APRIL 1984

Competition award

The range includes sine-square oscillators, synthesized signal generators, function generators and pulse generators.

Designed and manufactured in Britain, all instruments in the range are backed by the Farnell reputation for value for money performance.

Detailed information will be sent if you respond to this advertisement.

Competition award

Microprocessor-based ultrasonic pulse-echo-system depicted on cover is described elsewhere in this issue by Tony Heyes.

NEXT MONTH

Pausaid, a training aid for sufferers from certain motor speech disorders. This device won second prize in Wireless World's recent design competition.
Variable-speed video playback begins a series on combining servo head tracking with digital timebase correction that allows playback to broadcast standard over a wide range of speeds. Dr Murray chose to avoid criticising Relativity Theory in his recent Heretic's Guide. He makes good the omission by drawing attention to one of Einstein's rare but crucial mistakes.
Designer of WW Scientific Computer, John Adams, describes another computer design, this time a disc-based CP/M-compatible system.

Current issue price 85 p, back issues (if available) E1.06, at Retail and Trade Counter, Units $1 \& 2$. Bankside Industrial Centre, Hopton Street, London SE 1 Available on microfilm; please contact editor.
By post, current issue $£ 1.30$, back issues (if available) £1,40, order and payments to Sundry Sales Dept, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Tel: 01-661 8668.
Editorial \& Advertising offices: Quad rant House, The Quadrant, Sutton, Surrey SM 2 5AS.
Telephones: Editorial 01-661 3614. Advertising 01-661 3130. See leader page. Telex: 892084 BISPRS G pabe. Telex: 892084 Biption rates: 1 year f15 UK and Subscription ra
f19 outside UK.
Student rates: 1 year f 10 UK, and £ 12.70 outside UK.
Distribution: Quadrant House, The Quadrant, Sutton, Surrev SM2 5AS Telephone: 01-661 3248.
Subscriptions: Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone: 0444 459188. Please notify a change of address.
USA: $\$ 49.40$ surface mail, $\$ 102.60$ air Business Press International (USA) Subscriptions Office, 205 E.42nd Sireet NY 10017
USA mailing agents: Expediters of the Printed Word Lid, 527 Madison Avenue. Suite 1217, New York, NY 10022. 2nd class postage paid at New York class postage paid at New York. Lid 1984 C) Business Press
ISSN 00436062.

THE MIND-FORG'D MANACLES

COMMUNICATIONS COMMENTARY

SONIC PATHFINDER

DESIGNING WITH THE 68008 MICROPROCESSOR

CIRCUIT IDEAS
aSSEMBLY LANGUAGE PROGRAMMING-TELEPRINTER INTERFACE

MATCHED FILTERS FOR RADAR AND SATELLITES

TESTING MICROPROCESSORS AT HOME

SYNTHESIZED TELEVISION MODULATOR

LETTERS TO THE EDITOR

GPIB COMBINER

NEWS OF THE MONTH

AMPAL - REPLACEMENT FOR THE NTSC SYSTEM

STORAGE OSCILLOSCOPES

NEW PRODUCTS

APPOINTMENTS
ADVERTISERS INDEX

Philips PM3207 15MHz Oscilloscope £325 Compact, portable, lightweight oscilioscope designe for field and workshop use. 15 MHz band width with 5 mV sensitivity. TV and auto triggering from either
channel. with adjustable level. Add and invert facilities channel. with adjustable level. Add and invert facilitie
and $X-Y$ mode. Large screen with internal graticule.

Philips PM321750MHz

 Oscilloscope $£ 850$High 2 mV sensitivity, dual trace. $8 \times 10 \mathrm{~cm}$ display with small spot size. high light output and illuminated graticuie, auto trigger mode, TV enggerng onsine and seconct time base facilty Compact dimensions and second time base facility. Compact dimensions a
low weight.

Philips PM 3215 Single time base C695

Philips PM3219 Storage
Oscilloscope $\mathbb{E} 2675$
provides comprehensive cost effective storage of single-shot transients and low frequenc events. Variable persistence and variable
storage. Auto erase between 1 and 10 seconds. and read button facility Auto store up to 1 minute, up to 24 hours in
2 mV sensitivity at 50 MHz

Philips PM3256 75MHz
Oscilloscope £1245
Tough, light-weight ruggedised unit, with shoulder strap, that can be used in harsh servicer environments. Fast trigger circ.Ats to over 100 MHz TTL triggering is star dard. Trigger view third channel and full X - Y dizplay. Dual trace Philips PM 3254 Single time base £1145

Philips PM3267 100MHz
Oscilloscope £1250
Versatile and economic instrument designed fo advanced electronic environments. Separat
main and delayed time base controls with main and delayed time base controls with comprehensive triggering facilities and trigger view third channel Dual trace. 2 m v sens illuminated graticule.

[^0]Hameg HM103 10MHz Oscilloscope £158 This small oscilloscope has been designed specifically for fiedd service personnel and advanced electronic hobbyists. Single trace,
10 MHz bandwidth with 2 mV sensitivity. TV and auto triggering with adjustable level. Internal graticule and in-buit component tester

Philips • Fluke Hameg - Ice Test Equipment
 FOR

Hameg HM203-4 20MHz Oscilloscope £264 Designed for genepal purpose applications in industry and education. Versatile triggering performance to at least 40MHz Dial trace X - y component tester make the price/performance ratio of this scope most attractive.

Hameg HM204 20MHz Oscilloscope £365 High performance scope with peak value triggering up to 50 MHz . versatile triggering faciities and variable hold off control. Dual trace delayed swee, mode, Z modulation, X - Y operation, internal illuminated graticule and component tester complete

Hameg HM605 60MHz Oscilloscope $£ 487$ Dutstanding performance with versatile triggering to 80 MHz . Sensitivity 1 mV to 30 MHz and 2 mV above. Bright display from 14 kV CRT trace. delayed sweep X. Y operation. Z modulation, internal illuminated graticule and component tester.

Hameg HM705 70MHz Oscilloscope £588 General purpose scope with multitude of operating modes and trigger facilities. Extremely bright and well defined displays, with $8 \times 10 \mathrm{~cm}$. screen and internal illuminated graticule. TV triggering, Z modulation. $X-Y$ dispaly
facilities and sweep delay mode. Dual trace

 London WC1X 9LR. Tel 01-833 1166. Telex 298694 WW - 601 FOR FURTHER DETAILS

CABLE T.V. HEAD END AND REPEATER AMPLIFIERS

CHANNEL CONVERTERS
UHF-UHF Single channel converter. Gain adjustable $+2 \mathrm{~dB}-16 \mathrm{~dB}$. Maximum output +26 dBmV . Crystal controlled oscillator. Power requirement As TCUU except UHF to VHF conver)
CUV
As TCUU except VHF to UHF converter (Quote Channels required).

SINGLE CHANNEL AUTOMATIC GAIN CONTROL AMPLIFIERS
TAG4863 Gain 48dB, maximum output 63 dBmV Regulator + or - 8dB. Power
TAG4063 Gain 40 dB , maximum output 64 dBmV . Regulator + or -16 dB . Power requirement 14 V 210 mA

SINGLE CHANNEL AMPLIFIERS
TSS4663 Gain $28-46 \mathrm{~dB}$ adjustable. Maximum output 63 dBmV . Power requirement
TSS3062 $\quad \begin{gathered}\text { Gain } 12-30 \mathrm{~dB} \\ \\ \\ 14 \mathrm{~V} 26 \mathrm{~mA} \text { adustable. Maximum output } 62 \mathrm{dBmV} \text {. Power requirement }, ~\end{gathered}$ 14 V 26 mA .

DRIVER AMPLIFIERS

TS1030FM FM driver amplifier. 10 dB Gain. Maximum output 30 dBmV . Power require TS103083 ment 14V 10mA

解 equirement $14 V 10 \mathrm{~mA}$
TS1030UHF UHF driver amplifier. 10 dB gain. Maximum output 30 dBmV . Power require ment 14 V 10 mA .

Single channel UHF driver amplifier. 10dB gain. Maximum output 40 dBmV Power requirement 14 V 10 mA . (Quote channel required).

DISTRIBUTION AMPLIFIERS
TE2042 Domestic distribution amplifier. 1 input, 1 output. Gain 20dB. Maximum
TE1638 output 42 dBmV .
Domestic distribution amplifier. 1 input. 2 outputs. Gain 16dB. Maximum
output: 2 at 38 dBm .
TS2846 $\quad 40-860 \mathrm{MHz}$. Gain 20dB UHF. 18 dB VHF. Maximum output 46 dBmV
TS2845 $\quad 40-860 \mathrm{MHz}$. Gain 28dB UHF, 22dB VHF. Maximum output 46 dBmV
$\begin{array}{ll}\text { TS2054 } & 46 \mathrm{dBmV} \text {. } \\ 40-860 \mathrm{MHz} \text {. Gain } 20 \mathrm{~dB} \text { UHF, } 18 \mathrm{~dB} \text { VHF. Maximum output } 54 \mathrm{dBmV}\end{array}$
TS $2060 \quad 40-860 \mathrm{MHz}$. Gain 20dB UHF, 18dB VHF. Maximum output 60 dBm
TS5565 Gain 55dB UHF, 55 dB VHF, 42 dB FM. Maximum output 65 dBmV

REPEATER AMPLIFIERS

TSC 3660 Repeater. Gain 16-36dB UHF, 10-30dB VHF. Maximum output 60 dBmV
$\begin{array}{ll}\text { TSC3665 Repeater. Gain 16-36dB UHF, 10-30dB VHF. Maximum output } 65 \mathrm{dBmV} \\ \text { TSC3060 } & \text { Repeater. Gain 10-30dB VHF. Maximum output } 60 \mathrm{dBmV} \text {. }\end{array}$

QUALITY AT LOW COST TAYLOR BROS (OLDHAM) LTD

 LEE STREET, OLDHAM - TEL. 061-652 3221 - TELEX 669911
WW - 044 FOR FURTHER DETAILS

DESIGNERS AND MANUFACTURERS OF

HIGH QUALITY CCTV CAMERAS \& SYSTEMS

This self-contained black and white camera has been developed for use in situations where space is at a premium but the need for high quality is of paramount importance. Features include:

INSIGHT VISION SYSTEMS LIMITED
Unit 1, Merebrook Hanley Road, Malvern. Wores WR13 6NP. England Tel (0684) 310001
Telex 334480 INSIGT'G'

* UNPROCESSED VIDEO OUT TO EE LENS HIGH RESOLUTION, LOW - INBUILT IRIS DRIVE SERVO - 10 TO 32VOLT DC OPERATION - EDGE ENHANCEMENT CORRECTION

NOISE PICTURE

- PLUG ON BATTERY AND REMOTE CONTROL MODULES

LOW POWER CONSUMPTION

- AUTOMATIC VIDEO BLACK LEVEL - MOTORISED VIDICON RACKING RACKING Contact Andrew Smith on (0684) 310001

WW - 063 FOR FURTHER DETAILS

P.\&R. COMPUTER SHOP

 IBM GOLFBALL PRINTERS from E70 EACH + V.A.T.INTERFACE FOR IBM GOLFBALL $£ 40$ + V.A.T CENTRONIC 779 PRINTERS - £200 + V.A.T. CENTRONIC 781 PRINTER - £225 + V.A.T. POWER UNITS 15 VOLT 10 AMP - £ 20 EACH FANS, PCBs, KEYBOARDS AND LOTS MORE 8-INCH BURROUGHS FLOPPY DISC DRIVES

COME AND LOOK AROUND
SALCOTT MILL, GOLDHANGER ROAD
HEYBRIDGE, MALDON, ESSEX
PHONE MALDON (0621) 57440
Hours: Mon-Fri. 9am to 5pm. Sat. till 1pm

AC/DC Electronic Components

THIESOURC： 該相 ERNMPNIENT

Fectronic Brokers are furope＇s largest specialists in quality second user test equipment，computersand associated peripherals．All second use test equipment offered by Electronic Brokers is calibrated to meet the original manufacturer＇s sales specifications and guaranteed for 12 months．Our latest catalogue contains full details of our extensive inventory．Contact us for your free copy now

BRYANS SOUTHERN XY／T Recorder 29300.

These units are unused A4 size．High sensitivity $0.25 \mathrm{mV} / \mathrm{cm}$ and fast slew speed－better than $70 \mathrm{~cm} / \mathrm{second}$ ．
Price 51，000

TEKTRONIX
Logic Analyser
7 D01 with DF1．
16 Stored Channels，up to 1024 words deep．State and timing with up to

Illustrated with 7603
Mainframe（Extra）

RACAL－DANA
 Counter／Timer 9514

ANALYSERS

Hewlett Packard

611 Logic Analyser tor Micronrocessor Based
 Systems

 351 A Wave Analyser Tektronix
$10 \mathrm{~Hz}-100 \mathrm{KHz}$ Distortion

to Less than U UU： 5%
to Less than UOU5
£1，200．00
c3，000．00 £1，800．00
£1，450．00 F1 Display Formatter Fo 10100000 308 Portable 8 Channel \quad C500．00 Analyser $\mathbf{~ 2 2 , 1 0 0 . 0 0}$ 92 （opt 01.08$)$ Spectrum Analyser
$50 \mathrm{KHz} 21 \mathrm{GHz}, \mathbf{£ 1 3 , 6 0 0 . 0 0}$ and L3（Inout plug and L3 Input，plug in
12 Spectrum Analyser $100 \mathrm{KHz-1.8GHz}$
13 Spectrum Analyser $1 \mathrm{KHz-1} 18 \mathrm{GH} 2$ 1.56 Hz －60GHz Th503 Tracking Generator （for $492 / 496$ series） 700116 Channe Sample Rate 51，50000 ع1，500．00

OSCILLOSCOPES

awlett Packard

$332 A$ High Quality CRT Display 96×11950.00
？ 41 A 100 MHz Variable Persistance $\mathbf{~} 2,850.00$

1744 100 MHz Variable Persistance Storaye ³．000．00

 1809A fo 1821A Timetase Plug in \quad ع2，000．00 PhilipsPM3232 Dual Bean 10M－z \quad c495．00 PM324450MHz $41,500.00$ Tektronix

212500 KHz Dual Trace

335 Dual Trace 35 MHz Small portable 465100 MHz Portable 475 A 250 MHz Dual Trac
Portable
475200 MHz Dual Trace
Portable

7603100 MHz Mainframe
¢850．00
ع1，300．00
ع1，250．00
13，300．00
C2，500．00
ع2，225．00 7740 Scope DC－200MH2 Maintrame Mainframe
E2，850．00
c3，250．00
 C12 Camera
Telequipment
D34 15 MHz DT Battery Fortable
CTフ1 Curve Tracer
$\mathbf{~} 5 \mathbf{5 5 0 . 0 0}$
Gould
c995．00
SIGNAL SOURCES
EHLabs
139B Pulse Gen
0.100 MHz Counter

100 S to 10^{9} Sec Period
IEEE Interface

Superb Condition
Price： $\mathbf{5} 80$

2144 Pulse Gen	c950．00
117204 Pulse Modulator	c1,950.00
8004A Pulse Gen．	¢450．00
8011 A 01 Pulse Gen	¢695．00
8013 B Pulse Gen	¢750．00
8620C Sweeper	
Mainirame	¢2，100．00
86240B Sweeper Plug	8.4 GHz
	［4，200．00
8640A Sig Gen	［2，750．00
$8640 \mathrm{Bopt} 1.23 \mathrm{AM} / \mathrm{FM}$	SigGen
051024 MHz	C4，950．00
Marconi	
TF2002B AM／FM	10 K
88 MHz with TF2	hron
	¢1750．00
TF2008 Sig Gen	¢3，000．00
TF2015 Sig Gen	£1，350．00
TF2015／1 Siq Gen	¢1，350．00
TF2016 AM／FM Sig Gen	
$10 \mathrm{KHz-120MHz}$	c950．00
2	C850．00

TEKTRONIX PLUGINS

 We stock a complete range of PlusIns for use with 7000 and 5000 series Mainframes．

TEKTRONIX TM500

SERIES

We stock a very wide range of these versatile modular equipments MISCELLANEOUS
$\begin{array}{ll}\text { Avo } \\ \text { Modei } 8 \text { Multimeters } & \text { c80．00 }\end{array}$ 7 Electricians Multimeter Bruel \＆Kiaer
c950．00
（

Hewlett Packard
10 Ca Pulalator
¢950．00

1613 Filte
Datalabs
Datalabs
Fluke
£400．00
［750．00

8010 Portable Calibrator $\mathbf{£ 1 , 7 5 0 . 0 0}$ 8 battery $3^{1 / 2}$ digit DMM with built in 8050 A $4{ }^{2} 2$ Digit DMM \quad £150．00 8502 DMM | 931 B Diff VMeter | £1，200．0C |
| :--- | :--- |
| $1,000.00$ | | 8921 AMM Mrinter \quad £ 500.00 Hewlett Packard 1 Hz 461A Amp 20／40DB $1 \mathrm{KHz} 15 \times 120.00$ 467 A Amplifier $\quad \mathbf{~} 715$ Vister $\begin{array}{ll}415 E \text { VSWR Meter } & \text { £950．00 } \\ 3556 \text { A Psophometer } & \mathbf{8 5 0 . 0 0}\end{array}$ 3552A Trans Test Set $\mathbf{~ 1 , 5 0 0 . 0 0 ~}$ 4815A Vector Impedance Meter $\mathbf{8 5 0 . 0 0}$ 7035B X－Y Recorder £995．00 59308 AHPIB Timing Generator $£ 300.00$ 2438520 MHz Counte

Timer \quad ¢795．00

 TF2603 RF Millivoltmeter－$\quad \mathbf{~} 775.00$ Racal $£ 775.00$$£ 750.00$ 9514 Counter／Timer IEEE $\mathbf{~} 850.00$ 990450MHz Counter／Tmer C325．00 Tektronix
06 Square Wave Generator 1 nS
ccessories $\quad \mathbf{1 7 5 . 0 0}$
Step Attenuator 50 ：2 0.79 dB in WE NOW STOCK A RANGE OF HEWLETT PACKARD COMPUTERS AND CALCULATORS．

Electronic Brokers Ltd．，61／65 Kings Cross Road， LondonWC1X 9LN．Tel：01－2783461．Telex 298694

SINEWAVE INVERTERS -FROM CARACAL 200-1000 VA

Caracal offer you the U.K.'s widest range of high-quality static inverters. Our inverters are used in many countries throughout the world wherever a reliable and stable source of A.C. power is needed for computers, communications, instrumentation, etc. They are also frequently used for mobile or marine applications where only a D.C. source is available.

Caracal inverters employ modern pulse width modulation technology which is replacing obsolescent tuned-type (ferroresonant) inverters, by giving higher efficiency throughout the load range, very low standby current, and lower weight.

We have a large range of models and options, at competitive prices, to suit your exact requirements.

19-INCH RACK MOUNTING

Now all inverters are also available in 19-inch chassis form for rack mounting.

Export enquiries welcome

CARACAL POWER PRODUCTS LIMITED
42-44 SHORTMEAD STREET, BIGGLESWADE, BEDFORDSHIRE Telephone: 0767260997

VAC ACE DE-SOLDERING UNIT
Powerful suction. Built-in vacuum pump gives 600 mm Hg suction. No clogging. Solder remains molten until reaching filter.
Functional gun-type Construction. Trigger-switch controls pump. Easy clean and filter replacement. Ceramic heating element. Safe with LSI and MOS devices. Easily interchangeable. Long-life nozzles-4 sizes. Costs under $£ 280$.

Light Soldering Developments Ltd 97/99 Gloucester Road, Croydon CRO 2DN 01-689 0574
WW - 059 FOR FURTHER DETAILS

METAL FILM RESISTORS					
		SPECIAL OFFER			
		£12.60			
		SPECIAL 'POP' PACK			
		边			

WW - 046 FOR FURTHER DETAILS

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAY'S INN ROAD, W.C. 1
Phone: 01-837 7937
Telex: 892301 HARTRO G
WW - 050 FOR FURTHER DETAILS

pantechnic
 THE POWERFET SPECIALISTS

OEM USERS

Pantechnic present the most adaptable high-powered amplifier ϵ ver FET SYSTEM AMP
Features:
HIGH POWER up to 1.2 kW (single ended)

- LOW VOLUME. $1 / 15$ Cubic foot inc. Heatsink
- VERSATILE. Delivers more than 1 kW into $1 / 2$ to 8 ohms OR $2 \times 600 \mathrm{~W}$ into 2 to 8Ω
OR $4 \times 300 \mathrm{~W}$ into 2 to 4Ω (200 W into 8Ω)
OR $\left\{\begin{array}{l}1 \times 600 \mathrm{~W} \text { into } 2 \text { to } 8 \Omega \\ 1 \times 300 \mathrm{~W} \text { into } 2 \text { to } 4 \Omega \\ 1 \times 150 \mathrm{~W} \text { into } 4 \text { to } 8 \Omega\end{array}\right.$
Elc., etc.
Heving been closely involved in a wide variety of OEM applications of treir amp bcards. Pantechnic became aware of numerous implementation problerss often let untackled by other amp board manufacturers. These problems specivicaly an
size and thermal efficiency became particularly aggravated at high powers and considerably lengthened OEM product development time.
By including thermal design in the totality of board design it has been pessible to rejuce the size of the electronics, and increase the efficiency of the trar sistor to heatsink thermal circuit. The combined effect of this has been to drannatically increase the volumetric efficiency of the amplifier/heatsink assembly. The SYSTEM Amp offers 1.2 kW of power in a space of $180 \mathrm{~mm} \times 102 \mathrm{~mm} \times 77 \mathrm{~mm}$, excluding PSU and Fan.
The basis of this considerable advance is the PANTECH 74 Heat Exchanger designed and manufactured by us. By eliminating the laminar air flow lound in conventional, extruded heatsinks, heat transter to the envionment is grealy Tre flexibility of the 1.2 kW amp stems from its division into 4 potentially separate paralleled, increasing current capability or seriesed (bridged in pairs) doubling vcltage capability. In consequence a large variety of amplifier/load strategies can be inr plemented
At ever Pantechnic offer a full range of customising options including DC coupling, ultra-high slew, etc. Contact Phil Rimmer on 01-361 8715 with your perticular arplication problem.

A wide range of other amplifiers and other modules available.

 Technical Enquirias $17 A$ MOOLOW STBEET contact phil immer LIERPOUL 25 JWH

WW - 062 FOR FURTHER DETAILS

Happy Memories

Part type
4116200 ns
4164 200ns

1 off	25-99	100 up
1.25	1.15	1.10
4.95	4.40	4.20
4.20	3.75	3.60
Call	Call	Call
Call	Call	Call
3.85	3.45	3.30
4.20	3.75	3.60
3.85	3.45	3.30
Call	Call	Call
Call	Call	Call

6116 150ns Low power
6264 150ns
2716 450ns 5 volt
2732 450ns Intel type.
2532 450ns Texas type
2764 250ns
27128300 ns
Z80A-CPU£2.99 Z80A-P10......£2.99 Z80A-CTC.... .£2.99 €522 PIA£3.70 7805 reg.........£0.05 7812 reg....... $£ 0.50$

Low profile IC sockets: Pins $\quad 8 \quad 1416182022 \quad 242840$ Pence $\begin{array}{lllllllll}12 & 13 & 14 & 16 & 18 & 22 & 24 & 27 & 38\end{array}$

Soft-sectored floppy discs per 10 in plastic library case: inch SSSD $£ 17.00 \quad 5$ inch SSDD $£ 19.25 \quad 5$ inch DSDD E21.00 5 inch SSQD $£ 23.95 \quad 5$ inch DSQD $£ 26.35$
i4LS series TTL, large stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or phone for I st

Please add 50 p post \& packing to orders under E 15 and VAT to total Access \& Visa welcome. 24 hr phone service on (054 422) 518 Government \& Educational orders welcome, £15 minimun Trade accounts operated, 'phone of write for details

HAPPY MEMORIES (WW) Gladestry, Kington Herefordshire HR5 3NY
Tel: (054 422) 618 or 628

DEBSBMI

DEC 11/23 SYSTEMS

11/23AB CPU 5 la" Chassis 128kE MOS Memory OUW1. 4 - ine interface
Rxv211 Cual Floppy Cisk Orive
Cabinet
VTitoc Console
〔5,795

DEC 11/03 SYSTEMS

11/03N CPU 5 it Chassis
64KB MOS Memory
0lv11 Serial Interface
RXV11 Dual Floppy Disk Orve
Cabinet
LA36 Console
£3,500

DEC DISK DRIVES

RK05F 5MB fixed

RK05J. 2.5 MB
RKOG 14MB
RK07 28MB
RLV22 RLO2 and
$11 / 23+$ ctl NEW
RM02 67 MB
c695

DEC
CONTROLLERS
RH70
$£ 3,000$
RH780
£3,000
RKBEA
RK11D
RK611/RK7
RLBA.
RLBA
RL11/RL211
RLV11

DEC MODULES

HUGE STOCKS OF OPTION
MODULES FOR VAX, UNIBUS
GBLSS ANO OMNIBUS

DEC TERMINALS
L
VT100
VT102
LA34
LA35
LA36
LA12
LA19
LPO
LS

from $\mathbf{F} 775$

 £1,100from $£ 425$ C 275
from $£ 295$
£1,500
$£ 495$
E2,500
$\mathbf{~} 750$
£750
OTHER TERMINALS

hazELTINE

1440 VDU	$£ 295$
1420 VOU	$£ 325$
1500 VDU.	$£ 325$
ESPRIT VDU	$\mathbf{5 3 5 5}$

ANDEASON JACOBSON
AU832 O/Wheel KSR
Au860 120cps Matrix $£ 595$

CENTRONICS
703
DATA PRODUCTS
M200
dIABLO
1345A RO D/Wheel $£ 975$
1620 KSR D/Wheel 1795
1640 KSR D/Wheel $£ 1,350$

1650 RD O/Wheel $\mathbb{E 1 , 2 7 5}$
OUME S5/55D/Whee E625
TEXAS 745 Portable £850

TEKTRONIX
GRAPHICS

6068 Monitor 1950

4006 Terminal
4010/9 Termina
4015/1 Termina 4027A Colour Terminal 4051 Desktop Computer 4052 Desktop Computer $4 \uparrow 14$ Terminal. 4662 Plotter
4952 Joystick

ع1,995
£7,250
[1,995
C1,750
£4,950
from 210,500
from $\begin{array}{r}\text { £ } 1,995 \\ £ 275\end{array}$

TEKTRONIX GOLOUR GRAPHIGS Ex-Demonstration Stock in Original Manufacturer's Packaging

Colour Graphics Terminal Model 4027A

Providing full colour
graphics and
alphanumerics. Plot 10
compatible. 8 displayable colours from pallette of 64. Full screen crosshair cursor 34×80 display (2720 characters). 120
user-defined patterns
RS232 Interface with
up to 9600 baud
transmission
Original List Price £9,500
Our Amazing Price
Only £1,995

ADD 15\% VAT TO ALL PRICES Carriage and Pack ing extra
Electronic Brokers Ltd., $61 / 65$ Kings Cross Road, London WC1X 9LN. Tel:01-2783461. Telex 298694

Electronic Brokers

TELEPHONE：431323（0703）
Callers welcome．Access／Barclaycard：Telephone your order

WW－ 032 FOR FURTHER DETAILS

BERG LOW－PROFILE 14PIN DUAL IN－LINE I．C．SOCKET，manufactured from glass－ filled polyester to UL94V－O．$£ 7$ for $100, £ 31$ for 500 ，$£ 56$ for $1,000, £ 256$ for 5,000,
$£ 460$ for 10,000 ，$£ 2,100$ for $50,000, ~ £ 3,700$ for 100,000 ．Sample 10 sent for $£ 1.20+$ ${ }^{〔} 460$ for $10,000, £ 2,100$ fo
BERG LOW－PROFILE 16－PIN DUAL IN－LINE I．C．SOCKET as above，£8 for $100, £ 36$ fo 500 £ 65 for 1,000 ，£295 for 5,000 ，£ 530 for $10,000, £ 2,390$ for $50,000, £ 4,300$ fo WIRE CUTTER ANO STRIPPER TEMPEREO STEEL
BLADES，spring loaded with moulded red p．V．C．handies Cutting ，and stripping adjustable up to $6 \mathrm{~mm}^{2}$ ．Overall
length 135 mm ，weight 64 grm ． 10 for $£ 15,25$ for $£ 34,50$ for $£ 63,100$ for $£ 116,500$ for $£ 525,1,000$ for $£ 1,000$
 Sample pair sent for $£ 1.75+25 \mathrm{p}$ P\＆P（E2．60 inc．V．A．T．）．
HIGH－POWER SILICON BRIDGE RECTIERS 25 A．PD HIGH－POWER SILICON BRIDGE RECTIFIERS， 25 amp 600 v ．Single－hole fixing 250 （1／4in．），push－on connector terminals，manufactured by IR．$£ 20$ for 10 ，$£ 90$ for 50 ，
$£ 175$ for $100, ~ £ 800$ for $500, ~ £ 1,450$ for 1,000 ．Special quotation for larger quantities

METAL FILM RESISTORS FZ4．Manufactured by C．G．S．Semi－precision with a stan dard tolerance of $\pm 2 \%$ and a temperature coefficient of better than $100 \mathrm{ppm} / \mathrm{oc}$ ．W
have a full range in stock from 100 R to IMO ．All bandoliered．$f 250$ for 1000 any
Value wound resistors．Manufactured by E．R．G．Type 16 ES with a standard tolerance $\pm 5 \%$ of nominal resistance value．All values in stock． 3 －watt Series $£ 3.50$ per 100 any one value $+£ 1$ P\＆P $(£ 4.83$ inc．V．A．T．）． 6 －watt Series $£ 6.50$ per 100 any
one value $+\AA$ \＆P\＆P（ $£ 8.63$ inc．V．A．T．）． 10 －watt Series $£ 10.50$ per any one value + BRITISH－MADE TRANSFORMER． BRITSH－MADE RANSFORMER．Input 240 v at 50 Hz ，output $12 \mathrm{v}-0-12 \mathrm{v}, 1 / 2 \mathrm{amp}$ with buith－in thermal overload cutout．P．C．mounting E25 for $10+$ V．A．T．I 115 for 50
V．A．T．，$£ 210$ for $100+$ V．A．T．， 9950 for $500+$ V．A．T．，$£ 1,700$ for $1,000+$ V．A．T． V．A．T．$£ 210$ for $100+$ V．A．T（if $£ 950$ for $500+$
LESLE TREMOLO SPEAKER SYSTEM．A TWO－－speed rotating baffle system which when used as part of an organ，hi－fi or disco system produces the famous Leslie $220 / 240 \mathrm{~V} 50 \mathrm{~Hz}$ motors with central drive to rotating horn／baffle．This gives a three way sound effect，i．e．normal tremolo sound when stationary，wraparound sound 485 mm when reviving at rev．per sec．and supersound at 7 revs．per sec．Baffle size $485 \mathrm{~mm} \times 395 \mathrm{~mm}$ ．Overall depth from speaker magnet to central boss of rotating
horn／baffle 300 mm approx．$£ 200$ for $5, £ 360$ for $10, £ 825$ for $25, £ 1,500$ for $50, £ 2,700$

metal frame hinged for easy adjustment．Keyboards offset by mounted on a keyboard separator giving simulator wood effiect，ctipped between the two key boards．Manufactured overall dimensions：width $1,027 \mathrm{~mm}$ ，height 131 mm ，front and back 361 mm ；keyboard separator approx． $1,094 \mathrm{~mm}$ ．$£ 202.50$ for $5, £ 372.50$ for 10，£838．35 for $25, £ 1,545.35$ for 50 ．Sample sent $£ 45+£ 4$ P\＆P $£ 56.35$ inc．V．A．T．
ORGAN PEOALBOARD． manufactured in a hardwearing plastic covering steel levers．Contact switch fitted to each pedal unit $380 \mathrm{~mm} \times 250 \mathrm{~mm}$ ．$£ 108$ for 5 ，$£ 198$ for $10, \mathfrak{£} 822$ for $50, £ 1,513$ for SWELL PEDAL incorporating the latest technology
electric cell．Designed to be mounted in a console．Detachable metal by photo plate with roller stop for esy installation size $250 \mathrm{~mm} \times 120$ mbe metal mounting £56．25 for $5, £ 103.50$ for $10, £ 238$ for $25, £ 428.20$ for $50, £ 788$ for 100 ．Sample sent $\mathrm{£} 12.50+£ 4$ P\＆P，£18．98 inc．V．A．T
Elecruмис Eпuннiel Co．
SPRINGFIELD HOUSE
TYSSEN STREET，LONDON，E． 8
TELEPHONE： $01-2495217$
TELEX： 9853906 EEC0．G
INTEGRATED CIRCUITS

AN124	2.50	MC135 ${ }^{\text {P }}$	50
AN2140	2.50	MC1352P	
AN240P	2.80	MC1357	2.35
AN612	2.15	MC1358	1.58
AN7140	3.50	MC1495	3.00
AN7145	3.50	MC1496	1.25
AN7150	2.95	MC145106	
BA521	3.35		7.95
CA1352E	1.75	MC1723	0.50
CA3086	0.46	MC3357	2.75
ET6016	2.50	ML231B	1.75
HA11377	3.50	ML232B	2.50
HA1156W	1.50	MSM580	6.75
HA1339A	2.95	PLL02A	5.75
HA1551	2.95	SAA500A	3.50
LA1230	1.15	SAA1025	7.25
LA4102	2.95	SAA5010	6.35
L44250	2.95	SAS560S	1.75
L44400	4.15	SAS570S	1.75
LA4420	1.95	SAS580	2.85
LA4422	2.50	SL901B	4.85
LA4430	2.50	SL9178	6.65
LC7120	3.25	SL1310	1.80
LC7130	3.50	SL1327	1.10
LC7131	5.50	SL13270	1.10
LC7137	5.50	SN76003N	
LM324N	0.45	SN76013N	1.95
LM380N	0.95	SN76023N	1.95
LM383T	2.95	SN76033N	1.95
M51513L	2.30	SN76110N	0.89
M51515L	2.95	SN76115N	1.25
M51521L	1.50	SN76131N	1．30
MB3712	2.00	SN7762260	2.95
MC1307P	1.00	SN76227N	1.05
MC1310P	1.50	SN76533N	1.65
MC1327	0.95	SN76544N	1.95
MC13270	0.95	SN76570N	
MC1330P	0.76	SN76650N	1.15
MC1349P	1.20	SN76660N	0.80
MC1350P	0.95	SİK014	7.95
SEMICONDUCTORS			

[^1]
PHONE 0474813225

STOCK OF BRANDED VALVES				$\begin{array}{ll} \mathrm{HR} & 4.00 \\ \mathrm{HR2} & 1.00 \\ \text { HY90 } & \end{array}$	PD500 $\mathbf{3 . 5 0}$ PD510 $\mathbf{3 . 6 5}$	RPY43 $\mathbf{2 . 5 0}$ RPY82 $\mathbf{2 . 5 0}$
				HVR2 3.00	PENADO 2.00	RR3-250 37.00
A1714	18.50	EABC80 0.70	EF812 0.65	K391A K 3118 85.00 8.00	PEN 25 2.00 PENAOOD 2.00	$\begin{aligned} & \text { RR3-1250 } 65.00 \\ & \text { RS613 } \\ & \mathbf{4 5 . 0 0} \end{aligned}$
A1998	11.50	EAC91 $\quad 2.50$	EFL200 1.50	$\begin{array}{ll}\text { K3118 } & 85.00 \\ \text { KR6/3 } & 45.00\end{array}$	PEN4ODD PEN45 	RS613 RS685 $\mathbf{4 5 . 0 0}$
A2087	11.50	EAF42 $\quad 1.20$	EH90 0.72	KR6/3 $\quad 45.00$	PEN45 PEN45DD 3.00 0.00	$\begin{array}{ll}\text { RS685 } & 54.95 \\ \text { RS688 } & 52.15\end{array}$
A2134	14.95	EAF801 3.50	EK90 0.72	KT8C $\quad 7.00$	PEN45LD 3.00	RS688 52.15
A2293	6.50	EB34 $\quad 1.50$	EL32 0.95	KT33C $\quad 3.50$	PEN46 2.00	S6F33 29.95
A2521	21.00	EB44 $\quad 3.95$	EL33 4.00	2.00	PFL21	
A2599	37.50	EB91 0.60	EL34 2.25	KT44 4.00	PL21 2.50	S11E12 38.00
A2900	11.50	еВСЗ3 2.50	EL34 Philips	T45 4.00	PL36 0.95	S30/2K 12.00
A3042	24.00	EBC41 1.95	- 3.50	KT61 4.00	PL38 1.50	S104/1K 10.00
A 3283	24.00	EBC81 1.50	EL36 $\quad 1.50$	T6	PL81 0.72	S109/1K 15.00
AC/HL/DD	D 4.00	EBC90 0.90	EL37 9.00	KT66 OSRAM	Plbia 0.72	ST30 5.95
AC/TH\|	4.00	EBC91 0.90	EL38 $\quad 6.00$	10.5	PL82 0.60	S 313 P 5.95
ACT22	59.75	EBF33 2.50	EL41 3.50	KT66 USA 7.15	PL83 0.52	
AC/VP2	4.00	EBF80 0.65	EL42 2.00	EC	PL84	SC1/1200
AC/S2 PEN	8.50	EBF83 0.65	EL81 ${ }^{6.95}$	T77 Gold Lion	$\begin{array}{ll}\text { PL88 } & 1.00 \\ \mathrm{PL95} & 1.75\end{array}$	SD6000 M
AH221	39.00	0.95	EL82 0.58	970 9	PL302	
AH238	39.00	EBF89 0.70	EL84 0.75		${ }_{\text {Pl345 }} 12.50$	
A 160	6.00	E8F93 0.95	EL85 4.50	KT81 7.00	PL345 12.50	$\begin{array}{ll}\text { SP21 } & 1.50 \\ \text { SP41 } & 500\end{array}$
AN 1	14.00	EBL1 2.50	EL86 0.85	K188 USA 8.00	PL500 110	$\begin{array}{ll}\text { SP41 } & 5.00 \\ \text { SP42 } & 3.00 \\ \end{array}$
ARP12	0.70	EBL21 2.00	EL90 1.50	KT88 Gold ${ }^{\text {Lion }}$	PL504 PL508 1.15 1.95	$\begin{array}{ll}\text { SP42 } & 3.00 \\ \text { SS501 } & 35.00\end{array}$
ARP34	1.25	EC52 0.75	EL91 6.00	KTW61 250	PL509 4.85	ST11 1.50
ARP3	2.00	EC70 $\quad 1.75$	EL153 $\begin{array}{rr}\mathbf{1 2 . 1 5}\end{array}$	KTW62 2.50	PL519 4.95	280/40
BL63	2.00	EC80 $\quad 9.50$	$\begin{array}{lr}\text { EL153 } & 12.15 \\ \text { EL183E } & 3.50\end{array}$	KTW63 2.00	PL802 5.95	11.95
8S450	67.00 55.00	EC81 EC86 7.90 1.00	EL183P ${ }^{\text {E }}$	K1Z63 $\quad 2.50$	PL802T 3.50	STV280/80
BS814	55.00	EC88 1.00	EL360 7.95	102/2k 6.95	PL820 2.95	
CIK	16.00	EC90 $\quad 1.10$	EL500 1.40	L102/2K 6.95	PL5557 29.50	SU42 4.95
C3JA	16.00	EC91 5.50	EL504 1.40	$\begin{array}{lll}\text { L120/2K } & 12.00\end{array}$	PY32	
C1108	54.95	EC92 1.25	EL509 5.25	LS9B $\quad 6.95$	PY33 0.50	60.00
C1112G	70.00	EC93 1.50	EL519 6.95	M502A 95.00	PY81 0.70	T82-300 45.00
C1134	32.00	EC95 $\quad 7.00$	EL802 3.65	M537A 95.00	PY82	D1-100A
C1148A	115.00	EC97 1.10	EL821 8.50	M5143 155.00	PY83 0.70	T003-100 ${ }^{25.00}$
C1149/1	130.00	EC8010 12.00	EL822 12.95 1.90	$\begin{array}{ll}\text { M8079 } & 6.00 \\ \text { M8082 } & 7.50\end{array}$	$\begin{array}{ll}\text { PY88 } & 0.65 \\ \text { PY500A }\end{array}$	${ }^{\text {D03-100 }} 35.00$
C1150/1	135.00	ECC32 ECC33 3.50 3.50	$\begin{array}{ll}\text { EM1 } & 9.00 \\ \text { EM4 } & 9.00\end{array}$	M8083 3.25	PY800 0.79	TD03-10E
CCA	22.60	$\begin{array}{ll}\text { ECC35 } & 3.50\end{array}$	$\begin{array}{ll}\text { EM80 } & 0.70\end{array}$	M8091	PY80	
CC3L	0.90	ECC81 1.15	EM81 0.70	M8006 3.00	Q13.110BA	T003.10F
CL33	2.00	ECC82 0.55	EM84 $\quad 1.65$	M8098	47.50	
CVNos		EСС83 Br	EM85 3.95	M8099 5.00	QB3-300 30.50	TO3. 124.00
on request		Mullard 1.35	EM87	M8100	OEO3-	
63	1.20		EN10 $\quad 8.00$	M8136 7.00	QEO8-200	TSP4 7.00
DAF91	0.70	1.50	EN32 $\mathbf{1 3 . 5 0}$	M8137 5.5	5.00	11
DAF96	0.65	ECC83 0.65	EN91 1.10	M8161 6.50	OF40 65.00	T15 34.95
DC70	1.75	ECC83 Philips	EN92 4.50	M8162 5.50	QP25 1.00	125A 60.00
DC90	1.20	1.95	ESU872 25.00	M8163 5.50 $\mathbf{4 8 1 9 0}$ 450		
DCX4-1000		ECC84 0.50	EY51 EY81 $\mathbf{0 . 8 0}$ 150	M8190 M 195 6.50	27.00	TY7-6000A 365.00
DCX4-5000	12.00	$\begin{array}{ll}\text { ECC85 } \\ \text { ECC86 } & 0.60 \\ & 2.75\end{array}$	$\begin{array}{ll}\text { EY81 } & \mathbf{1 . 5 0} \\ \text { EY83 } & \mathbf{1 . 5 0}\end{array}$	M8196 $\quad 5.50$	OCEOE 40	Tr8-600W
	25.00	ECC88 0.85	EY84 5.95	M8204 5.50	39.50	365.00
DET16	28.50	ECC91 2.00	EY86/87 0.50	M8223 4.50	QOVOE. 612.75	TYS2/250
DET18	28.50	ECC180 0.72	EY88 0.55	M8224 2.00	Qovo3.105.50	5.00
DET24	39.00	ECC189 0.78	EY91 5.50	M8225 3.50	Qovo3. 20	U18-20 2.75
DET25	22.00	ECC801S 3.50	EY500A 1.50	ME1401 29.50		$419 \quad 11.95$
DF91	0.70	ECC803S 3.50	EY802 0.70	ME1402 29.50	OOVO3-208 3200	U24 0.90
DF92	0.60	ECC804 0.60	EZ35 0.75	ME150 14.00		$0{ }^{2}$
DF96	0.65	ECC807 2.50	EZ40 2.75		QOVO6-40A 19.50	$\mathrm{U26}$ $\mathbf{9 . 9 0}$ U 7 900
DF97	1.00	ECC2000 12.00	EZ41 2.15	MHLD 6 M1 4.50		U41 6.09
CH63	1.20	ECF80 0.85	EZ80 0.60	$\begin{array}{ll}\text { MS4B } & \mathbf{5 . 5 0} \\ \end{array}$	63.50	U50 $\quad 200$
CH77	0.90	ECF82 0.85	EZ81 0.60	M MU4B $\mathbf{5} 5.50$		4823.00
CH79	0.56	ECF86 1.70	EZ90 $\quad 1.35$	N 37414 $\mathbf{1 2 5 0}$	20203-20.50	
$\mathrm{CH}^{\mathrm{CH}} 49$	2.00	ECF200 185	F6064 FW4/800 295 295	N78 ${ }^{\text {N }}$ (158	Qozoe 40A	บ192 1.00
CK91	0.90	ECF202 1.85	G1/371K 30.00	OA2 0.85	45.25	$\cup 1930.65$
OL35	1.00	ECF805 2.50	G180/2M 9.00	OA3 250	OS75/40 3.00	U801 0.75
OL63	1.00	ECF806 10.25	G240/2D 9.00	$\mathrm{OB}^{\text {O }}$ - 0.85	OS92/\% 5.00	UABC80 0.65
9L70	2.50	ECH3 2.50	G400/1K 14.00	OB2WA 1.25	OS95/.0 4.85	UAF42 1.00
DL73	2.50	ECH4 3.00	GC10B 17.50	$\begin{array}{ll}\mathrm{OC2} & \mathbf{2 . 5 0} \\ \mathrm{OC3} & 1.50\end{array}$	OS 108;45 4.00	UBF80 UBC41 1.60
OL99	1.50	ECH35 2.15	GC10D 17.50			
OL92 $\mathrm{OL93}$	0.60 1.10	$\begin{array}{ll}\text { ECH42 } & 1.00 \\ \text { ECH81 } & 0.65\end{array}$	GC10/48 17.50 GC10/4E 17.50	003 1.70 $0 \mathrm{M4}$ 1.00	OS $\mathrm{O} 50 ; 4570$	UBF89 0.60
DL94	2.50	ECH83 0.78	GC12/48 17.50	OM5B $\quad 3.00$	OS1200 3.95	UBL21 1.75
DL96	2.50	ECH84 0.69	GD86W 6.00	OM6 $\quad 175$	OS1202 3.95	UC92 1.20
DLS 10	13.50	ECH2000 1.50	GDT120M 5.00	ORP43 $\quad 2.50$	OS1203 4.15	UCC84 0.70
DLS16	10.00	ECL80 0.60	GE10 $\quad 9.00$	ORP50 3.95	OS1205 3.95	UCC85 0.60
DM70	1.95	ECL82 0.65	GN4 6.00	P61 2.50	OS120\% 1.05	UCF80
DM160	275	ECL83 2.50	GN10 $\quad 15.00$	P4 PABC80 0.50 0.50	$\begin{array}{ll}\text { astro } \\ \text { astiof } & 0.90 \\ 0.90\end{array}$	$\begin{array}{ll}\text { UCH21 } & 1.20 \\ \text { UCH44 } & 1.20\end{array}$
OY5 ${ }^{1}$	1.50 0.65	$\begin{array}{ll}\text { ECL84 } \\ \text { ECL85 } & 0.74 \\ 0.69\end{array}$	GR10G GR10J 4.00 8.00	PC86 0.75	$\bigcirc{ }^{\circ} \mathrm{S} 120 \% 200$	UCH42 1.35
DY802	0.72	ECL86 0.80	GS10C 16.50	PC88 0.75	OS1210 $\quad 1.50$	UCH81 0.65
E80CC	8.50	ECL805 0.69	GS10H 12.00	PC92 3.50	OS1211 1.50	UF85 1.20
E80CF	11.00	EF37A $\quad 2.00$	GS120 12.00	PC97 $\begin{array}{ll}1.10\end{array}$	OS1212 3.20	UF41 1.15
E8OF	13.50	EF39 $\quad 1.10$	GT1C 1400	PC800 1.10	$0 \mathrm{~S} 1213 \quad 5.00$	UF42 115
E80L	11.50	EF41 3.50	GT1C S/S 1300	PC900 PCC84 0.250 0.25	$\begin{array}{ll}\text { OS } 1215 & 2.10 \\ \text { OS } 1213 & 5.00\end{array}$	$\begin{array}{ll}\text { UF80 } &$1.80 UF89 2.50\end{array}
E81CC	3.50	EF42 3.50	GTE175M 8.00	PCC84 PCC85	$\begin{array}{ll}\text { QU37 } & \mathbf{9 . 5 0}\end{array}$	$\begin{array}{ll}\text { UF89 } & 2.50 \\ \text { U41 } & 3.50\end{array}$
E81L	12.00	EF50 2.50	GTR 50 W 1.00	$\begin{array}{ll}\text { PCC88 } & 0.70\end{array}$	QU37 11.50	UL84 0.85
E82CC	3.50 3.50	$\begin{array}{ll}\text { EF55 } \\ \text { EF71 } & \mathbf{4 . 9 5} \\ \mathbf{1 . 5 0}\end{array}$	GU20 $\begin{array}{ll}\text { GXU, } \\ \text { B4.00 }\end{array}$	PCC89 0.70	OVO3-12 4.95	UU5 2.50
E83F	5.50	EF72 1.20	GXU3 2400	PCC189 0.70	0VO5-75 1.75	UU7 8
E86C	9.50	EF73 100	GXU50SS	PCC805 0.70	OVO6.20 29.50	UU8 $\quad 9.00$
E88C	7.95	EF80 0.55	14.50	PCC806 0.80 0.808	QVO8-100	UY41 3.50
E88CC	3.50	EF83 3.50	GY501 1.20	$\begin{array}{ll}\text { PCE82 } \\ \mathrm{PCF80} & 0.80 \\ 0.65\end{array}$		UY85 0.70
E90CC	8.50	EF85 0.50	GY802 1.00	PCF80 0.65	QY3.1.5 49.50	${ }^{2} 240 \mathrm{C} / 2 \mathrm{~K}{ }^{\mathbf{2 5 0 . 0 0}}$
E90F	7.95	EF86 $\quad 1.25$	Gz30 $\quad 1.00$	$\begin{array}{ll}\text { PCF82 } & 0.60 \\ \text { PCF84 } & 0.65\end{array}$	OY4-250 65.00	
E91H	4.50	EF86 Special	G231 100	PCF84 0.65 PCF86 1.20	QY4 400 R10 1.95 4.00	225.00
E92CC	3.95	quality 2.50	G232 1.00		$\begin{array}{ll}\text { R16 } & 12.00\end{array}$	
E99F	6.99 19.95		G733 4.50 G234 $\mathbf{2 9 5}$	$\begin{array}{ll}\text { PCF87 } & 0.40 \\ \text { PCF200 } & 1.80\end{array}$	R16 12.00 R17 1.50	195.00
E180CC	6.50	EF92 2.50	GZ37 450	PCF201 1.80	$\mathrm{R18} 250$	V246A/2K ${ }^{19500}$
E182CC	9.00	EF93 0.95	HAA91 1.00	PCF800 0.40	R19 2.50	
E180F	6.50	EF94 0.95	HABC80 - 90	PCF801 1.35	R20 R120 120	$\checkmark 3393$
E186F	850	EF95 1.00	H8C90 075	PCF802 060	R1169 55.00	$\begin{array}{ll}\text { VLS631 } & \mathbf{1 0 . 9 5} \\ \text { VP48 } & 4.50\end{array}$
E280F	19.50	EF97 0.90	HBC9 10.80	PCF805 1.25	RG1.125 4.95	$\begin{array}{ll}\text { VP48 } & 4.50 \\ V P 133 & 2.00\end{array}$
E283CC	10.00	EF98 0.90	HF93 0.75	PCF806 1.00	RG1.240A 14.50	VP133 VR75/30 $\mathbf{2 . 0 0}$
E288CC	13.50	EF183 0.65	HF94 $\quad 1.50$	PCF808 1.25	RG3-250A 3.50	VR101 2.00
${ }_{\text {E }}^{\text {E }} 1148$	1850 100	EF184 0.65	HK90 1.05 H	$\begin{array}{ll}\mathrm{PCH200} & 1.50 \\ \mathrm{PCL} 82 & 0.85\end{array}$		VR101/30 ${ }^{2.50}$
E1148	1.00 6.95	EF730 1.80 EF731 1.80 8	HL2K $\mathbf{3 . 5 0}$ HL23DD	PCLL82 0.85 PCL83 $\mathbf{2 . 5 0}$	RG3-1250A 52.50	VR150/30 1.15
EA50	1.00	EF732 1.80	HL41 3.50	PCL84 0.85	RK2K25 62.50	VT52 2.50 V
EA76	1.95	EF800 $\quad 11.00$	HL4100 3.50	$\begin{array}{ll}\text { PCL85 } & 0.80 \\ \text { PCL86 } & 0.85\end{array}$	RG4. 1000 RK.204 12.00 100	$\begin{array}{ll}\text { VU29 } & 4.50 \\ \mathrm{VU} 39 & 1.50\end{array}$
EA79	1.95 0.60	$\begin{array}{ll}\text { EF805S } & 13.50 \\ \text { EF806S } & 14.50\end{array}$	$\begin{array}{ll}\text { HL42DD } & 350 \\ \text { HL90 } & \mathbf{0 7 0}\end{array}$	$\begin{array}{ll}\text { PCL86 } & 0.85 \\ \text { PCL200 } & 1.60\end{array}$	$\begin{array}{lr}\text { RK.20A } & 12.00 \\ \text { RL } 16 & 1.50\end{array}$	$\begin{array}{ll}\text { W739 } & 1.50 \\ \text { W77 }\end{array}$
EAA9 1		EF806S 14.50	HL90 070			

WIREWOUND RESISTORS
BASES ETC.

