$\square \Gamma$ Programming Systems from Stock

EP8000 and EP4000 EPROM Emulator/Programmers

\square Software personality programming of NMOS, HMOS, CMOS EPROMs, both single \& triple rail up to $16 \mathrm{k} \times 8$ bytes (EP8000)
\square Expandable to program PROMs with BP5 Signetics PROM adaptor.
\square Emulation of all EPROMs up to $8 \mathrm{k} \times 8$ bytes with the EP8000 and up to $4 \mathrm{k} \times 8$ bytes with the EP4000.
\square No personality cards or characterisers required.
\square Use as stand alone programmer, slave programmer, or EPROM development system.
\square Checks for misplaced, reversed insertion and shorts on data lines (EP8000). Memory mapped video O / P, in addition to LED display allows full use of powerful editing facilities, including block/Byte move, insert, delete, match, highlight, shift, define, displacement calculation.
\square Comprehensive 1/O - RS232 serial port, parallel port.
\square Ex-stock EP8000 - 8k $\times 8$ RAM 6695 $+£ 12$ del + VAT EP4000 - $4 k \times 8$ RAM $£ 545+£ 12$ del + VAT.

P8000 Production
EPROM Programmer

\square Programs NMOS, HMOS, CMOS EPROMs up to $16 \mathrm{k} \times 8$ bytes, both single \& triple rail.
\square No personality cards or characterisers required.

Up to 8 EPROMs programmed simultaneously
\square Simple menu driven operation.
\square Reverse and misplaced insertion checks. Constant power supply monitoring and system checks.
\square Checksum, illegal bit test, blank check, compare and self check cycles.

RS232 serial interface as standard.
Single key programming operation.
Ex-stock P8000 - £695 + £12 del + VAT.

Accessories for the EP8000 and EP4000 range

NEW

\square BP5 Bipolar PROM Programming Module.
\square Allows the EP8000 and EP4000 to program, copy, verify a range of 21 Signetics bipolar PROMs up to $2 k \times 8$ bytes sizes Ex-stock - £228 + VAT.
\square SA27128 Adaptor. Allows EP8000 to program 27128 EPROM Ex-stock £69 + VAT.
\square UV141 EPROM Eraser. Erases.up to 14 devices simultaneously - safety interlocked - electronic timer. Ex-stock $-£ 78+$ VAT
\square Prinz Video Monitor. Green phosphor, high resolution video monitor suitable for EP8000 and EP4000 Ex-stock $£ 99+$ VAT.
\square Contact us now for a complete product data pack

GP Industrial Electronics Ltd

Tel: Plymouth (0752) 332961
Telex: 42513
Unit E, Huxley Close, Newnham Ind. Estate, Plymouth PL7 4JN

412 DIGIT AUTORANGING MULTIMETER - THE DM141

This 41/2 digit autoranging digital multimeter measures a.c. and d.c. volts and current, resistance and dBm. A.C. measurements and dBm are true r.m.s. with a frequency response of 45 Hz to 20 kHz .
For automatic ranging select the required function, connect and read. The DM141 will automatically select the best range and position the decimal point.
Manual range changes can be achieved using the UP or DOWN range push buttons and the HOLD facility is sometimes useful to stop automatic range changes around the 19999 count. The manual facility may be used to increase resolution as the DM141 provides up to 28500 counts on overrange.

Resolution on volts is $10 \mu \mathrm{~V}$ and on current $1 \mu \mathrm{~A}$. Resistance measurements down to $10 \mathrm{~m} \Omega$ are possible. The dynamic range of the decibel function is +30 to -60. Overload protection is excelient and includes spike protection to 2.5 kV . Basic d.c. accuracy is 0.03%.
The displays are seven segment 0.43^{n} red LEDs of the high efficiency type with range and decimal point being automatically annunciated. An autozero facility is provided and autopolarity means no lead switching and positive or negative reading clearly indicated. The sampling rate is 3 readings per second. An overrange condition is indicated by all displays flashing.
$10 \mathrm{HV}, 41 / 2$ digits, 28500 counts True r.m.s. up to 20 kHz Autoranging or manual range selection Big, bright, high efficiency LED display +30 to -60 dBm function Up to 2.5 kV spike protection Diode test facility B.C.D. version available. IEEE488 compatible with Omnibus OB1 option British design and manufacture by Farnell

DETAILS FROM

Front cover pictures David Read's PAL colourtv enhancement board, also pictured on page 37, comprising PAL modifier and comb filter decoder.

NEXT MONTH

Laboratory equipment for measurement in linear motion includes a computer-to-air interface. Detection of rider position enables RML computer to carry out experiments and display results.

In Stage Lighting System, forty 1 kilowatt circuits are remotely controlled with one cable linking desk and dimmers. A Z80 multiplexes data from the controls.
Dr Ken Smith of Kent University contributes a short series on power supply design, concentrating on the switched-mode variety. And John Adam's SC84 switch-regulated power supply is suitable for any application requiring an efficient, simple and economical power unit with either fixed or variable output. John also gives some SC84 construction tips.

Current issue price 85p, back issues (if

available) $\mathcal{E} 1.06$, at Ketail and Trade Counter, Units $1 \& 2$, Bankside Industrial Centre, Hopton Street, London SE1. Available on microfilm; please contact editor. By post, current issue $£ 1.30$, back issues (if available) $£ 1.40$, order and payments to EEP Sundry Sales Dept. . Quadrant House The Quadrant, Sutton, Surrey SM2 5AS Tel.: 01-661 3378.
Editorial \& Advertising offices: Quadrant House, The Quadrant, Sutton Surrey SM2 5AS
Telephones: Editorial 01-661 3614
Advertising $01-6613130$. See leader page.
Telex: 892084 BISPRS G (EEP)
Subscription rates: 1 years $£ 15$ UK and £19 outside UK
Student rates: 1 year $£ 10$ UK and $£ 12.70$ outside UK.
Distribution: Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Telephone 01-661 3248
Subscriptions: Oakfield House,
Perrymount Road, Haywards heath, Sussex RH163DH. Telephone: 04444 459188. Please notify a change of address. USA: \$49.40 surface mail, \$102.60 airmail. Business Press International (USA). Subscriptions Office, 205 E. 42 nd Street, NY 10017
USA mailing agents: Expediters of the Printed World Ltd, 527 Madison Avenue, Suite 1217, New York, NY 10022, 2nd class postage paid at New York.
© Business Press International Ltd 1984 ISBN 00436062.

Editor
PHILIP DARRINGTON 01-661 3128

Deputy Editor
GEOFFREYSHORTER, B.Sc.
01-661 8639

Technical Editor
MARTIN ECCLES
01-661 8638
Projects Editor
RICHARD LAMBLEY
01-661 3039

News Editor
DAVID SCOBIE
01-661 8632

Drawing Office Manager
ROGER GOODMAN
01-661 8690
Technical Illustrator
BETTY PALMER
Advertisement Manager
BOB NIBBS, A.C.I.I.
01-661 3130
MICHAEL DOWNING
01-661 8640
ASHLEY WALLIS
01-661 8641
Northern Sales
HARRY AIKEN
$061-8728861$
Midland Sales
BASIL McGOWAN
021-356 4838
Classified Manager
BRIAN DURRENT
01-661 3106
IAN FAUX
01-661 3033
Production
BRIANBANNISTER
(Make-up and copy)
01-6618648
Publishing Director DAVID MONTGOMERY 01-661 3241

International Agents and the Advertisers Index appear at the back of this issue.

ALL PRICES EXCLUDE VAT．
Please add carriage 50 p unless indicated as follows： （a）$£ 8$（b）$£ 2.50$（c）$£ 1.50$（d）$£ 1.00$

ACORN COMPUTER SYSTEMS BBC Model B BBC Model B＋Econet BBC Model B＋DFS BBC Model B＋DFS＋Econet 65022 nd Processor AcornElectron BBC Teletext Receiver

UPGRADE KITS
A to B Upgrade Kit DFSKit $£ 95.00 \mathrm{~d}$ ． Econet Kit $£ 55.00 \mathrm{~d}$ Speech Kit $£ 47.00 \mathrm{~d}$

ECONET ACCESSORIES
Printer Server Room File Server Level 1 File Server Level 2. Clock +2 terminator
Econet User Guide． BBC FIRMWARE BC CIRMXAE

TORCH ZRO DISC PACK

The proven upgrade for the BBC Micro．Comprising $2 \times 400 \mathrm{~K}$ disC rive， Z 80 processor with 64 K of memory，and a CP／M compatible ing advance languapes，scientific and business applications．The sys－ tem is supplied with the PERFECT software range including PERFECT WRITER，PERFECT SPELLER，PERFECT CALC，and PERFECT FILE．Full TORCHNET software is also supplied allowing sophisticated networking between other units．This will allow access to information． and communication，between up to 254 suitably upgraded BBCs．

phone for details about the 20Mbyte Hard Disc Pack，and the Phone for details about the 20Mbyte Hard Disc Pach
68000 Hard Disc Pack with UNIX Operating System． OOW AVALLABIE－The TORCH 780 SECOND PROCESSOR NOW AVALLABLE－The TORCH Z80 SECOND PROCESSOR CARD－for those who already have suitable disc drives．The card is
supplied with all th free perfect software and $Z 80$ basic，as detailed above，presenting a very attractive package．$£ 299$ Torch ZHO 240 Mbyte Hard Disc＋400K Flopy．E 1995 （a）

ACORN IEEE INTERFACE

A full implementation of the IEEE－488 standard，provid－ ing computer control of compatible scientific \＆technical applications are iner price than other systems．Typica industrial laboratories．The interface can support a network of up to 14 other compatible devices，and would typically link several items of test equipment allowing them to run with the optimum of efficiency．The IEEE Fil－ ing System ROM is supplied．$£ 282$.
BUZZ BOX A full spec pocket size direct connect modem with both Originate and Answer modes．this BT approved modem conforms to CCITT V21 300／300 Baud Standard Battery／Mains powered plugs directly into telephone line Modem Z69 head Z3：50 Ext PSU Z8：00

BODKS

We have a large selection of books on the BBC and other titles．Please ask for details．No VAT on books．

ACCESSORIES

£32．00d £52．00 C Double Disc Cable £6．00d M DiSCS Cable．．．．．．．．．．．．．．．．．．$£ 8.50 \mathrm{~d}$ £87．00b 4 D DISCS with Lifetime Warranty
£28．00d 40TSS／SD Pkt of $10 \ldots$.
£28．00d
£65．00 C
265．00 C
288．00d
$£ 28.00 \mathrm{~d}$
$£ 28.00 \mathrm{~d}$
£20．00d
£20．00d £20．00d
£59．00c
80T SSIDD Pktot 10
22.00 c

80T SS／DD Pkt of $10 \ldots \begin{aligned} & \text { E26．00 } \\ & \text { 80T DS／DD Pkt of } 10\end{aligned}$
3^{*} Double Sided Disc ．．．．．．．．．．．．．．．．．．．．Each $£ 4.50 \mathrm{C}$
FLOPPICLENE Drive HeadCleaning Kit．$£ 14.50 \mathrm{C}$
Disc Library Case ．．．$£ 1.90$
Disc File Case 30／40
£8．00 C
Disc Lockable Case 30／40 ．．．．．．．．．．．．．．．£15．00C Disc Lockable Case 60／70 ．．．．．．．．．．．．．．．．．£27．00b
SOFTWARE：
ACORN／MERLE BUSINESS SOFTWARE
§135．00a Invoicing，Stock Control，Accounts Payable
£145．00a Accounts receivable，Order processing，
\＄175．00a Mailing System．．．．．．．．．．．．．．．．．Each £22．65d
£190．00a GEMINI Business－Full Range
190．00a ACORNSOFT－Full Range
£225．00a ACORN LANGUAGES including BCPL，LISP
\＄300．00a FORTH with Manuals
BBCSOFT－Full Range
PRORAM POWER－Full Range
BEEBUGSOFT－Full R ana
BEEBUGSOFT－Full Range

＇TIME－WARP＇

REAL－TLME－CLOCK／CALENDAR

A low cost unit that opens up the total range of Real－Time applications．With its full battery backup，possibilities include an Electronic Diary，continuous display of＇on－screen＇time and date information automatic document dat－ ing，precise timing \＆control in scientific applic－ ations，recreational use in games etc－its uses are endless and are simply limited by one＇s imagination．Simply plugs into the user port－ no specialist installation required－No ROMS． Supplied with extensive applications software
Please phone for details．$\Sigma 29.00+\Sigma 2.50$ carriage．

 Auticicesin

PRINTERS

EPSONFX－80．
EPSON XX－80F
EPSONFX－100
EPSONDX－100
Printer Sharer＋Cable Set
JUK16100 Daisy wheel．
GratadG Granics Tableter
${ }^{〔 325.00 a}$

$\begin{array}{r}\text { E250．00a } \\ \\ \hline\end{array}$
$£ 480.00 \mathrm{a}$

$£ 375.00 \mathrm{a}$
E375．00a
E88．00c
c350．00a
$〔 88.00 \mathrm{c}$
£350．00
c 110.002

E350．002
E 110.00 a

ACCESSORIES

Parallel Printer Lead
Serial Printer Lead Epson Serial LInterface 2K 8148 EpsonSerial Interface 8143 FA80 Dust Cover
Epson Papet Roll Holder
P－80 Tractor Attact PAPER Fanfold 2000 sheet Ribbon MX80／AX80／FX80
£10．00d
$£ 6800 \mathrm{~d}$
56000
$£ 60.00 \mathrm{c}$

$\$ 50$

$\begin{array}{r}\sum 4.00 \mathrm{~d} \\ \text { £ } 17.006 \\ \hline\end{array}$

$£ 37.00 \mathrm{c}$

$\$ 13500$
$£ 6.50 \mathrm{c}$

MONTIORS

Microvitec 14311° RGE Std Res £ $£ 179.00 \mathrm{a}$ Microvitec 1431PS $144^{\text {RRGB／PAL }+ \text { Sound E225．00a }}$ Microvitec 1451 14＊RGBB Med Res．$£ 295.00 \mathrm{O}$ Microvitec 1441 14＂RGB Hi Res．．．$£ 422000 \mathrm{a}$
203120 RGBSta Res
£287．00a KAGAVision Ex 12 RGB KAGAVision IHi Res KAGA Vision IIHiRes RAGA Vision III 12 月GB 12 £ 195．00a
$£ 260.00 \mathrm{a}$ §260．00a
Super Hi
Super Hi
.$£ 358.00 \mathrm{a}$

CASSEITIE RECORDERS
SANYODR 101 Data Recorder Datex Slim Line．
BBC Tape Record
Cassette Lead
Computer Grade $\mathrm{C}-12$ cassette
Computer Grade Cassette 10 off
Phillips Mini－data cassette

SOFTY II
This low cast inteligent eprom pro－ grammer can program 2716， 2516, 2532,2732 ，and with an adaptor， 2564 and 2764．Displays 512 byte page on TV－has a serial and parallel l／O rou－ tines Can be used as an emulator，cas sette interface．Softy II 1699 （b）Adap－ tor for 2764／2564 £25．00（c）

PRODUCTION IPROGRAMMER：

UV1T Eraser with built－in timer and mains indicator．Built－in safety interlock to avoid accidental exposure to the harmful UV rays． It can handle up to 5 eproms at a time with an average erasing time of about 20 mins．$£ 59$ $+\Sigma 2$ p\＆p．UV1 as above but without the timer．£47＋£2 p\＆p．For Industrial Users，we offer UV140 \＆UV141 erasers with handling capacity of 14 eproms．UV141 has a built－in timer．Both offer full built－in safety features UV140 £61，UV141 £79，p\＆p £2．50．

SMARTMOUTH：

The original＇infinite speectr＇．Still the best
A ready bult totally seff contained speech synthesiser unit，attract－ ively packaged with built－in speaker，AUX output socket etc．－no installation problems！It allows the creation of any English word，with both ease and simpicicity，while，at the same time being very econom－ ical in memory usage．You can easily add speech to most existing programs．Due to is remarkable ininite vocabulary，its uses spread throughout the whole spectrum of computer applications－these
include industrial，commercial，educational．scientric，recreational incluce industnal，commercial，educational，scientific，recreational
etc No specialist installation－n no need toopen yourcomputer．sim－ ply plugs into the user port－and due to the simple sotware，no ply pugs int ne user por－and due to the simple sotware，no development programs on cassette，and full sotware instruction． $£ 37+£ 2.50$ cariage．

UV ERASERS

A fully self－contained mains－powered eprom programmer housed in an attractive finished case．It is able to program $2716,2732 / 32 \mathrm{~A}, 2764 \& 27128$＇s in a single pass．It is sup－ plied with vastly superior software when compared to any currently available similar programmer．In addition to normal basic programs onto eprom．
${ }^{*}$ Menu Driven Soltware provides user friendly options for programming the eprom with：
a）Basic programs
b）Ram resident programs．
c）Any other program．
＊Programmer can read，blank－check，program \＆verity at any address／addresses on the Eprom．
＊Personality selection is simplified by a single rotary

switch．

－Frogramming Editor with ASCII Disassembler，allowing direct modification data in HEX or ASCAl．
＊Continuous display of time left for completion of pro－
gramming
${ }^{2}$ Continuous display of current addresses as they are
being programmed．
The programmer comes complete with cables，sottware \＆ operating manual．
£89 $+£ 2.50$ carriage．Sottware on disc $£ 2$ extra．

CONNECTOR SYSTEMS

1 ByO 00

P8000 provides reliable gang pro－ gramming of up to 8 EPROMS simul－ taneousiy with device sizes up to 16 K $\times 8$ bytes．Devices supported range from 2704 to 27128 in single and three rail versions．Simple menu driven operation ensure easy eprom selec－ tion and reliable programming in mini－ mum programming times． $\mathbf{E 6 9 5}+\mathbf{5 6}$ carriage．

This CPU controlled Emulator Pro－ grammer is a powertul tool for both Eprom programming and develop－ ment work．EP 8000 can emulate and program all eproms up to $8 \mathrm{~K} \times 8$ bytes can be used as stand－alone unit for editing and duplicating EPROMS，as a slave programmer or as an eprom emulator $\mathbf{\Sigma 6 9 5}$（a）．

\section*{I．D．CONNECTORS
 （Speedblock Type）
 | （Speedblock Type） | | | |
| :---: | :---: | :---: | :---: |
| No of | Header | Recep－ | Edge |
| ways | Plug | tacle | Conn． |
| 10 | 90p | $85 p$ | 120p |
| 20 | 145p | 125p | 195p |
| 26 | 175p | 150p | 240p |
| 34 | 200p | 160 p | 320p |
| 40 | 220p | 190p | 340p |
| 50 | 235p | 200p | 390p |
 D CONNECTORS}

TEXTOOL ZIF

DIL SWITCHES

JUMPER LEADS
$\begin{array}{lllll} & & \\ & \text { 14－pin } & 16 \text {－pin } & 24 \text {－pin } & 40 \text {－pin } \\ 1 \text { and } & 145 p & 165 p & 240 p & 350 p\end{array}$ $\begin{array}{llllll}1 \text { and } & 145 p & 165 p & 240 \mathrm{p} & 350 \mathrm{p} \\ 2 \text { ends } & & 210 \mathrm{p} & 230 \mathrm{p} & 345 \mathrm{p} & 540 \mathrm{p}\end{array}$

 Ribbon Ca 25－way Male 500p RS 232 JUMPERS | $24^{\prime \prime}$ |
| :--- |
| $24^{\prime \prime}$ |
| $24^{\prime \prime}$ |
| $24^{\prime \prime}$ |
| $24^{\prime \prime}$ |

AMPHENOL
CONNECTORS CONNECTORS
36－way plug Centronics $\quad \mathbf{f 5} \quad £ 5.25$ 6－way socket Centro $\begin{array}{llll}24 \text {－way plug lEEE } & \mathbf{£ 5 . 5 0} & \mathbf{£ 5 . 5 0} \\ \mathbf{£ 5 . 0 0} & £ 4.75\end{array}$ $\begin{array}{llll}24 \text {－way socket IEEE } & £ 5.00 & £ 4.75\end{array}$ PCB Mtg Skt Ang pin 24－way $£ 6.00$ ． 36 －way $\mathbf{£ 6 . 5 0}$

EURO

CONNECTORS

OIN 41617	Plug	S
21－way	1600	165p
31－way	170p	170p
DIN 41612		
2×32－way St Pin	230p	275p
2×32－way Ang．Pin	275p	320 p
3×32 wav St．Fin	${ }^{2600}$	300p
$1 \mathrm{DCSkt} A+B 275 \mathrm{pA}+\mathrm{C} 350 \mathrm{p}$		
For 2×32－way pleas ing $(A+B, A+C)$	e speci	spac

RIBBON CABLE

Two new TV books from Newnes

SERVICING DIGITAL CIRCUITS IN TV RECEIVERS
 R Fisher

Specifically for colour television engineers, this book is an in-depth guide to digital circuits used in current TV receivers. The early chapters deal with digital techniques and their specific applications like teletext and videotex their respective decoders being described in detail Remote control systems, digital tuning and other digital circuits are also covered. A glossary of terms is included which will be useful to both engineers and students. Softcover 288 pages £13.95

BEGINNER'S GUIDE TO COLOUR TELEVISION

 Third Edition
Gordon J King - revised E Trundle

Colour TV has been greatly developed since it was first introduced. This new edition has been re-written to include, as well as the basic introduction to the subject, an up to the minute account of such innovations as satellite and cable, flat panel receivers, 3-D displays and "digitization" of TV signals.
Softcover 192 pages $£ 4.50$

Also available
 DOMESTIC VIDEOCASSETTE RECORDERS A Servicing Guide
 S Beeching

This book takes the subject from basics and then shows later modifications to the techniques, giving examples of various manufacturers' approaches to the subject. Includes VHS, Betamax, Grundig and Philips V2000 systems
Softcover 144 pages £14.95

SERVICING MONOCHROME PORTABLE TELEVISION G R Wilding

This dual purpose book explains the circuity of current standard miniature and 'combi' monochrome portables, together with typical faults and probable causes, and contains full size reprints of British, Japanese and Continental manufacturers' circuit diagrams and service information.
Softcover 160 pages £13.95

COLOUR TELEVISION SERVICING
 Second Edition
 Gordon J King

Softcover 350 pages $£ 11.50$

Order now from your Bookseller or direct from

Newnes Technical Books Borough Green. Sevenoaks. Kent TN15 8PH

CIRCLE 37 FOR FURTHER DETAILS

iiil Jackfield Wiring

Jackfields, Cables, Connectors and Wiring Aids in the new FFD Catalogue.

周 FUTURE FLM DEVELOPMENTS

P.O. Box 3DG, 114 Wardour Street, London WIA 3DG, England Telephone: 01-434 $3344 \& 01-4371892$. Telex: 21624 ALOFFD G. Cables:Allotrope-London Wl.

[^0]
Hyperthermia progress

Much attention in recent years has been focused on radiation hazards very close to high-power radio transmitters. Less notice has been taken of the advances being made in the medical use of r.f. heating by h.f., v.h.f. and microwave transmitters, particularly for hyperthermia treatment of malignant cancer tumours. Although hospitals have used heating by r.f. power (diathermy) for about 50 years, recent work has concentrated on the development of more effective coupling of the r.f. power into the affected part of the body by means of improved 'applicators'.

A recent report from the Biomedical Engineering and Instrumentation Branch of the American National Institutes of Health in Bethesda, Maryland, notes that while hyperthermia offers promise as an adjuvant to cancer therapy, so far little success has been achieved in heating deep-seated tumours. A new design of helical coil applicator has been developed which in tests under simulated conditions of the fat-muscle-bone of a human arm or thigh appears to be both practically and theoretically capable of producing deep heating (IEEE Trans 1984 vol.BME-31, pp.98-106, and Electronics Letters, 1984, vol.20, April 12, pp.337-8) Hyperthermia uses r.f. power to raise the temperature of tumours to around $43-45^{\circ} \mathrm{C}$ instead of the normal body temperature of about $37^{\circ} \mathrm{C}$. It has been known for over a century that some malignant tumours respond to localized but small elevation of temperature. The difficulty has been to heat the affected organ without overheating other parts of the body. The Bethesda work has used the industrial, scientific and medical frequencies of $13.56,27.12$ and 40.69 MHz . Other workers have concentrated on microwave hyperthermia on 2450 and 915 MHz despite its limited depth of penetration of roughly lcm for loads of high water content, such as muscle, brain and organs. Design of applicators that can improve the heating of tumours deep within layers of fat or bone, with minimum absorption of energy elsewhere has proved difficult
and the Bethesda work on helical coil applicators appears to be in the nature of a breakthrough.

A number of British hospitals are involved in hyperthermia experiments, some making use of obsolete 405 -line v.h.f. television transmitters which can be modified for this type of work. IBA have already donated several Band III equipments to hospitals in Aberdeen, Bristol and
Cambridge and have earmarked further equipments for this purpose when Band III television is finally phased out in January 1985.

Telecommunications Act

The Telecommunications Act, 1984 received Royal Assent on 12 April, 1984 and Part VI provisions relating to wireless telegraphy, incuding amendment and enforcement of the Wireless Telegraphy Acts-will shortly become law. The new Act appears to provide the DTI with the means of stamping out unauthorized and illegal use of transmitters of all types, provided always that sufficient effort is put into tracing them.

Manufacturing, selling, offering for sale or hire of 'restricted' apparatus becomes for the first time an offence. Having 'without reasonable excuse' such equipment in one's custody or control, or importing it, will also be an offence. Manufacturing includes assembly of component parts.

Immediate seizure of equipment under a search warrant becomes possible; if there is any doubt as to identity or address not even a warrant is necessary. Where such seizure is later confirmed by the Court, the Secretary of State can, as at present, dispose of it as he thinks fit.

The Act also makes provision for payment of the radio Interference Service from money provided by Parliament and operational responsibility for this service will be transferred from British Telecom to DTI.

The Act abolishes the advisory committee of the 1949 Act and strengthens the powers of the licensing authority in a number of ways including the ability at any time to revoke or vary the terms of any broadcasting or communications licence 'in the interests of
national security or relations with the government of a country or territory outside the UK'.

Sending of false or misleading messages becomes an indictable offence. DTI have the right to prescribe technical requirements for services.

It remains to be seen how strictly the Courts will interpret the amended Wireless Telegraphy Acts and the effort that will be put into enforcing them. On the face of it it would seem to be an instrument capable of quickly putting off-air the broadcasting 'pirates' and the more numerous pseudoamateurs such as the 'International C.B.' around 6.6 MHz . Less easy to suppress will be the unlicensed 'amateurs' and 'c.b.' operators who may still find it possible to pass unnoticed for a time by operating in accordance with the licences they have omitted to obtain.

It seems likely that concessions will be made soon to small-time broadcasters by the introduction of some form of 'community radio' or 'special event' radio licence involving for example low-power transmitters at major outdoor and sports events. This may however be deferred until the end of the second session of the ITU Regional Administrative Conference at Geneva next October to December, when frequency assignments between $100-108 \mathrm{MHz}$ are expected to be agreed for the European region.

Vienna Convention

The events during April surrounding the 'siege' of the Libyan People's Bureau were calculated to re-inforce the very worst fears of signals intelligence people. The American ABS network started the ball rolling by claiming that Libyan messages to London had been intercepted, deciphered but then not passed on to the police in time for them to take greater precautions during the morning of April 17. Such a 'leak' apparently from American sources, if true, must rank alongside the three classic occasions in the 1920s when it was openly revealed in the British Parliament that Russian diplomatic traffic was being read. This led inevitably to the USSR introducing secure ciphers and
the loss of a valuable source of information. As a result British Intelligence became very wary of passing sigint even to the Cabinet.

Today diplomatic traffic can be unconditionally secure (truly random :one-time' keys) or more often- 'computationally secure' requiring excessive computer time to crack. Clearly some of what can be plucked form the air can still be read, if only with difficulty, or signals intelligence would not have retained its importance. But the idea that almost all diplomatic traffic can be read immediately on receipt can serve only to encourage the Libyans (who know whether they sent such a message) and other countries to change to more secure ciphers.

The leak furthermore served no useful purpose. WPC Fletcher was already dead. If NSA or GCHQ are able to decipher such messages virtually without dealy, it may indeed have been blame-worthy that a warning did not reach the Metropolitan Police before the shooting. But finding a scapegoat is a doubtful advantage if in the process a source is blown.

Diplomatic radio communications form one of the fixed services not entirely transferred to satellite. A stroll though Belgravia or other embassy districts of London reveals many h.f. aerials ranging from very large log-periodics to the barely visible compact transmitting loop aerial on the roof of the US embassy in Grosvenor Square. Diplomatic communicatons remain an important market for h.f. equipment.

Foreign embassies, however, do not have an automatic right to set up radio links. Paragraph 1 of Article 27 of the Vienna Convention on Diplomatic Relations, 1961 reads: ‘The receiving state shall permit and protect free communication on the part of the mission for all official purposes. In communicating with the Government and the other missions and consulates of the sending State, wherever situated, the mission may employ all appropriate means, including diplomatic couriers and messages in code or cipher. However the mission may install and use a wireless transmitter only with the consent of the receiving State.'

CUBE/BBC SECOND PROCESSORS

EurobeEB/EuroCUBE-65: 6502 Second/Independent Processor
EuroCUBE-65 is a 6502 multi-function SBC/CPU. It is both a second processor and a stripped-down industrial equivalent to the BBC Microcomputer.
EuroBEEB is EuroCUBE with 16 kB BBC BASIC Interpreter ROM and 8 kB battery-backed CMOS RAM memory on board.

Features include:

* Four RAM/ROM memory sockets, up to 16 kB per device
* Real-time clock
* Battery back-up for CMOS RAM and clock
* VIA providing 16 digital i/o channels
* ACIA providing a bi-directional RS-423/422 serial port
* The BBC Micro acts as an intelligent terminal/file server to EuroBEEB
* Turnkey feature allows automatic power-up-and-run
* CUBE bus connector for rack-mounting with peripheral Eurocards

CUBE BeebFLEX: 6809 Second Processor Unit

* Fully supports the FLEX operating system on the BBC Microcomputer
* Housed in self-powered beige metal enclosure with 2 spare CUBE Bus sockets
* Wide range of software available to run under FLEX: macro-assemblers and cross-assemblers, compilers and cross-compilers, and high-level languages.

Supplied in 4 -slot mini-rack with power supply, 64 kB DRAM, supporting monitor ROM, CUBE BeebFLEX 'sideways' ROM, and TUBE interface.
$£ 328.90$ ex. VAT
Please ask for our new Catalogue which fully describes the CUBE range of 6502/6809 Eurocards. An explanatory colour leaflet on our CUBE/BBC Eurocard extensions is also available.

reliable high performance \& practical controls. individually powered modulesmains or dc option single cases and up to 17 modules in standard $19^{\prime \prime}$ crates small size-low weight-realistic prices.

49/51 Fylde Road Preston PR1 2×0
Telephone 077257560

Visual monitoring of anything, anywhere, by phone, in seconds, with Robot Phoneline TV.

Robot's Phoneline TV systems provide a low-cost, efficient solution to the problem of visually monitoring remote installations, meters, gauges, traffic, weather, water levels, or any subject, large or smalt. \square The Phoneline N equipment works well with standard CCTV equipment and Phoneline N equipment works well with standard cciv equipment and audio tones for transmission vie the dial telephone network or vole audio tones for transmission vis the dial colephone network or voic grade radio, then to a video signal again for display on a monitor at the
receiving end. The entire process takes as littie as 4 seconds end costa recelving end. The entire process takes as littie as 4 seconds and costs
only the amount of the phone call. \square Since one or more cameras cen be only the amount of the phone call. \square Since one or more carnoras cally or fed to one or more montoring stations for viewing sequentially or
simultaneously, and since the system can be fully automated, there is an simost Infinite number of PLTV system configurations possibit. Permanent storage is avaliable by recording the transmissions on atido cassette tapes. \square For fast, uncomplicated, inexpensive visual monitoring of any subject anyplace, Robot Phoneline TV is the answer. \square Write or call for more information
and descriptive literature.
Robot (UK) Ltd., Building 33
East Midlands Airport
Castle Donington, Derby DE7 2SA
Tel: (0332) 812446. Telex: 37522

ROBOT RESEARCH INC

CCD camera

At NAB, RCA introduced a solid-state portable broadcast camera based on chargedcoupled device sensors and a 'frame transfer' process. Priced $\$ 37,000$ the camera is claimed to provide a signal/noise ratio of 62 dB with high sensitivity and absence of smear on moving objects. C.c.d. cameras have been under development for at least ten years, but many difficulties have had to be overcome for broadcast-quality units, and studio cameras may still be some way off. Largest exhibit at NAB was mounted by Sony
Corporation at a cost of over $\$ 1$-million. They featured their $\frac{1}{2}$-in Betacam integrated camera/recorder and a complete high-definition system....NBC have begun distributing network programmes to 22 affiliate stations via satellite and plan to increase this to 150 stations by early 1985... About 17 -million US homes (19% of tv homes) now have v.c.r. machines, still significantly below UK penetration.

Amateur Radio

Moonbounced
 TV?

Andrew Emmerson, G8PTH, has passed along news from Maurice Clot, F1FVX, of what promises to be a remarkable and unique experiment aimed at gaining a 'world first' in amateur television. French amateurs are to attempt moonbounce of television signals transmitted on 1255 MHz using an aerial with a calculated gain of the order of 90dB!

To make this possible, the French electricity authorities have granted permission for F9CH and F6BGR to use the 10,000 square-meter plane metal reflectors of the French experimental solar oven near Fontromue, East Pyrenees as an aerial, with a dipole element replacing the normal crucible and with the computer programmed to follow the moon instead of the sun.

It is planned to use frequency-modulated vision
signals with a transmitter power of 140 watts during tests between July 9 and July 13 when the moon will be low enough on the horizon (20 to 24^{0} at the meridian) to allow receiving stations to aim their aerials without the need for an elevation rotor. Further information on these experiments is to be distributed through French stations on $144.170 \mathrm{MHz} \pm 10 \mathrm{kHz}$ and 3670 $\pm 10 \mathrm{kHz}$.

Here and there

The Australian society, WIA, has succeeded in persuading their Government to re-establish the special low import tariff (2%) on amateur transmitters and transceivers. This concession was lost in June 1983 when an Australian manufacturer of marine communications equipment complained that some imported amateur radio equipment had been modified and illegally sold for use in the maritime service. The low import tariff was granted on the basis that there is no Australian production of amateur h.f. transceivers.

The Olympic Games torch run that starts on the East Coast of the USA and will pass through all the 48 contiguous States before it ends at the Los Angeles venue on July 28 is being co-ordinated by amateur radio communicators travelling in the fleet of support vehicles, under the aegis of AT\&T.

Several Australian amateurs have been granted experimental permits permitting transmission on 196 kHz (1830 meters) on condition that only 'backyard' aerials are used. With output powers of about 100 watts and fairly short aerials about 10 m high, resulting in effective radiated powers of less than 0.5 -watt, telegraphy contacts are being made over distances of several hundred miles.

A successful meeting of Dutch amateurs interested in narrow-band mechanical television was held last March in Eindhoven, attracting 50 to 60 visitors. Historic 30 -line equipment was displayed by Kees Sanders, PAoDXY. A camera monitor by P. Wakker was made from small lenses taken from a broken road sign and driven by a bicyle dynamo. Several British NBTV enthusiasts have been using silicon solar cells as pick-up devices for low-definition
systems. A 96 -mile mechanical system being developed by J.A. Short uses the old Baird techniques of obtaining sync signals by blanking off part of the picture (i.e. no blacker-than-black pulses) but uses a much more sophisticated form of sync-separator discriminator. Apparently it works, which is more than could always be said of the Baird phonic-wheel technique!

Wayne Green, W2NSD, editor of 73 Magazine, in a petition for rule-making submitted to the FCC has proposed that all American radio amateurs should be re-examined for morse proficiency every two years with a requirement that they achieve a five word-per-minute up-grading each time, to a final level of 35 word $/ \mathrm{min}$. Failure to improve speed, he suggests, should result in loss of licence. However it seems highly unlikely that FCC will impose such a rule.

Region 1 Conference

At the 1984 IARU Region 1 Conference held at Cefalu, Sicily, DrJohn Allaway, G3FKM, was elected as secretary of the Region 1 Executive Committee, the post held until his death in 1981 by Roy Stevens, G2BVN and since then by Eric Godsmark, G5CO. Region 1 conferences are held once every three years. At this year's conference, membersocieties were urged to seek from their national adminstrations a 50 MHz amateur allocation and the removal of Syledis pulse transmissions from the 430 MHz band. The conference also recommended that no f.m. repeaters should operate between 144.8 and 145 MHz and rejected proposals to allocate channeis and repeater channels for narrow-band f.m. transmissions in the 29 MHz band. It endorsed a provisional band-plan for 1296 MHz and a new world-wide locator-squares system (fromJanuary 1, 1985). The IARU Medal was awarded to the Russian amateur N .
Kazansky, UA3AF. The conference also discussed the proposed new constitution for the International Amateur Radio Union.

Rather more success in dealing with interference from

Syledis-type transmissions in the 430 MHz band is reported from California where pulse transmitters on 433 and 437 MHz have now been turned off.

In brief

A major solar flare, possibly the largest in Solar Cycle 21, was recorded at the end of April The RSGB 1984 National Convention at NEC Birmingham attracted over 6000 people on Saturday 28 April and some 5000 on the Sunday. The 1985 Convention is to be held at the National Exhibition Centre on 13 and 14 April 1985 ... A postage stamp featuring the amateur radio station, H44SI, of the Solomon Island amateur radio society was issued last December as one of a set of three stamps forming a World Communications Year set ... During early June, French amateurs operated a special station, TK6JUN, at Ste Marie-du-Mont (Utah Beach) to mark the 6 June, 1944 D-Day landings by Allied forces. On this side of the Channel, GB4BLC operated from the Royal British Legion centre at Nettley, Southampton as part of an ‘Operation Overlord' project during the D-Day anniversary week ... RSGB annual subscription is being increased by $£ 2$ to $£ 16.50$ fromJuly $1 .$. In a recent prosecution for the illegal use of 6.6 MHz transmitter, Robert Burwell was fined $£ 250$ with $£ 50$ costs. It was stated that French air traffic control had complained of interference to its operations caused by the transmitter ... July mobile rallies include: Worcester club at Droitwich High School, Ombersley Road on July 1; West Manchester club at Burtonwood Motorway Service Area near the junction of M6 and M62 on 8 July; Cornish club at Camborne Technical College, Pool on 15 July; West Kent Radio and Electronics Fair at Royal Victoria Hall, Southborough on 21 July; Anglian rally at Stanway School, Colchester and McMichael rally at Bells Hill, Stoke Poges both on July 22; Rolls Royce rally at Sports \& Social Club, Barnoldswick and Scarborough rally at The Spa, Scarborough both on July 29-

Pat Hawker G3VA.

7 DAYS DELIVERY FOR SMALL QUANTITIES

V/A	Secondary Volts (Dual)	Primary Volts (Dual)	Unit Price	PRICE		
				P/P	VAT	Total
15	$3 \mathrm{v}-30 \mathrm{v}$	0-120	5.60	0.75	0.95	7.30
30	$3 \mathrm{v}-30 \mathrm{v}$	0-120	6.00	0.91	1.03	7.95
50	$3 v-30 v$	0-120	6.65	2.00	1.30	9.95
80	$3 \mathrm{v}-30 \mathrm{v}$	0-120	7.25	2.00	1.38	10.63
120	$3 \mathrm{v}-30 \mathrm{v}$	0-120	8.00	2.00	1.50	11.50
160	$3 \mathrm{v}-30 \mathrm{v}$	0-120	9.00	2.00	1.65	12.65
225	$3 \mathrm{v}-30 \mathrm{v}$	0-120	11.50	2.50	2.10	16.10
300	$3 \mathrm{v}-30 \mathrm{v}$	0-120	13.50	2.50	2.40	18.40
500	$3 \mathrm{v}-30 \mathrm{v}$	0-120	19.00	2.80	3.27	25.07
625	$3 \mathrm{v}-30 \mathrm{v}$	0-120	24.00	3.00	4.05	31.05

1. Prototype Sample Service Available For Special

 Requirements With Short Lead Time For Production.2. Quantity Prices Available On Application.
3. Mail Order: CHEQUES TO: WYE WINDING CO

- ACCESS CARD WELCOME.

We also manufacture to customer requirements laminated transformers, R.F. chokes, I. F. Inductors and current transformers.

WYE WINDING Co.
27 STATION RD, BRIMINGTON, CHESTERFIELD, ENGLAND

Tel: Chesterficld (0246) 70297/8/9 Tclex: 54284

Max 1 M M

A range of telescopic towers in static and mobile models from 7.5 to 36 metres with tili-over facility enabling all maintenance to be at ground level.

Designed in accordance with CP3 Chapter V; part 2 1972 for a minimum wind speed of 140 kph in conditions of maximum exposure and specified by professionals world-wide where hostile
environments demand the ultimate in design, quality and reliability.
Suitable for mounting equipment in the fieids of:
Communications
Security surveillance - CCTV
Meteorology
Environmental monitoring
Geographical survey
Defence range-finding
Marine and aero navigation
Floodlighting
Airport approach lighting
Further details available on reques

STRUMECH ENGINEERING LIMITED
Portland House, Coppice Side, Brownhills
Walsall, West Midlands W58 7EX, England Telephone: Brownhills (05433) 4321
telex: 335243 SEL.G

CIRCLE 48 FOR FURTHER DETAILS

Happy Memories

Soft-sectored floppy discs per 10 in plastic library case
5 inch SSSD $£ 17.00 \quad 5$ inch SSDD $£ 19.25 \quad 5$ inch DSDD $£ 21.00$ 5 inch SSQD £23.95 5 inch DSQD $£ 26.35$

74LS series TTL, large stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or phone for list

Please add 50 p post \& packing to orders under $£ 15$ and VAT to total
Access \& Visa welcome. 24 hr phone service on (054 422) 618 Government \& Educational orders welcome, £15 minimum Trade accounts operated, 'phone or write for details

> HAPPY MEMORIES (WW) Gladestry, Kington Herefordshire HR5 3NY Tel: (054 422) 618 or 628

Electronic Brokers Ltd., 61/65 Kings Cross Road, London WC1X gLN. Tel 01-833 1166. Telex 298694

Computer crashes

No less than three different computer companies ceased trading in one week: Dragon Data, Tycom and Camputers. The chief executive of Tycom is Sir John Clark, Conservative Members of the European Parliament. His major customer has been the Conservative party, who have installed the Microframe computer in a large number of constituency offices. The party is now looking for ways to provide services and hardware support to those constituences. Brian More of Dragon Data feels
that the bouancy of the home computer market has been overestimated and that most people who get home computers do it purely and play games or because they are curious about computers. He is looking for a buyer, and one may be at hand. Tandy Corporation, whose Color Computer is very similar internally to the Dragon 32 , has expressed an interest, initially in taking over the servicing and repair of the Dragon but possibly in continuing the manufacture as
well. Camputers, manufacturers of the Lynx computer which never really got off the ground, having sold only some 10000 units, are also looking for a buyer.

The business computer market is now greatly influenced by the coming of the IBM personal computer. Such large corporations can use their capital and their marketing expertise to produce a machine that is easy to mass produce, and can provide full documentation and support in both hardware and software. The smaller companies such as Tycom find it difficult to compete with such powers.

Software Key

A fresh attempt to counter home software piracy has been launched by the Cornish company Microdeal, with the inclusion of the protection device with one of their latest computer games.

Buzzard Bait, a game for the Dragon 32, comes with a small resin-encapsulated module which plugs into one of the computer's joystick ports. This software key, as Microdeal call it, must be in place to enable the cassette to load properly. The company hopes the device will put an end to unauthoried tape-to-tape copying, since without it the cassette is useless. And Microdeal believe that copying the module itself would call for resources beyond those of the home user. The key, or dongle, was developed to Microdeal's specification by Northern Software Consultants of Newcastle-upon -Tyne. It costs about $£ 2$, and can be applied to cassette or disc programs for almost any microcomputer. For business computers, a version can be made to interface with an RS232 port. A different key is required for each title.

Microdeal will be adding the key to several new programs on their Tom Mix Software label. They hope to discover whether increased sales to frustrated pirates will outweigh those lost to schoolchildren who might otherwise have bought the game by pooling their pocket-money. - Also fitting in to the RS232 port of a computer is the Sesame security key from Polytech Engineering Services Ltd. Without inhibiting the use of the port, any software used with the
system interrogates the key which responds only if the correct password is used. Any copy of the software will only work on a computer fitted with the same key and as there are approximately 100 million possible codes, made up out of ASCII control characters, in effect this means only one computer can use it. Each device is supplied with a randomly selected code, together with notes and a flow-chart on how to incorporate the interrogation routine into a program. It has been estimated that it would take a fast computer about 20 years to 'crack' the code. WW230

Cell news

Trials for Racal's cellular radio-telephone system, to be known as Vodafone, are to start in December 1984, ahead of the original schedule, over a 150 square-mile area of London. The service will also start up before its schedule date of March 1985, initially covering London, cities in the south, Wales and the midlands, and along several motorways. The second phase is to be an expansion into the north of England - plans for Scotland and Northern Ireland are to be announced later this year. Racal have also launched a new company, Racal-Vodac, to distribute, install and service subscriber equipment. Another company was necessary as the licencee for the system is not permitted under the terms of the licence from marketing the consumer equipment.

Consumer equipment for the BT/Securicor Cellnet system is
to be manufactured in Japan by NEC. After a world-wide search for a manufacturer to these products, BT decided that NEC were the only people with the facilities and expertise to provide the system. The equipment will include both car-mounted mobile radiophones and hand-held portables. The mobile sets will be available in December this year with the portables following later in 1985. If the cellular system is as successful and popular as both BT and NEC think it will be then there is a chance of manufacturing facilities being transferred to the UK. The first working pilot system of Cellnet was to be demonstrated in London early in June to cover 3000 square miles and give continuous coverage over central London, extending to Heathrow and Gatwick Airports.

BRYANS SOUTHERN XY/T Recorder 25000

THESE UNITS ARE UNUSED A4 Size.
X-Y Ranges: 1 mV to 1 V Per CM
Slew Speed: $49 \mathrm{CM} /$ Second. Timebase: 0.1 to 10 SEC/CM. Price $\mathbf{c} 750$

Saye 5388 On New Price

FLUKE

537a Wavemeer 37.7E 46

 8004 A . ilse Generator 10M
80114/OO1 Pulse Generator $8011 \mathrm{~A} / 001$ Pulse Generator
20 MHz

1695

 8013 P Pulse Generator $50 \mathrm{MHz} \mathbf{~} 750$

82903416 KMOD

 $82937 A$ HP1BI/F85 AComputer 8556 Spectrum Analyser Plug 86200 Sweeper Mainframe 86240 BSweeper Plug In
2.8 GHz
86260 A . 86260 A Sweeper Plug in 8640A Sigral Generator $4 \mathrm{M} / \mathrm{F}$ 9825 A Desk Top tunused $9835 A$ Desk Top + BCD $9885 \mathrm{M} / 001$ Disk Drive 9885S/001 Disk Drive
MARCONI INSTS
\qquadTF2015/2 Signal Generatar A$0.0008 \mathrm{~Hz}-100 \mathrm{KHz}$
TF2171 Synchroniser for 15TEKTRONIX
148RTVInsertion Gen 176 Fixture for Curve Tracer

TEKTRONIX

Logic Analyser 7001 with DF1.
${ }^{16}$ Stored Channels. up to 1024 words deep. State and timing with up to Price: £2,000
Save 94,558

Illustrated with 7603
Mainframe (Extra)

178 Linear IC Test for Curve Tracer $£ 1,250$	DAS 9103/01/02 Logic Analyser £7,500
2701 Attenuator 50 n 0.79 dt in	
b steps DC-2GHz	
4 Pulse Generator 70ps $¢ 950$	CS PLUGINS
308 Data Analyser ¢2,100	AM5010p Amp 1300
81/011 PAL Test Monitor £3,750	DC508A Counter to 13 GHz ¢1,000
434/01 Storage Scope	-C509 Counter/Timer to
7104 Oscilloscope 1 GHz	35 MHz C800
Mainframe ¢16,500	FG501 Function Generator $0001 \mathrm{~Hz}-1 \mathrm{MHz}$ £375
7603 Oscilloscope 100 MHz	3502 Function Generator
intrame	$0.1 \mathrm{~Hz}-11 \mathrm{MHz}$ [565
704A Oscilloscope 2OOMHz Mainframe C2,850	FG503 Function Generator
834 Storage Oscilloscope 400 MHz	501 Pulse Generator L400
Mainframe $\quad \mathbf{C 9 , 8 5 0}$	$5 \mathrm{~Hz}-50 \mathrm{MHz}$
7904 Oscilloscope 500MHz C5, 950	5505 Pulse Generator
11 Plug In Amplifier with FET	$1 \mathrm{~Hz}-100 \mathrm{KHz} \mathrm{C450}$
Probe $250 \mathrm{MHz} \quad £ 1,600$	Pulse Generator tor $£ 1,650$
A19 Plug In Amplifier	PG508 Pulse Generator
600 MHz (1,600	$5 \mathrm{~Hz}-50 \mathrm{MHz}$ C1,250
A26 Dual Trace Plug In Amplifier 200M ¢1,325	RG501 Ramp Generator
7810 Time base for $7104 \ldots$ ¢1,400	10μ S-10sec 5400
7 B 50 A Timebase for 100 MHz	Single Trace
Mainframe 1615	SC50 2 Oscilloscope 15 MHz
7880 Delayed Tirnebase for 400 MHz	Dual Trace ¢900
Maintrame	SC504 Oscilloscope 80MHz
Mainframe c925	Dual Trace $¢ 995$
7892A Timebase for 500 MHz	SG503 Generator
Mainframe C2,000	$250 \mathrm{KHz}-250 \mathrm{MHz}$ £1,250
D01/DF1 Logic Analyse	Signwave E2,100
2/	TG501-01 Time Mark Generator
Plugin ¢3,950	1 n S-5sec
18 Spectrum Analyser Plug in	with 7L14 [3,000
5/25 + L3/01 Spectrum Analyser	TR503 Trackıng Generator for use
Plog In with Tracker $20 \mathrm{~Hz}-5 \mathrm{MHz}$ c 7800	with 492 or 496 E4,250

RACAL-DANA
 Counter/Timer 9514

Comes
Electronic Brokers Ltd., 61/65 Kings Cross Road, LondonWC1X 9LN. Tel:01-2783461. Telex 298694

Uosat 2 notdead but poorly

Uosat-2, the Surrey University satellite which ceased to transmit beacon signals after the first three orbits, has now been traced. (Communications Commentary, last month) The giant SRI dish in Greenland managed to detect the 1.2 GHz local oscillator which pin-pointed the exact orbit of the craft. Surrey engineers were gratified to have confirmed that the satellite was where they expected it to be. They managed to turn on the 2 MHz beacon to discover that the satellite was undergoing a weekly temperature cycle and that there were major problems with the 2 MHz beacon system. Now they have managed to bypass the problem by using the on-board computer and have been able to send commands on the command uplink. It is still necessary to stabilize the craft to prevent the temperature cycling and to get the main antenna pointing earthwards. Then it will be possible to have a complete system check-out and find out how many of Uosat-2's functions are still working. Even if everything else functions propertly, it will not all be able to be used because of the use of the computer to bypass the 2 MHz problems.

OED on computer

The compilers of the new edition of the Oxford English Dictionary have decided to commit it to a computer. This will enable the original 13 volumes to be expanded by the four supplement volumes and any new words can be easily inserted right up to the moment that the edition is prepared for printing. There are over half-a-million entries which include over two million illustrative quotations giving a total of over 80 million characters. In addition there is a variety of typefaces including Greek, phonetic characters, mathematical symbols and scientific formulae.

The system is to be based around an IBM 4341 central processor with both tape and disc storage, printers and over 20 v.d.us. Under IBM's scheme for support for academic institutions they are sending two
data-processing specialists to the OUP to assist the dictionary editors with the task of updating.

One network not two in UK

Britain is urged not to follow the American example and have separate telephone and tv networks. In an article in the Sunday Times of June 4th, Warren Partridge an American lawyer and telecommunications business consultant, points out that with the denationalization of British Telecom, Britain is heading toward the same system that the US has developed in the 70 s: one that has a private telephone monopoly, underfunded cable tv and unnecessary investment in all sorts of services to be carried into homes on several wires. Now is the time, he maintains, for all these services to be combined into one network.

The American experience is the development of two separate, and inadequate, systems. The
telephone net work is neither designed for local transmission of high-speed data nor tv pictures; the other, a cable tv system is not designed to provide telephone services. Both systems suffer from not getting the income that could accrue from the services provided by the other.

Mr Partridge suggests that Britain's cable tv franchising process could be used as the mechanism for privatizing BT. Britain could be divided into a few large combined telephone and cable services. The condition attached to awarding a franchise should be the aquisition of BTs present telephone system assets. This would privatize BT geographically, piece by piece, with the licensee operating a single system for telephones and tv. Those awarded franchises
should offer a common carrier service only and lease capacity for tv channels or other services to programming and marketing companies. Control of such entertainment channels could be through the proposed cable authority.

