Wrelessiwitd

NOVEMBER 1983
85p

> Wireless Horld Hatieph Whatger

16 JAN 1984

The range includes sine-square oscillators, synthesized signal generators, function generators and pulse generators.
\& .. * Designed and manufactured in Britain, e. . all instruments in the range are backed by the Farnell reputation for value for money performance.

Detailed information will be sent if you respond to this advertisement.

Front cover shows a prototype of the Wireless World NiCd charger board. On the screen is the charging characteristic of a fourcell AA-size battery. The monitor was kindly provided by JLC Electronics. Photograph by Alan McFaden.

TIXT WOITM

The other side of the micro. A microcomputer survey for people who want to do more than play computer games.
PAL decoding. A new series on defects in colour receivers, leading to a new design of decoder with wide luminance bandwidth.

Energy saver. A pulsed controller for central-heating boilers which prevents excessive heating and cooling and saves fuel.
Robot control by micro is made simpler by Professor Driels' circuit, using a v.i.a. and stepper motor drive chip to control non-servo manipulators.

Current issue price 85 p, back issues (if available) £1.06, at Retan and Trade Counter, Units $1 \& 2$. Bankside Industrial Centre, Hopton Street, London SE1 Available on microfilm; please contact editor
By post, current issue E 1.30 , back issues (if available) $£ 1.90$, order and payments to EEP General Sales Dept, Quadrant House. The Quadrant, Sutton, Surrey SM25AS. Tel: 01-6618668
Editorial \& Advertising offices: Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS
Telephones: Editorial $01-661$ 3614. Advertising 01-661 3130. See leader page Telex: 892084 BISPRS G.
Subscription rates: 1 year $\mathbf{f} 15$ UK and E19 outside UK
Student rates: 1 year f 10 UK, and £12.70 outside UK
Distribution: Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Telephone: 01-661 3248
Subscriptions: Oakfield House, PerrySubscriptions. Hakied House, Perry mount Road, Haywards Heath, Sussex RH 16 3DH. Telephone: 0444459188
Please notify a change of address. Please notify a change of addres
USA: \$49.40 surface mail, \$102.60 air mail. Business Press International (USA).
Subscriptions Office, 205 E. 42 nd Street, NY 10017.
USA mailing agents: Expediters of the Printed Word Ltd, 527 Madison Avenue, Suite 1217. New York, NY 10022. 2nd class postage paid at New York (C) Business Press International Lid 1983 ISSN 00436062

Wirelessworld

23
24
26
30
34
39
42
44
51
54

LETTERS TO THE EDITOR

Symbul sandarls Desiun compoliion sidetants

CIRCUIT IDEAS

3080 stape cycte counter Measuramen intwiace Curremt semsor

62	16-LINE P.A.B.X. WITH OPTIONS By. M. Kuiner
\% 5	FORTH LANGUAGE Waodrofte

DIGITAL FILTER DESIGN TECHNIQUES

WH. F. Gurcu Waznle and K. Werom

USING THE 68008

by 荮 (ath

73	BERLIN RADIO SHOW
76	NEW PRODUCIS
78	RANDOM ECHOES
103	CAREERS IN ELECTRONICS

YOU DON'T NEED ME TO DETECT CROTECH'S VALUE

It's elementary. Just look at the $\mathbf{3 0 3 0}$ at $£ 154$ and the 3131 at $£ 250$, both are 15 MHz scopes with $5 \mathrm{mV} /$ Div maximum deflection coefficient. And the Dual Trace 3131 has matched $X-Y$, Algebraic Add and Subtract, and TV Trigger, all selected on easy to use clearly marked push buttons.

But that's not all, both incorporate a Component Tester, yes, even the Single Trace 3030, for the in or out of circuit testing of semiconductor and passive devices. With the resultant characteristic being displayed directly on the CRT.

Theres only one thing left to say
Do you want a Violinist?
For full details just fill in the enquiry card or call us direct.

Crotech hinstruments Limited

5 Nimrod Way Elgar Road Reading Berkshire RG2 0EB - United Kingdom
Telephone: (0734) 866945 Telex: 847073 POWLIN G

IRVINE BUSINESS SYSTEMS LTD.

KEYBOARDS FROM $£ 95.00$ 12' P31 MONITORS
FROM $£ 95.00$
CP/M 2-2 FOR
IBS 750 £ 95.00 DOCS $£ 15.00$

51/4"' TEAC DISK DRIVES
250K FD55A $=\mathbf{£ 1 5 9 . 0 0}$ 500K FD55E $=\mathbf{£ 1 8 9 . 0 0}$ IMB FD55F $=£ 249.00$
Subject to Yen fluctuation

SWITCH MODE POWER SUPPLY
+5V@7amps
+12V@3amps
+12 V @ 1 amp

- 5V @ 1 amp

80w
£79.95

A SINGLE CARD COMPUTER FOR ONLY tне IBS 750 s.в.с.

NEW

BUDGET ACCOUNT £1,000 INSTANT CREDIT ON ANY PRODUCTS

VISIT US AT
 COMPEC
 Stand 2976

WW - 050 FOR FURTHER DETAILS

pantechnic

THE POWERFET SPECIALISTS

OEM USERS

Pantechnic present the most adaptable high-powered amplifier ever fet SYSTEM amp

- HIGH POWER. 1.2 kW (single ended)
- LOW VOLUME. $1 / 15$ Cubic foot inc. Heatsink

ORERSATILE. Delivers more than 1 kW into $1 / 2$ to 8 ohms
OR $2 \times 600 \mathrm{~W}$ into 2 1o 8Ω
OR $4 \times 300 \mathrm{~W}$ into 2 to 4Ω (200 W into 8Ω)
OR $\left\{\begin{array}{l}1 \times 600 \mathrm{~W} \text { into } 2 \text { to } 8 \Omega \\ 1 \times 300 \mathrm{~W} \text { into } 2 \text { to } 4 \Omega \\ 1 \times 150 \mathrm{~W} \text { into } 4 \text { to } 8 \Omega\end{array}\right.$
Etc., etc.
Having been closely involved in a wide variety of OEM applications of their amp boards. Pantechnic became aware of numerous implementation problems often left untackled by other amp board manufacturers. These problems specifically o considerably lengthened OEM product development time.
By including thermal design in the totality of board design it has been passible to reduce the size of the electronics, and increase the efficiency of the transistor to ncrease the volumerric efficiency of the amplifier/heatsink assembly. The SYSTEM Ampooffe
and Fan.
designed and this considerable advance is the PANTECH 74 Heat Exchanger, newly designed and manufactured by us. By eliminating the laminar air flow found in enhanced.
The flexibility of the 1.2 kW amp stems trom its division into 4 potentially separate amplifiers of 300W each (downrateable with cost savings to 150 W). These can be voltage capability. In consequence a large variety of amplifier/load strategies can be implemented
As ever Pantechnic offer a full range of customising options including DC coupling,
ultra-high slew, etc. Contact Phii Rimmer on $01-8006667$ with your particular ultra-high slew, etc.
application problem.
PS Specs as ever are exemplary

WW -039 FOR FURTHER DETAILS

ANALYSERS
Howlott Packard

OSCILLOSCOPES

1332A High Quality CRT Display
$9.6 \times 11 \mathrm{Gcm} / \mathrm{c}^{2} 4$ Channel Plug
18094100 MHz
E1250.00
1821A Timebase Plug in $£ 2000.00$
Philips
PM 3532 Oual Beam 10 MHz ع495.00
Tektronix
305 Portable battery scope/DMM, OT
$\mathbf{M M H z}$
E975.00 335 Dual Trace 35 MHz Smal portable with 000 C Trolley for 400 Series E120.00 7313100 MHz Storage Mainframe 2255.00 7603 100MHz Mainframe $\quad \begin{array}{ll}\text { E2225.00 } \\ & \mathbf{E 1 8 5 0 . 0 0}\end{array}$ 540 50MHz Manframe E1000.00 Mainframe 7704 A Scope DC-200MHz Manframe. 00 7613 Storage Scope Manframe
OC-100MHZ
E3250.00 0C-400MH2 Scope Mainframe $\mathbf{E 7 2 0 0 . 0 0}$ 844 Dual Beam 400 MH H Man

854 Waveform Processing S ع7750.00

C-400MHZ
TEKTRONIX PLUG INS
We stock a complete range of Plug Ins for use with

TEKTRONIX TM500

 SERIESWo atock a vary wide range of these versetile modular equipmente

TEKTRONIX TV TEST EQUIPMENT

\author{

148 Sig Gen E4000.00
 141A SigGen..........E1500.00
 651 HR PAL Monitor
 655 HR - 1 Monitor
 656HR PAL \begin{tabular}{l}
E2 100.00

\hline 3800.00

\hline

 671 PAL Monitor \quad

E1800.00
\end{tabular}

}

MISCELLANEOUS

Avo
Model 8 Multimeters.................80.00
VCM 163 Value Characteristic Meter
7 Electricians MultimeterE885.00
E85.00

Brual C Kjaer 2203 Sound Level Me	E
2209 Sound Level Meter	E850

Datalabs
DL901 Trensient Recorder £750.00
DL905 Transient Recorder £995.00

Fluke

ukA	50.00
845 AB Null Detector .	E810.00
9318 Diff V'Meter	ع1,000.00
1900A Counter/Timer B0MHz	2225.00
2020A-3-6 Printer	E500.00
30104 Logictester Seff Con	
Portable Full Spec on Reque	\$8500.00
52054 Precision Power	
Amplifier.	E35
8921A DMM	£885.00

Genred

1607A Transfer-Function and Immittance
Bridge ..

Hewlett Packard. 32008 Dscillator
467 A Amplifier
415 E VSWA Meter
214 A Puise Gen
3556A Psophometer
435A Power Meter
3552A Trans Test Set
5300E/5306A DMM/Counter
80138 Pulse Generator
8350A83525A Sweeper Syste
$640 A$ AM/FM Signal Generator
$0.5-512 \mathrm{MHz}$
4815 A Vector Impedance Mete

11720 A Puse Modutor E3850.00

 TF2120 Waveform Gen850.00 TF2000 Dscillator575.00

Racal

9514 Counter/Timer IEEEE850.00
9917A/04A Counter 560 MHz _450.00 Telktronix
106 Square Wave Generator 1 nS risetime
10 Hz -1MHz without accessories.$£ 175.00$
10 Hz -1 MHz without accessories. $\mathbf{£ 1 7 5 . 0 0}$
191 Constant Amplitude Generator
E250.00 832 Data Comms Tester . $\quad \mathbf{E 8 2 5 . 0 0}$ 833 Data Comms. TesterE1350.00 steps
\rightarrow ?
STOP PRESS
New Catalogue
Just Out
Send for your
free copy now

Please note: Prices shown do not include VAT or carriage.
Electronic Brokers Ltd., $61 / 65$ Kings Cross Road, LondonWC1X SLN. Tel::01-278 3461. Telex 298694

MICROPROCESSOR CONTROLLED RECEIVERS

Type SR 530 USB/CW/AM/Telex - 10 Hz Steps (Marine) Type SR 532 USB/LSB/AM/CW - 10 Hz Steps (Static/Transportable)
Type SR 531 USB/LSB/AM/CW - 100 Hz Steps (Static/Transportable)

DESIGNED AND MANUFACTURED TO HIGHEST INTERNATIONAL SPECS

WW. 058 FOR FURTHER DETAILS

ROBOTICS!!

MOTORIZED GEARBOX

These units are used in a computerized

 tank, and offer the experimenter in ro botics the opportunity to buy the electro nechanical parts required in building $2 \times 3 \mathrm{~V}$ motors, linked by a magnetic clutch, thus enabling turning of the vehicle, and a gearbox contained with in the black ABS housing, reducing the final drive speed to approx. 50rpm. Data is supplied with the unit showing various options on driving the motors, etc. £5.95. Suitable wheels also available: $3^{\prime \prime}$ dia plastic with black tye able. 3 dia. plastic with black tyre (limited qiy) $3^{\prime \prime}$ dia aluminium disc 3 mm thick drilled to push-fit on spindle

MICROPROCESSOR PANELS

2903 Panel 240×165 with 6802 uP, 682 PIA, 6850 ACIA, $4040,4512 \times 2$, LS00號 Cs, plugs, 50
relay. E 5.95
2904 Panel $240 \times 165 \mathrm{~mm}$ with 6×4099 723 all in sockets, $14 \times 8 \mathrm{~A} 200 \mathrm{~V}$ triacs, 4 small signal transistors, 14 R/C networks, 30×1 N 4001 , sub-min relay, Rs,
Cs, etc. $£ 4.95$ 2905 Finned black ally heatsink 4×0 R 25 5W Rs. Only $£ 2.50$
\star THE 1984 GREENWELD CATALOGUE *

Nom Mne dise iroucton,

 unibeed in Novemaee unis mion ever before. With each copy there's discount vouchers, Bargain List, Wholesale Discount List, Bulk Euyers List, Order Form and Reply Paid Envelope. Al

COMPUTER GAMES

2901. Can you follow the flashing light/ pulsating tone sequence of this ramous game? Supplied as a fully working PCB
with speaker (no case) plus full instructions. Only £4.95 Z902. Probably 2902. Probably the most popular on the old-fashioned pencil and paper battleship game, this computerized version has brought it bang up-to-date! We supply a ready built PCB containing 76477 sound effect chip. TMS 1000 microprocessor chip, Rs, Cs etc. Offered for its components value only (board may be cracked or chipped), it's only

BULK BUYERS - LOOK

SEND FOR YOUR COPY NOW. LOW PRICES ON SEMIS AND PASSIVES

RIBBON CABLE

Special purchase of multicoloured 14 way ribbon cable - 40 p "THE SENSIBLE 64" David Highmore's new book on the Commodare now avaiabe NUTS, SCREWS, WASHERS \& BOLTS
Over 2 million in stock, metric, BA, self-
tappers, etc. SAE for list.

GREENWELD
 4436 Millbrook Road, Southampton SO1 OHX

WW - 043 FOR FURTHER DETAILS

AERIAL KITS

Army lightweight comprises $10 \times 3 \mathrm{ft}$ in screw sections, 2×16 ft 4 section whips, base spike, base insulator, 3 sets of 4 guys, base pegs, etc, makes a 46 ft vertical or 30 ft mast, plus a 4 ft mast with 16 ft whip supplied in carrying haversack, new cond., £46. PAN and TILT HEADS were used for CCTV Cameras heavy duty weight about 75 lbs , provide 360 deg pan and tilt, as two 240 v reversible motors will adapt to take dish ext soiled due to outdoor use, E65. TEST SET CT373 Audio bench test set $17 \mathrm{c} / \mathrm{s}$ to 170 Kc full spec. on list, £115. FREQ CONVERTOR 240 v I/P O/P $115 \mathrm{v} 400 \mathrm{c} / \mathrm{s} 1$ phase 100 Va sine wave solid state, new, £75, also OSC AMP unit $240 \mathrm{v} / / \mathrm{P} 115 \mathrm{v} 400 \mathrm{c} / \mathrm{s} 3$ phase O / P tuning fork osc, metered low power, £85. POWER UNITS 240 v I/P of 28 v DC at 15 amps semi reg load range $5 / 15$ amps in case size $7 \times 7 \times 7 \times 16$ in tested, £38. METERS Record Circa Scale $200 / 250 \mathrm{~V} 50 \mathrm{c}$ six $4 \times 4 \times 31 / 2 \mathrm{in}$, new, £15. Also Freq. Meters $45 / 65 \mathrm{c} / \mathrm{s} 230 \mathrm{v} 21 / 2 \mathrm{in}$ dia, new, £11.50. Also DC 100 amps $41 / 2$ in dia, $£ 11.50$. ROTARY CONVERTORS $24 v$ DC I/P $230 v$ AC 50c at 140 watts max O/P sine wave, £27. MORSE KEYS miniature key made for A510 set, new,
 TUNER HEAD 3 transis $88 / 10810.7 \mathrm{Mc} / \mathrm{s}$ O/P req 12 v , provision for AGC and AFC, new with connec., $\mathbf{f 4 . 7 5}$. RECORDING TAPE Ampex Mil Spec. $1 / 4$ in audio type $3,600 \mathrm{ft}$ on $10^{1 / 2 \mathrm{in} \text { spools, new, }}$ £4.50. CAR AERIALS for use on 27 to $27.5 \mathrm{Mc} / \mathrm{s}$, all feature a rubber aerial element with removable base loading coil with nom height of 38 cm , supplied with 13 ft of RG58 universal mounting with PL259 plug, £4.50. Spare Aerial element and base coil, £1.50. Also range of Car VHF aerials $30 / 200 \mathrm{Mc} / \mathrm{s}$, made by Spycher \& Beck in Switzerland, new, unused, see list PYE GROUND PLANE AEs, cut for $70 / 73 \mathrm{Mc} / \mathrm{s}$ with cable 50 ohm , new, POA. H.F. Tx Navy type 619 Pye 1.6 to $16 \mathrm{Mc} / \mathrm{s}, 3$ bands VFO or Xtal, 40 watts CW or Phone, as int ATU and metering reqs ext supplies, approx. size $14 \times 14 \times 14$ in with circ, etc., f 1115 . ARMY TYPE C. 12 HF T/Rx 1.6 to $10 \mathrm{Mc} / \mathrm{s}$ in two bands $3 / 5$ watts CW or Phone uses 13 miniature valves, RF O/P 75 ohm reas ext P.U and ATU for whip, can be set up on two freq Tx and Rx, £75 COLLINS R278 ground UHF Rxs 225 to 399.9 in 100 Kc steps, few only check, £115. Prices include carr/post and VAT. Goods ex equip unless stated new.
SAE for enquiry or $2 \times 16 p$ stamps for list 32 . A. H. Supplies, 122 Handsworth Road, Sheffield S9 4AE. Tel: 444278 (0742).

DEGSALI
a selection from our huge stocks. Allitems reconditioned unless otherwise stated.

DISK DRIVES

RK07ED 28MB NEW.......€2,500 RKO7PD 28MB NEW RLO1A 5MB
RMOZAD G7MB NEW RM03AD 67MB NEW. RM80 124MB RP06AB 176MB RX11BD Dual Floppy RX211BD Dual Floppy.

MAG TAPE

TE16 Slave
TE16 Master with TMO2 TE16 Master with TM03 TS11 Inc. UnibusCt1 NEW. TU77 Master with TM03 NEW ع2,5005995 \&6,250 E6,250 E9,500 £7,500 ... 6995
E1,725
£4,500 . 5,750 E6,250 E6,250
£14,500
All above include DEC Cabinet

CBUS

Processors
11/03 64KB, 51".... from £1495 11/23 128KB, $5 \frac{1}{4} \frac{1}{4}, \ldots$ from E3250 Memory
MSV11C 32KB MOS. MSV11DD 64KB MOS. MSV11LK 256KB MOS Options
ADV11A A/D Convertor BA11MF Expander Box. BA11NF Expander Box. DLV11F Asynch I/F
DLV11J $4-l i n e ~ I / F$ UNIBUS

Processors

11/04 З2K日, 10눌....from £1750
11/34A 64KB, $5 \frac{5}{4}$ " $\ldots .$. from $£ 2500$

£150

E295
.8750
$£ 725$
$\Sigma 595$
6775
$\Sigma 775$
£150
E350

PDP8A/RL01 SYSTEMS

11/34A 128KB, 10 $\frac{1}{2}^{\prime \prime}$. from $\mathbf{5 4 5 0 0}$	
11/40 32KW core, in cab	
.......................from £1500	
11/45 32KW core, in cab from $\mathbf{E 2 7 5 0}$	
11/60 256KB MOS, in cab from £3250	
Memory	
MM11DP 16KW core	E225
MM11YP 32KW core.	. 650
MS11JP 16KW MOS.	E150
MS11KE 32KW MOS.	E495
MS11LB 128KB MOS	¢500
MS11LD 256KB MOS	E975

Options

BA11LF 5ㄴ" Expander Box... £825 BA11KF10-"Expander Box. £1325 DD11CK 4-slot Backplane.....E275 DL11E Asynch. I/F.............E395 DL11W Asynch. I/F. DR11C Gen. Purpose I/OE325 FP11A Floating Point..........E1500 KK11 A Cache memory 1500 KW11P Programmable Clock.E345 M9312 Bootstrap.................. $\mathbf{E 3 9 5}$
DEC PDT11/130 PROGRAMMABLE DATA
TERMINAL COMPRISING

* integral LSI Processor with 32KRAM * integral dual TU58 minı cartridge Fantastic value whether for use as VT100 only or as

full PDT.

£995 including
compret
manual

Special Purchase - Immaculate as new condition
BA400-BR Processor complete with KK8A CPU MM8AB 16KW Core KC8AA Programmers Panel KM8AA Option module DKCBA Option module • 2xRL01AK Disk Drives • RL8A Controller • H967 4tt. cabine
£4,750

$-5 B]^{2}$
 PURCHASE OF IEKIRONNX GX-DEMOMSTRATION STOCK IN ORIGMAL MANUFACTUREAS OMLY SLAGHLY USED - covenen Ey FULL MARRANM

HIGH RESOLUTION BIG SCREEN

GRAPHICS DISPLAY TERMINALS

4014-1, 4015-1 and 4016-1
1 Gin. Screen providing 4096X by $3120 Y$ displayable points or 8512 alphanumerics [models 4014 and 4015). 25in. Screen providing 4096X by 3120 Y displayable points or 15,000 alphanumerics [model 4016] APL Character Set [model 4015]. Plot-10 compatible. Prices include Enhanced Graphics Option. Extra Memory Option and Programmable Keyboard Option.
4014-1 £8,850. 4015-1 £7,250. 4016-1 \&8,950.
Other Tektronix graphics equipment currently available includes 4006-1, 4010-1, 4027, 4051, 4952,
606/606A/606B and 611

Electronic Brokers Ltd., 61/65 Kings Cross Road, London WCIX 9LN. Tel:01-2783461. Telex 298694

TEONEX ELECTRONIC VALVES AND SEMICONDUCTORS

SERVING THE WORLD FOR 30 YEARS

We specialise in the supply of Industrial Valves of British, European and USA manufacture, and semiconductors from the Philips Group
Many types, including obsolete and obsolescent types, always available from stock.

For further details, contact Mrs. Janet Lowy.
T.O. SUPPLIES (EXPORT) LTD., 2A Westbourne Grove Mews, London WII 2RY. Telephone: (01) 7273421 Telex: 262256 Answerback TOSPLY G

WW - 023 FOR FURTHER DETAILS

Complete disk development system from £1176
Target single board computer card from £139
Here is an exciting concept, based on the demands of working engneers who are called on to pronde computer solutions, often at shor notice.
These flexible, robust and easy-to-use development systems are based on CUBE Eurocard modules, and can be extended to include as many interfaces of as many types as the ultimate application demands, and yet which can also be
reduced atter development to a minimum cost unit, leaving off every unnecessary feature. 6502 systems support Atom and BBC BASIC. both on disk systems and on the 6502 EuroCuBE SBC.
£ 139 buys this single board computer. which is also the cpu card of the
development system. It carties serial and digital interlaces, a standard CUBE bus connector and four byte-wide memory sockets wth battery back-up for CMOS RAM.

6809 systems suppor FLEX, and under FLEX support assembler for 6809 and cross assemblers for all popular processors. Control Universal especially support 6801 (single chup compurer) and 68000 High level compiling languages such as "C" and PL9 provide code to nun on the 6809 EuroCUBE which costs the same and has the same specification as the 6502 EuroCUBE
UniCUBE is a carrier for the 6801 single chup computer, which has a senal interface, 4 KB masked ROM or piggy back EPROM, 128 bytes of RAM and 29 IVo lines. It costs less than $£ 35$ in quantity, and the single chip micro itself is just a few pounds for the masked ROM version, or can be used in the EPROM version with no commitment to quantity.
Control Universal also market the Force 68000 single board computer, for which applications can
be developed on the 6809 FLEX system

Control Universal 1 ted The Hardware House
Unit 2, Andersons Court, Telephone (0223) 358757

ICOM ICR70

The professional communications receiver for foint to point, ship to shore, and general coverage radio work RANGE $100 \mathrm{KHz}-30 \mathrm{MHz} \star$ MODES AM, SSB, CW: RTTY and optional FM \star CPU kased 10 Hz step digital PLL synthesizer with DUAL VFO's *Frequency display 6 digit to 100 Hz * STABILITY less than 50 Hz after one hour \star POWER SUPPLY 117 or $235^{\prime} /$ AC and optional $12^{\prime} /$ DC \star IF - 1st 70.4515 MHz , 2nd 9.0115 MHz , 3 rd 455 KHz , 4 th $9.0115 \mathrm{MHz} \star$ Optional transceive units and filters avail able

THIS SUPERB RECEIVER IS PRICED AT $\mathbf{£ 4 3 3 . 9 1 \text { + VAT }}$

Contact us for more details on this and othe- ICOM professional communications equipment.

PMR - MARINE - AMATEUR
Dealer enquiries welcome

Thanet Electronics ICOM

143 Reculver Road, Herne Bay, Kent
Tel: 02273 63859. Telex $9 € 5179$
WW - 041 FOR FURTHER DETAILS

4 Philips PM 6667/01 Frequency Counter £290 High resolution
digut computing counter from 10 Hz to 120 MHz . Auto ranging on all waveforms PM 6G68/01 (E425) performs to 1 GH

Fluke 8022B Handheld DMM E99 -

Rugged $3 \frac{1}{2}$ digit, general purpose meter. Six functions include ciode test. Extensive overload protection and two year

N
0
0

48010 A Bench portable DMM £210 Exceptional performanc $3 \frac{1}{2}$ digit, true RMS meter Seven functions with 10Amp current capability. Comprehen accessories and
option avaita

Fluke 80268 Handheld DMM £180 Versatile $3 \frac{1}{2}$ digit, with true RMS capablity. Eight, functions include conductance and high speed audible continuity. Two year warranty applies

Electronic Brokers Ltd., 61/65 Kings Cross Road, London WCIX 9LN.Tel:01-8331166. Telex298694

$\%$ S.

VERTICAL RANGE FROM 3-10 SOCKETS ALL EX-STOCK!
SPECIALS TO ORDER

WHEN

 IT COMES TO POWER FOR RACKS IT MUST BE OLSON5-7 LONG STREET LONDON E2 8HJ TEL: 01-739 2343 TELEX 296797

WW - 035 FOR FURTHER DETAILS

6 ft . dia. dishes, feed horns and electronics for use in 4 GHz satellite reception. GaAs Fet transistors, SMA connectors, P.T.F.E., etc. available. Please send s.a.e. for full details and data sheets.

Harrison Bros.
Electronic Distributors
22 Milton Road, Westcliff-on-Sea, Essex SS0 7JX
Tel. Southend (0702) 332338

WW - 019 FOR FURTHER DETAILS

reliable high performance \& practical controls. individually powered modulesmains or dc option single cases and up to 17 modules in standard $19^{\prime \prime}$ crates small size-low weight-realistic prices.

Teleshone 0772 5? 60
WW - 010 FOR تURTHER DETAILS

Success means having the right connections.

You simply can't make it any clearer.

Write for full colour accessory catalogue to Department WW
CITI intecne ienal 3-5 Eden Grove, London N7 8EQ. Tal: 01-607 2717 .

Electronic Brokers

 Test Equipment DISTRIBUTORS
SCDDF
 The new Fluke 70 series at Electronic Brokers now

Electronic Brokers present the new Fluke multimeters, combining digital and analogue displays for the best of both worlds.
pperation is simple. A single switch selects functions,
Hgh-speed auto-ranging instantly selects the correct measurement range.

The 2,000 + hour battery life is unsurpassed.
The high-density plastic case is practically indestructible.
And everything is backed with a 3 -year warranty.

Electronic Brokers Ltd., 61/65 Kings Cross Road, LondonWC1X 9LN.Tel:01-8331166. Telex 298694

Electronic Brokers I

WW -

OROIDALS

The throidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to I.L.P., PRICE.
Our large standard range is complemented bv our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together section which can orfer a prototype servise which can be programmed to vour requirements with no price penalty

WW - 007 FOR FURTHER DETAILS

KONTAKT

The European name of Aeroso Excellence. Special cleaners for al electrical contacts and switches.

Kontakt 60

Dissolves oxides and sulphides, removes dirt, oil, resin and traces
of metal abrasion. Protects against erosion. Ensures perfect contacts.

Kontakt 61

Special cleaning, lubricating and anti-corrosion fluid for NEW (non oxydised) and specially sensitive contacts. An excellent lubricant mechanical systems and electro

Spray Wash WL

A rapid cleaner for reliable wash ing and degreasing of electrical equipment and components. For removal of dirt, grease, oil, soldering residues and other impurities.

ALSO AVAILABLE:

A COMPLETE RANGE OF INDUSTRIAL AEROSOL SPRAYS
SK10 Soldering Lacquer, K75 Cold Spray, K70 Plastic Spray, K88 Oil Spray, K701 Vaseline Spray, K90 Video Spray, K33 Graphite Spray, K100 Antistatic Spray, K101 Fluid Spray and, of course, Positiv 20 positive photo resist for printed
circuits.

Details from:

Special Products Distributors Ltd.

81 Piccadilly, London, WIV OHL
Tel: 01-629 9556. Telex: 26500 (answerback RACEN). Cables: Speciprod, London,

ELECTRON GUNS TV TUBE COMPONENTS

If you are Rebuilding or Manufacturing TV Tubes - We are the leading suppliers of Electron Guns and TV Tube Components to the TV Tube Industry. We specialise in all aspects of Electron Mount Technology.
Our product range includes more than 250 gun types for Colour, In Line, Mono and Display Tubes along with Mount Parts, Bases, Getters, Sealoffs, and all other associated items for TV Tube Production. A Full Technical Back-up and Advisory Service is available to all customers Worldwide.
Please request our current catalogues and Data Information.

A Griftronic
 2 SWAN STREET ALCESTER WARWICKSHIRE B4950p ENGLAND

Telephone: (0789) 764852/784100. Telex: 312354 Grifem G
WW - 017 FOR FURTHER DETAILS

Audio Measuring Instruments, Audio Amplifiers, Loudspeakers and Loudspeaker Components for the professional and enthusiast

RADFORD AUDIO LTD.

10 BEACH ROAD
WESTON-S-MARE, AVON BS23 2AU
TEL. 0934416033

LOOK AHEAD!

 WITH MONOLITH MAGNETIC TAPE HEADS -

 WITH MONOLITH MAGNETIC TAPE HEADS -

 VIDEO HEAD REPLACEMENT KIT

 VIDEO HEAD REPLACEMENT KIT}

DOES YOUR VCR GIVE WASHED OUT NOISY PICTURES - ITS PROBABLY IN NEED OF A NEW HEAD - FAST FROM OUR EX-STOCK DELIVERIES.
SAVE £££'S ON REPAIR CHARGES. OUR UNIVERSAL REPLACEMENT VIDEO HEADS FIT ALL MODELS OF VHS OR BETAMAX VCR's. FOLLOWING OUR REPLACEMENT GUIDE AND WITH A PRACTICAL ABILITY, YOU CAN DO THE WHOLE JOB IN YOUR OWN HOME WITH OUR HEAD REPLACEMENT KIT.

CATALOGUE

For our full Catalogue of Replacement Video and Audio Cassette/Reel to Reel Heads, Motors, Mechanisms etc. Please forward 50p P. \& P

KIT CONTAINS - NEW VIDEO HEAD, 5 CLEANING TOOLS, HEAD CLEANING FLUID CAN OF AIR BLAST, INSPECTION MIRROR, ANTISTATIC CLOTH, VHS/BETAMAX MAINTENANCE MANUAL, CROSS HEAD SCREWDRIVER, HANDLING Gloves, MOTOR SPEED DISC, SERVICE LABEL, HEAD REPLACEMENT GUIDE.

HOW TO ORDER,
please state CLEARLY THE MAKE AND MODEL OF YOUR RECORDER. THERE ARE TWO VERSIONS OF THE VHS HEAD AND YOUR ORDER CAN BE PROCESSED FASTER IF YOU CHECK THE SIZE OF THE CENTRE HOLE OF THE HEAD WHICH WILL BE EITHER 5 mm OR 15 mm DIAMETER.

VHS KITS $£ 53.25$ BETAMAX KIT £65. 25 Prices include P. \& P. and V.A.T.

MONOLITH THE SPECIALISTS

THE MONOLITH ELECTRONICS CD. LTO
5 \rightarrow Church Street. Crewkerne. Somerset TA18 7
Telephone Crewkerne $(0460) 74321$ Telephone Crewkerne (OAGO)
Telex 46308 MONLTH G

SUPPLIER TO MOST OF THE U.K.'s LEADING DISTRIBUTORS ANDSERVICE ORGANISATIONS

WW - 044 FOR FURTHER DETAILS

CUNARD INTERNATIONAL EXHIBITION CENTRE, CUNARD HOTEL, HAMMERSMITH, LONDONW6.
 Friday November 25th $10 \mathrm{am}-6 \mathrm{pm}$ Saturday Novemaber 26th 10am-6pm Sunday November 27th $10 \mathrm{am}-4 \mathrm{pm}$

Improved Venue
Offering improved facilities to the visitor, including car parking and ease of access by rall, tube and car, all in a modern attractive setting.

Holiday Weekend

Why not bring your partner to the show and enjoy a weekend in London? A complete hotel package is available to our visitors to the exhibition with all inclusive rail tickets. Send now for details of what we, the organisers, can offer you.
Write to:
Breadboard'83
ASP Exhibitions
145 Charing Cross Road
London WC2 2 H OEE

This year's featwres include

- Computer controlled model railway competition. (send off for entry form now)
- Kits components and tools to build all sorts of projects
- Robotic display
- Components and tools at bargain prices
- Technical advice on electronics projects and Ham Radio technique
- Computer Corner - 'Try before you buy'
- Lectures by professionals covering aspects of electronics and computing
- Holography and Producing Printed Circuit Boards.
- Pick of the projects - Demonstration of the best from ELECTRONICS TODAY INTERNATIONAL, HOBBY'ELECTRONICS AND ELECTRONICS DIGEST.

HM 605 - The new 60 MHz-Performer High quality scope at fow cost

74-78 Collingdon St. - LUTON, Beds. LU1 1RX • © (0582) 41.31.74 • Telex 825484

WW - 026 FOR FURTHER DETAILS

Sowter Transformers

With 40 years experience in the design and manufacture of several hundred thousand transformers we can supply
AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE YOU NAMEIT! WE MAKEIT! OUR RANGEINCLUDES
Microphone transformers (all types), Microphone Splitter/Combiner transformers. Input and Output transtormers, Direct injection transformers for Guitars, Multi-Secondary output transformers, Bridging transförmers, Line transformers, Line transformers to G.P.O. Isolating Test Specification, Tapped impedance matching transiormers, Gramophone. Pickup transformers, Audio Mixing Desk transformers (alt types), Miniature transformers, Microminiature transformers for UCB mounting, Experimental transformers, Ultra low frequency transformers, waths, Inductive Loop Transformers, Smoothing Chokes, Filter, Inductors, Amplifier to 100 volt line transformers (from a few watts up to 1,000 wans), 100 volt tine transformers to speakers, Speaker matching transformers (all powers), Column Loudspeaker transformers up to 300 watts or more:
We can design for RECORDING QUALITY, STUDIO QUALITY, HI-FI QUALITY OR OR SMALL QUANTITIES AND EVEN SINGLE TRANSEAND types are in stock and normal dispatch times are short and sensible.
OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES MIXING DESK MANUFACTURERS, RECORDING STUDIOS, HI-FI ENTHUSIASTS BAND GROUPS, AND PUBLIC ADDRESS FIRMS. Export is a speciality and we have overseas clients in the COMMONWEALTH, E.E.C., USA, MIDDLE EAST, etc. Send for our questionnaire which, when completed, enables us to post quota-
tions by return. ans by return.

E. A. Sowter Ltd.

Manufocturers end Deaipnore
E. A. SOWTER LTD. (Eptobliahed 1941) : Rep. No. Endiand 303990 Tho Bont Yord, Cullingham Roed, Dpawich IP 123 C , Suffolk P.O. Box 36, fpawich, ipi 2EL, Enrlond

Tolox 9877036 Sowtor

Access facilities	Connectors	Lamps	Semi-conductors
Aerosols	Discounts	Meters	Solder tools
Batteries	Electrolytics	Opto-electronics	Switches
Boxes	Ferrites	Pot cores	Jools
Breadboards	Grommets	Potentiometers	Transformers
Capacitors	Hardware	Quantity prices	Veroproducts
Computers and	I.Cs.	Relays	Visa facilities
Equipment	Knobs	Resistors	Zenerdiodes

ELECTROVALUE LTD. 28 St. Jude's Road, Englefield Green, Egham, Surrey, TW20 OHB. Egham 33603 (London 87: STD 0784). Telex 264475. Northern Shop (callers only), 680 Burnage Lane, Manchester (061-432 4945). EV Computing
Shop, 700 Burnage Lane, Manchester ($061-4314866$).

TThe Logic Probes | Spend Less | Test More |
| :--- | :--- |

LP-1 Logic Probe

The LP- 1 has a minimum detachable pulse width of 50 nanoseconds and maximum input frequency of 10 MHz . This 100 K ohm probe is an inexpensive workhorse for any shop, lab or field service tool kit. It detects high-speed pulse trains or one-shot events and stores pulse or level transistions, replacing separate level detectors, pulse detectors, pulse stretchers and pulse memory devices. All for less than the price of a DVM.

£31.00*

o Model LP-3 illustrated
LP-2 Logic Probe
The LP-2 performs the same bosic functions as the LP-1, but for slower speed circuits and without pulse memory capability. Handling a minimum pulse width of 300 nanoseconds, this 300 K ohm probe is the economical way to test circuits up to 1.5 MHz . It detects pulse trains or single shot events in TTL, DTL, HTL and CMOS circuits, replacing separate pulse detectors, pulse stretchers and mode state analysers.
(Available in kit form LPK-1 £13.25) £18.00*
O Model LP-3 illustrated

* Price excluding P\&P and 15\% VAT

LP-3 Logic Probe
Our LP-3 has all the features of the LP-1 plus extra high speed. It captures pulses as narrow as 10 nanoseconds, and monitors pulse trains to over 50 MHz . Giving you the essential capabilities of a high-quality memory scope at 1/1000th the cost. LP-3 captures one shot or low-repevents all-but-impossible to detect any other way. All without the weight, bulk,
inconvenience and power consumption of conventional methods.
£49.00*
OModel LP-3 illustrated

The New Pulser DP-1
The Digital Pulser: another new idea from G.S.C. The DP-1 registers the polarity of any pin, pad or component and then, when you touch the 'PULSE' button, delivers a single no-bounce pulse to swing the logic state the other way. Or if you hold the button down for more than a second the DP-1 shoots out pulse after pulse at 1000 Hz . The single LED blinks for each single pulse, or glows during a pulse train. If your circuit is a very fast one, you can open the clock line and take it through its function step by step, at single pulse rate or at 100 per second. Clever! And at a very reasonable price.
£51.00*
O Model LP-3 illustrated
GLOBAL SPECIALTIES CORPORATION

WW - 054 FOR FURTHER DETAILS

NEW PRODUCT

BX8 cOLOUR MATRIX PRINTER

Especially designed for use with the BBC Microcomputer

Colour printout is quickly assimilated, makes graphics more understandable and is an ideal medium for the presentation of complex data or concepts.

Prints in 7 colours on plain paper. Colour screen printing in ALL modes (inc. mode 7 Teletext). Uses RS423 output (cable supplied). Printer RS423 input has 2.5 K bytes buffer. In mode 7 Teletext, printer has a 2 page store with printout size option. 125 cps primary colour speed for listing, etc. Screen dump listing supplied.

also
Black and White printer interface for BBC micro-Epson MX*/RX/FX80 3.5K byte buffer: all modes inc. mode 7 Teletext. Uses RS423o/p.
Board, RS423 cable + listing $£ \mathbf{9 5}+$ VAT
Apple II parallel interface card for MX*/RX/FX80 gives hi res screen dumps, etc. C/w cable $£ 59+$ VAT
Ribbons for MX/RX80 £5.50+VAT
Ribbons for $\mathrm{BX} 80 £ 5+$ VAT

* MX80 requires printer ROM change, add £15+VAT

NEW model VRX80 black/white viewdata printer, 3.5 K byte buffer, £425+VAT

INTEGREX LIMITED

Portwood Industrial Estate, Church Gresley Burton-on-Trent, Staffs DE11 9PT
Burton-on-Trent (0283) 215432. Telex: 377106

FREQUENCY COUNTERS

HIGH PERFORMANCE
HIGH RELIABILITY
LOW COST
The brand new Meteor series of 8-digit Frequency Counters offer the lowest cost professional performance avaitable anywhere

* Measuring typically $2 \mathrm{~Hz}-1.2 \mathrm{GHz}$ * Low Pass Filter
* Sensitivity $<50 \mathrm{mV}$ at 1 GHz * Battery or Mains
* Setability 0.5ppm * Factory Calibrated
* High Accuracy *-Year Guarantee
* 3 Gate Times * $0.5^{\prime \prime}$ easy to read L.E.D. Display

PRICES (Inc. adaptor/charger, P \& P and VAT)
METEOR $100 \quad(100 \mathrm{MHz}) \quad £ 104.07$ Illustrated colour brochure
METEOR $600 \quad(600 \mathrm{MHz}) \quad £ .133 .97$ with technical specification
METEOR $1000 \quad(1 \mathrm{GHz}) \quad £ 184.57$ and prices available on request
NDS Dosigned and

Black

BLACK STAR LTD, 9A Crown Street, Stives.
Huntingdon, Cambs, PE17 4EB, England.
Tel: (0480) 62440 Telex: 32339
WW - 021 FOR FURTHER DETAILS

1. MITSUBISHI

mgF-1400 GaAs FETs
MGF-1402
MGF-1412

Aspen Electronics Limited

UK representative for Mitsubishi Electric
2/3 Kildare Close, Eastcote, Ruislip Middlesex HA4 9UR
Tel: 01-868 1188 Tix: 8812727

SINEWAVE INVERTERS -FROM CARACAL 200-1000 VA

Caracal offer you the U.K.'s widest range of high-quality static inverters. Our inverters are used in many countries throughout the world wherever a reliable and stable source of A.C. power is needed for computers, communications, instrumentation, etc. They are also frequently used for mobile or marine applications where only a D.C. source is available.
Caracal inverters employ modern pulse width modulation technology which is replacing obsolescent tuned-type (ferroresonant) inverters, by giving higher efficiency throughout the load range, very low standby current, and lower weight.

We have a large range of models and options, at competitive prices, to suit your exact requirements.

19-INCH RACK MOUNTING

Now all inverters are also available in 19 -inch chassis form for rack mounting

Export enquiries welcome

CARACAL POWER PRODUCTS LIMITED
42-44 SHORTMEAD STREET, BIGGLESWADE, BEDFORDSHIRE Telephone: 0767260997

Micwion
EAST ANGLIA'S LEADING SUPPLIER OF MICROCOMPUTERS AND COMPONENTS TO EDUCATIONAL ESTABLISHMENTS

The new microprocessor controlled EP8000 Emulator Programmer will program and emulate all EPROMs up to 8 k $\times 8$ sizes，and can be extended to program other devices such as $16 \mathrm{k} \times 8$ EPROMs， Bipolar PROMs，single chip microproces－ sors with external modules．
Personality cards and hardware changes are not required as the machine configures itself for the different devices．
The EP4000 with $4 \mathrm{k} \times 8$ static RAM is still available with EPROM programming and emulation capacity up to $4 \mathrm{k} \times 8$ sizes．
－EP8000 8k x 8 Emulator Programmer－ $\mathrm{f} 695+\mathrm{f} 12$ delivery BSC8 Buffered emu－ lation cable－£49 SA27128 Program－ ming adaptor－£69 SA25128 Program－ ming adaptor－£69 EP4000 4k x 8 Emulator Programmer $-£ 545+£ 12$ de－

FEATURES

．Software personality programming／emulation of all EPROMs up to $8 \mathrm{k} \times 8$ bytes including 2704，2708， 2716（3），2508，2758A，2758B，2516，2716，27C16， 2532，2732，27C32，2732A，68732－0，68732－1，68766， 68764，2564，2764，27C64．Programs 25128， 27128 with adaptors．
＊No personality cards／characterisers required．
篤 Use as stand alone programmer，slave programmer， or EPROM development system．
轎 Checks for misplaced and reversed insertion，and shorts on data lines．
Memory mapped video output allows full use of powerful editing facilities．
（ Built－in LED display for field use．
尃 Powerful editing facilities include：Block／Byte move， insert，delete，match，highlight，etc．
騂 Comprehensive input／output－RS232C serial port， parallel port，cassette，printer O／P，DMA．
Extra $1 \mathrm{k} \times 8$ scratchpad RAM for block moving．
livery BSC4 Buffered emulation cable－ £39 BP4（TEXAS）Bipolar PROM Module －£190 Prinz video monitor－£99－ UV141 EPROM Eraser with timer－$£ 78$ ． GP100A 80 column printer－£225 GR1 Centronics interface－£65

DISTRIBUTORS REQUIRED

GP Industrial Electronics Ltd.

VIDEOMONITORS

Thandar Video Products. A complete range of colour and monochrome OEM video monitors for protessional and OEM applications. Self-contained 2 inch models for desk-mounted security surveillance to 25 inch open frame models with TV scanning. Monochrome models offer P4, P31 and amber crt with standard or non-glare options in sizes of $2^{\prime \prime}, 5^{\prime \prime}, 7^{\prime \prime}, 9^{\prime \prime}, 12^{\prime \prime}$ Colour monitors are available in sizes ranging from $5^{\prime \prime}$ to $26^{\prime \prime}$. All built to a high specification offering composite and separated signal facilties. All competilively priced for low and high volume application.

THANDAR: The name to look for.

Thandar is the name for outstanding products, competitively priced. Thandar specifications, quality, reliability take some beating.

Thandar Electronics Limited,
London Road, St. Ives, Huntingdon,
Cambridgeshire PE174HJ, England.
Telephone (0480) 64646 Telex 32250 Test.

ELECTRONICS LIMITED THELOGICALCHOICE
WW - 048 FOR FURTHER DETAILS

PRECISION DUAL AXIS CONTROL STICK

Suitable for use with Computers, Robotics, Machine Tools Widely used by Government departments and industry

SUPER SMOOTH PRECISE ACTION . SEPARATE FINE TRIM ADJUSTMENT ACCURATE CENTRING • LONG-LIFE MOULDED NYLON PARTS
Available in kit form - easily assembled. Standard version Carbon track pots. 1 off $£ 8.50$, P\&P 75p. De luxe version Conductive plastic film pots. 1 off $£ 12.80$, P\&P 75p. Send SAE for full details of sticks and servos suitable for Robotics. OEM and trade enquiries invited, Barclaycard and Access accepted.

SKYLEADER, DEP 11. ARIPORT HOUSE. PURLEY WAY

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order

Full information from
HARRIS ELECTRONICS (London)
138 GRAY'S INN ROAD, W.C. 1
Phone: 01-837 7937

WW - 008 FOR FURTHER DETAILS

P.\&R. COMPUTER SHOP

IBM GOLFBALL PRINTERS from £70 EACH + V.A.T.

INTERFACE FOR IBM GOLFBALL $£ 40+$ V.A.T
*BRAND-NEW LA36 DEC WRITERS - SALE £200 EACH + V.A.T. CENTRONIC 779 PRINTERS $-£ 325$ + V.A.T
CENTRONIC 781 PRINTER $-£ 350+$ V.A.T
POWER UNITS, 5-VOLT 6-AMP-£20 EACH
FANS, PCBS, KEYBOARDS AND LOTS MORE
8 -INCH IBM FLOPPY DISC DRIVES.
COME AND LOOK AROUND

SALCOTT MILL. GOLDHANGER ROAD

HEYBRIDGE, MALDON, ESSEX
PHONE MALDON (0621) 57440

TRANSMIITER

Easy-to-build, solid-state design for the 1.8 MHz amateur band. Operates in c.w. or double-sideband suppressed carrier modes.

TEST GEAR EXTRA I.F Signal Generator

provides receiver test signals at around 455 kHz , with a.m. and $\mathrm{f} . \mathrm{m}$ capability from internal oscillators

Directional Response Indicator

Adaptor unit designed to produce polar patterns of antennas etc. on a simple oscilloscope.

PLUS! RESULTS - PW VHF QRP Contest
 inctical
 November Issue 90p
 THE RADIO MAGAZINE

BI POLAR \& FET POWERAMPLIFIERS

HEAVY DJTY POWER AMPLIFIERS STANDARD MODULES

MAX.OPR	SUPPLY
POWER	TYPE
$60 \mathrm{~W} / 8 \Omega 2$	$=35$
$100 \mathrm{~W} / 4 \Omega 2$	± 5
$120 \mathrm{~W} / 8 \Omega$	± 45
$200 \mathrm{~W} / 4 \Omega$	± 45
$180 \mathrm{~W} / 8 \Omega$	± 60
$320 \mathrm{~W} / 4 \Omega$	± 60
$90 \mathrm{~W} / 8 \Omega$	± 45
$170 \mathrm{~W} / 4 \Omega$	± 45

CRIMSON AMPLIFICATION: First Choice of the Professionals!

Whatever your application, Crimson Modular Amplification provides a simple, efficient, and reliable solution. As many engineers in production, development and research will testify, when you need a particular amplifier you need to deal with a company who can answer your queries and supply a working unit quickly. - CRIMSON will do exactly that!
We supply a standard range of power amplifier modules (both Bipolar and Mosfet) which can be incorporated in most systems from recording studios to home hi-fi or for more difficult loads such as induction loop transmitters, vibrators, servos and line transformers. For really complex applications, our technical department can usually supply a dedicated module on request.
All modules are guaranteed for two years and offer outstanding performance and value. If you would like more details please return the coupon with a s.a.e.

voltage MAX.	THD TYP.	PRICE INC. V.A.T. \& POST.
± 40	< 01%	£21.50
± 40	$<.018 \%$	£25.00
± 50	< . 01%	£28.00
± 63	< . 015%	£35.50
± 63	< . 01%	£35.50
± 63	< . 02%	£49.50
± 60	< 01%	£ 30.00
± 60	< . 025%	£39.00

I
Send to: Crimson Elektrik Stoke, Phoenix Works, 500 King Street, Longton, Stoke-onTrent

aPUS 몬들 ORIUES
 PRICE

 OPUS MICRODRIVE 3" DOUBLE-SIDED 40-TRACK

 OPUS MICRODRIVE 3" DOUBLE-SIDED 40-TRACK}

* Twice the capacity on line of other available Drives
* 200K S/D 400K D/D
* Ex-stock Delivery
* 3 ms Access Time
* Lowest Power Consumption
* Totally compatible with $51 / 4^{\prime \prime}$ Drives
* Direct Drive

DUAL DRIVE
£399
FREE - On first 100 orders received we will supply case and leads free of charge

ALL ITEMS CAN BE PURCHASED SEPARATELY, RING FOR DETAILS

THE ORGANISER DESK

 $£ 49.50$

Teak finish
On Castors

- Self assembly
- Full instructions provided
- Top shelf for Monitor/Printer
- Large Desk area
- Lower shelf for paper/book storage - ample room in front of the shelf for you to sit comfortably.

To Order: Add carriage at the following rates: Discs 85p, other goods $£ 7$. Add V.A.T. at 15% to total and send order to:

DPUS SiUPPLIES

158 Camberwell Road, London SE5 OEE
Tel: 01-701 8668 (3 lines) 01-703 6155/6/7
Opening Hours:
9a.m.-6p.m. Mon.-Fri. 9a.m.-4p.m. on Saturday

12" GREEN SCREEN
 MONITOR
 олиと $£ 69.95$ £3.95

One year warranty, Ex-stock delivery, 22 MHZ Phono Connector. Limited quantity

ATHANA FLOPPY DISCS

Minis

S/S S/D £16.95 for 10 S/S D/D $£ 19.95$ for 10
D/S D/D £22.95 for 10
S/S 80 Track $\boldsymbol{£} \mathbf{2 4 . 9 5}$ for 10
D/S 80 Track $\mathbf{£ 2 6 . 9 5}$ for 10
With full five-year warranty. All mini discs have hub rings and a FREE plastic library case

DOGFIGHT
 only £8.65

If you have a BBC 32 K with any O -S, become a flying ace with our wonderful new game Dogfight. An exciting two player game with eight levels of difficulty

Government and Educational orders welcome

Editor:

PHILIP DARRINGTON
01-661 3128

Deputy Editor:

GEOFFREY SHORTER, B.Sc. 01-661 8639

Technical Editor:

MARTIN ECCLES
01-661 8638
Projects Editor:
RICHARD LAMBLEY
01-661303.9
News Editor:
DAVID SCOBIE
01-661 8632

Drawing Office Manager:
 ROGER GOODMAN

 01-661 8690Technical Illustrator: BETTY PALMER

Advertisement Manager:

BOB NIBBS, A.C.I.I. 01-6613130

BARBARA MILLER 01-661 8640

Northern Sales:
HARRY AIKEN
061-872 8861
Midland Sales:
BASIL McGOWAN 021-3564838

Classified Manager: BRIAN DURRANT 01-661 3106

IAN FAUX
01-6613033

Production:

BRIAN BANNISTER
(Make-up and copy)
01-6618648
Publishing Director DAVID MONTGOMERY 01-6613241

Wireless World laboratory

With this issue, we celebrate the reestablishment of the Wireless World laboratory on the 17th floor of Quadrant House. The journal has been labless for far too long, following the move from London, but this month sees the publication of the first design from the new lab. - a charger for nickel-cadmium cells incorporating several novel features, designed by Richard Lambley, Wireless World's projects editor.
Announcing one's intentions too far in advance has been known to cause red faces: with that in mind, therefore, broad statements of intent rather than detailed promises are on offer. We have made plans to publish a number of relatively inexpensive and simple designs to start with, to be followed by the more exotic variety of device - test gear, computer interfacing, and perhaps some fairly
advanced satellite communications gear.
We intend these features to be entertaining, instructive and, perhaps, even money-saving, although that will not be of over-riding importance when we are deciding on a project - it never has been in the projects we have described in the past. We shall try to describe the design processes in detail, including false trails, in the hope that the articles will be readable in their own right, whether the equipment described is to be built or not.

Printed-circuit boards for our projects will be made available from at least one and maybe more sources, so that this stumbling-block will not exist, and we will ensure that components used in our designs are easily obtainable.

Although we do have a large number of projects in mind, we would be delighted to consider any ideas for development that might occur to readers. Any thoughts on this subject will be well received by Richard Lambley at the Quadrant House address.

Super-high superhet

A group of German research engineers at the Heinrich-Hertz-Institut fuer Nachrichten Technik in Berlin have reported (Electronics Letters, August 18, 1983) the development of an experimental fibre-optic digital transmission experiment with heterodyne detection in a coherent singlechannel, single polarization, system at 830 nm wavelength. The receiver has an in-termediate-frequency of 1.5 GHz and proved capable of receiving 8.4 Mbit/s digital signals over 280 m of fibre. It is recognized that the use of superhet-type techniques could not only reduce the minimum receiving level by $10-20 \mathrm{~dB}$ in comparison with systems using intensity modulation and direct derection but also open the way to multichannel systems utilising the relatively high selectivity of i.f. filters. A second laser is used as the local oscillator in the receiver. The work is being supported by the Deutsche Bundespost.

The Canadian Broadcasting Corporation is now using fibre-optic links up to about 3.7 km between cameras and mobile control units on major o.bs. The system uses a two-way, dual-fibre cable. Video signal-to-noise ratio is about 60 dB over a 3 km link.

Broadband power banks

Although the concept of broadband power amplifiers and automatic tuning units is making an increasing impact in h.f. transmitters for many applications, including budget-design amateur radio, few of the lower-cost designs can claim the flexibility of the Marconi H1051 amplifiers. This design is described by R. E. J. Gerard in the current issue of Marconi's Communication and Broadcasting. It virtually reduces a medium power r.f. amplifier to the longsought "black box" concept and can be used in power bank arrangements to feed separate multiple-channel transmissions in any mode including frequency-hopping and spread-spectrum signals, to multipleport aerial systems. With no r.f. tuning or setting-up time required, the time to change frequency is measured in microseconds anywhere within a frequency span of over 26 MHz (1.6 to 28 MHz). It requires no protection against mismatched loads and can work at full-power into a shortcircuit; similarly it can safely deliver full output under "keydown" c.w. conditions. The H1051 incorporates many of the innovative ideas on broadbanding developed by the company over more than two decades.
Earlier this year, the Japanese commercial broadcaster MBS, in Osaka, began using an all-solid-state v.h.f. television transmitter built by NEC with a vision output power of 10 kW . This has twelve 1 kW parallel-connected modules and uses a frequency-synthesizer based on a stable rubidium oscillator. Because of the ab-
sence of high-voltage supplies, a faulty amplifier unit can be withdrawn from service without any break in transmission and the transmitter requires no warm-up time. It must be one of the highest power all-solid-state $v . h . f$. transmitters yet in service.

Which video tape?

The problem of non-compatible professional video tape formats is highlighted in a table published recently by the EBU. This lists those European and North African broadcasters now using 1 -inch hel-ical-scan broadcast v.t.r. machines that will accept material in Format B (the Bosch-Fernseh developed format) and/or Format C (Ampex/Sony developed format). While some countries, such as Finland, Morocco, Netherlands, Norway and Sweden, will accept tapes in either format, most others opt for one or other, with the UK for example firmly geared to Format C. Moreover in some countries, such as France and Yugoslavia it even depends on the region or network: for example Antenne 2, FR3 (Dijon, Lille, Lyon, Marseilles, Nancy and Paris) accept Format B, but FR3 (Bordeaux and Limoges) want Format C tapes. It thus provides a good example of the man-made problems of non-compatible technical standards.

Medals for technology

The annual Queen's Awards for Technological Achievement are eagerly soughtafter by British firms and organizations. There are also a number of awards and travelling fellowships that can be gained by engineers - though perhaps none that approach in prestige the international Nobel Prizes. The USA is taking such incentives seriously and is launching early next year a new series of annual National Medals of Technology to be awarded by President Reagan to innovators who have "advanced US competitiveness in world markets, created new jobs, and made technological improvements to industries and people everywhere". Medals will go either to individuals or companies directly responsible for translating technology into commercial products or processes.

Radio-linked appliances

Widespread use continues of illegal "cordless telephones" using frequencies between 1.6 and $2 \mathrm{MHz}, 47.6$ to 49.9 MHz and 70 to 70.5 MHZ (there are also some legal units between 1.632 and $1,792 \mathrm{MHz}$ and 47.45 and 47.554 MHz). While very low-powered transmitters (about 100 mW) are the more widely used, there are also 'long-range' mobile units. DoTI's Radio Regulatory Division appears to be waiting for the passage of the Telecommunications Bill, with its important amendments to the

Wireless Telegraphy Acts, before attempting seriously to stamp out illegal operation.

