

Farnell Instruments have been active in the manufacture and marketing of bench power supplies for almost 30 years. The experience gained curing this time, together with Farnell's philosophy of constant improvement and the introduction of new technology has culminated in the company's present position as the major U.K. supplier of bench power supplies. Whatever your bench power supply needs, Farrell would welcome the opportunity to discuss them.
The company believes that almost any requirement can be met trom amongst its extensive range of unmetered and metered, bench and sub-bench, analogue or

bench power supplies

AN 800K DISC DRIVE SYSTEM. A RECORD $£ 380$.

If you're upgrading your BBC Micro to a disc system, you can get unbeatable value from Opus.

For instance, you can buy an Opus 5800 drive with 400 K single density, for only $£ 259.95$.

And for only $£ 120$ extra, we'll give you our new double density disc interface.

Specially developed by us, it effectively
doubles the capacity of your drive, giving you an 800 K system for only $£ 379.95$. And that includes VAT and carriage.

Our Double Density Interface can be supplied with any of the disc drives listed below. And it is not available anywhere else except Opus.

To place your order, post the coupon or buy direct at our showroom.

OPUS 3" MICRODRIVE.
Double Sided 40 Track Drive $1 / 2$ Megabyte Unformatted.

- Twice the capacity on line of other available drives
- 200 K . Single Density - 400K. Double Density
- Ex-stock delivery
- 3 ms access time
- Lowest power consumption-direct drive
- Includes case. leads and utilities disc
- Totally compatible with $51 / 4^{\prime \prime}$ drives

Single Drive £229.95. Dual Drive £459.95.
51/4"JAPANESE DISC DRIVES.
SINGLE DRIVE.
Opus 5401 single Sided 40 Track- 250 K . Unformatted. Formatted: 100 K . Single Density, 200K. Double Density $\quad \mathbf{1 7 9 . 9 5}$ Opus 5402 Double Sided 40 Track - 500 K . Unformatted.Formatted:20) K. SingleDensity: 400K. Double Density_ $\mathbf{2} 229.95$
Opus 5800 Double Sided $80 / 40$ Track1 Megabyte Unformatted. Formatted: 400 K . Single Density. 800 K . Double Density- $£ 259.95$ Opus 5802 Double Sided 80 Track - 1 Megabyte , Unformatted. Formatted: 400 K . Single Density, 800 K . Double Density

Switchable 80/40 Track

- 1/2 Height - Includescase, leadsandutilities disc DUAL DRIVES.
All Dual Drives are metal cased with separate power supply. Opus Dual 5401D. Single Sided 40 Track. 200 K .400 K . on line__ $\mathbf{\$ 3 7 9 . 5 0}$ Opus Dual 5402D. Doubled Sided 40 Track. $400 \mathrm{~K} . / 800 \mathrm{~K}$. on line__ $\mathbf{5} 459.95$ Opus Dual 5800I). Double Sided 80 40Track $800 \mathrm{~K} . / 1.6$ Megabyte on line___ $\mathbf{\delta 4 9 9 . 9 5}$ Opus Dual 5802D. Double Sided 80 Track. 800 K .1 .6 Megabyte on line__ $\mathbf{\$ 5 9 9 . 9 5}$

DOUBLE DENSITY DISC INTERFACE

The ultimate Acorn compatible disc interface for your BBC micro.

- Lutilities on ROM including: Format and verify tape to disc transfer, automatic 40/80 track selection, automatic density selection, unique mass copy routine, powerful machine code operating system giving up to 248 files. 80% faster than single density. Easy to install.
Free user manual supplied
$\$ 120.00$
MONITORS.
12" Green Screen
£89.95
$12^{\prime \prime}$ Amber Screen _ _ $\mathbf{~} 99.95$
Lead to connect to BBC Micro__ $\mathbf{E 3 . 9 5}$
- Ex-stock delivery
-24 MHz Bandwidth
- Limited quantity
$14^{\prime \prime}$ JVC Colour Monitor - Med Res.
$-\quad \mathbf{~} \mathbf{~} 187.39$ 14"JVC Colour Monitor-High Res.

THE ORGANISER DESK.

- Top shelf for Monitor/Printer
- Large Desk Top Area
- Lower Shelf for Paper/Book Storage
- Tcak Finish
- On Castors
- Self Assembly
- Ample room in front of the shelf for you to sit comfortably: Only 559.95

FLOPPY DISCS.

$3^{\prime \prime}$ Cartridges $\mathbf{\$ 5} .75$ each or $\mathbf{\$ 2 5 . 9 5}$ for 5
$51 / 4 "$ Discs - with full 5 year warranty + free plastic library case.
S/S S/D £19.95 for 10
S/S D/I) $\mathbf{E} 23.95$ for 10
S/S 80 Track $\mathbf{\$ 2 9 . 0 0}$ for 10 D/SD/D $£ 26.95$ for $10 \quad$ D/S 80 Track £ 31.95 for 10 8" Discs.
S/S S/D \&21.50. S/S D/D £28.50.

D/S D/D £29.95.
GOVERNMENT \& EDUCATION DISCOUNTS GIVEN.
QUANTITY DISCOUNTS GIVEN. DEALER ENQUIRIES INVITED.

OPUS SUPPLIES LTD.

158 Camberwell Road, London SE 5 (OEE
Opening hours: 9.00-6.00 Monday.Friday, 01.7018668 $9.00-1.30 \mathrm{p} . \mathrm{m}$. Saturday. 01.7036155

STOP PRESS.

Various Opus products are available from W'HSmith, Spectrum and John Menzies.
ALL ITEMS ARE GUARANTEED FOR 12 MONTHS AND ARE SUITABLE FOR USE WITH BBC AND OTHER LEADING MICROS.
To: Opus Supplies Lrd., 158 Camberwell Road, London SE 5 (OEE. Please rush me the following: (ALI. PRICES INCLIDE VAT \& CARRIAGE.)

Quantity	Description	Price

Or please debit my credit card account with
the amount of $\&$
My Access/Barclaycard (please tick) No. is

Wireless Wersoild

 over 70 years in independent electronics publishingFEATURES

27 Pausaid

by P. J. Pickersgill and N. J. Stewart $W W$ design competition second prize winner helps to counter dysarthritic speech. Full circuit details.

29 ZX81 generation and measurement interface
by J. Skinner Circuits and programs for timing, signal generation and frequency measurement.

33 Improving colourtv decoding
by D. C.A. Read Countering the loss of h.f. luminance that can happen in decoder i.cs.

SC84 microcomputer

by John Adams A new design for engineers and enthusiasts, SC84 uses a $6 \mathrm{MHz} \mathrm{Z80}$ and has 64 K bytes of ram.

41

Fibre optic communications
by Brett Wilson First of three articles. Part 1 deals with optical fibres and waveguide transmission.

55

Variable-speed video playback
by J. R. Watkinson
A combination of servo head-tracking and digital timebase correction allows wide range of playback speeds.

59
 Multi-standard modem

by R. Lambley Introduction to the design of a universal single-chip modem. Describes transmission of data by telephone.

62

Information society

by A. E. Cawkell A. E. Cawkell's reappraisal of the interaction between technology and society.

69

Roots of relativity
by W. A. Scott Murray The author of our recent 'Heretics Guide' draws attention to one of Einstein's rare, but important, mistakes.

REGULARS

6
 Comment 7
 News

World Telecommunications Day, laser v.l.s.i. etching, video discs in training

47

Communications

G.C.H.Q. Cheltenham, tv hazards, cable and stereo tv

49

Letters

Current-dumping amplifiers, colour-coding

52

Circuit ideas

Combination lock, universal crystal oscillator, simple music synthesizer

77

New products

Microcontroller, p.c.b. c.a.d., compact direction finder

TELESCOPIC MASTS

Pneumatically operated telescopic masts.
25 Standard models, ranging from 5 metres to 30 melres

Hilomast Ltd

THE STAEET HEYBRIDGE - MALDON ESSEX CMY TNE ENGLAND Tel. MALDON (C621) 56480 Telex No. 595855

E.M.S. POWER SYSTEMS

Solve all your Power Problems by contacting E.M.S
E.M.S. specialise in systems to eliminate your power problems.

Products range from 35VA switched square wave Power Packs to 1KVA fully uninterruptible sine wave systems.
E.M.S. also manufacture chargers which range up to 60 amps .

For further details please contact:
E.M.S. Manufacturing Limited Chairborough Road High Wycombe Bucks Tel: (0494) 448484

CIRCLE 007 FOR FURTHER DETAILS.

CIRCLE 014 FOF FCRTHER DETAILS.

Are you as fast as a bullet?

WOULD YOU HAVE MADE A FIGHTER PILOT? NOW YOU CAN FIND OUT WITH THE NEW

 REACTION TESTER A FREE PROJECT FROM GSCSplit second timing is essential for this, the latest and fasiest game from GSC Find out how long you could have stayed "upstairs" before you "bought it". Press start switch, after a random time period, a moving light appears. The quicker you press the button, the longer you "stay alive". You can't fool this game though - a "cheat" light will tell everyone that you guessed when the lights would come on Speed and concentration are the names of this game - build our kit and "beat the bullet'

HOW DO YOU MAKE IT?

Our FREE project sheet gives you a large, clear diagram of the components layed out on an EXP 300 breadboard. Each component is labelled, and the values are given in a component listing. Even the 'row and column' lettering of our EXP 300 is shown to make the location of the correct liules, in which to push the components, easy to find. There's no soldering involved; it couldn't be easier! As an extra bonus, there's a full circuit description, and the details of a regulated power supply on the other side of the sheet,
"Clip the coupon" and get your FREE project sheet with each EXP 300 bought. AND a free catalogue! Just ask about our other free projects too.

EXPERIMENTOR BREADBOARDS

The largest range of breadboards from GSC. Each hole is identified by a letter/number system. EACH NICKEL SILVER CONTACT CARRIES A LIFE TIME GUARANTEE. Any Experimentor breadboard can be 'snap-locked' with others to build a breadboard of any size.

1. EXP $325 \quad £ 2.25$ The ideal breadboard for 1 chip
circuits. Accepts $8,14,16$ and up to 22 pin ics. Has 130 circuits. Accepts 8,14 . 16 and up to 22 pin IC
contact points including two 10 point bus-bars.
2. EXP 350 £3.80 Specially designed for working with up to 40 pin ICs pertect for 3 \& 14 pin ICs. Has 270 contact points including two 20 point bus-bars.
3. EXP $300 \mathbf{f 6 . 5 0}$ The most widely bought breadboard in the UK. With 550 contact points. two 40 point bus-bars.
the EXP 300 will accept any size IC and up to 6×14 pin the EXP 300 will accept any size IC and up to 6×14 pin
OIPS. Use this breadooard with Adventures in Microelectronics.
4. EXP 600 £7.95 Most MICROPROCESSOR profects in 600 . 600.
5. EXP $650 £ 4.75$ Has $6^{\prime \prime}$ centre spacing so is periect for MICROPROCESSOR applications
6. EXP 4 B £2.75 Four more bus-bars in "snap-on" unit

PROTO-BOARDS

The ultimate in breadboards for the minimum of cost.
Two easily assembled kits
7. PROTO-BOARD 6KIT $\mathbf{f 1 2 . 0 0} 630$ contacts, four 5 . way binding posts accepts up to six 14 -pin Dips.
8. PROTO-BOARD 100

KIT Complete with 760 contacts accepts up to binding posts and sturdy base. Large capacity with kit economy

'Clip the coupon" and get your FREE project sheet with each EXP 300 bought. AND a free catalogue! Just ask about our other free projects too.

For further details of our FULL PROTO-BOARD RANGE, please send for our free catalogue.

GLOBAL SPECIALTIES CORPORATION

[^0]G.S.C. (UK) Limited Dept 7 J 8 Unit 1 . Shire Hill Industrial Estate, Saffron Walden. Essex CB1 1 3AO
Price include P \& P and 15% VAT

		\|QTY.		$\frac{\text { QTY }}{\text { ¢ }}$ \| 6.63		$\frac{\text { QTY }}{\text { £10.29 }}$		QTY. £6.33	6	QTY. $£ 4.03$	7	QTY.	8	$\frac{\text { QTY. }}{\text { £20.07 }}$
Name														
I enclose Cheque/P.O. for $£$ \qquad or debit my Barclaycard/Access/ American Express card no. \qquad expiry date \qquad														
FOR IMMEDIATE ACTION - The G.S.C. 24 hour, 5 day a week service Telephone (0799) 21682 and give us your Barclaycard, Access, American Express number and your order will be in the post immediately For FREE catalogue tick box														

Plus ça change

Once in a while, the appearance of Wireless World changes a little as fashions in typography and layout evolve. In recent times, the changes have been somewhat tentative - a bold-face heading here, a rule here and a bit of unjustified typesetting (meaning ragged, not unnecessary) somewhere else. It is even possible that they have been so slight that not many readers have noticed, and also possible that uncoordinated, small changes here and there led to a style which did not hold together as well as it might have.

With that in mind, our designers and editorial people decided that the moment was right for a full-blooded effort, starting from scratch, to make the journal more attractive to
the eye, since recent printing and production charges have made possible the introduction of colour and rather better paper. The new layout of pages is a great deal more in line with the best of current practice than was the earlier style and is, we think, fresher and visually more appealing.

Content is unchanged, except insofar as it is continually changing as the subject moves forward: computing, for example, occupies much more space than it did even five years ago. But the well-established features remain, and will do so long as readers want them.

One result of adopting the new style is that the familiar 'perfect-bound' method of making the issue has gone,
and is replaced by
'saddle-stitching', which also means that advertisements tend to appear in unfamiliar places in the page make-up part of the price one has to pay for the use of colour in editorial pages.

We hope you like the new appearance, which is celebrated by the first part of a description of John Adams' new computer. His first design, the Scientific Computer, was extremely successful and this new development is similary advanced, being disc-based and running a good deal of CP/M software. The new WW multi-standard modem also starts this month - the second design by Richard Lambley to emerge from our laboratory.

Pirate chips

Encouraged by the successful tests of Plymouth Poly's ingenious satellite tv system, research teams in Wireless World's laboratory block are pressing ahead with their own plans for broadcasting in the 1990s. One promising idea now under development may help do away with the ubiquitous radio pirates of which the IBA complains.

Our researchers note that the three or four pop pirates audible most evenings hereabouts are virtually indistinguishable in style and content: a needless duplication which is wasteful both of human effort and spectrum space.

To replace it, they propose a new national pop radio channel; possibly, for economies of scale, even a pan-European one. This could be distributed by satellite or perhaps as a subscriber on an existing network.

At the listener's end would be an intelligent receiver, designs for which are already at an advanced stage. Fitted inside each one would be a speech synthesiser chip which, on receipt of encoded cues from the network, would fill gaps here and there in the spoken announcements with brief contributions of its own.

Equipped with a suitably
programmed eprom, the device would draw upon a large repertoire of local place-names which it could slot into record requests and motoring flashes. With a few station ident jingles, and the addition of heavy audio compression over all, the illusion of a real local radio station would be complete.

The idea seems to have something in it for everyone. In

those underpriviledged regions

 which don't at present have their own d.js, listeners would (for the price of an eprom) be able to feel the sense of local identity now enjoyed by the more fortunate. And the former pirates themselves would be spared the hazards of possible prosecution - slight though these appear to be. Any takers?
Long queue for the QL
 Once again, Sinclair Research
 been known for main-frame

has failed to deliver a product when promised. At a champagne breakfast launch, at which the QL computer was extensively demonstrated, Sir Clive assured us that this time there would be no delays and that the computer would be available to mail-order purchasers 'towards the end of February'. Unfortunately the production of the QL hit a few snags. 'Bugs' have to be eliminated and this has led to the usual delays which could add four or five months to the promised date for delivery.

By launching a product when it is nearly ready, a manufacturer hopes to steal a march on competitors who may also be ready tolaunch new products. Such 'jumping the gun' is not new in the computer industry. It has
manufacturers to launch an empty box with an impressive specification and then spend the next few months attempting to meet that specification, if sufficient interest is shown by potential customers. But in the case of a personal computer like the QL, we would have thought it important to have the product ready before launch. No doubt, when it does come, the computer will be as impressive as it seemed to be, but the delays lead to a large number of disappointed customers and leaves an impression that we have all been taken in by the undoubted charisma of Sir Clive, and that gives the champagne a nasty taste. Incidentally, has anyone seen a Sinclair miniature, flat-screen tv recently?

World Telecommunications day

Telecommunications:

 Expanding Horizons is the theme chosen by the International Telecommunications Union for the 16th WorldTelecommunications Day to be held on 17th May. The day marks the foundation of the ITU which is now 119 years old. In his annual message, Richard E. Butler, Secretary-General of the ITU, praised the success of World Communications Year (1983) which combined many of the abilities of operators, manufacturers and users of telecom systems and pointed out that many nations were retaining their national committees set up for WCY so that the work may be continued.

The improvement of communications in underdeveloped countries has been a particular concern for the Union as it is believed that telecommunications can play a key role in development. Mr. Butler points out that 90% of all services are confined to about 15% of the world's nations.

Studies carried out by the ITU and the OECD have shown that rural communities, which had been steadily dwindling, could remain viable if they had the means of communication. This does not only apply to the 'Third World'; poorer parts of the United States became more prosperous when telephone services were installed under the Rural Electrification
Administration, instituted nearly 40 years ago.
Telecommunications can contribute to the amelioration of rural conditions by improving the social environment.

Such improvements come not only from improved living conditions but also from reducing the feeling of isolation felt by many rural inhabitants. Communications channels also work the other way and can inform urban dwellers of the conditions in the country and perhaps give them the will to improve them. Other spin-offs include improvements in conservation and better use of energy, in reduced transportation costs through the provision of telecommunications, for example.

Optical-fibre cables and satellite links will further improve rural communications. On the subject of the use of satellites, Mr Butler maintains that at present they are chiefly used for high capacity trunk circuits which could probably be better served by ground-based links and relays, especially high-capacity digital fibre-optic trunk lines including trans-oceanic links. Over the long term, he says, there are only three major areas that will always be better served by satellite communications than by any other means: aircraft, ships and rural areas.

Satellite communications are by their very nature distributed. It is much more economical to install an earth station in a rural
community than to lay down a cable and one or a few channels in each village is much better than large numbers of facilities in fewer locations. the advantages of such satellite communications will become more pronounced as appropriate satellites and earth stations become available.

In brief

Ambit International, component suppliers to industry and especially to the home construction hobbyist, have moved to Park Lane, Broxbourne, Herts, though it will be retaining a sales counter at its former Brentwood home.

Laser etching - a path to bigger i.cs

A new process, using a laser instead of the conventional photo resist, has been developed for the production of v.l.s.i. circuits by Toshiba in Japan. Scientists at the $R \& D$ centre, who were working on the use of lasers as a means of reducing radiation damage caused by the etching radiation, discovered that an etching phenomenon occurred when u.v. light was radiated onto a silicon wafer in chlorine gas. Based on this discovery, they subsequently demonstrated that a excimer (excited dimer) laser beam directed at a silicon wafer could etch the surface accurately without the usual photo-resist mask. The laser used is a chlorine xenon gas tube with a wavelength of 308 nm . The phenomenon is believed to occur when chlorine molecules are decomposed into chlorine atoms by the action of the short wave laser beam. The chlorine atoms attach themselves to electrons freed from the silicon surface by the laser radiation. The silicon reacts to these chlorine ions to produce a silicon-chlorine gas thus etching away at the surface.

This process will enable Toshiba to reduce the number of pattern forming steps from seven to one and ensure that damage caused by the etching and pattern forming process itself is eliminated.

Toshiba expects that when the process becomes operational "within a few years", it will make possible a major advance in precision processing of wafers and will have a great influence on the production of extremely large scale integration; a 16 M bit memory has been mentioned. Fine-line engraving of 0.5 microns or below would become possible without the inherent danger of damage to the circuits caused by reactive ion etching. The expensive production equipment needed for resist coating, developing and resist removal in clean room conditions would all be eliminated.

Part of a gallium arsenide microcircuit for microwave applications, showing integrated inductors with bridge connections. Because of the particular suitability of GaAs i.cs for microwave circuits including satellite communications, Plessey, who supplied the picture, are to mass-produce such circuits. Up to now they have only been made in small batches.

Software course for teachers

The second pack in the Open University's Micros in Schools project is a training program for teachers which discusses software design and helps them to select the best programs from those available commercially.
The course is intended for those teachers experienced enough to connect up a computer and run a fairly complex program. The first OU pack on educational computers, Awareness, would bring a user up to this level. The course requires some 40 to 50 hours' study and is suitable for both primary and secondary school teaching.

The pack starts by showing how a small Logo program is constructed and how the user can modify its operation and make short procedure calls. Educational programs are discussed, including simulations, models and
information retrieval programs; drill and practice; adaptive programs and intelligent systems.

This leads to a critical analysis of three commercially published computer-assisted learning packages so that the teacher can understand the qualities that make good software good.

Educational Software includes a study book, activities book and course reader, programs on disc and three commercial packages. There is also an audio cassette.

Version of the course are available for Apple II, which includes an offer for a generous discount on Apple Logo; and for the RML 380 Z which includes its own RML Logo. versions for the RML 480Z, the ZX Spectrum and the BBC model B computers are being prepared. details from Micros in Schools Project, Open University, Milton Keynes.

Walter Tusting Cocking

It is with much regret that Wireless World announces the death at the age of 77 of Walter Tusting Cocking, C. Eng., MIEE.

Walter Cocking was first associated with the journal in the early ' 30 s when, as a young experimenter, he developed a number of wireless circuits. He first worked as a freelance experimenter and writer and later he was invited to use the Wireless World laboratory facilities. Shortly afterwards, he became a full-time member of staff. In the days before the second world war, he established his reputation as a first-class engineer with an eye for detail and an ability to convey his developments in a concise and easy-to-understand manner.

Before the existence of an electronics industry and supporting component

Interactive video discs for union education

It can't be very often that a trades union gets a pat on the back from a Conservative minister. Such however is the case when the Electrician's Trades Union installed an interactive video disc player in their Union Training College at Cudham. The system is to be used to train union members in microelectronic technology and the system is to be developed jointly by the union and Epic Industrial Communications with the Department of Industry providing two-thirds of the $£ 150000$ costs. The union and Epic will provide the balance and will market the system to industry and training institutions, next year.

At the announcement of the project, Kenneth Baker, Minister for Information Technology, said, "I am very pleased to see this project launched. A trade union, an enterprising British firm and an exciting new technology are working together in a way that should be a pattern for all".

The system will combine laser video discs with one or more microcomputers to produce a package of information
graphics. According to the Managing Director of Epic, Eric Parsloe, "The system will provide a low-cost solution to a major industrial training and productivity problem and should certainly give the UK a lead in Europe".

Frank Chapple, General Secretary of the Electrical, Electronic, Telecommunications and Plumbing Union,
commented; "The EETPU is the only union to have its own training facility for running courses in new technology. Through this development the union has been able to offer a first class service that ensures that members are able to keep pace with developments in industrial technology and provide industry with the appropriate skills needed to install, commission and maintain modern plant and machinery. The joint development of the interactive videodisc learning system combines a training program on microelectronic technology with the very latest in teaching techniques and adds to the uniqueness of the union's programmes supplemented with computer-generated text and
achievement"
The videodisc learning system will be able to illustrate difficult electronics concepts and will show industrial applications of installation, maintenance and repair. The disc will contain a mixture of still frames, sequences of operation with a voice commentary and live action sequences. The computer graphics will include circuit diagrams for fault diagnosis. The union will use the system to supplement their tutors and for self-paced student learning.

The hardware to be used has not yet been selected. One option is to combine a Phillips Professional Laservision player with a BBC model B micro, using the Microtext language but other approaches are also being considered.

Epic have produced other interactive video systems including a project for an electronic manual for Rolls Royce and a diagnostic disc on gastroenterology for a drugs company.
manufacturers, it was his contention that we should publish nothing unless the constructor could make all the special parts himself. Thus, when he developed and published the first constructional articles for television, he gave precise instructions how to wind the scan coils, first having made the flared winding mandrel out of blocks of wood. Such was the quality of his engineering.

At the outbreak of war, he had already published a number of books, including his definitive work on television, Television Receiving Equipment. Not surprisingly, he was 'co-opted' into the army, where he was involved in secret work on military projects throughout hostilities. He never discussed this work, even years later. He liked to tell the story of coming back to Dorset House, the home of Wireless World, years later, to be greeted by the newspaper seller at the door with 'Evening Standard as usual sir?'. The equally undramatic Cocking simply said 'thank you'.

In the post-war era, with the editor (H. S. Pocock and later F. L. Devereux) Walter Cocking made an enormous contribution to Wireless World, helping to maintain and improve the engineering standards and integrity of the journal. Pursuing his goal of excellence in engineering, he developed an audio amplifier using triode valves in push-pull (PX4s) that preceded the famous Williamson amplifier.

Whilst continuing to provide constructional articles and other more theoretical material, he edited the famous Wireless Engineer. Under his editorship, this achieved such a reputation for quality and integrity that a number of overseas universities accepted publication of a paper or thesis in it as being of appropriate standard to award the author a degree.

Later in his career, Cocking became editor-in-chief of Wireless World and of the successor to Wireless Engineer. He retired in 1972 but maintained constant contact through letters to the editor. A truly great technical journalist, Walter Cocking was a tremendous influence on all who worked with him and will be sadly missed. TJB

CIRCLE 040 FOR FL'RTHER DETAIIS

UNISELECTORS TYPE 2 SERIES

Uniselectors are designed to meet the requirements for mechanisms having long life and dependability. They are approved by British Telecom and used extensively by them.
Uniselectors can be supplied with double-ended wipers giving two appearances of 25 points per revolution. 4, 6, 8, 10 and 12 level uniselectors can also be supplied with single-ended wipers, connected in adjacent pairs which give 2,3,4,5 and 6 complete circuits of 50 points per revolution respectively. Wipers may be bridging or non-bridging and can be adjusted for position on bank contacts independently of mechanism adjustments.
Also in stock: Miniature Uniselectors, 3000 Type Relays, Carpenter Polarised Relays, High Speed Relays, Transformers, 2000 and 4000 Type Selector Mechanisms, etc.
As one of the few remaining suppliers of Strowger components in the U.K. we would welcome your enquiries and look forward to discussing your needs.

Cynpex Ltd

Telecommunication component factors
Unil 3, Argyle Way, Stevenage, Hertiordshire SG1 2AD Telephone (0438) $352497 / 352326$. Telex 825617

MIDWICH

 RICKINGHALL HOUSE, HINDERCLAY ROAD. RICKINGHALL, SUFFOLK IP22 IHH. TEL DISS (0379) 898751.
BBC Microcomputers

 Model BModel + Disc int
NBCredut cards are
BBC Mictocomputer
BBC Micro Econet
Full range of products avalable Installation
service avalable
BBC Compatible Disc Drives Cased dnves, tun
supplied complet
and utilites disc All sungle cased dnves may be expanaed to dual ionhguration by the o
uncosed mechorusm $\begin{array}{llll}\text { Disc capacity } & \text { Single } & \text { Dual } & \text { Uncased } \\ 100 \mathrm{~K} 407 & 16083 & 29195 & 13000\end{array}$ $\begin{array}{llll}\text { Disc capacity } & \text { Single } & \text { Dual } & \text { Uncas } \\ \text { lo0k 40T } & 16083 & 2195 & 1300 \\ 400 \mathrm{~K} 40 / 80 \mathrm{~T} \text { D } 5 & 26435 & 47915 & 20500\end{array}$ Trade/quannty disco
BBC3Disc Interigce

Please send lor ou BBC accessones avariable

Memories

 $2114 \mathrm{~L} \cdot 20$416.15
4116.20
4118.15 $4116-20$
4118.15
4164.15 4164
4164
4416 4416
4564
5516
6116
 NNN

 1

 $\infty \times \infty$

8 8 8 8

D

ZN UN ZN

[^1]CIRCLE 020 FOR FLHTHER DETAILS.

TYPE 9051

VMOS WIDEBAND LINEAR POWER AMPLIFIERS. 4 watts RF output. Without tuning. Power gain $10 \mathrm{~dB} .24 \mathrm{~V}+$ supply

TYPE 9152

TELEVISION LINEAR POWER AMPLIFIERS. Tuned to your specified channels in bands IV or V
TYPE 9061150 mV . input, 10 mW . output

$\mathrm{f} 120+f 5 \mathrm{p}$ \& p TYPE 9159500 mW .
 $f 160+5 p \& p$

VMOS LINEAR POWER AMPLIFIERS. Tuned to your specified frequency in the range $10-250 \mathrm{MHz}$

TYPF 91553 Watts input 30 watts output TYPE 9165 As above with integral mains power supply unit ver supply unit TYPE 9086 FM TRANSMITTER $88-108 \mathrm{MHz} .50$ watts RF outp TYPE 9087 As above with integral mains power supply unit .
$240+£ 10 \mathrm{p} \& \mathrm{p}$ $\mathrm{f} 320+£ 15 \mathrm{p}$ \& y Complete $\mathrm{£} 380+£ 20 \mathrm{p} \mathrm{\& p}$
$£ 460+\mathrm{f} 25 \mathrm{p} \& \mathrm{p}$

TWO STAGE GASFET STRIPLINE PREAMPLIFIERS Tuned to your specified channels in bands IV or V

TYPE 9002 Two stage Gasfet preamplifier. N.F. 0.7 dB . Gain 25 dB . High Q filter. 15 V . + DC TYPE 9004 UHF two stage Gasfet preamplifier. N.F. 0. 6 dB. Gain 25 dB . Aligned to your specified frequency in the range $250-500 \mathrm{MHz}$. High Q filter. $15 \mathrm{~V} .+\mathrm{DC}$.............. $685+\mathrm{f} 2 \mathrm{p} \& \mathrm{p}$ TYPE 9010 Masthead weatherproof unit $\begin{gathered}\text { wer supply unit } £ 24.50+£ 3 \text { p\&p }\end{gathered}$

GASFET/MOSFET RF PREAMPLIFIERS. Aligned to your specified frequency in the range $30-250 \mathrm{MHz}$. Masthead/local use
TYPE 9026 N.F. 1.0 dB . Gain $10-40 \mathrm{~dB}$. variable
$\mathrm{f} 49.50+\mathrm{f} 2 \mathrm{p} \& \mathrm{p}$
TYPE 9026 FM As above. Band $I I 88-108 \mathrm{MHz}$.
$49.50+$ f $2 \mathrm{p} \& \mathrm{p}$
TYPE 9006 Gasfet. N.F. 0.6 dB . Gain 10-40 dB. variable .. $\ldots . . \mathrm{E} 65+\mathrm{E} 2 \mathrm{p} \& \mathrm{p}$ TYPE 9035 Mains power supply unit for above types24.50 + £3 p\&p

TYPE 8034 PHASE LOCKED SIGNAL SOURCE using low frequency reference crysta Specify output in the range $1-600 \mathrm{MHz}$. Output $10 \mathrm{~mW} .+10 \mathrm{dBm} € 79.50+£ 2 \mathrm{p} \& \mathrm{p}$ TYPE 913 TELEVISION FREQUENCY CONVERTER. Changes channels in the range 40

TYPE 90561500 MHz . PRESCALER. Divides $100-1500 \mathrm{MHz}$. by $10 . \ldots69 .50+$ €2 p\&p

CIRCLE 049 FOR FURTHER DETAILS.

Affordable Accuracy - Low Cost Multimeters from Armon

ARMON ELECTRONICS LTD.

Dept "A", Cottrell House, 53-63 Wembley Hill Road Wembley, Middlesex HA9 8BH Telephone: 01-902 4321 (3 lines). TELEX No. 923985
Please add 15% to your order for VAT. P\&P free of charge. Payment by cheque with order. Offer applicable to mainland UK only
TRADE ENQUIRIES INVITED. FULL RANGE OF METERS ON APPLICATION

SPECIFICATION HC1015 ANALOGUE
\star DC Voltage: $0.25,2.5,25,250$ 1,000 Volts, 10,000 Ohms/Volt

- AC Voltage: 10, 50, 250, 1,000 Volts 4,000 Ohms/Volt
\rightarrow DC Current: 1, 10, 500 mA
- Resistance: 0 to 1 MegOhm in 3 ranges
\star Decibels: -20 dB to +62 dB
* Battery: One 1.5 V size AA (incl)
\star Size \& Weight: $105 \times 63 \times$ $32 \mathrm{~mm} ; 130 \mathrm{gr}$

19 RANGES, COMPLETE WITH BATTERY AND TEST LEADS

CIRCLE 035 FOR FURTHER DETAII.S.

CIRCLE 019 FOR FURTHER DETAILS.

Audio Measuring Instruments, Audio Amplifiers, Loudspeakers and Loudspeaker Components for the professional and enthusiast

RADFORD AUDIO LTD.

10 BEACH ROAD
WESTON-S-MARE, AVON BS23 2AU
TEL. 0934416033

Electronic Brokers

INTRODUCE THE

CUBE JOBBER - the industrial computer

The CUBE Jobber is not so much a specific computer, but more an example of what can be done with the CUBE range of computer modules.
as illustrated:-

\square
\square
\square
\square
\squareChoice of 6809 or 6502 processors BBC BASIC option on 6502 8 KB of battery-backed RAM fitted Up to 64KB RAM optional expansion 24-column impact printer 24-character $\times 2$ row liquid crystal display Centronics printer port 25-position keyboard, supplied blank white $19^{\prime \prime}$ enclosed rack, with power supply RS-422/423 serial port + 20-channel digital port Alternatively, other modules from the CUBE range can be fitted, including video, memory, EPROM programming, floppy disk, digital and serial i/o, analog interface, micro development aids, and many more.

Send for free catalogue to:

Control Universal Ltd Anderson's Court Newnham Road, Cambridge CB3 9EZ Tel 0223358757 Telex 995801

CIRCLE 050 FOR FURTHER DETAILS.

VERTICAL RANGE FROM 3-10 SOCKETS ALL EX-STOCK!
SPECIALS TO ORDER

COMPLETELY NEW ECUIPMENT

Westminster Mobile Sets type W15AM tuned and including crystals for $121.7 \mathrm{Mc} / \mathrm{s}$, complete with loudspeakers, microphone and mobile aerials.

Price: $£ 95.00$ each.
Pye SSB type 130M 2 Channell - Price: $£ 440.00$ each
Pye SSB type 130M 4 Channell - Price:
$\oint 515.00$ each
For above: PSU 12 VDC - Price: $£ 88.00$ each PSU 230 VAC - Price: $£ 105.00$ each Remote Control - Price $£ 72.00$ each

Reflectometers type R.F.L.1A made by Telecommunication Ltd freq. 68-174 Mh, 50 ohms impedence.

Price: $£ 75.00$ each.
Prices shown do not include VAT.
Large quantity of spare parts for:
Pye Linear Amplifier A200
Pye Otimpic type M202
Pye 1000T SSB
Pye Tx Type T1000 FM VHF Pye W15 FM
Pye TX Type R17/R18 VHF FM Pye SSB 130 M \& F

COLOMOR (ELECTRONICS LTD.).170 Goldhawk Rd. LondonW12 Tel. 01-743 0899 or 01-749 3934.Open Monday to Friday 9 a.m.-5.30 p.m.

CIRCLE 069 FOR FURTHER DETAILS.
STEREO MICROPHONE AMPLIFIER

THIESOURC

Flectronic Brokers are Furope'slargest specialists in quality second user test equipment, computers and associated peripherals. All second user est equipment offered by Electronic Brokers is calibrated to meet the original manufacturer's sales specifications and guaranteed for 12 months. Our latest catalogue contains full details of our extensive inventory. Contact us for your free copy now.

BRYANS SOUTHERN XY/T Recorder 25000
 THESE UNITS ARE UNUSED

 A4 Size$X-Y$ Ranges: 1 mV to 1 V Per CM Slew Speed: 49 CM/Second. Timebase: 0.1 to 10 SEC/CM Price: £750

TEKTRONIX

Portable Data Analyser 308
For Timing, State Serial and
Signature Anàlysis
8 Data Lines
20 MHz
Price: $\boldsymbol{£ 2 , 1 0 0}$

ANALYSERS

Hawlatt Packard
$334 A$ Distortion Analyser . $£ 1,200.00$ 1611 A Logic Analyser. . . . £3,000.00 3581 A Wave Analyser 1,800.00

Taktronix

AA501 opt 01. Distortion $10 \mathrm{~Hz}-100 \mathrm{KHz}$ to Less than 0.0025\%, £1,450.00 C500.00 492 (opt 01, 08) Spectrum Analyser
$50 \mathrm{KHz}-21 \mathrm{GHz}$
ع13,600.00 75 opt 25 (Tracker) and 13 (Input plug 7L 12 Spectrum Analyser 7L18 Spectrum Analyser ع6,000.00 718 Spectrum Analyser TR502 Tracking Generato £3,950.00 7113 or 7114). TR503 Tracking Generator (for $492 / 496$ series) Sample Rate. Anal.
$7002 / 01$ Logic Analyser.
©3,000.00 70mple Rate Lo Analyser ¢4,250.00 £1,500.00

OSCILLOSCOPES

Hewlett Packard
1332A High Quality CRT Display
$9.6 \times 11.9 \mathrm{~cm}$ 1744 A 100 MHz Variable Persistance 1809A 100 MHz 4 Channel Plug in 1821A Timebase Plug in. . © 1,000.00

Philips
PM3232 Dual Bean 10MHE. . $\subset 495.00$ PM3244 50MHz 4 channel $£ 1,500.00$ Tektronix

12500 KHz Dual Trace

 Miniscope305 Battery 305 Batery Oscilloscope/DMM Trace £1,000.00 335 Dual Trace 35 MHz Small portable wh delay 35 MHz Storag 475 A 250 MHz Dual Trace
Portable.
475200 MHz Dual Trace Portable
7313100 MHz Storage M
£3,300.00 £2,500.00 7603 100MHz Mainframe £1,950.00
7704 A Scope DC-200MHz Mainframe 704 A Scope UC-200MHz Maintrame
C12 Camera
C2,850.00

Telequipment
 D34 15MHz DT Battery Portable $\mathbf{c} 350.00$ CTフi Curve Tracer \quad C550.00

SIGNAL SOURCES

EHLabs
1398 Pulse Gen
$\subset 950.00$
Hewlett Packard
144 Pulse Gen. 1720 A Pulse Modulator 1950.00 8004A Pulse Gen 1550.00 8013B Pulse Ge Ge 5695.00
$\mathbf{~} 750.00$ 8620C Sweeper Mainframe re 750.00 86240 B Sweeper Plug in 2 - $4,100.0$ 8640A Sig Gen
[4,200.00

RACAL-DANA Counter/Timer 9514

0.100 MHz Counter 100 nS to $10^{9} \mathrm{Sec}$ Period IEEE Interface

Marconi

TF2002B AM/FM Siq Gen 10 KHz -

88 VHz with TF2

TF2008 Sig Gen

TF2015 SiqGen
ع1,750.00
ع3,000.00
. $1,350.00$ TF2120 Waveform Gen \quad 〔 $1,350.00$
Taktronix
28470 pS Pulse Generator $£ 950.00$

TEKTRONIX PLUGINS

Wa stock a complate range of Plug Ins for use with 7000 and 5000 series Mainframes.

TEKTRONIX TM500

SERIES

We stock a very wide range of these versatile modular equipments

MISCELLANEOUS

Avo

Model 8 Multimeters \quad ع80.00 7 Electrictans Multimeter 860.00

Bruel 8 Kizer
2209 Sound Level Meter
1613 Filter
Bryans Southern
25000 XY/T Recorder $\quad \mathbf{7 5 0 . 0 0}$ and 26201 Timetase 16 Amplifiers As above but with 26202 Power 100.00 instead of Timebase... 1 1,250.00 instead of Timebase . \&1,250.00

Datalabs
DL901 Transient Recorder. . $£ 750.00$ Fluke
8010A 013^{112} digit DMM with built in
b050A 4 yack Digit DMM ... $\mathbf{£ 1 5 0 . 0 0}$ 331 Dit Meter 2200.00 - \quad 1,000.00 8921A DMM c595.00

Hewlett Packard 427A AC/DC Voltmeter C495.00 461A Amp 20/40D8 1 KHz 50M1. ¢120.00 415 E VSWR Meter $\quad \mathbf{~} 925.00$ 3556 A Pophometer $\mathbf{C 8 5 0 . 0 0}$ 4815 A Vector Impedance Meter

Marcani
2438520 MHz Counter/
TF1313ALCA Bridge $\quad \mathbf{7 9 5 . 0 0}$ TF2603 RF Millivoltmeter... $\quad \mathbf{5 7 5 0 . 0 0}$
Racal
9514 Counter/Timer IEEE \quad £850.00 Tektronix
106 Square Wave Generator 1 nS
risetime $10 \mathrm{~Hz}-1 \mathrm{MHz}$ without
accessories. $\mathbf{1 7 5 . 0 0}$ accessorles.
2701 Step Attenuator 50 O 0.79 dB in
1 dB steps. DC to $2 \mathrm{GHz} \quad$ C295.00

WE NOW STOCK A RANGE OF WE NOW STOCKA RANGE OF AND CALCULATORS

ADD 15\% VAT TO ALL PRICES
 Carrizge and P

 Electronic Brokers Ltd., $61 / 65$ Kings Cross Road,London WC1X YLN. Tel: $01-2783461$. Telex 298694

CIRCLE 044 FOR FURTHER DETAILS.

CIRCLE 033 FOR FURTHER DETAILS.

CIRCLE 030 FOR FURTHER DETAILS.
WIRELESS WORLD MAY 1984

DECSALE
 a selection from our

huge stocks. All items recondjitioned unless otherwise stated.

DEC 11/70

 SYSTEMS 11/70 CPUDual Rack Cabinet
1MB MOS Memory
$2 \times$ RMO3 Disk Drives
DH11AD Multiplexor
LA120 Console
£55,000

DEC 11/34 SYSTEMS

11/34A CPU
101/2" Chassis
$256 K B$ MOS Cabinet
$2 \times$ RK07 Disk Drives
0Z11A Multiplexor
VT100 Console
£10,250
DEC 11/23 SYSTEMS
11/23AB CPU 5 1/a" Chassis 128KB MOS Mernory
D(v11J 4 line Interface
RXV21 Dual Floppy Disk Drive
Cabinet
VITOO Console.
£5,795

DEC 11/03
 SYSTEMS

11/O3N CPU $51 / 4$ "Chassis
64KB MOS Memory
DLV11 Serial Interface
RXV11 Dual Floppy Disk Drive
Cabinet
LA36 Console
£3,500

DEC DISK DRIVES

RK05F 5MB fixed
E695
RKO5J 2.5MB
RK06 14MB
RK07 28MB
RLV22 RLO2 and $11 / 23+\mathrm{ctI}$ NEW
RM02 67MB

DEXPO Europe 84
 Kensington
 London Lontr
 $\frac{\text { May zo-June 1, } 1984}{\text { BOOTHNO. } 2}$ £995 $¢ 995$

 RMD5 256MB RXX11
RXV11 Range of Controllers also available

DEC MODULES

HUGE STDCKS OF DPTION
MODULES FOR VAX UNIBUS.
OBUS AND OMNIBUS
DEC TERMINAL OFFER
Fully Reconditioned Units covered by 90 days parts \& labour warrantv LA36 30cps KSR Terminal
Tractor feed unit
with integral stand Price:
with $20 \mathrm{~mA} / /$ F]. £295 (with EIA I/F). £325

 VT1XXAA [20mA] VT1XXAC [Printer Port) £125

LOW COST VDUS

 Hazeltine 1500
£325

 Newbury 7009
DAISY WHEEL PRINTERS

Anderson Jacobson Au832 $£ 375$

Diablo 1345A

TEKTRONIX GRAPHICS
606 Monitor E950
4006 Terminal $£ 1,525$
4010/1 Terminal
4015/1 Terminal
4027A Colour Terminal E1,995
E1,995
£7,250 4051 Desktop Computer $\quad \mathbf{E 1}, 750$ $\begin{array}{lr}4052 \text { Desktop Computer } & \mathbf{E 4 , 9 5 0} \\ 4114 \text { Terminal } & \mathbf{£ 1 0 , 5 0 0}\end{array}$
4662 Plotter from $£ 1,985$

0952 Joystick
from £1,995
TEKTRONIX
GOLOUR GRAPHICS

Ex-Demonstration Stock in Original Manufacturer's Packaging
Colour Graphics Terminal Model 4027A
Providing full colour
graphics and
alphanumerics. Plot 10
compatible. 8 displayable
colours from pallette of
64. Full screen crosshair
cursor 34×80 display
(2720 characters). 120
user-defined patterns.
RS232 Interface with
up to 9600 baud
transmission
Original List Price E9,500
Dur Amazing Price
Only £1,995

A copy of our Trading Conditions can be supplied on request
Electronic Brokers Ltd., $61 / 65$ Kings Cross Road, LondonWC1X 9LN. Tel::01-2783461.Telex298694

Sowter

 TransformersWith 40 - years' experience in the design and manufacture of several hundred thousand transformers we can supply

AUDIO FRIEQUENCY

TRANSFORMERS OF EVERY TYPE YOU NAME IT! WE MAKEIT! OUR RANGE INCLUDES
Microphone transformers (all types), Microphone Splitter/Combiner transformers. Input and Output transformers, Direct Injection ransformers for Guitars, Multi-Secondary output transformers, Bridging transformers, Line transformers, Line transformers to G.P.O. Isolating Test Specification. Tapped impedance transformers (all types), Miniature fransformers, Microminiature transformers for PCE mounting. Experimental transformers, Ulira low frequency transformers Ulira linear and other transtormers for Transistor and Valve Amplifiers up to 500 watts, Inductive Loop Transformers, Smoothing Chokes, Filter, Inductors, Amplifier to 100 volt line transformers (from a few want up to 1,000 waths). 100 voit line transformers to speakers, Speaker matching transformers (all powers). Column Loudspeaker transformers up to 300 watts or more.
We can design for RECORDING QUALITY, STUDIO QUALITY, HI-FI QUALITY OR P.A. QUALITY. OUR PRICES ARE HIGHLY COMPETITIVE AND WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS. Many standard types are in stock and normal dispatch times are shor and sensible.
OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES.
MIXING DESK MANUFACTURERS. RECORDING STUDIOS, HI-FI ENTHUSIASTS. MIXING DESK MANUFACTURERS, RECORDING STUDIOS, HI-FI ENTHUSIASTS. BAND GROUPS. AND PUBLIC AOORESS FIRMS. Expor is a speciality and we Send for our questionnaire which, when completed, enables us to post auotations by return.

