

MARCH 1984

$$
\frac{\text { ES }}{2 \text { ELSHMENT }}
$$

ALICKIANA

dual trace oscilloscopes

LOW COST, COMPACT BRITISH MANUFACTURED OSCILOSCOPES FOR TEST, SERVICE OR DEVELOPMENT ENGINEERS

FARNELL INSTRUMENTS LIMITED • WETHERBY • WEST YORKSHIRE LS22 4DH • TEL. (0937) 61961 • TELEX 557294

Front cover shows a Thurlby OM358 eight-trace multiplexer in use with a Hitachi V121 dual-trace oscilloscope to introduce our oscilloscope survey on page 57. Picture supplied by Thurlby.

NEXT MONTH

Bob Coates turns the Picotutor's 68705 microprocessor into a simple, low-cost interface for driving a teletypewriter from a microcomputer Centronics port.

As well as providing 5.5 and 6 MHz sound, a synthesized tv modulator can be accurately switched to any u.h.f. channel.

Testing microprocessor systems is not so simple for the first-time builder without access to logic analysers or emulators. Carson gives some simple procedures that highlight hardware and software problems.

Surface wave, charge transfer and digital v.l.s.i. devices have enabled complex and powerful matched filters to be made. Geoffrey Robinson describes some examples that illustrate their different forms and uses.

Current issue price 85p, back issues (if available) £1.06, at Retail and Trade Counter, Units 1 \& 2. Bankside Industrial Centre, Hopton Street, London SE1. Available on microfilm; please contact editor.
By post, current issue $£ 1.30$, back issues (if available) $£ 1.40$, order and payments to Sundry Sales Dept, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Tel: 01-661 8668 .
Editorial \& Advertising offices: Quad rant House, The Quadrant, Sutton rant House, The
Turrey SM2 SAS.
Telephones: Editorial 01-661 3614.
Advertising 01-661 3130 . See leader Advertising 01-661 3130 . See le
page. Telex: 892084 BISPRS G.
page. Telex: 892084 BISPRS G. £19 outside UK.
Student rates: 1 year £10 UK, and $£ 12.70$ outside UK
Distribution: Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS Telephone: 01-661 3248.
Subscriptions: Oakfield House,
Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone: 0444 459188. Please notify a change of address
USA: \$49.40 surface mail, $\$ 102.60$ air Business Press International (USA). Subscriptions Office, 205 E. 42 nd Street, NY 10017.
USA mailing agents: Expediters of the Printed Word Lid, 527 Madison Avenue, Printed Word Lid, 527 Madison Avenue, Suite 1217, New York, NY 10022. 2nd class postage paid at New York (C) Business Press International Lid 1984 ISSN 00436062.

Wirelessworld

SOFTWARE COPYRIGHT

COMMUNICATIONS COMMENTARY
Brown's binuratty Am steren 50MHz class anermis

ADAPTABLE TYPEWRITER INTERFACE

ty C. Portesque-Webh

IMPROVING COLOUR TELEVISION DECODING

byD. C. M Reall
\square

ELECTRONIC DEVICES FOR THE DISABLED

Wimers of the Wireless World compatitim

DIFFERENTIAL TEMPERATURE INTEGRATOR

by 月. Everets

CIRCUIT IDEAS

opto circuils Howing-enll amplifer 15ull dare

PARALLEL-FED VOLTAGE MULTIPLIER

by R. D. Purves ant C. Prescoll

FREQUENCY RESPONSE ANALYSER

by R. Para, K. Sivasta and S. L. Sudhamurth

DIGITAL FILTER DESIGN PROCEDURE-3

by d. T. R. Sytuester-bratley

NEWS OF THE MONTH

TATB S ontical DSP alunithms compressellm.

LETTERS TO THE EDITOR

Ratlo softwat Energy savimy
logic noise

OSCILLOSCOPE SURVEY

Non-storage oscilloscopes un to thomhz
DESIGNING WITH THE 68008 MICROPROCESSOR
by A. J. Bath

16 LINE PABX WITH OPTIONS

by d. M. Kuiper

NEW PRODUCTS

biovelase: How computers Transistor lester

APPOINTMENTS

ADVERTISERS INDEX

CABLE T.V. HEAD END AND REPEATER AMPLIFIERS

CHANNEL CONVERTERS
TCUU
TCUU UHF-UHF Single channel converter. Gain adjustable $+2 d \mathrm{~B}-16 \mathrm{~dB}$. Maxi1 mum output +26 dBmV . Crystal controlled oscillator. Power requirement
TCUV
TCVU \quad As TCUU except UHF to VHF converter. (Quote Channets required)

SINGLE CHANNEL AUTOMATIC GAIN CONTROL AMPLIFIERS
TAG4863 Gain 48dB. maximum output 63 dBmV . Regulator + or -8 dB . Power
TAG4063 Gain 40 dB , maximum output 64 dBmV . Regulator + or - 16dB. Power requirament 14 V 210 mA .

SINGLE CHANNEL AMPLIFIERS

TSS4663 Gain $28-46 \mathrm{~dB}$ adjustable. Maximum output 63 dBmV . Power requirement TSS3062 \quad GV 170 mA .

Gain $12-30 \mathrm{~dB}$ adjustable. Maximum output 62 dBmV . Power requirement
14 V 26 mA .
DRIVER AMPLIFIERS
TS1030FM FM driver amplifier. 10dB Gain. Maximum output 30 dBmV . Power requirement 14 V 10 mA .
TS1030B3 Band III driver amplfier 10dB gain. Maximum output 30 dBmV . Power SO 1030 HF requrement 14 V 10 mA
ment $14 V$ verplifler. 10dB gain. Maximum output 30 dBmV . Power require-
TS1040S Single channel UHF driver amplifier. 10 dB gain. Maximum output 40 dBmV . Power requirement 14 V 10 mA . (Quote channel required).
bution amplifier. 1 input, 1 output Gain 20dB. Maximum TE2042 Domestic distrib
TE1638 Domestic distribution amplifier. 1 input, 2 outputs. Gain 16 dB . Maximum Domestic distribution
output: 2 at 38 dBmV .
$40-860 \mathrm{MHz}$ Gain 20 dB UHF. 18 dB VHF. Maximum output 46 dB mV
TS2846 $40-860 \mathrm{MHz}$. Gain 28dB UHF, 22dB VHF. Maximum output 46 dBmV
TS2845 $\begin{aligned} & \text { Separate UHF/UHF inputs. Gain } 28 \mathrm{~dB} \text { UHF, } 22 \mathrm{~dB} \text { VHF. Maximum output } \\ & 46 \mathrm{dBmV} \text {. }\end{aligned}$ 46 dBmV . $40-860 \mathrm{MHz}$. Gain 20 dB UHF, 18 dB VHF. Maximum output 54 dB mV .
TS2054 $40-860 \mathrm{MHz}$. Gain 20 dB UHF, 18 dB VHF. Maximum output 54 dBmV
$40-860 \mathrm{MHz}$. Gain 20 dB UHF, 18dB VHF. Maximum output 60 dBm
REPEATER AMPLIFIERS
TSC3660 Repeater, Gain 16-36dB UHF, $10-30 \mathrm{~dB}$ VHF. Maximum output 60 dBmV . $\begin{array}{ll}\text { TSC3665 } & \text { Repeater. Gain } 16-36 \mathrm{~dB} \text { UHF', } 10-30 \mathrm{~dB} \text { VHF. Maximum output } 65 \mathrm{dBmV} . \\ \text { TSC3060 } & \text { Repeater. Gain } 10-30 \mathrm{~dB} \text { VHF. Maximum output } 60 \mathrm{dBmV} .\end{array}$

INSIGHT VISION SYSTEMS LIMITED
Unit 1, Merebrook, Hanley Road, Malvern. Worcs WR13 6NP, England

Tel (0684) 310001
Telex 334480 INSIGT'G'

DESIGNERS AND MANUFACTURERS OF
HIGH QUALITY CCTV CAMERAS \& SYSTEMS

This self-contained black and white camera has been developed for use in situations where space is at a premium but the need for high quality is of paramount importance. Features include:

- LOW POWER CONSUMPTION
- AUTOMATIC VIDEO BLACK LEVEL
- MOTORISED VIDICON RACKING
- UNPROCESSED VIDEO
OUT TO EE LENS
- INBUILT IRIS DRIVE SERVO
10 TO 32 VOLT DC OPERATION
EDGE ENHANCEMENT
CORRECTION
- EXTERNAL LOCK
- HIGH RESOLUTION. LOW NOISE PICTURE
- PLUG ON BATTERY AND REMOTE CONTROL MODULES

We believe this is the smallest self-contained black and white TV camera available. Contact Andrew Smith on (0684) 310001

WW - 068 FOR FURTHER DETAILS

IN VIew of the extremely rapid change taking PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, N. Finchley, London, N. 12.5 mins. from Tally Ho corner
Telephone 445 2713/0749

RECHARGEABLE BATTERIES

EXPORT \& TRADE ENQUIRIES WELCOME
Full range of Ni -Cads to replace 1.5 volt dry cells and 9 volt PP type batteries. S.A.E. for lists and prices. $£ 1.45$ for booklet, "Nickel Cadmium Power." Sealed lead range stocked. Chargers and multi-chargers to suit.
\star TRADE PRICES FOR SCHOOLS AND COLLEGES \star Sandwell Plant Ltd, 656 Chester Road Erdington, Birmingham B23 5TE

Tel: 021-373 9487
After hours Lichfield 57977
Southern Office - Hitchin 733254

 ?Electronic Brokers are Furope's largest specialists in quality second user test equipment, computers and associated peripherals. All second user test equipment offered by Electronic Brokers is calibrated to meet the original manufacturer's sales specifications and guaranteed for 12 months. Our latest catalogue contains full details of our extensive inventory. Contact us for your free copy now

TEKTRONIX Data Comms Tester 833

Bit Error Rate Testing String Search Lightweight and Portable As New Condition Price: £995

(30 Day Warranty Dnly)

ANALYSERS

Howlett Packard

334 A Distortion Analyser . 1,20000 3581 A Wave Analyser
 $0.02 \mathrm{~Hz}-25.5 \mathrm{KHz}$ Tokeronix to Less than Distortion $10 \mathrm{~Hz}-100 \mathrm{KHz}$ OAS 910300 op 010 . Logic Analdser OF1 Display Formatter For 7001 308 Portable 8 Channel $20 \mathrm{M} \quad \mathbf{5} 00.00$ Analyser 492 (opt 01, 08) Spectrum Analyser 7 L 12 Spectrum Analyser z-1.8GAz $1 \mathrm{KHz}+1.8 \mathrm{GHz}$. L18 Spectrum Analyser $1.5 \mathrm{GHz}-60 \mathrm{GHz}$. TR503 Tracking Generato (for 492/495 series). 00116 Channel 100 MH Sample Aate.c1,500.00

OSCILLOSCOPES
 Howloct Pa

1332A High Quality CRT Display 250.00 1741 A 100 MHz Variable Persistence. 1744 A 100 MHz Variable Persistence $\mathbf{~} 3,000$ Storage. 809 H 1821 A Timebase Plug in $\quad 1,000.00$ Philips

Dual Bean $10 \mathrm{MHz} \quad$ c495.00 PM3244 50MHz 4 channel c1,500.00

305 Portable battery scope/DMM, DT 5 MHz $11,200.00$ 335 Dual Trace 35 MHz Small portable with delay T'Base, $1,300.00$ 200 C Trolley for 400 Series 160 M 120.00 465 100M Mz Portable $\mathbf{5 1 , 5 0 0 . 0 0}$ 7313100 MHz Storage Mainframe 7603100 MHz Mainframe 7623 100MHz Storage $\mathbf{~ c 2 , 5 0 0 . 0 0}$ 7704 A Scope DC-200MHz Mainframe 7613 Storage Scope Mainframe £3,250.00 7844 Dual Beam 40 CMHz Mainframe 5110 Maintrame 2MHz ... ©1,095.00 C12 Camera.
03415 MHz DT Battery Portable $\mathbf{C 3 5 0 . 0 0}$ CTフ1 Curve Tracer 550.00 gould
OS4000 10MHz Digital Storage ${ }^{\text {C995.00 }}$

SIGNAL SOURCES

EHLabs

$132 A$ Pulse Gen. 1398 Pulse Gen. Howlott Packard $204 C$ Dscillator 2040 Oscillator 11720 a Pulse Modulator 612A Sig Gen. 8004 A Pulse Gen 8011 A-01 Pulse Gen 80138 Pulse Gen 8620 C Sweeper Mainfram 86240 Sweeper Plug In 86240B Sweeper Plug In	c1,200.0 C 950.0 . 2200.0 $C 950.00$ ع1,950.00 C 450. 695.0 $\$ 750.00$ C2,100.00 C4,200.00
ADO 15\% VAT	O ALL

TEKTRONIX Oscilloscope

 Mainframe 7704A200 MHz Bandwidth For use with 7000 series Plug Ins As New Condition Price: £2,850

Illustrated with Plug Ins (Extra)

RACAL-DANA
 Counter/Timer 9514

0.100 MHz Counter

100 ns to $10^{9} \mathrm{Sec}$ Period
IEEE Interface

862228 Sweeper Plug In U. $1-2.4 \mathrm{GHz}$
4,000.00 8640A Sig Gen C2,750.00 8640 B opt $1.2,3 \mathrm{AM} / \mathrm{FM}$ Sig Gen $\mathbf{C 4 , 9 5 0 . 0 0}$ Marconi
Marconi
TF2008 Sig Gen
£3,000.00
TF2015/1 SiGGen
TF2016AMFM SioGen
ع3,350.00
TF2016 AM/FM Sig Gen
10KHz-120MHz
TF2173 Digital Sync for TF201
TF2169 Pulse Modulator
TF2120 Waveform Gen 00
16.500 .00

6600.00
C200.

£650.00

TEKTRONIX PLUGINS
 We stock a complete range of plug

Ins for use with 7000 and 5000
series Mainframas.

TEKTRONIX TM500

SERIES

We stock a very wide range of these versatile modular equipments

MISCELLANEOUS

Avo
 Model 8 Multimeters.

7 Electricians Multimeter c80.00 Bruel \& Kiaor
2209 Sound Level Meter 1613 Filter
Datalabs
OL901 Transient Recorder
Fluke
${ }_{515 A} 515$ Portable Calibrator
515 A Portable Calibrato
8502A DMM
Carriage and Pack ing extra

931 D Diff V Meter.
20020-3-6 Printer c1,000.00 ©500.00 5205 A Precision Power Ampifier 8921A DMM E595.00
Howlott Packard
461A Amp 20/400B $1 \mathrm{KHz}-150 \mathrm{MHz}$
467A Amplifier
415 E VSWR Meter

\section*{| 41.... \quad C950.00 |
| :--- |
| 950.00 |} 352A $ع 850.00$ 4815A Vans 1 1,500.00〔3,850.00 59308A HP1B Timing Generator $\mathbf{E 3 0 0 . 0 0}$

Marconi TF1313A LCR Bridge
5775.00 TF2603 RF Millivotitneter $\quad \mathbf{7 5 0 . 0 0}$ T.F2604 Electronic Voltmeter $\$ 350.00$ TF2700 LCR Bridge 2295.00 Pacal
9514
9514 Counter/Timer IEEE . . 8850.00 Trektronir
06 Square Wave Generator 1 nS
risetime
accessories. 191 Constant Amplitude Generator $\mathbf{\Sigma 2 5 0 . 0 0}$ 832 Data Comms Tester 0395.00 833 Data Comms. Tester. 9995.00 2701 Step Attenuator $50 \Omega 0.798 \mathrm{in}$
1 dB steps OC to $2 \mathrm{GHz} \mathrm{C295.00}$

Electronic Brokers Ltd.,61/65 Kings Cross Road, LondonWC1X 9LN. Tel:01-2783461. Telex 298694
© scsers riny Easicequstem
The Essex Tiny Basic Computer is an ideal systems. Its crystal controlled process contro
rupts provit to criticat ende accurate timing ander and introl ensures revents. while the and fast response ensures reliable operation the watchdog time entered and tested from Pron. Programs can timer and then be copted from an RS232 can be instant ROM mopled into EPROM Alternativety.

C ssser 0pto- Nsolater
Connects to the Essex Iny BASiC System bus
to provide an additional 12 optoicole (F165) connection to exted outputs persolated inputs

Quaillable

all prices exclude V.A.T
substantial quantity discounts
available
carriage
within U.K. £2

Essex Beckplane

A four slot backplane with printer and termina connectors to accept these cards.

Aler

A powertul software utilities package that pro vides the user with an enhanced editor and all assembly language

* Text Editor * Assemble * Disassembler * Debug Monitor $£ 65$ Supplied as a 4K EPROM with comprehensive manual

Essex Electronics Centre
Wivenhoe Park. Colchester. Essex CO4 $35 Q$
Telephone: Colchester (0206) 865089

Orange aid!

No! It's not a floating drinks dispenser, it's the Neptune hand-held radio case Neptune is brilliant orange, it floats, it's waterproof and could save your life if your ICOM hand-held fell in the drink. Neptune casés are easily retrieved from

> Thanet Blectronics Itd. 143 Reculver Road Herne Bay Kent. Tel: (02273) 63859/63850. Sole U.K. Importers of ICOW equipment.

RADIOCODE CLOCKS Sove PROBLEMS

ATOMIC TIME, FREQUENCY AND SYNCHRONISATION EQUIPMENT

NEW PHASE-MODULATION SYSTEMS

Until recently, atomic time and date information was only available on v.I.f. transmissions using amplitude modulation. The RCC 8000AM series of equipment uses these transmissions to offer high noise immunity and high accuracy, particularly at very long range.
The new RCC 8000 PM series of equipment uses, for the first time, phase modulated tranmissions with massive radiated powers of up to 2 MegaWatts to offer long range, excellent noise immunity and no scheduled maintenance periods.

NEW PRODUCTS

The AM and PM series of Radiocode Clock equipment has been further expanded to include seven new models (from top) 8000 S - combined clock, frequency standard and optional stopclock. Internal standby power supply - with dual rate constant current charger. Time-event log - prints hours, minutes, seconds, milliseconds and day of year, on receipt of a log pulse. Speaking clock - time announcement or audio recording. Slave controller - total control of single-standard master/slave systems ie one pulse/sec. Dual standard slave controller - total control of two different and independent slave systems, ie. one pulse/sec and one pulse/half min. Slave distribution amplifier - maximum flexibility for the largest master/slave installations requiring dual standard operation, multiple circuits and complete master/slave backup.

NEW OPTIONS

A continuously expanding range of fully integrated software and hardware is available for both series of Radiocode Clock equipment. Standard options now include

- IRIG B precision serial o/p
- RS232/V24 1mS resolution
- General purpose parallel o/p - FSK record/replay system Keypad entry of alarm times Keypad entry of time/date
- Time code generators - Intelligent slave systems - Standard frequency outputs Stopclock operation
Calibrated systems for increased accuracy

you have trouble understanding chopper circuits and protection arrangements, want to know about flywheel line sync, are deeply interested in all things from pattern generators to satellite TV receiving techniques-well, have we got the magazine for you. What would you say to a unique specialist magazine which offers guidance to enthusiasts as well as electronics technicians on all aspects of TV and Video, including servicing, news and developments?
It's well worth a closer look... March issue on sale 15 Feb.

SWITCH ONTO...

P.\&R. COMPUTER SHOP

 IBM GOLFBALL PRINTERS from $£ 70$ EACH + V.A.T.INTERFACE FOR IBM GOLFBALL $£ 40+$ V.A.T CENTRONIC 779 PRINTERS - $£ 200+$ V.A.T. CENTRONIC 781 PRINTER - £ $225+$ V.A.T. POWER UNITS 15 VOLT 10 AMP - £20 EACH FANS, PCBs, KEYBOARDS AND LOTS MORE 8-INCH BURROUGHS FLOPPY DISC DRIVES

COME AND LOOK AROUND

SALCOTT MILL, GOLDHANGER ROAD
HEYBRIDGE, MALDON, ESSEX
PHONE MALDON (0621) 57440
Hours: Mon-Fri. 9am to 5pm. Sat. till 1pm
WW - 036 FOR FURTHER DETAILS

FILTERS

Custom-built to YOUR requirements
Solent Electronic Services Ltd specialize in the custom design and manufacture of L / C and crystal filters in the $0-40 \mathrm{MHz}$ range ($0-1000$ MHz under development).
Filters are designed, built and tested to meet the highest specifications, including those for telecommunications and defence. Production is specifically geared to small quantities - from single units to small batches - at relatively low cost.
Phone or write for further information.

Solent Electronic Services Ltd.
15 Abshot Close Titchtield Common
Fareham Hants PO14 4LZ
Tel. 04895-82094

WW - 037 FOR FURTHER DETAILS

Happy Memories

Part type				$\begin{aligned} & 1 \\ & 10 \mathrm{off} \end{aligned}$		25-99			$100 \mathrm{up}$	
4164200 ns						1.1				1.10
				4.95		4.4				.20
2016 150ns..				3.85		3.4				3.30
6116 150ns Low power.				5.25		4.7				.50
6264 150ns........				28.00		25.0				. 00
2716 450ns 5 volt				3.85		3.4				3.30
2732 450ns Intel type.				3.85		3.4				3.30
2532 450ns Texas type				3.85		3.4				3.30
2764 250ns.				Cal		Ca				Call
27128 300ns				Cal		Cal				Call
$\begin{aligned} & \text { 280A-CPU£2.99 } \\ & 6522 \text { PIA } \end{aligned}$	280A-P10	£2.99			280A-CTC					. 99
	7805 reg	£0.50			2 reg				. 50
Low-profile IC sockets:	Pins: 8	14	16	18	20	22	2	4	28	40
	Pence 12	13	14	16	18	22		4		38

Soft-sectored floppy discs per 10 in plastic library case:
5 inch SSSD $£ 17.00 \quad 5$ inch SSDD $£ 19.25 \quad 5$ inch DSD 5 inch SSQO £23.95 5 inch DSQD £26.35

74LS series TLL, large stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or 'phone for list.

Please add 50p post \& packing to orders under f15 and VAT to total Access \& Visa welcome. 24-hr 'phone service on (054 422) 618 Government \& Educational orders welcome, f15 minimum Trade accounts operated, 'phone or write for details

HAPPY MEMORIES (WW)

 Gladestry, Kington Herefordshire HR5 3NY Tel: (054 422) 618 or 628
E.M.S. POWER SYSTEMS

Solve all your Power Problems by contacting E.M.S.
E.M.S. specialise in systems to eliminate your power problems.
Products range from 35VA switched square wave Power Packs to 1KVA fully uninterruptible sine wave systems.
E.M.S. also manufacture chargers which range up to 60 amps .

For further details please contact
E.M.S. Manufacturing Limited

Chairborough Road
High Wycombe Bucks
Tel: (0494) 448484

[^0]becstaly
a selection from our huge stocks. All items
reconditioned unless
WINTER'83/'84 CATALOGUE NOW OUT

otherwise stated.

Send for your Fr

UNIBUS OPTIONS

AR11KT A/D Converter
DB11A Bus Repeater. 0011A Backplane ID11CK Backplane DL11E Interface DL11W Interface OMC11AL I/P Link DMC11AR Network Link OMC11DA EIA Link DMC11MD Modem Link DMF32 Multiplexor 00110A Synch Ct DR118 DMA Interface. DR11C Gen Purpose I/F DR780-AB DMA Interface DU11DA Synch I/F
FP11C Floating Point KE118 Ext Arithmetic KE44A EIS
KG11A CRC Module.
KJ11A Stack Limit Module kMC11A Aux. Processor KT11C Mernory Management KT11D Memory Management KW11L Real Time Clock KW11P Programmable RTC M9301 Bootstrap M9312 Bootstrap XYY1 Plotter Interface

LSI 11

11/03 Processor 32KW 11/23 Processor 128KB AAV11A D/A Converter ADV11A A/D Converter BA11MF 3 . 5in Expander Box DIV11 Asynch Interface DLV11F Asynch Interface DLV11J 4 -line Interface DRV11B Parallel I/D DUVV11A Synch Interface IBV11A IEEE Interface. KDF11AA CPU Module KDF11AC CPU Module MRV11C Prom Module. MSV110C 16KW MOS Memory
from
from $£ 395$ from $£ 395$
$£ 395$
from $£ 1,495$ from $£ 2,950$

ONS	MSV110D 32KW MOS Memory	£225
$£ 750$	MSV11LK 25KKB MOS Memory	$£ 750$
£250	MSV1PL 512KB MOS Memory	$£ 1,395$
$£ 125$	VTVO1 A/D Controller	$£ 475$

PERIPHERALS

CR11 Card Reader
 TiA Reader Punch and Ct

$£ 500$
$E 325$
PR11 Reader and Ctl
£575 RK05F 5MB Disk Drive
CB75 RKO5J 2.5MB Disk Drive
E2,750 RK06 14MB Disk Drive
£1,250 RKD7 28 MB Disk Drive
E55 RL01A 10MB Disk Drive
£350 RMD3 67MB Disk Drive.
£7,504 RPOA BEMB Disk Drive
£195 RPOG 256MB Disk Drive.
Cabinet
E16 lape Deck
from $£ 2,500$
$£ 995$ TU16 Tape Deck
from $£ 1,500$
£35 TU77 Tape Deck incl TM03 £14,500
c595
c75
c75
£425
575
kit RK05 Disk Ct (Unhuss)
£345 RKV11DA RK05 Disk Ctl [LSI11] £395
£125 RK611/RK711 RK06/RK07 Disk Ct
$£ 750$
205
£450

C850 PRINTERS
C725
PA34 KSR 30 CDS
£725 LA34 KSR 30 CDS from £425
£125from £250
125 from £295

£295 LPO4 RD 1200 Lpm £5,500
£395 LPO5 RD 300 Lpm . £2,500
£325
E900
E995
C175
¢150

CONTROLLERS

H70 Masshus Controller E3,000

RL11/RL211 RL01/RL02 Disk Ctl
RLV11 RL01/RL02 Disk Ctl (LSI11)
£1,500
RLBA RLOT/RLO2 Disk CtI (PDP8) ... £750 $£ 625$

TEKTRONIX GOLOUR GRAPHIGS

Ex-Bemonstration Stook in Original Manufacturer's Packaging

Colour Graphics Terminal Model 4027 A

Providing full colour
graphics and
alphanumerics. Plot 10 compatible. 8 displayable colours from pallette of 64. Full screen crosshair cursor 34×80 display (2720 characters). 120 user-defined patterns
RS232 Interface with
up to 9600 baud
transmission
Original List Price £9,500
Our Amazing Price
Only £1,995

LondonWC1X 9LN. Tel:01-2783461 Ta"
 $1=-1$

This manth's Pructicul Computing Droctrefty the facts in word procat-ing.

 Previews - Appines for the Commociore 64 Graphics routor IBM PC WP 10 portables BBC text edito systems Top 10 port

O2 Expert

This month we include a guide to the range of word processing packages available and give the pros and cons of each. Plus previews of the new, user friendly, Apple Macintosh and the Sinclair QL. A survey of the growing number of portable computers. Latest software reports on OZ, Expert-Ease and Atari Games. A benchtest of the
 March issue of Practical Computing. Out now, 85p.

The lightweight mast with 101 applications

The smoothly operated QTM Mast comes fitted with handpump or can be vehicle mounted with 'Power Pack' for extension and retraction. Available in a range of heights up to 15 metres, the OTM mast can provide the ideal answer
for:

- Mobile Radio Telephone
- Police Mobile HO (UHF)
- Field Telecommunications
- Floodlighting
- Environmental - gas sampling collector
- High level photography
- Meteorology
- Anemometer and Wind
- And a host of other uses Measurement

CLARK MASTS

Find out more about the QTM series by writing or phoning: u.k.

CLARK MASTS LTD . IW.W.) Evergreen House, Ringwood Road, Binstead, Isle of Wight,
England PO33 3 PA
Tel: Isle of Wight (0983) 63691
Telex 86686

EUROPE
GENK TECHNICAL PRODUCTS N.VIW W Woudstraat 21, 3600 Genk. Belgium
Teletoon 011-380831
Telex 39354 Genant B
RICKINGHALL HOUSE, HINDERCLAY ROAD, RICKINGHALL, SUFFOLK IPZZ 1 HH. TEL.DISS (OS79)

BBC Microcomputers		6500 Family	SN754548P
Model B		${ }_{6502}^{650}$	SN74468
NB Credil cards are not accepted in payment ioı		${ }^{6502} \times$	SN75491AN ${ }^{\text {SNS }}$
		${ }_{6520 \mathrm{~A}}^{520}$ D1 ${ }^{260}$	$\begin{array}{ll}\text { SNPIOCP } & 0.38 \\ \text { TLO }\end{array}$
BBC Microcorn puters		${ }_{6522}$ DS 3.47	TLOEICLP ${ }^{\text {THe }}$
BBC Micro Econet		${ }_{6523}^{6528} \quad$ DS 4.40	TL062CP 047
Full range of products available Installation service avalable		$\begin{array}{ll}6532 & D 25.33 \\ 6532 \mathrm{~A} & \mathrm{D} 2587\end{array}$	$\begin{array}{ll}\text { TLO64CN } & 0.89 \\ \text { TLO66CP } & 0.28 \\ \end{array}$
			TLO71 1 CP 0.28 10.2
		Linear \& Interface	TLO72CP 0.47
BBC Compatible Disc Drives		Devices	TLO74CN 0.91
		$6402-600$	TLOBICP 0.24 7082 CP 0.41 1
supplied complete with connecting cables, manucland urilines disc.		AY3.1015 D2 292	TL084CN
All single cased drives may be expanded to dual contiguration by the addition of the appropnate		${ }_{\text {AY3.8910 }}$ D6 448	TL091CP 0.41
		AYS 3600 D2 737	TL092CP $\quad 0.60$
uncased mechanism		D1 1.92	
Disc capacity	sed	0.80 317	TL4889CP 055 14
${ }_{400 \mathrm{~K}}^{100 \mathrm{~K}} 40 / 80 \mathrm{~T}$ D S $\quad 1654$	${ }_{479}^{291951513000}$	LM301AN 0.24	TL494CN $\quad 1.66$
		LM308AN 0.73	TL-966CP $\quad 0.30$
quantity discounts are ava		LM308N 047	$\begin{array}{ll}\text { TLSO7CP } & 1.02 \\ 724505 \\ 50\end{array}$
EBC3Disc Interface 84.95 Please send for our BBC Micro price last. Full range of		LM311N 084	$\begin{array}{ll}\text { ZN4SOE } & \text { 2. } \\ \text { ZN451E }\end{array}$
		${ }_{\text {LM M }}$	ZN4SIKTT 25.65
		LM	
Memories	Regulators	LM348N 1	DIL Socke
	$\begin{array}{ll}78105 & 0.26 \\ 78 L 12 & 0.26\end{array}$	LM336N LM393N 0.38 0.05	$\mathrm{P}_{8} \mathrm{~T}$ Tin Gold W/W
$4116-15$ D2 21.05 4116.20 D2 0.88		LM725CN 1.33	14 012 0.28
	$\begin{array}{ll}78125 & 026 \\ 7895 & 033\end{array}$	LM741CP 018	$16 \quad 0.13032086$
$4118.15 \quad$ D1 3.75	0.33	LM747C	
4164.15 D 2 4164.30	7812	LM748CP	
4164.20 4416.20	78.50	MC1413P	
4456.204564.15	7955 7912 0.46 046 0.46	MC1416 D1 0.66	$\begin{array}{lllll}24 & 0.20 & 0.63 & 1.44\end{array}$
	7915	MCl4s88CPL $\quad 0.26$	$\begin{array}{lllll}28 & 0.23 & 0.57 & 1.59\end{array}$
$5516-25$ d 6116.3 172	LM309	MC1495L	0330.99196
6116-LP3 D2 4.67	LM317K	MC	
2532.45 D 2 3.50 2708.45 D 2 3.25	LM323K		ZIF S
	Lм 338 K	MC3242A	
2708.45 716.35 D 23.25 2.50	78HGASC 8.13	MC3302P	${ }_{23} \mathrm{P}_{\mathrm{Pn}}$
2716.45 D1 3.50	78HOSSC 628	MC3340P 1.95 M 3357	${ }_{40} \mathrm{Pin}^{2} 8.45$
2716.3	78H12ASC $\quad 740$	MC3423PL 067	
${ }^{2732.35}$	78540 MM 628 78540 PC 250	MC344	
2732.45	$78540 \mathrm{PC} \quad 2.50$	D1 2.40	Data sheets are
	6800 Family	MC3447P	
${ }_{2}^{2764.250 \mathrm{NS} \mathrm{BBC}}$		$\begin{array}{llll}\text { MC3448AP } & \text { D1 } & 3.32 \\ \text { MC3470P } & \\ 5 & 523\end{array}$	Pric
	${ }_{6802}^{6800}$ DS 2.61	MC3480P D5 6.47	D1
$27128.30 \quad$ D2 24.50	${ }_{6803 \mathrm{C}}^{6802}$ (${ }_{583}$		
	${ }_{6809}^{683 C}$ D6713	MC14411 D1 852	$\begin{array}{llll}\text { D3 } & 1.25 & \text { D7 } & 4.00\end{array}$
${ }_{811595}^{\text {Buffers }}$	6810 D1		
	6821 D3 1.31	NES5	
815597	6840 D4 30.92	NES56CP RO3.2513	A full range of the
	${ }_{5885}^{6843 \mathrm{~L}}$	RO3-213L RO3.2513 D1 782	
	6845 D 6850 D2 18		comed in stock and
$87284(6889)$ 078 8795 (6855)	6862 0.00	SN75110AN 068	,
8795 (6885) 0.78 $8797 A$ 6887$)$ 0.78	6871.A1 14.17	SN75150P 0.72	
8798(6888) $\quad 0.78$	68488 D2 5.78		
		5	* 4000 Series SMMOS
	68800 68809	SN75161AN ${ }_{\text {S }}$	blar Mem
Data Convertors DN435 D1 370	68821 D3 1.88	SN75i62AN $\quad 3.31$	- 9900 Series Mictos
UPD7002 D1 ZN42SE.8 di.65 Di 3.13	68810 D1.80	SN75172NG 1.64	* Crysta
ZN426E-8 D1 1.67			- IDC,
ZN427E.8 D 8.575		SN75174 164 SN7575	- Dip lumpers
ZN428E-8 ${ }^{\text {D }}$		SN75182 062	* Monochrome ${ }^{\text {a }}$
	280 Family	5N75183 0.62	Colour Montors
WN432E-10 10		SN75188	(NEC \& KAGA)
ZN433CJ-10 Di 20.98	280 BCPU D1 778		- Eprom Programme
ZNT40	280A CTC 280BCTC D1 Di 778 178	SN7 54528P	Custom Cable
ZN447 D 670 ZN448 D1 575	$\begin{array}{ll}\text { 280B CTC } \\ \text { 280A DART } & \text { Di } \\ \text { Di } & 778 \\ 5050\end{array}$	SN754538P 024	Assembles
ZN449 Dl 235			
ZN441 Di 40.32		32K UPGRAD	95
Crystals	280 S10-0 D4 850	Carriage Otders up to $£ 199$ are senl by 1 st class post ond $£ 200+$ by Secuncor	
	$\begin{array}{ll}\text { Z280A SIO. } & \text { D4 } 4.00 \\ \text { Z30B SIO. } & \text { D4 } 29.78\end{array}$		
	280 SIO-1 D4 8.50		
${ }_{\text {Al }}^{\text {Al }} 116 \mathrm{~A} 2.4576 \mathrm{MHz}$	280A SIO. 1 D4 900	Prices quoted (+ car	charges) are exclu
	$280 \mathrm{SSO-1}$ D4 29.78		
		Quantity Discount	e on m
A140A 8 MHz A173A 9.8304 MHz 40 \square	2808 SIO-2 242978	products, please ring	
	MK3886 700	Official Orders are w	ome from Education
A182A 19.6608 MHz	6.4	Establishments, Gove	Bodies and Pub
UHF Modulators			
	8080 Family	the 1 Sthot to status Payment is due strictly nell by the 1 Sth of the month	
UM1233 $8 \mathrm{MHz} \quad 3.25$			
Floppy Disc		telephone and postal or	ss and NO SURCHARGE
Controllers 533		smade	
$\begin{array}{lr}8271 \mathrm{P} & 53.33 \\ \text { FDI771P } & \text { DS } 2125\end{array}$	$\left\lvert\, \begin{array}{ll} 82533 & 333 \\ 8255 \mathrm{~A} & \text { D5 } 2.50 \end{array}\right.$	Out of stock ilems wil discretion or a refund	low automatically, at our be given if requested
	D1791 D61700		
FDI795 D6 $2435 \sim$ SPECIAL TELEPHONE NUMBER FOR FAST,			
	IM	diate SERVICE,	LEPEONE YOUR
WD1691 ${ }_{\text {D2 } 2200} \longrightarrow$ ORDER TO: DTSS (0379)			
WD214301 D2			
Prices: all prices			
exclude V.A.T. and			
carriage. Please add			
these to your order.			
Alll prices correct at	at Address	Address	
time of going to press.			
	S4 ${ }^{\text {a }}$ Tilephone		

TOROIDALS

The toroidal transformer is now accepted as the standard in industry overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to I L.P PRICE

Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.

$62 \times \underset{\text { Regulation }}{349 \%}$
SERIES SECOndary rms

No	Volts	Curren
0×010	$6+6$	1.2
0×011	$9+9$	0.8
0×012	$12+12$	0.63
0×0.3	$15+15$	0.50
0×014	$18+18$	0.42
0×0.5	$22+22$	0.3
0×016	$25+25$	030
0×17	$3+25$	

(encased in ABS 025
$70 \times 30 \mathrm{~mm} \quad 0.45 \mathrm{Kg}$

| $\begin{array}{c}225 \mathrm{VA} \\ 110 \times 45 \mathrm{~mm} \\ \text { Requlation } \\ 7 \%\end{array} 2.2 \mathrm{Kg}$ | $140 \times 60 \mathrm{~mm}$ |
| :---: | :---: |$\quad 4 \mathrm{Kg}$

Why a Toroid
Smaller size \& weight to meet modern 'slimline' requirements. Low electrically induced noise demanded by compact equipment.

High efficiency enabling conservative rating whilst maintaining size advantages

Lower operating temperature.
Why ILP?

* Ex-stock delivery for small quantities.

Gold service available. 21 days manufacture for urgent deliveries. * 5 year no quibble guarantee. 5 year no quibble guarantee.
Realistic delivery for volume orders. - No price penalty for call off orders.

WW - 014 FOR FURTHER DETAILS

TEST EQUIPMENT

TIMEBASE (ద్)TV
94 ALFRISTON GARDENS, SHOLING, SOUTHAMPTON SO2 8FU[7RCinicini TELEPHONE: 431323 (0703)
Callers welcome. Access/Barclaycard: Telephone your order vKA
WW - 052 FOR FURTHER DETAILS

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order
Full Information from
HARRIS ELECTRONICS (London)
138 GRAY'S INN ROAD, W.C. 1
Telex: 892301 HARTRO G
WW - 026 FOR FURTHER DETAILS

- RADFORD

Audio Measuring Instruments, Audio Amplifiers, Loudspeakers and Loudspeaker Components for the professional and enthusiast

RADFORD AUDIO LTD.
10 BEACH ROAD
WESTON-S-MARE, AVON BS23 2AU
TEL. 0934416033

COOINTGG FAESS
 Cooling fans ETRI $9 \times U 01$ Dim. $92 \times 92 \times 25 \mathrm{~mm}$. Miniature $240 \times$ equipment fan complete flinger quard 59.95.
 GOULB JE-3AR Dim. $3^{n} \times 3^{n} \times 2.5^{n}$ compact very quiet running 240 voperation. NEWEE. BUHLER $69.11 .22 .8-16 \vee$ DC micro miniature reversible fan Uses a brusi miniature revers extremely high air flow, servo motor for almost servo moter for extremely high air flow, 10,000 almost silent nunning and guaranteed hr life. Measures only $62 \times 62 \times 22$ hr life. Measures only $62 \times 62 \times 22 \mathrm{~mm}$ Current cost $£ 32.00$. OUR PRICE ONLY E12.05 complete with data.
 MUFFIN-CENTAUR standard $4^{\prime \prime} \times 4^{\prime \prime} \times 1.25^{\prime \prime}$ fan supplied tested EX EOUIPMENT 240 v at fan supplied tested EX EQUIPMENT 240 v at E 6.25 or 110 v at $£ 4.95$ or BRAND NEW 240 v

8' WINGHESTERS

BASF $617223 \mathrm{mb} \mathrm{B}^{\prime \prime}$ winchester disk

 drive. Complete unit consists of sealedcavity with 3×8 " plattens and CPU based cavity with 3×8 "plattens and CPU based
control logic on 3 pcb's. Multiplexed i/o control iogic on
with the BASF "DISK BUS" interface is with the 10 way cable. Units have been carefully removed from believed working carefully removed fom staggering price of ONLYE125.00 are sold without guarantee. Supplied complete with $200+$ page tech manual. Additional +5 V DC, -12 VDC , +24VDC E65.00
Carriage \& Ins £10.00

SOFTY 2

The amazing SOFTY 2. Thecomplete "toolkit" for the open heart software surgeon, Copies,
Displays Emulates ROM, RAM and EPROMS of the 2516,2532 variety. Manyotherfeatures include keyboard, UHF modulator. Cassette interface etc. Functions exceedcapab
units costing 7 times the price! Only £ 169.00 pp $£ 1.95$ Data sheet on request

DATA MODEMS

Join the communications revolution with our
range of EX TELECOM data modems. Made to
range of EX TELECOM data modems. Made to
most stringent spec and designed to operate most stringent spec and designed to
for 24 hrs per day. Units are made to 2 25 way 'D' skt. Units are sold in a tested and working condition with data. Permission may be required for connection to PO lines. MODEM 28 "Hackers Special" fully fledged
up to 300 baud full duplex. ANSWER or CALL modes. AUTO ANSWER. Data i/o vi standard RS232 25 way 'D' socket. Just 2 wir Connection wo comms late tested, ready to nun at a
NEW SUPER LOW PRICE of ow EfS.00 + VAT + Cart.
MODEM 20
MODEM 20-1 Compact unit for use with
MICRONET, PRESTEL or TELECOM GOLD 1200 baud recelve. Data i/o via RS232 'D'
socket. Guaranteed working with data $\mathrm{E}^{49.95}$
 DATEL 4800 sync service. RACAL type
MPS 4800 ex TELECOM good condition. ES95.00 + VAT.
NEW DSL2123 Multi Standard modem Nelectable V21 300-300 bps, V23 75-1200, V23 $1200-75$ full duplex Or $1200-1200$ half duplex modes. Full auto answer via modem
CPU. LED status indicators. CALL or ANS CPU. LED status indicators. CALL or ANS
modes Switchable CCITT or BELL 1038 modes Swichable CCIT or BELL 1038
202. Housed in ABS case size only $2.5^{\prime \prime} \times 8.5$
$\times 9^{n}$. $286.00+$ VAT $\times 9^{n}$ £286.00+VAT
For further data or d
modems contact sales office.

SAVE新250

SUPER PRINTER SCOOP BRAND CENTRONICS 739-2 NEW CENTR

ON' 19

GE TERMIPRINTER

 printer-terminals enables us to offer youthese quality 30 cps printers at a SUPER Lose quality 30 cps printers at a SUPER over \&1000. Unh comprises of full QWERTY electronic keyboard and printer mech with print face similar to correspondence quality ypewriter. Variable forms iractor unit
nables full with - up to $13.5^{\prime \prime} 120$ colum enabies full width - up to 113.5 " 120 column
paper, upper - lower case, standard RS232 serial interface, intemal vertical and horizontal tab settings, standard ribbon
adjustable baud rates, quiet operation plus adjustable baud rates, quiet operation plu many other features. Suppliigo complete
with manual. Guaranteed working $\mathrm{E} / 50.00$ with manual. 00 optional fioor stand E 12 Carr $\&$ Ins $£ 10.00$. \qquad
MhTHIYPSASB35 $1 / 0$ TERMMASS
$1 / 2$
Prom elss + CAR. + VAT
Fully fledged industry standard ASR33 data terminal. Many features including ASCII keyboard and printer for data I/O-auto data
detect circuitry. RS232 serial intertace. 110 detect circuitry. RS232 serial interface. 110 baud, 8 bit paper tape punch and reader for
off line data preparation and ridiculously of line data preparation and ridiculously good condition and in working order Options: Floor stand $£ \mathbf{1 2 . 5 0}+$ VAT
Options: Floor stand $\boldsymbol{\Sigma / 2 . 5 0}+\mathrm{VAT}$
KSR33 with 20 ma loop intertace $\boldsymbol{E 1 2 5 , 0 0}+$ KSR33 with 20 ma loop internace $\mathbf{S o u n d}$ proof enclosure $£ 25,00+$ VAT
Sol
PROFESSIONAL KEYBOARD OFFER

An advantageous purchase of brand new surplus allows a great OWERTY, full travel
chassis keyboard offer at fractions of their onginal costs. chassis keyboard offer at fractions of their onginal costs
ALPHAMERIC $7204 / 60$ full ASCII 60 key, upper, lowe

SUPER DEAL? NO - SUPER STEAL!!

 The FABULOUS 25CPS TEC Starwriter BRAND NEW AT ONLY £ $499+$ VAT

 163 characters per line, friction feed rollers for single sheet or internal buffer, standard RS232 serial interface with handshake.
Supplied absoluty BRAND NEW with 90 day quarantee and FREE daisy whee and dust cover. Order NOW or contact sales office for more information.
Optional extras: RS232 data cable $£ 10.00$. Tech manual $£ 7.50$. Tractor feed

66\% DISCOUNT

 COMPONENQQUIPMENT

VIDEO MOMITORS
5" CASED Superb little unit made by
HITACHI in ergonimcally designed free HITACHI in ergonimcally designed ree display
standing case. Very high definition will dind
small but readable 132 columns wide! $12 v$ D sma. @ 800 ma, so ideal for mobile use. Supplied in AS NEW condition complete with
data. Composite 75 ohm vid inp. Black 8 White data. Composite 75 ohm vid inp.
CRT $£ \$ 5.00$ or Green CRT $£ \$ 5.00$ Carr \& Ins
12" CASED. Made by the British KGM Designed for continuous use as a data attractive brushed aluminium case with O OFF, BRIGHTNESS and CONTRAST
controls mounted to one side. Much attention was given to construction and reliability of this unit with features such as
internal transformer isolated regulated DC supply all components mounted on two ease of sevice, many internal controls for 75 ohm composite video signal via SO239
socket on rear panel. Bandwidth of the unit is estimated around 20 Mhz and will display most high def graphics and 132×24 lines. burns. However where burns exist they are Although unguaranteed alí monitors are tested prior to despatch. Dimensions Supplied complete with circuit. 240 volt
operation. OWIY $£ 5.00 \mathrm{PLUS} £ 9.50$ GARR. 24" CASED. Again made by the KGM C Originally used for large screen data
display Very compact unit in lightweigh alloy case dim. $19^{\prime \prime} \mathrm{H} \times 17^{\prime \prime} \mathrm{D} \times 22^{\prime \prime}$ W. All
silicon electronics and composite video
input make an ideal unit for schools, clubs, ONLY E55.00 PLUS E9.50 GARR 6 IWS.
SEMICONDUCTOR 'Grab BagS'
Mlxed Semis amazing value contents
include transistors, digital, linear, I. C.'s triacs, diodes, bridge recs., etc etc. Anc devices $50+82.95100+E 5.15$.
TTL 74 Serles A gigantic purchase of an C's enables us to offer $100+$ mixed

DEC CORNER

NEW from Kontakt The capability and effect of compressed air in a handy can. TENSION 67 efficiently removes

 dust and deposits from electronic and electrical apparatus, microscopes, medical equipment, cabinets, etc. Absolutely no spray residues. No compressed airline nesded. With plug-in nozzie even blows around corners. Ready for use in the service k.
Kontakt 60

Dissolves oxides and sulphides, re moves dirt, oil, resin and traces of metal abrasion. Protects against erosion. En sures perfect contacts.
Kontakt 61
Special cleaning, lubricating and antiorrosion fluid for NEW (non oxidised) cellent lubricant for all electrical and electro-mechanical systems.
Spray Wash WL
A rapid cleaner for reliable washing and degreasing of electrical equipment and components. For removal of dirt, grease ties.

ALSO AVAILABLE:

A COMPLETE RANGE OF INDUSTRIAL AEROSOL SPRAYS
SK10 Soldering Lacquer, K75 Cold Spray, K70 Plastic Spray, K88 Oil Spray, K701 Vaseline Spray, K90 Video Spray, K33 Graphite Spray, K'100 Antistatic Spray K 101 Fluid Spray and, of course, Positiv 20 positive photo resist for printed circuits.

Special Products Dlstributors Ltd.
81 Piccadilly, London W1V 0HL
Tel: 01-629 9556. Telex: 28500 (enswerback RACEN) Cables: Speciprod, London W1

COMPUTERS • GOMMUNICATIONS • TEST EQUIPMENT • GOMPONENTS

\square ALI MODELS $3 \frac{1}{2}$ L181] Inininion DEST UNESS STATED

THERMAL• MATRIX• LINE PRINTER

150 to 180 LPM • Fuil 96 CH ASCII * $40 \mathrm{CPL} \cdot 280$ Dots P/L - Auto-underline *
 SUITABLE FOR TAMOY • BBC • OAIC • MASCOM - GEM.WI * ACOAN -
HEW BAAIN• DAAGON • elc elc (Your Enquiries invitud). \|nterlace unit with leads $£ 15$ - slale modell. £69.s5 ${ }^{\text {mit }}$

SANYO DM2112 HIGH RESOLUTION MONITOR
 $889,95 \begin{aligned} & \text { Incl VAT } \\ & \text { IUK } / P \text { \& } 4 \text { ins } £ 2.05\end{aligned}$

Usuzally £89.95-£99.95
£
PROFESSIONAL SERIES
COMPUTERS IN STOCK
GEMINIO GALAXY${ }_{80}$ Bu Bus multiboards. Complete and part systems 10 suit your reeds fromes.

