

The $-5-5201$

a small, lightweight synthesized signal generator for field or bench use

Colour brochure available. Send for yours now.

100 kHz to 520 MHz
Runs from clip-on NiCd battery pack, external 12Vd.c. (vehicle battery via cigar lighter socket) or, from any standard a.c. mains supply Reverse power protection to 50W (standard) Excellent specification and features

from

Wrelēsswöld

21	ENGINEERING, NOT POLITICS
22	COMMUNICATIONS COMMENTARY IARU accountabilily CB collanse? HF jamming
24	TYPEWRITER TO DAISYWHEEL PRINTER by N. Dufty
29	AERIAL INEFFICIENCY AT SEA by J. J. Wiseman
32	LOUDSPEAKER MEASUREMENTS SIMPLIFIED by P. F. Dobbhins
36	ELECTRIC CHARGE FROM A RADIO WAVE by R. C. Jennison
38	LITERATURE RECEIVED Application notes and equipment data
39	CIRCUIT IDEAS Monitor conversion Cabie reflectometer Rom selector
42	SHORTCUTS IN CIRCUIT ANALYSIS by W. A. Vincent
44	FORTH COMPUTER by B. Woodrofie
46	300BAUD FULL-DUPLEX MODEM by D. Richards
49	LEETERS TO THE EDITOR Electromagnetic Doppler Heretics feethach Waves in space
53	BOOKS RECEIVED
54	ULTRASONIC RANGING FOR ROBOTS by H. W. Gieaves
58	HOBBYIST'S SPECTRUM ANALYSER by R. Hartioopi
62	DID MORSE GET IT RIGHT? by A. S. Chester
64	ELECTRONIC MAIL ORDER FOR ELECTRONICS Estelle Rewtel and Cashtel
65	NEWS OF THE MONTH Erasable optical disc Colour with mono crt
68	ASSEMBLY LANGUAGE PROGRAMMING by R. F. Coates
70	TWO-METRE TRANSCEIVER by I. Forrester
74	NEW PRODUCTS Logic game Eurocube computer Autodial modem

Now Cherry offers you a cost-effective answer to prototype development, in application areas hitherto not possible with conventional keyboards. The Protopad range of self-adhesive membrane panels offers you a wide choice, with keypad configurations
$4 \times 4,2 \times 4$ and 1×4 in single or double pad size, with or without LED windows. Their modular design makes for easier layout and unwanted pads can be progressively cut away, withou disturbing circuit continuity. For improved operator keying, all special finish to accept custom legends using dry transfers or water-based ink pen.
But most important of all, Protopads carry the Cherry name that assures you of no short-cuts in reliability and
'Protopad design evaluation modules are available, ex-stock, from our distributors.'
Semicomps, telephone: (0535) 67921 Tennco, telephone: (0793) 485255

CHIERREY GOMEMBRANES

CHERRY ELECTRICAL PRODUCTS LIMITED, Coldararbour Lane, Harpenden, Herts AL5 4UN WW - 037 FOR FURTHER DETALS

EuroCUBE 6502/6809

 One small Eurocard-more computer than everuroCUBE is just one, small $100 \times 160 \mathrm{~mm}$ Eurocard but il an Industrial Computer of exceptional power and versatility.
The user has a choice of 6502 or 6809 microprocessors. Trograms can be developed on a full CUBE development Eurorack or on any other microprocessor development or machine code.
EUROCUBE has four memory sockets whose function and position in memory is fully user selectable. For example, the first socket might contain a 4KB operating system EPROM, the second a BCC BASIC interpreter in ROM, the third the users BASIC program in whatever size EPROM is convenient, and the fourn migh.
An on-board calendar clock is also supported by the An on-board calendar clock is also supported by the
battery, and provides the time of day to $1 / 10$ th second and the date correct for the whole century.
EUROCUBE communicates with the outside world through 20 digital i o channels, RS423/RS232 serial por and the full CIBE/Acom data bus through which the entire CUBE/Acom range of video, disk, analog, solid tale switches and other peripherals can be controlled

£139
Exc. VAT No charge for Operating System Sotware Control Universal's new 150 page catalogue and technical overview is now available tree of charge. Use the reply service for your copy, or ring one of our engineering team to discuss your application.