D. A. Sowter Ltd.
 Manufceturere and Dealenere
 E. A. SOuTENLTD. (Ectabilohed 1911) : Rec. No. Encland 303seo Tho Coet Yan, Cullingham foad, ppwich 1 P 123 c , Suriols Tolex 987703 C sowter

VELLEMAN-KITS

High quality range of electronic kits for

 serious amateurs, qualified engineers and training schools and colleges:NEW INTERFACE SYSTEM FOR SINCLAIR ZX81 and SPECTRUM COMPUTERS:
K2615 Motherboard for ZX81 £25.69
K2616 Motherboard for Spectrum £25.69
K2609 DC Output board ... £19.01
K2610 A/D Converter .. £28.26
K2611 Opto coupler input board £20.66
K2614 Centronics interface £30.83
K2618 D/A converter..24.66
NEW KITS NOW AVAILABLE
K2594 Zero Cross Programmable timer £11.41
K2598 Car Amplifier .. £15.41
K2600 2 Amp dimmer ... $\mathbf{E 5 . 3 2}$
K2601 Stroboscope ... £10.79
K2602 4 channel running light with music modulator . $\mathbf{£ 2 0 . 5 5}$
K2606 LED audio power meter £12.48

SEND FOR FREE ILLUSTRATED POSTER OF COMPLETE RANGE AND LIST OF STOCKISTS from address below:

VELLEMAN(UK)LTD.

P.O. Box 30, St. Leonards on Sea, East Sussex TN35 7NH Tel: 0424753246

[^2]
Trackdown SWITCHMODE power supply

 ...Barlec-Richfield and SSS have the solution $L 296$ SWITCHING REGULATOR

- Available ex-stock
- Cost effective
- Short circuit protected
- Output over voltage protection
- 5.1 v to 40 v output
- 4A output current
- Up to 160w output power
- Programmable current limiter
- Soft start
- Reset output
- Precise ($\pm 2 \%$) onchip reference
- Very few components

CIRCLE 079 FOR FURTHER DETAILS.

CIRCLE 034 FOR FURTHER DETAILS.

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANT!TIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

R. Henson Ltd.

21 Lodge Lane, N. Finchley, London, N. 12.5 mins. from Tally Ho corner
Telephone 445 2713/0749
CIKCLE 012 FOR FURTHER DETAILS.

ESTABLISHEO 30 YEARS. U.K. RETURN OF POST MAIL DRDER SERVICE, ALSO WDRLDWIDE EXPDRT SERVICE

RADIO COMPONENT SPECIALISTS

BAKER AMMPLIFIERS BRITISH MADE
PA150 Watt MICROPHONE VOCAL AMPLFIER $£ 129$ 4 channel mixing. 8 inputs, dual impedance, $50 \mathrm{~K}-600$ ohm,
volume, treble, bass. Presence controls on each channel. Master volume, treble, bass. Presence controls on each channel. Master
volume control, echo send return socket. Slave sockets Post $\mathbf{f 3}$ 150 Watt MIXER AMPLIFIER 4 Inputs £99 Discotheque. Vocal, Public Address. Speaker outiets for 4.8 or 16 ohms. Four inpuls, $20 \mathrm{mv}, 50 \mathrm{~K}$ ohm. Individual volume controls "Four channel" mixing slave output $16^{\prime \prime} \times 8^{\prime \prime} \times 5^{1 / 2 "} \mathrm{Wt}$ 141b: Master volume control 240V A.C Post £2.
100 Volt Line Model, 150 watt $£ 114$. MONO SLAVE, 150 watt $f 80$ Baker Stereo Slave $150+150$ watt 300 watt Mono $f 125$. Post f 4 BAKER MOBILE PA AMPLIFIER. All transistor, 60 wat RMS, 12 v DC \& 240 v AC, 4 Inputs 50 k . Aux +2 mics
$\mathbf{1 8 9}$ Post f_{2}
1 phono. Output $4-8-16$ ohm +100 volt line. $\mathbf{E 8}$ Post fz
WAIERPROOF HORNS 8 ohms. 25 watt $£ 20.30$ watt $£ 23.40$ w $£ 26.40 \mathrm{~W}$ plus 100 volt line $£ 32$. Post $£ 2$
BAKER PORTABLE DISCO 150 watt. TWIn Console + amplifier

PA CABINET SPEAKERS, Complete 8 ohm 60 watt $17 \times 15 \times 9 \mathrm{in}$. 27. Post $\mathrm{f4} .4$ or 8 or 16 ohm 75 watt $23 \times 15 \times 1 \mathrm{in}$. $£ 52.90$ watt $32 \times 15 \times 1$ lin. $£ 71$. 150 watt E 80 . Carr. f 10 . Black vinyl covered

BAKER LOUDSPEAKERS				Post $£ 2$ each.								
MODEL	INCHES	OHMS	Watts	TYPE	PRICE							
DG 50/10	10	8-16	50	PA	¢18							
miorange	10	8	100	MID	£25							
MAJOR	12	4-8-16	30	HI-FI	f16							
SUPERB	12	8-16	30	$\mathrm{HI}-\mathrm{FI}$	f26							
WOOFER	12	8	80	$\mathrm{HI}-\mathrm{FI}$	$\underline{65}$							
AUDITORIUM	15	8-16	60	Wooter	¢37							
GROUP 45	12	4-8-16	45	PA	f16							
OG 75	12	4-8-16	75	PA	¢20							
DG 100	12	8-16	100	PA	f26							
DG 100	15	8-16	100	PA	f35		DG 100	15	$8-16$	100	PA	£35
:---	:---	:---	:---	:---	:---	Samples S.A E. CABINET WADDING 18 In wide 35 p ft .						

MOTOROLA PIEZO ELECTRIC HORN TWEETER, 33 .in. square $f 5$ HORN BOXES Crossover required, 4-8-16 ohm. $73 / 8 \times 31$ /in. $£ 10$ $16 \times 6 \times 6$ in. Black vinyl covered with handle Post 44
CROSSOVERS. TWO-WAY $3000 \mathrm{c} / \mathrm{s} 30$ Watt $£ 3.60 \mathrm{~W} £ 3.50$. $100 \mathrm{~W} \mathrm{f4}$. THREE-WAY $950 \mathrm{cDs} / 3000 \mathrm{cps} .40$ watt rating. $\mathrm{f4} .60$ watt $£ 6$. $100 \mathrm{~W} £ 8$ OUDSPEAKER BARGAINS. Please enquire, many others in stock.

 $15 \mathrm{ohm}, 21 / 4 \mathrm{In}, 31 / 2 \mathrm{in}, 5 \times 3 \mathrm{in} .6 \times 4 \mathrm{in}, \mathfrak{f} .50 .61 / 2 \mathrm{In} 10 \mathrm{~W} \mathrm{f5}$. 8 in f 4 . 10 in f 7
 EMI $131 / 2 \times 8 \mathrm{in}$. Bass \& Tweeter 4 or 8 ohm 10 watt $f 8$ DD $f 1$

SINGLE BOARD 6809 2nd PROCESSOR FOR THE BBC MICRO.

PROVIDES A LOW-COST DEVELOPMENT SYSTEM FOR INDUSTRIAL APPLICATIONS.

For full information contact Phil Taybor at

Bids

Cambridge
Microprocessor Systems Limited

FIBRE-OPTICS EDUCATOR

A New Concept in Optical Equipment

The Fibre-Optics Educator is a low-cost, versatile instrument designed primarily for organisations involved in or about to enter the field of fibre-optics.
It can function as.
TEST EQUIPMENT e.g. for accurate fibre attenuation measurements to a range of 50 dB , optical level measurements, and for testing out analogue and digital optical transmitters and receivers. Also, it may be set to give an audible indication of low level infra-red radiation using the analogue loudspeaker output or the digital buzzer output, with a length of optical cable acting as a probe.
TRANSMISSION EQUIPMENT for both analogue and digital data, over free-space as well as optical fibres. It is also ideal for:
TRAINING engineers, technicians and executives in the growing field of fibre-optics. Suitable for industry, colleges and technology training centres.
The Fibre-Optics Educator comprises fully portable optical transmitter and receiver units, optical cables, together with numerous accessories, a comprehensive manual, and carrying case.

Designed and Manufactured in the U.K
For further details contact:
ELLMAX Electronics Ltd.,
Unit 29, Leyton Business Centre,
Etloe Road, Leyton, London. E10 7B Tel: (01) 5390136

ELLMAX ELECTRONICS

CIRCLE 031 FOR FURTHER DETAILS

If an advertisement is wrong we're here to put it right.

If you see an advertisement in the press, in print, on posters or in the cinema which you find unacceptable, write to us at the address below. The Advertising Standards Authority.

ASA Led. Dept 3 Brook House. Torrington Place, London WCIE 7HN

AMBISONIC
 SURROUND SOUND DECODERS

Ambisonic surround sound gives a realism in the reproduction of music that is hard to describe without using hackneyed expressions like 'natural' and 'being there'. Positioning of the performer becomes obvious and the acoustic of the original environment comes through to the listening room. The Minim decoders also provide enhanced results from conventional stereo material. We can now supply UHJ encoded records, tapes and compact discs.

And don't forget our other products

PROGRAMMABLE WEEKLY TIME SWITCHES
TELEVISION SOUND TUNERS
Please send me information on Timeswitches/Television
Tuners/Ambisonics
Name.
Address
Minim Electronics Limited, Lent Rise Road
Burnham, Slough SL1 7NY. Tel. Burnham 63724 ww5

HERRY'S SW:
OPEN 6 dAYS A WEEK - OADER BY POST OR PHOME CALL INAND SEE FOR YOURSELF

80 - BUS
MULTI-BOARDS
buIL a custom system FROM SCRATCH or expand your GALAXY or NASCOM

GM811 CPU
GM832 SVC
GMB29 FOC/SASI
GM813 CPU/64K RAM
EVB 14 IEEE 488 CONT ROLLER
GMB02 64 K DYNAMIC RAM
GMB27 B7 KEY KEYBDARO GMB39 PROTTIYPING MPB26 STATIC RAM GM816 MuLTI-1/0 10 828A SUPER PLUTO COLOUR \quad E 125.00 PROCESSOR 192 K RAM
GMM33 RAM-DISK 512 K
UK C/P \& export extra atcost \quad £450.00 ALSO IN STOCK - MOTHER BOAROS. FRAMES CABLES. POWER SUPPLIES KEYBOAROS. SOFTWARE ELC.
fuLL Leaflets/detalls of sultable permutations - senolarge sae
We can advise also with lerminals and complete
Galaxy computers with monltors and Disks ready
to use
NASCOM-2
Available in both kit and built torm. Featuring Microsott Basic. NAS. SYS monitor full OWERTY keyooard or he highest quality. 4 mhz ZBOA processor. LUII RS232 $1 / 0$ and parallel I $/ 0$. One of the mosi hexibre compuler cards around. expansion cababilitites are impressive using the NASBUS and compatible BO-BUS expansion cards. Expansion includes hi-res colour graphics Send SAE Ior Iull leallets.
NASCOM 2 kit
NASCOM 2 built
${ }_{\text {£225.00 }}^{\text {£26. }}$
ITT 2020
CABINET
Prolessional computer case
$18^{\prime \prime} \times 15 \%^{\prime \prime} \times 44^{\prime \prime} \mid$ Front slope
As previously advertised $£ 23.91$ UKK C/P $£ 2.101$
TOROIDAL TRANSFORMER

100 watts isolations
$230 / 240 \mathrm{VAC}$ plus $80 . \mathrm{BV} 4 \mathrm{~A}$
$15-0-15 \mathrm{~V} 0.645 \mathrm{~A} 30 \mathrm{~V} 0.16 \mathrm{~A}$
size approx $4 / /^{\prime \prime}$ dia $\times 13 / 4$
£6.91 (UK C/P 75p)

PRESTEL KIT

Complete set ol PRESTEL adaptor cards. Con sisting of main processor card with battery backed RAM. modem card, direct line coupler and keypad. Outputs are composile moonochrome and separate RGB. Suitable for use with colour monitors or suitable TVs. (PS $+/-12 \mathrm{~V}$ and +5 V)〔60.83

ASCII

KEYBOARDS

Computer keyboards.
All models brand new
All moders
QWERTY
QWERTY
|UK C/P 90 D I |
64 key Exclualve Special Purchase Compact
64 key (hali eflect) 5 lunction keys -ve/*ve
All tacillties complete with plugs $\quad \mathbf{6 3 0 . 4 3}$
All tacilities complete with plugs
5.30 .43

Redefinable output. Nea strobe pulse, 4 use
definable keys. shitt and control keys etc.
With connector
£37.35
Discounts for quantitles - please enquire
Computer/calc.. etc. keyboard bargains lor callers
TuS always keyboard bargains for callers

SOFTWARE

mDis \{C INTELLIGENT
dISASSEMBLER
For all CP/Mbased machines IVC HI-AES ICIFOF Geminiand
others Iplease enquire). Provides Pseudo high resolution graphics
OISMPENIC] Version 3 Low cost word
OISKPENIC] Version and others
iplease enquirel
Plus large range or overlay $\quad \mathbf{~} 50.00$
HENRYS CP/M UTILITIES DISK IC
41 Programs for the CP/M Systems prugramme
$51 / 4$ " lormat
$\mathbf{E} 15.00$
8 formal
Ask for details on all of above. WHEN ORDERING
Ask for details on all of above. WHEN ORDERING
PLEASE SPECIFY FORMAT REQUIRED
PLEASE SPECIFY FORMAT REDUIRED
Contact Computer Dept if uncertain.
IC) Copyright Cubegate Lid - all rights reserved All above available to retailers and distributors contact Computer Dept. Ior details.

COMPUTER POWER SUPPLY
Switched mode Stabilised. Self protecting.
S/C protected. etc. $220 / 240 \mathrm{~V}$ AC. $+5 \mathrm{~V} 3.3 \mathrm{~A} .+12 \mathrm{~V}$
$2.4 \mathrm{~A} 40 \%$ cycle $-5 \mathrm{~V} 0.5 \mathrm{~A}-12 \mathrm{~V} .5 \mathrm{~A}$. $2.4 \mathrm{~A} 40 \%$ cycle $-5 \mathrm{~V} 0.5 \mathrm{~A},-12 \mathrm{~V} 0.5 \mathrm{~A}$ Suitable Apple replacement [UK C/P $£ 1.50$
COMPUTER FANS
CU7983 $115 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
12/13W Impedance protecte
luse 2 in series lor 230V)
$43 / 4^{\prime \prime} \times 43 /{ }^{\prime \prime} \times 1$

Twolor 28.70 UKC/P
220/240V as new only £4.78 (UK C/P 50p) each

COMPLETE WITH FULL
£43.43
SUITABLE FOR: TANDY BBC • DRIC • NASCOM GEMIN ACORN NEW BRAIN DRAGON ETC. ETC. finteriace unit with leads £13-state model) [your enquiries invited]

CHERRY KEY PAD
16 button key pad non encoded
E5.17 [UK C/P 300|

MODEM CARDS/

COUPLER

brand new. tested. answer and originate 300 BAUD uncased acoustic modem card by famous manufacturer. RS232 input/output. Power supply - -12 V at 180 mA . Requires 2 magnetic earpieces, 2 switches. 2 LEDs and connectors to complete. Clrcuils and connection data supplied. Card only E26.04 Card and remainder ol small components $£ 29.09$ Telephone Direct Line coupler type LTU 11 MKII. Sultable for direct coupling PRES TEL adaplors and the above acoustic modems. Integral Line select and autodial relays requiring TtL inputs. Circults and connection data supplied. LTU 11 Coupler
$£ 13.00$
1200 BAUD receive 75 BAUD send direct coupled modem lor PRESTEL. Requires +5 V supply with TTL inputs for data. If ne select and autodial. LTU 11 direct coupler required. See above. PRESTEL modem card
STOCKISTS FOR PTinters: Paper. Thermal Daisy wheel Disk Drives Boxed. Chassis also Winchester Monitors: Green, Or ange. Whlte. Colour. Micro's BBC Electron. Nascom. Galaxy. Plus others. Cables. plugs. blank disks \& lapes. software, books. etc.
GOMPUTER SHOP
OO4-40GE Edgware Road. London W2
$01-4026822$
ORDER BY POST OR PHONE

HERRY'S AUDIO ELECTRONICS

DIGITAL

MULTMETERS Hand held 65pl
PRDFESSIOMAL SERIES
Thandar Bench Portables
TM 355* $31 / 2$ digtt LED 29 rangas 10A AC/OC TM356* $31 / 2$ digit LCO 27 ranges IOA AC/DC 20 Mag ohm $-0.25^{\circ}{ }^{\circ}$ basic 20 Meg ohm - 0.1% basic
(\star Optional carry case $£ 5.95$)
Thuriby Bench Portables
 plus irequency mea surament up to $4 \mathrm{mHZ} \mathrm{AC} / \mathrm{DC}$ 503 H
503 Ha * $4 \frac{1}{4} \mathrm{dig}$ lt LCO as above but 0.03%
$1054 \star 43 / 4$ olgit LCD True AMS version $\quad £ 185.00$ 1905a $51 / 2$ digit intelligent multimeter IUA rosolution 0.0 FI $\%$ basic

2 meg 0 chm bas ic 0.5%
 20 Mag onm Basic 0.2% Plus conilnulty toster $\mathbf{~} 95.00$ M X 563 True AMMS $31 / 20$ olgit. 30 ranges $10 \mathrm{~A} A C / O C$. 20 Meg ohm. 2 OHZ to 30 KHZ D. 1% bas 21 C \& 155.00
 HAND HELD MODELS
Conirols. $S=$ Silde $\quad A=$ Rolary $P B=$ Push button all feature AC/OC volts. OC amps (many with AC amps) Ull
x025e 12 HIS CARRY CASE
KD305 14 range 0.2A OC 2 Mag ohm (S) $\times 130 \mathrm{C} 2 \mathrm{range}$ (A) $£ .24 .30$ METEX 300030 rame 10 A AC/OC 20 MAO $£ 29.13$
 K055C 28 range 10A AC/OC 20 Mag onm (A) £34,74 KDG 15 is range loa OC 2 meg ohm plus H tastar
7030
IR
 DM 3350 Autorange plus cont. toster 18 range
10A AC/0C 2 Meg ohm [A] DM2350 Minl autorange plus cont. tester 18 range 10A AC/OC [20A Maxl2 Mag ohm |PBI $£ 54.73$ SNGAS/OC luxe atorange plua cont. tester 23 range
E79.00

ConcerANALOGUE
MULTMETERS Metrix (ITT) Professional range (UK C/P 65pl Size $110 \times 45 \times 185 \mathrm{~mm}$ MX130 कr ranges 5000 ahms per volt
OC V 0.1 to 1000. 5 AC V 10 V to 1000.60 CAmps 100 A to 30 A .5 AC Amps $3 u$ A to 30 A 2 chms 1 K 1010 K
1×23020

E65.00
Y $2 C .3 V$ mx230 29 ranges $20 \mathrm{~K} /$ Voit 100 mV io 1000 1 K to 10 Meg ohm
K430 32 rangas $40 \mathrm{~K} / \mathrm{V}$ olt OC $4 \mathrm{~K} / \mathrm{V}$ AC
10 mV to 1500 V OC, 5 V to 1500 V AC 25 U to 15 ISOC .

HIGH VOLTAGE METERS arget mater raading
LHM80A 0/40KU E23.00
UKK C/P stither model $£ 1.001$
ACCLA MPMETER
$0 / 300 \mathrm{~A}$. $0 / 600 \mathrm{~V}$ AC D/1K ohm otal 9 ranges wich carry case an leadt ST300 E26.04 |UK C/P 65 p)

FREOUENCY COUNTERS

Bench poritales fUK C/P £1.00|

IPFM200A pockel co METEOR SERIES

UK made. 0.1 HZ resolution. 8 digit. LEO display mains oper ated $220 / 240 \mathrm{~V}$ AC. SWith hable gate
MET1000 2 range 5 HZ to $100 \mathrm{MHZ} \mid 120 \mathrm{MHZ}$
Mypical] 2 range 5HZ to LOOMHZ IIZOMHZ typicail 3 range 5HZ METIOOO 3 range 5HZ to IGHZ !1 2GHZ
 E115.00

SABTRONICS

S110A 8 digit 2OHz to 100 milchatie gate time 861089 digit 10 HZ to 600 MHz 800089 gil 10 Hz to 600 MHz 279.00 B500B 9 digi
THANDAR

THANDA

UK made LCD displays with batleries.
40 mv sensitivity 2 gate times with hatteries $f 120$ TF200 8 diglit 200 mHZ LCO. 2 ranges resolution 20.00 10 mV RHS sensitivity. 5 gate times with batteries Optional carry case $£ 5.95$. AC mains adaptor $£ 16.95 .00$ PFm200A Pockel 8 digit $20 H Z$ to 200 MHZ 2 Dand EED display with battery 0 ith resotution. 10 mV sensitivity with ba
PRESCALERS
Suitable lor most types
TP600 40MHZ to 600M HZ. 10 mV RMS. dire
powered by counter
TP 1000 100 to 1000 MHz complete with AC
adaptor P/S. 25mV RMS sensitivity
Optional probe kils - suitable for all models c 65.00

VARIABLE POWER SUPPLIES

PP241 single meter. A/Vswitch. $0 / 30 \mathrm{~V}$ I $3 \mathrm{mp} £ 30.43$ PP243 3 amp version 230N Twin meter 0/30V 1 A C83.00 $330 \mathrm{~N} ~ 3 \mathrm{mp}$ version
IUK C/P above models $£ 1.00]$
PL Laboratory series LED readout (IMD versions
series/paralilelelc.

PL31030V1A £118.00 PL3100M0 £259.00	PL3z0	
UUK C/P above models $£ 2.50$)	PL320 0MO $£ 315.00$	

ANALOGUE MULTIMETERS

General range (*mirrorscale)

 UUK C/P B5plHCEO15 i5
HCEO15 15
1 meg ohm W200 30 rangs $20 \mathrm{~K} /$ Volt 20K HZ Hm 10282 * 22 range $20 \mathrm{~K} /$ volt 10 A JC plus Buzzar. 10 Meg ohm TMK $500 * 23$ range bench, $30 \mathrm{~K} /$ Volt 12A OC cont. buzzer, 20 Meg ohm MH56R* 22 ning $10 \mathrm{~K} /$ VolL. 6 Mag ohm $£ 10.39$ $301 * 28$ raxe 30K/Volt loac/ac. 10 Mog ohm
£20.83 10A AC/OC plus Hes testior. 10 Meg onirar $£ 34.74$ T2100\% 31 range de luxe $100 \mathrm{~K} / \mathrm{Vol}$ O1020 100 Mag ohm E 29.13 lester. 5 Meg ohmm YM3GOTR* 19 range 20K/Volt plus He tiester
i Meq ahm
£ 12.13
 $50 \mathrm{~K} / \mathrm{Volt} 10 \mathrm{~A}$ OC 20 Meg ohm £17.35

ELECTRONIC

 INSULATION TESTER 500V/0-100 Mag ohm with carry case. lea dos oft.Y 5 CO 1

SIGNAL GENERATORS

-

220/240V $A C$ IUK $C / P \&$ ins $£ 1.00 \mid$
Bench portable all sine $/$ square /riangle/TIL/etc Bench portable all sine
External sweep mode

FUNCTION

Thandar TG101* 0-02HZ to 200KHZ various
racillties
Thandar TG102*0.2HZ to 2 MHZ various lacilities
Sabtronics 52000 0.1 HZ to 2 MHZ
Thandar Pulse Bench portable
TG105* 5 HZ 10 SMHZ various iacilities $£ 105.00$

- Colional carry case
audio
Leader LAG275 band aine/squara 0/P 0/5V RMS
0ist 0.05\% 10H7 io
 Leader LAG125 band 10 HZ to 1 MHZ 10 O. 34 AMS into 600 ohm sine/square/burtitignals $0.03 \mathrm{c} \% \mathrm{dist}$
IR10 AG2024 4 band 20Hz to 200KHz, IOV AMS $0 / \mathrm{P}$

TRIO S6402 8 range lookhz to 30 MHz hF 0.1 IV Ams Inl/xxt mod 7 (572.00
 AF 1 KHZ I volt (IMHZ Xesl oplional $£ 3.00$) $£ 95.00$
nIGITAL CAPACITANCE METERS

Direct reading LED meters

0 M6013 Pocket/bench 8 range $3^{3 /}$ digitio 05° w with battery 2500 mtd 6 ranges

DIGITAL THERMOMETERS
Pocket sire LCO ther mometers complete with 0 ?
 with thermocouple $£ 59.50$ TH 302 LCD -40 C to 11000 C Cent/Fanrenne 0.1 and I resplution with hermacouple $£ 79.50$
A3nge of various probes in stock 17.50 to $£ 25.00$

COMPONENTS ACCESSORIES

 TOOLSPlus millions of caracitors. resishes. relays. Tools. plugs/sockets etc. etc For bulk exporl users.

OTHER EQUIPMENT IN STOCK

Send SAE for full specifications
[\#UK C/P $£ 1.50+$ UK C/P $£ 1.00 \mid$

LHC 909B + VHS/BETA video head tester

 om 358 - Scope multiplexer. 35 MHZ. expan scope to eight channelsLTCS05* Scope add an semicon curve
Lracer LTC907- Transistor tester. signal injector tracer
LVT72+ FET/VOM/transistor tester LVT72 + FET/VOM/transistor tester
LCR740* LCR Dridge: cap. inductance and LCR740*
resisiance
LDM170* Oistortion meter 20HZ to 20KHZ LFG1300* Sweep 03^{*} / lunction generator

TC40* UHF/UHF FM and TV lietd strength $\mathbf{2 9 5 5} .00$ Battery oper ated with carry case $£ 177.00$ MC321+ UK PAL TV colour pattern genera
MC32B+ As above but Secam B-G-H $\quad £ 222.60$ £222.60 cap ras Ireq maasurement etc. CHART RECORDER $100 \mathrm{mV}(2 \mathrm{~mA})$ Panel moun 240V AC $\quad £ 149.00$ LFM 39 A-0* Wow and flutter meter. Jis. CCIF. $\begin{array}{ll}\text { H265, Scope add on component lester } & \mathbf{E 4 5 . 0 0} \\ \mathbf{E 2 4 . 0 0}\end{array}$ LTC910A* CAT tester/rejuvenalor for b/w
and colour

0

8

Single trace
 \section*{carfier TNT TN

}securicor
2 years warranly
HAMEG
2 years
HAMEG
HM
2
$2 \mathrm{mV} .6 \times 7 \mathrm{~cm}$ displa.
 Aloghraic uad trace zom Hz 2 mV component lester mad plus Case £21.501 E264.
HM204 Oual race 20 MHz hm204 Oual trace 20 MHz
swep delay 2 mV plus Sweep dilay, 2mV. plus
component tester loplional carry
case $£ 21.50$)
£365.00
 delay fine 1 mV . 1 MHZ C CALGEN
Ioptional carry case £2 C .501

2 probes.
v212 0ual 20MH2. bench
portable 6 CRT CHI O/P

2222 Oual zomHz 2335.00

V422 Dual 40 MHZ . portable
with DC ailset and alternate
amplifier $£ 580.00$
V203F Qual 20 MHz iab portable with sweep delay
5. CAT
£375.00
V650F Dual G0MH2 tab partable with dual lime base
E850.00
Also in stock VI 34 storage. VC6O 5 digital storage scopes
Battery/Mains Scopes. Vector \& TV montor available
3030 Single trace 15 MHZ . 5 mV . £154.00
3132 Oual ZOMMZ. 2 mV 5 CRT Algebraic $\cdot /-Z$ mad. plus
component comparalor and OC source outpuls $\quad £ 283.00$ 3034 Batiery/mains dual trace 5MHZ. 5 mV 95mm CRT. alg̣ebraic • - $\mathbf{£} 400.00$

wers

CAT. 5 mV .0 .5 microsec. with
2 probes
THANDAR
2 years warranty

(Optional carry casi es.
adaplof/charge E6.95) Rech Nicad £11.00

EDUCATIONAL:

\& EXPORT DISCOUNTS
We would be pleased is quote. Contact sales ollice al 406

TRANSISTOR TESTER
Oirect reading PNP/NPN and diodes.

In wallets with adaptors atc. BMC fittings

X1	66.90	x1/x10 Swichable	$£ 10.00$

Official ordars walcom
Please add 15% VAT IUK on
paiges exclude vat

Shop $\mathcal{G} \Omega \underbrace{}_{404-406 \text { Edgware Road, London, W2 }}$

Computers 01-402 6822 - Equipment 01.724 0323 - Components 01-723 1008
Shop ElBlO SLSOUS301 Edgware Road, London, W2
Test Equipment, Audio, Communioations 01-724 3564
All mail to Cubegate Ltd; Ist Floor, 406 Edgware Road. London W2 1ED

CATALOGUES

Send large

 SpecificationAny model
(State which)
Send SAE
Schools calleges. companies
Export tree on written request

B. BAMBER ELECTRONICS

ye Base Station Type f30 AM High Band

 Pye Base Slation Yppe F17 FM High BandPye Reporter Type MF6 AM High Band \& Low Ban
Pye Europa Type M F5 FM High Band
Pye Europa Type MF5UUHF
Pye Olympic Type M201 AM High Band
Pye Molotone Type MT5 AM High Band \& Low Band
PYe Pockelohone Type PE5 UHFCOme
Bufndepl UHF Porlable Type BE 471 with manual

$\& 220$ $£ 250$ $£$ £250 | 890. |
| :--- |
| $\boxed{8} 70$ |
 $\begin{array}{r}\text { \& } 35 \\ £ 125 \\ \hline\end{array}$

```
WANTED Second Hand Radiolelephone Equipment.
```


Pye Banlam Battery Chargers

Rank Tete coms Battery Charge
Pye pockelphone PFI Battery Chargers 12 Way
Tektronix Hard Copy Unit Type 4601
Advance Pulse Generator Type PG 500
Siemens Milliwattmeter $500 \mathrm{hm} 700 \mathrm{~mW} 0-12.4 \mathrm{Ghz}$
Gaumont - Kalee Flutter Meler.
Siemens Transistor Power Unit0-30v2amp
Avo Valve Characteristic Meter fype
Airmec Wave Analyser lype $85330 \mathrm{khz}-20 \mathrm{Mhz}$
Sullivan RC Oscillator $40 \mathrm{~Hz}-125 \mathrm{Khz}$
MESL Sweep Oscillalor Type M 10008-12G1/z
Electrohome 9^{*} Video Monitor metai cas
Aztec 20^{*} Video Monilormeta case
Servomex AC Vollage Slabiliser Type AC2 240 vac 9amp Servomex ACVoltage Statitlser Type AC7 240 vac 40 amp ewlenfackard Sweep Generator lype 6 S20 $18-4.26$ Tektronix Slorage Display Unil Type 61
Tektronix Os cilloscope Type 515A
Tektronix Plug in Type CA
Chomandif requency Meter lype FD1 30 -900Mh
Rohde \& Schwarz AF Wave Analyzer Type BN48302
Aohde \& Schwarz UHF TesI Receiver Type BN $1523280-940 \mathrm{Mhz}$ Rohde 8 SchwarzUHF TesI Receiver Type BN7S2 Marconi Carrier Deviation Meter Type TF 791D 4-ヶ024MMz Marconi FM Signal Generator Type TF $10668 / 110-470 \mathrm{Mh} z$ Marconi AM Signal Generalor Type TF $144 \mathrm{H} / 4 \mathrm{~S} 10 \mathrm{Khz}$ - 72 Mh Marconi Out ot Lımits Indicator Type TF 2404
JCC Micro - Film Reader Cassette lype
Marconi Transmis sion Line Test Sel Type TF 1267
Marconi variable Attenuator 750 nm Type TF $1073 \mathrm{~A} / 2 \mathrm{~S}$
60 amp Alternator \& Generator Noise Filter
(1)... 11.00 eacl

Carrand Car Cassette Player Mechanisms. Sereo Head, 10 vac E 1.50 each
extronix Oscilloscope Probes
Mullard Vari-cap TV Tuners Type EL.C2003Ex.Brand New Sets
Pye Cambrid ge/Vanguard 18 Way Control Leads
Sony $1 / 2$ Video Tape 5^{5} Reels
BNC Plugs 75 ohm
C TestClips 28 pin \& 40 pin
circulators $590-720 \mathrm{Mhz} \mathrm{N}$ sockets
Transislors Type 2N3055.
ranstormers 30 volt c. 1 amp
ranstormers $600-0-600<250 \mathrm{~mA}$ plus $460-0-460 \mathrm{u} 230 \mathrm{~mA}$ A 10.00

$1 T \mathrm{~T} 20^{\circ} \& 24^{*}$ Video Monitors wooden case
General Radio Microwave Oscillalor Type 1360B 1.7-4.1 Ghz
Wayne Kerr Componenieridge lype B52
Wandel \& Gollermann Level Meler Type TFPM $+310 \mathrm{Khz}-14 \mathrm{Mhz}$

Capacitors $76 \mathrm{mid} 6.5 \mathrm{kv} £ 25 \mathrm{each} .033 \mathrm{mtd} 10 \mathrm{kv}$. $£ 4.00 \mathrm{each}$

PYE POCKETFONE PF

UHF RECEIVER
$440-470 \mathrm{MHz}$, Singie Channel, int speaker and aerial. Supplied complete manual, $£ 6$ each plus $£ 1$ p.p. plus V.A.T.

BREAKING TEK 545A SCOPES

 FOR SPARESCRT type T543 P2 f12 each. Mains Transformers T601 $£ 15$. High Volume Switches, Knobs, Fans, Capacitors and Switches. K
Metalwork.

RADIOSONDE RS21
 METEOROLOGICAL BALLOON

 TRANSMITIERwith Water Activated Battery, contains all-weather sensors, fully solid state, $£ 5$
each plus $\mathbf{£} \mathbf{1}$ p.p. plus V.A.T.
P. \& P. or Carriage and V.A.T. at 15% on total must be added to all orders.
Callers very welcome, strictly beiween $9 \mathrm{a} . \mathrm{m}$. and 1 p.m and 2 and 5 p.m. Monday to Friday inc Barclaycard and Access taken Official orders welcome

Dichavidio
 V/SA

5 STATION ROAD, LITTLEPORT, CAMBS CB6 10E PHONE: ELY (0353) 860185

SATELLITE RECEIVING EQUIPMENT

$1.9 \mathrm{M}, 2.5 \mathrm{M}$ and 5 M Harrison Dishes. Sat-Tec R5000 4 GHz Receivers. Avcom COM-2B 4 GHz Receivers. California Amplifier 4GHz LNAs. Chaparral Horns. Harrison Feed Horns
Demonstrations by appointment only.
Dealer enquiries welcome
For further details contact: Harrison Electronics, 22 Milton Road, Westcliff-on-Sea, Essex SS0 7JX. Telephone: Southend (0702) 332338.

TOROIDALS

The toroidal transformer is now accepted as the standard in industry. overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to I. L.P., PRICE.
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 14 DA YS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.

$\begin{gathered} 90 \times 40 \mathrm{~mm} \\ \text { Regulation } 11 \% \end{gathered}$		
4×010	$6+6$	1000
4×011	$9+9$	666
4×012	$12 \cdot 12$	500
4×013	$15 \cdot 15$	400
4×0.4	$18+18$	333
4×015	22-22	272
4×016	25.25	240
4×017	$30 \cdot 30$	200
4×018	35.35	17
4×028	110	109
4×029	220	054
4×030	2.40	050
160 VA		
$\begin{array}{r} 110 \times 4 \\ 8 \end{array}$	mmation	$1.8 \mathrm{Kg}$
5×1 -	9-9	889
5×012	12.12	66.6
5×013	$15+15$	513
5×014	18.18	444
5×015	22-22	363
5×016	$25 \cdot 25$	320
5×017	30.30	266
5×018	35,35	228
5×026	40+40	200
5×028	190	145
5×029	220	072
5×030	240	066

Mail Order-Please make your crossed
cheques or cheques or postal orders payable to ILP Electronics Ltd
Trade - We will open your credit account immediately upon receipt of your first order

Prices including P\&P and Var						Mail Order - Please make your crossed cheques or postal orders payable to ILP Electronics Ltd.	Post to: ILP Electronics Ltd., Dept. 3 Graham Bell House, Roper Close, Canterbury, Kent. CT2 7EP Tel: (0227) 54778 Telex: 965780
			VA		£		
	O	7.43	160	5	12.90		
	1 2	8.08 10.10			16.30 18.55	Trade - We will open your credit account	
	3	10.8 :	500	8	2573	immediately upon receipt of your first	
	4	11.73	625	9	31.63		
For 110 V primary insert " O " in place of " X " in rype number. For 220 V primary (Europe) insert " 1 " in place of " \mathbf{X} " in type number. For 240 V primary IUK! insert " 2 " in place of " X " in rype number. IMPORTANT: Regulation - All voltages quoted are FULL LOAD. Please add regulation figure to secondary voltuge to obtain off load voltage.						V/SA	

CIRCLE 021 FOR FURTHER DETAILS.

House of Instruments Ltd. Clifton Chambers, 62 High Street Saffron Walden, Essex CB10 1EE Tel: (0799) 24922 Telex: 818750

GANG-OF-EIGHT, including instruction card, power supply and carriage $\mathbf{£ 3} \mathbf{3 5}$

+ VAT (= £454.25)

	Lombard House, Cornwall Road, Dorchester, Dorset, United Kingdom Telephone: Dorchester (0305) 68066.
Telex: 418442	

Pausaid

This low-cost speech training aid won second prize in Wireless World's recent design competition. It offers help to a large number of people with moderate speech impairments.

There are a number of speech disorders which cause patients to lose control of their rhythm of speech or to run words together. One relatively common example is dysarthria, which results from damage to the central or peripheral nervous system. This may lead to slurring, lack of co-ordination or altered muscle tone, which reduce the intelligibility of the speaker's words. The effects can range from a slight difficulty in pronouncing certain syllables to complete loss of the power of speech.

Dysarthria can be a sign of such diseases of the nervous system as Parkinsonism, multiple sclerosis and Huntington's chorea, or it may be the result of some incident such as a stroke or head injury.

The main aim of speech therapy with dysarthritic patients is to improve the clarity of speech and to minimise the abnormal characteristics. Patients are encouraged to reduce the speed of their speech and to enunciate each syllable separately, so that they can articulate with greater precision.

Unfortunately, most find it hard to monitor their own speaking rate: they do not know when they are speaking too fast or that
they are eliding words and syllables.

Some patients in these groups have spoken rapidly for most of their lives, and to change such a deeply ingrained pattern of behaviour may take a sustained effort. Many improve their speech dramatically during therapy sessions, only to slip back to their old ways when they return home. But with help of a simple training aid, these people might be able to continue their practice at home, freeing the speech therapist to deal with more sufferers.

The aid described in this article was developed in co-operation with Dr Pam Enderby, chief speech therapist of the Frenchay Hospital in Bristol. A survey carried out by Dr Enderby's department indicates that there are some 400000 people in the United Kingdom with moderate speech disorders; and she believes that such an aid may be able to help at least 250000 of them.

Circuit design

The function of the aid is to monitor the wearer's speech, analyse it for pauses and to sound a warning

if the pauses are absent or spaced too widely.

To avoid false triggering by extraneous noises a throat microphone is used. The type chosen is already widely found in speech therapy departments; it is very light and comfortable to wear. The microphone plugs into a small plastics box containing the electronics, which may be supported by a carrying pouch hung around the neck. Since the aid is intended for remedial exercises
by
P.J. Pickersgill B.Sc. and N.J. Stewart B.Sc.

Fig. 2. Complete circuit of Pausaid. R_{15} and R_{18} are miniature multi-turn presets. Sensitivity control R_{6} should be adjusted so that the led flashes whenever the patient talks.
and not for everyday communication, there is no need to conceal it.

Operation of the aid is centred on a capacitor which charges up as the patient speaks and discharges during pauses. If the charge exceeds a preset threshold a buzzer is triggered.

The design is based upon an LM324 quad op-amp. One section, IC_{1}, forms a microphone amplifier with a gain of about 50 . Its input is clamped by D_{4} and D_{5} to prevent damage should the battery charger be plugged into the wrong socket. $\mathrm{IC}_{1 \mathrm{~b}}$ is arranged as
a variable gain amplifier with a maximum gain of 100 controlled by the preset resistor R_{6}. A peakhold function is provided by D_{6}, R_{i} and C_{9}. IC_{t} is used as a comparator, its reference voltage supplied by R_{10} and R_{11}.

The talk without pause time limit is fixed by $\mathrm{D}_{9}, \mathrm{R}_{17}, \mathrm{R}_{18}$ and C_{11}; pauses necessary to prevent triggering of the buzzer are determined by $\mathrm{D}_{9}, \mathrm{R}_{15}, \mathrm{R}_{16}$ and $\mathrm{C}_{11} \cdot \mathrm{R}_{21}$ sets the hysteresis for the Schmitt trigger $\mathrm{IC}_{1 \mathrm{l}}$, which drives the control input of the buzzer directly. D_{i} resets the circuit and prevents unwanted feedback.

Using Pausaid

The unit is powered by a PP3 battery, from which it draws about 10 mA during normal use. A reachargeable battery can be fitted if required: there is a charger socket on the front panel. The preset control are accessible with the help of a trimmer tool, but the patient need be concerned only with the on-off switch and the ‘signal received’ light.

Prototypes have been in use at the Frenchay Hospital for several months with good results. Dr Enderby reports significant improvements in the intelligibility of patients using the aid and she describes her initial tests as 'extremely encouraging'. One development she has suggested is the possibility of replacing the buzzer with a body-worn vibrator. This would help patients with hearing problems and might enable the aid to be used by others in everyday conversation without the embarrassment a buzzer causes.

Phil Pickersgill is a design engineer with Racal's mobile communications company in Reading. He studied electrical and electronic engineering at Bristol University, graduating in 1982. Since then he has worked on the design of a variety of h.f. mobile radios.

Nic Stewart is an assistant consultant with General Technology Systems, a small independent consultancy based in Brentford, Middlesex. He studied at Bristol University, graduating with a degree in geography in 1981.

ZX81 generation and measurement interface

> Addition of a few i.cs to the ZX81 allows one to measure and generate signals with remarkable ease and accuracy. This simple circuit provides a signal generator, a d.v.m., a frequency counter/timer and a spring-board for those new to microprocessor interfacing.

Apart from its applications in games and bank-balance analysis, the home computer can prove a useful tool for measurement and control. This simple interface provides a signal generator, d.v.m. and frequency counter/ timer and although it has limitations in relation to professional instruments, its performance is more than adequate for many applications. Basic program examples shown are tried and tested but you will no doubt find ways of improving them. Higher operating speeds can of course be obtained using machine code. Although both hardware and sofware were designed for the ZX81, modification to suit other microcomputers should be easy.

Digital voltmeter

Conversion of analogue levels to digital form may be carried out using a digital-to-analogue converter (d -to-a) and comparator circuit. The program is designed
so that the computer sends out digital information to form an analogue ramp at the converter output, Fig. 1. The comparator compares the signal to be measured and the ramp voltage; when the two are equal, the comparator output connected to the computer input changes state. On detecting this change of state the computer halts ramp generation and so holds the digital equivalent of the unkown analogue signal. Program flow for analogue-to-digital conversion program is also shown in Fig. 1. This cycle may be repeated continuously, as it does in the digital voltmeter program List 1.

Using a technique known as successive approximation would be faster but I haven't tried it yet. In this method, the computer sends a digital value of half the maximum to the converter. If the comparator output is unchanged, the value is increased by 50% until it does. Similarly, if half the maximum value is too high and changes the comparator output
state, the value is reduced by 50% until the comparator output changes back. The ramp approach may then be used as before or the 'too-much, toolittle' approach continued until the final value is reached.

Signal generation

Signal generators such as the 8038 i.c. produce a range of waveforms with variable amplitude and frequency. They depend on an RC network for timing, which is good enough for general audio work, but where stability and repeatability are important a crystal frequency reference is desirable. Phase-locked circuits are an answer, but they become complicated when wide variations in frequency, amplitude and wave shape are required while retaining repeatability and stabiltiy. This design provides accurate programmable square and pulse signals and - with some limitations - synthesized waveforms. Synthesized wave-
 voltages, the computer feeds a digital- to-analogue converter with digital values starting at zero and incrementing to form a voltage ramp at the converter output. Unknown input voltage is compared with the steadily rising ramp and when the two are the same, the comparator output changes state. Sensing this change, the computer stops incrementing the digital value and thus holds a value representing the unknown input voltage.

Fig. 2. Pulse generation by software is simply a matter of writing a program which loops round, switching a digital output line on and off on each cycle. Mark/space ratio of the output signal is determined by proportions of delays x and z. Varying these delays for each loop can produce frequency and/or pulse-width modulation.
forms are constructed form a number of discrete segments. A drawback of this method is the time taken to build the shape, i.e. if 128 steps are used, a clock running at 128 times the resulting waveform frequency is required. The more steps, the better the waveform, but for most applications 128 steps suffice. Digital values representing segments of the waveform are supplied to the d-to-a converter by the computer in the appropriate sequence. These values may be calculated by the computer and stored ready for transfer. List 2, used to generate sinewaves, is easily modified to produce more segments or other waveforms.

Squarewaves can be generated in many ways, the simplest being to use a continuously looping program which sends one and zero logic levels alternateley to the output, Fig. 2. Using Basic and ZX81 fast mode, the highest frequency obtained is 190 Hz , or 12 kHz using machine code; lower frequencies are obtained by introducing a delay into the program. Different delays between the two logic levels will produce pulses but more interestingly, the delay may be varied each time round the loop to produce swept fre-
quencies or frequency-modulated signals.

Drawbacks to this approach are that matching the delay to the frequency required is done by trial and error and the upper frequency is rather limited. A more elegant way of controlling the generation process is to use a dedicated circuit such as the 8253 which has three separate and independently programmable 16 -bit counters. The device operates by dividing a clock signal by a certain preprogrammed value, and functions up to 2 MHz . Each counter may be used in one of five modes, including ones for pulse and squarewave generation. Unfortunately, when the divisor is samll, gaps between each programmable frequency are large, i.e. $\mathrm{f} / 2, \mathrm{f} / 3, \mathrm{f} / 4$, etc, but with a high clock frequency this is not so important.