IVC MI-RES [CI For Gemini and olters Splease e equare)

 PLUS range ol o vererias savi ibble lor loskpen Send lor delailis or all ibove

COMPUTER POWER SUPPLY

 $\mathbf{5 5 7 . 5 0}$ inc VaT IUK C / P P 1501

 SELEGTION OF SPECIAL OFFERS - OUANTITIES AVANLABLE

DIGITAL MULTIMETERS

- Free carry case |rolary conirols)

* Carrycase E

HAND HELD
KD25CE 13 range $0.2 A$ OC 2 meg ohm KD3050 16 range $10 A 0 C \cdot 2 \mathrm{meg}$ ohm KOJOCE 26 range IA AC/OC 20 meg ohm 227.90 KD55CE 28 range IOA AC/OC 20 meg ohm e3s METEX 300030 range 10 A AC/DC 20 meg ohm $\mathbf{E} 37.95$
 K0615 16 range 10A OC. 2 meg pl He lester
DM2350 139.95 minso 21 range 10 AC/OC 20 meg ohm minialure hand held auto range wllh case Beckman TIOO 34 range TOK AC/OC 556
 Dm3350 - 19 range IOA AC/OC 2 meg chm autmanging

FREQUENGY COUNTERS

MET - TF zar iag UK madd
PFM 2004200 MHZ hand hald pocket 8 dig LEO with batterites MET Sarias. 8 digit LED with AC Adaptors MET Sarias. 8 digit LED with AC Adaptors 100100 MHZ 2 ranqus

100016423 rampes	2132.35

 TF200 8 digit LCO 200 MHZ with butheries 1180.73 - Dotional carty case 86.84 AC adaptor 27.90 $\begin{array}{ll}811048 \text { diglt LED } 100 \text { MHZ } & \text { \& } 80.85 \\ 88108 & \text { digit LED } 800 \text { MHZ }\end{array}$ 8000 g 0 digh LED 1 GHZ

ELECTRONIC INSULATION TESTER YF501 $500 \mathrm{~V} / 0-100 \mathrm{~m}$ with carry case . 868.00

SK6330 24 range P.B autorange 10A AC/DC

 SKz330 24 range Metrix (ITT)$\mathbf{~} \mathbf{8 0} .85$ M $\times 52221$ range $10 \mathrm{~A} A C / 0 C$
877.00

MX562 24 range $10 \mathrm{~A} A C / D C$ Plus continuily buzzer
M $\times 56330$ range trua AMS Plus many leature MX575 4//2 Dipit true AMS

£ 178.25

BENCH MODELS
TM $356 \cdot 27$ range LCO 10A AC/UC 20 mag 2119.25 TM356e 27 range LCO 10A AC/OC 20 meg TM35 1 - 29 range LCO $10 A A C / O C 20 \mathrm{meg}$ 2 15220 - Oplional carry case $£ 6.84$

TM451 4/3digit LCLievery facilily $10.02^{2 \%} \% \quad 2184.00$
 $\begin{array}{ll}15038 \\ 1503 \mathrm{Ha} 0 \\ 1533^{\circ} \text { o basic ver sion ol above } & £ 189.00 \\ 1504 \text { True AMS version } & 201.25\end{array}$

Quicuon ob

SIGNAL GENERATORS

(220/240V AC) (UK C/P ©1 00) FUNCTION: All sine/square/iriangle/TTL etc TG 1010.02 HZ -200KHZ
TG1020.2 H2. 2 MHZ
PULSE
TGI 05 Various lácilities 5 HZ .5 MHZ e120.75 AU0IO: Multiband Sine/Square LaG27 10 H2 to 1 MHZ
AE202A 20 HZ to 200 KHZ |lis 1 £94.501 LAG 120 A 10 HZ . MMHZ LOW Distortion

LAG
RF
$\mathbf{S E 4 0}$
$\mathbf{L S C i}$
SG402 100 KHZ to 30 MHZ lis I 579.501
E106.95 LSC17
 Tonk. buzzer ranges
cont
MH5GR

proteclion. ett.
$360 \mathrm{R} 23 \mathrm{range} 100 \mathrm{~K} / \mathrm{V}$. Large scale loA
211.95

AC/OC plus Hte
AT 2100 10A AC/DC 31 range $100 \mathrm{~K} / \mathrm{V}$ deluxe $\begin{aligned} & \text { AT } 1020 \text { range rak/V. Deluxe plus } \\ & \text { at }\end{aligned}$ Hie tester
 TOROIDAL TRANSFORMER

 POCKET RADIATION DETECTORS $£ 6.95$ E Quantilies available
CASSETTE
MECHANISMS

 TOROIDAL POWER SUPPLY $£ 5.95$ иик с/р 65 ро ALSO STOCKED - LARGE RANGES AII Semiconductors valves. relays and other componenls. Plus millions of

INTERFERENCE FREE

 CENTAUR FANS CU79B3 $115 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ 12/13W impedance protected luse 2 Iwo lor £ 10.00 IUK C/P 70 pl 220/240V 'as now' $\mathbf{5 5 . 5 0}$ asch (UK C/P 50p) ASTEC UHF MODULATORS
 DIGITALTHERMOMETER
TH301 LCO $50-610.750$ with Uher mocouple \quad E68.43 MULLARD MODULES LP1171 IF and LP1179a
LP1186 Varican Tuner LP1 186 Varicap Tu
LP1157AM Tuner

RETAIL•MAIL ORDER • EXPORT • INDUSTRIAL•EDUCATIONAL
$f()^{2} S_{404-406}$ Edgware Road. London. W2 1ED
Computers 01-402 6B22. Equipment 01-724 0323 - Gomponents. 01-723 1008

01.7243564

All mail to Cubegate Ltd. Ist lloor, 406 Edgware Road, London. W2 IED
\qquad
Subiect to mers welcome.
ORDER BY PHOME OR BY CALL IN AND SEE FOR YOURSELF

[^1]CREDIT FACILITIES AVAILABLE
CREDIT FACILITIES AVAILABLE
(Triclity Finance) Ask for detalle.

BBC Micro Computer System

OFFICIAL DEALER
Please phone for availability

Software from ACORNSOFT/ PROGRAM POWER/GEMINI in stock

BBC Model B £348
B + Econet $£ \mathbf{1 8 9}$
B + DFS £409
B + DFS + Econet $\mathbf{£ 4 5 0}$
Carr $£ 7$
Model A to Model B
Upgrade Kit $£ 75$
Installation $£ 15$ LANGUAGE ROMs
BCPL Rom + Disc + Manual $\mathbf{£ 8 7}$ PASCAL-T Rom $£ 44$ WORD PROCESSOR ROMs VIEW 16k Rom $£ 52$
WORDWISE 8k Rom $£ 32$ Carr $£ 1.50$ UTILITY ROMs BBC Ultracalc $\mathbf{£} 65$
EXMON £24 DISC DOCTOR £28
FX Dump $£ 15$ Graphics ROM $£ 30$ Termi ROM £29

FLOPPY DISC INTERFACE £84 \& £15 installation

BBC COMPATIBLE DISC DRIVES

All drives are supplied with manual, form disc and cables.
Single Drive: $100 \mathrm{k} £ 150$; 200k $£ 215{ }^{*}$; 400 k £235.
Single Drive with PSU: 100k £185; 200k £260; 400k £275.
Dual Drive with PSU: $2 \times 100 \mathrm{k} £ 330$; $2 \times 200 \mathrm{k}$ £450*; $2 \times 400 \mathrm{k}$ £ 495 .
*These drives are switchable between 40/80 tracks
$40 / 80$ Switch Module for I $\times 400 \mathrm{k}$ and $2 \times 400 \mathrm{k}$ Drive $£ 32$.
DISKETTES: Packet of 10
40 track SSSD £15 40 track DSDD £22
80 track SSDD £24 80 track DSDD £26 Carriage $£ 2$ /box.
FLOPPICLENE Drive Head Cleaning Kit $£ 14.50$
Phone or send for our BBG leatidt

TORCH 280 DISC PACK

Your BBC computer can be converted into a business machine with the addition of a TORCH $Z 80$ disc pack. The Torch pack with twin disc drive and the 280 processor card greatly enhances the computer's data RAM and a CP/M compatible operating system in addition to BBC owner's user guide and a systems disc the package is supplied with PERFECT software package comprising of DATABASE, WORD PROCESSOR \& SPREADSHEET and COMANEX, an interactive business management game. Complete Package for $£ 738+£ 8$ carr.

CASSETTE RECORDERS

SANYO DR101 Data Recorder $£ \mathbf{3 4}+\mathbf{£ 2 . 5 0}$ car riage
BBC Tape Recorder $\mathbf{£ 2 8 . 5 0}+\mathbf{£ 2 . 5 0}$ carriage Cassette Lead $£ 3+£ 1$ carriage HOBBIT Floppy Tale $£ 135+£ 2.50$ carriage

Computer Grade C12 cassette 50p each. $\mathbf{£ 4 . 5 0}$ for $10 £ 1$ carriage

MONITORS

MICROVITEC 1431 14" RGB Std Res 9215 MICROVITEC 1431P 14" RGB/PAL Std Res $£ 249$ MICROVITEC 1451 14"' RGB Med Res $£ 320$ MICROVITEC 1441 14"' RGB Hi Res $£ 440$ KAGA VISION $12^{\prime \prime}$ RGB SGB Sto Res $£ 28$ KAGA VISION III 12' ${ }^{\prime \prime}$ RGB Hi Res $£ 385$ KAGA 12' GREEN Hi Res E106 SANYO DM8112CX 12"' Green Hi Res $£ 99$

'TIME-WARP'

REAL-TIME-CLOCK/CALENDAR
A low cost unit that opens up the total range of Real-Time applications. With its full battery backup, possibilities include an Electronic Diary, automatic document dating, precise timing and control in etc - its uses are endless and are simply limited by, one's imagination. Simply plugs into the user port - no specialist installation required - No ROMS. Supplied with extensive applications software. £29.

BBC EPROM PROGRAMMER

A fully self-contained Eprom Programmer with its own power supply, able to program $2516,2716 / 32 / 32 A / 64 / 128$ single rail Eproms.

* Personality selection is simplified by a single rotary switch.
\$ Warning indicator to show programming in progress.
* Programmer can read, blank check, program and verify at any address/ addresses on the EPROM.
\star Simple menu driven software supplied on cassette (transferable to disc). \star Full editor with ASCII disassembler.
Programmer complete with cables, software and operating instructions $\mathbf{£ 7 9 . 5 0 + £ 2 p . \& p . ~}$

PRODUCTION PROGRAMMER: P8000

P8000 provides reliable gang programming of up to 8 EPROMS simultaneously with device sizes up to $16 k \times 8$ bytes. Devices supported range from 2704 to 27128 in single and three rail versions. Simple menu driven operation ensures easy eprom selection and reliable programming in minimum programming times. $\mathbf{£ 6 9 5}+\mathbf{£ 6}$ carriage.

ACCESSORIES

 Paraliel Printer Lead $£ 10+£ 1$ carriag Serial Printer Lead $£ 8+£ 1$ carriage Epson Serial Interface $£ 50+£ 1$ carriage NEC Serial Interface $£ 42+\mathbf{£ 1 . 5 0}$ carriage Epson Paper Roll Holder $£ 17+£ 1.50$ car riageFX80
X80 Tractor Altachment $\mathbf{£ 3 7}+\mathbf{£ 1 . 5 0}$ car Paper Fanfold 2000 sheets $£ 13.50+£ 2.50 ~$ Paper Fanfold 2000 sheets $\mathbf{£ 1 3 . 5 0 + £ 2 . 5 0}$
carriage

ACORN IEEE INTERFACE
This IEEE 488 standard interface is a general purpose system dor exhanging cigita data between a
number of devices in a local area. The interface complies with the IEC $625-1$ standard and can be connected to up to 14 other devices. Interface board is supplied complete with software in ROM, interconnecting cables, IEEE cable for connection to an external device and a comprehensive manual
$£ 282.50+£ 2.50$ carr.

SMARTMOUTH

The 'infinite vocabulary' self-contained speech synthesiser unit. Uses only 5-10 bytes per word - no ROMs required - simply plugs into the user port. (Has Aux. Audio output skt.). Supplied with Demo/Development programs and simple software instructions, $£ \mathbf{3 7}+\mathbf{£ 2}$ p. \& p.
new comprehensive catalogue avail. ABLE - PLEASE SEND FOR PRICE LIST

$\begin{array}{lllll}\text { Solder } \\ \text { Angled } & 80 \mathrm{p} & 105 \mathrm{p} & 160 \mathrm{p} & 250 \mathrm{p}\end{array}$ Solder $\quad 105 \mathrm{FEMALE} \quad 160 \mathrm{p}$ 200p

 Hoods 90 p 85p 90 p 100p
IOC 15 -way plug 340p. Socket 400 p
IDC 25 way plug 385p.

DIL SWITCHES $\begin{array}{lr}\text { 4-way 70p } & 8 \text { way } 90 \text { p } \\ 6 \text {-way } 85 p & 10 \text {-way } 40 \text { p }\end{array}$

EPROM ERASERS
 UV1T Eraser with a built-in timer and mains indicator. Built-in safety interlock to avoid accidental exposure to the harmful UV rays. It can handle up to 5 eproms at a time with an average erasing time of about 20 mins. $\mathbf{£ 5 9}+\mathbf{£} \mathbf{2} \mathbf{p}$ \&
 UV1 as above but without the timer $\mathbf{f 4 7}+$ $\ddagger 2$ p\&p.
 UV140 up to 14 Eproms $\mathbf{f 6 1}$
 UV141 as above but with timer $£ 79$.
 $\star \star$ ATTENTION $\star \star$
 All prices in this double page spread are subject to change without notice.
 $1 T$ Eraser with a built-in timer and mains

BOOKS (no Vat; p\&p £1)
Advanced User Guide ($£ 2$ p \& p) $£ 1295$ Assembly Lang Prog. for BBC $£ 8.95$ Assembly Lang programming on BBC Micro by Ferguson and Shaw............... $\mathbf{£ 7 . 9 5}$ Basic Prog. for bBC. BBC An Expert Guide Easy Programming on BBC Further Programming on BBC Introducing BBC Micro Programming the BBC 30 Hour Basic 35 Educational Programs BBC Sound \& Graphics. Creating Adventure Programs Discovering Machine Code Structured Programming . The Friendly Computer Book BBC Beyond Basic BBC

Large number of other titles stocked
TEMS

AMPHENOL CONNECTORS

 36 -way plug Centronics Paralle Solder $£ 5.25$ IDC $£ 4.95$ 36 -way socket Centronics Paralle Solder $£ 5.50$ IOC $£ 5.20$ 24-way plug IEEE Solder f5 4.way socket IEEE Soider
RIBBON CABLE

Gray/meter

10-way	40p
16-way	60 p
20-way	85 p
26-way	120 p
34-way	100 p
40-way	180 p
50way	200 p
64-way	280 p

RS 232 JUMPERS (25 way D)	$\begin{gathered} \text { EURO } \\ \text { CONNECTORS } \end{gathered}$		
24"'Single end Fermale........... $\mathbf{E 5}^{2} .25$	DiN 41617	Plug	Skt
$24^{\prime \prime}$ " Fernale-Female 10.00	21.way	160 p	165p
24" Male-Male $\mathbf{E 9 . 5 0}$	37.way	170p	170p
24"Male-Female	DIN 41612		
	2×32 way St. Pin	220 p	275p
DIL HEADERS	2×32 way Ang. Pin	275p	320p
	3×32 way Ang. Pin	${ }^{260 p}$	300 p 350 p
Solder Type IDC Type			
$46 \mathrm{pin} \quad 50 \mathrm{p} \quad 110 \mathrm{p}$	TEST CLIPS		
24pin $100 \mathrm{p} \quad 150 \mathrm{p}$			
40pin 200p 225p	${ }^{14-p i n} 275 p_{40-p i n}$		

EDGE
CONNECTORS

	$0.1^{\prime \prime}$	0.156^{\prime}
2×12-way (VIc)	350 p	-
2×18-way	-	140 p
2×22-way	190 p	240 p
2×23-way	175 p	-
2×25-way	225 p	220 p
2×28-way	190 p	-
1×43-way	260 p	-
2×43-way	365 p	
1×77-way	600 p	
S100 Conn		600 p

$\left.\begin{array}{ll}\begin{array}{l}\text { EC50 Mains Electronic Iron. }\end{array} & \begin{array}{l}\text { proportional electronic temperature } \\ \text { c26.19 }\end{array} \\ \begin{array}{ll}\text { control inside the handle. Adjustable }\end{array} \\ 280^{\circ} \text { to } 400^{\circ} \mathrm{C} \text {. Burn-proof } 3 \text {-wire }\end{array}\right\}$mains lead. Fitted 3.2 mm Long. Life bit. $1.6,2.4$ and 4.7 mm available. 240 V a.c.	
SK18 Soldering Kit. $£ 15.24$ Build or repair any electronic project. LC18 240v 18 w iron with 3.2, 2.4, and 1.6 mm bits. Pack of 18 swg flux-cored 60/40 solder. Tweezers. 3 soldering aids. Reel of De-Solder braid. In PVC presentation wallet.	
ADAMIN Miniature Iron. $\mathbf{£ 5 . 9 7}$ nylon handle with finger grip. Interchangeable bits available 1.2, $1.6,2.4,3.4$ and 4.7 mm . Fitted with Possibly smallest mains iron in the 2.4mm. 240v $12 \mathrm{w}(12 \mathrm{v}$ available).	
'L' Series Lightweight lrons. 12w £6.23. High efficiency irons for all electronic hobby work. Non-roll handles with finger guards. Stainless steel element shafts. Screwmodel, $12 \mathrm{w}, 2.4 \mathrm{~mm}$ bit. LC 18 Model, connected elements. Slip on bits $18 w, 3.2 m m$ bit. $240 v$ Std $-12 v$ available from 1.6 to 4.7 mm . LA12 available. Presentation wallet.	
De-Solder Pumps. $£ 6.19$ High Quality version of increasingly popular type of tool. Precision made anodised aluminium body, plunger eje operation. Automatic solder guard and high-seal piston. Easy ejection. Conductive PTFE nozzle no static problems.	
MiniatureToolSetsTop quality Japanese metric hardened and tempered tools. Swivel- Fitted plastic cases. 113 pet seted brass handles. 6 miniature screwdrivers 0.9 to $3.5 \mathrm{~mm} £ 2.70$ 227 set 5 socket spanners 3 to $5 \mathrm{~mm} £ 2.80$ 305 set 2 crosspoint and 3 hex wrenches 1.5 to $2.5 \mathrm{~mm} £ 2.70$ 228 set 20 piece combination : 5 open, 5 skt spanners, 2 crosspoint, 3 hex	

Microcutters. $£ 3.21$ Light weight hardened and precision ground. Flush cutting. Screw joint, return spring, cushion grip handles. Safety wire-retaining clip.

Soldering Aids.

Set of 3 f 3.63
Scraper/Knife, Hook/Probe Brush/Fork. 3 useful double - ended aids to soldering/desoldering/ assembly. In plastic wallet.
Solder. $£ 0.90$
Top grade resin flux cored $60 / 40$ wire, 18 swg, in handy plastic dispenser. Approximately 3 metres (26 gm).

ADAMIN Electric Stylus. $£ 15.04$

Writes like a ballpoint in Gold, Silver, Copper or 6 colours, on card, plastics, leather etc. Personalise wallets, bags, albums, books, electronic equipment,
models
Operates at 4.5 v from its own plug! transformer - totally safe. Supplied with coloured foils.

SATELLITE RECEIVING EQUIPMENT

1.9M, 2.5M and 5M Harrison Dishes. Sat-Tec R5000 4 GHz Receivers. Avcom COM-2B 4 GHz Receivers. California Amplifier 4GHz LNAs. Chaparral Horns. Harrison Feed Horns.
Demonstrations by appointment only.
Dealer enquiries welcome
For further details contact: Harrison Electronics, 22 Milton Road, Westcliff-on-Sea, Essex SSO 7JX. Telephone: Southend (0702) 332338.

WW - 013 FOR FURTHER DETAILS

WW - 023 FOR FURTHER DETAILS

VMOS WIDEBAND LINEAR POWER AMPLIFIERS. 4 watts RF output
Without tuning. Power gain $10 \mathrm{~dB} .24 \mathrm{~V}+$ supply

TYPE $9046100 \mathrm{KHz} .-100 \mathrm{MHz}$
TYPE 905120 MHz .200 MHz.
£64.50 $53.50 \mathrm{p} \& \mathrm{p}$

TYPE 9152

TYPE
TELEVISION LINEAR POWER AMPLIFIERS. Tuned to your specified channels in bands IV or V
TYPE 9061150 mV . input, 10 mW . output TYPE 9159500 mW input, 5 watts output

VMOS LINEAR POWER AMPLIFIERS. Tuned to your specified frequency in the range $10-250 \mathrm{MHz}$
TYPE 9154200 mW . - 2 watts input, 20 watts output.........
$\mathrm{f} 180+\mathrm{E} 10 \mathrm{p} \& \mathrm{p}$
$\mathrm{f} 240+\mathrm{f} 15 \mathrm{p} \& \mathrm{p}$
TYPE 91688 watts input, 80 watts output.
TYPE 91688 watts input, 80 watts output, ${ }^{£} 240-£ 10 \mathrm{p} \& \mathrm{p}$ £295+£15p\&p
TYPE 9086 FM TRANSMITTER $88-108 \mathrm{MHz}$. 50 watts RF output. $24 \mathrm{~V}+$ supply. Complete
modular system. $£ 380+£ 20 \mathrm{p} \& \mathrm{p}$

TWO STAGE GASFET STRIPLINE PREAMPLIFIERS Tuned to your specified channels in bands IV or V

TYPE 9002 Two stage Gasfet preamplifier. N.F. 0.7 dB . Gain 25 dB . High Q filter. $15 \mathrm{~V} .+\mathrm{DC}$ TYPE 9004 UHF two stage Gasfet preamplifier N F 0.6 dB . Gain 25 dB . Aligned to your TYPE 9004 UHF two stage Gasfet preamplifier. N. F. 0.6 dB . Gain 25 dB . Aligned 65 f . $2 \mathrm{p} \& \mathrm{p}$ TYPE 9012 Gasfet preamplifier mains power supply unit $£ 24.50+£ 3 \mathrm{p} \& \mathrm{p}$

GASFET/MOSFET RF PREAMPLIFIERS. Aligned to your specified frequency in the range $30-250 \mathrm{MHz}$. Masthead/local use

YPE 8034 PHASE LOCKED SIGNAL SOURCE using low frequency reference crystal. Specify output in the range $1-600 \mathrm{MHz}$. Output $10 \mathrm{~mW} .+10 \mathrm{dBm} . \ldots £ 79.50+£ 2 p \&$ TYPE 9113 TELEVISION FREQUENCY CONVERTER. Changes channels in the range 40
 TYPE 90561500 MHz . PRESCALER. Divides $100-1500 \mathrm{MHz}$. by $10 \ldots \ldots$.

WW - 048 FOR FURTHER DETAILS

WW - 018 FOR FURTHER DETAILS

LEADEFGEN:AATORS

A complete range of generators including audio, function, RF, pattern, etc. In each type several models are available offering specifications suitable for most requirements and excellent value.

Audio

LAG-27 10 Hz to 1 MHz
LAG-120A 10 Hz to 1 MHz
LAG-125 10 Hz to 1 MHz

Function

LFG-1300 002 Hz to 2 MHz
Sine, Triangle, Square + Int. Sweep
RF
LSG-17 0.1 to 150 MHz
LSG-216 0.1 to 30 MHz and 70 to 115 MHz
Programmable, PLL Synthesized
LSW-250 2 to 260MHz Swemar

Pattern

LCG-399A PAL, Colour Bar, RF and Video outputs, Patterns.

For further information contact

Thandar Electronics Limited London Road, St Ives, Huntingdon, Cambridgeshire PE17 4HJ, England Telephone (0480) 64646 Telex 32250 Test THE LOGICAL CHOICE
WW - 005 FOR FURTHER DETAILS

\therefore
MGF-1400
MGF-1402 MGF-1412

Aspen Electronics Limited

UK representative for Mitsubishi Electric
2/3 Kildare Close, Eastcote, Ruislip Middlesex HA4 9UR
Tel: 01-868 1188 Tix: 8812727

WW - 027 FOR FURTHER DETAILS

AMBISONIC SURROUND SOUND DECODERS

Ambisonic surround sound gives a realism in the reproduction of music that is hard to describe without using hackneyed expressions like 'natural' and 'being there'. Positioning of the performer becomes obvious and the acoustic of the original environment comes through to the listening room. The Minim decoders also provide enhanced results from conventional stereo material. We can now supply UHJ encoded records, tapes and compact discs
And don't forget our other products:
PROGRAMMABLE WEEKLY TIME SWITCHES TELEVISION SOUND TUNERS
Please send me information on Timeswitches/Television
Tuners/Ambisonics
Name
Address

Minim Electronics Limited, Lent Rise Road
Burnham, Slough SL1 7NY. Tel. Burnham 63724

FORTH COMPUTER

Build
the TDS900
into products.
Programme it with a VDU and your forecasts become fact.

Software costs are significant in all industrial applications of microprocessors. They cannot be amortised over the large quantities associated with personal computers and electronic games. This C-MOS embedded computer card aims at resolving this problem by including FORTH high level language programming and developmental facilities The software can be wnitten quickly and made to work correctly at lowest possibl expense. Using a high level programming language rather than assembler gives a fast reaction time to market opportunities. Production products use the same board as employed in the prototypes.

No microprocessor development system is needed since the card contains a screen editor working with simple visual display units (VDUs). It also has the compiler for the FORTH source code. Debugging is inherent in the IORTH language and once the code is working, this can be output to a PROM programmer.

Use of C.MOS throughout has brought the power consumption down to 28 mA , making the TDS 900 especially suitable for portable and battery-driven applications.

WW - 076 FOR FURTHER DETAILS

Opus peripherals are the best buys in the whole peripherals market-bar none.

Just compare the prices below with anything else in this magazine. And note just what our prices include: VAT, all necessary leads, carriage and a full one year's guarantee.

All products are suitable for use with the BBC and most other leading Micros. And all are of the very highest quality-a fact endorsed by the
enthusiasm of dealers all over the country to carry OPUS brands.

WH Smith, for example, carry the $3^{\prime \prime}$ microdrive, while Spectrum dealers offer our 5401 and 5402 51/4" Disc Drive.

All products offered here,-and many more, are on display in our showroom. Trade enquiries welcome and discounts are available for Government and Educational authorities.

OPUS $3^{\prime \prime}$ MICRODRIVE.

Opus 3402 Double Sided 40 Track Drive $1 / 2$ Megabyte Unformatted.

- Twice the capacity on line of other available drives
- 200K Single Density-400K. Double Density
- Ex-stock delivery - 3 ms access time
- Lowest power consumption-direct drive
- Includes case, leads and utilities disc
- Totally compatible with 51/4" drives

Single Drive.
£229.95
Dual Drive.
$£ 459.95$
51/4"JAPANESE DISC DRIVES. SINGLE DRIVE.
Opus 5401 Single Sided 40 Track-250k. Unformatted. Formatted:
100K. Single Density: 200K. Double Density.
$£ 179.95$
Opus 5402 Double Sided 40 Track-500K. Unformatted
Formatted: 200K. Single Density. 400K. Double Density.
£229.95
Opus 5800 Double Sided 80 Track: 1 Megabvte Unformatted.
Formatted: 400 K Single Density 800 K Double Density. £259.95
Opus 5802 Double Sided 80 Track-1 Megabyte Unformatted.
Formatted: 800 K . Single Density, Switchable 80/40 Track.
£299.95
-1/2 Height Includes case, leads and utilities disc \bullet Fast access time State of the Art Technology Ex-stock delivery •Low power consumption.

DUAL DRIVES.

All Dual Drives are metal cased with separate power supply:
Opus Dual 540ID Single Sided 40 Track
Opus Dual 540ID. Single Sided 40 Track.
 $200 \mathrm{~K} / 400 \mathrm{~K}$ on line.
\&379.50
Opus Dual 5402D. Double Sided 40 Track.
$400 \mathrm{~K} / 800 \mathrm{~K}$ on line.
$£ 459.95$
Opus Dual 5800 Double Sided 80 Track.
800K./1.6 Megabvte on line.
$£ 499.95$
Opus Dual 5802D. Double Sided 80 Track. $800 \mathrm{~K} / 1.6$ Megabyte on line. Switchable 80/40 Track. £599.95

FLOPPY DISCS. DOUBLE DENSITY FLLING SYSTEM.

$8^{\prime \prime}$ Discs.

Double Density filing system.
£100.00

12" MONOCHROME MONITORS.

Superb units, optimised for high resolution and excellent geometry.

- Sturdy lightweight metal frame
- Easily accessible boards and modules
- Composite video input - Video response $24 \mathrm{MH} \%$
- 800 lines horizontal at centre
- EHT 13.0kv - Supply 220-240V.

Green Screen
Amber Screen

PRINTERS.

EPSONFX8OF/T___ $\mathbf{\& 4 1 0 . 0 0}$
EPSON FX 100 £549.00
EPSON RX $80 \mathrm{~F} / \mathrm{T}$ £315.00
JUKI 6100 Daisywheel £ 435.00
Parallel printer leads to BBC

THE ORGANISER DESK.

- Top shelf for Monitor/Printer
- Large Desk Top Area
- Lower shelf for Paper/Book Storage
- Teak Finish - On Castors
- Self Assembly
- Ample room in front of the shelf for you to sit comfortably
- Assembled Dimensions: H.31"W. $40 \frac{1 / 4 "}{}$ D. $26^{\prime \prime}$ Only $\mathbf{5 5 9 . 9 5}$

THE BUSINESS DESK RANGE.

Opus produce a range of 10 Business desks ideally suited for education, home or the professional user. Illustrated is the Model 10 desk.

- Units are finished in cream and brown
- Sturdy steel underframes - Castors have lockable brakes
- Different models are available to suit many leading computer systems.
Allare on displav in our showroom and are available from usor lealers throughout the U.K.
For further details please telephone.
Pricesstart from $\mathbf{\& 1 0 0}$
OPUS SUPPLIES LTD. 158 Camberwell Road, London SE5 0EE. 01-7018668. Opening hours: 9.00-6.00 Monday-Friday. 01-7036155. $\overline{9} .00-1.30 \mathrm{p} . \mathrm{m}$. Saturday:

GOVERNMENT \& EDUCATION DISCOUNTS GIVEN. QUANTITY DISCOUNTS GIVEN. DEALER ENQUIRIES INVITED.

Anew benchmoris for portable DVLNS.

The Keithley 175 Autoranging DMM - sets new standards in bench/portable technology.
It out-performs every other unit in its class and has all the features you'd expect of a full function multimeter $-4 \frac{1}{2}$ digits, $10 \mu \mathrm{~V}, 10 \mathrm{nA}, 10 \mathrm{~m} \mathrm{\Omega}$, TRMS AC- as well as many more you wouldn't expect even on some meters costing twice as much. For instance
Fast Autoranging on DC volts, ohms, $A C$ volts and dB. Manual range selection too.
100-Point Data Logger stores readings at six different rates from three per second to one every hour.
DIsital Callbration for increased reliability and ease of calibration. All calibration constants are stored digitally.

Min/Max Reading Hold stores both highest and lowest readings - over lunch, overnight, over weekends.
dB/Relative dB makes direct dB readings over a wide dynamic range and frequency spectrum.
Relative Reference used to null or zero the displayideal for monitoring small changes in input signal.
AddIEEE bus and̀ battery options and see for yourself how well the 175 comes up to the mark on your own bench - phone our hotline now for further information.

KEITHLEY
 Keithley Instruments L/mited 1 Boulton Road Reading Berkshire RG2 ON_ Telex 847047

0134861287

Editor
PHILIP DARRINGTON
01-661 3128
Deputy Editor
GEOFFREY SHORTER, B.Sc.
01-661 8639

Technical Editor
MARTIN ECCLES
01-661 8638
Projects Editor
RICHARD LAMBLEY
01-661 303.9

News Editor
 DAVID SCOBIE
 01-661 8632

Drawing Office Manager
ROGER GOODMAN
01-661 8690
Technical Illustrator
BETTY PALMER
Advertisement Manager
BOB NIBBS, A.C.I.I.
01-661 3130
BARBARA MILLER
01-661 8640
ASHLEY WALLIS
01-661 8641

Northern Sales
HARRY AIKEN
061-872 8861
Midland Sales
BASIL McGOWAN
021-356 4838
Classified Manager
BRIAN DURRANT
01-661 3106
IAN FAUX
01-6613033
Production
BRIAN BANNISTER
(Make-up and copy)
01-661 8648
Publishing Director
DAVID MONTGOMERY
01-661 3241

Software copyright and piracy

The issue of software copyright is a vexed and intractable one. On the one hand, there is the undoubted need to provide a living for programmers and maximum distribution of valuable software. On the other hand, one must consider that software is not an art form and can be derived independently from situation logic; furthermore, if a processor contains many equivalent registers, any change in the use of registers means a new program, therefore people desirous of stealing the work of a programmer for commercial gain and having the time to do it and the backup to pay lawyers, presumably can. As Dean Swift pointed out, that the lawyer is interested in "whether the said cow be black or white" not in what title the claimant has to the cow.
There are two alternatives to ensure a proper return. Either every user must pay a fee to the inventor of the program, or the state must use the award-to-inventor system. Attempts have been made to shame users into the former course by writing on software packages the fact that the programmer must live and asking all users to buy their own expensive copy, for the fact is that popular material will always tend to be expensive, providing quite unjustified returns, like a best-selling book, while the minority-interest material will with the greatest difficulty recover costs. A book or program concerned with sewage cannot sell more copies than there are sewage works, yet may affect the lives
of every citizen. Thus authorship of all kinds is grossly ill-rewarded by the commercial system.

This problem is entirely new, because in the past technical authors might be reasonably expected to have academic jobs and programs be published free. There is no way that the cottage industry of software production can protect its copyright. It must rely on honourable treatment. If it doesn't get it and if as a nation we want this industry to continue we will have to pay the workers from central funds.

This will distress the computer retail industry who naturally want to sell information in a physical object with a limited life and accident prone condition, like a paperback book.
Anyone who wants to pirate a very valuable program need only buy enough battery backed-up ram to hold it, for there is no way anyone can argue that software can't be copied into ram: similarly it would be very hard to argue that paper tape cannot be cut from this ram.
If one uses selective-bit inversion no one could ever prove a tape was their program; it is foolish to contemplate it. In the end people will pay for convenience if the software creators aren't greedy and shops take reasonable mark-ups. Blatant commercial pirates ought to be prosecuted, but talk of prosecuting friends for exchanging one's own copies is nonsense.

History in the making

Apart from those few radio and television pioneers who are regarded by the public as the great inventors - Marconi, Armstrong, Baird, Watson-Watt etc. - the bulk of engineers and scientists who have followed in their wake and contributed enormously to the technology have remained virtually unrecognised. Few engineers, let alone the public, associate the coaxial cable with Franklyn, the waveguide with Southworth, the optical fibre pipe with Kao . . . etc. Very few engineers write readable autobiographies, fewer still form the subject of in-depth studies by historians who can appreciate the precise value of the contributions they made to the state-of-art.

Occasionally one comes across exhortations to technologists such as "It isn't enough in any science to do things. It is necessary to communicate what has been done . . . not only your scientific or engineering results but also talk about how they arose, who was involved, all those things that are too often unrecorded. People's memories are not precise. But that does not matter because the essence of historical scholarship is to use memoirs and other primary sources with discretion. A person who has participated shouldn't worry about that bias he has due to his participation. The historians will take care of that in due time by comparing sources and checking dates."
Excellent advice - provided always that those later historians actually start digging, and manage to produce books that can be read with interest!
These thoughts have been generated by reading two recent exceptions to the general rule: Dr George Brown's lively and outspoken recollections of his life as a research engineer "and part of which I was" (Angus Cupar Publishers) that covers not only his pioneer work on aerials, r.f. heating and colour television but the familiar problems of an engineer caught up in commercial and political struggles to gain acceptance for his ideas. The second book was Andrew Hodges' excellent 600 -page study of "Alan Turing - The Enigma" (Burnett Books, 1983) that provides a detailed study of the life and tragic early death of the brilliant mathematician who in 1936 first outlined the concept of the 'universal machine' from which was to spring the digital computer. He was a gifted member of that formidable team of cryptoanalysts who in the "creative anarchy" of Bletchley Park successfully tackled the difficult German naval enigma machine code; taught himself electronic and radio engineering in a couple of months at Hanslope Park; and struggled at NPL to get built the stored program computer ACE but found bureaucracy too strongly entrenched. In fairness to NPL, Turing was clearly not the easiest or most
diplomatic person to work in harness with, though capable of attracting intense loyalty from those who assisted him during wartime.

A few years ago I received a letter from a technician who had worked alongside Turing at Hanslope when, with Donald Bayley, he was developing the never-to-beused Delilah speech encryption system. Alan Turing was then advising the whole 'laboratory on circuit calculations, he had picked up practical radio engineering in less than three months, claiming "When I first looked at radio I could see it was 100% mathematics anyway so it was no problem."
Andrew Hodges has amassed an enormous amount of information on Turing, but the reason for his suicide in June 1954 remains a mystery. Hodges shows that the often-mentioned prosecution of Turing on homosexual charges was by then two years behind him. He speculates on the continued involvement of Turing with GCHQ in an era when the security investigations following the Burgess, MacLean, the third and fourth man scandals were still rumbling on, but provides no evidence of any link between these events and Turing's untimely death. Certainly there can be no evidence that Turing, patriot that he was, was ever a real security risk.

NTSC, PAL and SECAM

Dr Brown is particularly revealing about the bitter struggle in the period 1945-1955 between RCA and CBS over the sequential and compatible colour television systems, and the subsequent struggle in Europe over NTSC (which was basically the RCA system), PAL and SECAM. He shows clearly, though from an American viewpoint, that politics rather than engineering dominated the CCIR meetings at Vienna and Oslo, and the similarity of Russian, American, French and British skulduggery in the form of overnight changes of policy, suppression of technical reports, rigging of delegations and the like. As one retired British television engineer put it to me, in recommending George Brown's lively account of his struggles with RCA's management, "Just change the name of the firm, and you have the story of my life". For any young engineer who wishes to understand how things really happen, this is essential reading - though I noted that even the politically-conscious Dr Brown apparently failed to note one of the most astonishing events of the Oslo CCIR meeting in 1966 . In April of that year, a member of the British delegation returned (unsuccessfully) to the UK during the event for the express purpose of trying to have the Post Office man in charge of the British delegation removed, leading later to an off-the-record press briefing in which the leader of the British team bitterly attacked the broadcasting delegates.

Data security

Presumably we shall never know whether Turing was under pressure from the security people in 1954 though one has no doubt that, as a wartime member of the Government School of Codes and Ciphers, he would have figured in those secret files that will remain inviolate under both the 30-year rule and the Data Protection Bill. Yet there is plenty of evidence that such files frequently contain information confused by mistaken identification etc. This might not matter so much were it not for the evidence that the Security Service advise outside organizations, including commercial firms, when recruiting engineers for sensitive posts. With such information now fully computerized, the effects on people's careers can be farreaching. Unlike many other countries not even the registrar, who will administer the British Act, will have power of inspection or supervision of either security or police files.

Clandestine war plans

Surprisingly one of the official files of 1953 now opened under the 30 -year-rule details plans then proposed for clandestine activities in the event of war. The 1982 Falklands campaign showed that such activities still form an important part of British military planning. The 1953 proposals covered "stay-behind", evader and coup-de-main activities. Sir John Sinclair, then head of the Special Intelligence Service, requested the use of 15 fast patrol boats, three trawlers, 42 fishing boats, 8 long-range aircraft, use of a submarine, and no less than 400 specially trained signals operators. Britain, France and the USA were each expected to provide 500 agents and 50 aircraft for the first three weeks following the outbreak of war. It was recognized that such activities were a gamble, possibly paying a high dividend or "next to none". One wonders if the agents knew that they were to be part of a high risk gamble.

Costly clangers

Governments can and do make bad mistakes on their assessment of new electronics technology in addition to grossly underestimating the development costs. Now, the French Government and their nationalised Elf-Aquitaine oil company has been forced into revealing that they were "taken" to the tune of some $£ 60$ million by the so-called Omega and Delta oil-sniffing systems that purported to reveal deeply buried geological strata to aircraft flying overhead, but was eventually shown to depend on prepared sketches fed into the machine. By surrounding the invention with an air of mystery, the Panamanianregistered company, Fisalma, was able to block all attempts to examine the costly prototypes. But it is not only the French

Government that has been known to back the wrong horse in electronics and telecommunications.

Recently Americans have become increasing!y uneasy that the electronics equipment put into military aircraft, flight simulators etc can cost up to ten times its civilian counterpart. The electronics can cost many times more than basic aircraft. As one writer put it recently: "In the necessary secrecy that shrouds weapons development, a pipe dream can be pursued for years - and for billions of dollars before someone catches on to its futility." The solution, it is suggested, would be to introduce independent technical monitoring of projects by a watchdog committee of top-notch engineers. But, one wonders, who would watch the watch-dogs? Engineers, as well as administrators, have been known to get it wrong.

The AM-stereo struggle

At the end of 1983 there was still no clear outcome to the "market-place" struggle in the USA between the four competing systems of a.m. stereo. In terms of transmitters, Harris had lost the lead to Kahn's independent sideband system used by some 80 stations including several major NBC music stations. Harris was stuck at about 65 stations, resulting from the FCC decision to restrain the company from marketing any more exciters until the type-acceptance dispute had been fully cleared up. Motorola was up to about 50 and their system has been endorsed by some large car radio firms. Trailing with single-figures was the Magnavox system, despite it being the original choice of FCC in 1979. Meanwhile Sony has marketed a $\$ 90$ combined a.m./f.m. portable that can receive any of the four a.m.-stereo systems and including a switch to widen the m.f. bandwidth to 12 kHz . A multimode set has also been marketed by Sansui.

50 MHz extension

The Department of Trade and Industry has agreed to a substantial extension of the special research permits for 50 MHz operation by British amateurs holding Class A licences. The number will go from 40 to 100. DTI have asked the RSGB to recommend additional names by March 31. With all British 405 -line television broadcasting in bands 1 and 3 now due to end in the first week of January 1985, British amateurs are hoping that the DTI will make an early announcement about any plans to implement the recommendation in the interim Merriman Report in 1982 that an alloca-
tion in this part of the spectrum should be made available to all British amateurs. There remains the problem that this part of the frequency spectrum (except channel 1) is likely to remain in use for television in virtually all other European countries.

RTTY

Ian Wade, G3NRW, the current editor of the British Amateur Radio Teleprinter Group newsletter, estimates that about one half of BARTG members are still using mechanical teleprinters but many are in process of adopting computer-based the electronic systems with over two-thirds of the membership owning home computers. Interest in the Amtor system with automatic correction of errors is also increasing rapidly and expected to really take off during 1984 with commercially manufactured units increasingly available. He also forecasts more amateur interest in digital data techniques including the"packet" systems. But there seems to be no end in sight to various problems of different technical standards, including the long standing problem of 45 versus 50 baud transmission, though some teleprinters, such as the Creed 444 will cope with both speeds. Bob Sayers, G8IYK is seeking contact with radio amateurs interested in adapting compact telephone-line facsimile equipments for h.f. transmission or for using such machines for other applications. He also points out that a special Met Office licence is needed to receive weather messages in r.t.t.y. format. Application forms for DTI licences can be obtained from Meterological Office (Licensing) London Road, Bracknell, Berks, RG12 2SZ. Full title of the licence is "Receiving licence for the reception of meterological information transmitted from special service stations"

During 1984 BARTG celebrates its Silver Jubilee having been founded in 1959. The group caters for those interested in most forms of data transmission, including r.t.t.y., Amtor, Fax, weather forecasting, satellites and telemetry. Current membership is about 1300. Membership details from John Beedie, G6MOK, 161 Tudor Road, Hayes, Middlesex UB3 2QG (telephone 01-561 0010). Apart from the quarterly newsletter BARTG publish "RTTY, the easy way".

Low power activity

Although extreme low-power operation is not an activity I would recommend to newcomers to the h.f. bands, it holds much interest for those with the necessary experience and patience. Indeed on some h.f. bands signals can come in at good strength from transmitters using power inputs of less than 5 watts over many thousands of miles. Low-power (QRP) operation in the UK has for a number of years been en-
couraged by the "G-QRP Club", formed in late-1974, and now having almost 2500 members. Rev George Dobbs, G3RJV, editor of its quarterly journal "Sprat" admits to being concerned that the fall-off of conditions on the h.f. bands due to the declining sunspot activity may make it more difficult to achieve good contacts on the higher of the h.f. bands but urges more activity on the "low-power calling frequencies" of 3560 kHz and 7030 kHz . He notes that low-power operation on these bands has not kept pace with the increasing number of members. He reports, however, an increasing interest in home construction of low power transmitters and compact direct-conversion receivers.

In brief

George Stratton Loughton, founder in the 1920s of Eddystone Radio, died during December 1983. Eddystone was one of the first British firms to cater specifically for short-wave enthusiasts and radio amateurs with their "All World" series of receivers and components for home construction.
. RSGB membership has exceeded 35,000 for the first time . . . The RSGB National VHF convention is being held on March 24 at Sandown Park Racecourse, Esher, Surrey . . . A mobile rally is being held at the Carelton Community Centre by the Pontefract society on March 18 ... An increasing number of amateurs in many parts of the world are now equipped for earth-moon-earth (moonbounce) contacts on the 1.3 and 2.3 GHz band but Z 25 JJ , representing Africa, is closed for the time being while his equipment, including a massive 32 ft dish reflector, is transported from Zimbabwe to South Africa . . . Much effort is being put into the rush building at the University of Surrey of its second spacecraft, UOSAT-B, which it hoped will be launched this Spring . . . Of the various Russian amateur satellites, RS6 and RS8 remain in operation. The problem on the L-band Oscar 10 transponder seems to have been successfully overcome . . . The IARU Region 1 Triennial Conference, bringing together the national IARU societies in Europe and Africa, is to be held in Sicily between April 7 and 14 . . . The installation of the RSGB's 50th President, R. G. Barrett, GW8HEZ, was at Cardiff Castle on January $14 \ldots$ A number of changes affecting the British CB licence were introduced on February 1. No further licences are being issued to persons under 14 years of age but they can operate CB equipment under supervision. There is now an explicit ban on the playing of music and the re-transmission of radio and television broadcast material (both of which have always been illegal) and DTI draw attention to the CB Code of Practice in particular highlighting the recommendation that Channel 9 should be used for emergencies and assistance only.

PAT HAWKER, G3VA

Adaptable typewriter interface

Abstract

Simple interface connects electronic typewriter to computer parallel output port. Selfdocumenting Pascal code facilitates translation into other languages that might be used in the target processor, and demonstrates how a printing routine is constructed rather than provides a rigid routine for only one situation.

Acquisition of a home-based computer requires a decision as to the type of printed output needed. The provision of a fullyformed letter printer allows a system to be used for word processing with a degree of professionalism that is absent from the usual low-definition dot-matrix machine. If an electronic typewriter is availble then the simple interface described here enables it to be driven from a Centronics or other parallel output port.
The interface is in principle applicable to any typewriter mechanism that uses electronic-style switches to complete a circuit when a key is depressed. Virtually all daisy wheel printers use this type of mechanism. Since the majority of small computer systems do not have printer spooling (i.e. the system is dedicated to driving the printer whilst the printer is active) the computer is used to provide as much as possible of the intelligence of the interface.

Although the interface itself is simple it is necessary to do some investigation to determine the correct connection points for the various wires - and then further work to find the correct data for each printed character. The interface was actually connected to an Olivetti Praxis 35 and the specific data as to connection points and character data refer to this machine. Enough information is included to enable adaption to any other machine.

General considerations

In operation the printer sequentially grounds one of the lines marked A through H and reads the data appearing on all the lines a through h, Fig. 1. If no keys are closed then the data will be read as all high but otherwise the occurence of a low will allow the closed key to be detected and decoded. Two points about this - first, a number of reads must give the same data for the printer to register the key closure and to avoid errors due to contact bounce. Second, not all possible crossing points on the matrix are used and so there are a number of possible data codes that may have no meaning to the printer as they should not be generated by the keyboard. Also there are two connections outside the matrix (I to i and J to j) used to tell the printer about keys that are pressed in conjunction with the main keyboard. Examples of this on the Praxis are Shift

by
 C. M. Fortescue-Webb M.Sc.

and Keyboard 1 or Keyboard 2.
To simulate a key closure the circuit of Fig. 2 could be used. When the select key line is true then the low-going pulse on the input line be coupled through to the output. By using open collector gates there will be no interaction between the various keys. The difficulty of such a scheme is that a key select line is needed for every key and this requires a lot of hardware. By using a multiplexer and demultiplexer coupled with open collector drivers the final arrangement shown in Fig. 3 is realised. Now three lines are used to select the input row and a further three to select the output column. The remaining two llines on the eight-line computer output are used for the shift and keyboard $1 / 2$ switches. Incidentally, if your computer will only output a seven-bit character on the parallel port then the keyboard $1 / 2$ or equivalent line will have to be operated manually.

It is also necessary to prevent the computer passing data to the printer at a rate in excess of that at which it can accept the data. The interface shown here uses a software delay loop in the driving routine to ensure that the character rate is within specifications. A longer delay is used for those functions on the typewriter that take longest - carriage return (up to two seconds on the Praxis), fast return (timing as carriage return) and tab. The alternative is to use hardware consisting of something like a 555 timer with a variable current source depending on the character being printed, with the output from the timer being the busy line and used for character separation. To achieve a maximum transmission rate it would be necessary to find an internal (to the printer processor system) status line that will show if the printer can accept a character and then use this line for the BUSY/ACKnowledge reply to the computer.

When the computer outputs data on a Centronics interface the strobe line is made low for a short time (a few microseconds) to tell the printer that data is available.

Fig. 1. Schematic of the mati:ix switching layout of typewriter keyboard. A keyswitch is present, normally open at intersections marked*. Pull-up resistors to $V_{c c}$ are connected to lines a to j inclusive.

The printer responds by asserting BUSY and should pulse ACKnowledge low to signify that the character was accepted. When the printer is ready to accept another character it will drop BUSY. Many computer systems are content to ignore either BUSY or ACKnowledge but printers requiring line buffering (normally line printers) may use ACKnowledge to fill the line buffer and then assert BUSY whilst the characters are printing. Strictly the computer is not permitted to change the data on the Centronics port between the assertion of STROBE and the receipt

Fig. 2. Possible connection method to simulate a key switch connection when key-select is high. This circuit would be substituted at each * in Fig. 1, in which case a low on X will be coupled through to x via the open collector gate.
of an ACKnowledge, nor to assert STROBE whilst the printer is BUSY.

Circuit details

The functioning of the actual circuit is straightforward and the full schematic is shown in Fig. 4. The layout corresponds to that used in Fig. 3. The monostable between the strobe and busy lines is used to separate a multiple sequence of the same character into separate 'key depressions' by enabling the LS138 for a set time after each strobe pulse. The period of the monstable must be adjusted to be sufficient for the printer to recognise the character yet less than the intercharacter delay and the shown values provide a good starting point. The maximum R value is about $5 \mathrm{k} \Omega$ due to limitations of the LS t.t.l. inputs.

The original was constructed on Vero d.i.p. breadboard using ribbon cable to couple the inputs and outputs. If a small system is being used then it may be more convenient to add on a eight-bit latch to the computer address/data lines rather that construct or purchase a specific parallel port.

If the keyboard uses greater than five volts then a small 5 V supply will be needed for the logic and the inputs to the LS151 should be isolated using diodes connected in series with the lines to the LS151 from the keyboard with the anode connected to the interface. If a key is pressed on the keyboard whilst the interface is connected then the keyboard supply voltage can be coupled through to the multiplexer unless isolation from higher voltages is implemented.

The typewriter/printer lines are shown with the connection schematic for the Praxis. It is possible that your warranty on the typewriter could be effected by connecting this modification and so it is perhaps wise to wait until it is out of the warranty period. When making connections to this main board be aware that mos chips may be used internally and so static should be avoided (no nylon carpets, plastics worktops etc.). A soldering iron with low leakage or securely grounded would be a wise precaution if using soldered connections. If using a mains-powered wire-wrap tool then do not work on the interface whilst it is connected to the keyboard.

Detective work

One of the first operations is to examine the keyboard connections of the selected machine to ensure that it is possible to

Fig. 3. Using a multiplexer and demultiplexer to replace a keyboard.
make the connections without having to, for instance, replace the complete case. First be quite sure that the mains cable is removed from the machine - a surprise jolt when you are probing inside the machine can do much damage to man and machine. On the Praxis after unscrewing the two platen knobs, without losing the small disc in the left hand one, four screws in the underneath of the case can be removed. Turning the case right side up again should enable the top section to be lifted off over the back of the machine. Be careful of the paper-holding bar. The keyboard can now be removed by undoing the two screws, one at either end, that hold the metal backing plate to the base of the typewriter case.

Lifting it off gently brings to light a number of connectors and these can be parted without putting any tension on the wires. At this stage the printer processor and electronics will be exposed to view along with three brass nuts positioned on the processor board that hold grounding straps and the processor board to the keyboard sub assembly. After noting the way in which the grounding straps are positioned the nuts can be undone and the keyboard and processor unfolded to show the printed circuit traces of the keyboard and processor connections. A drawing of the two boards opened out is shown at Fig. 5 with the connection points numbered to correspond with the schematic diagram Fig. 4.