4 Watt	10 K	0.24
		0.18 0.19
7 Watt	${ }^{15 \mathrm{~K}}$.22k	0.20
	18.10\%	0.2
11 Watt	${ }^{156}$ 22k	${ }_{0}^{0.24}$
17 Watt	${ }_{1}^{18.10 \mathrm{~K}} \times$	0.26 0.28

17 Watt

G

ZENER DIODES

BZX610.15

$6 V 27 V 58 V 29 V 110 \mathrm{~V} 11 \mathrm{~V} 12 \mathrm{~V} 13 \mathrm{~V}$ 15 V 16 V 18 V 20 V 22 V 24 V 27 V 30 V 33 V 36 V 39 V 4 V 51 V 56 V 68 V 75 V

BZY88 0.07

THERMISTORS BATTERIES 028 28

FAST PROGRAMMING

When manufacturers' recommended Fast Programming Algorithms can be used. GANG-OF-EIGHT IS FIVE TIMES AS FAST AS A STANDARD PROGRAMMER. This means you can program a set of 27128 's in 2 minutes - not 14 minutes. Or 2764's in 1.25 minutes instead of 7 minutes.
GANG-OF-EIGHT will program all single-rail devices from 2716 to 27256 with FAST or NORMAL algorithms. All possible levels of programming voltage are covered - even the latest 10.5 and 12.5 volt levels.

FAST MONEY BACK GUARANTEE

Part of our value-for-money deal is the REFUND GUARANTEE: if you don't want your GANG-OF-EIGHT you can return it within a fortnight and we'll send your money back immediately, less the cost of postage. We realise that this is like operating a free hire service, but we believe that most engineers are straight. We will be most surprised if we get any GANG-OF-EIGHTS back.

FAST THROUGHPUT

GANG-OF-EIGHT has SINGLE-KEY OPERATION, which makes life very easy for the operator. It always performs VERIFY and BLANK-CHECK operations automatically: it won't let you program the same EPROMS twice, or program EPROMS which are not blank. In the FAST programming mode, GANG-OF-EIGHT can produce several times the output of a standard programmer.

FAST DELIVERY

At the time of writing, DATAMAN has more than enough stock to meet the expected demand for GANG-OF-EIGHT. If you want confirmation before sending your cheque, please telephone us with an order number and a GANG-OF-EIGHT will be packed and set aside for you.
GANG-OF-EIGHT, including instruction card, power supply and carriage $\mathbf{£ 3 9 5}$ + VAT ($=£ 454.25$)

Lombard House, Cornwall Road.
Dorchester, Dorset, United Kingdom
Telephone: Dorchester (0305) 68066.
Telex: 418442

WW - 031 FOR FURTHER DETAILS

Sowter Transformers

With 40 years' experience in the design and manufacture of several hundred thousand transformers we can supply

AUDIO FREQUENCY

 TRANSFORMERS OF EVERY TYPE YOU NAMEIT! WEMAKEIT! OUR RANGE INCLUDESMicrophone transformers (all types), Microphone Spitter/Combiner transtormers. Input and Output transformers, Direct Injection transformers for Guitars. Multi-Secondary output transformers, Bríging transtormers, Line transformers. Line transformers to G.P.O. Isolating Test Specirication, Tapped mpedance matching transtormers, Gramophone Pickup transformers, Avaio Mixing Desk transformers (all types), Miniarure transformers, Microwiniaure tanskormers, PCB mounting, Experimental irans ormers, Uira Inductive Loop Transformers, Smoothing Chokes, filter, Inductors, Amplifier to 100 volt line transformers (from a few watrs up to 1,000 watts). 100 volt line transformers to speakers, Speaker matching transformers (all powera), Column Loudspeaker transformers up to 300 watts or more.
We can design for RECORDING QUALITY. STUDIO QUALITY, HI-FI QUALITY OR ITITIVE ANO WE SUPRLY LARGE OR SMALL QUANTITIES ANO EVEN SINGLE TRANSFORMERS. Many standard types are in stock and normal dispatch times are short and sensible. OUR CLIENTS COVER A LARGE NUMBER OF BROAOCASTING AUTHORITIES. MIXING DESK MANUFACTURERS, RECORDING STUDIOS, HI-FI ENTMUSIASTS, BANO GROUPS, ANO PUBLIC ADORESS FIRMS. Export is a specianty and we have overseas clients in the COMMONWEALTH. E.E.C., USA, MIDOLE EAST, eIC. Send for ouf questionnaire which, when completed, enables us to post quotations by return.

E. A. Sowter Ltd.

Manufacturore and Dosignere
E. A. SOWTEA LTO (Egtabliahed 1941): ReqFNo. Enclond 303990 The Box Yord, Cullingham Roed, Ipawich IP1 2EC, Suffeth Phono: 0432704 and oll 27 nand

Tolox 8877030 Sowtor

Reithlers130n\&136.

Reacy and willing to give you the accurac $/$ and flexibility you've come to expect from all handheld DMM's.

Or the one hand, the new 130A has the design and perfcrmance of our most popular 130 model but with grea-er basic DVC accuracy - 0.25% and the need to calibrate only once every two years - all this at no increase in prize.

Or the other, there is the new unbeatable value 136. a higf performance full autoranging $41 / 2$ tigit DMM perrritting precise measurements in 22 ranges of ACIDC voltage, resistance AC/DC current including 10A capability. If you could use an extra pair of hands, or would just like to find out about our complete range of DMM's - phone 0734861287 or contact a Keithley distributor now. Prices startat $£ 69.00$

Keithles Instruments Limited 1 Boulton Road
Reading Berkshire RG2 ONL Telex $8 \subset 7047$

Berks7ire	(0734) 861287	Glasgow	(02367) 28170
Essex	(0279) 29522	London	(01) 6390155
Gwen:	(0633) 280566	Cleveland	(0287) 32397
Eire	(0001) 984147	Henfordshire	(07073) 38623

Keesthase ContactsCLEAN

DIACROM

 SPATULA

No other cleaner has all these advantages:-
Only 100% pure. natural diamond grains are urlised
2. Blades are treated with hard chrome to reinforce the selting of the damond grairis, 10 obviate loosening or breakaway during use This p
diamonded surface by residues resulting from use
3: All diamonded blades are rectified to ensure an absolutely smooth surface by eliminating diamond grains which may rise above the surface. This eliminates all excessive scratching during use.
4. All diamond grains
200.300 or 400 .
5. The chrome gives a very weak co-efficient of friction and the rigidity of the nylon handele is calculated to permit prooer utilisation and yet pliant enough to avoid undue pressures on highly delicate relays.

- Grein size 200. thickness 55/100
relays ond awitching equipment. erc
Grain eize 300 thickness $55 / 100 \mathrm{~mm}$
telephone relays computer relays. etc
- Grain size 400 thickness $25 / 100 \mathrm{~mm}$. une fece dismonded. For senstive relays and siny face of the spatula is abresive.

Sole Distributors for the United Kingdom
SPECIAL PRODUCTS (DISTRIBUTORS) LTD 81 Piccadilly, London W1V OHL. Phone: 01-629 9556 Ao suppliod to the M.O.D., U.K.A.EA., C.E.G.B. British Rail and other Pubic Au UK and Expor Agems: DIACROM, 17 Hancock Nunn Houts, London, NW3 WW - 064 FOR FURTHER DETAILS

WW - 038 FOR FURTHER DETAILS

Telephone: 051-523 4011 Telex: 628608 MICRO G

$1500 \mathrm{MHz} \div 10$ PRESCALER

 $\star 150-1500 \mathrm{MHz}$ FREQUENCY RANGE\star COMPATIBLE WITH ANY FREQUENCY * $150-1500 \mathrm{MHz}$ FREQUENCY RANGE COUNTER

* 12 VOLT D.C. OPERATION

DON'T THROW AWAY YOUR FREQUENCY COUNTER

This 1500 MHz prescaler. MMD1500P, will adapt any existing frecuency cour covering up to 150 MHz , to accept frequencies in the range 150 - 1500 of better than 100 mV RMS over the range $150-1500 \mathrm{MHz}$ is specified

The unit is fitted with 50 ohm BNC sockets for input and output connections and requires a 12 volt DC power supply at 200 mA .
The prescater is housed in a highly durable black diecast case and all circuitry is constructed on high quality glass-fibre pcb
AVAILABLE FROM STOCK AT $£ 85+$ VAT - p\&p $£ 1.25$
MICROWAVE MODULES LTD
BROOKFIELD DRIVE, ANTREE, LIVERPOOL L. TAN ENCIAND

BBC 1
Model B

Model B

NB Credit cards are no
BBC Microcomputers
BBC Micro Econet fuil range of prod

BBC Compatible Disc Drives Cased dnves, finished to match the BBC Micro are
supplied complete with connecting cables, manual supphed comple All single cased drives may be expanded to dual contiguration by the a
uncased mechanism $\begin{array}{llll}\text { Disc capacity } & \text { Single } & \text { Dual } & \text { Uncase } \\ \text { l00K 40T } & 16083 & 291.95 & 13000 \\ \text { 400K 40/80T D.S } & 264.35 & 479.15 & 21500\end{array}$ Trade/quantity discounts cre available BBC3 Disc Jntertace Please send for our BB
accessorien avaviable
Memories
USE, HIND $348.26{ }^{6500}$ Family
 DIL Sockets

Regulator	Regul
78105	
78112	
78115	
785	50, 78 HOSSC

78 H 12 ASC
78540 DM 78540 PC
6800 Famil

믄믕

$$
\begin{aligned}
& \mathrm{MCl} \\
& \mathrm{MCl} \\
& \mathrm{MCl}
\end{aligned}
$$

6500 F cmi
6502
$6502 A$
6502
$6520 A$
6522
$6522 A$
6532
$6532 A$
Linear \& In
Devices路 AYY. 1270
AY3.8910
AY5. 3600
DP8304 AY5. 360
DP8304
L 203 LM308AN
UNENU 6802
6803
6809

6402
AY3. 101 AY3. 1015
AY3
AY L203
LIM301
LM LM301AN
LM308AN LM311N
LM319
LM LM M319
LM324N
LM339N LM339N
\qquad
24 Pin
28 Pin
40 Pin
Data sheetna
available on
matiodPricesare
D1 0.75$\begin{array}{llll}\text { D1 } & 0.75 & \text { D5 } & 2.50 \\ \text { D2 } & 1.00 & \text { D6 } & 3.00 \\ \text { D3 } & 1.25 & \text { D7 } & 4.00 \\ \text { D4 } & 2.00 & & \end{array}$

mily
A fuli range of the
following productstollowing products is
carried in stock andcarried un stock and
listed in our FREEcatalogue

* 74LS Series TTC* T7 Bipolar Memones$\star 9900$ Series
\star Crystals
\star IDC. Card- Type Con* Dip lumpers* MonochromedColour Monitors
(NEC \& KAGA)
* Eprom Prog
* EpromAssemble
SPECLAL OFFERI SPECTR
32KUPGRADEKITC24.95
Carriage Orders up to $£ 199$ are sent by lst class
post and 50 - $1000500 . \mathrm{b} 1991.25 £ 200+5.00$ by SecuncorPrices quoted (+ camage charges) are exclusiveof VAT and are subject to change without noticeQuantity Discounts are avalable on manyQuantit y Discounts are avalla
products, please nng for detalsOfticial Orders are welcome trom EducationEstablishmeCredit Accounts are avalable to others subiect
to status Payment is due stictly netl by the 15 th ofthe month
Credit Cards cre accepted (Access and Visa) for
telephone und postal orders and NO SURCHARGE
is madeOut of stock items will follow automatically, at ou
discretion, or a refund will be given if requested
SPECIAL TELEPHONE NUMBER FOR FAST IMMEDIATE SERVICE, TELEPHONE YOUR ORDER TO.DISS (0379) 898751 $\frac{\text { Prices: all prices }}{\text { exclude V.A.T. an }}$ \qquad carriage. Pleaseadd these to your order.
time of going to press.
Address

WW - 027.FOR FURTHER DETAILS

TDS900
 FORTH COMPUTER
 Build the TDS900 into products. Programme it with a VDU and your forecasts become fact.

microprocessors There significant in all industrial applications of associated with personal computers and electronic large quantities embedded computer card aims at resolving this problem by including FORTH high level language programming and developmental facilities software can be written quickly and made to work correctly a lowest possible expense. Using a high level programming language rather than asssmbler gives a fast reaction time to market opportunties. Production product the same board as employed in the protes

No microprocessor development syspem
conlains a screen editor working with also has the compler for the FORTH source code. Debugging is inherent in PROM programmer. Use of C.MO
consumption down to 28 mA , making the TDS 900 especially suitable for portable and battery-driven applications.

Triangle Digital Services Limited

wW - 034 FOR FURTHER details

OPEN6DAYS TKST EOUIPN
AWEEK
188 ainaiaion

FREOUENCY COUNTERS

All models BMC sockels
Bench portables |UK C/P £1.00

PFM200A pocket counter [/ P 6 65

atiEOR SERIES

UK made, 0 IMZ resolution. 8 digitit. LEO display. mains oper ated $220 / 240 \mathrm{~V}$ AC. awicchable gate time MET 10002 range 5 HZ 10 100MHZ |I20MHZ typical
MET600 3 range 5 HZ TO 600 MHZ I700MHZ typical) \quad E 115.00 typoical]
[Opolional $6 \times$ nicads 59.50]
SABTRONICS
New modiels. LED disolay, switchable gate limes.
8110 A 8 digit 20 HZ to 100 MHZ £79.00 861089 digit 10 HZ Io $600 \mathrm{MHZ} \quad £ 109.00$ $\begin{array}{ll}800089 \text { digit } 10 H Z \text { to } 16 H Z & £ 149.00 \\ & £ 239.00\end{array}$ THANOAR
UK made LCO disolays wilh bameries.
TFO40 8 digit 10 HZ to 40 MHZ LCO . 1 HZ resolution 40 mV sensilivily. 2 gate times with batteries $£ 120.00$ TF200 8 digit 200 MHZ LCO . 2 ranges resolution 1 DDm . 10 mV RHS sensilivily. 5 gate times with balteries
$£ 165.00$ Optional carry case $£ 5.95$. AC mains adaptor $£ 6.95$. Pfm200A Pockel B digil 20 HZ to 200 mHZ 2 ban LED display with battery 0.1 IT2 resolution. IOmy
sensilivity with battery
$\mathbf{E 6 9 . 5 0}$ sensilivity with 0
PRESCALERS

PRESCALERS Suitable tor most types of

IThandar) BNC snckels
IP600 40MHz to 600 MHz . 10 mV RMS direct
powered by counler
TP 1000100 to 1000 MHz complete what AC adaptor $\mathrm{P} / \mathrm{S} .25 \mathrm{mV}$ RmS sens/fivity

VARIABLE POWER SUPPLIES

PP241 single meler A / V switch. $0 / 30 \mathrm{~V} 1$ amo $\mathbf{£ 3 0 . 4 3}$ | PP241 single meler ANswich. | |
| :--- | :--- |
| PP243 | |
| a amp version | $£ 45.65$ | 230N Tw in meter 0/30V IA 330 N 3 amp version

[UK C/P above madels $£ 1.00$]
PL Laboratory series - LED readoul OMD versions
series/parallel etc. 18.00 P1310 0MO $£ 259.00$ PL310 30V PL320 3OV 2A $£ 145.00$
fUK C/P above models $£ 2.50$]

ANALOGUE MULTIMETERS

Ceneral ranye (*mirror scale)

 UK C/P 65 p)HCEOI 15 range pockat $10 \mathrm{~K} /$ Volt
1 meg ohm
E7.39 1 meg ohm W200 30 range $20 \mathrm{~K} /$ Volt 20 KHZ Special purchase ce.es (ilas price 102 ACD Buzper 10 Men otm Buzzer. 10 Mag ohm cont. buzzer. 20 Meg ohm E 20.83 WH56RA 22 range 10K/Volt 6 Meg ohm $\quad 10.39$ 830A* 26 range $30 \mathrm{~K} / \mathrm{Volt}$ 10AC/OC. 10 Mag ohm $360 \mathrm{Th}^{2} * 23$ range banch. $100 \mathrm{~K} / \mathrm{Volt}$, large scale. 10A AC/DC plus His tesimr. 10 Meg ohm $£ 34.74$ AT2100* 31 range de luxe $100 \mathrm{~K} /$ Volt IDA AC/OC: 100 Mag ohm

1 Meg chm $\quad 12.13$
 ST303TR * 22 range $20 \mathrm{~K} /$ Yoll plus Ha theter
12 DC I Meg ohm
$\mathbf{~} 15.61$ 12A DC I Meg ohm
ELECTRONIC
INSULATION TESTER
$500 \mathrm{~V} / 0.100 \mathrm{Meg}$ ohm with carry case.
leade wic
YF5O1

SIGNAL GENERATORS

220/240V AC IUK C/P \& ins $£ 1.00 \mid$ Aench portable all sine/square/triangle/ $\mathrm{TLL} /$ elc. Exterinal sweep mode.
FUNC TION
Thandar T 6101 * 0.02 HZ to 200KHZ various
acilities \quad £105.00
Thandar TS102* 0.2 HZ to 2 MHZ various
$£ 155.00$
$£ 239.00$
Sabtronics 5200 A 0.1 HZ 102 MHZ
Thandar Pulse Bench poriable
TG105* 5 HZ to 5 MHZ Various lacilities £105.00 * Optional carry case $\quad £ 5.95$

AUDIO

Lesder LAG27 5 band sine/square $\mathrm{Q} / \mathrm{P} 0 / 5 \mathrm{~V}$ AMS 01st 0.05% 10HZ to 1 MHZ (893.00 Leader Lagizon 5 band $10 h 2$ to maz to 0.3V.00 AMS into 000 ohm 0.05% dist. sine/ qquare $E 145.00$ Leader LaG125 5 band $10 H 2$ to 1 WhZ to 0 -3
 0.03% dist
TR10 18202 a 4 band $20 H Z$ to 200 KHZ , IOV AMS $0 / \mathrm{P}$. 0.5% disL CR OSC $0 / 10 \mathrm{~V}$ DP $0 / \mathrm{P} \quad 28.00$ Thio Ag203 5 band 10HZ to IMHZ. D. 1% dist 139 on O/7V AMS $0 / P$ £139.00 8F
RF
T Tnt/uxt mot 6 range l00khZ to 30MHZ RF 0.1072 .00 Leader LS 6176 band lookhz to 150 mHz (98 to 450 W HZ on Harmonics RF 0. IV hms. Int/art Mod.

DIGITAL CAPACITANCE METERS

Direct reading LEO meters
DM6013 Pocket/bench 8 range 0.1 p to 2000 mid DM6013 Pocket/mench 8 range 01 ip 10 2000 mid Cin200 Bench model 4//digit 0.2% 1pl to
IUK C / P 850| $£ 89.00$ 2500 mld 6 ranges

OMETERS
 DIGITAL THERMOMETERS

Pocket size LCD ther mometers complete wit bantery Accepl any tyon K probe (UK C/P 65 pl

 banery Accepl any type K prove with ther mocoupleTH302 LCD-40 C o 1100 C Cent/Fanrenheit 0.1° and $1{ }^{\circ}$ resolution with thermocouple Dangel various probes in stock£ $\mathbf{1 7 . 5 0}$ to $\mathbf{£ 2 5 . 0 0}$

COMPONENTS ACCESSORIES

TOOLS

 Large range in slock semiconduclors. relays, tools.Plus millions ol capacitors, re sistors. presets. controls. olugs/sockels etc. etc. For bulk export user

- THEREOUPME

OTHER EQUIPMENT IN STOCK

Send SAE lor full specilications

LHC 9098 + VHS/BETA video head tester $0 \mathrm{M} 358+$ Scope multiple rer 35 MHZ expand

 scope to eight channels \qquad LTC905tracer
LCT906A - Jransistor tes ier (all types) LTCS07* Transistor tester, signal injecto
tracer 1 VT72+ FET/VOM/transislor tesier
LVT72* FET/VOM/transislor tesier
LCA740* LCA brldige: cap. inductance and LCR740* LCA brldge: cap. inductance and Cesistiance
LOM170* oistortion meler 2OHZ 10 2OKHZ LF G1300* Sweep 0.3 \% luncilon generator 0.002 HZ 10 2 MHZ E395.00 TC40* VHF/UHF FM and TV lield strength meter
Battery onerated with carry case
£177.00 MC321+ UK PAL TV colour pattern generator
MC32 B+ As a bove but Secam A-G-H
£222.60 OMBO1 + 700 KHZ to 250 MHZ Dip meler tnduclive/ CHART RECORDER $100 \mathrm{mV}(2 \mathrm{~mA})$ Panel mounl LFM39 A-0* Waw and flutter meter. Jis. CCIR $\begin{array}{lr}\text { Oin. } & \mathbf{£ 4 4 5 . 0 0} \\ \text { HZ65 } & \text { Scope add on companenl tester } \\ \mathbf{£ 2 4 . 0 0}\end{array}$ LTC910A* CAT tester/rejuvenator for 0 and colour
\qquad -

OSCILLOSCOPES

model Send SAE

 model Send SAE
2 years HAME

HM103 Single rrace. 10 MHZ $2 \mathrm{mv} .6 \times 7 \mathrm{~cm}$ display ptus componenl ester E158.00 HM203 Dual Irace 20MH2 2mV Algebraic add. 'Z Mod. plus component lester (Optional carry case £21.501 £264. Hm204 ual ? my plus component tester loptional carry case $£ 21501$ E365.00 HM605 Oual Irace 60\%MHZ. delay line. Imv. ImHz CALCE loptional carry case $£ 21.501$.
$£ 487.0$
HITACHI All models $5 \mathrm{~m} V$ IImV using $x 5$ All models 5 magnilierl
All models complete wilh 2 probes.
2 years war ranty.
portable 6° CAT CHI DCh
1222 Dual 20 MHZ nortable with IC offsel and alternale magnitier V302F 30 MHz . dual Irace laboratory portable. E.369.00

V422 Dual 40 MHz . portable with $O C$ oflsel and
andifier
W510.00
v203F Dual 20 MHz lab portable with sweep delay VG50F Oual 60 MHZ lab gortable with dual time base ERage scope Battory/maina scopes. Vector a TV monltor avaliabie CROTECH
3030 Single trace $15 \mathrm{MHZ}, 5 \mathrm{mV}$ 95 mm CATं plus componen!
lesser \quad £ 154.00
3132 Oual 20 mhz .2 mV .5 CAT Algebraic $\cdot /-.2$ mod. plus
 source outputs £283.00 15 MHZ .5 mV .95 mm CAT. algebraic
 TRIO
GOS23 108 Single trear
10 MHZ . 5 mV . 7 mmm dispiay
 CS 1562 A Dual ince 1OMHZ. 130 mmCRT .10 mV . 1 microsec,
with 2 probes
E. 260.83 CS1560A Dual $20 \mathrm{MHZ}, 140 \mathrm{~mm}$ CRI. 5 mV . 0.5 microsac. with
2 probes
THAMDAR

2 yeari warranty

2 yeara warrany
sc 110 A 10 MHz batiory benct
portable $10 \mathrm{mv} 32 \times 28 \mathrm{~mm}$ portable. $10 \mathrm{mV} 32 \times 28 \mathrm{~mm}$
display. Size $255 \times 150 \times 50 \mathrm{~mm}$
(00ptional carry cast 55 95
adaplor/Charge E6.95) Rech Micad $\mathbf{E 1 1 . 0 0}$
EDUCATIONAL:
ryscoumts?
MIXED QUANTITY Z
\& EXPORT DISCOUNTS

TRANSISTOR TESTER

Direct reading PNP/MPM and diodes.

PROBE KITS

E19.96 (UK C/P 65p) ret
In wallofs with adaptors etc. BMC fitings for scepes/cauntirs/ generitors atc.

 Please add 15\% VAT JUK o

Shop $-\sqrt{2} \int 404-406$ Edgware Road, London. W2

Computers 01-402 6822 • Equipment 01.7240323 • Componenis 01-723 1008

Test Equipment. Audio. Communications 01.7243564
All mail to Cubegate Ldd. 1st Floor. 406 Edgware Road, London W2 1ED

OROE R BY PHONE OR BY POST OR CALL IN ANO SEE FOR YOURSELF

Send large SAE [200 UKI Soecilication
Any model [State which) Send SAE Schools. colleges companies Exporifree on written request

Opus peripherals are the best buys in the whole peripherals market-bar none.

Just compare the prices below with anything else in this magazine. And note just what our prices include: VAT, all necessary leads, carriage and a full one year's guarantee

All products are suitable for use with the BBC and most other leading Micros. And all are of the very highest quality-a fact endorsed by the enthusiasm of clealers
all over the country to carry OPUS brands.
WH Smith, for example, carry the $3^{\prime \prime}$ microdrive, while John Menzies carry our 5401 51/4" drives and JVC colour monitors. Spectrum dealers have the 5401 and 5402 drives.

All products offered here,--and many more, are on display in our showroom. Trade enquiries welcome and discounts are available for Government and Educational authorities.

OPUS 3" MICRODRIVE.

Opus 3402 Double Sided 40 Track Drive $1 / 2$ Megabyte Unformatted.

- Twice the capacity on line of other available drives
- 200 K Single Density-400K. Double Densiry
- Ex-stock delivery - 3 ms access time
- Lowest power consumption-direct drive
- Includes case, leads and utilities disc
- Totally compatible with 51/4" drives

Single Drive
\&229.95
Dual Drive
$£ 459.95$

51/4"JAPANESE DISC DRIVES. SINGLE DRIVE.

Opus 5401 Single Sided 40 Track - 250 k . Unformatted. Formatted:
100 K Single Density: 200 K . Double Density.
$\mathbf{1 1 7 9 . 9 5}$
Opus 5402 Double Sided 40 Track-500K. Unformatted.
Formatted: 200 K . Single Density. 400 K . Double Density: £229.95 Opus 5800 Double Sided 80 Track: 1 Megabyte Unformatted.
Formatted: 400 K Single Density. 800 K Double Density. £259.95
Opus 5802 Double Sided 80 Track-1 Megabyte Unformatted.
Formatted: 800 K . Single Density, Switchable $80 / 40$ Track. £299.95

- $1 / 2$ Height • Includes case, leads and utilities disc • Fast access time - State of the Ast Technology • Ex-stock delivery • Low power consumption.

DUAL DRIVES.

All Dual Drives are metal cased with separate power supply Opus Dual 540ID. Single Sided 40 Track $200 \mathrm{~K} / 400 \mathrm{~K}$ on line.	£379.50
$200 \mathrm{~K} / 400 \mathrm{~K}$. on line.	
Opus Dual 5402D. Double Sided 40 Track 400 K .800 K on line	£ $£ 459.95$
Opus Dual 5800 Double Sided 80 Track.	$£ 459.95$
800K./1.6 Megabyte on line.	$£ 499.95$
Opus Dual 5802D. Double Sided 80 Track.	
$800 \mathrm{~K} / 1.6$ Megabyte on line. Switchable 80/40 Track.	£599.95

FLOPPY DISCS. DOUBLE DENSITY FILING SYSTEM.

$3^{\prime \prime}$ Cartridge $£ 5.75$ each or $\mathbf{£ 2 5 . 9 5}$ for 5 .
$5 \frac{1}{4}$ " Discs with full 5 year warranty + free plastic library case.
S/SS/D $£ 19.95$ for 10 .
S/S 80 Track $£ 29.00$ for 10 .
S/SD/D £23.95 for 10 .
$\mathrm{D} / \mathrm{SD} / \mathrm{D} £ 26.95$ for 10 .
16

8 " Discs

Double Densitv
filing sistem.
£120.00

14" RGBJVC COLOUR MONITORS.

High Resolution (580×470 pixels) and
Medium Resolution (370×470 pixels) Models available.

- Robustly constructed
- Handsome Cream Casing
- RGB Analogue/TTL input
- 80 Characters $\times 25$ lines
- EHT: Min: 19.5kv MAX 22.5 kv
- Supply-220/240v 50/60Hz

High Resolution Model
£279.39
Medium Resolution Model
$\AA 187.39$

12" MONOCHROME MONITORS.

Superb units, optimised for high resolution and excellent geometry.

- Sturdy lightweight metal frame
- Easily accessible boards and modules
- Composite video input - Video response 24 MHz
- 800 lines horizontal at centre
- EHT 13.0 kv - Supply 220-240V. Green Screen _ _ _ _ _ _ _ _ $\quad \mathbf{8 9 9 . 9 5}$ Amber Screen

PRINTERS.
EPSONFX80 $/ \mathrm{T}$ £410.00
EPSONF
EPSONFX 100
£315.00
EPSONRX80F/T
£435.00
JUKI 6100 Daisywheel
£13.50
Parallel printer leads to BBC

THE ORGANISER DESK.

- Top shelf for Monitor/Printer
- Large Desk Top Area
- Lower shelf for Paper/Book Storage
- Teak Finish - On Castors
- Self Assembly
- Ample room in front of the shelf for you to sit comfortably
- Assembled Dimensions: H.31" W. $401 / 4^{\prime \prime}$ D. $26^{\prime \prime}$ Only $\mathbf{£ 5 9 . 9 5}$

THE BUSINESS DESK RANGE.

Opus produce a range of 10 Business desks ideally suited for education, home or the professional user. Illustrated is the Model 10 desk.

- Units are finished in cream and brown
- Sturdy steel underframes - Castors have lockable brakes - Different models are available to suit many leading computer systems.
All are on display in our showroom and are availablefromus or dealers throughout the U.K. For further details please telephone.

Prices start from $£ 100$
OPUS SUPPLIES LTD. 158 Camberwell Road, London SE5 OEE. GOVERNMENT \& EDUCATION DISCOUNTS 01-701 8668. Opening hours: $9.00-6.00$ Monday-Friday. GIVEN. QUANTITY DISCOUNTS GIVEN. 01-7036155. 9.00-1.30p.m. Saturday.

To Opus Supplies Lud. 158 Camberwell Road, London SE5 0EE Please
rush me the following: (ALL PRICES INCLUDE VAT \& CARRIAGE.)

Quantity	Descripuion	Price
		TOTN

lenclose a cheque ford
Or please debit my credit card
account with the amount of \ddagger.
My Access/Barclaycard (please tick) No. is

FORIUULA ONE

Word and Formula Processor

FOR CONINERCIAL AND TECHNICAL TEXT TYPESET WORK FROM YOUR TYPIST FIRST FOR SIMPLICIIY

The new Formula One system makes it easy to create complex scientific notation and quile simple to select and display different typestyles or arrange text in a complex format. To obtain superscripts, subscripts, a different typeface or enhancement no commands are required to be embedded in the text.

Formula One is a new and simple approach to word and formula processing made possible by the development of a very high resolution full page display. It is possible to prepare text in a number of different typefaces which can be in various point sizes and styles coupled with a wide range of technical symbols.
The display is an exact replica of the printed output. This includes true on-screen proportional or monopitched typeface representation and spacing, part line shifts and character enhancements. At last it is possible for the word processing operator to feel confident that if the text is correct on the screen, it will be correct when printed.
Formula One the most powerful and flexible system available.

NEW: an exciting range of projects to build on the EXP300 breadboards. NOW anybody can build electronics projects; it's as easy as A.B.C. with G.S.C.!

EXPERIMENTOR BREADBOARDS

The targest range of breadboards from GSC. Each hole is identified by a letter/number system. EACH NICKEL SILVER CONTACT CARRIES A LIFE TIME GUARANTEE. Any Experimentor breadboard can be 'snap-locked' with others to build a breadboard of any size.

1. EXP $325 \quad$ £2.00 The ideal breadboard tor 1 chip
circults Accepts 8.14 .16 and up to 22 pin ICs Has 130 contact points including two 10 point Eus-bars
2. EXP 350 £ 3.45 Specially designed for working with up to 40 pin ICs pertect tor 3814 pin ics Has 270 contact points including two 20 point bus-bars
3. EXP 300 £6.00 The most widely bought breadboard in the UK With 550 contact points iwo 40 point busbars. the EXP 300 will accept any size IC and up to 6×14 PIn
DIPS Use this breadboard with Adventures in 4 EXP 600 E7. 25 MOSt MICROPROCESSOR projects in 4 EXP 600 £7. 25 MOSt MICROPROCESSOR projects in
magazines and educational books are bult on the EXP ${ }_{600}$ magazines and educational MICROPROCESSOR applications.
4. EXP4B£2.50 Four more bus bars in "snap-on" unl"

PROTO-BOARDS

The ultimate in breadboards for the minimum of cost Two easily assembled kits
7. PROTO-BOARD 6 KIT £11.00 630 contacts four 5 way binding posts accepts up to six 14 -pin Dips 8. PROTO-BOARD 100 KIT Complete with 760 contacts accepts up to
14 -pin Dips. with two binding posts and sturd base. Large capacity with kit economy f14.25

For further details of our FULL PROTO-BOARD RANGE, please send for our free catalogue.
global specialties corporation

G.S.C. (UK) Ltd. Dept. 7B

Unit 1. Shire Hill Industrial Estate
Saffron Walden. Essex CB1 1 3AQ
Telephone: Saffron Walden (0799) 21682

FREE project:

AUTO-DICE

Liven up your board games with this sophisticated electronic dice circuit1 When the throw switch is pressed, a numerical display flashes up rapidly changing numbers. After a few seconds, the rolling stops. and the final result is displayed; any number, randomly selected, from 1 to 6 A few seconds later the display turns off to conserve your battery. letting the games go on uninterrupted fo weeks!

HOW DO YOU MAKE IT?

Our FREE project sheet gives you a large, clear diagram of the components layed out on an EXP 300 breadboard. Each componen is labelled, and the values are given in a component listing. Even the row and column lettering of our EXP 300 is shown to make the location of the correct holes, in which to push the components, easy - find There's no soldering involved it couldn't be easier! As an extra bonus, there's a full circuit description, and the details of a reguiated power supply on the other side of the sheet

Clip the coupon" and get your FREE project sheet with each EXP 300 bought. AND a free catalogue! Just ask about our other free projects too

F.Sc. (UK) Limited, Dept. 7B, Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ. 'Prices include P. \& P. and 15% V.A. T

EP8000

The new microprocessor controlled EP8000 Emulator Programmerwill program and emulate all EPROMs up to $8 k$ $\times 8$ sizes, and can be extended to program other devices such as 16k x 8 EPROMs, Bipolar PROMs, single chip microprocessors with external modules.
Personality cards and hardware changes are not required as the machine configures itself for the different devices.
The EP4000 with $4 \mathrm{k} \times 8$ static RAM is still available with EPROM programming and emulation capacity up to $4 \mathrm{k} \times 8$ sizes.

EP8000 8k x 8 Emulator Programmer $£ 695+£ 12$ delivery BSC8 Buffered emulation cable - £49 SA27128 Programming adaptor - £69 SA25128 Programming adaptor - £69 EP4000 4k x 8 Emulator Programmer - £545 $+£ 12$ de-

FEATURES

Software personality programming/emulation of all EPROMs up to $8 \mathrm{k} \times 8$ bytes including 2704, 2708, 2716(3), 2508, 2758A, 2758B, 2516, 2716, 27C16, 2532, 2732, 27C32, 2732A, 68732-0, 68732-1, 68766, 68764, 2564, 2764, 27C64. Programs 25128, 27128 with adaptors.

- No personality cards/characterisers required.
- Use as stand alone programmer, slave programmer, or EPROM development system.
m Checks for misplaced and reversed insertion, and shorts on data lines.
間 Memory mapped video output allows full use of powerful editing facilities.
- Built-in LED display for field use.
- Powerful editing facilities include: Block/Byte move, insert, delete, match, highlight, etc.
E Comprehensive input/output - RS232C serial port, parallel port, cassette, printer O/P, DMA.
Extra $1 \mathrm{k} \times 8$ scratch pad RAM for block moving.
livery BSC4 Buffered emulation cable £39 BP4 (TEXAS) Bipolar PROM Module - £190 Prinz video monitor - £99 UV141 EPROM Eraser with timer - $£ 78$ GP100A 80 column printer - $£ 225$ GR1 Centronics interface - £65

Unit E, Huxley Close, Newnham Industrial Estate, Plymouth PL7 4JN

DISTRIBUTORS REQUIRED

EXPORT ENQUIRIES WELCOME

GP Industrial Electronics Ltd.

Tel: Plymouth (0752) 332961
Telex: 42513
Unit E, Huxley Close, Newnham Industrial Estate, Plymouth PL7 4JN

Hot stuff inder the grile.

Check out Shure. Flidk through the pages of almost any specialist magazine and you'll find someone singing our praises. Handle our hardware at your nearest Shure stockist and you'll agree it feels good. Rugged and reliable. Most important, take a look at the technical specifications. Under the grille and inside the casing - where a microphone's reputation is won or lost-every Shure represents the state-of-the-art inelectronic, acoustic and mechanical design.
And of course, whatever demands you make on a Shure mike in performance, you can depend on it to rise to the occasion time after time.

Please send me the
Shure microphone catalogue.

Name

Address \qquad

H W International Ltd, 3-5 Eden Grove, London N7 8EQ. Tel 01-607 2717.

There's a mike in the Shure range designed and priced to meet the need's of everyone from rad o ham to rock star. To find out more simply complete the coupon and in return we'll send you our fully illustrated catalogue.

Hot stuff-cover to cover.

You simply can't make it any clearer.

Editor

PHILIP DARRINGTON
01-6613128
Deputy Editor
GEOFFREY SHORTER, B.Sc. 01-661 8639

Technical Editor
MARTIN ECCLES
01-661 8638
Projects Editor
RICHARD LAMBLEY
01-661 303.9
News Editor
DAVID SCOBIE
01-661 8632
Drawing Office Manager
ROGER GOODMAN 01-661 8690

Technical Illustrator
BETTY PALMER
Advertisement Manager
BOB NIBBS, A.C.I.I.
01-661 3130
BARBARA MILLER
01-6618640

ASHLEY WALLIS
01-6618641
Northern Sales
HARRY AIKEN
061-872 8861

Midland Sales

BASIL McGOWAN
021-356 4838
Classified Manager
BRIAN DURRANT
01-661 3106
IAN FAUX
01-661 3033

Production

BRIAN BANNISTER
(Make-up and copy)
01-6618648
Publishing Director DAVID MONTGOMERY
01-661 3241

The mind-forg'd manacles

The affair at Government
Communications Headquarters earlier this year goes much deeper than the question of banning union membership. Certainly the ban and its implications for civil liberties may well be a serious matter to some of our readers who work at GCHQ as engineers or technicians. But this dispute is only one immediately obvious sign of a more general and widespread process: the technicization of society - a process that threatens not only liberty but the very existence of democracy in what we call the free world.

If "technicization" only meant gadgets and machines to make life and work easier it would be welcome. But here we mean not just the hardware/software itself but the characteristic mode of thinking and feeling that determines the way the machines and systems are designed, the way they are used and, more recently, the way that people and machines have to interact in complex systems of command and control.

This mode of thinking and feeling is an iron in the soul of technocrats everywhere, East and West: the iron of technical necessity. Given an apparent "problem" in which certain constraints, factors and other data are fixed, there are certain options which can be clearly defined. Rational judgment shows one solution to be measurably superior to the others. It is objectively inescapable and therefore necessary. It has nothing to do with morality, wisdom, compassion or any other such human foibles. It is the "right" solution within its own terms of reference.

Sir Geoffrey Howe said that GCHQ
"must provide a service which can be relied on with confidence at all times." Given the political and military premises from which this intelligence gathering system has arisen, Sir Geoffrey's "must" is a technical necessity. And the equally inescapable conclusion is that any people involved in this system must be prevented from interfering with the service it provides, regardless of their motives.

From this, a perfectly rational expedient could emerge: reduce the dependence of
the system on human beings. Systems like GCHQ could probably be made less vulnerable by increasing the ratio of machine intelligence to human intelligence. With modern information technology, and expert systems and "fifth generation" computers not far off, this outcome is more than likely.
Responsibility would be centred in the smaller group of people left in charge. They, necessarily, would be absolutely loyal to, and identified with, the system. Like "company men", they would feel a threat to the organization as a threat to themselves.

This kind of process is already happening within the organizations of modern industrial states. It is clearly dangerous. The small number of technocrats in real control of these organizations always have better, more specialized knowledge of what is happening than have the legislators and representatives of the people who are supposedly making the rules that determine our lives. As specialists they are only expected to offer guidance, but this guidance increasingly takes the form of the already-prepared decision, the logical outcome of technical necessity, which the lay legislators cannot reasonably refuse to endorse.

Representative democracy is being undermined by the information-power of technocrats who are not answerable for anything beyond the technical effectiveness of their systems.

Britain, like other industrialized nations, is no longer instinctively understood as a human, geographic and historic entity. In the minds of many it is an economic machine designed to produce a yield, the more efficiently the better. The beginnings of this mental transformation were discerned two centuries ago by William Blake. In his poem London, after speaking of the "charter'd" streets and Thames - places reduced to legal definitions - he exclaims: "In every voice, in every ban, The mind-forg'd manacles I hear."

Narrow-channel tv

Ever since the early experiments in providing video telephone services in Germany in the mid-1930s, including the use of 90 -line mechanical scanning, the cost of providing the necessary bandwidth has been daunting. Even when a "permanent" Berlin-toLeipzig tv-telephone service opened in May 1936, public interest was less than expected. With two tv-telephone offices in Berlin and one in Leipzig the cost for a three-minute call was 3.50 Reichmarks, but one suspects the service was heavily subsidized.

When Bell introduced their public Picturephone service a decade or so ago it proved a commercial disaster and led most telecommunications authorities to limit their interest to teleconferences for business purposes rather than video telephones. Broadcast-quality television signals need as much bandwidth as about 960 telephone circuits, though a video telephone showing talking heads can make do with about 1.5 MHz bandwidth as an analogue signal. British Telecom has been developing a 313 -line colour system that uses digital transmission at $2.048 \mathrm{Mbits} / \mathrm{s}$, including speech, as part of the European COST 211 project. Analogue transmission of 1 MHz analogue 313 -line pictures is possible over audio-pairs of telephone lines up to distances of about 1.5 km without intermediate repeaters.
A new American system of narrow-band tv has been developed by Widcom Inc. of California. This makes use of extremely sophisticated bandwidth compression to squeeze the video signal into a data stream of $56 \mathrm{kilobits} /$ second (i.e. bandwidth about 28 kHz) which is slow enough to be transmitted over the standard digital telephone circuits proposed in the USA or with BT's System X. The aim is to provide a system that has video transmission charges no greater than for speech transmission.
Developed under American defence funding, the system provides colour pictures of talking heads, graphs and engineering drawings to a quality standard comparable with that of many consumer video cassette recorders, although quality degrades sharply if the picture is panned, since the system will not cope with fast motion.
The codec can provide bit reduction ratios as high as $1440: 1$ on video digitized initially at $80 \mathrm{Mbit} / \mathrm{s}$. Compression to 1.5 $\mathrm{Mbit} / \mathrm{s}$ is achieved by removing spectral and spatial redundancy from the bit stream. Further compression uses temporal redundancy by frame skipping, interpolation and conditional replenishment. Compression thus makes use of five processes: filtering and subsampling of chrominance components gives $2.5: 1$ reduction; a 2:1 sub-sampling in each direction yields $4: 1$; 2 d cosine transform coding for pixel-to-pixel decorrelation yields 6:1; frame skipping and interpolation $3: 1$; and
conditional replenishment 8:1. The current design is based on special Schottky t.t.1. and low-power Schottky t.t.1. devices, since arithmetic and logic operations up to $14-\mathrm{million} / \mathrm{sec}$ are required. The 56kbit/s systems are claimed to be already in production for Government and commercial applications. A smaller, lower-cost model is reported under development. Whether the cost of complex processing, together with picture origination and display equipment, could be reduced to the level needed for public video telephone applications remains to be seen.

Home video pay-tv

The first pay-tv system based on the use of video-recording during the down-time of broadcast transmitters has been launched in Chicago by ABC's "TeleFirst". The idea is to provide overnight transmission of films in scrambled (encrypted) form for play-out by the subscribers at convenient times. The service aims to provide viewers each month with four major new films, some months before these are released to cable operators, plus 16 to 20 "early release" films at roughly the same time as they are available on film cable channels. Monthly subscription fee is $\$ 25.95$, but subscribers can claim a $\$ 2$ credit for any early-release film they do not wish to record.

Home video nets of this type have been advocated as alternatives to cable and DBS by Sony who are supplying the addressable decoders for the Chicago service ($\$ 40$ per home or $\$ 75$ installed). Chicago at present has about 17 per cent of homes with video recorders. TeleFirst are selling VHS and Betamax recorders from about $\$ 400$ with credit facilities.

Meanwhile cable tv continues to grow in the USA. Home Box Office is the major pay-tv film channel offered on some 5200 cable and MDS (microwave distribbution system) networks with $13,500,000$ subscribers by the end of 1983, a 59% increase since May 1982. Showtime had 4.75 million subscribers on 2900 systems (up 58\% in 18 months) with Cinemax on 2000 systems and 2.7 -million (up 87%) subscribers.

Of the "basic" cable programmes, Ted Turner's WTBS-Atlanta channel can reach 27.65 -million homes on 5717 systems but has been overtaken by the entertainment and sports ESPN channel on 7074 systems having 28.5 million subscribers. Cable operators have been gaining about 400,000 subscribers a month to reach a total of over 34 -million or 40.5% of all US television homes.

Twin-oscillator amplifier
 M. Nakahma and J. Ikenoue of Kyoto

 University have proposed a system of linear amplification using a coupled system of two synchronized oscillators with a hybrid element. Experimental verification has been achieved using two 9 GHz Gunnoscillators, but the Japanese engineers believe the technique could be applied at optical frequencies using two laser diodes. In the absence of an external signal, the two oscillators are mutually synchronized in antiphase state and output is cancelled at one port. When external signal power is fed from the port, the oscillators change towards an inphase state so that combined power appears at the port in accordance with the input power.

Satellites and insurance

Disastrous successive failures of the booster engines on the two communications satellites launched from the Challenger space shuttle in early February seem bound to have significant knock-on effects on the costs of systems based on geostationary satellites. Insurance pay-out, including loss of revenue elements, has been estimated at well over $£ 150$-million.

In the 1960s, during the planning of the Intelsat system, a rule-of-thumb estimate was one failure in five, and this figure continued to be reflected up to about 1980 when, for DBS planning, insurance premiums to cover two launches and in-orbit for two satellites for five years were estimated at about $£ 20$-million for a $£ 100$-million project.
Insurers, however, are by nature a cautious community and it seems doubtful if today it would be possible to obtain cover on either Space Shuttle or Ariane operations at such a rate. Potential operators and insurers for DBS must also be concerned at the sparsity of in-flight life-data for high-power travelling-wave-tubes, and the relatively small number of vulnerable transponders.
Military and experimental satellites normally do not carry insurance and it is difficult to ascertain what percentage of satellites, particularly in higher orbits, successfully fulfil their missions. But it is claimed that for 12 commercial launches in 1983 no insurance claims were made.

OECD before ITU?

The American administration is seeking to involve the Organization of Economic Cooperation (OECD) in the planning of international telecommunications policy and regulation of the radio-frequency spectrum. The aim appears to be primarily to counter the increasing politicalization of the International Telecommunications Union by providing a planning forum at American, Japanese and Western European countries could discuss radio regulatory planning and policy in advance of the ITU meetings. However this ignores the major differences between telecommunications administration in Europe and the USA and involves the risk of a further polarization of the attitudes of Third World and Eastern European bloc countries.
The FCC is currently preparing the way for the extension of the American mediumwave broadcasting band between 1605 and

1705 kHz . American radio amateurs will use 1900 to 2000 kHz , with those communication services currently using 1605 to 1705 kHz moving up in frequency. A problem for listeners is that many existing broadcast receivers do not extend up to 1705 kHz .
FCC as part of its "deregulation" policy is withdrawing from any disputes over the allocation of call-letters to broadcast stations and will no longer insist that the callsigns should be in "good taste".
Of the 5000 comments filed with FCC during 1983 on the proposal to issue "nocode" v.h.f. amateur radio licences, only about one in 20 was in favour. The proposal has now been dropped.

> AMATEUR RADIO

Sweepers and creepers

In 1959, two Americans, N. C. Gerson and W. H. Gossard at Palo Alta, California reported the discovery of a new form of "atmospherics" that they have termed "sweepers". They described these as sounding like "clicks, tweeks, hisses and swishes" sweeping through parts of the h.f. band. Their paper (\mathcal{F}. Atmos. Terr. Phys., vol. 17, 1959, pp.82-4) speculated that these were in some way connected with Type I or Type III solar bursts. In 1977 two Indian engineers reported (7 . Inst. Electron \mathcal{E} Telecommun. Eng (India) vol. 23, no. 1, 1977, pp.19-21) detailed observation of sweepers between 20 and 25 MHz , again ascribing the signals to a natural phenomenon. In 1978 I drew the attention of radio amateurs to these sweepers (Radio Communication January 1978). One result was a series of careful observations, including tape recordings, made by Ted Cook, ZS6BT in Johannesburg.
Subsequently a careful analysis was made on professional equipment in the UK of the South African recordings. These proved conclusively that the 25 MHz sweepers were not natural phenomena but resulted from long-distance propagation of signals from unstable industrial r.f. heating equipment, nominally operating in the industrial, scientific and medical (ISM) frequency bands.
I see that Norman Fitch, G3FPK has recently reported similar interference in the 14 MHz amateur band. There is little doubt that this originates from 13.5 MHz -industrial equipment, again proving that powerful r.f. generators such as welding equipment can cause interference many miles distant without being converted to an aerial. One of the clues that led to iden-
tification was Ted Cook's observation that few sweepers were heard in South Africa during the European lunch-hour!

Current industrial equipment includes 12 and 25 kW r.f. generators nominally on 13.56 MHz and used for such industrial processes as rapid curing of synthetic resin adhesives in the wood industry, etc. It seems surprising that more care is not taken to ensure better frequency stability and/or absence of parasitics with such high-power "transmitters".

