

Directional power meter TMM10

leads by a head

For colour brochure contact:

FARNELL INSTRLMENTS LIMITEC WETHERBY LS 22 4DH TELEPHONE (09き7) 61961 TELEX 557294 FARIST G

- Single detector head covers wide frequency and power band
- 25 MHz to 1 GHz - 20 mW to 100 W and VSWR from 1 to 3
- Head can be used 1.5 m from meter (e.g.inside closed car boot)
- Fully portable-works from internal battery or vehicle battery
- Mains adaptor/charger and rechargeable battery available
- Manufactured, tested and inspected to Min. Def. Std. 0524.

New concepts of system modelling such as 'data marshalling' and 'thinking fatigue' are linked to hyperautism - this month's cover depicts the 'shell' condition - in R E. Young's perceptive analysis.

NEXT MONTH

Low-frequency stereo imaging is improved using simple delay technique.

Professor MaCausland finds persistant inconsistencies in Einstein's Special Theory of Relativity
Ray Macario shows a need for monitoring the accuracy of world time standards.

Complementing his description of a 6809-based Forth computer, Brian Woodroffe starts to describe the Forth language.

Flow diagrams enable a program for ladder network insertion loss and delay equalization for a $\mathrm{ZX81}$ to be modified for other computers

[^0]WireFOR EVERYTHING IN ELECTRONICS eassworld

21 TECHNOLOGY AND PEOPLE

22 COMMUNICATIONS COMMENTARY

Meteor scatter Polarixation motuation Batteries
22

MENTAL HANDICAP AND ELECTRONICS

by H. E. Young

RTTY ON A NASCOM

by 1. H. Wade

COMMON-MODE REJECTION EXPLAINED

by B. L. Mart

39
 CURRENT DUMPING REVIEW-1
 by M. McLoughin
 AUTOMATIC LOUDNESS COMPENSATION
 Microphone samples s.jul.

45 ASSEMBLY LaNGUAGE PROGRAMMING

50
 LETTERS TO THE EDITOR

Rechargeable h.t. battery Recording teletex More Heretics
PROCESS CONTROL BY PERSONAL COMPUTER
by E. Bertra of al.

NEWS OF THE MONTH

Merviman reporis Cable Io hids Teletext bu cabie

TYPEWRITER PRINTER

by N. Dufty

FORTH COMPUTER DISC DRIVES

by B. Woournife

COMPLEMENTARY CURRENT MIRROR

by I. M. Filanousky

CIRCUIT IDEAS

Acoustic limer 555 markspace compot RF noth iller
general purpose microcomputer Board
Iv M. Shragal

NEW PRODUCTS

INDEX TO ADVERTISERS

FREOUENGY COUNTERS
 HIGH PERFORMANCE HIGH RELIABILITY
 LOW COST
 The brand new Meteor series of 8-digit Frequency Counters offer the lowest cost professional performance available anywhere

* Measuring typically $2 \mathrm{~Hz}-1.2 \mathrm{GHz}$ * Low Pass Filter
* Sensitivity $<50 \mathrm{mV}$ at 1 GHz
* Battery or Mains
* Setability 0.5ppm
* Factory Calibrated
* High Accuracy
* 1-Year Guarantee
* 3 Gate Times * $0.5^{\prime \prime}$ easy to read L.E.D. Display

PRICES (Inc. adaptor/charger, P \& P and VAT)

METEOR $100 \quad(100 \mathrm{MHz}) £ 104.07$
Illustrated colour brochure
with technical specification
PD Designed and manufactured

Black*Star

 A Crown Street, St.lves Huntingdon, Cambs, PE17 4EB, England. Tel: (0480) 62440 Telex: 32339WW - 056 FOR FURTHER DETAILS

P.\&R. COMPUTER SHOP

IBM GOLFBALL PRINTERS from £70 EACH + V.A.T.

INTERFACE FOR IBM GOLFBALL $£ 40$ + V.A.T
*BRAND-NEW LA36 DEC WRITERS-SALE $£ 200$ EACH + V.A.T CENTRONIC 779 PRINTERS - $£ 325+$ V.A.T. CENTRONIC 781 PRINTER-£350 + V.A.T. POWER UNITS, 5 -VOLT 6-AMP-£20 EACH FANS, PCBs, KEYBOARDS AND LOTS MORE 8 -INCH IBM FLOPPY DISC DRIVES.

COME AND LOOK AROUND
SALCOTT MILL, GOLDHANGER ROAD HEYBRIDGE, MALDON, ESSEX PHONE MALDON (0621) 57440

FUSES, WIREWOUND RESISTORS
 British-made by Beswick, Osborne

Stock items available at 30\% extra discount Also Carbon film resistors (Asian) stock items
available at 50% extra discount Send or phone for stock lists

Our regular lines always available:
Audible Warning Devices \{single sample price including vat and postage shown in brackets)
Banshees (£23), Cybertones \{£11), Solotones (£4), Bleeptones (£7), Minib leeps ($£ 8$), Multimounts ($£ 3.50$)
Markers Sleeves - pvc, silicone rubber, neoprene, etc., printed or plain Elma range of Collet knobs, dials, etc
Crimp terminals. R.f. Chokes (Greendale)
Pcb self-adhesive guides, 18.5 mm wide x any length
Write, call or phone (0732) 851345
NOVAPRODUCTS (APB Ltd)
Cryslalate Works, Golden Green, Tonbridge, Kenl TN11 OLH Member Crystalate Group

TRANSDUCER and RECORDER AMPLIFIERS and SYSTEMS

reliable high performance \＆ practical controls． individually powered modules－ mains or dc option single cases and up to 17 modules in standard $19^{\prime \prime}$ crates small size－low weight－realistic prices．

49／51 Fylde Road Preston PR1 2×0

Fylde Electronic Laboratories Limited．

WW－ 018 FOR FURTHER DETAILS

The European name of Aerosol Excellence．Special cleaners for all electrical contacts and switches．

Kontakt 60

Dissolves oxides and sulphides， Dissolves oxides and sulphides， of metal abrasion．Protects against erosion．Ensures perfect contacts．

Kontakt 61

Special cleaning，lubricating and anti－corrosion fluid for NEW（non oxydised）and specially sensitive contacts．An excelient elericant mechanical systems．

Spray Wash WL
A rapid cleaner for reliable wash ing and degreasing of electrical equipment and components．For removal of dirt，grease，oil，solder
ing residues and other impurities．

ALSO AVAILABLE：

A COMPLETE RANGE OF INDUSTRIAL AEROSOL SPRAYS
SK10 Soldering Lacquer，K75 Cold Spray，K70 Plastic Spray，K88 Oil Spray，K701 Vaseline Spray，K90 Video Spray，K33 Graphite Spray，K100 Antistatic Spray， circuits．

Details from：

Special Products Distributors Ltd．

[^1]WW－ 028 FOR FURTHER DETAILS

ANALYSERS

Dranatz
606－3 Line Disturbance Monitor $\mathbf{£ 2 5 0 0 . 0 0}$ Hewlatt Packard
1615 A 001 Logic Analyser．．．．．．． $\mathbf{\Sigma 4 7 5 0 . 0 0}$ 5004A Signature Analyser .2550 .00 8407A8412A Network Analyser $\mathbf{E 1 8 0 0 . 0 0}$ Marconi
TF2303 Mod Meter
£460．00
Taktronix
AA501 opt 01 ．Distortion $10 \mathrm{~Hz}-100 \mathrm{KHz}$
 DF1 Display Formatter For 7001 E850．00 308 Portable 8 Channel 20 MHz Data Analyser 491 Spectrum Analyser $10 \mathrm{MHz}-40 \mathrm{GHz}$ 492 （opt 01，08）Spectrum Analyser
$50 \mathrm{KHz}-21 \mathrm{GHz}$ 50 KHz －21GHz ，3）Programmable Version
492P lopt 01，2，
of 492 7L5 Spectrum Analyser with opt 25 ［Tracking Gen）and L 3 （ 50Ω input） 20 Hz － 5 MHz L12 Spectrum Analyser $100 \mathrm{KHz}=1.8 \mathrm{GHz}$ 713 Spectrum Analyser 1 KHz ． 88000.00 714 Spectrum Analyser 10 KHz 7500.00 ．．．550．00 7L18 Spectrum Analyser $1.5 \mathrm{GHz-60GHz}$ TRSO2 Tracking Generator（for 7L12．13 G 14］ 1 1503 Tracking Generator［for $492 / 496$ series） $492 / 496$
ع3250．00 100 KHz c2350．00 フOÓ1 16 Channel 100 MHz Sample Rate 7002／01 Logic Analyser ．．．．．．．．． $\mathbf{\Sigma 3 8 5 0 . 0 0}$

OSCILLOSCOPES

Hewlett Packard
13324 High Quality CRT Display $9.6 \times 11.9 \mathrm{~cm}$
1809 A 100 MHz 4 Charnel Phug 18214 Timebase Pling－．．．．．．．£2000．00 … $£ 1000.00$ Philips
M3232 Dual Beam 10MHz ．．．．．．．£485．00 Tektronix．
305 Portable battery scope／DMM，D
3 MHz ． 335 Trace 35 MHz Smal portable w．00 delay T＇Base 465100 MHz Portable ．．．．．．．．．．．．£1，550．00 200C Trolley for 400 Series ．．．．．．．\＆120．00 7313100 MHz Storage Mainframe
7603 i 00 MHz Mainframe ．．．．．．．E1850．00 544050 MHz Maintrame ．．．．．．．．． 1000.00 544150 MHz Variable Persistance Storage 7704A Scope DC－200MHz Mainframe． 7613 Storsge Scope Mainfrarn 834 Storage Scope Mainframe DC－400MHz． E3250．00
 $E 7750.00$ $8 \mathrm{C}-400 \mathrm{MHz}$ 7904 opt 02 ， 03500 MHz ．．．．．E5350．00

TEKTRONIX TM500

SERIES

We stock a very wide range of these vereatile modular equipments

TEKTRONIX PLUG INS

Wo atock ecomplato rengo of Plug ins For use with
Ma inframes．

TEKTRONIX TV TEST

 ECUIPMENT
E4000．00

 141 ásig Gen1485R Waveform Monitor 651 HR PAL Monitor 655HR 1 Monitor
77 PAL Monito Monitor

MISCELLANEOUS

Bruel C Kjaar
209 Sound Level Meter
£850．00 Datalabs
DL901 Transient Recorder ．．．．．．．．．． 6750.00 DL905 Transient Recorder ．．．．．．．．．．£985．00 Fluke
515A Portable Calibrator ．．．．．．．．．£1750．00
883 AC／DC Differential ．．．．．．．．．．．．．．． 8815.00
845 AB Null Detactor ．．．．．．．．．．．．．．．． $\mathbf{8 8 1 0 . 0 0}$ 931日 Diff V＇Meter ．．．．．．．．．．．．．．． $\mathbf{\Sigma 1 , 0 0 0 . 0 0}$ 3010A Logictester．Self Contained． 00 Portable．Full Spec．on Request ．$£ 8500.00$ 8921A DMM ．．．．．．．．．．．．．．．．．．．．．．．．．．．．8895．00
Hewlett Packard．
32008 Oscillato
415E VSWR Meter 114 Puise Gen．．．
35564 Psophometer
435 A Power Meter．
 5300B／5306A DMM／Counter \＆1，500．00 5340 Counter $10 \mathrm{~Hz}-18 \mathrm{GHz}$ Q Digit 8013 B Pulse Generator 6750.00 80138 Pulse Generator ．．．．．．．．．． 8750.00 830ARSNA Sweeper Syste．E9，500．00 48154 Vector Impedence Meter 53850.00 11720 A Putse Modulator ．．．．．．．． $\mathbf{\Sigma 1 8 5 0 . 0 0}$ Marconi
TF1313A LCR Bridge ．．．．．．．．．．．．．．．．．． $\mathbf{5 7 5} .00$ TF2120 Waveform Gen ．．．．．．．．．．．．．8850．00 TF2603 RF Millivoltrneter ．．．．．．．．．． $\mathbf{£ 7 5 0 . 0 0}$ TF23008 Mod Meter ．．．．．．．．．．．．．．．． 1500.00 TF2015／2＋TF2171 AM／FMSigGen Racel
93014 RF Milivoltmeter ．．．．．．．．．．．．．\＆495．00 Tektronix
106 Square Wave Generator 1 nS risetime $1 \mathrm{OHz}-1 \mathrm{MHz}$ without accessories $£ 178.00$ 832 Data Comms．Tester．．．．．．．．E825．00 233 Data Comms．Testar．．．．．．．．．1350．00 steps．OC to 2 GHz ．．．．．．．．．．．．．．．．．．e2g5．00 steps．Time tork Generator．．．．．．．．．$£ 185.00$

See us at TESTMEX＇83
Stand 86
Grosvenor House
Sept $13-15$

Please note：Prices shown do not include VAT or carriage．
Electronic Brokers Ltd．，61／65 Kings Cross Road， LondonWC1X 9LN．Tel：01－2783461．Telex 298694 $1-\sqrt{1}$

 1

Be an a Winner! A.R.R.A.

presents the

AMATEUR RADIO AND ELECTRONICS EXHIBITION

BIGGER AND BETTER THAN EVER . . .

 on
6th, 7th \& 8th OCTOBER, 1983

at
THE EXHIBITION CENTRE
DONCASTER RACECOURSE
(LEGER WAY)
MAGNIFICENT EXHIBITION HALL
EXCELLENT CATERING AND BARS
FREE CAR PARKING

ADMISSION: $£ 1.50$
CAPs \& CHILDREN $£ 1$
PARTIES OF 15 AND OVER:
£1.25 (inc. postage)
Contact:
FRED HOPEWELL (G4PGC) 48 GLADSTONE STREET LOUGHBOROUGH
LEICESTERSHIRE LE11 iNS

THE ODDS ARE 100-1 YOU WILL ENJOY THE SHOW!

TUNE INTO THE WEATHER ．．

USING OUR COMPLETE＇METEOSAT＇WEATHER SATELLITE RECEPTION SYSTEM

We supply the complete system from antenna to video monitor，at the lowest price ever imagined for such a comprehensive system．View the entire olobe on your video screen，or select any enlarged portion of the earth，for example Europe，as seen by the satellite from 20,000 miles above the earth．Both visible light pictures and infra－red pictures can be selected，the latter giving useful temperature information

Our complete system consists of the following items：－
1．ANTENNA： $\mathbf{1 . 1}$ metre diameter parabolic dish with feed，supplied in kit form to reduce costs and make transportation easier
2．ANTENNA PREAMPLIFIER：Gasfet low－noise preamplifier to be jolted on to the antenna，to overcome feeder losses and provide maximum sensitivity．
3． 1690 MHz CONVERTER：Frequency converter from 1690 MHz to 137.5 MHz to allow a conventional receiver to be utilised．
4． 137 MHz RECEIVER：The FM receiver，which demodulates the rezeived encoded signal．Orbiting satellites on the $136-138 \mathrm{MHz}$ band $\mathrm{c} \varepsilon \mathrm{n}$ also วe received using this receiver
5．OIGITAL FRAME STORE：The audio signal from the receiver is stored n a large Dynamic RAM memory，which then drives the monitor to rovide a continuous display
6．VIDEO MONITOR：A high quality black－and－white monitor，with 25 MHz bandwidth，ideal for displaying this type of image with excellent definition．
The above items are all that are necessary to obtain first－class pictures from Meteosat．ALL FOR $£ 1,295+$ VAT．
Individual items from the above system are also available
Write or phone for further details
MICROWAVE MODULES
BROOKFIELD DRIVE，AINTREE，LIVERPOOL L9 7AN，ENGLAND Telephone：051－523 4011 Telex： 628608 MICRO G

WW－ 050 FOR FURTHER DETAILS

WW－ 019 FOR FURTHER DETAILS

DEGSAL

a selection from our huge stocks．All items reconditioned unless otherwise stated．

SPECIAL PURCHÁSE OF PDP11／34A PROCESSORS

11／34A CPU
MS11JP 64KB MOS Memory DL11W Console Interface KY11LB Programmers Panel， M9312 Bootstrap
BA11L 5 1／4＂Chassis
ONLY £2，500
DEC LSI PROCE8SORS
11／03LXKD11HACPU，
KEV1 1 EIS／FIS，BDV11AA Terminator／Bootstrap BA11N $51 / 4$ Chassis with Backplane and Power Supply No memory included．
NEW £1200
11／O3N KD11QCPU
KEV11 EIS／FIS，BDV11AA Terminator／Bootstrap．BA11R 5 $1 / 4^{\prime \prime}$ Chassis with Backplane and Power Supply，MSV11DD 32KW MOS
NEW $£ 1495$

DEC MAG TAPE

TE16Slave
¢4，500
TE16 Master with TMO？
ᄃ5，750
TE16 Master with TMO3
E6，250
TS11 Inc．Unibus Ctl
NEW E6，250
TU77 Master with TMO3
NEW E14，500
All above include DEC Cabinet

DEC MUX AND COMMS
DH1 1 AC Multiplexor £1，500 DH1 1 AD Multiplexor $£ 2,750$ DH11AEMultiplexor $£ 2,400$ DM11DA Line Adaptor $\mathbf{5} 525$ DMC11ALI／PLink $\Sigma 975$ DMC1 1 AR Network Link $£ 995$ DMC11DAEIA Link $£ 675$ DMC1 1 MD Int．Modem Link $£ 925$
DZ11BMultiplexor $\Sigma 995$
DZ11D Multiplexor $\Sigma 995$

DEC DISK DRIVES

RKO7ED 28MB £2，500 RKO7PD 28MB £2，500 RLO1A5MB £995 RMO2AD 67MB NEW

E6，250
RMO3AD 67MB NEW
E6，250
RM05AD 256MB NEW £14，750
RM80 124MB $£ \mathbf{£ 5} 500$ RX11BD Dual Floppy $£ 995$
RX211BD Dual Floppy
£1，725
DECSCOPE TERMINALS
VT50AB20mA
VT50－AF EIA
VT52－AB20mA
VT52－AF EIA
VT55－EB20mA
$\varepsilon 199$

VT55－EFEIA £495
$E 225$

T55－FB＋Copier 20 mA

VT55－FF＋Copier，EIA | E750 |
| :--- |
| 750 |

3800
－DBCHASEO2

TEKTRONX

GRAPHIES EPUPMENT
EX－DEMONSTRATION STOCK IN ORIGNAL MANUFAGTURER＇S PACKACING，HJCESAVINGS ON NEW PRICES ONLY SLIGHTLY USED－COVERED BY FULL WARRANTY

HIGH RESOLUTION BIG 8CREEN

GRAPHICS DISPLAY TERMINALS

4014－1，4015－1 and 4016－1
1 19in．Screen providing 4096X by 3120 Y displayable points or 8512 alphanumerics（models 4014 and 4015］．25in．Screen providing 4096X by 3120 Y displayable points or 15，000 alphanumerics［model 4016］ APL Character Set［model 4015］． Plot－10 compatible．Prices include Enhanced Graphics Option．Extra Memory Option and Programmable Keyboard Option
4014－1 £6，950．4015－1 £7，250． 4016－1 £8，950．
Other Tektronix graphics equipment currently available includes 4006－1． 4010－1，4027，4051，4952，
606／606A／606B and 611

TEONEX ELECTRONIC VALVES AND SEMICONDUCTORS

SERVING THE WORLD FOR 30 YEARS

We specialise in the supply of Industrial Valves of British, European and USA manufacture, and semiconductors from the Philips Group
Many types, including obsolete and obsolescent types, always availcble from stock.

Telephone: (01) 7273421 Telex: 262256 Answerback TOSPLY G

WW - 009 FOR FURTHER DETAILS

[isulumber
 Quick, neat and easy!

|
It's so easy and tidy with the Easibind binder to file your copies away. Each binder is designed to hold six issues and is attractively bound and blocked with the WIRELESS WORLD logo.
Price U.K. £4.30 including postage, packing and V.A.T.
Overseas orders add 35p per binder
Nat. Giro No. 5157552.
Please allow $3 / 4$ weeks for fulfilment of order.
Payment by ACCESS/BARCLAYCARD/ VISA. Send coupon below detailing credit card no. and signature.
Why not place your order now? Send the completed coupon below with remittance payable to

Order Form WIRELESS WORLD
I enclose P.O/cheque value
for
. binders Years required
BLOCK LETTERS PLEASE
Name.
Address

9in. MONITOR in
with into. EXS.
Matching ASE II coded QUERTY KEYBOARD with Numeric Keypad and 27 function keys. EZS each
PZP 55 THEPIR E.

$$
\begin{aligned}
& \text { tio zach. } \\
& \text { With matchit }
\end{aligned}
$$

With matching ASC 11 coded Qucaty kerboan with Numeric Xeypad and 24 fuction keys boan deep $\times 10 \mathrm{hin}$ high. E5 ench.
FLOPPY DISK DRIVE Bin. by Front load with info. fiz2 each KKTRONIX SIORAGE DISPA
 ETEC 20in. biack and white monitor. Video in E50. TV COSSOR VDU type CDO3000, 12 in green screen, 660 REED 75 TEEEPRINTER. Very good condition, E2

1 TKK

TORODTAS

The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to I.L.P., PRICE.
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.
*Gold service available.
21 days manufacture for urgent deliveries.
*Orders despatched within 7 days of receipt for single or small quantity orders.
*5 year no quibble guarantee.

TYPE	$\begin{gathered} \text { SERIES } \\ \text { No } \end{gathered}$	SECONDARY Vohs	RMS Current	price
$N E W!$		$N E N!$		$E N!$
15 VA	0×010	6+6	1.25	
$62 \times 34 \mathrm{~mm}$	0×011	$9+9$	0.83	
0.35 kg	0x012	$12+12$	0.63	95,12
Regulation	0x013	$15+15$	0.50	20.12
19\%	0×014	$18+18$	0.42	+p\& p 0.78
	0×015	$22+22$	0.34	+ VATE0.89
	0×016	$25+25$	0.30	TOTALE6 79
	0×017	$30+30$	0.25	
(encased in ABS plastic)				

30 Va	1×010	6+6	2.50	25.49
$70 \times 30 \mathrm{~mm}$	1×011	$9+9$	1.66	
0.45 kg	1×012	$12+12$	125	
$\begin{aligned} & \text { Regulation } \\ & 18 \% \end{aligned}$	1×013	$15+15$	1.00	+p\&p¢1.10
	1×014	$18+18$	0.83	+ Vateo.99
	1×015	$22+22$	0.68	TOTALE7.58
	1×016	$25+25$	0.60	
	1×017	$30+30$	050	
$\begin{gathered} 50 \mathrm{VA} \\ 80 \times 35 \mathrm{~mm} \\ 0.9 \mathrm{Kg} \\ \text { Regulation } \\ 13 \% \end{gathered}$	2×010	6+6	4.16	
	2x011	9+9	2.77	
	2×012	$12+12$	2.08	£6.13 +p\&0£135 + VATE1. 12 TOTAL $£ 860$
	2×013	$15+15$	1.66	
	2×014	18+18	1.38	
	2×015	$22+22$	113	
	2×016	$25+25$	1.00	
	2×017	$30+30$	083	
	2×028	110	0.45	
	2×029	220	0.22	
	2×030	240	0.20	
$\begin{gathered} 80 \mathrm{VA} \\ 90 \times 30 \mathrm{~mm} \\ 1 \mathrm{Kg} \\ \text { Regulation } \\ 12 \% \end{gathered}$	3×010	$6+6$	664	
	3×011	$9+9$	4.44	$£ 6.66$ $+p \& p E 1.72$ + VAT§1.26 TOTAL £9 64
	3×012	$12+12$	3.33	
	3×013	$15+15$	2.66	
	3×014	$18+18$	2.22	
	3×015	$22+22$	1.81	
	3×016	$25+25$	160	
	3x017	$30+30$	1.33	
	3×028	110	0.72	
	3x029	220	0.36	
	3×030	240	033	

160 VA	5×011	$9+9$	8.89	
$110 \times 40 \mathrm{~mm}$	5×012	12+12	666	
1.8 kg	5×013	$15+15$	5.33	
$\begin{aligned} & \text { Regulation } \\ & 8 \% \end{aligned}$	5×014	18+18	4.44	8843
	5×015	22+22	3.63	28.43
	5×016	$25+25$	3.20	+psp§1.72
	5×017	$30+30$	2.66	+ VATE1.52
	5×018	$35+35$	228	TOTAL§ 11.67
	5×026	$40+40$	200	
	5×028	110	1.45	
	5×029	220	0.72	
	5×030	240	0.66	
$\begin{gathered} \mathbf{2 2 5} \mathrm{VA} \\ 110 \times 45 \mathrm{~mm} \\ 2.2 \mathrm{Kg} \\ \text { Regulation } \\ 7 \% \end{gathered}$	6×012	$12+12$	9.38	
	6×013	$15+15$	7.50	
	6×014	$18+18$	6.25	
	6×015	$22+22$	5.11	9981
	Ex016	$25+25$	4.50	
	6×017	$30+30$	3.75	+p\&pe2.05
	6×018	$35+35$	3.21	+ VATE178
	6×026	$40+40$	2.81	TOTALE13.64
	6×025	$45+45$	2.50	
	6×033	$50+50$	2.25	
	6×028	110	2.04	
	6x029	220	1.02	
	6×030	240	0.93	

ALSO AVAILABLE
Sizes up to and including 5 KVA are manufactured to order.

The benefits of ILP toroidal transformers
LLP toroidal transtormers are only half the weight and height of their lamnated
For mail order please make your crossed cheques or postal orders payable to ILP Electronics Ltd. Barclaycard/Access equivalents, and are available with 110 V 220 V or 240 V primaries coded as follows welcome. Trade orders standard terms.

For 110 V primary insert " O " in place of " X in type number
For 220V primary (Europe) insert " 1 " in place of $" X$ "in type number
For 240 V primary (UK) insert " 2 " in place of " X " in type number
Also available at Electrovalue, Maplin, Technomatic and Barrie Electronics.

RECHARGEABLE BATTERIES

PRIVate \& trade enouiries welcome
Full range available to replace 1.5 volt dry cells and 9 volt PP type batteries, SAE for lists and prices. £1.45 for booklet, "Nickel Cadmium Power," plus catalogue.
\star COMPLETE RANGE OF CHARGERS
SANDWELL PLANT LTD.
2 Union Drive, Boldmere
Sutton Coldfield, West Midlands, 021-354 9764 After hours: LICHFIELD 57977
Now open Saturday morning 9.30 to 12.30

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for $10-14$ days delivery. Other Ranges and special scales can be made to order.
Full Information from:
HARRIS ELECTRONICS (London)
138 GRAY'S INN ROAD. W C. 1
WW - 022 FOR FURTHER DETAILS

A slot in the handle is the key to simple lead stowage, but that's only one aspect of our breakthrough. This series, designed and built in Britain, also features top entry leads with right angled fittings, moulded channels to contain spare prods and clips; easy-to-read analogue scales; simple range selection, a separate battery and fuse compartment and a handy tilt stand. The specification is equally outstanding.

The AVO 1001, for instance, offers voltage testing to 1 kV (a.c. and d.c.), current up to 1A d.c. and resistance up to $2 \mathrm{M} \Omega$.

See your usual distributor for further information and a demonstration.
Chances are you'll want to drop it into your toolbag right away. Which is fine, we've designed them for precisely that. breakthrough
in design.
AVO1000 Series of analogue testers featurea

6 ft . dia. dishes, feed horns and electronics for use in 4 GHz satellite reception. GaAs Fet transistors, SMA connectors, P.T.F.E., etc. available. Please send s.a.e. for full details and data sheets.

Farrison Bros. Electronic Distributors

22 Milton Road, Westcliff-on-Sea, Essex SS0 7JX Tel. Southend (0702) 332338

WW - 010 FOR FURTHER DETAILS

WW - 035 FOR FURTHER DETAILS

GET B
 powni

Most pre-arno modules can be driven by the PSU driving the man power amp.
A separate PSU 30 is avariable ourely for pre amp modules it siquired for
$\mathrm{E5.47}$ (inc. VATI. Pte-amp and mixing modules in 18 different variations.
Please send for deta
Mounting Boards
For ease of construction we recommend the 86 for modules HY6-HY 13 £1 05
hinc. VATl and the 866 for modules HY66-HY78 £1. 29 linc. VAT)
POWER SUPPLY UNITS (Incorporaling our own toroidal transtormers)

$\begin{gathered} \text { Model } \\ \text { Number } \end{gathered}$	For Use With	Price inc VAT	Model Number	For Use With	Prica inc. VAT	Model Number	For Use With	Price ine. VAT
PSU 21x	1 or 2 HY30	£19.93	PSU 52 x	$2 \times \mathrm{HY} 124$	¢17.07	PSU $72 \times$	$2 \times \mathrm{HY} 248$	[22.5\%
PSU 41x	1 or 2 HY60. $1 \times$ HY6060. $1 \times \mathrm{HY} 124$	£13.83	PSU 5.3x	$2 \times \mathrm{MOS} 128$	E17.86	PSU 73x	$1 \times$ HY364	122.54
PSU 42x	$1 \times$ HY128	¢15.90	PSU 54x	$1 \times \mathrm{HY} 248$	£17.86	PSU 74x	$1 \times+4 \times 368$	124.20
PSU 43x	$1 \times \mathrm{MOS} 128$	f 16.70	PSU 55x	$1 \times \operatorname{MOS248}$	${ }_{¢} 19.52$	FSU 75x	$2 \times \mathrm{MOS248}$ + MOS368	1224.25
PSu $51 \times$	$2 \times$ HY $128.1 \times$ HY244	¢17.07	PSU 71 x	$2 \times$ HY244	£21.75			

[^2]

Protection. Able to cope with complex toads withoul the need for very special
Slew rate: $20 \mathrm{~N} / \mu \mathrm{s}$. Rise nime $3 \mu \mathrm{~s}$. S / N ratio 100 dit

'NEW to ILP' In Car Entrtainments
C15
Mono Power Booster Amplilier to increase the outout ol your existing car radio
Mono Power booster Amplut her to increase
or cassette player to a nominal 15 watis rms.
Very easy to use.
Robust construction
$£ 9.14$ (inc. VAT)
Mounts any where in ca
Autornatic switch on.
Outbut Dower maximum 22 w peak into 4Ω
Frequency response $(-30 B) 15 \mathrm{~Hz}$ to 30 KHz , T.H.D. 0.1% at 10 w 1 KHz
S/N rato (DIN AUDIOI 80 dB , Load Impedance 3Ω
nput Sensitivity and im. (relectable) 700 mV rms inio $15 \mathrm{~K} \Omega 3 \mathrm{~V}$ rms into 8Ω
$C 1515$
Sterpo
$£ 17.19$ (inc. VAT)
Size $95 \times 40 \times 80$. We,ght 410 gms
(10

$\xrightarrow{3}$

MTHALOT OF MELP mom 으를 ELEOTRONICS LTD

PROFISSIONAL HIFII THAT EVERY ENTHUSSIAST CAN HANDIL...

 UnicaseOver the years ILP has been aware of the need for a complete packaging system for it's products, it has now developed a unique system which meets all the requirements for ease of assembly, adaptability, ruggedness, modern styling and above all price.
Each Unicase kit contains all the hardware required down to the last nut and bolt to build a complete unit without the need for any special tools.
Because of ILP's modular approach, "open plan" construction is used and final assembly of the unit parts forms a compact aesthetic unit. By this method construction can be achieved in under two hours with little experience of electronic wiring and mechanical assembly.

Hi Fi Separates

UC1 PRE AMP UNIT: Incorporates the HY78 to provide a "no frills". Iow distortion, ($<0.01 \%$), stereo control unit, providing inputs for magnetic cartridge, tuner, and tape/ monitor facilities. This unit provides the heart of the hi fi system and can be used in conjunction with any of the UP Unicase series of power amps. For ultimate hum rejection the UC1 draws its power from the power amp unit.
POWER AMPS: The UP series feature a clean line front panel incorporating on/off switch and concealed indicator. They are designed to compliment the style of the UC1 pre-amp. Performance for each unit which includes the appropriate power supply, is as specified on the facing page

Power Slaves

Our power slaves, which have numerous uses i.e instrument, discotheque, sound reinforcement, feature in addition to the hi fi series, front panel input jack, level control, and a carrying handle. Providing the smallest, lowest cost, slave on the market in this format.

UNICASES					
HIFI Separates					Price inc. VAT
UCl	Preamp				£29.95
LPIX	$30+30 \mathrm{~W} / 4-8 \Omega$	Brpolar	Stereor	H,F	£54.95
UP2X	$60 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	$\mathrm{H}_{1} \mathrm{~F}_{1}$	¢54.95
UP3X	$60 \mathrm{~W} / 8 \Omega$	Bipolar	Mono	H.F	£54.95
UP4X	$120 \mathrm{~W} / \mathrm{A} \Omega$	Bipolar	Mono	HiF	¢74.95
UP5 \times	120W/8 1	Bipolal	Mana	H, F/	f 74.95
UP6X	60W/4-8	MOS	Mano	H.F	$\mathrm{f64.95}$
UP7X	120W/4-8	MOS	Mano	HiF	£84.95
Power Slaves Siat ris					
USIX	$60 \mathrm{~W} 4 \Omega$	Bipolar	Power	Slave	「59.95
US2 X	120W/4 Ω	Bipular	Power	Slave	$\underline{179.95}$
US3 X	$60 \mathrm{~W} / 4-8 \Omega$	MOS	Power	Stave	$¢ 69.96$
US4 X	120W/4-8	MOS	Power	Slave	¢89.95

[^3]

TO ORDER USING OUR FREEPOST FACILITY
Fill in the coupon as shown, or write details on a separate sheet of paper, quoting the name and date of this journal. By sending your order to our address as shown at the bottom of the page Opposite, with FREEPOST clearly shown on the envelope, you need not stamp it. We pay postage for you. Cheques and money orders must be crossed and made payable to I.L.P. Electronics L td if sending cash, it must be by registered post. To pay C.O.D please add $£ 1$ to TOTAL value of order.

PAYMENT MAY BE MADE BY ACCESS OR BARCLAYCARD IF REQUIRED

HF COMMUNICATIONS RECEIVERS

POINT TO POINT/TRANSPORTABLE

AND
MaRIIIE SYSTEMS

DESIGHED AND MANUFFLCTURED TO HIGHEST IHTERMATIONAL SPECS

Fully Synthesised
10 Hz or 100 Hz steps Continuously Tuned 50 KHz to 30 MHz Modes LSB/USB/CW/AM/FSK Stability $\quad \pm 1$ part in $10^{7 / 0} \mathrm{C}$ Tuning Keypad/Spin/Decade Power Supplies $110 \mathrm{~V} / 240 \mathrm{~V}$ AC and 24 V DC

WE ANNOUNCE NEW MODELS

(a) SR 520 To meet new C.E.P.T. Spec for Ships Main Receiver
(b) SR 522 with Preselector for Point to Point/Transportable.
(c) SR 530 As (a) above but MICROPROCESSOR/KEYPAD controlled 200 channel memory, Scanning.
(d) SR 532 As (c) above but for Point to Point/Transportable

OPTIONS. Full Remote Control by VHF Radio or Telephone Line, Dual Diversity, FSK Demodulator and 600 ohm Line Amplifiers.

SEND FOR TECHNICAL BROCHURES TO:
VIGILANT COMMUNICATIONS LTD, UNIT 5, PONTIAC WORKS, FERNBANK ROAD, ASCOT, BERKS, ENGLAND
TELEPHONE: (0344) 885656
TELEX: 849769 VIGCOM G

WW - 052 FOR FURTHER DETAILS

						Hay Lane, Braintree, Essex CM7 Telephone: Telex: 24-Hour Ans	$\begin{array}{r} 376132 \\ \text { phone } \\ \text { phe } \end{array}$	7117 7911 Service	
	$\begin{aligned} & \text { R.F. } \\ & \mathrm{Ma} \end{aligned}$	POWER TR ny other type	$\begin{aligned} & \text { ISIST } \\ & \text { avalla } \end{aligned}$			Nationai,	NEW rian,	ALVES ullard, R	T_{\ldots}
2N3375	5.85	SD 1005	6.48	MRF 221	12.05	E8OCC	15.00	6AU6A	2.30
2N3553	1.50	SD 1006	1.80	MRF 231	9.36	E8OF	13.30	6AU5GA	4.25
2N3733	3.20	SD 1012FL	7.50	MRF 234	13.80	Eb8cc	4.50	6aw8a	2.85
2N3866	1.00	SD 1013	7.50	MRF 237	2.75	E180F	8.00	688	3.10
2N3926	9.85	SD 1088	23.00	MRF 238	12.60	EC91	8.65	6Baba	3.40
2N3927	11.02	SD 1089	25.64	MRF 239	1500	ECC81	1.19	6BH6	2.55
2N4416	0.75	SD 1098	32.82	MRF 240	18.55	ECC82	1.19	6E67A	$3: 45$
2N4427	1.00	SD 1127	2.60	MRF 243	28.08	ECC83	1.19	6BR8A	3.50
2N4440	6.50	SD 1135	8.42	MRF 245	30.10	ECC88	2.30	6B26	2.50
2N5016	6.72	SD 1136	11.80	MRF 247	34.00	ECC91	3.75	6CB6A	2.30
2N5090	16.80	SD 1143	8.50	MRF 260	5.00	ECH8 1	2.50	6CD6GA	4.65
2N5109	2.01	SD 1219	11.40	MRF 261	7.00	EF86	1.35	6CL6	3.40
2N5179	0.86	SD 1229FL	7.80	MAF 262	10.40	EL34	2.68	6CW4	6.85
2N5485	0.62	SD 1272	10.20	MRF 264	11.00	EL84	1.00	6DK6	2.65
2N5486	0.66	SD 1272FL	10.20	MRF 314	25.06	KT77	6.80	6005	5.50
2N5589	4.70	SD 1407	22.50	MRF 401	10.84	PC92	4.00	6D06B	4.00
2N5590	6.85	SD 1410	19.68	MRF 406	11.83	PCF802	1.60	6EAB	2.50
2N5591	8.90	SD 1412	27.18	MRF 421	31.57	PCL805	1.00	6GK6	2.46
2N5635	5.20	SD 1416	30.00	MRF 422	35.52	PL509	4.75	6 J 4	4.20
2N5636	9.70	SD 1418	26.22	MRF 449A	14.00	PL519	4.75	6 J 5	4.30
2N5637	11.25	SD 1428	23.00	MRF 450A	11.40	PY500A	2.98	6J6A	4.90
2N5641	5.35	SD 1429	13.98	MAF 453	13.30	OOVO2-6		6Jb6a	4.05
2N5642	7.90	SD 1444	3.00	MPF 454A	16.80	/6939	15.75	6JS6C	5.00
2N5643	13.00	SD 1488	26.25	MAF 455	13.80	QQvo3-10		6K6GT	2.75
2N5913	2.10	2SC730	3.84	MRF 460	15.78	16360	9.50	6KD6	5.60
2N5944	6.90	2SC1165	5.88	MRF 464	31.57	- CVOS-20A		6L06	6.00
2N5945	8.95	2SC1177	16.14	MAF 472	2.50	/6252	63.00	65N7GTB	2.75
2N5946	11.40	2SC1306	1.44	MRF 475	2.40	QQVO6-40A		6080	11.00
2N6080	5.10	2SC1307	2.34	MRF 476	1.71	15894	45.00	6146A	7.70
2N6081	6.75	2SC1678	1.44	MRF 477	10.70	Qvo3-12		6146 B	7.70
2N6082	8.45	2SC1946A	18.54	MRF 515	2.70	15763	5.80	6159B	18.00
2N6083	8.75	2SC 1947	9.24	MRF 604	1.60	UCL 82	1.60	6201	6.30
2N6084	11.70	2SC1970	2.76	MRF 607	2.20	2D21	2.85	6360	6.00
2N6094	5.00	2SC1971	7.50	MRF 629	4.10	3 B 28	14.95	6550A	670
2N6095	6.90	2SC1972	10.32	MAF 646	26.24	$4 \mathrm{C} \times 250 \mathrm{~B}$	37.10	6888	9.80
2N6096	8.40	2SC2237	15.00	MRF 648	35.14	4CX350a	69.50	6689	12.24
2N6097	13.30	2SC2538	1.62	MRF 901	2.58	5 U 4 GB	2.50	6883日	7.70
						5670	3.40	6973	3.85
Normally stock items are shipped by return post. We can supply nearly ANY TYPE OF VALVE or RF POWER TRANSISTORI- ring for quotation.						5726	2.40	7360	9.50
						5763	4.05	7551	5.90
						5814 A 5842	3.50 11.20	${ }_{75914}$	9.50 380
TERMS:	Cash, Postal Order or Cheque with order					5965	3.25	7868	3.95
						6AH6	4.75	811 A	14.75
CREDIT:	Accounts available subject to approved references					6AK5	3.55	812A	18.55
	Add 60 p to order					6 AK6	2.00	813A	60.00
postage:						6 AN5	4.40	866A	15.00
	Al phices are exduding VAT, prease add 15\% to order					6ANBA	3.20	872A	15.65
VAT:						6AO5A	2.15	8298A	4.90
GUARANTEE:	All goods brand new and to specification					6AS6	5.10	8417	5.80
						6ASTG	6.45	931A	18.20
						6AT6	1.35	$12 \mathrm{AY7}$	3.75
						6AU5GT	4.50	12BY7A	2.60

WW - 041 FOR FURTHER DETAILS

WRONG TIME?

MSF CLOCK is ALWAYS CORRECT - never gains or loses, SELF SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds, auto GMT/BST and leap year, parallel BCD (including Weekday) output for alarm etc and audio to record and show time on playback, receives Rugby 60 KHz atomic time signals only $15 \times 5 \times 8 \mathrm{~cm}$, built-in antenna, 1000 Km range, GET the RIGHT TIME $f 7270$
60KHZ RUGBY RECEIVER, as in MSF Clock, serial data output for computer, decoding details and Basic list ings, £ 24.20 .
Audio Oscillator, $10 \mathrm{~Hz}-200 \mathrm{KHz}$, sine, square, $£ 21.60$.
Each fun-to-build kit (ready made to order) includes all parts, printed circuit, case, instructions, by-return postage etc, money back assurance, so GET yours NOW

CAMBRIDGE KITS
45 (WW) Old School Lane, Milton, Cambridge. Tel 860150

Bird Electronic

THRULINE®
 Wattmeters TERMALINE® ${ }^{\text {B }}$ loads

and accessories from stock Aspen Electronics Limited The exclusive
UK representative for Bird Electronic 2/3 Kildare Close, Eastcote Ruislip, Middlesex HA4 9UR Telephone: 01-868 1188 Telex: 8812727

（e8

Esser tiny Eesiocystem
The Essex Tiny Basic Computer is an ideal
choice for data accuuisino nand process
systems its systems Its crystal contronled process control
rupts provide accura to crifical events．white thing and fast responter－ entered reliable operation watchdog time and then and tested trom．Programs caner Instant DO copied into EPR RS232 termina？ instant ROM modules may development and tor may be used both duris

© Esser Opto－／solatern
Connects to the Essex Tiny BASIC Syslem bus
to provide an additional 12 opto－isolated
and 12 opto connection to exted outputs per cated insuts vollage $=1500$ volts．

Essex Electronics Centre
Wivenhoe Park．Colchester．Essex CO4 3SQ Telephone：Colchester（0206） 865089

WW－ 013 FOR FURTHER DETAILS

If you can buy it cheaper we'll refund the difference*
 This month's offer is another winner - a consignment of
 It's a safe to put a cheque in the post today. Eecause, if

$14^{\prime \prime}$ R.G.B. colour monitors manufactured by J.V.C. - at prices never seen before in the U.K. Suitable for use with BBC Micro, Lynx, Oric, Apple II, Apple III and IBM, etc.

RGB MEDIUM RES $£ 199$

Resolution, 370×235 Pixels.
Display, 80 charactersx 25 lines. Slot Pitch .63 mm . Input, Video - RGB Analogue with TTL input. SYNC - Separate SYNC on RGB. Features, On/Off switch with pilot light. Brightness control.
Power 220/240V 50/60HZ.

RGB HIGH RES £299

Resolution, 580×235 Pixels.
Display, 80 characters $\times 25$ lines. Slot pitch .41 mm Input, Video - RGB Analogue with TTL input SYNC - Separate SYNC on RGB.
Features, On/Off switch with pilot light.
Brightness control. Power, $220 / 240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$.
IBM COMPATIBLE £349
Specifications as above with IBM interface.

VIEW DATA TERMINALS PRESTEL. Built-in modem Slimline design

Green characters/black background 24 lines x 40 characters

NASHUA FLOPPY DISCS
 Minis
 S/S S/D
 S/SD/D
 D/S D/D
 S/S 80 Track f 24.95 for 10
 D/S 80 Track $£ 26.95$ for 10
 $8^{\prime \prime}$ Discs
 S/S S/D
 £17.95 for 10
 E 23.95 for 10
 £24.95 for 10

With full 5 year warranty. All mini discs have hub rings and a FREE plastic library case.

$12^{\prime \prime}$ GREEN SCREEN MONITOR

One year warranty, ex stock delivery, 18 MHz , Phono connector. Limited quantity only $£ 69.95$
Lead to connect to BBC
$£ 5.95$
you find someone who's cheaper, we'll refund the difference.

8' ${ }^{\prime \prime}$ DISC DRIVES SHUGART COMPATIBLE

FD514 S/S Dual density. Formatted 600 K Byte only $£ 149.00$
FD650 D/S Dual density. Formatted 1.2M Byte only $£ 199.50$
Certec 90 -day warranty.
Case to hold 2 drives - complete with power supply and fan only $£ 99.95$

TEAC DISC DRIVES

TEAC 55F D/S 80-TRACK DRIVE

* Single drive in case complete with all leads
only $£ 249.95$
(Gives single density 400 K , double density 800 K)
* Dual drive in case with own P.S.V. and all leads only $£ 499.95$
(Gives single density 800 K , Double density 1.6 M b)
* Uncased drive
£229.00
Ribbon leads: single $£ 12$; dual $£ 15$
Power leads: single $£ 5$; dual $£ 6$
DUAL CASE WITH PSU \& BLANKING PLATE $£ 39.95$

JAPANESE DISC DRIVES
 TEAC 55A/CANON MDD 6106

S/S 40-TRACK FROM $£ 129.95$
Formatted single density 100 K Double density 200K
Case to hold single drive $\mathbf{£ 9 . 9 5}$

* Our price pledge orily applies to the JVC monitor

To order: Add carriage at the following rates: Discs 85p. Other goods $£ 7$ Add VAT at 15% to tatal and send your order to:

QPUS SUPPLIES

158 Camberwell Road, London SE5 OEE
Tel: 01-701 8668 (3 lines) 01-703 6155/6/7
Government and educational orders welcome
maxtimin
Hha

LOOK AHEAD!

 WITH MONOLITH MAGNETIC TAPE HEADS -

 WITH MONOLITH MAGNETIC TAPE HEADS -

 VIDEO HEAD REPLACEMENT KIT

 VIDEO HEAD REPLACEMENT KIT} MONOLITH electronic products

DOES YOUR VCR GIVE WASHED OUT NOISY PICTURES - ITS PROBABLY IN NEED OF A NEW HEAD - FAST FROM OUR EX-STOCK DELIVERIES.
SAVE EE£'S ON REPAIR CHARGES.
OUR UNIVERSAL REPLACEMENT
VIDEO HEADS FIT ALL MODELS OF
VHS OR BETAMAX VCR's.
FOLLOWING OUR REPLACEMENT GUIDE AND WITH A PRACTICAL ABILITY, YOU CAN DO THE WHOLE JOB IN YOUR OWN HOME WITH OUR HEAD REPLACEMENT KIT.

catalogue

For our full Catalogue of Replacement Video and Audio Cassette/Reel to Reel Heads, Motors, Mechanisms etc. Please forward 50p P. \& P.

HOW TO ORDER,

please state CLEARLY THE MAKE AND MODEL OF YOUR RECORDER. THERE ARE TWO VERSIONS OF THE VHS HEAD AND YOUR ORDER CAN BE PROCESSED FASTER IF YOU CHECK THE SIZE OF THE CENTRE HOLE OF THE HEAD WHICH WILL BE EITHER 5 mm OR 15 mm DIAMETER.

KIT CONTAINS - NEW VIDEO HEAD, 5 CLEANING TOOLS, HEAD CLEANING FLUID, CAN OF AIR BLAST, INSPECTION MIRROR. ANTISTATIC CLOTH, VHS/BETAMAX MAINTENANCE MIRROR, ANTISTATIC CLOTH, UHS/BEVAMAX HANDLING GLOVES, MOTOR SPEED DISC, SERVICE LABEL, HEAD REPLACEMENT GUIDE.

VHS KITS $£ 53.25$ BETAMAX KIT $\mathbf{£ 6 5 . 2 5}$ Prices include P. \& P. and V.A.T.

MONOLITH THE SPECIALISTS

THE MONOLITH ELECTRONICS CD. LTD 5-7 Church Street, Crewkerne, Somerset TA1B /HA, Englend Telephone Crewkerne (ロ460) 74321

Telex $\triangle 5306$ MONLTHG

BIPOLAR \& FET POWER AMPLIFIERS

HEAVY DUTY POWER AMPLIFIERS
STANDARD MODULES

CRIMSON AMPLIFICATION: First Choice of the Professionals!

Whatever your application, Crimson Modular Amplification provides a simple, efficient, and reliable solution. As many engineers in production, development and research will testify, when you need a particular amplifier you need to deal with a company who can answer your queries and supply a working unit quickly. - CRIMSON will do exactly that!
We supply a standard range of power amplifier modules (both Bipolar and Mosfet) which can be incorporated in most systems from recording studios to home hi-fi or for more difficult loads such as induction loop transmitters, vibrators, servos and line transformers. For really complex applications, our technical department can usually supply a dedicated module on request.
All modules are guaranteed for two years and offer outstanding performance and value. If you would like more details please return the coupon with a s.a.e.

19

MOCROURVE MOOULES LINO

DO YOU HAVE A REQUIREMENT FOR VHF/UHF RECEIVERS OR TRANSMITTERS?
 较泣e range of professional quality FM receiver and

 transmitter units, which can be supplied either as working printed circuit boards for inclusion as a sub-assembly in a more complex unit or as boards ore encased products, to operate in the frequency ranges: 130-180 MHz and $400-500 \mathrm{MHz}$.| UNIT TYPE | AR21 | AR71 |
| :---: | :---: | :---: |
| | VHF FM Receiver | UHF FM Rece |
| Description Fraquency Range | 130.180 MHz | $400-500 \mathrm{MH}$ |
| | 2 (6ch also available) | 2 (6ch also ave |
| Number of Channels Avsilable | 0.25μ V P.O. for 20 dB S Sinad | |
| Sensitivity | $>80 \mathrm{~dB}$ at +25 kHz | |
| Input impedance | 3 watts into 4 chms | |
| Audio Output Power | $0.2-1.0_{\mu} \mathrm{V}$ | 0.2-9.0.1 |
| Squalch Range | 12.5 volts (11v min, 15.6 v max) | |
| Supply Voltage | 50-600mA dependent on sudio | |
| Current Consumption | $135 \times 123 \times 26 \mathrm{~mm}$ | |
| | | |
| UNIT TYPE | AT25 | AT75 |
| Description | VHF FM Transmitter | UHF FM Trans |
| Frequency Range | 130-180M Mz | $400-500 \mathrm{M}$ |
| Power Output | 4 wetts (normail) 0.5 watts (reduced) | $\begin{array}{r} 2 \text { watts inor } \\ 0.5 \text { watts frec } \end{array}$ |
| Output Impedance | 50 ohm | |
| Supply Voltage | | |
| Current Consumption | 0.8 amps for 4 w output $0-5$ amps for $1 w$ output | 0.6 amps for 2 0.4 amps for 0.5 |
| Dimensions | $135 \times 102 \times 26 \mathrm{~mm}$ | |
| UNIT TYPE | PRICE (exc. VAT) | |
| AR21 VHF FM heceiver | f149 | |
| AR71 UHF FM Receiver | ¢177 | |
| AT25 VHF FM Transmitter | ¢84 | |
| AT75 UHF FM Transmitter | ¢110 | |

The above items carry a 12 month guarantee, and we normally carry good stocks to ensure the minimum of delivery delays. If you have a good stocks to ensure be interested in quantity discounts, please contact our sales department.

MICROWAVE MDDULES
BROOKFIELD DRIVE, AINTREE, LIVERPOOL LS TAN, ENGLAND Telephone: 051-523 4011 Telex: 628608 MICRO G
"Instruments for Industry"

This superb range of handheld and bench multimeters offers a unique choice of $31 / 2$ or $41 / 2$ digit specifications and features. Engineering excellence at competitive prices with numerous supporting accessories to suit design, production and service needs. Now available ex-stock from one of the U.K.'s most experienced electrical measurement specialists. The complete range of Anders instruments and panel meters is described in the "Instruments for Industry" catalogue.

For your personal copy contact
ANDERS ELECTRONICS LIMITED
48-56 Bayham Place
London NW1 OEU
Tel: 01-3879092. Telex: 27364
RADIOCODE CLOCKS SRooblems $_{\text {Sill }}$

ATOMIC TIME, FREQUENCY AND SYNCHRONISATION EQUIPMENT

NEW PHASE-MODULATION SYSTEMS

Until recently, atomic time and date information was only available on v.l.f. transmissions using amplitude modulation. The RCC 8000 AM series of equipment uses these transmissions to offer high noise immunity and high accuracy, particularly at very long range.
The new RCC 8000 PM series of equipment uses, for the first time, phase modulated tranmissions with massive radiated powers of up to $2 \mathrm{Mega-}$ Watts to offer long range, excellent noise immunity and no scheduiled maintenance periods.

NEW PRODUCTS

The AM and PM series of Radiocode Clock equipment has been further expanded to include seven new models (from top) 80005 - combined clock, frequency standard and optional stopclock. Internal standby power supply - with hours, minutes pulse. Speaking, seconds, mime controller pulse/sec. Dual control of single-standar total control of two different and indep. Dual standard slave controile and independent slave systems, ie. one pulse/sec andity for the largest Slave distribution amplifier - maximum fard operation, multiple circuits and complete master/slave backup.

NEW OPTIONS

A continuously expanding range of fully integrated software and hardware is available for both series of Radiocode Clock equipment. Standard options now include:
IRIG B precision serial o/p
RS232/V24 1 mS resolution
General purpose parallel o/p
FSK record/replay system
Keypad entry of alarm times
Keypad entry of time/date

- Time code generators
- Intelligent slave systems Standard frequency outputs - Stopclock operation - Calibrated systems for increased accuracy

Radiocode Clocks Ltd*
Unit 19, Parkengue, Kernick Road Industrial Estate
Penryn, Falmouth, Cornwall. Tel: Falmouth (0326) 76007
*A Circuit Services Associate Co.)

The Wings Appeal Fund helps to maintain the RAFAssociation Home forDisabled and Chronic Sick. Care is essential for those who have served their country and who are inneed. So please help by giving all you can foran emblem in WINGSWEEK in Septemberorsenda donation to show that you care.

To: Royal Air Forces Association, Appeals Dept. (DS) Portland Rd. Malvern, Worcs. WR142TA.
I enclose a donation of for the Wings Appeal fund.
Name
Address

[^4]Membershipl

Space donated by Wireless World

WW - 043 FOR FURTHER DETAILS

Audio Measuring Instruments, Audio Amplifiers, Loudspeakers and Loudspeaker Components for the professional and enthusiast

RADFORD AUDIO LTD.

WESTON-S-MARE, AVON BS23 2AU
TEL. 0934416033 order by return of post. Cash/Cheque/POs or Banker's Draft with order, payable to Hemmings Electronics Ltd. Official orders from schools, colleges and universtitis welcome. Trade and export enquiry welcome. P. \& P. add $45 p$ to all orders under £10. Telephone your Access Orders, using our 24-hr. 15% to total cost including P. 8 P VAT - Al prices exclusive of Vat - books.