Suppose that the typewriter is a different model from that used above. Then some investigation is necessary to find the connecting lines. Without the manufacturers service manual the best method is to follow the printed circuit traces to the various keys. Keyboard switches may have either three connections (with the outer two commoned-check with a meter) or just two. The key connection traces should either end up on a chip with open collector drivers (in which case they are being driven from the printer processor) or else be connected to pull-up resistors if an input to the processor. If the keyboard processor combination can be 'powered up' whilst access is retained to the keyboard traces then processor output wire should have no or small voltages on them whilst processor input traces should be at 5 V due to the pull-up resistors. In any event, provided that the keyboard is powered from five volts, an incorrect connection of the traces

to the interface will not cause damage but prevent the interface and/or the typewriter working properly. There is no need to assign specific assignments to each of the input/output connections on the interface since a software routine is used later to determine the actual data required to
simulate a specific key closure.
The next stage is to determine the output data required for each simulated key closure. Connect up the computer-in-terface-typewriter combination and then run a program to output characters (with data values in the range of 0 to 255) and see

List 1. Program to produce a file 'Trans. text' of ascii character and corresponding code to operate printer.

```
Program Decode; (* Pascal under UCSD Version 4 *)
var Translation_file : text; (* data and character file *)
        Printer
        j
            text; (* Treated as a file *)
            integer; (* loop variable *)
                            char ; (* character read from vdu *)
Begin; (* program from hereon *)
Rewrite( Translation_file,'Trans.text'); ("Open Output file*)
Rewrite( Printer,'Printer:'); ("Open Printer*)
For j:= 0 to 255 do begin; (* main loop *)
    Write(printer,chr(j));
    Write(' Enter (* data to printer *)
    Read(ch); (N for non printing)');
    writeln: (*ead character inputted from vdu *)
    writeln(Translation file,j:5,ord(ch) line on vdu*)
    end; (* end of main j loop *)
Close(Translation_file,Lock); (* keep the translation file *)
end,
```

List 2. Program to show how translation data can be used to run typewriter using codes from program in List 1.

```
Program Encode; (*Uses translation file to print on typewriter *
Const cr = 13; (* carriage return ascii value *)
Var Printer : text;
    Decode : Array(0..255) of 0..255; (* holds printer codes *)
        k : char; (" only used in demonstration program *)
Procedure PRINT INIT; (* Initialises for the Printer *)
Var Translation file : text; (* data setup in program DECODE *)
        data, code, }\mp@subsup{}{j}{j}\mathrm{ : integer;
```

 Begin; (*procedure Print_init *)
 Reset (Translation_file, Trans.text'); (*Open file *)
 For \(j:=0\) to 255 do Decode (\(j\)) \(:=0\); (*initialise Decode array *)
 For \(j:=0\) to 255 do begin; (* file data to decode *)
 Read (translation_file, data, code); (* read a line from file *)
 Decode(code) := Data; (and put to decode *)
 End;
 Close(Translation_file); (* no further need for this *)
 Rewrite(Printer,'printer:'); (*open printer for output *)
 end; (*of procedure Print_init *)
 procedure delay(ticks:integer); (gives a 'ticks' milliseconds delay)
 var \(i, j, k\) :integer;
 begin;
 For \(i:=1\) to ticks do
 For \(j:=1\) to 8 do \(k:=k+i(1 \mathrm{~ms}\) delay \()\)
 end;
 Procedure PRINT (ch: Char); (* accepts a character for printing *)
Var i : integer;
Begin; (* Procedure PRINT *)
i := ord(ch); (* find integer value of ascii character *)
$i:=$ decode(i); (* and use to get printer data *)
write(Printer, chr(i)); (* and output to Printer *)
if ch $=\operatorname{chr}(\mathrm{cr})$ then delay (1000) else delay(90); (* $11 \mathrm{c} / \mathrm{sec} *$)
if ch = Chrlcr) then delay(
End; (* of Procedure Print *)
Procedure PRINT_EXIT; (* called after finished with printer *)

```
Begin; (* start of Print_exit *)
    print(chr(cr)); (*Carriage return to Printer *)
    Write(Printer,chr(255)); (* Holds interface out of action to
                            enable all typewriter functions *)
```

close(Printer); (*No further use for printer *)
End; (* of Procedure Print_Exit *)
BEGIN;

```
(* This is where your main routine would be. The following
    is a short sample Program that can be used to test the
    interface, and would not be present for normal use *)
    Print_init; (* initalise the printer channel *)
    For k :='A' to 'z' do begin;
        write( k ): (* put out the character on vdu *)
        print (k); (* and on the printer to check correct action *)
        end;
        Print_Exit; (* and close up the channels *)
END.
```


Fig. 5. Connection points on the opened out Praxis processor and keyboard.
what the response is from the typewriter. Be aware that some of the unused code can cause the typewriter to 'lock out' and not accept any more input. If this should happen the easiest way to recover is to turn the typewriter off then on again to reset the internal mechanism. Also some software driving parallel output ports will only output seven bits, the most significant bit being masked off as it is not used by many printers. If this is the case with your system then either the driving software can be altered or alternatively one of the dedicated lines (I . . . i, J . . . j in Fig. 1) can be deleted.
In the case of the Praxis this would mean that keyboard 2 was not available but for many applications this would be quite acceptable. The program in Fig. 6 which is written in Pascal will provide you with a file of the data and corresponding characters printed. If you find that the interface is behaving badly, for instance by not printing all characters then check both the interface and connections to the keyboard traces. It is easy to have 95% functionality even though the shift line say is not connected.

Operation

The final step is to generate a small program that takes any character that you wish to output to the printer, translates this to the appropriate data code, and then outputs it on the parallel interface. The best method of implementing such a routine is in assembly language and then to incorporate it into the bios (basic inputoutput system) so that the operation is transparent to the host program. To give an idea of what is required and to provide a basis for further experimentation the small routine shown in Fig. 7 is written in Pascal and can be incorporated into an applications routine. The routine is broken up into three procedures: Print-init to open the printer channel, Print to actually translate and output the characters and Print-over to perform any closing tasks. Note that the main translation array TRANS must be declared in the main routine since Pascal cannot hold local variables from call to call of a sub routine. If you wish to use the printer for word processing then you will probably want to extend this program to enable such things as underlining and printing both $£, \mathrm{p}$ and \$, c.
continued on page 39

Improving colour television decoding

4 - Simple one-line comb decoder on a small single board can be added to existing receivers

Much of the background material and illustrations in these articles derives from the author's BBC work and that of his colleagues in the Research and Designs Departments. The particular proposal for a domestic receiver decoder described here is the author's own rather than a BBC concept.

Considering now the actual electronics, Fig. 34 shows a circuit diagram of the video path built to incorporate the

The full extent of picture improvement can only be achieved if the suggested modifications are incorporated into a receiver in which attention has been paid to a number of other aspects of performance, a similar experience to improving high quality audio. These would include the use of a 26 in tube (preferably high resolution), an efficient aerial (possibly with a down-lead amplifier), a tuner and i.f. amplifier response flat to 5.5 MHz and with the demodulated video group-delay equalized to give minimum phase errors. It would also be beneficial to receive the incoming r.f. signal from a transmitter of good performance.
The performance of the modifier used to comb chroma from the composite signal (to provide clean furninance) is degraded in the presence of phase errors. These errors are largely introduced by the video signal modulation and demodulation processes and mainly comprise poor group delay response across the chroma bandwidth ($\mathrm{f}_{\mathrm{cc}} \pm 1.3 \mathrm{MHz}$) and by differential phase (chroma phase shift with the change of luminance level).
Further information on transmitter performance and alternative circuits to place between the i.f. output and the PAL decoder will be given in a later article. These alternative circuits would be preferable for smaller screen sizes (assuming the standard iv receiver tube).

Some other developments which will be of relevance if the time delay for their introduction and cost are not too great are ITT's digital tv i.cs and the Philips n-mos memory chips. Philips also make a high resolution 2 in twbe (which will probably double the standard tube price) that can be operated at twice the normal line and field scanning rate. Memory chips store the incoming signal over a field or picture period; video information is thus available for scanning twice in the period of one input picture. This double scanning removes flicker and enables other decoding methods to be used, as outlined in the December and January articles. (See also the German Radio Show report, November 1983 issue pages 74, 75.)

by D. C. A. Read
B.Sc. (Eng), M.I.E.E.

foregoing principles (part 2, January issue). Composite video ($1 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$) is applied to the circuit to produce outputs that are suitable for the various decoder chips now readily available. Output pins can directly feed the decoder chips TDA35 16A or 3560 from Mullard.

Transistors Tr_{1} and Tr_{2} are complementary emitter followers providing low-impedance drives, appropriate resistors being fitted to match the delay-line characteristic impedance and the chroma bandpass filter impedance. Also, a low-impedance feed is available for the sync filter which is an optional extra. The three coils and capacitors ($\mathrm{L}_{1-3}, \mathrm{C}_{5-7}$) form a symmetrical gaussian bandpass filter (described later) set up by adjusting all three inductors so that maximum subcarrier level occurs at the output, also with minimum 7.8 kHz at chroma transitions.

The filtered chroma signal is fed out via Tr_{18} to provide low-impedance drive to the chroma input pin of the demodulator chip or chips. PAL decoding i.cs normally use a

Fig. 35. Modifier comb-circuit waveforms. Top trace is the input composite PAL video signal, middle trace shows the chroma envelope after the $\operatorname{Tr}_{1}, \operatorname{Tr}_{2}$ buffer and gaussian bandpass filter. After a further buffer this signal is fed out to pin 3 of the decoder TDA 3561A (or 3560) (if the onechip decoder is used). Minimum 7.8 kHz twitter at chroma transition indicates good group delay symmetry in the gaussian filter. Bottom trace is the luminance signal as fed to pin 10 of the one chip decoder.
chroma-length line ($64 \mu \mathrm{~s}-56 \mathrm{~ns}$) to provide delay-line PAL decoding for enhanced U/V separation in the chroma circuits. Colour prints 7, 8 and 9 are screen photographs with luminance off, showing, in print 7 , the chroma demodulation performance using the field sweep skew test waveform for line-by-line decoding. Print 8 shows one chroma line in use i.e. combing the chroma over two lines; this is the standard method in most television sets. Using two-line delays, print 9 shows threeline combing in the ratio $1 / 4: 1 / 2: 1 / 4$. The third line has no offset whereas the centre line has a 56 ns offset. No further chroma work was felt necessary on this add-on card and this design will use one chroma line. This is a reasonable compromise which provides some comb filtering of the luminance, a $3-\mathrm{dB}$ reduction of fine crosscolour, and, by adding and subtracting equal amplitude from the two lines, a 3 dB reduction of random noise occurs. The slight loss of vertical resolution is only apparent when viewing computer graphics. Spatially, on horizontal transitions, the luminance and chroma are displaced by half a line in the field, but this is only seen on electronically generated signals.

In the circuit of Fig. 34, Tr_{3} amplifies the signal from the chroma bandpass filter to provide a high level input for the DL60 delay line, which has a typical insertion loss of 11 dB . The output transducer of this delay line is floating and can therefore provide a balanced push-pull drive to the MC1596 balanced modulator input with the d.c. supply bias provided by resistors

Fig. 37. Signal waveforms for the complete decoder. Top trace is 1 V composite video input. The lower three traces are red, green and blue outputs from the modifier comb and TDA3516A (or TDA 3560) chroma chip.

R_{29} and R_{30}. The gain of this modulator, acting as a PAL modifier, is set by the resistance between the emitters of the transistors being driven from the chroma delay line. Pins 7 and 8 have suitably phased and d.c. balanced ($\mathrm{R}_{42}, 5 \mathrm{k} \Omega$ pot.) drives of 8.8 MHz (twice colour subcarrier) taken from the chroma demodulator chips via buffer stages $\mathrm{Tr}_{8}, \mathrm{Tr}_{9}$ which also provides phase shift. The two phase shifters plus the changeover shown adjacent to C_{28} and C_{29} mean that the change in phase setting available to the modulator is in excess of 360°. Thus a setting will always be found, regardless of the decoder chips being used, to obtain the correct phase in the overall system. Pin 9, the demodulator output is fed directly to a grounded base stage via 10 nF blocking capacitor (C_{21}). Therefore no signal can be seen at pin 9. Also summed at the grounded base stage is the composite PAL video from the luminance delay line. The delay of this, compared with the delay time through the gaussian bandpass filter plus the DL60 delay line and the modifier, is such that the two signals summing at the grounded-base stage are exactly $64 \mu \mathrm{~s}$ apart.

The collector load of $\mathrm{Tr}_{4}, \mathrm{R}_{20}$, gives sufficient gain to provide a suitable level to the output filter, this being buffered by emitter follower Tr_{6} and $\mathrm{R}_{23}(150 \Omega)$ representing the characteristic impedance to the output filter.
The first sections L_{8} and L_{9}, form a
phase/group delay equalizer as is L_{10}. The filter itself is formed by L_{11} and L_{12}; the last element in the filter L_{12} has an additional capacitor switched in by the f.e.t. to bring it to resonance at subcarrier frequency when the notch is needed, such as at a horizontal colour transition. As the notch switches in and L_{12} becomes resonant, the input impedance to the filter rises. The small resulting increase in voltage available at Tr_{6} emitter therefore drives Tr_{5} harder and the notch 'snaps in' with a positive-feedback effect. Components L_{6} and C_{13}, with variable resistor R_{24} are in series resonance at subcarrier frequency; R_{24} is adjusted to set the threshold of the notch. The notch will switch in very quickly with Tr s bottoming on the peaks of the 4.43 MHz oscillations developed across L_{6}. With R_{25} of $10 \mathrm{M} \Omega$ the decay is slow, switching the f.e.t. off about half a line later.

If the voltage supplied to the gate of this f.e.t. is displayed on a black and white receiver with an external sync feed and viewed adjacent to the colour receiver, the amount of time the notch is in is shown to represent a very small proportion of the total picture area. The loss of resolution
can therefore be considered slight. It is also statistically unlikely that fine luminance detail will occur on horizontal colour transitions when the notch is switched in.
If luminance detail is continually present at 4.43 MHz , the notch will be introduced and detail lost; it is as if the notch were always present. But the delay in operation of the adaptive notch switch will allow luminance edges through unscathed and this gives subjective improvement to the picture resolution.
It has been found in practice that with an input of test card F from a slide scanner, the threshold control resistor is best set so that the 4.5 MHz gratings pass through with minimal degradation. Subcarrier from horizontal coloured edges will then cause the notch to switch in if the amplitude increases above the equivalent amplitude of this 4.5 MHz grating. The 4.5 MHz grating on the analogue test card (about to be replaced by a digital one) is well below the 0.7 V black-to-white amplitude. However, switching to the electronically generated signal Channel 4 test card, the notch is permanently in during the 4.5 MHz grating. But on pictures, the notch switches in when horizontal dot

PAL modifier

Notes
(1) L5 and R_{21} can provide 1 to $3 d \mathrm{~B}$ h.f. lift, normally shorted by link.
(2) $R_{25} 10 \mathrm{M} \Omega$ for slow turn-off of adaptive notch, $100 \mathrm{k} \Omega$ for fast turn-off
(3) C_{14}, R_{27} slightly speed-up switch-on but need not befitted Setfor best 2 T lobes
(4) C_{11} not fitted but can be used to trim phase
(5) Poly $\equiv 2 \%$ polystyrene Cer \equiv ceramic disc or Redcap/Bluecap
(6) $\mathrm{C}_{30} 100 \mu \mathrm{H} 2 \mathrm{~V}$ Mullord for three-chip decoder. Lum. input has 2 k 7 in series \& 22 K to 12 V . Remove R 40
(7) Refer to next installiment for filter adjustments
(8) Inductors are wound with 5 or 6 -strand $48 \mathrm{sw.g}$. Litz or 38 s w. $(0.16$ or 0.14 mm dia.) enamelled copper wire
crawl becomes just visible at normal viewing distance, assuming $\leqslant 3.5 \times$ screen diameter. This seems a suitable criterion for determining the threshold of the notch. It may be considered that a slightly lower threshold which degrades 4.5 MHz gratings on the test card will further reduce visibility of horizontal dot crawl. This is a setting which will be made subjectively to suit the individual.

At the output of the filter the signal is terminated ($\mathrm{R}_{37}, 150 \Omega$) and buffered. Transistor Tr_{7} provides a low-impedance drive output as many clamps in decoder
chips require a low-impedance point. The coupling capacitor may have to be changed to suit the time constant of such clamps, depending on whether the extra circuit board is fitted to a three, two or one-chip decoder.

Setting-up procedure (luminance)

In the first place, it is required to obtain a timing difference between the two signals summed at Tr_{4} emitter of exactly $64 \mu \mathrm{~s}$. 100% colour bars are used as the test signal, although $95 \%, 75 \%$ or EBU bars would be suitable.

Fig. 34. Diagram of circuit that processes chroma and luminance signals.

No.	Volue $(\mu \mathrm{H})$	_ ___ Turns ___	
		Neosid E2	Toko 10K
1	33	37	55
2	23	34	42
3	54	15	18
4	10.5	21	27
5		Painton or Sigma	chake
6	6	16	21
7	$\begin{aligned} & 9.7 \\ & \text { or } 10 \mathrm{P} \end{aligned}$	$\begin{array}{r} 20.5 \\ \text { Painton or Sigma } \end{array}$	26 choke
8	14.3	$13+13$	1616
9	2.4	10	13
10	16.6	$14+14$	17+17
11	3.8	13.5	16
12	5.1	15	18
15	150 P	Painton or Sigma	choke

1. Disconnect either the input or output end of DL_{1}, and with the $2 \mathrm{f}_{\mathrm{sc}}$ feed also disconnected (by removing the links adjacent to C_{28} and C_{29}) unbalance the modifier pins 7 and $8\left(\mathrm{R}_{42}\right.$ turned to an end-stop).
2. With the output of the modifier linked to $\mathrm{R}_{12}, \mathrm{~T} \mathrm{P}_{1}$, the chrominance passing through the gaussian filter and DL60 delay line can be displayed on an oscilloscope and the signal path checked.
3. Reconnect the modifier Tr_{4} emitter so that the chroma envelope can be seen at the output test point TP_{4} (Fig. 34). The waveform appearance should be as shown in Fig. 35, middle trace. The green/magenta centre transition, will need to be expanded on the oscilloscope so that the signal is resolved down to 50 ns (see Fig. 24, January).
4. The link at $T P_{1}$ is switched so that the modifier output is across R_{12} and is not fed into Tr_{4} emitter. Reconnect $2 \mathrm{f}_{\mathrm{sc}}$, put the oscilloscope probe on TP_{1} and rebalance pins 7 and 8 on the modifier so that the carrier ($2 \mathrm{f}_{\mathrm{sc}}$) is nulled to zero. This represents carrier balance of the modulator/modifier.
5. Again feed the direct composite PAL

The normal functions expected of a PAL decoder are adequately provided by the Mullard one-chip decoder TDA3561A. The chip requires separate chroma and luminance inputs - the circuit of Fig. 34 provides these in enhanced form. Pin 25 feeds PAL modifier via Tr $_{15}$ in Fig. 34.
signal to Tr_{4} emitter by reconnecting DL_{1}. This results in the colour bar signal being seen at the output test point TP_{4} (Fig. 35 top trace); the delay line must now be adjusted so that the green/magenta transition occurs exactly at the same timing as it would in the gaussian/DL60/modifier route. The aim should be to get a timing coincidence of better than 50 ns and as good as 20 ns if possible (top trace, Fig. 24 January). Note the amplitude.
6. Disconnect either the input or output lead of DL_{1} as before, re-connect the modifier (link at Tr_{4} emitter), adjust the gain of the modifier with $R_{32}(1 \mathrm{k} \Omega$ pot.) to obtain the same chrominance amplitude as in preceding step.
7. Reconnect the luminance (link at DL_{1}), with the chrominance from the modifier also being summed at Tr_{4} emitter, it only remains to adjust the phase of
the modifier output. Using R_{86} (10 k pot.) and R_{89} (5 k pot.), the coarse and fine phase adjustments in the $2 \mathrm{f}_{\mathrm{sc}}$ feed (and, possibly, the links adjacent to C_{28} and C_{29} for 180° change), a point will be reached where the phase of the chroma from the modifier will cancel the chroma of the composite PAL signal.
8. The amplitude of the $2 \mathrm{f}_{\mathrm{sc}}$ feed from the phase shifting stages $\mathrm{Tr}_{8,9,10}$ can be from 0.3 to $1.3 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$ and it may be necessary to adjust C_{34} and/or C_{35} to obtain reasonably constant amplitude as the appropriate 'set phase' controls are taken between end stops. Check at Tr_{9} emitter first and adjust C_{34} on test for constant amplitude over the full range of R_{86}. Repeat for C_{35} and R_{89}.
9. Finally to achieve the best null and to optimise the chroma cancellation on all levels (steps) of the resulting luminance, a small adjustment on the gain will be required. It is as well to use the gain pot ($\mathbf{R}_{32} 1 \mathrm{k}$) the phase pot ($\mathbf{R}_{89} 5 \mathrm{k}$) with the modifier balance pot ($\mathrm{R}_{42} 10 \mathrm{k}$) in a converging sequence to minimize residual subcarrier for all the steps in the luminance signal.
The trace in Fig. 35 shows the composite PAL signal as measured across R_{2} (input

terminating resistor), the middle trace is the chrominance at TP_{2} which is being fed out to the chroma circuits of the demodulator (external to this additional circuitry), and the lower trace at TP_{4} shows that the chroma from the modifier output is cancelling the composite PAL chroma to leave a clean luminance signal.

Fig. 36 shows some optional additional circuitry that may be used depending on the receiver to be modified. Point X is taken from the emitter of the input buffering pair in Fig. 34, Tr_{2}. This feeds a filter with a characteristic impedance of $1 \mathrm{k} \Omega$ provided by R_{46}. The high-impedance terminated filter has a low-pass linear amplitude response which removes all the subcarrier and highband luminance energy but retains the sync risetimes with optimum shape. The filter design will be detailed later with group delay/phase and amplitude responses. Transistor Tr_{11} amplifies the signal and Tr_{12} emitter follower drives the sync separator chip IC_{1}, (TDA2590). There are other versions i.e. 2591, 2592, 2593 but in this application the available alternatives are not important. All the chips are capable of driving line output stages and field scan i.cs directly.

The chip has a sync-slicing system which is self-adjusting, according to the video amplitude, to maintain a 50% slice on sync edges. The line frequency can be set to approximately 15.625 kHz using R_{71} ($50 \mathrm{k} \Omega$ pot) with the input signal shorted at the points shown adjacent to $\mathrm{C}_{52}, \mathrm{R}_{60}$.

Fig. 36. Diagram of circuit of sync
processor chip providing field blanking and other pulses.

When the short is removed, the phase locked loop is centralized. This chip also provides field triggers and line triggers. By feeding the line trigger output pulse back into the chip (on pin 6 via R_{58}) a 'sandcastle' pulse is generated which, if necessary, is then available for the chroma decoder chip. In most of the receivers, however a sandcastle pulse is already available and this circuitry would not be required.

The line and field trigger pulse trains could both be used to drive line and frame time bases if the whole receiver is being engineered. There is another optional circuit available. This widens field trigger pulses via the monostable ($\mathrm{Tr}_{15} / \mathrm{Tr}_{16}$) and thus provides blanking of the ITS (insertion test signal), and teletext (Ceefax and Oracle) and other data signals in the field block. See Fig. 38.

On the author's attic workroom receiver, the picture is underscanned so that all four corners can be seen and the 'business' at the top of the picture becomes unacceptable without widened blanking The extra blanking circuit ensures that only active picture lines are displayed. The other optional extra, formed by Tr_{13} and Tr_{14}, is solely used to drive test gear which needs to be locked to mixed syncs.

The luminance output of the board from Tr_{7} can be coupled into the Mullard one-

Fig. 36(b). Some of the waveforms occurring in Fig. 36 circuit. Trace (i) is video signial fed to pre-sync separator filter $C_{37,} L_{15}$ and C_{36}. (iii) is field trigger from pin 8 of TDA2592 and (iii) line trigger from pin 2. (iv) shows RGB clamping (top), output picture blanked (middle) and active picture - line and field blanking off (bottom).
chip TDA3561A (or 3560) which is mainly used as a colour decoder (see Fig. 20, January issue pages 54,55). The coupling component feeding the luminance input, on pin 10 can be a $0.47 \mu \mathrm{~F}$ non-polarized ceramic/polyester capacitor. The chrominance input on pin 3 fed from Tr_{18} also requires d.c. blocking; 10 nF is suitable. The d.c. on both pins 3 and 10 of the decoder chip are typically 2.2 V and the output on Tr_{7} is typically 3.5 V . If a small tantalum capacitor is used, check for polarization particularly where other chips are employed.

Full amplitude levels in I T.S. and the high levels of teletext plus IC.E signals (internal communications equipment) need to be fully blanked

Output from pulse-widening circuit T_{15}, T_{16} in Fig. 36 to blank all the active lines in the
field block, important if the tube is underscanned or subject to internal reflection

Fig. 38(b). Off-air video signal and extra blanking to prevent any adverse visibility at the picture top. Top trace shows some lines in use in the field blanking period. Bottom trace is final green drive to display tube, indicating line blanking and extra field blanking provided by the circuit of Fig. 36 .

Provision was at one time made to adjust the chroma level output with a pair of resistors attenuating the feed to Tr_{18} base. When adjusting the level feeding the decoder chip TDA3561A or the equivalent two and three-chip versions, it was found to be difficult to determine which chroma level suited the decoder to obtain maximum chroma linearity (the linearity being somewhat poor). Also the matrix which produces the red, green and blue signals

Fig. 38. Vertical synchronizing and blanking waveforms. As shown, field blanking interval lines are also used for teletext, ICE (internal communications equipment), ITS (insertion test signals), and clear lines for noise measurement. TDA2562A also uses lines 21, 22, 23 for RGB tube black-level stabilizing.
from the luminance and colour-difference signals can have up to 10% and amplitude errors. By optimizing the chroma level and averaging out the matrix errors across the RGB outputs a fairly good compromise can be achieved as is shown in the photograph, Fig. 37.
The blanking as generated by the extra circuitry $\mathrm{Tr}_{16}, \mathrm{Tr}_{17}$ and IC_{1} (TDA 2590/1/2/3) is applied to the blanking input of the TDA3561A chroma demodulator chip. A line-rate trace of the blanking component is shown in Fig. 37 in which the fainter line represents the field blanking. Using this trace and with the oscilloscope timebase switched to field lock, the pot R_{76} is adjusted so that the field blanking ends at the beginning of the first line in the active picture. The blanking should end half way through line 23 in the first (even) field, and at the beginning of line 336 on the second (odd) field; see Fig. 38. The
insertion test signal (two lines per field), teletext information (four lines per field or six lines on some channels), and the ICE signal (internal communications equipment coding line), will then all be blanked by the widened field pulse.

With the extra board (modifier etc.), set up, the picture will attain a horizontal resolution which is close to the vertical resolution. The equivalent vertical and horizontal resolutions can be calculated as follows. There are 625 lines transmitted in each picture period (40 ms) but as 25 lines are blanked in each field $(20 \mathrm{~ms})$ there are only 575 active lines in each picture or 287.5 active lines per field. These 287.5 lines determine the vertical resolution, i.e. the maximum number of cycles that can occur within the picture height. The transmitted pictures has a horizontal to vertical aspect ratio of $4: 3$, so 287.5 vertical cycles are equivalent to 383.3 horizontal cycles. Given that the active line period is $52 \mu \mathrm{~s}$ ($64 \mu \mathrm{~s}$ less $12 \mu \mathrm{~s}$ blanking), the period for each cycle of this maximum equivalent horizontal resolution then is $135.62 \mathrm{~ns}(52 / 383.3)$. The frequency is to equivalent to 7.37 MHz . This is the justification for improving the horizontal resolution.

MaN

Left to right: Bill Bond (judge), David Gemmell (judge), Philip Darrington, H.R.H. Princess Anne, Sir Keith Sxinner (cheirman of Susmess P-ess international), Heinz Wolff (judge), Richard Lambley, Elizabeth Fanshawe (judge), Meredith Thring (judge).

Electronic devices for the disabled

First prize in Wireless World's recent competition was won by Tony Heyes of Nottingham University for his Sonic Pathfinder, a navigation aid for the blind. Dr Heyes received his award of $£ 2,500$ from Princess Anne at a presentation on January 30. Second prize, £1,500, went to Phil Pickersgill and Nic Stewart of Wokingham for a speech training device which they named Pausaid.

The four $£ 1,000$ prizes for runners-up went to

- David Battison and David Palmer of Cambridge, for their Miaphone, a speakback facility for blind, disabled typists.
- Michael Bolton and Alastair Taylor of Aberbeen, for their computer interface for the disabled.
- William McCarthy of Edinburgh, for his depth gauge for the visually handicapped.
- Ian Mitchell of Hull, for his Talking Box, a communication aid designed initially for speech-impaired children.

Judging and presentation of the awards took place on January 30th at the Institution of Electrical Engineers in London. Twelve entries selected for the final stage of the competition were demonstrated to the judges by their authors, who were Elizabeth Fanshawe of the Disabled Living Foundation, David Gemmell of Possum Controls Ltd, Bill Bond of the Polytechnic of the South Bank, Professor Heinz Wolff of the Brunel Institute for Bioengineering and Professor Meridith Thring, Queen Mary College, London University.
Princess Anne spent more than half an hour examining the devices and discussing them with their designers. In an address afterwards, she spoke of the ingenuity and inventiveness of those who had entered the competition. She said "Your enthusiasm and your efforts may not make you household names, but will certainly earn
you the sincere gratitude of a highly individual and progressively independent group of people". Princess Anne spoke also of those who had not reached the finals, whose entries might still warrant development and possible future production. "If they do that", she said, "they will have their own reward".

Speaking on behalf of the judges, Professor Wolff praised the designers for their cost-consciousness. They recognised that technical aids had to be paid for by someone. "A competition of this kind as a stimulus for technically knowledgeable people to exercise their compassion and think about people less fortunate than themselves is itself very valuable".
An article by Dr Heyes describing his prize-winning entry will appear in Wireless World shortly, and we plan to include details of other interesting entries during the next few months.
 editor, with Dr Heyes and a Sonic Pathfinder. Left is Richard Lambley, projects editor.

Dr Michael Bolton (right) shows Princess A.7าe his compuier interface.

Differential temperature integrator

Battery-powered remote-reading integrating thermometer has application in energyconservation schemes

As much as 25% of the UK's primary energy consumption is in domestic buildings, yet relatively little is known about the details of its use. Individual tastes vary wildly and variations of annual energy consumption of $3: 1$ or more between identical houses are quite common. Because of this, testing out some new insulation measure or heating system requires monitoring a large number of houses. This can be a very expensive business.

The traditional instrument for temperature recording has been the thermograph, a kind of clockwork chart recorder, still to be seen ticking away in the corners of art galleries and museums. More recently memory-based electronic recorders have appeared that can be read out into a computer.

For most housing work all that is re-

Fig. 1. Three-wire bridge circuit puts equal lead resistance in each arm, with one lead in common.

R. Everett

quired are weekly or monthly averages of temperature plus the opportunity to sample spot values, such as the evening living-room temperature. Most importantly, this must be done without disturbing the house occupants and without spending vast sums on cabling back to a central datalogger. The differential temperature integrator was specifically developed for the Pennyland field trial in Milton Keynes, one of many sponsored by the UK Departments of Environment and Energy in recent years, and involved monitoring 80 houses of varying insulation level and south-facing window area ${ }^{1}$.

Why a 'differential' integrator?

The heating energy consumption of a house is roughly proportional to the average inside-outside temperature difference $(\Delta \mathrm{T})$, the constant of proportionality being an indication of the insulation level of the house. To evaluate the effectiveness of insulation, weekly heating energy consumption needs to be correlated with weekly ΔT. We can extend the process to include solar radiation to make an estimate of the 'passive' solar gains into a house. ('Passive' as opposed to the 'active' solar energy that you get from solar panels.)

As various zones of a house are at different temperatures, a weighted average of

Fig. 2. Battery-saving circuitry samples temperatures every few minutes - the
amplifier and v. to f. converter are multiplexed between sensors.
the different temperatures of different rooms is required. Thus the job of the d.t.i. is simply to generate cumulative integrals of the difference in temperature between each of three sensors inside the house, two downstairs and one upstairs, and a fourth on the outside, preferably on the north side out of the sun's rays. The temperatures are sampled every 8 minutes and the cumulative integrals are clocked up on three liquid-crystal displays, in units of degree-days (i.e. 1 degC for one day, commonly used in building work). For the Pennyland field trial the integrator was mounted alongside the gas and electricity meters in an external meter cupboard where it could be read by the researchers without entering the house. The d.t.i. also has a hold mode allowing any of the four temperatures to be sampled on a test point with a d.v.m.
This device is a logical solution to a monitoring problem; I was not surprised therefore to find a paper proposing such a device after completing the prototype ${ }^{2}$.

Circuit design

The temperature sensors used are thinfilm platinum resistance types (such as RS 158-238), effectively precalibrated to $\pm 0.3 \mathrm{degC}$. This type of sensor has a resis-

Designed for temperature monitoring in energy conservation field trials as Milton Keynes this thermometer provides weekly average temperature dif. ferences between each of three zones of a house and the outside air cemperature. Put crudely, heating energy consumption to a house is proportional to the temperature difference and the constant of proportionality is a meawure of the quality of house insulation. The device requires three platinum rocisrance thermometers installed bo the house, nominally one each in living room, kitchen and a bedroom, and an outside air temperature seasm. These four sensors are wired to the integrator box located in some convenient place, such as a meter or bin cupboard on the outside of the house, where ir can be read weekly along with gas and eleciricity meters without disturbing the house occupants.

Fig. 3. Temperature integrator is mounted in the house external meter cupboard with other meters - the sensors are up to 10 metres away.

TOTAL GAS

tance of 100 ohms at $0^{\circ} \mathrm{C}$ rising to 138.5 ohms at $100^{\circ} \mathrm{C}$.

Because lead resistances are likely to be significant it is usual to use them in a bridge arrangement, as in Fig. 1. Here the p.r.t. is compared with a precision 100 ohm resistor (e.g. RS158-086) and the bridge ensures that equal lead resistances appear in each arm, with one resistance in common.
I wouldn't recommend the use of i.c.
constant-current sources in this type of bridge. Many have large temperature coefficients (read the fine print for long-term drift characteristics!) and more than one is sold as a dual-purpose constant-current source/temperature sensor! More recently, precalibrated thermistors have become available cheaply and these are now a better choice for temperature measurement than p.r.ts because of their higher output.
The temperature integration process is

achieved by feeding the difference between the inside and outside temperatures to a voltage-to-frequency converter and then counting and displaying the resulting pulses. To minimize drift, the bridge amplifiers are ICL7600 commutating autozero types. To keep the component-count down the internal temperatures are mutiplexed into a single bridge amplifier and v -to-f converter (see block diagram).

Much of the circuitry is devoted to battery saving. This allows four D -size and six AA-size alkaline cells to last up to six months.
The 32.768 kHz crystal oscillator is counted down by 4040 counters and decoded with the 4068 and gate to wake up the sleeping system for two seconds in 512 (about eight minutes). In the off state, battery consumption is essentially that of the three liquid crystal displays (about $300 \mu \mathrm{~A})$. The circuit cycles through four phases of 500 ms each, starting with a settling period with the amplifier inputs grounded. Then each of the sensors in turn is routed through the input multiplexer and the bridge amplifier to the v -to-f converter. The resulting pulse train is routed to the appropriate 4040 counter and 7224 counter/display driver.

The v-to-f converter (Teledyne 7400 or RS307-070) requires a stabilized negative voltage rail as a reference, the stability of

To separate displays
as above

Fig. 4. Light-emitting diode and associated switches were included for production testing and could be omitted. The l.e.d. was an idea to set the v. to f. converter gain without an oscilloscope by beating the output against the crystal clock, but the 'scope is a lot easier in practice.
the positive rail being not nearly so critical. Hence the use of a 9 V battery regulated to 5 V to drive v-to-f converter, bridge amplifiers and the bridge.

Pressing any one of the individual hold buttons powers the system. The 4532 priority encoder selects the appropriate two-bit address and also allows the normal integration mode priority should the counter time out. The bridge amplifiers are powered and the appropriate temperature can be sampled on the two test points with a d.v.m. (1 volt $\equiv 10 \operatorname{deg} C$).

Setting up

The design contains a rather confusing array of switch settings for testing and setting up, most of which turned out to be unnecessary. The bridge amplifier gains
and offsets can easily be set up in the hold mode using standard resistors ($100 \Omega=0^{\circ} \mathrm{C}$ and $110 \Omega \equiv 26.0^{\circ} \mathrm{C}$). The v-to-f offset is set to give a 5 Hz tickover at zero $\Delta \mathrm{T}$ (visible on the l.e.d. in the set-zero switch position). The v-to-f gain is set by adjusting the output to 8.192 kHz at a $\Delta \mathrm{T}$ of $16.9^{\circ} \mathrm{C}$. The beat between the v-to-f output and the reference signal from the clock chain should be visible on the l.e.d. with the test switches set to set-gain. Alas, in practice it is far more visible on a 'scope.

One vital ingredient missing from the design is a way of detecting leaky c-mos chips. With complex battery powered equipment, one leaky chip or a floating gate can mean the difference between microamps and milliamps of battery consumption. But which chip is it? Desoldering them at random from a double-sided printed circuit board is a recipe for disaster, and yet a few 100 ohm resistors in the power rails to localize the fault could have saved many boards from the bin.

This design dates from 1980. A production run of 100 were made in 1981 and have performed reliably since then. With
the close of the Pennyland field trial they are likely to be passed on to further trials. Although the design is a little dated, it is still difficult to get the same performance at the price from a micro design (the components excluding board and box come to about $£ 120$), but it it is only a matter of time.

Members of the Open University Electronics Common Facility transformed the scruffy prototype into a production device. Funding for the Pennyland project came from the Department of Energy, through their Passive Solar Energy Programme, and the Department of Environment as an extension of their 'Better Insulated House' programme.

References

1. Energy Projects in Milton Keynes, S. Fuller, J. Doggart \& R. Everett, 1982. Available from Milton Keynes Development Corporation.
2. Simple data-logging instrumentation for monitoring the thermal performance of buildings, Charles Newcomb, Proc. Sth Passive Solar Conference, University of Massachusetts, 1980.

Adaptable typewriter interface coninued form poge 28

Table 1. Small sample of the output of program of List 1.

Data to printer	Ascii decimal equivalent
12	82
13	77
14	64
15	75
16	94
17	94
18	80
19	83
20	87

Notes and limitations

Some residual problems exist such as the fact that the ascii code does not allow for characters such as half-space or \div which are available from the typewriter keyboard. One possible solution to this is to define characters in the code range 128 to 255 and then to use software to substitute these special codes when the alternate character set is required. A decision to include or discard such codes will have a bearing on the complexity of your final program as will, for instance, forcing your non-proportional spacing typewriter to right-margin justify text.

Note that the Praxis does not seem to read the keyboard $1 /$ keyboard 2 status unless the character buffer is empty and so it is necessary to delay before changing the keyboard status if the printing rate is above about ten characters per second.

A more serious limitation is the amount of time that the printer can run continu-

Table 2 shows the ascii code in binary for a character (written in left hand side of column) and decimal data representation of the binary code to be sent to the printer (right hand side). For example ascii code 1100100 is found from intersection of column 100 and row 1100 giving character 'd' translated to decimal code 123 for the printer. Non-printing characters are shown by blank entries.

Bits 7654	321													
	000	001		010		011		100		101		110		111
0000	nul												b	
0001	bs 114	ht 70	uf		vt		ff		cr	48	so	71		98
0010		dc1 68	$\mathrm{dc} 2$	67		65	$\mathrm{dc} 4$							
0011					esc	96					rs			
0100	sp 113	! 154	"	22	\#	158	£	54	\%	29	\&	52		40
0101	18) 56	*	30	+	26		125	-	80		85		62
0110	0120	194	2	86	3	126	4	78	5	118	6	110	7	116
0111	8104	972	+	23	;	87		- 8	=	90)	56		144
1000	@ 14	A 27	B	53	C	57	D	59	E	60	F	11	G	41
1001	H 55	110	J	47	K	15	L	63	M	13	N	45	0	58
1010	P 18	Q 28	R	12	S	19	T	44	U	42	V	9	W	20
1011	$\times 17$	Y 43	Z	25	1	8)	56				46
1100	Y 40	a 91	b	117	c	121	d	123	2	124		75	g	105
1101	H 119	i 74	i	111	k	79		127	m	77	n	109	0	122
1110	p 82	q 92	r	76	s		t	108	u	106	\checkmark	73	w	
1111	- 81	y 107	z	89		8		157		56				

ously until it needs a cooling off period. Typewriters are seldom driven by people who type virtually continuously and so they tend to overheat with this kind of use. For example the Praxis is not really up to printing more than 40 minutes continuously without say a 20 minute rest for the mechanism to cool down a bit. If the printer does get overheated it tends to skip characters and generally mess up the text, thus necessitating a reprint. A lot of printing can be done in 40 minutes but for really long and hard use it is probably more effective to purchase a heavy-duty daisy wheel printer in the first instance.
The problem of feeding single sheets of paper into the printer can be overcome
either by forcing a software delay (the simplest method) at the start of each new page or else detecting the form feed character, then setting a latch to hold BUSY high until manually reset.
There are of course plenty of hardware options to add on if desired. A uart can be added to accept serial input but be careful about drawing too much current from the printer power supply. A preprogrammed eprom inserted into the data lines will enable the printer to accept straight ascii character data rather than the modified set used here. By this stage you are probably considering one of those single-chip eprom-based processors to produce an interface with all the 'bells and whistles'.

Optical-fibre measurements

Used with an optical-fibre directional coupler, these circuits allow backscatter measurements on fibres with $>10 \mathrm{~dB}$ oneway insertion loss. Light pulses of 50 ns are used in the avalanche photodiode preamplifier which, when carefully constructed, has a $10-40 \mathrm{MHz}$ bandwidth. Small-signal Schottky diode D stops $\mathrm{Tr}_{1,2}$ saturating when strong optical reflections occur. Resistor R should be as high as possible, depending on the required bandwidth. When displaying fibre backscatter curves on an oscilloscope, the second amplifier circuit may be useful (b). Oscilloscope bandwidth should be equal to or greater than 40 MHz .
In the GaAs laser-diode pulse circuit, (c) capacitor C charges through the transistors and is discharged through the Siemens fast-recovery thyristor and the RCA SG2004/5/6 laser diode. These 904 nm laser devices suit the C30921 avalanche photodiode. Capacitor C, chosen to give 50\% light-on time, depends on the laser diode and supply voltage and is typically around 8 nF . Pulse repetition rates higher than 10 kHz are possible. Using a ferrite pulse transformer to drive the thyristor provides isolation (shown separately).

As an aid to optical-fibre bandwidth measurement, final circuit (d) can produce light pulses as short as 200ps with capacitor C at 45 pF and using selected transistors in avalanche mode. Input pulse-repetition frequencies between 100 Hz and 100 kHz

are possible. Siemens BC549s showed avalanche effect at $V_{C E O}>70 \mathrm{~V}$ and $\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}>140 \mathrm{~V}$ d.c. Each of the transistors must be above these limits and only small-signal devices may be used. Wiring within the boxed section should be as short as possible.

Chopped-light amplifier

Filtering the output of this amplifier to within 100 Hz of the chopping frequency of say 1 kHz allows light levels down to 10 pW to be detected when $R=10 \mathrm{M} \Omega$. A bipolar transistor fixes the fet drain voltage so

selection is not required; drain current may be altered by adjusting the source resistor. Voltage gain of the fet is high through inclusion of capacitor C which provides a high dynamic-load impedance. Amplifier noise is 0.04 pA r.m.s. $/ \sqrt{\mathrm{Hz}}$ and noise of the RCA C30920 p-i-n diode is 0.06 pA r.m.s. $/ \sqrt{\mathrm{Hz}}$.

Schmitt-trigger opto-coupler

[^2]
Aligning four frequencies

Four a.c. signals may be compared on a four-channel oscilloscope, but a more graphic representation can be obtained using an oscilloscope in XY mode and adding pseudo- Z and Z modulation signals. This is particularly useful when testing phase-locked loops or tuning several signals simultaneously.

This arrangement, originally devised for a Telequipment D83 oscilloscope, was used to set up two 50 Hz sinewaves in quadrature (at x and y) by means of a Lissajous circle. A 2.5 kHz signal introduced at z causes the circle to take on a crown shape; this signal appears stationary when its frequency is an exact multiple of the

Programmable pulses with delay

On triggering, this programmable circuit produces a pulse after a delay. Accuracy of the pulse and delay periods is determined by the accuracy of the clock so the design doesn't suffer from drift associated with monostable circuits and works reliably at high frequencies.

The first counter determines delay and the second one pulse width. Counter QD_{D} outputs are used as these change synchronously with the clock and don't produce glitches at the output but it means that the maximum count is half of that possible using the ripple-carry output. Eight-bit counters are shown but any number of bits may be used by cascading more or fewer 74 S163 i.cs. Delay D for a load value L is given by

$$
D=\left(2^{n}-1\right)-L
$$

where n is the number of counter bits. In this case, n is seven.
A. D. Hacket

Salisbury
Wiltshire
fundamental signal. The highest frequency, 5 kHz in this instance, is applied at m to modulate brightness and results in a stationary stripe when synchronized.

With practice, z and m can be adjusted simultaneously. For lower multiples applied to z characteristic shapes are obtained, i.e., three lobes at $2 f$ and four lobes at $3 f$. If frequencies at x and y are not the same, as usual, Lissajous figures are stationary when the frequencies are exact multiples of each other. For digital signals, sensitivity may be increased by reducing series-resistor values.
C. J. D. Catto

Cambridge

Simplified battery timeout

This contribution is a cheap and simple means of conserving battery power using only six components. After the touch switch is activated, power is applied to the

load for a period equal to $0.69 \mathrm{CR}_{1}$. Resistor R_{2} determines current limiting and may be changed. Quiescent leakage current is less than 100 nA and with values shown, the power-on period is 13 s and current limiting is at about 450 mA . At 200 mA , voltage drop is only 200 mV .
S. Whitt

Ipswich
Suffolk

Moving-coil amplifier

I find that this moving-coil cartridge amplifier using valves gives a more natural sound than many circuits using transistors and it is easy to construct. Anode voltage rating of the ECC88 dual triode is only 90 V but it may be taken as low as 10 V so
power-supply design is simplified. The two sections of each ECC88 are connected in series and low-noise transistors connected as constant-current sources form anode loads for the two stages. Gain of each stage is about 30 .

A 723 regulator is used for the main supply because signal-to-noise ratio of the

amplifier depends on noise, output impedance and ripple rejection of the supply. Popular 78 -series regulators are not good enough. Valve heater supply must be regulated for the same reasons but in this case a 7806 suffices. Overall closed-loop gain of 100 is determined by the $33 \mathrm{k} \Omega$ resistor, which may be lowered to reduce gain. Open-loop gain is 600. Loading required for different makes of cartridge varies but is usually between 10 and 100Ω. Capacitors are critical and high-quality polycarbonate or polypropylene types should be used throughout, except for power-supply smoothing.
Per Hojlev
Copenhagen
Denmark

15-bit d-to-a using ZN425 converters

Two cheap eight-bit d-to-a converters are combined to form a 15 -bit converter in this circuit. Output of the left-hand converter is calibrated for all input values (0 to 255) and a correction value is programmed into the 28 L 22 prom with 00 corresponding to $-511 / 512$ 1.s.b. and FF_{16} corresponding to $+511 / 512$ l.s.b. This correction is added to the seven least-significant bits of the input data to provide an eight-bit input to the second converter. Reference voltage for both converters is derived from one i.c. to reduce errors due to ageing and temperature fluctuations.

Resistors $\mathrm{R}_{3,5}$ are adjusted to give correct scaling factors for the two d-to-a converter outputs and R_{7} corrects for output offset. Component values are not shown since these will depend on the application and output voltage range required. Temperature compensation can be applied through R_{9} and by using an external reference voltage.
S. W. Beet

Merseyside

The parallel-fed voltage multiplier

Abstract

Although any desired voltage may be obtained by stringing together a sufficient number of cells, a voltage converter has many advantages. Battery testing and replacement are simpler, and there is the option of using a single rechargeable device to power the whole of the circuitry.

Our particular need arose during the design of a portable muscle stimulator for biomedical use. The initial specification called for a unit to give output pulses at 10 Hz , of 200μ s duration and amplitude 15 mA maximum into a load of approximately $8 \mathrm{k} \Omega$, representing the resistance of electrodes placed on skin over the muscle. The stimulator was to be carried about in a pocket or on a belt, and would be used for 6 to 12 hours per day. The power source was to be a single PP3 9V battery, and we hoped to keep the current drain below 1 mA to ensure long battery life-

The specification evidently requires a voltage supply of at least 120 V . As the output energy per pulse is 0.36 mJ , the average power drawn from the supply is 3.6 mW . If voltage conversion could be achieved with 100% efficiency, the current drain from the battery would be only 0.4 mA . Thus the target value of 1 mA seemed approachable. However at power levels below 10 mW a conversion efficiency of even 50% is hard to achieve, as we found by examining a commercial stimulator with broadly similar specifications. It employed the conventional oscillator and step-up transformer, rectifier approach to voltage conversion, and its current drain was several milliamps. This poor efficiency, less than 20%, encouraged us to consider an alternative method.

Fig. 1 shows the well-known CockroftWalton cascade voltage multiplier in the form commonly used when an alternating voltage is available to drive it. A minor modification at (b) enables it to be driven by antiphase square waves which do not have to swing below 0 V . These circuits are series-fed: the a.c. or square-wave driving voltage is applied to the end of a chain of capacitors in series. Design and analysis are notoriously difficult, because the current and voltage waveforms for each stage are different. It is known that with optimal allocation of resources the capacitor values should not all be equal, but should increase from C at the output end to NC at the driven end. Another disadvantage is that the additional output voltage per stage is not constant, but diminishes by one diode drop V_{f} for each stage in the circuit.

[^3]

Fig. 1. In the Cockroft-Walton series-fed voltage muitiplier the output reservoir capacitor $C_{\text {res }}$ is chosen to have a reactance, that is much less than the load impedance at the working frequency. (a) is the single-ended version, while (b) is a modification for push-pull input where antiphase square waves do not have to swing below OV.

Thus in Fig. 1 (b) with a driving swing from 0 to V_{dd} of 9 V and V_{f} taken as 0.6 V , one stage provides $9+8.4=17.4 \mathrm{~V}$, two stages provide $9+8.4+7.8=25.2 \mathrm{~V}$, and so on up to 14 stages which provide 72 V Beyond this limit extra stages contribute nothing.

While pondering these deficiencies we discovered that some remarkable improvements result if the configuration is changed to the parallel-driven form of Fig. 2. The N capacitors now all take the same

[^4]value, which simplifies construction. The open-circuit output voltage per stage has the constant value $V_{d d}-V_{f}$ and so the total output voltage $(\mathrm{N}+1)\left(\mathrm{V}_{\mathrm{dd}}-\mathrm{V}_{\mathrm{f}}\right)$ can be increased without limit. Finally, the analysis is facilitated by the fact that apart from a step-wise increase in d.c. level, the current and voltage waveforms for each stage are identical (this is strictly true only if N is even, so that points X and Y see the same total capacitance).
The most important design parameter of a power supply, after its open-circuit output voltage, is the equivalent output resistance. The parallel-fed multiplier's output resistance can be derived directly as the ratio of open-circuit output voltage to short-circuit output current. For calculation only, it is convenient to return point Z of Fig. 2 to earth instead of to $V_{d d}$ and to treat the diodes as having zero forward voltage drop. With these assumptions the output voltage becomes $\mathrm{NV}_{\mathrm{dd}}$. A further assumption, which will later be relaxed, is that square wave sources X and Y have negligible internal resistance and thus provide a full swing from 0 to $V_{d d}$ regardless of the load. Now if the output terminal is earthed the diodes and capacitors act in 'bucket brigade' fashion to transfer a charge $\mathrm{CV}_{\mathrm{dd}}$ from one stage to the next in each cycle. The average short-circuit current is therefore $\mathrm{CV}_{\mathrm{dd}} / \mathrm{T}$ where T is the square-wave period; it follows that the multiplier output resistance is NT/C.
A more general expression for output resistance, derived in the appendix, is
(NT/C) $\operatorname{coth}(T / 2 N R C)$
in which the hyperbolic term corrects for the finite resistance R of the square-wave

Fig. 2. Parallel-fed voltage multiplier. Resistors R represent the equivalent resistance of the square wave sources.

