEER" HF SSB TRANSCEIVER. $1 . \mathrm{B}-18 \mathrm{MHz}, 6$ channels 100 watts RF outpu $\times 310(\mathrm{D}) \mathrm{mm}$ and weighing 6 kg . May be operated as a base or mobile transceiver, complementing out trap dipole and HW4 mobile aerials. Prices start at $£ 700$, making this unit not only very attractive but highly competitive.

SOUTH MIDLANDS COMMUNICATIONS LTD.

SM HOUSE

Electronic Brokers are Europe＇s largest specialists in quality second user test equipment，computers and associated peripherals．All second user test equipment offered by Electronic Brokers is calibrated on meet the original manufacturer＇s sales specifications and guaranteed for 12 months．Our latest catalogue contains full details of our extensive inventory．Contact us for your free copy now

BRYANS SOUTHERN XY／T Recorder 25000
 THESE UNITS ARE UNUSED

 A4 Size$X-Y$ Ranges： 1 mV to $1 V \operatorname{Per} \mathrm{CM}$ Sleu Speed： $49 \mathrm{CM} /$ Second． Timebase：
Price：$£ 750$

Save 5388 On New Price

FLUKE

2020A／4／620 Column Thermal Printer 3010A FCB $£ 500$ $887 A B A C / D C D$ Vster $\mathbf{~ c 1 , 9 5 0}$ $8920 A$ E $1 / 2$ Digit True RMS $893 A$ AC／DC Diff Voltmeter GOULD／BRYANS
25000 A4 XY／T Recorder ．．．．£750 2600144 with 2×26116 Amplifiers ${ }^{2}$ As above but with 26202 power Unit 250 29300 A4 XY／T Recorder ．．．．． 1,000
HEWLETT PACKARD 110968 ᄏF Probe 2－18GHz．
1332 A High Resolution Display $£ 1,850$ 1615A Logic Analyser， $\mathbf{E 3}, 750$ $214 A$ Pulse Generator with 100 £200 $214 A$ Pulse Generator with 100 volts output． $\mathbf{c 9 5 0}$ 26318／005／01710i9 Dot－Matrix P．O．A． 3575A Opt 01 Gain／Phase $\quad £ 2,450$ 4238 Merstal Detector 427A Analogue AC／OC and 461A Antifie 461A Anplifier $1 \mathrm{KHz}-150 \mathrm{MH}$ 487A Arr plifier 10 watts DC－1M－Z 5300B／53064 DMM／Counter $£ 725$ 8004 A Pulse Generator $10 \mathrm{MHz} \mathrm{K} \mathbf{2 5 6}$ 8011 A 001 Pulse Generator 20 MHz ．

8013 BPulse Generator $50 \mathrm{MHz}, \mathbf{5 7 5 0}$ 82901M Dual Disk Drive ．．．．．．．．．． 82903A 16K MOD Dive ．．．．．s4，000日29З7A HP1日1／F日5A Computer
$8555 A$ Spectrum Analyser Plug In． 86014 Sweeper 86200 Sweeper Mainframe 362408 Swe
2.8 .4 GHz 26－8604 Sw 86260A Sweeper Plug in 8640 A Signal Generator AM／F 0．5－51 9 MHz ． $9835 A$ Desk Top＋BCD 9845 S Desk Top $98855 / 001$ Disis．
A80 Pers Mod．

MARCONIINSTS
 \section*{2438 Counter／Timer 520 MHZ}

 TF2015 Signal Generator AM／FM TF2015／2 Signal Generator AM／ TF2120 Waveform Generator TF2．171 Synchroniser for use TFENTH TF 2015 TF2333 Trans Test Set Set．
TEKTRONIX

and built in Recorder $148 \mathrm{R} T \mathrm{~T}$ Insention 1503 Insertion Generator $\mathbf{£ 4 , 4 0 0}$

 176 Fixture for Curve Tracer．－ 595 $\begin{array}{r}595 \\ c 200 \\ \hline\end{array}$ 11，250

C6，500

 ．ع1，950 \＆2，100． 4,200

〔3，600

ع2，750

E3，500
P．D．A．
E4，250
£1200
8795
8775
E1，450
\＆1，350
£850
$£ 975$
$£ 850$
ع750

FLUKE

8921A True RMS Voltmeter
Auto－ranging，dB reference bandwidth $10 \mathrm{~Hz}-20 \mathrm{MHz}$
MLP－57．326
OUR
PRICE
£695

Save 6631
 On New Price

TEKTRONIX
 Logic Analyser 7001 with DF1．

16 Stored Channels，up to 1024 words deep．State and timing with up to 100 MHz sample rate Price： $\mathbf{\Sigma 2 , 0 0 0}$
Save 84，55：
On New Price
Illustrated with 7603
Mainframe（Extra）

TEKTRONIX TM500 SERIES PLUG INS

OC508A Counter to 1.3 GHz ． DC509 Counter／Timer to

 135 MHz ．．．．．s．s800 FG501 Function Generator$0.001 \mathrm{~Hz}-1 \mathrm{MHz}$ ． 375 $0.001 \mathrm{~Hz}-1 \mathrm{MHz}$
FG502 Function Generator FG5．1Hz－11MHz FG503 Function Generator ． 5400 40MHz Function Generator $\mathbf{\Sigma 1 , 6 7 5}$ PGS01 Pulse Generator PG505 PG505 Pulse Generator £450 PG508 Pulse Generator $\quad \mathbb{1}, 250$ RG501 Ramp Generator \＆400 SC501 Oscilloscope $5 \mathrm{MHz} \quad \mathrm{C500}$ SC502 Oscilloscope $15 \mathrm{MHz} \quad \mathbf{~} 500$ $\begin{array}{ll}\text { Dual Trace } & \text { C900 } \\ \text { SC504 Oscilloscope 80 MHz } & \text { £995 }\end{array}$ Dual Trace
SG503Generator Hz ©1，250 SG504 Generator Leveled … $\mathbf{~ 1 , 2 5 0}$ Signwave c2，100
 TR502 Tracking Generator for use， $\mathbf{£ 3 , 0 0 0}$ TR503 Tracking Generator for use $£ 4,250$ with 492 or $496 \ldots250$
TM504 Mainframe TM504 Mainframe

TM506 Mainframe | TM506 Mainframe |
| :--- |
| TM515 Portable Mainframe ．．．．$£ 400$ |

 5565 TM5006 Mainframe
c750

TEKTRONIX
 Display Monitors 634

C／W Options 01 \＆ 20 （DC Supply only） $\mathbf{C 9 5 0}$
C／W Option 01 AC Supply
MLP£2，291
OUR
PRICE
£1，150
Save
S1，140
On New Price

01AC Supply

DBS problems

Virtually every broadcaster is convinced that 12 GHz direct broadcasting from satellites to small home dish or planar aerials is technically feasible and will come into widespread use both for countries already well served by terrestrial v.h.f./u.h.f. transmitter networks and for those large Third World countries for which d.b.s. is particularly suited. The big question is how soon and how paid for subscription pay channels are unlikely to be viable until homes with d.b.s. receivers reach a couple of million.

But it should not be forgotton that there are still technological problems that can be disregarded only at the risk of everyone concerned ending up with egg on their faces. The risk of an unsuccessful launch can be roughly quantifiable as around one in five though another NASA failure in early June for Intelsat again emphasises this risk. The risk of failures of the high-power transponders is perhaps even higher.

Japan successfully launched its Yuri 2A high-power broadcasting satellite on January 23 with the declared intention of providing the world's first true operational DBS service from May 12. Yuri 2A carries three 100 -watt transponders and the intention was to put out two NHK programmes (carried also on their terrestrial network), one of them an educational channel, and having one transponder in reserve. The channels were planned as unencrypted 525 -line NTSC with the stated intention of improving NHK coverage of the outer islands, etc. but undoubtedly also to stimulate the consumer industry into providing the electronic dish aerials and indoor converters needed for the f.m. type signals. I am told by Japanese visitors that a typical unit is retailing at 200,000 yen, or rather over $£ 600$, by no means a low cost.

Unfortunately by May 12 faults had occurred in two out of the three transponders. The educational channel has been dropped and NHK have re-classified the whole project as 'experimental'.

The Yuri transponders use travelling-wave tubes made by CSF Thomson in France and assembled by General Electric in the USA. Main contractors were

Toshiba. The Japanese complained bitterly of the d.b.s. faults during a visit to Tokyo by the American vice-president George Bush. For several years the Japanese government have been pressurizing both NHK and the commercial broadcasters to plan for the extensive use of d.b.s. and so put their industry ahead of the world.

Tribroken-line dipoles

A few years ago F.M. Landstorfer of the Munich Technical University introduced the radical concept of a curved 1.5λ dipole element having a gain-optimized shape that causes radiation to increase significantly in a forward direction to about 7.5 dBi $(5-5.5 \mathrm{dBd})$. Subsequently a number of people have developed his ideas, attracted by the unidirectivity of a non-terminated element. The front-back ratio is modest except when an array of gain-optimized elements is used

The latest suggestion from Chinese workers (Electronics Letters, May 24, 1984 , pp468-469) is that similar results can be achieved with a tribroken-line dipole with the curves replaced by six more convenient straight segments of roughly the same outline. Experimental results at 2000 MHz show a directivity of 6.6 dB . It is claimed that "this type of dipole with higher gain and simpler construction, which can even be folded up, is being used as a receiving antenna for u.h.f. and v.h.f. television channels".

Hand-held mikes

The UK is witnessing a tremendous build-up in the use of mobile radiotelephones, yet surprisingly little effort is being made to investigate road safety aspects of the use of telephone handsets by drivers. It is paradoxical that a driver risks prosecution by using an electric razor while a car is in motion but not from the use of a hand-held microphone unless other factors are involved.

It is now almost 20 years since in April 1965 the Ministry of Transport, in advance of the London Radiophone scheme announced that while Sections 2 and 3 of the Road Traffic Act 1960
already made it an offence to drive carelessly or dangerously it was intended to deal with the use of radio telephones with a new regulation that would insist that 'The driver of a motor vehicle shall not, while the vehicle is in motion on a road, speak into any radio transmitting equipment'.

The announcement provoked an immediate angry reaction from industry, following an emergency meeting of the Electronic Engineering Association which believed that the Ministry proposals threatened the whole concept of private and business two-way radio. Since no distinction was made between boom and hand-held microphones

In the end the Ministry was prevailed upon to drop the proposed regulations. There apparently has been no research into the safety aspects of mobile radio in the UK since the 1960s, in spite of the tentative findings of investigations in 1965 and 1969 that suggested that while background music from entertainment radios or tape cassettes presents no problem, and can be beneficial, anything that requires mental effort or is distracting, including operation of knobs, switches and push buttons can impair safety. The UK, unlike some American States, does not even forbid the use by motorists, motor- or pedal-cyclists, of stereo headphones. Similarly some of the radio/cassette stereo models now marketed provide audio outputs of 2×20 watts despite recognition by the Medical Research Council's Applied Psychology Unit in Cambrige that overloud speech or music, or the use of stereo headphones, can impair the driver's monitoring of auditory information, for example from horns outside the vehicle or any warning signs from the engine.

For many years it has been recognized (for example in the RSGB safety recommendations for amateur radio mobile operation) that the use of boom-type microphones arranged not to impair vision is much to be preferred to hand-held microphones or telephone handsets; this practice is also followed, for example, in taxi installations yet is still widely ignored in p.m.r. and c.b. installations.

The subject of safety in respect of entertainment car radio/tape installations has been
raised in an article "Facing the Music" by Lydia Taylor in the RoSPA publication Care on the Road (April 1984) but this does not cover the important question of two-way communications. It would seem that having over-shot the mark in 1965 by suggesting banning all use of transmitters while driving, the Ministry has left the subject severely alone. Yet the distinction between hand-held and boom-type microphones is surely a valid one:

More frequencies

May 23, 1984 saw the publication of an official DTI Consultative Document on the future use of Bands 1 and 111 for mobile radio following the final close-down of 405-line television in early January 1985, as a result of the 1982-83 'Independent Review of the Radio Spectrum', by the Merriman Advisory Committee which unmercifully clobbered British television viewers (a re-engineered v.h.f. tv network would have been far, far less costly or risky than d.b.s.) while concluding that Defence needed all of their generous allocations. While most observers agree that the p.m.r. services have long been starved of frequencies in the UK, the current recommendations largely ignore the expectation that the major growth area in the future will be 900 MHz cellular systems.
Similarly the possibility of 5 kHz s.s.b. channels is covered only by suggesting that provision should be made in Band III for the introduction of new methods of modulation.

The DTI document identifies a dozen 'key issues' inviting comments by the end of July

May 1984 also saw the issue of detailed information on the Racal 'Vodafone' cellular system with the forecast of trials over a 150 square-mile area of Central London starting next December, and with a typical cost for a standard saloon car of $£ 63.50$ per month (excluding v.a.t.).

Phase 1 of the Vodafone service is due to start in London and the major centres of population throughout the South, Midlands and Wales, and along several motorways. By late 1985 Phase 2 should extend the service to other main population centres.

The cellular system is claimed to be better and cheaper than

Agtront irakers

KEEP YOUR WEATHER EYE OPEN!

WITH OUR COMPLETE 'METEOSAT' WEATHER SATELLITE RECEPTION SYSTEM

THE SYSTEM..

'METEOSAT' is a geostationary satellite located 22,500 miles above the equator, transmitting invaluable weather information in both visible and infra red format. The picture image of the earth is transmitted in 24 segments ine casellite are virtually continuous and are updated hourly so that the user can see changing patterns in the weather Our MMS 1690 system, as plctured above, provides a live display of this information on a video monitor, at the lowest price ever for such a comprehensive system. A unique 'zoom' facility allows the user to enlarge any segment should he so desire, to provide more detailed information.
Our system, which is complete from antenna to video monitor, is available at $£ 1,738$ Please contact our sales dept. for further details

THE COMPANY..

Microwave Modules Limited, formed in 1969 is a wholly independent British company operating from modern purpose built premises, and is an established supplier of radio communication equipmentand systems to aword-widemarket. The equipmentdescribed

MICROWAVE MODULES LTD
BROOKFIELD DRIVE, AINTREE, LIVERPOOLL97AN, ENGLAND
Telephone: $051 \cdot 5234011$ Teiex 628608 MICRO G

CIRCLE 25 FOR FURTHER DETAILS.
 Pri/Sec $120 \mathrm{~V} \times 2$ v^{2}

ORMERS EX-STOCK
$50 / 25 \mathrm{~V}$ or $25-0.25 \mathrm{~V}$ $2 \times 25 \mathrm{~V}$ Tap Secs 5,7
 AUTOS

For step-up op down
VA Price

105, 115, 220, 230, 240V For step-up or down			AVOs \& MEGGERs
VA	Price	P蒝P	8Mk5 ¢126,00
80	4.84	1.40	8Mk6(latest) $\quad £ 140.70$
150	6.48	1.60	(1) $\begin{array}{r}\text { ¢78.90 }\end{array}$
350	11.84	2.00	DA212 LCD $\begin{aligned} & \text { ¢ } \\ & \text { 98.60 }\end{aligned}$
500	13.30	2.24	DA116LCD $\begin{aligned} & \text { ¢ } 154.50\end{aligned}$
1000	24.14	2.80	DA117 Auto $£ 157.00$
500	28.17	3.20	
2000	42.14	4.00	Megger Gen £116.40
3000	71.64	4.80	Batt Megger $\quad \pm 85.50$
5000	108.30	OA	
CAS	EO AUT		WWMOOEM
240 V to	115 V US	skts	WWmOOEM
VA	Price	P\&P	Transformers T1, 12
20	1.21	1.50	£5.70irc VAT
80	9.35	160	ELECTROSIL TR4 5\%
150	12.10	1.90	RESISTORS E1/100
250	14.73	2.00	
500	24.14	2.20	$51051,560,1 \mathrm{k}, 1 \mathrm{kl}, 1 \mathrm{k} 3$,
1000	33.14	2.80	$1 \mathrm{k} 6,1 \mathrm{kB}, 2 \mathrm{k}, 3 \mathrm{k}, 3 \mathrm{~kg}, 15 \mathrm{k}$,
2000	60.47	4.50	$16 \mathrm{k}, 24 \mathrm{k}, 27 \mathrm{k}, 39 \mathrm{k}, 56 \mathrm{k}$,
EDUCAT	ONAL M	TERS	82k, 100k 110k, 120k,
Frontter	mınals		130k. 150k. 200k, 220k,
$78 \times 98 \mathrm{~m}$			270k, 300k. P8P 20p.
$0-10 \mathrm{~A}$			BRIDGE RECTIFIER
0-2A		98each	
0-30v		50ppzip	200V2A . 45
PLEASE	AOD 15\%	at 70	100V35A \quad ¢2.60
ALL ITE	M AFTER		500 V 12.5A \quad ¢ 3.40
Unil 211. Stratior Morkshons			
Smiori Ropi, Lonion 51529 P			
Tat: 11.555 (1228 (3 Incs)			

CIRCLE 11 FOR FURTHER DETAILS.
ELECTRONICS \& WIRELESS WORLD SEPTEMBER 1984

a selection from our huge stocks. All items reconditioned unless otherwise stated. NEW SUMMER 84 CATALOGUENOW OUT

Covering our large stocks of Systems. Peripherals, Modules.
Terminals and Graphics equipment.

DEC SYSTEMS

PDP11/70
Dual Rack Cabinet
TMB MOS Memory
$2 \times$ RM03 Disk Drives
DH11AD Multiplexor
LA12O Console
〔55,000
PDP11/44 512KB
$2 \times$ RM02 Disk Drives
H9642 Cabinet
LA120 Console
£35,000
PDP11/34A CPU
10"/2" Chassis
256 KB MDS Cabinet
$2 \times$ RK07 Disk Drives
DZ11A Multiplexor
VT100 Console
110,250
PDP11/23AB CPU $5^{11 / 4 " C h a s s i s ~}$
128KB MOS Memory
Duvi1d 4 -line Interface
RXV21 Dual Floppy Disk Drive
Cabinet
£5,795
PDP11/23 128KB
$2 \times$ RLO2 Disk Drives
OLV1.J
Cabinet
VT100 Console
£7,825
PDP11/03N CPU 5 ${ }^{5} 4$. Chassis
64kB MOS Memory
0.V11 Serial Interface

RXVV1 Dual Floppy Disk Drive
Cabinet
LA36 Console
£3,500

LATEST DEC STOCKS INCLUDE:-

 PROCESSORS AND MEMORYPDP11/70, PDP11/44, PDP11/34A, PDP11/45,
PDP11/40, PDP11/23.
PDP11/03, PDP8E, PDP8A
DISK DRIVES AND CONTROLLERS
R80, RA80, RK05, RKO6,
RKO7, RLO1, RLO2, RMO2
RMO3, RM05, RM80,
RP06, RX01, RX02
MAGNETIC TAPE
TE16, TS11, TU10, TU58 TU77
VDUS
VR17 VTOS, VT50, VT52, VT55, VT62, VT78, VT100, VT101, VT102, VT103, VT110. VT125, VT180, VT278

PRINTERS

LA30, LA34, LA35, LA36,
LA180, LP04, LP05,
LP200, LS120
OPTION MODULES
Too numerous to list

TERMINALS

LRIBOPD PRINTERS

180cps Receive-only Matrix Printer with integral stand providing 132 column upper/lower case with tractor feed Centronics-type parallel input ONLY £495
SPECIAL PURCHASE DAISY WHEEL PRINTERS
DIABLD HYTYPE II model 1345
45 character-per-second letter quality printer with microprocessor control and solid die-cast aluminium frame Receive- only bidirectional model with 12 -bit parallelinput andlvariable 10/12 pitch printing OUR SPECIALIPRICE ONLY
£395 inclusive of integral desk

A36 DECwriter II KSR TERMINALS Bulk purchase of this most popular 30cps terminal providing 132 -column upper/lower case printing. Tractor feed matrix printer with integral stand and choice of interface
£295
[with
£325
with EIA/RS232
APL models
available

- $£ 50$ extra

Also available
Receive only
version, model LA35, price £250 and 2275 respectively
A copy of our Trading Conditions can be supplied on request
Electronic Brokers Ltd., 61/65 Kings Cross Road, LondonWC1X 9LN. Tel:01-2783461. Telex 298694

CIRCLE 204 FOR FURTHER DETAILS.
conventional area and trunking systems, such as the London Radiophone Service operated by BT, providing travellers with full access to the national and international public switched telephone network based on handsets. Here again one could note that telephone conversations can be more distracting and put more emotional strain on users than, for example, routine instructions from individual base stations in the private mobile service.

In the DTI rush to expand the mobile radio industry, road safety appears to have taken a back seat.

In from the cold?

The current proposal to transfer responsibility for the high-power FCO broadcast transmitters at Orfordness, Crowborough, Cyprus and Masirah Island to the BBC seems designed to produce 'paper cuts' rather than any genuine saving of taxpayers money. Foreign Office mandarins have seized the opportunity to cut down the 'plebian' activities of its Communications and Broadcast department (formerly 'Diplomatic Wireless Service') and so finally rid itself of those embarrassing links with wartime 'black' broadcasting" from Milton Bryan, using transmitters supplid by the
Intelligence-Service-linked Special Communications under Sir Richard Gambier-Parry and Harold Robin.

A similiar coyness can be seen currently at the Imperial War Museum where several rarely-seen examples of radio transmitters and receivers used for wartime clandestine communications links with France, Belgium, Denmark and Poland are among the fascinating collection of memorabilia in the special exhibition 'European Resistance to Nazi Germany, 1939-45' which runs to next April. The emphasis is firmly on SOE equipment and operations with a marked absence of any of the many equipments made by Special Communications at Whaddon (another notable omission is any reference to the Dutch Internal Radio Service of 1944-45). However the excellent Anglo-Polish AP4 and BP3 equipments can be seen as well as a very compact unit made in Denmark by Lorens Hansen when he became dissatisfied with
equipments supplied from the UK. SOE equipments on display include the B2, S-phone, MCR-1, Type 53 Mk 1 etc., although most of these can be seen in other collections in the UK. A home-built Belgian transmitter can also be seen.

Amateur Radio

Satellite to satellite

During the period when Oscar 7 and 8 were both fully operational it was possible for amateurs to establish contact 432 to 29 MHz by using both satellites simultaneously, with an intermediate satellite-to-satellite link on 146 MHz . Pat Gowen, G310R and David Rowan, G4CUO have now demonstrated that a similar path is possible using the Oscar 10 (mode B) transponder in conjunction with a mode A transponder on one of the current Russian satellites, such as RS4.

An interesting feature of this experiment with the higher orbit of Oscar 10 is that it would appear that, given the right combination of satellite positions, it should be possible to establish two-way communication between any two points on the globe.

The possibility of a successful outcome to the University of Surrey's UoSAT2 project, which went off the air shortly after being launched on March 1, is looking more hopeful, following restoration of the 145.825 MHz beacon.

Novice licence

Ian Abel, G3ZHI who has campaigned for the introduction of a 'novice licence' for amateur radio in the UK believes that there is now widespread misunderstanding of its aims and purposes. He believes, and there is evidence to support this, that many licensed amateurs have been led to believe that such a facility would serve only to permit c.b. operators who are unwilling to take, or have failed, the Radio Amateurs Examination to operate in the amateur bands. On the contrary, as administered over more than 30 years in the

USA, 'novice' operation is restricted to A1A (morse) within small segments of h.f. bands. it is primarily a form of 'incentive' licensing, of limited duration, and designed to encourage interest in cw operation on the h.f. bands, and thus to some extent to counter the concentration on 144 MHz telephony that has resulted from the popularity of the Class B licence. Today Class B licences outnumber Class A by more than 2500 (over 25,000 Class A, almost 28,000 Class B) and undoubtedly the hobby now differs significantly from its counterpart in North America where the emphasis is still on h.f. operation.

Under a London Gazette notice of June 8 the various changes in the conditions of the UK amateur licence introduced in January 1983, affecting training exercises for Raynet emergency communications and operation of a station by a non-licensed person under direct supervision, have been formalised. It is perhaps surprising that it is now many years since individual British Amateurs have been issued with an up-dated licence document.

Mixed grill

Leave to appeal to the House of Lords against the recent Manchester Crown Court decision that proof of unlicensed use of a transmitter is not necessary to secure a conviction under the Wireless Telegraphy Acts has been refused. This decision suggests that an offence can be established by the fact that transmitting equipment has been available for immediate use at any time'. The Manchester ruling, before Part VI of the Telecommunications Act 1984 was on the Statute Book, appears to establish an entirely new precedent that runs contrary to the often-expressed view that to obtain a conviction a 'pirate' has to be caught using his equipment.

The RSGB has reminded its members that it is a breach of the Copyright Acts to transmit or receive commercially-produced computer software. There is nothing in the terms of the amateur licence to prohibit the exchange by data transmission of non-copyright material such as programs written by the amateur
concerned. Commercial software includes computer games, educational programs and the software developed for small business computers, etc.

Italian amateurs have claimed a new distance record of 289 km on the 24 GHz band for a difficult contact last April between mountain-top stations $14 \mathrm{BER} / 14 \mathrm{CHY}$ in the province of Pescara and IW3EHQ/13SDY in the province of Udine. Both used Gunn-oscillator transceivers with about 100 mW output. The RSGB is recommending for 10 GHz that as from January 1985 wideband equipment should use the section of the band between the 'narrowband' section (10.368 to 10.370 GHz) and the nominal beacon frequency of 10.4 GHz . Currently most wideband operation is below 10.1 GHz .

The DTI has indicated that it is willing to hand over responsibility for the Morse Test, currently administered by British Telecom, to either the RSGB or the City \& Guilds of London Institute. RSGB Council is actively seeking to bring this about. When some years ago I suggested in Wireless World that it was time to make such a change I received a heated phone call from an indignant coast station radio operator who pointed out that giving tests to would-be amateurs represented a valued 'perk' since part of the fee came to the person giving the test!

The DTI-authorized extension of training facilities for the Raynet amateur radio emergency service appears to have had the unexpected effect of dragging this service into the political arena. This is because of the participation of Raynet in various civil defence training exercises. Objection has also been raised to the band-plan reservation of frequencies on the grounds that in other countries emergency services are allocated frequencies outside the amateur bands.

August mobile rallies include: August 5, RSGB national rally at Woburn. August 12 , Derby rally at Lower Bemrose School, St Albans Road, August 19, RAIBC/Flight-Refuelling societies at the Flight Refuelling social club, Merley, Wimborne, Dorset. August 26, BARTG rally at Sandown Park Racecourse, Esher, Surrey; Preston rally at Lancaster University; and Torbay rally at STC Works, Old Brixham Road, Paignton.

PAT HAWKER, G3VA

U.K. RETURN OF POST MAIL ORDER WORLDWIDE EXPORT SERVICE

RCS STEREO PRE-AMP KIT, To build Inputs for high, medium or low imp volume control £3.50 Post 65p

DECCA TEAK VENEERED PLINTH
mplifier.
Board cut for BSR or Garrard $18 \mathrm{lin} \times 14 \mathrm{il}$ in. $\times \mathbf{4 i n}$. $£ 5$ Tinted plastic cover trim.

INTED PLASTIC COVERS for Decks, Music Centres

THE "INSTANT"BULKTAPE
tand-held 17.50 Post 95p
Suitable for cassettes and all sizes of tape reels. AC mains
Will also demagnetise small
Tape Head Demagnetiser f5.

ALUMINIUM CHASSIS 2 tin. deep 6×4 £1.75; 8×6
E2.80.
ALUMINIUM PANELS. $6 \times 455 \mathrm{p}: 8 \times 690 \mathrm{p}: 14 \times 3$
$90 ; 10 \times 7 \times 12 £ 1.80 ; 16 \times 10 £ 2.10 ;$
ALUMINUMM BOXES. $4 \times 4 \times 1!$ fi. $20 ; 4 \times 21 \times 2 \mathrm{f1.20}$ $3 \times 2 \times 1 £ 1.20 ; 6 \times 4 \times 2 \mathrm{f} 1.90 ; 7 \times 5 \times 2 \div £ 2.90 ; 8 \times 6 \times 3$
 POTENTIOMETERS $5 \mathrm{k} / 2$ meg LOG or LIN. L/S 50 p . dP 90p. Stereo L/S © 1.10. DP $£ 1.30$.
Edge Pot 5K. SP 45p.
OISCO MIXER 240V. 4 channels. 2 magnetic. heamichope, 1 mono mic channel, twin v.u. meters, heade mounting, grained aluminium facia. Tape
deutput facility
f49. Post E .
dELUXE STEREO DISCO MIXER/EQUALISER as bove plus L.E.D. V.U. displays 5 band graphic phone/line, mike/line. Headphone Monitor, Mike Talkover Switch $£ 118$
\star BAKER GROUP P.A. DISCO AMPLIFIERS. post $£ 2$

BAKER AMPLIFIERS BRITISH MADE palso Watt MICROPHONE VOCAL AMPLIFIER £129
4 channel mixing, 8 inputs, dual impedance, $50 \mathrm{~K}-600$ ohm, volume. treble, bass. Presence controls on
each channel. Master volume control, echo, send return socket. Slave sockets. Post $£ 3$.
150Watt MIXER AMPLIFIER 4 Inputs $\mathbf{£ 9 9}$ Discotheque. Vocal, Public Address. Speaker outlets for 4,8 or 16 ohms. Four inputs, $20 \mathrm{mv}, 50 \mathrm{~K}$ ohm individual volume conrols "Four channe|" mixing.
Slave output $16^{\circ} \times 8^{\circ} \times 5 t^{\circ}$. Wt -141 l : Master Volume control. 240 V A.C. Post $£ 2$.
100 Volt Line Model, 150 watt f 114 . MONO SLAVE. 100 Volt Line Model, 150 watt f 114 . MONO SLAVE.
150 watt $£ 80$. 150 watt $f 80$
Baker Stereo Slave $150+150$ watt 300 watt Mono
f125. Post $£ 4$.
BAKER MOBILE PA AMPLIFIER. All transistor, 60 wat1 RMS, $12 \mathrm{vDC} \& 240 \mathrm{v}$ AC 4 in puts 50 k Aux +2 mics +1 phono. Output
$4-8-15$ ohms +100 volt line. $\quad \mathbf{~} 89$ Post $\mathbf{£ 2} \mathbf{2}$

WATERPROOF HORNS 8 ohms, 25 watt 10 in . $\mathbf{f 2 0 .} 30$
 plus 100 voit line E38. Post 22 .
BAKER PORTABLE DISCO 950 watt. Twin console + amplifier + mike and headphones + win speakers
$£ 330.300$ watt $£ 399$. Carr. $£ 30$. Console + decks + . pre-amp $£ 105$ Carr. $\mathbf{f 6}$.
PA CABINET SPEAKERS. Complete. 8 ohm 60 watt $17 \times 15 \times 9$ in. $£ 27$. Post $£ 4.4$ or 8 or 16 ohm 75 watt
$23 \times 15 \times 11$ in. $£ 52.90$ watt $32 \times 15 \times 11$ in. $£ 71.150$ watt $\mathbf{8 8 0}$. Carr. $£ 10$ Black vinvl covered.
MAINS TRANSFORMERS
$250-0.250 \mathrm{~V}$ 80 mA $, 6.3 \mathrm{~V} 3.5 \mathrm{~A}, 6.3 \mathrm{~V}$

 $350-0.350 \mathrm{~V} 250 \mathrm{~mA}, 6.3 \mathrm{~V} 6 \mathrm{~A}$ CT 220 V 45 ma 6 V 2 Amp $\begin{array}{lll}\mathbf{5} .000 \\ \mathbf{E 5} .00 & \mathbf{f} 1 \\ \mathbf{E} 1\end{array}$

Step-Down240V to 115 V 150w f9. 250 W f12. 500 W GENERAL PURPOSE LOW VOLTAGE

LOW VOLTAGE ELECTROLYTICS

$500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p}: 50 \mathrm{~V} 30 \mathrm{p}$, 1200 mF 76 V 80 P
 1500 mF 100 V E 1.20 . 2500 mF 50 V 70 p .3000 mF 50 V 65 p ; 4700 mF 40 V £ 1 .
CAPACITORS WIRE END $.001, .002,003, .005, .01,02,03, .05 \mathrm{mid} 400 \mathrm{~V} 10 \mathrm{p}$. 1MF 400 V 14 p .600 V 15 p .1000 V 25 p.
.22 MF 350 V 1 p .600 V 20 p .1000 V 30 p .1750 V 60 p.
47 MF 150 V 10 p .400 V 25 p .630 V 30 p. 47 MF 150 V 10 p .400 V 25 p .630 V 30 p

E8.50 post 50 p MINI-MULTI TESTER Deluxe pocket size precision moving coll instrument Impedence $+{ }^{+}$
Capacity 4000 op.v. Battery included 11 instant ranges measure: DC volts 5 ,
25 , 250,500 AC volts $10,50,500,100$ DC amps $0-250 \mu a ;$
Resistance 0 to 6000250 ma . Resistance 0 to 600 K ohm De-Luxe Range $\begin{aligned} & \text { Doubler Meter, } \\ & 50,000 \text { o.p.w. } 7 \times 5 \times 2 \text { in. Resistance }\end{aligned}$ 50,000 o.p.w. $7 \times 5 \times 2$ in. Resistance
0,20 meg in 5 ranges. Current $50 \mu \mathrm{~A}$ to
10 A Volts

PANEL METERS $50 \mu a, 500 \mu \mathrm{a}, 1 \mathrm{ma}, 5 \mathrm{ma}, 50 \mathrm{ma}$, $100 \mathrm{ma}, 500 \mathrm{ma}$, $1 \mathrm{amp}, 2$ amp, $5 \mathrm{smp}, 25$ volt. VU
$59 \times 53 \times 34 \mathrm{~mm}$. Stereo vu $82 \times 41 \times 25 \mathrm{~mm} 55.00$ RCS SOUND TO LIGHT CONTROLLER KIT $f 19$ Printed circuit. Cabinet. 3 channeis. 1,000 watts each. Ready Built Deluxe 4 Channel 4.000 watt with chaser + speed + programme controls $£ 69$. Post $£ 2$. BATTERY ELIMINATOR Mains to 9 volt D.C. 400 MA .
Stabilised, satety cutout, $5 \times 3: \times 2$ tin. $£ 5$. Post $£ 1$.

BADIO COMPONENT SPECIALISTS

Dept 1, 337, WHITEHORSE ROAD, CROYDON
ACCESS SURREY, U.K. TEL: 01-684 1665
Full Lists 32 Pos. Same day despatch. Closed
CIRCLE 4 FOR FURTHER DETAILS.

49/51 Fylde Road Preston PR1 2XQ
Telephone 077257560
reliable high performance \& practical controls. individually powered modulesmains or dc option single cases and up to 17 modules in standard $19^{\prime \prime}$ crates small size-low weight-realistic prices.

CIRCLE 55 FOR FURTHER DETAILS.
ELECTRONICS \& WIRELESS WORLD SEPTEMBER 1984

Interfacing a computer to a linear airtrack.

Linear motion experiments using a computer to measure and display results.

Detecting the rider can be done in a variety of ways. One is to mount a piece of card on the top and use this to break a light beam: a timer can be started and stopped in this way. The method used here uses a reflective opto switch ${ }^{2}$. This is a combined light emitter and detector in which an infra-red beam of light is produced which can be reflected back to the detector by a suitable reflective surface. This method of sensing a rider has several advantages over the conventional light gate methods: the sensors do not block any view of the track and the movements of the rider - useful in demonstrations; they are not subject to interference from the ambient lighting; each sensor can detect a specific rider on the track; and the equipment has a minimum of con-

> A linear air track is a piece of laboratory equipment that allows experiments in linear motion under very low friction conditions. It is essentially a long length of square section tube with a series of fine holes drilled along its length. When air is fed under low pressure into the tube, jets of air are produced that lift a piece of aluminium angle, called a rider, clear of the track, see fig. 1. Experiments on the motion of this rider can be carried out using the very low friction conditions ${ }^{3}$.

> Any experiments will involve the detection of a rider as it moves past a sensor. Some will need to detect two riders, as in the cases of collisions.
nections and low power consumption, so that the computer provides the power supply.

Hardware

The position sensors are R.S.Components infra-red reflective opto-switches, cat. no 307-913. They are mounted in aluminium channel sections with a 4 -core connecting cable to the interface circuit, which consists of two identical channels, one of which is shown in Fig. 2. The outputs go to the user port input of the computer, in this case a Research Machines 380Z; channel A is Data In 0 and channel B is

Data In 2. The other data input lines can be left unconnected as the software only tests for Bits 0 and 2. When there is no reflection of the i.r. beam, the transistor Tr_{1}, is switched on. The collector will be at a low voltage and this is inverted by the schmitt trigger, IC_{1}, to give a digital 1 . When a reflector is positioned in front of the sensor, the output from IC_{1} becomes a 0 .

The prototype was constructed on a small piece of Veroboard and fitted inside a metal case. Two DIN sockets were fitted for connecting the sensors, and a 25 -way D plug providing the connection to the computer's user port.

by H.B. Fielding

The author
Educated at Rochdale Boys
Grammar School and then
Nottingham College of Education, H.B. Fielding started his teaching career in Birmingham and is now Head of Physics at Archbishop Masterson School, a post he has held since 1975. His activities include introduction of computer control, electronics and technology courses into the school.

Fig. 1. Hollow square tube with air outlets forms a virtually frictionless bearing for the 'rider'.

Fig. 2. One channel of the interface amplifier.

Photo 1 Experimental assembly. Track is seen in position with the two sensors and an RML 380Z.

Photo 2 Positioning of the two sensors.

picked up by one sensor. Depending on the height of the sensor, it will only be sensed by the A or B sensor, as in Fig. 3. On side two, there are two reflectors so that the rider can be detected by both sensors. On this side there are two extra reflectors fitted in the top corners, used with another program ${ }^{3}$ for measurement of velocities and accelerations of the rider.

Demonstrations

Constant velocity. One rider is used with the two reflectors on the same side, separated by 40 cm . One reflector is detected by sensor A, the other by sensor B. The rider can be given an initial velocity by hand. By measuring the velocity at the two places along the track, the idea of a constant velocity can be demonstrated.

Potential energy into kinetic energy. Using an elastic band, a rider can be catapulted along the track. A value for the kinetic energy that the moving rider possesses can be determined from the velocity and its mass. By using two elastic bands stretched by a similar amount, twice the energy can be given to the rider.

Elastic collisions. Using two riders, send rider A along the track to collide with the stationary rider B. Use rubber bands at the collision points on the riders. The rider B should move away at the same velocity of rider A before the collision, (assuming equal masses).
Inelastic collisions. Change the rubber bands at the collision points to adhesive pads or plasticine and repeat the previous procedure.

Riders

The original black anodized surface of the riders was found to be a good reflector of infra red and so had to be coated with a matt-black spray paint: the surface of the track was also treated in this way. Sensors can be mounted by the side of the track, pointing downward at an angle of 45 degrees. The riders have a set of reflectors fitted to them - the small, silver, self-adhesive labels used for Write protection on floppy discs. Side one of the rider has a reflector that can only be

Software

This is designed to run on a Research Machines RML 380Z with 56 K of memory. Most of the program is in Basic with a machine-code subroutine for the time-critical sections. It is loaded from the Basic program and could be relocated to allow for other memory configurations.

Using the two infra-red switches, the positions of riders on the track can be detected. An inbuilt clock provides the means of timing the riders. In this case it is on a PIA board type EA2380 made by Irwin-Desman Ltd, giving times in increments of 10 ms . If the length of the reflector on the detected rider is known then the velocity can be calculated and if the mass of the rider has been given, the momentum and the kinetic energy can also be calculated. The program is able to decide from the measured results if a collision between two riders was elastic or inelastic, by comparison of the momentum before and after the collision. Assuming the law of conservation of momentum, the value after the collision should be of the same order; if the difference is greater than an arbitrary value, (20%), the collision is deemed to be inelastic, the two riders having joined together to form one of larger mass. The new mass is calculated along with the new momentum and kinetic energy values.

The program is organized as a series of modules, some being used in the setting up of an experiment, others calling up values taken from running the experiement. All modules except the Run timing are in Basic and command is from the keyboard. Only certain keys are operated on; all others are ignored. The Run timing module cannot be interrupted; it will only return to the main program after all the riders have been detected and timed.