Meanwhile, another contender for spectrum for short distance links has appeared in the form of portable computers which use integrated radio systems to link with the main processors located anywhere in a city or its suburbs. The radio links operate at rates of about 4800 bits/second to provide comparable signalling rates with 2400 b / s line systems (extra speed is needed because of additional error protection for the radio systems). Typically, American systems are being designed to use widely spaced incoming/outgoing channels between 800 and 900 MHz , with base-station powers up to about 50 watts.

Cold comfort farm?

Almost 20 years ago I visited the idylli-cally-sited research laboratories of the Hughes Aircraft Company in the foothills above Malibu Beach in southern California: advanced laser research in a setting more commonly associated with the out-of-town playground of the Hollywood film colony. Hughes were one of the first electronics companies to use a rural workplace to attract top-grade scientists and engineers. The idea has since spread to the UK.

Browsing through those vital back pages of a recent Wireless World my eyes alighted, in the "Appointments" section, on a large illustration of cottages set around a strangely familiar church steeple. An invitation by H.M.G.C.C. for grad-uate-status engineers and scientists to come and work in the "high-tech countryside" of Hanslope Park, Buckinghamshire.

My mind went back to a depressing evening in November 1941 when, still in my 'teens, I accepted an "invitation" to this country estate - to tind myself working in a hastily converted granary. Nor do I recall, as the advert. puts it, that the Park was "a mere stone's throw away from this delightful rural village" with memories of the long footslog back to the Park from the four pubs, the one tea-shop, and later the excellent WVS canteen run by the good ladies of the village.

Times change. Nobody then suggested that it would be "particularly helpful" if I described "the type of working environment most suited by my career plans". Rather I recall a highly irate adjutant telling me in no uncertain terms that it was not my job to think!

The village served mainly as a dormitory for those employed in the railway and printing works of nearby Wolverton. The vicar made the "News of the World" for his alleged activities on visits to wicked London. Hanslope Park, itself, had been the scene of a notable pre-war murder

Nevertheless "The Farmyard", as it was
then called, was not without distinction. Among those working there was the brilliant Alan Mathison Turing, pioneer of digital computing mathematics, and advanced cryptography, though he clashed with the local constabulary by riding his bicycle to work wearing a gas-mask (a sensible precaution in view of his hay-fever, a problem with rural workplaces). Engineering was under Dick Keen whose book "Wireless Direction Finding" (published by Wireless World) was for long the classic text in this field.

The station itself was at first under the command of a delightful character who told us never to ask permission to do something since he might have to refuse. "Do it and ask afterwards" he would say, though I did hear that he was later court-martialled for putting his precepts into practice.

Perhaps I had better make it clear to jobseeking readers that on the rare post-war occasions when I've been allowed inside the Park I could detect little of the spartan, if eccentric, regime of 1941-43!

EMC problems

Radio operation from residential areas seems to be facing increasing difficulties from a variety of electromagnetic-compatibility problems, ranging from the longstanding difficulties due to electrical interference and interference to television reception, to a whole host of new problems arising from the connection of additional equipments to television sets, including video cassette recorders, video games, home computers. UK amateurs also face shortly the problem of multichannel cable systems that, in the USA, are proving a major problem. This is due to radio frequency leakage into and out of the cable that often distributes tv programmes on frequencies that include the amateur v.h.f. bands. Although e.m.s. problems often arise from shortcomings in domestic equipment, the radio amateur faces a social problem if he persists in using his blameless equipment when neighbours complain. The use of video cassette recorders is proving particularly difficult as most of these incorporate wideband amplifiers and inadequate shielding of the tape head amplifier. Channel 4 is also causing difficulties in some areas since frequency channel 53, quite often used for Channel 4 but virtually never for the other three iv chan-
nels, is very susceptible to lou-level fifth harmonics from 144 MHz transmitters using the S20 "calling" channel.
It is also recognized that the increasing amount of "new technology" in homes and offices is emphasising the need for tighter legislation to reduce interference to weak signals from digital r.f.i. On September 1, the American FCC introduced new, tighter rules for checking interference radiation from computers, video games and other devices. These make it more difficult for manufacturers to obtain approval for class A and class B computerequipment categories, for example by arranging cables in unrealistic configurations so as to minimize mains-conducted or radiated interference levels during tests. Arrangement of power cords, cables and peripheral devices are spelt out in greater detail. Permissible radiation levels are not changed. Radiated signals are specified between 30 and 1000 MHz , line-conducted emissions between 450 kHz and 30 MHz . The radiation specifications are regarded as significantly more difficult to meet. Earthing, bypassing, shielding and filtering techniques are all having to be improved. Failure to pass these tests can result in substantial delays since equipments now have to obtain FCC approval before they can be marketed.

Space news

AMSAT-UK has recently issued a comprehensive series of data sheets to form an "Oscar 10 Handbook". This gives full details of the new amateur radio satellite in a high elliptical orbit, together with operating data etc (price to non-members $£ 3$ plus postage from AMSAT-UK London E12 5 EQ). Oscar 10 has been providing many long-distance contacts since its Mode B transponder was switched on on August 6, although problems are caused by some amateurs using excessive power on the uplink; maximum effective radiated power should not be more than 500 watts, remembering that e.r.p. represents aerial gain multiplied by power delivered to the aerial. The Oscar 10 microwave transponder (1269.5 MHz up, 436.5 MHz down) is due to be switched on late October. The H -one special service channel (145.972 MHz) is to be used to transmit a regular IARU Region 1 news bulletin prepared by AMSAT-UK in collaboration with the RSGB.

The eagerly awaited STS-9 Space Shuttle Mission during which Dr Garriott, W5LFL will operate a hand-held 144 MHz transceiver is now expected to begin about October 28.

Hazard for onlookers?

Recent advice from the NRPB confirms that under normal circumstances few hazards due to the non-ionizing radiation
from amateur h.f. or v.h.f. transmitters are likely to arise. A situation in which this may not apply came to my notice recently when a North Country amateur described how he awoke one night with violent pains in the right-hand side of his head, close to his eyes, that persisted for several hours. The previous evening he had stood alongside the car of another amateur who was demonstrating his 25 -watt mobile equipment from his parked car. My correspondent's eyes had been only a few inches from the mobile aerial during several transmissions.

While it is by no means certain that there was any connection between these two events, it would appear that these circumstances do represent a potential hazard. NRPB and other bodies point out that hand-held tranceivers where the aerial is within a few inches of the eyes should not exceed 7 watts. Since there are few battery-powered portable transceivers that exceed this power the advice seems not to have sunk in. Amateur mobile v.h.f. equipment however can now have 25 or 40 watts output. Again normally no danger in the driving seat, but advisable to stand clear of the aerial if you are a spectator and the car is stationary.

Here and there

The DoTI states that at the end of June 1983 the number of UK amateur licences was: Class A 23,204; Class B 22,904; plus 1694 "reciprocal" licences issued to overseas amateur while visiting or resident in the UK. The remaining G5-plus-three-letter type of callsigns previously issued to reciprocal licensees are being phased out by the end of this year. Reciprocal callsigns now take the form of G4/LA8AK etc. Three types of reciprocal licences are now issued: mobile licence valid for two months; temporary licence for up to one year; and permanent licence for UK residents.

The DoTI have stated that misunderstandings arise between the "Amateur Radio Certificate", which is now issued by or on behalf of the DoTI, and the "Radio Amateur's Certificate" issued by the City and Guilds of London Institute. The Amateur Radio Certificate is issued only to those who have passed both the Radio Amateurs Examination and the Morse Test and entitles the holder to operate the station of another amateur. The Radio Amateurs' Certificate is proof of having passed the RAE but does not itself entitle the holder to operate any amateur station.
Dr John Allaway, G3FKM recently received the "Golden Needle Award" of the Austrian OVSV society. He is only the third foreign recipient of an award normally given to Austrian amateurs for outstanding service to amateur radio.

PAT HAWKER, G3VA

Nickel-cadmium rechargeable cells, which until a few years ago were rarely seen except in equipment for the specialist or professional, are now widely used in consumer equipment and can even be bought in high-street multiple stores. Although many users find them an economical substitute for costly dry-cells, NiCd cells do have drawbacks - perhaps the most

by Richard Lambley*

tiresome of which is the long time it can take to recharge them. Manufacturers generally recommend a period of 12 to 14 hours; and the usual rule is to divide the

Fig. 1. Terminal voltage of a battery of four AA-size (500 mA -hour) cells: a 30 s period of charging at 650 mA alternates with a 10 s discharge at 50 mA .

Fig. 2. As the charge-discharge cycle continues, the peak and trough voltages seen in Fig. 1 begin to diverge. Detecting this change makes it possible to shut off the current before the onset of overcharging. The points represent measurements taken at 2 s intervals.
figure for the battery's rated capacity by ten to arrive at the charging rate. Thus a 500 milliampere-hour battery would be charged at 50 mA . The extra two to four hours make up for loss in the charging and discharging processes.
Slow recharging is advised mainly because leaving the cells in the charger too long is unlikely to do much harm to them. NiCd cells can safely be charged very much faster, but only if it is possible to guarantee that the current will be switched off as soon as charging is complete.
One way of doing this is to ensure that the cells are discharged completely and then to deliver a known current for a period corresponding to their capacity. The discharging process has to be carried out with care, however, since one cell in the battery will be the first to run out and its fellows will begin to drive current through it. The resulting polarity reversal may cause venting of gases and damage to the cell.
An alternative approach is to monitor the battery voltage during charging and to switch off when the voltage rises above a specified level. Unfortunately the cell voltage varies with temperature and so the end-point is hard to identify precisely. Furthermore, cells can become hot of their own accord if overcharged; and indeed this effect forms the basis of yet another fast charging method, by which charging continues until there is a rise in temperature. The problem here is to detect the temperature change soon enough.

[^0]overseas. project by mail order from Combe Martin Electronics, King Street, Combe
Martin, Devon EX34 OAD. The price is $£ 7$ including postage inland or - A ready-drilled glass fibre printed circuit board is available for this and the resistors are rated at $1 / 4 \mathrm{~W}$ except where indicated otherwise. at a point determined by the setting of R_{26}, resets an
${ }^{2} \mathrm{C}_{2}$, shutting the charger down. The Nand gates are c.m.o.s. 4011 types

 alternates with a 10 s discharge via the current sink $/ C_{7}, T_{6}, I C_{1}$, under the
control of the timer $1 C_{3}$. Switches $S_{2 a}$ and $S_{2 b}$, which are ganged together, Fig. 3 For efficiency, charging current for
switch-mode current source, $I C_{8}, T_{8}$ and T_{1}. A 30s charging period Fig. 3 For efficiency, charging current for the battery is supplied by a $28071^{2} / 1$
$\xrightarrow[\text { 管 }]{ }$ $\stackrel{\stackrel{0}{0}}{\stackrel{0}{2}}$

The charger to be described in this article relies on a voltage-sensing method, but a rather different one. If a moderately heavy charging current is applied to a NiCd cell for a short period, the terminal voltage wilh quickly rise to a level somewhat higher than the voltage marked on the cell. Discharging the cell a little will reduce the terminal voltage once more. A repeating cycle of rapid charge and light discharge will produce a succession of slowly rising 'peak' and 'trough' voltages, as shown in Fig. 1 .
If the cycle is repeated for long enough (Fig. 2), there will come a stage at which the peak voltage is increasing much more steeply than the trough voltage. At this point the cell is losing the ability to accept further charge and the charger can be shut off. By measuring the trough voltage as a fraction of the peak voltage it is possible to make an end-point detector which works independently of the number of cells under charge, since the proportions will be constant whether there is just one cell or a dozen. If the charge and discharge currents are selected to correspond with the rated capacity of the battery, the same setting of the detector should be able to cope effectively with all cell sizes.

Circuit description

The complete circuit of the charger is shown in Fig. 3. To keep heat dissipation within manageable limits, a switch-mode current source is used to supply the charging current. This part of the circuit is adapted from a design by Mike Davies (Circuit Ideas, Wireless World, February 1983). A series-pass transistor Tr_{8} and cur-rent-sharing resistors $\mathrm{R}_{27}, \mathrm{R}_{28}$ have been added to augment the current-handling capability of IC_{8}, but if the user has no high-capacity batteries to charge they may be omitted. The LM317T alone can provide up to about 1 A . The current is selected by $S_{2 a}$, and a power Darlington transistor Tr_{4} is used to switch the current source on and off.
The current sink for discharging the battery is formed by $\mathrm{IC}_{7}, \mathrm{Tr}_{6}$ and $\mathrm{Tr}_{7} . \mathrm{S}_{2 \mathrm{~b}}$ selects the discharge current, which is given by the potential difference across R_{23} divided by the value of R_{33}

When power is first applied, C_{3} forces the R-S bistable formed by two of the gates in IC_{2} to take up a state such that the current source and current sink are both turned off. Depressing the push-switch S_{1} causes the bistable to change state, removing the 'reset' from pin 12 of IC_{3} and allowing charging current to flow. IC_{3} contains an oscillator and a 14 -stage ripple counter. Its last two outputs, gated by a section of IC_{6}, yield a square-wave with a period of about 40 s and a mark-space ratio of 1:3 (at $\mathrm{IC}_{6} \mathrm{pin} 3$); and so for three-quarters of each cycle the charging source is activated, while for the remainder it is the current sink's turn.

The voltage peaks of the battery under charge are detected and stored by $\mathrm{IC}_{5}, \mathrm{D}_{3}$ and C_{6}. The output of this stage, stepped down a little by the potential divider R_{26} and R_{4}, is compared by IC_{4} with the instantaneous battery voltage. If, during a

Fig. 4. Mains power supply for the charger. For batteries of 12 V or less, reducing the supply rail to about 20 V would lead to better efficiency.
trough, the voltage falls below the fraction of the previous peak defined by the potential divider, the output of IC_{4} will go low, returning the bistable to its initial state once more. The 'standby' led D_{2} will relight indicating that charging is complete.
No components have been provided for discharging C_{6} when the standby mode is entered, since leakage across the board and through other components is likely to do the job quite adequately. However, if the p.c.b. is clean and the leakage very low the charger may at first refuse to restart. This point should be borne in mind during the setting-up procedure.

Construction notes

The printed circuit for the project accommodates all components except the switches, leds and the mains power supply. A length of 16 gauge aluminium bent into an L -shape should be fitted to the board as a heat-sink for $\mathrm{Tr}_{4}, \mathrm{Tr}_{7}, \mathrm{Tr}_{8}$, IC_{8} and D_{8}. It is worth extending one end of the strip off the edge of the board to fix to some metal part of the charger cabinet. To improve heat-sinking, the strip should be blackened. A useful heat-dispersant paint is obtainable in aerosol cans from motor-cycle dealers. The devices fitted to the heat-sink should be mounted with insulating washers and heat transfer compound. The component likely to run warmest is Tr_{8}. No heat-sink should be needed for the 12 V regulator IC_{1}.
The switch $\mathrm{S}_{2 \mathrm{a}}$ in the 4 A h position will have to carry about 5 A , which is more than most wafer-switches are designed to take. RS Components can supply something suitable (catalogue number $327-585$), though this is rather expensive. If the constructor has only a few different cell types to charge, a cheaper alternative would be a three-position toggle switch with a centreoff setting: this would allow for three sizes.

Since 0.22Ω resistors are sometimes difficult to obtain, provision has been made on the p.c.b. for R_{27} and R_{39} to be made up by paralleling 0.47Ω types.
The transformer for the current source is not a very critical component: any transformer capable of operating at a few tens of kilohertz will probably be suitable. In the prototypes, toroidal ferrite cores were used with Mike Davies's suggested turns ratio of $70: 1$. The ratio has to be fairly high since there might otherwise be a danger that the 'adj' terminal of the LM317T would go positive with respect to the output as the regulator switched.
The primary winding should be of 1 mm (or thicker) enamelled copper wire, though the single-turn secondary can be much
thinner. Some anonymous cores of about 30 mm diameter from a mixed pack bought at a Tandy store seemed to work just as well as a more respectable Mullard FX3853. Many component dealers do not stock toroidal cores, but a wide range is obtainmble from Ambit International. Unconted eares should first be wound with tape to prevent abrasion of the enamelled wire.

A further wire passed through the core will pick up enough signal to allow the switching waveform to be examined on an oscilloscope - the squarer it is, the cooler Trg will run ${ }^{4}$ If the circuit fails to oscillate when loaded, try reversing the secondary windine
The tioule D_{8} should be a fast recovery type: the BYX71-600 and BYX71-350, rated e 7 IA, would both be suitable. Note that marrions suffixed R have reverse polarity and will not fit the heat-sink. D_{7} is simply te protect the regulator and can be a much less substantial device. In case of difficuly, the BYX71-600 may be obtain-

The remaining components should present no problems. Care should be taken, though, if it is necessary to find a substitute for the CA3140: the input terminals have to operate within a few millivolts of the negative supply rail and some fet opamps may not operate satisfactorily in this region despite what their data sheets suggest. Fer the power mosfet, almost any nchanned device will do. The VN10KM (Siliconix) is a small, low-cost plasticencopsulated device; alternatives would include the Ferranti ZVN1306A and ZVN $1309 \mathrm{~A}^{2}$
Connections for the main charging current pathway to the battery terminals and through $\mathrm{S}_{2 \mathrm{a}}$ should be of heavy-gauge wire since any resistance will mean that the setting of \mathbf{R}_{26} may not hold good for all battery sizes. Wires should be kept short to reduce radiation of the switching waveform and it is desirable that the charger should be enclosed in a metal box to screen it.

Power supply

Thendr entuires a power supply capable of deliwitits A d.c. continuously at up to 30 V . The mains unit for the prototypes incorporated a toroidal transformer with two 18 V 3.3 A secondary windings (ILP Transformers, type 42014). A suppression filter should be used at the mains input.

Sotting up

The only adjustment to make is to set the
shutdown point with R_{26}. Perhaps the quickest way is to apply the charger to a battery known to be more or less fully charged (by a trickle charger, for example) and during discharge periods to reduce R_{26} by degrees from its maximum resistance until the charger is reverting to the standby mode at the end of the discharge period. The wiper should then lie about half way along its travel.

Using the charger

Like other voltage-sensing charger circuits, this one relies on all the cells in the battery having the same state of charge. This means that cells of different types or cells taken from separate items of equipment must not be put together for charging. Some cells would inevitably reach the fully-charged state before the others and could become seriously overcharged before
the unit shut down. The inclusion of faulty cells might also interfere with the action of the detector.

Values for the resistors around S_{2} have been chosen for six of the most common types of NiCd cells to give a charging period of a little over an hour. If the constructor has no 4 ampere-hour cells (the largest size provided for), the values could be adjusted to give faster charging of the smaller sizes.

No problems with cell heating or other undesirable effects have been experienced with the component values shown, though care should be taken if faster charging rates are tried. Cells are liable to evolve gas at high charging rates, especially if the trough voltage is allowed to rise above 1.5 V per cell. There is undoubtedly room for experiment with the length of the charge-discharge cycle: altering C_{5} is
perhaps the easiest way to adjust it.
The limit to the number of cells which can be charged at once is fixed by the input-output differential of the LM317T and by the power supply: to avoid damage to the 12 V regulator i.c. the supply voltage should should not exceed about 30 V offload. Where there is no requirement for charging batteries of above 12 V or so, the unit will run more efficiently with a somewhat lower supply rail.

If the supply voltage is relatively close to the battery's peak voltage, the differential across the LM317T will be low and it may refuse to switch; but it should operate satisfactorily in the linear mode so long as there is enough heat-sinking. Since the TIP2955 is thermally coupled to the LM317T, the i.c's thermal overload protection should ensure the safety of both devices.

In addition to many many manufacturers exhibiting at Testmex ' 83 represented in our New Products section, there were also a large number of distributors and hire services which are of course useful sources of test and measurement equipment. Their catalogues can often provide useful references as to the equipment available. Some manufacturers, while not exhibiting new products, also provided literature on their equipment.
A wide range of Hitachi oscilloscopes, various digital and analogue multimeters, resistance test sets from AOIP, signal sources, power supplies and mains supply conditioners are all available from Danesbury Instruments, 22 Parkway, Welwyn Garden City, Herts AL8 6HG.

WW 401

Completely refurbished and guaranteed, second user test equipment from Electronic Brokers, can sometimes be better than new, as it is fully re-calibrated in their own service laboratory. They carry large stocks of instruments which are available from stock. Electronics Brokers Ltd, 61 King's Cross Road, London WCIX 9 LN .
WW 402
A large number of new products are included in the latest edition of the Electroplan catalogue including computers from Hewlett-Packard, Tektronix 'scopes. Digital storage 'scopes from Gould. Also included are logic analysers, eprom programmers, computer interfaces, including the Microlink Signal Acquisition Interface and a wide range of meters and transducers. Electroplan Ltd, PO Box 19, Orchard Road, Royston, Herts SG8 5HH.

WW 403

Image processing systems are available from Elex Systems, who are the sole UK agents for International Imaging Systems. They also have a wide range of Kontron logic analysers. Brochures from Elex

Systems Ltd, John Scott House, Market Street, Eracknell, Berks RG12 1JB.

WW 408

Known for their very large catalogue of components, Farnell also have an Instruments division and that division, with its own catalogue, stocks a wide range of oscilloscopes, signal sources, mobile radio test gear, analogue and digital test equipment some of which interfaces with the IEEE488 interface bus. Farnell Instruments Ltd, Sandbeck Way, Wetherby, W Yorks LS22 4DH.
WW 409
For some applications it may be necessary to use an instrument for a short while for setting up a testbed or an experiment and then it may not be needed again. This is where hire companies can be very useful. Three of them at Testmex had comprehensive catalogues. Rather like hiring a car, there are other advantages to this approach as the hire company should service and maintain the equipment. So it could be a long-term advantage as well. Instrument Rentals is an offshoot of the American Leasing International Inc, which claims to be the oldest leasing organization in the world. They offer for hire a wide range of general purpose instruments: logic analysers, network analysers, universal bridges, counters, generators, GPIB equipment, meters, microprocessor development aids and systems, Microwave amplifiers and other components, oscilloscopes, power sources, data recorders, telecommunications equipment and a number of computer peripherals. Instrument Rentals (UK) Ltd, Lab House, Horton Road, West Drayton, Middlesex.
WW 410
Livingston have of course also a long established name in equipment hire and have recently added to their list the IBM Personal Computer, the Intel Personal development system and a wide range of other instruments. Their catalogue now includes over 6000 items. Livingston Hire, Shirley House, Camden Road, London NWI 9NR.
WW 404

Another hire company, Microlease, specializing in computers and microprocessor systems also have a wide range of electronic instruments and offer a number of well-known names, such as HewlettPackard, Intel, Tektronix, Marconi Instruments and Racal in their catalogue. They tell us that new equipment is being added to their inventory at the rate of at least one item each day. Microlease plc, Forbes House, Whitefriars Estate, Tudor Road, Harrow, Middlesex HA3 5 SS.
WW 405
A wideband multi-channel instrumentation tape recorder which features fully automatic calibration and equalization, is fully described in literature from Racal Recorders. They also had literature on a range of recorders and a time-code generator for use with the recorders that allows sections of a recording to be quickly identified and located. Racal Recorders Ltd, Hardley Industrial Estate, Hythe, Southampton, Hants SO4 6ZH.

WW 406

Optical fibres may be tested using the Siemens' L2225 optical time-domain relectometer which has just been introduced to the UK. This was on display at Testmex along with the literature describing it, as was also two carrier-frequency test sets both of which measure level, attenuation and gain, especially in the frequency-division time multiplexed transmission systems. One of them, Type 2355, can also provide accurate determination of phase jiiter. Siemens Ltd, Siemens House, Windmill Road, Sunbury-on-Thames, Middlesex TW16 7HS .

WW 407

Another well-filled catalogue comes from STC Instrument services, Edinburgh Way, Harlow, Essex CM20 2DF.

WW 411

Magnetic flux meters and Gauss meters along with microwave spectrum analysers and signal generators are featured in literature from Wessex Electronics who also deal in a wide range of test gear including calibrators for test and production applications. Wessex Electronics Ltd, 114 North Street, Downend, Bristol BS16 5SE.

WW 412

UK telecomms waves the flag at Geneva

Four years ago the proud centre-piece of the British joint stand at Telecom 79, the Geneva international telecommunications show, was the System X digital switching system. Four unhappy years later, after a notable lack of success in selling this system on world markets, the UK industry is putting on a brave face at Telecom 83 (Geneva, October 26 to November 1) still with System X hopefully included in the exhibit but drawing attention to a range of somewhat less ambitious projects using comparable electronic techniques.
For example there is a small stand-alone exchange, UXD5, for digital switching on up to 600 lines, which, like System X, is based on stored program control. Digital PABX: using similar principles include the modular OCS 300 from STC, for 50 to 300 extensions and operation with analogue or digital public networks; and the now well established Monarch (like System X made by GEC and Plessey) which gives the user many more facilities than conventional PABXs.

The 1983 joint display, in a $5000 \mathrm{~m}^{2}$ British Pavilion at Geneva, is led by British Telecom and the five big companies in this field, GEC, Plessey, STC, Marconi and TMC. In addition, over 60 other UK firms are exhibiting under the aegis of the EEA, supported as a joint venture by the British Overseas Trade Board. This time the centre-piece is a co-ordinated display, occupying $2400 \mathrm{~m}^{2}$, that shows British developments now available in the four areas of switching, rural communications (line and radio), transmission and advanced systems.

Digital microwave radio, for example, for line-of-sight paths in long- or shorthaul routes, now operates in the 4 , lower 6 , 11, 13 and 19 GHz bands. A display of ISDN (Integrated Services Digital Network) technology reveals systems operating at $80 \mathrm{kbit} / \mathrm{s}$ which provide a $64 \mathrm{kbit} / \mathrm{s}$ channel for speech or high speed data together with a separate $8 \mathrm{kbit} / \mathrm{s}$ data channel and a second $8 \mathrm{kbit} / \mathrm{s}$ channel for signalling and control.

An alternative to going fully digital in the System X grand manner is to modestly clip-on, as it were, a clever box of digital electronics at your existing old-fashioned
electromechanical exchange. Then only those subscribers who want to use the extra facilities of the digital system - and pay for them - need be connected through this unit, while other subscribers carry on as usual. An example of this approach is the Supplementary Services Exchange made by TMC. Using stored program control with a minicomputer for supervision, this equipment provides an impressive array of facilities including such things as call diversion, call waiting indication, incoming call queueing, threeparty conferences, abbreviated dialling, call barring, alarm calls and automatic an-
nouncement of call charges. each subscriber using the system has his own particular set of the supplementary services he needs programmed into the add-on unit. BT will be using them in the UK.
With all this, GEC and Plessey are still very hopeful of getting export sales for System X, which Sir George Jefferson, Chairman of BT, recently described as "very good value for money" - even though BT can now buy from manufacturers outside of the UK. He said it was not to be compared with many of the competitive systems already sold, which, he claimed, were only "quasi-digital".

Sinclair's pocket tv

Over two years since the announcement of the 'flat' c.r.t., Sir Clive Sinclair has announced the completed tv set. What took the time was the development of the electronics that could be used to produce a very small set to be easily mass-produced. Sinclair and Ferranti designers worked together to produce a large-scale integrated circuit which contains virtually all the active components needed in the set. Sir Clive claims that this is the first one-chip tv anywhere in the world.

The i.c. caters for both 625 and 525 line systems and adjusts field and line timebases automatically. A v.c.o. is used to lock onto the line sync and another provides a local oscillator for the sound channel. As the c.r.t. has the electron gun to one side, a trapezoid picture is avoided
by imposing a correction waveform on the field scan at line rate. The correction signal and field sweeps are generated digitally and converted to analogue signals on the i.c. The vision i.f. signal from the tuner uses an unusually high (230 MHz) frequency, to avoid imaging problems in the u.h.f. band, which is amplified in fourstages with a.g.c. and fed to a lowlevel envelope detector. The recovered video is taken to a d.c. restorer for sync separation and then to an external amplifier to drive the c.r.t. The intercarrier sound signal, retrieved from the detector, is fed through a band-pass filter, converted to a 250 kHz second i.f. passed through an a.c. coupled limiting amplifier and all coupling, decoupling and phase-shift networks are all on the same silicon chip.

Externally the set, only 140 mm wide, looks like a small portable transistor radio with a telescopic aerial and a tiny (51 mm diagonal) aperture on the front, improbably displaying a tv picture. The loudspeaker is small but adequate and there is

Block diagram of the Sinclair tv is dominated by the i.c.

Inside the tv are the c.r.t. and i.c. (outlined).
also an earphone socket. Only two user controls are provided, an on/off switch combined with a volume control, and a continuously variable tuning control.

Another first for the set is the flat battery that powers it. Developed by Polaroid for use with their instant colour-picture camera, a lithium power source is included in the film pack. This has now been produced as a separate battery specifically for the Sinclair tv. It costs $£ 9$ for three of them, each with a viewing life of 15 hours. A mains adaptor is available for indoor use.

Initially the set will be available to mail
order only at a cost of $£ 79.95$. Later, perhaps in six months' time, it will be sold through retail shops. Further de. velopments include a set that will have radio reception. A colour set incorporating three of the c.r.ts in a projection system is likely to take another two years to develop. About a year is forecast for the use of the c.r.t. as a computer display, again using a projection scheme, possibly with a folddown screen.

The UK set receives u.h.f. only but a v.h.f./u.h.f. is to be sold in the USA where there are a large number of $v . h . f$. transmitters.

Another microdrive

For mass storage in computer memories, cassette tape is slow and discs are expensive. A middle way has been found by using very fast tape storage which can operate, as far as the user is concerned, as if it were discs. The Sinclair Microdrive was one example and another has been developed in America by Entrepo Inc. The tape cassette in this case is claimed to be about the same shape and size as a credit card, to be known as the Microwafer. What is of interest in the UK is that BSR International, famed for autochanger turntables, has through its subsidiary, Astec, bought a 30% share in Entrepo and the manufacturing and marketing rights. They will be making the drive in the UK and in the Far East and by the time you read this it should already be in highvolume production. Entrepo has applied for a number of patents and copyrights covering various aspects of the mechanical tape transport, the microwafer medium, the read/write and motor control circuitry
and the operating software. The system is claimed to be very fast and reliable. BSR has been going through a thin time with reported losses of $£ 17.3 \mathrm{M}$ last year, so they are looking to the Microwafer to lift them out of the trough. They expect sales of the hardware as high as $£ 50 \mathrm{M}$ and $£ 70 \mathrm{M}$ by the end of next year.

Mercury gets green signal from British Rail

British Railways board have signed an agreement with Mercury Communications giving them access to the railway lines for the laying of their fibre optic communications network. Clear routes from one city centre to another are provided complete with ready-made ducts for power and telecommunications cables. The main network is to be a figure-of-eight loop centred on Birmingham with a southern loop incorporating London and Bristol and a northern loop taking Leeds, Manchester and Stoke-on-Trent. Smaller loops and microwave links will extend the system.

Terminals with repeater stations at about 25 mile intervals are to be built along with a network control centre in Birmingham, which will monitor all operations and detect potential faults.

Mercury gets the wayleaves and BR gets a rental for wayleaves and sites and also for the maintenance of the cable and optoelectronic equipment. Both parties seem very happy with the deal.

Beeb's baby brother

While the general opinion is that the Acorn/BBC computer is a good thing, it is also expensive. Acorn themselves are, of course aware of this and for some time have been working on a cut-down version to be known as the Electron. Following the usual, almost obligatory, delays that seem to accompany all such projects, the computer has at last been launched and seems set to enjoy a good following. It has left out a lot of the facilities of the BBC Micro but for the average user many of them were not required. It has taken several leaves out of Sinclair's book and so has drastically reduced the number of integrated circuits inside and also has the single key work entry system beloved of ZX followers. By contrast however words can also be entered as words unlike the ZX Spectrum where, on occasions more key depressions are needed to access the word than the number needed to type that word. Other features are a keyboard with real keys, good colour and graphics, BBC Basic and many add-ons which will extend it and replace those facilities taken away from the BBC. Actually, it could never be upgraded sufficiently to equal the BBC and even if it were, it would cost more than the BBC . It is expected to retail at $£ 199$.

Video fiction

A new sort of computer game is to be launched. Still involving science fiction, the adventure games are to be tied in with stories. Readers of the stories will be able to enact the scenes from the stories on their home computers and determine the outcome by their own games-playing skill. The first production of a new publishing venture, Mosaic Publishing, is to be a book-and-game combination created by Harry Harrison, American Sci-fi author, best known to aficionados for his Stainless Steel Rat novels. Future plans include other sci-fi stories, and a selection of children's detective and educational nonfiction packages. They will have to work out for themselves whether the butler did it. In addition to these 'interactive fiction' packages, the company are also planning a series of home computer users' books.

Electronic shopping must be fair

If the public are to be persuaded to accept electronics fund transfer systems, the computerized method of buying goods which are directly debited to the customer's bank. account, then the system must be safe against error and fraud, says Clive Newton, Director of Consumer Affairs at the Office of Fair Trading. He was speaking at the European Conference on Automation in Retailing. Commenting that such systems can lead to greater efficiency in retailing and banking, he said; "For consumers this should mean greater convenience and the containment of price increases. However it is important that those planning and designing the introduction of these systems recognise that they take account not only of the need of the traders but also the interests and reasonable expectations of the consumers".

Bubbles in cassettes

Another alternative to the disc memory for computers is the magnetic bubble which has gone through some bad patches during its development with many manufacturers falling by the wayside. However some have persisted and Fujitsu and 1 M -bit memory cassettes which plug into a controller/ driver which is about half the size of a slim

Mr Newton went on to discuss some possible problems: If bar-code readers are used at the checkout it may not be necessary for each individual item to have a price label. In this case there was a danger of the shelf being labelled with one price while the computer has been programmed with a different one, especially if there is a price change. Such bar-code readers were not always perfect and a proportion of items have to be re-scanned to give an accurate reading. If there are fewer checkouts because the system has been installed, this could lead to delays for shoppers. Electronic Fund Transfer systems (EFT) could invade the financial privacy of a customer and permit the building of personal profiles of an account holder's financial status and buying behaviour. The establishment of large data bases of this sort could be accessible to a number of institutions. Finally, such large EFT data bases could enable the sophisticated criminal to defraud large amounts of money by altering many accounts each by a small quantity. An unscruplous trader or an employee could record the transactions passing between a point of sale and a bank computer and then repeat the recoding later. Many such crimes had occured in the United States.
$51 / 4$ in floppy disc drive. In fact two can fit in the space taken by such a drive and use the same power supply lines. The advantages of bubble memories, if you need reminding, are that they are non-volatile, easily eraseable, have no moving parts and are proof against hostile environments. Average access time is 12.5 ms with a data transfer rate up to 12500 byte/s. Expansion unit may be added to give a memory expansion up to 512 K bytes.

Fujitsu bubble memory cartridge and drivercircuitry.

Software piracy and copyright

An attempt has been made by the Computer Retailers' Association Ltd, to clear up any misconceptions there may be about the rights of the writers of computer programmes with respect to the law on copyright.
A. J. Harding, on behalf of the CRA, has written a lengthy statement of which we reproduce the chief arguments:

Computer software can be defined as 'code generated by an author on paper or entered into a computer memory'. In the UK it is not necessary for an author to make any formal registration of the work. The copyright arises automatically when an appropriate work is generated. It is, of course, wise to state the copyright of the work and there are a number of conventions, such as the letter ' c ' with a circle round it though a simple 'Copyright 1983 J. Bloggs' is sufficient to be recognized worldwide. It is not necessary to publish the work in order to claim the copyright, although when published this affects the 'life' of the rights of the author.

There has been some confusion as to whether computer software actually qualifies under the Copyright Act of 1956. Although such software is not included specifically, works of a literary, artistic or artistic craftmanship are included. In three recent litigations, settled out of court, such works were deemed by Judges to be within the provision of the Act.

Infringement of the Act can take place in a number of ways but the most relevant of these are: 1. Reproducing the work in any material form; 2. Publishing the work without authorization of the author; 3 . Making an adaptation of the work. These are fairly straightforward and the third point could apply if, for example, a subroutine from one author's program were to be included in another program. The first restriction presents some problems. Is the work 'reproduced in material form' when it is entered into a computer's memory? In practice, it would seem to be difficult to use the program without reproducing it in a material form.

One common misconception is that the offender must copy a program for gain. However the Act makes ample provision and specifically states that infringement takes place even if the offender is no infringing for the purposes of trade. So theoretically someone who copies Space Invaders to give to a friend is as guilty as a company who specifically sets out to copy for profit. The penalties might be different but in most cases any judgement against a defendant will include costs which would bankrupt the defendant.

The Personal Computer World Show

Such large general shows as the PCW Show give one a good opportunity to catch up with hardware and software that may have been missed. Most of the major manufacturers of home and personal computers exhibit and there are some interesting stands in amongst the myriads of schoolboys (and a few girls) playing the latest video games.

ACT Holdings were showing off their latest 'executive' business computer, the Apricot. Portable (10 kg), it offers 16 -bit processing using the Intel 8086 processor running at 5 MHz , includes $31 / 2^{\prime \prime}$ floppy discs, has a green phosphor screen (229 mm diagonal), and offers an optional modem with autodialling facilities, in addition to the standard RS232 port and a parallel Centronics port. The computer may be unplugged from its v.d.u. and use a two-line display which is also used to give the date and time and to display the chosen functions of the six programmable keys. A calculator, electronic mail through the modem and a socket for a 'mouse' controller to give 'desktop' facilities. There is also a choice of six computer languages and the 256 K memory is expandable to 768 K bytes. The computer is to be assembled in a new factory at Glenrothes, Fife.

Firmly in the home computer field is the Elan Enterprise, with 64 K or 128 K user ram, the prototype Enterprise gave an impressive display of its 84 -column, 56 -line text capability which can be used as a 'window' on a large document. Graphics offer 256 different colours on a 672×512 pixel display. The keyboard uses 'real' keys and offers eight special function keys. It also has a built-in joystick which is not only usable for games but can be used for cursor control in serious applications. Four voice sound is available with eight octaves and stereo output. Cassette handling offers the ability to connect two cassette players each with remote motor control and a built-in indicator to tell if the recorder is set to the right level for data transfer. Various outlets permit the connection of other Elan computers
through the built-in interface. There is an RS432, a Centronics and a dual remote control interface. The Elan uses a Zilog Z80A running at 4 MHz . The ram and the internal 32 K rom are both expandable up to 3.9 M -bytes each, and there is provision for plug-in roms in cartridge format. All-in-all a very impressive specification, and as the computer has been designed by a software house there should be an ample supply of software available for it. The Elan is not to be launched on to the market until next April and the projected price for the 64 K model is $£ 200$

The portability of programmes between various computers has always presented a headache. For $£ 255$, Iansyst are offering Ianstal which can translate the machinedependent functions, such as cursor position, clear screen, inverse video etc, between some 72 different micros in a growing list.

Over on the professional part of the exhibition, Io Research were showing Pluto, a colour graphics system which is modular and allows the addition of further colours and resolution as the need increases. Up to 256 of Pluto's 16 million colours can be used at the same time.

Memotech established a reputation for producing add-on memory and other extensions for the Sinclair ZX81. Now they have branched out on their own to produce the MTX500 and 512 computers. Based on the Z 80 A running at 4 MHz , they include many firmware features, such as a real-time clock and a 24 K rom which has their own version of Basic, incorporating Logo-type graphics controls and Noddy, an interative screen selection program that may be menu driven. A Z80 assembler/disassembler is also included with register memory and program display and manipulation. Externally the computer is very solid. It is based on a mild steel chassis which supports the 79 keys. These include a separate numeric keypad which also may be used to control the cursor and editing function. Eight programmable function keys may be used with the shift key to give 16 functions. Expansion has been made an important part of the system so that the internal memory (32 K or 64 K for the two models) may be expanded up to 256 K . Plug in rom cartridges are available for alternative languages, Pascal and Forth.

The 40 -column, 24 -line display may be expanded to 80 columns if a disc drive is added. An add-on communications board allows the addition of two RS232 ports, and a network bus. The graphics display has its own 16 K ram and offers up to 256 $\times 192$ pixels in 16 colours. Memory may be further expanded by floppy or hard disc drives and also by solid state 'silicon discs' which offer up to 14 M bytes of storage at an even faster read/write cycle than hard discs.

Sinclair Research have introduced a second interface board for the ZX Spectrum which includes the facility to use two joysticks and plug-in rom cartridges for instant arcade games and other facilities.

For the do-it-yourself enthusiast, Stirling Microsystems were demonstrating Dennis, a kit-built 6809-based computer which has a number of facilities selectable by the addition of various function boards but may be expanded up to a full discdrive system, running Flex, a standard 6809 disc operating system which has a great deal of business and technical software already available

Marine plotter

A new marine Automatic Radar Plotting Aid (ARPA) has completed successful sea trials and is available in time to meet the new ship safety regulations due to come into force in September 1984.

Designed and developed by Marconi International Marine's research and development team, ARPA has met the design brief to be simple to operate by significantly reducing the number of controls and readouts when compared with other current equipment. This has been achieved by the use of a dynamic visual display unit and a control system with programmed keys. Basic radar controls are retained in their conventional form. The two push buttons, a joystick and eight keys are used to control all the ARPA primary functions and this compares favourably with some units which may have up to 100 controls for the same functions.

Using automatic and/or manual acquisition, the ARPA can track 25 different targets at a distance of 24 nautical miles. All functions required by International Marine Organization regulations are provided along with some extras such as true motion, ground stabilization from a reference target and a video map facility. The display can be integrated with Marconi's Radiolocator radar in a system which provides instant switching between 3 cm and 10 cm radars. Used with other dual systems it may select information from either radar, ensuring that the navigation officer can select the most appropriate system for the prevailing conditions.

Versatile toneburst gate

A wide range of duty cycle, integral cycle counting and single-shot working in a practical instrument for audio and acoustic testing.

Five years ago when KEF wrote back to me to say I had burnt out my tweeter and suggested that my power limiting circuits be rated to fall within the burst handling capability of their units, I decided to pull the toneburst gate ideas out of the file and build a cheap, good piece of test equipment. The peak output capability of an amplifier can be observed using a low duty-cycle toneburst. This peak value is usually much higher than the r.m.s. output figure, which depends on the load regulation of the transformer/rectifier/reservoir capacitor combining to form the usual unregulated d.c. supply. When one gets into active loudspeaker circuitry with h.f. drive amplifiers giving a peak-tor.m.s. ratio of the order of $10: 1$, this instrument becomes quite essential.

Another use would be in testing for room resonances. A short toneburst can be made to excite a standing wave and the rate of decay observed on an oscilloscope during the tone gap. I have not yet tried this, but I expect that low-frequency resonances can be triggered by gating a high frequency; for example 100 Hz by gating 10 kHz with a mark: space ratio of $1: 1$

Gating high-frequency sinewaves can produce some weird synthesizer effects for musical freaks - I recommend anyone to try it. However, I suspect that unless the potential constructor is interested in designing and testing ever more powerful loudspeaker and amplifier combinations, or engaged in extensive pulse-counting logic, this circuit will prove no more useful than an educational exercise.

Theory of operation

Referring to Fig. 1, the input signal is simultaneously fed into a 3302 comparator and two 4016 signal gates. The rectangular output waveform from the comparator is used to clock two 4017 counters, which advance by one count on every rising edge the upwards zero crossing points of the input waveform. With either counter enabled and free-running input waveform, a logic " 1 " will ripple through the outputs with each output remaining high for one input cycle in ten as is illustrated in Fig. 2. A logic " 1 " applied to the reset pin will inhibit further counting and return the counter to its output zero state.

In the circuit of Fig. 1, also assume that output N 2 of counter 2 has just gone high. This sets the Q output of the bistable low $\overline{\mathrm{Q}}$ high). Gate 1 now starts to conduct. At

by D. S. Taylor-Lewis

the same time, counter 2 is disabled with its count reset to zero. Counter 1 is enabled and starts to count the input cycles.

After Nl cycles, the output Nl of counter 1 goes high. The bistable is reset to its other state (Q high and $\overline{\mathrm{Q}}$ low). Gate 1 ceases to conduct, while gate 2 now starts to conduct. Counter 1 is disabled and reset to zero and counter 2 commences to count. The process repeats itself after N 2 cycles when output N 2 once again goes high.

The result is a toneburst from gate 1 with 'on' cycles and 'off' cycles respectively equal to N 1 and N 2 . Gate 2 provides the alternative tone-gap. If the counter outputs on each side are fed into a multiway switch, N1 and N2 both become variable. A further improvement can be made by cascading counters in the manner shown in Fig. 3. Here, each cascaded counter increases the count capability by a factor of 10. An extra multiway switch is

Fig. 1. Simple toneburst gate.
required for each addition. The and gate ensures that the bistable will only trigger when the selected outputs of both A and B are high, i.e. when NA +10 NB input cycles have passed. In theory, counts of any magnitude are possible with enough counters per side
Delays. In the real world, the circuit of Fig. 1 will prove unsatisfactory because of the switching delays associated with all its elements. This is particularly bad in the counter i.cs, where the delay becomes worse for larger values of N . The effect on typical toneburst waveforms is shown in Fig. 4: where counters are cascaded in the manner of Fig. 3, the situation can be worse still. With a high value of NA, counter B has time to adopt its new output state before the selected output of A again goes high. This only the delay of counter A is noticeable. However, when NA is set to zero, counter B is given no time to settle before the selected output of A goes high. For this case only, the delays of A and B are additive. It is possible, with NB set to a high value, for A to pass through its zero counter before the selected output of B starts to rise. This may mean that a spur-

(a)

Delay in counter B
(b)
ious 10 cycles will be added while A counts round again.
Settling time. The effect of propagation delay in the counters on output waveform purity can be eliminated if they can be allowed to settle some time before the sig nal gates are switched, by using the rising edge of the input to operate the counters and the falling edge, in conjunction with the

Fig. 5. Timing diagrams showing effect of delays on outputs in (a) NA waits for NB, NB rises bistable triggers and resets all outputs. At (b) NB fails to rise during NA high. NB waits until NA again goes high and once more resets all outputs

And logic, to trigger the bistable. The circuit of Fig. 6 does this as the following description will show.
The input signal is inverted by the input buffer $\mathrm{IC}_{1(\mathrm{a})}$, and is then fed to the comparator and the (4016) signal gates. The 4016 package holds 4 gates: the first two are used for signal gating as before, and the remaining two to short the respective out-

Fig. 4. Effect of switching propagation delays on outputs in circuit of Fig. 1.
puts to ground while the series gates are in their 'off' states. This eliminates any signal breakthrough. The toneburst and tonegap signals are again inverted by the output buffers $\mathrm{IC}_{1(\mathrm{~b})}$, and $\mathrm{IC}_{1(\mathrm{c})}$, before being made available to the outside world. The spare op-amp. in the quad package ($\mathrm{IC}_{1(\mathrm{~d})}$), is used to recombine the outputs to give an amplitude - modulated output, which is inverted with respect to the input.

The gain of the input buffer can be altered between $\pm 20 \mathrm{~dB}$ (± 10 times) by VR_{1}, which acts in conjunction with resistors R_{1} and R_{2}. Capacitor C_{2} prevents h.f. instability. The output amplitudes are adjustable between $-\infty \mathrm{dB}$ (zero) and that set on the input buffer, using VR_{2} and $V R_{3}$. The remaining buffers are configured for 0 dB (unity) gain by resistor combinations $\mathrm{R}_{4}+\mathrm{R}_{6}, \mathrm{R}_{5}+\mathrm{R}_{7}$ and R_{8} (or R_{9}) $+R_{12}$. Resistors R_{10}, R_{11} and R_{13} provide protection against capacitive loading and output short-circuits. Similarly \mathbf{R}_{3} prevents C_{3} or C_{4} from unduly loading the input buffer. These capacitors remove zero-crossing glitches caused by residual logic-switching delays.
A 3302, open-collector comparator ($\mathrm{IC}_{13(\mathrm{a})}$) squares the input waveform. This process is given a slight amount of hysteresis by positive feedback through R_{16}. Resistor R_{14} prevents this from being fed back to $\mathrm{IC}_{\mathrm{I}(\mathrm{a})}$ output. The components $\mathrm{VR}_{4}, \mathrm{R}_{18}$ and R_{1} allow accurate input offset nulling.
The rising edges of the clock correspond to the negative zero crossings of the input waveform, and are fed to the first counter in each chain. One output from each counter (IC_{3} to IC_{6} or IC_{7} to IC_{10}) is selectable by a 10 -way* switch (SW_{1} to SW_{4} or SW_{5} to SW_{8}). In this circuit, four counters are used in each chain to give counts ranging between 1 and 9999 . The common terminals from the switches are Nanded together by $\mathrm{IC}_{11(\mathrm{a})}, \mathrm{HI(b)}$ and when all of the selected outputs become simultaneously high, the output goes low. This output is Nored with the original clock waveform in $\mathrm{IC}_{12(\mathrm{a}) \text {, (b). }}$ The output of IC_{11} will become low sometime during the high part of a clock cycle, when the last counter output in a chain changes state (all being selected) to trigger the Nand. Until that time, the Nand gate output has been holding one

[^1]

(b)
input of the Nor gate high and therefore its output low.
The output of the Nor gate goes high when the clock waveform goes low, and provides the trigger pulse for the bistable formed by the remaining two Nor gates ($\mathrm{IC}_{12(\mathrm{c})}$, (d). Note that this trigger pulse starts at the positive zero-crossing of the original input waveform and occurs only on the coincidence of all counter outputs being high and the clock waveform being low. The counter outputs are effectively being allowed to settle during the negative part of the input preceding the switching point. The bistable outputs change state and reset the counter that produced the trigger waveform. The counter being reset terminates the trigger pulse.

Switch SW_{9} is included in the signal path of the 'off-cycles select' section to provide the option of selecting a continuous tone, by holding the reset input of the bistable permanently high via R_{29}. The two outputs from the bistable become the control voltages for the 4016 signal gates.

Propagation delays in the 4017 counters no longer affect the circuit operation except where the input frequency or a short negative duration of the input waveform do not allow sufficient time for them to settle. Ideally, the signal gates should be switched at the exact zero-crossing point of the negative-going output from $\mathrm{IC}_{1(\mathrm{a})}$. In practice, this occurs approximately 500 ns later, this figure being invariant.

The resistors R_{20} to R_{27} are necessary to prevent count rollaround, which would occur if for any reason an end-of-count coincidence is missed through any output 'high' from IC_{3} to IC_{10} not connecting through to the corresponding Nand input. The side on which the count is taking place will cycle through 9999 , back to zero and on once again to coincidence. If the input signal frequency is (say) 1 kHz , this will mean a ten-second latch-up before tonebursting resumes.

The switches $S_{W_{1}}$ to SW_{8} are the break-before-make type, to avoid shorting the decade counter outputs together while changing count (series resistors will prevent this from causing damage, but 78 take a lot of space!). The slowness of manual switching makes a missed trigger pulse a distinct possibility while changing count. The pullup resistors render the opposite default; that premature triggering may occur

Fig. 7. Trigger circuits. Simple one-shot trigger is at (a), while (b) shows zerocrossing one-shot trigger.

Single-shot operation

A very simple single-shot facility can be achieved using the circuit of Fig. 7(a), which has one disadvantage in that the trigger pulse will not necessarily coincide with the zero-crossing point of the input waveform.

To ensure that the single-shot trigger always occurs at the start of a complete cycle, the circuit of Fig. 7(b) can be used. The trigger is operated manually using the pushbutton (PB_{1}), or electrically by shorting the external trigger input to ground. Transistors Tr_{1} and Tr_{2} are in-

cluded to speed-up a slow-acting device. This particular configuration was chosen to allow the connection of one or more remote trigger switches (push-to-make) or open-collector devices.
The trigger action produces a negativegoing transient at the input of $\mathrm{IC}_{14(\mathrm{a})}$ (1/4 4011). $\mathrm{IC}_{1+(\mathrm{a})}$ and $\mathrm{IC}_{14(\mathrm{~b})}$ form a bistable which triggers on the negative input pulse. The output of $\mathrm{IC}_{14(\mathrm{a})}$ which is normally low, now goes high, allowing $\mathrm{IC}_{15(a)}$ to trigger the second bistable, which is formed by $\mathrm{IC}_{15(\mathrm{~b})}$ and $\mathrm{IC}_{15(\mathrm{c})}$ when next the clock goes high. If the clock already is high, this happens immediately. Finally the output of $\mathrm{IC}_{15(\mathrm{c})}$, now low, resets the bistable in the main circuit on the next falling edge of the clock waveform. The 'on-cycles' count is thus initiated.

(a)

Fig. 8. Power supply (a) and overload indicator

Peripheral circuitry

Figure 8(a) shows the power supply. Two split rails are generated. The first is for the "audio" circuits, encompassing IC_{1} and IC_{13} alone: the slight imbalance here is to achieve symmetrical clipping of the opamp outputs. The voltages are also higher than the logic supply to allow more filtering and to allow for the fact that the output swing of the op-amps falls far short of the supply lines.

Overload indicator. In Fig. 8(b) when the signal swing exceeds the threshold set by R_{44} and R_{46} or R_{45} and R_{47}, the output of the corresponding comparator pulls low, driving Tr_{3} into conduction. A single indicator led forms the collector load with a series resistor to limit the 'on' current. Only one prototype of the circuit has been built at the time of writing. This was constructed on Veroboard in a rather unortho-

Circuit performance

Maximum output 3 V r.m.s. ($\pm 4.5 \mathrm{~V}$ peak) Frequency response -3 dB at 20 Hz and 150 kHz (unity gain)
Tonegap signal break through 72 dB
Distortion below $-80 \mathrm{~dB}(1 \mathrm{kHz})$
Slew rate $2 \mathrm{~V} / \mathrm{Hs}$
Gate switch-on delay $2 \mu \mathrm{~s}$ ($1: 1$ cycle out)
Noise below -80dB
Maximum input frequency for reliable counts
120 kHz (9999 : n cycle out, square in)
will be to scrap the use of decade counters altogether and go binary. The counter section will now comprise a cascade of fast bistables, the output of each feeding into an And gate: the terminal or coincidence count will be fed into the second input of each And gate, the outputs all being Anded together and with an added blanking pulse. The duration of this pulse will be set equal to the total propagation delay through the counter chain (refer to Fig. 9). Assuming a maximum counter of 10,000 is again desired which approximates to 2^{14} (or 16,384), then where for example each bistable has a 25 ns propgation delay, the total propagation delay of $14 \times 25 \mathrm{~ns}$ ($=350 \mathrm{~ns}$) becomes the length of the blanking pulse. Now if one adds the delays of a fast comparator, three more gates (2 levels of And as shown in Fig. 9 plus bistable) and an analogue switch, one will arrive at a final figure of around 500 ns . It only remains to select the coincidence count which can be decoded from decimal switches into the binary equivalent - unless the constructor prefers to think in binary, octal or hex.
Taking care not to labour the point that any working electronic circuit is out of date, I shall briefly mention a third possible approach equally exotic as a binary approach as outlined above coupled to hardware or m.p.u.-driven ram decoding on the selector switches. This third approach is to delay the input waveform by a constant amount between the input buffer (where it generates the logic clock signal) and the 4066 analogue gates. Next, the switching delay in the logic can be designed to be constant - the reader can work out for himself how to ensure this. Make these two delay paths equal and this elegant and most expensive solution promises the ultimate goal of no upper frequency limit(!).

MN

Assembly language programming

Abstract

Any computer, no matter how powerful, is of little use without some means of communicating with the outside world. In this seventh tutorial, Bob Coates discusses input/output and illustrates it by turning the Picotutor into a simple musical instrument.

Generally speaking the computer's means of communicating with the outside world - its input/output - is implemented by connecting one or more special-purpose i.cs to the microprocessor buses. These i.cs come in various forms

- serial-interface devices for transferring one bit at a time to and from printers, v.d.us, etc.
- c.r.t.-control i.cs for converting data for displaying on a screen
- analogue-conversion circuits for changing logic levels into analogue signals and vice versa
- devices for feeding levels in and out of the computer system usually called peripheral i/o or peripheral-interface adaptors.

Two devices in the last category are the Zilog Z80 P10 and Motorola MC6821. Both have connections to allow them to 'talk' to the microprocessor through their buses and 20 t.t.l.-level lines, most of which can be set as either input or output.

Digital i/o

To illustrate why we need these external connections, consider an automatic garage door opener that is being controlled by a microprocessor. Power to the motor must be switched in order to lift the door but most peripheral i.cs can only drive light loads. Figure 1, a simple solution to this problem, uses a vmos fet to amplify the logic signal so that a relay may be used to switch high currents to the motor. If the output line is logical zero the transistor is turned off and no current flows through the relay coil but when the output is at logical 1 , i.e. at around 5 V , the transistor is turned fully on and the relay coil is energized.

Now the microprocessor can turn the motor on and off, but it also needs to know when the door is fully raised so that it can stop the motor. Figure 2 shows a circuit for allowing the processor to sense the contacts of a limit switch whose contacts close when the door is fully open. While the door is down, the switch is open and
the resistor pulls the high-impedance input line up to 5 V so the processor sees the input as logical one but when the door is fully open the contacts short the resistor to ground and the line becomes logical zero. Using an algorithm like the one in the flow chart, the processor can be programmed to
by R. F. - ates
switch on the motor and keep it on until it senses that the limit switch is closed.