Frequency response analyser

Using an oscilloscope to display response, this educational aid to understanding frequency response of amplifiers and tuned circuits covers the band 40 Hz to 400 kHz .

The heart of the analyser is a voltagecontrolled oscillator, Fig. 1, whose ramp voltage varies the frequency. The v.c.o. used, the Intersil 8038, has a linear relationship between control voltage and frequency with the required range of $1: 10,000$ covered in four sweeps, each sweep causing a decade change in frequency. A given frequency range depends on external resistances and a capacitor. In our scheme, four different timing capacitors are used, one for each sweep range, switched in a repetitive sequence. The switching circuit shown in Fig. 1 is also used for providing retrace pulses for the bootstrap ramp generator and external trigger input for stabilized oscilloscope display. For a large frequency sweep, the v.c.o. requires a control voltage decreasing from $V_{m a x}$ to $V_{\min }$ of $V_{c c}$ to $2 \mathrm{~V}_{c c} / 3+2$. The level shifter with inversion after the ramp generator shown in Fig. 1 solves this problem.

The v.c.o. output is attenuated and fed to the input of the device under test (d.u.t.), say an RC-coupled amplifier. The frequency-dependent output of the device under test is passed to the oscilloscope Y input.
K. Srivatsa, with a B.E. and M.Tech. in electronics, lectured at the University Visvesraraya College of Engineering, Bangalore, before becoming senior engineer (software) at Processor Systems Pty Ltd, Bangalore. His co-authors graduated from UVCE in 1982 with B. E. (Electronics) and have taken up jobs in power electronics (Sridhara Murthy) and digital microwave communication (R. Partha).

by K. Srivatsa, R. Partha and S. L. Sridharmurthy

Figure (2a) shows the clock input to the switching circuit, with a duty cycle of about 10%. Waveform (b) is derived from (a) with a period equal to four times the clock period. These pulses are passed to the bootstrap ramp generator circuit causing retrace.

The ramp at (c) has a frequency of

Fig. 2. Waveforms (a) to (f) are found at the nodes 1 to 6 in Fig. 1.

Fig. 1. 8038 v.c.o. covers four frequency ranges, and uses a switching circuit that also provides retrace pulses for the ramp generator and external trigger input. Numbered nodes have waveforms shown in Fig. 2.

Fig. 3. Full range of analyser is shown at (a), with an expansion at (b). Lower trace shows typical output from a tuned amplifier.

400 Hz . This waveform is inverted and level shifted before the v.c.o., whose output is shown in (d). Waveform at (e) has a period of four times the ramp period used for external sweep triggering to give a flicker-free display. Waveforms (f) to (i) switch the required capacitor into the v.c.o.

The performance of the analyser is demonstrated in Fig. 3. Photograph (a) shows the full range of v.c.o. and (b) is an expanded partial range. With this was the input to a tuned amplifier, the resulting output was as shown in (c). The detailed circuit is shown in Fig. 4. Design procedure is easily obtained from the data sheets ${ }^{1}$.

Improvements

For higher resolution, as in a tuned amplifier which requires a part of the frequency

Fig. 4. Regulated power supply is essential for this simple response analyser.
range, it must be possible to divide the entire sweep range into programmable sub ranges, and the above multisweep technique repeated within each sub range.

In the analyser, the sinewave output of the d.u.t. is fed directly to the Y input. For a proper plot a direct voltage must be
given to the Y input. It will be necessary to use a wideband average detector with a switched filter for a d.c. output. Switching of filter capacitors is done using the waveforms for switching the v.c.o. capacitors. Other techniques for improving the display can be found in reference 2.

References

1 Intersil application note ICL 8038.
2 Logarithmic audio sweep generator, by A. C. Ainslie. Wireless World Sept. 1979.

Parallel-fed voltage multiplier

Fig. 3. A simple low power square wave source, using a CMOS hex Schmitt inverter (40106B or 74C14).
sources. For fixed R the output resistance falls with decreasing T or increasing C until $T \ll N C R$, when a limiting minimum value $2 \mathrm{~N}^{2} \mathrm{R}$ is reached. The actual value of capacitance used is largely immaterial, as a compensatory change in T can always be made.
In low power operation c-mos gates have sufficiently low output resistance (a few hundred ohms) to act as drivers, espe-
cially if two or more gates are parallelled, Fig. 3. More effective buffering is needed at power levels greater than about 10 mW . A 15 -stage multiplier driven by this circuit with $\mathrm{T}=50 \mu \mathrm{~s}$ and $\mathrm{C}=10 \mathrm{nF}$ provided an open-circuit voltage of 137 V with a battery drain of 0.27 mA . The measured output resistance was $130 \mathrm{k} \Omega$. With $30 \mu \mathrm{~A}$ drawn from the output, total battery drain was 0.72 mA . Overall conversion efficiency (load power/battery power) is 60%, a very satisfactory result in view of the low power level. If miniature polyester layer capacitors are used in the multiplier chain the entire circuit occupies little more volume than the 9V PP3 battery supplying it.

Appendix

When the resistance R of the square-wave sources is not negligible, the waveform at X or Y with the multiplier output short-circuited takes the shape indicated in Fig. 4, in which the amplitude of the swing $\mathrm{V}_{2}-\mathrm{V}_{1}$ is less than its maximum value $V_{d d}$, owing to incomplete charging and discharging of the capacitors in

Fig. 4. The waveform seen at point X or Y of Fig 2 when R is not negligible.
each half cycle. The charge transferred from stage to stage in one cycle is $C\left(V_{2}-V_{1}\right)$ and the average short-circuit current is therefore $C\left(V_{2}-V_{1}\right) / T$. By inspection of Fig. 4:

$$
\begin{aligned}
& V_{1}=V_{2} e^{-1 / N R C} \\
& V_{1}=V^{2}
\end{aligned}
$$

$$
V_{2}=V_{d d}=V_{1}
$$

Hence $\mathrm{V}_{2}-\mathrm{V}_{1}=\mathrm{V}_{\mathrm{dd}}\left(1-\mathrm{e}^{-\mathrm{T} / \mathrm{NRC}}\right) /\left(\mathrm{i}+\mathrm{e}^{-\mathrm{T} / \mathrm{NRC}}\right)$

$$
=\mathrm{V}_{\mathrm{dd}} \tanh (\mathrm{~T} / 2 \mathrm{NRC})
$$

With ideal diodes the open-circuit output voltage is $N V_{d d}$ and so the output resistance is given by
$N V_{d d} T / C\left(V_{2}-V_{1}\right)=(N T / C) \operatorname{coth}(T / 2 N R C)$.

Digital filter design procedure - 3

Despite its limitations a high-pass digital filter is easily designed by 'inverting' its equivalent low-pass version (July issue). Except for sign changes, pole and zero parameters are the same.

Previous articles with this title were in the May and July 1983 issues, the first outlining how to design the digital equivalent of an analogue filter where the transfer function can be simply formulated. As an example, the article derived in detail the digital equivalent of a parallel tuned circuit, and one case had pole positions chosen with a simple microprocessor in mind. The second article covered the case where the z plane transfer function had to be derived from an analogue filter using a bilinear transformation, and a fourthorder low-pass Butterworth filter was used as an example.

One can argue that even in the analogue world a high-pass filter cannot really exist as it is not possible for a circuit to pass signals of an infinite frequency. The Butterworth low-pass filter has a flat response from zero up to its cut-off, but the flat response of the equivalent highpass filter cannot possibly extend from

(b)

Fig. 1. Spectra of ideal analogue and digital low-pass filters compare as at top diagram (a), while ideal analogue and digital highpass filters compare at bottom (b).
Frequency $f_{\text {max }}$ is the digital equivalent to an infinite analogue frequency.

by J. T. R.
 Sylvester-Bradley M.A.

cut-off to infinity. However, as explained in the previous article, with the digital version of the Butterworth low-pass filter, the digital equivalent to an infinite frequency is the maximum frequency that the digital filter can handle, that is half the sampling frequency.

The same applies to the high-pass digital filter, and within this limitation it can have a flat response from its cut-off frequency up to the digital equivalent of an infinite frequency ($f_{\text {max }}$), see Fig. 1, where the spectra (or more precisely, the Fourier transforms of the impulse responses) of both low-pass and highpass ideal analogue filters are compared with their digital equivalents. In the last mentioned the spectra are repeated at multiples (harmonics) of the sampling frequency.

Once the limitations of the high-pass filter are recognized, a filter which is the precise equivalent to its low-pass version is easily designed by inverting the position of the low-pass poles and zeros on the Z plane.

Figure 2 shows the spectrum and Zplane diagram of the high-pass filter designed in this way to be an exact
equivalent of the low-pass filter designed in the previous article (Fig. 10 of that article).

Pole and zero positions

The pole positions for the low-pass filter were

$$
\begin{array}{ll}
\text { pole 1 } & \mathrm{r}_{1} / \omega_{1} \mathrm{~T}=0.758 \angle 137.2^{\circ} \\
\text { pole } 2 & \mathrm{r}_{2} / \omega_{2} \mathrm{~T}=0.458 \angle 159.1^{\circ},
\end{array}
$$

with poles $3 \& 4$ as their conjugates. The four zeros were all located at $1.0 \angle 180^{\circ}$.

The pole and zero positions for the high-pass filter are found by adding 180° to the above positions, giving

$$
\begin{array}{ll}
\text { pole 1 } & \mathrm{r}_{1} / \omega_{1} \mathrm{~T}=0.758<42.8^{\circ} \\
\text { pole } 2 & \mathrm{r}_{2} / \omega_{2} \mathrm{~T}=0.458<20.9^{\circ},
\end{array}
$$

Fig. 2. Spectrum and Z-plane diagram and $|H(j \omega)|$ of digital equivalent of high-pass Butterworth filter.
with poles $3 \& 4$ as their conjugates, and with the four zeros located at $1.0 \angle 0^{\circ}$.
The spectrum of Fig. 2 shows a flat response from just above the cut-off frequency $\left(f_{c}\right)$ up to $f_{\text {max }}$ and

$$
\mathrm{f}_{\mathrm{c}}=1 / 8 \mathrm{f}_{\mathrm{s}}=1 / 4 \mathrm{f}_{\max } .
$$

Transfer function

For the high-pass filter $\mathrm{H}(\mathrm{z})=$
$\frac{(z-1)^{4}}{\left(z-r_{1} e^{j \omega}{ }^{T}\right)\left(z-r_{1} e^{-j \omega_{1}}{ }^{T}\right)\left(z-r_{2} e^{j \omega_{2}^{T}}\right)\left(z-r_{2} e^{-i \omega_{2} T}\right)}$
multiply the denominator to evaluate the pole parameters:
$\left(\mathrm{z}^{2}-2 \mathrm{zr}_{1} \cos \omega_{1} \mathrm{~T}+\mathrm{r}_{1}^{2}\right)\left(\mathrm{z}^{2}-2 \mathrm{zr}_{2} \cos \omega_{2} \mathrm{~T}+\mathrm{r}_{2}^{2}\right)$ $=z^{4}-2 z^{3} r_{1} \cos \omega_{1} T+z^{2} r_{1}^{2}-2 z^{3} r_{2} \cos \omega_{2} T+$
$4 z^{2} \mathrm{r}_{1} \mathrm{r}_{2} \cos \omega_{1} \mathrm{~T} \cos \omega_{2} \mathrm{~T}-2 \mathrm{zr} \mathrm{r}_{2} \cos \omega_{2} \mathrm{~T}+$ $\mathrm{z}^{2} \mathrm{r}_{2}^{2}-2 \mathrm{zr} \mathrm{r}_{1} \mathrm{r}_{2}^{2} \cos \omega_{1} \mathrm{~T}+\mathrm{r}_{1}^{2} \mathrm{r}^{2}$.

Collect like terms:

z^{4}	z^{3}	z^{2}	z^{1}	z^{0}
1	$-2 \mathrm{r}_{1} \cos \omega_{1} \mathrm{~T}$	r_{1}^{2}		
	$-2 \mathrm{r}_{2} \cos \omega_{2} \mathrm{~T}$	$4 \mathrm{r}_{1} \mathrm{r}_{2} \cos \omega_{1} \mathrm{~T} \cos \omega_{2} \mathrm{~T}$		
		r_{2}^{2}	$-2 \mathrm{r}_{2}^{2} \mathrm{r}_{2} \cos \omega_{2} \mathrm{~T}$	
			$-2 \mathrm{r}_{1} \mathrm{r}_{2} \cos \omega_{1} \mathrm{~T}$	$\mathrm{r}_{1}^{2} \mathrm{r}_{2}^{2}$

From the pole positions,
$\mathrm{r}_{1}=0.758$
$\omega_{1} \mathrm{~T}=42.8^{\circ} \quad \cos \omega_{1} \mathrm{~T}=0.7337$
$\mathrm{r}_{2}=0.458$
$\omega_{2} \mathrm{~T}=20.9^{\circ} \quad \cos \omega_{2} \mathrm{~T}=0.9342$.
Therefore the pole parameters are

z^{4}	z^{3}	z^{2}	z	z^{0}
a_{0}	a_{1}	a_{2}	a_{3}	a_{4}
1	-1.1123	0.5746		
	-0.8557	0.9518	-0.4917	
		0.2098	-0.2333	0.1205
$\Sigma 1$	-1.968	1.7362	-0.725	0.1205

The pole parameters, $a_{n}(n=0$ to 4$)$ for the high-pass filter above are the same, except for sign changes, as for the lowpass filter designed in the previous article. Some paperwork would therefore be avoidable if the high-pass filter is designed as the inverse of low-pass filter already designed.
The transfer function can now be written to include the pole parameters, and assuming unity gain, $\mathrm{H}(\mathrm{z})=$

$$
\begin{align*}
& \frac{(z-1)^{4}}{z^{4}-1.968 z^{3}+1.736 z^{2}-0.725 z+0.1205} \\
&=\frac{Y(z)}{X(z)}
\end{align*}
$$

In the numerator the zero parameters b_{0} to b_{4} can be found by expanding $(z-1)^{4}$ (or from Pascal's triangle):

$$
(z-1)^{4}=z^{4}-4 z^{3}+6 z^{2}-4 z+1 .
$$

Values for b_{n} are the same as for the lowpass filter, except for sign changes in b_{1}

Fig. 6. After the switching transient, pulses are transmitted but with no d.c. component. input is at $f_{\text {max }}$.

Fig. 7. In spite of being a "high-pass" filter, it cannot pass frequencies above $f_{\text {max }}$. Here the input is zero (after switching transient) with an input at the sampling frequency.

Fig. 8. Pulse train within the passband of the filter passed without distortion but with no d.c. component.

and b_{3}. Cross multiplying in the equation for $\mathrm{H}(\mathrm{z})$ and dividing by z^{4} gives the expression for $\mathrm{Y}(\mathrm{z})$:

$$
\begin{aligned}
Y(z)= & 1.968 Y(z) z^{-1}-1.734 Y(z) z^{-2}+ \\
& 0.725 Y(z) z^{-3}+0.1205 Y(z) z^{-4}+ \\
& X(z)-4 X(z) z^{-1}+ \\
& 6 X(z) z^{-2}-4 X(z) z^{-3}+z^{-4}
\end{aligned}
$$

The recurrence formula is therefore

$$
\begin{aligned}
y(n)= & 1.968 y(n-1)-1.734 y(n-2)+ \\
& 0.725 y(n-3)-0.1205 y(n-4)+ \\
& x(n)-4 x(n-1)+6 x(n-2)- \\
& 4 x(n-3)+x(n-4)
\end{aligned}
$$

which can be written directly into a computer program to realize the filter. The realization diagram and impulse response are shown in Figs 3 and 4.

The output with a long rectangular input pulse, as in Fig. 5, clearly shows the differentiating effect of the filter, together with some ringing at the cut-off frequency.

With an input at $f_{\max }$, (in Fig. 6 the on/off pulses are at half the sampling frequency) the output soon settles down to passing the pulses, but with their d.c. component removed. The output settles down after the ringing effect of the switching transient is over.

The filter is unable to pass a frequency equal to f_{s}, Fig. 7.

With a series of rectangular pulses three samples long their frequencies are well within the pass-band of the filter, and at Fig. 8 the pulse train is passed without much distortion (after the switching transient) but with the d.c. component removed.

In the fuly 1983 article, a slip occured on page 43, in which $X(z)$ was inadvertently repeated in the penultimate line.

If you read that article you will no doubt have spotted that the last two lines of text in column one on page 44 should have followed the recurrence formula. - dep. ed.

Who was Fessenden?

When J. D. Parker received the Fessenden Award from the National Marine Electronic Association, he had to confess that he did not know of Fessenden. So the NMEA provided him with an article from the January 1930 issue of Radio-Craft. Reginald A. Fessenden, it turned out, worked with Edison as an electrical engineer and as chief chemist. He later became professor of electrical engineering at Western University, Pittsburg and as early as 1895 began experimental work with radio waves. Through his knowledge of sound waves he conceived the idea of modulating a continuously oscillating radio wave and his was the first voice ever to be heard on radio. He invented the rectifying electrolytic detector, the successor to the coherer, and his other inventions included the r.f. alternator and the rotary spark-gap. He suggested the principle of heterodyning but was unable to go further until the development of suitable ocillator valves. He also spent a considerable time working on navigation and signalling at sea.

DSP, the next big step

Digital signal processing does the same things that are familiar to computer users. It executes algorithms. However in most computer applications relatively small batches of data are processed and they often do not require immediate processing. Many are familiar with the 'printout will be available next Tuesday' system. D.s.p. offers the ability to process great volumes of data with no observable delay, in 'real time'

The technique is not particularly new. It has been used in specialized military and aerospace programmes where ultra-fast real-time computation is said to be needed, and used very expensive array processors. What is new is the production of integrated circuits that make it feasible to perform tasks previously too expensive for general use or only possible on analogue equipment

An example of the use of d.s.p. is spectrum analysis of the vibrations in an engine on test. A. d.s.p. spectrum analyser receives signals from transducers attached to the engine. It converts the analogue signals to digital signals, processed through filters to analyse the frequency content of the vibrations and provide an instant printout or display on the current state-of-health of the engine. Such equipment might now be the size of a personal computer but the new integrated circuits will reduce this to a handful of chips. A car, for example, might be fitted with a self-diagnosed module and a collision-avoidance system. Similarly small packages could be used for speech analysis, speech synthesis or for helping to compensate for hearing, speech or sight impairments.

All d.s.p. algorithms have similar structures. They typically require the multiplication and totalling of strings of numbers. This structure is similar to the totalling of a bill where data (e.g. quantities) and coefficients (e.g. prices) are multiplied together to give subtotals which are, in turn, all added to give a grand total.

Such multiplication of data and coefficients is known as array processing. Typical algorithms are digital filtering, which may be used for improving the sig-nal-to-noise ratio; spectral analysis, which uses fast Fourier transforms to determine the frequency content of a signal; correlation, to compare signals; estimation, to decide on the validity of a signal that is incomplete or obscured by noise; and control.

A typical d.s.p. multiplier can complete a multiplication in 150 ns , about 1000 times faster than a standard microprocessor. Multipliers are typical building blocks for d.s.p. hardware, others are arithmetic logic units and sequencers.

Belying their name, Analog Devices have launched a 16 by 16 -bit multiplier accumulator (mac), the ADSP-1110. This c.mos device provides a 40 -bit internal accumulator and yet fits onto a standard 28 -pin cual in-line package. This is because it uses only a single port but operating from a 10 MHz clock, the mac can alternately load x and y operands and, when instructed, output the result.

The mac can be used as a low-cost computational accelerator in graphics systems where matrix multiplications are used in image manipulation to translate, rotate or zoom the image. Under control of the system's processor, the mac can multiply a four-by-four matrix and a four-by-one vector, requiring 16 operations in less than $4 \mu \mathrm{~s}$. It operates on six-bit instruction words, there are two control lines and an overflow flag. In the event of an overflow there is an eight-bit accumulator overflow register. The ceramic version of the ADSP-1110 is available in sample quantities. It can operate over the temperature range -55 to $125^{\circ} \mathrm{C}$. A plastics-housed version with a more modest temperature range, 0 to $75^{\circ} \mathrm{C}$ will be available soon. Prices are thought to be about $£ 75$ each if bought in quantities over 100. Analog Devices Ltd, East Molesey, Surrey KT8 OSN.

Electronic potato

If you have noticed that the potatoes you buy are less battered than before, this may be due to research carried out by the Scottish Institute for Agricultural Engineering (SIAE). They developed an electronic potato made out of plastic foam enclosing an Entran accelerometer, a transmitter and small rechargeable batteries. The transmitter sends out a v.h.f. radio signal, modulated when the transducer is activated. This potato is handled during harvesting and pototo grading along with a batch of real potatoes and the stages when the is at
most risk from damage can be monitored. A battery operated receiver and tape recorder are used to record the signals transmitted from the potato and 'voiceover' commentary may be recorded at the same time to identify the stages actually taking place. Machine adjustments, modifications or alterations to the operating speed can all be assessed with the electronic spud. Moreover it can also disguise itself as an apple or an onion which are also subject to mechanical handling. A similar technique has been used to monitor raspberry harvesting with electronic raspberries.

Do you remember Baird tv?

If you do, the Royal Television Society would like to get in touch with you. They are planning an event to mark the 50 years that have passed since the 30 -line service was terminated. They would like to identify as many of those 'pioneer viewers' as possible. The honorary secretary of the midland centre of the RTS is John Grantham, at BBC Network Production Centre, Pebble Mill Road, Birmingham, B5 7QQ.

Briton honoured

The tenth Marconi International Fellowship has been awarded to Professor Eric Ash. Dr Ash, Professor of Electronics at University College, London, has been made "in recognition of his outstanding leadership and pioneering work in the emerging technologies of acoustic surface wave device, optical fibre-based communications, acoustic optics and acoustic imaging".
Marconi International Fellowships were founded by Guglielmo Marconi's family and are awarded each year to further research by "a leading world scientist who has made a distinguished contribution to those areas of science and technology that improve the quality of life". Readers may recall that in 1982 the fellowship was awarded to Dr Arthur C. Clarke for first specifying the potentialities and technical requirements for the use of synchronous orbiting satellites for global communications.

High-Com stereo radio

A three month public trial of compressed f.m. broadcasts is under way in Federal Germany. The system had to offer no reduction in quality to the listener without an expander in the receiver and yet when an expander fitted there should be a noticeable difference. Not surprisingly, ARD chose a home-grown product -AEG-Telefunken's High-Com compander system. The system had to be modified to fit the requirements (see German radio show report, November 1983, page 75). After modification only two out of 13 'guinea pigs' could tell any difference between the compressed and uncompressed signal and then only in direct comparisons. Moreover, tests in cars showed that there was an audible improvement in v.h.f. reception of the compressed but unexpanded signals. It is thought that this was because the compressed signal increased the volume of quieter passages which were then more easily heard above the noise background.

Interface to be made in bulk

Swamped by the orders for the IEEE488 Procyon interface for the Acorn/BBC microcomputer, Cambridge Systems Technology have been forced to award an assembly contract for the unit to an outside manufacturer. The contract has gone to CVO Electronics of Stevenage.
The device has found a considerable number of customers in professional, scientific and educational users. A high proportion of scientific test instruments use 488 interfacing especially from such manufacturers as Hewlett Packard, CBM, Philips, and Tektronix, and therefore can be monitored or controlled through a BBC computer fitted with the Procyon unit.

TAT-8 will be optical

International agreement between 28 telecommunications authorities has given the go-ahead for TAT-8, which will use hairthin glass fibres. Two pairs of fibres will be incorporated in the cable. Each pair will operate digitally at $280 \mathrm{Mbit} / \mathrm{s}$ to give a total capacity of 8000 telephone circuits. This basic capacity can be increased by digital circuit multiplying equipment up to 40000 , although initially only a small proportion of this potential capacity will be used. Monomode transmission will give the cable this high capacity and allow a long spacing, 30 to 55 km , between light regenerators, the equivalent of repeaters on wire cables which are needed every 5 km .
The American end of the cable will start at Tuckerton, New Jersey and the main part, 5800 km will be provided by AT\&T Communications. Near the European continental shelf, a junction box will allow the cable to be split two ways. 520 km of cable will be laid by STC to join the junction box to Widemouth Bay, Cornwall, while another 310 km will branch off to Penmarche on the Brittany coast of France. The French branch will be the responsibility of a French company, Submarcom.
Cables and satellites share about half each the total capacity of telecommunications across the ocean. At present, including TAT-7, the cable capacity is about 11200 telephone circuits. TAT-8, expected to come into operation in 1988, will more than double this.

Home energy monitor

On page 36 of this issue is a project to build a differential temperature integrator to monitor temperature differences in a house. Designed by Bob Everett, a research fellow at the Open University, and engineered by the OU Electronics Com-

Amongst the facilities at the Daresbury Laboratory of the Science and Engineering Research Council are the world's largest tandem Van der Graaff accelerator and the world's first high energy electron accelerator dedicated to the production and use of synchroton radiation. In experiments to study the details of atomic nuclei, ions are accelerated to energy levels up to 20 MeV . Synchrotron radiation is emitted when electron have been accelerated to a peak level of 2 GeV and then deflected by the fields of storage ring magnets. It is used in atomic and molecular spectroscopy, X-ray spectroscopy and surface science. Microprocessor monitoring and alarm systems are provided by Sattcontrol of Aldershot.
mon Facility, 100 of them were made and installed in houses in Milton Keynes in the summer of 1981 as part of a series of energy conservation field trials. The Building Research Establishment put the device on its list of equipment suitable for such monitoring.

The device has proved to be useful and reliable and the OU has had a continuous stream of letters from architects and research students who would like to borrow one or have the circuit. But the potential for making them commercially is small: "The design will surely be superseded within a year or so by a suitable c.mos processor," says Bob Everett. The current cost of the components for the integrator excluding the p.c.b. and the box is a little over $£ 100$, whereas current competitive commercial systems is mainly restricted to microprocessor systems for ten or single channel ram-based devices at $£ 400$. "Although the world is full of well-intentioned people who would like to monitor the energy performance of their houses," says Everett, "there are few who are prepared to fork out that much money or harness the i / o port of their home computers to temperature monitoring for six months solid.
"It would be nice if it were possible to get the integrator as a kit," he commented, "the Open University would have no problems in selling the two double-sided circuit boards required, and the whole thing
would have the blessing of the Department of Energy, though it could be of more interest to countries such as Denmark and France where energy conservation research is not quite as unfashionable as it is here."

In brief

Giotto, the space probe which is to intercept Halley's Comet in 1986, has undergone a comprehensive check-out on its electrical and electromagnetic characteristics. The tests, on this European Space Agency project, have been carried out by British Aerospace Dynamics group, Bristol. The circular test chamber is 14 m in diameter and 12 m high, where the vehicle has been subjected to r.f. tests from 0.1 Hz to 18 GHz .

The formation of a new computer company and a new computer has been announced. The first product of Compass Computers, of Tetbury, Gloucestershire, will be the Compass 32 . This is a multiuser computer which will run CP/M, MSDos, or Unix under the DEC operating systems. Each user will have a Z80 or an 8088 processor and 64 KBytes of ram. Winchester disc memory will be available. The company is also planning a variety of add-on devices for the DEC range of computers which will include communications boards, mass storage systems, etc.

Under the heading "Moral persuasion" (Com munications Commentary, August issue) the claim is made that China has ceased to operate broadcast stations in the 7000 to 7100 kHz ama teur band. Whilst it may well be true that Chinese broadcast stations in this band are not heard in Europe, it is completely incorrect to say that these stations have quit the so-called amateur-exclusive band at $7000-7100 \mathrm{kHz}$.
As coordinator of the New Zealand Intruder Watch, and as coordinator for the Region 3 IARU Monitoring Service, I daily handle many complaints from amateurs regarding the use of this band by the Chinese broadcasting services - and others! My records for September and October show the following frequencies to be in current usage by the Chinese Service: 7010 , $7025,7030,7035,7040,7045,7050,7055$ and 7095 kHz .
With reference to the 7010 kHz frequency it appears that some rearrangement of schedules may have been made but the frequency is still used by China. The People's Liberation Army station on the nominal frequency of 7025 kHz , and the regular Radio Beijing station on 7055 kHz , hop around between the above noted frequencies depending on the degree of jamming they are being subjected to by the Russians.
The "hopping" from one frequency to another, without warning and often in the middle of an item, brings into question - at least in my mind - the value, if any, of this type of broadcasting.
Resolution 641 of WARC 1979 calls upon stations using this band to vacate it. To date this resolution has been ignored by China - using the "reservations" procedure of the ITU Convention, and simply ignored by Albania with its Radio Tirana on 7065, 7075 \& 7090 kHz .
Albania at least does have the excuse that it is not a signatory to the ITU Convention, not so China and the USSR, although we "down under" do wish somebody "up there" would show the Albanians how to operate their transmitters without the resultant daily high level 2nd harmonics on 20 metres.

The USSR at times re-broadcasts one of its Mayac (home service) programmes on top of Radio Beijing - grossly over modulated - as a jamming technique, and has the lower sideband of its 7100 kHz transmissions in the amateur band. To say nothing of the intense jamming, with 2 nd and 3 rd harmonics appearing on other amateur bands.
The 'footnoting" into the $7000-7050 \mathrm{kHz}$ portion of this band by the fixed services of 13 countries plus its unauthorized use by the Russian fixed service, and the broadcast service as noted above, brings into mockery the whole concept of an "exclusive" band for the amateur service.
A recent random check of this band by the WIA Intruder Watch, and later confirmed by the NZART Intruder Watch, showed that between the hours of 1900 to 1925 u.t.c. on the 13th July 1983 there were 11 broadcast stations present in this band plus seven jammers, and that the activities of these stations accounted for 70.7% of the available 100 kHz . At this date' (28-11-83) the situation has not changed appreciably!
We can only hope that the 1984 WARC for
h.f. broadcasters will go some way to alleviate the current situation on this band.
R. E. Knowles, ZL1BAD/ZL61W

Coordinator NZART Intruder Watch
Tuakau
New Zealand

RADIO SOFTWARE

With regard to your picture coverage of our Computer Programme, Datarama, and the subsequent reponse from our colleagues at BBC Radio Leeds claiming that they were the true pioneers of Radiosoftware, I should like to make few salient points.
Firstly, we are not in the business of claiming firsts: we believe the true originators of Radiosoftware as a broadcasting fact to be The Dutch Hobby Scoop Programme,* which began doing it in 1978
Secondly the Datarama team, unlike it would seem the BBC Leeds team and others who've followed suit, conducted its own 'experimental data transmissions' under controlled conditions and out of broadcasting hours, i.e. not during programme time. When the first series of Datarama went on air in March 1983 Radiosoftware, at least in our hands had passed beyond the stage of experiment and was a properly researched piece of broadcast material. Within the current series, Radiosoftware forms as natural a part of the programme, as does conversation. There is no more experimentation necessary. It is time to get on with it.
Thirdly, in conjunction with the IBA, we have produced outline specifications which we hope will form the basis of future technical specifications for any station wishing to broadcast Radiosoftware. These should be available from local IBA officers in all regions

Datarama is broadcast weekly on Radio West (in the Avon area), and on Wiltshire Radio (Swindon/W. Wilts) and very shortly on CBC Radio (Cardiff). Since its inception, each programme has included Radiosoftware for at least one microcomputer.
On the RW transmission, Datarama is supplemented by longer programmes for more micros transmitted after the stations closedown. These 'Nightfile' tapes are repeated at $1 / 4$ hour intervals throughout the night, a technique copied by Barry Norman's excellent 'Chip shop take-away service,' except that ours are free, and theirs require you to spend $£ 3.95$ on a translator kit, which is still not available at the time of writing!
Tim Lyons
Chief Engineer
Radio West
Bristol
*See also News, November, 1982.

ENERGY SAVING

I read Mr MacHarg's article and the subsequent correspondence with interest. Several of my colleagues have an interest in optimizing heating systems, and many lunch-time conversations have taken place, during which useful exchanges of ideas occur. Many different ideas are aired; individuals rate different aspects of a system with varied importance. To my mind it is necessary to get back to basics if we are to make decisions which enable us to optimize a system.
The object of a heating system is to burn fuel, thereby warming the house. A stable situation exists when heat input equals heat loss. Therefore the better insulated the property, the less energy we have to put in. This may seem very obvious, but is the first step.
Assuming, for the moment, that boiler efficiency is not affected by flame height, then in theory we could adjust the flame height to provide water at a constant temperature, so that the heat lost by the radiators was equal to the heat lost by the house to the outside world

The usual type of system does not work this way; we rely on a variable burner duty cycle followed by the integrating effect of large ther mal masses to iron out the discontinuity. Having said this we next need to define the areas of waste. There is the basic loss of heat from the building, and there is heat loss up the boiler flue. If the boiler was 100% efficient, all the heat would go into the house. Because of the effects of integration, the temperature will rise before a control thermostat operates, but continue to do so afterwards. It is recognised that the thermal inertia is normally too great to allow a simple thermostat to be used, which is why the "accelerator" heating resistor is fitted into the majority of room thermostats.

Taken in isolation, this arrangement, if operating in a constant temperature, is a duty cycle control device. Fly allowing a passage of air through this device the duty cycle is modified by ambient temperature as well as by manipula tion of the control. Provided that the rate of heating by the accelerator resistor can be adjusted to suit the thermal inertia of the system, a simple means of optimization is available. Unfortunately, most proprietary items do not have such a facility, so a basically sound principle is nearly always subject to maladjustment in a particular installation.

I believe that it is undesirable to have a boiler cycle continuously, particularly when only the pump is controlled by a thermostat. Unfortuna tely Mr Ball, whose system employs a room thermostat to control both pump and boiler simultaneously, seems to have received short shrift from Mr MacHarg in the correspondence column. This is probably because Mr Ball has not gone into as much analysis of his simple system as is desirable. I have used a similar, but not identical, system for several years. The system operates successfully because not only does it avoid excessive cycling of the boiler, but also keeps the boiler temperature as low as possible consistent with providing adequate heat, as advocated by Mr Hargis. The less required, the shorter the duty cycle becomes (controlled by the thermostat with accelerator resistor) and consequently, the lower is the maximum water temperature attained throughout the cycle Therefore the heating effect on the surrounding air is a function of both time and rising water temperature - a point which did not emerge in Mr Ball's letter.

The colder the weather, the greater the heat loss from the house, the longer will be the thermostat (and therefore, boiler) on duty cycle and the hotter the radiators become. To my mind, this is exactly what a sensible system should do. It is only under the most adverse conditions that I have known the boiler thermostat (set to $77^{\circ} \mathrm{C}$) to operate. The system works well because I have taken care to "tune" the accelerator resistor as mentioned earlier, using a modified commercial thermostat, placed in a carefully chosen position.
Economies can be made by modifying simple systems as described. First, I have delayed the pump start and stop relative to the controlled boiler cycle. The boiler has a cast-iron heat exchanger, and a pump delay of about 82 seconds enables the boiler temperature to rise quickly, but without overshoot, after ignition and also enables a substantial amount of heat to be extracted from the iron after the flame is extinguished

Another economy is made by designing the domestic hot water heating facility to latch up, so it is not defeated by the clock. This enables the water heating cycle to be completed before the boiler is turned off. The facility is particularly helpful in summer, when it prevents the need for re-ignition of the boiler at the start of the following day.

I should also point out that I heat the whole house consistently; radiator valves have been adjusted and are never normally touched Furthermore I use no supplementary heating; this would upset the balance of the system. If supplementary heating is to be used, the subject of control becomes more complex and thermostatic radiator valves are likely to be needed This would result in changes of heat output in other areas if the duty-cycle system I have described is used.

Finally, I believe long electrical time constants to be a potential problem because of the large values of resistance and capacitance needed. The diagram shows the bare bones of the 82 second delay referred to earlier. $\mathrm{A} \div 2^{12}$ counter counts 50 Hz mains pulses, but is nor mally held in the reset condition. The "go" control signal (which has also fired the boiler) causes the output from the interface and Schmitt to go high. A high or low excursion on this line results in a pulse emerging from 4030A, which sets the latch. Output goes high, maintaining a low at the output of B. Output Q goes low and removes the reset from the counter,
which then counts $2^{12}=4096$ pulses at 50 per second; this takes 81.92 seconds. The output from Q12? goes high and resets the latch; B now has only one high on its inputs - its output goes high and the pump starts. Conversely, when the control input goes low, the counter is started again which sets Q high. As the other input to 4030 B is now low, the pump keeps running until the circuit times out.
Keith Cummins
Southampton
Hampshire

LOGIC NOISE MARGINS

It is standard practice to talk of noise margins in terms of noise voltage. The meaning of this is, to say the least, vague, although it has its uses. For instance t.t.1. is quoted as having a noise margin of 0.9 volts, so it is obviously asking for trouble to use discrete diodes to expand the fan in, a reasonably common malpractice, because it reduces the margin to 0.2 volts.

The c-mos 4000 series is quoted as having a noise margin of 45% of the supply voltage clearly superior as compared with t.t.l. - but this is only half the story. When signal lines are short as is desirable and likely within a piece of equipment, they take their impedence from the driving output according to the slogan "Low Z rules, OK?"

Short lines driven by t.t.l. are at an impedance of about 100 and the noise power necessary to overcome the noise voltage margin is $\mathrm{V}^{2} / \mathrm{R}=0.9^{2} / 100$ or about 8 mW . The output resistance of 4000 series c -mos is $1.5 \mathrm{k} \Omega$ to $2 \mathrm{k} \Omega$, so with a supply voltage of 5 V the power needed to raise (or lower) the potential on the line by 45% is $2.25^{2} / 2000 \approx 2.5 \mathrm{~mW}$. The noise power margin of t.t.l. is over three times as great at this supply voltage, see diagram.
It is worth noting that 54 HC and 74 HC logic has a much lower output resistance and a noise voltage margain of about 1.5 volts. Taking output resistance as 100Ω - it is in that parish though I have not seen it quoted - this requires a noise power of $1.5^{2} / 100=22.5 \mathrm{~mW}$ to overcome the noise voltage margin.
Using the same noise power concept, 4000 series c-mos requires a supply voltage of 9 volts to match the t.t.l. margain of 8 mW , and only at a supply voltage of 15 V does it achieve a noise power margin of 23 mW , the equal in this respect of 74 HCXX .

So far I have been considering short lines which take their impedance from the driving output. Long lines are a different matter. Correct termination is vital to establish the designed (low) impedance of the line and therefore confirm the designed noise power margin of the receiver device. It also performs its well known task of minimising reflection and radiation, two most potent causes of noise and crosstalk. Once again we are specifying and maximizing the noise power margin.

Our evalution is not yet quite complete. An additional factor to be taken into account is the frequency response of the logic. 4000 c -mos just does not have time to propagate a noise spike of width 10 ns , so its tardiness has considerable advantage if the system can be run at a frequency suitable to this logic family. The noise is effectively band limited and this is where 4000 c -mos really scores in noise immunity. The old 4049 buffer was particularly good in this respect, having a frequency limit of about 180 kHz . Updated versions have a propagation delay of 60 ns. Modern fast logic has a much greater bandwidth and is therefore vulnerable also to high frequency noise. So we are concerned with a balance of two factors; the noise power margin and the noise power bandwidth, both here defined by the characteristics of the logic. It is desirable to arrive at a figure of merit for noise immunity, taking both factors into account and expressed in terms which are, ideally, self-explanatory. I would welcome comments on the subject.
Tim Hartigan
Ballsbridge
Dublin

FORTH PROCESSORS

In his article and letter in November Wireless World Mr Woodroffe is less scrupulous than the Intel benchmark report that he obliquely criticises. This report, which compares the 68 B 09 with the 8088 , can only really be faulted on the grounds that no allowance is made for code frequency in averaging out relative execution times and code sizes. It indicates, quite correctly, that re-entrancy is handled faster by the 6809 .

By contrast, the table presented in his article by Mr Woodroffe can be faulted on several grounds. First, it omits the Texas 9995 processor, which competes in the same market sector as the 6809 (64 k address, nonsegmented). I wonder why? The 9995 has a non-multiplexed bus and fast 16 -bit parallel onboard ram; for 450 ns access time its bus cycle is 670 ns , versus

800 for the 8088 and 1000 for the 6809. It also makes use of prefetch.

Second, and more serious, some funny arithmetic occurs before the bottom line. The relative speeds for the 6809 and the 8088 are given as 4.11 and 3.19 respectively although the 8088 actually executes its code faster. This is derived from this "speed for 450 nanosecond access memory." I have news for Mr Woodroffe; in the real world it is not desirable to run a processor with a bus cycle allowing 695 ns access at a speed which gives 450 ns access. It tends not to work In the real world the 8088 is faster by nearly 30%. Of course it would be perfectly practical to use a faster 6809 - the 68 A or B 09 options but then he should say so. If he is not actually using these faster devices in his own computer, he should tell us what access time his hardware actually requires, and recalculate his last line on that basis.

The third objection, however, is that in reality the 8088 programmer is unlikely to use the "JMP NEXT", as this requires that NEXT be within 127 bytes, necessitating numerous NEXTs scattered throughout the code rather like Underground stations (I nearly wrote public conveniences) in London. He or she will accept the 9 -byte inline code (typical 6809 code is twice as long as typical 8088 code), losing 15 clocks and giving 8.6 microseconds. This execution time is slightly less than for the 6809 running at 1.5 MHz with a comparable memory access time. The point, surely, is that the 8088 is the more expensive device, and the time and effort required to use features like segmentation mean that they are likely to be wasted in a small domestic microcomputer. There is no point in buying unused silicon.

The comments about code usage I agree with, except as regards the very arbitrary $80 / 20$ ratio, seen quoted elsewhere as $75 / 25,1 / 3 / 2 / 3$ - it is true that in most high level languages most of the time is spent pushing garbage to keep the system happy. This is why high level languages waste silicon and time while keeping programmers employed. However, the picture can change dramatically as soon as real arithmetic starts to happen, especially when trigonometry is involved. The makers of home computers assume, generally correctly, that most users will never stretch the resources of the mathematics I would have thought, however, that electronic engineers differed in this respect; in the days when I was limited to a programmable calculator I remember calculations that exercised the poor little thing for hours on end, leading me to wish a bleeper had been fitted to announce the result. For this reason I would have thought that, again, the TMS9995 would have been a strong contender for a CPU because of its ability to handle 16 bit signed and unsigned multiplication and division in the instruction set

Perhaps I should add that I am in no way connected with any semiconductor manufacturer.
Martin D. Bacon
Taunton
Somerse

WORLD TIMING

I am pleased that Dr J. D. H. Pilkington, head of the time department at Royal Greenwich Observatory, provided better background to the subject of "World Timing" than we were authorized to in our article on the subject; WW October 1983

In our laboratory we make use of the special transmissions which disseminate UTC and CAT (co-ordinated atomic time) for calibrating and monitoring frequency sources and transmis-
sions. Therefore, one of the purposes of our article was to draw attention to the less tightly co-ordinated h.f. broadcast (and m.f.) frequencies by broadcasters since as we said, "errors of frequency can in fact be more of a nuisance than an error of time"

Indeed, in an European Broadcasting Union Report (SBP66) entitled "A study of technical questions of interest to the WARC 1979", it was pointed out (paragraph 1.4) that the then frequency tolerance of l.f./m.f. and h.f. transmitters was unnecessarily generous, and that the stability of all carriers should be within 1 Hz of the nominal assigned frequency by 31 December, 1984. It would appear from Dr Pilkington's letter that some broadcast authorities could have a busy year.
R. C. V. Macario

Department of Electrical and Electronic
Engineering
University College of Swansea

IMPLANT FOR BLADDER CONTROL

You may be interested to know that since the article on the electronic implant for bladder control was published (January issue) the device is continuing to be used to help paraplegic patients. The MRC workers who developed the implant tell me that 36 patients have now been fitted with this neurological prosthesis.
May I please correct a couple of small errors which canne into the article during your preparation for publication? First, the article should have stated that the patient's hand-held transmitter (Fig. 8) was developed by T. A. Perkins of the MRC Neurological Prostheses Unit. Secondly, reference 3 should be to Proc. $I E E$, and not $I E E E$.
Tom Ivall
Staines
Middlesex

BEHIND THE MICRO

I've just read your articles 'Behind the micro' with interest, since I am thinking of expanding $m y$ interests in that direction.

Interesting . . . Well, yes, but I feel the writers haven't ever been in an actual shop to make enquiries!

The problem is, alas, compatibility. It's all very well to say that peripherals are available, but if I plug a device made by X into Y 's computer, will it work - or will I get a cloud of smoke?

Don't tell me to 'consult the literature'!
So far as I can see, it is deliberately written in such a way as to discourage any such experiments!

I know what I want . . . but to do it I need to join together gadgets from SIX different makers! But can I, I just don't know!
Ronald G. Young
Peacehaven
East Sussex

DEAD WATCH TIMERS

To cope with just the sort of situation referred to by A. Roscoe under "Thunderstruck" (Letters February) we routinely include a "dead watch timer" in most of our new products. We also recommend our clients to use a power supply that outputs an advance warning of impending failure. These two hardware features when well integrated into the software enable
mains-related problems to be dramatically re duced, provided a third and equally vital facility is incorporated: an area of battery-backed ram to hold critical variables.

The basic idea of the dead watch timer is to have the software periodically trigger a, retriggerable monostable. As long as the software does this the monostable is prevented from reaching time out. If this happens a maskable interrupt is forced into the microprocessor. This causes activation of a special restart routine.

These facilities are essential when the system is required to "remember" long-term accumulating variables e.g. p-i-d controllers.
Steven Harris
Lodge Associates
Portslade
East Sussex

INDUCTANCE MEASUREMENT

I don't know whether the subtitle 'Simple practical method, hard to find in the textbooks' is due to the author, D. R. Fownes, or to you, but while I agree with the first half of it I think I have reason to be surprised by the second. From the sales and library loans, I venture to claim that the obvious textbook in which to look for simple practical methods of measuring inductance is my 'Radio \& Electronic Laboratory Handbook', and Mr Fownes's method has been described in every edition of it from the first in 1938 (issued then by WW) to the 9th dated 1980. It was entitled 'The Three-voltages Method'.

I am obliged to Mr Fownes for deriving a simple formula for calculating the inductance. On the other hand most iron-cored inductors need to be measured with known variable amounts of d.c. flowing through them, and my measuring circuit has always shown this. Perhaps nowadays my stress on the voltmeter taking negligible current is no longer needed.
By the way, my letter in your October issue questioning the appropriateness of the term 'current dumping' having evoked no defence of it, I infer that there is no defence, and it is yet another misuse of a word in electronic terminology (e.g. 'slew rate', 'mixer' and 'attenuation distortion').
M. G. Scroggie

Bexhill
East Sussex

THE NEW BUREAUCRACY

Engineers will be regretful, but not surprised, that only one programmer in the country failed the von Neumann loyalty test. (Wireless World Letters, August and October 1983.)

However, D. W. Scott then writes,
"He - and MAPCON - still have not realised that machine architecture need have little to do with its technological implementation."
This statement beautifully illustrates the blocking position taken by programmers, preventing advances in the art. If, for instance, we can simulate a cam in a ram, then why should we ever want to build a cam? (If we can get there by horse and carriage, then why do we need a motor car?)
Ivor Catt
St. Albans
Hertfordshire

Apple Macintosh

The latest Apple computer is to be launched in the UK in April. Known as the Macintosh, it offers similar facilities to the Apple Lisa; it is menu driven from a display resembling a desk top where the facilities that a business executive may need can be pointed to with a cursor and selected for use by the push of a button. So notes may be scribbled on a pad, memos, expenses sheets, calculator, graph pad etc. are all available on the screen. They are selected by moving the cursor with a 'mouse', a small rolling box whose movements across the desk top are reproduced on the notional desk-top on the screen.

Macintosh uses a $16 / 32$-bit Motorola MC68000 processor and includes 64 K of rom and 128 K of ram . A 512 K version is due later in the year. The operating system is both rom and disc based and the computer includes a 3.5 in disc drive. Each disk has a capacity of up to 400 K bytes. There is a port for an optional additional disc drive, two RS232C/422 serial ports for attaching printers or for communicating through a modem. Sound facilities give polyphonic sound over more than 12 octaves and are capable of reproducing human speech through the built-in speaker. Apple is developing a point-to-point interconnection bus and the interface is already built in to Macintosh. The integral 9 in c.r.t display offers a bit-mapped 512 by 342 pixel resolution. There is a clock/calendar chip. Although not intended as a portable computer, it does have a carrying handle and at 7.7 kg it weighs less than many socalled portables.
The price of Macintosh has not yet been fixed, though in the US it is likely to be about $\$ 3,000$.
'Apple have produced two software packages for Macintosh; MacWrite word processing and MacDraw graphics. Lotus have developed a Macintosh version of 1-2-3, a spread-sheet and filing system and a number of software houses are preparing programs. Apple Computer (UK) Ltd, Eastman Way, Hemel Hempstead, Herts HP2 7HQ.

WW 303

Oric Atmos

The Oric 1 computer at the cheap home computer end of the market was never very successful. The

makers made a mistake in providing prototypes rather than complete machines to the computer press who were very unkind to it. A cynical definition of the Oric 1 was "prototype for the Oric 2". The faults were compounded by the non-appearance of many promised additions and peripherals; a disc drive, a communications modem with a teletextdecoder, a rom cartridge with "super extended Basic as powerful as the BBC".

The principal difference between the Oric 1 and the Atmos is the new version of the rom operating system which has, according to Oric, not only ironed out the Oric bugs but also some others inherent in the Microsoft software. A number of additional commands have been added; especially to the cassette routines so that programs can now be verified after they have been saved. Arrays can now be stored and recalled without recourse to machine code.
The Basic is adequate and most of the commands that you would expect to find are there. We were surprised to note that there has been no attempt to improve on the abysmal line editing facility. In this respect many other computers also claiming to use 'extended Microsoft Basic' are much better (for example the Dragon and the Tandy Color Computer). Serial attributes, to change the colour or style of
characters on the screen, take some getting used to but have the advantage of taking up very little memory space.
Also provided is a cassette which has a graphics display program showing how good the display facilities are. Included is an animation of a flying duck which is very impressive especially as it is written in Basic. The program may be broken in to and listed to show how a particular effect is achieved. Also on the tape is a machine-code facility to overcome some of the frustrations of program loading mentioned above; it enables the user to override the error-checking routine. This overcomes the most common problems caused by errors inthe 'header' and leading portion of the tape, which have no relevance to the actual program.
The specification for the Atmos includes a 6502 A processor running at $1 \mathrm{MHz}, 48 \mathrm{~K} \mathrm{ram}, 16 \mathrm{~K} \mathrm{rom}, 57$ keys and a concealed reset button for a 'warm' reset; i.e. one that does not lose any data. The screen format offers eight foreground and the same eight background colours for a text screen of 40 columns of 28 lines and a character set very similar to teletext (and BBC Mode 7) with standard ascii characters, double height and flashing characters and up to 80 userdefineable characters. Highresolution graphics offer 240 by 200
pixels in eight colours and there are line, circle and point facilities.
Areas of the screen may be "filled" with a chosen colour. Three channels of sound over eight octaves with additional white noise and envelope control are output through a powerful internal speaker or may be output to a hi-fi system. There is an expansion port for the addition of some peripheral equipment, such as disc drives or a-to-d converters, a Centronics printer port, a modulated tv output as well as an RGB output for a colour monitor.

The Oric printer/plotter using four-coloured ball point pens has been re-styled to match the Atmos colour scheme and the longpromised 3in disc drive with 160 K bytes per side and a transfer rate of $250 \mathrm{Kbit} / \mathrm{s}$ has been announcedbut at the time of writing we have not been able to get hold of one.

Those who already have an Oric 1 need not despair or throw it in the bin. Oric are looking "very seriously" at the possibility of providing an upgrade kit to turn an Oric 1 into an Atmos. This could cost about $£ 50.160000$ Oric 1s were sold so this could be a major operation. Oric Products International Ltd, Coworth Park, London Road, Ascot, Berks SL5 7SE.
WW 304

$20 \mathrm{MHz}+5 \mathrm{mV} /$ Division TRiO
 - $5 \mathrm{mV} / \mathrm{div}$ Sensitivity over the Entire Bandwidth.