Option S

This section enables the two sensors to be set up in relation to the reflectors on the respective rider. The screen shows two areas marked A and B. When a reflector on the appropriate rider is in the view of its sensor, a white square appears. Each sensor can be set up individually. Exit from the module is by pressing any key

Fig. 3. Setting the sensors and reflectors at different heights enables the sensors to differentiate between them.
except L．Pressing L enables the lengths of each reflector to be entered in the program，which is useful as the measured length of a reflector may not be the effective length that the sensor sees．The default value for the reflector length is set at $2.5(\mathrm{~cm})$ ．

Option D

This section enables details about the masses of the two riders to be entered into the program．There is no error checking on the values entered．If this module is not run， default mass values of 400 g are assumed．A simple diagram is also displayed that may be useful in explanations about the experi－ ments．

Option T

This draw a blank results table on the screen．Two columns are pro－ vided for values for the two riders A and B．Values for the masses of the riders are already shown． After a run，values for the veloc－ ity，momentum and kinetic energy for each rider can be called up onto the table．If a timing run has not been performed，there will be no valid values shown， 0 in fact．Values for velocity，momen－ tum and kinetic energy must be prefixed by either A or B，e．g． momentum of B would be called up by BM．

Option R

This runs the timing routine． First the start of a reflector on rider A is detected and the clock started．When the end of this ref－ lector is detected，the clock is stopped and the value stored．The routine now repeats this but for the other rider，B．The exit from this routine is automatic after the second rider has been detected． There is no other way out of this routine except by pressing the main reset button on the front panel！

Option H

Shows on the screen the complete list of options available．This clears any previous screen infor－ mation but not stored values which can be called up once more onto the screen．

Option X

Not shown on the general option table．Allows exit from the pro－ gram back to Basic command level．

Option V
 Option V

With the prefix A or B，displays the calculated velocity value．The value is displayed as a whole
level.

```
REM *Initial values only*
REM *Initial values only*
REM *M/C loader*
REM*HEadingS*
100 PUT 27."=0.3
102 7:?:?:?:
104 GRAFH
log REM*************************
l1O REM* Air Trazk Col
112 REM* HIR.E
lorlorlol
116 REM* 1/1984
120 REM*
120 REM* (
122 REM****D2-2.5: ***********
124 Dt=2.5:D2=2.5:
126 MA=400:ME=4OO:
128 MA=400:ME=
128 GOSIN 33G
130 GOSUB 488:
1%2 GOSUR 218:
134 Q&=GET$\
l
138 GOTO 148
140 REM**
142 GOSUB 568
144 Q*=GET $!
146 FLOT 0,-12.03
148 IF G%-"X" THEN GFAFPH 1:TEXT:FUUT 27."=1.5":END
148 IF Q$-"X" THEN GFAAPH 1:TEXT:FUT 27."=1.3":END
150 IF QS=" }\times\mathrm{ " THEN GFAPH 1:TEXT:PUT 27,"=1J": END
lol
los
156 IF O*="D" THEN GOSUE 410:
158 IF DS="d". THEN GOSUE 410
160 IF Os="T" THEN GOSUE 410
lon IF Os="T" THEN GOSUB 514:
los,
lo4 IF O&="R" THEN GOSUE 294:
\168 IF O$="A" THEN 182
lo6 IF O&="A" THEN 182
172 IF Q*="E" THEN 2OO
\
\
lol
178 IF D3="か" THEN 132
180 60T0 140
182 Q*=GET$()
184 FLOT O.-12,08
lol
188 IF C*="v" TMEN GOSUF 246
90 IF Q$="M." THEN GOSUM 240
FEM *Collisign details*
FEM #Blank table*
REM *R*ry timing *
```

```
192 IF 0$="m" THEN GOSUE 262
    194 IF Q*="K" THEN GOSUE 278:
    196 IF Q$="k" THEN GOSUE 278
    198 GOTO 140
    2OO QS=GET$ (
202 PLOT O,-12,Q&
llol
lol
214 IF Q ="K" THEN GOSUB 286
lol
218 REM
220 GRAFH 1, % "Summary of Options."
224 FLOT 22,S2,"{~m~~~~~
226 PLOT 0,46,"5S Set up sensors."
228 FLOT 0,40,"D
230 PLOT 0,34,"T
232 PLOT O,28,"R
23.4 FLOT 0,22,"L
238 FLOT 0, 6,"V
240 PLOT O,3. .M
242 PLOT O.0."K
244 RETUFN
246 REM*AV*
248 PLOT 58,3S,"
250 PLOT 58,33,5TR3 (INT (AV+.5))
252 RETURN
254 FLOT Z6.33,"
25S FLOT 36,JS,STR$(INT(9V+.5)
260 RETURN
262 REM#AM* ( PLOT 58, 24,"
264 FLOT 58.24,STR* (INT(AM+,5))
69 RETURN
270 REM*EM*
272 fLOT 36,24,"
274 PLOT 36.24.STR&(INT(BM+.5))
276 RETUFN
280 PLOT 58.15,"
292 FLOT SS.15,STR$\INT {AK*.5)%
284 FETUFN
286 REM*BK*
286 REM*BK**
290 PLOT SH,15.STRS (INT(BK+.5)
292 RETUFN
296 CALL SAD20: Sutane. Return with Times.* REM*M/C Start Address,
296 CALL &AZ20: FEM*M/C Start Address.**
OG SI=PEEK
Enter details of collision."
Display olant, results table.
Display olant. results table.
Run/repeat timing section.
Help."
Velocity naxt values."
Velority value.
Momentum value.
Momentum value.
20 GRAFH
*Summary of options*
224 FLOT 22,52,"'
Prefix for next values."
268 RETURN
278 REM#AK*
OS S1=PEEK (M)
302 H1=FEEK (M+1)
304 k1=FEEK (M+2)
308 S2=PEEK (M+O)
10 H2=PEEK (M+4)
12 KN=FEEK (M+5)
14 Tz=52+(H2*.01)+(K2*.0001)
$14 AU=5=+TH2:
REM*velocitv of A.*
18 EV=D2,T
GEN*velmeity Of E
18 EV=D2,'S:
FEM *romgntums
FEM *K.E.*
    AV=(MA#AV*AV)/2:
    * F= (MA#AV*AV)/2:
FEM TOF.E.
20 GOSUF S00:
ZE FETURN
REM*MarMLre Code Loader.
    M=S,A22O
    M=$A2EO
    4 FOF I=0
    FGEAD M
    NEXE (A+J)
```



```
    DATA *OS, DAZ, \CG
    DATA *'S
    REM*dual sensor setuo*
    GEM#dual
    GFAPH 1
    FLOT 1h, =1, "DUAL SENSOF, SETUP."
    FLOT O, 22, "FRESS L TO JNF-UT NEW FEFLERTOR IENGTHE,
    FLOT 4,16. FRESS ANV OTMEF KEY TO CONTINUE."
    FloOT 10,56, "Sensor A"
    FLOF 42.56,"S
        V=FEEE (84511)
        IF V AND 1 THEN FIOT 17, 46.:23 ELSE FLOT 17, 46, 25S
    IF V AND 4 !
    LIOGET$12)
    FLOT 0.-12,L*
    IF L:="" THEN *T=
8= IF L$="" THEN #72 
86 IF LE "L"THEN GFAFH \: SETUF"
88 FLOT 0, こ2,"
```



```
944 FLO+ 4,S."NEW LENSTH FTS FIFLETTCF A COM"M
```



```
O98 D1=0
4OO FLOR 4.O. "NEL :ENGTH FOC REFLECTOR E (CM.N"
4O2 X=TO:Y=O:GOSNE AOG
402 x=>0:
404 02=a
406 L =GEX4: SOO)
40B GFAFH I:RETUAN
410}\mathrm{ REM*colilision details*
412 REM*Returns riders mess MA - ME*
412 REMNRE
41&FLOT i8,58, "COllision fotayl三|"
```



```
420 FigGT 3, #0,"&icer
42% FCOT 19, 1."E"
```

number even though subsequent calculations use the complete number.

Option M

With the prefix A or B , displays the calculated momentum value.

Mption K

With the prefix A or B, displays the calculated kinetic energy value.

Note

The keyboard can be set to upper or lower case.
When an option can be called up, the lower part of the screen shows the valid keys.

A complete listing of the program is given. The machine code subroutine assembly is also given, and it may be than an alternative timing routine could be developed here that could be used on a wider range of machines.

REFERENCES

1. Linear Air Track, Equipment Notes P10041, Philip Harris Ltd.
2. R.S.Components Ltd, Reflective \& Slotted Opto Switches, Data Sheet R4276
3. H.B.Fielding, Air Track Data Processing Program, Electronics Systems News, May 1983
```
426 FLOT 10,10,"Senser E"
28 FLOT 44,10."Sensor A"
430 PLOT 12,18,254
434 FLLOT 12,17,25.j
436 FLOT 14,17,255
4:8 FLOT 46, 19,254: FL.OT 48, 18, 253
442 PLOT 16,17,2:LINE 2G.I7:LINE 28
444 PLOT 46,17,2.LINE 32,17:LINE 28,
444 PLOT 46,17,2:LINE S2"
448 FLOT O,35, 1;LINE 79,3
450 FLOT 0,27,1:LINE 79.27
452 GOSUP 578: "MASS OF RIDER REM* Clear lower sereen
454 PLOT 10.-6. "MASS OF RIDER A ": X=44:Y=-6:GOSUN 606
456 PLOT 68,5z, "Ma=5"
58 FLOT 66,40,
460 MA=0
60,40.5TR$(MA)+".'`
64 PLOT 10,-9. "MASS OF RIDEF E ": }X=44:Y=-9:GOSUR 606
466 PLOT
470 FLOOT 66,46,STR&(ME)+" g
42 PLOT 10,-12,"Is this correct? (Y/N )
474 O$=GET$()
476 FLOT 0,-12,Q*
48 IF QS="N"THEN 452
480 IF Q & ="n"THEN 452
484 IF Os="\gamma"THEN RETURN
84 %
486 GOTO 474
490 REM*HES
492 FLOT 1O,48, "COLLISIONS > < COLLISIONS"
494 PLOT 10,36,"A program to measure times"
496 PLOT 10,30,"and velocities of air track"
4 9 8 ~ P L O T ~ B , 2 4 , " r i d e r s ~ i n v o l v e d ~ i n ~ c o l l i s i o n s . ~
500 FLGT 25,15."H.B.Filelding.
502 FLOT 13,6,"Archbishop Masterson School"
O4 PLOT 27, S,"Eirmingham.
506 FLOT 20,0. "Version 1. 12/1983"
508 A$=GET*(1500)
SIO GRAPH 1'
514 REM*blank disolay table*
```

```
516 GRAPH 1
518 PLOT 20,58,"TAFLE of RESLMTS"
20 PLOT 34,55,1:LINE 34,8
52 PLOT 79,55,1:LINE 79,8
524 PLOT 55,55,1:LINE 55,8
526 FLOT 34,55,1:LINE 79,55
S28 FLOT 34,49,1:LINE 79,4
32 fLOT 44,52, "Q"
34 PLOT 46,52,A
SG PLOT b, ->2, "Velacit
S.8 PLOT 6.\vec{ , "Velacity"}
542 PLOT 6,15, "Kinetic"
44 FLOT 6,12, "Energy"
56 PLOT 26,42,"m"
548 PLOT 26.33," "\checkmark"
5EO flor 26,24,"m
552 PLOT 32,16,4
554 FLOT 26,15,28
556 FLOT 20,15,"mV"
558 FLOT 0,33, "V"
S62 PLOT 0,24,"M"
564 PLOT 36,42,STR$(MB):PLOT 58,42,STR$(MA)
5 6 6 ~ R E T U R N
56 REM*Help menu*
570 GOSUB 578
572 PLOT 32,-6, "OFTIONS"
574 PLOT 8,-12,"AU AM AK D S T R H X BV gM BK"
5 7 6 ~ F E T U R N
78 REM*Clear lower screen*
80 PLOT 0,-3,"
582 PLOT 0,-6,"
S84 PLOT 0, -9,".
588 RETURN
590 REM *Test for collision type/ adjust momentum * K.E. *
992 T=ABS (AM-BM)
94 IF T<(AM*.2) THEN RETURN: REM * Elastic *
596 MB=MB+MA:
598 BM=ME*BV:
600 EK=(ME*BV*BV)/2:
602 PLOT 36,42,STRS (MB)
O4 RETURN
06 REM *Buila number*
08 Ns="""
612 IF Q &=CHF*(13) THEN 620
614 PLOT X,V,Q*: X=X+2
616 N*=N*+Q*
618 GOTO 610
G2O Q=VAL (NS):RETURN
```

IAIR. 2SM - AIR TRACK SUBROUTINE ;H.B.FIEI.DING $2 / 1984$

FBFF	$=$	UFORT	EQU	OFEFFH	;3802 USER PORT
A 200	$=$	store	EeU	OAZOOH	: Stored time area
A220			ORG	OAZ2OH	;StART OF PROGRAM
A220	3E04	START:	LD	A, O4H	: RESET \& HOLD CLOCK
A222	D300		OUT	(O), A	
A224	SAFFFB	STARTI:	LD	A, (UPORT)	: FEAD 1/0 PORT
A227	E601		AND	O1H	: TEST FOR bit o
A229	C224A2		JF	NZ, START 1	: JUMP EACK IF NOT
A 22.2	3E07		LD	A,07H	;Start Clock
A221	D. 300		OUT	(0), A	
A230	3AFFFE	END 1 :	Lo	A, (UPORT)	; READ I/O PORT
A233	E601		AND	91H	; TEST FOR BIT O
A235	CA30A2		JP	Z,END 1	: JUMP RACK IF NOT
A238	3E06		LD	A, 066	: HOLD CLOCK
A23A	0.300		OUT	(b), A	
A23C	D8OO		IN	A, (0)	: GET SECONDS
A23E	3200A2		LD	(STORE +0). A	;StOfe It
A241	DEO1		IN	A, (1)	; GET 1/100 SEC
A243	320142		LD	(STORE + 1), A	: Stare it
A246	DEO2		IN	A, (2)	:GET 1/10000 SEC
A249	3202A2		LD	(STORE +2), A	;Store it
A24B	SEO4		LD	A, 04 H	; RESET Clock and hold
A24D	D300		OUT	(D), A	
A24F	3AFFFE	STARTZ:	LD	A, (UFORT)	: READ I/O PORT
A25 2	E604		AND	04 H	; TEST FOR EIT 2
A254	C24FA2		JP	NZ, START2	: JUMP BACK IF NOT
A257	JE07		LD	A,07H	: Start clock
A259	D300		OUT	(0), A	
A25E	3AFFFE	END2:	LD	A, (IJPORT)	; READ I/O PORT
A25E	E604		AND	O4H	; TEST FGR BIt 2
A260	CAStaz		JP	2,END2	: JUMP 8ACK IF NOT
A263	3EO6		LD	A, OSH	: HOLD CLOCK
A265	D300		out	(1), A	
A267	DEOO		1 N	A, (0)	; GET SECONDS
A269	$3203 A 2$		LD	(STORE +3). A	: STDRE IT
A26C	DEO1		1 N	A. (1)	; GET 1/100 SEC
A26E	\%204A2		LD	(5TDRE +4).A	- STORE IT
A271	DEO2		1 N	A, (2)	: GET 1/10000 SEC
A27	-20EA2		LD	(StORE +5S.A	: StORE IT
A276	0°		RET		; RETURN TO MAIN

: FROGRAM

LOOK AHEAD!

WITH MONOLITH MAGNETIC TAPE HEADS VIDEO HEAD REPLACEMENT KIT
DOES YOUR VCR GIVE WASHED OUT NOISY PICTURES - IT'S
PROBABLY IN NEED OF A NEW HEAD - FASTFROM OUR EX-STOCK PROBABLYIN
DELIVERIES.
OUR UNIVERSAL REPLACEMENT VIDEO HEADS FIT ALL MODELS OF VHS OR BETAMAX VCRs. FOLLOWING OUR REPLACEMENT GUIDE AND WITH A PRACTICAL ABILITY, YOU CAN DO THE WHOLE JOB IN YOUR OWN HOME WITH OUR HEAD REPLACEMENT KIT

KIT CONTAINS - NEW VIDEO HEAD, 5 CLEANING TOOL'S HEAD CLEANING FLUID, CAN OF AIR BLAST, INSPECTION MIRROR, ANTISTATIC CLOTH, VHS/BETAMAX MAINTENANCE MANUAL, CROSS HEAD SCREWDRIVER, HANDLING GLOVES, MOTOR SPEÉD DISC SERVICE $L A B E L$, HEAD REPLACEMENT GUIDE
VHS KITS $£ 53.25$, BETAMAX KIT $£ 65.25$. Prices include P\&P ar d VAT HOW TO ORDER: PLEASE STATE CLEARLY THE MAKE AND MODEL OF YOUR RECORDER. THERE ARE TWO VERSIONS OF THE VHS HEAD AND YOUR ORDER CAN BE PROCESSED FASTER IF YOU CHECK THE SIZE OF THE CENTRE HOLE OF THE HEAD WHICH WILL BE EITHER 5 mm OR 15 mm DIAMETER.
CATALOGUE: For our full Catalogue of Replacement Video and Audio Cassette/Reel to Reel Heads, Motors, Mechanisms, etc. Please forward 50p P\&P.
THE MONOLITH ELECTRONICS CO. LTD. 5-7 Church Street, Crewkerne, Somerset TA18 7HR, England Telephone: Crewkerne (0460) 74321

Telex: $\mathbf{4 6 3 0 6}$ MONLTH G
CIRCLE 99 FOR FURTHER DETAILS.

CIRCLE 28 FOR FURTHER DETAILS.

Reacs and willing to give you tie accuracy and flexibility you've come to expect fror alphandheld DMM's.

On the one hand, the new 13CA has the design and perficmance of our most copular 130 model but with greater basic DVC accuracy-0.25\% and the need to calibate only once every tvo years - all this at no increase in prise.

On he other, there is the rev unoeatable value 136, a higinperformance full atcoranging $41 / 2$ digit DMM permiting precise measusemerts in 22 ranges of AC/DC voltaze, resistance AC/DO surrent including 10A capability If ycu could use an extráoai- cf hands, or would just like to fin= out about our comp'eterange of DMM's - phone $073 \angle 361287$ or contact a Fie.tr lay distributor now. Prices start $\equiv \mathrm{t} £ 69.00$

KEITHLEY
 Keithley Instruments Limited 1 Boulton Road Qeading Berkshire RG2 ONL Jelex 847047

Berksh re	(0734) $861{ }^{(1)}$	G asgow	(02367) 28170
Essex	(0279) 29E22	London	(01) 6390155
Gwen!	(0633) 280556	Cleveland	(0287) 32397
Eire	(0001: $98<=4^{7}$	Hertfordshire	(07073) 38623

CIRCLE 60 FOR FURTHER DETAILS.

USED TEST ETUITV:IDU

Ring for latest
tock information

ELECTRONICS LTD. Telephone 01-943 4477. Telex 23920 (Euhire)
Used test equipment and computer specialists
CIRCLE 90 FOR FURTHER DETAILS.

ELECTRONIC POWER UNITS

FOR XENON ARC AND MERCURY ARC LAMPS
ÚNITS AVALLABLE FOR LAMPS RANG ING FROM 75 TO 6500 WATTS.
Lamp housings and lens systems manufactured as standard off the shelf models or to specific design.

VIDEO TAPE REC Philips N1500 series with two cassette \& circs. £65 Ferrograph Series 6. Audio single chan 3 speed int speaker good cond with book. £85 SCOPES Solaratron CD 523 gen purpose
 Res 50 ohm to 500 Megs , RF probe to $1500 \mathrm{Mc} / \mathrm{s}$ tested with book. § 48 , MARCONI SIG GENS TF995/A12AM/FM $1.5 / 220 \mathrm{Mc} / \mathrm{s}$ with book. § 100 TF 144 G 85 K c to $25 \mathrm{M} / \mathrm{S}$ AM large bench unit with leads book etc late series. $£ 65$. X.BAND RESONATORS direct cal $9170 / 9470 \mathrm{Mc} / \mathrm{s}$ with meter ind \& va atten 0 to 1000D£23 also X Band Tx load WG 15 est 50 Kw Pk £ 25 alsoX Band Echo Box fixed tuned with small dish unit. $£ 14.50$ NOISE GEN CT $207100 / 600 \mathrm{Mc} / \mathrm{s}$ var noise $0 / \mathrm{P}$ with int 600 ohm 0/P meter mains with book. £35. DUMMY LOAD WATTMETER. CT $21430 / 400 \mathrm{Mc} / \mathrm{s} 50 / 75$ ohm 0 to $20 / 20$ watts with connec. £55 FREQ CONV. $240 \mathrm{~V} 50 / \mathrm{s} 10115 \mathrm{~V} 400 \mathrm{c} / \mathrm{s}$ one phase, 1010 Va , sine wave new

 0/P at 10 crystal controlied treq in range $2 / 8 \mathrm{MC} / \mathrm{s}$. P var te 2 walts into . £18. H.V. TEST SETS CT97 two part unit var 0 to 401 V mains I/P metered £65 WATTMETER CT87 cal for $100 / 156 \mathrm{Mc} / \mathrm{S} 0$ to 10 watts into 50 ohms $£ 14.50$ CRYSTAL CAL CT 432 Gen purp $100 \mathrm{Kc} / \mathrm{L} / 10 \mathrm{MC} 0 / \mathrm{PS}$ int mixer amp for phones, can be swt to use ext crystal of various types, mains tested with book. £28 H.D. BLOWERS 240 v outlet $2 ; \times 3$, "new. $£ 14.50$

Above Prices Inc Carr/Postage \& VAT.
Goods ex equipment unless stated new, List 34 available on request A.H. SUPPLLES. 122 Hand SWorth Road, SHEFFIELD. 59.4 AE. Tal. (0742)444278

[^1]
D.C. Supplies from A.C. Sources

Often regarded as a boring necessity, power supply design is changing rapidly. Rule-of-thumb design will not be enough for long.

The universal mains distribution network of alternating current is rough stuff when considered as a power source for nearly all instrumentation, processing and communications equipment, the requirement for which is stable d.c. bias levels. Therefore all equipment entails a box (or corner of the rack, board, etc.) called 'the Power Pack', that changes the transformed a.c. to pulsating d.c., smooths and stabilizes it. The stabilization is against current or voltage variations to some degree or specification sufficient for the job in hand.

This Cinderella of all circuits is often bought-in, built up speedily from some standard design, or otherwise got out of the way as quickly as possible. Ubiquitous and important though it is if you want to run your apparatus from the a.c. mains, it nevertheless has a reputation of boring necessity.

* University of Kent at Canterbury

But a glance just under the surface of this boredom, reveals a slightly messy 'mystique' of poorly defined parameters such as line regulation, or rules of thumb and 'guesstimation' over things like the transformer design. On the other hand, judging from the number of power unit suppliers advertising, there is a good deal of bread and butter being earned in that industry.

The constructional magazines also carry articles on 'lab.' power supplies and so on, at regular: intervals, so perhaps there exists a specialized band of power-pack enthusiasts - who, with an attitude like the 'Manhole-cover Collectors' don't find such things boring at all!

Two cultures

If you look a little closer, power supplies fall into two categories, (ignoring the very simple supplies like battery chargers, model-train controllers and similar). Firstly,

the linear series or shunt stabilized supply is met, see Fig. 1. Secondly, the switched-mode power supply (s.m.p.s.) is seen, as in Fig. 2.

Linear supplies are notoriously inefficient - they get hot and tend to be bulky, especially at high powers. These supplies are geared to the technology of 50/60 Hz a.c. mains. Because of this, the need for bulky transformers and large CV products in the filtering capacitors is easily accounted for.

Fig. 1. The linearly stabilised d.c. power supply relies on the dissipation of excess power as heat, so that a constant output level can be maintained even if variations occur at the input. A typical design is schematically shown, including the growing use of a programming bus for automatic control and close-down.

Fig. 2. A switching system (s.m.p.s.) is shown nere.

Already it is obvious that greater complexity is likely in the design. Smaller components and much less heat dissipation is the trade-off. Again programming can be incorporated.

Aircraft electrical designers opted for supply frequencies of 400 Hz , where the transformers are much smaller and lighter. However, in whatever environment these supplies are used, after all the energy has been handled and stored, a large part of it is thrown away in the series dissipator, so that the output voltage is kept constant in spite of changing levels at the power line input (line regulation). The same control circuit is used to sense load changes and by feedback, keeps the output voltage at the set level, (load regulation).

A series regulator device and its control circuit usually take very little of the current, so in Fig. $1, I_{0}$ is very nearly equal to I_{s}. You might want to set V_{0} anywhere between a low minimum to a fairly high maximum. V_{s} must be above this $\mathrm{V}_{0}(\max)$. Therefore power into the regulator stage is $\mathrm{V}_{\mathrm{S}_{s}} \mathrm{I}_{\mathrm{s}}$ which is very nearly equal to $\mathrm{V}_{s} \mathrm{I}_{\mathrm{o}}$ (being slightly greater if anything) and the power into the load is $\mathrm{V}_{0} \mathrm{I}_{\mathrm{o}}$. The difference, $\left(\mathrm{V}_{\mathrm{s}}-\mathrm{V}_{\mathrm{o}}\right) \mathrm{I}_{\mathrm{o}}$ must be dissipated in the series element. So if you want a low output voltage at maximum current, your equipment is going to get a little warm...

Switchers, on the other hand, are potentially much more efficient. The principles are not new and many old time radiomen will recall the vibrator supplies used to convert the 12 or 24 volt d.c. lines available in vehicles, up to a few hundred volts. The mechanical vibrators that were used still operated at a low frequency, so the same arguments regarding transformers and capacitors still applied. But synchronous rectification on the vibrator eliminated hot and lossy valve rectifiers and the supplies ran relatively cool.

The growth of switchers had to wait until fast, bipolar, power transistors became available. Recently, even faster power mosfet devices have added new impetus - and s.m.p.s. technology appears to be sweeping the board. This seems to be relegating the linears to a shrinking market at the low-power (5 to 25 watt) end. Single-chip, monolithic, adjustable linear devices, such as the LM317, keep up the attraction for some turnover of designs at this low-power end, especially for experimenters and home constructors.

High frequencies reached in switchers mean that the inductive and capacitive components rapidly shrink in size for a given throughput of power. Significant power dissipation only occurs during the very short times at the edges of the rectangular switching waveform, where current flows in the switch at the same time as a high voltage appears across it.

Comparison of the two cultures' shows the effects of the principles involved.

	linear	switcher
output power	150 W	150 W
efficiency	30%	70%
power dissipated	350 W	64 W

The saving in space is equally impressive:

Volume	$26 \mathrm{ml} \mathrm{W}^{-1}$	$6.5 \mathrm{ml} \mathrm{W}^{-1}$
ratio of weights	5	1
ratio of area	3.5	1

Growth areas

Large inroads into the market by the s.m.p.s. people are occurring in the computer, telecommunications and data communications areas, especially in the new 32 -
bit micros, which overlap the old minicomputer systems. The new machines will hardly ever require more than 200 to 300 watts, even with power to Winchester disc drives, back-up cartridges, v.d.u. displays etc. Multi-output switchers can cope well at this power level.

Original-equipment manufacturers used to make 'in-house' p.s.us, but vast ranges of standard modules have appeared on the market and the attraction now is to buy-in. Some suppliers diversified into the market by developing their in-house supplies into a generalized range.

Rapid growth of local-area networks, word-processors, and the use of the Telex network and all the growing awareness towards information technology in business networks and so on, have created this demand. By marketing a 'standard range', however, especially for business and office - to say nothing of home - environments, s.m.p.s. manufacturers have been pitchforked into meeting international standards requirements. S.m.p.s. are efficient, but the square waveforms necessarily employed in the high-frequency chopping circuits are especially rife with e.m.i. and r.f.i. problems from the harmonics generated. Typical requirements laid down for this appear in BS800, Part 3 (1972) and VDE0875, curve ' N ', see Fig. 3. CISPR recommendation 43 (1970) and IEC478-3 is slightly more stringent, while FCC class ' A ' is less so. Safety standards, set up generally before switchers came onto the scene, are particularly concerned with fire hazards (USA) and electric shock prevention (UK and Europe). The preoccu-

pation by us regarding shock is probably because of the use of 230 volts for the r.m.s. mains pressure used here.

These standards include ours, the British Standards Institute and the International Elektrotechnical Commission (IEC). Various BS specifications relate to transformers, BS2204 and BS5850, for example. Most vendors of s.m.p.s. modules find the user-market tied to demanding conformity to IEC380 and IEC435, where the 'creepage distānce' of live conductors to dead metal and winding to windings must be at last 3 mm . The insulation breakdown voltage (class 1) is 1250 V to earth and input-tooutput isolation, 3750 V. Class 2 requires 3750 V to earth also. The Verband Deutscher Elektrotechniker (VDE) standards of West Germany are very similar to the IEC requirements and VDE0730 and 0840 apply to power supplies. Both IEC and VDE are advisory inasmuch as they carry no international legal weight, but manufacturers struggle to comply with them - and the competitive economic pressures accompanying the enterprise.

Andrew Smith of Weir Ltd told me that his firm's units are designed to meet the above specifications and he confirmed that the volume sales were in the data processing/microcomputing/ telecommunications industries. Weir use linear post-regulation circuits (in which they have had a lot of experience with their well known 'mini...' and 'maxi-regs' and similar, lab. supplies) for switchers of less than 150 watts throughput, but they use switched post regulators in new designs above this rating. Bill Kerr (Power General Ltd) confirmed the market was now increasingly competitive and pointed out that in spite of the difficulties in meeting the safety specs. with the 'different' small components in s.m.ps, his company markets a 40 watt switcher on one Euroboard, a 47% reduction in size. He agreed that ablanket statement that power can be supplied at so much per watt, is not meaningful, since a 50 watt
unit might cost $\$ 27$ to make, a 75 watt one $\$ 30$ and 100 watt $\$ 34$. The e.m.i. filters, transformer design, control circuit etc. would not differ much as the rating changes at this (low-end) region. Again, it was interesting to hear Alec Parsons of Amplicon Electronics more or less say the same thing.

The market

The figures given by forecasters Frost and Sullivan make interesting reading. The European market for s.m.ps in computer/peripheral applications is now 50% of the market at $£ 500 \mathrm{M}$ with a mean annual growth expected to reach 23%. This means a turnover of $£ 1.4$ billion by 1988 .
20% of the market is taken up by industry itself and is growing at about 21% per year. A rapid growth is appearing in the telecommunications field. 31% annual growth rate in this area is mentioned. The military market runs at 9% with a 21% growth rate, while the consumer end is only a small market at 3% ($£ 30 \mathrm{M}$) growing at 23% to reach a turnover of about $£ 85 \mathrm{M}$ by 1988.

Options

Linear supplies operate on relatively simple principles, as I have
outlined above. Switchers offer a number of options to the designer. Nearly all s.m.ps now employ a drive circuit, usually custom-designed integrated circuits such as the Mullard TDA2640 or the TDA2581, which offer slow start-up, over-voltáge protection, off-load protection, short circuit protection as well as regulation and ripple cancellation. But in all s.m.ps designs, the fundamental choice is in how the stored energy is handled.

One approach is to use the socalled 'flyback' circuit. The energy is stored entirely in the magnetic field of a choke during the 'on' period of the switch and is emptied into the output reservoir capacitor (via the 'flywheel' diode) during the 'off' period. The pressure level reached by the quantity of electricity passed, is determined by the ratio of on to off periods. The output voltage V_{0}, can be greater than V_{s}, so some people have referred to the flyback circuit as a boost regulator. Further flexibility and multioutputs can be obtained by making the choke into a transformer where turns ratios and a number of isolated windings can be used to generate separate voltages at convenient levels. This circuit is illustrated in Fig. 4.

Another circuit, see Fig. 5, known as the 'forward converter', passes energy directly to the output rails during the on period of the switch. Some energy is stored

Fig. 3. Limits to radio-frequency interference levels at the input to a power supply system, as laid down by the BSI and CISPR
authorities.

Fig. 4. The 'flyback' switching-mode circuit is shown in basic form. The energy stored in the choke is passed to the output while the bipolar switch is 'off'. The current paths shown this, and the associated waveforms highlight the current and voltage levels at various parts of the circuit.

Fig. 5. In the 'foward converter' switching circuit outlined, the current through the bipolar switch during the 'on' period is passed to the output in addition to storing energy in the choke. Current
continues to flow (from the choke) while the switch is 'off'.

Fig. 6. A simple current limit action is shown in (a), while that for 'foldback' action is illustrated in (b). In the foldback circuit, less power is dissipated during short circuit conditions.
in the choke to keep the output supplied during the off period via a steering diode. For the same throughput a smaller choke core is required for this circuit. The output voltage V_{0}, cannot exceed the input V_{s}. Some authors have called this circuit a buck regulator.

For large powers, energy is pumped into the transforner in both directions. In other words, true a.c. operation is used. Therefore, the largest flux swings from saturation to saturation* can be obtained by push-pull and bridge switching circuits.

In all the designs, minimum power dissipation is sought in the switches by tailoring the waveforms. Special low storage charge diodes are required for this, as well as correctly designed basedrive circuits for optimum switching in the bipolar devices. The problems of r.f.i. have already been mentioned and lowpass filters in the mains leads are vital to reduce conducted interference. Faraday screens between the transformer windings and around sensitive components, together with correct field cancelling layouts on the circuit board, are also required to reduce e.m.i. and r.f.i. The problems of smoothing of sawtooth current waveforms puts a strain on capacitor design. The series inductance and resistance of standard
*The ferrite cored transformers in s.m. $\dot{\text { p }}$
circuits could be 'loss-limited', rather than saturation limited in practice.
electrolytic capacitors has a large effect on residual ripple and noise voltages at the outputs. For low powers and very low ripple and noise levels at the outputs, linear supplies cannot be beaten. That is the main reason they hold their own there.

Specifications

Whatever the nature of the supply design, the user wants to know how it will perform. Specifications to be met may have been laid down beforehand: the power out is obvious and is given in terms of the regulated voltage range plus the maximum current drain. Supplies are designed to limit the current. The safest method is limiting by 'foldback: not only does the current limit, but it is 'turned down' to a low, safe level, as in Fig. 6. In switchers, you may find the 'hiccup' mode used if an overload occurs, the circuit turns off. After an interval it comes on - has a look, as it were; if the overload is still present, it immediately goes off again. The circuit might repeat this a few times, then go off permanently, until the fault is removed and the circuit reset.

The supply might be designed for a fairly long 'hold-up' time, where the energy stored is sufficient to keep up the output over a few cycles of lost mains input, (a common occurence, apparently).

There is always a requirement to know the quality of regulation obtainable. One of the most fundamental definitions of regulation can be seen as follows.

The output voltage V_{0}, is a function of the input voltage from the power line V_{s}, the output current demanded by the load I_{0}, and in many cases the temperature T.
$\therefore \quad \mathrm{V}_{0}-\mathrm{f}\left(\mathrm{V}_{\mathrm{s}}, \mathrm{I}_{0}, \mathrm{~T}\right)$
$\therefore \Delta V_{0}=\frac{\delta V_{0}}{\delta V_{s}} \Delta V_{s}+\frac{\delta V_{0}}{\delta I_{c}} \Delta I_{0}+\frac{\delta V_{0}}{\delta T} \Delta T$
You can read this as, 'The total change in V_{0} is the sum of how quickly V_{0} changes with V_{s}, times the actual change in V_{s}; plus how quickly V_{0} varies with load current I_{0}, times the amount the load changes; plus how quickly V_{o} varies with temperature, times the temperature change.' In the middle term on the right hand side, $\delta \mathrm{V}_{0} / \delta \mathrm{I}_{0}$ is a load regulation factor. You can see it can be thought of as the dynamic output impedance of the circuit. The first term factor is the output/input voltage change ratio, $\delta \mathrm{V}_{0} / \delta \mathrm{V}_{\mathrm{s}}$, or line regulation. But defined in this simple way the value of the factor depends strongly on the levels of V_{0} and V_{s}. For example, if the mains voltage changes from 220 volts to 240 volts and V_{0} goes from 14.95 vols, then $\Delta \mathrm{V}_{0} / \Delta \mathrm{V}_{\mathrm{s}}=$ $0.1 / 20=0.005$. But suppose the 'line" was the input to the actual regulator and this varied from 19.13 volts to 20.87 volts. Then $\Delta \mathrm{V}_{0} / \Delta \mathrm{V}_{\mathrm{s}}=0.1 / 1.74-0.057 \ldots$ very different.

(a)

(b)

There are differences in agreement, but the industry broadly interprets and defines these regulation factors for its own use as follows:
Line regulation. This is the maximum change of output voltage in percent as the input voltage is varied from defined 'line high' to assumed 'line low' conditions. Output load and temperature are held constant.

This gives [$\left.\frac{\Delta V}{V_{v}} \times 100\right] \div \frac{\Delta V}{V}$ for the line regulation. The earlier example now gives
$\frac{0.1}{15} \times 100 \times \frac{230}{20}=7.7 \%$
and $\frac{0.1}{15} \times 100 \times \frac{20}{1.74}=7.7 \%$
...a much more consistent, therefore useful result.
Load regulation is the maximum change of output voltage in percent as the load is changed from the maximum to minimum rated value. The input voltage is kept at the rated value, the temperature is constant.

This is given by $\Delta V_{0} / V_{0} \Delta I_{0} \times 100$, where $\Delta \mathrm{I}_{\mathrm{o}}$ is the maximum-tominimum load current change.

As an example, if V_{o} goes from 15 volts to 14.5 volts when $\Delta \mathrm{I}_{\mathrm{o}}$ is 10 amps, then

$$
\frac{15-14.5}{15 \times 10} \times 100=0.33 \%
$$

which is the load regulation.
The temperature coefficient is the average change of output voltage per degree Centigrade, measured over the specified temperature range of the unit.

A parameter known as the transient recovery time is sometimes important, and is the required time for the output voltage to settle within the regulation limits after a sudden change in load is applied. Figure 7 shows
the usual way this is portrayed. Linear supplies are much better in this respect than switchers. $\mathrm{t}_{\text {trans }}$ is some microseconds for linears, whereas it might be a few milliseconds for s.m.ps.

As in most situation where you rely on someone to supply something, 'you get what you pay for'. Of course, if you take mainstream economics out of it a little, you can custom a 'one off' for small expense, with a very good spec. I hope these articles therefore will not put off the home constructor, student - and engineer in her lunch hour... from having a go by direct construction.

To be continued

R.S.C. r.f.i.

There has been a lot of fuss in the papers about the BBC's proposal to build a short-wave radio station near Stratford upon Avon. The locals seem largely to be against it; and had their objections been purely on aesthetic grounds, my sympathies would have been with them. But the debate seems to centre instead on the irretrievable dam age the BBC's kilowatts may do to the Bard's reputation through disrupting the Royal Shakespeare Theatre's lighting and sound systems.

I can see that no-one would want Lillibullero bursting forth during the matinees there. However, as one who was brought up within sight of the BBC's Daventry station, and who now lives within a mile of the high-power television stations in south London (they keep our house wonderfully warm in winter), I'm finding it difficult to work up much sorrow for the thespians. They're lucky to have avoided r.f.i. troubles for so long: do they never get radio taxis outside?

But to free yourself of interference, you don't have to make your home on an
uninhabited wasteland or in a Faraday cage. We veterans of the battle against video breakthrough known that it's largely a matter of wiring layout and filtering - in other words, of good design and construction practice.

Professionally-built theatre lighting and audio equipment should be capable of withstanding the sort of assault the BBC is likely to make on Stratford. And if the RST's stuff turns out not to be, then I may one day fill my pockets with disc ceramics and r.f.-stopping 1 k resistors and wander up there to sort them out. In exchange for free seats, of course.

Fig. 7. Controlled power sources cannot respond to rapid changes in load demand instantaneously. Like all servosystems there is an unstable - or settling - time required. The time required for an 'up' demand may differ from that necessary for a 'down' change.

> Multi-standard modem: correction

On page 46 of the July issue, Fig. 1 shows two capacitors marked C_{36}. The one nearer transformer $\mathrm{T}_{2}(2.2 \mu \mathrm{~F})$ should have been marked C_{35}.

Capacitor C_{8} must be a class X mains-rated suppression type. C_{16} does not exist.

There is also a small mistake in the initial issues of the printed-circuit board for this project. The anode of D_{5} has been wrongly linked to pin 10 of IC_{19} instead of to pin 11. This error, which would affect selection of the 75 baud loopback mode, can be easily corrected on side 1 of the board.

One of the telephone numbers given for STC Electronic Services' Estelle system, the number for the V. 23 service is in any case not yet in operation. STC have said they will let us know the correct number as soon as it becomes available.

An autodialler program for the BBC Microcomputer, for use with the modem, will appear in next month's issue.

MANUFACTURERS, DISTRIBUTORS AND BULK BUYERS

CANDY STRIPPED RIBBON CABLE $10 / 0.1 \mathrm{~mm}$ cores, colour coded, individually PVC insulated, manufactured in Holland 'Pope' brand
10 WAY £21.50 per $50 \mathrm{mtrs}, £ 40$ per $100 \mathrm{mtrs} £ 185$ per 500 mtrs, $£ 350$ per 1000 mtrs, £ 1650 per 5000 mtrs, $£ 3135$ per $10,000 \mathrm{mtrs}$.
20 WAY $£ 39$ per $50 \mathrm{mtrs}, £ 75$ per $100 \mathrm{mtrs}, ~ £ 347$ per $500 \mathrm{mtrs}, £ 642$ per $1000 \mathrm{mtrs}, £ 2970$ per 5000 mtrs . 30 WAY $£ 60$ per $50 \mathrm{mtrs}, ~ £ 112$ per $100 \mathrm{mtrs}, ~ £ 520$ per $500 \mathrm{mtrs}, £ 960$ per 1000 mtrs , $£ 4440$ per 5000 mtrs . INTER-BOARD JUMPER CABLE Individually colour coded $1 / 0.45 \mathrm{~mm}$ tinned copper cores 2.5 mm between cores with clear transparent PVC web. Overall width 14 mm
6 WAY £ 19.50 per $500 \mathrm{mtrs}, £ 35$ per $100 \mathrm{mtrs}, ~ £ 171$ per 500 mtrs, $£ 316$ per 1000 mtrs, $£ 1460$ per 5000 $\mathrm{mtrs}, £ 2700$ per $10,000 \mathrm{mtrs}, £ 6250$ per $25,000 \mathrm{mtrs}$. ALUMINIUM FOIL CAPACITORS Manufactured by Iskra 2.25 mfd 385 V . a.c. wkg axial type. Body length $40 \mathrm{~mm} \times 23 \mathrm{~mm}$ £ 25 per 100 pcs, $£ 115$ per 500 pcs, £212 per 1000 pcs $£ 980$ per 5000 pcs, £ 1800 per $10,000 \mathrm{pcs}, £ 4165$ per $25,000 \mathrm{pcs}$, sample 10 sent for $£ 3.00+£ 1$ p\&p ($£ 4.60$ inc VAT).
Terms C.W.O. Please 5% to all orders for carriage plus 15% VAT export enquiries welcome. We find it impossible to advertise all we stock. Please telephone, write or telex for further enquiries. Personal callers always welcome.

CIRCLE 80 FOR FURTHER DETAILS.

The Wings Appeal

 Fund helps to maintain the RAF Association Home forDisabled and Chronic Sick. Care is essential for those who have served their country and who are in need. Sopleasehelpby giving all you can for an emblem in WINGS WEEK in September or send a donation to show that you care.to: Royal Air Forces Association. Appeals Dept. (DS) Portland Rd. Mialvern, Worcs. WR14 2TA
Ienclose a donation of for the Wings Appeal Fund.
Name_
Address

Please tick if receipt required
or information on RAFA Membership

Space donated by ELECTRONICS

OPEN G dAYS A WEEX - ORDER BY POST OR PHONE CALL IN AND SEE FOR YOURSELF
SOLFTWARE•PERIPHERALS•MULTI-BOARDS

80 - BUS MULTI-BOARDS

 bulld a custom system from scratch or exand your GaLAXY or MASCOM Oemonstrations for callersGM811 CPU
GM829 FOC/SASI

GM813 CPU/64K RAM EV8 14 IEEE 488 CONTROLLER GMBO2 GAK OYMAMIC FAM GM827 87 KEY KEYBDARD GM839 PROTDTYPING MPB26 STATIC RAM GM816 MULTII/O IO 828A SUPER PLUTO CDLOUR | £ 185.00 |
| :--- |
| £ 25.00 | PROCESSOR 192K RAM GM833 RAM-DISK 512K

IUK C/P \& export extra at cost] ALSO IN STOCK - MOTHER BOARDS. FRAMES CABLES. POWER
SOFTWARE EIC.
PERMEAFLETS/DETAILS OF SUITABLE保
We can advise also with terminals and complete Galaxy computers with monitors and Oisks ready to use.

NASCOM - 2

Available in both kit and buill lorm. Featuring
Availabie in boith kit
Microsolt Basic. NAS.SYS monitor. full DWERTY Meyboard of the highest quality. 4 MHz 280 A processor fuil RS232 I/D and parallet 1/0. Dne of the most flexible computer cards around expansion cababilities are impressive using the NASBUS and compatible BO-BUS expansion cards. Expansion includes hi-res colour graphics full CP/M disk system and much more. Send SAE for lull leaflets.
NASCOM 2 kit
ITT 2020

CABINET

Proies sional computer case
$18^{\prime \prime} \times 151^{\prime \prime} \times 4 y^{\prime \prime} \mid$ |Froni slope
As previously advertised $£ 19.95$ IUK C/P £2.10)
TOROIDAL TRANSFORMER

100 watts isolations 230/240V AC plus B. 0.8 V 4 A 15.0 .15 V 0.645 A 30 V 0.16 A size approx $41 / 2^{\prime \prime}$ dia x $13 / /^{\prime \prime}$
£6.91 [UK C/P 75p]

PRESTEL KIT

Complete set of PRESTEL adaptor cards. Con sisting of main processor card with battery backed RAM. modem card. direct line coupler and
keypad. Outputs are composite monochrome and separate RGB. Suitable for use with colour
monitors or suitable TVs. IPS $+/-12 \mathrm{~V}$ and +5 V I
£60. 83
ASCII
KEYBOARDS
Computer keyboards.
All models brand new
QWERTY

QWerty
All models +5 V and -12 V , I Amp P/S $C / P £ 1.001$
7.78

G9SD5 Exclualve Special Purchase Compact 64 key [hall effect) +5 function keys -ve/+ve strobe. Normal ASCil but all delinable. Steel frame. All facilities complete with plugs $\quad £ 21.70$
SMK 69 Key general purpose, steel plate,
Redeflinable output. Neg strobe pulse, 4 user
Redelinable output. Neg strobe pulse. 4 user
definable keys. shift and controf keys etc.
With connector
Discounts for quantities - please enquire
Computer/calc.. etc. keyboard bargalns lor callers
TUS ALWAYS KEYboard bargains

CIRCLE 14 FOR FURTHER DETAILS.
ELECTRONICS \& WIRELESS WORLD SEPTEMBER 1984
RETAIL•MAIL ORDER•EXPORT• INDUSTRIAL•EDUCATIONAL

$$
\begin{aligned}
& \text { Oificial orders welcome } \\
& \text { [Subjuct to comili mation] }
\end{aligned}
$$

Shop \mathcal{T}, ${ }_{\text {404-406 Edgware Road. London. W2 }}$

Computers $01-4026822$ • Equipment 01.7240323 • Components $01-7231008$
Shop RUDO SLE
Test Equipment. Audio. Communications 01.724 3564
All mail to Cubegate Ltd, 1st Floor, 406 Edgware Road, London W2 IED

ORDER BY PHONE OR BY POST OR
CALLIN AND SEE FOR YOURSELF

Up to $£ 1000$ instant credt

Catalogues

Send large

 SAE (20p UK) Any model [Stato which) Send SAE Schools. colleges. companies Exporifres on written request
TORODALS

The toroidal transformer is now accepted as the standard in industry. overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to I. L.P., PRICE.
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service with in 14 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.