OPTO ELECTRONICS 3 mm Red
3 mm Green
3 mm Yellow
3 mm Red
$\mathbf{5} 5 \mathrm{~mm}$ Green
5 mm
5 mm Yellow
Panel Clip 3 mm or 5 mm
Chrome Beaze
Chrome Bezel 3 mm
Chrome Bezel 5 mm
Square LED 5 mmx
Green or Yellow
Tricolour LeD Gren 30p
A Red and a Gren produces Yellow when both are
on
Red
Red

TIL 32 INFRARED

Tlla3 PN Gallium Arsenide IR Empiting
TYp 1.2 mW THL38 PN Ga
Emitting Dio Typ 12 mW Power Output
50 p tor
TIL100 Large-Area Silicon PIN Photodiode

7 SEGMENT OISPLAYS
TH 3120 . Red Common A TIL313 0.3" Red Common ${ }^{1}$ thode
HAl14 Anode...
Cathode \qquad
INCANDESCENT BULBS
Lilliput LES $(T 11 / 1 / 2)$ 6V or 12 V 16 p
Capless 6 V 60mA

NEONS
Panel Mounting Neon with Self
Contained Resistor for 250V 48p
LIGHT DEPENDENT RESISTORS
ORP12

REUYS

Microminiature Printed Circuit
Relay Single Pole Chat Relay Single Pole Change-over
Contacts rated 2 A of 125 V maxiContacts rated 2A of 125 V maxi-
mumcontacts are Gold on Silver
Palladium Pins on Palladium Pins on $0.9^{\prime \prime}$ "Grid
5 V dc $56 \mathrm{ohm}, 12 \mathrm{dc} 320 \mathrm{hm}$ $5 \mathrm{~V} \mathrm{dc} 560 \mathrm{hm}, 12 \mathrm{~V} \mathrm{dc} 320 \mathrm{ohm}$,
24 V dc 1280 ohm

LIQUID CRYSTAL

 DISPLAY MODULESDigits, $0.35^{\prime \prime}$ FM, SW, MW, MHz, Hold Capability, Reset Capobility. 25 Solectable il Offfets
Prescaler Available
Prescaler Avallable,
Incandescent Backlighting,
Supply Voltage 5 v , Operating Incandescent Backlighting,
Supply voltage 5 v , Operating
Current 4 mA Current 4 mA A $\quad 1715 \mathrm{p}$
PCIM 176 Digitar Voltmeter, $31 / 2$ digits, $0.5^{\prime \prime}{ }^{\prime}{ }^{+}$, and Decimal
Point 200 mV Full Scale input. True Differential input, Guaranteed O Reading. Single Consumption 20 mW . Accuracy $0.15 \%,+1-1$ Count.
Temperature drift $80 \mathrm{ppm} / \mathrm{C}$, Low Battery Indicator
Both Modules are supplied with a data sheet.

\section*{TEMPERATURE METER} A fully self-contained digital temwith an LCD display | - Temperature range $0.99 .9^{\circ} \mathrm{C}$ |
| :--- |
| * Accuracy $0.40^{\circ} \mathrm{C}+1-0.2^{\circ} \mathrm{C}$ | $\stackrel{\text { 咅 }}{\star}$ *Battery 9 v alkaline. Lifetime © External temperature probe

TRANSFORMERS

All types have dual primaries o - $120.0-120$ for inputs of 120 V or
240 V - Primary and Secondary ing superior Isolation
$3 \mathrm{VA} 2 \times 6 \mathrm{~V}$ at 250 ma

 -\star EPSON FX-80 \star We now have in stock the new
Epson printer, the FX-80, which replaces the $M \times 80$ F/T III. If you
thought the $M \times 80$ was good, you will agree that the FXX 80 is brilliant. All the MX80 feature
are there plus the following are there plus the followin
extras: * 160 cps print speed *80 cps special quiel mode set which can be downloaded
from your computer $\star 9$ different bit image modes up to 1920 dots per line * Print styles emphasised, condensed, proportional, elite
italic and all MX80 styles *Program control of 5 kip-ov
perforation, number of columns, character sets

- Fully compatible with $M \times 80$ £395+VAT PRINCE MONITOR A 12 "monachrome monitor
24MHz video bandwidth ideal for
mast personal computers word most personal computers, word processing, scientific work
NPUT VIDEO 1 volt p-p composite vide
EXIERNAL CONTROLS Contrast, brightness, vertica INTERNAL CONTROLS Horizontsi width, linearity,
frequency, phase, focus. fila level, vertical height and linearity
TECHNCAL CHARACIERISTICS Scan 525 lines $/ 50 \mathrm{~Hz}$, Deflection Scan 625 lines/ $11{ }^{\circ}$, Character display 80 bv 24
lines, Video input PHONO Xlines, Video input PHONO, X-ray
radiation to IEC spec no 65 radiation to IEC spec no
SCREEN PHOSPHORS Black/white, green, or orange
Green or orange filters available £98 + VAT $\underset{\text { SECURICORES }}{\text { E. }}$ THE COMMOOORE 64 MEMORY SIZE System memory 20K ROM 3 K User area 38K RAM or 54 K if BASIC tnterpreter is not used FUll colour display Full colour display 25 by 40
255 combinations of screen an border colours
16 Text/Character colours 16 Text/Character colours
displaying elphanumerics or PET dispiaying ald
qraphiestion to a TV set or a colour of monochrome monito computer
GRAPHICS
High resolution graphics $320 \times$ 62 predefined graphic symbol svailable from the keyboard
displayed in normal or reverse displayyed in normal or reverse in
all 16 colo rem al 16 colours
SPRITE GRAPHICS High resolution moveable object
blocks 24 pixels wide by 21 pixels Up to 8 Sprites which can b layered for 30 effects Sprites can be one of 8 colour
multicolour up 104 different colours in one sprite
Sprites can be moved Spries can be moved
independent of text, graphics or other Sprites
SOUND
Music Synthesis chip provides 3
voices, 8 octaves 4 wavetorms voices, 8 octaves 4 waveforms-
sawtooth, trizngle, pulse or noise sawtooth, trizngle, pulse or nois
Programmable attack, decay. sustain and release Programmablefiler - low pass
band pass, high pass or notch band pass, high pass or notch
outputs Outputs Volume control User port with RS232C Carridge port for games and ROM based sotware 2 jovstick/paddle/light pen ports
LANGUAGE
BASIC interpreter future options BASIC interpreter future op
aro BASIC compilier, Pascal,
COMAL LOGO and FORTH NOW ONLY £199 + YAT

SECURICORE6

Specification...Versatility... Accuracy Price. In almost every major area the new 179A - a $41 / 2$ digit bench/portable DMM from Keithley Instruments sets some pretty impressive standards:

- 20 amp capability O Full function: 27 ranges including true RMS AC Measurement - Year's guarantee on spec - 0.04\% DC accuracy IEEE option O Large display and $10 \mu \mathrm{~V} \mathrm{dc}$ resolution.
For those requiring 10 times more sensitivity and an analogue output there's the 177, a unit with similar specification to the 179A. Both models are part of a vast range of test equipment from one of the world's leading manufacturers.
For more information fill in the coupon at the bottom of the page.

OAlternatively, phone our Instant Information
Service on 0734861287 now

KEITHLEY

Keithley Instruments Ltd
1 Boulton Road Reading Berkshiie RG2 ONL Telephone (0734) 861287
Telex 847047

I'd like to know more

Name
Position
Company
Address

Telephone

WW - 008 FOR FURTHER DETAILS

WW - 015 FOR FURTHER DETAILS

PROVED IN SERVICE THROUGHOUT THE WORLD EDDYSTONE MODEL 1837/2 LOW COST, HIGH STABILITY COMMUNICATIONS RECEIVER 100 kHz to 30 MHz

* Capable of operation under the most stringent conditions of \quad - Complies fully with MPT Specifications 1201, and 1204 service, professional and military
* Manual tuning plus accurate digital frequency readout and high stability working with Eddystone patent digital lock
CEPT Draft Recommendations and DEF 133/L2
* Provides inexpensive teleprinter terminal when fitted with Model 1529 FSK Unit

Details on request

Eddystone Radio Limited

Member of Marconi Communication Systems Limited
Alvechurch Road, Birmingham B31 3PP, England
Telephone: 021-475 2231 Telex: 337081

Editor:

PHILIP DARRINGTON
01-661 3128
Deputy Editor:
GEOFFREY SHORTER, B.Sc.
01-661 8639
Technical Editor:
MARTIN ECCLES
01-661 8638
Projects Editor:
RICHARD LAMBLEY
01-661 3039
News Editor:
DAVID SCOBIE
01-661 8632
Drawing Office Manager:
ROGER GOODMAN
01-661 8690
Technical Illustrator:
BETTY PALMER
Advertisement Manager:
BOB NIBBS, A.C.I.I.
01-661 3130
BARBARA MILLER
01-661 8640
Northern Sales:
HARRY AIKEN
061-872 8861
Midland Sales:
BASIL McGOWAN
021-356 4838
Classified Manager:
BRIAN DURRANT
01-661 3106
IAN FAUX
01-661 3033

Production:

BRIAN BANNISTER
(Make-up and copy)
01-661 8648

Publishing Director

 DAVID MONTGOMERY 01-661 3241
Technology and people

As has perhaps been mentioned before on this page, it can be extremely dispiriting to take stock of society's scale of values, particularly when technology is the subject for discussion. Offensive weaponry, expensive trivia and the means to dispense one-way 'communications' constitute the overwhelming majority of applications in the field of electronics while other, more pressing, needs go unattended.

All the more encouraging, then, to report work which is supportive rather than sinister and which is designed to assist instead of to anaesthetize. In this issue, R. E. Young writes of his investigations into the alleviation of mental handicap by the breaking down of the communications barrier which is one of the symptoms of hyper-autism - the 'shell', as it has been called. The work stems from enquiries into human behaviour during unexpected emergencies, ${ }^{\star}$ in which people can exhibit some of the characteristics of mental handicap.

The use of technology to gain an insight into the ways in which humans operate and to alleviate abnormalities in behaviour illustrates the similarities between electronics and the human mind - if that is the word to use. It is possible that the similarities are contrived because we work in electronics and tend to think of most processes in electronic terms, but the

[^5]correlation is quite marked. Young refers to "gating interfaces", "delay time", "inversion" and the blocking effect caused by the accumulation of too much data for a handicapped person to accept, sort and act upon.
Whatever the connexion, it is evident that even the most severely handicapped autistic has a latent capability and can be assisted to break the shell by a deeply understanding approach - one which recognises that communication is the basic problem and that removal of stress and help in carrying out even simple actions to achieve some kind of pride in performance are beneficial, particularly when previously considered to be impossible.
Electronics and other technologies can be of great and increasing help to workers in this field, since the similarities between the mind and electronic systems enable the patient to be included in a system, so that small irregularities in behaviour can be discovered in a reasonable time. Simple, continuous observation of behaviour is not of great value, since irregularities must be encouraged by conditions, and detection must be certain.

One of the most remarkable aspects of this research is the persistence shown in the face of disbelief, and the insight to recognise the 'concealed person' on the basis of extremely slight evidence - some of it offered diffidently for fear of ridicule. This is an important and humanitarian application of engineering skill and deserves ultimate success.

Better batteries

There can be few areas of more consequence to the future progress of portable communications, lightweight television production equipment and consumerelectronics equipment than the development of higher-density and/or more cost-effective batteries. Current progress is reported from the USA on the standard carbon-zinc cell, including the use of a zinc chloride electrolyte and oxidation-resistant coated-paper separator, (according to Ralph Brodd of Broddays Inc.) that is claimed, at low and medium drain over protracted periods, to provide performance comparable to the considerably more expensive alkaline cells. For low-power consumption over very short periods in microminiature applications, mercury-zinc and mercury-silver cells offer extremely high efficiency, but recent zinc-air buttoncells are claimed to offer much higher power densities, of up to 15 watts per cubic inch. A disadvantage of the zinc-air button-cell is a life limited to about one month, due to continuous energy consumption once it has been put into use.
The rechargeable lead-acid cell appears to be gaining renewed interest for use in portable equipment as a result of the development of new forms of sealed, main-tenance-free batteries, in addition to the older jelly-acid ("gel") cells: in some recent "flooded" designs the electrolyte is soaked in porous pads. With these starved acid-lead cells there is no emission of gases or acid, as oxygen released from the positive plate when the cell is overcharged reacts at the negative plate to reform water.

Layer batteries. In the 1930s there was a widespread belief that a long-lasting match had been invented, but that the match-box firms had brought up the patent and blocked production. I have no idea whether there was any foundation for this story, though it circulated widely. In "The Secret War of Charles Fraser-Smith" (Michael Joseph, 1981) a somewhat similar anecdote appears relating to improved dry batteries.
Charles Fraser-Smith, as an official in the wartime Ministry of Supply, was responsible for obtaining a wide variety of items for use by the intelligence, escape and special operations organizations. One of his tasks was to acquire miniature radio receivers that could be smuggled into the prisoner-of-war camps, so that morale could be raised by reception of news from Allied radio stations though the news in the first few years could seldom have done much for morale!).
For this purpose he arranged for the production of some miniature receivers but encountered a "distinct lack of enthusiasm" when he approached the management of a large battery firm seeking more
compact, longer-life batteries. He was told firmly that this was "not feasible". However when he later met the firm's chief engineer the immediate response was that this could certainly be done, with an improvement of about three-to-one on existing batteries. The book claims that when the management heard what had been promised one of them remarked "Don't let on to the Board of Trade. . . . If these ever get on to the regular market we'd lose a fortune . . . customers would need only one in place of three ordinary ones. And they cost about the same." What emerged was a battery of layer-type construction instead of the former roundcell h.t. batteries! These did reach the public post-war, but initially in the USA.

Polarization modulation?

In one of the now traditional "April Fool" articles in a recent amateur radio magazine, an elaborate spoof was based on a complex "polarization modulation" technique. However this reminded a reader, Eric Harman of the IBA, that back in 1968, Mark Epstein of the Radioscience Laboratory of Stanford University published a report of experiments in "communication by polarization modulation" (Proc. IEEE, June 1968, pp.1114-5) in which he suggested that channel capacity on h.f. could be doubled by the use of antennas that launch and receive waves whose polarizations correspond to the limiting polarizations of the magneto-ionic modes.
Experimental results over a $1900-\mathrm{km}$ path from Lubbock, Texas to Stanford, California using signals switched alternately between left-hand and right-hand circular polarization showed a better than 15 dB separation on one-hop signals. This suggested to Epstein the possibility of increasing channel capacity by modulating the transmitted wave polarization of existing on-off and f.s.k. telegraphy systems two communications channels instead of one. That was 15 years ago but there seems to have been little follow up to this system - except as the basis of the April Fool article! Polarization diversity is an established h.f. technique, as is the use of mixed polarization to combat fading due to Faraday rotation - so why not polarization modulation?

III-V semiconductors

Further developments in $111-\mathrm{V}$ semiconductor technology have been reported from the Central Research Laboratories of Thomson-CSF. Following work on indiumphosphide (InP) metal semiconductor field-effect-transistors (InP mesfets) for microwave power amplification, the laboratories have recently produced de-
vices in which the gate is insulated by a silicon-oxide $\left(\mathrm{SiO}_{2}\right)$ layer. The InP misfet devices have achieved power outputs at 9 GHz with 4 dB gain of up to 1 watt, representing $3.5 \mathrm{~W} / \mathrm{mm}$ power per unit gate width, or roughly double that achieved with experimental gallium arsenide mesfet devices. The laboratory has also proposed a new form of GaAs enhancement-mode transistor with metal-insulated-metal gate. It is claimed that mim-gate fets would combine the advantages of both GaAs mesfet and GaAs misfet devices. Experimental devices have shown an enhancement current handing capability double that of more conventional mesfet devices.

Meteor aero-radio

Last April we noted the growing interest in the USA in meteor-trail communications for civilian as well as for secure military systems. The large number of meteors that enter the earth's atmosphere create shortlived ionized trails roughly 70 miles above earth. With computer-controlled highspeed burst transmissions it is possible to sustain teleprinter traffic at roughly normal speed, provided that the link is not required to provide instant access.
R. E. Martin of Guildford has pointed out that a good deal of work into extending the use of meteor-scatter systems has also been carried out in the UK, both for the NATO military systems and with a view to specialized civilian systems. Last year, at ICAP2, Dr H.P. Williams noted the potentiality of meteor-trail systems for medium-distance links over distances of up to about 2000 km , using high frequencies when these are above the m.u.f. and therefore under-utilized. Dr Williams' paper (briefly noted on this page in July, 1982) pointed out that frequencies as low as 14 MHz or so can be used for these systems.
R. E. Martin points out that meteor-trail systems appear most attractive for providing, for example, economical r.t.t.y. networks for administrative purposes for power authorities, especially in developing countries. In such places there are often only inadequate PTT networks and distances of one or two-thousand kilometres are frequently involved. Provided that short delays are acceptable and speech communication is not required, the meteor systems have the cost advantage of not requiring any costly powered microwave repeater sites, can utilize low v.h.f. (or even above-the-m.u.f. h.f.) and do not encounter so many of the usual problems in obtaining frequencies.
R. E. Martin also draws attention to one of the curiosities of meteor communications - the greater number of meteors that enter the atmosphere in the morning than in the evening, due to the effect of the rotation of the Earth.

This point has also been noted in the investigations into meteor-scatter currently being made at the Royal Aircraft Establishment with a view to the use of meteor-trails for air-ground communication, as first suggested by A. J. Hannum et al (IRE Trans. Com. Syst. vol. 8, pp.113133) in 1960. In a paper ("Meteor scatter communication in an air-ground environment") given at ICAP3, P.S. Cannon and G. Richardson of RAE note that the arrival rate is random with a $4: 1$ variation between the maximum in August (a "shower" period) and minimum in February. There is also a $4: 1$ variation between a maximum at around 0600 local time and a minimum at 1800 local time. Unlike amateur-radio use of meteor-scatter, which usually seeks to use only the longer-lasting "over-dense" trails created by the larger particles, commercial/military burst systems utilize the underdense trails which provide scattered signals that are "remarkably space and time-coherent", and are affected by the local time variations.
The RAE experiments have been based on an h.f. (27 MHz) link between Kinloss, Scotland and Farnborough, Hampshire a ground path length of 712 km , with path losses of about 178 dB , and a median "waiting time" of two seconds. The 27 MHz frequency was chosen because of equipment available but future work is to concentrate on v.h.f. where less interference is likely. Cannon and Richardson conclude that the close correspondence between predicted and experimental results for a ground-to-ground link provides confidence in the prediction equations; they note however that the design of an airborne meteor-scatter system will be more difficult than, and different from, a ground-based system. Aircraft-to-ground communication is expected to be easier than ground-to-air; Faraday rotation of polarization is foreseen as a problem.

Spiralling up

The cost to UK radio amateurs of "top-of-the-market" American and Japanese ama-teur-radio equipment has been rising at many times the official "inflation rate" due to the changes in the exchange rates, and the frequent up-dating of designs to include more and more "new technology".

Nowadays retailers and distributors, particularly in the USA, are increasingly coy about publishing prices, with list prices often heavily discounted. However a quick check shows that the top-grade Collins KW 380 h.f. transceiver is now likely to cost a British purchaser almost $£ 2200$
compared with about $£ 1600$ a year ago an increase of around 30 per cent. The comparative price in the USA (without vat) is around $\$ 2850$. The Drake TR7A transceiver is about $£ 1200$ in the UK, under $\$ 1400$ in the USA, whereas a year ago the earlier TR7 model, with power supply unit, could be bought new in the UK for under $£ 1000$. Japanese equipment prices have risen less steeply but are some $12-$ 15% higher than at this time last year: the Yaesu FT-One, for example, has gone from just under $£ 1300$ to about $£ 1450$. There are signs that the present high cost of top-grade h.f. equipment is depressing demand despite the continued rise in the number of British licences. A more welcome change is the number of home-construction projects now appearing, although it is recognised that an h.f. transceiver design fully equivalent to the top factory models represents a major project beyond the capabilities of most home constructors. Although all-solid-state linear power amplifiers of up to about 1 kW rating are now possible using modules based on either bipolar or power mosfet devices, there still appears to be a cost differential of at least two-to-one on the higher power units in favour of valve amplifiers. The solid-state models base their appeal primarily on being wideband designs permitting bandchanging without retuning. Also appearing are increasing numbers of aerial tuning or matching units with automatic tuning, but here again it is clear that operating convenience costs real money.

R.f radiation

Not all doubts surrounding possible behavioural ("non-thermal") effects of r.f. radiation have disappeared despite repeated efforts by the National Radiological Protection Board to stress that the only proven hazards of non-ionizing radiation are thermal, and that the safety limit of $10 \mathrm{~mW} / \mathrm{cm}^{2}$ is entirely adequate. The consultative document issued by NRPB in December 1982 proposes a reduced limit of $1 \mathrm{~mW} / \mathrm{cm}^{2}$ between 30 and 100 MHz , where dipole resonances of the body reduce the safety factor. It even accepts that "an auditory effect occurs for some individuals when exposed to intense and sharp pulses of microwave radiation" but adds that "there appear to be no harmful effects resulting from this phenomenon".
At ICAP3 last April, however, Leonard S. Taylor of the department of electrical engineering and radiation oncology of the University of Maryland devoted part of his paper on "Therapeutic applications of electromagnetic radiation" to a balanced appraisal of conflicting views on whether long-term exposure to very low-level microwave radiation can be harmful. In doing so he presented a viewpoint significantly different from that of NRPB, although he accepts that "the significance of much of the experimental evidence is ques-
tionable". He notes the evidence of increased calcium ion efflux both in vitro and in vivo chick and cat brain tissues at levels down to $0.05 \mathrm{~mW} / \mathrm{cm}^{2}$ and considers this substantiates the influence of u.h.f. and microwave fields on the brain-cell microenvironment.

Here and there

Apart from the Syledis and Maxiran posi-tion-locating radio-naviagational systems, the 430 to 440 MHz amateur band (with its "secondary" status in the UK) appears to be coming under increasing pressure from other users, including the Ministry of Defence. MoD have established a radio-communications network ("Mould") connected with civil defence between 433.0 and 433.5 MHz . There have also been unconfirmed rumours that the Belgian authorities have reduced their amateur allocation to 435 to 439 MHz and closed all microwave bands to Belgian amateurs.
By the time these notes appear, the Oscar 10 satellite, the first of the Phase 3 series, launched last June, should be in its final high orbit. The apogee motors were due to be fired about July 14. An early problem with the solar array also needs to be overcome or Oscar 10 could have an operational life of only a few months. The c. w. beacon is on 145.81 MHz .

In brief

The RRL membership has confirmed overwhelming opposition to code-free licences even on v.h.f. bands. . . . At the annual Dayton, Ohio convention two operators were able to read Morse at 68 words per minute, 4 word $/ \mathrm{min}$ short of Ted McElroy's pre-war "world record" of 72 word $/ \mathrm{min}$. . . . A draft new constitution for the International Amateur Radio Union was drawn up at an Administrative Council meeting in Tokyo and is to be further considered at a second meeting later this year. . . A "wireless museum" in Orkney features radio communications equipment of World War 2 as used by the Services in Orkney during that period. Research and restoration was carried out by James McDonald, GM88FG. . . . New Zealand amateurs have made a 545 km contact on 3.4 GHz between Cape Reinga (North Island) and Mount Egmont using one-watt output and 4 ft dish aerials Since May 22, American phone allocations in the 14 MHz have extended down to $14,150 \mathrm{kHz}$ with 14,150 to $14,175 \mathrm{kHz}$ reserved for "extra class' licences 14,175 to $14,225 \mathrm{kHz}$ reserved for "advanced" and "extra" licences. . . . The Scottish Amateur Radio Convention is to be held on August 27 at Cardonald College, Mosspark, Glasgow followed by a dinner/dance at the Bellahouston Hotel. . . . The Welsh Amateur Radio Convention is at Oakdale Community College, Blackwood on September 25.

PAT HAWKER, G3VA

Mental handicap and electronics

Abstract

Stemming from enquiries into human behaviour during unexpected emergencies reported in the author's previous Crisis Control article - R. E. Young writes of his investigations into the alleviation of the communication breakdown of hyberautism with the help of electronic systems, and proposes a new specialized mental handicap unit.

What was little more than an abstract idea has been taken to a development-backed set of proposals for setting up an operational complex. A project that grew on an ever-increasing scale from its mental-handicap base to make contributions in other fields, both humanitarian and technological, and in its own right, progressed towards the establishment of a researchbased care unit for the severely handicapped ${ }^{1}$. The aims of this unit are firstly to arrest the deterioration (regression) which is almost without exception taken to be inevitable with these 'most disadvantaged' people; and secondly to proceed to rehabilitation, with their development continuing from within.

In view of the picture of mental handicap presented by the media it would seem that to attempt to stop the retreat into the isolation of the blank-look shell of nontalker is just not 'on', still less 'on' is any effort to reverse the trend. Nevertheless, these things have been done, albeit on a limited basis. In the two-part article in Wireless World, where mental handicap was linked with the stress conditions of crisis control ${ }^{2}$, a brief outline was given of some of the methods adopted to bring-out the handicapped and, in particular, to help them to communicate from within. This question of communication is vital, and, as shown on the flow chart (phase 3) the statement of mental handicap being in essence a communication problem constituted the beginning of a defined research programme on the disability.

This does not mean that the work of phases 1 and 2 was not research nor that it was relatively unimportant. In the event, the development of the main project has demonstrated how far-reaching this earlier work has proved to be. Primarily it brought out the fact that there were people in the UK and other countries, notably Australia, who - by virtue of their own thinking and observation - held the conviction that "something was there" with even the most severely handicapped. Two major points emerged during this period.
O These people were almost invariably widely separated from one another (i.e. were isolated), and in general were surrounded by quite understandable scepticism. Despite these and other adverse factors, they had persisted in their be-

by R. E. Young
 B.Sc. (Eng.), F.I.E.E., M.R.Ae.S.

lief; and the importance of this cannot be over-emphasized, especially in relation to the almost insuperable difficulties of building-up any real observational data on mental handicap (see next section).
O Not only had this observational data to be gathered purely on a human basis, but it also had to be expressed in these human terms.

The full implications of this statement do not become clear until one looks at the circumstances surrounding these potential 'witnesses'. First, because of their isolation and the difficulty of putting words to phenomena which very often they had seen only fleetingly, 'data acquisition' could not be carried out by direct questioning. It had to be a matter of establishing contact in some way, a problem in itself, and then almost literally waiting for the information to 'come out'. The other, much more obstructive, aspect was the natural reticence to talk about something which was almost totally intangible and in addition was surrounded by incredulity. An associate of some years' standing - and responsible for the highly descriptive name of 'false handicap' - recently admitted that he had had moments of doubt - "have I got it wrong?" when thinking over some manifestation he had seen of the person behind the handicap.

Another major obstacle was the 'setback' of regression which is so easily brought about without the cause being obvious; and which, unless countered, made positive observation impossible.

But this basic information did emerge from these early activities, and it says much for the 'quality' (and even more for those who produced it) that the resulting statements remain, in effect, as some of the guidelines in the proposals for the unit. Furthermore, the point was reached where, as indicated for phase 3, it appeared possible to attempt to make an attack on mental handicap from an entirely new base.
The position at the end of phase 1 was that considerable insight had been gained
into this "most mysterious of all human complaints"; but that the evidence would remain intangible until, as a minimum, a "language" (technical vocabulary) had been evolved to enable some of the features of the disability to be identified and consequently described. In yet other words produced at the time: "If we had something to get hold of we could at least talk about it."

This was one of the first occasions on which it was possible to combine the 'thinking' from independent sources and to link this with the technological approach to the problem which had begun to take shape and which was eventually to form part of the 'human electronics' around which the remainder of this article is centred.

Human electronics

The term system modelling and hyper-autistic effects such as 'delay time', and distortion of speech by 'inversion', are representative of the technical vocabulary shown as being developed in phase 3; but the outstanding importance of them is that they had been predicted from the results of system modelling. In one sense this process came into being with the development of the concept of mental handicap being a communication engineering problem; and which, in common with others of these concepts, was introduced initally as a form of extended working hypothesis. But it soon became evident that the 'communication approach' was opening up other lines of attack which could be linked with the observations of phases 1 and 2 ; and, not only reinforced them but - most significantly - began to explain them. Thus it was in the context of electronically-based communication that 'clutter' - as a new concept - was developed.
Clutter, with the definitions it carried, provided an important bridge between electronic technologists and those who were looking for 'something to get hold of in the intangibility of mental handicap. It was, however, the 'human electronics' contribution that was then built up which produced the full electronic approach and which has been recognized by non-technologists as virtually the only way in which the 'deceptive' nature of mental handicap could have been overcome, certainly within an acceptable time. Full tribute must be paid to the medical authorities

Human electronics - project flow chart for mental handicap
Taken up to the point of publication of the proposals for a new 'Research Care Unit' for the mentally handicapped

	Phase 1 Build-up of observational data	Phase 2 'Enlarging the view	Phase 3 Establishing technological base (essentially electronic)	Phase 4 Statement of areas of research	Phase 5 Development and assessment of specialised techniques
Direct Project Action	Making contect with 'witnesses'	Bringing-in 'associates' outside the immediate field	Statement of main concepts, initially 'a communication problem	Identification of electronic-type 'mechanisms involved, including 'system modelling'	Construction of electronically-based equipment, and trials under 'research care' conditions
			Developing original 'technical' vocabulary and overall picture	Full coordination of this work and all observational results	Expansion of main concepts, production of integrating reports
Indirect Project Action	Analysis of 'Human' position	Feed-in of 'human' aspect into direct project	First-largely exploratory publications in the press	Correlation with 'outside' areas e.g. deafness and geriatric care	Extension of correlation to other fields, particularly with 'crisis control'; and with maximum twoway 'spin-off' flow
					Second-selertive publications in the press

who, despite all these difficulties, had set up the facilities which already existed in the UK. That the 'new thinking' has been made possible - and has taken place - is largely by virtue of the environment so soundly established by these authorities in the past.
The human electronics has been described, again by a non-technologist, as providing the equivalent of a ". . . microscope on mental handicap". Syster modelling is shown on the project flow chart (phase 4) as being concerned with the "identification of (electronic-type) mechanisms"' involved in such effects as 'thinking fatigue' and 'delay in response'. Although system modelling does not appear on the chart until phase 4 , investigation and analysis of this kind had been going on during the earlier phases. It was not until phase 4 that sufficient correlation of the information has been obtained for this process to be regarded as a 'firm' section of the work.

Examples of these early findings included the identification of (telegraphtype) 'start-stop' working and 'thinking fatigue'. The first-mentioned has been selected to show how a comparatively minor point was made to yield confirmatory and other information for application in the main programme. First, the underlying principle is simple: for communication, the transmission of a message entails the sending of a start alerting signal and of a corresponding stop signal for 'end of message'. It was found that a similar practice could be useful in certain circumstances when communicating verbally with the severely handicapped; and this information was fed in to, and coordinated with, the other data which was beginning to give a picture of some of the elements entering the hyper-autistic condition. Also
it had been possible, even at the stage, to "separate-out" some of the factors involved in the hyper-autistic state; and, as such an identified factor, 'start-stop' brought clarification both in itself and in respect of other effects as exemplified by the various aspects of clutter.
It will be realized that the work heavily depended on observation, and - not so obviously - on the way in which the findings were translated into action with ('handling') the individual. Thus, continuing with start-stop as a representative example, it was vital that usage of it should not be imposed on the person, but should be introduced only when it corresponded with something 'coming from within'.
A large number of interlocking issues are involved here; and some of these are examined later in the context of a specialised unit and in relation to its staffing. This treatment is preceded by descriptions of some of the new methods and techniques which have been used in the various phases of the project, and which form much of the basis for the Proposals for the unit.
To complete this brief review, it is relevant to show how the role of the observer, while remaining central to the whole project, changed in character as electronics moved more and more into what had become an entirely unique form of systems engineering.
Initially, observation had to be accepted as being 'passive' in that near-infinite periods could elapse between any manifestations of the person behind the handicap. Indeed the only way to overcome the randomness of these occurrences was to provide "utterly continuous observation" (ref. 1); and in other than exceptional cases only parents were in a position to approach this. The whole attitude to mental handi-
cap was such that any suggestion by them of the existence of concealed capability was almost cerrain to have been dismissed, bearing in mind the evidence available and (always present) the dangers of raising false hopes.

The first step was therefore to set up conditions for the controlled observation which favoured occurrence and also made detection much more likely. The lastmentioned point was made a matter of giving some indication of where and when to look for these occurrences, and which was made possible by elementary system modelling, itself founded on the correlated (observational) information which by then was available.
Thus in phase 4, it had been established that interconnected gating type systems 'gating interfaces' - appeared to be involved in the thinking process in such a way that the physical condition of mental handicap reduced the transfer efficiency between interface levels and also, in effect, reduced the isolation between channels required for 'multi-channel' thinking ${ }^{2}$. When correlated with direct observation in this and other fields such as crisis control emergencies, there were two far-reading conclusions.

- That 'inversion' of speech could take place largely as the result of 'imperfect read-out'. Inversion as used here covers a variety of distortion effects, including stuttering. In one relatively common form, syllables in a single word are transposed, sometimes with a loss of one or more, e.g. "poose" may be "spoon". As in all work on inversion, these transpositions are difficult to detect, particularly with loss of part of the original word (they are not, in general, classical spoonerisms); but even more difficult to pick out is the composite word made up of the end of one word and the
beginning of the next. A specific example which combined the features of both cases was afforded by "byer" which was traced to "fire burn". Of course, distortion may be so great that only what appears to be a noise or succession of noises is produced. Here again, as shown later (see full system modelling) detection may be achieved, especially if a benign atmosphere can be set up to encourage attempts at communication. ${ }^{3}$
- The other major aspect - 'data marshalling' - which arises here has effects such as 'delay in response' and 'thinking fatigue' associated with it, and from the point of view of the outside world is seen as a condition ranging from a severe lack of confidence to the shell of the total non-talker. This aspect is therefore linked with the stress condition under which the mentally handicapped can live for long periods; and which can be explained in relation to system modelling, largely in terms of data marshalling.

Data marshalling (refs 2 and 4) may be defined in the present context as the "streaming" and "sorting" of "masses of data". A full definition also includes the systematic presentation of the data, and it is in this final transfer outward that the handicapped often find the most difficulty.

Only just recently this last problem was demonstrated most dramatically by a young man who is easily driven into the non-talking state. On this occasion he selected a gramophone record which, from the sleeve, he knew to be of a piano; but instead of saying the word as usual he mouthed it - there is no ambiguity when lip-reading "piano". Although he could be sensed to be making an intense effort to achieve the transfer to voice production the pressures were such that he found it impossible.

Apart from its importance in providing direct evidence of something that cannot be detected in most circumstances - the failure to transfer - this incident carries a number of other important implications. Outstanding is the single aspect of delaytime which it covers (the "microscope" mentioned earlier). This specific element is part of the general build-up of delay which seems to be associated with the checking process of streaming and sorting which enter into data marshalling in the hyper-autistic condition. The evidence is sufficiently widespread to justify the statement that every new step - even for an action - has to be checked and re-checked before the individual feels that he can carry it out, unless some assurance which is acceptable has been given beforehand. However, the main reason for quoting this incident is that it gives an example of the "control" which is a feature of full system modelling. The chances of picking up an isolated event of this character are infinitesimal without some control of the attendant circumstances. To set up such controlled circumstances demands prediction by "primary" system modelling; and in this case the use of the gramophone provided a form of control (see later for an account of this approach) while experience combined with knowledge of the individual gave a likely time for observation. It
is the inability to obtain repetition of such incidents which has made it so difficult to maintain continuous lines of research. This difficulty has been fully recognised as one of the problems facing the specialised unit ${ }^{\mathrm{j}}$ and in effect forms one of the "design criteria" for it.
Similar lines of argument had to be followed to derive the remainder of these design criteria or the equivalent; and that the course of their development was linked with:

- the corresponding phases of the project itself and
- the progress of the trials which have been carried out with electronicallybased techniques and equipment and which have underlain, and have been correlated with, the project as outlined in the foregoing description.
It is hoped that this has given at least an indication of the difficulties facing anyone entering this field and having to assimilate all the new concepts which have been introduced. Again briefly, it does seem that the only real solution is through on-the-job study and experience (see ref. 2 for link with training for emergency control) so that overall perspective and atmosphere can be gained. This general requirement has been covered in the proposals for the specialised unit in that allowance is made for high-calibre learners to work alongside the permanent research-care staff. These learners would thus be favourably placed for ". . . coming to grips with so many new concepts" and ". . . in building up their own know-how" (ref. 1). It is envisaged that they would spend at least a year in the nominal learning role, and then as part of the general policy for the unit would undertake the passing-on of their know-how and relevant experience to others.

How these possibilities would be realized in the unit is perhaps best shown by giving some account of the techniques and

Christina at work with the magnetic board - tutorial techniques being established in parallel.
equipment which have already been developed. This account is concluded with a description of an advanced language laboratory which would provide facilities - already tried out in principle - to enable individual aspects of hyper-autism to be investigated in the controlled circumstances of total system modelling.
It cannot be stressed too highly that, although the laboratory would provide unique facilities for research into various aspects of mental handicap which have already been "separated out", the basic objective would remain to develop everimproving care for the handicapped. And in so doing to remove the worry and the other pressures from them, which is utterly obligatory if this work is to be at all successful - quite apart from the humanitarian issues which arise. It has been suggested that the present methods could be expanded and could feed this "source" information into a health authority organization "concerned with all vulnerable members of the community ${ }^{\text {l", }}$

Magnetic board

The first piece of equipment specially designed to provide research-based care ("re-search-care") facilities for a young woman who suffered from a mental handicap and multiple physical handicap was the magnetic board. Full tribute must be paid to the staff who worked with Christina. They had established a rapport despite her inability to do more than make a small range of noises, while communication through the hands was near-impossible because of severe malformation of her wrists

Nevertheless, it did seem that the last-mentioned avenue of communication might be investigated, and that this might even yield some spin-off; and full acknowledgement must be made to the head of the unit in that this spin-off was of a major character especially in terms of some basic principles that have been brought into the design of the advanced language lab.
The so-called magnetic board consisted of a square of sheet iron faced with 0.2 mm thick plastics over which converted magnetic door-latch pieces could be moved by

a magnetic stick. The first decision taken - to have "words" rather than individual letters as the movable pieces - though simple, was of major importance in other applications. Thus in practice, the speed of selection was found to be matched to Christina's concealed capability and - as confirmed by other examples - the alternative of letter-by-letter build-up was tedious and time-consuming. This is of interest in those control systems employing speech synthesis ${ }^{4}$ and, as will be seen, in the human electronics of the advanced language lab.
In the same way, the results of the attack on the problem of the physical handicap to enable the pieces to be moved by Christina - were of wider interest because severe mental handicap is frequently accompanied by some form of physical disability and, as with Christina, this calls for courage and determination of the highest order. (The mentally handicapped have been described as "the most courageous people on earth".)

Similar considerations also applied to the development of the "ruggedized gramophone" (see below), where one of the aims was to enable those with an appreciable degree of physical handicap to do something, hitherto accepted as quite impossible, themselves. Furthermore, as has been shown to be crucial for progress and to help offset the effects of their difficult circumstances, they are working with a mature objective. ${ }^{1}$
As a practical example of the attention needed for the apparently simple component design required in these instances, with their human implications, it may be useful to consider the "magnetic stick" as finally adopted. As the result of a series of trials - which helped Christina to supplement her own efforts to improve her command of the stick - its dimensions, found to be quite critical, were 25 cm long and a diameter of 8 mm . The actual configuration was tee-shaped with a croupier-type end tipped with a small permanent magnet. The magnet was selected, in conjunction with the rake end, to provide the push/pull action required to move the words against the magnetic "sticktion" of the board.

Ruggedized gramophone

In its do-it-yourself role, the ruggedized gramophone is noteworthy for the large amount of spin-off that was gained from it. Developed specially for this application, the basic design aim was to provide a unit which could be operated by the most severely handicapped individual; and, as implied by its original title, would stand up to any form of clumsy handling that could be envisaged. Provision was made to restrict access to the turntable and pick-up when a record was being played. Thus the mechanical design of the box was extremely robust with power interlocks on the lid which had to be shut before playing. On the operational side, "start" was by a plunger-type control external to the box; while an alternative cone-shaped spindle provided easy juke-box centring for compatible records where physical
handicap made this difficult.
When this unit was brought into service a definite break-out from the shell was produced with every member of the group concerned, and that this could be repeated. This meant that concealed capability could be demonstrated effectively "to order" for the first time. This depended upon the maintenance of stable conditions i.e. by preventing disturbance, particularly by avoiding intrusion by strange visitors. ${ }^{2}$

That this point had been reached was of particular significance in terms of intensifying research, because it proved that it was possible to set up the equivalent of the controlled conditions which were being evolved even then, on the basis of rather more indirect evidence; and not to have to depend entirely on random - passive observation for firm vital data.

On the human (care) side a summary of the position is perhaps best achieved by quoting from statements made by the staff at the time:
"It (the gramophone) has given them great satisfaction being able to do something completely by themselves" and
" ... expressions change and the mentally handicapped start to communicate more freely than they have ever done before".

The statement that " . . . people there was little hope for, who remained silent throughout long periods . . . progress from gestures to more comprehensive sounds and words . . . and more awareness of what is going on around them" is given as being representative of the evidence that has been collected from many witnesses. However in this instance there are two vital differences: firstly that the evidence is for all of a group and secondly that it has been obtained in a controlled, non-random fashion.

The last statement quoted also includes a reference to ". . . clearer voices . . ." (when progress is being made with communication). These may be regarded as being early manifestations of "second voice" (and "super-second voice" effects which are covered elswhere. ${ }^{3}$ By their very nature they are difficult to detect, but work continues on this aspect of "the person underneath".

On the technical side, the bringing into operation of the gramophone may be said to have marked the beginning of system modelling proper. The composite system - planned to produce certain research answers - consisted of the individual with a "thinking mechanism" sub-system, the sound-track "data content" of the record and the instructions (roughly software) given to the student.
With regard to this last aspect, one element in the control programme was that the student selected "his" record by looking for his photograph on the sleeve which also carried his name (for possible "subliminal" recognition); and, for instance, information could be obtained on delay time which was "tied" to a specific parameter and set of circumstances.

Continuing with this example, the next step now could be to look into gating interface blockages, for example, when suffi-
cient linking information had become available. Thus, analysis of delay times in telephone communication with, say, variation in side-tone content could be made assuming isolation had been achieved from such effects as "back-comparison" time.
The crystal transducer and amplifier unit were used with a small hand-held loudspeaker unit for the original speech reinforcement development. In the proposed advanced language lab application, the speech output would be fed into the laboratory loudspeaker system (page 00); and it is of interest that a similar arrangement might be adopted for the main operating space for "two-tier" full emergency control. ${ }^{2}$
The unit gave remarkably good quality, and as far as the main problem of acoustic feedback was concerned, this could be kept below the howl-back threshold for all but the maximum loudspeaker volume. The initial speech reinforcement requirement was set at a minimum of increasing the intelligibility-content of sounds produced by the less-heavily mentally handicapped who were prevented physically from making almost any form of utterance. (Precedents with the non-mentally handicapped have been seen.) Accompanying this initial requirement was the hope that the work would encourage attempts to produce sounds which were more speechlike; and in the trials that were possible this did indeed take place.
With regard to improvement of speech sound production a basis was established the work planned in this area for the a.l. lab. Taking advantage of the early magnetic board findings, it appeared possible to "fill-in" words such as those produced as little more than exclamations by a word on the board and vice versa.

This has been taken further in planning to include in the a.l. lab. a 'talking typewriter' for 'filling-in' by the handicapped person with words instead of individual letters on the keys - following the principle accepted for the magnetic board. This does mean that only a very restricted vocabulary is available; but in many cases this is desirable, especially in cases where system modelling is being carried out and where mental search time has to be kept to a minimum.

The lightly handicapped occupy a special place in the proposals in that it is suggested that they should be made part of the unit's back-up staff, acting as contact helpers. Information has been collected from a variety of sources on their ability to interpret the distorted (e.g. inverted) speech of those at a lower level of attainment; and in undertaking this work they would derive enormous benefit for themselves from doing something that is adult, carries recognizable responsibility, and perhaps for the first time - shows them that they can be successful at doing this mature work. Experience can be quoted than the resultant enthusiasm is then transmitted to the others; and this access of confidence - as opposed to a dread of 'getting it wrong' - can be seen in their ability to act as team-leaders to the more handicapped. They are, in fact, achieving the equivalent of rehabilitation in bringing
themselves and their team out of the hyper-autistic shell.
Such a successful arrangement should not be disturbed; continuity and hence stability are vital even for those at the higher levels of attainment if they are to retain this position. Also, they still require highly sensitive guidance and particularly, encouragement, as with all the handicapped.

Language laboratory
 tutorial scheme

As envisaged the first application of the tutorial system would be to the talking typewriter scheme. It is assumed that the move to this scheme would be preceded by a build-up of contact experience where interpretation would become increasingly tripartite in character, i.e. students, helpers and main care staff would develop more and more mutual understanding, and as time went on more and more interdependent.
Such an arrangement could be made more formal with, say, the d.i.y. gramophone operating with a definite team programme. To prepare for the final scheme, individual members of the team might be introduced to basic language lab. conditions with the use of the telephone under controlled conditions ${ }^{2}$. Thus, providing the telephone is accepted, the student can be expected to gain in confidence and in facility of verbal communication.
This question of acceptance of the unfamiliar (with the anxiety it may cause) is perhaps where the helper can make his greatest contribution. Association of ideas effects ${ }^{1}$ are often enough to prevent such acceptance in these circumstances; but the trust placed in the helper may enable him to smooth the way to compliance. It should be added that non-compliance usually takes the form of entrance into the isolation of the shell for an indefinite period (and which should not be confused with sulking).
With this background, it becomes more than evident that human considerations must always be given absolute priority in the design of these systems and in planning their operation. Thus human electronics takes on its full meaning; with failure even to avoid, say, an unsuitable shape of a control liable to vitiate the whole scheme.
Something of the way in which these principles are applied may be seen with the talking typewriter development. This scheme is centred round a word-keyboard speech synthesizer with software arranged to display the words being keyed-in. In the word mode, the words would be spoken as they were keyed-in. In the phrase mode, they would still be displayed word-byword, but not put out as speech until a speak button was pressed for the group of words to be transmitted out from store.

Insert mode would have two sub-modes. In the first, this button would bring in a throat microphone worn by a tutor to give an insert (interject) facility for 'filling-in'. In the second sub-mode, this interject facility would be made available to both tutor and student so that the tutor could back up any attempts made by the student to produce coherent speech by mixing his

own sounds into the controlled, synthesized speech. In general this would only be used by lightly handicapped students (they will accept the throat microphone) particularly by those who were potential tutors; but as the result of experience it might be possible to evolve a simplified version of this system for the more handicapped.
The aim throughout is to develop 'subliminal' methods for learning to read, combined with improvement of speech. Not long ago it would have seemed astonishing that systems of this kind were being suggested for the mentally handicapped. Now, as has been shown, more than sufficient evidence exists to justify further extension of these advanced methods; and in the last system to be described, the extension is taken into 'visual mathematics'. This concept has been evolved in the context of mental handicap, and not least in the light of an interest in numbers that has been detected.

The ideas entering into this concept come from several areas, and started with an aerospace calibrated display system ${ }^{5}$. This continued with the suggestion that this system - essentially for multi-channel 'histogram' working - would be made in single-channel form to meet a specific requirement in crisis control. A further development for operation under 'survival' control conditions ${ }^{6}$ appeared to offer possibilities in the evolution of visual mathematics; and in view of the interest being shown in this area, the principle was applied to the tutorial side. As in other instances of this kind, spin-off flow built up in both directions.

In its original form the calibrated display enabled the time-division multiplexed output from several transducers - appearing as a histogram - to be shown simultaneously with an adjustable calibration line on a c.r.t. display. Histogram and calibration line were shown on alternate strokes of the time base, and thus
'Tutorial' position in advanced language laboratory as envisaged for the talking typewriter. Tutor operating with throat microphone and 'interject' button. Demonstration/teaching c.c.tv camera and microphones overhead.
measurements in terms of calibration frequency were made on common equipment. The calibration - and therefore the accuracy of measurement - were thus independent of changes in the chain because the calibration and histogram signal were fed into it at the same point.
This same basic principle is used in the crisis control application. Here the raw data output from a single 'frequency' transducer is measured by moving the calibration line to coincide with the top of the pulse representing the transducer output value. In the illustration, the pulse is shown as repeated in order to read more easily through 'locked' interference; while the sine wave shown below the calibration line is a direct representation of the transducer output.

This last feature has been added for visual mathematics where the idea of number might be associated initially with this picture of a variable-frequency tone reproduced on a loudspeaker. This would be related to the numerical value shown on the calibration adjustment control at a suitable point as judged by the tutor, with this followed appropriately by interchange of setting and reading between him and the student. It is envisaged that this facility might be extended to more computer-like displays; but this would only be after a protracted exploratory period. And the outcome of this work might only reveal a logical aptitude; but this alone would be worthwhile, as in a comparable case when one discovers that a non-communicator is making himself understood with words which it was not known that he had mastered.

Project summary

The position now reached with this project as shown in the five phases of the flow chart can be stated in terms of 'researchcare' and the developments which have stemmed from the establishment of a technological (essentially electronic) base - phase 3.

The growth in the wider aspects of re-search-based care has been maintained throughout the project; the most important element in it continuing to be information (observational data) obtained from witnesses at all levels, and giving direct insight into the concealed capability of the mentally handicapped. The work of interpretation of these reports and their correlation has been strengthened with the development of the required technical vocabulary; and has been increasingly interlocked with the results of trials which it has been possible to carry out, particularly during the latter part of the programme.

It has become increasingly clear with the progress of the project that over-riding priority must always be given to the human considerations. Thus, although the accepted research-care is an abbreviation of research-based care, and although research is fundamental to the whole concept of the unit, it must be made subordinate to care at all times. This principle has already been stated with regard to the design of electronic equipment for use by the handicapped themselves, where disregard of their special requirements is quite likely to result in non-acceptance and consequent entry into the shell.

Therefore, broadening this principle not only to include system design but also to include the planning of any research it becomes clear that a close watch must always be kept for any signs of the development of set-back, not least for the serious economic penalty that can be incurred with the inordinate amount of time and effort that may have to be expended to restore the position.
Precautions can be taken to reduce the chances of set-back conditions being set

Laboratory equipment arranged for

 'visual mathematics' display. In tutorial use, auxiliary traces would be shown on separate displays. Photo by Manchester Polytechnic.
up; and one part of this approach is to make sure that a step forward in a programme is not taken until the current step has been understood and accepted. This is vital, particularly where research is being carried out by indirect methods designed to pick up answers to questions arising from, say, system modelling, and where it is difficult to separate-out the factors.
Some of this has already been outlined in the earlier sections on tutorial techniques; and can be seen in more detail by taking the case of the young man who failed to make the final transfer to audible speech. The question of "Could failure to transfer always be traced to the last interface (or at others?" could be tackled by an indirect approach using suitable facilities available in the advanced language lab. These might well include observation of delay time with the 'talking typewriter' and the telephone with its side-tone effects; and would involve finding how representative these students were, in order to avoid causing distress to individuals not inmediately capable of using these pieces of equipment.

Original calibrated display for multichannel working.

Such a research investigation would be complex, but could be kept under control; and could give valuable information in a number of fields such as ordinary autism and geriatric ability to speak, and, of course, for getting a better picture of this aspect of mental handicap communication.
Acknowledgements. Special acknowledgement must be made of the part in this project played by Dr Gordon Avery, District Medical Officer of the South Warwickshire Health Authority, particularly with regard to the publication of proposals for a specialised unit, which is approved and backed by him. A personal acknowledgement is made to Professor Harold C. A. Hankins of the University of Manchester Institute of Science and Technology for his major contribution to this work both with continuous practical interest and with full-ranging discussion throughout. Finally, full recognition must be given to Peter Watts and the UMIST Medical Engineering Unit for the originality shown in the design and development of the ruggedized gramophone and throat microphone, and for the research done on the microphone.

References

1. Mental Handicap - Proposals for South Warwickshire Specialised Unit, by R. E. Young,1982. Communication to South Warwickshire Health Authority, available in its original form from Wireless World.
2. Crisis control by R. E. Young Wireless World, June and July 1982.
3. Mental Handicap - The New Thinking, by G. M. and R. E. Young, August 1981.
4. Control in Hazardous Environments, by R. E. Young and Peter Peregrinus (IEE), 1982.
5. Analogue telemetry equipment and systems by S. Poole, A. Potten, C. O. Titley, - Pt 2, Electron. Eng. Vol. 33, 1961 no. 396
6. Crisis control - the background, by R. E. Young, Nuclear Engineer, Vol 24, July/August 1983.

RTTY on a Nascom

Abstract

Now that home microcomputers are replacing the old-style electromechanical teleprinters, interest in transmitting teleprinter messages by amateur radio (RTTY) is on the increase. Ian Wade describes how a Z80-based Nascom microcomputer can be used for RTTY, and includes full details of the special hardware and software required. Most of the techniques apply to any micro-based system.

Despite the fact that the $\bar{Z} 80$-based Nascom microcomputer was first introduced several years ago, many of these excellent machines are still in use today in amateur radio stations. About two years ago I decided to build a rtty system around a Nascom, and this article describes how it was done. The package started life as a small collection of rudimentary subroutines performing little more than conversion between the ascii and Baudot character codes, but as operational experience increased, more and more software and hardware facilities were progressively added until the system eventually assumed its present form. The panel opposite lists the features now incorporated in the system.

The first part of this article summarizes the basic operation of the system, and then covers suggested hardware modifications to make the Nascom function as a rtty terminal. Each of the modifications is accompanied by a short test program, so that the changes can be checked out individually before running the rtty program proper. The second part describes the software in detail, and includes a machine code listing of the rtty program. Whilst some of the material is naturally specific to the Nascom, most of the techniques described are equally applicable to any microbased rtty system, and may be adapted for use on other machines.

by lan Wade BSc(Hons) MBCS G3NRW

RTTY system

Starting at the top left-hand corner of the simplified block diagram, Fig. 1, the twotone audio output from the receiver is passed through the terminal unit, in this case a home-made version of the wellknown ST5 design ${ }^{1}$. The output from the terminal unit is a stream of ± 5 volt pulses, -5 V corresponding to a mark (1445 Hz) and +5 V corresponding to a space tone $(1275 \mathrm{~Hz})$. These serial pulses, representing Baudot characters, are then input to the uart in the Nascom. The rtty software now takes over, converting the Baudot characters into their ascii equivalents, and saving them in the ascii text buffer. From there they are sent to the tv screen, and optionally, to a printer connected to the parallel interface (p.i.o). In the reverse direction, characters to be transmitted are typed in at the keyboard and saved in the ascii text buffer. These characters are displayed on the screen and again optionally printed, before being converted to Baudot for transmission, via the uart, to the two-tone generator ${ }^{1}$. The audio output from the generator is connected to the

microphone input of the transmitter, which operates in vox mode.
The single-bit drive output from the Nascom (normally used to control a cassette tape recorder motor when saving programs on tape) is used in the rtty system to switch the two-tone generator on and off. When DRIVE is asserted low, the generator operates normally, sending mark and space tones to the transmitter. When DRIVE is asserted high, however, no tones are generated at all. Thus the drive output controls transmit/receive changeover, and when used in conjunction with vox there is no need to make any direct control connection to the transceiver. In

FEATURES OF THE G3NRW NASCOMRTTY SYSTEM

The rty program runs on a basic Nascom 1 or 2 microcomputer, under the Fandard Nas-Sys Monitor, and occupies fust 893 bytes of user ram (in the address range OCB0 to OFFF).

Only minor hardware changes are re\#uired to the Nascom hardware, to make the uart hande five-bit characters at 45.45baud. An alternative uart clock generator covering all the standard fates is also described.

Supports an external real-time clock, operating under interrupt, allowing the current time to be displayed on the tv screen and to beincluded in messages.

Supports a Centronics-compatible prinser via the parallel i/o (o.i.o.) interface. dso operating under interrupt, to provide hard copy of all transmitted and roceived messages.
Uses the drive output from the Nascom to control transmit/receive changeover, and to transmit the station callsign in Morse code for identification.
When transmitting, provides:
addition, the system has a command which causes the drive output to be keyed with the station's callsign in Morse code, for identification.

The optional real-time clock interrupts the processor at regular intervals, and forms the basis of a time-of-day clock which is displayed on the screen and which can also be transmitted as part of a message if desired.