List 3 is a program for squarewave generation and simply requires a control word and two data bytes for each counter section. Division factor n is the clock frequency divided by the output frequency and must be equal to or greater than two. It is presented to the circuit as two bytes. The computer may be used to calcualte these bytes using
Most-significant byte $=$

integer ($\frac{\mathrm{n}}{256}$)
Least-significant byte $=$
$\left(\frac{\mathrm{n}}{256}\right.$ - integer $\left.\left(\frac{\mathrm{n}}{256}\right)\right) \times 256$
Where n is low, the resulting frequency's precise value can be calculated by dividing the clock frequency by the integer of n. How to use the 8253 timer is outlined separately.

Frequency/period measurement

Frequency is measured by simply counting the number of input pulses during a known gate period. Conversely, a period is measured using the period as a gate and counting the number of pulses of a known frequency that occur during the event. Both of these measurements may be made using the 8253 by connecting it according to Fig. 3. Counters zero and one are set as squarewave generators in mode three and the third counter is set to mode zero for pulse counting. In mode zero the counter is preset to a known value, usually FFFF_{16}. When a positive edge is received, the counter is decremented by the clock until the gate returns to zero. The computer can then read the remaining value, subtract it from FFFF_{16}, multiply the result by the clock-cycle period and display the final result.

In the case of frequency measurement, counter zero is set to produce lkHz and counter one to divide this down to 0.5 Hz . Counter three is then gated by the resulting 1 s positive section of this signal so that frequency may be read directly in hertz.

The gating period for period and interval measurement will depend on the range required. For intervals of, say, ls, clock pulses of 1 kHz would resolve 1 ms but for

Fig. 3. Timer/counter connections. For frequency measurement, input pulses are counted during a period of known length and conversely for period/interval
measurement, pulses of known frequency are counted during a period determined by
the input signal. Frequency generation is simply a matter of sending a division ratio and control word to the 8253 timer/counter i.c.

intervals of several minutes, a is clock is more appropriate. Setting the desired clock rate for best resolution is relatively simple. List 4 is a program for these measurements.

Hardware

Some input/output hardware is required for sending data to the d -to-a converter and for reading inputs from the comparator and timer circuits. It is also useful to have spare lines for other purposes. A popular and easy-to-use device for this purpose is the 8255. It provides two eight-bit and two four-bit ports, all individually programmable. Figure 4 shows the complete interface circuit.

Decoded address lines select the 8253 and 8255 devices; memory locations $\mathrm{C} 000^{16}$ to FFFF_{16} are free in the ZX81. When the circuit is active, ZX81 ram needs to be disabled so the RAMCS signal is taken low. Address lines $\mathrm{A}_{\overline{-}-15}$ are decoded by gates, output of which enables the 74LS138 data-selector circuit. This in turn selects the 8255 for $\overline{\mathrm{A}}_{2}$ and the 8253 for A_{2}. Lines $\mathrm{A}_{0.1}$ are inter-

List 1. Voltage measurement using the ZX81

10	POKE 49155,13
20	FOR D=0 TO 255
30	POKE 49152, ${ }^{\text {d }}$
40	LET A = PEEK 49154
50	IFA $-2 \times 1 \mathrm{NT}(\mathrm{A} / 2)$
	THENGOTO 70
60	NEXTD
70	PRINTD; "V"
80	GOTO 20

Initialize 8255
Output step to d-to-a converter Read comparator

Read value D0, jumpif 1
Printresult

List 2. Sinewave generation program

Store sine values x, X increments
1 REM $x x x x x \ldots$ xxxxx \quad (x No of chars)
10 INPUTX
20 FORN $=1$ TOX
30 LETP $=16513+N$
40 LETS $=$ INT $(128 \times(1+\operatorname{COS}((2 \times P I / 360) \times N \times 360 / X)))$
50 POKEP,S
60 NEXTN
70 GOTO 20
Run this then delete lines 40 to 70
40 LETQ $=$ PEEK P
50 POKE $49152, Q$
60 NEXTN
70 GOTO 20
Note Frequency may be reduced by inserting
55 PAUSE x
wherex is the pause value.

Fig. 4. Measurement and signal-generation interface for the ZX81 provides voltage, period/interval and frequency measurement, accurate and programmable pulse/squarewave signals and low-frequency synthesized waveforms through software. Spare digital i/o lines are available on the 8255 i.c.

nally decoded by both devices Input/output port A of the 8255 supplies data to the d-to-a converter and the converter output is connected to D_{0} of port C . Counter one output of the 8253 is connected to D_{1} of port C .

A 5 V supply is available from the computer, but using this can lead to problems. It is better to use the 9 V unregulated supply and a separate 5 V regulator with a small heat sink. The ZX81 transformer should cope with this provided that no other external loads are applied. Each program shown will operate on its own using the standard 1K-byte memory; if further memory is available all of the functions could be incorporated in one large program and selected at will.

The 8253 needs an accurate clock signal best derived using a crystal. Readily available but running at 6.5 MHz , the ZX 81 's own clock is not convenient for this purpose so I added a 1 MHz crystal oscillator. The LM311 comparator is readily available and operates from a single supply rail but any similar i.c. may be used. Improved resolution at higher frequencies could be obtained by using a 2 MHz crystal.

Using the 8253 counter/timer i.c.

Each of the 8253 timers is set up independently by sending a control word to the device. The control word selects the operating mode and has to be followed immediately by associated data. In mode zero, the data presets the count to be decremented while in mode three the data sets the division ratio. Control word format is according to Table 1. Bits four and five select the form in which the data is loaded, which can be least-significant byte only, mostsignificant byte only or leastsignificant byte followed immediately by the most-significant byte. A further option is to read and latch the counter. The double-byte load option is used here. Binary count is selected by a zero at bit zero.

Yet another facility is provided for reading the count after decrementing. Sending control word 80_{16} reads the count and transfers it to a separate register. The register is then simply read using two 'peek' operations. Addresses for the counters are

49156 for counter zero

49157 for counter one

49158 for counter two

49159 for control

Table 1. Control-word format for the 8253 counter/timer

Bit Function	Data			
		\mathbf{T}_{0}	\mathbf{T}_{1}	$\mathbf{T}_{\mathbf{2}}$
7	Counter No	0	0	1
6		0	1	0
5	Read/Load	1	1	1
4		1	1	1
3	Mode No	1	1	0
2		1	1	0
1		1	1	0
0	Bin./Dec.	0	0	0
Dataword	54	118	176	

Table 2. Control-word format for the 8255

Bit		Function
7	Set flag	1
6	Sel. mode zero	0
5		0
4	Port A	0
3	Port C, upper	1
2	Sel. mode zero	0
1	Port B	0
0	Port C, lower	1
Decimal data		
Note: Logic level 1 data sets port		
for input, logic level O for output.		

List 3. Squarewave generation

10	POKE49155,137	Initialize 8255
20 INPUTF 30 CLS is desired frequency		
40 LET N = 1,000,000/F		
50 LETM $=1 \mathrm{INT}(\mathrm{N} / 256) \quad$ l.s.b.		
60 LETL $=$ INT ($(\mathrm{N} / 256-\mathrm{M}) \times 256$) m.s.b.		
70 POKE49159,54 8253 Control		
80 POKE49156,L		
90 POKE 49156, M		
100 PRINT 1,000,000/INT N; "HERTZ" 110 GOTO 20		" Print actual frequency
		Next frequency
List 4. Frequency counter/timer program		
10 POKE 49155,137 Initlalize 8255		
20	POKE 49159,54	
30	POKE 49156,232 $\} \quad T$	$\mathrm{T}_{0}=1 \mathrm{kHz}$
40 POKE 49156,3		
50 POKE 49159,118		
60	POKE 49157,208	$\mathrm{T}_{0}+\mathrm{T}_{1}=1 \mathrm{~s}$
70 POKE 49157,7 7 , $T_{0}+T_{1}$		
80 POKE 49159,176		
90	POKE 49158,225	$\mathrm{T}_{2}=$ full count
100	POKE 49158,255	
120	LET A = (PEEK 49154)/2 rear	read port C, d_{1}
	IFA-2×INT $($ A/2) THEN GOTO 110	
		wait for $\mathrm{D}_{1}=0$
$\begin{aligned} & 125 \\ & 130 \end{aligned}$	LET $A=($ PEEK 49154)/2 rear	read port C, D_{1}
	IF NOT (A-2 $2 \times 1 \mathrm{NT}$ (A/2)	
	THENGOTO125 w	wait for $\mathrm{D}_{1}=1$
140	POKE 49159,128	
	LET $\mathrm{X}=$ PEEK 49158 \% \quad r	read T_{2} count
160	LET Y = PEEK 49158)	readr ${ }_{2}$ count
	CLS	
18	PRINT $65536-((Y \times 256)+X ;$ "HERTZ"	
	GOTO80	

Programming the 8255

The function of each port is set up by sending a control word to address 49155. Port A is set as an output and port C as input. Remaining ports may be set and used as required. Control-word format is according to Table 2. The program to initialize the circuit is
POKE 49155,137
(send control word)
POKE 49125,DATA
(send data to d-to-a converter)
POKE 49153
(read lower port C data)
Addresses for 8255 control are
49152 for port A
49153 for port B
49154 for port C
49155 for control

Improving colour televisiondecoding-5

In obtaining improved horizontal resolution consideration must be given to the loss of luminance high frequencies that can occur in the decoder i.cs; at this stage of signal processing the luminance is clamped, blanked and matrixed with the colour difference signals to produce the red, green and blue signals for outputs at low impedance. The TDA3561A onechip decoder response has a 3dB point at 5 MHz but further h.f. losses occur in the following circuitry which provides the red, green and blue colour tube drives, typically 100 V pk-pk, to the tube cathodes.

RGB tube drive stage

Many home receivers, of three or more years old will have single transistor class A video output amplifiers. These work well on negative-going edges as the load capacitance (c.r.t. + tube base and stray $\approx 12 \mathrm{pF}$) can discharge through the transistor. On positive edges, the rise-time is determined by the load resistor; a.c. feedback cannot help. To obtain a reasonable performance, lowvalued resistors have to be used, resulting in high dissipation (1020 watts).

A better solution is to use some form of push-pull circuit with complementary transistors or active pull-up by means of an emitter follower.

Advantages of newer types of output stage, are better symmetrical bandwidth, lower dissipation, similar rise/fall times, and larger output amplitude. A complementary circuit is shown in Fig. 40, taken from a note issued by the Mullard Applications Laboratory, Mitcham. In this circuit, both the upper (BF423) and the lower (BF422) transistors are biased to conduct sufficiently to maintain correct d.c. conditions (at picture back level) and the capacitor 4.7 nF and $2.2 \mu \mathrm{~F}$ enable the transistors to provide peak currents (on voltage transients) of several times the means. This will give rise/fall times of 100 ns , with a full amplitude response flat to 4 MHz falling to 3 dB down at about 5.6 MHz and providing up to $40 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$ output to 9 MHz . It will also handle the tube cathode input impedance of down to $9 \mathrm{k} \Omega$ without
introducing non-linearity. The colour tube current can peak to 7.5 mA on peak white and at black level the input impedance reaches maximum capacitance. Dissipation in this type of output stage, in typically $1 W$ per channel. The lower-dissipation circuit can be readly mounted on the tube base thus reducing the load capacity to 8 pF and improving performance further.

It is better to use the voltages on the A_{2} second grids of the c.r.t. to balance the cut-off voltages of the three RGB electron guns. The guns then operate with similar resolution (defocusing at high beam currents), video drive, black to white grey-scale tracking and input cathode loading.

For the regular TX 10 receiver, Fig. 39, lower trace was obtained by applying the line sweep to pin 10 (the luminance input) of the decoder chip (TDA3561A) and using a low capacitance $(2.2 \mathrm{pF}) \times 100$ test probe at the output of the video drive amplifier which feeds the cathode of the green gun (see Fig. 37). Figure 39 , centre screen, shows that the colour subcarrier frequency if 6 dB down. In fact the situation is somewhat worse than this because, in addition there is the effect of a subcarrier notch, a 6 MHz sound notch and a (far from perfect) luminance delay line before the decoder chip. As it is not intended to use these three components in the modified receiver (although details of them will be given later), it is only necessary to consider from pin 10 (luminance input) of the i.c. (TDA3561A) onwards.

The output drive stages to the c.r.t. cathodes plus equalisation circuits for TDA3561A remain to be considered for improvement. The TX10 receiver video output circuit provides both active pullup and active pull-down and a line sweep shows that a video excursion of 100 V pk-pk can be achieved nearly up to the edge of the band.

Such an output stage is shown in the circuit diagram of the decoder chip TD3561A, Fig. 40. Some compensation for the 3 dB response drop across the decoder chip, and for the loss that occurs in the three transistor output stages may be achieved by adding capacitance across the feedforward resistors carrying the RGB
decoder outputs. In the circuit of Fig. 40 capacitances of $27-33 \mathrm{pF}$ connected across the 2.7Ω resistors from pins 12,14 and 16 (R, G and B outputs, respectively) will give a suitable lift.

The type of output stage used in the Ferguson TX10 receiver, Fig. 41, is a class A stage in which the lowest transistors 653, 652 and 651 form the amplifying stages for each of the R, G and B feeds and 659, 658, 657 emitter followers provide active pull-up; note that resistors 665,664 and 663 must be low-capacitance components. Some crossover distortion occurs as the emitter followers begin to conduct on pull up. This effect can be seen on a line-sweep oscilloscope trace of the output waveform but it is difficult to discern on inspection of the displayed picture. Again, the feedforward resistors on the output pins 12,14 and 16 are shunted with a series LCR combination of $33 \mu \mathrm{H}, 51 \mathrm{pF}$ and a $1 \mathrm{k} \Omega$ resistor (for the TX10) to give a flatter

Fig. 39. Top trace is the luminance sweep 0.5 to 8.5 MHz applied to pin 10 of the TDA3561A decoder chip. Lower trace is the signal at the tube cathode (pin 2) showing loss in response at high frequencies in the decoder chip and the video output drive circuit.

Fig. 42. Typical frequency response of TDA3561A colour demodulator chip through to the RGB output stage. This was the green drive to the c.r.t. cathode.

Fig. 43. Video sweep showing output of modifier comb board with the subcarrier notch retained by the f.e.t. gate connected to $\pm 12 \mathrm{~V}$ rail; modifier turned off.

Fig. 40.Colour decoder chip and surrounding components. The chroma and luminance inputs are taken from the additional board, Fig. 34.
response. The capacitor and the inductor resonate so that the lift does not continue beyond subcarrier frequency. Figure 42 shows the typical overall frequency response of the TDA3561A colour demodulator chip through the RGB output stages; in practice, Fig. 42 was the output response of the green drive to the tube cathode.

From a comparison of Fig. 39 with Fig. 42 it is apparent that
there is some ringing at the beginning and end of each line. On investigation, it was found that the leads carrying RGB signals between the decoder chip and the tube base board (which contains the RGB output video drives transistors) must be carefully positioned. In the circuit condition shown in Fig. 39, the rings were at a high amplitude because these leads were passing near the switched mode power
supply. Since the power supply chopping rate is line-locked (operating at 15.625 kHz), magnetic field 'rings' from the transformer can readily be picked up by the wires. Figure 42 shows that, with careful positioning, 'rings' at the end of the active line are greatly reduced and can be made virtually invisible on the final display picture.

The response trace shown in Fig. 43 was taken with the notch

switched into circuit by connecting the gate of the f.e.t. to the +12 V rail so that the colour subcarrier (centre of the trace) is removed.

Alternative circuits between the i.f. and decoder

The added circuit board shown last month may not be appropriate if the tuner i.f. uses a surface acoustic wave filter with the colour subcarrier frequency $4-6 \mathrm{~dB}$ down, or if the tube cannot display video signals in the region 3.5 to 5.5 MHz , or if the received signal is poor.

To investigate these difficulties reception tests were carried out on a South of England transmitter with the results shown in Figs 44 to 51 . The test equipment was first placed 'back-toback' to determine response flat-
ness and the effect of channel filters. Insertion gain and group delay responses are shown in Fig. 44 and 45 . The extra marker indicates $f_{s c}$: the left end of the trace is zero in terms of the baseband frequency ($0-5.5 \mathrm{MHz}$ video). Figs 46 and 47 are the gain and group delay responses with the transmitter included in the chain. Amplitude errors are within \pm 1 dB over the range $0-5.5 \mathrm{MHz}$, but the phase errors increase greatly above $f_{s c}$. Subtracting the test equipment errors (back-toback test, Fig. 45) from the Fig. 47 full-line trace gives the bro-ken-line response curve which indicates approximately the resulting group delay and shows that at 5 MHz the error is 100 ns or nearly half the period of $f_{s c}$. With such an error it is difficult to obtain zero 7.8 kHz twitter at the chroma transitions (chroma input

Fig. 44. Figure shows amplitude response of the test modulator and demodulator connec.ed back-to-back ($1 \mathrm{~dB} / \mathrm{cm}$).

Fig. 45. Trace shows the group delay response of the modulator and demodulator ($50 \mathrm{~ns} / \mathrm{cm}$).

Fig. 41. Part of the TX10 receiver showing components associated with the decoder chip. 7

Fig. 46. A BBC 1 transmitter in the south of England. Figures show the amplitude response (right), group delay characteristic (Fig. 47, middle) and i.t.s. test signal performance (Fig. 51, below)

Impedance matching formeasurement

$R_{1}>R_{2}$
R_{1} is 510Ω the characteristic impedance of gaussian band-pass filter used for chroma filtering, Fig. 34 March, R_{2} is 75Ω. Caiculated values:

To reduce the need for low impedance drive stages and to avoid awkward inductor or capacitor values it is often advantageous to scale the network impedance. To use standard 750 hm test equipment these networks are suggested.

R, is 150Ω, the characteristic modifier/modulator filter used in
impedance of post Fig. 34 March, R_{2} is 75Ω. Calculated values:
$\mathrm{R}_{\mathrm{A}} 106.07 \Omega$
$R_{\mathrm{B}} 106.07 \Omega$ Power loss 7.66 dB Forward voltage loss 10.67 dB Reverse voltage loss 4.65 dB Insertion loss 7.14dB
$R_{\mathrm{A}} 471.01 \Omega$
$\mathrm{R}_{8} 81.21$
Power loss 14.01 dB
Forward voltage loss 22.33 dB
Reverse voltage loss 5.68 dB
Insertion loss 10.51 dB

This circuit avoids the high losses of matching pads. 81Ω resistor may be removed to reduce insertion loss. With the above circuit placed close to the generator the output waveform was unaffected - but check with oscilloscope.

* 820 to $1.8 \mathrm{k} \Omega$ to suit delay line. For 150Ω filter, make left two resistors $106 \Omega, 150 \Omega$ on right. For 510Ω filter make left 471Ω, right 510Ω.

Fig. 48. Television screen photograph showing similar effects of residual 7.8 kHz at colour transitions caused by lack of amplitude and/or phase symmetry in chroma path. Such symmetry should be maintained because the V-spectrum shifts on alternate lines, see Fig. 4 Dec 1983 issue; also Fig. 72.

Fig. 49. With an input of 100% colour bars, photograph shows screen with a minimum of cross-luminance at colour transitions. Colour bar generator was fed directly to the comb filter (Fig. 34 circuit).

decoder pin) using the colour bar test signal.

The diagonal-to-vertical chroma transition will also have an upward moving Hanover bar disturbance visible at each colour change, in a manner similar to the black and white photograph of Fig. 48. Also the modified performance will certainly be marred by cross-luminance returning to the luminance channel, giving subcarrier dot crawl at vertical transitions as shown in Figs 49 and 50 . Figure 51 shows the i.t.s. performance for this transmitter. Given such transmitter performance, it is necessary to know the condition of the received signal before deciding whether to add the extra board and/or improve the i.f. strip, or the alternative filter circuits, to be described next. Where the incoming signal is received from a chain of transmitters i.e. receive re-broadcast links, then almost certainly the alternative passive filter circuits are to be preferred.

To be continued

Part 4 March issue
In the inductor details for the Fig. 34 circuit L_{5} should read $10 \mu \mathrm{H}$ not 5 , Inductors $13 \& 14$, not included on that list, are $22 \mu \mathrm{H}$ Painton or Sigma chokes. Also in that diagram, please ignore the 60 ns delay figure at DL_{2} and disregard the last five words in note 3 (which refer to the phase equalizer $\mathrm{C}_{51} \mathrm{~L}_{8} \mathrm{C}_{18}$ and L_{4}). Capacitors 20 and 25 should be polystyrene types.

Apologies for the slip in the caption on page 32 , where Tr_{15} should have read $\mathrm{Tr}_{\text {r, y }, 10}$.

Fig. 50. Conditions as for Fig 49 but with inclusion of the transmitter and receiver tuner plus i.f. section in the signal path. Results are still better than a luminance notch decoder only, but the possible improvement compared with Fig. 49 conditions is about half.

SC84 Microcomputer

Designed for engineers and enthusiasts, the SC84 microcomputer uses a 6 MHz Z80 processor and has 64K-bytes of ram - but its main feature is that it can be used with a disc operating system and much readily available applications software.

I designed my first computer, the Scientific Computer published by Wireless World in 1979, to gain experience with microprocessors. This small system had novel features for its time including a hardware number cruncher and up to 5 K -byte of ram! Looking back, the Scientific Computer appears embarrassingly primitive but, judging from correspondence, it served its purpose of giving readers the best possible introduction to microprocessors - hands-on experience.

This new design has a similar objective but it also permits the use of much readily-available software including word processors, language interpreters and compilers. Retained features are the Z80 microprocessor, the resident machine-code operating system extended to provide extra commands, and general accessibility needed for engineering applications. New features are the $64 \mathrm{~K}-$ byte of user memory, a high-resolution c.r.t. controller and a flexible i/o section including interfacing for $3.5,5.25$ or 8 in single or double-sided, single or doubledensity disc drives. Up to 32 lines of 96 characters or 192 by 192 picture elements may be displayed and graphics and characters may be mixed.

My disc operating system, SciDOS (see note at end of article), is compatible with most software written for the standard 8 -bit operating system CP/M. I have also designed software to make use of special features of the computer, in particular the v.d.u. These programs include utilities, disc editors and an extended Basic interpreter. Much of this software was developed in conjunction with the Scientific ComWIRELESS WORLD MAY 1984
puter whose disc interface came later, so users of the original computer will find that their software runs on the SC84 with little or no modification.

SC84 reflects the shift towards microcomputers with most of their programming on disc rather than in read-only memory. The only rom in this design is an 8 K byte eprom which on switch-on or reset copies the resident operating system into random-access memory (ram) and is then switched out, leaving the system entirely dependent on ram. There are two advantages in this approach. Firstly, having everything in ram means that every aspect of the computer is open to experimentation. Secondly, while a system with, say, Basic in rom will be ready to program in Basic as soon as it is switched on, that rom is an encumbrance when you want to use anything else but Basic. The classic argument against disc-based systems is that a rom-based system is ready for use as soon as you switch it on, whereas initiating a discbased system can take as much as 45 seconds. SC84 initiates in just under one second and leaves virtually all of the system ram available for whatever you want Basic, Pascal, machine-code assembly, word-processing etc. A major feature of SC84 is that a disc operating system, SciDOS, has been written especially for it. As well as implementing those commands and functions necessary for CP/M compatibility, this software provides some extra commands and functions which make the system of use to those who see a computer as more than a black box. SciDOS has been kept small by efficient programm-
ing; when it is loaded and running, up to 58 K -bytes of memory are free for user programs.

SC84 is built on 100 by 160 mm Eurocard p.c.bs interconnected through a 64 -way bus system. The basic configuration consists of a processor card, a character v.d.u. card and an i/o card. Frames for housing Eurocards are available in various sizes and materials, the interconnecting bus or 'backplane' being either a p.c.b. - again readily available - or a series of card sockets linked using wire-wrapping techniques. Prototypes have been constructed using both methods and while a p.c.b. saves time, wire-wrapping a series of sockets together is recommended as being cheaper and giving a little more flexibility should you not want all of the connectors wired strictly in parallel, as would be the case in a 'daisy-chained' interrupt system. Bus signals are shown in Table 1. Pin designations refer to a standard DIN 41612 64/96 connector i.e. the type with spacing for three rows of pins but with the middle row missing. Power is provided through the outer two pairs of pins at each end of the connector which suits p.c.b. backplanes available from Vero and other manufacturers. All signals are buffered in and out of the processor board using low-power Schottky t.t.l. i.cs.

Processor/memory board

On this p.c.b. is the $280,64 \mathrm{~K}$ bytes of ram, system rom and a buffered interface to the rest of the computer. The decision to integrate memory with the microprocessor was taken as the size

by J. H. Adams

SC84

Processor
$4 / 6 \mathrm{MHz}$ Z80 processor.
Maximum 64K-byte ram.
58K-byte ram available using SciDOS

Display

Up to 32 lines of 96 characters fully programmable. Scrolling window determined by software.
Graphics mode 0 gives 192 by 96 pixels, mode 1 gives 192 by 192 resolution. Characters and graphics may be displayed simultaneously.

Input/output

Up to four single or double-sided 8 $5.25,3.5$ or 3 in disc drives may be used, either single or double density.
RS232 serial i/o data rates range from 1 to 38400 baud with separate transmit/receive clocks. Synchronous serial i/o format is 5 to 8 -bit auto-search and sync. or asynchronous 5 to 8 -bit with 1.1 .5 or 2 stop bits. RTS and CTR signals control serial data flow.
Eight-bit parallel data input is buffered by schmitt i.cs. Eight-bit parallel output drives five t.t.I. loads Three mos i/o lines operate event counters, pulse timers and Z80 interrupts. Four mos timer lines are available for timing and sound generation.

John Adams is currently working on a high-resolution colour-graphics processor using the 7220 , and an eprom programmer inter facing to SC84 but with its own pro cessor.

Timing for $\mathbf{Z 8 0}$ memory read and write cycles. 'Early write' cycles are common in larger systems but are not found in most eight-bit processors.

First of SC84's three main sections - the processor with 64 K -byte ram, operating system eprom and logic for dynamic-ram, bus-driver and reset control(far right). On resetting, part of the rom content is loaded into high ram and the rom is then switched out, leaving up to 64 K -bytes for user programs.

Timing for an op-code fetch. The $\mathbf{Z 8 0}$ microprocessor has a special register for use with dynamic rams which provides a refresh address coinciding with a refresh control signal.
of the system memory is largely determined by the processor. Also, without the memory the processor board would be rather bare and an extra Eurocard would be needed. Integrating the two on one board doesn't preclude the use of extra memory on other boards - as indeed happens with the v.d.u. memory. Timing diagrams shown will be referred to throughout this explanation of the processor board.

There are three types of memory cycle that the $\mathrm{Z80}$ can execute. Fetching of an instruction or 'op-code' from memory is illustrated in the first diagram. The second is a composite diagram illustrating the writing or reading of data to or from memory. The difference between fetching an op-code and fetching data from memory is that the opcode fetch is shortened and followed by a special memory cycle intended, and used in this case, to refresh dynamic memory. Three relevant Z 80 control signals in accessing memory are MREQ indicating that the current cycle is a memory cycle, RFSH indicating that memory refresh can now take place and RD which indicates that the current cycle will involve data passing into the $\mathrm{Z80}$. There is also a signal called $\overline{\text { M1 }}$ which becomes active during op-code fetches and interrupt acknowledge periods, and a WR signal which indicates that data is to pass from the $Z 80$ to the system. Neither signal is used in memory access although M1 takes part in controlling the buffering of the data bus.

Z80 control signals and virtually all others in this design are active low, i.e. they assert their

Z80 address lines

function by going to the negative or ' 0 ' state. The normal description of a gate function is based upon positive logic so that, for instance, a 74LS02 is deemed to contain tour two-input NOR gates. In this circuit diagram and following ones, gates are shown in their logical context. This can be seen in the 74LS02 which arbitrates the data-bus buffer direction (IC_{118}). Here, three of the four gates have been drawn in their inverse form, i.e. as AND gates with active low inputs rather than as OR gates with an active low output. Having differently shaped gates in the same i.c. takes some getting used to but it helps understanding of the logic. For example, in the case of IC_{11}, direction line $\overline{\mathrm{IN}}$ becomes active when (M1 and IORQ) or RD and not (MREQ and not MEMDIS) are active. Translated into English, this means that the data buffer faces towards the Z80 during interrupt acknowledges and during any read other than one on the processor board memory.

Control gating for the bus buffer is fairly complex as the buffer has to respond to various conditions, summarized in Table 2. One reason for such a tight definition of the bus operation arises from the use of mode 2 interrupts. This is the $Z 80$'s most complex mode of interrupt organization where, in response to the Z80 acknowledging an interrupt by taking control lines $\overline{\mathrm{M1}}$ and IORQ low simultaneously, the interrupting device supplies eight bits of an address. This address combined with the contents of the Z80 'I' register forms a 16 -bit pointer to a table of addresses of
interrupt-service routines. Each device capable of interrupting is supplied with one or a range of such 'interrupt yectors' during the computer's initialization so upon an interruption the $\mathrm{Z80}$ is able to pick out and make a call to specific routines for each interrupting vector. The strength of the system though is that by changing the interrupt vector or a particular entry in the table of addresses, different service routines can be provided for the same interrupt line. This is particularly important, for example, with the disc controller used which uses one interrupt line to signal both a request for data from the system during disc writing and the offer of a data byte during disc reading. This 'interrupt acknowledge' sequence is condition seven in Table 2. On receipt of an interrupt the $Z 80$ disables its interrupt sequence but pauses before acknowledging to allow what may actually be several interrupting devices to decide which has the highest priority. This is done by the daisy-chain technique mentioned earlier. In this way lower priority devices that might need service are prevented from interrupting more important tasks. Note that condition four must be implemented as during an interrupt service, all devices capable of interrupting will want to watch what is being fetched from memory so that they can spot the return-from-interrupt op-code being fetched and automatically re-initialize themselves.

The dynamic memory control is quite novel. For this reason, and for the bad publicity that dynamic memory sometimes gets, it is worth detailing a few

Table 1. Bus connections		
Row		
Rin	Row	Function
R		C

Note: address and data (A and D) lines are active high
*These lines have a pull-up resistor on the processor board and should be driven by open-collector drivers.
\dagger When $\overline{\mathrm{M} 1}$ and $\overline{\mathrm{O} \overline{R Q}}$ are both active the processor is inviting a peripheral device to supply part of an interrupt vector - interrupt acknowledge.

Table 2. Data-bus driver logic

Condition	
1 I/O write	Bus-buffer drives
2 I/O read	towards bus
3 System-memory write	towards Z80
4	System-memory read
5	External-memory write
6	towards bus
7	Internal-memory read

features of its operation before describing the external circuits. Modern dynamic memories use a multiplexed addressing technique where the address is split in two, in this case eight-bit parts. This reduces the number of address pins on the i.c. from 16 to 10 , eight address pins and two 'strobes' to latch the address bytes into the memory. A prime consideration here is that this reduces the package size and hence the cost, but it also allows the memory access to be broken into two stages with consequent benefits.

Consider a 64 K -bit dynamic memory to be a matrix of memory stores 512 by 128 , each row of 128 being connected to a single bus line. Each store is a minute capacitance connected by gates to these lines. When the first part of the address known as the row address is latched into the memory, the highest bit is stored and the other seven are decoded to decide which of the 128 cells in each of the rows should be connected to the bus line for that row.

Thus access starts well before the full address is in. The bus line is, naturally, physically much bigger than the individual cell which has now been connected to it by activation of the row-address strobe (RAS) and so the potential stored in the cell is all but lost on the bus. At one point on the bus is a sense amplifier connected back onto the bus lines with positive feedback. While RAS is inactive the sense amplifier is held in balance so now, even though it has been all but lost, the potential delivered by the cell is enough to tilt the amplifier one way or the other. Having positive feedback, the amplifier pushes the potential on the line heavily in the direction of the input potential, putting the line - and the cell - back to the level in the cell prior to the access. There are two implications here. Firstly that there is a minimum length for the active RAS pulse in that if it goes off before the bus line is recharged by the sense amplifier it will disconnect the read cells from their bus lines before they have had a chance to recharge. Secondly there is a minimum inactive time for RAS as the sense amplifier is brought back into a state of balance. These conditions are paramount and to meet them RAS is driven by a monostable i.c. triggered by a signal directly from the $Z 80$ rather than one which has been combined with others and might therefore be subject to glitches caused by timing problems between the various constituent signals. The monostable i.c. sets the minimum active RAS period and thus by definition the minimum inactive.

Once the leading edge of the RAS pulse has latched the first address byte into the memory i.cs., the addressmay be changed to that of the bus row to be fed to the output of the memory. The eight bits are gated in by the starting edge of the column-address strobe (CAS) signal and combined with the stored bit from the previous addressing strobe to operate a 1-out-of-512 data multiplexer which selects and latches the signal from one of the 512 bus lines within the memory. Once this is done, RAS may go inactive; indeed it is a good thing if it does as then the sense amplifiers may return to a balanced state as soon as possible, ready for the next access. CAS also controls the state of the memory-output driver. While it is active the output is enabled and the selected data bit held there. CAS is a far less sensitive signal as far as integrity of the memory is concerned, the main consideration being that it becomes active as soon as possible in the access and stays on until the data is definitely available and the $Z 80$ has it.

This has been a description of a memory read cycle. A write cycle is similar in that the RAS signal connects cells to buses and releases sense amplifiers and then the CAS signal operates the latching multiplexer and activates the output driver. What is different is that the signal on the datainput pin is routed through the multiplexer to the cell. During a conventional write cycle the data output pin will follow the output of the cell while CAS is active. This might seem to preclude the use of dynamic memory in circuits usually associated with static memory, where the same line is used for data input and output, but it is possible to prevent the output of a dynamic memory from coming on when CAS goes active by arranging for the write signal to go active before CAS does. These 'early-write' cycles are common in large systems but are not found in most eight-bit microprocessors such as the Z80 where the WR signal goes active well into the memory cycle and is too late to be of use. One answer is to use an eight-bit three-state buffer between the ram outputs and the data bus, but my solution is to use the inverse of RD as a write strobe to the memory. Whenever RD goes high, i.e. at the end of reading memory or i / o, the write strobe goes low and so the dynamic memory is primed for an 'early write'. As RAS will be over long before RD goes high, there is no chance of a memoryread cycle being transformed into a memory write cycle. Should it be a read cycle then the write strobe is removed from the memory by RD going active low at the beginning of the cycle, well before CAS is applied. Except for a slight increase in current consumption during the write-line strobe, the effect is unnoticable.

The sequence of pulses for the dynamic memory is generated by a series of Schmitt buffers $\left(\mathrm{IC}_{221}\right)$. RAS is generated by the leading edge of memory-request signal MREQ which triggers monostable IC ${ }_{122}$. A potentiometer sets the RAS pulse length. For the devices' specified in the diagram RAS should last for at least 200 ns and should have a minimum off period of 120 ns . In practice this adjustment is not too critical with a system running at 4 MHz as a complete RAS cycle lasts at least two clock cycles which corresponds to 500 ns . Set the potentiometer to give the off-period required for the dynamic memories used or, if measurement is not possible, to its mid-position for a 4 MHz microprocessor or at or near its minimum for a 6 MHz version.

Fibre optic communications

Part 1 - Optical fibres and waveguide transmission

An optical fibre is a dielectric waveguide made of glass (or occasionally of a transparent polymer) and essentially consists of two regions, a core region and a cladding region, Fig. 1. Protection and a degree of mechanical strength is provided by the outer jacket. The fibre is characterized by a refractive index profile as a function of radial distance from the fibre axis, as illustrated in Fig. 2. Silica is used for the majority of fibres with either germanium or boron doping to achieve the desired refractive indices. Inexpensive fibres can be made from perspex polymer but they exhibit very high losses of around $500-1000 \mathrm{~dB} / \mathrm{km}$.

The most convenient type of fibre to describe is the multimode step-index fibre of Fig. 2(a), where the core region has a constant refractive index n_{c} that is larger than the constant refractive index n of the cladding region. This fractional refractive index step difference \triangle is only small, usually around 1%, but is sufficient to produce light guidance by total internal reflection under certain conditions. In a multimode fibre the core diameter is large compared to the wavelength of light, hence propagation in the fibre can be modelled adequately by using geometrical optics. For a typical multimode step-index fibre we might have $\mathrm{n}_{\mathrm{c}}=1.5, \mathrm{n}=$ $0.99 \mathrm{n}_{\mathrm{c}}$ with $\Delta={ }^{c} 0.01$, core diameter of $50 \mu \mathrm{~m}$ and a cladding diameter of $100 \mu \mathrm{~m}$.

Lengths of optical fibre can be joined together with very low losses (0.1 to 0.3 dB) by fusing their ends together whilst clamped in a special alignment jig. Demountable connectors require a high degree of mechanical precision for best results, with losses of around 1 dB per connector pair being WIRELESS WORLD MAY 1984

First of a three-part series reviews the fundamentals of fibre optic transmission and outlines the main advantages and limitations in using optical fibres as a communications medium.

typical. In Figure 3 a point source is shown emitting light rays over a wide range of angles. Ray 1 enters parallel to the fibre axis and simp'y propagates straight along the axis. Ray 2 strikes the fibre at an angle $\theta_{\text {ext }}$ relative to the axis. Because the air outside the fibre has an index of refraction of 1.0 whilst the fibre core has a refractive index of about 1.5 , the ray is bent toward the fibre axis according to Snell's law of refraction. After travelling a short distance along the fibre ray 2 strikes the core-cladding boundary and is refracted again. If the angle of incidence at the core-cladding interface is sufficiently shallow, the ray will totally internally reflect and continue to propagate along the fibre following a zig-zag path. However, if the angle of incidence is too large, ray 3 for example, the ray will enter the cladding region and ultimately be absorbed by the higher losses in the cladding and jacket. Note that the light will still be correctly guided even when the fibre is subject to bending or twisting. Obviously under these conditions the zig-zag light paths will be somewhat modified.

The maximum internal angle $\theta_{m t}$ a ray may have relative to the tibre axis and still be guided is given by Snell's law:

$$
\begin{gathered}
\sin \theta_{\text {in max }} \approx \mathrm{n}_{\mathrm{c}}^{-1} \sqrt{ } 2 \Delta \text { and } \\
\quad \sin \theta_{\text {ext nax }} \approx \sqrt{ } 2 \Delta
\end{gathered}
$$

where n_{c} is core refractive index, n the cladding refractive index, and Δ the fractional index step $\left(n_{-}-n\right) / n_{c}$. For $n_{c}=1.5$ and $\Delta=$ 0.01 then θ int max $=5.5^{\circ}$, corresponding to $\theta_{\text {ext max }}=8.1^{\circ}$. An equivalent way of describing a fibre is by way of its numerical aperture (NA), defined as sin $\theta_{\text {int max }}$; in this example NA ≈ 0.1.

It is a feature of optical fibres that they require a light source with a narrow emitting angle to efficiently couple power into the fibre. Two requirements conflict when deciding on a suitable value of \triangle and hence NA for a fibre. A large step index makes it easier to couple power into the fibre but the increased total internal reflection angle allows a greater number of zig-zag paths per unit length. The increased length for some rays tend to smear out fast data pulses and reduces the potential bandwidth available. On the other hand a low value of Δ produces a higher bandwidth fibre but makes it more difficult to couple energy into the fibre.

The two major fibre characteristics of interest from a commu-

Fig.1. An optical fibre consists simply of an inner flexible rod of very pure glass surrounded by a cladding layer of slightly lower refractive index.

Fig.2. Choice of refractive index profile determines the propagation characteristics of the fibre.

Fig. 3. Light in the fibre is guided by a Fig. 3. Light in the fibre is guided by a
process of multiple internal reflection process of multiple internal reflection caused by the difference in refra
index between the core and the index bet
cladding.

Fig.4. Light loss in a multimode fibre approaches the theoretical minimum except at the wavelengths associated with water impurities.

Fig.5. If the bandwidth of the fibre is insufficient then adjacent data pulses can be spread out to the extent of becoming indistinguishable.

Fig.6. Pulse spreading is much less noticeable with graded index fibres than with step index multimode fibres.

 tion link occurs when two adja-
cent, but separate, input pulses emerge from the far end of the link smeared out in time to an extent that they are indistinguishable (assuming that the receiver has a sufficiently high bandwidth). Thus the two input pulses in Fig. 5(a) will still be detectable separately if they emerge as in (b), but not if they overlap to the extent of (c).

In a multimode fibre the bandwidth is primarily determined by two mechanisms: modal delay spread and material dispersion coupled to the source spectral bandwidth. As the amount of pulse-spreading depends on the length of the fibre it is most useful to quote the performance of a fibre as the product of its bandwidth and length. For any given fibre and source, bandwidth can be traded off against length (however the maximum length may be restricted by the allowable system attenuation, see part 3).

Modal delay spread

The first of these bandwidthlimiting factors, modal delay spread, refers to the differences in the group delays of different waveguide modes. In terms of ray optics, this is equivalent to saying that the rays which are totally internally reflected at the higher angles of incidence on the corecladding boundary take a longer zig-zag path before emerging at the far end of the fibre. Referring back to Fig. 3 shows that a ray travelling at an angle $\theta_{\text {int }}$ relative to the fibre axis takes $1 / \cos \theta$ longer to travel an axial distance than does a ray travelling straight along the axis. The maximum time delay difference ${ }^{2}$ will be

$$
\delta \mathrm{T}_{\mathrm{max}} \approx \Delta \mathrm{n}_{\mathrm{c}} / \mathrm{c}(\mathrm{~ns} / \mathrm{km})
$$

where c is the speed of light in vacuo. For a typical fibre with an index step $\triangle=0.01$ and a core refractive index $n_{c}=1.5$, then $\delta T_{\text {max }} \approx 50 \mathrm{~ns} / \mathrm{km}$. The pulsesmearing caused by this delay spread is equivalent to a modulation bandwidth-length product of around 5 to 10 MHz km . In other

words, due to modal delay spreading a 1 km fibre of this type would exhibit a usable modulation bandwidth of 5 to 10 MHz .

One method of reducing the modal delay spread in a multimode fibre is to make the refractive index of the core graded rather than stepped (refer back to Fig. 2(b)). Rays propagating in such a graded-index fibre have nearly equal delays as the higher mode zig-zag rays now take a helical path, keeping to the outer regions of the core where the refractive index is lower and hence the speed of propagation faster. By choosing a suitable index profile (usually parabolic) the modal delay-spreading can be reduced by two orders of magnitude or more relative to multimode step-index fibres.

Figure 6 shows how the modal delay spreading varies with refractive index difference Δ for both step index and graded-index multimode fibres at a wavelength of $0.85 \mu \mathrm{~m}$. To achieve the best compromise between bandwidth and source coupling efficiency it is usual for most multimode fibres to have a Δ value of around 0.01 , producing typical modal delays of $50 \mathrm{~ns} / \mathrm{km}$ and $0.3 \mathrm{~ns} / \mathrm{km}$ for step and graded-index fibres respectively ${ }^{3}$. This corresponds to a fibre bandwidth-length product of
approximately 1 to 5 GHz km at $0.85 \mu \mathrm{~m}$ due to modal delay spreading for a graded-index fibre; a substantial increase. The penalty is the extra manufacturing difficulty of retaining tight control over the index profile, for even slight unplanned deviations in the index profile will cause a disproportionate reduction in the bandwidth-length product.

An alternative way to reduce the modal delay spread is to make the fibre core region much narrower than the multimode fibre core but still with a step index, Fig. 2(c). As the core diameter is reduced toward the wavelength of light, fewer and fewer of the higher order zig-zag modes can propagate and the fibre eventually becomes a monomode waveguide (HE_{11} mode) when the core diameter lalls below approximately three times the wavelength of the optical radiation. It is extremely difficult to make fibres with such a narrow diameter (2 to $3 \mu \mathrm{~m}$) and so usually diameters in the range 5 to $10 \mu \mathrm{~m}$ are used and a few low-order propagation modes tolerated ${ }^{4}$. (In contrast, a typical multimode step-index $50 \mu \mathrm{~m}$ fibre may support several thousand porpagation modes.)

The modal delay-spreading of a true monomode fibre must be
zero, but there are usually several low-order modes present in a practical fibre, making it difficult to give meaningful figures. For a step-index monomode fibre modal delay spreading is not usually the restricting factor on the operational bandwidth-length product (it is probably well beyond 100 GHz km). Instead, the practical restriction placed on the bandwidth-length is due to the second mechanism - that of fibre material wavelength dispersion and the spectral width of the optical source.

Material dispersion

Material dispersion refers to the variation in group velocity with wavelength of light in the fibre. The dispersion causes pulse spreading in fibres driven by optical sources with a finite spectral width; the greater the source spectral width the greater the pulse spreading and therefore the lower the bandwidth-length product. A typical $0.85 \mu \mathrm{~m}$ l.e.d. exhibits a spectral width of around $0.05 \mu \mathrm{~m}$ (50 nm) in contrast to an injection laser diode whose spectral width is typically $0.002 \mu \mathrm{~m}$ (2 nm). These figures translate to bandwidth-length products of about 500 MHz km and 25 GHz km for 1.e.ds and

Visible red light rather than infra-red is often used with the low-cost polymer fibre shown.

After a postdoctoral fellowship a Manchester University, Brett Wilson taught in Baghdad for a year and then returned to work on optical position detectors and sensitive non-contact at Nottingham Uent. He then lectured Nottingham University, where he's op-amps in addition to fibre optics, and op- Easter neturns to Manchester, thi time at UMIST. His Ph.D, was on high-speed laser stroboscope for magnetic bubble research. Hobbies include walking, cycling, climbing motorcycling, films, literature and photography

References

1. T. Li, "Advances in optical fibre communications: an historical perspective", IEEE Journal on selected areas in communications, vol.SAC-1, no.3, 1983, pp.356-72.
2. H. F. Wolf, "Handbook of fibre optics", chapter 2. Granada, London, 1979.
3. S. D. Personick, "Review of fundamentals of optical fibre systems", IEEE Joumal on selected areas in communications, vol.SAC-1, no.3, 1983, pp.373-80.
4. J. W. Fleming and V.R. Raju, "Low-loss single-mode fibres prepared by plasma-enhanced MCVD", Electronics Letters, vol.17, Nov.1981, pp. 867/8.
5. D. N. Payne and W. A. Gambling, "Zero material disuersion in optical fibres", Electronics Letters, vol.11, April 1975, pp.176-8.
6. J. R. Stauffer, "FT3C - a lightwave system for metropolitan and intercity applications", IEEE Journal on selected areas in communications, vol.SAC-1, no.3, 1983, pp.413-9.