Picotutor i/o lines

Peripheral i.cs such as the 6821 cannot easily be connected to the Picotutor 68705 processor as it does not have an external bus, but an equivalent circuit providing 20 i/o lines is built in. These lines, grouped as two sets of eight bits, ports A and B, and one four bit set, port C, account for 20 of the processor's 28 pins and may be programmed as either input or output. Each port has its own unique address in the memory map, Fig. 3, and is accessed as though it were a memory location. Ports B

and C are used to interface the keypad and display in Picotutor and their operation will be described later; this leaves eight lines of port A available for other purposes.
Reading a memory location by means of a load instruction results in the eight bits from the addressed location being transferred along data lines into the accumulator or index register depending on the type of instruction. Assuming that the lines of an i / o port are programmed as inputs, reading the port address location will result in the logic state of each of its pins being transferred through the data bus to the c.p.u. Port A line numbering coincides with data bus numbering, i.e., PA_{0} data is transferred to data-bus line $\mathrm{D}_{0}, \mathrm{PA}_{1}$ connects to D_{1} and so on

Using i/o lines as inputs

On Picotutor, the eight port A pins are taken to two 16 -pin i.c. sockets as shown in the circuit diagram on p. 53 of the December 1982 issue. An eight-way dil switch may be plugged into the lower socket and eight elements of a 10 -element led array into the upper socket. With resistors $\mathrm{R}_{8.19}$, these elements form a means of providing an input signal to each of the eight port A lines as shown in Fig. 4. Leftmost switch and led elements are connected to PA_{7}, rightmost elements to PA_{0}; when a switch is open its port line is pulled to logical one by the resistor and no current flows through the led element. If the switch is closed, the port line is grounded. i.e. logical zero, and current flows through the resistor to light the led. Try this short program

030	B600 LDA 0	
032	83	SWI
$\mathrm{S}_{2 / 1}$	$\left(\mathrm{PA}_{7}\right)$	open
$\mathrm{S}_{2 / 2}$	$\left(\mathrm{PA}_{6}\right)$	closed
$\mathrm{S}_{2 / 3}$	$\left(\mathrm{PA}_{5}\right)$	open
$\mathrm{S}_{2 / 4}$	$\left(\mathrm{PA}_{4}\right)$	closed
$\mathrm{S}_{2 / 5}$	$\left(\mathrm{PA}_{3}\right)$	open
$\mathrm{S}_{2 / 6}$	$\left(\mathrm{PA}_{2}\right)$	closed
$\mathrm{S}_{2 / 7}$	$\left(\mathrm{PA}_{1}\right)$	open
$\mathrm{S}_{2 / 8}$	$\left(\mathrm{PA}_{0}\right)$	closed

with the elements of switch number two open (down) or closed (up) as indicated. Switch $\mathrm{S}_{2 / 1}$ is leftmost.
Examining the accumulator using the register key should reveal 55_{16}, which is 01010101 in binary form, since the accumulator content reflects the state of each bit of port A. Repeating the program with different switch settings will confirm this.

Bit-test-and-branch instructions are used when only one bit of the port is of interest. Try this program with $\mathrm{S}_{2 / 1}$ open to set a logical one on PA_{7}.

030 1E00FD SELF BRSET 7,0,SELF 03383
 SWI

Display blanking should occur as the first instruction BRSET 7,0,SELF causes a branch to the label SELF, or the start of the same instruction, if bit seven of address zero is set to logical one. When the switch is closed, the bit is cleared to logical zero so the branch does not occur and software interrupt SWI is executed which causes the display dash prompt to reappear.

Using i/o lines as outputs

Port A lines are automatically programmed as inputs after a reset, through a memory location called the data-direction register (d.d.r.). There is one of these registers for each port, each with its own memory location, and they can be written into by a program. Whether a bit of a port is an input or an output depends on whether its corresponding d.d.r. bit is zero or one respectively. So if the port A d.d.r. holds 80_{16} (10000000), PA_{7} is an output and PA_{0-6} are inputs. This remains so until a new value is written into the d.d.r. or a reset occurs, such as at switch on, when all d.d.r. bits are cleared to zero.

Fig. 1. Peripheral output line. Signals from the microprocessor are low level but a vmos fet buffer can drive a relay coil allowing high currents to be switched.

Fig. 2. Peripheral input line. Only a resistor is needed to sense the contacts of a switch - microprocessor system input lines are usually high impedance.

Fig. 3. Memory map of the 68705 microprocessor. Input/output ports A, B and C are addressed as memory locations. Their 20 lines may be set as inputs or outputs depending on the level of corresponding bits in one of the three data-direction registers (d.d.r.s).

Status indication of port A lines is provided by the led array when all elements of S_{2} are open, a logical zero being indicated by a lit element and a logical one by an unlit element. This example sets all port A lines as outputs.

030	A6FF	LDA	\#\$FF
032	B704	STA	PADDR
034	A6AA	LDA	\#\$AA
036	B700	STA	PA
038	83	SWI	

All ones are put into port A's d.d.r. in the first two program lines, which sets all the lines as outputs. Value AA (1010 1010) is then stored in port A and the leds should reflect this. Try the program again using different accumulator values in line three of the program. To illustrate how some lines are set as inputs and some as outputs, the following program sets port A lines $\mathrm{PA}_{0.3}$ as inputs and PA_{4-7} lines as outputs. Port A is read then shifted left four times to put the four bits read from $\mathrm{PA}_{0.3}$ into PA_{4-7}. Then the accumulator content is put back into port A location to light leds for PA $_{4-7}$ according to the states of the switches for $\mathrm{PA}_{0.3}$. Switches for $\mathrm{PA}_{4.7}$ must be open.

030 A6F0		LDA	\#\$F0
032 B704		STA	PADDR
034 B600	LOOP	LDA	PA
036	9D		NOP
037 48		LSLA	
03848		LSLA	
039 48		LSLA	
03A 48		LSLA	
03B B700		STA	PA
03D 20F5		BRA	LOOP

Storing data in port bits configured as inputs does no harm but has no effect as the output drivers are not enabled. Try replacing the no-operation instruction, NOP, with COM A, INC A, DEC A, LSL A and LSR A in turn and examine the effect of different switch settings on the display.

Data-direction registers

First note that with the Picotutor, datadirection registers should only be written into by a program. If you use the memoryopen key, mo, to change the contents of a d.d.r. an error message will be displayed unless you are setting all the lines as outputs because these registers on the 68705 can only be written into and not read from. An attempt to read one of these registers will result in a display of FF. After data have been written into an opened location using the Picotutor memory-open function, the monitor reads back the data for verification. If data read back are not the same as was written, i.e. if you try to alter an eprom location or d.d.r., Picotutor displays the error message as a warning.

Mini-organ

To demonstrate what has been discussed so far, this section shows how the Picotutor can be turned into a mini-organ using hexadecimal keys of the keypad to generate different notes and a port A output line to drive a small loudspeaker. A suitable algorithm for the organ is given in the second flow-chart (see over). Only one of the port A lines is used but all of them are set as outputs for ease.
Scanning the keypad to see if a key has been pressed is the first function of the main program loop. We can use Picotutor system call KEYIN for this purpose (see p. 49 of September issue), to scan the key-
pad and return to the main program with the code of the key pressed in the accumulator; if no key is pressed the accumulator will be clear.

Moving down the flow diagram, code now in the accumulator is a function of the key's physical position on the keypad matrix and needs to be converted to give a hexadecimal value for the key using a second system call - HEXCON. If this subroutine is entered while the accumulator contains a key code the program first checks that the key is a hexadecimal one. If it is, the program loads the accumulator with the appropriate value (00 to 0 F) and clears the condition-code register carry bit. Should the key code represent a function key or no key pressed, the subroutine returns control to the main program with the accumulator content unaltered but with the c.c.r. C bit set to inform the calling program that the key pressed was not a hexadecimal one. As seen in the flow diagram, the algorithm tests whether a hexadecimal key has been pressed and if not loops and rescans the keyboard until a hexadecimal key is detected.

On detection of a hexadecimal key being pressed, the value in port A's location is complemented to reverse the logic states and a delay value determining the pitch of the note for the key pressed is obtained from a table. A further loop then decrements the delay value until it reaches zero so the larger the initial delay value the longer it takes for completion of the delay loop. Consider what happens when a key is

List 1. Using this program and a high-impedance loudspeaker, Picotutor forms a simple organ.
held down to envisage how this algorithm generates a note. The program loops continuously, changing the states of port A lines each time round the loop so a square wave whose period is determined by the time taken for a complete loop appears on all port A output lines. Time taken for the delay loop to be completed varies according to the key pressed so the frequency of the square wave varies accordingly. While no key is pressed the instruction which changes the output state is not executed so a constant d.c. level appears on the output.

Mini-organ output. Although drive capabilities of mos outputs are low, a high impedance loudspeaker of around 80Ω connected between a port A output line and +5 V will produce an audible output. Connections may be made using the 16 way led-array socket with one loudspeaker terminal connected to a point on the lower row (pins 1-8) and the other terminal on the upper row (pins 9-16). This will place a 270Ω resistor in series with the 5 V rail, limiting current to a safe value. Alternatively, a circuit similar to the one in Fig. 1 could be used but with the loudspeaker and a series current-limiting resistor in place of the relay coil.

Mini-organ program. The first two lines of assembly language for the mini-organ program shown in List 1 set port A lines as outputs. System calls KEYIN and HEXCON scan the keypad and clear the c.c.r. carry bit if a hexadecimal key is being pressed. If the carry bit is set, the next instruction BCS LOOP causes a branch back to rescan the keyboard but when the carry bit is clear port A outputs are complemented by COM PORTA. At this stage the accumulator contains a value between 00 and 0 F according to the key pressed which is transferred to the index register using the TAX instruction. Now the accumulator is loaded with a value from the table labelled PERIOD which is a block of

Fig. 4. Picotutor's eight port-A i/o lines are available for external use and have programming switches and an led array connected to them as shown.
memory containing a data byte for each of the hexadecimal keys. Loading of the accumulator with the appropriate byte from the table is done using an indexed load instruction with the address of the start of the table as the offset, i.e., LDA PERIOD, X. Unless the program is relocated, the value of PERIOD will always be 038 and the effective address for the instruction is formed by adding the values of PERIOD and X. If key 0 is being pressed, X will contain 00 so the effective address is 038 and the accumulator is loaded with the contents of address 38 , the first location in the table, delay value FF. When key 1 is pressed, the index register contains 01 so the effective address becomes 039 and the accumulator is loaded with the content of that address which is a delay value of DD.

A new mnemonic appears in this program, FCB, which stands for form constant byte and is an assembler directive to inform a computer assembler that data in the operand field is to be inserted in the program as bytes of data and not as instructions.

Entering and running the program. Normal procedure is carried out for entering the program into Picotutor memory but for the FCB instruction, each byte in the operand is entered into successive memory locations, i.e., FF goes into location 038, DD in 039 and so on up to address 047. Now press the go key and enter address 024 and pressing a hexadecimal key should produce a note from the loudspeaker. Two octaves are covered by the 16 keys, with key 0 producing the lowest note and key E the highest. Key F produces the same note as key 0. Looking at the PERIOD table, although the values for keys 0 (FF) and F (E7) are different, they both produce the same note. This is because system call KEYIN takes a varying amount of time to execute according to how far it has to search through the matrix before it finds a pressed key. It takes longer for it to discover that the F key is pressed than the 0 key so entries in the period table have been adjusted to compensate.

The Picotutor monitor assembly language list, which includes the two system calls mentioned in this article, can be purchased from Magenta Electronics Ltd, 135 Hunter Street, Burton-on-Trent, Staffordshire DE14 2ST, as can complete Picotutor kits.

Bob Coates looks more closely at Pictotutor in the next article, in particular at how the keypad and display operate. Picotutor is turned into a simple stop watch to illustrate the 6805 hardware timer.

Common-mode rejection explained

Abstract

Op-amp common-mode rejection is cloaked in mystery for many engineers. Bryan Hart describes an accurate but inexpensive measurement technique, with practical examples that show how c.m.r.r. may be handled in circuit calculations. The September part gave the origin and meaning of c.m.r., together with a graphical interpretation.

Two examples illustrate the practical significance of the analysis in the first part of this article. Consider first, a transducer in which a signal voltage of 5 mV is developed corresponding to the change in some physical variable under observation, for example temperature. Because of unavoidably long lead lengths connecting the transducer to its amplifier, and because of mains proximity problems, assume a com-mon-mode signal of 500 mV amplitude at the input to the amplifier. What rejection ratio is required of the amplifier if the magnitude of the output c.m.c. is to be less than 1% of the amplified d.m.c.?
The requirement is $500 / \rho<5 / 100$ because the signals $\mathrm{V}_{\mathrm{C}} / \rho$ and V_{D} that appear in series with the input of an amplifier (now assumed to have an infinite c.m.r.) are both treated in the same way by the

by B. L. Hart

amplifier. Hence $\rho>10^{4}$ or 80 dB . This calculation assumes perfect matching in the resistors associated with the V_{+}and $\mathrm{V}_{\text {- }}$ inputs of the op-amp, that set the closed-loop gain. (Resistor mismatches degrade the overall c.m.r. performance but that is beyond the scope of this article, which is specifically concerned with the c.m.r. of the op-amp itself.)

Consider next, the voltage follower circuit of Fig. 15. Writing the loop equation for the input circuit gives

$$
V_{+}-V_{100}+\left(V_{+} / \rho\right)-\left(V_{O} / A_{D}\right)=V_{O}
$$

Fig. 16. Rejection ratio can obviously be found by separate measurement of A_{C} and A_{D} but equation 8 enables a single direct measurement to be made.

Fig. 18. In this improved test circuit V_{O} is maintained automatically at earth potential, and the voltage source of Fig. 17 isn't required.
which reduces to

$$
V_{0}=\frac{V_{+}(1+(1 / \rho))-V_{100}}{1+\left(1 / A_{D}\right)}
$$

As $A_{D M} \gg 1$, use the binomial expansion and write

$$
1 /\left\{1+\left(1 / A_{D}\right)\right\} \approx 1-1 / A_{D}
$$

Recognize now that the signs of ρ and V are not specified. So neglecting the term $1 / \rho A_{D}$, the equation further reduces to

$$
\begin{aligned}
V_{0} & \approx V_{+}\left[1-\left(1 / A_{D}\right) \pm(1 / \rho)\right] \\
& \pm V_{I O O}\left[1-\left(1 / A_{D}\right)\right] .
\end{aligned}
$$

This reveals an interesting fact: without prior knowledge of the sign to be associated with ρ, the magnitude of which may not be constant over the input voltage, it cannot necessarily be assumed that $d V_{0} / d V_{+}<1$. The analysis of the effect of

Fig. 17. To avoid the need for variable floating voltage source V_{D} and a voltmeter of high c.m.r.r., the earth is relocated though d.c. operating conditions are identical with Fig. 16.

Fig. 19. More complete equivalent circuit takes into account input currents and input resistances, and could be styled a 'class 5' op-amp but if these were troublesome an op-amp with mosfet input stage would be preferable.

Fig. 21

Fig. 22

Fig. 20. Low-frequency common-mode effects can be eliminated in certain circuit schemes, as in this example of a voltage follower with its supply lines bootrapped to its output.
finite ρ on the performance of a voltagefollower with gain (a non-inverting amplifier) is basically an extension of that for the unity-gain stage.

Measurement of c.m.r.r.

The ratio ρ can obviously be found by separate measurements of A_{D} and A_{C}. However, a single direct measurement is preferable, particularly if it can be mechanized to give a c.r.t. display of commonmode performance. The basis of the direct technique is the use of equation 8 , but there are problems. Consider, for example, the circuit of Fig. 16 in which a.u.t. is the amplifier under test. A test procedure for ρ could be as follows:

- set $V_{C}=0$ and adjust V_{D} so that $\mathrm{V}_{\mathrm{O}}=0$
- set V_{C} at a convenient value V_{C} (e.g. 5 V) and note the change $\Delta \mathrm{V}_{\mathrm{D}}$) required to restore V_{O} to zero
- calculate $\rho=\left|\Delta V_{C} / \Delta V_{D}\right|$.

Fundamental difficulties in such a scheme would be the provision of a small floating adjustable bipolar voltage source V_{D}, and the requirement for a voltmeter (to measure V_{D}) having a known c.m.r.r. significantly better than that of the a.u.t. These restrictions can be eased by relocating the earth on the circuit, as shown in Fig. 17. From the potential differences labelled on the two diagrams, the d.c. operating conditions are identical for the amplifiers in both Fig. 16 and Fig. 17.

In the final, more elegant, form ${ }^{4}$ of the test circuit, Fig. 18, the connection of an auxiliary amplifier A , and the addition of a feedback loop from its output, produces two benefits: V_{O} is maintained automatically at earth potential, and the adjustable bipolar voltage generator of Fig. 17 is no longer required. When V_{C} is varied, V_{D} changes to maintain the condition $\mathrm{V}_{\mathrm{O}}=0$. The output voltage change ΔV_{K} of A is an amplified version of the change $\Delta \mathrm{V}_{\mathrm{D}}$. For the resistor values shown,

$$
\rho \approx 1000\left|\Delta \mathrm{~V}_{\mathrm{C}} / \Delta \mathrm{V}_{\mathrm{K}}\right| .
$$

The voltmeter used to measure ΔV_{C} and ΔV_{K} can have one terminal earthed and need not have a high resolution. Thus if $\rho=100 \mathrm{~dB}$ a 10 V change in V_{C} is accompanied by an easily measured 100 mV change

in V_{K}. The circuit of Fig. 18 has a high low-frequency loop gain. Depending on the particular amplifiers used, an appropriately located frequency-compensation capacitor may be needed to prevent sustained oscillation.

For more detailed investigation the c.m.r. performance of the a.u.t. can be displayed graphically if V_{C} is made a sweep voltage and applied to the x-channel of an oscilloscope, or $x-y$ plotter, and V_{K} is applied to the y channel. The sweep rate for V_{C} will be limited by the frequency response of the amplifier test scheme.

A fifth class?

The op-amp classification scheme introduced, has disregarded other d.c. and low frequency effects. Fig. 19 shows a more complete d.c. and low-frequency smallsignal equivalent circuit that takes into account input currents ($\mathbf{I}_{+}, \mathbf{I}_{-}$), commonmode input resistance R_{C}, differentialmode resistance R_{D}, and output resistance R_{O}. For completeness we could have styled this a class 5 op-amp but there are relatively few applications (precision analogue storage circuits and electrometer schemes' that would warrant the use of such a complete circuit. If it appeared that $\mathrm{I}_{+}, \mathrm{I}_{-}, \mathrm{R}_{\mathrm{C}}, \mathrm{R}_{\mathrm{D}}$ might be troublesome in a proposed application, then an obvious solution would be to use an op-amp with a mosfet input stage.

Finally

Because of its introductory nature, this article has considered only low-frequency c.m.r. without being specific about the meaning of 'low'. But don't forget that ρ, like A_{D}, varies with frequency. This is because of the different frequency dependence of the voltage gains A_{1} and A_{1}^{\prime}, caused by mismatches in the dynamic parameters (e.g. interelectrode capacitances) of the active devices, or unequal capacitive loading resulting from the configuration adopted for the following stage and from asymmetries in circuit layout. Literature on the subject is sparse but an analysis of the popular $741 \mathrm{op}-\mathrm{amp}$ by Mack and Fidler ${ }^{5}$ predicts a response for ρ that is sensibly single-pole in nature with a
cut-off frequency of some 300 Hz , in general accord with published experimental data.

References

1. Middlebrook, R. D., Differential Amplifiers. Wiley, 1963.
2. Parnum, D. H., Biological amplifiers, Wireless World, vol. S1, Nov. 1945, pp. 337-40; Dec. 1945, pp. 373-6.
3. Hart, B. L., Offset voltage, c.m.r.r. and p.s.r.r. of a long-tailed pair: an integrated approach, Electronics Letters, vol. 17, no. 15, July 1981.
4. Gray, P. R., and Meyer, R. G., Recent advances in monolithic operational amplifier design, IEEE Trans. on Circuits \mathcal{E} Systems, vol. CAS-21, no. 3, May 1974, pp. 317-27.
5. Mack, R. J., and Fidler, J. K., Simple second-order amplifier model for differential and common-mode gain, Electronics Letters, vol. 12, no. 6, March 1976.

Appendix

Common-mode rejection analysis for circuit of Fig. 7. Consider the circuit in Fig. 21(a): the small-signal equivalent of which is shown in (b).

$$
\mathrm{i}=\mathrm{g}_{\mathrm{fs} \mathrm{l}}\left(\mathrm{v}_{+}-\mathrm{v}_{\mathbf{s}}\right)+\left(\mathrm{v}_{\mathrm{ds}} / \mathrm{r}_{\mathrm{ds} 1}\right)
$$

Substituting $v_{d s}=-i R_{D}$ and $r_{d s l}=\mu_{1} / g_{f s l}$ and rearranging gives

$$
v_{s}=\left\{\mu_{\mathrm{l}} /\left(1+\mu_{\mathrm{l}}\right)\right\} \mathrm{v}_{+}-\mathrm{i} \mathrm{r}_{\mathrm{ol}},
$$

where $r_{o l}=\left(r_{d s 1}+R_{D}\right) /\left(1+\mu_{1}\right)$. Fig. $21(c)$ is an equivalent circuit representation of this. Using this result the signal current change circulating in the source circuit of Fig. 7, and the output voltage, can be calculated from the small-signal equivalent circuit of Fig. 22

$$
\begin{aligned}
\mathbf{A}_{1} & =\left(\mathbf{v}_{\boldsymbol{o}} / \mathbf{v}_{+}\right) \text {with } \mathbf{v}_{-}=0 \\
& \left.=\left\{\mathbf{R}_{\mathbf{D}} /\left(\mathbf{r}_{\mathbf{o}_{1}}+\mathbf{r}_{\mathbf{0}}\right)\right)\right\}\left\{\mu_{1} /\left(\mathbf{l}+\mu_{1}\right)\right\} \\
& =\lambda \mu_{\mathbf{1}} /\left(\mathbf{1}+\mu_{1}\right) \approx \lambda\left[\mathbf{1}-\left(1 / \mu_{1}\right)\right]
\end{aligned}
$$

where $\lambda=R_{1} /\left(r_{01}+r_{02}\right)$ and $\mu_{1} \gg 1$. Similarly,

$$
\begin{aligned}
\mathbf{A}_{1}^{\prime} & =\left(-\mathbf{v}_{\mathbf{0}} / \mathbf{v}_{-}\right) \text {with } \mathbf{v}_{+}=0 \\
& =\lambda \mu_{2} /\left(1+\mu_{2}\right) \approx \lambda\left[1-\left(1 / \mu_{2}\right)\right] .
\end{aligned}
$$

From equation 4 ,

$$
\begin{aligned}
1 / \rho & =\Delta \mathbf{A}_{1} / \overline{\mathbf{A}}_{1} \\
& =\frac{\left\{1-\left(1 / \mu_{1}\right)\right\}-\left\{1-\left(1 / \mu_{2}\right)\right\}}{\left.1 / 2\left[1+\left(1 / \mu_{1}\right)\right\}+\left\{1+\left(1 / \mu_{2}\right)\right\}\right]}
\end{aligned}
$$

and putting $\left(\mu_{1}+\mu_{2}\right) / 2=\mu(\gg 1)$ and $\partial \mu_{1}=\mu_{1}-\mu_{2}$ gives equation 5 in the text, i.e. $1 / p=\partial \mu / \mu^{2}$. NNT

Video disc programming for interactive video

Interactive video discs are likely to be useful in education, training and areas involving the use of quasi-static data. But before its facilities can be used to the full three problems need to be solved - provision of suitable office workstations, availability of an adequate authoring tool, and provision of resources to aid automatic searching.

Combined with an interactive computer system a video disc creates a useful tool to aid dissemination and assimilation of pictorial material. This article outlines the type of facilities provided by an optical disc and describes some programming techniques for an interactive video disc system based on a Philips Laservision disc player interfaced to an Intertec Superbrain computer. The system that we have been using consists of a teletext tv receiver with an associated remote control function pad, an Intertec Superbrain microcomputer system and a Philips professional VP705 Laservision disc player.

The Superbrain microcomputer is a Z80-based system fitted with twin integral flexible dise drives and two RS232C serial communication ports. The main port connects to the optical disc unit, while the auxiliary attaches to a conventional printer. Each of the ports operated asynchronously at speeds of 1200 and 300baud, respectively. All programs were developed under the CP / M operating system using Basic and Intel 8080 assembler. For programs written in Basic both an interpreter and a compiler were used. Details of software development appear later.

The VP705 Laservision player differs from conventional commercially available players in two ways. It has an asynchronous serial RS232C interface operating at 1200 baud to enable connection to the computer; and second, it contains a special teletext encoder to encode program-generated teletext character strings (and/or graphics) in such a way that they can be transmitted to the teletext tv, decoded and then displayed on top of the video images originating from the optional disc.

The video disc may be controlled in one of three ways: manually, remotely, and/or by computer. The manual mode of operation uses control buttons and switches located on the front panel of the player. Each of the functions may be invoked remotely via the use of a hand-held infra-red controlled remote keypad. Because this provides facilities for the entry of strings of decimal digits, it can be used to effect

[^2]operations that are not possible using the front-panel controls alone - for example, direct retrieval of individual pictures and entry of data into the start and auto-stop memory of the player. The third method of controlling the video player is via a computer - the most versatile method, as

by Philip Barker

all the functions that the player is able to provide may be invoked by operational programs running within an attached computer system. This is achieved by sending a suitable string of control characters to the player RS232C port and, if need be, waiting for an acknowledgement to indicate that the control operation has been performed.

Computer interface

Command strings from the microcomputer to the player are transmitted via the stan-
dard RS232C output line to the complementary input pin on the player - Fig. I (a) shows the connections and pin numbering. Similarly, character string information is returned from the video disc to the control program via the serial input line. The control command format, illustrated schematically in Fig. 1(b), specifies that a command string may consist of from one to a maximum of 64 characters. The command must be terminated by a car-riage-return character (C / R). Examples of single and multiple character command strings are presented in Fig. l(b). When the " \star " character is sent to the player, it causes the player to stop playing and "frame-freeze" on the particular picture it happens to be displaying. Similarly, sending the character " N " to the player causes it to commence normal playing again. In contrast, use of the letter " O " as a command character would cause the player to go into reverse mode and show frames at normal speed while traversing the disc backward. The multi-character command shown in example 4 is used to

Fig. 1. To avoid problems with the 'busy' state, synchronization is either by putting a delay loop into the control program, or by watching for video disc feedback via the data-terminal-ready line, or serial output line.

Optical video discs

Discs for laser playback contain a spiral track of optically tiny pits embedded in a reflective layer. The complete video signal - liminance, chrominance and sync along with the sound information associated with one or two audio channels are stored in the track by varying the length and the spacing of the pits, see Fig. (a). During playback, the rotating disc is scanned by a laser beam that is focused on the track containing the required frame, Fise (b) and (c). Reflected light from the disc is modulated with the track information and, by means of a suitable photodetector, subsequently

transformed into an electrical signal and processed to decode the video, audio and control information.
There are two types of disc available for use with optical disc players. A c.a.v. disc rotates with a constant angular velocity ($1500 \mathrm{rev} / \mathrm{min}$) such that the time for one revolution of the disc is exactly equal to the time for one video frame. For such a dise, the mean length and spacing of the pits increases linearly with increasing track radius' The discs contain a maximum of 55,500 frames, equivalent to a playing time of 37 minutes. Such discs offer the capability of providing a number of special effects such as fast forward, slow motion, reverse motion and still frames.
A c.l.v. dise rotates with a constant linear

velocity which means that the disc rotation speed decreased linearly with increasing track radius. For this kind of disc the mean length and spacing of the pits is constant over the disc, which therefore contains more information and the playing time for one side is about 60 minutes. Discs of this type can only be used for normal speed playing in a forward direction; they cannot be used to achieve any of the special effects that may be created using c.a.v. discs.

The two discs differ in an important way in that the former contain 'picture numbers' as part of the information stored on each track. These are not present in c.l.v. discs, and therefore cannot be used for interactive video applications similar to those described in this article.

(c)
make the read-head move directely to the track or picture having the number 15000; it would then display this as a still picture on the tv screen. When the command string shown in example 5 is sent to the player it would activate the internal teletext encoder causing the message "this is an apple" to be overlaid on the screen in yellow characters (CY) at row $\$$ (ROS) starting at the left-hand screen margin.
When commands are sent to the disc player a finite amount of time indmavired to service them. Thus the stop emmand (*) requires 40 ms , the normel + y forward (N) takes 200 ms to action, and the teletext command (T) takes 60 ms . Mast commands take a fixed length of time to execute. However the length of time that the "GOTO picture number" command (P) takes is completely variable, because it depends on the number of diac rexempant have to be traversed in gotide wion the current track to the destination target track.

When a command has been down loaded to the player a second command must not be sent until the first has been completed; any additional commands sent to the disc while it is "busy" will be lost. To avoid problems associated with the busy state a suitable synchronization procedure is required, which can be achieved in either of two ways. One of these involves putting a delay loop into the control program, thereby halting it for the length of time needed to service any particular command. Alternatively, the computer system can watch for feedback information sent to it by the video disc from the data-terminalready line or its RS232C serial putput pin (Fig. 1(a)).

The way in which the DTR line may be used is illustrated schematically in Fig. $l(c)$. When the player is not busy and waiting to receive a command from the computer it will indicate this via its DTR line. The computer can examine this line before it sends a command string to the player. Provided the player is ready, the computer can send its command. This is not executed by the player until it receives a carriage-return character (decimal 13). Once received, the player changes the status of its line to indicate "not ready for data', and then actions the command. As soon as the command has been implemented and the player is ready to receive another command the DTR condition is restored. Provided the computer always checks this line before sending commands to the disc, subsequent ones will not get lost.
The second way in which the microcomputer can acquire feedback information from the disc is via the serial output line. Consider the "GOTO picture number" command illustrated in example 4 of Fig. $l(b)$. When this command is sent to the player it causes the laser read head to move to the specified frame. When the head is positioned at the destination track, the player sends the decimal value 6 back to the computer; it then displays the still picture on the tv monitor. If the player reaches the end of the disc and has not found the required picture it will return an acknowledgement value of 21 back to the computer. Another example of a command that uses the serial communication port for feedback is the "read picture number" command (?). When this control character is sent along to the player it causes the
number of the picture that is currently being displayed to be sent back to the computer. To ensure that the software in the host computer is ready to receive transmitted data, the player always checks the clear-to-send line before starting to transmit.
Software control of the interface between the computer and the video disc is fairly straightforward. Two Basic primitives are available: OUT and INP. The mode of using these is illustrated in the following simple program:

$$
\begin{aligned}
& 10 \text { OUT } 1, \mathrm{~J} \\
& 20 \mathrm{~N}=\operatorname{INP}(\mathrm{K})
\end{aligned}
$$

where I and K are port addresses. The OUT command outputs the value J $(0 \leqslant \mathrm{~J} \leqslant 255)$ to the machine port whose address is 1 , and the INP function assigns to the variable N the value read in from the machine port having the address K. Provided the port addresses of the RS232C i/o and status lines are known, these primitives can be used to program the interface. So send a stop command to the video player via the Superbrain's auxiliary communication port (address 64), only two lines of Basic code would be needed:

10 OUT 64,42
 20 OUT 64,13

The way in which the i/o and status ports are programmed is discussed in more detail later.

Computer control

The main facilities that can be controlled by the computer are summarized in Table 1. These may be used to effect the following operations.
Random access. Using either the enter (/)
and run (R) commands or the picture command (Pxxxxx) the player can be made to display any of the available pictures on the disc. This is achieved by moving the read head directly to the track containing the required picture.
Freeze frame. At any time during the display of a series of frames the picture sequence can be stopped. This enables a single picture to be viewed for as long a period as is required. Freeze frame can be achieved either by passing a stop command (*) to the player or by using the auto-stop facility (see later).
Single stepping enables the system to step forward (control code L) or backward (control code M) a frame at a time, thereby enabling each picture in a sequence to be viewed individually.

Slow motion enables the speed of presentation of both forward and reverse picture sequences to be reduced to any value from normal (25 frame/second) down to a single frame every 4 s . The slow speed change is effected by means of the Sxxx command string; here xxx is a number in the range 2 to 255 ; multiplication of this value by 20 gives the time lapse between each new picture. For example, the command U followed by the command string $\$ 50$ would cause slow motion in the forward direction with one second intervals between pictures.
Fast motion. To facilitate the quick preview of a section of the disc contents, the fast-forward command (W) causes the display speed to be increased to a value that is three times the normal rate.
Search forward ($>$) and search reverse ($<$) commands can be used to scan the disc at 70 times the normal playing speed to visually locate particular sequences of interest. During the search, every hundredth frame is briefly displayed.
Indexing operations. Each picture on the disc is labelled with a five digit frame number. This number can be displayed on the top left hand corner of the tv screen by issuing a D_{1} command; similarly, display of the frame number can be inhibited by means of the inverse command D_{0}. The picture number can be used by a computer program to start, stop and initiate a variety of different facilities, for example the computer can find out which frame is being displayed by means of the "read picture number" command (?). Similarly, the three variants of the picture (P) command:
(A) PxxxxyR
(B) PxxxxxS
(C) PxxxxxI
also allow several useful facilities. In the first of these, (A), the player finds frame xxxxx and then displays the still picture. The second command, (B), instructs the player to go into still mode when it encounters the specified picture number; an indication of this state of affairs is then sent to the computer (acknowledgement code 6). The final example, (C), is similar to (B) but the player does not stop when the specified frame is displayed.

The player has a built-in memory that is able to store two five-digit frame numbers;

Interactive video disc system comprises $Z 80$-based microcomputer with disc drives and two RS232 ports, main one connecting the video disc player and the other a printer. Programs are developed using $C P / M$.
these are referred to as the ordinary memory (M) and the auto-stop memory (AS). Values are entered into these by using the enter ($/$), memory (;) and autostop ($=$) commands. Values may be erased from these memory locations by means of the clear command (X). When values are stored in these two memory locations some interesting effects can be achieved, for example

> - auto stopping
> - repetition
> - frame skipping.

In the first case, the video player will enter still mode whenever it encounters the picture number value that is contained in the auto-stop memory. In the second example, whenever the repeat command (Y) is issued, the player will replay the sequence of frames commencing at the number defined by the contents of the M memory and proceeding through to the value contained in the AS memory. Frame skipping is achieved by using the plus (+) command in conjunction with the enter command. Thus, the command sequence: " $300+$ " would cause the player to skip to the frame which is 300 ahead of the value contained in the M store. These facilities can be used under computer control to achieve a variety of interesting animation effects.
Teletext. The built-in teletext encoder enables static images (text and graphics) to be overlayed onto images that are being displayed on the tv screen. The facilities provided by the encoder are invoked by means of the teletext command (T). Teletext may be displayed against either a black video background or against a normal picture where the text itself is contained within a background "box" which may be either black or coloured. When using the teletext command it is possible to use both alphanumeric characters and graphics (shapes based around a 2×3 matrix) as with broadcast teletext. The desired graphic characters are then produced by transmitting the appropriate ascii codes within the teletext command (T). The format of this is as follows:

T/<control info $>$ [<display info>!<control info $>](1: N)$

The teletext command contains two types of parameter: control codes; and, information that will appear on the screen. Contro! and display information may be freely intermixed, subject to the limitation that the overall length of the command is not greater than 64 characters. Control codes are separated from each other by oblique strokes (/) while information that is to be presented on the screen is delimited by @ characters. A simple teletext command was shown in Fig.1(b), example 4; further examples are presented in Table 2.
The teletext command contained in example 1 would cause the string of characters "What is it called?" to be overlayed on top of the video pictures. The teletext characters would be coloured red and would be positioned on the screen at row 12 starting 15 spaces in from the left hand margin. Example 2 is similar to example 1 except that two colours (yellow and red) are used for the displayed text; also, 'Bizet' would flash on and off. Box creation facilities are illustrated in example 3. Here the new background (NB), start-box (SB) and end-box (EB) control codes are used to create a yellow background box upon which is displayed red text. In example 4, the double height code (DH) is used to cause yellow text to be displayed at twice its normal size within a black background box. Similarly, the sequence of instructions shown in example 5 would cause two double-height teletext overlay lines to appear. The first would occupy lines 1 and 2 and would contain red letters within a white box; the second would appear at lines 22 and 23 and would contain a yellow box with blue letters. The final example in Table 2 illustrates the use of some of the teletext graphic codes. When down-loaded to the video player these commands would cause a yellow square to appear on the teletext screen; its top left hand corner would be located at column 12 within row 6.

Other special effects. Audio commands (A_{x} and B_{x}, where $x=1$ or 0) can be used to control the playback of the individual audio tracks on the disc. Similarly, the audio beep command (!xy) can be used to produce simple sound effects via the loudspeaker contained within the teletext iv.

The video mute command (E_{x}, where $\mathrm{x}=1$ or 0) mutes both video and sound simultaneously - also achieved with the pause command (:). Several other useful facilities can be controlled by the computer - such as activation/deactivation of the manual controls on the front-panel of the player, and of the remote control keypad.

Programming techniques

Programming the video disc is straightforward. Both Basic and Intel 8080 assembly language have been used to construct programs. Wherever feasible, it is easier to program in Basic, but, certain situations can arise in which the 'slowness' of Basic can cause some anomalous effects. In these cases assembler (or compiled Basic) must be used; examples of situations requiring this approach are described later. Consider first the use of conventional interpreted Basic. Two approaches to command downloading are possible:

- by means of direct commands typed in through the computer keyboard, and
- via strings that are generated by a stored operational program.
In both cases, string transfer to the disc may be achieved using the LPRINT statement or by use of the OUT command. When the first is used, it is assumed that the disc is connected to the computer via its standard serial RS232C printer port (the auxilliary port in the case of the Superbrain). The OUT command does not require this assumption. As an example, consider a system in which the video disc is attached to the Superbrain via the standard printer port. Either of the following commands, when typed in directly, would cause the optical disc unit to halt operation:

(A) LPRINT " \star "

(B) OUT 64, 42 : OUT 64, 13.

These same commands could of course be embedded within a Basic program and would achieve the same effect. The use of LPRINT and OUT within an interpreted Basic program is illustrated in the following lines of code:

```
10 LPRINT "P1500R"
20 FOR I \(=1\) TO 1000
\(30 \mathrm{~K}=\mathrm{K}\)
40 NEXT I
50 OUT 64, 78 : OUT 64, 13
```

Execution of these statements would cause the video disc player to move its read head to frame 1500 and then start normal image display from that point. A timing loop prevents the N command (embedded in line 50) being sent to the player before it has completed actioning the P command that was issued in line 10.

An example of a situation where it is necessary to wait for feedback information from the disc is illustrated in the following section of code:

```
10 PRINT "Enter your frame number"
20 INPUT N
30 LPRINT "P"+N$+"R"
40 A = INP (64)
50 IF A<>6 THEN }4
60 LPRINT "N"
70 STOP
```

Here the user is asked to type into the computer the frame number at which image display is to commence. A P command is then constructed and sent to the video unit (line 30). The computer then waits for an acknowledgement signal from the player (lines $40 \& 50$) before attempting to issue an N command to start the display of images. Unfortunately, when
this code is executed using a Basic interpreter the results are non-deterministic. That is, when it is invoked, sometimes it works correctly while at other times the program fails to terminate. Bearing in mind the slowness of interpreted Basic, the reason for this is easy to see. The function of lines $40 \& 50$ are to 'watch' for a value of 06 transmitted from the video player. If this value is transmitted while the computer is executing line 50 of the program then obviously this feedback signal will be missed. The way around this problem is to either use a handshaking procedure based upon the CTS line in the RS232C interface, or increase the speed of execution of the program. In the last case this could be achieved by compiling the Basic program to produce executable machine code or by actually coding the software in Intel 8080 assembler.
A slightly more advanced application of the basic control operations outlined above is depicted in Table 3. This shows how a Basic program can be constructed to show the same animated sequence repeaiedly. The user enters the four important control parameters for this mode of operation by means of the simple dialogue sequence, specifying the starting frame number, the final frame number, the number of times the sequence is to be repeated, and the time interval between successive repeat showings. Once entered, computer contol can commence. The read head is first positioned at the starting track by means of the LPRINT command in line 200. Before a subsequent command is given, the computer must wait for the disc to send an acknowledgement signal indicating that it has arrived at the required track (line 210). The N command embedded in line 220 initiates display of the animated sequence.

Table 1

commano codes			
RELURED DISC FANCION	CONTROL OARACTER	JECIMAL COEE	TIME ms
audio beep	!	33	
5 too	-	42	40
Correction	.	${ }^{46}$	40
Enter	1	${ }^{47}$	40
Oigit a	0	48	40
Oegre 1	1	49	40
Digit 2	2	50	40
Digit 3	3	51	40
Digut 4	4	52	40
Digit 5	5	53	40
Digit 6	6	54	40
Digit ,	7	55	40
Digit 8	8	56	40
Oigit 9	9	57	40
pause		58	\bigcirc
Memory	;	59	500
Search Reverse	<	60	40
Auto-Stor	,	61	500
Search formaro	,	62	40
Read Plcture Niumber	?	63	200
Auctio 1	Aiton anoofy	65	200
Aucio il	8180 N S000FF	${ }_{66}$	200
Picture Number Oisplay	dian dodoff	${ }^{68}$	200
$\checkmark 1$ deo mute	E1-ON EOaOFF	69	40
Normal Play formerd	*	78	200
:Worme I Play Reverse	0	9	200
GeTo Pleture Number	$\mathrm{P}_{\times \times \times \times \times}$	80	-
Run	a	82	40
slom speed Change	${ }_{5 \times \times x}$	83	40
Teletext	Txxxxxx	84	60
slow motion formard	\checkmark	${ }^{85}$	200
Stow Mction teverse	v	${ }^{86}$	200
Fost forward	*	87	${ }^{40}$
clear	*	38	40
repeat	r	89	40
Plus	2	90	40

Table 2
examples of teletext commanos
TTMEI

[TM

T/ HC

5 T/MCL

6 TTHEI

TR09GY/12

Table 3
tpicil vou diaccue
entro start ing frue numer: 12000
EITER LAST FRAE NMEER: 12500
anter ncer of repeats: 10
antion interval between repeats (secs): 65
(B) program code

```
print Chrs(12) + ChRs(7)
```



```
120 PRINT *"
input "emter last frome numere " ", fs
print ":
tmput "enter mumerr of repeats: ",n
print -.
input "enter interval betueen repeats (secs): ! !
I=0
If fs)SS THEN 200
coro }11
LPRLNT *P*+SS+NR
If INP(64)<<66 THEN 2%O
LPRINT "M"
cosub 1000
LPRINT "P++FS+"S"
If INP(64)OS THEN 250
i=i+1
pramt Fimished *.l
If LEN THEN 300
l prINT `All
STOP
GOSU& 2000
reh test laserviston dtr signal line
REM TEST LASERVISION DTR SIGNAL LIM
IF INP(
c
```

When the disc reaches the end of the display sequence another P command must be given to the player - this time having an S suffix.
A check must be made to ensure the video player is not in a busy state, by the subroutine located at line 1000
The computer can then down-load a PxxxxxS command (line 240); and go into a loop waiting for an indication that the last frame in the sequence has been shown (line 250). When terminated a counter increments (line 260) and is then tested (line 280) to see if the overall control sequence is complete. If the animated sequence has not been shown the required number of times then a timer subroutine is invoked (line 300). The code contained in this subroutine would simply halt execution of the computer program for the delay period specified in the initial user dialogue (Table 3).

Video disc applications

The convergence of computer and optical disc technology to produce interactive video systems provides a completely new resource for information system designers. A number of important areas are likely to benefit from the advantages offered by this new approach to information handling. This section of the report briefly outlines areas where the impact of this technology is likely to be most significant.
As a medium of instruction, the computer alone is quite restricted in what it can achieve. Although it is useful for the storage and presentation of textual and numeric information, it is limited with respect to its ability to store and present sonic and pictorial information. However, when the data processing capability of the computer is combined with the data storage capacity of the video disc, a powerful instructional medium can be produced. Learning centre based upon this type of technology can provide interactive access to significant volumes of pictorial/sonic information. It is thus likely that they will provide many novel approaches to learning that will be applicable within a wide range of educational and training environments. Possibilities currently being investigated are outlined elsewhere.
Within marketing, two important applications of this type of technology are quite obvious. On-line point-of-sale catalogues, and the provision of marketing support in the way of sales promotion and advertising material. Examples of each of these approaches are already appearing within many commercial establishments. Mothercare, for example, use interactive video discs to store details of their product ranges - customers call-up details of products through a simple interactive keypad. BL Systems Ltd have been investigating the potential of the video disc for setting up automated display systems - similar to that illustrated in Table 3. As an illustration of this approach, consider a system in which customers could call-up, on demand, intelligent 'movies' showing all the salient details (and giving demonstrations) of the particular models of car in which they are interested. Such a system could enable customers to browse and enquire in
the absence of a forceful and persistent sales attendant. As a marketing tool, this type of technology could have considerable impact if used in an appripriate fashion.
Knowledge archives require the storage of three basic types of information: text, sound, and, images. The optical disc can provide facilities for the storage of substantial volumes of each of these. Disc storage capacity is typically in the region of 55,000 frame/side, which is equivalent to about $12,000 \mathrm{Mbytes}$ of conventional digital information. Discs of this type thus offer a means of storing vast quantities of knowledge. As an example, consider the storage requirements for a typical paperback containing 200 pages of printed text. Assuming that each page is composed of 40 lines and that each of these contains 64 characters. The total storage requirement is thus about 0.51 Mbyte. An optical disc would thus, in principle, be able to store over 20,000 such books.

Of course, one of the main advantages of the optical disc as a knowledge-storage medium is the fact that it can also store computer programs. When 'intelligent' software is combined with text, sonic and pictorial data, it is possible to construct highly reactive media capable of supporting communicative techniques hitherto impossible to achieve using the more conventional approaches.

Problems for the future

Disc production involves three basic steps: pre-mastered, mastering, and replication. In the first of these, all the basic material that has to be put onto the disc has to be collected together and stored on a master tape containing the composite video and audio signals along with the control codes that are required for the production of the master. This is then achieved via laser photography: a recording laser modulated by the signals on the master tape writes a pattern onto the photosensitive material contained on a master disc. After development, the master can be used to mould or stamp replica discs for distribution purposes. At present disc production is entirely manufacturer-based and is costly for individual users. Philips, for example, charge $£ 1,500$ to produce a master disc and then between $£ 80$ and $£ 20$ for replica discs depending on the quantity. Disc production is undoubtedly an expensive process and so is likely to provide a problem area until costs fall significantly, and facilities are provided to enable endusers to create their own discs.

Authoring techniques

Discs intended for use in a turnkey com-puter-based interactive video environment require substantial planning and testing. Indeed, disc authoring involves a number of complex functions: preparation of the pictorial information, preparation of the supporting sound tracks, production of computer software for programme control, creation of special effects - for example, sound and teletext overlay, and coordinating and testing the results of integrating each of the communication media. To achieve these objectives in a facile way, conventional computer programming lan-
guages are quite inadequte, particularly for users who are not technically orientated. This point easily be seen by analysing and nature of the teletext commands presented in Table 2. Complex instructions are needed to produce what are, in principle, very simple screen effects. Because of the need to provide a 'friendler', easier to use programming interface for this type of system specially-oriented languages are being developed. Their design objectives are to remove the technical complexity associated with using the kind of sophisticated interaction environments provided by computer-based video disc systems, and to provide the dialogue designer with an easy way of soliciting user input, analysing it, and then making the system react in an appropriate way. Authoring languages for simple computer-aided instruction and learning have been available for some time, but the new facilities provided by video disc technology have shown up many of their inadequacies. Much current research and development in this area is therefore oriented towards the addition of facilities that will enable them to incorporate techniques for handling interactive videa disc. Unfortunately, many of these are presently little understood.

Automatic searching via scene analysis

Pictorial data retrieval from disc may be accomplished in either of two ways: by indexing, and by content analysis. The first depends on knowing what part of the disc the required image or sequence resides in. The second method requires a knowledge of the required content of the images that are sought, and the availability of techniques for finding them. This latter approach is relatively each to implement manually but is much more difficult to automate.

The problems associated with automatic image retrieval arise from two sources the complete lack of end-user facilities for image specification, and the limited capability of currently available hardware/software pattern-matching technology for implementing content (or scene) analysis in effective ways.
In due course, v.l.s.i. technology will undoubtedly produce appropriate chips to handle content analysis in both an efficient and effective manner, though adequate solutions to the problem of image specifications are not yet in sight. We are currently working on a technique called "specification via synthesis". This involves building an image from parts (or sub-components) contained within a video disc library, and involving the user in an interactive dialogue called "importance contouring". This means using methods that enable the user to specify the portions of an image or sequence wherein the most important pieces of pictorial information lie. Our results are as yet inconclusive. But, they do provide us with many interesting and novel views of user interaction with dynamically changing images.

M

WW - 011 FOR FURTHER DETAILS

ELECTRONIC COMPONENTS

\star ELECTRONICS \star COMMUNICATIONS \star COMPUTING \star VIDEO \star AUDIO
$\star 3 \times £ 1$ DISCOUNT Vouchers as usual

Adaptors	Copper Clad PCB
Aerosols	Cores
Ammeters	Coils
Amplifiers	Converters
Audio Leads	Crystals
Auto Modulation Meter	Data Books
Batteries	Die Cast Broxes
Beads - Ferrite	Displays
Books - Technical	Diodes
Bridge - Rectifiers	Dot Matrix LCD Module
Bulbs	Double Balanced Mixer
Cable	Drafting A_{1} ds
Cable Accessories	Drawing Pen
Cabinet Feet	Dnlls
Cage Jacks	Dnve Cord
Capacitors	Earpieces
Cases	Enamelled Copper Wire
Cassette Mechanisms	Encoder Rotary
Caps - Keytops	EPROM Eraser
Ceramic	Equprnent Cases
Cermet Preset	Etching K.t
Chassis Punches	Etch Resist Pen
Chargers - Battery	Ferric Chloride
Chokes-Min Fixed	Fernte
Cleaning Blocks	FET Dip Oscillator
Clocks - LCD	File Set
CMOS ICs	Filters
Computer Leads	Fixed Inductors
Connectors	Fluorescent Displays
Co-ax Relay	Frequency Counter
Contact Cleaner Aerosol	Function Generators

200 North Service Road, Brentwood, Essex CM144SG - Telephone (Industrial Sales Enquiries) 0217-231616 - Telex 995194 AMBIT G - Data 24 hrs (RS232/300 baud) 0271232628; REWTEL

लहाता III
 Biild your own远 anturis

DIGITAL ULTRASONIC DETECTOR

- Adjustable range from 5251 t already used ina wide range of applicationstron and doo opening equipment featuring 2 LED f 10.95 + V.A.I
INFRA-RED SYSTEM
IR 1470

POWER SUPPLY \& RELAY UNIT PS 4012

SIREN MODULE SL 157

Add 15% VAT to all prices.
Add 50 p post $\&$ packing to all orders.
Order by télephone or post
your credit card.

- Testlooo taciliay

Price $\mathrm{f} 19.95+$ V.A.T.
SIREN \& POWER SUPPLY MODULE PSL 1865

Price $£ 9.95+$ V.A.T.
HARDWARE KIT
HW 1250
only
£9.50
V.A.T.

HARDWARE KIT
HW 5063

RKSCOMPLIMITZD
Dept. WW6
21 Duke Street
Princes Risborough Bucks HP17 0AT Princes Risborough (084 44) 6326

$\sqrt[A]{C} / E$			Minimum Orderf1				VALVES VAT IS INCLUDED		
A10	1.40	EF89 1.05	PFL200 9.10	280	3.45	6B	0.8	6 Y	0.90
A2293	8.80	EF91 1.50	$2.80{ }^{*}$	28016	3.75	68R	4.80	624	0.70
A290	13.75	EF92 2.90	PL36 $\quad 1.10$	2803 U	16.00	68W6	6.20	$9 \mathrm{D6}$	2.90
AR8	0.75	EF95 0.65	PL81 0.85	Z900T	2.45	68W	1.80	10C2	0.85
ARP3	0.70	EF96 0.60	PL82 0.70	1A3	0.85	${ }^{6} 4$	0.50	10 F 18	0.70
ATP4	0.60	EF183 0.80	PL83 0.60	1L4	0.50	6C6	0.55	10 P 13	1.50
B12H	3.90	EF184 0.80	PL84 0.95	1R5	0.60	${ }_{6} \mathrm{CH}$	8.20	11 E2	9.50
CY31	1.40	EF812 0.75	PL504 1.00	1 S 4	0.45	6CL6	2.75	12A6	0.70
DAF96	0.70	EFL200 1.85	PL508 $\quad 2.40$	1S5	0.45	$6 \mathrm{CW4}$	8.50	12AT6	0.70
DET22	28.50	EH90 0.85	PL509 5.65	$1{ }^{1} 4$	0.45	6C×8	3.80	$12 \mathrm{AT7}$	0.85
DF96	0.70	EL32 1.10	PL519 5.80	1 U 4	0.80	$6 \mathrm{C} Y 5$	1.15	12 A , 7	0.60
DH76	0.75	EL34 $\quad 1.80$	PL802(SE) 2.95	1×28	1.40	6D6	0.70	12AV6	0.95
DL92	0.60	$2.90 *$	PY80 0.70	$2 \times 2 \mathrm{~A}$	2.50	6F6	1.60	$12 \mathrm{AX7}$	0.65
DY86/8	0.6	EL37 5.20	PY81/800 0.85	3A4	0.70	6F6G	1.10	12BA6	0.90
DY802	0.70	EL82 0.70	PY82 0.65	3AT2	2.40	6F7	2.80	128 E 6	1.25
E92CC	2.80	EL84 0.80	PY88 $\quad 0.60$	3B28	2.00	6F8G	0.85	12 BH 7	1.95
E180F	7.70	EL86 0.95	PY500A 2.10		$19.50{ }^{*}$	6 F 12	1.50	12BY7A	2.30
E182C	6.25	EL90 $\quad 1.00$	Qovo3/10 3.20	3D6	0.50	6F14	1.15	12 CB	0.65
EA76	2.25	EL91 4.20	$7.50{ }^{*}$	3D22	23.00	6F15	1.30	12E1	8.95
EABC	0.80	EL95 0.80	Quv03 20a	3 E 29	19.00	6F17	3.20	12J5GT	0.55
E891	0.60	EL504 1.70	21.50	354	0.60	6F23	0.75	12K7GT	0.70
EBC33	1.15	EL803 5.90	QQV03-25A	4832	18.25	6F24	1.75	12KBGT	0.80
EBC90	0.90	EL509 3.95	36.50	5R4G	1.80	6F33	10.50	1207GT	50
EBF80	0.60	EL821 8.20	QQV06/40A	5U4G	0.75	6FH8	12.50	$12 \mathrm{SC7}$	0.65
E8F83	0.60	EL822 9.95	16.10	5 V 4 G	0.75	6GAB	1.95	125 H 7	0.65
E8F89	0.80	ELL801SE) 2.80	QV03-12 4.20	5Y3GT	0.95	6GH8	1.95	12517	0.70
EC52	0.65	EM80 0.85	SP61 1.80	523	1.50	6H6	1.60	12507	1.45
EC94	4.40	EM87 $\quad 1.30$	$\Pi 21 \quad 23.00$	524 G	0.75	6JU6	5.85	12507 G	0.85
EC92	0.85	EY51 0.95	T22 $\quad 23.00$	5Z4GT	1.05	6.14	1.35	12 Y 4	0.70
ECC81	0.85	EY81 0.65	UBC41 $\quad 1.20$	6/3012	0.90	$6.4 W$	2.00	13 D 3	2.80
ECC82	0.60	EY86/87 0.60	UABC80 0.75	${ }^{64 B 7}$	0.70	615	2.30	$13 D 5$	0.90
ECC83	0.65	EY88 0.65	UAF42 1.20	${ }^{64 C 7}$	1.15	6.56	0.90	13 D 6	0.80
ECC84	0.60	EZ80 $\quad 0.70$	UBF80 0.70	6AG5	0.60	6.5	0.65	14S7	1.15
ECC85	0.60	EZ81 0.70	UBF89 0.70	6AH6	1.15	6 J 6 W	0.90	19405	0.85
ECC88	0.80	GM4 $\quad 5.90$	UCC84 0.85	6AK5	0.65	6K7	0.80	19G3	11.50
ECC189	0.95	GY501 $\quad 1.30$	$\begin{array}{ll}\text { UCC85 } & 0.70\end{array}$	6AK8	0.60	6KD6	4.50	19G6	8.50
ECC804	0.90	Gz32 1.05	UCF80 $\quad 1.30$	6AL5	0.60	6L6M	2.80	19H5	39.55
ECF80	0.85	GZ33 4.20	UCH42 1.65	6AL5W	0.85	6L6GC	2.65	20D1	0.80
ECF82	0.65	GZ34 $\quad 2.75$	UCH81 0.75	6AM5	4.20	6L6G	125	20F2	0.85
ECF801	1.05	GZ37 $\quad 3.95$	UCL82 0.95	6AM6	1.50	6L18	070	20E1	1.30
ECH34	2.25	KT66 $\quad 7.80$	UF4 1	6ANBA	2.50 3.40	6LD20	0.70	20P1	0.65
ECH42	1.20	11.20°	UF80 0.95	6 AO 4	3.40	607G	1.30	20 P 3	0.75
ECH81	0.70	KT88 $\quad 10.50$	UF85 0.95	6AO5	1.00	6SA7	1.00	20P4	1.25
ECH84	0.80	13.80°	UL84 0.95	6A05W	1.80	6SG7	1.15	20P5	1.35
ECL80	0.70	MH4 $\quad 2.50$	UM80 0.90	6AS6	1.15	6S.17	1.05	25L6GT	0.95
ECL82	0.75	ML6 $\quad 2.50$	UM84 $\quad 0.70$	6AT6	0.90	6SK7	0.95	25Z4G	0.75
ECL85	0.80	N78 $\quad 9.90$	UY82 0.70	6aU6	0.60	6SL7GT	0.85	30 C 15	0.50
ECL86	0.90	OA2 0.70	UY85 0.85	6AV6	0.85	6SN7G	0.80	30 C 17	0.50
EF37	2.15	OB2 0.80	VR105/30 1.25	6AX4GT	1.30	6SR7	1.10	30 C 18	2.45
EF39	1.25	PCL82 0.95	VR150/30 1.35	$6 \mathrm{~A} \times 5 \mathrm{~F}$	1.35	6S07	0.95	30F5	1.15
EF80	0.65	${ }^{\text {PCLLB4 }} 0.90$	$\begin{array}{ll}\times 66 & 0.95 \\ \times 61 M & 1.70\end{array}$		0.55		1.50		1.40
EF83	1.75 0.80	$\begin{aligned} & \text { PCLB6 } \\ & \text { PCI } 805 / 850.75 \\ & 0.95 \end{aligned}$	$\begin{array}{\|rr} \mathrm{X}_{6} 1 \mathrm{M} & 1.70 \\ \mathrm{Z} 759 & 19.00 \end{array}$	${ }_{6 B G 66} 6$	0.60 1.60	6 V 6 GT 6×4	0.95 0.95	$\begin{aligned} & 30 \text { FL } 12 \\ & 30 \text { FL } 14 \end{aligned}$	1.25 2.15
EF86	0.75	PD500/510 4.30	$2759-19.75$					30L15	1.0
VALVES AND TRANSISTORS Telephone enquiries for valves. transistors, etc: retail 7493934 , trade and export 7430899. FIELD TELEPHONE, CABLE TYPE D10 HARNESS " A " \& " B " CONTROL UNITS " A " "R" "J1" "J2." Microphones No 5, 6. 7 connectors, frames, carrier sets, etc. FIELD TELEPHONES TYPE "J". Tropical, in metal cases. 10-line MAGNETO SWITCH- BOARD. Can work with every type of magneto telephones. PRICES MAY VARY									
COLOMOR (ELECTRONICS LTD.) 170 Goldhawk Rd,London W12 Tel. 01-743 0899 or 01-749 3934.0 pen Monday to Friday 9 a.m.-5.30 p.m. ww-20									

Happy Memories

Part type

4116200 ns
4816100 ns For BBC comp
4164200 ns
2114 200ns Low power
2114 450ns Low power
6116/2016 150ns
6116 150ns Low power
2708 450ns
2716 450ns 5 volt
2716 450ns three rail.
2732 450ns Intel type
2532 450ns Texas type
2764 250ns
1 off

27128 250ns.
Z80A-CPU£2.99 Z80A-PIO. 6522 PIA $3.70 \quad 7805$ reg. Low profile IC
sockets: Texas solder-tail

Pins Pence 12

Soft-sectored floppy discs per 10 in plastic library case
5 inch SSSD £17.00 5 inch SSDD $£ 19.25 \quad 5$ inch DSDD $£ 21.00$ 5 inch DSOD f26.35
inch SSDD
8 inch DSDD $£ 25.50$
74LS series TTL, large stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or phone for list

Please add 50p post and packing to orders under f 15 and VAT to total Access and Visa we/come. 24-hr. phone service on (054 422) 618 Government and Educational orders welcome, $f 15$ minimum Trade accounts operated, phone or write for details.