The computer in my system is a basic Nascom 1, with 896 bytes of user memory, and running under the standard Nas-Sys Monitor program. All of the options listed above work in this system, but any of them

- keyboard buffering, allowing typeahead
- automatic carriage return/line feed insertion, to prevent overprinting at the end of a line
- automatic insertion of shift character after a space
- automatic transmission of a pre-defined message (e.g. a CO call)
When rezeiving, provides:
- automatic carriage return/line feed insertion
- facility to insent a Letter Shift or Figure Shift chafacter into incoming text, to correct characters being receivedin the wrong shift
- automatic testing of uart status, with rejection of invalid charackers (i.e. characters having overrun or framing errors)
- facility to set up a message for later transmission
Received message text is displayed on the tv screen in lower case letters, and transmitted text in upper case, to allow easy distinction between incoming and outgoing messages.
can be omitted if the corresponding hardware is not available.

Hardware modifications

The essential modifications to the Nascom are

- to provide a uart clock running at 727 Hz for 45.45 baud operation (or 800 Hz for 50 baud), and
- to set up the uart control inputs for 5 bits per character and $11 / 2$ stop bits.
The remaining modifications (i.e. for the printer, real-time clock and drive control) are optional, but once fitted can be used in a wide range of other applications apart

Fig. 2. Modification to 555 clock generator to run the uart at 44.45/50baud.
Component numbers refer to those in the Nascom 1 manual.
from rtty. The modifications are described in detail below, and are suitable for both the Nascom 1 and 2 computers. The test programs to check out the changes are keyed in from the keyboard, using the Nas-Sys modify memory (M) command, and they all start at address $0 C 80$; i.e. execution is started with the command EC80. All references to memory addresses and their contents, here and elsewhere in the article, are in hexadecimal.

UART clock

Two methods of providing a uart clock are described. The first involves a minor modification to the existing 555 clock generator (which normally runs at 1760 Hz for 110 baud operation), and the second is an external clock which produces all of the standard clock rates from 45.45 to 9600 baud.

To make the 555 clock run at 727 or 800 Hz , it is only necessary to replace the existing 22 nF timing capacitor (C_{12} in Fig. 2) with a 47 nF capacitor. This should be a

polycarbonate film type or similar to reduce thermal drift. It is then a matter of adjusting the preset, ideally using a frequency counter, until the desired frequency is achieved. This modification was used successfully for several months, but does of course have the minor disadvantage that it is not then possible to revert to 110baud operation without having some means of switching the timing capacitor back to its original value.

To overcome this disadvantage, an external uart clock generator was developed (Fig. 3). This is based on the cmos 4702B 'baud rate' generator chip, whose output frequency can be selected by means of the four s.p.s.t. switches $S 0$ to S3, according to the table shown in the diagram. The basic 4702B chip provides all of the standard clock rates for operation from 50 to 9600 baud, and the three additional cmos chips produce the clock for 45.45 baud by dividing the master clock frequency $(307200 \mathrm{~Hz})$ by a factor of 422 . The four clock select switches do not require pull-up resistors. Pin 4 of the 4702B chip is normally left unused, but if it is grounded the clock output on pin 10 is disabled.
The unit can be built on a small piece of stripboard and requires no setting up. After construction, the output frequency should be checked with a frequency counter for each of the 16 possible combinations of the clock select switches, and should be within a few Hz of the values given in the table. The 'unusual' frequencies for 110 and 134.5 baud arise from limitations in the design of the chip, but are still well within acceptable limits for the uart.

UART control

The uart control inputs (pins 35 to 39) need to be set up for five-bit character operation. This requires these pins to be connected as follows (corresponding to 5 data bits, $11 / 2$ stop bits, no parity):

Pin 35:	high
36:	high
37:	low
38:	low
39:	high or low (does not matter).

To achieve this, it is required first to remove the existing connections to these pins, if necessary by breaking the p.c.b. tracks. Then the pins can be connected to s.p.s.t. switches with pull-up resistors, as shown in Fig. 4, so that any combination of control inputs can be set up.

Printer interface

The rtty program will drive a Centronics-. compatible printer to provide hard copy of all received and transmitted messages (Fig. 5). The printer is connected to port B of the p.i.o. and operates under interrupt. When the printer is ready to receive a character, its acknowledge output (and therefore the BSTB input to the p.i.o.) goes low, thus causing the interrupt. The data strobe from the p.i.o. to the printer is connected to the B_{7} data pin of the p.i.o. because the print strobe is generated by software.

To test the printer, load the program listed in Table 1, and start it running with the EC80 command. Then type any characters on the keyboard. As each key is struck, the program outputs the corresponding character via the p.i.o. to the printer. Having accepted the character,

Table 1. Printer test program.

OC 80:	21	86	$0 C$	$E 5$	$E D$	$4 D$	$3 E$	$O F$
OC 88:	$D 3$	07	$3 E$	$A C$	$D 3$	07	$3 E$	87
OC 90:	$D 3$	07	$3 E$	$O C$	$E D$	47	$E D$	$5 E$
OC 98:	$F B$	$D F$	$7 B$	32	$B 9$	$O C$	$C B$	$F F$
OCAD:	$D 3$	05	$C B$	$B F$	$D 3$	05	$C B$	$F F$
OCA8:	$D 3$	05	18	$E C$	$A E$	$O C$	$O 8$	$3 A$
OCB $: ~$	$B 9$	$O C$	32	$F 9$	$O B$	08	$F B$	$E D$
OCB8:	$4 D$							

the printer should then respond with an interrupt, and the interrupt service routine in the test program now echoes the character at the top right-hand corner of the screen. If no characters are echoed, the printer is not interrupting correctly. Note that although the characters are echoed on the screen, nothing is actually printed until carriage return is typed (or 132 characters have been input).

Real-time clock

A real-time clock can be connected if desired to the ASTB input of the p.i.o. The clock could be at 50 Hz , derived via a suit-

Fig. 5. Program will drive a Centronicscompatible printer to provide hard copy of messages.
able step-down transformer from the mains, or could be generated by a crystal oscillator. Any frequency in the range 1 Hz to about 1500 Hz could be used, provided that it is accurately known and stable. In the G3NRW system, the clock is obtained from the uart master clock, which is divided by 256 to give a square-wave output at 1200 Hz ; see Fig. 6. This frequency was chosen to allow the Nascom to run Amtor, but that is another story!
To test the clock, first load the program listed in Table 2, setting locations OCAC and OCAD (indicated by Y and X in the program) to correspond to the clock frequency in use. X is the most significant byte of the frequency and Y is the least significant byte. Examples of the hexadecimal values of X and Y for various clock frequencies are shown in Fig. 6. Now start the program with the EC80 command. If the clock is working correctly, the twobyte counter at locations 0BF7 and 0BF8 will be decremented after every individual clock interrupt, and the counter at location 0BF9 will be incremented once per second. As these three memory locations correspond in fact to the last three character positions on the top line of the tv screen, the counters can be observed very easily. Thus the first two of these characters will be changing at the clock rate (and hence will be quite blurred except for very low clock frequencies), whereas the last character on the top line will only change once per second. If these characters do not change at all, the clock is not interrupting correctly.

Fig. 6. Real-time clock could be driven by any accurate frequency between 1 Hz and 1500 Hz ; in the G3NRW set-up clock is obtained from uart and divided by 256 to
Master clock give rectangular-wave output at $\mathbf{1 2 0 0 H z}$.

Table 2. Real-time clock test program. Clock frequency $=X Y$.
OC 80: 2186 OC E5 ED 4D 3E OF
OC 88: D3 06 3E 9E D3 06 3E 87
OC 90: D3 06 3E OC ED 47 ED 5E
OC 98: AF 474 F FB 18 FE AO OC
OCAO: $2 A \mathrm{F7} 0 \mathrm{OB} 2 B 22 \mathrm{F7}$ OB ED
OCA8: 42 20 OA 21 BO) 04 F7
OCBO: OB 21 F9 OB 34 FB ED 4D

Drive control

To control the transmit/receive changeover of the transceiver, and to allow the callsign to be sent in Morse code, the drive output from the Nascom can be used to switch the
tone generator on and off. The output is

- intermittently low and high when sending the callsign (low corresponds to the 'on' or audible elements of the callsign)
- continuously high during receive
- continuously low during transmit.

To check for proper operation of the drive and generator outputs, load the program listed in Table 3, press the reset key and start the program running withe EC80 command. Then strike any key on the keyboard. This should cause the drive l.e.d. to light, indicating that the drive output is low, and the tone generator should be enabled. Then strike another key. Now drive should go high, the drive l.e.d. should go out, and the tone generator output should be inhibited. Repeated
entry of keyboard characters in this manner will toggle the drive output from high to low and back again as many times as required.
Table 3. Drive output test program.
OC 80: DF 6130 FC DF 5F 18 F8

RTTY software

The main features of the rtty program are described followed by the operating instructions, illustrating the start-up of the program and the various commands used in transmitting and receiving messages. The machine code version of the rtty program is listed in Table 4. Copies of the full assembly listing, which runs to some 20 pages, are available direct from the author ${ }^{2}$

Receive mode

The main functions of the receive section of the rtty program are to translate incoming Baudot characters to ascii, to deposit them in the ascii text buffer, and to display them on the tv screen. In addition, the characters can be output from the text buffer to the printer. Several features have been included in the receive section of the program to allow error correction and to allow reply messages to be prepared for later transmission.
O The program tests the uart status as each character is received. If a status error (i.e. framing or overrun error) is detected, the received character is discarded and replaced by a space character. This is very useful under noisy conditions, or when receiving characters at the wrong speed, considerably reducing the number of garbled characters displayed and printed.
O If an incoming letter shift or figure shift character is corrupted so that subsequent characters are displayed in the wrong shift, it is possible to inject a shift correction character via the keyboard to restore the correct shift. For example, if a series of numbers are displayed, and it is suspected that they should be letters, the $<$ SHIFT $>$ L (lower case L) command can be typed. This inserts a Baudot letter shift into the character stream, and all following characters will then be displayed as letters (until, of course, a figure shift character is received, or a <SHIFT> F command is typed at the keyboard). This feature is again extremely useful under noisy conditions particularly when the transmitting station sends line after line of plain text without shift characters.
O The program automatically inserts carriage return/line feed (CRLF) into the incoming message stream, at the first space following the first 64 characters on a line. Thus when using the printer, overprinting at the end of the line is prevented.
O All received message characters are displayed in lower case on the screen to distinguish them from transmitted characters which are displayed in upper case.
When receiving messages, it is possible

Fig. 8. Morse callsign program constants for 'DE G3NRW' are loaded into memory from location OFD4.
to set up a one-line reply or calling message on the top line of the screen, Fig. 7. When transmitting, this heading message can be sent automatically, by simply typing the $<$ SHIFT $>$ H command. This can be repeated as many times as required. The first half of the line contains the time (updated every minute by the real-time clock), and the second half contains the message, which can be any string of characters which fit into the available space; e.g. 'CQ DE G3NRW' or 'EA5CNG DE G3NRW'. This message can be changed at any time whilst receiving, in readiness for the next transmit over.

Fig. 7. When receiving a one-line heading message can be set-up at the top which can be transmitted automatically by keying 'shift' H.

Transmit mode

When transmitting, the program invokes several further features which simplify operation.
O Message characters typed in at the keyboard are buffered, so that it is possible to type much faster than the characters are transmitted. The characters are not echoed on the screen until the instant they are actually sent, so that it is possible to monitor the progress of the transmission.
O Baudot letter shift and figure shift characters are inserted automatically into the message.
O After each of the space characters is transmitted, the program automatically inserts a shift character. Thus even if a particular word is received in the wrong shift, because an earlier shift character was garbled, the next word should be received properly.
O As on receive, CRLF is inserted automatically into outgoing messages at the first space after the first 64 characters on a line. This allows the operator to type long messages without needing to consider when to start a new line, thus preventing overprinting on his own printer and on the printer at the other end. In fact, the CRLF sequence consists of four characters: carriage return,
line feed, space and letter shift. The space is a pad character to allow additional time for the receiving printer to complete the mechanical movement to the left margin, and the letter shift character ensures that the new line starts in a known shift state, in case the shift was corrupted in the previous line.
O When no message characters are being transmitted, the program automatically sends null (i.e. blank) characters, rather than just a continuous mark or space. This ensures that there are a regular transitions between mark and space all the time, even when the system is idling. This can be helpful to a receiving station equipped with a terminal unit containing separate mark and space amplitude demodulators, as opposed to the more usual f.m. discriminator; it is claimed that such an a.m. terminal unit can perform better than an f.m. unit under noisy conditions, provided that the demodulators are kept 'topped up' by regular transitions between mark and space ${ }^{3}$.
O As mentioned above, a one-line heading message can be set up on the screen whilst on receive, and then transmitted with the $<$ SHIFT $>$ H command. This can save considerable typing effort for repetitive messages, such as $C Q$ or test calls, as once the message has been set up it is only necessary to type $<$ SHIFT $>\mathrm{H}$ each time the message is to be transmitted.
O At any time it is possible to transmit the station's callign in Morse code.
O Any spurious output from the receive section of the uart is discarded when transmitting. This was found to be necessary because random noise generated in the terminal unit was occasionally treated by the uart input as valid characters. These characters were regarded by the transmit program as keyboard characters, and consequently transmitted along with genuine keyboard characters.

Tailoring the rtty program

Before the rtty program can be used certain memory locations need to be set up to make it applicable to the hardware options actually fitted to the system. This is a once-only job. That is, the rtty program listed in Table 4 is loaded into memory, then the necessary modifications are made, and finally the modified version is saved on cassette tape for future use. If, on the other hand, none of the options are fitted, the program listed in the table can be used without any changes.

Binary	Hex
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	A
1011	B
1100	C
1101	D
1110	E
1111	F

The three areas of the program which may require setting up are:
a. two Nas-Sys table pointers (Nas-Sys1 only)
b. real-time clock frequency
c. callsign in Morse code.

No changes are required if a printer is not connected.
Running under Nas-Sys. The rtty program listed in Table 4 runs under the Nas-Sys 3 Monitor, which is the version now normally supplied with the Nascom. To run the program under the earlier NasSys 1 Monitor, just two modifications are required:

- change location 0CDE from 7C to 82
- change location 0D8E from 80 to 86 .

Setting up the real-time clock. If a realtime clock is fitted, the clock frequency XY is set up in locations $0 \mathrm{FE} 0(\mathrm{Y})$ and 0 FEl (X), in the same way as in the realtime clock test program listed earlier.
Callsign generation. Locations 0FD4 to 0 FDF are set up with constants which correspond to the on and off elements of the Morse characters of the callsign. As an example, Fig. 8 shows how the constants for the message 'DE G3NRW' are derived. First, the individual dots and dashes are drawn on squared paper, with each square representing a single dot-time. The usual rules for Morse code timing are followed:

- individual elements of a character are separated by one dot-time
- a dash is three dot-times
- individual characters are separated by three dot-times
- individual words are separated by seven dot-times.
Then, the squares are grouped into fours, and each group is allocated a hexadecimal digit, according to the table in Fig. 8. Finally, these hexadecimal digits are grouped into pairs. These pairs are the constants which are stored in memory from location 0FD4 onwards. The constants occupy 12 locations, giving a total of 96 dot-times. If the callsign requires less than this, the trailing bits should be set to zero, and the callsign will terminate when the first all-zero byte is encountered. If the callsign contains many dashes, it may be necessary to omit the initial 'DE' to make it fit into 96 bits. The speed of callsign transmission is controlled by the software delay constant at location 0D7B. The value of 06 corresponds to about 12 words per minute, with the c.p.u. clock running at 2 MHz . If the c.p.u. clock frequency is 4 MHz , this constant should be doubled to

OC. Larger values of the constant will reduce the speed of callsign transmission, and smaller values will increase it.

Using the program

The rtty program is now ready for use. After loading it into memory, strike 'reset' and start the program running at address 0 C 80 , using as usual the EC80 command, followed by the time in hours and minutes (24-hour clock) if the real-time clock is fitted;
for example: EC80 1715.
The time, as set up above, will be displayed on the top line of the screen and will be updated every minute thereafter. If the clock is not fitted, simply type the EC80 command by itself to start the program.

Receiving rtty messages

On start-up, the program goes automatically into receive mode, and incoming Baudot characters are translated to ascii and displayed in lower case on the screen. If the printer is fitted, the ascii characters will also be printed.
When in receive mode, there are five command characters which can be entered from the keyboard. Each of these characters is a shift character; that is, to enter a command, hold down the $<$ SHIFT $>$ key, strike the command key, then release the $<$ SHIFT $>$ key. The commands are
$<$ SHIFT $>$ L: insert Baudot letter shift into the incoming message
$<$ SHIFT $>$ F: insert Baudot figure shift into the incoming message
$<$ SHIFT $>$ Z: start building a heading message
$<$ SHIFT $>$ X: finish building a heading message
$<$ SHIFT $>$ T: change to transmit.
The $<$ SHIFT $>$ L and $<$ SHIFT $>$ F commands are very useful for changing the Baudot shift of incoming message characters when previous shift characters have not been received correctly.
The <SHIFT> Z and <SHIFT> X commands are used to set up the one-line heading message on the top line of the display. This message can then be transmitted later when in transmit mode. To set up the message, input the $<$ SHIFT $>$ Z command. This causes a flashing arrow to appear at the top right hand corner of the screen, signifying that the system is ready to accept a new message. Also, a row of dots is displayed on
the top line, indicating the maximum extent of the message area.

Now type in the message. As each character is input, it will appear on the top line. When the end of the line is reached, the next character will appear back at the beginning of the message area. If a typing mistake is made, give the $<$ SHIFT $>\mathbf{Z}$ command again and retype the line from the beginning.

When the message is complete, input the $<$ SHIFT $>$ X command. The flashing arrow will then disappear, and any further keyboard characters (except commands) will be ignored.

The heading message can be set up or changed at any time whilst in receive mode. Note that when setting up the message, incoming Baudot characters are still displayed on the remaining lines of the screen without interruption. Therefore it is possible to tune in to a station, ascertain its callsign, then set up an appropriate reply, all without missing any incoming characters.

Transmitting rtty messages

The <SHIFT> T command changes the program from receive to transmit mode, whereupon the drive output from the Nascom goes low. To send a message, simply type in the required text at the keyboard. As each character is transmitted via the uart, it appears in upper case on the screen, and hard copy is produced on the printer.

In transmit mode there are three command characters:

$<$ SHIFT $>$ H: transmit the heading message
 $<$ SHIFT $>$ I: transmit the station identification in Morse code
 $<$ SHIFT $>$ R: change to receive mode.

The <SHIFT> H command causes the top line of the display to be transmitted (the whole line, including the time, if the real-time clock is fitted, or the message only if the clock is not fitted). The command causes the line to be transmitted once; to transmit it more than once, simply type $<$ SHIFT $>\mathrm{H}$ as many times as required.

The <SHIFT> I command causes the program to transmit the Morse callsign to identify the station, and can be used at any time whilst transmitting.
The $<$ SHIFT $>$ R command causes the program to change back to receive mode, and the drive output goes high.

The final test

Before using the rtty program on the air, it can be tested using a cassette recorder in place of the transceiver. That is, messages are 'transmitted' to the recorder, and then 'received' by playing back the tape. This method of operation was used extensively when developing the program, to make sure that the message characters were being transmitted exactly as expected (and this technique has proved to be even more useful in developing other data communications programs such as Amtor which transmit and receive synchronous bit streams).

Experience

On the air, the system described in this article has been in regular use at G3NRW for over a year, and many very interesting contacts have been made on h.f. and v.h.f. Low power operation on 20 m has been particularly rewarding - you simply can't beat the thrill of getting a 539 report from Italy when running 50 milliwatts of rtty to a dipole - and the many features built in to the program have more than proved their worth.

There are, of course, limitations in the software, arising mainly from the very small memory available. With not one single byte to spare there was just no room, for example, to store a library of standard messages (such as 'RYRYRY' or station description), which would considerably reduce typing effort on transmit. However, the whole exercise has been extremely instructive, in that it forced me to find out exactly how Nas-sys works and how it could be used to maximum efficiency in supporting the required input/output functions.

On the hardware front, few problems were experienced in making the computer system work by itself, but the fun really started when the system was attached to the h.f. transceiver. On receive, r.f. hash from the computer virtually blotted out all but the strongest signals, and on transmit an output power greater than about 15 watts caused the computer to stop running. Eventually, after much experimentation with ferrite beads, decoupling capacitors, r.f. chokes and screened leads, almost all of the interference in both directions was cured by connecting a single 150 pF capacitor between the +12 V d.c. supply and ground. A simple remedy, but it took a long time to find.
Finally a special thankyou to Bob, EA5CNG (perhaps better known in the UK as G3FXG). Bob has been using the program on his Nascom 2 for several months and has provided much useful feedback and suggestions for further development. Incidentally, the program itself was originally transmitted to Bob over the air, Nascom to Nascom on 20 m , and since then several other experiments in direct computer-to-computer communication between the UK and Spain have been carried out. But that is yet another story!

References

1 'RTTY The Easy Way'. A popular booklet describing how to build simple rtty terminal units and two-tone generators. Published by the British Amateur Radio Teleprinter Group (BARTG) at $£ 1.15$ including packing and postage. Available from the BARTG Secretary, 27 Cranmer Court, Richmond Road, Kingston-upon-Thames, Surrey.
2 Assembly listing of the G3NRW RTTY Program. Available direct from the author at $£ 2$ to cover stationery, photocopying and mailing at 7 Daubeney Close, Harlington, Dunstable, Beds.
3 'Two-tone terminal unit'. A three-part article describing an a.m. terminal unit, published in the BARTG Newsletter: March/June/September 1979.

Common-mode rejection explained

Common-mode-rejection ratio characterizes the ability of a differential amplifier to discriminate between the differentialmode and the common-mode components of a signal. It is often conveniently ignored in amplifier circuit analysis because in many op-amp applications - perhaps the majority - the non-inverting input is connected to earth and a large amount of d.c. negative feedback forces the inverting input to be close to earth, so the commonmode component is insignificant, even in second-order calculations. But there are some practical op-amp circuits, such as direct-coupled voltage followers, in which the finite c.m.r.r. cannot be ignored. This article clarifies the c.m.r. properties of an op-amp - its origin and meaning, its graphical interpretation and its representa tion by a voltage generator for circuit calculations. A second article deals with practical aspects of c.m.r. and explains how c.m.r.r. can be measured directly.

Classification of op-amps

An understanding of the origin of com-mon-mode rejection of a real op-amp can be built up by introducing a classification system. Postulate initially the existence of an almost perfect op-amp having the symbol shown in Fig. 1(a). This symbol is almost the same as that used for any differential voltage amplifier but the vertical side of the triangle is thickened to denote that the amplifier characteristics depart from the conventional 'ideal' (infinite input impedance output admittance and bandwidth) in that there is a finite voltage gain A. The total instantaneous input signal V_{+}and V_{-}can be considered as two parts, (b), a c.m. component V_{c} given by $\left(V_{+}+V_{-}\right) / 2$, and a d.m.c. V_{D} defined as $\mathrm{V}_{+}-\mathrm{V}_{-}$. There is general agreement in the literature that the meaning of c.m.c. is the algebraic average of V_{+}and V_{-}, as just defined. There is an alternative choice for d.m.c. of $\left(V_{+}-V_{-}\right) / 2$ which corresponds to $\mathrm{V}_{\mathrm{D}} / 2$. This is certainly useful in analysis, as shown by redrawing (a) in the form of (c).

The quasi-perfect op-amp, which I shall term a Class 1 , is completely specified by a single transfer characteristic, (d). For all values of V_{C} this is a straight line $a_{0} b_{0}$ with slope + A that passes through the origin of co-ordinates on a plot of $V_{0} v s V_{D}$. So $\mathrm{V}_{0}=\mathrm{A} \mathrm{V}_{\mathrm{D}} . \mathrm{A}$ is clearly the d.m. gain, i.e. $A=A_{D}$. In elementary analyses a Class 1 op-amp is implied, usually with the additional assumption $\mathrm{A}_{\mathrm{D}} \rightarrow \infty$ corresponding to a transfer characteristic coincident with the vertical axis.

The gain A_{C} for the c .m.c. is zero. Thus

by B. L. Hart

(a)

(b)

(d)

Fig. 1. Symbol for 'quasi-perfect' op-amp uses thickened line to denote non-ideal behaviour (a). Signals V_{+}and V_{-}can $b e$ split into common-mode component V_{C} and differential component $V_{D}(b)$. Redrawn version (c) emphasizes significance of V_{C} and V_{D}. This class 1 opamp is completely specified by transfer characteristic (d).

Fig. 2. Common-mode gain for class 1 opamp is zero so if V_{+}and V_{-}have the form indicated, V_{0} is an amplified version of V_{D} only.
if V_{+}and V_{-}have the form indicated in Fig. $2, V_{0}$ is an amplified version of V_{D} only; V_{C} is totally rejected. This is an ideal never achieved in practice. The reason for this rejection is that though V_{+}and V_{-}are applied at different input points to the amplifier they undergo identical magnifi-

The author

Bryan L. Hart is currently senior lecturer in charge of the electronics group in the School of Electrical and Electronic Engineering at North East London Polytechnic, where his principal research interests are device modelling and analogue integrated-circuit design techniques. Graduating in physics from Queen Mary College, London University, in 1951 and following national service in the Royal
Signals, he obtained a
postgraduate diploma in electronics and radio from Edinburgh University in 1954. After a period in industry as a radar research engineer with the Marconi Company he entered teaching in 1964.

Fig. 3. Common-mode signal is rejected due to identical magnifications, though the signal paths are different, as indicated.
cation in their passage through it. (Magnification means an increase in signal amplitude without regard to polarity.) To emphasize the fact that the initial signal paths are different we can imagine the opamp as comprising three separate units for which $A_{D}=A=A_{1} A_{0}$, Fig. 3.

Class 2

A second class of op-amp is best defined graphically. For all magnitudes of V_{C} there is a single transfer characteristic - a straight line $a_{1} b_{1}$ with slope $+A$ and intercept OX_{1} on the V_{D} axis, Fig. 4. By definition OX_{1}, arbitrarily shown as positive, is the input offset voltage and its

Fig. 4. Class 2 op-amps have straight-line transfer characteristic with intercept on the $V_{D} a x i s, ~ e q u a l ~ t o ~ t h e ~ i n p u t ~ o f f s e t ~ v o l t a g e, ~$ V_{100} arising simply from small differences in the active devices.

Fig. 5. Class 2 op-amp is represented by a class 1 with an offset voltage generator in either of its inputs (a). Alternatively, for analysis, offset voltage can be split into equal components one in series with each input (b).

Fig. 6. Unequal magnifications of V_{+}and V_{-}together with offset voltage are taken into account in this class 3 equivalent circuit.
magnitude is $\mathrm{V}_{\text {IOO }}$. The cause is due to a number of factors, including the nature of the active devices used in the amplifier and it could arise merely through a small difference in the emitter areas of two otherwise identical bipolar junction transistors forming part of a long-tailed pair in the input stage.
A Class 2 op-amp can be represented by a Class 1 op-amp with an offset voltage generator in series with either of its input terminals as shown in Fig. 5(a), in which the non-inverting input terminal is arbitrarily chosen. For analytical convenience, V_{IO} can equally well be split into two equal components, one in series with each input terminal, as in Fig. 5(b). Then

$$
\begin{gathered}
\mathrm{V}_{0}=\mathrm{A}\left\{\mathrm{~V}_{+}-\left(\mathrm{V}_{\mathrm{IO} 0} / 2\right)\right\}- \\
\\
\\
A\left\{V_{-}+\left(\mathrm{V}_{\mathrm{IO} 0} / 2\right)\right\}
\end{gathered}
$$

and substituting for V_{+}and V_{-}gives

$$
\begin{equation*}
V_{0}=A_{D}\left(V_{D}-V_{100}\right) \tag{1}
\end{equation*}
$$

Notice that $A_{D}(=A)$ now relates to changes in V_{0} and V_{D} i.e. $A_{D}=\Delta V_{0} / \Delta V_{D}$. $V_{\text {IOO }}$, unless zero, causes a d.c. offset at the output. V_{C} is still completely rejected as V_{+} and V - are magnified equally in passing from input to output.

Class 3

Complications must be expected when the signals V_{+}and V_{-}are magnified by unequal amounts in their passage through the amplifier, as is the case in practice. Taking $\mathrm{V}_{\mathrm{IO} 0}$ into account, the equivalent circuit representation of a Class 3 op -amp is shown in Fig. 6. In this case

$$
\begin{aligned}
\mathrm{V}_{0}= & \mathrm{A}_{0}\left\{\mathrm{~V}_{+}-\left(\mathrm{V}_{\mathrm{IO} 0} / 2\right)\right\}- \\
& \mathrm{A}_{0}\left\{\mathrm{~V}_{-}-\left(\mathrm{V}_{\mathrm{IO} 0}\right) / 2\right\} \mathrm{A}_{\mathrm{I}} .
\end{aligned}
$$

Substituting for V_{+}and V_{-}

$$
\begin{aligned}
\mathrm{V}_{0}= & \left\{\mathrm{A}_{0}\left(\mathrm{~A}_{\mathrm{I}}+\mathrm{A}_{\mathrm{I}}{ }^{\prime}\right) / 2\right\}\left\{\mathrm{V}_{\mathrm{D}}-\mathrm{V}_{\mathrm{IO} 0}\right\}+ \\
& \mathrm{A}_{0}\left(\mathrm{~A}_{\mathrm{I}}-\mathrm{A}_{\mathrm{I}}{ }^{\prime}\right) \mathrm{V}_{\mathrm{C}}
\end{aligned}
$$

which can be rewritten

$$
\begin{equation*}
V_{0}=A_{D}\left(V_{C}-V_{I O 0}\right)+A_{C} V_{C} \tag{2}
\end{equation*}
$$

where by definition

$$
\begin{aligned}
\mathrm{A}_{\mathrm{D}} & =\text { d.m. gain } \\
& =\Delta \mathrm{V}_{0} / \Delta \mathrm{V}_{\mathrm{D}} \text { with } \mathrm{V}_{\mathrm{C}} \text { constant } \\
& =\left\{\mathrm{A}_{0}\left(\mathrm{~A}_{\mathrm{I}}+\mathrm{A}_{\mathrm{I}}^{\prime}\right) / 2\right\}=\mathrm{A}_{0} \bar{A}_{I} \\
\mathrm{~A}_{\mathrm{C}} & =\text { c.m. gain }=\Delta \mathrm{V}_{0} / \Delta \mathrm{V}_{\mathrm{C}} \quad \mathrm{~V}_{\mathrm{D}} \text { const. } \\
& =\mathrm{A}_{0}\left(\mathrm{~A}_{\mathrm{I}}-\mathrm{A}_{I^{\prime}}\right)=\mathrm{A}_{\mathrm{D}} \Delta \mathrm{~A}_{\mathrm{I}} .
\end{aligned}
$$

The voltage V_{0} contains an undesirable c.m.c. because of the existence of a nonzero gain difference $\Delta \mathrm{A}_{\mathrm{I}}$. This arises through unbalanced passive and active component parameters.
A quantitative description of the extent to which a differential amplifier rejects the c.m.c. in favour of the d.m.c. is the com-mon-mode rejection ratio ρ or $\mathrm{k}_{\mathrm{CMR}}$, the usual definition of which is

$$
\begin{equation*}
\rho=\left|A_{D} / A_{C}\right| \tag{3}
\end{equation*}
$$

Thus $\quad \rho=\left|\bar{A}_{D} / \Delta A_{\mathbf{l}}\right|$.
Although this indicates an origin for c.m.r.r. its potential usefulness to a device designer or circuit engineer for calculating ρ to any degree of accuracy depends on the particular amplifier configuration. One circuit for which this is applicable is the single-stage resistively-loaded fet longtailed pair differential amplifier shown in Fig. 7, in which the output in question is taken from the drain of Tr_{2}.

The low-frequency incremental output resistance of the tail current generator is assumed infinite: the nominally matched n -channel j -fets have voltage amplification factors μ_{1} and μ_{2}. It can be shown (see Part 2 , in which a derivation is given for completeness) that

$$
A_{1}=\lambda \mu_{1} /\left(1+\mu_{1}\right) \text { and } A_{1}^{\prime}=\lambda \mu_{2} /\left(1+\mu_{2}\right)
$$

where λ is a constant fixed by a resistor ratio. Putting

$$
\left(\mu_{1}+\mu_{2}\right) / 2=\mu(\gg 1) \text { and } \mu_{1}-\mu_{2}=\delta \mu(\ll \mu)
$$

it follows that

$$
\begin{equation*}
1 / \rho=\left|\delta \mu / \mu^{2}\right| \tag{5}
\end{equation*}
$$

As μ usually only weakly depends on operating current, so does ρ. Equation 5 will be familiar if you recall the use of matched thermionic valves in d.c. amplifiers for biomedical applications. Accord-

Fig. 7. Typical circuit for which commonmode rejection is quantitativelv given by the ratio of the mean amplifier gain to the difference in gains.

Fig. 8. Effect of finite c.m.r. can be allowed for by including a voltage generator V_{C} / ρ in series with one of the inputs.
ing to Middlebrook ${ }^{1}$, effectively the same result was obtained - though by a different analytical technique - for a valve stage by, among others, Parnum ${ }^{2}$ as long ago as 1945 . What is perhaps not generally appreciated is that this equation also applies to the case of a single-stage resisti-vely-loaded and voltage-driven long-tailed pair amplifier using bipolar transistors. This can be shown by an extension of the proof given in the Appendix, or alternatively follows from a different approach ${ }^{3}$.
For the case of bipolar transistors $\mu=\mathrm{g}_{\mathrm{m}} \mathrm{r}_{\mathrm{ce}}$ where $\mathrm{g}_{\mathrm{m}} \approx 40 \mathrm{I}_{\mathrm{c}} \mathrm{mS}$, the quiescent collector current I_{c} being expressed in mA , and r_{ce} in $\mathrm{k} \Omega$ is the low frequency collector incremental output resistance with baseemitter voltage drive. Values for $r_{d s}$ for a fet and r_{ce} for a bipolar transitor are normally comparable in magnitude but $\mathrm{g}_{\mathrm{m}} \gg \mathrm{g}_{\mathrm{fs}}$ at similar operating current levels. As a result, for a modern planar bipolar transistor, μ is considerably greater than that for a fet, typically about 5000 . Consequently, for a given percentage match in μ, ρ for the bipolar stage exceeds that for the fet stage. Actually, the majority of op-amp input stages are not simple long-tailed pairs: ingenious circuit design techniques attempt to obtain a ρ superior to that given by equation 5 . Nevertheless equation 4 is still a useful relationship from a system viewpoint. As specified by device manufacturers, ρ is obtained from measurements on production samples and is commonly expressed in dB: even low-cost op-amps typically have $\rho \sim 80 \mathrm{~dB}$.

Equations 2 and 3 give a clue to the equivalent circuit representation of c.m.r. as we can combine them to obtain

$$
\begin{equation*}
V_{0}=A_{D}\left\{V_{D}-V_{I O O}+V_{C} / \rho\right\} \tag{6}
\end{equation*}
$$

Like offset voltage, the effect of finite c.m.r.r. can be allowed for by including a voltage generator $\left(\mathrm{V}_{\mathrm{C}} / \rho\right)$ in series with one of the input terminals of the op-amp, as in Fig. 8. The positive sign for the third term, as with the negative sign for the second, arises through an arbitrary choice.

Fig. 9. 'Three dimensional' characteristic plane displays functional dependence of V_{0} on the two dependent variables V_{D} and V_{C}. $A s A_{D}$ and A_{C} are constant, equation for V_{0} is the plane surface defined by two parallel lines.

Fig. 10. With $V_{I O O}$ constant, the incremental form of the V_{0} equation is as shown.

Fig. 11. Transfer characteristic of class 3 op-amp comprises a series of parallel lines, two of which are shown, corresponding to the projection of lines such as $a^{\prime}{ }_{2} b^{\prime}{ }_{2}$ on the plane
The way in which the sign-uncertainty is dealt with in practice will be considered later (Part 2). For calculation, equation 6 is unnecessarily complicated and can be simplified. Thus from equation 6

$$
\begin{aligned}
& V_{+}-V_{-}=V_{D}=\left(V_{0} / A_{D}\right)+V_{I O}-V_{C} / \rho \\
& \text { or } \quad V_{-}=V_{+}-\left(V_{0} / A_{D}\right)-V_{I O 0}+V_{C} / \rho
\end{aligned}
$$

substituting $\mathrm{V}_{-}=2 \mathrm{~V}_{\mathrm{C}}-\mathrm{V}_{+}$in this expression gives

$$
\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{+}-\left(\mathrm{V}_{0} / 2 \mathrm{~A}_{\mathrm{D}}\right)-\left(\mathrm{V}_{\mathrm{IO}} / 2\right)+\mathrm{V}_{\mathrm{C}} / 2 \rho
$$

or $\mathrm{V}_{\mathrm{C}}=\left[\mathrm{V}_{+}-\left(\mathrm{V}_{0} / 2 \mathrm{~A}_{\mathrm{D}}\right)-\mathrm{V}_{\mathrm{IO} 0} / 2\right] /[1-1 / 2 \rho]$
Typically, $V_{0}<10 \mathrm{~V}, A_{D}>80 \mathrm{~dB}, ~ \rho \gg 1$, $\mathrm{V} \sim \operatorname{lmV}$. Hence, if $\mathrm{V}_{+} \gg \mathrm{V}$, then $\mathrm{V}_{\mathrm{C}} \approx \mathrm{V}_{+}$ and $V_{C} / \rho \approx V_{+} / \rho$.

Mathematically, equation 2, unlike 1, indicates that V_{0} is a function of two dependent variables, V_{D} and V_{C}. So to display the functional dependence we must plot in three dimensions. In Fig. 9 the axis for V_{C} is perpendicular to the V_{0} and V_{D} axes. As A_{D} and A_{C} are presently assumed constant, equation 2 is the equation of a plane surface that is defined by any two parallel straight lines such as $a_{1} b_{1}$, corresponding to $\mathrm{V}_{\mathrm{C}}=0$ and $\mathrm{a}_{2}{ }^{\prime} \mathrm{b}_{2}{ }^{\prime}$ for $\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{C}}$, that cut the plane $\mathrm{V}_{0}=0$ at points X_{1} and $\mathrm{X}_{2}{ }^{\prime}$ respectively. As V_{IO} is constant the incremental form of equation 2 is

$$
\begin{equation*}
\Delta V_{0}=A_{D} \Delta V_{D}+A_{C} \Delta V_{C} \tag{7}
\end{equation*}
$$

A geometrical interpretation is given in Fig. 10, in which $a_{2} b_{2}$ is the projection of $a_{2}{ }^{\prime} \mathrm{b}_{2}{ }^{\prime}$ on the plane $\mathrm{V}_{\mathrm{C}}=0$ and $\mathrm{a}_{1}{ }^{\prime} \mathrm{b}_{1}{ }^{\prime}$ is the projection of $\mathrm{a}_{1} \mathrm{~b}_{1}$ on the plane $\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{C}^{\prime}}$. Suppose, initially, we are biased at the point P. Then an increase in both V_{D} and V_{C} can be imagined to occur in two separate steps. The change from P to Q with V_{C} constant (at zero) gives $\Delta \mathrm{V}_{01}\left(=\mathrm{A}_{\mathrm{D}} \Delta \mathrm{V}_{\mathrm{D}}\right)$: similarly, the change from Q to R at constant V_{D} gives $\Delta V_{02}\left(=A_{C} \Delta V_{C}\right)$. Point S is the projection of R on the plane $V_{C}=0$.
The transfer characteristics of a Class 3 op-amp comprise a series of parallel straight lines - two of which are shown in Fig. 11 - corresponding to the projection of lines such as $\mathrm{a}_{2}{ }^{\prime} \mathrm{b}_{2}{ }^{\prime}$ on the plane $\mathrm{V}_{\mathrm{C}}=0$. The lines are equally spaced because $\left|\mathbf{A}_{\mathrm{C}}\right|$ is constant: $a_{2} b_{2}$ is drawn to the left of $a_{1} b_{1}$ because we are assuming $\mathrm{A}_{\mathrm{C}}>0$. The construction in Fig. 12 not only gives information about the spacing of the parallel characteristics but also leads to an alternative definition of c.m.r.r. that is useful for measurement.
Suppose we operate at $\mathrm{V}_{0}=0$ corresponding to $V_{C}=0$ and $V_{D}=V_{\text {IOO }}$, i.e. point X_{1}. If $\Delta V_{0}=0$ when V_{D} and V_{C} both change, then the path traced out is X_{1} to T (V_{D} constant, V_{C} changes) and T to X_{2} (V_{C} constant, V_{D} changes). From equation 7 ,

$$
0=A_{D} \Delta V_{D}+A_{C} \Delta V_{C}
$$

The spacing of the characteristics in Fig. 12 is thus

$$
\left|\Delta V_{D}\right|=\left|\Delta V_{C} / \rho\right| \approx\left|\Delta V_{+} / \rho\right| .
$$

The same result would, of course, be obtained had we started with $\mathrm{V}_{0}=\mathrm{V}_{0}{ }^{\prime}=0$ and again made changes in V_{D} and V_{C}, this time for $\Delta V_{0}{ }^{\prime}=0$. Now V_{D} for $V_{0}=0$ is defined as the input offset voltage $V_{I O}$, so the reciprocal of ρ is the rate of change of input (offset) voltage with common mode input voltages. Thus
$1 / \rho=\left|\Delta V_{D} / \Delta V_{C}\right|$ for V_{0} constant at zero

$$
\begin{equation*}
=\left|\Delta \mathrm{V}_{\mathrm{IO}} / \Delta \mathrm{V}_{\mathrm{C}}\right| \tag{8}
\end{equation*}
$$

On data sheets the input offset voltage is commonly given two subscripts, e.g. $V_{\text {os }}$ or V_{IO} : an additional subscript (0) is used in this article to refer to the usual practical measurement condition $\mathrm{V}_{\mathrm{C}}=0$. In general

$$
\mathrm{V}_{\mathrm{IO}}=\mathrm{V}_{\mathrm{IO} 0} \pm \mathrm{V}_{\mathrm{C}} / \rho \approx \mathrm{V}_{\mathrm{IO} 0} \pm \mathrm{V}_{+} / \rho .
$$

The negative sign applies for $\Delta A_{t}>0$. Notice for comparison, that in a Class 2 opamp $V=f\left(V_{C}\right)$ so for that case the line

Fig. 12. Construction not only gives information about line spacing but also leads to an alternative definition of common-mode rejection that is useful for measurement.

Fig. 13. Class 4 op-amps are defined by non-planar characteristic surface such as that shown.

Fig. 14. Family of Class 4 transfer characteristics associated with Fig. 13 obtained by projection onto the plane $V_{C}=0$ are now neither straight nor parallel.
$\mathrm{X}_{1} \mathrm{X}_{2}{ }^{\prime}$ in Fig. 9 would be parallel to the V_{C} axis.

Class 4

A fourth class is defined by a non-planar characteristic surface such as that shown in Fig. 13. The associated family of transfer characteristics obtained by projection on to the plane $\mathrm{V}_{\mathrm{C}}=0$ are now neither straight nor parallel, Fig. 14.
A_{D}, A_{C} and ρ are all dependent on the d.c. operating conditions but can be considered sensibly constant if the changes in $\mathrm{V}_{0}, \mathrm{~V}_{\mathrm{D}}$ and V_{C} about the selected bias point are small enough for the characteristic surface to be well-approximated by a tangent plane. Then
$\mathrm{A}_{\mathrm{D}}=\partial \mathrm{V}_{0} / \partial \mathrm{V}_{\mathrm{D}}$ at constant V_{C}
$\mathrm{A}_{\mathrm{C}}=\partial \mathrm{V}_{0} / \partial \mathrm{V}_{\mathrm{C}}$ at constant V_{D}
$1 / \rho=\left|\partial \mathrm{V}_{\mathrm{DS}} / \partial \mathrm{V}_{\mathrm{C}}\right|$ at constant V_{0}.

To be continued

, Current dumping review -1

Crossover distortion is a problem in designing any class B audio amplifier. Bias current provides the basis for the usual solution, but introduces the threat of thermal instability. Current dumping is an alternative to bias current, aiming to abolish crossover distortion without further difficulty.

In his original article in this periodical (December 1975), P. J. Walker explains a new technique for abolishing crossover distortion in audio amplifier output stages. His ideas are backed by the commercial success of the Quad 405 amplifier, and the subsequent 1978 Queen's Award for technological achievement.

Seven years have now passed, but the discussion continues unabated. The early contributions in these pages were from practitioners in the audio field, including many well-known names, while later material has come from universities over the world. This article presents in good order the results so far obtained. The discussion reads rather like an epic, full of sudden reversals of fortune.

As the new method is often referred to as something of a mystery, it will first be related in terms of familiar ideas. Walker's own explanation is in terms of the circuit of Fig. 1. For small output currents the driver amplifier A itself supplies the load Z_{L} directly, via Z_{3}. Larger currents turn on a dumper, and as Z_{4} is chosen to be small the dumper then supplies the bulk of the output current. Then A never has to supply much power, and so it can operate in class A , with no crossover distortion. Indeed, A is just the usual driver amplifier, and we shall refer to it as such.

It is therefore appropriate to call the output transistors in Fig. 1 the "current dumpers', and the substantial distortion which remains will be their crossover distortion. Walker has shown how to choose circuit values that result in complete cancellation of this distortion. It is this choice which is the heart of the matter.

Feedback explanation

To start detailed discussion of Fig. 1 with an intuitive idea of its working, that offered by P. Baxandall (July 1976) relies on the most familiar ideas.

He starts from a circuit similar to that of Fig. 2, with S_{1} closed and Z_{4} shorted as drawn. Now imagine Z_{3} removed. There will be no feedback, and the $\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {in }}$ characteristic will look like that of Fig. 3, except that the central segment will be horizontal. This occurs while V_{in} makes progress across the dead region, while the output of A is traversing the voltage gap

by Michael McLoughlin

between the levels required to drive the transistor bases. Adding Z_{3} assists matters: while this gap is being crossed there is still some output to the load, as shown by the reduced but positive slope of the central segment.

Now open S_{1} of Fig. 2, to provide 100\% voltage feedback to A. The variation in open-loop gain shown will be violently assaulted, and the ratio of the gains in the dumpers-off and dumpers-on regimes will be very close to unity. There is now scarcely any crank between the three segments of Fig. 3. (Also the horizontal scale has changed dramatically.)

Baxandall observes that there is now a way to make all three segments line up perfectly. All that is needed is a little extra feedback in the dumpers-on regime, to reduce the gain slightly to that found at the central segment. Then the outer segments tilt gently on their point of meeting with the central section, to provide a perfect straight line!

To provide the extra feedback it suffices to remove the short on Z_{4}. When the dumpers are off this resistor has no influence on feedback, but when they are on the hotter end of Z_{4} carries more output voltage than the load itself. So there is now extra feedback when the dumpers are on, as required. Naturally, Z_{4} must be chosen with care to produce just the correct flexing in Fig. 3.

If desired, Z_{2} may be connected between N and B in Fig. 2. It is however clearly quite unnecessary. Indeed its contribution to total feedback at N is retrograde, actually feeding back more of $\mathrm{V}_{\text {out }}$ when the dumpers go off. But if Z_{2} is inserted, its harmful effect can readily be cancelled by an increase in Z_{4}, to boost the desired feedback as necessary.

When the correct Z_{4} is in circuit the transfer characteristic is perfectly linear. As a result the grounded terminal of the signal source $V_{\text {in }}$ may now be connected instead to $\mathrm{V}_{\text {out }}$, and the signal source made to float. Of course, much less signal will
Michael McLoughlin is a mathematics teacher at Haberdashers' Aske's School, Elstree.
now be required for a given output.
Following Baxandall closely we have arrived at Walker's circuit in Fig. 1, with S_{1} as drawn. And when S_{1} is switched the essential invention now appears as the introduction of Z_{4}, to provide a little extra feedback in the dumpers-on regime to counter the extra gain introduced into the system when the dumpers bypass Z_{3}.

Algebra

Baxandall's intuitive explanation can easily be extended into algebra, to derive the Walker balance condition on the four bridge components. The discussion will now centre on Fig. 1, taking the floating "zero volts" rail as zero for the discussion of all voltages. It should be helpful initially to think of this line as "earth", and to regard Z_{3} and Z_{4} as amplifier load resistors connected to this.

We shall study the total load current I flowing to "earth", and deduce the balance condition in three short paragraphs. Before starting define F as that fraction of output voltage across Z_{3} fed back to the negative input terminal of A. And recall that for an amplifier of infinite gain the closed-loop gain is inversely proportional to F.
(A) When a dumper is on, its baseemitter junction cannot support voltage variations, so $\mathrm{F}=1$. But when the dumper goes off the junction is an open circuit, and $\mathrm{F}=\mathrm{Z}_{1} /\left(\mathrm{Z}_{1}+\mathrm{Z}_{2}\right)$. So F has been multiplied by this last fraction. As A has infinite gain, the closed-loop gain to B promptly multiplies by the inverse fraction, namely $1+Z_{2} / Z_{1}$.
(B) However, as the dumper goes off the load impedance which controls I rises from $Z_{3} \| Z_{4}$ to Z_{3}. Dividing, we see that load impedance has been multiplied by $\left(Z_{3}+Z_{4}\right) / Z_{4}$, which is $1+Z_{3} / Z_{4}$.
(C) There is no charge in gain through to I when the dumper goes off if the gain multiplies by the same factor as the load impedance. The relevant factors are at the ends of the two previous paragraphs, and concur if the Walker condition is met:

$$
\begin{equation*}
Z_{2} / Z_{1}=Z_{3} / Z_{4} \tag{1}
\end{equation*}
$$

Actually the argument neglects two minor factors. When F was established for the dumpers-off condition in (A), the effect of Z_{4} on the potential division was neglected.

Fig. 1. Walker's basic current dumping circuit. It is a standard class B circuit with elaboration of the feedback network, and floating signal source. (Z_{p} means Z_{1} / Z_{2})

It should be added io numerator and denominator in the fraction for F. Secondly, when the dumpers go off the output impedance is not exactly Z_{3} as stated in (B); there is a second parallel path, and the symbols $\|\left(Z_{2}+Z_{1}+Z_{4}\right)$ must be juxtaposed to Z_{3}. Both these factors are clearly minimal. In fact some straightforward reworking of the argument now shows that they cancel out perfectly, proving (1) exactly. So much cancelling suggests that we are not yet looking at the problem in the simplest possible way.
Lifting the circuit up and down on the floating rail cannot falsify V_{s}, by definition of that quantity. Nor will it disturb the inputs to A , both of which are carried up and down together. But it will normally falsify the output volts of A, because any amplifier delivers its output relative to its negative rail, and not with respect to a hot point chosen for our convenience in the calculation. In this case, however, we can take refuge in the infinite gain of A. Fig. 4 should make the point clear.

Bridge explanation

It is now clear that with current dumping there need be no gap between intuition and algebra: one passes naturally into the other. It has to be admitted, however, that the argument so far has depended on a simple on/off transistor model, which is not really valid at the edges of the crossover region. We assumed that the base-emitter junction of a dumper either clamped like a short circuit, or passed no current as an open circuit. But the level of intuitive understanding can be extended to include the edges of the crossover region as well, most simply by using an idea of Vanderkooy and Lipshitz (June 1978).
They model the dumpers of Fig. 1 as a voltage source V having zero internal impedance, but varying throughout the cycle just as does the real dumper V_{be}. They then redraw the circuit as a bridge, Fig. 5. The current envisaged as flowing through V in that figure is the dumper emitter current.
Actually only the base current flows in
the upper battery arm, but this difference can be ignored as A has zero output impedance. Otherwise the voltages and currents remain undisturbed by the substitution of this "battery". Reduction of current in the upper battery arm is noted by Vanderkooy and Lipshitz as a flaw in their argument. This is because their amplifier has been taken as a perfect current amplifier with infinite output impedance, and so alteration of its output current is unthinkable. Then there is no way of tidying up the current discrepancy, and it follows that in their model the potentiometer rules we are about to use can have no validity.

Suppose now that an arbitrary increase ΔV arises in V of Fig. 5, quite unrelated to the input V_{s} which remains unaltered for the moment. Well, V_{s} has not changed, and the voltage between the input terminals of A must remain zero, so V_{N} remains unchanged. (A can readily secure this by raising the potential at B suitably, while the voltage at D falls sufficiently to make up the remainder of $\Delta \mathrm{V}$.)

Now the point E delivers current I, and that current may be calculated on the basis that E is a generator of the e.m.f. that would arise there if the line to I were cut, while the volts at B \& D were unchanged. The generator must also be thought of as having output impedance $Z_{3} \mid Z_{4}$.
Then the output current I will not change if the open-circuit e.m.f. just mentioned does not change in response to $\Delta \mathrm{V}$. We know that the change at V_{N} was zero, so in requiring zero change of this e.m.f. we are simply requiring a bridge balance: $\mathrm{Z}_{2} / \mathrm{Z}_{1}=\mathrm{Z}_{3} / \mathrm{Z}_{4}$.

Meet this condition. Then arbitrary changes in V do not affect output current. If this is true for arbitrary changes of V , then it will be true for that particular track followed by V during the signal cycle. This completes our first rigorous proof of the Walker balance condition (1), where any transistor behaviour is allowed for, even that found at the corners of the crossover region.
The proof can readily be extended to the real case, where A is finite. When ΔV
arises, the amplifier will again control the redistribution of potentials. Indeed for every millivolt that V_{N} falls, the amplifier will insist on a rise of $\mathrm{A}(\mathrm{mV})$ at B. Thus the point of zero voltage change is no longer at V_{N}, but is $1 /(A+1)$ of the way up Z_{2}. So the open-circuit e.m.f. at E mentioned above will not change if

$$
\begin{equation*}
\frac{Z_{3}}{Z_{4}}=\frac{\frac{A}{A+1} \cdot Z_{2}}{Z_{1}+\frac{1}{A+1} \cdot Z_{2}} . \tag{2}
\end{equation*}
$$

Thus even when A is finite there is no difficulty in choosing Z_{4} to obtain perfect freedom from dumper distortion. Of course (2) can be tidied in various ways. Notice that when A becomes large it tends to (1).

When V_{N} falls 1 mV , B rises AmV , both measured relative to the floating zero volts rail of Fig. 5. This floating rail causes no embarrassment to the inputs of A , which are both equally affected. But in fact the output of A is produced relative to its negative supply rail, and not relative to any floating rail. This time the difficulty can be deflected by observing that our condition sets $\Delta I=0$, so no voltage difference arises between "zero volts" and ground.

It is still essential to assume zero output impedance in the driver amplifier, to cope with the varying deficiencies in the upper battery arm current as ΔV arises. Of course in a voltage amplifier this output

Figs 2 \& 3. When Z_{3} is present in this class B output circuit the output transistors could be called "current dumpers" just as in Fig. 1. Transfer function is shown bottom at Fig. 3.
impedance will be very small. In terms of algebra this bridge model is very powerful, and also in terms of intuition. Fig. 5 with an inductor at Z_{4} and a capacitor opposite shows that the basic idea is just to balance a traditional LC bridge, according to $\mathrm{L}=\mathbf{R}_{1} \mathbf{R}_{3} \mathbf{C}$.

Feedforward explanation

It may seem strange that current dumping claims to cancel distortion completely. Certainly in normal correction of error by negative feedback the distortion can never be totally eliminated because a residue must be left to be sensed and so drive the amplifier into opposing the source of distortion. But what if one sensed the distortion in the output current (by comparing it with input voltage) before it was fed into the load, and then injected a further correction current into the load, but forward of the sensing element? The difficulty disappears, because correction does not now reduce sensing and so perfect cancellation of error is then theoretically possible. For example, the crossover distortion of a heavy-duty class B amplifier can be corrected perfectly in principle by a small class A amplifier of high quality.

In practice resistor tolerances do impose serious limitations, though these do not often seem to be analysed. In contrast to feedback, this type of error correction is called feedforward, and has sometimes been aired here (May 1972, October 1974, twice in May 1978). But suppose only four 5% resistors are used in the defining chains. Then the correction may be 20% out. One would do better to increase the

Fig. 4. Amplifier of infinite gain must produce V_{f} equal to V_{s} even when a voltage source drives the floating "zero volts" rail with respect to which these quantities are measured. Think what would happen if V_{f} fell short.