15 VA
$62 \times 34 \mathrm{~mm}$
Regulation 19%

	120 VA	$1.2 \mathrm{Kg}$
4×010	$6+6$	10.00
4×011	9+9	6.66
4×012	$12+12$	5.00
4×013	$15+15$	4.00
4×014	$18+18$	3.33
4×015	$22+22$	272
4×016	$25+25$	240
4×017	$30+30$	2.00
4×018	35+35	171
4×028	110	1.09
4×029	220	054
4×030	240	0.50
160 VA		
Regulation 8\%		
5×011	9+9	8.89
5×012	$12+12$	666
5×013	$15+15$	533
5×014	$18+18$	4.44
5×015	$22+22$	363
5×016	$25+25$	320
5×017	$30+30$	2.56
5×018	35+35	2.28
5×026	$40+40$	2.00
5×028	110	1.45
5×029	220	072
5×030	240	066

$\begin{array}{r} 110 \times 4! \\ R e \end{array}$	225 VA	$2.2 \mathrm{Kg}$
6x012	12+12	9.38
6×013	$15+15$	750
6×014	$18+18$	6.25
6×015	$22+22$	5.19
6×016	$25+25$	450
6×017	30+30	3.75
62018	35+35	3.21
6×026	$40+40$	2.81
6×025	$45+45$	2.50
6×033	50+50	225
6×028	110	204
6×029	220	1.02
6×030	240	0.93
110×5	300 VA mm ciolation	$2.6 \mathrm{Kg}$
7×013	$15+15$	1000
7×014	$18+18$	833
7×015	22+22	682
? $\times 1016$	$25+25$	6.00
7×017	30+30	5.00
7×018	35+35	428
7×026	$40+40$	375
7×025	$45+45$	333
7×033	$50+50$	300
7×028	110	272
7×029	220	136
7×030	240	1.25

Why a Toroid?

- Smaller size \& weight to meet modern 'slimline' requirements. Low electrically induced naise demanded by compact equipment.
High efficiency enabling conservative rating whilst maintaining size advantages.

Lower operating temperature.
Why ILP?
Ex-stock delivery for small quantities.
Gold service availabie. 21 days manufacture for urgent deliveries. 5 year no quibble guarantee. Realistic delivery for volume orders.

* No price penalty for call off orders.

Prices including P\& P and VAT					
VA	Size	£	VA	Size	£
15	0	7.43	160	5	12.90
30	1	8.08	225	6	16.30
50	2	10.10	300	7	18.55
80	3	10.81	500	8	25.73
120	4	11.73	625	9	31.63

Mail Order - Please make your crossed cheques cr postal orders payable to ILP Electronics Ltd.
rade - We will open your credit account immediately upon receipt of your first order.

Post to: ILP Electronics Ltd., Dept. 3 Graham Bell House, Roper Close, Canterbury, Kent. CT2 7EP Tel: (0227) 54778 Telex: 965780

CIRCLE 48 FOR FURTHER DETAILS.

CIRCLE 51 FOR FURTHER DETAILS.

P RADFORD

Audio Measuring Instruments, Audio Amplifiers, Loudspeakers and Loudspeaker Components for the professional and enthusiast

RADFORD AUDIO LTD.

10 beach road
WESTON-S-MARE, AVON BS23 IAU
TEL. 0934416033

Stage Lighting System.

Forty 1 kW circuits are remotely controlled. Computer memory stores scenes, and timed fades up or down are performed.

This project was conceived in order that the school where I teach might have a modern stagelighting system for its plays and productions. The system was designed so that the pupils could take an active part in the design and construction of the various modules. In a previous system, switches controlled 18 circuits with four 1 kW rheostat dimmers. For the new system, we needed: - forty separate circuits, each capable of controlling 1 kW ;

- remote operation of the dimmers from the control desk with only a single cable linking the control desk and dimmers, which involved using a 280 microprocessor to multiplex the information from the control desk;
- various stages of system redundancy, so that the project could be built in stages: as a result the lamps can still be operated even if there is a total failure of the electronics;
- scene storage and several other facilities. The whole thing was to cost no more than $£ 1800$, of which $£ 1000$ was for lamps and re-wiring.

The following terms are used in the article: power box refers to the enclosure containing all of the dimmers and the main a.c. supply; scene refers to a lighting arrangement; and fader refers to the variable controls on the control desk which determine the lamp brightness.

System functions

All the information for transmitting to the power box is stored in the computer memory as a scene. Each scene is numbered (with 2 K of ram, 46 different scenes can be stored) and any scene can be transmitted to the power box. The master fader always controls the brightness of the lamps, whichever scene is being transmitted.

Any scene can be displayed on
desk, which houses all of the controls and the microprocessor; and the power box, which houses the dimmers and control electronics. The various sub-sections can be seen in the block diagrams of the control desk and the power box, shown in Figs 1 and 2.

Dimmer circuit. This circuit, shown in Fig. 3, was inspired by a Texas Instruments application note. Forty of these were needed and so were to represent a large proportion of the total cost of the system. Ideally, each dimmer should have contained two highcurrent thyristors and a trigger transformer, but the cost was prohibitive. In fact, any commercially available trigger transformer was too expensive hence the decision to have the 0 V line of the electronics connected to mains neutral. The triacs used were cheap, 400 volt, 8 amp . devices and none of these components have yet failed whilst in operation. Each triac is mounted on a heat sink of approximately $35 \mathrm{~cm}^{2}$ of aluminium fitted to a dimmer board.

The author

Ian Kemp graduated from Oxford University in 1976 with a degree in physics and spent the following year studying for a post-graduate Certificate in Education, his first teaching appointment being at Langley School, Solihull, where he formed a very active extra-curricular electronics club.

In 1980 Mr Kemp was appointed Head of Physics at Malvern Hall School, Solihull. The design of the lighting system began in 1981 and was completed in November 1983

Fig.1. Control desk block diagram.

Fig. 2. Block diagram of power box. Forty identical dimmer circuits are used.

Each dimmer is updated with information approximately every 100 ms . This meant that each dimmer needed a memory to retain the brightness information between refresh cycles, which is provided by a 0.1μ F capacitor and a TL081 voltage follower. The associated resistors and 8V2 Zener diode provide protection to the TL081. Although only needed to retain information for 100 ms , these analogue memories are quite stable for several minutes. The output from the voltage follower, 0 to +6 V , is fed to a summing amplifier, the 741. The ramp input (see ramp generator description) varies linearly from -6 vols to 0 volts in 10 ms (mains frequency synchronized) and then resets to -6 volts again. When the inverting input of the 741 is positive, the op-amp is free to oscillate, its output being amplified by the 2 N 3703 and fed to the gate of the triac via the $0.1 \mu \mathrm{~F}$ capacitor. The continuous oscillations during the conduc-
tion time of the triac ensures that it reliably triggers and remains conducting.

Two power-supply lines, plus and minus 12 volts, are fed through 220Ω resistors, to ensure that if there is a fault on any dimmer board it should not disturb any of the other dimmers. The same also applies to the -20 volt supply line which passes through a $1 \mathrm{~K} \Omega$ resistor.

Radio-frequency interference suppression is aided by inductors in series with the lamps, which are $1 \frac{1}{4}$ in diameter toroids supplied by Telcom Metal Industries (code number CM630) for r.f.i. suppression in such circuits. Further suppression is obtained by the $0.01 \mu \mathrm{~F}$ capacitors across the lamp circuit.

Power box power supply. During the development of the lighting system, a component failure in the power supply led to some damage to other sub-sections, in particular the dimmer circuits.

The power supply was therefore redesigned and as many precautions as possible were taken to ensure that, if a similar fault developed, then any other damage caused would be minimized.

Each sub-section has its own regulators powered from the main power supply in Fig. 4, which provides plus and minus 20 volts. These supply lines are taken through 1 N4002 diodes to further increase isolation for the various sub-sections.

The mains supply is taken directly from the 100 A supply lines, via a switch and fuse. The filter, consisting of the inductor and two $0.01 \mu \mathrm{~F}$ capacitors, was included to reduce noise on the mains due to the triacs. The inductor consists of 30 turns of 20 s.w.g. wire wound on a lin diameter toroid.

Ramp generator and diameter regulators. The ramp generator provides an output waveform as shown in Fig. 6.

In Fig. 5, an a.c. from the power supply is full-wave rectified by the 1 N4148 diodes and then fed to the first transistor, which conducts whenever the input voltage exceeds approximately 0.6 V . The second transistor is switched off, enabling the integrator formed by the 741, $0.1 \mu \mathrm{~F}$ capacitor and the 150 k resistor to produce the ramp. When the input voltage to the first transistor falls below 0.6 V , it switches off and makes the second transistor conduct, which short-circuits the integrating capacitor and so reduces the integrator output to zero. This process repeats every 10 ms . The output goes to a 759, high-currentoutput op-amp, via the offset and

Fig. 3. One of forty dimmers, based on a TI design.

amplitude present potentiometer. Dimmer boards are mounted in two racks, each containing 20 circuits.

In the event of a dimmer-regulator failure forty dimmer circuits could suffer. The aim of the dimmer regulator circuit was to provide an 'indestructible' power supply: 500 mA fuses protect the 1 amp regulators on the input and 3423 over-voltage i.cs on the output, feeding TIP3055s, which clamp the output. The use of the transistor rather than the usual arrangement of the thyristor is so that any voltage spikes are removed without the whole supply being terminated by the fuse blowing.

Power box input board. Since the 0 V line of the power-box electronics is at mains neutral potential, the input from the control desk is fed via an opto-isolator, as in Fig7. The device used is rated at 2 kV breakdown and so it does not matter if the control desk and power box are being operated from different mains supplies. Data is taken from the opto-isolator to the 6402 uart, which has a clock frequency of approximately 140 kHz , and is crystal-controlled for stability (an ex-tv crystal being used and a divide-by- 32 counter).

Master reset of the uart is provided at switch on by the $1 \mathrm{M} \Omega$ resistor and $0.47 \mu \mathrm{~F}$ capacitor connected to the MR terminal. The data outputs, D_{0} to D_{6}, are connected to the lamp number latches, consisting of the first two 4042s, and also to the input buffer of the $\mathrm{ZN} 428 \mathrm{~d} /$ a convertor. D_{7} is used to determine whether a lamp number or a brightness has been received. Brightness is in the range 00 H to 7 FH and lamp numbers in the range 80 H to FFH .

On receipt ($\mathrm{DR}=1$) of a lamp number ($\mathrm{D}_{7}=1$), a pulse is produced to store the number in the lamp number latch. The bistable, consisting of a 4011, is set and a pulse is generated which resets the uart ($\mathrm{DRR}=0$). The next information to be received should be a brightness ($\mathrm{D}_{7}=0$), and pulses are produced which store the brightness in the $\mathrm{d} /$ a convertor, the information in the lamp number latch is transferred to the output latch which consists of two more 4042s, the bistable is reset and the uart is reset.

The logic is such that whenever a lamp number is received it is stored in the lamp number latch. If a brightness is received

and the previous data received was also a brightness (due to a received error) then the data is ignored and the uart is reset. The uart is also reset if any received errors (parity, overflow or framing) are detected.

All of these i.cs operate from
+5 V , but the demultiplexer operates from +12 V , so that a control voltage of 0 to 6 volts can be used for the dimmers. It is therefore necessary to change the logic levels, by means of a ULN2003 Darlington driver i.c. The output from the d / a is amplified by the

Fig.4. Power box power supply, supplying voltage regulators in each sub-section.

Fig.5. Ramp generator and dimmer regulators, which feed all forty dimmers.

Logic Designer's Handbook
by E.A.Parr
456 pages, hardback, $£ 18.00$
Granada Publishing Ltd,
8 Grafton Street,
London Q1X 3LA
Numerical Methods for the Personal
Computer
by Terry E.Shoup
238 pages, paperback, $£ 16.10$
Prentice/Hall Intemational
66 Wood Lane End
Hemel Hempstead
Herts HP2 4RG
What's this Channel Four? by Simon Blanchard \& David Morley
186 pages, paperback $£ 3.50$
Comedia Publishing Group
9 Poland Street
London W1V 3DG
Bond Graphs for Modelling
Engineering Systems
by Alan Blundell
151 pages, hardback. £16.50
John Wiley \& Sons Limited
Shripnet
Bognor Regis
West Sussex PO22 9SA
CBasic User Guide
by Adam Osbome, Gordon Eubanks
Jr. Martin McNiff
215 pages, paperback, $£ 11.95$
McGraw-Hill Book Company (UK) Ltd
Shoppenhangers Road
Maidenhead
BerkshireSL6 2QL
Computer Assisted Home Energy
Management
by Paul E. Field
182 pages, paperback $£ 11.95$
Prentice/Hall International
66 Wood Lane End
Hemel Hempstead
HP2 4RG
Nothing Local about it by Local Radio Workshop paperback $£ 3.50$, hardback $£ 10.50$
Marion Boyars Publishers Ltd
18 Brewer Street
London W1R 4AS
Radiophonic Workshop by Desmond Briscoe \& Roy
Curtis-Bramwell
175 pages, paperback, $£ 7.75$
BBCPublications
35 Marylebone High Street
London W1M 4AA
How to Maintain And Service your Small Computer
by John G. Stephenson and Bob Cahill
206 pages, paperback, $£ 15.25$
Prentice/Hall International
66 Wood Lane End
Hemel Hempstead
Herts HP2 4RG
IBA Technical Review No. 21.
Compatible Higher-Definition Television
by IBA
47 pages, paperback.
IBA
70 Brompton Road
London SW3 1EY
STD Bus Interfacing
by Christopher A. Titus, Jonathan A.
Titus and Divid G. Larsen
286 pages, paperback, $£ 11.15$
Prentice/Hall Intemational
66 Wood Lane End
Hemel Hempstead
Herts
HP2 4RG
TRS-80 Model III Assembly
Language
by Hubert S. Howe Jr.
344 pages, paperback $£ 14.40$
Prentice/Hall International
66 Wood Lane End
Hemel Hempstead
Herts
HP2 4RG
Z-80 Microprocessor Adv. Interfacing with Applications in Data
Communications
by J.C.Nichols, E.A.Nichols and
K.R.Musson

347 pages, paperback, £16.95
Prentice/Hall International
66 Wood lane End
Hemel Hempstead
Herts
HP2 4RG
Linear Electronic Circuits and
Systems, 2nd Edition
by Graham Bishop
220 pages, paperback, $£ 7.95$
Macmillan Press
4 Little Essex Street
London EC2R 3LF
Transistor Circuit Techniques by G.J.Ritchie
168 pages, hardback, $£ 10.95$,
paperback $£ 4.95$
Van Nostrand Reinhold Company Ltd Molly Millars Lane
Wokingham
Berkshire RG11 2PY
Feedback Circuits and Op. Amps
by D.H. Horrocks
152 pages, paperback, $£ 5.25$
Van Nostrand Reinhold Company Ltd
Molly Millars Lane
Wokingham
Berkshire RG11 2PY
Local Telecommunications
by J.M.Griffiths
265 pages, hardback, $£ 19.99 / \$ 44.00$
Peter Peregrinus Limited
Marketing Department
P.O. Box 8

Southgate House
Stevenage
Hertfordshire SF1 1HQ
The Art of Micro Design
by A.A. Berk
296 pages, paperback,
Newnes Technical Books
Borough Green

Sevenoaks
Kent TN158PH

Forth for Micros

by Steve Oakey
148 pages, paperback $£ 6.50$
Newnes Technical Books
Borough Green
Sevenoaks
Kent TN15 8PH
Interfacing to the TRS-80 Computer by Jerry R. Lambert
206 Pages, paperback, $£ 15.25$
Prentice/Hall Intemational
66 Wood Lane End
Hemel Hempstead
Herts HP2 4RG
Choosing and Using ECL
by Paul L. Matthews
168 pages, hardback, $£ 15.00$
Granada Publishing
P.O. Box 9

Frogmore
St. Albans
Hertfordshire AL2 2NF
Semi-Custom IC Design and VLSI
by P.J.Hicks
218 pages, hardback, $£ 16.00$
Peter Peregrinus Limited
Marketing Department
P.O.Box 8 Southgate House

Stevenage
Hertfordshire SG1 1HQ

Servicing UK CB Radio

by Michael H. Tooley
259 pages, paperback, $£ 14.95$
Newnes Technical Books
Borough Green
Sevenoaks
Kent TN15 8PH
A User Guide to the Unix System
by Rebecca Thomas Phd. and Jean
Yates
508 pages, paperback
Osbome/McGraw-Hill
630 Bandcroft Way
Berkeley
Califomia 94710 USA

Z8000 Handbook
by Martin L. Moore
390 pages, paperback
Prentice/Hall International
66 Wood Lane End
Hemel Hempstead
Herts HP2 4RG

The Handbook of Antenna Design

Vol. 2
by A.W.Eudge, K. Milne, A.D. Oliver and P. Knight
945 pages, hardback
Peter Peregrinus Limited
Marketing Department
P.O.Box 8

Southgate House
Stevenage
Hertfordshire SG1 1HQ
From Compass to computer
by W.A.Atherton
337 pages, hardback, $£ 20.00 \mathrm{PR}$
£9.95

Macmillian Press
Houndmills
Basingstoke
Hampshire RG21 2XS
16-bit Microprocessors
by I.R. Whitworth
381 pages, hardback, $£ 18.00$
Interfacing To the IBM Personal
Computer
by Lewis C. Eggebrecht
246 pages, paperback, $£ 13.55$
Prentice/Hall Intemational
66 Wood Lane End
Hemel Hempstead
Herts HP2 4RG
iAPX 86, 88, 186 and 188 User's,
Manual Programmers Reference
by Intel
109 pages, paperback, $£ 15.25$
Prentice/Hall Intemational
66 Wood Lane End
Hemel Hempstead
Herts HP2 4RG
Electronics Servicing Part II Core
Studies
by Rhys Lewis
142 pages, paperback, $£ 6.95$
Macmillian Press
4 Little Essex Street
London WC2R 3LF
Microcomputer Systems: The 8086/8088 Family
by Yu-CHeng Liu and Glenn A.
Gibson
55 pages, hardback, $£ 31,30$
Prentice/Hall International
66 Wood Lane End
Hemel Hempstead
Herts HP2 4RG

Towers' Intemational Mospower \&
Other Fet Selector
by T.D.Towers, and N.S.Towers
103 pages, paperback, £9.95
W. Foulsham \& Co. Ltd

Yeovil Road
Slough
Berks
Digital PLL Frequency Synthesizers
by Ulrich L. Rohde
494 pages, hardback, $£ 44.95$
Prentice/Hall International
66 Wood Lane End
Hemel Hempstead
Herts HP2 4RG

Basic \& Fortran in parallel
by S.J. Wainwright and A. Grant
79 pages, paperback, £1.95.
Bemard Babani (publishing) Ltd
The Grampians
Shepherds Bush Road
London W6 7NF

An Introduction to Programming the
Acorn Electron
by R.A. and J. W. Penfold
Bernard Babani (publishing) Ltd
The Grampians
Shepherds Bush Road
London W6 7NF

B. BAMBER ELECTRONICS

```
Marconi Modulation Meter Type TF2301A
MarconiRMS AC/OC Voltmeter Type TF 2607
Marconi RF Power Meter Type 0A 7024/4
Marconi UHF Artenuator Type IF 2168
Wavetek LF Generator Type
Solartron DVM Type 1420?
Hewfett Packard Power Supply 040 5
SchomandIM Mdulator Type MAF BN B41962
Schoolmandl Synthesizer Type ND 100M.
Rohde & Schwan Decade Signal Generato
0.3-500 Mhz.Type SMDV BN41104
```


$£ 330$.

``` \(\begin{array}{r}£ 330 . \\ £ 185 . \\ \hline\end{array}\) £ 195 £100 \(£ 380\)
\(£ 65\) 450 \(£ 650\)
Rohde \& Schwar Decade Signal Generato \&1200 §1200.
Rohde \& Schwan Sweep Signal Generalor 50 Khnz - 12Mhz Typ BN4242/2
Rhode \& Schw ar2 Frequency Ind icator Type BN4705
Rhode \& Schwarr Group Delay Measuring EquipmentIndicato
Marconi AM Signal Generator \(10-500 \mathrm{Mnz}\) Type
TF 8018 .
AM Signal Generator 10 - 310 Miz Type £ 125.
```



```
Marconi Standard Signal Generator 15 Khz - 440 Mhz Type TF867
MarconiRCOsciliaior 20Hz-200khiz Type TF 101 IM Signal Generalor Type TF 955 A/5
Marconl VHF Signal Generalor Type TF 1064B/5M
Marconi x \& Ax Output Test Set Type TF 1065
,yemodulalion Meter \(68-510 \mathrm{Mhz}\) Type MM
Type 352
```

ye Base Stli Type F401 AM High Band Pye aase Siation Type F401 AM High Band
Pye Reporter Type MF6 AM High Band \& Low Ban
Pye Europa Type MF5 FM High Band
Pee Europa Type MFSUUHF
Pe 0lymicnee 20 AM High Band
Pye Motofone Type MF5 AM High Band \& Low Band
Pye Banlam Battery Chargers
Rank Telecoms Battery Charges
Pye pocketphone P FI Battery Chargers 12 Way
ITT Slarphone Battery Chargers.
Tektronix Hard Copy Unit Type 460
Advance Pulse Generator Type PG 5002
Siemens Milliwattmeter 500 hm 500 mW 0-12.4Ghz
Gaumont - Kalee Flutier Meler.
Siemens Transistor Power Unit 0-30v2amp..
Airmec Wave Analyser Type 85330 khz - 20 Mn
Airmec Wave Analyser Type 85330 Khz -20Mhz
Sullivan RC Os cillator $40 \mathrm{~Hz}-125 \mathrm{khz}$
Electrohome $9^{*} V$ Video Monitor metal case
Azlec 20. Video Monilor metal case
Marconi UHF SIgnal Generator Type TF $1060 / 2450$ to 1200 MHz
Marconi VHF Aligament Oscilloscope Type TF1104/1
Sander Oscillator Type CLC2-4. 2 to 4.56 Hz
Marconi 100 Wan 7 db Allenuator Type TM5280, 150 to 185 MHz
Bruel Kioer VIbralion Meter Type 2502,
Pye Aerial Tunar Unit Type ATU 4. 2 to 9 MHz, Pre-5et
A. I.M. Electronics Pulse Genarator with Clock Genarator

Rohde \& Schwarz Z-p Diagraph Type BN 356230010240 MHz
Telequipmen 10 scilloscope Type S32A. DC to 3 MHz .
Advanco Audio Generalor TypaH1
Bruel \& Kioer Microphone Amplifier Type 2604
Airmec Sweep Signal Generalor Type $352,20 \mathrm{~Hz}$ to 200 KHz
Belix Variable Power Unito to 50 V at 2 amp ,.
STR Silverlown Anti-Static and Conductive Footwear Teste
Dawa True RMS Valv V Voltmeter Type 6 12A.
ehtroniz Time Mark Generator Type 180A.

Servomex AC Voliage Slabiticer
 Servomex AC Vollage Slabitiser Type AC2 240 vac 9 amp .

 Servomex AC Voltage Slabiliser Type AC7 240 vac 40amp Hewlell PackardSweep Generator Type 6920 1.8-4.2Ghz ektronir Storage Display Unil Type 611Tektronix Oscilloscope Type 515A
ekronix Plug in Type CA
chomandl Frequency Meter Type F $0130 \cdot 900 \mathrm{Mhz}$
ohde \& Schwarz AF Wave Analyer Type BN48302
Ohde \& Schwar UHF TestReceiver Type BN $1523280-940 \mathrm{M}$
Armec Modulalion Meter type 2103-300 Mh2
Marconi FM Signal Generator Type TF $1066 \mathrm{~B} / 110-470 \mathrm{Mh}$
Marconi AM Signal Generalor Type TF $144 \mathrm{H} / 4 \mathrm{~S}$ 10Khz-72Mh2
Marconi Out ol Limits Indicalor Type TF 2404
UCC Micro - Film Reader Cassette Type
Marconl TransmissionLine TesI Sel Type TF 1267
Marconi variable Attenualor 75ohm Type TF 1073A/2S
60 amp Alternator $\&$ Generalor Noise Filter

E3each. $110 \mathrm{vac} £ 1.50$ each
Garrard Car Cassetie Player Mechanisms. Stereo Head
Tekironir Oscilloscope Probes...
ye Pockelphone Rx N-Cad Batienes
Pye Cambridge/Vonguard 18 Way Control Leads
Sony $1 / 2^{\circ}$ Video Tape $5^{\prime \prime}$ Reels.
ANCPlugs 750 hm
C Tesiclips 28 pin \& 40 pin
Circulators $590 \cdot 720 \mathrm{Mhz} \cdot \mathrm{N}$ sockets
Transistors Type 2N3055
Transtormers 30 volt 1 amp .

Transformers 600-0.60040 50 m . 1.00
Variacs 2 50 5 mp 150 mp 20 mp . 2500 Variacs' $2 \mathrm{amp}, 5 \mathrm{amp}, 8$ amp. $15 \mathrm{amp}, 20 \mathrm{amp} .25 \mathrm{amp}$
Loudspeakers Richard Allan Type $\mathrm{CP} 12,12^{\circ} 15 \mathrm{ohm}$ Loudspeakers Richaro Al
AC 228, BCY65E, BC173C, BC328, BC149, BC113, NKT12. $2 T \times 213$, R2517, AC $128, ~ B$
in4007.

IERECEVERS

PYE POCKETFONE PF1 UHF RECEIVER
440-470 MHz, Single Channel, int. speaker and aerial. Supplied complete with rechargeable battery and service
manual, $\mathbf{£ 6}$ each plus $\mathbf{£ 1} \mathbf{p . p}$ plus V.A.T.

EDDYSTONE RECEIVERS
Model 770 R f 120 each GEC RECEIVERS

Model BRT $400 £ 120$ each

RADIOSONDE RS21 meteorological balloon TRANSMITER

 each plus $£ 1$ p.p. plus.V.A.T.P. \& P. or Carriage and V.A.T. at 15% on total must be added to all Callers very welcome strictly between 9 a.m. and 1 p.m and 2 and 5 p.m. Monday to Friday inc. Barclaycard and Access taken Official orders welcome ww

24 hour telex service

A vital service for

 continuous operation and maintenance of your electronic installations7 days a week

ELECTRONIC • WORLD-WIDE EXPRESS SERVICE

- ELECTRON TUBES - KLYSTRONS - MAGNETRONS - T.WT.'s - LEADING BRITISH, AMERICAN \& EUROPEAN BRANDS. - manuFacture of Solid state direct replacements FOR OBSOLETE ELECTRON TUBES \& POWER TRANSISTORS - WORLD.WIDE EXPRESS SERVICE FOR AMERICAN ELECTRICA \& ELECTRONIC SPARES FOR CIVIL \& MFLITARY AIRCRAFT TEST \& CERTIFICATION TO GOVERNMENT STANDARDS

B.S.L. EXPRESS SERVICE LTD.

Handrail'House, Maygrove Rd, London NW6 2EG, England. Tel: 01-328 2111 Telex: 298655 (BSLLDN). Cables: Sarozal London CIRCLE 40 FOR FURTHER DETAILS.

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.
Full Information from:
HARRIS ELECTRONICS (London)
138 GRAY'S INN ROAD, W.C. 1 Phone: 01-837 7937 Telex: 892301 HARTRO G

CIRCLE 42 FOR FURTHER DETAILS.

Toroidal Transformers
 as manufacturers we are able to offer a range of quality Toroidal Transformers at high competitive prices and fast delivery.
 Mail Order Price List

30VA 6.54 .50 VA 8.36 . BOVA 915 . 120VA 10.55. 160VA 11.98. 225VA 15.61
300VA 17.19. 500 VA 22.33. 625VA 27.96. 750VA 31.05. 1 KVA 41:40. price includes p+p \& vat. Available from stock in the following voltages: $-6-0-6,9-0-9,12-0-12$, 15-0-15. 18-0-18, 22-0-22. 25-0-25, 30-0-30, 35-0-35, 40-0-40, 45-0-45, $50-0-50,110,220,240$ (max. 10 amp). Primaries $240,220,120$ volt please state which

Quantity Prices and delivery on request (we also manufacture conventional E1 type transformers)

Airlink Transformers.
Unit 6, The Maltings, Station Road,
Sawbridgeworth, Herts. Tel: 0279-724425.

Switch-regulated power supply

Originally designed for SC84, but suitable for any application requiring a simple and economical power supply, this multi-rail switching unit is $\mathbf{9 0} \%$ efficient with high loads.

For computer use, the ideal power supply should have plenty of spare capacity for future expansion of the system, end run cool enough to be part of the general assembly. This unit was designed for the SC84 microcomputer but is suitable for any application where a high-eff ciency fixed or variable-voltage p.s.u. is required. It provides plenty of spare capacity and runs cool, but it is also cheap and doesn't require a special transformer.

Ratings of the supply using components shown over and a $15-0-15 \mathrm{~V}$ transformer are +5 V at $5 \mathrm{~A},+12 \mathrm{~V}$ at 2 A and -12 V at 750 mA individually. It is designed to run from a standard transformer and is easily a dapted to supply other voltages and currents (see SC84 application). At low loads, efficiency of the power regulators is 80%, rising to 90% at high loads.

Supply design

One of the problems with conventional linear power regulators is that to cope with component tolerances, mains fluctuations, expansion needs, etc., while keeping the minimum input voltage to the regulator high enough for correct operation, mean input voltage to the regulator needs to be well above the minimum. This results in considerable heat dissipation in the regulator. A simplified design example for a linear regulator is shown separately. It is not difficult to see the prcblems associated with designing suitable circuits. What is more, to optimize performance a special mains transformer is needed to supply the right voltage frcm the right source impedance - a very special one if several voltages are required! My design consists of a
rectifier, smoothing capacitor and two switching and one linear regulators. The linear regulator provides a low current negative supply but most of the regulation is done by the two switching circuits. Switching regulators do not provide such a smooth output, which is not very important in most computer circuits, but are very efficient regulators. They are more correctly called regulating power converters as their nature is to take in power and deliver it at alternative, regulated voltages and currents with efficiencies of up to 90%. They are cheaper than equivalent linear types, they do not require large heat sinks, fans and mounting paraphernalia, and allow a common supply with a single rectifier and smoothing capacitor to feed several regulators.

In a switching regulator, the transistor controlling load current operates in one of two highly efficient states - either fully on or fully off. Using the +5 V section as an example, consider what happens when the circuit is switched on. Output capacitor C_{2} is discharged so the linear regulator turns on and, as it draws current through R_{2}, turns Tr_{1} and hence Tr_{2} on. Voltage at the emitter of Tr_{2} switches from zero to just less than the unregulated supply and so a steadily increasing current flows through the inductor, passing charge to output capacitor C_{2} and the load, as well as storing magnetic energy in the inductor. When this voltage appears at the emitter of Tr_{2}, a small fraction of it appears at the common terminal of the regulator i.c. The regulator and pass transistor stay firmly on until the regulator is delivering 5 V , i.e. load voltage reaches 5 V plus this small fraction. At this point the
regulator and pass transistor switch off - an act which is hastened by the positive feedback effect of the voltage at the common terminal falling to zero and do not come back on again until output falls to +5 V . At this point the regulator comes back on - speedily again, as its common terminal is pulled back up by the small fraction. During the off period, inductor flux collapses and the reverse e.m.f. generated biases the diode on so that even this energy is not wasted but is fed forward into the output capacitor and load.

Construction

One can see from this discussion that the ratio of R_{3} to R_{4} sets the amount of ripple on the 5 V supply and that they, along with the values of the inductor and output capacitor, set the switching frequency. The frequency chosen is just supersonic so that magnetostriction effects in the inductor core are not heard. Inductors L_{1} and L_{2} are identical. Each consists of 18 turns of 1 mm diameter polyurethane-coated copper wire wound as two layers on a Mullard RM10 core type LA4546, also available as RS Components part number 228-242. When winding the ends of the copper wire around the bobbin pins prior to soldering, take care not to flex the brittle bobbin. Leave between 5 and 10 cm of wire free at each end of the coil so that when the wire is fed through the bobbin gap and wound around the pin, the length of wire between your finger and thumb and the point where the wire presses on the bobbin acts as a shock absorber. When you have half a tum wrapped around the base of a pin, cut away the rest and solder the wire directly. Do

The two switching sections of this regulated power

 supply are 90% efficient at high loads. Components shown and a $15-0-15 \mathrm{~V}$ transformer provide +5 V at$5 \mathrm{~A},+12 \mathrm{~V}$ at 2 A and -12 V at 750 mA but minor modifications give a wide range of output voltages and currents or variable output voltage. A Eurocard p.c.b. and kit of parts are available.
not attempt to strip the polyurethane prior to soldering, just keep the iron on the wire and pin and feed in solder. Surplus can be removed later and the bobbin itself appears to have a remarkably high melting point.

The transistor specified is a high-speed switching type selected for its transition frequency of about 50 MHz , low col-lector-emitter saturation voltage and suitable current capability. The diode, a Schottky power type, is crucial to efficient operation of the regulator. An efficency figure of 90% is easily degraded to 70% or less (still better than the 30% for the linear version) by using an adequately rated conventional diode. Not only does the Schottky device offer a very low forward voltage drop when passing the very high currents which flow when the flux in the inductor collapses, but it switches off very quickly when the pass transistor comes on. This avoids the few microseconds of full conduction at full reverse applied voltage which would occur, degrading efficiency and the conventional diode's life expectancy.

There are, naturally, disadvantages to using switching regulators which tend to apply to their general use rather than to the SC84 power unit. It is difficult to protect this design against shortcircuits. Fusing would not be fast enough to protect the circuits and, even if a circuit is added tc
shut down the regulator on a short, the regulator will be damaged when the short is removed due to the very high currents which would flow as the circuit attempts to build up the 5 V supply again. This effect is due to saturation in the switching inductor. It does not occur at switch-on as supply to the regulator builds up relatively slowly; after a short circuit, the full voltage will already be present at the regulator input.

Circuits must be checked for shorts before being connected to the supply. Where short circuits might occur, connect a 1Ω power resistor in series with the supply. Failure in the power unit is less likely than with conventional circuits as its running temperature is lower and, should an external short circuit occur, the failure mode of the device tends to be to render the pass transistor or its driver open-circuit, switching off the supply.

There is a high frequency ripple at the regulator output due to the switching. Ripple magnitude is set by the ratio of two resistors and is at -40 dB on the noisiest supply. Being at tens of kilohertz, what ripple remains is easily filtered should critical circuitry be added to the computer. Switching regulators radiate interference which can be significant if component layout is poor. In particular, as suggested in the way the circuit has been drawn, paths between the pass transistor emitter, the
inductor, the Schottky diode and the output capacitor must be kept as short and as thick as possible. Careful selection of components is also necessary. Apart from those mentioned already, the capacitors should have as low an effective series resistance, (e.s.r.) as possible. Unfortunately, when manufacturers bother to quote e.s.r. they quote it at 100 or 120 Hz . As e.s.r., as its name suggests, isnot an actual resistance but an effect which can be modelled by a series resistance, this value is not a guide to the capacitor's performance at tens of kilohertz.

The design as shown uses a 15-0-15V transformer whose power rating will depend upon the load you intend to put on the power supply. An 80 VA type is more than adequate for the SC84 computer. The linear regulator smoothing capacitor has an optimum value of $140 \mu \mathrm{~F}$ per 100 mA drawn, $100 \mu \mathrm{~F}$ being a suitable initial value. Any higher value will just cost more and increase heat dissipation in the regulator. If the negative supply is not required, leave out the 79 -series regulator and its associated capacitors and make link two instead of link one. Connect the two transformer windings in parallel to terminal x and y and leave c.t. unused to offer the maximum transformer power to the switchers. Different voltages may be obtained by simply changing the 78 L -series regulator although an upper limit is set
by the unsmoothed supply available to the regulator. A 15 V transformer was chosen for this design as it allows a 25 V smoothing capacitor to be used. If regulated outputs above 15 V are required, as for an 8 in drive, a $22-0-22 \mathrm{~V}$ transformer will be suitable providing the smoothing capacitor is also uprated to at least 35 V . When using a 78 L 24 with a $22-0-$ 22 V transformer, reduce R_{6} to 10Ω. It is possible to make a variable voltage version of this supply, just as for the linear version, as shown in the inset diagram.

SC84 application

Power requirement for the basic SC84 computer, i.e. one using the three Eurocard modules described in the May, June and July issues of $E \& W W$, is +5 V at 1.5 A for the logic i.cs and $+12 /-$ 12 V at 50 mA for the RS232 interface and possibly a keyboard. One of these power units with a 15-0-15V, 80 VA transformer could run the computer and a second one with an identical transformer could supply +5 V at 4 A and +12 V at 3 A for disc drives and a v.d.u. Alternatively, a 22 -$0-22 \mathrm{~V}$ transformer and a different
voltage regulator could supply +5 V at 5 A and 24 V at 1.25 A for an 8in disc drive. Efficiency of the unit is high. It runs cool enough to
be built on Eurocard and mounted in a rack unit alongside the other computer boards without overheating risks.

Linear versus switching regulators

Take a linear $5 \mathrm{~V}, 5 \mathrm{~A}$ supply using a 78 H 05 regulator i.c. (minimum input 8 V), a bridge rectifier and a $4700 \mu \mathrm{~F}$ smoothing capacitor with a tolerance of -10 to $+30 \%$. The worst-case capacitor value is $4230 \mu \mathrm{~F}$ from a smoothing point of view (maximum supply ripple) and $6110 \mu \mathrm{~F}$ from a dissipation point of view (minimum supply ripple). Maximum peak-to-peak ripple voltage is 11.8 V given by I / Cf where I is $5 \mathrm{~A}, \mathrm{C}$ is $4230 \mu \mathrm{~F}$ and f is 100 Hz . To maintain regulator voltage, peak unsmoothed voltage must be at last 19.8 V (11.8V+8V). Allowing, optimistically, for mains fluctuations of 5%, the safe minimum is 20.8 V .

If the capacitor is $6110 \mu \mathrm{~F}$, peak-to-peak ripple voltage is I/. 611 so worst-case dissipation in the regulator, W, is given by multiplying current by peak supply minus mean ripple minus regulator output voltage.
$\mathrm{W}=\mathrm{I} \times(20.8-(\mathrm{I} / .611) / 2-5)$.

So worst-case dissipation of 58 W occurs when I is 5 A , which means an efficiency of less than 30%.

The equivalent switching regulator dissipates only 4 W . It draws approximately 1.5 A from a 19 V (mean) supply and so only requires a bridge circuit rated at 2 A rather than 5 A . The switching regulator requires a transformer rated at 32 VA ; volage is not too important. Assuming a 2 V loss in the bridge rectifier, the linear regulator requires a 16.1 V , 100VA transformer. Use an 18 V one and worst-case regulator voltage rises to over 70W. Even with a nominal mains supply and smoothing capacitor, a perfect transformer and a load current of 2.5 A , dissipation is over 30W and efficiency only 45%. No allowance has been made for transformer regulation or winding impedance. Non-ideal parameters will produce even more dissipation in the, linear circuit.

Drilled and roller-tinned Eurocard form p.c.bs are $£ 5$ each including inland or overseas postage and v.a.t. from Combe Martin Electronics, King Street, Combe Martin, Devon EX4 0AD. A kit of parts (excluding transformer and p.c.b. but including terminal block) costs $£ 20.50$ including vat and UK postage from John Adams, 5 The Close, Radlett, Hertfordshire. Parts are available individually; send an s.a.e. and details of parts required to John Adams.