These proposals would counter the problems found in the US, where it has been found that cable tv only provides more channels and if those channels are also available over the air then the cable systems begin to founder. Only in Washington DC has the telephone company proposed that they provide the cable system to be leased to cable tv companies. That should be the way forward for Britain, says Mr Partridge, if it wants to learn from US mistakes and take its telecoms into the futue.

Communications in the air

British Telecom persuaded British Caledonian to run part of its Gatwick operation from Birmingham at Communications 84. They did this to demonstrate the capabilities of Touchdown, a communications link between the aircraft, controllers and groundstaff which allows for the arrangement of schedules for re-fuelling and repairs, check destination and arrival times, book crews and aircraft, check passenger loads and the provision of on-flight catering. All this is done from a touch-screen terminal. By touching squares on the screen operators can answer incoming calls, call up background information, make internal and external calls (all regular

Expanding American teletext

National Association of Broadcasters has joined the FCC in its proposals to authorise American tv stations to provide paging and a variety of data paging and a variety of data
transmission services in the tv signal vertical blanking interval. The services should include The services should include
video games and computer programs, and other 'interactive’ programs, and other 'interactive'
services. The decision to provide these services should be left to the market place. In its
numbers are stored and dialled automatically), and send or receive telexes. The link from Gatwick to Birmingham was for two of the 12 terminals in use at Gatwick.

Another communications

 system, installed by BT at Gatwick, is for the air traffic controllers. Through ADEKS, Advanced Design Electronic Key System, allows controllers to get in instant touch with other controllers and with telephone lines. Mike Morris, a director of BT National Networks, expressed his pleasure at receiving the order from the Civil Aviation Authority. He hoped that similar organizations in other countries would follow suit.submission, the NAB said that the system was technically sound, promoted competition and conductive to spectrum efficiency. It also said that the services should not be subject to common carrier regulation. Cable services which are obliged to carry certain network services should not be permitted to 'strip' the new offerings from the tv signals.

The system combines 'scphisticated features and high reliability, at an extremely competitive price. ADEKS was designed specifically for installations such as this and is the result of cooperation between BT and CAA communications engineers.'

ADEKS keyboards are small units incorporated into the air traffic controller's desks. At the touch of a button users have instant access to all kinds of internal, public and emergency telephone lines. Incoming calls are indicated according to their priority.

The control system is designed to minimize disruptions and uses multiple processors and back-up cable routes to ensure high integrity. Any components failure can effect a maximum of one console or two lines. Self-checking routines and battery back-up are also provided. Cables are smoke and fire resistant and special immunity to radar and radio interference has been built in. One system can handle up to 116 lines to 60 consoles and systems may be linked for larger installations. ADEKS can also be interfaced to radio circuits. ADEKS is installed in the new stalk-mounted control tower at Gatwick.

POWERFUL AND RELIABLE

Microcomputers 64 K with double disc drives, British made $2-80 \mathrm{~A}$ processor 4 MHz circuit, 2 built-in high quality disc drives $250 \mathrm{~K}=1 / 2 \mathrm{Mbyte}$, high resolution Monochrome $12^{\prime \prime}$ screen. Expansion slots for printer, modem, upgradable to 2Mbyte, or Winchester 20Mbyte. Computer based on CP/M system.
Professionally made light alloy enclosure. User manual and 10 diskettes 5.1/4* S/W module "Data Flow" as starter pack included in price (CP/M is Digital research Trademark).

PRICE: $\mathbf{£ 8 0 6}$ plus VAT.
90 dars warronly or refund it not sotisfed. COLOUR mentior 14^{4} med. resolution $£ 190$ extra.

Foundrometers Ltd.
South Accommodation Road, Leeds LS9 SLW (Instument makers, est'd 1919) Tel: (0532) 485811 Ask for Dowid Brooke. Telex: 556408

CIRCLE 51 FOR FURTHER DETAILS.

Valradio

A wide range of Inverters (30 to 1000 Watts) are available for incorporation in these Standby Systems. They are the 'T' type (square wave) or the 'S' type (sine wave), having either a 12 v or 24 v DC Input supply.

Recommended batteries (not supplied) for 200 watt Standby Systems, $4 \times 6 \mathrm{~V} 120 \mathrm{AH}$ each series parallel connected to a total capacity of 12 V 240 AH .

We also manufacture Frequency Changers, AC-DC Power Supplies, No-Break Systems, and we are always happy to quote for your special requirements.

Valradio POWER LIMITED

AK INTERNATIONAL BUILDING, LAWRENCE ESTATE, GREEN LANE, HOUNSLOW, MIDDX TW4 GDU, ENGLAND. Tel: 01-570 5622

Electronic Brokers

FOR
BIEST TEALS ow DEB
a selection from our huge stocks. All items reconditioned unless otherwise stated. NEW SUMMER 84 CATALOGUE NOW OUT
Covering our large stocks of Systems, Peripherals, Modules,
Terminals and Graphics equipment

£3,500

TERMINALS

UT100 VDU TERMINALS
The world's best-selling VDU. Don't make do with a look-alike - buy the genuine article at only

Range of options available, i.e

SPECIAL PURCHASE DAISY WHEEL PRINTERS
DIABLO HYTYPE II model 1345
45 character-per-second letter quality printer with micropracessor control and solid die-cast aluminium frame Receive-only bidirectional model with 12 -bit parallel mput and

unit

LA36 DECwriter II KSR TERMINALS Bulk purchase of this most popular 30 cps termınal providing 132 -column upper/Iower case printing. Tractor feed matrix printer with integral stand and choice of interface. PRICE
£295
with $20 \mathrm{~mA} / \mathrm{F}-$ $£ 325$ (with EIA/RS23? (F) Also avaitable Receive-only version model LA35, price $\mathbf{£ 2 5 0}$ and $\mathbf{£ 2 7 5}$ respectively

CIRCLE 66 FOR FURTHER DETAILS.

Digital stereophony with television

Tests on digital four-phase d.p.s.k. technique of transmitting additional sound information for tv stereophoney show the system to be more rugged than for either teletext or colour television pictures.

A single high-quality broadcast audio channel requires a bandwidth of at least 15 kHz . Simple linear quantization of an audio signal requires at least 13 bits per sample for acceptable broadcast quality. Near-instantaneous digital companding*, however, enables the number of transmitted bits per sample to be reduced to ten with negligible degradation in quality. Assuming a 15 kHz audio bandwidth, a sampling rate of about 32 kHz is required to satisfy the Nyquist criterion** and thus avoid unwanted alias effects. The minimum bit-rate for a single high-quality audio channel is therefore about $320 \mathrm{kbit} / \mathrm{s}$. To this must be added the bit-rate needed to transmit additional data such as framing words, parity bits for error detection, and the scale factor words associated with near-instantaneous companding. Two such channels, therefore require a bit-rate of something in excess of $640 \mathrm{kbit} / \mathrm{s}$.

[^1]A system has been devised based on earlier work at the BBC Research Department ${ }^{2}$ and its outline parameters are given in Table 1. The proposed system, which is still under development, was not used in the South Wales tests, a pseudo-random binary sequence generator being used instead. However, the important factor was to test the modulation system employed and this is discussed next. The proposed system employs a bit-rate of $704 \mathrm{kbit} / \mathrm{s}$, chosen because it is a multiple (22) of the sampling fre-

Receiving, demodulating and measuring equipment inside a BBC survey vehicle.
quency which could lead to simplification of the decoder, and it provides a few kbit/s spare data capacity for supplementary purposes.

Choice of modulation techniques

The choice of a modulation technique for any digital transmission system results from a compromise between the required bandwidth, the signal-to-noise ratio required to achieve an acceptably low received bit-error rate (this
by E. H.
Hartwell BBC Research Department

Ted Hartwell joined the BBC in 1963 after serving four years as a design and development engineer in industry. Most of his time in the BBC has been spent in the studio engineering department at the Television Centre in West London where he worked as an engineer and, more recently, as a technical writer. He became Research Author at the BBC's Research Department last year.

Table 1. Proposed baseband coding for experimental digital stereo sound with terrestrial television.

Audio bandwidth	15 kHz
Pre-emphasis	CCITT
Audio sampling rate	32 kHz
Samples per block	32
Audio coding	$14 / 10-\mathrm{bit}$ near-in- stantane- ouscomm- panding $640 \mathrm{kbit/s}$
Scale factor bits	3 per block per Chan- nel $6 \mathrm{kbit} / \mathrm{s}$
Error protection for sample words	$32 \mathrm{kbit/s}$
Error protection for scalefactor bits	$4 \mathrm{kbit/s}$
Framing	$8 \mathrm{kbit/s}$
Available for further development	$14 \mathrm{kbit/s}$
Overall bit rate	$704 \mathrm{kbit/s}$

Fig.1. In the differential coding process four bit-pair combinations which modulate the carrier cause it to change phase by the amount shown in the table (a). Carrier has four possible rests state 90 apart (b). An example of carrier rest states adopted for the input bit-pair sequence $00,10,11$ and 01 is shown in (c).
usually determines the carrier power required), and cost. The last item is particularly important here because it is highly desirable to minimize the cost of the decoder required in domestic receivers.

The broad family of four-phase-shift keying systems offers the best compromise between the requirements above, and a particular variant known as fourphase differential or quadrature phase shift keying was chosen for the experimental system. Fourphase d.p.s.k. had been successfully used by the BBC in earlier contexts ${ }^{3}$ so experience had
already been gained in the use of this method.

Four-phase p.s.k. is a digital modulation technique in which the carrier adopts one of four possible phase states dependent on the two-bit pattern occurring at any instant, i.e. 00, 01, 11 and 10. Carrier amplitude remains constant except during phase transitions.

Simple four-phase p.s.k. requires the transmission of an additional phase reference signal for correct decoding and this can only be achieved at the expense of increased carrier power or bandwidth, neither of which is desirable. However, if the p.s.k. signal is differentially coded (d.p.s.k.), no additional information is required. Instead, the transmitted message is coded into carrier phase changes between one bit pair and the next, which the decoder does not need a phase reference to detect, Fig.1. Briefly, the modulation system works as follows.

The changes of carrier phase which correspond to the four possible bit pairs $00,01,11$ and 10 are respectively $0,-90,180$ and -270°, Fig.1(a). The carrier phase itself can dwell in one of four rest states 90° apart, as depicted in (b). An input bit-pair shifts the carrier phase into a different rest state by the amount assigned to that particular pair. The transmitted phase changes and subsequent carrier rest states for the input bit-pair sequence $00,10,11$ and 01 are illustrated in (c).

Choice of second sound carrier

The relative levels of the vision and sound carriers, and the fre-quency-spacing between the main and second sound carriers, have to be chosen to give good compatibility with existing receivers, whereby interference to the picture or main sound

Table 2. Modulation system for experimental digital stereo sound with terrestrial television.

Frequency of second sound carrier	6.55 MHz above vision carrier Level of second sound carrier Modulation of the second sound carrier Overall bandwidth (to - 30dB) of transmitted d.p.s.k. signal Level of main carrier sound carrier4-phased.p.s.k. at 704kbit/s

channel is kept to a minimum. The frequency and level of the second sound carrier must also be chosen so that the digital system works reliably throughout the service area of normal television reception. A third requirement is that the second sound carrier must not interfer with transmitters operating on adjacent television channels. The first and third requirements have been investigated in the laboratory, and the second during the field tests in South Wales. Inevitably, these requirements conflict and a compromise has had to be sought.

Theory and laboratory tests indicate that, to avoid interference to or from the main fre-quency-modulated sound signal, the additional digitally-modulated sound carrier woudl need to be spaces 6.5 MHz or more above the vision carier (i.e. 0.5 MHz above the rest frequency of the main sound signal), and at an amplitude of between 20 to 25 dB below it.* This is a larger frequency spacing than that used in the earlier BBC tests on the analogue two-carrier system, where a spacing of about 6.3 MHz was best, because of the greater bandwidth (about 700 kHz) of the digitally modulated signal compared with that of the f.m. signal.

The upper limit on the spacing of the second carrier from the vision carier was determined by adjacent-channel interference, both from the viewpoint of interference from the digitally modulated signal into the vestigial sideband of the upper adjacent channel, and vice versa.

Laboratory tests indicate that with the second sound carrier at a level of 20 dB below the vision carrier level, interference from the digitally modulated second sound carrier into the upper adjacent channel is not a problem and complies with the CCIR recommended protection ratio. In fact the main sound carrier is the limiting factor for interference into the upper adjacent channel; this remains true even when the main sound carrier is reduced by 3 to 10 dB below the vision carrier. Interference from the upper adjacent channel into the digital sound channel seems more likely because the CCIR recommended protection ratio in this direction is much more tolerant.

Any interference to the digital sound channel from the vestigal sidebands of the upper adjacent channel vision signal is picture dependent, which meant detailed
studies of the power-density spectrum with a variety of picture signals. As expected from the vestigial sideband shaping, the power density spectrum falling into the digital channel is triangular, power-density decreasing with increasing spacing from the interfering vision carrier. This indicates that the frequency of the second sound carrier should be kept as close as possible to that of its parent vision carrier.

These conflicting requirements lead to a frequency spacing for the digital sound channel of 6.55 MHz above the wanted vision carrier, i.e. 0.55 MHz above the main f.m. sound carrier, Fig. 2.

Parameters of the modulation system adopted fo the experimental equipment are given in Table 2.

Conclusions

The South Wales tests show that the experimental digital system is
adequately resistant to impairments to digital sound signal reception arising from low field strength, multipatr propagation, ignition interference, and distortions in a long chain of transposers.

The results clearly show that when receiving low field-strength signals directly from the main transmitter (at Wenvoe) the digital sound signal will not, on average, fail before the picture became unacceptably noisy; when receiving signals via a redbroadcast relay station (transposer) the average failure point occurring at a field strength well below the nominal service area limits for Band IV and V transmissions. The system is more rugged than either colour television pictures or teletext with regard to multipath propagation effects (ghosting).

In March, with Home Office agreement, the BBC conducted similar tests from the BBC2 transmitter at Crystal Palace, to

confirm that the experimental system is compatible with the widest possible range of domestic receivers. In May, test transmissions were made of a television programme with stereophonic sound using the experimental system described. The results of both series of tests are very encouraging; the BBC is presently having discussions with the IBA and the receiver industry to establish an agreed UK Standard.

Fig.2. Frequency bands occupied by the colour picture components and sound signal of one television channel with the proposed digital sound signal added.

Background to BBC experiments

For many years there has been interest in the possibility of adding stereophonic sound to existing television services and the BBC has investigated a number of possible methods. In all cases an additional sound signal is required to carry the stereo information and, in some cases, the additional signal is suitable for the transmission of two independent sound signals as may be required, for example, to provide a bilingual service. Methods investigated include the pilottone system as used for stereo radio broadcasting in the UK, the Japanese f.m.-f.m. system and the German two-carrier system, all of which employ an analogue second sound signal; and digital sound similar to that proposed for direct broadcasting by satellite television.

The first two methods have certain limitations in this context and were not pursued as serious contenders. The German method, (WW November 1981, Page 40) in use on a limited basis in that country, appeared more promising and engineers at the BBC Research Department devised a variant of this method adapted to the PAL System I as used in the UK.

Toward the end of 1982, the BBC conducted over-air compa-
tibility tests of this variant from the BBC transmitter at Crystal Palace outside normal broadcasting hours. The tests indicated that the system was only marginally compatible; interference between the additional sound carrier and the main sound carrier gave rise to picture patterning, which, to avoid, required reduction of the main sound carrier. However, reduction of the main sound carier to 13dB below the vision carrier as in Germany caused increased buzz-on-sound in some existing receivers.

During the period that various options for analogue stereo sound with television were being assessed, the status of digital techniques in domestic equipment had changed considerably and consumer products, such as the digital audio disc with its attendant high quality sound, had become available. Also, the BBC proposes using an internationally agreed system of digitally coded sound for d.b.s. These advances led to the consideration of a digitally modulated second sound carrier to convey the stereo signal.

A digitally-coded signal is more rugged than its analogue counterpart and may therefore be transmitted at a lower level. This reduces the level of any interfer-
ence between the main sound carrier and the added digitallymodulated carrier. Also, because of the more noise-like nature of a digital signal, the visibility of any interference patterns is reduced further, which enables the main sound carrier to be maintained at or near its full level, avoiding the increased buzz-on-sound problem found with the analogue twocarrier system.

A thorough investigation of the digital option carried out at the Research Department led to over-air tests of an experimental system, conducted outside normal broadcasting hours from the BBC2 transmitter at Wenvoe in South Wales and its associated rebroadcast relay stations during the autumn of 1983 [ref.1]. This particular area was chosen because the terrain is hilly and multipath propagation of normal television signals very evident. The area contains a large concentration of rebroadcast relay stations which enabled assessment of the digital sound signal when subjected to the cumulative effects of distortions in a long chain of such stations.

This article discusses the reasons behind the choice of parameters used for the experimental systems, together with a summary of the test results.

References

1. S.R. Ely. 1983. Experimental Digital Stereo Sound with Terrestrial Televison : field-test from Wenvoe, October, 1983 BBC Research Department Report RD1983/19
2. D.F. Reid and N.H.C. Gilchrist. 1977 Experimental $704 \mathrm{kbit} / \mathrm{s}$ Multiplex EquipExperimental $704 \mathrm{kbit} / \mathrm{s}$ Multiplex Equip-
ment for two 15 kHz Sound Channels. BBC ment for two 15 kHz Sound Channels. BBC
Research Department Report RD1977/38. Research Department Report RD1977/38.
3. M. J. Kallaway. 1976. Expermental 3. M. J. Kallaway 1976. Experimental
Four-phase Differential-phase-shiftkeying System to carry two High-quality Digital Sound Signals. BBC Research Department Report RD1976/20.

[^2] second sound camiers refer to the respec
tive levels of the unmodulated camiers.

RESEARCH COMMUNICATIONS LTD. TELEPHONE: CANTERBURY (0227) 56489 CIRCLE 36 FOR FURTHER DETAILS.

CIRCLE 64 FOR FURTHER DETAILS.

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.
Full Information from:
HARRIS ELECTRONICS (London)
138 GRAY'S INN ROAD, W.C. 1 Phone: 01-837 7937 Telex: 892301 HARTRO G

TOROIDAL

 TRANSFORMERSWe are now able to offer a range of high quality Toroidal transformers at very competitive prices 30VA £6.27, 50VA $£ 7.73,80 \mathrm{VA} £ 8.51$ 120VA $£ 9.33,160 V A £ 11.43,300 V A € 15.27$

Prices include P\&P and VAT
Available in the following voltages: 6-0-6, 9-0-9, 12-0-12, 15-$0-15,18-0-18,22-0-22,25-0-25,30-0-30,35-0-35,40-0-40,45-0-$ 45, 50-0-50.
Oty. discount 50 plus 10\%, 100 plus 20\%.
TRADE ENQUIRIES WELCOME
AIRLINK TRANSFORMERS LTD
28 Bullfields, Sawbridgeworth, Herts. Tel: 0279-724425

CIRCLE 27 FOR FURTHER DETAILS.

Total Testand Measurement Capability

TOMORROW'S TOOLS TODAY
G.S.C. (UK) Limited, Dept. 7D,

Unit 1, Shire Hill Industrial Estate Saffron Walden, Essex CB11 3AO. Telephone: Saffron Walden (0799) 21682 Telex: 817477

Irstant frequency indication from 5 Hz to 100 MHz ; no range selection problems; a brilliant 8 -digit LED display; mains or battery operation; an accuracy of 4 parts per million ± 1 count; and totally automatic operation - all this for only $£ 116.00$ * with GSC's new Max-100 frequency counter.
Just take a look at our spec. Where else could you find anything similar at the price? *Frequency range 5 Hz - 100 MHz * Input impedance 1 M shunted by 10 pF *Sensitivity 30 mV from 1 KHz up to $50 \mathrm{MHz} ; 120 \mathrm{mV}$ r.m.s. over full frequency range *Timebase accuracy ± 4 parts in 106 (from 5 to $45^{\circ} \mathrm{C}$) *Maximum aging rate 10 parts in 106 per year *Over-frequency indication *Low-battery-power alarm *Operates from dry or rechargeable cells, an external 7.5 to 10 VDC supply, or a car battery (via an adaptor) *Dimensions: $45 \times 187 \times 143 \mathrm{~mm}$ "Options: 12 V adaptor; battery eliminator; r.f antenna, low-loss r.f. tap, carrying case
Fill in the coupon for further details ...

CIRCLE 26 FOR FURTHER DETAILS.
by R. M. Adelson

Ronald Adelson graduated in engineering from Cambridge University in 1956. After a spell in industrial electronics he entered the field of operational research which has been his principal occupation since. However he has kept up an active interest in electronics, especially where it impinges on his interests as a musician (actually he plays the bassoon - perhaps not quite the same thing!). He joined the Operational
Research Department of Lancaster University in 1967. A recent initiative by the Music Department at Lancaster is currently enabling him to spend some of his time putting his technical skills to work.

Fig. 2. Circuit of the music-keyboard interface. Whenever strobe voltage goes outside the narrow window defined by $\mathbf{R}_{54 \cdot 56}$, dual comparator IC_{9} generates an interrupt at CB_{1}. The computer then responds by reading the inputs of IC $1-8$, then clocking them on using CB_{2} on IC_{10} until the whole keyboard status has been read.

Music keysfor the BBC microcomputer

Using the computer's sound unit or external generators, this economical polyphonic keyboard interface makes a musical instrument and an educational tool for storage, analysis and display of music.

Potential of the microcomputer as a tool for teaching, editing and perhaps even composing music is great, as the amount of musicrelated software currently available will testify. This software however suffers from one serious drawback - the means of entering musical information into the computer. These means include the computer's typewriter-layout keyboard and sometimes games paddles or joysticks but all are clumsy, slow and error prone which is a great discouragement to the musician (as opposed to the computer enthusiast) attempting to use the computer creatively.

There are systems that include the natural input device for a musician - a music keyboard - but they are mainly intended for computer-based synthesizer applications. Best known of these are probably the Fairlight Computer Musical Instrument costing around $£ 20000$ and the Alpha Syntauri add-on for the Apple computer
costing around $£ 2500$. The Alpha Syntauri is intended for use as a synthesizer but there is now some elementary teaching software available for use with it. Some other (mainly American) music teaching systems were recently reviewed by David Ellis*.

Lancaster University's music department is studying possible uses of microcomputers in aspects of its work including the training of musicians, music editing and research into music analysis. We felt from the outset that a 'musician friendly' input device was essential for acceptance by potential users and given the cost of commercial systems - not to mention their shortcomings we decided to develop a straightforward and cheap keyboard interface for the BBC microcomputer. The outcome is a keyboard and interface costing around $£ 50$

[^3]in components and drawing about 60 mA from the computer's 5 V supply, which hasn't caused problems even while two disc drives are powered from the same source.

Design considerations

Synthesizer applications were not considered a prime objective although the design can be used to play the computer's own sound generator or external units. No attempt was made to make the keyboard touch sensitive to measure the speed of key depression; simple on/off key switches will suffice. Uses envisaged for the interface suggested that it should be fully polyphonic, i.e. should accept chords and should not be restricted to the one-note-at-atime characteristic of typewriterstyle keyboards designed for computer input. Finally, rapid response was required and in some circumstances the computer might be processing input

information in real time, suggesting that time should not be wasted by scanning the keyboard unnecessarily.

These conditions were met by making the system interrupt driven and bit mapped. This means that any change in keyboard status due to a key being pressed or released produces an interrupt signal causing the computer to read the status of all the notes on the keyboard. On reading the keyboard, the computer stores a bit-mapped image (zero for an unpressed key, one for a pressed key) of the current keqboard status for subsequent analysis, display, sound generation, etc.

Hardware

A four octave C-C (49 note) keyboard is used. Initially, the 49th note proved a minor nuisance since 48 notes can be neatly mapped into six bytes. However, in the final design it turned out to be convenient to read the keyboard in eight bytes so the system can accommodate a five-octave keyboard. One byte is used to check that spurious noise pulses have not sent the interface byte counter out of step with the reading software.

Keyboard and key switches used are those sold by Maplin Electronic Supplies as the basis oit their 'Spectrum Synthesizer' (no connection with the well knowr microcomputer). The key switches are unusual in that they are simply coiled springs soldered to a p.c.b. at one end and touching a bus bar on the p.c.b. at the other end when the key is pressed (the p.c.b. is also supplied). This
seemingly effective keyboard is easy to assemble and much cheaper than using conventional organ key switches. Some initial problems were experienced due to key bounce caused by spring vibration but these were solved by inserting lengths of soft foam plastic at the edge of the p.c.b. where the switches are soldered to damp the vibrations.

The BBC microcomputer user port is connected to the B lines of a 6522 versatile interface adaptor, v.i.a. It carries eight data lines, D_{0-7}, two handshake lines, $\mathrm{CB}_{1,2}$, a number of ground lines and the computer 5 V supply. Through programming, the v.i.a. can be made to generate an interrupt signal when CB_{1} changes from high to low or alternatively low to high - but not both. For the keyboard, a response is required when any key is pressed, or released, and even if a number of other keys are already held down, so a means producing a suitable interrupt signal is needed.

Figure 1 shows basic key connections in which two equal resistors, $\mathrm{R}_{1,2}$, establish a steady-state voltage of 2.5 on the strobe rail. Each key switch is conncted to a network made up of R_{x} and C_{x}. Initially, C_{x} has a potential difference of 2.5 V across it (lower plate 5 V , upper plate 2.5 V). When the switch is closed, the lower plate potential falls initially by 5 V and as the capacitor's charge cannot change instantaneously, so does the upper plate's potential i.e., the strobe potential drops to-2.5V.

In due course, C_{x} discharges through R_{2} then recharges with reverse polarity through R_{1} and the strobe returns to 2.5 V . When

the switch is opened, C_{x} tries to discharge through $\mathrm{R}_{1,2}$ and R_{x} and in doing so pulls the strobe line above 2.5 V by an amount depending on the values of the resistors. The capacitor now discharges and recharges to the original steady-state voltage through R_{1} and R_{x}, so key status can be read at point S.

If several keys are connected to the strobe rail each with their own RC networks, their behaviour will be similar but step magnitudes and associated time constants will depend on how many keys are pressed. For example, if 48 keys are pressed - a tricky feat even using arms instead of hands - pressing the 49th key places the last C_{x} in parallel with the 48 others and limits the step size to about 100 mV . However, as long as the system can detect the smallest possible step and react to the minimum time constant while the maximum time constant is short enough to ensure that recovery occurs before one has a chance to press the next key, all is well. Component values shown allow the keyboard to respond to chords of any number of notes that I have managed to reach over and to trills and glissandi without problem.

Negative-going interrupts can be produced by taking the strobe line to the non-inverting input of a comparator whose input is biased just below 2.5 V so that it responds only to negative-going pulses, and to the inverting input of a further comparator, whose non-inverting input is at just above 2.5 V , which responds only to positive-going pulses. The LM393 dual-comparator is ideal for this purpose since it works with a 5 V supply and has opencollector outputs which can be wired together to produce OR gating.

Figure 2 is the final circuit. Resistors $\mathrm{R}_{1,2}$ provide bias for the strobe rail and $R_{3.51}$ and C_{1-49} are R_{x} and C_{x} for each key, Fig.1. Resistors R_{54-56} provide bias for the comparators, IC_{9}. Resistor R_{59} forms collector load and resistors $\mathrm{R}_{57,58}$ provide some hysteresis - usually a good policy when using comparators to improve noise immunity and switching times and to reduce tendency to spurious oscillations. The input voltage on IC_{9} must not be allowed to fall below ground and it can be seen from Fig. 1 that the strobe rail can do this - hence

Fig. 1. Outline of the keyboard's interrupt generator. Closing or opening the switch causes the voltage on the strobe rail to act as shown. Each pulse causes an interrupt.

At switch on, the counter is set to zero and its synchronism is checked each time the keyboard is read. The delay allows for key bounce and for the fact that is impossible to play all the notes of a chord simultaneously.

Vigilant MiOO HF Communications Receivers MICROPROCESSOR CONTROLLED RECEIVERS

Type SR 530 USB/CW/AM/Telex -10 Hz Steps (Marine)
Type SR 532 USB/LSB/AM/CW - 10 Hz Steps (Static/Transportable)
Type SR 531 USB/LSB/AM/CW - 100 Hz Steps (Static/Transportable)

DESIGNED AND MANUFACTURED TO HIGHEST INTERNATIONAL SPECS

Freq. Range Increments Stability Tuning Power Supplies 110/240V AC and 24V DC FULLY MODULAR 'PLUG IN' CONSTRUCTION

Memory Scanning

200 Channels Freq/Mode/Filter Full memory or discreet parts Automatic or Manual Stop Manual step on or Reverse Dwell : Variable from Keypad 1 to 9 seconds KEYPAD FUNCTIONS INDICATED BY DISPLAYS

NOW AVAILABLE AT HIGHLY COMPETITIVE PRICES

Send for Technical Brochure to:
Tel: (0344) 885656 Vigilant Communications Ltd. Telex: 849769 Vigcom G Unit 5, Pontiac Works, Fernbank Road, Ascot, Berks SL5 8JH, England

CIRCLE 24 FOR FURTHER DETAILS.

Trackdown SWITCHMODE power supply

 ...Barlec-Richfield and SGS have the solution 1296 SWITCHING REGULATOR

- Available ex-stock
- Cost effective

Short circuit protected

- Output over voltage protection
- 5.1 v to 40 v output
- 4A output current
- Up to 160 w output power
- Programmable current limiter
- Soft start
- Reset output
- Precise ($\pm 2 \%$) onchip reference
- Very few components

Switching frequency to 200 kHz

- Very high efficiency (up to 90%)
- Thermal shutdown
- Remote inhibit and sync input
- Control circuit for crowbar SCR
For complementary evaluation kit please write to Barlec-Richfield on your company headed paper.

Phone: 040351881
Telex: 877222

now better served to serve you better

Barlec-Ruchfield Ltd.
Foundry Lane. Horsham. West Sussex RHI3 5PX
A menner of the IBR Electroncs Group

Television reception with papaya tree antenna

Novel technique couples r.f. energy from vegetation canopy to receive tv signals.

Back in 1979 we conceived of using green vegetation canopy as an r.f. antenna and conducted feasibility studies with a live cypress plant and freshly cut date palm leaf branch at 1000 MHz to successfully demonstrate it^{1}. Later ${ }^{2}$, we conducted experimental studies to use vegetation canopy (leaves and branches of gulmohr, canna, bottle brush, coconut, date palm, fern, etc) as electromagnetic antennae structures at microwave frequencies. These studies reveal that certain geometrically-shaped vegetation, due to water and chlorophyll content vis-a-vis their dynamic complex dielectric properties can sustain, propagate and radiate electromagnetic waves from their structure if suitably excited. A gain varying from 2 to 5 dB over an exciter probe antenna from selected vegetation canopies at 1000,3000 and 4000 MHz has been achieved with satisfactory impedance-matching characteristics. (The radiation pattern of the exciter probe antenna be shaped with increased its gain axially when it excited an e.m. wave on vegetation cover structure.) A range of branches from a single tree branch to a bunch of a few branches (kept in a plastics cone to maintain a dielectric-rod antenna configuration of the bunch) were used to achieve better radiation pattern characteristics with a gain of around 5 dB over that of the exciter probe antenna.

In all these studies a probe helix at the end of a vegetation branch was used to excite an e.m. wave on the vegetation structure. The radiation characteristics so observed were found to remain so long as the vegetation structure is fresh, and start to deteriorate with increase in dryness.

We further reported ${ }^{3}$ experimental studies to receive Band 3 television signals from the Bangalore transmitter (radiating 1 kW) by using freshly-cut date palm and coconut branches, of length 1.5 and 3 metres respectively. The vegetation cover with reasonably good signal-to-noise ratio. A new simple method to tap the r.f. energy captured by the leaves branch was reported at the same time.

And most recently, we

Fig.1. Field receiving site
received signals from the Bangalore tv transmitter using a few live papaya trees (one at a time only) of height around 3 to 5 m in length and located firstly at 12 km and later 25 km away from the transmitting tower.

Experimental set up

In this last experiment a few papaya trees (used one at a time), of height around 3 to 5 m were

The authors are with ISRO Satellite Centre, Bangalore, India, except S.P. Kosta who is studying at the National College, Jayanagar, Bangalore.
by S.P. Kosta K.N. Shamanna R. Bhawani Shanker K.S. Dayashankara B. Rudralingappa V.R.Katti Y.P. Kosta

Dr Shiv Prasad Kosta graduated from Jabalpur University and took his Ph.D. in Telecom engineering in 1969 at the same university.

Dr Kosta is a specialist on antenna and transmission line systems and has more than 120 research and technical papers to his credit. He takes keen interest in basic research problems relating to electromagnetics, antenna and microwaves and has guided students for M.Tech and Ph.D. degrees. Recently, Dr Kosta conceived of using trees and salt solutions as tv and radio antennas for very high and microwave frequencies.

Presently, Dr Kosta is working as head of systems integration, at the ground checkout and test division of ISRO Satellite Centre, Pennya, Bangalore.

Fig.2. Probe coupling configuration

REFERENCES

1. S.P. Kosta, et al, Cypress plant as r.f. antenna, Frequenz, April 1979, pp.117/8. S.P. Kosta, et al, Date palm tree branches as antenna structure Nachrichten Technische Zeitschrift (NTZ) April 1979, p. 236.
2. S.P. Kosta, et al, Gulmohr vegetation canopy as antenna structure. Communicated to IEEE Transactions on Antennas and Propagation, paper C-013 June 1983.
3. S.P. Kosta, et al, Coconut tree branch - nature's television antenna. Communicated to Proc. IEEE, September 1983.
4. Li-Jen Du and W.H. Peake, Rayleigh scattering from leaves Proc, IEEE, June 1969, pp. 1227-9.
5. J.E. Spence and K.G. Heisler Jr., Radio propagation loss in a tropical jungle. Abstracts of URSI 1967 Fall Meeting, Anstracts of Michigan, Ann Arbor.
6. Jasik, H. Antenna Engineering Handbook. McGraw-Hill, New York, 1961.

located to receive line-of-sight signals at a distance varying from 12 to 25 km from radiating tv tower were used to receive colour, as well as black \& white signals. A flexible coaxial cable (RG-58A/U) tapped r.f. energy from the appropriately selected places of the tree. The inner conductor of the BNC connector (EMRI-506, projecting by around 3 mm) was pierced through first into the trunk and then at the end point of the stem supporting the green leaf of the tree (Fig. 1).

The maximum signal tapping point was found after many trials, from which we found that the piercing end of the inner conductor should touch the moist/wet portions of the tree (xylem, phloem, chloren chyma, etc). The other end of the coaxial cable was connected to a Sony portable receiver model CVM-111E. The BNC connector is not necessary to tap the r.f. energy, Fig. 2. A bare sharpened inner conductor end of RG-58A/U cable itself should be used in practice to
economically receive television signals.

Observations

The signal received with the probe antenna alone at the height of the tapping point was very hazy (unreadable) at 12 km distance and, practically, identification of the picture wasn't possible, Fig. 3. Further, no signal was received by the probe alone at 25 km distance.

The signals received from the papaya tree trunk, its one green leaf and the dipole antenna at 12 km and 25 km distance, were of good readable quality. The v.s.w.r. under best conditions of reception was around 1.5 . Only the leaves pointing clearly toward the tv transmitting tower without obstruction received good television pictures. To achieve higher gain (better s / n ratio of the received tv picture), standard antenna array techniques using a few suitably located Papaya trees or a few suitably oriented leaves
need to be studied in depth.
Under average conditions (slow breeze and feeble rain) the observed tv picture quality was fairly satisfactory.

Theoretical model

To a first order of approximation one may simulate either

- suitable symmetrical and geometrically-shaped freshlycut or live vegetation branch or a bunch of branches (like fern, date palm, bottle brush) as a standard well-known dielectric rod antenna configuration; or
- papaya, coconut, bananatype live branch leaf as a thin dielectric sheet aperture antenna.

The exact constitutive parameters of a green leaf are not well-known ${ }^{4}$. Because of the very large static dielectric constant of water one can well expect that the moisture content of the leaf will have a predominating influence. A reasonable estimate of the complex dielectric constant of green foliage (Du and Peake ${ }^{4}$) can be made from the following equation:

where g_{e} the ionic conductivity due to dissolved salts of the fluid in the leaf, G is the fraction of water content, f_{0} is 16 GHz , and ε_{0} have the usual meanings, and the conductivity of the dissolved salt may vary widely but is assumed here to be 0.2 to $0.4 \times$ $10^{-4} \mathrm{mho} / \mathrm{m}$. Further, the effective relative dielectric constant of the medium can also be written as

$$
\varepsilon_{,}=\varepsilon_{1}+\frac{g_{1}}{j \omega \varepsilon_{i n}}
$$

where ε_{x} is the effective dielectric constant, and g_{i} the effective conductivity.

Du and Peake ${ }^{4}$ measured values of the relative dielectric constant ($\varepsilon \approx 1.01$ to 1.04) and effective conductivity ($g_{j} \approx 0.2$ to $0.4 \times 10^{-4} \mathrm{mho} / \mathrm{m}$) of the green leaves with varying percentage of water content (10 to 50%) and the volume concentration of the leaves (in the range of 0.0003 to 0.001) at v.h.f. They have also found that dielectric constant is nearly independent of frequency in the v.h.f. band. Spence and Heisler ${ }^{5}$ have reported dielectric constant of jungle environment as $\varepsilon_{j}=1.02$ and conductivity $g_{i} \approx$ $10^{-4} \mathrm{mho} / \mathrm{m}$. It is also known that Continued on page 29

Variable-speed video playback

Using C-format video recorders over a wide speed range. Discussion continues with a description of the effect of the recording process on video waveforms.

At $+2 \times$ and at 0 , a singletrack jump is required every drum revolution, whereas at $-1 \times$ and $+3 \times$, a two-track jump is required. At intermediate speeds, a sequence of single and two-track jumps is made. A single-track jump will always be made, but if the bimorph displacement exceeds one track at the end of a field, a two-track jump is needed. This process can be extrapolated up to any speed as necessary until the travel of the bimorph cannot cater for complete tracks. In this extreme case, a maximum size jump will take place whenever the travel limit is approached.

The head jump must take place during the vertical interval in order that it shall not occur in a visible part of the picture. There is, however, a further difficulty. In C-format, vertical-interval storage is optional and vertical detection is done by locating the equalising pulses which are at the end of the main field track. These pulses are relatively narrow, and could be missed in the case of dropout. They are thus predicted and validated by counting lines along the field track. The $31 / 2$ line timing shift between adjacent fields has been mentioned: if a jump takes place, this shift has to be taken into account in order to locate the equalising pulses correctly.

When the tape speed is varied, the head-to-tape speed changes, causing the off-tape H sync. pulses to change frequency. As the tape-head contact is not continuous, the machine has to maintain sync. from track to track by counting extrapolated H sync. pulses at the same frequency as they are coming off the tape. A circuit is incorporated which measures the off-tape line period in cycles of a reference clock, and which can generate H pulses separated by that period during the vertical interval. By counting these H pulses, and modifying the count by $3 \frac{1}{2}$ lines for every track
jumped, the machine can always know where it is in a field, and generate convincing vertical pulses which it has not played back. The drum servo will use these corrected vertical signals in order to maintain correct drum phase in the presence of head jumping. It is important that the off-tape field rate should always equal reference field rate: the reason for this will become clear when the timebase corrector is discussed.

Effect of the v.t.r. on video waveform

Mixing and editing in PAL video is only possible provided that all sources are synchronised to within about 5 degrees of subcarrier, which is approximately 3 nano seconds. A field in PAL has a duration of 20 milliseconds, so the stability demanded is:
$\frac{3 \times 10^{-9}}{20 \times 10^{-3}} \times 100 \%=0.000015 \%$
As no mechanism can approach such a tolerance, timebase correction is mandatory even at normal speed.

Video tape, like all magnetic tape, has a plastics backing, which has a relatively high tem-perature-coefficient of linear expansion, and can also change its dimensions as a fanction of ambient humidity. It is also flexible. The length of a field track on the tape can be altered by temperature, humidity or tension changes, and timing errors will be caused.

When tapes are interchanged between machines, mechanical tolerances on drum diameter and tape tension will change playback timing. The impact of the rotating heads striking the tape and leaving again creates shock waves which travel along the tape, causing jitter.

Where portable recorders are carried whilst recording, inertial effects can cause timing shifts of several lines. The drum attempts

to rotate at constant speed with respect to the earth, owing to its inertia, and if the v.t.r. is tumed about the drum axis, the drum phase will change until the drum servo can correct it. This is often erroneously referred to as 'gyroscopic error'.

Video tape is also subject to dropout, where the playback r.f. level is too low to resolve the frequency. Although the mechanism of dropout cannot in itself change

Fig. 10. In PAL, subcarrier must be at odd multiple of one quarter line rate for 0 and V spectral peaks to interleave with luminance (Y). Unlike NTSC, there is no dominant component at $\mathbf{1 / 2} \mathrm{f}_{\mathrm{H}}$ points.
Fig. 11. Quarter-cycle subcarrier/H relationship and burst swing combine to give four-line sequence-normal and inverted pairs which is not absolutely defined.

Table 1
video timing, the consequence of dropout can. For example, the destruction of a burst by dropout renders the following chroma information meaningless, since the timing of the suppressed carrier is lost. Dropout compensation is thus a major function of timebase correctors.

If the variable-speed playback is employed, the effect is to change the line period from the standard 64 microseconds. It is possible to calculate the line period for any speed. As the track angle in C-format is so small, the error caused by assuming it is zero is of the order of 0.1%, which can be neglected. The line period in inversely proportional to the head/tape speed. At $\times 1$ forward, the tape speed is $239.8 \mathrm{~mm} / \mathrm{s}$, and the head to tape speed is $21.39 \mathrm{~m} / \mathrm{s}$. If the tape is run at $+2 \times$ normal speed, the head/ tape speed will now be $21.39+$ $0.2398 \mathrm{~m} / \mathrm{s}$ and the line period will be

$$
\mathrm{t}_{\mathrm{H}}=\frac{64 \times 21.39}{21.39+0.2398} \mu \mathrm{~S}=63.29 \mu \mathrm{~S}
$$

a change of about 1.1%.

It is important to remember that, although the line period becomes smaller, the field rate remains constant owing to the constant drum speed. The visible part of the picture is thus timecompressed into a shorter part of the field period, and the interval where the head is between tracks

Appendix

PAL structure

The broadcasting of colour televisionie done in such a way that the bandwidth of the algnal is no greater than that of a monvchrome signal of equal resolution, and that a monochrome recelver can display a good picture froma colour broade ast without modilication. Without these constraints, NTSC could never have beenlntroduced, since every monochrome tv eot in the United States would have been made obsolete overnightby a non-compatible system.

The bandwidth constraint was achioved by choosing a subcarrier whose sidebands interieaved with those of the monochromesignal, and monochrome compatibility was achleved by encoding colour difference skgnals intothe subcarrler which a colour recelver could use to convert the monochromesignalinta a colour plicture. The subcarrier would be virtually invisible to a
monochrome recelver. The only problem was that the original designers of the 525/60 monochrome system had very wisely placed the sound carriar at an odd multiple of half line rate, to give maximumimmunity to video sidebands. Thls
became, however, precisely the frequency of subcarrier sidebands. A solution Involving a change of sound carrier frequency would have meant re-aligning the coils in everytv set in the United States, sothe only alternative was to shift the video/subcarrier spectrum by changing the entire picture rate. NTSC fied rate is thus 59.94 Hz ,a change of 0.1%. A direct
consequence of this was the development of a drop-frame time code to permit synchronisation of this strange frequency with real time. Experience of broadcasting NTSCled the PAL system, whose well known characteristic of neversing the sense of one of the colour-difference signals on alternate lines had some far resching consequences. The first, and intended, consequence is that by line averaging, hue errors caused by phase errors under difficult reception conditions were converted to saturation errors, much more acceptable subjectively, and the hue control was elliminated from the recelver. Cholce of gubcarrier frequency in PAL is, howerver, more complox than in NTSC because of the V switch. the effect of the V switch is to shift the V spectrum up and down by $\pm 1 / 2 \mathrm{I}_{\mathrm{t}}$ at half-line rate. The unswitched Usignal is at the centre of the $\pm 1 / 22_{\mathrm{H}}$ swing of the Venergy.

If the eubcarrier (U) frequency were chosen at an odd multiple of half line rate, thls would make V sidebands coincide withluminance. To interleave Y, U and V, it ie mandatory that the subcarrier frequency is an odd multiple of one quarter line rate. The odd multiple chosen is 1135 , but 1133 or 1137 would have worked Just as well. Figure 10 shows that, using this frequency, perfect interieaving of Y, U and V is achieved. Note also that there is no spectral component at haif line frequencies, a fundamental difference from NTSC.
will be extended. Owing to the horizontal alignment condition, this extension will be $3^{\frac{1}{2}}$ off-tape lines at +2 X as there is a onetrack jump at every drum revolution. There are normally $312 \frac{1}{2}$ lines in a field, but at $+2 \times$ speed, an extra $3 \frac{1}{2}$ can be fitted into the same field period. This holds the key to a much simpler way of calculating the line period, which is $t_{\mathrm{H}}=\frac{64 \times 312.5}{312.5+3.5}=63.29 \mu \mathrm{~s}$
This can easily be generalised if the specific speed S is unity at normal speed.

$$
\mathrm{t}_{\mathrm{H}}=\frac{64 \times 312.5}{312.5+(\mathrm{S}-1) \times 3.5} \mu \mathrm{~s}
$$

This equation is to be preferred, since no approximation has been made, and no knowledge of drum dimensions or tape format is needed except the size of the video offset of $3 \frac{1}{2} \mathrm{H}$. It is very easy to arrive at the equation for other standards. For example, in 525/ 60 NTSC C-format, the video offset is $2_{2}^{1} \mathrm{H}$. The equation follows
from that. Table 1 shows the effect of applying a variety of speeds to the equation. Interestingly, in reverse, the field tracks are stretched in time, the backwards head jumps lose $3 \frac{1}{2} \mathrm{H}$ for each track jumped and the vertical interval is encroached upon.

The change in head/tape speed also changes the apparent frequency range of the f.m. carrier, and consequently the levels and amplitude of the playback video. The percentage change can be derived from the equation for change in line rate, since both are controlled by the same phenomenon.

Jumping performed in variable speed causes fields to be omitted or repeated, which destroys the eight-field sequence of PAL. The recreation of the eight-field sequence, the correction of the time compression or expansion of fields, and restoration of video levels are the major additional actions of a variable speed timebase corrector.

The subcarrier frequency In PAL is thus fixed at 2833^{3} times Ilne rate, but with offset of 25 Hz , which causes residual subcarrier on luminance signals to be out of phase on alternate fields, helping to make the subcarrier Invisible to the viewer.

Subcarrier frequency Is defined as

$$
\begin{aligned}
2833_{\mathrm{H}}+\frac{1}{2} \mathrm{f}_{\mathrm{V}} & =283 \frac{3}{4} \times 312 \frac{1}{2} \mathrm{f}_{\mathrm{V}}+\frac{1}{2} \mathrm{f}_{\mathrm{V}} \\
& =88672.375 f_{\mathrm{V}} \\
& =4.43361875 \mathrm{MHz}
\end{aligned}
$$

The V signal can only be decoded properly if the receiver knows the sense of the switch. This informatlon is conveyed by swinging the burst phase, relative to continuous subcarrler, from line to line. A well damped phase-locked loop in the receiver will run at the average phase of successive bursts, but the sense of the phase error in the loop wil follow the burst swing and will reveal the sense of the V switch to the decoder. The swing couid not be $\pm 90^{\circ}$, because there would be ambigulty about the average phase. A swing of $\pm 135^{\circ}$ corresponds to 90° between the lines.

Spectrum Interleaving demands a quarter cycle offset between subcarrier and line frequencies, a direct result of PAL Vswitch. Burst swing Is another direct result of using V switch. The combination of these two gives some interesting results.

The quarter-cycle shift means that subcarrier phase advances by 90° from the start of one line to the next. Burst swing is also 90° from line to line, but alternately avanced and retarded. On some lines then, the 90° advance of the subcarrier cancels the 90° retarded burst, giving no change, whereas on others, the 90° subcarrier advance adds to the 90° advanced burst, causing a 180° change. The result of this is a four-line sequence, containing, relative to H pulses, two identically phased bursts, and two identicaily inverted bursts. Figure 11 shows these effects.

The two burst phases, normal and inverted, are determined by the state of a squarewave of $1 / 4$ line rate. As 625 will not divide by four, it takes four frames before a given relationship between the burst phase control signal and the vertical pulse repeats. The 25 Hz offset is negligible within the four-llne sequence described, but it causes the four-frame sequence to contain 2500 unique lines

This extremely long sequence must never be broken If the signal is to be broadcast and this adds to the complexity of videotape editors and timebase correctors.

Fig.3A. Received TV picture by probe antenna

Fig.3B. Received TV picture by coconut tree branch

TREE TV

continued from page 26
the relative permitivity of water alone, which is the dominant content of the green vegetation foliage, is around 80 at microwave frequencies.

In the literature, low-loss die-lectric-loaded aperture antennas and dielectric rod antennas are well-known for their directional beam-mode antenna radiation pattern. Low-loss dielectric rods have been used in practice, with Teflon, polystyrene ($\varepsilon \approx 2.5$).

Thus after carrying out indepth studies of the dielectric data cited above, and the works of Zucker, King, Ulaby, Anderson, James et al, weconceived, intuitively, of the idea to use the green vegetation canopy as an antenna structure.

We concluded that a suitably located Papaya tree of height 3 to 5 metres (at 10 to 25 km distance) has the properties to pick up Band 3 tv signals from the tv tower, which can be easily tapped by a suitable feeder line probe to the tv set.

However, no attempt was made to optimize the quality of $t v$ picture received by the organic tree antenna structure, either by developing more efficient antenna probes or by adopting antenna arraying techniques. Indepth studies are called for to overcome the effects of hostile environments (wind, rain, snow) and to improve the s / n ratio of the received tv signals before any commercial venture can be thought of.

Continued from page 23
inclusion of $\mathrm{R}_{52,53}, \mathrm{D}_{1,2}$ forming a clamp at zero volts. Capacitors $\mathrm{C}_{50,51}$ and C_{52} are bypass capacitors to reduce interference from switching spikes, r.f., etc. Switch-sense points at the junctions of R_{x} and C_{x} (S in Fig.1) are each taken to an input of a group of eight-to-one-bit multiplexers ($\mathrm{IC}_{1.8}$) whose inverting outputs $\mathrm{D}_{7.0}$ provide a byte which can be read by the computer through the v.i.a. Control inputs of the multiplexers (A, B and C) are taken to a three-bit counter whose clock input is connected to CB_{2} (programmed as an output) of the v.i.a. Capacitor C_{53} and R_{60} provide a reset to zero on switch on so that the counter always starts from a known position (see flow diagram).

Thus the whole keyboard is read in eight bytes. This gives a complete bit-map of the state of the keyboard, and some redundancy. After receiving eight clock pulses, the counter is back in its original state. The delay at the third operation in the flow diagram is introduced to allow for any residual key-bounce and for the fact that it is impossible to play all the notes of a chord simultaneously.

Figure 2 shows that only six of the eight inputs of IC_{1-7} are used, and only seven of IC_{8}. It would be possible to fit a 48 -note keyboard using all the inputs of six multiplexers and it would not be necessary to provide an additional one for the extra note. However this would lead to reading only six bits per byte, causing either wasted memory if the inputs are to be stored or a complex software repacking procedure. Further, unless complicated wiring was used to connect keys to multiplexers (which would not lend itself well to p.c.b. layout), the bit-mapping involved would need extra software. The small additional cost of two extra multiplexers used offers two advantages.

- By taking six keys to each multiplexer (seven on the last one) an octave of 12 notes fits into two multiplexers. This makes it much easier to keep track of which bit represents which note
- Bit zero (pin four) of all the multiplexers is grounded. Thus the first byte read should be FF (hexadecimal) since the outputs are inverting.