Grenada aided military

As further details emerge of the activities of 22 -year-old Mark Barellella, KA20RK, at the Grenada medical school last October it has been admitted that his transmissions "inadvertently aided US troop movements". His transmissions were widely monitored by the media and did much to reassure the parents of the American students. The first American amateur he contacted during the invasion reminded him that the USA had no third-party ama-teur-radio traffic agreement with Grenada. This was waived by FCC but broadcasters were not permitted to conduct over-the-air interviews with him on the grounds that amateur radio rules strictly prohibit the use of the band for business communication. The all-news station, WTOP in Washington D.C., claimed a two-hour "scoop" in reporting that the evacuation of the medical students was about to take place, based on monitoring the transmissions from KA20RK. FDC has subsequently endorsed these activities with James McKinney, chief of the Mass Media Bureau, claiming: "I have not heard an ounce of criticism from anyone about the way the amateurs conducted those operations. Grenada constituted one more shining hour of Amateur Radio public service for the benefit of all Americans."

Is "amateur" derogatory?

Last year I reported the feeling of some radio amateurs that the University of Surrey's Uosat project had been directed primarily towards scientific rather than amateur-radio experimentation, and had taken advantage of the facilities of the international amateur satellite service while at the same time had shown surprisingly reluctance to be associated with 'amateur radio'm The reason, it later appeared, was that the university disliked the ambiguity of the term, pointing to the dictionary definition of "amateurish' as inexpert, lacking professional skill. The RSGB which has existed to serve "amateur radio" for so many years, now appears to agree with the views of the university to the extent where it is suggested that it may run a competition to find a better name! Since the Society already frowns on the longestablished term "ham" and dislikes being confused with Citizen's Band activities,
and since the term "community radio" is already spoken for, the search may be a difficult one.

Meanwhile the University of Surrey is pressing forward with construction of Uo-sat-B for an early launch. Again its objectives are largely scientific, and not telecommunications. It would be welcomed more enthusiastically by British amateurs if the university were less inhibited in admitting that the satellite will operate as part of the "amateur" service.

GaAs on 144MHz?

The superior low-noise performance of gallium-arsenide devices compared with silicon devices is well-established at microwave frequences. But in recent years the reduced cost of some dual-gate GaAs fet devices has led a number of amateurs into using these at the relatively low frequency of 144 MHz , claiming exceptionally good strong-signal performance. This claim is disputed by Chris Bartram, G4GDU, of MuTek, who has found that, on measurement, the GaAs devices have third-order intercept points of the order of OdBm, roughly the same as for good silicon devices. They also have a "bath tub" noise characteristic that results in noise figures at 144 MHz slightly higher than at 430 MHz . He believes that the idea that GaAs devices provide exceptionally good dynamic range is largely a myth, although one that is already influencing a number of enthusiasts.

In brief

During the flight of the Columbia space shuttle Dr Owen Garriott, WSLFL, recorded identifiable calls from 290 stations including about six in the UK. The number of real-time two-way contacts however was Vt is hoped that amateur radio operations will be repeated in some future flights. . . . Problems arising from leakage of cable television signals on frequencies within the 144 MHz band have been reported from the British Telecom installation at Milton Keynes. . . The death occurred last December of Eric ("Bill") Yeomanson, G3IIR, former president RSGB, who did much to establish the Raynet emergency network and to popularise the use of amateur r.t.t.y. . . . The DTI has confirmed that the installation of transceivers by short-wave listeners is legal provided that they do not use the transmitting facilities. . . . Mobile rallies at the University of Leeds on April 1, and at Pavilion Gardens, Buxton and Patti Pavilion, Swansea on April 8.... RSGB National Convention 1984 at NEC, Birmingham on 28-29 April will include technical sessions and an h.f. convention.
A new edition of "The AMSAT UK Guide to amateur satellite operation" is available to non-members of AMSAT for $£ 1.25$ including postage (AMSAT-UK, 94 Herongate Road, Wanstead Park, London E12 $5 E Q$).

PAT HAWKER, G3VA

Pathfinder

A programmable guidance aid for the blind

The Sonic Pathfinder is designed to give the independent blind traveller information relating to objects in and to the side of his path. It presents only that information relevant to safety and efficiency, and displays the information in an easy to understand format. The device does not aim to provide a surrogate for vision, rather to provide a limited amount of supplementary information over and above that obtained from the user's other senses. In common with all previous electronic travel aids for the blind the aid is not able to provide protection against holes in the ground; consequently, this is a 'secondary aid' to be used in conjunction with a cane or a dog.

General description

During the last fifteen years many electronic guidance aids have been developed by engineers and physicists and introduced to the blind. They have met with almost total failure. In response to the problem so created - namely, that devices which clearly are capable of providing the blind user with much of the information denied him because of his handicap are, nevertheless, found to be unacceptable the Medical Research Council and the Department of Health and Social Service jointly created the Blind Mobility Research Unit and placed it in the Department of Psychology at the University of Nottingham. Over the years this unit has developed evaluative procedures capable of giving objective measures of a user's performance with any aid, thus enabling us to highlight the shortcomings of existing aids and to achieve an understanding of the informational requirements of the independent blind traveller. The Sonic Pathfinder is an attempt to embody, within a practical device, the many insights gained during the work at Nottingham.

The aid is an ultrasonic, pulse-echo device, mounted on a spectacle frame, and with an auditory display: Fig. 1 shows the aid being modelled by the author. The prime function of the aid is to detect and indicate the distance of any obstacle which lies directly in the blind pedestrian's path. In the absence of any obstruction ahead, it reverts to its secondary function of indicating the presence and range of obstacles to the left and right of the travel path. Like the simpler hand-held Nottingham Obstacle Detector ${ }^{1}$, the aid represents the distance of the nearest object in terms of the notes of the musical scale - one note being assigned to each of the one-footrange zones. Again, like its predecessor,

by Tony Heyes

B.Sc., Ph.D, M.Inst.P.
the aid is a digital device, no attempt being made to provide an analogue signal to give textural information. This is done to avoid information overload. Moreover, if a blind user really wants to distinguish between a tree and a lamppost he can reach out and discover this by touch.

The user listens to the display through two small earpieces, one mounted on each side of the spectacle frame in close proximity to, though not actually in contact with, the ear. Time division multiplexing is employed between the three receivers and the two earpieces so that the distance of any object which lies, within range, to the left of the main travel path is signalled only in the left earpiece whilst an object to the right is signalled only in the right earpiece. An object which lies directly ahead produces a signal at both earpieces and, in this way, creates a central sound image. In the absence of any obstacle within the area viewed by the aid the display is totally silent

With the aid in use, the pedestrian is able to walk parallel to the inner shore line - the hedge or wall - by keeping the repeating note at the 'inner' ear at a constant pitch. He is at the same time able to tell when he passes a tree or lamppost on the outer shore line by the interposition of the occasional note in the other ear; such objects are vital landmarks for the blind. If he encounters an object lying directly ahead, the side information is no longer provided and information relating to the central hazard is presented to both ears. As an additional 'attention grabber' the central display is arranged to have a repetition rate four times that for the side information - some 16 times a second. Only when the hazard is circumnavigated does the aid revert to giving side information.

Early prototypes of the aid were made using c.m.o.s. integrated circuits. A number of these prototypes have been evaluated using blind volunteers ${ }^{2}$ and the results have been most encouraging. However, some shortcomings were identified during the evaluation. For example, although users were advised to switch the aid from long range to short range - from 8 ft . down to 4 ft . - when trying to negotiate narrow openings, they tended not to do so. By changing to a microprocessor-

Fig. 1. Dr Heyes wearing a prototype of the Sonic Pathfinder.
based system it has been possible to develop software information processing algorithms and thereby achieve an automatic adjustment of the range. These techniques are discussed later

Circuit description

Use has been made of the Intel 8048 family of microprocessors ${ }^{3}$. Referring to the circuit diagram shown in Fig. 2, it is seen that, for convenience of programming, the prototype devices use the 8035 version of the microprocessor in conjunction with an external memory, the 2716, and associated latch, the 74LS373. When the software has been finalized, the program will be masked into the internal memory of the lowpower, c.m.o.s., version of the 8048. All outputs are taken from port 1. Those for the two transmitters, T_{L} and T_{R}, and that for the display output, are buffered via a Darlington driver. Outputs P11 and P12 are used as control lines for the c.m.o.s.

two-pole analogue switch, the 4052 . One pole of this switch is used to select the current receiver transducer and the other to short out one of the earpieces when the side receiver transducers are in use, or neither earpiece when the centre receiver transducer is in use. The analogue receiver in Fig. 3, is based on the LS404 quad amplifier and is designed to have a peak response at 40 kHz . I am indebted to Allan Greaves of B.T. Research for suggesting the design of this stage. The output of the amplifier is inverted using one of the Darlington drivers before being fed to input T_{L} of the microprocessor. Other inputs to the microprocessor are T 0 , the short/long range switch, and the higher half of port P2 which usually sits high but may be connected to earth via a hex. switch, which is used to select various software options. All timing is derived from the micropro-

Fig. 2. Main circuit diagram of the guidance aid.
cessor's internal clock, controlled by a 6 MHz crystal. Self starting on switch-on is achieved by shorting pin 4 to earth via a $1 \mu \mathrm{~F}$ capacitor.

The whole action of the aid is determined by the program, all the necessary delays and frequencies being derived from software timing loops. Many novel features are included, as will be seen from the following description.

Program

The design involves the use of cheap, readily available transducers. In order to provide a suitably wide beam, two splayed

Fig. 3. 40 kHz analogue amplifier. Amplifier i.c. is LS404.
transmitters are used, convergently rather than divergently splayed to avoid the 'hole in the middle'. Unfortunately, using two transmitters at the same frequency produces a diffraction pattern resulting in the aid having 'corridors of insensitivity'. This is overcome by reversing the phase of one of the transmitters at appropriate intervals. The multiplexing and transmitter phasing is controlled by a single register, named MULTI, such that:
00000000 look left, out-of-phase
$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \text { look centre, out-of-phase }\end{array}$ 00000010 look right, out-of-phase
00000011 look centre, out-of-phase
00000100 look left, in-phase
00000101 look centre, in-phase
00000110 look right, in-phase
00000111 look centre, in-phase
000011000 RESET TO
00000000 look left, out-of-phase

For each step of MULTI the transmitters are activated for a 0.5 ms burst of 40 kHz . Precise frequencies, both in-phase and out-of-phase, are obtained from software loops controlling the appropriate bits of the output port.

During the transmitter pulse and for a short time afterwards the receiver must remain off. This, the 'dead time' is necessary to prevent the receiver from triggering due to cross-talk. For short range pulseecho systems it is necessary to set this time to a minimum value. However, this minimum is critically dependent upon component and wiring layout and is therefore difficult to pre-set. Using the microprocessor it has been possible to write a software routine which uses the first twenty four transmission pulses after switch-on to 'dynamically' determine and set the minimum usable 'dead time'

The elapsed time between the transmitter pulse and the receipt of the first echo determines the musical note displayed to the user. The notes are obtained from a software timing loop, the parameters of which are obtained from a 'look-up' table.

Interference from other ultrasonic sources has been largely eliminated by the inclusion of a software-controlled digital filter: the processor has a cycle time of $2.5 \mu \mathrm{~s}$. The output of the analogue receiver amplifier is sampled every 4 cycles until a change is detected, confirmatory samples then being taken every 5 cycles, provided each one is the inverse of its predecessor; if not, after a 3 -cycle delay, the 4 -cycle sampling is resumed. This mixture of 3,4 and 5 -cycle sampling ensures that any 40 kHz waveform is detected, no matter what its phase relationship to the internal clock of the processor. By requiring nine successful samples before an echo signal is regarded as genuine, the digital filter has an effective bandwidth of 6 kHz cycles. This is more than adequate to cater for the Doppler shift introduced in the frequency when the user is approaching the object from which the echo is received. For example, at a walking speed of 5 mile $/ \mathrm{h}$ the received frequency is 40.5 kHz .
Priority is given to objects in the centre of the user's path - Centre Echo Priority - by failing to increment MULTI when a central echo is detected. And, if after a period of repeated central echo an echo is not detected, bit 2 of MULTI is complemented and one last 'look' is taken in the centre, this time with the opposite transmitter phase inter-relation, before the aid reverts to its left/right scanning mode.

Information-processing algorithms

The difficulties encountered during the evaluation by users trying to negotiate narrow gaps may be illustrated with reference to Fig. 4. The figure depicts a plan view of a subiect standing still and facing an open doorway leading onto a corridor. Very small rotations of the head produce three different musical notes: a note of low pitch corresponding to the distance to the nearest doorpost dl , a note of higher pitch corresponding to the distance to the corri-
dor wall w , and a note of intermediate pitch corresponding to the distance to the far doorpost d2. The centre-echo-priority algorithm ensures that these notes are presented to both ears, giving no obvious impression of the existence of a gap. Furthermore, very small head movements produce a jangling sound which is very difficult to interpret. (The user will only realize he is facing a gap when he notices that one of the notes has a higher pitch than the other two!) How much better the information display would be if the aid had a maximum range greater than d 2 but less than w ! If this were the case small head rotations would produce a note of low pitch corresponding to distance dl , a note of higher pitch corresponding to distance d2 and a middle position in which these two notes are presented alternately to the left and right ears, giving an unambiguous indication of an opening in the centre.

It has been found possible to achieve this desirable display by the introduction of an algorithm which I have named the Ratchet. Essentially the action of the Ratchet is to reduce the range of the aid to that of the nearest object in the central region and to maintain this limited range for a certain time, the Ratchet hold time. In order to avoid numerous undesirable sideeffects certain constraints must be placed on the Ratchet algorithm. For instance, referring to Fig. 4, a crude Ratchet with a hold time greater than, say, 2 seconds would result in the near doorpost - the note corresponding to the distance $\mathrm{dl}-$ alone being displayed. This seems inappropriate, since the far doorpost distance d 2 - is sufficiently close that it could be encountered within the 2 second hold time, even if, as in this case, the subject is moving from a standing start. Consideration of walking speed, acceleration and reaction times have led to the action of the Ratchet being restricted to the four outer zones of the aid. Thus the Ratchet never reduces the range of the aid to less than 4 feet.

A careful choice of Ratchet hold time is crucial if other undesirable side-effects are to be avoided. In the above example a Ratchet hold time of 2 seconds was chosen, a duration long compared to the time taken for the user to make head rotations but short compared to the time required to negotiate the doorway and move into the

Fig. 4. Plan view of user approaching open doorway.

The author

Tony Heyes is a Senior Research Fellow with the Blind Mobility Research Unit, Department of Psychology, University of Nottingham. Trained as a physicist, Dr Heyes went blind while researching into crack propagation at the Cavendish Laboratory, Cambridge. After eight operations the sight of one eye was saved and a new research interest created. Dr Heyes received a Ph.D. in Physics from Cambridge in 1967 and a second Ph.D. in Psychology from Nottingham in 1979.
comparative open space of the corridor. Although in these circumstances the choice of 2 seconds for the Ratchet hold time is appropriate it does, however, produce one unfortunate consequence. If a user is using the side signal of the aid in order to maintain a travel line parallel to the shore line at a distance of say 3 feet, and if he were momentarily to rotate his head towards the shore line, the Ratchet would immediately be invoked and the range of the aid set to 4 feet. (4 feet, not 3 , because of the restriction described above.) Thus from that moment, for the duration of the Ratchet hold time the user has only the protection of an aid with a range of 4 feet. In these circumstances this is serious because he is not moving from a standing start and may be travelling at 4 mile/h! The solution is to use a Ratchet hold time proportional to the time the invoking object remained in 'view'. Thus a quick 'glance' towards a near object would produce a hold time considerably shorter than would a prolonged 'stare'. It does, however, remain necessary to limit the Ratchet hold time to some maximum value -2 seconds seems to be appropriate.
Having made the Ratchet hold time dynamically determined one has, in effect, produced an aid, the range of which is governed by the walking speed of the user. That is to say, instead of an aid with a range of 8 feet, we have an aid with a range of 2 seconds! Rather an odd concept. However, given the information-processing demands inherent in independent blind travel ${ }^{4}$ and the moment-to-moment problem solving nature of blind travel ${ }^{5}$ it would seem highly desirable to have an aid which was limited to providing informa-

Fig. 5. User about to pass through open doorway.
tion solely about those objects which would be encountered during the next 2 seconds of travel.

Figure 5 illustrates what may happen when our blind subject takes a pace forward. Large head rotations are now required to bring the door posts into the central region of the aid and there is a high probability that the Ratchet will be released before the doorway is negotiated. When this happens the aid returns to having an 8 foot range and the Centre Echo Priority algorithm ensures that the musical note corresponding to the corridor wall is
displayed rather than the side information about the door posts. The undesirable effect may be eliminated by yet another information processing algorithm - the Clamp.
The Ratchet can only be invoked and sustained by signals received in the central, forward facing receiver. The Clamp, on the other hand, may be invoked and sustained by any signal received in the nearest zone of the aid (zone 1) whether

Fig. 6. Flow chart showing information processing in Sonic Pathfinder.
left, right or centre. The Clamp operates for a fixed duration (1.2 seconds) and has the effect of reducing the aid to a singlezone device. By increasing the length of near zone to two feet and reducing the ranges of the other zones so that the overall range of the aid remains equal to 8 feet the Clamp provides an effective solution to the problem described with reference to Fig. 5. The presence of one or the other door post in the side regions of the near zone prevents the far corridor wall from being perceived no matter how slowly the
continued on page 62

Designing with the 68008 microprocessor

A member of the 68000 8/16/32 bit processor family, the 68008 has an internal 32-bit architecture and an eight-bit external data bus. This second article shows how it is used with other microcomputer components - rom, ram and peripheral devices.

Interfacing the 68008 to memory, peripherals and other microcomputer devices is straightforward. The examples shown here are practical circuits using the popular 74LS z.t.l. family. When the separate examples are brought together to form a complete system numerous circuit rationalizations can be made. In the case of very high volume designs f.t.l. tends to be replaced by custom circuits.

68000 with rom

A practical minimum 68008 -based system could employ one 8 k byte rom to contain program code and reset vectors. Fig. 3 shows the 68008 interfaced to an 8kbyte rom, MCM68764. The eight-bit data bus and the low-order address lines of the MPU are connected to the rom on a one-

by A. J. Barth

to-one basis. The high-order address lines are used to allocate different portions of the one megabyte address space to various memory and peripheral devices in the system. A 74LSI38 1-of-8 demultiplexer is driven by these lines to generate a chip-

Fig. 3. 68008 interfaced to rom. Asynchronous data bus enables the bus cycle time to be ne-tuned to the speed of the currently accessed memory or peripheral.
select signal for each device. The demultiplexer is enabled by the 68008 address strobe signal (AS) which indicates when a valid address is on the address bus.

During a read operation on the rom the m.f.u. sets up the read/write signal (R/W) and places the appropriate address on the address bus. Signal AS is activated by the processor enabling the demultiplexer to chip-select the rom. As part of the asynchronous bus cycle, hardware must activate data-transfer-acknowledge (DTACK), to indicate to the processor that data from the rom will shortly be valid on the data bus. A 74LS175 quad D-type flip-flop acts as the DTACK generator for the rom. The rom chip-select signal EROM/CS releases the flip-flops from their cleared state which allows a logic zero to propagate from one \bar{Q}

output to the next on successive rising edges of the 8 MHz clock. The fourth $\overline{\mathrm{Q}}$ output generates the active low DTACK which signals the 68008 to read the data on the data bus and to terminate the bus cycle. The DTACK delay time is governed by the number of flip-flops and the frequency of the clock, and is chosen to suit the rom access time (approximately 450 ns in this case).

In this example the R/W signal and all of the high-order address lines have been included in the rom chip-select logic. This enables the detection of illegal operations such as writes-to-rom and access to some unused memory space. In a price-sensitive product this may be considered a luxury and the invertor and the five-input or-gate could be omitted.

68008 with ram

Interfacing the 68008 to static ram is similar to the rom case except that the read/write signal connects directly to the ram or rams and is not included in the chip-select logic. Dynamic ram interfacing is more complex because they require refreshing and address multiplexing logic. Fig. 6 shows the 68008 connected to eight MCM6664 64kbit dynamic rams providing 64 kbytes of read/write memory. The D input and Q output of each dram are connected to a different 68008 data line only one dram is shown in Fig. 4 for clarity. The 16 low-order address lines are multiplexed together using two 74LS257 quad two-input multiplexers to form the row address and column address needed by the drams.
Like the rom circuit a 74LS175 quad D-

Fig. 4. 68008 interfaced to ram. Highdensity rams require the m.p.u. address to be multiplexed into a column and row address
type flip-flop is used as DTACK generator. Where the ram and rom, or any other device used, have the same data access time a single generator may be used for these devices. If a single generator is shared among several devices having different access times much of the benefits of
an asynchronous bus are lost since the processor executes an unnecessarily long bus cycle for the faster devices. However, in a very price-conscious design where minimum device count is paramount, this may be an acceptable engineering compromise. As well as generating the ram DTACK the 74LS 175 also provides the dram control signals, row address strobe (RAS), column address strobe (CAS), write (W), and the switching signal SEL for the multiplexers. AS, R/W and data

Fig. 5. 68008 dynamic ram refresh controller. The MCM6664 $64 K$ drams use a simple pin- 1 refresh technique. Here the m.p.u. operation is temporarily suspended while a block of eight internal memory rows are refreshed.

Fig. 6. 68008 with M68000 type peripherals have on-chip DTACK generators which provide the return handshake signal for the asynchronous data bus.
strobe (DS) are used to ensure the DTACK waveform is generated correctly for the three types of 68008 bus cycles read, write and read-modify-write.

Refresh requirements for the MCM6664 drams are modest, which makes them ideal for a low-cost 68008 -based system. The refresh row address counter is on-chip and refresh may be performed by providing a pulse on pin 1 (REF) to refresh the next row of memory elements. A dynamic ram refresh controller is shown in Fig. S. The technique used is to temporarily suspend processing by requesting the 68008 bus. Eight successive rows within the drams are refreshed before allowing the 68008 to continue. Block refreshing in this way affects the longest possible interrupt la-
tency time, the time between an interrupt occurring and the mpu entering its interrupt handler. A block refresh of eight rows is acceptable for most applications.

The 68008 bus arbitration, controlled by bus request (BR) and grant (BG), is used to suspend processing. When BR is activated by external logic the 68008 makes BG active as soon as possible, usually directly after internal synchronization. Once BR is removed BG is deactivated and the 68008

Fig. 7. 68008 with non-M68000 type peripherals. Specialm.p.u. control lines allow straight forward interfacing to these peripherals with minimal hardware. The m.p.u. performs a synchronous bus cycle when accessing such devices.
resumes processing. In Fig. 5 the multivibrator ($1 / 2 \mathrm{MC} 3456$) produces a clock REFCLK at the required refresh rate (about 9 kHz). The rising edge of signal REFCLK triggers the first D-type flipflop (1/2 74LS74) which generates the bus request to the 68008 . When bus grant is received AS and DTACK must be monitored to determine the end of the current bus cycle.

This condition, detected by the four-input nand-gate, is clocked through the second D-type flip-flop. The Q_{2} output goes high enabling a stream of negativegoing pulses to appear on the REF inputs of the drams. And simultaneously, the 74 LS 161 counter is allowed to count. After eight refresh pulses have been generated the counter clears the first flip-flop. This in turn removes the bus request, and disables the REF pulses and stops the counter. The 68008 removes the bus grant and continues normal processing. This state continues until the next rising edge of REFCLK

68008 with M68000-type peripheral

Many M68000 peripheral devices have 8bit data buses and some may be configured for eight or 16 -bit buses. In these cases the data bus lines $\mathrm{D}_{0}-\mathrm{D}_{7}$ are connected on a one-to-one basis with the 68008 data bus. For the few peripherals with only 16 -bit buses, a 16 -bit interface can be constructed using two octal transceivers and a couple of gates

Fig. 6 shows a typical interconnection between the 68008 and the 68230 parallel interface/timer (PI/T). The PI/T register select inputs $\left(\mathrm{RS}_{\mathrm{n}}\right)$ are controlled by the low-order address lines $A_{1}-A_{5}$. Note that address line A_{0} is not used in this example. While it is quite acceptable to use A_{0}, making it a "don't care" places the bytesized internal registers of the PI/T on 16 rather than eight-bit boundaries in the memory map. This preserves complete software compatibility with programs

Fig. 8. 68008 interrupt interface logic. M68000-type peripheral (68230) uses the vectored interrupt scheme where it provides the vector number (0-255) on the data bus. Non-68000 type peripheral 6850 uses the auto-vector scheme.
written for the 68000 m.p.u. (which does not have an external A_{0} signal).

M68000-type peripherals have an onchip DTACK generator so the DTACK pin is connected directly to the 68008 DTACK, and may be or-wired with the DTACK signal from other peripherals.

The interfacing of interrupt signals is described later.

68008 with non-M68000-type peripheral

Non-M68000-type peripherals do not have on-chip DTACK generators and are usually accessed synchronously using the M6800-peripheral signals enable (E) and valid peripheral address (VPA). Fig. 7 shows the interconnection of the 68008 with a 6850 a.c.i.a. Each time such a device is accessed during a m.p.u. bus cycle, the 68008 VPA input is used for the returning handshake instead of DTACK. VPA signals the 68008 to perform the current bus cycle synchronously. Data transfer is made on the falling edge of the E clock which the 68008 provides for the peripheral. A J-K flip-flop (1/2 74LS73) generates VPA whenever any M6800-type peripheral in the system, such as the a.c.i.a. is chip-selected. A second flip-flop provides a valid memory address (VMA) used by many of these devices.

68008 interrupt logic

Fig. 8 shows the interrupt connections for a typical small system. A M68000-type peripheral ($68230 \mathrm{PI} / \mathrm{T}$) uses interrupt priority level 7 for its parallel interface and level 5 for its timer. A M6800-type peripheral (6850 ACIA) uses level 2. The three
interrupt request signals (PIRQ, TIRQ and ACIAIRQ) are priority encoded by the 74LS148 priority encoder which generates a three-bit binary number corresponding to the interrupt level. Two bits of the three-bit number are presented to the 68008 via its interrupt priority level inputs IPL1 and IPL0/2. These input pins indicate the encoded priority level of the peripheral requesting an interrupt. The 68000 uses three pins to encode a range of $0-7$ but due to pin limitations only two pins are available on the 68008 . By connecting the IPL0/2pin to both the IPL0 and IPL2 inputs internally the 68008 encodes values of $0,2,5$ and 7 . Level zero is used to indicate that there is no interrupt depending and level seven is a non-maskable edge-triggered interrupt. Except for level seven, the requesting level must be greater than the level contained in the processor status register before the 68008 will acknowledge the request.

Interrupt acknowledgement (IACK) is indicated by the processor function code outputs $\mathrm{FC}_{0}, \mathrm{FC}_{1}$ and FC_{2} all logic high. The address lines $\mathrm{A}_{1}, \mathrm{~A}_{2}$ and A_{3} contain a three-bit binary number corresponding to the interrupt priority level being acknowledged. In Fig. 8 a 74LS138 1-of-8 demultiplexer decodes the individual IACK for each peripheral device ($\mathrm{IACK}_{\mathrm{n}}$). For M68000-type peripherals $I A C K_{n}$ is connected to an input pin on the peripheral for this purpose (e.g. PIACK or TIACK on the $68230 \mathrm{PI} / \mathrm{T}$). When this input is activated the peripheral places the vector number (binary 0-255) on the data bus and then it activates the DTACK signal. The 68008 reads the vector number and uses it to nd the start address of the required
interrupt handler from its interrupt vector table. Non-M68000 peripherals, not capable of this vectored interrupt method, need hardware to provide the v.p.a. signal. Asserting VPA during IACK signals the m.p.u. to use one of the autovectors to find the appropriate interrupt handler. The nand-gate J-K flip-flop used as VPA generator here is the same as that in Fig. 7

Other circuit elements

No special multi-phase clocks are required by the 68008 . An 8 MHz t.t.l. clock generated from a crystal and several inverters is sufficient. A double-frequency master clock is useful for producing certain timings such as those for controlling dynamic memories. A watch-dog timer should be used in asynchronous microprocessor systems to detect attempts by software to access non-existant memory. It may be constructed in similar fashion to the DTACK generators shown but connected to the 68008 bus error input (BERR). Its time-out period should be longer than the slowest memory or peripheral device in the system. Power-on reset logic could comprise a 555 timer and several invertors.

Microcomputers as 68008 peripherals

Low-cost single-chip microcomputers, like the MC6805 family, may readily be cuscontinued on page 41

Motorola peripheral devices

6821 PIA Peripheral interface adapter
6822 IIA Industrial interface adapter
6829 MMU Memory management unit
6835 CRTC Mask programmed c.r.t. controller
6840 PTM Programmable timer module
6844 DMAC Direct memory access controlier
6845 CRTC CRT controller
6847 VDG Video display generator
6850 AC|A Asynchronous communications
interface adapter
6852 SSDA Synchronous serial data adapter
6854 ADLC Advanced data link controller
68120 IPC Intelligent peripheral controller
68153 BIM Buss interrupter module
68230 PIT Parallel interface and timer
68440 DDMA Dual direct memory access controller
68450 DMAC Direct memory access controller 68451 MMU Memory management unit 68452 BAM Bus arbitration module 68454 IMDC Intelligent multiple disc controller 68459 DPLL Disc phase-locked loop
68488 GPIA General-purpose interface adapter 68561 MPC Multi-protocol communications CII controller II
68562 DUSC Dual universal serial communicaC tions controlter
68564 SIO Serial input output
68590 LANCE Local area network controller for Ethernet
68652 MPCC Multi-protocol communications controller
68653 PGC Polynomial generator and checker 68661 EPCl Enhanced programmable commu. nications interface
68681 DUAR Dual universal asynchronous reT ceivertransmitter
68802 LNET Local area network controller
68901 MFP Multi-function peripheral
14442 A to 0 Microprocessor compatible a-to-d convertor
146818RTC Real time clock + ram

Low-jitter crystal oscillator

While constructing digital audio equipment, a need arose for a very low noise 12 MHz crystal oscillator with t.t.1. output. Designs using logic gates have too much jitter so I developed this circuit comprising a conventional crystal oscillator, buffer and t.t.l. comparator. The oscillator must be well shielded and its separately-stabilized power supply introduced via feedthrough filters.
D. G. Malham

Department of Music
University of York

Serial data-frame converter

My requirement was for converting eightbit serial RS232 data into seven-bit data serial data. Input to the first uart is converted to t.t.1. level by a 7400 i.c. instead of the usual 1489 receiver to save money. I wanted a fixed data rate of 300 baud but simple switching on the 4702 generator inputs allows other data rates to te selicted.

Serial data enters the uart on the left at input RRI; this uart is set for eight-bit serial data words. Parallel data passes from this uart to the second one under handshake control between the data-received output, DR, and transmitter-buffer register load input, TBRL, and between the data-received reset input, DRR, and transmitter-register empty output TRE. A 74121 monostable i.c. is included to com-
ply with timing requirements. The second uart is set for seven-bit serial data words and transmits through a 1488 driver at output TRO. Inclusion of switches allows data frames to be set to any combination and the circuit is easily modified for twoway communications.
Stephen Evans
Cradley Heath
West Midlands

Reducing op-amp crossover distortion

Crossover distortion in op-amp push-pull outputs operating in class AB mode worsens when driving low impedance loads at high frequencies. But fortunately the output can usually be forced to work in class A mode, as shown here where an op-amp connected as an inverter has an external current sink. Operating mode of the op-
amp is changed considerably. The n-p-n output transistor Tr_{1} is forced to carry a quiescent current equal to I_{m} while $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistor Tr_{2} is switched off as long as $I_{\text {out }} \geqslant-I_{m}$.

Bearing in mind that 741 output current is limited at about $16 \mathrm{~mA}, \mathrm{Tr}_{1}$ continuous current should be set so that maximum undistorted output swing I_{m} is less than 8 mA . Advantages are absence of crossover distortion, reduction of other forms of
distortion due to higher operating current of Tr_{1} and increased phase margin of the whole amplifier since slow lateral p-n-p output transistor Tr_{2} is removed from the signal path. Disadvantages are an increase in quiescent current and reduced output swing. Distortion reduction using this technique ranges from 20 to 40 dB .
Giovanni Stocchino
Rome
Italy

Alternative biasing for valve amplifiers

In this configuration, i.c. voltage regulators allow accurate setting of quiescent current and maintain the setting for the life of the valve. Another important feature is the absence of d.c. in the transformer primary winding which minimizes core distortion. Regulator input current is

$$
\mathrm{I}_{\text {in }}=\mathrm{I}_{\text {out }}+\mathrm{I}_{\mathrm{q}}=\mathrm{V}_{\text {out }} / \mathrm{R}_{\mathrm{L}}+\mathrm{I}_{\mathrm{q}}
$$

Quiescent current drawn by the regulator,
I_{q}, is typically around 7 mA for a 7805 regulator and varies by only between 1 and 1.5 mA for a 20 V input change. Cathode current is the same as the regulator input current and is solely determined by output voltage and load resistance, both of which are constant. Values shown are those used to convert my Leak Stereo 20 amplifier.
J. S. Spicer

Melbourne
Australia

Precise single pulses

Referring to D. A. Haines' circuit in the November 1983 issue, precise single pulses equal in width to the clock period can be obtained using only two D-type bistable i.cs.
A. Dhurkadas

Cochin
India

Assembly language programming

Centronics-to-teletypewriter interface

In this final assembly-language application, Picotutor's processor is turned into a low-cost interface for driving a teleprinter from a microcomputer. But you don't need to know anything about assembly-language to use this simple circuit.

Bringing concepts introduced in previous articles together, this final application example is a larger project for driving a Creed teletypewriter from a Centronics parallel interface such as found on most microcomputers. Software for the interface was developed on the Picotutor assembly-language trainer. If you have a later version of this kit, software for the interface is already programmed in; those of you with earlier versions can have your processor reprogrammed for a small charge. For readers just interested in the interface hardware the preprogrammed processor may be obtained separately.

Teletypewriters - used by British Telecom for the Telex service - have been around for many years and have remained almost unchanged in design. Many find their way on to the amateur-radio surplus market and are widely used by amateurs for 'radio teletype,' often known as r.t.t.y. Being readily obtainable and cheap they represent an ideal low-cost printer for a home computer. A Creed 7E teletypewriter was used to design the prototype but other models should be just as easy to adapt. Printing is on 216 mm wide plain paper in roll form.
There are two main design problems when interfacing a teletypewriter to a microcomputer. For compatibility with

Fig. 1. Centronics interface timing diagram. Eight parallel data lines carry ASCII-coded signals from the computer under control of these signals. Data strobe, when low, tells the printer that there's a character on the data lines. Busy and acknowledging signals are sent to the computer by the printer to give 'handshaking

by R. F. Coates

signals transmitted over telephone lines, teletypewriters are designed for use with high-voltage drive signals. Secondly, se-rially-transmitted data used to control teletypewriters, called Baudot, is quite different from ASCII code sent in parallel form (i.e. more than one bit at once, in this case eight) through the Centronics interface. The first problem is a hardware one and easily solved by replacing the original drive circuit in the teletypewriter; both RS232 and t.t.1. levels are accepted by the circuit presented. The second problem is taken care of by the MC68705P3 single-chip microcomputer used in Picotutor.

Printer interface

The Dragon Computer printer interface on which the prototype was based is a Centronics type, devised by printer manufacturer Centronics Data Computer Corp. It sends characters to the printer one at a time under control of 'handshake' signals. Timing for the data transfer is shown in Fig. 1. The computer first places the ASCII code for the character to be sent on the eight data lines. Only seven lines are required to select one of the 128 ASCII codes so the adaptor software ignores data-bit seven. The printer then receives a nega-tive-going data strobe pulse from the computer to tell it that there is a character waiting for it on the data lines. Upon receiving this pulse the printer reads the character on the data lines and sends an 'acknowledge' pulse to the computer to indicate that the character has been read and that another character may be set up on the data lines. A 'busy' signal is also sent to the computer to stop it sending further characters while those already received are being printed; characters are normally printed a line at a time. When printing is finished, the 'busy' signal ceases and the computer is allowed to send

Flg. 2. Teletypewriter serial data is similar in form to that usually sent down RS232 links, and travels at 50 baud.
the next 'data-strobe' pulse if there is another character to be printed.

Baudot code

Character code used by the teleprinter is in five-bit serial Baudot form. Only five bits means that there are only 32 possible combinations yet we need to send more than this. Letters of the alphabet and numbers $0-9$ alone add up to 36 characters. Baudot code solves this by having two modes, letters (LTRS) and figures (FIGS). LTRS and FIGS are two unique codes which set the receiving teleprinter to the appropriate mode. With the exception of 'space,' 'car riage return' and 'line feed,' all other codes will print one of two different characters depending on the mode set, i.e., either a letter or a number/puncutation mark (see 'Nanocomp teleprinter interface,' P. C. Barton, October 1983 issue).

For instance, letter Q and figure 1 both have the same five-bit code - which one is printed depends on which 'mode' character was sent last. Data is sent serially down a single pair of lines and the format, shown in Fig. 2 is similar to the RS232 serial code. When no transmission is taking place, the signal line remains in the 'mark' state, which in the case of this modified teleprinter interface is zero volts. A character to be sent is preceded by a start bit, which puts the signal line into the 'space' state $(+5 \mathrm{~V})$ for one data-bit period. Length of the data-bit period is determined by the data rate, which for a teleprinter is normally fixed at 50 baud (50 data-bits per second so one data-bit period is 20 ms). The five data-bits are then sent and finally a stop signal which is the 'mark' state for at least one and a half bit periods.

Converter

The adaptor is divided into two sections the ASCII to Baudot parallel-to-serial converter and the teletypewriter t.t.l. driver interface. The converter consists of the Motorola MC68705P3, suitably programmed, and a few passive components. This section performs most of the work. Its job is to read ASCII characters from the computer, convert them to equivalent Baudot code, send out a LTRS or FIGSmode code if necessary and send the character out serially at 50 baud to the teleprinter; the hard work is all done in software.

Converter software

Software flow is shown in Fig. 3 and the relevant part of the Picotutor-monitor in assembled form, see over. This program list was produced by the development system used to write the software for Picotutor. Such a list is produced when the source code is assembled by an assembler

program, to provide the object code for programming into the 68705 eprom. The assembly-language source program, i.e. what is written by the programmer and typed into the development system, is below and to the right of the source-line page heading. Everything to the left of this is produced by the assembler. Column headings are
LOC - the hexadecimal address (location).
OBJECT - object code, the result of assembling.
\mathbf{M} - not used with this type of program.
STAT - the statement number of each line. Comment lines begin with ${ }^{*}$ and are not allocated a statement number.
E - column holds an error code if there is an error in the line.
LINE - line number.
Note that hexadecimal numbers are preceded by an H and enclosed by single quotation marks in assembly language used with this development system. Similarly, binary numbers are preceded by a B ; if there is no prefix or quotation marks then the number is assumed to be decimal, or a label.
The first function of the converter software is to set up the 68705 peripheral ports and initial states required. Circuit diagram Fig. 4 shows that all eight lines of port A are used for parallel data input from the computer, so these are set to inputs by CLR PORTAD which sets the port A data-direction register, d.d.r., to all zeros (inputs). Port B is not used, but three of the four port C lines are used as outputs. as these require different treatment.
Carriage return. For carriage return, the subroutine TPROUT sends the character in CHAR to the teletypewriter. The teleprinter takes a long time to send the

Fig. 3. Flow diagram of ASCII-to-
teletypewriter code conversion software (see over).

heavy carriage from one end to the other, so a delay loop is introduced before going on to the next character. Also, when the Dragon sends a carraige return signal, it really means carriage return and line feed (or new-line) so after carriage return line feed is sent in a similar way. Note that with the BBC micro, whether carriage return with line feed or just carriage return is sent is determined by software. It should be configured to send just carriage return, which is the dafault setting.
Line feed. This is sent to the teleprinter as before but a further shorter delay is inserted. The program then branches back to get the next input character.
Space. This code is sent out and the program branches back to get the next input character.

If the code isn't one of these three then it's one which requires the teleprinter to be in the appropriate mode. Testing bit seven of the code indicates the mode required, and testing the LFLG, BITSTR bit flag indicates which mode the printer is in.

Bit manipulation instructions need the bit number within the byte and the byte address. Flag LFLG is equated earlier in the sourse file (not shown) to give the bit number, and similarly BITSTR is equated to a ram byte address. If the teleprinter is not in the correct mode, then the appropriate subroutine, LTRSET or FIGSET, is called to send the mode code and alter LFLG,BITSTR. The character code is then sent and the program then loops back to CHIN where the BUSY line is cleared, acknowledgement of receipt of the last character is sent, and the next character waited for.

Characters or mode codes are sent to the teletypewriter by calling subroutine TPROUT. This first sends the start bit by setting PC_{0} high (serial-data out) for one data-bit period (20 ms) by calling subroutine WAI50B which loads the accumulator with value eight and passes to subroutine WAIT which executes a 2.5 ms -delay loop for the number of times indicated in the accumulator, and then returns from the subroutine. On return, the five data-bits are sent one at a time, bit zero first, by a loop which sets PC_{0} according to the state of each bit of the data code in turn and Port C d.d.r. is set up by writing FF (all ones or outputs) to it. These three outputs also have to have an initial value; C -port line PC_{2} is set to $(+5)$ to indicate busy, PC_{1} is set to one, the normal state for the acknowledge line and PC_{0}, the serial data output, is set to zero. To ensure that the teletypewriter is in the LTRS mode, an LTRS code is sent and an LTRS flag in ram is set. Both of these functions are performed by the LTRSET subroutine.

The main loop of the program is now entered, the BUSY signal is released and a pulse is sent to acknowledge receipt of the last character - if there was one. Next the program waits for a character to be sent by repeatedly testing the data-strobe line for a negative pulse. The data strobe line from the computer is connected to the 68705 interrupt input, but the line is not used as an interrupt in this application. At power-
Software for the interface in
assembly－language form

คัํํ

药学
管号 5
$\stackrel{5}{8}$ 5
\％
5\％\％

$\begin{array}{ll}\text { BRCLR } & \text { LFLAG，BITSTR，SENO BRANCH \＆SEND IF ALREADY IN FIGS MODE } \\ \text { BSR } & \text { FIGSET IF NOT，SET MOOE FIRST } \\ \text { BRA } & \text { SEND }\end{array}$

OUT，PORTC SENO START PULSE
WAISOB SET COUNTER FOR NUHBER OF DATA BITS GET NEXT CODE BIT INTO CARRY 15告空

loc object M stat e line source line

up the interrupt mask bit (I) in the condi-tion-code register is set and interrupts are ignored until this bit is cleared, which it isn't in this program. The state of the interrupt pin tested by using branch-if in-terrupt-low/high instructions. Instruction BIH CHIN1 branches back to itself until the data strobe goes low. On the low strobe, the program proceeds by reading the data character into the index register from port A and setting the BUSY line.

ASCII-to-Baudot conversion

Converting ASCII to Baudot code is simple. The ASCII character set consists of 128 characters, represented by hexadecimal values of 00 to 7 F . There is a 128 byte table in the program (TABLE) which contains a byte with the Baudot equivalent for each ASCII code. Five bits of each byte in the table represent the character $\left(\mathrm{b}_{0}-\mathrm{b}_{4}\right)$ and bit seven indicates whether the character requires LTRS (b 7 high) or FIGS (b_{7} low) mode. Instruction LDA TABLE,X loads the accumulator with the Baudot equivalent of the ASCII code in the index register. The accumulator is loaded with the contents of a memory location in the table. This address is an offset equal to the ASCII value in the index register added to the starting address of the table. For example, ASCII code for letter A is 41. This value is added to the address of TABLE, 62 D , to give the address in the table of 66 E which contains Baudot code for A, 9 C . Bit 7, being high, indicates that LTRS mode is required. The Baudot code is also stored in ram register CHAR for later use. Tests are made on the code to see if it is a space, carriage return or line feed waits for one data-bit period. Finally a stop bit is sent which is a logical zero for one and a half bit periods, calculated by the assembler at LDA $£ D L Y 50 B \star 3 / 2$. Label DLY50B is the one-bit period delay value required by subroutine WAIT and is determined early in the list by assembler directive DLY50B EQU 8. The rest of the operand field tells the assembler to multiplay that value by three and divide by two.

Converter construction

The teletypewriter software must be in the 68705 eprom. Recently distributed versions of Picotutor include this software but earlier versions will need reprogramming (note to follow). To find out which software release you have, examine memory location D9; if it holds 00 you don't have the teleprinter software, if it contains 12 then you do.

The converter can either be constructed as a stand-alone unit or Picotutor can be used. Connection details for adapting a Picotutor are shown in Fig. 4, and those for a stand-alone unit in Fig. 5. Note that with both of these circuits, additional driver gates are not used on the 68705 outputs, but strictly speaking they should be. Inputs on a Centronics interface normally have $1 \mathrm{k} \Omega$ pull-up resistors to +5 V . This means that the driver must be capable of sinking at least 6 mA , which is outside the specification for PC_{1} and PC_{2} outputs of the 68705. However, the BBC micro
uses $4.7 \mathrm{k} \Omega$ pull-up resistors and the Dragon $10 \mathrm{k} \Omega$ which it will drive satisfactorily. If you have a computer that requires drivers, Fig. 5(a) may be used. This simple circuit is easily constructed on Veroboard. Power to drive the 68705 can be taken from the Dragon through the interface cable. With other computers it may be necessary to provide a separate +5 V supply.
The printer interface connector used on the Dragon is not a standard Centronics one, presumably for reasons of cost, but is a 20 -way ribbon cable insulation-displacement socket. Looking into the Dragon connector on the side pin 1 is at top right and numbers on the circuit diagram refer to the conductor number of the assembled socket and cable, counting conductors from pin 1. If the adaptor is to be used with another type of computer, the connections may need to be altered to suit (details should be given in the manual). The BBC microcomputer uses the same connector as the Dragon and pin numbers are the same except that all even pin numbers are connected to ground. This means that the BUSY signal is not used and an alternative 5 V source of +5 V will have come from inside the computer. Conductors at the other end of the ribbon cable are taken to the appropriate pin of the 68705 and unused conductors cut off. Insulate these well. The ribbon cable should be shorter than 30 cm if buffers are not used. Output from the adaptor to the teletypewriter can be any twin flex; length here is not too critical.

Fig. 5. Excluding a small circuit for raising the signal driving the teletypewriter, this microprocessor used in Picotutor is the complete Centroncs-to-teletypewriter interface. Buffers, shown separately, may, be needed to feed the inputs of some computers (see text).

Teleprinter interface

To enable the teleprinter to accept t.t.1. level signals sent by the converter, some minor modification is required. If your teleprinter has a separate terminal unit and interconnecting cable, these are not required and can be discarded. The motor is driven from 240 V a.c. mains. This input is taken to the input of the mains filter on the far left of the teletypewriter, underneath. The electromagnets are to be driven by the input from the adpator and they move an actuating arm one way or the other depending on the state of the input signal. This movement is passed on through the mechanical print mechanism to decode the character and print it.

All original connections to the electromagnets should be removed and the circuit shown in Fig. 6 constructed and connected to them. The electromagnets are on the right-hand side of the unit, on top, but, the connecting block for them is underneath, directly below. It consists of four connectors as shown in Fig. 7. Original connections should be removed and the middle two connected together and the outer two taken to the interface circuit board. This board can be constructed on Veroboard from the circuit in Fig. 6 and can either be mounted in space underneath the teleprinter or in a separate box. Which way round the electromagnet

* For $8 B C$ computer, PC_{2} output (pin 10) is not connected
\dagger For Dragon computer only. For other computers, see text

connections are made is important, but is best found by trial and error as described later.

The circuit of Fig. 7 was designed to accept either RS232 or t.t.1. levels and so the first section converts the input to 0 and +5 -volt levels. This then drives three logic gates which give complementary signals to drive the two Darlington transistors. One or other is on according to the input state thus sinking current through one of the $2.7 \mathrm{k} \Omega$ resistors and coils, giving a reversal of current through the coils for a change of input state.

Setting up

The adaptor can now be connected to the computer and the teletypewriter interface.

Centronics-to-teletypewriter interface

Programmed microprocessors and kits of parts including p.c.b. and mains transformer are avallable from Magenta Electronics Ltd, 135 Hunter Street, Bur ton-on-Trent, Staffordshire DE14 2ST for $£ 24.98$ and $£ 12.97$ respectively, including vat. Case and hardware cost a further E 3 , and postage is $50 p$ for each order

For those who already have the Picotutor or any 68705s of their own and require the latest software release or wish to use a crystal instead of resistor oscillator, the 68705 can be remprogrammed by the author for an inclusive cost of $£ 2$ by sending it to 57 Dalebrook Road, Burton-on-Trent, Staffs DE15 $0 A B$. State whether a crystal or resistor clock is to be used.
The program for the teleprinter interface is included in the latest version of the Picotutor monitor (version 1.2) which also has some minor modifications to the monitor and the software for the teletypewriter interface and mini-organ (November 1983 issue). The mini-organ runs from address '0A4' or alternatively will run automatically at switch-on if PB_{1} is tied to ground and PB_{0} to +5 V . This turns Picotutor into a stand-alone organ

Fig. 6. Teletypewriters weren't designed with computers in mind so this circuit is needed to raise the low-level signal for driving electromagnets.

First check that the electromagnets have been connected up correctly. With everything connected up, switch on the computer and teletypewriter. If you are using Picotutor key in go 0Al to run the program. The stand-alone version automatically runs the program at power-up. If the electromagnet connections are correct, the teletypewriter motor should run and nothing else happen, but if it clatters away seemingly trying to print something, but not actually doing so, then the two connections from the interface board to the electromagnets should be reversed.

The printer is now ready for trying out, but the variable resistor on the adpator may need adjusting before intelligible results cacn be obtained. This resistor sets the clock speed of the 68705. Data rate timing depends on this resistor. Using Picotutor, R_{17} will need either to be replaced by a $22 \mathrm{k} \Omega$ variable (or a selected fixed resistor). If you are using a crystal for timing (the eprom has to be reprogrammed for this, see December 1983 issue) a crystal of 3.2768 MHz should be used, which will give the correct data rate without adjustment.
Enter a line or two of text into the computer and then send this to the teletypewriter, using the LLIST command in the case of the Dragon. The teletypewriter should now attempt to print something. Adjust the variable resistor until the printing becomes intelligible; the setting is not critical.

Conclusions

One difficulty with this arrangement is that not all ASCII characters are available in Baudot. In most cases, a space is printed where there is no Baudot equivalent, with

Fig. 7.

Electrcmagnet connections on the teleprinter. These may need to be changed in some cases (see text)
 board
these exceptions.
By altering the table, any character can be made to print as you wish, so it is possible to alter this to suit your needs. I mentioned earlier that if you are using Picotutor you need to key in the program start address, but a stand-alone unit will run the printer adaptor at switch-on using PB_{0}. When the 68705 is powered up, all peripheral pins are programmed as inputs. On Picotutor, all port B lines are pulled up to +5 V by the 270Ω resistor network (see circuit diagram, December 1982 issue) but in Fig. 5 (stand-alone circuit) PB_{0} is tied to ground. At switch-on, or when reset is pressed, the monitor program tests the PB_{0} input. If it is one, it runs the monitor program, if it is zero, it jumps to the computer/teletypewriter adaptor program and runs that.