BOOKS

Audio Amplifier Construction
by R.A.Penfold
99 pages, paperback, $£ 2.25$
Bernard Babani (publishing) Ltd
The Grampians
Shepherds Bush Road
London W6 7NF
8088 Assembler Language
Programming: The IBM PC
by David C. Willen and Jeffrey
I.Krantz

235 pages, paperback, $£ 13.55$
Prentice/Hall International
66 Wood Lane End
Hemel Hempstead
Herts HP2 4RG
Connecting Computers, Printers,
Terminals and Modems
by MartinD. Seyer
214 pages, paperback, $£ 13.55$
Prentice/Hall Intemational
66 Wood Lane End
Hemel Hempstead
Herts HP2 4RG
An Introduction to Video
by D.K.Matthewson
87 pages, paperback, $£ 1.95$
Bemard Babani (publishing) Ltd The Grampains
Shepherds Bush Road

London W6
How to Design Electronic Projects
by R.A.Penfold
101 pages, paperback, $£ 2.25$
Bernard Babani (publishing) Ltd
The Grampians
Shepherds Bush Road
London W6 7 NF
Microshop series "TILL"
by John Phipps
218 pages, paperback, $£ 13.50$
Phipps Associates
99 East Street
Epsom
Surrey KT17 1EA
A simple Guide to Indulation and
Continuity Testing
by Thom EMI Instruments Ltd
94 pages, paperback, $£ 2.75$
Thorn EMI Instruments Ltd
Archliffe Road
Dover
Kent CT17 9EN
Surveillance radar performance prediction
by P.Rohan
324 pages, hardback, $£ 33.00$
Peter Peregrinus Limited
Marketing Department
P.O.Box 8

Southgate House
Stevenage
Hertfordshire SG1 1HQ
Corrugated homs for microwave antennas
by P.J.B.Clarricoats and A.D.Olver
231 pages, hardback $£ 26,50$
Peter Peregrinus Limited
Marketing Department
P. O.Box 8

Southgate House
Stevenage
Hertfordshire SG1 1HQ
Sound Systems
by Donald Aldous
37 pages, hardback, £3.95
Kingfisher Books Ltd
Elsley Court
20-22 Great Titchfield Street
London
Fundamentals of Microprocessor
Systems
by Philip A. Witting
525 pages, paperback,
Chartwell-Bratt Ltd
Old Orchard
Bickiey Road
Bromiey
Kent BR1 2NE

Analog and Switching Circuit Design
by J. Watson
602 pages, paperback
Adam Hilger Ltd
Techno House
Redcliffe Way
Bristol BS 16NX
PAL Handbook
by Monolithic Memories Limited paperback
Monolithic Menories Limited
Lynwood House
1 Camp Road
Famborough
Hants GU14 6EN
The TRS-80 Model 100 Portable
Computer
by David A.Lien
555 pages, paperback
Compusoft Publishing
P.O.Box 19669

Dept. 100A
San Diego
CA92119
Television and Radio 1983
by IBA
224 pages, paperback, $£ 3.50$
BA
70 Brompton Road
London SW3 1EY

PHONE 0474813225

 3 LINES MEOPHAM GREEN, MEOPHAM, KENT DABOOYINTEGRATED CIRCUITS

AN124	2.50	MC1351P 1.50
AN2140	2.50	MC1357
AN612	2.15	
AN7140	3.50	MC1496 ${ }^{\text {P }}$
AN7145	3.50	MC145106P
AN7150	2.95	7.95
${ }_{\text {BAF }}^{\text {BA1352 }}$	${ }_{1}^{3.75}$	MC1723 MC3357 0.50 2.75
CA3086	0.46	ML2318
ETT6016	2.50	ML2328 2.50
1377	3.50	MSM5807 8.75
HA1156W	1.50	PLLo2A 5.75
HA13394	2.95	SAA500A 3.50
HA1551	2.95	SAA1025 7.25
LA1230	1.15	SAA5010 6.35
LA4102	2.95	SAS560S
La4250	2.95	SAS570S 1.75
La4400	4.15	SAS580 2.85
La4420	1.95	SL9018 4.85
LA4422	2.50	SL97178 6.85
La4430	2.50	${ }^{\text {SL1310 }}$
LC7120	3.25	${ }_{\text {SL1327 }}$
LC7130	3.50	SL13270
LC7 133	5.50	SN76003N
LC7137	5.50	SN76013
LM324N	0.45	SN/6023N
LM380N	0.95	SN76033N
LM3837	2.95	SN76110 0.89
M51513L	2.30	SN76175N 1.25
M 515751	295	SN76131N 1.30
M515212	1.50	SN762260N 2.95
M 83712	2.00	SN7622N 1.05
MC1307P	. 50	SN76333 1.65
MC1327	0.95	SN76570 1.00
MC13270	0.95	SN76650N 1.15
MC1349P	${ }_{1}^{1.20}$	${ }_{\text {STKO14 }}$
MC1350P	i.95	STK

SEMICONDUCTORS

DIODES
AA119
BA15
BA145
BA148
BA154
BA 156
BA157
BAX13
BAX16
BB105B
BT151
BY 126
BY 127
BY 133
BY
BY 164
BY
BT179
BT
BY 184
BY 199
-OOO HO O O O O O O O O O O O O O

 ※"m zim

LNE OUTPUT TRANSFORMERS	EHT MULTIPLUERS	
DECCA 100 7.95	$1 \mathrm{TT} \mathrm{CVC20}$	6.35
DECCA 1700 MONO 9.95	$1 T \mathrm{CVC3}$	6.35
DECCA 1730	PHILIPS G8 550	6.96
DECCA 2230 - 8.25	RANK T20A	8.91
GEC 2040 - 8.95	THORN 3000/3500	7.57
GRUNDIG 1500 15014 15	THORN 8500	5.80
GRUND/G 5010-6010, 2222.5011-6011 13.45	THORN 9000	8.00
	UNIVERSAL TRIPLER	5.45
PHMPSG8 8.25 $\mathbf{8 . 5 0}$		
PHHLPS G9 8.50 PHL 	REPLACEMEMT ELECTROLYTIC CAPACITORS	
PHILIPSG11		
PYE 725 - 10.95		
R8MT20A 12.40	DECCA $30(400-400 / 350 \mathrm{~V})$	2.85
TANDBERGE 90* 11.15	DECCA $80 / 100(400 / 350 \mathrm{~V})$	2.99
TELEFUNKEN 711A 11.15	DECCA 1700	
THORN 1590 - 9.50	(200-200-400-350V)	3.55
THORN 8000 9.20	GEC $2110(600 / 300 \mathrm{~V})$	2.25
THORN 9000 THORN 9800	ITT CVC20 (200/400V)	1.80
THORN 9800 22.40	PHILIPS G8 (600/300V)	2.25
THORNMAIN TRANSFORMER. 3000/3500	PHILIPS G9 (2200/63V) PHILIPS G11 $1470 / 250 \mathrm{~V})$	1.19 $\mathbf{1 . 1 9}$

NEW BRANDED CATHODE RAY TUBES

PHONE

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|r|}{A SELECTION FROM OUR STOCK OF BRANDED VALVES} \& \\
\hline A1714 \& 18．50 \& E1524 8.95 \& EF732 3.50 \& HR2 4.00 \\
\hline A1998 \& 11.50 \& EA50 1.00 \& Efros 11.00 \& \begin{tabular}{ll}
HY90 \\
HVR2 \& \\
\hline 1.00 \\
3000 \\
\hline
\end{tabular} \\
\hline A2087 \& 11.50 \& EA76 \& \(\begin{array}{cc}\text { Ef805S } \\ \text { EF806S } \\ \& 13.50 \\ 14.50 \\ 14.50\end{array}\) \& \\
\hline A2134 \& 14.95 \& EA79 \({ }^{1.95}\) \& \({ }_{\text {EFF806S }}\) \& \\
\hline \({ }^{\text {A2293 }}\) \& \({ }^{6.50}\) \& EABCB0 0.70 \& \({ }_{\text {EF8812 }}^{\text {EFI200 }}\) \& \(\begin{array}{ll}\text { K3914 } \\ \text { K3118 } \& 95.00 \\ \text { 85．．00 }\end{array}\) \\
\hline A2599 \& 37．50 \& EAC91 2.50 \& EFL200 \(\begin{aligned} \& \text { EH90 } \\ \& 0\end{aligned}\) \& \\
\hline A2900 \& 11.50 \& EAF42 \(\quad 1.20\) \& \(\begin{array}{ll}\text { EH90 } \\ \text { EK90 } \& 0.72 \\ 0.72\end{array}\) \& \\
\hline \& 24.00 \& EAF801 \(\quad 3.50\) \& \({ }^{\text {EkS }}\) El32 \& \({ }_{\text {KT33C }}{ }^{\text {K183 }}\) \\
\hline \({ }^{\text {A }}\) 3283 \& 24.00 \& EB34 \(\quad 1.50\) \& \({ }^{\text {EL33 }}\) \& \(\begin{array}{ll}\text { KT336 } \& 3.50 \\ \text { KT36 }\end{array}\) \\
\hline \& 4.00 \& \({ }_{\text {EB4 }}\) \& \({ }^{\text {EL33 }}\) \& KT44 \({ }^{\text {K }}\) \\
\hline \({ }_{\text {ACCT22 }}\) \& 4.00 \& \({ }^{\text {E891 }}\) \& \({ }_{\text {ELL34 Philips }}{ }^{\text {2．25 }}\) \& 4.00 \\
\hline \({ }_{\text {AC }}^{\text {AC }}\)（ \({ }^{\text {d }}\) \& 5．75 \& \& \({ }^{\text {a }}\) \& ． 00 \\
\hline \({ }_{\text {ACISP2PE }}\) \& 8． 50 \& C81 \& EL36 1.50 \& 00 \\
\hline AC／222 \& 3.00 \& C81 \& EL37 9.00 \& \\
\hline 232 \& 39．00 \& E8c90 \& \(4 \mathrm{Ll38}\) \& \\
\hline \({ }_{\text {Al }}\) A 60 \& \({ }^{3.00}\) \& \({ }_{\text {E8F33 }}\) \& EL41 3.50 \& KT66 USA 6.90 \\
\hline AN1 \& \({ }^{16.00}\) \& \& EL42 2.00 \& KT \\
\hline A P12 \& 0.70 \& \({ }_{\text {EBF83 }}{ }^{0.65}\) \& EL81 6.95 \& \\
\hline \& 1.25 \& \& EL82 0.58 \& 9.50 \\
\hline \& 2.00 \& EBF89 0.70 \& \(\mathrm{ElP4}^{0.75}\) \& KT81 7.00 \\
\hline 63 \& 2.00 \& EBF93 0.95 \& \({ }^{\text {El85 }}\) \& \\
\hline \& 67.00 \& EBL1 2.50 \& 成 \({ }^{\text {El86 }}\) \& KT88Gold 15.95 \\
\hline BS810 \& 55.00 \& EBL21 2.00 \& EL90 1．50 \& \\
\hline \& 55.00 \& EC52 0.75 \& EL95 8.70 \& KT67， 9.00 \\
\hline CIK \& 19.00 \& EC70 1.75 \& 成 \& KTW61

KTW6

\hline C3JA \& 21．00 \& 9.50 \& EL183E 3.50 \& KTW63 2.00

\hline ${ }_{\text {Cl128 }}$ \& 54.95 \& ${ }^{\text {ECB1 }}$ \& EL18P 3.50 \& KT263 2.50

\hline ${ }_{C}$ \& ${ }_{32.00}^{70.00}$ \& $\begin{array}{ll}\text { EC86 } \\ \text { EC89 } \\ & 1.00 \\ 1.000\end{array}$ \& EL360 \& L63 1．50

\hline C1148A \& ${ }_{12500}$ \& \& EL500 1.40 \& L102／2K 6.95

\hline C1149／1 \& 130.00 \& EC91 5.50 \& EL504 1.40 \& | L120／2K | 12.00 |
| :--- | :--- |
| 187 | |

\hline 150／ \& 135.00 \& EC92 1.25 \& ${ }^{\text {ELL509 }}$ \& L87．20

\hline ${ }_{C C A}$ \& 32.00 \& EC93 $\quad 1.50$ \& ${ }^{\text {ELLO22 }} 3.65$ \& M502A 60.00

\hline $\mathrm{CCO}^{\text {C }}$ L \& ${ }^{2.60}$ \& EC97 \& EL829 8.50 \& 85.00

\hline CL33 \& 2.00 \& ${ }_{\text {ECB010 }}{ }^{12.00}$ \& EL822 12.95 \& M537A 60.00

\hline CV Nos P \& Prices \& ECC32 3.50 \& EM1 \& M5143 155.00

\hline ${ }^{\text {requ }}$ \& \& ECC33 3.50 \& EM4 9.90 \& M8079 ${ }^{\text {cheo }}$

\hline 063 \& 1.20 \& $\begin{array}{ll}\text { ECCC35 } & 3.50\end{array}$ \& EM81 \& ${ }^{\text {M }}$

\hline DA4， \& 22.50
1750 \& ECC8 \& EM84 1．65 \& M8091 7.50

\hline \& 50 \& ECC82 0.55 \& EM85 3.95 \& M8096 3.00

\hline \& 125.00 \& ps \& EM87 2.50 \& M8098 $\quad 5.50$

\hline Daf9 \& ${ }_{0}^{0.65}$ \& ECC83 $\begin{aligned} & \text { 0．65 }\end{aligned}$ \& EN10 8.00 \& M8099 5.00

\hline DC70 \& 5 \& CCC83 \& EN32 13.50 \& M8100 5.50

\hline \& \& Mullard 1．35 \& EN91 1.10 \& M8136 7.00

\hline DC×4－10 \& 20 \& ECC83 Philips \& EN32 ${ }^{4.50}$ \& 57．50

\hline \& \& \& ESU872 \& （150

\hline X4－500 \& 0 \& ECC84 0.50 \& EY51 ${ }_{\text {EY1．}}$ \& M8163 $\quad 5.5$

\hline DET16 \& ${ }_{28.50}^{28.00}$ \& \& EY83 1.50 \& M8190 4.50

\hline DET18 \& ${ }_{28.50}$ \& \& ${ }^{\text {EY84 }}$ EY8／97 5.95 \& | M8195 | |
| :--- | :--- |
| $\mathbf{M 1 9 6}$ | 8.50 |
| 8.50 | |

\hline DEET23 \& ${ }^{35.00}$ \& ${ }^{\text {ECC91 }}$ \& ${ }_{\text {EY88887 }}^{\text {EY }}$ \& M8204 ${ }^{\text {M }}$

\hline （eter \& 39.00
22.00 \& ECCC189
ECl
0 \& \＃Y91 5.50 \& M8223 4.50

\hline DET29 \& \& ECC801S 3.50 \& EY500A 1.50 \& M8224 ${ }^{\mathbf{2}} \mathbf{2 . 0 0}$

\hline DF91 \& 0.70 \& ECC803S 3.50 \& EY802 0.70 \& M8225 ${ }^{\text {P2，}}$

\hline DF92 \& 0.60 \& ECC804 0.80 \& E230 ${ }^{1}$ \& Me ${ }^{\text {M }}$

\hline DF96 \& 0.65 \& $\mathrm{ECCB87}^{2.50}$ \& EZ41 2.75 \& MET501 ${ }^{14.00}$

\hline ${ }_{\text {OFP63 }}$ \& 1.20 \& \& EZ80 0.75 \& MH4 3.50

\hline DH77 \& 0.90 \& ${ }_{\text {ECFP2 }} 0.85$ \& \& MHLD6 4.00

\hline OH79 \& 0.56 \& ${ }_{\text {ECFF86 }}$ \& E76904 \&	MS4

\hline $\mathrm{OH}^{\mathrm{O} 499}$ \& 2．00 \&	ECF200	
ECF202		
	1.855	
1.85		
185		\& FW4／800 2.95 \& MU14 1.50

\hline OK92 \& 1.20 \& ${ }_{\text {ECFF801 }}{ }_{\text {cter }}$ \& 61／371K 30.00 \& N37 12.50

\hline DK96 \& 2.50 \& ECF804 8.00 \& 65511K 9.00 \&

\hline OL35 \& 2.50 \& \& \& ${ }_{\text {OAZWA }}{ }^{\text {a }}$

\hline 0163 \& ${ }^{1.00}$ \& \& G400／ik 14.00 \& ${ }_{043}{ }^{\text {a }}$ 2．50

\hline ${ }^{\text {DLL7 }}$ \& 2．50 \& \& GC108 17.50 \& ${ }_{0} 082$

\hline 0 Ot9 \& ${ }_{1.50}$ \& $\mathrm{ECH35}^{2} \mathbf{2 . 1 5}$ \& GC100 17.50 \& ${ }_{0} 082 \mathrm{WA}$ 1．25

\hline DL92 \& 0.95 \& $\begin{array}{ll}\text { ECH42 } & 1.00 \\ \\ \text { CHP }\end{array}$ \& GC10／48 ${ }^{\text {17．50 }}$ \&

\hline DL93 \& 1.10 \& \& GC12／48 17.50 \& ${ }_{0} 031$

\hline 0，94 \& 2．50 \& ${ }_{\text {ECH84 }}{ }_{\text {ECH6 }}$ \& GD86W 6.00 \& OM4 ${ }^{\text {O }}$

\hline Dis10 \& 13.50 \& ECH2000 1.50 \& GDT120M 5.00 \& OM58 ${ }^{\text {M }}$

\hline DLS16 \& －10．00 \& \& $\begin{array}{ll}\text { GE10 } \\ \text { GN4 } & 9.00 \\ 60.00\end{array}$ \& $\begin{array}{ll}\text { OM6 } & 1.75 \\ \text { ORP43 } & \text { 2．50 }\end{array}$

\hline DM160 \& 2.75 \& ${ }_{\text {ECL183 }}{ }^{\text {E．50 }}$ \& GN10 15．00 \& ORP50 ${ }^{\text {P6 }}$

\hline OY51 \& 1.50 \& ${ }_{\text {ECLI84 }} \begin{array}{ll}\text { ECL } & 0.74\end{array}$ \& GR10G
GR10，
4.000 \&

\hline OY86／87 \& ${ }^{0.65}$ \& $\begin{array}{ll}\text { ECLL85 } & 0.69 \\ \text { C－186 } & 0.80\end{array}$ \& GSIOC 16.50 \& PABC80 0.50

\hline ${ }_{\text {E8BOCC }}$ \& ${ }_{9}^{0.75}$ \& \& GS10H 12.00 \& ${ }^{\text {PC86 }} 0$

\hline EBOCF \& 11.00 \& EF37A $\quad 2.00$ \& GS12D \& （1）

\hline E80F \& 13.50 \& \& GTYC ${ }_{\text {GTIC }} / \mathrm{S} 14.00000$ \& ${ }_{\text {PC97 }}{ }^{\text {PC892 }}$

\hline E881C \& cin \& | EF41 | |
| :--- | :--- |
| EF42 | 3.50 |
| 3．50 | | \& GTE175M 8.00 \& PC800 1.10

\hline E81L \& 12.00 \& EF50 $\quad 2.50$ \& GTR150W 1.00 \& ${ }^{\text {PCCO50 }} 11.25$

\hline E82CC \& 3.50 \& EF55 4．95 \& － \& | PCCC84 | |
| :--- | :--- |
| PCO5 | 0.40 |
| 0 | |

\hline E83CC \& 3.50
5.50 \& EF72 \& GxU3 ${ }^{24.00}$ \& PCС88
0.70

\hline E86C \& ${ }_{9}^{5.50}$ \& EF73 1.00 \& GXU50ss \& ${ }^{\text {PCCC89 }}$

\hline E88C \& 7.95 \& EF80 \& GY501 ${ }_{\text {coser }}^{\substack{14.50 \\ 3.20}}$ \& （1）

\hline ¢88CC \& 3.50
7.95 \& \& GY802 1.00 \& PCC806 0.80

\hline E90F \& 7.95 \& EF86 1.25 \& $\begin{array}{ll}\text { Gz30 } \\ \text { G731 } & 1.00 \\ 1.00\end{array}$ \& PCE822
PCFEO

\hline E91H \& 4.50 \& \& Gz32 ${ }_{1}$ \& $\begin{array}{ll}\text { PCFE82 } & 0.80\end{array}$

\hline ${ }_{\text {E992CC }}$ \& ${ }_{6.99}^{3.95}$ \& ${ }_{\text {EF99 }}{ }_{\text {¢ }}$ \& G233 4.50 \& ${ }^{\text {PCFFSA }}$

\hline 301 \& ${ }^{19.95}$ \& EF91 1.50 \& 6234 $\quad \mathbf{2 . 1 5}$ \& | PCF866 |
| :--- | :--- |

\hline E180CC \& 6.50 \& 92 $\quad 2.15$ \& HAA91 1.00 \& ${ }_{\text {PCFF200 }}{ }_{\text {1．80 }}$

\hline \& 6．50 \& | EFF93 | |
| :--- | :--- |
| EF93 | 0.955 |
| 0.95 | | \& НАвсво 0.90 \& PCF201 1.80

\hline E186F \& 8.50 \& EF95 1.00 \& HBC90 0．75 \&

\hline E188CC \& 7.50 \& EF97 \& ${ }_{\text {HF93 }} 0.75$ \& PCF802 0.60

\hline \& 19.50 \& EF983 \& HF94 $\quad 1.50$ \& PCFE805 1.25

\hline 88 CC \& ${ }_{13.50}$ \& | EFP183 | |
| :--- | :--- |
| EF134 | 0.65 |
| 0.65 | | \& HK90 1．05 \& PCF806 1.00

\hline EE810F \& 18.50 \&	EFF730	1.850
EF34		
1.50		\&
:---	:---	
HL2300	3.50	
8.00		\& （1）

\hline
\end{tabular}

2759
28004
28034
241000
241001

宗官点謌

4 Watt
7 Watt
11 Watt
17 Watt

BASES ETC

${ }_{87 \mathrm{G}}^{87}{ }^{0}{ }^{0}$

 B8GB9A
B94 $\begin{array}{ll}8108 & 0.15 \\ 8138 & 0.50 \\ 818\end{array}$ $\begin{array}{ll}8108 & 0.16 \\ 8138 & 0.50 \\ 8 \text { PIn DIL } & 0.14\end{array}$ 14 Pin DIL $15 \mathrm{~K}-22 \mathrm{~K} \quad 0.24$
5K－22K $\quad 0.24$
$\begin{array}{ll}\text { R－10K } & 0.26\end{array}$
30

ZENER DIODES
BZX61 0.15
6 V 27 V 58 V 29 V 10 V 11 V 12 V 13 V
15 V 16 V 18 V 20 V 22 V 24 V 27 V 30 V
$82 Y 880.07$

12 V 13 V 15 V 18 V 20 V 24 V 27 V 30 V

TMERMISTORS		BTIERES
VA1040	0.23	7V Power M
VA1056S	0.23	
VA1104	3.70	175 £1．40 en
VA8650	0.45	other prices on
VA1097	0.25	

C．

边

 VR105／30
VR150／30
VT52
$Y 65$
Y65
Y011
$Y 100$
Y
Y
Y1060
YL1020
YL1070
YL107
277
2302 C
2359
7505 S
2359
Z505S
25201
2521
2521 M
27000
2749
2759
7800
NNN
ZA1000
ZC1040
ZM100
ZM102
ZM100
ZM102
ZM102
ZM102
ZM10
ZM10
ZM108
ZM10
2M108
ZM117
ZM120
ZM126
2M120
ZM126
ZM161
$183 G$
1822
1824
1835
号ずず刀

NNNN む゙

\author{

CALLERS WELCOME

 －ENTRANCE ON A227
 50 YDS SOUTH OF MEOPHAM GREEN CAR PARKING AVAILABLE OPEN MONDAY TO FRIDAY 9a．m．$-5.30 \mathrm{p} . \mathrm{m}$ ACCESS AND BARCLAYCARD ORDERS WELCOME
 \section*{UK ORDERS P\＆P 50p PLEASE ADD V．A．T．AT 15\％}
 EX＇PORT ORDERS WELCOME．CARRIAGE／POST AT COST
 AND BARCLAYCARD ORDERS WELCOME}
${ }^{5 \text { gatar }}$ $\underset{\substack{1.50 \\ 10.20 \\ 13.50}}{1.5}$

LEADER OSCILLOSCOPES

The Leader range of high performance oscilloscopes are designed to suit most requirements, offering comprehensive specification and long term reliability, yet remaining low cost.

The LBO series includes a battery portable with 20 MHz bandwidth, two lost cost 15 MHz and 20 MHz models and $35 \mathrm{MHz}, 50 \mathrm{MHz}$ and 100 MHz laboratory performance models with or without delayed sweep:
LBO-514A is a dual trace, 15 MHz bandwidth, 1 mV sensitivity, low cost general purpose oscilloscope.
LBO-522 is a dual trace 20 MHz bandwidth, 500 uV sensitivity oscilloscope, featuring X X.Y, variable hoid off plus full TV triggering.

ELECTRONICS LIMITED

LBO-523 is a dual trace 35 MHz oscilloscope offering similar features to the LBO-522 plus internal graticule dome-mesh tube with 7 kV acceleration (pda).
LBO-524 is a 35 MHz dual trace oscilloscope similar to the LBO-523 plus the added facility of delayed sweep timebase.
LBO-525L is a 50 MHz dual trace oscilloscope offering comprehensive triggering and timebase facilites. LBO-518 is a 100 MHz quad channel oscilloscope with eight trace capabilities, offering comprehensive triggering and timebase options.
LBO-308S is a battery/mains dual trace 20 MHz small compact oscilloscope offering all the features normally found in a bench scope.

For further information contact-
Thandar Electronics Limited, London Road, St. Ives, Huntingdon, Cambridgeshire PE17 4HJ, England Telephone (0480) 64646 Telex 32250 Test THE LOGICAL CHOICE

VRiATIONS ONANEW THEME

 SERIES8000

Whiteley
AUOOO SYSTEMS
Over half a century of sound experience

CIRCLE 22 FOR FURTHER DETAILS

Fundamentals of electromagnetic energy transfer
 Discussion of some weaknesses in the traditional approach to e.m. theory, and the establishment of a sounder foundation

The rise of digital electronics has highlighted weaknesses in our approach to the fundamentals of electromagnetic theory. This paper discusses some of the weaknesses and begins the building of a more sound approach at the fundamental level.

In the 1870s Oliver Heaviside, the father of digital electronics, worked with his brother Arthur to improve pulse signalling down a transmission line, using theory and experiment to improve the performance of the undersea telegraph line between Newcastle and Denmark. This practical experience gave him a mastery of electromagnetic theory which remained unequalled for a century. It led to his greatest achievement, the discovery of the concept of 'energy current ${ }^{11,2,3}$, which he himself undervalued, and never mentioned again after Hertz demonstrated the more glamourous wireless waves ten years later.

Ever since its advent in around 1900, wireless signalling has been regarded as a major advance. In fact, it stunted theoretical development. Wireless is a resonant, neo-steady state activity. It is far less central to the successful development of electromagnetic theory than its apparent primitive precursor, the TEM step or transient, travelling undistorted at the speed of light, guided by two conductors. The glamour, the magical nature of signalling without wires caused the suppression and then the loss of understanding of the mechanism by which a pulse travels at the speed of light from one logic gate to the next. In 1949, this suppression even made it possible for Albert Einstein to dismiss the

[^2]very idea of a logic pulse as absurd!
"...If I pursue a beam of light with the velocity c (velocity of light in a vacuum), I should observe such a beam of light as a spatially oscillatory electromagnetic field at rest. However, there seems to be no such thing, either on the basis of experience or according to Maxwell's equations." (ref.4)
A deep chasm developed between the post Einstein Community, who call themselves 'modern physics', and digital electronic engineering, the latter being based on the logic pulse which the former dismissed as absurd. (Within the 'modern physics' community, the only viable electromagnetic wave is the sine wave, whereas digital electronics is based on the puls ${ }^{3.5}$.

Einstein never read Heaviside, and Heaviside, although very interested in Einstein, lacked the information needed to grasp the nature of the gaffe Einstein had committed. Today, the chasm could be bridged if only professors of modern physics would look at high-speed logic pulse using a sampling oscilloscope ${ }^{5}$. They would then be forced to admit that, far from being absurd, Heaviside's slab of energy current exists.
"Thus the whole slab moves bodily to the right at speed v, so that a moves to A and b moves to B in the time given by $\mathrm{vt}=\mathrm{aA}$ or bB .
"The disturbance transferred in this way constitutes a pure wave. It carries all its properties unchanged...
"... For the slab may be of any depth and any strength, and there may be any number of slabs side by side behaving
in the same way, all moving along independently and unchanged.
"... Since every slab is independent of the rest, there need be no connection between the directions [$=$ polarity, sign,] of E in one slab and the next. The direction may vary anyhow along the wave." ${ }^{3}$
Since Einstein went on to say that the false statement of his is the very basis of relativity, we can see why 'modern physics' contributes no help, but only confusion, to the work of computer designers.

Energy current

Whereas the conventional approach to electromagnetic theory is to concentrate on the electric current in wires, with some additional consideration of voltages between the wires, Heaviside concentrates primarily on what he calls 'energy current, this being the electromagnetic field which travels in the dielectric

Fig.1. Theory N. Electric current is the cause.
Fig.2. Theory H. Energy current is the cause.

Fig.3. Trapped energy current.

Fig.4. Curvilinear squares.

between the wires. It has an amplitude equal to the Poynting Vector, $\mathbf{E} \times \mathrm{H}$. Heaviside's phrase, "We reverse this"; points to the great watershed between the 'etherials' who with Heaviside believe that the signal is an 'energy current' which travels in the dielectric between the wires, and the 'practical electricians', who like Sprague believe that the signal is an electric current which travels down copper wires, and that if there is a 'field' in the space between the wires, this is only a result of what is happening in the conductors ${ }^{1}$.

Qliver Heaviside announced Theory H a century ago^{2}.
"Now in Maxwell's theory there is the potential energy of the displacement produced in the dielectric parts by the electric force, and there is a kinetic or magnetic energy of the magnetic induction due to the magnetic force in all parts of the field, including the conducting parts. They are supposed to be set up by the current in the wire. We reverse this; the current in the wire is set up by the energy transmitted through the medium around it..."
The importance of Heaviside's phrase, "We reverse this", cannot be overstated. (See Fig. 1, Fig. 2.) It points to the great watershed between the 'practical electricians ${ }^{7,8}$, who have held sway for the last half century, promulgating their theory which we shall call 'Theory N', the Normal theory: that the cause is electric currents in wires and electromagnetic fields are merely an effect - and the 'etherials', who believe what we shall call 'Theory H ': that the travelling field is the cause, and electric currents are merely an effect of this field.

The 'energy current' lapproach, Theory H , is much the
more helpful approach for the digital designer. The car battery delivers energy which is guided between the OV and +12 V lines, to the car headlight. The electromagnetic energy travels down through the dielectric at the speed of light. * When the energy reaches the lamp, it penetrates into the filament, is absorbed and converted.

If the car lamp is removed, the energy current reflects at the resulting open circuit and returns back towards and into the battery, always travelling at the speed of light. This results in an endless dance of energy. The energy current continually flows from the battery at the speed of light; reflects at the open circuit to the right; and flows back into the battery, there to reflect back out again from the (left hand) far end of the battery plates and down between the wires for a second time.

In the resulting, apparently stationary, quiescent state, there is no mechanism for the energy current, which has been delivered into the dielectric between the wires at the speed of light, ever to slow down as it oscillates from end to end.

If the two wires are now suddenly cut at the middle, then energy current (conventionally thought to be electic charge) is trapped between the wires to the right. The energy is apparently stationary, but in fact is all moving at the speed of light. If these wires were very wide and close, we would have a conventional charged capacitor. At any moment, half of the energy trapped in a charged capacitor is moving to the right, and the other
*The density of this energy at any point is equal to the product of the electric field D and the magnetic field B, which are always at right angles to each other and to the direction of energy flow. The flow rate of energy across unit area is $\mathrm{E} \times \mathrm{H}$, which is
called the Poynting Vector called the Poynting Vector.
half if moving to the left. Using either theory N or H^{8}, the total current in each plate (or wire) is zero, so there are no $i^{2} \mathrm{R}$ losses, only dielectric leakage G losses, which would be zero in the case of a vacuum dielectric. Attempts to detect the magnetic field component of the energy current would be frustrated by the fact that the leftwards travelling energy current has a magnetic field component in the opposite direction to that of the rightwards travelling energy current ${ }^{9,10}$ (Fig.3).

Nature of space and ether

A logic pulse is a TEM wave (Transverse Electromagnetic Wave), which means that both the electric field and the magnetic field are at right angles to the direction of propagation. Also, at every point, the electric field and the magnetic field are at right angles to each other. If the wires in Fig. 2 are circular, the field pattern is as in Fig. 4.

The vertical E lines and the circular H lines divide the surface inţo what are called 'curvilinear squares' of equal width and height. Down one side of a square the electric potential drop is E and along the other side the magnetic potential drop is H . If the dielectric medium has permittivity and permeability μ then the ratio of E to H is $E / H=\sqrt{\mu} / \epsilon$, which in the case of a vacuum dielectric turns out to be 377 ohms. Further, the velocity of propagation of this energy current into the paper is equal to $1 / \sqrt{\mu}$ which in the case of a vacuum turns out to be $300,000 \mathrm{~km}$ per second.
(It is noteworthy that Einstein himself and also the whole postEinstein community who call themselves 'modern physics', never mention the impedance of free space $\sqrt{ } \mu / \epsilon$, although it is
one of the key primitives on which digital electronic engineering is based. The reader is encouraged to look for reference to it in the literature of modern physics.)

As energy current flows through one of the squares in the (vacuum) dielectric in Fig. 4, it is resisted in its attempt to proceed. This is necessary, because if energy is flowing through the square, work must be done. The $\mathrm{E} \times \mathrm{H}$ energy works against the impedance of the square surface, 377 ohms, as it passes through that surface. The resistance (impedance) of a square of vacuum is innate. Thus, empty space has the physical characteristic, impedance (resistance), a fact which has to be ignored in modern physics which conforms to the belief that empty space has no features. (It is remarkable that, while ignoring $\sqrt{ } \mu / \epsilon$, modern physics can still make such play with velocity, $1 / \sqrt{ } \mu \epsilon$.)

In the world view of the digital electronic engineer, it is convenient to say that free space and the ether are synonymous. This includes the assertion that the ether exists; it is the something which resists the passage of energy and so, paradoxically, makes the passage of electromagnetic energy $E \times H$ possible. (It is impossible to give kinetic energy to a brick with zero mass. Similarly, it is impossible to deliver potential energy to a spring whose Young's Modulus is either zero or infinity. Energy may only enter a region when its entry is reasonably resisted - hence the need for free space to have an impedance (resistance),. if energy is to be able to enter it.)

Via a devious route, we have come to think that the fundamental primitives in a region of space are permittivity and permeability, ϵ and μ. However, when it comes to actually measuring anything, which mean measuring the impedance (of space) or the velocity (of space), we find that we always use ϵ and μ in combination in order to form velocity (c) or impedance Z_{0}. It seems clear that the latter two are more primitive, being more fundamental and also measureable, and ϵ and μ are merely subsidiary parameters lacking fundamental physical reality. To sum up; whereas it is usual to start with ϵ and μ and derive the impedance $Z-\sqrt{ } \mu / \epsilon$ and velocity © $-1 / \sqrt{ } \mu \epsilon$, it is more correct to start with Z and © , the directly measurable parameters of a region of space.

Should we be so disposed, we could then derive ϵ and μ using the formulae $\epsilon=1 / Z \subset$ and $\mu=$ Z / \mathbb{C}. However, although being far divorced from physical reality, and μ remain useful instruments for use in calculation.
(A further advance which the reader might wisely ignore initially is made when we realise that length of a region of (single velocity) space and velocity of propagation through that région cannot be independently measured. All that we can measure is the time delay through that region. We should move to the idea of a segment of space being of length t , e.g. 1 n , rather than of length 1 foot ${ }^{11}$.)

Theories

A number of different dualisms obtain within or in the vicinity of electromagnetic theory as it is developing. The student needs to be warned against thinking that only one dualism is involved, and that he is merely seeing different expressions of the same dualism. The mutually distinct dualisms include:
> wave-particle dualism
> Theory N - Theory H^{8}
> The Rolling Wave - The Heaviside signal ${ }^{9}$

It will be seen later that one of these is in fact a three-way split between Theory N, Theory H and Theory C.

Historical development. The transition from classical, wireless-based electromagnetic theory, loosely equivalent to Theory N^{8}, to one of the preferred theoretical positions for the digital electronic designer, Theory H or Theory C^{8}, is via a complex development shown in Fig. 5.

The capacitor

In the early 1960's I pioneered the inter-connection of high speed (1 ns) logic gates at Motorola, Phoenix, Arizona ${ }^{12}$. One of the problems to be solved was the nature of the voltage decoupling at a point given by two parallel voltage planes. I asked Bill Herndon about this problem, and he gave me the answer: "It's a transmission line" ${ }^{13}$. Bill learnt this from Stopper, whom I never met, who now works for Borroughs in Detroit.

The fact that parallel voltage planes, when entered at a point,

Fig.7. Four factors in a TEM
wave.

Fig.8. The problem Maxwell faced.
shown up by the new theoretical discoveries indicated in Fig.5. However, more recently, thanks to Dawe ${ }^{22}$, I have been led to a flaw at a more simplistic level. We shall deal with this flaw, called the 'Catt Anomaly', first.

Traditionally, when a TEM step (i.e. a logic transition from low to high) travels through a vacuum from left to right, (Fig.7.), guided by two conductors (the signal line and the 0 V lines), there are four factors which make up the wave:
electric current in the conductors;
magnetic field, or flux, surrounding the conductors;
electric charge on the surface of the conductors;
electric field, or flux, in the vacuum terminating on the charge.

The key to grasping the anomaly is to concentrate on the electric charge on the bottom conductor.

During the next 1 nanasecond, the step advances one foot to the right. During this time, extra negative change appears on the surface of the bottom conductor in the next one foot length, to terminate the lines (tubes) of electric flux which now exist between the top (signal) conductor and the bottom (0 V) conductor.

Where does this new charge come from? Not from the upper conductor, because by definition, displacement current is not the flow of real charge. Not from somewhere to the left, because such charge would have to travel at the speed of light in a vacuum (This last sentence is what those "disciplined in the art" cannot grasp, although, paradoxically, it is obvious to the untutored mind.) A central feature of conventional theory is that the drift velocity of electric current is slower than the speed of light.

Displacement current and the TEM wave. The concept of the transmission line and the TEM wave came after Maxwell's time, so he could not use it to resolve the anomaly which dogged electromagnetic theory in the midnineteenth century. This anomaly arose from consideration of the performance of the capacitor in a closed electric circuit, which upset the techniques which have been developed to relate electric current to nearby magnetic field. These were the Biot-Savart Law, $\mathrm{H}=\frac{\mathrm{idil} \sin ^{+}}{4 \mathrm{n} \mathrm{I}^{-}}$and Ampere's Rule,
$\oint \mathrm{Hdl}=\mathrm{i}$. To resolve the anomaly, Maxwell proposed that the build-up of electric flux $\epsilon \mathrm{dE} / \mathrm{dt}$ (i.e. $\mathrm{dD} / \mathrm{dt}$) across the plates of a capacitor behaved just like real electric current in that it generated magnetic flux nearby as per the Biot-Savart Law. However, the assumption underlying the anomaly which he purported to solve was as follows. In a closed circuit (Fig.8) comprising battery, resistor and capacitor, at the moment the switch is closed, electric current instantaneously flows in all parts of the circuit, including the capacitor.

Since Maxwell's time, we have learnt that there is no instantaneous action at a distance, and part of that body of knowledge is the TEM wave which travels at the speed of light. We, who follow in the wake of the telegraph equations and the development of the TEM wave in a transmission line, known that when we close the switch(es), (Fig.9.) the current and field move across from left to right at the speed of light. We also know that the capacitor is merely a change in the characteristic impedance of the transmission line, and that the wave front enters it sideways.

To be concluded

REFERENCES

1. Catt, I. et al., 'Digital Hardware Design', Macmillan, p65, 1979
2. Heaviside, O., 'Electrical Papers Vol 1', Macmillan, p438, 1892
3. Heaviside, O., 'Electromagnetic Theory Vol 3' chapter 9, art. 451 seqq., 1912 4. ed Schilpp, P.A., 'Albert Einstein, Phi-losopher-Scientist', Library of Living Philosophers, p53, 1949
4. Catt, I., 'Crosstalk (Noise) in Digital Systems', IEEE Trans. Electron. CompuSystems', IEEE Trans. Electron. Compu-
ters, Vol. EC-16, No. 6, p757, Fig. 39, first ters, Vol. EC-16,
trace, Dec. 1967
trace, Dec. 1967
5. ref. (1), p57
6. ref. (1), p57. . ${ }^{\text {7. }}$.
7. Sprague, J.T., 'Electricity: Its Theo
Sources and Applications', p239, 1892

Sources and Applications', p239, 1892
8. Catt, I., 'The Death of Electric Current',
Wireless World, p79, Dec. 1980
9. Catt, I., 'The L-C Oscillator Circuit', Proc. IEEE V Vol. 71, No. 6, p773, June 1983
10. Catt, I., 'Waves in Space', Wireless World, p43, March 1983
11. Catt, I., 'Electromagnetic Theory Vol.2', C.A.M. Publishing, p241, 1980 12. Catt, I., et al., 'A High Speed Integrated Circuit Scratchpad Memory, Fall Joint Computer Conference, Nov. 1966.
13. ref. (5), p40
13. ref. (5), p40
14. ref. (1) p40
14. ref. (1) p40
16. Catt, I., Digital Electronic Design Vo 2'C.A.M. Publishing, p216, 1979
17. Heaviside, O., 'Electromagnetic Theory Vol. 1', p8, 1893
18. ref. (17), p68
19. Catt, I., et al., 'The History of Displacement Current', Wireless World, p68, March 1979
20. Catt, I., 'The Heaviside Signal', Wireless World, p73, July 1979
21. van der Pol, B., 'Oliver Heaviside', Electronics \& Power, p222, March 1978 reprinted from 1938
22. Dawe, P.G.M., Wireless World, p39 August 1981 and Catt, 1., Wireless World, August 1981 and
p59, August 1982

NEW AND FREE FROM GSC.
NEW an exciting range of projects to build on the EXPE00 breadboarcs.
NOW anybody can build electronic projects using "Electronics-by-numbers", its as "Easy as A, B, C with G.S.C!"
FREE project
MUSICAL DOORBELL OF THE 3RD KIND
You've sean the film, now haunt your visitors with the tune!
Each time the doorbell is pushed the eerie tune plays out, then switches off to conserve battery power.

HOW DO YOU MAKE IT.

Our FREE project gives vou clear "step-bystep" instructions. For example "take Resistor No. 1 and plug it into hole numbers $B 45$ and B47".
"Take IC ANo. 1 and plug it into hole numbers E35 to E42 and F35 to F42, (pin 1 on the IC goes into F35)"
"Take. . ."Well! why not "clip-the-coupon" and get your FREE step-by-step instruction sheet and your FREE 12 projects with each EXP300 bought and your FREE catalogue and.

EXPERIMENTOR BREADBOARDS

The largest range of breadboards from GSC.
Each hole is ider tifted by a letter/number system
EACH NICKEL-SIL JER CONT ACT CARRIES A LIFE-TIME GUARANTEE
All modular conatruction means that any Experimentor breadboard can te 'inap-locked' together to build breadboards of any size.

	EXP325 -he 'one chip' breadboard - akes 8, 14, 16 and up to 22 pin IC's Has $\mathbf{1 3 0}$ contact points including 2 bus bars.

EXP350
The 'beginnersbreadboard' For limited period you can have FREE 12 'Electronics by
Numbers' PROJECTS

EXP300

The most 'widely-bought' breadboard Don't miss out on our 'NEW AND FREE' projects They can be built an the EXP300
EXP600
The Hobbyist microprocessor' board
EXP650
The 'one-chip micraprocessor' board
EXP4B
'Snaps on' four extra hus bars
P86
The ultimate breadzoard kit
P8100
The most kit for the last money

NEW AND FREE FROM G.S.C. 24 HOUR SERVICE.

Tel (0799) 21682 with your Access, American Express, Barclaycard number and your order will be put in the post immediately.

TO ORDER JUST CLIP THE COUPON

Experimentor Breadboards	Unit Price Ine. $P \& P+15 \%$ VAT	Quantity Required
Exp 325	£3.45	
Exp 350	£5. 23	
Exp 300	f8. 63	
Exp 600	f10.29	
Exp 650	£6.33	
Exp 4B	¢4.03	
PB6	£14.95	
PB 100	f20.07	

NAME
ADDRESS
enclose cheque/PO for \mathbf{f}
Debit my credit card No.
Expiry date
Please send free catalogue Tick \square Dept. 7p

OSCILLOSCOPE USERS!

Have you ever wanted to freeze time? Capture transient phenomena? Isolate single occurence events? Find out why things happened the way they did?

YOU NEED A BIT ON THE SIDE!

The DTS12 digital storage scope from Farnell is based on our popular DT12-5 (a dual trace 12 MHz model) but is just 55 mm wider. This 'bit on the side' incorporates the DSO section.
You thus retain the use of a real time oscilloscope and gain storage, and specialised trigger facilities that open up new dimensions in measurement. The DTS12B is an optional version with an IEEE488 interface - useful for more sophisticated processing or to aid exterior storage of data on disc or tape. Model DTS12P has outputs for an XY recorder or Y-T recorder. More details:

Farnell Instruments Limited Sandbeck Way Wetherby West Yorkshire Tel. 093761961 or Harpenden 66123/4

CIRCLE 09 FOR FURTHER DETAILS.

SHEET METAL PUNCHES

 FOR CLEAN BURR-FREE HOLES inElectronic Equipment Housing \& Ducts

10 mm To 75 mm

3/8 INCH TO 3 INCH PLUS THREE SQUARE SIZES \& ONE RECTANGULAR

- Easy, quick \& simple to operate
- Will cut holes in sheet metal up to 1.625 mm mild steel
- As no power needed can be used on-site anywhere
- Produces a 'finished' hole
- Heat treated to maintain a keen cutting edge

Q-MAX (ELECTRONICS) LTD

37-39 High Holborn London WC1V 6BG Tel: 01-2427400

CIRCLE 34 FOR FURTHER DETAILS.

SC84 Micro computer

These constructor's tips for SC84-a professional Z80 microcomputer for engineers and enthusiasts described over the past three months include notes on connecting various disc drives, and MCOS command syntax.

The SC84 microcomputer has been designed as a series of Eurocards plugged into a common backplane and there are many suppliers of frames into which these cards may be fitted. The standard width for such frames is 19in with a capacity, to use the 'Euro measure', of 84 E (1 E is 0.2 in). Vero produce narrower frames, down to 24 E . ETL produce basic, but low-cost, 84 F . frames in plastic. For guidance, you should allow 6 or 7 E for the power, v.d.u. and c.p.u. cards and from 12 to 24 E for the i / o card, depending upon the number of connectors to be mounted on the front of the unit and assuming that recommended components are used. For a compact system, two 3.5 in drives require 20 E of space, two 5.25 in drives 42 E of space. I recommend wire-wrapping sockets together as a means of forming the backplane for the cards but, if the flexibility of wiring is not required - or for initial experimentation - long and short backplane p.c.bs are available from various sources.

To aid construction, a set of three printed-circuit boards and sets of components are available (details at end of article). I recommend use of these p.c.bs as the wiring can be critical frequencies up to 36 MHz being significant - and requires r.f. construction techniques.