> | HAPPY MEMORIES (WW) |
| :--- |
| Gladestry, Kington |
| Herefordshire HR5 3NY |
| Tel: $(054422) 618$ or 628 |

Low-harmonic s.c.r. voltage controller

Zero-crossing switching and programmable burst mode give wide voltage range and low r.f.i.

Radio-frequency interference, emanating from many silicon-controlled-rectifier (s.c.r.) mains controllers is extremely strong and, in many cases, totally swamps radio reception on nearby receivers over the long, medium and parts of the shortwave spectrum. This interference stems from the very fast voltage and current transients associated with simple phasecontrol systems and is frequently very difficult to suppress. Figure 1 shows the skeleton components of such a system, together with the associated load voltage waveform. It is immediately evident that the sudden voltage transitions result in high energy harmonics and, as has already been indicated, are a potential source of considerable high-frequency interference. The spectrum of the voltage shown in Fig. 1 has been Fourier analysed for the case when $\alpha=90^{\circ}$ (for future comparison) and the spectral components are shown in Fig. 2. The slow fall-off in the amplitudes of the harmonics as their number is increased is clear.

A better solution than heavily filtering the system is to use zero voltage switching, where the supply is switched to the load as

Fig. 1. Skeleton circuit of basic-phasecontrolled s.c.r. controller with no anti-r.f.i. precautions. Sharp transitions in output are fruitful source of harmonics.

by R. T. Irish

it crosses zero voltage. Bursts of complete cycles, or, in some cases complete halfcycles, are thus applied to the load. These have negligible harmonic content within the radio spectrum and are therefore found to produce minimal interference.

The logical development of the zero crossing switching is a programmable s.c.r. voltage controller, using complete cycles of mains waveform applied to the load, followed by a "rest" interval of a generally different number of cycles. If M cycles of mains waveform are applied to the load, followed by N cycles "rest", the r.m.s. load voltage is $V M /(M+N)$ times the input r.m.s. voltage - as indicated in Fig. 3.

The application of this technique lies principally in the area of resistive loads of moderately high thermal capacity. It is not envisaged that it would be useful for the control of lamps, in view of the flicker which would be introduced due to the low thermal capacities of the filaments.

Circuit

The complete circuit is shown in Figs 4 and 5. Referring to Fig 4, the 50 Hz transformer output is full-wave rectified, smoothed and then regulated by the 78L12. This forms the d.c. supply to the LM348 quad operational amplifier, the TIS43 unijunction and the pulse-counting circuits shown in Fig. 5.

A sample of the mains is taken by the potential divider consisting of the $33 \mathrm{k} \Omega$ variable resistor. Facilities for the connection of a $0.1 \mu \mathrm{~F}$ phase-correction capacitor, either in parallel with the variable resistor as shown, or in parallel with the $33 \mathrm{k} \Omega$ fixed resistor, are included in the circuit to correct for any small phase shifts within the transformer. This mains sample is then fed via the 1 N 4148 diode to the first of the operational amplifiers. The

Fig. 2. Slow fall-off in amplitude of harmonics produced by basic circuit of Fig. 1.

Fig. 3. Development of ordinary zerocrossing controller, switching numbers of whole cycles, rather than parts of cycles.

Fig. 5. Cycle-counting bistable switch.
zero crossings of the mains waveform thus appear as rapid rises and falls in the voltage at the output (pin 8) of this amplifier. After some differentiation, provided by the $0.01 \mu \mathrm{~F}$ coupling capacitor, these transitions are used to trigger the monostable, formed by using the amplifier connected to pins 12, 13 and 14 of the LM348. Pulses 1 ms in duration are thus produced every time the mains waveform crosses the zero axis in a particular direction.

Referring now to Fig. 5, these 1 ms pulses are fed simultaneously to both clock inputs of the 4526 down-counters. The count of each of these is individually, externally programmed from one to fifteen by means of the d.i.l. switch system shown.

To appreciate the action of the circuit, assume initially the $4027 \overline{\mathrm{Q}}$ to be high and Q low. The right hand 4526 counter is thus enabled and the left hand one disabled both by means of their PE terminals. Input clock pulses are thus counted by the right hand 4526 until it has counted down to zero, starting from the binary count set on the d.i.l. switches. The 0 condition is indicated by the appearance of a high on its 0 terminal. This thus sets the 4027 - via the 1000 pF capacitor, $470 \mathrm{k} \Omega$ and diode network. The \bar{Q} output now becomes low, enabling the left hand 4526 to count subsequent input pulses and inhibiting the right hand counter. When this has run down to zero, after the number of pulses set on the d.i.l. switch, the cycle repeats.
The count of each of the two 4526 integrated circuits, as shown, is a maximum of fifteen, but this may be

readily expanded by cascading 4526 circuits to cover the desired range.

The $\overline{\mathrm{Q}}, 4027$ output is then fed to another operational amplifier (pins 5, 6 and 7 of the LM348) and its output is used to provide continuous firing of the u.j.t. device when Q is high, thus triggering the s.c.rs, via pulse transformer T_{2}. Since the u.j.t. is now firing continuously for M cycles and is resting for the following N cycles, the r.m.s. load voltage is now the desired $\sqrt{ } M /(M+N)$ times the mains supply voltage.
The range of load voltages available with this system is shown in Table 1 but, as has already been indicated, this may be extended by cascading 4526 counters.

Setting-up

Initially, it is recommended that the two pulse counters should each be set at two and the $10 \mathrm{k} \Omega$, u.j.t. frequency control to its maximum value. The 1 ms pulse and its relationship to the mains waveform should be monitored on an oscilloscope and the 47 $\mathrm{k} \Omega$ phase-adjustment resistor (together with the possible repositioning of the 0.1μ capacitor) should be coarsely varied to position the pulse at the mains zero crossing. The count ratio should then be increased to 15 when a further, finer adjustment of the $47 \mathrm{k} \Omega$ phase-control resistor enables correct operation to be obtained. This will then be found to be maintained over the whole count range. If one particular r.m.s. output voltage only is envisaged, the $10 \mathrm{k} \Omega$ u.j.t. oscillator frequency control may be finely adjusted to fire the s.c.rs precisely at the beginning of each cycle.
As expected, when this circuit was operated, no radio interference could be detected on either the long or medium waveband, using a portable receiver (nested within the wiring!). A simple phase-controlled s.c.r. circuit was set up for direct comparison and radio interference was immediately apparent up to a range of some six feet from the system.

The Fourier analysis of a range of waveforms with $M=N$ was performed for

Table 1. R.m.s. load voltages for M cycies on, N cycles off, when supplied from 240V.

\mathbf{M}	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	170	196	208	215	219	222	224	226	228	229	230	231	231	232	232
2	139	170	186	196	203	208	212	215	217	219	221	222	223	224	225
3	120	152	170	181	190	196	201	205	208	210	213	215	216	218	219
4	107	139	157	170	179	186	191	196	200	203	206	208	210	212	213
5	98	128	147	160	170	177	183	188	192	196	199	202	204	206	208
6	91	120	139	152	162	170	176	181	186	190	193	196	199	201	203
7	85	113	131	145	155	163	170	175	180	184	188	191	193	196	198
8	80	107	125	139	149	157	164	170	175	179	183	186	189	191	194
9	76	102	120	133	143	152	159	165	170	174	178	181	184	187	190
10	72	98	115	128	139	147	154	160	165	170	174	177	180	183	186
11	69	94	111	124	134	143	150	156	161	166	170	173	177	180	182
12	67	91	107	120	130	139	146	152	157	162	166	170	173	176	179
13	64	88	104	116	126	135	142	148	154	158	162	166	170	173	176
14	62	85	101	113	123	131	139	145	150	155	159	163	166	170	173
15	60	82	98	110	120	128	135	142	147	152	156	160	164	167	170

direct comparison with the phasecontrolled system ($\alpha=90^{\circ}$) and the high rate at which components fall off with frequency are immediately apparent Fig. 6 - in stark contrast to the phasecontrolled circuit in Fig. 2. Providing the thermal capacity of the load is high, the harmonic content of the load waveform may be improved further by the selection of high values for M and N , rather than the lower values which are able to be used when M and N have common factors.

Fig. 6. Spectral components up to 250 Hz with various ratios of $M: N$.

It is also useful to note that the control circuit is completely isolated from the mains supply and is this quite safe when making adjustments, oscilloscope connections, etc. Finally, the replacement of the d.i.l. switch system by voltageactuated c.m.o.s. switches would enable the computer control of the r.m.s. output voltage to be achieved.
wan

Next month

Behind the micro. A survey for users who want to progress beyond computer games and use their machines as tools for practical experimentation.

PAL decoding. David Read analyses the cause of dot-patterning and cross-colour effects in colour tv receivers in the
first of a new series. Later parts discuss decoder design and how to reduce defects, colour tube limitations and a practical decoder design with wide luminance bandwidth.
Energy saver. Instead of the bang-bang' mode of operation usually to be found in centralheating boilers, where the boiler works flat out until stopped dead by the thermostat, Jim

McHarg's unit pulses the boiler, reducing the excursions of temperature and saving fuel.
Microcomputer robot control. Morris Driels describes an interface to control non-servo robotic devices by means of a Rockwell 6522 v.i.a. and SAA1027 stepper motor drive chip.

On sale

 November 16
Is this year really the centenary of electronics?

Supporters of Thomas A. Edison would certainly claim that 1983 is the true centenary of electronics as a technology. It was a hundred years ago that this prolific inventor discovered "the Edison Effect", later to be known as thermionic emission. He had discovered that the discoloration of the inside of a carbon-filament electric light bulb was reduced in the plane of the filament, but only on one side of the bulb, and that on the side of the filament which was connected to the positive pole of the supply. He reasoned that the positive half of the U-shaped filament was casting a 'shadow' between the negative half and the glass. Later, he found that if he put a tinfoil coating on part of the inside of the evacuated glass bulb, a current could be made to flow across the empty space between the hot filament and the tinfoil coating. He noted the fact - later to have such practical importance - that this current would flow in one direction only
But although the electron had been postulated (as the minimum amount of charge carried by an ion) and named as such by Johnstone Stoney in 1874, the idea of this particle of negative electric charge moving about and constituting an electric current was not yet known to the practical experimenters of the 1880 s. So it did not occur to Edison that the one-way current he had observed was in fact the result of any such entities travelling through the empty space in his lamp. It was a great mystery to him and the Edison Effect remained a scientific curiosity for a while.

A decade or more had to pass before J J. Thomson found that it was possible to validate the existence of the electron by measurement. He measured the charge/ mass ratio of the electrons constituting the cathode rays that had been investigated by William Crookes and others in the 1870s. From this work arose, about 1897, the Thomson concept of the atom as a positively charged mass with a lot of small negatively charged electrons embedded in it sufficient for the atom as a whole to have no net charge. Thomson also studied the Edison Effect at about this time and established that the current flowing through the empty space was in fact a stream of electrons.

In the present story the old saw that the British make discoveries and inventions which the Americans then turn into successful products is manifestly the

by James Franklin

inverse of the truth. It was J. A. Fleming who not only experimented with the Edison Effect but showed an awareness of its practical possibilities when he wrote to Guglielo Marconi: "I have not mentioned this to anyone yet as it may become very useful."

Fleming's crucial work resulting in the invention of the thermionic diode as a practical device for use in wireless telegraphy was not done until 1904. Is this, then, the true date of birth of electronics technology? The retrospective account which Fleming gave in his book "Fifty Years of Electricity" (published by Wireless World

Fig. 1.

Glow-lump, hnving tho glass bulb Hackened by deposit of carbon, showing the moleculnr seattering which has taken place from the point a on the filament, and the shadow or line of no deposit produced at 6 .

Based on a diagram taken from Proceedings of the Royal Institution, February 14, 1890, which illustrated a paper by Prof. J. A. Fleming, 'Problems in the Physics of an Electric Lamp'.
in the 1920s) may help one to think about it. He recalls:
"The author had carefully studied in 1883 and 1896 . . . the so-called "Edison effect" in glow lamps discovered by Edison in 1883, and by 1904, as a consequence of the researches of Sir J. J. Thomson, it was well known that an incandescent filament of carbon in a high vacuum was giving off torrents of electrons or particles of negative electricity. Also, it had been found by the author that the space in a high vacuum between an incandescent cathode and a cold anode could conduct negative electricity from the hot to the cold electrode, but not in the reverse direction. It was not at all obvious, however, that a carbon filament incandescent lamp with a plate sealed into the bulb could be used to rectify high-frequency alternating currents; that is, to convert them into continuous or direct currents. Mr Edison had made no such use of his "Edison effect" lamps, nor had it occurred to anyone, until the author pointed it out, that such a lamp, having a metal cylinder surrounding the filament and carried on a wire sealed through the bulb, could be used to rectify high frequency currents and, therefore, as a detector of electric waves in wireless telegraphy
"The author, however, constructed in 1904 some carbon filament incandescent lamps in which the filament was surrounded by a metal cylinder carried on a platinum wire sealed through the bulb. These lamps had their filaments made incandescent by a six-cell storage battery, and they were connected . . . with the receiving circuit of a wireless telegraph apparatus
"It was at once found that this thermionic valve gave us a very simple, easily managed detector of electric waves in radiotelegraphy."
All praise to Fleming for inventing the thermionic diode - from which, of course came Lee de Forest's triode, modern radio technology and eventually electronics. (The triode oscillator was used in an early electronic instrument for measuring mechanical displacement by capacitance variation only a few years after the invention of this type of valve.) But whether Fleming in 1904 or Edison in 1883 was the true founder of electronics as a technology will probably remain a matter for historical interpretation.

LOGIC AND ELECTRONIC SYMBOL STANDARDIZATION

It is with a certain sense of bewilderment that I view the differing symbols used in the electronics magazines which I read: these range from the otherwise excellent, but often symbolically and artistically abysmal, recent computer magazines to your own (I feel) leading journal.

British Standards perhaps need taking to task for their lack of guidance and unhelpful 'black boxes': can you - anyone - kick them into a "non-sitting-on-it" situation?
'Mil' standards please those of us who deal with them on a daily basis, naturally, but what is needed is a workable standard which also allows for an individual style, as exhibited in $W W$ for so long.
G. Beard

Wandsworth

ELECTRONIC WEIGHING SCALE

I have read with interest J. L. Hood's design for an electronic weighing machine in your October issue. Obviously, I am very pleased to see he has used as the 199.9 mV d.p.m. our own DPM 200 which is particularly suitable as it has the kg symbols available on the display.

However, I should point out that whilst we cannot comment regarding the rest of the circuit, there is an error regarding the driving of these symbols. To avoid 'burn in' an l.c.d. should be driven by an a.c. source and such a source is available on our meter labelled 'XDP'.
Your circuit shows the symbol and the decimal point connected directly to ground which could damage the meter.

Should any of your readers require full data sheets for this product we would be delighted to supply one. Could I also mention that besides ourselves, the DPM 200 is available from the following distributors: RS Components Ltd, BICC Verospeed Ltd and Farnell Components Ltd.
S. P. Wyre

Lascar Electronics
Module House, Whiteparish
Wilts

CALL SIGN

Keith Ellis's letter in October brought back two amateur radio memories, one very painful, of over 60 years ago.

As 2MT's QTH at Writtle, Essex was the next village to my home at Widford, his signals were devastating when listened to on a homebuilt set under the permission of my Experimental Receiving Licence of December 1920. Capt Eckersley kindly put up with "instant" visits from three of us hot and sticky off our cycles even before he had put his telephone microphone mouthpiece down at the end of a transmission.

At St John's School, Leatherhead, where I was a Founder Member of the School Wireless Society I once skipped Prayers between two evening preps to listen to a special transmission on a receiver equipped with several French R valves. As the set was temporarily housed in a
basement room under the Masters' Common Room I put a cloth over the valves to conceal my presence, but sadly I was spotted by a Master entering the building from the outside. At the end of the second Prep, all were released to bed except Thurlow 1 who, after confession, had to pay a painful visit to his Housemaster for six of the best.

What was done for amateur radio!
Richard Thurlow G3WW
March
Cambridgeshire

ELECTROMAGNETIC DOPPLER

So now S. J. Hobson chooses to join Kennaugh and the rest in the demonstration of failure to understand basic principles (September Letters.)

The terms $C+V$ and $C-V$ are potentially infinite and it is quite wrong even to imagine that they might be used to discuss events in an orderly universe in which events happen linearly in a scale which ends abruptly at C. Let j_{v} be the Lorentz transform. V is as we measure and we see that

$$
\mathrm{V} . \mathrm{j}_{\mathrm{v}}=\text { a linear proportion of the scale } \mathrm{C} .
$$

Knowing this, we can use the diagram for all of our experimental results leaving mass, length and time invariant: there is

S.T.R. was the miscegenation of a man who did not understand that apples must not be mixed up, mathematically, with pears.

Finally, to change the subject, could someone remind Catt and Co. that when a short wire is statically charged, the charge migrates half to each end and there remains until let out. Might this not have something to do with the cause of the step being half as high and twice as long?
A. Jones

Alderney, CI

SINE WAVES, HARMONICS AND SIDEBANDS

The simplest and most fundamental form of repetitive motion can be represented by a sine wave. To mix metaphors, one coud say it is the the "lowest level" of repetitive motion and all other types tend to "gravitate" towards it. The waves of the sea, the swing of a pendulum, the vibration in a piece of solid material all tend towards a sine wave. Mathematically the sine wave has the unique property that the representation of the rate at which it changes (its differential) is another sine wave.
In electronics it has the property of being the only kind of electro magnetic radiation which occupies one spot frequency, and apart from indicating its existence conveys no other information whatever.

Immediately the shape of the wave changes from a pure sine form other frequencies appear. And this is where a certain amount of confusion can arise. On the one hand we learn that a repetitive waveform which is not a sine wave always contains harmonics. On the other we learn that a sine wave, modulated by another wave at a lower frequency always results in the production of sidebands. But what is not so often realised is that harmonics and sidebands are exactly the same. The reason why this is not realised seems to stem from the fact that we tend to think of a modulated sine wave as a sine wave which is varying - usually rather slowly - in amplitude. Actually it is nothing of the kind, because a 'sine wave' which is varying in amplitude is no longer a sine wave. No matter how slow the change each half cycle, for example, must be a little greater or smaller in amplitude than the previous one and we have in effect a distorted sine wave. Now suppose we increase the modulating frequency until it is the same as the modulated frequency. The distortion becomes more and more obvious until, when they are equal, every cycle suffers the same amount of distortion and we have a repetitive, non sinusoidal wave form. And of course, the sideband offset frequency is now the same as the modulated frequency - in other words we have a harmonic.

Understanding, as opposed to the mechanical acquisition of unrelated facts, arises from our ability to make a coherent pattern out of the information we receive. And the realisation that harmonics are only a specific kind of sideband can help to give a clearer picture of the general process of modulation.
Roy Hartkopf
Alphington
Victoria
Australia

INADEQUATE MATHEMATICS?

I have been very interested to read the series of challenging articles and letters on basic physics in Wireless World; however I must say that Professor Jennison's article and his description of a machine for stopping a travelling wave have all the appearance of being an elaborate hoax. He produces a stationary field and asks "Where are the charges that produce it?" It is obvious to me where the charges are - they are moving up and down (or more precisely, in his circular configuration, inwards and outwards) in the
capacitors of his looped waveguide. Could it be that Professor Jennison has made the mistake that my students commonly make - that of confusing the mathematical description with the real thing? The fact that one can write the same equations for two phenomena does not mean that the two phenomena are the same. In using an artificial waveguide, Professor Jennison has, in effect, localized his wave with respect to specific points in his construction, i.e. his capacitors; there is, as far as I know, no evidence to suggest that an electromagnetic wave travelling in a closed loop of waveguide would be so localized with respect to any specific point in the guide. It may be argued that it is so localized due to the reflective effect of electrons in the metal of the guide, but then, of course, we are back to electrons.
The method described of getting a stationary field from a travelling wave is not new; in a rotor-fed 3-phase induction motor, a magnetic wave is produced which travels round the airgap at a speed equal to the difference between the synchrononous speed and the rotor speed. If one couples a d.c. motor to the shaft and forces the rotor speed up to be equal to the synchronous speed, the field becomes stationary. This is an experiment which is easily carried out and the result checked simply by connecting an oscilloscope across a stator winding.

It is not that I favour any particular theory of electromagnetic phenomena - it is just that in Professor Jennison's article my attention focused itself on his assumption that the wave in his machine is the same sort of thing as the wave in his theoretical waveguide, presumably because the equations are the same. In fact in recent years I have come to consider that the mathematics we use are inadequate to describe the phenomena we encounter, and are frequently a source of confusion to students.
A. H. Freeborn

Managua

Nicaragua

DESIGN COMPETITION

It should be possible to reduce a microphone's pick-up of unwanted background noise (D. Wattson - Letters, September). One would need two microphones placed back to back so that one of them picks up more signal energy from the source than the other.

By combining their outputs in anti-phase the background noise could be reduced by means of a balance control. Such a circuit could also be used with advantage for those useless microphones which are built on the cases of cassette recorders. They also pick up the recorder's motor noise. An internal anti-phase mike near the motor would reduce this defect.
A. H. Winterflood

Muswell Hill
London N10

CLOSED LOOPS

I was delighted to note Mr Winterflood's enjoyment of WW's "Physics Section" and Letters: your excellent magazine is becoming rather like the House of Commons where protagonists and antagonists agonise without much hope of convincing each other, it being the interested onlooker who wins by seeing the most as if he were watching a game of chess. Such is the function of debate, and most interesting it can be. But it is also extremely valuable because it helps brains to tick conceptually and we could
do with a lot more of that, in a digital world of disintegration, Deus being very much ex Machina even if Machina can not see it. That must remain Machina's problem.
If I may, I would like to put it to Mr Winterflood that the mummy of the closed loops is the concept of mass-energy-mass-energy interchange, where mass is perceivable (from one side) and energy is deduced to exist because mass demonstrates a funny thing called behaviour which has to be explained somehow.

Similarly, the daddy of the closed loops is creation-catastrophe-creation-catastrophe whether looking at mass or imagining energy travelling in the opposite direction to mass. The unattainability of ultimate mass and zero energy appear to account for the finiteness of the universe.

The marriage of this daddy with that mummy is the essential marriage between method and means, Deus and Machina: if that marriage breaks down, so does the machine and the patent becomes void, but Deus lives on to create another day.

The only missing parameter is the causal factor for the outward acceleration of mass, and we can find that if we can put behind us the egotistic thought that in throwing a cricket ball we give it energy and accept that we dissipate energy in giving it movement, while the ball imbibes energy during the act of acceleration: the concept alters nothing in that it only amounts to a deeper analysis of how kinetic energy actually works, the point being that spatial energy would tend to constancy in any locality.

In cosmological scale, this would not imply constancy of spatial energy along any radial geodesic of outward acceleration: if there were an energy gradient, mass would climb up it and thus accelerate! Such a gradient is provided by the realisation that a mass approaching the speed of light would self-destruct just before getting there, becoming a dissociated collection of basic building blocks carrying away the energy of destruction in their violent spinning. Thus a high-energy state would exist at the catastrophic boundary of the universe, gradually dissipating to a greater state of entropy towards the centre - hence the energy gradient that causes the acceleration of the masses, so explaining the increasing relativistic energy state of mass in its evolution from basic building block to quasar (and perhaps black hole) with increasing distance.

In this concept, the Einsteinian curvature of space becomes an energy gradient, the fifth dimension, time being the fourth, the other three being well enough known to all but the flatearthers, while in the commercial world the sixth dimension would be chepth, or cheapness!

Such an energy gradient would occur towards all masses in that they would attract energetic sub-massive building blocks around them, the carriers of spin energy: gravity then becomes a quarter wave with a pressure node centred around the mass in question.

If Professor Eric Laithwaite will now wave his mill-wheel about again as it spins on its axle, we might learn something, especially about the precession of gyroscopes, the inordinately rapid winking of extremely massive and dense pulsars at very great distances, quasars, and black holes. As he says, there has got to be something up there, and I happen to agree with him.

But now, what price the planetary electron? There is nothing to stop it from orbiting and its orbital velocity becomes a function of its distance from creation towards catastrophe: as the atom progresses outwards accelerating, so its nucleus becomes more massive and attrac-
tive. The electron appears to spiral more and more rapidly into the nucleus, does it not? Thus mass becomes denser and denser, ultimately becoming perhaps a black hole dissipating itself into energy, having been a quasar.
Macrocosm and microcosm are subject to the same laws: all we need to do is to recognise them, and to integrate them using our powers of mental conception, the building of a great spatial jig-saw puzzle.
James A. MacHarg
Wooler
Northumbria

FORTH COMPUTER

When choosing a computer to perform a particular function one evaluates its performance in terms of price, throughput and storage. Throughput is more dominated by the number of cycles it has to perform than by cycle time (at any given level of process technology). The number of cycles is determined both by the size of the task and by the degree of fit between the task and the computer's instruction set (i.e. the fit between the source language and the processor architecture). As with most engineering the old $80 / 20$ rule applies; 20% of the source task will consume 80% of the processor activity. Thus to a first order approximation, all one needs to do when evaluating a processor in an application is to find out how the processor copes with the code fragments (20% of the total) which it will be executing for 80% of the time. Hence it is neither worthless nor misleading as Mr J. O'Connor (July Letters) asserts, to examine some small code fragments so long as they have been chosen with care. In the case of Forth, as I explained, the dominant code fragment is Next for it is used in all code routines which are used to emulate the Forth machine. Other code fragments (all of which incorporate Next) in decreasing order of usuage are those for subroutine nesting and denesting (Docol, Semis) and stack operations (DUP, SWAP, DROP, + etc). Hence the choice of code fragments (all duplicated from the relevant FIG models) published in May $W . W$. upon which I based my processor choice for my Forth computer.

Recent research into processor architecture has led to a new form. Spectacular performance claims are made for these Reduced Instruction Set Computers (fabricated as VLSI microprocessors), in that they will outperform both in terms of programme size (smaller) and task execution (faster) not only commercially available microprocessors but also commercially available mini and super-mini computers. Such results are claimed both by the original RISC workers David Patterson and Carlo Sequin (IEEE Computer Sept '82) and also by Inmos for their S14 processor which appears to be a research vehicle for the as yet unavailable Inmos

Transputer. Patterson and Sequin found that just one code fragment - the procedure call/return for high level languages accounted for a massive 40% of the processor memory accesses. So they concentrated their efforts upon designing a processor architecture which effectively tackled this problem. They produced with less design and layout effort a design that usually, with less instructions and with less transistors, outperforms most current computers.

Tables of relative performance (Manufacturer's figures)

	design + layout effort	relative to RISC code execution	
man-months	size	time	
RISC	27	1.0	1.0
S14	na	na	na
M68000	170	0.9	3.5
Z8002	130	1.2	4.1
PDP 11/70	na	0.9	2.6
VAX 11/780	na	0.8	2.1

	\# instructions, addr modes	relative to S14 code execution size time	
RISC	31,2	na	na
S14	48,na	1.0	1.0
M68000	61,14	4.3	2.2
Z8002	110,12	3.6	2.2
PDP 11/70	65,12	na	na
VAX 11/780	248,18	2.9	2.1

Obviously there is not a one-to-one correspondence between designing a processor architecture and choosing a microprocessor to run Forth on. However I maintain that they are similar in that by looking at what instruction sequences will consume most processor resources and then by analysing the fit of those few, one can make the correct choice.

I obviously failed to convey to the $W . W$. readership the fact that the Forth machine (emulated by the M6809) is a zero address machine. The only microprocessor that I know of that has zero address stack instructions is the INS16032. In a zero address machine, data operations always create and destroy items at the top of stack. The more common microprocessor architecture is a one [two] address machine where data operations occur between the [an] accumulator and some other (normally memory) location. For these reasons Mr J . O'Connor's code is not a suitable emulation of the Forth word ' + ' for it both fails to destroy one of the operands by adjusting the length of the data stack and it also leaves the result in the accumulator. Mr J. O'Connor points out that if BP (base pointer) has a fixed relationship towards SP (stack pointer) his code fragment can be shortened even further. The use of stack instructions rela-
tive to BP works fine for PASCAL-like languages with compile time evaluated offsets within stack frames but is impractical for Forth where there are no stack frames and the stack size is so dynamic. Forth avoids all the complications of stack frames (and so also of static and dynamic links) by keeping control information on the return stack. Therefore there is no appropriate place for the stack frame marker (BP) to point to. That is, in Forth there is no base other than stack top from which to evaluate at compile time a run time offset. Of the two processors under discussion (18088, M6809) it is only the M6809 that allows just such addressing.
B. Woodroffe

Edinburgh

PREFERRED VALUES IN SERIES AND PARALLEL

A little acquaintance with the sequence of preferred values for resistors manufactured to a tolerance of 20% leads to the discovery that every resistor in the sequence is the approximate equivalent of two others connected in series. For example, the resistors ranging from 1 ohm to 10 ohm are

$$
1,1.5,2.2,3.3,4.7,6.8,10
$$

and

$$
3.3 \simeq 1+2.2
$$

and so on.

$$
4.7 \simeq 1.5+3.3
$$

Closer acquaintance yields the further discovery that every resistor is also the approximate equivalent of two others connected in parallel. For example,

$$
\begin{aligned}
& \frac{1}{1.5} \simeq \frac{1}{2.2}+\frac{1}{4.7} \\
& \frac{1}{2.2} \simeq \frac{1}{3.3}+\frac{1}{6.8}
\end{aligned}
$$

and so on. At the expense therefore of some inconvenience one could avoid the expense of stocking half of the values in the 20% sequence.
A search for an exact basis for these two approximations would begin with the reminder that the preferred values are the rounded approximations of

$$
1, \mathrm{r}, \mathrm{r}^{2}, \mathrm{r}^{3}, \mathrm{r}^{4}, \mathrm{r}^{5}, \mathrm{r}^{6}, \ldots
$$

where r is determined by the requirement that $\mathrm{r}^{6}=10$, and equals 1.468 to three decimal places. The next step would be to investigate a preferred sequence

$$
1, x, x^{2}, x^{3}, x^{4}, x^{5}, x^{6}, \ldots
$$

where x is determined, on the one hand, by the condition

$$
x^{3}=1+x^{2}
$$

and, on the other hand, by the condition

$$
\frac{1}{x}=\frac{1}{x^{2}}+\frac{1}{x^{4}}
$$

Surprisingly, simplification of the second condition shows that it is identical with the first. In other words, if a preferred sequ-
ence possesses either the series property or the parallel property it will also possess the other.
Cause for greater surprise lies in the solution of the equation

$$
x^{3}=1+x^{2} .
$$

A few trials with an electronic calculator will show that x is equal to 1.466 to three decimal places, a value fortuitously close to that obtained for r above.
D. R. Watson

RAAF Academy
Point Cook
Australia

DEATH OF ELECTRIC CURRENT

Two quotations from Wireless World, September 1983:

1. M. G. Wellard's letter, quoting Hertz: "In [Weber's theory], conductors appear as the only bodies which take part in the propagation of electrical disturbances -non-conductors as bodies which oppose this propagation. According to our [Hertz's] conception . . . all propagation of electrical disturbances takes place through non-conductors; and conductors oppose this".
2. M. McLoughlin: "Current dumping review - 1": "Obviously high farce has effected an entry . . . A complex situation may sometimes be viewed quite validly in alternative ways. In this case the fullest understanding seems to be obtained when one has seen both explanations, seen that they are both valid, and grasped that they are complementary views of the same situation".

Need one say more?
R. Kennaway

Norwich

AERETICS

First, may I congratulate Dr Scott Murray and yourself on these articles and the courage displayed in attacking the 'Citadel'. Today's teachers know too little physics and have let the mathematics, of which they know a little, rule the whole field, often against the physical facts.

I would suggest there is an error in Part 2 (August) of the series, when the electric and magnetic fields are described as "the first instance when imagination is treated as truth". Surely the action of the gravitational field was the first. No one, so far as I know, expects the gravity field to act through intermediate bodies, so why should the electric field? No one looks for a gravity wind, so why seek an aether wind? The Michaelson-Morley experiment was quite irrelevant. It disproved nothing, not even an aether, if there is one.

Then in Part 3 (October) Dr Scott Murray breaks his own rule by accepting the photon as a fact. Perhaps the photon is a
root trouble for modern physics. Arguments about the duality of particles and waves would cease without photons. What are they? The photon is a truly metaphysical object, being a particle which travels at the speed of light, and so has no depth, no volume, only an infinite area transverse to its direction of propagation, like the surface of an expanding balloon. It also has no mass, in fact it is a nothing which carries a packet of energy.

Photons were 'guessed-up' by Einstein who also postulated a constant velocity for light - but only in a vacuum (nowhere) We know that light travels more slowly in other dielectrics such as glass or water.

Before the electric telegraph, a blind man might have said that all velocity was limited to the speed of sound. Until some new medium is found the velocity of communication is limited to that of light or radio. If Spain (lat 40°, long- 5°) and New Zealand (lat 175, long 175) both fired vertical rockets at 0.6 c none of the astronaughts would believe the US and USSR reports, via radio, that the other ship existed, for they could neither see it nor hear its radio.

Can we start again? Are we looking at an energy packet from the wrong point: Planck (1901) was studying the photoelectric effect when he discovered the quanta, and he had probably barely assimilated the idea of an electron. He could not have known Bohr's atom (1913) and so came to the wrong conclusion? Is it the electron which requires an energy packet to acquire escape-velocity from the atom, and not the light that comes in packets? If a large missile hits a car head-on and one or two humans go through the windscreen, would one say that the missile energy is a discrete number of humans?

Let us start again from known facts. (1) Light is an electro-magnetic phenomenon: demonstrated by Faraday and Kerr. (2) Light is not a static problem: it is oscillatory (Hertz). (3) The electric and magnetic fields are at right-angles and always 90° out of phase. Some recent textbooks show these in-phase - an umpardonable error. Infortunately too few physicists know much about radio and, ever since Hertz, scientists have avoided the question of how a radio signal gets from point A to point B. This is an inadmissible question, likened by Bedford to the grin on the Cheshire Cat.

With sound waves, disregarding the Brownian movement or the wind, the vibrations of air molecules pass from one atom to another with no continuous linear motion of air molecules in the direction of propagation. Electromagnetic waves must also be conveyed by small displacements of electricity: electron vibrations induced from one to another by the electro-magnetic field, or action-at-a-distance. Are these free electrons? Unlikely, except in an ionised layer. So this brings us back to "What is a displacement current?"

The only good theory I can offer is that of Dr Moulin (JIEE 1941, V86 pl13) who
showed that the electron orbits of a dielectric appear to be displaced when a capacitor is charged. The orbits move towards the positive plate by an amount depending on the potential gradient and the construction (permittivity) of the atoms.

Consider hydrogen atoms between two charged plates. The electron's orbit is displaced towards the positive plate, the distance being kE , where k is the permittivity. The distance may also depend on the gas-pressure, which controls the breakdown voltage, but let us keep it simple. An alternating voltage (r.f.) on the plates will cause the electrons to move up and down while the slower, heavier, nucleus will scarcely move.

Now consider the same simple atoms near to a conductor carrying a direct current. The electrons moving in the wire will repel, and be repelled by (inductance), the electrons in the gas. So the orbiting electrons tend to move in a plane parallel to the wire, or the orbit tends to be warped to be at right-angles to the wire regardless of its original axis, giving a magnetic field. This will give a gyroscopic precession, but more about that later. The orbits of the atoms can be likened to a flattened chainmesh, the amount of warp depending on the current in the wire and the permeability of the atoms. With an r.f. current, the warp will flatten the mesh first on one side and then on the other.

But there is another effect to be noted. Due to repulsion the orbit is not merely turning over, it also moves in the direction of flow in the wire, or the warp includes a voltage component. Similarly when the orbit moves in an electric field the spiralling up and down produces the equivalent of a warp, so there is a magnetic component.

Now consider the atoms around a dipole aerial. The orbital motion would now be: 'Up'; going down and warping forwards; losing warp until 'Down'; going upwards and warping backwards; losing warp until 'Up' again. It should be noted that the warp is greatest, most tilted, when the voltage passes through zero, or the maximum electric and magnetic components are 90° out of phase.

Then there is the gyroscopic precession which causes the warp to turn outwards also, always away from the aerial. (Fleming's Rule). So the full motion is: Horizon-tal-Up; downwards forwards and outwards; downwards forwards and inwards to Horizontal-Down; then upwards backwards and outwards, upwards backwards and inwards, to Hori-zontal-Up. The motion of any one orbit will induce similar motion in adjacent orbits giving radiation as a wave of electromagnetic energy.

Such a picture of orbital displacement requires no photons. It explains how a polarised electromagnetic wave can radiate outwards, to be propagated with any value of energy. The Planck quanta is only required to cause an electron to escape from its atom in a photo-cell. It will also explain
most, perhaps all, the phenomena associated with radio propagation: refraction, scattering, Luxemburg effect, etc.
W. M. Dalton

Bracknell
Berks

MIXED LOGIC

Writing in reply to Mr Catt's letter 'Mixed Logic' in the August 1983 issue of Wireless World, his points shall be answered in the order in which they were made.

1. I agree with Mr Catt that the 'flag' or 'polarity indicator' is not a new symbol. Details of this symbol and also the 'small, circle' symbol for the 'negation indicator' are covered in depth in British Standard 3939, Section 21, July 1977.

My use of the word 'new' was purely in the context of the article!
2. British Standard 3939, Section 21, July ' 77 is obviously in complete disagreement with Mr Catt's quotation from US MIL-STD-806B (26 February 1962), in that the British Standard (A.4.2.) describes the negation indicator (small circle) as indicating logic reversal, or Not operation.
A.5.1. of the same British Standard states that use of the 'polarity indicator' (flag) automatically involves the Mixed Logic convention, and defines which logic convention (voltage) is in force at the interconnection interface.
B.S. 3939 attributes completely different functions to the two symbols. How does US MIL-STD-806B define the 'flag' symbol?
3. Outright condemnation of the 'oblique slash' does appear to be a rather impulsive reaction!

It is agreed that an oblique slash is used to indicate multiple lines, but it is also associated with a digit to indicate the number of lines symbolized.
i.e. . . 8/

The Not action 'slash' proposed does not have a digit appended, and is drawn with a thicker stroke.
i.e. . . . /
4. It was Mr Cassera's excellent article which prompted me to write my own; in an attempt to both reinforce his arguments and then to extend them.

The main thrust of my article was to promote adoption of 'Mixed Logic' principles, and to this end I can only give credit to British Standard 3939, Section 21, July '77. (Which I don't feel the need to supply at cost, as it is readily available!)

My only agreement with Mr Catt is in his point that this is an important and neglected subject.
M. B. Butler

Chelmsford
Essex

Current sensor uses op-amp

Found convenient for measuring current without breaking a circuit, this sensor uses an op-amp and current mirrors. If the amplifier input impedance is high, output current, $\mathrm{I}=\mathrm{K}-\mathrm{J}$, is the difference between the two supply currents, and cur rent mirrors deliver $\mathrm{I}^{\prime} \sim \mathrm{I}$ to \mathbf{Z}. Accuracy of 99% is possible from 0 Hz to a frequency limit set by the op-amp. This accuracy can be obtained even when the amplifier is overloaded, but the voltage at Y will not equal the input.

If Z is resistive, voltages at X and Y can be used to exhibit the I/V characteristic of any load between Y and ground; examples of loads are electromechanical transducers, thermistors, current limiters and nonlinear reactances. When point X is connec-

	CK	R_{1}	Q_{1}	\bar{Q}_{1}	R_{2}	Q_{2}	A	B	C
	Clock n	1	0	1	1	0	0	0	0
$n+1$	0	1	0	0	0	1	0	1	
$n+2$	0	1	0	0	1	1	1	0	
	x	1	0	1	1	0	0	0	0

ted to the input, the open-circuit system is stable with an impedance -Z from Y to ground and it is possible to design a signal source with a negative output impedance which can be used to improve the Q of a reactive load. For most applications, a 741 amplifier with 15 V rails and a value of 100Ω for the four resistors is adequate, but higher power and frequency devices may be used.
F. N. H. Robinson

The Clarendon Laboratory
Oxford

Precise single pulses

Gating to give single pulses whose width is exactly one clock cycle can be formed using only two i.cs - a dual D-type flipflop and $1 / 4$ of a quad exclusive-or i.c. Debouncing is needed for a manual switch.
D. A. Haines

Bromley
Kent

Economical

 multi-channel measurement interfaceValues of a number of thermistors - or other variable resistances - may be converted into digital form for reading by a microprocessor using this simple circuit. A cmos 555 timer oscillates at between 10 and 50 kHz with a $100: 1$ to $20: 1$ markspace ratio and its control voltage pin is grounded, through one of a number of resistors to be measured, by an analogue switch; these resistors are around $20 \mathrm{k} \Omega$, one of them forming a reference value. Resistor R_{s} acts as part of a potential divider and should be approximately equal to the reference resistor.
The microprocessor selects a channel through the analogue switch and counts timer oscillations over a given period. Resistance changes in a channel alter the mark period but the space period remains constant and a few thousand counts can be made in around 100 ms , so all channels may be scanned in less than 1s. Use of a reference resistor allows frequency errors due to temperature, voltage and other

changes to be cancelled by software. If the resistors are thermistors the circuit can resolve 0.1°, absolute accuracy depending only on stability of the reference resistor.
Unknown resistors are sensed using d.c., so connections may be long without radiating a.f. signals. Integration elimi-
nates 50 Hz interference if the count period is a multiple of 20 ms and h.f. spikes merely add or subtract one or two counts in one or two thousand.

R. J. Milburn

Chester-le-Street
County Durham

Low-power alarm

Here is a simple low-power sounder using an inductor to increase the voltage across a piezo-electric audible warning device. The circuit includes a Colpitts oscillator with a variable inductor, which is tuned to suit the sounder resonant frequency. Using the sounder as part of the tuned circuit means that the r.m.s. voltage across it is multiplied by the loaded Q of the tuned section and the resonant frequency pulls toward that of the sounder. These factors combine to give a piercing 5 kHz whistle suitable for burglar alarms, etc., at supply voltages down to 4 V with a current drain of 2.5 mA . I included a simple latching arrangement to make the circuit suitable for burglar alarms, etc.
Steve Kirby
University of York
Yorkshire

State/cycle counter for $\mathbf{8 0 8 0}$ processors

Designed for 8080 -based systems, this digital circuit accurately measures program or program-segment execution time by counting machine states and aids debugging by counting machine cycles. Initialization of the circuit occurs when the monitor loads 16 -bit start and finish addresses of the program segment to be traced. Start and finish low-byte addresses are loaded from the accumulator into buffers $\mathrm{IC}_{1,2}$ and $\mathrm{IC}_{3,4}$ by executing say OUT $x, 0$ and OUT x,l instructions respectively. Executing OUT $x, 2$ and OUT $x, 3$ instructions will load high-byte start and finish addresses into buffers $\mathrm{IC}_{1^{\prime}, 22^{\prime}}$ and $\mathrm{IC}_{3^{\prime}, 4}$ respectively.
Buffers $\mathrm{IC}_{7,7}$ latch current low and high addresses from the address bus during each machine state. Both buffers are controlled by $\phi 1$ clock pulses, during which time the address on the address bus

is stable. The latched address is continuously compared with the starting address using exclusive-nor gates of $\mathrm{IC}_{5,6}$. When matching is detected the clock input of $\mathrm{IC}_{15 \text { a }}$ goes high causing the flip-flop to reset which inhibits the counting operation of IC_{8} to IC_{11}.

Reinitialization is required to repeat the counting operation; the clear line may be connected to the processor reset input to reset the counters, buffers and $\mathrm{IC}_{15 b}$ when
the system is reset or reinitialized. This inhibits the counter prior to initialization. When system control is returned to the monitor you can put counter data into the accumulator using say IN $x, 0$ and IN $x, 1$ instructions. This module can count 10000 states or cycles but it can be expanded using tri-state drivers like IC_{12} to IC_{15} and software.

Any port number can be used for the OUT instruction. The inverted signal de-
rived from this instruction is used during initialization to set the D input of $\mathrm{IC}_{15 \mathrm{~s}}$ and reset its output which allows the startingaddress matching process to begin. When machine-state mode is used, compensation should be made for the number of uncounted machine states in the final machine cycle detected.
G. A. M. Labib

Heliopolis
Cairo

16-line p.a.b.x with options

A flexible electronic/electromechanical p.a.b.x using i.cs wherever possible to provide quiet operation.

After successfully constructing L. D. Gunn's 10-line exchange (WW August 1980, pp 41-45) I felt that more facilities were necessary which led to the construction of this flexible private automatic branch exchange, p.a.b.x, with optional facilities and equipment status feedback. As some of the facilities are not directly related to the system they may be included or omitted as required.
To obtain flexibility each of up to 16 stations is in fact a full switchboard which eliminates the need for a centrally supervised switchboard. The block diagram shows the modular construction of the system which offers the following.

- internal conversation between each of the stations with full privacy.
- accepting incoming exchange calls at each station with automatic switching of the incoming call to the position taking the call.
- making of outgoing exchange calls from each station with the option of inhibiting out-dialling from selected stations as required.
transfer of incoming or outgoing calls between any station.
- visual indication at each station signalling incoming exchange call, exchange line occupied and hold mode.
- line hold when transferring calls or when having private consultations with 'music-on-hold' option for party on line.
- optional timer or manually controlled ringer as an alternative to going off hook or unplugging when telephone intruders are not wanted. Visual indication and access to the exchange line are retained.
- optional connection of an outdoor telephone with electronic door opener.
- BT compatibility with full galvanic separation
one-person transfer, that is, put an incoming call on hold, replace handset and pick up the conversation from any other station.
- optional on/off switching of electrical equipment from any station both in continuous and pulse mode. The total number of stations and remote switches connected will however be limited to 16 .
Finally, some features like hold and visual signalling of incoming calls facilities may be used separately, the latter being useful for the hard of hearing and those frequently using headphones. Relay contacts could be used to disconnect the headphones

As outlined in the aforementioned

by J. H. Kuiper

original project, uniselectors and i.cs have their disadvantages. In this design, i.cs are used instead of relays wherever possible, which results in a relatively quiet electronic/electromechanical system. To make the diagrams easier to follow, only full details for connecting one station are given. Up to 16 further stations are connected to the main bus in the same way as the first. Details for modifying the telephones will be given. Each station connected requires an originator relay, O , having three contacts, a terminate relay, T , having two contacts and a ground relay, G, having four contacts. Six diodes per connected set are required in addition to one normally-closed contact on the K and Q relays. In the diagram only one internalcontrol K relay and one external-control Q relay are drawn. Ignoring these n.c. contacts, K and Q relays each have two contacts. Since the usual maximum number of contacts on a relay seems to be six, additional K and Q relays will be required, the number depending on the number of stations connected. These are connected in series or parallel with the first relays depending on the coil resistance of the relays used.
In the terminator, T relays are driven

System block diagram
from the 4514 decoder using transistors. Table 1 lists the 16 outputs of the i.c. To simplify construction a driver i.c. is used. Since one array contains seven drivers the maximum of 16 stations would require two of these driver arrays and two discrete n-p-n transistors. Any combination of components can be selected as long as all emitters of the separate drivers are connected to pin eight of the arrays and

Table 1. Sixteen outputs of the 4514 decoder used in the terminator.

Output	Pin	Number
0	11	79
1	9	70
2	10	11
3	8	12
4	7	13
5	6	14
6	5	15
7	4	16
8	18	71
9	17	72
A	20	73
B	19	74
C	14	75
D	13	76
E	16	77
F	15	78

*Suggested dialling numbers for stations 11-16 and 70-79.
pin nine is connected to $V_{d d}$. Table 2 lists the seven in and outputs of the array. The array has internal diodes so T relays may be connected directly.

Operation

Internal conversation. Lifting the calling station handset completes a circuit from

Table 2. Input/output pins of the ULN2003 driver i.c.

In	Out
1	16
2	15
3	14
4	13
5	12
6	11
7	10

Note ULN2003 equivalents are SN75468, XR2203 and RS307-109
ground through the a line, telephone b line, the calling station g_{2} and k contacts, the Q coil and back to V_{ss}. Contact o_{1} prepares a holding path for $\mathrm{O}, \mathrm{o}_{2}$ operates internal-interrupter relay II and o_{3} will be
discussed later. Contact ii_{2} in the terminator switches without effect due to b_{2} still being closed while ii_{1} operates reset relay IR in the internal control. An internal control path is set up by ir_{2} and ir_{1} holds relay O through o_{1} and operates relays A B and E. Contact a_{1} prepares an additional holding path for $\mathrm{A}, \mathrm{a}_{2}$ prevents

Main switchboard circuit comprising originator, internal control, recall and engaged/dial-tone oscillator sections. The system can accept up to 16 stations but only one interface is shown for clarity. Each station connected to the bus requires an originator relay, a terminator relay, a ground relav and six diodes.

D from switching, b_{1} prepares a hold for B (all internal control) and b_{2} in the terminator unlocks the terminator input bistable whose output is logical zero. Contact b_{2} also partially enables the 40161 i.c., prevents T drivers from operating to disable the bell during dialling, and therefore inhibits the ringing-tone oscillator/interruptor. Contact e_{1} powers the K coil and e_{2} completes the dial-tone path from its oscillators through $\mathrm{e}_{2}, \mathrm{c}_{2}, \mathrm{ri}_{2}$, 2eng 2 and the calling station O_{2} and g_{2} relay contracts to inform the caller that origination is complete and dialling may start.

Dial-tone oscillator DT consists of a

free-running 555 timer generating an internal dialling tone of around 400 Hz . Relay(s) K, operated through e_{1}, switch the appropriate number of k contacts as follows. Contact k_{1} prepares an operating path for the IENG relay while k_{2} in the terminator keeps completes enabling of the 40161 counter and allows the 4514 decoder to operate. Further k contacts disconnect all sets from their respective originator relays, the coil of the calling set being held as explained above. Any further handset lifted from this point on will cause the IENG relay to operate by making a path through ground, the a line, the station wanting to make the call, the b line, its g_{2}, o_{2}, and t_{1} contacts, k_{1} and IENG to V_{ss}. Contact leng ${ }_{1}$ now starts the 556 engaged oscillator which produces a high-pitched tone interrupted at 2 Hz intervals by relay F. Through an attenuator, f_{1} and a decoupling capacitor, this busy signal passes to the second caller by means of t_{1}, o_{2} and g_{2} contacts. Contact o_{2} prevents the original caller from being disturbed by the busy signal.

Dialling takes place since internal interruptor relay II follows dial pulses sent from the originating station. Contact ii_{1} switches RT through r_{3} and C on the first pulse of the first digit. Following events

In the terminator, positive-going edges of pulses produced by contact i_{2} operate the 4016 counter. Negative-going edges operate the 4514 decoder/latch connected to the counter output and latch output drives the selected relay coil through a buffer transistor in the ULN2003 array. If sixteen stations are used, two array. If sixteen stations are used, two arrays and two discrete transistors are required. Unspecified values are selected to suit the number of stations used.

Alternative 556 dial-tone

 oscillator/interruptor. Resistors connected to i.c. pins 1, 2 and 6 are selected to give the desired ring-interruption period.caused by the switching of ii_{1} first and looking at ii_{2} later, rt_{1} will hold relay RT energized through contacts r_{1} and ir_{1} will hold relay RT energized through contacts r_{1} and ir_{1} while rt_{2} prepares the ringingtone oscillator/interruptor for operation. In the internal-control section, c_{1} holds relay C on through ir_{1} and connects the initial operating path of relay A through ir_{1} Relay A is slow to release because of its RC shunt and remains energized through a_{1}, ir_{2} and ii_{1} in spite of ii_{1} switching on and off while following dial pulses. Meanwhile c_{2} disconnects the dial tone from the calling station. Internal-reset relay IR also has an RC shunt slowing its release so pulsing through contacts i_{1} has no effect. After the final pulse of the frist digit dialled, ii_{1} continues to hold IR for a while. Contacts ir_{2} and a_{1} set up an additional holding path
through b_{1} for relay B while a path for relay D is made through contacts $\mathrm{ir}_{2}, \mathrm{a}_{1}$ and a_{2}.
Dialling the second digit causes a similar action now involving relays D and B . Switching of ii_{1} operates relay D on the first pulse through contacts $i r_{2}, a_{1}$ and a_{2}. Relay D is held by contacts ir_{1} and d_{1}. Slow releasing relay B loses its previous holding path through d_{1} but is energized as long as pulsing of contacts ii_{1} continues through contacts $\mathrm{ir}_{2}, \mathrm{a}_{1}$ and b_{1}. It disengages shortly after the last pulse of the second digit dialled. Breaking of contact B_{1} and previous opening of contact a_{1} prevents further dialling pulses from having effect since relays C and D remain powered. Finally, b_{2} in the terminator closes. Blocking diodes ensure that only the required relays operate and eliminate bounce effects from contacts i_{1}.

How the system manipulates incoming and outgoing calls is described in the next section.

Selecting a processor to suit the language, and control structures are subjects of Brian Woodroffe's second article illustrating why he designed his computer around Forth.

Forth's speed is directly related to how efficiently the computer can execute the NEXT operation. The Table shows how NEXT is coded for some popular eight-bit microprocessors; the 6809 processor executes the operation quickly so a NEXT operation may be included at the end of code routine. This improves performance since the 'JMP NEXT' operation needed for most processors is avoided - in stark contrast to conclusions drawn from one manufacturer's benchmark tests ${ }^{7}$.
NEXT is the virtual-machine instruction fetch so the choice of a processor to run Forth on should be dominated by speed and memory costs of the NEXT operation. Further, 6809 registers exactly match those required for Forth as can be seen in List 2. Machine code in the host computer represents the Forth machine, the Y register taking on the role of the Forth program counter. Following examples of simulating the virtual machine, in 6809 machine code, confirm that this processor is well suited to Forth.

The stack

So far, only the control mechanism by which Forth transfers control from one word to the next has been described, but the language must also control and manipulate data. This, too, is done by means of a stack, but this storage area is known as a data stack, as opposed to the one previously described which is known as the 'return' or 'control' stack. Separation of the stacks simplifies things; normally, data and control operations use the same
Table. Coding and performance analysis of the Forth NEXT operation for popular eight-bit microprocessors.

by B. Woodroffe

stack. The stack is further broken down into 'frames' with markers to denote which part is what. In Forth all operators, such as the words + and AND, may remove instructions from the stack, destroy them manipulate them and push results back onto the stack many times. This has the advantage that operators need not be told where their operands are, which results in less code. A computer operating this form of addressing is known as a zero-address
List 2. Registers of the 6809 suit Forth requirements.

6809 register		Forth usage S		stack pointer	RP	return stack
pointer						
pora						

machine, for operand addresses are implicit in the instruction. These words may be in the machine code of the target computer or determined using words already defined.

Using a stack avoids problems caused by parentheses and operator precedence. As far as the computer is concerned the problem is solved, List 3, but programmers used to infix notation may find postfix notation (reverse-Polish notation) difficult, e.g.

$$
\begin{array}{ll}
\text { Postfix } & \text { Infix } \\
34+56+\times & (3+4) \times(5+6)
\end{array}
$$

Processor	6809	6800	280/8085	8088	6502
Code	$\begin{aligned} & \text { LDX } 0, Y++ \\ & \text { JMP }[0, X] \end{aligned}$	$\begin{aligned} & \text { JMP NEXT } \\ & \text { LDXIP } \\ & \text { INX } \\ & \text { INX } \\ & \text { STX IP } \\ & \text { LDX 0,X } \\ & \text { STX W } \\ & \text { LDX 0,X } \\ & \text { JMP } 0, X \end{aligned}$	JMP NEXT LDAXB INXB MOVL,A LDAXB INXB MOV H,A MOVE,M INXH MOV D,M XCHG PCHL	JMP NEXT LODS AX MOV BX,AX MOV DX,BX INC DX JMP WORD PTR ${ }^{[B X]}$	JMP NEXT LDY \# 1 LDY [IP],Y STA W+1 DEY LDY [IP],Y STAW CLC LDAIP ADC \#2 STAIP BCC L INC IP + 1 LJMP W-1
Memory bytes	4	17	14	11	28
Processor clock cycles	14	44	60	58	43
Normal cycle time ($\mu \mathrm{s}$)	1	1	0.25	0.2	1
Total time ($\mu \mathrm{s}$)	14	44	15	11.6	43
Memory-access (ns)	695	530	250(Z80)	450	650
Time for 450 ns access memory ($\mu \mathrm{s}$)	9	37	27	11.6	29.7
Speed relative to 6800*	4.11	1	1.37	3.19	1.25

*Value rises proportional to speed.

List 3. Some 6809-code arithmetic routines including add, subtract and two's complement.