Flg. 5. Modelling the dumpers of Fig. 1 as a voltage source V, Vanderkooy \& Lipshitz redraw the circuit as a bridge.
gain of the main amplifier by a factor of five, and then use feedback to cut it back again. And this is a great deal easier to do. Nevertheless, the idea of feedforward demonstrates that a claim to perfection of error correction is not objectionable in principle.

Does current dumping use feedforward? Following Baxandall we have presented it entirely in terms of feedback. Imagine Z_{4} of Fig. 1 shorted: then the transfer characteristic returns to the style of Fig. 3. The solution was to consider the slope of the central section as basic, and to insert just the right Z_{4} to adjust into line the gain of the outer segments. The picture is one of negative feedback being adjusted during the cycle, to make the gain conform to its value at the centre. This is not classical feedback, because the feedback fraction is varied during the cycle, but it is negative feedback, and no further picture is required.

Walker's explanation

In his original article, however, Walker gives a perfectly valid discussion of Fig. 1, which is entirely feedforward in style. He regards Z_{4} as the output sensing element, and compares V_{s} with the sensor voltage $\mathrm{I}_{4} \mathrm{Z}_{4}$. His argument may be simplified and presented as follows.

A is taken to have infinite gain, so the voltage between its input terminals is zero. Now think of both input terminals as a new "zero volts" point for reference. Viewed from here, $-\mathrm{V}_{5}+\mathrm{I}_{4} \mathrm{Z}_{4}$ appears at the far end of Z_{1}. As usual when such a signal is fed to the negative input terminal of an amplifier, it reappears at the output terminal but multiplied by $-\mathrm{Z}_{2} / \mathrm{Z}_{1}$. To obtain this output voltage relative to the floating rail of Fig. 1, it is only necessary to add V_{s} again. (Ignore the expression V_{B} in Fig. 1.)

So $\mathrm{V}_{5}-\mathrm{I}_{4} \mathrm{Z}_{4}$ is heavily amplified, and if $\mathrm{I}_{4} \mathrm{Z}_{4}$ is at all sluggish in following V_{5} a large protest voltage will appear at the output of A, forcing extra current through Z_{3} forward of the sensing element Z_{4}. We have just found the output voltage, so we may choose Z_{3} and then write down I_{3}. Then add I_{4} to obtain the total output current, which is just

$$
\frac{1}{\mathrm{Z}_{3}}\left[\frac{\mathrm{Z}_{2}}{\mathrm{Z}_{1}}\left(\mathrm{~V}_{\mathrm{s}}-\mathrm{I}_{4} \mathrm{Z}_{4}\right)+\mathrm{V}_{\mathrm{s}}\right]+\mathrm{I}_{4}
$$

It is now clear that if Z_{3} is chosen according to (1) then I_{4} actually cancels out in this expression! Whatever particular I_{4} the dumpers choose to allow at any particular time, the output current will remain untouched, provided just the right Z_{3} has been fitted.
The language used here is entirely feedforward, though the situation is not classical, for two reasons. Firstly, the protest volts generated by \mathbf{A} do actually power the sensing element Z_{4} as well as the sensor bypass Z_{3}. Also Z_{3} is not a pure bypass element, but reports back to the amplifier via Z_{2}, as can be seen clearly in the dumpers-off condition.

Mr Walker's accompanying discussion seems to take as basic the gain when the
dumpers are on, feeding current through $\mathrm{Z}_{3} \| \mathrm{Z}_{4}$. Of course there will be a short departure from these arrangements during crossover. And during this brief period of error a suitable correction will be fed through Z_{3}. The whole picture is perfectly valid, and indeed nothing more than this feedforward is required to explain current dumping.

Much binding

Suppose a tuned circuit is energized at its resonant frequency. Then the circulating current is large, compared with its value at adjacent frequencies. Bloggs explains that this is because C is cancelling the high impedance offered by L. Smith objects that this could not be more false. It is L that is cancelling the high impedance offered by C! And so they rattle on.

Obviously high farce has effected an entry. This illustration establishes the principle that a complex situation may sometimes be viewed quite validly in alternative ways. In this case the fullest understanding seems to be obtained when one has seen both explanations, seen that they are both valid, and grasped that they are complementary views of the same situation.

There seems to have been a similar division of opinion about the operation of Walker's amplifier: does it use feedback or feedforward? In good part the discussion seems to stem from a resolve to class a new and hybrid idea as one or the other of the two existing categories. But a major factor might be a failure to realize that a complex idea can sometimes be explained in several different ways. Our own view is that current dumping may be adequately explained by feedback, or by feedforward, or as a bridge, or as a measuring instrument (see below).

Everyone agrees that use of (1) aligns the three segments of Fig. 3. But it is fruitless to argue whether this is because the correct Z_{4} has been chosen to make the outer segment slope equal to that found at the centre (feedback), or because the correct Z_{3} has been chosen to ensure that the central section slope concurs with the outer parts (feedforward). We followed Baxandall initially as a matter of taste (indeed so does Walker in November 1976): the feedback ideas involved are more familiar.

In their most recent article (cited later) Vanderkooy and Lipshitz again insist that feedforward alone is the only correct explanation. Their argument consists of a logical structure presenting a "conceptual development of current dumping from feedforward." But one has to ask "whose concepts?" An equally clear set of concepts is the basis for Baxandall's feedback explanation. (It is a mistake to list Baxandall's letter here in support of feedforward.) In short, an explanation in terms of feedforward, however clear, does nothing to exclude other explanations.

An objection

In Fig. 1 the value of Z_{4} is carefully chosen to yield the correct additional feedback when the dumpers are on. But how can a single value of Z_{4} cancel perfectly the

Fig. 6. Millman's theorem allows ready calculation of the voltage E at which a junction will settle. Strictly speaking it is result (a), stated in terms of admittances, and it is useful to abolish denominators in difficult algebra. Form (b) is more useful in easier cases.
peculiar vagaries of dumper V_{be} ? And how can anyone assert such a thing without examination of the vagaries concerned?

The objection could easily be met by observing that the result is already secured by different thinking. But it can also be met directly and on the intuitive level by presenting the circuit as a measuring instrument. The dumper behaviour from instant to instant is measured by Z_{4}, which controls the feedback accordingly to hold the gain constant. Naturally any talk of gain variation within a cycle refers to incremental gain. This intuition is built into a rigorous proof below. We shall not impose the detail on the printer, and all except enthusiasts are urged to bail out at once, as far as the next heading.

Replace the dumpers of Fig. 1 by a resistor R , to stand for the small-signal emitter input resistance of the operating dumper; this variable R connects from Z_{2} to Z_{4}. Now measure all voltages relative to the floating zero rail. Then for unit increment of V_{B} there will be an increment of V_{N} given by

$$
\frac{\mathrm{Z}_{4}+\frac{\mathrm{Z}_{1}}{\mathrm{Z}_{1}+\mathrm{Z}_{2}}\left[\mathrm{R} /\left(\mathrm{Z}_{1}+\mathrm{Z}_{2}\right)\right]}{\mathrm{Z}_{4}+\mathrm{R} /\left(\mathrm{Z}_{1}+\mathrm{Z}_{2}\right)}
$$

Add $1 / A$ to this to yield ΔV_{s}. Now the ΔI resulting from the unit change in V_{B} is just the reciprocal of the impedance from B to E: write down this simpler expression. Then solve $\Delta V_{s}=K \Delta I$ in such a way that K does not depend on the varying R. This constant proportionality will provide an undistorted output. Provided it is noticed early that R only occurs as $R \|\left(Z_{1}+Z_{2}\right)$ and this quantity is labelled x, a page of work will produce a rigorous proof of (2). This time, Z_{4} has been regarded as a measuring instrument, noting how much current R passes in response to changes of voltage at B, and then controlling gain accordingly.
There is the usual fallacy in that argument, which it is easier to correct after deriving the result. If the output volts of A rise one unit relative to the floating conductor, then relative to true ground they rise an additional $Z_{L} \Delta I$. This must be taken into account when calculating ΔV_{s}, which must therefore be augmented by a further $\mathrm{Z}_{\mathrm{L}} \Delta \mathrm{I} / \mathrm{A}$. But this addition does not contain \mathbf{R} and is already proportional to
ΔI, so provided K has the value found as above a relationship of proportionality will still prevail between ΔV_{s} and ΔI.

This analysis is really an extension of Baxandall's feedback approach, showing that it can be extended to include any transistor behaviour, even when A is finite.

Algebraic explanations

In an attempt to dispel mystery the abovementioned arguments have remained close to intuition, even at the cost of complexity. But we shall now study straight algebra, and discover much simpler arguments.

The obvious method of studying Fig. 1 is to regard Z_{2} and Z_{1} as a potential divider, whose lower end is at $I_{4} Z_{4}$ volts and whose upper end is maintained a further $I_{3} Z_{3}-I_{4} Z_{4}$ volts higher. Ignoring the expression in Fig. I an expression for V_{N} is therefore

$$
\mathrm{I}_{4} \mathrm{Z}_{4}+\frac{\mathrm{Z}_{1}}{\mathrm{Z}_{1}+\mathrm{Z}_{2}}\left(\mathrm{I}_{3} \mathrm{Z}_{3}-\mathrm{I}_{4} \mathrm{Z}_{4}\right) .
$$

Take A large: then this can be taken as an expression for V_{s} and tidied:

$$
\mathrm{V}_{\mathrm{s}}=\frac{\mathrm{Z}_{1} \mathrm{Z}_{3} \mathrm{I}_{3}+\mathrm{Z}_{2} \mathrm{Z}_{4} \mathrm{I}_{4}}{\mathrm{Z}_{1}+\mathrm{Z}_{2}}
$$

Suppose now $Z_{1} Z_{3}=Z_{2} Z_{4}$ as in (1). Then the coefficients of I_{3} and I_{4} are equal in this expression for V_{s}. So the output current $\left(I_{3}+I_{4}\right)$ has been locked into a proportionality relation with V_{s}, and the output is undistorted.

An even briefer analysis seems to underlie the remarks of J. Halliday (April 1976). He appears to rely on the circuit theorem of Fig. 6, which gives in two convenient forms the potential adopted at the meet of several impedances. We shall rely heavily on this theorem henceforward.

When Fig. 6 (form b) has been mastered, it will be easy to verify the expression for V_{N} marked in Fig. 1, where only two arms Z_{1} and Z_{2} are connected to marked voltages. Now $V_{s}=V_{N}$ because the gain of A is large. Simply by looking at that expression for $\mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\mathrm{N}}$ it is clear that if $\mathrm{Z}_{4} / \mathrm{Z}_{1}=\mathrm{Z}_{3} / \mathrm{Z}_{2}$ then V_{s} and $\left(\mathrm{I}_{3}+\mathrm{I}_{4}\right)$ are trapped in a linear relation.

Given the expressions of Fig. 1, the last sentence provides a fifth proof that cancellation of distortion is possible, and gives the condition for it.

Output current

For practical reasons Z_{4} is much smaller than Z_{3}, and provided the balance condition holds then

$$
\mathrm{Z}_{3} \gg \mathrm{Z}_{4} \Rightarrow \mathrm{Z}_{2} \gg \mathrm{Z}_{1} \Rightarrow \mathrm{Z}_{\mathrm{P}} \approx \mathrm{Z}_{1}
$$

(Strictly speaking the first four symbols should have modulus signs.) So the $\mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\mathrm{N}}$ of Fig. 1 now simplifies to

$$
\mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\mathrm{N}}=\left(\mathrm{I}_{3}+\mathrm{I}_{4} \frac{\mathrm{Z}_{4}}{\mathrm{Z}_{1}} \cdot \mathrm{Z}_{\mathrm{P}}\right.
$$

and if $\mathrm{I}=\mathrm{I}_{3}+\mathrm{I}_{4}$ we have

$$
\begin{equation*}
\mathrm{V}_{\mathrm{s}} \approx \mathrm{IZ}_{4} \tag{3}
\end{equation*}
$$

In other words the output current can be calculated simply by supposing that V_{s} is
applied to Z_{4}, and it can be modelled by the output current I in the emitter follower circuit of Fig. 7 (with S_{1} as drawn.)

The operator H

Before entering on our conclusions we have a duty to look at the difficult article of H. S. Malvar (March 1981). Its early algebra can be much simplified, as shown by K. G. Barr (June 1981). The article relies heavily on a multiplier B, which it will be safer here to call H , and it is used to relate two voltages of our Fig. 1 according to $V_{D}=H V_{B}$. This H is the most general possible multiplier, and it changes with V_{B} as necessary, to maintain the above equation true to what happens in an amplifier. Certainly if one makes a printout of these two voltages at small increments of either, then H could be listed in a third column. Indeed for a given amplifier H could be presented as a list opposite small increments of input signal to the amplifier. But of course such a system leaves the list for H violently dependent on any variations in driver gain that are being considered.

Well, briefly, there is no need to consider what happens when H is offcourse by ΔH. The course is defined as above by what H does, and it cannot be off-course. $\Delta \mathrm{H}$ is meaningless and should be set at zero throughout (equation 8 misleading). If this is not liked, then an alternative description of H must be given. Also it is clear from the above equation that one may not reason on the basis that $\mathrm{H}=0$ when the dumpers are off (equation 12 wrong). And when A is allowed to tend to infinity, then his (6) requires either that R_{3} does likewise, or R_{4} tends to zero (equation 9 wrong). Finally, once it is admitted that a change in driver gain will cause shifts in H , the Maclaurin expansion used is not only incorrectly computed (equation 10 wrong) but quite invalid in method (H has been treated as a constant in the differentiation.)

Quad 405

Walker explains that he takes (1) as the basic design equation for the Quad 405 design, with $Z_{1}=R_{1}$ and $Z_{3}=R_{3}$, so that both are straight resistors. But Z_{4} is an inductor L and Z_{2} is a capacitor C . Ingeniously enough, substituting the necessary $j \omega \mathrm{~L}$ and $1 / j \omega \mathrm{C}$ in (1) yields nevertheless the frequency-independent balance condition found in the bridge model:

$$
\begin{equation*}
\mathrm{L}=\mathbf{R}_{1} \mathbf{R}_{3} \mathrm{C} \tag{4}
\end{equation*}
$$

This ensures that the coefficients of I_{3} and I_{4} found at V_{N} in Fig. Fare equal and will stay equal to each other at all frequencies.

But it does nothing to ensure that these coefficients remain constant as frequency varies, and disaster has in fact struck at this point. Indeed, simply by looking at (3) one can see that if Z_{4} is an inductor then output current is inversely proportional to frequency. In circuit terms, what happens to the frequency response in Fig. 7 if Z_{4} is an inductor?

This conclusion can be confirmed by substituting $R_{1}, 1 / j \omega C, R_{3}$ and $j \omega R_{1} R_{3} C$
for the four bridge values in V_{N} of Fig. 1 and simplifying, to obtain

$$
\mathrm{V}_{\mathrm{N}}=\left[\frac{\mathrm{j} \omega \mathbf{R}_{1} \mathbf{R}_{3} \mathrm{C}}{1+\mathrm{j} \omega \mathrm{C} \mathbf{R}_{1}}\right] \mathrm{I} .
$$

The bracketed factor is almost constant when ω is large, but its modulus does fall with frequency. Indeed, with $\mathbf{R}_{1}=500 \Omega$ and $\mathrm{C}=120 \mathrm{pF}$ as in the Quad 405 , the denominator is essentially unity below 1 MHz . Hence V_{N} varies as f in the audio range, and output varies as $1 / \mathrm{f}$ there.

The use of L and C in the bridge has resulted in a ferocious dependence of gain on frequency. The solution applied is the use of massive negative feedback, applied in the usual way by switching S_{1} in Fig. 1. This can be modelled by switching similarly in Fig. 7. In this figure Z_{4} now causes no attenuation of output across Z_{L} at low frequencies, but at 20 kHz it may reduce output noticeably. Suppose we decide that at 20 kHz we will tolerate a 0.1% reduction in output volts. Then if $\mathrm{Z}_{\mathrm{L}}=8 \Omega, \quad \mathrm{Z}_{4}=0.36 \Omega \quad$ inductive, so $\mathrm{L}=2.85 \mu \mathrm{H}$. Actually $3 \mu \mathrm{H}$ is fitted.

Many pairs of L and C would satisfy (4), and there has been no explanation of the choice made. It seems that feedback is unable to overcome the effect on gain if L is any larger, even when the amplifier gain is infinite. It follows that above 20 kHz the performance of this amplifier must begin to deteriorate, and this explains the exhortation not to make tests with square waves.

Somersaults

The operation of the circuit in Fig. 1 may now be summarized in a sentence. Firstly bridge values are balanced to ensure that $\mathrm{V}_{\mathrm{N}} \propto \mathrm{I}$, and then the driver amplifier is used to ensure that $\mathrm{V}_{\mathrm{N}}=\mathrm{V}_{\mathrm{s}}$, thus locking into proportionality V_{s} and I .

This full discussion of current dumping equips us to examine the controverted points, and we shall now witness three successive somersaults before the end of this article.

Firstly Halliday, supported by Olsson (July 1976), rides in from the flank. He agrees with all that has been said, but points out that it is entirely superfluous. We have just seen that the method depends on deriving a feedback V_{N} proportional to $\left(\mathrm{I}_{3}+\mathrm{I}_{4}\right)$. Then why not derive it from a small resistor in series with the load at r in Fig. 1?
Indeed, supposing that (1) holds and examining V_{N} of Fig. 1, the value of r required to give identical feedback voltage is readily seen to be $\mathrm{Z}_{\mathrm{P}} \mathrm{Z}_{4} / \mathrm{Z}_{1} \approx \mathrm{Z}_{4}$. (The accurate figure is $Z_{3} \| Z_{4}$.) And J. G. Bennett (April 1976) drives the nail home. Such an r will provide feedback strictly proportional to I, but Walker's bridge owing to tolerances cannot be expected to balance perfectly the two coefficients in V_{N} in Fig. 1. The bridge will not produce a feedback strictly proportional to I, and current dumping is actually worse than the simpler conventional approach proposed.
Walker in his reply does not oppose these arguments. He points instead to the real case where A is finite, and quotes
result (5) below, in a slightly different algebraical form. The result may readily be derived, by noting that if A is finite then a voltage V_{B} / A exists between the input terminals of A in Fig. 1. This yields a second expression for V_{N}, given on the left below and equated to that of Fig. 1:

$$
\begin{aligned}
& V_{s}-\frac{I_{3} Z_{3}}{A}=\left(\frac{I_{3} Z_{3}}{Z_{2}}+\frac{I_{4} Z_{4}}{Z_{1}}\right) Z_{P} \\
& \Rightarrow V_{s}=Z_{P}\left[I_{3}\left(\frac{Z_{3}}{Z_{2}}+\frac{Z_{3}}{A Z_{P}}\right)+I_{4} \cdot \frac{Z_{4}}{Z_{1}}\right]
\end{aligned}
$$

So V_{s} is again locked linearly to $\left(\mathrm{I}_{3}+\mathrm{I}_{4}\right)$ if

$$
\begin{equation*}
\frac{Z_{4}}{Z_{4}}=\frac{Z_{3}}{Z_{2}}+\frac{Z_{3}}{A Z_{P}} \tag{5}
\end{equation*}
$$

The usual difficulty arises from the floating zero-volts rail of Fig 1. The real output voltage of the amplifier is not just V_{B} : in fact $\left(I_{3}+I_{4}\right) Z_{L}$ needs to be added. Divide by A and use the result to alter the figure used above for volts between the amplifier input terminals. But the extra term has I_{3} and I_{4} already balanced, leaving unaltered the above balancing requirement (5).

Thus the current dumping circuit can still provide freedom from crossover distortion with finite A. Further, fixing an eye on (5) and examining V_{N} of Fig. 1, it is now clear that the coefficients of I_{3} and I_{4} in that expression are no longer equal. Hence V_{N} cannot now be derived from a resistor in series with the load. Current dumping is sound after all, because Halliday's objection only applies when A is infinite.

But Walker does not go on to revise his explanation of the Quad 405 to show how he has used (5) instead of (1). Indeed, it would appear that he did use the last mentioned. For a start, his explanation is in terms of (1), and also of (4) which is a form of it. Further, the driver in the Quad 405 is a current output device whose working load adopts three values over the cycle. According to (5) there is still a solution: make the gain very large, and then the last term can be dismissed, together with its several gyrations. Then variations in A during the cycle will not upset the bridge balance. Now whether one thinks of A as infinite or merely as large, neglect of the third term of (5) means that the coefficients of V_{N} of Fig. 1 are set equal. And so identical feedback can be derived from the small resistor mentioned earlier. Halliday's criticism is sound: the Quad 405 would work better without its current dumping. These matters will recur in Part 2.

Fig. 7. Dumper output model.

In principle, however, current dumping is now once more of value, provided that A is not taken as large, but is allowed instead to influence (5). The dumpers may do as they please as the cycle progresses, provided only that A is not given too much work. So any crossover distortion caused by the dumpers, or indeed any other harmonics, noise, hum or delays that they introduce into the circuit will all cancel perfectly.

Tolerances

All that is theory, however, and the position is reversed for the third time when practical considerations are taken into account. Components do not have their nominal values, but are produced to tolerances. It follows that if A is large, the designer cannot give any serious weight to the last term in (5), whose contribution will be overrun by tolerance errors in the other terms. He might as well specify $\mathrm{Z}_{4} / \mathrm{Z}_{1}=\mathrm{Z}_{3} / \mathrm{Z}_{2}$, and once this is done Halliday's observation on V_{N} recovers all its power. Such an amplifier would do better to abandon current dumping.

What sort of amplifier could use current dumping with advantage? Certainly not one where A is so high that the third term of (5) disappears under the tolerance of its predecessor. If this has happened then a designer attempting to allow for the third term will actually do harm to a proportion of his production run. The critical value of A is the figure which reduces the third term in (5) to 10% of the value of the previous term, because the third term is then getting inside the 10% uncertainty of its predecessor. (We are assuming 5% components, as in the Quad 405.)

Indeed the noose can now tighten, if variation of the first term of (5) is taken into account. Now the third term must not fall below 20% of its predecessor. So the critical value of A satisfies

$$
\frac{Z_{3}}{A Z_{P}}=\frac{1}{5} \cdot \frac{Z_{3}}{Z_{2}} \Rightarrow A \approx \frac{5 Z_{2}}{Z_{1}} \approx \frac{5 Z_{3}}{Z_{4}}
$$

(where really the moduli are under consideration).

We are kinder to current dumping if this upper limit on A is set high. But Z_{4} cannot really be made smaller than 0.1Ω, or the resistance of the soldered joints will get into the act. And Z_{3} might be 47Ω as in the Quad 405. In which case the upper limit on A is around 2,500 or so. If A exceeds this no designer can allow for it because of tolerances. In particular, the circuit is no use if the driver is an op-amp.
To recapitulate, if A is thought of as large and the last term of (5) neglected, the current dumping circuit is actually worse than normal negative feedback. Indeed, even if A is linear, and known, and used in (5), tolerances defeat the designer's efforts unless A is under 2,500 or so. There might just be a window of gain up to this figure where current dumping could be useful. This point is pursued in part 2 of this article. Meanwhile, it appears that reactive components should be kept out of the bridge.

To be continued

Automatic 'loudness' compensation uses microphone

Using a microphone-derived control signal to adjust the response of electronic filters, Swede Eric Jansson has produced a circuit that gives loudness compensation at all listening levels, regardless of the listening environment, source-signal levels and loudspeaker impedance.
Sound pressure is sensed by the microphone and the amplified signal rectified to feed a voltage-controlled loudnesscompensation filter which processes the source signal. The output signal is now compensated for the equal-loudness contours but so are sound pressure levels sensed by the microphone, so to correct this a subfilter whose function is the inverse of the main filter is connected between the microphone and rectifier. Output of the active subfilter also depends on

A microphone-derived signal controls the electronic loudness filter and a further voltage-controlled filter removes loudness compensation from the microphone signal.

Loudness compensation governed by sound pressure levels and independent of listening environment, source level and loudspeaker impedance is claimed for this circuit. circuit
the control voltage so the signal feeding the rectifier is effectively uncompensated
Positioning of the microphone is not critical as loudness compensation mainly affects frequencies below 1 kHz . Components C_{1} and R_{1} form a 48 Hz high-pass filter before the voltage amplifier which feeds the subfilter. Output of the subfilter feeds rectifier $\mathrm{IC}_{2 \mathrm{C}}$. A comparator, $\mathrm{IC}_{2 \mathrm{~B}}$, causes analogue switch IC_{3} to short the control voltage at C to point A when sound pressure level is above 86 dB . When these points are shorted the control voltage is
zero and both filters have a flat amplitude response. Resistor R_{2} sets the control voltage; at 0 dB sound pressure level the voltage over points A and C should be 310 mV and above 86 dB the reading should be zero. Circuit IC_{1} is a quad voltagecontrolled filter; two sections of the device are loudness filters for each channel and a third section forms the subfilter.

The circuit is designed for a microphone sensitivity of $0.56 \mathrm{mV} / \mu \mathrm{bar}$. Jansson has applied for a patent for his circuit.
$0 \sim 0$

Assembly language programming

Emphasizing the use of flow diagrams to aid programming, Bob Coates illustrates how microprocessors perform arithmetic in his sixth tutorial.

Flow charts provide a pictorial representation of a procedure. A simple programming loop illustrates how flow charts are applied as an aid to assembly-language programming, see diagram below. Programmers use flow charts to help program writing and to provide documentation for future reference. When constructing flow charts, one must first decide how much detail is required; charts can range from a brief outline to a highly detailed description. Textbooks often expound that the 'correct' method for program writing is to draw up a neat flow chart using all the proper symbols - of which there are many - but in practice few programmers work in this way. Flow charts are an aid to writing programs and should be constructed in the way that suits you.
If a section of a chart proves difficult to sort out it is useful to consider the section as one block and to work the block out later using a second flow chart. Things can get a little disjointed but it doesn't matter as long as you understand what is happening. The time to write a flow chart conforming to the rules for future reference is when the program works correctly.

Summing numbers

As a first example, consider a simple looping program. Requirement of the program is to sum eight-bit binary numbers stored in successive memory locations and store the result in a specified location. The number of binary values is specified by a value in a memory location. Memory locations for the Picotutor* are

024	start of program
050	result store
051	number of values
052	first 8-bit value
053	second 8-bit value
054	...

and so on. Flow diagram 'Summing of numbers' represents the operation required, and you can see how this chart corresponds to the basic structure shown earlier. The job of this program is to circulate the loop section once for each eight-bit value, adding each value to the result. Using the index register as a pointer, as-
*Picotutor is a low-cost assembly-language trainer described in Wireless World December 1982 and January 1983. A Picotutor kit is available from Magenta, see advertisers index.

sembly language for the program is shown in List 1.
Two instructions which clear the summing register and set the pointer to the first data-byte location form the initialisation section of the program. The processing section is the single ADD instruction which adds the contents of the memory location addressed by the index register to the accumulator. INCX updates the pointer so that the next iteration adds the next value to the summing register. To keep track of the number of iterations still to be carried out, DEC VALUE decre-

ments the location containing the number of values. BNE causes a branch if the zero flag is not set. Offset is a twos complement number which when added to the program counter causes a branch to the address of label LOOP. If the zero flag is set the next instruction in sequence, STA RESULT, is executed. The last instruction affecting the zero bit before the branch instruction is DEC VALUES and branching continues

until this instruction causes the location called＇values＇to decrement from 01 to 00. If the initial content of location＇values＇is 02 ，two loops will be performed hence two numbers added．
Try filling the data locations with these values

052	08
053	13
054	2 A
055	1 C

and set the values location 051 to 04 ．Re－ sult location 050 should contain 61 when the program is completed and control is returned to the monitor．
Reassembling the program as shown in Lists 2 and 3 allows it to run on systems， using 6800 and 6809 microprocessors．The only significant difference is that there is no INX register incrementing instruction in the 6809．A more versatile load effective address instruction，LEA，replaces it． Here the effective index－register address is formed from the index－register value plus the twos complement offset．With an offset of one，one is added to the index register as with INX but the register is incremented or decremented using a single instruction which is not possible with the 6800 or 6805.

List 2．Summing numbers using the 6800.

1000	CF		C－RA	
：00：	こミ1：5		＿－	\＃1．3－E．
－ 004	420 －	－ECP	ADEA	\％\％
1006	06		二人	
1007	7只．0： 1		DES	9－－E5
10.4	ここ＝ヨ		9－	－05
1000	$5-1080$		$5-8$	ここ
10\％	フロプを		－M	シーのマ

List 3．Summing numbers using the 6809.

＋ 200	E		ごマィ	
－ $\mathrm{S}^{\text {a }}$	¢5．－5こ		－	\＃．7－L
$\therefore 009$	AEC	－20．	AここA	0， 0
1．203	こo：		－ミス\％	
－\％o	74.05		25こ	リアへごき
$\therefore 2$	こミーフ		2．E	－ 0
$\therefore 2$	\cdots		\＃	テここー－
	ーーッ゙吅？		－\times	E－

All of the examples shown depict just one way of performing a given operation and even the simplest programs may be reconstructed to perform the same opera－ tion．Generally，examples given are chosen because they indicate clearly what is hap－ pening．They are not necessarily the most efficient solutions．It may be wise to mod－ ify programming techniques for different processors，as can be seen by applying the summing example to the Z 80 ，List 4 ．
With the Z80 there is no specific clear－ accumulator instruction but it is possible to perform an exclusive－or function on the accumulator and any other register－in－ cluding the accumulator．An exclusive－or operation on a number with itself gives all

List 4．Z80 number summing program．

2000	3A5：20		－	A．UnLUES！
2003	47		．${ }^{\text {D }}$	S．A
2004	AF		ソこR	A
2005	こ15こ20		－ 2	Y．UA－E：
2008	EJ	＿DC？	Aこう	A．HiL）
2000	23		：NC	－
200，	－ 0.		2une	－ODP
2000	ここ5020		：	
2305	c36000		－？	จ

zeros so performing exclusive－or on the accumulator，XOR A，has the effect of clearing the accumulator．Secondly condi－ tional jump DJNZ decrements the B regis－ ter and causes a relative jump if the B register does not hold zero．This instruc－ tion replaces two in the 6800 －series programs．The \mathbf{B} register cannot be loaded on its own，only as a pair with the C regis－ ter，so the A register is loaded with data which is subsequently transferred to the B register．

Four basic arithmetic functions are fre－ quently carried out in further examples． Sixteen－bit addition and subtraction has already been illustrated，leaving multipli－ cation and division to be explained．

8－bit multiplication

An algorithm for 8 －by－ 8 bit multiplication in which two eight－bit numbers in loca－ tions 60 and 61 are multiplied and the eight most－significant bits of the result placed in location 62 is illustrated in the multiplication flow diagram．Eight bits of location 63 are set to one．How one can multiply when the processor can only add and subtract needs explaining．Consider these binary numbers

0101 multiplicand
 0110 multiplier

To multiply these numbers，for each bit in the multiplier the multiplicand must be shifted left to realign with the bit in the multiplier．If the bit in the multiplier is set the shifted multiplicand is added to the value in a result register and if the bit is
clear no addition takes place．For the first bit in the multiplier the multiplicand is shifted left by one bit to give binary 1010 which is stored as a partial product．For the second bit the multiplicand is shifted left again to give 10100 which is added to the partial product，i．e．

$$
\begin{aligned}
\text { first shift } & 1010 \\
\text { second shift } & 10100 \\
\text { total } & 11110
\end{aligned}
$$

resulting in $1 E(5 \times 6=30$ decimal giving 1 E hex．）．Consequently one only needs to shift and add in order to multiply．

Details in the flow－chart differ from this slightly because shifting an eight－bit multiplicand eight times would require a further byte to shift the value into．Instead the multiplicand is added to the product store and that is shifted left，saving a byte of ram．Program derived from the flow chart for the 6805 is shown in List 5.

List 5．Multiplication program for the 6805.

024	3Fジ	N山	$5-2$	PRES
035	3553		C－is	P¢OE＋
028	AECE		IDX	HE
92A	3963	MUL：	－¢＇－	－ROE＋ 1
02C	3962		TEL	F200
	286		－ミ－	～0－IER
030	240 B		ECC	\cdots
032	egeo		－Da	MESNS
034	$\bigcirc 363$		ADO	32015
030	276J		ITA	FRコロ－
0 －	4			
O35	2eご		9Jこ	Pres
635	－7ミこ		STA	Fras
6 ± 0	5 A	M	ここと：	
¢			こ0	\cdots
$\therefore 0$	ここさ		\cdots	$5-A R T$

Sixteen－bit register PROD and PROD +1 ， which is initially cleared，holds the result． Counting is carried out by the index regis－ ter which is set to the number of bits in the multiplier，in this case eight，to determine how many times the program will run．

Shifting of the 16 －bit product store is required in the first part of the looping section but only eight－bit registers can be shifted（except with 6801／3 processors）so shift and rotate are used to give the same effect．Program section LSL PROD＋1 shifts the first eight bits of the product left， placing bit seven into the carry position． ROL PROD then rotates the most－signifi－ cant eight bits left and the previous carry indication moves into bit zero of PROD， resulting in a 16 －bit left shift．

Next，the multiplier is shifted left to place each of its bits in the carry location where they can be tested for one or zero on each loop．A digital one causes the multiplicand to be added to the 16 －bit par－ tial product，the result being returned to the partial product locations，and a zero causes the add section to be skipped over by the BCC instruction．Decrementation of the loop counter then takes place and the program loop restarts if all eight bits of the multiplier have not been tested； otherwise looping ends with the partial－ product locations containing the final re－ sult value．

15－by－7－bit division

Division on a microprocessor can be car－ ried out using a series of trial subtractions． For each step in the division it must be determined whether or not the divisor can be subtracted from the remainder of eight

most-significant bits of the dividend without causing a borrow. If the divisor can be subtracted the corresponding bit in the quotient is one, if not, the bit is zero. Dividend and quotient are correctly aligned by shifting them left one bit before each trial subtraction.

In this example dividend and quotient occupy the same 16 -bit register at locations 60 and 61. This is possible because the algorithm, see flow diagram, clears one bit of the dividend at the same time as it determines one bit of the quotient, leaving an integer quotient and the remainder, i.e. what is left of the dividend. Program for the 6805 derived from the algorithm is List 6. To try the program, a 15 -bit or less dividend is entered in locations $60 / 61$ and a seven-bit divisor placed in address location 62. After running the program, location 61 will contain the quotient and location 60 the remainder. This simple program only allows an eight-bit quotient and only
works if the dividend/divisor combination give an eight-bit or less quotient. As an example, using dividend 1234 (4660) and divisor 1F (31) gives quotient 96 (150) remainder A (9).

Decimal arithmetic

All arithmetic functions so far discussed operate on binary numbers but manipulation of decimal numbers is more acceptable to humans. There are two ways to accommodate decimal numbers; one is to write arithmetic routines that handle decimal numbers, the other to convert decimal input numbers to binary. I will cover both methods.

True decimal routines. Some modern processors contain instructions which perform decimal or binary-coded decimal (b.c.d.) arithmetic directly, but not those that we are considering. To enable one to write decimal arithmetic routines, the fundamental requirement is addition of b.c.d. numbers. An eight-bit binary number can contain two b.c.d. digits but as the greatest decimal digit is nine, the greatest binary value is 1001 .

With 6800/09 and Z80 processors, if the accumulator holds two b.c.d. digits which are added to another two b.c.d. digits, i.e.

LDAA \$99
 ADDA $\$ 49$

the processor produces the result E2 in binary form. Binary numbers in the accumulator can be converted back to b.c.d. after an add or add-with-carry instruction using DAA, the decimal adjust accumulator instruction. Using DAA the result is 48 and the carry bit is set, indicating 148 , so

$$
\begin{array}{ll}
\text { LDAA } & \$ 99 \\
\text { ADDA } & \$ 49 \\
\text { DAA } &
\end{array}
$$

allows b.c.d. numbers 99 and 49 to be added correctly.

The 6805 has no DAA instruction but b.c.d. addition can be performed by using a subroutine which is the equivalent of DAA. Explaining this subroutine also explains how the DAA instruction works. To perform a decimal correction it is necessary to know whether a bit-seven carry took place in the addition, indicated by the condition-code register (c.c.r.) carry bit, and if there was a carry from bit three to bit four indicated by the c.c.r. half-carry bit, bit H. Only ADD and ADC instructions affect the half-carry bit in Motorola processors but decimal subtraction with the Z 80 is simplified as this bit and the add/subtract flag are affected. Normally the half-carry bit is only used by the DAA instruction but on the 6805 there are two conditional branch instructions, branch-if-half-carry-set and branch-if-half-carry-set, which partly compensate for the absence of

a DAA instruction.

Decimal correction is shown in the flow diagram. If the carry-bit is set or the number is greater than 99 then high-digit correction by adding 60 to the number is necessary. Low-digit correction by adding six to the number is required when the half-carry bit is set or the units half of the byte is greater than nine. Adding 99 and 49 shows how this works

$$
\begin{array}{r}
99 \\
+49 \\
\hline \text { total E2 }
\end{array}
$$

Adding two nines gives two and sets the half-carry indication, and adding nine, four and the carry gives E. Applying the decimal-adjust algorithm, result E2 is

greater than 99 so 60 is added and the half－ carry bit is set so a further six is added． With correction of 66 added，result E2 becomes 148 ，i．e． 48 with the carry indica－ tion set．

Because this algorithm is often used and ram space in Picotutor is limited the subroutine for this shown in List 7 is in－ cluded in eprom at address 33．I used a different assembler for this program so entering of hexadecimal numbers is dif－ ferent；numbers entered are prefixed with H．List 8 illustrates how 99 and 49 are added using this subroutine．When the first SWI instruction is encountered，press the register key and check that the H bit is set，that the C bit is clear and that the accumulator contains E2．Leave register mode and press the cn key to continue the program．Pressing the register key should now indicate that the H bit is clear and the carry bit is set．The accumulator now con－ tains 48 and multiple－precision addition may be carried out as described earlier using the carry indication．

Number conversion

Converting a decimal number to binary， manipulating it and converting it back to

List 8．Adding two numbers using the simulator of List 7.

\because－	ソ®こ	－	
$1: \%$	ヘ2¢¢	こここ	！${ }^{\text {＋}}$
5	を	5in：	
$\because 5$	$322=$	」ご	$\therefore \because$
$62 E$	33	ご，	

List 10．Assembly language for Picotutor subroutine BCDBIN．

			（14）： 042 343 844 845 645	PJIN ：SO ： 4 EIT BIFARY，ANJ P゙ーACES UNAL－ERED．SETS CARFY IF A NEN－DEC：MAL g：E：T EVTERED．			
24	2e	432	847	8CDBIN	C－S	$0 . \lambda$	CLEAR RESULT REgisters
\％ 5	EFO1	432	848		くia	$1 \times$	
427	13：0	433	845		ECL\％	1－BITSTR	clear overflok flag
403	E5：A	4.34	asp		LD2	PGINT	PUT 1000 ＇s Dictt in poivts
408	44	435	351		L57a		
400	44	437	930		$15 \times \mathrm{A}$		
40 E	4.4	231	054		L．594		
2 5	B） 12	4ココ	as：		STA	FCints	
4．1	AD47	4 cos	355		85%	ECDCHK	CHECK DIGT＊＊S -9
513	270 A	$44:$	457		eEa	ELE2	ERANCH IF DIET＊ 6
			esa	＊			
$5: 5$	As03	472	391	BCB：	－DA	＊3	ADD H＇300＇TO RESL゙＿T
41）	fB	443	900		ADP	0.8	
t．E	57	444	E31		STA	5．$\%$	
6：$:$	ACE8	4.45	E85		－DA	＊${ }^{\prime}$ Es	ADD H＇E日＇－ 0 RESUL－
1：3	AD32	448	833		曻	BCDAD	（TOTAL ADD＝－ 3 E8＇． 1000 DEC）
110	26F6	487	85\％		PNE	gCE	ERAACH
			EE5	＊			
			EES	＊			
4 F	2656	$4 \mathrm{4E}$	E27	ecez	150	40：3－	
く！	4405	640	［178		Hisd	＊ $1 \times$	
122	07：5	450	Ess		ETs		
4こ5	AD33	cs．	c）		453	3CDE K	
27	2706	45	671		258	$3 C E 4$	gRANEH 「F E：ご＊＊＊
			578	＊			
C2t	AG－9	253	631	1－83	－E． 7	aH－34	
	26FA	45	974		ESE		
			972	＊			
			明	，			
13 F	23：E	456	日TE	ECS 4	LDa	PC： $\mathrm{V}^{\text {＋}}$	＂L＇ 10 ＇s $2: 01 \%$ in faint
¢3：	$4{ }^{4}$	493	1185		Lड5．		
19	＜4		$\stackrel{\mathrm{Bec}}{\sim}$		L579		
433	64	458	$50:$		L上フA		
236	42	C10	6ez		－574		
Las	3715	4E：	8 El		STa	P0： V^{-1}	
137	幺221	c52	日E6		2E＝		
43 ¢	7706	¢ 63	Het		125	CCEI	
			866	＊			
43 E	AE，${ }^{\text {a }}$	464	687	E285	LDA	＊${ }^{\prime}$＇A＇	ASD 尸＇A（：0）－0 PESJ－T
43 D	AD10	465	965		こ5？	ECDAID	
43 F	2SFA	46E	889		EnE	ECBS	
			890	＊			
			日9：	＊			
441	9618	467	292	bces	LIA	PESNT ${ }^{\text {a }}$	ADE ： 5 TO PESL゙．
C43	A40F	4EE	893		AND	\＃H＇F＇	
$\begin{aligned} & 645 \\ & 447 \end{aligned}$	AD： 3	$4 E 9$	Es4		esir	BCDCF\％	
	A 205	470	295		esr	ecdade	
			856	＊			
			587	－			
445	96	47：			CLC		
$4_{4} 4$ A	031501	472	855		erclir	1．8：TSTR	
44 D	99	473	200		SEC		SET CARRY AS NOA－LECIMAL NG．
StE	日：	474	001	6 ca 7	R＇S		RETURN，EON，ERE：ON EOMDLETE
			902	－			
			903	＊			
			504	＊			
445	E80：	475	505	ecdacy	$A D D$	1．\times	AED NUMEER IM A P：RESUL－
45：	E701	475	906		Sta	：\times \％	
453	AGDO	477	507		$\therefore E A$	\＃	
455	FS	478	908		ALC	0．\％	PASS EN Carr＊
556	57	479	309		E＊${ }^{\text {A }}$	0，\％	
457	3A1C	480	9：0		cec	PG：NTS	DECREMEN：THE DEL：MAL DIGI＊
459	B：	481	3：1		R？S		
			9：こ	＊			
			913	＊			
			$9: 5$	＊			
65 A	Al0s	482	915	3CDCHK	CMPA	＊${ }^{\text {a }}$	SET Errop fiag if jig：－${ }^{\text {c }}$
45 C	2302	433	916		2－s	zedeh：	
$45 E$	1215	484	3：7		ESE＊	1．8T＂STR	3E－FLAJ
460	40	485	9：8	BCDCH：	TSTA		
4.51	81	486	5：9		RTS		

List 9．Converting decimal 2748 to binary form using Picotutor．

024	AG27	LDA	\＃\＄27
$0=5$	こ71～	STA	PO：NT
028	AE4E	LDA	＊\＄48
O2A	87i	Sta	POINT＋：
02 C	AEEO	LDX	\＃¢60
O2E	BD89	JSR	3CDEIN
030	BC80	$J M P$	START

List 7．Simulation of the 6800 DAA instruction included in the Picotutor．

decimal form is the second alternative． These conversions are often used，for in－ stance the d．v．m．program referred to in the January issue obtains an eight－bit bi－ nary value equivalent to the input voltage and converts it to decimal form for display． Subroutines for converting numbers in both directions are included in the Picotu－ tor monitor as＇system calls＇．How b．c．d．is converted to binary in its BCDBIN program is illustrated in the flow diagram shown．Here，for each of the thousands， hundreds and tens digits the equivalent hexadecimal number is added to a result register by the number of times equal to the number of the digit．Finally，units are added to the result．Table 1 ，system calls， shows that the b．c．d．number should be placed in POINT and POINT +1 ，the first being the ram register used by the monitor at address 1 A and the last the next loca－ tion，1B．As these locations are used by the monitor they cannot be set up by the memory－open command（mo）which uses POINT for other purposes but must be set up within the user program．Setting up of the index register is also required so that it points to where the result of the conversion is to be placed．

BCD-to-binary conversion

List 9 is a program example for converting 2748 to binary for representation in hexadecimal form. First POINT and POINT+1 are set up with the decimal value then the index register is loaded to point to result location 60. Subroutine BCDBIN is then called to convert the number to decimal and return control to the monitor. Examination of locations 60 and 61 using the memory-open key should

Table 1. System calls.

\begin{tabular}{|c|c|c|c|c|c|}
\hline Add \& Name \& Function \& Add \& Name \& Function \\
\hline \[
\begin{aligned}
\& 80 \\
\& 83
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { START } \\
\& \text { DISKEY }
\end{aligned}
\] \& Re-enter monitor. Refreshes display with data in DISBUF then calls KEYIN. \& B6 \& BINBCD \& Converts a 14 -bit binary number in POINT/POINT+1 to a four-digit packed \\
\hline 86 \& KEYIN \& Scans keypad and returns with key code in \(\mathrm{A}, 00\) if no key pressed. Sets c.c.r. C bit if same key pressed, clears otherwise. \& B9 \& BCDBIN \& b.c.d. number in 0 , \(X / 1, X\). Sets \(C\) if an overflow occurs. Converts a four-digit packed b.c.d. number in POINT/POINT +1 to a 14 -bit binary \\
\hline 89 \& DISGET \& Repeatedly calls KEYIN until a new key is pressed, returns with key code in \(A\) \& BC \& BUILD4 \& number in \(0, \mathrm{X} / 1, \mathrm{X}\) Sets \(C\) bit if a nondecimal digit entered. Gets four hex. digits \\
\hline 8C \& DISHEX \& Calls DISGET and converts key code to hex. if a 0-9 or A-F key and clears C bit. If non-hex., returns with original key code and sets \(C\) bit. \& BF \& ADD \& from keypad and packs them in POINT/POINT+ 1 . Jumps to START if non-hex. key pressed. Adds two 16-bit binary numbers in \\
\hline 8F \& HEXCON \& Converts key-code in A to hex (\(00-0 \mathrm{~F}\)) and clears carry. If nonhex. key, returns with original code in A and sets carry. \& C2 \& SUB \& POINT/POINT+1 and TEMPX1/TEMPX2. Result in POINT/POINT+1. Subtracts 16-bit number in \\
\hline 92 \& BADDR \& \begin{tabular}{l}
Builds three-digit address entered by keypad in \\
POINT/POINT +1
\end{tabular} \& \& \& TEMPX1/TEMPX2 from 16 -bit binary number in POINT/POINT +1 . \\
\hline 98 \& THEX \& Gets two hex. digits from keypad and combines in A. Puts seven-segment equivalent of two digits in \(0, X / 1, X\). Nonhex. keys cause jump to START. \& C5

C88 \& MUL

DIV \& | Result in |
| :--- |
| POINT/POINT+1. |
| Multiplies two eightbit binary numbers in TEMPX1/TEMPX2. 16 bit result in POINT/POINT+1. |
| Divides 15 -bit binary |

\hline 9 B \& LSEG \& Converts m.s. nibble in A to seven-segment code. \& \& \& number in POINT/POINT + 1 by seven-bit binary

\hline 9E \& RSEG \& Converts I.s. nibble in A to seven-segment code. \& \& \& number in TEMPX1, puts quotient in POINT +1 , remainder

\hline AD \& ERROR \& Puts 'Error' in display until any key pressed then jumps to START. \& CB \& DVM \& | in POINT. |
| :--- |
| Digital voltmeter program (see Jan. 83 |

\hline B0 \& CLRDIS \& Clears display buffer ram DISBUF. \& CE \& VGEN \& issue)

\hline B3 \& DAA \& Simulates the 6800 DAA instruction. \& \& \& program (see Jan. 83 issue).

\hline
\end{tabular}

reveal the result 0 ABC . List 10 is the b.c.d.-to-binary program in Picotutor. Try modifying the program to convert from binary in hexadecimal form to b.c.d. using Picotutor subroutine BINBCD.

System calls

Because of limited ram in Pictotutor a collection of useful subroutines, or system calls, such as BCDBIN are included in the monitor eprom, Table 1. By linking these to your programs fairly complex programs

Table 2. Reserved memory.

Address	Bytes Name	Function	
10	6	DISBUF	Store for seven-segment codes for each digit of display.
16	1	TIMEV	Timer interrupt vector. Program will jump to the direct address given here when a timer interupt occurs.
17	1	IRQV	Same as TlMEV but for hardware interrupt.
18	1	LASKEY	Used by DISKEY.
19	1	POINTP	Used by monitor
14	2	POINT	Used by monitor and for arguments of some system calls.
1 C	1	POINTS	Used by monitor.
10	1	BITSTR	Single bit flag store. Bit 0 used by DAA, bit. 1 used by BINBCD
$1 E$	1	TEMPA	and BCDBIN. Bits 2 to 7 reserved for future use.
$1 F$	1	TEMPX monitor.	Used by monitor.
20	1	TEMPX1	Used by monitor and for arguments of some system calls.
21	1	TEMPX2	Used by monitor and for arguments of some system calls.

can be used despite the small ram. Included are the routines for addition, subtraction, multiplication and division already described. Other routines will be described later; the list is included now to allow you to experiment.

Addresses of each call are only three bytes apart because the address merely contains a jump instruction which causes a jump to the actual routine address. There are two reasons for this. Firstly all these jumps can be contained in page zero eprom locations which allows direct addressing and saves memory space. Secondly minor program modifications which alter address locations may be made without altering the jump addresses. An area of ram reserved for use by the monitor is also used by some of the system calls, indicated in Table 2.
vin

Bob Coates concentrates on the 6805 and reveals some of Picototors secrets in his next article.

DESIGN COMPETITION

In case anyone who has entered your design competition is still undecided about what to do, I would like to make a suggestion.

In a noisy environment the normal ear can shut out the unwanted sound, enabling a conversation to be carried on without much difficulty.

Interpose a hearing aid or any microphone amplifier - receiver combination for that matter and the ability to discriminate is lost. All we hear is the loudest noise.

Anyone who can overcome this will earn the undying gratitude of the hard of hearing.
D. Wattson

Hayfield
Derbyshire

Over the years there have been several methods for the disabled to signal help when they are in difficulties - cords, bells, lights, whistles, etc. and, of course, the telephone. They are all so limited that they are virtually useless for the very people for whom they are most needed the very severely disabled, including the frail elderly. When they fall to the floor, or are in similar difficulty, they are helpless; they cannot reach any of the communication aids presently suggested.

What is needed is a portable fail-safe alarm, a device that can be worn round the wrist or neck which the person can immediately operate, activating automatically the telephone or similar means of communication to an outside source of help. I have to say that there are one or two such devices on the market, but they, too, are limited and, I think, expensive.

If something really suitable could be produced it would be a tremendous boon for the increasing numbers of disabled people. There would be an enormous market amongst them, and Social Services department, especially with the increasing emphasis on community care.

I hope this will be taken up.
E. M. Cohen

Southend-on-Sea

'WASTE' OF A RESOURCE

May I suggest a new cause that Wireless World with its new-found sense of social responsibility may care to take up?
This is the almost incredible waste of a precious natural resource - the radio spectrun - on what can only be described as pap at its mildest and sheer rubbish at its worst. If one tunes across the medium-waveband in any part of this country today, all that can be heard is the same type of "chat-show, DJ, phone-in", repeated ad nauseam from what seems to be hundreds of stations, all identical except for their names and the occasional reference to some local event or other. Some put out adverts for local businesses and call themselves "independent" stations, others advertise themselves and claim to be the BBC. Radio 4 has absconded to long-wave, Radio 3 has been relegated to a single frequency and ruined by continuous fading even in daylight, and the scene is not even enlivened by the occasional "good music" station, as in the USA. In fact, as a frequent visitor to the USA, it seems to me that from a situation 20 years ago where we could be rightly proud of what the BBC was doing, we have completely degenerated to the point where almost any large

American city has more real choice than we do. What I object to is the sheer waste of frequencies. We have been told repeatedly over many years whenever some new form of public service broadcasting was suggested that the real problem was lack of frequencies, so they never came to anything, yet now we seem to have found (by magic, apparently) that there are in fact huge numbers of channels totally unoccupied and just waiting for another pap station to occupy them.

I have in mind, particularly, continuous weather broadcasting of the "Airmet" variety. "Airmet", you:may remember, was a long-wave station that transmitted continuous weather reports for a large number of stations throughout the UK, interspersed with interpretation by a forecaster. Nominally for the benefit of aircraft, it was chased off the air in 1950 by, supposedly, the Copenhagen Plan, which re-allocated its frequency (245 kHz) to Copenhagen. There was a considerable outcry at the time, quietened down somewhat by the reassurance that as soon as an alternative frequency could be found it would be re-instated. Needless to say it has not been.

Now this was a particularly useful bit of true public service broadcasting. Being in plain language, on an easily accessible frequency, it needed no specialised equipment and eliminated all the business we now have of trying to remember at what time on what channel the weather forecast is. Unless you happen to have specialised knowledge and can use the h.f./s.s.b. civil and military weather broadcasts, there is still no way to get up-to-date actual weather reports country-wide. And yet, how many disasters do we still have attributed to some poor chap's lack of knowledge of how the weather was developing? A continuous broadcast on the medium waveband might just prevent some of those hikers or sailors starting out in the first place, and save the expenditure of large sums by the rescue services.

Of course, none of the existing broadcasters would want to organise it - it is unglamorous and might not pay - but how about the Government itself doing it?

This is only one example, but there are many others. Come on, Wireless World, this one might even have a better chance of success than some of your other causes!
W. Blanchard

Dorking

Essex

TELECINE SCANNING

Is it not time that, even now, after all these years of the growth of tv , something could be done to adjust more sensibly the 35 mm telecine scanners of both BBC and the IBA companies. I have the impression that for a large number of years the SMPTE standard has been used, but unfortunately this results in excessive underscanning of the film frame, titles becoming far too close to the picture edges, in some cases even being partially cut off. Credits such as "irected by" at times being the result. Even famous names have been "shortened" on occasion.

In cinemas in pre-CinemaScope days when screens were all 4×3 ratio this problem did not arise. When one considers that domestic tv receivers almost always overscan the picture tube (all the ones I've seen - except mine do) the present excessive underscanning by the broadcasting authorities telecines is completely unwarranted.

Surely the solution is to line up to the traditional scanning area of standard 35 mm projectors. This will result in correct framing and compostion as intended by the original film makers. Incidentally there would be an added bonus (albeit only marginal) in that the definition would be improved.

Who will pursue this?
Arthur Dungate
Hounslow
Middlesex

BINAURAL RECORDING

I want to give some comment on Mr Kirkham's letter in $W W$ June, 1983. First of all I want to deal with the "oddities" he discovered in the schematic diagram given in my article in WW November, 1982.

Driver stage for the 600Ω load

This stage was designed to operate with $1 V_{\text {peak }}$ input voltage, with an overload margin of some 10 dB , and a flat frequency response up to 50 kHz . Therefore the output can make excursions between the power supply-lines. This requirement cannot be met by most op-amps, hence the class-B output stage. This opened the way to the use of a somewhat "funny" amplifier, the LM 3900, which is a Norton amplifier. This reduces the number of switch contacts, and reduces the number of resistors. The a.c. analysis of a typical Norton amplifier is given below.

This shows that the amplification of the first stages is 3 in both modes, and that the third stages are $1 \times$ amplifiers in both modes.

Second amplifier stage

The second amplifier has to have the following characteristics: low noise, because the output of the cross-feed circuit is $0.01 \times$ the input signal; frequency characteristic flat up to 50 kHz . These demands are met by the LM387, which has an equivalent noise voltage of $7 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$. This single supply amplifier however has a somewhat peculiar behaviour. The input presents a 1.2 V d.c. level, which by means of d.c. feedback controls the d.c. output level. This explains the split between d.c. and a.c. feedback, and the 1μ capacitor on the input. Mr Kirkham is correct however, when he indicates that the switch was wrongly positioned. This was corrected in WW of January 1983.

The circuit as published in my article (WW Nov 1982) can be approved upon by using TL074 (or equivalent) because LM3900 is prone to high frequency instability, which generates noise. However, the circuitry has to be changed considerably, else you will end up with

wrong amplification factors. Part of the circuit is given below.