Keyboard software and control are outlined in a second article.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{QUALITY COMPONENTS FROM CRICKLEWOOD！This list contains only a fraction of our stock，which is constantly being updated．Prices quoted are for ＂one－offs＂－quantity discounts by negotiation．Official orders from Schools， colleges，Goods Dept etc welcomed．WE SPECIALISE IN CREDIT CARD PHONE ORDERS．A quick call will check stock position and current prices．Prices subject to change．Add \(60 p p \& p+15 \%\) VAT to all orders．Catalogue \(40 p+\) A4 SAE envelope．All in－stock items despatched same day unless notified．} \& 01 \& －45 \& 520161 \& \(101-45\) \& 000995 \& 5 Tx：9 \& 14977 \\
\hline aEsistors \& \& \& \& \& \& \& \& \& \& 300 38 \& \& Srs \& \& \& WIRE \\
\hline \& \& \& \& \& \& \& \& （70 \& \& 420 \& \& fiacs \& \& \& \\
\hline \& \& \({ }_{7475}^{7474}\) \& \({ }_{995} 9\) \& 49p \& \& \& \& 促 \& \& ¢ 6 \& \& diacs \& \& \& \\
\hline \& \& \({ }^{2476} \times 49\) \& 136 \& \begin{tabular}{l}
4051 \\
\hline 052 \\
\hline 050 \\
\hline 150 \\
\hline 690
\end{tabular} \& \& \& \& \& \& 9 \& \& \& Leos \& \(\xrightarrow{\text { T1064 }}\) \& \\
\hline \& LS．Wres \& \& \({ }_{89}{ }^{\text {P }}\) \& \({ }_{\text {a }}^{4053} \begin{aligned} \& \text { 4052 }\end{aligned}\) \& \& \& \& 90， \& \& \& \& \& \& \& \\
\hline WE24 \& \& \& 59 \& \& \& \& \& 5\％ \& \& 72 P \& 950 \& \& \& \& \\
\hline E24 \& \(47 \quad 6380\) \& \& \& \({ }_{\text {4056 }}^{4059} \begin{gathered}\text { 4059 } \\ 4990 \\ 4990\end{gathered}\) \& v REG \& \& \& 1.55 \& \& 50， \& 350 \& xas 70220 \& \& \[
\begin{array}{ll}
47, \\
55 p
\end{array}
\] \& \\
\hline 隹 \& 100 \& 9990 \& \& \& \& \& \& 990 \& \& ¢00 \& \& \& \& \& \\
\hline Metalfime \& \({ }^{350} 6300\) \& \({ }_{39} 9\) \& 25 \& \& \& \& \& \& \& 兂 \& \({ }_{4}{ }_{4}\) \& \& \& \& \\
\hline ul tra stable O AWEXTRA \& （100） \& 990． \& － 595 \& \({ }_{\text {a }}^{49}\) \& \({ }_{7}^{780512 A}\) \& \& \& \& \& Pp \& \[
\begin{aligned}
\& 390 \\
\& 470
\end{aligned}
\] \& \& LINICs \& \[
\begin{array}{ll}
4180 \& 2.49 p \\
72003 \& 75 p
\end{array}
\] \& \\
\hline \& \& \& \& \& \& \& \& \& \& 5 p \& \& \& \& 50 \& \\
\hline \& \(22 \quad 63\) \& 7492 \& 7415158 \& 4069 \& \& \& \& \& \& 1190 \& 490 \& \& \& \& \\
\hline E24 \& \(\begin{array}{llll}22 \\ 22 \& 100 \& 110 \\ 27 \& 350 \\ 300\end{array}\) \& 7493 \& \({ }^{7015160}\) \& 27p \& \& \& \& \& \& － 1 \& \({ }_{\text {cose }}^{690}\) \& 510 \& 990 \& \({ }_{75 \mathrm{p}}\) \& \\
\hline glaze 12 w \& 33 250100 \& 49 \& \(7415162 \quad 75 \mathrm{p}\) \& \({ }^{27 p}\) \& \& 45p \& \& 39 \& \& P \& 190 \& 5 p \& 95p \& UPCC1185 \({ }^{1.950}\) \& \\
\hline \& 33 \& 59 \& 85 ， \& 270 \& \& \& AC， \& 778 \& \& \({ }^{2} 300\) \& \(6{ }^{6}\) \& \& 590 \& \& \\
\hline ， \& 4.7 \& \(\begin{array}{ll}7997 \\ 74100 \& 1759 \\ 1390\end{array}\) \& 7415164 \& \({ }_{\text {che }}^{270}\) \& \& \& \& 770 \& \& \begin{tabular}{l}
2.578 \\
2.890 \\
\hline 1
\end{tabular} \& \& \& \％ \& \& \\
\hline On CEbamic \& 4.7 \& 59， \& 139 p \& 4077 \& \& \& \& \({ }_{87}\) \& \& 2750 \& 420 \& 220 \& \& \& \\
\hline SE \& \(47 \quad 40 \quad 110\) \& 590 \& 1.29 p \& \({ }_{\substack{4076 \\ 4081}}^{\substack{270 \\ 270}}\) \& \& \& \& cos \& \& \& 20． \& \％ \& \[
\left|\begin{array}{ll}
\text { CA3 } 3307 \& 235 \mathrm{P} \\
\mathrm{CA} 310 \mathrm{E} \& 54 \mathrm{p}
\end{array}\right|
\] \& \& \\
\hline 2304220 280 \& 47） \(\begin{array}{rrrr}63 \\ 47 \& 100 \& 120 \\ 108\end{array}\) \& \({ }^{74109} 5\) \& \& \({ }_{4085}^{4085}\) \& \& \& \& \& \& 㖪 \& 580 \& \& \& \& \\
\hline \& 25 \& 630 \& \& 4096 \& \& \& \& 9 \& BD \& 9p \& 29 \& \& 2．00p \& \& \\
\hline \& \({ }_{63}^{40}\) \& \(\begin{array}{ll}74118 \\ 718 \& 1.250 \\ 71250\end{array}\) \& 8sp \& \& \& \& \& \[
49 p
\] \& \& \％ \& \({ }^{659}\) \& \[
\begin{gathered}
4 \mathrm{p} \\
\text { 5p } \\
\hline 1
\end{gathered}
\] \& O\％ \& \& \\
\hline \({ }^{10} 33 \mathrm{~K} \quad 37 \mathrm{p}\) \& \(10 \quad 100 \quad 16\) \& \& \({ }^{744 L 5183}\) 1．45p \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline POTS \＆ \& \& \& 744S190） \& \& \& \& \& \& \& 1．330 \& \& \({ }^{9} 9\) \& 970 \& \& \\
\hline PRESETS \& \({ }_{22}{ }^{2} 40\) \& 74122 490 \& 74 \& \& \& \({ }_{570}\) \& \& 160 \& \& 㖪 \& 9 p \& \& \& \& \\
\hline \multirow[b]{5}{*}{ROTARY POTS LOW NDISE 14 SPINDLES E3 SERIES 4K7 to 2M LIN} \& \(\begin{array}{llll}22 \& 63 \& 160\end{array}\) \& 79 \& \begin{tabular}{ll}
7415193 \& 65 \\
74.5194 \& 650 \\
\hline 65
\end{tabular} \& \& 7924 \& \& \& \& \& \& \& \& \[
49 p
\] \& \& \\
\hline \& 100

20 \& \& ${ }^{74151599} 6$ \& \& \& \& \& \& \& \& 50p \& \& \& \&

\hline \& 17 \& $74128 \quad{ }^{\text {b5p }}$ \& \& \& \& \& \& \& \& \& 90 \& TIC2060（4A） 69 p \& \& \&

\hline \& \& （1at36 \& 74 \& ${ }^{7750}$ \& \& \& \& $$
\begin{aligned}
& 8 p \\
& i p
\end{aligned}
$$ \& \& 19 \& ${ }_{99 p}^{85 p}$ \& 929 \& ${ }_{\text {spp }}$ \& \&

\hline \& \％ \& $76141 \quad 790$ \& \& \& \& \& \& \％ \& \& 6.33 O \& 06 p \& \& ．05p \& \&

\hline \multirow[t]{2}{*}{} \& 100 \& \& ${ }^{7445241}$ \& 45 \& \& \& \& \& \& \& \& \& －39 \& \&

\hline \& \& 199 \& Ta \& ${ }_{4512}^{4512}$ \& \& $$
\begin{array}{ll}
36 p \\
330
\end{array}
$$ \& \& ${ }^{168}$ \& \& ${ }_{80}^{8 p}$ \& TTP137 \& \& 1．300 \& 50 VA 5 \&

\hline A ${ }_{\text {a }}^{\text {A above with }}$ \& 1008100 \& \& \& | 4514 | |
| :--- | :--- |
| 4515 | 1.258 |
| 1.250 | | \& \& ${ }^{339}$ \& \& \％ \& \& ${ }_{80}^{80}$ \& （2p \& \& ${ }_{1}^{1.600}$ \& ${ }^{12.01}$ \& ${ }^{1.998}$

\hline \multirow[t]{2}{*}{As above stereo} \& \& \& \& \& \& 39 \& \& $15 p$ \& \& 8 \& \& \& ${ }^{620}$ \& \&

\hline \& $\begin{array}{lll}220 & 25 \\ 220 & 225 \\ 40 & 250\end{array}$ \& 74150 7151 \& \& \& ${ }_{\text {2N223 }}^{2 \times 223}$ \& 5．850 \& \& 900 \& \& ${ }_{\text {cole }}$ \& ${ }_{4}^{1.999_{p}}$ \& \& \& \&

\hline PRE．SETS PIMER \& ${ }_{220}^{222}$ \& \& 74 \& \& \& \& \& \& \& 55 p \& \& \& \& \&

\hline \& 100 \& $74150{ }^{7} 1990$ \& \& ．1．5p \& \& 349 \& \& \& \& 639 \& 79 p \& BR100 29p \& \& \&

\hline \multirow[t]{2}{*}{} \& \& \& ${ }_{741}^{7745}$ \& 45 \& \& 35 p \& \& ${ }^{26 p}$ \& \& ${ }_{7}{ }^{66 p}$ \& \& \& \& Herence \&

\hline \& \& \％55 \& ${ }_{7}^{2415}$ \& ${ }_{\text {cke }}^{4527} 5$ \& \& ${ }^{35}$ \& \& \& \& \& \& \& \& \&

\hline $$
\left\lvert\, \begin{aligned}
& \text { Minithoriz } \\
& \text { Standara Vert }
\end{aligned}\right.
$$ \& \& \& \& \& \& 389 \& \& ${ }_{4}^{4}$ \& \& ${ }_{90}^{90}$ \& \& ZENEP \& \& \&

\hline Slandard toilis \& 100 \& \& \& \& \& ${ }^{35}$ \& \& 370 \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{CERMET 20 TURN PRECISION PRESFTS} \& $\begin{array}{llll}1000 & 25 & 380\end{array}$ \& 74162 \& \& （tasi \& \& 38. \& \& \& \& \& \& \& \& \&

\hline \& 1000 \& \& 74 \& \& \& \& \& ${ }_{45 \mathrm{p}}^{49}$ \& \& \& \％p \& \& \& \&

\hline \& \& \& \& 9 P \& \& ${ }_{650}^{65}$ \& \& 5p \& \& 690 \& \& （1）500m \& \& \&

\hline \multirow[t]{2}{*}{} \& 40 \& 1499 \& 7415 \& 45 \& \& ${ }_{1}^{1.899^{2}}$ \& \& \& \& 390 \& \& $2.41097{ }^{\text {a }} 7$ \& （m723CN 498 c \& （75 $\times 5$ \&

\hline \& $\begin{array}{llll}2200 & 63 & 134 p\end{array}$ \& 2.45 \& \& \& \& 115. \& \& 59 p \& \& \& \& \& \& 27p \&

\hline CAPS \& | 16 | |
| :--- | :--- |
| | |
| | |
| 25 | 759 |
| 890 | | \& \& \& （5560 \& \& \& \& $\xrightarrow[190]{190}$ \& \& ${ }_{4}^{450}$ \& \& \& \& \&

\hline \multirow[t]{4}{*}{} \& \& \& 22 \& 999 \& \& －59p \& \& \& \& \& 号 \& 14^{2} \& 90p \& Op \&

\hline \& wirs one end \& \& ${ }_{7}^{7415}$ \& ${ }_{4585}^{4594}$ \& \& cis \& \& \& \& 32P \& \& \& Mm77CN \& \&

\hline \& \& \& 74.5 \& \& \& \& \& \& \& 320 \& 90 \& \& \& \&

\hline \& \& \& \& Lo \& \& \& \& 50， \& \& ${ }_{320}^{320}$ \& \& \& \& \&

\hline \& 20 \& \& ${ }^{7} 7145353881.750$ \& \& \& \& \& \& \& 32 p \& \& \& 4．39p \& \&

\hline \multirow[t]{2}{*}{SIEMENS 75 mm MINI BLOCE12 250 V} \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& $47 \quad 16$ \& \& \& ${ }^{18002} \times 1$ \& \& \& \& \& \& \& \& wollioot ${ }^{280}$ \& \& \&

\hline \multirow[t]{2}{*}{$$
\begin{array}{ll}
250 V & 7 v \\
\text { InF } 10688 & 7 v \\
8 n 21047 \mathrm{nF} & B p
\end{array}
$$} \& ＋100 10 \& \& \& 6502A 6499 \& \& \& \& 1 \& \& \& \& \& （129807N 2750 \& \&

\hline \& ${ }_{220}^{120} 10$ \& \& \& \& \& 37 p
.090
.090 \& \& \& \& \& 为 \& \& \& \&

\hline 56 nF 10150 nF \& （100 \& \& \& 6899 \& \& ${ }_{550}$ \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{} \& \& \& \& \& \& ${ }^{6.888}$ \& \& 50 \& \& 372 \& \& \& \& \&

\hline \& 100010 \& \& \& ${ }_{\text {8039 }}^{8089}$ \& \& \& \& － \& \& \& \& \& \& \&

\hline $$
\left|\begin{array}{c}
100 \mathrm{nF} \text { to } 150 \mathrm{nF} \\
180 \mathrm{nF} \text { to } 270 \mathrm{nF}
\end{array}\right|
$$ \& \& 150 \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{\[
330 \cap F to 390 \mathrm{nF}^{16 \mathrm{p}}

\]} \& ${ }^{2200}{ }^{2200}$ \& 1500 \& 998 \& | Z80A CPU 359p |
| :--- |
| 7．80RCPU 945 p | \& \& \& \& 9ค \& \& ${ }^{249 p}$ \& \& Somer \& \& \&

\hline \& \& 4LS TTL \& \& 780A CPU 9 95p \& \& \& \& ${ }^{25}$ \& \& \& 21×753 50 \& \multirow[t]{2}{*}{6amp ye} \& \& Ouick dissolving \& ，om Stand ${ }^{\text {5 }}$

\hline $$
\text { a70nf to } 560 \mathrm{nF}
$$ \& \[

$$
\begin{array}{lll}
4700 & 10 & 65 \\
4700
\end{array}
$$
\] \& \& （14．5396 \& MEMORIES \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& 6.955 \& \& ${ }_{6}^{66}$ \& \& 180 \& \& 60 \& \& \& \& \&

\hline \& \multirow[t]{2}{*}{74TTL} \& 硣 \& \& as \& \& \& \& \& \& ${ }_{1935}$ \& \& \& ${ }^{89} 9$ \& \&

\hline \multirow[t]{2}{*}{ras} \& \& \& \& \& \& \& \& \& \& \& \& \& （180 \& \&

\hline \& \& \& 7415640 \& \& \& ${ }^{2388}$ \& \& \& \& \& \& \& 990 \& \& O50，

\hline \& \& \& 1／415641 2.500 \& ${ }_{4,64}^{4,68}$ \& \& 290 \& \& \％ \& \& ${ }^{1.580}$ \& － 1 Ne23 \& \& （1．37p \& \&

\hline \multirow[t]{2}{*}{} \& \& \& \multirow[t]{2}{*}{cmos} \& \multirow[t]{2}{*}{${ }^{6810} 101.950$} \& \& \& \& \& \& ${ }^{1} 1650$ \& \& kot11 \& ${ }^{3} \mathbf{3 9 9}$ \& \&

\hline \& \％ \& \& \& \& \& ${ }^{3} 4.42 \mathrm{P}$ \& \& 12 \& \& ${ }^{\text {5 }}$ 5 ${ }^{\text {a }}$ \& \& \& 1750 \& \& 8

\hline \multirow[t]{2}{*}{} \& ${ }^{\text {a }}$ \& ｜rals \& ${ }^{4000}$ \& MISC LoGic ic＇s \& \& 358p \& \& $\underset{180}{170}$ \& \& \& \& \& 2．95p \& \& ${ }_{9}$

\hline \& \& 74 \& 400 \& ${ }_{\text {a }}$ \& \& ${ }_{430}$ \& \& \& 130 \& \& 1N4008 $5^{51} 2 \mathrm{P}$ \& \& 44 p \& ， \&

\hline \& \& ${ }^{74,521}$ 290 \& $4006 \quad 698$ \& \& \& \& \& \& \& 25， \& \& 35A 400V 4.66 \& 7．950 \& \&

\hline \& \& \& （2007 \& \& \& ${ }_{990}^{990}$ \& \& 16 p \& \& \& \& \& \& \& Soc

\hline ${ }^{\text {inf } 500 \mathrm{~V}}$ 35p \& p \& 74 \& 40 \& ． 50 \& \& \& \& 9b \& M \& 3．39， \& \& \& 345 \& \&

\hline \multirow[t]{2}{*}{High Viltage} \& \& \& $2010 \quad 29 \mathrm{P}$ \& 40 \& 2 NS 2 \& ${ }_{46}$ \& \& 30 \& \& ${ }_{3}^{2760}$ \& \& \& － 1.959 \& \& 25 Way Soider

\hline \& \& 774 \& 401 \& SAASO10 7810 \& \& 690 \& \& ${ }^{180}$ \& \& \& \& \& \％00 \& $420=195 \mathrm{~mm}$ \&

\hline ¢ \& \& ${ }^{74} 4$. \& 4012 \& SAA5020 595 \& \& ${ }_{650}$ \& \& 22^{2} \& \& 2.390 \& ${ }_{20}^{20}$ \& \& 75p \& \& ${ }_{\text {a }}$

\hline \multirow[t]{2}{*}{stock} \& \& $7{ }^{741538} \quad 59$ \& $10015 \quad$ 65p \& SAA5030 6．999 \& \& \& \& \& \& \& \& \& ¢ 58.98 \& \&

\hline \& ${ }_{\substack{7421}}^{7822}$ \& \& 4016 \& \& \& ${ }^{3.25}$ \& \& 10 \& \& \& \& \& \& \&

\hline \& \& ${ }_{75}$ \& 1018 690 \& SAASO50 \& 2N541 \& 1.368 \& ac \& 59p \& \& \& 8 P \& \& 2955 \& \&

\hline \& \& $741551 \quad 298$ \& 4019 55 \& 1995 \& 2 Ns \& 1.173 \& ${ }^{\text {BC3 }}$ \& \& \& \& 90， \& \& \& \& ． ee ， Gm ．

\hline ${ }^{33} 335 \mathrm{SV}$ \& ${ }^{74226}$ \& ${ }_{350}^{295}$ \& ${ }^{402}$ \& \& \& \& \& ${ }_{\text {cop }}$ \& \& 1490 \& ${ }^{\text {gp }}$ \& used \& 275p \& SEvSITVE \&

\hline \multirow[t]{2}{*}{（in $\begin{aligned} & 6835 \mathrm{~V} \\ & 1035 \mathrm{~V}\end{aligned}$} \& 7429 \& 744573 \& 102 \& ${ }^{8795}$ \& \& \& \& ${ }^{60}$ \& \& \& \& $\underset{\substack{\text { G5D } \\ \text { Y5D }}}{\substack{160 \\ 150}}$ \& ${ }^{2.559}$ \& \& Thas Skt $\times 1$

\hline \& \& 741574 7 \& \& 2.278 \& \& ${ }_{66 \mathrm{p}}^{63}$ \& \& \& MJE \& 1.590 \& ${ }_{5}$ \& \& \& \&

\hline \multirow[t]{2}{*}{} \& ${ }_{7433}$ \& ${ }_{741576} \quad 390$ \& $1026{ }^{\text {a }}$ \& 2270 \& 2 S 5 \& 39 \& \& 250 \& \& \& $5{ }^{50}$ \& Small difuse \& 2.74 4 \& \&

\hline \& ${ }^{7237}$ 358 ${ }^{\text {35 }}$ \& ${ }^{741578} \quad 45$ \& 402 \& $811597 \quad 2270$ \& \& \& \& \& \& 290 \& \& ${ }_{28}{ }^{2}$ \& \& \&

\hline 4，
4.716 V \& \& \& （0209 \& ${ }_{\text {ckill }}^{8592}$ \& ${ }_{2}^{2 N}$ \& － \& \& \& \& － \& BA \& ${ }^{30} \quad 128$ \& ${ }^{287}$ \& $100 \times$ \&

\hline $$
6.8255
$$ \& 7441 69 \& ${ }_{741586}^{39}$ \& 4030 \& $6522 \mathrm{~A} \quad 5.550$ \& $2 \mathrm{Ns5}$ \& ， \& \& ${ }^{421}$ \& \& 9， \& \& 0.1 \& 2．37\％ \& \&

\hline 6.835 V \& 7442 58p \& 74.5980 \& 4031 \& $6532 \quad 6450$ \& 2 N \& 91 p \& \& \％ \& \& 㖪 \& \& \& TRA1002 \& \&

\hline $$
\begin{aligned}
& 1016 \mathrm{~V} \\
& 1035 \mathrm{~V}
\end{aligned}
$$ \& 724a ${ }^{245}$ \& \& \& ${ }_{\text {cker }}^{68821}$ \& ${ }_{2}^{2 N 6}$ \& 99p \& \& ${ }_{290}^{290}$ \& \& \& \& 29 \& \& Doub \&

\hline － \& ${ }^{2445}$ \& \& 698 \& \& \& \& \& 31 P \& \& 9 \& Bazor 290 \& \& \& \&

\hline 1516 V
1525 V \& 7447 655 \& ${ }^{774596} 70$ \& 4036 $\quad 2.690^{4030}$ \& 6847 6．4990 \& \& \& \& \& \& \& \& \& 4.3 \& 203 $\times 114$ \&

\hline \multirow[t]{2}{*}{\[
2216 \mathrm{~V}

\]} \&	7448
7450	\& 76 \& ${ }^{4030}$ \& ${ }_{\text {lis }}^{\text {8154 }}$ \& \& 99， \& \& \& \& ${ }_{30}$ \& 8 A \& \& 2250 \& 2205 \&

\hline \& ${ }_{7451}{ }^{29}$ \& 74 \& 4041 \& （ex \& ${ }^{2 \mathrm{~N} \times 1}$ \& ${ }^{1} 1050$ \& \& \& \& \& \& \& \& \& $$
\begin{aligned}
& \text { SPST } \\
& \text { SPOT }
\end{aligned}
$$

\hline \& 7453
7454 \& \& ${ }^{4002}$ \& $\begin{array}{ll}8212 & \text { Dls ask } \\ 8224 & \text { pls ask }\end{array}$ \& \& \& \& \& \& O \& \& \& － \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& ${ }_{\text {comel }}$ \&

\hline
\end{tabular}

SC84 Micro computer

> The third module of John Adams' disc-based professional microcomputer for engineers and enthusiasts provides a c.r.t. display of more than 3000 text characters, 36000 picture elements, or a mixture of text and graphics.

A visual-display unit, v.d.u., passes information from a computer to its operator. It consists of a display device - a monitor or a tv - and digital circuits to control an area of memory holding a representation of the image to be displayed. Data written into this memory from the computer is read out for processing and combination with control signals to produce the necessary monitor input signals. This being a vital part of a computer, large-scale integrated circuits of varying complexity have been produced to simplify the design of v.d.u digital circuits. There are two fundamental types of v.d.u. circuit, memory-mapped and i/omapped.

In a memory-mapped system, memory storing characters to be displayed on the screen is part of the system's addressable memory. The advantage of memory mapping is that the processor can make rapid transfers to and from the v.d.u. - as fast as its own memory cycle - which for a Z80B means 300000 characters per second. Also, as the memory is under processor control, it is relatively easy to implement unusual screen features such as scrolling the display left or down. The main disadvantage is that the v.d.u. memory takes up memory available for programs unless paging is used and, as the screen resolution and hence the amount of memory required for a display increases, less and less of the addressable memory remains for the program.

Paging is a technique where a block of memory can be temporarily switched in place of another. Use of paging means that v.d.u.
memory doesn't appear to take up any space in the main memory map, with the proviso that software that sends information to the v.d.u. mustn't be in the memory segment switched out when the v.d.u. is switched in, and the penalty that v.d.r. access is slowed down by extra switching software. Other problems with memory-mapped v.d.us are the extra circuits required to switch address lines to the v.d.u. memory, the arbitration needed and the screen disturbance which can occur when the c.p.u. accesses the memory. The problem of arbitration is most reievant when dynamic memory, with its need for orderly memory access, is used. As dynamic memory is cheaper and as higher resolution requires more and more memory, this can lead to extra complexity or expense. With static memory it is simply a matter of giving the c.p.u., which will after all control the arbitration process, priority in addressing and accessing v.d.u. memory. The disturbance occurs when the c.p.u. gains control during an active-display period. The v.d.u. control circuits take bytes from memory in an orderly manner and pass them on for processing into video information. When a c.p.u. cycle occurs this is interrupted, the location addressed and the data on the bus lines being different from that planned by the v.d.u. controller. The result is speckling on the screen which, particularly during scrolling can almost obliterate the wanted information. Common solutions to this are to force the video output to the 'black' state during c.p.u. accesses or to only allow access
to the v.d.u. during flyback periods - i.e. when the video is naturally suppressed. Unless done carefully, selective blacking can noticeably reduce display intensity; the second solution reduces the rate at which characters can be passed to the screen.

Terminal-type or i/o-mapped y.d.us appear to the c.p.u. as input/output channels, so their advantage is in not occupying any system memory. Their disadvantage is in circuit complexity. Circuits must be provided for receiving and interpreting commands as well as data. For example the i/o-mapped v.d.u. must recognize a request for the character at a particular screen location (including transfer of the screen coordinates - information implicit in a memory-mapped access), or the need to clear the rest of the current display line and return the cursor or next-screenlocation pointer to the left-hand margin on receiving the carriage retum control character. It is common practice to pass data to

by J. H. Adams

John Adams, with a B.Sc.and M.Sc. from University College of North Wales, is head of the microprocessor division of Graseby Dynamics Ltd. Prior to working in industry he held various educational posts during which he initiated the teaching package 'Starting microelectronics'. This, his second series of articles for Electronics and Wireless World, combines his interests in education and engineering.

In his spare time, John is a keen classical organist.

Designed chiefly for fast clear high-density text display, the monochrome v.d.u. section of SC84 is memory mapped and uses the pipelining technique. Output is separete video and sync. signals in either polarity.

Fig.1. SC84's monochrome v.d.u. circuit, right, uses an enhanced version of the 6845 c.r.t. controller with light-pen register and interlaced video facility to give 32 lines of 96 characters and up to 192 by 192 pixels for graphics. Using an eprom character generator is cheaper than using a proprietary rom and allows reprogramming. Switching is included to relocate the v.d.u. section for experimentation.
an i/o mapped v.d.u. in serial form, which restricts the character rate to about 1000/s. Processor i/o operations are not so various or fast as memory ones, making something of a bottleneck of the i/o channel, however the possible division of processing between the main c.p.u. and the v.d.u. circuits can lead to a reasonably fast system. Also, as v.d.u. memory only has one controller it can be dynamic without any problems arising.

It should now be apparent that there are pros and con's to both methods. There are further reasons affecting the choice. Wordstar, a popular word-processing program, is an example of software which can work well with either system but which shows off its best features when modified for use with a memory-mapped v.d.u. My solution is to use both systems - a memory-mapped display for monochrome characters and medium resolution graphics and an i/o system for highresolution colour graphics*. This prompts use of two monitors - a

* John Adams is currently working on the high-resolution colour system which we plan to describe in a future article - Ed.
monochrome one for dense character display, where typically close-up use renders a colour monitor tiresome to read unless perfectly adjusted, and a full colour output with the option of character formation.

Controllers

The Hitatchi HD6845S used in this design (until recently numbered HD46505S) is a developed form of the popular 6845 v.d.u. controller. Its advantage to the computer designer is flexibility, virtually all design parameters (e.g. characters per line, lines per screen, sync. pulse length etc.) being stored in registers loaded by the c.p.u. rather than being fixed. In the Hitatchi version capabilities of these registers are extended; these capabilities are used in this design so it is important to use the specified device. While it can be used for graphic displays, its primary intent is as a character-display controller and to this end it has control lines which can be fed to a character generator (a rom which produces
dot patterns corresponding to characters placed in the v.d.u. memory), and skewed video control lines, i.e. signals which can be delayed internally by one or two characters periods to allow a technique called 'pipelining' to be used. 'Pipelining' is a technique used in complex v.d.us whereby v.d.u.memory and charactergenerator outputs are latched in synchronism with the character display rate. Whatever the speed of memory accesses, providing they are each shorter than one character display period (500 ns in this system), data passes, or is 'piped' synchronously through the v.d.u. Being able to skew the display and cursor enabling systems means that it is easier to ensure that control and data information appear together at the end of the 'pipeline' (see the timing diagram). The controller provides a register for positioning a cursor which can be made to flash, a register for use with a light pen and a facility for interlaced video. Together with multi-

VDU timing. Synchronization in this v.d.u. using 'pipelining' (see text) is critical and depends on two signals NOT CARRY and the dot clock.
plexers selecting memory, c.p.u. or controller lines, some highspeed logic too fast to build into the nmos controller, and memory it forms the character v.d.u.

The NEC μ PD7220 is one of a new generation of graphics controller designed for i / o mapping but offering a degree of internal complexity which overcomes many of the objections to i/o mapping. Designed to control up to 256 K words (1 word $=16$ bits) of dynamic memory, it appears to the c.p.u. as two i / o ports and optionally a d.m.a. channel. Using i / o ports for commands and d.m.a. for data, rapid access to v.d.u. memory is possible. For graphic functions such as shape drawing or filling areas, the 7220 can be given parameters and then commanded to draw - which it can do at over one million picture elements (pixels) per second without further c.p.u. involvement. Other internal features are full refresh, zooming (expansion of one part of the display to fill the entire screen) and the option of flash-free memory update (i.e. memory access during flyback period only). Details of the graphics display and of programming techniques for both controllers will appear in a later article.

Figure 1 shows the character v.d.u. circuit. As most c.r.t. controllers, the HD6845S is designed
for use in raster-scanning systems, i.e. with a normal, televi-sion-like display where the cathode-ray tube spot writes lines across the screen from left to right while being progressively swept down the screen. This means that one character is not completely drawn on the screen before the next. As the spot moves across the screen, successive character codes are taken from v.d.u. memory and just one row of dots from each of the corresponding character pattern is taken from the character generator rom and displayed on the v.d.u. At the start of the next c.r.t. line the v.d.u. memory address reverts to the same value as that of the start of the line but a different row of dots is selected from the character generator. Only when the last dot row has been drawn is the memory address allowed to step to the next area of v.d.u. memory. The number of characters on line and the number of dot rows, or rasters, is set by loading values into the controller when the $Z 80$ is initializing the system. These factors control v.d.u. memory address lines M_{0-12} and row-address lines $\mathrm{R}_{0.3}$.

In this system displayed characters are six dots wide by nine dots high; this pattern includes the space (one dot column) between adjacent characters and

the space (two dot rows) between adjacent display lines. The twodot horizontal space is used by lower-case letters with descenders (g, p, q, etc.). The fastest event in the v.d.u. is sending of a pixel to the display and a signal at this frequency is generated by the 12 MHz dot-clock oscillator, (IC_{319}). This signal is divided by six in a programmable divider to give a signal running at the char-acter-display frequency, the character clock. This division, and all operations at the dot frequency, is done outside the controller as the frequencies involved are too high for most technology used in the HD6845S. Note that the character generator is an eprom. Not only are they cheaper than proprietary character generator roms but they allow you to change the character set to suit your own requirements. Even the number of dots making up a character can be altered, up to an eight-by-16 matrix, but this is rather advanced work

Circuit IC_{318} is a four-bit programmable counter. It provides a 'carry' pulse at pin 15 as it passes through its maximum count value - binary 1111 - and this signal loads the binary value on pins six to three instead of allowing the counter to count on to zero on the next dot clock pulse. This value is binary 1010 - denary 10 - so the counter counts through six states, binary 1010 to 1111 , before repeating. Divider output C provides the character clock signal fed to the controller. An inverted carry pulse is used to provide a clocking and/or loading signal throughout the logic outside the controller.

Synchronization is extremely important. As one can see from the timing diagram there are many delays between the rising edge of the character clock initiating the addressing sequence and the production of a dot pattern at the output of the character generator, and between this point and the coming of those dots and control signals for display blanking, etc., from the controller. The timing diagram is to scale and incorporates the worst-case delays specified for the i.cs. Two signals used to synchronize the system are rising edges of dot clock and carry signal. To cope with delays between the controller generating an M -line address and the output of v.d.u. memory settling - a process which might take up to two-thirds of a character period - memory Continued on page 64

FAST PROGRAMMING

When manufacturers' recommended Fast Programming Algorithms can be used. GANG-OF-EIGHT IS FIVE TIMES AS FAST AS A STANDARD PROGRAMMER. This means you can program a set of 27128 's in 2 minutes - not 14 minutes. Or 2764 s in 1.25 minutes instead of 7 minutes.
GANG-OF-EIGHT will program all single-rail devices from 2716 to 27256 with FAST or NORMAL algorithms. All possible levels of programming voltage are covered - even the latest 10.5 and 12.5 volt levels.

FAST MONEY BACK GUARANTEE

Part of our value-for-money deal is the REFUND GUARANTEE: if you don't want your GANG-OF-EIGHT you can return it within a fortnight and we'll send your money back immediately, less the cost of postage. We realise that this is like operating a free hire service, but we believe that most engineers are straight. We will be most surprised if we get any GANG-OF-EIGHTS back.

FAST THROUGHPUT

GANG-OF-EIGHT has SINGLE-KEY OPERATION, which makes life very easy for the operator. It always performs VERIFY and BLANK-CHECK operations automatically: it won't let you program the same EPROMS twice, or program EPROMS which are not blank. In the FAST programming mode, GANG-OF-EIGHT can produce several times the output of a standard programmer.

FAST DELIVERY

At the time of writing, DATAMAN has more than enough stock to meet the expected demand for GANG-OF-EIGHT. If you want confirmation before sending your cheque, please telephone us with an order number and a GANG-OF-EIGHT will be packed and set aside for you.

FEATURES

* CONVERSATIONAL LIQUID CRYSTAL DISPLAY * NINE INDUSTRY - STANDARD TEXTOOL ZIF SOCKETS
* SWITCH-SELECTION OF EPROM TYPE (NO MODULES TO BUY)
* PROGRAMS ALL SINGLE RAIL EPROMS INCLUDING 27256
* USER CAN CHOOSE NORMAL OR FAST PROGRAMMING ALGORITHM
* SINGLE KEY OPERATION
* WORKS FASTER THAN STANDARD PROGRAMMER
* INTELLIGENT OPERATION TRAPS OPERATOR ERRORS
* SAFETY FEATURES BUILT-IN
\star LOW-COST DESIGN

GANG-OF-EIGHT, including instruction card, power supply and carriage $£ 395$ + VAT (=£454.25)

Lombard House, Cornwall Road, Dorchester, Dorset, United Kingdom Telephone: Dorchesteŕ (0305) 68066 Telex: 418442

CABLE T.V. HEAD END AND REPEATER AMPLIFIERS

CHANNEL CONVERTERS
TCUU UHF-UHF Single channel converter. Gatn adjustable $+2 \mathrm{~dB}-16 \mathrm{~dB}$. Maximum output +26 dBmV . Crystal controiled osciliator. Power requirement As TCUU except UHF to VHF converter. (Quote Channels required) TCUV As TCUU except UHF to VHF converter (Quote Channels required)

SINGLE CHANNEL AUTOMATIC GAIN CONTROL AMPLIFIERS
TAG4863 Gain 48dB, maximum output 63dBmV Regulator + or - 8dB Power
TAG4063 Gair 40dB, maximum output 64dBmV. Regulator + or -16 dB . Power requirement 14 V 210 mA .

SINGLE CHANNEL AMPLIFIERS
TSS4663 Gain 28-46dB adjustable. Maximum output 63dBmV Power requirement
TSS3062 Gain $12-30 \mathrm{~dB}$ adjustable Maximum output 62 dBmV . Power requirement 14 V 26 mA .

DRIVER AMPLIFIERS

TS1030FM FM driver amplifier. 10dB Gain. Maximum output 30dBmV Power require ment 14 V 10 mA .
TS1030B3 Band III driver amplfier 10dB gain. Maximum output 30 dBmV Power requirement 14 V 10 mA
SIO30UHF UHF driver amplifier. 10 dB gain. Maximum output 30 dBmV Power require-
S1040S Single channel UHF driver amplifier. 10 dB gain. Maximum output 40 dBmV Power requirement 14 V 10 mA . (Ouote channel required)

DISTRIBUTION AMPLIFIERS
TE2042 Domestic distribution amplifier. 1 input, 1 output. Gain 20dB. Maximum
TE1638 Doutput 42 dBmV Distribution amplifier i input, 2 outputs Gain 16dB. Maximum Domestic distribution
output: 2 at 38 dBmV
IS2046 $40-860 \mathrm{MHz}$. Gain 20dB UHF. 18 dB VHF. Maximum output 46 dBmV
TS2846 $40-860 \mathrm{MHz}$ Gain 28dB UHF, 22dB VHF. Maximum output 46 dBmV
TS2845 Separate UHF/UHF inputs. Gain 28dB UHF, 22dB VHF. Maximum output 46 dBmV
$40-860 \mathrm{MHz}$. Gain 20 dB UHF. 18 dB VHF. Maximum output 54 dB mV, $40-860 \mathrm{MHz}$. Gain 20 dB UHF, 18 dB VHF. Maximum output 54 dBmV
$\begin{array}{ll}\text { TS2060 } & \text { 40-850MHz Gain 20dB UHF, } \\ \text { TS5565 } & \text { Gain } 55 \mathrm{~dB} \text { UHF, } 55 \mathrm{~dB} \text { VHF, } 42 \mathrm{~dB} \mathrm{FM} \text {. Maximum output } 65 \mathrm{dBmV}\end{array}$

REPEATER AMPLIFIERS

TSC3660 Repeater Gain 16.36 dB UHF, $10-30 \mathrm{~dB}$ VHF Maximum output 60 dBmV
TSC3665 Repeater Gain 16-36dB UHF. 10-30dB VHF Maximum output 65dBmV
TSC3060 Repeater Gain $10-30 \mathrm{~dB}$ VHF. Maximum output 60 dBmV

QUALITY AT LOW COST TAYLOR BROS (OLDHAM) LTD

 LEE STREET, OLDHAM - TEL. 061-652 3221 - TELEX 669911
CIRCLE 72 FOR FURTHER DETAILS.

Affordable Accuracy - Low Cost Multimeters from Armon

SPECIFICATION
HC 6010 DIGITAL

- 10 Amp AC/DC
* Battery: Single 9V PP3. Life:

200 hrs .

- Dimensions: $170 \times 89 \times 38 \mathrm{~mm}$
* Weight: 400 g inc. battery

Mode Select: Push Button AC DC Current: $200 \mu \mathrm{~A}$ to 10 A
AC Voltage: 200 mV to 750 V AC Voltage: 200 mV to 750 V DC Voltage: 200 mV to 1000 V Resistance: 200Ω to 20 Ma Input Impedance: $10 \mathrm{M} \Omega$ Lispıay: s $1 / 2$ Ligit 13 mm LCD O/load Protection: Alt ranges * Accuracy: 0.5\% DC Volts

28 RANGES, EACH WITH FULL
OVERLOAD PROTECTION. BATTERY
\& TEST LEADS INCLUDED

Heron House, 109 Wembley Hill Road, Wembley, Middlesex HA98AG Telephone: $01-9024321$ (3 lines). TELEX No. 923985
\star DC Voltage: $0.25,2.5,25,250$, 1,000 Voits, $10,000 \mathrm{Ohms} /$ Voit * A'C Voltage: $10,50,250,1,000$ Volts, 4,000 Ohms/Volt © DC Current: $1,10,500 \mathrm{~mA}$ \# Resistance: 0 to 1 MegOhm in 3 ranges

- Decibels. $-3 \mathrm{nHR}+\mathrm{n}+6 \mathrm{f}$ dB * Battery: One 1.5 V size AA (incl) * Size \& Weight: $105 \times 63 \times$ $32 \mathrm{~mm} ; 130 \mathrm{gr}$

19 RANGES COMPLETE WITH

 bATTERY AND TEST LEADS

Audio Measuring Instruments, Audio Amplifiers, Loudspeakers and Loudspeaker Components for the professional and enthusiast

RADFORD AUDIO LTD.
10 BEACH ROAD WESTON-S-MARE, AVON BS23 1AU

TEL. 0934416033

Improving colour television decoding

Viewing tv pictures at work and at home over several years using various decoding methods, David Read found the comb filter method an undoubted improvement with a 26 in screen. But inprovements to other video processing blocks are needed to fully appreciate the picture. This postscript recommends an acoustic surface wave filter for i.f. use and discusses other picture enhancement techniques.

Most of the signal-processing improvements that the home viewer can make - to PAL decoding, RGB drive, and wideband comb filtering - have been covered in this series of articles. One remaining area for investigation is the tuner/i.f. strip. Although the ten-years old design originally described in these pages (1975, Oct-Dec) is still in use and gives good results, particularly with extended comb filter methods of PAL decoding, it is felt that the design and circuit board cannot be recommended for building today - with discrete inductors providing all the i.f. bandwidth shaping and postdemodulator group-delay equalization. It has been remarked that the board looks more like a Manhattan sky line! There is also a daunting setting-up procedure.

Recently, both Signal Technology and Mullard have been manufacturing some excellent surface acoustic wave i.f. filters. The SD155 from signal Technology is flat at frequencies above f_{sc} and has a sound shelf of -16 dB though probably not sufficiently down for a single-chip demodulator e.g. TDA 3541, though an LC trap to provide an extra 10 dB could readily be added. Over the retailers' counter this could cost $£ 40$ to $£ 50$ currently, but it is hoped that cable-head companies and set manufacturers will start to use these better quality filters and the price will reduce.

Some of the better filters, for example Signal Technology's SY 155 and RW 153P have the subcarrier equivalent frequency (vi-
sion carrier minus subcarrier, 35.07 mHz), only 0.5 to 2 dB down. These will provide the best overall performance with modified LC filters used before the chroma decoder. However, the performance is not good enough to justify the Fig. 34 comb filter circuit approach although a much improved picture can be obtained with the alternative LC networks shown last month. This is achieved by using the Fig. 77 circuit for the luminance path (Figs 74 and 76 show amplitude and group-delay performance) and the Fig. 81 circuit for the chroma path (Figs 79 and 80 give amplitude and delay performance). The chroma circuit can be modified to advantage as shown in Fig. 93 (See Figs 94 and 95 for amplitude and delay performance). The modified chroma filter will offer a better chroma bandwidth and reduced 7.8 kHz twitter at the chroma transitions if it is adjusted to match the s.a.w. filter response (chroma sideband symmetry optimized), as was similarly indicated in Fig. 82.

When the s.a.w. filter with the performance of Fig. 96 is in use, e.g. the SD155, the best chroma filter is the gaussian band-pass filter of Fig.34. For this Fig. 52 shows the amplitude response and Fig. 53 the group delay performance, with Fig.52(b) indicating the clean chroma transitions that can be obtained.

Mullard are expected to introduce two new tuners later this year, the U343 for potentiometer tuning and the U344 for use with a frequency synthesizer. These use
low noise, high dynamic range mosfet stages and include the first i.f. bandpass coupling stage and driver amplifier for the s.a.w. filter. The tuner i.f. board then need only comprise a front-end tuner, s.a.w. filter and the integrated i.f. amplifier demodulator TDA3541 together with a few discrete components (ref.11).

Design of high-grade receiver

For really high quality sound and vision to feed into a comb-type decode, the B.B.C. have designed a u.h.f. tv receiver type RCI/511, being manufactured under licence by SPT Video
by D.C.A. Read, B.Sc. (Eng), M.I.E.E.

 shown by the group delay response above (Fig.88).

Group delay ripple and other losses in performance caused by using preferred capicitor values are shown in these pulse-and-step test results (Fig.89).

Fig.93. Circuit of modified chroma-path filter when using the better i.f. s.a.w. filter. Subcarrier (equivalent frequency 35.067 MHz) is only 0.5 to 2 dB down.

Fig.94. Amplitude performance of the chroma path filter.
Limited. This unit has a performance specification of

- Two video outputs at 75 : amplitude response $\pm 1 \mathrm{~dB}$ to 5.5 MHz .
- balanced and unbalanced sound outputs: harmonic dis tortion 0.5\% MAX.
- u.h.f. coverage: channels 20 70
- differential phase and gain: 4° and 4% max, 2° and 2% typi cally.
Physically, it is a 2 U high, full bay width unit. Channel setting (tuning) is by front-panel thumbwheel

Fig.100. Resulting picture improvement with scan-velocity off and on (screen photographs taken from a Mullard report).
switches which control a synthesiser; a rear D-plug enables remote control. Details of the internal operation are shown in Fig.97; the notes on this block diagram explain the functions.

Other methods of picture enchancement

There are excellent picture enhancers that rely on picture storage and can provide both horizontal and vertical aperture correction. By recycling the information taken from the picture store with new pictures as they arrive, noise reduction is achieved. But on movement, zonal adaptive

Fig.95. Group delay response of the high-pass chromafilter.
techniques are needed to stop cumulative recycling and thus prevent excessive blur.

For the domestic receiver, a simple enhancement technique is to modulate the line scan velocity

Fig.92. Component location for PAL modifier comb filter board. It is useful to check the coil bases with the board before winding any coils, particularly the center-tapped ones. Chip provides additionally the $2_{\text {fac }}$ feed required by the PAL modifier in Fig. 34. The sandcastle pulse to the TDA3561A can be supplied from the TDA2591/2/3. These two signals may already be available in existing receiver designs, but check that it is a $2_{\text {fsc }}$ locked oscillator if this signal is to be extracted.

Fig.96. Amplitude and group delay performance of s.a.w. filter recently introduced by Signal Technology.

Fig. 97. Block diagram of the BBC-designed u.h.f. tv receiver, $\mathrm{RC} 1 / 511$, giving outputs of 1 volt composite video and good quality sound.

Readers of this series puzzled by the numbering of component references on page 33 of the May installment may be reassured to know that it originated from the maker's service sheet and were not shown on the circuit diagram. The BC337s of Fig. 41 are transistors $653,652 \& 651$ in the text, the BF392s are 659, 658 \& 657, and resistors 665, $664 \& 663$ are the 22 k pull-up components at the BF392 bases. Also on that page, the resistor referred to in line three, column three, should be 2.7 k and not $2.7 \Omega \mathrm{In}$ Fig.42,
the annotation 'Fig. 34' should have read Fig.41. The author also asks us to point out that in Fig. 40 the chroma input burst should be

150 mV rather than the 250 mV shown at pin 3 of the i.c.
The right-hand ordinate on
Fig. 86 (page 62, June) was inadvertently cropped, and should of course be labelled with
attenuation in dB. Observant
readers will have noticed that Fig. 60 was a repeat of Fig.69; the correct figure appears in this article. In Fig. 24 (page 56 January) please substitute 200 ns for the 200μ s shown.

Component suppliers

1. Surface wave filters

Signal Technology Ltd, Crompton
Road, Groundwell Industrial
Estate, Swindon. Wilts.
Tel: 0793-726666 ex. 230.
Mullard Ltd
Torrington Place, London WC2.
Tel: 580-6633.
Delay lines.
Manor Supplies, 172 West End
Lane, London NW3
Tel: 794-8751.
Future Films
Leamington Street, London W1.
Tel: 437-1892.
Coil formers
Cirkit (Ambit), 200 N.Service
Road, Brentwood, Essex.
Tel: 0277231616.

Palyester metallized $\pm 10 \% 100$ or 250V (Mullard type 344)
$6.8 \mathrm{n} \quad 40$
470 n

$6.8 n$	40
$470 n$	42
$270 n$	53

Tantalum $\pm \mathbf{2 0 \%}$ (Union Carbide or RS components)
$30 \mu 10 \mathrm{~V} 1,2$
$22 \mu 15 \mathrm{~V} 3,17,31,30,22,47,55$
$22 \mu 10 \mathrm{~V} 10$
$4.7 \mu 25 \mathrm{~V} 44$

Electrolytic (Eire, Mullard or
equivalent) 1m6.3V 27

Transistors

Type
2N3904 BG239
2N3906
or BC309
or VN0610L,
or VN2222L, TR19 (f.e.t.)
or M991BD/C,
or 1167BD

Integrated circuits

MC796, MC1496 or MC1596 IC2 TDA2590/1/2/3

IC 1
TDA2593 in the current I.C.
If used +12 V regulator $\mu \mathrm{A} 7812$
Dlodes
$\begin{array}{ll}\text { BZY88C6V2 } & D_{4}, D_{4} \\ \text { BZY88C4V3 } & D_{5} \\ \text { IN916 } & D_{3}\end{array}$
1N916
Circuit reference
$1,3,8,9,10,11,12$ (reference missing from the circuit: transistor with R36, 38), 13, 14, 15, 16,17

Delay lines
DL, Best to make the descrete LC network $Z_{0} 2208$ or see text for
alterations.
DL ${ }_{2}$ DL60 or DL700 not critical. Observe
R_{18}^{2} and R_{29} suit Z_{0} of line. See table
Resistors : Mullard MR25 metal film $\pm 2 \% ~ 0.4 W$ or equivalent metal film $\pm 5 \%$ 0.2W.

Vakus Q) Circult reference	
$4,7 k$	$1,3,57$
4709	$12,16,31,33,81$
$13 k Q$	10
$10 k Q$	$13,15,47,63,74$
$560 Q$	$21,18,28$
150Ω	23,37
$1 k$	$22,4,5,46$
$680 Q$	$8,73,36$
$27 k$	14,85
$100 Q$	$83,34,64,65$
$3.3 k$	$82,38,86,88,90,66,79$
$100 k$	26,40
$33 k$	$29,30,54,75$ (note R_{29} was
	$22 k, R_{30}$ was 18k using 33k
	improves modifier baiance)

22k	84, 45, 80	Potentiometers (Cermet)			
12k	41,49,69	Value Clrcult reference			
20k	43 (use $\mathbf{2 \times 1 0 k}$ or 18k if	5002		24	
	necessary)	1k		32	
15k	44	5k		42,89	
2.7k	48	10k		87	
2.2k	50,61, 62	100k		76	
1.5k	52	50k		71	
2.2N*	60 Eire carbon $\pm 5 \% 0.33 \mathrm{~W}$				
1.8M*	59 Eire carbon $\pm 5 \% 0.33 \mathrm{~W}$				
1.2k	67				
82k	68,55	Values determined by DL,			
120k*	70 Mullard MR30 metal film or	impedance			
2209	53,56	Zo	759	800-1kQ using LC	
47k	58,78				network2200
2208	72				
47	51				
1.6k	to pin 5 MC796 (Fig.34) from	R_{8}	1509	1.6k9	4409 (2×220)
	$\pm 12 \mathrm{~V}$ rall (component ref.	R_{7}	1509	1.6 k Q	4409 (2×220)
	omitted from circuit)	R_{9}	1209	-	-
$\mathbf{R}_{\text {D }}$	R_{2} and R_{p} can beset as a	R_{11}	2208	8202	2202
	potentlal divider to sult higher	R_{17}	689	1508	689
	video input levels. If high Z in	R_{19}	1kQ	2.7 k Q	1kQ
	required omit R_{2} and set R_{D} to	R_{20}	5102	1.5k Q	5108
	4702 (parasitic oscillation stopper)	C_{8}	1 mF	-	-

*It is best to set up A and B group-delay equalizer sections in isolation, i.e. no other equalizer or filter component in the circuit; thus check each stage of the filter and equalizer one section at a time.
L_{8} and L_{10} measured across outer pini.e. total inductance.

in relation to transitions in the increasing video signal. A pair of four-turn coils built into the scanning yoke and placed in the line-scan coil plane provides line aperture modulation of the scanning field. A restricted spectrum of the luminance signal (in the range 2 to 3.5 MHz) is amplified, amplitude-limited and used to drive the extra coils in the scan yoke. The block diagram is shown in Fig.98. The additional circuit feeding these coils need only consist of a simple CR differentiator, back-to-back diode limiter and class B output amplifying transistors. The waveforms of the system are as shown in Fig. 99 and the display picture shown in Fig. 100 illustrates 'before and after' the application (screen photograph taken from a Mullard publication)

Picture enhancement with colour-

 transient improvement circuitIt is possible to improve the R G B signal where the chroma bandwidth has been restricted to suppress crosscolour, resulting in risetimes in excess of 500 ms . On improving (speeding up) the risetimes, care has to be taken not to exaggerate the crosstalk (e.g. increased U/V 12.5 Hz flicker).

By using a switched equalizer under the control of the differentiated luminance signal (to minimize cross-colour increase), the U and V i.e. $\mathrm{B}-\mathrm{Y}$ and $\mathrm{R}-\mathrm{Y}$ chrominance steps can be improved. This is possible because of the good correlation between the luminance and chrominance picture information. An i.c. to improve colour transients is the Mullard TDA4560, shown in Fig.101. This uses the differentiated input $\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ chroma to control and chroma delay switching. The effect of using such techniques is for a chroma positivegoing transition as seen in

Fig.102. Waveforms showing chroma edge enhancement by delay switching.

Fig. 102.

Picture enhancement techniques and various methods of aperture correction can have adverse effects - multiple images and movement blur - viewers have said that the picture appears as if looked at through speckled glass. Also if the noise spectrum lies in the $2-3 \mathrm{MHz}$ region, noise on the final picture can be increased. After viewing many live programmes it was concluded that it is better to get back more of the signal as originally generated at source.