For those following the 'Assembly language programming' series, I hope that this description of a real application of the 6805 and the software listing will help to show some of the techniques of programming. When learning to program it is extremely useful to look at programs other people have written to get ideas and for this reason the complete source listing for the Picotutor monitor is available if required and is advised if full use of the facilities on the Picotutor is to be made. Unfortunately, because of its size (about 25 pages) it is not possible to publish it but copies may be purchased through Magenta Electronics (see box).
vion

Articles in this series

Picotutor

December 1982, pp. 52-54.
January 1983, pp. 70-72

Assembly language
 programming

March 1983, pp. 33-35
April 1983, pp. 63-66
May 1983, pp. 51-52
June 1983, pp. 59-61
August 1983, pp. 68-69
September 1983, pp. 45-49
October 1983, pp.71-72
November 1983, pp. 39-41
December 1983, pp. 56-61
January 1984, pp. 30-33

Designing with 68008

continued from page 33
tomized as intelligent peripherals having a 68008-type interface; the interface being emulated by m.c.u. software. Some of the m.c.u. i/o ports are used to provide the peripheral data bus $\mathrm{D}_{0}-\mathrm{D}_{7}$, chip-select (CS), read/write (R/W) DTACK, IACK, and register select $\left(R S_{n}\right)$ lines. Port lines programmed as inputs ($\mathrm{CS}, \mathrm{R} / \mathrm{W}$ and RS_{n}) are monitored by the on-chip software to determine 68008 accesses. And with the port lines used for $D_{0}-D_{7}$, DIACK and IACK, the m.c.u. may be programmed by the 68008 , and provide vectors during interrupt acknowledgement cycles. To the 68008 the m.c.u. behaves just like any other M68000 family peripheral. Nav

Matched filters for radar and satellites

Surface wave, charge transfer and digital v.l.s.i. devices enable complex and powerful matched filters to be made. Geoffrey Robinson describes some examples that illustrate their different forms and uses.

A fundamental building block of radar and communication systems, the matched filter is used in radar receivers as the main signal processing circuit to detect weak echoes returned from a target, and in synchronization and detection circuits of digital communication systems. Matched filters have nothing to do with the concept of impedance matching between filters for maximum power transfer. They are, in fact, filters that are matched to a particular signal. They can be either entirely passive or active and range from the simplest two component capacitor-resistor low-pass filter to complete sub-systems of thousands of amplifiers, logic gates and associated circuits.

A filter is said to be matched to a signal if its impulse response is the time-reversed replica of that signal. The filter matched to the signal $\mathbf{x}(\mathbf{t})$ shown in Fig. 1(a) would therefore have an impulse response $h(t)$ as shown in Fig. 1(b). Mathematically the

relationship between the two waveforms, which defines a matched filter, is

$$
\begin{equation*}
h(t)=k x\left(t_{0}-t\right) \tag{1}
\end{equation*}
$$

where k is an arbitrary constant and t_{0} is a fixed time delay. The transfer function $H(\omega)$ of the matched filter is the Fourier transform of $h(t)$

$$
\begin{equation*}
\mathrm{H}(\omega)=\mathrm{kX} \mathrm{X}^{\star}(\omega) \exp \left(-j \omega \mathrm{t}_{0}\right) \tag{2}
\end{equation*}
$$

where $X^{\star}(\omega)$ is the complex conjugate of $\mathbf{X}(\omega)$, the Fourier transform of $\mathbf{x}(\mathrm{t})$. The frequency response $H(0)$ of the

by G. N. Robinson B.Sc.

Since graduating from Salford University in 1975, Geoff Robinson has worked for Marconi Avionics on the AEW Nimrod project, and for Marconi Communication Systems where he is currently a principal engineer in the space and microwave division. During this time he has also spent three years at Leeds University working on an experimental spread spectrum system which will form the basis for a Ph.D thesis.
matched filter is therefore the same as the amplitude spectrum $|\mathbf{X}(\omega)|$ of the signal to which it is matched. The output of the filter, $y(t)$, is found by convolving $x(t)$ with $h(t)$

$$
\begin{equation*}
y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau \tag{3}
\end{equation*}
$$

From Fig. 1(c) the matched filter has caused considerable distortion of the input signal $x(t)$. This distortion is typical of all matched filters which in general produce a 'peaked' symmetrical output, similar to $y(t)$, when their matched signal is the input. Substituting equation 1 in equation 3 gives

$$
\begin{equation*}
\mathbf{y}(\mathrm{t})=\int_{-\infty}^{\infty} \mathbf{x}(\tau) \cdot \mathbf{k} \mathbf{x}\left(\mathbf{t}_{0}-t+\tau\right) d \tau \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{y}(\mathrm{t})=\mathbf{R}\left(\mathrm{t}-\mathrm{t}_{0}\right) \tag{5}
\end{equation*}
$$

The output therefore is the autocorrelation function $R(\tau)$ of the matched signal. This often serves as an alternative definition of a matched filter: i.e. one whose outpur sig-
nal is the autocorrelation function of its input signal.

The 'peaked' output obtained from a matched filter is exactly the type of response needed to detect the presence of a signal buried in noise. The matched filter is, in fact, the optimum device for detecting weak signals and it is therefore no surprise to learn that it forms the basis of many radar and digital communication receivers. In digital communications, matched filter considerations generally only arise when transmitter power is limited, such as in the case of satellite communication.

Before discussing the use of matched filters in satellite earth stations it is necessary to review some of the fundamentals of digital transmission. Digital information, whether computer generated or from some other source such as p.c.m.-encoded voice, is usually available prior to transmission in the form of an n.r.z. rectangular waveform, as shown in Fig. 2(a). To transmit

such a waveform without distortion would require an infinite bandwidth in theory. The waveform can be considered to be made up of the sum of individual pulses as in (b) which are confined to a time interval t seconds. If the n.r.z. waveform is filtered to limit the bandwidth, the effect on the individual pulses is to stretch them so that they are no longer entirely contained in their original time slot.

The effect of one particular low-pass filter is shown in Fig. 2(c). If the filtered n.r.z. signal is sampled at the points shown the tails of the individual pulses will affect the sample values in the nearby time slots. This effect, known as intersymbol interference (i.s.i.) can be avoided if the filtering is performed in accordance with Nyquist's vestigial symmetry theorem. This theorem, put forward by Nyquist as long ago as

1928, states that the zero crossings of the waveform in (c) occur at the sampling instants (giving no intersymbol inteference) if the filter is either an ideal 'brick-wall' low-pass filter or an ideal 'brick-wall' lowpass filter with a transition band modified to give odd symmetry about the cut-off frequency. The theorem also requires the original n.r.z. waveform to be converted into a sequence of impulsis so that the spectrum at the input of the filter is flat over the filter bandwidth. A class of widely used filters which satisfy this theorem are the raised-cosine filters. The amplitude response of the raised-cosine filter with various values of excess bandwidth or rolloff factor α are shown below. A linear

phase characteristic up to the zero transmission frequency is also required. In any bandwidth-efficient data transmission system with no intersymbol interference, overall channel filtering should therefore be as shown or equivalent to it for an r.f. modulation system.

Satellite data transmission

Although the overall channel response for interference-free data transmission has been specified, the apportioning of this response between the various transmitter and receiver filters is a complicated problem. It is true, however, that if the transmission medium is linear between the transmitter and the receiver then the optimum split of the overall response is an equal division of the filtering between the transmitter and the receiver. The frequency response of the identical transmitter and receiver filters is therefore the square root of the response shown. This filter, known as a root cosine roll-off filter, is therefore only 3 dB down at half the signalling frequency as opposed to 6 dB in the diagram.
The equal division of the overall Nyquist response results in a matched filter at the receiver. This then simultaneously combats both intersymbol interference and the effects of noise. Although most satellite channels are non-linear due to the operation of transmitter high power amplifiers at or near saturation, the matched filter concept is still used in many earth station designs. A number of major satellite operators have specified this type of system including Intelsat who have made root 40% cosine roll-off filtering mandatory for their $120 \mathrm{Mbit} / \mathrm{s}$ t.d.m.a. traffic service through the Intelsat V satellites. The earth station receiver filter mask specified by Intelsat is illustrated next, being nominally a root 40% cosine roll-off filter

The actual filters used to realise these responses are generally based on standard filters such as Butterworth, Chebyshev or elliptical filters. The filter shown below consisting of a sixth-order Butterworth filter followed by a stage of delay equalization realises a root 100% cosine roll-off low-pass filter.

Radar

Most radar receivers use matched filtering, although prior to about 1960 this was relatively trivial and merely involved the optimizing of conventional i.f. bandwidths. The usefulness of a matched filter, from a radar designer's viewpoint, is directly proportional to the time-bandwidth product of the filter, obtained by multiplying signal duration by filter bandwidth. Unfortunately the complexity of a matched filter is also proportional to its time-bandwidth product. The type of matched filters previously discussed in relation to digital communication generally have time-bandwidth products of the order of unity and are consequently not considered to be complex. In radar, however, the designer

is not restricted by considerations of intersymbol interference and as a result has virtually an infinite variety of waveforms and corresponding matched filters to use for his signal processing functions. Current state-of-the-art in radar matched filt-
ers provides a time-bandwidth product in the range 10,000 to 100,000 .

The main motivation behind the early matched filter development which led to the invention of the pulse compression radar was the need to obtain good range resolution with limited peak powers. Long range detection requires a large pulse energy which with a conventional powerlimited radar means increasing the pulse duration. This causes a direct reduction in range resolution and accuracy. If instead of increasing the pulse duration the pulse bandwidth is increased, an improvement in range resolution in proportion to the time-bandwidth product is obtained.
The most well-known pulse compression technique uses the frequency chirp waveform shown next together with its dispersive delay-line matched filter. The

matched filter output, which is the compressed pulse, is shown below. The sin \mathbf{x} / \mathbf{x}-shaped pulse has a peak which is $\sqrt{ } \mathrm{BT}$ times larger than the original chirp signal amplitude. Dispersive delay lines, that is

delay lines with a delay proportional to frequency, are today generally fabricated using acoustic surface wave technology and a wide variety are currently available 'off the shelf'.
The more complex matched-filter receivers which have also to satisfy the additional requirement of being able to process many different waveforms often resort to digital techniques. Bottom diag. is a flexible arrangement which performs matched filtering by multiplication in the frequency domain, rather than by convolution in the time domain, as in the previous filters discussed. In this method the signal is first sampled at a very fast rate, anything up to 200 MHz , and then passed through an a-tod converter. Blocks of digitized samples are then converted into corresponding blocks of frequency samples by a fast Fourier transform circuit. Then next these samples are multiplied by stored coefficients which represent the conjugate spectrum of the signal. Finally the transform circuit is re-configured to perform an inverse transform on the samples.

Testing
 microprocessor-based systems at home

Though the design of microprocessor systems is not particularly difficult, testing is not so simple for the first-time builder without access to logic analysers or emulators. Here are some simple procedures that highlight hardware and software problems.

The design of simple microprocessor systems is not a particularly difficult task. Provided that one adheres to the correct oading rules for both current and capaci.ance, the design can be as easy as putting oy building bricks together. However, esting that the system - hardware or software - works is not so simple for the amateur or first-time builder who does not ave access to logic analysers or plug-in nicroprocessor emulators. This article dentifies some simple procedures to highight both hardware and simple software oroblems. The discussion is based around he 8085 microprocessor but applies to irtually any microprocessor having a eady input.
Developed in the mid-seventies by Intel, he 8085 is an update for the 8080 chip set. Because the device has only 40 pins, Intel nultiplexed the lower eight address bits with the eight data bits on lines designated $\mathrm{tD}_{0.7}$, Fig. 1. Figure 2 shows typical iming for the 8085 during a memory read and illustrates how AD_{0-7} are multiplexed. The 8085 produces a clock output that is talf the frequency of the source at X_{1} and X_{2}; the timings of all the other signals

Fig. 1. Pin-out of the 8085 indicates the difficulty in using only 40 pins.

by Colin Carson

Fig. 2. Bus $A D_{0-7}$ is multiplexed between address and data by ALE.
produced by the microprocessor are related to its edges.
Shortly after the start of T_{1}, the lower eight bits of the memory address appear on lines $\mathrm{AD}_{0.7}$ and are guaranteed to be stable before the negative edge of ALE, generally used to latch the address into an eight-bit buffer such as a 74 LS373 (see Fig. 3). As
this is a transparent buffer, the address will be passed through the buffer whenever ALE is high, and latched on the negative edge. The address is stable some time before the latching and the use of a transparent latch ensures that the address is available early in the read cycle, so that it can be used by other circuitry such as chip select logic. This is a great advantage when using fast microprocessors.

Around the start of T_{2}, the memory address bits are removed and $\mathrm{AD}_{0.7}$ goes tristate, waiting for data to be read in during T_{3}.

Figure 3 shows how this might be achieved in hardware terms. Some designers add an additional latch on the upper eight address lines, which can glitch when certain instructions are executed.

During a write cycle the multiplexing of $\mathrm{AD}_{0.7}$ follows in a similar fashion, address being valid before the trailing edge of ALE and valid data long before the rising edge of WR.

Ready

The 8085 has a ready pin which can be used to extend the length of read or write cycles to compensate for slow peripheral chips or to handle devices not always available such as dual-ported memory. Figure 4 shows how the ready pin is sampled by the

Fig. 3. TTL latches to demultiplex the address from the bus.

READY must be stot: tura period tefor: the sample
Fig. 4. READY is sampled during T_{2} and any successive wait states.

8085 in the middle of T_{2}, although it must be stable for a period before the sampling, the set-up time. If ready is low when sampled then on completing the T_{2} cycle, the 8085 produces another T_{2} cycle rather than going on to T_{3}. This will repeat until the ready pin is sampled high.
The test procedures mentioned here make use of the ready pin, and the fact that signals such as $\bar{R} \bar{D}, W \mathrm{R}$ and AD_{0-7} remain unchanged during the not ready period.

Reset

After the 8085 is reset, it reads the contents of the memory location whose address is 0000 . It then continues to read from consecutive locations, decoding and executing them until instructed to jump to a different adjress. However if the ready pin is forced low before the 8085 is reset the microprocessor sits doing repetitive T_{2} cycles with the address 0000 at the outputs of the latches, $\bar{R} \bar{D}$ low and waiting for valid data. This valid data should be the contents of the first location in prom and will invariably be the first byte of the three byte instruction LXI SP which sets-up the internal stack pointer.

First test procedure

1. Check that the Hold input is not being driven high. Hold will force many of the 8085 outputs tristate.
2. Pull the ready input low, taking care not to damage any chips driving this pin. If necessary remove the 8085 from its socket and bend the ready pin so that it does not make contact on re-insertion. Then using a crocodile clip and lead ground the ready pin.
3. Reset the 8085.
4. Using a logic probe or oscilloscope, check the address lines are all low.

Fig. 6. Provided there is adequate bus during capability, seven-segment displays can be used to follow address and data.

Fig. 7. Multiple step function can easily be incorporated, as shown.
5. Check the address pins on the prom are all low.
6. Check the chip select logic is driving the chip select pin on the prom low.
7. Check that R D is driving the output enable on the prom low.
8. Check the correct eight bit data for location 0000 is present on AD_{0-7}.
By following this step-by-step procedure simple hardware faults can be highlighted but because all the address lines are low, this will not show up shorts between them. To further exercise the hardware and trace simple software faults a single step facility is required, such as that in Fig. 5.

Fig. 5. The 8085 can easily be single-stepped by using t.t./.

Single step

The next stage is to step the microprocessor through instructions, monitoring the data and address buses until something unexpected happens. When the circuit is on, the flip flop and hence ready can be either low or high. After the power-on reset, the 8085 produces an ALE to latch the lower address byte 00 . Signal ALE is inverted by G_{3} clearing the flip flop and ready goes low. This condition will continue until the push switch S_{1} is depressed, which after debouncing by G_{1} and G_{2}, clocks a high through the flip flop. Ready goes high and the 8085 completes reading the first instruction and issues the address for the next byte. Once again the flip flop is cleared and the microprocessor waits for S_{1}. In this fashion S_{1} can be used to single step the 8085 through each byte of each instruction. Take care to ensure that G_{3} does not overload the ALE line, which can drive a maximum of five normal LS t.t.l. loads.
Using this circuit the microprocessor can be stepped through its program in prom until something goes wrong. Often it will only take a few instructions to highlight shorted address or data lines, although the tester will obviously need to be able to spot certain 8085 op-codes such as jumps, calls, interrupts and returns. The beginner to the 8085 should learn a lot

Synthesized television modulator

As well as providing 5.5 and 6 MHz sound, this modulator can be accurately switched to any desired u.h.f. channel

There are a variety of television modulators currently available for inclusion into video games, pattern generators etc. Such modulators have a tuning characteristic with a very wide tolerance, and a longterm and thermal frequency stability that leaves a lot to be desired. These problems are being highlighted by the introduction of frequency synthesis to domestic television receivers. These precision tuning systems still require provision for fine tuning and a.f.c. It seemed obvious to us that frequency synthesis should also be applied to the television modulator, and this article describes such a design.

The objective then was to provide a television signal at r.f. whose frequency could be adjusted with confidence to any Gne of the recognized u.h.f. television channels. Frequency synthesis would be used, the channel being loaded by thumbwheel switches, and the whole system being under the control of a microprocessor. The diagram of Fig. 1

Fig. 1. Block diagram of complete tv synthesizer.

by R. Wilkins \& L. Cergel

shows a basic phase-locked loop whose programmable divider ratio is supplied from the microprocessor.

Microprocessor

The MC6805-P2 m.p.u. is an eight-bit microprocessor with a built-in software capacity of 1 Kbyte of rom, 64 bytes of ram, and twenty t.t.1./c.mos-compatible bidirectional input/output lines. Eight of the lines are l.e.d-compatible. The microprocessor is designed for low-cost high-volume applications; normally the makers of the device would produce a rom pattern from the customers software, and manufacture at least several thousand parts. For the one-off however, there is an eprom version that can be loaded with software and if necessary erased and loaded again many times over and the MC68705-P3 version was chosen for this application. Its task is to take in the channel number from the two b.c.d.

thumbwheel switches, do the necessary calculations and send the division ratio to the programmable divider. However, as the information sent to the programmable divider is latched into the divider the microprocessor unit need only send the information when it needs changing. This has the advantage of keeping radiation from the microprocessor to a minimum, which is essential in r.f. applications.
As the microprocessor is only checking the thumbwheel switches most of the time, it can be given additional work to do. Firstly, if the requested channel is less than 21 , the microprocessot presumes that the user has made a mistake, lights a lamp and sends the data for channel 21 to the programmable divider. Similarly, if a channel greater than 68 is requested, the light comes on again and channel 68 is sent. Secondly, as sound may well be required as well as vision, the micro-

Fig. 2. Restructuring of the ELC1043 tuner to turn it into a modulator.
processor can control a second phaselocked loop, synthesizing either a 5.5 MHz or a 6.0 MHz sound carrier.

Modulator

In Fig. 1 the circuit blocks that are enclosed by the broken line were the result of heavily modifying a Mullard ELC1043 television tuner. But as the purpose of this article is to decribe the application of frequency synthesis, only an outline of the necessary modifications to the tuner are given. The changes, shown in block form in Fig. 2, follow an original article by Trundle (Practical Television, April 1975).

Three further changes were necessary beyond the circuit described by Trundle. Firstly, the length of the oscillator tuning line was increased so that the whole u.h.f. band could be covered by the oscillator. Secondly, a $\div 64$ prescaler was fitted inside the tuner box and coupled up to the oscillator output. Thirdly, the original black-level stabilizing circuitry was improved. The result of the modifications was a tuner box that required and produced the signals shown in Fig. 3.

Phase-locked loops

Fig. 4 shows the contents of a UAA2000 which is the device chosen for both phaselocked loops in this application. The crystal frequency chosen was 4 MHz , and is used as a clock for the microprocessor as well as the second UAA2000. In both phase-locked loop circuits, the output from the reference divider is 976.5625 Hz , the frequency that the u.h.f. oscillator must be divided down to. For example, channel 44 is 655.25 MHz , and this must be divided by 670975 to make it equal the reference frequency. Part of the division ratio is fixed at 64 by the tuner pre-scaler and there is an additional fixed $\div 2$ in the UAA2000. The programmable divider
must therefore divide by 5242 to obtain the correct result. Calculation of the ratio provided by the programmable divider is done by the microprocessor.
The UAA2000 accepts data in serial form made up of 18 bits. Data are transferred into the shift register on positive-going edges of the clock, and latched into the programmable divider after the enable signal goes high. The required waveforms and their timings are depicted in Fig. 5, together with the format of the serial data word. The first four bits are used in v.h.f./u.h.f. operation and are all zero in this application. The last 14 bits are the binary equivalent of the division ratio, with the first bit, bit five, being the most significant. Fig. 6 shows the data, clock and enable waveforms for channel 44. This requires a programmable division ratio of 5242 which has a binary equivalent of 0001010001111010 . The order of the binary number is reversed however to satisfy the requirements of the UAA2000 shift register.
For the sound channel modulation, the microprocessor sends the binary equivalent of 2816 for 5.5 MHz or 3072 for 6.0 MHz .

Circuit description

The complete circuit diagram is shown in Fig. 7. The incoming video has its sync. tips clamped to a voltage adjusted to match ELC1043 a.g.c. characteristic.

A sound carrier is generated using a Hartley oscillator tuned by an MV2112 diode. Its output frequency can be either 5.5 MHz or 6.0 MHz depending on the data fed into the phase-locked loop divider. The sound carrier output, as well as being fed back to the UAA 2000 to complete the loop, is added to the video via an 18 pF capacitor. A locally generated 700 Hz tone
frequency modulates the sound carrier, though an external modulation may be connected. The correct $50 \mu \mathrm{~s}$ pre-emphasis is provided by the 2.2 nF capacitor connecting the audio to the Hartley oscillator. An ever-increasing frequency response is prevented by the $10 \mathrm{k} \Omega$ resistor limiting the maximum amplitude at about 15 kHz .

The two phase-locked loops have the same circuit but different filter time constants. Values used for the calculation of the loop filters are

$$
\begin{aligned}
\mathrm{K}_{\phi} & =0.8 \mathrm{volt} / \mathrm{rad} \\
\mathrm{~K}_{\mathrm{o}} & =84.5 \times 10 \mathrm{rad} / \mathrm{s} / \mathrm{volt} \text { for vision } \\
\text { and } \mathrm{K}_{0} & =571 \times 10 \mathrm{rad} / \mathrm{s} / \text { volt for sound }
\end{aligned}
$$

Both UAA2000s share the same data and clock, but have different enable signals for obvious reasons.

Software description

Because there is no hardware or timer interrupt used in the system, the software is organized as depicted in Fig. 8.
Initialization. After power is applied or the reset activated, the microprocessor starts with the initialization subroutine. The following operations are performed. Input/output relations are established on ports A and B. Port A is configured as eight input lines, on port B only the line PB_{2} is configured as input; all remaining lines are outputs. The UAA2000 circuits are set into the starting conditions, in that the input VDR, DATA, CLOCK are set into logic state 1 . The starting address of the program - which is the initialization - is stored under the reset interrupt priority. The MC6805P2 or MC68705 can be reset three ways: by initial 'power-up', by the external reset input (RESET), and by an optional low-voltage detect circuit.
Input data for vision. In this subroutine the switches are read and debounced. The value is read in b.c.d. and compared to the value previously read. If there is no difference, no further action is required

Fig. 3. Signal levels to be found around the modified ELC1043 tuner.

Fig. 4. Simplified block diagram UAA2000 showing the parts necessary in this application taken from Motorola data.

Fig. 5. Motorola UAA2000 data format and timing diagram.
and the program execution is diverted to the next subroutine. If there is a difference, the b.c.d. is transformed into the n.c.b. value. The result of the transformation is compared to the value for channels 21 and 68. If the new value is lower than that for channel 21 , the value for channel 21 is considered correct. On the other side of the scale, if the new value read is greater than 68, the value for channel 68 is considered correct. In both cases the lamp is switched on, signalling an
incorrect value read from the switches
In the next step, the division ratio for the UAA2000 circuit is calculated. The result is 14 bits long and stored in two registers. Input data format for the UAA2000 is 18 bits long and consists of the band code, which is four bits long and the input frequency division code, which is 14 bits long. High-to-low transition on the v.d.r. allows an access to the new data. The new data starts with the band code first, followed by the input frequency

Copies of the software listing and printed circuit board and component layouts are a vailable from the editorial office at Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS, in return for a stamped and addressed envelope.
division ratio code, most significant bit; first. During this operation the timing: must be guaranteed, as required by the data sheets for the UAA2000.
Data input sound. Information about the sound frequency is on the pin PB_{2}. The input frequency division code for the sound is altered only if there was a change with the previous reading. The values that are to be sent to the UAA2000 for sound are stored in the same registers as the vision values, and the same routine for code generation is used as for the vision code. At this stage the program is returned to the reading of the possible new data for vision and the process continues.

Fig. 8. Software flowchart for both sound and vision loops.

Fig. 6. Serial input waveforms for channel 44 as sent to Motorola UAA2000 controlling the modified tuner frequency.

Fig. 7. Full circuit diagram of synthesized television modulator.

Performance

Vision carrier power $+87 \mathrm{~dB} \mathrm{\mu V}$ Sound carrier power $+50 \mathrm{~dB} \mu \mathrm{~V}$ Residual f.m. on vision carrier $\pm 3 \mathrm{kHz}$ Vision/sound intermodulation -50 dB Vision bandwidth -408 at 5 MHz -8 dB at 10 MHz
In settling from channel 40 to channel 41, the software processing time is 43 ms , followed by a p.lil. settling time of 11 ms .

Testing microprocessor-based systems

about its operation by making practical use of this circuit

Displays

Examining the address and data buses with a logic probe or oscilloscope for a dozen or so instructions starts to prove rather tedious and if serious use is intended then it is worthwhile adding some displays and a high-speed multiple step.

Data and address can be displayed on individual l.e.ds or more expensively on seven-segment displays. Either way, the addition of displays must load the 8085 as little as possible and certainly via buffers.

One approach is to wire the buffers etc to a 40 pin i.c. clip that fits over the 8085.

Figure 6 shows an array of seven-segment displays D_{1} to D_{6}. Displays D_{1} and D_{2} register the upper address byte and are driven from a 74LS373 latched on a buffered version of ALE so that it only presents one LS load. Each display is a TIL311 which includes the relevant decoder. Other displays can be used although not all can display the hex codes A to F satisfactorily, or alternatively single l.e.ds could be driven from each bit. Consideration must also be made of the extra power consumption this type of circuit requires. Displays D_{3} and D_{4} show the lower
continued from page 45
address byte and $\mathrm{D}_{5}, \mathrm{D}_{6}$ the data. And IC_{3} can be either a straight buffer such as an 81LS95, or a latch clocked by $\overline{\mathrm{R}} \overline{\mathrm{D}}$ or $\overline{\mathrm{W}} \overline{\mathrm{R}}$ so that either can be monitored. Note that this circuit loads AD_{0-7} with two buffers.

Multiple step

A multiple-step facility can easily be incorporated, as shown in Fig. 7. The capacitor value can be varied to suit personal choice.

There are many other enhancements that can easily be made, however the circuits and notes described here have to be found quite adequate for simple hardware and software debugging.

MNO

TEM-WAVE PHYSICS

Lest the fierceness of Mr Catt's response to Mr Dalton (February 1984 issue) obscures what he said, could I diplomatically support all that was contained in his letter while at the same time describe a situation where E and H are 90 out of phase. This should please Mr Dalton
But first let me remind Mr Dalton that the opposite of "static" is "dynamic" and not "oscillatory". The last is just one of many modes of motion which need not even be periodic. This is particularly important because the example 1 propose to give for E and H being 90° out of phase is static. This should please Mr Catt.

Starting from Maxwell's equations it is easy to derive equations of wave propagation for E and H , the solutions of which are
and

$$
\begin{aligned}
E & =f(x-c t) \\
H & =\frac{1}{c \mu} f(x-c t)
\end{aligned}
$$

where f can be any function, not just sinusoidal or even periodic e.g. a digital (level) change, a single pulse - square or any other shape

The variation (f) of H matches precisely the variation of E (also f) whatever whatever f happens to be. There is no delay between E and H or, in the case of f being sinusoidal, no phase difference. As Mr Catt states there is no causality between \mathbf{E} and H . However, and this may be part of the origin of Mr Dalton's error, there is a rotation of 90° from E and H which is right handed about (not along) the direction of propagation. Thus if f is sinusoidal E and H are in phase but at right angles to each other in space, not time.

If the equations above are divided one into the other then

$$
\frac{\mathrm{E}}{\mathrm{H}}=\frac{1}{c \mu}=\sqrt{\frac{\mu}{\epsilon}}=\mathrm{Z}_{0}
$$

where Z_{0} is the wave impedance of free space (about 375 ohms) which is independent of f.

If E and H were sinusoidal and 90° out of phase as Mr Dalton suggests, then Z_{o} would be the tangent i.e. from minus infinity to plus infinity. This would make it difficult for a wave to propagate. At the very least it would imply causality if one knew which occurred first and at worst would mean changing the title of your illustrious magazine.

This brings me to the example of E and H being out of phase and possibly the other half of Mr Dalton's confusion.

Suppose that a sinusoidal wave described by

$$
\mathbf{E}_{1}=\mathbf{E}_{0} \sin \left\{\frac{2 \pi}{\lambda}(\mathbf{x}-\mathrm{ct})\right\}
$$

has superimposed on it an equal wave but travelling in the opposite direction, say by reflection, described by

$$
\mathbf{E}_{2}=\mathrm{E}_{0} \sin \left\{\frac{2 \pi}{\lambda}(\mathrm{x}+\mathrm{ct})\right\}
$$

Some trigonometry reduces the sum of these to

$$
\begin{gathered}
\mathrm{E}_{1}+\mathrm{E}_{2}=2 \mathrm{E}_{0} \sin \frac{2 \pi \mathrm{x}}{\lambda} \cos \frac{2 \pi \mathrm{ct}}{\lambda} \\
\quad \text { or } 2 \mathrm{E}_{0} \sin \frac{2 \pi \mathrm{x}}{\lambda} \cos \omega
\end{gathered}
$$

Similarly $\quad \mathrm{H}_{1}+\mathrm{H}_{2}=-2 \mathrm{H}_{0} \cos \frac{2 \pi \mathrm{x}}{\lambda} \sin \omega \mathrm{t}$
This results in the well-known standing wave where the nodes of H correspond with the peaks of E and vice versa i.e. 90° out of phase. When E is a maximum, H is zero everywhere. Then H
grows and E decreases until it is a maximum and E is zero, and so on cyclically. Thus the standing wave has all the appearance of transforming itself from an entirely electric form to an entirely magnetic one and vice versa. But it is just an illusion, for as Mr Catt states, there is no causality between E and H for a single wave, still less is there any between two in which we only observe their interference pattern.
This, I hope, explains the source of Mr Dalton's confusion.
Finally I would like to disagree with Mr Catt (only in a very minor way) concerning his references. Carter in his book "The Electromagnetic Field in its Engineering Aspects" pages 266 to 276 is quite specific about there being a delay (or phase difference in the sinusoidal case) between E and H , both in his diagrams and text, and of which the above is, I trust, an accurate paraphrase. They correspond, though in different words, with the views expressed by Mr Catt.
E. O. Richards

Hitchin
Herts
PS: For those who share Mr Catt's disgust with sin and cos I commend a closer look at Walsh functions, an introduction to which appeared in these pages in January 1982. An excellent book on the subject is "Walsh Functions and the Engineering Applications".

OPERATING FORTH

The articles by Brian Woodroffe and Roy Easson on the description and applications of the Forth language have been admirable and must have done much to popularise this elegant little computer language. In particular Mr Easson's introductory paragraphs are as concise an explanation of Forth as I have seen anywhere.

Of all the features of Forth the one which seems to be over-emphasized is the manner in which it is extensible, i.e. that new words, defined by the user, can be added to the dictionary thereby extending the language. This mechanism is not unique to Forth. Most languages especially the so-called block-structured ones have similar features. In Algol, Pascal and Coral 66 the section of code which carries out one small well-defined task can be isolated, called a procedure and then given a unique name Thereafter, whenever that particular little job needs to be done, the controlling program merely calls that procedure by name. Similarly the procedure can be incorporated into bigger procedures and so on. Most large operating systems with a job control language have a similar arrangement. Sequences of commands are put into a named file (a macro) that can then be considered as an extension to the j.c.l. since invoking it causes the machine to obey the command sequence it contains. That macro may also be incorporated in further macros. Where Forth scores is surely the simplicity with which its new words are defined
It is this simplicity and conciseness which are its real advantages. Forth is not just another language. It is also a complete miniature operating system. In size, it requires much less memory than most compilers would require as their workspace.
In implementation it means that Forth can be installed on most machines quickly and economically, especially if the FIG-Forth model is used. In operation, it means that a new user can
sit down at any keyboard and use Forth without needing a week or more to learn how to drive the host computer first (the problem that ADA is striving to beat). Time on development is saved and, due to the structures of Forth, so is time and effort in testing. Any project manager on a tight budget will tell you how valuable these savings can be

I don't wish to eulogise Forth, for it is not the perfect language by any means. But its more unusual virtues are very real and deserve recognition. It comes much closer than any other so far to my personal ideal of a Universal Assembler Language that I can afford

L. J. Smith

Barnet
Herts.

‘CURRENT DUMPING’

Readers may be interested in the basis on which 'current dumping' is founded. In the Wireless World for January 1973 and October 1974 I published two contributions on 'error take-off', as I now call it, which preceded P. J. Walker's AES lecture on current dumping in March 1975.

However, Vanderkooy and Lipshitz have very clearly shown in the $\mathcal{J A E S}$ (Jan./Feb 1980, Fig.6) the connection, reproduced below. It may well help others who wish to develop error take-off circuits, of which current dumping is a successful example.

A. Sandman

London NW3

(b)

$$
\text { For error null } \frac{Z_{2}}{Z_{1}}=\frac{Z_{3}}{Z_{1}}
$$

(C)
(c)

Fig. 6. (a) Sandman's "error take-off" principle, in which any errors (including gain errors as well as nonlinear distortions) caused by A_{1} appear at its virtual ground summing point Q and are thus available for amplification by the auxiliary amplifier A_{2} and subsequem subtraction from the output signal (b) The cirevit rearranged to make use of an operational amplifier for \mathbf{A}_{2}. (c)
Show ing hou "'curtent dumping" is derived from (b) The resisShow ing hou "curtent dumping" is defived from (b). The resisthe output of A_{2}. If A_{2} has a large gain then there will be no

FORTH COMPUTER

Although James Kidd and I agree about what makes the 6809 so sutable for FORTH, I disagree with his rankings: 1 data stack access 2 NEXT 3 control stack access. As NEXT is executed every time any code fragment finishes it is executed as often as all other fragments put together. Hence it is the most critical piece of code in any FORTH implementation. It is the execution frequency and not the static frequency of occurance that matters (i.e. those things at the centre of loops matter more than those outside). Conversely the execution time of 80% (or is it 66% ?) of the code has minimal effect on the overall performance. Hence the fast execution of infrequently encountered instructions (e.g. divide, string search versus add, move etc) is almost irrelevant and hence the RISC argument. It is a mistake to make a virtue out of anything that extends NEXT not only because NEXT is time critical but also because error correction and program testing in a high level interactive environment should be done with the tools of that environment and not with the aid of single step debugging.

The FORTH primitives DOCOL and SEMIS are the most commonly executed. Implementers of FORTH on processors which do not support two stacks should investigate the potential of making the control stack the processor "normal" stack and maintaining the data stack via a user pointer. This should benefit the 8088 for the common control stack operators (DOCOL, SEMIS) only push and pop values. This would leave BP free to access the data stack using indexing modes as noted by J. O'Connor. The 8088 BP register is used for the control stack in the FIG model.

The 9900 series memory to memory architecture appears to be peculiarly unsuited to computation and FORTH for most operations involve the time penalty of three data accesses to memory whereas more normal architectures (e.g. 6800/8080 etc) seldom require more than one. Texas have dropped their 99/4A home computer (9995 based) and their latest personal computers incorporate more mainstream products. However, the 9995 by virtue of its own on-chip memory that could be programmer maintained as an instruction cache could be an interesting prospect for FORTH. Caching is a method of keeping frequently accessed data (or instructions) in fast on-chip memory which makes the whole memory system look faster. It is similar in concept to paged virtual memory between disc and main memory which FORTH has. I leave it to the interested reader to follow this up. (The Z 800 with genuine on-chip cache looks especially interesting in this respect.)

Mr Bacon goes on to castigate me for trying to make some allowance for the processor's required memory speed. In any design with a half decent size of memory the cost of that memory will be more than that of the processor (in my case $4: 1$ approximately), hence it is reasonable to make some allowance for higher cost of faster memories. Hence my crude attempt to rationalize processor speed with memory access time. As James Kidd points out access time does not linearly scale with clock rate (especially if wait states are used). However, some allowance must be made. Also as James Kidd points out my design should use 350 ns eproms, although I still use 450 ns parts with a standard 6809 running at

[^2]1.5 MHz . As the read/write control signals (MR, WE etc) are conditioned by the processor clocks there is no problem if the chip selects glitch upon an address change.

The on-chip memory used as a program cache is the main reason why Texas were able to show the 9995 running the Intel benchmarks faster than the 8088. One would expect the 9995's performance to be less good if the program could not fit the cache. So there are problems about the suitability of the benchmark as a performance indicator for the target application. Similar reservations should be borne in mind when looking at the Seive of Eratosthenes results. If your application is scientific (floating point operations dominate) then the Seive results will not be a good indicator. You should think in terms of a processor that supports a numeric co-processor (i.e. a newer 16 -bitter or a mini), but if you want to run FORTH then in most any environment the 6809 takes a lot of beating.

It is not true that 'in most high level languages most time is spent pushing garbage'. Today's compiler technology is such that an optimizing compiler will produce more efficient code than a human can. Not only will it be done correctly every time but also the computer is much better at taking a global picture. Hence reasons why neither Inmos (Occam for the transputer) nor Xerox (for the Mesa system) issue details of the machine instruction set, for the conpiler will produce optimum code. Today most operating system kernals are written in compiled code (e.g. Unix in C). High-level languages are accepted as the means to get programs to work more quickly and thus save programmers' time. No matter how fast a program runs, unless it runs correctly, it is wasting programmers' time

Dr Croker of Woking has written to me pointing out that the FIG model for the 8088 is coded sub-optimally. NEXT can be shortened to the four byte macro 'LODSW; MOV BX, AX; JMP [BX]' improving NEXT's speed by about 40%. It is not true that as originally coded there have to be multiple copies of NEXT for the JMP NEXT is coded as a short jump (+-32 k bytes) and not a near jump (+-127 bytes) as Martin Bacon supposes. Second, by keeping the top of data stack in a register (e.g. DI), many data primitives can be improved (e.g. @ becomes MOV DI, [DI] etc). This technique can be applied to any simulation of a zero address machine. I looked into this when I coded my 6809 (top of stack in D) but I felt the disadvantages to the branch primitives (OBRANCH, (LOOP) etc) would outweigh the benefits to the data primitives (@, + etc).

Mr Carter of Nottingham has also written to me showing that my method for producing a 11μ s data transfer routine can be improved. He points out that as the transfer loop does not affect the carry flag then it can be cleared upon loop entry. This is then tested for upon possible loop exit and in the normal case it will loop back. However when the sector transfer is complete the NMI interrupt occurs to set the carry flag in the saved context hence letting the processor exit the loop. As the interrupt does not cause the loop exit but only flags for it there is no need to have differing interrupt vectors. He also points out that if the WD1793 exhibits an interrupt latency near its maximum rather than typical value my data transfer loop could fail, requiring a re-try ($\mathrm{t}_{\mathrm{irr}} 500 \mathrm{~ns}$ typ, 3000 ns \max).

Further failings in my proof readings have been detected by constructors. The full list of

errors appears to be

- pins $39 / 40$ of the 6821 pi.i. are shown reversed June page 56.
- power supply op-amp is MC3405 July page 61.
- power supply op-amp pins $5 / 6$ shown reversed July page 61.
- 6809 interrupt pins are irq 3, firq 4, nmi 5 May page 56.
- LS122 for pin 9 read 11, for pin 11 read 13 May page 56
- dot clock oscillator 51 pF connects to IC_{74} pin 9 not 8 June page 56.
- Some constructors' computers hang upon producing the log on message. I have been unable to reproduce this. It is apparently cured by pulsing an interrupt low.
- LS139 see corrections in June issue, page 58.
- LS138 pin 15 label ' v ' not ' u ' June page 56.

A source listing is also available.
Brian Woodroffe
Edinburgh

PRECISION PREAMP

I should like to thank Mr Armstrong (Letters, January) for the interest he has taken in my latest preamplifier design. Unfortunateky I am in the position of having to contradict virtually everything he says. At the end of my article I expressed the pious hope that anyone wishing to dispute points of the kind raised by Mr Armstrong would arm themselves with objective evidence (i.e. actual measurements). Sadly, he has not done this.
I was not surprised that I failed to convince everyone that tone controls could actually be useful; although it is less than ten years since a preamp without them would have been unthinkable, since then fashion and dogma have been invading a field in which the technical challenges have largely been overcome. Omitting the tone controls will not save a lot of components, as you must retain not only the high-impedance buffer, but also the tonecontrol op-amp, in order that the balance control can be retained. This also keeps all ins and outs in phase. I should like to emphasize that with the controls set centrally the signal undergoes no spurious phase shift or detectable degradation. Nonetheless, here are the details for a no tone-control version.
(a) Delete R_{21}, and C_{1}, to C_{21}, and also the treble control.
(b) Replace \mathbf{R}_{20} and the bass control with short circuits, and change $R_{18,19}$ to 1.7 k . This should be satisfactory, though I must emphasize that I have not tested it exhaustively.

I do not believe that I have neglected any of the important parameters of electrolytic capacitors. They are quite adequately reliable when operated with no polarizing voltage; only the application of a reverse bias greater than 1 V is likely to cause breakdown of the dielectric film. This of course cannot happen when an electrolytic is being used as an audio coupling capacitor, because the voltage across it does not change significantly during any cycle of normal audio frequency: if it did then it would act as a low-cut "filter". Of course, no-one in their right mind

This printed circuit board, accommodating a stereo version of D. Self's precision preamplifier Wireless World, October 1983) is available from its designer, P. A. Joiner, at Glensuie, Lybster, Caithness TW3 6BS, for $£ 13$ inclusive of postage.
The preamplifier uses the recently introduced NE5534 op-amp circuit. Measurements on Mr Self's prototypes gave a sinal-to-noise ratio on the movingmagnet disc input of 81 dB (referred to a 5 mV r.m.s. input at 1 kHz). Distortion on the line inputs for a 100 mV signal was 0.005% (1-20kHz).
would attempt to define a critical time constant using a wide-tolerance electrolytic, though I do wonder quite how well Mr Armstrong understands this point.
It should also be unnecessary for me to point out in a journal of WW's calibre that the reason op-amps do not saturate themselves with their own offset voltages is because they have d.c. negative feedback, not despite it.
Mr Armstrong's next point surprises me; if any preamps have been built using nothing but non-polar electrolytics, then I should think they were very expensive and bulky. All a waste of money too, because this faled "electrolytuc capacitor cross-over distortion", which is, I assume, what he means, simply has no existence in reality. Any old electrolytic will pass an audio signal with less than 0.001% harmonic distortion (the limit of my Sound Technology testgear) and no questions asked. I fully understand that many people will consider sinewave testing hopelessly unhip, and will claim that this alleged audio degradation mechanism, like so many others, is only audible on critical listening to music of a specified genre. However, like many engineers, I find it hard to believe in a degradation mechanism that is intelligent enough to tell the difference between music and sinewaves, and only mangle the former. I can imagine that a complicated circuit could be devised with this property - a "pathological amplifier", but I do not see how such an inevitably complex mechanism could lurk inside a humble capacitor.
Similar objections apply to the mysterious failings in non-gold connectors. While it is in
theory possible for a rectifying contact to be set up, in practice it just doesn't happen; if it did it would be instantly audible as gross distortion. It is instructive to set up the above-mentioned testgear, with the oscillator output returned to the analyser input via the connector under test, and to attempt to generate distortion (even 0.001% would do) by loosening or maltreating it. Having failed to produce a convincing rectifier from a series of ancient connectors, and various scraps of oxidized wire, I was eventually driven to using a rusty iron nail as one contact. This was capable of generating some secondharmonic distortion, but while it may be relevant to crystal sets it has nothing to do with hifi.
There is no point in worrying about electrolytics or connectors in the signal path. Not only are they normally harmless, but any signal your hi-fi system is likely to encounter will have already passed through hundreds of both in the recording process. The complexity of modern mixing desks and multi-track recorders is such that only real, rather than mythical, engineering considerations are given house-room.
Mr Armstrong, like all too many hi-fi enthusiasts, has come on strong with assertions but without a single shred of objective evidence.
D. R. G. Self

London E3

XY PLOTTER

I was most interested in the article on constructing a cheap $\mathrm{X}-\mathrm{Y}$ plotter in the January issue of Wireless World and in the follow-up letter on drawing straight lines in the subsequent issue. You may be interested that a complete straight line drawing program is to be found in the Sinclair ZX81 BASIC Programming manual on page 121. This is the first edition dated $1980-$ I have not checked that it is still in there in any subsequent reprints. I have implemented this program in machine code on the Wireless World Nanocomp, two of the 7 -segment displays being used to indicate the rotation of the stepper motors.
I understand that this is an implementation of a Digital Differential Analyser algorithm (it integrates a constant). It would only need a second routine with an invertor to draw circles or parts
of circles, this being a digital equivalent of a sine/cosine generator using two integrators and an invertor (I am an analogue computer enthusiast myself). Maybe there is someone out there who may like to investigate!
M. D. J. Foreman

Department of Computer Studies
Bristol Polytechnic

FUEL LEVEL SAFETY

I am concerned about the safety of the "Fuellevel indicator" Circuit Ideas, (January 1984). When used with liquids like petrol, precautions to prevent a static discharge from the tank to the "outer copper tube" should be taken. The connections to the copper tunes comprising the sensing capacitor should be in a vapour-free region, lest a mechanical failure occurs while the circuit is live.
C. D. H. Williams

Durham University

PREFERRED HISTORY

I'm afraid that both Watson (November 1983) and Scott (January 1984) impute too formal a construction of the preferred value series. It has, by the way been variously called the stepped incremental series, logarithmic and exponential series. Many laws could no doubt be fitted closely to the values but that is not how the system was designed.

At the outbreak of the 1939-45 War, the standard series for resistors was $10,15,20,25,30$, $35,40,45,50,60,75,100$. From these 35,45 were frequently omitted by manufacturers. These omissions were of academic interest only, since designs called for almost any value required viz. 140 or 2300 or 37500 , which values were generally found by selection.

However the rapid build up of sophisticated electronics in 1940 to ' 45 , saw industry being slowly choked by demands for large quantities of outlandish valued resistors. The process of selection had been passed back from the user to the manufacturer, and action had to be taken to relieve the situation. The same of course was happening in other components, particularly valves.

In October 1941, the MAP, MOS, and Admiralty set up the Inter-Services Component Committee. With representatives in the design establishments, it was intended to control the supply of components, and to prevent wastage of manufacturing effort. One of its aims was also to standardize on components, to simplify stockholding by the Services supply branches, and to simplify servicing. One of its early tasks, through its technical committee ISCTech.C was to try to devise a value series, and at the same time reduce the number of values in the basic (20\%) series.

A number of draft proposals were made in a memorandum sent to the Design Establishments, TRE, ADRDE, RAE and ASEE, as well as equipment manufacturers. There were many uncomplimentary remarks thrown around concerning what many considered to be interference, until it was realised that (a) the ISCS meant business and (b) ultimately standardization would be in the interest of designers as well as the War effort in general.

The initial series hinged around the $\mathrm{R} \times 1.5$ sequence. When expanded this gives a reasonable series at the lower end of the scale: 10,15 , 22.5 (rounded to 22) 33, but from here, the scale widens 49.5 (rounded to 49), 73.5 (rounded to
73) and 109.5. Clearly the range should fit into the decade better.
Possibly a disproportionate amount of effort was put into the problem, remembering that we were in a crucial stage of the War, and that if any real benefit was to come out, the solution had to be found quickly, as otherwise it would be too late to affect production within the foreseeable future. In the meantime vast numbers of new equipments were being designed using the decimal series.

One event however concentrated the minds wonderfully. A ship carrying a bulk consignment of resistors from the USA was sunk. Many equipments were intended to be totally provisioned by this consignment, but one of them was the GL3 (AA No 3 Mk 2) which required over a million resistors mainly for the Presentation (display) Unit. Immediately, The Gramophone Co. (EMI), who were responsible for the PU and already resistor manufacturers on a relatively small scale, set up a vast crash programme to produce not only those components they themselves required, but also to satisfy other manufacturers. They used the spiralled carbon process and I enclose some samples of the resistors made at that time, including also some wirewound ones (on glass).

In expanding production the company produced preferred series of their own for use by their own designers, arguing that any decimal value could be satisfied within its tolerance by the nearest preferred value. Their series was 10,15 , $23,32,47,68,100$ in which the values 23 and 32 could equally have been 22 and 33: they were simply the nearest whole numbers to 20,25 and $30-35$ respectively. Similarly 47 is the near equivalent of 45 and 50 , and 68 that of 65 and 70. The important thing however is the recognition that it is possible to build a series built on tolerances.

In the meantime other thoughts had also turned to the use of tolerances to delimit the series, using the tolerance limits to touch or just slightly overlap. Thus any value resistor as manufactured could be assigned a unique value, within its tolerance. If we consider the 20% series the following are the possible figures:
$\begin{array}{llllll}10 & 15 & 22 & 33 & 49 & 73 \\ 100\end{array}$
4972
4871
4870
4769
4768
In most cases however, the $+20 \%$ tolerance of the higher choices (69-73) exceeds 80 ($=100-20 \%$) by substantial amounts. If the tolerance band overlaps are minimized and equalized, the most likely series becomes 10,15 , $22,33,47,68,100$. Similar methods can be used to fix the 10 and 5% series.

The preferred value list was promulaged in late 1942 or early 1943 and was published in WW and other periodicals in March 1943 (WW vol. 49 no. 3 page 71). The scales were not so much mathematical, but were good old compromises born of the necessity to simplify manufacture. They were, even so, too late to have a significant effect during the War. They became however lastingly effective for resistors, but although capacitor lists have quoted the standard values since the 1950's, it is only in the last few years that they have become almost universal. Though there were still continued murmerings about different scales (see for instance Bowen, $W W$ vol. 50 no. 8 August 1944 page 253).