Now about the use of the circuit described in WW November, 1982. It is intended to give loudspeaker-like reproduction on headphones, or headphone-like reproduction on loudspeakers. This is something totally different from what Mr Kirkham is looking for. He is looking for some "gadget" that enlarges the stereo-base. The circuit he provides does just that, and nothing more.
When Mr Kirkham suggests that a simple roll-off at 1 kHz would very likely generate the same audible effect as my circuit, I think this will not be the case. This is caused by the fact that no account is given to the difference in arrival-time of the sound of a single source on the left and right ear, and that no account is given to the high frequency lift generated by the presence of the head. Because of the cross-feed circuit used by me (and developed by Mr Bauer of CBS in 1961) does just that, one ends-up with a good reproduction of dummy-head (kunstkopf) recordings via loudspeakers, and loudspeakerlike reproduction of conventional stereo via headphones. These are facts that the circuit given by Mr Kirkham cannot achieve.
J. H. Buijs

Huizen
Holland

WAVES IN SPACE

I refer to the correspondence in the August issue concerning Catt's "Waves in Space", (March, 1983).

Ivor Catt has, for some years, been proposing new explanations of electrical phenomena which many regard as already fully explained by classical e-m theory; theory which unfortunately has become dogma because few have bothered to question its tenets in those areas where its teachings give rise to curious and unexplained paradoxes.
Correspondents who try to put Catt down generally throw up a dogmatic smokescreen whilst often failing competely to address themselves to the apparently paradoxical events he has attempted to explain. The latest correspondence concerning "Waves in Space" is no exception. R. T. Lamb's letter gives no real explanation of the phenomena that Catt discussed and simply fluffs the issue of pulse duration with a remark about the charged line being an energy storage device rather than a source of e.m.f.

Timothy C. Webb's letter puts a finger on one important issue when he asks why Catt's contra-moving waves are not destroyed by line losses, but he fails to ask whether conventional energy dissipation due to line loss applies to these contra-moving waves. I suspect Catt thinks otherwise and it would be interesting to have his views.
In other respects Mr Webb's letter falls into the dogma trap. There is a resounding bit about
"The great body of scientific and engineering knowledge that has amply demonstrated . . ." etc., etc. Dr Catt has quite reasonably asserted that the great body of scientific and engineering knowledge has singularly failed amply to demonstrate some of the things it purports to explain! At the end of his letter Webb gives what I found to be an incomprehenisble explanation of the pulse duration problem and then rounds this off with a remark about the "pleasing aspect of this argument . . ." etc. I was not very pleased because I could not make head nor tail of it!
Hodge's letter is perhaps more thoughtful but again it does not seem to explain the phenomena which Catt discussed in his article.

Catt's theories may be wrong but he is certainly right to shine lights into some of the dark and deceiving corners of classical e.m. theory. One would like to see more reasoned arguments advanced in refutation and less reliance on the "dogma must be right" approach which, incidentally, rather neatly mirrors the discussion on the "closed loop arguments", (said to be used to support relativistic dogma), given in an unrelated letter from A. H. Winterflood in the same issue of Wireless World.

Anyone who thinks he knows all about electricity should also read Professor Jennison's article on making a charge from a radio wave! M. G. T. Hewlett

Midhurst
W. Sussex

CRAFT AND TECHNOLOGY

In your July issue, under the above heading, Dr Smith purports to "discuss the role of the industrial designer". As a craftsman myself, with some experience in engineering and industrial design, I was disappointed to find that the discussion amounted to one paragraph, where he says that "a well structured p.c.b. with all the components colour-coded and laid out for strictly functional use can be aesthetically (though unintentionally) very pleasing (but) many mass-produced goods disguise themselves in poor design, however good the technology incorporated in them"

The main body of the article is entirely devoted to a "bracket clock of modern design, with fine traditional metalwork mounted in a handcrafted case of amber-tinted transparent acrylic (with) silvered chapter ring, brass spandrels and finials . . . finely engraved and hand finished . . . (giving) the impression of being a traditional English timepiece while using modern materials.

The maker of this article, which is shown in an illustration said, in answer to a question: "Contemporary artists and craftsmen must use modern materials and mould them to give a message of what we are doing now". The author justifies the printing of this article in Wireless World by saying that the clock "although it originated in a cottage industry established by a craftsman, uses a very up-to-date quartz drive
(and) bridges the gap between fine individually made objects and anonymous massproduced (although highly technological goods". He says "the success of this design encourages me".

Well, it doesn't encourage me! What if someone were to make a modern electric locomotive look like a steam loco. Or an automatic washing
machine like an old dolly-tub, or a steam smoothing iron look like the old flat-irons?
As a matter of contemporary fact, mass-produced pseudo-traditional clocks very like this handcrafted piece are the most astonishing feature of a modern city shopping centre. Industrial design seems to have by-passed clocks, except for the occasional pocket digital alarm-cum-stop-watch-cum-almost-everything in precision timing.
An instrumentation engineer myself, with somewhat disused craft skills of my own, I just love old clocks and measuring instruments, and the fine old instrument work that still lingers in a few old college laboratories. But this kind of modern mechanism deliberately dressed up in old clothing is the very antithesis of real craftsmanship, which in every age has always used the very best techniques and materials available at the time, and allowed the craftsman to express himself superbly without a single note of falseness or deference to an archaic traditionalism.
Does anyone suppose that clocks and other artefacts like the one described in this article will be admired by connoisseurs, or reproduced by artist-craftsmen one or two hundred years hence?

I am sure we are in for a resurgence of fine craftsmanship (if we survive long enough), if only to fill in the time of our structural unemployed. But I am equally sure it will not be dissipated in copying antique objects of beauty, or clothing high technology in resurrected 'traditional' forms.
R. Gill

Derby

RECORDING TELETEXT

Speaking recently by telephone to one of your technicians doubt was expressed about the possibility of recording teletext pages and subtitles on a domestic video recorder.

I thought that it might be of interest that I have quite successfully recorded using a teletext decoder from Ayr Viewdata of Byfleet, who advertise in your journal, this being simply tuned through a spare channel on my Toshiba V8600 video recorder.

There is a slight reduction in quality by using an adaptor rather than a teletext tv and, though pages are in full colour, subtitles are in black and white to save cost on the decoder. Results are pretty good and quite acceptable to the viewers.

This facility is valuable to people who are suffering from hearing problems and particularly those who would like to record a subtitle programme being shown at an unsociable hour or clashing with one on another channel.

Since it is available at approximately one third of the current price of a 22 inch teletext $t v, I$ am amazed that manufacturers and dealers are not pressing sales of the decoder for people who already have a modern tv without the teletext facility.
N. Gibson

Burgess Hill
W. Sussex

IMPOSSIBLE LOYALTIES

Referring to your May editorial, the ethical problems of conflicting loyalties may have come to Wireless World's attention only in 'the perilous 1980 s', but people have been grappling
with these questions for some thousands of years. To make a useful contribution, Wireless World should perhaps give them rather more careful thought than is evident in the editorial.

There seems no case for saying that loyalty can exist only between people. Loyalty is given to ideas and principles, not to people as structures of flesh, bones and hair nor to organizations as management structures. Ideas and principles may be embodied by organizations as much as by people: surely an organization such as The Red Cross must be allowed as an example of this.

The argument that organizations are motivated only by self-interest can be applied equally to people. One can say that any person's good action is done ultimately for the resulting glow of self-satisfaction, but this is a sterile line which puts an end to any useful debate.
Wireless World seems very ready to judge for us whether our loyalties are worthy or not. Are you, or is anybody, really in a position to dismiss as unacceptable the possible loyalty of a wife to her mass-murderer husband? In any case you are really suggesting only the replacement of conventional allegiances by loyalty to the concept of 'Engineers Against Evil.' If some engineers decided to uphold their principles with action rather than just words, you might even find yourselves advocating loyalty to a terrorist group!
D. P. Leggatt

Farnham,
Surrey.

DEATH OF ELECTRIC CURRENT

I believe Ivor Catt bases his theory on Heaviside's "the current in the wire is set up by the energy transmitted through the medium around it."

Chapter ten of Hertz's book 'Electric Waves' is a reprint of his paper 'On the Propagation of Electric Waves by Means of Wires' first published in 1889, a year after the experiments which made him famous. The purpose behind the experiments described in this later paper was to test Heaviside's and Poynting's theory that, as Hertz wrote, "the electric force which determines the current is not propagated in the wire itself, but under all circumstances penetrates from without into the wire. . . ." Hertz went on to say "As a matter of fact the theory was found to be confirmed by the experiments which are now to be described; and it will be seen that these few experiments are amply sufficient to support the conception introduced by Messrs Heaviside and Poynting.'

Hertz then described a set of experiments which used his invention of the coaxial cable and the balanced feeder or transmission line, and concluded his paper, "On studying the experiments above described, the mode in which we have interpreted them, and the explanations of the investigators referred to in the introduction, one difference will be found especially striking between the conception here advocated and the usually accepted view. (Weber's theory of electricity carried by charged particles acting instantaneously at a distance.) In the latter, conductors appear as the only bodies which take part in the propagation of electrical disturbances - non-conductors as bodies which oppose this propagation. According to our conception, on the other hand, all propagation of electrical disturbances takes place through non-conductors: and conductors oppose this propagation with a resistance which, in the case of rapid alterna-
tions, is insuperable. We might almost feel inclined to agree to the statement that conductors and non-conductors should, according to this conception, have their names interchanged.

Hertz was even more specific in his Supplementary Note No. 24. "By the experiments in the following paper it is pretty plainly proved that in the case of rapid variations of current the changes penetrate from without into the wire. It is thereby made probable that in the case of a steady current as well, the disturbance in the wire itself is not, as has hitherto been assumed, the cause of the phenomena in its neighbourhood; but that, on the contrary, the disturbances in the neighbourhood of the wire are the cause of the phenomena inside it."

Catt's critics have a choice: either Hertz was a crank and a crackpot, or he was, as an experimenter and detective, in the same class as Faraday. If Hertz's diagnosis of his experiments with a transmission line is correct, the effect we call a current is caused by "the disturbances in the neighbourhood of the wire," what, in the neighbourhood of the wire, is being disturbed? Maxwell's ether?

M. G. Wellard

Kenley Surrey

ELECTROMAGNETIC DOPPLER

If two objects have a relative velocity then the distance between them is changing (by definition). Anything that travels from one object to the other at regular intervals will travel different distances on successive trips. If the two objects are travelling away from each other then each trip will be longer (in distance) and will take longer (in time) unless the thing making the trip (wave crest, photon, bullet, or jogger for that matter) increases its speed to compensate for the increased distance. The fact that consecutive trips take longer (in time) means that consecutive arrivals are further apart (in time) than the corresponding departures. This is called the Doppler effect.

Special Relativity and Newtonian physics predict different values for the Doppler effect: they do not invoke different mechanisms. The mechanism is that unless you increase your speed you'll take longer to travel a greater distance.

You don't have to like Special Relativity but you must accept that it "explains" Doppler shift just as well as Newtonian physics does - indeed, the "explanation" is the same for both systems.

In your July issue, S. Kennaugh derives a formula for the magnitude of the Doppler effect. He describes his derivation as commonsense, elegant, but heretical. His derivation is Newtonian and relies on two assumptions (velocities can be added like pure numbers, and wavelength of a electromagnetic wave is constant to all observers) that are valid for Newtonian but not for special Relativistic physics. Neither of these assumptions is needed - I offer the following: Observer B is receiving radio signals transmitted by A at frequency f. A is moving at velocity v relative to B . "Wave crests" are transmitted at intervals of $1 / \mathrm{f}$, during which time the distance from A to B increases by v / f. This extra distance is covered in time v / fc (c being the velocity of radio waves measured, like v , relative to B). Wave crests arrive at B at intervals of ($1 / f+v / f c$) which corresponds to a frequency of $\mathrm{fc} / \mathrm{c}+\mathrm{v}$ - a Doppler frequency shift factor of $c / c+v$.

This derivation is correct for both Newtonian and Special Relativistic physics - provided that all values are observed by B. Note that (aside from the symbol ' c ' for speed of wave propagation) there is nothing specific to electromagnetic Doppler in this derivation; it is equally correct for sound waves, or for any periodic transmission across an increasing distance.
In your July issue, J. Kennaugh raises another aspect of Special Relativity: suppose that the same radio wave is observed by two observers who are moving relative to each other. They each observe a different frequency for the wave but they observe the same propagation speed (c). Since $V=f \lambda$ holds good for all observers, these two observers obtain different wavelengths for the same wave. The two observers disagree about the length of the same physical "object". J. Kennaugh, it seems, does not like this prediction of Special Relativity. Although I can only agree with JK that Newtonian physics is simpler in many ways than Special Relativity, that doesn't make it correct.
In case your readers should think that I'm trying to avoid discussing the more disturbing predictions of Special Relativity, let me return briefly to the question of observed wavelengths. Special Relativity predicts (as pointed out by JK) that two observers of the same wave will see different wavelengths. Imagine now that one observer measures the time taken by the radio wave to travel between two objects at a distance of say in wavelengths apart. The other observer times the same radio wave travelling between the same two objects. Now Special Relativity predicts that the two observers measure a different distance (between the same two objects) traversed by the same wave at the same speed. They measure a different amount of time for the same physical event!

Predictions like these may be hard to understand and even harder to believe but it is important to realise that they are not contrary to logic. I'm sure that nothing I can say will shift JK (and many many others) from his view that Special Relativity contains some basic logical flaw, but if you are happy to continue publishing our letters then I am happy (for a while, at least) to continue defending Special Relativity.
Before I finish this letter I must challenge two things raised by James L. Smith also in your July issue. Firstly he suggests that the existence of a wave propagation medium (ether) changes the observed Doppler effect; as I've already explained, this is not true. Secondly he offers a choice between "Einsteinian" and "NonEinsteinian" systems; this is a ludicrous oversimplification - Einstein proposed at least two systems (Special and General Relativity) and there are almost unlimited alternative (nonEinsteinian) systems - some predict an "ether", others do not
S. J. Hobson

Hampton
Middlesex

HERETICS' GUIDE

It is reassuring to hear that the idea of the wave/particle duality or complementarity of light, "current half a century ago" (and chosen by Niels Bohr as his motto when knighted by the King of Denmark), is no longer a required belief in modern physics. Yet Mr Coleman (July 'Letters') continues to rely on the duality concept, even in this letter. In his fifth paragraph he refers to Doppler shift, a wave phenomenon (incidentally, is it really the ordinary conductivity electrons that radiate with
this Doppler shift, and how is it measured, please?); then he speaks of "a photon hitting the surface of a metal" and of "an area comparable with the square of its wavelength" in the same sentence. Duality may be dead but it seems reluctant to lie down!
I asked earlier why it was that only one of these (millions of) electrons is ejected by the impact of a single photon. Mr Coleman says the answer is simple, but he does not supply it. The work function (escape energy of a conductivity electron) from a metal surface is measurable, and no visible or ultra-violet photon carries more than a few times this escape energy. If that energy were distributed equally or even thermally among millions of electrons not one of them would have enough energy to escape yet one of them does. Why? The quantume theory does not try to explain this but, characteristically, side-steps the real question by assuming the observed result.
The bunching of visual photons measured by Dontsov \& Baz' (WW Letters, May, 1983) may perhaps assist in accounting for the interference phenomenon, but it is not required in order to explain the so-called "diffraction" of electrons or gamma-rays. (I have not felt entitled to ignore such facts - indeed, the early articles were concerned with little else!). The mechanism need not be wavelike. In a pin-ball game the ball bearings follow preferred tracks and finish up in preferred places that are predictable statistically but unpredictable individually. This is just what is observed when electrons and photons pass through crystals and are "diffracted". A pintable doesn't look much like a diffraction grating to me.
W. A. Scott Murray

Kippford-by-Dalbeattie
Galloway
Dr Scott Murray on page 35 of the May 1983 issue of Wireless World uses the seepage of water through sand as an analogy for the tunnel effect. A more satisfactory analogy is that of frustrated total internal reflection of light waves.

N. A. de Bruyne

Princeton
New Jersey
USA

DARLINGTON DEVIATION

Mr Gray has pointed out (WW, March, 1983, p.62) the limitation of the Darlington in saturation and the advantage of the independent emit-ter-follower drive. When the main transistor is a power switch, and more especially when it is one of the devices which is operated at $I_{b}=I_{c} / 5$, an intermediate configuration offers advantages.
The general form is shown in Fig. (a), and (b). In Fig. (a), R_{2} and R_{3} form the load to be heated. It is obvious that R_{2} carries the total current in the two transistors. Provided that the first transistor is robust enough to accept a wide

(a)

(b)
tolerance of current, the drop in R_{3} need only be ($\mathrm{V}_{\mathrm{CE} \text { Sat } 1+\mathrm{V}_{\mathrm{BE} 2}-\mathrm{V}_{\text {CE Sat 2 }} \text {), about half a volt, }}$ and the load current is then, for the typical case, increased by some $10-15 \%$. The introduction of R_{1} gives better control at the price of lower efficiency.

When an output transformer is used, the circuit of Fig. (b) allows the drive transistor to be limited to anywhere between V_{CC}, for the emitter follower form, and $2 \mathrm{~V}_{\mathrm{CC}}$ for the Darlington.
T. Roddam

Arundel
W. Sussex

SATELLITE TV AERIAL ALIGNMENT

I must agree with all the difficulties that N. L. H. Cresdee describes in directing a satellite aerial dish. The problems are especially acute using the 12 GHz band, with necessarily large dishes at present in use. In addition, if the receiving lens or reflector is slightly off-focus or boresight, the lobe pattern of the aerial is quite disturbed and you can easily end up optimising for a false or poor maximum.

However, there is one invaluable aid, both to directing and focusing that was not mentioned, and that is the sun. Far from the rarity it would appear to be in the UK, a visual sighting of the sun reflected on to your receiver lens will give you a positional fix close to that of the satellite orbit. The accuracy of this fix depends solely on your ability to know or calculate the local Solar Time.
J. Emmett

Supervisory Engineer
Thames Television
Sundials: Their Theory and Construction. A. E. Waugh, Dover.

RECHARGEABLE H.T. BATTERY

OVER recent months it has been my task to sort over the "debris" of 60 years of life of one family in the one house. One particular item that I have "found" is a Milnes rechargable h.t. battery (6×120 volt) that I know for fact has not been recharged or used in any way at all since 1956 - and almost certainly was last charged not later than 1952. Imagine my astonishment when a quick check with a multimeter revealed that several of the individual cells still - after 30 years or so - show a potential of at least one volt. I am writing to your journal because I know that your circulation penetrates those institutions where the "brains" are. Someone, somewhere - possibly engaged in storage battery research - could well be interested in this Milnes unit. I feel it would be criminal of me to cast it onto the rubbish heap without first making the effort to put it where it perhaps could be of use. I had over 35 years in radio communication and I only ever saw just two Milnes in my life - this one that my father bought sometime in the 1930 's and one other where I first worked in 1943 al Somerton Radio Station: there cannot be very many in existence. I feel that a high percentage of those engaged in radio and electronics today would not even know what it was if one showed it them - hence my approach to you.
W. B. Pash

Somerton
Somerset

FORTH COMPUTER

In his article on a Forth Computer, Brian Woodroffe takes the dangerous step of comparing microprocessor c.p.us by preparing a number of examples of small isolated sections of code.

Whilst I do not wish to take a standpoint in favour of any particular device I would like to point out that this sort of comparision is, at best, worthless and can be misleading. To quote one counter example, the 8088 ' + ' operation could be carried out via the instructions:

> POP AX
> $\mathrm{MOV} \mathrm{BP}, \mathrm{SP}$
> $\mathrm{ADD}[\mathrm{BP}]$
equal to the 6809 in terms of instructions or, if BP has a fixed relation to SP as is the case in most executing programs:

> POP AX
$\mathrm{ADD}[\mathrm{BP}+\alpha] \mathrm{AX}$
where X is an assembly time constant. I hasten to point out that I am not trying to challenge his choice of processor but simply to point out that his reasoning is flawed (I have no doubt that any software engineer (sorry Mr Catt) familiar with the other c.p.u. mentioned could improve upon the quoted examples.
J. O'Connor

Crewe

BBC ENGINEERING

May I reply to R. G. Brown (June 'Letters') whose letter I certainly take as constructive criticism rather than abuse.

First of all, most non-news recording in the BBC today is effected on 1 in helical machines, the earlier 2 in quadruplex equipment being progressively phased out. The technical quality obtained with the 1 in helical system is unquestionably superior to that on quadruplex.
Secondly, a lower standard of recording quality is sensibly accepted for e.n.g. work, in the interest of portability. But e.n.g recording quality could not possibly be matched by a domestic video recorder.

So equipment and engineering standards can certainly not be blamed for Mr Brown's dissatisfaction.

On the other side of the coin, programme makers will always push their technical facilities to the limit. Any improvements in effective sensitivity (ie signal/noise ratio) or other technical' parameters will tend to be exploited to give additional programme flexibility in the way of darker or higher-contrast scenes, even more multi-generation dubbing for editing purposes, and more complex special effects. This push for flexibility is very proper and it is the business of engineering to continue with improvements which offer it; but of course a balance must be struck between programme flexibility and technical quality, such that the major part of our audience is pleased with the former and content with the latter. I'm sorry if to Mr Brown's eye we have overstepped the line at times but the final judgements are subjective.

As engineers we remain continually vigilant to see that the flexibility/quality balance is about right. Comments such as those of Mr Brown are useful aids to this vigilance.
D. P. Leggatt

Engineering Information Department BBC
London

Process control by personal computer

> Although most of the general-purpose process control systems still use proportional-integral-derivative algorithms, control techniques which have been too expensive or too complicated to implement not long ago are now made possible using a microcomputer.

This article covers the operation, design procedures and the applications of a microcomputer-based digital dynamic control system (d.d.c.) and underlines how the addition of a simple analogue interface on a small personal computer allows the designer to be come familiar with the digital dynamic control techniques in a real (not simulated) environment. The system described consists of an eight multiplexed input a-to-d converter, a d-to-a converter with power outputs and a six input adder. Thus multiple feedback controlling only one output variable is possible. Alternative interfaces are also described; their object is acquiring data and simplifying the software which the microprocessor needs to make data conversion.

Digital process control ousts analogue

The history of automatic control, from the use of ingenious pneumatic controllers tc the present-day d.d. control systems, has spanned almost half a century. This evolution has not been the result of a continuous transformation but the consequence of an acceleration-stop process which has been technology's main characteristic since the second World War.

Neither has this evolution occured without controversy: the technological changes have originated many and sometimes serious polarizations in the designer's opinion. They can be classified into two main controversial groups, the first being an immediate consequence of the technological change. Concerning the control hardware selection, it is generally solved assuming that the ultimate decision is purely a marketing decision. Innovations in hardware often act like perturbations in the decision system.

The theory-practice gap evident in many applications constitutes the second controversy and is the most relevant characteristic in the recent history of automoatic control. On the other hand, theory and technology have evolved side by side; from the idea of feedback as a starting point, control theory has developed powerful analytical tools and efficient controllers

[^6]
use revealed that 34 out of 37 listed controllers were p.i.d., either exclusively or with options for proportional-integral or proportional actions. Satisfactory performance in the properly tuned p.i.d. controllers caused other control options to be relegated, whereas electronic technology could have made them possible.

It has not been exclusively a problem of mistrust in the theoretical proposals; an algorithm more sophisticated than p.i.d. implies a more complex and expensive analogue controller. The close relationship between algorithm and hardware complexity didn't allow the practical application of most theoretical models until the introduc-

Fast sampling equipment
together with rest of the microcomputer system - Rockwell Aim 65 keyboard, external memory, power supply and oscilloscope.
tion of the digital computer. But not until few years ago could designers count on a real, economical and flexible alternative to the use of p.i.d. analogue controllers. Thus microcomputer-based digital control is competitive even in the area of small applications.

In a direct digital control system the microprocessor performs the controller tasks. The control becomes control by program instead of hardware control by analogue filter. Algorithm complexity is no longer related to the system price but to the computation time, namely to the output delay which constitutes a basic parameter in closed-loop systems. Neither does control sensitivity depend on filter component tolerance, but on computation accuracy (round-off, number of bits representing every coefficient, etc.). Old restictions disappear while new design factors arise. And finally, software flexibility allows selection of the appropriate algorithm, adoption of a control strategy which allows alternatives (for instance, starting and
steady-state), program linearization of transducer characteristics, etc.

The small personal computer is a very useful tool for designers' practical initiation into d.d.c. techniques and it is mostly used for running either standard programs (e.g. video-games, file-handling) or the users program. Its outer communication is basically limited to the input and storage of data and programs, and to the display. By adding appropriate input/output devices and by means of a special program, this computer can perform the real-time control of anv outer device. The small personal computer can therefore be used as a calculator (analysis or design programs), as a simulator (simulation programs with graphical results), and as a controller (realtime control programs).

Equipment scheme and performance

An analogue control interface for the Rockwell Aim-65 microcomputer system has been implemented though the design is easily adaptable to any other computer. It uses eight multiplexed inputs and one output, and has been designed to control lowpower devices. Its structure corresponds to the very general functional scheme of Fig. 1.

The analogue input consists of several modules whose performance is controlled by the microcomputer through an input/ output port. The multiplexer selects one of its input signals and applies it to the sample and hold circuit whose aim is holding a sample at a fixed voltage during the a-to-d conversion time interval. The converter provides a digital representation of the value of every sample by using a limited number of bits (eight in this case). A decoder allows the microcomputer to read the digital samples through a specific memory address which belongs to the memory space not occupied by rom, ram or other addressable devices. The analogue output consists basically of a d-to-a converter. The microcomputer writes the digital values in an output port which is connected to the above-mentioned d-to-a converter. Finally, an analogue adder

Figs 1 \& 2. Functional scheme of the analogue interface (above) together with its detailed system performance (below).
(Σ) with three adding and three substracting inputs has been incorporated.

The microcomputer system performs the control of the analogue input through the so-called v.i.a., a set of programmable input/output ports, owing to the use of the AIM-65 system. The sequence of tasks for the acquisition of one sample is given below:
1 Programming of v.i.a. port A, implies that $\mathrm{PA}_{0}, \mathrm{PA}_{1}, \mathrm{PA}_{2}$ and PA_{4} will be the outputs and PAsthe input.
2 Selection of an analogue input. According to the binary combination PA1, $\mathrm{PA}_{0}, \mathrm{PA}_{2}$, one of the eight possible inputs is chosen.
3 Order of sampling: A 'one' is loaded in PA_{3}.
4 Acquisition time. A minimum time t_{A} of
$5 \mu \mathrm{~s}$ is needed to ensure that the sample and hold output be equal to the input.
5 Order of holding. A ' 0 ' is loaded in PA_{3}.
6 Delay of opening. A minimum time t_{H} of $l \mu \mathrm{~s}$ is required to ensure a fixed voltage in the sample and hold output.
7 Beginning of conversion. Once the input signal analogue sample is obtained, i.e., t_{H} microseconds after the 'hold' order, the microcomputer gives the order 'begin of conversion' to the a-d converter by loading a ' 0 ' in PA_{4}.
8 End of conversion. The microcomputer remains in a waiting state until the end of digitization, indicated through PA_{5}. Therefore it will test either continuously that bit state. By varying the jumper position, the microcomputer may execute other program tasks without making any test since it would receive the end of conversion indication as if it were an interrupt request.

9 Reading of the sample. Once the end of a-to-d conversion is verified, the microcomputer reads the results in a memory position whose address is determined by the logical decoder. This decoder also activates the tristate buffer connected between the a-d converter ouput pins and the data bus. Fig. 2 shows the system performance when the sampling period is fixed by an external clock and the jumper applies the signal 'end of conversion' to PA5. Port A is assumed to be initially programmed. Whenever a new clock edge is applied, the task (main program) is interrupted to execute the a-to-d conversion subroutine. As regards the analogue output, the $\mathrm{R}-2 \mathrm{R} \mathrm{d-a}$ converter is directly coupled to v.i.a. port B which is output-programmed. Therefore, an analogue signal extracting program is an instruction or a set of instructions that can modify the contents of Port B. A detailed scheme of the acquisition and extracting modules for analogue signals is shown in Fig. 3.

Design alternatives

A similar equipment incorporating two cascaded monostables is shown in Fig. 4. Once the microcomputer gives the order of sampling, the orders 'hold' and 'beginning of conversion' are automatically generated after the necessary opening and holding times. This solution however, is not always optimal. In fact, in many cases it can be much more interesting not to use the monostables even at the cost of generating successively all the orders by microcomputer.

Fig. 3. Under control of port A, analogue input signals are processed by the multiplexer, amplifier and sample and hold circuit, and digitized by the AD570. Sample digital codes reach the data bus through the three-state 74245. DAC-08 performs the d-a conversion. An error adder is built separately with standard op-amps (LM324).

Another contribution of this equipment is the presence of a programmable gain amplifier which offers greater versatility by conforming the optimal range of the sample and hold performance to different possible multiplexor inputs.

Reading the digital code corresponding to the input analogue signal can be made in different ways. Fig. 5 describes the two most important ones, consisting either in the reading of the data as though it were a ram position, or in the reading through an i/o port. Choice of the method will depend on the application and, above all, on the limitations of the microcomputer.
In some applications, like supervision or processes identification, it can be interesting to dispose of a sampling unit with specific services. Fig. 6 shows the functional block diagram of an equipment for fast sampling which has been developed in the Department of Systems Control (E.T.S.I.T., Barcelona). Its performance also differs from the former because the

microcomputer initializes a counter by loading the number of consecutive wanted samples from the input signal. These samples are stored in the consecutive positions of a ram at the maximum speed allowed. While the input signal is being sampled, a d.m.a. controller carries the microcomputer to a state of waiting, this taking place only if the computer tries to accede to the ram, which is shared both by the computer and the acquisition system. Thus the information loss coming from the multiplexer is avoided.
With this equipment the rate of sampling can also be selected either automatically or by hand. It also allows sporadic transient phenomena to be registered in the ram, and pulse trains as well as different analogue signals to be generated.

Real time control constitutes the most stringent demand of the afore-described equipments. Computation lags, conversion times and operation accuracy now acquire a relevant design significance. So the basic criteria determining the microcomputer assignment can be classified as follows:

Precision grade - is proportional to the number of bits representing samples and coefficients. Quantization is modelled like an added noise to the

Fig. 4. Modified acquisition system automatically provides the delayed hold and beginning of conversion signals which follow the microcomputer sampling order. Two options of end-of-conversion indication can be switch-selected: a flag (bit 5) in the i/o port or an interrupt generation.

Fig. 5. Digital code-reading options: memory mapped or i/o mapped.

Fig. 6. This fast sampling equipment exploits the automatic generation conversion signal shown in Fig 4. The samples can be acquired by blocks of selectable length under control of the direct memory access arbiter.

(b) i,o mapped:

designed ideal filter. It represents the round-off and truncation, both from calculations and from the filter coefficients effective value.
Maximum processing speed - is the inverse of the minimum possible sampling period. This period is calculated by considering the a-to-d conversion time, the control algorithm computation time and the d-to-a conversion time.

Precision criteria

By assuming a uniform distribution of the input samples along the whole amplitude range, an equation can be derived by relating the number of bits (n) used in the a-tod conversion to the quantization signal-tonoise ratio in the input filter:

$$
\mathrm{S} / \mathrm{N}_{\mathrm{q}} \approx 6 \mathrm{n}(\mathrm{~dB}) .
$$

This equation applies exactly to an eightbit converter. In general, the noise caused by internal operations can be neglected because calculations are usually made with a bigger precision (number of bits) than that used in converters. As regards the filter coefficients, if these have been calculated with a Q digits precision, P bits must be used to maintain that precision. This

Fig. 7. From the digital filter specification, $D(z)$, its corresponding recurrence equation can be obtained. This equation can be written in a more convenient form, substituting each digital sample by its N-bit twos-complement representation. Computations will be greatly simplified using preculculated values of F as a function of $x_{j}^{k}, x_{j}^{k-1}, y_{j}^{k-1}$, (x_{j}^{k} being the j-bit of the digital sample $x(k)$, etc.).

Fig. 8. Using distributed arithmetic, the processing speed of an 8-bit microcomputer can be easily multiplied by a factor of 100.16-bit microcomputers normally include a powerful set of instructions that reduces the differences between the distributed and conventional arithmetic processing. Digital signal processing microprocessors are devices specially suited to signal processing, reaching thus the highest possible speed.
yields the following condition:

$$
\mathrm{P} \geqslant 3.3 \mathrm{Q}
$$

To express the sign, a supplementary bit is used so coefficients internally will need $\mathrm{P}+1$ bits.
If a high-order filter is implemented, then it will be useful to decompose it into second-order sections, either series or parallel-coupled. Thus, global filter behaviour will be less sensitive to quantization errors in computations or in coefficients.

Speed criteria

By using a high-level language (Basic, Fortran, PL1, Pascal, etc.) internal operations are made with great accuracy, and as a consequence processing speed is reduced. On the other hand, using assembler language makes the speed increase at the expense of implementing operations with large arrors. This is due to the limitation to eight or 16 bits in the internal representa-
tion, which simplifies the operations; otherwise, speed would be also reduced.
A high processing speed without loss of precision can be obtained by means of a distributed arithmetic. Multiplications are substituted by accesses to table containing calculated values and additions, Fig.7. Therefore, the best services of an eight-bit standard microprocessor can be obtained at the expense of employing a great memory space (look-up tables). Thus, the antonym speed-precision changes into memory occupation-precision while maintaining the speeds. An example of the effective minimum sampling times with the AIM 65 and the equipment of Fig. 1 are

- 0,2 seconds (Basic and conventional arithmetic)
- 1 millisecond (assembler and eight-bit distributed arithmetic).
These times include the conversions and the internal processing of a second-order correcting filter.

The microcomputer services can be evaluated when implementing a secondorder filter; on the other hand, the microcomputer maximum processing speed for an nth-order filter will result from extrapolation as follows:

$$
\mathrm{T}_{\mathrm{n}} \approx \frac{\mathrm{n}}{2} \cdot \mathrm{~T}_{2}
$$

This equation means that the processing time of an nth-order filter (T_{n}) will be approximately $\mathrm{n} / 2$ times the processing time of a second-order filter (T_{2}). Decomposition in second-order sections, which is reasonable from the point of view of sensibility, justifies this estimation.
The process bandwidth (B) is a particularly useful parameter in the analysis of the microcomputer applicability to a particular case. This gives a measure of the process response speed to the control signal; a response time of 1 second implies $\mathrm{B} \approx 1 \mathrm{~Hz}$; 1 millisecond corresponds to $B \approx 1 \mathrm{kHz}$. According to the sampling theorem, this bandwidth will be related to the processing time as

$$
\mathrm{B}<\frac{1}{2 \mathrm{~T}_{\mathrm{n}}}=\frac{1}{\mathrm{nT}_{2}} .
$$

This condition allows the maximum bandwidth to be determined once the processing time of a second order filter $\left(\mathrm{T}_{2}\right)$ and the correct order are known. Figure 8 shows the results obtained in an approximate evaluation for different microprocessors. An important factor in the evaluation of \mathbf{B} is the margin for the Nyquist's condition. For instance, $\mathrm{B}<1 / 10 \mathrm{nT}_{2}$ implies that the consequences of the delay computation on the controlled-system performance can be neglected.

Application examples

The main connections in the equipment in Fig. 3 are used for position control of a d.c. servomotor in Fig.9. Position feedback is obtained through the potentiometer transducer.
Fig. 10 represents the functional block diagram of the control system. By using the

Fig. 11. Motor responses to a six-volt step in the set-point $(p=1.5 ; 3)-(a)$ compared with ($k=0.02,0.03,0.58$) $-(b)$.

Fig. 9. Schematic representation of a laboratory experience intended to test the performance of the equipment described in Fig. 3 in the position control of a d.c. servomotor.

Fig. 10. Functional model block diagram of the control system implementation of Fig. 9(a).

bilinear transformation a lag-lead controller has been programmed in the microcomputer, with the transfer function

$$
\mathrm{G}_{\mathrm{a}}(\mathrm{~s})=\mathrm{K} \frac{\mathrm{~s}+\mathrm{c}}{\mathrm{~s}+\mathrm{p}}
$$

Finally motor responses to a six-volt step in the set-point have been obtained for different values of p , Fig.11(a), and K, (b). In spite of the simplicity of this system, it has not been difficult to verify
the importance of the computation time which must be reflected as a transport lag in the system. In fact, if the mechanical time constant of the motor is 0,38 seconds and the controller program execution time 0,16 seconds, Nyquist's condition will be only strictly accomplished. By comparing the real with the simulated response plots, it can be verified that only one of those simulated is correct - the one considering computation delay.

August 25-28
Acorn Computer Show (including the launch of the Electron); Cunard International Hotel, Hammersmith Broadway, London. Details from Susan Phipps, Telephone: 01-390 1612.

September 2-4

September Satellite Weekend: organised by the Institute of Broadcast Sound at the BBC Engineering Training Department, Evesham. Details from Jeff Baker, 14 Meadow Close, Marlow, Bucks

September 2-11

Funkausstellung 83: International audio and video fair. Exhibition grounds and International Congress Centre, Berlin.
AMK Berlin, Postfach 191740 ,
Messedamm 22 D-1000 Berlin 19.

September 5-9

Many local further education colleges are enrolling for Radio Amateurs' Courses during this week.

Radio Spectrum Conservation

Techniques: IEE International conference, University of Birmingham. IEE, Tel: 01-240 1871 Ext 222.

September 6-8

Electronic Displays, Exhibition and conference, Frankfurt Intercontinental Hotel. Network Exhibitions. Tel: 02802 5226.

September 6-10

Inteltec 83/Swissdata 83. Two exhibitions at the Swiss Industries Fair Halls, Basle, on industrial and technical electronics and on data processing in technical applications: SMB, CH-4021 Basel,
Messeplatz, Switzerland.

September 13-15

Testmex 83: Test and measurement instrumentation technology, exhibition at the Grosvenor House Hotel, Park Lane, London. Details from Evan Steadman Communications, Tel: 079922612.

Merriman reports

More public accountability is needed in the allocation of slices of the radio spectrum. This is one of the conclusions of the Independent Review of the Radio Spectrum, chaired by Dr James Merriman. The main conclusion of the Merriman Report is that there should be a more positive approach to the regulation of the spectrum and this has already resulted in the transferrence of the Radio Regulatory Division (RRD) to the Department of Trade and Industry from the Home Office.
One of the main reasons for having the enquiry was to find extra space for land mobile bands and the Report says that although there is enough room to cope up to the late 1980s, problems thereafter are likely to become acute unless significant use can be made of other bands and/or use of 'new technology'. No mention is made of where these other bands may be found although the earlier, interim, Report reallocated Bands I and III to land mobile use after the demise of the 405 -line tv service.
For broadcasting it is recommended that the demand from the "enlarged community of programme makers" should be taken into account in policy formulation, and that the broadcasters should be encouraged to make the maximum use of the existing bands to accommodate their ancillary requirements. But there is "no justification for the provision of additional spectrum for terrestrial tv or sound services . . in the light of the undoubted emergence of alternatives" [i.e. cable and satellite]. (Public broadcasting in the UK has the smallest allocation of frequencies in Europe.)

Despite outside criticism that the military are somewhat profligate with their frequency allocations, the Review body finds that "there is little scope for the reduction in defence spectrum usage".
Facing that saturation point is likely to be reached soon for fixed services, the Report recommends that early special arrangements be made with all parties concerned to review the policy and practice of frequency spectrum management so that an overall strategy may be developed.
In general the Report concludes that there is no prospect of any significant reserves of unused or underused spectrum being identified in the 30 to 960 MHz range and reallocated, so any fundamental decisions need to be taken early on the relative priorities to be given to different services.
In the public accountability and information area the main recommendations
of the Review are to:

- produce an RRD annual report reviewing spectrum policy and management together with explanatory material
- institute regular reviews related to specific user groups
- publish the frequency allocation table
- establish a high-level advisory committee
- use spectrum costing and cost/benefit analysis in management decisions
- review defence usage by a small committee of Privy Councillors
- adjust licence fees periodically to give financial incentive to use more efficient equipment in less congested bands
- allocate adequate resources to spectrum monitoring to aid efficient usage and effective management.
Decisions of responsibility, wherever
practicable, should be delegated to common interest groups, reporting back to the RRD. Services should have some priority over individuals and fixed-term assignments could be adopted, as could shortterm provisional assignments, to increase planning and development efficiency.
Because the RRD is understaffed and overworked, according to the Report, it is recommended that sufficient resources be made available for the Division so that it may carry out its duties, especially those activities in cooperation with the Science and Engineering Research Council and the Specially Promoted Programme into Radio Communications Systems.
Finally, the report recommends that radio regulation remains within Government, rather than being made the responsibility of a non-government body. There should be a separate ministerial department responsible for telecommunications or, failing that, responsibility for telecommunications be concentrated in a distinct unit with its own Minister, within an existing Government department.

Crack detection in offshore rigs

A method of testing for cracks in offshore platforms has been developed by British Gas at their Engineering Research Station. Hitherto it has been necessary clean back to the bare structure; removing all marine life and mineral deposits, but a new approach considers that important cracks are only those that let in water. To test if a rig member is full of water, an ultrasonic probe is clamped to the member magnetically and pulses transmitted by cable

from a remote controller on the surface. In a normal air-filled structure the only echo received is from the nearest surface. But if water is present inside, a second echo will be received from the opposite wall. The method requires the minimum of cleaning from the surface of the steel structure and can be handled by divers with no previous experience of n.d.t. Each test takes about a minute and a whole structure can be surveyed in a few days as opposed to months using former methods. The equipment, sensor and remote control/recorder, is being manufactured under licence by WellsKrautkramer Ltd.

Book-size computer growth 'exponential'

Portable computers - those that fit into a carrying case with a keyboard, display and internal memory with stand-alone ability - are going to have an exponential increase in sales, according to a market research study by Venture Development. The provision of hard-copy as a built-in or add-on printer will be an important factor in differentiation between products, as will the operating system. The amount of memory storage is also considered to be important and yet users are demanding all this in as small a space as possible. This has resulted in the production of 'booksize' computers, the first of which on the market has been the Epson HX20. Many similar types will be introduced soon, but as they get smaller, users will need to choose between size and ease of use.

The survey found that the majority of users were in the scientific and engineering fields. A large proportion also used them for word processing, although portable computers with their inherently small displays do not seem to be particularly suitable for this. Business users like graphics displays for bar graphs and pie charts and the demand for graphics capabilities will increase. The use of electronic mail on portable computers is forecast to increase rapidly over the next five years. The full report, The portable briefcase computer and terminal industry: A strategic analysis, is published by Venture Development Corporation, 1 Washington Street, Wellesley, Massachusetts 02181 , USA.

News in brief

The opening of a $£ 1 \mathrm{M}$ factory marked the culmination of a business that started nine years ago in a kitchen sink. Brian Howard and John Edwards started by making small batches of printed circuit boards. As business expanded they moved to larger premises and eventually acquired Circuit Techniques Ltd. The new factory at Ashford, Middlesex, has two computer-aided design systems for the plotting and designing of multi-layer p.c.b.s. The plant also includes n.c. drilling equipment and the mechanical and optical devices needed to photo-print, align and bond all the layers. The company claims to produce a prototype single-layer board from a designer's sketch in 72 hours, and a 50 -off preproduction set of boards within four weeks.

Button cell manufacture in Washington, Tyne \& Wear, will no longer be carried out by the Timex Corp, as they have sold the factory to Ray-o-Vac, the US manufac-

More US-UK cable tv bids

A bid for a major share in the cable tv market in Britain has been launched by Plessey Scientific-Atlanta with the introduction of a so-called multistar distribution system designed to meet Government requirements for both 12 and 20 -year franchises. The system is based on the conventional tree architecture, but can be upgraded to switched-star if required.

The basis of PSA's network is a threetier hierarchy of switching nodes capable of servicing various sized groups of homes. A key element in the switched-star version is a new subscriber switch capable of delivering to 20 households as many as three simultaneous tv channels plus the entire $88-108 \mathrm{MHz}$ f.m. broadcast band. The three television channels are carried as system I PAL signals in the band 5 88 MHz , the lower portion of which is allocated to two-way data communications and a 'reverse' video channel allowing contributions to be fed back to the head-end. With some reconfiguration, the switch could also carry the C-MAC transmission format developed by the IBA.

Besides radio-frequency equipment, the unit incorporates a number of microprocessors - one for every three households for control purposes, plus another to relay information from the cable system's central computer. Subscribers can be billed
turer of miniature batteries for use in electronic watches, calculators and hearing aids. Much new equipment is to be installed and the jobs of 85 employees are secure, say Timex.

The 1983 recipient of the Marconi International Fellowship is Francesco Carassa, professor of electrical engineering at the Polytechnic of Milan. The award recognises his 'outstanding contribution to radio-frequency communications, including both land and satellite communications using microwaves'. His experiments in v.h.f. satellite communications culminated in the launch of the Italian Sirio satellite which led to the use of new satellite technologies.

An agreement on basic specifications for magnetic discs to be used in electronic still-picture cameras has been reached by 20 companies in electronics, camera and magnetic tape industries. Over three quarters of the companies involved are Japanese but the alliance includes 3 M , Philips and RCA and the specifications are being considered for submission to international organizations.
automatically for the 'pay-per-view' programmes and access to individual channels can be permitted or denied. Non-payers may be cut off instantly against loss of revenues through unauthorised use of the system without the signal degradation often associated with scrambling devices. The computer software for the switch is capable of handling a variety of additional services such as home banking and 'teleshopping'.

In view of the signal radiation problems experienced with some cable systems abroad, PSA's choice of frequencies for the subscriber drops should go some way towards allaying the fears of other spectrum users. The method of construction of the company's demonstration system may be reassuring too: the electronic modules and their switched-mode power supplies are enclosed in separately screened boxes and the outer casing of each unit is sealed with an r.f.-tight gasket.

Upstream from the subscriber switch would be a further node capable of handling 160 households; and above that in a full switched-star system there would be a 1500 -point switch. Coaxial cable is to be used for the feeders initially, though the company envisages a change-over to optical fibre when costs have fallen. The capacity of the switching nodes is dictated by typical housing densities in the United Kingdom.

It is expected that the Government will award first batch of cable franchise during the autumn and PSA hopes to have system components ready for the successful applicants from the end of the year onward. The first networks could begin operation in mid-1984.

Plessey Scientific-Atlanta Ltd is owned jointly by Plessey Telecommunications and the American corporation ScientificAtlanta, from which many of the system's components will at first be imported. However, the company intends to transfer production of the distribution equipment to England, leaving only a few specialised items for the network head-ends to come from the United States.

- Another Anglo-American alliance in the cable tv field has been formed by GECMcMichael and the Jerrold division of the General Instrument Corporation. GEC Jerrold's activities are to include the design and supply of both switched-star and tree-and-branch systems. The new company will also be concentrating on business users, with products such as a video teleconference system which uses data-rate compression to obtain bandwidth reduction of up to 40:1.

Oric springs Forth

After what seems an interminable wait, some useful software has been published for the Oric-1 computer. There are the inevitable arcade games involving shooting things in space, though some of these do demonstrate the high-resolution colour graphics and high quality sound available. One package which caught our attention is an Oric Forth cassette program with an operation handbook. With it, the Basicbased system runs Forth. Standard FIG Forth is implemented with some additional words specific to the Oric. Programs may be stored in blocks of memory called screens, and a screen editor program is provided. When completed programs can be compiled into the Forth 'dictionary' or list of instructions and executed; they are not separate entities but part of Forth itself. Each instruction is linked to its component parts, which in turn are linked to their component parts, down to the machine-code primitives. This is why Forth is called a 'threaded interpretive language' - each instruction is threaded to others.
In addition to the Forth core and the screen editor, the cassette includes a
machine-code assembler to create primitive Forth words from assembly language mnemonics. This incidentally illustrates the efficiency of Forth; the assembler, written in Forth, occupies less than 4 K of memory and yet includes all the 6502 mnemonics, allows the use of labels and macroassemblies.
A further addition is the 'extension' program which is mostly concerned with specific commands for high-resolution graphics and three-voice music. This is extended by a music demonstration program, Tunesmith, which enables music to be entered very easily and includes a demonstration tune in three-part harmony.

Loading from tape is slow but only a temporary discomfort as Forth is really designed to be run on disc and a $3 \mathrm{in}, 100 \mathrm{~K}$ drive is to be added to the range.
Another addition is a $£ 160$ printer/plotter based on the Alps ball-pen mechanism. This has limitations; it is slow (eight character/s) and uses 120 mm -wide paper. But it is low cost, has four colours and has a very clear print-out even in the tiny 80 characters/line mode.

Standardisation in gate arrays

Although semi-custom i.cs are all individual many of them have certain elements in common. Professor Carver Mead and Lynn Conway of Xerox's Palo Alto Research Centre devised an approach to v.l.s.i. design which has been adopted in many universities and in the (American) technical press. The system treats parts of a design as building blocks which may then be arranged to produce the required design. The building blocks themselves are given hierarchical values and are arranged topologically to keep interconnections to a minimum. In a report on the Mead-Conway approach and other routes to user-designed i.cs, the analogy is drawn that designing an i.c. is like designing a house; in a conventional custom i.c, the aim would be to get all the rooms into the least possible space and the first items to be designed would be the bricks and fittings. As a number of designers might be involved, the rooms could be of quite different styles and there may be no immediate connection between the dining room and the kitchen. Services and drains may be spread all round the house. By contrast, the Mead-Conway 'house' would start with blocks to represent the main rooms, as functional blocks and then move these
around so that there is minimal interconnection, with the services together. Device manufacturers are largely ignoring these methods but the report points out that with the appropriate c.a.d, design is passing into the hands of the customers who can use the structured methodology introduced by Mead and Conway. The report was prepared by Mackintosh Consultants Ltd, and is published by Benn Electronics Publications, Luton.

Full-page cable teletext

A version of their full-channel teletext system has been developed by Jasmin Electronics for use on the switched-star multi-channel cable tv system designed by Rediffusion. The use of a full channel rather than the unused lines of a tv raster enables the transmission of 500 pages per second. Another advantage is a very large database capacity. The system can accept pages from Prestel and other data services and can decode the Ceefax/Oracle signals that would be transmitted by the public networks. A subscriber scheme is envisaged and the service would provide at least 1000 pages.

Computer display for partially-sighted

The portable reading aid for the partiallysighted, Viewscan, has been extended to include an information handling system. Viewscan has been coupled to an Epson HX20 portable computer. The system may be used, as before, to scan printed text and produce an enlarged image on the screen (News, March 1982). The improvement means that the text so displayed may also be stored in the computer memory and text may also be entered through the keyboard, viewed on the screen, and edited and stored. The system would seem to be particularly useful to those wishing to gather information from libraries. The combined unit can be carried in a briefcase and can operate from battery or mains. Wormald International, 7 Musters Road, West Bridgford, Nottingham.

Better stereo

The article scheduled for this issue on increasing low-frequency spatial impression in stereo reproduction by Y. Hirata has unavoidably been held over. We received further information in particular details of a circuit applying Dr Hirata's technique too late to include in the article.
Did WW get it right? In Alan Chester's study of the statistical background to the Morse code on pages $62-64$ of the August issue, two lines were inadvertently not typeset. So in line 14 of column 2, following 'eight bits', please insert: "On this basis a bit count for all letters of the . . .", and in line 13 of the text on page 64, column 1, after 'sending the passage normally', insert 'in a given time. For random code letters are . . ." Finally, in line 14 of column 3 on page 62,1 word/ $\mathrm{min}=50 / 60$ baud, and not 50 to 60 .

N. Darwood's numerical crossword appeared on page 62 of the August issue.

Typewriter printer

Abstract

In the July issue Neil Duffy showed how an electronic daisywheel typewriter could be fitted with an RS232 interface to enable it to double as a printer for a computer. This article describes a few simple changes to the circuit to provide it with a Centronics-compatible parallel interface so that it can be used with micros that don't provide a serial output port.

The design described in the July edition can be readily adapted to enable the typewriter/printer to be driven from a Centron-ics-compatible parallel port on a personal computer. The connection between the computer and the interface is designed to use a 26 -way ribbon cable with alternative wires grounded to prevent cross talk between the signal cores. A 26 -way insula-tion-displacement connector at the interface end is used rather than the more conventional Amphenol 36 -way plug because of its lower cost and its compatibility with the Centronics port on the BBC Micro. As with the RS232 interface, correct operation of the handshake between the computer and the typewriter relies on the computer outputting both a line feed and carriage return character at the end of each line.
The main change to the original circuit consists of replacing the uart and the data rate generator (IC_{2} and IC_{3}) with octal buffer IC_{12} to buffer the incoming parallel data from the computer before feeding it to the existing eprom. The clear-to-send signal originally generated by Tr_{2} is no longer needed and the handshake timer circuitry associated with IC_{5} is modified to handle the strobe and acknowledge signals associated with the Centronics interface.

Circuit operation

The interface described here is Centronicscompatible, that is, it uses a minimum subset of the signals available on a full Centronics port. The signals actually used are

- seven data lines D_{0} to D_{6} which are active high and which carry data from the computer to the interface
- a strobe line driven from the computer and which pulses low to indicate that valid data is available
- an acknowledge signal sent from the interface to the computer. This signal pulses low to indicate that data has been received and that the typewriter is ready for the next data strobe.

Relationships during a data transfer to the typewriter are shown in the timing diagram. When a strobe pulse is received from the computer the latch formed by IC_{13} is set and Tr_{3} is turned off. After approximately $63 \mathrm{~ms}\left(\mathrm{t}_{1}\right)$ capacitor C_{3} charges up to the threshold level of timer

by Neil Duffy

IC_{5} causing its output to go low and reset the latch. Transistor 3 is now turned on again and discharges C_{3} through R_{26}. After a further period of $63 \mathrm{~ms}\left(\mathrm{t}_{2}\right)$ the voltage on C_{3} falls below the trigger level of the timer and its output goes high again. This causes R_{24} and C_{13} to generate a 10μ s pulse which is buffered by one of the gates of IC_{13} and sent to the computer as the acknowledge signal.

Latches IC_{10} in the original circuit generate a halt signal during a typewriter carriage return or when the paper has run out. These latches are now clocked on the rising edge of the timer output signal. The halt signal is fed to flip-flop IC_{14} which delays it until the next data word (a line feed) is transferred from the computer. The delayed signal on the output of IC_{14} is used to prevent the subsequent acknowledge pulse from being generated until the halt condition is removed. This happens
when the line-feed-complete switch on the rypewriter operates or when the paper-out condition is removed.

Period $t_{1}+t_{2}$ in the timing diagram determine the maximum speed of data transmission between the computer and the typewriter. Because of the tolerance of C_{3} it may be necessary to change the value of R_{5} to set the speed to around eight characters per second.
wn

In a Centronics parallel interface a strobe pulse from the computer signals that valid data is available. The computer must receive an acknowledge pulse from the peripheral device before any further data transfer can take place.

Forth computer

> Exceeding Brian Woodroffe's earlier expectations, his 6809-based Forth computer can be used with disc drives requiring high data-transfer rates - including Sony's microdrive and 8in floppy-disc drives. Access times for standard drives can also be reduced using a minor hardware modification.

After using the computer for a while I became discontented with the disc system because the software caused a one second delay each time access to the disc was required. This waiting time is needed to allow the drive to reach its operating speed - the software doesn't know whether the disc is running or stopped before access and much of the benefit of the virtual memory system is lost because of this delay. Forth keeps data from a number of dise sectors in memory. When data from a sector that is not in the main memory is requested by the program, Forth overwrites one of the buffers with the required data. But if data in the buffer has been changed Forth first sends the data back to the disc so there can be two ls delays for one disc call.
Keeping the disc constantly rotating is the easiest way of avoiding this delay but this was rejected because it shortens the life of the drive even though the motor is a brushless d.c. type. The method chosen relies on the fact that disc access operations are not uniform in time i.e., they are likely to come in bursts, especially when loading or listing screens from a disc and as a resuli of the virtual-memory buffer replacement algorithm described above. Keeping the drive running for a short while after a disc access is made means that it is likely that the disc will be running when the next disc access is required.