Addition and Subtraction of Waveforms.

WW - 066 FOR FURTHER DETAILS

- Bright, High Resolution Display.

Observation of Video Signals.

* Wide Sweep Time Range.

House of Instruments Ltd. Clifton Chambers, 62 High Street Saffron Walden, Essex CB 10 1EE Tel: (0799) 24922 Telex: 818750

TESTINSTRUMEVTS

A wide range of high performance instruments that put professional test capability on your bench.

COUNTERS - TF200 10 Hz to 200 MHz . TFO 4010 Hz to 40 MHz . PF प200A 20 Hz to 200 MHz (hand-held model); TP600 prescales to 600 MHz, TP1000 prescales to 1000 MHz

MULTIMETERS - TM351 0.1\% 31/2 digit LCD. TM356 0.25\% $31 / 2$ digit LCD TM355 0 25 \% 3 1/2 digit LED: TM354 075\% 31⁄2 digit LCD (hand-helc model) TM451 0.03\% 4 $1 / 2$ LCD digit with autoranging and sample hold
OSCILLOSCOPE - SC110A $10 \mathrm{MHz}, 10 \mathrm{mV}$ sensitivity, 40 mm CRT w th 6 mm graticule divisions.

THERMOMETERS TH3O1 $-50^{\circ} \mathrm{C}$ to $+750^{\circ} \mathrm{C}, 1^{\circ}$ resolution; TH3O2 $-40^{\circ} \mathrm{C}$ to $+1100^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{F}$ to $+2000^{\circ} \mathrm{F}, 0.1^{\circ}$ and 1° resolution. Both accept any type K thermocouple

GENERATORS - TG101 02Hz to 200 kHz Function Generator, Sine, Square, Triangle Waveforms; TG102 0.2Hz to 2 MHz Function Generator, Sine, Square, Triangle Waveforms; TG105 5 Hz to 5 MHz Pulse Generator, Free-Run, Gated or Triggered Modes

LOGIC ANALYSERS - TA2080 8 channel 20 MHz , TA2160 16 channel 20 MHz ACCESSORIES - Bench rack, test leads, carrying cases, mains adeptors, probes. thermocouple probes; microprocessor disassembly options.

For further information contact
Thandar Electronics Ltd, London Road, St Ives,
Huntingdon, Cambridgeshire PE174 4
Telephone (0480) 64646. Telex: 32250

THE GOULD OS300 DUAL-TRACE 20MHz'SCOPE

The OS300: as tough as the environment you use it in, e.g. measuring vibration characteristics of rotating machinery and mechanical structures on site.

A tough, professional instrument you can trust - at a price you can afford! Built to do more - safely, reliably and longer.

Complete with a 2 -year guarantee. This robust and highly portable oscilloscope has obvious applications in test, production, service and R \& D areas.

As some of the specification highlights make clear: *True 20 MHz operation - compare its maximum display amplitude at full bandwidth
with competitors; *Continuously variable amplifier sensitivity with no loss of bandwidth from $2 \mathrm{mV} / \mathrm{cm}$ to $25 \mathrm{~V} / \mathrm{cm}$; \star Differential measurements can be made using the channel 2 'add' and 'invert' controls; $\star X-Y$ operation for frequency and phase shift measurements; *New type CRT with quick-heat cathode to reduce operational delays and P43 phosphor for a brighter display.

And many other features designed specifically for you!

Comprehensive data is yours for the asking. On this tough little 'scope.

Sales Department, Design \& Test Systems Division, Gould Instruments Ltd., Roebuck Road, Hainault, IIford, Essex IG6 3UE. Telephone: 01-500 1000. Telex: 26375.

Electronics

Non-storage oscilloscopes up to 100MHz

Instruments currently available on the UK market

In the time since the last oscilloscope review appeared in Wireless World - a survey of portable types - it has become unnecessary to classify them in such a way, since the majority are now easily portable. Indeed, it is becoming increasingly difficult to classify oscilloscopes in any way at all: some of the functions of the more modern test instruments are those of an oscilloscope, but in some cases form only a small part of the instrument's repertoire. Logic analysis, spectrum analysis, waveform recording and even computing are now taken in hand by the latest, high-end equipment and the distinctions become blurred.
Not many instruments now exist of the type intended solely for displaying a trace. Very extensive measuring facilities in both axes are offered and, in the case of digital oscilloscopes, these can be made to an extremely high level of accuracy, sometimes with the result displayed on the screen.

To enable readers who may be out of touch with modern oscilloscope design and the characteristics and facilities provided, the terms used in manufacturers' data sheets need explanation. The first part of this survey is therefore devoted to a glossary of terms.

Signal path

Bandwidth is the passband of the Y amplifier or amplifiers, measured at the -3 dB points. Normally, oscilloscope amplifiers are directly coupled, so that the amplitude response extends to zero frequency: a capacitor can usually be switched in to allow small events on a large d.c. level to appear on the screen, the bandwidth then being limited to around 10 Hz rather than zero.

In some cases, it is possible to offset the d.c. by means of a panel control to achieve the same effect without loss of low frequencies. The bandwidth of the Y amplifier is the characteristic used to indicate the kind of oscilloscope under consideration.
Rise-time is the response time of the Y amplifier to an infinitely steep step. If the amplifier's frequency/amplitude response has a smooth roll-off at high frequencies, as they all do, then the rise time in nanoseconds can be found from the bandwidth in megahertz by the expression $t_{r}=350 / \mathrm{f}$. A

10MHz Trio CS1562A (top). Tektronix 2236100 MHz oscilloscope, with digital display and multimeter function.
bandwidth of 100 MHz will give rise to an amplifier rise time of 3.5 ns . Since, however, voltage steps are not infinitely steep, the displayed rise time (taken from 10% to 90% of the excursion) will always be longer than this, and is equal to $\sqrt{t_{r a}+t_{r s}}$, where $t_{r a}$ is the amplifier rise time and $t_{r s}$ is that of the step itself.
Deflection factor is often termed Y sensitivity and is the amount of vertical deflection of the spot on the screen for a given input voltage to the amplifier. It is measured in millivolts per division of the graticule or per centimetre. A common figure is $5 \mathrm{mV} / \mathrm{div}$ and may not be constant over the whole bandwidth of the amplifier: sometimes an increased sensitivity can be
obtained by sacrificing bandwidth and rise time. The sensitivity is controlled at the front panel by a switch, working in the 1 , 2,5 sequence, and often there is a twoposition auxiliary switch to increase the sensitivity by a factor of 10 . When a continuously variable gain control is fitted, the amplifier is not calibrated unless the control is at the end of its travel.
Display modes describe the way in which the input signals are presented on screen, in dual-trace oscilloscopes. A front-panel control selects for display channel 1 , channel 2 (one of which can often be inverted), ch1 and ch2 alternately, ch1 and ch2 effectively simultaneously by chopping from one to the other at high speed so that

$\begin{aligned} & \overline{ \pm} \\ & \bar{\square} \\ & \Sigma \\ & \hline \end{aligned}$					$\begin{aligned} & \text { ᄃ } \\ & \text { む̀ } \\ & \text { 心 } \end{aligned}$		\#		
BK/Dynascan									
1590	100	$5(\times 5)$	4	$20(\times 10)-$ -	$8 \times 10 \mathrm{~cm}$	16kV			WW501
1570	80	$5(\times 5)$	4	$50(\times 10)-$ -	$8 \times 10 \mathrm{~cm}$	12 kV	1285	V-mode trigger	
1560	60	1 (CH3-0.1)	2	$500(\times 10)$ - -	$8 \times 10 \mathrm{~cm}$	16 kV	1139	Trig, holdoff. Auto focus. XY operation. V-mode	
1522	20	1	${ }_{2}^{2}$	$\left.{ }_{200}^{100} \times 10\right)$ -	$8 \times 10 \mathrm{~cm}$	12kV	941	XY. V-mode	
1466A	10	1	1	500 (x10)	$8 \times 10 \mathrm{~cm}$	${ }_{2} \mathbf{2 k V}$	670 380	XYY. ${ }^{\text {X }}$-mode	
1476A	10	1	2	500 (x10) -	$8 \times 10 \mathrm{~cm}$	2 kV	460	Dual-trace version of 1466A	
1535 A	35	2	2	100 (x5) -	$8 \times 10 \mathrm{~cm}$	6 kV	745	Variable trigger hold off. Differential	
14798	30	5	2	$200(\times 5)$ -	$8 \times 10 \mathrm{~cm}$	6 kV	700	XY. R.f. detector triggering	
1477	15	10	2	500 (x5) -	$8 \times 10 \mathrm{~cm}$	2 kV	453	XY	
1405 1420	5	10	1	1000 aprx.			188	Free-running time base, synchronized	
1435	15 15	10 2	${ }_{2}^{2}$	$1000(\times 10)$ 500 (x5)	$4 \times 5 \mathrm{~cm}$ $4.8 \times 6 \mathrm{~cm}$	$\stackrel{1 \mathrm{kV}}{15 \mathrm{kV}}$	650 677	Mains/battery	
Crotech									
3337	30	5	2	200 (x5) -	$8 \times 10 \mathrm{~cm}$	10kV	405	XY	WW502
3132	20	2	2	500 (x5) -	$8 \times 10 \mathrm{~cm}$		283	XY. Tester for passive and active components	
3034	15	5	2	500 ($\times 2.5$) -	$5.3 \times 6.6 \mathrm{~cm}$	2kV	370	Battery. XY. Battery saver	
3033	15	5	,	500×2.5)	$5.3 \times 6.6 \mathrm{~cm}$	1 kV	287	Battery saver	
3030	15	5	1	500 (x2.5)	$5.3 \times 6.6 \mathrm{~cm}$	1 kV	154	Component tester	
3035	10	5	1	500 (x2.5)	$8 \times 10 \mathrm{~cm}$	2 kV	174	Component tester	
$\begin{aligned} & \text { Datacheck } \\ & 1200 \mathrm{~B} \end{aligned}$	2.5	50	1	2000 (x10)	$5 \times 4.2 \mathrm{~cm}$	1.8kV			WW518
				2000 (10)	$5 \times 4.2 \mathrm{~cm}$	1.8 kV	4223	Modular. Up to 7 units plugged into rack. Dual, selectable inputs	
1200B(S)	2.5	50	1	20,000 ($\times 10$)	$5 \times 4.2 \mathrm{~cm}$	1.8 kV	4545		
Farnell DT12-5	12	5	2	500 (x5) -	$8 \times 10 \mathrm{~cm}$	2kV	245	XY	WW503
DTV 12-14	12	5	2	500 (x5) -	$8 \times 10 \mathrm{~cm}$	2 kV	265	More flexible Y display options.	
DTC-12	12	5	2	500 (x5) -	$8 \times 10 \mathrm{~cm}$	2 kV	359	Fine X and Y controls Component tester	
DTS-12	12	5	2	500 (x5)	$8 \times 10 \mathrm{~cm}$	2kV	795	Digital storage version of DT12-5. Max. event speed 100 kHz . Max. sample rate 0.5 MHz .	
$\begin{aligned} & \text { Gould } \\ & \text { OS } 300 \end{aligned}$	20	2	2	500 ($\times 10$)	$8 \times 10 \mathrm{~cm}$		325		WW504
OS8100	100	2	2	50 - -	$8 \times 10 \mathrm{~cm}$	16 kV	8400	Micro-controlled. Menu display. Auto calculations	
Hameg HM103	10	5 (x2.5)	1	500 (x2.5) -					WW505
HM203	20	$5(\times 2.5)$	2	$500(\times 12.5)$	$6 \times 7 \mathrm{~cm}$ $8 \times 10 \mathrm{~cm}$	${ }_{1}^{1.8 \mathrm{kV}}$	$\begin{aligned} & 158 \\ & 264 \end{aligned}$	Component tester Component Tester	
HM204	20	$5(\times 2.5)$	2	$500(\times 2.5)$	$8 \times 10 \mathrm{~cm}$	${ }_{2}^{2 \mathrm{kV}}$	365	Trig. delay	
HM605	60	$5(\times 5)$	2	$50(\times 10)$ - -	$8 \times 10 \mathrm{~cm}$	14 kV	487	Trig. Delay. Trig. hold off	
HM705	70	5 (x2.5)		$50(\times 10) \quad$ -	$8 \times 10 \mathrm{~cm}$	14 kV	588	Trig. delay	
Hewlett-Packard 1980									WW521
	100	2	2	$5 \cdot$ -	10x. 12 cm	22kV	8516	XY Trig-view. Trig delay. Auto-ranging triglevel, deflection factor and sweep speed	
Hitachi V-212	20								WW506
V-222	20	5(x5)	2	200(x10)	$8 \times 10 \mathrm{~cm}$ $8 \times 10 \mathrm{~cm}$	${ }_{2}^{2 \mathrm{kV}}$	295	XY. V-mode	
			2	$200 \times 10)$		2 kV	340	D.c. offset for small signal viewing in presence of d.c. Avoids a c. coupling V-mode	
V-422	40	$5(\times 5)$	2	200 (x10) -	$8 \times 10 \mathrm{~cm}$	12 kV	510	d.c. Avoids a.c. coupting. V-mode	
V-203F	20	5 (x5)	2	200 (x10) -	$7.5 \times 9.5 \mathrm{~cm}$	2 kV	355	Trig. delay	
V-353F V - 1050 F	35	$5(\times 5)$	2	200 ($\times 10$) -	$7.5 \times 9.5 \mathrm{~cm}$	5.2 kV	495	Trig delay	
V-1050F V -650F	100	$5(\times 10)$	4	$20(\times 10)-$ -	$8 \times 10 \mathrm{~cm}$	20 kV	1200		
\checkmark V-509	50	$5(\times 5)$ $5(\times 5)$	3 2	$50(\times 10)$ $100(\times 10)$ -	$8 \times 10 \mathrm{~cm}$ $5 \times 6.3 \mathrm{~cm}$	10 kV 12 kV	750	A-trigger view on third channel	
V-209	20	5 (x5)	2	500 (x5)	5x6.3cm	1.5 kV	995 525	A.c.-d.c. Trig. delay A.c.-d.c.	
watsu									
SS5702	20	5(x5)	2	$100(\times 5)$	$8 \times 10 \mathrm{~cm}$	2kV	290	XY. Ac/dc	WW519
SS3510	50	$2(\times 5)$	2	$100(\times 10)-$ -	$5 \times 6.4 \mathrm{~cm}$	12 kV	1250	Batt/mains, $8.25 \times 4 \times 11.875 i n .8 .61 b$	
SS5710	100	1	4	$20(x 10)$ - -	$8 \times 10 \mathrm{~cm}$	20 kV	745		
SS5711	60	1	4	50 ($\times 10$)	$8 \times 10 \mathrm{~cm}$	15kV	1150		
Kikusui COS6100	100								WW511
	100	5 (x5)	5	$20(\times 10)$ -	$8 \times 10 \mathrm{~cm}$	20kV	1145	XY. Displays $\mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 3, \mathrm{~A}$ trig, B trig.	
COS3010	15	$5(\times 5)$	2	$500(x 5) \quad$ -	$7.6 \times 6.4 \mathrm{~cm}$	1.5 kV	395	Mains/battery. Trig. hold off. XY off	
$\begin{aligned} & \text { COS5060 } \\ & \text { COS5041 } \end{aligned}$	$\begin{aligned} & 60 \\ & 40 \end{aligned}$	$5(\times 5)$	3	$50(\times 10)-$ -	6 in rect.	12 kV	735	8 traces. $X Y$	
COS5040	40	$5(\times 5)$ $5(\times 5)$	2	${ }_{200}^{200(\times 10)} \times$ -	6 in rect.	12 VV	535		
COS5021	20	5 (x5)	2	200 ($\times 10$) -	6 in rect 6 in rect	${ }^{12 \mathrm{kV}}$	445 395	XY. Trig. hold off	
COS5020	20	5 ($\times 5$)	2	200 ($\times 10$)	6 in rect	${ }_{2}^{2 \mathrm{kV}}$	280	$\begin{aligned} & \text { Trid } \\ & \text { XY } \end{aligned}$ Trig. hold off. XY	
Leader L80514A	15	5 (x5)	2						WW507
B0522	20	$5(\times 10)$	2	200 (x5)	$8 \times 10 \mathrm{~cm}$	1.8kV	349		
[80523	35	5 (x10)	2	200 (x10)	$8 \times 10 \mathrm{~cm}$	7 kV	501	$X Y$ Trig. hold off	
LB0524	35	$5(\times 10)$	2	200 (x10) - -	$8 \times 10 \mathrm{~cm}$	7 kV	615	XY	
Non-Linear MS215	15	10	2	100					WW520
MS230	30	10	2	50	2. $2.5 \times 3.2 \mathrm{~cm}$	$\begin{aligned} & 700 \mathrm{~V} \\ & 700 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 445 \\ & 540 \end{aligned}$	Batt/mains (110 V a.c.) Measures $2.9 \times 6.4 \times 8 \mathrm{in}$. Batt/mains (110Va.c)	
Philips PM3262	100	2	3						WW512
PM3267	100	2	3	$50(\times 10)-$	$8 \times 10 \mathrm{~cm}$ $8 \times 10 \mathrm{~cm}$	${ }_{1}^{17 \mathrm{kV}}$	1695	Trig. hold off. Trig. view	
PM3264	100	2	4	$50(\times 10)$ -	$8 \times 10 \mathrm{~cm}$	17 kV	3550	Trig. view on fifth channel	
PM3263	100	2	2	$50(\times 10)$ -	$8 \times 10 \mathrm{~cm}$	17 kV	3030	Trig view. Dual delay for time interval	
PM3254	75	2		$50(x 10)$ -	$8 \times 10 \mathrm{~cm}$	10kV	1145	Trig. view on third channel	
PM3256			2				12.45	As 3254 with two channels	
PM3215	50	2	2	$100(\times 10)-8$	$8 \times 10 \mathrm{~cm}$	10 kV	695	XY. Trig. hold off	
PM3217	50 10	2	2	$100(\times 10)-$ -	$8 \times 10 \mathrm{~cm}$	10 kV	850	As 3215 with delayed time base	
PM 3211	10 15	2	2	200 (x5) -	$8 \times 10 \mathrm{~cm}$	10 kV	960	Dual beam	
PM3207	15	5	${ }_{2}^{2}$	500 (x5)	$8 \times 10 \mathrm{~cm}$ $8 \times 10 \mathrm{~cm}$	4 kV	660		
				500 (x5)	$8 \times 10 \mathrm{~cm}$	2 kV	325	X and Y sensitivity equal continued on pa	age 61

TIEIL DORTHA FECOID LOOR...

No - you're not seeing double, just the Crotech 3132's Component Comparator in action. This unique feature, using two Crotech component testers, gives you the benefit of checking an active or passive component against a known standard. Complete circuits can also be checked using signature techniques.

But that's not the only, new feature. The 3132 has three DC source outlets available on the front panel, capable of powering most solid state circuits. Dare we say that the 3132 is the nearest affordable 'scope to come near to being a complete test system?

WW - 050 FOR FURTHER DETAILS

THE HM605 ~BEYOND COMPARISON -THE CHOICE IS IA M MEI

Ideally Suitable for Computer Systems Applications
(V) 60 MHz Bandwidth
$5 \mathrm{mV}-20 \mathrm{~V}$ Sensitivity at 60 MHz 1 mV Sensitivity at 30 MHz Timebase Range $5 \mathrm{~ns}-2,5 \mathrm{~s} / \mathrm{cm}$ Reliable Triggering to 80 MHz Normal and Peak Value Triggering
(V) Alternate Triggering
(V) Variable Sweep Delay
(14kV Rectangular CRT
V.Output
(v) $1 \mathrm{kHz} / 1 \mathrm{MHz}$ Calibrator
(V) Component Tester
(V) 2 Year Warranty

For free data sheet of the full range contact:

Out of this world for value!

EI

Not our extro-terrestrical friend, but a versatile bench power supply -
-the ET30/2
For a modest price It will provide you wth: 2 outpelis of 0 to 30 volis d.c. af 1 amp or 2 authuts af 0 to 15 volts d.c. af 2 amps or 0 to 30 volts d.c. af 2 amps or 0 to 60 volts d.c. at 1 amp or 0 to 15 volts d.c. af 4 amps .

Send for details now from: FARNELL INSTRUMENTS LIMITED - WETHERBY . WEST YORKSHIRE LS22 4DH TELEPHONE (0937) 61961 • TELEX 557294 FARIST G | REGIONAL OFFICE TELEPHONE (05827) 66123/4 • TELEX 826307

WW - 033 FOR FURTHER DETAILS

」COPEX 14D10V VITAL FOR VIDEO

A high sensitivity (2 mV) oscilloscope with an advanced digital delay system for TV line selection providing an exceptionally stable and inherently jitter-free display from inherently unstable mechanically reproduced video recording systems, whether tape or disc. The digital counting system operates on line numbers (selected by a 10 -turn vernier delay control), not on elapsed time thus guaranteeing jitter-free traces even after a delay of almost a full field.
Designed primarily for the video service market, the 14D10V with its large screen and advanced facilities also offers considerable advantages to Technical Colleges and Polytechnics for demonstrating modern TV methods and for work on video, text and digital techniques.
Outstanding value at only $\mathbf{£ 3 6 5}$ plus VAT. Send for full specification details today. British designed and made. Agents required worldwide.

Scopex Electronics Limited
63-65 High Street, Skipton, North Yorkshire BD23 1EF Tel: Skipton (0756) 69511

the chopping is invisible, ch1 minus ch2 and chl plus ch2.
The 'alternate' and 'chopped' presentations perform roughly the same function. At low and middle frequencies, chopping between channels occurs many times during the time-base sweep and is generally not phase-related: it cannot, therefore, be seen and the two traces appear simultaneously. At higher frequencies, the chopping may occur only a few times during a sweep and may become visible, so that each trace must then be triggered alternately to give once again an effective simultaneous display of the two signal channels.
Input impedance at the Y inputs is usually $1 \mathrm{M} \Omega$ with $20-30 \mathrm{pF}$ in parallel. In the event that the signal under inspection is from a high-impedance source and would be deformed by this input arrangement, most makers provide as an accessory a probe which, at the expense of a decrease in sensitivity by a factor of 10 , gives $10 \mathrm{M} \Omega$ and 2 pF at the probe tip. Even better performance is provided by probes with a field-effect transistor source-follower, which can give $1 \mathrm{M} \Omega$ and around 1 pF even when the input of the oscilloscope is a 50Ω coupling - often found with high-frequency instruments.
Input coupling selects a coupling capacitor when the d.c. component of a signal is too high to allow inspection of small features which need a high sensitivity. It is usually marked AC, DC and GND, the latter earthing the input to provide a 0 V reference on the display.
Delay line allows inspection of the leading edge of a transient. Since the signal itself normally triggers the time-base, and since the time-base takes a certain amount of time to fire after the trigger, the leading edge would have occurred before the sweep started, without the delay line.
With the line in the signal path, the signal is delayed by a fraction of a microsecond until the time-base is operative. The delay line does not deform the signal.

Time-base

Modern time-bases are of the triggered variety - they run when triggered by a pulse. The rate at which the spot sweeps across the screen is controlled from a frontpanel switch, usually in a $1-2-5$ sequence, and by an uncalibrated variable control. The fastest sweep provided must spread the rise-time of the Y amplifier over a useful part of the screen; for example, if the bandwidth is 100 MHz , giving a rise time of 3.5 ns , the highest sweep speed should be around 2 to 5 ns per division or per centimetre. It may be that the fastest sweep on the control is ten times slower than this, at around 50 ns per division, in which case there will probably be provision to magnify the sweep amplitude to overscan the screen by a factor of 10 , effectively multiplying the sweep speed by 10 . The result is roughly the same.

Horizontal modes

In dual-trace instruments, delayed sweeps vith a number of display modes are comionplace. In essence, the main (A) sweep
traverses the whole area of investigation relatively slowly, small events being identifiable but not easily seen. By means of a delay control, the second (B) sweep is triggered just before the area of interest and, since it is set to run much faster than the A sweep, covers only that part. During this time the A sweep only is displayed, the part covered by the B sweep being brightened up.
When the delay and the duration of the B sweep are adjusted as required, the B sweep is displayed across the whole screen, the aforementioned small event now being magnified horizontally. The front-pànel mode selector is labelled A, A intensified by B, B, or words to that effect. On some instruments, the delayed and delaying sweeps can be mixed to display both simultaneously. It might be possible to see the small occurrence in the normal way with sweep magnification, if it were near the trigger pulse, but a large magnification on a small trace would almost certainly result in a jittery display: the delaying method avoids this problem.

Triggering

A variety of triggering modes is usually provided. 'Normal' is the condition when the Y signal signal provides a trigger pulse for the time-base, which does not sweep unless the trigger is present. In the 'automatic' mode, the time-base free runs, providing a base-line on the screen in the absence of a Y signal, and locks to an applied signal: it is somewhat similar to the method used many years ago when freerunning time-bases were synchronized with the Y signal. A 'single-sweep' facility is sometimes provided, when the timebase fires once on the next trigger after a frontpanel button is pressed. Trigger hold-off is useful when, say, one cycle in a long train is to be viewed. It would normally not be easy to trigger the sweep just before the wanted cycle, since as far as the trigger circuit is concerned, all the cycles are identical. With trigger hold-off, pulses can be inhibited until the part to be investigated is reached, whereupon the next trigger fires the time-base, which can then run at the desired speed.

Since the Y signal itself normally provides the trigger, it is necessary to select the exact point on a waveform at which the trigger pulse is generated. The 'level' control sets this in the vertical direction and the 'slope' determines whether the trigger is taken from a positive or negativegoing edge. It is usually possible to use an external trigger, selectable from the front panel. Vertical-mode triggering (V mode) enables two traces of differing frequencies to be viewed alternately - normally, triggering from one would give an unlocked display of the other.

In the table, sensitivity and sweep-speed figures are given without taking into account the multipliers shown in brackets. Prices quoted are exclusiive of v.a.t.

For more complete information, insert the WW No on the Reader Service Card facing page $£ £$.

Manufacturers

BK/Dynascan. B \& K Precision, P.O. Box 27. 39 Whitby Street, Hartlepool, Cleveland TS24 7BR. 042975750.
Crotech. Crotech Instruments Ltd, 5
Nimrod Way, Elgar Road, Reading, Berks. RG2 OEB. 0734866945.
Datacheck. RMR Measurements, 138 Lime
Crescent, Cumbernauld G67 3PQ. 02367 28170.

Farnell. Farnell Instruments Ltd, Sandbeck
Way, Wetherby, West Yorks. LS22 4DH. 093761961.

Gould. Gould Instruments Division,
Roebuck Road, Hainault, Essex IG6 3 UE.
01-500 1000. Electroplan Ltd, P.O. Box 19,
Orchard Road, Royston, Herts ST8 5HH. 076345145.

Hameg. Hameg Oscilloscopes Ltd, 74-78
Collingdon Street, Luton, Beds LU1 1RX.
0582 413174. Lawtronics Ltd, 139 High
Street, Edenbridge, Kent TN8 5AX. 0732 865191.

Hewett-Packard. H.P. Ltd, Nine Mile Ride, Easthampstead, Wokingham, Berks RG11 3LL. 034463100.
Hitachi. Hitachi Denshi (UK) Ltd, 13-14
Garrick Industrial Centre, Garrick Road,
Hendon, London NW9 9AP. 01-202 4311
Reltech Instruments, New Road, St. Ives,
Huntingdon, Cambs. PE17 4BG. 0480 63570.

Iwatsu. STC Instrument Services,
Edinburgh Way, Harlow, Essex CM20 2DF 027929522.

Kikusui. Telonic Instruments Ltd, 2 Castle Hill Terrace, Maidenhead, Berks SL6 4JP. 062873933.

Non-Linear Systems. Lawtronics Ltd, 139 High Street, Edenbridge, Kent TN8 5AX. 0732865191.

Leader. Thandar Electronics Ltd, London
Road, St. Ives, Huntingdon, Cambs PE17
4HJ. 0480 64646. Also Electroplan Ltd, P.O.
Box 19, Orchard Road, Royston, Herts. SG8 5HH. 076345145.
Philips. Pye Unicam Ltd, York Street,
Cambridge, CB1 2PX. 0223358866.
Electronic Brokers Ltd, $61 / 65$ Kings Cross
Road, London WC1X 9LN. 01-278 3461.
Rohde und Schwarz. R \& S GmbH\&Co KG. D-8000 Munchen 80, Mühldorfstrasse 115 , West Germany. (089) 4129-1.
Scopex. Scopex Electronics Ltd, 63-65 High
Street, Skipton, N. Yorks. BD23 1EF. 0756 69511.

Siemens. Siemens Ltd, Siemens House, Windmill Road, Sunbury-on-Thames, Middlesex TW16 7HS. 0932785691.
Solartron. Solartron Schlumberger,
Victoria Road, Farnborough, Hants GU14 7PW. 0252544433.
Tektronix. Tektronix UK Ltd, P.O. Box 69,
36/38 Coldharbour Lane, Harpenden, Herts, AL5 4UP. 05827 63141. Also Electroplan Ltd, P.O. Box 19, Orchard Road, Royston, Herts SG8 5HH. 076345145.
Thandar. Thandar Electronics Ltd, London Road, St. Ives, Huntingdon, Cambs. PE17 4HJ. 048064646.
Trio. House of Instruments, Clifton Chambers, 62 High Street, Saffron Walden, Essex CB10 1EE. 0799 24922. Also Lawtronics Ltd, 139 High Street,
Edenbridge, Kent TN8 5AX. 0732865191.
Vu-data. RMR Measurements, 138 Lime
Crescent, Cumbernauld G67 3PG. 02367 28170.

Give your oscilloscope 8 channels with the NEW 8001 SCOPE MULTIPLEXER

And the price is right, too - as you'll see from the coupon. Why not fill it in right away.

gLobal specialties Corporation

G.S.C (UK) LIMITED 7F

UNIT 1. SHIRE HILL INDUSTRIAL ESTATE SAFFRON WALDEN, ESSEX CB113AQ Telephone: Saffron Waiden (0799) 21682 Telex: 817477

GLOBAL SPECIALTIES CORPORATION (UK) LIMITED, DEPT. $7 F$

Unit 1. Shire Hill industrial Estate. Saffron Walden. Essex CB11 3AO

| 8001 SCOPE
 MULTIPLEXER | £263.35 (inc. P \& P)
 and 15% VAT | Quantity
 Reqd |
| :---: | :---: | :---: |\quad| For FREr |
| :--- |
| catalog! |
| tick bo' |

Name \qquad Address

[^5]
HIGH CAPABILITY.

 LOW PRICE.
There's never been 9755

 better value, anywhereLike Kikusui's COS5060
A really professional 60 MHz dual channel, dual timebase delayed sweep oscilloscope.

Just part of Kikusuis COS5000 dual channel oscilloscope range, including 20 MHz and 40 MHz single and dual timebase models from less than $£ 300$ + VAT, including probes and delivery.

Mostly ex stock Ask for data

Telonic Instruments Ltd, 2 Castle Hill Terrace, Maidenhead, Berks, SL6 4/P. Tel: (0628) 73933. Telex: 849131 (Telber G).
© KIKUSUI

No Project Is Complete Without The Right

KMT
The unique new modular enclosure.
Suitable for alarm systems, counters, interfaces amplifiers, model control units and many other projects.

Hand Held Box

Easy to assemble - just 10 screws
Easy on the pocket - house your projects economically and professionally.
For full size eurocards ($100 \times 160 \mathrm{~mm}$) mounted horizontally in the 35 TE front panel kit.

Half size eurocards ($100 \times 80 \mathrm{~mm}$)
mounted vertically included as part of all front panel kits (except 35 TE), with connector included.

This box is moulded in two sections and has a textured finish. The battery compartment accepts a PP3 or nickel cadmium stack $25 \times 45 \mathrm{~mm}$ long. A circuit board $56 \times 105 \mathrm{~mm}$ may be mounted on three pillars in the base, location being provided by a 3 mm spigot. The top moulding will accept a circuit board 71 $\times 107 \mathrm{~mm}$.

- Material-Textured ABS
- Colour-Dark brown

Hi-Style Desk Top Case

Designed to house keyboards and displays on two $1,6 \mathrm{~mm}$ silver anodised is manufactured from high impact polystyrene and has a textured finish.

- Casing-High impact textured ABS
- Colour-Brown, front and base pa $1,6 \mathrm{~mm}$ satin anodised aluminium

Plastic Boxes

Type A

Plastic boxes consisting of a top and bottom moulding with front and rear aluminium panels, positively retained in the two halves.

- Top and bottom moulding-High ABS.
- Colour-Light greytop: dark grey base
- Front and rear panels-Satin anodised aluminium $1,6 \mathrm{~mm}$ thick.

Type B

Constructed of high impact polystyrene these handsome two-toned grey boxes these handsome two-toned grey boxes
are suitable for wall mounting and free are suitable for wall mounting and free
standing instruments. The two halves of the box are held together by screws inserted from the base

- Material-High impact polystyrene
- Colour-Top light grey: base dark grey
- Panels-Satin anodised aluminium

Send 50p for a copy of the catalogue with details of the full range available.

BICC-Vero Enclosures.
A complete range where
quality and economy are combined.
BICC-VERO
ELECTRONICS LIMITED
Retail Department, Industrial Estate, Chandlers Ford, Hants SO5 3ZR
Tel (04215) 62829

WW - 053 FOR FURTHER DETAILS

(0) Hitachi Oscilloseopes performance, reliatility, value and immediate delivery!

Hitachi Oscilloscopes provide the quality and performance that you'd expect from such a famous name, with a newly-extended range that represents the best value for money available anywhere.

$$
\begin{array}{llll}
\text { V-212 } & 20 \mathrm{MHz} \text { Dual Trace } & \text { V- }-209 & 20 \mathrm{MHz} \text { Mini-Portable } \\
\text { V- } 222 & 20 \mathrm{MHz} \text { (illustrated) } & \text { V-509 } & 50 \mathrm{MHz} \text { Mini-Portable } \\
\text { V-203F } & 20 \mathrm{MHz} \text { Sweep Delay } & \text { V-1050F } & 100 \mathrm{MHz} \text { Quad Trace } \\
\text { V-353F } & 35 \mathrm{MHz} \text { Sweep Delay } & \text { V-134 } & 10 \mathrm{MHz} \text { Tube Storage } \\
\text { V-422 } & 40 \mathrm{MHz} \text { Dual Trace } & \text { VC- } 6015 & 10 \mathrm{MHz} \text { Digital } \\
\text { V-650F } & 60 \mathrm{MHz} \text { Dual Timebase } & \text { VC- } 6041 & 40 \mathrm{MHz} \text { Digital }
\end{array}
$$

Prices start at around $£ 300$ plus VAT including two probes and two year warranty. We hold the range in stock for immediate delivery.
For colour brochure giving specifications and prices ring (0480) 63570 Thurlby-Reltech, 46 High Street, Solihull, W. Midlands B91 3TB.

WW - 021 FOR FURTHER DETAILS

Portable Precision

Measure With Accuracy

Precision is simple with the new 309 I digital oscilloscope. High resolution digitizers (12 -bit) improve accuracy 10 times over analog scopes. Clear numeric readouts eliminate human error and guesswork in critical situations. Extremely high dynamic range is at your fingertips with zoom expansion for any waveform section up to X60.

Capture Transients With Push-Button Ease

Hold one-time events in each 4 k memory and on the screen You can examine signals from an intermittent problem minutes or even days after the occurence. Using self explanatory controls set the scope to capture pre- and post-trigger information. View what led up to an event as well as what occured afterwards.

Store Signals In A Bubble

The 3091 's unique bubble memory option provides reliable non-volatile storage in a handy cassette. Controls are simple read-write buttons on the front panel. Store up to ten 2000 -point waveforms on each cassette

Display Mode Options

Select the display mode to suit your measurement needs: YT, XY, or ROLL mode can be combined with either a CURSOR or GRID display. In all modes reference signals may be displayed for comparison with incoming signals. These references may be recently acquired waveforms or signals recalled from bubble memory.

Price-Performance

The 3091 offers many of the advantages of Nicolet's more powerful benchtop models - high resolution, ease of use. data storage and computer interfaces. But it is small (18 lbs), and so is the price

30-Day Trial Offer

Discover for yourself how the 3091 can benefit you. Try one for 30 days. All we need is a purchase order. If the Oscilloscope doesn't suit your applica tion, you may return it at no charge

wr Nicolet

Nicolet Instruments Limited
Budbrooke Road Warwick CV34 5XH
Telephone (0926) 494111 Telex 311135

WW - 010 FOR FURTHER DETAILS

Designing with the 68008 microprocessor

Abstract

Ideal for use in low-cost, high-volume applications like personal computers and small business machines, the 68008 is an eight-bit microprocessor with a 32-bit architecture.

This two-part article describes its main features and how it's used with other microcomputer components like rom, ram and peripheral devices.

All of the microprocessors in the M68000 family of high-performance processors and peripherals, including the 68008, are based on the same 32 -bit architecture. The 68008 has an eight-bit external data bus; others have 16 or 32 -bit buses. The once-clear divisions between eight, 16 and 32-bit microprocessors are becoming blurred; with the 68008 the designer is now able to have a high-performance microprocessor with a 32 -bit architecture in small costeffective systems using eight-bit data buses.

The architecture of the 68008 is identical to the original member of the family, the 68000 , a processor with a 16 -bit external data bus. From the programmer's point of view the two processors look identical, so that the 68008 is completely code-compatible with the 68000 . This means that any program developed for one processor will run on the other. This is true for object code as well as source code. Other 68000 -family microprocessors such as the 68010, virtual memory version of the 68000 , and the 68020 , very high performance 32-bit mpu, have achitectures which are upward-compatible with that of the 68008, making it easier to upgrade 68008 -based systems. For example, any user program written for the 68008 will execute correctly on the 68000,68010 and 68020 without need for modification.

Using standard rams and roms a smaller minimum-sized system can be constructed with the 68008 than with the 68000 . Cost savings are made by producing the 68008 in a 48 -pin dual-in-line package as opposed to the 64 -pin version for the 68000 . Eight pins are saved by halving the reduced data bus. Other minor hardware differences allow more pins to be shed (Fig. 1), for instance a few of the high-order address lines of the 68000 are not brought off-chip on the 68008 . Even so, this still allows direct addressing of over one megabyte of memory - huge compared to that of conventional eight-bit microprocessors and more than enough for the low-end applications for which the 68008 is intended.
The 68008 is as fast as the 68000 when

by A. J. Barth

accessing byte-sized operands. However, because of its byte-sized data bus the 68008 needs to access 16 -bit words as two successive bytes. As a result, the overall throughput of the 68008 is less than that of the 68000 . For the same processor clock and for a typical mix of instructions, the 68008 's performance is about 60% of that of the 68000 . This is still a lot of raw processing power and will meet a need for low-end applications.

Because the architectures of the 68000 family microprocessors are so similar, knowing the 68008 means knowing much about the other processors. The 68008 is characterized by its 'clean', regular and consistent structure and in particular, emphasis was given to the architecture to make it regular with respect to the registers, instructions, addressing modes and data types.

Register set

The 68008 programming model has a large number of general-purpose 32-bit data and address registers, Fig. 2. There are eight
general-purpose 32 -bit data registers, $\mathrm{D}_{0}{ }^{-}$ D_{7}, for byte (8 -bit), word (16-bit), and long word (32 -bit) operations. Seven address registers $\mathrm{A}_{0}-\mathrm{A}_{6}$ and two system stack pointers A_{7}, may be used as software stack pointers and base address registers. In addition these registers may be used for word and long-word address operations. All 17 registers may be used as index registers.

High-performance microprocessors are expected to rapidly handle complex functions having a large number of parameters. The 68008 can maintain most or all of these parameters in processor registers, which is both fast and makes the programs efficient and elegant. Microprocessors with only a few registers in such situations need to continuously swap parameters between registers and external memory.
As the 68008 has general-purpose registers, the programmer and not the microprocessor-chip designer decides which registers are used. It does not dictate that certain instructions use certain registers. This not only eases the task of the assembler language programmer but also makes high-level language compilergenerated code more efficient. Many of the instructions and addressing modes which

Fig. 168008 signal lines. The microprocessor has an internal 32-bit architecture and an eight-bit external data bus. Packaged in a 48-pin package the 68008 has non-multiplexed buses and a non-segmented 1 megabyte address space.
operate on the address registers may also be used with the 32 -bit program counter. This makes it easy to write positionindependant software that will execute correctly no matter where the code is loaded in memory.

The 68008 has a 16 -bit status register which consists of two parts: a user byte and a system byte. The user byte is accessible by any program and contains the usual condition code flags associated with the execution of instructions, condition like Negative, Zero, Carry, Overflow, etc. The system byte of the status register is accessible only by a supervisory program (usually the operating system) and is used to control the operating mode.

Addressing range

The 68008 has a large linear addressing range. It can directly access one megabyte of external memory without paging or segmentation. Many microprocessors are able to access fairly large memory space but need to do so via a narrow window called a segment or page. This may be useful in a few applications, but in most situations it is an irritating handicap because the programmer is obliged to keep repositioning the window to access the desired location.

Like other Motorola microprocessors the 68008 has memory-mapped i/o. This enables the programmer to use the m.p.u's sophisticated instructions and addressing modes to operate on i / o as well as memory.

Instruction set

The 68008 has a powerful, flexible and easy-to-use instruction set. There are 56 basic instructions (Table 1). This is actually less than the ten-year-old 6800 microprocessor. However because of the regularity of the 68008 architecture, those instructions which use registers may use any register with almost any addressing mode and data type. These permutations yield many thousands of useful operations, compared to less than 100 for the 6800; the 68000 family philosophy being to provide a small number of easy-to-remember and flexible general-purpose instructions.

The instruction set covers the following classes of operations:
-data movement
-integer arithmetic

- logic
-shift and rotate
-bit manipulation
-binary-coded decimal
-high-level language support
- program control and
-system control.
Operations on data in registers and memory are independent of the data size and usually involve a source and a destination operand. The programmer need only remember one mnemonic for each type of operation and then specify data size and addressing modes for both the source and destination operands. Consistency is maintained as all data registers and memory locations may be a source or destination for most operations on integer data.

Fig. 268008 programming model: eight general-purpose data registers for 8, 16 and 32-bit operations, seven address registers, and two system stack pointers for software stack pointers and base address register. All 17 maybe used as index registers.

Like all M68000 microprocessors the 68008 instructions are implemented by microcode rather than random logic, so that, for example, the execution of undefined instructions no longer leads to unpredictable results.

Data types

The 68008 operates on five main data types. Operations may be on bits, b.c.d. digits, bytes, words and long-words. For integer arithmetic the programmer need not remember different instructions for different data sizes. The required data size is simply appended to the instruction as the program is written.

Addressing modes

An addressing mode is the method by which the data or other operand is accessed by the processor. The availability of powerful and flexible modes usually means performing an operation with just one instruction which would otherwise take many. This results in programs executing faster, being smaller, easier to read and to maintain. The 68008 has 14 powerful addressing modes (See Table 2). They operate consistently and are independent of the instruction itself.

Program privilege scheme

A two-level program privilege scheme
provides security and high reliability. Programs should access only their own code and data areas, and ought to be restricted from accessing the information which they do not need and must not modify. Such a scheme not only prevents the deliberate tampering with data but also guards against a faulty program running wild and altering other programs.

The 68008 operates at one of two privilege levels, the supervisor level or at the user level. At the supervisor level programs have access to all processor resources and can execute any instruction or access any register. Normally, only the controlling operating system or its kernel runs at this level. This code is normally relatively small, well-tested and therefore reliable. All the rest of the software, which includes both the utility and application programs, executes at the user level and has access only to a subset of the total processor unit resources, the resources governing control of the system being protected from these programs. If a userlevel program attempts to execute a 'privileged' instruction or to access a supervisor register, control is immediately taken away and given to the controlling supervisor program which can take some corrective action.

Interrupt structure

In most applications, programs are seldom executed instruction-after-instruction without a break. The need frequently arises to respond to an event or exception. Such exceptions may be the hardware interrupts caused by external logic, or the software interrupts caused by the recognition of some condition internal to the processor unit. High-performance microprocessors must be able to respond rapidly to a large variety of exceptions with varying degrees of priority.

Three levels of priority are provided for external hardware interrupts. By use of the three-bit interrupt mask in the 68008 status register (Fig. 2) the supervisor program may postpone handling external interrupts with priorities less than that contained in the mask. When an interrupt

Andrew Barth is a senior staff engineer with Motorola's systems engineering group in East Kilbride. He graduated in physics from Leeds University and since 1976 has worked in
microprocessor systems design in
Germany and the USA, as well as in the UK.

Table 1. 68008 instruction set

Mnemonic	Description
ADBC	add decimal with extend
ADD	add
AND	logical and
ASL	arithmetic shift left
ASR	arithmetic shift right
BCC	branch conditionally
BCHQ	bit test and change
BCLR	bit test and clear
BRA	branch always
BSET	bit test and set
BSR	branch to subroutine
BTST	bit test
CHK	check register against bounds
CLR	clear operand
CMP	compare
DBCC	test condition, decrement \& branch
DIVS	signed divide
DIVU	unsigned divide
EOR	exclusive or
EXG	exchange registers
EXT	sign extend
JMP	jump
JSR	jump to subroutine
LEA	load to effective address
LINK	link stack
LSL	logical shift left
LSR	logical shift right
MOVE	move

is recognised the processor performs an interrupt acknowledgement sequence (IACK). During IACK the peripheral being acknowledged may indicate that program control should be given to any one of 256 interrupt service routines (vectored interrupt method), or to one of three service routines corresponding with the hardware interrupt priority level (autovector interrupt method). Most of the M68000-family peripherals use the vectored interrupt method in which the peripheral provides an eight-bit vector number on the data bus. The 68008 uses this vector number to determine which of the 256 interrupt routine addresses in its interrupt vector table to use. The less sophisticated peripherals use the autovector interrupt method which have seven vectors reserved for them. In either case the external hardware needed to interface both kinds of perpherals to the 68008 is minimal.

Some 68008 instructions are designed to cause internal interrupts, some always and others only upon detection of certain conditions. An example of the last is the execution of a 'privileged' instruction. If a supervisor-level program executes such an instruction, the instruction will execute normally and no exception will occur. However, if a user-level program attempts to execute it, a prividege violation exception occurs and program control is given immediately to the appropriate interrupt service routine.
A number of exceptions correspond to error conditions, either those detected by external hardware or by the processor itself. For example, the Bus Error input (BERR) may be used by external hardware to cause the 68008 to abandon the current bus cycle and give program control to the Bus Error interrupt routine, or, by the simultaneous use of BERR and HALT, to retry the current bus cycle.
A very useful feature is the trace exception, which enables a supervisorlevel program to step through a target program on an instruction-by-instruction

Mnemonic	Description
MOVEM	move multiple registers
MOVEP	move peripheral data
MULS	signed multiply
MULU	unsigned multiply
NBCD	negate decimal with extend
NEG	negate
NOP	no operation
NOT	one's complement
OR	logical or
PEA	push effective address
RESET	reset external deuces
ROL	rotate left without extend
ROR	rotate right without extend
ROXL	rotate !eft with extend
ROXR	rotate right with extend
RTE	return from exception
RTR	return and restore
RTS	return from subroutine
SBCD	subtract decimal with extend
SCC	set conditional
STOP	stop
SUB	subtract
SWAP	swap data register halves
TAS	test and set operand
TRAP	trap
TRAPV	trap on overflow
TST	test
UNLK	unlink

basis. Each time the target program executes an instruction, no matter which instruction it may be, control is returned to the supervisory program. No external hardware is required to implement the program tracing as it is part of the processor architecture.

Asynchronous data bus

Like most of the other Motorola microprocessors, the 68008 data bus is not multiplexed - the m.p.u. pins used for the data bus are not shared with other signals. Some microprocessors multiplex the data and address buses onto the same pins to reduce the total number of pins. Non-multiplexed microprocessors such as the 68008 require more pins and sometimes a more expensive package. However, non-multiplexed buses have many advantages: they can operate much
faster, dissipate less chip power, and do not require external demultiplexing hardware. Analysis shows that multiplexed microprocessor systems are more costly than non-multiplexed systems because the microprocessor and demultiplexing i.cs together cost more, occupy more board space and have more pins overall.

The 68008 has an asynchronous data bus. The time taken to transfer data to or from a memory or peripheral device via the data bus is variable. The memory or peripheral device signals the processor when it is ready to make the data transfer by use of a special handshake line called data transfer acknowledge (DTACK). The advantage of this asynchronous scheme is that each bus cycle can be fine-tuned to the speed of the particular device being accessed. If the device is rather slow, the processor simply marks time until the device is ready. In this way the 68008 runs at the fastest rate that memory and peripherals can go, which maximizes system throughput.

Most M68000-family peripherals have a pin for the DTACK handshake signal, and interfacing such parts to the 68008 microprocessor is simple. Even those peripherals originally designed to work with synchronous processors, like the 6800 or 6809 microprocessor units, may be interfaced to the 68008 with minimal hardware. This is because the 68008 has several signal pins specially for this purpose. By use of these signals, the M6800-type peripheral device signals the processor to perform the current bus cycle synchronously, making the 68008 behave like a synchronous microprocessor for this one bus cycle.

The 68008 m.p.u. uses a two-line bus arbitration scheme which enables the data bus to be shared efficiently with other microprocessors unitss in a multiprocessor system and with other bus masters such as d.m.a. controllers.

To be continued with interfacing details.

Mode	Generation
Register direct addressing	
Data register direct	$E A=D_{n}$
Address register direct	$E A=A_{n}$
Absolute data addressing	
Absolute short	EA=(next word)
Absolute long	$E A=$ (next two words)
Program counter relative addressing	
Relative with offset	$E A=(P C)+d$
Relative with index and offset	$E A=(P C)+\left(X_{n}\right)+d_{8}$
Register indirect addressing	
Register indirect	$\mathrm{EA}=\left(\mathrm{A}_{\mathrm{n}}\right)$
Postincrement register indirect	$E A=\left(A_{n}\right), A_{n} \leftarrow A_{n}$
Predecrement register indirect	$A_{n} \leftarrow A_{n}-N, E A=\left(A_{n}\right)$
Register indirect with offset	$E A=\left(A_{n}\right)+d_{16}$
Indexed register indirect with offset	$E A=\left(A_{n}\right)+\left(X_{n}\right)+d_{8}$
Immediate data addressing $\begin{aligned} & \text { Immediate }\end{aligned}$	
Quick immediate	
Implied addressing Implied register	EA = SR, USP, SP, PC
EA effective address	
A_{n} address register	
D_{n} data register	
X_{n} address or data register used as index register	
SR status register PC program counter	
d_{8} eight-bit offset (displacement)	
d_{16} sixteen-bit offset (displacement)	
$\mathrm{N}=1$ for byte 2 for words and 4 for long words () contents of	
\leftarrow replaces	

16-line p.a.b.x with options

Hints on construction complete Jaap Kuiper's description of a versatile electronic/electromechanical exchange

Current passing through the telephones has to be kept within acceptable limits. Having used 700Ω relays throughout the O relay requires a $470 \Omega, 1 W$ series resistor (at 45 V supply). As relays $\mathrm{O}, \mathrm{G}, \mathrm{II}, \mathrm{EI}$ and R are all controlled from the individual stations they must switch positively. Typical values for limiting resistors turned out to be 390Ω, 1 W for II, EI and R, and $1 \mathrm{k} \Omega, 1 \mathrm{~W}$ for G relays and others working off the 45 V supply. Relays using the 12 V rail don't need series resistors and so operate economically and reliably. The limiting resistor for G relays, if required fits between the G-bus and contacts $\mathrm{gh}_{2} / \mathrm{gi}_{2}$ in the external control section.
Most Continental telephones include a ground key but where not, momentary push-buttons may be fitted and connected directly to the set's a-line. The original switches, if available, may be fitted in the space provided on top of UK sets in front of the cradle. Holes for the leds have to be drilled or melted in a suitable position and are also connected directly to the a-line. Previous diagrams gave details for both Continental and UK sets.
Special mounting plates (RS Components RS349-119) are available for fitting Siemens/Varley type relays. Each plate holds six relays. Joining these plates together allows daisy-chain wiring of the bussed contacts. The mounting plates have each station's O, T and G relays grouped together for ease of wiring with ribbon cables running to the T-drivers. Terminator, oscillators and line interface were constructed on home-made p.c.bs and 30 -way connectors were used to plug in the various telephones.
Resistors in the ground-key toggle have to be approximately the same value as the relay coil and must be capable of dissipating the full power during switching ($1 \mathrm{k} \Omega$, 5 W). The muting i.c. is an LM311 which is rated at 36 V maximum, so a voltage divider was included to reduce the supply. These are resistors ra and rb . The reference point is connected through a $1 \mathrm{M} \Omega$
resistor so as not to affect proper operation of EI which has to follow dial pulses. At 700Ω EI coil value and a telephone presenting 300Ω when operating, the reference voltage will be approximately 31.5 V . Therefore divider rc/rd has to be adjusted to provide around 35 V . As soon as the dial is moved the reference point goes to the full supply voltage; the $1 \mathrm{M} \Omega$ resistor protects the i.c. The LM311 will switch up

by J. H. Kuiper

to 40 V so the additional transistor was included for protection.
With the introduction of more and more d.t.m.f. (system \mathbf{X}) exchanges it is sensible to construct the line interface on a separate p.c.b. so that when change-over is required only the line interface needs replacing. A dual tone circuit (Exar application note AN-08) then feeds the 4514 latch. Wiring to the individual sets is by standard four-core cable as each station's b and

Automatic dialling by computer requires two buffered output ports each driving a relay. Additional hardware requirements are minimal as shown here.