REFERENCES

1. Drewery, J.O. Filtering of Luminance and Chrominance Signals to Avoid Crosscolour in PAL Colour System. BBC Research Department Report 975/36. See also BBC Engineering 1976.
2. Mullard Limited, Mullard House, Torrington Place, London WC1E 7HD. Scan Velocity Modulation for the 30AX Tube.
3. Fischer, T. Digital v.l.s.i breeds next 3. Feneration, T. Digitavers Electronics 11 generation
Aug. 1981
4. Reitmejer, G.A. "The Effects of analog filtering on the picture quality of component digital television systems. SMPTE Journal Oct. 1981.
5. Auty, Read \& Roe, Colour picture improvement using simple analogue comb filters. BBC Engineering Dec. 1977 no. 108 pp. 28-33. Also SMPTE Journal Oct. 1978 vol. 87 .
6. Clarke, C.K.P. Digital standards conversion: Comparison of colour methods. BBC Research Department Report 1972/6. 7. J. Sabatier and F. Kretz. Sampling the components of 625 -Line television signals. EBU Keview, no. 171 Oct. 1978.
7. G.D. Roe and D.C. Read Patent 2256/77 Comb Filters for PAL Coders and Decoders. Nov.1977, UK patent 2256/77.
8. C.K.P. Clarke, 1982. High Quality Decoding for PAL inputs to digital YUV studios. BBC Research Department Report 1982/12.
9. P.G.J. Barten and J. Kaashoek. 30AX Self-aligning $110^{\circ} \mathrm{In}$-line Colour TV Display. Mullard Technical Note 119.
10. P.J.M. Sijbers and J. Zeelen (Philips Technical). One i.c. and a SAW-filter in a high-performance visioni.f. channel. Elec-high-performance visioni.f. channel. Elec-
tronic Components and Applications. tronic Components
vol.5, no.1. Nov. 1982 .
vol.5, no.1. Nov. 1982 . Weston Clean PAL 12. A. Oliphant, 1982 . Weston Clea BBC Res
1980/1.

Fig. 98. Block diagram describing a method of scan-velocity modulation to improve picture sharpness.

Fig.99. Example of waveforms occurring in a scan-velocity modulation circuit.
Fig.101. Functional block diagram of an available i.c. for colour transient improvement (taken from the data sheets for the TDA4560).

CIRCLE 59 FOR FURTHER DETAILS.

CIRCLE 22 FOR FURTHER DETAILS.

Multi-Standard

MODEM

WORLD CHIP*

The chipat the heart of Richard Lambley's Multi-Standard Modem project.

Order now and ask for your free data sheet.

20,000

DEVICES IN STOCK ATHAWKE.
PrimeSource for AMD AM7910 0-9797199 d heivkis

AHEAD OF THE FUTURE

Hawke Electronics Limited, Amotex House, 45 Hanworth Road, Sunbury-on-Thames, Middlesex Tel: 01-979 7799 Telex: 923592

* WORLDCHIP' is a Trade Mark of AMD

1.5 GHz testing problems?

Use a TECHTEST Model 260 1.5GHz Up-Converter

- it works with any 240-350 MHz generator

The Model 260 has been designed to provide a very economical signal source for testing 1.5 GHz communication equipment. It is a linear heterodyne up-converter that employs advanced techniques to generate very clean and stable signals in the 1440-1550 MHz band from signal generator inputs 1200 MHz lower. Since it has zero insertion loss the input signal generator controls are used directly to set the output signal level and all modulation conditions. Full accuracy and stability is ensured by phase-locking the internal 1200 MHz local oscillator to the signal generator standard. Find out more from:

Techtest Ltd, Street Court, Kingsland, Leominister, Herefordshire HR6 9QA England.
Telephone: KINGSLAND (056881) 744 Telex 837264.

CIRCLE 70 FOR FURTHER DETAILS.

SATELLITE RECEIVING EQUIPMENT

1.9M, 2.5M and 5M Harrison Dishes. Sat-Tec R5000 4 GHz Receivers. Avcom COM-2B 4GHz Receivers. California Amplifier 4 GHz LNAs. Chaparral Horns. Harrison Feed Horns.
Demonstrations by appointment only.
Dealer enquiries welcome
For further details contact: Harrison Electronics, 22 Milton Road, Westcliff-on-Sea, Essex SSO 7JX. Telephone: Southend (0702) 332338.

Multi-standard modem

Details of the line interface and software requirements, plus some telephone numbers to dial

The line interface follows the pattern shown in Fig. 3 of the article in the May issue. In the directconnect version of the modem, op-amp IC_{10} duplexes the transmitted and received carriers. Resistor R_{44} is the terminating resistor for the telephone line. A cmos analogue switch IC_{9} provides loopback of the transmitted signal to the receiver input when S_{2} is in test position; but in a direct-connect modem, this i.c. and its associated components (Tr_{2} and Tr_{3} etc.) should be omitted, since there will be sufficient coupling around the duplexer. If IC_{9} is not fitted, a link must be wired between pins 8 and 9 of its location on the p.c.b.

When a call is in progress, the modem holds the telephone line by means of the gyrator network around Tr_{5} and Tr_{6}. This arrangement is taken from a Mullard circuit* widely used in commercial modems. No heat-sink is required for Tr_{5}. The capacitors in the line interface may have to withstand ringing voltages and transients on the line, and so it is important to fit suitably rated types: for the prototypes, 250 V metallized film capacitors were chosen.

If the constructor does not intend to add an auto-dialler, there is no need for $\mathrm{RL}_{2}, \mathrm{RL}_{3}$ or their associated components R_{49}, R_{51} and C_{2}; but a wire link should be added in place of the contacts of RL_{2}.

The spark gap across the telephone line is included for safety, although some commercial modems do without. It should be able to withstand the voltages developed during ringing without breaking down. Suitable types are available from Electrovalue Ltd.

[^4]The auto-answer circuit is isolated from the line by an optocoupler IC_{11}. The zener diodes are to protect IC_{11} against damage by over-voltages and to define a threshold level below which it will not respond. An a.c. ringing voltage causes the level on pin 3 of the inverter $\left(\mathrm{IC}_{16}\right)$ to fall, triggering the monostable. The telephone will continue to ring for a few seconds until the second monostable is triggered by the rising edge at IC_{16} pin 4.

At this point, pin 1 of the Am7910 is pulled low, causing it to begin its answering sequence, and the line-seize relay RL_{1} closes. The time constant of the second monostable is about 30 seconds, which should allow enough time for the calling modem to establish communication. Control of RL_{1} then passes to the CD or BCD outputs of IC_{8} : if the incoming carrier is lost the relay will be released and the call terminated.

To enable auto-answering, it is necessary to disable RTS until the answer sequence of IC_{8} is complete. For this reason the amendments shown in Fig. 3 should be made to the computer interface section of the modem. The additional connection to pin 16 of IC_{8} is to ensure that the DTR signal is removed briefly between auto-answered calls. Without this, the modem will not generate its burst of answer tone.

However, a problem may arise if a large transient occurs on the line as S_{3} is moved. The first monostable in IC_{12} may be triggered, removing DTR temporarily. If this happens, a way of dealing with it is to inhibit the monostable except when auto-answering is enabled. Omit C_{40} and R_{58}, but connect pin 6 of IC_{16} to pins 3 and 11 of IC_{12}.

If the components of the autoanswer section are ommitted entirely, a $47 \mathrm{k} \Omega$ resistor must be inserted between pins 12 and 16
of the IC_{12} position to ensure that pin 1 of the Am7910 is tied high.

Note also that the dotted links LK_{10} and LK_{12} in last month's circuit diagram are shown reversed: if a full RS232 interface is required, the RTS input of IC_{8} should be linked to pin 11 of IC_{5} and the BRTS input to pin 8 of IC_{5}.

Components

The Am7910 integrated circuit is stocked by AMD distributors, including Quarndon Electronics and Hawke Electronics; the unit price is $£ 32.80$ excluding v.a.t. This and other semiconductor devices for the project together with the crystal, the relays and the connectors are available from Technomatic Ltd (see address list). The Am7910 is also stocked by Maplin Electronics.

The two transformers can be supplied for $£ 5.70$ the pair, including inland postage and v.a.t., by Barrie Electronics.

A printed circuit measuring 160 by 200 mm will be available from July 10 from Combe Martin Electronics, for $£ 16$ inclusive. The board, a prototype of which was shown in last month's article, is double sided with platedthrough holes.

Software

To control the modem, a suitable communications program is needed. In its simplest form, this would configure the serial port to transmit and receive at the required rate. It would then route data arriving from the modem to the screen, and direct data from the keyboard to the modem.

In a practical program there would also be facilities for selecting the data word length, parity and stop bits, for controlling the display format and for transferring disc or cassette files to and from the modem.

tsnets

Y/ierocomputing
Incorporst ing MICRONET 800,
 Emyenisf

Logging on, or in: like Prestel and many commercial databases, the British Library's BLAISE system asks for passwords.

The start of a program in Apple Basic, in Prestel telesoftware format. With the help of suitable communications software, a complete program can be down loaded
automatically in about the
time it would take to load from tape.

Fig.1. Line interface, and autoanswer section. Isolation from the line is via a transformer and, for the ring detection circuit, an opto-coupler. An autodialler could be added by the user if required.

Other useful options include the ability to send Xon and Xoff commands to halt temporarily the output from the distant computer, and to echo incoming characters back to it: this allows the other operator to see what he is typing. There may be some advantage too in redefining the output of certain keys on the key-
board. In particular, the effect of the delete key seems to vary from one computer to another. For Viewdata systems such as Prestel it is convenient to have the return key send a \# character.

Some of the bulletin board systems listed here have adopted the so-called Christensen or Xmodem protocol for file hand-

ling. This protocol allows virtually error-free transfer of Ascii text or program files over event the poorest lines. The file to be sent is transmitted in 128 -byte blocks, with error-checking on each block. If an error arises, the receiving computer asks for the block to be sent once more. Error-checking is used also in viewdata terminal programs for telesoftware file downloading.

Viewdata software for a variety of home and business computers is available from Micronet 800 . For the 300 baud modes, Maplin Electronics can provide modem interfaces and software for the ZX81, Spectrum, Dragon, Oric, VIC 20 and Commodore 64.

For the BBC Microcomputer there is a wide choice of software, including packages in eprom. Computer Concepts' communicator (16Kbyte) provides emulation of a DEC VT100 terminal. It gives very extensive control of transmission mode and display format and includes such features as storage of telephone numbers for an auto-dialler. Communicator costs $£ 59$.

A rom of especial interest to bulletin-board users is Pace Software's Commstar (8Kbyte). This provides software handshaking, file transfer facilities using the Christensen Xmodem protocols and numerous other features. Current versions have a Prestel mode which supports colour Viewdata graphics (including double-height characters) and can download telesoftware. The price is $£ 34$ including v.a.t.

Software for the TRS-80 is available from Molimerx Ltd, who offer two communications packages: Smart Terminal at $£ 25.30$ and Modem 80 at £30.48.

A communications program to run under $\mathrm{CP} / \mathrm{M}-80$ is available to members of the CP/M User's Group. Details, in return for a stamped addressed envelope, from the group at 72 Mill Road, Hawley, Dartford, Kent. Individual membership costs $£ 7.50$ per year.

Logging on

First select the appropriate signalling standard and mode using S_{1} and S_{2}. At this stage S_{3} should be in the centre off-line position. Dial up the computer of interest; and when its answering tone is heard move S_{3} to the on-line position. This will establish communication, disconnecting the tele-
phone handset at the same time. With some of the bulletin board systems listed in the box, it may then be necessary to type a few carriage returns to start things off.

At the end of the call, S_{3} should be moved back to the centre position to break the connection. In the Viewdata mode, disconnection occurs automatically when the Prestel computer drops its carrier. This may happen prematurely if the RTS signal is removed: as this may occur momentarily while files are being saved to cassette or disc, it may be best to fix RTS permanently on in the modem. This can be done by linking pins 13 and 14 of IC_{5}; it may then be wise to cut the track between pin 13 and the 25 -way socket to avoid contention when the full RS232 interface is used.

The third position of S_{3} allows the modem to auto-answer calls from other computers. This facility is allowed only in the 300 baud 'answer' modes and in V. 23 mode with S_{2} set to 'reverse'.

Acquisition of a carrier in the back channel is indicated by LED_{1}, and in the main channel by $\mathrm{LED}_{2} . \mathrm{LED}_{3}$ lights when the circuit is powered and flickers during transmission of outgoing data. When a call is autoanswered, LED_{4} lights; and LED_{5} comes on when the modem is holding a line.

To test the modem off-line, set S_{2} to the test position. The modem should then echo characters typed at the keyboard back to the screen. Note that this test may not work in the V. 23 mode, since the Viewdata terminal software will set the RS232 driver and receiver to different data rates.

Some databases to try

The following 'bulletin board'systems are run by private individuals on a voluntary basis. No charges are made for use of their facilities, which include message handling, software downloading and news. Forum- 80 systems use a seven-bit word with even parity and one stop bit; others have an eight-bit word with one stop bit and no parity bit.

Beware of $1200 / 75$ systems: some use the same data format as on their 300 baud modems, and may not be compatible with Prestel terminal software.

CBBS Chiltern: 07073-28723, 07073-39241, 18.30-22.30h, Monday and Wednesday.
CBBS Cumbria: 069-92314*, 1800-

Fig.3. Disabling RTS and DTR during the auto-answer sequence. This addition has been incorporated in the p.c.b.for this project.

2200 h daily. V.21, Bell 103 and 1200 / 75 baud V. 23 .
CBBS Southwest: 0626-890014, 24 hours, V. 21 and 1200/75 baud V. 23. CBBS Surrey (Woking): 0486225174, 24 hours.
MG-NET CBBS (London): 01-399 2136 , Sunday only, $17.00-22.00 \mathrm{~h}$. CABB, Computer Answers bulletin board (London): 01-631 3076, 24 hours. Also weekdays on $1200 / 75$ baudV. 23.
Forum-80 (Hull): 0482-859169.
Tuesday and Thursday, 19.00-
22.00 h ; Saturday and Sunday, 13.00
22.00 h . Night-time service for
U.S.A. using Bell 103 tones, $00.00-$ 08.00 h .

Forum-80 (London): 01-902 2546,
evenings and weekends.
Mailbox-80 (Liverpool): 051-428 8924, 24 hours.
Mailbox-83 (West Midlands): 0384 635336*, 17.30-08.30h daily and all day Sunday.
Manchester BB: 061-427 3711, Sunday-Thursday 22.30-00.0h, Friday $13.30-02.00 \mathrm{~h}$, Saturday $22.30-$ 02.00h.

Microweb (Stockport): 061-456
4157, 24 hours. For users of the BBC Micro.
TBBS City (London): 01-606 4194, 24 hours. 1200/75 on Wednesdays. TBBS London: 01-348 9400, 09.0001.00 h with CCITT V. 21 tones,
01.00-09.00h with Bell 103 tones. TBBS Southampton: 0703-
437200, 17.00-08.00h weekdays, all day at weekends.
North Birmingham BBS: 0827
288810*, 24 hours.
Blandford Board: 0258-54494, 24
hours.
Stoke ITEC BB: 0728-265078, 24
hours.
Southern Bulletin Board: 0243-
511077, 24 hours.
BASUG (British Apple Systems User
Group board): 0742-667983, 24 hours.
The following commercial systems, operated by electronic component suppliers make no charge to users except where shown:
Distel (Display Electronics Ltd, London SE 19): 01-679 1888(V.21). A 1200/75 baud service is to be added: test port on 01-679 6183. Estelle (STC Electronic Services, Harlow, Essex): 0279-443511 (V.21), 0279-442288(V.23), business hours.
Rewtel (Cirkit, formerly Ambit International, Brentwood, Essex): 0277-232628. Some facilities are available only to subscribers.
Maptel (Maplin Electronics Ltd, Southend-on-Sea): 0702-552941.

Fig.2. Space for this power supply is provided on the p.c.b.

Viewdata

Prestel Microcomputing: details from Micronet 800, Scriptor Court, 155 Farringdon Road, London EC1R 3AD. Enquiries, 01-278 3143. The quarterly subscription of $£ 13$ (for domestic users) gives access to Micronet 800 , Viewfax 258 and all sections of Prestel not restricted to other closed user groups.
Prestel: for information ask the operator for Freefone 2296.
*'Ring back' systems: dial the number, let it ring once, replace the handset and then dial again.

Addresses

Barrie Electronics Ltd, Unit 211 Stratford Workshops, Burford Road, London E15 2SP; 01-555 0228.
Combe Martin Electronics, King Street, Combe Martin, Devon EX34 OAD.
Computer Concepts, 16 Wayside, Chipperfield, Hertfordshire WD4 9J]; 09277-69727.
Electrovalue Ltd, 28 St Jude's Road, Englefield Green, Egham, Surrey TW200HB; 0784-33603.
Maplin Electronic Supplies Ltd, P.O. Box 3, Rayleigh, Essex SS6 8LR; 0702-554155.
Molimerx Ltd, 1 Buckhurst Road, Town Hall Square, Bexhill-on-Sea, East Sussex; 0424-220391.
Pace Software Supplies Ltd, 92 New Cross Street, Bardford BD5 8BS; 0274-729306.
Technomatic Ltd, 17 Bumley Road, London NW 10 1ED; 01-452 1500.

TOROIDALS

The toroidal transformer is now accepted as the standard in industry. overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to I.L.P., PRICE.
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 14 DA YS together with a short lead time on quantity orders which can be programmed to vour requirements with no price penalty.

CIRCLE 09 FOR FUR'THER DETAILS

FREQUENCY COUNTERS
 HIGH PERFORIMANCE
 HIGH RELIABILITY
 LOW COST

The brand new Meteor series of 8 -digit Frequency Counters offer the lowest cost professional performance avaidable anywhere.

* Measuring typically $2 \mathrm{~Hz}-1.2 \mathrm{GHz} \quad$ * Low Pass Filter
* Sensitivity $<50 \mathrm{mV}$ at 1 GHz
- Battery or Mains
* Setability 0.5 ppm
- Factory Calibrated
* High Accuracy
- 1-Year Guarantee
* 3 Gate Times
* 0.5" easy to read L.E.D. Display

PRICES (Inc. adaptor/charger, P\&P and VAT)
METEOR $100 \quad(100 \mathrm{MHz}) \quad £ 104.36$
METEOR $600 \quad(600 \mathrm{MHz}) \quad £ 134.26$
METEOR 1000
$(1 \mathrm{GHz}) \quad £ 184.36$

Illustrated colour brochure with technical specification and prices available on request.

BLACK STAR LTD, Dept. WW, 9A Grown Street, Si lves Huntingdon, Cambs PE17 4EB, England Tel: (0480) 62440 Telex: 32339

CIRCLE 14 FOR FURTHER DETAILS

AMBISONIC SURROUND SOUND DECODERS

Ambisonic surround sound gives a realism in the reproduction of music that is hard to describe without using hackneyed expressions like 'natural' and 'being there.. Positioning of the performer becomes obvious and the acoustic of the original environment comes through to the listening room. The Minim decoders also provide enthanced results from conventional stereo material. We can now supply UHJ encoded records, tapes and compact discs And don't forget our other products

PROGRAMMABLE WEEKLY TIME SWITCHES

 TELEVISION SOUND TUNERSPlease send me information on Timeswitches/Television Tuners/Ambisonics

Name

Address
Minim Electronics Limited, Lent Rise Road
Burnham, Slough SL1 7NY. Tel. Burnham 63724 ww 7

ANTENNA TUNER

NEW! 0.1-30MHZ, IMPROVES RECEPTION, switched series/parallel bandpass, adapts to absorption wavemeter, field strength meter, modulation monitor, $£ 25-20$
TIME WRONG? MSF CLOCK is ALWAYS CORRECT - never gains or loses, SELF SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds, auto GMT/BST and leap year, can expand to Years, Months, Weekday and Milliseconds, parallel BCD output for computer, audio to record and show time on playback, receives Rugby 60 KHz atomic time signals, only $15 \times 15 \times 8 \mathrm{~cm}$, built-in antenna, 1000 Km range, GET the TIME RIGHT,£72-70.
Each fun-to-build kit (ready made to order) includes all parts, case, by-return postage etc and list of other kits.

CAMBRIDGE KITS
45 (WG) Old School Lane, Mitton, Cambridge. Tel. 860150

RS422/RS232 converter

RS422 is a half-duplex data-link standard and, being balanced, allows greater distances to be covered and higher data rates than are possible using RS232. It can also be used with one transmitter and several receivers ('multi-drop'). This circuit provides RS422 and line monitoring using an RS232 v.d.u. or computer.

Normally, the circuit is in receive mode and the v.d.u. monitors the line. When a key is pressed, line four on the RS232 interface is inverted and the 75176 transmits the character. Receive mode is resumed on key release. Line five provides information on the direction of the line and may be omitted. Essentially, the circuit is a level converter and therefore independent of data rates. Note that direction reversal time on an RS422 line can be far shorter than that of a simple v.d.u.,

75176, 1489 require only +5 V , Gnd,
1488 also requires $+12 \mathrm{~V},-12 \mathrm{~V}$.

DON'T WASTE GOOD IDEAS
We prefer circuit ideas with neat drawings and widely-spaced typescripts, but we would rather have scribbles on "the back of an envelope" than let good ideas be wasted. Submissions are judged on originality or usefulness not excluding imaginative modifications to existing circuits so these points should be brought to the fore, preferably in the first sentence. Minimum payment of $£ 30$ is made for published circuits, normally early in the month following publication.
which can lead to apparent loss of characters. A twisted pair should be used for the 422 line as the 75176 is very sensitive, and care
should be taken with layout.
L. Smith

Blackford
Perthshire

Isolated video driver

Designed for connecting computer video output to a non-isolated domestictv, this circuit uses a readily available 6N139 optical coupler (RS Components) operating at $1: 1$ current-transfer ratio. Positive video modulation is assumed and, for the UK, a composite video-signal bandwidth requirement of 6 MHz .

Voltage gain of the fet stage is about four. The source is directly coupled to the next stage which approximates a current drive for the coupler led. Bias current of around 9 mA , determined by the
fet drain/source resistors and supply voltage, keeps the optical-coupler transfer characteristic in its linear region. Capacitor C_{3} negates the effect of Miller capacitance in the driver transistor and C_{4} extends frequency response to above about 800 kHz by quickly removing stored charge in the transistor emitter during voltage transitions. Resistor R_{7} is set for optimum rise and fall times.

Collector current in the opto-coupler is about 7 mA , allowing low resistor values to be used to shunt Miller capacitance
so that the transistors can operate at maximum speed. Direct-current supply for this stage may come from the $t v$; in valve sets, the sound output-valve cathode might be used.

The prototype gave rise and fall times of 200 ns corresponding to a bandwidth of 5 MHz which should be sufficient for most home computers. Bandwidth is mainly limited by the opto-coupler and faster devices should work with only minor modifications since the driver bandwidth is about 20 MHz . Layout is critical - all tv circuit
tracks should be separated from the grounded side by at least 4 mm for insulation, and signal paths should have minimum stray capacitance. Video signal from 75Ω coaxial cable is terminated and should be about 1 V pk at the input and large values of $\mathrm{C}_{1,2}$ are required for faithful reproduction of frame-sync. pulses. Output is about 4 V pk and may need to be divided for some sets.
J. A. McLay

Ballincollig
Co. Cork
Ireland

Repeat for D_{1} to D_{7}, A0 to A_{15}, c.u and memory control lines

Accentuated metronome

Loud regular pips - clearly audible even above my attempts to master the guitar - are generated by this metronome. Each pulse from $\mathrm{IC}_{1 \mathrm{a}}$ triggers a fixed-duration pulse from $\mathrm{IC}_{1 \mathrm{~b}}$ which drives the loudspeaker through $\operatorname{Tr}_{1,2}$. Normally, common collectors of Tr_{3-6} are approximately at ground potential but counting and decoding circuits around IC_{2}
cause Tr_{3-6} to be driven in opposition to $\mathrm{Tr}_{1,2}$ on the first beat of each bar to give an accentuated pip. Time signatures of $2 / 4,3 / 4$ or $4 / 4$ are selected by a switch. Supplies of between 5 and 18 V may be used. I used two PP3 batteries to give 18 V in the prototype.
Steve Kirby East Molesey Surrey

Microprocessor teaching aid

Using the WAIT command, the Z 80 microprocessor can be made to execute one instruction at a time under control of a manual switch. If all the address, data and control lines are monitored, the processor can be seen fetching/storing information and carrying out commands.

While the switch is open, WAIT is low. When the switch is closed, the upper bistable device is clocked and WAIT goes high. Simultaneously, pulses from the processor clock feed the lower bistable i.c. and after two rising edges, the output of the lower device goes low and resets the upper one. Thus WAIT returns low after one or two clock cycles and sets the lower bistable i.c. Note that dynamic memory content will be lost since the memory-refresh circuit cannot operate. The circuit has been used with a ZX81 (no ram expansion), connected through the 23 -row connector to make internal soldering unnecessary. A binary-to-hexadecimal converter and display on the data lines is a useful addition.
Peter Hall
University College London

Simple clipping detector

No setting up is required on this simple clipping detector for audio power amplifiers. When positive output swing exceeds

$$
\mathrm{V}_{\mathrm{b} 1}+\mathrm{V}_{\mathrm{eb} 1}+\mathrm{V}_{\mathrm{led}}+\mathrm{V}_{\mathrm{be} 2}+\mathrm{V}_{\mathrm{Dl}}
$$

the led lights. Values shown are for a 34-0-34V supply and switch the led on at 64 V pk-pk, but they may be altered to suit any single or dual-rail power amplifier.
Tolerance on the switching point is about 0.5 V due to junction effects. Resistor R_{1} and the diode protect Tr_{2} during negative swing.
M. J. Conduit

Farnham
Surrey

CIRCUIT IDEAS

Artificial daylight

For applications including tropical fish-tank lighting, this circuit gradually changes lamp brightness from off to full-on in 25 minutes, or vice versa depending on the switch position. A bridge rectifier and shunt zener diode provide mains synchronized d.c. pulses. Triac firing, through an opto-coupler, is from a unijunction transistor whose time constant is determined by a fet acting as a variable resistor. The capacitor which biases the fet, is charged or discharged depending on the switch position. If R_{1} is disconnected, brightness remains constant for at least 24 h through charge in C_{1}.
J. Clegg

Doncaster
Yorkshire

Accurate switched-gain for op-amps

Using a cheap array of seven equal resistors provides accurate switched op-amp gains of one, two, five and ten times. Resistance ratios for these gains in a non-inverting amplifier are $0^{2}, 1^{2}, 2^{2}$ and 3^{2} respectively so the input resistor may be made from zero, one, two or three resistors in parallel, and the feedback resistor form the same number of resistors in series.
B. P. Cowan

Bedford College

University of London

Current limiting for 317 regulators

Addition of an opto-isolator to a 317 -based variable-voltage power supply allows precise current limiting. I have used this circuit to protect transistors during development of r.f. output stages of uncertain behaviour and it should be possible to apply this idea to simpler power supplies using power-transistor/zenerdiode combinations.

When voltage across the series-pass resistor exceeds around 1 V the isolator photodiode starts to emit, turning on the phototransistor and reducing control voltage to the regulator. Output diodes keep regulator output voltage at

1.5 V above control voltage to limit output current under a dead short. Power and resistance ratings of the series resistor are chosen to suit the required current limit and the diodes must
be able to carry more than the current limit value.
Lionel Sear
Truro
Cornwall

Combination lock with deterrent

In this idea in the May issue, IC_{1} should have been a 74148, E_{0} of IC_{2} is not connected to E_{1} of IC_{1}, the transistor shown should have a base resistor and IC_{172} is the left-hand section. On $\mathrm{IC}_{6}, \mathrm{Q}$ and \bar{Q} should be transposed. We apologise for these errors.

Remote volume control

Heart of this circuit, which requires only contact closures for volume increase/decrease, is a 4051 eight-channel multiplexer operating in analogue mode. The setting of this variable attenuator depends on output states of a $4029 \mathrm{up} /$ down counter which is stepped through on contact closures under control of a buffered clock signal from pin eight of the 4069 inverter. Frequency of the clock is $\mathrm{RC} / 2.2$ and a 555 timer ensures that the volume level is low when the circuit is switched on.

One 4051 is required for each further audio channel, the maximum number of channels only being limited by 4029 drive capability.
DennisJ. Eichenberg
Ohio
USA

Three-channel light dimmer

Using a non-linear ramp to linearize power output, this light dimmer with three channels requires few components and allows triacs to be fired remotely through non-mains carrying cable. Remote firing also means that the triacs can be mounted next to the load which simplifies mains filtering. Channels may be added by using further comparators, isolators and triacs.

Advantage is taken of the LM339 open-collector outputs to eliminate series resistors at the three phase-control sections and directly discharge the ramp capacitor. Transformer output should not exceed about 6 V to prevent excessive dissipation in the LM339.
Tim Williams Tunbridge Wells Kent

38

Cool and calculating． Analog＇s fast CMOS digital multipliers．

It takes the leader in real－world signal processing to come up with a family of fast，digital multipliers as cool and calculating as CMOS．

No more power－hungry ECL，NMOS， and bipolar multipliers encumbered with hefty power supplies，heat sinks and cooling fans．

No more power－related design headaches，reliability problems or costs that make your temperature soar．

CMOS digital multipliers keep a cool head whether your application calls for digital filters，FFTs，matrix operations or $\mu \mathrm{P}$ acceleration．
ir DIPs，flatpacks，LCCs and space saving pin grid arrays，our improved second source products offer comparable speed at less than $1 / 20$ th the power．All at competitive prices． Pin－for－pin，they＇ll replace the
overheated＂multifriers＂that are
plugged into your sockets right now． In addition we are proud to announce our proprietary single port 16×16 multiplier accumulator （ADSP 1110 ）for new low－cost designs and 24×24 multiplier（ADSP 1024） for high accuracy applications．

In the coming months．Analog Devices will be moving its entire DSP product line into a new two－micron CMOS process．This process enables the cycle times for all parts to improve by roughly a factor of 2.5 to one．For example，we will be offering a 16×16 multiplier with a 60 ns multiply time－ in a low－power CMOS technology．In addition to major speed break－throughs on industry standard parts，watch for us to announce a broad line of proprietary DSP devices during 1984.

PART	DESCRIPTION	REPLACES	POWER （W）	SPEED（ nS ）©		
				$25^{\circ} \mathrm{C}$ AMB	$70^{\circ} \mathrm{C}$ AMB	$125^{\circ} \mathrm{C}$ AMB
ADSP 1080	8×8 MULTIPLIER	MPY 08HJ	0.09	85	100	115
ADSP 1008	8×8 MULT／ACC	TDC 1008」	0.1	105	120	140
ADSP 1081	8×8 UNSIGNED MULT．	MPY 8HUJ	0.1	75	90	105
ADSP 1012	12×12 MULTIPLIER	MPY 12HJ	0.15	110	130	150
ADSP 1009	$12 \times 12 \mathrm{MULT} / \mathrm{ACC}$	TDC 1009」	0.15	130	155	180
ADSP 1016	16×16 MULTIPLIER	MPY 16HJ	0.15	145	170	200
ADSP 1010	16×16 MULT／ACC	TDC 1010J	0.15	165	190	220
ADSP 1110	16×16 SINGLE PORT MAC	PROPRIETAFY	0.15	165	190	220
ADSP 1024	24×24 MULTIPLIER	PROPRIETAFY	0.25	200	235	275

Contemporary ECL and Bipolar parts are specd for a maximurn CASE temperature of $125^{\circ} \mathrm{C}$ ．Due to their high dissipation
this Lorresponds to an ambient of about $95^{\circ} \mathrm{C}$ ．Analog Devices Mifitary．CMOS parts are spec．d at an AMBIENT of $125^{\circ} \mathrm{C}$ ．

cenazators

NEW TG501 FUNCTION GENERATOR
.005 Hz to 5 MHz ; sine, square, triangle, ramp, pulse and haverwave waveforms; free-run, triggered or gated modes; variable start/stop phase, 19:1 symmetry range; variable DC offset; variable 50Ω output; TL output; external sweep mode
NEW TG502 SWEEP/FUNCTION GENERATOR
Main generator features as TG501 plus internal sweep generator; 1000:1 linear or 10,000 1 log sweep range; precise dial-and-enter setting of sweep limits; marker with variable duration and out-of-range indicator; variable sweep rate; single sweep mode; sweep reset and hold; sweep and pen-lift outputs.
NEW TG503 PULSE/FUNCTION GENERATOR Main generator features as TG501 plus normal, double and delayed pulse modes; pulse width variable from 50 ns to 50 ms ; delay variable from 100 ns to 50 ms ; 10 MHz capability in double pulse mode; complement mode; symmetrical, positive-going or negative-going outputs with adjustable baseline.
For further information contact:
Thandar Electronics Ltd,
London Road, St. Ives, Huntingdon, Cambridgeshire PE17 4HJ Telephone: (0480) 64646 Telex: 32250.

CIRCLE 21 FOR FURTHER DETAILS.

E.M.S. POWER SYSTEMS

Solve all your Power Problems by contacting E.M.S.
E.M.S. specialise in systems to eliminate your power problems.
Products range from 35VA switched square wave Power Packs to 1KVA fully uninterruptible sine wave systems.
E.M.S. also manufacture chargers which range up to 60 amps .

For further details please contact:

E.M.S. Manufacturing Limited Chairborough Road
High Wycombe
Bucks
Tel: (0494) 448484

KONTAKT

NEW from Kontakt compressed air in a handy can. TENSION 67 efficiently removes dust and deposits from electronic and electrical apparatus, microscopes, medical equipment, cabinets, etc. Absolutely no spray residues. No compressed airline needed. With plug-in nozzle even blows around corners. Ready for use

Kontakt 60
Dissolves oxides and sulphides, re moves dirt, oil, resin and traces of metal abrasion. Protects against erosion.

Kontakt 61
Special cleaning, lubricating and anti corrosion fluid for NEW (non oxidised) cellent lubricant for all electrical and electro-mechanical systems.

Spray Wash WL

A rapid cleaner for reliable washing and degreasing of electrical equipment and components. For removal of dirt, grease, oil, soldering residues and other impuri

ALSO AVAILABLE:

A COMPLETE RANGE OF INDUSTRIAL AEROSOL SPRAYS
SK10. Soldering Lacquer, K75 Cold Spray, K70 Plastic Spray, K88 Oil Spray, K701 Vaseline Spray, K90 Video Spray. K33 Graphite Spray, Kio0 Antistatic Spray, $K 101$ Fluid Spray and, of course, Positiv 20 positive photo resist for printed circuits.

Fibre optics communications

Part 3 - Systems and applications. This last article in this three-part series looks at the range of applications in which fibre optic systems are being introduced.

In view of the very low energy levels involved in fibre optic transmission they are best suited to the transfer of information rather than power. It is in this area that they are making a major impact, even at this relatively early stage of their development. Indeed, British Telecom has recently announced that it will be ordering no more coaxial cable after 1985 for the telephone network, due to their growing commitment to fibre optics. It has been predicted that over half of all trunk telephone traffic will be carried on optical fibres by 1991.

There is no difficulty in principle in substituting optical fibres for copper cables in the majority of data transmission applications. After multiplexing the data in the normal manner the electronic modulator drives a light emitting or laser diode rather than a coaxial line amplifier, Fig.1. At the receiving end the signal can be treated again in the conventional manner once it is beyond the detector preamplifier. In small systems the additional complexity is minimal, whilst complex data systems such as telephone trunk routes can actually be simplified by adopting optical fibres as the transmission medium.

The range of telecommunications applications for fibre optics can be conveniently divided into three areas
-public telephone network
-broadband entertainment and information services
-computer local area networks.

Public telephone network

Because of the very low bandwidth required for each telephone handset, it is doubtful if there will ever be an economic need to replace the usual copper wire pairs with an optical fibre. (This position changes of course when considering an integrated data network including telephony, television and data link). The major fibre application is in the area of junction and trunk telephone transmission where the traffic has been concentrated and multiplexed to a much higher data rate. Here experience has shown that the first generation systems have fallen into several broad performance areas, as we would expect from the previous look at fibres, sources and detectors.

The majority of installations have operated at a wavelength of around $0.85 \mu \mathrm{~m}$ using medium performance graded index fibre with silicon avalanche photode-
tector receivers, Fig.2. Where the main consideration was not maximum repeater spacing l.e.ds have normally been used because of their lower cost, resulting in repeater separations of around 6 km in the $30-45 \mathrm{Mbit} / \mathrm{s}$ and 7 km in the $100-140 \mathrm{Mbit} / \mathrm{s}$ range ${ }^{1}$. The latest phase of the first generation systems has seen the use of the dispersion null at $1.3 \mu \mathrm{~m}$ with low attenuation fibres resulting in even greater spacings for medium data rates.

An additional advantage arising from the increased repeater spacings is that well over 50% of the connections between major switching centres within cities can now be made repeaterless, with an increase in reliability and decrease in cost. This has also been the pattern of experience in N. America, Europe and Japan.

Optical fibres are not usually laid as a single fibre. Instead a number of them, eight being common, are made up into a cable around a steel strength member.

After a post doctoral fellowship at Manchester University, and a year teaching in Baghdad, Brett Wilson returned to Manchester to work on optical position detectors and sensitive non-contact current measurement. He then lectured at Nottingham University, where he's been concerned with novel uses of op-amps in addition to fibre optics, and is now back in Manchester, this time at UMIST. His Ph.D. was on a high-speed laser stroboscope for magnetic bubble research.

Fig.1. Principal components of an optical communications system.

Fig.2. Longer wavelength laser systems offer the best combination of repeater
spacing and data rate, but shorter wavelength l.e.d. systems are less costly.

Most of the cables are installed in existing ducts where their small size is a great advantage in an already crowded environment. Lengths of around 1 km of optical cable are usually pulled through the ducts before being jointed using V-groove or arc-fusion techniques.

For second generation systems effort is being concentrated on long-haul high-speed communications where the cost is affected strongly by repeater spacings. Hence it is natural to use laser driven monomode fibres in their minimum dispersion region at $1.3 \mu \mathrm{~m}$. Repeater spacings of 20 km are typical with data rates of $400 \mathrm{Mbit} / \mathrm{s}$ being employed (NTT, Japan) over routes ultimately several thousand kilometres in length ${ }^{2}$. Most field trials, however, have been conducted with shorter routes of around 100 km .

The promise of low-loss transmission with high data rates is obviously of great importance in the area of underwater telephone cables. In addition, the lower weight and smaller size of optical fibres compared to copper coaxial cables is of great economic and handling importance considering the long lengths of cabling, approximately 6500 km , involved in a transatlantic crossing. The various agencies concemed have mapped out the nature of the first optical fibre transatlantic telephone cable, TAT 8, to be installed in 1988.

It is intended to operate multiple optical fibre pairs at 280 Mbit / s, equivalent to 35,000 two-way voice channels, with repeater spacings of more than 35 km . Monomode fibre will be used excited by $1.3 \mu \mathrm{~m}$ injection laser diodes. Strength is provided by the usual arrangement of central and peripheral steel elements with cushioning from interstatial

elastomer and an external polyethylene coating. Water resistance and electrical power in the form of a constant current for the repeater electronics is obtained via a continuously welded copper cylinder jacket. The overall diameter of the completed cable will be just over 20 mm ; under half the diameter of the previous copper coaxial TAT 7 cable.

The underwater repeaters, which have not yet been finalised, will probably use up to four laser transmitters, one actively employed and the other three as standby units. This is thought to be necessary because of the limited lifetimes so far achieved with i.l.ds coupled with the enormous cost of underwater repairs. Optical detection is performed by an $\operatorname{InGaAs} \mathrm{p}-\mathrm{i}-\mathrm{n}$ diode rather than an a.p.d. because of the complexity of providing a high voltage supply to an a.p.d. A silicon bipolar transimpedance preamplifier is used in preference to a GaAs unit because as yet silicon fabrication technology is more proven than that required for GaAs. Active waveform retiming is carried out at each repeater by clock extraction circuitry. Various monitoring circuits transmit operational information back to the shore based stations.

Broadband information services

The use of optical fibre technology has been much discussed with respect to the 're-cabling of Britain', where a single unit on the customer's premises would provide access to a wide range of tv channels and interactive information service. Connections between the customer's unit and the distribution centre can obviously be of the ordinary copper coaxial cable type or by optical fibres, either of which could be arranged as a tree and branch, or switched star topology, both of which are shown in Fig.3. The switched star system is currently favoured as offering the greatest future potential for system expansion. In contrast, over 80% of all American coaxial cable systems use a tree and branch topology.

Owing to the inherent difficulties and signal losses involved in splitting the signal in an optical fibre, it is likely that its use in a tree and branch network would be restricted to the main trunk. In a switched star network, however, the signal paths are a series of point to point transmissions
ideally suited to the characteristics of optical fibre technology.

Most of the field trials that have been conducted around the world (UK, USA, Canada, Germany and Japan) to assess the potential of fibre optic transmission links have relied on some form of analogue intensity modulation of thelight source. The reason is simply that frequency division multiplexing onto ever higher frequency carriers has been the traditional manner in which to multiplex telephone, and by extension, television channels. Analogue intensity modulation performs satisfactorily with coaxial cable techniques but does not ideally suit optical sources since in general they are non-linear unless pre-biasing techniques are employed. Even then circuit complexities arise because the lasing threshold of a semiconductor injection laser is temperature sensitive. The best properties of the optical transmission systems discussed in the previous articles are brought out by binary intensity modulation, i.e. on or off. For a fully integrated data network this is obviously the best form of modulation as it renders unnecessary any form of modulation change between the computing section and the distribution section.

However, there are certain bandwidth penalties to be paid when attempting to encode tv channels in a completely digital format. in an analogue format a PAL colour signal will occupy a bandwidth of 6 MHz , but with eight-bit p.c.m. digital encoding this increases dramatically to around 120 MHz to satisfy sampling requirements at an appropriate multiple of the colour subcarrier. In other words a single digital tv channel would occupy the equivalent of a 140 MHz optical fibre telephone trunk circuit! Even with bandwidth compression techniques this figure is only reduced to approximately 70 MHz . Clearly there is a problem in providing every user in a tree and branch network with an optical fibre and receiver electronics with sufficient bandwidth at an affordable price, capable of bringing in perhaps 10 or 20 simultaneous ty channels and ancillary services.

A switched star network overcomes many of these problems by employing upstream low speed signalling, so that customers may indicate to the star switching centre which service or channel they want at any given time. The
switching centre then routes the required signal down the customer's line, which obviously only need sufficient bandwidth for one service at a time. The primary routes from the main control centre to each of the switched star centres must of course be able to carry the full range of services simultaneously.

British Telecom has gained valuable experience in this field with their Milton Keynes 'Fibrevision' experiment in which 18 houses received a full range of services via optical fibres ${ }^{3}$. Based on this experience, BT are proposing a 'Multi-star Wideband Network' offering
—broadcast tv, d.b.s. tv,
subscription tv, pay per view

- videotex; alphanumeric
and photographic
--individual video, e.g. library discs
-home data services.
The proposed topology of the network is shown in Fig.4. The originating site, or super headend, would house the data library as well as the off-air tv and video equipment. This site would be connected by optical fibre 'super primary links' up to approximately 20 km in length with no repeaters, to a number of hub sites. Each of these hub sites would simply regenerate and distribute the information over 'primary links' to a maximum of 120 wideband switching points where the real intelligence and flexibility of the system resides. The full range of services is available to all the switching points, but programmes are only transmitted down the 'secondary links' to each customer when they demand a specific tv channel or service.

It is envisaged that each wideband switching point will be able to service up to 300 customers with cable runs up to 500 m . Even though the Fibrevision trial used optical fibres for these secondary links it is considered that cost still favours small bore coaxial cables, at least for the next few years. Eventually the secondary links will also be optical fibres. Each customer will be able to receive two simultaneous tv channels and a range of f.m. stereo sound encoded by frequency division multiplex on their 120 MHz bandwidth secondary link. A customer termination unit, a small set-top u.h.f. converter and a remote control handset completes the information/control chain.

Where a super primary link to the super head end is relatively short it is intended to utilise $50 \mu \mathrm{~m}$ graded index fibre driven by a $0.85 \mu \mathrm{~m}$ semiconductor laser. On the longer super primary links it may be necessary to use $1.3 \mu \mathrm{~m}$ monomode fibre. Each link will be composed of ten fibres. There will be five fibres for a full range of off-air and subscription television, with each fibre carrying four frequency multiplexed frequency modulated tv channels, resulting in a total of 20 broadcast channels.

Of the remaining five optical fibres constituting the 10 fibre link, three will be for dedicated tv bandwidth channels such as ondemand video library and videotex, again multiplexed four per fibre. Each fibre will be optically modulated by analogue intensity modulation. The remaining two fibres will carry switching and control signals - one upstream and one downstream.

At a hub site the optical signals are simply regenerated and relayed out to the wideband switching points. A firm decision does not seem to have been taken whether to use an injection laser diode along with an avalanche photo detector at $0.85 \mu \mathrm{~m}$ on a graded index fibre for the primary links, or whether to upgrade an i.l.d. or l.e.d. at $1.3 \mu \mathrm{~m}$ with a $\mathrm{p}-\mathrm{i}-\mathrm{n}$ fet receiver, again using graded-index fibre. What is certain is that in the primary links the five fibres containing the 20 broadcast tv channels will be optically tapped to serve several switching points. The primary links between hub sites and switching points will be less than 5 km in length.

Within each wideband switching point a microprocessor-controlled matrix type of routing switch will route the 20 broadcast tv channels as demanded by each of up to 300 customers. Each customer will be able to receive two channels simultaneously. Requests for individual video programmes in the form of discs will be relayed up through the system to the super head end, which will then replay on one of the dedicated channels back down through the hub site and the customer's own switching point and out on to the customer's own secondary link.

Local area networks

A lan is a communications network connecting a number of

users within a local geographical area to shared computing resources. The two most common topologies have been the contended bus with collision detection (Ethernet) and the ring structure, as in the Cambridge ring, Fig.5. Many of the features of optical fibres make them attractive for use in lans but usually only after some modification from a coaxial cable design has been implemented.

In the Ethernet system each station is connected to the coaxial bus via a bidirectional passive tap, making insertion of a new work station a relatively simple matter. Each station attempts to transmit its message when the bus is quiet. If a message collision is detected transmission is stopped and retried a short time later. With fibre optic technology it is relatively difficult to make passive couplers without an unnacceptably high loss, thus restricting severely the number of users that may be attached to the bus. To overcome this, Fibernet, the optical version of Ethernet, uses a central passive star coupler to enable 16 users to com-

Fig.4. British Telecom's proposed multi-star wideband network will use fibre optics in all but the short final link to the customer.

Fig.5. Ethernet-style local area network uses a bi-directional data highway approach compared to the enclosed path of a Cambridge ring lan.

Fig.6. D-Net optical lan combines a data highway and a star return, making it more like an open ring.

References

1. J. E. Midwinter, First generation trunk transmission systems: capabilities and limitations. IEEE Joumal on selected areas in Communications, vol.SAC-1, 1983, pp. 381-6.
2. E. Iwahashi, Trends in long wavelength single-mode transmission systems and demonstrations in Japan. IEEE Journal of Quantum Electronics, vol.QE-17, 1980, Quantum
3p. J. R. Fox, D. I. Fordham, R. Wood and 3. J. R. Fox, D. I. Fordham, R. Wood and
D. J. Ahern, Initial experience with the Milton Keynes optical fibre cable tv trial. IEEE Transactions on Communications, vol.COM-30, 1982, pp. 2155-62.
3. C. W. Tsend and B. U. Chen, D-Net, A new scheme for high data rate optical LANs. IEEE Journal on selected areas in Communications, vol.SAC-1, 1983, pp.493-9.
4. A. L. Harmer, Review of optical fibre sensors. IEE Colloquium on Optical Fibre Sensors, digest $1982 / 60$, paper $1 / 1$, London, 1982.
municate with each other.
At higher data rates, such as can be supported on fibre optics, the efficiency of a message contention scheme starts to fall rapidly. The transmission delay is not deterministic and the network cannot guarantee to support real time transmission such as telephony.

The alternative is a ring network. This structure suits the nature of fibre optics better because it is essentially a series of point to point transmissions. Since the signal is regenerated at each station there is little trouble with power levels. To increase the reliability of communications with respect to fibre failure for example, a double ring may be easily employed.

While commercial versions of optical ring lans are available, development attention is focusing more on structures such as D-Net where high data rates and low delays are obtainable ${ }^{4}$. Fig. 6 shows an outline of D-Net in its star coupled form with a single star connector at the far end of the outward bound bus. The transmitter T sends regular 'locomotive' header signals out along the highway which are detected by all stations at their S-terminal.

At each station a message packet may be attached to the appropriately numbered 'wagon' slot after the locomotive has passed. Because the locomotive is a synchronized event, re-triggered by reception of a previous locomotive back at the terminus R , the message delay through the system is tightly bound.

At the far end of the highway, the star coupler distributes the trains of information back to the receive terminals of all the stations. Just as there can be more than one train on the line between Manchester and London, so will D-Net support more than one train at a time, given a detailed knowledge of the maximum propagation time, bit slot lengths and number of stations. This configuration seems extremely attractive at very high speeds beyond $100 \mathrm{Mbit} / \mathrm{s}$ because it retains a higher efficiency than a passive bus arrangement.

Fibre-optic sensors

One of the aims of research workers in the field of fibre optics has been to stabilize the transmission of information along an optical fibre against commonly encountered environmental changes, for example; pressure, temperature, strain, etc. they have succeeded to an extent where, in many applications, fibre optics is, or will soon be, the preferred transmission medium. In contrast, at the opposite end of the applications spectrum, there have been efforts to exploit variations in the same transmission parameters with respect to environmental disturbances in order to produce a range of fibre optic sensors.

Optical modulation and detection schemes, as classified in an informative survey of fibre-optic transducers (ref.5).

Parameter	Mechanism	Detection	Examples
Coherence	Interference between signal and reference fibre, or different propagation modes in multi- mode fibres.	Fringe counting or phase shift detection.	Fibre gyroscope, hydrophone multimode gauge for dynamic
strain measurement.			

Such sensors would exhibit many potential advantages, usually for the same reasons as in communications, namely; electrical isolation, freedom from electromagnetic interference and the lack of fire risk in sensitive areas.

The range of parameters that can be measured can conveniently be classified into
> -mechanical (force, pressure, deformation)
> -electrical (field strength, polarization, current) -magnetic (field strength, polarization) -temperature.

In most cases these measurands produce changes in the refractive index or in the absorption of the fibre, but some of them will modulate luminescence effects. The table presents information on the categories of modulation and detection that may be used with each of the five different optical parameters.

Some of the most sensitive fibre sensors constructed use an interferometric technique in which the optical phase shift produced in a fibre by interaction with the measurand is compared to the phase of a reference arm. Rotation sensors (gyroscopes) with sensitivities around 10^{-2} degrees per hour are currently operating. Similar techniques can be applied to phase shifts produced by pressure changes on the fibre, resulting in acoustic hydrophone sensors with higher sensitivities than piezoelectric types. Magnetic fields can also be detected by phase techniques if the optical fibre is coated with a magneto restrictive material.

Mechanical displacement can be measured by several arrangements of intensity sensing between movable fibre ends, either with an orthogonal or a slant cut. Vibration detection of a movable membrane from reflected light is also popular. One of the most widespread uses of amplitude detection is the sensing of a Gray code from an encoded disc or shutter, with resolutions available down to $10 \mu \mathrm{~m}$. Finally, modulated microbending loss can be used by clamping a fibre between two plates with a periodic mechanical grating. In general amplitude detection methods are less sensitive than phase modulated sensors and in addition suffer from unwanted and variable signal attenuation and temperature problems.

DOUBLE-SIDED DISC DRIVE ATA SINGULAR PRICE.

For only $£ 229.95$ (and that includes VAT, and all the necessary leads) you can have an OPUS 500 k double-sided disc drive. And remember $3^{\prime \prime}$ disc drives are fast becoming the standard for home and business use.

This is an even bigger bargain than it sounds. For you're getting a double sided drive at the price that other company's sell single sided drives for: It reads and writes to the disc cartridge from both sides, giving you twice the on-line capability of other $3^{\prime \prime}$ drives. And there's no need to flip the disc over!
STATE OF THE ART TECHNOLOGY FEATURING:

- Compurible with most other makes
- Comprethensive manual
- Pree dise carridge
- Format, vertfy andolother uilities

One touch carridge kord provicled

- 3 ma access time
- Porable, compact and reliable
- One vears tull guarantee 1)
- Totally compauble wad $51 / a^{\prime \prime}$ drives

TECHNICAL PERFORMANCE.