With the exception of eproms, i.cs should not be socketed unless high quality sockets (e.g. turned-pin types) are used. By using cheap sockets you will be
building in unreliability. In particular, dynamic memory i.cs $\mathrm{IC}_{110-117}$ should be soldered in directly. Using sockets makes fault finding easier but may itself be the source of the trouble. General points to note are that 100 nF decoupling capacitors should be mounted with as short leads as possible. Even a few extra millimetres of lead can lessen their decoupling efficiency - particularly with those between the dynamic memory i.cs. Crystals on the c.p.u. and i/o p.c.bs stand upright on the board and I recommend that a fillet of silicone rubber (not the acid-based type) is set around their bases to absorb vibration. The crystal on the v.d.u. board can be laid flat, a double-sided adhesive pad being a suitable anchoring device. Note that the crystal and e.p.r.o.m. on the board shown on the May issue front cover differ from those on the production processor board.

Since the processor board was designed, high-speed c.m.o.s. has become widely available and builders of the SC84, particularly those who intend using processors even faster than the 280 B , might like to use a 74 HC 04 for IC_{123}. The $\mathrm{Z80}$ requires a clock signal which rises rapidly to at least 4.4 V - it is not a normal t.t.l. signal. This is achieved in the original circuit by using a lowvalue pull-up resistor on the output of the 74S04 gate. This resistor, R_{103}, should be left out when using a 74 HC 04 , as the cmosi.c. can more than meet the required signal specification, and R_{101} and R_{102} should be increased to
$2.2 \mathrm{k} \Omega$. It may be necessary to connect a pull-up resistor to pin five of the 74 HC 04 . The eprom supplied with the mos kit is a 2764. Although only 2Kbytes of the eprom are programmed, an 8 Kbyte eprom is supplied to meet Z80B speed requirements. Theoretically, the eprom should be a 200 ns device but the standard 250 ns one will normally suffice. The philosophy behind this computer is that it is disc-based and as little rom software as possible should be used. Nevertheless, the 2764 gives scope for extra firmware and, as a 27128 may be used without any modifications — and a 27256 or 27512 with just a couple - the computer can easily be changed into a 'silicon system'.

It is only feasible to test individual boards by substitution in a working machine. The only reason for any of the protype units not working was that solder joints had been missed so it is worth inspecting the boards for unsoldered joints or solder bridges between adjacent points. The only shorts which are potentially dangerous are those to the supplies, so it is a good idea to check that supplies on the board only go where they should.

Power supply should be checked with a representative load to make sure that it performs correctly. Suitable loads are 47 Ω, 4 W resistors for the two 12 V supplies and a $2.7 \Omega, 10 \mathrm{~W}$ resistor for the +5 V supply. It would be galling if a faulty power supply were to destroy working computer boards. To test the system, set

Table 1. Connections from i/o p.c.b. to female D-type connector for serial printer.

i/o p.c.b. pin	25-way D connector
1	7
2	5
3	3
4	2
5	20

[^3]the preset resistor on the processor board fully clockwise to its minimum, assemble the three boards and power supply, connect a monitor to the v.d.u. card and switch on. If the system works, the display will consist of 32 rows of 96 characters each. The lower 31 lines will consist of random characters and the top lines will be blank except for the word READY and a flashing cursor in the form of an underlining dash. If the screen is stable but there is no READY display, adjust the height control of the monitor, just in case the top line is off the top of the screen.

The display consists of 288 scan lines, each comprising a display period of $48 \mu \mathrm{~s}$, and should fit on a standard monitor without adjustment. If it doesn't, most displays have height and width controls (often on the tube neck) and horizontal shift may be achieved by adjusting the line hold. If the picture is rolling vertically or 'tearing' across the screen and cannot be held steady by adjustment of the hold controls, try altering S_{305} and/or S_{308} respectively as you may not be supplying correct sync. polarity. This should correct any synchronizing problems as the computer produces 625 -line-compatible signals (624-line, actually). If the monitor is well out of adjustment it may be necessary to adjust both the vertical (frame) and horizontal (line) hold controls.

If nothing at all happens, try pressing and releasing the system reset button. If the system still doesn't work, check for unsoldered joints or a faulty backplane. Experience has shown that unsoldered joints are the prime cause of failure in these types of boards and that once these are rectified, it is very likely that the system will work first time. Apart from checking for the presence of supplies and short circuits there is little that can be done in the way of fault finding without an oscilloscope with a bandwidth of at least 10 MHz .

A fault-finding service is available from me (only for systems built on E\&WW p.c.bs) but for readers who can service the boards, first check the various oscillators and the devices they drive. After this, all bus signal should be inspected for signals not falling within the definitions of t.t.l. highs and lows, i.e. below 0.5 V or above 2.4 V . Note that this refers to signals; there will be
periods when the data bus is in its third state and thus floating. Permanently floating lines may indicate an unsoldered joint. Lines sitting at the wrong levels will almost certainly be due to a short-circuit.

Readers who are new to microprocessor servicing should be wary of simple answers based on observations. If you have no screen display it doesn't necessarily mean that the fault is on the v.d.u. board. If the c.p.u. board is not working it will not load the c.r.t. controller with the information it needs to work properly. If the i / o board is faulty it may not be possible to access the v.d.u., access being controlled by a bit in the control port, IC_{205}. Do not waste too much time trying to define the fault from the current state of the system. If you know the system well you may get somewhere but it is more effective to work around the circuit repeatedly, accumulating evidence of simple, localized problems. Also note that low-capacity attenuating probes must be used with the oscilloscope and that what you see on the oscilloscope screen will not really be a true representation of the signals if their frequencies are more than one fifth of the oscilloscope bandwidth. Even then, the rise and fall times of the waves will be altered by the probe and the oscilloscope rise time. These points are not intended to be discouraging, merely to encourage realism. Experience has to be gained somewhere and if you have the time, fault finding is a good way of learning how the system works.

If the computer displays READY and the flashing cursor, the keyboard should be connected to the i / o board and the system switched on again. The keyboard strobe signal must be one that goes high when a key is pressed and stays there until it is released, and the 'echo' line must be connected or grounded. A sign of the strobe being wrong is that random characters will begin to fill the screen. If the echo line is high, only one character may be typed before the system freezes, waiting for the as yet non-existent printer to say that it is ready for an echoed character.

If it is possible to type in characters, press system reset and type LIST followed by a space and then 0000 , i.e. the four letters, a space, then the four digits. The computer should now list an area of its memory, starting at address

0000 , and then return to the READY state. If this occurs, connect a printer set for 9600 baud, eight-bit word, no parity and one stop-bit. The same listing operation may then be attempted with the echo line switched low. The printer should echo the listing which appears on the v.d.u. Note that the listing may not be as fast, or may pause before the screen is compeltely full as the computer paces the printer and its buffer capacity. Table 1 shows RS232C connections suitable for an Epson printer. These should suit other printers although it may be necessary to activate and/or interconnect other lines. For details refer to the printer manual.

All that remains is to connect the disc drives to the i/o board as described earlier. Many drives offer options. It would be impossible to describe all of the options available as they are different for each drive both in quantity and nature. Some drives (Canon, BASF) use jumpers to link pairs of pins, some (old DRE) use wire links that look like unmarked resistors. SC84 assumes what are generally the default settings of these links. The exception worth investigating is that most drives offer the option of loading the drive head whenever the drive is selected, or only when it is selected and another input line called Head Load, Radial Load or Option is active. Where possible, the second option should be used as although the system would work in the default mode, discs and the drive heads will last longer if the heads are loaded separately.

Some drives do not have a READY output, in which case wire the computer's READY input low. When using second-hand drives it is necessary to check the options with greater care as they may already have been altered for their original application. In particular, some 8in drives have an option link connected so that they use the two head-positioning control lines as 'step in' and 'step out' rather than as 'step' and 'direction'.

Many types of drive, new and second-hand, have been used with SC84 and with the Scientific Computer and the same problems have been faced and overcome due to the interface's inherent flexibility. Option details for various drives already used with SC84 appear in the users' group newsletter.

When more than one disc drive is used, the control cables are fed to one drive and then on to the next, all control and ground lines being wired in parallel. The drive will have some means of setting which drive-select signal it responds to. Once again, this varies from drive to drive but usually consists of an option area which connects one of the drive select pins on the drive interface connector to the drive electronics. Exceptions are Sony D31 and D32 drives where a four position slide switch does the selection. To use two drives set one switch to position two and the other to position three. A feature found on most drives (not Sony) is a pack of terminating resistors connected to the drive control lines. When more than one drive is to be used these resistor packs - usually in the form of a dil package - must be removed from all but the drive at the end of the interface cable.

When initially testing the disc drive(s) it is advisable to have the mechanism fully exposed so that its action can be observed. Apply power to the drive and computer. Set the switches on the i/o board for the type and density of disc used, insert a write-protected* SciDOS system disc in the drive selected by select-line one and type control S or control D (i.e. type S or D while holding down the key marked control or CTRL), depending on whether the disc is single or double density. Except for drives with mains motors which should already be running - the drive motor should start. The head carriage in the drive should retract to the outermost position on the disc and the head should be loaded against the disc. In the mean time the computer will have cleared the display and should then load SciDOS from the disc and display '3.5in DOUBLE DENSITY DISC SYSTEM - Version $1.0 \mathrm{~A}^{\prime}$ or something similar on the top line of the v.d.u., followed by an 'A>' prompt. After about a second, the drive head is lifted from the disc and the drive stopped. If so, type the three letters DIR followed by the return key.

If the drive motors are running or the head is loaded before you type control S or D, press reset and try again. If you can, switch off the drive power and manually wind the head carriage towards the centre of the disc. This is quite simple with 8 and 5.25 in drives and will ensure that you can observe any head motion.

Apply power again, press reset and retype control D or S. If the head carriage doesn't move out as described earlier you may not be selecting the drive, either through an interface-wiring or option-selecting error. To force drive select, connect only one drive to the computer, temporarily ground all of its drive-select pins and repeat the operation. This will not harm the interface circuit as all its lines are open-collector types. With the drive forcibly selected thus, pressing system reset should make the head carriage move a short distance towards the outermost position, even if nothing else works. If not you should completely recheck the interface wiring for faults.

Use an oscilloscope to check that there is a short negativegoing pulse on pin 19 of IC_{211} when system reset is pressed and released. If there isn't, trace this line to backplane line 16a. If the pulse is there, check IC_{211}, pin 21 for +5 V , pin 24 for a 1 or 2 MHz clock (depending upon the density, single or double, respectively) and then pin 15 and drive interface line 20 for up to 256 short pulses (positive going at the i.c., negative going on the interface) whenever system reset is operated. These pulses are part of IC_{211} 's reset procedure and should make the head of the selected drive step outward. The presence or absence of these pulses will give some guidance as to whether it is the i / o board, the interface cable or the drives which are not responding.

Once the disc reading function of the interface is confirmed by loading SciDOS, test disc writing by running the fomat program. To be on the safe side, when the program ásks you on which drive code you want to format take out the system disc, even if it isn't the drive you intend using for the formatting operation, and insert a non write-protected blank disc in one of the drives then continue with the formatting operation (for fuller details, refer to the manual supplied with SciDOS). Once formatting is complete, press reset and type the three letters NEW followed by a space. This wipes the computer memory so that there is no chance of an undiscovered system bug reactivating the format program - which would otherwise still be in memory. Insert your system disc, load SciDOS as before, replace the system disc with the one you have just formatted and type the three

Abstract

\section*{MCOS operating syntax.}

LIST < start address> lists 496 bytes of memory in hexadecimal form and in ascii starting from <start address> . Line format during list comprises the starting address of that line's code then the hexadecimal values of the contents of 16 consecutive memory locations starting at that address. At the end of the line the ascii representation of the 16 byles is given, any bytes not in the normal ascii range (020 to 07E) being display as a period

LOAD <start address> loads hexadecimal data into memory, starting at the specified address. LOAD formats the input code in the same way as that used during the LIST operation. II a mistake is made in entering a byle, the error may be corrected by completing the byte and then pressing DEL or DELETE. This decrements the memory pointer by one for each press as wel as backspacing the cursor position to the peviously input data. Deletions attempting to place the cursor on aprevious line of loaded code are processed by repeating that line's format on the current v.d.u. line. To exit from a LOAD, press the space bar.

ALT < address><byte> alters the location specified to the given byte After doing this it relists the memory area last listed. As you will have probably listed the area you are to alter before using ALT, the effect of this wil be to re-display the same area with the alteration made. ALT re-enters itselt, to let you continue aherazions. To terminate the ALT command use the soft reset or type any non-hexadecimal character - in which case MCOS will exi ALT and use this letter as the first of the next command. FIND < byles> searches the memory for the string of hex. bytes entered in the command line and lists the staring address of each occurrence. The maximum number of bytes is approximately 80 ; the string being terminated by pressing the ESC (or Control 1) key. MOD < start address><end address><10><from> changes all occurrences of the byte <from> to the byte <to> over the memory range < start address> to <end address>-1. FILL <address> fills memory fron <address> 10 the end of the page in which <address > falls. with the byte 0FF (a page being 256 locations sharing the same higher order address byte, e.g. Q8900 to 089FF).FILL is usually used inclearing areas of memory to make code you are using stand. out when listed or to prepare areas of memory which are not to be altered when you are preparing to partially program an eprom (programming OFF into an eprom location has no effect upon that location

NEW is an extension of FILL which fills the memory from address 00000 up to OF7FF with byte OFF and then rewrites the RST information. Used for similar purposes to FILL. COMP <address $1><$ address $2>$ compares on a byte-by-byte basis the two blocks of code starting at <address $1>$ and <address 2>. If any pair is found to differ, the address of the byte in block 1 is displayed. This command is terminated by a soft reset

MOV <start address> <end add:ess> < destination address> copies the block of code from <start address> up to <end address>- 1 to the area of memory starting with < destination address> . Care must be taken in using MOV when the destination is within the block to be moved as this will result in replication rather than a clean block move as code is moved, moved again, moved again and so on. In fact this can be quite useful for creating large blocks of the same n bytes. If you need to move a block backwards, for example to insert an extra instruction, use BACK BACK < start address><end address><count byte> moves the block of code < start address> to <enc address>-1 back < count byte > focations. A count of 00 corresponds to a move back of 256 locations which is the maximum possible in one BADK command.

RUN < start address> begins execution at < start address> Press CTRL © for saft reset.

letters DIR followed by the return key. If the message NOT FOUND appears within a second or two all is well as the system is reporting that it can read the disc directory but there is nothing in it - as one would expect with a newly formatted disc. If, after several seconds, a message beginning 'BDOS error' appears, you have a writing fault. To simulate the error message, try the DIR operation on an unformatted disc. Once you have a formatted disc, use the

Continued on page 63

Some readers have run into problems through using the wrong dynamic rams. These i.cs must be those specified on page 39 of the May issue. If in doubt, contact the author (address on previous page).
*Notch in the disc envelope covered for 5.25 in , uncovered for 8 in and window open on 3.5 in discs

DONT WASTE GOOD DEAS

We prefer circuit ideas with nezt drawizgs and widely-spazed typescrifts, but we unuld sther have scribble* on "the back of ar envelope" than let goaci ideas be wasted. Sulmissions are iadged on originalits or usefulness not exclucing imeginative modinications to existing circuits sc izese points should be lirought to the fore, preferably n the first sentence. Minimum payment of (53) is rade for published cicurts, nennally early ir the month fol owing publicetion.

High-voltage regulated supply

Costing around $£ 25$, this high-voltage regulated power supply uses only low-voltage active components. We measured a 0.1% change in output voltage when varying output current between zero and 2.5 mA . At full load $(1000 \mathrm{~V}$, 2.5 mA) with the Darlington and vmos transistors mounted on heat sinks, stability was bettethan 1% over a 10 -hour period.

Buying a power supply for our vacuum photo-detector used in laser-experiments would have cost around $£ 100$.

Two vmos transistors and a pot-core transformer form an astable blocking oscillator operating at around 12 kHz . The transformer's main secondary output voltage is doubled and then filtered by R_{1} and C_{3}. A series-pass Darlington transistor controls supply to the oscillator. Its base is driven by an LM723H voltage-regulatori.c. connected in its negative-voltage
configuration and fed by a 6.2 V positive supply derived from a further secondary winding on the transformer. A potentiometer connected to this i.c. sets the output voltage.

Feedback from the high-impedance potential divider on the output is buffered by the left-hand 2N2905 transistor; the second 2905 compensates for temperature drift.
J.J.Meyer

ITODYS University
Paris
France

Cheap timing

Radios, tape recorders, heaters, etc., can be switched on at a precise time by the alarm outrut of cheap calculators and clock; with this acoustically coupled
circuit. I have used the circuit for some time now to record BBC World Service programmes. Normally, the timer is used when the house is empty, but its filtering makes it tolerant of noise including background music and slamming doors.

A switch resets the D-type bistable i.c., the op-amps can be almost any type (if in doubt use the 741) and the microphone element is from Tandy. Hans Wedemeyer Vanse Norway

Youd have to spend over £3000 tobeatour £199Second Processor.

The BBC Micro is already one of the fastest and most powerful micros around.

But with the addition of the 6502 Second Processor, it becomes the fastest micro in its price range.
(To be fair to the opposition, their $£ 3000+$ package includes a disc drive. But a similar BBC Micro set-up with the 6502 Second Processor will cost you less than a third!)

The 6502 greatly expands the Micro's usable memory. Its 64 K of RAM combines with the BBC Micros 32 K , for a total of 96 K .

It is supplied with its own special version of BBC BASIC, called Hi-BASIC, which allows the maximum amount of this memory to be used for BASIC programs and variables. Other languages allow some or all of this memory to be used for programs, and many will automatically adjust themselves to make maximum use of available space.

Whats more, the 6502 uses the same microprocessor as the BBC Micro, but at a much higher speed. Which means programs can run up to 50% faster.

The 6502s extra power enables it to run more powerful software, such as that provided with the Acorn Bitstick, which turns the BBC Micro into a versatile computer graphics station. In fact, it has a variety of features usually found only on much larger systems.

It can also exploit the full potential of local area networking through the Econet system, with Level 2-File Serving.

So to get the most from your BBC Micro, get the 6502 Second Processor.

The 6502 Second Processor is available from your BBC stockist. For the address of
 your nearest supplier, ring 0l-200 0200.
If you wish to order by credit card, phone 099379300 during office hours.

6502 Development Programs
(available seperately)
MASM: A 6502 macro-assembler. A full range of macro facilities are provided, including looping recursive calls and conditional assembly.
XREF: A cross-referencer to be used in conjunction with MASM.
ViewEdit: A full screen editor based on the VIEW word processor.
TRACE: A 6502 trace package for de-bugging all types of program.
PRINT: A program to produce formatted assembly listings without using MASM.
The package is provided with a 250 -page manual describing all the facilities provided by the system.

Technical Specifications
The Second Processor operates at a clock rate of 3 MHz . A version 1.2 MOS will need to be fitted into the BBC Micro before operating the 6502. Integral power supply
Measurements: $205 \mathrm{~mm} \times 345 \mathrm{~mm}$
Weight: 2.1 kg
Colour: BBC Computer cream
Construction: Moulded top and bottom to match BBC Computer profile. ABS injection moulded plastic.
Power in: $240 \mathrm{v}, 50 \mathrm{~Hz}, 3 \mathrm{w}$.

The BBC Microcomputer System.

Designed, produced and distributed by Acorn Computers Limited.

WHY ILP? Years of experience in audio, unique designs, world wide sales and outlets, reliable delivery and friendly service.

BIPOLAR MODULES

Ideal for Hi Fi, Full load line protection integral Heatsink, slew rate $15 \mathrm{v} / \mu \mathrm{s}$

Distortion less than 0.01\%							
Type	Output	Load	Price	Type	Output	Load	Price
	Power	Impedance			Power	Impedance	
	Wetts (ms)) 8			Watts (ms)		
HY60.... 30.......4-8...... £9.95 HY248.. 120.......8......... £26.95							
HY6060 HY124	$30+30$	4-8.	£19.45	HY364	180	4	£39.95
			E20.95	HY368			E39.

MOSFET MODULES
Ideal for Disco's, public address and applications with complex loads (line transformers etc.). Integral Heatsink slew rate $20 \mathrm{~V} / \mu \mathrm{s}$ distortion less than 0.01%

Type	Output Load Price Power Impedance	Type $\left.\begin{array}{l}\text { Output Load Price } \\ \text { Watts }(\mathrm{mms}) \\ \\ \\ \end{array}\right)$

MOS128. 60 4-8....... $£ 30.45$ MOS248. 120........4-8........ $£ 39.95$

POWER SUPPLY UNITS
All modules are supplied with in line connectors but require potentiometers, switches etc. If used with our power amps they are powered from the appropriate Power Supply.
Type Application Functions Price
HY6 MonoPre Amp
Full Hi Fi facilities 47.95 HY66.... Stereo Pre-Amp. Full Hi Fi facilites $\mathbf{£ 1 4 . 9 5}$ HY73.... Guitar Pre-Amp............... Two Guitars plus Microphone . f15.95 HY78.... Stereo Pre-Amp............... As HY66 less tone controls..... $\mathbf{£ 1 4 . 4 5}$ MOUNTING BOARDS: For ease of construction we recommend the B6 for HY6 £0.95 B66 for HY66-78 $£ 1.45$.

Type	For Use With	Price	Type	For Use With	Price
PSU212.	1 or 2 HY 30	f11.95	PSU5	1 HY248	£17.95
PSU412..	1 or 2 HY60, 1 HY6060	f13.95	PSU55	1 MOS248.	E19.95
PSU422.	1 HY128.	£15.95	PSU71	. 2 HY 244	f71.95
PSU432..	1 MOS 128	£16.95	PSU72	. 2 HY248	$\underline{72.95}$
PSU512.	$2 \mathrm{HY} 128,1 \mathrm{HY} 244$	f17.45	PSU73	1 HY364	522.95
PSU522..	2 HY 124	£17.45	PSU74	. 1 HY368	£24.45
PSU532.	2 MOS128	E17.95	PSU75	. 2 MOS248, 1	£24.45

FOR FREE DATA PACK PLEASE WRITE TO OUR SALES DEPT

Post to: ILP Electronics Ltd., Dept. 6
Graham Bell House, Roper Close,
Canterbury, Kent. CT2 7EP
Tel: (0227) 54778 Telex: 965780

SUBSCRIBERS TO THE SEMICON INDEX

Volume 1. Transistors. Volume 2 Diode \& SCRs. Volume 3.ICs. have been advised of the 1984 updating

If this has not reached you, please contact

SEMICON INDEXES LTD
 P.O. Box 31, Fleet, Hants GU13 9DA. Tel: 0251428526 Telex: 858893 FLETELG

CIRCLE 27 FOR FURTHER DETAILS.

Dynamic ram controller

Under nomal conditions this high-speed dynamic-ram controller provides invisibie refresh yet allows the rams to be used close to their minimum cycle time (320 ms for 200 ns devices). It does so by accessing and refreshing rams
concurrently. Two 64Kbyte banks are shown but the circuit is expandable in 123Kbyte blocks. The controller works by dividing the memory into halves with separate refresh logic for even and odd memory locations (see p.58). When an even address is accessed by the processor. odd-address memory is refreshed, and vice versa.

Usually, the microprocessor accesses the memory almost sequentially and each memory driver executes refresh cyeles for approximately 50% of the time. As long as 128 memory cycles are made for each memory driver in the time allowed for one complete refresh period of 1.536 ms , extra refresh cycles are not required. This is so as long as a memory access is made once every 6μ s on average, which most microprocessors are capable of, hence the microprocessor system nomally sees the circuit as static memory; failing this,
extra refresh cycles are requested.

Bus interfacing depends on the system used and details are not shown. Most of the signals used are common. At the beginning of a memory access ADDRESS STROBE goes. low. This signal is given by the processor when the address is stable on the bus, and should be held low throughout the memory access (minimum 200 ns). It should also be high for at least 120 ns prior to each access. The controller sends out REFRESH REQUEST to halt the system while refresh cycles are carried out; normally, as mentioned, this should not happen. When the microprocessor is ready to allow these extra cycles it sends REFRESH GRANT to the controller. The 8 MHz clock must bet.t.l. compatible but it need not be synchronous with the rest of the system.

Two inverters in the ADDRESS STROBE line, $\mathrm{IC}_{46,6 b}$. cause a delay of about 30 ns to form a select signal which multiplexes address lines A_{1-16} onto an eight-bit bus (M_{0-2}) through $\mathrm{IC}_{6,7}$. Inverter $\mathrm{IC}_{4 c}$ causes a further 15 ns delay in the address strobe to produce a signal used by the memory drivers to form CAS. RAS is produced by $\mathrm{IC}_{3 \mathrm{~b}, 4 \mathrm{t}, 5 \mathrm{c}}$ either from the address strobe during a
normal cycle or from the output of IC ${ }_{1}$ during a refresh cycle.

The memory driver to be accessed is selected by $\mathrm{IC}_{4 e, 4,4,5 a, 5 b}$ depending on the state of address line A_{0}. A normal memory access is executed by the selected memory driver, the multiplexed address $\mathrm{M}_{0.7}$ being applied to the dynamic rams through $\mathrm{IC}_{13,1}$ During this period, the other memory driver executes a RAS-only refresh cycle, the refresh address being provided by C_{12} and selected by $\mathrm{IC}_{13,14}$.

If the memory driver has not executed 128 refresh cycles during the last 1.5 ms , a refresh-request signal is produced by IC ${ }_{9,10 a, 10 b, 14}$. Refresh request signals from the two drivers are combined in IC_{30}. The incoming REFRESH GRANT signal is synchronized with the beginning of a refresh cycle by $\mathrm{IC}_{2 \mathrm{t}}$ then IC_{1} provides a RAS signal while the memory drivers are not selected so that each executes refresh cycles until the memory driver requesting refresh is satisfied.

Memory capacity is increased in 128Kbyte blocks by decoding the CAS signal within each memory driver using the higher order address bits (\AA_{17} upwards). N.J.G. Brown Jesus College Cambridge

Complementary stepping-motor drive

Two stepping motors turning altemately through a given angle in a certain time were required for an instrument. In this solution, $555 \mathrm{i} . \mathrm{cs}$ in two identical sections determine how long each motor is on and counters fix the motor rotation angle. The two sections are linked by a bistable circuit.

At switch on, the first timer produces pulses at a rate depending on the setting of \mathbf{R}_{1}. These pulses drive the first stepping motor until the counter reaches the end of its count and rests. Now, the first monostable i.c. gives a pulse which, with the aid of a bistable circuit, disables the first counter and enables the second to start the second motor and the process is repeated.
E. Olcayto

Helensburgh
Stathclyde

CIRCLE 35 FOR FURTHER DETAILS.

Triangle Digital Services Limited 100a Wood Street, Waitharnstow, London E17 3HX Tel: $01-5200442$ 2

100 a W ood Street, Waitharnstow, L.

CIRCLE 69 FOR FURTHER DETAILS.

FM/AM 1500
The most comprehensive communication service monitor available today.

A complete workshop in one package for all radio communications testing.

FM/AM 500A

Compact and light - just 16 lb - for field testing.
For more information contact Mike Dawson 01-897 6446

Fieldtech Heathrow Limited Huntavia House, 420 Bath Rd Longford, Middlesex UB7 OLL Telex: 23734 FLDTEC G

Affordable Accuracy - Low Cośt Multimeters from Armon

SPECIFICATION
HC 6010 DIGITAL

* 10 Amp AC/DC
\star Bettery: Single 9V PP3. Life:
Dimensions: $170 \times 89 \times 38 \mathrm{~mm}$
\star Weight: 400 g inc. battery
\star Mode Select: Push Button
\star AC DC Current: $200 \mu \mathrm{~A}$ to 10 A \star AC Voltage: 200 mV to 750 V \star DC Voltage: 200 mV to 1000 V * Resistance: 200Ω to $20 \mathrm{M} \Omega$ * Input Impedance: $10 \mathrm{MS}_{2}$ \star Display: $3^{1 / 2}$ Digit 13 mm LCD
\star Accuracy: 0.5% DC Volts
28 RANGES, EACH WITH FULL OVERLOAD' PROTECTION. BATTERY \& TEST LEADS INCLUDED

Microcomputercontrolled cassette recorder

An up/down counter determines tape position, and Linsley Hood's record/playback circuits are found suitable for this recorder.

Fig. 9 shows the circuit of the electronic up/down counter used to determine the tape position. The counter consists of four t.t.l. decade up/down counter i.cs, type 74LS192. These are connected together as shown and controlled by logic signals from the control circuitry of Fig.2. The outputs from the four counters are selected for reading by four 4-to- 1 multiplexer circuits contained in two, dual i.cs type 74LS153. The link between counter and microcomputer is thus by seven lines of an eight-bit i/o port. The outputs from the counter are on lines PA_{0} (l.s.b.) to PA_{3} (m.s.b.). Lines $\mathrm{PA}_{4} \& \mathrm{PA}_{5}$ are outputs from the microcomputer and determine which digit is
selected. Line PA_{7} is also an output from the microcomputer and provides an overall reset function to the counter. The link with the microcomputer and method of reading out the counter values via suitable software are described later.

Operation of the counter is controlled by signals from the control circuitry. The clock input comes from the motion sensor of the cassette deck, via the transistor interface, on the output to PB_{6} (see Fig.2). The up/down control signal is derived from the rewind (R/W) 1.e.d. output signal. This signal is low for forward motion of the cassette (play and fast-forward) and high for backward (rewind) motion. The up/down con-
trol signal combined with the clock signal, using the four, dual input nand gates (type 74LS00), produces the up-clock and downclock signals required by the up/ down counter. The clock input on PB_{6} pf the control circuitry can be either at the logic high or low level when motion ceases. To prevent changes on the up/down input from clocking the counter, the clock signal should always return to logic low in the absence of tape motion. Consequently the monostable circuit, around the 74121 i.c. is introduced between the clock input and the input to the nand gates.

The reason for including the stop signal input is as follows.

Fig.9. Cincuit of up/down counter.

Fig.10. Record and playback circuitry, based on a Linsley Hood design.

Suppose that the cassette deck is operating in the rewind mode. In that case, the up/down line will be high and the counter will be counting down. Immediately the motion is stopped, the up/down line will go low. The motion of the cassette deck comes to an abrupt stop. However, the rotating magnet of the motion sensors oscillates mechanically, generating a number of false clock pulses. Because the up/down line is then low, the false pulses will clock the counter up. No matter in which direction the cassette deck is operated, the counter will always be incremented, at the instant motion ceases, by these false pulses. Such additional pulses quickly accumulate and offset the counter from its true reading. The stop signal thus prevents the clocking of the counter immediately the motion of the cassette deck is stopped. With this method some mechanical slippage between the tape motion and the counter is inevitable. However, it should occur in both forward and rewind directions and therefore, to some extent, cancel out. The stop signal is derived from the 'stop' l.e.d. signal output of the control circuitry (see Fig.2)

The circuitry of the up/down counter is powered from a 5 volt supply, but the inputs, CLOCK, STOP and UP/D are compatible with the higher 12 volt, logic signals from the control circuitry.

The four digits of the counter are selected for reading by the computer by logic levels on the lines PA_{4} and PA_{5}. The truth table
for digit selection is as shown below.

$\mathrm{PA}_{5} \mathrm{PA}_{4}$	Digit		
0	0	D 4	(m.s.)
0	1	D 3	
1	0	D 2	
1	1	D 1	(l.s.)

Record/playback electronics

There have been a number of circuit designs for the record/playback electronics for cassette deck tape recorders in various magazines over the last eight years or so. Integrated circuits have been specially designed for this purpose. The potential constructor thus has a good choice of designs from which to make his selection The main requirement of any design is that it should have an upper frequency response that extends to at least 12 kHz . (If an attempt is to be made to increase the bit rate from 2400 to 4800 baud, then an upper frequency response in excess of 15 kHz may well be desirable, so that the centre frequency of the f.s.k. system can be increased to about 12 kHz .)

From my own experience of using a cassette tape recorder to record digital data*, I do not hesitate to recommend the Linsley Hood electronics described in this magazine back in 1976. For the benefit of readers who are not familiar with Linsley Hood's circuits, they are reproduced in Figs 10 and 11 in a simplified form for use with my f.s.k. circuits. The circuits have, in fact, been simplified very little, but I see little rea-
son to include equalization for both $120 \mu \mathrm{~s}$ and $70 \mu \mathrm{~s}$ recording characteristics and therefore show the circuits with only the $70 \mu \mathrm{~s}$ characteristic. (As good high frequency response is required for the f.s.k. circuits, the use of high-bias tapes and the $70 \mu \mathrm{~s}$ characteristic is recommended.)

As no low frequency component is to be recorded, I have also removed the bass pre-emphasis components at $3180 \mu \mathrm{~s}$. The preset control of the record amplifier is retained so that the magnitude of the high-frequency pre-emphasis may be adjusted for a maximally flat frequency response; which seems to be the most logical response characteristic to choose for the f.s.k. circuitry. The rest of Linsley Hood's circuitry remains essentially unchanged.

The design of the bias/erase oscillator is that of the high efficiency circuit which Linsley Hood produced later as a postscript to his original articles. Component additions to the record/playback amplifiers, which were discussed in the postscript article, are not necessary in this undemanding application and have not been included. The requirements of the record/playback electronics in recording f.s.k. signals are not very critical (apart from good high-frequency response): audio signals are recorded at full recording level all the time and signal-to-noise ratio, for example, is not important. Distortion is also relatively unimportant, but as the frequency response is
wider below the full recording level, it should not be exceeded.

There is no need for a VU or other level meter; once the output level from the f.s.k. modulator and the input level to the record amplifier have been set they do not need to be readjusted. In fact, one or other of the level controls can be removed. I suggest that the $10 \mathrm{k} \Omega$ level control of the record amplifier be replaced with a fixed $10 \mathrm{k} \Omega$ resistor. The input sensitivity of the record amplifier is about 50 mV r.m.s., for a full recording level output of 2.25 V r.m.s., at 660 Hz , from IC_{2}. At higher frequencies the sensitivity will be even greater due to the high-frequency preemphasis circuit.

The record/playback electronics will operate very well with the record/playback and erase heads supplied with the solenoid-operated cassette deck. However, to get the best high-frequency response out of the system, it is recommended that the HS16 stereo record/play head is bought for use with the deck instead of that supplied. (No equivalent mono head as good as the HS16 is as yet available.) Stereo record/ playback circuitry is, of course, not required in this application. There is, however, a good reason for recording the f.s.k. signals onto both halves of the tape. Both halves of the stereo head may be readily driven from the single output of IC_{2} - simply provide an additional $1 \mu \mathrm{~F}$ capacitor and $39 \mathrm{k} \Omega$ resistor in series with the other half of the head. It is not recommended that the two halves of the stereo head should be paralleled for playback. Rather it should be possible to select which half is used for playback. The precise way by which this may be done is left to the constructor. If this technique is adopted, two recordings will always be made of the microcomputer programs or data. If one half is not recorded entirely correctly, there is a good chance that the other half will be.

To set the record/playback electronics to a satisfactory condition for recording the f.s.k. signals, three controls need to be adjusted. They are the signal level input, the magnitude of the high-frequency pre-emphasis (470Ω pre-set), and the bias level ($100 \mathrm{k} \Omega$ pre-set). To do this an a.c. voltmeter with a frequency response up to that of the bias oscillator's frequency is needed. Firstly, the bias voltage on the record head should be adjusted to

about 7 V r.m.s. measured across the record head with a suitable low-capacitance h.f. probe. With the value of the 470Ω resistor adjusted for maximum resistance, adjust the input signal level from the f.s.k. modulator (at the higher frequency) for an output of 2.25 V r.m.s. measured at the output of IC_{2}.

Applying logic 0 and 1 levels at the input of the modulator, record the resulting audio signals for a time sufficient for a subsequent analysis of the recorded signals. Rewind and replay the recorded signals. The amplitude of the replayed signals should be around 400 mVs r .m.s. and there should be no significant difference in the amplitude of the two frequencies. If the amplitude of the higher frequency is more than 3 dB below
that of the lower frequency, repeat the recording process having first adjusted the 470Ω preset for a lower value of resistance. It should be possible to arrive at a setting that produces very little difference between the amplitudes of the two frequency signals.

If a large difference between the amplitude of the two frequency signals still exists after attempts at adjusting the preset, it may be worth altering the bias voltage setting, remembering that the higher the bias voltage, the greater the attentuation effect upon the higher frequency. When the best possible settings are found, do try the replayed signals on the demodulator; it is very non-critical of amplitude and amplitude differences.

To be continued

Fig.11. Bias and erase oscillator.

Back in 1932, Baron von Ardenne was experimenting with variable-speed scanning tv. The theory was that if the scanning beam could travel slowly over the light areas of the subject and quickly over the dark, there would be no need to modulate the intensity of the beam. His experimental equipment used as a telecine to transmit films is shown in these pictures which are examples from the many historical photos held in the E\&WW archives. These are available to outside users at a very moderate fee. Details from Quadrant Picture Library, Quadrant House, Sutton, Surrey. Telephone: 01-661 3427.

01－208 1177 Technomatic．Ltd 01－208 1177

BBC Micro Computer System OFFICIAL DEALER
Please phone for a vailability

ALL PRICES EXCLUDE VAT Please add carriage 50p unless indicated as follows：
（a）$£ 8$（b）$£ 2.50$（c）$£ 1.50$（d）$£ 1.00$

ACORN COMPUTER SYSTEMS BBC Model B BBC Model B＋Econe BBC Model B＋DFS BBC Model B＋DFS 6502 2nd Proce BBC Teletext Receiver UPGRADE KITS A to B Upgrade Kit DFSKit Installation

Econet Kit．
installation
Soeech Kit
Installation
ECONET ACCESSORIES
Printer Server Rom
File Server Level 1
File Server Level 2
Clock +2 Terminators
Econet User Guide．

BBC FIRMWARE

View Word Fiかcssar Roul
BCPL ROM + Ris
Disc Docto：Utility Fiom
£348．00a
〔389．00a
〔429．00a
〔429．00a
£470．00a
£470．00a
\ldots
£ 1750
$\Upsilon 175 \mathrm{~b}$
$£ 169.00 \mathrm{~b}$
£195．00a

© 75.00 d

95.00 d

1500

§55．00d

§25．00

\＆47．00d
$£ 10.00$

£41．00b

186.00 b
$〔 86.000$
$\Gamma 216.000$
£216．000
92.00 b
$\begin{array}{r}\text { £ } 10.00 \mathrm{~d} \\ \hline\end{array}$
£7．500 Accessories
552.00 c Single Disc Cable

Double Disc Cable．．．．． 88.00 d
E34．00 C 3 M DISCS with Lifetime Warranty
$87.00 \mathrm{~b} 40 \mathrm{TSS} / \mathrm{SD}$ ．．．．．．．．Fkt of 10 ．．．．．．$£ 1600 \mathrm{c}$
 $\begin{array}{ll}\text { 〔65．00d } & \text { 8OT DS／DD Pkt of } 10 \text { ．．．．．£30．00c } \\ \text { 28．00d } & \text { 3＂Double Sided Disc }\end{array}$
 28．00d FLOPPICLENE Drive HeadC／Kit ．．．．$£ 14.50 \mathrm{c}$
£20．00d Disc Library Case． £20．00d Disc File Case 30／40．．．．．．．．．．．．．．．．．．．．．．00c £28．00d Disc Lockable Case 30／40… $£ 15.00 \mathrm{C}$ £59．00c Disc Lockable Case 60／70．．．．．．．．．．£2700b

SOFTWARE

ACORN／MERLE BUSINESS SOFTWARE
Invoicing．Stock Controk Accounts Payable Accounts Receivable，Order Processing． Mailing System ．．．．．．．．．．Each $£ 22.65 \mathrm{~d}$ GEMINI Leisure－Full Range ACORNSOFT－Full Range．
ACORN LANGUAGES including BCPL LISP FORTH with Manuals
BBCSOFT－Full Range PROGRAM POWER－Full Range BEEBUGSOFT－Full Range．

TORCH Z80 DISC PACK
Designed with a tital expansion capability The Torch upgrade will give you a sophisticated business／
professional system．Why not contact us for your require－ profess
ments？

TORCH Z80 DISC PAC！

The proven upgrade for the BBC Micro Comprising $2 \times 400 \mathrm{~K}$
disc drive． ZBO processor with 64 K or memory，anda $\mathrm{CP} / \mathrm{Mcom}$ ． patible operating system The system is supplied complete with the PERFECT software range including PERFECT WRITER
PERFECT SPELLER．PERFECT CALC and PERFECT FILE Fuli PERFECT SPELLER．PERFECT CALC and PERFECT FILE Full
TORCHNET software is also supplied allowing sophisticated networking between other units．

The TORCH $Z 80$ SECOND PROCESSOR CARD－for those
who already have suitable disc drives The card is supplied with all the tree sottware．as detailedabove，presenting a veryattrac－
tive package $\mathbf{~ E 2 9 9}$

ACORN IEEE INTERFACE

full implementation of the IEEE． 488 standard，providing computer control of compatible scientific \＆technical equip－ ment at a lower price than other systems．Typical applications
are in experimental work in academic and industrial aberatories．The interface can support a network of up to 14 other compatible devices and would typically link several items of test equipment allowing them to run with the optimum
efficiency．The IEEE Filing System ROM is supplied． $\mathbf{£ 2 8 2}$ ．

BUZZBOX

A full spec pocket size direct modem with both Originate and
Anower modes．This BT approved modem contorms to CCITT directly into telephone line．Modem $£ 69$ head $\mathbf{E 3 . 5 0}$ Ext PSU directly
$\$ 8.00$

BOOKS
We have alarge selection of books on the
Please ask toi details．No VAT on books

＇TIME－WARP＇
 REAL－TIME－CLOCK／CALENDAR

 FOR THE BBCA low cost unit that opens up the total range of 6 Real－Time applications．With its full battery backup possibilities screen time and date information automatic document dating．precise timing \＆control in scientific applications． recreational use in games eic－its uses are endless and are simply limited by one＇s imagination．Simply plugs into Supplied with extensive applications softwar
Please phone for details．£29．00＋£2．50 carriage．
$\star \star$ ATTENTION $\star \star$
All prices in this double page spread are subject to change
without notice． without notice．

SOFTY II
This low cast intelligent eprom programmer can
program $2716.1516,2532$ 2732．and with an adaptor， 2564 and 2764 ．Displays 512 byte page on TV．－has a serial and parallel $1 / 0$
routines Canbe used asan routines Can be used as an
emulator，cassette inter－ tace． Softy 11 £195（b）Adaptor for
$2764 / 2564$ £25．00（c）

PRINTERS

Printer Sharer＋Cabie Set
JUKI6 100 Dasiby whee．．．．
MCPAO

ACCESSORIES

 325.00 a250.00 a | 250.00 a |
| :--- |
| 80.00 a | 38.00 a

37500 a
and
 \＆350．00
$£ 10.00 \mathrm{a}$ \＆ 110.00 a
E 125.00 c

rallel Printer Lead	§10．000
Serial Printer Lead	£8．000
Epson Serial Interface 2 K 8148 ¢	£50．00c
Epson Serial Interface 8143	135．00c
FX80 Dust Cover	¢400d
Epson Paper Roll Hoider	¢17．00c
FX－80 Tractor Attachment ．．．．．£	£37．00c
PAPER Fantold 2000 sheets ．．．	£13．500
Ribbon MX80／HX80／F X80	［6．50c
Ribbon MX／RX／FX100	¢12．50c

£195．00a	
£225．00a	CASSETTE RECORDERS
£295．00a	SANYO DRIOI Data Recorder．．．． 530.000
£420．00a	Datex Silm Line ．．．．．．
£287．00a	B8C Tape Recorder ．．．．．．．．．．．．．．．$£ 28.500$
¢195．00a	Cassette Lead ．．．．．．．．．．．．．．．．．． 5300 d
£260．00a	Compule Grade C－12 cassette \quad 0．45d
£358．00a	Compuler Grade Casserte 10 oft ．．．54．000
£106．00a	Phillips Minl data cassette ．．．．．．．． 53000
£99．00a	
¢6．50d	
£3．00d	

UV ERASERS

SMARTMOUTH FOR THE BBC The original＇infinite speech＇．Stlll the best． A ready built totally self contained speech synthesiser unit，attractively packaged with built in speaker，AUX
output socket etc－no installation problems It allow output socket etc－no instaliation problems ease and simplicity，while at the same time being very economi－ cal in memory usage．You can easily add speech to most existing programs Due to its remarkable infinite vocabulary．its uses spread throughout the whole
spectrum of computer applications－these include industrial，commercial，educational，scientific，rec－ reational etc．No specialist installation－no need to open your computer．simply plugs into the user port－ and due to the simple software，no ROMS are needed．
SMARTMOUTH is supplied with demo and develop－ ment programs on cassette，and full software instruc－ ment programs $\begin{aligned} & \text { tions } \mathbf{£} 7+\varepsilon 2.50 \text { carriage }\end{aligned}$

UV1T E
Buitt－in
Buik－in safety interlock to avoid accidental ex－ posure to the harmful UV rays
averag handle up to 5 eproms al a time with an p\＆p．
UV1 as above but without the timer

For Industrial Users．we offer UV140 \＆UV14 1 erasers with handling capacity of 14 eproms．
UV141 has a built in timer．Both offer full built in safety features UV140 £61．UV141 179

PRODUCTION PROGRAMMER

P8000
P8000 provides reliable gang prograns simultaneously 8 EPROMS simultaneously with device sizes up to $16 \mathrm{~K} \times 8$ bytes operation ensure easy eprom selection and reliable pro－ gramming in minimum program． ming times £695 + £6 carriage．

EP8000．
This CPU controlled Emulator Programmer is a powerful tool for both Eprom programming and development work EP 8000 can emulate and program all eproms up to $8 K \times 8$ bytes，can be used as stand alone unit for edit－ ing and duplicating EPROMS，as a slave programmer or as an eprom emulator $£ 695$（a）．

CONNECTOR SYSTEMS										
I．D．CONNECTORS （Speedblock Type）	JUMPER LEADS 24＂ ＇Ribbon Cable with Headers				AMPHENOL CONNECTORS		RIBBON CABLE			
					36－way pluy Centronics ParallelSolder 55.25IDCIS． 25		（Grev／meter）			
					36．way socket Solder £5．50 24－way olug IEEE Solder $\varepsilon 5$					
D CONNECTORS	Abbon Cablewith D Comin				PCB Mtg Skt Any Pin 24 way Solder 600p 36 way ZOC 650p			${ }_{280}$		
	RS 232 JUMPERS			EURO CONNECTORS		EDGE CONNECTORS				
				DIN41612 $\times 32$ way St Pin 230p 275p 2×32 way Ang Pin 275p 320p						
Sotaer ${ }^{\text {a }}$										
								－ 350 p		
Hoods 90p 85p 90p 100D IDC 25 way plug 385p．Socket 450p				－		（175p220p				
TEXTOOL ZIF	DIL HEADERS							$200 \mathrm{p}-$250260 p19001900		
						spacing $(A+B, A+C)$ TEST CUPS				
DIL SWITCHES ${ }_{\text {SOP }}$			－	$\begin{gathered} \text { TEST CLIPS } \\ \text { 14-pin 375T } 40 \text { pepin } \varepsilon 10.30 \text {-pin £4 } \end{gathered}$						$\begin{aligned} & 395 p= \\ & 400 \mathrm{p} 500 \mathrm{p} \end{aligned}$
8 －way 120 p 10 －way 150 p										

LED Driver System
 The ICM 7218 series of universal LED driver systems

 provides in a single package, all the circuitry necessary for interfacing most common microprocessors and digital systems to an LED display.Using multiplexed scanning circuitry, 8 individual 7 segment displays can be driven using just one 28 -pin package.