The arguments about the basic structure of the E series have flared from its early days, but one of the most effective explanations came
from 'Cathode Ray' in WW in 1952 'Why 47' (vol. 59 no. 2, page 77).
Donald H. Tomlin
Malvern
Worcs

GPIB/EEE488 INTERFACE

It was with great interest that we read the article by A. G. Ray in your February issue, entitled "An IEEE488 Interface for the BBC Micro," and we totally agree that the BBC machine with an IEEE488 interface is a powerful combination for automated testing and measurement. However, we were most surprised to learn that this was the first IEEE 488 interface available for the BBC Micro, since we have been manufacturing and marketing such an interface for more than six months!* Our interface, the CST Procyon, has been extensively featured in the electronics press, and Wireless World itself has carried advertisements for it. So it was some shock to learn that Mr Ray was unaware of its existence.
From the information give in his article, it would appear that Acorn's design philosophy has been different from our own in that we have tried to make our interface easy to use. To appreciate the difference between the interfaces, it is only necessary to compare the article's example program with an equivalent one for our own interface.

```
    *DISC
    result \(\%=\) OPENOUT("RESULTS")
    *IEEE
    siggen \(\%=7\)
    \(\mathrm{dvm} \%=3\)
    FOR frequency \(\% 1000\) to 10000 STEP 100
        PRINT \#siggen\%," \(0.1 \mathrm{~V}, "=\) STR\$
    (frequency\%)+"Hz"
        INPUT\#dvm \%,reading\$
        response \(=20^{\star} \mathrm{LOG}(\mathrm{VAL}\)
    (reading\$)/(0.1*0.7071))
        *DISC
        PRINT\# result \%,frequency \(\%\),
    response
        *IEEE
        NEXT frequency\%
    *DISC
    CLOSE\# result
```

There are three principal areas in this example where the CST Procyon Interface is simpler to use than the Acorn.

1. When the interface is initialized, the Procyon makes sensible default assumptions - these make it unnecessary to include lines 60 to 80 of the Acorn program.
2. The organisation of channel and file handling is different: the Procyon handles all device addressing automatically, so, when a string is sent to a device, the interface unaddresses any previous listeners and then addresses the target device to listen. This removes the need for a separate command channel and lines 40,50 , $120,140,150$ and 170 in the Acorn program are unnecessary.
3. The Procyon provides simplified file handles for use with devices with single primary addresses. These are automatically opened when the interface is initialised and may be used without further use of the OPEN command
*We understand from Mr Ray that prototypes of the Intelligent Interfaces design, complete and with software in rom, reached Acorn as long ago as November 1982. No changes were made for the production units, the first of which were delivered to Acorn in November 1983. - Ed.
though it is perfectly valid to do so. This simplification allows us to eliminate the OPEN and CLOSE commands in lines 90 and 100, 230 and 240.

These simplications will make programs considerably shorter and much easier for the unitiated to understand.
Polling is another area in which the Procyon is far simpler than the Acorn: serial and parallel polls are both easily and quickly done using the BGET \# command on special channels allocated by OPEN.
For a serial poll: (of device 7)
serial poll = OPENIN("SA7")
response $=$ BGET \# serial poll
and for parallel poll: (of all devices)
parallel poll = OPENIN("P")
response $=$ BGET\# parallel poll
The Procyon interface also allows all bus commands to be sent individually. Here, we use a different operating system interface - the "*Commands" or command line interpreter OSCLI. We also use the mnemonics recommended by the IEEE488 standard, rather than the cumbersome Acorn command strings:

Acorn - PRINT \#cmd\%, "LOCAL LOCKOUT"

CST Procyon - *LLO
Many powerful operating system features of the Procyon can be used because of its similarity to other filing systems. The commands "^LOAD" and "^SAVE" may be used to move blocks of binary data, with a maximum rate of over 50 kilobytes per second; the "*SPOOL" and "*EXEC" commands and the DFS utilities "^DUMP", "*TYPE" etc. may be used in the same way as other filing systems.

Users who wish to use the interface as a simple talker/listener are given full software support rather than being left with the vague advice to PEEK/POKE into hardware registers.

The Procyon uses secondary addresses to select between the various functions which are implemented. One selects the filing system on the device and this can be used for transferring programs and data between BBC machines and other computers. It is both faster and more standardised than the RS432 interface.

Another secondary address sends incoming characters to the v.d.u. driver routines, allowing the device machine to be used as an inexpensive graphics display screen for another machine. Software support is also provided for passing control of the bus from one controller to another.

Assembler programmers have a choice of using the standard filing system calls in the "usual" way, which is sufficiently straightforward to be worthwhile in the Procyon system, or they can use a low level interface corresponding to the mnemonic star commands, but accessed through calls to Osbyte 139 (*OPT).

The Procyon interface is available in a special version optimized for use with CBM discs as an alternative to the disc filing systems and allows for use of CBM hard disc units. Support is also provided for the widely used Torch Z80 second processor within the standard interface. A bus analyser rom will also be released shortly.

The many features of the Procyon Interface are fully explained and documented in a 130 page manual, which includes a tutorial section to help the novice user through the first steps of setting up an IEEE488 system.
Guy Jennings
Procyon Research Ltd
Martin Baines
Cambridge Systems Technology.

GPIB combiner

Up to six standard g.p.i.b. controllers can be simultaneously connected to a set of standard peripherals. A typical application is the sharing of one disc unit and one printer between several CBM Pet computers.

The GPIB, HPIB, IEEE-488 or IEC625 bus is well known and widely used because of the ease with which it may be used to interconnect many peripheral devices. GPIB-compatible devices are made by many manufacturers and range from printers and disc units to industrial power controllers, network analysers and digital multimeters. A dozen or so of these devices are simply attached to one computer or controller using the specially designed connectors which can be plugged into each other. The 24 wires which make up the bus simply run in parallel from one device to the next. The main disadvantage of the bus is that only one controller may be connected to the string of peripherals at one time. However, with the GPIB combiner described in this article, up to six controllers can be linked via separate 24 core cables. A single 24 -core cable leads from the combiner to the peripherals which are "daisy-chained" in the usual manner.

The prototypes for this design have been in use for over three years where a varying number of CBM Pet computers have needed to be connected to a varying number of printers and disc units. They have been very successful and the users are rarely aware of the existence of the combiners. However, the Pet does not use all of the functions which are provided for in the IEEE definition of the bus (in particular the serial and parallel poll sequences) and I cannot guarantee that the combiner will work with controllers built by other manufacturers.

Table 1 shows the designations of the 24 lines which make up the bus. The 16 signal lines all use negative logic, i.e. zero volts is logic one. At each device on the bus, each line is driven by an open-collector buffer and at each buffer there is a two resistor arrangement to pull up the line to about +3 V when the transistor is off (Fig. 1). In this way all lines of the bus are nodes of a wired-or gate. That is, any device can pull a particular line low, but it is only when all devices are not pulling a line to zero that it floats high. The high state is also the idle state for all lines.

The operation of most of the lines of the bus is not altered by the functioning of the combiner and so a full description of the bus is not presented here. An accurate and readable description of the working of the bus is given in the references.

The bus functions by entering various modes in which different devices have control over different lines. For most com-

by David J. Greaves

munications, only four states are used. These are:

- Idle mode: this is the quiescent state which must exist before any communications can occur. All lines are high except possibly for remote enable (DEN) which is hardwired low is some systems. In particular both NDAK and NRFD are high, a state which can always be used to detect the idle mode.
- Device talker mode: in this mode the controller is receiving a string of bytes from a device connected to the bus. The bytes are transferred along the bus on the eight data lines $\mathrm{DA}_{0}-\mathrm{DA}_{7}$. Handshaking is performed using the three wires NDAK, NRFD and DAV. The talking device drives DAV while the controller drives NDAK and NRFD. When the talker comes to send the last byte in the string, it also pulls EOI (end of identify) low. EOI is normally high. The controller recognizes this signal and will then prepare to terminate the data transfer and return to idle mode.

Table 1. GPIB line designations

Pin name	Type	Mnemonic	Name
1	Data	DA_{0}	Data 0 (least significant)
2	Data	DA_{1}	Data 1
3	Data	DA_{2}	Data 2
4	Data	DA_{3}	Data 3
5	Control	EOI	End of identity
6	Handshake	DAV	Data valid
7	Handshake	NRFD	Not ready for data
8	Handshake	NDAK	Negative data acknowledge
9	Control	IFC	Interface clear
10	Control	SRO	Service request
11	Control	ATN	Attention
12	Control	REN	Remote enable
13 or A	Data	DA_{4}	Data 4
14 or B	Data	DA_{5}	Data 5
15 or C	Data	DA_{6}	Data 6
16 or D	Data	DA_{7}	Data 7 (most significant)
17 or E		GND	Ground
18 or F		GND	Ground
19 or H		GND	Ground
20 or J		GND	Ground
21 or K		GND	Ground
22 or L		GND	Ground
23 or M		GND	Ground
24 or N		GND	Ground

Device listener mode: this is similar to the talker mode except the controller and device swap control of the lines NRFD, NDAK, DAV, $\mathrm{DA}_{0}-\mathrm{DA}_{7}$ and EOI. Hence bytes are transferred from the controller to the device. (Many devices such as printers are listen-only devices.)

Command mode: it is likely that more than one device will be connected to the bus, and so before communications can take place the controller must transmit information to select one (or possibly more) of the devices present. Also, many physical devices have several logical registers within them and these too must be distinguished. The solution is to give each physical device a distinct device address (or device number). The different registers within a device are also given a number the secondary address. Both halves of the total address are integers in the range 0 to 30. It is this information that is sent in command mode. Command mode can always be identified by ATN (attention) being low.

A typical transaction

A transaction is the complete sequence of events from leaving to returning to idle mode. Table 2 shows the steps of a typical sequence - the reading of one line from an open disc file or a paper tape reader. Ten separate events have been identified starting in the idle mode at event one. For each event shown, the lines DAV, NRFD and NDAK complete one handshake cycle and the byte shown on $\mathrm{DA}_{0}-\mathrm{DA}_{7}$ is transferred from one device to another. The byte on $\mathrm{DA}_{0}-\mathrm{DA}_{7}$ is true when DAV (data valid) is low. All transactions start when ATN goes low as in event two.

Event 2: the controller puts ATN low to wake up all devices and command mode is deemed to have been entered. All devices have to respond at this point since they do not yet know which of them is to be addressed in the coming transaction. Each device temporarily enters device listener mode (although this is more properly called acceptor handshake).

The controller now sends out a command byte selected from Table 3. In this example the transaction will be data coming from a device to the controller, so the

Fig. 1. In full circuit of the combiner only \downarrow one control section is needed but a separate interface section is needed for each user.

upper three bits of the command byte are 010 . Since the device number that data is being read from is eight, the other five bits are 01000 . This byte is communicated to all devices on the bus using a standard DAV, NRFD and NDAK handshake.
Event 3: this event occurs only when a secondary address is needed. Again a command byte is selected from table three, but this time the top three bits are 011. This tells the device that the low-order five bits are the secondary address to be used for the forthcoming data transfer. Only the device which recognized its device number during event two will need the secondary address, but all devices handshake the bus while ATN is still low - they are watching out for their own device number. It is because more than one device can be handshaking the bus at one time that the open collector, wired-or structure is used.

At the end of event three the controller puts ATN high and the remainder of the devices which were not selected return to idle mode.

Event 4: since this is an example of a device talking to the controller, the controller is now waiting for the first data byte from the addressed device. It sets up NRFD and NDAK and waits for DAV to go low signifying that the byte is present on DA_{0}-DA7. If DAV does not go low within a reasonable length of time then the controller can only assume that device eight is broken, switched off or non-existent.

Events 5-8. The controller goes on reading bytes for as long as it likes. The device sourcing the data cannot stop sending bytes even if it has run out of data - it must pad with nulls. However it can indicate that it would like to stop with the EOI line. On the CBM Pet the Basic variable ST is set to 64 when an EOI is detected. If the program then continues fetching further data with, say, an INPUT\# or GET\# statement then ST is set to 2.
Event 9: when the controller has had enough data it again puts ATN low to reenter the command mode. All devices set up NRFD and NDAK in order to receive a command byte. The controller sends 5 FH which is the untalk command.
Event 10: finally, the controller puts ATN high. All lines are now in idle mode ready for the next transaction.

Logically connected transactions

Consider the case where a program has been written on the controller to transfer a file from one device to another, one byte or line at a time. This might be the case when listing a disk file on a printer. In the original IEEE488 standard there is provision for such a process to be set up by the controller and run as a single transaction. However, the average user will not bother to consult lengthy texts to find out how to do this. Instead he will write a simple program such as

$$
\begin{aligned}
& 40 \text { INPUT \# 1,A\$ } \\
& 50 \text { PRINT \# 2,A\$ } \\
& 60 \text { GOTO } 40
\end{aligned}
$$

This uses two separate transactions for each line of the file and although this is not

Fig. 2. Electrical connection used at each device on each line to sense and influence the status of the line.
particularly undesirable, it does cause the bus to pass through idle mode many times during the execution of the program.
From the point of view of the combiner the only way that it can detect that a user has finished with the bus is the presence of the idle mode. However, in this example, the user has not finished and will be immediately submitting another transaction. It is undesirable that another user should interrupt and gain control of the printer (say) during an idle period half-way through the first user's job.
The combiner overcomes this problem by providing a special re-admit period. This is an interval of about 1.5 seconds after a particular user has finished a transaction during which that user alone can submit further transactions. If he has no further work to do then the next controller that is queued is allowed to proceed; or if there is none, the bus becomes free.
There is a disadvantage of the re-admit period: when two users are quite separa-
tely using two peripherals it works out that one of them is continually waiting for a 1.5 s gap in the other's transaction stream. Only then can they swap roles.

Circuit description

The combiner consists of eight sections: six interface sections, one control section and a power supply. The sections are interconnected by an internal bus and most of this bus also leads directly off to the peripheral devices. Figure 1 shows one interface section, the control section and the internal bus.
The interface sections are very simple as all except two of the signal lines from the controller lead directly through it to the internal bus. DAV and EOI are only connected through to the internal bus when a particular interface section is enabled by the control section. EOI must normally be isolated because of a limitation on the early Pet computers. To prevent excessive flicker on the Pet screen when scrolling was taking place, a programmable output pin was connected so that the screen could be blanked, under software control, during scrolling. Unfortunately, when all of the outputs from the computer's three versatile interface adaptors (v.i.as) had been assigned, there was none left to use for this blanking signal. Instead, the pin that controls EOI on the g.p.i.b. connector was used for this purpose as well. The two consequences are that the screen sometimes blanks when using the bus and that the computer produces an extraneous EOI pulse every time the screen scrolls. The EOI half of the interface section is therefore provided to stop these spare pulses from interrupting other users' transactions.

The DAV half of the interface section is provided so that the combiner can pull a

Table 2. Typical sequence of bus events making reading up a bus transaction: reading the line BLUE <CR> from device 8 , register 4 , in this example.

Event	Mode	$\begin{aligned} & \text { Contro } \\ & \text { DAV, EOI } \\ & \text { DA A }_{0} \mathrm{DA}_{7} \end{aligned}$	of NRFD NDAK	Data on $\mathrm{DA}_{0} \mathrm{DA}_{7}$	ATN	EOI	Comments
1	Idie	-	-	00-all high	high	high	Quiesce
2	command	controller	all devices	48 H	low	high	Controller requests that device 8 should
3	command	controller	all devices	64H	low	high	${ }^{\text {talk }}$ Secondary address 4^{\prime}
4	talker	device 8	controiler	42 H	high	high	Data B
5	talker	device 8	controller	4 CH	high	high	transfer L
6	talker	device 8	controller	55 H	high	high	U
7	talker	device 8	controller	45 H	high	high	
8	talker	device 8	controller	ODH	high		return
9	command	controller	all devices	5 FH	low	high	Controller commands
10	idle	-	-	00	high	high	

*if this were the last byte in a file, EO would be low.

Table 3. Command byte meaning

$\mathbf{D A}_{\mathbf{7}}$	$\mathbf{D A}_{\mathbf{6}}$	$\mathbf{D A}_{\mathbf{5}}$	$\mathbf{D A}_{\mathbf{4}}$	$\mathbf{D A}_{\mathbf{3}}$	$\mathbf{D A}_{\mathbf{2}}$	$\mathbf{D A}_{\mathbf{1}}$	$\mathbf{D A}_{\mathbf{0}}$	Interpretation
0	1	0	n	n	n	n	n	Cause device nnnnn to go into talk mode
0	1	0	1	1	1	1	1	Untalk command
0	0	1	n	n	n	n	n	Cause device nnnnn to go into listen mode
0	0	1	1	1	1	1	1	Unlisten command
0	1	1	n	n	n	n	n	Use secondary address nnnn

Note:- 'nnnnn' is a five-bit binary number in the range 0 to 30 . Device number 31 is illegal.

Table 4. Integrated circuit list

IC	Type	$+5 \mathrm{~V}$	GND	Usage
1	NE555	8	1	Clock
2	74LS02	14	7	
3	74LS161	16	8	'Which controller?' counter
4	74LS138	16	8	'Which controller?' counter
5	$74 \mathrm{LS00}$	14	7	
6	74LS161	16	8	'Re-admit' timer
7	74121	14	7	'End of transaction' monostable
8	74LS138	16	8	Bus command detector
9	74LS20	14	7	Completion bistable
10	74LS00	14	7	Direction bistable et al.
11	74LS10	14	7	

controller's DAV line low without pulling the DAV line of the internal bus low. The interface section holds this low unless it is enabled, in which case it connects it to the internal bus. When a controller wants to use the bus, the first thing it does is to test its DAV line to see if it is high. If the controller finds it low, it sits in a software loop until it does go high. This loop or "hang" is the basis of the combiner's queueing system. Because the interface sections are not normally enabled, when a controller wants to start a transaction it normally finds DAV low and goes into a hang.

Circuit IC_{1} in control section is the master clock and runs at a few hertz. Assuming the busy bistable ($\mathrm{IC}_{5 \mathrm{a}}$ and $\mathrm{IC}_{5 \mathrm{~d}}$) is clear, clock pulses are transmitted through $\mathrm{IC}_{2 \mathrm{a}}$ into $\mathrm{IC}_{3} . \mathrm{IC}_{3}$ is a four bit counter and is decoded by IC_{4} so that the interface sections are each enabled in a "roundrobin" fashion. If a particular controller has a transaction ready it will see DAV go high as its interface section is enabled and put ATN low (event 1). ATN is connected to $\mathrm{IC}_{5 \mathrm{~d}}$ and this sets the busy bistable, stopping IC_{3} at its present count.
Some Pet users have effected the facilities provided by this combiner purely by modifying the g.p.i.b. handling software
within their computers. However, this approach has a number of drawbacks, among which is the problem $\mathrm{IC}_{5 b}$ is designed to solve. What can happen is that the software checks that the bus is in idle mode (i.e. not being used) and then starts its transaction with the assertion of ATN. Meanwhile, on another user's machine the same software can be running just a few microseconds further on. Because time must elapse between the execution of the idle mode check and the execution of the instructions which assert ATN, both controllers get the impression that the bus is free and both assert ATN at once. On the combiner described here, there is a safety period of one clock cycle after an interface section has been enabled and then disabled during which the controller can still assert ATN and gain control of the bus.
The buffers in the interface sections are bidirectional and need to know whether it is a controller or a peripheral device which is driving DAV and EOI. This information is sent along the TX lines which are controlled by $\mathrm{IC}_{10 \mathrm{a}}$ in the control section of the combiner. If ATN is low then it is command mode and the controllers drive DAV and EOI. IC_{8} is a 3 -to- 8 line demultiplexer and provides a simple way of re-

David Greaves is an engineering student at St John's College, Cambridge. He has designed and built many projects including a digital spectrum analyser and a powerful microcomputer system using three microprocessors. He is currently working on a polyphonic keyboard synthesiser. He is a three times winner of the Design Technology competition sponsored by Esso, a holder of an IEE Jubilee Scholarship and was once a contestant on BBC TV's 'Young Scientists of the Year' programme.
An enthusiast for most types of music, he plays the guitar. Other interests include archery, sailing, canoeing and badminton.
cognizing the command bytes that the controllers send. In fact it is a bit too simple since it does not work with device numbers in the range 16-30! A more complex detector must be used instead of IC_{8} if it is desired to use these device numbers. The direction bistable ($\mathrm{IC}_{10 \mathrm{c}}$ and $\mathrm{IC}_{10 \mathrm{~d}}$) is set depending on whether a talk or listen command byte is detected and when ATN again goes high at the end of the command mode (event 3 in the example) the TX lines take up the information from this bistable.
All the circuitry in the combiner remains passive until the command mode is again entered at the end of the transaction. When either the unlisten or untalk command byte is sent, IC_{8} detects it and sets the completion bistable ($\mathrm{IC}_{9_{\mathrm{a}}}$ and $\mathrm{IC}_{9_{b}}$). IC_{6}, another four bit counter, and $\mathrm{IC}_{2 \mathrm{~b}}$ together form a retriggerable monostable capable of high duty cycles. Whenever ATN goes low, IC_{6} is reser, and when it goes high, clock pulses from IC_{1} feed through $\mathrm{IC}_{2 \mathrm{~b}}$ causing it to count up until it reaches 15 . This takes about 1.5 seconds and provides the re-admit period after ATN has gone high and the bus finally returned to the idle mode. If no new transactions are started by the enabled controller during this period, then the completion bistable will still be set and the busy bistable will be cleared. The circuitry which does this is $\mathrm{IC}_{5 \mathrm{c}}$ and IC_{7}. However,
continued on page 62

Fig. 3. (a) Alternative circuit for the interface sections using the MC3446 integrated circuit (b) which is specifically designed for use with the g.p.i.b.

Plymouth satellite tv system bounces back

Despite the setback of being rejected by the Part report, the direct broadcasting by satellite system developed at Plymouth Polytechnic has just been successfully demonstrated. The development team from the Polytechnic's communications engineering department is led by Dr Martin Tomlinson. At the time of the Part report, Dr Tomlinson said "Given the funds, I have no doubt that we could meet the deadline [1986] and offer the UK a system that could put us ahead of the world in satellite tv broadcasting long into the future. Most of the technology required for our system already exists." He has kept his word; funds have been obtained from an undisclosed US source, and the successful test was carried out using a NATO satellite. This makes a nonsense of the Part rejection of the system which found it "elegant and ingenious" but claimed that there was not enough time to meet the deadline. There are two years left for 'fine tuning'.

Part selected the IBA's Multiplexed Analogue Component (Mac) system. A licence to operate two channels of d.b.s. was granted to the BBC , but they have been unable to reach an agreement on standards with other European broadcasters and have virtually abandoned the project.

Details of the system were described by Dr. Tomlinson in our issue of January 1983. In essence it separates chrominance and luminance signals and transmits both. Each signal is quantitized into sixteen amplitude levels and coded into a digital signal. At the same time an error signal from the quantitization process is generated. Sound channels are transmitted separately as a $2 \mathrm{Mbit} / \mathrm{s}$ stream digital signal and there is an additional $2 \mathrm{Mbit} / \mathrm{s}$ data stream provided. The luminance, chrominance, sound and any data signals are time-division multiplexed into a composite $60 \mathrm{Mbit} / \mathrm{s}$ digital stream. The analogue quantitization error signals are
also time-division multiplexed and are then phase modulated onto the carrier at a low level along with the digital bit-stream so that analogue and digital components are all transmitted together, using the same carrier. As the analogue modulation is at a low level, no error is caused in the digital information. At the receiver fairly simple demodulating and demultiplexing circuits recover the signals and they are converted back to analogue form with the quantitization error signal, used for correction, reimposed on the signals. The system offers, it is claimed, very high bandwidth and signal/noise ratio on both luminance and chrominance with no crosstalk between them. Encryption for subscription tv services may be easily provided. Dr Tomlinson is now confident that this is by far the best system yet devised and has high hopes that it will be accepted internationally.

Dish antenna allows denser satellite spacing

A smaller dish aerial with an improved performance will enable more countries to use more communications satellites, according to British Telecom, who designed it. The 5.5 m -diameter dish is based on the geometry of an optical telescope invented by James Gregory, a 17th century Scottish mathematician, and the design is known as Offset Gregorian. The traditional design of earth terminal aerials has been based on Cassegrain geometry, with a parabolic dish, a convex subreflector and a feed usually placed symmetrically in the centre of the dish. This works well for large, 8 m or more, diameter reflectors but the performance falls off as the diameter is reduced. The Gregorian design uses a shallower paraboloid dish, an offset concave subreflector and an offset feed to give a performance at least as good as that of larger diameter Cassegrain aerials.

Placing the subreflector and its supporting structure to one side eliminates the block to power caused by the subreflector. It is possible to achieve a narrower beam with reduced sidelobes. This will become important if plans by Intelsat are put into operation. At present there is a limit to the number of satellites which can be placed in equatorial geosynchronous orbit. A slot is provided every 3° allowing a maximum of

120 positions. The proposal is that the angle be reduced to 2°, creating an extra 60 locations. This would reduce the distance between satellites from 2200 to less than 1500 km and would require earth station antennae to produce narrower beams to avoid interference between satellites. The new design meets these requirements
The 14 GHz up-link has a 5 dB beam width of 0.27°, which means that when it reaches the satellite the beam is only 336 km wide. Radiation at angles greater
than 1° from the beam axis is at, least 10 dB less than from a conventional antenna. The offset design also gives a lower angle of elevation for a given beam angle. In the illustration, the beam angle of elevation is 30° while the dish elevation is only 20°. This helps to reduce wind loadings and makes it less obtrusive. Erected on the roof of a BT building in Ealing, London, the first use of the antenna will be on a transatlantic digital transmission service, SatStream.

Is European electronics beaten?

"Common Market countries will have to regard each other as friendly partners, rather than foreign threats, if they are to have any hope in catching up with their non-European competitors in the electronics industry," says Ian Mackintosh, head of the market research organization that bears his name. Each nation," he said at a recent conference in Milan, "must create a national strategic plan for electronics, which is fully in tune with the overall in terests of the European Community. Only then can the European companies have any hope of fighting back to a position of parity with such competitors
"Over the last 20 years or so, the electronics industry in Europe has in-
creasingly fallen behind the rapid pace set by companies in the US, Japan and some parts of SE Asia, so that today, with only a few honourable exceptions, Europe's electronics companies are no longer leaders in terms of either market share or innovation."

Dr Mackintosh pointed out that although there were potentially formidable resources of finance and talent, these.had been dissipated by management failure and financial caution, compounded by governmental indifference. Looking at a ten-year forecast of worldwide markets and production, he predicted an electronics trade deficit in the European Commu nity of $\$ 16$ billion by 1992 .

Operated by voice-entry terminal, microcomputer, disc drive and voice synthesizer, this voice-activated domestic appliance demonstration system cost about $£ 3000$ to build, though it is expected that production systems could be sold for under $£ 1000$. A vocabulary search is made prior to using the voice print which is built up over a period of training sessions. Initiated by Mal Hyams for the DTI travelling exhibition 'The Concerned Technology', the system was constructed in six weeks by Voice Input Ltd of St lves Cambridgeshire.

Ultrasonic eye probe

An ultrasonic data imaging and recording system for an eye scanner has been developed at Harwell for use in the Moorfields Eye Hospital. The scanner was originally developed in the mid-70s and has been used in the clinical diagnosis of eye disorders. In operation a low-energy pulsed beam of ultrasound is scanned in a raster movement across the eye; the reflected signals may then be recorded and processed to give an image of the interior of the eye.

The new system can display the images directly on to a standard tv screen and they may be recorded using a standard video recorder. The image processing equipment consists of a dual memory unit through which the captured data is transferred to a temporary store. Subsequent processing involves co-ordinate plotting and trnasfer of the data to a picture store for manipulation and display. The system makes extensive use of programmable circuits which allow variations of scan and of picture presentation to be made by simple changes in software. It is built around an LSI-11 computer.

A key element of the system is the development of video syinchronization techniques which will ensure that the processed data emerges as a genuine video signal, compatible with any standard unmodified v.c.r. This development overcomes the main criticism of ultrasonic inspection methods, that they were very inconvenient to use. The system has applications in industrial non-destructive testing. Indeed it was the NDT Centre at Harwell that developed the system. For on-site testing the raw scanning data can be recorded on a v.c.r. for later processing and display.

Coax centenary

Just one hundred years ago, Werner Siemens described a new method for constructing an induction-free cable. "It consists of individual conductors covered by a sheath which forms the common return conductor," he wrote to Ludwig Lüffler. The concept was patented in Germany on March 27, 1884, as a solution to the problem of "induction-free cables of lightweight design." It was not until the Berlin Olympic Games in 1936 that a coaxial cable was put to a practical use when a link was set up between Berlin and Leipzig. By using a carrier wave it was found possible to transmit 200 telephone calls and a tv signal simultaneously. Current techniques using an 18-core cable permit the transmission of 100000 calls and 18 tv signals.

Repeaters for amateur tv

Licences have been granted for five amateur tv repeater stations to be established in the UK. As they are all set in the 1.2 to 1.3 GHz allocation, it is thought that this will lead to a much wider use of the band and preserve it for the amateur service.

Callsign	Location	Channel	Vision freq. (kHz) in out		Sound freq. (kHz) in out	
GB3GV GB3UT	$\left.\begin{array}{l} \text { Leicester } \\ \text { Bath } \end{array}\right\}$	RMT-1	1276.5	1311.5	1282.5	1317.
GB3TV	Luton					
$\begin{aligned} & \text { GB3UD } \\ & \text { GB3VR } \end{aligned}$	Stoke-on-Trent Worthing	RMT-2	1249.0	1318.5	1255.0	1324.5

Repeaters on channel RMT-1 will receive a.m. or f.m. signals and retransmit them on a.m. only. RMT-2 channels are likely to be f.m. only. Vision transmissions are 625 -line, negativegoing video with positive-going synchs. F.m. signals are limited to a 6.5 MHz deviation with CCIR pre-emphasis. Sound frequencies shown in the table are for a.m. systems. F.m. systems will contain a 6 MHz sound subcarrier. Aerial polarization is horizontal. It is expected that GB3GV, GB3TV and GB3VR are to be operational almost immediately. Further details may be had from the British Amateur Television Club, Telephone: 0533 600108.

Extra-long play compact disc

A new performance of Beethoven's Choral symphony, lasting 71 minutes, has been issued on one side of a compact disc. Although designed to last for up to 74 minutes, the discs have mostly been made with a playing time of less than one hour. One reason for this stems from the difficulty of achieving precision moulding in the outer areas of the disc (readers will recall that the disc is scanned from the inside outwards). Less-than-perfect mouldings can cause birefringence, a double refraction phenomenon that scatters the light from the pick-up's laser and makes signal detection virtually impossible. The discs are injection moulded from the centre which is why it is difficult to get the right degree of accuracy at the outside edge. Denon engineers at the Kawasaki plant of Nippon Columbia Co. near Tokyo, investigated varying the temperature of the mould and the plastics and also the injection speed and pressure, and adjusting the thickness of the stamper. They believe that this will not only increase the playing time of the digital discs but also increase the overall precision and quality of the recordings.

Farewell Westinghouse?

A system by which railway train brakes are actuated electrically rather than by air is being tested by British Rail. Proving trials are being held and an electric actuator has been mounted in the bogie of a passenger coach in regular use between London and the West Midlands where it will be subject to all the normal shocks and vibration experienced by rolling stock. The actuator
is being operated against a dummy load and plays no part in the braking of the train. Brake callipers are applied through a large step-down gearbox from a small d.c. electric motor. The motor is powered from a battery which is constantly recharged through the train's power supply. The motor has been designed to withstand the actuating current when in a stalled condition with the brakes applied. As with the air system, invented by George Westinghouse in 1872, a fail-safe approach means that the brakes are automatically applied in the event of a system failure. The electronic control of the system offers a stepped degree of brake pressure, switching a current to the acutator.

The system has worked successfully on the test bench and for 12000 km on a test train so the current experiment is designed to test the longer term durability of the actuator and of the battery charging circuit. A special controller applies and releases the brakes through a series of timed cycles and the currents, voltages and the brake application force are all continuously monitored and recored.

Save telecom industry say unions

Trades unions in companies manufacturing telecom equipment are joining the British Telecom Union in pressing parliament to adopt key amendments to the Telecommunications Bill that would protect British industry. They see their jobs at companies like Plessey, GEC, and STC as being at risk. The companies themselves have certain misgivings and Lord Weinstock, chairman of GEC, is also pressing for amendments in the House of Lords. The amendments would stop overseas manufacturers selling telecom equipment in Britain while the markets in their countries are not open to British manufacturers. To open the British market to foreign competition without any reciprocal agreement would be catastrophic, according to a spokesperson for the various telecommunication workers unions.

Videoconference on videoconferences

Appropriately enough, the International Teleconference Symposium, to be held on April 3 to 5, links participants from four continents by satellite. In the first-ever live link-up on such a scale, those taking part will be able to see and hear each other from conference centres in London, Tokyo, Philadelphia, Sydney and Toronto. The London centre will be the Royal Lancaster Hotel, which will be fitted with large projection tv screens. Also at the hotel will be an exhibition of equipment and services. The symposium will be taking full advantage of the digital compression techniques developed in the UK which only transmits changes in a picture rather than the whole frame. The symposium also heralds the transatlantic teleconferencing services which will soon provide a link to Canada and later in the year to the USA. A service within Britain will also commence this year.

AmPAL - replacement for the NTSC system

Abstract

Following the decision by the FCC to phase out the current 525/60 NTSC system, American broadcasters have been looking at PAL to see if its colour fidelity can be achieved without the drawbacks of the eight-field sequence. This report - leaked from the working party studying the competing systems - details the system most likely to be adopted.

Since the introduction of the PAL colour broadcast system, it has become clear that it does successfully overcome the major failing of the NTSC system, i.e. sensitivity to chrominance phase errors, but that a penalty is paid in the complexity of broadcast equipment designed to handle it. The major problems with PAL arise because of the quarter-cycle difference between subcarrier and line frequencies necessary to make up the chrominance spectrum
(a)

(c)

Line averaged V

Line overaged

Fig. 1
spreading caused by the V-switch interleave with the luminance sidebands. This causes the PAL structure to have four-line groups of burst phase, whereby the sequence only repeats every eight fields. This causes difficulties in video editing where a four-field edit causes a 180° phase jump in the video, which timebase correctors convert into a picture shift to restore subcarrier phase to reference. A further difficulty is that the original PAL specification did not define the subcarrier H phase relationship, with the result that video tapes from different sources will not colour frame without adjustment to equipment.
The criteria by which the system has been designed are

- colour accuracy as good as or better than PAL
- four-field sequence length maximum
- use as many existing components as possible
- eliminate drop-frame time code.

(a)

It was decided that a phase-alternating system was mandatory to equal the PAL colour accuracy and eliminate the NTSC hue control. A novel approach has been used whose performance can exceed that of the PAL system. In AmPAL ${ }^{\circledR}$ the RGB camera signal is converted into the PAL U and V colour difference signals as normal, but the alternating line principle is achieved by interposing U and V on alternate lines. On even lines, U is horizontal in

Fig. 3. Subcarrier phases shown correspond with the AmPAL definition of subcarrier H phase for video signals recorded on tape.

(b)

Fig. 2
the phasor diagram and V is vertical, whereas on odd lines V is horizontal and U is vertical (a). Fig. 1(b) shows the resultant phase az as broadcast on successive lines, and (c) shows the signal $a z^{\prime}$ as received with a phase error. This is decoded to ab, on the even line, and V is too small because of the phase error. On the odd line, however, az^{\prime} becomes ad, and V becomes too large because of the phase error. Line averaging, as in (d), gives an almost correct V signal. Similarly, the line averaging of U gives an almost correct signal. As in PAL, the phase error becomes a saturation error not a hue error.

The saturation error can be calculated from the difference between odd and even line U and V signals, which determines the phase error, and from the U and V signals themselves which determines the desaturation due to the error. It is possible to compute a correction signal which largely eliminates the residual saturation error, which gives this system its superiority over PAL. A custom lsi chip has been designed which includes a digital cosine look-up table to perform the correction at low cost. In urban America with multipath problems caused by skyscrapers and frequent aircraft, the system has been tested and found to give better results from any other.

The result of the U and V interchange is to cause a pair of chrominance sidebands to appear which are at $\pm 1 / 4 f_{H}$ from subcarrier. These sidebands are alternately
occupied by U and V energy, as shown in Fig. 2(a). Optimum interleaving of luminance and chrominance spectral energy occurs when subcarrier is an odd multiple of half line rate as in (b). The subcarrier is suppressed of course. The result is that, like PAL, there is no energy at half line intervals, but the subcarrier has a half cycle offset, rather than a quarter cycle, so the sequence simplifies to two lines, and repeats every four fields to meet the second criterion, Fig. 3. The actual subcarrier frequency chosen is $2831 / 2 f_{\mathrm{H}}+25 \mathrm{~Hz}$. The 25 Hz term gives cancellation of residual subcarrier on alternate fields.

The 625 line system gives a better balance of horizontal to vertical resolution than 525 lines, and it is proposed to use 625 line transmission. As the current field rate of NTSC, 59.94 Hz , is not locked to 60
cycle power, it has been decided that the advantages of 50 Hz field rate, i.e. compatibility with European standards, ease of televising movie film, etc., outweigh the improved flicker performance of 60 Hz . As 60 and 50 Hz have a simple relationship, synchronizing to 60 Hz equipment would be easier than using drop-frame time code.

As the line period is unchanged, tv receivers can be made for the new system using existing line output transformers and scan components.

In this election year, the White House anxiously conveys the message that this is a genuine move to improve television quality, since some minority groups are already implying that it will become a rich versus poor issue and are demanding subsidies for low income groups to purchase new receivers.

JRW

Sonic pathfinder

subject moves. Only when he steps through the doorway is the user informed of the existence of the corridor wall. Indeed, it is only then that this information becomes relevant.
After introducing the Clamp it became necessary to reduce the maximum Ratchet hold time to 1.5 seconds.

The existence of the Ratchet and the Clamp will not be perceived by the user during normal use of the Sonic Pathfinder. The various durations used in the algorithms have been chosen to correspond to those involved in human movement. Consequently the user does not, contrary to what might appear to be the case from the above description, experience objects leaping in and out of his perception. There is only one weird side-effect; all objects
continued from page 29
disappear if the user walks backwards!
Since the aid uses only readily available components it is capable of being made relatively cheaply; current estimates suggest $£ 50$, leading to a final selling price of some $£ 250$. The final device would be powered by a 9 volt rechargable battery and the user would have to plug in the charger for an overnight charge once a week. Training in the use of the aid would be provided by Mobility Officers of which there presently exists some 120 throughout the UK. Current experience suggests that some 15 hours of training will be necessary.

The work described in this paper was funded by the DHSS and carried out under the general supervision of Professor C. I. Howarth. Special thanks are due to the

Unit technician, Carl Espin, who has helped in the assembly of numerous prototypes.

References

1. Heyes A. D. (1981) The Nottingham Obstacle Detector - A technical description. Journal of Visual Impairment and Blindness. Vol. 75, No. 5, pp. 203-209.
2. Dodds A. G. \& Carter D. C. (1984) The Sonic Pathfinder - An evaluation. Journal of Visual Impairment and Blindness. In press; due to appear in the March issue.
3. Bacon M. D. (1983) Eprom single-chip microcomputers. Wireless World, April.
4. Shingledecker C. A. (1978) The effects of anticipation on performance and processing load on blind mobility. Ergonomics Vol. 21, pp. 335-371.
5. Dodds A. G. (1983) Personal communication.

NM

GPIB combiner
 continued from page 28

if a new transaction does start, either a talk or listen command will occur and reset the completion bistable. Then, when the readmit period completes, nothing will happen.

Because the re-admit period and "round robin" polling of the controllers both use similar circuits, there is an average latency of half the re-admit period on all one-off transactions, even if the bus is completely free. To overcome this, on one prototype a second NE555 counter was fitted running at about 150 Hz . This was connected into $\mathrm{IC}_{2 \mathrm{a}}$ instead of IC_{1} thereby increasing the response time. The colossal disadvantage of this is that the pretty display caused by the interface section l.e.d.s flashing in turn is completely lost.

The two push buttons are termed clear and reset. Pushing "reset" generates an interface clear signal (IFC) and resets all devices on the bus. If any old-style Pet disc units are connected then they will need reinitializing. Pushing "clear" is generally a good way to get rid of a "bus-hogger".

Alternative interface sections

An alternative circuit for each of the six interface sections, Fig. 3(a) uses the

MC3446 integrated circuit of Fig. 3(b). The MC3446 contains four-line driver-receivers specifically designed for interfacing with the bus, their equivalent circuit being exactly as shown in Fig. 1. The driver transistor is guaranteed to sink 48 mA and an absolute rating of 150 mA is specified.
If very long lengths of cable are to be used, then buffers similar to those already on EOI and DAV can be made up for the other lines of the bus. These extra buffers must still be enabled only when the enable line from the control section is low and must buffer in the correct direction depending on the TX signal. That is, $\mathrm{DA}_{0}-$ DA_{7} always go in the same direction as EOI and DAV, NDAK and NRFD always go in the opposite direction, ATN and REN always go from the controller to the peripherals and SRQ always goes from the peripherals to the controller. IFC is best neglected.
When one user is performing a large transaction such as printing a listing on a printer, other users who are queued and awaiting access to the peripherals may change their minds and decide to do something else that does not use that peripheral. In this case some means of exiting from the queue or "unhanging" their controller is
required. In the case of the Pet computer, pressing buttons on the keyboard is to no avail, the only solution being to unplug the g.p.i.b. connector from the rear of the computer. To reduce connector wear, it may be preferable to fit four pole push-tobreak buttons in series with the lines NDAK, NRFD, DAV and ATN. Operation of this switch has the same effect as removing the connector. The controller sees that DAV has gone high, asserts ATN, finds that NRFD and NDAK are both high (an error condition) and aborts its transaction.

References:

Fisher, E. Jensen, C. W., The Pet and the IEEE 488 bus. Osborne/McGraw-Hill. Jackson, P. J., IEC/IEEE data transmission bus interfaces, Mullard Technical Communications, vol. 14, no. 138, April 1978, p. 290.
IEEE bus standard, by P. R. Ellefson, Wircless
World, June/July 1980, pages 75-78. ~~N

Improving colour television decoding

We regret that David Read's final articles describing a one-line PAL comb decoder have been postponed due to pressure on space. In the meantime you may be interested to read of the new PAL modifications proposed for North America, described on the previous page.

Digitall-storage oscilloscopes

According to one market study digital storage is the fastest growing segment of the oscilloscope market. In 1982, digital storage represented 13\% of the oscilloscope market and is expected to represent 33\% by 1987.

In recent years faster i.cs have led to the introduction of more and more oscilloscopes using semiconductor memory to store the waveform in digital form. In terms of flexibility, digital-storage techniques offer much more than is possible using an oscilloscope with a storage tube. They also allow extremely slow waveforms to be displayed, and indefinite storage. However, high-quality storage-tube instruments allow persistence of the screen to be varied, they are faster and they generally offer higher resolution. If waveform capture is the only facility required over the functions of a normal oscilloscope, storage-tube instruments can work out cheaper than digital ones; storage tubes and their drive circuits are complex but developments over many years have brought prices down.

Concepts of digital storage

In the digital storage oscilloscope, an anal-ogue-to-digital converter changes the signal from the input amplifier into binary words which are stored in memory. Some manufacturers call this device a digitizer. The number of binary words produced in a given time - the sampling rate - is governed by an accurate timebase clock signal and determines horizontal resolution of the stored waveform (not necessarily the displayed waveform). This same clock drives a counter which steps through the addresses of memory locations to put each word sampled sequentially in the memory bank.

Vertical resolution of the stored wave-
form is determined by the number of bits in each binary word. Converters used in oscilloscopes are usually eight, nine or tenbit devices giving a resolution of 256,512 or 1024 steps respectively. Generally speaking, the more bits the converter has, the lorger the conversion time, but there are ways of shortening conversion time by using two converters and sampling them alternately.
Once in memory, the stored waveform in binary form can be displayed by feeding it to a digital-to-analogue converter to drive the tube vertical amplifier. For each binary word clocked out of memory, a counter driving a further d-to-a converter is incremented. Output of this second converter forms a ramp which drives the tube horizontal amplifier. The waveform only has to be clocked out of memory fast enough to stop screen flicker so these
Essentials of a digital storage oscilloscope. As shawn, the tube drivers, d-to-a converters and c.r.t. would have to be as fast as the input circuits but in practice, the stored waveform only needs to go from memary to the tube fast enough to stop screen flicker. Most digital-storage oscilloscopes use fast tubes and circuits though so that the storage section can be bypassed and the instrument used as a conventional real-time analogue oscilloscope. Waveforms from the a-to-d converters are made up of dots and many instruments use interpolators to join the dots together. Digital-storage oscilloscopes with at least an optional interface for computer control are common.
converters, the tube amplifiers and the tube need not be high speed unless the oscilloscope has an analogue mode.

In practice, things are usually a lot more complicated than this because processing circuits are invariably included to improve fidelity of the reproduced waveform and the digital circuits lend themselves to the inclusion of many enhancements. Using just a d-to-a converter as described above, the display consists of a number of dots but as frequency of the input signal rises, the dots become further apart. With fast periodic waveforms this can result in a confusing display through a phenomenon called perceptual aliasing, i.e. one's mind tends to join the wrong dots together. About 25 dots for every cycle of a sinewave are needed to present a recognizable display. To avoid this, interpolators are often included to join the dots. Interpolators are optimised to work best with either pulses or sinewaves, not both.
Due to the sampling method, trying to store and display signals at frequencies higher than the time-base setting permits gives strange and misleading results through aliasing. The simplest demonstration of this is to imagine a sine wave being sampled at periods exactly equal to one cycle of the sine wave. All the samples would be exactly the same and the interpolator would produce a tidy straight line. Shift one of the frequencies slightly and the results are even more confusing. To avoid this the sampling rate should always be twice as fast as the highest frequency in the signal. Anti-aliasing filters (similar to
vertical
amplifier
bandwidth limiters but with a higher rolloff rate) may be used but obviously, these obscure part of the signal.

Triggering

One of the main features of a digitalstorage oscilloscope is pre-triggering - the ability to trigger after or in the middle of an event rather than before as is the case with a conventional oscilloscope. Before triggering occurs in pre-trigger mode, the memory is constantly updated with the current input signal. When triggering occurs, the memory is frozen if the pre.trigger is set to 100%, or otherwise allowed to run for a set interval after triggering so the one can see what happened both before and after the trigger point.

There are many unpredictable types of
fault that can be detected by a storage oscilloscope that can't be detected by any other means because of this feature. What happens just before a failure is usually much more important than what happens just after but the failure itself is the only trigger source. Pre-triggering also lets one see the initial section of a transient that is lost on a conventional oscilloscope because of the trigger-level setting and response time.

Digital triggering by setting the trigger level as a binary value and comparing it with the value at the a-to-d converter output is often used. This results in stable and repeatable triggering. Some oscilloscopes allow trigger hysteresis to be set and/or have a bi-trigger mode for use when one is not sure whether the transient to be captured is positive or negative.

Time base

Being governed by a crystal oscillator, the digital storage oscilloscope's time base is far more accurate than the one found in most conventional oscilloscopes, i.e. one derived from an analogue ramp generator. Short and long-term stability and horizontal linearity are also greatly improved upon through use of a crystal-controlled time base. Some digital oscilloscopes allow the time base to be switched electronically from one setting to another during capture so that part of the waveform may be stored at a higher horizontal resolution than the rest.

Memory

Size of an oscilloscope's memory is usually expressed in terms of words rather than bytes because many of the converters used

Bright, High Resolution Display. 110 Observation of Video Signals. Tif Wide Sweep Time Range. 162 year guarantee

House of Instruments Ltd. Clifton Chambers, 62 High Street Saffron Walden, Essex CB10 1EE Tel: (0799) 24922 Telex: 818750

Hameg Oscilloscopes Ltd. wish to remind readers that in addition to those listed last month, amongst their distributors are:

Electronic Brokers Ltd. 81/85 King's Cross Road London WC1N 9LN Tel: 01-833 1166

Audio Electronics (Cubegate)
301 Edgware Road London W2 1BN Tel: 01-724 3564

HRS Electronic Components
Brass House Pass I Birmingham
Tel: 021-643 0705
Acro Instruments
PO Box 25
Wokingham, Beds

HAMEE

74-78 Collingdon St. Luton,
Beds, LU1 1RX
Tel: (0582) 413174 Telex 825484

WW - 026 FOR FURTHER DETAILS
are either nine or ten-bit devices, rather than eight. A 4 K -word memory in an oscilloscope using a ten-bit converter is larger than a 4 K -word memory in an instrument using a nine-bit converter, or at least it should be.
Memory segmentation is usually possible, which means that more than one waveform can be stored at the expense of resolution (or stored at the same resolution at the expense of part of the waveform depending on how you look at it). Using 512 words of memory to store a waveform means a horizontal resolution of 512 steps which will give a good reproduction of the original waveform when the memory section is displayed in full. The reason why most digital oscilloscopes allow much more memory than this to be used for a single stored waveform is that they invariably have a zoom facility which allows one to look at a part of the waveform in detail.

Flexibility

Memory output can easily be converted for viewing on the c.r.t., but it can just as easily be fed to a digital plotter or a computer or a disc drive for permanent storage, provided that the instrument has the right interface circuits and outputs. Digital circuits used for the storage process, triggering and time base also lend themselves to computer control, and hence many digital oscilloscopes have at least an optional GPIB (IEEE488) interface for this purpose

Resolution and accuracy

Resolution is not synonymous with accuracy. Imagine a 10 V ramp signal driving a 100% accurate eight-bit a-to-d converter and driving the converter binary output word from zero to full scale (255). For each 0.039% increase in the ramp, the binary output value increments by one. If the ramp now represented as a series of binary numbers is converted back to analogue form by a digital-to-analogue converter, d-to-a, it becomes a staircase waveform with 256 steps; lower amplitude input signals give a decreasing number of steps but reso-

When the speed limit of a digital-storage oscilloscope is approached, false readings are unlike those displayed on a conventional instrument and more difficult to spot unless special features are available. Aliasing occurs when the converter sampling rate is too low for a given frequency component. In the bottom waveform, line interpolation is used to join the dots resulting from a sampling rate which is too slow. One-off and random waveforms suffer most because in periodic waveforms, repeated samples can often be overlaid.
lution remains within 0.39% of full scale. Resolution therefore defines the degree of change in the converter input value that can be represented in the binary output signal.

As far as accuracy is concerned no converter is absolutely linear, even under static conditions. As the rate of change in the input signal increases, linearity worsens and a point is reached where output codes that should appear are skipped. In a digital-storage oscilloscope, the dynamic transfer function of a converter is important in determining the fidelity of reproduction of waveforms which have fast components. Non-linearities and missing codes at various frequencies are parameters well worth looking at. If accuracy was determined by resolution alone, a 10 -bit converter would offer an accuracy in the region of 0.1% but in practice, digital storage oscilloscope accuracies are usually in line with similar quality conventional analogue oscilloscopes as far as amplitude measurement is concerned. Cursors used on many digital oscilloscopes though reduce human and paralax errors when making comparisons.

MNN

- one or two even have built-in disc drives. Computing within the oscilloscope often allows things other than just a waveform to be displayed. Cursors to allow, say sections for zooming or trigger levels to be set are the most basic addition but instruments that display crucial front-panel settings, waveform timing and voltage levels are not uncommon. These readouts are particularly useful if the only means of obtaining hard copy is a camera.

WW - 072 FOR FURTHER DETAILS

SATELLITE RECEIVING EQUIPMENT

1.9M, 2.5M and 5M Harrison Dishes Sat-Tec R5000 4 GHz Receivers. Avcom COM-2B 4 GHz Receivers. California Amplifier 4GHz LNAs. Chaparral Horns. Harrison Feed Horns.
Demonstrations by appointment only.
Dealer enquiries welcome
For further details contact: Harrison Electronics, 22 Milton Road, Westcliff-on-Sea, Essex SSO 7JX. Telephone: Southend (0702) 332338 .