	Single Deonsity	Double Density
Cupacity	250 K Bytes	500k Bytes
Recording density	4.915 BPI	9.8301 BPI
Track density	100712	100 TP 1
Toual number of tracks	40 (each side)	40 (each side)
Recording merhod	M	M1FM
Rotational specel	300 RPM	300 RPM
Transter rate	12 5K Bits $/ \mathrm{sec}$	250 K Bits/ sec
Access time (rack lo) track	3 ms	3 ms
Access time souling	20 ms	20 mls
Aunor start time	6.) 5ec	05.50 C

The Opus super 3 Microdrive is now avalable from W. H. Smiths and leading specialist shops

$$
\text { Dual disc crives are also avalable for } 5460 \text {. }
$$

OPUS SCPPLIES LTD.

158 Camberwell Road, London SE5 OEE
Opening hours 9.00-6.00 Mondat-Fridav, $501-7018668$ 900-1.30p.m. Saturday: 01-7036155

[^5]ESTABLISHED 30 YEARS. U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

RECORD DECKS 240 volt AC. Post $£ 2$				
Make	Mode	Drive	Cartridge	Price
BSR	P170	Rim	Ceramic	627
GARRARD	6200	Rim	Ceramic	524
BSR	P207	Rim	Ceramic	± 20
BSA	P232	Beit	Magnetic	¢28
BSR	P200	Beit	Magnetic	634
AUTOCHANGEESS 260 VOLT				
BSA	Budget	Rim	Ceramic	f18
BSR	Deluxe	Rim	Ceramic	420
BSR	Deluxe	Rim	Magnetic	${ }^{226}$
GARRARD	6200	Rim	Ceramic	62

THE "INSTANT" BULK TAPE ERASER I 11.50 POST 95D Wilt also demagnetise small tools. Tape Heed Demapnetiser $£ 5$.
ALUMINIUM CHASSIS. $21 /$ Rin deep 6×4 f1.75; $8 \times 6 \ldots 2.20 ; 10 \times 7$ 92.75: 12×8 \&3.20; $14 \times$

ALUMINIUM PANELS. 6×4 55p; 8×6 90p; 14×3 90p; 10×7 fl.15; $12 \times 8 \mathrm{f1} .30 ; 16 \times 6 \mathrm{fi} .30 ; 14 \times 9 \mathrm{f1.75} ; 12 \times 12 \mathrm{f1.80} ; 16 \times 10 \mathrm{EL} .10$. ALUMINIUM BOXES. $4 \times 4 \times 1 / 2 \mathrm{f} 1.20 .4 \times 21 / \times 2 \mathrm{f} 1.20 .3 \times 2 \times 1 \mathrm{f} 1.20$
 $12 \times 8 \times 3$ f4.30. $9 \times 4 \times 453$
POTENTIOMETEAS $5 \mathrm{k} / 2 \mathrm{meg}$, LOG or LIN. US 50 p . OP 90 p . Stereo L'S

FAMOUS LOUDSPEAKERS

			wat			
dax	WOOFER		25	8	f10.	
GIDODMANS	HIFAX	$71 / 2 \times 41 / 4$	100	8		
OOMANS	HB W00F	Bin			$f 13$	
harfedal	WODFER		30		¢9.5	
LESTION	DISCO/GRO	10in	50	8/1	¢21	
ODMANS	HPG/GRO	12in	120	$8 / 1$	f29	
Odmans	HPO/DISCO		120	$8 / 1$	f29.	
Odmans	HP/BASS	15 in	250		f72	
coodmans	HPD/BASS	18in	230	8		
RCS STEREO PRE-AMP KiT. To build. Inputs for high, medium or lowimp volume control and PC Board. Can be ganged for multi-channe					£3.50	
MAINS TRANSFORMERS					Post	
$350-0-350 \mathrm{~V} 250 \mathrm{~mA}$, 6.3 V 6 $\mathrm{A}^{\text {CT }}$						
220 V 25 ma 6V lamp$250 \mathrm{~V} 50 \mathrm{~mA}, \mathrm{6V} 2 \mathrm{~A}$						
tep-Dow						

Step-Down 240 V 10115 V 150 W E9. 250 W E12

RADIO COMPONENT SPECIALISTS

Books and Components Lists 32p stamps. (Minimum post/packing charge 65p.) Access or Barclaycard Visa. Tel: 01-68
CIRCLE 44 FOR FURTHER DETAILS.

B. BAMBER ELECTRONICS

ye Base Station Type F30 AM High Band \& Low Band from Pye Base Station Type F401 AM High Band yye Rase Staition Type F17 FM Hign Band Pye Europa Type MF5 FM High Band
PyE Europa Type MF5U UHF
Pye Olympic Type M201 AM High Band Pye Motofone Type MF5 AM High Band \& Low Band pe Westminster Type W30 Low Band
Pye Banlam Battery Chargers
Rank Teiecoms Battery Charges
Pye pocketphone PFI BatteryChargers 12 Way IT Slarphone Battery Chargers
Tekironix Hard Copy Unit Type 4601
Advance Pulse Generator Type PG 5002
Siemens Milliwattmeter 500 hm 500 mW - -124 Ghz
Gaumonl-Kalee Flutter Meter
Siemens Transistor Power Unit 0-30v 2 amp Airmec Wave Analyser Type 85330 Khz - 20 Mhz Sutilvan RC Oscillator $40 \mathrm{~Hz}-125 \mathrm{Khz}$ Electrohome 9' Video Monitor metal case Axtec 20° Video Monitormetal case Marconi UHF SIgnai Generator Type TF $1060 / 2450101200 \mathrm{MHz}$ Marconi VHF Ailgnment Oscilloscope Type TF 1104/
Mandorni 100 Wati7dt Alt enuazio Type TM 5280,150 to 185 MH ruel Kjoer Vilication Meter Type 2502
Pyo Aerial Tuner Unil Type ATU 4,2 to 9 MHz . Pre-set
A.I.m. Electronics Pulse Gon arator with Clock G ener ato Rohde \& Schwarz-g Diagraph Type BN 3562300 to 240 MHz telequipmant Dscill os cope Type S32A, DC $103 \mathrm{MHz}_{2}$ Aurmec Millivolit Meter Type 301A
dran ce Audio Gencrator Type
Trues 8 Kjoer Microphona Amplifier Type 2604 Alrmer Smoep Sional Gonerator Ty pe 352.20 Hix Yarabia Power Unito to 50 V a 2 amp Dis Tue RMS Valive Voltmater Type 612 A Footwear Tectior Teltronila Tima Mart Generator Type 180 A

BAKER AMPLIFIERS BRITISH MADE
PA150 Watt MICRDPHDNE VDCAL AMPUAER $£ 129$
4 channel mixing, 8 inputs, dual impedance, $50 \mathrm{~K}-600$ ohm, ole control echo send return socket Slave sockets. Post 53 150 Watt MIXER AMPLIFIER 4 Inputs $\mathbf{4 9}$ Discotheque, Vocal. Public Adress. Speaker outlets for 4,8 or
16 ohms. Four inputs, $20 \mathrm{mv}, 50 \mathrm{~K}$ ohm. Individual volume controls Four channel" mixing. Slave outpu
100 Volt Line Model, 150 watt f114. MONO SLAVE, 150 watt $£ 80$ Baker Stereo Slave $150+150$ watt 300 watt Mono $£ 125$. Post $£ 4$ BAKER MOBILE PA AMPLIFIER. All transIstor, 60 watt RMS, 12 v DC \& 240v AC, 4 inpuls 50k. Aux +2 mics
+1 phono. Ouiput $4-8-16 \mathrm{hm}+100$ volt line. $\quad \mathbf{£ 8} \mathbf{g}_{\text {Post }} \mathrm{f} 2$ WATERPROOF HORNS 8 ohms. 25 watt $10 \mathrm{in} . £ 20.30$ watt $8 \times 4 \frac{1}{2} \frac{1}{1}$. £23. 40 watt 12 in . $£ 29.20$ watts 12 in, plus 100 volt line $£ 38$. Post $£ 2$ BAKER PORTABLE DISCO 150 watt. Twin console + amplifier mike and headphones + twin speakers $£ 330.300$ watt $£ 399$. Ca
$£ 30$. Console + decks + pre-amp $£ 105$ Carr. $£ 6$.

PA CABINET SPEAKERS, Complete. 80 hm 60 watt $17 \times 15 \times 9 \mathrm{in}$.
 $32 \times 15 \times 11$ in. $£ 71.150$ watt $£ 80$. Carr. $£ 10$. Black vinyl covered.

BAKER LOUDSPEAKERS Post $£ 2$ each.

M00EL	INCHES	OHMS	WATTS	TYPE	PRICE
DISCO/GROUP	10	8-16	50	PA	¢18
midrange	10	8	100	MID	$\underline{125}$
MAJOR	12	4-8-16	30	Hi-FI	f16
SUPERB	12	8 8-16	30	HIFF	f26
WOOFER	12	8	80	Hi-FI	$\underline{5} 5$
AUDITORIUM	15	8.16	60	Wooter	f37
DISCO/GROUP	12	4-8-16	45	PA	f16
DISCO/GROUP	12	4-8-16	75	PA	E20
DISCO/GROUP	12	$8-16$	100	PA	¢26
DISCO/GROUP	15	8.16	100	PA	f35

MOTOROLA PIEZO ELECTRIC HORN TWEETER, 33 \%in. square £5 100 watts. No crossover required. $4-8-16$ ohm, 73 / $\times 31 /$ /in. f 10 HORN BOXES, complete 200 watt 530 . 300 watt $£ 35$. Size $16 \times 6 \times 6$ in. Black vinyl covered with handle
CROSSOVERS. TWO-WAY $3000 \mathrm{c} / \mathrm{s} 30$ watt £3. 60W 53.50 . 100 W e4 THREE-WAY $950 \mathrm{cps} / 3000 \mathrm{cps} .40$ watt ratıng £4. 60 watt $£ 6$. $100 \mathrm{~W} £ 10$ LOUDSPEAKER BARGAINS. Please enquire, many others in stock. $4 \mathrm{ohm}, 5 \mathrm{nn}, 7 \times 4 \mathrm{in}, \mathfrak{£ 2 . 5 0} ; 61 / 2 \mathrm{in}, 8 \times 5 \mathrm{n}, \mp 3 ; 8 \mathrm{in}, \mathbf{E 3 . 5 0} .61 / 2 \mathrm{in} 70 \mathrm{~W}, \mathrm{f} 16$.
 $8 \times 5 \mathrm{mn}, \mathfrak{f 3} ; 8 \mathrm{in}, \mathfrak{f 4} 50 ; 10 \mathrm{in}, \mathfrak{\mathrm { f }}$; $12 \mathrm{nn}, \mathfrak{£ 6} . \sin 25 \mathrm{~W} \mathrm{f6} .50$. $60 \mathrm{~W} £ 13.50$

PYE POCKETFONE PF1 UHF RECEIVER
$440-470 \mathrm{MHz}$, Single Channel, int speaker and aerial. Supplied complete with rechargeable battery and service
manual, $£ 6$ each plus $£ 1$ p.p. plus V.A.T.

EDDYSTONE RECEIVERS

Model 770 R $£ 120$ each
GEC RECEIVERS
Model BRT $400 £ 120$ each

RADIOSONDE RS21 METEOROLOGIGAL BALLOON TRANSMITER all-weather sensors, fully solid state, $£ 5$
each plus $£ 1$ p.p. plus V.A.

Airmac Modulation Mater Type 409
Servomex AC Voltage Stabiliser Type AC2240 vac Gamp Servomer AC Voltage Stabiliser Type AC7 240 vac 40amp Hewlett Packard S weep Generator Type 692D 18-4.2Ghz Tektronir Storage Dis play Unit Type 611
Tehtronir Oscilloscope Ty
Tehronir Pugin type C
Rohde a Schequency Meter Type FD1 $30-900 \mathrm{Mn}$
Rohde a Schwar UHF Test Receiver Type BN $1523280-940 \mathrm{Mh} 2$
Airmec Modulation Meter Type $2103-300 \mathrm{Mhz}$
Marconi Carrier Deviation Meter Type TF 79104-1024MMz
Marconi FM Signal Generator Type TF 1066B/1 $10-470 \mathrm{Mhz}$ Marconi AM Signal Gen eralor Type TF $144 \mathrm{H} / 4 \mathrm{~S}$ 10Khz- 72 Mhz Marconi Out of Limits Indicalor Type TF 240
UCC Micro - Film Reader Cassette Type
Marconi Transmission Line Tesi Sel Type TF 1267
Marconi Variable Attenualor 750hm Type TF 1073 A/2S
60 amp Alternator $\&$ Generator Noise Filter.
Instrument Fans $41 / 2^{2} \times 41 / 2^{*} 240$ vac $\quad £ 3$ each 110 vac $£ 100$ each Garrard Car Cassette Player Mechanisms. Stereo Head Tehtronix Oscilloscope Probes
Pye Pocketphone RyNi-Cad Batheries
Mullard Vari-cap TV Tuners Type ELC 2003 Ex. Brand New Sets Pye Cambridge/Vanguard 18 Way ControlLeads
Sony $1 /$ " * Video Tape 5 "Reels
BMC Plugs 750 hm
IC Test Clips 28 pin \&
IC Tast Clips 28 pin \& 40 pin
Transistors Type 2N3055
Transformers 30 volt 61 amp
Transformers 36 volt tt 15 amp
 'Variacs' 2 amp, 5 amp, 8 amp, $15 \mathrm{amp}, 20 \mathrm{amp}, 25 \mathrm{amp}$
Loudspeakers Richard Allan Type CP12. 12.15 hmm
$\$ 6.00$ Semiconductors at 5p each
AC 128
BCY65E. BC173C, BC328, BC149, BC113, NKT12, ZTX213, R2517 1 N4007
P. \& P. or Carriage and V.A.T. at
15% on total must be added to all
Callers very welcome, strictly be
tween $9 \mathrm{a} . \mathrm{m}$. and $1 \mathrm{p} . \mathrm{m}$ and 2 and 5 p.m. Monday to Friday inc
Barclaycard and Access taken
Official orders velcome wwa

Micro-controlled cassette recorder -2

Description of cassette recorder for use with microcomputer continues with description of f.s.k. modulator and demodulator.

The main criteria for choosing a suitable encoding technique for recording serial data from the output of a microcomputer (RS232 or t.t.l. levels) are, in my opinion, reliability, circuit simplicity and, perhaps most importantly, the ability to be used with any good set of recording/playback electronics. The microcomputer user is primarily concerned with reliability and ease of use of any encoding technique. He is not interested in very high speed techniques if half the time the data is recorded or played back incorrectly; or if the tape-recorder settings need constant adjustment.

There have been a number of designs in various electronic magazines for 'high' speed recording techniques. The fastest of these, of which I am aware, was for 4800 baud. I also have had some experience of designing suitable encoding techniques for high speed serial data recording and am therefore very aware of the problems. Readers may recall the series of articles, in this magazine, on a digital multichannel tape recorder. In this design I achieved a rate of 22,000 baud
using complex, but well known, techniques called Miller or delay modulation. However, all these very high speed designs, including my own, rely on the ability to record single high/low or low/ high signal transitions. The success or otherwise of the technique depends not only on getting the 'electronics' right but also on tape quality and the mechanical operation of the cassette deck. It is very sensitive to imperfections in the tape quality, dirty tape-heads and indifferent transport of the tape across the head. In my opinion the techniques are unlikely to be successful unless only the best tapes are used, the cassette deck is of the highest quality, and the tape-heads are regularly cleaned.

A technique that is far less sensitive to these three sources of error is frequency shift keying. Using a few modern i.cs, a vol-tage-controlled oscillator and a phase-locked loop, a modulator and demodulator are easily designed that are easy to set up and reliable in use. In f.s.k., the output of an oscillator is simply switched between two frequencies; to represent the low and high logic states. There is a maxi-
mum rate at which the switching between the two frequencies can take place; somewhere between a fifth and a tenth of the mean of the two frequencies is a good rule-ofthumb. Using a good set of record/playback electronics I set my sights cautiously on a mean frequency of 10 kHz , i.e. 9 kHz and 11 kHz for the 'low' and 'high' frequencies. A bit rate of 2400 has a highest frequency content of 1200 Hz when a train of successive ones and zeros are being transmitted. Thus this figure was taken as the highest rate that could be easily be transmitted using the two nominal frequencies of 9 kHz and 11 kHz . (Actually, by pushing the mean f.s.k. frequency up to 12 kHz and careful design of the demodulator stage, it should be possible to record at 4800 baud. Alternatively, it should be possible to drop the mean frequency to 6 kHz and still be able to record at 2400 baud.)

F. s.k. modulator \& demodulator circuits

The circuits of the f.s.k. modulator and demodulator are shown in Figs 6 and 7. I claim no originality

Fig. 8. Internal layout of 565 p.1.1.

Fig.7. F.s.k. demodulator, using Signetics 565 phase-locked loop.
for these, being but a variation of circuits published by Signetics in their book on the 566 (v.c.o.) and 565 (p.1.1.) integrated circuits. To the circuit of the modulator I added a triangular-to-sine waveform converter. This makes the circuit capable of being used with a much wider range of cassette deck recorder/playback electronics, overcoming some of the problems associated with the high-frequency pre-emphasis circuitry. The triangle-to-sine wave converter is also a variation of a circuit to be found in the Signetics book. It is possible to adjust the sine wave, total harmonic distortion, to less than 1% by setting the amplitude of the triangular waveform correctly.

uses the non-linear $\mathrm{I}_{\mathrm{DS}}-\mathrm{V}_{\mathrm{DS}}$ transfer characteristic of a p -channel j -fet to shape the triangular waveform: The output from it is a little less 1 V , r.m.s. with a distortion factor of less than 1% when the input amplitude is correctly adjusted. A distortion meter is the only proper way of achieving the minimum distortion figure, but visual inspection using an oscilloscope can produce a good enough result. A variable or fixed attenuator is used to reduce the sinewave output voltage to a level suitable for recording on the cassette deck's record/playback electronics.

The circuit of the f.s.k. demodulator is shown in Fig.7, the heart of which is the 565 phase-locked loop. There is nothing unusual about its design but a few comments will be made so that its operation may be understood. The phase-locked loop consists of a voltage-controlled oscillator (an identical v.c.o. to that used in the 566 i.c.), a phase-sensitive detector and an amplifier with a single stage of low-pass tiltering. The interconnection between the various elements of the p.1.1. is shown in Fig.8. When the frequency of the v.c.o. is locked to that of the incoming signal, the output from the phase detector (amplified and filtered) applied to the input of the v.c.o. is that voltage which the v.c.o. requires to produce the particular frequency. The voltage applied to the input of the v.c.o. is also the demodulated output signal that we require. For the v.c.o. to produce a different frequency output, the voltage on its input will have to change. This is exactly what the p.l.1. achieves; when a signal of a different frequency is applied to the input of Continued on page 67

The heart of the f.s.k. modu- levels (between 0 and 5 V) or lator (Fig.5) is the voltage controlled oscillator i.c. the 566 . These i.cs are designed to operate with a nominal voltage on their modulation input, pin 5 , of $V_{s} / 8$ below the positive supply rail, i.e. $7 \mathrm{~V}_{\mathrm{s}} / 8$. A modulation of this voltage by $\pm 10 \%$ produces a modulation of the frequency output by the same amount. For a V_{s}, of $15 \mathrm{~V}, \mathrm{~V}_{\mathrm{s}} / 8$ is 1.875 V . Plus and minus 10% of this value gives voltages of approximately 1.69 and 2.06 V below the positive supply rail, i.e. actual voltages on pin 5 of 13.31 and 12.94 V . the $1.5 \mathrm{k} \Omega$ and $12 \mathrm{k} \Omega$ resistors produce a nominal voltage on pin 5 of 13.33 V . When the transistor is conducting the $39 \mathrm{k} \Omega$ resistor is effectively in parallel with the $12 \mathrm{k} \Omega$, reducing the effective resistance to about 9.2 kohms . The voltage on pin 5 , when the transistor is conducting, is thus reduced to a nominal value of 12.90 V . Thus by switching the transistor on and off the voltage on pin 5 is modulated by $\pm 10 \%$ about its centre value of 13.125 V . The input stage to the transistor has been designed for either t.t.l.
levels (between 0 and 5 V) or If both types of input are required there is no reason why two transistors should not be used with their collectors sharing a common $39 \mathrm{k} \pm$ resistor. It is, of course, important that the transistor of the unused input be in its offstate, i.e. non-conducting.

Apart from the voltage on pin 5 , the frequency-determining components of the 566 i.c. are the 9.1 k ohm resistor on pin 6 and the 3.3 nF capacitor on pin 7. With these chosen values, the output frequency for a voltage of 7 $V_{\mathrm{s}} / 8$ on $\operatorname{pin} 5$ is $\mathrm{f}=1.2 /(4 \mathrm{RC})$, i.e. 9990 Hz . Thus, when the logic level on the input varies between low and high, the frequency out put of the 566 i.c. varies between about 9 and 11 kHz .

The output from pin 4 of the 566 i.c. is a symmetrical triangular waveform of about $3 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$ with a positive d.c. bias voltage. The triangle-to-sine wave converter needs quite a large voltage drive and the variable gain stage is included for this purpose. The tri-angle-to-sine wave converter

"There is no doubt that the JVC range of ECM colour monitors is excellent value for money . . . there is no loss in quality of picture after long periods . . . and remember, as more and more resolution is available with new micros, the need for a better display will be that much greater."

High recommendation indeed from Personal Computer News. Meanwhile Acorn User said:
"It seems that all 'normal' and 'medium' resolution monitors, including the Sanyo, are simply inadequate to deal with the Beeb's graphics and text output . . . The JVC was excellent, giving clear, legible results . . Was the JVC better than the Microvitec?* Would I buy one? Yes to both questions."

Our RGB high resolution colour monitor ($580 \times$ 470 pixels) sells for $£ 229.95$ (excluding VAT) - that's a saving of over $\& 100$ compared with other leading monitors of similar specifications.

The unit has a $14^{\prime \prime}$ screen and is suitable for the BBC Micro, Electron, Sinclair QL, Lynx, Oric, Apple, IBM and most other leading micros.

MODEL REFERENCE	1.302.21High Resolution
RESOLITION	$580 \times+{ }^{\circ} 0$ Pixels
C.R.T.	$1{ }^{\prime \prime}$
SUPPAY	$220 / 240$: $50 / 60 \mathrm{~Hz}$.
E.H.T.	Minimum 19 5kw Maximum 22.5 kv
YTDEO BAND WII)Tl	10M1Hz.
DISPAY	80 characters by 25 liness
SLOT PITCH	0) 4 Imm
INPI IT: VIDEO	K.G.B. Analogue TTL Impur
SINC	Separate Sync on R. (B. Positise or Negative
FXTERNAL CONTROLS	On/off switch and brightness control

And naturally there's a year's full guarantee.
If you order your monitor by post, you'll receive it within ten days by courier service

Simply post the coupon below to: Opus Supplies Ltd., 158 Camberwell Road, London SE5 OEE. Or telephone 01-701 8668 quoting your credit card number. Or, of course, you can buy at our showroom between $9.00-6.00 \mathrm{pm}$, Monday-Friday: $9.00-1.30 \mathrm{pm}$, Saturday.
"Microvitec Cub 14" monitor.
To: Opus Supplies Lid., 158 Camberwell Ruad, London SE5 OEE Please send me:
High Resolution Colour Monitor(s) at
$\$.229 .95$ each (ex. vAT).
Connection lead(s) at $\$.6 .00$ each.

I understand carriage per monitor will cost an extra $£\urcorner .00$. (N.B. A High Resolution Monitor including VAT, lead and carriage costs £279.39). Ienclose acheque for 5 ____Or please debit mycredit card account with the amount of $\&$ \qquad MyAccess/Barclaycard (pleasetick) no. is Please state the make of your computer

CIRCLE 34 FOR FURTHER DETAILS.

SC84 microcomputer
 continued from page 34

output is captured in an eight-bit latch, IC_{305}, by the trailing edge of the next carry pulse and held during the next memory cycle. This allows the eprom to produce the dot pattern for character zero while character one is being brought from memory. The trailing edge of the next carry pulse occuring 500 ns later allows plenty of time for the eprom to submit a dot pattern. This pulse enables parallel loading of the shift register IC_{307} used to convert the dot pattern from eprom into a serial stream of pixels. Being synchronous, the shift register does not load the dot pattern until the rising edge of the dot clock, which occurs while the load input is low. This edge occurs just before the end of the carry pulse and might not, at first, appear to be consistent with the synchronous philosophy propounded earlier as there is an undefined delay between this clock edge and ending of the carry pulse. Note though that it is this same clocking edge which advances the synchronous counter and thus ends the carry pulse, which must therefore change after the rising edge of the clock. Also, the required holding time for the loading signal after shift register clocking is zero and the clocking signal is from a Schottky gate with a very fast rise time, so the loading of data is assured. With this data stored in the shift register the trailing edge of the carry pulse loads a new value from v.d.u. memory into IC_{305} and the cycle repeats. This means that pixel output begins two character periods after the start of a scanning period. As mentioned earlier, the controller also supplies some direct video-control

Fig.2. A monitor is best for high density text display but a monochrome tv set with minor alterations can give satisfactory results. This modification for Ferguson/Ultra 3840, 3845, 3847, 3848, 6840 and 6845 tvs allows the set to be switched between computer input or broadcasts. Numbers in circles refer to pins on the cathode-ray-tube controller socket. The tv circuits must be isolated from the mains (see text).

signals, one to enable the display (so that the screen may be blanked during non-display periods such as during flyback) and a second to indicate when the character position being accessed corresponds to the setting of the controller cursor register. As with M lines, these signals will be delayed and, taking the example of the display-enabling signal, they must be delayed by one and a bit character periods if they are to become active just as pixels for the first character on the line are clocked out of the shift register. One enhancement made to the Hitachi 6845 is that it is possible to delay the output of these two control signals by one or two character periods, which saves on i.cs. These signals are given a one character-period delay and synchronized by a two-bit latch, IC_{315}, which is also clocked by the carry signal.

At the other end of the system, the 74LS85 four-bit comparator produces a signal at pin 6 when $\mathrm{A}_{13,14}$ and VDUSEL are low and A_{15} is high, i.e. an address on the address bus is in the range 08000 to 09 FFF and the v.d.u. memory is switched into the memory. Note that the four matching comparator inputs are switched so it is possible to relocate the area in memory at which the v.d.u. appears (switch on=low). The address is set up before MREQ by the $\mathrm{Z80}$ so the comparator signal can activate MEMDIS to inhibit a system-memory cycle. Further decoding is necessary though to ensure that this is a memory cycle; MREQ is gated so that v.d.u. signal SEL only goes low during a true v.d.u. memory access. Select signal SEL does several things. It switches the four 74LS157 multiplexers so that they direct bus address lines into the v.d.u. memory and connect the system WR signal to the memory and HD6845S. The v.d.u. memory and the 6845 are always selected so they would be incorrectly written to if WR wasn't gated. It also enables the data-bus buffer and clocks a set/ reset latch made from half of an 74LS00. When set, this latch clears the 74LS273, forcing a dis-
play of one dot-row of the character generator corresponding to code 000 - which happens to be blank. The latch is reset by the character clock. This latch suppresses the speckling effect mentioned earlier, the algorithm being 'any c.p.u. access during the fetching of a character code to the character latch forces character code to zero'. While it might seem simpler to gate SEL directly with the video output to produce blanking, due to the pipelining technique SEL would blank the display between one and two characters too early.

The v.d.u. memory consists of 6 Kbytes of static memory. Address and data lines to the v.d.u. memory i.cs do not correspond to their specified ' A ' or ' D ' numbers but this doesn't matter. The order used was chosen to ease p.c.b. layout. After all, if a data byte is written into memory with a particular addressing pattern, that same byte will be accessed when the same address is applied. The lower 11 bits of the address supplied by the multiplexers are fed to all three memories in parallel. The next two most-significant bits of the address feed a decoder which activates one of four output lines. The four lines pass to the memory i.c. enable inputs and the 6845 so that within the addressing range 08000 to 09FFF for which SEL is active, the memory is mapped at addresses 08800 to $09 F F F$ and the 6845 control registers from 08000 to 087 FF . Effectively, the 6845 only needs two locations, one to receive the number of the internal register that the c.p.u. wants to access and one which appears as that register. The fact that it has been allocated another 2046 in the rather coarse decoding is not a loss though, and it simplifies both hardware and software. The standard rom supplied programs the system for standard timing signals and a display consisting of 32 rows of 96 characters each. This means that only 32 by 96 , or 3 Kbytes , of v.d.u. memory is required and, for the basic system IC_{304} may be omitted. 6 Kbytes of memory is needed though to work with the higher resolution graph plotting mode provided in Basic which reprograms the 6845 to scan twice as much memory and produce a display of 64 rows of 96 characters. In graph plotting with the character v.d.u., the splitscreen plotting area is 192 by 180.

Connecting a monitor

A 30 cm -screen monitor is about optimum. Synchronizing and video signals may be inverted to suit your requirements. For the switches controlling the sync. signals, S_{305} and S_{308}, on provides negative-going syncs, whereas switch sections S_{306} and S_{307} select either positive or negativegoing video; note that these two switches must not be on at the same time. The dense display makes a stringent requirement on the monitor but standard types with bandwidths of 15 MHz or more should be satisfactory. As a cheaper alternative, a television may be modified. This does not stop the set being used as a tv but does require some simple internal
modifications. Following details show how to adapt a Ferguson 3845 , which is the type used by most of the present Scientific Computer group, and give guidance for modifying other models. Make sure that the set you choose is one with an isolated supply, i.e. that there is no electrical connection between the mains and internal tv circuits, or use an external isolation transformer. The Ferguson set has a double-wound mains transformer - as do many portable tvs nowadays - but check to make sure if you use a set other than the 3845 . Apart from the risk to yourself if you use a live-chassis set, you stand a good chance of permanently reprocessing large amounts of expensive circuitry should something untoward occur.

From the circuits in the tv set, Fig.2, find where the sync. signal is separated from the video, the polarity of the sync. signal, the cathode and grid pins of the c.r.t. socket, which of the two is driven with video, and the potential on the other. In the case of the 3845 these points are the end of R_{72} nearest the back of the set, negative sync., pins two and one respectively, the cathode and zero volts. Modifications required are to break the sync. signal path within the set, in this case by unsoldering and lifting away the end of R_{72}, and remaking the path with one half of a two pole change-over switch, the other input of which is a combination of the two sync. signals. The other half of the switch is used to connect a decoupling capacitor to

A set of three Eurocardformat plated-through-hole boards for SC84 is available from Combe Martin Electronics, King Street, Combe Martin, Devon EX4 OAD. Price is E.39 for the set including v.a.t. and inland or overseas postage. John Hodson - secretary of the Scientific Computer User Group - is organizing the SC84 user group. For further information, send an s.a.e. to him at 12 Broughton Road, Basford, Newcastle-under-Lyme (new address). A listing of SC84's machinecode operating system MCOS - can be obtained by sending an s.a.e. to Electronics and Wireless World, Room L303, Quadrant House, The Quadrant, Sutton; Surrey SM2 5AS.

Keyboard and parallel i/o interfacing

Keyboard requirement is for a source of seven-bit ascii code with a positive-going level strobe, i.e. one which stays high as long as a particular key is pressed (circuit shown last month). As ascii is a seven-bit code, the eighth input bit is not wasted but used as a flag that the RS232C port is to echo v.d.u. program output when using MCOS. Not all keyboards have an auto-repeat function so it is provided on the board; an interrupt puise is sent to the STI at the start of the strobe pulse and after a pause of approximately 0.5 s further pulses occur at approxi-
mately 20 Hz . Overall speed of the repeat system may be adjusted by changing the $1 \mu \mathrm{~F}$ capacitor value, the 0.5 s hold-off only may be adjusted by altering the $390 \mathrm{k} \Omega$ resistor and the repeat frequency by altering the $1.8 \mathrm{k} \Omega$ resistor. In all cases, reducing the value increases the speed of operation. The i.c. used for keyboard repeat, IC_{209}, also supplies the 2.4576 MHz signal for bit rate generation. I recommend that you avoid a National Semiconductor part for this i.c., CD4093BE (RCA) or MC14093BCP (Motorola) being suitable.

Table 2. Interrupt vectors in memory.

Address	Service routine
OFF00	I/O line 0 (keyboard interrupt)
OFF02	1/O line 1
0FF04	I/O line 2
0FF06	I/O line 3 (pulse width/event B)
OFF08	Timer D
OFFOA	Timer C
OFFOC	I/O line 4 (pulse width/event A)
OFFOE	I/O line 5
OFF10	Timer B
OFF12	Transmit error
OFF14	Transmit buffer empty
OFF16	Receive error
OFF18	Receive buffer full
OFF1A	Timer A
0FF1C	1/O line 6 (disc controller INTRQ)
OFF1E	1/O line 7 (disc controller DRQ)

These are addresses of the two consecutive locations in memory at which the interrupt controller will expect to find the starting address of the service routine for that particular interrupt.

Table 1. Nominal allocations of $\mathbf{Z 8 0} \mathbf{i / o}$ ports.

Port address (hex.) Allocaton	
0E0-3	Keyboard input and control port output
0E4-7	General purpose parallel I/o
0E8	Disc controiler command and status po
OE9	Disc controller track register
OEA	Disc controller sector register
OEB	Disc controller data register
OEC-F	Not used
OFO	STI indirect register
0 F 1	STI paralleli/o port
OF2	STl interrupt pending register B
OF3	STI Interrupt pending register A
OF4	STI interrupt inservice register B
0 O5	STI interrupt inservice register A
OF6	STl interrupt mask register B
OF7	STl interrupt mask register A
OF8	STI pointer/vector register
0F9	STI timers A and B control register
OFA	STI timer B data register
OFB	STI timer A data register
OFC	STI usart control register
OFD	STI receiver status register
OFE	STI transmitter status register
OFF	STI usart data register
000	STI sync. character register
001	STI timer D data register
002	STI timer C data register
003	STI active edge register
004	STI interrupt enable register B
${ }_{0}^{005}$	STI interrupt enable register A
006 007	STI data direction register STI timers C and D control register

Wire links from ground pin TP_{201} to TP_{202-4} select addresses of the i / o ports. The i / o allocation used in the system software is given in Table 1. Links need only be included should these be changed for experimental purposes. If this is not envisaged, they may be left out altogether.

Parallel i/o is catered for by uncommitted eight-bit input and eight-bit output ports, a control port used for keyboard input, and output to the disc drives and system. There is an option for the eight-bit parallel output port, IC_{206}. Use a 74LS273 and make link 202 for a standard eight-bit
port which is automatically cleared on RESET, or use a 74LS373 and make link 201 for a tri-state port enabled by applying a low level to pin one of the port connector. The latter option means that this port may then be connected in parallel with the eight-bit input port to form a bidirectional i / o port. Spare I lines on the STI, pins 11 to 13 , are also available from pads adjacent to the i.c. pins as are the outputs from the four frequency generators. Link 203 should be wired in on the basic system but may be removed to free pin 16 of the STI for use in an interrupt daisychain, Table 2.
the driven pin, the cathode in this case, to suppress the tv video signal in computer monitor mode. In the 3845 , a resistor is also connected to this switch and to the junction of R_{127}, the height control, and R_{128} which, looking at the back of the set, is the leftmost terminal of the height control. This allows automatic adjustment of picture height to the optimum for tv and computer.

The video signal is brought in on a short length of screened cable and buffered by a 2 N 2369 A transistor before being applied to the tube grid. All connections are made through the tube socket, the prototypes being about lin square pieces of Veroboard
mounted directly on the back of the tube socket. This is the recommended position as long wires will ruin the video quality. When making this interface, remove the tube socket from the tube while soldering and use stiff wire to mount the interface board onto the socket and flexible wire (including the screened wire) to link from it to the switch, etc., in order not to put strain on the socket and c.r.t. neck. Most portable sets have the 3845 type of circuit where the cathode is driven and the grid is at zero volts. If neither the grid nor cathode is at a low potential then some form of level-shifting must be used or, better, a different type

of set considered.

Normal settings for S_{301-4} are off-off-on-on, mapping the v.d.u. at hexadecimal addresses 0800 09FFF, switched in by VDUSEL being high. Other permutations are possible for experimentation.

SC84's disc-operating system, SciDOS, with utility software costs $£ 36$ extended Basic with graphics is $£ 22.50$ and Basic with enhanced file manipulation, i/o control, numeric/constant string handling and 12 digit precision is $£ 31.50$. These prices include v.a.t. and postage and become $£ 24, £ 15$
and $£ 21$ respectively for noncommercial users and further discounts are available for those buying more than one software package at once. John Adams is considering producing a kit of i.cs for SC84. For details of these items send an s.a.e. to him at 5 The Close, Radlett, Herts.

A switch-regulated power supply and further constructor's notes are subjects of a future article.

Continued from page 62

the p.s.d. the output voltage changes to drive the v.c.o. to the new frequency

Operation of the phase-locked loop is exactly analogous to a servo-loop; it has a natural frequency, damping factor and a bandwidth with a second order, low-pass filter characteristic. Effectively what the p.1.1. does is to recover, from the frequency of the input signals, the original changes in voltage that drove the v.c.o. in the modulator. As the v.c.o. of the p.l.1. is identical to that of the 566 , it is not surprising that the changes in voltage levels at the output of pin 7 are similar to those applied to the input of the v.c.o. of Fig.6. The voltage change applied to the v.c.o. of the modulator was 430 mV (13.3312.9); the voltage output from the 565 (pin 7) is thus of the same order.

The maximum operating voltage of the 565 i.c. is 26 volts. It cannot therefore operate from the ± 15 volt supply rails and was consequently chosen to operate from the +15 volt supply rail and ground. (± 15 volt supply rails were chosen because of the large voltage drive required by the tri-angle-to-sine wave converter of Fig.6; it will not operate satisfactorily from ± 12 volt supplies.) The two inputs of the 565 i.c. pins $2 \& 3$, require an identical d.c. bias that is slightly less than the half-supply voltage. The potential divider consisting of the $4.7 \mathrm{k} \Omega$ resistor and $3.3 \mathrm{k} \Omega$ resistors produces the required d.c. bias on pins $2 \& 3$ via $3.3 \mathrm{k} \Omega$ series resistors. The audio input may be to either of these two inputs, via a suitable decoupling capacitor. As the lowest audio signal frequency is not less than 9 kHz , the decoupling capacitor may have a conveniently low value of 22 nF .

The components that determine the free-running frequency of the v.c.o. of the 565 i.c. (which should be the centre frequency of 10 kHz) are the resistor on $\operatorname{pin} 8$ (a $6.8 \mathrm{k} \Omega$ resistor in series with a $5 \mathrm{k} \Omega$ variable) and the capacitor on pin 9 . The values chosen are the same as those for the v.c.o. of Fig.6, except that the resistor is made adjustable. For a $\pm 10 \%$ frequency deviation, the amplitude of the audio input signal can vary from 10 mV to 1 V r.m.s., and still maintain good tracking of the input frequency. The volume setting of the record/playback electronics on playback of the recorded signal is thus non-critical and a mid-way setting of

100 mV r.m.s. ideal.
The expected direct voltage variation on the output of pin 7 for an input signal with frequency deviation of $\pm 10 \%$ is, as mentioned earlier, about 430 mV . This can be adjusted to $\pm 215 \mathrm{mV}$ about the reference voltage level on pin 6 by adjusting the value of the $5 k \Omega$ variable resistor. This is most easily achieved by connecting the output of the modulator to the input of the demodulator and applying logic low and high levels to the modulator input.

The output from the demodulator, pin 7, which is applied (internally) to the input of the v.c.o. needs to be filtered for the p.I.I. to operate satisfactorily. This is achieved in this circuit by the 27 nF capacitor connected between pin 7 and the +15 V supply rail. For the chosen v.c.o. operating frequency of 10 kHz and a rate of 2400 baud this value has been found to be satisfactory. It is also satisfactory for lower rates, but possibly not for a higher rate of 4800 baud. (Unfortunately I have not been able to try this out.)

To provide a t.t.l. and RS232 type output level, the output from the demodulator, on pin 7, needs to be amplified. This is achieved using an op-amp, as a comparator and the output from pin 6 as the reference level. The output from pin 7 is further filtered by the simple two-stage ladder filter composed of $5.6 \mathrm{k} \Omega$ resistors and 4.7 nF capacitors. The band-edge of the ladder filter is chosen to be approximately half way between the maximum keying rate (2400 baud or 1200 Hz) and twice the input frequency (about 20 kHz).

The lnF capacitor connected between pins $7 \& 8$ acts in the same way as that between pins 6 \& 5 of the 566 i.c.; i.e. to improve high-frequency stability. Similarly, the 1 nF capacitor across the inputs of the op-amp comparator does the same thing. The $1 \mathrm{M} \Omega$ resistor connected from the inverting input of the opamp to the -15 volt rail ensures that a logic high level is output from the op-amp when no audio signal is present on the input to the demodulator. Two outputs are provided from the op-amp, one at t.t.l. levels suitable for coupling directly to t.t.1. i.c. inputs, and one at an RS232 type level.

I must confess, at this point, that although I have shown the modulator and demodulator cir cuits of Fig. 6 and 8 with RS232 type inputs and outputs, I have
not tried them out on my own computer, preferring to use t.t.l. levels. It is my understanding that RS232 type inputs and outputs normally invert the t.t.1. logic levels. In so far as I have shown the RS232 type inputs and outputs being used, this should not matter since, if the modulator is connected to the demodulator then a 'high' input on the modulator will produce a 'high' output from the demodulator. However, in the absence of an audio signal input to the demodulator thet.t.l. output should be high. If the RS232-type connection is used on the output of the demodulator, this will also be high. A subsequent RS232 input on the microcomputer may invert this to a logic low on its t.t.l-type output. To invert this logic, the $1 \mathrm{M} \Omega$ resistor connected between the negative input of the op-amp comparator and the - 15 volt supply rail should be connected to the +15 volt supply rail instead. A final article will describe the up/ down tape counter and record/ playback electronics.

LITERATURE RECEIVED

A neat modern design is carried through the S Range of meters and instruments from Philip Harris. They are designed with particular attention to reliability, ease of servicing and user safety and feature ease of storage and are clearly marked for identification. The range includes a dual-trace oscilloscope adaptor, various power supply and amplifiers, meters for joules, conductivity, pH , counters, timers and an electrical safety tester. Philip Harris Ltd, Lynne Lane, Shenstone, Staffs WS14 0EE. WW270

A CNC lathe which can be controlled from a BBC micro is produced by Colne Robotics and described in a leaflet. Included is the basic software which provides a comprehensive range of control codes to program and retain complex cutting sequences. Safety measures are provided by hardware safety cut-out switches and from within the software. Colne Robotics Co. Ltd, Beaufort Road, off Richmond Road, Twickenham, Middlesex, TW1 2PQ. WW271

A range of small p.c.bs, each with elements of a circuit can be linked together to make up more complex circuits. This is the Alpha system from Unilab. It is designed to be a 'low-cost, radical apluroach to the effective teaching and learning of basic electronics, initially for the $13+$ age range.' There is also a range for more advanced work. Details supplied in a leaflet from Unilab, Clarendon Road, Blackburn, Lancs BB1 9TA. WW272

The functions of many different instruments are combined into one unit in the Griffin programmable scientific instrument, or GiPSI. Starting from a single or dual-input multimeter it may be converted into a variety of other instruments by the addition of plug-in modules and overlays to show the functions of the touch-sensitive membrane keyboard. Among the modules are a pH meter, measurements of pressure, magnetic flux, timing and counting, and many more. The meter can also be interfaced with a computer as part of a data acquisition system. Full details in a brochure from Griffin \& George, 285 Ealing Road, Wembley, Middlesex HA0 1HJ. WW273

A number of programs for biological experiments are included in Micros in the Lab. Designed for use with the $Z \mathrm{X}$ Spectrum computer, full software and hardware details are given in this duplicated booklet. The centre that publishes it can also supply a number of components to ILEA schools. ILEA South London Science Centre, Wilson Road, London SE5 8PD. Telephone: 01-701 2224.

ILEA publish two magazines for school micro users-Computers in Primary Schools newsletter for primary schools and Educational Computing for secondary schools. Both come from the Inner London Educational Computer Centre, John Ruskin Street, London SE5 0PQ. WW275

THE SMC MARINER99

This newly designed microprocessor controlled 1 watt VHF transceiver allows for the first time a marine transceiver with all channels and every operating convenience imaginable yet small enough to fit comtortably in your hand.

Incorporating the latest in efficient CMOS components the Mariner 99 goes a step further in prolonging the life of batteries with its unique power save mode using just one seventh of the power required by common squelched monitoring

The multimatch facility is not restricted to the usual (by usual we refer to main stations) dual or triple watch but will in fact cope with up to 10 channels! These memories can also be used in conjunction with the priority channel mode.

For those intrepid explorers who venture across the Atlantic you will be pleased to hear this handheld also copes with all the US channels including the weather channels!

NOW AVALLABLEAT 2245 + VAT (inc. nicads and wall charger) DON'TFORGET THE SmG104M (6 channel handheld) ISSTILL AVAILABLEAT 1160 = VAT (inc. nicads and charger)

SOUTH MIDLANDS COMMUNICATIONS LTD. OSBORNE ROAD, TOTTON, SOUTHAMPTON Tel: (0703) 867333 TIx: 477351 SMCOMM G

CIRCLE 56 FOR FURTHER DETAILS.

\dot{A}
 MITSUBISHI

MGF-1400 GaAs FETs
MGF-1402
MGF-1412

FROM STOCK

Aspen Electronics Limited

UK representative for Mitsubishi Electric
2/3 Kildare Close, Eastcote, Ruislip Middlesex HA4 9UR
Tel: 01-868 1188 Tlx: 8812727

CIRCLE 28 FOR FURTHER DETAILS.

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD appreciate a telephone call or a list if available. WE PAY TOP PRICES AND COLLECT.

R.Henson Ltd.

21 Lodge Lane, N. Finchley, London, N. 12.5 mins. from Tally Ho corner
Telephone 445 2713/0749 CALL N AND SEE FOB YOURSELF

GOMPUTER SHOP open 6 days a week - ohder by post or phone Exices SOFTWARE•PERIPHERALS•MULTI-BOARDS

GM811 CPU GM832 SVC GM829 FOC/SASI GM813 CPU/64K RAM GV814 1EEE 4BB CONTROLLER GM827 87 KEY KEYBOARO GMB39 PROTOTYPING MP826 STATIC RAM GM816 MULTII/D IO 828A SUPER PLUTOCOLOUR GR PROCESSOA 192K RAM GM833 RAM-OISK 512 K 80 -BUS
MULTI-BOARDS MULTI-BOARDS FRDM SCRATCH or expand your GALAXY or NASCOM Demonstratlons for caliers
[UK C/P \& export exira al cosi) ALSO IN STOCK MOTHEA BDAROS FRAMES CABLES. POWER SUPPLIES, KEYBOAROS SOFTWARE etc.
FULL LEAFLETS/OE TAILS OF SUITABLE PERMUTATIONS - SENO LARGE SAE
We can advise also with terminals and complete Galaxy computers with monitors and oisks ready to use.
\qquad SOFTWARE
MDIS |CI INTELLIGEN
OISASSEMBLEA
For all CP/Mbased machines IVC HI-RES (C) For Geminl and others [please anquire). Provides Ps fudo high otharg (piease enquit
rasolution graphics ics DISK PENIC) Varsion 3. Low cost processor for Gismin and others Plus large range or overlays for Otskpen HENRYS CP/M UTILITIES DISK (C) 41 Programs for the CP/M Systoms prugrammer $51 / 4 "$ format $£ 15.00$ 8 format $£ 17.35$ Ask lor detajls on all of above. WHEN OROERING PLEASE SPECIFY FORMAT REQUIREO Contact Computer Dept. If uncertaln. (C) Copyright Cubegate Ltd - all rights reserved. All above available io retallers and distrlbutors contact Computer Dept. for details.
COMPUTER POWER SUPPLY
Swltchad mode. Stablllsed. Seff protecting.
S/C protected. itc. $220 / 240 \mathrm{VAC}+5 \mathrm{~V} 3.3 \mathrm{~A}+12 \mathrm{~V}$ $2.4 \mathrm{~A} 40^{\circ} \mathrm{c}$ cycis. $-5 \mathrm{~V} 0.5 \mathrm{~A},-12 \mathrm{~V} 0.5 \mathrm{~A}$. Suttabla Apple replacement

COMPUTER FANS
CU7983 $115 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
12/I3W Impedance protected use 2 in series for 230V] $43 / 4^{\prime \prime} \times 43 / 3^{\prime \prime} \times$

Two for 88.70 UUK C/P 70pl 200/240V as new' only \& 4.78 |UK C/P 50 pl each

COMPLETE WITH FULL HANOBOOK 3 HOLLSPAPER 843.43 SUITABLE FOR: TANOY BBC - ORIC NASCOM GEMINI ACORN - NEW BRAIN ORAGON - ETC. ETC. [interface unit with leads E13-state model| |your enquiries invited|

CHERRY KEY PAD

16 button key pad non encoded

MODEM CARDS/

COUPLER
Brand new, tested answer and originate 300 BAUD uncased acoustic modem card by famous manuiacturer. RS232 input/output. Power supply earpieces. 2 switches, 2 LEOs and connector complete. Circuits and connection data suoplied Cardonly $\mathbf{E 2 6} 04$ Card and remainder ot small components $£ \mathbf{£ 9 . 0 9}$ Teleahone Dirsct Line coupler type LTU 11 MKII. Suitable for direct coupling PRESTEL adaptors and the above acoustic modems. Integral Line select and autodial relays requiring TTL inputs. Circuits and connection data supplied. LTU 11 Coupler
1200 BAUO receive 75 BAUO send direct coupled modem for PRESTEL. Requires +5 V supply with TTL inputs for data. Inne select and autodial LTU 11 direct coupler required. See above Connection data supplied.
PRESTEL modem card
$\$ 13.00$
STOCKISTS FOR Printers: Paper, Thermal, Daisy. whael Disk Drives Boxed. Chas sis al so Winchester Electron. Nascom. Galaxy. Plus others. Cables. plugs. blank disks \& tapes. software, books. zic.

AMATEUR RADIO CALL BOOK

 1984 editionPublished annually, this comprehensive directory of amateur radio stations in the UK \& Republic of Ireland, incorporates over 18,000 new callsigns and over 10,000 amendments. All notified by the Department of Trade and Industry between August 1982 and February 1984. It also includes lists of RSGB affiliated societies, groups and special callsigns.
For most entries, the address published is the station location. This gives the VHF/UHF enthusiast an easy reference for beam directing purposes. This new edition is available now from the RSGB sales counter price $\mathbf{f 5 . 8 9}$

OTHER RSGB PUBLICATIONS

mateur Radio Awards (£3.41
Amateur Radio Operating Manual	55.2
HFAntennas for All Locations	f6.9
Radio Amateurs Examination Manual (10th edn)	E3.42
Radio Communication Handbook (paperback)	£10.91
Teleprinter Handbook (2nd edn)	f13.84
Television Interference Manual (2nd	¢2.13
VHF/UHF Manual (4thedn)	f10.3
The RSGB is the national society representing all UK radio amateurs. Membership is open to all interested in the hobby, including listeners. The Society publishes a range of books, log books and maps for the radio amateur. A large selection of other radio and electronics books are also stocked, a full list is available on request. Contact the membership services section for more information about amateur radio, the RSGB and its publications. All publications sold by the RSGB are available at dis-	

RSGB Publications

Cranborne Road, Potters Bar, Hertfordshire EN6 3JW

Thanet Electronics Limited

143 Reculver Road, Herne Bay, Kent, England. Tel:(O2273) 63859/63850. Telex 965179.

CIRCLE 38 FOR FURTHER DETAILS

Two-metre transceivers

A survey of amateur radio equipment for the popular $144-146 \mathrm{MHz}$ band

For most newly-licensed radio amateurs, the two-metre band is a natural starting point. It is the lowest band available to those without proficiency in morse code. It is also the most populous: there are no worries about finding other stations to talk to.

Most equipment now in use on 2 m is factory-built, almost invariably in the Far East; and a wide choice is available with prices starting at a little over $£ 100$. But it is still possible for the constructor to get on the air with a homebuilt rig at a cost of perhaps a few tens of pounds*.

The average newcomer's choice is likely to be a narrowband f.m. set, for use mainly in the channelized region above 145 MHz . This type of rig closely resembles the sort of c.b. set from which many new licensees have recently graduated: the controls are few and simple, and operation involves little more than pushing the button and talking.

For this reason, experienced operators often prefer singlesideband operation, where the technical demands are greater and the rewards higher. With weak signals, s.s.b. has a considerable advantage over f.m. and is essential for serious long-distance working.

Nevertheless, many old hands do use f.m. A chat on two metres, possibly through the local repeater, can be a pleasant enough way of whiling away the traffic jams on the way to work.

A type of set which has grown rapidly in popularity in recent times is the hand-held portable transceiver. Small enough to fit into the pocket, it can be taken anywhere; and for those with something grander at home, it makes a convenient second rig. The latest models offer performance figures and features scarcely
*For a more complex transceiver suitable for home construction, see T.D. Forrester's design in Wireless World, November 1982 to April 1983, with a postscript in August 1983.
inferior to those of larger units. Most hand-helds offer f.m. only, though there is at present one s.s.b. model.