The Hardware House $\begin{gathered}\text { Newnham Road Cambria } \\ \text { Telephone (0233) 33875? }\end{gathered}$
wW - 017 FOR FURTHER DETAILS

Thanet Electronics © ICOM
143 Reculver Road. Herne Bay Kent
 WW - 033 FOR FURTHER DETALS

Hilomast Ltd

HILOMAST LIMITED THE STREET HEYBRIDGE - MALDON ESSEX CM9 7 NB ENGLAND
Tel. MALDON $(0621) 56480$ Tel. MALDON (0621) 56480
TELEX NO. 995855
ww - 019 FOR FURTHER details
WIRELESS WORLD AUGUST 1983

TEKTRONIX

DESKTOP COMPUTERS

Special Purchase of Ex-Demonstrator Stock

4051

High resolution Graphics and
Alphanumerics 3 2ki
Alphanumerics. 32kB Memory
Integral Cartridge Tape Drive £2,250 INCLUDING OPTION 22 32KB MEMORY
4052
High performance stand-alone processor with 64KB Memory

4,950 INCLUDING OPTION 24 64KB MEMORY JOYSTICK 4952
(for 4050 series] sensitive cursor-control with
Dther Tektronix graphics equipment currently available includes 006-1, $010-1$, 40, 11 4014-1, 4015-1, 4016-1
606/606A/606B and 611
Electronic Brokers Ltad., $61 / 65$ Kings Cross Road London WCIX 9LN Te::01-2783461. Telex 298694 1 ニ-1
Electronic Brokers 1

80 Column Conversion for PET/CBM

Suitable for small screen PET with basic 4.
Plug in PCB, no track cutting
Gives all the features of an 8032
$\mathbf{£ 1 4 9}+$ V.A.T., C.W.O. $^{\text {W. }}$
Tor turne dealits onnatit
Delph Electronics Ltd.
4Deeping Road, Baston, Peterborough. PE69NP.
WW - 040 FOR FURTHER DETALLS
in view of the extremely rapid change taking PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, N. Finchley, London, N.12. 5 mins. from Tally Ho corner Telephone 445 2713/0749 WW - 014 FOR FURTHER DETALLS

METER PROBLEMS?

137 Standard Ranges in a variety of
sizes and stylings available for 10.14 sizes and stylings available for $10-14$
days delivery. Other Ranges and special scales can be made to order.
Full Information from:
HARRIS ELECTRONICS (London) 13B GRAY'S INN ROAD, W.C. 1 Phone: 01-837 7937 WW - 021 FOR FURTHER DETALS

E. A. Sowter Ltd.

WW - 044 FOR FURTHER DETALLS

WW - 023 FOR FURTHER DETAILS

WW - 039 FOR FURTHER DETALS

CX80 colour MATRIX PRINTER

At last a low-cost Colour Matrix Printer for Text, Graphics, Histograms, Colour VDU Dumps, etc.

Colour printout is quickly assimilated, makes graphics more understandable tation of complex data or concepts.

Compatible with most microprocessors, prints in 7 colours - sophisticated internal programme makes the CX80 easy to use.
Dot Addressable +15 user programmable characters, 96 ASCII and 64 graphics characters in rom. Centronics interface with RS232 and IEEE488 options. Apple II interface gives dot for dot colour dump. New viewdata interface prints out two pages side by side in full colour. See Prestel 200650.
The CX80 is a product of our own design and development laboratories. It represents a British breakthrough in colour printer technology. Colour brochure on request. OEM pricing available.
IITEGREK LIMITED
Portwood Industrial Estate, Church Gresiey Burton-on-Trent, Staffs DE11 9PT
Burton-on-Trent (0283) 215432. Telex: 377106

The new microprocessor controlled EP8000 Emulator Programmer will program and emulate all EPROMs up to 8 k $\times 8$ sizes, and can be extended to program other devices such as $16 \mathrm{k} \times 8$ EPROMs, Bipolar PROMs, single chip microprocessors with external modules.
Personality cards and hardware changes are not required as the machine configures itself for the different devices.
The EP4000 with $4 \mathrm{k} \times 8$ static RAM is still available with EPROM programming and emulation capacity up to $4 \mathrm{k} \times 8$ sizes.