Power supply diagram. Current of the 33 V secondary producing 45 V direct is 1.5 A . Using higher impedance coils will reduce this. Current from the $9 V$ secondary is 100 mA ; a 12 V regulator is used on this supply. The $1 \mu \mathrm{~F}, 250 \mathrm{~V}$ ringer-line capacitor is not needed for UK sets.

ground-key wire have to be discrete throughout. This largely applies to the awire as well to avoid speech induction to unwanted sets. Led-lines may, however, be joined together at convenient places to reduce the number of leads.
The line isolating and matching transformer is available from RS Components (RS217-826). The RC shunt across the interruptor contact consists of a $1 \mu \mathrm{~F}, 250 \mathrm{~V}$ capacitor and a $560 \Omega, 1 W$ resistor on the Continent and $2 \mu \mathrm{~F}, 250 \mathrm{~V}$ and 600Ω, 1 W in the UK. In view of interface requirements relays EI and M should be new types as they must have a contact bounce of less than 4 ms and contact resistance of less than $200 \mathrm{~m} \Omega$. All other relays may be surplus types. Diodes are general-purpose high-speed silicon types. Many diodes used combine or separate switching actions to reduce the number of relay contacts; these are rated at 100 mA (BA155). Diodes used in the oscillator circuits and sections working at 12 V may be rated lower.

Note that in stations not requiring the muting-inhibit action the g_{4} contact becomes redundant. Since relays usually come with two or four contacts, a component can be reduced by omitting the diode between contact t_{2} and the G coil and connecting spare contact g_{4} directly from t_{2} to ground (marked with asterisk on page 63 of November issue).

MNO

Micro-floppy

Following other Japanese manufacturers, Teac have announced the availability of FD30A, a 3in floppy disc drive that has all the same characteristics as their 5.25in drives; capacity, format, density, disc rotation speed, transfer rate and power and data interface connections are all identical. This makes it fully compatible and a direct replacement for its larger cousin. With a brushless d.c. direct-drive motor, the drive is claimed to be very durable and electrical noise is eliminated. Available in the UK through Tekdata Electronics, Federation Road, Burslem, Stoke-on-Trent ST6 4HY
WW 305

Transistor tester

An addition to their range of handheld test units is the Osgorne 4500 transistor tester. Completely selfcontained, it can be used easily to check p-n junctions of discrete semiconductors whether in or out of circuit. It features a series of leds which indicate the junction status; p-n-p or n-p-n, open or short circuit can be instantly identified and it will work reliably even when parallel circuits have values approaching 270 ohms or 33 microfarads. Osborne Electronics, Binstead Road, Ryde, Isle-of-
Wight.
WW 306

Voice digitizer

A voice digitizer may be used to enable the transmission of voice and data down the same telephone line. An American model, the Switchco TSP series 1000 works at a very low data rate of $2400 \mathrm{bit} / \mathrm{s}$ which makes it easy to use with data modems or, by using a multi-
port modem it can transmit four voice conversations over the same line. It is distributed by Vanderhoff Communications Ltd,
Haunchwood Estate, Bermuda Road, Nuneaton, Warwicks CV10 7QF.
WW 307

Conduct heat - not current

Another American product is a thermally-conductive dry filled silicone rubber that provides 2000 V isolation between power semiconductors and heat sinks. The low-cost Aarvid Rubber-Duc pads are vulcanised onto the heatsinks in the factory and eliminate mica washers and grease or silicone rubber pads and adhesives, while offering better thermal conductivity than either. Configurations suitable for TO-3, TO-66 and plastic power devices as well as DO-4 and DO-5 diode washers. Warth International Ltd, Oxted, Surrey. WW 308

Shaft cutter

The cutting of shafts on potentiometers, rotary switches and variable capacitors has been made much easier by the introduction of the Telpro shaft shear. This guillotine-type tool will cut copper, aluminium, mild and stainless steel, and plastics rods of diameters up to 0.25 in or 6 mm . It does not transmit any shock or vibration and may be used on such delicate components as helical trimmers, providing a clean cut
with no need for further filiing or finishing. It is claimed that the tool will pay for itself by cutting as few as half-a-dozen shafts because of the reduction in time and damage to components. Electronic and Computer Workshop Ltd., 171 Broomfield Road, Chelmsford Essex CM1 IRY
WW 309

Laser for communication

A new high-frequency GaAlAs diode laser with a modulation bandwidth of 6 GHz is mounted in an impedance matched high frequency module which includes an integral power-monitoring photodiode for the automatic control of carrier wave output power. The laser diode can be used for the transmission of analogue or digital signals from d.c. up to microwave frequencies over long or short optical links. For a complete high-speed link, there is a matching photodiode with a 7 GHz detection bandwidth. The small size, light weight and very low power consumption of the laser make it suitable for airborne or remotely powered system use. Typical applications include multi-channe communications, phased array antennae, or radar signal transmission. Walmore Electronics Ltd, 11 Betterton Street, London WC2H 9BS. WW 310

Polyester capacitors

An alternative to the multi-layered ceramic capacitor in decoupling application is offered by the Suflex range of metallized polyester capacitors. The SUF168 is a subminiature device that allows for high packing density and is printed on the top to allow identification of values when closely mounted Values range from 1000 pF to $1 \mu \mathrm{~F}$ with ratings of 50,60 and 100 V d.c Suflex Lid, Risca, Newport, Gwent NP1 6YD. WW 311

Sinclair goes into business

No modesty has been exercised by Sinclair Research in the naming of their latest computer which they have called the QL for Quantum Leap. It certainly is a leap into an entirely different world from that occupied by the ZX 81 or the Spectrum. The QL is being promoted as a purely business machine and is provided with four business-oriented software packages; a word processor, a database, a spreadsheet and a graphics program for the production of graphs and charts.
The computer is based on Motorola MC68000 processor which Sinclair claim is a 32 -bit processor. The 68000 has 32 -bit internal architecture but uses 16 bits externally and the 68008 version used in the QL has an 8-bit data bus. So it's really an $8 / 16 / 32$ bit processor depending from where you look at it. A second processor, Intel 8049, is used to control the keyboard, generate the sound and act as an RS232C receiver. QL has 128 K of ram and there will be a 0.5 M byte plug-in ram module as an optional extra. Program storage is on Sinclair Microdrive, a tape cartridge medium with 100 K bytes of storage on each of the two built-in drives.
There is an expansion slot for up to six further drives.

Sinclair have designed their own operating system, called QDOS, although no discs are involved. QDOS is a single user, multitasking system which has the ability to run several programmes concurrently and to display the result simultaneously in different windows on the screen. The operating system uses a new version of Sinclair Basic, called SuperBasic, which is claimed to be so superior to 'normal' Basic as to constitute a different language. It has the ability to define procedures written in individual blocks. A 'constant execution speed' is claimed, that does not get slower if a program is longer.

The computer has a full typewriter-pitch keyboard with 'real' keys, 65 of them, including cursor-control keys and five programmable function keys.
The display facilities are from a wide choice of character sets with a normal format of 84 columns by 25 lines. Two modes of highresolution graphics are offered; 512 by 256 pixels with four-colour (red, green, black and white) display, and 256 by 256 with an eight-colour display. A 'stipple' command allows the mixing of foreground and background colours to add to the palette. In both modes a varying grey scale is produced on a monochrome monitor. The quality

of the display is such that a highresolution monitor is necessary to take full advantage of the system. Much would be lost by using a tv receiver even though a tv modulated output is provided.

A number of interfaces are built in; two RS232C interfaces, two analogue joystick ports, a romcartridge slot, a u.h.f modulated tv output as well as an RGB monitor output. There is a general-purpose expansion slot which may be used to plug in a ram module, or other peripherals as they become available. There are also two local area network ports and up to 64QLs and/or ZX Spectrums may be daisy-chained together sharing such facilities as a printer or a data base. Data may be transmitted along the QLAN at 100 K baud and there is a handshake protocol to ensure that a receiver station is 'listening'.

The QL is due to be issued to customers toward the end of February. As is usual with Sinclair new products, it will be available on mail-order only and may appear in retail shop after about six months. There is a $£ 7.95$ charge for postage and packing and users are invited to join a users' group or QLUB, for an additional $£ 35$ a year. Members will get software up-dates and news of all additions.

Planned enhancements already under development include a C comiler, 6800 assembler, emulation of a main-frame terminal, a-to-d converter, a hard disc interface, a modem, a parallel printer interface, and an IEEE-488 interface.

Sinclair Research Ltd, Computer Division, Stanhope Road, Camberley, Surrey GUl5 3PS.

WW 301

Wren for $£ 1,000$

Designed by Transam for Prism Business Systems, the Wren computer is based around a Z80B processor running at 6 MHz . It has 64 K or ram exandable to 256 K , with a diagnostics rom of 8 K . A real-time clock is included as is a 50byte c.mos ram, both with battery back-up. It includes a 7 in monochrome amber display c.r.t with 36 K of screen memory, three selectable screen formats; 80 columns by 24 lines, 40 columns by 24 lines Prestel format, or 512 by 256 elements high-resolution graphics. Although the internal display is monochrome, full colour graphics are supported and there is an RGB output to a colour monitor. The keyboard, which is not detachable, has 67 full size qwerty keys with separate cursor keys and five function keys which allow up to 15 different programmable operations. Two 5.25 in disc drives are included with 200 K byte storage for each drive.

There are a number of interfaces; an RS232 serial port, a Centronics parallel printer port, two analogue inputs for paddle cursor controls, a hard disc interface, and a built in autodial modem which is Prestel and CCITT compatible. Software may be downloaded from Micronet 800 through the inbuilt download facility. For transport, the screen and disc drives in the upper section slide forward over the keyboard, revealing a sturdy carrying handle at the back, it weighs "under 20 lb" (9 kg).

The software includes a Z 80 version of BBC Basic, a desk-top facility which includes a diary, an address file, a system for creating simple documents such as memos, or expense forms, a filing system, a calculator and it may be used in conjunction with a printer as a typewriter. Perfect Writer, Perfect Calc and Perfect Filer are included along with CP/M 3.
Prism Business Systems Ltd, 18 Mora Street, London ECIV 8BT. WW 302

CHUM ONE

Industrial Computer
 £189

* BASIC, 280 Assembler and PLC Language
\star Detachable Hand-held Keyboard and Display
* 8 K Bytes of non-volatile Memory
* Eight Analogue Inputs
\star One Analogue Output
\star Up to 512 Optical Coupled Inputs/Outputs
\star Four Programmable Frequency/Timers
\star RS 232 Serial Input/Output Port
\star Cassette Back-up Memory
\star Real Time Clock
Simply by changing the EPROM in the top socket a Chum One can be used for such functions as

Machine Contro Temperature Control Computer Outstations
Data Logging
Weighing Machine Programmable Timer
WARWICK DESIGN GROUP, 12 ST. GEORGE'S ROAD LEAMINGTON SPA CV31 3AY (0926) 34311

COMMERCIAL CONTINENTALCRADLE RELAYS

pold flashed silver contacts E615 for 500 Sample sent for $£ 2-35 \mathrm{p}$ P\&P ($£ 2.70$ inc. VAT)
TYPE 25 AO 4 Cl 18 A . 4 -pole changeover relay rated at 1 amp with a coil resistance of 430 R , nomina oltage $12 \mathrm{~V} D \mathrm{DC}$, approx. dimensions, length 24 mm , width 19 mm , heig TYPE 25A04C20A. 4-pole changeover rated at 1 amp with a coil resistance of 700 . nominal voltage
24V DC, approx. dimensions, length 24 mm , width 19 mm , height 30 mm . Price $£ 18$ for $10, £ 160$ for 100 , 24 VOC, approx. dimensions, length 24 mm , width 19 mm . heig
$\xi 720$ tor 500 . Sample sent for $£ 2.25+35 \mathrm{P}$ \& $(£ 2.99 \mathrm{inc}$. VAT)

CONTINENTALCRADLE SERIES SOCKET
TYPE FR10. Cradie including cinp manufactured for Type 24 relay listed above PCB mounting. Price $£ 5$ TYPE. FR16. Cradle including clip manufactured for Type 25 relay as listed above, PCB mounting. Price TYPE FR16. Cradle including clip manufactured for Type 25 relay as listed above, PCB moun
E6 for 10 , 27 for 50 . $£ 49$ for 100 . $£ 220$ for 500 . Sample sent for $75 \mathrm{p}+25$ p P\& ($£ 1.15$ inc. VAT)

METAL FILM RESISTOR TYPE FZ4
cient of better than 100 PPM/OC. We have a full range in stock from 100 R to 1 MO. All bandoliered. E 2.50 per 1.000 any one value.
Manufactured by E.R.G., Type 16 ES With a standard RESISTORS
values in stock.

6 WATT SERIES, $£ 6.50$ per 100 any one value $+£ 1$ P\&P $(£ 8.63$ inc VAT)
10 WATI SERIES. $£ 10.50$ per 100 any one value $-£ 1$ P\&P ($£ 13.23$ inc. VAT).
POLARISED ALUMINIMUM ELECTROLYTIC CAPACITOR
Designed for application in power supply filters and sim appications in instrumentation radio oommunications and industrial control equipment, rated at $2 \mathrm{CFF}(100 \mathrm{~Hz}), 13.8 \mathrm{~A}\left(50{ }^{\circ} \mathrm{C}\right)$, solder tags dia

HUNTS THERMINOL CAPACCTOR
List No. 2528 EDA, rated at $2 \mu \mathrm{~F} 440 \mathrm{~V}$ AC cont, and a temp racge of
號
 inc. VAT).
WIMA MKS METALLISED POLYESTER CAPACITORS
With an epoxy resin moulding, temp range $-55^{\circ} \mathrm{C}+100^{\circ} \mathrm{C}$ Capacitance tern
 50hz deferating is necessary. Divide peak AC voltage by 1.4 for RMS rating assuming sinusoidal CAP
volts
CA $1 \mu \mathrm{~F}$
$0.01 \mu \mathrm{~F}$
0.068 F
$011 \mu \mathrm{~F}$
$0.33 \mu \mathrm{~F}$
$0.47 \mu \mathrm{~F}$
$0.68 \mu \mathrm{~F}$
$0.068 \mu \mathrm{~F}$
0.11 HF
0.42
0.22
Man
BER
for
Sa

100 sent for $£ 4.80+£ 1$ P\&P (E6. 67 inc. VAT)

 100 sent for $£ 8.20+£\{P \& P(E 1058$ inc. VAT
100 sent for $10.00+£ 1 P \& P(12.65$ inc. VAT)
100 sent for $£ 1200$ - $£ 1$ P\&P $(\mathbb{1} 14.95$ inc. VAT)

BERG low profile 14 pin dual in tine IC socket manufactured from glass-filled polyester to UL94V-0. $£ 7$ - SPRINGFIELD HOUSE

WW - 082 FOR FURTHER INFORMATION

42 Gorst Road, Park Royal

 London NW10 6LD, UKTelephone: 01-965 0627 Telex: 24708 and Telephone: Esher 67282

Member of the $\boldsymbol{P C M} L_{\text {Group }}$

COMPARE OUR PRICES

COME TO US LASTI!!!

CDC DISKETTES AT CRAZY PRICES!
Code Type
TD1 $51 / h^{\prime \prime} 40$ TRK single sided.
TD2 51/4" 40 TRK double sided
T03 $51 / 480$ TRK sinqle sided
TO451/4" 80 TRK double sided
T05 ${ }^{\prime \prime \prime}{ }^{\prime \prime} 40$ TRK SS-SD

$f 1.95$
fz .40

106 $8^{\prime \prime} 40$ TRK SS-DD
TD7 8, 40 TRK DSSD

10 per box. Prices per diskette quoted Discounts for quantity ADD 15% VAT $+£ 1.50$ P8P

LARGE RANGES OF LISTING PAPER AND RIBBONS AT GREAT PRICES

Code Type

TO9 $11^{\prime \prime} \times 81 / 2^{\prime}$ " 60 GSM Plain.
TO10 11" "x91/2" 60 GSM Pert'd Margins
D11 11" $141 / 1^{\prime \prime}$ " 70 GSM Music Ruled
D12 11" "x450mm 60 GSM Music Ruled
RIBBONS: 10 off EPSON FX-80
(Redil for met...............

per $1000 \mathrm{f3} .75$
 per 1000 £3.95

 per 1000 f5. 95 per $1000 € 59.95$$f 49.95$
$\mathbf{f 4 2 . 5 0}$

ADD 15% VAT $+£ 1.50$ CARR. PER ITEM (PAPER) OR BOX of 10 RIBBONS

MANY MORE AVAILABLE - PHONE FOR DETAILS NOW! $01-9650627$

ECONOMICAL DRIVE POWER

Very powerful and versatile, from Rade Systems the R150 multiprocessor SBC £385! (ex. VAT + carr). Amazing spec. Look what you get: 280 A at 4 MHz with 64 K RAM $51 / 4 / 8^{\prime \prime}$ disk controller, Z80A CTC, Z80A DMA, Z80A P10, memory mapped VDU uses M6845 CRTC 25×80 char display, you can use all the TD8 option cards to build your own powerful system, or build your own TD8! Suitable power supply $£ 95$. Keyboard from $£ 85$. Cased Video Monitors from £95. Supplied with full technical documentation. Demand for this excellent machine is high! Order now! Power requirements: +5V @ 1.5A, +12V@25A.-12V required for RS232 option - available on our standard PSU. Uncased drives ałso avaiłable with/without PSU.

EXCLUSIVE OF VAT \& CARRIAGE

DON'T WASTE MONEY ON OTHER COMPUTERS: COMPARE THE TD8 WITH OTHERS - COME TO US LAST!!

FROM 9995
 PHILIPS 12 display

£449
TD8 SYSTEM PRDC SSOR

CP/M80 £139. CP/M86 £225. 8086/7 with 128KB f495 extra gives you THE most powertul machine in its class. You could spend $£ 6,000$ for a machine of this specification. Other options include: 64KB RAM ex pansion f135. 192KB RAM E249. IEEE488 £97.50. Sync comms £78. Dual Parallel
Ports f59 Dual RS232 559.68000 CPU fT8A. 16032 CPU ETBA. A to D and D to A converters, high res graphics, floppy and hard disk controllers and drives, tracker ball, real-time clock/calendar with BBU and more on the way!

CHOOSE YOUR SOFTWARE FIRST THEN COMPARE OUR HARDWARE

SOFTWARE: WordStar, Mailmerge, 0 Base II, Personal Pearl, MBasic, CBasic, Pascal 2, MT + , Fortran, CIS Cobol, C, Cardbox, FMS, Datastar, CalcStar, Supercalc, Mathemagic, Peachtree Sales Nominal, Purchase Ledgers, Inventory Management 80, Act $65,68,69,86 / 88$ Tran8, Catchum and much more!
PHONE TO ARRANGE DEMO 01-965 0627
24 HOURS - SEVEN DAYS
Complete TD8 system (as illust.) with Keystar, Epson RX-80, disk filing hox, CPM 2.2 and WordStar, VDU and keyboand
ONLY £1895! OR wilh HR15 Daisy Wheel - £1995
EXCLUSIVE OF VAT \& CARRIAGE

NEW!

PERSONAL TYPE SETTING

For use with your CP/M 80, CP/M 86 MS-DOS, and most other systems Provide you with the ability to produce customised letter heads, invoices, delivery notes, price lists.
Do you own printing on your EPSON or compatible printer. No modifications to hardware. PRICE includes comprehensive MANUAL and MASTER DISK.

Call us now to receive some sample output of .

FANCY FONT ©

your personal typesetter £150 exc. VAT \& CARR.

INCREDIBLE!
A high quality daisy wheel printer with RS232 interface 3 KB character buffer, and a host of other features lik full WordStar function support dual colour (red/black) printing

FREE DATA CABLE WITH EVERY BROTHER HR15! Use this printer with the low-cost TOB micro for the DATA CABLES
Made to your specification
Off shelf from $£ 12$ Exclusive of VAT \& CARR

The most

ECONOMICAL VIDEO

 MONITORyou can buy
PHILIPS 12' 25×80 character, green phosphor anti-glare screen, attractive case ONLY £69.95 Exclusive VAT \& CARR

CASED DRIVES WITH PSU

bBC COMPATIBLE SINGLE DISK DRIVES
TD $10051 / 4 \times$ SS 40TK 100K $\mathbf{f 1 8 1}$
TD $2005 \frac{1}{4} \times$ SS 80 TK 200 K $\begin{array}{r}\mathrm{f} 223 \\ \mathrm{f} 248 \\ \hline\end{array}$

BBC COMPATIBLE DUAL DISK DRIVES

TD $2002 \times 51 / 4$ SS 40TK 208K $£ 339$
TD $4002 \times 51 / 4$ SS 80 TK 40 K £379
TD $8002 \times 51 / 4$ DS 80TK 800K…........... $\mathbf{f 4 5 1}$

BBC COMPATIBLE DUAL SWITCHABLE DISK DRIVES

TD $400 \mathrm{~S} 2 \times 51 / 4$ SS $80 T \mathrm{~K} 400 \mathrm{~K}$ f457
TD $800 \mathrm{~S} 2 \times 51 / 4$ DS 80 TK 800 K . $\mathbf{f 5 1 0}$

The drives include connecting cables, user manual, disk formatter ex of VAT \& CARR.

MICROPROCESSOR CONTROLLED RECEIVERS

Type SR 530 USB/CW/AM/Telex -10 Hz Steps (Marine)
Type SR 532 USB/LSB/AM/CW - 10 Hz Steps (Static/Transportable)
Type SR 531 USB/LSB/AM/CW - 100 Hz Steps (Static/Transportable)

DESIGNED AND MANUFACTURED TO HIGHEST INTERNATIONAL SPECS

Freq. Range Increments Stability Tuning Power Supplies FULLY MODULAR 'PLUG IN' CONSTRUCTION

FULI M: $110 / 240 \mathrm{~V}$ AC and $24 V$ DC

Memory
Scanning
50 KHz to 30 MHz
10 Hz or 100 Hz Steps $\pm 1 \mathrm{Part}$ in $10^{7} /{ }^{\circ} \mathrm{C}$ Keypad and Spin Wheel $110 / 240 V$ AC and 24V DC
PLUG IN' CONSTRUCTION NOW AVAILABLE AT HIGHLY COMPETITIVE PRICES
Send for Technical Brochure to:
Tel: (0344) 885656 Vigilant Communications Ltd.

Telex: 849769 Vigcom G Unit 5, Pontiac Works, Fernbank Road, Ascot, Berks SL5 8JH, England

WW - 016 FOR FURTHER DETAILS

1% Tolerance, $1 / 4$ Watt High quality, British made 89 (E24) values, only $3 p$ each. VAT, p\&p inclusive.
SPECIAL OFFER
5 of each 445 resistor £12.60

SPECIAL 'POP' PACK

50 pcs: 100R, 1K, $4 \mathrm{~K} 7,10 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}$ M. 25 pcs $330 \mathrm{R}, 470 \mathrm{R}$ 1K5 2 K 2 3K 22 K . Total 500 pes $£ 11.50$.

Extra special 1 of each kit $£ 22$

ORION SCIENTIFIC LTD - 16 Orange Street - London WC2H 7ED WW - 067 FOR FURTHER DETAILS

TIME WRONG?

MSF CLOCK is ALWAYS CORRECT - never gains or loses, SELF SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds, 24 hour format, larger digit Hours and Minutes for easy QUICK GLANCE time, auto GMT/BST and Leap Year, can expand to Years, Months and Milliseconds, also audio to record and show time on playback, receives Rugby 60 kHz atomic time signals, only $15 \times 5 \times 8 \mathrm{~cm}$, built-in antenna, 1000 km range, GET the TIME RIGHT, £72.70.
TUNABLE AUDIO NOTCH FILTER £16.40.
Each fun-to-build kit (ready made to order) includes all parts, printed circuit, case, instructions, by-return postage, etc, full catalogue, money back assurance, SEND away NOW.

CAMBRIDGE KITS

45 (WB) Old School Lane, Milton, Cambridge. Tel: 860150

TRANSFORMERS Ex-stock

MAINS ISOLATORS Pri/Sec 120V×2		
VA	Price	P8P
*20	5.82	1.60
60	9.49	1.80
100	11.08	2.00
200	15.69	2.25
250	18.97	2.64
350	23.47	2.70
500	29.23	2.95
750	41.28	3.70
1000	53.00	4.00
1500	68.37	4.70
2000	82.27	5.10
3000	115.35	OA
6000	203.65	OA

momeve souTons

com	
${ }^{200}$	
(100	
${ }^{1000}$	

1224V or 12-0.12v

$60 / 30 \mathrm{~V}$ or $30-0-30 \mathrm{~V}$
Pri $2 \times 120 \mathrm{~V} .2 \times 30 \mathrm{~V}$ Tap
Secs Volts $6,8,10,12$,
$16,18,20,24,30,36,40$, 48,
30 V
$50 / 25 \mathrm{~V}$ or $25-00-25 \mathrm{~V}$ $2 \times 25 \mathrm{~V}$ Tap secs. Volts 5 , $30 / 15 \mathrm{~V}$ or $15-0-15 \mathrm{~V}$ $2 \times 15 \mathrm{~V}$ tap Sec. Volts 30 V.
60 V 48,6
30 V.
60 V

INVERTERS
12/24V DC in. 240V 13A skt. AC out. Cont. Rated 100W …...............E57.00 $\begin{array}{ll}250 \mathrm{~W} & \mathbf{5 1 5 2 . 5 0} \\ 500 \mathrm{~W} & £ 23950\end{array}$ $\begin{array}{lr}500 \mathrm{~W} & £ 239.50 \\ 1000 \mathrm{~W} & £ 317.50\end{array}$ CONSTANT VOLTAGE TRANSFORMERS Spike-free stable mains l20VA $£ 131.12$ 500VA $£ 219.91$ 1kVA $£ 336.40$ 2kVA $£ 594.50$ 5kVA £1587
AVOs \& MEGGERs

 $\begin{array}{ll}\text { MM5 Minor } & \mathbf{£ 4 6 . 5 0} \\ \text { DA212LCD } & £ 89.90\end{array}$ $\begin{array}{lr}\text { DA212LCD } & \mathbf{£ 8 9 . 9 0} \\ \text { DA116LCD } & \mathbf{£ 1 4 0 . 3 0}\end{array}$ DA117 Autorange
ECD 157.00 Megger Gen $£ 108.50$ Bati Megger $£ 85.50$
2001 $2001 \quad £ 87.40$
P\&P $£ 2.00$ VAT 15%

BURGLAR ALARM Ultrasonic portable, looks
E 99.00 - Just plugs - No wiring - Loud siren - Exit/Entry delays - Recharge batts ELECTROSIL TRA 5\% RESISTORS $£ 1 / 100$
2. $20,33,47,75,390,430$. $10 \Omega, 560,1 \mathrm{k}, 1 \mathrm{kl}, 1 \mathrm{k} 3$,
510 k $1 \mathrm{k} 6,1 \mathrm{kB}, 2 \mathrm{k}, 3 \mathrm{k}, 3 \mathrm{~kg}, 15 \mathrm{k}$.
 ${ }^{82 k}, 100 \mathrm{k}, 110 \mathrm{k}, 120 \mathrm{k}$, 270k, 300k.
PLEASE ADD 15\% VAT TO ALLITEMS

SOUTH MIDLANDS COMMUNICATIONS

 SALE ot TEST EQUIPMENT OAAPROCESSOR FREQUENCYPERIOD $\stackrel{\text { PULSES }}{ }$ IEMPRRATURE £365

The YC1000L is a laboratory grade instrument with versatile microprocessor control. It includes: a frequency $(10 \mathrm{~Hz}-600 \mathrm{MHz}, 0.02$ ppm), a period (0.1 S to 0.1 US), and a pulse counter ($0-99,999,999$, 1 L (remote sensor -29.0 to $+99.9^{\circ} \mathrm{C}$) plus a precision timer (24 hour clock providing; event or period, (local or remote) and alarm functions). Display is via 8 large fluorescent green digits and/or the inbuilt 5×7 (20 characters line 2 line second) Dot Matrix thermal printe

WW - 057 FOR FURTHER DETAILS

\section*{SURPLUS STOCK SALE
 Compact Switch Mode Power Supplies (50 watt)
 | | SIZE | StATUS | PRICE |
| :---: | :---: | :---: | :---: |
| Model SR5-10 5v @ 10A | $51 / 2^{\prime \prime} \times 41 / 2^{\prime \prime} \times 1 \frac{1}{2 \prime \prime}$ | Unused | |
| Model SR12-4 12v@4A | $51 / 2^{\prime \prime} \times 41 / 2^{\prime \prime} \times 1 \frac{1122^{\prime \prime}}{}$ | Unused | |
| Prices each | | | £75 |
| Lots of 10 | | | £65 |
| Lots of 20 | | | £49 |

 Dicoll Electmonic: Lirnited Bond Close. Kingsland Estate

Besingstoke. Hampshiro. RG24, Telophone: 8 Basingstoke 61551
Telox: 858769}

INTEGRATED CIRCUITS

MC1350P 0.
MC1351P

ITS	SN
0.95	ST
1.50	STK
1.25	St
2.35	STK
1.58	TA
3.00	TA7
1.25	TA
7.95	TA
0.50	TA7
2.75	TA7
1.75	TA7
2.50	TAT
6.75	TA7
5.75	TA7
3.50	TA7
7.25	TA7
6.35	TA7
1.75	TAT
1.75	TA7
2.85	TA
4.85	TA
6.65	TA
1.80	
1.10	TAA
1.10	TAA
1.95	TBA
0.89	TBA
1.25	TBA
1.30	TBA
1.55	TBA
1.05	TBA
1.65	TBA
1.95	TBA
1.00	TB
1.15	TB

WW - 046 FOR FURTHER DETAILS

PHONE
 P. M. COMPONENTS LTD SELECTRON HOUSE, WROTHAM ROAD 3 LINES MEOPHAM GREEN, MEOPHAM, KENT DABOOQ

WIREWOUHD RESISTORS

4 Watt
7 Watt
R47 $447 \quad 0.18$

11 Watt
17 Watt

BASES ETC. 0.15
0.18

ZENER DIODES	
BZX61 0.15 6 V 27 V 5 EV 29 V 110 V 11 V 12 V 13 V 15 V 16 V 38 V 20 V 22 V 24 V 27 V 30 V 33 V 36 V 39 V 47 V 51 V 56 V 68 V 75 V	
$\begin{array}{r} \text { BZY8 } \\ 2 V 73 V 3 V 3 \text { 3V6 } \\ 5 V 66 \mathrm{~V} 26 \mathrm{~V} 7 \mathrm{~V} 5 \\ 12 \mathrm{~V} 13 \mathrm{~V} 15 \mathrm{~V} 18 \mathrm{~V} \end{array}$	0.07 9 4V3 4V7 5V1 2 9V1 10V 11 V 24 V 27 V 30 V
	PTTEAES
VA1040 0.23 VA1056S 0.23 VA1104 0.70 VAB650 0.45 VA1097 0.25	7V Power Mike batteries TR175 $£ 1.40$ es other prices on request

CALLERS WELCOME

50 YDS SOUTH OF MEOPHAM GREEN CAR PARKING AVAILABLE OPEN MONDAY TO FRIDAY 9a m 5.30p . 2 HOURANSWERPHONE SERVICE ACCESS AND BARCLAYCARD ORDERS WELCOME

UK ORDERS P\&P 50p PLEASE ADO V.A.T. AT 15\%
EXPORT ORDERS WELCOME. CARRIAGE/POST AT COST

London's premier exhibition of public address, sound reinforcement and communications equipment will be another exciting show!
a unique opportunity to see the very latest equipment and systems - to meet and talk with specialists of vast experience in sound installations

CUNARD INTERNATIONAL HOTEL HAMMERSMITH, LONDON

FEBRUARY 21-22-23, 1984

10 am-5pm Daily - Admission Free

Association of Sound and Communications Engineers Limited
4B High Street, Burnham, Slough SL1 7JH

It's so easy and tidy with the Easibind binder to file your copies away. Each binder is designed to hold six issues and is attractively bound and blocked with the WIRELESS WORLD logo.
Price U.K. $£ 4.30$ including postage, packing and V.A.T.
Overseas orders add 35p per binder
Nat. Giro No. 5157552.
Please allow $3 / 4$ weeks for fulfilment of order.
Payment by ACCESS/BARCLAYCARD/ VISA. Send coupon below detailing credit card no. and signature.
Why not place your order now? Send the completed coupon below with remittance payable to:

42 Hoxton Square London N1 6NS

Order Form WIRELESS WORLD

binders
l enclose P.O/cheque value
for \qquad Years required.
BLOCK LETTERS PLEASE
Name.. Address.

WW - 030 FOR FURTHER DETAILS

FAST EPROM PROGRAMMER

NINE TEXTOOL ZIPDIP SOCKETS
LCD ALPHA DISPLAY
PROGRAMS ALL SINGLE RAIL EPROMS TO 27256
80\％CUT IN PROGRAMMING TIME USING MANUFACTURERS SUGGESTED ALGORITHMS（e．g． 2764 takes 1.25 mins not 7 mins typical） SWITCH－SELECT OF EPROM TYPE（NO MODULES）

FOR CABLES LOOMS，BARE PCBS，ETC

 Would be to use a buzzer．with a probe in each hand to complete the circuit which meana that 653.796 tests are required to chack a PCB with 1.144 component pads．
DATAMAN＇s ICT performs in the same way－but finishes the task in seconds． The resultz can be comparad with a provioushly learned pattern or formed into a standard ASCII file（a list of wher－is－connocted with whet）and transmited tormat．CuSTOM LSI
ICT Usos CUSTOM LSI designed by DATAMAN．A toster of tha size and formal You noed can be BUILT－TO－ORDER DATAMAN can also provide a COMPLETE
SOLUTION with fixtures，beds－ot－nails．N．C．drilling from your artworks otc．
BUS EXERCISER／DIAGNOSTIC AID

TV DISPLAY of program．register and stack．
Outstanding edititng，debugging，single－step
sel breakpoint etc．Very useful on－line ASSEMBLER－
also DISASSEMBLER to serial output．Cassette interface
Desioned
Designed for British schoois－council to teach micro－control－appears in GCE syllab Module for Course in Micror－supply，leads，manual etc
Teachers＇Guide
Pupil Reader
Analogue to Digital Module
D．C．Motor \＆control Module
Complete set of all above including MENTA
$£ 99.00$

INN EPROM PROGRAMMER／EMULATOR

Plugs into microprocessor socket，reads and writes to system ROM
RAM and I／O
Prints memory ccntents in HEX．ASCII or ASSEMBLER MNEMONICS
Prints MEMORY MAP Prints MEMORY MAP of addressing space．
Performs CHECKSUMS．TESTS RAM，prints addresses and bits which default．
Tests data lines for SHORTS to rails，other data or address lines．
Tells engineer of address／data faults impossible to find with other tools Easy io program：retains sequences for testing up to fifteen different
products in permanent memory products in permanent memory
appropriate disassembler（say which， 6800 and 8085 format with MICRODOCTOR

SOFTY programs

2716， 2732 and 2532 EPROMS Will copy any EPROM to any other－same
HEX MEMORY MAP with many code inserting deleting，shifting and diting features．Has standard serial and paraliel I／O routines for communication with computers and printers－and cassette interface．

位
2764／128 ADAPTOR for SOFTY
With 28 pin Zero－Force Textool socke
Rotary switch selects bank to be programmed

EPSON thondor
 NEC

CUBE
 TOTAL COMPUTER SYSTEM

 6502 +assembler+BBC BASIC

 6502 +assembler+BBC BASIC $6809+$ FL $X x \rightarrow$ cross assemble anything $6809+$ FL $X x \rightarrow$ cross assemble anything

 SPECIAL SUPPORT FOR 6809 , 6801, (SINGLE CHIP) AND 68000

 SPECIAL SUPPORT FOR 6809 , 6801, (SINGLE CHIP) AND 68000}

Complete disk development system from $£ 1276$ Target single board computer card from £139
Here is an exciting concept, based on the demands of working engineers who are called on to provide computer solutions, often at short notice.
These flexible, robust and easy-to-use development systems are based on CUBE Eurocard modules, and can be extended to include as many interfaces of as many types as the ultimate application demands, and yet which can also be reduced after development to a minimum cost unit, leaving off every unnecessary feature. 6502 systems support Atom and BBC BASIC, both on disk systems and on the 6502 EuroCUBE SBC
$£ 139$ buys this single board computer, which is also the cpu card of the
development system. It carries senial and digital interfaces, a standard CUBE bus connector and four byte-wide memory sockets with banery back-up for CMOS RAM.

6809 systems support FLEX, and under FLEX support assembler for 6809 and cross assemblers for all popular processors. Control Universal especially support 6801 (single chip computer) and 68000. High level compiling languages such as "C" and PL/9 provide code to run on the 6809 EuroCUBE which costs the same and has the same specification as the 6502 EuroCUBE.
UniCUBE is a carrier for the 6801 single chip computer, which has a serial interface, 4KB masked ROM or piggy-back EPROM, 128 bytes of RAM and 29 io lines. It costs less than $£ 35$ in quantity, and the single chip micro itself is just a few pounds for the masked ROM version, or can be used in the EPROM version with no commitment to quantity.

Control Universal Ltd
Anderson's Court Newnham Road,
Cambridge CB3 9EZ
Tel 0223358757 Telex 995801

FREQUENCY COUNTERS
 HIGH PERFORMANCE HIGH RELIABILITY LOW COST

The brand new Meteor series of 8 -digit Frequency Counters offer the lowest cost professional performance available anywhere

* Measuring typically $2 \mathrm{~Hz}-1.2 \mathrm{GHz}$ เ Low Pass Filter
* Sensitivity $<50 \mathrm{mV}$ at 1 GHz
* Setablity 0.5 ppm
* High Accuracy
- 3 Gate Times
- Battery or Mains
* Factory Catibrated
* 1-Year Guarantee
* $0.5^{\prime \prime}$ easy to read L.E.D. Display

PRICES (Inc. adaptor/charger, P \& P and VAT)
METEOR $100 \quad(100 \mathrm{MHz}) \quad £ 104.36$
METEOR $600 \quad(600 \mathrm{MHz}) \quad £ 134.26$
METEOR 1000
$(1 \mathrm{GHz}) \quad £ 184.36$
Illustrated colour brochure with technical specification and prices available on request

N12 Designed and manufactured in Britain

BLACK STAR LTD, Dapt. WW, 9A Grown Street, St lves Huntingdon, Cambs PE17 4EB, England Tol: (0430) 62440 Telex: 32339

WW - 022 FOR FURTHER DETAILS

STEREO DISC AMPLIFIER 4

THE MOST THOROUGHLY RESEARCHED DISC AMPLIFIER THERE IS

Magnetic cartridge to balanced lines. Unique Response Variable Filter provides, through a single control knob, a 3 dB turnover frequency variable between 13 and 4 kHz but always with an appropriate phase and amplitude characteristic for psychoacoustic considerations. Also unbalanced
amplifier. amplifier.

SURREY ELECTRONICS LTD., The Forge, Lucks Green, Cranieigh
Surrey GU6 78 BG - Telephone: 0483275997

TOROIDAL TRANSFORMERS

We are now able to offer a range of high quality Toroidal transformers at very competitive prices:
30VA $£ 6.27,50$ VA $£ 7.73,80 \mathrm{VA} £ 8.51$ 120VA $£ 9.33,160 \mathrm{VA} £ 11.43,300 \mathrm{VA} £ 15.27$

Prices include P\&P and VAT
Available in the following voltages: 6-0-6, 9-0-9, 12-0-12, $15-$ $0-15,18-0-18,22-0-22,25-0-25,30-0-30,35-0-35,40-0-40,45-0-$ 45, 50-0-50.
Qty. discount 50 plus 10%, 100 plus 20%.
TRADE ENQUIRIES WELCOME
AIRLINK TRANSFORMERS LTD
28 Bullfields, Sawbridgeworth, Herts. Tel: 0279-724425

To obtain further details of any of the coded items mentioned in the editorial or advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These service cards are valid for six months from the date of publication,
Please use capital letters

If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you: their address is shown below.

OVERSEAS SUBSCRIPTION AGENTS

Australia: Gordon 8 Gotch (Australasia) Lt Melbourne 3000. Victori Belgium: Agence et
Messageries de la Presse 1 Rue de la Petite-ILE Brussels 7

Canada: Davis Circulation Agency, 153 St . Clair Avenue West. Toronto 195. Ontario
Cyprus: General Press Agency Litd. 131 Prodromou Street, P.O. Box

Denmark: Dans
Denmark: Dans Hovedvagisgade 8 , Dk. 1103 Kobenhavn.

FInland: Rautaklrja OY, Koivuvarankuja 2, 01640 Vantas 64 , Finland.

France: Dawson-France S.A., B.P.40, F-91121 Palaiseau
Germany: W. E. Saarbach GmbH. 5 Koin 1 . Follerstrasse 2

Graece: Hellenic Distribution Agency Syngrou Avenue, Sea Smymi, Greece.
Nengren

Holland: Van Ditmar N.V. Amsterdam 1004
India: International Book House, Indian Mercantile Mansion Ext. Madame Cama Rosd, Bombey 1

Iran: A.D.A., 151 Khisban Sorava, Tehran

Israel: Stelmatzky's Agency Lid, Citrus House. P.O. Box 628. Tal Avi

Jepan: Western Publica.
tions Distribution Agency. tions Distribution Agency. 4-chome, Shinjuk Tokyo 160

Lebanon: Levant Distributors Co.. P.O. Box 1181 Makdesi Street, Halim Hanna Bldg. Beirut
Malaysia: Times Distributors Sdn. Bhdi. Times House, 390 Kim Seng Road. Singapore 9, Malaysia.

Malta: W. H. Smith Continental Lid, 18a Scots Street, Valleta
Now Zealand: Gordon \& Gotch (New Zealand) Lid, 102 Adelaide Road. Wellington 2

Nigerla: Dally Times of Nigeria Lid, 3 Kakawa Nigeria Lid, 3 Kakawa
Street, P.O. Box 139 . Lagos

Norwav: A/S Narvesens Kioskompani, Bertrand Narvesens veil 2. Oslo 6

Portugal: Livaria Bertrand s.a, r.
Apartado 37. Amadora
South Africa: Central Now: Agency Lid, P.O. Box 1033. Johennesburg

Bpaln: Comercisl Atheneum 8.e. Consejo de Clento, 130-136 Barcelona 15
Sweden: Wennegren williams A B. Fack S-104 25 Stockhoim 30

Switzerland: Naville 8 Cie SA, Rue Levrier 5-7. CH-1211 Geneve 1 Schmidt Agence AG. Savogelstissse 34, 4002 Basle
U.S.A.: John Barios. Business Press International; 205 East 42nd Street,
New York, N.Y. 10017

Postage will be paid by Licensee

Do not affix Postage Stamps if posted in Gt Britain, Channel Islands, N Ireland or the Isle of Man

BUSINESS REPLY SERVICE
Licence No CY258
Wreless wiotd
Reader Enquiry Service
Oakfield House
Perrymount Road
Haywards Heath
Sussex RH16 3DH

Enquiry Service for Professional Readers

WW.	WW	WW
WW.	WW	
WW	WW	ww
WW.	WW.	ww
WW.	WW.	WW
WW.	WW.	Ww
WW.	WW	ww
WW.	WW	WW
WW.	WW.	WW
WW.	WW	ww
WW.	WW.	ww
ww.	WW	ww
Ww.	WW	ww

Wireless World, March 1984
WW 8463
Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.

Name

Name of Company

Address

Telephone Number

PUBLISHERS USE ONLY			A/E			

Position in Company
Nature of Company/Business
No. of eminloyees at this establishment.
I wish to subscribe to Wireless World
VALID FOR SIX MONTHS ONLY

Wirelessinworld Subscription Order Form

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:

Subscription Manager, Business Press International Ltd, Oakfield House, Perrymouth Road Haywards Heath, Sussex RH16 3DH United Kingdom

Enquiry Service for Professional Readers only.

UK subscription rates
1 year: f 14.00
Overseas 1 year: $£ 17.00$
Please enter my subscription to Wireless World for 1 year
I enclose remittance value.
made payable to
BUSINESS PRESS INTERNATIONAL Ltd.

Name

Address

USA \& Canada subscription rates
1 year: $\$ 44.00$

OVERSEAS ADVERTISEMENT AGENTS

Hungary Ms. Edit Bajusz, Hungexpo Advertising Agency, Budapest XIV, Varosliget - Telephone : 225008 -
Telex: Budapest 22-4525 INTFOIRE

Italy Sig. C. Epis Etas-Kompass, S.p.a. Servizio Estero, Via Mantegna 6, 20154 Milan - Telephone 347051 Telex: $\mathbf{3 7 3 4 2}$ Kompass

Japan Mr. Inatsuki, Trade Media - IBPA
(Japan), B212 Azabu Heights, 1-5-10
Roppongi, Minato-Ku, Tokyo 106-
Telephone : (03) 585-0581

United States of America Ray Barnes
*Business Press International
205 East 42 nd Street,
New York, NY 10017 - Telephone:
(212) 6895961 - Telex: 421710

Jack Farley Jnr., The Farley Co.,
Suite 1548, 35 East Wacker Drive,
Chicago, llinois 60601 - Telephone :
(312) 63074

Victor A Jauch,
Elmatex International.
P.O. Box 34607.

Los Angeles Calif. 90034 U.S.A
Telephone: (213) 821.8581
Telex: 18-1059.
Jack Mentel, The Farley Co., Suite 605.
Ranna Building. Cleveland, Ohio 4415 -
Telephone: (216) 6211919
Ray Rickles. Ray Rickles \& Co.,
P.O. Box 2008, Miami Beach, Florida

33140 - Telephone : (305) 5327301
Jim Parks, Ray Rickles \& Co.,
3116 Maple Drive N.E., Atlanta, Georgia
30305. Telephone : (404) 2377432

Mike Loughlin, Business Press Internationa 15055 Memorials, Ste 119, Houston. Texas
77079 - Telephone: (713) 7838673

Canada Colin H. MacCulloch.
International Advertising Consultants Lid.
915 Carlton Tower, 2 Carlton Street,
Toronto 2 - Telephone (416) 3642269

[^6]
DC MICROVOLTMETER

TYPE TM8 £120 $+p \& p+V A T$
$\pm 3 \mu \mathrm{~V}, \pm 10 \mu \mathrm{~V}, \pm 30 \mu \mathrm{~V}$.
Accuracy $\pm 1.5 \%$ rdg. $\pm 1.5 \%$ range $\pm 0.15 \mu \mathrm{~V}$.
Drift $<0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. Noise $<0.3 \mu \mathrm{~V}$ p-p on $3 \mu \mathrm{~V}$.
Input resistance 100 M on $\mathrm{V},(\mathrm{mV})$; 1 M on $\mathrm{mV}, \mu \mathrm{V}$.

CURRENT RANGES

$\pm 3 \mathrm{pA}, ~ \pm 10 \mathrm{pA}, ~ \pm 30 \mathrm{pA}$
$\pm 300 \mathrm{nA}$.
Accuracy $\pm 2 \%$ rdg. $\pm 1.5 \%$ range $\pm 0.2 \mathrm{pA}$.
Drift $<0.3 \mathrm{pA} /{ }^{\circ} \mathrm{C}$. Noise $<0.5 \mathrm{pA}$ p-p on 3 pA .
LIN/LOG RANGES
On $m V, \mu V$ and $n A, p A L O G$ ranges
$\pm 30 \%$ fsd equals $\pm 3 \mu \mathrm{~V}$ and ± 3 pA approx.
$\pm 60 \%$ fsd equals $\pm 30 \mu \mathrm{~V}$ and $\pm 30 \mathrm{pA}$ approx.
$\pm 100 \%$ fsd equals $\pm 300 \mathrm{mV}$ and $\pm 300 \mathrm{nA}$ approx.
On V LOG the voltages are 1000 times greater.
RECORDER OUTPUT
$\pm 300 \mathrm{mV}$ at fsd. Source resistance $4.7 \mathrm{k} \Omega$ POWER SUPPLY
One type PP9 battery or equivalent, life 1000 hrs . SIZE \& WEIGHT
$180 \times 260 \times 140 \mathrm{~mm} .3 \mathrm{~kg}$. Meter scale 120 mm .

Send for data covering our range of instruments

LEVELL ELECTRONICS LTD.

Moxon Street, Barnet, Herts. EN5 5SD, England.
Telephone: 01-4408686/4495028.

ESTABLISHED 30 YEARS.

RECORD DECKS 240 volt AC. Post $\mathbf{4}$				
Make	Model	Drive	Cartridge	Price
BSR	P170	Rim	Ceramic	$\underline{72}$
GARRARO	6200	Rim	Ceramic	$\underline{42}$
BSR	P207	Rim	Ceramic	± 20
BSR	P232	Belt	Magnetic	$\underline{4}$
AUTOCHANGERS 240 VOLT				
BSA	Budget	Rim	Ceramic	¢18
BSA	Deluxe	Rim	Ceramic	E20
BSA	Deluxe	Rim	Magnetic	$\underline{4} 2$
GARRARD	6200	Rim	Ceramic	$\underline{72}$

THE "INSTANT" BULK TAPE ERASER £11.50 Post 95p Suitable for cassettes and ál sizes of tape reels. AC mains Will also demagnetise small tools. Tape Head Demagnetiser $\mathbf{f 5}$.
ALUMINIUM CHASSIS. $21 / 2 \mathrm{in}$. deep $6 \times 4 \times 1.15 ; 8 \times 6 £ 2.20 ; 10 \times 7$
 $14 \times 3 € 2.50 ; 13 \times 9 £ 2.80$.
ALUMINIUM PANELS. 6×4 55p; 8×6 90p; 14×3 90p; 10×7 £1.15; $12 \times 8 \mathrm{£1.30} ; 16 \times 6 \mathbf{£ 1 . 3 0} ; 14 \times 9 £ 1.75 ; 12 \times 12 \mathrm{£1.80} ; 16 \times 10 £ \mathbf{Z} .10$. ALUMINIUM BOXES. $4 \times 4 \times 11 / 2 £ 1.20 .4 \times 21 / 2 \times 2 \mathrm{f1} 20.3 \times 2 \times 1 \mathrm{f} 1.20$. $6 \times 4 \times 2 £ 1.90 .7 \times 5 \times 3 £ 2.90 .8 \times 6 \times 3 £ 3.10 \times 7 \times 3 \mathrm{f} \ddagger .60 .12 \times 5 \times 3 £ 3.60$. $12 \times 8 \times 3 \mathrm{f4} .30 ; 9 \times 4 \times 4$ £ 3 .
£1.10. DP £1.30. Edge Pot 5L. SP 45p.