Table 1. Principal limitations on fibre optic systems.

OPTICAL SOURCE	MULTIMODE	FIBRE	MONOMODE
	Step inder	Gradedinder	Step index
$\begin{aligned} & \text { l.e.d. } \\ & \lambda 0.85 \mu \mathrm{~m} \\ & \delta \lambda 50 \mathrm{~mm} \end{aligned}$	10 MHzkm	1-5 GHzkm $\begin{aligned} & 500 \\ & 3 \mathrm{mHzkm} \\ & 3 \mathrm{dmm} \end{aligned}$	
I.e.d. $\lambda 1.3 \mu$ $\delta \lambda 2 \mathrm{~nm}$	10 MHzkm	```1-5 GHzkm 2-8 GHzkm 1dB/km```	$\begin{aligned} & >100 \\ & \mathrm{GHzkm} / 2-8 \\ & \mathrm{GHzkm} \\ & 0.7 \mathrm{~dB} / \mathrm{km} \end{aligned}$
$\begin{aligned} & \hline \text { i.1.d. } \\ & \lambda 0.85 \mu \mathrm{~m} \\ & \delta \lambda 2 \mathrm{~nm} \end{aligned}$			$\begin{aligned} & >100 \\ & \text { GHzkm/25 } \\ & \text { GHzkm } \\ & 2.5 \mathrm{~dB} / \mathrm{km} \end{aligned}$
i.I.d. $\lambda 1.3 \mu \mathrm{~m}$ $\delta \lambda 2 \mathrm{~nm}$		$1-5$ GHzkm GHzkm $1 \mathrm{~dB} / \mathrm{km}$	

i.l.ds respectively at $0.85 \mu \mathrm{~m}$.

Fortunately a material dispersion minimum has been discovered at $1.3 \mu \mathrm{~m}$ which allows for wide bandwidth transmission over distances, $>100 \mathrm{GHz} \mathrm{km}$, even with an l.e.d ${ }^{5}$. Combined with the generally lower losses at $1.3 \mu \mathrm{~m}$, this has provided the impetus for much recent research at longer wavelength operations for future optical sources and detectors.

For any given fibre type and optical source there are therefore two main limitations on the maximum achievable bandwidth-distance product that can be achieved. Either modal delay spreading or material dispersion will dominate depending on the fibre type, source type and operating wavelength. Table 1 summarises the points discussed so far in a convenient form, including figures for the highest modulating speeds so far achieved with l.e.ds and i.l.ds. Clearly there is much development to be done on source modulation before the bandwidth potential of the best fibre system is reached.

Step-index multimode fibres are best employed in sort-haul medium bandwidth systems, probably with an inexpensive $0.85 \mu \mathrm{~m}$ l.e.d. source as modal delay spreading restricts the performance to around 10 MHz km . Graded-index multimode fibres are the natural choice for longhaul high data-rate links operating up to approximately 15 GHz km at $1.3 \mu \mathrm{~m}$, probably using an i.l.d. source for faster modulation. Monomode fibres operating at $1.3 \mu \mathrm{~m}$ with an i.l.d. source offer the best performance for ultra-high data rates. It may not always be possible to trade off

the extremes of the bandwidthdistance product because of system power level restrictions imposed by fibre attenuation.

The only area in which present optical fibre systems are inferior to traditional metal cable systems is in the allowable power budget between the transmitter and receiver. It is presently difficult to launch more than several hundred microwatts of optical power into a fibre from an i.l.d. (less for an l.e.d.), whereas r.f. transmitters can inject many times this level of input power into ordinary copper cables. Similarly, optical detector-receiver arrangements are rather less sensitive (≈ 1 to 20 nW) than r.f. receivers.

The allowable power loss between transmitter and receiver in an optical fibre system is therefore restricted to a maximum of around 30 to 40 dB for acceptable bit error rates or signal-to-noise ratios ${ }^{6}$. This is much less than a conventional cable system. Fortunately, attenuation of an optical fibre is much less than that of traditional coaxial cables, resulting in potentially longer spacings (20 to 50 km) where there are few cable splices or optical junctions. The problem of restricted power budget must be kept in mind when considering optical fibres for data network systems where there may be many junctions, couplers or splitters with attendant high losses. There is no optical equivalent of a high impedance tap!

A general comparison is made in Table 2 between the characteristics of twisted pairs, coaxial

Table 2. Comparison of major communication cable types.

CHARACTERISTIC	IWISTED Pala	$\begin{aligned} & \text { COAX } \\ & \text { CABLE } \end{aligned}$	OPTICAL FIBRE
Length-bandwidth product (MHzkm)	1-2	50-100	1,000-5,000
Spacing between repeaters (km)	1-2	1-2	5-20
System cost	Low, smail increase in future	Medium small increase infuture	High now, large decrease in future
Lifetime (years)	20-40	20-40	$2-5,10-40$ infulure
Crosstalk	High	Low	Negligible
Noise immunity	Low	Medium	High
Input-output isolation	No	No	Total
Weight, size	High	High	Low
Cable connections	Soldering, standard connectors	Soldering, slandard connectors	Splicing, well aligned connectors
Fabrication control	Loose	Medium	Precise

cables and fibre optics used as communication links. The many advantages of a fibre optic link are clearly evident.

Main benefits of fibre optic systems over metal cables:

- higher system channel capacity
- larger bandwidth and small loss
- longer distance between repeaters
- electrical isolation of input and output
- almost complete immunity to e.m.i.
- almost complete freedom from signal leakage and crosstalk
- almost complete security against unauthorized interception
- smaller size and weight
- lower system cost per channel km.

In contrast to metal cable systems fibre optics is a rapidly developing technology. It is obvious that fibre optics is currently superior in most respects to metal cable transmission techniques these advantages can only be strengthened as the technology matures. Over the next ten years or so we are likely to see the increased use of integrated optics in couplers, switches, modulators, sources and receivers further increasing the advantages of guided optical transmission over metal cable techniques.
Optical transmitters and receivers are discussed in part 2 of this article.

'The report of my death was exaggerated' (MARK TWAIN)

the same can be said of the

- still going strong and selling by the million

With a range of over 20 different families from 400 mW to 50 W it is almost certain that there is a Zener to meet every application. For your free Short Form guide to these and other Thomson Discrete Products contact us at the address below.

THOMSON-CSF COMPONENTS AND MATERIALS LTD.
RINGWAY HOUSE, BELL ROAD, DANESHILL, BASINGSTOKE, HANTS RG24 0QG. TEL. (0256) 29155 TELEX 858865
\section*{Distributors}
Abacus Electronics 0635-33311 • Bloomer Electronics 0762-39818 • E.S.1. 0256-57166 Lock Distribution 061-652-0431 . Phoenix (Airdrie) 0555-892393 . Pronto Electronics 01-554-6222 Semiconductor Specialists 08954-46415 . Solid State Supplies 0892-34366 Steatite 021-454-2655. Transworld Scientific 0494-36381. United Components 0494-444712

Tvhazards

The problems that can arise when a television mast, or aerial system, fails were underlined in the incident that put all four channels off-air at Durris, near Aberdeen at the height of the appalling weather conditions on January 17. While it proved possible for IBA, BBC, Grampian ITV and British Telecom riggers and engineers to restore service to most viewers in a matter of days, some viewers remained virtually without television until February 9. Although this incident is the first time that a very large number of UK viewers have lost all services for a matter of days, (the collapse of the Emley Moor mast in 1969 left BBC-1 unaffected) basically similar incidents have happened elsewhere.

Last October, for example, a 315-metre mast of Belgian television at Wavre, serving Brussels with a considerable number of radio and two television services, was blown down. While a temporary substitute for the 'Radio 21' service used a spare transmitter at the Palais de Justice, other services were lost over an extended period, including television services of BRT-2 and RTBF-2. However a large percentage of Belgian viewers are on cable systems and steps were taken quickly to improve the distribution of programmes directly to the cable stations.

An electrical fire put an American tv transmitter WOWV-TV in West Virginia off the air in the afternoon of January 12. Before the station could be put back on the air that night a second fire broke out, completely destroying both transmitters. Finally a new transmitter was brought in, but the station was off-air for four days.

Satellites

Although the European Ariane launch vehicle scored a major success with the Intelsat V communications satellite launched on March 5, the problems for Immarsat have not been entirely overcome. The marine communications organization refused to accept the Intelsat VF7 spacecraft as unworkable and the March
WIRELESS WORLD MAY 1984
satellite is to an earlier design still not entirely debugged. The F9 launch scheduled for summer 1984 has been put back to 1985 . The problems with the booster engines on the Space Shuttle satellites has increased the demand for the Ariane, and production of the European vehicle may have to be stepped up from six per year. The sensitivity of the insurance market after the double failure with the Space Shuttle may be a deciding factor in the bright commercial future for the largely-French Ariane, despite the earlier set backs. It remains to be seen, however, whether the market for high-power DBS satellites will prove as large as forecast until recently. DBS, like multi-channel cable systems, are being subjected to a more realistic scrutiny. Many of the would-be cable programme providers in the UK have already merged or quietly vanished.

One of the fastest production jobs on a new scientific/ educational/amateur radio satellite, the second UOSAT design, was successfully into low earth orbit on March 1, 1984. Built, tested and launched in a few months, it represents a real achievement by the University of Surrey team.

Services and GCHQ

Among the millions of words that have been written about the banishing of unions at GCHQ, suprisingly few commentators have noted the implications of this badly-handled affair for other sectors of British and NATO defence communications or come up with a credible reason for the Prime Minister's determination to press ahead with this action at this time. The usual scenario has been to blame it on either American pressure following the Prime case (as for the introduction of the polygraph machines) or simple union-bashing.

There is, I would suggest, an alternative and inherently more likely explanation - the strong wish of the Services, particularly Navy chiefs, to reverse the post-war trend towards having defence communications and signals intelligence networks manned and controlled by
civilians. The suggestion of de-unionisation, stemming from within GCHQ, can then logically be seen as a move to counter increasing Service pressures against the 'demobilisation' of the defence communications set-up.

For many years, the monitoring and interception of the radio traffic of real or potential enemies was the responsibility of the Y-service at stations manned largely by the Services, though backed up by civilian personnel. This tradition changed following the war-time successes of Bletchley Park with the formation of the Composite Signals Organization as an inherent part of GCHQ. A typical example of the resulting changes can be safely quoted without breaching security since the station closed down several years ago. Flowerdean, near Winchester, was for many years a Y-service h.f. station of the Royal Navy. It became, under the GCHQ regime, a civilian-manned CSO station run from Cheltenham.

Although Service signals personnel still man some intercept stations, the direct role of the Services in this work, as in many other branches of Defence communications, has clearly decreased. The Royal Navy, always quick to take umbrage at any attack, real or apparent, on its assumed role as the 'senior Service' has consistently opposed such diminution of its responsibilities.

Stereo on tv

A further series of test transmissions of the BBC's digital stereo tv system suitable for use on terrestrial networks were carried out early in March in the London area, on the Crystal Palace high-power transmitter and its local relays. This followed earlier tests in the hilly South Wales area from Wenvoe where the main purpose was to check digital performance under multipath propagation conditions. The London tests concentrated on compatibility with the wide range of television receivers in use.

The system uses a phase-modulated second sound carrier at 6.55 MHz above the vision carrier phase modulated with a bit rate of about 700 kilobits/second.

If the system proves satisfactory in all types of terrain and does not cause interference problems with existing monophonic receivers, the BBC hope to put it forward for European standardization, though this may not prove easy in view of the current use in West Germany of an alternative analogue tv-stereo system. These days it is not enough to develop a good system to ensure winning a standards battle!

A long struggle

Although political lobbying by the Services is usually conducted behind closed doors, in 1978 Admiral Sir Edward Ashmore, then a recently retired Chief of the Defence Staff, in a lecture to the Royal Signal Institution, made no secret of his vehement dislike of the command structure of NATO and the whole organisation of defence communications. He advocated strongly that defence communications should be securely in the hands and control of the Services, reversing the post-war trend towards a part civil, part Service, system, on the grounds that civilians might be provoked into industrial sabotage by hostile propaganda.

RN dislike of providing communications facilities for the civilian media was evident during the Falklands campaign, while the influence of the Defence Staff on the Prime Minister was underlined at that time, when she was persuaded by the then Chief of Defence Staff, Admiral Sir Terence (now Lord) Lewin, to agree that HMS Conqueror should sink the Argentine cruiser General Belgrano.

The hostility of the Services to Intelligence activities over which they have no direct control, by people not subject to Service discipline and traditions, is of long standing, particularly in the field of Sigint. It dates back at least to the period following World War 1 when the Navy's cipher-cracking operation passed from Room 40 at the Admiralty to the Foreign Office-controlled Government Code \& Cipher School. It was reflected during World War 2 in the refusal of the Admiralty to agree to Ultra intelligence being distributed to the Navy by MI6's Special Communication Units, as for

Army and RAF Commands.
Viewed in this light the GCHQ fracas emerges as part of the old struggle between a Navy-dominated Ministry of Defence and the civil departments of Government, including the Foreign and Commonwealth ()ffice - a view supported by later reports of political 'vetting' at MoI).

Here and there

In many major urban centres in the USA, broadcast listening on f.m. is now significantly ahead of a.m. with the I Dallas-Fort Worth area showing f.m. with a 69.4 per cent share of listening. A few major urban centres, including San Francisco, still remain a.m.-orientated. The a.m. broadcasters hope to win back listeners with a.m. stereo. Meanwhile the f.m. broadcasters are being given greater freedom to use Subsidiary
Communications Authorization (SCA) facilities, including the use of a second sub-carrier. The use of broadcast transmissions for area or nation-wide radio-paging based on the second SCA sub-carrier is attracting increasing interest.

The first part of the ITU conference on h.f. broadcasting, early this year in Geneva, scems to have gone smoother than expected, with even the Americans, often critical of ITU conferences, expressing satisfaction. Frequency allocations requested by countries are to be computerized and a check is to be made to establish the extent of deliberate jamming. However the conference was concemed only with establishing technical parameters and the main problems may come next time in 1986.615 delegates from 90 countries attended.

The Pentagon is planning to double its spending during 1985 on the protection of ground and airborne electronic command centres from the effects of e.m.p. (electromagnetic pulses generated by nuclear blasts). Also planned is the establishment of a world-wide network of five terrestrial electro-optical surveillance centres to detect and identify objects in deep space, for completion by 1988.

Amateur Radio

Telephone and cabler.f.i.

The lack of attention paid to e.m.c. problems by those supplying electronic equipment for homes, cars, petrol pumps etc. is becoming ever more noticeable. The consumer-electronics industry assumes that very few of its products will ever be used in places subject to high levels of r.f. despite the many thousands of broadcast, amateur-radio, c.b. transmitters, cordless telephones, two-way car radios etc.

The latest problem is arising from the new telephone handsets and inserts that replace the traditional carbon-granule microphone with an electret transducer and integrated-circuit amplifier. As fitted, these telephones appear to be most susceptible to local transmitters. yet there is evidence that this can often be much reduced by improved r.f. bypassing, sometimes by utilizing components already fitted.

The KSGB reports that the interference to amateurs using the 144 MHz band at Milton Keynes has been traced by IITI to radiation by and feed-through at the British Telecom cable frequency translation units at about 120 points in the cable area, where a television channel centred on 143 MHz is changed to u.h.f. for final distribution into homes. No significant leakage has been traced to the main buried distribution cable. Each translation unit feeds about 50 homes. The problem does not arise with translation units built in metal cabinets but only where these are contained in fibreglass cabinets, where filters have to be fitted.

The I)TI measured high levels of radiation at distances up to 100 metres from the translation units. DTI have stated that the local Radio Interference Service teams will fit suitable filters in fibreglass units near the homes of radio amateurs, but only if complaints are received. Since
the BT cable installation at Milton Keynes is normally regarded as a technically advanced system the problems that seem likely to arise as more and more television signals are distributed at frequencies within the amateur bands may prove severe.

50,000-plus

At the end of December 1983, the number of UK amateur radio licences was 50,635 , of which 24,359 were Class A and 26.276 were Class B. During 1983 the number of Class A licences were. thus, for the first time overtaken by the 'no-morse-test' Class B licences (144 MHz and above). When the Class B licence was introduced in June 1964 it was for 420 MHz -and-above only, and was then intended to encourage the development of the U.H.F. bands by technically-minded experimenters. Unlike the FCC system, where radio amateurs voted 20-to-1 against the introduction of a no-code licence, the British Class B licence for first u.h.f. and later extended to v.h.f.. resulted from closed-door discussions.

The FCC state: "Morse code is a fundamental communications skill critical to the nature of the Amateur Radio service."

ATV repeaters

The DTI have approved the setting up of the first five amateur-television repeater stations in the UK. They will use the 1.3 GHz band and acepting vision and sound a.m. or f.m. signals, located at Leicester, Bath, Luton. Stoke-on-Trent and Worthing. The Leicester (GB3GV), channel RMT1, Luton (GB3TV) Channel RMT2 and Worthing (GB3VR) channel RMT2 repeaters should be active by the time these notes appear.

Aerial polarization both incoming and out-going is horizontal. RMT- 1 has vision-in 1276.5 MHz vision-out 1311.5 MHz , sound-in 1282.5 MHz and sound-out (a.m.) 1317.5 MHz . KMT has vision-in 1249.0 MHz . vision-out 1318.5 MHz , sound-in 1255.0 MHz , sound-out 1324.5 MHz . The British Amateur TV

Club has appealed to its members: "Since these are the first such licences to be issued in the UK, it is incumbent on us all to use the facilities in a responsible manner in order that the authorities may look favourably on any future expansion plans to the amateur-television network."

In brief

Ir Owen Garriott, W5LFL, the radio-amateur scientist on board the STS-9 Space Shuttle took part in a London meeting of the Royal Society during February where the general scientific work of the mission was discussed. There are signs that future Space Shuttles are likely to have amateur radio equipment on board but most observers agree that it will be essential to achieve greater operational discipline and co-operation by those on the ground as well as a less-noisy environment on board the Shuttle. . . . Japan is introducing 900 MHzc .b. with 80 channels and $25-\mathrm{kHz}$ spacing. Automatic transmission of identification signals will be incorporated. Although Japan has supplied the world with c.b. equipment it is one of the last major countries to introduce c.b. Mobile rallies to be held during May include an Anglo-Scottish rally at Kelso on May 6: Swindon (Oakfield School) and ()tley (Flower Show Hall, Harrogate) on May 13; Drayton Manor Park (near Tamworth) on May 20; and East Suffolk Wireless Revival (Suffolk Showground, Ipswich) on May 27 . . . In the period to May 1984, the Radio Amateur Licensing Unit of the Post Office is sending a questionnaire to each licensed radio amateur in the UK. However the main purpose appears to be to check postal addresses and post codes . . . Solar flux levels were unexpectedly high during February 1984, reaching the highest levels since December 1982 The RSGB have extended the deadline for the additional 50 MHz permits to April 30 at the request of the ITTI.

PAT HAWKER, G3VA

PREFERRED HISTORIES

Mr Scott, in the January issue, has drawn quite the wrong conclusion for his final quotation, and his conclusion reflects his thinking throughout. The modern camel has been designed by a large committee of users, whose lives and livelihood have depended on their transport.
Camels work for them, as horses work for Mr Scott and Jorrocks. Horses one may recall, did not work for Captain Scott.

The appropriate quotation might be Belloc: "Only an aristocracy can be governed by committees". When the preferred number system and colour coding were standardized the light-current engineers had something of the character of an aristocracy. Tenuous links of common education or common experience extended almost everywhere, just as we can see the family links in the books of Anthony Powell.

The two basic factors were the almost universal use of carbon composition resistor, and the boom, highly seasonable, in the manufacture of wireless sets. There really were, every year, new ideas at Olympia, and one large manufacturer closed for six months each year because no-one bought in the early summer. The carbon composition resistor was not very stable, so that designers were forced to live with $\pm 20 \%$ tolerance. The method of manufacture had a lot in common with the production of the stodgy school puddings which you can now get only at a decent London club. Two buckets of A, one of B, a shovelful of C and D to taste. Blend, mould to shape, place in a hot oven. Sort.

Sort in fact into bins, with
0.8-1.0-1.2: 1.2-1.44.1-728:

As long as they were inside ceramic tubes the resistance could be printed on the tube. Changes of mix to make them fairly damp-proof gave a black body which did not need to be encased. Like the $£ 1$ coin it all made sense to have a set of values and a colour coding system. The trouble with answers which make sense is that no-one likes them. In the 1945 edition of Langford Smith the Radio Manufacturers Association (US) has a long list of popular
values, few of which are our preferred number. Colour coding yes; E6 or E12, no.

One important trick, and a jolly good one, was to link value and colour. The use of 3.3 instead of 3.2 means more colour contrast, and as it means 2.7 to 3.9 anyway, how does it matter. To use the full colour range we can pick either $4.7,6.8$ or $4.6,6.7$. But 4.7, 6.8 gives us a double colour contrast. The committee, in fact, lifted its collective eyes from the slide rule and looked at the real world, as they knew it.

Full acceptance of the system came only with the War, with the drafting of specifications and lists, and with pressures on designers like the ruling that even 10% tolerance could only be used if application and justification were made in writing.

The functional nature of the preferred number series was discussed in a series of articles in Wireless Engineer nearly 40 years ago. The initial problem was to produce simple band-separating filters, the sort the PO used to provide if a local embassy transmitting in the h.f. band interfered with your Band I television, subject to the condition that the capacitor should have preferred values.The usual method was to design conventionally and wonder what the effect of 220 instead of 270 would be. Using as an example the typical equation $C \neq$ $1 / 2 \pi f_{c} R$, we have
$\log _{6} \mathrm{C}=-\left(\log _{6} 2 \pi+\log _{6} \mathrm{f}_{\mathrm{c}}+\right.$ $\log _{6} \mathrm{R}$)
If $2 \pi=6.8$ we can choose f_{c} and R as preferred numbers. Then $\log _{6} \mathrm{C}$ is an integer and so C is a preferred number. We have defined the design limitations at the beginning, not fudged them at the end. For equations containing a square root, $\log _{6} \mathrm{X}$ will be $n / 2$, and thus will be in the E12 range.

Mr Scott should ask himself what sort of people he thinks we are, not to have noticed that $10_{1 / 6}$ is not 1.5 . And then, what sort of a person do we think he is?

Thomas Roddam

Arundel
W. Sussex

DBX AND DOLBY
I am writing with regard to an article entitled "BSR clambers out of depression" in the January 1984 issue of Wireless World which states that "They (dbx, Inc.) have produced a neat little playback decoder, battery operated, for use with headphone cassette players for both dbx and Dolby B decoding." If this statement is referring to the dbx PPA-1 decoder, it is incorrect, since this unit does not have a Dolby B-type decoding facility. In its dbx B mode, the PPA-1 does have static decode characteristics that approximate to those of Dolby B-type, but it does not have the dual path circuitry, the overshoot suppression, the dual-rate control circuit and other characteristics that it would need before it could be said to have "Dolby B decoding". I would appreciate it if you would advise your readers of this. Ian Hardcastle
Vice president
Dolby Laboratories
San Francisco, LA

ELECTRIC CHARGEFROM A RADIO WAVE

In his letter (January 1984) Peter Hesketh gives a step by step method of changing Professor Jennison's apparatus to produce an ideal waveguide bent into a circle. I agree with him that no amplifier is in principle necessary to maintain a wave in such a guide, and so far, his assumptions are completely justified. However, I do not see how he can use this idealised equipment, even in his imagination, to support Professor Jennison's contention.

Is it not true that the velocity in space of a guided
electromagnetic wave is independent of the motion of the conductors that do the guiding? In other words, even in principle we cannot drive a waveguide backward so that the wave it carries is arrested in space.

Now this objection does not apply to the discrete component machine described in the article. The waves associated with such a machine are not electromagnetic waves in space, but as I said in my earlier letter, more like the waves we find on a polyphase
machine. As such they have a velocity relative to the hardware of the machine. Perhaps Mr Hesketh has raised unwittingly a more serious objection to Professor Jennison's demonstration than at first occurred to me. We cannot use a machine that generates waves having a velocity which can be vectorially combined with the velocity of the machine to explain a phenomenon where the waves have a velocity that is independent of the machine velocity.

Perhaps in what I say here I am mistaken. I would certainly like to see Professor Jennison's defence of his apparatus.

Chris Parton

Department of Electrical \&
Electronic Engineering Bell College of Technology Hamilton

Letters to the editor

Letters for publication are always very welcome. Many more come in than can be published, since space in the journal is limited, and I would therefore ask that letters be short and to the point, so that heavy cutting need not be suffered. Letters on new subjects will now be printed on the Feedforward page, those referring to past topics, already mentioned in articles or previous letters, going in the Feedback section.

Ed.

TELEVISION TECHNOLOGY

I think it is time something was done about Television. It has become rather nasty. I am referring not to video vice and violence, but to circuit technology. The whole science has, like Topsy in Uncle Tom's Cabin, "just growed". Well, what of it? one might ask, it works well enough, doesn't it?

Get yourself a circuit diagram of your own receiver, study it, and then ask yourself how you would like to track down an obscure fault in the heart of it. Logical, step-by-step fault tracing is not so easy.

The point I wish to make is that it has all developed out of pre-war neon relaxation oscillator technology. If there had never been any television prior to 1980 say, then we would not have started from there, and we would not still be perpetuating that piece of non-ideal practice. At present I believe the following line standards exist, 405,525 , $625,819,929$, and the Japanese are developing 1251 lines.

The advent of satellite television broadcasting gives the world a chance to make a clean break with the past, and to adopt a new, elegant and simple global standard. For a start, lack of bandwidth need surely no longer compromise and complicate system design. For instance, one could have three separate colour carriers, thus greatly simplifying everything. Since all receivers are likely to incorporate at least one frequency crystal, there is no need to transmit line as well as frame synchronizing pulses. Interlacing could probably be dropped in favour of some round number of lines, e.g. 1200 , $1500,1800,2400$ or 3000 , and the sooner the shadow mask goes the better.

Modern tv receivers certainly are reasonably reliable. However, they do sometimes break down, and the involved circuitry around the line timebase (diagram) can give even experienced servicing engineers a great deal of trouble, wasting a lot of time. This results in heavy charges for customers to pay. Components in the line timebase are the most highly stressed in the set. Even the scanning coils may have a thousand volts across them.

If, instead of the present
scan-and-flyback system, we had a zig-zag scan-scan system, the line timebase would be much more wholesome, and far less lethal. It would be a simple matter to generate the e.h.t. by a separate oscillator and Cockcroft-Walton voltage multiplier. Synchronizing pulses and most of the other pulses at present supplied by the line output transformer could come straight from an internal crystal-controlled waveform generator. The crystal frequency and phase would be trimmed by a received frequency burst, which also serves as the frame sync. signal.

As tv receivers do not usually last much longer than 15 years, I submit that it is not essential to make the system for the future compatible with anything now in existence. Let's start again, and this time make it all elegantly simple, rational and straightforward, for in the end this will save everybody a lot of time, trouble and money. Many expensive items like colour cameras could probably be sent back to the manufacturers to be refurbished to the new system, only printed boards ending up on the scrap heap. Getting rid of fast flyback should also significantly reduce the fire hazard of $t v$ receivers, and greatly increase reliability.

The prospects for international co-operation over programmes, and for tv "globe-trotting" would obviously be much enhanced if there was a single universal system. The co-operation of all nations is really needed in order to evolve the best possible system and to get it universally accepted.
H. G. May

Barton-on-Sea
Hants

* Double the line standard and you are likely to end up with twice the voltage across the deflector coils, unless you abolish flyback and have a zig-zag scan.

SHIFTING WAVES

I wonder if any of your readers could explain to me the odd behaviour of u.h.f. transmissions which I outline below?

To receive domestic television signals from the Sandy Heath transmitter, a simple half-wave dipole with a sheath balun is positioned at an anti-node in the standing-wave pattern which the transmissions set up in a rectangular brick enclosure of approximately $6 \times 4 \times 2 \frac{1}{2}$ metres. (Sometimes referred to as a sitting-room)

While the anti-node positions for BBC 2, ITV and C4 are practically coincident, that for BBC 1 displaced from them by nearly 50 cm . Since the point of transmission is the same for all four and the wavelength variation trivial, it is difficult to understand this.

An attempted analysis has postulated the irradiation of two of the enclosure walls by a plane wavefront travelling horizontally and then generated a Huygens wavelet construction from those walls. Mathematical ineptitude prevented a rigorous solution of the expressions arising but they did not, in any case, appear to contain the seeds of an
explanation.
H. C. Wright

Blisworth
Northampton

CODED TELEPHONE NUMBERS

May I suggest a simple method of removing one of the most frustrating and error prone activities of any business. This is, the dialling of unfamiliar telephone numbers.

By means of a simple decoder attached to a standard telephone this would use trade directories, visiting cards etc. carrying their bar-encoded telephone numbers. The reader would be a simple wand with possibly a slot to allow cards to be passed through.

This system would, of course, only be of use if a significant number of the business sector used it. Perhaps you would be good enough to raise the subject and help start by producing a suitable adaptor.

John Wilkins
 Somersham
 Cambridgeshire

SC84 microcomputer continued from page 40

The signal at the start of the Schmitt buffers is (MREQ and not MEMDIS) and not (RFSH or ROMEN), i.e. unless MEMDIS, RFSH or ROMEN is active it is $\overline{M R E Q}$ delayed by a couple of gates. The starting (falling) edge of MREQ becomes a rising edge at the output of the first Schmitt gate. This rising edge is slowed down by the RC combination between the first two buffers so that the falling edge at the second output is somewhat later than that of MREQ. This signal is used to switch addresses being supplied to ram through multiplexers $\mathrm{IC}_{108,9}$. Further delay is applied to produce CAS. To provide a quick end to the memory access so that the multiplexers are definitely reset to the row-address position ready for a refresh cycle, a diode shunts the first time delay which would follow MREQ's trailing (rising) edge. Refresh occurs when MREQ cycles while the RFSH signal is active. During this period, the 280 puts out a sevenbit value from a special internal register which increments after every refresh. MREQ triggers the monostable i.c. to set off a RAS cycle but the RFSH signal inhibits production of address-multiplex or CAS signals. From the previous discussion of dynamic memory operation, one can see that the sole result of the RFSH cycle, or any memory cycle during which MEMDIS or ROMEN is active, is to 'refresh' $1 / 128$ th of the memory.

A simple inverter ring produces the system clock. The crystal frequency will depend on the microprocessor used, i.e., 4 MHz for the 280 A or 6 MHz for the 280 B . A 280 A should work with a popular 4.1943 MHz crystal. These are relatively cheap and although the MK3880-4 or Z80A-CPU is only specified up to 4 MHz , it is unlikely that they will not work at this slightly higher frequency. Each i/o section has its own crystal and oscillator, so the crystal used on the processor board will not affect i / o data rates, etc., with the proviso that the processor clock must not fall below 3.6 MHz if 3.5 or 8 in dou-ble-density disc drives are used. When the RESET pin on the 280 is active everything, including memory refresh, stops. For this reason the reset monostable i.c. generates a short pulse and no matter how long the reset button is held in, refresh is only briefly interrupted so that no memory corruption occurs. As well as providing a reset signal for the 280 and all peripheral circuits, the pulse is used to set a bistable i.c. WIRELESS WORLD MAY 1984
formed from two gates of IC_{120}. The output of this bistable device gates with A_{15} to produce ROMEN, a signal which follows A_{15} while the bistable i.c. is set and enables rom whenever A_{15} is low, i.e. during access at any address from zero to $7 \mathrm{FFF}_{16}$. On receiving a reset signal, the $Z 80$ starts to fetch and execute instructions from address location zero. This means that following reset, the 280 executes instructions from eprom. At the base of the eprom it finds instructions to copy a part of the rom at the top 8 K -bytes of system memory followed by a jump that area. This copied software is the machinecode operating system whose first instruction is an i / o read which, due to the $\overline{I O R Q}$ line going active during its execution, resets the flip-flop and forces ROMEN to the inactive high state, disabling the eprom and freeing the entire 64 K -byte ram. The timing circuit on the reset monostable i.c. arranges for a much longer time constant to be applied during power-up, providing a reset pulse long enough to allow start up of all of the system clocks. Eprom IC_{107} is shown as a 2764 or 27128 but the board may be modificd to take 27256 or 27512 devices.

Prototypes of the computer have been made in wire-wrapped and soldered wiring forms, the most recent version using Vero 03-2989 L boards and wiring pen type 79-1732G. Suggested wiring layouts and component placement diagrams for such boards can be obtained by sending a large s.a.e. to Wireless World's editorial offices. Constraction using p.c.bs is a much easier matter and will be the assumed method. When using these boards the i.cs should be soldered directly onto the boards with the exception of eproms which should be fitted in good quality sockets. Sockets may be used if required, but only good quality ones. Dynamic rams are best soldered in. The natural fear is that of removing i.cs should faults occur. This is quite easy though, either using a desoldering tool or by snipping all of the pins off the i.c. body and removing them one by one. A system as complicated as this should not be repaired using the swap-andsee technique so for those who do not have the test facilities to trace a fault, a repair service will be available - for systems built on p.c.bs! Standard pitches have been used for discrete components, details of which appear with each circuit diagram.

John Adams' next article describes SC84's input/output

board. SciDOS with utility software, extended Basic with graphics facilities and Basic with enhanced file manipulation, i / o control, numeric/constant string handling and 12 -digit precision are available for $£ 36, £ 22.50$ and £31.50 respectively. These prices include vat and postage and become $£ 24, £ 15$ and $£ 21$ respectively for non-commercial users. Further discounts are available for those buying more than one software package at once. Write enclosing s.a.e. to J.H. Adams, 5 The Close, Radlett, Herts.

A set of three Eurocard-format plated-through hole boards for SC84 is available from Combe Martin Electronics, King Street, Combe Martin, Devon EX34 0 AD . Price is $£ 39$ for the set including v.a.t. and inland or overseas postage. John Adams is considering producing a kit of parts for these boards and John Hodson - secretary of the Scientific Computer User Group - is organizing the SC84 user group. For further information send an s.a.e. to John Adams for kit details orJohn Hodson, 189 Trent Valley Road, Oakhill, Stoke-onTrent ST4 5LE, for user group details.

DONT‘T WASTE GOOD

IDEAS
We prefer circuit ideas with neat drawings and widely-spaced typescripts, but we would rather have scribbles on "the back of an envelope" than let good ideas be wasted.

Submissions are judged on originality or usefulness - not excluding imaginative modifications to existing circuits so these points should
be brought to the fore, preferably in the first sentence.

Minimum payment
of $£ 30$ is made for published circuits, normally early in the month following publication.

Combination lock with deterrent

This electronic lock operates on entering the correct four-digit combination on a hexadecimal keypad but should an incorrect entry be made, a further entry is not permitted for one minute. Each subsequent incorrect entry increases the entry-inhibit period by one minute up to a maximum of 15 minutes, after which the delay period is reset.

Inputs $\mathrm{A}-\mathrm{H}$ of shift registers $\mathrm{IC}_{21,22}$ are used to set the combination and $\mathrm{A}-\mathrm{D}$ inputs of counter IC_{5} set the combination size (four in this case). Pressing the internal clear key resets the control-sequence counter IC_{12} and control-pulse generator IC_{13}. On pressing the enter key, positioned externally on the keypad, outputs of decoder IC_{13} and counter IC_{12} are enabled through bistable $\mathrm{IC}_{11 \mathrm{a}}$.

Activating X_{1} loads the combination size into counter IC ${ }_{5}$, loads the keyword into shift registers IC ${ }_{21.22}$, clears previously entered trials in registers $\mathrm{IC}_{3,4}$
and resets the open signal of bistable IC_{17}. Activating X_{2} sets bistable IC_{116}, which was reset when the internal clear key was pressed through $\mathrm{IC}_{8 \mathrm{cc}, 10,9_{3}}$, to enable the hexadecimal keypad decoder $\mathrm{IC}_{1,2}$ so that digits entered are stored in $\mathrm{IC}_{3.4}$ sequentially. On entry of each digit, monostable IC_{6} generates a pulse which decrements counter IC_{5} by one. Following entry of the four-digit combination, the borrow output of IC_{5} goes low and disables $\mathrm{IC}_{11 \mathrm{~b}}$, inhibiting further entry of digits into encoders $\mathrm{IC}_{1,2}$. Keyboard activation is indicated by the 1.e.d.

Activating X_{5} connects clock MCK to clock inputs of shift registers $\mathrm{IC}_{21.22}$, causing the internal keyword to be transferred serially through the Q_{H} output of IC_{22} to one of the inputs of the exclusive-Or circuit comprising IC_{10} 20c.200..8d. Also, activating X_{5} will put shift registers $\mathrm{IC}_{3.4}$ in shift mode due to $\mathrm{IC}_{10.80}$ outputs and connect clock MCK to inputs of both registers causing the entered keyword to be shifted in
synchronism with the internal keyword to the second input of the exclusive-Or circuit. This permits a comparison which if untrue, sends the error line high. Note that MCK is 4 n times the CK clock frequency, where n is the number of codeword digits.

If the comparison is true, $\mathrm{IC}_{19,17 \mathrm{~b}}$ will be cleared, and with the activation of X_{6}, the 'open' line will go high and open the lock. Otherwise, IC_{19} will be set on the first low-to-high transition of Error, setting $\mathrm{IC}_{17 \mathrm{~b}}$ and clearing the open line on X_{6} activation to keep the lock engaged. The change of state in Error inhibits the sequence counter IC_{12}, through setting of IC_{19}, and activates a $1 / 60 \mathrm{~Hz}$ multivibrator IC_{16} with a duty cycle of 30 s . Also, the delay counter is incremented by one and its contents loaded into counter IC_{15} which holds the control sequence for the specified delay steps; after this the borrow output goes low clearing IC_{19} and allowing sequence counter IC_{12} to continue.

At the end of each control sequence, mutlivibrator IC_{16} is

disabled and IC_{11} clears,
inhibiting sequence decoder IC_{13} and the sequence counter IC_{12}. A further Enter signal restarts the control sequencer, permitting another trial entry. Upon
activation of Open, delay counter IC_{14} and the sequence counter IC_{12} resets. Note that the MCK generator, not shown, can be realized with a 74123 (as shown in the delay section) or with an
NE555 timer
G.A.M. Labib

Heliopolis
Cairo

Universal crystal oscillator

Design of a universal crystal oscillator is hampered by the wide variation in crystal parameters - series resistance of low-frequency crystals can be more than 200 times that of h.f. types. This simple modified Pierce circuit works with crystals from 25 k to 19 MHz . Oscillation frequnecy is the parallelresonant frequency of the crystal shunted by about 45 pF ; output is about lVpk-pk. The inductor, used only as a choke, is not critical and if the circuit is used below 100 kHz it may be replaced by a $1 \mathrm{k} \Omega$ resistor.

F. Brown

Lake San Marcos
California.

Simple digital music synthesizer

Musical notes of 32 instruments can be generated using this circuit. Basic sound patterns of the 32 intruments contained in a 2716 eprom are in 64 -byte blocks which are sampled at 64 uniform intervals. Six lower address lines corresponding to a memory block of 64 locations are driven by a 7493 counter. This is clocked by a variable oscillator whose frequency is detemmined by nine non-locking push switches to control pitch. Five locking switches program the upper eprom address lines to select one of 32 memory blocks containing instrument patterns. Eprom data outputs feed a digital-to-analogue converter and loudspeaker amplifier.
K. Balasubramanian

NSS College of Engineering
Palghat
India

Variable-speed video playback

The C-format broadcast video recorder uses helical scan on lin tape. This short series shows how servo-controlled head tracking and digital timebase correction allows playback of broadcast-standard video over a wide speed range.

C-format is a helical-scan system, using an omega wrap around the drum as in the sketch. A head on the drum traces a diagonal track across the tape, where one drum revolution corresponds to one video field. Because of the open base of the omega, the head will be out of contact with the tape for a short period once every revolution, which is timed to coincide with the vertical sync. pulse where there is no visible picture information.

Vertical interval sync. pulses can be easily taken from reference signals and, for this reason, storing the vertical interval is optional under C-format. Where vertical sync. storage is implemented, a second, sync.-only head, positioned 30° behind the video head, records in an area between the control and Audio 3 tracks. If ver-tical-sync. recording is not implemented, a dummy head replaces the sync. head, and a further audio track is available in the area vacated by the sync. information.

Figure 1 shows the resultant pattern on the tape, and includes the linear audio and control tracks. the drum turns against the direction of tape travel and the video-head-to-tape velocity is the vector sum of the drum peripheral velocity and the linear tape velocity. Similarly the angle of the tape tracks is a function of the drum geometry and the tape speed. During playback the capstan and drum servos must phase lock to an external video reference, such that off-tape video has the same timing as the reference, which means that correctly timed playback can take place at one tape speed only. Furthermore, the video head will only accurately trace the tape tracks if drum and capstan turn in a fixed relationship.

For variable-speed playback, WIRELESS WORLD MAY 1984
the capstan servo must be unlocked: thus the video head will no longer accurately trace the tape tracks, and the timing of the off-tape signal will no longer correspond to the reference.

Two systems are necessary to overcome these problems. A track-following video head solves the geometrical problems, and a timebase corrector restores the timing to that of reference video.

Video track following

Track following was originally applied to video recording in order to improve compatibility between machines. This technique will be discussed first, followed by the additional requirements of variable-speed track following. The principle appears under various trade names:
by J. R. Watkinson, M.Sc., B.Sc.

Fig 1(a) shows essentials of PAL C-format. Tape is guided round drum at helix angle, but movement of tape agains drum rotation causes track angle to be slightly smaller than helix angle. Tape speed is chosen to give video offset of 3.5 lines, which gives horizontal alignment condition (inset). Vertical interval storage is optional and a fourth audio track is an alternative.

Where optional sync. head is used, vertical interval is recorded separately (b), without overlap. Effect of interlace is to record two types of field. Two-field sequence repeats endlessly. Addition of chrominance to interlace sequence causes sequence to extend - see appendix.

nal, and the waveforms in Fig. 2 correspond to the r.f. envelope of the f.m. carrier. Case (a) and case (c) display the same output, although the tracking error is in the opposite sense. Simple processing of the r.f. level thus only provides the magnitude of the tracking error, not the sense. To extract the sense of the tracking error, a dither is superimposed on the tracking head, which is driven by a piezo-electric bimorph
Fig. 2. Effect of tracking error on playback signal. Signal amplitude in (a) and (c) is identical, despite sense of tracking error. Maximum signal occurs with correct alignment as in (b).

Fig 3. Simple single bimorph at (a) changes head contact angle . At (b) compound bimorph closely approximates parallel action. Tracking head mounted in video drum is shown at (c).

Fig. 4. Top, dither waveform which causes head to oscillate across track. At (a) is optimum alignment, showing frequency doubling in r.f. envelope. With head above track centre, as in (b), r.f. amplitude increases as head reaches lowest point, whereas reverse applies in case (c).

Ampex use the term Automatic Scan Tracking, whereas Sony's description is Dynamic Tracking.

Essentially, the playback video head can move at right angles to the tape track, and forms part of a position servo and, as with all servo systems, a position error is required. The system used differs completely from those used in track following disc drives.

Figure 2 shows three configurations of head to track, and corresponding output. Video recorders use f.m. recording, to cater for the wide bandwidth of the sig-
mounted in the drum, as in Fig. 3. In the interests of good head-to-tape contact, it is necessary to give the head an approximation to parallel motion by combining two bimorphs, whose bending tendencies will then cancel. An a.c. component of between 400 and 700 Hz is added to the bimorph drive, which causes the head to execute an approximate sinusoid. One field scan contains many cy cles of dither. The effect of the dither on the r.f. envelope, as shown in Fig. 4, is an amplitude modulation of the carrier, which has little effect on the video,
 owing to the insensitivity of the f.m. system to amplitude variations. Figure 4 (a) shows that the effect of the dither on a correctly aligned head is a dither frequency doubling in the r.f. envelope. Figures 4(b) and (c) show the effect of the head off track. Both examples appear similar, but the phase of the envelope modulation is determined by the sense of the tracking error.

In Fig. 5 the r.f. is detected to obtain a level, which is fed to a phase-sensitive rectifier, whose reference is the dither drive signal. The output of the phase sensitive rectifier is a tracking error signal which contains both magnitude and sense. This tracking error is fed back to the bimorph drive circuit to cancel the error.

As the track following head and the bimorph form a mechanical resonant system, the resonance must be above the frequencies used in operation, and damping is required. This is provided
by positional feedback from the bimorph. A break is formed in the electrodes on the surface of the bimorph which apply the electric field for delfection, and the small strip of electrode which is isolated in this way becomes a sense strip, which generates a deflection signal used for damping and for feedback during the vertical interval, when the head is out of contact with the tape.

If the capstan of the v.t.r. is made to run slightly slow, the drum speed will not change because it determines the field rate. Thus, the tracking servo will cause the bimorph to bend further and further down the drums as it attempts to follow tracks which are not passing quickly enough. Conversely, if the v.t.r. runs slightly fast, the bimorph will bend further and further up the drum to follow tracks which are passing too quickly. In both cases, if nothing were done, the bimorph would eventually run out of travel. To allow continuous operation it is necessary to make the tracking head jump as it crosses the base of the omega, reducing the bimorph travel. When running slow, the jump will be one track back, such that from time to time one field is played twice to maintain field rate, whereas when running fast, the jump will cause a tape field to be missed periodically. The more the speed differs from unity, the more often will such jumps be necessary. Figure 6 shows several examples of jumping, and also shows the drive signal which will be sent to the bimorph (neglecting the dither signal). Note the dipulses which are needed to accelerate and decelerate the tracking head during the jump.

It is possible to stop the tape completely and maintain an output. In this case the bimorph can be made to follow one field continually by making a one-track reverse jump at the vertical interval, using the drive waveform in Fig. 7(a). An alternative is repeatedly to play one frame, where a two-track jump occurs every two fields, as shown in Fig. 7(b). If the tape is reversed at normal speed, the tracking head can still follow the tracks, but has to make a two-track reverse jump once every revolution.