"+"	$\begin{aligned} & \text { FDB \$+2 } \\ & \text { PULU D } \\ & \text { ADDD O,U } \\ & \text { STD OU } \\ & \text { NEXT } \end{aligned}$
MINUS	$\begin{aligned} & \text { FDB } \$+2 \\ & \text { LDD \#0 } \\ & \text { SUBD 0,U } \\ & \text { NEXT } \end{aligned}$
@	$\begin{aligned} & \text { FDB } \$+2 \text { (fetch) } \\ & \text { LDD }[0, U] \\ & \text { STD 0,U } \\ & \text { NEXT } \end{aligned}$
1	$\begin{aligned} & \text { FDB } \$+2 \text { (store) } \\ & \text { PULU X } \\ & \text { PULU D } \\ & \text { STD 0,X } \\ & \text { NEXT } \end{aligned}$
DUP	FDB \$ + 2 LDD 0, U PSHU D NEXT
OVER	FDB \$ +2 LDD 2, U PSHU D NEXT
SWAP	FDB \$ + 2 PULU D, X EXG D,X PSHU D,X NEXT
DROP	$\begin{aligned} & \text { FDB } \$+2 \\ & \text { LEAU } 2, U \\ & \text { NEXT } \end{aligned}$

NEXT is defined as a macro instruction.
Parameters are also passed between separate lists using the stack. The word consumes as many stack elements as required and pushes back its results. Some defined Forth words for subtracting and doubling the top of the stack respectively are
"-"FDB DOCOL
FDB MINUS
FDB ADD
FDB SEMIS
"2^"FDB DOCOL
FDB DUP FDB PLUS

Language control structures

As has been shown, Forth passes control from one item in a word to the next and results are calculated. These words can be either machine-code words or pointers to other words. How control may be diverted to form if-then-else or repeat-until structures is the following subject, starting with an explanation of how Forth tests for true or false conditions by simply considering a non-zero value at the top of the data stack as a true condition. Examples of conditions that create these flags are ' $0={ }^{\prime},{ }^{\prime} 0<{ }^{\prime},{ }^{\prime}=$ ' and ' $<$ ' in the form of code words or Forth words, as appropriate, Lists 4,5. Diversion of control is carried out by Forth

List 4. Code routines leaving a flag at stack top.		
OEQUAL	FDB \$ + 2	
	LDD \#1	assume true (i.e. zero)
	LDX0,U++	get operand, set 6809 flags
	BEQ OE1	
	DECB	was $<>0$ so set Forth flag
OE1	$\begin{aligned} & \text { STD } 0, U \\ & \text { NEXT } \end{aligned}$	put back Forth flag
OLESS	FDB \$ + 2	
	LDB \#1	prepare true
	LDA 0,U	get sign to A
	BMI OL1	
	CLRB	no, leave false
OL1:	CLRA	
	STD 0, U	
	NEXT	

List 5. Forth routines leaving a flag.
" =" FDB DOCOL
FDB SUB
FDB OEQUAL
FDB SEMIS
" $<$ " FDB DOCOL
FDB SUB
FDB OLESS
FDB SEMIS
" $>$ " FDB DOCOL
FDB SWAP
FDB LESS
FDB SEMIS
words BRANCH and OBRANCH, the former taking the next storage cell as a branch offset and the latter branching or not depending on the value at the top of the stack. If the flag is false, the threadedcode instruction pointer, ip, is incremented by the offset value contained in the next program storage cell. When the flag is true, this offset is skipped and execution continues with the next word. Controlled loops may also be constructed. Using 'begin . . . until' structures, statements between are executed so long as the flag at the top of the stack remains false. Iterative loop type structures such as ' 100 TIMES DO' are handled by taking initial and limit loop indexes off the data stack and storing them on the control stack. At the potential end of the loop the current index is incremented and compared with the limit. If the limit is exceeded a branch is executed as described above, otherwise the indexes are deleted and the offset skipped to continue execution, List 6.

List 6. Code for diverting control flow if the flag at the top of the stack is false.
OBRANCH: FDB \$+2 6809 code LDD ,U++ test and delete Forth flag
BNE OB1 $<>0$, branch if true LDX $0, Y$ get jump offset in X
LEAY Y,X add offset NEXT

OB1: LEAY 2,Y skip over offset NEXT
BRANCH FDB $\$+2$
LDX 0,Y
LEAY Y,X
NEXT

ROOTS
SWAP MINUS
(stack ..c b a start defining new word 'ROOTS')
..ca-b)
OVER
DUP + 1
ROT ROT
..c a -b 2a quicker than 2*)
..ca-b/2a)
/
.. $-\mathrm{b} / 2 \mathrm{a}$ c a save $-\mathrm{b} / 2 \mathrm{a}$)
OVER DUP*
.-b/2ac/a)
$+$
.. $-b / 2 a c / a-b / 2 a *-b / 2 a)$
.. $\left.-b / 2 a b^{* *} 2 / 4 a-a / c\right)$
DUP $0<$
IF
DROP DROP
CR ." imaginary roots"
ELSE
CR (real roots, send <crc><|f> to terminal)
0
SQRT
OVER OVER +
(convert 16 -bit positive number to 32 bits)
(get back square root)
(duplicate both parts of answer and get 1st result)
(print message and first answer)
(print message and other answer)
(continue execution)
(send <cr><lf> and stop compiling return to execution)

List 7. Forth code used to calculate the roots of a quadratic equation. The stack is represented across the page with the top of the stack at the right.

Using Forth

List 7 is an example of a Forth routine for calculating the roots of a quadratic equation, given that the indexes are on the stack. Forth has the shortcoming that it only handles integer arithmetic so non-in-
teger results will be incorrect. The program example illustrates a number of Forth concepts, e.g., stack manipulation, passing parameters and terminal output. Words used in the program are explained in the next article, as are the dictionary and compiler.

Reference

7. Intel iAPX88 Book, July 1981, appendix pp. 20-36.

Three flow diagrams compare, from left to right, hard code, interpretive code and threaded code.

Digital filter design techniques

A survey of the most widely used techniques for the design and implementation of digital filters, with comparisons based on the authors experimental work.

Digital filters are classified into two categories based on finite and infinite impulse response. Finite response or non-recursive filters have a finite duration impulse response, while infinite response filters have an impulse response of infinite duration. due to their recursive structure. This fundamental difference in structure dictates different design approaches to be adopted for the two types of digital filter.
Finite response filters can have linear phase and may be designed by several techniques, of which the following are considered:

- frequency sampling
- window method
- optimal design methods.

For the design of infinite response filters, however, there are two different approaches. The first is a direct approach in which the coefficients of the digital filter are determined by some computational alogorithm directly from the filter specifications. The second, indirect, approach is to determine the coefficients from the corresponding analogue filter transfer function. The following methods based on these concepts are compared:

- numerical methods
- impulse invariance method
- bilinear transformation.

FIR filter design

Finite impulse response filters have two distinct properties: they are always stable, and second, if they are not causal, they can always be made to be causal by introducing finite delays. Because of these two properties, the design of f.i.r. filters can be simplified. The system functions can be expressed as

$$
H(z)=\sum_{n=0}^{N-1} h(n) \cdot z^{-n}
$$

where $h(n)$ is the N-point impulse response of the f.i.r. filter and $H(z)$ is the $z-$ transform of the sequence evaluated on the unit circle. Such a filter can be implemented as a set of taps and delay blocks leading to the general f.i.r. filter structure shown in Fig. 1. The most important of the various techniques for design of these filters are discussed in detail.

Frequency sampling technique

A finite-duration sequence can be represented by its discrete Fourier transform. Considering the equation given earlier, $h(n)$ can be obtained merely by taking the

by R. N. Gorgui-Naguib and K. M. Henein

inverse discrete Fourier transform:

$$
h(n)=\frac{1}{N} \sum_{n=0}^{N-1} H(k) \cdot e^{i 2 \pi k n / N}
$$

so that

$$
H(z)=\sum_{n=0}^{N-1} \frac{1}{N} \sum_{k=0}^{N-1} H(k) \cdot e^{i 2 \pi k n N} \cdot z^{-n}
$$

which ultimately can be written in the form

$$
H(z)=\frac{1-z^{-N}}{N} \sum_{k=0}^{N-1} \frac{H(k)}{1-e^{i 2 \pi k N} \cdot z^{-1}} .
$$

This equation is the basis of the frequency sampling realisation of an f.i.r. filter. Substituting $z=e^{j \omega}$ in the above equation and using some trigonometric identities gives

$$
H\left(e^{j \omega}\right)=\frac{\mathrm{e}^{-j \omega(N-1) / 2}}{N} \sum_{k=0}^{N-1} H(k) \cdot I_{\omega, k}
$$

where

$$
I_{\omega, k}=e^{\mathrm{i} \pi k(1-1 / N)} \cdot \frac{\sin \{N(\omega-2 \pi k / N) / 2\}}{\sin \{(\omega-2 \pi k / N) / 2\}}
$$

and is called the frequency interpolating function. In other words, the filter is specified in terms of samples of one period of the desired frequency response, and the interpolation is used to complement or fillin the gaps of the function. The interpolation effect, however, can be a serious drawback because passband and stopband oscillation develops due to the slow convergence of the Fourier series, caused
by the discontinuity at the passbandstopband border. This peak at the transition point is known as Gibb's phenomenon.

Window method

The window method overcomes the problems described by some approximating techniques which consist essentially in preconditioning the impulse response $h(n)$ using a class of time-domain functions, or 'window functions', $w(\mathbf{n})$. These functions modify $h(n)$ to get the desired truncated response $h^{\prime}(\mathrm{n})$ as follows:

$$
\begin{aligned}
h^{\prime}(n) & =h(n) . w(n) \text { for } 0 \leqslant n \leqslant N-1 \\
& =0 \text { otherwise. }
\end{aligned}
$$

Using the window method means that

- discontinuities in $\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)$ become transition bands between values on either side of the discontinuity
- the width of this transition band is inversely proportional to the energy under the main lobe
- side lobes of the window function produce unwanted ripple in the filter stopband.
In an attempt to reach the ideal window, several were proposed among which the following are most important.

Rectangular window. The rectangular winciow has the function

$$
\begin{aligned}
w(n) & =1 \text { for } 0 \leqslant n \leqslant n-1 \\
& =0 \text { otherwise. }
\end{aligned}
$$

It has two serious drawbacks: the side lobes produce large ripple in the stopband and the Gibb's phenomenon problem remains unsolved. To overcome this, it is necessary to 'taper' the ends of the window, considered next.

Generalized Hamming and Hanning windows. Hamming and Hanning windows can be derived from the generalized Hamming window function:

Fig. 1. General finite impulse-response filter structure with input X_{n} and output $Y_{n . Z^{-}}$ represents a delay block while h_{n} is the nth impulse response.

$$
\begin{aligned}
w(n)= & \alpha+(1-\alpha) \cos \frac{2 \pi n}{N} \\
& \text { for }-\left(\frac{N-1}{2}\right) \leqslant n \leqslant \frac{N-1}{2} \\
= & 0 \text { otherwise. }
\end{aligned}
$$

In the case of the Hamming window, $\alpha=0.54$, while in the Hanning window $\alpha=0.5$. These two windows, differing only in the choice of α, present trade-offs between the width of the main lobe and the ripple cancellation.

Blackman window. This window presents an improvement in ripple performance over the Hamming window due to the introduction of an extra cosine term in the function, giving

$$
\begin{gathered}
\mathrm{w}(\mathrm{n})=0.42+0.5 \cos \frac{2 \pi \mathrm{n}}{\mathrm{~N}}+0.08 \cos \frac{4 \pi \mathrm{n}}{\mathrm{~N}} \\
\text { for }-\left(\frac{\mathrm{N}-1}{2}\right) \leqslant \mathrm{n} \leqslant\left(\frac{\mathrm{~N}-1}{2}\right)
\end{gathered}
$$

$=0$ otherwise.
This last term leads to a further reduction in the amplitude of the oscillation due to Gibb's phenomenon. The effect of applying this window is an increase in transition region width and a decrease in ripple level.

Kaiser window. The attractive property of this window is that it offers two variable parameters which can be adjusted to control the transition region width and the ripple performance. The Kaiser window is

$$
\begin{aligned}
w(n) & =\frac{I_{0}\left(\alpha \sqrt{1-\left(\frac{2 n}{N-1}\right)^{2}}\right)}{I_{0}(\alpha)} \\
& \text { for }-\left(\frac{N-1}{2}\right) \leqslant n \leqslant \frac{N-1}{2} \\
& =0 \text { otherwise }
\end{aligned}
$$

where $\mathrm{I}_{0}(\mathrm{x})$ is the zero-order Bessel function of the first kind. In the equation, the value of α controls the ripple ratio and N determines the main lobe width. Unfortunately, this adaptivity gained is at the expense of increasing complexity in computation. Fig. 2 shows the performance of the Kaiser and Hamming windows for the same number of samples.

Computer optimization methods

Optimal design methods are the most accurate and most complex ways for designing f.i.r. filters. Several authors suggest varying the number of frequency
samples to improve the filter frequency response by minimizing the maximum deviation between this response and the desired one over the frequency range of interest.

Computer optimization techniques can select the transition points and calculate the maximum out-of-band response as a function of the transition values. Then, the frequency response is interpolated to a predetermined degree of accuracy using the fast Fourier transform.
An algorithm which can be adopted to obtain the solution to the approximation problem is the Remez exchange algorithm, a flowchart of which is given in Fig. 3. In this algorithm, the weighted error function $\mathrm{E}\left(\mathrm{e}^{\mathrm{j} \omega}\right)$ is minimized so that a unique solution (best solution) is obtained to approximate the required frequency response $H_{D N}\left(\mathrm{e}^{j \omega}\right)$:

$$
\mathrm{E}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=\mathrm{W}_{\mathrm{N}}\left(\mathrm{e}^{\mathrm{j} \omega}\right) \cdot\left\{\mathrm{H}_{\mathrm{DN}}\left(\mathrm{e}^{\mathrm{j} \omega}\right)-\mathrm{P}\left(\mathrm{e}^{\mathrm{j} \omega}\right)\right\}
$$

and $\mathrm{P}\left(\mathrm{e}^{\mathrm{j} \omega}\right)$ is the Lagrange interpolation function on r points. $\mathrm{E}\left(\mathrm{e}^{\mathrm{j} \omega}\right)$ is then compared to a specific resolution, δ, until the optimal approximation is reached.

Fig.3. Flowchart of the Remez exchange algorithm shows how it can be used to obtain the solution to the approximation problem. Starting with an initial guess of $r+1$ extremal frequencies, the error function is forced to have a magnitude δ with alternating signs, then the Lagrange interpolation formula is applied to interpolate $P\left(e^{\omega W}\right)$ on the r points until the best approximation is obtained.

Infinite impulse response filter design

The different structure and transfer function of infinite impulse response filters from the previously considered f.i.r. filters dictates different design approaches.
The general i.i.r. filter transfer function is

$$
H(z)=\frac{\sum_{n=0}^{N} a_{n} \cdot z^{-n}}{1+\sum_{m=1}^{M} b_{m} \cdot z^{-m}}
$$

and the problem in the design of such filters is to determine the filter coefficients a_{n} and b_{m} so that the filter specifications are satisfied. For this purpose, the following techniques are based on direct and indirect approaches are presented. It should be mentioned that i.i.r. filter design methods relying on the indirect approach are simple to realize as they are based on simple closed-form analogue formulae.

Numerical methods

Some numerical approximation techniques are based on the intuitive notion that the derivative of an analogue time function can be approximated by the difference between consecutive samples of the function to be differentiated. As the sampling rate is increased, i.e. greater N , the approximation to the derivative becomes more accurate. In fact, to attain a reasonable degree of accuracy, the sampling rates required are so high that these methods are very inefficient and there is little to recommend them. Furthermore, problems can arise as unstable filters may result from the approximation of the analogue transfer function. It is therefore preferable to use other mapping methods which produce better

Fig.2. Plot showing the behaviour of Kaiser and Hamming windows (number of samples = 65) for the same cut-off frequency.

Impulse invariance method

In transforming the analogue transfer function to a digital one, $h(n)$ or $H(z)$ must be first obtained. This requires a mapping from the s-domain to the z-domain. The requirements are:

1. The imaginary axis of the s-plane maps on the circumference of the unit circle of the z-plane.
2. Strips of $2 \pi / T$ on the surface of the left hand part of the s-plane map into the unit circle of the z-plane, Fig. 4.

In practical cases, however, the analogue filter is not band-limited. This creates aliasing between successive terms, i.e. the sampling process will be affected by the interference between the spectra and the response of the digital filter will not be identical to the original analogue frequency response.

Bilinear transformation

The advantage of the bilinear transformation over the previous method is that the aliasing problem is overcome. This is done by mapping the entire left-hand half of the s-plane into the unit circle of the z plane, Fig. 5. The transformation can be derived from the notion that it is required to obtain a stable function, $G(z)$, of the form

$$
G(z)=\frac{\sum_{n=0}^{N} a_{n} \cdot z^{-n}}{1+\sum_{m=1}^{M} b_{m} \cdot z^{-m}}
$$

Fig.4. Mapping from the s-plane to the z plane using the impulse invariance method. Shaded area shows a strip of $2 \pi / T$ on the surface of the left-hand half of the splane being mapped onto the unit circle of the z-plane.

As $G(z)$ is real, rational and stable in z^{-1}, we need a transformation function, $f(z)$, of the form

$$
f(z)=\frac{a+b z^{-1}}{c+d z^{-1}}
$$

Fig.5. Mapping from the s-plane to the z plane using the bilinear transformation. Here, the entire left half of the s-plane is mapped onto the unit circle of the z-plane thus solving the aliasing problem occurring in the case of the impulse invariance method.

Applying the mapping conditions yields

$$
\begin{array}{ll}
& a=-b \\
\text { and } & c=d
\end{array}
$$

and so $f(z)$ can be rewritten as

$$
\begin{aligned}
& f(z)=\left(\frac{a}{c}\right) \frac{1-z^{-1}}{1+z^{-I}} \\
& j \Omega_{c}=\left(\frac{a}{c}\right) \frac{1-e^{-i \omega_{c} T}}{1+e^{-j \omega_{c} T}}
\end{aligned}
$$

which gives

$$
\Omega_{\mathrm{c}}=\left(\frac{\mathrm{a}}{\mathrm{c}}\right) \tan \left(\frac{\omega_{\mathrm{c}} \mathrm{~T}}{2}\right)
$$

This is the non-linear (warped) bilinear transformation which maps the entire lefthalf of the s-plane into the unit circle of the z-plane.

Summary

Various design techniques can be applied to each type of filter. In f.i.r. filters, the methods are based on the approximation or truncation of the impulse response, and a trade-off between accuracy and complexity has always to be made. Both the frequency sampling technique and the window method have proved to be simple to implement. The first-mentioned method, however, suffers from the effect of interpolation and Gibb's phenomenon, while the last does not provide a defined criterion for optimum design. Optimal methods, on the other hand, are very accurate but too complicated to implement.

In i.i.r. filter design, the methods essentially rely on digitizing some existing analogue transfer function. Numerical methods are ineffective as they require a large number of samples and a very high sampling rate. Moreover, unstable digital
filters can result from stable analogue ones due to the approximation of the analogue transfer function.

The impulse invariance method, which relies on getting the z-transform of an $\mathrm{H}(\mathrm{s})$ transfer function and maps a portion of the left-half of the s-plane into the z-plane unit circle, results in aliasing. Conversely, in the bilinear transformation, a mapping of the entire left half of the s-plane onto the z plane unit circle overcomes aliasing and stability problems but is non-linear thus requiring compensation, or pre-warping, operations to be performed which may not be possible for all functions.

VAN

Further reading

Digital Filters: Analysis and Design by A. Antoniou. McGraw-Hill, 1976.

Digital and Kalman Filtering by S. M. Bozic. E. Arnold, 1979.
Digital Filters and their Applications by V. Cappellini, A. G. Constantinides, P. Emiliani. Academic Press, 1978.

One-Dimensional Digital Signal Processing by C. T. Chen. Marcel Dekker, 1979.
Digital Filtering and Signal Processing by D. Childers and A. Burling. West Publishing Co., 1975.
Digital Filters (experimental report) by K. M. Henein. Imperial College of Science and Technology, December 1982.

Digital Signal Processing by A. V. Oppenheim and R. W. Schafer. Prentice Hall, 1975.
Theory and Application of Digital Signal Processing by L. R. Rabiner and B. Gold. Prentice Hall, 1975.
Digital filter design, by B. M. G. Cheetham and P. M. Hughes. Wireless World, May, June, August 1982.

Using the 68008

Having 32-bit architecture, Motorola's 68008 can run in existing eight-bit microcomputer systems

This article demonstrates the ease with which the Motorola MC68008 can replace conventional eight-bit microprocessors in existing microcomputer systems to provide a quick and ready means of producing a 68008-based system with minimal design effort. The Motorola Micromodule 19 chosen (M68MM19A) is typical of many existing eight-bit systems, comprising a single p.c. board, an 2 MHz 6809 m.p.u., 16 kbytes of rom, 2 k bytes of static ram, an asynchronous serial data port (using MC68B50 ACIA) with RS232C/422/423 interface, a parallel printer interface port (using a MC68B21 PIA), three 16-bit counters (using a MC68B40 PTM), and external address, data and control bus buffers. The interface logic is designed primarily to interface to the M68MM19A, although in principle it should work with most 6809 -based systems. No bus arbitration logic has been included, and this will need to be added if dynamic memory or other potential bus masters - such as d.m.a. devices - are used. The bus arbitration schemes of the 6809 and 68008 are similar and should not require much additional hardware.

MC68008 overview

The MC68008 has the same internal architecture as, and is fully software-compatible with, the 68000 m.p.u., but has an eight-

Fig. 2. MC68008 programming model shows eight general-purpose registers, for 8, 16 and 32 -bit data operations, seven address registers, and two system stack pointers for software stack pointers and base address registers. All registers may be used as index registers.

Andrew Barth is a senior staff engineer with Motorola's systems engineering group in East Kilbride. He graduated in physics from Leeds University and since 1976 has worked in microprocessor systems design in Germany and the USA, as well as in the UK

By Andy Barth

bit external data bus. It therefore allows the design of cost-effective systems using eight-bit non-multiplexed data buses, simultaneously providing the benefits of a 32-bit microprocessor architecture, Fig. 1. It provides 17 general-purpose 32 -bit registers, 56 basic instruction types and 14 basic addressing modes with many more sub-modes, Fig. 2. The combination of these instruction types, data types and addressing modes provides thousands of useful instructions. The 1 Mbyte non-seg-
mented linear address space allows modular programs to be developed and executed efficiently. It interfaces to memory and peripherals through non-multiplexed asynchronous address and data buses.

Interfacing

In normal operation the 68008 makes data transfers to or from memory and peripherals in an asynchronous fashion. Handshake control lines, address strobe (AS), data strobe (DS), read/write (R/W), and data transfer acknowledge (DTACK), enable the data transfer rate to be optimised for the particular device being accessed. Once a bus cycle has begun the

Fig. 1. MC68008 signal lines. The designer can now use a high-performance microprocessor with a 32-bit architecture in small cost-effective systems using an 8-bit data bus. With nonmultiplexed buses and 1 megabyte address space the 68008 comes in a 48 -pin package at two-thirds of the price of a 68000.

Fig. 3. In the 68008-M68MM19 combination the right-hand side of the line could be any 6809-based system. Such systems provide a ready means of producing a 68008-based computer with minimal design effort.
 devices fit easily onto a single Eurocard.

memory ir peripheral device notifies the m.p.u. that it is ready to receive or transmit data by issuing the DTACK signal. The timing of DTACK within a given bus cycle is tailored to the data access time of the device. For a slow device the 68008 inserts wait states until DTACK is received. In new designs this technique is used to maximize system throughout and minimize the external logic required. In a synchronous system, like that using a 6809, the data is expected to be valid after a certain time into the bus cycle. For a 6809 system this is on the falling edge of the E clock.

There are two methods of interfacing to a synchronous system: the 68008 itself running synchronously, and also running asynchronously.
Synchronous mode. The 68008 has 6800 peripheral control signals (E, VPA) which enable it to execute a 6800 -type synchronous bus cycle. The peripheral device issues VPA instead of DTACK during the bus cycle to indicate this to the m.p.u. The E clock output runs at one tenth of the 68008 clock (CLK) so that, for example, if the m.p.u. uses an 8 MHz clock, the peripheral will be clocked at 800 kHz . This provides an easy method of interfacing synchronous peripheral devices with the minimal external logic. There is no reason why all memory (including program memory) and peripherals shouldn't be controlled in this way, so that every bus cycle is executed synchronously. While this is very easy to implement, it does mean all bus cycles, including instruction fetch and execute cycles, contain large numbers of wait states.

Asynchronous mode. Here the 68000type peripherals can be clocked at their highest operating frequency (2 MHz) using an externally generated E clock. The m.p.u. runs asynchronously and the DTACK signal is generated synchronously with the 'new E' clock. This reduces the number of wait states per bus cycle. This approach requires more circuit components but results in increased system throughput, and is the scheme used in this article.

Circuit description

Figure 3 is the block diagram of the 68008/68MM19A combination, and Fig. 4 shows the detailed circuit of the interface logic. Signals on the connector pins are connected to the 6809 d.i.l. socket on the M68MM19A board. The 68008 data bus and 68 MM19A data bus are connected via a pair of 74LS373 octal latches (IC_{6} and IC_{7}) joined back-to-back. Their enable outputs are controlled by the m.p.u. R/W so that one latch $\left(\mathrm{IC}_{7}\right)$ is enables for a m.p.u. read and the other (IC_{6}) is enabled for a m.p.u. write. The latches are normally in the transparent mode but became latched as the memory/peripheral is deselected. They remain latched until DTACK is negated in the 68008 bus cycle state S_{7}. The MC68008 data sheet explains bus cycle states.

The DTACK signal is generated by the 74 LS 112 JK flip-flops ($\mathrm{IC}_{8 \mathrm{Ba}, \mathrm{b}}$) from DS and E. Note that E is derived from the clock oscillator $\mathrm{K} 1148\left(\mathrm{IC}_{3}\right)$ via the

Fig. 5.

74LS163 counter $\left(\mathrm{IC}_{4}\right)$ and that the 68008 E-output is ignored. DTACK is fed to the m.p.u. on every bus cycle except during interrupt acknowledge (IACK) cycles. During IACK cycles the interrupting peripheral must issue DTACK (if the m.p.u. is to perform a vectored interrupt sequence) in which case the peripheral must provide the interrupt vector number on the data bus, ot it must issue VPA (for the m.p.u. to perform an auto-vector sequence). As none of the 68 MM19A peripherals are capable of generating their own interrupt vector numbers, DTACK must be supressed during an IACK cycle and VPA asserted in its place. The IACK state is indicated by the 68008 function codes, $\mathrm{FC}_{0}=\mathrm{FC}_{1}=\mathrm{FC}_{2}=1$. Nand gates $\mathrm{IC}_{9 \mathrm{~b}}$ and $\mathrm{IC}_{9 \mathrm{c}}$, generate VPA and inhibit DTACK.

Signal MPSEL from 74LS04 inverter $\mathrm{IC}_{5 f}$ enables the 68 MM 19 A address decoder logic for the memory and peripheral devices. Fig. 5 shows the relationship between 6809 and 68008 bus timings for a m.p.u. read operation. Signal MPSEL is asserted during state S_{3} corresponding to the beginning of a 6809 cycle ($\mathrm{A}_{0}-\mathrm{A}_{19}, \mathrm{AS}$, R/W and DS having been set up in states $\mathrm{S}_{0}-\mathrm{S}_{2}$). Data from the memory or peripheral device becomes valid prior to the next falling edge of E at which time the data is latched by IC_{7} and DTACK is asserted at the m.p.u. During S_{6} the 68008 reads the data from the latch IC_{7}, and the bus cycle terminates at the end of S_{7}.

Similarly, during a m.p.u. write operation, data from the m.p.u. becomes valid in S_{2} and DS in S_{3}. Data is latched by the memory or peripheral device on the next falling edge of E. Signal DTACK is asserted and the m.p.u. proceeds to terminate the bus cycle.

Counter IC_{4} and the jumper block enable the m.p.u. and memory/peripherals to operate at several clock rates, i.e. 4 or 8 MHz 68008 and 1 or 2 MHz memory/peripherals. The 74LS148 priority encoder IC_{2}, and jumper block determine the relative priority of the peripheral interrupts. Unlike the 68000 which has three interrupt priority level inputs ($\mathrm{IPL}_{0}, \mathrm{IPL}_{1}$ and IPL_{2}), the 48 -pin 68008 has only two, $\mathrm{IPL}_{0 / 2}$ and $\mathrm{IPL}_{1} ; \mathrm{IPL}_{0}$ and IPL_{2} are connected internally. Consequently only four
of the eight interrupt levels $0,2,5$ and 7 are usable.

Comparisons

Eight t.t.l. devices are required to interface the 68008 to the synchronous 68MM19A microcomputer. This is more than the 68008 synchronous scheme but does yield improved system throughout. The components can easily be accommodated on a single Eurocard. Connections between the 68008 board and the 68 MM19A would be via the connector (say, a 3 M Scotchflex 50 -way header) on the 68008 board and the 6809 socket on the 68MM19A. As shown in Fig. 4, signals on the pins replace those of the ousted 6809 on a one-to-one basis (except pin 39, the MPSEL signal which is used to enable the address decoder).
By reprogramming the field programmable array address decoder on the 68 MM19A to suit the differing requirements of the 68008 (e.g. 68008 has its RESET and other vectors in low-order memory; 6809 in high-order memory) many applications become possible. For example, I made minor modifications to MEX68KECB Tutor (a 68000 byte debug monitor program with assembler/disassembler) to suit the memory mapping of the 68 MM 19 A , thereby creating a simple 68008 development/educational tool from the $68008-68 \mathrm{MM} 19 \mathrm{~A}$ combination.

Benchmark tests were conducted comparing the unmodified 68 MM 19 A with .2 MHz 6809 with the $68008-68 \mathrm{MM} 19 \mathrm{~A}$ system, last-mentioned showing typically a three to four-fold speed improvement over the first. This is not a fair indication of the true performance of the 68008 because it is the 2 MHz 68 MM 19 A that governs the maximum system throughout here, not the 68008. The m.p.u. is inserting wait states until the 68 MM 19 A is able to transfer data. In a new design where both m.p.u. and memory/peripherals are running asynchronously it is possible to have zero states in a bus cycle and maximum data transfer rates are obtained. On such systems a four to five-fold speed improvement may be seen. Ten and 12.5 MHz versions of the 68008 are planned for the future.

German radio show

The International Audio and Video Fair, also known as the exhibition or Funkausstellung, continues to be held in Berlin. paid a lightning visit.

Embarrassment accompanied the start of Bildschirmtext or Btx, Germany's national viewdata service, officially inaugurated by the new Federal Minister for Posts Dr Christian Schwarz-Schilling at the 34th Funkausstellung. The service, on trial in Berlin and Düsseldorf for the last three years, was not able to go nation-wide on schedule because of difficulties in the construction of the central computers, said to hinge on "software problems" of IBM's Series 1 and 4300 -based system. Three firms tendered for the 1981 Btx contract, IBM, GEC and SEL, and as the lowest bidder IBM were given the job, thought to be worth $\$ 22.5$ million. But to avoid losing face a further, Berlin-only, contract was placed with - ironically - GEC Computers, suppliers of the original Pres-tel-type system, and the full service postponed until May next year. And as if to rub salt into the wound, Austria's parallel Btx service was off to a flying start - using GEC's system.

Prestel-type experiments started back in 1977, followed by the formal field trial in 1979 (WW Berlin reports, November 1977, 1979) using British technology. But the limited Prestel character set was not originated with multinational alphabets in mind, and it was this, together with limitations in graphical capability, that led to the European post administrations (CEPT) agreeing a new international standard (WW Berlin report Nov 1981). Surprise has often been shown at BT's attempts to push Prestel as a serious proposal for international working, and certainly many Europeans thought the UK wouldn't get as far as it did in promoting its system overseas.
It was quickly realised that to be widely successful many information providers would need to be attracted. To do this has meant allowing the data processing systems of the suppliers to interwork with the system: banks, mail-order houses, tour operators, computer centres, for example, which required new software, later sold back (sic) to Britain. And having sold the idea to commerce and the 'semi-professional' areas there would be more to offer private users. But as our last report hinted the new CEPT decoders could be expensive - Loewe Opta decoders now cost DM1000 - at any rate until a new chip made by the Philips subsidiary Valvo brings price down to DM300,500 next year. (For the Berlin and Düsseldorf trials the Bundespost placed 8,000 Prestel-type decoders with subscribers, free of charge, with the understanding that a new standard was under way.)

But despite the delayed start, the Bun-

despost is confident of its forecast of a million Btx users by $1986-600,000$ sets in businesses and 400,000 in private homes - and three million by the end of the decade
Coaxial cable systems have been given a big push by the country's new government, through its Minister for Posts. Dr Christian Schwärz-Schilling increased spending to DM1 billion for 1983 alone a big increase from the original DM400 million budget, and which drew press comment earlier in the year because of alleged previous cable interests. Up until then, spending on cable tw had been restricted to situations of difficult aerial reception, largely as a result of a lack of social-democratic enthusiasm for letting commercial/private interests into the cable networks.

The christian-democratic takeover at the election allows the CDU-oriented publishers into the cable tv business, who are pushing for coaxial svstems that can be
installed now. A copper network is argued to cost DM3,400 million, compared with DM100 billion for a glass fibre network. Although several Länder, which have responsibility for broadcasting, have become aligned with the CDU since 1975 when cable systems were first recommended, a federal CDU influence in favour of cable was needed to initiate investment through the Bundespost, which has responsibility for cable networks up to the consumer interface. What the Länder have to do now is to sort out the legal problems - what to do about sex, violence, block advertising, press rights - by consensus.

Bigfon ${ }^{\star}$ - an acronym for wideband integrated fibre optic telecommunication network - is still some way off. The trials announced at the last show are only just beginning and won't be completed until 1987. But in a special one-year assessment of transmission techniques to commence

[^3]
mid-1984 five systems are to be tested, including an analogue proposal by Fuba \& Blaupunkt, hybrid schemes by SEL and Siemens, and a completely digital system proposed by Telefunken.
The tests need a new kind of receiver, for which Telefunken have received DM2 million in development money over the last two years, that will decode 32 stereo p.c.m. channels with a quality much superior to that obtainable from f.m. and cable systems. (And there is the potential to transmit compact discs or p.c.m. tapes directly.) Telefunken's prototype receiver comprised circuitry using 80 i.cs including error detection, with performance values for dynamic range and crosstalk of between 75 and 80 dB , distortion below 0.05%, and all interference suppressed. Engineers at Telefunken say they are confident that Germany will have p.c.m. radio by the end of the eighties.

In a parallel programme, valued at between DM6 and 7 million over three years, Telefunken has developed the first p.c.m. tuner for direct satellite broadcasts. One of the channels allocated for direct tv broadcasting when the German service starts in 1985 will be dedicated to a raster of 32 digital radio channels, using 14bit linear coding and a sampling rate of 32 kHz . Elaborate error detecting circuitry - 30% of

the signal is taken up with error protection - ensures that not more than one fault an hour will be audible, even under difficult reception conditions. Because the satellite field strengths have been chosen to suit analogue transmission, p.c.m. will obviously allow reception with smaller antennae - a 60 cm dish will be suitable over most of Europe - or else an increase in catchment area. Despite the relative sim-
plicity of the front end (the h.f. part is fixed-tuned on account of the digital coding), overall complexity is such that 180 i.cs are used in the prototype. Cost will be around DM 800 by the time the circuits have been further integrated down to three i.cs in 1986. It seems very likely that programme identification will be integral feature.

Video conferencing experiments have been given the go-ahead in Germany. Bundespost trials starting in 1984, announced at the exhibition, will offer a limited quality b / w service through existing facilities, and digital colour transmissions will have to wait for optical networks to be installed. An EEC standard will be adopted for the scheme as international compatibility is of paramount importance, and a codec design already agreed has been made in small quantities for the experiments. (Similar $2 \mathrm{Mbit} / \mathrm{s}$ codecs for the COST 211 programme are made in the UK by McMi chael under a BT development contract.)

Many tv sets include digitized circuitry nowadays but the ITT Digivision set is the first to digitize all circuits following demodulation. Since the five-chip v.l.s.i. circuits were announced at the last Berlin show three more circuits have been added to the set - two to enhance chrominance and luminance processing for NTSC sets and a third is a low-cost teletext decoder. The original circuits were conceived in 1977 and breadboard verification over a period of three years resulted in the first

Satellite p.c.m. tuner developed for Germany's TV-Sat permits high quality reception of 16 stereo or 32 mono sound channels with automatic programme identification. Selector knob shown will switch between various satellites and cable (118MHz).

Digital processing of video signals using a charge transfer memory, as proposed by Philips, can reduce effects of crosstalk between colour and luminance signals as shown on colour edges (left), increasing picture quality (right).
$3 \mu \mathrm{~m}$ integrations being made and tested in 40 MHz n -mos two years ago (the video codec is bipolar however). Since then, ITT have signed up a good proportion of set makers who are gradually announcing digital chassis'. ITT's sets now on sale in Germany are priced at DM2600, with the teletext decoder built in. Other makers using these chips - which cost around \$30-40 - include Grundig, Sony, Sanyo, Sharp, Telefunken and Zenith now that the automatic picture control processor circuit is available. Meanwhile other i.c. makers - Philips' subsidiary Valvo, Motorola, maybe RCA - will try and interest set makers in other approaches.

To improve the quality of the tv picture without having to modify transmission standards requires a reasonably inexpensive memory that can store at least the information contained in one television field. For standard pal and secam signals the required sampling frequency for the brightness signal is 12 MHz and for the two

colour signals 3 MHz , and together with a seven-bit quantization of the sampled values this gives an information content of 2.2 Mbit per field. As the information to be stored arrives sequentially and only needs to be read out sequentially, a charge transfer device is sufficient, with a transfer rate that allows information becoming available in one field period (20 ms) to be read out twice in succession within 10 ms , as required when the field frequency is to be doubled. The purely sequential character of the memory makes the control and layout of the circuit much simpler, and the chip area required per bit is only about a third of that needed in ram.

Engineers at Philips Research Laboratories in Eindhoven have developed such a memory chip using a $2 \mu \mathrm{~m}$ n-mos process on which one of the bits from a digitized television field can be stored, so the total field information, quantized in seven bits, can be stored using seven such chips. Each stores 308 lines of 1024 bits with a surface area of $7.4 \times 4.7 \mathrm{~mm}^{2}$. (Only seven connections are needed per chip: data in, data out, two clock signals and three supply lines. As normal encapsulations have ten connections, three can be used for introducing delay-offset of $0-7$ bits.)

The final result - a 308 K bit video memory with control logic on a chip area of $34.8 \mathrm{~mm}^{2}$ - is two to three times smaller than the same amount of ram, making it easier to design and less costly to
produce, say Philips. Effective field frequency could be increased from 50 to 100 Hz in either of two ways. In the first, the information in the even lines which is transmitted within 20 ms can be stored in memory and reproduced twice by reading out from the memory twice in succession in 10 ms . This is then repeated for the odd lines. Brightness flicker is eliminated by this process, but interline flicker remains. The other method, which on still pictures will eliminate both interline flicker and brightness flicker, reproduces the odd and even lines alternately, also in 10 ms , but requires a larger memory than the first method because the information for a complete picture has to be stored for 40 ms .
Moving pictures still cause problems at present because of the continual jumping back to a previous field, but the problems are now being studied. The use of a memory in colour decoding can also reduce noise and the effects of colour and luminance interaction, as well as including stationary pictures, magnifying picture details, reducing waiting times on teletext pages, and resynchronizing video signals originating from different sources.
In Sony's NTSC sets circuitry similar to ITT's doubles the number of scan lines to give a non-interlaced display. Processing starts with comb filtering to reduce false colour effects and dot patterning, in which three lines of composite video - 910 samples by eight bits per line - are stored
in static ram. A line can be read out twice to produce 525 lines per field, this interpolation being suggested for character display. Alternatively, the interpolation can be the averaged of two adjacent lines, this being preferable for pictorial display Either way, clock rate must be twice that of the input lock and horizontal scan rate must be doubled. Sony's digital PAL receiver will implement a single field memory in dynamic ram to double the field frequency and reduce large-area flicker.

Using the ITT chips as a starting point, Matsushita incorporate a 64 K ram to display a 96×64 dot colour picture within the main frame, which they like to call "monitor in television". No doubt they would like to make their own digital tv i.cs, for their television division recently described a digital signal processor that could be integrated into a very large scale circuit. Analogue to digital and d-to-a converters, luminance and colour signal separation, colour controller, system clock generator, luminance signal controller, PAL/NTSC decoders and matrix have been implemented with about 10,000 t.t.l. gates and 8 K rams. Integrated into a v.l.s. circuit, this would take the place of two of the ITT chips.

For two weeks around the time of the Funkausstellung Sender Freies Berlin was broadcasting its second programme on 92.4 MHz encoded with a noise reduction system. That was Telefunken's High Com, a wideband compander offering a noise reduction of about 20 dB in cassette recorders (see November 1979 report, page 49). But although Telefunken argue that this is better than the 15 dB of Dolby C (Aweighted), it has proved difficult to market against Dolby, and not many licencees have adopted it in cassette machines. So for the last two or three years they have been experimenting with a version for f.m. radio to improve noise performance in fringe areas and increase service area.

Because it is essential in this application that the encoded signal is received by conventional sets compatibly, the amount of noise reduction has needed to be reduced: starting with 9 dB , they went up to $15-$ with adverse effects - and then down through 12 to 10 dB . Encoded broadcasts by Westdeutscher Rundfunk have not produced any complaints so far, so compatibility seems proven, say Telefunken. But before the scheme can be adopted nationwide there must be a consensus of the Länder broadcasting organisations and so further field tests are planned for next March. By the end of 1984 a new i.c. will be available which because it is 'singleended' (decode-only) is simpler, smaller and cheaper than its predecessor, and can be used in car radio and portable cassette players as well. The resulting o.e.m. price reduction from DM10 to DM3 should help to establish High-Com-FM despite the advance of digital noise-free radio in Germany. The idea is also being discussed in France (Telefunken's parent company is Thomson Brandt) and in Austria.

TEST AND MEASURE

The good thing about such exhibitions as Testmex is that their specialization ensures that a visitor is likely to find something of interest. Such a visitor is only likely to be there if concerned with test and measurement equipment. We present here those products which were actually launched at the exhibition.

PLOT THICKENS

A new six-pen colour graphics plotter for use with engineering and scientific personal computers has been introduced by HewlettPackard. At the same time the earlier two-pen plotter has been reduced in price by 30%. The plotters are compatible with a number of computers including Apple, IBM PC and, of course, the HP models. Software is available to make them appeal to a wide range of users. They can even be used with a range of 'smart' instruments and an external controller may be bought separately to interface the plotters with other instruments. The new plotter (HP 7475A) can accept A3-size paper or transparent film to produce a variety of graphs, charts and histograms. HewlettPackard Ltd, Nine Mile Road, Easthampstead, Wokingham, Berks RG11 3LL
WW 301

SCOPE FOR ADD-ONS

In addition to a very neat portable digital storage 'scope, the 336, Tektronix were showing some digitizer plug-in units for their 7000 range of oscilloscopes which would turn them into digital storage 'scopes, the 7D20 add-on can accurately measure the amplitude of a 5 ns-wide transient. Dual samplers simultancously acquire

INTELLIGENT 'SCOPE

A microprocessor-based, 100 MHz oscilloscope with a built-in IEEE488 interface can easily be incorporated into an automatic test system. It is the OS5 110 from Gould which offers very comprehensive triggering facilities, Automatic measurements of many waveforms parameters carried out using a menu selection control system with full display of control settings, centre line voltages and measurement results. The built-in digital storage system provides waveform storage to the full
100 MHz bandwidth of the instrument and transient storage at a sample rate of up to 1 MHz . Gould Instruments Ltd, Roebuck Road, Hainault, Essex IG6 3UE
WW 306
the measurements from two channels as if it were a dual-beam oscilloscope. Signal averaging, pretrigger and storage for six independent waveforms are provided, as is user prompting and menu displays to make it easy to use, The programming facilities make it suitable for fully automated testing and measurement. A high proportion of these facilities are also available on the 336 portable 'scope which weighs only 5 kg . Tektronix UK Lid, PO Box 69 , Harpenden, Herts AL5 4UP. WW 302

INSTRUMENT CONTROLLER

Making its debut on the Fluke stand was the 1722A Industrial Instrument Controller, designed for controlling instrumentation systems in factories or labs. It features an interactive touchsensitive screen, has IEEE and RS232 interfaces and a choice of memory storage; floppy disc, hard disc or bubble memory. Based around a 16 -bit 99000 processor, the instrument offers wide facilities in automated testing and remote control. Fluke (GB) Ltd, Colonial Way, Watford, Herts WD2 4TT.
WW 303

TEST AND REPAIR ANALYSIS

Incorporated into the display of the GenRad test and repair analysis/control system, or TRACS, were a number of new incircuit board and component testers, including the 2274 circuit board test system. It was claimed to be low cost and flexible enough to

meet the needs of both the small electronics manufacturer and the high-volume producer. The 1734 and 1735 component testers were capable of being configured to exercise a virtually unlimited variety of digital and analogue devices. GenRad Lid, Norreys Drive, Maidenhead, Berks SL6 4BP.

WW 304

FAST FOURIER TRANSFORMATION

Bruel and Kjaer had a new FFT dual channel analyser with 800-line resolution, many functions and made a special point about its ease of use. They were also proud of their 2644 line driver amplifier which could be used to extend the communications lines between transducers and the measurement equipment. Bruel and Kjaer (UK) Ltd, Cross Lances Road
Hounslow, Middlesex TW3 2AE WW 305

SHORT-CIRCUIT LOCATION

Fast and easy location of short circuits on p.c.b.s was being demonstrated on the Omnitest stand using their Hy-trak instrument. They were also showing a disc-drive exerciser, the AVA 103D, for the alignment of magnetic heads in flexible and hard disc drives. Omnitest Ltd,
Highcliffe House, 411 Lymington Road, Highcliffe, Christchurch, Dorset BH23 5EN
WW 307

LOW-COST LOGIC ANALYSER

is provided as an add-on to a Commodore computer as part of a range of logic analysers and other Kontron equipment supplied by Elex Sustems Ltd, John Scott House, Market Street, Bracknell. Berks RG12 1 JB
WW 308

THREE-CHANNEL 'SCOPES

On display for the first time at Testmex were two Trio threechannel, dual timebase oscilloscipes. CS-1040 and CS-1060 have respective bandwidths of 40 and 60 MHz . The use of a highly linear c.r.t. ensures that waveforms remain accurate and undistorted anywhere on the screen. Vertical axis 'sensitivity' is continuously adjustable between $1 \mathrm{mV} / \mathrm{cm}$ and $5 \mathrm{mV} / \mathrm{cm}$. Part of the signal is diverted and sent to an outlet for use with frequency counters or other instruments. Alternate delayed sweep allows the display of a window section of the waveform at the same time as the original and as this can be done on all three channels, this can give six traces at the same time. There is a wide choice of sweep times and delays. There is provision for the display of video signals with a video-clamp function. House of Instruments, Clifton Chambers, 62 High Street, Saffron Walden, Essex CB10 IEE WW 309

ANALYSER WITH PERSONALITY

Z80, 6809 and 8085 options are the first of a series of personality modules which may be added to a Thandar TA2 160 logic analyser. Each module enhances the facilities of the analyser and permits easy connection between circuits incorporating the microprocessor and the analyser. Complete address, data and contrul bus information is multiplexed by the unit into 16 channels for the TA2160. Switches on the units select the types of cycle captured and once stored the cucles may be displayed on the screen as wave forms or disassembled as
mnemonics. An RS232 interface is provided to connect a printer. Thandar Electronics Lid, London Road, St Ives, Huntingdon, Cambs PE174HJ.
WW 310

WAVES RECORDED AND ANALYSED

With up to 16 channels available and a memory capacity of 64 K by 12 -bit words per channel, the Difa Transiscope can be used to study short transient signals, to an accuracy of 0.15%, or record over 170 hours of long-period waveforms. When the waveform has been stored, built in processors can be used to analyse and display them. Software is provided to allow

WW 300

many parameters to be calculated, with options for scalar, vector and fast Fourier transform computations. Guiding menus and controls labelled on the nine-inch data and scope display allow for ease of operation. Complex programmes can be downloaded through the GPIB port. Used in conjunction with a data recorder the instrument can analyse very rapid events in such applications as destructive testing or ballistics research. Racal Recorders Ltd, Hardkey Industrial Estate, Hythe, Southampton, Hants SO4 6ZH
WW 311

TESTING ANY DEVICE

A single system which may be used to test virtually any component was the 2200 Device Test System, from Deltest. Plug-in packages area available for linear i.cs, digital i.cs, data converters, diodes and transistors, and other components Turnkey systems are available for testing complete systems. Deltest Systems Ltd, PO Box 24, Pottery Road, Poole, Dorset BH14 8RQ WW 312

HARD COPY SPECIALISTS

In their first appearance at Testmex, Gulton were showing off their wide range of chart recorders They have launched two multi channel devices, the Supertrak 4100 and Computrak 6100 which are controlled by microprocessors to give programmable chart speeds, automatically generated grid patterns, automatic channel identification and many more features. Gulton Ltd, Maple Works, Old Shoreham Road, Hove, Sussex BN3 7EY WW 313

FAULT TRACERS

In addition to their established range of fault locators and current tracers, Antron were exhibiting a unit developed for in-circuit testing to be used for displaying impedance signature of devices. This uses a built-in oscilloscope display but another unit with the same facilities could be used with a separate scope to provide the display. Both units can switch between, and compare, known working circuits and the test circuit and can display semiconductor curve characteristics for selection and matching. Antron Electronics Ltd, 39 Kings Road, Haslemere, Surrey GU27 2QA WW 314

THUNDERSTRUCK

The trouble with intelligent office machines is their tendency to get silly ideas at the most inconvenient times.
Take our IBM electronic typewriter for example. It has a solid state memory capable of retaining several pages of typing, but it can't do the clever things that a fully fledged word processor can do. And I'm sure it has an inferiority complex that makes it show off.

Because of its limitations we rarely use its full memory, and most of the information stored is rather dull - addresses and similar short items. It is only on the infrequent occasions when we wish to send a number of personalized but otherwise identical letters that the full memory capability is used. So, every now and then it decides to remember an entire report or similar document and stores it away with a contact's address until you are ready to write to him.
We have grown accustomed to these idiosyncrasies and know how to deal with them; but one Monday morning last month it took the opposite action and refused to function at all. Usually, when it is switched on it gives a little performance in a rather bossy way with the golf-ball typing head charging up and down the carriage before stopping at the margin setting, with the machine purring gently to show it is ready to get to work

But on that Monday it refused to move. It made its purring noise to show that the drive motor was running, but it ignored operation of any of the keys and sat sulking on the desk doing nothing. Naturally we telephoned IBM, and they said they would ask the appropriate service engineer to contact us as soon as possible. He phoned the following morning and I explained that our electronic typewriter seemed to have developed a mechanical fault.

I was quite wrong. I should explain that the machine has a volatile memory, so that although one switches off the power to the operational circuits, the internal microcomputer remains connected. Our engineer thought that a thunderstorm during the weekend had caused a "spike" on the mains which put wrong data in the operational memory and stopped the machine working.

I can see why they are called intelligent machines - but "cunning" would be a better word.

TICKER-TALK

I suspect that the real car buff prefers five cylinders, electronic ignition and a turbo charger to the Maestro's talking dash-
board. But it was the talking car that hit the headlines; cars that just go faster are pretty ordinary in terms of news value.
Electronic devices that talk or listen are now the fashionable technological magic. So I was not surprised to read about a talking wrist watch on the Financial Times Technology page just before they went on strike. It was produced by those clever Japanese who got a photograph of their wrist watch television set on the FT front page. I wrote about it in the July issue.
The talking wrist watch is not quite what you might expect. It is a normal digital watch, but with an all-solid-state memory system that can store up to eight seconds of speech and trot it out whenever you press the button. It is intended for use as an oral (or aural) electronic memo instead of one of these miniature cassette recorders.

I'm surprised that they can even accommodate the microphone and loudspeaker in a wrist watch case, and I'm bound to admire the ingenuity of the designers. But an eight-second capacity seems a bit small. I think it would just about accommodate the manufacturer's international address - spoken in English.

I was a bit disappointed, however, when I read the description. When I first saw the headline I assumed that a talking and listening wrist watch would tell you the time when you ask it. But perhaps one shouldn't expect the magic to be useful as well.

THE ALL ELECTRONIC SHOW-OFF

Do you remember when the term "electronic" was generally associated with radio, radar and similar kinds of magic that are now regarded as a bit dull and ordinary?

It's all different now, of course, with microchips all over the place, space invaders and that sort of thing. And it seems that no modern home is complete without an all-electronic kitchen - electronic washing machine, food mixer, cooker and steam iron - all programmable naturally.

I was a bit surprised, however, when I began to make some enquiries about a home video cassette machine. We're a little behind the times at our house. I started with that knowledgeable chap in the radio shop opposite our office. He recommended that I should be sure to get an electronic one.
"Is there some other kind?" I asked.
"Well, not now sir," he told me, with that knowing smile the expert gives when he thinks he's been caught out, "But the older models had mechanical push-button
switches instead of these touch controls."
We had a similar experience with the telly. A few drops of water spilled into it when it was only a few days old and it stopped working immediately. We dried it out with the hair dryer and complained to the supplier, who repaired it under guarantee.
"These electronic sets do have teething troubles," the shop manager told me when I reported the fault.
"They are all electronic," I said.
"No sir, yours has electronic remote control," he explained.
I didn't argue. We live and learn. I always believed that our old valve colour telly was electronic, but it took more than a drop of water to put that one out of action.

LOGICAL CONCLUSION

There is a computer news journal on my side table with a survey of "Semi-custom logic" that goes on for page after page. Of course, I could discover what it means by reading the article, but that seems like cheating, so I looked up the words in my old dictionary.

The meaning of "logic" is given as reasoned argument; and the only adjectival meaning given for the word "custom" is custom design - designed to the customer's individual requirements. So semi-custom logic must mean that the product is half-designed to the customer's reasoned argument. Well, we're quite used to that:

One of the facts of life that an old dictionary brings to notice is the brief time since all this computer jargon became part of the language. My old dictionary is a 1954 edition. Less than twenty years old, but it gives the meaning of the verb "compute" as - count, reckon, assess; and the noun "computer" is, naturally, one who computes. So, with digits defined as fingers or toes, a digital computer is, logically, someone who counts on his fingers.
In my old dictionary the word "programme" is a noun pure and simple. A programme is a plan of intended proceedings, and no other meaning is given.

I have a press release on my desk announcing a "programmed socket". It says that if your second-source i.c. device has the wrong pin outs for your p.c. layout, you can simply instal the Programmed Socket instead of the i.c. and then the i.c. into the Programmed Socket. I think I know what all that means. I go through a similar procedure to drive my electric shaver from a 3 -pin 13 -amp socket.

What will they think of next - programmed soap for electronic washing machines?

Testing...Testing...Testing
 anywhere! FM/AM $1100 S$ with Spectrum Analyser. The most sophisticated portable Communications Service Monitor from IFR, with an unrivalled versatility of integrated functions.

For a practical demonstration to prove our point contact: Mike Dawson on 01-897 6446.
(1) Fieldtech
Hemting

Fieldtech Heathrow Limited Huntavia House 420 Bath Road Longford Middlesex UB7 OLL Telex: 23734 FLDTEC G

WW - 012 FOR FURTHER DETAILS

Hitachi Oscilloscopes performance, reliability, value
 (6)

New from Hitachi are three low-cost bench scopes with bigger screens and extra features in a new slimline ultra-lightweight format The range now extends to 13 models:-

4 dual trace single timebase models 20 MHz to $\mathbf{4 0 \mathrm { MHz }}$ 2 dual trace sweep delay models 20 MHz and 35 MHz 2 dual timebase multi-trace models 60 MHz and 100 MHz 2 miniature field portable models, 20 MHz and 50 MHz 3 storage models, one tube storage, two digital storage

Prices start at $£ 295$ plus vat (model illustrated) including 2 probes and a 2 -year warranty. We hold the range in stock for immediate delivery For colour brochure giving specifications and prices ring (0480) 63570 .

Reitech Instruments, 46 High Street, Solihull, W. Midlands, B91 3TB

Discover the Microcomputer Age

Come along to The Northern Computer Fair and discover for yourself the excitement of the microcomputer age. All you need to know about personal computers, home computers and microcomputer systems for business will be on display at Belle Vue, Manchester from November 24-26. All your questions will be answered at the North's premier personal computer exhibition.

Enthusiasts can see the latest software and hardware technology in action, and for those new to the world of computers this show is a great introduction. Being sponsored by Practical Computing and Your Computer, the leading microcomputing magazines, you can be sure of value for money at $£ 3$ a ticket for Adults and $£ 2$ for Children under 16.

Travelling to the show is also easy as the organisers have arranged special reduced-price tickets with British Rail which include the cost of admission. For further information ring British Rail Enquiry Bureau on $061-832$-8353 before November 11.

The Northern Computer Fair is open between 10.00 am and 6.00 pm every day so come along and bring the microcomputer age alive for you.

For special party rates and further information contact: The Exhibition Manager, The Northern Computer Fair, Reed Exhibitions, Surrey House, 1 Throwley Way, Sutton,
Surrey SM1 4QQ

Sponsored by

The heavy duty versions of the Avo 1000 Series矃ave to pass a lot of tests that aren't electrical.

Under normal operating conditions, you can depend on the Avo 1000 Series to give long and reliable performance. However, we appreciate that a lot of users subject their test instruments to treatment that is far from normal. They drop them into their toolkits, throw pliers onit them or take them into hot and sticky boiler rooms. So to make a tough range of instruments even tougher, we have developed a special rubberised coating which is moulded directly onto the casing.

We put all our instruments through a series of tests that make normal rough treatment look like delicate handling. We flash test them, we subject them to intense vibration, bump them up and down for hours, make them sit in difficult climatic conditions and drop a heavy metal rod on them from a substantial height.

Software costs are significant in all industrial applications of microprocessors. They cannot be amortised over the large quantities associated with personal computers and electronic games. This C-MOS embedded computer card aims at resolving this problem by including FORTH high level language programming and developmental facilities. The software can be written quickly and made to work correctly at lowest possible expense. Using a high level programming language rather than assembler the same board as employed in the prototypes

No microprocessor development system is needed since the card contains a screen editor working with simple visual display units (VDUs). It also has the compiler for the FORTH source code. Debugging is inherent in the FORTH language and once the code is working, this can be output to a PROM programmer.

Use of C-MOS throughout has brought the power consumption down to 28 mA , making the TDS 900 especially suitable for portable and battery-driven applications.