Normally, the disc-drive motor is turned off by the disc-select signal going false (p.i.a. A port, $\mathrm{D}_{6}, 0$ to 1) when the program finishes using the drive. In the modification the drive motor enable signal is held true for five seconds after the driveselect signal goes false by a monostable multivibrator triggered by the trailing edge of the p.i.a. signal. As the software always assumes that the drive is up to speed and available, even though the monostable i.c. might have completed its cycle, a means of ensuring that the WD1793 controlle: doesn't try to access the drive during the motor start period is required. During this period the ready signal is held false by a further monostable multivibrator fired by the drive-motor start signal. A low-pass filter after the NOR gate combines the two sources of motor-on signal to allow for the set-up time of the 5 s monostable.

This small hardware modification, consisting of two s.s.i. devices relieves the software of all considerations of motorstart latency. To prevent erroneous trig-

[^7]
by B. Woodroffe

gering the two monostable multivibrators should be grounded separately.

Interfacing 8in drives

I found it galling that my 1.5 MHz 6809 Forth system could not be interfaced with faster 8 in drives, especially as these are often available second-hand at bargain prices. I have not yet got an 8in drive but I have been fortunate enough to try one of the sub-Sin drives from Sony which has the same data rate as 8 in drives. There is as yet no de jure standard for microfloppydisc drives ${ }^{1}$ but within Hewlett Packard, the Sony drive is the de facto standard. The first problem is to build a data-service routine that services the disc at a rate better than $11 \mu \mathrm{~s} / \mathrm{byte}$. Although nominal discdata transfer normally takes $16 \mu \mathrm{~s} / \mathrm{byte}$, Western Digital specify 11 and 13μ s worstcase service times for write and read respectively.
The previously used software loop (Wireless World, June 1983) achieves far worse than $11 \mu \mathrm{~s}$, even with the M6809 direct-page register modified to make the

List 1. In this design the following Forth words are available.
controller i.c. accessible through direct addressing. Analysing the software loop shows that two functions are being carried out - a byte is transferred between the WD1793 controller and ram, and bytes are counted to determine when the sector operation is completed. If the second function could be dispensed with the remaining loop would be much smaller and faster. There would be a small penalty in that the ability to read from and write to consecutive sectors would be lost as no byte count is kept. The problem now is how to break out of the disc-service software loop. Fortunately the controller gives hardware help here in that the IRQ line is activated on completion of every command; the DRQ line is activated for each byte transfer. DRQ, connected to the M6809 FIRQ line, is used in the data transfer loop to make the processor clear its SYNC state, thus synchronizing controller/processor transfers operations.

Interrupt request IRQ is tied to one of the other M6809 interrupt lines so that when a read or write-sector command is complete the processor aborts its current data-transfer loop activity and commences the interrupt routine. On application of the FIRQ signal the processor does not abort the data transfer loop and carry out the FIRQ routine because the program inhibits the FIRQ interrupt by holding the FIRQ mask bit in the condition-code re-

1.15	ExECute	HiNGNCH	QREANTH	(1) nop)	
(DU)	I		к	OIGI!	(F IivD)
ENCIOSE	EMT	KE'	?TERMIMAL	CR	CMOVE
	U* Sil Sil	U' ${ }^{\prime}$	AND	OR	xok
gro	Smin	RPpt	\bigcirc	+	0.
M*	\%	id	(MOI)	$1-$	2-
*/MOD	*/	Mirind	AFS	DARS	$\stackrel{\text { Sod }}{5}$
$\stackrel{-}{-1}$	D+	${ }^{1}$.	0 ¢	CEAVE	3P
R $)$ +1	$\stackrel{1}{6}$	OUER	drop	SWAP	DUP
+1	DOES	Ca	!	C^{1}	rogge
(1)	1	3	3	CONSTANT	JARIAILE
FESST	Latrit	USER	+ORIETN	Si	C/L
T1E	WILTH	WARNTNE	FENCE	DP	VOC LTNK.
EIL K	TN	OUT	Sck	DFFSET	CONTEXT
Gurnent	STATE	KASE	DPL	FLD	CSP
Ri	${ }^{\text {HI }}$ C ${ }^{\text {d }}$	Coldians	HE:RE	ALI OT	
Traw	S'ACE	M, LW	max	- DUF	
TRAvRES	LTEST	LFA	CFA	NFA	「FA
-0,ir	TERROR	? Conip	? EXEE	PPAIRS	905 ${ }^{\text {a }}$
? fonling	Chapfle	-	1	smudge	HEX
	(, CODE)	count	1 YPE	-TRAIIINg	
			DEPTH	*Stack	PFREE
FidMKS	Expret	pueriy		Ftlil	ERASE
+1ND	(AMOR ${ }^{\text {l }}$)	E.RROR	WIR ${ }^{\text {a }}$	(NIMBER)	MIMIEF
1.3TERAI	D 1 TLRAL	INTERIRET	tmite diate	CREATE vocarlilary	CCOMPILEJ
	DUT	AFOT	COLD	WARM	- Dr
15 Sit	PREV	+ $+131 \mid{ }^{\text {a }}$	(tINE)	. LTNE	MESSAEE.
1.1 And	\cdots		FORCIT	BACK	EEGIM
ENDIF	THES	DO	1, 190	+1009	dintil
CHI	Alinin	$18 F P E A T$	IF	ELSE	WHILE
spares	\bigcirc	i)	STGN		D. R
$\bigcirc \mathrm{F}$	D.		?	1.15T	IINDEX
DLill	W131	[3/BUF	H/SCR	SCR $>$ FLLK	USERTK
DR0	DRI		DRINE	R/w	CODE
$\begin{aligned} & \text { IPPDAIt } \\ & \text { NTOPF } \end{aligned}$	Eiduty-IMFFERS	Elack	Flusi	For $\mathrm{F}_{\text {ct }}$	TASK

Drive	Density	WD1793 (pin24)	Data separator
8 in	Double	2 MHz	8 MHz
	Single	2 MHz	4 MHz
$5^{1} / \mathrm{in}$	Double	1 MHz	4 MHz
	Single	1 MHz	2 MHz

Disc interface modification speeds up overall access time by keeping the drive motor running for five seconds after the computer tells it to switch off. This significantly reduces the effect of a one second delay required for the motor to start up since disc-access operations tend to come in bursts.

U.h.f. modulator connects to the video-

 controller circuit output (see June issue) so that the computer can be used with a standard tv set.gister set. The controller interrupt-request line IRQ, being connected to the processor's non-maskable interrupt input NMI, can never be masked so when this line is true the processor must be interrupted and goes to the routine requested by IRQ. The processor IRQ interrupt-request input could have been used but I wanted to leave it free for expansion.

For sector read and write operations the disc controller interrupts on transfer of the last byte. In the case of a sector-write operation the data-transfer routine is finished when the last byte is written into the controller. In sector read operations the data transfer routine is finished not when the last byte is read from the controller, but when it is written into the ram sector buffer. So when a sector is written the

controller interrupts after all data transfers have taken place but when sectors are read the controller causes a jump out of the software loop before the last memory-storage operation is carried out. Worse still, latency before the controller interrupt is variable so when an interruption is made, whether or not the memory has been updated remains in doubt. The solution I chose was to code the data-transfer loop so as to maximize the time between reading data from the controller and writing it into
the memory. Inclusion of a no-operation, NOP, increases the data-transfer loop time to just under the allowable maximum of $13 \mu \mathrm{~s}$ to ensure that the controller always interrupts before the processor can write the byte into memory; the first operation of the interrupt routine is to write that byte into memory. Unfortunately this writing operation done outside the data-transfer loop means that the interrupt routines for sector reading and writing must be different.

The processor starts its interrupt sequence by pushing appropriate registers onto the stack and jumping to code pointed to by a vector in high memory. In this Forth system high memory is eprom so the interrupt vectors cannot be changed to point to different routines. I remedied this by making the interrupt vectors point to code which executes a jump to a location determined by a value stored in ram. By changing data in the ram location the non-maskable interrupt vector can be altered during program execution. This practice is unstructured and therefore unfashionable, but it is highly effective.

Normally an interrupt routine is completed by a return-from-interrupt instruction which restores processor register values to those prior to the interrupt, i.e. restore context. In this case the interrupt vector is being used as a jump instruction to jump out of the data-transfer loop so the first operation in the NMI routine is to

Diagram of program flow during a sector. read on the Forth computer.
delete saved registers (LEAS 12,S). As the controller is connected to the non-maskable interrupt line there is the potential for the occurrence of an interrupt when one is not required. To prevent this the NMI vector points to a safe routine when not in use which reads the controller status register, clearing the cause of the interrupt before carrying out a more normal return from interrupt, RTI, operation.
Extra signals to the disc drives, e.g. track 42, should be inverted and buffered using standard t.t.l. open-collector drivers (7438) as used for the WGATE signal. Extra input signals from the drive such as READY should be buffered using say two LS14 gates, and terminated as previously shown. I should have used the drive's ready signal, eliminating one of the monostable multivibrators connected to the index line but I did not. Also I connected my
motor-on signal (5.25in drive, pin16) to the Sony drive head-load line, pin 14, whereas I should have used hold, HLD on pin 28 of the controller. These minor modifications were made because I still intend to use 5.25 in drives as they currently offer better value for money than the Sony drives at one-off prices.
The matter of write-precompensation has not yet been resolved. I found by trial and error that for the Sony drive at least write-precompensation is not mandatory. It might be necessary for older 8 in drives, and in commercial products to minimize the number of attempts to read the disc. Details of precompensation circuits are given in the Western Digital handbook and reference two.
For drives that keep the disc rotating, such as Sony's and most 8in drives, the disc speed-up hardware previously described should not be fitted but the drive should be connected with the motor-on

List 2．Forth words speciif to this systern．	
Note the movement of data onto and off the stack is shown tinus $51 \quad 52$ ．AHC．．$r 1$ ir 2 r3	
Forth word＇AEC＇takeb two values off the statk（ ς ？ 10 of of stack）and produces three resulis（r3－new top of stack）	
	EMIT，KEY，TTERMINAL respetively VEMIT．．addr ．VKEY．．addr ．．V？TER．．addr
DPMAX	－a user variaile containiny the maximum aduress for the dictarary． ．DPmax．aldar
Smax	$=$ ：vour variable contaxining the maximum depin of datd stack allowed for this user SMAX．．\rightarrow ddr
p^{\prime}, ，Pe	\therefore a WORD to siore a byte tu，read a late fram une of the user ports data adur．P＇．．addr．Pe．．data
density	d constan： 0 for siriyle densdty；－1 fur double tensity ．DENSITY ．Hoolean
DR－－SEL	－a WRD io select the wrive ualue top of stack value，，DR－－SEL．
DE－SEL	$=$ a WRRD to deslett the dibl orives DE－SEL．
VERIFY	$=$ a vailable which if trate ranses a reall after write vertfy of dasc writes VERTFY addr
SIDE／DISC	－a constant retarione lite nomber of sides per Jisc ．SIDE／DISC．．いますue
SEC／TKK，TRK／STDF	constants returainy the aumber of sectors per track and tracker per dist respertively． ．SEC／TRK．valum ．．TRK／SJDE．value
SIDF	a WhRD In select tha sitle of the asse depenting on the value at top of stank value side．
？WR 17 F	ahort execution to resura to terminal mole ．TWRITE．．
CMnd	－a WDRD 10 extcute＇ratt cemmand at top of stack value ．CMND
RATE：	a CONSTANT which equds the dist iftive oppping idate abo colled for The WD 1703 ．RATE．．value
SEEK	cheps the flapoy drive to spek the tratk that is at top of stack
STEP	
	value ．．SEEK．．
R Abr	 W／sector lupe，hat tor，blow，track，false flag R－ADR．，Irve
EREAD，EWRITE	 track．
	 didrebt shut sed onf ．HRFAD 5tatus
$\operatorname{Scc} \cdot \mathrm{R} / \mathrm{W}$	
TRK Whe	
TRK－HLD	 （hate allarems of whe：th the imale 1 ．．
2 pl （	 2015C．
MS	that 1 thou of tiat k VETlum．Ms．
HEL	 carmently al top of 1act

signal permanently true，i．e．grounded．
Software issued（first revision）assumes the presence of disc speed－up hardware and includes the faster data－transfer loop．I will supply a drive pin connection list and format program for the Sony drive that can be modified for 8in drives to readers sending an s．a．e．to me at 632 Queensferry Road，Edinburgh．The Forth word BLD－ TRK in eprom is only suitable for mini－ floppy disc drives．

Thanks to Hewlett Packard for the use of their test equipment and Sony for the loan of a microdrive．Software used，based on the FIG model，was prepared on an HP64000 microprocessor development system．

Integrated circuits 87 and 88 were miss－ ing from last month＇s components list． They are 2114 static rams．In the photo－
graph of power－supply spikes，vertical sen－ sitivity for all but the clock signal is $0.5 \mathrm{~V} / \mathrm{div}$ ．

References

1．J．Bovin，Floppy incompatibility，Systems Internatioral，May 1983，p． 61.
2．J．Hoeppner and L．Wall，Encoding／decod－ ing techniques double floppy disc capacity， Computer Design，Feb．1980，pp．127－135．NVN

Brian Woodroffe plans to describe the Forth language in a subsequent series．

Wireless World Forth computer

Introduction，c．p．u．and memory circuits， May 1983，pp．53－8．
Circuit description，video－controller circuit and peripherals，June 1983，pp．55－8．
Software，disc controller and power supply circuits，July 1983，pp．58－61．
Construction tips，August 1983，pp．44，45．

Complementary current mirror

Current mirrors with transistors of the same type of conductance are well known ${ }^{1}$ and widely used in integrated circuits ${ }^{2}$ ．It is possible to create the configuration with similar properties using complementary transistors also，Fig．a．Accepting the usual assumptions ${ }^{2}$ that

$$
\begin{gathered}
\mathrm{I}_{\mathrm{Cl}}=\mathrm{I}_{\mathrm{S} 1} \mathrm{exp}^{2} \mid \mathrm{V}_{\mathrm{BE} 1} / \mathrm{V}_{\mathrm{T}} \\
\mathrm{I}_{\mathrm{C} 2}=\mathrm{I}_{\mathrm{S} 2} \mathrm{exp}_{\mathrm{P}}^{\mathrm{BE} 2} / \mathrm{V}_{\mathrm{T}} \\
\mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{C} 1} / \beta_{\mathrm{F} 1}
\end{gathered}
$$

and $\mathrm{I}_{\mathrm{B} 2}=\mathrm{I}_{\mathrm{S} 2} / \beta_{\mathrm{F} 2}$ ，the output current is

$$
\mathrm{I}_{\mathrm{C} 2}=\frac{\mathrm{I}_{0}}{\left(1+\frac{1}{\beta_{\mathrm{F} 1}}\right) \frac{\mathrm{I}_{\mathrm{S} 1}}{\mathrm{I}_{\mathrm{S} 2}}+\frac{1}{\beta_{\mathrm{F} 2}}}
$$

with $\left|V_{B E 1}\right|=V_{B E 2}$ ．If the technology allows two complementary transistors with $\mathrm{I}_{\mathrm{S} 1}=\mathrm{I}_{\mathrm{S} 2}$ ，then

$$
\mathrm{I}_{\mathrm{C} 2}=\frac{\mathrm{I}_{0}}{1+\frac{1}{\beta_{\mathrm{F} 1}}+\frac{1}{\beta_{\mathrm{F} 2}}} \approx \mathrm{I}_{0}\left(1-\frac{1}{\beta_{\mathrm{F} 1}}-\frac{1}{\beta_{\mathrm{F} 2}}\right)
$$

as in the ordinary current mirror．Usually $\mathrm{n}-\mathrm{p}-\mathrm{n}$ and $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistors in an inte－ grated technology are produced by dif－ ferent methods and parameters $\mathrm{I}_{\mathrm{S} 1}$ and $\mathrm{I}_{\mathrm{S} 2}$

Complementary transistor current mirror with matched transistor（a）and matched emitter resistances（b）．
are not matched．But the discrete current mirror with matched resistors in emitter circuits works reasonably well，Fig．b．In this circuit

$$
\mathrm{I}_{\mathrm{E} 1} \mathrm{R}+\left|\mathrm{V}_{\mathbf{B E} 1}\right|=\mathrm{V}_{\mathrm{BE} 2}+\mathrm{I}_{\mathrm{E} 2} \mathbf{R}
$$

and

$$
\mathrm{I}_{\mathrm{E} 1}=\mathrm{I}_{\mathrm{E} 2}+\frac{\left|\mathrm{V}_{\mathrm{BE} 1}\right|-\mathrm{V}_{\mathrm{BE} 2}}{\mathrm{R}} .
$$

If transistors are designed for complemen－ tary operation，say 2 N 4401 and 2 N 4403 ， and emitter resistors are matched to within 1% the error is 2 to 3% without pre－ liminary transistor matching．The gain $\beta_{F 1}$ of a discrete $p-n-p$ transistor is usually high and the collector currents happen to be matched also．－I．M．Filanovsky，Uni－ versity of Alberta．
1．F．J．Lidgey．Looking into current mirrors． Wireless World，October，1979，vol．68，pp．51－ 58.

2．P．Gray，R．Meyer．Analysis and design of analog integrated circuits．Wiley，1977

555 mark/space control

The frequently used 555 astable circuit ${ }^{1}$ with one capacitor (a) has the disadvantage that the capacitor C is charged through R_{1} and R_{2} and is discharged through \mathbf{R}_{2}. Any variation of R_{2} will change both the charge and discharge time.
A circuit where the same capacitor is charged and discharged by independently controlled currents is shown at (b). In the first quasi-stable state C is charged by the current source $\operatorname{Tr}_{1}, \operatorname{Tr}_{2}$ when the switch Tr_{5} is closed and the transistor Tr_{3} of the discharging current source is off (the inner switch of the 555 timer is open). Charge current is $\mathrm{I}_{\mathrm{c}} \approx\left(\mathrm{V}_{\mathrm{cc}}-0.7\right) / \mathrm{R}_{1}$ and the mark duration is $\mathrm{T}_{1}=\mathrm{V}_{\mathrm{cc}} \mathrm{C} / 3 \mathrm{I}_{\mathrm{c}}$. Capacitor C will be charged up to $2 \mathrm{~V}_{\mathrm{cc}} / 3$. Then the inner switch of the 555 timer (pin 7) closes. Simultaneously the switch Tr_{5} opens and the circuit flips to its second quasistable state. Potential on pin 7 becomes close to 0 V . Capacitor C starts to discharge. The discharge current

$$
\mathrm{I}_{\mathrm{d}} \approx \frac{\left(\mathrm{~V}_{\mathrm{cc}}-0.7\right)}{\left(\mathrm{R}_{2}+\mathrm{R}_{4}\right)} \cdot \frac{\mathrm{R}_{4}}{\mathrm{R}_{3}}
$$

and the space duration is $\mathrm{T}_{2}=\mathrm{V}_{\mathrm{cc}} \mathrm{C} / 3 \mathrm{I}_{\mathrm{d}}$. When C discharges to $\mathrm{V}_{\mathrm{cc}} / 3$ the circuit returns to the first quasistable state.

This circuit can be used without matched transistors in the current source

$\mathrm{Tr}_{1}, \mathrm{Tr}_{2}$. In this case we have to introduce resistors ${ }^{2}$ in the emitter circuits of Tr_{1} and Tr_{2} as in Tr_{3} and Tr_{4} (the emitter resistor of Tr_{1} in this case can be used for frequency control as well). For the current source $\mathrm{Tr}_{3}, \mathrm{Tr}_{4}$ the resistor R_{3} and R_{4} are necessary to compensate for the saturation voltage of the 555 inner switch (this voltage can be as large as 0.1 V).

Mark/space ratio for this circuit is $T_{1} / T_{2}=I_{d} / I_{c}$. It is easily controlled, and $\mathrm{T}_{2} / \mathrm{T}_{1}$ of the order of 10^{-3} can be achieved without difficulty, taking into consider-
ation practical limitations for transistor currents.
I. M. Filanovsky, V. A. Piskarev

University of Alberta
Canada

1. J. L. Linsley Hood 555-Type integrated circuits. Wireless World, April 1982, pp. 41-43. 2. U. Tietze, Ch. Schenk. Advanced Electronic Circuits. Springer-Verlag, 1978.
2. F.J. Lidgey. Looking into current mirrors. Wireless World, October 1979, pp. 57, 58, 68.
Predictable relay oscillator. Switch S of this circuit in the August issue was the one at the top of the diagram.

Acoustic timer with bargraph display

Devised to monitor the response time of an acoustic impulse system, the start pulse in this circuit is derived from the stimulation and the stop pulse from a pressure sensor. As several supposedly identical sources were triggered simultaneously, and the important parameters were output phase and reapeatability rather than absolute delay, a multiple bargraph display gave the best visual readout.
The most attractive feature is that only one control wire is needed to each bargraph display; no current-limiting resistors are needed and each display takes only 40 mA of current irrespective of the number of segments lit. Calibration is unnecessary, device tolerances being well within the 10% display resolution.
The ZN425E is used in the counting d-to-a mode, and will accept clock rates of up to 1 MHz . Using the internal 2.55 V reference, one clock pulse gives an output step of 10 mV . With full scale on the D634P needing 1.0 V , this corresponds to 100 clock pulses; a 100 kHz clock gives a full scale of 1 ms , and the scale can be changed merely by changing the clock frequency.

The m.s.b. output will go high at a count of $128(=1.28 \mathrm{~V})$. By or-ing this with the stop input, the display will always give a "full house" reading when the stop pulse
is missing or outside the pulse window.
For measuring such items as pulse jitter about a mean, the effective accuracy of the display can be increased by introducing a fixed delay in the start pulse to bring it closer to the stop pulse, and increasing the clock frequency.
Trevor S. Smith
Stag Electronics
Hebden Bridge
W. Yorkshire

Don't waste good ideas

We prefer circuit ideas with neat drawings and widely-spaced typescripts, but we would rather have scribbles on "the back of an envelope" than let good ideas be wasted.

Submissions are judged on originality or usefulness - not excluding imaginative modifications to existing circuits - so these points should be brought to the fore, preferably in the first sentence. Minimum payment of $£ 20$ is made for published circuits, normally early in the month following publication.

Simpler combination lock

This simple and cheap circuit has been in use for over three years on an entrance door to a clean-room and has suffered only one breakdown caused by "infant mortality" of a leaky BC108 transistor.

Three push-buttons have to be operated in sequence to open the lock. Pressing an incorrect button inhibits lock operation for approximately 20 seconds. A person trying to gain access without knowing the combination would not know how long to wait between attempts, and therefore might miss the successful combination. There are 700 possible combinations of 3 different keys from 10 , so waiting 20 seconds between entries will take approximately 10 hours to try them all. If an authorized person hits a wrong key, the 20 seconds is not too long to wait until a new attempt can be made. Of course, the time delays or even the number of keys can be altered as appropriate for the security level required.

The code for the lock can be hard-wired by connecting the push-buttons directly to the circuit, or can be changed as shown in the circuit diagram by routing the connections through a 28 -pin d.i.l. socket or any other appropriate patch plug. The three active push-buttons are jumpered across the first, second and third digit inputs, and

RF notch filter has wide range

Designed to operate from the low to the high radio-frequency range, this notch filter provdes -76 dB stopband attenuation. Basically a common-gate amplifier, at the notch frequency $\mathrm{f}=1 / 2 \pi \sqrt{\mathrm{LC}}$, the parallel-tuned LC circuit effectively isolates the gate from ground and gain falls steeply at this frequency. L_{1} and L_{2}, bifi-

the remainder are wired in parallel to the
inhibit input. Note that push-buttons with separate access to both switch contacts separate access to both switch contacts
must be used, and not the encoded matrix arrangement used on calculators etc.
The circuit could be extended for
can be replaced by simpler resistive coupling. Attenuation and Q are dependent on choice of fet, LC characteristics and circuit layout. A Q of 30 and stopband attenuation of -76 dB were obtained at a cut-off frequency of 30 MHz using an MPF102 field-effect transistor.
A. Achong

University of the West Indies
Trinidad
greater security by adding further pushbuttons across the inhibit input, or by adding another quad nor-gate for up to four more keys in the code chain.
A. F. Abbey

Stoney Stanton, Leics

General-purpose microcomputer board

Designed to perform secondary tasks in a larger system, this single-board microcomputer based on the 8085 processor has serial i/o through a uart - data rates up to 9600 baud are selected by software.

As presented, this single-board microcomputer transmits and receives characters for teleprinters and other terminals using a usart but the board has numerous applications including modem, c.r.t. and instrument control. Test software given demonstrates sending and receiving of characters in RS $232 / 20 \mathrm{~mA}$ loop form and proves the hardware construction. The board's first application was in traffic control: data on traffic received by telephone in four-bit hexadecimal form is converted and sent to a remote terminal in serial 300 baud ASCII code or binary form at RS232 levels.

Four main elements of the circuit are c.p.u., memory, serial i/o and timer sections. Features of the 8085 processor are five interrupt levels, integral clock, two serial i/o lines (SID and SOD), seven registers and 71 instructions, 69 of which are 8080 compatible. An 8251 universal synchronous/asynchronous receiver/transmitter, or usart, was used for serial i / o instead of the serial capability of the processor to keep software to a minimum and reduce the load on the processor, but apart from this there is no reason why the 8085 serial i/o lines shouldn't be used.
Most of the control bus is buffered to provide extra drive necessary when the computer is connected to external systems. Decoder 74LS142, connected to the highorder byte of the address bus, is used for selecting ram, eprom, usart and the timer. Four additional external devices may be

by Michael Shragai

Table 1. Values used with software control words to determine data rates

Rate (baud)	Number CNTR1	loaded CNTR2
110	163	10
300	40	3
600	140	1
1200	200	0
2400	100	0
4800	40	0
9600	20	0

selected using spare capacity of this decoder. Memory devices may be $2-8 \mathrm{~K}$ static ram and $2-8 \mathrm{~K}$ eprom, and their start address may be either 0 and 20000 octal or 20000 and 0 respectively. Usually, eprom uses addresses 0 to 20000 and ram starts at 20000.

Restart interrupt inputs RST 5.5 and RST 6.5 of the processor are connected to the usart transmitter and receiver-ready outputs. Alternatively polling may be used to test the status word of the usart. The receiver/transmitter can work in synchronous and asynchronous modes; in this application the device is used to receive or transmit data at rates up to 9600 baud which are determined by software using

only six instructions. Initiation of the usart and timer are included in the program example, List 1, and values of control words used to set the data rate assuming a 6.144 MHz clock are given in Table 1 . Data can be transmitted or received in RS232 or 20 mA current loop form using

General-purpose microcomputer
board using the 8085, eight-bit
microprocessor which is software compatible with the 8080 . Shich may be either RS232 or
20 mA loop, is interfaced by an
8251 usart to give the processor
more time and save on software -

be used though. An 8253
plock signal from the processor
provides software programmable
data rates up to 9600 baud. Links

opto-couplers, data transmission being indicated by an led.
The prototype was connected to the outside world using four connectors - a 44 pin edge connector for address, data and control signals, a 16 pin dil socket connected to the decoder, a 26 pin flat-cable connector carrying status signals and a 10 pin connector for RS232/20mA signals. Automatic power-on reset is included, i.e. the program always starts from the beginning when the computer is switched on.
Software was developed on a PDP11/40 minicomputer and translation to machine code carried out by a MAC80 cross assembler. In my application ram is loaded from the host computer using a 'front panel' system. Loading is done in direct memory access mode after defining the memory region and the file name of the program to run in real time on the target microprocessor. The front panel has tracing and breakpoint capabilities to help debugging of the program.

Data-conversion application

This software and interface developed for the general-purpose microcomputer board were used to convert four-bit hexadecimal telephone traffic-control data into 300 baud RS232 serial data for sending to a remote terminal in ASCII or binary.

Inputs to the conversion
interface are four bits
representing a
hexadecimal word, punch-instruction select
sigñal, ASCII/binary
select and a signal
representing operating
mode, set using the
unmarked switch.

EElant til address 74 oct
Fiestart 7.S address
Set time for 300×16 perus

Set wart for even parity

EEnale trestart 7.5 only
E Erable iriterrupt
Fry.pit header
;Frint CF aral LF
il. \& CF every 80 ghar.
;SOD low (ready signal)
;HALT: wait for índerrupl
; keady la tramonit?
;SU0 hish (tut ready
rriput status
:Rotio b. Lo chect carry (switci, pos.)
Jump axeud dirig lo swither prosition
;and Lransmit 与eltol mSCII
;liput parallel word
;and trancmit serjist marary

Frinit CK and lis
1
001
001
T CRLF
12 , A
$\begin{array}{ll}1 \\ 0 & 01\end{array}$
$\begin{array}{ll}2 \% \\ 15 & 52 \\ 15\end{array}$
0., E

E:YTE :2,15
ASC/TKAFFIC MEASUREMENT DEVICE/
EEYTE 12, 15

- ASC /TELECOMMINTCATION FESEARCH CENTER
- AYTE 12, IS
- ASC
- EYTT 12, 15,0
$\begin{array}{cc}\text { rTYO: } \operatorname{INT} & 1 \\ \text { ANI } & 001\end{array}$
NT TTYO
$\begin{array}{ll}\text { MOV } & M, A \\ \text { DUT } & 0\end{array}$
$\begin{array}{ll}\text { INX } & H \\ \text { ANA } & A\end{array}$
MP. TTYO
JMF TTY

BRITISH PRINTER FOR SCHOOLS AND SHIPS

Walters WM200 dot-matrix printer incorporates many of the features that make printers emanating from the Far East attractive. It has 9 by 9 dot-matrix printer head that prints in either direction at a speed of 120 characters/s. Four character sizes are available and much thought has been put into the design of the typeface which is very clear and legible. Sprocket-fed paper can be up to 254 mm wide. The printer is provided with a Centronics, RS232 or IEEE488 interface and may be easily converted from one to another by changing a slot-in p.c.b. a 750 -character internal buffer is supplied which may be expanded to 1800 characters. The printer's development was partly funded by the Department of Industry's Microprocessor Applications scheme and has been selected for use in schools as part of the extension to the 'micros in schools' project, and by the Ministry of Defence. $£ 395$ from Walters Microsystems International Ltd, Cetec House, Lincoln Road, Cressex Industrial Estate, High Wycombe, Bucks HP12 3QU. WW 301

FAST-RISE PULSE GENERATOR

Rise and fall times of 150 ps are provided in Avtech pulse generators. AVMR-1 has a pulse width variable between 10 and 200 ns and a repeat frequency of 5 MHz which may be increased to 10 MHz with a rise time of lns. AMVR-2 is similar but provides high pulse amplitude to 20 V with 300 ps rise time at 5 MHz or 3 ns at 10 MHz . Both models are available as a bench instrument with internal clock, a line-powered instrument with external trigger or a compact module requiring 24 V direct power and an extenal trigger. Prices start

WW305

at $£ 700$. Lyons Instruments, Hoddesdon, Herts.
WW 302

MAGNETIC HYSTERESIS MEASURED

A B-H meter which can be used directly to check the quality of magnetic recording tape and discs is the 7500 A meter which can be used for process control by manufacturers of magnetic media The microcomputer-controlled meter may be prograrrmed (though two floppy discs) for a variety of applications. Analogue B and H measurements are digitised, stored, sorted and scaled in order to measure the desired parameter. A 50 or 60 Hz magnetizing field is applied to the sample and a graphical plot of the Hysteresis curve is displayed on the c.r.t.

WW302

WW304
along with the computed parameters. The curves and data may be stored for later use or printed out on the optional printerplotter. All fits into a convenient desk-sized unit. LDJ Electronics Inc. Unit 2, The Midlands, Holt, Trowbridge, Wilts BA14 6RU WW 303

MICRO-CONTROLLED D.V.M.

A digital voltmeter with an $81 / 2$ digit readout with a resolution down to 10 nV has been announced by Solartron. The heart of the system is a patented pulse-width modulated a-to-d converter. The scale length can be selected to give five or eight significant digits, each with a different integration time. On d.c. ranges the meter is claimed to have an accuracy to within 1.2 p.p.m. over a 24 -hour period. The performance has been achieved, say Solartron, by close attention to the ageing of such components as zener diodes and resistors, with compensation circuits to allow for temperature stability of the zeners. True r.m.s. alternating voltages can be measured with six significant figures, resistances from $10 \mu \Omega$ to 1400 Ms . The lowest ohms range has the means of measuring any spurious e.m.f. and then compensating for this to give a "true
ohms' reading. The control circuitry allows eight different ratio measurements and 17 data processing programs to calculate such parameters as the mean, standard deviation and variance of measurements, or for checking results against pre-defined limits. 1500 results may be stored and used for analysis or display. The meter has IEEE488 and RS232 interfaces and calibration may be carried out through these. The makers see the meter as of use in calibration labs and in automatic test gear as well as general lab and workshop use. The 7081 is from Solartron
Instrumentation Group, Victoria Road, Farnborough, Hants GU14 7PW.
WW 304

FLAT-SCREEN SCOPE WITH DVM

A combination of the functions of an oscilloscope, a transient recorder and a digital multimeter are all fitted into one portable unit. The 31/2-digit multimeter has 32 ranges of current, voltage and resistance measurement. A flat screen liquid crystal display oscilloscope can run for up to eight hours on the internal battery. The transient recorder uses the integrated l.c.d, and there are two independant 0.5 K -byte memories. Folding for carriage and storage the instrument is useful in the laboratory, workshop or for the field engineer. The M2050 costs $£ 975$ and can be provided with a printout when it would cost $£ 1150$. John Minster Instruments Ltd, 137 Sandgate Road, Folkestone, Kent CT20 2DE
WW 305

REMOTE CONTROL

A four-channel infra-red remote control costing $£ 38.50$ for both receiver and transmitter is available. The control provides a latched push-on/push-off function which may be used to operate several functions. Power switching relays may be added if required. Maximum operating range is 20 m . The receiver preamplifier is fitted into a screened box mounted on to a p.c.b. with the remaining components, and a stabilized power supply which operates from 12 to 14 V alternating supplies. Immunity from interference is provided with the use of coded signals. The transmitter uses four power infrared le. ds with reflectors and is powered by a 9 V battery, all fitting into a hand-held case. The
Velleman control is available from Electronic and Computer Workshop Lid, 171 Broomfield Road, Chelmsford, Essex, CM1 IRY. WW 306

16-BIT FORTH

A Forth implementation for the Sage II computer includes an assembler for the 68000 processor which enables machine code languages to be developed through Forth. The versatility of Forth is illustrated by the development of the package; "To write this version of Forth we had to use an assembler that had certain shortcomings," says Tim Moore of Kuma. "We wrote a verbosely coded Forth and then used it to write a real assembler. Using that, we wrote the final version of Forth". Kuma intends to implement the Forth on as many different 68000 -based computers as popular demand requires and are willing to undertake 'custom' versions for such applications as industrial robotics. The kernel conforms to FIG-Forth standard, the 68000 assembler uses standard mnemonics, a screen editor is provided and the system is supported by a tutorial manual. Kuma Computers Ltd, 11 York Road, Maidenhead, Berks SL6 1SQ.
WW 307

C-MOS 8086

A world first c-mos 16 -bit processor is claimed for the Harris 80 C 86 , a cmos version of the Intel 8086. The 80 C 86 is completely compatible with its pattern and has the added advantages of lower power requirements, greater reliability and a wide temperature-operating range. The operating current of 10 mA compares with 340 mA for the 8086. This means that high speed portable computers may be manufactured with the full facilities of standard computers. The operating frequency of 5 MHz is available now for versions with commercial, industrial or military temperature range requirments, 8 MHz versions will be introduced toward the end of the year. Harris Systems Ltd, 153 Farnham Road, Slough, Berks SL 1 4XD
WW 308

8085 COMPUTERS USE Z80 SOFTWARE

if a simple adaptor is used to replace the 8085 microprocessor with an NSC800 and a matching circuit. The plug-in unit fits the 8085 socket and itself has a socket for the NSC800. One drawback is that the serial input and serial output pins of the 8085 may not be used. The adaptor costs $£ 12.90$ from F. Braunschmid,
Inzerdorferstrasse 119, A-1100
Vienna, Austria.
WW' 309

MICRODRIVE AT LAST

Announced as 'coming soon' when the Sinclair ZX Spectrum was launched, the ZX Microdrive has just been launched, about a year later. The recording medium turns out to be a continuous loop of tape sealed in a removeable cartridge. Each cartridge can store over 85 K bytes with a typical access time of 3.5 s and the Microdrive behaves rather like a miniature floppy disc drive. It interfaces with the computer through ZX Interface 1, which contains the control circuitry for up to eight Microdrives, giving a total storage capacity of 680 K bytes. Interface 1 also provides an RS232 interface so the Spectrum can communicate with other
net worked Spectrums, or with other computers or peripherals. Transmission rates are software selectable up to 19200 baud. The local area network can link up to 64 Spectrums; it transmits at 100 baud Each transmitting terminal can select a receiver or broadcast to al open receivers. File exchanges and peripheral (i.e. printer) sharing are allowed for.

The ZX Microdrive costs $£ 49.95$ Interface 1 is $£ 29.95$ if bought with Microdrive or $£ 49.95$ on its own Each cartridge costs $£ 4.95$. There is unlikely to be any available in the shops for a while; they are being offered, mail order, to the owners of ZX Spectrums in the order in which they were purchased. Sinclair Research Ltd, 25 Willis Road, Cambridge CB1 2AQ WW 310

HIS MAESTRO'S VOICE

The speech synthesiser chip used in the BL Maestro car is now available to design engineers as an evaluation and support package. The Europcard Speechpak board is based on the Hitachi HD61885 speech synthesiser and includes an audio amplifier. Words and phrases can be input through a keyboard, or through an RS232 data link. It costs $£ 180$. There is also a software development service available and the distributors can provide production-quantity boards with the on-board rom maskprogrammed to any requirement. Dialogue Distribution I.td, Watchmoor Road, Camberley, Surrey GUl5 3AQ
WW 311

WW311

FAST FORTH FOR Z80

A CP/M disc version of Forth for the Z 80 processor claims to be the only version which can compile high-level threaded code definitions into machine code primitives. This gives a two- to five-fold increase in speed according to the Quanta Corporation, who developed Q4TH. The standard Forth-79 set is implemented along with an interpreter, screen editor, assembler (using Zilog mnemonics) and the machine code compiler The system is available in a number of disc formats and is supported by an update and newsletter scheme. A package of various utilities is included. Quanta Corporation, 2510 Sunset Boulevard, Los Angeles, California 90026, USA WW 312

WW - 016FOR FURTHER DETAILS

Hitachi Oscilloscopes performance, reliability, value
 New Models! immediate delivery!

New from Hitachi are three low-cost bench scopes with bigger screens and extra features in a new slimline ultra-lightweight format. The range now extends to 13 models:-

4 dual trace single timebase models 20 MHz to 40 MHz 2 dual trace sweep delay models 20 MHz and 35 MHz 2 dual timebase multi-trace models 60 MHz and 100 MHz 2 miniature field portable models, 20 MHz and 50 MHz 3 storage models, one tube storage, two digital storage
Prices start at £295 plus vat (model illustrated) including 2 probes and a 2-year warranty. We hold the range in stock for immediate delivery For colour brochure giving specifications and prices ring (0480) 63570. Reltech Instruments, 46 High Street. Solihull, W. Midlands, B91 3TB
WW - 055 FOR FURTHER DETAILS

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

BROADFIELDS \& MAYCO DISPOSALS

21 Lodge Lane, N. Finchley, London, N.12. 5 mins. from Tally Ho corner Telephone 445 2713/0749

WW - 058 FOR FURTHER DETALLS

PRECISIONDUALAXIS CONTROL STICK
 Suitable for use with Computers, Robotics, Machine Tools Widely used by Government departments and industry

SUPER SMOOTH PRECISE ACTION. SEPARATE FINE TRIM ADJUSTMENT: ACCURATE CENTFING, LONG-LIFE MOULDED NYLON PARTS
Available in kit form - easily assembled. Standard version - Carbon track pots. 1 off £8.50, P\&P 75p. De luxe version Conductive plastic film pots. 1 off $£ 12.80, \mathrm{P} \& \mathrm{P} 75$ p. Send SAE for full details of sticks and servos suitable for Robotics. OEM and trade enquiries invited, Barclaycard and Access accepted.

SKIEADER BET S, ATPORT MOUSE PURLS WAT GiOYOU, SURBET CiO OZ B B1-68S G68

E- PM COMPONENTSLTD VALVE \& COMPONENTS SPECIALISTS

INTEGRATED CIRCUITS

SEMICONDUCTORS

DIODES
AA119
BA102
BA115
BA145
BA148
BA154
BA155
BA156
BA157
BAX13
BAX16
BB105B
BT151
BY126
BY127
BYY3
BY164
BYY76
BY179
BY
BY 184

PHONE P. M. COMPONENTS LTD SELECTRON HOUSE, WROTHAM ROAD 3 LINES MEOPHAMGREEN, MEOPHAM, KENT DABOQY

EuroCUBE 6502/6809-EuroBEEB-BEEBEX The expanding range of CUBE control boards

EuroCUBE is ust one small $100 \times 160 \mathrm{~mm}$ Eurocard-but it is a single-board computer of exceptional power and versatility.

- 6809 or 6502 Microprocessors available.
- Four memory sockets, each 28 pin. Supports RAM. ROM. EPROM-from 2 KB to 32 KB each.
- Battery Back-up for CMOS RAM
- Dual CPU clock mode-2 MHz for memory. 1 MHz for i / o
- VIA provides 20 digital $1 / 0$ channels.
- ACIA provides a bi-directional RS-23e $423 / 422$ senal port On-board programmable baud-rate generator.
- PROM address decoding.
- Machine Operating System included free of charge

EuroBEEB-EuroCUBE with BBC BASIC-The MOS included on EuroCUBE, provides an environment in which languages can be run, and is available in two main versions

MOS A - supports ATOM BASIC

MOS B - sumports BBC BASIC
EuroCUBE fitted with MOS B can run BBC BASIC. th its simplest form, with 4KB RAM fitted for work space, a BEC BASIC program in EPROM could control the two 8 -bit ports and the serial interface, in addition to any other cards connected to the CUBE expansion bus.
BEEBEX, anotner recent addition to the CUBE range, is a simple low-cost Eurocard which interfaces to the 1 MHz bus connection on the BBC Microcomputer. enabling it to communicate with the entire range of CUBE Acom Eurocads

EuroCUBE £ 139.00

One-off price excluding VAT
No charge for Operating System Software

CUBE RANGE
includes video, analog \& digital i/o, prom programming, disks, etc.

Control Universal's new 150 page catalogue and technical overview is now available free of charge. Explanatory leaflets are also available on the CUBE range, and on our Eurocard extensions to the BBC Microcomputer.

Controllhiversalled
The Hardware House

Unit 2, Andersons Court
Newnham Road, Cambridge CB3 9EZ
Telephone (0223) 358757
Telex 995801-G (Cl3)

WW - 030 FOR FURTHER DETAILS

28 RANGES, EACH WITH FULL OVERLOAD PROTECTION
 Accurate Digital Vultimeters at Exceptional Prices

OTHER features: Auto polarity, auto zero, battery low indicator. ABS plastic case cluded, optional carrying case

6010 \& 7030 MODELS SPECIFICATION 10 amp AC/OC Battery single $9 V$ drycell. Life: 200 hrs
Oimensions: $170 \times 89 \times 38 \mathrm{~mm}$ Weight: 400 g inc. battery. Mode Select: Push Button AC Voltage: 200 mV to 750 V AC Voltage: 200 mV to 1000 V Resistance: 20051 to 20Ms! Input Impedance: 10 MS a Display: $31 / 2$ Digt 13 mm LCD

ARMON ELECTRONICS LTD.
Cottrell House, 53-63 Wembley Hill Road Wembley, Middlesex HA9 8BH, England Telephone: $0 \uparrow-9024321$ (3 lines). TELEX No. 923985

WW - 054 FOR FURTHER DETAILS

ELECTRON GUNS TV TUBE COMPONENTS
 If you are Rebuilding or Manufacturing TV Tubes - We are the

 leading suppliers of Electron Guns and TV Tube Components to the TV Tube Industry. We specialise in all aspects of Electron Mount Technology.Our product range includes more than 250 gun types for Colour, In Line, Mono and Display Tubes along with Mount Parts, Bases, Get ers, Sealoffs, and all other associated items for TV Tube Production. A Full Technical Back-up and Advisory Service is available to all customers Worldwide.
Please request our current catalogues and Data Information.

Telephone: (078s) 764852/764100. Telex: 312354 Grifem G

U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

RECORD DECKS SINGLE PLAY 240 Large furntables		
BSA	${ }_{\text {P232 }}$-12 2 volt	Megoreic

MAINS PRE-AMP FOR MAGNETIC CARTRIDGES to Iow
gain amplifier 10 mv to $1 / 2$ voit, mono $£ 5$, stereo $£ 7$. $P \& P \mathrm{fl}$
HEAVY METAL PLINTHS
silver grey finish. Size $16 \times 133 / 4 \mathrm{in}$.
OECCATEAK VENEERED PLNTH. Post $£ 1$
Superir
Superior finish with space and panel for
£5
$183 / 4 \mathrm{in} . \times 14^{1 / 4 i n} \times 4$ in. Black/chrome facia trim. Also with
boards cut out for Garrard £3. Tinted plastic cover $£ 5$

TINTED PLASTIC COVERS$177 / 8 \times 131 / 8 \times 31 / 4 \mathrm{in}$. E5			Post f1
		$181 / 4 \times 12^{1 / 2} \times 3 \mathrm{in}$.	E5
$171 / 4 \times 93 / 8 \times 31 / 2 \mathrm{in}$.	E3	$143 / 8 \times 12^{1 / 2} \times 27 / 8 i n$.	c5
$161 / 2 \times 15 \times 41 / 2 \mathrm{in}$.	¢5	$165 / 8 \times 13 \times 4 \mathrm{in}$.	$f 5$
$17 \times 12^{7 / 8} \times 3^{1 / 2 i n}$.	£5	$141 / 2 \times 13^{1 / 8} \times 2^{3 / 4} / 4$.	55
$225 / 8 \times 137 / 8 \times 3 \mathrm{in}$.	£5	$171 / 4 \times 13^{3 / 4} \times 4^{1 / 8 i n}$.	E5
$211 / 2 \times 14^{1 / 4 \times 21 / 2 i n}$.	E5	$21 \times 137 / 8 \times 41 / 8 i n$.	E5
$233 / 4 \times 14 \times 37$ /in.	$E 5$	$30^{3 / 4} \times 133 / 8 \times 31 / 4 i n$.	$\underline{5}$

THE "INSTANT" BULK TAPE ERASER E10.50 Post 95p
Suitable for cassettes and all sizes of tape
reels. AC mains $200 / 250 \mathrm{~V}$. Hand held size reith switch and lead (120 volt to order). Will also demagnetise small tools and computer tapes.

BATTERY ELIMINATOR MAINS to 9 VOLT D.C Stabilised output, 9 volt $400 \mathrm{~m} . \mathrm{a}$. U.K. made in plastic case with scraw terminals. Safety overioad cut out. Size
$5 \times 31 / 4 \times 2^{1 / 2 i n}$. Transformer Rectifier Unit. Suitable Radios, Cassettes, models, £5. Post $£ 1$.
DRILL SPEED CONTROLLER/LIGHT DIMMER KIT. Easy build kit. Controls up to 800 watts AC mains with plastic case
power tools, drills and lighting.
Post 65 p .

R.C.S. LOW VOLTAGE STABILISED

POWER PACK KITS
£3.95. Post 65p cuit, mains transformer 240 V a.c. Output 6 or $71 / 2$ or 9 or 12 V d.c. up to 100 mA or less. Please state voltage RELAYS. 6V DC 950. 12 V DC $£ 1.25$. $18 \mathrm{~V} £ 1.25,24 \mathrm{~V} £ 1.30$
ALUMINIUM CHASSIS. $21 / 2 \mathrm{in}$ deep $6 \times 4-£ 1.75 ; 8 \times 6-£ 2.20$;
$10 \times 7-£ 2.75: \quad 12 \times 8-£ 3.20 ; \quad 14 \times 9-£ 3.60 ; \quad 16 \times 6-£ 3$ 10×7-£2.75; $16 \times 10-£ 3.80 ; 12 \times 3 £ 2.20 ; 14 \times 3 £ 2.50 ; 13 \times 9 £ 2.80$. ALUMINIUM PANELS. $6 \times 4-55 p ; 8 \times 6-90 p ; 14 \times 3-90 p ;$
$10 \times 7-£ 1.15 ; \quad 12 \times 8-£ 1,30 ; 12 \times 5-90 p ; 16 \times 6-£ 1.30 ;$ $10 \times 7-\mathbf{£ 1 . 1 5 ;} \quad 12 \times 8-£ 1,30 ; \quad 12 \times 5-90 p ; \quad 16 \times 6-\mathbf{£ 1 . 3 0} ;$
$14 \times 9-\mathbf{£ 1 . 7 5 ;} 12 \times 12-\mathbf{£ 1 . 8 0 ;} 16 \times 10-\mathbf{£ 2 . 1 0}$. $14 \times 9-\mathbf{£ 1 . 7 5 ; ~} 12 \times 12-\mathbf{£ 1 . 8 0 ; ~} 16 \times 10-\mathbf{£ 2 . 1 0}$.
ALUMINIUM BOXES. $4 \times 4 \times 1 / 2 \mathbf{£ 1 . 2 0}$.
 $3 \times 2 \times 1 £ 1.20$. $6 \times 4 \times 2 £ 1.90 . \quad 7 \times 5 \times 3 \quad £ 2.90$. $8 \times 6 \times 3$ £3 $10 \times 7 \times 3$ £ 3.60 . $12 \times 5 \times 3$ £ $3.60 .12 \times 8 \times 3 £ 4.30$
BRIDGERECTIFIER 200V PIV $2 \mathrm{a} £ 1.4 \mathrm{a}$. $£ 1.50$. $6 \mathrm{a} £ 2.50$
TOGGLE SWITCHES SP 40p. DPST 50 p . DPDT 60 p .
MINIATURE TOGGLES SP 40 p . DPDT 60 p .
RESISTORS. 10Ω to $10 \mathrm{M} .1 / 4 \mathrm{~W}, 1 / 2 \mathrm{~W}, 1 \mathrm{~W}, 2 \mathrm{p}$: 2 p .
Low ohm 1 watt 0.47 to 3.9 ohm 10p
HIGH STABILITY. $1 / 2 \mathrm{~W} 2 \% 10 \mathrm{ohms}$ to 1 meg .10 p . WIRE-WOUND RESISTORS 5 watt, 10 watt, 15 watt 20 p PICK-UP CARTRIDGES SONOTONE 9TAHC $£ 3.80$.
BSR Stereo Ceramic SC7 Medium Output $£ 2$. SC12 $£ 3$. BSR Stereo Ceramic SC7 Medium Output $£ 2$. SC12 £3.
PHILIPS PLUG-IN HEAD. Stereo Ceramic. AU1020 (G306 GP310-GP233-AG3306, £2. A.D.C. QLM $30 / 3$ Magnetic E6.50 Shilus most Ceramic Acos, Sonotone, Garrard MAGNETIC STYLUS, Sony, JVC, Sanyo, Goldring, etc. $£ 4$. LOCKITTE SEALINGKIT DECCA 118 . Complete f1. VALVE OUTPUT Transformers push/pull 15 watt $£ 14$;
30W £18;50W £20; 100 W £24. Post $£ 2$. $100 \mathrm{~V} / \mathrm{Line} 20 \mathrm{~W} £ 3.75$ MICROSWITCH, 50 p , Miniature 65 p. SPDT ANTEX SOLDERING IRON 'C' $15 \mathrm{~W} \mathbf{£ 5 . 2 5}$. 25 W ' $\times 25$ ' $£ 5.50$. WAFER SWITCHES. $1^{11 / 4^{\prime \prime}}$ dia. 60p ea.

XLR Lead Plug $£ 2.40$. Lead socket $£ 2.75$

BANANA 4 mm Plugs/Sockets, red/black 20p
JACK PLUGS Mono Plastic 25p; Metal 30p. Sockets 25p. JACK PLUGS Stereo Plastic 30p; Metal 35p. Sockets 30p. FREE SOCKETS - Cable end 30p. Metal 45p. 2.5 mm and 3.5 mm JACK SOCKETS 25p. Plugs 25p
DIN TYPE CONNECTORS DIN TYPE CONNECTOR
Sockets 3-pin, 5-pin 15p. Free Sockets 3-pin, 5-pin 25p.
Plugs 3-pin 20p; 5-pin 25p; Speaker plugs 25p; Sockets 15p. Plugs 3-pin 20p; 5 -pin 25p; Speaker plugs 25p; Sockets 15p.
PHONO PLUGS and SOCKETS ea. 20p; Double sockets 30p. Free Socket for cable end 20p. Screened Phono Plugs 25p. B.N.C. PLUGS $£ 1$. Sockets $£ 1$. Free Sockets $£ 1.10$. U.H.F. PLUG 50 p . Socket 50p. Reducer 20p. Coupler 50p. 300 ohm TWIN RIBB ON FEEDER 10 p yd.
300 ohm to 75 ohm AERIAL MATCHING TRANSFORMER £1.
U.H.F. COAXIAL CABLE SUPER LOW LOSS 75 U.H.F. COAXIAL CABLE SUPER LOW LOSS, 75 ohm 25p yd. COAX PLUGS 30p. COAX SOCKETS 20p. Lead Sockets 65p NEON INDICATORS 250 V , round 40p. Rectangular 45p MORSE CODE TAPPER AND BUZZER SET $£ 3$.

POTENTIOMETERS Carbon Track
$5 k \Omega$ to $2 \mathrm{M} \Omega$. LOG or LIN. L/S 50p. DP 90p. Stereo L/S
$£ 1.10$. DP $£ 1.30$. Edge Pot 5 K SP 45 .
 MINI-MULTI TESTER NEW De luxe pocket size precision moving coil instrument. Impedance +
-4000 o.p.v. Battery included. 11 instant ranges measure:
DC volts $5.25,250,500$.
. 7.50 OC amps $0-250 \mu \mathrm{~A}, 0-250 \mathrm{~mA}$ Post 65p Resistance 0 to 600 K ohms. 50,000 o pange Doubler 43 Ranges, $1,000 \mathrm{~V}, \mathrm{AC}$-DC, 20 meg , etc.

PANEL METERS

$50 \mu \mathrm{a}, \quad 10 \mathrm{C} \mu \mathrm{a}, \quad 500 \mu \mathrm{a}, 1 \mathrm{ma}$, amp, 2 amp, 25 volt, VU $31 / 4 \times 15 / 8 \times 1$ in. $\mathbf{£ 4 . 5 0 \text { Post } 5 0 \text { p }}$

RCS SOUND TO LIGHT CONTROL BOX

Complete ready to use with cabinet size $9 \times 3 \times 5 \mathrm{in}$. $\mathbf{£ 2 7}$
3 Channel, 11000 watt each. For home or disco
OR KIT OF PARTS $£ 19.50$
Post $\mathrm{E1}$
OR KIT OF PARTS E19.50
LIGHT BOXES, $20 \times 9 \times 9$ in, red, yellow, blue, green, $\mathbf{£ 1 5}$ D.D. E2.

"FUZZ" lights, red, blue, green, amber, 240 V, £28. Post $£ 1$ Disco Lights. Edison Screw. 6 for $£ 4$, or 12 for $£ 7.50$. Post £1.50. Suitable panel mounting holders 85 p.

> RCS "MNOR" 10 watt AMPLIFIER KIT £14 This kit is suitable for record players, guitars, tape playback, electronic instruments or small PA systems. Two versions available: Mono, $£ 14$; Stereo, $£ 20$. 10 W per channel; size $91 / 2 \times 3 \times 2 \mathrm{in}$. SAE details.