Double Forth

One particularly useful feature of the Microkey 4500 computer is that it can accept input from two independent keyboards and display the results on two monitors. This means that for program development or for text manipulation it acts as two computers. The ability to drive two monitors can have many uses. For example it is possible to have one screen displaying a control program while the other shows the results. The computer is based around the 6502 processor but may be alternatively fitted with a 6809 with no hardware modifications. In this configuration it can run the Flex operating systems. An add-on 68000 second processor extension is planned.

The 'native' language for the computer is an extended combination of Forth-79 and FIGForth with an assembler and a screen editor. Being developed is a Logo-type extension to Forth, a database system and a power systems engineering package. Through Flex a number of other languages may be used including Pascal and C.

Some clever techniques are employed to make maximum use of ram. Screen information may be written to the video display memory which occupies the same memory area as the rom which may be accessed during a read cycle; thus the video ram is 'invisible' to the user. All 128 K ram and 32 K rom may be accessed to allow maximum use of the memory, though the ram may also be divided into two distinct areas of 64 K each for the two-user mode.

High-resolution graphics are possible with 640 by 200 elements in 16 colours. In monochrome, it is possible to produce 1280 by 200 dots. There are three bidirectional parallel ports and a full RS232 communications port as well as an expansion bus using a similar pin-

out to Apple computers. One or two Sony 3.5 in disc drives may be fitted into the computer and up to two more may be added. A Winchester drive will be available.

The designers see their computer being of most use in educational, industrial, scientific and medical fields and are willing to offer a wide variety of hardware and software configurations to suit specific applications. The basic system without a monitor or disc drive (but including a disc interface and a high-quality professional keyboard) costs $£ 650$. Microkey Ltd, 98a St James Street, Brighton, Sussex, BN2 1TP

WW301

More than a
 multimeter

Claiming to offer more measuring facilities than any multimeter, the Philips PM2519 is called a 'digital measurement centre'. Apart from all the volt, ohm and amp measurements with an accuracy of 0.1%, it includes a counter to measure frequency up to 1 MHz , dB may be measured on both a.c. and d.c. voltage ranges, and there are 16 reference values built in to provide relative measurements.

Included in the display is

logarithmically scaled bar graph which indicates some digitally displayed values, providing a virtual analogue display for the easy setting of null values. The bar graph may also be used in the relative reference mode, enabling rapid and simple adjustment to a specific value, held in the internal non-volatile memory.

The PM2519 has a self-test facility and in the event of a fault, the built-in signature analysis fault finding technique ensures fast detection and repair. The meter is available in two versions; with an IEEE488 interface bus to enable computer-controlled testing at $£ 495$, or without for $£ 285$. A battery back-up pack is available to make the instrument fully portable. Pye Unicam Ltd, York Street, Cambridge CB1 2PX.

WW302

Build your own computer

A high-resolution-display computer, based on the MC6809E, is a British design from Micro Concepts of Cheltenham. The Microbox offers a minimal cost approach so that functions may be added as required. But the designer stresses that this is a 'no compromise' approach which equals or even exceeds the capabilities of the best personal computers. These include 60 K of main system ram, disc controller for two $5.25^{\prime \prime} 40$ or 80 -track drives, two RS232 ports, a Centronics printer port and a parallel keyboard input port. An additional 128 K ram is reserved for display and for 'silicon disc'. The ram-based silicon disc looks to the system like a conventional floppy disc with a capacity equal to a 40 -track singlesided, single density disc; however the access time is a lot faster. The same principle is applied to the rom area; eprom cartridges, called
'discs' in this context, will accept up to four $8,16,32$ or 64 K eproms
each, up to a maximum of 256 K These slot into a port that is fully buffered and isolated so that the rom discs may be changed while the system is powered. A built-in eprom programmer is included in the design.
The display offers several alphanumeric formats including 108 columns by 24 lines and 128 columns of 72 lines. Use of the NEC 7220 graphics controller chip gives a 768 by 576 element display with high-speed drawing through the inbuilt vector generation. Such facilities as points, lines, rectangles, circles, arcs and the ability to fill an area are provided.

For disc operation, the Flex system was selected because it is hardware independent and a considerable range of software is already available. Implementation is taken care of by the autoconfiguring boot program which is included in the supplied system support monitor so there is no need for any knowledge of hardware or software to get the system going. This 8 K rom contains all disc, console and graphics drivers plus 27 diagnostic and utility commands.

The start-up kit consists of a bare through-hole plated p.c.b. measuring 305 by 241 mm , a 76 by 100 mm eprom carrier board, the system support eprom, system utilities on a 5.25 in disc, constructional notes, operational documentation, and a list of components and suppliers. All for £95 from Micro Concepts, 8 Skillicorne Mews, Queens Road, Cheltenham, Glos GL50 2NJ.

WW303

Commodore enhancement

A plug-in rom for the Commodore 64 home computer adds nearly 100 Basic commands to its operation. Particular areas of improvement are in the high resolution display facilities, the organization of sprites, colour text displays, sound commands have been improved to give synthesizer capabilities. There are many new commands to improve the ability to program in machine code and to give the Basic more of a structured approach Input and output control has several new commands and there are many others. One of the criticisms of the Commodore 64 has been its inadequate Basic and this toolbox addition seems to be very useful in correcting this. Known as BC Basic, the rom comes with an 82-page manual for $£ 57.50$ (inclusive) from Kuma Computers Ltd, Unit 12, Horseshoe Park, Pangbourne, Berks RG8 7JW.

Massive Eprom

By combining a number of eprom chips onto a ceramic substrate, it is possible to get eproms with up to 256 K bits of storage into a standard d.i.l. package. Included on the substrate is decoupling capacitors and decoding to provide the configuration so that externally it behaves as a single unit with pin functions conforming to JEDEC standards. 32 Kbyte versions are available in n.mos and c.mos, with a 16 K byte version in c.mos only. A 16 K by 16 version will become available soon. Electronic Design Europe Ltd, Shelley House, The Avenue, Lightwater, Surrey GU 18 5RF.

WW309

Single-chip modem

A single-chip c.mos f.s.k. modem has been produced by TI. It incorporates filters which conform to the CCITT V23 standard, having a transmit modulation at 75,150 , 600 or 120 baud and receive demodulation at 600 or 1200baud. It offers full duplex operation up to 1200 baud receive and 150 baud transmit or half duplex at 1200baud both ways. It operates from a single 4 to 6 V supply with a consumption of only 30 mW and is ideal, according to Texas, for communications by telephone between home/personal computers, intelligent terminals, credit card readers, viewdata terminals etc. Texas Instruments Ltd, Manton Lane, Bedford MK41 7PA.

WW310

Video filters

A range of 22 filters from Barr \& Stroud has been designed to cover all known current requirements for both analogue and digital video processing applications. The range consists of nine luminance low pass filters, four chrominance low pass, three luminance/chrominance YUV filter combinations, four sub-

WW306
carrier band pass and two subcarrier band stop filters. The subcarrier filters, used to isolate the chrominance and luminance information in colour tv systems, are available in NTSC and PAL versions. In addition to the standard range, the manufacturers are willing to provide a made-tomeasure service. Barr \& Stroud Ltd, Melrose House, 4 Savile Row, London WIX IAF.

WW306

A and $D i / o$ board for IBM PC

A single board containing both analogue and digital inputs and outputs is available for the IBM personal computer. Costing $£ 495$ (less in o.e.m. quantities), the DT2808 includes an on-board prammable clock and its own processor. It provides 16 channels of a-to-d with 10 -bit resolution and two channels of d-to-a with 8 -bit resolution, there are also 16 lines of digital i / o. The board is intended for use in industrial control, data logging, product testing, and quality assurance. Energy management and security systems are also among the applications.
The on-board processor acts as interface between the board and the host computer. It controls all the i/o functions on the board and includes self-test functions it may be programmed through its internal microcode, or through a special software package available from the manufacturers, Data Translation

Ltd, 430 Bath Road, Slough, Berks SLI 6BB.

WW312

Connect 36

Strips of 0.025 in square pins and receptacles, made in straight and right-angular form have beryllium copper contacts. With a standard 0.1 in pitch, the makers say that they are ideal for mother/daughter module connectors. They come in standard lengths of 36 connectors and are notched to break off a desired length. Robinson Nugent Ltd, 74 London Road, Riverhead, Sevenoaks, Kent.

WW313

Polyester decoupling

A new range of metallized polyester 5 mm -lead-pitch capacitors has been designed to replace the more expensive multi-layer ceramic types used in decoupling. The small size allows high density packing on a p.c.b. and with this in mind the makers have printed the value, from 100 pF to $1.0 \mu \mathrm{~F}$, on the top for easy identification. Leads are ready-cropped and are provided with mounting 'feet'. Sufflex Ltd, Risca, Newport, Gwent NP1 6YD.

WW314

Reference diode

A 2.5 V reference diode offers a tolerance of 5 mV or 0.2%. The LT1009 is a precision trimmed shunt regulator diode, with a temperature drift of less than

$25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. It operates over a wide current range; from $400 \mu \mathrm{~A}$ to 10 A , with a dynamic impedance of 0.6Ω A third terminal is supplied to allow the reference voltage to be altered by 2% to calibrate out any system errors. Dialogue Distribution Ltd, Watchmoor Road, Camberley, Surrey GU15 3AQ.

WW315

Spectrum interface

A printer interface for the Sinclair ZX Spectrum includes both RS232 and Centronic interfaces. It is able to implement the Copy command which allows the printing of a high resolution screen image. This is available for a number of popular printers including Epson, Star and Seikosha and will give a full colour image with the Seikosha GP700 printer. The ZX Lprint III costs £34.95 inclusive from
Euroelectronics, 26 Clarence
Square, Cheltenham, Glos GL50 2UJ.

WW316

Ribbon-cable cutter

The KT80 ribon-cable cutter is made from steel with plasticscovered handles. It has a hollow ground hardened steel blade which is provided with a toggle-lever action so that all conductors are cleanly cut at the same time. The g.r.p. an vil has a built-in guide to ensure that a cut is made at right angles. The blade and angle are replaceable and spares are included. Klippon Electricals Ltd, Terminal Works, Power Station Road, Sheerness, Kent NE12 3AB.

WW317

[^3]
performance, reliability, value and immediate delivery!

Hitachi Oscilloscopes provide the quality and performance that you'd expect from such a famous name, with a newly-extended range that repre sents the best value for money available any where

V- 212	20 MHz Dual Trace	V- 209	20 MHz Mini-Portable
V-222	20 MHz (illustrated)	V- 509	50 MHz Mini-Portable
V-203F	20 MHz Sweep Delay	V- 1050 F	100 MHz Quad Trace
V-353F	35 MHz Sweep Delay	V- -134	10 MHz Tube Storage
V-422	40 MHz Dual Trace	VC -6015	10 MHz Digital
V-650F	60 MHz Dual Timebase	VC -6041	40 MHz Digital

Prices start at around $£ 300$ plus vat including 2 probes and 2 year warranty We hold the range in stock for immediate delivery.
For colour brochure giving specifications and prices ring (0480) $\mathbf{6 3 5 7 0}$ Thurlby-Reltech, 46 High Street, Solihull, W. Midlands, B91 3TB

WW - 033 FOR FURTHER DETAILS

Add 8 channels to your 'scope New Thurlby OM358 multiplexer £169-vat

The Thurlby OM358 gives any oscilloscope an 8 channel display. Observing many waveforms simultaneously can be essential when analysing sophisticated equipment. Application areas include microprocessor based products, data transmission systems, A to D converters, frequency synthesizers etc. The OM358 is ideal for digital equipment (it can often solve problems that would otherwise need a fast logic analyser) but, unlike dedicated logic test instruments, it is equally suited to analogue waveforms.
The OM358 has a bandwidth of 35 MHz and 3% calibration accuracy. Each input has an impedance of $1 \mathrm{M} \Omega-20 \mathrm{pF}$ and accepts signals up to $\pm 6 \mathrm{~V}$. An 8 channel, 4 channel, or single channel display can be selected with triggering from any channel. Colour data sheet with full specifications available.

||Thurlby \mathbb{E} Thurlby Electronics Ltd \quad OM358 with two BNC
designed and buils in Britain PE17 4BG Tel: (0480) 63570 (inc P \& P and VAT)

WW - 022 FOR FURTHER DETAILS

Where business is making contact

 currently a focus of attention. office systems. and organisations at the heart of these developments is at COMMUNICATIONS 84. communications products and services. your business. under one root. your visit. communic ators at COMMUNICATIONS 84.
WIRELESS WORLD APRIL 1984

For the comm 」nications industries worldwide, the Unitec Kingdom is
There's so much accelerating change - in telecommunications services, in the increased use of mobile and cellular radio, in the re-cabling of the country, and in the spread of information technology and electronic

Your prime opportunity to renew (and make) contact with the people

Once again, the latest presentation of this established event has attracted hundreds of companies - from the world over - who market

They are there to discuss how their organisations can help
Whatever aspect of communications is your concern, you can view and compare the alternatives - comfortably, cost-effectively and conveniently

Attend the associated conference too, and add further to the value of
The time and place are right, so make a date. Communicate with the

15-18 May $1984 \begin{gathered}\text { National Exhibition Centr } \\ \text { Birmingham, England }\end{gathered}$
 Communications 84 is organised by industrial \& Trade Fairs Limited Radcliffe House, Blenheim Court, Solihull, West Midlands B91 2BG England $\mathbf{8}$ 021-705 6707 Telex 337073
 Communications 9
 INTERNATIONAL EXHIBITION OF TELECOMMUNICATIONS, RADIO

 AND INFORMATION TECHNOLOGY PRODUCTS AND SERVICES.Please send me the visitor information pack for COMMUNICATIONS 84, which includes details of the conference programme, easy travel arrangements, andfree registration card for the exhibition.
Name
Company

Address

I
Complete and send to Department PS1 at the address shown. WWV2

Temperature-Controlled Soldering? LITESOLD haveit-toa Degree!

For the closest temperature control, easiest adjustment and fastest heating/recovery, you need the LITESOLD ETC-4 Systems.

Using a special 5 -transistor and op. amp. circuit, the power unit provides a controlled lowvoltage dc supply to the plug-in lightweight soldering iron, in response to a thermocouple sensor located inside the bit. Spiking, RFI, hum and magnetic effects are totally avoided. The metal power unit case and the soldering iron shaft are earthed for screening and static elimination.

Temperature selection, between $180^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$, is by potentiometer (with calibrated scale or digital display) or by tamper-proof selector plugs (in 7 temperatures). Proportionalband control ensures rapid heating and prevents swing, with idling temperature held typically within $1^{\circ} \mathrm{C}$.

Soldering irons are interchangeable without re-calibration and are simple and inexpensive to

service. Burnproof 4 -wire leads are fitted and non-seize iron-plated bits are available in 16 shapes/sizes. So get your degree in temperature-controlled soldering - with LITESOLD.

LIGHT SOLDERING DEVELOPMENTS LTD
97/99 GLOUCESTER ROAD, CROYDON, SURREY CRO 2DN. TEL: 01-689 0574. TELEX: 8811945 WW - 058 FOR FURTHER DETAILS

WW - 009 FOR FURTHER DETAILS

WHAT RESOLUTION FORONLYE230.

Our RGB high resolution colour monitors (580×470 pixels) sell for $\$ 229.95$ (excluding VAT)-a saving of over $\& 100$ compared to other leading monitors of similar specifications.

That's a bargain we guarantee you won't see from any other micro retailer.

We've managed to acquire the sole distribution rights enabling us to offer these superb monitors at this unbeatable price.

And just because you're saving on price doesn't mean youre sacrificing quality. Here's what Personal Computer News had to say about our monitors.
"There is no doubt that the JVC range of ECM colour monitors is excellent value for money... there is no loss in quality of picture after long periods ...remember as more and more resolution is available with new micros, the need for a better display will be that much greater."

For those who only require medium resolution we also have a model (370×470 pixels) at $\$ 149.95$ (excluding VAT) which is equally excellent value for money.

Both units have a $14^{\prime \prime}$ screen and are suitable for the BBC Micro, Spectrum QL,Lynx, Oric, Apple, IBM and

MODEI REFERENC:	1,502 2 High Resolution	1302 1 Medium Resohution
RESOIUTION	580×470 Pixels	370×470 Pixels
CRT	14	14"
SIPPIY	220/240v 50/60)	$220 / 240 \mathrm{c}$ 50/001\%
E.H.T	Minimum 19. 5 kv Maximum 225 kv	Binumum 195kv Maximum 22.5k
VILDEO BANI WITDTH	10911\%	(M1\%
DISPAY	80) haracters by 25 lines	socharactershy 25 lines
S1OT PTCH	0.41 mm	0.0 .5 mm
INPUT: VIDEO	RGB. Analogue TTL Itapua	R G.B. Analogue 7"しL Inpu
Sinc	Separate sync on R.G B Postrive or Negative	Separate sync on R.G.B Pestitive or Negative
EXTERNAL CONTROIS	On/off switch and brightness conter	On/ofl switch ard brightness coneret

most other leading micros.
And naturally there's a years full guarantee.
Another one of our commitments is to make certain we deliver your monitor by courier within ten days of receiving your order.

You can order by filling in the coupon below and posting to: Opus Supplies Ltd., 158 Camberwell Road, London SE5 0EE. Or bytelephoning 01-7018668 quoting your credit card number. Or, of course, you can buy at our showroom between $9.00-6.00 \mathrm{pm}$, Monday-Friday $9.00-1.30 \mathrm{pm}$, Saturday.

Now available from John Menzies

To: Opus Supplies Let., 158 Canberwell Koud, London SES OEE Please send me

High Resolution Colour Monitor(s) at £229.95 each (ex. VAT). Medium Resolution Colour Monitor(s)at d. 49.95 each (ex. VAT)
__._._Connection lead(s) at s. 6.00 each.
I understand carriage per monitor will cost an extrad? 00 . (N B B A High Resolution Monitor including VAT, lead, and carriage costs $\$ 279$ 39. A Medium Resolution Monitor including VAT, lead and carriage costs $£ 187.39$)
I encloseacheque for $\&$ \qquad Or please debit my credit card account with the amount of Φ \qquad Mv Accesis/Bardaycard
(please tick) no. is
Please state the make of your compuler
Name
\qquad

BBC Micro Computer System OFFICIAL DEALER
Please phone for availability

Software from ACORNSOFT/ PROGRAM POWER/GEMINI in stock

BBC Model B $£ 348$
B + Econet $£ 389$
B + DFS $£ 409$
B + DFS + Econet $£ 450$
Carr $£ 7$
Model A to Model B
Upgrade Kit £75
Installation £15 LANGUAGE ROMs
BCPL Rom + Disc + Manual $£ 87$
PASCAL-T Rom £44
WORD PROCESSOR ROMs
VIEW 16k Rom £52
WORDWISE 8k Rom $\mathbf{£ 3 2}$
Carr $£ 1.50$
UTILITY ROMs
BBC Ultracalc $\mathbf{£ 6 5 , \text { Toolkit } £ 2 0}$

Termi Rom $£ 29$

EXMON £20 Disc Doctor Rom £28
FX Dump $£ 15$ Graphics Rom $£ 28$

CASSETTE RECORDERS

SANYO DR101 Data Recorder $\mathbf{£ 3 4}+\mathbf{£ 2 . 5 0} \mathbf{c a}$ riage
BBCT
BBC Tape Recorder $£ 28.50+£ \mathbf{2} .50$ carriage Cassette Lead $\mathbf{£ 3}+\mathbf{£ 1}$ carriage
HOBBIT Zero Memory Option carriage riage
Computer Grade C12 cassette $\mathbf{5 0 p}$ each. $\mathbf{£ 4 . 5 0}$ for $10 £ 1$ carriage

MONITORS

MICROVITEC $143114^{\prime \prime}$ RGB Std Res $£ 210$ MICROVITEC 1431P 14' RGB/PAL Std Res $£ 2$ MICROVITEC 1441 14, RGB Hi Res $£ 440$ MICROVITEC $203120^{\prime \prime}$ RGB Std Res £287 KAGA VISION 12'" RGB Hi Res $£ 230$ KAGA VISION II 12"' RGB Hi Res $£ 260$ KAGA VISION III 12' RGB Super Hi Res $£ 385$ KAGA $12^{\prime \prime}$ GREEN Hi Res $£ 106$ SANYO DM8112CX $12^{\prime \prime}$ Green Hi Res $£ 99$ All leads included. Carriage $£ 7$

FLOPPY DISC INTERFACE £84 \& £15 installation

BBC COMPATIBLE DISC DRIVES

These drives are supplied with manual, form disc and cables
Single Drive: 100k £150; 200k £180*; 400k £195.
Single Drive with PSU: $100 \mathrm{k} £ 185$; 200k $£ 260$; $400 \mathrm{k} £ 240$. Dual Drive with PSU: $2 \times 100 \mathrm{k} £ 330$; $2 \times 200 \mathrm{k} £ 400^{*}$; $2 \times 400 \mathrm{k}$ £ 420
*These drives are switchable between 40/80 tracks $40 / 80$ Switch Module for $1 \times 400 k$ and $2 \times 400 k$ Drive £32.
DISKETTES: In packs of $10 . W=W$ abash, $M=3 M$
40T SSSD, W: $£ 15, \mathrm{M}: £ 17.50$; 40 T DSDD M: $£ 22$ 80T SSDD, W: £24, M: £26; 80T DSDD, W: £26, M: £30 Carriage f2/box
FLOPPICLENE Drive Head Cleaning Kit $£ 14.50$

Fhone or scmi for our isb tamlat

TORCH Z80 DISC PACK

Your BBC computer can be converted into a business machine with the addition of a TORCH $Z 80$ disc pack. The Torch pack with twin disc drive and the 280 processor card greatly enhances the computer's data storage and processing capability. 280 card comes complete with 64 K RAM and a CP/M compatible operating system. In addition to BBC owner's user guide and a systems disc the package is supplied with PERFECT software package comprising of DATABASE, WORD PROCES SOR \& SPREADSHEET and COMANEX, an interactive business manage ment game. Complete Package for $£ 730+£ 8$ carr.

PRINTERS \& PLOTTERS

EPSON FX80 £ $\mathbf{3 2 5}$. EPSON RX80 FT $\mathbf{£ 2 5 0}$ EPSON FX-100£555 NECPC80 23BE-N £310 SEIKOSHA GP 100 A $£ 170$ SEIKOSHA GP $250 \times \mathbf{f} 190$ SEIKOSHA GP 700 A Colour $£ 375$ JUKI 6100 Daisy Wheel $£ 365$ MSP 40 Col Printer/Plotter $£ 109$ Colour Graphics Plotter A3 size $\mathbf{£ 2 7 0}$ GRAFPAD Graphics Tablet f125

ACCESSORIES

Parallel Printer Lead $\mathbf{f 1 0} \mathbf{1 0} \mathbf{f 1}$ carriage Serial Printer Lead $\mathbf{£ 8}+\mathbf{£ 1}$ carriage Epson Serial Interface $2 \mathrm{~K} £ 40+\mathbf{£ 1}$ carriage Epson Serial Interface $£ 25+\mathbf{£ 1}$ carriage NEC Serial Interface $£ 42+£ 1.50$ carriage Epson Paper Roll Holder $£ 17+£ 1.50$ car riage
FX80
FX80 Tractor Attachment $£ 37+£ 1.50$ car riage
Paper Fanfold 2000 sheets $\mathbf{£ 1 3 . 5 0 + £ 2 . 5 0}$ carriage

TIME-WARP'

BBC REAL-TIME-CLOCK/CALENDAR A low cost unit that opens up the total range of eal-Time applications. With its full battery backup, ossibilities include an Electronic Diary, automatic ocument dating, precise timing and control in andications, recreational use in games, tc - its uses are endless and are simply limited by one's imagination. Simply plugs into the user port no specialist installation required - No ROMS.

BBC EPROM PROGRAMMER

program $2516,2716 / 32 / 32 \mathrm{~A} / 64 / 128$ single rail Eprom * Personality seiection is simplified by a single rotary switch

* Programming voltage selector switch is provided with a safe position
* Warning indicator to show programming in progress
* Programmer can read, blank check, program and verity at any address/ addresses on the EPROM
* Simple menu driven software supplied on cassette (transferable to disc). Programmer complete with cables, sofis + £ 2 p\&

PRODUCTION PROGRAMMER: P8000

P8000 provides reliable gang programming of up to 8 EPROMS simultaneously with device sizes up to $16 \mathrm{k} \times 8$ bytes. Devices supported range from 2704 to 27128 in single and three rail versions. Simple menu driven operation ensures easy eprom selection and reliable programming in minimum programming times. $\mathbf{£ 6 9 5}+\mathbf{f 6}$ carriage.

BOOKS (no Vat; pqp fi)

Advanced User Guide ($£ 2$ p \& p) £12.95 Assembly Lang Prog. for BBC Assembly Lang programming on BBC Micro by Ferguson and Shaw. Basic Prog. for BBC BBC An Expert Guide Easy Programming on BBC Further Programming on BBC Introducing BBC Micro Programming the BBC 30 Hour Basic 35 Educational Programs BBC Sound \& Graphics Creating Adventure Programs Discovering Machine Code Structured Programming The Friendly Computer Book BBC Beyond Basic BBC
$8 B C$
$f 7.95$ $£ 7.95$ f5.95 E 6.95 E5.95 E5.95 $\mathbf{f} 5.95$
$\mathbf{f 5} .95$
f5.95
E6.50

$f 5.95$
6.95

$£ 6.95$ f6.95 $f 6.95$ f 6.50 \&4.50 $£ 7.25$
arge number of other titles stocked

EPROM ERASERS

UV1T Eraser with a built-in timer and mains indicator. Built-in safety interlock to avoid accidental exposure to the harmful UV rays. t can handle up to 5 eproms at a time with an average erasing time of about 20 mins. $59+\mathbf{f} \mathbf{2}$ p\&
UV1 as above but without the timer $\mathbf{f 4 7}+$ E2 p\&p.
(14 Eproms $\mathbf{f 6 1}$
V141 as above but with timer $£ 79$.

$\star \star$ ATTENTION $\star \star$

All prices in this double page spread are subject to change without notice.

ACORN IEEE INTERFACE

This IEEE 488 standard interface is a general purpose system for exchanging digital data between a complies with the IEC 625 -1 standard and can be connected to up to 14 other devices. Interface board is supplied complete with software in ROM, interconnecting cables, IEEE cable for connection to an external device and a comprehensive manual. $\mathbf{£} \mathbf{2 8 2 . 5 0}+\mathbf{£ 2 . 5 0}$ carr.

SMARTMOUTH

SPEECH SYNTHESISER FOR BBC The 'infinite vocabulary' self-contained speech synthesiser unit. Uses only 5-10 bytes per word - no ROMs required simply plugs into the user port. (Has Aux. Audio output skt.). Supplied with Demo/Development programs and simple software instructions, $\mathbf{f 3 7}+\mathbf{f 2}$ p. \& p.

NEW COMPREHENSIVE CATALOGUE AVAILABLE - PLEASE SEND FOR PRICE LIST

CONNECTOR SYSTEMS				
	JUMPER LEADS 	AMPHEN CONNECT 36 -way plug Centronics 36-way socket Centron 24-way plug IEEE 24-way socket IEEE		RIBBON CABLE \qquad
CONNECTORS	Ribbon Cable with D. Conn	$\begin{array}{llll}{ }^{24} \text { 2.way sockel IEEE } & \text { E5.00 } & \text { E4.75 }\end{array}$ PCB Mtg Skt Ang pin24-way 66.00 .36 -way 66.50		
	RS 232 JUMPERS 		㫛	
		TEST CLIPS		

FREOUENCY COUNTERS
 HIGH PERFORMANCE HIGH RELIABILITY LOW COST

The brand new Meteor series of 8 -digit Frequency Counters offer the lowest cost professional performance available anywhere

* Measuring typically $2 \mathrm{~Hz}-1.2 \mathrm{GW} \mathbf{z}$
- Sensitivity $<50 \mathrm{mV}$ at 16 H 2 Z
* Setability 0.5ppm
* High Accuracy

3 Gate Times
PRICES (Inc. adaptor/changer, It W Whd VAT
METEOR $100 \quad(100 \mathrm{MHz}) \quad £ 10436$
METEOR $600 \quad(600 \mathrm{MHz}) \quad \mathbf{1} 134.26$
METEOR 1000
$(1 \mathrm{GHz}) \quad, \quad \mathrm{f} 194.36$

L Low Pass Filter

- Battery or Mains
* Factory Calibrated
* 1-Year Guarantee
* $0.5^{\prime \prime}$ easy to read L.E.D. Display

Illustrated colour brochure with technical specification and prices available on request

Black素Star

BLACK STAR LTD, Dop. wW, 9 A Crown Stroot, St wes

24 hour telex service

A vital service for

 continuous operation and maintenance of your electronic installations
7 days a week

ELECTRONIC • WORLD-WIDE EXPRESS SERVICE

- electron tubes - klystrons - magnetrons - tw. - LEADING BRITISH. AMERICAN \& EUROPEAN BRANDS. - MANUFACTURE OF SOLID STATE DIRECT REPLACEMENTS FOR OBSOLETE ELECTRON TUBES \& POWER TRANSISTORS. - wORLD-WIOE EXPRESS SERVICE FOR AMERICAN ELECTRICAL \& ELECTRONIC SPARES FOR CIVIL \& MILITARY AIRCRAFT. - TEST \& CERTIFICATION TO GOVERNMENT STANDAROS

B.S.L.EXPRESS SERVICE LTD.

Handrail House, Maygrove Rd, London NW6 2EG, England.
Tel: 01-328 2111 Telex: 298655 (BSLLDN). Cables: Sarozal London.

WW - 017 FOR FURTHER DETAILS

A hig'h sensitivity (2 mV) oscilloscope with an advanced digital delay system for TV line selection providing an exceptionally stable and inherently jitter-free display from inherently unstable mechanically reproduced video recording systems, whether tape or disc. The digital counting system operates on line numbers iselected by a 10 turn vernier delay control), not on elapsed time thus guaranteeing jit-ter-free traces even after a delay of almost a full field.
Designed primarily for the video service market, the 14D10V with its large screen and advanced facilities also offers considerable advantages to Technical Colleges and Polytechnics for demonstrating modern TV methods and for work on video, text and digital techniques.
Outstanding value at only £365 plus VAT. Send for full specification details today. British designed and made. Agents required worldwide.

Scopex Electronics Limited

63-65 High Street, Skipton North Yorkshire BD23 1EF Tel: Skipton (0756) 69511

- Protects against ingress of dust and liquids IP55 (BS5490 1977, IEC 529 1976).
- 1.5 and 1.75 mm steel bodies and 2 mm steel doors.
- Smaller sizes fitted with advanced polyurethane gaskets. Larger sizes (600×600 and above) fitted with neoprene gaskets.
- Wide range of chassis systems including plates DIN rail, telequick and gland plates.
- Standard finish is textured beige polyester powder paint.
- Glazed doors - wide choice from stock.

Think big - think Sarel
Sarel Limited
Cosgrove Way, Luton, Beds. Tel: Luton 20121

[^4]WW -061 FOR FURTHER DETAILS

B. BAMBER ELECTRONCS

Rohde \& Schwarz Enograph Type BN 18531, f60.
Rohde \& Schwarz Sweep Signal Generator Type BN 4242/2, 50 kHz to 12 MHz $£ 85$
Rohde \& Schwarz U.H.F. Signal Generator Type BN 41026, 1000 to 1900 $\mathrm{MHz} £ 125$.
Rohde \& Schwarz Group Delay Measuring Equipment Indicator, 550 .
Rohde \& Schwarz Group Oelay Measuring Equipment Modulator/Demodu ator $£ 50$.
Rohde \& Schwarz Power Signal Generator Type BN 4105, 30 kHz to 300 MHz, f 125 .
Rohce \& Schwarz U. H.F. Millivolt Meter Type BN $1091,20 \mathrm{mV}$ to 10 V, E50
Airmec Modulation Meter Type 210, 3 to $300 \mathrm{MHz}, \mathfrak{f} 95$. Hewdett Packard S.H.F. Signal Generator Model 618 B, 3.8 to $76 \mathrm{GHz}, \mathrm{£} 120$ Hewlett Packard Squase Wave Generator Model 211 A, $£ 60$.
Pye 12 V Power Unit Type AC 15, £25.
Wandel Golterman Carrier Frequency Level Meter, Type TFPM 76, £60. Rohce \& Schwarz Video Skop Type BN 4241, $£ 250$. Sche mantol Frequency Meter Type FDI, 30 to $900 \mathrm{MHz}, 650$ Tekt onix Delay Cable Type 113 , £50 Brued \& Kjoer Vibration Meter Type 2502, $\mathbf{5 5 0}$
Advé nce Pulse Generatortrum Analyzer Model $805,200 \mathrm{~Hz} 101.6 \mathrm{MHz}$, $£ 550$ Ministry Oscilloscope Type CT 436 Dual Beam D C. to 6 MHz , 885 . Marconi Signal Generator Type IF 995A/3/S (CT402), 995 Marconi 100 -Watt 7 d B Artenuator Type TM 5280,150 to $185 \mathrm{MHz}, £ 40$ Pye Aerial Tuner Unit Type ATU 4, 2 to 9 MHz , Pre-set, £15.
A.I.N Electronics Pulse Generator with Clock Generator, $\mathbf{f 6 5}$ Marconi V.H. F. Signal Generator Type TF 1064B/5M, £125 Marconi Tx \& Rx Output Test Set Type TF 1065, $\mathbf{f 8 5}$. Marconi $1 / 0 \%$ Universal Bridge Type
Tektronix L-C Meter Type 130, 665 .
Heathkit Harmonic Oistortion Meter Type 1M-12U, £20
Rohde \& Schwarz Polyskop 11 Type
Twin Clothes Lockers, nests of 2 with keys, £20
Twin Clothes Lockers, nests of 2 with keys,
Louvred Lin Bin Panels, $4^{\prime} 6^{\prime \prime} \times 4^{\prime} 6^{\prime \prime} \quad £ 20$
Kodak Roll Film Orying Cabinet with Hangers, $£ 150$ Potter Line Printer Type LP 3000, $\mathbf{£ 1 5 0}$.

Digital Decwriter 11 Printer with keyboard, $\mathbf{f 1 0 0}$ Rohde \& Schwarz 2-g Diagraph Type BN 3562,300 to 2400 MHz , f85 Marconi V.H.F. Alignment Oscilloscope Type IF 1104/1, E150 Tektronix Sampling 0scillos cope Type 661 with 4 S2 plug in, $£ 120$ - Valve Toscill Type Cobers Telequipment Oscilloscope $\mathrm{O} 2 \mathrm{SA}, \mathrm{DC} 10 \mathrm{3MHz} \mathrm{f} 120$ Tequiment Oscilloscope Type D43, DC to $10 \mathrm{MHz}, \mathrm{£} 100$ elequipment Oscilloscope Type S43, DC to $10 \mathrm{MHz}, \mathbf{f} 85$ Telequipment Oscilloscope Type $\$ 51$, $£ 75$ Telequipment Oscilloscope Type S $32 \mathrm{~A}, \mathrm{DC} 103 \mathrm{MHz}, 665$. Tektronix Rack Mount Oscilloscope AM17, DC to $10 \mathrm{MHz}, \mathbf{f} 85$ Tektronix Oscilloscope Type $317, \mathrm{DC}$ to $15 \mathrm{MHz}, \mathrm{f} 120$. Marconi R.C. Oscilloscope Type TF1101, $\mathbf{4} 65$ Airmec Millivolt Meter Type 301A, $£ 75$. Advance Audio Generator Type H1, $£ 20$ Tektronix Oscilloscope Type 543A with Type B plug in, $\mathbf{f 1 6 0}$ Tektronix Oscilloscope Type 531A with Type H plug in, £160 Sander Oscillator Type CLC 2-4, 2 to 4.5 GHz , E95. Bruel \& Kjoer Microphone Amplifier Type 2603, $£ 50$. EMI Oscilloscope Wide Band Amplifier Type 7/1, £25 Airmec Sweep Signal Generator Type 352, 20 Hz to 200 kHz , 445 . Belix Variable Power Unit, 0 to 50 V at 2 amp, £ $£ 40$. BTR Silvertown Anti-Static and Conductive Footwear Tester, $£ 25$. Dawe True RMS Valve Voltmeter Type 612A, $£ 20$. Rohde \& Schwarz Power Signal Generator Type BN41001 01 to 30 MH f 75.
Marco
Marconi Oistortion Factor Meter Type TF142F, £85, Marconi A.M. Signal Generator Type TF144H/4S, £125. Tektronix Time Mark Generator Type 180, 1 BS. Marconi F.M Signal Generator Type TF 1066B/6, £300. Marconi Carrier Deviation Meter Type TF 791 D, $£ 95$. Airmec Modulation Meter Type 409, f 120. Marconi Universal Bridge Type TF 868 , 550
Marconi A.M./F.M. Signal Generator Type TF 995A/5, £230. Marconi R.F. Power Meter Type IF 1020A/4, 300W, 750 hm , £65 Marconi R.F. Power Meter Type TF 1020A/1, 100W. 50 ohm, f65

SURPLUS \& EX-EQUIPMENT

A2293	£6.50	1A	ES	6AU6	£1.00
DA41	£21.50			6AV6	£1.00
DF61	£4.00	ELB21	¢8.00	68A6	£1.00
DY70	59.00	EL822	¢12.00	68G6	f1.25
E182CC	99.00	EN91	£1.10	68H6	$f 1.95$
E282F	¢19.00	EY81	E1.50	6BJ6	f1.20
EAC91	E2.50	EY84	E6.50	6807A	£1.00
EBC30	£1.00	GZ32	£1.00	6 B	55.00
EC88	¢1.00	GZ34	¢2.00	6CB6	. 50
EC91	$\underline{87.00}$	GZ37	¢ 4.00	${ }^{6} \mathrm{CH} 6$	$f 10.00$
ECC35	£3.50	KT66	¢6.50	6 CL6	f3.50
ECC85	£1.00	KT88	¢8.00	60K6	53.50
ECC88	f1.00	N78	¢14.00	6F6G	$\underline{5.00}$
ECC91	¢2.00	0A2	¢1.00	6.55	$\underline{2.00}$
ECF80	f1.00	PL82	\$1.00	6SJ7	20
ECF82	f1.00	auv03-10		$6 S .7$	00
ECF804	£6.00		¢4.00	6 U 4	11.75
ECL80	¢1.00	00V03-20A		6 6 6	11.20
ECL82	£1.00		f15.00	6×4	11.20
EF39	f1.00	a0vob-4	40A	7×4	11.95
EF54	¢2.50		£18.00	12AT	¢1.00
EF86	£1.25	QV04-7	£4.00	12AU6	¢2.50
EF91	E1.25	Q206-20	£15.00	12AU7	¢1.00
EF92	$\underline{5250}$	R18	$¢ 2.50$	12AV7	63.50
EF95	¢1.00	S11E12	£19.00	12AX7	£1.00
EF184	¢100	U403	¢2.40	1284	63.50
EF732	¢1.80	5B254M	£12.50	128 H 7	¢1.80
EK90	¢1.00	58255	£12.50	$12 \mathrm{BY7}$	$£ 2.75$
EL34	¢2.25	5R4G	$£ 2.80$	12EI	£17.00
EL37	¢9.00	5V4	f1.25	25L6GT	$¢ 2.75$
EL71	¢250	5Y3GT	£1.00	85A2	¢200
EL81	¢6.75	6AG5	£1.50	90 Cl	¢2.70
EL84	£1.00	6AG6G	$\underline{5} .00$	5642	¢8.00
EL85	£4.50	6AG7	£2.00	5763	£4.00
EL86	£1.00	6AN5	¢3.95	5965	¢2.25
EL90	¢1.25	6AS6	f1.50	6080	f5.75
EL. 91	£6.00	6AS7G	£7.50	${ }^{6146}$	£7.00
EL360	£7.75	6AL5	¢1.00	6216	¢4.20

P. \& P. or Carriage and V.A.T. at 15% on total must be added to all Callers very welcome, strictly between 9 a.m. and 1 p.m and 2 and 5 p.m. Monday to Friday inc. Barclaycard and Access taken

Official orders welcome

PYE POCKETFONE PF1

 UHF RECEIVER 440.470 MHz, Single Channet, int, with rechargeable battery and service manual, $\mathbf{f 6}$ each plus $\mathbf{£ 1}$ p.p. plus V.A.T.
BREAKING TEK 545A SCOPES

 FOR SPARESCRT type T543 P2 $£ 12$ each. Mains Transformers T601 £15. High Volume Switches, Knobs, Fans, Capacitors and Metalwork.

RADIOSONDE RS21 METEOROLOGICAL BALLOON TRANSMITIER

with water Activated Battery, contains
all-weather sensors, fully solid state, $£ 5$ each plus $£ 1$ p. p. plus V.A.T.

Cinclaverab

V/SA

5 STATION ROAD, LITTLEPORT, CAMBS CB6 10E PHONE: ELY (0353) 860185

WW - 073 FOR FURTHER DETAILS

OOT शUपजR Th RH:OUST 10008017 ,

THE ALADDIN'S' CAVE OF COMPUTER AND ELECTROMIC EQUIPMENT

HARD DISK DRIVES
$\left\{\begin{array}{l}\text { Fully re } \\ \text { DEC RK }\end{array}\right.$
Exchangeablee stand or rack mount $\mathbf{E 5 5 0 . 0 0}$

SOLID STATE SWITCHES

Matchbox size solid state switch type IA D2402

 600 watts, direct from your micro etc. Fully isolated 3-32 V DC input with zero voltage switching. 250,000 other relays EX STOCK call for deta| COOLING FANS
 Keep your hot parts COOL and RELIABLE with our range of BRAND NEW professional cooling fans.
 ETRI $99 \times U O I$ Dim. $92 \times 92 \times 25 \mathrm{~mm}$. Miniature 240 v equipment fan complete with finger quard $£ 9.95$.
 GOULB JB-3AR Dim. $3^{\prime \prime} \times 3^{\prime \prime} \times 2.5^{\prime \prime}$ compact very quiet running 240 voperation. NEW £6.95 BUHLER 69.11.22. 8-16 \vee DC micro miniature reversible fan Uses a brushless servo motor for extremely high air flow, almost silent running and guaranteed 10,000 hr life. Measures only $62 \times 62 \times 22 \mathrm{~mm}$. Current cost £32.00. OUR PRICE ONLY £12.95 complete with data. MUFFIN-CENTAUR standard $4^{\prime \prime} \times 4^{\prime \prime} \times 1.25^{\prime \prime}$ fan supplied tested EX EQUIPMENT 240 v at $\varepsilon 6.25$ or 110 v at $£ 4.95$ or BRAND NEW 240 V at $£ 10.50 .1000$'s of other fans Ex Stock Call for Details. Post \& Packing on all fans $£ 1.60$ |
| :---: |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

8' WINCHESTERS

BASF $617223 \mathrm{mb} 8^{\prime \prime}$ winchester disk
drive. Complete unit consists of sealed cavity with $3 \times 8^{\prime \prime}$ plattens and CPU based control logic on 3 pcb's. Multiplexed i / o with the BASF "DISK BUS" interface is
a single 40 way cable. Units have been carefully removed from believed working equipment - but at the staggering price of ONLYE125.00 are sold without guarantee. Supplied complete with $200+$ page tech manual. Addition
$+24 \mathrm{VDC} \leqslant \leqslant .00$

SOFNIT 2

The amazing SOFTY 2. The complete "toolkit

 for the open heart software surgeon. Copies, Displays, Emulates ROM, RAM and EPROMS of the 2516,2532 variety. Manyotherfeaturesinclude keyboard, UHF modulator. Cassette include keyboard, UHF modulator. Cassette
interface etca Functions exceedcapabilities o interace etcits costing 7 times the price! Only

ELIS,00

DATA MODEMS
Join the communications revolution with our
range of EX TELECOM data modems. Made to
 and working condition with data Permission MODEM 28 "Hackers Special" fully fledged
up to 300 baud full duplex, ANSWER or CAL

 Complete with data, tested, ready to run at a
NEW SUPER LOW PRICE of owly Et5.00 MAT + Cart.
moimo
 DATEL 4800 sync service. RACAL MPS4800 ex TELECOM good condition. NEW DSLL21 23 Multi Standard modem
selectable V21 $300-300$ bps, V23 $75-120$ selectable V21 300-300 bps, V23 75-1200,
V23 $1200-75$ full duplex. Or $1200-1200$ hal
duplex modes. Full auto answer via modem CPU. LED status indicators. CALL or ANS
modes Switchable CCITT or BELL 1038 202. Housed in ABS case size only $2.5^{\prime \prime} \times 8$ $\times 9^{n}$. £286.00 + VAT
For further data or details on other EX STOCK

GE TERMIPRINTER

 printer-terminals enables us to offer you hese quality 30 cps printers at a SUPEROW PRICE against their over $£ 1000$. Unit comprises of full QWERT electronic keyboard and printer mech with print face similar to correspondence quality yoewriter. Variable forms tractor unit
nables full width - up to $13.5^{\prime \prime} 120$ column paper, upper - lower case, standard RS232 serial interface, internal vertical and horizontal tab settings, standard ribbon adjustable baud rates, quiet operation plus
many other features. Supplied complete with manual. Guaranteed working $\mathrm{E} / 30.00$ with manual. Guaranteed working $£ / 30.00$

THLETYPS ASRB31 I/O TMRMMIAIS

An advantageous purchase of brand POFESSIONAL KEYBOARO OFFER
ALPHAMERIC $7204 / 60$ full ASCII 60 key orginal costs.
output plus strobe. Dim $12^{\prime \prime} \times 6^{\prime \prime}+580-12$ DC. E.39, 50 .
DEC LA34. Uncoded keyboard with 67 quality, GOLD, normally open switches on standard X, Y matrix. Complete with 3 LED indicators and i/o cable-ideal micro

SUPER DEAL? NO - SUPER STEAL!!

The FABULOUS 25CPS TEC Starwriter
RAND NEW AT ONLYE4́99+ VAT=

and ful icontro viac printing, switchable 10 or 12 bitch, full width 381 mm paper handling with upto internal buffer, standard RS232 serial interface with handshake.
and dust cover. Order NOW or contact sales office for more infermatio

66\% DISCOUNT

解 b-assemblies

$2.5 \mathrm{kls} £ 4.25+\mathrm{pp} £ 1.25 \quad 5 \mathrm{kls} £ 5.90+£ 1.80$ モC. $10 \mathrm{kls} £ 10.25+\mathrm{pp} £ 2.25 \quad 20 \mathrm{kls} £ 17.50+£ 4.75$

ALL PRICES PLUS VAT

All prices quoted are for U. K. Mainland, paid cash with order in Pounds Stirling PLUSVAT. Minimum order value $\mathbf{E 2 . 0 0}$, Minimum Credit £20.00 Where post and packing not indicated please ADD $£ 1.00$. + VAT Warehouse open Mon-Fri $9.30-5.30$. Sat 10.15-5.30 We reserve the right to change prices and.specifications without notice. Trade, Bulk and Exprort enquiries welcome.
32 Biggin Way, Upper Norwood, London SE19 3XF Telephone 01-679 4414 Telex 27924

VIDEO MONITORS
HITACHI in ergonimcally designed free standing case. Very high definition will display
small but readable 132 columns wide! 12 VDC opp @ 800 ma , so ideal for mobile use. Supplied in AS NEW condition complete with data. Composite 75 ohm vid inp. Black \& Whit CRT E45.00 or Green CRT ESS.00 12 " CASED. Made by the British KGM Designed for continuous use as a data attractive brushed aluminium case with
OFF, BRIGHTNESS and CONTRAST controls mounted to one side. Much
attention was given to construction and reliability of this unit with features such a
\qquad fibre glass PCB boards
ease of service, many in
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad operation, owty e45.00 Plu Es. 50 GARR.
\qquad
\qquad
\qquad
\qquad SEMICONDUCTOR 'GRAB BAGS'

Mixed Semis amaz higital linear ic's triacs

diodes, bridge recs, etc etc. All devices

\qquad TTL 74 Serles A gigan
\qquad
\qquad

DEC CORNER

MOSTEK CRT 80E Brand new dua eurocard, Z80 based VT100 PLUS

\section*{emulator with graphics etc $\quad \mathbf{8 9 9 . 0 0}$} $\begin{array}{ll}\text { 8A11-MB 3.5" Box, PSU, LTC } & £ 355.00 \\ \text { DLV11-J } 4 \times \text { EIA interface } & \text { E } 310.00\end{array}$ $\begin{array}{ll}\text { RKO5-J } 2.5 \mathrm{Mb} \text { disk drives } & \text { ESS0.00 } \\ & \end{array}$ | PDP1105 Cpu, Ram, i/o, etc. | E 450.00 |
| :--- | :--- | RT11 ver. 3 B dockit

LA36 De \quad| E 250.00 |
| :--- | LA36 Decwriter ElA or 20 ma MIBE PDP 8 Bootstr DILOG DO Bootstrap option \quad E75.00 controller

LAXX-NW LA180 RS232 serial inte
and buffer option \quad E230.00 1000's Es5.00 PDP8 PDP11 PDP15 \& periperhals.
Call for details. All types of Computer
and spares want
CASH PAYMENT

COMPUTER 'CAB'
All in one quality computer
cabinet with integral switched mode PSU, Mains filtering, and twin Originally made for the famous DEC PDP8 compu hours per day the PSU is fully screened and will deliver massive $+5 v D C$ at $17 \mathrm{amps},+15 v D C$ at 1 amp and -1 DC at 5 amps . The complete unit is fully enclosed with removable top lid, filtering, trip switch, 'Power' and 'Run
LEDs mounted on Alifront panel, rear cable entries, et etc. Units are in good but used condition - supplied for
240 v operation complete with full circuit and tech man Give your system that professional finish for only 49.95 + Carr. Dim. $19^{\prime \prime}$ wide $16^{\prime \prime}$ deep 10.5" high Useable
Also ava

TOROIDALS

\section*{| R | RADFORD |
| :--- | :--- |}

Audio Measuring Instruments, Audio Amplifiers, Loudspeakers and Loudspeaker Components for the professional and enthusiast

RADFORD AUDIO LTD.
10 BEACH ROAD
WESTON-S-MARE, AVON BS23 2AU
TEL. 0934416033
WW - 037 FOR FURTHER DETAILS

Hit

MICROBOX II
 A NEW MICRO CONCEPT

Do you remember the days when people built their own computers? Well they are back with a vengeance. MICROBOX, the most advanced design ever offered as a build-it-yourself system, offers every facility imaginable to the home constructor. Just look at the amazing specification of this easy-to-build project

- MC68B09E 8-/16-bit microprocessor
\star 64K main system ram + 128 K alpha/graphic/simulated disc ram
\star Alpha display of 108 colums by 24 rows of 128 columns by 72 rows
\star True high-resolution graphics with 768×576 resolution High-speed hardware vector generation using NEC 7220 graphics controller. Point, line, rectangle, circle, arc and area fill facilities.
\star High-speed ram disc for fast data access
* Up to 256 K silicon disc eprom on plug-in eprom carrier
$\star 8 \mathrm{~K}$ system $1 / \mathrm{O}$ support monitor plus added utility and boot commands
\star Integral eprom programmer
\star Floppy disc controller for two 5.25 -inch 40 - or 80 -track drives
* Battery backed realtime clock/calendar
* Battery backed ram for storing system startup parameters
* Two serial RS232 I/O ports. 50-19200 baud under software control
\star Centronics compatible printer output port
\star Parallel keyboard input port
* Composite video and separate video/sync outputs
* Buffered expansion buss for user added enhancements
* Auto configuring 'FLEX' disc operating system boot program in monitor
$\star 12 \times 9.5$ in. through hole plated main PCB; $3 \times 4 \mathrm{in}$. eprom board
'FLEX', which is supported by MICROBOX, is a well-proven, industry standard, disc operating system with a wealth of available software packages. Basic, Forth, Pascal, PL9 and C high-level languages as well as assemblers, word processors and electronic spreadsheet are currently available. Clever programming techniques have permitted the inclusion in the system monitor of a boot program that automatically loads and configures the operating system to the MICROBOX herdwars fiquirements.
The on-board ram and eprom discs are seen by the operating system as conventional dise drives, The ram disc has the capacity of a 40 -track single-density disc but with an access time 10 times that of a floppy disc. Eprom discs are supported by way of a plug-in eprom carrier which has provision for four 8,16,32 or 64K eproms into which can be prögrammed the operating system and any other often used programs by way of the built-in programmer. 'FLEX' supports up to four disc drives which in MICROBOX can each be allocated as floppy, ram or eprom types so providing, if required, a completely silicon configuration.