The third main transceiver type is the basestation. This is typically quite a large and complex unit, normally mains-powered but often with a d.c. supply option for use with a car battery. Most ready-built basestation units are multi-mode sets, providing all three of the common amateur radio transmission modes: narrow-band f.m., s.s.b. and (for morse code) c.w. Amplitude modulation is more or less dead on v.h.f., despite one or two attempts to revive it: the few stations still using a.m. are equipped mostly with secondhand commercial radiotelephones.

The multi-mode set also makes a useful building block for forays into the higher bands by providing a stable frequency source for multiplying up through devices such as varactor triplers.

Technical features

Commercial amateur radio equipment has changed considerably during the last few years. Perhaps the most conspicuous development, in v.h.f. transceivers at least, is that digital frequency synthesizers have almost entirely displaced switched crystal oscillators and free-running variable frequency oscillators.

True continuous tuning has become virtually a thing of the past in 2 m equipment. Most sets
tune in steps governed in the first instance by the frequency of the synthesizer's v.c.o. With f.m. equipment for the European market, the step size is often 12.5 or 25 kHz . This gives easy tuning of the numbered f.m. channels on 2 m , which are spaced 25 kHz apart. So an f.m.-only set which scans in smaller steps may be awkward to handle when rapid retuning is called for. However, in many synthesized sets the channel spacing can be programmed by the user.

On s.s.b., tuning steps as small as 100 Hz are the norm. But s.s.b. sets also have a clarifier or receiver incremental tuning control (r.i.t.), which allows the receive frequency to be offset slightly from the transmit frequency: this is to help resolve offchannel transmissions. On the more expensive multi-mode sets there may also be a control to pull the transmitter frequency slightly, for satellite working. With this, the operator can compensator for Doppler shift as the spacecraft approaches and recedes.

In some of the cheapest sets, the hand-held portables, frequency selection is by means of a bank of thumbwheel switches. This method works well enough if the switches are reliable, though some users may prefer to pay a bit more to have a digital display giving positive indication of the tuned frequency. Many recent portables have a low-power liquid crystal display, with a calculator-

Model	Price (f)	Style	Ix ades	Other bands	Tx power			Tuning enthod	Menories	Scan code	$\begin{aligned} & \text { Dis- } \\ & \text { Dlay } \end{aligned}$	5aster	kx sensitivity	Audio out	Power needs	Battery capacity	$\begin{aligned} & \text { Size } \\ & \text { (a0) } \end{aligned}$	Weight (kg)	Features	Optional extras
WPO 2m Talkbox	68	$k 1 t$	f	-	14	χ	-	-	6 ch	-	-	-	$0.25 \mu \mathrm{~V}, 10 \mathrm{~dB}$	-	12 V	-	-	-	Rx and tx available spparately	Synthesized v.f.O., £38.50
Wood \& Douglas	74	kit	f	-	103	x	-	-	-	-	-	-	$0.4 \mu \nu, 12 d B$	<1.5W	12 V	-	-	-	Modular kit systen	Synthesized version, flo0; nany add-ons
Belcom LS-20XE	139	hand	f	-	170.111	5	5kHz	thumbw	-	-	-	-	Iav, 3260 B	20.16	6V,20<500 n	$4 \times A A A$	$140 \times 69 \times 26$	0.28	Very coapact	Headset, NiCd cells, charger
FDK Palmcomm II	139	hand	f	-	31.54	x	-	knob	6 ch	-	-	-	$-4 \mathrm{~dB} \mathrm{\mu} \mathrm{~V}, 20 \mathrm{~dB}$	0.5M	12V,25<300nA	225aAh	$68 \times 154 \times 41.5$	0.47	Capacitor aic	Throat sic, headset, speaker-aic
Standard C110	140	hand	f	-	2,5/0.15	S	5kHz	thubbw	-	-	-	as	$0 \cdot 2 \mu \nu, 12 d B$	0.3 H	9V, 20<750 \quad A	450ah	$176 \times 65 \times 34$	0.47	2.5W output is with optional NiCd pack	Choice of chargers
Yaesu FTZ03R	169	hand	f	-	$2 \cdot 51$	5	5/10kHz	thumbw	-	-	-	ac	$0 \cdot 25 \mu \mathrm{~V}, 12 \mathrm{~dB}$	0.45W	$\langle 13 \mathrm{~V},<0 \cdot 7 \mathrm{~A}$	425aAh	$65 \times 34 \times 153$	0.45	Drams 20at on standby	Headset for vox operation; bigger NiCd pack
Icom IC-2E	173	hand	f	-	1.5/0.15	5	5/10kHz	thusbw	-	-	-	-	$\langle 0.4 \mu \nu, 200 B$	20.34	$8 V, 20<550 n A$	250 Ah	$165 \times 65 \times 35$	0.45	Very conpact	Interchangeable NiCd packs in three sizes
Yaesu FTZ08R	179	hand	f	-	2,5)0.34	5	5/10kHz	keypad	10	b, ${ }^{\text {a }}$	1cd	-	$0.4 \mu \nu, 12 d B$	0.510	$10.8 V,<0.5 A$		$168 \times 61 \times 49$	0.72	20nA standoy current	Chargers, car adaptor, pomer applifier
NDi HC-1400	179	nobi	\dagger	-	25H	5	5	d	3	-	led	ac	$\langle 0.3 \mu \mathrm{~V}, 12 \mathrm{~dB}$	2II	13.8V, $<5 \mathrm{~A}$	-	$182 \times 66 \times 258$	3.4		
Standard C8900	219	nobi	\dagger	-	104	5	$5 / 25 \mathrm{kHz}$	d,u-d	5	b, ${ }^{\text {a }}$	led	bar	$0.15 \mu \mathrm{~V}, 12 \mathrm{~dB}$	2II	$12 \mathrm{~V}, 0 \cdot 4<2 \cdot 8 \mathrm{~A}$	-	$138 \times 31 \times 178$	$1+1$	GaAs fet r.t. anp; tiltable display	-
Belcom LS-202E	225	hand	1,5	-	2,5/0.5	S	5kHz	thusbw	-	-	-	ac	$0 \cdot 25 \mu \nu, 10 \mathrm{~dB}$	20.44	9V, 30<750nA	$6 \times A A$	$165 \times 62 \times 40$	0.5	Dual made; 73.5 W output with 124 supply	Console for mobile use; can accept 25w linear anp.
Icom IC-O2E	239	hand	f	-	3)0.54	5	12.5/25k	keypad	10	1	Icd	bar	<0. $32 \mu \nu, 20 \mathrm{OB}$	20.5W	8V, 45aA<1A	250.ah	$165 \times 65 \times 35$	0.515	13.8 bupply gives 5 W r.f. output	Interchangeable NiCd packs
KDK FM-2033	239	nobi	\dagger	-	25/5W	5	5/12.5k	d, u-d	11	b, a	Icd	bar	$0.2 \mu \mathrm{~V}, 12 \mathrm{~dB}$	32N	$13.8 V, 0.3<6 A$	-	$162 \times 55 \times 182$	1.7	Receiver has 1 kHz r.j.t. 5teps	
FDK Multi-725X	239	nobi	f	-	25)14	5	5/12.5k	d, u-d	-	b	fluor	bar	- $4 \mathrm{~d} \mathrm{~B} \mu \mathrm{~V}, 20 \mathrm{~dB}$	310	1318V, 66.5 A	-	$162 \times 62 \times 260$	$2 \cdot 3$	Two v.f.os	Expander unit for 70ca
Trio TR-2500	246	hand	f	-	2.570.311	5	5kHz	keypad	10	1	led	-	<0.2 $2 \mathrm{~V}, 12 \mathrm{~dB}$	20.4 4	$8 \mathrm{~V}, 0.03<0.8 \mathrm{~A}$	400.ah	$168 \times 66 \times 40$	0.54	Renovable NiCd pack	
Standard CSBE	249	port	f,5, 6	-	IN	5	1100 Hz	d, u-d	5	b, ${ }^{\text {d }}$	led	nc	$0 \cdot 22 \mu \mathrm{~V}, 12 \mathrm{~dB}$	11\%	<16V, 09<.6A	450.Ah	$129 \times 52 \times 190.5$	1.45	Separate aic	25W booster; nobile mounting bracket
Yaesu FT230R	259	nobi	\dagger	-	25/3M	5	$5 / 10 \mathrm{kHz}$	d, u-d	10	$b, 1$	led	ac	$0.25 \mu \mathrm{~V}, 128 \mathrm{~B}$	11%	$13.6 \mathrm{~V}, 0.3<5 \mathrm{~A}$	-	150×50×174	1.3	Two v.t. 05	Speaker-aic
Yaesu FT290R	269	port	f,5, 6	-	2.5	S	5/10kHz	d, u-d	10	$b,{ }^{\text {b }}$	led	ac	$0.25 \mu \mathrm{~V}, 12 \mathrm{~dB}$	III	70<800. A	8×1	$150 \times 58 \times 195$	$1 \cdot 3$	Two v.f.05; telescapic antenna	Speaker-aic etc.
Trio TM201A	279	nobi	\dagger	-	25/5W	S	5kHz	d,u-d	5	b, ${ }^{\text {a }}$	led	bar	$0.22 \mu \mathrm{~V}$	1241	$13.8 V,<5 \cdot 5 A$	-	$141 \times 39.5 \times 183$	$1 \cdot 25$	GaAs fet r.f. anp, two v.f.05, separate speaker	Renote control/display unit
Icom IC-27E	319	nobi	f	-	25/5W	5	12.5/25k	d,u-d	9	b, ${ }_{\text {a }}$	led	bar	<0.4 ${ }^{2} V, 20 \mathrm{~dB}$	${ }^{214}$	13.8V, <6A	-	$140 \times 38 \times 177$	1.2	Very coapact; two v.f.os	Speech synthesizer, £25
Trio TR-7930	323	nobi	f	-	25/5W	5	5 kHz	kpad, u-d	21	b, ${ }^{\text {d }}$	led	bar	< $0.25 \mu \mathrm{~V}, 12 \mathrm{~dB}$	1241	13.8V, 66.54	-	$175 \times 64 \times 206$	1.8		
FDK Multi-750XX	349	-obi	f,5, 6	-	20/1w	S	100Hz/5k	$\mathrm{d}, \mathrm{u}-\mathrm{d}$	-	b	fluor	bar	$-4 d B \mu \nu, 20 d B$	1.3 W	$13.8 V,<5 A$	-	$162 \times 62 \times 260$	$2 \cdot 3$	Two v.t. 05	Expander unit for 70cn
Icom IC-25H	359	nobi	\dagger	-	45/2W	5	5/15/25k	d	5	0,0	led	bar	<0.6رV) 20 dB	12M	$13 \cdot 8 V,<9 \cdot 5 A$	-	140×50×222	1.9	High-power version of old IC25E; two v.t.os	Mesory back-up for mobiles
Standard CSBOOE	359	n06i	f,5,c	-	25/14	5	2100 Hz	d, u-d	10	0,1	1 l ${ }^{\text {d }}$	bar	0.19 $20,12 \mathrm{~dB}$	1241	$12 \mathrm{~V}, 45<4.7 \mathrm{~A}$	-	$149 \times 55 \times 218$	1.9		Speaker-aic
Yaesu FT4日OR	399	nobi	f,5,6	-	15 W	5	jikHz	d,u-d	4	b, ${ }^{\text {a }}$	fluor	bar	$0.35 \mu \nu, 20 \mathrm{~dB}$	2W	$13.8 V, 0.5<3 \mathrm{~A}$	-	$180 \times 60 \times 240$	$2 \cdot 9$	Dual v.f.os	Tone encoder, p.s.u., station console
Trio TR-9130	458	nobi	f,5,c	-	25/5W	5	12.5/25k	d, u-d	6	b,a	led	ac	$20.25 \mu \mathrm{~V}, 12 \mathrm{~dB}$	124	$13 \cdot B V,<5 \cdot 5 A$	-	$170 \times 68 \times 241$	214	Two v.t. 05	
Trio TW-4000A	488	nobi	\dagger	70ca	25/5W	5	$5 / 25 \mathrm{kHz}$	d,u-d	10	b, ${ }^{\text {b }}$	Icd	bar	$<0.17 \mu V, 12 \mathrm{~dB}$	2241	$13 \cdot B V,<7 \cdot 5 \mathrm{~A}$	-	$161 \times 60 \times 217$	$2 \cdot 0$	GaAs fet preanps, two v. $f .05$	Voice synthesizer (£25) fits internally
Icom IC-2900	499	nobi	f,5,6	-	25/14	5	1/5kHz	d	5	b, ${ }^{\text {a }}$	led	bar	<0.6رV, 20dB	124	$13.8 V, \angle 6 A$	-	$170 \times 64 \times 218$	2.5	Two v.t. 05	NiCd battery for menory retention
Icom IC-271E	649	base	f,5,6	-	25) 1 W	5	1/5kHz	d, u-d	32	b, ${ }^{\text {a }}$	fluor	ac	<0, $3 \mu \geqslant, 12 \mathrm{~dB}$)24	13.8V, 16 A	-	$285 \times 110 \times 275$	$5 \cdot 2$	For mains use, requires internal s.m.p.5., 1449	Conputer interface, voice synthesizer
Yaesu FT726R	739	base	4,5,6	-	10W out	S	20/200Hz	d,u-d	11	b, ${ }^{\text {e }}$	Huor	ac	<0. $25 \mu \mathrm{~V}, 12 \mathrm{~dB}$	31.5M	ac/12V, 4 4,5A	-	$334 \times 129 \times 315$	11	Duplex mode with optional satellite i.f. unit	R.f. codules for 6a, 70cm and (to come) h.f.
Icom IC-271HE	789	base	4,5,6	-	100\%104	5	1/5kHz	d,u-d	32	b, ${ }^{\text {a }}$	Huor	ac	$<0 \cdot 3 \mu V, 12 d B$	2W	$13.85,<18 A$	-	$111 \times 286 \times 324$		for ains use, requires internal s.A.p.s., $\{149$	Computer interface, voice synthesizer
Trio TS-780	850	base	4,5,6	70c:	10310	5	5/12.5k	d	10	b, ${ }^{\text {a }}$	Huor	ac	$\langle 0 \cdot 2 \mu \nu, 12 d B$	224	$13.8 \mathrm{~V},<5 \mathrm{~A}$	-	290x124×322	10.1	Cross-band operation; two vfos; switchable rx b.w.	

style keypad for rapid frequency selection. The display may incorporate extra features such as a bar-graph meter to indicate transmitted power and received signal strength. In mains-powered sets, or mobile equipment designed to run from a car battery, a fluorescent display is sometimes fitted: this may give better readibility under unfavourable lighting conditions.

The transmitter

The maximum power level permitted to British amateurs on the 2 m band (other than those with special dispensation from the licensing authority) is a carrier power supplied to the aerial of 20 dBW , or in the s.s.b. mode a peak envelope power (p.e.p.) of 26 dBW . These figures correspond to 100 W and 400 W respectively.

The power output of the average 2 m mobile f .m. transceiver is in the region of 10W. Since this type of set is probably the most common, there is little point choosing something more powerful unless the performance of its receiver is better than average. There is no virtue in being able to shout at other stations if their replies are going to be lost in noise.

With portable and hand-held transceivers, transmit power is usually restricted to a watt or two for reasons of battery life; but often the power can be switched to a still lower level for contacts under good signal conditions, with a dramatic reduction in battery drain. Under typical conditions, with one-minute transmission periods alternating with three minutes of listening, the life expectancy of a battery pack is likely to be in the region of two and a half hours.

The current drain in the standby condition is a detail worth seeking out on the manufacturer's data sheet. Some of the early portables had led displays which were so heavy on current that they had to be blanked for much of the time. But if the user anticipates long periods of intensive operation, it is worth looking for a model with a quick-change battery pack so that a spare can be slipped in when the output starts to droop. With certain sets, the manufacturers offer a choice of packs in different sizes, some of them having a higher-than-usual nominal voltage to give increased transmit power.

The receiver

Receivers too have their share of design improvements. Ceramic filters offer excellent filtering at low cost, and new low-noise r.f. devices are bringing enhanced performance in the front-end. Beginning to make an appearance in commercial two-metre equipment is the gallium arsenide fet. But it is worth bearing in mind that fashionable components do not automatically make a set better.

Receiver sensitivity usually features prominently in radio manufacturers' promotional material, though the figures quoted are not always expessed in the same units and it can be difficult to raw meaningful comparisons. However, the 'goodness' of a receiver is affected by many other factors, including resistance to overloading, resistance to out-ofband signals and the quality of the filters. The sensitivity figures should not therefore be taken on their own as an index of the receiver's overall merit.
As it is with cars, so with transc -eivers: even the cheapest will get you from A to B if the road is open. So what are the advantages of buying one of the more expensive models? With radios, even the costliest cannot offer extra speed. But it can provide a range of features designed to make a session at the microphone more interesting and less tiring.

Among these are extra memories for storing commonly used frequencies; additional scanning modes; accessories such as a voice synthesiser to supplement the front panel display; plug-in radio-frequency modules for other bands; an interface unit enabling the transceiver to be controlled automatically by the user's computer; and of course more transmitter power and a better receiver.

Notes on the table

Price: the distributor's UK price, including v.a.t.
Style: entry indicates whether the set is intended for portable, mobile or base-station use. However, for many mobile units it is possible to buy desk-top consoles with mains power units; and for some portables, car fixing kits are available.
Modes: ' f ' indicates narrow-band f.m.; 's' indicates s.s.b.; 'c' indicates c.w.
Other bands: this survey includes one or two dual-band models. For
certain other sets, r.f. modules giving coverage of additional bands are available as an accessory.
Tx power the transmitter power quoted by the manufacturer, normally for the f.m. mode. Two figures separated by an oblique stroke indicate high and low power settings. The separator ' $>$ ' indicates that the power is continuously variable between the limits shown.
Syn/xtal: ' s ' denotes frequencysynthesiser tuning, ' x ' denotes a crystal oscillator providing only those channels for which suitable crystals have been fitted.
F.m. step: the normal minimum tuning step in n.b.f.m. use. Some multi-mode sets are capable of much smaller steps even on f.m. In many cases, the size of the step is programmable: for example, 12.5 and 25 kHz can be selected instead of 5 and 10 kHz if the user wishes.
Tuning method: ' d ' indicates a conventional knob or dial, 'thumbw' indicates thumbwheel switches and ' u - d ' indicates updown buttons.
Memories: most present-day sets permit storage and instant selection of a number of the user's favourite frequencies. Certain models also have one or more variable-frequency oscillators which can be used as additional memories.
Scan modes: some sets allow scanning of frequencies stored in memory (' m '), others provide scanning of the entire band ('b') or programmable sectors of it.
S-meter. most sets include a received signal-strength meter of some sort. Often this doubles as a power level indicator. The entry 'bar' indicates a bar-graph indicator as distinct from a moving-coil meter, 'mc'.
Receiver sensitivity: the figure shown is, where possible, for the f.m. mode.

Power needs: some hand-held sets tolerate a wide range of supply voltages, while mobile sets work best on the 13.8 v provided by a reasonably healthy car battery. Figures for current indicate the consumption on standby and while transmitting on high power. Battery, mA-hour. storage capacity of the standard battery. Most portable sets are supplied with nickel-cadmium rechargeable batteries. Batteries of other sizes may be available as an accessory. many sets, portable and otherwise, have a smaller battery (not indicated here) for memory retention.

Amateur Electronics UK
504-516 Alum Rock Road
Birmingham 8
Tel. 021-327 1497/6313
Yaesu
Arrow Electronics Ltd
5 The Street
Hatfield Peverel
Essex
Tel. 0245-381626
NDi
Lee Electronics Ltd
400 Edgware Road
London W2
Tel. 01-723 5521
Standard
Lowe Electronics Ltd
Chesterfield Road
Matlock, Derbyshire DE4 5LE
Tel. 0629-2817/2430/4057
Trio, Belcom
Microwave Modules Ltd
Brookfield Drive
Aintree, Liverpool L9 7AN
Tel. 051-523 4011
Numerous preamplifiers, power
amplifiers, converters and
transverters
Modular Electronics Ltd 95 High Street
Selsey, Chichester, Sussex
Tel. 0243-602916
Preamplifiers, linear amplifiers
and r.f. components
Mutek Ltd
Bradworthy
Holsworthy
Devon EX22 7TU
Tel. 040924543
Preamplifiers etc.
Thanet Electronics Ltd
143 Reculver Road
Beltinge, Herne Bay
Kent CT6 6PD
Tel. 02273-63859/63850
Icom
South Midlands Communications
Rumbridge Street
Totton, Southampton SO4 4DP
Tel. 0703867333
Yaesu, KDK
Waters and Stanton Electronics
18-20 Main Road
Hockley, Essex
Tel. 0702-206835/204965
FDK, Trio
Wood and Douglas Ltd
Unit 13, Youngs Industrial Estate
Aldermaston, Reading RG74PQ
Tel. 0736-5324
2 m transceiver modules.
WPO Communications
20 Farnham Avenue
Hassocks
West Sussex, BN6 8NS
Transceiver kits

PREFERRED VALUES

It is not unusual for the engineer to be condemned for incompetence when his strictly practical camel fails to look like the mathematician's image of an elegant but non-existent breed of horse. Preferred values are selected not by rigid arithmetic, but as the result of some very clear and simple thinking about tolerances and their application to the real world. Since the 20\% range has produced the most glaring 'anomaly', let us use it as our example.

To produce a series of figures such that any value will fall into the tolerance band of one of them, they must be related so that the top end of the lower band coincides with the lower end of the higher one. In our case this is to say that 120% of the lower should be 80% of the higher, so they should stand in the ratio of 1 $: 1.5$. In practice the 'Two-digit' rule will prevent this from always being met, and rounding of a calculated value will be required. This must always be in the sense to close the gap between the two values, since the other way will produce a 'hole' into which components could fall and so be lost. This consideration also leads to the conclusion that when rounding has taken place, the next value must be based on that rounded value and not the calculated one. This destroys once and for all any elegant arithmetic relation. Lastly, in order to keep the total number of values down as far as possible, it is sensible to select the 10% values from those already existing in the 5% range (if possible) and the 20% from the 10\%.

We can now see where this reasoning gets us. Starting initially from the lowest value: previous selected value selected $\times 1.5 \quad$ value

-	1
1.5	1.5
2.25	2.2
3.3	3.3
4.75	4.7

Now the problem. On this basis the next value should be 7.0 (although it could be less) and the next is over 10 by quite a bit. Let us therefore consider what happens if we calculate back from
10. We will now have a value 6.7 (although it could be more). So there are four possible values available all of which would meet the 'no holes' criterion. 6.8 is the only one to appear in the 5% range, or in the 10% range for that matter.

Mr Scott tells my namesake that he will find the 'same standard of arithmetic' in all three ranges. Precisely so. However we have one more obstacle to overcome. Calculate the 5% range and you will get two values (1.4 and 1.7) which do not appear in the standard, transgressing the 'no-holes' rule. With them in there was a great deal of overlap, while without them the holes are only very small. The need to keep the number of values to the minimum was presumably judged to be the over-riding factor.

Even if the poor beast does have bad breath, it is still not a bad camel in a hard world! Alan Watson
Pollense
Mallorca

GPIB COMBINER COMMENTS

I refer to the article in the April 1984 issue of Wireless World by D.J. Greaves., the 'GPIB combiner'

Mr Greaves' design, though ingenious, is a complex hardware solution to a problem imposed by his coice of GPIB controller. The particular machine he employs (the CBM Pet) does not implement the full GPIB standard and lacks the ability to pass control. The concept of the design is based on a fallacy brought about by the author's reliance on a particular manufacturer's interpretation the function of a GPIB controller. Mr Greaves states 'The main disadvantage of the [GPIB] bus is that only one controller may be connected to the string of peripherals at one time.' That statement is incorrect.

The IEEE-488 Standard specifically allows for multiple bus controllers. A GPIB controller which implements the full IEEE-488 standard includes the capability to pass control to another controller connected to the same bus. Most GPIB controllers commercially available include this capability, typically as a high-level language
statement. Also, several commercial l.s.i. devices are available which implement this GPIB feature. As recently as February 1984 your magazine described an interface module available for the BBC microcomputer using an l.s.i. device which includes bus control transfer.

More than one controller may have access to peripherals on a single GPIB through the existing standard using software. It is not necessary to spend time designing a hardware multiplexer for GPIB controllers. The user who finds that he needs to attach several controllers to his bus will find a neater and quicker solution by selecting his bus controllers with this capability built-in. There are several well known international manufacturers of GPIB instrumention, and several less-well-known national ones, who can supply GPIB controllers with pass-control as a standard feature.

J. Summers

Application Manager
Fairchild Camera and Instrument (UK) Ltd.

IS LIGHT VELOCITY A CONSTANT?

The questions about relativity theory will not go away; Michael M. Albahari ("Is light velocity a constant?" February letters) is mistaken if he considers that the issue could be resolved by accurate measurement of time and distance; the real conflict is between incompatible philosophical hypotheses.

The complex of notions embodied into the Special Theory of Relativity (and from which the General Theory was developed by processes of logic) is based on two propositions selected from several alternatives:

1. All inertial frames of reference are equivalent in their physical characteristics.
2. Light travels in any fixed direction with the same velocity c in all inertial reference systems.

Professor Albert Einstein stated (2) as a corollary to (1) in his 1905 paper 'Electrodynamics of Moving Bodies', but notwithstanding the validity of (1), it is impossible to give an
unambiguous interpretation of (2) because velocity exists between two physical entities and is not something that resides independently within frames of reference.

Implicit in the theory as developed from (1) and (2) are two generally unstated propositions:

3. Electromagnet radiations

 impinge upon the surfaces of all materials conglomorates, from unoccupied space with the same velocity c.4. Unoccupied space has no characteristic which regulates the propagation of radiations crossing it, except to guide it in a straight path.

To render (3) and (4) some appearance of plausibility Einstein made the suggestion that 'The relations between co-ordinates of two systems in uniform motion relative to each other cannot be indentical with those of Newtonian physics in which simultaneity is absolute'.

The problem of interpretation of this assertion in terms of experience is the real stumbling-block for relativity theory; the late Professor Herbert Dingle strongly suggested that no meaningful interpretation is possible. Some further propositions which readers may like to comtemplate are:
5. A unique universal medium (or aether) propagates radiations at the velocity c.

6. Material conglomerates

 moving through the aether of (5) suffer spatial contractions along the axis of motion in proportion to its rate and concomitantly their internal processes are retarded.In his 1905 paper Einstein recognised the Lorentz-Fitzgerald contraction time-dilation effects as consequences of (2), the former effect being considered as 'apparent' and the latter as real, which was a blatant inconsistency.

The development of the General Theory requires the Lorentz-Fitzgerald effects to be physical; it is not generally stated that this in turn produces difficulties with the dynamics-energy possessed by rotating entities, and the
development of the theory to require an increase of mass with increase in velocity through the ether violates the principle of energy-mass conservation.

Some further propositions are:

7. Electromagnetic radiation

 emanates from every emitter with a velocity relative to that emitter and remains directly related to that emitter indefinitely (i.e. each emitter is embedded in its own individual medium).8. All radiating media have similar characteristics, and as a corollary exist 'within' or 'throughout' each other, and have a general propagational velocity of c where remote from matter.
9. The characteristics of media in
(8) may be modified in the proximity of considerable conglomerates of dense matter. Proposition (7) was originally stated by Michael Faraday (Phil. Mag Vol. 28, No.188, May 1846), and as misinterpreted by Clerk Maxwell to have the meaning of (5) and thus taken as providing the basis for his equations of the electromagnetic field. When (5) appeared to have been rendered untenable by some rather inept exercises in research, Einstein raised his 1905 paper in an attempt to show that we can have as many ethers as we like; he made the mistake of implying that all receivers of radiation must be embedded in their own individual ethers, this being the interpretation he gave of (2). Faraday's proposition (7) amounts to the complement of this, and avoids the complication of (2). Although (1) may be invalid if the physical universe has a centre-point about which it is in rotation, and (2) cannot be tested unless its ambiguity is resolved, (3), (5), (7), (8) and (9) can be subjected to physical investigation to varying degrees of determination.

It is doubtful that the members of professional bodies are as yet prepared to embark on such work, since it would be inexpedient to demonstrate that their uncritical commitment to relativity theory may have been mistaken.
C. B. V. Francksen

Farnborough

Hants

XY PLOTTER

I am prompted to write to you because of the very interesting XY plotter by P.N.C. Hill. I am retired now, from running a plastics injection factory, but have long been keen on electronics, photography, astronomy.

For a number of years, I have been experimenting with a method of printing colour photographs direct on to paper by scanning as in the facsimile process. This started with EF50s and multiplier cells and progressed to transistors and has involved many different models using ballpens and also carbon paper for the image. I even tried a mixture of metal indicators soaked into paper with glycerine and electrodes of copper, nickel and molybdenum to mark the paper. So far, the carbon paper has seemed the best to manage with limited funds to spend on research.

In the course of these experiments I have used various steppers including the Clo-Syn motors from Stewart. Not being good enough with logic circuits I have had to use simple chips like the 4017 BE which give a decade count from simple pulsing and can be made to count lesser steps by reset from one of the outputs. The 4017 is used for 400 steps by the circuit shown in my sketch.

A useful chip is the SAA 1027 which will drive a Slo-Syn motor and reverse in an easy manner, but my circuits have been mainly for unidirectional running...

I think by the way that Mr Hill is wrong to state the rotor is not a permanent magnet. You can feel the holding force if you turn this
by finger and thumb and generate about 50 volts or so in one winding by running it as a dynamo. Also, I have some motors from the States, including a Rapid Syn with four coils which has a magnetic hold so strong that it is hard to turn by hand. This performs very well as it has 12 volt coils and better torque than the Slo Syn.

Despite this one seeming error, the article is most interesting as I have made up a plotter in the past, using ordinary motors and a potentiometer balance circuit to do transistor curve tracing. It was not very good and needed to be refined so it was scrapped.

Your write-up leaves out some important details for me since it would be nice to make up a stepper plotter controlled by Basic and digital-to-analogue output from the computer with a potentiometer to compare positions.

The ball bearing idea is a good
one and simple. I have used a system of crossed ball races with silver steel rods and this has proved quite good. See sketch.

A further article dealing in much more detail, with the electronics of the plotter would be welcome to me and I suspect many others.
A.J. Quinton

Thorpe Bay Essex.

TECHNOCRATIC BONDAGE?

Your April leading article put the blame for restrictive aspects of our society on 'technocrats'. But government ministers rely on the advice from their ministers, i.e. from civil servants, and it has long been notorious that few graduates in science subjects make their way to the higher ranks of the civil service. (I guess that in addition to the fact that few of those who apply are

accepted, it is probable that few apply.) So far from our troubles being due to 'technocrats', many are due to the fact that few of those in a position to influence policy have what might be called an 'engineering' outlook, a knowledge of scientific fact and method plus some appreciation of the human side of
'management'.
On the narrow issue of GCHQ I can only say that those who go to work in such an establishment should be forewamed of the burden which 'security' will place on them. From the little which I have seen from the outside, I would regard this burden of knowing things which must on no account be disclosed as the most serious factor associated with such work.
D. A. Bell

North Humberside

RELATIVITY

Much discussion concerning the Special Theory of Relativity has appeared of late both in your letter columns and in other publications, even to the extremes of scrapping the theory altogether and retuming to the day of classical mechanics and the aether. On the other hand, some have raised more fruitful suggestions concerning the physical basis of the relativistic (or e-m) Doppler shift.

Surely at this stage in the career of that theory it should be evident that the theory suffers from a number of definite shortcomings: (a) it is physically incomplete, i.e., certainly questions of physics are still left open by the theory itself; and (b) as basically a correction factor to classical electrodynamics it suffers from a instrumentalist interpretation that prevents these fruitful physical questions from being asked, i.e., the theory concerns rigid rods and clocks, but does not directly have a microbasis

Assuming that there is some validity in these observations on the theory the following questions seem to be quite open. What is the physical basis for the constancy of light's velocity if there is relative motion between source and the observer, especially since the classical physics requires that velocity to vary?

What is the physical basis for clocks (or any natural process) running slower v a the inertial
system of which it is a part is in relative motion?. How is the special theory related physically to quantum mechanics? Does the paradox of the twins that age at different rates depend more on relative acceleration than on relative velocity? Is the special theory valid for systems in instantaneous velocity rather than constant relative velocity? Einstein's early success (1911) in deriving the red shift formula for a gravitational field could only be explained by assuming he used relative instantaneous velocity Finally, does the wavelength change under conditions of relative motion between a light source and observer while the velocity of the light is constant? The constancy of wave length (and associated wave number) is an unwarranted carryover from classical physics, and even Einstein himself showed his conservative nature is making this latter assumption.

G. Blondeau

CANMET, Dept of Energy,
Mines \& Resources,
Ottawa, Ont.,
CANADA
I am beginning to get the hang of much that you have recently printed; in spite of the titles, it has had nothing to do with relativity!

Science comprises a considerable body of facts and theories which support one another and which are widely considered to be true. This body can grow in two very different ways. We may wake up to new implications of what is already accepted - 'new', that is, in the sense that no one had got round to digging them out before - or we may add new facts which fit in to the old body and so consolidate it. That is, we may build on the old structure

But we can also work on the foundations. Some of the theories in science are fundamental, which means that their truth cannot be inferred from other accepted facts or theories- their sole purpose is to provide explanations of other theories and facts. Science likes a fundamental theory if it is felt on balance inexplicable things outweigh the unsatisfactory aspect of introducing a new inexplicable idea, and provided that it does not lead to inferences which conflict with observations. In other words a fundamental theory has to be useful (it must
survive Occam's razor) and it must be refutable by established facts.

Now the special and general theories of relativity, wave mechanics, gauge theories and so on are all fundamental in this sense. All that their advocates claim for them is that if you assume them to be true, you can explain a wider range of facts than you can if you assume them to be false. It is not a valid objection to a fundamental theory to say that it embraces a concept which clashes with your old preconceived ideas, or that it cannot be derived from something else.

Science has always had trouble getting people to modify their tenaciously held ide as: the sun revolves around the earth, action at a distance is conceptually impossible, and so on. Even today people get stuck with wrong ideas through failing to look at all the evidence; a clockmaker would say that the great property of a pendulum is that its period is constant but a church bellringer would say that the one thing which makes change ringing possible is the fact that a small change in the amplitude makes a big difference to the period!
J. G. D. Pratt.

West Horsley
Leatherhead
Surrey
You do your journal no service by continuing to publish these embarrassing articles by Dr Murray. It is true that there are serious imperfections in both Relativity and Quantum Mechanics and if Dr Murray confined himself to explaining them to your readers one could not object, even if one had doubts whether he was the man best qualified to do so. But it is really too much when, although apparently not able to offer any constructive comment himself, he jeers at those men who have, over the years, painstakingly put these theories together. Newton is supposed to have said tht he saw so far be cause he stood on the shoulders of giants. No such humility from Dr Murray who can apparently see nothing from an even better vantage point.

The community of theoretical scientists - Dr Murray's despised establishment - is well aware of the imperfections of fundamental theory but is far from complacent about them. On
the contrary it continues to devise procedures for obviating them while at the same time looking for more fundamental changes which would remove them altogether. A consensus is beginning now to emerge on what the basis of a new theory might be. As usual in these matters the roots of the new theory go back a long way - originally to Hamilton's quaternions but more significantly to the work of Eli Cartan at the beginning of the century. Cartan showed that a geometrical space could be discribed not only by vectors and tensors but also by more elemental entities variously called half-vectors or spinors. These entities were first used in physics by Pauli and slightly later by Dirac who in 1930 constucted a relativistically covariant wave equation in which electron spin is inherent. What is now becoming apparent is that the spinor formulation may also be required to remove the difficulties of macro-theory.

Dr Murray may denounce these developments as even more counter to common sense than Minkowsky space but then common sense has never been of much help in theoretical physics. The nub of the matter is however easily explained to any reasonably competent mathematician. Spinors are a sort of complex number, distinguished from ordinary complex numbers by the fact that their law of multiplication is not in general commutative, that is, $A \times B$ is not necessarily equal to $B \times A$. In a group of spinors there is usually a sub-group whose multiplication law is commutative and whose properties palely reflect those of the full group; in the present case this sub-group is the complex numbers. What physics in general has been doing up to now is to use complex numbers when they should have been using the full group. Thus they have been in much the same situation as electrical engineers trying to make do with real numbers, knowing nothing about complex ones.

If a new theory along these lines is ever formulated and accepted it will be because it works better than the one it replaces.

E. R. R. Holmberg
 Barnes
 London SW 13

F

PHONE 0474813225

 3 LINES MEOPHAM GREEN, MEOPHAM, KENT DABOQY PMCOMP

PHONE SELECTRON HOUSE，WROTHAMROAD 3 LINES MEOPHAM GREEN，MEOPHAM，KENT DABOOY

A SELECTION FROM OUR STOCK OF BRANDED VALVES				 HLAT 3.50 $H L 42 D$ 3.50 HL90 0.70 $H L 92$ 1.50 HL133／DD 3.50 HR2 4.00 $H Y 日 2$ 1.00
A1714	18.50	E1524 6.95	EF732 3.50	
A 1998	11.50	EAS0 1.00	EF800	HVR2 ${ }_{3}$
887	11.50	EA76	$\begin{array}{ll}\text { EF805S } & 13.50 \\ \text { EF806S } & 18.50 \\ 14.50\end{array}$	JP9．7A 60.00
A2293	14．95	${ }^{\text {EAA }}$	EF812 ${ }_{0}$	K391A 95.00
${ }_{\text {A }}$	37．50	$\begin{array}{ll}\text { EABCBO } \\ \text { EAC91 } & 0.70 \\ & 2.50\end{array}$	EFL200 1.50	
A 2900	11.50	EAF42 $\quad 1.20$	EH90 0.72	KR6／3 45.00
A3042	24.00	EAF801 $\quad 3.50$	EK90 0．72	
A3283	24.00	EB34 $\quad 1.50$	EL32	KT33C ${ }^{\text {K }}$
／HL／	4.00	E841 3.95		
	4.00	EB91 0.60		KTa5
CT22	59.75	EBC33 $\quad 2.50$	hilips	${ }_{\text {KT61 }}{ }^{\text {K／}}$
NP2	4.00	E8C41	EL36 $\quad \begin{aligned} & \text { 1．50 }\end{aligned}$	KT63 ${ }_{2} .00$
${ }_{\text {A } 2221}$	39.00	$\begin{array}{ll}\text { E8C81 } \\ \text { E®C90 } & 1.50 \\ 0.90\end{array}$	EL37 9.00	KT66 OSRAM
AH238	39.00	EBC9 0.90	EL38 4.75	㖪． 50
Al60	6.00	E8F33 2.50	EL41 ${ }_{\text {EL42 }}$	KT66USA 6.90
ANT	14.00	EEF80 0.65	EL42 E181 E1．00 1.95	77 Gold Lion
${ }_{\text {ARP }}$ AA	1.25	E8F83 E8F85 0.65 0.95	EL82 0.58	9.50
ARP35	2.00	${ }_{\text {ERFB9 }}^{\text {E8F85 }}$	EL84 0.75	． 00
	2.00	EBF93 0.95	EL85 4.50	KT88USA 9.00
450	67.00	EBL1 2.50	E186 0.85	Galdion
	55.00	2.00	EL90 1.50	
BS814	55.00	EC52 0	EL91 6.00	K167 9.00
	19.0	EC70 ${ }^{1.75}$	EEL95	
C3JA	21.00	EC80 ${ }^{\text {che }}$		KTw63 2.00
${ }_{\text {Cl128 }}$	${ }^{5495}$	EC81 EC86 1.95 1.00	EL18P ${ }^{\text {El }}$	KTZ63 ${ }_{2}$
${ }_{C 1134}$		${ }_{\text {EC88 }}$	EL360 $\quad 6.75$	1.50
C1148A	115.00	EC90 1.10	EL500 1．46	95
C1149／1	130.00	EC91 5	${ }^{\text {ELL504 }}$	L120／2K 12.00
，	135.00	EC92 1.25		187.20 95.00 1598
C1534	32.00	${ }_{\text {EC93 }}$		0
CCA	2.60	${ }_{\text {EC95 }}$		M
${ }^{\text {Cl3 }}$	${ }_{2}^{2.90}$	${ }_{\text {EC97 }}$	EL822 12.95	M537A 60.00
\checkmark Nos	兂	ECC32 ${ }^{\text {che }}$	EM1 9.00	M5143 155.00
		3.50		6.00
			EM80 0.70	7.50
DA4	22.20		EM81 0.70	M8083 3.25
DA42	17.50	$\begin{array}{ll}\text { ECC82 } & 0.55\end{array}$	EM84 ${ }^{1.65}$	M8091 7.50
DA100	125.00	ECC82 Philips	EM85 ${ }^{\text {E }}$	M8096 ${ }^{3}$
	0.70	1.5	EM87 2.50	M8098 5
	0.65	ECC83 0.65		M8\％00 5.50
DC90	1.20		EN91 1.10	M8136 7.00
DCX4－1000		ECC83 Philips		M8137 5.50 M 8161 6.50 185
DCX4．5000			EY51	M8162 ${ }^{\text {M }}$ 5．50
		$\begin{array}{ll}\text { ECC84 } \\ \text { ECC85 } & 0.50 \\ 0.60\end{array}$	EY81 1.50	M8163 5.50
DET16	${ }^{28.50}$	ECC86 ${ }^{\text {ECC8 }}$		M8190 4.50 $M 8195$ 6.50
EET18	28.50	${ }_{\text {ECC888 }}$		M8196 ${ }^{\text {N8，}}$
Et23	35.00	ECC91 2.00	EY88 0.55	M8204 $\quad 5.50$
DETT25 22.00		$\mathrm{ECCO}^{\text {ECCO}} 10.72$	EY91	M8223 4.50
		ECC189	EY500A 1.50	M8224 2.00
旡	22.00		EY802 0.70	M8225 3.50
D992	0.60		E235 0.75	ME1401 29.50
即	${ }^{0.65}$		EET40 2.75 EZ41 2.75 1885	ME：402
訾	1.20		EZ80 0.75	MH4 ${ }^{\text {M }}$
－173	0.90		EZ81 0.75	MHLD6 ${ }^{4.00}$
＋99	${ }_{0}^{0.56}$		EZ90 $\quad 1.50$	ML4 4.50
－ H 199	2.00			MS48
	0.90	ECF202 1.85		MU14 ${ }^{1.50}$
	1.20 2.50		655／1k 9.00	${ }_{\text {N78 }}{ }^{\text {N }}$
（	2.50 2.50		6180／2M 9.00	OA2 ${ }_{0}{ }_{0.85}$
D63	2.50 1.00 1	$\begin{array}{ll}\text { ECFB06 } & 10.25\end{array}$	6240／2D 9.00	OALWA 1.50
－7\％	2.50.	${ }_{\substack{\text { ECCH3 } \\ \text { ECH4 }}}$	G400／1K 14.00	$\mathrm{OAB}^{04} \quad 2.50$
L73	2.50		GC108 17.50	
L91	1.50	ECH35 2.15	GC10／4日 17.50	
Di92	0.95		GC10／4E 17．50	1.50
d93	1.10		GC12／4E 77.50	\％
DL94	2．50		GD86W 6.00	OM4 ${ }^{\text {M }}$
Disto	13.50		GDT120M 5.00	
DM70	$\underset{\substack{10.00 \\ 1.95}}{1}$	$\begin{array}{ll}\text { ECL82 } & 0.65 \\ \text { ECl83 } & 2.50 \\ \\ \text { cle }\end{array}$	GN4 $\quad 6.00$	$\mathrm{ORP4}^{\text {OR }} \quad 2.50$
M160	2.75		GN10 15．00	ORP50 $\quad 3.95$
Drs	1.50	$\mathrm{ECLR4}^{\text {ECL }}$	GR10G 4.00	P64 $\mathrm{P41}$
V86／87	${ }^{0.65}$		GRSIOC 16.00 S	$\begin{array}{ll}\text { PABC80 } & 0.50\end{array}$
EOCCC	${ }_{9}^{0.95}$	${ }^{\text {ECLCR05 }}$	GS10H 12.00	PC86 0.75
E80CF	11.00	$\begin{array}{ll}\text { EF37A } & 2.00 \\ \text { EF39 } & \\ 1.10 \\ 10\end{array}$	GS12D 12.00	
E80F	13．50	$\stackrel{\text { EF39 }}{\substack{\text { EF4，}}}$	GTiC S／S 13.00	PC97 ${ }^{1.10}$
${ }_{\text {E }}^{81 \mathrm{ClC}}$	${ }_{3}^{1.50}$		GTE 175M 8.00	${ }^{\text {PCC800 }}$
811	12.00	EF50 EF5	${ }_{6}{ }^{\text {G7R120 }}$	$\begin{array}{ll}\text { PC900 } \\ \text { PCC84 } & 1.45 \\ 0.40\end{array}$
E82CC	3.50 3.50	${ }_{\text {EF55 }}$	GXUU ${ }^{13.50}$	${ }^{\mathrm{PCCC85}} 50.54$
E83F	5.50	EF71 EF72	GXU3 24.00	${ }^{\text {PCCC88 }}$
${ }_{86 C}$	9.50	EF73 1.00	150	70
${ }^{88}$	7.95 3.50	$\begin{array}{ll}\text { EF80 } \\ \text { EFF3 } & \\ & 0.55 \\ 3.50\end{array}$	GY501 $\quad 1.20$	PCC805 0.70
	7.95		GY802 ${ }^{\text {G30 }}$	${ }^{\text {PCCC806 }}$
G90F	7.95		G230 G231 1.00 1.00	$\begin{array}{ll}\text { PCEF88 } \\ & 0.80 \\ 0.65\end{array}$
${ }_{\text {c9 }}^{992 \mathrm{ClC}}$	${ }_{3}^{4.95}$	${ }_{\text {EfB6SPecial }}^{\text {quatity }}$	G232 100	PCFF82 0.00
999F	6.99			
301	19.95		G234 637	PCFE7 0.40
180CC	6.50	$\begin{array}{ll}\text { Ef93 } & \\ \text { EF94 } & 0.95 \\ 0.95 \\ 0\end{array}$	HAA91 1.00	PCFF200 1．80
（1882F	${ }_{6}^{9.50}$		HABCBO 0.90	80
36F	8.50	EF95 ${ }^{\text {Efor }}$	нвс90 0.75	PCFF800 0.40
88CC	．50	EF97 EF98	${ }_{\text {Hf93 }}{ }_{\text {He93 }}$	PC¢f80
退	19．50	$\begin{array}{ll}\text { EFF } 183 \\ \text { EFI84 } & 0.95 \\ 0.65 \\ 0.65\end{array}$	HF94 1.50	PCFF805 1.25
E288CC	${ }_{13.50}^{10.00}$		HK90 1.05	${ }^{\text {PCFF806 }}$
E80\％	18.50	EFF731	HL2K HL230	PCFP888 PCH200 1.25
E1148	1.00		HL230D 4000	PCH200 1.50

NNNNNNNNNNNNNNN 	
N	
OGNNANN OGUA－ONA $\overrightarrow{0}$合宗 	

CALLERS WELCOME

－ENTRANCE ON A227

50 YDS SOUTH OF MEOPHAM GREEN CAR，PARKING AVAILABLE
OPEN MONDAY TO FRIDAY 9a．m．－5．30p．m．
$\star 24$ HOUR ANSWERPHONE SERVICE
©
©

ZENER DIODES

BZX61 0.15

MICROBOX II

A NEW MICRO CONCEPT

Do you remember the days when people built their own computers? Well they are back with a vengeance. MICROBOX, the most advanced design ever offered as a build-it-yourself system, offers every facility imaginable to the home constructor. Just look at the amazing specification of this easy-to-build project:
\star MC68B09E 8-/16-bit microprocessor

* 64 K main system ram +128 K alpha/graphic/simulated disc ram
* Alpha display of 108 colums by 24 rows of 128 columns by 72 rows
* True high-resolution graphics with 768×576 resolution High-speed hardware vector generation using NEC 7220 graphics controller. Point, line, rectangle, circle, arc and area fill facilities.
* High-speed ram disc for fast data access
t Up to 256 K silicon disc eprom on plug-in eprom carrier
* 8 K system l/O support monitor plus added utility and boot commands
* Integral eprom programmer
* Floppy disc controller for two 5.25 -inch 40 - or 80 -track drives
* Battery backed realtime clock/calendar
* Battery backed ram for storing system startup parameters
two serial RS232 I/O ports. 50-19200 baud under software control
\star Centronics compatible printer output port
* Parallel keyboard input port
* Composite video and separate video/sync outputs
* Buffered expansion buss for user added enhancements
* Auto configuring 'FLEX' disc operating system boot program in monitor
$\star 12 \times 9.5 \mathrm{in}$. through hole plated main PCB; $3 \times 4 \mathrm{in}$. eprom board.
'FLEX', which is supported by MICROBOX, is a well-proven, industry standard, disc operating system with a wealth of available software packages. Basic, Forth, Pascal, PL9 and C high-level languages as well as assemblers, word processors and electronic spreadsheet are currently available. Clever programming techniques have permitted the inclusion in the system monitor of a boot program that automatically loads and configures the operating system to the MICROBOX hardware requirements.

The on-board ram and eprom discs are seen by the operating system as conventional disc drives. The ram disc has the capacity of a 40 -track single-density disc but with an access time 10 times that of a floppy disc. Eprom discs are supported by way of a plug-in eprom carrier which has provision for four $8,16,32$ or 64 K eproms into which can be programmed the operating system and any other often used programs by way of the built-in programmer. 'FLEX' supports up to four disc drives which in MICROBOX can each be allocated as floppy, ram or eprom types so providing, if required, a completely silicon configuration.

A startup kit for the advanced MICROBOX system is available and consists of: Bare PCBs, 8K system support monitor, 'FLEX' system support disc, constructional notes, system documentation, component supplier list.

PRICE: $£ 95$ + V.A.T.
'FLEX' disc operating system for MICROBOX, including editor and assembler: $£ 75+$ V.A.T.
Send cheque to:
Micro Concepts
8 SKILLICORNE MEWS - QUEENS ROAD CHELTENHAM - GLOUCESTERSHIRE GL50 2NJ Telephone: Cheltenham (0242) 510525

CIRCLE 30 FOR FURTHER DETAILS.

ELECTROTALUE

Your

Out of a very wide range of types, we show Some of the more popularly demanded ones. in our latest free A-Z price 8 products list. Please mention this journal when contacting

Electrovalue.

MINIATURE TOGGLES, 7000 Series $250 \mathrm{~V} / 2 \mathrm{~A}, 120 \mathrm{~V} / 5 \mathrm{~A}$. Single, double, inc. Centre Off/On and biased.

CK WAVECHANGE with adjustable stops. 1P/12 way, $2 \mathrm{P} / 6 \mathrm{~W}$, $3 \mathrm{P} / 4 \mathrm{~W}$, stops. $18 / 12 W^{\text {W }}$
$4 \mathrm{P} / 3 \mathrm{~W} / 2 \mathrm{~W}$.

SWITCH KITS
RA Shaft Assemblies up to 6 wafers. DP Mains switch. Screens; Spacers.

PUSH BUTTON

Miniature
Single and Double Pole Changeover Standard
Latching and momentary
SLIDERS
Miniature \& Standard. SP and DP in 1,2 or 3 positions
Many other types such as for timing Many other types such as for time
and other special applications.

BRITANS LEADING qUALITY COMPONENT SUPPLIERS-SEND FOR FREE 32 PAGE A-Z LIST atimetive iscouits fate posinge goob senicr a deavew

28 St. Jude's Road Englefield Green Egham, Surrey

CIRCLE 25 FOR FURTHER DETAILS.

Communications 84, Birmingham

Business communications seemed to be the central theme of the exhibition held at the NEC in Birmingham. The integration of communications services usually thought of as separate entities was emphasized by several exhibitors - the office computer terminal can also be a telex and teletex terminal and an autodial telephone as well as offering local computing, word processing, calendar and diary, calculator and directory. One such device launched by STC
Telecommunications was Executel, a multipurpose work
station with optional extension for a secretary which offerred most of the same facilities and a built-in intercom.

If you believe that electronics is communications, then the exhibition has something to offer to anyone interested in electronics. This is certainly confirmed by the variety of the products on show: anything from a complete satellite receiver station to a single transistor and almost anything that can be thought of that includes the prefixes tele or trans.