The ICM 7218 series is ideal for use in microprocessor systems. Data is read directly from the l/O BUS line from the processor.

The ICM 7218 is manufactured in CMOS to give all the benefits associated with this technology.

Total circuit integration on chip includes:
\# Digit and segment drivers.

* All multiplex scan circuitry.
* 8×8 static memory.
* 7 -segment Hexadecimal and Code B decoders
* Output drive suitable for large LED displays.
* Both common anode and common cathode LED drive versions.
* Single 5 volt supply required.
* Data retention to 2 volts supply.
* Shutdown feature - turns off display and puts chip into very low power dissipation mode.
* Pin selectable choice of 2 seven segment decoders - Hex and Code B or No Code.
* Microprocessor compatible.
* Serial and rándom access versions.
* Decimal point drive on each digit.

AHEAD OF THE FUTURE

Hawke Electroncs Limied, Amotex House. 45 Hanwor th Road, Sunbury-on-Thames, Middlesex Tel: 01-979 7799 Telex: 923592

HF WORLD BEATER.
 ICOM are proud to present the $I C-M 700$ marine

 SSB transceiver. This 150 watt radio is above and beyond the competition and built to operate with confidence when others cannot.The IC-M700 has 48 fully programmable memory channels and operates in simplex or semi-duplex covering all ship-to-shore, high seas telephone and ship-to-ship SSB channels. Independent transmit and receive programming

A heavy-duty loudspeaker provides 5 watts of receive audio, other features include a wide range clarifier and audio activated squelch (radio remains silent unless a human voice is detected). Interference noise blanker and a heavy-duty mounting bracket are standard. The IC-M700 is a sophisticated but rugged and reliable marine transceiver.

ILICOM

Thanet Electronics Ltd
143 Reculver Road, Herne Bay. Kent. England. Te!(O2273) 63859/63850. Telex 965179 CIRCLE 66 FOR FURTHER DETAILS.

CIRCLE 37 FOR FURTHER DETAILS.

Variable-speed video

Part 3: C-format timebase correction

The principle of sampling is almost universally used for the correction process. The continuous video waveform from the recorder is broken into discrete voltage samples which are stored for subsequent recreation of the waveform. The samples can be stored in analog form in chargecoupled devices, or quantized and stored as digital data in memories or shift registers. All these approaches will be found in current timebase correctors.

Fig. 1 shows how the stored samples are treated to compensate for the instabilities encountered. In (a), a line played back at the wrong time can be shifted by changing the delay between storing and reading samples. To be able to advance or retard lines, all correctors introduce a nominal delay which can be changed as needed. The recorder is synchronized to signals which are in advance of reference video by the nominal delay period. To give a symmetrical advance and retard capability, the nominal delay should be one half of the storage capacity of the corrector.

In (b) a line is too short because the head to tape speed is higher than normal. The sample rate on writing the store is faster than on reading, and the line is expanded to the correct length. Clearly lines which are too long can be shortened by writing the store more slowly. In (c), the drum accelerates and time compresses the end of the line. The write sample rate is constant, but the read sample rate is decelerated as the line proceeds in order to time-linearize the waveform. This is known as velocity compensation.

In practice, all three processes will be contemporaneous. The

> A video tape recorder cannot playback a C-format tape with sufficient precision to keep subcarrier phase within 5 degrees of reference, even at normal speed. By removing instabilities affecting line and position, a timebase corrector restores precise timing to the offtape signal.
structure of a simple timebase corrector is largely defined by the requirements of these processes, Fig.2. The essential components are:

- Off-tape sample rate locked to off-tape signals, starting in a repeatable place on each line and dividing the line into the same number of samples irrespective of line period.
- Sample store, an endless ring memory, where the instantaneous delay is determined by the difference between write and read timing.
- Read sample rate based on reference video, spacing out the samples to standard line length. - Velocity compensation, dynamically changing the read sample rate according to velocity errors

by J. R. Watkinson, M.Sc., B.Sc.

Fig.1. Three fundamental timebase corrections. At (a), the v.t.r. is advanced from reference, and correctly timed output lines are returned to reference timing by a delay equal to the advance. Early and late lines are compensated by changing the delay. At (b), off-tape lines are sampled by a clock which changes proportionally to off-tape line frequency. Line period errors are removed in this way. Shown at (c) is non-linearity due to tape acceleration which is removed by swinging the read clock in the same way. (Burst and chroma omitted for clarity.)

Fig.2. Simplified t.b.c. block diagram, showing that the memory acts as a buffer between unstable off-tape timing and stable reference timing. Note that the dropout compensator and the varispeed colour processor have been ommitted as these functions can be performed at various different places.

Fig.3. When a finite filter slope is used, aliasing will always occur. In (a) the sampling rate is twice the -3 dB frequency limit of the input spectrum, and accordingly aliasing products may only be 3 dB below wanted signals. In (b) the sampling rate has been increased to 12.25 MHz and aliasing products for the same filter are now 15 dB below program.
in the writing process.

- Vertical lock circuit, which ensures that the first line in an offtape field entering the memory will become the first line in the reference field when the memory is read, irrespective of the relative timing of the two events, which can change due to inertial effects or the use of variable speed.

Sampling the off-tape video. As in all sampled systems, the sampling rate must satisfy the Nyquist criterion, which means that it must be at least twice the highest frequency in the input spectrum to avoid aliasing. It is standard practice to provide a steep cut filter immediately prior to the sampling circuit. Unfortunately all realisable filters have a finite slope, and this means that aliasing will always take place. The level of aliasing products

below program can be chosen by raising the sampling rate.

Fig.3(a) shows the aliasing area where the baseband spectrum overlaps the lower sideband of the sample spectrum. In (b) the aliasing products for the same filter slope have been reduced by raising the sampling rate.

For a video bandwidth of 5.5 MHz a sampling frequency of 11 MHz is adequate with a perfect filter, whereas perhaps 2 MHz needs to be added to allow for finite filter slope, making 13 MHz a working minimum.

The usual arbiter in choice of C-format correction sampling rate has less to do with Nyquist than with the difficulty of providing a sample clock which has the same number of samples in a line, whatever the line period may be.Some repetitive feature of the off-tape video signal must be multiplied up to provide the clock. It is a characteristic of phase-locked loops that those which display the least inertia are those which multiply by the smallest integer. It is far more practicable to track the offtape signal by phase locking to the burst than it is to rely on the much lower frequency H -pulses. For this reason, a sampling rate which is an integer multiple of subcarrier frequency is usually used. There is nothing in sampling theory to dictate such a choice.

The smallest integer multiple of subcarrier which exceeds the Nyquist criterion is 3, giving a sampling rate of 13.29 MHz , but
$4 \mathrm{f}_{\mathrm{sc}}$ is also used giving a sampling rate of 17.72 MHz .

The relative merits of $3 \mathrm{f}_{\mathrm{sc}}$ and $4 \mathrm{f}_{\mathrm{sc}}$ sampling can be assessed in a number of ways.

- Memory size and cost are proportional to sampling rate, all other things being equal.
- Where quantizing is used, the speed of the a-d converter will be determined by the sampling rate. In a varispeed system at +50 times normal speed, the line period falls to $41.3 \mu \mathrm{~s}$ and a $4 \mathrm{f}_{\mathrm{sc}}$ converter will be required to run at 27.5 MHz , whereas a $3 \mathrm{f}_{\text {sc }}$ convertor will only be running at 20.6 MHz .
- In a perfect sampling circuit, the sample gate is closed for an infinitely short time, and a truly instantaneous voltage is held. In practice the aperture must be finite, and the sample is not truly instantaneous. This so-called aperture effect causes a frequency response roll-off which is a $\sin x / x$ function of the aperture ratio. For a given aperture period, which is the usual design constraint, $3 \mathrm{f}_{\mathrm{sc}}$ sampling gives an aperture ratio (aperture/sample period) which is $4 / 3$ better than $4 f_{\text {sc }}$ sampling, since the sample period is $4 / 3$ as long. The result is that less equalization is necessary to compensate for aperture effect in a $3 \mathrm{f}_{\mathrm{sc}}$ system.
- Four times f_{sc} sampling eases the design of the anti aliasing filter, but in timebase corrector applications such a filter is not a critical component, as there is very little energy in a v.t.r. output
signal above the specified video bandwidth.

As there are points in favour of both frequencies, the choice of sampling rate is largley a matter for the designer's preference, and this view is reinforced by the fact that broadcast quality correctors are to be had using either sampling rate, and offering virtually identical specifications.

The sampling rate to be used on a given line of offtape video is determined by the frequency of the chroma burst at the beginning of that line. A phase-locked oscillator locks to the burst and runs at the same frequency for the duration of the line. The sampling clock is obtained from the p.1.1. divider chain. In this way every line is subdivided into an equal number of samples, irrespective of line period changes due to mechanical effects or the use of variable speed.

The precise point on a line where sampling begins is not as important as the stability of that point, as any variation in start point of write or read processes will result in horizontal picture movement.

It is neither necessary nor desirable to store the H -pulse at the start of the line, as it contains no information which cannot be obtained from reference video. There are, however, good reasons for sampling and storing the burst; following correction it can be phase compared with reference burst, and the error can be

fed back to eliminate thermal drift.
A common write start point is just the burst on the back porch. As the back porch in this area is a constant voltage, there is nothing to trigger from, and the choice of such a point may appear to be a high-tech form of masochism. The problems to be overcome are

- centre crossings of the burst advance towards the H-pulses at one cycle per frame owing to the 25 Hz component of subcarrier frequency
- burst inverts after every pair of
lines due to the N / I sequence
- burst occurs after the desired write start point
- change in head-to-tape speed causes the time between the leading edge of H -pulses and the burst to change.

The 25 Hz component of subcarrier, uncorrected, would cause ambiguity over which burst centre crossing to select, resulting in one cycle of subcarrier picture shifts. The solution is to apply an equal rate of advance to H -pulses as the frame progresses, which resets at the beginning of each

Vigilant \cap @ MICROPROCESSOR CONTROLLED RECEIVERS
 Type SR 530 USB/CW/AM/Telex -10 Hz Steps (Marine)

 Type SR 532 USB/LSB/AM/CW - 10 Hz Steps (Static/Transportable) Type SR 531 USB/LSB/AM/CW - 100 Hz Steps (Static/Transportable)

DESIGNED AND MANUFACTURED TO HIGHEST INTERNATIONAL SPECS

Freq. Range	50 KHz to 30 MHz	Memory	200 Channels Freq/Mode/Filter
Increments	10 Hz or 100 Hz Steps	Scanning	Full memory or discreet parts
Stability	± 1 Part in $10^{7} /{ }^{\circ} \mathrm{C}$		Automatic or Manual Stop
Tuning	Keypad and Spin Wheel		Manual step on or Reverse
Power Supplies	110/240V AC and 24V DC	Dwell	Variable from Keypad 1 to 9 seconds
FULLY MODULAR	'PLUG IN' CONSTRUCTION	KEYPAD	CTIONS INDICATED BY DISPLAYS

NOW AVAILABLE AT HIGHLY COMPETITIVE PRICES
Send for Technical Brochure to: Tel: (0344) 885656 Vigilant Communications Ltd. Telex: 849769 Vigcom G Unit 5, Pontiac Works, Fernbank Road, Ascot, Berks SL5 8JH, England

101 FOR FURTHER DETAILS.

Add 8 channels to your 'scope New Thurlby OM358 multiplexer £169.vat

The Thurlby OM358 gives any oscilloscope an 8 channel display. Observing many waveforms simultaneously can be essential when analysing sophisticated equipment. Application areas include microprocessor based products, data transmission systems, A to D converters, frequency synthesizers etc.
The OM358 is ideal for digital equipment (it can often solve problems that would otherwise need a fast logic analyser) but, unlike dedicated logic test instruments, it is equally suited to analogue waveforms.
The OM358 has a bandwidth of 35 MHz and 3% calibration accuracy. Each input has an impedance of $1 \mathrm{M} \Omega-20 \mathrm{pF}$ and accepts signals up to $\pm 6 \mathrm{~V}$. An 8 channel, 4 channel, or single channel display can be selected with triggering from any channel. Colour data sheet with full specifications available.

$1 / \text { Thurlby }$	Thurlby Electronics Ltd New Road, St.Ives, Cambs.	OM358 with two BNC cables $£ 197.80$
designed and built in Britain	PE17 4BG Tel: (0480) 63570	(inc P \& P and VAT)

CIRCLE 82 FOR FURTHER DETAILS.

ELECTRONICS C.A.D. "ANALYSER"

PERFORMANCE ANALYSIS Of LINEAR CIRCUITS using the BBC MODEL B AND PERFORMANCE ANALYSIS Of LINEAR
SINCLAIR SPECTRUM 48 K MICRO'S
SINCLAIR SPEC RUM 48K MICRO'S CIRCUI USing the BBC MODEL B AND
Simulates Resistors, Capacitors, Inductors, Transformers, Bipolar and Field effect Transistors, and Operationa! Amplifiers in aryy circuit configuration,
Performs FREQUENCY RESPONSE ANALYSIS on Circuits with up to 16 Nodes and 60 Components, for Phase and Gain/Loss, Input Impedance and Output Impedance. Ideal for the analysis of ACTNE and PASSNE FILTERS, AUDIO, WIDEBAND and R.F. AMPUFIERS, LINEAR INTEGRATED CIRCUTS etc., etc.
"ANALYSER" can greatly reduce or even eliminate the need to breadboard new designs. USED BY INDUSTRLAL AND UNIVERSTY R\&D DEPARTMENTS WORLD WIDE LOW COST ... VERY EASY TO USE.

For further details write or phone NUMBER ONE SYSTEMS
DEPARTMENT WWV
9A CROWN STREET, ST IVES
HUNTINGDON
CAMBS. UK PE 17 4EB
TEL: 048061778 TELEX: 32339

LOGICAL EE/EPROM PROGRAMMERS \& ERASERS

RS 232 serial interface Stand alone/computer operation \bullet Industrial quality $\cdot 128 \mathrm{~K}$ internal RAM upgradeable to $256 \mathrm{~K} \cdot$ Emulation
Programs 8748/49/51/41/42/55

\star COMPETITIVE PRICE \star SOLE U.K. SUPPLIER

HIGH ST. KIRMINGTON S.HUMBERSIDE

CABLE T.V. HEAD END AND REPEATER AMPLIFIERS

CHANNEL CONVERTERS
TCUU UHF-UHF Single channel converter. Gain adjustable $+2 d \mathrm{~B}-16 \mathrm{~dB}$. Maxi mum output +26 dBmV . Crystal controlled oscillator. Power requirement
TCUV As TCUU except UHF to VHF converter. (Quote Channels sequired)

SINGLE CHANNEL AUTOMATIC GAIN CONTROL AMPLIFIERS
TAG4863 Gain 48dB, maximum output $63 d \mathrm{BmV}$ Regulator + or -8 dB . Power
TAG4063 Gain 40 dB , maximum output $64 d \mathrm{dmV}$. Regulator + or -16 dB Power requirement 14 V 210 mA

SINGLE CHANNEL AMPLIFIERS

TSS4663 Gain 28-46dB adjustable. Maximum output 63dBmV. Power requirement

DRIVER AMPLIFIERS

TS 1030 FM FM driver amplifier. 10 dB Gain. Maximum output 30 dBmV . Power require-
TS1030B3 Band III driver ampltier. 10dB gain. Maximum output $30 d B m V$. Powe equirement 14 V iom
TS1030UHF UHF driver amplifier. 10 dB gain. Maximum output 30 dBmV . Power require
single channel UHF driver amplifier. $10 d \mathrm{~B}$ gain. Maximum output $40 d \mathrm{BmV}$ Power requirement 14V 10 mA . (Quote channel required).

DISTRIBUTION AMPLIFIERS
TE2042 Domestic distribution amplifier. 1 input, 1 output. Gain 20dB. Maximum
Domestic distribution amplifier. 1 input, 2 outputs, Gain 16dB. Maximum
output: 2 at 38 dBmV .
TS2846 $\quad 40-860 \mathrm{MHz}$ Gain 20 dB UHF. 18dB VHF Maximum output 46 dBmV
TS2845 $\quad 40-860 \mathrm{MHz}$. Gain $28 d \mathrm{~B}$ UHF, $22 d \mathrm{BVHF}$. Maximum output $46 d \mathrm{BmV}$
TS2054 $\quad 46 d \mathrm{BmV}$. $40-860 \mathrm{MHz}$, Gain 20 dB UHF, 18 dB VHF. Maximum output 54 dBm
TS2054 $40-860 \mathrm{MHz}$, Gain 20dB UHF, 18 dB VHF. Maximum output 54 dBmV
IS2050 \quad Gain 55 dB UHF, 55 dB VHF, 42 dB FM. Maximum output 65 dB mV .
$\begin{array}{ll}\text { REPEATER AMPLIFIERS } \\ & \\ \text { TSC3660 } & \text { Repeater. Gain } 16-36 d \mathrm{BHF}, 10-30 \mathrm{~dB} \text { VHF. Maximum output } 60 \mathrm{dBmV} \\ \text { TSC3665 } & \text { Repeater. Gain } 16-36 d \mathrm{BHF}, 10-30 \mathrm{~dB} \text { VHF. Maximum output } 65 \mathrm{dBm} \mathrm{m}\end{array}$ TSC3060 Repeater. Gain 16-36dB UHF, 10-30dB VHF. Maximum output 65 dBmV Repeater. Gain $10-30 \mathrm{~dB}$ VHF', Maximum output 60 dBmV

QUALITY AT LOW COST TAYLOR BROS (OLDHAM) LTD

 LEE STREET, OLDHAM - TEL. 061-652 3221 - TELEX 669911
CIRCLE 94 FOR FURTHER DETAILS.

R.WITHERS * COMMUNICATIONS

If you have not heard of (R. Withers Communications) we are main distributors or agents for the following, Yaesu, Icom, Kenwood, M.Modules, Jaybeam, Toevna, Revco Antennas. Cleartone, Mutek, Drae, F.D.K. Tonna, Welz, Zycomm, Neve Radiotelephones.

We are also stockist (British Telecom Approved) of a wide range of cordless telephones and telephone systems. We are also agents for hundreds of other radio communications equipment known the world over, we also manufacture our own range of VHF-UHF beam antennas which are also used by leading broadcast companies for wireless mic applications. We supply a large range of power transistors \& modules to the trade. These we import ourselves directly from Japan. Listed below are just some of the many services we offer.

* Supply \& repair of all amateur \& business radio equipment
\star Complete check of your transiever on a spectrum analyser (with
comprehensive report) for the all in price of $£ 12.50$ subject to an appointment being made
* Supply \& complete installations of business radio systems including
competitive maintainance contracts, local authorities included
\star Supply of 10 metre converted radios LCL. DNT, ICOM
* Only supplier of modified Revco RS $200050-520 \mathrm{MHz}$ continuous
coverage scanning receiver modified by (R . Withers Comms)
* Probably the largest seller of second hand radio equipment in the country because of our commission sale agreement (3 month warranty) plus equipment facility
* The fastest growing retail \& wholesale company in the British Isles. Send for details of any of the equipment or services we offer whether you are in the protession of just an interested party an s.a.e will speed up your enquiry \star For all your communication needs give R.W.C. a try we promise you will not be disappointed
\star The largest selection of radio allied services offered under one roof, with no expense spared on test equipment and qualified staff.

584 Hagley Road West, Oldbury, Warley
 B68 0BS (Quinton, Birmingham)
 Tel: 021-421 8201/2 (24 hr answerphone)

Overseas customers welcome. We speak German \& Japanese Import/Export no problem. Please telephone during working hours or TELEX 334303 TXAGWM-G

frame. This process is known as H -modulation, and can be seen in Fig. 4.

H-pulses are fed through an integrator which gives the leading edge a rise time of 225 ns or one cycle of subcarrier. A second integrator produces a sawtooth of the same amplitude, but whose period is one frame. A comparator changes state when the H-pulse ramp crosses the frame rate ramp. The effect is to delay H -pulses by 225 ns at the start of a frame, Fig. 4, falling to zero delay at the end of a frame. Burst crossings now have a constant relationship to H -modulated sync. pulses, and there is no further ambiguity over the centre crossing to use as the start point.

The burst in version every pair of lines would cause the halfcycle timing shifts shown in Fig. 5 for both $3 \mathrm{f}_{\mathrm{sc}}$ and $4 \mathrm{f}_{\mathrm{sc}}$ sampling. In normal operation this is not important, but for drop-out compensation, where samples are taken from previous lines, the half-cycle shift causes problems for both sampling frequencies. The solution is to selectively invert the burst signal sent to the write (and read) start circuits, but to leave unchanged the burst signal sent to the a-d convertor. As the burst signal to the write start circuit is an e.c.l. level, it can be inverted with nothing more than an exclusive-or gate.

A consequence of this approach is that all lines in memory have the same relation to subcarrier, and can be interchanged for the purpose of dropout compensation and under certain other circumstamces due to varispeed operation which will be dealt with under memory control. The preference for constancy of subcarrier phase rather than H-pulse means that the start point moves along the line by one cycle as the frame progresses, causing the square frame to become slightly rhombic in the memory. As H modulation is also used to establish the read start point, the overall effect is cancelled.

The burst swing will also be discernible in the memorized bursts, because all lines in the memory now start at the same subcarrier phase. The readout burst can thus still be used for temperature compensation.

The write start point precedes the burst, but a burst crossing is necessary to define the start point. This problem is handled by inserting a delay in the video path to the sampling circuit, as in Fig.6. A phase-locked oscillator
known as a burst stretcher, locks to the burst, and a centre crossing of the oscillator output, a fixed number of cycles after H-modulated H-sync, becomes the write start point which will be just before the burst on the output of the delay line. As the delay is not an integral number of cycles of subcarrier, the phase relationship between sampling points and offtape burst is arbitrary but repeatable. As the sampling rate is only a multiple of subcarrier for convenience, no particular phase relationship is required.

The determination of the correct centre crossing of the burst stretcher output is complicated by the fact that the burst frequency changes as the head to tape speed changes. A simple time delay from H -modulated H -sync would only work at normal speed. One solution is to use an adaptive delay which adjusts itself every line by phase comparing the end of its own delay period with the nearest centre crossing of stretched burst. The process is shown in Fig. 7.
If the v.t.r. accelerates, raising the burst frequency, the stretched burst will phase lead the delay output, and the phase error causes the delay to be shortened. If it decelerates, lowering the burst frequency. The stretched burst will phase lag the delay output, and the phase error will act to increase the delay. The delay adapts itself in this way to the speed of the v.t.r. and tracks the same cycle of subcarrier relative to H -modulated H -sync irrespective of the actual offtape subcarrier frequency.

A couple of refinements are necessary in practice. Firstly if the phase error exceeds 180 deg . it will be ignored, as such a gross error could only be conducive to picking the wrong cycle of burst. Secondly, there is no absolute standard for phase in PAL, and the relationship on a given tape will depend on the SPG used when it was recorded. A delay adjustment is usually provided to permit the write start phase error to be zeroed for a particular tape, which allows the adaptive delay to work in the centre of its range.

Reference timing. Accuracy of read timing must be no less than that of the write timing. The read sample rate is obtained by multiplying up reference video bursts. Read start timing is established by the same processes as write start, and sometimes identical circuitry will be used in order
to cancel the effects of temperature change on overall timing. The read timing circuits contain in addition a manual adjustment to the read start point, which pertmits picture centering in the reference raster, and the read section of the velocity compensation system.

Velocity compensation. Frequency of the sampling clock is derived from the burst, and the remains constant for the duration of each line. However, the change of off-tape subcarrier from the v.t.r. is continuous, as it is proportional to head-to-tape speed. Fig.8(a) shows that if the v.t.r. accelerates, the subcarrier follows smoothly, but as the corrector can only lock to each burst, phase errors are caused between sampling rate and subcarrier which become worse as the line proceeds, Fig.8(a). The effect is an increasing chroma phase error along the line which gives rise to desaturation at the right hand side of the monitor screen.

Velocity compensation counteracts this error by changing the phase of the memory read clock after storage. The amount of phase swing necessary is exactly the same as the phase error between the stretched burst of the line concerned and the burst of the next line. When the memory is being written, the velocity error is not available until the end of the line, whereas when the memory is being read, the velocity error is needed throughout the line. The velocity error for each

Fig.6. The insertion of a delay line in the signal path as shown permits the burst to be sampled at a rate determined by its own frequency.

Fig.7. The use of an adaptive delay permits the write start point to track the same point on the line despite line period changes. The three timing diagrams shown how the delay period is changed to follow the input timing.

Part 4 continues with analogue-to-digital conversion,memory organization and sequencing, and the vertical lock system of vari-speed timebase correctors.

Fig.8. As burst phase can only be sampled at the beginning of each line, an acceleration or deceleration of head-type speed causes phase errors which worsen as the line proceeds (a). In first-order velocity compensation, the phase errors of (a) are used to determine the slope of a change of reed clock phase which is constant throughout the line (b). In second-order velocity compensation Successive velocity errors are used to fit a phase change curve to the points given by burst sampling (c). Read timing is phase wing $\pm 180^{\circ}$ of subcarrier by comparing the correction signal with a subcarrier rate sawtooth (d). The compensated signal will then be multipled by 3 or 4 to become the read clock proper.

line is thus subject to one line less delay than the corresponding video. The error signal obtained by comparing successive bursts is an analog phase error, and can be stored either by quantizing or as the charge on a capacitor.

In first-order velocity compensation, used for example in the Sony BVT-2000, the velocity error determines the slope of a straight phase swing ramp, which gives a piecewise-linear approximation to the off-tape subcarrier phase change as shown in

Fig.8(b). In second-order veloc ity compensation, used for example in the Ampex TBC-2, the difference between successive velocity errors is used in addition to the straight velocity error to give a curved phase swing signal from a double integrator as in (c).

The phase swing signal is fed to a comparator along with a reference subcarrier rate sawtooth. The phase of the reference subcarrier is swung so that the memory read clock derived from it will cancel the velocity error for that
line (d).
Velocity error is measured by sampling the phase of successive bursts, and an error of greater than plus or minus 180 deg. between samples will not be correctly measured. For example, an error of +225 deg . would be measured as -135 deg . It is the PAL system itself, rather than the corrector design, which determines this correction range. Fortunately, observed velocity errors are less than 180 degrees.

DIGITALTUNER CONTROL
 Simple digital tuning, with readout, for Varicap-tuned f.m. modules.

Most f.m. tuner modules are Var-icap-tuned and only require a tuning voltage, which can, of course, be derived from a stable source and potentiometer arrangement. This article describes a simple digital tuning arrangement providing up/down control, preset memory control and digital read out for less than a typical f.m. digital readout module.

Derivation of control voltage

Figure 1 is a block diagram of the principle used. The oscillator frequency is not critical and is chosen to provide an acceptable display count speed when either up or down is selected.

The fundamental frequency is divided by ten in the first half of a 14518 and by two in the second half, although the second division is a result of using this divider as a gate.

Two programmable up/down counters are used to provide an eight-bit input to the R-2R ladder network from which a sawtooth wave-form is obtained. The height of the ramp is about 4 V for a frequency of 108 MHz , so some modification is necessary to give a tuning voltage of $2-12$ volts required by the tuner used. This is accomplished by use of a 3140 operational amplifier, where the output from the d-a section is applied to the 3140 . The gain (adjusted by RV_{1},) sets the range of the control voltage and the level shifting circuit ($12 \mathrm{k}, 1 \mathrm{k} 5,500 \mathrm{R}$, 2 k) enabling the start point of the ramp to be adjusted around 2 V with RV_{2}. Figure 2 shows the overall linearity obtained from this circuit.

An 8-bit binary number will of course give 256 steps to the ramp, whereas only 200 are needed to step the frequency from 88.0 to 108.0 in 0.1 MHz steps. This 'overrange' is compensated for in the calibration of the finished unit and is preferred to resetting the counter at the 200
count point because the large reset step in the ramp, which occurs at this point, may cause problems during calibration.

Preset stations

Figure 3 shows how the memory is added to the basic circuit to allow the selection of preset stations. Two 5101 rams are used because of their extremely low current consumption and low data-retention voltage, which is necessary when battery back-up
is required. If $\frac{1}{2} \mathrm{~A}, 3.4$ volt lithium batteries are used, data will be retained for up to five years.

The use of a 74922 keyboard encoder may be considered a luxury, but the prototype was built for use in a tuner/amplifer and by using a b.c.d.-decimal convertor (7445) up to sixteen key selections can be made available to cover f.m. stations and other inputs such as tape and pick-up etc. Additionally a clean pulse to enable the parallel inputs of the counters is obtained.

John Darlington joined the RAF in 1961 as a radio apprentice and trained for three years at RAF Locking, followed by a further ten years as a radar technician, during which time he obtained an HNC in electronics.

On leaving the RAF he joined Marconi Radar as a technical author attached to the Sea Wolf missile project. For the last eight years he has held production management posts, having gained a diploma in management studies at the Norwich Management Centre: first with Datron Instruments manufacturing precision digital voltmeters, and lately as works manager of Laserscan Laboratories in Cambridge.

Fig.1. Principle of tuner control. R/2R ladder produces a stepped ramp.

Fig. 2. Linearity of ramp when amplified by 3140 op-amp.

Microcomputer

 Development System- High Resolution - colour graphics
- Enhanced memory facilities
- Advanced user-friendly software
- Fully compatible with the complete range of LJ equipment
- On-board facilities include: EPROM Programmer RS232 Interface Centronics Interface IEE Interface 10 switched faults

pantechnic

THE POWERFET SPECIALISTS

OEM USERS

Pantechnic present the most adaptable high-powered amplifier ever. FET SYSTEM AMP
Features:
HIGH POWER up to 1.2 kW (single ended)

- LOW VOLUME. $1 / 15$ Cubic foot inc. Heatsink VERSATILE. Delivers more than 1 kW into $1 / 2$ to 8 ohms OR $2 \times 600 \mathrm{~W}$ into 2 to 8Ω
OR $4 \times 300 \mathrm{~W}$ into 2 to 4Ω (200 W into 8Ω)
OR $\left\{\begin{array}{l}1 \times 600 \mathrm{~W} \text { into } 2 \text { to } 8 \Omega \\ 1 \times 300 \mathrm{~W} \text { into } 2 \text { to } 4 \Omega \\ 1 \times 150 \mathrm{~W} \text { into } 4 \text { to } 8 \Omega\end{array}\right.$
Etc., etc.
Having been closely involved in a wide variety of OEM applications of their amp left untackled by other amp board manufacture implementation problems often size and thermal efficiency became particularly aggravated at high powers and considerably lengthened OEM product development time.
By including thermal design in the totality of board design it has been possible to reduce the size of the electronics, and increase the efficiency of the transistor to heatsink thermal circuit. The combined effect of this has been to dramatically increase the volumetric efficiency of the amplifier/heatsink assembly. The SYSTEM Amp offers 7.2 kW of power in a space of $180 \mathrm{~mm} \times 102 \mathrm{~mm} \times 77 \mathrm{~mm}$, excluding PSU The bas
The basis of this considerable advance is the PANTECH 74 Heat Exchanger onventional manufactured by us. By eliminating the laminar air flow found enhanced.
The flexibility of the 1.2 kW amp stems from its division into 4 potentially separate amplifiers of 300 W each (downrateable with cost savings to 150 W). These can be paralleled, increasing current capability or seriesed (bridged in pairs) doubling voltage capability. In consequence a large variety of amplifier/load strategies can be implemented
As ever Pantechnic offer a full range of customising options including DC coupling ultra-high slew, etc. Contact Phil Rimmer on 01-361 8715 with your particular pplication problem.
P. Specs, as ever, are exemplary.

A wide range of other amplifiers and other modules available

CIRCLE 98 F̄OR FURTHER D̄ETAILS.

CIRCLE 70 FOR FURTHER DETAILS.

Marconi A.F. wattmeter CT44, 200 microwatts 106 watts in 10 ranges switched2150 ohms. £30. P\&P paid. Marconi H.F. wattmeter CT211, high power 70 ohms 25 watts, low power 52 ohms, 1 watt. £25. P\&P paid. Ex-Gov. 27 ft telescopic aerial close to 5 ft . Good condition, complete with all base \& fittings $\mathbf{f 4 5}$. P\&P paid. Callers welcome £25. Pye Pocketfone Nightcall for PF1/TX/RX. New boxed £17.00. Whip aerial Ex-Gov. 4 ft collapsible f1.00. Steel 2 in. Interlocking Mast sections 4 ft . Price f4.00 each p\&p paid min. t. Crystals HC6U Ex. Equip. $5,000 \mathrm{mc} / \mathrm{s}, 7.000 \mathrm{mc} / \mathrm{s}, 8.00$ I.M.C. $\mathrm{mc} / \mathrm{s}, 9.000 \mathrm{mc} / \mathrm{s}$. Also Glass Crystal $100 \mathrm{Kc} / \mathrm{s}$, to fit B7G base. All at $£ 3 \mathrm{p} \& \mathrm{p}$ paid. Telephones - Type 706 good condition $\mathbf{£ 5} \mathrm{p} \&$ p paid. PFI TX batteries $\mathbf{£ 2}$ each p\&p paid. We have also for sale the following items which are too numerous to advertise. Callers only, valves, transformers, tuning units, receivers, bases, wave guide, scopes, plugs, sockets, power units, capacitors, aerials, headsets, cable, signal generators. BC221. Ni-Cad batteries for Pye PF1 RX. 5 for $£ 2 \mathrm{p} \& \mathrm{p}$ paid. Min. order 5. All these batteries are ex-eq. but good condition. Bargain Parcels 14 lbs at $£ 10,28$ lbs at $£ 20$ and 56 lbs at $£ 40$, p\&p paid. Contains pots, res., diodes, tagboards, caps. chassis, valve holders etc. Good value save $£ £ f^{\prime}$'s. Lucky dip service. AVO $7 X$ Tested. Ex. eq. $\mathbf{£ 4 0} \mathrm{p} \& \mathrm{p}$ paid.

Opening times: Monday-Friday 8.30am-5.00pm, Saturday 8.30am-12noon
Please allow 14 days for delivery. Mainland only.

A. H. THACKER \& SONS LTD
HIGH STREET, CHESLYN HAY NEAR WALSALL, STAFFS.

CIRCLE 41 FOR FURTHER DETAILS.

THESE ARE TESTING TIMES FOR DIGITAL IC USERS

A.B.I. ELECTRONICS LTD. BARNSLEY, S. YORKS. S73 8HA. TEL: BARNSLEY (0226) 751639

CIRCLE 81 FOR FURTHER DETAILS.

Total Test and Measurement Capability hii!

CIRCLE 89 FOR FURTHER DETAILS.

CIRCLE 36 FOR FURTHER DETAILS.

IMPROVE YOUR PROSPECTS

with skills that employers want. Train the easy way with modern home study courses from Ideal Schools.

MODERNELECTRONICS

Takes you from the beginning, right up to C\&G level 2 and BTEC national level.

COMPUTER PROGRAMMING
Learn BASIC with a Spectrum included if you wish.

For free booklet write today to IDEAL SCHOOLS (Ref. WW1) Freepost, Woking, Surrey GU214BR.

CIRCLE 88 FOR FURTHER DETAILS.
ELECTRONICS \& WIRELESS WORLD AUGUST/SEPTEMBER 1984

GP

EPB000 and EP4000 EPROM Emulator/Programmers

\square Software personality programming of NMOS, HMO'S, CMOS EPROMS, both single \& triple rail up to $16 \mathrm{k} \times 8$ bytes (EP8000)
Expandable to program PROMs with BP5 Signetics PROM adaptor.
\square Emulation of all EPROMs up to $8 \mathrm{k} \times 8$ bytes with the EP8000 and up to $4 \mathrm{k} \times 8$ bytes with the EP4000.
No personality cards or characterisers required.
Use as stand alone programmer, slave programmer, or EPROM development system.
Checks for misplaced, reversed insertion and shorts on data lines (EP8000)
\square Memory mapped video O/P, in addition to LED display allows full use of powerful editing facilities, including block/Byte move, insert, delete, match, highlight, shift, define, displacement calculation.
\square Comprehensive I/O - RS232 serial port, parallel port.
\square Ex-stock EP8000 - 8k x 8 RAM £695 $+\mathrm{f} 12 \mathrm{del}+\mathrm{VAT}$ EP $4000-4 \mathrm{k} \times 8$ RAM $£ 545+£ 12$ del + VAT

$\begin{array}{c}\text { PBOOO } \\ \text { EPROM Production } \\ \text { Programmer }\end{array}$

\square Programs NMOS, HMOS, CMOS EPROMs up to $16 \mathrm{k} \times 8$ bytes, both single \& triple rail.
\square No personality cards or characterisers required.
\square Up to 8 EPROMs programmed simultaneously.
\square Simple menu driven operation.
\square Reverse and misplaced insertion checks. Constant power supply monitoring and system checks.
\square Checksum, illegal bit test, blank check, compare and self check cycles.
\square RS232 serial interface as standard.
\square Single key programming operation.
\square Ex-stock P8000 - £695 + £12 del + VAT.

Accessories for the EPB000

 and EP4000 range
NEW

\square BP5 Bipolar PROM Programming Module.
\square Allows the EP8000 and EP4000 to program, copy, verify a range of 21 Signetics bipolar PROMs up to $2 k \times 8$ bytes sizes Ex-stock - £228 + VAT.
\square SA27128 Adaptor. Allows EP8000 to program 27128 EPROM Ex-stock f 69 + VAT
\square UV141 EPROM Eraser. Erases up to 14 devices simultaneously - safety in. terlocked - electronic timer. Ex-stock - £78 + VAT.
\square Prinz Video Monitor. Green phosphor, high resolution video monitor suitable for EP8000 and EP4000 Ex-stock £ 99 + VAT .
\square Contact us now for a complete product data pack

GP Industrial Electronics Ltd Unit E, Huxley Close, Newnham Ind. Estate, Plymouth PL7 4JN

CIRCLE 33 FOR FURTHER DETAILS.

If an advertisement is wrong we're here to put it right.

If you see an advertisement in the press, in print. on posters or in the cinema which you find unacceptable, write to us at the address below.

Complete circuit diagram of the digital tuner control.

Fig.3. Two 5101 rams are included to allow preset voltages to be stored.

Operation of memory

A pull up on the read/write lines of the memories forces the rams into a permanent Read mode: the output from the ram is therefore available at the program inputs of the binary counters. This infor-
mation is ignored whilst PE is low, but on selection of a station, the contents of the associated memory location are present to the counter inputs and a positive pulse from the 94922 Data Available output sets the binary outputs to the inputs, thus setting a new d.c. bias condition.

Operation of the up/down control does not affect the stored information unless the memory key is pressed, whereupon the binary output is recorded in the present address position.

To be continued

AVO DIGIMINOR 2000

An ideal tool for maintenance applications. An economically priced instrument with a special buzzer socket for simple continuity testing without reference to the display.

AVOMEIER 2001
Features a socket specifically for current testing Comprehensive ranges, with unit and mode displayed on LCD. Ensures a valid current measuring mode is selected any discrepancy is signalled by an alarm.

AVO VEHICLE TEST 2002
Designed with co-operation from a world leader in vehicle manufacture and service. Accessory kit allows temperature and charging current testing. Heavy duty test leads and comprehensive handbook available

THORN EMI Instruments Limited
Archcliffe Road, Dover, Kent CT17 9EN. Telephone: 0304 202620. Telex: 96283

6-CHIP LED LAMP

Available in a choice of four colours, these new p.c.b. mounting lamps are 20 mm (0.8 in) diameter, low-power, dome-shaped lamps incorporating six chips per unit for high reliability and large area illumination. They are mounted on 15 mm (0.6 in) pitch d.i.p. bases with separate anodes and cathodes for each chip. The four colour options are: high efficiency red, orange, green and yellow.

Absolute maximum ratings are 500 milliwatts power dissipation; 30 milliamps average forward current per led; 200 milliamps pulse peak current per led and 5 V reverse voltage per led. Storage and operating temperature range is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and luminous intensity - with all six leds lit - varies from 20 mcd for the yellow version to 35 mcd for the green. Selectronic Ltd., The Old Stables, 46 Market Square, Witney, Oxon. EWW 210

PRIMARY STANDARD OF ATTENUATION

Based on a design by the National Physical Laboratory, the Techtest WBC0 (piston) attenuator Model 310 is claimed to provide the most accurate standard of variable attenuation at present commercially available. It is intended for use in calibration laboratories requiring the precision of a national standard.