A startup kit for the advanced MICROBOX system is available and consists of: Bare PCBs, 8K system support monitor, 'FLEX system support disc, constructional notes, system documentation, component supplier list.

PRICE: $\mathbf{£ 9 5}+\mathbf{V} . \mathbf{A . T}$.
FLEX' disc operating system for MICROBOX, including editor and assembler: $\mathbf{£ 7 5}+\mathrm{V} . \mathrm{A} . T$.
Send cheque to

8 SKILLICORNE MEWS - QUEENS ROAD CHELTENHAM - GLOUCESTERSHIRE GL50 2NJ Telephone: Cheltenham (0242) 510525

PAN \& TILT HEAOS were used for CCTV cameras heavy duty weight about 751 b provide 360^{\prime} pan $\&$ tilt as two 240 V reversible motors, wilt adapt to take dish $400 \mathrm{c} / \mathrm{s} 1$ phext paintwork in poor condition. $£ 45$ FREQ CONV TAPE RECORDERS MOD/EMI two chan 71^{\prime} sine wave, new. ' $15^{\prime \prime}$ spools in table case $21 \times 8 \times 15^{\prime \prime}$ in mon spk, two chan valve units with book. f65. RADIAC SIMULATORS hand held Geiger Counter responds to RF signal on $40.68 \mathrm{Mc} / \mathrm{s}$ as meter cal in Rontgens transis superhet circ 5UV I/P for i on meter, with aerial will adapt to HP7/PP3 batteries. £13.50. ARMY AERIAL KIT with 30ft $1^{\prime \prime}$ mast 10 section, $2 \times 16 \mathrm{ft}$ whips plus accs, can be used as 46 ft vert aerial or 30 ft mast good cond. £46. ELEC BELLS in neat case, new cond. f25. UPX-6 Rx TUNER 1080 to 1130 Mc O/s for 240 v mains in neat case, new cond. £25. UPX-6 Rx TUNER 1080 to $1130 \mathrm{Mc} / \mathrm{s}$ with 1 N21 new $\mathbf{L 5 5 6} 2 / 16 \mathrm{Mc} / \mathrm{S} 50 / 100$ watt CW/SSB/DSB solid state, valve in P.A. req ext P.U. these req some mech attention. £75. BENCH P.U. 240V, O/P 28 V DC at 15 amps size $16 \times 7 \times 7^{\prime \prime}$ semi stab, ground P.U. for ARC-52. £38. RESISTANCE MATTS size $131 / 2 \times 15^{\prime \prime}$ approx 500 watt, available in 490, 320, 95 \& 29 ohms ex new equip £4.50. UPM-6 Bench T.S. comprises W.M. Sig Gen, Demod etc $960 / 1125 \mathrm{Mc} / \mathrm{s}$ ground IFF T.S. for $115 \mathrm{v} 50 \mathrm{c} / \mathrm{s}$ some info. £45

Above prices include Carr/postage \& VAT
Goods ex equipment unless stated new, List $33 / 1$ available on request.
A. H. SUPPLIES

122 Handsworth Road, SidEFFIEID 59 4AE
Tel. (0742) 444278

WW - 052 FOR FURTHER DETAILS

[^5]BEGKENHAM PERTPHERALS LTD 124 Lennard Road, Eeckenham

SAE for LISJ
dad enquiries Caliers welcome apo enquiries

WW - 048 FOR FURTHER DETAILS

KEEP YOUR WEATHER EYE OPE!!

WITH OUR COMPLETE 'METEOSAT’ WEATHER SATELLITE RECEPTIOM SYSTEM

THE SYSTEM

'METEOSAT' is a geostationary satellite located 22,500 miles above the equator transmitting invaluable weather information in both visible and infra red format The picture image of the earth is transmitted in 24 segments in the case of visible are virtually continents in the case of infra red. Transmissions from the sate the changing patterns in the weather
Our PA5500 system, as pictured above, provides a live display of this information on a video monitor, at the lowest price ever for such a comprehensive system. A unique 'zoom' facility allows the user to enlarge any segment should he so desire, to provide more Please contact our

THE COMPANY.

Microwave Modules Limited, formed in 1969, is a wholly independent British company operating from modern purpose-built premises, and is an established The equipment described above forms part of an extensive range of proven designs in the communications field.

MICROWAVE MODULES LTD
BROOKFIELD DRIVE, AINTREE, LIVERPOOL LS TAN, ENCLAND Telephone: 051.5234011 Telez 628808 MICRO G

WW - 018 FOR FURTHER DETAILS
established 30 Vears. U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

RECORD DECKS 240 volt AC. Post f2				
Make	Model	Drive	Cartridge	Price
BSA	P170	Rim	Ceramic	12
GARRARD	6200	Rim	Ceramic	524
BSA	P207	Rim	Ceramic	f20
BSR	P232	Bett	Magnetic	f28
BSR	P200	Belt	Magnetic	E34
AUTOCHANGERS 240 VOLT				
BSR	Budget	Rim	Ceramic	18
BSR	Deluxe	fim	Ceramic	120
BSR	Deluxe	Rim	Magnetic	126
GARRARD	6200	Rim	Ceramic	$\underline{22}$

THE "INSTANT" BULK TAPE ERASER 111.50 Post 95p
Sultable for cassettes and all sizes of tape reels. AC mains will also demagnetise small tools. Tape Head Demagnetiser f 5 . ALUMINIUM CHASSIS. $21 / 2$ in deep 6×4 [1.75; $8 \times 6,92,20 ; 10 \times 7$ £2.75; 12×8 £3.20; $14 \times 9 £ 3.60 ; 16 \times 6 £ 3 ; 16 \times 10 £ 3.80 ; 12 \times 3 £ 2.20$; 4×3 £ $2.50 ; 13 \times 9$ £2.80.
ALUMINIUM PANELS. $6 \times 455 \mathrm{p} ; 8 \times 6$ 90p; $14 \times 390 \mathrm{p}$; $10 \times 7 \mathrm{f1.15}$ $12 \times 8 \mathrm{£} 1.30 ; 16 \times 6 \mathrm{f} 1.30 ; 14 \times 9 \mathrm{f} 1.75 ; 12 \times 12 \mathrm{f1.80} ; 16 \times 10 \mathrm{f} 2.10$. ALUMINIUM BOXES. $4 \times 4 \times 1 / 2 \mathrm{f1} .20 .4 \times 21 / 2 \times 2 \mathrm{f1} .20 .3 \times 2 \times 1 \mathrm{f1.20}$ $6 \times 4 \times 2 \mathrm{f} 1.90 .7 \times 5 \times 3 £ 2.90 .8 \times 6 \times 3 £ 3.10 \times 7 \times 3 £ \mathcal{E} .60 .12 \times 5 \times 3 £ \mathcal{E} .60$ $2 \times 8 \times 3 \mathrm{f4} .30 ; 9 \times 4 \times 4 \mathrm{f3}$.
$12 \times 8 \times 3$ f4.30; $9 \times 4 \times 4 \mathrm{EJ}$.
POTENTIOMETERS $5 \mathrm{k} / 2 \mathrm{meg}$. LOG LIN. US 50 p . DP 90 p . Stereo LS
c1.10. DP $£ 1.30$. Edge Pot 5 LL SP 45 p .
MINI-MULTI TESTER \qquad $\mathbf{f 7 . 5 0}$ Post 50p Pocket size moving coil instrument. 4000 o.p.V. 11 ranges: DC volts $5,25,250,500$. AC volts
$1000 . \mathrm{C}$ amps $0.250 \mathrm{uA}, 0-250 \mathrm{~mA}$. Ohms 600 K .

De Luxe Range Doubler MULTI-METER 50,000 o.p.v. $7 \times 5 \times 2$ in. 50 Micro Amp
£19.50 43 Ranges, $1,000 \mathrm{~V}, \mathrm{AC}-\mathrm{DC}, 20 \mathrm{MEG} 10 \mathrm{amp}$ DC Post E 1
PANEL METERS $50 \mu \mathrm{a}, 100 \mu \mathrm{a}, 500 \mu \mathrm{a}, 1 \mathrm{ma}$, $5 \mathrm{ma}, 50 \mathrm{ma}, 100 \mathrm{ma}, 500 \mathrm{ma}, 1 \mathrm{amp}, 2 \mathrm{amp}, 25 \mathrm{volt}, \mathrm{VU}$

RCS SOUND TO LIGHT CONTROL BOX
Complete ready to use with cabinet size $9 \times 3 \times 5$ in OR KIT ÓF PARTS $£ 19.50$

RADIO COMPONENT SPECIALISTS

make	MODEL	SIZE	WATIS	OHMS	PRICE P	OST
AUDAX	WOOFER	5 in	25	8	£10.50	f1
G00DMANS	HIFAX 7	$71 / 2 \times 41 / 4$	100	4/8/16	£30	£2
G00DMANS	HB WOOFER	8 in	60	8	£12.50	£1
WHARFEDALE	WOOFER	8 in	30	8	$f 9.50$	¢2
CELESTION	disco/group	P 10in	50	8/16	¢21	f2
G000 MANS	HPG/GROUP	12in	120	$8 / 15$	f29. 50	¢2
GO0DMANS	HPD/DISCO	12 in	120	$8 / 15$	£29.50	E2
GO0DMANS	HP/BASS	15 in	250	8	¢72	¢4
G000MANS	HPD/BASS	18in	230	-	$f 84$	¢4

BAKER AMPLIFIERS BRITISH MADE PA150 Watt MICROPHONE VOCAL AMPURER f129 4 channel mixing. 8 inputs, dual impedance, $50 \mathrm{~K}-60 \mathrm{y}$ ohm,
volume, treble, bass. Presence controls on each channel. Master volume, treble, bass. Presence controls on each channel. Master 150 Watt MIXER AMPLIFIER 4 Inputs £99 Discotheque, Vocal, Public Address. Speaker outlets for 4, 8 or "Four channel" mixing. Slave output. $16^{\prime \prime} \times 8^{\prime \prime} \times 5^{1} h^{\prime \prime}$ WI 14 lb : Master volume control. 240 V A.C. Post ∓ 2
100 Volt Line Model, 150 watt f114. MONO SLAVE, 150 watt 580 Baker Stereo Slave $150+150$ watt 300 watt Mono $£ 125$. Post $£ 4$. BAKER MOBILE PA AMPLIFIER. All transistor, 60 watt RMS, 12 v OC \& 240v AC, 4 inputs 50 k . Aux +2 mics $\quad \mathbf{f 8 9}$ Post f 2 WATERPROOF HORNS 8 ohms. 25 watt $£ 20.30$ watt $£ 23.40$ watt E26. 40 W plus 100 volt line $£ 32$. Post $£ 2$.
BAKER PORTABLE DISCO 150 watt. Twin console + amplifier + mike and headphones + twin speakers $£ 330.300$ watt $£ 399$. Carr

PA CABINET SPEAKERS, Complote. 8 ohm 60 watt $17 \times 15 \times 9 \mathrm{in}$ 227. Post $£ 4.4$ or 8 or 16 ohm 75 watt $23 \times 15 \times 11 \mathrm{in}$. $£ 52.90$ watt $32 \times 15 \times 11 \mathrm{in}$. $\mathbf{7 1}$. 150 watt f80. Carr. $\mathbf{£ 1 0}$. Black vinyl covered.

BAKER LOUDSPEAKERS

MODEL	INCHES	OHMS	wats	TYPE	PRICE	POST
MAJOR	12	4-8-16	30	HI-FI	¢16	¢2
SUPERB	12	8 -16	30	HI-FI	526	¢2
WOOFER	12	8	80	HI-Fi	$E 75$	¢2
AUDITORIUM	15	8-16	60	Wooier	537	¢2
GROUP 45	12	4-8-16	45	PA	116	¢2
DG 75	12	4-8-16	75	PA	f20	¢2
GROUP 100	12	8-16	100	PA	E26	¢2
DISCO 100	12	8.16	100	Disco	f26	$\underline{5}$
GROUP 100	15	$8-16$	100	PA	635	fl^{2}
DISCO 100	15	8-16	100	Disco	635	¢2

REPAIR service to most Baker loudspeakers. SPEAKER COVERING Samples S.A.E. CABINET WADDING 18 in wide 35 p ft .

MOTOROLA PIEZO ELECTRIC HORN TWEETER, 3 3.bIn. square £5 100 watts. No crossover required. $4-8-16 \mathrm{hm}, 73 / \mathrm{s} \times 3 / \mathrm{din}$. f 10 HORN BOXES, complete 200 watt $£ 30$. 300 watt $£ 35$. Size $16 \times 6 \times 6$ in. Black vinyl covered with handle Post $£ 4$. CROSSOVERS. TWO-WAY $3000 \mathrm{c} / \mathrm{s} 30$ Watt $£ 3.60 \mathrm{~W} £ 3.50$. 100 W f4. THREE-WAY $950 \mathrm{cps} / 3000 \mathrm{cps} .40$ watt rating. $£ 4.60$ watt $\mathrm{f6}$. 100 W £8. LOUDSPEAKER BARGAINS. Please enquire, many others in stock.
 $8 \times 5 \mathrm{in}, \mathrm{£} 3$; $8 \mathrm{in}, \mathrm{f4} 40$; $10 \mathrm{in}, \mathrm{f5}$; $12 \mathrm{in}, \mathrm{f6}$. $8 \mathrm{in} 25 \mathrm{~W} \mathrm{f6.50}$. 60 W f 12.50 15 ohm, $21 / 4 \mathrm{in}, 31 / \mathrm{in}, 5 \times 3$ in, 6×4 in, $£ 2.50 .61 / \mathrm{zin} 10 \mathrm{~W}$ E5. $8 \mathrm{in} \mathrm{f4}$. 10 in f 7 . 25 ohm, $3 \mathrm{n}, \mathrm{E}_{2} ; 5 \times 3 \mathrm{in}, 6 \times 4 \mathrm{in}, 7 \times 4 \mathrm{in}, \mathfrak{E 2}, 50.120 \mathrm{ohm}$. $31 / \mathrm{in}$ dia. fl .

Affordable Accuracy - Low Cost Multimeters from Armon

SPECIFICATION HC 6010 DIGITAL

$\star 10 \mathrm{Amp} \mathrm{AC} / \mathrm{DC}$

* Battery: Single 9V PP3. Life 200 hrs.
\star Dimensions: $170 \times 89 \times 38 \mathrm{~mm}$ * Weight: 400 g inc. battery Mode Select: Push Button
AC DC Current: 200uA to $10 A$ - AC Voltage: 200 mV to 750 V DC Voltage: 200 mV to 1000 V - Resistance: 200Ω to $20 \mathrm{M} \Omega$ Input Impedance: $10 \mathrm{M} \Omega$ \star Display: $31 / 2$ Digit 13 mm LCD * Accuracy-0.5\% DC Volts 28 RANGES, EACH WITH FUL OVERLOAD PROTECTION. BATTERY \& TEST LEADS INCLUDED

Dept "A", Cottrell House, 53-63 Wembley Hill Road Wembley, Middlesex HA9 8BH Telephone: 01-902 4321 (3 lines). TELEX No. 923985

SPECIFICATION

 hC1015 ANALOGUE\star DC Voltage: $0.25,2.5,25,250$ 1,000 Volts, 10,000 Ohms $/$ Voí - AC Voltage: $10,50,250,1,000$ Volts, 4,000 Ohms/Volt - DC Current: 1, 10, 500 mA \star Resistance: 0 to 1 MegOhm in 3 ranges
\star Decibels: -20 dB to +62 dB \star Battery: One 1.5 V size AA (incl) \star Size \& Weight: $105 \times 63 \times$ 32 mm ; 130 gr

19 RANGES COMPLETE WITH BATTERY AND TEST LEADS

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, N. Finchley, London, N.12. 5 mins. from Tally Ho corner Telephone 445 2713/0749

ลT7 Electronic Corporation

THRULINE ${ }^{\circledR}$ Directional Wattmeters TERMALINE ${ }^{\circledR}$ RF Coaxial Load Resistors TENULINE ${ }^{\circledR}$ Attenuators and accessories from stock
Aspen Electronics Limited
The exclusive UK representative for Bird Electronic
2/3 Kildare Close, Eastcote, Ruislip Middlesex HA4 9UR Tel: 01-868 1188 Tlx: 8812727

42 Gorst Road, Park Royal

London NW10 6LD, UK

Member of the $P C M / L_{\text {Group }}$

Telephone: 01-965 0627 Télex: 24708
and Telephone: Esher 67282

COMPARE OUR PRICES

COME TO US LAST!!!

CDC DISKETTES AT CRAZY PRICES!
Code Type
TD1 51/4" 40 TRK single sided
103 51/4" 80 TRK singie sided
TD4 51/4" BO TRK double sided
TD5 $8^{\prime \prime}, 40$ TRK SS-SD
TD6 8' 40 TRK SS-00
TD6 $8^{\prime \prime}, 40$ TRK SS-DD
TD7 $8^{\prime \prime} 40$ TRK DS-SD
TD7 $8^{\prime \prime \prime} 40$ TRK DS-SD
TD8 $8^{\prime \prime} 40$ TRK DS-DD
10 per box. Prices per diskette quoted. Discounts for quantity ADD 15% VAT $+£ 1.50$ P\&P

LARGE RANGES OF LISTING PAPER AND RIBBONS AT GREAT PRICES

Code Type

TD9 $11^{\prime \prime} \times 8 /{ }^{\prime}$ ' $^{\prime \prime} 60$ GSM Plain
TD11 $11^{\prime \prime} \times 14^{\prime} \AA^{\prime \prime}$ " 60 GSM Perf'd Margins
TD12 11" "x 450 mm 60 GSM Music Ruled.
RIBBDNS: 10 off EPSON FX-80
10 off EPSON FX. 100
(Refill for metal cartridges)
ADD 15% VAT $+£ 1.50$ CARR. PER ITEM (PAPER) OR BOX of 10 RIBBONS
MANY MORE AVAILABLE - PHONE FOR DETAILS NOW! 01-965 0627

ECONOMICAL DRIVE POWER

Very powerful and versatile, from Rade Systems the R150 multiprocessor SBC £385! (ex. VAT + carr). Amazing spec. Look what you get: Z80A at 4 MHz with 64K RAM $5^{1 / 4} / 8^{\prime \prime}$ disk controller, Z80A CTC, Z80A DMA, Z80A P10, memory mapped VDU uses M6845 CRTC 25×80 char display, you can use all the TD8 option cards to build your own powerful system, or build your own TD8! Suitable power supply $£ 95$. Keyboard from $£ 85$. Cased Video Monitors from $£ 95$. Supplied with full technical documentation. Demand for this excellent machine is high! Order now! Power requirements: +5V@ $1.5 \mathrm{~A},+12 \mathrm{~V} @ 25 \mathrm{~A} .-12 \mathrm{~V}$ required for RS232 option - available on our standard PSU. Uncased drives also available with/without PSU.

EXCLUSIVE OF VAT \& CARRIAGE

DON'T WASTE MONEY!
ON OTHER COMPUTERS: COMPARE THE TD8 WITH OTHERS - COME TO US LAST!!

£149
For dual 250 KB disk system with 25×80 char. VDU, 93 -key keyboard, user definable char set, 128 KB RAM (no upper limit to expansion, due to our unique bus structure. This also allows CPUs to be mixed). 4KB ROM with M/C monitor, bootstrap, dual RS232 ports to 19.2 K baud, software controlled Unique 'stackable' option modules allow easy and cheap expansion of your system \mathbf{s} 100 bus based machines!

CP/M80 £139. CP/M86 £225. 8086/7 with 28 KB £495 extra gives you THE most powerful machine in its class. You could spend $£ 6,000$ for a machine of this specification. Other options include: 64KB RAM expansion £135. 192KB RAM £249. IEEE488 £97.50. Sync comms £78. Dual Parallel
Ports $£ 59$. Dual RS232 £59, 68000 CPU £TBA. 16032 CPU £TBA. A to D and D to A converters, high res. graphics, floppy and hard disk controllers and drives, racker ball, real-time clockicalendar with BBU and more on the way!

CHOOSE YOUR SOFTWARE FIRST THEN SOFTWARE WordStar, Maimerge, D Base II, Personal Peart, MBasic CBasic, Pascal 2, MT+, Fontran, CIS COMPARE OUR Cobol, C, Cardbox, FMS, Datastar CalcStar, Supercalc, Mathemagic, Peachtree Sales Nominal, Purchase Ledgers, Inventory Management, Payroll, etc, ADA, Charger, Rattor, Act B0, Act 65, 68, 69, 86/88, Tran8, Catchum and much more

PHONE TO ARRANGE DEMO 01-965 0627
${ }_{24} 01$ HOURS - SEVEN DAYS
Complete TD8 system (as illust.) with Keystar, Enson RX-80, disk filing box. GPM 2.2 and WordStar, VDU and keyboard
OMLY £1895!
OR with HR15 Daisy Wheel - $\{1995$
EXCLUSIVE OF VAT \& CARRIAGE

NEW!

PERSONAL TYPE SETIING

For use with your CP/M 80, CP/M 86, MS-DOS, and most other systems. Provide you with the ability to produce customised letter heads, invoices, delivery notes, price lists.
Do you own printing on your EPSON or compatible printer. No modifications to hardware. PRICE includes comprehensive MANUAL and MASTER DISK.

Call us now to receive some sample output of
FANCY FONT ${ }^{\text {® }}$
your personal typesetter
£150 exc. VAT \& CARR.

INCREDIBLE!
A high quality daisy wheel printer with AS232 interface, 3 KB character buffer, and a host of other features like full WordStar function support dual colour (red/black) printing ONLY f395

1

FREE DATA CABLE WITH EVERY BROTHER HR151 Use this printer with the low-cost TD8 micro for the ultimate in low-cost WP systems

DATA CABLES

Made to your specification
Off shelf from $£ 12$ Exclusive of VAT \& CARR

The most
 ECONOMICAL VIDEO MONITOR

you can buy

PHILIPS 12' 25×80 character, green phosphor anti-glare screen, attractive case

ONLY £69.95

CASED DRIVES WITH PSU

BBC COMPATIBLE SINGLE DISK DRIVES
TD $10051 / 4 \times$ SS 40 TK 100 K .
...f181
TD $20051 / 4 \times$ SS 80 TK 200 K f223
TD $40051 / 4 \times$ DS $80 T \mathrm{~K} 400 \mathrm{~K}$
...f248

BBC COMPATIBLE DUAL DISK DRIVES

TD $2002 \times 51 / 4$ SS 40 TK 208Kf339 TD $4002 \times 51 / 4$ SS 80 TK 40 K f379
TD $8002 \times 51 / 4$ DS 80 TK 800 K f 451

BBC COMPATIBLE DUAL SWITCHABLE DISK DRIVES

TD $400 \mathrm{~S} 2 \times 51 / 4$ SS 80 TK 400 K f457 TD 800S $2 \times 51 / 4$ DS $80 T \mathrm{~K} 800 \mathrm{~K}$ f510

The drives include connecting cables, user manual, disk formatter ex of VAT \& CARR

RADIOCODE

TOMIC TIME. FREQUENCY AND SYNCHRONISATION EQUIPMENT

NEW PHASE-閴ODULATION SYSTEMS

Until recently, atomic time and date information was only available on v.l.f. transmissions using amplitude modulation. The RCC 8000 AM series of equipment uses these transmissions to offer high noise immunity and high accuracy, particularly at very long range

The new RCC 8000 PM series of equipment uses, for the first time, phase modulated tranmissions with massive radiated powers of up to 2 MegaWatts to offer long range, excellent noise immunity and no scheduled maintenance periods

NEW PRODUCTS

The AM and PM series of Radiocode Clock equipment has been further expanded to include seven new models (from top) 8000S - combined clock, frequency standard and optional stopclock. Internal standby power supply - with dual rate constant current charger. Time-event log - prints hours, minutes, seconds, milliseconds and day of year, on receipt of a log pulse. Speaking clock - time announcement or audio recording. Slave controller - total control of single-standard master/slave systems ie one pulse/sec. Dual standard slave controller - total control of two differen and independent slave systems, ie. one pulse/sec and one pulse/half min. Slave distribution amplifier - maximum flexibility for the larges master/slave installations requiring dual standard operation, multiple cir cuits and complete master/slave backup.

NEW OPTIONS

A continuously expanding range of fully integrated software and hardware is available for both series of Radiocode Clock equipment. Standard options now include
IRIG B precision serial o/p Time code generators

RS232/V24 1 mS resolution General purpose parallel o/p FSK record/replay system Keypad entry of alarm times Keypad entry of time/date

- Intelligent slave systems - Standard frequency outputs - Stopclock operation
- Calibrated systems for
increased accuracy

Radiocode Clocks Ltd*
Unit 19, Parkengue, Kernick Road Industrial Estate
Penryn, Falmouth, Cornwall. Tel: Falmouth (0326i) 76007
(*A Circuit Services Associate Co.)
WW - 028 FOR FURTHER DETAILS

® RAEDEK ELECTRONICS

 DISTRIBUTORS FOR RICHARDSONS CETRON AND NATIONAL ELECTRONICS102 PRIORY ROAD, SCRIBERS LANE, HALL GREEN, BIRMINGHAM B28 OTB TEL: 021-474 6000

VALVES - National, Varian, Mullard, RCA, ITT . . .

$\begin{array}{r}21 \\ 90 \\ 375 \\ \hline\end{array}$

71199 A
1799
7203
7233
(NAT)
(EIM)

R. F. POWER TRANSISTORS
Many other types available on request

TERMS: C.O.W. POSTAGEPACKING: Add $£ 1$ to order under $£ 50$ value. VAT: All prices are excluding VAT, please add 15% to order and postage. GUARANT
current production and sold with manufacturer's warranty. ENGUIRES: Are welcomed for other types/brands of valves. Please send SAE

'DOLBY' NOISE WEIGKTING FILTERS Cat. No. 98A. Noiss weighting filters for CCIR/ARM ${ }_{£} 40$ each $(+£ 1 \mathrm{p} \mathrm{\&}$)

BECKMAN TURNS COUNTER DIALS
Miniature type $(22 \mathrm{~mm}$ diam.). Counting up to 15 turn "Helipots". Brand
tions. Only $£ 2.50$ each.

RFI RECENER

Stoddart Model NM52A. RF Noise \& Field intensity measuring receiver. $375 \mathrm{MHz}-1 \mathrm{GHz} \mathrm{c} / \mathrm{w}$ power supply un

KAY SOUND SPECTROGRAPH

Model 6061 B with Amplitude Display, scale magni${ }^{\text {fier. }} 8 \mathbf{8 5 \mathrm { Hz }}$-16kHz. Complete sound spectrograph in excellent condition

$t+$ STEPPER MOTORS $t+$

Brand new stock of 'ASTROSYN' Type 20PMA055 stepper motors. 28 V DC. 24 steps per rev. 15 oz-in torque@100PPS. Body length $2^{1 / 2^{\prime \prime}}$. diameter 2 shaft $1 / 4$ diam $\times 41 / 4$ spirally 50 p). Connections supplied.

(MILI-YOLI MEASUAGMET, MALDGE

 MARCONI TF2600. Twelve ranges 1 mV -300V FSD. Wide-band to 10 MHzMARCONI TF2603. Frequency range 50 kHz 1.5GHz. High Sensitivity from 300 uV . MARCONI TF2604. Electronic Multi-meter. AC/DC 300 mV Full scale to 300 V ($1 \mathrm{kV} \mathrm{DC)}. \mathrm{Re-}$ sistance ranged. AC Frequency range 20 Hz 1500 MHz
\& \quad CONSTANT VOLTAGE TRANSFORMERS $\star \star$ ADVANCE VOLSTAT; Type. Model MT140A. Mains input 190-260V AC. Output 230V AC @ 150W. Price each $£ 20+$ VAT + £2 carriage

MARCONI TF2502 RF Power Meters. DC 1GHz. 10 w fsd f 350 .
MARCONI TF2701 In-Situ Universal Com-
ponent Bridge e250.
MEGGER-5KV Insulation Tester. Hand-crank
MARCONI TF2343A Quantization Distortion Meter $£ 150$.
ROHDE \& SCHWARZ 'SDR' AM Signal Generator $0.3-1 \mathrm{GHz}$.
TEKTRONIX 2901 Time-mark Generator
GOULD J3B Signal Generator $\mathbf{f 1 5 0}$
ROHDE \& SCHWARZ Resonance Frequency Meter $470 \mathrm{MHz}-2.5 \mathrm{GHz}$. HEATHKIT AW1U Audio Power Meters 5 mW - $50 \mathrm{~W} £ 25 \mathrm{pp} £ 1$. METROHM 500 V Insulation Testers Transistorised $£ 40$ pp $£ 1.50$ BRUEL \& KJAER Heterodyne Voltmeter 0.5-240M AIMECDIL1ay der, Model B-34 frequency celibration, variable mod
JUST E55 + VAT. Carfiage each + £4. $\mathbf{3 0 0}-1500 \mathrm{MHz}$. $\mathbf{£} 325$
\star AVO STENLL GETERATORS AFNR \star We have in stock a quantity of AVO rype AFM2 signal
generators supplied in fully tested working condition generators supplied in fully tested working condition
complete with accessorias. $S p e c$ as follows: 0.45 MHz 225 MHz in 8 bands, AM all bands plus FM on two bands
covering $20-100 \mathrm{MHz}$. Output 1 UV - 50 mV and 200 mV High O / P setting, m / c set level meter, scale shift for accurate

SHEEPERS

 ep generator system type 2003. Fitted with Marker, attenuator, Detector plugin units and Generator covering\qquad
\star MURHEAD FACSIMLIE UNITS * MUFAX 'COURIER' facsimile receiver type K441-CH and transmitters K400 AMCH in stock in excelent condition $£ 250$ per pair. PLEASE NOTE. All the pre-owned equipment shown has been carefully tested in our workshop and reconditioned where necessary. It is sold in first-class operational condition and most items carry a three months guarantee. For our mail order customers we have a money-back scheme. Repairs and servicing to all equipment at very reasonable rates. PLEASE

WW - 071 FOR FURTHER DETAILS

In these testing times the minutes

RTT comitest

ensures testing and calibrating to the highest specifications demanded by modern radio communications systems Interactive instruments semi automatic in operation, ensure faster, more efficient system testing, reduce servicing costs and downtime whilst improving communications quality and reliability

RTT comtes

s designed, manufactured and serviced by RTT, a Division of a major UK Electronics Group with 30 years experience of manufacturing to Government quality standards. New enhanceable features are continually being added which ensure the system never becomes outdated.

Features include: - 1.7 GHzversion - Selcall / Pilot Tone Testing - 300W Power Meter - Sinad Meter - Full Duplex Testing - Fully protected - Small / Lightweight /Portable - 12 V for field use - Automatic Tuning

- Off Air and Adjacent Channel Power Measurement

RTT Division of Hanworth Enterprises Lid, Emerprise House, Cenira Way, WW - 010 FOR FURTHER DETAILS
North Feltham Trading Estate, Feltham, Middx. TW14 ORX. Tel 01-844 1811

E.M.S. POWER SYSTEMS

Solve all your Power Problems by contacting E.M.S.
E.M.S. specialise in systems to eliminate your power problems.

Products range from 35VA switched square wave Power Packs to 1KVA fully uninterruptible sine wave systems.
E.M.S. also manufacture chargers which range up to 60 amps .

For further details please contact:

E.M.S. Manufacturing Limited Chairborough Road
High Wycombe
Bucks
Tel: (0494) 448484

* BETTER VALUE MAIL ORDER SUPPLIES FOR YOUR MICRO*

From Verbatim, the world s leading diskette
manutacturer. Full 5 year warranty. All manutacturer. Full 5 year warranty. All
minidisks are certified for double density recording, and are fitted with hub ring reinforcement as standard
Prices per box of 10 dis
$\mathbf{5 . 2 5}$ ' DISKETTES

$\begin{array}{lll}\text { MD550 } & \text { D/S, DDD, } 48 \mathrm{TPI} & \mathbf{~} 27.15 \\ \text { MD577 } & \text { S/S. DD } 96 \mathrm{TPI} & \mathbf{£ 2 5 . 5 5} \\ \text { MD557 } & \text { D/S. D.D. } 96 \mathrm{TPI} & \mathbf{£ 3 4 . 2 0}\end{array}$
48 TPI suitable for 35 o 40 track operation.
96 TPI suitable for 77 or 80 rack operation. 10 and 16 hard sectored versions avaitable at same prices

8' DISKETTES

The new premier qualty standard. against
which all other manufacturers wifl have to be judged All products certifed for double density recording. Now with a lifetime warranty. Unreservedly recommended Prices per box of 10 disks
5.25* DISKETTES
 $\begin{array}{lll}\mathbf{5 0 1 2 - 2 0 0 0} & \text { S/S. D/D. } 96 \text { TPI } & \text { £27.75 } \\ \mathbf{5 0 2 2 - 2 0 0 0} & \text { D/S D/D. } 96 \text { TPI } & \text { £35.80 }\end{array}$ 48 TPI suitable for 35 or 40 track operaton. 96 TPI suitable for 77 or 80 track operation. 10 and 16 hard sectored versions available
at same prices at same prices.
8 DISKETTES
$\begin{array}{lll}8012-1000 & \text { S/S. D/D } & \text { §26.40 } \\ 8022-1000 & \text { D/S. }\end{array}$
32 nard sectored versions available at same prices.

DISKETTE STORAGE BOXES

Features:-
Friction and tractor leed as standard 80 cps
Bi-directional logic seeking.
Sub and superscripts.
litalic printing and auto underlining.
Condensed. emphasised. expanded and
ine) shike proting (can be muxed in
Paraliel interiace fitted as standard
12 month warranty
from external contamination. Lockable. portable and secure Two part box made.
from anti-static ABS plastic. Price inchudes from anti-static ABS plastic. Price inchodes
dividers and index labels. Capacity 80 disks. A5 Storage box (for 8^{-}disks) $\quad \mathbf{5 3 2 . 0 0}$ A6 Storage box (tor $525^{\prime \prime}$ disks $\quad \mathbf{£ 2 2 . 0 0}$ CP-80 PAINTEA $\quad \mathbf{2} 249.00$ $\begin{array}{ll}\text { Optional RS-232 interface } & £ 40.00 \\ \text { Special VIC20/VIC } 64 \text { intertace } & £ 46.00\end{array}$ Special VIC20/VIC 64 intertace $\quad \mathbf{8 4 6 . 0 0}$

Suitabie for use with dot matrix printers. Litts printer Sufticiently to enable continuous
stationery to self-stack. Pamted steel unit Dimensions: 39 cm wide
$\times 28 \mathrm{~cm}$ deep
$\times 10 \mathrm{~cm}$ nigh
Comes as package which also Contalns:--

$$
\begin{aligned}
& 200 \text { sheels continuous stationery } \\
& 1 \times 91 / 2 \text { binder. }
\end{aligned}
$$

$$
\begin{aligned}
& 1 \times 9 \text { oers conur } \\
& 1 \times \text { inder. } \\
& 1 \times \text { highlighter per }
\end{aligned}
$$

choice of rubber feet/sticky pads
PRINTER STAND E19.95

* NEW1984 PRICES *

RSG1B National

 PSGFB National RonventionAmateur Radio National Exhibition

Saturday 28th April 10am to 6pm Sunday 29th April 10am to 5pm FEATURING

Lectures on Propagation,
VHF and Microwaves.
Introduction to Amateur
Radio for Beginners
Annual RSGB HF
Convention
Major Exhibition of
Amateur Equipment \& Components.

Forum for VHF and Repeater Enthusiasts.
RSGB stand with book sales and representation by many of the Society's committees.
Bigger Flea market as a result of last year's success.

Entrance Fee $£ 2$ (Children $1 / 2$ price) Car Parking Free

Organised by the Radio Society of Great Britain

To obtain further details of any of the coded items mentioned in the editorial or advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These service cards are valid for six months from the date of publication.
Please use capital letters

If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you: their address is shown below.

OVERSEAS SUBSCRIPTION AGENTS

Postage will be paid by Licensee

Do not affix Postage Stamps if posted in Gt Britain, Channel Islands, \mathbf{N} Ireland or the Isle of Man

BUSINESS REPLY SERVICE

 Licence No CY258Mar iefromes
Reader Enquiry Service
Oakfield House
Perrymount Road
Haywards Heath
Sussex RH16 3DH

Enquiry Service for Professional Readers

Wireless World, April 1984
WW 8464
Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.
Name.

Name of Company

Address

Telephone Number

PUBLASHERS USE ONLY			A/E		

> Position in Company

Nature of Company/Business
No. of emplovees at this establishment .
I wish to subscribe to Wireless World
VALID FOR SIX MONTHS ONLY

Wirelesssworld
Subscription Order Form

To become a subscriber to Wireless World
please complete the reverse side of
this form and return it with your
remittance to:
Subscription Manager, Business Press International Ltd, Oakfield House, Perrymouth Road Haywards Heath, Sussex RH16 3DH United Kingdom

Enquiry Service for Professional Readers only.

Wrelessswirld
Wireless World, April 1984

Wreletsiwirld subscription Order Form

UK subscription rates
1 year: £15.00
Overseas 1 year: £19.00
Please enter my subscription to Wireless World for 1 year
I enclose remittance value... pade pable to
BUSINESS PRESS INTERNATIONAL Ltd.

Name.

Address

USA \& Canada subscription rates 1 year: \$49.40

\qquad

Postage will be paid by Licensee

Do not affix Postage Stamps if posted in Gt Britain, Channel Islands, N Ireland or the Isle of Man

BUSINESS REPLY SERVICE

 Licence No CY258Wreleseswồld
Reader Enquiry Service
Oakfield House
Perrymount Road
Haywards Heath
Sussex RH16 3DH

 Address

OVERSEAS ADVERTISEMENT AGENTS

Hungary Ms. Edit Bajusz, Hungexpo Advertising Agency, Budapest XIV, Varosliget - Telephone : 225008
Telex: Budapest 22-4525 INTFOIRE

Italy Sig. C. Epis Etas-Kompass, S.p.a. Servizio Estero, Via Mantegna 6. 20154 Milan - Telephone 347051 -
Telex : 37342 Kompass

Japan Mr. Inatsuki, Trade Media - IBPA
(Japan), B212 Azabu Heights, 1-5-10
Roppongi, Minato-Ku, Tokyo 106 -
Telephone : (03) 585-0581

United States of America Ray Barnes,
*Business Press International
205 East 42 nd Street.
New York, NY 10017 - Telephone:
(212)6895961-Telex: 421710

Jack Farley Jnr., The Farley Co.,
Suite 1548, 35 East Wacker Drive,
Chicago. Illinois 60601 - Telephone
(312) 63074

Victor A Jauch.
Elmatex International.
P.O. Box 34607.

Los Angeles Calif. 90034 U.S.A
Telephone: (213) 8218581
Telex: 18-1059.
Jack Mentel, The Farley Co.. Suite 605.
Ranna Building. Cleveland, Ohio 4415 -
Telephone: (216) 6211919
Ray Rickles, Ray Rickles \& Co.,
P.O. Box 2008, Miami Beach. Florida

33140 - Telephone : (305) 5327301
Jim Parks, Ray Rickles \& Co.,
3116 Maple Drive N.E., Atlanta, Georgia 30305. Telephone: (404) 2377432 Mike Loughlin, Business Press International 15055 Memorials, Ste 119, Houston, Texas 77079 - Telephone: (713) 7838673

Canada Colin H. MacCulloch,

International Advertising Consultants Lid. 915 Carlton Tower, 2 Cariton Street,
Toronto 2 - Telephone (416) 3642269

[^6]

WW - 021 FOR FURTHER DETAILS

HAVEN'T HEARD OF US?

THEN PERHAPS YOUR COMPETITOP.S HAVE!

MONITOR RECEIVERS
We can supply a wide selection of monitor receivers to cover frequencies from 15 kHz to 500 mHz for portable mobite or fixed station use. Models include pocket portable synthesised monitors for $141-180 \mathrm{mHz}$ FM and $110-140 \mathrm{mHz} \mathrm{AM}$, both fitted with rechargeable batteries

VHF PORTABLE TRANSCEIVERS
Our latest 2 watt 6 channel FM VHF portable is proving very popuiar where low cost and simplicity is a requirement. It can be supplied to cover frequency bands in the range $140-180 \mathrm{mHz}$. Other models available to meet most requirements.

HF COMMUNICATIONS
We can provide a wide range of products for HF communications whether it be transceivers, aerials, tuning units, RF power and monitoring equipment.

RF TEST EQUIPMENT
As importers and distributors of the famous WELZ brand of products, we can supply RF power and VSWR measuring equipment for frequencies from 1.5 mHz to 1500 mHz . power measuring equipment, etc., etc. Send for details.

PLUGS, SOCKETS, ETC
ve supply many of the popular communications plugs and sockets in small or large quantities. Let us have your requirements

WITERS \& STANTOW ELECTRONUCS
18-20 MAN ROAD, HOCK EY, ESSEX
TEL: (0702) 206835. TELEX: 995895
WW - 039 FOR FURTHER DETAII .S

Modem Filters

 New Low Prices

 New Low Prices in OEM Quantities From Stock

R5630 Full-duplex 300 baud, 103
compatible filter in 16 pin DIP.

R5631 Full-duplex 200/300 baud, V. 21 CCITT compatible filter in 16 pin DIP, pin-for-pin compatible with R5630.

R5632 Full-duplex 1200 baud, 212/V. 22 combo filter.

R5633 General purpose programmable filter array for full-duplex 103, V.21, DTMF and Videotex.

R5626 Mask programmable to your specification.

Reticon also provides a wide variety of other stan dard and specialised custom filters and signal processing devices using Reticon's proven NMOS
| Switched-Capacitor Technology.
I Contact us on your needs at Chicago (312) 640-I
17713; Boston (617) 745-7400; Japan 03-343-4411; England (0734) 788666; Germany (089) 928-060.

Conegra reticon

34/35 MARKET PLACE, WOKINGHAM, BERKSHIRE RG 11 2PP Telephone: Wokingham (0734) 788666 Telex: 847510 EGGUK

SOUTH MIDLANDS COMMUNICATIONS

SALE of EQSUIPMENT

YC1000L OBSERVE \& RECOR OBSERVE \& RECORD FREQUENCY PERIOD PULSES TEMPERATURE
VOLTAGES \& TIMES

The YC1000L is a laboratory grade instrument with versatile microprocessor control. It includes: a frequency $(10 \mathrm{~Hz}-600 \mathrm{MHz}, 0.02$ microprocessor control. It includes: a frequency ($10 \mathrm{~Hz}-600 \mathrm{MHz}$, 0.02
$\mathrm{ppm})$, a period (0.1 S to 0.1 uS), and a pulse counter $(0-99,999,999$, TL level), a voltmeter (AC or DC to $999 \mathrm{~V}, 3$ ranges), a thermometer (remote sensor -29.0 to $+99.9^{\circ} \mathrm{C}$) plus a precision timer $(24$ hour clock providing; event or period, (local or remote) and alarm functions). Display is via 8 large fluorescent green digits and/or the inbuilt 5×7 (20 characters line 2 line second) Dot Matrix thermal printer.

You will wonder how your laboratory or workshops

WW - 074 FOR FURTHER DETAILS

ELECTRONIC POWER UNITS

FOR XENON ARC AND MERCURY ARC LAMPS UNITS AVAILABLE FOR LAMPS RANGING FROM 75 TO 6500 WATTS. Lamp housings and lens systems manufactured as standard off the shelf models or to specific design.
K. T. Manners Design Ltd.
P.O. Box 936, London, W4 4NW Telephone: 01-994 7155. Telex: 28604 WW - 077 FOR FURTHER DETAILS

EEEGTROALIE

SUPPLIES

 for CAPAGITORS of all preferred typespolyester layer (Siemens) B. 325095 mm PCM 10% tolerance 63 V . In 13 B 3251075 mm PCM blerance 100 mm min In 7 val tolerance 0.004 min. 1 n 7 vaF B. 3251215 mm PCM $1 \mathrm{PF} /$ tolerance $100 \mathrm{~V} 1 \mu \mathrm{~F} 2.2 \mu \mathrm{~F}$ B. 3256075 mm PCM 26 types 10% tolerance 400 V 0.001 to $0.0068 \mu \mathrm{~F}$ P\% tolerance from 0.0082 to $0.68 \mu \mathrm{~F}$ in 400,250 \& 100 V

BRITAINS LEADING QUALITY COMPONENT
SUPPLIERS-SEND FOR FREE 32 PAGE A-Z LIST ATTRACTIVE DISCOUNTS-FREE POSTAGE-GOOD SERVICE \& DELIVERY

ELEGTROVALUE LTD

28 St. Jude's Rd. Engle field Green, Egham,
Surrey TW20 0HB (0784) 33603. Telex 264475. (Callers only) 680 Burnage Lane N c (061 i-432 4945) EV Computing Shop. 700 Burnage Lane, Manchester (061-43: 4866)

WW - 078 FOR FURTHER DETAILS

reprints

If you are interested in a particular article/ special Feature or advertisement published in

this issue of

WIRELESS WORLD

why not take advantage of our reprint service
Reprints can be secured at reasonable cost to your own specifications providing an attractive and valuable addition to your promotional material (Minimum order 250.)
For further details contact
Michael Rogers, Electrical-Electronic Press. Phone 01 6613457 or simply complete and return the form below.

To Michael Rogers, Reprints Department: $>$ Quadrant House, The Quadrant Sutton, Surrey SM2 5AS
I am interested incopies of the article advertisement headed featured in

WIRELESS WORLD

on page(s) in the issue dated
Please send me full details of your reprint service by return of post
Name
Company
Address
Tel No

VA	S		$\underset{\text { Minimum }}{\text { Order }}$		VAlves vat					
	cay	${ }^{\text {prazoo }}$								
				cose						
		comem								
			\%os							
		\%								
	cotay									
		did								
Valves An Transistors										
COLOMOR (1)										

FILTERS

Custom-built to YOUR requirements

Solent Electronic Services Lid. specialize in the custom design and manufacture of L / C and crystal filters in the $0-40 \mathrm{MHz}$ range ($0-1000$ MHz under development)
Filters are designed, built and tested to meet the highest specifica tions, including those for telecommunications and defence Production is specifically geared to small quantities - from single units to small batches - at relatively low cost
Phone or write for further information

WW - 047 FOR FURTHER DETAILS

, droblathoourd MAKE YOUR OWN PRINTED CIRCUITS

DIRECT ETCH KIT

COPY DIRECT FROM MAGAZINE or OWN DESIGN Simple system- Complete kit containing PCB, Pattern Transfer \& Etch Resist Sheets, Tray \& Etchant, Copper Cleaning Block, Gloves \& full instructions
HB/1 £18.00*

PHOTO RESIST KIT
Complete kit containing artwork PCB, and all the necessary process materials. HB/2 £29.00*

DIY UV EXPOSURE UNIT

Perfect results everytime. Kit contains: Lamp, Holder \& Shade together with full instructions for DIY Unit which offers PCB, Precision Photo, Lable \& Panel manufacture. UV/1 £27.00*

FRONT PANELS \& PHOTOGRAPHY

FOTOTOOL KIT

Containing artwork, film and all the necessary process materials required for professional quality labels and panels.CAN ALSO BE USED TO PRODUCE PRECISION PCB PHOTOMASTERS HB/3 £27.00*
UV EXPOSURE UNIT AND ARTBOX.
(Ref: UV2)
A portable ready made unit containing two 8 watt UV tubes giving a 6 " $\times 9^{\prime \prime}$ exposure area which may also be used as a light box with the UV filter supplied. UV/2 £64.00*
These are introductory kits and all materials are available separately. Full catalogue $£ 1.50$ refundable with 1 st order over $£ 10$

[^7]
Appointments

Advertisements accepted up to 12 noon Tuesday, April 3, for May issue subject to space available.

DISPLAYED APPOINTMENTS VACANT: $£ 17$ per single col. centimetre (min .3 cm)
LINE advertisements (run on): $£ 3.50$ per line, minimum $£ 25$ (prepayable).
BOX NUMBERS: $£ 5$ extra. (Replies should be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 SAS).
PHONE: IAN FAUX, 01-661 3033 (DIRECT LINE)
Cheques and Postal Orders payable to BUSINESS PRESS INTERNATIONAL LTD. and crossed.

FOR TOP ELECTRONIC APPOINTMENTS

£7,000-£22,000

* Where does your interest lie: Graphics; Comms; Robotics; Simulation; Image and Signal Processing; Medical Automation; Avionics; Acoustics; Weapons; Radar; Opto and Laser?
* Experienced in: Microprocessor Hardware or Software; Digital and Analogue circuitry; RF and Microwave techniques?
* There are hundreds of opportunities in: Design; Test; Sales and Service for Engineers and Managers
\star For free professional guidance: Call 076384 676/7 (until 8p.m. most evenings) or send your c.v. (no stamp needed) to:
ELECTRONIC COMPUTER AND MANAGEMENT APPOINTMENTS LIMITED
Freepost, Barkway, Royston, Herts SG8 8BR

Philip Drake Electronics Ltd is a growing, successful company that has established itself as a leading supplier of studio communications equipment, programme quality sound distribution modules and special "one-off" designs to the Broadcast Industry.
Our continuing expansion has led to a requirement for suitable people to fill the following positions which have become vacant or are being created to handle our increasing business.
As well as attractive salaries, the Company offers a pension scheme and BUPA membership and the new premises being constructed will provide a pleasant working environment when completed.

ANALOGUE/DESIGN ENGINEERS

PROJECT ENGINEERS

We have vacancies in the Projects Department for both senior and junior engineers. The department deals primarily with system design of studio talkback and intercom equipment. In addition to this, the department undertakes one-off designs to customer's requirements and modifications to aucusioner's requirn the work involves liai dio and con wing son with customer engineers, detailed system design, preparation of production and handbook documentation and technical suppo
manufacturing and test departments.
Applicants for the senior projects engineering posiApplicants for the senior projects engineering posi-
tions should have a recognised electronic engineering qualification and at least two years experience of system/project engineering of professional equipment.
Junior engineers would initially assist on major projects but would be expected to tackle small systems as experience is gained. A suitable engineering qualification and some practical exper ience could be advantageous to enable the successful applicants to progress within the Company.

We have vacancies for experienced engineers to oin our Development Department. Candidates should have a relevant degree and will probably have worked in a design environment. The person will be responsibie for all aspects of development from initial concept to production, and will herefore become involved in a variety of tasks. An ability to produce innovative but practical designs with minimum supervision is essentiai

JUNIOR DRAUGHTSMAN

A junior draughtsman is required to join our Development Department. The work involves close liaison with engineers to produce metalwork, circuit and wiring drawings for both manufacture and customer documentation. The ideal applicant will be self-motivated and capable of adding the finer details to the work passed on by the engineer.