VOICE RECOGNITION SYSTEM

The facility for someone to speak to a computer and get it to obey has been appealing to the imagination for some time and systems are available but still in the process of development. Pye Telecommunications proudly demonstarted their system at Comm 84 which they claim is both complex and reliable. It may be used remotely by two-way radio or telephone and has been found to work in up to 100 dB helicopter noise when test established that only one error resulted amongst 3200 recognitions. (Some of the techniques used in voice recognition systems were described by Tom Ivall in our last issue.) Pye Telecommunications Ltd, St. Andrews Road,
Cambridge CB4 1DW.
EWW 218

SOLID-STATE BATTERIES

Batteries do not often hit the headlines but some new offerings from Chloride are interesting. Solid-state lead-acid batteries use highly absorbent, porous separators made from microscopically thin glass fibres, that take up the liquid electrolyte within their pores.
Consequently, there is no free acid, and no risk of corrosion
from fumes or acid spillage. Under normal operating conditions there is no loss of water and so it is possible to dispense with normal vents though there is a small safety vent in case of accidental over-changing. The Powersafe range includes 2 V cells of 48 and 110 Ah capacities and a 6 V block of 80 Ah . Another range, Powerstore, is available in 12 different sizes with capacities ranging from 3 to 240 Ah , in 2,4 , 6 and 12 V configurations. Chloride Power Storage, PO Box 5 , Clifton Junction, Swinton, Manchester M27 2LR.
EWW 216

HAND-HELD TERMINALS/TESTERS

A number of hand-held terminals may also be used as support devices for communications equipment. Such devices made by G. R. Electronics have been used to test p.a.b.xs, multiplexers and other processor-based systems for commissioning and installation of such systems in the field. The 14B, for example has a 14-digit display, 92 -character memory and RS232 and/or 20 mA loop interfaces as standard. Options include a rechargeable battery pack making it completely independent of outside power sources, and RS422/432 interface for longer-cable signals. Larger memories and more
facilities are offered by the 42B and 42 C terminals which have 40 -character displays, battery operation with memory protection, signalling up to 9600 baud and from 8 K to 64 K of ram. Different protocols are optional and the units can store diagnostic routines for on-site testing and can capture data for later analysis. The company also offers an acoustic coupler and a data recorder to complete a battery-operated system for the collection and transmission of data. G. R. Electronics Ltd, Fairoak House, Church Road, Newport, Gwent NPT 7EJ. EWW 215

FIBRE-OPTICMODEM

High data rates, low transmission line costs and freedom from electromagnetic interference are three of the several benefits claimed for Easydata's Raycom 2000 fibre-optic modem. A dual RS232 interface allows two separate peripherals to have access to the full duplex data channel operating at $100 \mathrm{Kbit} /$ s over a range of one km. Interconnection of RS232 interface between adjacent remote sites permits cascading and allows the system to be extended for up to 10 km .

A fibre splicing technique has been incorporated into the system and this is claimed to take one third of the time needed normally to make splices and yet offers a high-fidelity connection into each modem. The modems are priced at $£ 250$ each and saving is claimed from the use of single strand fibres, lower in cost than the equivalent twin strand or screened twisted pair cables normally used. Easdata Ltd, 7 Charleton Rise, Welwyn, Herts AL6 9RP. EWW 217

- marconi signa GENERATOR

MARCONI TF1066B.

 100 kzz,$M A R C O N$
Han TF95A5. AM/FM Generator Narrew deviation model 995 covering $1.5-220 \mathrm{MHz}$. f^{450}.
TF2015. 10.520 MHz . AM/FM. TF 144 H . AM 10 kHz . 72MHz $\operatorname{\text {MARCONI}}$ covering in three ranges $68-108,118-185$ and 450 . 70MHz. FM fix
'DOLLY' NOISE WEIGHTING FILTERS at. No. 98A. Noise weigh $£ 40$ each ($+£ 1$ p\&p).

BECKMAN TURNS COUNTER DIALS

Miniature type 22 mm diam t) Counting up to

 tions. Only $£ 2.50$ each.* 1000 WATT AUDIO AMPLIFIER*
- for inter factory/omice communication comprising wo racks containing ten 100 W Grampian audio amplifiers and receiver for back

OPTICAL ISOLATORS

ERRY UNVAC M4000 oplo-isolator unirs providing 2 KV of insulation between Modems and Terminals. 25 way ' D ' connec-
tors (RS232C Interface) in and out. Measures $9 \times 5 \times 7^{\circ}$ Complete with handbook

$t \rightarrow$ STEPPER MOTORS th

Brand new stock of 'ASTROSYN' Type 20PMA055 stepper motors. 28V DC. 24 steps per rev. 15 oz-in torque @ 100PPS. Body length $2^{1 / 2^{\prime \prime}}$, diameter ${ }^{\text {Whreaded. Weight } 160 z \text {. Price each } £ 15 \text { (p\&p }}$ 50 p). Connections supplied. INC. VAT
> "TELEVISION SERVICE KIT* equipment affording vast savings on new price All Service sold in fuil working condition and guaranteed LABGEAR CM6037/OE. UHF/VHFPAL COLOUR BAR GENlocation. £80
> LABGEAR CM6004-PG. Monochrome UHF PATTERN GEN terns. E4S. Grey Scale/variable level cross-hatch \& Dot pat LABGEAR
METEAS. CM6016/SM. UHF SIGNAL STRENGTH METERS. Variable tuning Chamnels $25-65$. Calibrated
4 -range moving-coilmeter, $30 \mu \mathrm{~V}$ - mV . Battery powered 4 -range moving-coilmeter, $30 \mu \mathrm{~V}$ - 3 mV . Battery powered.
$\S 45$,
Please note all these prices INCLUDE VAT, Carriage $+£ 2$ each item.

P. F. RALFE ELECTRONICS

'OSEHLLOSEOPES'

TEKTRONIX 453. Dual-trace 50MHz portable $£ 450$
HEWLETT-PACKARD 1707 A Dual-trace 75 MHz .
TRIO CS 1575 5MHz Dual-trace $£ 250$
$\rightarrow+$ TEST EQUIPMENT +
MEGAPHONES - 'EAGLE' MV8SN. New. E40
BEAVER Model E57500 Automatic test equipment MARCONI TF868 LCR Bridge
MARCONI TF2604 Electronic Multi-Meter MARCONI TF893A Audio Power Meters $£ 85$.
MARCONI TF2502 RF Power Meters. DC
1GHz. 10 W fsd f 350 .
MARCONI TF2701 In-Situ Universal Com
ponent Bridge $£ 250$ ponent Bridge e2so.
HEWLETT-PACKARD 3450A Multi-Function Digital Multi-Meter ROHDE \& SCHWARZ 'SDR' AM Signal Generator $0.3-1 \mathrm{GHz}$ TEKHDE \& SCHWARZ Resonance Firato ROHDE \& SCHWARZ Polyscop SWOB II.
METROHM 500V Insulation Testers Transistorised $£ 40$ pp $£ 1.50$ BRUEL \& KJAER Heterodyne Voltmeter $0.5-240 \mathrm{MHz}$. AIRMEC Display Oscilloscope 279, 4-trace, $14 \times 10^{\prime \prime}$ CRT £ 195

UNTED PERIPHERALS model 3100 Minidisc drives (3×8^{8} sealed plattens) cap-
able of over 19 MBytes storage. Exierna power supply requirements are 24 V a 3 A and 5 V © 4 A . Little used condition believed OK but at the unbelievable price of just f125 are sold without guarantee copy of user-handbook

\rightarrow SWEEPERS \star

TELONAC 2000 System. $800-1500 \mathrm{MHz}$ Eze TELOHCS SM2000 with $500-900 \mathrm{MHz}$ plug-in 877 KNIGHT KG-687 $3-220 \mathrm{MHz}$. $£ 150$ tested in our workshop and recon equipment shown has been carefully first-class operational condition and most items carry a three months' guarantee. For our mail order customers we have a money-back scheme Repairs and servicing to all equipment at very reasonable rates. PLEASE

* TEKTRONIX *

FILE MANAGER SYSTEM MODEL 4907 Option 31 (Third disc drive)

PLEASE PHONE FOR CURRENTSTOCK

COMPUTER PERIPHERALS
 1.6MB 8" FLOPPY DISC DRIVES New Stock

After our recent sell-out of the DRE7100 FDDs we are pleased to offer another bargain package as follows: BRAND NEW American 'MFE Corp model M-700 DOUBLE-SIDED 8"Disc Drives. Massive storage capability up to 1.6 MBytes . Full IBM compatability. External power requirements are +5 V at 1.2 A and +24 V at 1.1A. Full spares back-up available U.K. (Elcomatic's). Current list is over $£ 315$

DRE 4000 - SERIES DRIVES

Data Recording Equipment 5+5MB exchangeabie disc drives

 and full technical manual
+ DISK CARTRIDGES

surplus BASF 12-Sector RK05 cartridges available small quantity only remaining at $£ 15$ each. Carage each $£ 1.50$

\star SWITCHING POWER SUPPLIES

 The following DC power supplies are available nowfrom stock in limited quantities. All fully tested and guaranteed. 3.5V a $10 \mathrm{Amps} . . . \mathrm{f} 15$ 15V16A(110VIN) ... £20
 5 V (@. 6 C Amps £40 19 V @ 30 Amps $£ 40$ ALL PRICES NOWINCLUDE VAT. CARRIAGE + £2EACH.

\star CENTRIFUGAL BLOWERS \star

TORIN Type U62B1. 230V Cap'Start (supplied) ery powerful (200W $3,000 \mathrm{rpm}$) centrifugal fans or large rack cooling or enclosure extraction appli ations. Overall dimensiolus stock f15 each inc Cms. BRAND

CIRCLE 55 FOR FURTHER DETAILS

pantechnic THE POWERFET SPECIALISTS
 OEM USERS
 Pantechnic present the most adaptable high-powered amplifier ever FET SYSTEM AMP
 Features 1.2 kW (single ended)
 LOW VOLUME. $1 / 15$ Cubic foot inc. Heatsink
 - VERSATILE. Delivers more than 1 kW into $1 / 2$ to 8 ohms
 OR $2 \times 600 \mathrm{~W}$ into 2 to 8Ω
 OR $4 \times 300 \mathrm{~W}$ into 2 to $4 \Omega 1$ (200 W into 8Ω)
 OR $\left\{\begin{array}{l}1 \times 600 \mathrm{~W} \text { into } 2 \text { to } 8 \Omega \\ 1 \times 300 \mathrm{~W} \text { into } 2 \text { to } 4 \Omega \\ 1 \times 150 \mathrm{~W} \text { into } 4 \text { to } 8 \Omega\end{array}\right.$
 Etc., etc.
 Having been closely involved in a wide variety of OEM applications of their amp boards. Pantechnic became aware of numbrous implementation problems often left untackled by other amp board manufacturers. These problems specifically of size and thermal efficiency became particularly aggravated at high powers and considerably lengthened OEM product development time. By including thermal design in the totality of board desion
 reduce the size of the electronics, and increase the efficiancy of the possible to heatsink thermal circuit. The combined effect of this has been to dramatically increase the volumetric efficiency of the amplifier/heatsink assembly. The SYSTEM Amp offers 1.2 kW of power in a space of $180 \mathrm{~mm} \times 102 \mathrm{~mm} \times 77 \mathrm{~mm}$, excluding PSU and Fan.
 The basis of this considerable advance is the PANTECH 74 Heat Exchanger, designed and manutacturea by us. By ellminating the laminar air flow found in conventional, extruded heatsinks, heat transter to the environment is greatly enhance. The flexibility of the 1.2 kW amp stems from its division into 4 potentially separate amplifiers of 300 W each (downrateable with cost savings to 150 W). These can be paralleled, increasing current capability or seriesed (bridged in pairs) doubling voltage capability. In consequence a large variery of amplifier/load strategies can be imptementad
 As ever Pantechnic offer a full range of customising options including DC coupling. ultra-high slew, etc. Contact Phil Rimmer on 01.3618715 with your particular application problem. P.S. Specs, as ever,
 A wide range of other amplifiers and other modutes available.

PANTEGITIIG (Dept. WW7) 139 HichRoad
 Technical Enquiries Phil Rimmer
 on $01-3619715$

M \& B RADIO (LEEDS)

THE NORTHS LEADING USED TEST-EQUIPMENT DEALER

OSCILLOSCOPES

Tektronix 465 100MHZ Dual-Trace Delay Sweep
Tektronix 7403N Main-Frame
900.00
750.00 Hewlett-Packard 182A Main-Frame550.00 Hewlett-Packard 182C Main-Frame 395.00 Hewlett-Packard 182A 4 Channel Plug-In
and 1825 A and 1825A Time-Base and Delay
Generator
1000.00 $\begin{array}{lll}\text { Teleaviorment } & \text { D83 } & 50 \mathrm{MHZ} \\ \text { Dan-Trace } & & 450.00\end{array}$ ANALYSERS
Hewlett-Packard Fourier Analyser 54518 With 900 A Disk-Drive and Low-Pass RHODE-SCHWARZ
SHF Signal-Generator 1.7 to 5.0 GHZ
VHF
VF Signal-Generator 25 to $\begin{array}{r}850.00 \\ 48 \mathrm{MHZ}\end{array}$ SLSV
Sweep Signal-Generator 400 to 1200 MHZ SWeep Signal-Generator 400 to 1200 NHZ
SWU
UHF Signal-Generator 300 to $1,000 \mathrm{MHZ}$ SDR Signal-Generator 00 to $1,00145.00$ UHF Test Receivers 280 to 4600 MHZ USVD Selentomat Type USWV $\quad 225.00$ Stereodecoder Standard MSDC 225.00 UHF Power Signal-Generator SCRD 275 to 2750 MHZ .05 to 50 watts CH 400.00 Y 30 Hz to 30 Transmission Measuring Line $\begin{aligned} & 75 \text { to } \\ & 305 \mathrm{MHZ}\end{aligned} \mathbf{4 0 0} \mathbf{4 0 0}$ Reflektometer 300 to 4200 MHZ
2DB Unbalanced Standard Attenuator DPU $0-1500 \mathrm{MHZ} 50 \mathrm{ohms}$

MISCELLANEOUS

Avo RM215F/3 Ac Breakdown Tester 195.00 Avo Universal Bridge 8150 MK2 95.00 Advance X-Y Recorder HR96 Clare Multiple Earth Clare
V14465.00

86 Bishopgate Street, LEEDS LS1 4BB. 0532-435649 HEWLETT-PACKARD
431 B Power Meter
8052A impulse Sound L
3406A
Broadband
3480A Digital Voltmeter 1900A Pulse Generator 135.00 Generator Generator 1925A Word Marconi TF144H/4 Standard $\begin{array}{ll}\text { Generator } & 150.0 \\ \text { Marconi } 801 \mathrm{D} \text { Signal-Generator } & 100.00\end{array}$ Radiometer
Generator
Racal 9908 Counter Timer 11 GHZ 250.0
5000 Racal Universal Cor Ter 9835 Wayne Kerr Logarithmic LCR Bridg B500 Ken 295.00 Marcon
TF2604
Marconi X-Y Displays TF 2212 HEWLETT-PACKARD PSU.
6433B Power Supply 0-36v 10A 6448 B Power Supply $0-600 \mathrm{v} 1.5$ 6453A Power Supply $0-15 \mathrm{v} 200$ Bradley Pulse Generator 176B Hewlett-Packard Time Hewlett-Packard Time Interval Probes
5363 A RECEIVERS
Eddystone $830 / 7300 \mathrm{Kcs}$ to 30 Mhz 250.00 Racal RA17L Communications $\begin{array}{ll}\text { Receivers } \\ \text { Mercer } & 155 \quad \text { Electronic/Pneumatic }\end{array}$ Gauging System Electronic/Preumatic Genging System Genera Radio Capacitane Bridg
$1617 A$ All Prices plus V.A.T. SAE Enquiries WANTED
Test Equipment, Receivers, Valves, Components, Cable, PCB's Etc Top

CIRCLE 71 FOR FURTHER DETAILS

AWARD-WINNING TAPE STREAMER

Using standard 0.5 in computer tape the 9800 tape streamer from Thorn EMI Datatech may be used as archival back-up for hard disc data and for transferring data from mini to mainframe computers. The 9800 , while taking a standard reel of tape is amazingly small and the combination of electronic, mechanical, and software design, combined with its ergonomic and aesthetic appeal has won for it a Design Council award.

The combination of hard disc and tape has become established in main frame computer usage for some time. With many peripherals and minicomputers however there has been a lot of reliance on floppy or hard discs and a system failure can lead to the loss of valuable data. The use
of a back-up or archival tape can overcome the vulnerability of such a system. Datatech recognised a need for a high-speed, high-capacity desk-top tape store which was comparatively low in cost, hence the development of the 9800 . Compatible with any computer system, the machine can automatically lace the tape through the tape path and onto the take-up hub. The tape cannot be put in the wrong way round, the machine will refuse to accept it and signal an error. Internally, all circuits are on plug-in cards and there are self-diagnostic testing routines built in for fault findings. As a trump card Thorn EMI are hasty to point out that the system is compatible with the IBM PC and expect to find a large market for the device amongst micro users. Thom EMI Datatech Ltd, The Mill, Wookey Hole, Wells, Somerset BA5 1BB. EWW 210

NUJ/Reed International dispute

This space is one result of the continuing dispute between members of the National Union of Journalists and Reed International subsidiaries Business Press International. Butterworths, Hamlyn Books and IPC Magazines.

ADAPTIVEH.F. RADIO

A radio system which improves frequency management for communication networks that have several transceivers is announced by Racal Messenger. The VRM455OFS combines a frequency-scanning receiver with a selective call transmitter. It monitors up to ten pre-selected frequency channels, locks automatically onto a received signal and decides if it is the station being addressed before warning the operator of an incoming message. This facility enables the optimum receiver frequency to be selected, from the ten pre-programmed channels, by the transmitter
station, taking into account the existing h.f. propagation conditions.

Sets of the transceivers can have a different selection of channel frequencies so that networks can interlace or overlap while being secure from each other. With a transmitting power of 100 or 120 W the synthesized frequency transceivers operate between 1.6 and 30 MHz . A small display indicates the selected channel while an audible tone and a flashing light wam the operator of an incoming call. Racal Messenger Ltd, 5 Bennett Road, Reading, Berks RG13 1LJ. EWW 211

WORD-PROCESSED TELETEX

An adaptor has been devised by BT to provide the Merlin word processor with the facility to connect to teletex services. This, claims Merlin, the business machine branch of British Telecom, "provides the ability to exchange text information in a rapid error-free and cost effective manner". Using the de-facto standard for electronic mail, the system will communicate with any other teletex terminals, of any manufacture. The system has been developed by BT research engineers and has undergone a series of network-user trials prior to its public launch. As well as
providing teletex protocol, the system offers auto dialling, auto answer for unattended operation, store and forward operation allowing messages to be transmitted at times when the charges are lower, automatic logging of all documents sent and received and a full character set ensuring that the copy is received exactly as sent. Future expansion will include inter-working with telex and packet switched services. Merlin don't provide an address: all you need do is pick up a telephone, dial 100 and ask for Freephone Merlin.
EWW 212

DATA MULTIPLEXER

The Polynet local-area network from Logica has been enhanced by the introduction of a highly flexible multiplexer, Polyline, to interface computers with the network. The device may be used with any computer or peripheral device with an RS232 port to give it access to the network which may also be used with high-speed computer-to-computer traffic. Polyline may be used to connect normally incompatible networked or stand-alone devices. In addition the multiplexer may be used to interface a terminal with external services, such as electronic mail, which may be available to the
host computer. Each multiplexer can support up to eight asynchronous channels which operate full duplex and support communications over the network for six signal lines. Control of the network can be undertaken by a Terminal Manager software package. The Polynet/Polyline combination can be used to provide high-speed links between a number of otherwise incompatible mini and microcomputers from different manufacturers. Logica VTS Ltd, 84 Newman Street,
London W1A 4SE. EWW 213

VOICE-OPERATED SWITCH

A microphone/switch combination that allows hand-free operation of a transceiver has many uses. The Sonic Tornado voice-operated switch is such a device and uses a inertial throat microphone or noise cancelling microphone. The unit can be used with ear-hanger headsets, or be fitted into breathing masks and helmets. Field trials have established that the sets will
respond in 8 ms when used by firemen with breathing aparatus, or in fully enclosed anti-radiation or laboratory suits. It has also been tested successfully by RAF search and rescue helicopter crews and by free-fall parachutists. Sonic Helmets Ltd, Communications Centre, 202 Bradford Road, Castle Bromwich, Birmingham B36'9AA. EWW 214

Sowter Transformers

With 42 years' experience in the design and manufacture of several hundred thousand transfermers we can supply

AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE

YOU NAMEIT! WE MAKEIT! OUR RANGE INCLUDES:

Microphone transformers (all types), Microphone Splitter/Combiner transformers, Input and Output transformers, Direct Injection transformers for Guitars, Multi-Secondary output transformers, Bridging transformers, Line transformers, Line transformers to G.P.O. Isolating Test Specification, Tapped impedance matching transformers, Gramophone Pickup transformers, Audio Mixing Desk transformers (all types), Miniature transformers, Microminiature transformers for PCB mounting, Experimental transformers, Ultra low frequency transformers, Ultra linear and other transformers for Transistor and Valve Amplifiers up to 500 watts, Inductive Loop transformers. Smoothing Chokes, Filter, Inductors, Amplifier to 100 volt line transformers (from a few watts up to 1,000 watts), 100 volt line transformers to speakers, Speaker matching
transformers (all powers), Column Loudspeaker transformers up to 300 watts or more.
We can design for RECORDING QUALITY, STUDIO QUALITY, HI-FI QUALITY OR P.A. QUALITY. OUR PRICES ARE HIGHLY COMPETITIVE AND WE SUPPLY LARGE OR SMALL QUANTITIES ANE EVEN SINGLE TRANSFORMERS. Many standard types are in stock and normal despatch times are short and sensible. OUR CLIENTS COVER A LARGE NUMEER OF BROADCASTING AUTHORITIES, MIXING DESK MANUFACTURERS, RECORDING STUDIOS, HI-FI ENTHU. SIASTS, BAND GROUPS AND PUBLIC ADDRESS FIRMS. Export is a speciality and we have overseas clients in the COMMONWEALTH, EEC, USA, MIDDLE EAST, etc. Send for our questionnaire which, when completed, enables us to post quotations by return.

E. A. Sowter Ltd.
 Manufacturers and Designers
 E. A. SOWTER LTD. (Established 1941), Reg. No. England 303990

The Boat Yard, Cullingham Road, lpswich, IP1 2EG, Suffolk, P.O. Box 36, Ipswich, IP1 2EL, E7gland Phone: 04735279480473219390 : Telex: 987703 G SOWTER

CIRCLE 47 FOR FURTHER DETAILS.

CIRCLE 13 FOR FURTHER DETAILS

Moreoutput LESSOUTLAY

Overhalf a century of sound experience

PCBTOOLS

Repair and reworking of printed circuit boards is claimed to be simple and economical with miniature power tools from Foredom. Based on a motor unit and a flexible shaft drive the tools can be used to clean, alter and modify boards with a variety of attachments including buffs, brushes, sanding discs, abrasive wheels, ball cutters, burrs, drills and saws. Power is supplied by a 0.1 hp electric motor through the flexible shaft at speeds from zero to $14 \mathrm{krev} / \mathrm{min}$. Speed may be varied by a foot control. Hirsh Jacobson Merchandising Co. Ltd, 91 Marylebone High Street, London W1.
EWW 219

PROM REMOVER

New from Sweden are these i.c. removers which can pluck a rom from its socket without damage to the p.c.b. or to the circuit. For once the model numbers seem to make some sense; 2428 is for 24 and 28 -pin devices while 3640 is for 36 and 40 pins. Called Prom-outs they are available from Welwyn Tool Co. Ltd, 4 Black Fan Road, Welwyn Garden City, Herts AL7 1EH.
EWW 220

REELTAPE RECORDERS

Analogue sound recorders designed for audio and video production work have been manufactured by Tascam. The 40 series comprises three different machines; the 42 with two tracks for stereo and 7.5 or $15 \mathrm{in} / \mathrm{s}$ tape speed; the 44 with four tracks and the same two speeds, and the 48 with eight tracks on 0.5 in tape and a single speed of $15 \mathrm{in} / \mathrm{s}$. The machines can all use the SMPTE time codes and may be locked on to time code synchronizers, and search and cue facilities are available using the real-time counters. The machines use ceramic capstans to improve performance and minimize wear. Three heads are used and flux levels of $250 \mathrm{nWb} / \mathrm{m}$ or 320 may be accommodated. NAB or IEC/DIN equalization may be used. The tape transport is heavy-duty, servo controlled with claimed low wow and flutter figures. Optional plug-ins provide synchronization with automated broadcast equipment or remote transport control. Each machine has both XLR (balanced 600Ω connections with a recording-level headroom of +28 dBm) and phono (unbalanced $10 \mathrm{k} \Omega$) connections. Internal switching enables a +8 dBm operating level.

Tascam see the use of the 40 series to be in smaller studios, video post-production, dubbing, and in training and education. In contrast they have taken the opportunity to upgrade the two series 50 machines which they claim to be in the full professional league. The 50 series now includes the -10 dBv phono outputs and balanced +4 dB balanced connections. The two-track 52 now has front-mounted input and output level controls with pre and post fader switching. The 50 series also offers remote control facilities for the transport and for selection of channels. All switching and preset controls are available on the front panel. Model 58 offers eight tracks on 0.5 in tape. Both the 52 and 58 machines have their bias and equalization set for use with high output/low noise tapes such as Scotch 226 or Ampex 456, and may be easily adjusted to the correct parameters for such tapes. If a particular low-bias tape is to be used, a small modification is needed to adjust the preset's range. Distributor: Harman (Audio) UK Ltd, Professional Products, Mill Street, Slough, Bucks SL25DD. EWW221

SERIAL COMMUNICATIONS
Much more than a dumb buffer is the serial communications card which includes an on-board M68000 processor running at 8 MHz . The SCC- 01 can also have up to 32 Kbytes of local program stored in eprom or fusible-link prom, and 128 Kbytes of dynamic ram. The unit communicates with a host processor through a VME bus by means of interrupt generation and 4 Kbytes of dual port ram. There are twelve u.a.r.ts on the card, eight of which are used for several peripherals while the other four are available for monitoring in receive-only mode. The u.a.r.ts have programmable data rate generation and can detect breaks in a data stream. Four of the u.a.r.ts have been designated as fast channel devices and, if selected all four can be operated in synchronization at up to 1Mbaud. Plug-in daughter boards provide conversion from t.t.l. level to RS232, RS422 or 20 mA level. The double Eurocard with the system on board has been designed for use in industrial environments and can operate within a temperature range of 0 to $70^{\circ} \mathrm{C}$, and a relative humidity of up to 9%. All boards undergo a 48 h temperature/power cycling programme. Manufactured by Wormald Data Systems, they may be obtained from Unit-C Ltd, Dominion Way West, Broadwater, Worthing, West Sussex.
EWW 222

FORTH EPROM PROGRAMMER

A single Eurocard accommodates a circuit which can be used to program, read, verify, and copy eproms. The TDS960 card is used in conjunction with the single-board TDS 900 Forth computer and the programmer software is provided on rom as well as a listing. The Forth listing enables the user to add any particular programming needs as may be required. The programmer card is the same cost as the TDS 900 c .mos computer; both are $£ 179.95$. Triangle Digital Services Ltd, 100A Wood Street, London E17 3HX. EWW223

35 Watt Complete Kit. MosFet O/P
45 Watt Complete Kit. MnsFet O / P 679.50
f83.50 Reprintsot

LINSLEY-HOOD 100-WATT MOSFET

 POWER AMPLIFIERThe very latest amplifier design, published in 'Wireless World' by the renowned John tinsley-Hood his may now be 1aken as
the standard by which the rest are judged! Our kit, approved by the designer, has massive heat sinks and power supply and
theludes all components needed to build. Case size 412 mm
incle thcludes all components needed to build. Case size 412 mm
wide, 254 mm deep and 145 mm high Automatic swithed wide, 254 mm deep anduded as standard. Cost of ail parts is
speaker potetion is inclu
over $£ 120$. Our complete stereo kit price $£ 105.50$.

HART TRIPLE-PURPOSE TEST CASSETTE TC1

One inexpensive test cassette enables you to set up VU level,
head azimuth and tape speed. Invaluable when fitting new
heads. Only $£ 4.66$ plus VAT and 50 p postage.

STEREO AMPLIFIER MODULE

Ready builh and tested quality power amplifier module complete and ready to use. Mains input 220/240v with power to spare for tuner and tape deck. Size $190 \times 110 \times 65 \mathrm{~mm}$.

TUNER AND PRE-AMP MODULE Matching unit to above Contains Long medium and short wave AM turer. Stereo FM tuner and pre-amp with switched inputs for luners, tape and pickup. Complete with flywheel drive and cord Spenial ffer for both $\mathbf{2}$.

UINSLEY-HOOD CASSETTE RECORDER CIRCUITS Complete racord and replay circuits for very high quality low
noise stereo cassente recorder. Circuits are optimised for our HSise Stereo cassette recorder. Circuits are optimised for our equalisation to cater for chrome and feric tapes. Very easy to assemble on plug- in PCBs. Complete with full instructions.
Complete Sterentin 26

STUART TAPE RECORDER CIRCUITS Complete stereo record, replay and bias system for reel-toComplete stereo record, replay and bias system for reeltogood tape deck. Separate sections for record and replay give optimum performance and allow a third head monitoring sys-
tem to be used where the deck has this fitted. Standard 250 mV hput and output levels. Full details are in our lists. Reprint of Original Articles.

ALPS FF317U FM FRONT END Beautiful, precision made High Quality variable capacitor
Buned FM Front End with Dual-gate MosFet. The tuning capaciuned FM Front End with Dual-gate MosFet. The tuning capaci-
or also has $2-A M$ Gangs and built in $3: 1$ feduction gear. Covers full FM range of 87 to 109 MHz . Supply needed is 12 V at only 30 mA Max. Inputs are provided for AGC and AFC signals. plier at $£ 4$ plus VAT. OUR PRICE IS ONLY $£ 3.99$ INCLUDING VAT AND POSTAGE! Circuit if required 35 p.

COMPLETE STEREO TUNER MODULE
Three band LW/MW/FM Steree TUner f flly assembled on PCB $165 \times 85 \mathrm{~mm}$. Supplied with Ferrite rod aerial and band switch tully wired. Facility provided to drive tuning meter and stereo
LED. Only needs $12 v \mathrm{DC}$ supply. FM sensitivity. 2.5 UV . Price only f 7.99 inc. VAT and post.

HIGH-SPEED DIGITAL CASSETTE RECORDER A really super buy for the computer enthusiast. These decks made by Burroughs, use a capstanless cassette mechanism to record and replay data at 10 and 30 inchesper second. The read after write head uses an NRZ system with separate tracks for clock and data power supplies of $5 \mathrm{v},-12 \mathrm{v}$ and +12 v are equired. Front panel is 137 mm square and the unit is 200 mm deep including rear connector. Offered in good ex-equipmem postage Data inc circuits and layouts of PCBs $£ 3.50$

COMPONENTS
We now list a wide range of individual components many of which are not available elsewhere. Send for your copy

Do your tapes lack treble? A worn head could be the problem to better than our replacement heads could restore performance to better Than newl Standard mountings make fitting easy and the actual importers which means you get the benefit of lower The following is a list of out most popular heads, all are suitable for use on Dolby machines and are ex-stock HC20 Permalloy Steroo Head. This is the standard head fitted as original equipment on most decks...
HMi90 High Beta Permalloy Head. A formance head with metal capabilify............................. HS16 Sendust Alloy Super head, the best head we can find Longes life than Permalloy, higher output than Ferrite, fantastic
frequency response. HO551 4- Track Head for auto-reverse or quadrophonic use. Ful specification record and playback head at......... 9.7 Special Purpose Heads
MA481 Latest version Double Mono (2/2) Record/Play head. Replaces R484
SM166 St above or HO5514 Track head. ME15inon Standard Mounting 2/2Erasa head ciency
ciency
H561 Metai Ta H561 Metal Tape Erase Head. Full double gap
RS7 106 Audlo Visual Head. (1/2 plus top $1 / 4$) \quad § 10.90

Tape Head De-magnetiser. Handy size mans operated unit | prevents build up of residual head magnetisation causing noise |
| :--- |
| on playback |
| $\mathbf{5 4}$ | Curved Pole Type for inaccessibie heads $\quad \mathbf{£ 4 . 8 5}$

Please add part cost of post, packing and insurance as follows:

inland

overseas
Orders up to $£ 10-50$ p
Orders $£ 10$ to $£ 49-£ 1$

ALL PRICES EXCLUDE VAT
UNLESS STATED

Personal callers are always very welcome but please note that we are closed all day Saturday
(0691) 652894

Add 8 channels to your 'scope New Thurlby OM358 multiplexer £169-vat

The Thurlby OM358 gives any oscilloscope an 8 channel display. Observing many waveforms simultaneously can be essential when analysing sophisticated equipment. Application areas include microprocessor based products, data transmission systems, A to D converters, frequency synthesizers etc. The OM358 is ideal for digital equipment (it can often solve problems that would otherwise need a fast logic analyser) but, unlike dedicated logic test instruments, it is equally suited to analogue waveforms.
The OM358 has a bandwidth of 35 MHz and 3% calibration accuracy. Each input has an impedance of $1 \mathrm{M} \Omega-20 \mathrm{pF}$ and accepts signals up to $\pm 6 \mathrm{~V}$. An 8 channel, 4 channel, or single channel display can be selected with triggering from any channel. Colour data sheet with full specifications available.
\qquad Thurlby Electronics Ltd New Road, St.Ives, Cambs.
PE17 4BG Tel: (0480) 63570
OM358 with two BNC
Thuriby vas
cables $£ 197.80$
(inc P \& P and V AT

VIDEOTERMINAL BOARD

\$ 80 characeres $\times 24$ ines \star

Requires ASCII encoded keyboard and monitor to make fully configurable intelligent terminal. Uses 6802 micro and 6845 controller. Program and character generator (7×9 matrix with descenders) in two 2716 EPROMs. Full scrolling at 9600 baud with 8 switch selectable rates. RS232 interface.

Bare board with 2 EPROMS and program listing £48 plus VAT. Send for details or CWO to:

A M Electronics
Wood Farm, Leiston, Suffolk IP16 4HT Tel: 0728831131

LISIBIIDHita auck, neatandessy

It's so easy and tidy with the Easibind binder to file your copies away. Each binder is designed to hold six issues and is attractively bound and blocked with the WIRELESS WORLD logo Price U.K. $£ 4.30$ including postage, packing and V.A.T Overseas orders add 35 p per binder Nat. Giro No. 5157552
Please allow $3 / 4$ weeks for fulfilment of orde
Payment by ACCESS/BARCLAYCARDNISA. Send coupon below detailing credit card no and signature.
Why not place
Why
Easibind, 42 Hoxton Square, London N1 6NS
Order Form WIRELESS WORLD

l enclose P.O./cheque value.
Years required.
BLOCK LETTERS PLEASE
Name...
Address
Registration No. 735718

Amstrad sounds off

On paper, Amstrad's CPC464 microcomputer scheduled for June introduction seems an ideal all rounder - cheap, fast, 64 K ram, high-resolution graphics and with a colour or monochrome monitor included in the price. Of interest to we of technical bent there's the promise of even more, including full access to the 4 MHz Z80 processor, CP/M, Basic interrupt operations, assemblers and disassemblers.

With built in cassette recorder and direct-drive green-tube monitor the basic version costs $£ 229$, and for a further $£ 100$ one can have the colour-monitor version. Monitors will not be available separately. Disc-based monochrome and colour-monitor versions will cost $£ 429$ and $£ 529$ respectively including CP / M and Logo (a US import language for educational programs). The Japanese Hitachi format (IBM data format) 3in disc drives should be available separately for around $£ 200$. There is as yet no CP/M compatible software on 3in disc.

At these prices one couldn't buy the parts and build one cheaper. Assuming no hidden snags, the only remaining question is reliability. Bill Poel, general manager of Amstrad's new software company Amsoft and co-founder of Ambit International (recently sold to Bulgin), told E\&WW"Amstrad has increased reliability of its products over the years and will continue doing so. We expect a 2 or 3% return rate - the biggest problem will probably be with people who haven't read the instructions properly and those who spill tea in the cassette mechanism".

Main i.cs used are the 6845 c.r.t. controller for 80 -column text and up to 640 by 200 picture elements, an 8912 three-channel sound generator and an 8255
parallel i/o device. Screen memory is 16 K . There is a Centronics parallel printer output and an expansion port but regrettably the connectors are the edge of the p.c.b. and not gold plated.

The keyboard and its separate numeric and cursor-control pad is full size and uses familiar keytops but has a membrane switch matrix undemeath to keep costs down. Matsushita membrane technology is used, conductive rubber against gold-plated p.c.b. contact areas so, theoretically at least, it should last a long time.

Considering that the average consumer is now wary of microcomputer manufacturers
who promote products using predictions made by design engineers, Amstrad would be risking too much to promise all this but to present only part of it, especially when one takes into account Britain's current aggressive home microcomputer market. Delays in the introduction date could be devastating. The company expects to produce 200000 units this year and sell them mainly through Dixons, Boots, Comet and Rumbelows. Amstrad Consumer Electronics plc, Brentwood House, 169 Kings Road, Brentwood, Essex CM14 4GF.

EWW 208

COMMUNICATIONS PROCESSORTO EASE NETWORKING

Instead of employing separate communications devices, protocol converters, data concentrators, multiplexers, cluster controllers, packet processors, or nodal processors, the Netway communications system from Scicon combines all
these functions into a single unit. The system can be configured to connęct virtually any type of microcomputer, terminal, wordprocessor, and local-area network with host computers from IBM, ICL, DEC and Burroughs. Subsequent
additions of dissimilar equipment to the network can be accommodated by upgrades to the disc-held software.

Netway has multiple distributed microprocessors within its hardware structure which has been optimised for communications. It uses a dynamic multi-tasking, multi-programming operating system called NCOS. The central unit of the system, Netway 200 with its 800 Kbyte disc drive can be configured, on-line if necessary, to support local or remote microcomputers and other devices using the protocols of the host mainframe. Netway 200s works in conjunction with Netway 100s which interface individual devices into the network, and with the Netway 150 which provides remote connection to Netway local networks. The full capacity of the system is a large multi-node network incorporating up to 254 Netway processors each having a combination of up to 32 workstations and host ports, though the system can start by serving just one or a few workstations. Scicon Ltd, 49 Berners Street, London W1P 4AQ. EWW 209

HARD DISK DRIVES

HOT LINE DATA BASE DISTML
1000 I IGINAL FREE OF CHARGE dIal
ON LINE NOW
01-679 1888 MAINS FILTERS

COMPUTER 'CAB'

mode PSU. Mains filtering, and iwin fan cooling.

 Originally made for the famous DEC PDP8 computer hours per day the PSU is fully screened and massive $+5 v$ DC at 17 amps. removable top lid, filtering, trip switch. 'Power and 'RunLEDs mounted on Alifront panel, rear cable entries, et etc. Units are in good but used condition - supplied for 240 v operation complete with full circuit and tech
Give your system that professional finish for on
\qquad
\qquad
MODEM 2 B "Hackers Special "tuly Hedged

standard RSS232 25 way 'D. socket. Just 2 wirr

MAT + CaI.
MICRNET PRESTEL OTTELECOM GOLD
SOLKe
TRANSDATA $307 A$ B 300 baud acoust
NEW DSL2123 Multi Standard modem

For further data or details on
modems contact sales oftice

EPROM COPIERS

NEW GAG OF EGGT ineligen IzBo

GE TERMIPRINTER

A massive purchase of these desk top
printer-terminals enables us to offer you
these quality 30 cDs printers at a SUPER hese quality 30 cps printers at a SUPER
OW PRICE against their original over $£ 1000$. Unit comprises of full QWERT electronic keyboard and printer mech with
print i ace similar to correspondence quality print ace similar to correspondence quality
typewriter. Variable forms tractor unit enables full width - up to $13.5^{\prime \prime} \$ 20$ column paper, upper - lower case. standard RS232 serial interface, internal vertical and
horizontal tab settings, standard ribbon horizontal tab settings, standard ribbon
adjustable baud rates quiet operation plus many other features. Supplied complete with manual. Guaranteed working $\varepsilon / 30.00$

COLOUR MONITORS

 inguts. Internal speaker and audio amp,
"GREN TEXT' switch for high def tex applications and matching BBC exacting user. Brand new a
only $£ 199.00+£ 10.00$ c

DATA MODEMS

PROFESSIONAL KEYBOARD OFFER
 PROFESSIONAL KEYBOARD OFFER

LHTMYY2 ASB33
$I / 0$ IMRMIITATS
FROMEI9S + CAR + VAT
erminal. Many features including ASCII keyboard and printer for data l/O auto data baud. 8 bit paper tape punch and reader tor line data preparation and ridiculously good condition and in working order Options Floor stand $\mathbf{E} \mathbf{1 2 . 5 0}+\mathrm{VA}$
\qquad

The FABULOUS 25CPS TEC Starwriter BRAND NEW AT ONLYE499 + VAT=

SUPER PRINTER SCOOP BRAND CENTRONICS 739-2

NEVER be repeated Printer" at a price that will

 parallel intertace for direct connection to BBC ORIC, DRAGON elc. Supert ponnt quality with full MG DEFINITION internal PROPORTIONAL SPACEDMODE for WORD PROCESSOR applications SO I columns, single sheet. Sprocket or roll paper handling plus much more. Available ONLY from DISPLAY ELECTRONICS
at the ridiculous price of OwIY Ei99.00 + VAT COmplete with Options. Interface cable (specify) for stocks last, $88 C$ ORIC,
ORAGON or CENTRONICS 36 way plg \& 1250 Spren DRAGON or CENTRONICS 36 way pig $\varepsilon 12.50$ Spare ribbor
$\kappa 300$ each $88 C$ graphics screen dump utility program $£ 850$

VDED MONITORS HITACHI in ergonimcally designed free standing case Very high definition will display
small but readable 132 columns wide! $12 v D C$ opp @ 800 ma , so ideal for mobile use. Supplied in AS' NEW condition complete with data. Composite 75 ohm vid inp. B
CRT $£ 45.00$ or Green CRT ESS. 00
CRT $\mathbf{6 4 5 . 0 0}$ or Green CRT ESS. 00
Carr 8 Ins $£ 5.00$
$12^{\prime \prime}$ CASED. Made by the British KGM C
Designed for continuous use as a data
attractive brushed aluminium case wit
OFF. BRIGHTNESS and CONTRAST
controls mounted to one side. Much
altention was given to construction and
reliability of this unit with features such
internal transtormer isolated regulated
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad only apparent when monitor is switched off ested prior to despatch. Dimensions Supplied high $x 14$ wide by 11 deep operation OWHYE45.00 PLUSE9.5O CARR.
\qquad
\qquad
\qquad
\qquad
SEMICONDUCTOR GRAB BAGS

Mixed Semis amazing value contents include transistors, digital, linear, I. C's triacs.

 guaranteed brand new full spec withhacturer's markings. fully guaranteed.
$50+\mathbf{E 2} .95100+\mathbf{E 5 . 1 5}$. TL 74 Series A 5.15

DEC CORNER

 1000's of EX STOCK spares for DEC
PDP8 PDP11 PDP15 \& periperhals.
Call for detals. All types of Computer

66\% DISCOUNT

2.5kls £4.25 + pp£1.25 $\quad 5 \mathrm{kls} £ 5.90+£ 1.80$ दर $10 \mathrm{kls} £ 10.25+\mathrm{pp} £ 2.25 \quad 20 \mathrm{k} / \mathrm{s} £ 17.50+£ 4.75$

No - you're not seeing double, just the Crotech 3132's Component Comparator in action. This unique feature, using two Crotech component testers, gives you the benefit of checking an active or passive component against a known standard. Complete circuits can also be checked using signature techniques.

But that's not the only new feature. The 3132 has three DC source outlets available on the

For full data sheet and a copy of our Highlight brochure - all free - just give us a call or fill in the enquiry card

CIRCLE 41 FOR FURTHER DETAILS.

CIRCLE 20 FOR FURTHER DETAILS.

ANY SOUND SYNTHESIZER

Up to eighteen different sound envelopes may be stored in the synthesizer/amplifier unit from Haven Automation. These may be selected and mixed to emulate any combination of sounds 'from birdsong to double bass'. The synthesizer was originally developed to reproduce the complex sound spectra of a ship's engine room to make training exercises more realistic. The company is now exploring markets in the electronic enhancement of musical instruments, speech therapy vehicle and aircraft simulations and the generation of sound effects.

The system fits into 19 in racks and includes a sound simulator, three mixer/amplifiers and a distribution unit. Each circuit is identical to the others except that the different sounds are retained on eproms. The units interconnect and are controlled through a GPIB which is also used to control a set of filters to produce a required sound. Eighteen signals from the distribution unit are combined in the three mixer/amplifiers to give the desired mix and output level for a specific environment. Haven Automation Ltd, Cwmru Industrial Estate, Gendros, Swansea SA5 5LQ.

EWW 207

SATELLITE WEATHER MAPS

The use of new circuitry and a study of users' requirements has enabled Feedback to produce a weather satellite system, the WSR513, at a fraction of the cost of similar systems. The basic version will receive the APT (automatic picture transmission) signals from orbiting satellites in the 136 to 138 MHz band. The addition of extra modules and a parabolic dish antenna allows reception of S-band transmission from geosynchronous satellites in the 1690 to 1697 MHz band.

The basic version is supplied with a helical omnidirectional antenna which incorporates a single-stage preamplifier. This feeds a tuneable v.h.f. receiver and the a.m. subcarrier from this is output to a decoder which converts it to digital form which is entered into the internal memory and provides a synchronizing signal. The memory is continuously scanned by the raster timing generator, and images are converted back to analogue signals and displayed on the screen.

Front panel control allows the selection of resolution and format and local or satellite time for scan resolution and this can retain or remove the Doppler effect caused by satellite motion. The version to receive S -band transmissions includes a low-noise preamplifier

EPROM EMULATOR

For use in conjunction with their E series of editing eprom programmers, Elan have introduced the Ell eprom simulator which can speed up program and hardware development by simulating a target eprom. Programs may be run, checked and easily altered before being committed to permanency in a eprom. One E11 may be used to simulate any of the current range of 24 and 28 -pin devices including 2716 , 2732, 2764, 27128 and 27256. Two units in a master/slave configuration may be used to provide twin eprom simulation or 16 -bit simulation. The E11 is available in two versions; one up to 16 K of memory (27128), the other up to 32 K (27256).

Data is entered into the main programmer which is connected

in the dish antenna. The signal from this goes through an r.f. switch which is used to select S-band or APT transmissions. Controls include channel selection, automatic scan synchronization, semi-automatic picture acquisition and the selection of a specific part of the image for storage in the memory. Apart from its obvious uses in weather prediction, the system
may be used as a teaching aid in geography and in the study of the technical and engineering aspects. Each equipment is supplied with a comprehensive installation and operation manual as well as information on satellites and the prediction of orbits. Feedback Instruments Ltd, Park Road, Crowborough, East Sussex TN6 2QR. EWW 205
to the E11, the target eprom and to the microprocessor control system. The E11 has an access time typically of 175 ns . Once programmed, the system may also be used connected directly
to a microprocessor unit where it will function as a pseudo-eprom. Elan Digital Systems Ltd, 16 to 20 Kelvin Way, Crawley, West Sussex RH10 2TS.
EWW 206

DECADE OSCILLATOR

LEVELL ELECTRONICS have a range of oscillators covering frequencies from 0.02 Hz to 2 MHz .
There is a FUNCTION GENERATOR that provides sine,

square, triangular, pulse and ramp waveforms with high output levels over a wide range
Low distortion RC OSCILLATORS are available with analogue tuning and sine and square wave outputs The digital tuned series are as detailed below:

FREQUENCY $\quad 0.2 \mathrm{~Hz}$ to 1.22 MHz on four decade controls
ACCURACY $\quad \pm 0.02 \mathrm{~Hz}$ below 6 Hz $\pm 0 \cdot 3 \%$ from 6 Hz to 100 kHz $\pm 1 \%$ from 100 kHz to 300 kHz . $\pm 3 \%$ above 300 kHz
SINE OUTPUT $\quad 5 \mathrm{~V}$ rms down to $30 \mu \mathrm{~V}$ with
DISTORTION Rs $=600 \Omega$
$<0 \cdot 15 \%$ from 15 Hz to 15 kHz $<0.5 \%$ at 1.5 Hz to 150 kHz ,
METER SCALES 2 Expanded voltage and
$-2 l+4 \mathrm{dBm}$.
SIZE \& WEIGHT $260 \times 180 \times 180 \mathrm{~mm} .5 .4 \mathrm{~kg}$
TG66B
Battery Mains \&
model $£ 295$ battery model $£ 310$

Prices exclude VAT. Free delivery in the UK. QUANTITY DISCOUNTS available. We supply many other instruments including: FUNCTION GENERATORS, COUNTERS, OSCILLOSCOPES, dB \& MICROVOLTMETERS.

LEVELL ELECTRONICS LTD. Moxon Street, Barnet, Herts. EN5 5SD, England.

CIRCLE 8 FOR_FURTHER DETAILS.

The Archer--Single Board Computer

The ARCHER - a new Z80 based single board computer for professional applications. After a power failure, it carries on where it left off and the on board watchdog guards against software crashes.

FEATURES
$\star 4 \mathrm{MHz}$ Z80A
$\star 2$ serial ports
\star Counter-timer chip
\star CMOS battery back-up
\star Bus expansion connector

* On-board mains power supply
$\star 4$ Parallel ports with handshaking
$\star 4$ Bytewide memory sockets - up to 64k
\star Power-fail and watchdog timer circuits
\star High quality double sided plated through PCB
SDS ARCHER single board computer SDS DEBUG ROM
SDS BASIC ROM £150
$£ 20$
SDS ARCHER, CASED with on/off switch, mains connector, lead etc.
£200

OEM and distributor discounts available
Sherwood Data Systems Ltd Sherwood House The Avenue Farnham Common Slough SL2 3JX

Tel. 02814-5067

Appointments

Advertisments accepted up to 12 noon Tuesday, July31st for August/Sept issue subject to space available.

DISPLAYED APPOINTMENTS VACANT: $£ 17$ per single col. centimetre (min .3 cm) LINE advertisments (run on): $£ 3.50$ per line, minimum $£ 25$ (prepayable). BOX NUMBERS: $£ 5$ extra. (Replies should be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS) PHONE: LUCY O'SULLIVAN, 016613033 (DIRECT LINE)
Cheques and Postal Orders payable to BUSINESSPRESSINTERNATIONALLTD. and crossed.

ALWAYS AHEAD WITH THE BEST!

£7,000-£22,000

\star Where does your interest lie: Graphics; Comms; Robotics; Simulation; Image and Signal Processing; Medical; Automation; Avionics; Sonar; Acoustics; Weapons; Radar; Opto and Laser?
\star Experienced in: Microprocessor Hardware or Software; Digital and Analogue circuitry; RF and Microwave techniques?
\star There are hundreds of opportunities in: Design; Test; Sales and Service for Technicians; Engineers and Managers
\star For free professional guidance: Call 076384676 (till 8pm most evenings) or send your C.V. (no stamp needed) to:
EIECTRONIC COMPUTER AND MANAEEMENT APPOIMTMENTS IIMITED
Freepost, Barkway, Royston, Herts SG8 8BR
1926

MICROPROCESSORS IN SOUND RECORDING

We make a range of timing and control products in the professional audio and broadcasting field and have a vacancy for an engineer to be in charge of production and test. The successful applicant would have experience in digital and microprocesor circuits (we use 6802), formal qualifications are important but not essential, an interest in sound recording would be an advantage. A certain amount of field work would be involved, so a driving licence would be required. A small expanding company such as ours is greatly in need of a bright and intelligent person will not only fill this post but also become involved in all parts of the company.

Salary in the range of $£ 8,000-£ 10,000$.
Apply in witing to
STEPHEN BROWN APPLIED MICROSYSTEMS LIMITED,
TOWN MILL, BAGSHOT ROAD, CHOBHAM, WOKING, SURREY

SALARY: Scale $3 / 4$ up to $£ 8,700$ approx p.a including shift pay and weekend allowances.
HOURS: 37 hr . wk. including Saturday and Sunday (no night duties).
QUALIFICATIONS: CITY AND GUILDS FULL(TT4)-TECH/ONC or equivalent, + a clean driving licence.
DUTIES: Repair and maintenace of airport $10 \mathrm{~cm} . \& 3 \mathrm{~cm}$. ground radars. Navigational aids including ILS and Communications equipment
Applicants should have considerable experience and be capable of working without close supervision. Fault finding to component level is essential Application forms are available from
Airport Director, Southend Airport, Essex, SS2 6YF. Tel. no. (0702) 40201 Complete applications to be relurned by Friday 6th July 1984

BROADCASTING ENGINEER LATIN AMERICA

To work as a technical advisor with a Latinamerican organisation for education by radio, with 40 affiliated radio stations in 17 countries. The engineer will initially be based in Quito, Ecuador and will later travel to radio stations in other countries. The job consists of planning and running training courses for local technicians in the maintenance of studio equipment and mainly small short and medium wave transmitters and aerials.
Applicants should be familiar with the operation and repair of studio equipment and small transmitters and must be able to advise and instruct people with non-technical backgrounds in these skills
The post is initially for three years on a basic salary. Because of extensive travel, it is unlikely to suitapplicants with families. CIIR provides Spanish language training, pre-departure orientation (including instruction in teacing methods), insurance, air fares and various allowances.

For a job description and application form, please send a brief c.v. to CIIR Overseas Programme, 22 Coleman Fields, London N1 7AF, quoting ref. WW1.