10W per channel; size $9 / 2 \times 3 \times 2 \mathrm{in}$. SAE details.
Full instructions supplied. 240 V AC mains. Post f 1
RCS STEREO PRE-AMP KIT. All parts to build this
pre-amp. Inputs for high, medium or low imp $\mathbf{£ 3 . 5 0}$ per channel with volum control and PC Board Can be ganged to make multi-way stereo mixers ${ }^{\text {Post } 65 p}$

MAINS TRANSFORMERS

$250-0-250 \mathrm{~V} 80 \mathrm{ma}, 6.3 V 3.5 \mathrm{~A}$,
$350-0-350 \mathrm{~V} 250 \mathrm{~mA} .6 .3 \mathrm{~A}$.
220 V 25 ma 6 V tamp $£ 3.00$
Post
$£ 6.00 £ 2$
$12.00 £ 2$
$250 \mathrm{~V} 60 \mathrm{~mA}, 6 \forall 2 \mathrm{~A}$
220 V 45 ma 6 V 2 Am $\begin{array}{cc}\mathrm{E} 12.00 & \mathrm{E} 2 \\ \mathrm{EA} \\ \mathrm{EA} \\ \mathrm{E} .75 & \mathrm{E} 1 \\ \mathrm{E} 9\end{array}$
Step-Up
to 240 V 150 W c9. 250 W f10. 500
GENERAL PURPOSE LOW VOLTAGE

OPUS COMPACT

SPEAKERS $£ 22$ pair Post $£ 2$ TEAK VENEERED CABIN $11 \times 81 / 2 \times 7 \mathrm{in}, 15$ watts
50 to $14,000 \mathrm{cps} .4 \mathrm{ohm}, 8 \mathrm{ohm}$ or 16 ohm OPUS TWO $15 \times 101 / 2 \times 73 / 4$ in 25 watt 2-way system $£ 39$ pair. Post $£ 3$
LOW VOLTAGE ELECTROLYTICS Wire ends

All 10p ea. $\mathrm{mf}, 2 \mathrm{mf}, 4 \mathrm{mf}, 8 \mathrm{mf}, 10 \mathrm{mf}, 16 \mathrm{mf}, 25 \mathrm{mf}, 30 \mathrm{mf}, 50 \mathrm{mf}, 100$
$\mathrm{mf}, ~$
mf
. All 15 volts. $22 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 25 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 47$ $\mathrm{mf} / 10 \mathrm{v} ; 50 \mathrm{mt} / 6 \mathrm{v} ; 68 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} / 25 \mathrm{v} ; 100 \mathrm{mf} / 10 \mathrm{v} ; 150$
$\mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 200 \mathrm{mf} / 10 \mathrm{v} / 16 \mathrm{v}$: 220mf/ $2 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} ; 330$ $\mathrm{mf} / 4 \mathrm{v} / 10 \mathrm{v} ; 500 \mathrm{mf} / 6 \mathrm{v} ; 680 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 1000 \mathrm{mf} / 2.5 \mathrm{v} / 4 \mathrm{v} / 10 \mathrm{v}$ $1500 \mathrm{mt} / 10 \mathrm{v} ; 2200 \mathrm{mt} / 6 \mathrm{v} / 10 \mathrm{v} ; 3300 \mathrm{mf} / 6 \mathrm{v} ; 4700 \mathrm{mt} / 4 \mathrm{v}$. $500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p} .1200 \mathrm{mF} 76 \mathrm{~V} 8$
$1000 \mathrm{mF} 12 \mathrm{~V} 20 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 50 \mathrm{p} ; 100 \mathrm{~V} \mathrm{£} 1.20$.
$2000 \mathrm{mF} 30 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} 60 \mathrm{p} ; 100 \mathrm{~V} \mathrm{f} 1.40 ; 1500 \mathrm{mF} 100 \mathrm{~V} \mathrm{£} 1.20$. $2200 \mathrm{mF} 63 \mathrm{~V} 90 \mathrm{p} .2500 \mathrm{mF} 50 \mathrm{~V} 70 \mathrm{p} ; 3000 \mathrm{mF} 50 \mathrm{~V} 65 \mathrm{p}$ $4700 \mathrm{mF} 30 \vee 75 \mathrm{p}$; 40 v f 1 ; $63 \mathrm{v} £ 1.80$
NON POLARISED CAPACITORS - REVERSIBLE
$1 \mathrm{mF} 250 \mathrm{~V} 25 \mathrm{p} ; 1.5 \mathrm{mF} 100 \mathrm{~V} 25 \mathrm{p} ; 2.2 \mathrm{mF} 250 \mathrm{~V} 30 \mathrm{p} ; 3.3 \mathrm{mF}$
$100 \mathrm{~V} 40 \mathrm{p} ; 4.7 \mathrm{mF} 100 \mathrm{~V} 40 \mathrm{p} ; 10 \mathrm{mF} 63 \mathrm{~V} 40 \mathrm{p}: 32 \mathrm{mF} 50 \mathrm{~V} 25 \mathrm{p}$ HIGH VOLTAGE ELECTROLYTICS
$\begin{array}{llllll}2 / 500 \mathrm{~V} & 45 \mathrm{p} & 32+32+16 / 350 \mathrm{~V} 90 \mathrm{p} & 8+16 / 450 \mathrm{~V} & 75 \mathrm{p}\end{array}$
$\begin{array}{lllll}16 / 350 \vee & 45 \mathrm{p} & 100+100 / 275 \mathrm{~V} & 50 \mathrm{p} & 16+16 / 350 \mathrm{~V} \\ 32 / 500 \mathrm{~V} & 85 \mathrm{p} & 32+320 / 275 \mathrm{~V} & 50 \mathrm{p} & 32+32 / 350 \mathrm{~V} \\ 82 & 85\end{array}$
$\begin{array}{lllll}32 / 500 \mathrm{~V} 95 \mathrm{p} & 32+32+32 / 325 \mathrm{~V} 50 \mathrm{p} & 32+32 / 500 \mathrm{~V} & \mathbf{8 2} \\ 32 / 350 \mathrm{~V} 50 \mathrm{p} & 50+50+50 / 350 \mathrm{~V} 95 \mathrm{p} & 50+50300 \mathrm{~V} & 50 \mathrm{p} \\ 50 / 450 \mathrm{~V} 95 \mathrm{p} & 8+8 / 500 \mathrm{~V} & \mathbf{£ 1} & 50+50 / 350 \mathrm{~V} & 80 \mathrm{p}\end{array}$
CAPACITORS WIRE END High Voltage
$001, .002, .003, .005$,
M MF 350 V 12p. 600 V 20 p . 000 V 30 p .
.22 MF 350 V 12 p .600 V 20 p .1000 V 30 p .1750 V 60 p
.47 MF 150 V 103.400 V 25 p .630 V 30 p .1000 V 60 p
TRIMMERS 30 गF, $50 \mathrm{pF}, 10 \mathrm{p} .100 \mathrm{pF}, 150 \mathrm{pF} 20 \mathrm{p}$. 500 pF 30 p .
MICROSWITCM SINGLE POLE CHANGEOVER 40 p
GEARED TWIA GANGS $365+365+25+25 \mathrm{pF} £ 2$.
BRASS SPINDLE EXTENDERS 85p. Couplers 65p
VERNIER DRIVE DIALS, $36 \mathrm{~mm} £ 2.50,50 \mathrm{~mm} £ 3$
SLOW MOTIOW DRIVE 6:1 £1.50. Reverse Vernier drive 90p
TRANSISTOR WIN GANG. Japanese Replacement £ SOLID DIELEC TRIC 100pf $£ 1.50$
HEATING ELEMENTS, WAFER THIN (Semi Flexible) Size $11 \times 9 \times 1 / 3$ in. Operating voltage $240 \mathrm{~V}, 250 \mathrm{~W}$ approx.
Suitable for Heating Pads, Food Warmers, Convector Heaters, Propagation, etc. Must be clamped between two sheets of metal or ceramic, etc.
ONLY 600 EACH (FOUR FOR $£ 2$) POST 50p.

NEW baker Star sound
high power full range quality loudspeakers. British made Ideal for Hi-Fi, music P.A. or discotheques. These loudspeakers are recommended where high power handling

BAKER AMPLIFIERS BRITISH MADE

NEW PA150 MICROPHONE PA AMPLIFER 129

 4 Channel 8 inputs, dual impedance, $50 \mathrm{~K}-600$ ohm 4 channel control, acho send return socket. Slave sockets. Post $£ 3$.BAKER 150 Watt AMPLIFIER 4 Inputs $£ 99$ For Discotheque, Vocal, Public Adoress. Three speaker outlets Individual volume controls "Four channel" mixing. 150 watts 8 ohms R.M.S. Music Power. Slave output 500 M.V. 25 K .0 hm . Response $25 \mathrm{~Hz}-20 \mathrm{kHz} \pm 3 \mathrm{~dB}$. Integral Hi-Fi preamp separate Bass \& Treble. Size - $10^{\prime \prime} \times 8^{\prime \prime} \times{ }^{2}$: Wi-14b: Master volume control. British made. 12 months guarantee. 240 V A.
ma ns or 120 V to order. All transistor and solid state. Post $£ 2$. 100 Volt Ling Modal fil4. MONO SLAVE $£ 80$
Now Stereo Slave $150+150$ watt 300 watt Mono $£ 125$. Post $£ 4$
BAKEA MOBILE PA AMPLIFIER. All transistor, 60 -watt RMS, 1 DC \& 240-v AC, 4 inputs $50 \mathrm{~K}, \mathrm{Aux}+2$ mics +1 phono, $4-8-16$ BAKER PORTABLE DISCO 150W. Twin console + amplifier mike and headphones + twin speakers $£ 330$. 300 watt versio
Complete. E399. Carriage f 30 . Concole with pre-amp only f 107
ELECTRONIC ECHO CHAMBER £85. Post £2
BBD Delay System $30 \mathrm{~m} / \mathrm{sec}$ to $200 \mathrm{~m} / \mathrm{sec}$. Variable echo
DISCO GRAPHIC MIXER
4 Channel stereo, 5 band graphic, red + green LED. display, headphone monitor or Deluxe Model £119 PA CABINET SPEAKERS, Complete. 8 ohm 60 watt $17 \times 15 \times 9 \mathrm{in}$. £25. Post f4. 4 or 8 or 16 ohm 75 watt
$23 \times 15 \times 11 \mathrm{in} . £ 50$. 90 watt $32 \times 15 \times 11$ in. $£ 63$. 120 watt $23 \times 15 \times 11$ in. $\mathbf{£ 5 0} 90$ watt $32 \times 15 \times 11$ in. £ 63 . WATERPROOF HORNS 8 ohms 25 watt $£ 20$. 30 watt WATERPROOF HORNS 8 ohms 25 watt $£ 20$. 30 wat
£23. 40 watt $£ 26$. 40 W plus 100 volt line $£ 32$. Post $£ 2$. R.C.S. 100 watt R.M.S. VALVE AMPLIFIER 4 Channel mixing. Master trebe, bass and voluma suits 4,8, 16 ohm. Disco group f125. Carr. \& Ins. 15 .
60 WAIT VALVE AMPLIER 3 mxer inputs, $4-8$ - 16 ohm, 100 volt line. 5 controls, 2 mic inputs plus 1 input switchable for mic, phono, aux. Trable and bass and

FAMOUS LOUDSPEAKERS

 "SPECIAL PRICES SPEAKER COVERING MATERIALS. Samplas Large S.A E
B.A.F. LOUDSPEAKER CABINET WADDING 18 in wide 35 p ft . MOTOROLA PIEZO ELECTRIC HORN TWEETER, 33 kin. squars E5 CROSSOVERS. TWO-WAY $3000 \mathrm{c} / \mathrm{s} 30$ watt 53 . 100 W E4. 3-way, $950 \mathrm{cps} / 3000 \mathrm{cos}$. 40 watt rating. $£ 4.60$ watt $\mathrm{f6}$. 100 W £8. LOUDSPEAKER BARGAINS. Please enquire, many others. $8 \mathrm{ohm}, 25 \mathrm{sin}, 3 \mathrm{in}, \mathbf{6} 2 ; 5 \times 3 \mathrm{in}, 6 \times 4 \mathrm{in}, 7 \times 4 \mathrm{in}, 5 \mathrm{in}, 62.50 ; 61 \mathrm{hin}, 20 \mathrm{~W} \mathbf{f 7 . 5 0}$

EMI 13½x8in. LOUDSPEAKERS

Model 450A, 10 watts R.M.S. with moving
coil tweeter and two-way crossover; 3 ohm
or 8 ohm . "Final Clearance". SUITABLE BOOKSHELF CABINET

GET THE COMPLETE PICTURE

WW - 060 FOR FURTHER DETAILS

The professional communications receiver for point to point, ship to shore, and general coverage radio work RANGE $100 \mathrm{KHz}-30 \mathrm{MHz}$ \& MODES AM, SSB, CW, RTTY and optional FM \star CPU based 10 Hz step digital PLL synthesizer with DUAL VFO's \star Frequency display 6 digit to $100 \mathrm{~Hz} \star$ STABILITY less than 50 Hz after one hour \star POWER SUPPLY 117 or 235 V AC and optional 12V DC \star IF - 1st 70.4515 MHz , 2nd 9.0115 MHz , 3rd 455 KHz , 4th $9.0115 \mathrm{MHz} \star$ Optional transceive units and filters available.

THIS SUPERB RECEIVER IS PRICED AT $\mathbf{£ 4 3 3 . 9 1 ~ + ~ V A T ~}$
Contact us for more details on this and other ICOM professional communications equipment.

> PMR - MARINE - AMATEUR

Dealer enquiries welcome

Thanet Electronics DDICOM

143 Reculver Road, Herne Bay, Kent
Tel: 02273 63859. Telex 965179

EEEGTROVALIUE

Understandably Britain's most popular and relied-upon suppliers of SEMI-CONDUCTORS I.C.s COMPONENTS COMPUTING EQUIPMENT TOOLS, BOXES, CONNECTORS and much, much more OUR SUMMER PRICE LIST TELLS ALL

Send for your FREE copy by return

 BETTER PRICES, BETIER CHOIGE, BETIER SERVICE Don't forgat to mention WIRELESS WORLD with your requestELECTROVALUE LTD.
Head Otfice: Mail Order Dept. and Shop 28 St Judes Road, Englefield Graen, Egham, Surrry TwO 20 OHB 28 SI Judes Road, Englefield Green, Egham, Surey to 200 HE
Telephone Egham ISTD $0784 ;$ London 877 33603; Telex 264475

[^8]680 Burnage Lane, Burnage, Manchester M19 1NA. Telephone 061-432 4945 Computing Shop:

700 Burnage Lane, Manchester. Telephone 061-4314866

EMS POWER

 SYSTEMS
THE EASY SOLUTION TO YOUR POWER REQUIREMENTS

Your previous Inverter/Charger requirements can now be sourced from the EMS Range.

Some typical Inverter types are: 351 E 12V DC INPUT 35 Watts square wave output $115 / 230 \mathrm{~V}$ AC
120IE 12V DC INPUT 100 Watts square wave output $115 / 230 \mathrm{~V}$ AC
250IE 12V DC INPUT 250 Watts square wave output $115 / 230 \mathrm{~V}$ AC
200IS 12V DC INPUT 200 Watts sine wave output $115 / 230 \mathrm{~V}$ AC 500IS 12V DC INPUT 500 Watts sine wave output $115 / 230 \mathrm{~V}$ AC 1000IS 24V DC INPUT 1000 Watts sine wave output 115/230V AC

We also manufacture U.P.S. systems, power supplies and chargers.

For further details please contact:
E.M.S. Manufacturing Limited Chairborough Road
High Wycombe, Bucks.
Tel: (0494) 448484
his performance hi: comperilive hi:

$01-4521500$ Tbchnomatic LTi 01-450 6597

BBC Micro Computer System OFFICIAL DEALER
 Please phone for availability

 BBC Model B £399
 (incl. VAT)
 Carr £8/unit
 Model A to Model B upgrade kit $£ 50$ Fitting charge $\mathbf{£ 1 5}$ Individual upgrades also available
 TELETEXT ADAPTOR $£ 195$ WORDWISE 8K ROM $£ 39$ TORCH 280 DISC PACK $£ 780$ WORD PROCESSOR 'VIEW' 16K ROM £52

FLOPPY DISC INTERFACE

incl. 1.2 Operating System £95 \& £20 installation

BBC FLOPPY DISC DRIVES

Single Drive $51 / 4^{\prime \prime} 100 \mathrm{~K}$ £ $230+\mathrm{f} 6$ carr
Double Drive $51 / 4^{\prime \prime} 800 \mathrm{~K} £ 699+£ 8$ carr.
BBC COMPATIBLE 51/4'' DISC DRIVES
These drives are supplied in BBC matching colour cases.
SINGLE DRIVES: $100 \mathrm{~K} £ 150$; $200 \mathrm{~K} £ 215400 \mathrm{~K} £ 265$
SINGLE DRIVES: with PSU 100K £185; 200K £260*; 400K £330
DUAL DRIVES: with PSU 200K £355; 400K £475*; 800K £595
*These drives are provided with a switch to change between 40 and 80 tracks.
DRIVE CABLES: SINGLE £8, DUAL£12.
DISC MANUAL \& FORMATTING DISKETTE $£ 17.50$
Phone or sani for our isif catiot

CASSETTE RECORDER

SANYO Data Recorder DR101
A superior quality data recorder with dedicated computer output and monitoring facility on $\mathrm{f39.50}+£ 1.50$ carr
SLIMLINE Cassette Recorder complete with counter and remote control
$£ 24.50+£ 1.50$ carr
Computer Grade Cassettes
$\mathbf{£ 0 . 5 0}$ each. $£ 4.50$ for $10+\mathbf{£ 1}$ carr
Cassette lead $£ 3.50$.

MONITORS

MICROVITEC 1431 4in Colour Monitor $£ 249+£ 8$ carr VICROVITEC 203120 in Colour Monitor $£ 319+£ 8$ carr KAGA 12 in RGB Monitor $£ 255+£ 8$ carr Rad for KAGA/SANYO RG8 $£ 10$ TOR $£ 99+£ 6$ carr SANYO HI RES RGB MONITOR $£ 445+£ 8$ carr

BBC BOOKS (no VAT; p\&p f)
Basic on BBC $\mathbf{£ 5 . 9 5}$
30 House Basic $\mathbf{£ 5} 95$
Programming the BBC Micro $£ 6.50$
BBC Micro An Expert Guide $\mathbf{£ 6 . 9 5}$
Assy Lang Prog. for B8C $\mathbf{E 8 . 9 5}$
6502 Machine Codes for Beginners $\mathbf{f 6 . 9 5}$

NEC PC 8023 BE - C $100 \mathrm{CPS}, 80$ cols Logic Seeking, Bidirectional
Forward and Reverse Line Feed.
Proportional Spacing, Auto Underline,
Hi-Res and Block
Graphics, Greek Char.
Set.
Only $£ 320+£ 8$ carr

Parallel Printer lead for BBC/Atom to most printers $\mathbf{f 1 3 . 5 0}$
Variety of interfaces, ribbons in stock. 2,000 fan fold sheets $91 / 2^{\prime \prime} \times 11^{\prime \prime} £ 13.50+£ 3$ p\&p

EPSON RX80 and FX80 SEIKOSHA GP 100A 80 cols 30 CPS Full ASCII and Graphics 10" wide paper Now only $£ 175+\mathbf{£} 6$ car Now only $\mathrm{E} 75+$ e 6 car GP250A £235 + £8 carr.

Tractor Feed $£ 290$
FX80 160CPS 80 col F \& T Feed $£ 389$ MX100 F/T3 $£ 425$ (Carr./printer $£ 8$)

Full specification on request

CONNECTOR SYSTEMS

RUGBY ATOMIC CLOCK

This 280 micro controlled clock/calendar receives coded time data from NPL Rugby. The clock never needs to be reset. The facilities include 8 indepen meiody or alternatively these can be used for electrical switching. A separate timer allows recording of up to 240 lap times without interrupting the count. Expansion facilities provided.

See July/August 82 ETI for details.
Built and tested $£ 145+£ 2$ p\&p. Built and tested $£ 145+£ 2$ p\&p.

MICROTIMER

6502 Based Programmable clock timer with + 224 switching times/week cycle 24-hour 7 -day timer
4 independent switch outputs directly interfacing to thyristor/triacs

- 6 digit 7 seg. display to indicate real time,

ON/OFF and Reset times

- Output to drive day of week switch and status LEDs
Full details on request. Price for kit $£ 57$

DISC DRIVES FOR THE FORTH COMPUTER

51/4" Teac FD55 Slim Line Mechanisms. FD55A 40 track SSDD 250 kbytes unformattec

Bare: £135; Cased: £155 $2 \times$ FD55A 40 track SSDD 500kbytes unformatted

Cased \times psu £350 FD55E 80 track SSDD 500kbytes unformatted

Bare: $£ 180$; Cased: $£ 205$ $2 \times$ FD55E 80 track SSDD 1 Mbyte unformatted

Cased + psu £475 51/4" Mitsubishi M4853 Slim Line mechanism 80 track DSDD 1 Mbyte unformatted

Bare: £225; Cased: £245 $2 \times$ M4853 2 Mbytes

Cased + psu £590
Single drive cable $\mathbf{£ 8}$; Dual Drive cable $\mathbf{£ 1 2}$
Other parts for FORTH COMPUTER available send SAE for details.

NEW COMPREHENSIVE CATALOGUE AVALLABLE
PLEASE SEND FOR PRICE LIST

SOFTY II INTELLIGENT PROGRAMMER

The complete microprocessor development system for Engineers and tobbyists. You can develop programs, debug, verify and commit to ROMS or use in host computer by using softy as a romulator. Power ful editing facilities permit bytes, blocks of bytes changed, deleted or inserted and memory contents can be observed on ordinary TV. Accepis most $+5 v$ Eproms
Softy || complete with PSU, TV Lead and Romulator lead £169

UV ERASERS
UV1B up to 6 Eproms $£ 47.50$ UV1T with Timer $£ 60$ UV140 up to 14 Eproms UV141
UV141 with Timer $£ 78$ (Carr E2/eraser) All erasers are fitted with terlocks.

'WIRELESS WORLD' PROJECTS

Semiconductors inc. 1.Cs., Transistors, Displays, Connectors and Sockets for most projects are stocked by us
SPECIAL OFFER

BOOKS

(No VAT p\&p E1

 CRT Controlier H/BOOK Z80 Microcomp Handbook Programming the 6502 6502 Assy. Lang. 6502 Applications 6502 Software Design …........ $£ 10.20$ 6502 Games............................25 ing books, books on BBC etc in stock Ask for our list.WW-12

RADIO AND TELEVISION SERVICING 1982-83 MODELS

Editor: R. N. Wainwright, T. Eng (CEI), F.S.E.R.T.

This volume, like its predecessors, continues to provide the only comprehensive reference source for a large range of domestic entertainment products currently available from retail outlets.
The first part of this volume contains manufacturers' circuits and service information for the main classes in a wide selection of colour and monochrome receivers. The second section presents a selection from the numerous available types of audio equipment, including portable and clock radios, in-car units, cassette recorders combinations and unit audio systems. The usual addendum gives cross-references to relevant information detailed in earlier volumes, together with supplementary servicing information abstracted from the technical bulletins issued by the manufacturers during the year.

Price: £22.50
On sale now
Previous volumes are still available Enquiries to the Sales Department, Macdonald \& Co.

From booksellers, or in case of difficulty, please use the coupon below:-

To: Cash Sales Dept. Macdonald \& Co., Maxwell House, Worship Street, London EC2A 2EN.

Please send me..................copy(ies) of RADIO AND TELEVISION SERVICING 1982-83 MODELS.

I enclose a cheque/PO made out to Macdonald \& Co (Publishers) Ltd for
Please allow 28 days for delivery

Name

Address

POWERFET AMPLIFIER MODULES

MODEL	POWER RANGE (Continuous RMS)	TYPICALLDADS	PRICES (one off)
PFA 100	$50 \mathrm{~W}-150 \mathrm{~W}$	$4 \Omega, 8 \Omega$	£20.65
PFA 200	100W-300W	$4 \Omega, 8 \Omega$	£27.35
PFA 500	250W-600W	$2 \Omega, 4 \Omega, 8 \Omega$	£42.00
PFA HV	200W 300 W	$4 \Omega, 8 \Omega, 16 \Omega$	¢36.04
Key features: * RELIABLE - Powerfet freedom from thermal runaway and			
	- Powerfet freedom from thermal runaway and secondary breakdown		
	- TID zero, IMTHD < 0.01\% full power (mid-band THD		
- F	- Slew rate $>30 \mathrm{~V} / \mu \mathrm{S}(45 \mathrm{~V} / \mu \mathrm{S}$ typical)		
	- Signal to noise ratio 120dB		
-			
	LE - Without axtra circuitry		
	- 10 watts to 20 watts per $£_{,}$depending on model and		

As they stand these modules suit most P.A. and industrial applications and satisty all foreseeable audiophile requirements. (The HV is aimed at digital audio.) Where aspects of performance fail to meet specific requirements (e.g. in speed or power) low-cost customising is often a possibility. Alternatively entirely new boards can be produced.
ALSO-
PAN 20-Ultra-low-noise/distortion, mono preamp board, $£ 7.61$
PAX $2 / 24$ - 2 -way active crossover board (24 dB /octave) plus regulators, $\mathbf{£ 9 . 7 0}$
THE HEAT EXCHANGER-New, super-efficient heatsink; handles 300 W or 1.2 kW when blown; $7 \mathrm{in} . \times 4 \mathrm{in} . \times 21 / 4 \mathrm{in}$., $£ 7.50$

This is just a fraction of the new products availabie from Pantechnic -check us out!

Prices exclude V.A.I
Carriage 75p

PANTECHNIC (Dept. wws) 17A WOOLTON STREET LIVERPOOL 125 5NH Tel: 051-428 8485 contact
Phil Rimmer 0t-moners

WW - 064 FOR FURTHER DETAILS

FILTERS

Custom-built to YOUR requirements

Solent Electronic Services Ltd. specialize in the custom design and manufacture of L / C and crystal filters in the $0-40 \mathrm{MHz}$ range ($0-1000$ MHz under development)
Filters are designed, built and tested to meet the highest specifications, including those for telecommunications and defence Production is specifically geared to small quantities - from single units to small batcries - at relatively low cost
Phone or write for further information:

Solent Electronic Services Ltd.
15 Abshot Close Titchfield Common
Fareham Hants PO14 4LZ
Tel. 04895-82094

WW - 068 FOR FURTHER DETAILS

Give as they Gave

'P.W. WINTON' TUNER AND AMPLIFEF

Tuner. Complett Kir.
 Amplifier Reprint
 18103

SOLENOID CONTROLLED HI FI/DIGITAL CASSETTE MECHANISM

Front loading deck with full solenoid control of all functions incluting optionem read in fast wind modes. 12 volt operatior
Fitted 3-digit memory counter and Hall ic Motion Sensor. StarFitted 3-digit memory counter and Hall IC Motion Sensor. Star-

$1 \begin{aligned} & \text { these feat } \\ & \text { included. }\end{aligned}$

LINSLEY-HOOD 100 WATT POWER

AMPLIFIER

Our complete kit for this brilliant new design is the same size as our Linsley-Hood Cassette Recorder 2. Kit includes all parts fo two power amplifiers with large heatsink area, huge power supply and speaker protection circuit. Total cost of art parts is
E 114.46 but our secial introductory price for all parts bough ogether is only $£ 105.50$.

TMIS MONTH'S SPECIAL OFFERS

DOLBY 'B' NOISE REDUCTION IC LM1011 Marvellous opportunity for home experimenters, build your
own noise reduction system. Suppliad complete with circuit showing typical application. Absolute knockeut price only 33.50 for two lne. VAT and post.

COMPLETE STEREO CASSETTE DECK

 Brand new high quatity top-loading Cassette Deck complate with Record/Play electronics. Supplied with connection dato and circuit diagram. Automatic chrome/ferric switching. Dniyneeds $9 V$ DC supply. Total price only E18.34 Inc. VAT and post.

COMPLETE STEREO TUNER MODULE Three band LW/MW/FM Stereo Tuner fully assembled on PCB $165 \times 85 \mathrm{~mm}$. Supplied with Ferrite rod aerial end bend switch
 LED. Only needs 12 V OC supp
only 57.99 inc. VAT and post.

SUPER SLIN FLOPPY DRIVE

 Very latest low consumption $5 / / 4 i n$ Disk Drives. Fit two in the
space previously taken by one! Compatible with major stan-
dards. Connects directly to BBC and oher microcomputers dards. Connects directly to BBC and other microcomputers fitted with disk interface. The 80 track drive can be made
switchable to read 40 or 80 track disks, very useful when upgrad ing to higher density storage.
40 Track Drive $£ 154.80$ Track Driva $£ 214$

Please Note: New Phone Number: (0691) 652894
Personal callers are always very welcome but please note that we are closed all day Saturday

HIGH QUALITY REPLACEMENT CASSETTE HEADS

Do your tapes lack treble? A worn head could be the problem. Fitring one of our replacement heads could restore performance our IC1 Test Casserte helps you set the azimuth spot-on. We are the actual importers which means you get the benefit of lower The following is a list of our most popular heads, all are suitable
for use on Dolloy machines and are ex-stock
HC20 Permatioy Sterwo Head. This is the standard head fitted as
£4 25 original equipment on most decks i............... 25 formance head with metal capability................................E6.20 HS18 Sondust Alloy Super Head. The best head we can find. Longer life than Permalloy, higher output than Ferrite, fantastic HQ551 4-Treck Head for auto-reverse or quedrophonic u5e. Full specification record and playback head qu.................40 Please consult our list for technical date on these and other Special Purpose Heads.

HART TRIPLE-PURPOSE TEST CASSETTE TC1

One inexpensive test cassette enables you to set up VU level, One inexpensive test cassette enables you to set up
head azimuth and tape speed. Inviluble when firting rew
heads. Only E 3.80 ptus VAT and 50 p postage.

Tape Head De-magnetiser. Handy size mains operated unit prevents build up of residual head magnetisation causing noise
on playback
$\mathbf{E 3 . 6 8}$

Full details of the entire range of HART products is contained in our illustrated lists.
Ask for your FREE copy NOW
Ask for your FRee copy NOW. Enquiries for lists are also welcome rom overseas but please let us have three IRC
airmail. In a hurry? A telephone order with credit card number placed befors p.m. wil be despart pari

INLAND OVERSEAS
Orders up to $£ 10-50 \mathrm{p} \quad$ Postage at cost plus fP documentation and handling

PLEASE ADD VAT
TO ALL PRICES

reprints

If you are interested in a particular article / special Feature or advertisement published in this issue of

WIRELESS WORLD

why not take advantage of our reprint service
Reprints can be secured at reasonable cost to your own specifications providing an attractive and valuable addition to your promotional material. (Minimum order 250.)
For further details contact Michael Rogers, Electrical-Electronic Press. Phone 016613457 or simply complete and return the form below.

To Michael Rogers, Reprints Department Quadrant House, The Quadrant Sutton, Surrey SM2 5AS
1 am interested in
copies of the article /
advertisement headed
featured in
WIRELESS WORLD
on page(s) in the issue dated
Please send me full details of your reprint service by return of post
Name
Company
Address
Tel. No

WW - 031 FOR FURTHER DETAILS

Modem Kit Only $£ 39.95$

\star CCITT standard

* 300 baud full duplex
\& Direct connection - greatly reduces data loss associated with acoustic couplers
* Powered from phone lines therefore no power supply required
\star Opto coupled data in and data out for intrinsically safe operation.
Build it yourself for $£ 39.95$ including VAT and postage (note case not included).

Racom Ltd., Dept. B
81 Cholmeley Road, Reading, Berks RG1 3L.Y
Tel: 073467027

INSULATION TESTER

A lcgarithmic scale covering 6 decades is used to display either insulation resistance or leakage current at a fixed stabilised test voltage. The current available is limited to a maximum value of 3 mA for safety and capacitors are automatically discharged when the instrument is switched off or to the CAL condition. The instrument operates from a 9 V internal battery.
RESISTANCE RANGES
$10 \mathrm{M} \Omega$ to $10 \mathrm{~T} \Omega\left(10^{13} \Omega\right)$ at $250 \mathrm{~V}, 500 \mathrm{~V}, 750 \mathrm{~V}$ and 1 kV .
$1 \mathrm{M} \Omega$ to $1 \mathrm{~T} \Omega$ at $25 \mathrm{~V}, 50 \mathrm{~V}$ and 100 V .
$100 \mathrm{k} \Omega$ to $100 \mathrm{G} \Omega$ at $2.5 \mathrm{~V}, 5 \mathrm{~V}$ and 10 V
$10 \mathrm{k} \Omega$ to $10 \mathrm{G} \Omega$ at 1 V
Accuracy $\pm 15 \%+800 \Omega$ on 6 decade logarithmic scale. Accuracy of test voltages $\pm 3 \% \pm 50 \mathrm{mV}$ at scale centre. Fall of test voltages $<2 \%$ at $10 \mu \mathrm{~A}$ and $<20 \%$ at $100 \mu \mathrm{~A}$. Short circuit current between $500 \mu \mathrm{~A}$ and 3 mA . CURRENT RANGE
100 pA to $100 \mu \mathrm{~A}$ on 6 decade logarithmic sale.
Accuracy of current measurement $\pm 15 \%$ of indicated value.
Input voltage drop is approximately 20 mV at 100 pA , 200 mV at 100 nA and 400 mV at $100 \mu \mathrm{~A}$. Maximum safe continuous overload is 50 mA
MEASUREMENT TIME
<3 s for resistance on all ranges relative to CAL position. <10 s for resistance of $10 \mathrm{G} \Omega$ across $1 \mu \mathrm{~F}$ on 50 V to 500 V .
Discharge time to 1% is 0.1 s per $\mu \mathrm{F}$ on CAL position. RECORDER OUTPUT
1 V per decade $\pm 2 \%$ with zero output at scale centre. Maximum output $\pm 3 \mathrm{~V}$. Output resistance $1 \mathrm{k} \Omega$.

Send for data covering our range of instruments

LEVELL ELECTRONICS LTD.

CX80 colour MATRIX PRINTER

New low price
$\mathbf{f 7 9 5}$ + V.A.T.
At last a low-cost Colour Matrix Printer for Text, Graphics, Histograms, Colour VDU Dumps, etc.

Colour printout is quickly assimilated, makes graphics more understandable and is an ideal medium for the presentation of complex data or concepts.

Compatible with most microprocessors, prints in 7 colours - sophisticated internal programme makes the CX80 easy to use.
Dot Addressable + 15 user programmable characters, 96 ASCII and 64 graphics characters in rom. Centronics interface with RS232 and IEEE488 options. Apple II interface gives dot for dot colour dump. New viewdata interface prints out two pages side by side in full colour. See Prestel 200650.

The CX80 is a product of our own design and development laboratories. It represents a British breakthrough in colour printer technology. Colour brochure on request. OEM pricing available.

WW - 062 FOR FURTHER DETAILS

B. BAMBER ELECTRONICS
 Rank Pullin Airport Weapon Detector Type 3 Walk-

through Cabinst. Complete and good working order £150 plus VAT
Marconi HF Spectrum Analyser Type OA1094A/S complete with Frequency Convertor Type TM644B and mounted on trolley, 0-30 MHz £90 plus VAT.
Systron Donner Spectrum Analyser Model 805200 Hz -9.6 MHz . POA.
Hewlett Packard SHF Signal Generator Type 620B 1
$11 \mathrm{GHz}, \mathrm{FM}, \mathrm{CW}$, \& Square Wave f120 plus
$11 \mathrm{GHz}, \mathrm{FM}, \mathrm{CW}$, \& Square Wave, f 120 plus VAT.
Marconi AM Signal Generator Type TF 801D/8S 10 485 MHz , $\mathbf{£ 9 5}$ plus VAT.
Avo Valve Tester Mark IV complate with instruction Tektronix Oscillosc
plus VAT.
Toktronix Oscilloscope Type RM45A Rack Mount main rames, 50 plus VAT.
Tektronix Oscilloscope Type 551 Mainframes with Tektronix Oscilloscope Type 555 Mainframes with Power Unit, E85 plus VAT Tektronix Sampling Oscilloscope Type 661, fitted with Tektronix Plug-In Units Type B, G, H, K, L. £25 each plus VAT. Avo Transistor Tester Type 2 with Battery and Mains Power Units, $\mathbf{£ 3 0}$ plus VAT.
Solartron Oscilloscope Type CD 1642.
Solatron Oscilloscope Type CD 1014.3.
Telequipment Oscilioscope Type D 61.
Telequipment Oscilloscope Type D 43 R.
Telequipment Storage Oscilloscope type DM 64.
Solartron RC Oscillator Type CD $100410 \mathrm{~Hz}-1 \mathrm{MHz}$
Advance Oscilloscope Type OS $2100 \mathrm{DC}-30 \mathrm{MHz}$
f185 plus VAT.
Radiosonde RS 21 Meteorological Balloon Transmitter with Water Activated Battery. 55 each plus VAT.
Pye Industrial pH Monitor Model 539 complete with Technical Manual, $£ 30$ plus VAT
Marconi AM/FM Signal Generator Type TF 995A/5, £250 plus VAT.
Meguro Signal Generator Type MG6 - 230 E 16 KHz 50 MHz , £125 plus VAT
Philips PAL Colour TV Pattern Generator Type PM 5508
Good secondhand equipment always wanted for cash

Pye Europa MF5FM High Band Sets, ideal for 2 M. 5
watt output 6 Ch , complete but less mike and cradle
with circuit diagrams, 60 each plus VAT. with circuit diagrams, $\mathbf{f 6 0}$ each plus VAT.
Pye Reporter MF6 AM High Band Sets, single Ch, complete but less speaker with circuit diagrams, $\mathbf{f} 60$ plus Pat.
Pye Motafone MF5AM Mid band 6 Ch , good condition with circuit diagram, £15 plus VAT. Plete but less speaker mike Mid Band Single Ch, com Pye Westminster W15AMD Low and f45 plus VAT. complete but less speaker, mike and cradle, £50 plus VAT.
Pye Westminster W30AM Low Band Sets, boot mounted, 30 W output, complete but less speaker, mike and leads, E25 plus VAT.
Pye Olympic M201 AM High Band, complete but less mike, speaker and cradie. With circuit diagrams. $£ 40$ Pye Cambridge AM10D Low Band, few only $£ 15$ plus VAT.

Pye Cambridge AM10B High Band, fow only, $\mathbf{f 1 0}$ plus

 VAT.Pye Base Station F27 Low Band, £40 plus VAT. Pye Base Station F30 High Band, f180 plus VAT Pye Base Station F401 High Band, $\mathbf{2} 20$ plus VAT. ye Base Station F9U UHF. Remote. E90 plus VAT and UHF fixed station radio telephones over land VHF E10 plus VAT.
Pye PC1 Radiotelephone controller, good condition, $£ 50$ plus VAT.
Pye Base Station Tx Type T406 100 W Low Band FM. £ 150 plus VAT.
Pye Base Station Tx Type T100 100W FM 'G' Band 38.650 MHz , ideal for 6 M . New condition. $£ 100$ plus VAT. Pye Pocketfone Type PF5, UHF 'T' Band, complete with Pye Pocketfone PF5 Battery Charger Type BC16A, £25 plus VAT.
Pye Pocketfone PF1 UHF Receiver, $440-470 \mathrm{MHz}$, single channel, int. speaker and aerial. Supplied complete with rechargeable battery and service manual. f6each plus $\mathbf{E 1} 1$ p.p. plus VAT.
i-Cad Batteries for Pye PF1 rx, used but good condition, $£ 2$ each, PF1 tx Batteries, $\mathbf{£ 3}$ each plus VAT.

LEASE NOTE: All sets are sold less crystals unless otherwise stated. Carriage on RT equipment - Mobiles f2 each. Base stations f15 each. Red Star available at .

SEMICONDUCTDAS \& VALVES p.p. 50p per order. PLEASE ADO VAT. 1 N4 44810 for $25 p, 7414$ for $£ 1,555$ 4 for £1, Z80-P 10 £1.85, Z80-CTC £1.85, BC108 4 for 50p. BC109 4 for 500, BC113 4 for 50p. BC148 4 for 50p. BC149 4 for 50 .
QQV03 10 ex-equip. $£ 1.20$, QOZ03 - 10 new $£ 2.50$,
QOV03 - 20 e es-equip $£ 5$, QQVO6 - 40 a $£ 15$, QOZO6 QOVO3 - 20a ex-equip £5, QQVO6 - 40a £15, QOZO6 VIDCON SCAN
VDCON SCAN COILS $1^{\prime \prime}$ Transistor type but no details, complete with widcon base. $\mathbf{E 3 . 5 0}$ each plus 50 p p.p. Mains isolating transformer, 500 VA 240 V input, 240 V C.T. output, noused in metal box. $\mathbf{f} 15$ each plus $\mathbf{E 6}$ p.p. plus VAT.
Mains isolating transformer, 240 V tapped input, 240 V 3 amp, plus 12 V Q 5 amp output, f 20 each plus E 6 p.p. plus VAT.
Garrard Car Cassette Player Mechanisms, 12 V motor, stereo head, brand new, $\mathbf{E 2} .50$ each plus 50 p p.p. plus VAT.
Cigar Lighter Plug with lead, $\mathbf{f 1}$ each p.p. plus VAT. IC Test Clips, 28 way and 40 way, gold plated, $£ 2$ each plus 30p p.p. plus VAT.
Vehicles, $\mathbf{f} 1$ each plus 5 nerator Noise Filters for use Computer Grade Electrolytic C.p. plus VAT. nals, 25000 mfd., 33 volt, brand new, $\mathbf{f 1}$ each plus 50 p. p.p. plus VAT.

Mains Transformars $220 \vee$ Pri. $36 \vee$ @ 1.5 amp . Sec. $\mathbf{\text { E } 1}$ each plus 50p p.p. plus VAT.
BASF Chromdioxid Video Cassette Tape for use with Philips N1500/1700 VCR. LVC30+5, 36 min . Iong play. Mullard Vari-Cap Tuners Type
noved from brand new TV sets. 53.103 , UHF only, reVAT
2N3055 Transistors, Brand New, 4 for $\mathbf{£ 1}$ plus 20p, p.p. plus VAT.
Beryllium Block Mounts for CCS1 valves. Brand new
and Boxed, $\mathbf{~} 10$ each plus 50 p. p.p. plus VAT.

All prices quoted exclude p/p and VAT unless otherwise stated

MARK 1983 WITH GAPS IN CIRCUIT FILES WELL-PLUGGED

WIRELESS WORLD CIRCARDS last year benefited many 'new generation' readers who bought at 1976 bargain prices $+10 \%$ discount for 10 sets! Most sets are still available although companion volumes CIRCUIT DESIGNS 1, 2 and 3 are out of print (CIRCARDS sets 1 to 30).
wireless world circard \qquad Naw

> The Offer stands,
so order now your
sets of $127 \times 204 \mathrm{~mm}$
cards in plastic wallets.
These unique circuit
cards normally contain
descriptions and
performance data of
10 tested circuits,
together with ideas
for modifying them
to suit special needs. The Offer stands,
so order now your
sets of $127 \times 204 \mathrm{~mm}$
cards in plastic wallets.
These unique circuit
cards normally contain
descriptions and
performance data of
10 tested circuits,
together with ideas
for modifying them
to suit special needs. The Offer stands,
so order now your
sets of $127 \times 204 \mathrm{~mm}$
cards in plastic wallets.
These unique circuit
cards normally contain
descriptions and
performance data of
10 tested circuits,
together with ideas
for modifying them
to suit special needs. The Offer stands,
so order now your
sets of $127 \times 204 \mathrm{~mm}$
cards in plastic wallets.
These unique circuit
cards normally contain
descriptions and
performance data of
10 tested circuits,
together with ideas
for modifying them
to suit special needs. The Offer stands,
so order now your
sets of $127 \times 204 \mathrm{~mm}$
cards in plastic wallets.
These unique circuit
cards normally contain
descriptions and
performance data of
10 tested circuits,
together with ideas
for modifying them
to suit special needs. The Offer stands,
so order now your
sets of $127 \times 204 \mathrm{~mm}$
cards in plastic wallets.
These unique circuit
cards normally contain
descriptions and
performance data of
10 tested circuits,
together with ideas
for modifying them
to suit special needs. The Offer stands,
so order now your
sets of $127 \times 204 \mathrm{~mm}$
cards in plastic wallets.
These unique circuit
cards normally contain
descriptions and
performance data of
10 tested circuits,
together with ideas
for modifying them
to suit special needs.

1 Basic Active filters 2 Switching Circuits, comparators and Schmitts (But these gaps cannot be filled)
6 Constant current circuits 7 Power amplifiers 8 Astable circuits 9 Optoelectronics 10 Micro power circuits 11 Basic logic gates 12 Wideband amplifiers 13 Alarm circuits 14 Digital Counters 15 Pulse modulators 16 Current differencing amplifiers - signal processing 17 Current differencing amplifiers - signal generation 18 Current differencing
amplifiers - measurement and detection 19 Monostable circuits 20 Transistor pairs 21 Voltage-to-frequency converters 22 Amplitude modulation and detection 23 Reference circuits 24 Voltage regulators 25 RC oscillators-1 26 RC oscillators - $2 \quad 27$ Linear cmos-1 28 Linear cmos-2 29 Analogue multipliers 30 Rms/log/power laws 31 Digital multipliers 32 Transistor arrays 33 Differential and bridge amplifiers 34 Analogue gate applications-1 35 Analogue gate applications-2.
*Photocopies only: 3 Waveform generators 4A.C. measurement 5 Audio circuits @ £3.20 each set.

To Electrical-Electronic Press
General Sales Department
Room 108
Quadrant House
Sutton
Surrey SM2 5AS

[^9]Please send me the following sets of
Circards. ..£2 each, $£ 18$ for 10 post free.
Remittance enclosed payable to BUSINESS PRESS INTERNATIONAL LIMITED
\qquad
\qquad

GOMPNHF WIRH:OUSH

THE 'ALADDIN'S' CAVE OF COMPUTER ARD ELECTRONIC EQUIPMENT

HARD DISK DRIVES

dily refurbished Diabio/DRE Series 30
disk drive for DEC RKOS. NOVA. TEXAS et
F
PSU type ME3029 for 2 drives $£ 125.00$
DRE $44 \mathrm{~A} / 4000 \mathrm{AB} 10 \mathrm{mb} 5+5$ all
£ 995.00 Call sales office for details.

5 AMP MANNS FLTTERS

amp 240 v load. As recommended by the ZX 81 news

DISIMT ©

The UK's FIRST free of charge, 24 hr . public access deta base. Get information on 1000 's of stock tems and order via your computer and credit card. On line now, 300 baud. CCITT tones, full duplex, fully interactive.
DON'T MISS THOSE BAROAINS CALL NOW, IT'S FREE!

7 dyys per
$01-6831133$ moik

COMPUTER 'CAB'

Aabinet with integral switched
mode PSU, Mains filtering, and twin fan cooling
Originally made for the famous DEC PDP8 compute system costing thousands of pounds. Made to run 24 hours per day the PSU is fully screened and will deliver massive $+5 v$ DC at $17 \mathrm{amps},+15 v D C$ at 1 amp and -15 $D C$ at 5 amps. The complete unit is fully enclosed with removable top lid filtering, trip switch, 'Power and 'Ru
LEDs mounted on Ali front panel, rear cable entries, et -EDs mounted on Ali front panel, rear cable entries, et etc. Units are in good but used condition - supplied for
240 voration complete with full circuit and tech, man Glve your system that professional finish for only $£ 49.95$ + Carr. Dim. $19^{\prime \prime}$ wide $16^{\prime \prime}$ deep 10.5" high Useable area $16^{\prime \prime} W^{\prime} 10.5^{\prime \prime} h{ }^{11} 5^{\prime \prime} \mathrm{d}$.
Also available LESS PSU, with FANS etc. Inter

COOLITG FANS

 Keep your hot parts COOL and RELIABLEwith our range of BRANO NEW protessional CTRI G9xUOI Dim $92 \times 92 \times 25 \mathrm{~mm}$ Miniature $240 \vee$ equipment tan complete with finger guard £9.95.
GOULB JB-3AR Dim very quiet running 240 v operation. NEW E6 BUHLER 69.11.22. 8-16 \vee DC micro servo motor for extren almost silent running and guaranteed 10.000 hr life. Measures only $62 \times 62 \times 22 \mathrm{~mm}$.
Current cost $£ 32.00$ OUR PRICE ONL £12.95 complete with data. Man supplied tested EX EQUIPMENT 240 v at £6.25 or 110 v at $£ 4.95$ Or BRAND NEW 240 at $£ 10.50 .1000$'s of other fans Ex Stock
Call for Details. Post \& Packing on all fans $£ 1.60$

$8^{\prime \prime}$ FLOPPY DISK DRIVES

Unbelievable value the ORE 71008 " floppy disk drives ut:lise the finest technology to give you 100%
bus compatibility with most drives available today. The bus compatibility with most drives available today. The manufacturing quality! The 7100 single sided drive accepts hard or soft sectoring IBM or ANSI standard Ormats giving a massive 0.8 MB of storage Absolutely SHUGART, QASF,
SEMENS etc. compatib e Supplied BRAND NEW with user manual and full 90 SIEMENS etc. Compatib e. Supplied BRAND NEW with user manual and full 90
day warranty 7100 Sirgle sided $£ 225.00+$ Carriage and insurance $£ 10.00$.
Optional accessories: Full technical manual $£ 20.00$ alone $£ 10.50$ with drive. Fefund difference on drive purchase. DC and AC power connector an
way IDC connector $£ 5.50 .50$ way ribbon cable $£ 3.20$ per metre.

SUPER DEAL? NO - SUPER STEAL!!

 The FABULOUS 25CPS TEC StarwriterDaisy wheel printer at a fraction of its original cost. BRAND NEW AT ONLYE499.+VAT = Made to the very highest
Spec the TEC Stawriter
FP1500-25 featres heavy duty die cast chassis and DIABLO type chassis and DIABLO type
print mech anism giving print mech anism giving
superb registration and - savererera00 offer full DIABLO/QUME
command compatability Many other teatures include bidirectional printing, switchable 10 or 12 pitch, full width 381 mm paper handing with upto internal buffer, standard RS232 serial intertace with handshake Supplied absolutly BRANO NEW with 90 day quarantee and FREE dasy wheel
and dust cover. Order NOW or contact sales office for more intorm and dust cover. Order NOW or contact sales office for more information. £140.00. Stas. RS232 data cable $£ 10.00$. Tech manuar $£ 7.50$. Tractor teed

DATA MODEMS

Join the Communications revolution with our
range of EXTELECOM data modems. Made t most stringent spec and designed to operate
for 24 his per day. Units are made to the or 24 hrs per day. Units are made to the
CCITT tone spec. With RS 232 I/o levels via and working condition with data Permission
and and working condition with data Permission
may be required for connection to PO lines. MODEM 13A compact, a sync, same size as MODEM 13A compact, a sync, same size as
telephone base. Up to 300 baud, full duplex telephone base. Up to 300 baud,
over 2 wires, but call mode only $£ 75.00$ MODEM 2B/C Fully fledged, up to 300 baud auto switching, ideal networks etc. Just 2 wire connection to comms line. E85,00 MODEM 20-1 Compact unit for use with transmit - 1200 baud receive. Auto answer E130.00
MODEM $20-2$ same as $20-1$ but 75 baud receive 1200 baud transmit. $£ 130.00$ MODEM 20-3 Made for data rates up to 1200 baud in full duplex mode over 4 wire circ
half duplex mode over 2 wires. $£ 130.00$ half duplex mode over 2 wires. $£ 130.00$
ICarriage. $13 A £ 4.50 \quad 2 B / C \& 20 £ 9.50$. OATA PUMP MOOEM compact unit upto
1200 baud full duplex over 4 wires or halt 1200 baud full dup!ex over 4 wires or halt
duplex over 2 wires. BELL specification with data i/o va RS232 25 way D socket. remote
test etc. 240 voperation. Supplied complete
with data £65.00 carr $£ 4.50$

SPECIAL MODEM OFFER

EX TELECOM. Direct cor nect. 2 wire. European standard, $75 / 1200$ baud data modems. Normally priced at $£ 140.00$, we have a limited quantity of guaranteed working, but cosmetically defective (ie scratches and scuffs on panels etc.) units
 DISTEL's forthcoming high speed ports. Standard RS232 data i/o via 25 way

> TBIFTYMP A8BB3 I/0 Y̌i:..Ini.T.
> FROM LI\% + CAR. + terminal Med industry standard ASR33 data keyboard and printer for data I/O auto data detect circuitry. RS232 serial interdace. 110 ofl line data preparation and ridiculously cheap and reliable data storage. Supplied good condition and in working order Options: Floor stand $\mathbf{E} \mathbf{1 2 . 5 0}+$ VAT Options: Floor stand $£ 12.50+$ VAT
KSR33 with 20 ma loop intertaceE $125.00+$ KSR33 with 20 ma loop intertace $\mathbf{E 1 2 5 . 0 0 +}$
Sound proof enclosure $£ 25.00$ + VAT

SOFTY 2

The amazing SOFTY 2. The complete "toolkit" for the open heart software surgeon. Copies, Displays. Emulates ROM, RAM and EPROMS of the 2516,2532 variety. Many other features
include keyboard, UHF modulator Cascette include keyboard, UHF modulator. Cassette
interface etc. Functions exceed capabilities of units costing 7 times the price! Only units costing 7 times the price! Only
$\mathbf{E} / 69.00 \mathrm{pp} £ 1.95$ Data sheet on requ

D sk. With data
MODEM 2A Early version of modem 2B/C 300 baud full duplex, send-receive Onty $£ 35.00$. Supplied comjlete with data. Carriage 8 Ins. $\varepsilon 9.50$

8" WINCHESTER price SLASH4

S100 Bus 19 Mb. Subsystem. A cancelled order and change of policy by a major Eritish disk drive manufacturer enabies us to offer you 'last year's model' at a plug in and ready to go SUPER LOW PRICE. Our own custom controller pugs direct into the S100 bus and will control 2 disk drives, offering a total storage of OVER 36 P Abs ! and at data transfer rates in excess of $7 \mathrm{Mb} / \mathrm{sec}$ seeing is believing!! Supplied complete with user confugrabe e Bios etz save a tortune. Limitec quantity onis 310019 Mb . Disk drive E 499.00 PSU unit E165.00 CD1100 controlier \& BIOS $\mathbf{E 3 4 5 . 0 0}$ PSU extension cabler Efi.95 Full tech Manual $\quad \mathbf{E 2 0 . 0 0}$
Special SUBSYSTEM prices. 1×3100 disk + PSU + Controller $\quad \mathbf{7 9 9 . 0 0}$ $\begin{array}{ll}\text { or } 2 \times 3100 \text { disks }+2 \text { PEU }+ \text { Controller } & \text { E1295.00 }\end{array}$

For more information or details of other types of ex. stock modems contact sales office.

RECHARGEABLE NICADS

SAFT VR2C

cells in ex equipment pack Good condition-easily split 10 singl
E.50 $+£ 1.90$ post and packing.

VIDEO MONITORS

12 " CASED. Made by the British KGM C Designed for continuous use as a data display station, unit is totally housed in an attractive brushed aluminium case with ONcontrols mounted to one side Much controls mounted to one side. Much attentiability of this unit with features such internal transformer isolated regulated DC supply, all components mounted on two fibre glass PCB boards - which hinge out f ease of service, many internal controls for
linearity etc. The monitor accepts standard linearity etc. The monitor accepts standard 75 ohm composite video signal via SO239 socket on rear panel. Bandwidth of the un is estimated around 20 Mhz and will display
inost high def graphics and 132×24 lines Units are secondhand and may have screen burns. However where burns exist they are only apparent when monitor is switched of Although unguaranteed all monitors are ested prior to despatch Dimensions approx 14 " high $\times 14^{\prime \prime}$ wide by 11 "deep. operation. OWIY E\$S.00 PLUSE9.50 CARR. $24^{\prime \prime}$ CASED. Again made by the KGM with a similar spec as the $12 "$ monitor display. Very compact unit in lightweight alloy case dim. $19^{\prime \prime} \mathrm{H} \times 17^{\prime \prime} \mathrm{D} \times 22^{\prime \prime} \mathrm{W}$. Al input make an ideal unit for schoois, clubs hops etc Supplied in a used but working
 14" COLOUR superb chassis monitor made by a subsidiary of the HITACHICO. Inputs plug direct into the BBC micro etc definition. Brand new and guaranteed Complete with full data $\&$ circuit 240 v

SEMICONDUCTOR 'GRAB BAGS'
 Mixed Semis amazing value contents

 include transistors, digitat, linear. I.C.'s triacs, diodes, bridge recs., etc. etc. All devicequaranteed brand new full spec. with quaranteed brand new full spec with facturer's markings. fu
$50+E \mathbf{2} .95100+E S .15$.
TL 74 Series A gigantic purchase of an
"across the board" range of 74 TLL series C.'s enables us to offer $100+$ mixed ". mostly TL" grab bags at a price which or three chips in the bag would nnormally cost to buy. Fully guaranteed all I.C. s f fill
spec. $100+£ 6.90200+£ 12.30300+£ 19.5$

CALLING DEC USERS

Brand new and boxed

et your bookshelf! Under half price only E 120.00 carr. $\mathbf{E} 6.500$ vat on manuals. DEC MSV11-DD $32 \mathrm{k} \times 16$ bit RAM $£ 195.00$ We are always keen to buy all typ

ALL PRICES PLUS VAT

DBFLAY

WW - 066 FOR FURTHER DETAILS

ACT AT ONCE—DELAY IS FATAL!