Triangle Digital Services Limited
100a Wood Street, Walthamstow, London E17 3HX Tel: $01-5200442$

MANUFACTURERS \& OISTRIBUTORS

BERG low profile 14 pin dual in line IC Socket manufactured from glass-filled polyester to UL94V-0. $£ 7$ for $100, £ 31$ for $500, £ 56$ for $1,000, £ 256$ for $5,000, £ 460$ for 10,000 £2,100 for $50,000, £ 3,700$ for 100,000 . Sample 10 sent for $£ 1.20+30$ p P\&P ($£ 1.37$ inc. VAT)
BERG low profile $\mathbf{1 6}$ pin dual in line IC Socket as above $£ 8$ for $100, £ 36$ for $500, £ 65$ for $1,000, £ 295$ for $5,000, £ 530$ for $10,000, £ 2,390$ for $50,000, £ 4,300$ for 100,009 . Sample 10 sent for $\mathbf{E 1 . 4 0}+30 \mathrm{P}$ P\&P (f1.96 inc. VAT)

> (For larger quantities telephone for special quotation)

HIGH POWER SILICON BRIDGE RECTIFIERS. 25 amp 600 V . Single hole fixing 250 (ain push-on for $100, \mathbf{£ 8 0 0}$ for $500, \mathbf{£ 1 , 4 5 0 \text { for } 1 , 0 0 0 \text { . Spe }}$
sent for $£ 2.50+25 p$ P\&P ($£ 3.16$ inc. VAT).

ZENER DIODES manufactured by Thompson C.F. all bandoliered BZX79 C18-BZX79C20-BZX83-C18-BZX83-C20. $£ 12$ per 1,000 of one type, $£ 15$ per 1,000 assorted sample, 100 sent for $£ 3+25$ p P\&P ($£ 3.74$ inc. VAT)

WIRE CUTTER \& STRIPPER, tempered steel blades spring loaded with moulded red PVC handles. Cutting and stripping adjustable up to $6.0 \mathrm{~mm}^{2}$. Overall length 135 mm . $£ 116,500$ for $£ 525,1.000$ for $£ 1,000$ Sample pair sent for $\mathbf{£ 1 . 7 5}+\mathrm{P} \mathrm{\&}$ P (£2.60 inc. VAT).

RECTANGULAR AMBER NEON INDICATORS 240 V AC 0.3 W fit most standard cut outs. Connection by $250\left(1 / 4^{\prime \prime}\right)$ push-on connectors. $£ 11.50$ for $50, £ 21$ for 100 , $£ 95$ for
 VAT).

ROUND RED NEON INDICATOR 240V AC $0.3 W$ MT Hole dia. approx. 9.5 mm . Bezel dia. aprox. 12.5 mm . Complete with heat resistant leads approx. 500 mm in length fitted

METAL FILM RESISTOR TYPE FZ4 manufactured by C.G.S. semi-precision with a standard tolrance of $\pm 2 \%$ and a temperature co-efficient of better than $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. standard tolrance of $\pm 2 \%$ and a temperature co-efficient of better than $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
We have a full range in stock from 100 R to 1 MO . All bandoliered. $\mathbf{£ 2 . 5 0}$ per 1,000 , any one value.

Terms c.w.o. Please add 5\% to all orders for carriage plus 15% V.A.T. Export enquiries welcome. We find it impossible to advertise all we stock. Please telephone or write for further enquiries. Personal callers always welcome.

Eiectranc Eunumar Co.
 SPRINGFIELD HOUSE TYSSEN STREET, LONDON E8 TEL: 01-2495217 TELEX: 8953906 EECO.G

 Veight 64 grms. 10 for $£ 15,25$ for $£ 34,50$ for $£ 63,100$ forWW - 073 FOR FURTHER DETAILS

TIME WRONG?

MSF CLOCK is ALWAYS CORRECT - never gains or loses, SELF SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds, auto GMT/BST and leap year, parailel BCD (including Weekday) output for alarm, computer, etc, and audio to record and show time on playback, receives Rugby 60 KHz atomic time signals, only $15 \times 5 \times 8 \mathrm{~cm}$, built-in antenna, 1000 Km range, GET the TIME RIGHT, £72.70.
60KHZ RUGBY RECEIVER, as in MSF Clock, serial data output for computer, decoding details and Basic listings, $£ 24.20$

Each fun-to-build kit (ready made to order) includes all parts, printed circuit, case, instructions, by-return postage, etc., money back assurance, send off NOW.

CAMBRIDGE KITS
45 (WY) Old School Lane, Milton, Cambridge

RECHARGEABLE BATTERIES

PRIVATE \& TRADE ENDUIRIES WELCOME
Full range available to replace 1.5 volt dry cells and 9 volt PP type batteries, SAE for lists and prices. £1.45 for booklet, "Nickel Cadmium Power," plus catalogue.
\star COMPLETE RANGE OF CHARGERS
SANDWELL PLANT LTD.
656 Chester Road, Erdington, Birmingham B23 5TE 021-373 9487
After hours: LICHFIELD 57977
Now open Saturday morning 9.30 to 12.30

U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

니

RECORD DECKS
Large Turntables

Make	Model	Drive	Cartridge	Price
BSR	P170	Rim	Ceramic	$£ 20$
GARRARD	6200	Rim	Ceramic	$£ 22$
GARRARD	Delux	Belt	Magnetic	$£ 40$
GOLDRING	G102	Belt	Magnetic	$£ 30$
BSR	P232	12 volt	Magnetic	$£ 24$

	AUTOCHANGERS 240 VOLT			
BSR	Budget	Rim	Ceramic	£16
BSR	Delux	Rim	Ceramic	£18
BSR	Delux	Rim	Magnetic	£26

MAINS PRE-AMP FOR MAGNETIC CARTRIDGES to low
gain amplifier 10 mv to $1 / 2$ volt, mono $£ 5$, stereo $£ 7$. P\&P $£ 1$.
HEAVY METAL PLINTHS
Cut out for most Garrard decks. Black or
silver grey finish. Size $16 \times 133 / 4 \mathrm{in}$.
DECCA TEAK VENEERED PLINTH. Post $£ 1$
DECCA TEAK VENEERED PLINTH. Post f
small amplifier. Board is cut for B.S.R.
boards cut out for Garrard $£ 3$. Tinted plastic cover $£ 5$
TNTED PLASTIC COVERS

寿	£5		Post ¢1
$17^{1 / 4} \times 9^{3 / 8} \times 31 / 2 \mathrm{in}$.	f 3	$181 / 4 \times 12^{1 / 2} \times 3$ in	f5
$161 / 2 \times 15 \times 41 / 2 \mathrm{in}$.	£J	$165 / 8 \times 13 \times 4 \mathrm{in}$.	£5
$17 \times 12^{7 / 8} \times 3^{1 / 2} 2 \mathrm{in}$.	£5	$14^{1 / 2} \times 13^{1 / 8} \times 2^{3 / 4}$ in.	¢5
$225 / 8 \times 13^{7} / 8 \times 3 \mathrm{in}$.	£5	$17^{1 / 4} \times 13^{3} / 4 \times 41 / \mathrm{sin}$.	$£ 5$
$211 / 2 \times 14^{1 / 4} \times 21 / 2 \mathrm{in}$.	£5	$21 \times 137 / 8 \times 41 / 8 i n$.	£5
$233 / 4 \times 14 \times 37 / 8 \mathrm{in}$.	£5	$303 / 4 \times 13^{3} / 8 \times 31 / \mathrm{in}$.	£5

THE 'INSTANT"' BULK TAPE ERASER $£ 10.50$ Post $95 p$
reels. AC mains $200 / 250 \mathrm{~V}$. Hand held size with switch and lead (120 volt to order).
computer tapes.
Tape Head Demagnetiser only $£ 5$.

BATTERY ELIMINATOR MAINS to 9 VOLT D.C
Stabilised output, 9 volt $400 \mathrm{~m} . a$. U.K. made in plastic case with screw terminals. Safety overload cut out. Size
$5 \times 3^{1 / 4} \times 2^{1 / 2 i n . ~ T r a n s f o r m e r ~ R e c t i f i e r ~ U n i t . ~ S u i t a b l e ~}$ Radios, Cassettes, models, £5. Post fit
DRILL SPEED CONTROLLER/LIGHT DIMMER KIT. Eas Y build kit. Controls up to 800 watts AC mains with plastic case $4 \times 3 \times 11 / 2 \mathrm{in}, \mathbf{£ 5}$, less case $£ 4$. For brush motors,

R.C.S. LOW VOLTAGE STABILISED

POWER PACK KITS
位
. 100 mA . Please state voltage required
RELAYS. 6 V DC 95p. 12V DC $£ 1.25$. $18 \mathrm{~V} £ 1.25 .24 \mathrm{~V} £ 1.30$
 $16 \times 10-£ 3.80 ; 12 \times 3 £ 2.20 ; 14 \times 3 £ 2.50 ; 13 \times 9 £ 2.80$. ALUMINIUM PANELS $6 \times 4-55 p ; 8 \times 6-90 p$; $14 \times 3-90 p$ $10 \times 7-£ 1.15 ; \quad 12 \times 8-\mathbf{f 1 . 3 0 ;} 12 \times 5-90 p ; \quad 16 \times 6-£ 1.30$ ALUMINIUM BOXES. $4 \times 4 \times 1^{1 / 2} \quad \mathbf{£ 1 . 2 0}$. $4 \times 21 / 2 \times 2 \quad £ 1.20$ $3 \times 2 \times 1 £ 1.20$. $6 \times 4 \times 2 £ 1.90 . \quad 7 \times 5 \times 3 £ 2.90$ $10 \times 7 \times 3 £ 3.60 .12 \times 5 \times 3 £ 3.60 .12 \times 8 \times 3$
BRIDGE RECTIFIER 200 V PIV $2 \mathrm{a} £ 1.4 \mathrm{a} £ 1.50$. $6 \mathrm{a} £ 2.50$
TOGGLE SWITCHES SP 40p. DPST 50p. DPDT 60p.
MINIATURE TOGGLES SP 40p. DPDT 60p.
RESISTORS. 10Ω to 10 M . $1 / 4 \mathrm{~W}, 1 / 2 \mathrm{~W}, 1 \mathrm{~W}, 2 \mathrm{p} ; 2 \mathrm{~W} 10 \mathrm{p}$.
Low ohm 1 watt 0.47 to 3.9 ohm 10 p .
HIGH STABILITY. $1 / 2 w 2 \% 10$ ohms to 1 meg. 10p. WIRE-WOUND RESISTORS 5 watt, 10 watt, 15 watt 20p PICK-UP CARTRIDGES SONOTONE 9TAHC $£ 3.80$. PHH Stereo Ceramic SLUG-IN HEAD Stereo Ceramic. AU1020 iG306-GP310 GP233-AG3306, £2. A.D.C., QLM $30 / 3$ Magnetic $£ 6.50$. STYLUS most Ceramic Acos, Sonotone, BSR, Garrard MAGNETIC STYLUS, Sony. JVC, Sanyo, Goldring, etc. £4 LOCKTITE SEALING KIT DÉCCA 118 . Complete f 1 . VALVE OUTPUT Transformers push pul 15 watt $£ 14$ 30W £18;50W £20; 100W £24. Post f2. 100 V/Line 20W £3. 75 SPEAKER MATCHING TX 4 to 8 or 8 to 4 ohm
MICROSWITCH, 50 p. Miniature 65 p . SPDT.
MICROSWITCH, 50 p , Miniature 65 p . SPDT.
ANTEX SOLDERING IRON 'C' $15 \mathrm{~W} £ 5.25 .25 \mathrm{~W} \times 25$ ' $£ 5.50$ WNAFER SWITCHES. $11 / 4^{\prime \prime}$ dia. Long Spindle 60p ${ }^{\prime} £ 5.50$ 1P 12 W ; 2 P 2 W ; 2 P 6 W ; 3 P 4 W ; 4 P 2 W ; 4 P 3 W . FERRITÉ ROD.

XLR Chassis Plug $£ 2.20$. Chassıs Socket $£ 2.55$
BANANA 4 mm Plugs/Sockets, red/black 20p
JACK PLUGS Mono Plastic 25p; Metal 30p. Sockets 25p JACK PLUGS Stereo Plastic 30p; Metal 35p. Sockets 30p FREE SOCKETS - Cable end 30p. Metal 45p.
2.5 mm and 3.5 mm JACK SOCKETS 25p. Plugs 25p DIN TYPE CONNECTORS
Sockets 3-pin, 5-pin 15p. Free Sockets 3-pin, 5-pin 25p. Plugs 3-pin 20p; 5-pin 25p; Speaker plugs 25p; Sockets 15p. no Plugs 25p. Free Socket for cable end 20 p. Screened Phono Pl U.H.F. PLUG 50p. Socket 50p. Reducer 20p. Coupler 50p. 300 ohm TWIN RIBBON FEEDER 10 p yd.
300 ohm to 75 ohm AERIAL MATCHING TRANSFORMER $£ 1$ U.H.F. COAXIAL CABLE SUPER LOW LOSS, 75 ohm 25 p yd. COAX PLUGS 30p. COAX SOCKETS 20p. Lead Sockets 6 MORSE CODE TAPPER AND BUZZER SET $£ 3$. GAR CASSETTE MECHANISM. 12 V Motor Stereo Head $£ 5$

POTENTIOMETERS Carbon Track

5 k 1210 .

PANEL METERS

$5 \mathrm{ma}, 50 \mathrm{ma}, 100 \mathrm{ma}, 500 \mathrm{ma}$, amp, 2 amp, 25 volt, VU

RCS SOUND TO LIGHT CONTROL BOX
Complete ready to use with cabinet size $9 \times 3 \times 5$ in. $\mathbf{£ 2 7} 7$
3 channel, 1000 watt each. For home or disco OR KIT OF PARTS £19.50
LIGHT BOXES, $20 \times 9 \times 9 \mathrm{in}$, red, yellow, blue, green, $£ 16$. DISCO BULBS 100 watt, blue, green, yellow, red "'FUZZ" lights, red, blue, green, amber, 240 V . £28. Post $£$ 200 Watt Rear Reflecting White Light Bulbs. Ideal for
Disco Lights, Edison Screw. 6 for $£ 4$, or 12 for $£ 7.50$. Post $£ 1.50$. Suitable panel mounting holders 85 p.
RCS "MINOR" 10 watt AMPLIFIER KIT £14 This kit is suitable for record players, guitars, tape
playback, electronic instruments or small PA systems. Two versions available: Mono, $£ 14$; Stereo, $£ 20$. Post $\varepsilon 1$ 10W per channel; size $91 / 2 \times 3 \times 2 \mathrm{in}$. SAE details.

RCS STEREO PRE-AMP KIT. All parts to build pre-amp. Inputs for high, medium or low imp

per channel, with volume control and PC Board $\mathbf{£ 3 . 5 0}$ | Can be ganged to make multi-way stereo mixers Post 65 p |
| :--- |
| MAINS TRANSFORMERS Post |

LOW VOLTAGE ELECTROLYTICS Wire ends AII 10p ea
$1 \mathrm{mf}, 2 \mathrm{mf}, 4 \mathrm{mf}, 8 \mathrm{mf}, 10 \mathrm{mf}, 16 \mathrm{mf}, 25 \mathrm{mf}, 30 \mathrm{mf}, 50 \mathrm{mf}, 100$
POSt
f6.00
£2 2.00
$£ 2$ $\mathrm{mf}, 250 \mathrm{mf}$. All 15 volts. $22 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 25 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 47$ $\mathrm{mf} / 10 \mathrm{v} ; 50 \mathrm{mf} / 6 \mathrm{v} ; 68 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} / 25 \mathrm{v} ; 100 \mathrm{mf} / 10 \mathrm{v} ; 150$
$\mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 200 \mathrm{mf} / 10 \mathrm{v} / 16 \mathrm{v}: 220 \mathrm{mf} / 4 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} ; 330$ $\begin{array}{ll}\mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; & 200 \mathrm{mf} / 10 \mathrm{v} / 16 \mathrm{v} ; 220 \mathrm{mf} / 4 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} ; ~ \\ \mathrm{mf} / 4 \mathrm{v} / 10 \mathrm{v} ; 50 \\ 500 \mathrm{mf} / 6 \mathrm{v} ; 680 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 1000 \mathrm{mf} / 2.5 \mathrm{v} / 4 \mathrm{v} / 10 \mathrm{v}\end{array}$ $500 \mathrm{mf} / 10 \mathrm{v} ; 2200 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 3300 \mathrm{mf} / 6 \mathrm{v}: 4700 \mathrm{mf} / 4 \mathrm{v}$ 500 mF 12 V 15 p ; $25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p} .1200 \mathrm{mF} 76 \mathrm{~V} 80 \mathrm{p}$. $1000 \mathrm{mF} 12 \mathrm{~V} 20 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 50 \mathrm{p} ; 100 \mathrm{~V} \mathrm{f} 1.20 \mathrm{p}$. $2000 \mathrm{mF} 30 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} 60 \mathrm{p} ; 100 \mathrm{~V} \mathrm{E1.40} ; 1500 \mathrm{mF} 100 \mathrm{~V} £ 1.20$. $2200 \mathrm{mF} 63 \mathrm{~V} 90 \mathrm{p} .2500 \mathrm{mF} 50 \mathrm{~V} 70 \mathrm{p} ; 3000 \mathrm{mF} 50 \mathrm{~V} 65 \mathrm{p}$: $700 \mathrm{mF} 30 \mathrm{v} 75 \mathrm{p} ; 40 \mathrm{v} £ 1$; 63 v £ 1.80
NON POLARISED CAPACITORS - REVERSIBLE
$\mathrm{mF} 250 \mathrm{~V} 25 \mathrm{p} ; 1.5 \mathrm{mF} 100 \mathrm{~V} 25 \mathrm{p} ; 2.2 \mathrm{mF} 250 \mathrm{~V} 30 \mathrm{p} ; 3.3 \mathrm{mF}$ $100 \mathrm{~V} 40 \mathrm{p} ; 4.7 \mathrm{mF} 100 \mathrm{~V} 40 \mathrm{p} ; 10 \mathrm{mF} 63 \mathrm{~V} 40 \mathrm{p} ; 32 \mathrm{mF} 50 \mathrm{~V} 25 \mathrm{p}$ HIGH VOLTAGE ELECTROLYTICS
$2 / 500 \mathrm{~V} \quad 45 \mathrm{p} \quad 32+32+16 / 350 \mathrm{~V} 90 \mathrm{p} \quad 8+16 / 450 \mathrm{~V}$ $\begin{array}{llll}8 / 450 \mathrm{~V} & 45 \mathrm{p} & 100+100 / 275 \mathrm{~V} & \text { 50p } \\ 16 / 350 \mathrm{~V} & 45 \mathrm{p} & 150+200 / 275 \mathrm{~V} & 50 \mathrm{p}\end{array}$ $\begin{array}{lllll}16 / 350 \mathrm{~V} & 45 \mathrm{p} & 150+200 / 275 \mathrm{~V} & 50 \mathrm{p} & 16+16 / 350 \mathrm{~V} \\ 32 / 500 \mathrm{~V} & 95 \mathrm{p} & 32+32+32 / 450 \mathrm{~V} 95 \mathrm{p} & 32+32 / 350 \mathrm{~V} & 8 \\ 32\end{array}$ $\begin{array}{lllll}32 / 350 \mathrm{~V} & 50 \mathrm{p} & 50+50+50 / 350 \mathrm{~V} & 95 \mathrm{p} & 50+50 / 300 \mathrm{~V} \\ 50 / 450 \mathrm{~V} & 95 \mathrm{p} & 8+8 / 500 \mathrm{~V} & \mathrm{f1} & 50+50 / 350 \mathrm{~V}\end{array}$ CAPACITORS WIRE END High Voltage $.001, .002, .003, .005, .01,02, .03, .05 \mathrm{mfo} 400 \mathrm{~V} 10 \mathrm{p}$
.1 MF 400 V 14 p .600 V 15 p .1000 V 25 p. 22 MF 350 V 12 p .600 V 20 p .1000 V 30 p .1750 V 60 p 47 MF 150 V 10 p .400 V 25 p .630 V 30 p . 1000 V 60 p .
TRIMMERS $30 \mathrm{pF} .50 \mathrm{pF}, 10 \mathrm{p} .100 \mathrm{pF}, 150 \mathrm{pF} 20 \mathrm{p} .500 \mathrm{pF} 30 \mathrm{p}$. TRIMMERS 30pF, 50pF, 10p. 100 pF , 150 pF 20 p . 500 p
MICROSWITCH SINGLE POLE CHANGEOVER 40p EARED TWIN GANGS $365+365+25+25 \mathrm{pF}$ £2. BRASS SPINDLE EXTENDERS 85p. Couplers 65 p ERNIER DRIVE DIALS, $36 \mathrm{~mm} £ 2.50,50 \mathrm{~mm} £ 3$ LOW MOTION DRIVE 6:1 $£ 1.50$. Reverse Vernier drive 90p. HEATING ELEMENTS, WAFER THIN (Semi Floxible) Size $11 \times 9 \times 1 / 8: \mathrm{m}$. Operating voltage $240 \mathrm{~V}, 250 \mathrm{~W}$ approx
Suitable for Heating Pads, Food Warmers, Convector Suitable for Heating Pads, Food Warmers, Convector
Heaters, Propagation, etc. Must be clamped between Wo sheets of metal or ceramic, etc.
ONLY 60 p EACH (FOUR FOR £2) POST 50p

NEW baker Star sound

High power full range quality loudspeakers. British made Ideal for Hi-Fi, music P.A. or discotheques. These loudspeakers are recommended for high power quality

MODEL	INCHES	OHMS	Watts	TYPE	PRICE	POST
MAJOR	12	4-8-16	30	HI-FI	f16	
SUPERB	12	8 -16	30	HI-FI	E26	f2
AUDITORIUM	12	8-16	45	HI-FI	E24	f2
AUDITORIUM	15	8 -16	60	H1-F	f37	f\%
GROUP 45	12	4-8-16	45	PA	f16	f2
DG 75	12	4-8-16	75	PA	520	f2
GROUP 100	12	8-16	100	PA	$f 76$	f2
DISCO 100	12	8-16	100	Disco	f26	£2
GROUP 100	15	8 8-16	100	PA	f35	£2
DISCO 100	15	8-16	100	Disco	E35	E2

BAKER AMPLIFIERS BRITISH MADE

NEW PA150 MICROPHONE PAA AMPLFIER $£ 129$ 4 channel 8 inputs, dual impedance, $50 \mathrm{~K}-600$ ohm 4 channel control, echo send return socket. Slave sockets. Post $£ 3$
BAKER 150 Watt AMPLIFIER 4 Inputs $£ 99$ for 4,8 or 16 , Vocal, Aub Address. Three speaker 50 K ohm Individual volume controls "Four channel" mixing. iso watts 8 ohms R.M.S. Music Power Stave output 500 M.V 25 Kohm . Response $25 \mathrm{~Hz}-20 \mathrm{kHz} \pm 3 \mathrm{~dB}$. Integral ${ }^{\text {Hi-Fi }}$ preamp separate volume control British made 12 months' quarantee. 240 v AC mains or 120 V to order. All transistor and solid state. Post $£ 2$ 100 Volt Line Model f114. MONO SLAVE 150 watt $£ 80$ New Stereo Slave $150+150$ watt 300 watt Mono $£ 125$. Post $£ 4$ BAKER MOBILE PA AMPLIFIER, All transistor, 60 watt RMS, 12 v DC \& 240v AC 4 inputs 50 k . Aux +2 mics +1 phono (2) $4-8-16 \mathrm{hm}+100$ volt line, $\mathrm{f} 89 \mathrm{p} . \mathrm{p} . \mathrm{f} 2$

BAKER PORTABLE DISCO 150w. Twin console + amplifier + mike and headphones + fwin speakers Complete . 399 . Carriage $£ 30$. Console with pre-amp only $£ 107$ ELECTHONIC ECHO CHAMBER $£ 85$. Post $£ 2$ BBD Delay System $30 \mathrm{~m} / \mathrm{sec} 10200 \mathrm{~m} / \mathrm{sec}$. Variable echo 240 V AC

DISCO GRAPHIC MIXER EQUALISER £108. Post £2 4 Channel stereo, 5 band graphic, red + green LED, PA CABINET SPEAKERS, Complete. 8 ohm 60 watt $17 \times 15 \times 9 \mathrm{in}$. $£ 25$. Post $£ 4.4$ or 8 or 16 ohm 75 watt
$23 \times 15 \times 11$ in. $£ 50$. 90 watt $32 \times 15 \times 11$ in. $£ 63$. 120 watt $\mathbf{~} \mathbf{f 7 7}$. Carr. f10. Black vinyl covered with handles WATERPROOF HORNS 8 ohms. 25 watt $£ 20.30$ watt
$£ 23.40$ watt $£ 26.40 \mathrm{~W}$ plus 100 volt line $£ 32$. Post $£ 2$.

R.C.S. 100 watt R.M.S

4 Channel mixing. Master
Channel mixing. Master
treble, bass and volume
controls. 5 Speaker outtets,
group. $\mathbf{f 1 2 5}$ CaIr \& ins $£ 15$.
60 WATT VALVE AMPLIFIER,
3 mixer inputs, $4-8-16$ ohm, too volt line 5 controls, 2 mic inputs plus 1 input switchable for mic, phono, aux. Treble and bass and
3 volume controls, 7 valves f 69 . Post $\mathbf{f} 3$.
FAMOUS LOUDSPEAKERS "'SPECIAL PRICES

s. No cossover

CROSSOVERS. TWO-WAY $3000 \mathrm{c} / \mathrm{s} 30$ watt E 3 . 100 W f 4 .
3-way $950 \mathrm{cps} / 3000 \mathrm{cps} .40$ Watt rating. $£ 4.60$ watt $£ 6$. 100 W fB .
LOUDSPEAKER BARGAINS. Please enquire, many others in sto $4 \mathrm{ohm}, 5 \mathrm{In}, 7 \times 4 \mathrm{in}, £ 2.50 ; 61 / 2 \mathrm{in}, 8 \times 5 \mathrm{in}, £ 3 ; 8 \mathrm{in}, \mathrm{£} .50 .61 / \mathrm{in} 20 \mathrm{~W} £ 7.50$. $8 \mathrm{ohm}, 25 / 8 \mathrm{in}, 3 \mathrm{n}, \mathfrak{f 2} ; 5 \times 3 \mathrm{in}, 6 \times 4 \mathrm{in}, 7 \times 4 \mathrm{in}, 5 \mathrm{in}, \mathfrak{f 2} .50 ; 61 / 2 \mathrm{in} .20 \mathrm{~W} £ 7.50$

EMI 13½x8in. SPEAKERS

oil tweeter and two-way crossove
ohm or 8 ohm. 'Final Clearance'
SUTTABLE BOOKSHELF CABINET
Dept 1, 3і7 WHITEHORSE ROAD, CROYDON
Open 9-6. Closed all day Wed. Open Sat. 9-5.

E.M.S. POWER SYSTEMS

Solve all your Power Problems by contacting E.M.S.
E.M.S. specialise in systems to eliminate your power problems.
Products range from 35VA switched square wave Power Packs to 1KVA fully uninterruptible sine wave systems.
E.M.S. also manufacture chargers which range up to 60 amps .

For further details please contact:

> E.M.S. Manufacturing Limited Chairborough Road
> High Wycombe
> Bucks
> Tel: $(0494) 448484$

PRICE BREAKTHROUGH!
CVS DRIVE KITS BBC COMPATIBLE

Kit includes
\star Formatting Disc for BBC
\star D.O.S. Pocket Reference Guide

* Metal case; high quality finish to match BBC
\downarrow All cables
※ Full instructions - easily assembled in 15 minutes
All Drives are calibrated and checked before leaving our factory. These are NOT manufacturer's surplus but currently produced top grade drives by Shugart Associates using the well-proven SA 800 Drive Head.

Single 100 K kit KD $100 £ 158$ pp £2.50

Miscellaneous
IC 8271 £ 36 , IC 1797 £ 26 , IC $2764 £ 3.60$
BBC Double Density Kit, KDD1 £79 p.p. £2
(Doubles capacity of above drives)
All prices exclude VAT. Please add 15% to total order value
COMPUTER VILLAGE LTD.
(MAIL ORDER DEPARTMENT)
WALKER HOUSE, TELFORD TOWN CENTRE
TELFORD TF3 4HA
(0952) 506596

AMPLIFIERS

Over the last few years we have received feedback via the general public and industry that our products are from Taiwan, Singapore, Japan, etc... ILP are one of the few 'All British' electronics Companies manufacturing their own products in the United Kingdom. We have proved that we can compete in the world market during the past 12 years and currently export in excess of 60% of our production to over twenty different countries - incłuding USA, Australia and Hong Kong. At the same time we are able to invest in research and development for the future, assuring security for the personnel, directly and indirectly, employed with in the UK. We feel very proud of all this and hope you can reap some of our success
I.L.Potts -- Chairman

Protection: Full load line. Slew Rate: $15 \mathrm{v} / \mathrm{\mu s}$. Risetime: 5 sc . S / N ratio. 100 do , input Impedance $100 \mathrm{~K} \Omega$. Damping focter. $100 \mathrm{~Hz}>400$

PRE.AMP SYSTEMS

Module Number	Module	Functions	Current Required	Price inc. VAT
HY6	Misno pre amp	Mic/Mag. Cartridge/Tuner/Tape/ Aux I VolBass/Treble	10 mA	£7.60
$\mathrm{H}^{\prime} \times 66$	Stereo pre amo	Mic/Mag. Carlridge/Tuner/Tape/ $\mathrm{Aux}+\mathrm{Vol} / \mathrm{Bass} /$ Treble/Balance	20 mA	£14.32
HY73	Ciuliar pre amp	Two Gutar (Bass Lead) and Mic + separate Volume Bass Treble + Mix	20 mA	£15.36
HY/b	Stereo pre amp	As HV66 less tone controls	20 mA	£14.20

Most pre-amp modules can be diven by the PSU driving the man power amp
A spparate PSU 30 is avallable purely for preamp modules it requ red fo
E5,4 (inc. VAT). Pie-amp and mixing modules in 18 different variation
Pease send for detal
For ease of construction we recommend the B6 for modules HY6-HY13 $£ 1.05$
(inc. VAT) and the B66 for modules HY66-HY 78 £ 129 linc. VAT)
POWER SUPPLY UNITS

Model Number	For Use With	Price ine VAT	Model Number	For Use With	Price inc. VAT
PSU 21 x	1.2 $2 \mathrm{H}^{2} 30$	£11.93	PSU $52 x$	$2 \times \mathrm{HV} 124$	£17.07
PSU41x	\% or 2 HV60. $1 \times$ HV6060.1 \times HV124	£ 13.83	PSU $53 \times$	$2 \times \operatorname{MOS} 128$	E 17.86
PSU $42 x$	$1 \times \mathrm{HY} 128$	£ 15.90	PSU 54x	$1 \times \mathrm{H} Y 248$	t 17.815
PSU 43 x	1 * MOS 128	£16.70	PSU $55 \times$	1 \times MOS248	£19.52
PSU $51 \times$	2. HY 288 , * HY2 24	£ 17.07	PSU 71x	$2 \times H \vee 244$	121.75

Model Number	For Use With	Price inc VAT
PSI 7	- 1	
PS1173X	1...rs36.3	$1 \times$
H"36. $7.8 \times$	- ... 688	
	- $11+2 \times$	1...

SAMSONS
 EEECTKONICSI LTD

9-10 Chapel Street, Marylebone London NW1 5DN
21-23 Bell Street, London, NW1 01-262 5125 \& 01-723 7851
please ado 15\% to all orders inc. car

SPECIAL OFFER HIGH-GRADE ISOLATION TRANSFORMERS GPO spec. Pri 110-115-120-220-240V. Sec 240V 1500 watts can be used in feverse
Open frame terminal block connections £29.50, carr. £4, VAT £5.02. Pri 240 V . Sec 240 V .250 watts, open frame type tag connections, $£ 10$, P\&P £2, VAT $£ 1.80$ Pri 100 .
$110-200-210-220-230-240-250 \mathrm{~V} \operatorname{Sec} 220-230-240 \mathrm{~V} 600 \mathrm{~W}$ can be $\$ 10-200-210-220-230-240-250 \mathrm{~V}$, Sec $220-230-240 \mathrm{~V} 600 \mathrm{~W}$, can be used in reversed
on

12 or 24 VOLT
1

50 VOLT RANGE

30v range $3.4,5,6,8,9,10,12,15,18,20,24,30 \mathrm{~V}, 12-0.12 \mathrm{~V}$ or $15-0.15 \mathrm{v}, 50 \mathrm{~V}$ range $5,7,8,10,13,15,17,20,25,30,33,40 v, 20-0-20 \mathrm{v}$ or $25-0-25$. 60 v range $6,8,10,12$
$16,18,20,24,30,36,40,48,60 \mathrm{v}, 24-0-24$ or $30-0-30$.

AUTO STEPDOWN TRANSFORMERS

FOR AMERICAN EQUIPMENT shrouded. Fitted with American two or three pin socket outlets and 3 core 240 V
mains lead. Types 1750 and 2250 watts afe steel cased with two American socket outlets. Neon indicator, three core mains lead and carrying handle. Send SAE for price list and further details. American sockets. plugs, adaptors aiso availabl 22 $20.240 \mathrm{~V} \mathrm{Sec} 300 \mathrm{~V} 200 \mathrm{~m} / \mathrm{a} 30 \mathrm{~V} 100$ mis 6.3V 5 A half shrouded, sub chasSIS mounting $\mathbf{£ 6 . 5 0}$ inc postage and m / a f 2.75 inc postage and VAT

PARMEKO HT CHOKES

 6.3V 3 A $5 V$ VA $\mathbf{f 8 . 5 0}$, inc postage and VAT. No $2 \mathrm{Sec} 300-0-300 \mathrm{~V} 60 \mathrm{~m} / \mathrm{a} 6.3 \mathrm{~V}$ 2A CT 6.3V 1 A $\mathbf{£ 6 . 5 0 \mathrm { inc } \text { postage and }}$ VAT. No $3400-0-400 \mathrm{~V} 180 \mathrm{~m} / \mathrm{a} \mathbf{£ 6 . 5 0}$ Inc postage and VAT. No $4 \mathrm{Sec} 400-0$$400 \mathrm{~V} 150 \mathrm{~m} / \mathrm{a}$ and $150-0.150 \mathrm{~V} 20 \mathrm{~m}$ $400 \mathrm{~V} 150 \mathrm{~m} / \mathrm{a}$ and $150-0.150 \mathrm{~V} 20 \mathrm{~m} / \mathrm{a}$ $£ 6.50 \mathrm{inc}$ postage and VAT. No 5 se
$350-325-0-325-350 \mathrm{~V} 120 \mathrm{~m} / \mathrm{a} £ 6.50$ inc postage and VAT. Gresham Pri 220 240 V , Sec $250 \mathrm{~V} 80 \mathrm{~m} / \mathrm{a} 6.3 \mathrm{~V} 4.5 \mathrm{~A} 15 \mathrm{~V}$ $1.2 A$ £5.95 inc postage and VAT P $230-250 \mathrm{~V}$, Sec tapped $190-210 \mathrm{~V} 24 \mathrm{~m} /$ 1 A $£ 3.95$ inc postage and VAT. Pri

| $10 \mathrm{H} 250 \mathrm{~m} / \mathrm{a}$ | $\mathbf{5 5 . 9 5}$ | $20 \mathrm{H} 75 \mathrm{~m} / \mathrm{a}$ | $£ 3.50$ |
| :--- | :--- | :--- | :--- | | $5 \mathrm{H} 1250 \mathrm{~m} / \mathrm{a}$ | $\mathbf{5 5 . 5 0}$ | $10 \mathrm{H} 75 \mathrm{~m} / \mathrm{a} / \mathrm{a}$ | $£ 3.50$ |
| :--- | :--- | :--- | :--- |
| $5 \mathrm{H} 180 \mathrm{~m} / \mathrm{a}$ | $£ 4.75$ | 7.95 | |
| $7.50 \mathrm{~m} / \mathrm{a}$ | $\mathrm{f7} .50$ | | |

$5 \mathrm{H} 180 \mathrm{~m} / \mathrm{a}$	$\mathrm{£4.75}$	$7.5 \mathrm{H} 60 \mathrm{~m} / \mathrm{a}$	$\mathrm{£2.50}$
$25 \mathrm{H} 500 \mathrm{~m} / \mathrm{a}$	$£ 5.95$	$15 \mathrm{H} 120 \mathrm{~m} / \mathrm{a}$	$£ 3.95$

HIGH GRADE LT TRANSFORMERS HIGH GRADE LIMARANSFOR
ALL PRIMARIES 240v OPEN FRAME TOP PANEL CONNECTIONS No 1 tapeed $2-3-4-5-6-7-8-9-10-11-12-13$-14-
$15 \mathrm{v} 8 \mathrm{E} E 10$. No 212 v 8 EF 50 . No 3 tapped

 $7 \mathrm{v} 750 \mathrm{~m} / \mathrm{f} £ 3.50$. All prices include postage
and VAT. OARMEKO LT TRANSFORMERS Open frame type top pamel connections
prices include postage and VAT
No $12-18-32 V 2 A$ OC ratin $)$ and 12-18-32
 (DC) and $12-18-32 \mathrm{~V} 1 / 4 \mathrm{~A}$ (DC) and $12.18-32 \mathrm{~V} 50$
$\mathrm{~m} / \mathrm{a}(\mathrm{DC}) ~ \cong .50$. No $532 \mathrm{~V} 110 \mathrm{~m} / \mathrm{a}(\mathrm{DC})$ and

CRESSAL RHEOSTATS All prices include pestag

 All prices include postage and VAT650 onms 150 watts $31 / 21$ in dia di.75. 1500
ohms 25 W .500 ohms 25 W 100 ohms 25 W
$£ 1.75$. 650 ohms 150 watts $31 / 2$ in. dia $\begin{aligned} & \text { £2.75. } 1500 \\ & \text { ohms } 25 \mathrm{~W}, 500 \text { ohms } 25 \mathrm{~W} \\ & \mathrm{E} 1.75 \text {. }\end{aligned}$ ohms 25 W

10 WATTS OPEN FRAM Tag connections
SPECIAL PRICE $£ 2.75$
(4. BLACK AND WHITE MONITORS
 Made by leading USA firm, will handee 80
columns, suitable for most makes of compu-
ters. E2e.so inc VAT. Callers anly.

PARMEKO TRANSISTOR TESTERS Leakage, Gain $5 / \mathrm{c}$-o/c readir gs shown on 2 in. panel meter. Full instructions. 66.50 inc . potage and VAT
hengstler Low voltage resettable counters, 52 ohms 6 $12 \vee$ DC 6 digit. Compact size. Only $£ 3.25$ inc VAT and cart

22.00063 V DC wkg. $33,00040 \mathrm{~V}$ DC wikg. 3,000
50 V DC wkg. $20,00004 \mathrm{~V}$ DC wkg. 6,500 50 V DC 50 V D Wkg. $20,00045 \mathrm{~V}$ DC wkg. 6
wkg. All et each inc VAT and carr.

HEAVY-DUTY L.T. CHOKES

 C core type 10£3, VAT E1. 95

WW - 069 FOR FURTHER DETAILS

Largest range? Superior paint finish? Bestexstock delivery?

Familiar claims? Study the Sarel range and decide for yourself. You'll find answers to all your own questions on enclosures - small, large, metal, plastic, glass-fibre reinforced polyester, monobloc, modular, with every imaginable accessory from gaskets to swing racks, chassis to brackets, locks, handles, glands and ventilators.

Sarel's range answers all your questions. No fuss, no bother, no compromise Contact us for a quotation

Think big - think Sarel
Sarel Electric Limited
Cosgrove Way. Luton. Beds Tel: Luton 20121

Send me my free copy of the new Sarel Electric catalogue, fast!

Telephone

The MPF1 PLUS incorporates the Z80 - the most widely used 8-bit microprocessor in the world, to form a Single Board Computer (SBC). Packed in a plastic bookcase together with three comprehensive manuals and power supply (to BS3651 standard), the MPF1 PLUS is a microprocessor learning tool for every application.

FLIGHT

Electronics Ltd.

Teaching you in a step-bystep method the MPF1 PLUS helps the user fully understand the Software and Hardware of a microprocessor easily and conveniently - as opposed to micro-computers that aim to teach high-level languages instead of microprocessor systems fundamentals.

Not only is the MPF1 PLUS a teaching tool but with the available accessories it can also be used as a low-cost development tool or simply for OEMs.

THEMPFIPLUS

Just look at the specification:-

Technical Specification

CPU: Z80A - 158 instructions Software:

- Z80/8080/8085 machine code
- 280 Assembler, line and 2 pass
- 8K BASIC interpreter (Extra)
- 8K FORTH (Extra)

ROM: 8K Monitor (full listing and comments)
RAM: $4 K$ CMOS (2×6116)
Input/Ouput: 48 system I/O lines
Speaker: 2.25 " coned linear
Display: 20 character 14 segment green phosphorescent
Expansion:

- Socket for 8 K ROM
- Cassette interface
- Connectors 40 way, complete CPU bus Keyboard: 49 key. Full "QWERTY" real movement good tactile feedback
Batteries: $4 \times \cup 11$ for memory back-up (batteries not included)
Serial Interface: 165 baud for read/write via audio cassette

Manuals

1. User's Manual 8 chapters.
2. Over view and installation
3. Specification (hardware and software). 3. Description of Operation 4. Operating the MPF-1 Plus 5. 54 Useful Sub-Routines 6. The Text Editor.
4. Assembler and Disassembler.
5. System Hardware Configuration.
6. Experiment Manual. 16 experiments.
7. Monitor Program Source Listing with full commenting.
8. Also available the MPF-1 Plus Student Work Book (self-learning text).

Accessories

-PRT-MPF-1P: 20 character printer Ready to plug in. Memory dump.

- EPB-MPF-1P: Copy/list/verity 1K/2K/4K/8K ROMS. Ready to plug in.
- SSB-MPF-1P: Speech Synthesizer. Inc. 20 words and clock program. 1200 words available.
- SGB-MPF-1P: Sound Synthesizer Board.
- I/O - MPF-1P: Input/output board

com puler Graphics tovip:o

Have you ever wanted to record non standard computer outputs on video tape, and been forced to use film or video cameras pointing at a monitor screen?
This is no longer necessary with the unique CVP100 Computer Video Processor from Cox.
Unusual line and field frequencies are processed via a YUV frame (full picture) store before coding into standard composite colour video signals.
The computer RGB signals may be at TTL level, or analogue with syncs on green, or with separate sync feed.

Further details from:

We have the vision MICHAEL COX ELECTRONICS LIMITED Hanworth Trading Estate, Hampton Road West, Feltham, Middlesex. Tel:01-8986091 Telex:935147.

WW - 068 FOR FURTHER DETAILS

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTIties of components become redundant. We are CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, N. Finchley, London, N. 12.5 ming. from Tally Ho corner Telephone 445 2713/0749

WW - 018 FOR FURTHER DETAILS

APM2. PPM 3 and 20 pin Dis hybrid PPM5 drivers and Ernest Turner movements Stereo Disc Amplifier 3 and 4 10 Outlet Distribution Ampliflier 3
Stabilizer and Frequency Shifter circuit boards Broadcast and Communica lions Receiver $150 \mathrm{kHz}-30 \mathrm{MHz}$ Stereo Microphone Amplifier Moving Coil Preamplifier Peak Deviation Meter and Chart Recorders

SURREY ELECTRONICS LTD The Forge, Lucks Green. Craniolgh Surrey bul 786 . Tel: 0483275997

WW - 051 FOR FURTHER DETAILS

To obtain further details of any of the coded items mentioned in the ¿ditorial or advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These sérvice cards are valid for six months from the date of publication.

Please use capital lettèrs

If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To starta one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you: their address is shown below.

OVERSEAS SUBSCRIPTION

 AGENTS 380 Lonsdale Street. Belgium: Agence etMessageties de la Presse 1 Rue de la Petite ILE Brussels 7

Denmerk: Dans̀ Bladdistribution,
Hovedvagisgade 8 , Dk. 1103 Kobenhavn.

Japan: Western Publica tions Distribution Agency. 170 Nishi-Okubo 4-chome, Shinjuku-Ku. Tokyo 160 Lebanon: Levant Distio butors Co., P.O. Box 1181. Makdesi Street, Halim Hanna Bldg. Beirut
Malaysia: Times Distributors Sdn. Bhd Times House. Sing apore 9 Mataysia

Malta: W.H.Smith Continental Lid. 18a Scots Street, Valleta
Now Zealend: Gordon \& Gotch (New Zealand) Lid, 102 Adelaide Road Wellington 2 Nlgerla: Daily Times of
Nigeria Lid, 3 Kakawa Street, P.O. Box 139 , Lagos
Norway: A/S Narvesens Kioskompani, Bertrand Narvesens vei 2, Oslo 6

Portugal: Livaris
Portugal : Liva
Bentrand s.a.i.
Apartado 37, Amadora
8outh Afrlca: Centia News Agency Lid, P.O. Box 1033, Johannesbure
8paln: Comercial Atheneums.a. Consejo de Clento, 130 -1 30 Barcelone 16
Eweden: Wennegren Wilisms A B. Fack S-104, 25 Stockholm 30

Swlezerland: Navilio E_{a}
Cle SA, Rue Levrier 5.7,
CH-1211 Geneve 1 Schmidi Agence AG, Savogelstrasse 34 4002 Basle
U.S.A.: John Barios, Business Press international New York N. Y 10017

WIRELESS WORLD
Reader Enquiry Service
Oakfield House
Perrymount Road
Haywards Heath
Sussex RH16 3DH

Enquiry Service for Professional Readers

WW . . .	WW...	WW
wW.	Ww	WW
WW.	WW.	ww
WW	WW.	Ww
wW.	WW.	Ww.
WW.	WN. .	ww
WW	Ww	ww
WW.	WW	Ww.
ww.	WW	ww
ww	WW.	ww
ww	WW	WW
Ww...	WW.	ww
WW . . .	WW.	WW
WW. .	wW....	WW.
WW...	ww . . .	WW.
ww . . .	Ww	WW....

WIRE LESS WORLD Wireless World, November 1983 WW 8371
Please arrange for me to receive further details of the products listed the appropriate reference numbers of which have been entered in the space provided.
Name
Name of Compank
Address

Telephone Number

PUBLISHERS USE ONLY			A/E			

Position in Company
Nature of Company/Business
No. of emiloyees at this establishment
wish to subscribe to Wireless World
VALID FOR SIX MONTHS ONLY

Wireless World: Subscription Order Form

> To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:

Enquiry Service for Professional Readers only.

WIRE LESS WORLD Wireless World, November 1983 WW 8371
Please arrange for me to receive further details of the "products listed, the appropriate reference numbers of which have been entered in the sasce provided.

Name.

Position in Company. .

No. of employees at this establishment

VALIO FOR SIX MONTHS ONLY

BUSINESS REPLY SERVICE

 Licence No CY258
WIRELESS WORLD

Reader Enquiry Service
Oakfield House
Perrymount Road
Haywards Heath
Sussex RH16 3DH

Wireless World Subscription Order Form Wireless World, November 1983 Ww 8371

OVERSEAS ADVERTISEMENT AGENTS

Hungary Ms. Edit Bajusz, Hungexpo Advertising Agency, Budapest XIV. Varosliget - Telephone : 225008 -
Telex: Budapest 22-4525 INTFOIRE

Italy Sig. C. Epis Etas-Kompass, S.p.a. Servizio Estero, Via Mantegna 6, 20154 Milan - Telephone 347051 -
Telex : 37342 Kompass

Japan Mr. Inatsuki. Trade Media - IBPA (Japan), B212 Azabu Heights, 1-5-10
Roppongi, Minato-Ku, Tokyo 106 -
Telephone : (03) 585-0581

United States of America Ray Barne:
*Business Press International
205 East 42nd Street,
New York, NY 10017-Telephone:
(212) 6895961 -Telex: 421710

Jack Farley Jnr.. The Farley Co.,
Suite 1548, 35 East Wacker Drive,
Chicago. Illinois 60601 - Telephone :
(312) 63074

Victor A Jauch,
Elmatex International.
P.O. Box 34607.

Los Angeles Calif. 90034 U.S.A.
Telephone: (213) 8218581
Telex: 18-1059.
Jack Mentel, The Farley Co., Suite 605.
Ranna Building. Cleveland, Ohio 4415 -
Telephone: (216) 6211919
Ray Rickles, Ray Rickles \& Co.,
P.O. Box 2008, Miami Beach. Florida

33140 - Telephone : (305) 5327301 Jim Parks, Ray Rickles \& Co.,
3116 Maple Drive N.E., Atlanta, Georgia 30305. Telephone : (404) 2377432

Mike Loughlin, Business Press Internation: 15055 Memorials, Ste 119, Houston, Texas
77079 - Telephone: (713) 7838673

Canada Colin H. MacCulloch,
International Advertising Corisultants Ltd. 915 Carlton Tower, 2 Carlton Street,
Toronto 2 - Telephone (416) 3642269

[^4]
Its easy to complain about an advertisement. Once you know how.

One of the ways we keep a check on the advertising that appears in the press, on posters and in the cinema is by responding to consumers' complaints.

Any complaint sent to us is considered carefully and, if there's a case to answer, a full investigation is made.

If you think you've got good reason to complain about an advertisement, send off for a copy of our free leaflet.

It will tell you all you need to know to help us process your complaint as quickly as possible.

The Advertising Standards Authority. If an advertisement is wrong, were here to put it right.

ASA Ltd, Dept 1 Brook House, Torrington Place, London WC1E 7HN
This space is donated in the interests of high standards of advertising.

YOU HAVENT SEEN ANYTHING LIKE THIS ON A COLOUR MONITOR BEFORE.
 An RGB monitor fromJVC offering a resolution of 370×470 pixels for less than $£ 150$?
 We guarantee you won't see another bargain like that in this or any other micro mag-or in any other supplier's showroom.
 For we've managed to acquire the sole distri bution rights to these superb machines and we are able to offer them at an unbeatable price.
 There are two models available: medium resolution (370×470 pixels) at $£ 149.95$; and high resolution (580×470 pixels) at $£ 229.95$. (Both

 excluding VAT.)The units have a $14^{\prime \prime}$ screen and are suitable for the BBC Micro, Lynx, Oric, Apple, IBM and most other leading micros

They are robustly constructed in a handsome cream casing. And come with a full year's guarantee

Delivery is good: your monitor should arrive by courier service within ten days of our receiving your order.

You can order by filling in the coupon below and posting to: Opus Supplies Ltd., 158 Camberwell Road, London SE5 0EE. Or by telephoning 01-701 8668 quoting your credit card number Or, of course, you can buy in person at our showroom between $9-5.30 \mathrm{pm}$, Monday-Saturday.

MODEL REFERENCE	1302-1 Medium Resolution	13022 High Resolution
RESOLLTTION	370×470 Pixels	580×470 Pixels
CR.I.	$14^{\prime \prime}$	14"
SUPPLY	220/240v. 50,601lc.	220/240v 50/60/iz
E.HT	Minimum 19.5 kv Maximum 22.5kv	Minimum 19.5 kv Maximum 22.5kv
VIDEO BAND WIDTH	64 Hz	10 MHz
DISPLAY	80 characters by 25 lines	80 characters by 25 lincs
SLOT PITCH	0.63 mm	041 mm
INPUT VIDEO	R.G.B. Analogue T"IL. Inpat	R.G.B. Analogue/ TTL Inpuut
SYNC	Separate Sync on R.G.B Positive or Negative	Separate Sync on R.G.B Positive or Negative
EXIERNAL CONTROLS	On olf switch and brightness control	On off switchand brightness control

To Opus Supplies Lid.. 158 Camberwell Road, London SE5 OEE. Please send me__Medium Resolution Colour Monitor (s) at $\$ 149.95$ each (cx. VAT)

High Resolution Colour Monitor(s) at \&.29.95 each (ex. VAT)
Connection lead(s) at $\& 6.00$ each
I understand carriage per monitor will cost an extra \&.7.00)
(N.B. A Medium Resolution Monitor including VAT, lead, and carriage costs s. 187.39. A High Resolution Monitor including VAT, lead and carriage costs $\$ 279$.39.)

I enclose a cheque for \& _ _ Or please dehit my credit card account with the amount of $\& \quad$ __ My Access/Barclaycard (please tick) no, is \qquad
-
\square

WW - 065 FOR FURTHER DETAILS

Electronically Controlled Soldering? LITESOLDhave it in hand!

Whether you choose low or mains voltage operation, LITESOLD have electronically temperature controlled soldering irons to meet your needs. Economically.

Mounted inside the handles of the new EC50 and LE40 irons are sophisticated electronic proportional control circuits, giving close control, easy adjustment and freedom from troublesome spiking and switch problems. Temperature control is typically $\pm 1^{\circ} \mathrm{C}$ of the set point, which can be varied between approximately 280 and $400^{\circ} \mathrm{C}$.

Efficient thermal design gives fast heating and recovery, and there is a wide range of iron plated bits to choose from. Translucent handle mouldings allow internal lamps to show clearly the operation of the control. Burn-proof 3 -wire leads are fitted.

The LE40 iron can operate from 24 v ac bench supplies, or soldering iron power units. Combined with the LITESOLD PU2450 power unit it becomes a low-voltage soldering station.

The new EC50 iron is made for direct operation from 110, 220 or 240 volt mains supplies, for convenience and economy.

So why not put control of your soldering in hand - with LITESOLD.

01-452 1500

BBC Micro Computer System OFFICIAL DEALER
 BBC Model B £347

Please phone for availability

BUSINESS, EDUCATION AND FUN SOFTWARE

IN STOCK

$+f 7$ carr. A to B Upgrade Kit $£ 50$ Installation $£ 15$ LANGUAGE ROMs BCPL Rom + Disc + Manual $\mathbf{£ 8 7}$ PASCAL £59 FORTH £59 WORD PROCESSOR ROMs VIEW 16k Rom $£ 52$ WORDWISE 8k Rom £34 Beebpen 8k Rom $£ 30$

FLOPPY DISC INTERFACE
 incl. 1.2 Operating System

 £95 \& £20 installation
BBC FLOPPY DISC DRIVES

Single Drive $514^{\prime \prime} 100 \mathrm{~K} £ 230+£ 6$ carr.
Double Drive $514^{\prime \prime}{ }^{\prime \prime} 800 \mathrm{~K} £ 699+£ 8$ carr.
BBC COMPATIBLE 51/4" DISC DRIVES
These drives are supplied in BBC matching colour cases and with necessary cables.
SINGLE DRIVES: $100 \mathrm{~K} £ 150$; $200 \mathrm{~K} £ 215400 \mathrm{~K} £ 265$
SINGLE DRIVES: with PSU 100 K £ 185 ; 200K $£ 260^{*} ; 400 \mathrm{~K}$ £330
DUAL DRIVES: with PSU $2 \times 100 \mathrm{~K} £ 355 ; 2 \times 200 \mathrm{~K} £ 475^{*}$; $2 \times 400 \mathrm{~K} £ 595$
*These drives are provided with a switch to change between 40 and 80 tracks.
DRIVE CABLES: SINGLE £8, DUAL£12.
DISC MANUAL \& FORMATTING DISKETTE $£ 12.50$

CASSETTE RECORDER

SANYO Data Recorder DR104
A superior quality data recorder with dedicated computer output and monitoring facility on both record and play
$\mathbf{£} \mathbf{3 9 . 5 0}+\mathbf{£ 1 . 5 0}$ carr.
SLIMLINE Cassette Recorder complete with counter and remote control $£ 24.50+£ 1.50$ carr. Computer Grade Cassettes £0.50 each. $£ 4.50$ for $10+£ 9$ carr Cassette lead $£ 3.50$.

MONITORS

MICROVITEC 1431 14in Colour Monitor $\mathbf{£ 2 1 5 + £ 8 \text { carr }}$ MICROVITEC 203120 in Colour Monitor $£ 319+£ 8$ carr KAGA 12 in RGB Monitor $£ 255+£ 8$ carr Lead for KAGA/SANYO RGB $£ 10$ SANYO HI RES GREEN MONITOR $£ 99+\mathbf{£} \mathbf{c a r r}$

BBC BOOKS (no VAT; p\&p fi)
Basic on BBC $£ 5.95$
30 House Basic $£ 5.95$
Programming the BBC Micro $£ 6.50$
BBC Micro An Expert Guide $£ 6.95$
Assy Lang Prog. for BBC $£ 8.95$
6502 Machine Codes for Beginners $£ 6.95$

NEC PC 8023 BE - N
$120 \mathrm{CPS}, 80$ cols
Logic Seeking, Bi-
directional
directional
Forward an
Forwardad
Proportional Spacing. Auto Underline, Hi-Res and Block Graphics, Greek Char, Set.
Only $\mathbf{£ 3 2 0}+\mathbf{f 8}$ carr

PRINTERS

SEIKOSHA
EPSON

EPSON GP 100A £175 GP 250X £210 GP 700A £425 Silver Reed EX44 Daisy Wheel with Serial Interface £ 365 , with PARALLEL Interface $£ \mathbf{3 8 5}$ Carriage/Printer $\mathbf{£ 8}$ Parallel Printer lead for BBC/Atom to most printers $£ 13.50$ Variety of interfaces, ribbons in stock. 2.000 fan fold sheets $91 / 2^{\prime \prime} \times 11^{\prime \prime} £ 13.50+£ 3$ p\&p

SIDEWAYS ROM EXPANSION BOARD

SREB provides 8 additional sockets for expanding the computer's sideways ROM capacity by a further 128 k (2764 s consume 40 mA on standby and in our
opinion 8 ROMs will not overload the computer opinion 8 ROMs will not overload the computer of components with adequate ventilation. Fully asof compled and tested board with fitting instruction. With Ti sockets $£ 25$. With turned pin sockets $£ 30$. P. \& P.f2.

TORCH Z-80 PACK

Your B.B.C. computer can be converted into a business machine at a cost slightly higher than an 800k a Z80A processor card greatly enhances the data storing and processing capability of the computer. (NOTE' In BBC mode the disc pack functions as a normal BBC drive.). Z80A card comes with 64k of RAM and a CP/M compatible operating system. The system is supplied complete with a PBCECT softuser guide, a Systems/Demo disc, a PERFECT software package and COMANEX, a business management game. The PERFECT software package comand SPELLER commercially valued at over $£ 1,000$. The complete package for only $\mathbf{E} 730$. Installation £20. Carr. £8.