The Model 310 has a total
dynamic range of 120 dB and an inherent accuracy, supported by NPL certification, of ± 0.0002 $\mathrm{dB} / 10 \mathrm{~dB}$. It can be supplied to operate at discrete frequencies in the range 10 MHz to 500 MHz . Attenuation is adjusted at speeds up to 10 dB per second by means of an electronically controlled stepping motor and is displayed with a resolution of $\pm 0.0001 \mathrm{~dB}$ on a 7 digit led display reading
directly in dB .
The attenuator may be controlled manually by means of the hand-held controller supplied or it may be incorporated in a computer controlled system via the IEEE 488 GPIB interface fitted as standard. Techtest Limited, Street Court, Kingsland, Leominister, Herefordshire, HR6 9QA. EWW 211

PROGRAMMABLE CURRENT SOURCE

Model 224 programmable current source is the newest in Keithley Instruments' line of IEEE-488 instrumentation. Its output is settable from $\pm 5 \mathrm{nA}$ to $\pm 101 \mathrm{~mA}$ d.c. in 6 ranges, while a separate voltage compliance limit is settable from 1 to 105 V in 1 V increments: the instrument is capable of 4 -quadrant operation for full bipolar source and sink.

For manual testing, the data keyboard permits straightforward entry of output conditions, which can also be changed within the instrument's
full-scale range by selecting a display digit and incrementing or decrementing from some preset value. A unique 'auto' capability generates a staircase ramp at a step size determind by the selected display digit. Time between steps, dwell time, and high/low current output limits are programmable from the front panel.

The optional IEEE interface, Model 2243, includes four input and four output t.t.I compatible I/0 lines which may be programmed and read through
the interface. These may be used for monitoring external system events or controlling system activities.

External triggers provide easy synchronization with triggerable measurement instruments Additionally, a 'dwell time' is programmable from 50 ms to 999.9 s and acts as a trigger delay to allow for external settling or other system timing.

In component testing on switches, relays, connector contacts and other low resistance applications, the low current and compliance settlings can assure no punch through on oxide layers.

The low currents available from the model 224 can substantially reduce self-heating errors in precision thermometry using thermistors or PRTDs (platinum resistance temperature detectors). The guard output is useful in performing in-circuit measurements on resistance networks or reducing the effective capacitance in long runs of interconnect cabling. Keithley Instruments Limited, 1 Boulton Road, Reading, Berkshire RG2 0NL.
EWW 212

200 WATT SWITCHED P.S.U.

Powerline's F200 switched-mode power supply provides five outputs at 200 W total, with pulse overload capability on all outputs. The main +5 V output provides 25 A with pulse load capability to 40A. Auxiliary outputs are +12 V at 5 A (10 A $\mathrm{pk}),-12 \mathrm{~V}$ at $5 \mathrm{~A}(10 \mathrm{Apk}),-5 \mathrm{~V}$ at $5 \mathrm{~A}(10 \mathrm{~A} \mathrm{pk})$ and +24 V at 5 A (10A pk).

The F200 has been designed to be mechanically similar to competitors' power units, but having the facility to trade power and allow for high peak currents to be taken from all the outputs. It has been designed in accordance with IEC 380 and IEC 435, VDE 0804 and VDE 0806, TG2 and TG26 and BS 5850 safety requirements. Powerline Electronics Ltd, 5 Nimrod Way, Elgar Road, Reading. EWW 213

FREQUENCY COUNTERS

The three versions of the Meteor range of frequency counters from Levell are for measurement of frequencies up to 100 MHz , 600 MHz and 1 GHz : ' X ' versions are also available fitted with temperature compensated crystal oscillators for improved accuracy. These counters have an 8 digit 0.5 in led display with automatic decimal point and overflow warning. Sensitivity is 5 mV up to 1 MHz and 50 mV at 1 GHz with resolution down to 0.1 Hz . Mains-input protection and a switched low-pass filter are included. A 10 MHz crystal oscillator gives settability of $< \pm 0.5$ p.p.m., temperature
stability of $< \pm 2.5$ p.p.m. $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ and ageing of $< \pm 5$ p.p.m./year. The ' X ' versions give improved settability of $< \pm 0.2$ p.p.m., temperature stability of $< \pm 0.5$ p.p.m. $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ and ageing of $< \pm$ lp.p.m./year.

Power is supplied by rechargeable batteries of a.c. mains supply via a mains adaptor/charger unit. A telescopic aerial is available to enable this portable instrument to be used for transmitter frequency measurement in the field. Levell Electronics Ltd, Moxon Street, Barnet, Herts, EN5 5SD. EWW 214

MOTORIZED POTENTIOMETERS

A range of motorized potentiometers with a 5 W power rating, by Micro Electric Ltd of Switzerland, is Swissinco UK Ltd.

The Micromat ${ }^{\mathrm{R}}$ Series MPD 4000 potentiometers combine programmable cam-type timer units with a potentiometer drive. Features include high nominal resolution resistance tolerance of $\pm 5 \%$, excellent linearity (better than 0.25%), a friction drive which protects the unit when manually operated, solid mechanical stops, and two adjustable limit switches controlling the rotation angle of the potentiometer.

The standard units comprise a drive, cams and microswitches, potentiometer(s), and a frame with setting knob and scale. Drive unit options (24 to 220 V a.c. or 24 V d.c.) provide two directions of rotation and a broad range of cycle times from 3 to 36 hours.

All units have two cams fitted which allow an electrical limitation of the potentiometer's angle, and other cams are provided in accordance with each customer's requirements. The design permits easy programming adjustments by the user. Swissinco UK Ltd., Unit 2, 225 Hook Rise South, Surbiton, Surrey. KT6 7LD. EWW 216

ACTIVEA.M. ANTENNA

The Active AM Antenna 10 should get a warm reception from radio listeners whose 'tune in' preferences are the long and medium wavebands - audience figures indicate there are upwards of 10 million of them in the UK.
In a robust, 24.5 cm diameter, round plastic disc casing, the mains-powered Active Antenna from B and O is designed to enhance a.m. reception for all Bang \& Olufsen Beomaster and Beocenter radios. It costs around $£ 27.50$, and can be used in conjunction with other radio receivers equipped with an a.m. antenna socket.

The antenna has a sensitivity which stands comparison with efficient roof aerials, say the manufacturers. It is directional and can be simply rotated to achieve optimum reception of desired stations, and to exclude
interference from other stations or domestic electrical noise sources.

It employs the magnetic component of broadcast transmissions, by means of two ferrite rod aerials and an amplifier. The two aerials are precision-coupled to 'flatten out' the signal amplitude across the entire frequency range and eliminate the need for variable components which, in conventional designs, have to be manually adjusted when changing from one station to another.

The directional performance of the active antenna is claimed to be excellent, making it an extremely useful accessory in difficult reception areas. Installation requires connection to the radio's a.m. socket and to the mains supply. Bang \& Olufen UK Limited, Eastbrook Road, Gloucester GL4 7DE. EWW 215

WIDEBAND OPERATIONAL AMPLIFIER

AM1435 from Datel is an ultra-fast-settling, wideband operational amplifier that is directly interchangable with devices having the same type number.

It provides high open-loop gain (100 dB), flat frequency response beyond 10 kHz and a $6 \mathrm{~dB} /$ octave roll-off to beyond 100 MHz , which suit the AM1435 for application in radar and sonar signal processing, video instrumentation and ultra-fast data-acquisition systems. Gain-bandwidth product is typically 1 GHz and slew rate is 300 volts per microsecond.
D.c. characteristics include 1 megohm input impedance, initial
offset voltage of only $\pm 2 \mathrm{mV}$ and an input offset voltage drift of ± 5 microvolts $/{ }^{\circ} \mathrm{C}$. Minimum common-mode rejection ratio is better than 80 dB and full power frequency bandwidth is 8 MHz minimum. Output voltage swing is $\pm 5 \mathrm{~V}$ minimum at 10 mA load current and the AM1435 remains stable with capacitive loads up to 1000 pF .

The AM-1435 is specified for operation over the commercial, industrial and military temperature ranges and is housed in a 14 -pin, hermetically sealed, ceramic d.i.p. Datel Division, G.E. Intersil Datel (UK) Ltd., Belgrave House, Basing View, Basingstoke, Hants. EWW 217

CIRCLE 84 FOR FURTHER DETAILS.

SATELLITE RECEIVING EQUIPMENT

1.9M, 2.5M and 5M Harrison Dishes. Sat-Tec R5000 4 GHz Receivers. Avcom COM-2B 4 GHz Receivers. California Amplifier 4GHz LNAs. Chaparral Horns. Harrison Feed Horns.
Demonstrations by appointment only.
Dealer enquiries welcome
For further details contact: Harrison Electronics, 22 Milton Road, Westcliff-on-Sea, Essex SSO 7JX. Telephone: Southend (0702) 332338.

JOYSTICKS CONTROLS

By specialisation, volume production and tightly-controlled overheads we are able to offer competitively-priced, wellengineered, innovative and reliable joystick controls ranging from £1.50 each (for TV games units in quantity) to $£ 2,000$ for a one off triple axis force feedback system, including torque motor amplifiers. Our current ranges cover most combinations of:-

- 1,2 or 3 axes, or up to 6 degrees of freedom.
- Potentiometer, wafer switch, microswitch and contactless sensing.
- Spring, friction or detent positioning, or force feedback systems.
- Press button switches in handles or handgrips.
- Miniature TV game units to heavy duty types for mobile and heavy engineering environments. In addition we can design and build special requirements into standard units within days.

OVERSEAS DISTRIBUTION

- आTALY, FRANCE, GERMANY, SWITEERLAND, Vicenza. Hally 0444/36444. TX431075.
- HOL ANO: Silema. Wihelimalaan 1112182 CC . Hilegom, Holland.
australla: Tecnico Electronics Lane Cove Sydney, NSW Australia. Sydney 4273444
USA and CANADA: PO. Controls inc OSA and CANADA: P.Q.Controls inc. 95 Dolphin Road, Bristol. Connecticut 06010 USA (203)5936994. TX643127

SWEDEN: Svensk Telindustri, Box 5024
916205 vallingby, Sweden $8380 / 320$.

FLIGHT LINK CONTROL LTD.
UNTT 12 THE MALTINGS, PHONE 042087241 (24HRS
TURKSTREET, ALTON, HANTS, TELEX 859623 TELBURG

200NS EEPROM

Am9864, a 64-Kbit eeprom from Advanced Micro Devices, is a 200 ns device that can be electrically altered in system. The Am9864 features a self-timed write cycle with a write time of 10 milliseconds, and uses a ready/busy pin to indicate the completion of the write cycle. It is pin-compatible with the AM2764 64Kbit eprom.

Three data-protection features prevent accidental writing into memory during transition states. Data is protected by inhibiting write-cycle initiation when the supply voltage is less than 3.8 V ; by preventing write-enable pulses or less than 20 ns duration from initiating a write cycle and a feature that ensures a write cycle cannot be initiated when the output-enable control is in the enabled state.

Am9864 is offered in 200 ns , 250 ns , and 350 ns versions, and is available inceramic d.i.p. packages. The 200 ns version is priced at $£ 140.70$ each and the 250 ns version $£ 108.24$ each in 100 -off quantities, in ceramic packages. Samples of the Am9864 are now available, with volume production planned for September. Advanced Micro Devices (UK) Ltd, AMD House, Goldsworth Road, Woking, Surrey GU21 1JT. EWW 218

P.C. BATTERY HOLDERS

Gould Micro Power Systems has introduced a range of plastic battery holders which allow zinc-air button cells to be mounted directly onto printed-circuit boards. They are produced in a heat-stable material, with a low-profile design and spacer feet allowing air flow. These holders, which
cover all the standard sizes and ratings of zinc-air cells, enable equipment designers to exploit the energy-density benefits of zinc-air cells directly in memory-back-upor portable-equipment applications

Typically, the Type 630EL zinc-air cell offers 950 mAh with a maximum drain rate of $42 \mu \mathrm{~A}$. Gould Micro Power Products Division, 11 Ash Road, Wrexham Industrial Estate, Wrexham, Clwyd LL13 9UF. EWW 219

LOW-COST MULTI-LAYER BOARDS ALTERNATIVE

P.c.b. connectors which offer a low-cost alternative to multi-layer boards are now

Minimal board preparation is necessary: only the fitting of solder pads, and drilling of connector mounting holes; plus checks to ensure that the profile of components on each board is as low as possible. Connector contacts do not require soldering or welding. Boards are attached to each other by interspersing them with Qikstack connectors, and tightening the mounting hardware. This presses the boards down onto all the connector contacts simultaneously. As the boards bear down on each connector, its contacts penetrate the solder pads and form reliable gas-tight connections whose resistance is only 30 milliohms at $3 \mathrm{~A}, 300$ V.a.c. The mating forces are low, so that the possibility of damage to circuits, components and soldering joints is eliminated. Astralux Dynamics Limited, Red Barn Rod, Brightlingsea, Colchester, Essex. EWW 221

HIGH-PRESSURE PROXIMITY SENSORS

A series of inductive proximity sensors from Honeywell is capable of withstanding pressures up to 500 bar. These devices can be used for any applications where there is direct fluid pressure on the sensing face.

The front face of each device is made of ceramic and sealed to withstand pressures up to 500 bar, static and the sensor probe can vary in length as required by the application. Sealing of the stainless steel housing and factory-terminted cable is to protective class IP68, the standard cable length being 1.5 metres. The device will operate in a temperature of -25° to $+85^{\circ} \mathrm{C}$, requires between 5 and 55 V d.c. and has overload and short circuit protection.
Honeywell Control Systems Ltd., Honeywell House, Charles Square, Bracknell, Berkshire. RG12 1EB. EWW 220

HIGH STEPPERS
A new range of SLO-SYN stepping motors from Micromech Ltd, the MA61 series, are claimed to have an extremely high torque and to set new standards in step angle and position accuracy. The MA61 can also produce up to twice the holding torque of conventionally constructed motors. Since they are capable of withstanding a load of five times the rated current, the makers claim that this new range of motors may be safely over-driven to produce high torque in a relatively small frame size.
A step accuracy of typically 98.7% makes them ideally suited for application in X-Y plotters, printing mechanisms and other computer peripheral equipment. Micromech Ltd, 12 Driberg Way, Braintree, Essex. EWW 222

Three new names from IODthe leaders in DTMF equipment.

IQD offers the most advanced DTMF signalling equipment on the market.
IQD Codepad: the best in portable tone diallers, available in three models.
IQD Micropad: a microphone with not only the standard

functions, but many additional features including an illuminated keyboard version.
IQD Selcall: a superior DTMF signalling unit with an extensive program facility giving you selective access to 99 sub-stations.

Telephone (0460) 74433 for further information.

CIRCLE 75 FOR FURTHER DETAILS.

(iil) Video Interconnections

... listed in the 1984 FFD Catalogue.

[四 FUTURE FLM DEVELOPMENTS

P.O. Box 3DG. 114 Wardour Street, London W1A 3DG, England Telephone: 01-434 $3344 \& 01-4371892$. Telex: 21624 ALOFFD G. Cables:Allotrope-LondonWl

TIME WRONG?

MSF CLOCK is ALWAYS CORRECT - never gains or ioses, SELF SETTING at switch-on, 8 digits shows Date, Hours, Minutes and Seconds, auto GMT/BST and leap year, can expand to years, Months, Weekday and Milliseconds, parallel BCD output for computer and audio to record and show time on playback, receives Rugby 60 KHz atomic time signals, only $15 \times 5 \times 8 \mathrm{~cm}$, built-in antenna, 1000 Km range, $£ 79-70$, GET the TIME RIGHT

60KHZ RUGBY RECEIVER, as in MSF Clock, serial data output for computer, decoding details, Basic listings, £25-80.
Each fun-to-build kit (ready made to order) includes all parts, case, by-return postage etc and list of other kits

CAMBRIDGE KITS

45 (WJ) Old School Lane, Milton, Cambridge. Tel 860150
CIRCLE 28 FOR FURTHER DETAILS.

VIDEO TERMINAL BOARD

\star 80 characters $\times 24$ lines \star
Requires ASCll encoded keyboard and monitor to make fully configurable intelligent terminal. Uses 6802 micro and 6845 controller. Program and character generator (7×9 matrix with descenders) in two 2716 EPROMs. Full scrolling at 9600 baud with 8 switch selectable rates. RS232 interface.

Bare board with 2 EPROMS and program listing £48 plus VAT. Send for details or CWO to:

A M Electronics
Wood Farm, Leiston, Suffolk IP16 4HT Tel: 0728831131

ONE-CHIP TELETEXT DECODER

The TPU2700 from ITT
Semiconductors provides a single chip solution to teletext decoding, with the capability of acquiring and storing eight pages simultaneously. It decodes the standard Level 1 teletext transmissions widely used in the UK and other European countries, and interfaces directly to the digital signal processing Digit-2000 v.l.s.i. circuit family.

Up to eight stored pages are controlled by the processor,
giving a much reduced access time over current multi-chip decoder designs. A menu of the stored pages is also available to the user. The only external components necessary to build a decoder is some ram in the form of a single $64 \mathrm{~K} \times 1$ device, or a number of 16 K parts. Standard, low-cost dynamic ram can be used without speed problems by virture of an on-chip fifo buffer.

The processor will also underline and automatically

A range of v.d.u. bezels is available to accomodate all c.r.ts from 5 in to 17 in from G.A. Stanley Palmer Ltd. Bezels are available for both front and rear entry into the monitor housing. The standard colour is black, but

V.D.U. BEZELS

other colours can be supplied to special order. Bezels can be fitted with moulded, anti-glare, contrast-enhancement filters using the 'Homalite' material already available from G.A. Stanley Palmer Ltd since 1980. G.A. Stanley Palmer Ltd, West Molesey Trading Estate, Surrey KT80UR. EWW 225

select character sets. This single device will serve in receivers for eight different language teletext transmissions. Compensation for ghost pictures with delays up to 0.8 microseconds is automatically performed, and the device works on either PAL or NTSC standards.

The TPU2700 comes in a 40 -pin plastic d.i.p., requires a single 5 V supply and consumes typically 1.25 W .

ITT Semiconductors, 145-147 Ewell Road, Surbiton, Surrey, KT6 6AW. EWW 223

SUBMINIATURE TRIMMER POT

Murata have introduced a range of $1 / 10 \mathrm{~W}$ subminiature trimmer potentiometers which use a moulded resin substrate with a carbon element fired to it and a single or double contact wiper, which is screwdriver adjustable. This simple two-part construction is claimed to give the RVF6 (single contact 6 mm dia.) and RVF8 (double contact 9 mm dia.) devices the advantage of outstanding reliability, and the makers say that the high-temperature fired carbon element provides stability in the most adverse environments and reduces resistance drift with temperature to less than half that of other similar devices.

A variety of pin configurations is available, and cartridge packing can be supplied. Both the RVF6 and RVF8 can be adjusted from front or back, have snap-in legs and are available with dust cover. Murata Erie ElectronicsUK Ltd.,100-102 Albert Street,Fleet, Hants. EWW 231

POLYSTYRENE REPLACEMENT CAPACITORS

The WIMA FKP2 series of polypropylene film/foil capacitors is now available in E48 capacitance values with 2.5% tolerance. These miniature, radial-leaded capacitors with 5 mm pitch mounting are encapsulated in flame retardant cases. They are inherently resistant to cleaning solvents normally used in the electronics industry and thus they can be mounted on p.c.bs prior to normal board cleaning. The FKP2 series is available from 220 pF to $0.01 \mu \mathrm{~F}$ at 63 V d.c. and is available loosely boxed or taped in either roll, reel or Ammo-packs. Waycom Ltd, Wokingham Road, Bracknell, Berks RG12 1ND. EWW 224

QUIET COOLING FAN

A range of cooling fans for quiet operation in office and domestic equipment is made by Papst. The latest is the 412GXL, which operates from a nominal 24 V d.c. supply, produces an airflow of $85 \mathrm{~m}^{3} / \mathrm{h}$ at an operational noise level of only $28 \mathrm{~dB}(\mathrm{~A})$. The airflow and noise level can be adjusted by operating within the permitted voltage range of 18 to 30 volts d.c. The low noise is attributed to a re-designed venturi and impeller shape. Dimensions are
$119 \times 119 \times 38 \mathrm{~mm}$. At 24 Vd .c., the motor uses 1.1W. Papst Motors Ltd, East Portway, Andover, Hants. EWW 226

MINATURE SOLDERING IRONS

The Oryx Micro Series of soldering irons, the smallest in the Greenwood 'Oryx' range, have been designed for intricate circuit work. They provide maximum heat in a concentrated area and offer typical tip temperatures of around $320^{\circ} \mathrm{C}$.

Typical unit weight is only 4 grams, The range includes 5,6 , $9,11,12,18$ and 25 watt models and operating voltages include 6 , 12,24 , and 50 volts. A power-supply stand and cleaner, the Micro P.6.6, offers 115/240 V.a.c. mains operation and
delivers a safe, isolated output for the $6 \mathrm{~V}, 6 \mathrm{~W}$ Micro iron. The Micro P.T. 6.6 variable temperature unit is also available. With this, the tip temperature of the iron can be controlled between $120^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$ via a control knob on the base stand. Greenwood Electronics, Portman Road, Reading, Berks. RG3 1NE. EWW 227

M.P.U.-BASED PANEL THERMOMETER

Amplicon Electronics Ltd announces a microprocessor-based, high performance $3 \frac{1}{2}$-digit thermocouple meter at $£ 199$.

The model 2051 digital panel thermometer measures temperatures in the range - 256 to $+1999^{\circ} \mathrm{F}$ or -165 to $+1760^{\circ} \mathrm{C}$. user-accessible switches are used to select thermocouple type and ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$ scaling, whilst the meter is supplied with reversible bezel to show either ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$.

Gain, offset-error correction, cold-junction compensation and thermocouple linearization are supplied by the meter's internal microprocessor, which also provides 7 bit parallel ASCII characters in a nine-character serial sequence of polarity, temperature, space, C or F, carriage return and line feed. Digital outputs, with strobe, may be directly connected to the company's Model 24 digital panel printer to provide hard copy printout.

Additional circuitry is optionally available to provide a linearized $1 \mathrm{mV} /$ degree analogue output for chart recorders and an optically isolated serial 20 mA current loop output, which may be used as four-wire, full-duplex operation with a host computer
located up to 3 km from the meter.

The 2051, which will aperate from mains ord.c., is housed in a DIN or NEMA standard case. Amplicon Electronics Ltd, Richmond Road, Brighton, East Sussex. BN2 3RL. EWW 228

STE BUS

 BACKPLANESInterconnection backplanes for the Eurocard-based STE bus market are available from Dage Systems. The ST14 range is in five sizes, offering either 7 or 14 slots using a 0.6 in card pitch, or 5,10 or 21 slots with 0.8 in pitch. This choice provides designers with versions for quarter-, halfor full-width card frame systems using 19in standard packaging.

The p.c.bs are of four-layer construction, and are fully fitted with DIN 41612 connectors. Tracks are separated by 0.5 mm , giving an unloaded characteristic impedance of typically 60 ohms . One, preferred, assembly option offers long connector pins protected by reverse DIN-style bridging shrouds at the end positions, allowing the use of pluggable termination-network modules. The rest of the DIN connectors in the backplane are standard short-terminal types.

The SYSCLK signal line has been sited as far away as possible from other lines to avoid crosstalk. Along with three other signals, SYSERR, SYSRST and ATNRQO, the SYSCLK line has been extended to additional pins at the end of the backplane for ease of system testing. Also, the power tracks have been made very wide, extending to within 8 mm of the board edge, so that the backplanes easily deal with the maximum demands of the bus specification.

The backplane fully conforms to the IEEEP 1000 committee specification for the bus, and remains fully compatible with the requirements of IEC 297 and DIN 41494 specifications. Standard FR4 epoxy material is used for p.c.b. construction. Dage Systems, Rabans Lane, Aylesbury, Bucks. EWW 229

FAST OP-AMP

With a slew rate of $600 \mathrm{~V} / \mathrm{\mu}$, settling time of 350 ms to 0.1% and $600 \mathrm{MH} z$ gain/bandwidth, the TP1342 from Teledyne Philbrick should be well suited to video, c.r.t. graphics or fast track-and-hold work.

The standard version is in a 14 -pin ceramic d.i.p. and works over the $0^{\circ}-75^{\circ} \mathrm{C}$ temperature range (TP1342-01 from-55 $5^{\circ}-125^{\circ} \mathrm{C}$).

MCP Electronics Ltd, 38 Rosemonit Road, Alperton, Wembley, Middx. EWW 230

CIRCLE 68 FOR FURTHER DETAILS.

The way ahead for 8-bit computers

Arcom's new range of STE Eurocards point the way.
A compatible Eurocard standard is now available from Arcom that will make other Eurocards obsolete. A growing range of boards is now available which use the new STE bus interface (IEEE P1000). The Z80A" based CPU board offers 64K DRAM, up to 32K EPROM and two RS 232 serial ports. Four extra I/O lines are provided plus a parallel keyboard port and the board can address 192 K bytes of off board memory. The on board floppy disk controller can handle up to four drives from 3 inch to 8 inch in all formats, and the software package provided as standard is CP/M Plus ${ }^{\circ}$ (version 3). A complete system on a single Eurocard, compatible with other STE bus systems, and all for only $£ 580$, including CP/M Plus ${ }^{*}$.

It has the all-new STE bus, easily expandable architecture, with a growing range of peripheral boards and full support from a young company which is rapidly establishing itself as one of Europe's leading innovators in control and processing.

It isn't just new, it's unique. Showing the way ahead for 8-bit computers.

- Fully asynchronous processor independent bus. - Intermodule compatibility between manufacturers. - The STE bus is multimaster, allowing up to three masters, CPU's or DMA's to use the same bus. - 20 memory address lines allowing 1 Mb of external addressing - 12 //Oaddress lines allowing up to 4096 I/O devices. - Flexible scheme for interrupts. - Single Eurocard mechanical format.

Get in touch for more details of the bus, the CPU and the I/O boards now available.

คRCO Innovation

Arcom Control Systems Ltd., Urit 8, Clifton Road, Cambridge CBI 4BW Telephone: (0223) 242224. DISTRIBUTORS:
Mi-Tek Distribution Limited, Tratolgor Woy, Bar Hill, Mi-Tek Distribution Limited, Tratolgor Woy, Bor Hitl
Combridge C83 85Q Telephone (1994) 81996 T x: 817347 .
 Dage Eurosem Limited, Robans Lone,
Telephone: $(0296) 33200 \mathrm{Tx}: 83518$.
Crellion Microsystems, 380 Both Rood, Slough, Berks SLI 6JE Telephone: (06286) $4300 \mathrm{~T} \mid \times 847571$.

THE SERVICESSOUND AND VISION CORPORATION

BROADCAST AND ELECTRONICENGINEERS

Required for work in the Broadcast Engineering and Production Departments of the SSVC which provides Radio, Tetevision and Training Servies for the British Forves and their dependents in the UK and abroad.
Candidates (preferably aged 22-35) should be educated to HND standard in electronic and electrical engineering and have work experience in broadcast or related industries.
The work, often overseas, indudes the operation, maintenance and installation of the full range of professional radio and television studio equipments and, in some areas, medium wave and VHF transmitters.
The salary offered is in the range $£ 7967$ - $£ 10325$, tax-free when on overseas service plus generous tax-free overseas allowancess and other fringe benefits.
There are promotion prospects to higher grades and opportunities for training and transfer to other departments of the SSVC.
Write for application form to:
MrE.G. Lacke
Pergomel Officer,
The Services Sound and Vision Corporation
Chalfont Grove,
Narcot Lane,
Gemards Croes
Bucks SL98TN

[^4]
"COMMUNICATIONS TECHNOLOGY LTD.

Applications are invited for the post of Service Manager. A sound electronic engineering background with several years experience of UHF/VHF land mobile systems is essential. Experience with $\mathrm{HF} / \mathrm{SSB}, \mathrm{AM}$ and FM broadcasting or small computer systems would be an advantage.

We are looking for a responsible, experienced engineer to take sole charge of a busy service department handling a wide variety of equipment and systems. The post is ideally suited to a single man wishing to broaden his experience whilst living in a pleasant Caribbean island.
The initial appointment would be for two years, with an option to extend for a further two years. Return passages will be paid, and a company car is provided. Salary commensurate with experience and ability in the range US dollar 25,000 to 35,000 per annum tax free.
Apply giving full details of qualifications and experience, together with a telephone number, to:-

Communicatons Technology Ltd.
(Service Manager), P.O. BOX 1215, Grand Cayman, British West Indies"

TELECOMMUNICATIONS TECHNICIANS

The posts available are varied, but broadly they fall into 2 groups at, HANSLOPE PARK (MILTON KEYNES) and CENTRAL LONDON
for installations, maintenance and other work associated with HF communications equipment, VHF, UHF and microwave links and associated test equipment; teleprinters, telephone subscribers' apparatus, PMBXs, PAXs, PABXs and ancilliary equipment including that using analogue and digital techniques and voice frequency telegraph.

Applicants should normally have at least 4 years' relevant experience, and must hold one of the following qualifications:

* ONC in Engineering (with pass in Electrical Engineering ' A ')
\star TEC/SCOTEC certificate in relevant discipline
* City and Guids Telecommunications Technicians Certificate Part II (Course No 271) or Part l plus maths ' B ', Telecommunications Principles ' B ' and one other subject
\star a pass in the Council of Engineering Institutions Part I examination
\star an equivalent or higher relevant qualification.
Ex-Service personnel who have had suitable technical training, and with at least 3 years' in an approved senior technical capacity will also be considered.
Salary: $£ 6262$ - $£ 8580$; London $£ 1250$ more, starting salary may be above minimum for those with additional relevant experience. Promotion prospects are good.
Relocation assistance may be available
The Foreign and Commonwealth Office is an Equal Opportunities Employer.

For an application form write to:
Foreign \& Commonwealth Office, Hanslope Park, Hanslope, Milton Keynes, MK 19 7BH, or telephone Milton Keynes (0908) 510444 Ext 5710. Please quote referece TT/06/84. Closing date for applications 29 August 1984
FOREIGN AND COMMONWEALTH OFFICE

ELECTRONICS TECHNICLAN

required for expanding South London company in the amusement industry.
Applicants are expected to have the appropriate qualifications (minimum HNC) and The work is inve experience of electronic engineering.
The work is interesting and varied, involving repairs, fault-finding and some research and development.
Salary scale is currantly $£ 8,400-59,000$ per annum.
Appications olving full details of age, qualtifcations and experience. Box No. 2615

Clip this advert and you can stop hunting for your next appointment. We have a wide selection of the best appointments in Digital, Analogue, RF, Microwave. Microprocessor, Computer, Data Comms and Medical Electronics and we're here to serve your interests.
Call us now for posts in Design, Test, Sales or Field Service, at all levels from $£ 6,000-£ 16,000$
(COROLOT 11 Westbourne Grove, London W2. Tel: 01-229 9239. ~
\qquad , $<$ \sum

UNIVERSITY OF ABERDEEN
Department of
Bio-Medical Physics and Bio-Engineering

ELECTRONIC ENGINEER or PHYSICIST

Of practical bent required in department of international reputation, to care for electronic imaging equipment containing computers, particularly Iwo X-ray CT Scanners in modern teaching hospital. Training will be provided.

Salary within Grade 1A Scale for other Related Staff, $£ 7,190$ - $£ 11,615$ per annum, depending on qualifications and experience (scale under review).

Further particulars and applications forms from The Secretary, The University, Aberbeen, with whom applications (2 copies) should be lodged by 6 September 1984.

BRIGHTON POLYTECHNIC COMPUTER CENTRE
 DATA COMMUNICATIONS TECHNICIAN
 Salary up to $£ 8,712$ (pay award pending)

To help maintain an extensive communications, terminals and microprocessor service comprising 350 terminals, and well over 50 microprocessors. There is a small team dedicated to this task. Additional development activities are undertaken, improving the network by designing, building and servicing various system components.
A progression scheme is provided for accelerated remuneration commensurate with development skills.
Application forms and job description can be obtained from the Personnel
Department, Brighton
Polytechnic, Moulsecoomb,
Brighton BN2 4AT. Tel (0273)
693655 Ext 2537. Closing date 31 August 1984.

ENGINEERS FOR

 CYBERNETIC APPLICATIONSWe were one of the first companies in the U.K. to design and produce robots for educational and training purposes. Our products can now be seen in universities, colleges and other establishments throughout the worid. We need Electronic Engineers (Digital) for the design and development of new products in the cybernetics field. A familiarity with computers and a knowledge of mechanical principles are essential. As well as the job itself, we are offering an excellent salary and the security and benefits of working for a publicly owned group. So, if you want to be involved in the development of brand new products and are prepared to roll up your sleeves and get the job done.. RIng for Appllcation form or send C.V. to Managing Director. Powertran Cybernetics Limited, Portway Industrial Estate, Andover, Hampshire. Telephone Andover (0264) 62902

GROUND ELECTRONICS AND TELECOMMUNICATIONS - ENGINEERS/TECHNICIANS -

Earnings over 2 years not less than $£ 23,500$ (tax-free) PLUS free accommodation and meais, expert medical care, personal accident insurance PLUS 21 days' UK leave at 17 week intervals with free air travel to and from Heathrow.

Applications are invited for immediate and forthcoming bachelor status vacancies with our Company in the Sultanate of Oman. The work involves the maintenance of modern military equipment associated with the three branches of the Armed Services.

Ideally, applicants should have a thorough knowledge of techniques and have been employed for a minimum of 5 years' within the field of one or more of the following: mobile and static military radio systems, associated antennae and ancillary equipment; cryptographic and telegraphy equipment: weapons fire control systems and navigation aids used in air traffic control.

If you fэel you are suitably qualified and interested in joíning our Company; , please write giving a brief summary of your qualifications and experience to: The Company Personnei Manager, Alrwork LImited, Bournemouth-Hurn Airport, Christchurch, Dorset BH23 6EB.
, whuc

THE OLYMPIC CHALLENGE

BROADCAST ENGINEERING

The BBC's coverage of the 1984 Olympic Games in Los Angeles brings engineering skills into sharp focus. Capturing the drama, the triumph and the tragedy and bringing it across America, the Atiantic, and into millions of homes nationwide is an olympic feat in its own right, but a feat we accept as commonplace.

Broadcast Engineering with the BBC is a unique synthesis of artistic appreciation and technical skillnatural gifts carefully developed and strengthened at our Engineering Training Centre in Worcestershire and at work in our studios to produce peak performance not once in a lifetime but day in, day out.

Our behind-the-scenes team is responsible for the around-the-clock operation and maintenance of
complex technical equipment-much of it developed in-house and among the most advanced in the world. If you have active interests in electronics, a desire to work in showbusiness and the right qualifications, you could become a BBC Engineer.

You will need a Degree, HND, HNC, Higher BTEC Diploma in Electronics or equivalent to be considered for appointment, but your motivation is equally important. You must have normal hearing and colour vision.

Salaries are now on a scale from $£ 8,094$ rising to $£ 9,791$ in London. Allowances of about $£ 1,000$ are paid in addition to these salaries, to cover irregular hours of work.

If you have the stamina, commitment and qualifications for a Career in Broadcast Engineering, please
complete the coupon and send it to: The Engineering Recruitment Officer, BBC, P.O. Box 2BL, London W1A 2BL.

Please enclose a large SAE and quote ref 84E/4070 in any correspondence.

Who knows? You could be helping us to cover the 1988 Olympics.

The Engineering Recruitment Officer

 BBC, P.O. BOX 2BL, London W1A 2BL.Name
Address
\square

Age.
Current Occupation

Qualifications

Please quote 84E/4070

Civil Aviation College (Gulf States) DOHA, QATAR

REQUIREDFOR SEPTEMBER 1984: INSTRUCTOR AVIATION ELECTRONICS

University Degree and Professional Qualifications in Aviation Electronics. Qualified and Experienced in Installation and Maintenance of Modern Radio Systems. Must have MINIMUMTEN YEARS' EXPERIENCE with Three Years' Instructional Experience at an ICAO Recognised Training Centre.
Salary and Allowance up to US dollars 3400 Per Month.
Applications to:
THE PRINCIPAL
CIVIL AVIATION COLLEGE (GULF STATES)
P.O. BOX 4050

DOHA
STATE OF QATAR

HARINGEY HEALTH AUTHORITY BASICGRADE PHYSICIST/ ELECTRONICSENGINEER
Applications are invited from suitably qualified graduates for the above post in the Medical Physics Department. The successful applicant will be primarily responsible for the day to day running of the EBME Service provided by the department. Maintenance of equipment is provided for the hospitals within the Haringey District.

Applicants should have experience in electronics and additionally experience in maintenance is desirable.

Salary 86900-£8576p.a. inclusive of London Weighting
For further details contact Mr D.W. Bailey (Principal Physicist) on 01.8073071 Ext. 678.

Application forms and job descriptions available from the District Personnel Department, Mountford House, The Green, London, N.15.01-808 1081 extension 337.

Closing date: 6thSeptember, 1984
(2681)

SIGNAL RADIO

 BROADCAST ENGINEERFor general duties in the Engineering Department. The successful applicant will have a HND/Degree qualification or equivalent training in a relevant subject.
Experience in broadcasting and a clean driving licence desirable Salary: Negotiable depending on experience.
Apply with full C.V. to:
Dave Donahue,
Chief Engineer,
Chief Engin
Studio 257
StokeRd.,
Stoke Rd., Stoke-on-Trent
ST42SR

NIMBUS RECORDS LTD

Require a practical person able to build and wire up prototype electronic equipment from given circuits, also preferably able (with some guidance) to undertake faultfinding and maintenance on existing equipment. This is not simply a wireman's job - it needs a high level of general intelligence as well Write to:-

Head of Research, Nimbus Records Ltd, Wyastone Leys, Monmouth, Gwent NP5 3SR.

Medical Physics Technicians

 Electronics \& Medical Gases c. $\mathbf{E 2 3 , 5 0 0}$ p.a.tax-free Saudi ArabiaThe National Guard King Khalid Hospital in Jeddah has a wide range of modern biomedical systems and equipment and we car now offer the following opportunities:
Bio-Medical Engineer (Electronics)

You will have responsibility for the maintenance, repair and calibration of Electronics BioMedical Equipment used in the monitoring, treatment and diagnosis of patients. Ref. M067/01. Bio-Medical Engineer (Medical Gases)

You will be responsible for the maintenance of patient ventilators, anaesthetic and medical gas administering apparatus as well as the latest electronics servocontrolled ventilators. You will also be expected to ensure the proper operation of the piped medical gas systems supplying wards and theatres. Ref. M067/02.

You will need to have had at least 8 years relevant experience including 4 years or more spent in the maintenance of the appropriate equipment or in the design, construction and testing of such
equipment in a university or manufacturing environment. You will also possess an $\mathrm{HND} / \mathrm{HNC}$ or ONC in a suitable subject.

The Hospital is managed by the International Hospitals Group in liaison with the British government and is staffed by IAL.

What you would earn with IAL The figure quoted is based on a salary of SR 100,000 (c£21,700 pa), ar a conversion rate of SR $4.6=11$, plus a bonus of one month's salary for every 12 months satisfactory service which is paid as a tax-free lump sum at the end of your time with IAL in Saudi Arabia.

These accompanied status positions include 49 days annual holiday with free return flights to the UK, free accommodation and medical care and children's educational allowance.

Preference will be given to suitably qualified Saudi Arabian Nationals and to other Arabic speaking personnel.

Write to the Senior Recruitment Officer (M/S) quoting appropriate reference.

Advanced telecommunications:
 careers with extensive scope at Cheltenham

Join the Government Communications Headquarters, one of the world's foremost centres for R \& D and production in voice/data communications ranging from HF to satellite - and their security. Some of GCHO's facilities are unique and there is substantial emphasis on creative solutions for solving complex communications problems using state-of-the-art techniques including computer/ microprocessor applications. Current opportunities are for:

Telecommunication Technical Officers

Two levels of entry providing two salary scales £6262-£8580 \& £8420-£9522
Minimum qualifications are TEC/SCOTEC in Electronics/ Telecommunications or a similar discipline or C \& G Part II Telecommunications Technicians Certificate or Part I plus Maths B, Telecommunication Principles B and either Radio Line Transmission B or Computers B or equivalent: ONC in Electrical, Electronics or Telecommunications Engineering or a CIÉ Part I Pass, or formal approved Service technical training. Additionally, at least four years' (lower level) or seven years' (higher levell appropriate experience is essential in either radio communications or radar, data, computer or similar electronic systems. At the lower entry level first line technical/supervisory control of technicians involves "hands-on" participation and may involve individual work of a highly technical nature. The higher level involves application of technical knowledge and experience to work planning including implementation of medium to large scale projects.

Radio Technicians -£5485-£7818

To provide all aspects of technical support. Promotion prospects are good and linked with active encouragement to acquire further skills and experience. Minimum qualifications are a TEC Certificate in Telecommunications or equivalent plus two or more years' practical experience. Cheltenham, a handsome Regency town, is finely endowed with cultural, sports and other facilities which are equally available in nearby Gloucester. Close to some of Britain's most magnificent countryside, the area also offers reasonably priced housing. Relocation assistance may be available.

For further information and your application form, please telephone Cheltenham (0242) 32912/3 or write to:

Recruitment Office, Government Communications Headquarters, Oakley, Priors Road, Cheltenham, Gloucestershire, GL.52 5AJ.

INNER LONDON EDUCATION AUTHORITY
 LONDON COLLEGE OF FURNITURE
 41/71 Commercial Road, London E1 ILA

LECTURER 1 - MUSICAL ELECTRONICS

The College's Department of Musical Instrument Technology has become a unique establishment in the field of instrument making, offering a range of advanced and non-advanced courses of study validated by BETEC, and the City and Guilds.
The department has 18 full-time teaching staff, supported by visiting lecturers and well equipped workshops, laboratories and other facilities.
Candidates should be well qualified, have some educational experience and proven success in an aspect of the music industry
Salary: On an incremental scale with the range of $£ 5,649, £ 9,735$ plus $£ 987$ Inner: London Allowance.
Further details and application forms are available from The Clerk to the Governors at the College.

ILEA IS AN EQUAL OPPORTUNITIES EMPLOYER

ELECTRONICS ENGINEER
 The Polygram Recording Studio and Copying Suite require an electronics engineer.
 Applicants should have an interest and experience in the field of modern recording and digital electronics. Ability to operate and implement a fault diagnosis and repair procedure is essential.
 Experience within a recording studio or similar environment involving maintenance of electronic, electro-mechanical and digital systems would be an advantage.
 The successful applicant must have a flexible approach and be able to fit into a busy working studio. There is a requirement for some overtime and weekend working to meet recording studio deadlines.
 Applicants should have a degree or HNC in a relevant discipline.
 Please send a detailed C.V. with covering letter to:
 Veronica Spicer, Personnel Officer,
 PolyGram Record Operations Ltd.,
 54, Maddox St., London W1.
 014914600

Appointments

Electronics Engineers 89561

Communications Design in High Tech Country

At H.M. Government Communications Centre we're using the very latest ideas in electronics technology to design and develop sophisticated communications systems and installations for special Government needs at home and overseas.

With full technical support facilities on hand, it's an environment where you can see your ideas progress from initial concepts through prototype construction, tests and evaluation, to the pre-production phase, with a chance to influence every stage. Working conditions are pleasant, the surroundings are attractive, and the career prospects are excellent

Ideally we're looking for men and women who have studied electronics to degree level or equivalent and have had some experience of design, whether obtained at work or through hobby activities. Appointments will be made as Higher Scientific Officer ($£ 7149-£ 9561$) or Scientific Officer (£5682-£7765) according to qualifications and experience.

For further details please write to the address given below. As our careful selection process takes some time, it would be particularly helpful if you could detail your qualifications, your personal fields of int erest and practical experience, and describe the type of of working environment most suited to your career plans.