MINI-MULTITESTER £7.50 Post 65p
Pocket size moving coil instrument. 4000 o.p.v. 11 ranges. $D C$ volts $5.25,250,500$. $A C$ volts $10,50,500$, 1000. DC amps $0-250 \mu \mathrm{~A}, 0-250 \mathrm{~mA}$. Resistance 0 to 600 K
De Luxe Range Doubler MULTI-METER 50,000 o.p.v. $7 \times 5 \times 2$ in. 50 Micro Amp 43 Ranges, $1,000 \mathrm{~V}, \mathrm{AC}-\mathrm{DC}, 20 \mathrm{MEG} 10 \mathrm{amp} \mathrm{DC}$
PANEL METERS 50μ а, 100μ, 500μ а, 1 ma $5 \mathrm{ma}, 50 \mathrm{ma}, 100 \mathrm{ma}, 500 \mathrm{ma}, 1 \mathrm{amp}, 2 \mathrm{amp}, 25$ volt. VU $2^{1 / 4} \times 2 \times 11 / 4$. Stereo VU $31 / 4 \times 15 / 8 \times 1$ in. £5. p.p. 50 p
RCS SOUND TO LIGHT CONTROL BOX Complete ready to use with cabinet suze $9 \times 3 \times 5 \mathrm{in}$. 3 channel, 1000 watt each. For home hi- $\frac{1}{1}$ or disco OR KIT OF PARTS £19.50
BATTERY ELIMINATOR Mains to 9 volt D.C. 400MA Stabilised, safety cutout, $5 \times 3^{1 / 4} \times 2^{1 / 2} / 2$ in. $£ 5$. Post $£ 1$.
DISCO GRAPHIC MIXER EQUALISER £108. Post $£ 2$. 4 channel stereo, 5 band graphic, red + green LED. VU display, headphone monitor, or Deluxe Model, 5 channel 7 band graphic. £119.

U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

FAMOUS LOUDSPEAKERS

	MODEL		WATTS	OH	PRICE	POST
aUdax WO	WOOFER	5 Sin	25	8	£10.50	£1
GOODMANS HIF	hifax	$71 / 2 \times 41 / 4$	100	4/8/16	¢ 30	2
GOODMANS HB	HB WOOFER	8 in	60	8	\$12.50	1
WHARFEDALE WO	WOOFER	8 in	30	8	59.50	2
CELESTION OIS	OISCO/GROUP	10 in	50	$8 / 16$	$\underline{21}$	f2
G00DMANS HP	HPG/GROUP	12in	120	8/15	$\underline{29.50}$	2
G000mANS HP	HPD/DISCO	12 in	120	8/15	529.50	2
GOODMANS HP	HP/BASS	15 in	250	8	¢72	53
GOODMANS HPO	HPO/BASS	$18 i n$	230	8	¢84	4
RCS STEREO PRE-AMP KIT. To build. Inputs for high, medurm or low imp volume control and PC Board. Can be ganged for multi-channel					$£ 3.50$Post 65p	
GENERAL PURPOSE LOW VOLTAGE						
Tapped outputs avalable2 amp. $4.5,6,8,9.10,12.15,18,25$ and 30 VPrice$\mathbf{f 6 . 0 0}$						
1 amp $6,8,10,12,16,18.20,24,30.36,40,48,60$						
2 mmp 6. 8. $10,12.16 .18 .20 .24 .30 .36,40,48,60 \quad £ 10.50$						
	$\mathrm{mp} \quad \mathrm{f2} 20 \mathrm{fl}^{\text {¢ }}$	1 0-8-1	12V. 5 am		65.00	
12 V .750 ma						
12 V .3 amp$12.0-12 \mathrm{~V} .2 \mathrm{amp}$	¢4.50 ¢1		-0-172a		55.50	
	¢5.50 £	35 V .	2 amp		65.00	

$500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p} .1200 \mathrm{mF} 76 \mathrm{~V} 80 \mathrm{p}$

$1000 \mathrm{mF} 12 \mathrm{~V} 20 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 50 \mathrm{p} ; 100 \mathrm{~V} 120 \mathrm{p}$. $2000 \mathrm{mF} 30 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} 60 \mathrm{p} ; 100 \mathrm{~V}$ £1.40; $1500 \mathrm{mF} 100 \mathrm{~V} £ 1.20$ $2250 \mathrm{mF} 50 \mathrm{~V} 70 \mathrm{p} .3000 \mathrm{mF} 50 \mathrm{~V} 65 \mathrm{p} ; 4700 \mathrm{mF} 40 \mathrm{~V} \mathrm{f} 1$.
CAPACITORS WIRE ENO High CAPACITORS WIRE END High Voltage
$.001, .002, .003 .005, .01, .02, .03, .05 \mathrm{mfd} 400 \mathrm{~V} 10 \mathrm{p}$
22MF 350 V 12 p .600 V 20 p .1000 V 30 p.
22 MF 350 V 12 p .600 V 20 p .1000 V 30 p .1750 V 60 p.
47 MF 150 V 10 p .400 V 25 p .630 V 30 p.
HIGH VOLTAGE ELECTROLYTICS

$2 / 500 \mathrm{~V}$					
2/500V	45p	$32+32+16 / 350 \mathrm{~V}$	90p	$8+16 / 450 \mathrm{~V}$	75p
16/450V	45p	$100+100 / 275 \mathrm{~V}$	50p	$16+16 / 350 \mathrm{~V}$	80p
$20 / 500 \mathrm{~V}$	75p	$150+200 / 275 \mathrm{~V}$	50p	$32+32 / 350 \mathrm{~V}$	85p
$32 / 350 \mathrm{~V}$	45p	$32+32+32 / 450 \mathrm{~V}$	95p	$32+32 / 500 \mathrm{~V}$	£2
$32 / 500 \mathrm{~V}$	95p	$50+50+50 / 350 \mathrm{~V}$	95p	$50-50 / 300 \mathrm{~V}$	50p
125/500V	£2	$8+8 / 500 \mathrm{~V}$	£1	$50+50 / 350 \mathrm{~V}$	80p

BAKER AMPLIFIERS BRITISH MADE PA150 Watt MICROPHONE VOCAL AMPLIFER £129 4 channel mixing, 8 inputs, dual impedance, $50 \mathrm{~K}-600$ ohm, volume, treble, bass. Presence controls on each channel. Master 150 Watt MIXER AMPLIFIER 4 Inputs $£ 99$ Discotheque, Vocal, Public Address. Speaker outlets for 4,8 or
16 ohms. Four inputs 20 mv 50 K ohm. Individual volume controls
 four channel mixing. Slave output $16^{\prime \prime} \times 8^{\prime \prime} \times 51^{\prime \prime} \mathbf{n}^{\prime \prime}$. Wt 240 V A. C. 120 V to order. All transistor and solid state. Post $£ 2$. 100 Volt Line Model. 150 watt $£ 114$. MONO SLAVE, 150 watt $£ 80$. Baker Stereo Slave $150+150$ watt 300 watt Mono $£ 125$. Post $£ 4$ BAKER MOBILE PA AMPLIFIER. All transitor. 60 watt RMS, 12 v DC \& 240v AC, 4 inputs 50k. Aux +2 mics
f89 + phono. Output 4-8-16 0hm +100 von
BAKER PORTABIE DISCO 150 watt. Twin console + amplifier + mike and headphones + twin speakers $£ 330.300$
$€ 30$ Console + decks + pre-amp $£ 95$. Carr. $£ 12$
PA CABINET SPEAKERS Comp Carf. 12.
PA CABINET SPEAKERS, Complete. 8 ohm 60 watt $17 \times 15 \times 9$ in. $\ddagger(27$. Post f4. 4 or 8 or 16 ohm 75 watt $23 \times 15 \times 11 \mathrm{in}$, £52. 90 wat
bakEr loudspeakers

BAKE	U		RS			
MODEL	INCHES	OHMS	WATTS	TYPE	Price	POST
MAJOR	12	4-8-16	30	HI-FI	¢16	f2
SUPERB	12	8 8-16	30	HI-FI	f26	£2
AUDITORIUM	12	8-16	45	HI-FI	f24	\ddagger
AUditorium	15	8-16	60	Wooler	E31	$E 2$
GROUP 45	12	4-8-16	45	PA	£16	£2
DG 75	12	4-8-16	75	PA	E20	$\ddagger 2$
GRDUP 100	12	8-16	100	PA	¢26	$f 2$
DISCO 100	12	8.16	100	Disco	£26	$\underline{1}$
GROUP 100	15	8-16	100	PA	f35	E_{2}
DISCO 100	15	8-16	100	Disco	£35	¢2

REPAIR service available to most Baker loudspeakers.
SPEAKER COVERING MATERIALS. Samples Large SA.
SPEAKER COVERING MATERIALS. Samples Large S A.E.
B.A.F. LOUDSPEAKER CABINET WADDING 18 in wide 35 p t
B.A.F. LOUDSPEAKER CABINET WADDING 18 in Wide 35 p t.

MDTOROLA PIEZO ELECTRIC HORN TWEETER, 33 \%in. Square $£ 5$
 HORN BOXES, complete 200 watt $£ 30$. 300 watt $£ 35$. Size
$16 \times 6 \times 6$ in. 8lack vinyl covered with handle
Post $£ 4$ $16 \times 6 \times 6$ in. 8 lack vinyl covered with handle
CROSSOVERS. TWO-WAY $3000 \mathrm{c} / \mathrm{s} 30$ Watt $£ 3.100 \mathrm{~W} £ 4$. THREE-WAY $950 \mathrm{cps} / 3000 \mathrm{cps} .40$ watt rating. $\mathbf{f 4} .60$ watt $£ 6$. 100 W £8.
LOUDSPEAKER BARGAINS. Please enquire many LOUDSPEAKER BARGAINS. Please enquire, many others in stock.
4 ohm, $5 \mathrm{in}, 7 \times 4 \mathrm{in}, £ 2.50 ; 61 / 2 n, 8 \times 5 \mathrm{in}, \mathfrak{£ 3} ; 8 \mathrm{in}, \mathfrak{£} .50 .61 / 2 \mathrm{In} 20 \mathrm{~W} . \mathrm{E} 7.50$

 EMI $131 / 2 \times 8$ in. Bass $\&$ Tweeter 4 or 8 ohm 10 watt $£ 8 \mathrm{pp} £ 1$

Books and Components Lists 32 p stamps. (Minimum post/packing charge 65p.) Access or Barclaycard Visa. Tel 01-684 1665 0pen 9-6. Closed all day Wed. Open Sat. 9-5.

HIGH QUALITY REPLACEMENT CASSETTE HEADS

 Do your tapes lack treble？A worn head could be thë problem

 to better than newl Standard mountings make fitting easy and our TC1 Test Cassette helps you set the arimuth spot－on．We are ricas for prime parts．Compare us with other suppliers and seel the following is a list of our most popular heads，all are suitable use on Dolby machines and are ex－stock．20 Pormalloy Storeo Hoad．This is the standard head firted as Hingo High Beta Permalloy Head． Si6 Sendust Alloy Super Head．the best head we can fard response Ha5s 4 Track Head for auto－reverse or quadrophonic use．Full Please consult our list for technical data on these and other pecial P

HART TRIPLE－PURPOSE TEST CASSETTE TC1

One inexpensive test cassette enables you to set up VU leve head azimuth and rape seed invaluable
heads．Only $£ 4.66$ plus VAT and 50 p postage
so Head Do－magnatisor．Handy size mains operated uni而 Curved Pole Type for inaccessible heads

COMPONENTS
en not avalable elsewtiere Send for your copy of our latest lis thich also gives further information on our Kits．

Please add part cost of post，packing and insurance as foll	
INLAND	OVERSEAS
Orders up t $£ 10-50$ p	Please send sufficient to cove
Orders $£ 10$ to $£ 49-£ 1$	Surface or Air Post as reauire
Orders over $£ 50-\mathbf{£ 1 . 5 0}$	

ALL PRICES EXCLUDE VAT UNLESS STATED

 － 2503 （axt

閣

PHILIPS P2000 DAISY WHEEL PRINTER．RS232 E3ヶ ea SHUGART BOI FLOPPY OISK DRIVES $8^{\prime \prime}$ ．．．．．．．．．．．．． 1000° | TRANSTEL DOT MATRIX PRINTER COmpact Serial |
| :--- |
| f65 a | TELETYPE ASR33（Printer，Kayboard，Punch and TELETYPE ASR

Reader）RS232 CREED 75 TELEPRINTER．Very good condition ．．．．E25 ea $9^{\prime \prime}$ MONITOR Cased．Non－standard，with info．．．．．E20 12＂MONITOR．Cased．Non－standard，with into $£ 15$ ea AZTEC $20^{\prime \prime}$ Black and white MONITDR Video in f 50 ea TV Style $20^{\prime \prime}$ MONITOR Black and white．

Item

osciluoscopes

TEK $454 A$ dual trace 150 MHz delay swee TEK 453 A dual trace 60 MHz delay sweep TELARTRON／SCHLUMBERGER COITAO 50 MHz dual TB delay sweep．
TELEQUIPMENT 066 dual trace 25 MHz ． COSSOR CDU 120 dual trace 50 MHz delay sweep． COSSOR CDU150 dual trace 35 MHz dela SOLARTRONCD 1400 dual beam 15 MHz
TELEQUIPMENT D 43 dual beam 15 MHz STORAGE OSCILOSCOPES PHILIPS PM3234 dual beam toMHz TEEEQUP MENT DM 64 dual trace 10 MH

$$
\begin{aligned}
& \text { TEK } 549 \text { with IAI plug-in, dual frace } 30 \mathrm{MH} \\
& \text { delav sweop. } \\
& \text { HP SIGNAL ANALYSER } 5430 \mathrm{~B} \text { memory dis }
\end{aligned}
$$

HP SIGNAL ANALYSER $5480 B$ memory display wit
 with TF 1246 ．${ }^{2}$ VIV ANAI YSER TF2330 $2 \mathrm{H}_{2} 50 \mathrm{kHz}$ 44 MARCONI WAVE ANALYSER TF2330， 20 Hz －50kHz
25 MARCONI SIG GEN IF2002AS .10 kHz － 72 MHz AM／F
MARCONI SIG GEN TF995A／5 1．5－228MHz AMMIFM F ar ROW defiation
MARCON UNIVESSAL BRIDGE TF 1313
0.25%
EZ 28 MARCONI UNIVERSAL BRIDGE TF $1313.0 .25 \%, \frac{\text { E25 }}{29}$ 31 MARCONI UNIVERSAL BRIOGE TFBGB range．．．．．．．． 56
 MARCONI OEVIATION METER TH791OMM 4．1024MH 3A MARCONI SIG GEN TF $995 / 3 S 1.5$ ．220MH2 AM／FM
 4 HP PULSE GEN 222A．Repetition rate to 10 MHz 4 HP PULSE GEN 214A 200 watt pulse power．
3 HP MUSTIFUNCION VOLTMETER AIOC UP

STEWART OF READING

 110 WYKEHAM ROAD，READING，BERKS RG6 1PL Telephone： 073468041
YOU HAVEN’T

 SEEN ANYTHING LIKE THIS ON A COLOUR MONITOR BEFORE.An RGB monitor fromJVC offering a resolution of 370×470 pixels for less than $£ 150$?

We guarantee you won't see another bargain like that in this or any other micro mag-or in any other supplier's showroom.

For we've managed to acquire the sole distribution rights to these superb machines and we are able to offer them at an unbeatable price.

There are two models available: medium resolution (370×470 pixels) at $£ 149.95$; and high resolution (580×470 pixels) at $£ 229.95$. (Both excluding VAT.)

The units have a $14^{\prime \prime}$ screen and are suitable for the BBC Micro, Lynx, Oric, Apple, IBM and most other leading micros.

They are robustly constructed in a handsome cream casing. And come with a full year's guarantee.

Delivery is good: your monitor should arrive by courier service within ten days of our receiving your order.

You can order by filling in the coupon below and posting to: Opus Supplies Ltd., 158 Camberwell Road, London SE5 OEE. Or by telephoning 01-701 8668 quoting your credit card number. Or, of course, you can buy in person at our showroom between $9-5.30 \mathrm{pm}$, Monday-Saturday.

MODEL REFERENCE	$1302 \cdot 1$ Medium Resolution	1302.2 High Resolution
RESOLUTION	370×470 Pixels	580×470 Pixcls
CRT	$14^{\prime \prime}$	$14^{\prime \prime}$
SUPPLY	$220 / 240 v 50 / 60 \mathrm{~Hz}$	$220 / 2404: 50 / 60 \mathrm{~Hz}$.
E.H.T	Minimum 19.5 kv Maximum 22.5 kv	Minimum 19.5 kv Maximum 22.5 kv
VIDEO BAND WIDTH	6 MHz	10 MHz
DISPLAY	80 characters by 25 lines	80 characters by 25 lines
SI.OT PITCH	0.63 mm	0.41 mm
INPUT: VIDEO	R.G.B. Analogue/ TTL Input	R.G.B. Analogue/ TTL Input
SYNC	Separate Sync on R.G.B. Positive or Negative	Separatc Sync on R.G.B. Positive or Negative
EXTERNAL CONTROLS	On/off switch and brightness control	On/off switch and brightness control

To Opus Supplies Ltd., 158 Camberwell Road, London SE50EE Please send me__ Medium Resolution Colour Monitor(s) at 149.95 each (ex. VAT).
High Resolution Colour Monitor(s) at $£ 229.95$ each (ex. VAT).
Connection lead(s) at $£ 6.00$ each.
I understand carriage per monitor will cost an extra $£ 7.00$. (N.B. A Medrum Resolution Monitor including VAT, lead, and Carriage costs $\mathfrak{£} 187.39$. A High Resolution Monitor including VAT. lead, and carriage costs \&279.39.)
I enclose a cheque for \mathfrak{s} _Or please debit my credit card account with the amount of $£ \quad$ My Access/Barclaycard (please tick) no is

B. BAMBER ELECTRONICS

Rohde \& Schwarz Enograph Type BN 18531, $\mathbf{\text { E }} \mathbf{0}$
Rohde \& Schwar Sweep Signal Generator Type BN 4242/2, 50 kHz to 12 MHz , £ 5 .
Rohde \& Schwarz U.H.F. Signal Generator Type BN 41026, 1000 to 1900 MHz , $£ 125$.
Rohde \& Schwarz Group Delay Measuring Equipment indicator, £50. Rohde \& Schwarz Group Delay Messuring Equipment Modulator/Demodu-
lator, f50.
Rohde \& Schwarz Power Signal Generator Type BN 4105, 30 kHz to 300 $\mathrm{MHz}, \mathrm{f} 125$.
Rohde \& Schwarz U.H.F. Millivolt Meter Type BN 1091, 20 mV to 10 V , £50. Airmec Modulation Meter Type 210,3 to 300 MHz , f95. Howlatt Packard S.H.F. Signal Generator Model 618 B, 3.8 to $7.6 \mathrm{GHz}, \mathbf{E 1 2 0}$.

Pye 12V Power Unit Type AC 15, $£ 25$.
Wandel Golterman Carrier Frequency Level Meter. Type TFPM 76, f60 Schoman Schwarz Video Skop Type BN 4241, f250.
Tektronix Frequency Moter Type fDI, 30 to 900 MHz , E 50
Bruel \& Kolay Cable Type 113, f 50.
Advance Pulse Vibation Moter Type 2502, E50
Advance Pulse Generator Type PG 54, £40
Systron Donner LF. Spectrum Analyzer Model $805,200 \mathrm{~Hz}$ to 1.6 MHz , $£ 550$ Ministry Oscilloscope Type CT 436 Dual Beam D.C. to 6 MHz, $\mathrm{EB5}$.
Marconi Signal Ganerator Type TF 995A3// (CT402), f95
Marconi 100-Watt 7dB Aktenuator Type 7 M 280,150 to $185 \mathrm{MHz}, \mathrm{f} 40$.
Pye Aeriai Tuner Unit Ype A1u 4,2 to MHz . Pre-set,
Marconi V.H.F. Signal Generator Type TF $1064 \mathrm{~B} / 5 \mathrm{M}, \mathrm{f} 125$. Marconi Tx \& Rx Output Test Set Type TF 1065, 885 Marconi $1 / 4 \%$ Universal Bridge Type TF 1313, f2z0. Tektronix L-C Meter Type 130, f65.
Heathkit Harmonic Distortion Meter Type 1M-12U, 520.
Rohde \& Schwarz Polyskop 11 Type BN 425/50, $£ 350$
A.E.W. Process Cycling Oven, c500.

Twin Clothes Lockers, nests, of 2 with keys, ≥ 20 Louvred Lin Bin Panels, $4^{\prime} 6^{\prime \prime} \times 4^{\prime} 6^{\prime}$, Ezo. Kodek Roll Film Drying Cabiner with
Potter Line Printer Type LP $3000, \mathrm{f} 150$.

Digital Decwriter 11 Printer with keyboard, $\mathbf{f 1 0 0}$. Rohde \& Schwarz Z-g Diagraph Type BN 3562,300 to 2400 MHz , f85 Marconi Y.H.F. Alignment Oscilloscope Type TF 1104/1, £150. Tektronix Sampling 0scilloscepe Type 661 with 4S2 plug in, $£ 120$ Avo Valve Tester Type CT160, £30.
Advance Oscilloscope Type DS25A, DC to 3 MHz , f 120 . Telequipment Oscilloscope Type O43, DC to 10 MHz , £100. Telequipment 0sciloscope TYpe S43, 1 C
Telequipment Oscilloscope Type S32A, DC to 3 MHz , fes5. Tektronix Rack Mount Oscilloscope RM17, OC to 10 MHz , f 85 . Tektronix Oscilloscope Type 317 , DC to $15 \mathrm{MHz}, \mathrm{£} 120$. Marconi R.C. Oscilloscope Type TF1101, $\mathbf{f 6 5}$.
Airmec Millivolt Meter Type 301A, $£ 75$.
Advance Audio Generator Type H1, £20.
Tektronix Oscilloscope Type 543A with Type B plug in, f160 Tektronix Oscilloscope Type 531A with Type H plug in, f16 Sander Oscillator Type CLC 2-4, 2 to 4.5 GHz , 595. Bruel 81 Kjoer Microphone Amplifier Tpe 2603, $£ 50$. EAM1 Oscilloscope Wide Band Amplifier Type 7/1, $£ 25$ Airmec Sweep Signal Generator Type 352, 20 Hz to 200 kHz , £45. Belix Variable Power Unit, 0 to 50 V at 2 amp, $£ 40$. BTR Silvertown Anti-Static and Conductive Footwear Tester, f2s. Dawe True RMS Valve Voltemeter Type 612A, E20. Rohde \& Schwarz Power Signal Generator Type BN41001, 0.1 to 30 MHz f75.
Marconi Distortion Factor Meter Type TF142F, $£ 85$. Marconi A.M. Signal Generator Type TF144H/4S. f125 Tektronix Time Mark Generator Type 180A, £1zs Marconi F.M. Signal Generator Type TF
Marconi F.M. Signal Generator Type TF $1066 \mathrm{~B} / 6, \mathrm{E} 300$. Marconi Cerrier Deviation Meter Type TF 791 D. $£ 95$. Airmec Modulation Meter Type 409, f 120 . Marconi Universal Bridge Type TF 868 , £50
Marconi A.M./F.M. Signal Generator Type TF 995A/5, £230. Marconi R.F. Power Meter Type TF 1020A/4, 300W, 75 ohm, f 65 Marconi R.F. Power Meter Type TF 1020A1, 100W. 50 ohm, f65.

PYE POCKETFONE PF1

 UHF RECENER $440-470 \mathrm{MHz}$, Single Channel, int speaker and aerial. Supplied complete with rechargeable battery and service with rechargeable E each plus $£ 1$ p.p. plus V.A.T.
BREAKING TEK 545A SCOPES

 FOR SPARESCRT type T543 P2 $£ 12$ each. Mains Transformers $T 601$ £15. High Volume ransformer $\mathbf{T 8 0 1}$ with valves $£ 25$. Also Switches,
Metalwork.

RADIOSONDE RS21 METEOROLOGICAL BALLOON TRANSTITER
with Water Activated Battery, contains
all-weather sensors, fully solid state, f.5 each plus $\mathbf{E} 1$ p.p. plus V.A.T.

SURPLUS \& EX-EQUIPMENT

A2293	¢6.50	18	E	6 6au6	£1.00
DA41	f21.50			6AV6	£1.00
DF61	f4.00	EL821	88.00	6BA6	f1.00
DY70	59.00	EL822	¢12.00	6BG6	61.25
E182CC	99.00	EN91	£1.10	68H6	11.95
E282F	f19.00	EY81	f1.50	68J6	§1.20
EAC91	¢ 2.50	EY84	£6.50	6807A	f1.00
EBC90	£1.00	G232	£1.00	68W6	55.00
EC88	£1.00	G234	$\ddagger 2.00$	6CB6	£1.50
EC91	\$7.00	GZ37	84.00	${ }^{6}$ CH6	£10.00
ECC35	\$3.50	KT66	E6.50	6CL6	¢3.50
ECC85	$f 1.00$	KT88	88.00	60k6	E3.50
ECC88	19.00	N78	¢14.00	6F6G	¢2.00
ECC91	\% 2.00	DA2	1.00	6.5	82.00
ECF80	f1.00	PL82	¢1.00	6SJ7	11.20
ECF82	f1.00	Qav03-1	10	6SL7	f1.00
ECF804	f6.00		54.00	$6{ }^{6} 4$	¢1.75
ECL80	f1.00	QOV03-2	20 A	${ }^{6} \mathrm{~V} 6$	f1. 20
ECL82	£1.00		f15.00	6×4	¢1.20
EF39	£1.00	QQv06-4	40 A	$7 Y 4$	11.95
EF54	$£ 2.50$		£18.00	12AT7	1.00
EF86	¢125	QV04-7	f4.00	$12 \mathrm{~A} \mathrm{l}^{1}$	$\underline{7.50}$
EF91	f125	0206-20	¢15.00	$124 \cup 7$	E1.00
Ef92	12.50	R18	$¢ 2.50$	$12 \mathrm{AV7}$	53.50
EF95	$\underline{1.00}$	S11E12	¢19.00	$12 \mathrm{AX7}$	f1.00
EF184	¢1.00	U403	¢240	1284	63.50
EF732	11.80	5B254M	£12.50	12 BH 7	f1.80
EK90	18.00	5B255M	£12.50	12 BY 7	¢ 275
EL34	¢2. 25	5R4G	¢2.00	12 El	£17.00
EL37	19.00	5V4	£1.25	25L6GT	$\underline{62.75}$
EL71	¢2.50	5Y3GT	£1.00	85A2	$\square 7.00$
ELSI	¢6.75	6AG5	£1.50	90 Cl	92.70
EL84	£1.00	6AG6G	82.00	5642	88.00
EL85	f4.50	6AG7	62.00	5763	¢4.00
EL86	f1.00	6AN5	53.95	5965	¢2.25
EL90	£1.25	6AS6	11.50	${ }^{6080}$	${ }^{65} 7.75$
EL91	E6.00	6AS7G	17.50	6146	£7.00
EL360	$\underline{77.75}$	6AL5	$\underline{1.00}$	6216	¢4.20

P. \& P. or Carriage and V.A.T. at 15% on total must be added to all
orders. Callers very welcome, strictly between $9 \mathrm{a} . \mathrm{m}$. and $1 \mathrm{p} . \mathrm{m}$ and 2 and 5 p.m. Monday to Friday inc. Barclaycard and Access taken Official orders welcome wwz?

SINGLE BOARD 6809 2nd PROCESSOR FOR THE BBC MICRO.

PROVIDES A LOW-COST DEVELOPMENT SYSTEM FOR INDUSTRIAL APPLICATIONS.

- Sits inside the BBC or plugs into an extension rack
- Enables standard Flex format Discs to run on BBC
- Supports High Level Language Compilers
- Cross Assemblers and Disassemblers for most micros
- Connects directly on to the tube
- 64k DRAM on board
- Two 28 pin byte wide memory sockets
- Acorn Bus compatible DIN 41612 Bus interface
- Also available as a single board controller

For full information contact Phil Taylor at

Bids

11 St Margarets Road
Girton, Cambridge CB3 0LT
(0223) 276791

Cambridge
Microprocessor
Systems Limited

Sowter Transformers

With 40 years' experience in the design and manufacture of several hundred thousand transformers we can supply

AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE YOU NAMEIT!
 WE MAKE IT! OUR RANGE INCLUDES

Microphone transformers (all types). Microphone Splitter/Combiner transformers. Input and Output transformers, Direct Injection transformers for Guitars Multi-Secondary output transformers, Bridging transformers, Line transformers Line transformers to G.P.O. Isolating Test Specification. Tapped impedance matching transformers, Gramophone Pickup transformers, Aud ansformers (all types), Miniature transformers, Microminiature transformers for PCB mounting, Experimental transformers, Uitra low frequency transformers, Ultra linear and other transformers for Transistor and Valve Amplifiers up to 500 watts, Inductive Loop Transformers, Smoothing Chokes, Filter, Inductors, Amplifier to 100 volt line transformers (from a few watts up to 1,000 watts), 100 volt line transformers to speakers, Speaker matching transformers (all powers), Column
Loudspeaker transformers up to 300 watts or more.
We can design for RECORDING QUALITY, STUDIO QUALITY, HI-FI QUALITY OR P.A. QUALITY. OUR PRICES ARE HIGHLY COMPETITIVE AND WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS. Many standard types are in stock and normal dispatch times are short and sensible. MIXING DESK MANER A LARGE NUMBER OF BROADCASTING AUTHORITIES, BAND GROUPS, AND PUBLIC ADDRESS FIRMS. Export is a speciality and we have overseas clients in the COMMONWEALTH, E.E.C., USA, MIDDLE EAST, etc. Send for our questionnaire which, when complered, enables us to post quotations by return.

E. A. Sowter Ltd.

Manufacturers and Designers
E. A. SOWTER LTD. (Established 1941) : Reg. No. England 303990 The Boat Yard, Cullingham Rosd, lpswich IP1 2EG, Suffolk P.O. Bon 36, Jpswich, IP 12 EL, England Phone: 047352794 and 0473219390 Telex 987703G Sowter

WW - 063 FOR FURTHER DETAILS

pantechnic

THE POWERFET SPECAALISTS

OEM USERS

Pantechnic present the most adaptable high-powered amplifier ever.

fet SYSTEM amp

Features

- HIGH POWER up to 1.2 kW (single ended)

LOW VOLUME. $1 / 15$ Cubic foot inc. Heatsink

- VERSATILE. Delivers more than 1 kW into $1 / 2$ to 8 ohms

OR $2 \times 600 \mathrm{~W}$ into 2 to 8Ω
OR $4 \times 300 \mathrm{~W}$ into 2 to 4Ω (200 W into 8Ω)
OR $\left\{\begin{array}{l}1 \times 600 \mathrm{~W} \text { into } 2 \text { to } 8 \Omega \\ 1 \times 300 \mathrm{~W} \text { int } 2 \text { to } 4 \Omega \\ 1 \times 150 \mathrm{~W}\end{array}\right.$
Etc., etc.
Having been closely involved in a wide variety of OEM applications of their amp boards. Pantechnic became aware of numerous implementation problems often left untackled by other amp board manufacturers. These problems specifically of size and thermal efficiency became particularly aggravated at high powers and
considerably lengthened OEM product developmentlime By including thermal design in the totality of bment time.
reduce the size of the electronics, totality of board design it has been possible to reduce
heatsink size of the electronics, and increase the efficiency of the transistor to increase the volumetric efficiency of the amplifier/heatsink assembly. dTe SYSTEM Amp offers 1.2 kW of power in a space of $180 \mathrm{~mm} \times 102 \mathrm{~mm} \times 77 \mathrm{~mm}$, excluding PSU and Fan
The basis of this considerable advance is the PANTECH 74 Heat Exchanger, designed and manuactured by us. By eliminating the laminar air flow found in conventional, extruded heatsinks, heat transter to the environment is greatly enhanced.
The flexibility of the 1.2 kW amp stems from its division into 4 potentially separate paralleled, increasing current capability with cost savings to 150 W). These can be voltage capability in consequence a large variety of (elifiged in pars) doubling implemented
As ever Pantechnic offer a full range of customising options including DC coupling ultra-high slew, etc. Contact Phil Rimmer on $01-3618715$ with your particular P.S. Specs probiem.
P.S. Specs, as ever, are exemplary.

A wide range of other amplifiers and other rnodules available.PANTECHNHC (Dent. WW3)174 WOOLTON STBET

SAREL'S

 8000 SERIES SET THE STANDARD- Protects against ingress of dust and liquids IP55 (BS5490 1977, IEC 529 1976).
- 1.5 and 1.75 mm steel bodies and 2 mm steel doors.
- Smaller sizes fitted with advanced polyurethane gaskets. Larger sizes (600×600 and above) fitted with neoprene gaskets.
- Wide range of chassis systems including plates DIN rail, telequick and gland plates.
- Standard finish is textured beige polyester powder paint.
- Glazed doors - wide choice from stock.

Think big - think Sarel Sarel Limited
Cosgrove Way, Luton, Beds. Tel: Luton 20121

WW - 060 FOR FURTHER DETAILS

COLOURJET

 7 COLOUR INK JET PRINTERLogic seeking in dot address mode
$£ 499$
With Centronics parallel interface and free BBC Micro dump listing also: prints OVERHEAD
TRANSPARENCIES

Options available

- Buffered RS232/Viewdata interface
- Apple II \& IIe interface

IBM pc dump
Specifications:
1280 dots/line in double res. mode 37 cps in full colour Friction feed roll paper and single sheet feed A4
Ink cartridges 4 million character life
 NEW AIDS TO RECOVERY

BE READY TO SAVE LIFE.
SOMEONE MIGHT SAVE YOU.

ELECTRICAL TIMES' FIRST AID CHARTS To the Cashier, Business Press Internationa Ltd., Sales and Distribution, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS, England. Tel: 01-661 8438.
Please send me:
pocket cards at 70p each paper charts at $£ 1.00$ each card charts at $£ 2.00$ each plastic charts at $£ 3.00$ each I enclose cheque/money order for $£$. . payable to
BUSINESS PRESS INTERNATIONAL LTD
Name \qquad
Address \qquad
\qquad

Co. Reg. No. 151537. Reg. Office: Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS.

WW - 075 FOR FURTHER DETAILS

BULK PURCHASE BARGAINS CAPACITORS

AXIAL		
Value/Volts		Price each
$100 / 10$	Qty.	per 100
$220 / 10$	89000	0.07
$2200 / 10$	5000	0.08
$4700 / 10$	10000	0.19
$100 / 16$	4000	0.32
$470 / 16$	4000	0.07
$47 / 40$	400	0.11
$100 / 40$	9000	0.09
$150 / 40$	2500	0.11
$4700 / 40$	7000	0.11
$4.7 / 50$	400	0.55
$3.3 / 63$	2800	0.05
$4.7 / 63$	1400	0.06
$.47 / 63$	300	0.06
$1000 / 63$	6000	0.04
$100 / 100$	450	0.32
$1 / 160$	450	0.15
$10 / 160$	2000	0.05
$4.7 / 450$	18000	0.08
$22 / 500$	4000	0.07
$4.7 / 500$	1500	0.05
$470 / 6.3$	350	0.06
$1 / 250$	900	0.11
	1000	0.07
CERAMIC FILTERS		
10.7 Mhz	15000	0.15
INDUCTORS		
$82 \mu H$	35000	0.15
$33 \mu H$	16000	0.15

RADIAL	
Value/Volts	Oty.
47/10	3600
330/10	69500
1000/10	7400
33/16	47000
33/25	19600
330/25	3000
100/40	9200
47/40	3000
100/63	23400
2.2/100	2800
330/40	850
22/100	1900
220/100	8400
47/160	1000
10/200	1000
47/250	1500
4.7/450	550
CERAMICS	
10pf	24000
39pf	56000
47pf	118000
20pf	16000
51 pf	100000
33pf	48000
120pf	16000
12pf	16000
6800pf	36500
4700pf	6000
120pf	1800
150pf	75000
15pf	40000
12pf	16000
68pf	20000
22pf	2000
39pf	5000
47pf	14000

Price each	Price each Price each per 100	per 1K
0.04	0.03	per 10K
0.05	0.03	0.02
0.08	0.05	
0.04	0.03	0.02
0.04	0.025	0.02
0.07	0.05	
0.06	0.04	
0.05	0.03	
0.11	0.07	0.05
0.03	0.02	
0.09	0.05	
0.05	0.03	
0.18	0.11	
0.12	0.07	
0.04	0.025	
0.05	0.03	
0.03		

All one price
£10 per 100
£25 per 10K
£125 per 100K
Any mix

All components are new and boxed. Carriage additional. All prices exc. V.A.T.

94 ALFRISTON GARDENS, SHOLING, SOUTHAMPTON SO2 8FU
dinctiven
visa TEL. 431323 (0703)

Abstract

$6=6$ 0 \star MARCONI SIGNAL GENERATORS 72002 AS , liflustroted) 10 kHz 72MHz. AM/FM. $£ 750$ 712002 . As above b MARCONI TFIOGSB. AM/FM Generator. 10. 470 MHz . 2 LV -200mV output FM Deviation up to AM/FM MARCONI TF995A5. AM/FM Generator. Narrow deviation model 995 covering $1.5-220 \mathrm{MHz}$. E450. TF 2015.10 . 72 MHz E295. !

'DOLBY' NOISE WEIGHTING FILTERS
Cat. No. 98A. Noise weighting filters for CCIR/ARM signal-to-noise ratio measurements. As new units.
$£ 40$ each $(\mathbf{f 1} 1$

BECKMAN TURNS COUNTER DIALS

Miniature type $(22 \mathrm{~mm}$ diam.) Counting up to 15
turn "Helipots". Brand new with turn "Helipots". Brand new with mounting instruc-
tions. Only $E 2.50$ each.

RF RECENER

Stoddart Model NM52A. RF Noise \& Field intensity measuring receiver. $375 \mathrm{MHz}-1 \mathrm{GHz} \mathrm{c} / \mathrm{w}$ power supply unit.

KAY SOUND SPECTROGRAPH

Model 60618 with Amplitude Display, scale magnifier. $85 \mathrm{~Hz}-16 \mathrm{kHz}$. Complete sound spectrograph in excellent condition.

$t+$ STEPPER MOTOAS $t x$

Brand new stock of 'ASTROSYN' TYpe 20PMA055 stepper motors. 28V DC. 24 steps per rev. 15 oz-in torque @ 100PPS. Body length $21 / 2^{\prime \prime}$, diameter $2^{\prime \prime}$, shaft $1 / 4^{\prime \prime}$ diam $\times 41 / 4^{\prime \prime}$ spirally' threaded. Weight $160 z$. Price each $£ 15$ ($\mathrm{p} \& \mathrm{p}$ 50p). Connections supplied.

H Mill-vul Mramancil, MALISM
MARCONI TF2600. Twelve ranges 1 mV - 300 V MARCIde-band to 10 MHz
MARCON MAGHz. High Sensitivity from 300 uV
MARCONI TF2604 AC/DC 300 mV Full scale to 300 V (1kV Cli meter. sistance ranged. AC Frequency range 20 Hz 1500 MHz .
t CONSTANT VOLTAGE TRANSFORMERS t 'ADVANCE VOLSTAT; TYpe. Model MT140A. Mains input $190-260 \mathrm{~V}$ AC. Output 230 V AC @
150 W . Price each $920+$ VAT 150 W . Price each £20 + VAT + £2 carriage. 1 GHz . 10 w fsd $£ 350$.
MARCON TF2701 In-Situ Universal Com-
MEGGER-5KV Insulation Tester. Hand-crank
MARCONI TF2343A Quantization Distortion Meter $£ 150$ HEWLETT-PACKARD 3450A Multi-Function Digital Multi-Meter ROHDE \& SCHWARZ 'SDR' AM Signal Generator $0.3-1 \mathrm{GHz}$.
TEKTRONIX 2901 ne-mark Generato
GOULD J3B Signal Generator $£ 150$.
ROHDE \& SCHWARZ Resonance Frequency Meter $470 \mathrm{MHz}-2.5 \mathrm{GHz}$. HEATHKIT AW1U Audio Power Meters 5 mW -50W $£ 25 \mathrm{pp} £ 1$.
BRUEL \& KJAER Heterodyne Voltmeter $0.5-240 \mathrm{MHz}$. 1.5
AlRMEC Display Oscilloscope 279 , 4.trace $14 \times 10^{\prime \prime}$
RIKADENKI 3-channal Chart Recorder, Model B-341
 We have in stock a quantity of AVO type AFM2 signal
generators supplied in fully tested working condition complete with accessor es. Spec as follows: 0.45 MHz -
 $0 / \mathrm{P}$ setting. m / c set levef meter, scale shift for accurate frequancy calibration, variable mod mod
JUST $£ 55+$ VAT. Carriage each $+£ 4$
\rightarrow SWEEPERS t TELONIC Sweep generator system type 2003. Fitted with in units and Generator covering $800-1500 \mathrm{MHz}$. £325

 MUFAX 'COURIER' facsimile receiver type K441-CH and transmitters K400 AMCH in stock in excetlent condition $\mathbf{£ 2 5 0}$ per pair. PLEASE NOTE. All the pre-owned equipment shown has been carefully first-d in our workshop and reconditioned where necessary. It is sold in guarantee. For our mill order customers we have carry a three months Repairs and servicing to all equipment at very reasonable rates scheme. ADD 15\% VAT TO ALL to all equipment at very reasonable rates. PLEASE

+ COMPNTER PERIPHERALS t 8" FLOPPY DISK DRIVES
 DRE (Data Recording Equipment) Model 7100

 Single-sided floppy disk drives in stock now at vastly reduced prices. Supplied BRAND NEW in O.8MBytes. Hard'Soft sectoring ANSI/ECMA Stan dards compatible. Measures $4^{1 / 2} \times 8^{1 / 2} \times 14^{\prime \prime}$ Weigh 13 lbs . PRICE $£ 150+$ VAT. Securicor despatch i required $+£ 10+$ VAT. 7200 (Double-sided) $£ 250$
8" WINCHESTER DRIVES

United Peripherals type 3100 Minidisc Drives CAPACITY over 19PABytes. Power supply require ments $5 \mathrm{~V} . D C$ at $4 \mathrm{~A} .+24 \mathrm{~V}$ DC at 3 A . Measures $17 \times 8 \times 7^{\prime \prime}$ Limited quantity only available in BRAND NEW condition. $£ 250$ each + VAT. Carriage details as above

4000-SERIES HARD DISK DRIVES

Data Recording Equipment 4000 -Series exchange

 able IBM-type 5440 Disks. Units available ex-stoc and BRAND NEW. Please call us for our lowest eve quotation
\star DISK CARTRIDGES \star

Surplus BASF 12-Sector RK05 cartridges available small quantity only remaining at $£ 15$ each. Car iage each 11.50
\star SWITCHING POWER SUPPLIES \star The following DC power supplies are available now from stock in limited quantities. All fully tested and guaranteed.
3.5V@10 Amps 5 V @ 20 Amps. £ 15
f 20
$5 \mathrm{~V} @ 10$ Amps SV 19 V @ 30 Amps

Ail prices + VAT please. Carriage + f2 each

* CENTRIFUGAL BLOWERS \star

'TORIN' Type U62B1. 230V Cap'Start (supplied), very powerful (200W. 3,000rpm) centrifugal fans
for large rack cooling or enclosure extraction cations. Overall dimensions $20 \times 12 \mathrm{cms}$, outlet 6×4 cms. BRAND NEW. Surplus stock. $£ 15$ each inc. VAT, pp £1.50.

ROTROM IMSTRUMENT COOLNGG FAMS

Supplied in fully tested excellent condi-

 tion, as follows:$115 \mathrm{~V}, 41 / 2 \times 41 / 2 \times 11 / 2^{\prime \prime}, 55,230 \mathrm{~V}$ same size £5.50. $115 \mathrm{~V} 3 \times 3 \times 112^{\prime \prime} £ 4.230 \mathrm{~V} 3^{\prime \prime}$ size,
brand new $£ 6$. Also small quantity 115 V brand new $£ 6$. Also small quantity 115 V
$41 / 2^{\prime \prime}$ size, brand new $£ 6$. Postage each + $41 / 2^{\prime \prime}$ size, brand new £6. Postage each +
50p please.

Gateways to the World Outside

The CST PROCYON opens a lot of doors to your BBC microcomputer - lifting it right out of the "home computer" league. The CST PROCYON provides full IEEE 488 interface, enabling your BBC micro to operate professional plotters and printers, frequency counters, voltmeters, disc drives etc, and to communicate with other IEEE-ported machines, such as Commodore, Sirius, Osborne, Hewlett-Packard or Tectronix computers.
The CST PROCYON comes with a highly efficient IEEE filing system, supplied in EPROM, and responds to any high level language, including LISP, FORTRAN, FORTH, APL and BASIC. A specially-written Commodore data-exchange routine, allows you to link your BBC micro to CBM machines and disc drives. At 70 k bytes of information per second, the CST PROCYON channels data quickly and efficiently between up to sixteen devices, responding to standard system commands as wetl as specialised filing instructions. Its capabilities are fully documented in a straightforward but comprehensive manual.
Isn't it time you started taking your BBC micro seriously?

- Full multiple controller implementation
 - Extensive "HELP" facilities - Interactive debugging
 - Visual Display of operating status
 - Internal switched and socketed power supply
 - Comprehensive error checking and indicating

The CST PROCYON from

 Cambridge Systems Technology 30 Regent Street, Cambridge Tel: (0223) 323302ENQUIRIES FROM DEALERS WELCOME

Modem Filters

New Low Prices in OEM Quantities From Stock

R5630 Full-duplex 300 baud, 103 compatible filter in 16 pin DIP.

R5631 Full-duplex 200/300 baud, V. 21 CCITT compatible filter in 16 pin DIP, pin-for-pin compatible with R5630.

R5632 Full-duplex 1200 baud, 212/V. 22 combo filter.
R5633 General purpose programmable filter array for full-duplex 103, V.21, DTMF and Videotex.

R5626 Mask programmable to your specification.

Reticon also provides a wide variety of other standard and specialised custom filters and signal processing devices using Reticon's proven NMOS Switched-Capacitor Technology.

Contact us on your needs at Chicago (312) 640 7713; Boston (617) 745-7400; Japan 03-343-4411; England (0734) 790 7722; Germany (089) 918-060.

Head Office: EG\&G Reticon, 345 Potrero Avenue, Sunnyvale, California 94086 (408) 738-4266; TWX 910-339-9343.

CAEGRG RETICON ${ }^{*}$

34/35 MARKET PLACE, WOKINGHAM, BERKSHIRE RG11 2PP Telephone: Wokingham (0734) 788666 Telex: 847510 EGGUK

Valradio

DC-AC inverters
 (30W up to 1 kW)

sine wave or square
wave output
AC-DC power units
Frequency
changers
Emergency
standby
systems No-break systems Controlled units

POWER UNITS

NOW AVAILABLE WITH 3 VARIABLE OUTPUTS

Input $200-250 \mathrm{~V} .50 \mathrm{~Hz}$ or $100-120 \mathrm{~V}$ 60 Hz to order.
Output 1:0-30V. 25A. D.C. Output 2:0-70V. 10A. A.C Output 3:0-250V4A. D.C. ALL CONTINUOUSLY VARIABLE
Other units are also available with outputs of: $0-60 \mathrm{~V} 12 \mathrm{~A}$ $0-60 \mathrm{~V} 12 \mathrm{~A}$ $0-120 \mathrm{~V} 6 \mathrm{~A}$ $0-240 \mathrm{~V} 3 \mathrm{~A}$

SEMD FOR FUBTHER DTALLS DFTHESE VERSAILE UNIIS
Valradio power Lumite
A.K. INTERNATIONAL BUILDING LAWRENCE ESTATE, GREEN LANE HOUNSLOW, MDDX. TW4 6DU
ENGLAND 01-570 5622
WW - 078 FOR FURTHER DETAILS

Lynwood GD1 VDUs: Intelligent Green micro controlled, RS232, printer port, $101 \mathrm{key} \mathrm{k} / \mathrm{b}$. Full Video enhancements. ONLY $£ 149+£ 15$ P\&P $(\mathrm{S} / \mathrm{H})$
Burroughs MT686/7/TD710: Intelligent Green 12" VDU with 3 micros and 64 K store. RS232. Programmable. Only $£ 199$ new or $£ 149$ S/H $+£ 15$ P\&P
Videocom Apollo VDU's: Stylish 15'' Green Z80 videocom Apoll controlied VDU with printer port and 10 S/H 1 f15 P\&P Vanced features. Only Esinters: Professional fast 1120 Centronics 306 Line printers: Professional fast 120 cps), superb quality, 80
ONLY £ $149+£ 17.50$ P\&P
Computhink Act 800 Computer system. Dual floppies (2.4 Mb) with Qume Sprin daisywhel and lof business software ONLY $£ 1200$ Qume Sprint daisywheel and RS 232 NEW $£ 599+£ 15$ P\&P. Diablo Hitype 2 Daisywheel, Tractor unit, S/H $£ 399+£ 15$ P\&P

PRACTICALLY ALL THE WIRELESS PARTS YOU'LL EVER NEED, GATHERED TOGETHER IN ONE CATALOGUE...

Coils, crystals, filters

TOKO coils, filters chokes. UNI crystals, filters, NTK and Murata ceramic filters. Probably the broadest stock ranges of these types of component in the world, and a full service from AMBIT INDUSTRIAL MARKETING to support the OEM with custom requirements.

Semiconductors for radio communications

ICs, Varicaps, FETS, MOSFETS, RF Power for HF, VHF, UHF. A broad selection that will meet the majority of requirements in receiver and transmitter designs

High Performance Coax Relays, switches etc. PC and connector relays engineered to the highest standards, plus a broad range of electro-mechanical support including push, toggle, and keyboard switches, rotary switches, plugs sockets etc.

New Black Star Frequency counters, Weller and Antex soldering tools, plus a wide selection of all types of equipment and tools for home and work.

Communications Technology

for the enthusiast
 (and professional)

200 North Service Road, Brentwood, Essex CM14 4SG
Tel: Consumer (0277) 230909. Industrial (0277) 231616
Telex: 995194 AMBIT G.
Data: (0277) 232628 REWTEL" (300 baud duplex)
\star REGIONAL SALES COUNTERS
Solent Component Supplies, 53 Burrfields Road, Portsmouth
Broxlea, Park Lane, Broxbourne, Herts

Appointments

Advertisements accepted up to 12 noon Tuesday. March 6, for April issue subject to space available.

DISPLAYED APPOINTMENTS VACA'T: $£ 17$ per single col. centimetre (min .3 cm). LINE advertisements (run on): $£ 3.50$ per line, minimum $£ 25$ (prepayable). BOX NUMBERS: $£ 5$ extra. (Replies should be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS).
PHONE: IAN FAUX, 01-661 3033 (DIRECT LINE)
Cheques and Postal Orders payable to BUSINESS PRESS INTERNATIONAL LTD. and crossed.

ALWAYS AHEAD WITH THE BEST!
 £7,000-£20,000

\star Where does your interest lie: Communications; Computers; Weapons; Radar; Sonar; Data-Comms; Signal Processing; Medical; Telemetry; Simulation; Satcom; Local Area Nets; ATE?

* Experienced in: Microprocessor Hardware or Software; Digital and Analogue circuitry; RF and Microwave techniques?
* There are hundreds of opportunities in: Design; Test; Sales and Service for Engineers and Managers
\star Act now: Just call 0763 84676/7 (until 8 p.m. most evenings)

Applications Engineering

(Dolhy Stereo sound consultant)
Dolby Laboratories Inc. require a young sound engineer with solid technical background and the ability to deal with people. Practical experience as a mixing or recording engineer is essential. A foreign language would be useful. Based in London with some international travelling.
Competitive salary according to experience and good general benefits.

Apply in writing to John lles.