From Fig. 8 it can be seen that the waveforms needed for $-1 \times$ and $+3 \times$ speeds are the inverse of one another. This is because the $+1 \times$ speed is obtained by drum geometry, and the $-1 \times$ and $+3 \times$ represent an equal departure from it. This must be looked at in the context of head to tape speed. Because the drum peripheral velocity is the dominant factor, stopping or reversing the tape only reduces the head-to-
tape speed slightly. Similarly, doubling or tripling the linear tape speed only slightly increases the head-to-tape speed. Note that in C-format, the drum turns against tape travel. In some formats, the drum turns with the tape travel, and many of the effects described here will be in the opposite sense.

When the tape speed exceeds certain limits, the bimorph does not have enough physical travel to stay on one track for a complete revolution of the drum. In this case jumping has to take place on the visible part of the scan, and guard band noise between tracks will be played back during the jump. There is no disturbance to H sync. phase caused by in-field track switching because the C-format, like most other video tape formats, is designed such that H pulses on adjacent tracks are aligned. This is achieved by choosing a linear tape speed which causes a 3.5 line shift between tracks. The half-line component removes the effects of interlace on the H/V sync. relationship, permitting the horizontal alignment condition. It is this constraint that results in video recorders having rather strange linear tape speeds. One revolution of the drum now plays back segments of various tracks to build up a field. the circumstances under which this happens are beyond the speed range where a broadcast quality signal is required, and the jumping within the field permits a picture to be seen which is not perfect but is of much more practical use than no picture at all.

The track-following head is in a drum which is of 67.31 mm radius, and tuming at 3000 r.p.m., which means that it is experiencing a pull of about 700 times the force of gravity, which tends to keep the bimorph straight! Large excursions needed for variable-speed operation mean that an appreciable drive (several hundred volts) is needed to overcome the overall stiffness of the bimorph. As drive in a conventional feedback servo is proportional to the loop error, the tracking error would be greater at the excursion limits. This problem can be eliminated by using a feedforward technique. For any linear tape speed, it is possible to calculate the slope of the voltage ramp needed to keep the head on track by geometry. Figures 6, 7 and 8 show that the slope is proportional to the deviation from normal speed, i.e. slope is zero at $+1 \times$, and the slope at $+3 \times$ is equal and opposite to the slope at $-1 \times$. The capstan drive circuit can determine the speed deviation, and if this is fed into an integrator which resets once per drum revolution, a predicted deflection signal can be

Fig. 5. Phase-sensitive rectifier in (a) extracts tracking error from r.f. envelope. Position feedback from sense strip provides damping. At (b), break in electrode plating isolates sense strip on bimorph, isolating two sections of element which bend in opposition due to cross wire connections.

Fig. 6. Tape at (a) moving at 125\% normal speed: to maintain field rate, four out of every five tracks are played, with single-track jump every four. Slope of bimorph drive signal is positive: negative steps are where head jumps down to skip one track. At (b), tape moves at 80% of forward speed: every fourth track played twice using single-track reverse jump. Slope of bimorph drive is negative, with positive jumps to repeat one track.

Fig. 7. Still-field mode at (a) repeats one field endlessly. With tape stationary, one-track reverse jump is needed once per field.
Still-frame mode at (b) repeats two fields endlessly.
Two-track reverse jump once per frame. Depending on where tape stops, d.c. component may be needed.

Fig. 8. Single-track advance is obtained by normal tape movement. Two-track jump forwards adds to give $\times 3$ speed: two-track backwards subtracts to give -1 speed.

$+3 x$
 2-track forward jump

 every field plays every third tape field2-track reverse jump
every field plays fields in reverse

(a)

Fig. 9. Circuit arrangement at (a) shows feedforward signal predicting slope of bimorph drive derived from capstan speed deviation. At (b), correct choice of dither frequency enables interleaving of tracking-error spectrum and smapling.
obtained. The feedback system has now only to correct for difference between actual track position and predicted track position, and the tracking error will be independent of bimorph excursion. Figure 9 shows details of the system.

Stability criteria for a ditherbased servo warrant a closer study. The tracking error is sampled at the dither frequency by the phase-sensitive rectifier. As it is a sampled system, then Nyquist's sampling theory suggests that there will be no information above one half the dither frequency. It is essential to filter the tracking error to prevent aliasing components distorting the feedback.The presence of a low-pass filter in a feedback loop is undesirable in a servo system, since the overall response cannot exceed the response of that filter without instability.

One approach is to use a comb filter in conjunction with a carefully chosen dither frequency. Figure 9(b) shows that the harmonics of the tracking error are at multiples of 50 Hz , the drum speed. If the dither frequency is set between multiples of 50 Hz , the sampling spectrum will interleave the base spectrum. A comb filter with peaks at 50, 100, 150 Hz etc. can recover the tracking error and reject the aliasing components, giving the highest possible response rate for a given dither frequency. Clearly an NTSC machine with 60 Hz drum rate will need a different dither frequency.

The mechanism of track following has been discussed, but this can only function if it is correctly coordinated with jumping control. To reduce jerkiness in the picture, the jumps should be as small as possible, which implies that they will be as frequent as possible. The smallest jump possible is one track, and to give broadcastable pictures, the jump can only occur at the vertical interval. From stationary to $+2 \times$, single-track jumps are sufficient, their frequency varying from never at $+1 \times$ to once per rev. at $+2 \times$ where every other field is played back. This variation in jump rate is infinite, and therefore it is not easy to calculate when to jump by processing the tape speed. From 0 to $+2 \times$, a single-track jump will be made if the bimorph displacement exceeds $1 / 2$ track at the end of a field. This will cause the bimorph displacement to become half a track the other way, and if that tape speed is maintained, the error will return to zero over a number of fields, and build up to half a track again, causing a further jump.

Multi-standard modem

 Suitable for any computer with

 Suitable for any computer with an RS232-type serial port

 an RS232-type serial port}

Until fairly recently the average electronics hobbyist would have had little use for a modem. But now the situation has changed considerably, with the emergence of a multitude of dial-up information services accessible to anyone with a suitable home computer.

One of the very biggest databases, British Telecom's Prestel, can be reached frommost parts of the country for the price of a local telephone call. Besides wellpublicised services such as home banking and teleshopping Prestel includes thousands of pages for microcomputer users, with news and information and software to download

The basic Prestel service is available to home users for $\mathcal{\$} 5$ per quarter at present. There are other databases costing still less to use, or nothing at all. A number of electronic component suppliers, including Maplin Electronics, Display Electronics, Ambit International and STC Electronic Services, allow customers to search their stock-lists by microcomputer and place orders directly. In addition, there is a chain of privately-run 'bulletin boards' offering facilities such as software down-loading and electronic mail.

One problem faced by wouldbe modem constructors (or buyers) has been in deciding which transmission standard to go for. Prestel follows the CCITT V23 standard, sending data to the subscriber at 1200 baud and receiving at 75 baud. Many other systems operate at 300 baud in each direction. There is also a 600 baud CCITT standard; and the situation is complicated further by the existence of yet other standards across the Atlantic, some of which are used by databases in Britain.

Multi-mode modems have tended to be complex and expensive; but the introduction by Advanced Micro Devices of a versatile modem chip capable of supporting all common standards has now made them a practical possibility for the home constructor.

The Am7910 is a 28 -pin 1.s.i. device signal processing through-
which it is possible to set up any of nine normal operating configurations. For testing, one line sets transmit and receive filters to the same frequency, allowing data to be looped back through the modem. The other modes are reserved by the manufacturer for diagnostic purposes.

Frequency assignments for the various standards are shown in Fig. 1. The Bell 202 and CCITT V23 modes are described rather misleadingly as 'half-duplex', which means that the data rates in each direction are different. Prestel's 75 baud 'back' channel can transmit data much faster than most people can type it, but the equivalent in the Bell system offers a rate of only 5 bits per second and its uses are therefore more limited. To prevent conflict in the full-duplex modes, the modem originating the call should transmit on the lower pair of frequencies and the answering modem on the higher.

The Am7910 has data and handshaking ports for a standard RS232 computer interface and

by Richard Lambley

A Wireless World Design

Fig. 1. Full duplex modes allow simultaneous 300baud transmission in both directions. In the half-duplex modes, the return channel is of limited bandwidth.
out. Audio-frequency tones received from the telephone line are sampled by an 11-bit ana-logue-to-digital converter and tones transmitted are generated by an 11 -bit d-to-a. The shape of the sine-wave is governed by data stored in an internal rom and frequency stability is assured by a quartz crystal. Even the filtering is performed within the chip and so there are no setting-up adjustments to be made. All the designer has to do is to interface the device to the telephone line and to the computer and of course to provide mode-switching.
There are five control lines with

Fig. 2. Block diagram of the AM7910. The mode control pins provide selection of a variety of common European and American standards. No external filters are required.

Viewfax 258 (right) is available through Prestel.

Browsers welcome: Distel

(below) is soon to offer automatic mode selection to match the user's modem.

Melcone to DISTEL (C) DIsplay Electronics 1989
Control 's' a can be used to slow down outgut for readiaq
'H' For help file is Reconaended for farst tiat users **
' 0 . For distel including miling list and topical into
of for dISTEL ain menu
Enter Coasand H
Use Control ' 5 ' and ' 0 ' to stop and stapt data output.
The DISTE data base contains a lot of inforation. READ thas help
file to enable you to aike the best use of it, bood Luck!'
all data from the DISTEL coaputer is selected br an a choice MERU. Menu explamationt
1' SEARCH Data base by GENERIC part nusbers. A lot of annufacturers aake siailar iteas and dentify then by alpha prefixes. for example an SW7400 mould be found by 7400. Reanaber the FEWER digits you enter the MORE liess you list. 2 N entered on its oun will list a lot of transistors
'2' SEARCH Data base by TYPE of Product, for example: PRINTERS, BlSKS, POWER SUPPLIES, IRANSISTORS ets. The GEMERIC search still applies so the less you enter the core types of product heidings you will see. Enter the J digit category nuaber to see all SUB categories under the chosen heading. Full nates of PRODulis are MOT required - 15 SEL wall search froe just single characters.
' 3 ' SEARCH by AS Component 5 catalog number, He stock a LOT of itens that atch or exced the spec of RS itess. The only difference is the PRICE Iteas ay be found by entering the RS oart number ie. 500-657 reseaber to inciude the ' - '. 'Wo such itea' oeans me do not have it at present.
requires only a set of inverting buffers to drive the line and receive from it. However, many home computers are not equipped to handle the full set of RS232 signals and external logic may be needed to combine some of them.
'Although the Am7910 has only one transmitter and one receiver (Fig. 2.), separate connections are provided for the main data channels and the halfduplex 'back' channels. Thus, for Prestel, received data appears on the RD pin, just as it does in the full duplex modes: but data to be transmitted must be applied to separate back channel input, BTD, instead of the main channel input TD.

A useful feature provided by
the i.c. is the facility to operate what might be termed a reverse Prestel mode - in other words, receiving at 75 baud and transmitting at 1200 baud. This allows the user to communicate with the growing number of Prestel subscribers equipped with $1200 / 75$ baud modems. In this condition, data to be sent is applied to the TD pin and the back-channel received data appears on BRD instead of RD.

In a full RS232 interface, the 25 -pin connector has separate terminals for the main and back channels; but for home computers which do not, transmitted and received signals can be routed to the appropriate pins of the modem via switching logic governed by the setting of the mode switch.

The same switching must be applied to the handshake signals CTS and RTS. The computer sets the RTS (request to send) line to +12 V to indicate that it is ready to receive data, and in response the modem drives CTS (clear to send) to +12 V to signify that the computer may transmit. These signals are inverted by the RS232 buffers and are presented to the Am7910 as RTS and CTS, or BRTS and BCTS in the case of the back channel. Note that the RS232 line itself is governed by a negative logic convention and thus provides a good deal of scope for confusion.

To indicate that it is receiving a carrier from the telephone line, the Am7910 takes to 0V either its CD (carrier detect) pin or, for the back channel, its BCD pin. Again, in a full RS232 interface these signals appear on the separate pins. However, in the Bell 202 mode transmission in the back channel consists simply of keying a 387 Hz carrier on and off. It follows that not all the modem's back channel signals are meaningful. BCTS and BRD are not used at all; and on the transmit side keying is applied to the BRTS line while BTD is held at +5 V .

To complete the RS232 interface, the Am7910 has a DTR pin ('data terminal ready'), which acts as a sort of chip select line. Held at +5 V , the DTR pin disables the internal logic and the inputs and outputs. It may be convenient to use this as a method of switching the modem on- or off-line. All digital inputs and outputs of the Am7910 are

Telephone interface

The transmit carrier appears on the TC output of the Am7910 at a level of about - 3 dBm into 600Ω. In an acoustically-coupled modem it can be applied direct to the microphone of a telephone handset; but in a direct-coupled design
this signal must be fed to the same connections from which the received signal is to be extracted. It is desirable to provide some degree of separation between transmitted and received signals, and this can be achieved simply with an op-amp duplexer (Fig. 3). The impedance of the telephone line is matched by the 600Ω resistor, and the network introduces a 6 dB loss between the transmitter and receiver. In practice, the line is unlikely to match the resistor perfectly and may even be quite reactive; however, this should not matter much.

Sensitivity of the receiver is very high: the modem will accept signals between 0 dBm and -48 dBm , although the carrier detect pin will not turn on unless the level exceeds -43 dBm .

A matching transformer provides coupling to the telephone line and the necessary degree of electrical isolation. On the line side of the transformer the modem must also include a d.c. path to hold the telephone line once it has been acquired.

To allow automatic answering of calls, the Am7910 has a RING input. This may be forced low by a signal derived from a ringing tone on the line, whereupon it will switch the modem into an answer sequence. If the modem is on-line it responds with a period of silence at the TC output (1.9 s under European regulations) followed by a few seconds of answer tone. The call is then established and data can be exchanged between the computers at each end.

Regulations

Potential constructors should be aware that the telecommunications authorities in Britain still place heavy restrictions on what may be connected to a public telephone line. Direct-coupled modems have to be approved by the British Approvals Board for Telecommunications, which unfortunately can only examine finished equipment. Even so, many commercially-manufactured modems available to the home user are not approved, even though they may include components designed to meet the official specifications.

What seems to worry British Telecom is the possibility that someone will accidentally connect a telephone line to mains electricity. This could happen in a modem through faulty construction and might damage the telephone network as well as being dangerous for its users.

Constructional details of a modem using the Am7910 will follow next month.

Table 1. Frequency assignments. In the Bell 202 back mode, a 387 Hz tone corresponds to a mark, its absence to a space.

Mode	$\begin{aligned} & \text { Data } \\ & \text { rate } \\ & \text { (baud) } \end{aligned}$	Duplex	Transmit frequency		Receive frequency		Answer tone freq. Hz
			$\begin{gathered} \text { space } \\ \mathbf{H z} \end{gathered}$	mark Hz	space Hz	mark Hz	
Bell 103 originate	300	full	1070	1270	2025	2225	-
Bell 103 answer	300	full	2025	2225	1070	1270	2225
CCITT V. 21 originate	300	full	1180	980	1850	1650	-
CCITT V. 21 answer	300	full	1850	1650	1180	980	2100
CCITT V. 23 mode 1	600	half	1700	1300	1700	1300	2100
CCITTV. 23 mode 2	1200	half	2100	1300	2100	1300	2100
Bell 202	1200	half	2200	1200	2200	1200	2025
CCITT V. 23 back	75	-	450	390	450	390	-
Bell 202 back	5						

Table 2. Control pins on the Am7910 provide selection of nine operating modes and ten 'loopback' modes for testing. Optional equalisation is available to cope with long or poor-quality lines.

MC4	$M_{\text {M }}^{3}$	MC_{2}	MC1	MCo	
0	0	0	0	0	Bell 103 originate 300 baud full duplex
0	0	0	0	1	Bell 103 answer 300 baud full duplex
0	0	0	1	0	Bell 2021200 baud half duplex
0	0	0	1	1	Bell 202 with equalizer 1200 baud half duplex
0	0	1	0	0	CCITTV. 21 originate 300 baud full duplex
0	0	1	0	1	CCITT V. 21 answer 300 baud full duplex
0	0	1	1	0	CCITT V. 23 mode 21200 baud half duplex
0	0	1	1	1	CCITT V. 23 mode 2 with equalizer 1200 baud half duplex
0	1	0	0	0	CCITT V. 23 mode 1600 baud half duplex
1	0	0	0	0	Bell 103 originate loopback
1	0	0	0	,	Bell 103 answer loopback
1	0	0	1	0	Bell 202 main loopback
1	0	0	1		Bell 202 with equalizer loopback
1	0	1	0	0	CCITT V. 21 originate loopback
1	0	1	0	1	CCITT V. 21 answer loopback
1	0	1	1	0	CCITT V 23 mode 2 main loopback
1	0	1	1	1	CCITT V. 23 mode 2 with equalizer loopback
1	1	0	0	0	CCITT V. 23 mode 1 main loopback
1	1	0	0	1	CCITTV.23 back loopback

Fig. 3. Connection to the telephone line can be via an acoustic coupler, or (below) through an op-amp duplexer and an isolating transformer.

byA.E.Cawkell

The information society

1-Technology, politics and infrastructures

A. E. Cawkell looks back at his 1978 piece "The paperless revolution" and forwards to the year 2000. In this first article, he considers the interactions of politics with technology and the infrastructures which influence, support and enable an information society.

In 1978 I wrote an article in this journal about forces controlling the introduction of new technology^{1}. At that time the arrival of the silicon chip, just introduced to a marvelling public, was being discussed with both optimism and foreboding.

The article was entitled "The paperless revolution" and featured a machine called the Consumersole, an information interface between man and the world outside, to become a reality, perhaps, by the year 2000; universal data communications were assumed to be in place. Reading this article again, I see that I took a rather gloomy view of the technological future.

Information is a curious and unique resource. It is unsatisfactory to call it a commodity. You cannot evaluate it until you have obtained it; once you have it it may be almost impossible to evaluate in monetary terms, but on other occasions there may be no doubt about its value - ask a dealer on the money market about the value to him of timely, accurate information. The value of a train time-table to a man standing on Paddington station who wants to get to Penzance is obvious. It is equally clear that the same information displayed to a Martian is valueless. Information is destroyed when consumed and so has no scarcity value in the usual sense, and yet the meaning of the phrase "there is a scarcity of information about the effects of video nasties on crime" is perfectly clear.

Information is obtained for pleasure and entertainment, for monetary gain or the acquisition of power, or simply to satisfy curiosity, but nearly always it has to be moved before it is changed from mere data into knowledge. These days transference often involves using an electrical rather than a paper-based system.

The idea of an "The Information Society" was implicit in Fritz Machlup's work in 1962^{2}. In 1974 Marc Porat, in an unpublished paper, analysed occupations in the United States and concluded that 50% of the labour force was engaged in information processing occupations. Parker and Porat discussed political issues and headed part of a 1975 article with the phrase "The Information Society" ${ }^{3}$.

The concept of an industry centred on a resource more important than oil - information - was introduced later. Information Technology Year (IT 82) was launched to rub in the message 'Britain Needs Information Technology'. Before considering the outlook for the rest of the decade, let me establish my forecasting credentials, if any, by conducting a brief post mortem on the 1978 article.

Semiconductor technology has advanced and costs have dropped at about the rate predicted. Expectations for bubble memories and holographic storage have not materialised. The mismatch between the information processing capacity of the eye/brain and the amount provided by the c.r.t. screenful is being improved. Larger display devices will be available rather sooner than predicted. Teletext is successful but Viewdata/Prestel is slower to gain acceptance, although private Viewdata-type systems are making progress. Teleconferencing is still in its infancy and so are electronic journals, but electronic publishing is advancing. Electronic mail was much discussed in 1978 and it still is today; implementation lags. The rate of progress in speech recognition has been slow, also as predicted

I think my end-of-term school report should read "Forecasting - very fair; Cawkell should try harder'. However it is no worse than most other forecasts, and rather better than those mentioned below.

Wild forecasting

Before considering the likely rate of formation of a telecommunications infrastructure - the backbone of the Information Society - it is instructive to consider the development rate of other technologies contending mainly with technical problems. The telecommunication/service infrastructure will be contending mainly with political and social problems which will greatly slow down the growth rate.

In the July 1966 issue of Datamation it was stated that "economies of scale are swinging increasingly in the direction of large computers" and in a 1970 issue of Computer Decisions "Small businesses are not going to have small computers; it's not a practical way to go". In 1972 it was forecast that " $40-60 \%$ of American homes will have cable tv by $1980^{\prime \prime}$, and at the end of 1979 a UK forecast of " 100,000 Prestel sets in 1980, equally split between domestic and business" was made.

In 1979 it was anticipated that "By 1983 all the 220,000 telephone subscribers in the llle et Villaine department of Brittany will possess desk-top video terminals costing $£ 33$ each providing access to a local and national database of telephone numbers".

All these forecasts were wildly off target.

As recently as late 1981 one pundit said that the world total for all types of microcomputer in use by the end of 1983 would be 4 million units costing $\$ 3550 \mathrm{M}$. But another now thinks, with the con-
siderable advantage of hindsight for most of the period, that the total will be 17 million units costing $\$ 79 \mathrm{kM}$ (79 billion doliars) ${ }^{4}$!

The delay factor

Forecasters are often misled by manufacturer's announcements abbut development work which may or may not be followed by production, limited application, and more general application. The interval between these events, for technical and political reasons, may be many years, but new-technology announcements inspire speculative articles in the press which prompt discussion and awareness, and new products or services get talked into existence.

Euronet and a set of separate European PTT telecommunications networks are expected to become a unified network by about $1985-15$ years after the pioneering work with ARPANET in the US. It took about 10 years before working local area network (LAN) systems were installed in any quantity following the development of the ALOHÂ network ${ }^{5}$.

The next transatlantic cable will be the optical-fibre type. The idea of optical-fibre communications was first mooted in 1966^{6} and the development of more efficient monomode cables accelerated their use. Such cables started to be installed in 1980 an interval of 14 years after the early work.

Many years passed before Clarke's 1945 forecast that global communications using three geostationary satellites ${ }^{7}$ would be possible. By 1980 satellites were being routinely used as relay stations in the United States. In this case it took 18 years for the idea falteringly to be realised, a further 10 years before satellites became used as telephone relay stations in the Intelsat network, and several more years for tv relay satellites to become commonplace.

The Electronic Scientific Journal was suggested in 1976^{8}, pioneered with mixed results in 1979-1982 ${ }^{9}$, and is the subject of further experiments today ${ }^{10}$. It seems unlikely that the final form will replace the scientific and social functions of the conventional journal for many years.

It has turned out to be extremely difficult to design an electronic device which can recognise continuous speech from any speaker. According to a classic 1976 article 11 it will be many years before this becomes possible. A very large research effort seems to have produced rather limited results, but this simply reflects the difficulty of the problem. The interval between the first substantial research

Heading picture is an artists impression of an office in 2000 A.D., of which the essence is comfortable simplicity. There is a large colour screen with voice control of the display. The keyboard will probably still be needed because continuous speech recognition will not yet be possible. A noise-cancelling microphone'. for display control doubles as voice-controlled telephone number selector. High-quality paperwork is still used, and can be transmitted and reproduced by the
Imagemaster text/picture machine, which digitizes paperwork for storage. No other devices are needed.

One longs, indeed, for

 a unit of knowledge which might be called perhaps a 'wit', analogous to the 'bit'.K. E. Boulding
work in the 70 s and the application of continuous speech recognition may well be 50 years.

A recent television programme described progress with synthetic speech - a much easier achievement - and then showed the recognition of single words and short phrases by a machine, which had almost certainly been preceded by a human/ machine training session which was not mentioned. This led naturally to speculation and an interview, firstly with an equipment, supplier about this 'here and now' technology, and then with a lay audience about how comfortable they would feel when conversing with machines. This kind of 'logical extension' from one thing to another against a background of impressive rows of knobs and c.r.t. screens encourages false expectations.

Very-large-screen display devices may become generally available during the next 5 years, 60 years after the c.r.t., not much changed today, was first introduced by von Ardenne in the 1920s. Technical advances have been rapid in image processing systems ${ }^{12}$ but facsimile machines of rather low resolution have been available since the 1930s. After the war, machine compatibility was the problem. The interval between the introduction of the first usable machines, the evolution of standards, and fairly widespread use in business was 50 years.

The development of Teletex, a system for transmitting text rapidly between telex-replacement/word processing machines, is progressing slowly, and microforms - around since the Franco-Prussian war - are still not widely used.

I conclude that a significant new development in information technology usually takes at least 10 years from point A in time to point B, where B is useful small scale application. Point A - the 'starting date' is hard to define. It is not so much that something significant actually happens on that date, but that a preliminary accouncement about Widgetisors gets transformed into a report (not in this journal!) that "Colossus Systems Ltd are believed to be considering the construction of a new factory for the production of Widgetisors". The infor-mation-technology industry is skilled in convincing us that only fossilised people can afford to ignore 'imminent' developments which may still be a gleam in the inventor's eye.

An exception

Technical developments, falling costs, and a combination of other circumstances may enable something new to be offered and
applied rather quickly. If political, human acceptability, and economic factors are favourable, the offering will catch on faster - an exception to the ten year rule appears.

The microcomputer is such an exception, so its brief history is of some interest. The first commercially available machine to be produced in any quality was the Altair 8800 , provided as a kit by MITS in $1975{ }^{13}$. The ingredients which made that possible were developments of the transistor (first patent filed 1948); improvements in photolithography and diffusion techniques enabling transistors and other circuit elements to be manufactured as integrated circuits (Fairchild 1959) ${ }^{14}$; M. E. Hoff's invention of the Intel 4004 microprocessor containing over 2000 transistors on a chip in 1970, further developed into the 8080 in 1973; US government subsidisation of semiconductor developments amounting to about $\$ 1000 \mathrm{M}$ in 1958-1974; a large local computer market capable of absorbing and encouraging improved circuits.

For a period the Altair and its successors were limited by small memories and the absence of disc storage to a market composed of enthusiastic hobbyists. Software for useful applications was nonexistent. Demand increased with increasing software familiarity, better reliability, and falling costs but two further related developments may be singled out as major contributors to the explosive demand which started around 1978.

IBM introduced a terminal incorporating the FD-11 floppy disc in 1971. Competitors announced copies almost immediately, but in September 1972 IBM announced the 3740 data entry station incorporating a "diskette", and a host of competitors followed ${ }^{15,16}$.

In 1975 Gary Kildall wrote some software for controlling files stored on a floppy disc. He was asked by Imsai, a floppy disc supplier, to design an operating system for them, and the first version of $\mathrm{CP} / \mathrm{M}, 1 \cdot 3$, became available. Hardware-dependent functions were concentrated in one section of it, enabling it to be adapted for use with microcomputers using the 8080 and later the Z80 c.p.us. Kildall founded Digital Research in 1976 and more versions were released later, including one for 16 -bit machines, CP/M 86.

Microcomputers with CP / M and floppy discs offering up to 1 Mbyte were manufactured at reasonable prices and the "business microcomputer" was born.

A parallel development started with the IBM Ramac "hard disc" introduced in 1956, but in 1973 IBM announced the

3340 "Winchester Disc" a sealed unit with the heads flying 20 microinches above the disc surface. In 1978 Shugart announced the SA4000 Winchester for microcomputers, and in 1980 Seagate introduced a 5 Mbyte $5 \cdot 25$ inch Winchester selling for $\$ 925$. Tandon replied in 1982 with the same unit for $\$ 400^{14}$, and microcomputers can now be purchased with built-in Winchesters to store 10 Mbytes or more for around $\$ 4000$. These machines can deal with advanced information storage and retrieval, word processing, etc.

Interactive infrastructures

In order to discuss some of the wider issues as we move into the Information Society it may be helpful to refer to Fig. 1 which shows the forces influencing an information services infrastructure.

Technical advances are a necessary but far from sufficient requirement for progressing towards an information society. The rate of advance will be much more dependent upon the interplay of the factors shown in the figure. Exceptions like the microcomputer may arise in special cases where successful application can be independent of most of the delaying factors

Two prime forms of information are shown - the "old technology", that is print-on-paper in the form of written letters, typed reports, printed newspapers, magazines and books, and the "new technology" - that is radio, television, tape or disc recordings, videotex, databases and information banks. Associated with these systems and information channels is the hardware and software required to put the information into machinereadable form, process it, and convert it back into human-assimilable form.

The old technology is well entrenched. It has been developed by trial and error since 1455, when Gutenberg demonstrated the feasibility of movable type. A set of compromises in compilation, distribution, storage, display, aesthetics, convenience, accessibility and cost has emerged which serves us quite well.

The new technology has been developed during the last 50 years, but 90% of it during the last 15. In that time radio, television, automation and computers have been followed in quick succession by pocket calculators, home computers, online systems, word processing machines, and video and optical discs, backed by a semiconductor technology proceeding at an unprecedented speed.

The general momentum of all
WIRELESS WORLD MAY 1984
this encourages the belief that almost anything is possible by the introduction of more technology. There is no shortage of people with vested interests to foster this belief. However, application takes time, as has been discussed already. Ordinary people get in the way. They have contra-beliefs generated both by innate conservatism and, in some areas, by well-founded scepticism. This scepticism is in part a reaction to sales razzamatazz, to the observed general mismatch between men and machines, and to the fact that for every prediction which turned out to be an underestimate, there are several which turn out to be unduly optimistic or simply wrong.

Readiness potential and enabling infrastructure

Some years ago the phrases Readiness Factors and Enabling Forces were used with reference to teleconferencing ${ }^{18}$. The similar phrases Readiness Potential and Enabling Infrastructure are apt in the context of the information infrastructure generally. For a new undertaking to be feasible the state of the ingredients needed for success must be considered. A readiness potential exists when the development of those ingredients, considered collectively, seems to indicate that the time is ripe for launching the undertaking. They include

- processing technology
(hardware and software)
- appropriate telecommunica tion facilities
- encouraging experimental work
- credible advocates and publicity
- optimistic forecasts
- apparent economic viability
- apparent need (markets)

Figure 1 shows the factors which then control success - the factors with which the driving force, a group of manufacturers or services, or perhaps one only, must successfully contend. They seem to be

- human factors associated
with the use of machine
- reliability
- standardisation/
compatibility
- success momentum
- political reality
- service infrastructure

Success momentum continues if the earlier hot air can be backed up by success in practice, with circulation of the good word, favourable technical articles and reviews, further purchases with wider usage etc. Success breeds success.

Political reality means both concentration on the art of the possible and conducting operations which will take advantage WIRELESS WORLD MAY 1984

The government has a role in co-ordinating national and international standards. Perhaps it can best continue to do that by supporting organisations like NPL, British Standards and ISO in the UK, National Bureau of Standards and ISO in the US, and similar activities in other countries.

In the US, the IEEE has succeeded in establishing standards which have become international, such as the RS232 communications interface. Some manufacturers have established de facto standards such as Digital's CP/M microcomputer operating system software and IBM's SNA communication protocol. Europe-often follows the US in this field. In Europe German DIN standards have been adopted in some fields (not in information technology).

Telecommunications and the market

A service infrastructure will be the technological backbone of an information society. Digitized information (or, for the purists, data, which may be one man's information but another's noise) will flow from source to recipient.

Fig. 1. The information infrastructure and the forces which influence it.

I am not referring to "service" in the "maintenance" sence (although an efficient service network in these days of increasing dependence upon machines is extremely important) but services for supplying information.

The components of a service infrastructure are a communications network accessible to a large customer base offering cheap time, independent of distance; a customer base possessing a range of compatible machines using standardized processing and communications software; and a number of information providers feeding information to the network.

When compatible terminals connected to a growing network reach a critical mass, assuming that an adequate customer base for particular service also exists, the incremental cost to a supplier mounting the nth service will be low. His service will ride on the infrastructure, so his direct investment involves only the injection of information.

CREATION OF A MARKET-DRIVEN SERVICE IWFRASTRUCTURE

The economics and politics of telecommunications.

I do not intend here to become involved in the controversy about public interest, state control, and private enterprise. Governments are, of course, concerned about roads, medical services, police, railways, telecommunications etc. In the UK govemmental interest in information technology has been strong because it is perceived as a way of generating new industries and services, increasing exports, and providing new jobs to replace those lost in decaying industries. Governmental interest in cable systems in the UK is an example.

The present government takes more of an arm's length view than has formerly been the case: in other words it is attempting to set a climate which it thinks will encourage development, rather than becoming directly involved in it, hence its action in first liberalizing and then privatizing British Telecom, in granting licenses for cable franchises, and so on. In the US the trend is similar with the de-regulation of AT\&T, and there are some signs of a move in this direction in continental Europe.

Inevitably governments have been and will continue to be involved in the provision of telecommunications through the PTT's (a European abbreviation which I shall use to describe all telecom authorities). Thus the creation of a suitable PTT (see Fig. 1) depends upon the actions of PTTs/governments.

The existing national and international PTT telephone network has the great advantage that it exists. It is far from ideal for data transmission, but can be pressed into service for that purpose. Most PTTs have also created, or are in the process of creating, purpose-designed national data networks. They have also collaborated under EEC auspices in setting up Euronet, a network consisting of interconnected host computers, in different countries, running databases for information storage and retrieval (mainly scientific information) for terminal-connected users ${ }^{19}$.

The private networks shown in Fig. 1 are composed of lines leased from the PTTs for interconnecting the different sites of an organisation within a country, or may be to provide intra-organisation services for large companies such as Unilever ${ }^{20}$, airlines ${ }^{21}$ etc., requiring intemational satellite or cable links.

The commercial networks in Fig. 1 refer mainly to the Value Added Networks (VANs) developed by private telecommunication companies, in consequence of deregulation in the United States, to offer special services using lines leased from AT\&T, or using satellite or terrestrial microwave communications. Some private companies have been accorded the status of 'common carrriers', meaning that they are permitted simply to carry traffic for others without having to quality as VANs. Some companies have 'nodes' (that is, connection points) in Europe and elsewhere.

If these three kinds of network were interconnected so that any service available on any of them was available to all in such a way that there appeared to be a single network, then a big step towards universal communications would have been made. The critical mass of customers needed to encourage more services would appear, the system would grow, costs would fall and home services would become viable.

There are some technical problems to overcome, but the main obstacles to this kind of common sense have been political. The PTTs have rigidly applied their carrier monopoly. Unlike the situation in the US, no other organization has been permitted to arrange communication links between service and customers, for instance, so that people with terminals can obtain information from a database running on a remote computer.

In 1979 an electronic journal was running in the United States, and the organizers planned an experiment to connect terminals for editorial services and contributions from the UK to the system.

British Telecom (BT) could not provide the interconnection, and it was planned to use the commercial network, Telenet, which had a node in the UK requiring connection to terminals via BT lines. The experiment had to be abandoned because BT vetoed the participation of Telenet as a "third party" carrier ${ }^{22}$. Note that if Telenet had been offering an electronic journal to UK participants - that is, if it had owned the journal's computer and facilities in the US, and was using its network to link its own customers to the system - then it would not have been acting as a third party and the veto could not have been applied.

The question is, can the existing networks be coalesced to provide the needs of the information society, and how long is it likely to take?

The 'critical mass' problem mentioned previously could of course be resolved by further separation rather than coalescence. In other words, new separate networks appear for interconnecting information sources and customers, because this group regards the value of the particular kind of information received to be worth the relatively high price they have to pay to support the facilities. The services available to stockbrokers in the City of London are an example.

A possible compromise ${ }^{23}$ would be multiple interconnected networks, each free to innovate (a huge unified network would tend not rapidly to adopt communication new technology) but with common interconnection stand ards and a payments clearinghouse mechanism.

To be continued

From the long line of success

 the affordable portables
The 2200's

The four low cost oscilloscopes in this group offer unprecedented value in initial cost and inherent high reliability.

Choose the 2213 or the 2215 for superior 60 MHz performance, with single and dual time bases respectively, or the 2235 and 2236 for 100 MHz bandwidth and many advanced features. The 2236 includes a counter/timer totally integrated into the vertical, horizontal and triggering systems of the instrument, providing measurement capabilities and convenience not previously attainable.

The 2300's

Compact and lightweight, these 100 MHz oscilloscopes are ruggedly built to withstand tough service in the field. The 2335, 2336 and 2337 all have a fastest sweep rate of $5 \mathrm{~ns} / \mathrm{div}$, making them extremely useful for high speed logic and digital applications. A flip-top protective lid safeguards the front panel from transit damage and also houses the electronics, controls and LCD displays for delta time measurement readout in the 2336 and delta time plus DMM functions in the 2337.

The 2400's
Representing the state-of-the-art in today's portable oscilloscopes, the 2465 and 2445 provide probe-tip bandwidths of 30.0 MHz and 150 MHz respectively. On-screen cursors allow the immediate and precise determination of voltage, time, frequency, ratio and phase with CRT readout of results.

The 2400 oscilloscopes have four independent vertical channels, two of which are optimised for logic signals. Facilities are also provided for accurate delay matching between two channels to allow detailed examination of timing.

The advanced triggering system includes a hands-off Auto Level mode, ensuring stable triggering on any pulse width or waveform at repetition rates as low as 50 Hz .

The 2400 series succeeds the eartier Tektronix 400 range as the new industry-standard portable oscilloscope.

Telephone now for your free literature.

Harpenden 0582763141 Maidenhead 062873211 Manchester 0614280799 Livingston 050632766 Dublin 850166

Tektronix UK Limited

PO Box 69. Harpenden. Herts AL5 4UP
Ter: Harpenden 63141 Telex. 25559

THIS IS THE MAST TO SUPPORT YOUR OUTSIDE
 THIS IS THE MAST TO SUPPORT YOUR OUTSIDE BROADCASTING

 New XT Series Masts from Clark Masts designed for vehicle mounting whenheadloads are heavy and stability required is high. This is the mast which meets
all your requirements for an O.B. or E.N.G. vehicle unit. Tailored in every way for
the job, Clark Masts offer the latest state of the art in mast design with the
background of more than 25 years of constant development and an unfailing
availability of spares over the same period. New XT Series Masts from Clark Masts designed for vehicle mounting when
headloads are heavy and stability required is high. This is the mast which meets
all your requirements for an O.B. or E. . G. vehicle unit. Tailored in every way for
the job, Clark Masts offer the latest state of the art in mast design with the
background of more than 25 years of constant development and an unfailing
availability of spares over the same period. New XT Series Masts from Clark Masts designed for vehicle mounting when
headloads are heavy and stability required is high. This is the mast which meets
all your requirements for an O.B. or E.N.G. vehicle unit. Tailored in every way for
the job, Clark Masts offer the latest state of the art in mast design with the
background of more than 25 years of constant development and an unfailing
availability of spares over the same period. New XT Series Masts from Clark Masts designed for vehicle mounting when
headloads are heavy and stability required is high. This is the mast which meets
all your requirements for an O.B. or E.N.G. vehicle unit. Tailored in every way for
the job, Clark Masts offer the latest state of the art in mast design with the
background of more than 25 years of constant development and an unfailing
availability of spares over the same period. New XT Series Masts from Clark Masts designed for vehicle mounting when
headloads are heavy and stability required is high. This is the mast which meets
all your requirements for an O.B. or E. . G. vehicle unit. Tailored in every way for
the job, Clark Masts offer the latest state of the art in mast design with the
background of more than 25 years of constant development and an unfailing
availability of spares over the same period. New XT Series Masts from Clark Masts designed for vehicle mounting when
headoads are heavy and stability required is high. This is the mast which meets
all your requirements for an O.B. or E.N.G. vehicle unit. Tailored in every way for
the job, Clark Masts offer the latest state of the art in mast design with the
backgound of more than 25 years of constant development and an unfailing
avallability of spares over the same period.

NEW SERIES

vehicle mounted stability for very heavy headloads

UK. CLARK MASTS LTD (EWW) Binstead, Isle of Wight, England Tel: (0983) 63691 Telex: 86686 EUROPE GENK TEGHNICAL PRODUCTS N V (EWW), Woudstraat 21, 3600 Genk, Belgium Tel 011/380831 Telex 39354
\qquad

The roots of relativity

Dr Murray avoided criticising relativity theory in his recent Heretic's Guide series, but here he makes good that omission by drawing attention to one of Einstein's very rare but crucial mistakes.

It is not unusual to encounter references to the Special Theory of Relativity between the covers of Wireless World, either in readers' letters or in formal articles. One interesting feature of these contributions is that they are almost invariably critical of the theory, although it is so thoroughly established. Why so?

It is true that the criticism comes from all sides, so that critics will refute each others' arguments as hotly as they refute Einstein's - for there exists as yet no singly-accepted or "received" argument in denial of Special Relativity. Einstein's theory is in every day practical use in modern physics and one is never (apparently) driven into error by employing it. Pragmatically, "it works". Nevertheless, the fact that now, some 80 years after its formulation, a large number, perhaps even a majority, of scientif-ically-educated people harbour niggling doubts about it may indicate that something, somewhere, might perhaps be wrong. Moreover, today's critics of Special Relativity are no longer diehard, but well-informed, reasoning, and serious.

I am willing to wrangle with the best of them about the traditionally poor presentation of the clock paradox and the impossibility of drawing co-variant Minkowski diagrams, but to do so would only extend and support arguments that have been raised many times before : arguments which, characteristically, have never been refuted without begging the question, or even worse logical crimes, by any Relativist. (For a selection of such tricks see Professor McCausland's nicelyreasoned article in WW, October 1983). Criticism of this kind takes issue with the weird 'predictions' (consequences) of the theory, so that one is forced to refer to arguments, mathematical or otherwise, within the theory itself in order to criticise it. One can then always be accused of 'failing to understand the theory properly'. Naturally, no relativist would ever admit that his critic might understand the theory too well!

On this occasion I prefer to discuss the premises of the theory rather than its deductions;
and I shall not invoke the opinion of any third party, but rely only on the written words of Einstein himself. By these means I hope to present my main contention as precisely as I possibly can. But first, by way of background, let me recall how the Special Theory of relativity arose in the first place, and what it was intended to achieve.

Origins of Special Realtivity theory

Contrary to received belief, the idea of relativity was not a product of the early twentieth century. The concept of the relativity of uniform translational motion dates back two hundred years and more before 1905 . It is directly associated with the truth of Newton's first law of motion, and there is nothing at all complicated about it. The following passage appears in Newton's Principia (1687):
"The motions of bodies included in a given space are the same among themselves, whether that space be at rest or moving forward uniformly in a right line without any circular motion... A clear proof of which we have from the experiment of the ship, wherein all motions happen after the same manner whether the ship be at rest, or be carried forward uniformly in a straight line."

From this quotation it is abundantly clear that Einstein did not invent the Principle of Relativity. He himself, in a passage that I shall quote later, said so in as many words. He had to re-state the Principle because, for reasons that we shall uncover shortly, his colleagues of those days had been led astray by a chain of false reasoning and had rejected the relativity principle of classical mechanics in favour of an 'aether' theory, in terms of which all motion must be specified absolutely. That theory was, of course, the Maxwell-Lorentz electromagnetic theory, also known as 'Maxwell's Equations'.

It is best to be frank and not mealy-mouthed about these historical facts. By the year 1905 electromagnetic theory had already failed on three separate experimental counts, namely,

1. The physical aether upon which
it depended for its operations does not exist (Michelson and Morley, 1887)
2. The radiation of energy in the form of light is not a continuous process (Planck, 1899)
3. Light quanta - 'photons' - do not dissipate whilst in transit in vacuo (Einstein himself, 1905)
In addition it had become clear by the turn of the century, largely as the result of the brilliant work of H.A. Lorentz, that the theory had also failed internally, in that it could not handle even the simplest of situations involving relative motion.

Einstein was acutely aware of this problem. In his view, something was obviously wrong. In the preamble ${ }^{1}$ to his Special Relativity paper 'On the electrodynamics of Moving Bodies' he took it as one of his starting points. He wrote (1905):
"Customary electrodynamics does not take into account the experimentally-corroborated lack of absolute motion. The description of a magnet moving relative to a conductor at rest is quite different from the description of a conductor moving relative to a magnet at rest. Yet the observed phenomena are exactly the same in both cases."
That last sentence again embodies the principle of relativity, but it is the first sentence in the quotation that provides the vital key : Maxwell's electromagnetic theory violates that principle. But there was, and still is, no doubt about the sheer power of the electromagnetic dogma among its adherents. Faced with this crisis the theory's protagonists held on adamantly to their all-dominating Faith. As I said in this connection in the third Heretic's Guide article (WW, October 1982 page 77), 'Human feelings at levels deeper than mere reason were involved in this conflict'. Thus Einstein again, almost plaintively ${ }^{2}$ (the square brackets are my own sympathetic additions)
"Prominent theoretical physicists were therefore more inclined to reject the principle of relativity [than the e-m theory], despite the fact that no empirical data had been found which contradicted that principle [and even though experimental data had contradicted e-m theory]."

By writing down a group of mathematical equations (the
'Lorentz transformations'),
H.A. Lorentz was able to compensate for the failure of Maxwell's electromagnetic theory to cope with relative motions. In 1905 Einstein derived these same equations by postulating, without evidence, that the velocity of light was universally constant.

The resulting Restricted or 'Speciai' Theory of Relativity, which required space and time to become distorted as a consequence of the observer's motion, preserved electromagnetic theory intact but at the expense of classical mechanics and common sense. Many paradoxes have ensued; the one examined here, which is less well-known than some, shows that Einstein's 'relativity of simultaniety' is incompatible with his own Second Postulate. The implication is that Einstein's arguments concerning the nature of time may be suspect and hence no longer capable, by sustaining the Lorentz transformations, of 'rendering the Maxwell-Lorentz theory plausible'.

Here is as vivid a description as we are ever likely to read, by 'the man on the spot', of the intransigence of preconceived, established ideas.

Poor Einstein! Like everyone of his generation he had been brought up on the great FaradayMaxwell theory of electromagnetism, and he himself believed completely in the reality of electric, magnetic, and gravitational fields. He did his best to help by proposing what seemed to be a wise, balanced, and above all generally acceptable compromise. Here he is, writing about the crisis of 1905 retrospectively ${ }^{3}$ in 1952 (the italics are his own) :
"Classical mechanics ... teaches the equivalence of all inertial systems ... for the formulation of natural laws. Electromagnetic and optical experiments taught the same thing with considerable accuracy. But the foundation of electromagnetic theory taught that one particular inertial system must be given preference, namely that of the luminiferous aether at rest. That aspect of the theory was most unsatisfactory. Was there no modification that, as in classical mechanics, would uphold the equivalence of inertial systems?"
"The answer to that question is the Special Theory of Relativity. This takes over from the theory of Maxwell-Lorentz the assumption of the constancy of the velocity of light in empty space ..."