CONNECTOR SYSTEMS

CONNECTOR SYSTEMS					
I.D. CONNECTORS	JUMPER LEADS 24 " Ribbon Cable with Headers $\begin{array}{cccc}14-p i n & 16-p i n & 24 \text {-pin } & 40 \text {-pin } \\ 145 p & 165 p & 240 p & 350 p\end{array}$ $210 p$ 230p $345 p \quad 540 p$ 4 Ribbon Cable with Sockets $\begin{array}{lllll} & 20-p \text { in } & 26-p i n & 34-p i n & 40 \text {-pin } \\ \text { end } & 160 p & 200 p & 280 p & 300 p \\ \text { ends } & 290 p & 370 p & 480 p & 525 p\end{array}$ Ribbon Cable with D Conn 5-way Male 500p Female 550p	AMPHENOL CONNECTORS 36 -way plug Centronics Parallel Solder $£ 5.25$ 36 way socket Centronics Parallel Solder $\mathbf{£ 5} .50$ IDC $£ 5.20$ 24-way plug IEEE Solder $£ 5$ DC $£ 4.75$ 24 -way socket IEEE Solder $£ 5$		RIBBON CABLE	
D CONNECTORS\qquad					
			EDGE CONNECTORS		
			2x18-way	.1"	
$\underset{\substack{\text { SockETS } \\ \text { 28.pin } 8.00}}{\text { TEXTOOL ZIF }}$					$\stackrel{\text { 20p }}{-}$
			2×43-way 1×77 way 5100 conn		s00p

BBC EPROM PROGRAMMER

A fully self-contained Eprom Programmer with its own
program $2516,2716 / 32 / 32 A / 64 / 128$ single rail Eproms.
\$ Personality selection is simplified by a singlevided with a safe position Warning indicator to show programming in progress.
\& Programmer can read, blank check, program and verify at any address/ addresses on the EPROM.

* Simple menu driven software supplied on cassette (transferable to disc). * Full editor with ASCII disassembler.

Programmer complete with cables, software and operating instructions: $\mathbf{£ 7 9 . 5 0}+\mathbf{£} 2 \mathrm{p} . \& \mathrm{p}$.

SMARTMOUTH

The 'infinite vocabulary' self-contained speech synthesiser unit. Uses only 5 10 bytes per word - no ROMs required - simply plugs into the user port. (Has Aux. Audio output skt.). Supplied with Demo/Development programs and simple software instructions, $£ \mathbf{3 7}+\mathbf{〔} 2$ p. \& p.

NEW COMPREHENSIVE CATALOGUE AYAILABLE

PLEASE SEND FOR PRICE LIST

PRODUCTION EPROM PROGRAMMER Type P8000 It will blank check, copy and verify up to 8 Eproms at a time. Eprom types 2716 to 27128 can be selected by a single rotary switch $\mathbf{f 6 9 5}+\mathbf{f 6}$ carriage.

UV ERASERS

UV1B up to 6 Eproms $£ 47.50$ UV1T with Timer f60 UV140 up to 14 Eproms £61.50
(Carr f2/eraser)
Carr f2/erase
All erasers mains switches and safety interlocks.

'WIRELESS
 WORLD' PROJECTS

Semiconductors inc

 1. Cs.. Transistors, Sockets for most projects are stocked by us| SPECIAL OFFER | |
| :--- | ---: |
| 2532 | $\mathbf{£ 3 . 5 0}$ |
| 2732 | $\mathbf{£ 3 . 5 0}$ |
| $2764-25$ | $\mathbf{£ 1 8}$ |
| $27128-3$ | $\mathbf{£ 4 . 5 0}$ |
| $4164-2$ | $\mathbf{£ 3 . 5 0}$ |
| $6116 \mathrm{P}-\mathbf{3}$ | |

BOOKS

(No VAT p\&p $£ 1$
CRT Controller H/Book Programming the $280 \ldots$....
Z80 Microcomp Handbook Programming the 6502 6502 Assy. Lang. 6502 Applications 6502 Software Design 6502 Games Ask for our list.

TRANSISTOR TESTER

Tests bipolar transistors, diodes and zener diodes. Measures leakage down to 0.5 nA at 2 V to 150 V . Current gains are checked from $1 \mu \mathrm{~A}$ to 100 mA . Breakdown voltages up to 100 V are measured at $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and 1 mA . Collector to emitter saturation voltage is measured at $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA for $\mathrm{Ic}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$ ratios of $10,20,30$. The instrument is powered by a 9 V battery.

TYPE TM12 £180

TRANSISTOR RANGES (PNP OR NPN)

$I_{\text {CBo }}$ \& I IEBo: $\quad 10 \mathrm{nA}, 100 \mathrm{nA}, 1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$ and $100 \mu \mathrm{~A}$ f.s.d acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at voltages of $2 \mathrm{~V}, 5 \mathrm{~V}$ $10 \mathrm{~V}, 20 \mathrm{~V}, 30 \mathrm{~V}, 40 \mathrm{~V}, 50 \mathrm{~V}, 60 \mathrm{~V}, 80 \mathrm{~V}, 100 \mathrm{~V}$, 120 V and 150 V acc. $\pm 3 \% \pm 100 \mathrm{mV}$ up to $10 \mu \mathrm{~A}$ with fall at $100 \mu \mathrm{~A}<5 \%+250 \mathrm{mV}$

BVcBo: $\quad 10 \mathrm{~V}$ or 100 V f.s.d. acc $\pm 2 \%$ f.s.d. $\pm 1 \%$ at currents of $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and $1 \mathrm{~mA} \pm 20 \%$
$10 \mathrm{nA}, 100 \mathrm{nA}, 1 \mu \mathrm{~A} \ldots 10 \mathrm{~mA}$ f.s.d. acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at fixed I_{E} of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$, $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, and 100 mA acc. $\pm 1 \%$.

3 inverse scales of 2000 to 100,400 to 30 and 100 to 10 convert I_{B} into $h_{F E}$ readings.

1 V. s.d. acc. $\pm 20 \mathrm{mV}$ measured at conditions on hfe test.

1V f.s.d. acc. $\pm 20 \mathrm{mV}$ at collector currents of $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA with $\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$ selected at 10,20 or 30 acc. $\pm 20 \%$.

DIODE \& ZENER DIODE RANGES

IDR:
V_{z} :
$V_{D F}$:

Breakdown ranges as $B V_{C B O}$ for transistors.
1 V f.s.d. acc. $\pm 20 \mathrm{mV}$ at I_{DF} of $1!\mathrm{A}, 10 \mu \mathrm{~A}$ $100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA .

Send for data covering our range of instruments

LEVELL ELECTRONICS LTD. Moxon Steq, Hiph Bande Hens. EN5 5SD

 WW - 005 FOR FURTHER DETAILS

TEST EQUIPMENT

Gould Advance OS 355 15MHz Dual Channel Scope
20 cm Variable Airlines
Philips PM3244 4 Channel 50 MHz Sweep Delay Scope
Gould Advance OS 1000 B 20 Mhz Dual Channel Scope
Carry Case for above
Tek. Type 113 Delay Cable
Gould Advance OS4000 10MHz Digital Storage Scope
Carry Case for above.
Philips 2522A $41 / 2$ digit DMM
Fluke 8030A Batter/Mains 3
Fluke 8030A Batter/Mains $31 / 2$ digit DMM
Systron Donner 625A 8 digit Timer Counter BCD output
Tek. 7 B70 Plug-in
APLAB 25v 2A Metered PSU
Racal $907641 / 2$ digit DVM
H.P. 7100 B 2 pen char recorder with 17500 A \& 17505 A P.I

Tek. 1 A6 Plug-In
Tek. 3A6 Plug-in
Tek. 2 A63 Plug-in...........
Avometer Model 7 Mk. 2
Leader LB0510 4 MHz Single Channel Scopes - NEW
Telequipment D75 50MHz Dual Channel Scope with Delayed Timebas
Scopex 4566 MHz Single Channel Scope.
Farnelf 300430 MHz Dual Channel Scope
Tek. Type M 4 Channel Plug-in
Tek. Type CA, Z, P Plug-ins
Tek. 56410 MHz Storage Scope with 3 A 3 \& 2867 Plug-ins
Gould Advance OS 3500 60MHz Dual Channel Scope with DMM option Systron Donner 7344A DMM 41/2 digit IEEE
Weir Power Supplies V/A metered.
lequpe 191 Constant Amplitude Ge Delayed Sweep Scope
Tek. Type 106 Fast Rise Pulse Generators
Tek. Standard Aplitude Calibrators Type 067-050-200
Singer Synchro Resolver Test Set
Flann $0-90 \mathrm{dBs} \times$ Band Variable Attenuators - unused
Selectest Super 50 Multimeter
Houston DP 10 Incremental Plotters
Tek. 661 Sampling Scope with 5T3 \& 4S1 Plug-ins
Bend \times Digitiser Complete with 3×4 Tabl
DRI Series 302.5 MegaByte Disk Drives
Full size Draughtsman Table - Neolt.
Hitachi V-1050F 100 MHz Scope 4 trace Recorder
Telequipment DM64 Storage Scope - ex demo. as new
Feedback VP0602 Variable Phase Oscillat
Rotronics 150 KHz Sine/sq. Signal Generator
Brandenburg Solid State EHT Meter 5kv
Brandenburg Solid State EHT Meter 15 kV
TIMEBASE
TH
94 ALFRISTON GARDENS, SHOLING, SOUTHAMPTON SO2 8 FU
an ose ortis supia

DNAL C :

WW - 040 FOR FURTHER DETAILS

Gateways to the World Outside

The CST PROCYON opens a lot of doors to your BBC microcomputer - lifting it right out of the "home computer" league. The CST PROCYON provides full IEEE 488 interface, enabling your BBC micro to operate professional plotters and printers, frequency counters, voltmeters, disc drives etc, and to communicate with other IEEE-ported machines, such as Commodore, Sirius, Osborne, Hewlett-Packard or Tectronix computers
The CST PROCYON comes with a highly efficient IEEE filing system, supplied in EPROM, and responds to any high level language, including LISP, FORTRAN FORTH, APL and BASIC. A specially-written Commodore data-exchange routine, allows you to link your BBC micro to CBM machines and disc drives At 70 k bytes of information per second, the CST PROCYON channels data quickly and efficiently between up to sixteen devices, responding to standard system commands as well as specialised filing instructions. Its capabilities are fully documented in a straightforward but comprehensive manual.
Isn't it time you started taking your BBC micro seriously?

- Full multiple controller implementation
- Extensive "HELP" facilities
- Interactive debugging
- Visual Display of operating status
- Internal switched and socketed power supply
- Comprehensive error checking and indicating

The CST PROCYON from
Cambridge Systems Technology
30 Regent Street, Cambridge
Tel: (0223) 323302
ENQUIRIES FROM DEALERS WELCOME

WW - 077 FOR FURTHER DETAILS

300 WATT POWER SPEAKERS

AND SUPERB QUALITY AT LOW LEVELS

- Re-Active suspension
- Ram Air voice coil cooling
- Range $30-4000 \mathrm{~Hz}$.
- Polypropylene cone rim.

Price inc. VAT and P\&P
All 6 to 8 ohms. $5^{\prime \prime} 45-6 \mathrm{kHz} .70 \mathrm{w}$ RMS 8" $40-5 \mathrm{kHZ}$ 150w RMS
10" 30 -4kHZ 300w. RMS 30
$12^{\prime \prime} 30-4 \mathrm{kHz} 300 \mathrm{w}$. RMS 38
24 hr DELIVERY SERVICE

> MONEY BACK GUARANTEE
OF SATISFACTION

INTEGRATED CIRCUITS

with x-over. 60w RMS 14

$$
27
$$

PHONE
 0474813225 3 LINES MEOPHAM GREEN, MEOPHAM, KENT DABOOQY

966371

A SELECTION FROM OUR STOCK OF BRANDED VALVES

A1714	18.50	EAF42 1.20	EF731 1.80
A1998	\$1.50	EAFB01 1.40	EF732
A2087	11.50	E834 $\quad 1.50$	EF800 11.00
A2134	14.95	EB47 3	EF800 EF804S 11.00 1.50
A2293	6.50	EB91 0.52	EF805S 13.50
A2521	21.00	EBC33 $\quad 2.50$	EF806S 14.50
A2599	37.50	EBC41 1.95	EF812 0.65
A2900	11.50	EBC81 0.85	EFL2NO 1.50
A3042	24.00	EBC90 0.75	EH90 0.72
A3283	24.00	EBC91 0.75	EK90 0.72
AC/HL/D	DD 4.00	EBF33 2.50	EL32 0.95
AC/THI	4.00 59	EBF80 0.50	EL33 4.00
ACT22	59.75	EBF83 0.50	EL34 2.25
AC/VP2	4.00	E8F85 0.95	EL34 Philips
AC/S2 PE	N 8.50	E8F89 0.70	
AH221	39.00	EBF93 0.95	EL36 $\quad 1.50$
AH238	39.00	EBL1 $\quad 2.50$	EL37 9
AL6 6	6.00	EBL21 2.00	EL38 6.00
ARP34	0.70 1.25	$\begin{array}{ll}\text { EC52 } & 0.75 \\ \text { EC70 } & 0.75\end{array}$	EL41 3.50
ARP35	2.00	$\begin{array}{ll}\text { EC80 } & 4.25\end{array}$	$\begin{array}{ll}\text { EL42 } & \mathbf{2 . 0 0} \\ \text { EL81 } \\ \mathbf{3 . 9 5}\end{array}$
BL63	2.00	EC81 $\quad 4.50$	EL82 0.58
BS450	67.00	EC86 $\quad 1.00$	EL84 0.75
88810	55.00	EC88 $\quad 1.00$	$\begin{array}{ll}\text { EL85 } & 4.50\end{array}$
ES814	55.00	EC90 1.10	EL86 0.85
CIK	16.00	EC91 $\quad 7.00$	EL90 1.25
C3JA	16.00	EC92 1.25	EL91 $\quad 6.00$
C110	55.00	EC93 0.80	$\begin{array}{ll}\text { EL95 } & 0.70\end{array}$
${ }^{\text {C1134 }}$	32.00 11500	$\begin{array}{ll}\text { EC95 } & 7.00 \\ \text { EC97 } & 1.10\end{array}$	EL153 2.50
C1148A C1149/1	115.00 130.00	EC97 $\quad 1.10$	EL183E $\quad 3.50$
C1150/1	135.00	EC8010 ECC32 $\mathbf{3} \mathbf{3 . 0 0}$	EL183P $\quad 3.50$
${ }^{\text {C1534 }}$	32.00	$\begin{array}{ll}\text { ECC33 } & 3.50\end{array}$	$\begin{array}{ll}\text { EL3600 } & 7.95 \\ \text { EL500 } & 1.40\end{array}$
CCA	2.60	ECC35 $\quad 3.50$	EL504 1.40
CC3L	0.90	ECC40 3.00	EL509 5.25
CL33	2.00	ECC81 0.95	$\begin{array}{ll}\text { EL519 } & 6.25\end{array}$
CV Nos ${ }^{\text {P }}$	Prices	ECC82 0.55	EL802 3.65
${ }_{\text {D63 }}{ }^{\text {¢ }}$ requ	${ }^{\text {vest }}$	ECC82 Philips/	EL821 8.50
$\begin{aligned} & \text { D63 } \\ & \text { DAF91 } \end{aligned}$	1.20	Mullard 1.35	EL822 12.95
$\begin{aligned} & \text { DAF91 } \\ & \text { DAF96 } \end{aligned}$	0.45 0.65	ECC82 Philips	EM1 $\quad 9.00$
DC70	1.75	ECC83 0	EM4 EM35 $\mathbf{9 . 0 0}$ 1.50
DC90	1.20	ECC83	$\begin{array}{ll}\text { EM35 } & 1.50 \\ \text { EM80 } & \mathbf{0 . 7 0}\end{array}$
DCX4-100	1200	Mullard/	$\begin{array}{ll}\text { EM81 } & 0.70\end{array}$
	12.00	Brimar U.K.	EM84 1.65
DCX4-500		1.35	EM85 $\quad 1.10$
	25.00 28.00	ECC83 Philips	EM87 $\quad 2.50$
$\begin{aligned} & \text { DET22 } \\ & \text { DET24 } \end{aligned}$	28.00 39.00	$\begin{array}{ll}\text { ecces } & 1.50 \\ 0.50\end{array}$	ENTO 8.00
DET25	22.00	ECC85 0.60	EN32 13.50
DF91	0.70	ECC86 1.45	EN91 ${ }^{\text {EN92 }}$
DF92	0.60	ECC88 0.85	EY51 0.80
DF96	0.65	ECC97 2.00	EY81 1.50
DF97	1.00	ECC180 0.72	EY83 1.50
DH63	120	ECC189 0.78	EY84 6.95
DH77	0.90	ECC801S 3.50	EY84W 10.00
	0.56	ECC803S 3.50	EY86/87 0.50
${ }_{\text {DH149 }}$	2.00	ECC804 0.60	EY88 0.55
DK91	0.90	ECC807 2.50	EY91 5.50
${ }_{\text {DK96 }}$	1.20 2.50	ECC2000 12.00	EY500A 1.50
DL35	1.00	ECF80 ECF82 0.85	EY802 0.70
DL63	1.00	ECF86 1.70	$\begin{array}{ll}\text { EZ35 } & 0.75 \\ \text { EZ40 } & 2.15\end{array}$
DL70	2.50	ECF200 i.85	E240 2.15 EZ4, 1.15
DL73	2.50	ECF202 1.85	EZ80 $\quad 0.60$
DL91	1.50	ECF801 0.85	EZ81 0.60
DL92	0.60	ECF804 6.00	EZ90 0.96
DL93	1.10	ECF805 2.50	F6064 ${ }^{295}$
DL94	2.50	ECF806 10.25	FW4/800 2.00
DL96	2.50 1350	ECH3 ${ }^{\text {ECH }}$	G1/371K 30.00
DLS10	13.50 10.00	$\mathrm{ECH} 4^{\mathbf{E C H}} \mathbf{}$	G55/1K $\quad 9.00$
DM70	1.10	ECH42 1.00	G180/2M 9.00
DM160	2.75	ECH81 0.58	G400/1k 14.00
DY51	1.00	ECH83 0.78	GC108 17.50
DY86/87	0.65	ECH84 0.69	GC100 17.50
DY802	0.72	ECH2000 1.50	GC $10 / 4817.50$
E80CC	7.00	ECL80 0.60	GC10/4E 17.50
E80CF	10.00 13.50	ECL82	GC12/48 17.50
${ }_{\text {E80\% }}$	13.50 11.50	$\begin{array}{ll}\text { ECL83 } & \mathbf{2 . 5 0} \\ \text { ECL84 } & 0.74\end{array}$	GD86W 6.00
E81CC	3.50	ECL85 0.69	GDT120M 5.00
E81L	12.00	ECL86 0.74	GN4 ${ }^{\text {GE }}$
E82CC	3.50	ECL805 0.69	GN10 15.00
E83CC	3.50	ECLL800 16.95	GR10G 4.00
E83F	5.50	EF37A $\quad 2.00$	GR10J 4.00
E86C	9.50	EF39 $\quad 1.00$	GS10C $\quad 16.50$
E88C	7.95	EF4 ${ }^{\text {P }}$	GS10H 12.00
E8BCC	2.60	EF42 3.50	GS $12 \mathrm{D} \quad 12.00$
E90CC	5.90	EF50 EF55 3.50	GT1C $\quad 17.00$
E90F	7.95	EF55 $\quad 3.50$	GT1C S/S 13.00
E92CC	4.50 2.25	$\begin{array}{ll}\text { EF71 } & \mathbf{1 . 5 0} \\ \text { EF72 } & 1.20\end{array}$	GTE 175M 8.00
E99F	2.25	$\begin{array}{ll}\text { EFF73 } & 1.20 \\ \text { EF73 } & 1.00\end{array}$	GTR150w 1.00
E130L	19.95	EFB0 0.55	GXV1 $\quad 13.00$
E180CC	6.50	EF83 3.50	GXU3 $\quad 24.00$
E182CC	9.00	EF85 0.50	GXU50S 14.50
E180F	6.50 8.50	EF86 1.25	GY501 1.20
E280F	19.50	Ef86 Special	GY802 1.00
E283CC	1000		GZ30 1.00
E288CC	13.50	EF91 1.25	GZ32 1.00 1.00
E810F	16.00	EF92 2.50	GZ33 4.50
E1148	1.00 6.95	EF93 0.69	GZ34 2.15
${ }_{\text {EA50 }}{ }^{1524}$	6.95 1.00	EF94 EF95 0.85 100	GZ37 $\quad 4.50$
A 76	1.95	EF97 0.90	HAA91 HABC80 $\mathbf{0}$ 0.90
EA79	1.95	EF98 0.90	HABC80
EAA91	0.60	EF183 0.65	H8C91 0.80
EABC80	0.68 2.50	EF184 EF730 0.650 1.80	$\begin{array}{ll}\text { HF93 } & 0.75 \\ \text { HF94 } & 0.60\end{array}$

$3 C \times 3 A$
$3 D 21 A$
$3 D 22$
$3187 E$
$31187 G$
$3 W 4 G T$
$4 B 551 B$
$4-65 A$
$4.250 A$
$4 C 27$
$4 C 28$
$4 C \times 250 B$
$4 C \times 250 B$

2.50
29.50

BFO7	1.95	90 CG	13.50

WIREWOUND RESISTORS			BASES ETC.	ZENER DIODES		
Preferred values			${ }^{\text {B7G G Skirted }}{ }_{0}^{0.15}$	BZX61 0.15		
	4R7-1188	0.18				
4 Wat	2K2-6K8		0.30 B8G 0.70 B9A 0.20	6V2 7V5 8V2 9V1 10V 17 V 12 V 13 V 15 V 16 V 18 V 20 V 22 V 24 V 27 V 30 V		
	10K	0.24		$33 \vee 36 \mathrm{~V} 39$		1 V 56 V 68 V 75 V
	R47-4K7		$\text { B9A Skirted } 020$	BZY88 0.07		
7 Wat	5K6-12K	0.19	$\begin{array}{ll} & 0.30 \\ \text { B10B } & 0.16 \\ \text { B13B } & 0.50 \\ \text { 8PinDIL } & 0.14 \\ 14 \text { Pin DIL } & 0.15 \end{array}$	2V7 3V 3V3 3V6 3V9 4V3 4V75V1 5V6 6V2 6 V 87 V 58 V 2 VV 110 V 11 V 12 V 13 V 15 V 18 V 20 V 24 V 27 V 30 V		
	15K-22K	0.20				
11 Mat	1R-10K	0.25	14 Pin DIL/O	THERMISTBR8		BITEXES
	15K-22K	0.24	16 Pin 140.30			
17 Mat	1R-10K	0.28	16 PINDIL 0.17 OCTAL P/35	VA1040	0.23 0.23	7 Cl Power Mike
			CANS 0.27	VA1104	0.70	TR 175 f 1.40 ea
	15K-22K	0.28	B9A PCB 0.15	VA8650	0.45	other prices on
			$\begin{array}{ll}\text { B5 } \\ \\ \text { B9G } & 0.75 \\ & 0.38\end{array}$	VA1097	0.25	request

CALLERS WELCOME

\star ENTRANCE ON A227
50 YDS SOUTH OF MEOPHAM GREEN CAR PARKING AVAILABLE
OPEN MONDAY TO FRIDAY 9a.m. 5.30p.m
\qquad
© 24 HOUR ANSWERPHONE SERVICE \star

UK ORDERS P\&P 50p PLEASE ADO V.A.T. AT 15\%

EXPORT ORDERS WELCOME. CARRIAGE/POST AT COST

Why not be spoilt for choice this Christmas and avoid all the usual rush, hassle and frustration of present buying. Visit the first Your Computer Christmas Fair (December 1518) and be sure of seeing a truly vast range of microcomputer products, all under one roof at the Wembley Conference Centre, the most modern and comfortable exhibition venue in the country.

Whether you're interested in choosing a micro for home management, child education or games playing, you can see live demonstrations at the show, and have your questions answered by expert sales staff from the manufacturers, dealers and software houses. Huge amounts of software and hardware. add-ons like joysticks and printers, plus a special Sinclair Village, will be at the show. so you can purchase the system you really want.

Large product stocks held on site mean no one will be disappointed and, because most exhibitors will accept major credit cards, you can buy in comfort, at the show on the spot.

The Conference Centre, with its excellent and economical catering facilities, is the ideal pre Christmas family treat away from the high street crush.

Open from 10 am to 6 pm every day except Friday Special late night 8 pm closing.

There's never been a better way to shop for micro computer presents. So wrap up your Christmas gift worries at the Your Computer Christmas Fair.

Sponsored by
 YOUR COMPUTER

Britain's biggest selling computer magazine and organised by Reed Exhibitions
Surrey House 1 Throwley Way Sutton Surrey SM1 4QQ Tel: 01 643-8040

GOMPUHAR Winatiousg

THE 'ALADDINS' CAVE OF COMPUTER AND ELECTROMIC EQUTPMENT

HARD DISK DRTVES

Front load $£ 550.00$ - Top load $£ 295.00$

DRE 44A $4000 \mathrm{~A} 810 \mathrm{mb} 5+5$ a!l
$\varepsilon 995.00$. Call sales office for details.

5 AMP MAINS FLLTERS

DISTEL®

The UKS FIRST free of charge, 24 hr . public
access data base. Get information on 1000's of stock items and order via your computer and credit card. On line now, 300 baud. CCITT tones, full duplex, fully interactive. DON'T MISS THOSE BAROAINS CALL NOW, IT'S FREE!
01-6791888 woinkiphr
weak DA hri.

COMPUYFR 'CAB'

cabinet with integral switched
mode PSU, Mains filtering, and twin fan cooling Originally made for the famous DEC PDP8 com
system costing thousands of sysiem costing thousands of pounds. Made to
hours per day the PSU is fully screened and massive $+5 v D C$ at 17 amps, + massive $+5 v \mathrm{DC}$ at 17 amps, emovable top lid, filtering, trip switch fully enclosed LEDs mounted on Ali front panel, rear cable entries etc. Units are in good but used condition - supplied for $240 v$ operation complete with full circuit and tech. ma Give your system that professional finish for on C49.95
Useable area $16^{\prime \prime}$ w 10.5 "h $11.5^{\prime \prime} \mathrm{d}$.
Also available LESS PSU, with FANS etc. Internal dim

COOLTNG FANS

Keep your hot parts COOL and RELAABLE with our range of GRANO NEW protessional

GOULB JB-3AR Dim. $3^{\prime \prime} \times 3^{\prime \prime} \times 2.5^{\prime \prime}$ compact Very quet runing 240 v operation. NEW E6.
BUHLER 6911 .

8" FLOPPY DISK DRIVES

Unbelievable value the DRE 7100 8" floppy disk drives utlise the finest technology to give you 100% bus compatibility with most drives available today. The only difference being our PRICE and the superb
manufacturing quality! The 7100 single sided drive manufacturing quality! The 7100 single sided drive formats giving a massive 0.8 MB of storage. Absolutely SHUGART, BASF, IEM Optional accessories. Full technical manual $£ 20.00$ alone. $£ 10.50$ with drive. Refund of difterence on drive purchase. DC and AC power connector and cable kit £8.45. 50 wayIDC connector $£ 5.50 .50$ way ribbon cable $£ 3.20$ per metre

SUPER DEAL? NO - SUPER STEAL!?
 The FABULOUS 25CPS TEC Starwriter
 Daisy wheel printer at a fraction of its original cost BRAND NEW AT ONLYE499, VAT

THTFTYPSASBES $1 /$, I/O TEBMINALS Fully fledged industry + VAT rerminal Many features including AS 3 dat keyboard and printer for data $1 / O$ auto data detect circuitry RS232 serial interface. 110 baud, 8 bit paper tape punch and reader fo oft line data preparation and ridiculously cheap and reliable data storage. Supplied Options: Floor stand $\mathbf{E} \mathbf{1 2 . 5 0}+$ VAT SR33 with 20 ma loop interface $£ / \mathbf{2 5 . 0 0}+$

SOFTY 2

 The amazing SOFTY2. The complete "toolkit"for the open heart software surgeon copies Displays, Emulates ROM, RAM and EPROMS of the 2516,2532 variety. Manyotherfeatures include keyboard, UHF modulator Cassette interdace etc. Functions exceed capabilities of £169.00 pp£1.95 Data sheet on requ

DATA MODEMS

range of EX TELECOM data modems. Made a 25 way D skt Units are sold in a tested may be required tor conn MODEM 13A compact. async, same size as over 2 wires, but call mode only $£ 75.00$ MODEM 2B/C Fully fledged up to 300 baud async. ANSWER \& CALL modes, auto answer connection to comms line c85 oo

MODEM 20
PRESTEL or full duplex 2 wire tink 75 baud
£ 130.00
MODEM $20-2$ same as 20 - but 75 baud
receive 1200 baud transmit 130 -00 eceive 1200 baud transmit $£ 130.00$ MODEM 20-3 Made for data rates up to
baud in full duplex mode over 4 wire circ half duplex mode over 2 wires. $\& 130.00$ arriage. 13A £4.50. 2B/C \& $20 £ 9.50$.
\qquad

SPECIAL MODEM OFFER

EX TELECOM. Direct connect. 2 wire, European standard, $75 / 1200$ baud data modems Normally priced at $£ 140.00$, we have a limited quantity of guaranteed
working, but cosmeticalty defective (ie scratches and scuffs on panels etc.) units at a super low price of only 49.95 . Modems are made to the highest standard DISTEL's forthcoming high speed ports. Standard RS232 data i/o via 25 way
MODEM 2A Early version of modem 2B/C 300 baud full duplex, send-receive, auto answer. RS232 i/o. With data but untested. End of line clearance.

8" WINCHESTER price SLASSH

S100 Bus 19 Mb . Subsystem. A cancelled order and change of policy by a major British disk drive manufacturer enables us to offer you 'last year's model' at a plug in and ready to go SUPER LOW PRICE. Our own custom controller pugs direct into the S100 bus and will control 2 disk drives, offering a total storage of OVER 36 Mbs! and at data transfer rates in excess of $7 \mathrm{Mb} / \mathrm{sec}$ seeing is believing! Supplied complete with user configurable BIOS etc. Save a fortune, Limited quantity only. $\mathbf{3 1 0 0 1 9} \mathbf{M b}$. Disk drive $\mathbf{~} \mathbf{5 9 9 . 0 0}$ PSU unit $\mathbf{E 5 . 0 0}$ CD1100 controller \& BIOS $£ 345.00$ PSU extension cabler $\quad \mathbf{~} \mathbf{E 9 . 9 5}$ Full tech Manual
$\mathbf{E 1 0 . 0 0}$

$$
\text { Special SUBSYSTEM prices. } 1 \times 3100 \text { disk }+ \text { PSU + Controller }
$$

CALCOMP 936 PLOTTER

 3 colour 33" digital incremental plotereand accessories. Standard paraliel
in

VIDEO MONTTORS

12" CASED. Made by the British KGM display station, unit is totally housed in attractive brushed aluminıum case with ON OFF, BRIGHTNESS and CONTRAST controls mounted to one side Much
attention was given to construction an reliability of this unit with teatures such internal transiormer isolated regulated D
supply, all components mounted on wo supply, all components
fibre glass PCB boards
\qquad
75 ohm composite video signal via SO239
is estimated around 20 Mnz and will display
inost high det graphics and 132×24
Units are second hand and may hav
only apparent when monitor is switched of Although unguaranteed all monitors are
approx $14^{\prime \prime}$ high x $14^{\prime \prime}$ wide by $11^{\prime \prime}$ deep
operation OWLYE 45.00 PLUSE9.5O GARR.
$24^{" ~ C A S E D . ~ A g a i n ~ m a d e ~ b y ~ t h e ~ K G M ~}$
with a similar spec as the '2" monitor
Originally used for large screen data
display. Very compact unit in lightweigh
\qquad
\qquad
14" COLOUR superb chassis monitor made
are TTL RGB with separat
plug direct into the BBC min
Exceptional bandwidth with yood 80
definition. Brand new and guaranteed
Complete with
OWIYEI99.00 PLUSE9.50 CARR.
SEMICONDUCTOR 'GBAB BAGS'

CALLING DEC USERS

Brand new and boxed

P.D.P.8/P.D.P.11/P.D.P. 15

Thousands of spares ex-stock Call for details.
DEC MSV11-DD 32k $x 16$ bit RAM E/95.00

ALL PRICES PLUS VAT

Mimbluis -ELELTRUNIES

$=$

B. BAMBER ELECTRONICS

Rank Pullin Airport Weapon Detector Type 3 Walk Rank Pullin Airpor Complete and good working order hrough Cabis plus VAT
Marconi HF Spectrum Analyser Type OA1094A/S com mounted on trolley, $0-30 \mathrm{MHz}$ f 90 plus VAT Systron Donner Spectrum Analyser Model 805200 Hz 1.6 MHz. POA.

Marconi AM Signal Generator Type TF 801D/8S 10 485 MHz , f 95 plus VAT.
Tektronix Oscilloscope Type RM45A Rack Mount mainframes, £50 plus VAT.
Tektronix Oscilloscope Type 551 Mainframes with Power Unit, $£ 75$ plus VAT
Tektronix Oscilloscope
Power Unit, £85 plus VAT
Tektronix Sampling Oscillo
4S1 plug-in, £120 plus VAT. VAT. Avo Transistor Toster Type 2 with Battery and Mains Power Units, f 30 plus VA
Solartron Oscilloscope Type CD 1642
Solatron Oscilloscope Type CD 1014.3
Telequipment Oscilloscope Type D 61.
Teleauipment Oscilloscope Type D 43 R.
Solartron RC Oscillator Type CD $100410 \mathrm{~Hz}-1 \mathrm{MHz}$ £25 plus VAT. £ 185 plus VAT
Radiosonde RS 21 Meteorological Balloon Transmitter with Water Activated Battery. 55 each plus VAT.
Pye Industrial pH Monitor Model 539 complete with Technical Manual, $£ 30$ plus VAT
Marconi AM/FM Signal Generator Type TF 995A/5, £250 plus VAT
Charles Austin Two-Stage Air Pump Type F65 DER complete with pressure regulator, 240 vac., chassis plus 55 p.p. plus VAT, etc., brand new and boxed, $£ 45$
Tektronix Square Wave Generator Type $107 £ 25$ plus $£ 5$
p.p. plus VAT
pohde \& Schwarz A.F. Wave Analyzer Type BN 48302 £ 45 plus $£ 15$ p.p. plus VAT.
Rohde \& Schwarz Enograph - G Type BN1198/25 £60
plus $£ 15$ p.p. plus VAT.

Pye Europa MF5FM High Band Sets, ideal for 2 M. 5 watt output 6 Ch , complete but less mike and cradle with circuit diagrams, £60 each plus VAT.
plete but less speaker with circuit diagrams, $£ 60$ plus VAT.
Pye Motafone MF5AM Mid band 6 Ch , good condition with circuit diagram, $£ 15$ plus VATr
Pye Westminster W15AMD Mid Band Single Ch, com plete but less speaker, mike and cradle, £45 plus VAT. Pye Westminster W15AMD Low and High Band Sets, complete but less speaker, mike and cradle, $\mathbf{£ 5 0}$ plus Pat.
Pye Westminster W30AM Low Band Sets, boot mounted, 30 W output, complete but less speaker, mike and leads, $£ 25$ plus VAT
Pye Olympic M201 AM High Band, complete but less plus VAT.
Pye Cambridge AM10D Low Band, few only $£ 15$ plus VAT.
Pye Cambridge AM10B High Band, few only, $£ 10$ plus
Pye Base Station $F 27$ Low Band, $£ 40$ plus VAT.
ye Base Station F30 High Band, £180 plus VAT
Pye Base Station F401 High Band, £220 plus VAT.
Pye RTC Controller units for remotely controlling VHF and UHF fixed station radio telephones over land lines. £10 plus VAT. plus VAT.
Pye Base Station Tx Type T406 100 W Low Band FM. $£ 150$ plus VAT
ye Base Station Tx Type T100 100W FM 'G' Band 38.650 MHz , ideal for 6 M . New condition. $£ 100$ plus VAT. ye Pocketfone 6 , battery, good condition, 45 plus VAT
ye Pocketfone PF5 Battery Charger Type BC16A, E25 yye Pocketfone PF1 UHF Receiver, $440-470 \mathrm{MHz}$, single channel, int speaker and aerial. Supplied complate with rechargeable battery and service manual. $£ 6$ each plus $£ 1$ p.p. plus VAT
Ni-Cad Batteries for Pye PF1 rx, used but good condition, $£ 2$ each, PF1 $1 \times$ Batteries, $\mathbf{£ 3}$ each plus VAT.

PLEASE NOTE: All sets are sold less crystals unless otherwise stated. Carriage on RT equipment - Moblles f 2 ea
cost.

SEMICONDUCTORS \& VALVES p.p. 50 p per order. PEMICASE ADD VAT. 1 N4 44810 for $25 p, 7414$ for $£ 1,555$ 4 for $£ 1$, Z80-P10 $£ 1.85, Z 80$-CTC $£ 1.85$, BC108 4 for 50 p BC109 4 for 50p, BC113 4 for 50p, BC148 4 for 50p. BC149 4 for 50p. QQV03 - 10 ex-equip. $£ 1.20, Q Q Z 03$ - 10 new $£ 2.50$, QQV03 - 10 ex-equip. $£ 1.20, Q Q Z 03$ - 10 new $£ 2.50$,
QQVO3 - 20 a ex-equip £5, QQVO6 - 40 a $£ 15, ~ Q Q Z 06-$ 40a ex-equip, £10.
VIDICON SCAN SOILS 1" Transistor type but no details, complete with vidicon base $£ 3.50$ each plus 50p p.p. plus VAT.
Mains isolating transformer, 500 VA 240 V input, 240 V C.T. output, noused in metal box. £15 each plus $£ 6 \mathrm{p} . \mathrm{p}$. plus VAT.
Mains iso hains isolating transformer, 240 V tapped input, 240 V 3 plus VAT.
Garrard Car Cassette Player Mechanisms, 12 V motor, stereo head, brand new, $\mathbf{E 2 . 5 0}$ aach plus 50p p.p. plus VAT.
Cigar Lighter Plug with lead, $\mathbf{£ 1}$ each p.p. plus VAT. IC Test Clips, 28 way and 40 way, gold plated, $£ 2$ each plus 30p p.p. plus VAT.
60 amp Alternator and Generator Noise Filters for use in vehicles, $\mathbf{£ 1} 1$ each plus 50 p p.p. plus VAT Computer Grade Electrolytic Capacitors, screw termi p.p. pius VAT.

Mains Transf
ains Transformers 220 v Pri. 36 v @ 1.5 amp. Sec. $£ 1$ ach plus 50p p.p. plus VAT.
解 hips N1500/1700 VCR. LVC30+5, 36 min . Iong play.
f5 each plus 50p. p.p. plus VAT.
Mullard Vari-Cap Tuners Type ELC2003, UHF only, removed from brand new TV sets. $£ 3.50$ plus 5p. p.p. plus VAT.
2N3055
2N3055 Transistors, Brand New, 4 for $£ 1$ plus 20p, p.p. plus VAT.
Beryllium Block Mounts for CCS1 valves. Brand new and Boxed, $£ 10$ each plus 50 p. p.p. plus VAT

' $D O L B Y '$ NOISE WEICHTIN: FILTERS Cat. No. 98A. Noise weighting filters for CCIR/ARM signal-to-noise ratio
$£ 40$ each ($+\mathbf{f 1}$ p\&).

BECKWAK TURNS COUNTER DIALS

 Miniature type (22 mm diam.). Counting up to 15 turn "Helipots". Brandtions. Only $£ 2.50$ each

RFI RECENER

Stoddart Model NM52A. RF Noise \& Field intensity measuring receiver. $375 \mathrm{MHz}-1 \mathrm{GHz} \mathrm{c} / \mathrm{W}$ powe supply unit

KAY SOUND SPECTROGRAPH

Model 6061 B with Amplitude Display, scale magni fier. $85 \mathrm{~Hz}-16 \mathrm{kHz}$. Complete sound spectrograph excellent condition

$t \star$ STEPPER mOTOAS $\star \star$

Brand new stock of 'ASTROSYN' Type 20PM A055 stepper motors. 28 V DC. 24 steps per rev 15 oz-in torque @ 100PPS. Body length $21 / 2$ diameter $2^{\prime \prime}$, shaft $1 / 4^{\prime \prime}$ diam $\times 41 / 4^{\prime \prime}$ spirally 50 p). Connections supplied.

t MLLI-vali MEASungent, Maldeut
 MARCONI TF2600. Twelve ranges $1 \mathrm{mV}-300 \mathrm{~V}$ FSD. Wide-band to 10 MHz
 MARCONI TF2603. Frequency range 50 kHz 1.5GHz. High Sensitivity from 300 uV MARCONI TF2604. Electronic Multi-meter. AC/DC 300 mV Full scale to $300 \mathrm{~V}(1 \mathrm{kV}$ DC). Resistance ranged. AC Frequency range 20 Hz
 \rightarrow CONSTANT VOLTAGE TRANSFORMERS $\rightarrow t$ ADVANCE VOLSTAT: Type. Model MT140A Mains input 190-260V AC. Output 230V AC @ 150W. Price each $£ 20+$ VAT $+£ 2$ carriage.

P. F. RALFE ELECTRONICS 10 CHAPEL STREET, LONDON, NW1 TEL: 01-7238753

 OSHILOSGOPES

TERTRONIX 453. Dual-trace 50 MHz

TEKTRONIX 565. Dual time-base. Differen-
tial plug-ins. E350.
MARCONI TF2210. Dual-trace, 100 MHz , sweep-delay $£ 350$.
DYNAMCO D7200 Mains/Battery portable Dual-trace 15 MHz £225.
N.B. We have a frequent stock turnover of
 good, used 'scopes. Should you have a specific requirement for any item of test equipment we
MARCONI TF2502 RF Power meters. DC-1 GHz. 10 w fsd $£ 350$
MARCONI TF2502 RF Power meters. DC-1 GHz. 10 w fsd $£ 350$ MEGGER-5KV Insulation tester. Hand-crank
PHILIPS Model PM8041. X-Y Recorder
MARCONI TF2343A Quantization Distortion Meter $£ 150$. HEWLETT-PACKARO 3450 A Multi-Function Digital Multi-Met ROHDE \& SCHWARZ 'SDR' AM signal generator 0.3-1GHZ. HEWLETT.PACKARD 608C. AM signal generator $10-480 \mathrm{MHz}$ TGL Spectrum Analysers model SA102. $0-500 \mathrm{MHz}$. Brand new factory units. $0-500 \mathrm{MHz}$. Send for specifications.

\rightarrow INSULATION TESTERS +

Transistorised 'Metrohm' 250 V \& Transistorised 'Megger' 500 V $£ 60$ Hand-Crank 'Megger' $500 \mathrm{~V} \mathbf{E 6 0}$ Supplied in fully tested excellen condition

SWEEPERS

TELONIC Sweep generator system type 2003. Fitted with Marker, attenuator, Detector plug in units and Generator covering $800-1500 \mathrm{MHz}$. $\mathbf{3} 35$

325

- DISC CARTRIDGES \star BASF 12-Segment Single Hard Disc Cartridges. B
plus stock. $£ 20$ ea. PLEASE NOTE All the pre tested in our workshop and reconditioned where necessary. It is sold in tested in our workshop and reconditioned where necessary. It is sotd in
first-class operational condition and most items carry a three months first-class operational condition and most items carry a three months
guarantee. For our mail order customers we have a money-back scheme. Repairs and servicing to all equipment at very reasonable rates. PLEASE ADD 15% VAT TO ALL PRICES.

MUIRHEAD

\star facSimlie Units * mufax 'COURIER' facsimile re MUFAX 'COURIER' facsimile re ceiver type K441-CH and transmiters K400 AMCH in stock in excel. lent condition £ 250 per pair.

* COMPUTER PERIPHERALS *

8" ${ }^{\prime \prime}$ FLOPPY DISK DRIVES

 DRE (Data Recording Equipment) Model 7100Single-sided floppy disk drives in stock now at Single-sided floppy disk drives in stock now at
vastly reduced prices. Supplied BRAND NEW in manufacturers sealed cartons. CAPACITY 0.8MBytes. Hard/Soft sectoring ANSI/ECMA Standards compatible. Measures $4^{1 / 2 \times 81 / 2 \times 14^{\prime \prime} \text {. Weight }}$
131bs. PRICE $£ 150+$ VAT. Securicor despatch if 13Ibs. PRICE $£ 150+$
required $+£ 10+V A T$.

8" WINCHESTER DRIVES

United Peripherals type 300 Minidisc Drives

 CAPACITY over 19 MBytes . Power supply requirements 5 V .DC at $4 \mathrm{~A} .+24 \mathrm{~V}$. DC at 3 . Measures$17 \times 8 \times 7^{\prime \prime}$. Limited quantity only available in BRAND NEW condition. E250 each + VAT. Carriage details as above.

4000-SERIES HARD DISK DRIVES

Data Recording Equipment 4000 -Series exchangea ble IBM-type 5440 Disks. Units available ex-stock and BRAN

BRUEL \& KJAER *
Model 2006 Heterodyne Voltm
Voltage measurements to 240 MHz .

CLAUDE LYONS 240V AC
 REGULATORS

Small quantity available of constant voltage mains

 nput 204-252V. Output adjustable $200-254 \mathrm{~V}$ AC士 $0.3 \% .45-65 \mathrm{~Hz}$. Condition as new (Dims- $11^{\prime} \times 7^{\prime} \times 6^{\prime \prime}$. Weight 20 Kgs). Price f 95 ea.Carriage 55 . Carriage 55 .

- ROTRON NSTRUMENT COOLING FANS
tion, as follows
$115 \mathrm{~V}, 41 / 2 \times 41 / 2 \times 11 / 2^{\prime \prime} \quad \mathbf{E 5} .230 \mathrm{~V}$ same size
£5.50. $115 \mathrm{~V} 3 \times 3 \times 11^{\prime \prime} £ 4.230 \mathrm{~V} 3^{\prime \prime}$ size,
brand new $£ 6$. Also small quantity 115 V
4/2 size, brand new $\mathbf{\text { f6}}$. Postage each
- 50 p please

Careers in electronics

How do you train? What branch of electronics appeals to you? Where will you work and how much can you earn? Ron Slater investigates.

For the boy or girl at school, choosing a career is no easy matter. Natural ability and cultivated interests will clearly play their part, but it is also necessary to try and ensure that the industry or profession which attracts one has a career rather than just a temporary job to offer; and therein lies the rub. An average working life spans some forty years and it would need a highly skilled operator with a turbocharged crystal ball to forecast the fate of any industry over so long a period. For instance, the last forty years have seen either the total demise or very serious cutbacks in many formerly well established and prosperous British industries - textiles, motor cycles and cars, steel, shipbuilding; the list unfortunately is very long.

So what of electronics? Over the last fifty years or so it has, worldwide, been the fastest growing industry ever known to man. Literally day by day new applications are being found for electronics and there is no reason to suppose that the growth will slacken in the foreseeable future. It can be forecast with a fair degree of certainty that for many years ahead there will be an increasing demand for more sophisticated communication systems and for higher degrees of automation in industry, commerce, transport and, of course, in the home.

The form that electronics will take is very much more problematical and to forecast future developments is well beyond the scope of this article, except so far as one point is concerned. The last 35 years have seen the transition from the thermionic valve through the transistor to integrated circuits. In general, the engineers who have successfully survived through these changes have been those with a thorough grounding in mathematics and physics and that undoubtedly is a sound pointer to the basis of a sound education for the future.

Education and qualifications

The value of a sound technical education and the attainment of recognized technical qualifications cannot be overestimated. It is the initial yardstick by which a person applying for an appointment will be judged and it is the foundation on which experience and a successful career will be built. Although twenty or thirty years ago many persons rose to the top of the engineering profession without formal qualifications it is becoming increasingly difficult to do so. Indeed, at the present time it is
almost impossible even to make a start on a career in electronics without having first obtained some recognized technical qualification. The only real exception to this rule is for the comparatively few young persons who are fortunate enough to be accepted as apprentices and where attendance at an academic establishment, either on block or day release, will form part of the terms of engagement.

What are these qualifications and how are they obtained? Before answering this question it is necessary to define the levels of qualification which are generally accepted throughout the industry. Although this can be done in terms of the academic awards made by educational establishments it is, perhaps, easier to look at the somewhat broader division which is made by the Engineers' Registration Board. This is a body set up in 1970 which

by R. C. Slater, F.I.E.R.E.

derives its authority from a Royal Charter granted to the Council of Engineering Institutions (CEI)*: The three registers kept by the Engineers' Registration Board are:
(1) technicians
(2) technician engineers
(3) chartered engineers

To have one's name entered on one of these registers it is normally necessary to obtain specified academic qualifications and also to have had a specified period of approved industrial training and/or experience. Application for entry on one of these registers is generally made through one of the societies or institutions which cater for the needs of electronic technicians and engineers (see later).
The academic requirements for the above grades are briefly as follows.

Technicians

Ordinary National Certificate or Diploma (ONC or OND) in appropriate subjects.
City \& Guilds Part II Certificate in course 271 - Telecommunication Technicians, or course 272 - Radio, Television and Electronics Technicians. TEC (Technician Education Council) Certificates and Diplomas in appro-

[^5]priate subjects, e.g. Electronics and Communications.

Technician engineers

Higher National Certificate or Diploma (HNC or HND) in Electrical and Electronic Engineering.
City \& Guilds Full Technological Certificate in course 271 or 272 (see under Technicians).
TEC Higher Certificates in Electronic and Communication Engineering

Chartered engineers

The basic requirement here is a degree awarded by an accredited body and in an appropriate subject, e.g. electronic engineering, electrical and electronic engineering, computing science, physics.

The above is an abbreviated list of acceptable qualifications for the various grades of technical staff. There are various other qualifications which are deemed to be equivalent as, for example, various courses of training provided by the armed services and specialist courses such as those for Merchant Navy officers. Advice on such educational matters may be freely obtained from educational establishments and from member bodies of the Engineers' Registration Board. It should also be noted that there are other qualifications which, while not falling into one of the three categories above, are, nevertheless, very worth obtaining. An example of these are City and Guilds Certificates in Electronic Servicing.
At this point it may be worthwhile to say a few words about the societies and institutions which serve the needs of technical personnel and which are members of the Engineers' Registration Board. For technicians and technician engineers, these are the Society of Electronic and Radio Technicians (SERT) and the Institution of Electrical and Electronics Incorporated Engineers (IEEIE). For chartered engineers, they are the Institution of Electrical Engineers (IEE) and the Institution of Electronic and Radio Engineers (IERE). The IERE also has a section for technician engineers: the addresses of all four are given at the end of this article. While it is by no means mandatory for anyone to join a professional body there are considerable advantages in doing so and persons seriously intent on making a career in electronics are strongly advised to obtain details of the various institutions and of the services they provide.

Probably the next question is 'At what level of qualification should one aim?'.

The easy answer to that is 'As high as possible'; but that is a glib answer which needs some qualification. In the first place it depends to some extent on the type of work which is likely to be most attractive. Second and most important, it depends on one's academic abilities and inclinations. There are many persons who will do very well and be happy doing practical work but who would not do well and would not be happy carrying out more theoretical work. For such persons a good technician or technician engineer qualification may well stand them in better stead than a poor degree. In this respect it is worth noting that the IEE has recently set a minimum standard for corporate membership of a second class honours degree and that is a fair reflection of the standard of graduate that industry requires.

There are a number of ways in which the various qualifications cited above can be obtained. In most cases it will necessitate attendance at a college of further education, a college of technology, a polytechnic or a university. The majority of technician and technician engineer qualifications can be obtained by either full or part-time study. The latter may take the form of day release (one or two days a week at college and the remainder at work), block release (several weeks or months at college alternating with similar periods at work) or by attendance at evening classes. The choice will largely be determined by personal circumstances and by what is currently available. If an apprenticeship can be obtained involving day or block release that is an excellent way to start a career. Unfortunately the rising costs which industry has had to face has resulted in fewer companies providing such schemes; this may well make it necessary to obtain some basic technical education before being accepted into industry.

In the case of degree students, the choice really lies between a full-time course and a sandwich course. A typical sandwich course will involve two or three six-month periods spent in industry with the remainder spent at university or polytechnic. There are advantages and disadvantages to both the full-time and the sandwich course and in the long-term it is probably immaterial which is followed. The full-time course allows a greater continuity of academic work and, generally, a greater length of time in an educational environment. On the other hand a sandwich course can provide a useful and gradual introduction to a working environment together with valuable industrial experience. The emphasis must, however, be on the word 'can'; the sandwich course only enjoys its benefits if the industrial training periods are spent on useful and meaningful work which is pertinent to the course being followed. It is an unfortunate fact that, over the last few years, the number of companies willing to provide industrial training has diminished and many universities and polytechnics are now finding great difficulty in finding suitable industrial placements for their students.

Before leaving the subject of education there is one further point which, although
self-evident, needs to be kept in mind and that is that an engineer never finishes learning. Over the last 20 or 30 years the face of electronics has changed dramatically and no doubt it will continue to do so. New technologies evolve and new components and techniques are continually emerging. If an engineer is to make continued progress in this profession it behoves him to keep abreast of technical developments by all means available - by attending courses, colloquia, institution meetings etc. and by reading the technical press.

Types of employment

The electronics industry is very complex and in the confines of this short survey it is not possible to cover all the categories of work in which an electronic engineer or technician may be involved. However, in the following paragraphs a few words will be said about the main classes of employment, the qualifications and personal qualities which are required and, where possible, the avenues for career progression.

Research. Generally speaking, research can be divided into two types of work pure research, where the primary objective is to increase man's scientific knowledge and applied research where the objective is to solve a known problem. In practice the two will frequently overlap. The main centres for original research are the universities and polytechnics, Government research establishments and the laboratories of the larger manufacturers.

Direct entry into research will usually call for a good honours degree and in some cases a higher degree - M.Sc, M.Phil., Ph.D. etc. To be successful also calls for a number of personal qualities - patience, perseverance, a disciplined approach to work, logical and innovative thought and an ability to communicate. It also calls for the resilience to overcome disappointments, for not all research is successful.

For many persons, research may be a part of their education and thus a comparatively short-term occupation as, for example, when carrying out research for a higher degree. For those entering research on a more permanent basis the considerations are somewhat different. Research can, of course, be very intellectually rewarding and can result in a high degree of job satisfaction: in a large organisation, promotion prospects are also good and a reasonable level of income can usually be attained. However, like most sections of industry it is a pyramidal structure and places at the top are not very plentiful; not many can become a manager or director of research. Thus, if one's aspirations run higher than, say, a principal research engineer, it may be necessary to make a transition into a more practical branch of industry. This should not be left too late, the early thirties perhaps, and it may well be advisable to make earlier preparation for such a move. This could, for instance, take the form of a part-time degree or diploma in management studies.

Design and development. This can be a very exciting and satisfying area in which
to work. It is the activity which leads to the birth or evolution of new components and products. Without effective design and development no company can hope to stay in business for very long. The stimulus for design and development may come from various sources; it may, for instance, be the result of market forces where a company needs to produce new or updated products to keep abreast of its competitors or where it can see a market waiting for a new product, or it may arise from the needs of a specific customer. In either case, the objective will usually be clearly defined and it will often need to be carried out against tight performance specifications and with the constraints imposed by environmental conditions, international standards, time and cost scales, etc.

The activities and responsibilities of a design and development engineer can differ enormously. The end product may vary from a single component to a large and complex system. Thus the overall activity may involve the work of just one or two men or the combined activities of a large number of multidisciplinary teams. In either case it is seldom possible to separate the design and development phases. From the initial concept to the production of a prototype ready for manufacture is usually a continuous process and the time-scale for this operation may vary from days or weeks to two or three years.

For direct entry into design and development, the majority of companies will be looking for a good degree, although with the right personal attributes some companies will consider persons with lesser qualifications such as an HND. Possession of a higher degree will, in the longer term, prove advantageous, although it will not necessarily result in a higher starting salary.

In addition to technical knowledge, a good design and development engineer needs certain personal qualities; among these may be cited the ability for original and innovative thinking allied to a logical, disciplined and enthusiastic approach to the job in hand. He will need to keep up-to-date with new components and technologies and in most cases he will need to have a sense of commercial awareness, for whatever he produces will usually have to be sold in a competitive market. In most cases he must have the willingness and ability to work as a member of a team and, most important, he must be able to communicate precisely with his colleagues and with other people - customers, suppliers, etc. - who have an interest in his work.
In most companies of reasonable size a design and development engineer will have the opportunity for a worthwhile career progression. He may, for instance, go from engineer to senior engineer to section leader to project leader. For the most able engineers the progression to development manager or technical director is by no means impossible. A few years spent in design and development can also be a valuable stepping-stone towards a successful career in other branches of the industry such as sales and marketing, production and general management.

Although it has been stated that the usual qualification for direct entry into research, design and development is a degree, good career opportunities exist in these departments for both technicians and technician engineers. Generally, they will be employed in supporting roles, as assistants to the engineers, on the construction of prototypes, on the maintenance and calibration of test equipment and in the drawing office. Additionally, some companies will provide their technicians with the opportunity to obtain higher academic qualifications by giving them time off work to attend day or block release courses. There are many cases where a young man has entered a company as a junior technician and who by hard work and study has reached the highest level.

Production engineering. It has often been said that the British are very good at inventing things but not very good at producing them. This, unfortunately, tends to be true and one of the many reasons for this is that far too few of the most able people go into production engineering as a career. This is in contrast to other successful industrial nations such as Japan, Germany and the USA where the complexities of actually producing goods efficiently and cost effectively are solved by some of the best brains available to them. Good design goes for nought if the product cannot be produced effectively; at the other end of the process, the best marketing and sales organization cannot sell goods if they are not well produced, available on time and competitively priced. In other words, production engineering and production supervision offer a real challenge, yet the majority of graduates and technicians shy away from it. It may be that many still think of a factory in Dickensian terms but, in reality, a modern electronic production unit is far removed from that gloomy and depressing environment.

For the person who likes solving problems, working with people and seeing the tangible result of his efforts, production has much to offer. Jobs in this category include production planning and co-ordination, procurement of components and equipment, production supervision, production equipment maintenance right through to production management. Opportunities in production exist for all levels of technical staff, from technicians to graduates, and it is certainly an area where hard work and enthusiasm can lead to the top. Initial qualifications for entry into this sphere of activity may be in electronic engineering, mechanical engineering, production engineering and various combinations thereof. Again, further studies will pay dividends and these may for example, be directed towards the examinations of the National Education Board for Supervisory Studies or those of the Institute of Works Managers.

Reliability and quality engineering. In any manufactured goods reliability and quality are important. In many applications of electronics they are absolutely vital; examples which, readily come to
mind include patient monitoring and life .support systems, satellites, aircraft navigational systems, process control equipment and defence systems. Thus, in many sections of the electronic industry engineers concerned with reliability and quality have a most important role to perform and consequently enjoy a high status within the company.

Although the nomenclature applied to the various tasks may vary from company to company there are really three separate jobs here; reliability engineering, quality control and quality assurance.
The reliability engineer will be concerned with the inherent reliability of an equipment and he may well be involved from the early stages of design through to production. His area of interest may be very wide, ranging from choice of circuit techniques and components to methods of construction and packaging (packaging for use, not transport that is!).

The quality control engineer will be more concerned with the manufacturing process and test procedures, ensuring that finished goods meet the specifications and standards laid down for them and with the remedial action to be taken if they do not.