The Recruitment Officer, HMGCC, Hanslope Park, Buckinghamshire MK19 7BH
(2448)

Design Engineers

If you are keen to gain the maximum benefit from working in an Applied Research Technology Environment, our client can offer you the finest resources coupled with the most up to date computer facilities and they will help and encourage you to develop your professional skills to their fullest

We are confident there are few companies who can match their record of growth and innovation over the past few years. They can offer excellent opportunities for you to work in a wide range of advanced circuit/device development. Because of their expanding order book which now runs into the next century they will also give you early opportunities to use your abilities to control and manage teams and projects.

As a member of one of several small teams of professional engineers you will work in generously equipped modern laboratories devising some of the most sophisticated defence systems yet known.

We are able to offer progressive openings at all tevels for ambitious engineers to establish themselves in advanced electronics design and development. Our client provides an excellent salary package, full company benefits, five weeks holiday, generous relocation expenses and they will be particularly interested if you can contribute experience to the following

uriot 18.000

Power Engineering - development of ultra-sonic transmitters and high power switch mode supplies using the very latest FET systems and power hybrids

VLSI Device Design - tor dgata sgnal poocessng

 applications using in-gate arrays, semi-custom and full-custom and employing some of the best CAD circuit, logic simulation and autoplacement technology availableAnalogue Circuit Development - very ow noise
broadband amplifier design at LF and VLF using thick film hybrids together with programmable attenuators and active filter techniques.
Digital Signal Processing - using FFT and Advanced
Digital Technology in sophisticated micro processor controlled systems which also use the very latest DSP chips

TO. FIND OUT MORE and to obtain an early interview, please telephone JOHN PRODGER in complete confidence on HEMEL HEMPSTEAD (0442) 47311 during office hours or one of our duty consultants on HEMEL HEMPSTEAD (0442) 212650 evenings or weekends (not an answering machine). Alternatively write to him at the address below.

Career Opportunities in the High Technology Broadcast Industry.

Sony Broadcast Ltd is a world leader in the professional T.V. industry with branches throughout our marketing territory of Europe, the Middle East and Africa. Applications are now invited from experienced engineers for the following challenging opportunities:-

Senior Project Test Engineer

To join our Systems group, responsible for the manufacture, testing and commissioning of complex static and mobile television systems, including dubbing and editing systems, full production studios and EFP packages. The successful candidate will supervise a small team,responsible for acceptance of vendor equipment, final evaluation of completed systems, test and repair of equipment built in-house and the development of "black box" electronic units. Aged 25 plus, applicants should have direct experience of sound and television principles together with a recognised electronics qualification. Previous supervisory experience would be an advantage.

Demonstration Equipment Engineer

The successful candidate will be responsible for the Demonstration of our complete range of Broadcast Video products, including cameras, VTRs/VCRs, editing control systems and the exciting new range of Betacam equipment. Duties will also include the service and repair to component level of Demonstration equipment, and the provision of Technical Support to Sales. Aged 23 plus, applicants should possess an HND or equivalent electronics qualification, together with the ability to effectively interface with Customers. Previous experience in the Broadcast industry, gained either in operations or allied manufacturing industries is essential
We offer attractive salaries and first class conditions of employment. If you are interested please contact: David Parry, Assistant Personnel Officer, Sony Broadcast Ltd., City Wall House, Basing View, Basingstoke, Hants. RG21 2LA. Tel No. (0256) 55011

Sony Broadcast Ltd.

City Wall House
Hampshire RG21 2 L
Telephone (0256) 55011

Soundtracs, winners of the Queen's Award for Export Achievement 1984, require audio test engineers with extensive analogue experience. The position will involve final test of our digitally routed CM4400 and hence experience of CMOS, latches and microprocessors is an additional necessity. The position involves intermediary and final test of products, writing test schedules for new consoles and subassemblies: Specification of test jigs and strong liaison with the design team to 'productionise' the design of new units.

Working in our refitted factory in Surbiton, the salary will be up to $£ 10,000$ depending on experience, 26 days' holiday, BUPA and other normal benefits

John Stadius, 01-399-3392 or write to:
Soundout Laboratories Ltd., 91 Ewell Road, Surbiton, Surrey. KT6 6AH.

Link
 ELECTRONIC TEST ENGINEERS -TELEVISION STUDIO PRODUCTS

Experienced Engineers are required for the design of TV Studio Products using the very latest analogue techniques. You will have the opportunity to see your designs made in volume production and fulfilling the high technology requirements of the ' 80 's

We are looking for engineers minimum age 25 , who are qualified to Degree level and who have at least 3 years experience of electronic equipmentpreferably in television.

DESIGN AND DEVELOPMENT ENGINEERS

Experienced Engineers are required for test and quality assurance duties on our current range of broadcast equipment. You would be involved in fault-finding, testing and checking to spec., sophisticated studio products, including our new range of microprocessor based colour cameras and digital test equipment. Preferably qualified to a least HND/Higher TEC/Degree level you should be familiar with modern digital and analogue circiutry. At least three years' experience in a related field would be an advantage for the present level of vacancies.

Salaries offered are competitive and are backed by free life and health insurance plus a contributory Pension Scheme and generous holidays. Assistance with relocation will be given where appropriate to help successful candidates move to this pleasant rural part of Hampshire, which offers easy access to London and major towns in the South of England.

Please phone JEAN SMITH on Andover (0264) 61345 for an application form or, alternatively, let us have full details of your background and experience.
Nicsics

ELECTRONICS

Walworth Industrial Estate, Andover, Hampshire, England Telephone: Andover (0264)61345

THE UNIVERSITY OF SUSSEX

ELECTRONICS TECHNICIAN

A vacancy exists for an electronics technician in the Psychology Laboratory, from as soon as possible. Applicants with at least seven years' experience in electronic work are sought. Someone with less experience will also be considered. especially if with an interest in the computer and/or audio/visual fields.
Salary in the Technician Grade 5 range, $£ 6,279-£ 7,332$ per annum, according to age and experience, but someone with less than seven years' experience would be appointed on a lower grade.
Send self-addressed envelope ($9 \mathrm{in} \times 6 \mathrm{in}$) for application form to Mrs. S. Cory-Wright, Personnel Office, Sussex House, University of Sussex, Falmer, Brighton BN1 9RH. Applications must be received by 5th September 1984.

TECHNICAL AUTHORS

We have vacancies for experienced and trainee technical authors, to write handbooks on some of the latest technology electronics equipment.
Prospective trainees should have a sound knowledge of electronics and the ability to express themselvesconcisely in the written word.
We offer varied and interesting work, pleasant working conditions and attractive salary.

> Applications to:
> Tho Manager
> Engineering \& Tochnical Publications Ltd 12 Shute End Wokingham, Berks

Tol: Wokingham (0734) 790123

PORTSMOUTH POLYTECHNIC
 Department of Electrical and

Electronic Englneering
(Electrical Standards Laboratory)
EXPERIMENTAL OFFICER Post No. 254
Required for duties in the above laboratory, offering calibration of a wide range of electrical equipments. This laboratory has British Calibration Service approval and provides traceability to defence standards 05 for local industries. The postholder is responsible for the daily functioning of the laboratory and the ability to work unsupervised is essential.
Salary Scale: Up to a maximum of £8712.00 per annum

Application forms and further particulars can be obtained from the Personnei Office, Nuffieid Centre, St. Michaol's Road, Portsmouth, PO1 2ED, tolephone (0705) 825451, and should be returned by 17 September shoul.
1984.

Electronic Engineers What you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $£ 5000-£ 15000$.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL PERSONNEL SERVICES, 12 Mount Ephraim, Tunbridge Wells, Kent. TN4 8AS.

Tel: 089239388

(24 Hour Answering Service)

Please send me a TJB Appointments Registration form:
Name
Address

CAPITAL APPOINTMENTS LTD THE UK's No. 1 ELECTRONICS AGENCY ELECTRONICS ENGINEERS

If your career is stagnating, if you are unemployed, or just starting your career in the most dynamic industry this country has to offer, then Capital Appointments can help. Our client companies have immediate and long term requirements throughout the UK for most categories of staff including:
TECHNICAL MANAGEMENT, DESIGN, SOFTWARE, TEST, FIELD SERVICE, SALES, ETC. with salaries from $£ 6,000$ to $£ 16,000$ p.a.
Ours is a FREE SERVICE for applicants and you are assured of complete confidentiality.
For immediate attention to your career requirements, complete the form below now and post to: CAPITAL APPOINTMENTS LTD, 76 WILLOUGHBY LANE LONDON N17 USF
If you would prefer to telephone :'s to discuss your situation in more detail, one of our consultants will be pleased to help.
TELEPHONE: 01-808 3050
CONFIDENTIAL
CUT FORM AND RETURN

ADDRESS
NAME. \qquad

Type of Position required: ... Salary level.

Please indicate areas in which you are prepared to work:					
Cent. London	S. Coast		E. Midtands		
S.E. London		West Councry		W. Midlands	
S.W. London		N.E. England		E. Anglia	
N.E. London		N.W. England		Wales	
N.W. London		Scotland		Overseas	
Home Counties: N.W.	N.E.	S.W.	S.E.		

Are you a houseowner?	Are you willing to relocate?
Are you prepared to travel - In UK?	Overseas?
State of heath:	
Notice Period required:	Availability for Interview:

EDUCATION:
Secondary School Qualifications:
College or University Qualifications:
Any Professional Membership:
CAREER HISTORY

Please indicate any Companies you do not wish us to contact.

If you wish to detail further aspects of your experience or job requirements, piease continue on a separate sheet.

Project Engineer
 Electromagnetic Compatibility

Working in our Radio Interference Laboratory, your brief will be to provide an electromagnetic compatibility advisory and measurement service for companies within the Group - a wide ranging role involving such elements as the planning and supervision of development work surrounding radiated ignition interference from vehicles, the compatibility and relative susceptibility to interference of electronic circuits and the corrective actions necessary.

You should be educated to degree level in Electrica//Electronic Engineering, with experience in Radio Engineering and its application to electronic circuitry and/or instrumentation.

We offer a five figure salary to match the responsibility and seniority of the post, together with a wide range of large group benefits.

Please write enclosing full career history to Alan Morgan, Personnel Manager, Lucas Electrical Electronics \& Systems Limited, College Road, Kingstanding, Birmingham B44 8DU.

Lucas Electrical

IOMA

ENGINEERING LIMITED

JUNIOR DESIGNENGINEERS ELECTRONICS

Are you seeking your first real challenge in electronics design? Whether your main interest is Analogue, Digital or Microcomputer design, we could have an opportunity for you.
Our design projects usually incorporate a good balance of all disciplinnes, and we believe these positions will interest those seeking to broaden their knowledge base.
As our successful candidate we hope that you would, in due course, become responsible for your own projects from conception to completion.
The equipment which you design will operate in arduous factory environments, principally in the food process industry. It will generally be used to weigh and otherwise check and maintain the quality of the manufacturers product.
We can offer an attractive salary and relocation package to the successful applicants
Telephone for an application form or write enclosing
your C.V. to:
Mrs. J. Tricker
Loma Engineering Ltd
Invinclble Road
Farnborough Industriai Estate
Farnborough
Hants
Tel:0252540346

The leading supplier of Newsroom Computer Systems for radio and television is looking for an ALL ROUNDER to work on installation, support and maintenance.
Experience with Onyx Micros and IBM-PC based systems would be an advantage as would some software ability. Based in Central London, but lots of travel. Competitive salary for the right person.

> Please send C.V. to:BASYSINC.
> 43, Portland Place, London W1N 3AG
> Telephone: $01-6310286$

SCOTTISH OFFICE - DIRECTORATE OF TELECOMMUNICATIONS
 WIRELESS TECHNICIAN ($£ 6251-£ 8450)$

Applications are invited for the above post based in East Kilbridge, Nr Glasgow. Candidates must have a sound theoretical and practical knowledge of Radio Communications Systems both fixed and mobile, in the frequency range HF to 2 GHz . They must also be able to use test equipment and simple machine tools. A sound basic knowledge of digital techniques would be an advantage. They should have a minimum of 3 years appropriate experience and should hold an Ordinary National Certificate in Electronics or Electrical Engineering or a City and Guilds of London Institute Certificate in an appropriate subject or a qualification of higher or equivalent standard. Some assistance may be given with re-location expenses.
A valid UK driving licence is essential.
Application forms and further information are obtainable from Scottish Office Personnel Division, Room 110, 16 Waterloo Place, Edinburgh EH1 3DN (quote ref PM(PTS) 1/6/84 (031-556-8400 Ext 4317 or 5028).

Closing date for receipt of completed application forms is 7 September 1984.

The Civil Service is an equal opportunity employer.
(2660)

TELECOMMUNICATIONS ENGINEERING TECHNICIANS

OPENINGSIN SERVICING AND MAINTENANCE - UP TO £8,450 p.a.

Our business is to install and maintain the communications equipment used by the Police and Fire Brigades in England and Wales some of the latest you will find in operation anywhere. We have a number of vacancies at our Service Centres in various parts of the country, for Telecommunications Engineering Technicians with practical skills in locating and diagnosing faults in a wide range of equipment from computer-based data transmission to FM and AM radio systems.
The work provides excellent opportunities for extending your technical expertise, with specialised courses and training to keep you up to date on developments and new equipment. There are also opportunities for day release to gain higher qualifications.
Applicants, male or female, must be qualified to at least City \& Guilds Intermediate Telecommunications standard and posess a current driving licence (some travelling will normally be involved). Registered disabled persons can of course apply.
The Home Office is an equal opportunities employer.
Salary will be on a scale of $£ 6,251-£ 8,450$ (pay award pending) with generous leave allowance and pension scheme. There are good prospects for promotion.
If you are interested in working with us, please write for further details and application forms quoting reference WW/1, to: Miss M Andrews, Home Office, Directorate of Telecommunications, Horseferry House, Dean Ryle Street, London SW1P 2AW. (2687)

ELECTRONIC ASSEMBLY Qualification Engineer

IBM United Kingdom Laboratories requires an electronics engineer to join a component engineering department at the company's product development laboratory at Hursley, near Winchester.

You will join a group responsible for the qualification of electronic assemblies and components which are used in IBM products. You will define and implement tests to evaluate the devices function and reliability, and may occasionally be required to travel overseas. You will meet design teams and suppliers to discuss performance, quality and reliability matters and will possess the necessary communication skills.

You should possess a degree or HND in Electronic Engineering and a sound working knowledge of analog circuits is essential. Familiarity with CRT drive circuits and experience of reliability test methods would be an advantage.

The job is ideally suited to a young engineer with a minimum of two years' experience in an appropriate field. We offer an excellent salary supported by a generous benefits package which includes flexible working hours, free life assurance, a contributory pension scheme and BUPA membership. Relocation assistance to this pleasant part of Hampshire will be provided where appropriate.

For an application form, please write to Rena Southcott, Personnel Officer at IBM United Kingdom Laboratories Limited, FREEPOST, Hursley Park, Hursley, near Winchester, Hants SO21 2 BR (no stamp required), or send a detailed curriculum vitae. Please quote reference E365.

- 16,000 jobs in over 40 UK locations

- Two manufacturing plants
- Development laboratory near Winchester
- An equal opportunity employer
- $£ 745$ million exports in 1983
- $£ 146$ million invested in UK in 1983

BORED ?

Then change your job!

1) Data Communications Customer service engineer to work on local area networks. To 113,000 + car. Berks.
2) Test Engineer to work on peripheral and printers to component level. To £9,000. Berks/Bucks/Hants.
3) CAD/CAM Field Service Engineers. To work on PDP 11 based graphic display to £12,000 + car. Berks/Bucks.
4) Office Automation Systems Technical Support Engineer to work on 280 based systems. To £11,000 + car
Berks/Bucks.
Hundreds of other Electronic and Computer vacancies to $£ 12,500$ Phone or write:
Hoger Howerd, C.Eng., M.I.E.E., M.I.E.R.E.
CLINEDEN CONSULTANTS 92 The Broadway, Bracknell, Berkshire Tol: 034 asents

Are you an inventive electronics person with good, old-fashioned horse-sense?

We are looking for someone to join us in N.E. Surrey in a small but busy and creative team designing electronics for a range of laboratory and industrial measurement equipment.
We use analogue and digital circuitry and 6800/6809, and have recently started to make use of FORTH. There is plenty of opportunity for brainstretching, and scope for the contribution of ideas from outside the electronics field.

If this sounds as if it might suit you, or that you might adapt to it, then get in touch.

We would expect that the successful candidate will have experience in nitty gritty electronics and probably be HNC/Degree level but qualifications are of much lower importance than actual ability.
Telephone Tania Thompson (Chertsey 62671) or write for an application form to:

> KENT INDUSTRIAL MEASUREMENTS LTD. Hanworth Lane, Chertsey, Surrey KT16 9LF

SETTING UP A RADIO STATION:

Prolessional quatity VHF/FM broadcast transmitlers and repenter links available. 25.250 watts, al solid state, continuously rated Mono/Stereo ver-
sions. High stability PLL/Xtal relerences. Competitluely priced ie 100 watt model. with integral mains power supply - $\$ 375$ Fully guaranteed Cyberscan International,
3 Eastcote View, Plnner.
Middx HA5 IAT. Tel: 01.8663300

SHEETMETAL FOLDERS $18 \% \times 18 G$ Vice or Bench model. £38. Leaflet, 01-890 7838 Anytime.
PCB HAND ASSEMBLY - any quantity. Highest quality at sensible prices. INTERESTED? Phone 01-274 3070

Our Protessionai Marne Electronic Repair Sales and Reservation Facillty is moving to new premises and we are Morced to clear all exlsting equip(rent at knock-down prices.
Marine radio telephones, Radar Echo-sounders. Rotary Convertors, Transformers, Transistors, Valves, inflact nything from a $B C 108$ to a 1500 wat main transmitter. Our stocks are soextensive, new and second-hand that you dare not miss inis unique opportunity. Open io personal callers, professional and amateu. Open 10.00am- 6.00 pm Mon-Sal
$1-4$ Swan Moad, off Tower Bridge Ro, London SET. $2375261 / 2$

[^5]YOU WON'T BE BORED BY OUR BOARDS.Many interesting boards available, software/hardware combinations, one off prototype bled and supplied on eproms, electronics/computer design work. Automation and Control Technology, Cofton Road, Marsh Barton, Exeter, EX28QW Tel: 039237190
(2688)

FOR SALE Several data dynamic 390 teletype machines with silent covers. Offers in writing to Manager, NORWEB, Peak Area Office, Union St, Oldham, OL1 1DG. Viewing by appointment 0616246281
(2695)

SURPLUS TO OUR REQUIREMENTS 1200 SONITRON sm2b buzzers $1.5 v$ to 28 v dc at 24 v 87 dB atl meter $6 \mathrm{~mA}, 3.5 \mathrm{KHz} 80 \mathrm{p}$. ALLEN BRADLEY 16 pin resistor networks 20 p . 15 tol pin. $2.2 \mathrm{~K} ; 13500$ © $470 ; 5000$ © 33 K 5000 CAPS dil ceramic 100 n 50 v AVXMDO15E104z 20 p . QUANTITY discount $10-10 \% 100-25 \% 500-40 \%$ 1000-50\% 10000-60\% Add VAT and 50p P\&P. JPG ELECTRONICS 276 Chatsworth Road Chesterfield S40 2BH (0246) 211202

WANTED

VALVE HI-FI, Quad, Leak, Garrard, Radford, Lowther, Thorens etc., All types of yalve equipment considered for purchase. The Vintage Wireless Co., Tudor House, Cossham Street, Mangotsfield, Bristol BS17 3EN. Tel: 0272-565472, or Telex 437287 Sharet G

ARTICLES FOR SALE

DRIOTWICH STANDARD FREQUENCY RECEIVER

Outputs, $1 \mathrm{MHz}, 10 \mathrm{MHz}$ Phase locked crystal oscillator. Complete with ferrite rod aerial, usable throughout U.K. Now available in updated version. §185.00
R.C.S. Electronics, Wolsey Road, Ashford, Middx. Phone 53661. (2656)

> The Publishers take all reasonable care to ensure that classified advertisements are genuine, but readers must satisfy themselves that they will be obtaining what they require before entering into transactions, particularly if they involve large sums of money.

MORSE READING PROGS. Work on clean sig. nals without hardware interface. ZX81 1 KUNEX
PANDED MEMORY. Translated code with word PANDED MEMORY. Translated code with word and line spaces
action. $£ 7$ incl.
SPECTRUM 16/48K. Scroll action with 10 -page scrolling memory, instantly accessible page by page. $£ 8$ incl. All types variable speeds. Feed signal direct into EAR socket. Pinehurst Data Studios, 69 Pinehurst Park, West Moors, (2532)
BORNE, Dorset. BH22 0BP.

Townley \mathbb{T} imes

FREE Mail Order newspaper of Bargains. Relays; Diodes; Thyristors; Capacitors; Resistors; Bridge Rectifiers; Cable Straps; High Speed Fuses and Mechanical Components.
Harehill, Todmorden, Lancs. OL14 5JY
Tel. Todmorden (STD 070 681) 4931

UNUSED OLD STOCK. DC convertors input 50 V output 20 V 3 A and 24 V 2 A . Telecom type 62 equipment practice. Normal price $£ 387$ each. $£ 50$ D.H. Wilson, 33 Farwig Lane, Bromley, Kent.

UNUSED OLD STOCK. DC convertors input 50 V output 20 V 3 A and 24 V 2 A . Telecom type 62 equipment practice. Normal price $£ 387$ each. $£ 50$ D H. Wilson 33 Farwig Lane. Bromley. Kent. D.H. Wilson, 33 Farwig Lane. Bromley. Kent WAVEGUDE 2900 WAVEGUDDE, Flanges and dishes. All standard sizes and alloys (new material only) from stock. 7876. 22 Howie Street. London SW 11 4AR. (2099) ENCAPSULATING EQUIPMENT FOR. coils, transformers, components, degassing silicone rubber, resin, epory. Lost wax casting for brass, bronze, sive, ele. Vacuum equipmens, cransior used and new. Also for CRT regunning metallis ing. Rescarch \& Development. Barratts, May Road, Croydon CR0 2QP. 01-6849917. (9678)

OPTOELECTRONICS DATA BOOK 1984

Price by Texas $£ 6.00$
DIGITAL ELECTRONIC CIRCUITS

\& SYSTEMS by N.M. Morris | PRICE $: ~$ |
| :--- |
| $£ 5.45$ |

MICROELECTRONICS:

A PRACTICAL INTRODUCTION by R.A. Sparkes PRICE: $£ 8.50$ SOLDERING IN ELECTRONICS DY R.J. Klein Wassin Wassink PRICE: $£ 51.00$ OPTICAL FIBER COMMUNICATIONS dIGITAL IMAGE ANALYSIS PYS. Levialdi PRICE: $£ 26.00$ SEMI-CUSTOMIC DESIGN \& VLSI INTRODUCTION TO MOS LSI DESIGN by M. Mavor PRICE: $£ 18.50$
HANDBOOK OF BATTERIES \&
FUEL CELLS by D Linden PRICE: $£ 63.00$
THE DESIGN \& DRAFTING OF
PRINTED CIRCUITS by D. Lindsey

- all prices include POSTAGE

THE MODERN вооК $\mathbf{C O}$.

BRITAIN'S LARGEST STOCKIST of British and American Technical Book

19-21 PRAED STREET

 LONDON W2 1NPTelephone: 01-4029176
Closed Saturday 1 p.m Please allow 14 days for reply or delivery

When replying to classified advertisements, readersare recommended to take steps to protect their interests before sending money

TO MANUFACTURERS, WHOLESALERS

 BULK BUYERS. ETC.LARGE QUANTITIES OF RADIO. TV AND ELECTRONIC COMPONENTS FOR DISPOSAL
SEMICONDUCTORS, all types, INTEGRATED CIRCUITS. TRANSISTORS, DIODES, RECTIFIERS, THYRISTORS, etc. RESISTORS, C/F, M/F, W/W, etc CAPACITORS, SILVER MICA, POLYSTYRENE, C280, C296, DISC CERA-

MICS. PLATE CERAMICS. etc.
ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE, CABLES, SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFORALL KNOCKOUTPRICES MERS. etc.

TELEPHONE: $4450749 / 4452713$
R.HENSONLTD

21 Lodge Lane, North Finchley, London, N. 12

BRIDGES waveform/transistor analysers. Calibrators, Standards. Millivoltmeters. Dynamometers. KW meters. Oscilloscopes. Recorders. SigRMS, audio, FM , deviation. Tel. 040 ${ }_{376236 \text {, }}{ }^{\text {RMS }}$, FM, deviation. Tel. ${ }_{(1627)}$

COMMUNICATION RECEIVERS

 PLIEO WTH OUST COVER - OPERAVION NSTRUCTIONS

- CIRCUIT - IN FAIP SED CONOTTON O RACCI YHM-

 RECEIVER SOLID STAIE - COMPLETE NTH SEPARATE
SYNTHESISER - INCLUDES FM - VRY HIGHAGAN,
SENSITVE AND EXTHEMELY STABE REGE SENSITIVE AND EXTREMELY STABLE RECEEVER -
NOTH AMERICAN RACAL MAOE E4OO RAB37L L COMVERTO 3 TO 980 KHZ FOR USE WITH SOLLD STATE
RECEIVERS - £150- EDOYSTOWE COMMUNICATON

STATE - SINGLE CHENNEL - SBB - MANSOR BATTEAY
-1.6 TO 27.5 MC S ANO 400 to 535 KHZ \& 100 WITH

 STATE - 10 FIXED CHANNELS - RANGE 1.5 TO $30 \mathrm{MC/S}$
AND 255 KHZ TO 525 KHZ - MAINS OR BATTERY - COMPLETE WTTH ISB ADAPTOR ARU1OA MANUAL - CREED 75 TELEPPANTERE - FITTED TAPE PANCHANO GEARBDX FOR 50 AND 75 BAUDS - 110 VOLT
AC SUPPIY - IN ORIGINALTRANSPORTTRAY SEALEDIN POLYTHENE - LIKE NEW - E15 EA. Q REDFOO T11
 - SUPPLY 110 OR 240AC - MAOEFORUSE WITHABOVE
TELEPRINTER ENABLING PRINT-OUT OF MESSAGES RECEIVED FROM AUDID INPUT OF COMMUNICATION REGEIVER - $\mathbb{C} 15$ WITH CIRCUII TESTED. REDAFON T10 COMYERTOR AS ABDVE BUT INCUDES TTANSMIT FACCCITES - £20 - OSCILIOSCOPES - STOCKS ALWAYS

 OOT CODE - UP TO 300 BAUDS - FOR PRINT-DUT ON
PLAIN TELEPRINTR PAPER 550 TO 100 - TRAUSTEL

 MILE CANVAS CONAINERS - E20 © MIGHT YHE WMA
MFRA-RED AFY PERISCOPES - TWIN EYEPECE 24 -
 ERNME STOVER 111000 EA. STATICIMVERTORS- 120
24-VOLT INPUT - 240 -VOLT AC SINEWAVE OUTPUT VARIOUS WATTAGES PO.R. - XY PLOTERE AMD PEN
RECORDERS VARIOUS - P.O. - FERROORAPH SERES 7

 And L5 PLUG-INS 4 TO $75 \mathrm{MC} / \mathrm{S}$ £60 P TELOWIC SWEE
 POWER METER E50 - AERIAL MAST ASSEMPIY SOFT. MIGH
 GUYROPES - INSULATORS - BASE AND SPIKES, ETC

- IN HEAVY-OUTY CARAYING BAG - NEW - $\mathcal{Z} 30$ - IN HEAVYOENT COURER NPE B36 - NEO TEKTROMAX PLUG-HS - $1 \mathrm{~A} 1 £ 50,1 \mathrm{~A} 2 \mathrm{£} 40,1 \mathrm{~A} 4 \mathrm{£} 100$, $\mathrm{M} £ 50$

CAARIGGE EXTRA.
EXPORT TRADE AKD QUAMTITY BISCOUNTS GIVEW
WHTE BALL WOOKS, BA WHITEHALL ROADEAST BIRKEMSHAW, QRADFOROBO112E
TEL: 10274 (GE4007

Wanted: redundant test equipment CEVIING A | RE. |
| :---: |
| VALVES | PLUGS SOCKETS SYNCHROS, ETC.

WANTED

WANTED

Test equipment, receivers valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash. Member of A.R.R.A.

M \& B RADIO

86 Bishopsgate Street
Leeds LS1 4BB
0532435649
(9956)

SURPLUS

We offer good prices for test equipment components, redundant computers PB's connectors. Immediate settle

TIMEBASE
94 Alfriston Gardens
Sholling, Southampton SO2 8FU
Telephone: (0703) 431323

(1832)

WANTED SURPLUS ELECTRONIC COMPONENTS AND EOUIPMENT

We also welcome the opportunity to quote for complete factory clearance B. BAMBEA ELECIRONICS
IION ROAO LITLEPORT, CAMBS Phone: Ely (0353) 860185

DISTRIBUTORS WANTED

for comprenensive range of
POWER SUPPLIES
For further details, please contac
Gary Davies, Product Manager,
Gary Davies, Product Manager, Canadian instruments \& Electronics
Ltd, Harris-Bass House, Station Road,

Ilkeston, Derbyshire DE7 5TX. (2697)

VERBGATE LTD.

We buy large and small parcels of surplus I/C, transistors, capacitors and related electronic stock. Immediate settlement

Tel: 01-208 0766
Telex: 8814998
(2478)

STEWART OF READING 110 WYKEHAM ROAD READING RG61PL TEL NO: 073468041
 TOP PRICES PAID FOR
 ALL TYPES OF SURPLUS TEST EQUIPMENT
 COMPUTER EQUIPMENT
 ANY QUANTITY.

CAPACITY AVAILABLE

FREE P.T.H. PROTOTYPE of the finest quality with EVERY P.C.B. artwork designed by us. Com petitive hourly rates, and high standard of work. Halstead Designs Limited, 34, Hıgh St., Halstead,
Essex. Tel. (0787) 477408/474554. (2126)

TW ELECTRONICS LTD
 THE PCB ASSEMBLERS

More and more companies are investigating the advantages of using a profes sional subcontractor. Such an
ing requires certain assurances.
TW are able to satisty all of them quality, competitive pricing, firm delivey and close co-operation with the cus tomer.
Assembled boards at 100% inspected Assembled soldering and reinspected after automatic cropping and cleaning. Every batch of completed boards is is mity and quality - our final assurance. For further details, contact us at our new for furt

> Blenheim Industrial Park Bury St. Edmunds
> Suffoik IP33 3UT
> Telephone: 02843931 (1466)

SMALL BATCH PCBs, produced from your artwork. also DIALS, PANELS, LABELS. Camera work undertaken. FAST TURNAROUND. Iecails: Winsion Promotions, 9 Hation Place, London
ECIN 8RU. Tel. $01-4054127 / 0960$.

FOR THE BEST PCB SERVICE

 AVAILABLE*Ciricuiut Design as Development
Digital and Analogue
A.Artwork Lavout

PCB arvwork layout and mechanical detailing. P.O.
approved standidard.
approved standard.

Protorype to semi-production, excellent rates.
*Wining \& Ansembly
PCB assembly, winng and cable forming. Flow solder-
ing facilities available
*Tost
Full test facilities
zvailable.
One or all services available. Please telephone Cheimstord
10245) 357935; or write to HCA Electronics, The Industrial Unit, Parker Road, Cheimsiord.
i30mins from Liverpool Street St
(1169)

ANALOG COMPUTERS LIMITED CAPACITY NOW AVAILABLE FOR:
chartpak stockist

Design \& Development, Complete Artwork Service, Camera Work, Prototype thiru to Production PCB Manufacture/Assy. 5 Cork Street, Eccles, Maidstone, Kent, ME 20 7HG TELEPHONE 10622179987 TELEX 965633 (2348)

EQUIPMENT
REPAIR AND CALIBRATION
FAST, EFFICIENT SERVICE CONFORMANCE TO NATIONAL STANDARDS

A division of:
PAOTOTPP DEVELOPMENT SYSTEMS LTD Enteprise House, 4-45 Tenace Roas Wallon-on-Thames, Suriey KT12 250
(0932) 245670

PROFESSIONAL DESIGN SERVICE. Analogue/RF circuit/System design. Specialising in microwave amplifier, oscillator and network design. MOTOROLA 6805/6809 series microprocessor design/development capability. All work carried out to a high standard by competent profes vical Lengıneers. Trontech Electronic Design Ser End, Bucks. 0628528835 , DESIGN AND MANUFACTURE. ANALOGUE, DIGITAL, RF AND MICROWAVE CIRCUTT AND SYSTEM DESIGN. Also PCB design, mechanical design and prototype/small batch production. - Ad Berks. Tel: Bracknell (0344) 52023. (656)

CIRCOLEC

THE COMPLETE ELECTRONIC SERVICE

Artwork, Circuit Design, PCB Assembly, Test \& Repair Service, Q.A Consultancy, Prototypes, Final Assembly. Full PCB Flow Soldering Service.
Quality workmanship by professionals at economic prices Please telephone 01-646 5686 for advice or further details.

TAMWORTH MANOR
302-310 COMMONSIDE EAST, MITCHAM
"DIGITAL DESIGN. We take your digital system concept from feasability study through design and develepment utihising the latest Mentor Graphics CAE workstation. Also semicustom digital IC design undertaken, supported by one of the worlds most experienced semicustom manufacturers. MAPCON consultancy also available. Call Gary Stangroom. Design Manager of Logic Solutions on Basingstoke
$(0256) 54017$."

TENDERS

BRECKLAND DISTRICT COUNCIL Sale of Surplus UHF FM Mobile Radio System

Applications are invited for receipt of tender documents in respect of a surplus UHF, ($450-470 \mathrm{MHz}$), FM mobile radio system comprising one base station, with remote control unit, nine mobiles. three portables and various associated items.
Items may be viewed by appointment with the Senior Administration Officer, on 0362-5333 Ext 215, at Central Depot, Yaxham Road, East Dereham.
Applications should reach the undersigned by 10th September 1984
Ronald C. Coates, Surveyor,
Breckland District Council, The Guildhall, East Dereham, NR19 1EE.
(2657)

CLASSIFIED ADVERTISEMENTS Use this Form for your Sales and Wants

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW
To "Wireless Woild" Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate £4.00 PER LINE. Average six words per line. Minimumr $£ 25$ (prepayable)
- Name and address to be included in charge if used in advertisement
- Box No. Allow two words plus $£ 5$
- Cheques, etc., payable to "'IPC Business

Press Ltd." and cross " $\&$ Co."

PLEASE WRITE IN BLOCK LETTERS. CLASSIFICATION
NUMBER OF INSERTIONS

COMPUTER APPRECIATION

16 Walton Street, Oxford OX1 2HQ Tel: Oxford (0865) 55163

UNITRON Model 2200 microcomputer. APPLE $11 / e \&$ CP/M compatible machine with 6502 \& $Z 80$ processors, 64kbyte memory, detached keyboard with numeric pad \& floppy disc interface. BRAND NEW \&350.00
SHARP Model PC3201 MICROCOMPUTER SYSTEM comprising, 8085 -base es, moni-

MiCRO V Model Microstar I microcomputer system. 8085 based with 64 kbytes, dual double sided, double
density \sin disc drives, 3 serial interfaces \& LEAR SIEGLER Model ADM 31 VDU 650.00
ROCKWELL AIM $65 / 40$ single board 6502 development system with display, kevboard, power supply \& cas-
atte recorder
ACIT Model 4070 PAPER TAPEPUNCH. BRAND NEW 350.00 Eessor with green 24×80 display, detached kevboard with numeric \& function keypads, twin 8° double or single density floppy disc drives (IBM compatible), RS232 \& Centronics interfaces, NEC Model 5500 Spinwtiter $\{55 \mathrm{cps}$ daisy wheet printer). Software included in the price - CP/M, WORDSTAR, BASIC, DATASTAR tc. BRAND NEW
factured).
DICOLL LSI11 SYSTEM comprising. processor with 64bytes, BA11 backplane \& PSU (DEC manufactured).
DLVI1J quad serial interface, dual PERTEC double density floppy disc drives. Contained in compact, attrac-
ive portable box. Sofware includes RT-11 \& many interesting bits \& pieces 80 col. screen, 64 kbyte memLYMPIA BSS M

TRANSAM 'TUSCAN' S 100 MICROCOMPUTER Z80 based machine with 64kbytes of slatic RAM, Iwin 5 floppy disc drives, NEC green phosphor monitor, RS232 \& 8 bit paraliel interfaces. S 100 sotware includes CP/M otc.
$£ 750.00$ VISUAL Model 200 VDUU $24 \times 80,9600$ Baud etc. with slow scrolling. Externally accessible switches configure for VT52, ADM3A, ADD S520 or HAZELTINE 1500 compatibility. Currently listed at $£ 850 \ldots \ldots . . . \mathbf{£ 2 5 0 . 0 0}$ PHILIPS Model P2121 daisy wheel printer (TEC 'Starwriter'). RS232 intertace, bidirectional priming. ingoodex printer ind 1250.00

CBM Model 8027 daisy wheel printer (Olympia 'Scripta') for PET. 25cps, IEEE interface. BRAND
NEW.... 8024 high (Tlly 12001 for PET. IEEE interface. BRAND NEW..........250.00 MANNESMANN/TALLY Model M80MC matrix printer. With microprocessor control, 200cps bidirectional printing with $U /$ L case, self test. Compact but heavy duty machine. BRAND NEW \& BOXED $\mathbf{£ 9 5 . 0 0}$ CENTRONICS Model $730-2$ matrix printer
CENTRONICS Model 702 matrix printer. 132 col . 165 cps . bidirectional printing with self test. In good exderno condition.

Wrelesesswönd INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 92-103

Printed in Great Britain by Index Printers Ltd.; Oldhill, Dunstable, and typeset by Legendary Characters. South Street, Lancing, tor the propnetors, Business Press International, Quadrant House. The Quadrant, Sution. Surrey SM2 5 AS. O Business Presslintemational 1984. Wireless World can be obtained abroad from the following: AUSTRALIA and NEW ZEALAND: Gordon \& Gotch LId. INDIA; A. H. Wheeier \& Co. CANADA: The Wm. Dawson Subscription Service Lld

The advanced design of the Neptune 2 makes it the lowest cost real-life industrial robot
It is electro-hydraulically powered, using a revolutionary water based system (no messy hydraulic oil!!
It performs 7 servo-controlled axis movements (6 on Neptune 1) - more than any other robot under $£ 10,000$.
Its program length is limited only by the memory of your computer. Think what that can do for your BASIC programming skills!

And it's British designed, British made.

Other features include
Leakproof, frictionless rolling diaphragm seals.
Buffered and latched versatile interface for BBC VIC 20 and Spectrum computers.
12 bit control system (8 on Nuptune 1).
Special circuitry for initial compensation.
Rack and pinion cylinder couplings for wide angular movements.
Automatic triple speed control on Neptune 2 for accurate 'homing in
Easy access for servicing and viewing of working parts.
Powerful - lifts 2.5 kg . With ease.
Hand held simulator for processing (requires ADC option)
Neptune robots are sold in kit form as follows:

Neptune i robot kit (inc, power supply)
£1250.00
Neptune I control electronics (ready built)
Neptune I simulator
Neptune 2 robot kit (inc. power supply)
Neptune 2 control electronics (ready built) $£ 475.00$
Neptune 2 simulator $£ 52.00$

ADC option (components fit to main control board)	$£ 95.00$
Hydraulic power pack (ready assembled)	$£ 435.00$
Gripper sensor	$£ 37.50$
Optional extra three fingered gripper	$£ 75.00$
BBC connector lead	$£ 12.50$
Commodore VIC 20 connector lead and plug-in board	$£ 14.50$
Sinclair ZX Spectrum connector lead	$£ 15.00$

All prices exclusive of VAT and valid until the end of 1984.

mentor
 desk-top robot

This compact, electrically powered training robot has 6 axes of movement, simultaneously servo-controlled. It gives smooth operation, and its rugged construction makes it ideal for use in educational establishments. Other features include long-life bronze and nylon bearings, integral control electronics and power supply, special circuitry for inertial compensation, optional on-board ADC, and hand-held simulator as the teaching pendant Like Neptune, Mentor's program length is limited only by your computer's memory. Programming is in BASIC

Mentor is all-British in design and manufacture and comes in kit form at an astonishingly Iow price
Mentor robot kit (inc. power supply) Mentor Control electronics (ready built)
£345.00

Mentor Simulator (requires ADC option) £135.00 $£ 42.00$
ADC option (Components fit to control electronics board)
$£ 19.50$ BBC connector lead £12.50
Commodore VIC 20 connector lead and plug-in board E14.50 Sinclar ZX Spectrum connector lead $£ 15.00$

All prices exclusive of VAT and valid until the end of 1984.

[^0]: The dispute between the Company and the National Union of Jounalists is settled and normal working has been resumed. The settlement came a little late to allow normal production of this issue, but the October edition will be well up to our usual standard. We apologize to readers and to advertisers for the enforced hoiding over of advertised features, notably the digital multimeter survey, which will appear nextmonth

[^1]: P.O. Box 936, London. W4 4NW Telephone: 01-994 7155. Telex: 28604

[^2]: *Watford College.

[^3]: SC84's processor, i/o and v.d.u. sections are described in the May, June and July issues of E\&WW respectively. Addresses and prices for p.c.bs, the SciDOS CPliv compatible disc-operating system, Basic and the SC84 user
 group have been given: A power group have been given: A p
 supply suitable for SC84 is described in this issue. John Adams, writer and supplier of SC84 software, can supply all parts for the three boards except .t.t.I. i.cs, 64 -way edge connectors and the disc-drive connector; John Hodson (SC84 User Group founder) can supply all t.1.I. parts and other hardware (excluding cases) at reasonable prices (stocks are limited). Their -addresses are 5 The Close Radlett, Hertfordshire and 12 Broughton Road, Basford, Newcastle-under-Lyme, Staffordshire ST 5 OPQ.
 respectively. John Adams is also offering a repair service for SC84 modules built on p.c. bs from Combe Martin Electronics. Please send an s.a.e. and specify details required.

 John Adams' next article describesSC84's machine-code operating system, MCOS.

 Adresses of enclosure manufacturers mentioned are ETL Ltd, Unit G, Southhampton airport, Southampton SO2 2HG, and BICC-Vero Electonics Ltd, Unit 5 , Industrial Estate, Flanders Rd, Head End, Southampton SO3 Head
 3LG.

[^4]: VIDEO ENGINEER (Service/Development)
 Broadcast Developments Ltd. require an engineer aged 24/34 to service our specialist products. In addition he/she must have the ability to assist
 in the design and development of new products for the broadcast industry. A driving licence is essential. Salary negotiable (depending on experience). We are an equal opportunities employer.

 Please write to: BDL, 16 Cannon Drive, West India Dock Road, Lime House, London E14 9SU
 (2692)

[^5]: Quantity of items used in design \& manufacture of semiconductors. $16 \& 35 \mathrm{~mm}$ back projectors. Travelling microscope. Hydrogen lamp power supply. Thermocouple me asurement \& selector with digital readout. Laboratory oven 0-400 C with nometer Fielden Potentiometric indicator £30. Alr/gas flow meters. Chart recorder's 20 -pen etc. Vacuum pump. Teletype machine. Data Logger. Anemometer. Portable battery/mains oscilloscope. Refrigeration/cryogenic test guages, E 29. Sweep Generator. FM Deviation/AM modulation meter £75. Nall-gun \& accessories $\mathbf{8 6 5}$. Soldering transformer \& elecrode clamps for heavy duty applicatons 30. Centrifuge 24e. 3-phase converter Kent Chromalog recorder \&65. Event recorder \&45. Marconi ' Q ' meter £49. Polyskop and Selectomat £75/£45. 20.amp Variac. Hewlett Packard 130 oscil-
 oscope, \&49. etc. otc

 ## 040376236