- EP8000 8k x 8 Emulator Programmer $6695+£ 12$ delivery BSC8 Buffered emuation cable - £49 SA27128 Programming adaptor - f69 SA25128 Program ming adaptor - $£ 69$ EP4000 $4 \mathrm{k} \times 8$ Emulator Programmer - $£ 545+£ 12$ de
fEATURES
Software personality programming/emulation of all
 2732A, 68732-0, 68732-1, 68766, 68764, 2564, 2764. Programs 25128,27128 with adaptors.
- No personality cards/characterisers required.
- Use as stand alone programmer, slave programmer,
-

shorts on data lines. Memory mapped video output allows full use of powerful edititng facilities.

- Built-in LED display for field use. . Block/Byte move, insert, delete, match, highlight, etc.
- Comprehensive input/output - RS232C serial port, Extra $1 \mathrm{k} \times 8$ scratch pad RAM for block movin
livery BSC4 Buffered emulation cable £39 BP4 (TEXAS) Bipolar PROM Module - 1900 Prinz video monitor - $£ 99$. GP100A GP100A 80 column printer - £225 GR1 Centronics interface - $£ 65$

VAT should be added to ali prices
DISTRIBUTORS REQUIRED

EXPORT ENQUIRIES WELCOME

GP Industrial Electronics Ltd. Tell Pelymumut (0752) 332961
Unit E, Huxley Close, Newnham Industrial Estate, Plymouth PL7 4JN

	2704
	2708
	2716(3)
	2508
	2758A
	2758B
	2516
	2716
	48016
	2532
	2732
WEW 1	2732A
NODUCT?	68732-0
,	68732-1
- Checks, Programs, Compares up to 8 devicess simultaneously	68766
with no personality modules or characterisers - See list	68764
- Easy to use, menu driven operation for blankcheck, program, verify, illegal bit check, checksum, self-test	68764
- Constant display of device type, mode and fault codings	2764
- Individual socket LED indicators for EPROM status Comprehensive EPROM integrity checks - Illegal bit check,	
- datarend address shorts, constant powerer line monitoring	2564
- Full safeguard protection on all sockets	MK2764
- RS232C interface supplied as standard	25128
- Costeffective price - $¢ 695+$ VAT	27128

*G ld service available.
21 days manufacture for urgent
deliveries.
Orders despatched
The toroidal transtormer is now accepted as the standard in industry, ov ta ring gne obsolete eantages toroidals offer in size
 DESIGN section which can offer a prototype service within 7 DAYS
together with a short lead time on quantity orders which can be
programmed to your requirements with no price penalty. within 7 days of receipt for single or
small quantity order
*5 year no quibble guarantee.