Now it was precisely because the new theory 'took over the assumption of the constancy of the velocity of light' that modern physics became saddled with the three well-known mind-bending horrors of relativity theory : the irrational assumption itself, together with the shortening of measuring-rods in the direction of travel and the slowing-down of clocks due to relative motion which are the inevitable mystical consequences of maintaining that assumption. Earlier, H.A Lorentz had shown (somewhat apologetically, perhaps) that if those particular distortions of physical reality could conceivably occur in Nature, then all the inter nal discrepancies of the electromagnetic theory would disappear He showed further, that such distortions were necessary if the electromagnetic theory were to be saved.* In direct and conscious support of Lorentz although ostensibly from a new and independent standpoint, Einstein argued that if the velocity of light were universally constant, then those very same mathematical distortions of reality (the 'Lorentz transformations') must actually take place : for that was

[^3] process.)
the only way the velocity of light could be the same for everyone, as he had assumed it to be. And in order to save the electromagnetic theory - which had already been disproved - his colleagues bought the idea.

That is how it all happened. It was a grand cover-up operation, and the people who pulled it off were acclaimed as heroes. The trouble was that their desperate and successful defence of the electromagnetic theory soon led (in 1925) to far worse difficulties Maybe someday we shall come to wonder if their success was really worth the troubles it has caused. In the meantime let us try to find out whether there is any possibility that the Special Relativity concept might be true.

Einsteins's second postulate

The precedent that Einstein said he had 'taken over from the theory of Maxwell-Lorentz' was that the velocity of light is a constant of Nature. The' electromagnetic statement was

$$
c=1 / \sqrt{k_{0} \mu_{0}}=\text { constant }
$$

where c is the velocity of light in vacuo and k_{0}, μ_{0} are artefacts of electromagnetic theory by which it seeks to attribute mechanical properties to a vacuum ('aether'); in e-m theory c is constant relative to this unique aether, and not universally. Thus the assumption of its universal constancy was not in truth 'taken over from e-m theory', with which it was actually inconsistent, but was introduced ad hoc in a curiously ambivalent attempt to reconcile c with the principle of relativity. Einstein's 'second postulate' was therefore suspect immediately. Whether or not we admit it to have been a fudge, it is certain that it leads consistently to paradox.

Nevertheless, Einstein indeed accepted that assumption without evidence (in 1905) as if it were, as he said, a "simple law" and a "natural law". Thus whatever my motion, light reaching me from any source whatever must always appear to approach me at the same velocity. For example, suppose that I am looking towards London from the hills to the north : light from the beacon on the Post Office tower shines towards me at velocity c , which is fine. But you are a pas senger in a southbound airliner, lining up for Heathrow. According to Einstein the light from the Post Office tower is also approaching you at velocity c (exactly), despite the fact that you are passing over my head at about 300 mile/h the velocity of that light is the same for both of us. If that is indeed a nautral law, then it would seem that something very odd must have happened to Nature. (The Relativist would say that

Nature had always been that way, but we never noticed.)

Of course, anything can happen in mathematics. Arguing from the Lorentz transformations, Einstein suggested that ordinary relative velocities don't add up -2 and 1 make 2. If we call the you-to-me velocity v and the light-to-me velocity c , then (he said) the light-to-you velocity is not just the simple

$$
\mathrm{w}=\mathrm{c}+\mathrm{v}
$$

that you thought it was, but the 'relativistic' velocity

$$
w=\frac{c+v}{1+c v / c^{2}}=\frac{c+v}{(1 /)(c+v)}=c .
$$

One can scarcely refrain from murmuring 'q.e.d.' in response! All that has been proved by this little excercise (the so-called 'Theorem of the addition of velocities') is that the steps from the assumed constancy of c to the Lorentz transformations and back again are free of mathematical error; the result is just a restatement of the initial assumption and the argument is entirely circular. Whether or not it corresponds to the working of the physical world has never been put to the test.

At this point I should put in the routine reminder that the velocity of light from a moving source - a relatively moving source - has never been measured. What Michelson and Morley found was that if light was radiated from their light source at some velocity, presumably c, its velocity remained c when it was reflected into any arbitrary direction. (There were no moving parts or relative motions within the Michelson-Morley apparatus.) Similarly, the reflection of radar signals from fast-moving earth satellites can be interpreted in two ways, one that makes sense and another that doesn't; needless to say, the way that doesn't make sense is the one that assumes the velocity of light to be universally constant, but that fact doesn't measure the velocity of light. All manner of laboratory experiments have been proposed, and performed, but always the quantity measured turns out to be not c itself but some associated parameter. The canonical support for Einstein's premise lies in the argument of de Sitter (1913), that light signals from spectroscopic binary stars take the same time to reach us irrespective of the motions of their sources; yet there are several cases on record in which the spectra of such systems are said to 'break up' or to show inconsistent centroid velocities - both effects to be expected if c is not universally constant. Apart from de Sitter's argument there exists no experimental support for the universality of c. It is
assumed to be true becasue Special Relativity theory demands its truth, which is as circular an argument as you will find anywhere! There is no definitive evidence either way.

So now we have reached this situation : to save the MaxwellLorentz electromagnetic theory (which we already know by experiment to be wrong), we are asked to accept the 'Lorentz transformations' (which contravene all our existing experience of the nature of time and space), on the basis that the velocity of light is the same relative to all 'material' things, whatever may be their motions relative to each other (which certainly seems to deny ordinary logic). Perhaps there may be a higher logic? The whole thing begins to look like a confidence trick. One is always adjured to accept this theory simply on the grounds of the success of its predictions; but would it not be more convincing to get a line on the truth or otherwise of Einstein's second postulate from Einstein himself, if only one could find a way?

Signal error at the trackside

Einstein acknowledged that some physicists, as opposed to mathematicians, might have difficulty in swallowing these wayout ideas, so he developed an interesting argument about the nature of time and simultaniety. He envisaged a section of straight railway track running along an embankment from A to B, with M as its measure mid-point (see Figure 1). During a thunderstorm, lightning strikes the rails at both A and B simultaneously. "But what does one mean by simultaneously?" he asks, and replies simplistically, ${ }^{4}$
"If the observer [at M] perceives the two flashes of lightning at the same time, then they are simultaneous."
This is Einstein's definition of what he means by simultaniety, and it is clear that it depends on what an observer perceives. But he is still being haunted by the aether-ghost of his own and his contemporaries' early training, and worried that the velocity of light might not be the same over the two equal but opposite distance $\mathrm{A} \rightarrow \mathrm{M}$ and $\mathrm{M} \leftarrow \mathrm{B}$. After what, for him, is a longish discussion he concludes (his own italics):
"That light requires the same time to traverse the path $\mathrm{A} \rightarrow \mathrm{M}$ as for the path $\mathrm{B} \rightarrow \mathrm{M}$ is in reality neither a supposition nor a hypothesis about the physical nature of light, but a stipulation which I can make of my own free will in order to arrive at a definition of simultaniety."

Now a 'stipulation', - arbitrary and subject to one's own free will 'in order to arrive at a definition' - does not seem quite the same thing as a universal natural law. Is he not still talking about the velocity of light in vacuo? And incidentally, why should the definition (or fact) of simultaniety be associated so particularly with light signals? Could one not equally well send timing information through a vacuum by means of calibrated bullets fired from calibrated guns at velocity u? (Of course one could not use calibrated carrier pigeons because they fly relative to a medium, air). But since he needs to differentiate between the behaviour of photons and rifle bullets in order to bring cinto his argument about time, and since it is the electromagnetic theory that he is trying to save, let us concede to him the light-based definition of simultaniety that he proposes, pro tem.

Einstein next puts a train onto his railway embankment, travelling in the direction $\mathrm{A} \rightarrow \mathrm{B}$ at velocity v , and puts a second observer M^{\prime} into the train (Figure 2), so that "just when the flashes of lightning occur (as judged from the embankment)" this M in the train happens to be located exactly opposite M^{\prime} on the embankment, half-way between A and B . If the observer M^{\prime} were not moving "he would remain permanently at M^{\prime}, and the light rays emitted by the flashes of lightning at A and B would reach him simultaneously, i.e. they would meet just where he is situated." Good. But Einstein then goes on :
"Now in reality (considered with reference to the railway embankment) M° is hastening towards the beam of light coming from B, whilst he is riding on ahead of the beam of light coming
from A . Hence the observer will see the beam of light emitted from B earlier than he will see that emitted from A. Observers who take the railway train as their ref-erence-body must therefore come to the conclusion that the lightning flash B took place earlier than the lightning flash A . We thus arrive at the important result :
"Events which are simultaneous with reference to the embankment are not simultaneous with respect to the train, and vice versa (relativity of simultaniety). Every reference body (co-ordinate system) has its own particular time; unless we are told the reference body to which the statement of time refers, there is no meaning in a statement of the time of an event."

Let us now without passion analyse that remarkable argument by which Einstein sought to justify both his assumption of the constancy of c and the consequent 'dilation of time'. Here we find his observer M^{\prime} "hastening towards the beam of light coming from B while riding on ahead of the beam of light coming from A." But at the instant when the flashes occur the position of M^{\prime} coincides with M (by scenario, see above); so at that instant the distance $A \rightarrow M^{\prime}$ is equal to the distance $\mathrm{B} \rightarrow \mathrm{M}^{\prime}$, in exactly the same way that the distance $\mathrm{A} \rightarrow \mathrm{M}$ is equal to the distance $\mathrm{B} \rightarrow \mathrm{M}$. Therefore, if the velocity of light is the same for everyone (as assumed in the theory), its time of passage from A to M^{\prime} must be the same as its time of passage from B to M^{\prime} - exactly as it is over the equal distances AM and BM. Hence the light from both sources must reach \mathbf{M}^{\prime} at the same time, just as the light from both sources reaches M at the same time. But this is precisely the condition which Einstein himself has so carefully defined as 'simultaneous'!

Situation at the trackside, Fig. 1.

Situation deduced by observer M,

 Fig. 2.Situation as seen by observer M^{1}, Fig. 3.

References

1. Einstein, A. : 'Zur Elektrodynamik ewegter Körper', Ann. d. Phys., vol. 17 1905, pp. 891-921. The quotation is from anczos. The Einstein Decade, (Elek, 1974) p. 131
2. Einstein, A. : Relativity : The Special and the General Theory (Methuen, 1960) p. 19 (text, dated 1916).
3. Einstein, A. : Op.cit.(2), p. 148 (appen dix, dated 1952).
4. Einstein, A. : Op.cit.(2), pp. 22-26 text, dated 1916). All quotations which follow are extracted in order from these five pages.
5. Gamow, G. : Mr Tompkins in Paperback (Cambridge, 1965) pp.13-14
6. Waldron, R.A. : 'Electric Forces’, Radio and Electronic Engineer, Vol. 51, 1981, pp. 553-560.

I will paraphrase that result because of its importance : If the velocity of light were independent of the velocity of its source as claimed, then, as seen by two observers M and M^{\prime} in uniform relative motion, the flashes which originated at points A and B when M and M^{\prime} were spatially coincident at the mid-point of $A B$ must arrive at the future positions of M and M ' simultaneously. ${ }^{*}$ It would then follow that the times kept by observers M and M^{\prime} must be identical in an absolute sense.

That is the exact opposite of the conclusion which was reached by Einstein in this, his own, scenario.
"Unbelievable", you will say; "there must be a mistake somewhere". There is, and we can locate it easily by transferring coordinates and joining observer M in his 'moving' train, as we are entitled to do by the Principle of Relativity (forgotten it?). The situation is as shown in Figure 3. The distances AM^{\prime} and BM^{\prime} are equal, as also are AM and BM, because Einstein has chosen to make them so. The lightning flashes are simultaneous by Einstein's own definition, in that the light signals emitted from them travelled the equal distance AM, BM at velocity c and therefore reached the 'fixed' observer M at the same instant. According to his own second postulate the motions of the sources A and B relative to M^{\prime} are irrelevant; each light signal travels towards M^{\prime} at the same universal velocity c . Therefore, since AM^{\prime} is equal to BM^{\prime} (so long as the Relativist does not change the rules!), these signals must arrive at M^{\prime} at the same time - that is, simultaneously.

In the quotation above Einstein was actually arguing that M' was 'hastening towards' the light from B (relative velocity c + v) and 'riding ahead of' the light from A (relative velocity $\mathrm{c}-\mathrm{v}$), so that their times of arrival at M^{\prime} must differ. But even the Master may not be allowed to keep his cake and eat it. According to his

[^4]theory (second postulate) one cannot 'hasten toward' or 'ride on ahead of' a beam of light : its velocity relative to every observer is always and exactly c. If that is so, reception at M^{\prime} is simultaneous by his own definitions and there is no case for denying universal time.

If the observations of M and M^{\prime} differ it must be for the reason Einstein actually gave in that quotation rather than the reason he thought to give : not because the velocity of light is mystically the same for both observers but precisely because it is not the same - not universally constant, but relative. It adds up to this: one can maintain either the 'relativity of simultaniety' or the universal constancy of c , but not both.

"Please take your litter home"

In view of the simplicity of the logical error that we have been investigating, where Einstein fell so guilelessly into his own conceptual trap, does it not surprise you that so may famous Authorities have so blindly and uncritically followed him into it? Check me, if you please, by looking up the argument in any textbook of your choice, or in any popular presentation such as George Gamow's classic Mr Tompkins. ${ }^{5}$ (In the modern edition it is all done with rockets). Having checked, you may not be surprised to discover that very few people have heard of this counter-argument - which was not invented by me - nor even realised that the paradox existed. Those who wrote the textbooks did not want to know.

I suspect that most people will hold the same view about the present result as they do already about the other, better-known paradoxes of relativity theory. The established method of dealing with challenges to the logic of Special Relativity is to ignore them: and why not? For by using 'relativistic mechanics' (specifically, mass increase) in the interpretation of physical measurements one can always bring one's experimental results into line with the predictions of electromagnetic theory, which is all that a scientific technician need be concerned to do. A natural philosopher, on the other hand, will go on trying, in the hope that he may
in the end arrive at a logically consistent, paradox-free understanding of the physical universe. There are limits, intellectually, beyond which people of this second kind cannot be pushed.

It would be more in accord with the notional methods of science to make use of such anomalies rather than deny their existence. The lesson to be leamed from this one is that we, mere humans, are not entitled to define the fundamental physical operator TIME in an ad-hoc way simply in order to 'save' any particular theory. The reason behind the demand that time 'must be' defined by the transmission of information to some observer by means of light signals is solely that such a definition, if accepted, permits an independent derivation of the Lorentz transformations. If that definition is rejected, many persistent physical and conceptual difficulties are immediately concentrated into the area where they properly belong - where also, once identified, they can be dealt with.

Up to and including the third quotation above (1905/1952) it is clear that Einstein's first intention had been to modify electromagnetic theory in such a way as to bring its erroneous predictions into line with the rest of physics rather than vice versa; the classical mechanics of Galileo and Newton conforms with the relativity principle. As an intention it was wholly admirable, but alas, things did not work out as intended. The only compromise acceptable in the atmosphere of 1905 seemed to be one which left the already-disproved but sacrosanct electromagnetic theory untouched but insisted instead that the simple, natural world of energy and motion, time and space must become distorted in order to accommodate its failure. The irrationality of that development was breathtaking, and the precedent it set was unfortunate : natural philosophers have had to put up with a lot of nonsense for a long time. Suppose we were to retum to Einstein's original intention and try to put an end to the nonsense by correcting electromagnetic theory, rather than go on indefinitely riding roughshod over ordinary mechanics and common sense?

People working along these lines have made substantial progress recently, for example Professor Richard Waldron of the Ulster Polytechnic. ${ }^{6}$ It may be that only one or two more good, new ideas are needed in order to clear up this mystery, which dates back nearly a century to Michelson and Morley. If, at long last, we could get "the foundation of electromagnetic theory" right, we could take a deep breath and make a start on tidying up the mess.

WIRELESS WORLD MAY 1984

performance, reliability, value and immediate delivery!

Hitachi Oscilloscopes provide the quality and performance that you'd expect from such a famous name, with a newly-extended range that represents the best value for money available anywhere.

V-212	203Hz Dual Trace	V. 209	20MHz Mini-Portable
V-222	20 MHz (illustrated)	$\checkmark-509$	50 MHz Mini-Portable
V-203F	20 MHz Sweep Delay	\checkmark-1050F	100 MHz Quad Trace
V-353F	35 MHz Sweep Delay	V-134	10 MHz Tube Storage
V-422	40 MHz Dual Trace	VC-6015	10 MHz Digital
V-650F	60Mhz Dual Timebasc	VC-6041	40 MHz Digital

Prices start at around $\mathfrak{£ 3 0 0}$ plus vat including 2 probes and 2 year warranty. We hold the range in stock for immediate delivery.
For colour brochure giving specifications and prices ring (0480) 63570 Thurlhy-Reltech, 46 High Street, Solihull, W. Midlands, B91 3TB

CIRCLE 010 FOR FURTHER DETAILS

Happy Memories

116200 ns

10

4164200 ns
$4.95 \quad 4.40 \quad 4.20$

6116 150ns Low powe
Call Call Call
6264 150ns

32 450ns Intel type
3.75

52450 ns Texas type
$3.85 \quad 3.45$
3.30

27120300 ns

CIRCLE 058 FOR FURTHER DETAILS.

MONO
 300
 WATTS

MAIN FEATURES: include

2. FREESTANDING
3. OPENFRAME
4. variable gain
5. PRECISION PARTS

243.50 inc. P.P.

OPTION:TE

X.T.R.ELECTRONICS

 335 HOLDENHURSTROAD, BOURNEMOUTH, DORSET, BH8 8BT. PH: 0202 309872TECHNICAL SERVICE
7-10pm WEEKDAYS
$11-6 \mathrm{pm}$ WEEKENDS

STEREO

watts $(2 \times 100$ WATTS/CH:)
MAIN FEATURES:include

1. COMPLETE 2CH. CHASSIS

OPEN FRAME DESIGN
3. VarIABLEPOWER60-100w
terminalblocks LAB STYLE FRAME
£48.50 inc. P.P.
S. 200
RMINALS EXTERNAL. FITTED TOFRAME
ADDE3.00
\qquad CUSTOM DESIGNS AND PACKAGING AVAILABLE TO SPECIAL ORDER. STATE REQUIREMENTSINDETAIL

Coming SoonOpen Frame Power Supplies
 Alsso Availlable MOMN Amplifier Drive Bozard. 100-350w

 $D-100=23.50$ INC.PP
I WISH TO ORDER:-

QTY........S. 200 STEREOMODULES 48.50 EA QTY.........M. 300 MONOMODULES 843.50 EA. QTY............ 100 MONO DRIVER PCB£23.50EA.
VISA/ACCESSNO
FOR INFORMATION:- A4 S.A.E. ONLY.

TRANSFORMERS

STOCK

INVERTERS

 $30 / 15 \mathrm{~V}$ or $15-0.15 \mathrm{~V}$ 250W $2 \times 25 \mathrm{~V}$ Tap Secs 5 $2 \times 15 \mathrm{~V}$ Tap Sec. Volts

$3,4,5,6,8,9,10,12,15$ | VA | Price | P\&P | $10,13,15,17,20,25,30,3,4,5,6,8,9,10,12,15$, | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -20 | 5.82 | 1.60 | $33,40,20-00$ or $250-25 \mathrm{~V}$ | $18,20,24,30$ or $15-0.15 \mathrm{~V}$ | | |
| 60 | 9.49 | 1.80 | 50 V | 25 V | Price P\&P | 30 V |

LANCRIX SUPPMES ITD
 Tel:01-677 2424 Telex:946708

SEMICONDUCTORS

VALVES

BD132		${ }_{\substack{\text { BF2 } 27 \\ \text { BF288 }}}$	${ }_{0}^{0.27}$
${ }_{\substack{\text { BDI } \\ \text { RDP } \\ \text { P3 }}}$	${ }_{0}^{0.48}$	${ }^{\text {BFF } 288}$	27
${ }_{\text {BD }} 136$	0.40	BF336	0.34
BD137	0.40	BF337	0.33
BD138	0.48	BF338	0.36
${ }_{\text {BD }} 139$	0.48	${ }_{\text {BFS } 21}$	4.00
${ }^{\mathrm{BDD}}$ (4)	${ }^{0.50}$	${ }_{\text {BFS28 }}$	2.25 0.20
${ }^{\mathrm{BD}} 144$	2.00	${ }^{\text {BFSSO1 }}$	0.20
${ }^{\text {BDP } 181}$	1.20	${ }_{\text {BFPs98 }}$	${ }_{0}^{0.20}$
	- 0.80	${ }_{\substack{\text { BFX } \\ \text { RFW11 }}}^{\text {did }}$	0.97 0.96
BD238	0.54	BFX84	0.30
BDX10	0.91	${ }^{\text {BFP885 }}$	0.30
BDX32	2.00	BFX87	0.30
BDY20	${ }^{1.50}$		0.30 0.35 0.25
BEMY	2.75 0.35	$\stackrel{\text { BFY }}{\text { BFS }}$	0.25 0.25
	0.16		0.25
${ }_{\text {BF }}^{\text {BF }} 154$	0.16	${ }_{\text {BFP64 }}^{\text {BFY }}$	0.30
ckis	0.17		${ }^{3.92}$
BFIC0	0.17	BSX20	0.27
BF167	0.24	BSX21	0.29
${ }^{\text {BFIT13 }}$	0.30	${ }_{\text {BTITO6 }}$	${ }^{1.20}$
	0.35 0.35	BTY79,40	
${ }_{\text {BFI } 179}$	0.35	BU205	1.30
BF180	0.28	BU206	1.50
BF181	0.28	${ }^{\text {BU } 208}$	2.00
${ }_{\text {BFI }}^{\text {BF }}$	- 0.28	${ }_{\text {BYI } 26}$	${ }_{0.13}$
BF184	0.28	BY127	0.14
BF185	0.30	BZX61	0.17
${ }^{\text {BFF } 194}$	0.14	Sent	
	0.12	${ }_{\text {B7Y }}$	0.10
${ }_{\text {BFI } 197}$	0.14	CRS1/40	0.60
${ }_{\text {BF } 200}$	0.40	$\mathrm{CRSS}^{\text {C/40 }}$	0.75
BF224	0.25	CRS3160	0.90
BF244	0.28	GEX66	3.00

C205	2.75
C206	2.75
C207	2.50
CP71	2.00
RP12	1.00
2008B	2.00
2009	2.25
2010B	2.00
IC44	0.27
[C226D	1.20
12209	0.16
1 P 29 A	0.43
IP30A	0.45
IP31a	0.33
1 P 32 A	0.36
[P33A	0.54
1P34A	0.67
iP41A	0.44
P42A	0.42
IP2955	0.70
IP3055	0.56
1 S 43	0.43
S140	0.25
S170	0.21
S178	0.54
S271	0.23
S278	0.57
TX107	0.12
TX108	0.12
TX109	0.12
TX 300	0.13
TX30]	0.14
TX302	0.18
TX303	0.18
TX 304	0.20
TX311	0.13
TX314	0.25
Tx500	0.14
TX501	0.14
TX502	0.18
TX503	0.19

INTEGRATED CIREUITS

BASES

valve siterening
cans all

RST

No

0.21
0.24
0.25
0.05
0.09
0.06
0.06
0.06
0.07
0.09
0.11
0.12
0.07
0.04
0.13
0.13
0.04
0.08
0.09
1.00
1.00
1.09
1.30
0.32
0.32
0.32
1.25
0.25
0.25
0.25
0.30
0.30
1.20
0.80
1.20
1.20
1.50
1.10
1.75
1.20
0.32

[^5]8

[^6]CIHCLE 047 FOR FURTHER DETAILS.

WHAT RESOLUTION FORONLY $£ 230$.

Our RGB high resolution colour monitors (580×470 pixels) sell for $\$ 229.95$ (excluding VAT) -a saving of over $£ 100$ comparedto other leading monitors of similar specifications.

Thats a bargain we guarantee you won't see from any other micro retailer:

We've managed to acquire the sole distribution rights enal) ling us to offer these superb monitors at this. unbeatable price.

And just because you're saving on price doesin't mean youre sacrificing quality: Here's what Personal Computer News had to say about our monitors.
"There is no doubt that the JVC range of ECM colour monitors is excellent value for money. . .there is no loss in quality of picture after long periods...remember as more and more resolution is available with new micros, the need for a better display will be that much greater."

For those who only require medium resolution we also have a model (370×470 pixels) at \&.179.95 (excluding VAT) which is equally excellent value for money:

Bo th units have a $14^{\prime \prime}$ screen and are suitable for the BBC Micro, Spectrum QI., L.ynx, Oric, Apple, IBMand

		1302 I Vichiom Reashution
(. RT	1.4"	$1+$
$\triangle 1$ M!		$\pm 262+65816011 /$
FHT	 Mavimum?	
	10961/	c, ¢11)
[1]P成A)	80, haratern by 25 lines	W! (hardeleraby \therefore - lusen
V.0) [PrTCH	1041 mm	い6Smm
	R (if Analogue T"ll Lipu!	R (i) A Analogue FIII. Inpu:
UN(.	separate sync unk G 13 Posalme or Negative	separate sayn on K G 13 Pontiseror Negative
EXTERNAI. CONTROLS	()n oft awitchand hrightenes control	() on oflswith and brightness contral

mosis other leading micros.
And naturally there's a years full guarantee.
Another one of our commitments is to make certain we deliver your monitor by courier within ten days of receiving your order.

Youcan order by filling in the coupon belowand posting ($)$: Opus Supplies Led., 158 Camberwell Road. Londen SE5 OEE. Or by telephoning 01-7018668quoting vour credit card number. Or, of course, you can buy at our showroom between $9.00-6.00 \mathrm{pm}$, Monday - Friday $9.00-1.30 \mathrm{pm}$, Saturday:

To: Opus supplien Lid., 158 Camberwell Road, London SE5 (OEE Pledise send me:

I unclerstand carrage per monitor will cost an extra d (N.B. A High Resolution Monitor inclucling VAT, lead, and carriage (o)sta \& 2^{-9}. 39 . A Medium Resolution Monter including Vat, lead and carriage (onts \& 221.89) .
Iencloneachequefors_Orplease debit myoredit card account with the amount of s^{2} \qquad My Access/Barclaycard (pleare tick) nos. is Please sate the make of your computer \qquad
Name

FROM STOCK AT PRICES

 THAT DEFY COMPETITION!
ac geared motors

 DC MOTORS MICROSWITCHES RELAYS REED SWITCHES SOLENOIDS A.C. or D.C. PROGRAMME TIMERSPhone in your enquiries

Superior Quality Precision Nads
NEW POWER RHEOSTATS New ceramic construction, he
assembly, continuously rated 25 WATH $5 / 10 / 25 / 50 / 100 / 150 / 250 / 300 / 500 / 1 \mathrm{~K} \Omega$ 50 WATT 250 If $55.50+50 \mathrm{p}$ p\& P ($\mathbf{f 6} .90$ inc VAT)
 $7.75+75 p$ p\&p (99.77 inc VAT). lack Siiver Skirted Knob calliratea in Nos $1-9$, 1, in dia
brass bush. Ideal for above Rheostats 30 p WHY PAY MORE?

\qquad
INSULATED TESTERS NEW!
 GEARED MOTORS 38.3 rpm GEARED MOTOR

 CROWN $42 \mathrm{ppm} 110 / 230 \mathrm{~V}$ A.C $50 \mathrm{~Hz}, 100 \mathrm{Ib} . \mathrm{m}$. approx. Reversible geared Motor Price $£ 18.15-£ 250$ p\&p total incl VAT $£ 23.75$) 120 RPM $1 / 10$ HP APPROX $15 \mathrm{lb} . \mathrm{in}. \mathrm{230V}$ A.C. Cont Rating Non reversible Size $150 \mathrm{~mm} \times$
$90 \mathrm{~mm} \times 85 \mathrm{~mm}$ spindide 8 mm diad 33 mmm long Complete with capacitor and relay for
max load starting Offered at mere fraction

CHECK METER

200-240V AC 50amp fulfy reconditioned $\mathbf{6 7 . 5 0}$
SANGAMO WESTON TIME SWITCH
Type S25120
with ove
if 1265
Other ind
M S New Manufacturers' Surplus Good normally despatched within 7 days.

9 Little Newport Street London WC2H 7JJ Tel: 01-4370576

CIRCLE 038 FOR FURTHER DETAILS.

Cailers welcome 9 a.m. to 5.30 p.m. Mo nday to Saturday inclusive
CIRCLE 063 FOR FURTHER DETAILS.

LEARNING MICROPROCESSOR? USING MICROPROCESSOR? GET THE LS?

LS series of microprocessor learning systems offers inexpensive trainers in learning and practising microprocessor programming and interfacing; low cost controllers in automation and OEM. The series comprises systems based on the most popular 8 bit microprocessors, $6502,6802,6809, \mathrm{Z80}$, and 8085 .
Features:
20 editing. debuggme commands in EPROM; 3-16 user keys; Hex keys: 2 K RAM: 16 programmathle I/O lines, spare socket for estra 4 K EPROMOr 2 K RAM: seven segment [.ED display: cassette recorder interface; npeaker; breadhoard; wre-urap

OPton:
LS Projects. A collection of 15 programming and interfacing progects with eonstruefion manual and components. Progets include muste generator, nemory expanEPROM programmer home A Dil DA converston, optical
No woldering or wire-wrapping is requared)
Price:
$1 . \operatorname{S680} 2$
ST880
8109.00
109.00
-129.00
1109.00
$\mathbb{1} 109.00$

Moss Module (work on L.SZ80)
129.00

The prices shown include surface mal postage.
90 days warranty.
(heques to: Room I.320. Quadrant House, Sutton SM2 5AS, Gt. Britain.
Distributors Invited
BINARY SYSTEM
MAXWELI ROAD, P.O. BOX 1583
SINGAPORE 9031
REPUBLIC OF SINGAPORE

CIRCUIT BOARD REPAIR

The salvage of just one complex p.c.b. assembly would pay for the repair kit used to do it, say OK Industries. Available in economy, standard and de-luxe versions, the kit includes repair tracks in most of the configurations likely to be required as well as setting tools. Additional to the standard kit are a number of consumables; epoxy
resin, flux, cleaner, spatulas, abrasive sticks, tweezers, clamps and knives. The de-luxe kit has all that and an temperature-controlled soldering iron and five pairs of pliers. All items can also be purchased separately. OK Industries UK Ltd, Dutton Lane, Eastleigh, Hants. SO5 4AA. WW 220

P.C.B.C.A.D.

Finding p.c.b. layout laborious and existing computer-aided design systems too expensive, Keith Ingham, a hardware and software engineer, designed his own c.a.d. system entirely in machine-code. This makes the system, Artwork plus, very fast and Mr. Ingham has managed to incorporate a number of very useful functions-curved tracks, for example, and a facility for dumping work in progress to a dot-matrix printer. At its simplest level, Artworker is a computerized analogue of a drawing board with 18 overlay sheets in register and the drafting pen replaced by a cursor. A p.c.b. designer with no computer experience could use the system with very little difficulty, claims Ingham.

The system compiles a list of all interconnections as the work progresses and if a component is repositioned, then the connecting tracks are reoriented to suit. A library of the user's company standards may be kept on disc and the redrafting of a standard board is reduced to a
minimum. Library space can also begiven to a host of standard and non-standard pad layouts. Pads can be placed to an accuracy of 0.01 mm and tracks to 0.6 mm . Clearances between pads and tracks can be checked visually although an automatic clearance check is to be added to the system. Individual tracks or groups of tracks are initially given straight line connections and may then be moved using a 'rubber-band' control.

Output from the system may be on a precision drafting plotter

CONTROLLER FOR THE BBC MICRO

A controller interface designed to plug into the 1 MHz bus socket of the BBC computer provides a number of useful facilities, including an eight-channel, eight-bit a-to-d converter, an eight-bit input port, eight-bit output port, four switch inputs, four relay outputs and a bus extender for further expansion.

The a-to-d converter is a single-chip device with a separate 2.45 V precision voltage reference i.c. it gives 256 -step resolution on all eight channels. A 5 V regulator provides the supply for all the internal circuitry with a spare capacity of 80 mA for external circuitry. Up to four switches can be connected directly to the switch inputs and the four internal relays can be used to switch devices of up to 12 V at 1 A . They could also be used to switch external relays for higher power requirements. The expansion connector uses its own configuration for add-ons designed by the makers. There is already an additional a-to-d pack which allows for high-speed operation, it takes 100 K

samples/s and is said to be ideal for use with an experimental digital storage oscilloscope or similar project. This is complemented by a d-to-a converter with eight-bit resolution (256 steps) which incorporates a high-impedance input buffer. the interface module, called Interbeeb, includes a power pack for $£ 59.95$ while the AD pack and the DAC pack cost $£ 19.95$ each all prices inclusive. DCP
Microdevelopments Ltd, 2 Station Close, Lingwood, Norwich NR13 4AX. WW 222

MORSE RECEIVER FOR ZX81

 artwork. It will also send output information to a photo plotter, eliminating the camera stage. Each Artworker station is a complete stand-alone system with full design facilities. Further workstations when added can share a plotter. The basic price of the Artworker is $£ 14530$ and this with a appropriate plotter is all that is needed for a complete in-house p.c.b. design system. Wayne Kerr, Datum Ltd, Woolborough Lane, Crawley, RH10 2UG. WW 221A program for the ZX81 computer can translate Morse code signal received from a radio or other source and translate them into text which is displayed on the screen. Two keys on the computer are programmed to adjust the reading speed and when this is correct, spaces appear between the words. The cassette program is loaded and a loudspeaker feed from the receiver is connected by coaxial cable to the cassette input of the computer. The instructions provide some useful hints and tips for the reception of signals including the use of a pair of back-to-back diodes to clean up the signal. This could be of use in cassette loading. The program has been successfully tested with both versions of the ZX81 r.o.m. Brian Bailey, Pinehurst Data Studios, 69 Pinehurst Park, W. Moors, Wimborne, Dorset BH22 0BP. WW 223

COMPACT DIRECTION FINDER

A radio direction finding system, the DF2, gives an instant readout of the direction of a signal both as a digital display and as points around a compass. The signals are collected from four identical antennae mounted in a square array. These are combined in a head unit which
phase-modulates the signal with a special waveform. the extra phase modulation carries the information about the direction of the incoming signal. In the unit this additional modulation is separated from any other modulation and processed to give two voltages; one proportional to the sine of the bearing angle and the other to the cosine. These voltages are digitized and the
the head unit. Although the system is designed to work with f.m. signals it will also operate with a.m. or s.s.b. signals which it will interpret as n.b.f.m. Other refinements include an offset so that the antennae especially on a mobile unit, do not have to be accurately aligned, since any misalignment can be compensated. It is even possible to reverse the directions entirely so that the system can be used with upside-down antennae, under an aircraft, for example. Suitable antennae, receivers and all ancillary equipment can be obtained from the Manufacturer; Datong Electronics Ltd, Spence Mills, Mill Lane, Bramley, Leeds LS13 3HE. WW 211

calculation to the bearing is handled by a 280 processor, which is also used to drive the display. The phase-shift cause by signal delay through the receiver is automatically compensated for to give a superior performance than that in most Doppler-shift direction finders, according to the maker.

The DF2 is designed to be easy to install and use. In normal operation the unit instantly indicates the bearing of the received signal. If the signal fades the reading is held. Various operating modes give different selections of sampling and holding signals. The averaging time can be altered by a control but the processor control always ensures that the briefest signal will give an accurate bearing, whatever the setting. The unit may be used in conjunction with a separate receiver or may have a receiver incorporated into it. The coaxial feeder from the head unit also act as a d.c. power cable to

MORE ON VISION

The MicroEye system for the BBC Computer has now been enhanced by the addition of two software packages. The standard MicroSight software will calculate areas and perimeters of an image and can be accessed from the Basic system. The additions are the Hi Res package which uses BBC mode 0 to give a 265 by 256 image which may be stored on tape or disc; and a Photo Graphics package which uses mode 2 and offers 'false colour' representation of different shades of grey. The system including tv camera, software and documentation cost £495. For an additional $£ 99$ it is possible to add an RGB filter system with the appropriate software to give a 'true' colour image in mode 2. Digithurst Ltd, Leaden Hill, Orwell, Royston, Herts SG8 5QH. WW 212

SINGLE-LENS VIDEO PROJECTOR

A new projector has been specifically designed to work with computer data output. The ECP 1000 differs from most other video projectors by combining the RGB images internally, working like a tv camera in reverse, and projecting the combined image through a single lens. This avoids the registration problems often encountered with three-lens projection tv and the system is capable of displaying
high-resolution images with 600 lines of 1024 elements.

The input signal is fed to the three c.r.ts which are positioned around a cube of dichroic mirrors. the mirrors within the cube have been aligned by laser light, and the dichroic coatings, up to 35 layers on each mirror, have been selected to match the wavelengths of the outputs from the c.r.ts. This ensures that the brightest image is available for projection. The c.r.ts. are also liquid-cooled to improve their efficiency.

The synchronization electronics can automatically lock onto an output operating frequency so that it will synchronize with the output of, for example, an IBM3279 terminal even though this uses a non-standard vertical frequency. the ECP1000 can scan and hold frequencies between 15 and 33 kHz horizontally and 45 to 100 Hz vertically. This permits the projector to be used with many different output devices, from personal computers to high-resolution graphics terminals. With an optional adaptor and a tuner the system can be used to display broadcast tv or v.c.r. images, which benefit from the high resolution of the system. Electrohome Ltd, 7 Civic Way, Ellesmere Port, Cheshire L65 0AX. WW 213

FLOPPYTAPES

We have received news of two very similar products which are both intended to improve the reliability and speed of tape storage for microcomputers for those who cannot afford disc drives. The Ultra-drive from Ikon uses a standard cassette, offering a read/write speed of 1200 characters/s and a capacity of around 200 k bytes on each cassette. A version compatible with the Dragon 32 computer is now available ($£ 79.95$) and others for the BBC, Nascom, Tandy, Oric, Electron and Commodore computer are to be available soon. Ikon computer products, Kiln Lane, Laugharne, Dyfed. WW 214

A different approach is taken by Phi Mag Systems, who have produced Phloopy, which uses a continuous loop of tape about three meters long in an interchangeable cartridge. Tape
speed is $15 \mathrm{in} / \mathrm{s}$ and 0.25 in instrumentation tape is used. Each cartridge offers a capacity of 100Kbytes and a transfer rate of $10 \mathrm{Kbytes} / \mathrm{s}$. typically a file can be found and loaded in three or four seconds. The 'special secret' of Phloopy is that it records bytes in parallel, by using a nine-track head. The controller includes an on-board microprocessor which incorporates error-correction facilities and can take over many of the housekeeping and file-handling tasks of the computer. The system has been designed for the BBC computer, although other versions are on the way, and costs $£ 99$ plus $£ 25$ for an interface module which can handle up to eight drives. Phi Mag Systems Ltd, Tregonnie Industrial Estate, Falmouth, Cornwall TR11 4RY. WW 215

If you need assistance in HiFi/audio service:

REQUIREMENT: AMPLIFICATION SOLUTION: CRIMSON!

More than ever, Engineers, Enthusiasts, \& Professionals require a reliable source of quality amplification, crimson continue to meet this demand with a comprehensive range to suit virtually every application and support this with friendly advice and back-up. Our prices have remained stable for 18 months and with two regional distributors and our own mail order system, there has never been a better time to choose the best.

Full details of our complete range including heatsins, toroidal power supplies, active crossovers etc. available on S.A.E.

No problem, but as postage varies so much please write for a proforma

CRIMSON ELEKTRIK STOKE
PHOENIX WORKS, 500 KING STREET, LONGTON, STOKE ON TRENT, STAFFS.

FREOUENCY COUNTERS
 HIGH PERFORMANCE HIGH RELIABILITY LOW COST

The brand new Meteor series of 8 -digit Frequency Counters offer the lowest cost professional performance avaidable anywhere
\star Measuring typically $2 \mathrm{~Hz} \quad 1.2 \mathrm{GHz} \quad \star$ Low Pass Filter
\star Sensitivity $<50 \mathrm{mV}$ at $1 \mathrm{GHz} \quad \star \quad$ Battery or Mains

* Setability 0.5ppm * Factory Calibrated
* High Accuracy
* 1-Year Guarantee
* 3 Gate Times
* $0.5^{\prime \prime}$ easy to read L.E.D. Display

PRICES (Inc. adaptor/charger, P \& P and VAT)
METEOR $100 \quad(100 \mathrm{MHz}) \quad £ 104.36$
METEOR $600 \quad(600 \mathrm{MHz}) \quad £ 134.26$
Illustrated colour brochure
METEOR $1000 \quad(1 \mathrm{GHz}) \quad £ 184.36$
with technical specification

NA Dosigned ind

> TOROIDAL TRANSFORMERS

> We are now able to offer a range of high quality Toroidal transformers at very competitive prices: 30VA £6.27, 50VA $£ 7.73$, 80VA $£ 8.51$ 120VA $£ 9.33$, 160VA $£ 11.43,300$ VA $£ 15.27$

> Prices include P\&P and VAT
> Available in the following voltages: $6-0-6,9-0-9,12-0-12,15-$ $0-15,18-0-18,22-0-22,25-0-25,30-0-30,35-0-35,40-0-40,45-0-$ 45, 50-0-50
> Qty. discount 50 plus 10\%, 100 plus 20\%
> TRADE ENQUIRIES WELCOME
> AIRLINK TRANSFORMERS LTD
> 28 Bullfields, Sawbridgeworth, Herts. Tel: 0279-724425

STURDY CASSETTE RECORDER

Basing their efforts on a cassette recorder designed for use in schools, Bell \& Howell and Leasalink Viewdata have combined their talents to produce a cassette recorder (3179CX) for use with microcomputers. Pointing out that the use of cassettes for computing accounts for much heavier use than with audio, the player has been manufactured with a heavy-duty case, mechanism and circuit boards, said to be hard wearing and shock resistant. All the usual facilities are provided including 'cue' and 'review' and a tape counter, while the recording level can be automatic or manually controlled. Frequencies up to 8 kHz can be recorded which the makers claim is ideal for computer use. The recorder also doubles as an audio machine. Bell \& Howell, Alperton House, Bridgewater Road, Wembley, Middlesex. HA0 1EG. WW 216

WIDEBAND OP-AMPS

Thought to be ideal for use in high-speed data and signal applications the Teledyne Philbrick TP1437 and TP1438 operational amplifiers offer a 40 MHz bandwidth with a slew rate of up to $400 \mathrm{~V} / \mu \mathrm{s}$. Both need only +200 pA offset bias currents, offer 95 dB open loop gain and +0.5 mV offset voltages. A true differential input is designed to ensure a reliable performance whether used in inverting, non-inverting or differential configurations. 1437 has a guaranteed +20 mA output and is packaged in a T099 can, while 1438 in a T08 package has a guaranteed +50 mA output. Typical applications include current-to-voltage digital-to-analogue converters, pulse amplifiers, radar and sonar signal processing and video systems. Available from MCP Electronics Ltd, 38 Rosemont Road, Alperton, Wembley, Middlesex HA0 4PE. WW 217

PROGRAMMABLE MAINS SWITCH CAN SAVE ENERGY
A control system which uses mainsborne signalling, the Datapath, can switch up to 256 remote mains-powered appliances. The manufacturers see the main purpose of the system as switching heating and are therefore promoting it as an energy saver. though there are a nuber of other applications including the switching of security appliances and lighting. It can be used for controlling contactor or switchgear. The signals only provide for on-off controls but local, e..g. thermostat, control is possible for each remote site.

The control unit includes a microprocessor, a real-time calendar clock, and a transmitter for sending the f.s.k. signals into
the mains supply. Each receiver has a frequency comparison decoder.

The frequency band used is 110 to 125 kHz which is suitable for continuous transmission. Each Datapath installation uses one central frequency and all 256 remote switches are controlled from a single channel. Accuracy is ensured by including a redundant data byte at the end of each message this is used as a check byte and prevents interruption or interference from any other source. The checking procedure introduces a delay which can be up to two seconds for switch-on or up to 30 seconds to switch-off. To prevent interference with neighbours, the signal is only 10 mW , which
ensures that it will not pass the metering point of the premises.

The main advantage of the system is that it needs no additional wiring. The control unit may be plugged into any convenient socket and may be easily moved. Each receiver outstation is about the size of a double-gang socket and is easily installed. The control unit can be used in an immediate mode to switch on or off any remote station. It may also be programmed to switch at specific times during the day or on specific days; off at weekends, for example. A c.r.t. monitor displays the status of all the outstations and the programmed times. Programs may be easily written to suit any requirements and although the system is self-contained it may also be programmed from a host computer. The distance at which the system will operate is restricted by the porposed standard for mains signalling equipment. In practice this has not proved to be a limitation and the system has worked in many large installations.

Different applications require different configurations of the control unit but an installation with 50 control units should cost about $£ 7500$, or for 100 units, $£ 13000$. FDB Electrical Ltd, Reynard Mills Trading Estate, Windmill Road, Brentford, Middlesex. TW8 9NZ. WW 218

TEST PATTERN
Two new colour bar and pattern generators have been announced by Advid. The Unaohm EP690 is a bench insturment, intended for use by broadcasting stations, close circuit studios, laboratories, production test and service departments. It can produce colour bars, cross-hatch, chequer-board, staircase and other patterns, all of which are available as composite video or r.f. modualted signals. The signals may be output in a frequency range from 35 to 950 MHz . It costs $£ 495$.

The second instrument, Type GC981, is a small hand-held device for use by the service engineer in the field. It gives ten test patterns and colour bars as a modulated r.f. output in the
range 47 to $65 \mathrm{MHz}, 175$ to 217 MHz and 470 to 860 MHz . It comes complete with leather case, NiCd battery and a mains
adaptor/charger for $£ 119.95$. Advid Electronics, 17a Mill Lane, Welwyn, Herts AL6 9EU. WW 219

PEAK ENVELOPE POWER MEASURED FOR HAMS

A module is produced which can be added to a forward power meter to convert it to read peak envelope.

The common s.w.r. meter or the in-line wattmeter can often give misleading readings when used with s.s.b. transmission. According to Amateur Accessories, the natural tendency of the operator is to increase the microphone gain or speak too close to the microphone in order to get some response from the meter. It is exactly these circumstances that the peak envelope reading is so valuable as it enables the user to operate within the correct parameters for the output stage.