The duty of the quality assurance engineer is to provide the evidence to show how well the quality function is being performed and will include activities such as quality audits, failure analysis, qualification approval by outside bodies, etc.

In some organizations, the above will be separate functions. In other companies, two or more of the functions may be combined. In most cases the persons involved will usually have to co-operate with various departments within the company and frequently with outside companies and official bodies. The minimum academic requirement will usually be at $\mathrm{HNC} / \mathrm{HTC}$ level but in a number of cases a degree will be needed. It calls for a broad knowledge, or the willingness to acquire such knowledge, of specifications, standards, manufacturing processes, measurement techniques, methods of analysis and assessment. A good knowledge and interest in statistics is generally necessary, as is the ability to deal tactfully but efficiently with people at varied levels.

The quality function is an important one in the electronics industry, as indeed it should be, and it is to some extent becoming a profession in its own right. This is evidenced by the fact that quality assurance engineers have their own professional institution (The Institute of Quality Assurance).
Test. Under this heading we consider the jobs and careers available in the test of completed components and equipment. It is a section of industry which calls for an extremely wide range of technical skill and experience. For many young technicians and for an increasing number of graduates the test department will be their first introduction to industry. It is also an area of activity which will fully use the skills of highly trained and experienced engineers. The reason for this is, quite simply, that the item under test can range from a simple component to a large and highly
complex system; clearly the methods employed and the skills required will vary enormously. This disparity is accentuated by the fact that the test technician or engineer will usually be called upon to find and often rectify any faults on the equipment under test.

In addition to testing manufactured products, the staff of the test department may also be called upon to draw up test schedules, devise appropriate methods of testing and to design and construct special test equipment. Further, with the increasing use of automatic test equipment (a.t.e.) they may be required to design interfaces between the item under test and the a.t.e. and to write computer programs to enable the a.t.e. to operate in the required mode.

Sales and marketing. A career in technical sales has a lot to offer. It can provide a high degree of job satisfaction and financially can be very rewarding. But it is no easy job and requires personal attributes that not all possess.

A sales engineer can come from any academic level, the main criteria being that he has a sufficient technical knowledge to acquire an in-depth knowledge of the products he is selling and be able to understand and help to solve the problems of his customers. Clearly, the required level of technical knowledge will vary enormously with the complexity of the product.

The next requirement for a successful sales engineer is a real desire to sell and to succeed. In addition he needs to be able to communicate effectively and with enthusiasm, to be self-motivated and self-disciplined, to be able to stay calm and courteous under pressure, to be at ease with other people - ranging maybe from junior engineers to top management. He also needs to be able to accept failures and setbacks philosophically and then go out and start all over again. In short, he needs sound technical knowledge and a pleasant outgoing personality coupled with mental toughness and resilience. Given these qualities sales engineering can provide excellent career progression right up to board level.

Entry into sales can be made in several different ways. Some companies will take people direct from college or university and provide them with the necessary product and sales training. This will often entail a period spent in a sales office before going on to outside sales. Other companies prefer to select and train their sales engineers from among those who have had several year's experience in other sections of the industry such as development or test.
Marketing is closely related to sales but it encompasses a wider range of activities such as marketing strategy, publicity, market research and often pricing and price agreements. It is an area into which a sales engineer may eventually move.

Installation and commissioning. In many cases, a manufacturer will supply staff to install and commission equipment at a customer's premises or site. Installation is exactly what it says it is; that is, assem-
bling the equipment in the right place and carrying out the necessary wiring, etc. Commissioning includes testing the equipment, clearing any faults that arise and handing it over to the customer in good working order.

It is a iob which will often entail varying periods spent away from home and it many involve a considerable amount of travelling both in the UK and overseas. For the man who likes to do a practical job combined with travelling and meeting other people it can be a satisfying and rewarding way of life.

While the majority of installation and commissioning engineers will be technicians and technician engineers, there are an increasing number of career opportunities for graduates, either in a supervisory capacity or in dealing with the more sophisticated and complex equipments. Although some companies will take men straight from college and provide them with the necessary training, a number of companies prefer to use men who have already gained product knowledge in another department such as test or service. Service. The job of the service engineer or technician is to diagnose faults in equipment and to repair them; in some cases he may also carry out routine maintenance with the object of preventing faults from occurring.

The 'in-house' or base service engineer will work on his employer's own premises and will have the benefit of workshop facilities and be able to obtain additional technical assistance where needed. Also, more often than not he will work regular hours.

The field service engineer, on the other hand, will be working on a customer's premises. This, depending on circumstances, may involve local, country-wide or overseas travel. He will usually be working on his own, will often need to work irregular hours and may often find himself working with a customer breathing down his neck. In addition to technical expertise it is a job which calls for selfdiscipline, self-reliance and self-motivation. On the plus side he will, to some extent, be his own boss and may well have a company vehicle at his disposal. It is a job which many young men fancy and for this reason it tends to be oversubscribed.
Service engineering has traditionally been the preserve of technicians and technician engineers, but with the increasing sophistication of modern equipment many companies are now looking towards graduates to fulfil this role. As in most sections of the industry, well-paid management appointments are available for those who prove their worth. Field service engineering also provides experience in customer contact which can make a useful stepping stone to sales engineering.

Other activities. In the space of this short article it has not been possible to mention all the types of work which are available in the electronics industry and only those have been included which employ the greatest number of people. There are many other vitally important tasks but
which only employ comparatively small numbers: technical writers who produce technical manuals to go with equipment, a job requiring a high standard of technical knowledge and a high standard of literacy; technical training officers who may be concerned with training a company's own or its customer's personnel; draughtsmen, contract engineers and host of others.

This section could not be left without some mention of the armed Services since they are very large trainers and users of electronic personnel. All three Services provide good training for technicians, and where possible, will allow time off to study for civilian qualifications. They provide sponsored university courses for potential officers and good practical training for graduates. The Services provide an excellent career in themselves and generally speaking persons leaving them are well equipped for a second career in civilian life.

Specialization and sectors of industry

Which branch of this vast industry a person gravitates towards will depend on a number of factors, such as personal inclination, locality, the jobs available at a particular time, etc. Good opportunities exist in most sectors and it is not practicable to make any recommendations on the most likely areas of success; this could only be done on an individual basis.
Equally, there are a number of more or less discrete technologies such as analogue equipment, digital devices and microprocessors, and in the latter case there are both hardware and software. Most technical personnel will have to specialize to some extent but the choice is of particular importance to the young graduate starting out on this career. Digital techniques are being used more and more in almost every application of electronics and the microprocessor is finding an increasing number of uses. These trends will doubtless continue but at the end of the day it is an analogue world in which we live and analogue electronics will always be with us. On looking at the c.vs of new graduates there is an utter monotony in reading 'my final year project was a microprocessorbased so and so'. Very few have undertaken analogue projects and even fewer have concentrated on r.f. The result of this is that industry is now crying out for good r.f. designers and they have acquired a scarcity value. The soundest advice to any young person would be to concentrate on what interests them most and not to concentrate on any given technique because it is fashionable. It is also wise to keep one's technical knowledge as broad as possible; specialize by all means but keep abreast of other techniques by reading and by discussion with other engineers.

Location

There are few areas of the UK where there is not some electronic activity, but the greatest concentration is in the Thames Valley and the South East of England plus sizeable slices of the industry in the North West of England and Central Scotland.

One thing is certain, if satisfactory employment is to be obtained it is necessary to go where the work is and it is highly advisable to ascertain the prospects of employment before deciding that such and such a town would be a nice place in which to live. For those starting employment or for those who wish to find fresh employment this may mean relocating. The difficulties of doing this are not overlooked, especially for a married man with school age children, but it will sometimes be necessary. The majority of companies will assist in this by helping with relocation expenses and in some instances these are on a very generous scale.

Salaries

It may seem strange that in an article on careers no mention of salaries has been made. The reason for this is that it is highly misleading to do so. This also applies to the salary surveys which are periodically published by various bodies. One of the main reasons for this is that jobs which come under the same title can vary so enormously in the level of responsibility held and the skill and experience required.

What can be said is that salaries in the electronics industry have increased very considerably over the last few years and that they compare very favourably with other industries. As an example, in 1975 the average starting salary for a new graduate was around $£ 2,450$ p.a., in 1978 it was around $£ 4,850$ p.a., while this year it is of the order of $£ 6,800$ p.a. To give some idea of the progression which can be expected a good graduate with one or two years' experience could expect to earn between $£ 8,000$ p.a. and $£ 9,000$ p.a. and to be into five figures after four or five years' experience.

Although in various parts of this article technicians and engineers have been referred to as 'he' or 'men' this has been done for ease of writing only and certainly does not imply that there is no career for women in engineering. There have been and are many good female engineers. Indeed, electronics which is usually clean and physically light work can be an ideal profession for any girl who has a leaning towards mathematics and physics. In practically all companies they can, and do, compete with men on even terms.

Relevant institutions

Institution of Electrical Engineers, Savoy Place, London WC2R OBL.
Institution of Electronic and Radio Engineers, 99 Gower Street, London WC1E 6 AZ .
Institution of Electrical and Electronics Incorporated Engineers, 2 Savoy Hill, London WC2R OBS.
Society of Electronic and Radio Technicians, 57-61 Newington Causeway, London SE1 6BL.
Institute of Measurement and Control, 20 Peel Street, London W8.
Institute of Quality Assurance, 54 Princes Gate, London SW7.
British Computer Society, 13 Mansfield Street, London W1.

MNN

Appointments

Advertisements accepted up to 12 noon Tuesday, November 1st, for December issue subject to space available.

DISPLAYED APPOINTMENTS VACANT: $£ 17$ per single col. centimetre (min .3 cm). LINE advertisements (run on): $£ 3.50$ per line, minimum $£ 25$ (prepayable). BOX NUMBERS: $£ 5$ extra. (Replies should be addressed to the Box Number in the advertise ment, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS). PHONE: IAN FAUX, 01-661 3033 (DIRECT LINE)
Cheques and Postal Orders payable to BUSINESS PRESS INTERNATIONAL LTD. and crossed.

Electronic Engineers What you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $£ 5000-£ 15000$.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL PERSONNEL SERVICES, 12 Mount Ephraim, Tunbridge Wells, Kent. TN4 8 AS.

Tel: 089239388
(24 Hour Answering Servic

Please send me a TJB Appointments Registration form
Name
Address

BRISTOL AND WESTON HEALTH AUTHORITY BIO-ENGINEERING GROUP DEPARTMENT OF MEDICAL PHYSICS

SENIOR ELECTRONICS ENGINEER - SYSTEMS ENGINEERING UNIT

Applicaions are invited from those who combine both sound engineering abilities and scientific knowledge of the range of clinical applications of modern radiological equipment (e.g. Linear Accelerator. Gamma Camera, Ultrasound Scanners, CT Scanners and X ray equipment
This interesting post requires dynamic eadership of technical staff, drive to accomplish efficient equipment repair, and ability to engage in scientific equipmen developments requiring eng neering/scientific/computer expertise Minimum qualifications and expertence: Honours Degree in electromics or equivalent plus at least five years experience in computer orict 0 electronics. Salarm f11,649 per annum.
Informal enquiries may be made to Mr A. Garrett, Bristol 298627. Application form and job description avarament, 10 Martborough Street. Bristol BS 1 3NP Closing date: 2 nd November, 1983

LOGEX ELECTRONICS RECRUITMENT

pecialists in Fietd \& Customer Eng:
Logex House, Burleigh, Stroud Gloucestershire GL5 2PW 0453883264 \& 01-290 0267 (24 hours)

Appointments

F.W.O. Bauch Limited

Major suppliers of professional audio equipment to the recording and broadcasting industries have vacancies for the following positions:
A FIELD SERVICE ENGINEER in our Professional Audio Department and A SERVICE ENGINEER in our Revox Service Department.
Relevant electronic experience and an interest in sound recording would be an advantage.
Please apply in writing with full C.V. to Christine Melhuish Personnel Department

FW.O. Bauch Limited

49 Theobald Street Borehan II Wood Hertfordshre WD6 4RZ Telephone 01-9530091, Telex 27502

THE SERVICES SOUND AND VISION CORPORATION

BROADCAST ENGINEER

Required by the Broadcast Division of the Services Sound and Vision Corporation which provides broadcast radio and television services to the British Forces and their dependants abroad Candidates (preferably aged 22-35) should be educated to HND standard in electrical or electronic engineering and have work experience in the broadcasting industry
The work (mostly overseas) includes the installation, operation and maintenance of the full range of professional radio studio equipment and Medium Wave and VHF broadcast transmitters
A tax-free salary in the range of $£ 7,587$ to $£ 9,833$ is paid overseas, plus generous tax free overseas allowance and other fringe benefits. There are promotion prospects to higher grades, and opportunities for training and transfer to the Television Division
Please apply in writing to
Personnel Supervisor Mr E. G. Locke The Services Sound and Vision Corporation

Chalfont Grove, Gerrards Cross Bucks SL9 8TN

Appointments

Appointments

SATELLITE RECEPTION RESEARCH ASSISTANTS MONITORING SERVICE

Caversham Park

With the advent of satellite communications, broadcasting and newsagency organisations are switching from conventional means to satellites for their transmissions. Satellite Reception Research Assistants will be involved in the Monitoring Service's work in this field.
Duties include frequency scanning and the compilation of transmission schedules. Extensive experience in communications with C and G Intermediate Telecommunications Technicians Certificate or equivalent qualification are essential, as is a thorough grasp of satellite communications, knowledge of major broadcasting systems and familiarity with newsagency transmissions. Ability to recognise a wide range of languages an advantage.
Applicants will take written tests and appointment will be subject to satisfactory hearing tests. Shift work involved.
Salary $£ 7,492-£ 9,296$ plus 10% shift allowance.
Relocation expenses considered.
Write or telephone immediately for application form (enclosing addressed, foolscap envelope and quote ref. $3651 / \mathrm{WW}$) to Senior Personnel Officer, BBC Monitoring Service, Caversham Park, Reading, RG4 8TZ.
Tel. Reading (0734) 472742 Ext. 212.
We are an Equal Opportunities employer
BBG

COMMUNICATIONS POSITIONS TO MAKE YOU THINK A LITTLE FASTER

Below are a number of positions that will up the pulse and make the grey matter churn round a little faster
Telephone Paul Hecquet or write to him to discuss these and many other positions we have within our Communications Division.
Systems Engineer/Proposals - on site work c£12,000 South East
The job will be to carry out complete systems appraisals/evaluations, generate a proposal for predominantly civil/civilian duty VHF/UHF users. Ref: 2/135.
TV Design Engineers
£8 to £14,000
Wales
To work in the R \& D area of consumer colour TV. Ref: 12/19.
Cable TV Design Engineers $£ 9$ to $£ 16,000$
South East
Experience in television engineering, VHF/UHF techniques and/or Data Comms would be useful to this Cable TV systems provider. Ref: $3 / 260$.

Studio (TV) Management
 \& Technical Staff Salaries from around $\mathbf{£ 9 , 0 0 0}$

South East
For technical and engineer level people to around $£ 17,000$ for supervisory staff. You must have experience with a TV Broadcasting organisation though not necessarily UK based. Ref: 1/241.

The Electronics
 Recruitment Company

Temple House
25/26 High Street, Lewes
East Sussex BN7 2LU
Tel: Lewes (07916) 71271

Then change your job!

1) VideoTV Equipment

Field Service Engineers required with experience of analogue/digital/ computer based
equipment. f9-f 10,000 -Hants. equipment. $£ 9-£ 10,000$ - Hants.

2) Microprocessor-based Control

Systems

Commissioning/Servicing Engineers required To 88,590 - Sussex
3) Computer Peripherals

Service Engineers to repair complex PCBs for terminals, printers, disc drives, etc. C. $£ 8,000$
4) VIdeo/CC TV/Audio Equipment

Installation/Service Engineers needed with ex perience of audio/video systems. C. $£ 9,000$
Surrey.
5) Service Personnel
(RAF, RN, Army)
We have many clients interested in employing ex-service fitters and techniclans at sites
6) $£ 500$ per week

We are paying very high rates for contract design and test engineers who have a backOGUE or SOFTWARE at sites through
UK. Hundrads of other Electronic and Computer Vacancies to $£ 12,500$ Phone or wite: Roges Howard, C.Eng.,
CLYEDEN CONSULTANTS
87 St. Leonard's Road, Windsor, Berks. Windsor (07535) 58022 (5 lines)

CLIVEDEN

UNIVERSITY OF ABERDEEN
Department of Bio-Medical Physics and Bio-Engineering
ELECTRONICS OFFICER
Required for well-equipped Electronics Section (staff 15 total) of internationally known Department which undertakes maintenance of modern electronic equipment in hospitals and laboratories The Officer will be expected to guide technicians and help research in appropriate bio-medical applications o electronics. Additional experience de sired in one or more relevant areas of instrumentation e.g. vacuum, lasers, more important than high formal qualifi cations.

Salary within Grade 1A Scale for Other Related Staff, f7,190-£11,615 per annum, depending on qualifications and experience.
Further particulars and application forms from The Secretary, The Univer sity, Aberdeen with whom applications (2 copies) should be lodged by November 11, 1983
(2300)

[^6]
Sony Broadcast

Abstract

Well established as one of the world's leaders in professional broadcast video and audio equipment, we have a range of extremely high quality products which includes VTR's/VCR's, video cameras and editing control systems. The tremendous growth and success of the Company continues, and this has resulted in the creation of more career opportunities. Consequently applications are now invited for the following positions:

Manager, Cairo Office

We are seeking an engineer to manage part of cur Middle East territory. Located in Cairo, the successful applicant will be experienced in the Broadcast Television market or a related field and possess a high degree of management potential. Long term career prospects bothoverseas and in the UK headquarters areconsiderable.

Quality Assurance Supervisor

To be responsible for a team involved in the eva uation of product performance. Applicants should be aged 28-40, and possess several years' experience in the Broadcast Television industry. Previous supervisory experience would be advantageous.

Engineer-Systems Design

To join a specialist team engaged in the design and marketing of Broadcast Systems. The successtul applicant will ideally have had experience of Studio or Outside Broadcast Unit design, and should be able to appreciate customer requirements. Applications are also weicome from engineers with operational experience who now wish to utilise their skills in a demanding commercial environment.

Systems Project Engineers

To be responsibie for the manufacture and commissioning of complex static and mobile te evision systems. Candidates for this challenging and responsible position should have direct experience of sound and television principles gained in operationai television or its allied manufacturing industry.

Senior Engineer - Quality Assurance

To join a department responsible for the evaluation of product performance. Key activities will include conducting customer acceptance tests, the provision of engineering support to our inspectorate and an involvement in the establishment and maintena ce of ATE. There will be a significant involvement with customers and the ability to effectively maintain this interface is essential.

Service Engineer - Dubai

Located at our Dubai office, the successful candidate will be responsible for the service and reparr of our range of products. Experience of broadcast televisior cameras and professional VTR's is required Comprehensive product training will be provided at our UK Technical Training Centre

Field Service Engineer

To be engaged in the service and repair of a wide range of sophisticated equipment including VTR's/NCR's, videocameras and editing control systems. A high level of self motivation and initiative is required in order to successfully undertake customer visits throughout Europe, Africa and the Middle East

Sales Engineer - Dubai

To be based at our Dubai office. The successful candidate will be an experienced Broadcast engineer keen to move into, or to continue a career in sales. Full product training will be provided.

Senior Trainer-Practical Measurement and

 MaintenanceTo join our technical training team and be responsible for conducting and supervising practical measurements and alignment training sessions. Applicants should have extensive experience in practical maintenance and measurement techniques, and knowledge of microprocessors, logic analysers and signature analysis techniques is desirable.

Sales Engineer - UK

An engineer with experience in the Broadcast Television industry is required to join our UK sales team. Applicants should be aged 25-35, highly motivated and able to work on their own initiative. Previous sales experience would be advantageous, although this is not essential

Lecturer

To run theoretical and practical courses on our range of products. Applicants should have engineering experience in the broadcast industry and possess the ability to present ideas clearly Training on our product range and on lecturing skills will be given where appropriate.

We offer an excellent remuneration package with attractive salaries and first class conditions of employment. If you are interested please contact. Mike Jones, Senior Personnel Officer, Sony Broadcast Limited, City Wall House, Basing View, Basingstoke Hants RG21 2LA Telephone 025655011

Sony Broadcast Ltd.
City Wall House Basing View, Basingstoke Hampshire RG21 2LA United Kingdom

Appointments

Writing about ICL's new hardware is even more interesting than reading about it

As a man or woman with a detailed knowledge of computer hardware, you'll know something about the new techniques and technologies that are transforming $I C L$'s product line.

What you won't know is that your technical knowledge could see you into a new career as one of ICL's new generation of technical writers.

You'd write for an audience ranging from service engineers to experienced users. You'd produce a wide variety of documentation that's literate, accurate, easy to understand, and that creates a good image for ICL.

To handle such a task, you'll need to understand the hardware; decide what the engineer needs to know when it goes wrong; and then communicate your knowledge effectively.

For this, we'll offer you a starting salary of at least $£ 8000$, and a future in an area of our business that is going to be even more important in the years to come.

If you're as proud of your writing ability as your technical ability, contact Lynn Ritchie, ICL, Personnel Department, Lovelace Road, Brack:nell, Berks RG12 4SN. Telephone Bracknell 24842. Extension 2895.

COUNTY COUNCIL OF HEREFORD AND WORCESTER
HEREFORDSHIRE TECHNICAL COLLEGE Department of Engineering

Required by 1 st January 1984, or arlier if possible, a
LECTURER II in MICRO-ELECTRONICS and/or TELECOMMUNICATION
The person appointed will be required to teach on TEC Cerificate and City and Guilds courses, and to assist in the development of short courses
It would be an advantage for candidates to have recent industrial experience of micro-electronics and/or telecommunications, and a degree or equivalent qualification
Further particulars, and application forms, can be obtained from the Principal (Ref. PMR), Herefordshire Technical College, Folly Lane, Hereford HR1 1LS, to whom complated application forms should be returned as soon as possible.
(2311)

TECHNICAL AUTHORS

We have vacancies for experienced and trainee technical authors, to write handbooks on some of the latest technology electronics equipment
Prospective trainees should have a sound knowledge of electronics and the ability to express themselves concisely in the written word
We offer varied and interesting work, pleasant working conditions and an attractive salary

Applications to
Applications to
Engineering \& Technical
Publications Ltd
12 Shute End
Wokingham, Berks
Tel: Wokingham (0734) 790123

Electrical/ Electronic Test Engineers

Thorn EMI Automation is a world leader in the design and manufacture of a diverse range of equipment covering almost every aspect of industry's need for control We have several vacancies within our Test Department where you would find yourself working on a very interesting range of equipment involving thyrister controls, digital logic, microprocessors, etc , in close liaison with the Design Engineers Ideally you should have served an apprenticeship in the Electrical/Electronic industry and achieved ONC or HNC or equivalent qualifications. Persons qualified by experience will also be welcome to apply
Salaries for these positions will reflect experience and personal qualities and a comprehensive relocation package enabling the successful applicant to move into this pleasant well-serviced rural area where housing costs are low

Ring Rugeley 5151 for an application form or write including an up to date c.v. to Personnel Manager, Thorn EMI Automation Limited, P.O Box 4, Rugeley, Staffs.

ELECTRONICS TECHNICIAN

The Laboratory of CA Testing and Research at Gosfield in Essex requires an experienced Electronics Technician to construct and maintain analogue test equipment, and to assist in the provision of test facilities to be used over a wide range of activities.
The successful applicant will have:

- experience of analogue circuitry in one or more of the following areas:
maintenance and repair, design and construction of test equipment, faultfinding, installation and commissioning, test and measurement.
- an appropriate qualification such as City \& Guilds 272,222 or 224.
a high standard of practical ability.
Salary will be according to experience. If you feel that you match up to our requirements, please write for an application form to

The Personnel Officer CA Testing \& Research Harpenden Rise Laboratory Harpenden Rise Harpenden, Herts.

Transmitter Engineers

As the acknowledged leader in airborne radar systems our client is widely recognised for its technical excellence. A substantial increase in their workload through the acquisition of new contracts has resulted in the need to make two key appointments.

The work incorporates all aspects of transmitter design and will therefore involve working with high and medium power supplies (peak power being in the MW region) with a particular emphasis on the design of modulators for driving TWT's. One of the positions will also involve a considerable amount of analogue and digital control circuit design for the TWT's.

It is expected that the successful candidates will possess an electrical/electronic engineering degree with at least 5 years relevant post graduate experience.

In return the company offers a highly competitive salary and a generous benefits package including relocation assistance in certain cases.

In the first instance please write, listing any company to whom your application should not be sent, to The Manager, Le Tissier Executive Selection, Suite 323, Ely House, 37 Dover Street London W1X 3RB.

Northern Home Counties circa $£ 13 \mathrm{~K}$ Executive Selection

Our client, a very successful British company, is able to offer you the chance to lead the development of very advanced, high technology/high reliability power conditioning equipment for a wide range of military products. In particular, this will involve solving the problems of miniaturisation for advanced aero products, such as providing high voltage, switched-mode power supplies for on-board guidance systems.

You would be part of an expanding, well-funded department of power conditioning specialists dealing with diverse up-to-date technology including:

MULTI-OUTPUT FLYBACK CONVERTERS OFF.LINE CONVERTERS HIGH POWER FET's HIGH FREQUENCY MAGNETICS

which will allow you to broaden and deepen your specialist knowledge and benefit from the expertise of other team members.

You would have the opportunity to be involved in the managerial as well as the technical aspects of your project, thereby enabling you to develop your managerial skills. Working within this department that has high visibility in a
successful, rapidly developing company where vacancies at a senior level frequently arise as a result of expansion, your prospects for further promotion would be first-class.
To be capable of handling these important positions you will need a degree qualification or equivalent and be familiar with power supplies, transformer design, high power switching techniques and have knowledge of modern component technologies.
Our client is located in a pleasant, modern town with excellent amenities surrounded by the delightful Berkshire countryside, putting a wide range of attractive residential locations within your reach. In addition to a basic salary of up to $£ 13,000$ per annum, there is an attractive benefits package including generous relocation assistance where appropriate and an optional pension scheme.
TO FIND OUT MORE and to obtain an early interview, please telephone BERNARD INNES in complete confidence on HEMEL HEMPSTEAD (0442) 212655 during office hours or on (0442) 211814 evenings or weekends (not an answering machine). Alternatively write to him at the address below.

Executive Recruitment Services
the specialists in hecruitment for the eiéctronics. computing and detence industaies
29-33 Bridge Street, Hemel Hempstead, Herts., HP1 1EG

Appointments

We are offering you the challenge of working in the Future Business Division or the Systems and Software Division of a highly successful company involved in applying the very latest technology to the problems of very advanced equipment for inner space (the sea is as fascinating, strange and formidable as deep as outer space).

Being involved in future business activities you would enjoy considerable freedom and opportunities to exercise your persona initiative and innovate ability. You would be involved in all stages of a project from conception to customer liaison through to the later stages of design and development when you would turn your ideas into something real

These divisions exist to explore and exploit all aspects of underwater technology for commercial and defence systems including Acoustic Warfare, Intelligent Mines and Torpedoes, Sonar Arrays, Submersibles etc.

To find out more and to obtain an early interview, please telephone FRED JEFFRIES CEng MIERE in complete confidence on HEMEL HEMPSTEAD (0442) 212655 during office hours or on (0442) 49909 evenings and weekends (not an answering machine). Alternatively write to the address below.

This wide product range coupled with a bold policy concerning P.V. funded projects and CAD, computing and VLSI facilities means you can look forward to a varied, interesting and secure future with excellent promotional prospects.

To maintain and increase the exciting programme of expansion of their product range our client requires high calibre professional engineers who have a strong systems orientation, are innovative and have a degree in Electronics, Physics, Mathematics, Computer Science or Mechanical Engineering for:

Systems Engineers

Principal Engineers (Systems,
Software or Hardware)
Technical Managers
Project Managers
To attract the quality of candidates needed for these important roles, many of which demand a high level of innovative and technical ability, our client recognises that he must offer excellent rewards and conditions with starting salaries of up to $£ 17,500$ per annum. Executive Recruitment Services
the sfecianists in accauitment for the eicctronics. computing ano oefrince industaits
29-33 Bridge Street, Hemel Hempstead, Herts., HP1 1EG

R.F.Engineers

(all levels)
up to $£ 18,000$ pa

+ relocation
perm positions-Hampshire

Prove
 PHON $01-734276$ Up 10 8 pm Mon to Thurs

 Buticourt Recruitment Consultants21/22 Poland St
London W1V 30D

ELECTRONIC DESIGN ENGINEER

 SALARY NEGOTIABLEA leading manufacturer of Artificial Limbs and Aids for the Disabled require an Electronic
Engineer to work in its Research and Development Department
Applicants should have experience in low noise amplifier design such as in audio fre quency systems and some experience in with digital techniques and microcomputers essential. HND or degree preferred.
The applicant must be creative and selfmotivated with an ability to produce cost effective designs.

Apply in writing to Mr D. Hawkins, Hugh Steeper Led. $237-239$ Roehampton Lene London SW15 4LE. Tel: 01-7888165 ex 31
(2317)

TOWNLEY EMPORIUM

Bargains for callers ELECTRICAL, ELECTRONIC \& MECHANICAL COMPONENTS
Vast range of surplus test equipmen Diodes: Thyristors; Resistors: Terminals; Switches; Relays; Screws; Cs; Tools.
Harehill Street off Burnley Road
Todmorden, Llancs OL145 1 JY

Space \& Defence Systems
(2303)

Appointments

TEST ENGINEERS Canwe offeryou a careerwith a string attached?

With all your experience isn't it about time you settled for more than just a job? A career with Development attached

Because of increasing production demand aue to newly won contracts, Racal Defence Electronics (Radar) are able to offer Electronic Test Engineers unique opportunities in New Malden and Hersham

We manufacture a wide range of products aimed principally at the Defence Industry, including radar early warning and guidance systems, ECM and ESM systems. The test department is responsible for the test and diagnostic functions on a wide range of complex radar equipment using high quality manual and automatic systems.

Were looking for Engineers educated to at least TEC/HNC or appropriate C \& G passes, You'll be working on a variety of interesting equipment from PEC through to complete systems (DC to $40 \mathrm{GH}_{2}$)

Experience with analogue, digital and RF would be an advantage.

Test\&Calibration Engineers

 aving introduced an extended new product range, many of which are microprocessor based. Marconi Instruments has once again confirmed itself as Europe's leading manufacturer of sophisticated test and measurement systems. Our products are selling throughout the world and we are naturally developing further new and innovative designs.

Akey role in our organisation is that of our Luton based Service Division, where a group of Technicians satisfy a very wide range of customer needs in the repair and calibration of test equipment.

When you join our team you will quickly become individually responsible for work assignments involving many different kinds of propriety products.

prospects are excellent. The Division is part of a large company with its main Instrument Design/Manufacturing Base at St. Albans, a Microwave Plant at Stevenage and a further substantial Design Manufacturing Group at Donibristle in Scotland. The Company is proud of its policy of promoting men and women from within, as future Salesmen. Managers and Engineers.
 alaries. which are dependent upon experience and ability are excellent and regular overtime is normally a vailable. Progress for competent engineers arid technicians can be rapid. Relocation assistance is available in approved cases. Special consideration is given to 'ex-forces' personnel.

Whatever your level of experience we would like to hear from you. Cut out the coupon and send it to John Prodger. Recruitment Manager. Marconi Instruments Limited. FREEPOST.
St. Albans AL4 0BR. Tel: (0727) 59292.

Name
Age
Address
Tel. No.
Years Experience Present Salary:

$$
\begin{array}{llll}
£ 6.000 & £ 7.000 & £ 8.000 & \text { Over } \\
\stackrel{\Sigma 7.000}{ } & \boxed{£ 8.000} & \boxed{£ 9.000} & \overline{£ 9.000}
\end{array}
$$

Qualifications

Present Job

ELECTRONICS

ENGINEER

committed to Third World Development
to develop simple solar voltaic products and assist in establishing smain
turing units in Botswana. Practical experience of design and construction of electronic devices essential. 2 year contracts includance and tlights. Regret no fundi
pendants
pendants.
Write for details including short c.v. and s.a.e. 10: International Vol-
untary Service. EW2, 53 Regent Road Leicester

Why not work Overseas?
 Required for various parts of the World

Electronic Technicians

Well trained and experienced Technicians required for milifary and civilian Radio and Radar maintenance to component replacement level
Attractive salaries are paid, currently tax-free and conditions of
eriployment are good
Apply, giving outline of training and experience to
The Company Personnel Manager, Airwork Limited,
Bournemouth - Hurn Airport, Christchurch, Dorset BH23 6EB.

Telephone Salesperson

Required to foin small team telephoning existing
(2302) necessary, but knowledge of radio communications essential (than operato take advantage of basic + commission systert to earn a good wage Must be Commission
non-smoker

```
Please phone
```


Vanuatu

Principal Engineer

Up to $£ 18,540$ pa
Vanuatu is a developing island group in the Western Pacific, formerly known as the New Hebrides. Radio Vanuatu require a Principal Engineer, qualified to degree/HND level, with a good working knowledge of technical maintenance and repair within a small broadcasting operation. Duties will include staff management, duts rotas, dealing with technical prohlems and maintenance and purchasing. A salary of up to $£ 18,5+0$ pa is offered, which includes a tax-free supplement paid from British aid funds. Basic salary attracts a 25% gratuity, other henefits include free passages, paid leave, children's visit passagts and education allowances, appointment grant and supplement advance. There is no income tax at present in Vanuatu. Candidates should normally be under 58 years of age and citizens of the UK or Republic of Ireland.
For further details and application form ring Gina Cole on 01-222 7730 ext 3626 or write quoting reference YRIN/902/WW to:

Crown Agents

The Crown Agents for Oversea Governments $\mathbb{\&}$ Administrations Recruitment Division, + Millhank, London SW 1P 3JD.

ARTICLES FOR SALE

EX WD Radio equipment and test equipment. Over 500 sets in stock from 18 . Send 50 p for illustrated catalogue (incloding £1 voucher).
Weirmead Ltd. 129 St . Albans Road, Watford, Weirmead Lid. 129 St. Albans Road, Watford,
Herts. Tel: Watford (0923) 49456 . (1974) VALVES, PROJECTOR Lamps, 6000 types, list 75p, world wide export. Cox Radio (Sussex) Lid.
The Parade, East Wittering, Sussex. Phone (024 The Parade, East Wittering, Sussex. Phone (024
366) 2023 . 366) 2023.

SMALL BATCH PCB panel assembly to drawing or sample. Competitive rates, quick turnaround. Delta Enginering,
way, Coventry $(0203) 449391443895$. ${ }_{l}^{\text {(2227) }}$
ANALOGUE INTEGRATED CIRCUIT design on a single chip. Phone Four-D Limited on 0279-29246. (2159)

19' 3 U VERO RACKS with
4 Amp 10 V 1 Amp P.S.U Complete with 22 D/S Edge Conn backplane P.C.B., front and rear backplane P.C.B., front and rear panels. Ideal for housing compu ters and ancillary equipment.
PS.U. can be converted to give P.S.U. can be converted to
$+/-12$ volts at 3 amps. $\mathbf{f} \mathbf{3 5 . 0 0}$.

19' 3 U CASES for above unit
Vero case (blue)
£15.00
Schroff case (beige)
f12.50
All prices include VAT but exclude P / P
RUSHMOOR ELECTRONICS LTD.
43 Queens Road FARNBOROUGH
Hampshire GU14 6JP
Tel: Farnborough (0252) 515373

THE SCIENTIFIC WIRE COMPANY

ENAMELLED COPPER WIRE				
SWG	110	${ }_{802}$	402	202
8 to 34	$¢^{〔 3.63}$	f2.09	¢1 10	E038
35 to 39	¢3.82	£2.31	¢1.27	c0. 93
40 to 43	¢600	£3.20	¢225	¢161
44 to 47	${ }^{8} 8.67$	£5.80	¢3.49	$¢ 2.75$
48	£1596	¢9.58	¢6.38	¢3.69
14 to 30 SHL	SHIVER PLATEO COPPER WIRE$\mathfrak{£ 9 . 0 9 \quad £ 5 2 0 \quad £ 2 9 3}$			$¢ 1.97$
TINNED COPPER WIRE				
141030	¢3.97	£2.41	£1.39	f0.93
Fluxcore Solder	£5.90	¢3.25	£1.82	¢0.94
Prices include P \&P. and VAI. Orders under $£$? add 20 p S a.e. for list of copper and resistance wire Deales				
enquiries welcor			(9063)	

ENCAPSULATING EQUIPMENT FOR coils, transformers, components, degassing silicone rubber, resin, epoxy. Lost wax casting for brass, bronze, silver, etc. Impregnating coils, transformers, components. Vacuum equipment, low cost, used and new. Also for CRT regunning metallising. Research \& Development. Barratts, Mayo Road, Croydon CRD LAMPS AND CABLE. Large amount of lamps and cable for sale - all types and sizes, domesuc and industrial. Telephone MIRAGE LIGHTING on HITCHIN (0462) 733388 between 10am-7pm. BRIDGES, waveform transistor analysers. Calibrators, Standards. Millivoltmeters. Dynamomelers. KW meters. Oscilloscopes. Recorders. Signal generators - sweep, low distortion, true
RMS, audio, FM, deviation Tel 040376236 RMS, audio, FM, deviation Tel. 040376236
WAVEGUIDE, Flanges and Dishes. All standard sizes and alloys (new material only) from $01-228$ 7876, 22 Howie Street, London SWII 4AR.

RADIO AND TV SERVICING 1982-83 MODELS

by R. N. Wainwright Price $£ 23.50$

THE ART OF ELECTRONICS by Horowitz Hill Price $£ 16.00$ INTEGRATED ELECTRONICS by Millman-Halkias Price $£ 11.25$ PRINCIPLES OF INTERACTIVE COMPUTER GRAPHICS by William M. Newman Price $£ 12.50$ BASIC PRINCIPLES AND PRACTICE OF MICROPROCES. SORS by D. E. Heffer Price f6.50
VHF UHF MANUAL 4th Ed. by G. R. Jessop Price f10.00

INTERNATIONAL VIDEO YEARBOOK 1983/84 Price £26.00 DOMESTICE VIDEOCASSETTE RECORDERS by Steve Beeching Price £15.00
1983 THE RADIO AMATEUR'S HANDBOOK Price £10.00
TOWERS' INTERNATIONAL MOSPOWER AND OTHER FET SELECTOR by T. D. Towers Price £10.50

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST of British and American
19-21 PRAED STREET LONDON W2 1 NP

Phone 01-4029176
Closed Saturday 1 p.m. Please allow 14 days for eply or delivery

USED ELECTRONIC INSTRUMENTATION

B \＆K 2305 Level Recorder（Paper available
H－P 141 T SPECTRUM ANALYSER 8552B I．F．Section 8553B R．F．Section ．．．．．．．．．．．．．．．£15250 H－P 1332 A X－Y DISPLAY H－P $1335 A$ X－Y DISPLAY VARIABLE PERSISTENCE HAFSTROM COLD HOT OVEN $24^{\circ} \mathrm{W} \times 21^{\prime \prime} \mathrm{H} \times 18^{\circ} \mathrm{D}-50$ to $+300^{\circ} \mathrm{C}$ LEEDS \＆NORTHRUP SPEEDOMAX 2 PEN FLAT BED RECOR MARCONI TF． 1066 B I F．M SIGNAL GENERATOR $10-470 \mathrm{MHz}$ ． MARCONI TF ．995A 3／S AM FM SIGNAL GENERATOR 200kHz－2 MARCONI TF． 2600 SENSITIVE MILLIVOLTMETER DC－ 10 MHz PHILIPS 6556 STERFO GENERATOR TELEQUIPMENT D． 83 OSCILLOSCOPE DC－50MHz TELEQUIPMENT D． 75 PORTABLE OSCILLOSCOPE DC－50MHz
\section*{MARTIN ASSOCIATES}
＇PARTHIA HOUSE＇，BECKHAMPTON NR．MARLBOROUGH，WILTS TELEPHONE：AVEBURY（067 23） 219 E200

B\＆T ELECTRONICS

 13 TANNERS HIL DEPTFORD，LONDON，S．E． 8 TEL：01－692 14411，000s ELECTRONIC，ELECTRICAL MECHANICAL ITEMS
Xenon Tubes．Type XBLU 50／00 Eclatron $\mathbf{~} 2.50$ each．P\＆P 60p．Quantity discounts．P．O．A． Xenon Flashers．Complete panel with dual flash rate， $12-18$ volts DC，inc．Tube，Base，Fuse Holder， 10 metres connecting wire．Full instruc－ tions． 3 months guarantee．Complete package only $10+ \pm 1.80$ P\＆P．DiscDunts P．OA Enamelled Copper Wire．090，080，． 180 MM f 5 per 1 kg Reel $+£ 1.80$ P\＆P AVO 8 Movements．Mk 3 pius spares，plus damage
Measured Pressure Iransducers $£ 25$ each S．A．E LISTS
Meters Mcoil，de plastic，as used in Japanese and 10 Units，app．size 5.5 mmx 4.5 mm ．We have 200 micro amp fsd $£ 1.50$ each．P\＆P 60 p ．

LINSLEY HOOD DESIGNS

75Watt and 100W amps
Audio Signal Generators

p\＆p50p

A．E．for leaflets
TELERADIO ELECTRONICS 325 Fore Street，London N9 OPE

Watson Stereoscopic，Prismatic，Binocu－ lar microscope f125．Tektronix oscillo－ scope transducer plug－in £ 30 ，twin plug－ ins in power supply output unit to feed
alternative equipment $£ 89$ ．Time／mark／ alternative equipment $£ 89$ ．Time／mark／
calibrator generator $£ 85$ ．Transformer calibrator generator £85．Transforme
$2 \mathrm{KW}, 230 / 115 \mathrm{v}, 3$ outlets $£ 39$ Centrifuge f49．Heavy duty angled drill，carbide tipped cutter for wall chasing／conduit． etc，$£ 45$ ．Dexion guillotine $£ 15$ ．240／440 single to three－phase converter $£ 115$. Converter parts and accessories，Micro－ match transformer，precision im
pedance matching，£45．Avo Power Fac tor and Wattage unit（works with Univ Avo）， $1 \mathrm{~W}-50 \mathrm{KW}, 10 \mathrm{~mA}-100 \mathrm{~A}$ ，Power fac tor 0．1，single，two or three phase， f 49 Philips Compact Sweep Generator 100－220，£ 135 ．Avo Valve Characteristic Meter Mk IV，$£ 75$ ．Flash and insulation Tester $£ 55$ ．Philips Compact EHT Supply

040－376236
（2106）

24 COLUMN PRINTER ONLY
£69 EACH （inclusive）
nvertard 4 －inch 3 mounting， $9 V A C$ or $5 V D C$ power supply；stan－ dard centronics interface or serial data；extends only 40 mm behind panel．

For further details contact Bonwick Electronics 9 Doddington Road，Benwick Telephone：Benwick（035477） 471

INVERTERS

Algh－qually DE－AC；also＂ne break＂（2ms）static switch，19fn． rach．Auto Eharger．

COMPUTER POWER SYSTEMS
Interport Mains－Store Ltd．
P0B 51，London，W11 3 BZ
Tol：01－727 7042 or 0225310916

FILTERS

Custom built to your requiramts

We specialize in the design and
manufacture of filters in the $0-40 \mathrm{MHz}$ range（ 0.1000 MHz under development） with production geared to high speci－ fications and small quantities
Solent Electronic Services Ltd．
15 Abshot Close Titchfield Common
Fareham Hants PO14 4LZ
Tei 04895－82094 \quad（2326）
15 Abshot Close Titchfield Common
Fareham Hants PO14 4LZ
Tei．04895－82094 \quad（2326）
$£ 2.30$

TO MANUFACTURERS，WHOLESALERS

 BULK BUYERS，ETC． LARGE QUANTITIES OF RADIO．TV AND ELECTRONIC COMPONENTS FOR DISPOSALSEMICŌNDUC̄TORS，all types，INTEGRATED CIRCUITS，TRANSISTORS，
DIODES，RECTIFIERS，THYRISTORS，etc．RESISTORS，C／F，M／F，W／W，etc． CAPACITORS，SILVER MICA，POLYSTYRENE，C280，C296，DISC CERA－ MICS，PLATE CERAMICS，etc．
ELECTROLYTIC CONDENSERS，SPEAKERS，CONNECTING WIRE CABLES，SCREENED WIRE，SCREWS，NUTS，CHOKES，TRANSFOR－ MERS，etc
ALL AT KNOCKOUT PRICES－Come and pay us a visit ALADDIN＇S CAVE TELEPHONE： 445 0749／445 2713
BROADFIELOS \＆MAYCO DISPOSALS
21 Lodge Lane，North Finchley，London，N． 12

SERVICES

CIRCOLEC

THE COMPLETE ELECTRONIC SERVICE
Artwork，Circuit Design，PCB Assembly，Test \＆Repair Service，O．A Consultancy，Prototypes，Final Assembly．Full PCB Flow Soldering Service．
Quality workmanship by professionals at economic prices．
Please telephone 01－646 5686 for advice or further details，
TAMWORTH MANOR
302－310 COMMONSIDE EAST，MITCHAM
（1391）

山іlliョாワร
 P．C．B．Artworks FAST TURNROUND

and master artwork
wLLLAMS ARTWORX
GRAYS LANE，MORETON－IN－MARSH，GLOS． Telephone 0388832152 －to 9 p．m．

EPROM PROGRAMMING From list and／or existing EPROM for most 5 v N．MOS types．Charge $£ 2.50+12$ pence per 32 words manually entered．Erasing and EPROMS also available． Bandley Chipware 28 Boroughgate Appleby Cumbria CA16 6AG Tol： 093051027

PCBS \＆PANEL LABELS to your require－ ments．Design－Prototypes－Production．G．
N ．Slee Cusrom Products， 78 Dery Grove， N．Slee Custom Products， 78 Derry Grove，
Thurnscoe，Rotherham，Yorks SG3 0TP．Tele Thurnscoe，Rotherham，Yorks SG3 0TP．Tele－
phone（0709） 89525.
（1892） LESIGN AND DEVELOPMENT．ANAL－ OGUE，DIGITAL，RF AND MICROWAVE
CIRCUIT AND SYSTEM DESIGN．Also PCB design，mechanical design and prototype／small design，mechanical design and prototype／small Longshot Estate，Bracknell，Berks．＇Tel Bracknell（0344） 52023 ．

TURN YOUR SURPLUS Capacitors，tran istors，etc，into cash．Contact COLES－HAR DING \＆Co．， 103 South Brink，Wisbech，Cambs come the opportunity to quote for complete fac ory clearance
DESIGN SERVICES．Electronic design de－ velopment and production service available fo
digital and analogue instruments．RF Transmit digital and analogue instruments．RF I ransmit ters and recevers，telemetery and conino Wolsey Road，Ashford，Middlesex．Phone Mr Falkner 53661．

DESIGN AND CONSULTANCY of micropro－ cessor，digital and analogue equipment．Complete service from feasibility and design to prototype and commissioning．Advice on test and design of dedicated test equipment or ATE．DPM Electronics， 24 Timbermans View，Basildon
Fssex．Tel． 0268558831.

BOX NOs．

Box number replies should be addressed to Box No．
c／o Wireless World Quadrant House
The Quadrant
Sutton，Surrey，SM2 5AS

FOR THE BEST PCB SERVICE AVAILABLE

Circult Deaign ${ }^{6}$ Dov

igital and Analogue
\star Artwork Layout
Work of the highes
draughtsmen．No minimum charge
－Board Manufacture
Eonrd Manufacture
Prototype to semi－production．excellent rates
24－hour prototype service from filmwork
24－hour prototype service from filmwork．
\＆Wiring \＆Aavembly
PCB assembly，wiring
PCB assembly
qualified staff．
＊Teast
Full test
Full test facilities available
One or all services avail－
able，no order too small．
abie，no order too small．
Please teledenone Chelms－
ford ford（0245） 357935 ，or write
to HCR Electronics，The in

MENDASCOPE LTD
Repair and recalibrate
oscilloscopes
All makes－all models MENDASCOPE LTD
Otter House，Weston Underwood Olney MK46 5JS
Tel：Bedford（0234） 712445

SMALL BATCH PCBs，produced from your art work．also DIALS，PANELS，LABELS．Camera tails：Winston Promotions， 9 Hatton Place，London ECIN 8RU．Tel．01－405 $4127 / 0960$.

BUSINESS OPPORTUNITIES

READY MADE

RADIO COMMUNICATIONS COMPANY
With demonstration stock．Home Offic operating and for trading licences．Fully supported by sister company already company to be operated in Souther England．

Replies to W／W Box No． 2325

SOUTH EAST LONDON EXISTING ELECTRONICS WORKSHOP／OFFICES

4,000 sq．ft．
Rent：$: 5,9000$ per annum
IMMEDIATE OCCUPATION
Contact：Roger Smit
$01-4936193$ 01－4936193

WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap, and quantity. Prompt service and cash. Member of A.R.R.A.

M \& B RADIO 86 Bishopsgate Street Leeds LS1 4BB 053235649

SURPLUS

Top prices paid for surplus, redundant and obsolete test equipment, factories cleared.
Immediate settlement. We will call any where in the United Kingdom.

TIMEBASE
94 Altriston Gardens
Sholling, Southampton S02 efU
Talephone: (0703) 431323

ANTIQUE RECEIVING VALVES
Unused and boxed In large quantity

Tsutom Yoshihara C1-105, Deguchi-cho 34 Suita-shi, Osaka 564 Suita-sh
JAPAN

YOUR CLASSIFIEDS TO

IAN FAUX ON 01-661 3033

Printed Circuit Boards to your specification from artwork through to finished board.
68.3080

QUICK DELIVERY COMPETITIVE PRICES

F प्रणपषप

ELETBQ!ige -

35 Grosvenor Road

Twickenham. Middlesex
TEL 01.891 1923/1513 Telex 295093

BATCH PRODUCTION wiring and assembly to sample or drawings. McDeane Electricals Lid, 195. Tel: $01-9928976$ Ealing Common, Londo

FREE PROTOTYPE of the finest quality with EVERY P.C.B. artwork designed by us. Competitive hourly rates, and high standard of work Halstead Designs Limited. Tel: Halstead (0787) 477408.

TW ELECTRONICS LTD

THE PCB ASSEMBLERS

More and more companies are investigating the advantages of using a professional subcontractor. Such an undertak ing requires certain assurances
TW are able to satisfy all of them quality, competitive pricing, firm delivey and close co-operation with the customer.
Assembled boards at 100% inspected before flow soldering and reinspected after automatic cropping and cleaning. Every batch of completed boards is is sued with a signed certificate of confor mity and quality - our final assurance For further details, contact us at our new works:

Blenheim Industrial Park Bury St. Edmunds Suffolk IP33 3UT
Tolephone: 02843931 (1466)

PCB/ELECTRONIC ASSEMBLY

- Circuit Design \& Development - Prototyping
* Pre-production Consultancy * Full Production Capability * Component Sourcing \& Stocking \star Complete Test Facilities

CLASSIFIED ADVERTISEMENTS Use this Form for your Sales and Wants

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

To "Wireless World" Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate f3.50 PER LINE. Average six words per line. Minimum f 25 (prepayable)
- Name and address to be included in charge if used in advertisement
- Box No. Allow two words plus £5
- Cheques, etc., payable to ""IPC Business Press Ltd." and cross "\& Co."

NAME

ADDRESS

\star All system components by well known manufacturers * CPM available

The following configurations are available:
A - PCC 2000 with dual floppy disc drives $\&$ CENTRONICS Model 730 matrix printer:
B - PCC 2000 System as A with add ition of PERTEC Series 3000 hard disc drive (5mbyte removable +5 mbyte fixed);
C - PCC 2000 System as B but with NEC Spinwriter in place of CENTRONICS 730
D - PCC 2000 System as C but with 20 mbyte hard disc drive;

Appointments Vacant Advertisements appear on pages 107-119

Advertising Standards Authority, the............ 90	
Aero Electronics (AEL) Ltd ...	
A.H. Supplies	5
Ambit International	49
Armon Electronics Ltd	2
Aspen Electronics Ltd	6
Audio Electronics	
Bamber, B. Electronics 102	
Black Star Lid	16
Breadboard '83	13
Broadfields \& Mayco Disposals	88
Cambridge Kits	82
Cambridge Systems Technolog	97
Caracal Power Products Ltd	17
Colomor Electronics Ltd	50
Computer Appreciation.	120
Computer Village Ltd	84
Control Universal Ltd.	6
Cricklewood Electronics Ltd	93
Crimson Elektrik Stoke	21
Crotech Instruments Lid	
Danavox (Gt. Britain) Ltd \qquad Display Electronics Ltd \qquad 101	
Easibind .. 79	
Electronic Brokers Lid3, 5, 7, 9	
Electronic Equipment Co 82	
Electrovalve Ltd 14	
EMS Manufacturing Ltd 84	
Essex Electronics Centre	88

OVERSEAS ADVERTISEMENT AGENTS

France \& Belgium: Norbert Hellin, 50 Rue de Chemin Veat
F-9100, Boulogne, Paris
Hungary: Ms Edit, Bajusz, Hungexpo Advertising Agency Budapest XIV, Varos liget
Telephone: 225008 - Telex: Budapest 22-4525
INTFOIRE

[^7]PAGE
PAGE
Farnell Instruments Ltd Fieldtech Heathrow Ltd Flight Electronics Ltd Foundations of Wireless. Future Film Development
Fylde Electronic Laboratories Ltd
Cover i
Global Speciaities Corp
GP Industrial Electronics Ltd
Greenweld Ltd
Griftronic Emission Ltd
Hameg Lid.
Harris Electronics (London)50
Harrison Bros El 20
Harrison Electronic Kits LtdHW International 8
ILP Electronics Ltd
ILP Electronics Ltd 12, 85
Integrex Ltd16
. .2
Irvine Business Systems Ltd
Klippon Electronics Lid.
Langrex Supplies LtdLevell Electronics89
Light Soldering Development 92
Michael Cox Electronics Midwich Computer Co Ltd
Monolith Electronics Co Ltd 88 13
Northern Computer Show 80
Olson Electronics Ltd 8
91
Opus Supplies 22,91
Orion Scientific Products.
Orion Scientific Products. 16 16

Pantechnic
4, 79 PM Components Ltd
87 Practical Wireless .90 P\&R Computer Shop

Japan: Mr Inatsuki, Traae Media - IBPA (Japan), B. 212.
Azauu Heights, 1 1-5-10 Roppongi, Minato-ku, Tokyo 106. Telephone: (03) 5850581

United States of America: Ray Barnes, Business Press Inter national Ltd, 205 East 42nd Street, New York, NY 10017 elephone (212) 867-2080-Telex: 238327.
Jack Farley Jnr., The Farley Co., Suite 1584, 35 East Walker Drive, Chicago, Illionois 60601 - Telephone (312) 63074. Victor A. Jauch, Elmatex International, P.O. Box 34607 , Los Angeles, Calif. 90034, USA - Telephone (213) 821-8581
Telex: 18-1059

[^8]

MOURGUPQPTER

 Lमst \& MHFADRHMHNT The instrument industry's annual event aE the Wembley Conference Centire November 15, 16 \& 171983 measurement embraces the full range of instrumentation for applications from r \&d and design through production
(including a.t.e.) to fie.d test and maintenance
Environmental test \& measurement monitors the performance of products under stress, including high and low temperature, humidity, vibration, fatigue, impact shock etc.
In both areas, TEST 83 is comprehensive and highly specialist.
TH:IH CONLPRPMCH There will be three sessions: ATE wilr be chaired by R.A.Harris, Technical Director of ATE Systems Ltd. GPIB will be chaired by Brian T. de Lane of WKR Ltd Calibration will be chaired by C.H.Dix, Consultant
료걱-to all visitors a cuppa to cheer your visit
And to speed your joumey in comfort and convenience, a courtesy coach links Wembley Park

Station with the Conference Centre

$1=7:$ is sponsored by the

Test \& Measurement Association.
To pre-register as a VIP visitor or delegate, just ring 08224671 or write to Trident International Exhibitions Ltd, 21 Plymouth Road, TAVISTOCK, Devon PL19 8AU, England. Telex 45412 Tritav

[^0]: *Projects editor

[^1]: * Depending on which type of switches are used, outputs 1 to 9 only on the first counter in each chain need be selectable. A separate toggle switch - $\$ W_{9}$ provides the continuous on/off selection).

[^2]: Dr Barker is in the department of computer science, Teesside Polytechnic

[^3]: *Breitbandig integriertes Glasfaser-FernmeldeOrtsnetz

[^4]: *Also subscription agents

[^5]: *At the time of writing the functions of CEI are being taken over by the Government sponsored Engineering Council but this will not affect the details given.

[^6]: HAMMERSMITH AND FULHAM HEALTH AUTHORITY CHARING CROSS HOSPITAL
 ELECTRONICS TECHNICIAN
 For the Regional Audiology calibration and repair service
 A technician is required to assist in providing a service to improve audiology (hearing testing) throughout the Region.
 Throughout the Region.
 The work includes routine calibration and re-
 pair of equipment in audiology centres in the Region. It also involves assisting in the equipment advisory service and in some development work in the Audiology Department at Charing Cross Hospital.
 The service is based in its laboratory in the Department of Medical Physics at Charing Cross Hospital under the supervision of the Audiological scientist and applicants should have an interest in audio-engineering.
 The work involves travel throughout the Region
 and a technician using private transport would and a technician using private transport would accordance with DHSS regulations.
 The post is Medical Physics Technician Grade The post is Medical Physics Technician Grade
 IV with a salary scale of $£ 5,171-£ 6,798+£ 997$ London Weighting Allowance.
 Further details and an application form are available from Miss Lynnette Moffatt District Personnel Department, Brandenburgh House, Fulham Palace Rd W6. 7482040 ext 2992.

[^7]: Haly: Sig C. Epis, Etas-Kompass, S.p.a. - Servizio Estero Via Mantegna 6, 20154 Milan
 Telephone: 347051 - Telex: 37342 Kompass.

[^8]: Printed in Great Britain by QB Ltd, Sheepen Place, Colchester, for the proprietors, Business Press International Lid, Quadrant House, The Quadrant, Sutton, Surrey SMz 5AS C) Business Press International Ltd 1983. Wireless World can be obtained abroad from the following: AUSTRALIA and NEW ZEALAND: Gordon \& Gotch Ltd. INDIA: A. H. Wheeler UNITED STATES: Eastern News Distribution Inc., 14th Floor, 111 Eighth Avenue, New York, NY 10011 TH AFRICA: Central News Agency Lid; William Dawson \& Son (SA) Lid.