To Electrical-Electronic Press General Sales Department
Room 108
Quadrant House
Sutton SM2 5AS
Surrey
England

[^10]Please send...... copy/copies as indicated
Pocket Card@ 70p each inc VAT Paper Chart @ £1.00 each post free Card Chart @ £2.00 each post free Plastic Chart @ £3.00 each post free
Discounts: $100+$ copies 10%
$500+$ copies 15%
(Overseas surface and air mail rates supplied on application.)

Appointments

Advertsiements accepted up to 12 noon Tuesday, September 6th, for October issue, subject to space available.

DISPLAYED APPOINTMENTS VACANT: $£ 17$ per single col. centimetre (min .3 cm). LINE advertisements (run on): $£ 3.50$ per line, minimum £25 (prepayable).
BOX NUMBERS: $£ 5$ extra. (Replies should be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS). PHONE: IAN FAUX, 01-661 3033 (DIRECT LINE)
Cheques and Postal Orders payable to BUSINESS PRESS INTERNATIONAL LTD. and crossed. Weapons; Radar; Sonar; Data-Comms; Signal Processing; Medical; Telemetry; Simulation; Satcom; Local Area Nets; ATE?
\star Experienced in: Microprocessor Hardware or Software; Digital and Analogue circuitry; RF and Microwave techniques?
\star There are opportunities in: Design; Test; Sales and Service for Engineers and Managers.
\star Act now: Just dial 100 and ask for FREEPHONE JOBLINE or send your c.v. to:

LINK
 SOFTWARE DEVELOPMENT ENGINEER

A programmer is required to join our development team involved with software development of our automated broadcast television products (including processor-controlled broadcast studio colour television cameras). You should be experienced in writing assembly language programs for process control/automation applications using the NSC800 (a CMOS Z80) series of processors or similar. Experience in the use of higher level languages would also be an advantage.

TELEVISION SYSTEMS SALES ASSISTANT

An assistant with a sales engineering background who has the ability to progress into the area of writing and costing proposals and quotations for the design and construction of broadcast television systems (studios and outside broadcast vehicles) is required to join our sales team. You should have a knowledge of television broadcast engineering, a technical writing ability and a financial awareness.
Competitive salaries are offered together with free permanent health insurance, contributory pension scheme and generous relocation assistance where necessary.
Please telephone our Personnel Department on Andover (0264) 61345 for an application form or alternatively, write to us giving us full details of your background and experience.

LINK

ELECTRONICS

Walworth Industrial Estate, Andover, Hampshire, England Telephone: Andover (0264) 61345
 junior vacancies from our comprehensive file of applicants who have registered with this Company. We now wish to extend our file to meet future demands and are seeking application for registration mainly from those whose qualifications and experience fall into the following categories: Management staff with engineering qualifications and experience in Television and Radio broadcasting or related technologies.
Transmitter installation or operations and maintenance engineers and technicians for Broadcasting and Telecommunications services.
Television Studio and Outside Broadcast engineers and technicians.
Graduates with Electronics degree but without material practical experience.
Vacancies occur both for UK based and overseas posts.
If you believe your skills or qualifications meet the above broad requirements please contact:

PERSONNEL \& ELECTRONICS LTD.

Triumph House, 1096 Uxbridge Road Hayes, Middlesex
UB4 80H, England, UK
Telephone: 01-573 8333. Telex: 934271

ELECTRONICS APPOINTMENTS $£ 6,000-£ 16,000$
 ANALOGUE, RADIO, MICROWAVE DIGITAL, MICROPROCESSOR, COMPUTER DATA COMMS, MEDICAL
 Design, Test, Sales and Field Service Engineers -
 to use our free, confidential service and improve your sal ary and career prospects. UK and overseas, contact

(1) Technomark

1 Westbourne Grove, London W2. Tel: 01-2299239

Laser-Scmen

LASER-SCAN LABORATORIES LIMITED

We are a leading manufacturer of precision computer controlled laser-deflection systems, located on the Science Park.
displays, of products includ
Due to Company expansion we invite applications for

IN-HOUSE COMMISSIONING ENGINEER

Required to test and align the Company's precision laser plotters and digitisers. A working knowledge of TTL is required, and experience with microprocessors and/or laser optical systems would be an advantage. A minimum qualification of HNC in Electrical and Electronic Engineering or equivalent is required, coupled with at least two years' industrial experience of both digital and analogue circuitry

To the successful applicant we can offer pleasant working conditions, competitive salary and a non-contributory sickness scheme.

Please apply to
The Personnel Officer
Laser-Scan Laboratories Limited
Cambridge Science Park
Milton Road
Cambridge CB4 4BH
Telephone: (0223) 69872
(2223)

NNER LONDON EDUCATION AUTHORITY
Learning Resources Branch
Television Centre
Thackeray Road
Battersea SW8 3TB

ENGINEER - ELECTRONIC MAINTENANCE

Salary range: (ST2) $£ 7,035$ to $\mathbf{£ 7 , 9 7 4}$ plus $£ 1,284$ London Weighting Allowance.
The ILEA's Television Centre produces a wide range of educational programmes on video and audio cassettes.
The Maintenance section numbers four persons and a vacancy has arisen for an engineer with a sound knowledge of the principles of colour television, and preferably a working experience of maintaining broadcast type TV equipment. Applicants must wish to specialise on the video side (cameras, vision mixers, telecine, etc.), and will receive appropriate training.
An engineering degree, TEC or other equivalent qualifications are desirable.

Application forms from the Education Officer (EO/Estab. 1B), Room 365, The County Hall, London SE1 7PB. Please enclose a stamped and addressed foolscap envelope. Completed forms to be returned by May 4, 1983.

ILEA is an equal opportunities employer.

LOGEX
 ELECTRONICS RECRUITMENT

cialists

 ments all locations and disciplines.Logex House, Burleigh, Stroud Gloucestershire GL5 2PW 0453883264 \& 01-290 0267 (24 hours)

TOWNLEY EAPORIUN
Bargains for callers or send for catalogue ELECTRICAL, ELECTRONIC \& MECHANICAL COMPOMENTS

Vast range of surplus test equipment

 Diodes: Thyristors; Resistors Terminals; Switc Cs; ToolsHarohill Street off Burnley Road Todmorden, Llancs OL145JY

COLOUR TELEVISION

If you have experience in television or test equipment engineering there could be an interesting and rewarding future for you at Rediffu there could be an interesting and rewarding future for you at Rediffu-
sion Consumer Manufacturing Lid. We are currently producing an advanced range of colour television receivers at our factories in County Durham and Cleveland and wish to make the following appointments:

PROJECT LEADER - Production Support

A senior engineer with a sound understanding of television systems and receiver circuits is required to lead a team of eng neers and technicians responsible for ensuring that engineering standards are maintained during mass production of television receivers
Responsibilities include investigation of any technical problems encountered in production, component fault assessment and origination of test/quality specifications. Close liaison is required with the design team to ensure that the product conforms to design specification.

PROJECT LEADER - Test Equipment

Effective testing of television receivers plays an important role in ensuring that our very high quality standards are maintained, and we now wish to appoint an experienced engineer of proven ability, to control a team of engineers and technicians responsible for all aspects of production test equipment
Responsibilities will include the calibration and maintenance of a sophisticated range of test and signal origination equipment, em ploying both digital and analogue techniques. Although some test gear is designed and constructed locally, close liaison will be required with the design team, based at Chessington, Surrey, both to keep abreast of new development and influence the design of new equipment in the light of production experience.

Both positions are based at our factory in Bishop Auckland, County Durham, which is within easy reach of attractive countryside and has excellent road, rail and air connections. A wide range of good quality housing is available and assistance with relocation expenses will be made available where appropriate

Attractive salaries will be offered, together with the benefits of a good pension scheme, free life assurance and 22 days' holiday with a choice of leave period.

If you are interested in either of these positions and would like more details, please write to or telephone:

Mr. D. Abbott

Engineering Product Manager
Rediffusion Consumer Manufacturing Ltd.
Fullers Way South
Chessingtor
Surrey KT9 1HJ
Telephone: 01-397 5411
REDIFFUSION

Leeds Western Health Authority THE GENERAL INFIRMARY AT LEEDS

Senior Electronics Technician (Grade III or IV)

Applications are invited from persons experienced in electronic maintenance, preferably with imaging and counting equipment, to work in our well-equipped Nuclear Medicine Department. Knowledge of computer systems particularly 8080A microprocessors would be an additional (or alternative) recommendation. The work is interesting, responsible and includes design and development of specialised electronic units. A less experienced person may be considered on the MPT IV Grade.

Minimum qualifications are H.N.C. in electronics or equivalent and N.H.S experience is desirable

Salary Scale: MPT III - $£ 6,132$ to $£ 7,926$ per annum MPT IV - £5,171 to £6,798 per annum

Application forms and job descriptions are obtainable from The Personnel Officer, Leeds General Infirmary, Great George Street, Leeds LS1 3EX. Telephone (0532) 432799, ext. 3355.

Closing date: August 31, 1983

Appointments

Televisiongineer's BBCTe en

"Our
Television Recording requires Electronics Engineers to train in Broadcast Engineering, to support an expanding Video Tape and Telecine Operation, which includes complex digital and analogue equipment

Applicants need not initially possess an in-depth knowledge of Television Engineering, as full training will be given, but previous academic training must be supported by enthusiasm for practical engineering

After training, applicants will progress to work involving all aspects of Television Recording, A of equipment, design of modifications, and technical investigations.

These challenging posts offer excellent promotional prospects for the self-motivated and committed engineer capable

Please quote ref: 83.E.
we are anequal opportunities emplover

televisionrecording

Appointments

Test \& Calibration Engineers

 aving introduced an extended new product range, many of which are microprocessor based. Marconi Instruments has once again confirmed itself as Europe's leading manufacturer of sophisticated test and measurement systems. Our products are selling throughout the world and we are naturally developing further new and innovative designs.

Akey role in our organisation is that of our Luton based Service Division, where a group of Technicians satisfy a very wide range of customer needs in the repair and calibration of test equipment.

When you join our team you will quickly become individually responsible for work assignments involving many different kinds of propriety products.

prospects are excellent. The Division is part of a large company with its main Instrument Design/Manufacturing Base at St. Albans, a Microwave Plant at Stevenage and a further substantial Design Manufacturing Group at Donibristle in Scotland. The Company is proud of its policy of promoting men and women from within. as future Salesmen. Managers and Engineers.
 alaries, which are dependent upon experience and ability are excellent and regular overtime is normally available. Progress for competent engineers and technicians can be rapid. Relocation assistance is available in approved cases. Special consideration is given to 'ex-forces' personnel.

whatever your level of experience we would like to hear from you. Cut out the coupon and send it to John Prodger, Recruitment Manager. Marconi Instruments Limited. FREEFOST, St. Albans AL4 0BR. Tel: (0727) 59292.

Name
Age
Address

Tel. No.
Years Experience Present Salary:

$$
\begin{array}{llll}
£ 6.000 & £ 7.000 & £ 8.000 & \text { Over } \\
\square & & \square & \square \\
& \mathfrak{£ 8 . 0 0 0} & \mathfrak{£ 9 . 0 0 0} & £ 9.000
\end{array}
$$

Qualifications

ADVANCED TELECOMMUNICATIONS:

careers with extensive scope at Cheltenham

Join the Government Communications Headquarters, one of the world's foremost centres for R \& D and production in voice/data communications ranging from HF to satellite - and their security. Some of GCHQ's facilities are unique and there is substantial emphas is on creative solutions for solving complex communications problems using state-of-the-art techniques including computer/microprocessor applications. Current opportunities are for:

Telecommunication Technical Officers

Two levels of entry providing two salary scales: £5980-£8180 and £8065-£9085
Minimum qualifications are TEC/SCOTEC in Electronics/Telecommunications or a similar discipline or C \& G Part II Telecommunications Technicians Certificate or Part I plus Maths B Telecommunications Principles B and either Radio Line Transmission B or Computers B or equivalent: ONC in Electrical Electronics or Telecommunications Engineering or a CIE Part Pass or formal approved Service technical training Add Pass, or tormal approved Service technical training. Add tionally, at (higher level) appropriate experience is essential in eithe radio communications or radar, data, computer or similar electronic systems. At the lower entry level first line technical supervisory control of technicians involves "hands-on" participation and may involve individual work of a highly technical nature. The higher level involves application of technical knowledge and experience to work planning including implementation of medium to large scale projects.

Radio Technicians

£5232-£7450

To provide all aspects of technical support. Promotion prospects are good and linked with active encouragement to acquire further skills and experience. Minimum qualifications are a TEC Certificate in Telecommunications or equivalent plus two or more years' practical experience.
Cheltenham, a handsome Regency town, is finely-endowed with cultural, sports and other facilities which are equally available in nearby Gloucester. Close to some of Britain's most magnificent countryside, the area also offers reasonably-priced housing. Relocation assistance may be available.

For further information and your application form, please write to

Recruitment Office
GCHQ Oakley, Priors Road
Cheltenham, Gloucestershire GL52 5AJ
or phone 02.42 21491, Ext. 2269
(1998)
 THE UK's No. 1 ELECTRONICS AGENCY
If you have HNC/TEC or higher qualifications and are looking for a job in design, test, customer service, technical sales or similar fields:

> Telephone now for our free Jobs list We have vacancles in all areas of the UK Salaries to $£ 15,000$ pa

01-637 5551 or 01-636 9659

(24 hours)
Or if you prefer send a FULL CV to
CAPITAL APPOINTMENTS LTD
29-30 WINDMILL STREET, LONDON W1P 1HG

Appointments

GRADUATE STATUS ENGINEERS AND SCIENTISTS

COME TO HIGH-TECH COUNTRY

IN COMMUNICATIONS R\&D

Hanslope in Buckinghamshire is, we admit, an unlikely backdrop for high technology research and development

Yet a mere stone's throw away from this delightful rural village the men and women at HM Government Communications Centre are applying the very latest ideas in electronics to the development of sophisticated communications systems and installations, designed to meet special Government needs both at home and overseas.

For graduates and near graduates with real ability and a genuine passion for creative electronics design (the kind of enthusiasm that may already have prompted you to design and build your own communications equipment), this is a superb career environment.

Technically challenging projects cover a wide range of interests including radio (HF to microwave, advanced modulation, propagation studies and micro-circuitry applications); acoustics; magnetics; signal analysis; systems engineering

The majority of these projects are directed towards specific ends, and we have our own production facility. So, unlike many
other R \& D establishments, HMGCC offers you the satisfaction of seeing your work right through from conception to manufacture.

With such a broad spectrum of work and training facilities at your disposal, HMGCC is an ideal environment in which to develop the potential you've gained by studying an electronics-biased course. What's more, we think you'll find the working conditions and location very much to your liking.

Please write to us for further details on the work and the remunerations offered at the Centre. As our careful selection process takes some time, it would be particularly helpful if you could detail your qualifications, your personal fields of interest and practical experience, and describe the type of working environment most suited to your
career plans.
Dr. D. Orr, Recruitment Officer, HMGCC, Hanslope Park, Hanslope, Buckinghamshire MK19 7BH.

Her Majesty's Government Communications Centre HANSLOPE PARK

Appointments

Electronics Engineers
 Aviation Systems Planning

1AL you will find worldwide, wherever there is a need for Aviation. Meteorological. Communications or Medical Services.

The continuing expansion within our Aviation Division enables us to offer further opportunities to career minded electronics engineers. These engineers will be based at our headquarters, near Heathrow Airport, and will undertake the systems planning of ground electronics projects for new and existing commitments. Dealing with these projects will entail an element of overseas travel.

You should be gualified with a degree, HND or HNC and preferably be a corporate member of a recugnised professional institution. As well as systems planning your experience should cover
at least one of the following:

* Radio navigation aids - ILS. VOR, DME
* HF, VHF and UHF radio and line communications for civil and military aviation.
* Primary and/or secondary radar systems for airfield control, terminal and long range applications.
* Computerised data handling systems for radar display, automaric message switching and meteorological applications. Salary will be in the range of $\{8,500$ to £ 11,500 commensurate with experience. Apply to the Senior Recruitment Officer, IAL, Aeradio House, Hayes Ruad, Southall, Middlesex, UB2 5NJ. Tel. 01-574 5134. Please quote Ref. K120.

BORED ?

Then change your job!

1) Video/TV Equipment

Field Service Engineers required with experience of analogue/digital/computer based 2) Microprocessor-hased Control Systems
Commissioning/Servicing Engineers required To $£ 8,500$ - Sussex

3) Computer Peripherals

Service Engineers to repair complex PCBs for terminals, printers, disc drives, etc. C. $£ 8,000-$ Surrev
4) Video/CC TV/Audio Equipment

Installation/Service Engineers needed with ex perience of audio/video systems. C. $£ 9,000$ Surrev
5) Service Personnel
(RAF, RN, Anwy)
We have many clients interested in employing ex-service fitters and technicians at sites throughout the UK. Phone for detalls 6) f 500 per week

We are paying very high rates for contract design and test engineers who have a background in RF, MICROWAVE, DIGITAL, ANALOGUE or SOFTWARE, at sites throughout the UK Hundreds of other Electronic and Computer Vacancies to $£ 12,500$

Phone or write:
Roger Howard, C.Eng
CLIEDEN CONSULTANTS
87 St. Leonard's Roed, Windsor, Berks
Windsor (07535) 58022 (5 lines)

CLIVEDEN

Hammersmith and Fulham Health Authority
 CHARING CROSS HOSPITAL SENIOR CHIEF TECHNICIAN
 Salary scale: £9898-£11,395 p.a.

 inclusiveAn appointment exists in this modern teaching hospital, which carries responof the technical staff in the Medical Electronics Department.
The main duties are associated with medical equipment management which includes maintenance, electrical safety testing and evaluation of new equipment. Extensive use is made of a minicomputer for record keeping and work scheduling.
Applicants should have considerable experience of electronic equipment and preferably have experience of running an equipment maintenance section. The successful applicant will probably have
a degree, HNC or HND in Electronic Engineering and will be appointed on the Medical Physics Technician I scale. Application form and job description Application form and job description burgh House, 116 Fulhem Palace Roed, London W6. Tel: 01-748 2040, ext 2992. Closing date: 14 September, 1983.

BOX NOs.

Box number replies should be addressed to:
Box No.
c/o Wireless World
Quadrant House
The Quadrant
Sutton, Surrey, SM2 5AS

Over the past ten years we have become one of the country's foremost leaders in the field of audio pre and power amplifier modules. We now wish to extend the existing range together with launching new and unassociated products. In order to fulfil this expansion programme, ou Research and Development Department have the following vacancies:

AUDIO ENGINEER

The successful applicant must have previous experience in the Hi-Fi field and will be required to tackle all aspects of design, development and preproduction of new products (from conception through to launch).
Salary: Negotiable.

R.F. ENGINEER

We require an R.F. Engineer to be involved in a number of new and interesting projects. Suitable applicants are expected to be qualified to degree level and have some relevant experience in the design of lowpower R.F. transmission and receiver circuitry from VHF upwards Salary: Negotiable.
Apply in first instance with full c.v. to: Mrs. Johnson, Personnel Manageress, ILP Electronics Limited, Graham Bell House, Roper Close, Canterbury, Kent CT2 7EP.

Appointments

Test Engineers and Technicians -Wembloy, Middlesex

Racal-BCC are members of the highly successful Racal Electronics Group and are world leaders in the design and manufacture of tactical radio communications equipment. We require a number of test technicians and test engineers to fill a variety of grades within the Test Department on both the day and night shift. The department is responsible for the manual and automatic testing and
fault finding of the Company's equipments at various stages of manufacture

Applicants should be qualified to $\mathrm{HNC} / \mathrm{HTC}$ level and have experience of radio communications equipment We offer excellent conditions of service including good basic pay and all the benefits you would expect from an internationally successful company.

Please apply in writing to: Mr. A. Charman, The Personnel Officer, Racal-BCC, South Way, Wembley, Middlesex.

Racal-BCC

Word leaders in electronics

BACAD

(2217)

SALES MANAGER

A manager with proven sales experience in the broadcast field and/or sales management experience of professional capital products is required. An eng tions and customer's enquiries.
The manager is responsible for the efficient running of the sales department including control of staffing preparation and monitoring of department budgets monitoring of quotation and invoice procedures and direct involvement wish astomervisis, preparation of quotations, and checking of quotation output from the department.
and sales liter will also be involved with exhibitions manager. Applicants collaboration with the marketing licence.

SALES ENGINEERS

The Sales Department requires extra staff to cope with the increasing amount of work. The department is involved in defining customers' requirements, preparing quotations, order acknowledgements, invoices, securing sales and briefing projects engineers on new orders. Experienced staft handle all aspects of the work experience or sales experience who are able to experience or sales experience who are able to engineering qualification would be an advantage

WIREMEN

We require wiremen/women able to interpret circuit diagrams and wiring schedules and with a minimum of anstruction detail to build and wire control panels Good references are and quickly to a high standard work under contract need not apply.

PROJECTS ENGINEER

An additional engineer is required to join our projects team. The department deals with system design of talkback and intercom equipment, including software ustems, one-off system designs to customers' require ments, and modifications to customers' audio and ontrol equipment
The work involves liaison with customer engineers, detailed system design, one-off circuit design, preand suppore for manufacturing and test departments. Applicants should have a recognised electronic engiApplicants should have a recognised electronic engi system/project engineering of professional equipment. Previous experience of systems involving software control would be an advantage but not essential.

TEST ENGINEERS

We are loaking for suitably qualified test engineers with probably four to five years' experience in testing analogue (preferably audio) circuits, who will be involved in varied testing, from small batch produced modules to complete communication systems, and who are able and willing to adapt to digital technology as this is introduced to the Company.

PRODUCTION MANAGER

A person with a good background in production is equired to manage our wiring shop and to organise he production of metalwork, printed circuit boards and also be experk using subcontractors. The person wil also be expected to oversee the introduction of printed bly aids including flow soldering equipment.

TRACER/JUNIOR DRAUGHTSMAN

A tracer/junior draughtsman is required to assist en gineers with system designs. The work involves close liaison with engineers and production staff and production of metalwork, circuit and wiring drawings for both manufacturing and customer documentation. The idea applicant would be self-motivated and capable of adding finer details to the work passed on by the engineer. scope for advancement as experience is gained.

TEST DEPARTMENT MANAGER

A suitably qualified person with a successful record in testing both analogue and digital equipment is都ited to take on the full responsibility of running this work of a small team of test engineers, the successful applicant will be required to design test methods and jigs, maintain test records and investigate the introduction of ATE to the department.

AUDIO ENGINEERS

We have vacancies for experienced audio engineers - join our Development Department. Candidates should have a relevant degree and will probably have worked in a design environment. The person will be responsible for all aspects of development from initial concept to production, and will theretore become involved in a variety of tasks. An abinty to produce innovative but practical designs with minimum supervi sion is essential.

Appointments

Premier international electronics companies - very secure and expanding in London and the south of England - require professional senior staff (including departmental heads). Relocation allowance up to $£ 3,000$

ELECTRONIC ENGINEERS

Electronic engineers required with degree - H.N.C. - tech. cert. - O.N.C. Almost any background required but software and hardware experience will bring salary of absolute minimum of $\mathrm{f} 6,500$ p.a. and could be up to $\mathrm{f} 11,000$ p.a

ELECTRONIC DESIGN/DEVELOPMENT

Engineers required with experience of circuit or component design or development for microwave equipment or digital logic or computer peripherals of electronic packaging or film technology or telecommunications. Also above for updating in modern techniques. Salaries up to $\mathrm{f} 15,000$

SOFTWARE PROGRAMMERS \& ENGINEERS

Engineers or mathematicians required for development of commissioning and design proving programmes from assistant to team leader level. Salaries up to $£ 12,000$ p.a.

TELECOMMUNICATIONS/ SEMI-CONDUCTOR Advanced Engineering Applications to $£ 14 \mathbf{K}+$ Car + Profit Share \quad Home Counties

The progress of the electronic revolution is now heavily dependent on the interfacing of real world analog signals to digital processing. The complexities of current and future LSI circuitry demands highly sophisticated computer controlled AUTOMATIC TEST EQUIPMENT in all phases of design and manufacture.
Our Client, an established world leader in LSI Test Systems has created exciting career opportunities for 2 talented Engineers to contribute to their success in taking responsibility for the complete application support of an interesting and varied client base.
You will ideally

- Be currently employed in the Telecommunication or Semi-Conductor industries.
- Be performing a Design/Testing or Applications role.
- Be experienced with Digital Signal Processing, Digital/Analog LSI circuits and/or Testing techniques.
A high degree of customer contact providing consultancy advice on future applications and problem solving demands good presentation, communication and organizational abilities.
The benefits include 3 months product training in the U.K. and U.S.A.; a full relocation package where necessary; company car with petrol expenses; company profit share and share purchase plan; 23 days holiday; family BUPA and Life Assurance.

For an initial confidential discussion please telephone Bob Rae or write to him in strict confidence to: -

ARCHIBOLD RAE CONSULTANTS LIMITED. (High Technology Search and Selection)
 7, London Road, Newbury, Berkshire. Tel: Newbury (0635) 33445.

BRIGHTON POLYTECHNIC Learning Resources VIDEO RECORDING STUDIO ENGINEER £9,060-£10,539

Urgently required to join an experienced and enthusiastic team making educational training and distance learning video and audio programmes. The standard is high (mastering on 1' C-Format) and the variety wide (studio, mobile and V,T. editing).
Further details and application forms from the Deputy Head of Personnel, Brighton Polytechnic, Moulscoomb, Brighton BN2 4AT. Tel: Brighton 693655 Ext. 2536. Closing date, 16 th September.

UNIVERSITY COLLEGE CARDIFF Department of Physiology
 ASSISTANT EXPERIMENTAL OFFICER/EXPERIMENTAL OFFICER

The department, which has an active neurosci ence-based research programme, requires a per son with design experience to work in collaboration with the academic stsif in the development
and maintenance of equipment for research laboratories. Degree in electronics an advantage. This post offers a challenging opportunity for those interested in developing the lates electr
ment.
Salary range: OR IB $£ 6,310-£ 9,875 / £ 10,250-$ possible.
Applications (two copies), togather with the names and addresses of two reforees, should be forwarded to the Vice-Principal (Administration),
and Registrar, University Colloge, P.O. Box 78, and Registrar, University Colloge, P.O. Box 78,
Cardift CFI IXL, from whom further particulars may be obtained. Closing date 14th September, 1983. Ref: 2660.
(2232)

BUSINESS OPPORTUNITIES

FOR SALE

Complete
Tube Rebuilding Plant including automated ovens

Training available
All enquiries Box No. 2237

FIELD SERVICE ENGINEER

LKB Instruments Limited, the UK subsidiary of a major international scientific instrument company, require an additional Field Service Engineer for their Customer Service Department.

Applicants should have a sound knowledge of digital and analogue electronics, preferably with some field experience in the scientific industry.

The work entails the repair and maintenance of instruments situated mainly in Hospitals and University Laboratories. Preference will be given to applicants living between Glasgow and Edinburgh.

Conditions of employment are excellent and in addition to a good basic salary and company car, the company have a profit sharing scheme, BUPA participation and four weeks' annual holiday.

Contact Mrs D. Duff for application forms

LKB INSTRUMENTS LIMITED 232 Addington Road Selsdon, South Croydon Surrey CR2 8YD

Tel: 01-651 5313

The Royal Marsden Hospital Fulham Road, London, S.W. 3

Medical Physics Technician IV

required to work in the Physics and Radiotherapy departme its. The successful applicant will form part of a team maintaining and servicing an interesting variety of radiotherapy equipment. The deprtment has three Cobalt treatment machines, 150 kV and 300 kV X-ray units, a Philips 10 MV linear accelerator and a simulatcr X-ray units, a Philips Current developments include the installation of a Philips $5 \mathrm{P} / \mathrm{VV}$ Current developments include the installation anit.

Applicants should possess two A levels or equivalent in appropriate scientific subjects and have three years' relevant technical experience.
Salary on scale $£ 6,168$ to $£ 7,795$ p.a
Application forms and job descriptions available from the
Personnel Department (Tel. No. 01-352 8171, extension 446,447),

LINEAR ACCELERATORS FIELD SERVICE ENGINEER

T.E.M. Instruments Ltd. require an electronics engineer with some mechanical knowledge and experience in installing and servicing clinical linear accelerators.
The Engineer will also be expected to work on T.E.M. simulators and cobolt units. Training will be provided
The company offers a good basic salary, paid overtime, a company car, expenses and pension scheme.

Applications and C.V. in writing to the service manager
T.E.M. INSTRUMENTS LTD.

Gatwick Road, Crawley
West Sussex RH10 2RG

Video Engineer Dorking

We have an immediate vacancy for a video engineer to work under the supervision of the Television Technical Supervisor at our Video Unit in Dorking. Applicants should have experience in the operation and maintenance of a wide range of colour television equipment, including broadcast cameras and recorders, and qualifications should include ONC or equivalent. A clean driving licence is essential.

Commencing remuneration will be in the region of $£ 8,400$, together with a noncontributory pension scheme, and the usual fringe benefits associated with a major clearing Bank. The successful candidate will be an important member of a small team working in a progressive and stimulating environment.

Please apply in writing, giving details of age, education, technical qualifications and practical experience, to:-
J. M. White, Esq.

Manager, Group Video,
Midland Bank plc.,
Vidcom House,
138 South Street,
Dorking, Surrey
RH4 2EU.
Midland Bank

HUNTINGDON HEALTH AUTHORITY

The new Hinchingbrooke Hospital, situated in Huntingdon is currently being commissioned and will open for inpatients during the Autumn. The new Bio-Medical Equipment Support Unit requires the following staff:

Technician-in-Charge (MPT I)

To be responsible for the day-to-day control of this unit, which provides the full range of Technical Service Support for Anaesthetics, Electro-Medical and associated equipment.

Medical Physics Technician (MPT II)

For service support for Anaesthetics, Oxygen Therapy and providing first line instruments - mechanical support for a wide range of equipment.
Salary Scales: MPT I - £8,901-£10,398 per annum. MPT II -£7,386-£9,212 per annum.
Application forms and job descriptions from District
Personnel Officer, District Headquarters, Primrose Lane
Hospital, Primrose Lane, Huntingdon, Cambs PE18 6SE. Tel. 048050571 ext. 32.
Closing date for applications 5 September 1983

ARTICLES FOR SALE

BRIDGES, waveform/transistor anslysers. Cali brators, Standards. Millivoltmeters. Dynamome rers. KW merers. Oscilloscopes. Recorders. Signal generators - sweep, low distortion, true RMS, audio, FM, deviation. Tel. 040376236 WAVEGUIDE, Flanges and Dishes. All standard sizes and alloys (new material only) from stock. Special sizes to order. Call Earth Stations, $01-228$ 7876, 22 Howie Street, London SW11 4AR.
LAMPS AND CABLE. Large amount of lamps and cable for sale - all types and sizes, domestic and industrial. Telephone MIRAGE LIGHTING on HITCHIN (0462) 733388 between 10am-7pm.

Analogue integrated circuit design on a single chip. Phone Four-D Limited on 0279-29246.

MARINE FIELD/BRANCH/SERVICE/ INSTALLATION ELECTRONIC ENGINEER required. Must be familiar with communication, telex, radar, autopilot, gyro, SAT-NAV equipment, etc. and have practical experience. Should be based in or near London. Apply in
writing to Ms B. A. Barnard, Telesonic Marine writing $60 / 62$ Brunswick Centre, Marchmont Street, London WC1.
\qquad

ENCAPSULATING EQUIPMENT FOR coils, transformers, components, degassing silicone rubber, resin, epory. Lost wax casting for brass, bronze, silver, etc. Impregnating coils, transfor mers, components. Vacuum equipment, low cost, used and new. Also for CRT regunning metallis | ing. Research \& Development. Barratts, Mayo |
| :--- |
| Road, Croydon CR0 2QP.01-684 $9917 . \quad$ (9678) |

Clossified

TO MANUFACTURERS, WHOLESALERS BULK BUYERS. ETC.
 LARGE QUANTITIES OF RADIO. TV AND ELECTRONIC COMPONENTS FOR DISPOSAL
 SEMICONDUCTORS, all types, INTEGRATED CIRCUITS, TRANSISTORS CIODES, RECTIFIERS, THYRISTORS, etc. RESISTORS, C/F, M/F, W/W, etc CAPACITORS, SILVER MICA, POLYSTYRENE, C280, C296, DISC CERA MICS, PLATE CERAMICS, etc.
 ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE CABLES, SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFOR
 ALL AT KNOCKOUT PRICES - Come and pay us a visit ALADDIN'S CAVE
 TELEPHONE: 445 0749/445 2713
 BROADFIELDS \& MAYCO DISPOSALS
 21 Lodge Lane, North Finchley, London, N. 12

Standard 4 -inch 30 mounting inverted 4 double sized print; single 9 V AC or 5 V DC power supply; stan dard centronics interface or serial
data; extends only 40 mm behind panel.

For further details contact
Benwick Electronics
9 Doddington Road, Benwick
nr March, Cambs, PE15 OUX
INVERTERS
High-quality DC-AC; also "'no break" (2ms) static switch, 19in. rack. Auto Charger.

COMPUTEA POWER SYSTEMS
Interport Mains-Store Lid.
P08 51, London, W11 3B2
Tel: 01-727 7042 or 0225310916

AVO Model 8 Test Meters.

 Brand new with leather carrying case. Ex-Government issue, needing slight electrical and mechanical adjust ments. $£ 45$ each Burgess Lane \& Co. Ltd., Thornton W4 10E 01.9945752 Avenue, London(2194)

G3BXI 50ft MAST
Telescopic, tiltover, ground post, assembly manual, £250 Ready for collection
Eric Dowdeswell, G4AR Ashtead, Surrey
Tel: 72515 or 01-661 3604 (2238)

EDWARDS HI-VAC ROTARY PUMP \& DIFFUSION PUMP £138
idler/stabiliser motor $£ 150$. Portable Ar welder, blower cooled, special for thi sections $£ 35$. 25 Micron filter/separato £10. Centrifuge $£ 49$. Rotary burette $£ 20$ Pye 200,000 Megihhmeter £45. Zenity phase-shift transformer £49. Sullivan Decade Mica Capacitor total $1 \mu F £ 45$
Sullivan Mirror Galvanometer $£ 35$. tertechnique 4 -channel digital recorder £75. Weston Electrodynamometer $£ 25$ Peekel micro-strain gauge apparatus £59. Spembly Thermocouple Thermo meter Cr/Al, Fe/Con, Cu/Con, mV, etc.
£35. Industrial Microscope £98. Tacussel $£ 35$. Industrial Microscope $£ 98$. Tacussel
PRT $20-2$ £ 75 . Crompton Parkinson KW Meter f 39 etc.

040376236
(2016)

LINSLEY HOOD DESIGNS

Audio Signal Generators
5Watt amp p.c.b.
$p \& \rho 50 \rho$
S.A.E. for leaflets

TELERADIO ELECTRONICS
325 Fore Street, London N9 OPE
EX WD Radio equipment and test equipment. Over 500 sets in stock from $£ 8$. Send 50 p for illustrated catalogue (including El voucher). Herts. Tel: Watford (0923) 49456 . Herts. FORTY.FIVE HEWLETT PACKARD $5080-$ 97478 k by 16 bit Memory Boards for sale. Each suard contains 34 tms 4030 ram ICs plus many support components. Untested. IS each, or offer
for the lot. Contact J. Mathews. Tel: Wrindsor
69595 69595 . Contact J. Mathews. Tel: Windsor

RACAL COMMUNICATON RECENERS $500 \mathrm{kc} / \mathrm{s}$ to $30 \mathrm{mc} / \mathrm{sin} 30 \mathrm{bands} 1 \mathrm{mc} / \mathrm{s}$ wide, RA17 MK11
f000, RA17L $£ 150$, RAA117E $£ 225$. New metal louvred cases or above $£ 25$ each. All receivers are air tested and
albrated in our workhop Supplied with manual calbs cover, in fair used condition. RACAL SYNYIMESIS.
duch
ERS

 $1 \mathrm{mc} / \mathrm{s} 100 \mathrm{khz}$ E 100 to EREDOUEDCY STAMNARD SMOC/S
 state, 10 fixed charnels, range 15 te TYPE Ress Solid
 DID TELEPRINTER CONVERTOR SOID Slate, tested with
circuir $£ 25$. CREED TYPE 75 TELEPRINTER 50 and 75 bauds for use with above converlop $£ 25$
OSClUOSCOES
CoSsOh COU150 35mc/s, twin beam, solid state f195 nternal battery pack, $15 \mathrm{mc} / \mathrm{s}$, dual strace DUAL BEAM Doscilloscope, Gmc/s $£ 75$. TEKTRONIX GATA CDN1 TPGSs SIGNAL GEMERATORS fith manual. MAR$5 \mathrm{mc} / \mathrm{s} 10220 \mathrm{mc} / \mathrm{s}$ AM-FM. AZM $£ 100$, A] $£ 100$, A5 $£ 150$ $5 £ 250$ with manuals. TF2005R Two tone signal source
Udio $£ 150$. TFZ2006 DIFFERENTIAL OC VOIT WETEA 0 IO 1100 volts floo. TF2002 AM SIGNAL GENERATOR 10k
 NIZER For above $£ 350$. TF $10668 / 6 \mathrm{FM}$-AM SIGMAI GENCHATOR $10 \mathrm{~cm} / \mathrm{s}$ to $470 \mathrm{mc} / \mathrm{s}$ E 5000 TF1245 CIRCUIT MAGN.
FCATION METER and TF1246 Oscillator
 GENERATOA $60910-420 \mathrm{mc} / \mathrm{s}$ - f70 MARCONI AF WATI METEA CTLA NO1 Absorption, 200 microwatts 106 warts. in rangus switched, 2.50 hms to 20 K ohms fas Trasa
AF WATI MEEER I miltiwatt to 10 wotts 250 hms to 20 K ohms in 48 steps E65. THYRISTOR TEST SET, CTOS5 Voltages up io 2KY f100. TEKTRONIX 4002 GRAPHIC 4001 Hard copy unit for use with aboye "450 Both unit tor E1550. RACAM DIGITAL COUHTERS. TYPE E01M
$125 \mathrm{mc} / \mathrm{s}$ E50. RACAL 185 COUNTER $35 \mathrm{mc} / \mathrm{s}$ f50
VAT ANO CARPIAGE ON ABOVE ITEMS EXTAA
All items are bought difect from H M G Government, being

JOHN'S RADIO WHITEHAL WOAKS \& WHITRAL
ROAD EAST, GIRKENSHAW, BRADFORO BDIT 25 A
TEL: (0274) 684007
(848)

PRE-COATED BOARDS

Antic protection
Any quantity
Single-sided board 5 p per sq. in
Double-sided board 8 p per sq. in
Double-sided board 8 p per sq. in
MAYIrcuits also manufactured
MAYLAND PCB, Maylandsea
Chelmsford, Essex CM3 6 AB
Telephone: (0621) 741560
(2231)

\section*{OPERATIONAL AMPLIFIER EXPERIMENTAL MANUAL

by B Clayton

by B Clayton

DIGITAL ELECTRONIC
CIRCUITS \& SYSTEMS
by N.M. Morris
CIRCUITS
by B. Klein
£15.00
OSCILLOSCOPE AND ITS USE
OSCILLOSCOPE AND ITS US
by G. N. Patchett
VIDEOTAPE RECORDING
by J. F. Robinson
DOMESTIC VIDEO CASSETTE RECORDERS
A SERVICING GUIDE
by S. Beaching
£15.00
MICRO COOKBOOK VOL 1
FUNDAMENTALS
AN INTRODUCTION TO
£13.50
MICROCOMPUTERS
VOL 1: BASIC CONCEPTS
by A. Osborne
WORLD RADIO TV
HANDBOOK
1983 THE RADIO
AMATEUR'S H/B
by A.R.R.L
ع10.50

ALL PRICES INCLUDE POSTA

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST

19-21 PRAED STREET LONDON W2 1NP

Phone 01-4029176
Closed Saturday 1 p.m.
Please allow 14 days for reply or delivery

VALLES, PROJECTOR Lamps, 6000 types, list SMALL BATCH PCB panel assembly to 7he world wide export. Cox Radio (Sussex) Lid., drawing or sample. Competitive rates, quiclk
The Parade, East Wittering, Sussex. Phone (024
turnaround. Delta Engineering, 85 Sewell High-

SERVICES

CIRCOLEC

THE COMPLETE ELECTRONIC SERVICE

Artwork, Circuit Design, PCB Assembly, Test \& Repair Service, O.A. Consultancy, Prototypes, Final Assembly. Full PCB Flow Soldering Service.
Quality workmanship by professionals at economic prices
Please telephone 01.6465686 for advice or further details.
TAMWORTH MANOR
302-310 COMMONSIDE EAST, MITCHAM

FOR THE BEST PCB SERVICE AVAILABLE

* Circuit Dosign E Dovetopmont
pin analogu
W Artwork Layout
Work of the highost standard by
draughtsmen. No minimum charge.
\star Board Manuffacture
Prototype to semi-production, excellent rates,
24-hour prototype service from filmwark

* Tast

Full test facilities available.

Please telephone Chelms.
ord (0245) 357935, or write
to HCRA Electronics, The in

15
45

Chelmstord.

PCB/ELECTRONIC ASSEMBLY

to sample or drawing. Short or contin uous runs. Any quantity. 100\% inspected. Special rates for small companies or large quantities. Fast turnaround and local deliveries if required.
AUTRONICS, 23 Regency Gardens Yardley Wood, Birmingham B14 4JS 021-4744638

பillianாร
 P.C.B. Artworks FAST TURNROUND

effective specialist layo
WILIAMS ARTWORK
GRAYS LANE MORETON-IN-MARSH, GLOS
Telaphone 3386840121 - 109 p.m.

TURN YOUR SURPLUS Capacitors, tran-
sistors, etc, into cash. Contact COLES-HAR sistors, etc, into cash. Contact COLES-HAR
DING \& Co., 103 South Brink, wisber 0945-4188. Immediate settlement. We also wel come the opportunity to quote for complete fac-
tory clearance.

SMALL BATCH PCBs, produced from your art work. also DIALS, PANELS, LABELS. Camera work undertaken. FAST TURNAROUND. Details: Winston Promotions, 9 Hatton Place, London
ECIN 8RU. Tel. 01-405 4127/0960.
(9797)

BATCH PRODUCTION PCB Assembly and Wiring to drawings or samples production runs or prototype. C.M.J. Electronics, Unit 8, 16 Union
Mill Street, Horseley Fields, Wolverhampton WV1 3DN. Tel. (0902) 871563 . Wolverhampton
PCBS \& PANEL LABELS to your requirements. Design - Prototypes - Production. G.
N . Slee Custom Products, 78 Derry Grove, Thurnscoe, Rotherham, Yorks SG3 0TP. Telephone

EPROM PROGRAMMING From list and/or existing EPROM for most 5 v , N.MOS types. Charge $£ 2.50+12$ pence per 32 words manually entered. Erasing and EPROMS also available. Bandley Chipware 28 Boroughgate Applaby Cumbria CA16 6AG Tel: 093051027	MENDASCOPE LTD Repair and recalibrate oscilloscopes All makes - all models MENDASCOPE LTD Otter House, Weston Underwood Olney MK46 5JS Tel: Bedford (0234) 712445 (2230)
DESIGN SERVICES. Electronic design development and production service available for digital and analogue instruments. RF Transmit ters and receivers, telemetery and conirol systems. 20 years' experience. R.C.S. Electronics, Wolsey Road, Ashford, Middlesex. Phone Mr Falkner 53661 .	UESIGN AND DEVELOPMENT. ANAL OGUE, DIGITAL, RF AND MICROWAVE CIRCUIT AND SÝSTEM DESIGN. Also PCB design, mechanical design and prototype/smali batch production. - Adenmore Limited, 27 Longshot Estate, Bracknell, Berks. Tel: Bracknell (0344) 52023.
ARTICLES WANTED	
WANTED Redundant test equipment receiving and transmitting equipment - valves, plugs and sockets - synch. ros etc. Phone: Johns Radio 0274684007 84 Whitehall Road East Birkenshaw Bradford BD11 2ER (2049) SURPLUS Top prices paid for surplus, redundant and obsolete test equipment, factories cleared. Also quantities of components. Immediate settlement. We will call anywhere in the United Kingdom. TIMEBASE 94 Alfiston Gardons	WANTED Test equipment, receivers, valves, transmitters, components, cable and electronic scrap, and quantity. Prompt service and cash. Member of A.R.R.A. M \& B RADIO 86 Bishopsgate Street Leeds LS 1 4BB 053235649

TW ELECTRONICS LTD

THE PCB ASSEMBLERS

More and more companies are investigating the advantages of using a profes gating the advantages of using a profesing requires certain assurances.
TW are able to satisfy all of them quality, competitive pricing, firm delivey and close co-operation with the cus tomer.
Assembled boards at 100% inspected before flow soldering and reinspected after automatic cropping and cleaning.
Every batch of completed boards is issued with a signed certificate of conformity and quality - our final assurance.
For further details, contact us at our new works:

Blenheim Industrial Park Sury St. Edmunds Suffolk IP33 3UT
Telephone: 02843931 (1466)

PCB/ELECTRONIC ASSEMBLY

\star Circuit Design \& Development * Prototyping
\star Pre-production Consultancy
\star Full Production Capability

* Component Sourcing \& Stocking \star Complete Test Facilities

STAGECRAFT (ELECTRONICS) LTD 3 Churchfield Road Acton Central, W3 6BH Tel: 01-993 1852/3660

FREE PROTOTYPE of the finest quality with EVERY P.C.B. artwork designed by us. Competitive hourly rates, and high standard of work. 477408.
(2126)

BATCH PRODUCTION wiring and assembly to sample or drawings. McDeane Electricals Lid, 19b Station Parade, Ealing Common, London W5. Tel: 01-992 8976.

CLASSIFIED ADVERTISEMENTS Use this Form for your Sales and Wants

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

To "Wireless World" Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate £3.50 PER LINE. Average six words per line. Minimum £25 (prepayable)
- Name and address to be included in charge if used in advertisement
- Box No. Allow two words plus $£ 5$
- Cheques, etc., payable to "IPC Business Press Ltd." and cross " $\&$ Co."

NAME.

ADDRESS

Crotech Oscilloscopes Nationwide availability local to You

London \& Home Counties
Audio Electronics

East Anglia
Electronic \& Computer
Workshop
Maplin Electronics
Ambit International
Midlands \& North Northern Instrument Universal Instruments Electronic Measurement Services
Radio Telephone Service
Scotland
RMR Measurements

Rayleigh Brentwood0532.791054Leire (Leics)Manchester661-273-46530332-41235

Wales \& West
Glevum Instruments

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 93-103

PAGE
Aero Electronics (AEL) Ltd 86
Amateur Radio Retailers Association 4
Ambit International Ltd$\begin{array}{r}.4 \\ .80 \\ \hline\end{array}$
Anders Electronics Lid 17
Armon Electronics Ltd 78
Aspen Electronics Ltd 12
Audio Electronics (Cubegate Ltd). 13
Bamber, B. Electronics 89 89
Black Star Ltd
Black Star Ltd
Broadfields \& Mayco Disposals 75
Cambridge Kits 12
Circuit Services
Circuit Services 17
Clef Products (Electronics) Ltd 78
Control Universal Ltd. 78
Cricklewood Electronics Ltd
Cricklewood Electronics Ltd
15
15
Crimson Elektrik Stoke 104
Display Electronics Ltd 91
Easibind6
Eddystone Radio Ltd 20
Electrical Review Shock Cards 92
Electronic Brokers Ltd 3,5
. .84
80
Electronic Equipmen
80
80
Electrovalue Ltd
Electrovalue Ltd
81
81 13
EMS Manufacturing
EMS Manufacturing

PAGE
PAGE

Pantechnic.. 84
PM Components .. 76
Practical Wireless .. 18
P\&R Computer Shop.................................... 2
Racom Lid 86
Radford Laboratory Instruments. 18
Radiocode Clocks Ltd
17
17
Radio Component Specialists. 79
Reprints. 86
Research Communications Ltd 8
Royal Air Fo 84
.16 7
Sandwell Plant Ltd
Sandwell Plant Ltd Sarel Electric Ltd 84
Scopex Instruments 89
Skyleader 76
Solent Electronic Service Ltd. 84
South Midlands Communications Lid 9
Special Products Distributors Ltd
6
6
Surrey Electronics Ltd 75
Technomatic Ltd 2, 83
Thandar Electronics Ltd 85
Thanet Electronics Ltd 80
Thorn EMI Instruments 8
Thurlby Electronics Ltd 75
Timbase Ltd 76
TO Supplies (Export) Ltd. 6
Valradio Ltd 5
Vigilant Communications Ltd 12
Orion Scientific Products Ltd 78

[^11]
OVERSEAS ADVERTISEMENT AGENTS

France Belgium: Norbert Hellin, 50 Rue de Chemin Veat,
F-9100, Boulogne, Paris.

Hungary: Ms Edit, Bajusz, Hungexpo Advertising Agency, Budapest XIV, Varosliget.
Telephone: 225008 - Telex: Budapest 22-4525

Italy: Sig C. Epis, Etas-Kompass, S.p.a. - Servizio Estero, Via Mantegna 6, 20154 Milan.
Telephone: 347051 - Telex: 37342 Kompass.

[^12]Printed in Great Britain by QB Lrd, Sheepen Place, Colchester, for the proprietors, Business Press International Ltd, Quadrant House, The Quadrant, Sutton, Surrey SM2 SAS.
(C) Business Press International Lid 1983. Wireless World can be obtained abroad from the following: AUSTRALIA and NEW ZEALAND: Gordon \& Gotch Ltd. INDIA: A. H. Wheeler
\& Co. CANADA: The Wm. Dawson Subscription Services Lid; Gordon \& Gotch Ltd. SOUTH AFRICA: Central News Agency Ltd; William Dawson \& Son (SA) Led.
\& Co. CANADA: The Wm. Dawson Subscription Services Lid; Gordon \& Goich Lid. SOUTT
UNITED STATES: Eastern News Distribution Inc., 14th Floor, 111 Eighth Avenue, New York, NY 10011 .

The new microprocessor controlled EP8000 Emulator Programmerwill program and emulate all EPROMs up to 8 k $x 8$ sizes, and can be extended to program other devices such as $16 \mathrm{k} \times 8$ EPROMs, Bipolar PROMs, single chip microprocessors with external modules.
Personality cards and hardware changes are not required as the machine configures itself for the different devices.
The EP4000 with $4 k \times 8$ static RAM is still available with EPROM programming and emulation capacity up to $4 \mathrm{k} \times 8$ sizes.

- EP8000 8k x 8 Emulator Programmer $£ 695+£ 12$ delivery BSC8 Buffered emulation cable - $£ 49$ - SA27128 Programming adaptor - $£ 69$ - SA25128 Programming adaptor - £69 - EP4000 $4 \mathrm{k} \times 8$ Emulator Programmer - £545 $+£ 12$ de-

FEATURES

- Software personality programming/emulation of all EPROMs up to $8 \mathrm{k} \times 8$ bytes including 2704, 2708, 2716(3), 2508, 2758A, 2758B, 2516, 2716, 2532, 2732, 2732A, 68732-0, 68732-1, 68766, 68764, 2564, 2764. Programs 25128, 27128 with adaptors.
- No personality cards/characterisers required.
- Use as stand alone programmer, slave programmer, or EPROM development system.
- Checks for misplaced and reversed insertion, and shorts on data lines.
- Memory mapped video output allows full use of powerful editing facilities.
- Built-in LED display for field use.
- Powerful editing facilities include: Block/Byte move, insert, delete, match, highlight, etc.
- Comprehensive input/output - RS232C serial port, parallel port, cassette, printer O/P, DMA.
- Extra $1 \mathrm{k} \times 8$ scratchpad RAM for block moving.
livery BSC4 Buffered emulation cable £39 BP4 (TEXAS) Bipolar PROM Module - £190 - Prinz video monitor - £99 UV141 EPROM Eraser with timer - £78 GP100A 80 column printer - £225 GR1 Centronics interface - £65

[^0]: Current issue price 80p, back issues (if available) £1, at Retail and Trade Counter, Units 1 \& 2, Bankside Industrial Centre, Hopton Street, London SE1. Available on microfilm; please contact editor.
 By post, current issue $£ 1.23$, back issues (if available) £1.80, order and payments to EEP General Sales Dept., Quadrant to EEP General Sales Dept., Quadran House, The Quadrant, Sutton, Surrey SM2 5AS Tel: 18668 Editorial \& Advertising offices: Quadrant House, The Quadrant, Sutton Surrey SM2 5AS.
 Telephones: Editorial 01-661 3614. Advertising 01-661 3130. See leader page.
 Telex: 892084 BISPRS G
 Subscription rates: 1 year $£ 15$ UK and E19 outside UK.
 Student rates: 1 year E 9.35 UK and f11.70 outside UK.
 Distribution: Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS Telephone 01-661 3248.
 Subscriptions: Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone: 0444459188 Please notify a change ot address.
 USA: $\$ 44$ surface mail, $\$ 93.80$ airmail USA: $\$ 44$ surface mail, $\$ 93.80$ airm
 Business Press International (USA).
 Business Press International (USA).
 Subscriptions Office, 205 E. 42 nd Street, NY 10017.
 USA mailing agents: Expediters of the Printed Word Lid, 527 Madison Avenue, Suite 1217. New York, NY 10022. 2nd class postage paid at New York.
 (C) Business Press International Lid 1983 ISSN 00436062

[^1]: Tel：01－629 9556．Telex：
 81 Piccadilly，London，W1V OHL
 Tel：01－629 9556．Telex： 26500 （answerback RÁCEN）．Cables：Speciprod，London，
 W1

[^2]:

[^3]: Please note X in part number denotes mains voltage. Please inseri O in place of X for 110 V ' 1 ' in place of X for 220 V (Europel, and ' 2 ' in place of X for 240 V X for $110 \mathrm{~V} . " 1$ in in place of X for 220 V (Europel, and 2 in place of X for
 (U.K.) Alt units except UC1 incorporate our own toroldal transfirmers.

[^4]: Please tickifreceiptrequired \square orinformation on RAFA

[^5]: * Crisis control, R. E. Young, WW June, July, 1982

[^6]: Professor Bertrán and colleagues are in the Department de Sistemas de Control, Escuela Téchnica Superior de Ingenieros de Telecomunicacion, Barcelona, where they teach circuit theory and systems control

[^7]: Brian Woodroffe works in research and development at Hewlett Packard

[^8]: Also in Manchaster for personal shoppers at:

[^9]: Company Registered Number: 151537 (ENGLAND).
 Registered Office: Quadrant House, The Quadrant
 Sutton, Surrey SM2 5AS

[^10]: Company Registered Number: 151537 (ENGLAND) Registered Office: Quadrant House, The Quadrant Sutton, Surrey SM2 5AS

[^11]:

[^12]: Jack Mantel, The Farley Co., Suite 650, Ranna Building, Cleveland, Ohio 4415 - Telephone (216) 6211919. Ray Rickles, Ray Rickles \& Co., P.O. Box 2028, Miami Beach, Florida 33140 - Telephone (305) 5327301. Tim Parks, Ray Rickles \& Co., 3116 Maple Drive N.E., Atlanta, Georgia 30305. Telephone (404) 2377432 Mike Loughlin Business Press International, 15055, Memorial Ste 119, Houston, Texas 77079 - Telephone (713) 7838673.

 Canada: Colin H. MacCulloch, International Advertising Consultants Lid., 915 Carlton Tower, 2 Carlton Street Toronto 2 - Telephone (416) 3642269.

 * Also subscription agents.