The module consists of a p.c.b. with one integrated circuit and a number of discrete components. It has been adjusted for zero readings and then sealed. It comes with mounting hardware and may be fitted to an s.w.r. meter or an a.t.u. and needs no particular knowledge or skills to fit. When fitted the circuit is adjusted so that the meter gives the same reading as it did before fitting and the meter will behave exactly as before when used with continuous carrier modes. $£ 12$ from Amateur Accessories Ltd, Church Street, Glan Conwy, Colwyn Bay, Clwyd LL28 5LS. WW 205

FAST F.I.F.O.

For those seeking the speed of t.t.l. in spooler memories without the power consumption, they could look to the 67L401 from Monolithic Memories. The device has a maximum $I_{c c}$ of 110 mA , about 30% lower than the standard 67401. The memory is organised as a 64 K by 4 -bit structure and may be cascasded to any width or depth. Typical applications for these first-in, first-out memories are for print spoolers, disc controllers, communications buffers, modems etc. Monolithic Memories, Lynwood House, 1 Camp Road, Farnborough, Hants GU14 6EN. WW 206

MICRO CONTROLLER

Built around the c.mos version of the 6502, a controller module may be programmed using a BBC computer. Programs are generated in assembly language on the BBC and then downloaded into the control board, where it may be stepped through or run. When development is complete, the program can be entered on an eprom for normal operation. As c. mos is used throughout, the controller may be battery powered. Applications include robotics, machine controllers,
data loggers, automatic test equipment and any device requiring 'intelligent' control. The board may be purchased built and tested ($£ 84.98$) or as a bare board. The monitor eprom may also be purchased separately and the technical manual supplied with the assembled circuit can be bought for $£ 2.50$. Nikam Electronics Ltd, 25 Suffolk Drive, Lacey Green, Wilmslow, cheshire SK9 4DE. WW 207

CUSTOM POWER SUPPLIES

A small projects division set up by Grenson Electronics was able to win a large contract by designing and providing prototype switch-mode power supplies in five days. Although they cannot guarantee to be so fast every time, they say that they are geared up to the rapid design and construction of prototypes. They achieve this by separating this division from the main manufacturing of production units. Grenson Electronics Ltd, High March, Daventry, Northants NN11 4HQ. WW 209

TRANSIENT PROTECTORS

A range of power-line and data-line protectors incorporate TransZorb silicon junction transient suppressors. Mains-born transients can induce computer breakdowns and signal line interference may not be immediately detected but can cause downgrading of performance and may in the long term lead to damaged components. Hunter Electronic Components Ltd, Unit 3, Central Estate, Maidenhead, Berks. SL6 7BN. WW 210

MEMORY IN BULK

High density memory arrays can be provided simply and at lower cost by combining several 64 K ram i.cs on to a single substrate. Mounted in single-in-line packages, these Texas memory arrays are available in several configurations, including 64 K by $4,5,8$ or 9 bits. as well as a device organized as a 256 K by one-bit memory. Leadless chip carriers are bonded directly to the substrate which also includes decoupling capacitors. Mounted vertically, the devices offer considerable saving in board space and in board complexity and assembly time. The rams require a single 5 V supply and have an access time of 150 ns . They are refreshed 256 times every 4 ms and have a protective coating against alpha-particle intrusion, which can cause errors. Available from Jermyn Distribution, Vestry Estate, Sevenoaks, Kent. WW 208

THE 'ALADDIN'S' CAVE OF COMPUTER AND ELJCTRONIC EQUIPMENT
hot line data base

DISITEL©

THE ORGINAL FREE OF CHARGE Dial Yp data base

 ONLINENOW-300 01-679 1888 MAINS FILTERSCOMPUTER 'CAB'
.

FPROM COPIFRS

NEW GANGOFIGTT inteligent Z8O

COLOUR MONITORS
 NOVEX NC-1414.CL Fully cased brand new

14" colour monitor Many exacting features
such as RGB TTL and PAL composite video
inputs. Internal speaker and audio amp.
-GREEN TEXT'
swith for hign det text

exacting user. Brand new and only $199.00+\varepsilon 10.00$ car.

DATA MODEMS

Join the communications revolution with our
range of EX TELECOM data modems. Made to most stringent spec and designed to operate
or 24 his per day Units are made to the
 MODEM 28 "Hackers Special" fuly tled
 modes. AUTO ANSWER:Data Yor connection to comms line, Ideal networks etc COMP SUPE Win Lata tested ready 1o Run a a VAI CLAT
MODEM
MODE NO-1 ComPact Un lo Use with socket Guaranieed workhg wird data for 95
MODEM 20.2 same as 20.1 but 75 bauc
TRANSDATA 307 Ba 300 baud acoustic
coupler RS232 1/o 995.00
NEW DSLL 123 Multi Standard modem
 Cuolex modes. Full auto answer via modem or
 $\times 9^{9} .1286 .00+$ vat For furner data or details on

COOLITG FAES

SUPER PRINTER SCOOP

 BRAND CENTRONICS 739-2\section*{VIDEO MONITORS

HITACHI in ergonimcally designed free standing case. Very high delinilion will display
small but readable 132 columns wide! $12 v D C$ opp. @ 800 ma , so ideal for mobile use. Supplied in AS NEW condition complete with data Composite 75 ohm vid inp
CRT $£ 45.00$ or Green CRT $£ \$ 5.00$
12" CASED. Made by the Britist KGM Designed for continuous use as a data display station, unt is totally housed in an attractive brushed aluminium case with
OFF, BRIGHTNESS and CONTRAST ONH
Options. Interface cable (sp
DRAGON or CENTRONICS 36 way plg
GE TERMIPRINTER
printer-terminals enables us to offer you
These quality 30 cps printers a a SUPER over £ 1000 . Unit comprises of full OWERTY
electronic keyboard and printer mech with print face similar to correspondence quality
typewriter. Variable forms tractor unit enables full width - up tc $13.5^{\prime \prime} 120$ column
paper, upper - lower case, standard RS232 serial interface, internal vertical and
horizontal tab settings, standard ribbon
attention was given to construction and

$$
\begin{aligned}
& \text { ested prior to despatch Dimensions } \\
& \text { pprox } 14^{\prime \prime} \text { high } \times 14^{\prime \prime} \text { wide by } 11^{\prime \prime} \text { deef }
\end{aligned}
$$ adjustable baud rates, quiet operation plu many other features. Supplied complete

SUPER DEAL? NO - SUPER STEAL!!

NEVER be repeated Standard CENTRONICS
 Hz

\qquad d $\$ 500$ onteed florking E . E 12.50

$$
\begin{aligned}
& \text { operation OWIY E45.00 PLUS E9.50 CARR. } \\
& 24^{\prime \prime} \text { CASED Again made by the KGM C }
\end{aligned}
$$

PROFESSIONAL KEVBOARD OFFER

\qquad

$$
\begin{aligned}
& 24 \text { CASED Again made by the KGim } \\
& \text { with a simitar spec as the } 12 \text { monntor } \\
& \text { Originally used to large screen data } \\
& \text { display very compact unit in lightweight }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Chassis keyboard otfer al } \\
& \text { ALPHAMERIC } 7204 / 60
\end{aligned}
$$

An advantageous purch
chassis keyboard otfer
ALPHAMERIC $7204 / 6$
outout plus strobe. Cim

The FABULOUS 25CPS TEC Starwriter
GRAND NEW'AT ONLY£4́99\% + VAT=

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\begin{aligned}
& \text { only apparent when monitor is switched of } \\
& \text { Although unguaranteed ali montors are }
\end{aligned}
$$

$$
\begin{aligned}
& \text { alioy case dim } 19^{\circ} \mathrm{H} \times 17^{\mathrm{D}} \times 22^{\mathrm{W}} \mathrm{~W} \text { Al } \\
& \text { silicon electronics and composite video }
\end{aligned}
$$ONLYE55.00 PLUSE9.50 CARR \& INS.

SEMICONDUCTOR'GRAB BAGS'

include tra
\qquad facturer's markings, fully guaranteed.
$50+E 2.95100+E 5,15$. TTL 74 Series A gigantic purchase of an s enables us to offer $100+$ mixed
mostly TL" grab bags at a price which
three chips in the bag would nnormall or three chips in the bag would nnormally
cost to buy Fully guaranteed all IC's full
spec. $100+E 6.90200+E 12.30300+E 19.50$

DEC CORNER

MOSTEK CRT BOE Brand new dual eurocard, Z80 based VT 100 PLUS
 emulator with graphics etc $\quad \mathbf{E 9 9 0 0 0}$

 $\begin{array}{ll}\text { BAI1-M8 } \\ \text { DLV11-J } 4 \text { X EIA interface } & \text { EJ8S.00 } \\ \text { EJ10.00 }\end{array}$ $\begin{array}{ll}\text { RK } 10.00 \\ \text { RKO5-J } 2.5 \mathrm{Mb} \text { disk drives } & \mathbf{E 6 5 0 . 0 0}\end{array}$ POP1 105 Cpu Ram, i/o, etc. RT11 ver. 38 doc kit LA36 Decwriter EIA or 20 ma KL8JA PDP 8 async i/oMIBE PDP 8 Bootstrap option MIBE PDP 8 Bootstrap option
DILOG DO 100 RKO5 LSI $4 \times$ RKO controller MSC4804 \qquad am card (Equiv MSVII-L) 256 k bytes
$\begin{array}{ll}\text { LAX } 34-A L \\ \text { LA34 tractor feed } & \mathbf{E} \$ 59.00\end{array}$ 1000's of EX STOCK spares for DEC
PDP8 PDP11 PDP15 \& periperhals.
Call for details. All types of Computer

66\% DISCOUNT

$5 \mathrm{kls} £ 5.90+£ 1.80$ छ日

$10 \mathrm{kls} £ 10.25+\mathrm{pp} £ 2.25 \quad 20 \mathrm{kls} £ 17.50+£ 4.75$
ALL PRICES PLUS VAT

'DOLBY' NOISE WEIGHTING FILTERS

 signal-to-noise ratio measurements. As new units. f40 each (-f1p\&p)
BECKMAN TURNS COUNTER DIALS

Miniature type (22 mm diam.). Counting up to 95 tions. Only $£ 2.50$ each RFI RECEIVER
Stoddart Model NM52A. RF Noise \& Field intensity measuring

KAY SOUND SPECTROGRAPH

Model 6061 B with Amplitude Display, scale magni
excellent condition.

Brand new stock of 'ASTROSYN' TYpe 20PM A055 stepper motors. 28 V DC. 24 steps per rev 15 oz-in torque (a) 100PPS. Body length $2^{1 / 2} 2^{\prime \prime}$ diameter $2^{\prime \prime}$, shaft $1 / 4^{\prime \prime}$ diam $\times 41 / 4^{\prime \prime}$ spirally threaded. Weight $160 z$ Price each $£ 15$ ($p \& \mathrm{p}$ 50p). Connections supplied. INC. VAT

> K MILLI-VOLT MEASUREMENT, AMALOGUE FSD Wide-band to 10 MHz
> MARCONI TF2603. Frequency range
> 1.5GHz. High Sensitivity from 300 uV

> MARCONI TF2604. Electronic Multi-mere AC/DC 300 mV Full scale to 300 V (1 kV DC). Re sistance ranged. AC Frequency range 20 Hz $1500 \mathrm{MHz}^{2}$
> \star CONSTANT VOLTAGE TRANSFORMERS $\star \star$ ADVANCE VOLSTAT; TYpe. Model MT140A 150 W . Price each $£ 20+$ VAT $+£ 2$ carriage.

 TEKTRONIX 453. Dual-trace 50 MHz .
TELEQUIPMENT D75 Dual-trace 50 MHz
portable £450
HEWLETT-PACKARD 1707 A Dual-tr
st TESTROUIPMENL It

MARCONI TF $13131 / 4 \%$ LCR Bridge MARCONI TF 1312 LCR Bridge
MARCONI TF2604 Electronic Multi-Meter
£85.
1 GHz 10 W fsd $£ 350$.
MARCONI TF2701 in-Situ Universal Com
ponent Bridge $£ 250$.
HEWLETT-PACKARD 3450A Mult1-Function Digital Multi-Meter
ROHDE \& SCHWARZ 'SDR' AM Signal Generator $0.3-1 \mathrm{GHz}$.
TEKTRONIX 2901 Time-mark Generator.
ROHDE \& SCHWARZ Resonance Frequency Meter $470 \mathrm{MHz}-2.5 \mathrm{GHz}$
ROHDE \& SCHWARZ Polyscop SWOBII.
METROHM 500V Insulation Testers Transistorised $£ 40 \mathrm{pp} £ 1.50$.
BRUEL \& KJAER Heterodyne Voltmeter $0.5-240 \mathrm{MHz}$

\star AVO SIGNAL GENERATORS AFM2

[^7]TEKTRONIX * FILE MANAGER SYSTEM MODEL 4907 Option 31 (Third disc drive). GPIB Graphic System compatible. GPIB (IEEE 488-1975) compatible.

GOWPUTER PEBIPHERALS t 1.6MB 8" FLOPPY DISC DRIVES New Stock

After our recent sell-out of the DRE7100 FDDs we are pleased to offer another bargain package as tollows: BRAND NEW American 'MFE Corp model M-700 DOUBLE-SIDED Bisc Drive Massive storage capability up to 1,6MBytes. Ful BM compatability. External power requirements are $\pm 5 \mathrm{~V}$ at 1.2 A and +24 V at 1.1 A Full spares/ back-up available U.K. (Elcomatic's). Current list is over £315. OUR PRICE JUST $£ 175+$ VAT (in luding full manual worth $£ 15$)

DELIVERY $(48 \mathrm{Hrs})+\varepsilon 10+$ VAT
4000-SERIES HARD DISK DRIVES atile IBM-type 5440 Disks. Units avalable ex-stock quotation.

DISK CARTRIDGES \dagger

\star SWITCHING POWER SUPPLIES *

The following DC power supplies are avallable now

\star CENTRIFUGAL BLOWERS

TORIN Type U62B1. 230V Cap Start (supplied), for large rack cooling or enclosure extraction applit cations Overall dimensions $20 \times 12 \mathrm{cms}$, outlet 6×4 cms. BRAND
VAT, pp f 1.50.

BERG LOW-PROFILE 14-PIN DUAL IN-LINE I.C. SOCKET, manufactured from glass filled polyester to UL94V-O. £7 for $100, ~ £ 31$ for $500, ~ £ 56$ for $1,000, ~ £ 256$ for 5,000 , £ 460 or $10,000, ~ £ 2,100$ for $50,000, £ 3,700$ for 100,000 . Sample 10 sent for $£ 1,20+30 \mathrm{p} \mathrm{P} \&$
BERG LOW-PROFILE 16-PIN DUAL IN-LINE I.C. SOCKET as above, $£ 8$ for $100, £ 36$ for $500, ~ £ 65$ for $1,000, £ 295$ for $5,000, £ 350$ for $10,000, £ 2,390$ for $50,000, £ 4,300$ fo WIRE CUTTER AND STRIPPER TEMPERED STEEL BLADES, spring loaded with moulded red p.v.c. handles. Cutting and stripping adjustable up to $6 \mathrm{~mm}^{2}$. Overall length £116, 500 for $£ 525,1.000$ for $£ 1,000$ Sampie pair sent for $£ 175$ + (

HfGH-POWER SILICON BRIDGE RECTIFIERS, 25 amp 600v. Single-hole fixing 250 ($1 / 4$ in.). push-on connector terminals, manufactured by IR. $£ 20$ tor $10 . £ 90$ tor $50, ~ £ 175$ for $100, £ 800$ for $500, £ 1,450$ for METAL FILM RESISTORS FZ4. Manutactured by C G S Semi-precision with a standard toprace $\pm 2 \%$ and a temperature coefficient of better than $100 \mathrm{ppm} / \mathrm{oc}$. We have a fult fange in stock from 100 A to IMO. All bandoliered. $£ 2.50$ for 1,000 any one value.
WIRE WOUND RESISTORS. Manufactured by E. A. G. Type 16 ES with a standard tolerance $\pm 5 \%$ of nominal resistance value All vatues in siock. 3 -wat! Series $£ 3.50$ per 100 any one value, $+\Sigma 1 \mathrm{P} \mathrm{\&}$ ($£ 4.83$ inc. VA. T. . 6 -wall Series $£ 6.50$ per 100 any one value,
Series $£ 1050$ per any one value $+\Sigma 1$ P\&P ($£ 13.23$ inc V A.
BRITISH-MADE TRANSFORMERS. Input 240 val 50 Hz , output $12 \mathrm{v}-0-12 \mathrm{v}$, $1 / 2 \mathrm{amp}$ with buill-in ther mal overtoad cutout. P.C. mounting $£ 25$ tor $10+$ V. A. T., $£ 115$ for $50+V$ A. T. $£ 210$ tor $100+$ V A. T., $£ 95$ LESLIE TREMOLO SPEAKER SYSTEM. A Iwo speed rotating batfle system which when used as pa of an organ, hi-fio or disco system produces the famous Leslie effect. The unit come s complete with a 50 wall 8 ohms speaker at peak output, two $220 / 240 \mathrm{v} 50 \mathrm{~Hz}$ motors with central drive to rotating horn/bal Hle This gives a three way sound effect, i.e. normal themole sound when stationary, wraparound sound when evolving al rev. per sec. and supersound at rev, per sec. Banle size 485 mimx 395 mm . Overall 10. $£ 825$ for 25 . $£ 1,500$ for 50 . $£ 2.700$ for 100 . Sample sent tor $£ 45+£ 5 \mathrm{P} \& \mathrm{P}$ ($£ 5750$ inc V A T) TWIN KEYBOARD AND FRAME. Two 44 -note ' F ' 10 ' C ' keyboards mounted on a metal frame hinged for easy adjustment. Keyboards offset by one octave with keyboard separator giving simulator wood effec clipped between the two keyboards. Manutactured overall dimensions: width $1,027 \mathrm{~mm}$, height 131 mm .
front and back 361 mm , keyboard separator approx. $1,094 \mathrm{~mm}$. $£ 202.50$ for $5, £ 372.50$ for $10, £ 83835$ for 25 . $£ 1.545 .35$ for 50 . Sample sent $£ 45+£ 4 \mathrm{P} \& \mathrm{P}$ ($£ 5635$ inc. VA T)
ORGAN PEDALBOARD. A high quality ' 13 -note ' $C^{\prime} 10{ }^{\circ} \mathrm{C}$ ' pedaiboard. Notes are manufactured in a hard wearing plastic covering steellevers Contact switch fitted to each pedal unit $380 \mathrm{~mm} \times 250 \mathrm{~mm}$. $\mathcal{E} 108$ SWELL PEDAL incorporating the latest technology. Volume controlled by photoelectric cell Designed lo be mounted in a console. Detachable metal mounting plate with roller stop for easy installation. Size $250 \mathrm{~mm} \times 120 \mathrm{~mm}$, matt-black finish, $£ 56.25$ for $5, £ 103.50$ for $10, £ 238$ for $25, £ 428.20$ for $50, £ 788$ for 00 . Sample sent $£ 12.50+£ 4 \mathrm{P} \& \mathrm{P}$ ($£ 18.98$ inc. V.A T.
TERMS C. W. O. Please add 5% to all orders for carriage by 15% V. A. T. Export enquiries welcome We ind it impossible to advertise ail we stock. Please telephone or write for further enquiries. Personal cal ers always weicome

SPRINGFIELD HOUSE
TYSSEN STREET, LONDON, E. 8 TELEPHONE: 01-249 5217

AC/DC Electronic Components

BIG VALUE RESISTOR PACKS Resistors保 Metal Film Mntrs OPCOA
LMDA OPB 815 OPTOICe PMD IIK 80 Power Darlingto each RW 153 P each
TI $\quad 2 \mathrm{~N} 1302$ NPN GE TO5 each $2 N 5450$ Small Signal each each TD3 M\&T MC 14433 each 27 pf 63 V CER Plate per 1000

Mntrs ITT ISKRA	Device 93750 DTL GATE CER 47pf 160V Polystyrene per 200	Price f0. 20
		f2.00
$\begin{aligned} & \text { TCSF } \\ & I T T \end{aligned}$	470 pt 50 V DISC CER per 1,000	£10.00
	3300 pf 500 V DISC CER per	f10.00
MUL	3440.022 mf 400 V Polyester	
	per 250 .	f5.00
	0.01 mf cocv Poivester Ax pel	
	100	¢2.50
PLeSSEY	0.47mt 250V 'X' Radial Poly	
		¢0.25
	10 mi 25 V Bead Tant per 100	£10.00
LORLIN	10000 mf 40V Comp Grade	
	each	f2.00
Terms: C.W.O. +75 p p\&p		
reet, Enfield, Middlesex		

CIRCLE 060 FOR FURTHER DETAILS.

VIDEOTERMINAL BOARD

$\star 80$ characcers $\times 24$ lines \star
Requires ASCll encoded keyboard and monitor to make fully configurable intelligent terminal. Uses 6802 micro and 6845 controller. Program and character generator (7×9 matrix with descenders) in two 2716 EPROMs. Full scrolling at 9600 baud with 8 switch selectable rates. RS232 interface.

Bare board with 2 EPROMS and program listing £48 plus VAT. Send for details or CWO to:

AMElectronics
Wood Farm, Leiston, Suffolk IP16 4HT Tel: 0728831131

CIHCLE 083 FOR FUHTHER DETAILS.

\iint JPR ELECTRONICS

NEW WHOLESALE PRICE LIST AND CATALOGUE NOW AVAILABLE

 HUNDREDS OF COMPONENT LINES AT COMPETITIVE PRICES AVAILABLE FROM STOCK CAPACITORS - RESISTORS - PRESETS - CERMETS - RELAYS - BUZZERS - NI. CAD BATTERIES - DIODES - BATTERY HOLDERS EDGE CONNECTORS - MINIATURE SWITCHES - 7 SEGMENT DISPLAYS - POWER SUPPLIES - MAINS FILTERS - IDC CONNECTORS FUSEHOLDERS - INVERTERS - A.B.S. BOXES - MOTORS - SPEAKERS - WIREWOUNDS - CABLES - TRANSFORMERS D CONNECTORS - TRANSISTORS - FERRITES AND MUCH MOREWRITE OR TELEPHONE NOW FOR A FREE CATALOGUE - TRADE ONLY JPR ELECTRONICS. UNIT M KINGSWAY INDUSTRIAL ESTATE. LUTON LU1 1 LP TELEPHONE: LUTON (0582)410055 TELEX: 925859 JPR

CIRCLE 059 FOR FURTHER DETAILS

Brand NEW \& EX DEMO surplus BARGAINS!

ITT Model 3510 TELEFAX

- Group 2 facsimile transceiver tor sentinas reproductions of documents over a phone line in two minutes - Modern, compact, microprocessor controlled machine for the miachurle

Piease Note:

- All prices are ex VAT \& carriage please enquira for detaits $\&$ prices

COMPUTER APPRECIATION, 16 Walton Street, Oxford OX1 2HO. Oxford (0865) 55163
AUTOTYPE, 1 Church Street, Cuckfield, Haywards Heath, W. Sussex, RH17 5JZ. Haywards Heath (0444) 414484 \& 454377
CIRCLE 052 FOR FURTHER DETAILS.

01-452 1500 Technomatic Ltid 01-450 6597

BBC Micro Computer System OFFICIAL DEALER
Please phone for availability

Software from ACORNSOFT PROGRAM POWER/GEMINI in stock

BBC Model Bf348
B + Econet $£ 389$
B + DFS $£ 429$
$B+D F S+$ Econet $£ 470$
Carriage $£ 7$
Model A to Model B Upgrade Kit £95 Installation £15

LANGUAGE ROMs
BCPLROM + Disc + Manual $£ 87$
UTILITY ROMs
BBC Ultracalc $£ 65$ Toolkit $£ 20$ EXMON £20; DISC DOCTOR £30; FXDump £15; Graphics ROM £28; TermiROM £29

FLOPPY DISC INTERFACE £84 \& £15 installation BBC COMPATIBLE DISC DRIVES

These drives are supplied with manual, form disc and cables
Single Drive: $100 \mathrm{k} £ 140$ 200k £ 175 * $400 \mathrm{k} £ 195$.
Single Drive with PSU: $100 \mathrm{k} £ 165200 \mathrm{k} £ 210400 \mathrm{k} £ 221$
Dua! Drive with PSU: $2 \times 100 \mathrm{k} £ 3202 \times 200 \mathrm{k} £ 400^{*}$; $2 \times 400 \mathrm{k}$ £ 420
*These drives are switchable between 40/80 tracks $40 / 80$ Switch Module for $1 \times 400 \mathrm{k}$ and $2 \times 400 \mathrm{k}$ Drive £32.
DISKETTES: In packs of $10 . W=W$ abash, $M=3 M$ 40T SSSD, W: £14 M: £16 ; 40T DSDD M: £22 80 T SSDD, $\mathbf{W}: \mathbf{£ 2 4 , ~ M : ~ £ 2 6 ; ~ 8 0 T ~ D S D D , ~ W : ~} £ 26, \mathrm{M}: £ 30$ Carriage $£ 2$ /box
FLOPPICLENE Drive Head Cleaning Kit $\mathbf{£ 1 4 . 5 0}$

Linone or send for aur Bicleainat

TORCH Z80 DISC PACK

Your BBC computer can be converted into a business machine with the ddition of a TORCH $Z 80$ disc pack. the Torch pack with twin disc drive and he $Z 80$ processor card greatly enhances the computer's data storage and processing capability. Z80 card comes complete with 64K RAM and a CP/M compatible operating system. In addition to BBC owner's user guide and a systems disc the package is supplied with PERFECT software pack age comprising of DATABASE. WORD PROCESSOR \& SPREAD SHEET Complete Package for $£ 730+£ 8$ carr

MONITORS

MICROVTEC 1431P 14*RGB/PAL Std Res $\mathbf{f 2 4 9}$ MICROVITEC 1451 14* RGB Med Res $£ 299$ MICROVITEC 1441 14* RGB Hi Res $\mathbf{£ 4 2 0}$ MICROVITEC 203120° RGB Std Res $£ 287$ KAGA VISION 12° RGB Sid Res $£ 230$ KAGA VISION || $12^{\prime \prime}$ RGB Hi Res $£ 260$ KAGA VISION III 12'RGB Super Hi Res $£ 358$ KAGA 12 GREEN Hi Res $£ 106$ All

SANYO DR101 Data Recorder $\mathbf{f 3 4}+\mathbf{f 2} 50$

 riageBBC Tape Recorder $£ 28.50+\mathbf{£ 2 . 5 0}$ carriage Cassette Lead $\mathbf{£ 3}+\mathbf{£ 1}$ carriage
HOBBIT Floppy Tale $\mathbf{£ 1 3 5}+£ 2.5$ HOBBIT Zero Memory Option $£ 25+£ 1$ carriage
Computer Grade C12 cassette $\mathbf{5 0}$ p each. $£ 4.50$ for tot1 carriage

PRINTERS \& PLOTIERS

EPSON FX80 $\mathbf{£ 3 5 0}$ EPSON RX80FT $£ 250$ EPSON FX- 100 £450 SEIKOSHA GP 100A 160 JUKI 6100 Daisy Wheel $£ \mathbf{3 5 0}$ MCP 40 Col Printer/Plotter $\mathbf{£ 1 2 0}$ Colour Graphics Plotter A3 size £270 GRAFPAD Graphics Tablet $\mathbf{£ 1 2 5}$ Carriage $£ 7$

BBC EPROM PROGRAMMER

A fully self-contained Eprom Programmer with its own power supply, able to program 2516, 2716/32/32A/64/128 single rail Eproms

* Personality selection is simplified by a single rotary switch.
- Programming voltage selector swith is provided with a safe position
- Wrogring indicator to show programming in progress.

Programmer can reac, blank check, prog addresses on the EPROM

* Full editor with ASCl| disassembler Programmer complete with cables, software and operating instructions: $\mathbf{£ 8 9}$

PRODUCTION PROGRAMMER: P8000

8000 provides reliabie gang programming of up to 8 EPROMS simultaneously with device sizes up to $16 \mathrm{k} \times 8$ bytes. Devices sions Simple from 2704 to 27128 in single and three rall yer selection and reliable programming in minimum programming times $£ 695+£ 6$ carriage
 € $2 \mathrm{p} \% \mathrm{p}$

ACORN IEEE INTERFACE

This IEEE 488 standard interface is a general pur pose system for exchanging digital data between a
number of devices in a local area. The interface comples with the IEC 625-1 standard and can be connected to up to 14 other devices. Interface board is supplied complete with software in ROM, interconnecting cables, IEEE cable for connection an externa, device and a comprehensive manual. $\mathbf{£} 282.50+£ 2.50$ carr.

SMARTMOUTH SPEECH SYNTHESISER FOR BBC
The 'infinite vocabulary' self-contained speech synthesiser unit. Uses only 5-10 bytes per word - no ROMs required simply plugs into the user port. (Has Aux Audio output skt.) Supplied with Demo/Development programs and simple software instructions, $£ 37+\mathbf{£ 2} \mathrm{p}$. \& p .

NEW COMPREHENSIVE CATALOGUE AVAILABLE - PLEASE SEND FOR PRICE LIST
I.D. CONNECTORS

D CONNECTORS

textool zif

DIL SWITCHES

ACCESSORIES

Parallel Printer Lead $\mathbf{f 1 0}+\mathbf{f 1}$ carriage Serial Printer Lead $£ 8+£ 1$ carriage Epson Serial Interface $2 \mathrm{~K} \mathbf{f 6 0 + £ 1 \text { carriage }}$ Epson Serial Interface $\mathbf{f 5 0}+\mathbf{£ 1}$ carriage
NEC Serial interface $\mathbf{f} \mathbf{4 2}+£ 150$ carriage NEC Serial Interface $£ \mathbf{4 2}+\mathbf{£ 1 . 5 0}$ carriage
Epson Paper Roll Holder $\mathbf{£ 1 7}+\mathbf{£ 1 . 5 0}$ car
riage
 riage Fantold 2000 sheets $\mathbf{£ 1 3 . 5 0}+\mathbf{E 2 . 5 0}$ carriage

TIME-WARP

BBC REAL-TIME-CLOCK/CALENDAR
A low cost unit that opens up the total range of Real-Time applications. With its full battery backup, possibilities include an Electronic Diary, automatic scientific applications, recreational use in games, etc - its uses are endless and are simply limited by one's imagination. Simply plugs into the user port - no specialist installation required - No ROMS Supplied with extensive applications software. $£ 29$

BOOKS (no VAt; p\&p f1)

Advanced User Guide (£2 p \& p) £12.95 Assembly Lang Prog. for BBC
$\mathbf{f} 8.95$ Assembly Lang Prog. for BBC $\mathbf{£ 8 . 9 5}$ Assembly Lang programming on BBC Micro by Ferguson and Shaw BBC An Exper GBC... Easy Programming on $B B C$ Further Programming on BBC introducing BBC Micro. Programming the BBC Programming
30 Hour Basic 35 Educational Programs BBC Sound \& Graphics Creating Adventure Programs Discovering Machine Code Structured Programming The Friendly Computer Book BBC Beyond Basic BBC

$\mathbf{£ 7 . 9 5}$ $\mathbf{f 5} 95$

£5.95
£6.95 $\mathbf{£ 5 . 9 5}$ an average erasing time of about 20 mins
$\mathbf{£ 6 . 9 5} \mathbf{~} \mathbf{£ 2} \mathbf{~}$ \& \mathbf{p}.
$£ 5.95$
$£ 5.95$
$\mathbf{f} .95$
$£ 5.95$
$£ 6.50$
$£ 6.50$
$£ 5.95$
5.95 $£ 6.95$
$£ 7.95$ ± 6.95 $£ 6.95$ $£ 6.95$ £6.50 $£ 4.50$ £7.25 It can handie up to 5 eproms at a time with

UV1 as above but without the timer $\mathbf{£ 4 7}+$
E2 p\&p.
UV140 up to 14 Eproms $\mathbf{E} 61$
UV141 as above but with timer $£ 79$.

$\star \star$ ATTENTION $\star \star$

All prices in this double page spread are subject to change with-
out notice.

EPROM ERASERS

UV1T Eraser with a built-in timer and mains indicator. Built-in safety interlock to avoid accidental exposure to the harmful UV rays

Large number of other titles stocked
CONNECTOR SYSTEMS

 Ribbon Cable
25.way Male 5000 RS 232 JUMPERS

AMPHENOL CONNECTORS

RIBBON CABLE
6.way oluy Centoniciser IDC \qquad . 36.way socket Centrifonct
 ${ }^{24}$ CB May sock

EURO EONNECTORS Din 41617
\qquad
EDGE CONNECTORS

CONNECTORS		
		3000
2.way Vic	150	
wey		1900
way	${ }^{7250}$	${ }_{208}^{2080}$
wy (Speectum)	2000	
	2200	
- way		
1, 7 , wey	$\underset{\substack{\text { min }}}{\substack{\text { min } \\ \text { mop }}}$	sopp

CABLE T.V. HEAD END AND REPEATER AMPLIFIERS

CHANNEL CONVERTERS
TCUU UHF-UHF Single channel converter. Gain adjustable $+2 d 8-16 d B$. Maxi${ }_{1}$ mum output $25 \mathrm{~mA}+26 \mathrm{dBmV}$. Crystal controlled oscillator. Power requirement Av 25 mA . Quote Channels required).
TCUV As TCUU except URF to VAF converter (Quote Channels required)

SINGLE CHANNEL AUTOMATIC GAIN CONTROL AMPLIFIERS
TAG4863 Gain 48dB maximum output 63dBmV Regulator + or -8 dB . Power Gain 40 dB maxiomA
Gair 14 d 21 mA output 64 dBmV Regulator + of -16 dB . Power requirement 14 V 210 mA .

SINGLE CHANNEL AMPLIFIERS

TSS4663 Gain 28-46dB adjustable. Maxımum output 63 dBmV Power requirement
ISS3062 Gain $12-30 \mathrm{~dB}$ adjustable. Maxımum output 62 dBmV . Power requirement 14 V 26 mA .

DRIVER AMPLIFIERS

TS1030FM FM driver amplifier. 10 dB Gain. Maximum output 30 dBmV . Power require
TS1030B3 Band Ii! driver amplfier. 10dB gain. Maximum output 30dBmV Powe
TS:030UHF UHF driver amplifier ment 14 V 10 mA . Single channel UHF driver amplifier 10 dB gain. Maximum output 40 dBmV Power requrement 14 V 10 mA (Quote channel requred).

DISTRIBUTION AMPLIFIERS

TE2042 Domestic distribution amplifier. 1 input. 1 output. Gain 20dB. Maximum
Output 42 dBmV
output 2 at 38 d 8 mv
TS2046 $\quad 40.860 \mathrm{MHz}$ Gain 20 dB UHF. 18 dB VHF. Maximum output 46 dBmV
$40-860$ MHz Gaın 28 dB UHF, 22dB VHF. Maxımum output 46 dBmV
TS2054 $\quad 46 \mathrm{dBmV}$. $40-860 \mathrm{MHz}$. Gaın 20 dB UHF. 18 dB VHF Maxımum output 54 dB mV
IS2060 $\quad 40-860 \mathrm{MHz}$ Gain $200^{\circ} \mathrm{B}$ UHF 18 dB VHF Maximum output 60 dBm
T $\$ 5565$ Gain 55 dB UHF 55 dB VHF 22 dB FM Maximum output 65 dBmV

REPEATER AMPLIFIERS

TSC 3660 Repeater Gain 16-36dB UHF, $10-30 \mathrm{~dB}$ VHF, Maximum output 60 dBmV
TSC3665 Repeater Gain $16-36 \mathrm{~dB}$ UHF, $10-30 \mathrm{~dB}$ VHF Maximum output 65 dBmV
ISC3060 Repeater Gain $10-30 \mathrm{~dB}$ VHF. Maximum output 60 dB mV

QUALITY AT LOW COST TAYLOR BROS (OLDHAM) LTD LEE STREET, OLDHAM - TEL. 061-652 3221 - TELEX 669911

CIRCLE 081 FOR FURTHER DETAILS

TEST EQUIPMENT

1. Marconi TF2002B AM/FM Signal Generator with TF2170 Synchroniser
. Tektronix 106 FastRise Pulse Generator. $\ddagger 95$
$f 115$
Tektronix 191 Constant Amplitude Generator
Tektronix T922R rack mounted dual channel 15 mHz
oscilloscope.
£ 375
f135
Tektronix 2901 Time-Mark Generator
£115
Tektronix 184 Time-Mark Generator £165
Tektronix MR501 X-Y Monitor for TM500 system
Tektronix 067-502 Amplitude Calibrator.
Tektronix 067-502-01 Amplitude Calibrator
Tektronix DF2 Formatter for Logic Analysers
Telequipment DM64 10MHz Storage Oscilloscope
Gould-Brush 500 X-Y Plotter
Marconi TF 240150 Mhz Counter
Dana $50006 \frac{1}{2}$ Digit Multimeter
Hewlett-Packard 8002B 10Mhz Pulse Generator
Tecktronix 613 Storage Monitor
Solartron 7201 Locator. Singnature Analyser, DMM,
Thermometer and Logic Analyser.
Siemens D2072 W2072 100Mhz Level Measuring System
Siemens D2006 W2006 17Mhz Level Measuring System.
Siemens G2022 Sweep Oscillator, various plug ins available AVO Model 8 Mk. $3 \& 4$.
AVO Model $7,7 \times$ \& Mk. 2
Fluke 8020A D́MM (Unused)
Cases for above (New).
J.J. Lloyd PL100 X•Y Plotter

DEC PDP 8 Computer
DEC PDP 81 Computer in rack with reader etc.
Honeywell 20MByte Disk Drive with interface
Sullivan AC Test Sets
Philips PM 2522A Digital Multimeter
Hewlett-Packard 1801A Vertical Plug in
Hewlett-Packard 1821A Timebase Plug in
Ice Digital Multimeters
Tektronix 3S3 Sampling plug in
ent D1010 Dual Trace Oscilloscope
Many other iterns in stock please phone with your
TIMEBASE (ヘ)TVR

94 ALFRISTON GARDENS, SHOLING, SOUTHAMPTON SO2 8FU
TELEPHONE: 431323 (0703)
Callers welcome. Access/Barclaycard: Telephone your order

MGF-1400
MGF-1402
MGF-1412

Aspen Electronics Limited
UK representative for Mitsubishi Electric
2/3 Kildare Close, Eastcote, Ruislip Middlesex HA4 9UR
Tel: 01-868 1188 Tlx: 8812727

CIRCLE 015 FOR FURTHER DETAILS.

FILTERS

Custom-built to YOUR requirements

Solent Electronic Services Lid specialize in the custom design and manufacture of L / C and crystal filters in the $0-40 \mathrm{MHz}$ range ($0-1000$ MHz under development)
Filters are designed. bult and tested to meet the highest specifications. including those for telecommunications and defence Production is specifically geared to small quantities - from single units to small batches - at relatively low cost. Phone or write for further information

CIRCLE 013 FORFLRTHER DETAIIS.

FUNCTION GENERATORS

The LEVELL TG302 is the lowest priced 2 MHz function generator on sale in the UK. The LEVELL TG303 is a function generator together with a frequency counter.

* SINE, SQUARE, TRIANGLE, PULSE \& RAMP
* 0.02 Hz to 2 MHz in 7 RANGES
* EXTERNAL SWEEP OVER 3 DECADES
* 20Vp-p from 50ohm SOURCE
* VARIABLE DC OFFSET
* Ttloutput
* FREQUENCY COUNTER TO 10 MHz (TG303)
* CMOS OUTPUT (TG303)

We supply many other instruments including:
OSCILLATORS, COUNTERS, OSCILLOSCOPES, dB \& MICROVOLTMETERS.
LEVELL ELECTRONICS LTD.
Moxon Street, Barnet, Herts. EN5 5SD, England. Telephone: 01-4408686/4495028.

CIRCLE 022 FOR FURTHER DETAILS.

CIRCLE 039 FOR FURTHER DETAILS.

CIRCLE 029 FOR FURTHER DETAILS.

SOUTH MIDLANDS COMMUNICATIONS

SALE of IESIMMENT

pantechnic

Features OR $2 \times 600 \mathrm{~W}$ into 2 to 8Ω
OR $4 \times 300 \mathrm{~W}$ into 2 to $4 \Omega(200 \mathrm{~W}$ into 8Ω)
OR $\left\{\begin{array}{l}1 \times 600 \mathrm{~W} \text { into } 2 \text { to } 8 \Omega \\ 1 \times 300 \mathrm{~W} \text { into } 2 \text { to } 4 \Omega \\ 1 \times 150 \mathrm{~W} \text { into } 4 \text { to } 8 \Omega\end{array}\right.$
Etc., etc. and Fan enhanced. implemented application problem.
application problem.

YC1000L OASERVE \& RECORD FREQUENCY PERIOD PULSES TEMPERATURE £365
$+15 \%$ VAT
+65 Securie.
The YC1000L is a laboratory grade instrument with versatile microprocessor control. It includes: a frequency ($10 \mathrm{~Hz}-600 \mathrm{MHz}, 0.02$ level) a voltmeter (AC or DC to $999 \mathrm{~V}, 3$ ranges), a thermometer (remote sensor -290 to $+99.9^{\circ} \mathrm{C}$) plus a precision timer (24 hour lock providing; event or period, (local or remote) and alarm func lons) prow is via 8 large fluorescent green digits and/or the inbuilt 5×7 (20 characters line 2 line second) Dot Matrix thermal printer. You will wonder how your laboratory or workshops

CIRCLE 056 FOR FURTHER DETAILS.

ThE POWERERT
S.EGALSTS

OEM USERS

Pantechnic present the most adaptable high-powered amplifier ever.
fet SYSTEM amp
HIGH POWER up to 1.2 kW (single ended)

- LOW VOLUME. $1 / 15$ Cubic foot inc. Heatsink
- VERSATILE. Delivers more than 1 kW into $1 / 2$ to 8 ohms

Having been closely involved in a wide variety of OEM applications of their amp boards. Pantechnic became aware of numerous implementation problems often size and thermal efficiency became particularly aggravated at high powers and considerably lengthened OEM product development time.
By including thermal design in the totality of board design it has been possible to reduce the size of the electronics, and increase the efficiency of the transistor to heatsink thermal circuit. The combined effect of this has been to dramatically increase the volumetric efficiency of the amplifier/heatsink assembly. The SYSTEM Amp offers 1.2 kW of power in a space of $180 \mathrm{~mm} \times 102 \mathrm{~mm} \times 77 \mathrm{~mm}$, excluding PSU
and Fan
The basis of this considerable advance is the PANTECH 74 Heat Exchanger, designed and manufactured by us. By eliminating the laminar air flow found in

都ity of the 1.2 kW amp stems from its division into 4 potentially separate amplifiers of 300 W each (downrateable with cost savings to 150 W). These car be paralleled, increasing current capability or seriesed (oridged in pairs) doubling voltage capability. In consequence a large variety of amplifier/load strategies can be
As ever Pantechnic offer a full range of customising options including DC coupling,

INTEGRATED CIRCUITS

SEMICONDUCTORS

TDA2523
TDA2524
1.95
1.95
1.95
 BFR 8
BFR
BFR
BFR
BF
BFT
BFT
BF
BF
BF
BF

 4

CIRCLE 066 FOR FUR

PHONE 0474813225 P. M. COMPONENTS LTD SELECTRON HOUSE, WROTHAM ROAD 3 LINES MEOPHAM GREEN, MEOPHAM, KENT DABOQY

W77
W729
$W 739$
\times XFW50
$\times \mathrm{G} 2-6400$ $X 65.5$
$\times L 1$
$\times 1.528$ XL628
$\times \mathrm{NP} 12$

$\times \mathrm{P} 1002$ | 4.50 | 3 |
| :--- | :--- |
| 1.50 | 3 |
| 5.00 | 3 |
| 1.00 | 3 |
| 1.50 | 3 |
| 1.00 | 3 |

Vigilant Micoh hF Communications Receivers MICROPROCESSOR CONTROLLED RECEIVERS

Type SR 530 USB/CW/AM/Telex -10 Hz Steps (Marine)
Type SR 532 USB/LSB/AM/CW - 10 Hz Steps (Static/Transportable)
Type SR 531 USB/LSB/AM/CW - 100 Hz Steps (Static/Transportable)

DESIGNED AND MANUFACTURED TO HIGHEST INTERNATIONAL SPECS

Freq. Range	50 KHz to 30 MHz	Memory	200 Channels Freq/Mode/Filter
Increments	10 Hz or 100 Hz Steps	Scanning	Full memory or discreet parts
Stability	± 1 Part in $10^{7}{ }^{\circ} \mathrm{C}$		Automatic or Manual Stop
Tuning	Keypad and Spin Wheel		Manual step on or Reverse
Power Supplies	$110 / 240 \mathrm{~V} \mathrm{AC}$ and 24 V DC	Dwell	Variable from Keypad 1 to 9 seconds
FULLY MODULAR	LUG IN' CONSTRUCTION	KEYPAD	CTIONS INDICATED BY DISPLAYS

NOW AVAILABLE AT HIGHLY COMPETITIVE PRICES
Send for Technical Brochure to: Tel: (0344) 885656 Vigilant Communications Ltd.

Telex: 849769 Vigcom G Unit 5, Pontiac Works, Fernbank Road, Ascot, Berks SL5 8JH, England

SOLDER FUME ABSORBER
Removes smoke and fumes from soldering area and absorbs harmful components, using activated carbon filter. Free standing unit, adjustable for angle, with removable hood. Supplied with 3 spare filters.
Price only $£ 58.04$.
Light Soldering Developments Ltd 97/99 Gloucester Road Croydon CRO 2DN 01-689 0574

WRONG TIME?

MSF CLOCK is ALWAYS CORRECT - never gains or loses, SELF SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds, 24 hour format, larger digit Hours and Minutes for easy QUICK-GLANCE time, auto GMT/ BST and leap year, can expand to Years, Months, Weekday and Milliseconds, with parallel BCD output for computer and audio to record with commentary and show time on playback, receives Rugby 60 KHz atomic time signals, only $15 \times 5 \times 8 \mathrm{~cm}$, superhet receiver, built-in antenna, 1000 Km range, GET' the RIGHT TIME, £72.70.
Fun-to-build kit (ready-made to order) includes all parts, printed circuit, case, instructions, by-return postage etc, list of all kits, SEND away NOW.