TEST ENGINEERS

We are looking for suitably qualified test engineers with experience in testing analogue (preferably audio) circuits, who will be involved in varied testing, from small batch produced modules to complete communication systems, and who are able and willing to adapt to digital technology as this is willing to adapt to digital
introduced by the Company.

Applications in writing and including an up-to-date cy should be addressed to The Personnel Officer, Philip Drake Electronics Ltd, 37 Broadwater Road, Welwyn Garden City, Herts AL7 3AX, or phone Jill Humphreys on Welwyn Garden City (07073) 33866 for an application form.

* Graduate Engineers
* 2 yrs + Experience
* Generous Relocation
* Superb Coastal Region
* Career Progression

Call Mat Henshall today
AB Executive (Bristol) Ltd.
el $\lll(0272) 426631$

WHO CAN SUPPLY

complete know-how for production of portable X-ray system?
BOX NO. 2494

LOGEX
 ELECTRONICS
 RECRUITMENT

Specialists in fieid \& Customer Eng
ments, all tocations and disciplines.
Logex House, Burleigh, Stroud Gloucestershire GL5 2PW $0453883264 \& 01-2900267$ (24 hours)

Electronic Test Engineers/Technicians

Racal Radar Defence Systems part of the Racal Electronics Group is undergoing a period of rapid growth. To meet our increasing production demands, we need to recruit a number of Test Technicians and Test Engineers at the following locations in Surrey New Malden, Chessington and Hersham, and at Leicester.

The Company manufactures a wide range of products aimed principally at the Defence Industry including radar early warning and guidance systems, military displays and ECM and ESM systems.

The Test Department is responsible for the test and diagnostic functions on a wide range of complex radar equipment using high quality manual and automatic test equipment.

Applicants should be educated to $\mathrm{HNC} / \mathrm{HTC}$ standard and have practical knowledge or experience of radar and/or microwave systems.

Conditions of employment are excellent including a competitive salary, five weeks holiday, and company pension and life assurance scheme

Interested? Then phone me on: 01-3975281 or alternatively write with brief details of qualification experience and current salary to:
Mr P N Willis,
Senior Personnel Officer,
Racal Radar Defence Systems Ltd.,
Davis Road, Chessington, Surrey.

T.V. ENCRIPTION

Large concern seeks designer/manufacturer for off air PAL T.V. signal coder and subsequent decoder.

Box No. 2499

We are the world leader in the design and manufacture of computer assisted sound mixing consoles for the record and broadcast industries. We are looking for:

GRADUATE ELECTRONIC ENGINEERS

The problems we are solving are difficult: DIGITAL AUDIO HIGH SPEED SIGNAL PROCESSOR DESIGN DESIGN FOR RELIABILITY AND TESTABILITY
Although we don't necessarily expect experience in this tields, we do require a good theoretical background, combined with practical engineering ability. Whether you have just graduated or have one-two years' experience, you will need to be one of the best. Most of the problems with which we are faced have not been solved before; inventive design and a professional attitude are required.
At our Research and Development Department in rural Oxfordshire you will join a small, enthusiastic, friendly team, using computer-aided design, manufacture and test to create original high performance hardware of the highest quality.

Please write to John Wilson and enclose your cv

Appointments

Blectronics Dingineers 89561 Communications Design in High Tech Country

At H.M. Government Communications Centre we're using the very latest ideas in electronics technology to design and develop sophisticated communications systems and installations for special Government needs at home and overseas.

With full technical support facilities on hand, it's an environment where you can see your ideas progress from initial concepts through prototype construction, tests and evaluation, to the pre-production phase, with a chance to influence every stage. Working conditions are pleasant, the surroundings are attractive, and the career prospects are excellent.

Ideally we're looking for men and women who have studied electronics to degree level or equivalent and have had some experience of design, whether obtained at work or through hobby activities. Appointments will be made as Higher Scientific Officer ($£ 7149-£ 9561$) or Scientific Officer (£5682-£7765) according to qualifications and experience.

For further details please write to the address given below. As our careful selection process takes some time, it would be particularly helpful if you could detail your qualifications, your personal fields of interest and practical experience, and describe the type of of working environment most suited to your career plans.

The Recruitment Officer, HMGCC, Hanslope Park, Buckinghamshire MK19 7BH.
(2448)

APPICCTIONS EMGIIIERS CUSTOMER SUPPORT EMGIIEERS Zehrtel

AUTOMATIC TEST EQUIPMENT

£ NEG

MILTON KEYNES
Due to rapid growth, ZEHNTEL are again looking for additional APPLICA TIONS ENGINEERS and CUSTOMER SUPPORTENGINEERS to be based at their Milton Keynes office.
ZEHNTEL are world leaders in in-circuit technology, and as such, require quality people to assist with further expansion plans.
The ideal candidates would be:

* Aged between 20 and 40 .
* Qualified to Degree level or equivalent.
* Background/experience in software \& hardware engineering

Above all, we are looking for self-motivated people, who want to be a part of a progressive team.
The benefits package includes an excellent salary and bonus scheme, private health insurance and genuine career prospects. Company car commensurate with position.
Please write in confidence, enclosing cv to:
The Personnel Manager
ZEHNTEL LTD
Sentry House
500 Avebury Blvd., Saxon Gate West
Central Milton Keynes MK9 2NJ

CAPITAL APPOINTMENTS LTD

THE UK's No. 1 ELECTRONICS AGENCY

If you have HNC/TEC or higher qualifications and are looking for a job in design, test, customer service, technical sales or similar fields
Telephone now for our free johs list We have vacancies in all areas of the UK Salaries to £15,000 pa

01-6375551 or 01-636 9659
 (24 hours)

CAPITAL APPOINTMENTS LTD

 29-30 WINDMILL STREET, LONDON W1P 1HG
Brompton Hospital Medical Physics Technician III ELECTRONICS

A vacancy exists for a technician with hospital experience to join the team of technicians in the Department of Medical Electronics. The Department provides a comprehensive maintenance and development service to two busy cardiothoracic hospitals. The technician will be based initially at the Brompton Hospital, SW3, but he/she must be willing to also work at London Chest Hospital, E2.
For further information contact Mr P. Butler, Chief Technician, 01-980 4433, Ext 340.
For a job description and application form contact Miss J. A. Jenks, Group Personnel Manager, Brompton Hospital, Fulham Road, London SW3 6HP. Tel: 01-352 8121 Ext 4357.

ELECTRONICS RESEARCH
 at the

UNIVERSITY OF ESSEX

Graduates who have (or final year students who expect to obtain) a first or upper second class honours degree are invited to apply for research leading to a higher degree (M.Sc., M.Phil. or Ph.D.) in the following areas:
Acoustic Noise and Vibration Cencellation (adaptive microprocessorcontrolled system); Audio Engineering (high-precision digital signal processing, system transparency, stereo); Circuit Design Studies (circuit theory, fault diagnosis, sensitivity effects, CAD, filter realisations); Digital Transmission for Tolecommunications (data transmission filters, pulse shaping and chennel coding techniques, local digital access); Interactive Systems (handwriting analysis, computer graphics, speech, personal databases); programming architectures). Microweve and Millimetre Weve Eng, mering (scattering from precipitation particles space frame radomes): Optical Com munications (detectors, noise processes, signal design, switching); Picture Coding and Processing (data reduction, adaptive filtering, motion estimation, feature extraction); Satellite Communication Systems (business systems protocols, data and video services); Telecommunication Swhtching Syetems and Software (computer control, software production, teletex and viewdata, information system performance engineering); Visual Displays and Television Engineering (computer graphic input systems, stereo, colour and highprecision displays)

Further information and application form available from: Dr. G. J. Ritchie Chairman, Department of Electrical Engineering Science (ref JAN/2), Univer sity of Essex, Wivenhoe Park, Colchester CO4 3SQ.

DEVELOP YOUR ENGINEERING CAREER AND SHAPE TOMORROWS COMMUNICATIONS Up to $£ 18,000$

We are now able to offer you the challenge of developing your career in the exciting and fast moving world of high-speed communications in a highly successful company. The client enjoys a world-wide reputation for the design and implementation for some of the most advanced space, microwave, tropo-scatter and RF communication systems, as well as being highly sought after for its ability to handle every aspect of modern communications projects.

You will have the opportunity to be fully involved in total systems, from RF to Baseband, including system configuration, advanced studies or original hardware design. You will also enjoy an up-front position in some of today's most prestigious communication projects which include advanced data networks and next-generation satellite ground stations.

TO FIND OUT MORE and to obtain an early interview, please telephone FRED JEFFRIES C.Eng. MIERE in complete confidence on HEMEL HEMPSTEAD (0442) 212655 during office hours or on (0442) 49909 evenings and weekends (not an answering machine). Alternatively write to the address below.

To cope with the increasing demand for their expertise, this go-ahead Company seeks to recruit further high calibre professional engineers who have an engineering degree or HND and at least 2 years experience in communications or related technology for:

Microwave/R.F., I.F. and Baseband Design;

 Antenna Design;
Real-Time Software Design;

System Design; Systems Definition;
Advanced Systems Studies;
Technical Management - Group and Section Leadership; Project Management.
Opportunities also exist at less senior levels for candidates with $\mathrm{HNC} / \mathrm{H}$. Tech. qualifications or graduates yet to gain experience.

With an attractive salary package, the opportunity for overseas travel and full company benefits, including five weeks holiday and generous relocation package, these important positions present a major opportunity for the engineer set to really make his mark in world-wide communications.

Executive Recruitment Services

the specialisistw. fecruutment for the electronics computing and defence industries

29-33 Bridge Street, Hemel Hempstead, Herts., HP1 1EG

UNIVERSITY OF OXFORD

OXFORD ORTHOPAEDIC ENGINEERING CENTRE

ELECTRONICS ENGINEER OR PHYSICIST

This post offers an opportunity for an engineer or physicist with a definite interest in medical engineering. The appointee would be responsible for maintaining an extensive range of computing and electronic equipment, and would design and construct a wide variety of instruments for bioengineering research. Projects currently include a range of microprocessorbased patient monitoring systems. The appointment will involve working with medical and scientific staff in both the Nuffield Orthopaedic Centre and the Department of Engineering Science of the University of Oxford. and the Department of Engineering Science of the University of Oxford.
Candidates should possess a degree in electronic engineering or physics. Appropriately qualified candidates would have the opportunity to Appropriately qualified cand
undertake original research.
Appointment to this post would be for an initial period of three years, renewable subject to the contractual arrangements for the Centre.
The salary range is $£ 6,310-£ 11,615$, depending on age, qualifications and experience

Further details are available from
J. D. Harris, Director

Oxford Orthopaedic Engineering Centre
Nuffield Orthopaedic Centre
Headington, Oxford OX3 7LD
Tel: 0865-64811, Ext. 514/510
Applications should be submitted by 2nd April, 1984.

CAMBRIDGESHIRE COLLEGE OF ARTS AND TECHNOLOGY

ARE YOU MAKING THE MOST OF YOURSELF Have you considered furthering your training in Electronics?

We offer:

CNAA BSC in ELECTRONIC ENGINEERING
A four-year part-time degree course for mature students in industry, involving attendance for one full day each week of the academic year. The course is based upon modern electronic engineering with a strong computing theme.
Entry qualifications: HTC or equivalent in Electrical and Electronic Engineering or Applied Physics.

BTEC HND in
 ELECTRICAL AND ELECTRONIC ENGINEERING

A two-year full-time course which combines an up-to-date technological education with a considerable 'hands on' experience of a wide range of modern equipment and techniques
Entry qualifications: One pass at ' A ' level in an appropriate subject, or a BTEC Certificate or Diploma or equivalent.
For further details contact the Department of Engineering, Cambridgeshire College of Arts and Technology, Cambridge CB1 1PT.
Telephone (0223) 352973 or 352979.

TRAINEE RADIO OFFICERS

First-class, secure career opportunities
A number of vacancies will be available in 1984 for suitably qualified candidates to be appointed as Trainee Radio Officers.
If your trade or training involves Radio Operating, you qualify to be considered for a Radio Officer post.
Candidates must have had at least 2 years' radio operating experience or hold a PMG, MPT or MRGC certificate, or expect to obtain this shortly
On successful completion of 35 weeks' specialist training, promotion will occur to the Radio Officer grade. Registered disabled people may be considered.

SALARY AND PROSPECTS:

Trainee Radio Officer: $£ 4,579$ at 19 to £5,481 at 25 and over. On promotion to Radio Officer: £6,270 at 19 to $£ 8,182$ at 25 and over. Then by 4 annual increments to $£ 11,182$ inclusive of shift working and Saturday and Sunday elements

For full details please contact our Recruitment Office on Cheltenham (0242) 32912/3 or write to:

Recruitment Office, Government Communications Headquarters, Oakley, Priors Road, Cheltenham, Gloucestershire, GL52 5AJ.

TEST EQUIPMENT DESIGN ENGINEERS

Rediffusion Consumer Manufacturing design and manufacture a full range of advanced speclfication colour television receivers and monitors.

We are lookdng for experienced Electronic Design Engineers to help us maintain our industry lead in sophisticated computer controlled test gear for production testing of our products. Future test equipment will be an interesting mix of digital and analogue circuitry almed at increasing the automation of the production testing operation.

If you are able to concelve, design and implement production test equipment with minimal supervision, we'd like to hear from you.

These positions are based in our Chessington Engineering Centre but some visits to our factories in the North East and Lancashire will be required at infrequent intervals. Salaries are obvlously dependent on qualifications and experience, but will reflect the importance of future test gear projects to the Company's long term develop ment.

Interested? ... Then write or phone:
Harry Brearley,
Rediffusion Consumer Manufacturing Ltd., Fullers Way South,
Chessington, Surrey. KT9 1HJ .
Telephone: 01-397-5411.

BRITISH ANTARCTIC SURVEY Radio Operators/ Electronic Technicians

The Survey requires RADIO OPERATORS/ELECTRONIC TECHNICIANS who have experience in the maintenance and operation of HF and satellite communications to work singlehanded at its stations in the Antarctic.
Responsibilities of the postholders include:
The efficient operation of Inmarsat satellite communications installations, VHF and HF transmitters, receivers, and peripheral gear and its routine maintenance; logging of all traffic schedules; carrying out operational communications schedules; and maintenance of scientific electronic equipment.
Because of the isolated situation of Antarctica the ability to work on their own initiative is essential; they will be solely responsible for all aspects of communications. Ability to operate MRGC standard with some knowledge of maritime procedures is also necessary. Appropriate training on specific equipment will be given if required.
The period of employment will be from 2nd July, 1984, until spring 1987 which entails working in Antarctica for two consecutive winters.
Applications are invited from single men who are physically fit and aged between 22 and 35 to work mainly overseas.
Salary: from $£ 7,255$ per annum plus annual increments. Accommodation provided whilst overseas. Clothing, messing and canteen are provided free on base and free messing on voyage.
For further details and an application form please write to: The Establishment Officer, British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 OET. Please quote ref: BAS 6. Closing date: 11th April, 1984.
NATURAL ENYIRONMENT RESEARCH COUNCIL

SENIOR ENGINEER
S 4 C is consolidating its post production facilities and urgently requires a Senior Engineer, experienced in broadcast operations and qualified in electronic to H.N.C. or equivalent standard. Based in Cardiff Salary: £11,091 Further details and application form from:Vince Flanagan, Chief Engineer, S4C, Sophia Close, Cardiff (0222) 43421

Inner London Education Authority LEARNING RESOURCES BRANCH
 Assistant Vision Engineer (Lighting) ST1/2

An Assistant Vision Engineer (Lighting) is required to work as part of a team taking responsibility for the quality of television pictures recorded. The assistant vision engineer will be particularly concerned with the rigging, adjustment and maintenance of lamps and operation of telecine.
Candidates should have suitable technical qualifications and a good working knowledge of appropriate equipment.
The current salary range is $£ 5,517-\mathrm{f} 8,316$ plus $£ 1,347$ L.W.A.
Application forms and further details are available from: The Education Officer, Application forms and further details are available from.
EO/Estab. 18, Room 365, The County Hall, London SE1 7PB.
The closing date for the receipt of completed application forms is $\mathbf{1 6 t h}$ April 1984. This post is suitable for job sharing.
ILEA is an equal opportunities employer

Classified

ARTICLES FOR SALE

WORLD RADIO

 TV HANDBOOK1984 ed.
£12
1984 THE RADIO AMATEUR'S H/B by A.R.R.L. Price $£ 12.50$ BEGINNER'S GUIDE TO INTEGRATED CIRCUITS by I. R. Sinclair Price $£ 4.50$ ELECTRONIC PROTOTYPE CON STRUCTION by S. D. Kasten Price f15.95 UNDERSTANDING ELECTRONIC SECURITY SYSTEMS by M. D. Lamont Price 12.30 UNDERSTANDING DIGITAL ELECTRONICS by G. McWhorter Price $£ 4.30$
INTRODUCTION TO ELECTRONIC SPEECH SYNTHESIS by N. Sclater Price £8 ELECTRONICS FOR HIGHER TECH by S. A. Knight Price $£ 10$ DOMESTIC VIDEO CASSETTE RECORDERS. A SERVICING GUIDE by S. Beeching

Price $\mathbf{f} 15.50$
SEMICONDUCTOR DATA BOOK by A. M. Ball Price $£ 7.50$ * all prices include POSTAGE \star

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST of British and American Technical Books
19-21 PRAED STREET LONDON W2 1NP
Telephone: 01-402 9176 Closed Saturday 1 p.m. Please allow 14 days for reply or delivery

B\&T ELECTRONICS

13 TANNERS HILL
TEL, LONDON, S.E. 8 TEL: 01-692 1441
1,000 s ELECTRONIC, ELECTRICAL MECHANICAL ETEM
Xenon Tubes. Type XBLU 50/00 Eclatron $£ 2.50$ each. P\&P 60p. Quantity discounts. P.OA Xenon Flashers. Complete panel with dual flash
rate, $12-18$ volts DC inc. Tube Base Fuse rate, $12-18$ volts DC, inc. Tube, Base, Fuse +
Holder 10 metres connecting wire Full instruc tions. 3 months' guarantee. Complete package only $\mathbf{£ 1 0 + \mathbf { f } 1 . 8 0 \text { P\&P Discounts. P.O.A }}$

Enamelted Copper Wire 090, 080,180

per 1 kg Reel +f 1.80 P\&P.
AVO 8 Movements. Mk 3 plus spares, plus damaged Meters. P.O.A. Will sell as one lot. £ 400 .
Measured Pressure Transducers $£ 25$ each S.A.E. LISTS.

Meters Mcoil, dc plastic, as used in Japanese and 10 units, app. size 5.5 mmx 4.5 mm . We have Power W. V.U. Signal, or Battery level. 100 or
200 micro amp fsd f1.50 each P\&P 600.
K.E.F. CONSTRUCTOR LOUDSPEAKE UNITS. Specialist in all models inctuding cross overs. Construction details available. Send larg s.a.e. stating models of interest. Also available replacement units for older models. Wel. W.-952 High Sureet, Edgware, Middlesex HA8 7HE

AVO 8 SERIES. Fully refurbished and calibrated Avo 8 Mark 3, 4,5. Price including Avo type leads, prods, crocs and VAT $£ 70$. Also digital Electronic Designs, Bedford 857171 .

VALVES, PROJECTOR Lamps, 6000 types, list 75p, world wide export. Cox Radio (Sussex) Ltd., The Parade, East Wittering, Sussex. Phone (024 366) 2023.

RADIO MORSE READING PROG. FOR 2X81, unexpanded memory. Prints translated Morse Code on screen with spaced scroll action easy to read. Variable speed. 27. Spectrum version 18 . Pinehurst Data Studios, 69 Pine-
hurst Park, hurst Park, W. Moors, Wimborne, Dorset
BH 22 OBP.
ENCAPSULATING EQUIPMENT FOR coils, transformers, components, degassing silicone rubber, resin, epoxy. Lost wax casting for brass, bronze, silver, etc. Impregnating coils, transfor mers, components. Vacuum equipment, low cost, used and new. Also for CRT regunning metallisRoad, Croydon CR0 2QP. 01-684 9917 . (9678) WIRELESS WORLD APRIL 1984

SENIOR TV ENGINEERS

Since 1982, Channel Four has been broadening the scope of British television with an ever-widening selection of different, distinctive programmes.

We have an equally visionary approach to broadcasting technology. Behind the scenes, a high calibre engineering team installs, maintains and operates suites of some of the world's most advanced digital television equipment.

To operate and maintain these facilities we require additional Senior Engineers who have extensive related experience particularly in Video Tape and Telecine techniques. We offer a highly attractive salary and benefits package, progressive working environment and career prospects.

Please apply, with full C.V. including current salary, to the Personnel Department, Channel 4 Television, 60 Charlotte Street, London WlP 2AX, quoting reference EGl3.

Channel Four is an equal opportunities employer. Applications are welcomed from candidates regardless of manital status, race, nationality, ethnic or national origins or sex, and from registered disabled people.
CHANNEL FOUR TELEEVISION

LINSLEY HOOD DESIGNS

75 Watt and 100 W amps
Audio Signal Generators
75Watt amp p.c.b. .
100Watt Mosfet p.c.b
.... 52.30

p\&p 50p

S.A.E. for leaflets

TELERADIO ELECTRONICS
325 Fore Street, London N9 OPE

DATABASED? We supply the ideal stand alone compact Prestel terminal with autodial, keyboard
port, etc. One off only $£ 175+$ VAT. Discount for quantity. Futronics Tech. (UK) Lid. Tel: 01 -368 5188.

SERVICE SHEETS. C.T.V.s/Music C §? others $£ 2$ plus l.s.a.e. Repair data including all circuits - any named TV or video $£ 9.50$. L. s.a.e for quotation, free 50 p mag and service shect, etc World's largest service/repair manual stockists. [TISWW] 76 Church St. Larkhall, Lanarkshire
HL9 1HE HL9 1HE. (For fast quotes phone 0698883334).

Microwave Circuit Designers

Here at Marconi Electronic Devices, our Microwave Development team is dedicated to the achievement of excellence.

Our products and indeed the whole division is built around people, creating an environment packed with all the technical resources you'll ever need. We don't just believe in our engineers, we believe in supporting them with every means at our disposal.

We want to talk to Microwave Engineers who will be able to put these resources to good use. Your experience could be in any of a number of areas - SAW Devices, RF System Integration, FET Amplifiers, Mixers, Switches, etc.

It's a rare chance to influence the future direction of microwave technology, providing an innovative input on projects at the very forefront of component and sub-system technology.

So call Chris McDonnell on 0522693389 during normal working hours or any evening between 7.00 pm and 9.00 pm on 0522 752244. Alternatively send brief career details to him at: Marconi Electronic Devices Ltd., Doddington Road, Lincoln LN6 3LF.

MICROWAVE TECHNOLOGY-THE ULTIMATE COMMITMENT
INTEGRATEDCRCUITS.HYPRIDS. MCROWAVE.FOWER DEVCES

ARTICLES FOR SALE
racal communication receivers

 OSCILLOSCOPES

 AM SIGAMAL GOMERATOR

va t ano caramage on abovf items erta ALITHMS ARE BOUGHT DRECT FROM HM GOVERNMENT
BE NG SURPLUS EOUPMENT PRICE ISEX WORKS SAE FOA AIL ENQUIRIES PHONE FOF APCOINTMENT FOR DEM ALL ENQURIES PHONE FPR APPOIN
STAATON OF ANY ITEM
 BIRKENSHAW BRADFORO
Wanted regunont test eouipment receiving
AMd thansmiting eoupment vaives piugs ano
SOCKETS SYMCHROS ETC

VIDEO LINE SELECTOR

converts your cheap scope into a video waveform monitor
PATTERN GENERATOR ALSO 12 VOLT ADAPTIONS OF IKEGAMI $9^{\prime \prime} \& 12^{\prime \prime}$ MONITORS
Contact Andrew Smith
INSIGHT VISION SYSTEMS LTD
Unit 1, Merebrook. Hanley Road, Malvern
Wores WR 136 NP . Tel $(0684) 310001_{2^{3}}$

WAVEGUIDE, Flanges and Dishes. All stan dard sizes and alloys (new material only) from stock. Special sizes to order. Call Earth Stations, 01-228 7876, 22 Howie Street, London SW11
4AR

BRIDGES, waveform transistor analysers. Calibrators, Standards. Millivoltmeters. Dynamometers. KW meters. Oscilloscopes. Recorders. Sig. nal generators sweep, low distortion, true RMS, audio, FM, deviation. Tel. 040376236.

THE HOSPITALS FOR SICK CHILDREN
 Great Ormond Street, London WC1N 3JH

BIOMEDICAL ENGINEERING DEPARTMENT requires

1. A SENIOR TECHNICIAN (MPT II)

involving development of medical and laboratory electronic, mechanical and computing equipment, together with repair and maintenance responsibilities. Candidates should have a minimum of two years' NHS experience as an MPT III and practical experience which should include some machine shop practice and electronic circuit design. Familiarity with small computers, nuclear medicine, X-ray, ultrasonic and laboratory equipment would be an advantage. Salary scale: $£ 8,428$ rising to $£ 10,254$ p.a. inc.

2. A TECHNICIAN (MPT III)

mainly involving the repair and maintenance of a wide range of hospital and laboratory equipment, with occasional constructional work and some potential for development. Candidates should possess at least an HNC or equivalent and should have three years' technical experience which should include the repair of current hospital equipment. Salary scale: $£ 7,174$ rising to £8,968 inc.
Application forms and further details from the Group Personnel Department on 01-405 9200 ext 266.

ANGEL RECORDING STUDIOS

MAINTENANCE ENGINEER
With pleasant and enthusiastic personality required to work in friendly surroundings in top studios. If you have at least two years' experience and are prepared to work occasional long hours then an excellent job and salary could be yours. If interested contact Sheean on 3542525

COMPONENT SCOOP PURCHASE

ONE MILION C283 MULLARD PHILIPS POLYESTER CA-
PACITORS. Ideal
 p.p. $£ 1.1 .000$ of one value $£ 12.50$. p.p. $£ 1$. 5.000 assoned
£42. p.p. $£ 2$. Pleas9 add VAT. MAINS TRANSFORMERS Famous mantactJrer. TYPE 1 . Midget clamped type.
Input 200 -250 250 cs . On . input $200-250 \mathrm{v}$. 250 cs . Output $250-0-25060 \mathrm{~m}$ a 63 V at 2

 Lerger discounts for larger quantities Ten thousand valives, 1925 to 19.95 , modem and obsolete types. Send
60p (retundable). $\operatorname{VERSATLLE}$ BENCH POWER SUPPLY UNITS. Contains high quality transtormer made to exacting spacifications giving one 20 voutput and one $20.0-20 \mathrm{~N}$ output D.C. output fused at 3 amps but will easily give 5
amps. Input AC 110250 . 50 cs . Bridge racitication amps. input AC 110250 N 50 c s. Bridge rectication.
Contained on metal chassis with robust compact case size $7 \times 5 \times 4$. Easiky modifised to give 40 vand 50 v . Makes
idpal ideal variabie power supply. Usual cost around $f 60$ Our price as new with circuit $\mathrm{C8} 50$ each, P.P. E3. Two units
CZO post free XENDN FLASHER UNIIS. Comolete panel with dual fash rate islow/fast). 12 V to $18 \mathrm{~V} D . C$. Includes tubs, base, fusethol der, 10 metres of connecticing wire. Full instructions and gi arantee. As used on police vehicles
Ideal for boats anc cars. Should be f 40 each. Our price $\mathfrak{f 1 2}$ each, p.p. 11.5 C . Two units $£ 23$ post free ideal emergency beacons for joats and cars.

2:14 HATM, MYERS ELECTRDMIC DEVICES 2/14 Harper Street, Leods LS2 JEA Tel: 452015

7-track portable recorder, four head blocks $£ 65$. Car/van/lorry gas conversion 50 kV regulated, variable EHT supply (Brandenburg) £89. Microgen laboratory projector £59. Binocular, prismatic laboratory microscope $£ 145$ (mechanical stage). Fibreoptic laboratory light source £35. Braun Hobby professional electronic flash (rechargeable batteries) £39. Heavy duty multiple output power supplies. Star-Delta starter box £25. Alternator control unit £35. Single to three
phase converter. Vacuum pump and phase converter. Vacuum pump and
motor $£ 35$. Compressor $£ 39$. Standard Reference Inductors $\mathbf{E 7 . 5 0}$ ea. Variac 20.A f49. 2KW 340/110 transformer, three outlets, $£ 39$. Rank wow/ flutter meter £75. Polaroid back $£ 15$. Grunther CHI servicing, testing and reactivating Unit $£ 40$. 20A variable resistance $£ 20$ (metal case). Mullard H.S. valve tester. Avo valve characteristic meter.

040-376236
(2016)

YUASA NP6-12

12v 6 Amp/hr $6^{\prime \prime} \times 21 / 2^{\prime \prime} \times 31 / 2^{\prime \prime}$
YUASA 12v fully sealed lead acid batteries
For sale NP6-12
$6 \mathrm{amp} / \mathrm{hr}$
$6^{\prime \prime} \times 2^{1 / 2^{\prime \prime}} \times 31 / 2^{\prime \prime}$
Less than half price $\mathbf{£ 3}$ each in lots of 50

Leasure Products Electronics Leen Gate Lenton
Nottingham NG7 2ND

When replying to classified advertisements, readers are recommended to take steps to protect their interests before sending money

SCOPES

repaired and recalibrated
All makes, all models Scopex, Safgan Older TEK \& TQ

MENDASCOPE LTD.

Otter House, Weston Underwood Olney, Bucks MK465JS
BEDFORD (0234) 712445

Electrical/ Electronic Engineer

Assessment of Health Service Equipment

This opportunity is in the Scientific and Technical Branch which provides the scientifiz, engineering and other professional services essential to the provision of medical apparatus, instrumentation and supplies to hospitals.

The Engineer will join a London-based Section which is part of a group responsible for all medical diagnostic imaging modes and radiotherapy. He/she will have a wide variety of duties in connection with the supply of X-ray equipment, films and associated accessories to NHS hospitals. The Section maintains records of equipment available, formulates technical conditions to be ap slied to contracts for supply and installation; examines representative installations; carries out assessments of manufacturers; investigates reported incidents pointing towards serious defects in equipment and determines the corrective action; maintains close liaison with the industry, users and regulatory bodies; and provides general advice on X-ray equipment The successful candidate may be employed on any o these duties, which could involve considerable travelling in the UK.

Candidates must have a degree in electrica engineering or have passed the Council of Engineering Institutions Part 2
examination in appropriate subjects or have an equivalent (including overseas) or higher acceptable qualification and have an aggregate of at least 5 years recognised study and professional training. Candidates qualified to the same level in related technological disciplines may be considered if they also offer particular relevant experience. Those with qualifications at a lower level may be considered if they have extensive experience in working with medical X-ray equipment. All candidates should be familiar with the specification, design, construction and testing of electrical and electromechanical equipment. They should also have high ability in the use of written and spoken English.

Salary $£ 8425-£ 10,930$ (including $£ 1250$ Inner London Weighting) with starting salary according to qualifications and experience. Promotion prospects.

RELOCATION ASSISTANCE MAY BE AVAILABLE.

For further details and an application form (to be returned by 6 April 1984) write to Civil Service Commission, Alencon Link, Basingstoke, Hants, RG21 1JB, or telephone Basingstoke (0256) 68551 (answering service operates outside office hours).

Please quote ref: $\mathbf{T}(13) 85$.

Department of Health and Social Security
 The Civil Service is an equal opportunity employer.

Engineer - fibre optics systems instrumentation Greenwich

High speed PCM communications demand the most advanced available instrument ation, right now we are looking for a Senior Engineer to work in our Test Equipment Section.

The Section is a key part of the submerged repeater manufacturing unit and your work there on the installation, calibration and servicing of automatic test equipment will cover a wide range of digital and analogue techniques, from d.c. to u.h.f.

To be considered, you should desirably have an appropriate degree or diploma and some programming skill with micro computers and ideally, experience in repairing instruments down to component level. However, if you are well grounded in the fundamentals of electrical measurements and circuitry with practical capability, we can offer suitable training in communications and the requirements of our submarine cable systems

Starting salary will be attractive and the range of benefits is appropriate to a large progressive organisation.

For further information, contact Alan Wild, Personnel Manager, Standard Telephones and Cables plc, Christchurch Way, Greenwich SE10 OAG. Tel: 01-858 3291. Ext 403.

Field Service Engineers Middlesex Car Salary c. $£ 8,000$

Do you have:-
Minimum Higher TEC or equivalent? 5 years electronics experience?

Communication skills?
Self motivation?
If so, we can give you the opportunity for varied and interesting work with high technology.
Linotype-Paul needs high quality people to install and maintain a wide range of sophisticated mini/micro based phototypesetters, peripherals and systems in the U.K. and overseas.
Part of the international Linotype Group, Linotype-Paul is a marketing and sales company at the forefront of communication and printed word technology, combining electronics with optics to produce quality typesetting.
We offer interesting work with career advancement opportunities, attractive conditions and a company car, which is available for private use. We will assist with relocation costs if necessary and will provide full product training.
If interested, write to: Gerry Smith, Personnel Services Manager, 849 Harrow Road, Wembley, or tel. 0242518288 (day) or after 7.00 pm on 01-441 5228 or 0923776950 or 068463167.

Technical Manager Media Services

Ashridge, one of the largest independent management centres in Europe, has a vacancy for a manager to lead its media resources technical support team.

Applications are invited from men and women who have the following:
Qualifications in electronics to the level of City and Guilds FTC, Higher TEC or HNC. At least ten years' experience in the field of educational television/media resources. Proven ability to manage an audio-visual support team in an educational setting. Good interpersonal skills and the capacity to work constructively with others. Commitment to the provision of a high quality professional service for our tutorial staff.

Salary scale: $£ 9,500$ to $£ 11,500$
Please telephone or write to the Personnel Department at the following address for further details and an application form: Ashridge Management College, Berkhamsted, Herts., HP4 1NS. Telephone Little Gaddesden (044 284) 3491.

Electronic Engineers What you want, where you want!

DESIGN AND CONSULTANCY of micropro cessor, digital and analogue equipment. Complet service from feasibility and design to prototspe and commissioning. Advice on test and design of dedicated test equipment or ATE. DPM Electronics, it Timbermans View, Basiliton Essex. Tel. 0268558831.

TENDERS

CITY OF COVENTRY

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $£ 5000-£ 15000$.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL PERSONNEL SERVICES,
12 Mount Ephraim, Tunbridge Wells, Kent. TN4 8AS.

Tel: 089239388
(24 Hour Answering Service

Please send me a TJB Appointments Registration form
Name
Address

VIDEO ENGINEERS

Rediffusion Consumer Manufacturing Ltd is seeking an intermediate and a senior video engineer with OND, HND or similar qualifications, together with a knowledge of modern consumer electronics circuitry techniques, to join a small team looking after Rediffusion's mammoth investment in domestic video recorders and video disc players.
In addition to analysis of performance and long term reliability factors, assessment reporting is an important part of the team's function and the ability to express oneself verbally and in writing is essential Our laboratories are situated at Chessington within easy commuting distance of the surrey countryside. Attractive salaries and the usual big company benerits, which include assistance with relocation expenses, are offered to suitably qualified and experienced engineers. If you believe you can make a significant contribution to our video projects please write to or phone:-

Harry Brearley,
Rediffusion Consumer Manufacturing Ltd., Fullers Way South,
Chessington, Surrey. KT9 1HJ.
Telephone: 01-397-5411.

REDIFFUSION

ACOUSTIC SIGNAL PROCESSING SPECIALIST London

An experienced graduate electronics or computer hardware specialist is required to join a team working on a variety of challenging projects.

Activities involve the design, specification and use of electronic and computer equipments to process acoustic data; technical liaison with Government R\&D establishments and with industry; and the provision of advice to non-technical personnel

Applicants should be under 30 , hold a good Honours Degree or equivalent in Electronics or Computer Systems Technology, and be familiar with the acoustics/ communications/signal processing field. An ability to liaise effectively with senior technical staff is essential.

The starting salary will be in the band $£ 7,000$ to $£ 11,000$ per annum, depending on qualifications and experience, and the post will initially be based in London, although career progression may take you to our Communications Centre at Hanslope Park.

For an application form please write to Dr. D. Orr, Recruitment Officer. HMGCC. Hanslope Pirrh, Hanslope, Buckinghamshire MK19 7BH.

Classified

If you are, then now's the time to think about a career with Lucas Electrical Electronics \& Systems. We're poised to become the world leader in advanced automotive instrumentation and engine management systems, using the latest electronic technology, and we're now looking for the following highly talented engineers (male or female) for our site at College Road in Birmingham.

Project Team Leader

Engine Management Blectronics
You'll be leading several project teams involved in the design and development of electronic modules for ignition and fuel control systems, from concept to production - guiding and advising engineers, and controlling the administrative aspects of the development section.

Educated to degree level, you must have experience of the latest electronic techniques including custom/semi custom and microprocessor designs, ideally gained on the design, proving and product introduction of electronic modules. Although some software ability would be an advantage, the ability to manage a mixed software/ hardware team is of the utmost importance

Project Engineer Electromagnetic Compatibility

Working in our Radio Interference Laboratory, your brief will be to provide an electromagnetic compatibility advisory and measurement service for companies within the Group - a wide ranging role involving such elements as the planning and supervision of development work surrounding radiated ignition interference from vehicles, the compatibility and relative susceptibility to interference of electronic circuits and the corrective actions necessary.

You should be educated to degree level in Electrical/Electronic Engineering, with experience in Radio Engineering and its application to electronic circuitry and/or instrumentation.

We offer attractive salaries to match the responsibility and seniority of the posts involved, together with a wide range of large group benefits.

Please write enclosing full career history to Graham Plumley, Personnel Manager, Lucas Electrical Electronics \& Systems Limited, College Road, Kingstanding, Birmingham B44.

ELECTRO-MEDICAL SALES ENGINEER

required for Midlands area by leading physiotherapy equipment manufacturers.
Rewarding job for self-motivated person (with HNC or equivalent in electronics) able to work from home without supervision. Car pfovided. Salary/commission negotiable.

Apply (with cv) to:
Mr lan C. Greenham, Managing Director ELECTRO-MEDICAL SUPPLIES (GREENHAM) LINITED Wantage, Oxfordshire OX12 7AD

CIRCOLEC

THE COMPLETE ELECTRONIC SERVICE
Artwork, Circuit Design, PCB Assembly, Test \& Repair Service, O.A. Consultancy, Prototypes, Final Assembly. Full PCB Flow Soldering Service.
Quality workmanship by professionals at economic prices
Please telephone 01-6465686 for advice or further details.
TAMWORTH MANOR
302-310 COMMONSIDE EAST, MITCHAM

ARTICLES FOR SALE

TO MANUFACTURERS, WHOLESALERS

 BULK BUYERS, ETC.
LARGE QUANTITIES OF RADIO. TV AND

 ELECTRONIC COMPONENTS FOR DISPOSALSEMICUNUUCIUKS, all types, INTEGRATED CIRCUITS, TRANSISTORS, DIODES, RECTIFIERS, THYRISTORS, etc. RESISTORS, C/F, M/F, W/W, etc. CAPACITORS, SILVER MICA, POLYSTYRENE, C280, C296, DISC CERAMICS, PLATE CERAMICS, etc.
ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE CABLES, SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFORMERS, etc.
ALL AT KNOCKOUT PRICES - Come and pay us a visit ALADDIN'S CAVE
TELEPHONE: 445 0749/445 2713
BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, North Finchley, London, N. 12
$(15$ minutes trom Tally Ho Corner)
(1613)

CLEARANCE - Universal Frequency Counters

Due to the introduction of new lines we are clearing a limited quantity of 24500 and 700 MHz direct measuring laboratory standard Counters, 9 digits. Accuracy 1 part per 10 million/ 12 months. 3 channels 10 mV Sens. Price $£ 240.35$ inc. VAT (r.r. $£ 782$ inc. VAT). Send SAE for full spec. or telephone (0202) 736640
SWITCH MODE POWER SUPPLY UNITS
We are producing a new range of low cost S.M.P.S.U.s up to 250 VA and above. Telephone your requirements on (0202) 723454

PRONTAGRAM LIMITED

6-8 STATION ROAD, LOWER PARKSTONE, POOLE, DORSET BH 14 8UB ENGLAND
EQUIPMENT
REPAIR AND CALIBRATHON
FAST, EFFICIENT SERVICE
CONFORMANCE TO NATIONAL
STANDARDS

CLASSIFIED ADVERTISEMENTS Use this Form for your Sales and Wants

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

To "Wireless World" Classifled Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate £3.50 PER LINE. Average six words per line. Minimum $£ 25$ (prepayable)
- Name and address to be included in charge if used in advertisement
- Box No. Allow two words plus $£ 5$
- Cheques, etc., payable to "IPC Business Press Ltd." and cross "\& Co."

NAME

ADDRESS

COMPUTER APPRECIATION

16 Walton Street, Oxford OX1 2HO - Tel: Oxford (0865) 55163

PDP $11 / 03$ SYSTEM comprising LSI $11 / 2$ processor with EIS/FIS, 64 KB memory, PERTEC Model 3000 20 MB front losding disc drive fully RK-05 compatible, DILOG Model DO100 disc drive controiler, DLV11, LPV11,

 fioppy disc drives, DLV11.J Contained in attractive portable box and RT-11 operating system,
PDPI 103 with 48 K memory. MXV-11 multifunction card (including 2 serial interfaces) GENERAL ROBOTICS floppy disc interface (for SHUGART compatible drives) in NEW BA-11 8 siot box floppy disc interface (1) SHOGART compatible drives in News With 64 KB memory \& twin 8 floppy disc drives \& two RS232 interfaces in compact desk-top case. BRAND NEW LSI11/1 processor. BRAND NEW DEC startup box comprising. NEW BA11-MF 8 slot box, 22 bit LS1-11/23 processor with MMUU, DLVI1-J $\mathbf{E 7 5 0}$ PERTEC Model PCC 2000 SYSTEMS. BRAND NEW machine with 8085 processor, P100 bus, detached keyboard with numeric of function pads, 64 KB memory 24×80 green display, twin $8^{\prime \prime}$ " double density floppy disc drives, RS 232 interface, CENTRONICS interface. Price includes, BRAND NEW NEC Model 5500 SPINPHILIPS Model P2000M MICRO-COMPUTER SYSTEMS, Comprising 2.5 MHZ Z80 processor unit with integra keyboard \& DIGITAL mini cassette drive, 24×80 green monitor, twin $51 / 4^{\prime \prime}$ dual density floppy disc drive, 25 C.p.S. daisy wheel printer. Complete with world processor ROM Pack \& either NEW or EX DEMO........... 9995

MANNESMAN/TALLY Modet M8OMC matrix printer. With microprocessor control, 200 c. p.s. bidirectional printing with U/L case, seff test, all electronics on single card (30 ics) heavy duty machanism for serious ransformer is availabinal cost from Samson
TT Model 3510 TELEFAX MACHINES. Group II facsimile machine manufactured '981 BRAND NEW 8 COXed.... Model SELEX 75SC plain paper
no warm up originaliy retailed at f1200...
CENIRONICS Model 152-2 parallel matrix printer
COMMODORE Model 8027 da isy wheel printer for PET IEEE interface BRAND NEW
COMMODORE Model 8024 high speed matrix printer for PET IEEE interface. BRAND NEW
CENTRONICS Model 779150 c . P. . matrix printer 120 col EX. DEMO
GENERAL DATACOMM Model LDM-1 Modern \& Model TDM 1240 line multiplexor. Modem unit self 1 est $\&$ oopback etc. microprocessor controlled multiplexor. We have 4 sets available, per set
TRANSTEC MOdel $120012^{\prime \prime}$ green screader monitor. BRAND NEW ...

TEKTRONIX MOdel 4601 hard copy unit for 4000 Series graphics terminals
GOULD-BRYA
TEKTRONIX Model 611 graphics display (With a 1 mm wide burn at extreme bottom of screen)
 TEKTRONIX Model 611 graphics display.

* All prices are exclusive of VAT \& Carriage.

Wirelessiworld
 INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 92/103

PAGE
PAGE
PAGE

OVERSEAS ADVERTISEMENT AGENTS
France \& Belgium: Norbert Hellin, 50 Rue de Chemin Veat, F-9100, Boulogne, Paris.

Hungary: Ms Edit, Bajusz, Hungexpo Advertising Agency, Hungary: Ms Edit, Baju
Budapest XIV, Varosliget
Telephone: 225008 - Telex: Budapest 22-4525
INTFOIRE
Italy: Sig C. Epis, Etas.Kompass, S.p.a. - Servizio Estero,
Via Mantegna 6,20154 Milan
Telephone: 347051 Telex: 37342 Kompass.

Japan: Mr. Inatsuki, Trace Media
 IBPA (Japan), B. 212 Azabu Heights, 1-5-10 Roppongi, Minato-ku, Tokyo 106.

 Telephone: (03) 5850581United States of America: Jay Feinnan, Business Press Inter national America: Jay Feinnan, Business MY 10017 national Ltd, 205 East 42 nd Street, New Yo
Telephone (212) 867-2080- Telex: 238327.
Jack Farley Jnr The Farley Co., Suite 1584, 35 East Walker Jack Farley Jnr., The Farley Co., Suite 1584, 35 East Wal
Drive, Chicago, illionois 60601 - Telephone (312) 63074. Drive, Chicago, ilionois 60601 - Telephone (312) 63074.
Victor A. Jauch, Elmatex International, P.O. Box 34607 , Angeles, Calif. 90034, USA - Telephone (213) 821-8581 Telex: 18-1059.

Pantechnic
8/9

P.M. Components Ltd
4

Radford Laboratory 80
Radiocode Clocks Ltd
Radio Component Spec
Radio Society Great Britain
Raedek Electronics
Ralfe Electronics (PF)
Reticon (EG\&G)
RTT Division of Hansworth 89
R1T Division of Hansworth 86

Samsons Electronics Ltd... 92
Sarel Electric Ltd..
copex.
.......... 77
Solent Electronics Services Lid................................ 91
South Midiand Communication
Special Products Distribution
Stewart of Reading
Surrey Electronic Ltd.. 91
Taylor Bros (Oldham) Lid ${ }^{4}$
Taylor Bros (Oldh 83

Teledigital Computers

Thanet Electronics L
89
Thurlby Electronics
Timebase .
. 71
TK Electronics ... 11
Triangle Digital Services .. 14

Valradio Power Ltd .. 80
Water Stanton Electronics 89

Printed in Great Britain by QB Lid., Sheepen Place, Colchester, for the proprietors, Business Press International Lud., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. C) Business Press International Lid, 1984 . Wireless World can be obained abroad from the following: AUSTRALIA and NEW ZEALAND: Gordon \& Gorch Ltd. INDIA: A. H. Wheeler \& Co. CANADA: The Wm. 14th floor, 111 Eighth Avenue, New York, N. Y. 10011

THE NEW ANTEX TCSU－D temperature conirol digital soldering unit has joined the Antex range advancing the science of soldering
 With the New Antex TCSU－D High－Value，high－performance

unit．Its simple design incorporates an LED display and a unique ULA integrated circuit，custom－built for Antex by Ferranti．
Tight temperature control can be maintained by setting the station－ then removing the knob，preventing any further alteration，for laboratory，for workshop，for production－line．Joins the most sophisticated range of soldering equipment．Irons，bit，kits，stands，units and accessories－each at the forefront of soldering technology．It＇s just one more advanced from Antex．
For the very latest in the science of soldering send for a catalogue now．

COULD OSCILLOSCOPESSETAHIGHERSTANDARD

shall mgre low phace,

 :UTBG NPERFORANCE...

Standard Realtime 'Scope: Two independent channels, TY or XY. 20 MHz bandwidth from $2 \mathrm{mV} / \mathrm{cm}$ to $25 \mathrm{~V} / \mathrm{cm}$. 'ADD' and 'INVERT' controls for baseline compensation and differential voltage measurements. Fully variable sensitivity.
Transient Waveform Capture Unit: Captures information occurring prior to trigger point. Waveform can be
expanded after capture.
Electronic Chart Recorder: Waveform rolls across display at $50 \mathrm{~s} / \mathrm{cm}$ to $50 \mu \mathrm{~s} / \mathrm{cm}$ and can be frozen from automatic or manual trigger.
Storage 'Scope: Permanent retention of waveforms up to 20 MHz . Displays new with previously stored waveform. Automatic analogue output for pen-recorder.

[^0]: $1=12 \mid=1$
 Electronic Brokers \|
 WIRELESS WORLD APRIL 1984

[^1]:

 ～ૈ

 2524
 2530
 2532
 2540
 2541
 2560
 2581
 2593
 2600
 2610
 2611
 2640
 2680
 3690
 5660
 575 C
 1025
 1028
 1032
 11568
 1167
 1181
 11814
 1185
 11911
 1350
 1353
 20025
 2

 CRT TUBES
 A selection ava
 Prices on request． $\begin{array}{lrlll}\text { 3BPI } & \mathbf{£ 1 3 . 5 0} & \text { D10－210GH } & \mathbf{£ 4 5} \\ \text { DG7－32 } & £ 42 & \text { DH7－91 } & \mathbf{£ 5 9} \\ \text { DP7．6 } & \mathbf{£ 3 5} & \text { DP7．11 } & \mathbf{£ 3 5}\end{array}$

 TV SPARES
 We now have available from
 stock a range of popular $T V$ stock a range of popular TV
 spares including ：line output
 transformers，tuners，triplers．

[^2]: We assure Mr Woodroffe and his readers that the reprinting of his correspondence was entirely inadvertent! - Ed.

[^3]: If you would like more information on any of the ftems featured here, enter the appropriate WW reference number(s) on the mauve replypaid card bound in this issue. Overseas cards require a stamp.

[^4]: Please send me full details of how Sarel's 8000 Series of cabinets and accessories set the standard.
 | Name

    ```
    | AddressI
    ```

 Sarel Limited Cosgrove Way Tel: on, Beds 1
 ᄂ

[^5]: Lynwood GD1 VDUs: Intelligent Green micro controlled, RS232 printer port 101 key (b. Full Video enhancements. ONLY £149 +£15 P\&P (S/H)
 Burroughs MT686/7/TD710: Intelligent Green $12^{\prime \prime}$ VDU with 3 micros and 64 K store. RS 232 . Programmable. Only £ 199 new or £149S/H +£ 75 P\&P
 Videocom Apollo VDUs: Stylish 15'" Green 280 controlled VDU with printer port and lots of very advanced features. Only $£ 399$ new or $£ 249$ S/H $+£ 15$ P\&P Centronics 306 Line printers: Professional fast (120 cps), superb quality, 80 column printer. Parallel i/f. ONLY £149 + £17.50 P\&P
 Computhink Act 800 Computer system. Dual floppies (2.4 Mb) with Qume Sprint daisywheel and lots of business software ONLY £1,200 Diablo 630 Daisywheel printer. RS232, NEW £599 + £15P\&P. Diablo Hitype 2 Daisywheel, Tractor unit, S/H £399 + £15 P\&P

[^6]: *Also subscription agents

[^7]: *Prices inclusive of VAT, carriage 60p in U.K. Overseas orders please add extra carriage to published prices
 frobtybuare
 complete P.C.B. workshop