The Catholic Institute for International Relations operates a secular overseas programme and is a memberof the British volunteer Programme. (2614)

ELECTRONICS TECHNICIAN

required for expanding South London company in the amusement industry.
Applicants are expected to have the appropriate qualifications (minimum $H N C$) and have experience of electronic engineering.
The work is interesting and varied, involving repairs, fault-finding and some research and development.
Salary scale is currently $58,400-¢ 9,000$ per annum.
Appications giving full detalls of age, qualtications and experience.

CAPITAL APPOINTMENTS LTD
the UK's No. 1 electronics agency
If you have HNC/TEC or higher qualifications and are looking for a job in design, test, customer service, technical sales or similar fields:
Telephone now lor our free jobs llst We have vacancles in all areas of the UK Salaries to $£ 15,000$ pa
01-6375551 or 01-6369659 (24 hours)

CAPITAL APPOINTMENTS LTD

 29-30 WINDMILL STREET, LONDON W1P 1HG
TEST EQUIPMENT DESIGN ENGINEERS

Rediffusion Consumer Manufacturing design and manufacture a full range of advanced specffication colour television receivers and monitors.

We are looking for experienced Electronic Design Engineers to help us maintain our industry lead in sophisticated computer controlled test gear for production testing of our products. Future test equipment will be an interesting mix of digital and analogue circuitry aimed at increasing the automation of the production testing operation.

If you are able to conceive, design and implement production test equipment with minimal supervision, we'd like to hear from you.

These positions are based in our Chessington Engineering Centre but some visits to our factories in the North East and Lancashire will be required at infrequent intervals. Salaries are obviously dependent on qualifications and experience, but will reflect the importance of future test gear projects to the Company's long term development.

Interested ?... Then write or phone;
Harry Brearley,
Rediffusion Consumer Manufacturing Ltd., Fullers Way South, Chessington, Surrey. KT9 1HJ, Telephone: 01-397-5411.
the prestigious 650 bed Riyadh AI-Kharj health care programme in Saudi Arabia. The two hospitals which comprise the Programme are new, superbly equipped, mainly U.K. staffed and enjoy a full range of paramedical and support services.

The Bio-Engineering Section of the Department of Medical Physics and Bio-Engineering - based in Riyadh - is responsible for servicing approximately 2,200 items from a wide range of bio-medical equipment.

We now need an MPTO to specialise in the maintenance of an extensive range of laboratory equipment covering clinical chemistry, haematology, microbiology and histopathology. The complexity of the equipment ranges from multi-channel analysers and centrifugal analysers to simple tissue processors and centrifuges. You will work with two other technicians repairing and scheduling maintenance of the laboratory equipment. This small group also provides a maintenance service to the Medical Physics Department's Nuclear Medicine, Radiation Protection and Radiotherapy Sections for their nucleonic counting equipment.

For this post, you will need an HNC or equivalent plus at least four years experience.

The Sterling salary quoted (based on 5.0 Saudi Riyals $=$ £1) includes a bonus of one month's salary for each twelve months satisfactory service, payable at the end of contract.

In addition to the tax free salary, this two year single status contract post attracts one of the best benefits packages offered in the Middle East.

For further details and an application form, please write quoting Ref: P/RKH/6653/WW, to: Kate Vincent, Personnel Officer, Allied Medical Group, 12/18 Grosvenor Gardens, London, SW1W 0DZ. Alternatively, call our 24 hour answering service on 01-730 5339, quoting reference number.

All applications will be dealt with in the strictest confidence.

The Best of British Health Care in the Middle East

ELECTRONIC INSTRUMMENT FIELD SERVICE TECHNICIANS

Sartorius Instruments is a world leader in electronic weighing in the analytical, research, quality assurance and allied industries. The product range is expanding further into industry and personnel are required to supplement our already established Field Service team. Areas with a vacancy include the South Midlands and Northem home counties plus a relief engineer prepared to travel nationwide.

Successful applicants will service and install our electronic weighing instrument systems. Primary responsibilities will be problem solving of Sartorius equipment contract maintenance and customer liason.

Education to a suitable allied qualification ie. C \& G/TEC - Electronics is preferred for the relief engineer. A successful trouble shooting ability in electronics experience of balance/scale service or maintenace of fine instruments is otherwise necessary. On appointment you will spend 4 weeks training in our workshop in Belmont.

Candidates must be in possession of a current driving licence and over 23 years of age. A company car is provided.

In additional to the above vacancies trainees are required for general electronic and mechanical balance maintenance at our in-house service centre at Belmont Surrey.

If you would like to apply for a position
Please write for an application form to the
Service Co-Ordinator
Saratorius Instruments Ltd
18 Avenue Road Belmont Surrey
Telephone No. 01-643 8870

EARYY REPPOMISBUITIT WI EECTBONICS

Are you recently qualified (HNC - H.TECH or DEGREE) with hands-on sandwich or work experience in both analogue and digital circuitry and electronic test knowledge and with the ability to programme in 'Basic'?
Then if you have the initiative to take responsibility for the design, construction and maintenance of specialised and proprietary test equipment, contact us by telephone and we will send you a form, or write to us with full c.v. and an indication of your salary requirements.

Telephone CHERTSEY 62671 Personnel Department

> KentIndustrial MeasurementLimited

Hanworth Lane, Chertsey, Surrey.

CUT THIS OUT!

Clip this advert and you can stop hunting for your next appointment. We have a wide selection of the best appointments in Digital, Analogue. RF. Microwave. Micro processor. Computer. Data Comms and Medical Elec tronics and we re here to serve your interests.
Call us now for posts in Design. Test, Sales or Field Service, at all levels from $£ 6,000 \cdot \mathfrak{£} 16,000$.

Technomark
11 Westbourne Grove, London W2. Tel: 01-2299239

THE EUROPEAN MOLECULARBIOLOGY LABORATORY
 A Research Institute Situated in Heidleberg, West Germany, INVITES APPLICATIONS FOR THE FOLLOWING POST:

SYSTEMS INTEGRATOR

The successfui candidate will be responsibte for the conception and implementation of Microcomputer Hardware and Software for use in various projects with the Laboratory such as on-line lmage Processing and Graphic Display Systems.
Systems already in use in the laboratory are based on Z80 and M68000 processors in the VME standard configuration. A
knowledge of these systems is desirable but not essential.
The basic salary offered will be around DM3900 - monthly. Certain allowances will be payable in addition, depending on personal circumstances. An initial contract of 3 years will be offered, which can be renewed.
PLEASE WRITE BRIEFLY FOR AN APPLICATIONFORM, QUOTINGREFERENCEN.83/23TO:

EMBL PERSONNEL SECTION, POSTFACH 10.2209, D-6900 HEIDELBERG

Dlectronics Dingineers 29561

Communications Designin High Tech Country

At H.M. Government Communications Centre we're using the very latest ideas in electronics technology to design and develop sophisticated communications systems and installations for special Government needs at home and overseas.

With full technical support facilities on hand, it's an environment where you can see your ideas progress from initial concepts through prototype construction, tests and evaluation, to the pre-production phase, with a chance to influence every stage. Working conditions are pleasant, the surroundings are attractive, and the career prospects are excellent.

Ideally we're looking for men and women who have studied electronics to degree level or equivalent and have had some experience of design, whether obtained at work or through hobby activities. Appointments will be made as Higher Scientific Officer ($£ 7149-£ 9561$) or Scientific Officer (£5682-£7765) according to qualifications and experience.

For further details please write to the address given below. As our careful selection process takes some time, it would be particularly helpful if you could detail your qualifications, your personal fields of interest and practical experience, and describe the type of of working environment most suited to your career plans.

The Recruitment Officer, HMGCC, Hanslope Park, Buckinghamshire MK19 7BH.
(2448)

Appointments

Senior Wireless Engineer

 telecommunications trainingof vital national importance

This is an opportunity to join a team which provides vocational training for technical staff in the operation and maintenance of telecommunication equipment for Police Forces and Fire Brigades in England and Wales and for the Home Defence and Prison Services.

You will identify staff training requirements, develop new training techniques, approve applications for academic training, operate to a financial budget, prepare estimates, provide statistical reports and cost data on Directorate of Telecommunications training and serve as Training Liaison Officer.

Candidates should have an appropriate degree or equivalent (including overseas) qualification in electronics or be suitably qualified senior technicians who have appropriate training and about 15 years experience in a related field of work and who have either satisfied the CEI requirements for registration as a Technician Engineer or hold an HNC/FTC in Electronics or Telecommunications. Applicants should, preferably be corporate members of a relevant professional institution. All candidates should have at least 4 years experience in the design, installation and maintenance of communication systems, preferably in
the field of mobile radio and be capable of the day-to-day supervision of a small section of technical iristructors and administrative staff. The post requires an officer with a good knowledge of telecommunication practice and principles, including micro-electronics, and the capability of preparing and presenting courses which are essentially orientated towards the maintenance of telecommunication equipment coming into service because of the World Administrative Radio Conference (WARC) Frequency Conversion Programme

Salary for this Stanmore-based post will be within the range 610,575 - 612,660 (including 6500 Outer London Weighting) according to qualifications and experience. SALARIES UNDER REVIEW.

RELOCATION ASSISTANCE MAY BE AVAILABLE.
For further details and an application form (to be returned by 13 July 1984) write to Civil Service Commission, Alencon Link, Basingstoke, Hants RG21 1/B, or telephone Basingstoke (0256) 68551 (answering service operates outside office hours). Please quote ref: $T / 6252$.

The Civil Service is an equal opportunity employer

BORED? Then change your job!

1) Electronics Test Engineer c8,500780 and instrumentation and calibration. Herts area.
2) Bench/Service Engineer £8,500. Hand held radio and allied communications equipment. Advanced field. Croydon.
3) Technical Support Engineer £11,000 + car. Design, test and service ol office automation systems. Overseas travel. Berks.

4) Test Engineer.

Test and troubleshoot minis and micros. Berks area.

Service Engineer.
£10,000 + car. Computerized info. + data retrieval systems. Training in U.S.A. Middx area

Hundreds of other Electronic and Computer vacancies to $£ 12.500$ Phone or write:
Roger Howard, C.Eng., M.I.E.E., M.I.E.R.E CLIVEDEN CONSULTANTS $\$ 2$ The Broadway, Bracknell. Berkshire Tol: 034448489
CLIVEDEN

Outstanding opportunities to move into Sales or Sales Management U.K. \& Export

The expansion in our markets means that we urgently need to recruit the following staff for key positions in the U.K. and overseas:

- SALES ENGINEERS
- TECHNICALSUPPORT ENGINEERS
- AREA SALES MANAGERS
- REGIONAL SALES MANAGERS
We are Racal-Dana Instruments Lid., an international manufacturer of sophisticated electronic test and measurement instrumentation for the radio communications, ATE and microprocessor based industries.

We are looking for men or women educated to at least HNC level in electronics who have a solid basis of practical experience. Knowledge of the radio communications industry would be advantageous and for overseas sales a second language (French or Spanish) would be useful.

If you are ambitious and are seeking a new challenge these opportunities will allow you to develop your career in selling high technology products and will open up exceptional promotional paths in several different areas.

We can also offer an attractive salary package including company car for U.K
direct sales staff, over five weeks annual leave, staff pen sion and free life assurance scheme plus many other benefits associated with a major employer.

If you are interested please telephone Graham Addison to find out further details on Windsor (07535) 68101. Or write giving ful. details of career and current salary to:- Personnel Officer Racal-Dana Instruments Ltd.

PRINCIPAL DESIGN and ATE ENGINEERS

HIGH TECHNOLOGY / ATE EQUIPMENT
S. ENGLAND to $£ 16 \mathrm{~K}$

As a candidate you will have a degree in electronics and experience in one or more of the following:
Customised Chips, High Density PCB assemblies, CAD/CAM, Computer Based Systems using Pascal/ Assembler or BITE, Proprietary Test Systems eg Gen Rad, Membrain, Marconi and Hewlett Packard.
To support the growth of the above mentioned engineering division our

This is a first class career opportunity for a person with knowledge and experience of Hi-Tech Electronic and Automatic Test Equipment Development. Your technical nterest will be immediately captured by the highly advanced technology now being employed Your challenge will be to integrate the product with the design of the ATE providing innovative solutions to both design and test methodology problems

From original concept you will be providing an active contribution to the design and development of systems using analogue. digital signal processing, digital data. electro-optics, infra-red and millimetric circuits and systems. You will provide a consultancy service to development teams on testability. BITE and ATE applications. developing test ability and methodology as applied to future and specialised microelectronic packaging.
client also has vacancies for Engineers in less Senior positions
These important positions present a major opportunity to the professional engineer set to establish a career in Hi-Tech Electronic and Automatic Test Equipment Design and Development. Our client provides an attracive salary package. the posstbility of travel and full company benefits, including five weeks holiday and a generous relocation package to an attractive location in S. Engiand.

To find out more and to attain an early interview please contact KEN JACOBSEN in complete contidence on Hemel Hempstead (0442) 47311 during office hours or one of our duty consultants on Hemel Hempstead (0442) 212650 evenings or weekends. Alternatively write 10 him at the address below

Executive Recruitment Services
the international specialists in recruitment for the electronics computing ano defence inousiaies
25-33 Bridge Street, Hemel Hempstead, Herts., HP1 1EG

GROUND ELECTRONICS AND TELECOMMUNICATIONS - ENGINEERSTTECHNICIANS -

Earnings over 2 years not less than $£ 23,500$ (tax-free) PLUS free

 accommodation and meals, expert medical care, personal accident insurance PLUS 21 days' UK leave at 17 week intervals with free air travel to and from Heathrow.Applications are invited for immediate and forthcoming bachelor status vacancies with our Company in the Sultanate of Oman. The work involves the maintenance of modern military equipment associatec with the three branches of the Armed Services.

Ideally, applicants should have a thorough knowledge of techniques and have been employed for a minimum of 5 years' within the field of one or more of the following: mobile and static military radio systems, associated antennae and ancillary equipment; cryptrigraphic and telegraphy equipment: weapons fire control systems and navigation aids used in air traffic control.

If you feel you are suitably qualified and interested in joining our Company, please write giving a brief summary of your qualifications and experience to: The Company Personnel Manager, Airwork Limited, Bournemouth-Hurn Airport, Christchurch, Dorset B'H23 6EB.

Electronics Technician

Move up with the award winners.

Our winning of the Queens Award for Technology 1984 is just one example of our outstanding success. The company has an enviable reputation in the marketplace and this is reflected in the calibre of staff we recruit. The Special Products Division designs and builds special purpose machines for engine and fuel system manufacturers worldwide
An additional ELECTRONICS TECHNICIAN is now sought -someone aged 22.35 who has served a recognised apprenticeship. and has an ONC/HNC, to be involved in work of an interesting and practical nature, featuring assembly, wiring and testing one off PCB's, prototype machines and test rigs, followed up by analysis and reporting of results. 2 years relevant experience is therefore essential
The salary offered will be according to your age, experience and qualifications
If you would like the opportunity of working for an award winning company with a secure future please apply for an application form from:
Rod Mitchell, Personnei Manager
Leslie Hartridge Limited, Tingewick Road,
Buckingham, Bucks MK181EF
Tel: Buckingham (0280) 813661

Power Supply Development Engineer

Negotiable Salary
Coventry
Our sustained growth in the expanding new telecommunications technology - combining voice, data and video services, is creating some exceptional opportunities, at the Company's Headquarters in Coventry.
Applicants must have at least two years' experience in the field of Switch Mode Power Supply design or in a related field where he/she has acquired a sound understanding of closed loop control theory and/or magnetics, will be an advantage.
The successful candidate must be able to work as a member of a small team and make a real contribution to the development of high frequency power supplies to customer specifications. We're offering excellent negotiable salary, dependent upon qualifications and experience, plus the usual big company benefits.
Assistance with relocation expenses may be available where appropriate
interested? Then please write enclosing a brief C.V. to Joan Thorpe, Personnel Department, GEC Telecommunications Ltd, P.O. Box 53,
Coventry
CV3 1HJ.

Product Management Engineer Audio Mixing Consoles

Sony Broadcast Limited, one of the world leaders in the professional sound broadcast and recording industry, markets a complete range of professional audio equipment throughout
Europe, the Middle East and Africa. In addition to microphones, analogue tape machines, mixing consoles and RF communication products, we are also at the forefront of digital audio technology.

An excellent opportunity has now arisen to join a team responsible for the product management of our professional audio equipment. The successful applicant will provide support on our full range of mixing consoles. There will be a combination of in-depth technical involvement with inter-departmental and customer liaison. This position will also entail some overseas travel as required
Applicants should be educated to HNC (Electronics), or equivalent, and have several years experience in the professional audio industry. Knowledge of the operational features of mixing consoles and experience of console design would be particularly relevant

We offer attractive salaries together with first class conditions of employment, and relocation assistance will be given where appropriate.

If interested, please contact: Mike Jones, Senicr Personnel Officer, Sony Broadcast Ltd City Wall House, Basing View, Basingstoke, Hants. RG212LA Tel: (0256) 55011

Sony Broadcast Ltd.

SONY.
Broadcast
City Wall House
Basing View, Basingstoke
Hampshire RG21 2LA
Telephone (0256) 55011
(2619)

THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY ELECTRONIC SERVICE UNIT

CHIEF TECHNICAL OFFICER (COMPUTING)

Applications are invited for the above position, which becomes vacant at the beginning of 1985.

Duties include planned maintenance and repair of an extremely wide range of electronic equipment, upkeeping of servicing records, advisory service to academic staff, supervision of technical staff, and training of Technical Officer trainees.

The Electronic Service Unit is housed in recently enlarged air-conditioned quarters, and has a wide range of modern test equipment. Computer facilities are available

Applicants should be qualified to Technician Engineer level and should have substantial experience of electronic workshop technique and management. Experience with microprocessor-controlled equipment and microcomputers would be an advantage.

Salary: Chief technical Officer (Computing) K20,520 per annum (K1 = Stg 0.8177) (Level of appointment will depend upon qualifications and experience).

The initial contract period is for approximately three years. Other benefits include a gratuity of 24% taxed at 2%, appointment and repatriation fares, leave fares for the staff member and family after 18 months of service, settling-in and settling-out allowances, six weeks paid leave per year, education fares and assistance towards school fees, free housing. Salary protection plan and medical benefit schemes are available.

Detailed applications (two copies) with curriculum vitae. together with the names and addresses of three referees and indication of earliest availability to take up appointment should be received by The Registrar, Papua New Guinea University of Technology, Private Mail Bag, Lae, Papua New Guinea by 30 July 1984.

Applicants resident in the United Kingdom should also send one copy to the Association of Commonwealth Universities (Appts). copy to the Association of Commonwealth Universities (Appr
36
Gordon Square, London WC1H OPF, from whom further 36 Gordon Square, London
information may be obtained.

Advanced telecommunications:
 careers with extensive scope at Cheltenham

Join the Government Communications Headquarters, one of the world's forem ost centres for R \& D and production in voice/data communications ranging from HF to satellite - and their security. Some of GCHO's facilities are unique and there is substantial emphasis on creative solutions for solving complex communications problems using state-of-the-art techniques including computer/ microprocessor applications. Current opportunities are for:

Telecommunication Technical Officers

Two levels of entry providing two salary scales: £6262-£8580 \& £8420-f9522
Minimum qualifications are TEC/SCOTEC in Electronics/ Telecommunications or a similar discipline or C \& G Part II Telecommunications Technicians Certificate or Part I plus Maths B, Telecomm unication Principles B and either Radio Line Transmission B or Computers B or equivalent: ONC in Electrical, Electronics or Telecommunications Engineering or a CIE Part | Pass, or formal approved Service technical training. Additionally, at least four years' (lower level) or seven years' (higher level) appropriate experience is essential in either radio communications or radar, data, computer or similar electronic systems. At the lower entry level first line technical/supervisory control of technicians involves "hands-on" participation and may involve individual work of a highly technical nature. The higher level involves application of technical knowledge and experience to work planning including implementation of medium to large scale projects.

Radio Technicians -
 £5485-£7818

To provide all aspects of technical support. Promotion prospects are good and linked with active encouragement to acquire further skills and experience. Minimum qualifications are a TEC Certificate in Telecommunications or equivalent plus two or more years' practical experience.
Cheltenham, a handsome Regency town, is finely endowed with cultural, sports and other facilities which are equally available in nearby Gloucester. Close to some of Britain's most magnificent countryside, the area also offers reasonably priced housing. Relocation assistance may be available.

For further information and your application form, please telephone Cheltenham (0242) 32912/3 or write to:

[EHHD

Recruitment Office, Government Communications Headquarters, Oakley, Priors Road, Cheltenham, Gloucestershire, GL52 5AJ

ARTICLES FOR SALE

BRIDGES waveform/transistor analysers. Calibrators. Standards. Millivoltmeters. Dynamometers. KW meters. Oscilloscopes. Recorders. Signal generators - sweep, low distortion. true
RMS. audio. FM, deviation. Tel. 040 $\underset{376236 \text {. audio. FM, deviation. Tel. }{ }_{(1627)} 040}{ }$

Townled Times

FREE Mail Order newspaper of Bargains. Relays; Diodes; Thyristors; Capacitors; Resistors; Bridge Rectifiers; Cable Straps; High Speed Fuses and Mechanical Components.
Harehill, Todmorden, Lancs. OL14 5JV
Tel. Todmorden (STD 070 681) 4931 (2530

HI-FIREVIEWING

I need a young person to help me test hi-fi products, during June, July and August 1984 Pay - around $£ 80 / \mathrm{wk}$. You must have an electronic principles and minimum qualifications of O Levels in a science subject and English. Central London location (Paddington). Phone/write: NOEL KEYWOOD, 64 Castellain Road, Maida Vale, London w9 1EX. 01-2893533
\qquad

PCB HAND ASSEMBLY - any quantity Highest quality at sensible prices. INTERESTED? Phone 01-274 3070 (2570)

5눌 ${ }^{\circ}$ DISKETTES
Certified for Single OR Double
Density media with hub ring
PRICES EXC VAT
40 tpi suitable for 40 track 96 tpi suitable for 80 track

PRICEPER
DISC

VIDEOTAPES BOXOF 10
VHS Beta E-180
§35.00
£38.00

CARRIAGE CHGS PLEASE SEND $£ 2$ FORBOXOF TEN ANY QUANTITY ABOVE 10 ALLOW〔5FORNEXT DAY DELIVERY

Computer ${ }_{\text {cal }}^{\text {cal }}$		
Cassettes ${ }_{\text {cha }}$		

High quality low noise cassette tapes. Short play, leaderless construction for use with computer cassette systems. Each tape in individual plastic library case with index card.

HOW TO ORDER For disks all 50p per box of ten for $p \& p$. First class mail for small packets - next day delivery for heavier ones. For cassettes allow $£ 5$ carriage costs (min order is 100) for next day elivery. Post/carriage costs include VAT

P. V.TUBES
 PLEASE ADD 15% VAT
 TOALL

Dept. E
104 ABBEY STREET,
ACCRINGTON, LANCS BB5 1 IEE.
Telephone: (0254) 36521 (0254) 32611

Teiex: 635562 Griffin G for PV
2628)

TO MANUFACTURERS, WHOLESALERS

 BULK BUYERS. ETC.LARGE OUANTITIES OF RADIO. TV AND ELECTRONIC COMPONENTS FOR DISPOSAL
SEMICONDUCTORS, all types, INTEGRATED CIRCUITS, TRANSISTORS, DIODES, RECTIFIERS, THYRISTORS, etc. RESISTORS, C/F, M/F, W/W, etc CAPACITORS, SILVER MICA, POLYSTYRENE, C280, C296, DISC CERAMICS, PLATE CERAMICS, etc.
ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE CABLES, SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFORMERS etc.
ALL AT KNOCKOUT PRICES - Come and pay us a visit ALADDIN'S CAVE
TELEPHONE: 445 0749/445 2713 R.HENSONLTD.

21 Lodge Lane, North Finchley. London, N. 12

QUARTZ CRYSTALS OSCILLATORS AND FILTERS of all types. Large stocks of standard item.s. Specials supplied to order. Personal and
export orders welcomed - SAE for lists please OEM support thru:- design advice. prototype quantities, production schedules. Colledge Electronics. Mernott, Somerset TA16 5NS. Tel: 046073718 (2612)

SHEETMETAL FOLDERS $18 \% \times 18 \mathrm{G}$. Vice or Bench model. £38. Leaflet, 01-890 7838 Anytime.

ARTICLES FOR SALE

COMMUNICATION RECEIVERS

 LOUYRED CASESFOR ABOVE E S5. ALL RECEIVERSAREAIR
TESTED AND CALIBRATED IN OUR WORKSHOP SUP
 CIRCUIT- IN FAIR USEO CONOITION BRCAL SYM. TMESISER RS (DECAOE FREDUENCY GENERATORS)

 VERTOR - 10 TO 980KC/S - $£ 75$ - RL218 IMOEPEMLENT

 RECEIVER WITH ELECTRONIC FREQUENCY DISPLAY TO
 RECEVER SOLID STATE - COMPLETE WITH SEEARATE
SYNTHESISEA - INCLUDES FM - A VEAY HIGH-GAIN. SENSTIVE AND EXTREMELY STABLE RECEIVER NORTH AMERLCAN RACAL MADE E400 - RA337 LI COM-
 recelvers - Ec958 - SOLID STATE - HIGH STABILITY
 STATE-SINGGECENNEL SBB - MAANSOR BATERY MANUAL •PLESSEY PR1556 SOOIO STATE $60 \mathrm{KC} / 5-30$ MCIS R 400 - REDOFON SSB RECEIVER - RA99 - SOLID
 PLLTE WITH ISB ADAPTOR ARU10A - E100 WITH manual - cheen 75 teleprimters PUNCH ANO GEARBOXFOR 5OAND 75 BAUDS - 110 VOLT POLYTHENE - LIKE NEW - \&15 EA - REDIIOM TII AUOIO TELLPRRITIEA CONVERTOR RECEIVEA SOLID STATE - SELEPPLY 110 OR 240 AC - MAOE FOR USE WITH ABOVE RECEIVED RROM AUDIO : NPUT OF COMMUNICATON RECEVER - $£ 15$ WITH CIRCUIT TESTED. REDIFOM TTID COMVERTOA AS ABOVE BUT INCLLDDES TRANSMIT FACI.
 COSSOR COU 150 - 35 MC/S E200 • TELEQUIPMENT DT5-
 SRAME IYPE 7704 - $£ 7507504$ C600 7704 A \& RECOROER SAMGHMO SABBE 111 14 CHANNELS $£ 350$ tipaistel mathix philiters - af 11R - 5 -LEVEL bau-
 Ah11R AS ABOVE BUT ALSD 8 -LEVEL ASC11 CCCITT NO 2 AND CCLIT NO . 5) LIKE NEW 2200 - ARMY FIELS TELE-
 AVAILABLE P.O.R OON 10 TELEPHOME CABLE HALFMLLE CANVAS CONTANERS - £20 - MIGGT VIEWIMG IMFRARED AFF PERISCOPES - TWIN EYEPECE - 24 .
 ${ }_{24}{ }^{24}$-VOLT INPUT - 240 - VOLT AG 5 INEWAVE OUTPUT VARIOUS WATTAGES P.O.R. - XY PLOTEEAS AMO PEN
 MOISE AMPLFIESS - $500 \mathrm{MC/S}$ TO $40 G / \mathrm{CS}$ I IN VARIO GANGES MADE BY WATKINS JOHNSON, 110-OR 240 .
 AM and FM . £675 © TF $8010-8510-485 \mathrm{MC} / 5$, $\varepsilon 100$ -

 and L5 PLUG-INS 4 TO $75 \mathrm{MC} / \mathrm{S}$ E60 - TELOMIC SWIEFP GEEFRFTORS 2003-850 T0 $2150 \mathrm{MC} / \mathrm{S}$ £275- IF1313
 COMPLEEE WTH 16FT. WHIP AERRAL TO MOUNT ON TOP - GUYROPES - INSULATORS - BASE AND SPIKES. ETC

 Temonstration 01 an ian Also
CARRIGGE EXTRA
EXPORT TRADE Ano quantiry oiscoumts given
WHITEHAL WORKS BS SAOID BIRXENSHAW, BRADFORDBD 11 2ER TEL:(0274) 584007
WANTED REOUNDANT TEST EOUPMENT RE ceving and iransmiting eoulpment valves
plugs sockets synchros, etc.

[^6]
HNC Electronics? See yourself in video?

If you're a qualified electronics technician, keen on video, and want to work in the world of video production, talk to Unipart.
We keep all our customers and staff in the picture about promotions, news, training etc. through our own exciting Channel 5 video communications package
Right now we need two technicians to back up our production team in our studios and on location. You'll carry out routine maintenance and emergency repairs in a 2 -camera studio, 3-machine editing suite, and a fullyequipped A / V theatre, photo studio and record library. Location shooting and some setting up of presentation equipment on-site will be required.
If you have an HNC or equivalent in electronics, some
knowledge of video techniques and equipment and, essentially, a strong personal interest in electronics, we will provide a competitive salary and comprehensive benefits.

Please write, initially, for an application form to:

Instrument Service Engineer

for a key role in new ideas and technology £10,000: Beckenham, Kent

... to join the Wellcome Foundation Limited, a major group of chemical and pharmaceutical companies with headquarters in the UK and a turnover close to $\mathbf{£ 7 0 0} \mathbf{m}$.

As site based Instrument Service Engineer, you would become a key member of the Instrument Maintenance team for a group of engineers whose responsibility it is to provide an advanced electronic and precision mechanical engineering capability to the company.
This is a most unusual job and we believe you will have to be an unusual person to succeed in it. You will need a very broad range of experience and ability, and be able to mend a much needed analogue recorder, yet tomorrow have the ability and enthusiasm to switch your attention to helping out a scientist with his/her broken computer controled spectrometer.
Aged around 30, you should have a qualification in Electronics or Instrument Maintenance such as the City and Guilds Full Technical Certificate - together with 5 to 10 years' experience servicing electronic equipment. knowledge of modem electronic instruments and their canstruction and an understanding of the electronics interface with computers is essential.
We offer a competitive salary, depending on experience and ability. Excellent benefits include five weeks' holiday, pension and life assurance scheme and generous assistance with relocation expenses as appropriate.

[^7](2016)

ARTICLES FOR SALE

OPTOELECTRONICS DATA BOOK 1984

Price
 by Texas $£ 6.00$

DIGITAL ELECTRONIC CIRCUITS
\& SYSTEMS by N.M. Morris
PRICE: £5 45

MICROELECTRONICS:

A PRACTICAL INTRODUCTION by A. A. Sparkes PRICE: $£ 8.50$

SOLDERING IN ELECTRONICS by
A. Klein Wassin Wassink PRICE $£ 51.00$

OPTICAL FIBER COMMUNICATIONS
GY G. Kelser PRICE: $£ 9.50$
DIGITAL IMAGE ANALYSIS
S. Leviald PRICE: $£ 26.00$

SEMI-CUSTOM IC DESIGN \& VLSI by P.J. Hicks

PRICE: £ 13.50
INTRODUCTION TO MOS LSI
DESIGN by J. Mavor PRICE. £1850
HANDBOOK OF BATTERIES \&
FUEL CELLS by D Linden PRICE: $£ 63.00$
THE DESIGN \& DRAFTING OF
PRINTED CIRCUITS by D. Lindsey

* all prices include

POSTAGE *

THE MODERN BOOK CO.

britain's largest stockist
of British and American Technical Books

19-21 PRAED STREET LONDON W2 1NP

Telephone: 01-4029176
Closed Saturday 1 p.m.
Please allow 14 days for reply or delivery

ENCAPSULATING EQUIPMENT FOR.coils, transformers, components, degassing silicone rubber, resin, epoyy. Lost wax casting for brass, bronze, siver, etc. Impregnating coils, ransfor used and new. Also for CRT regunning metallis ing. Research \& Development. Barratts, Mayo ing. Rescarch
Road, Croydon CR0 2QP. $01-684$ 9917. (9678)
MORSE READING PROGS. Work on clean signals without hardware interface. 2X81 1K UNEX ANDED MEMORY. Transiated code with word and line spaces for easy reading Automatic scroll SPECTRUM scrolling memory, instantly accessible page by page. $£ 8$ incl. All types variable speeds. Feed signal direct into EAR socket. Pinehurst Data Studios, 69 Pinehurst Park, West Moors, WIM BORNE, Dorset. BH22 0BP.
PRINTER FOR BBC MICRO or any computer with RS232 interface. 180 CPS. Bidirectional printing. Dot matrix 7×9. True descenders. Buf fered. Various baud rates. Variable tracktor set-
tings. Ideal for users requiring fast continuous tings. Ideal for users requiring fast continuous printing. Cables and pugs included. 280. Phone
Crowthorne $(0344) 776894$.

VIDEO \& TV TESTEQUPMENT(PAL)

 PHILIPSLDH6200 14* colour monitor.... £750 PM5519 pattern generator. . $£ 500$ SYSTEM VIDEO
1204A \& 1205 waveform \& colour analysers (1 unit)
DIGITEL
D4060-01 noise meter $£ 480$ All 18 mths old. For details write/phone- HI-TEST, 64 Castellain Road, London W9 1EX
tel: 01-289-3533.
(2636)

VALVES, PROJECTOR Lamps, 6000 types, list 75p, world wide export. Cox Radio (Sussex) Lid. The Parade, East Wittering, Sussex. Phone (02 366) 2023.
V.D.US FOR SALE Data General DGC - 6012 S232 V24/current loop 110-4800 baud. Qwert and numeric keypad ideal for interfacing with mic ros useful in test equipment. Give away prices
$£ 70-£ 125$. Phone $01-8662871$
wavegulde, Flanges and Dishes. All standard sizes and alloys (new material only) fron stock. Special sizes to order. Call Earth Stations 4AR.

When replying to classified advertisements, readers are recommended to take steps to protect their interests before sending money (2519)

WANTED

WANTED

Test equipment, receivers valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash. Member of A.R.R.A.

M \& B RADIO
 86 Bishopsgate Street

Leeds LS1 4BB
0532435649
(9956)

VERBGATE LTD.

We buy large and small parcels of surplus I/C, transistors, capacitors and related electronic stock. Immediate settlement

Tel: 01-208 0766
Telex: 8814998
2478)

STEWART OF READING

 110 WYKEHAM ROAD READING RG6 1PL TEL NO: 073468041TOP PRICES PAIDFOR
ALL TYPES OF SURPLUS TEST EOUIPMENT,
COMPUTER EOUIPMÉNT, COMPONENTS etc. ANY OUANTITY.

SURPLUS

We offer good prices for test equipment components, redundant computers PCB's connectors. Immediate settlement.

TIMEBASE
94 Alfriston Gardens
Sholling. Southampton SO2 8FU
Telephone: (0703) 431323

1832)

WANTED

SURPLUS ELECTRONIC COMPONENTS AND EQUIPMENT
We also welcome the opportunity to quote for complete factory clearance B. BAMBER ELECTRONICS Phone: Ely (0353) 860185

CAPACITY AVAILABLE

TW ELECTRONICS LTD

THE PCB ASSEMBLERS

More and more companies are investi gating the advantages of using a profes sional subcontractor. Such an undertak ing requires certain assurances.
TW are able to satisfy all of them quality, competitive pricing, firm delivey and close co-operation with the customer.
Assembled boards at 100% inspected before flow soldering and reinspected after automatic cropping and cleaning.
Every batch of completed boards is issued with a signed certificate of conformity and quality - our final assurance. For further details, contact us at our new works

Blonhaim Industrial Park Bury St. Edmunds
Suffolk IP 33 3UT
Telephone: 02843931 (1466)

FREE PROTOTYPE of the finest quality with EVERY P.C.B. artwork designed by us. Competitive hourly rates, and high standard of work. Halstead Designs Limited. Tel: Halstead (0787)
477408.
(2126)

SERVICES

PROM, EPROM \& PLA

Programming service from original device or list. Most devices catered for. Charges $£ 2.25$ per copy +5 p per 16 bytes manually entered. VAT extra.S.A.E. Appreciated.
M.GAFFNEY

17 Solway Close, Fearnhead
Warrington WA2 OUP. (2622)

FOR THE BEST PCB SERVICE AVAILABLE

*Cincuit Design \& Development
Digital and Analogue
\#Artwork Layout approved standard.
*Board Manufacture
Prototype to semi-production, excellent rates.
*Wining \& Assembly
PCB assembly, wiring
ing facilities avallable.
*Test Full test facilities available.
One or all services zvailabie.
Please telephone Chelmsiord
Please Teiepphone Chelmainior
$10245 / 357935$, or write to HCR Electronics, The industrial Unit,
Parker Road, Chelmsford.
(30mins from Liverpool Street St.

SPECIALISEDSUB CONTRACT SERVICES
Custom Design - Assembly Testing of VHF and UHF equipment Cable Television, Communication Equ., Filters, amplifiers etc. Contact:

JTELECTRONICSLTD.,

Unit C4 Industrial Estate
Button End, Harston.
Cambs. CB2 5NX
Tel: (0223) 871239
Tlx: 21792 Ref. 3575
DESIGN SERVICES. Electro. design development and production service available for digital and analogue instruments. RF Transmir lers and receivers, telemetery and con rol
systems. 20 years' experience. R.C.S. Electronics, X'olsey Road, Ashford, Middlesex. Phone Mr Falkner 53661 . 834 P.C.B.s \& PANEL LABELS to your requirements. Design - Prototypes - Production G. N. SLEE CUSTOM PRODUCTS, 78 Derry Grove, Thurnscoe, Rotherham, Yorks. 563 0TP Telephone: (0709) 895265

ANALOG COMPUTERS LIMITED chartpak CAPACITY NOW AVAILABLE FOR: stockist

Design \& Development, Complete Artwork Service, Camera Work Prototype thru to Production PCB Manufacture/Assy.

5 Cork Street, Eccles, Maidstone, Kent, ME 20 7HG TELEPHONE 10622 ! 79987 TELEX 965633

CIRCOLEC

THE COMPLETE ELECTRONIC SERVICE

Artwork, Circuit Design, PCB Assembly, Test \& Repair Service, Q.A Consultancy, Prototypes, Final Assembly. Full PCB Flow Soldering Service.
Quality workmanship by professionals at economic prices.
Please telephone 01-646 5686 for advice or further details.
TAMWORTH MANOR
302-310 COMMONSIDE EAST, MITCHAM
(1391)

TURN YOUR SURPLUS i.cs transistors etc. into cash, immediate settlement. We also welcome the opportunity to quote for complete factory clearSouth Brink, Wisbech, Cambs. 0945 584188.

PROFESSIONAL DESIGN SERVICE. Aתa logue/RF circuit/System design. Specialising in microwave amplifier, oscillator and network design. MOTOROLA 6805/6809 senies microprocessor design/development capability. All work carried out to a high standard by competent professional engineers. Trontech Electronics Design Services, 81 Finchampstead Rd, Wokingham,

DESIGN AND MANUFACTURE ANALOGUE DIGITAL, RF AND MICROWAVE CIRCUTT AND SYSTEM DESIGN. Also PCB design, mechanical design and prototype/small batch production. - Ad Berks. Tel: Bracknell (0344) 52023 . (656 DESIGN AND DEVELOPMENT SERVICE. RF transmitters and receivers. Telemetery U.H.F V.H.F. Anologue and digital circuits, control sy tems. Fulf manufactunng facilities. RCS Electronics, Wolsey Road, Ashford, Middx. Phone Dr. Eric SMALL BATCH PCBs, produced from your artwork. also DIALS, PANELS, LABELS. Camer work undertaken. FAST TURNAROUND. DeECIN 8RU. Tel. 01-405 4127/0960. (9797)

> The Publishers take all reasonable care to ensure that classified advertisements are genuine, but readers must satisfy themselves that they will be obtaining what they require before entering into transactions, particularly if they involve large sums of money. (2sis)

Its easy to complain about an advertisement. Once you know how

One of the ways we keep a check on the advertising that appears in the press, on posters and in the cinema is by responding to consumers' complaints.

Any complaint sent to us is considered carefully and, if there's a case to answer, a full investigation is made.

If you think you've got good reason to complain about an advertisement, send off for a copy of our free leaflet.
send off ror a copy of our free leaflet.
It woul you all you need to know to help us process your
complaint as quickly as possible.
The Advertising Standards Authority. If an advertisement is wrong, wére here to put it right.

ASA Ltd, Dept 1 Brook House, Torrington Place, London WCIE 7HN
This space is donated in the interests of high standards of advertising.

CLASSIFIED ADVERTISEMENTS

 Use this Form for your Sales and Wants
PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

To "Wireless World" Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate £3.50 PER LINE. Average six words per line. Minimum £25 (prepayable)
- Name and address to be included in charge if used in advertisement
- Box No. Allow two words plus $£ 5$
- Cheques, etc., payable to "IPC Business Press Ltd." and cross "\& Co."

NAME

ADDRESS
\qquad
\qquad

performance, reliability, value and immediate delivery!

Hitachi Oscilloscopes provide the quality and performance that you'd expect from such a famous name, with a newly-extended range that represents the best value for money available anywhere,

V-212	20 MHz Dual Trace	V- 209	20 MHz Mini-Portable
V-222	20 MHz (illustrated)	V- 509	50 MHz Mini-Portable
V-203F	20 MHz Sweep Delay	V- 1050 F	100 MHz Quad Trace
V-353F	35 MHz Sweep Delay	V- 134	10 MHz Tube Storage
V-422	40 MHz Dual Trace	VC- 6015	10 MHz Digital
V-650F	60 MHz Dual Timebase	VC- 6041	40 MHz Digital

Prices start at around $£ 300$ plus vat including 2 probes and 2 year warfanty We hold the range in stock for immediate delivery
For colour brochure giving specifications and prices ring (0480) 63570 Thurlby-Reltech, 46 High Street, Solihull, W. Midlands, B91 3TB

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 91-103

PAGEA\&H Supplies6
Airlink Transformers Ltd 20
AM Electronics86
53
Analogue Devices 53
Armon Electronics 36
Aspen Electronics Ltd 68
B.Bamber Electronics 60
Barlec Richfield Ltd 24
Barrie Electronics Ltd 42
Beckenham Peripherals
48
Black Star
Cambridge Kits 48
Carston Electronics 20
Control Universal Ltd 30
Crotech Instruments 89
Dataman Designs 35
Display Electronics 88
Easibind 86
Electronics Brokers $11,13,15$
Electrovalue 80
EMS Manufacturing 54
Electronics Wireless World Pliers offer 89
Farnell Instruments 1
Foundrometers Ltd
Foundrometers Ltd
.6
FyldeElectronics Ltd 8
OVERSEAS ADVERTISEMENT AGENTS OVERSEAS ADVERTISEMENT AGENTS F-9100, Boulogne, Paris
Hungary: Ms Edit, Bajusz, Hungexpo Advertising Agency Budapest XIV, Varosliget. Telephone: 225008 - Telex: Budapest 22-4525

INTFOIRE
Gemini Marketing LtdPAGE
Global Specialities.Inside Front coverOutside Back Cover
Grandata Ltd.
Greatech Electronics

\qquad
Happy Memories
10
10
Harris Electronics London
Harrison Bros 44
Hart Electronics Kits Ltd 86
Hawke Electronics Ltd 44
Henrys Audio Electronics 68/69
Henson (R) 68
ILPElectronics 48
Langrex Supplies Ltd 90
Levell Electronics 92
MB Radios. 82
Micro Concepts 80
Minim Electronics 48
Newnes Technical Books (CButterworths) 6
OpusSupplies 59, 63
Pantechnic $\ldots 82$
M Components 78/79
PyeUnicam. Inside Back Cover

Japan: Mr. Inatsuki, Trage Media - IBPA (Japan), B. 212 Telephone: (03) 5850581.

United States of America: Jay Feinnan, Business Press Inter national Ltd, 205 East 42nd Street, New York, NY 10017 Telephone (212) 867-2080 - Telex: 238327
Jack Farley Jnr., The Farley Co., Suite 1584, 35 East Walker Drive, Chicago, illionois 60601 - Telephone (312) 63074. Victor A. Jauch, Elmatex International, P.O. Box 34607 , Lo Angeles, Calif. 90034, USA - Telephone (213) $821-8581$ -
Radford Electronics 36
Radiocode Clocks 1
Radio Components specialists 60
Radio Society of Great Britian 70
Ralfe Electronics P, F, 82
Research Communication Ltd. 20
Robot (UK) Ltd.90
Sherwood Data Systems 92
Sowter Ltd E.A. 84
South Midland Communication 68
Special Products Distribution 54
Strumech Engineering 10
Stewart of Reading. 42
Surrey Electronics Ltd 6
Taylor Bros
36
36
Technomatic Ltd 4/5
Techtest Ltd 44
Thander Electronics Ltd 54
Thanet Electronics 77
Thorn EMI Instruments 86, 104
Valradio Power Ltd 15
Vigilant Communication 24
Whiteley Electronics 84
Wings Appeal 80
Wye Winding Co 10
Jack Mantel. The Farley Co., Suite 650, Ranna Building,Cleveland, Ohic 4415 - Telephone (216) 6211919.Ray Rickles, Ray Rickles \& Co., P.O. Box 2028, Miami BeachRay Rickles,
Florida 33140 - Telephone (305) 5327301 .Tim Parks Pay Pickles \& 3116 MapAtlanta, Georgia 30305 . Telephone 3116 Maple DrAtlanta, Georgia 30305. Telephone (404) 2377432.Mike Loughlin Business Press International, 15055Mike Loughin Business press international, 15055Memorial Ste 119, Houston, Texas 77079 - Telephone (713)7838673.

Canada: Colin H. MacCulloch, International Advertising Consultants Ltd., 915 Carlton Tower, 2 Carton Street, Toronto 2 - Telephone (416) 3642269.
*Also subscription agents.

If you need assistance in Hiri/audio service:

Philips versatile PM5109 LF generator and unique combined distortion meter/oscillator, the PM6309, give you all the help you need for HiFi and audio service applications. They're easy to operate - and economically priced.

PM5109 brings together all the high technology features you require from a test instrument. It offers symmetrical or asymmetrical outputs; pure sine wave signals; a wide $10 \mathrm{~Hz}-100 \mathrm{kHz}$ frequency range and switchable output impedances. A high 30 Vpp amplitude in the asymmetrical mode, with stepped and continuous attenuation; a 10 Vpp floating output in the symmetrical mode, and useful TTL or DIN loudspeaker outputs are
further benefits. In addition, there is a choice of low-distortion or fastsettling modes.

PM 6309 is a simple-to-operate distortion meter that can handle all types of audio equipment. It has been specially designed to provide appropriate signal generation plus an accurate distortion measuring capability within a single instrument.

It offers a built-in RC: oscillator, total harmonic distortion (THD), 3rd harmonic distortion and rms measuring facilities. It not only measures distortion according to DIN 45500 - but also determines the distortion figure accurately when unstable audio signals are being applied.

Fully automatic operation means that all you do is connect the input, select the test frequency - and then read-out the distortion. Separate two-channel testing is also possible for stereo equipment.

Use the inquiry service to obtain further information.

Inquiry No.
PM 5109 LF generator 74
PM 6309 distortion meter

Philips Test and Measuring

Pye Unicam Ltd

York Street, Cambridge CB1 2PX
Tel (0223) 358866 Telex 817331
GN13

[^0]: FREQ CONV. I/P 240 v O/P $115 \mathrm{v} 400 \mathrm{c} / \mathrm{s} 1$ phase 100 Va sine wave new, transis unit $£ 85$. 1053) $100 / 600 \mathrm{mc} / \mathrm{s}$ mains operated with book. £35. POWER UNIT bench P C to oper ate ARC-52 set mains I/P provides semi stab O/P of 28 v DC at 15 amps tested. £ 38 POWER SIG GEN mains operated self contained in rack case tunes 1.5 to $12 \mathrm{Mc} / \mathrm{s}$ varR O/P approx 20 watts into 75 ohm metered O/P direct cal with circ. £ 75 DUMMY LOAD WATTMETER CT $21430 / 400 \mathrm{mc} / \mathrm{s} 20 / 200$ watts meter indication $50 / 75 \mathrm{ohm}$. $£ 55$ MAR CONI TF142E Distortion Meas Set. £45. also TF995/A2 (CT520) Sig Gens 1.5/220Mc/ AM/FM with book. £ 100 RADAR RANGE CAL CT 379 mains. £ 45 X . BAND RESONATOR loads WG. 15 est 50 Kw PK $£ 25$ POWER \& R F DRIVE UNIT for 240 v provides 12 v at 5 amps or 24 v at 2.5 amps DC stab and RFO/P at 10 cyrstal freq in range $2 / 8 \mathrm{Mc} / \mathrm{s} \mathrm{O} / \mathrm{P}$ var 0 to 2 watts into 50 ohm , alt transis, tested. £55. ELEC BRIDGE TESTER for 200/250v provides earth neutral test or neutral to ext earth or can be used as ext bond tester, as balance meter with cal poteniometer $0 / 5$ ohms in carrving case with leads. $£ 25$ CON DENSERS Sprague 2700 Uf at 250 v size $51 / 2 \times 3^{*}$ with insul case, heavy duty type new. £3.50 ea 6 for £ 18 ARMY AERIAL KITS with $30 \mathrm{ft} 1^{\prime \prime}$ mast 10 sections plus $2 \times 16 \mathrm{fl}$ whips with guys, stakes, insulators carrying bagetc can be used as vert Ae or mast new cond. £46 DEVIATION METER TF9341CT219) mains operated treq $2.5 / 100 \mathrm{Mc} / \mathrm{s}$ mea deviation 0 to 75 Kc in 3 ranges with book. E55 TAPE RECORDERS MOD/EMI model also Series 6 single chan new cond with book. $£ 85$ ELEC BELLS 6^{*} dia $24 v$ DC new £11.50 SOLENOIDS for 12 v DC new $£ 3.80$ ea. METER mains voltmeters, $200 / 300 \mathrm{v}$ circa scale size 4^{*} sq new $£ 15$ also ameters DC 500 amps with shunt new $£ 11.50$ Collec tems Aerials Pye $70 / 73 \mathrm{Mc} / \mathrm{s}$ Ground planes new f 10 ea. Racks $6 f t 19{ }^{\prime \prime}$ with doors ex Vtrs. $£ 30$ ea.

 Above prices include carr/postage \& VAT
 Goods ex equipment unless stated new, List 34 available on request
 A.H. SUPPLIES

 Tel: (0742) 444278

[^1]: *In near-instantaneous digital companding the analogue input signal is sampled and digitally coded to an accuracy of 14 bits per sample. Only ten of these 14 bits are actu ally transmitted, the ten-bit 'window' moving up and down the 14 -bit range according to the peak signal level occurring during a lock of 32 samples. The receiver decoder is instructed on the correct placement of the 'window' by a three-bit scale factor word sent with each successive 32 -sample block. By this method, low-level programme signals are transmitted with 14 -bit accuracy. The accuracy progressively decreases down to ten bits per sample for the higher signal levels, but the consequently increased quantization noise is masked by the higher level of programme **The sampling frequency must be at least twice the highest modulating frequency.

[^2]: *The vision camier level is taken as the peak vision carrier power at the tips of the peak vision carnier power at the tips of the
 sync pulses, and the levels of the main and sync pulses, and the levels of the main and

[^3]: *David Ellis, CAMI - Some educational music programs. Electronics and Music Maker, Oct. 1983

[^4]: *LSI circuits for teletext and viewdata: the Lucy generation. Mullard Technical Publication M81-0001, June 1981.

[^5]: To Oous Supplies Lid, 158 Camber well Roud. Londen SF:5 OEE. Please To Opus suppliestid, (ALI Came following (ANCLUDE VAT \& CARRIAGE.)

 | Quantity | Description | Price |
 | :---: | :---: | :---: |
 | | single drive(s) at 2.22995 cat | |
 | | Dual drivers)at $x+59.95 \mathrm{ca}$ | |
 | | TO' | |

 I enclone achequefors
 Or please dehit my credit candaccount with
 the amountofs
 Ms Access/Barclaycard (plcaselick) Nos
 \qquad
 Name
 Address
 \qquad Opus.
 Teleptrone
 Opusinupliesind W

[^6]: Six-channel chart recorder with six colour facily. C.59. Twin pen recorder with semi-conductor amplifiers 2 mV -20.V.,II ranges $£ 98$. Variable $4 C$. PSU, 650 meters 2SA, 50v., transformer sototal mirrofarads $\mathbf{6} 99$ Low-ohms meter $£ 29$ sweep generator Signal Generator Stab pa's Teleprinter. Lab microscope, £89. 6.V-81/ rechargeable batteries (make portable searchlights) £5ea. FM/AM Generator. Tektronix Calibrator. Fibreoptic light supply (variable intensity) Centrifuge. Infra-Red Gas Analyser. 50 KV variable stabilised EHT supply. Tektronix Waveform Generator. Pye Megohmmeter. TV Sweep Genera:or. Water Conductivity Meter. Akratork Torque der. Record 4^{*} chart recorder EA9. Singie to 3-phase converter. Dissolved oxygen meter. Nicad charger. FM/AM Modulation Meter. exc.

[^7]: Please write enclosing a full CV and quoting ref. WRL/276, to: A. Murdoch, Personnel Officer, The Wellcome research Laboratories, Beckenham, Kent BR3 3BS.
 (2613)