CAMBRIDGE KITS

45 (WE) Old School Lane, Milton, Cambridge. Tel. 860150
MICRO ENGRAVER
MICROPROCESSOR-CONTROLLED ENGRAVING MACHINE

STEPPING MOTOR XYZ MACHINE.Complete with microprocessor controller and sof ware programmed to engrave alphabet and numbers. Also features easy operator-programmable XYZ sequences to engrave, drill or cut out special shapes and logos. XY axis raved
keyboard, 24 character liquid crystal display. Machine supplicd complete and ready to manufacture labels.
J.A.F. GRAPHICS PRICE $£ 2650.00$ 70 Leek Road, Congleton, Cheshire CW12 3HU - 026025127

Appointments

Advertisements accepted up to 12 noon Tuesday, April 3, for May issue subject to space available.

DISPLAYED APPOINTMENTS VACANT: $£ 17$ per single col. centimetre (min. 3 cm) LINE advertisements (run on): $£ 3.50$ per line, minimum $£ 25$ (prepayable). BOX NUMBERS: $£ 5$ extra. (Replies should be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS). PHONE: IAN FAUX, 01-661 3033 (DIRECT LINE)
Cheques and Postal Orders payable to BUSINESS PRESS INTERNATIONAL LTD. and crossed.

ALWAYS AHEAD WITH THE BEST!
 £7,000-£22,000

\star Where does your interest lie: Graphics; Comms; Robotics; Simulation; Image and Signal Processing; Medical Automation; Avionics; Acoustics; Weapons; Radar; Opto and Laser?
\star Experienced in: Microprocessor Hardware or Software; Digital and Analogue circuitry; RF and Microwave techniques?
\star There are hundreds of opportunities in: Design; Test; Sales and Service for Engineers and Managers
\star For free professional guidance: Call 076384676 (till 8pm most evenings) or send your C.V. (no stamp needed) to
ELEETRINIC COMPUTER AWD mARNEEMENT SERYICES LIMITED
Freepost, Barkway, Royston, Herts SG8 8BR

RESEARCH INSTITUTE University of Petroleum and Minerals DHAHRAN, SAUDI ARABIA

Needs Digital Electronics Repair Technicians for expansion of the facility for instrument repair, maintenance and calibration.
Candidates' background should include:-
\star Bachelors or associate degree or equivalent military/Technical training.

* Minimum 4 years hands-on digital experience on micro-mini computers, peripherals, data acquisition systems, micro-processor controlled test instruments
- Trouble-shooting and repair capability to component level (experience with current model minis, micros and GPIB a big advantage)
Salary is competitive, benefits include annual repatriation, housing and transportation allowances.
Candidates possessing the above requirements should only apply to the following address within one week of the release of this advertisement furnishing details resume of their educational qualifications and experience, attaching copies of their degrees and transcripts, giving names and addresses of four referees, including their present employer, if possible, and the present position held.

Mr. Ali A. Jaman. Director General. Financial and Admin. Affairs. Research Institute - University of Petroleum and Minerals. P.O. Box 7177. Dammam - 31462
Saudi Arabia.

BRIGHTON POLYTECHNIC

LEARNING RESOURCES

Senior Audio-Visual Technician £6,264- $\boldsymbol{\ell 7 , 8 9 6}$

To be responsible for the organisstion and operation of the audio-visual equipment loans service which supports teaching at the Mouslecoomb site of the Polytechnic. Equipment includes production standard colour video cameras, $3 / 4^{*}$ and $1 / 2^{*}$ video recorders and multi-standard video replay production quality sound equipment, including Revox and Uher recorders, along with film and slide projectors. Candidates must have experience of the operation and maintenance of equipment of this kind, and be able to work with a wide range of acedemic, media production and engineering staff. candidates must also have good orkanisational skills. City and Guilds Final Certificate or TEC qualifications in a relevant area of electronics an advantage.
Further details and application forms available from the Personnel Officer, Brighton Polytechnic, Mithras House, Moulsecoomb, Brighton BN2 4AT. Tel (0273) 693655 Ext 2536.
Closing Date: 4 May 1984
(2560)

LOGEX ELECTRONICS RECRUITMENT

 Specialsts in Field \& Customer Engments, all locations and disciolines

Logex House, Burieigh, Stroud
Logex House, Burleigh, Strou
Gloucestershire GL5 2PW 0453883264 \& 01-290 0267 (24 hours)

BRIGHTON POLYTECHNIC COMPUTER CENTRE

TECHNICIAN

(DATA COMMUNICATIONS) Salary up to $£ 8,712$

To help maintain an extensive communications, terminals and microprocessor service comprising 350 terminals, and well over 50 microprocessors.
There is a small team dedicated to this task. Additional development activities are undertaken, improving the network by designing, building and servicing various system components.

A progression scheme is provided for accellerated remuneration commensurate with the applicant's development skills.

Application forms and Job description can be obtained from the Personnel Officer, Brighton Polytechnic,
Moulsecoomb, Brighton BN2 4AT. Telephone Brighton (0273)693655 Ext 2537. Closing date 4 May 1984. (2544)

CUT THIS OUT!

Clip this advert and you can stop hunting for your next appointment. We have a wide selection of the best appointments in Digital. Analogue. RF. Microwave. Micro processor. Computer. Data Comms and Medical Elec. tronics and we're here to serve your interests. Call us now for posts in Design. Sales. Applications or Field Service, at all levels from $£ 6.000$ £ 16.000

GENIUS WANTED
 To join our technical department at Utopia recording Studios. SSL, Studer, Neumann and Neve experience an asset, to work with our young and enthusiastic team of Utopians.
 Call Phil Wairman now on 015863434 .

Test and Service Technician required for Electronics Company to undertake the running of a small service department.
Duties would include test and repair of electromechanical devices and associated microprocessor based electronics along with the administration of spare parts stock control.
Although formal qualifications would be recognised, mechanical aptitude and a working knowledge of microprocessors and digital circuitry are considered more essential.
Good conditions of employment, BUPA participation etc.
Apply in writing to:

Personnel Manager
Roxburgh Electronics Ltd., 22 Winchelsea Road, Rye, East Sussex TN31 7BR

BORED ?

Then change your job!

1) VIU and Peripherals

Senior service engineer required to support and liaise with 0.E.m. sales orientated personality required - Middx. To $£ 11.5 \mathrm{~K}$ + car.
2) Data Communications

1 years experience in sevicing PW Telex or mes. sage switching equipment lor customer support Berks. $\mathrm{EgK}+\mathrm{tar}$.

3) Naval Weapons/Communications

Support Engineer for managing logistics of instal
lation and maintenance - Berks 99 K

4) Sevvice Personnel
 (RAF, RN, ARMY)

We have many clients interested in employing exService fitters and technicians at sites throughout the U.K. Phone for details

5) 1600 per week

We are paying very high rates for contract design and test engineers who have a background in RF, Microwave, Digital, Analogue or Sottware, at sites
throughout the U K throughout the U.K.

Hundreds of other Electronic and Computer vacancies to $£ 12,500$ Phone or write:
Roger Howard, C.Eng., M.I.E.E., M.I.E.R.E.
BLMEDEN RONSULTANTS \$2 The Broadway, Bracknell, Berkshire Tol: 0344409499

University of Leeds

Applications are invited for the post of Senior Technician (Grade 5) in the Electronics Workshop of the Department of Electrical and Electronic the maintenance of electronic insiruments and for the development and construction of electronic equipment for brith teaching and restarch.

Applicants are expected to have an appropriate qualification (minimum ONC) and considerable expenence of electromic engineering, preferably £6279- $£ 7332$ pa Applications giving full details of age, qualifications and experience, together with the names and addresses of 2 referees, should be sent to MrW G Black. Department of Electrical and Electronic Engineering, Leeds University. Leeds LS2 9JT.
(2566)

MID-WARWICKSHIRE COLLEGE OF Faculty of Technotogy

LII IN ELECTRONICS/
MICROELECTRONICS
Applications are invited for the above post for appointment from 1st September 1984.
Applicants should possess a relevant degree or professional qualification with some relevant industrial experience and will be required to teach on a range of Technician and Craft courses, with particular responsibility for the organisation and development of courses relating to Electronics Microelecronics. Application forms and further details may be
obtained from the Principal's sectetary (s obtained from the Principals secretary (s.a.e.
please). Completed application forms to be prease). Completed application orms to be date of this advertisement.

PLYMOUTH GENERAL HOSPITAL DEPARTMENT OF MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING

Applications are invited for two posts at Greenbank Hospital

> Post A Technician (electronics) Post B Technician (mechanical)

The person appointed to Post A will be a member of a team of eleven in a well-equipped and expanding unit offering support services in the various aspects of the management of clinical electronic equipment in hospitals and health centres throughout the Plymouth Health District.

The person appointed to Post B will be a member of a team of five in a well-equipped and expanding unit dealing with the maintenance and development of a wide range of non-electronic clinical equipment (mainly in theatres and special care units) in hospitals throughout the Plymouth Health District.

Hospital experience is not essential as further training will be given. $\mathrm{HNC} / \mathrm{ONC}$ /City and Guilds Final certificate or equivalent qualification is required. The work involves occasional travel and necessitates a current driving licence. There is a requirement to be prepared to participate in a scheme to provide out-of hours emergency cover.

Posts are offered in one of the following grades according to relevant experience. MPT IV $£ 5171-£ 6,798$ per annum or MPT $111 £ 6,132$ - $£ 7,926$.
For further information
Post A Contact Mr A Dawson 0752834276
Post B Contact Mr Bartrip 0752834279
Applications forms available from and returnable to
Unit lersonnel Officer
1 Belvedere, Greenbank Rd., Plymouth
Please enclose a s.a.e. Closing date: 4th May 1984.

SATELLITE RECEPTION RESEARCH ASSISTANTS

For the BBC's Monitoring Service at Caversham, near Reading, Berkshire.
With the advent of satellite communications, broadcasting and news agency organisations are switching from conventional means to satellites for their transmissions. Satellite Reception Research Assistants will be involved in the Monitoring Service's work in this field. Duties include frequency scanning and the compilation of transmission schedules. Extensive experience in communications with C and G Intermediate Telecommunications Technicians Certificate or equivalent qualification and a thorough grasp of satellite communications are essential. Knowledge of major broadcasting systems, familiarity with news agency transmissions and the ability to recognise a range of languages an advantage.
Applicants will be required to take written tests and appointment will be subject to satisfactory hearing tests. Shift working involved. Salary $£ 7,867-£ 9,761$ plus a 10% shift allowance. Relocation expenses considered.
Write or telephone immediately for application form (quote ref. 3222/WW and enclose stamped, addressed foolscap envelope) to Senior Personnel Officer, BBC Monitoring Service, Caversham Park, Reading, Berks., RG4 8TZ. Tel. (0734) 472742 Ext. 212.

We are an Equal Opportunities employer

Appointments

Design Engineers \& Materials Supply Control

Farnell Instruments and the Electronic Engineering Department at Huddersfield Polytechnic have together established a Teaching Company Scheme.

This has provided a rare opportunity for Associates to work on industrial projects in:

1] Test and measurement instruments design Digital signal processing Digital storage oscilloscopes
2] Materials supply and control

Applications are invited from Honours graduates in an appropriate discipline and ideally with some industrias experience. Associates have the opportunity to register for a higher degree. Three posts are based at Wetherby and are initially for a two year period. Salary range £6516-£7692

Find out more by ringing Andy Lamming on Wetherby 61961 or Harrogate 870643 after 7.00 pm

Further details also available from Personnel Farnefl Instruments Ltd., Wetherby LS22 4DH

CAPITAL APPOINTMENTS LTD THE UK's No. 1 ELECTRONICS AGENCY
If you have HNC/TEC or higher qualifications and are looking for a job in design, test, customer service, technical sales or similar fields:
Telephone now for our free jobs llst
We have vacancles in all areas of the UK
Salarles to $£ 15,000$ pa
01-6375551 or 01-6369659
(24 hours)
CAPITAL APPOINTMENTS LTD 29-30 WINDMILL STREET, LONDON W1P 1HG

CHELSEA COLLEGE UNIVERSITY OF LONDON

Electronics workshop technician required for interesting work for electronics and physics research and teaching. Includes prototype instrument design, development and construction and the servicing and repair of commercial electronic equipment.

Experience and qualifications in electronics (particularly digital) at an appropri ate level are essential. Inclusive salary Grade $5-£ 7529$ to $£ 8582$ p.a

Further details and application forms from Mr M E Cane, Chelsea College Department of Electronics, Pulton Place, London SW6 5PR.

Careers in Electronics Research

The Laboratories at Redhill, Surrey, are the UK research centre of the international Philips Group of Companies. The facilities and resources rank alongside the most technically advanced in the world today. The total environment is completely conducive to the wide range of research projects which continue to achieve the successes for which we carry world recognition.

There are vacancies in two teams for people qualified at least to HNC or HTEC level and having relevant experience in:

DIGITAL TELECOMMUNICATIONS

This team is involved in an advanced Integrated Services Digital Network embracing subscriber access through digital transmission. The task will involve exploitation of both Digital and Analogue Signal Processing.

As a key member of this team you will be directly concerned with construction, testing and evaluation of hardware systems.

FLAT CATHODE RAY TUBES

An opportunity to join a team working on Advanced Vacuum Tubes, building and testing sub-assemblies through to complete units, using a wide variety of mechanical and physical techniques and processes.

If you believe that your experience and qualifications would equip you for either of these positions we would be pleased to hear from you. Conditions of service and rewards reflect those of the parent group, renowned for their for ward thinking and enlightened policies. Assistance with relocation is available if required.

Please apply to: Chris Nye,
Appointments Co-ordinator, Personnel Department, Philips Research Laboratories, Cross Oak Lane, Redhill, Surrey RH1 5HA. Tel: Horley 5544.

Together we can shape the future

Electronics Engineers 29561 Communications Design in High Tech Country

At H.M. Government Communications Centre we're using the very latest ideas in electronics technology to design and develop sophisticated communications systems and installations for special Government needs at home and overseas.

With full technical support facilities on hand, it's an environment where you can see your ideas progress from initial concepts through prototype construction, tests and evaluation, to the pre-production phase, with a chance to influence every stage. Working conditions are pleasant, the surroundings are attractive, and the career prospects are excellent.

Ideally we're looking for men and women who have studied electronics to degree level or equivalent and have had some experience of design, whether obtained at work or through hobby activities. Appointments will be made as Higher Scientific Officer ($£ 7149-£ 9561$) or Scientific Officer (£5682-£7765) according to qualifications and experience.

For further details please write to the address given below. As our careful selection process takes some time, it would be particularly helpful if you could detail your qualifications, your personal fields of interest and practical experience, and describe the type of of working environment most suited to your career plans.

The Recruitment Officer, HMGCC, Hanslope Park, Buckinghamshire MK19 7BH.
(2448)

COMMUNICATIONS ENGINEERING

- WIDE-RANGING OPPORTUNITIES IN THE DEVELOPMENT AND MAINTENANCE OF ADVANCED VOICE AND DATA SYSTEMS.

In every sphere of its operations, Aramco relies heavily on the most sophisticated communications links. The following appointments offer invaluable experience of advanced data and voice networks, together with all the tangible rewards of working for the world's largest oil producing company:

PROJECT PLANNING/ CO-ORDINATING ENGINEERS

 (3 posts) Circa $£ 19,500-£ 25,500$ netWill be involved in the planning and coordination of all types of telecommunications projects. One post requires at least 10 years' experience covering Transmission Systems
Engineering, Systems Design and UHF/ VHF Radio Networks, and Microwave and Multiplex Applications. The other 2 posts require at least 7 years in the planning, engineering and implementation of telecommunications projects. Experience of drawing up engineering standards and of technical writing would be advantageous for one of these posts.

Ref: PPE/139.

DOCUMENTATION ENGINEER

Circa £19,500- $£ 22,500$ net

Will head the technical writing group and must have experience in the development, preparation and editing of communicationsrelated standards, specifications, procedures etc.

Ref: DOCE/ 140.

STANDARDISATION ENGINEER

Circa $£ 19,500-£ 22,500$ net

Will determine specifications etc and technical acceptability of substitutions. Must have in-depth knowledge of communications materials, equipment and spare parts. 8 years' experience is required in design, research, maintenance or a related area.

Ref: STE/ 141.

SAUDI ARABIA £15,000-£25,500 net

SENIOR COMMUNICATIONS TECHNICIANS

(6 posts) Circa £15-17,000

Will carry out the maintenance and repair of a variety of communications and electronic equipment, including UHF/VHF radio-systems and radio-data systems. One post will include the monitoring of the quality of the technical and administrative performance of contractors plus cost verifications for statistical purposes. Candidates should have a minimum of 10 years' post apprenticeship experience in the maintenance and repair of communications and electronic equipment.

Ref: COMT/142.
For the Engineering posts a relevant degree, HNC or equivalent is required and for the Technician posts an apprenticeship, plus the experience specified above.

These single status appointments offer open-ended contracts with the usual tax advantages. The excellent range of benefits include low-rental accommodation (fully furnished and air-conditioned), regular UK leave with company paid air fares, free medical care and good sports and recreational facilities.

Please write with full career details quoting relevant ref. no. to: Webb Whitley Associates Limited, International Recruitment Consultants, 45 Kensington High Street, London W8 5ED.

MAXELL (UK) LTD SALES ENGINEER FOR PROFESSIONAL AND INDUSTRIAL VIDEO PRODUCTS

Maxell (UK) Ltd is a subsidiary of one of the world's largest and most respected tape companies. Maxell's research and development efforts have brought very high performance tapes to both the amateur and professional user and to supply the European market for video tape Maxell have recently completed construction of a video tape factory in Telford, Shropshire. The company has achieved considerable success as a supplier to broadcast duplication and video facilities companies and to support these clients Maxell now wish to appoint a Sales Engineer. The products mainly involved will be VHS, Beta and U-matic video cassettes and the position will involve sales and technical liaison with existing and potential users of these products.

The successful candidate will ideally be educated to degree standard and have experience in consumer and professional video systems.

The company offers a secure future in an industry which is developing rapidly and which will present an interesting and challenging working environment.

The position is based in Harrow, Middlesex and benefits include free membership of the company BUPA scheme and a company car.

If this position would interest you please send a CV and any additional information you feel relevant to:

maxell.

Maxell (UK) Ltd, 1 Tybum Lane, Harrow, Middx HA1 3AF.

Senior Technical Assistant

from $£ 9,300$ p.a.

The Purchasing and Supply Department of the Independent Broadcasting Authority, based at Harrow, now has an opportunity for a Senior Technical Assistant to lead its small Technical Services Group.
Provision of technical services includes goods inwards inspection, storage environment, component testing, repairs to electrical equipment and maintenance of office equipment held at Harrow.
Candidates require a good secondary education to ' O ' level standard and TEC or City and Guilds in Electrical/Electronic Engineering or equivalent knowledge and experience at a similar level. Considerable experience in a technical stores environment of a large organisation dealing with a wide range of complex technical equipment, will not only have furthered technical knowledge of electronic components and equipment, but brought an appreciation of stock control, purchasing systems and procedures, and of computer usage in stores and stock control.
An excellent working environment and conditions of employment are offered.

INDEPENDENT BROADCASTING; AUTHORITY

- An Equal Opportunities Employer *

For further details of the vacancy and an application form, please telephone 01-584 7011 ext 390 (9 am to 5pm weekdays).

Several unique opportunities affording excellent career prospects with a large, expanding, performance orientated company exist for engineers with a degree or HNC in Physics or Engineering (preferably Electronics or Systems Engineering, but possibly Mechanical Engineering). Candidates shoud have acquired good systems experience whilst working in the Electronics or Defence Industries as a team leader or group leader and ideally will have acquired practical knowledge of prototype production or trials.

Your task will be to assist our client, who has developed an enviably secure base in the development and manufacture of complex weapons systems, to develop new business areas for high technology systems in both the defence and commercial sectors. The number of persons ultimately involved in a project will vary from 20 to 750 and the development costs will range from $£ 20 \mathrm{M}$ to $£ 200 \mathrm{M}$ and consequently there will be tremendous opportunities for you to progress to the control of the running of very large projects as well as to higher levels of management. By proposing, developing and evaluating systems and design options, producing prototypes and arranging for all necessary trials and tests, your team's objective will be to produce complete technical and cost proposals for complex, state-of-the-art systems whose technical excellence and competitiveness will ensure that large contracts are

Abstract

secured. To have acquired the necessary skills and experience to meet this formidable challenge you will probably be at least 30 to 35 years old; have management experience especially of dealing with people outside your direct control; have experience of customer liaison and project planning; and will have developed commercial and business awareness.

These important new positions offer excellent rewards and conditions with first class future prospects in the thriving division of a leading company in the High-Technology and Defence Industries that is part of a highly successful, major international group. The division has an order book which takes them potentially beyond the year 2000 , is committed to developing several new business areas, and is poised to move into the world market in a big way.

[^8]
Experienced Graduate Engineers Children of the 60's

On April 20th, 1964, BBC viewers were given a choice of channels:
On April 20th, 1964, BBC viewers were given a choice of channels: BBC2 was born.

Advanced
 telecommunications:

Join the Government Communications Headquarters, one of the world's foremost centres for R \& D and production in voice/data communications ranging from HF to satellite - and their security. Some of GCHO's facilities are unique and there is substantial emphasis on creative solutions for solving complex communications problems using state-of-the-art techniques including computer/ microprocessor applications. Current opportunities are for:

Telecommunication Technical Officers

Two levels of entry providing two salary scales £6262-£8580 \& £8420-£9522
Minimum qualifications are TEC/SCOTEC in Electronics/ Telecommunications or a similar discipline or C \& G Part II Telecommunications Technicians Certificate or Part I plus Maths B, Telecommunication Principles B and either Radio Line Transmission B or Computers B or equivalent: ONC in Electrical, Electronics or Telecommunications Engineering or a CIE Part I Pass, or formal approved Service technical training. Additionally, at least four years' (lower level) or seven years' (higher levell appropriate experience is essential in either radio communications or radar, data, computer or similar electronic systems. At the lower entry level first line technical/supervisory control of technicians involves "hands-on" participation and may involve individual work of a highly technical nature. The higher level involves application of technical knowledge and experience to work planning including implementation of medium to large scale projects.

Radio Technicians -£5485-£7818

To provide all aspects of technical support. Promotion prospects are good and linked with active encouragement to acquire further skills and experience. Minimum qualifi cations are a TEC Certificate in Telecommunications or equivalent plus two or more years' practical experience Cheltenham, a handsome Regency town, is finely endowed with cultural, sports and other facilities which are equally available in nearby Gloucester. Close to some of Britain's most magnificent countryside, the area also offers reasonably priced housing. Relocation assistance may be available.

For further information and your application form, please telephone Cheltenham (0242) 32912/3 or write to:

Recruitment Office, Government Communications Headquarters Oakley, Priors Road, Cheltenham, Gioucestershire, GL52 5AJ

Cameron Communications, an expanding division of
CW Cameron Ltd, is a well established leader in the Visual Communications market, with high quality products for the protessional and industrial users, including - Colour Graphic - Interactive Video Systems - Video Projection Videotex Terminals - Broadcast and Industrial Video Equipment Iouch Screen Displays - Computer Graphics Projectors The continuing growth and success of the company has resulted in the creation of further career opportunities based in our new Reading Otfice

SENIOR ENGINEER VideolComputer Products

Salary: $£$ Negotiable
Based: Reading
Plus: Car

A Senior Engineer is required to head a team of engineers operating in a modern well equipped department providing technical assistance to the Sales Group. OEM Customers. Dealer Network and End Users. Key activities will include the organisation of documentation system to cope with the expanding product line and installed equipment base. Provide and maintain a technic intertace with the company's suppliers and its customers
introduce equipment training and acceptance facilities.

EUROPEAN SERVICE ENGINEER

Interactive Video - Computer Products

Salary: $£$ Negotiable Based: Reading Plus: Car
An adaptable and self motivaled person is required to provide service support and practical training on the above display systems at our distributors and customers premises in the UK, Europe and certain other countries
Formal qualifications in electronics are required and service experience on video displays and some knowledge of personal computers or microprocessor based equipment would be a distinct advantage as would a foreign language.

TEST/SERVICE TECHNICIAN

Interactive Video - Computer Products

Salary: £ Negotiable Based: Reading Plus: Car
An interesting position is offered which will involve carrying out regular quality control checks on pre-manufactured 'Interact' systems passing through our Reading distribution and service depot. The post will also invotve service and update of display units returned from the field and the preparation of fault investigation reports. Formal qualifications in electronics would be an advantage
A small amount of UK and overseas travel may also be required.

We offer an attractive remuneration package with competitive salaries and company protit sharing scheme. All replies will be dealt with in the strictest contidence.

Cameron

Write for an Application Form quoting the position relerence number to:-
Mr J F Cowan
Personnel Department at
Company Head Otfice
C W Cameron Lid
Communications Division
Burniteld Road
Tel: 041 -6330077

ARTICLES FOR SALE

TO MANUFACTURERS, WHOLESALERS BULK BUYERS. ETC.
 LARGE QUANTITIES OF RADIO. TV AND ELECTRONIC COMPONENTS FOR DISPOSAL

SEMICONDUCTORS, all types, INTEGRATED CIRCUITS, TRANSISTORS DIODES, RECTIFIERS, THYRISTORS, etc. RESISTORS, C/F, M/F, W/W, etc. CAPACITORS, SILVER MICA, POLYSTYRENE, C280, C296, DISC CERAMICS, PLATE CERAMICS, etc.
ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE, CABLES, SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFORMERS, etc.
ALL AT KNOCKOUT PRICES - Come and pay us a visit ALADDIN'S CAVE
TELEPHONE: 445 0749/445 2713
R.HENSONLTD.

21 Lodge Lane, North Finchley, London, N. 12 Lane, North Finchley, London, N. 12
$(5$ minutes from Tal/ Ho Corner)

ENCAPSULATING EQUIPMENT FOR coils, ransformers, components, degassing silicone rubber, resin, epoxy. Lost wax casting for brass, bronze, silver, etc. Impregnating coils, transtormers, components. Vacuum equipment, low cost, used and new. Also for CRT regunning metallis ing. Research \& Development. Barratts, Mayo
Road, Croydon CR0 2QP. $01-6849917$.
(9678)

AMP terminals type $152387 / 2$ - 90.000 half price. Automatic coil winder Blume and £450. Also equipment and stock for loud speaker manufacturing - cheap for clearance. 0924470757 . (2540)

FERROGRAPH CONTINUOUS Ioop cassette £10. RBC Type Garrard 301 £29. Low ohms resistance bridge metre $£ 29$. Single to three phase converter. Binocular prismatic lab microscope $£ 145$. Fibreoptic lig! source $£ 35$. Semi conductor tungston to white light correction mirror $£ 2.50$.
Carbon filter inserts $£ 8$. Ten KT 66 and two KT88 Carbon filter inserts $£ 8$. Ten KT 66 and two KT88 yalves $£ 18$. Monocular nicroscope experimental
laser mirror pairs $£ 5.75$ pair. New microscope lenses. Pipe bender with four sets of dies £55. Flexible pipes with BSP couplings and adaptor $\lceil 3.50$ ea . (air etc). Advance cable test set, $0-6000 \times 59$. Lightfast screen inks for semiconductor/IC design and production. Nerve $\&$ mustard yas detection equipment $£ 20$. Quantity of items used in semiconductor design and manufacSweep \& RF generators. $040-376236$.

Electronic Test Engineers/Technicians

Racal Radar Defence Systems part of the Racal Electronics Group is undergoing a period of rapid growth. To meet our increasing production demands, we need to recruit a number of Test Technicians and Test Engineers at the following locations in Surrey New Malden, Chessington and Hersham, and at Leicester.

The Company manufactures a wide range of products aimed principally at the Defence Industry including radar early warning and guidance systems, military displays and ECM and ESM systems.

The Test Department is responsible for the test and diagnostic functions on a wide range of complex radar equipment using high quality manual and automatic test equipment.

Applicants should be educated to $\mathrm{HNC} / \mathrm{HTC}$ standard and have practical knowledge or experience of radar and/or microwave systems.

Conditions of employment are excellent including a competitive salary, five weeks holiday, and company pension and life assurance scheme.

Interested? Then phone me on: 01-3975281 or alternatively write with brief details of qualification experience and current salary to:
Mr P N Willis,
Senior Personnel Officer,
Racal Radar Defence Systems Ltd., Davis Road, Chessington, Surrey.

BRITISH ANTARCTIC SURVEY
 Electronics Technicians

Applications are invited from suitably qualified and experienced persons to work as part of a team working on the design, construction and maintenance of a wide range of electronic equipment.
The succesfull applicants must be able to build electronic circuits and systems which will be used for scientific research in the Antarctic at the Survey's Stations, in remote field sites, aboard their ships and in their aricraft. They will be required to spend periods in Antarctica, sometimes working from tents, operating, maintaining and installing electronic equipment. resourcefulness and initiative are essential as much of the field work will be unsupervised.
Qualifications: ONC/HNC or equivalent technical training combined with a sound practical electronics background in digital and/or analogue circuiting. The understanding of microprocessor systems with the ability to maintain low level software is an advantage. Academically well qualified younger applicants, but with limited practical experience will be considered and relevant necessary training will be given.
Salary: Dependant on qualifications and experience in the scale $£ 6483$ $\Sigma 7552$ p.a. (Professional and Technology Officer Grade IV)
The vacancies are at Professional and Technology Officer grade IV for period appointments of 3 years.
Applicants should be physically fit and must be male as field work requires successful candidates to share tented accommodation and to live in premises provided by the British Antarctic Survey which are only equipped for male accommodation.
For further details and an application form please write to:
The Establishment Officer
British Antarctic Survey
High Cross
Madingley Road
Cambridge CB3 OET
Please quote Ref: BAS 14
Closing date: 9 May 1984.

Electronic
 Opportunities

£6,000-£18,000 p.a.

\star Microwave Design

* Sales
* Test and Commissioning
* ATE Applications
* Field Service

Many of our clients in the S.E. can offer excellent prospects in the above disciplines.

GRADUATE DESIGNERS wanted to join videotex specialist firm based at Whitechapel Technology centre. Must be versatile, experienced and familiar with the viewdata system. Catl John Barton on (01) 3771982

ARTICLES FOR SALE

BBC MICROCOMPUTER "GENLOCK" ROAD

This card, type 630 B enables the RGB and monochrome video outputs of the computer to be locked to an external video or sync signal. The card is supplied complete, ready to fit inside the computer wirther details send s.a.e. to
ABBEY AUDIO, POBOX 2 STAINES, MIDDX TW18 2NH

Tel: Staines (0784) 63319

Classified

ARTICLES FOR SALE

FERROGRAPH RECORDER test set RTS2 and auxilliary test units ATU 1 for sale. As new. Tel:

OR SALE IBM Selectric Golfball Printer. Letter quality with centronics parallel interface. In very FOR SALE: MARCONI spacial purpose HF radic tations type HS27/HR28. (Military type D11)
Complete with atl manuals. Tel: Ruyston

LINSLEY HOOD DESIGNS

Audio Signal Generators

00Watt Mosfet
\& p 50p
A.E. for leafl

TELERADIO ELECTRONICS 325 Fore Street, Londion N9 OPE

SURPLUS STOCK COMPONENTS
we mimenta. Monthly stockilists are avalabic on request. We also export vanous qually Germ
products. Enquines are always welcome
Agents wanted for our hobby kits.Contact us Hessenbach str. 35
8900 Augsburg. H. Germ
Tel: 082152.9033 . Tx: 53776 RESCO I

7 -track portable recorder, four head blocks $£ 65$. Car/van/lorry gas conversio kit $£ 89$. Flann microwave attenuator $£ 35$. (Brandenburg) 889 . Micregen laborator projector E59. Binocular prismatic laboratory microscope $£ 145$ (mechanical stage). Fibreoptic laboratory light source £35. Braun Hobby professional electronic flash (rechargeable batteries) £39. Heavy duty multiple output powe supplies. Star-Delta starter box $£ 25$. Al ternator control unit $£ 35$. Single to three phase converter. Vacuum pump and
motor $\mathbf{8 3 5}$. Compressor $£ 39$. Standard Reference inductors $\mathbf{£ 7 . 5 0}$ ea, Variac 20.A f49. $2 \mathrm{KW} 340 / 110$ transformer 20.A £49. 2KW $\mathbf{3 4 0 1 1 0}$ transforme three outlets, $\mathbf{£ 3 9 \text { . Rank wow }}$ Grunther CHI servicing, testing and reactivating Unit E40. 20A variable resis. tance $£ 20$ (metal case). Mullard H.S valve tester. Avo valve characteristic meter.

040-376236
(2016)

FOR SALE - Marconi OE 1761 Autotest compuPCB's. Offers mvited. Phone 01-223 2102 ext.

SETTING UP A RADIO STATION?

Professional quality VHF/FM broadcast transmitters and repeater links available. 25-250 watts, all solid state, continuously rated. Mono/Stereo versions. High stability PLL/Xtal references. Competitively priced ie 100 watt model, with inte-
gral mains power supply - $\{280$. Fully gral mains p

Cyberscan International, Middx HA5 1AT. Tel: 01-866 3300

WORLD RADIO TV HANDBOOK

1984 ed

1984 THE RADIO AMATEUR'S H/B by A.R.R.L. Price f12.50 BEGINNER'S GUIDE TO INTE GRATED CIRCUITS by I. R. Sin clair Price $£ 4.50$ ELECTRONIC PROTOTYPE CONSTRUCTION by S. D. Kasten

Price f15.95
UNDERSTANDING ELECTRONIC SECURITY SYSTEMS by M. D. Lamont Price $£ 2.30$ UNDERSTANDING DIGITAL ELECTRONICS by G. McWhorter

NTRODUCTION TO ELECTRONIC SPEECH SYNTHESIS by N. Sclater Price £8 ELECTRONICS FOR HIGHER TECH by S. A. Knight Price $£ 10$ DOMESTIC VIDEO CASSETTE RECORDERS. A SERVICING GUIDE by S. Beeching

SEMICONDUCTOR DATA BOOK by A. M. Ball Price E 7.50 * all prices include

THE MODERN BOOK CO.
 BRITAIN'S LARGEST STOCKIST

 British and American Technical Books
19-21 PRAED STREET LONDON W2 1NP

$01-4029176$
Closed Saturday 1 p.m.
Please allow 14 days for reply or delivery

SATELLITE TELEVISION DISHES diameter petal type for home construction from constructional diagrams and drawings $£ 1.50$ including postage to all countrees. W'N Jones 2 TynRhos,
LL60 6 HIL .
VALVES, PROJECTOR Lamps, 6000 types, lis 75p, world wide export. Cox Radio (Sussex) Lid The Parade, East Wittering, Sussex. Phone 002 366) 2

WAVEGUIDE, Flanges and Dishes. All standard sizes and alloys (new material only) from stock. Special sizes to order. Call Earth Stations, 01-228 7876, 22 Howie Strcet, London SW11

DESIGN SERVICES. Electro. design development and production service available for
digital and analogue instruments. RF Transmir digital and analogue instruments. RF Transmi systems 20 vears experience. R C.S. Electromes
Wolsey Road, Ashford, Middlesex. Phone M Wolsey Road,
Falkner 53661 .

ASSEMBLY
 CAPACITY
 PRINTED CIRCUIT BOARDS

A multi-product factory, part of a large Company, situated in East Lancashire, offers capacity for production of printed circuit board assemblies

Production facilities include:-

* Automatic component insertion
* Flow soldering
* Automatic test equipment
* Well equipped laboratory
* Quality assurance Procedures
* Ametrology department with British Calibration service approval * Delivery performance
* Skilled labour force with the personal approach of a small highly technical unit.
The Company combines a high degree of
commitment to meeting delivery schedules with an excellent reputation for quality which may be to British Defence Standards 05-21.

RING IAN GREEN 025455241. QUOTING REF.EWW

VERBGATE LTD.

We buy large and small parcels of surplus I/C, transistors, capacitors and related electronic stock. Immediate settlement

Tel: 07-208 0766
Telex: 8814998
(2478)

WANTED

SJRPLUS ELECTRONIC COMPONENTS AND

EQUIPMENT
We also wetcome the opportunty to quote for complete factory clearance B. BAMBER ELECTRONICS

5 STATION ROAD, LITTLEPORT, CAMBS Phone: Ely (0353) 860185

SURPLUS
We offer good prices for test equipment, components, redundant computers, PCB's connectors. Immediate settle-

TIMEBASE
94 Alfriston Gardens
Sholling, Southampton SO2 8 FU
Telephone: (0703) 431323

WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash. Member of A.R.R.A.

M \& B RADIO
86 Bishopsgate Street Leeds LS 1 4BB
0532435649
(9956)

WANTED

Test equipment, measuring instruments, redundant stock, manufacturers' surplus, etc. Any quantity, large or one-off Please write or phone with details:

RALFE ELECTRONICS

 10 CHAPEL STREXT LONDON NWY 5DN Tel: 01-723 8753

CIRCOLEC

Artwork, Circuit Design, PCB Assembly, Test \& Repair Service, Q.A. Consultancy, Prototypes, Final Assembly. Full PCB Flow Soldering Service.
Quality workmanship by professionals at economic prices.
Please telephone 01-646 5686 for advice or further details.
302-310 COMMONSIDE EAST, MITCHAM

TW ELECTRONICS LTD

THE PCB ASSEMBLERS

 gating the advantages of using a protesing requires certain assurances.TW are able to satisfy all of them quality, competitive pricing, tirm delivey and Assembled boards at 100% inspected blore flow soldering and reinspected Every batch of completed boards is issued with a signed certificate of conformity and quality - our final assurance. For further details, contact us at our new

Blenheim Industrial Park Sury St. Edmunds
Telephone: 02843931 (1466)

Design \& Development, Complete Artwork Service, Camera
Work, Prototype thru to Production РСB Manufacture/Assy.
5 Cork Street, Eccles, Maidstone, Kent, ME 20 7HG TELEPHONE 10622179987 TELEX 965633

CLASSIFIED ADVERTISEMENTS Use this Form for your Sales and Wants

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

To "Wireless World" Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate £3.50 PER LINE. Average six words per line. Minimum $£ 25$ (prepayable)
- Name and address to be included in charge if used in advertisement
- Box No. Allow two words plus $£ 5$
- Cheques, etc., payable to "IPC Business Press Ltd." and cross " $\&$ Co."

Crotech Oscilloscopes
 Nationwide availability local to You

London \& Home Counties London W2 od Electronics
Aughton Instruments
Strood

Wales \& West
Glevum Instruments
Gloucester 0452-31620

01-724-3564
01-267-5311
0734-698040
0634-724751

East Anglia Electronic \& Computer Workshop Maplin Electronics Ambit International

Midlands \& North

Northern Instruments	Leeds	$0532-791054$
Universal Instruments	Leire (Leics)	$0455-202391$
Electronic Measurement		
Services	Manchester	$061-273-4653$
Radio Telephone Service	Derby	$0332-41235$
Scotland		
RMR Measurements	Cumbernauld	$02367-28170$

Wreleseswowind
 INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 93-103

AC/DCElectronics Corp 84	
Airlink Transformers	80
AM Electronics	84
Armon Electronics	10
Aspen Electronics Ltd	88
Audio Electronics..................................... . 22,23	
Barrie Electronics Ltd.	73
B. Bamber	24
Barlec-Richfield Ltd	20
Beckenham Peripherals	10
Black Star Ltd....	80
Binary Systems	76
Cambridge Kits	92
Cambridge Micro Prossor's	21
Carston Electronics	46
Clark Masts Ltd	68
Colomor Electronics	14
Computer Appreciation	85
Control Universal ...	12
Crimson Elektrik Stoke	80
Crotech Instruments	104
CynpexLtd..........	
Dataman Designs	26
Display Electronics	83
Electronics Brokers 13, 15, 11, 17	
Electronic Equipment Co	. 84
Ellmax Electronics Ltd.	. 22
EMS Manufacturing.	4
Essex Electronics.	. 68
Farnell Instruments Inside Front Cover	
Future Film Development 24 Fylde Electronics Lab	

OVERSEAS ADVERTISEMENT AGENTS

France \& Belgium: Norbert Hellin, 50 Rue de Chemin Veat
F-9100, Boulogne, Paris.
Hungary: Ms Edit, Bajusz, Hungexpo Advertising Agency,
Telephone: 225008 - Telex: Budapest 22-4525
INTFOIRE
Italy: Sig C. Epis, Etas-Kompass, S.p.a. - Servizio Estero,
Via Mantegna 6, 20154 Milan
Telephone: 347051 - Telex: 37342 Kompass.

PAGE
PAGE

apan: Mr. Inatsuki, Trade Media - IBPA (Japan), B. 212
Azabu Heights, 1-5-10 Roppongi, Minato-ku, Tokyo 106 elephone: (03) 5850581.

United States of America: Jay Feinnan, Business Press Inter ational Ltd 205 East 4 nd Sere Now York NY 10017 Telephone (212) 867-2080 - Telex: 238327
Jack Farley Jnr., The Farley Co., Suite 1584, 35 East Walker Drive, Chicago, íllionois 60601 - Telephone (312) 63074 Victor A. Jauch, Elmatex International, P.O. Box 34607, Los Angeles, Calif. 90034, USA - Telephone (213) 821-8581 -

Jack Mantel, The Farley Co., Suite 650, Ranna Building,

 Cleveland, Ohio 4415 - Telephone (216) 6211919.Ray Rickles, Ray Rickles \& Co., P.O. Box 2028, Miami Beach Florida 33140-Telephone (305) 5327301.
Atlanta, Georgia 30305. Telephone (404) 2377432
Atlanta, Georgia 30305. Telephone (404) 2377432.
Mike Loughlin Business Press International, 15055 Mike Loughlin Business Press nternational, 15055
Memorial Ste 119 , Houston, Texas 77079 - Telephone 713) 7838673.

Canada: Colin H. MacCulloch, International Advertising Consultants Ltd., 915 Carlton Tower, 2 Carlton Street Toronto 2 - Telephone (416) 3642269.

* Also subscription agents.

EP8000

EPROM EMULATOR PROCORAMMER

The new microprocessor controlled EP8000 Emulator Programmer will program and emulate all EPROMs up to 8 k $\times 8$ sizes, and can be extended to program other devices such as $16 \mathrm{k} \times 8$ EPROMs, Bipolar PROMs, single chip microprocessors with external modules.
Personality cards and hardware changes are not required as the machine configures itself for the different devices.
The EP4000 with $4 \mathrm{k} \times 8$ static RAM is still available with EPROM programming and emulation capacity up to $4 \mathrm{k} \times 8$ sizes.

FEATURES

- Software personality programming/emulation of all EPROMs up to $8 \mathrm{k} \times 8$ bytes including 2704, 2708, 2716(3), 2508, 2758A, 2758B, 2516, 2716, 2532, 2732, 2732A, 68732-0, 68732-1, 68766, 68764, 2564, 2764. Programs 25128, 27128 with adaptors.
- No personality cards/characterisers required.
- Use as stand alone programmer, slave programmer, or EPROM development system.
- Checks for misplaced and reversed insertion, and shorts on data lines.
- Memory mapped video output allows full use of powerful editing facilities.
- Built-in LED display for field use.
- Powerful editing facilities include: Block/Byte move, insert, delete, match, highlight, etc.
- Comprehensive input/output - RS232C serial port, parallel port, cassette, printer O/P, DMA.
- Extra $1 \mathrm{k} \times 8$ scratchpad RAM for block moving.
livery - BSC4 Buffered emulation cable £39 BP4 (TEXAS) Bipolar PROM Module - £190 Prinz video monitor - £99 UV141 EPROM Eraser with timer - £78 GP100A 80 column printer - £225 GR1 Centronics interface - £65

P8000 - THE PRODUCTION PROGRAMMER
 THAT HANDLES ALL NMOS EPROMS

GP Industrial Electronics Ltd.
Unit E, Huxley Close, Newnham Industrial Estate, Plymouth PL7 4JN

[^0]: G.S.C. (UK) Ltd. Dept.7J8

 Unit 1. Shire Hill Industrıa। Estate Saffron Walden. Essex CB11 3AQ
 Telephone: Saffron Walden (0799) 21682

[^1]: CIRCLE 051 FOR FLRTHER DETAILS.

[^2]: CIRCLE 086 FOR FURTHER DETAILS.

[^3]: * 'Saved' : 'Maintained, without the need for agonising re-appraisal and re-formula tion from revised first principles'. (There are good reasons for avoiding that extreme

[^4]: * The incidence of future position in this context is not unique to this scenario. It arises whenever one tries to measure the position of a moving body by means of light signals radiated from it - a fact which is not generally realised. 'Astronomical aber ration' is one of many examples of the is one of many examples of the effect.

[^5]:

[^6]: Terms of business: CWO. Postage and packing valves and semiconductors 50p per order. CRTs $£ 1.50$. Frices excluding VAT, add 15%.
 in some cases prices of Mullard and USA valves will be higher than those advertised. Prices correct when going to press.
 Account facilities available to approved companies with minimum order charge $£ 10$. Carriage and packing $£ 1.50$ on
 Telephone 01
 E. \& O.E.

 Account facilities available to approved companies with minimum order charge $£ 10$. Carriage and packing $£ 1.50$ on credit orders
 Over 10,000 types of valves, tubes and semiconductors in stock. Quotations for any types not listed. S.A.E.

[^7]: ## \rightarrow SWEEPERS \star

 TELONIC 2003 Systern. $800-1500 \mathrm{MHz}$ £325 TEL ONIC SM2000 with $500-900 \mathrm{MHz}$ plug-in $£ 175$ TELONIC SM2000 with 0-10MHz plug-in § 150

 PLEASE NOTE. All the pre-owned equipment shown has been carefully tested in our workshop and reconditioned where necessary. It is sold in
 first-class operational condition and most items carry a three monts first-class operational condition and mest items carry a three months
 guarantee. For our mail order customers we have a money-back scheme Repairs and servicing to all equipment at very reasonable rates. PLEASE

[^8]: TO FIND OUT MORE and to obtain an early interview, please telephone FRED JEFFRIES C.Eng., MIERE in complete confidence on HEMEL HEMPSTEAD (0442) 212655 during office hours or one of our duty consultants on HEMEL HEMPSTEAD (0442) 212650 evenings or weekends (not an answering machine). Alternatively write to him at the address below.