Technician

With audio experience, probably City and Guilds electronics or similar education. Ability to work without day-to-day supervision is important for this inhouse position within the marketing department.
Competitive salary according to experience and good general benefits.
Apply in writing to David Watts.
DOD Dolby
Dolby Laboratories Inc.
346 Clapham Road London SW9 9AP
Tel No. 01-720 1111

Lonndon College Furniture

 ใiea oi HEAD OF DEPARTMENT OF MUSICAL INSTRUMENT TECHNOLOGY (BURNHAM GRADE IV)Applications are invited for the above post.
The position demands an appropriately qualified person in the field of music and instrument making, coupled to organisational ability and an understanding of the developments in further and higher education The College's Department of Musical Instrument Technology has become a unique establishment, offering an expanding range of advanced and non-advanced courses in instrument making validated by BTEC and the City and Guilds.
Salary: On an incremental scale within the range of $£ 14,148$ - £15,849 plus $£ 987$ Inner London Allowance.
Further details and application forms are available from The Clerk of the Governors at the College.
LONDON COLLEGE OF FURNITURE
41/71 Commercial Road, London E1 1LA. Tel: 01-247 1953
ILEA is an equal opportunities employer.
Box number reples should
beaddressed to:
Box No
c/o Wireless World
Quadrant House
The Quadrant
Sutton, Surrey, SM2 5AS

AN OPPORTUNITY FOR SELF-EMPLOYED ENGINEERS

We have a steady flow of customers seeking repairs to $\mathrm{Hi}-\mathrm{Fi}$, Radio, TV and Video equipment.
If you offer a service in
London in these fields call: MR PATTERSON

2424000
(2465)

WIRELESS WORLD MARCH 1984

Appoinments

等 TARGET CHARACTERISTICS CHARACTERISTICS OF ENVIRONMENT SHSTEM笪 FEATURES

 ELECTRONIC WEAPON SYSTEMS to $£ 17.5 \mathrm{k}$Our client is able to offer you unequalled opportunities to further your career if you have a Degree/HNC qualification and experience of radar, missiles, underwater systems, avionics, control systems or mathematical modelling. This is because this highly successful, progressive company is growing more rapidly than any other company in the defence industry today. Their constantly expanding product range includes total defence and weapons systems as well as intelligent weapons and electronic countermeasures.

The majority of products are at an early stage of development and many are PV funded. Your technical knowledge would be fully utilised and expanded because, in order to retain technica supremacy, our client has a policy of ensuring that the latest and most effective technology is embodied in its products. You would work in a fast moving environment and would have access to first-class CAD, computing and VLSI facilities.

The company recognises that to maintain its position of world leadership it relies above all else on the excellence of its engineering staff and this is reflected in a highly attractive package of rewards and conditions, including generous assistance with relocation where appropriate and siarting salaries of up to $£ 17,500$.

As a Systems Engineer you could be involved with Electronic Sub-systems in respect of one or more of the following: theoretical studies; computer simulation and matheticical modelling; performance evaluation; algorithm development; the assessment and analysis of weapon and hardware performance.

As an Electronic Design/Development

Engineeryou could be involved with either digital or analogue design in the early development of equipment. The equipment can involve novel advanced transducer techniques; sophisticated signal processing; advanced microprocessor technology; recording \& instrumentation; power conditioning for high power densities and high efficiency; VLSI and high density packaging.

To find out more and to obtain an early interview please telephone FRED JEFFRIES, C.Eng., M.I.E.R.E. in complete confidence on Hemel Hempstead (0442) 212655 during office hours or one of our duty consultants on Hemel Hempstead (0442) 212650 evenings or weekends. Alternatively write to him at the address below.

Executive Recruitment Services
29-33 Bridge Street, Hemel Hempstead, Herts., HP1 1EG.

Dlectronics Dingineers $\$ 9561$ Communications Designin High Tech Country

At H.M. Government Communications Centre were using the very latest ideas in electronics technology to design and develop sophisticated communications systems and installations for special Government needs at home and overseas

With full technical support facilities on hand, it's an environment where you can see your ideas progress from initial concepts through prototype construction, tests and evaluation, to the pre-production phase, with a chance to influence every stage. Working conditions are pleasant, the surroundings are attractive, and the career prospects are excellent.

Ideally we're looking for men and women who have studied electronics to degree level or equivalent and have had some experience of design, whether obtained at work or through hobby activities. Appointments will be made as Higher Scientific Officer (£7149-£9561) or Scientific Officer (£5682-£7765) according to qualifications and experience.

For further details please write to the address given below. As our careful selection process takes some time, it would be particularly helpful if you could detail your qualifications, your personal fields of interest and practical experience, and describe the type of of working environment most suited to your career plans.

The Recruitment Officer, HMGCC, Hanslope Park, Buckinghamshire MK19 7BH.

Appointments

Antenna
 Test pecialists
 The Satellite Division of Marconi Space and Defence

 Systems is about to commission the UK's most advanced satellite test facilities. There is an immediate requirement for an Antenna Range Test Superintendent and for an Antenna Test Systems SupervisorThe SuperIntendent will institute test runs and be responsible for range personnel, test procedures, safety the integrity of test equipments, and will also contribute to the development of the test range facility. Applicants should have an HNC as a minimum qualification and at least 5 years experience of R.F. and antenna testing utilising computer based systems.
The Supervisor will be responsible to the Range Superintendent for the implementation of test runs and generally contribute as a member of the range test team Applicants for this should possess ONC in electronics plus at least 3 years computer based test experience of R.F equipments

Appropriate salaries and other attractive benefits form a first-class package anticipated from a large market-leader employer

Telephone Portsmouth (0705) 674019 for an application form or write direct to Derek Withers Marconi Space and Defence Systems Limited. Browns Lane. The Airport, Portsmouth, Hants PO3.5PQ quoting reference BL 152
(All posts are open to men and women)

Marconi

Space \& Defence Systems

WANDSWORTH HEALTH AUTHORITY
Atkinson Morley's Hospital: Department of Medical Physics

ELECTRONICS TECHNICIAN

A technician is required to design, build and develop microprocessor-based in struments including both associated hardware and software
The person appointed will join a small team of scientists and technologists providing a service to Atkinson Morley's Dospital and to other Hospitals in the District and Region.

Educational standard will be at least H IEC or HNC with a minimum of five vears appropriate experience, including work with microprocessors. The ap pointment will be in the grade of Medi-
cal Physics Technician Il.

The starting salary will be $£ 8,009$, with increments up to a maximum of $£ 9,835$ including London Weighting. Post avail able from April 1984.
For further information please contac lan Eversden, Principal Physicist
Application form and job description available from

> Hospital Administrator
> Atkinson Morley's Hospital Copse Hill, Wimbledon
> London SW20. Tel: $01-9467711$
(2479)

Electronic

 Opportunities
\square

* RF and DIGITAL DESIGN \star ATE APPLICATIONS
- SALES and MARKETING \star TEST and REPAIR

For details of these and our many other permanent and contract vacancies apply to:
D \quad Technical Services
13 Station Approach
M Northwood
STD: 0927421622
(2489)

PICCADILLY RADIO seeks an ENGINEER

Qualified to HNC/HND to perform varied tasks in a friendly and challenging environment. No broadcasting experience required training will be given. Good salary, shift allowance and bonus.

Apply.
Apr, Piccadiliy Radio P.0. Box 261, Manchester

Piccadilly Radio - An Equal Opportunities Employer

CAPITAL APPOINTMENTS LTD

the UK's No. 1 ELECTRONICS agency
If you have HNC/TEC or higher qualifications and are looking for a job in design, test, customer service, tech nical sales or similar fields:
Telephone now for our free johs list We have vacancies in all areas of the UK Salaries to $£ 15,000 \mathrm{pa}$
01-637 5551 or 01-6369659 (24 hours)

CAPITAL APPOINTMENTS LTD

29-30 WINDMILL STREET, LONDON W1P 1HG
1291)

UNIVERSITY OF ABERDEEN

Department of Bio-Medical Physics and Bio-Engineering

ELECTRONIC ENGINEER or PHYSICIST

of practical bent required in department of international reputation, to maintain electronic imaging equipment containing computers, particularly two X-ray CT Scanners in modern teaching hospital. Training will be pro vided.
Salary within Grade 1A Scale for Other Related Staff, $£ 7,190-£ 11,615$ per annum, depending on qualifications and experience.
Further particulars and application forms from The Secretary, The University, Aberdeen with whom applications (2 copies) should be lodged by 15 March 1984. (2461)

Appointments

BHECHONIC WNGINDRS

Due to promotion, two Electronic Engineers, qualified to a minimum of HNC level, are required for our Electronic Maintenance Department

Electronic Maintenance

One opportunity is to join the section responsible for repair to component level of studio broadcast equipment, including Video Switching and Processor Systems, Field Synchronisers, Telecine and Cameras. Applicants should be familiar with colour television technology and have experience in fault finding on analogue, digital or microprocessor based hardware

Routine Maintenance

The second vacancy is within a team which ensures that the Industry Code of Practice is met through a comprehensive policy of measurement and routine maintenance of the electronic broadcast systems on the station. Test engineering experience on such systems with a television company or
equipment manufacture is essential.
Starting salaries will be in a range up to $£ 13,000$, depending on qualifications and experience. plus overtime payments.

Applications in writing to
Personnel Officer (Recruitment)
Yorkshire Television Limited
The Television Centre, Leeds LS3 1JS

YORKSHIRE
TELEVISION

VIDEO ENGINEERS

Rediffusion Consumer Manufacturing Ltd is seeking an intermediate and a senior video engineer with OND, HND or similar quallfications, together with a knowledge of modern consumer electronics circuitry techniques, to join a small team looking after Rediffusion's mammoth investment in domestic video recorders and video disc players.
In addition to analysis of performance and long term raliability factors, assessment reporting is an important part of the team's function and the ability to express oneself verbally and in writing is essential. Our laboratories are situated at Chessington within easy commuting distance of the surrey countryside. Attractive salaries and the usual big company benefits, which include assistance with relocation expenses, are offered to suitably qualified and experienced engineers. If you believe you can make a significant contribution to our video projects please write to or phone:-

Harry Brearley,

Rediffusion Consumer Murufacturing Ltd.,
Fullers Way South,
Chessington, Surrey. KTG 1 HJ .
Telephone: 01-397-5411.
REDIFFUSION

Advanced telecommunications:
 careers with extensive scope at Cheltenham

Join the Government Communications Headquarters, one of the world's foremost centres for R \& D and production in voice/data communications ranging from HF to satellite - and their security. Some of GCHQ's facilities are unique and there is substantial emphasis on creative solutions for solving complex communications problems using state-of-the-art techniques including computer/ microprocessor applications. Current opportunities are for

Telecommunication Technical Officers

Two levels of entry providing two salary scales: f6262-£8580 \& £8420-£9522
Minimum qualifications are TEC/SCOTEC in Electronics/ Telecommunications or a similar discipline or C \& G Part If Telecommunications Technicians Certificate or Part plus Maths B, Telecommunication Principles B and either Radio Line Transmission B or Computers B or equivalent: ONC in Electrical, Electronics or Telecommunications Engineering or a CIE Part I Pass, or formal approved Service technical training. Additionally, at least four years' (lower level) or seven years' (higher level) appropriate experience is essential in either radio communications or radar, data, computer or similar electronic systems. At the lower entry level first line technical/supervisory control of technicians involves "hands-on" participation and may involve individual work of a highly technical nature. The higher level involves application of technical knowledge and experience to work planning including implementation of medium to large scale projects.

Radio Technicians -£5485-£7818

To provide all aspects of technical support. Promotion prospects are good and linked with active encouragement to acquire further skills and experience. Minimum qualifications are a TEC Certificate in Telecommunications or equivalent plus two or more years' practical experience.
Cheltenham, a handsome Regency town, is finely endowed with cultural, sports and other facilities which are equally available in nearby Gloucester. Close to some of Britain's most magnificent countryside, the area also offers reasonably priced housing. Relocation assistance may be available

For further information and your application form, please telephone Cheltenham (0242) 32912/3 or write to:

Recruitment Office, Government Communications Headquarters, Oakley, Priors Road, Cheltenham

Gloucestershire, GL52 5AJ.

CAREERIN
 MUSIC ELECTRONICS

Music Electronics company specialising in the design of electronics for music indus
try requires an engineer to join design team. Duties will include design and test, knowledge of digital, analogue, C.A.D., microprocessors.
Ability to work on own initiative. Knowledge of music and sound would be appreAled ciated but
Sound knowledge of business administration will be expected. Excellent promotional prospects.
Salary negotiable. Position would suit ambitious graduate
Applicants write with full C.V to
MUSIC ELECTRONICS CO.
c/o Kynastons (Business Consultants)
Block D. Metropolitan Wharf
Wapping High Street, London, E.1
Telephone 01-2650722 (24-hour p
or $01-8065127$ (Evenings)

Appointments

Move up with a world leader

We have designed, developed and manufactured a series of products which have brought enormous advancements in data communications and established our dominance in international markets.
Now, due to expansion, we're looking for highly competent Repair Engineers to fill the following positions:

Senior Base Repair Engineer (Message Switching Equipment)

Experience in the repair and testing, down to component level, of mini-computers and peripherals, micro-processors on 6800 and Winchester tech. disc systems is preferable.

Senior Base Repair Engineer (Data Communications)

A sound background in data communications and experience of repairing and testing equipment, down to component level, is essential. The ability to program and some knowledge of Texas 9900 and Motorola 6800 micro-processors would be advantageous.

Probably in your mid 20's you must be able to demonstrate sufficient experience in a similar environment to equip you for these demanding and responsible positions. Competitive negotiable salaries, depending on the extent and relevance of your experience, are offered.
Our company's continuing success and exciting plans for the future create excellent prospects for career advancement and mean that we can offer a generous range of benefits, including bonus and profit share.

To apply, please write to, or telephone, Chris Burns at:
\qquad Computer and Systems, Engineering plc, Caxton Way, Watford Business Park, Watford WD1 8XH. Hertfordshire. Tel: Watford 33500.

GUY'S HOSPITAL

DEPARTMENT OF CLINICAL PHYSICS AND BIOENGINEERING

This active, well-established and well-equipped Department provides a physical sciences service for a number of clinical departments in the hospital. We require a technician to join our electronics servicing group. This work includes the maintenance and servicing of a varied range of medical electronic equipment, and covers all aspects of patient orientated equipment from fixed installations to small portable instruments.

Experience in this type of work would be an advantage, but candidates with HM Forces experience, or a good background of TV servicing are encouraged to apply

An ONC/HNC or equivalent qualification, plus at least three years' technical experience is essential.

The appointment will be on the Medical Physics Technician Grade 3 scale.

Salary: $£ 7,174$ to $£ 8,968$ р.a inclusive.

Application forms are available from the Personnel Department, Guy's Hospital, London SE1 9RT. Tel: 01-407 7600, Ext. 3471. Please quote Ref: P/2. Closing date for completed application forms, March 30, 1984

LOGEX
 ELECTRONICS
 RECRUITMENT

Specialists in Field \& Customer Engineering appointments. all locations and disciplines

Logex House, Burleigh, Stroud Gloucestershire GL5 2PW 0453883264 \& 01.2900267 (24 hours)

Inner London Education Authority
LEARNING RESOURCES BRANCH
Television Centre, Thackeray Road, London SW8 3TB

TECHNICIAN (ST1/2)

A Technician is required to work in the Schools TV Workshop to share in the operation and maintenance of its facilities. The colour studio enables students to make practical use of television equipment

Candidates should have educational as well as relevant technical experience and should be able easily and quickly to establish a helpful relationship with visitors

Salary $£ 5,517-£ 8, \mathbf{3 1 6}$ plus $\mathbf{£ 1 , 2 8 4}$ London Weighting
Further details and application form from EO/Estab 1b, Inner London Education Authority, Room 365, The County Hizll, Lon don SE1 7PB

The closing date for receipt of completed application forms is 29th February, 1984.
This vacancy is suitable for job sharing.
All applicants will be given equal consideration irrespective of sex, age, disabilities, race, colour, ethnic or national origins, marital status, sexual orientation, family responsibility, trade union activity or political belief.

British Antarctic Survey Radio Officers (Marine)

Vacancies exist for Radio Officers (Marine) to serve on the Survey's research vessels. Successful applicants would be required to commence duties on August 1, 1984. Voyages are normally seven months long and vessels sail from the United Kingdom in the autumn
The Survey's vessels re-supply Antarctic land stations, support scientific parties in the field and in addition undertake shipborne research.
Candidates should possess valid certificates of proficiency recognised by the Department of Trade and have served the necessary sea time to work a single-handed station.
Starting salary in a scale up to $£ 8,640$, rising to $£ 10,917$ per annum. In addition an allowance of $£ 1,200$ per annum is payable for periods of service spent south of Montevideo.

For further details and an application form, please write, stating full qualifications and experience, to: The Establishment Officer, British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 OET. Please quote ref: BAS 5. Closing date: March 14, 1984.
NATURAL ENVIRONMENT RESEARCH COUNCIL

Appointments

Cameron Communications, an expanding division of C W Cameron Ltd, is a well established leader in the Visuai Communications market, with high quality products protessional and indusirial users, including - Co Projection Displays - Interactive Terminals - Broadcast and Industrial Video Equipment Videotex Terminals - Broadcast and Graphics Projectors.
The continuing growth and success of the company has resulted in the creation of further career opportunities based in our new Reading Office.

SENIOR ENGINEER Video/Computer Products

Salary: £ Negotiable
Based: Reading

Pus: Car

A Senior Engineer is required to head a team of engineers operating in a modern well equipped department providing technical assistance to the Sales Group, OEM Customers, Dealer Network and End Users. Key activitles will include the organisation of documentation system to cope with the expanding product line and installed equipment base. Provide and maintain a techni interface with the company's suppliers and its customers
introduce equipment training and acceptance facilities.

EUROPEAN SERVICE ENGINEER

Interactive Video - Computer Products
Salary: £ Negotiable Based: Reading Plus: Car
An adaptable and sell motivated person is required to provide service support and practical training on the above display systems at our distributors and customers premises in the UK, Europe and certain other countries.
Formal qualifications in electronics are required and service experience on video displays and some knowled ge ot perso distinct advantage as would a foreign language.

TEST/SERVICE TECHNICIAN

Interactive Video - Computer Products

Salary: £ Negotiable Based: Reading Plus: Car
An interesting position is oftered which will involve carrying ou regular quality control checks on pre-manufactured 'Interact systems passing through our Reading distribution and service depot. The post will also invoive service and units returned from the field and the preparation investiturned reports. Formal qualifications in electronics would be an advantage
A small amount of UK and overseas travel may also be required
We offer an aftractive remuneration package with competitive solaries and company profit sharing scheme. All replies will be dealt with in the strictest confidence.

Write for an Application Form quoting the
position reference number to:-
Mr JF Cowan
Personnel Department at
Company Head Office
C W Cameron Lid
Communications Division
Burntield Road
Glasgow G46 7TH
Tel: 041-633 0077

TECHNICAL MANAGER

Laser Sporting Products Limited are looking for an Electronics Engineer based at their office in North Yorkshire. The company is about to launch a new product and package on to the Game Shooting scene.
The applicant should have a sound knowledge of electronic and sonic technology together with a flare for innovation. An interest in fire-arms and shooting would also be a great advantage.
Please send applications together with curriculum vitae to
The Managing Director, Laser Sporting Products Ltd Manor Farm House Garriston Leyburn
N. Yorkshire DL8 5JT

TEST EQUIPMENT DESIGN ENGINEERS

Rediffusion Consumer Manufacturing design and manufacture a full range of advanced specification colour television receivers and monitors.

We are looking for experienced Electronic Design Engineers to help us maintain our industry lead in sophisticated computer controlled test gear for production testing of our products. Future test equipment will be an interesting mix of digital and analogue circuitry almed at increasing the automation of the production testing operation.

If you are able to conceive, design and implement production test equipment with minimal supervision, we'd like to hear from you.

These positions are based in our Chessington Engineering Centre but some visits to our factories in the North East and Lancashire will be required at infrequent intervals. Salaries are obviously dependent on qualifications and experience, but will reflect the importance of future test gear projects to the Company's long term development.

Interested ? ... Then write or phone:
Harry Brearley,
Rediffusion Consumer Manufacturing Ltd., Fullers Way South, Chessington, Surrey. KT9 9 HJ . Telephone: 01-397-5411.

REDIFFUSION

(2408)

DOES THIS COMPANY EXCITE YOUR IMAGINATION?

All-British with American backing. Winner of $£ 20,000,000$ contract to supply one of the most advanced type Mobile Radio Systems.

THEY REQUIRE

RF CIRCUIT ENGINEERS and DESIGN/DEVELOPMENT ENGINEERS

to design a very wide range of mobile radio products - including those for commercial users, public bodies and other professional users. Technology includes RX, TX, frequency synthesisers, hybrid and microprocessor circuitry, frequency right up to microwave bands.

SOFTWARE ENGINEER-GROUND-FLOOR OPPORTUNITY

required to provide the necessary SW expertise in support of the above project including the use of 6800 family microprocessors. The candidate will be required to advise on latest techniques. Knowledge of Assembler and Pascal essential.

Location:

Rural fringe of Britain's Silicon Valley - motorway to South Coast and London. Outstanding scenic beauty nearby.

Salaries:

Ranging from $£ 9,000$ to $£ 15,000$ plus excellent relocation package.

FOR FURTHER DETAILS PLEASE CONTACT
Charles Airey Associates
Tempo House, 30 Fairfield Street, London SW18 10W Telephone: 01-870 4504

Appointments

Engineering Opportunities

As world leaders in the supply of communications, navigation and entertainment equipment to the mercantile marine and offshore industry, we need additional professional men and women to help us meet the demand for our expanding product range.

SYSTEMS PLANNING/ PROJECT ENGINEER

Would you like to be technically involved with the planning of communication systems to meet specific marketing requirements? If so this position has good prospects with an ultimate objective to engineer and manage major projects. You should be aged 30 to 40, a good organiser, of graduate level or equivaent, with a sound knowledge of communication systems both in a practical and theoretical sense.

DEVELOPMENT ENGINEERS

Radio Communications

You will need to be a degree level/HNC or equivalent engineer with experience of radio communication development work with particular regard to transmitters, modems, ancillary units control and RF circuitry. Experience of digital and microproces sor work is highly desirable.

Radar Systems

A graduate with sound industrial experience, preferably including digital circuit design, is needed for the design of marine electronics equipment, initially radar. Your tasks would involve the detailed design of analogue and digital circuits over a wide range of speeds and power levels, together with associated software, overall systems design and equipment evaluation including sea trials.
The preferred age range for both these positions is 23-40
We offer good working conditions, attractive salaries and other benefits usual within the thriving Marconi group of companies.

Please send full personal and career details, indicating which position interests you, to John Ellis, Marconi International Marine Company Limited, Elettra House, Westway, Chelms ford, Essex. Telephone: Cheimsford 261701.

> Marconi International Marine

Opportunities in Field Service PROFESSIONAL BROADCAST PRODUCTS

£ Neg. Plus Car.

We area highly successful and rapidly expanding world leader in the professional broadcast industry, with our international headquarters based in North Hampshire. Our wide range of products includes Cameras, VTR's, sophisticated editing control systems and the exciting new Betacam range.
Applications are now invited from engineers with a minimum of 2 years' experience gained either in operational television or its allied manufacturing industry There are opportunities at all levels within the Department
Responsibilities will include the commissioning, service and repair of our full range of video products This will involve travel throughout our marketing area of Europe, the Middle East and Africa. Full product training will be given where necessary.

We offer an excellent benefits package including an attractive salary, Company car, free private medical cover and a Company Pension/Lite Assurance Scheme. If you are interested please write to, or telephone: David Parry, Assistant Personnel Officer, Sony Broadcast Limited, City Wall House, Basing View Basingstoke, Hants RG21 2LA. Tel: (0256) 55011

Sony Broadcast Ltd.
City Wall House
Basing View, Basingstoke Hampshire RG21 2LA United Kingdom Telephone (0256) 5501
(2469)

SENIOR ELECTRONICS DESIGN ENGINEER

THE JOB: Electronics and Instrumentation design for the rehabilitation and medical markets: signal processing, digital circuits, microprocessors, small servo systems.
THE REWARDS: An opportunity to be involved from conception to production in a company with a good working atmosphere. Salary $£ 9,000-£ 12,500$ depending on ability.
THE PERSON: Age: Preferably 26-40 years. Qualification: Degree or equivalent. Experience: At least three or four years of relevant design work needing a creative approach.

THE COMPANY: The post is in our Roehampton Research Department which is part of a company which has supplied rehabilitation services to the disabled for over 60 years.

Apply with full c.v. to:

> Mr D. Hawkins
> Hugh Steeper Ltd
> 237 Roehampton Lane
> London SW15
> Tel: $01-7888165$ 01-228 7876, 22 Howie Sireet, London $\$ W: 1$ 4AR.

98 Avo 8 Mark $3,4,5$. Price including Avo type leads, prods, crocs and VAT $£ 70$. Also digital meters
from £29. Telephone for delails ELECTRONIC DESIGNS, Bedford 257171 .

SITUATIONS VACANT

"In 3 days, 27 employers approached me. That's some form, lansdowne."

The Lansdowne profile form is like no other application fomm. It 's so brief and easy to fill in. But is tells employers just what tliey need to know to pick you out for a job offer

In just 3 days one Lanidowne job-seeker was approached by 27 employers. No real surprise considering we ve spent I2 years introducing employers to job-seckers. At the same time crimining and shaping the information we ask for into the lean fighting forme employers welcome and use

Our computer instantly memorises your form and compares it with the vast number of vacancies we ve been asked to help fill in 283 different job categnies. Speed is important because we sean the Register every day to see which of the latest incoming vacancies might suit you.

We need to do this because the lansdowne tean is talking to employers about job sacancies day in. day out by phone, mailand face to face So new vacancie are constantly being added to Lansdowne Appointments Register:

We could lave one in there for you right now. And if you think it will cost you to fund out, think again.

It costs you nothing.

NOW SHORTHISTING
 PNGINEDRS
 SERVICE - TEST - OA. CUSTOMIER SUPPORT 017436321 (24hours)

Lansdowne

(2466)

University of Leeds
 An
 Electronics Technician Grade 7

is required to take charge of the electronics workshop that jointly serves three departTechnician already in post. The duties include the construction of new instruments for the research and teaching activities of the department, together with the maintenance of existing instruments It is essential that the person appointed should be familiar with, and keep abreast of the lectronic circuitry (including microproceselectronic circuitry (including microproces
sors) and that he should also be prepared to sors) and that he shouid ant. There is a very interesting wide spread of applications. Applicants should be qualified to at last HNC or equivalent level and have had a minimum of ten years' relevant experience Salary is in the range $£ 8.385$ - £9,418pa
Applications to Professor A C T North, Astbury Department of Biophysics. The University, Leeds LS2 9JT.

1) Computer Terminals

Field support and service of microprocesso
based equipment. 2 yrs. ex min. to $£ 9,500$ car - London.
2) Marine Communications
offshore/abroad. £VG-Glasgow

3) Satellite Communications

 Senior test engineers with a knowledge o digital and analog or rader techniqf10000 - Surrey/Middx/S. Coast.

4) Service Personnel

We have many clients interested in employing ex-service fitters and technicians at
throughout the UK. Phone for details.

5) $£ 500$ per week

We are paying very high rates for contract design and test engineers who have a background in RF, MICROWAVE, DIGITAL, ANALUGUE

Hundreds of other Electronic Hundreds of Other Electronic
and Computer Vacancies to $£ 12,500$

Phone or write: Roger Howard
C.Eng., M.I.E.E., M.I.E.R.E. CLIVEDEN CONSULTANTS 92 The Broadway, Bracknell, Berkshire

CLIVEDEN

MEOICAL RESEARCH COUNCIL NEUROENDOCRINOLOGY UNIT Newcastle upon Tyne
 RESEARCH OFFICER (Electronics)

The appointee will be responsible for the de-

 sign, construction and maintenance of electronic equipment to be used in biophysica investigations of the properties of neurones and neurosecretory cells. Design tasks will include: very low-level current detection circuitry; high-speed multichannelied stimurecording devices; computer-controll recording devices; compumentation amplifiers lation equipment, instrumentation and analog signal transtormation experience of computer interfacing.
Minimum requirement is a university degree HNC or equivalent qualfication, with two years
relevant experience after qualification. Salary relevant experience aiter qualicaich Office
scale (due for revision) Research £6,204- $£ 8,126$; Senior Research Officer $£ 8,204$ £10,467.

For further information contac

Di R. N. McBurney
MRC Neuroendocrinology Unit Newcastle General Hospital Westgate Road
Newcastle upon Tyne NE4 6B
Telephone (0632) 735251

Salary on scale $£ 7174$ - £8.968 incl

An Electronics Technician is required for the Medical Electronics Department to assist with the development and maintenance of electronic circuits and systems.
Applicants should hold the Ordinary Tec Certificate in appropriate subjects, or an equivalent or higher qualification, and have good practical experience in the design of electronic circuits using state of-the-art tectniques
Application form and job description Application form and Personnel Dept., available from the Personnel Uept.
Royal Free Hospital, Pond Street, Hamp Royal Free Hospital, Pond Street
stead NW3 20G. Quote ref. 0758
Closing date - 2nd March 1984
HAMPSTEAD HEALTH AUTHORITY

Classified

TEST EnCIIIEERS For real invaluement in electronit equipment

quantity items South East. ext. 2484.
 Marconi

Automation is taking much of the initiative out of a test engineer's role. But not here at Marconi Radar, where we need you to make a major contribution to the constant refinement of our complex electronic modules, units and systems, incorporated in advanced radar equipment. As world leaders in this technology, our performance and quality standards are stringent which is why we are looking for Test Engineers to work on a wide range of small

You will need to have previous experience in a test or related field, possibly gained in HM forces or the electronics industry. In return, we offer an attractive salary and a range of benefits including assistance with relocation to this attractive part of the

Write with full details of your experience and qualifications to Mr. B. Walsh, Marconi Radar Systems Limited, Writtle Road, Chelmsford, Essex. Telephone Chelmsford (0245) 267111, Radar Systems

TO MANUFACTURERS, WHOLESALERS

 BULK BUYERS. ETC
LARGE QUANTITIES OF RADIO. TV AND

 ELECTRONIC COMPONENTS FOR DISPOSALSEMICONDUCTORS, all types, INTEGRATED CIRCUITS, TRANSISTORS CAPES, RECTIFIERS, THYRISTORS, etc. RESISTORS, C/F, M/F, W/W, etc
CAPAS. SILVER MICA, POLYSTYRENE, C280, C296, DISC CERA MICS, PLATE CERAMICS, etc.
ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE, CABLES, SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFOR' ALL AT KNOCKOUT PRICES MERS, etc.

TELEPHONE: 445 0749/445 2713
BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, North Finchley, London, N. 12

BULK COMPONENTS

increase stocks at a very low price We We re selling

 new. full lead length resistors in onginal boxespackets/reels. Because most are packed in tho sands (some are 100 s) you'll need to buy a
large quantity to get a reasonable mix
 $1 / 8 \mathrm{~W}$. $1 / 4 \mathrm{~W}$ and $1 / 2 \mathrm{~W} 20,000 \mathrm{E} 26 ; 50,000 \mathrm{f60}$ \% 100,000 £ 10: 1/4 million E250, 1 million E950. A
pr Ces inclusive. SAE for samples. We also stock prices inclusive. SAE for samples We also stock
capacitors, semiconductors, veroboard etc. in
SCE for latest list:
PLECTRONICS. 2 THORNHIL
PC ELECTRONICS, 2 THORNHILL
ROMSEY ROAD, WHITEPARISH, SALISBURY

B\&T ELECTRONICS

13 TANNERS HIL
DEPTFORD, LONDON. S.E 8 TEL: 01.6921441
1,000 s ELECTRONIC, ELECTRICAL MECHANICAL ITEMS
Xenon Tubes. Type XBLU $50 / 00$ Eclatron $£ 2.50$ Xenon Flashers. Complete panel with dual flas Xenon Flashers. Complete panel with dual flash
rate, $12-18$ volts DC, Inc. Tube, Base, Fuse Holder, 10 metres connecting wire. Full instruc tions 3 month s' guarantee. Complete package onty $£ \uparrow 0+£ 180$ P\&P Discounts. P O.A Enamelled Copper Wire . 090, 080, 180 MM $£ 5$ per 1 kg Reel $+\mathrm{f}^{\dagger} .80$ P\&P
AVO 8 Movements. Mk
damaged Meters. PD.A Will sell as one lot £ 400
Measured Pressure Transducers $\mathbf{f} 25$ each Meters Mcoil, ic plastic as used in and 10 units. app. size $55 \mathrm{~mm} \times 4.5 \mathrm{~mm}$. We have power W. V. U. Signal, or Battery level 100 or
200 micro amp fsd $\mathbf{~} 1.50$ each P\& 60 .

LINSLEY HOOD DESIGNS
75 W att and 100 W amps
Audio Signal Generators
75Watt amp p.c.b.
£2.30
p\&p 50p
S.A.E. for leaflets

TELERADIO ELECTRONICS 325 Fore Street, London N9 OPE

SITUATIONS VACANT

CAPITAL APPOINTMENTS LTD
 THE UK's No. 1 ELECTRONICS AGENCY
 ELECTRONICS ENGINEERS

If your career is stagnating, if you are unemployed, or just starting your career in the most dynamic industry this country has to offer, then Capital Appointments can help. Our client companies have immediate and long term requirements throughout the UK for most categories of staff including: TECHNICAL MANAGEMENT, DESIGN, SOFTWARE, TEST, FIELD SERVICE, SALES, ETC with salaries from $£ 6,000$ to $£ 16,000$ p.a.
Ours is a FREE SERVICE for applicants and you are assured of complete confidentiality
For immediate attention to your career requirements, complete the form below now and post to CAPITAL APPOINTMENTS LTD, 29/30 WINDMILL STREET, LONDON WIP IHG
If you would prefer to telephone us to discuss your situation in more detail, one of our consultants will be pleased to help
TELEPHONE 01-637 5551
CONFIDENTIAL
CUT FORM AND RETURN
name
ADORESS

Tel. (Home):
(Office):
Date of Birth:
Place of Birth:
Nationality now
If not British, is a Work Permit required?
Marital Status:
Car Driver
Type of Position required

Please indicate areas in which you are prepared to work:			
Cent. London	S. Coast		E. Midlands
S.E. London	West Counury		W. Midlands
S.W. London	N.E. England		E. Anglia
N.E. London	N.W. England		Wales
N.W. London	Scotland		Overseas
Home Counties	N.E.	S.W.	S.E.

Approx. Salary level

EDUCATION
Secondary School Qualifications:
College or University Qualifications:
Any Professional Membership:
CAREER HISTORY

From To

Job Title/Description

Are you a houseowner
Are you willing to relocate? Are you prepared to travel - In UK?

Overseas?
State of health:
Nouice Period required
Availability for Interview
Compa

ARTICLES FOR SALE
WORLD RADIO wh HANDBOOK

1984 ed.
£12
1984 THE RADIO AMATEUR'S H/B by A.R.R.L. Price £12.50 BEGINNER'S GUIDE TO INTEGRATED CIRCUITS by I. R. Sin-
clair ELECTRONIC PROTOTYPE CON STRUCTION by S. D. Kasten

Price $£ 15.95$ UNDERSTANDING ELECTRONIC SECURITY SYSTEMS by M. D Lamont Price $£ 2.30$ UNDERSTANDING DIGITAL ELECTRONICS by G. McWhorter INTRODUCTION TO ELECTRONIC SPEECH SYNTHEELECTRONIC SPEECH SYNTAE- Sclater ELECTRONICS FOR HIGHER TECH by S. A. Knight Price £10 DOMESTIC VIDEO CASSETTE RECORDERS. A SERVICING GUIDE by S. Beeching

Price $£ 15.50$
SEMICONDUCTOR DATA BOOK
by A. M. Ball Price $£ 7.50$

* all prices include

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books
19-21 PRAED STREET LONDON W2 1NP
Telephone: 01-4029176 Closed Saturday 1 p.m Please allow 14 days for reply or delivery
(2245)

USED ELECTRONIC INSTRUMENTATION

Avo 8 Mk.III. No Leads

Avo 215L Breakdown \& Ionisation Tester Cropico RBE4 Resistance Box
0.1%
Hilgar \& Warts. Optic Bench
Hilgar \& Watts. Optic Bench
Haistrom $2 \times 18^{\circ} \times 18^{\prime \prime}$ Oven. 300°
Haistrom 2×18 U 18 Soven. 300 F
I.C.I. UV. 2518 Utraner
Keithley $13541 /$ digit Handheld D.V.M. Hewlett-Packard 1332A X-Y Display Hewlett-Pack ard C.R.T's fo
Laminair Clean Air Bench Unitek 2-127-05 Microbond Parallel Gap W Marconi TF.995A/3 AM/FM Signal Generat Philips PM. 6465 Stereo Generator R.F. 100 M Solartron 16045 Digit D.C. Voltmeter Sens

VAT \& Carriage Extra
MARTIN ASSOCIATES PARTHIA HOUSE, BECKHAMPTON TEL: AVEBURY (067 23) 219

COMPONENT SCOOP PURCHASE

If you wish to derail further aspects of your experience (2450)

We buy large and small par cels of surplus I/C, transistors, capacitors and related electronic stock. Immediate settlement

Tel: 01-452 9769
Telex: 8814998
(2478)

SURPLUS
We offer good prices for test equipment, components, redundant computers ment.

TIMEBASE
94 Alfriston Gardens
Sholling, Southampton SO2 8FU
Telephone: (0703) 431323

VERBGATE LTD.

SURPLUS ELECTRONIC COMPONENTS AND EOUIPMENT
We also welcome the opportunity to quote for
omplete ractory clearance
B. BAMBER ELECTRONICS

5 STATION ROAD, LITLLEPORT, CAMB
Phone: Ely (035z) 860185
(2483)

SCIENCE OF CAMBRIDGE MK $14 \underset{(2484}{\text { micro- }}$ computer any condition. Box No. 2484. (2484

Bishopsgate Stre 0532435649
(9956)

040-376236

THE FOWBERRY EMERGY SAYER
(Patent Pending)
As described in the December issue of Wireless World Printed Circuit Board, fully silk-screen printed with component positions; component specifications and sources of
supply; assembly instructions; drilling supply; assembly instructions; driting and self-adhesive label, fully printed. Board to fit Bimbox 2006
$£ 7.50$ inc. postage and VAT
MacHARG PARTNERSHIP
Fowberry Tower, Wooler
Northumberland NE71 6ER
(2470)

Kodak Stereoscan (stereoscopic scanning of picture pairs), $£ 50$. Reversible £4.50. PCM Simulator (Schlumberger), £250. PCM Decommutator. Infra-red Gas Analyser, E 125 . Philips FM/AM Generator, £89. Modulation Meter, £89. Clare Flash/Insulation Tester, £60. Sullivan
0.1% Decade Potentiometer, £35. Chart 0.1% Decade Potentiometer, £35. Char NiCad Multi-Charger, £20. FM Deviation meter, $£ 45$. Centrifuge, $£ 49$. Pulse Generator, Audio Generator, EHT Supply. EHT Meter. Wow/Flutter. RCL Deviation Bridge. Television Alignment Generator. Pulse Anatyser. Oxygen Meter. PhotoSelf Inductance Brider. Mutual and Sweep/Marker Gerge Valve Tester Rohde \& Schwarz Audio Spectrograph £75. Stabilized PSU (variable). Books (various)

[^7]
SYSTEM PROJECT ENGINEERS

The Ampex Broadcast Systems Group based in Reading, Berkshire, supplies complete television studio and mobile systems to broadcast installations worldwide.
Owing to expansion of the group's activities, we are now looking for Systems Project Engineers to join our innovative project teams involved in the design installation and commissioning of television studio and outside broadcast vehicle projects.
These appointments involve occasional overseas travel for on-site commissioning
Key requirements are:

* Thorough knowledge of video and audio principles - HNC/Degree in Electronics preferred.
* Experience in broadcast television industry.
* Previous knowledge of TV systems an advantage.

Attractive salaries and benefits, which include pension, life assurance, permanent health scheme, Bupacare option, product training, overseas allowances and relocation expenses where appropriate.

Please contact Maureen Brake for

Classified

ANALOG COMPUTERS LIMITED CAPACITY NOW AVAILABLE FOR:
 stockist

Design \& Development, Complete Artwork Service, Camera Work, Prototype thru to Production PCB Manufacture/Assy

5 Cork Street, Eccles, Maidstone, Kent, ME 20 7HG TELEPHONE 10622) 79987 TELEX 965633

Thamescity Limited Electronic (Analog and Digitil!, electro pneumatic and control systems. R. \& D. facilitres for long or short run assembly and test to you desion or ours at our new Maidstone facility. design or ours at our London SEI TUN Lent Tel. 01-407741

 (2281)

KOSTADIN LTD
offers services in computing and microprocessor applications

- Circuit design e System sottware design - Numerical analysis © Graphics We at Kostadin are problern soivers and whatever your technical probem wow oracticable solution

Phone 01-874 1362 ar write to Kostadin Ltd
${ }_{35}$ Clionmore Stret, London SW18 SEU

MENDASCOPE LTD

Repair and recalibrate oscilloscopes
All makes - all models MENDASCOPE LTD Otter House, Weston Underwood Olney MK46 5JS
Tel: Bedford (0234) 712445

பillianтs P.C.B. Artworks FAST TURNROUND Cost effective specialist layout

 and master artwork WILIAMS ARTWCRGRAYS LANE, MORETON-IN-MARSH, GLOS Telephone 0386832152 - to 9 p.m

DATA BASED? - For a cost effective stand alone Prestel terminal, telephone Futronics. 01-alone Pres
9910070 .

SMALL BATCH PCBs, produced from your artwork. also DIALS, PANELS, LABELS. Camer work undertaken. FAD ECIN 8RU. Tel. 01 -405 4127/0960. (9797)

TURN YOUR SURPLUS Capacitors, transistors, etc, into cash. Contact COLES-HARDising \& Co, 103 South Brink, Wisbech, Cambs. 0945-4188. Immr diate settlement. We also wel come the oppor cunity to quote for complete factory clearance
P.C.B.s \& PANEL LABELS to your requirements. Design - Prototypes - Production. Grove, Thurnscoe, Rotherham, Yorks. 5630 TP . Telephone: (0709) 895265 . 2401

ELECTRONIC SERVICES. Design and development. Repair, test, PCB assembly. Equip ment prototypes and production. 14 years experience since 1970. Young Electronics Ltd, Southgare, London N14. Tel 01.886 6709

CIRCOLEC

THE COMPLETE ELECTRONIC SERVICE

Artwork, Circuit Design, PCB Assembly, Test \& Repair Service, O.A. Consultancy, Prototypes, Final Assembly. Full PCB Flow Soldering Service.
Quality workmanship by professionals at economic prices
Please telephone 01-646 5686 for advice or further details.
TAMWORTH MANOR
302-310 COMMONSIDE EAST, MITCHAM

A COMPLETE SERVICE

From design and pcb manufacture to assembly, wiring, testing and despatch to complete units. Suppliers to B.T. Quick service at competitive rates. Parts supplied at OEM prices if required. Techtronic Design Lid. Unit 20, Low Mills, Low Mills Lane. Ravensthorpe, Dewsbury, W. Yorks. Telephone: (0924) 499500.
(3033)

PROGRAMMED LOGIC SERVICES persona lise most programmable devices: EPROMs, BIPROMs, IFL, PAL. Services include design, prototyping, production, testing, marking, Truth-table entry Victoria House, London Road, Cheam, Surrey SM3 8HY l'hone: 01-644 8095. ("MMI' trademark). (2421

UESIGN AND DEVELOPMENT. ANALOGUE, DIGITAL, RF AND MICROWAVE CIRCUIT AND SÝSTEM DESIGN. Also PCB design, mechanical design and prototype/small batch production. - Adenmore Limited, 27 Longshot Estate, Brackne!1, Berks. (656)
Bracknell (0344) 52023 .

DESIGN SERVICES. Electro. design de velopment and production service available for digital and analogue instruments. RF Transmir ters and receivers, telemetery and con rol systems. 20 years' experience. R.C.S. Electronics Wolsey Road, Ashford, Middlesex. Phone M Falkner 53661

DESIGN AND CONSULTANCY of microprocessor, digital and analogue equipment. Complete service from feasibility and design to prototype and commissioning. Advice on test and design of dedicated test equipment or ATE. DPM Electronics, 24 Timbermans View, Basildon Essex. Tel. 0268558831

PROTOTYPE

 INSTRUMENT FASCIAS Photo-dyed Matt Black on Silver, 19swg-1mm Anodised Aluminium, from your Positive Art work Transparency. $£ 4.50$ plus $10 \mathrm{p} / \mathrm{sq}$ in inc VAT P\&P. SAE for price list of other gauges colours, tooling, etc ESENCO - Signs, Labels, Mimics, Dials, etc Peppercorns W, Eaton Socon/St. Neots Huntingdon, Cambs. PE19 3JE Telephone: (0480) 74454(2434)

PROFESSIONAL DESIGN SERVICE. Analogue/RS circuit/system design. Specialising in microwave amplifier, oscillator and network design. AOTOR design development capability. All work carried out to a high standard by competent professional engineers. Trontech, Electronics Desıgn Services, 81 Finchampstead Rd., W'okingham, Berkshire. Tel: 0734790103 (2439

CLASSIFIED ADVERTISEMENTS

 Use this Form for your Sales and Wants
PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

To "Wireless World" Classiffed Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate f3.50 PER LINE. Average six words per line. Minimum $£ 25$ (prepayable)
- Name and address to be included in charge if used in advertisement
- Box No. Allow two words plus $£ 5$
- Cheques, etc., payable to "IPC Business Press Ltd." and cross " $\&$ Co."

Wrolassiwivh rnd into ADVERTISERS

Appointments Vacant Advertisements appear on pages 92-103

OVERSEAS ADVERTISEMENT AGENTS

France \& Belgium: Norbert Hellin, 50 Rue de Chemin Veat F-9100, Boulogne, Paris.

Hungary: Ms Edit, Bajusz, Hungexpo Advertising Agency, Budapest XIV, Varosliget.
Telephone: 225008 - Telex: Budapest 22-4525
INTFOIRE

Italy: Sig C. Epis, Etas-Kompass, S.p.a. - Servizio Estero, Via Mantegna 6, 20154 Milan
Telephone: 347051 - Telex: 37342 Kompass

Global Instruments Corporations 63	
Gould Instruments	56
G.P. Industrial	III, IV
Grandata Ltd. ... 82	
Hameg	59
Happy Memories	7
Harris Electronics (London)	10
Harrison Bros. Electronic Dist	16
Hart Electronics Kits	82
House of Instruments.	55
ILP Electronics Ltd. 10	
Insight Vision Systems Lid.	
Intergrex Ltd. ... 86	
Keithley Instruments 22	
Midwich Computer Co. 9	
Minim Electronics..	18
Nicolet Instruments 65	
Pantechnic .. 85	
PM Components......................................76, 77	
Practical Computer	
Practical Wireless ... 6	

Japan: Mr. Inatsuki, Trade Media - IBPA (Japan), B. 212 Azabu Heights, 1.5-10 Roppongi, Minato-ku, Tokyo 106

United States of America: Ray Barnes, Business Press Inter-
national Ltd, 205 East 42nd Street, New York, NY 10017 national Ltd, 205 East 42nd Street, New Y
Jack Farley Jnr., The Farley Co., Suite 1584, 35 East Walker Jack Farley Jnr., The Farley Co., Suite 1584, 35 East Wak
Drive, Chicago, illionois 60601 - Telephone (312) 63074 Victor A. Jauch, Elmatex International, P.O. Box 34607, Los Angeles, Calif. '90034, USA - Telephone (213) 821-8581 Telex: 18-1059.
G.P. Industrial III IV

Hameg .. 59
Happy Memories ... 7
Harris Electronics (London) 10
Harrison Bros. Electronic Dist. 16
Hart Electronics Kits .. 82
55

10

Sandwell Plant Ltd
Scopex Electronics Ltd
Scopex Electronic
Seasims Controls.
Service Trading Co.
Solent Elect .
South Midlan
South Midlands Communications
Sowter EA..
Special Products Distribution Ltd
Stewart of Reading
Strumech Engineering
Surrey Electric
PAGE
Taylor Bros. (Oldham) Ltd 4.2
matic Ltd.
Teledigital Computer $\ldots 73$
Television
‥ 64
Telonic Instruments 18, 55
Thanet Electronics
.65
.65
Thurlby Electronics (Reltech)
88
88
Timebase Q Teq 10
.. 74
TK Electronics.
TK Electronics. 18
Valradio Power Ltd. 90
74
Vigilant Communications 74
Warwick Design Group 72

[^8]

The new microprocessor controlled EP8000 Emulator Programmer will program and emulate all EPROMs up to $8 k$ $\times 8$ sizes, and can be extended to program other devices such as $16 \mathrm{k} \times 8$ EPROMs, Bipolar PROMs, single chip microprocessors with external modules.
Personality cards and hardware changes are not required as the machine configures itself for the different devices.
The EP4000 with $4 k \times 8$ static RAM is still available with EPROM programming and emulation capacity up to $4 \mathrm{k} \times 8$ sizes.

FEATURES

- Software personality programming/emulation of all EPROMs up to $8 \mathrm{k} \times 8$ bytes including 2704, 2708, 2716(3), 2508, 2758A, 2758B, 2516, 2716, 2532, 2732, 2732A, 68732-0, 68732-1, 68766, 68764, 2564, 2764. Programs 25128, 27128 with adaptors.
- No personality cards/characterisers required.
- Use as stand alone programmer, slave programmer, or EPROM development system.
- Checks for misplaced and reversed insertion, and shorts on data lines.
- Memory mapped video output allows full use of powerful editing facilities.
- Built-in LED display for field use.
- Powerful editing facilities include: Block/Byte move, insert, delete, match, highlight, etc.
- Comprehensive input/output - RS232C serial port, parallel port, cassette, printer O/P, DMA.
- Extra $1 \mathrm{k} \times 8$ scratchpad RAM for block moving.
- EP8000 8k x 8 Emulator Programmer £695 + £12 delivery BSC8 Buffered emulation cable - £49 SA27128 Programming adaptor - £69 SA25128 Programming adaptor - £69 EP4000 $4 \mathrm{k} \times 8$ Emulator Programmer $-£ 545+£ 12$ de-
livery BSC4 Buffered emulation cable £39 BP4 (TEXAS) Bipolar PROM Module - £190 - Prinz video monitor - £99 UV141 EPROM Eraser with timer - £78 GP100A 80 column printer - £225-GR1 Centronics interface - £65

Unit E, Huxley Close, Newnham Industrial Estate, Plymouth PL7 4JN

[^0]: WW - 020 FOR FURTHER DETAILS

[^1]: Oroer by Pout min CHEOUES/ACCESSS
 VIBA or you can lwaphome your ordere

[^2]: J. Vandewege

 Ghent University
 Belgium

[^3]: * Battery-powered instruments, by lan Hickman, Wireless World, vol. 87, 1981, pp.57-61.

[^4]: Dr Purves is with the department of pharmacology, University of Otago, New Zealand, and Mr Prescott is at the department of anatomy \& embryology, University College, London.

[^5]: I enclose $\mathrm{PO} /$ Cheque for $£$
 Barclaycard/Access/American Express. No. or.
 \qquad

[^6]: *Also subscription agents

[^7]:

[^8]: Printed in Great Britain by QB Lid., Sheepen Place, Colchester, for the proprietors, Business Press International Lid., Quadrant House, The Quadrant, Sutton, Surrey SM2 SAS. (C) Business Press nternational Lid, 1984. Wireless World can be obtained abroad from the following: AUSTRALIA and NEW ZEALAND: Gordon \& Goich Lid. INDIA: A. H. Wheeler \& Co. CANADA: The WIm. Dawson Subscription Service Lid., Gordon \& Gotch Lid. SOUTH AFRICA: Central News Agency Lid.: William Dawson \& Sons (S.A.) Ltd. UNITED STATES: Eastern News Distribution Inc 14ih floor, 111 Eighth Avenue, New York, N.Y. 10011