TPPE	${ }_{\substack{\text { SERIES } \\ \text { No }}}$	$\underbrace{}_{\substack{\text { SeONDAR } \\ \text { vols }}}$	${ }_{\text {cums }}^{\text {curnt }}$	PaICE	TYPE	$\underset{\substack{\text { SERIE } \\ \text { No }}}{\text { cose }}$	$\substack{\text { sconoant } \\ \text { Vols }}$	${ }_{\text {cusem }}^{\text {Rurent }}$	PRICE	TYPE	${ }_{\substack{\text { SERIIS } \\ \text { No }}}$		${ }_{\text {a }}^{\text {anim }}$	PRice
		$\begin{gathered} 6+6 \\ \substack{6+9 \\ 12+2 \\ 15+15 \\ 15+18 \\ 22+22 \\ 25+25 \\ 30+30 \\ \text { in } \\ \text { in Al } \\ \hline} \end{gathered}$	$\begin{aligned} & 1.25 \\ & 0.83 \\ & 0.50 \\ & 0.520 .92 \\ & 0.34 \\ & 0.300 \\ & 0.254 \end{aligned}$	$£ 5.12$ +VAT£0 89 TOTAL $£ 6.79$ astic)								$15+15$ $15+15$ $25+25$ $35+30$ $35+35$ $45+36$ $45+45$ $5+50$ $1+50$ 2120 240	10.00 8.82 6.60 6.00 5.28 3.25 3.33 3.00 2.72 1.26 1.25	$£ 10.88$ +VA 21.94 +OTAL 14.87
				$£ 5.49$ + VAT $£ 0.99$ TOTAL $£ 7.58$ TOTAL E7. 58 $£ 6.13$ +QTAL $£ 8.60$ £6.66 +OTAL $£ 9.64$					$£ 8.43$ + VAT $£ 1.52$ TOTAL $£ 11.67$ $£ 9.81$ +VAT $£ 1.78$ TOTAL $£ 13.64$	 ALSO A Sizes up manufac	$8 \times 016$$8 \times 018$ 8×026 $8 \times 025$$8 \times 033$8 ${ }_{8 \times 042}$ $8 \times 028$$8 \times 029$ ${ }_{8 \times 030}$ 9×017 $\underset{\substack{9 \times 018 \\ 9 \times 026}}{\substack{9 \\ \hline}}$ ${ }_{9 \times 033}^{9 \times 025}$$9 \times 02$ 9×28 9×2029 $9 \times 039$$9 \times 030$ AVAILA tured to	$\begin{aligned} & 25+25 \\ & \hline 30+30 \\ & 35+35 \\ & \hline 5+50 \\ & 45+45 \\ & 55+50 \\ & 55+55 \\ & 2125 \\ & 240 \\ & 240 \end{aligned}$ ABLE d includi to order.		£14.38 +VAT $\Sigma 2.52$ TOTAL $£ 1930$ £17.12 + VATE2.95 OTAL £22.62
The benelitis of ILP toroidal transformers - ILP toroidal transtormers are only half the weight and height of their laminated equivalents. and are avaiable with 110 V . 220 V or 240 V primaries coded as fol ows: volaget to ootain of llad volage. For 110 V primary inserer " " 0 " in place of " " " in type number For 220 V primary (Europe) insert " 7 " in place of " " x " in type number. For 240 V primary (UK) insert " 2 " in place of " x " in type number Also available at Electrovalue,Maplin, Technomatic and Barrie Electronics,														

wW - 006 FOR FURTHER DETAILS

Hitachi Oscilloscopes
performance, reliability, value
New Models!
immediate delivery!

[^0]
Accurate Digital Multimeters at

 Exceptional PricesNEW ANALOGUE METER WITH CONTINUIT BUZZER AND BATTERY SCALE

Add 15% to your order for VAT. P\&P is free of charge
Payment by cheque with order Cottrell House.53-63 Wembley Hill Road. Wembley, Middlesex HA9 8BH, England TELEX No. 923995
WW - 007 FOR FURTHER DETALLS

Cotswold Electronics Ltd.
Unit 71 , Kingsville Road, Kingsdich Trading Estate, Chetrennam GL51 9NX
Tel: 0242-41313

WW - 012 FOR FURTHER DETALS

METAL FILM RESISTORS

ww - 047 FOR FURTHER DETALLS s

Versatowers

A range of telescopic towers in static and mobile models from 7.5 to 36 metres with tilt-over facility enabling all maintenance to be at ground level.
hi: performance hit competilive hi:
ww - 020 FOR FURTHER DETALLS

wW - 028 FOR FURTHER DETALS

GET ac powai

WITH ALOT OF MELP FRom Qner

PROFFSSSIONAL HIFII THAT EVERY ENTHUSIAST

 CAN HANDIL...Unicase
Due to continous improvements in components and design ILP now launch the
modules ever.

Over the years ILP has been aware of the need for a complete
packaging system for it's products, it has now developed a packaging system for it's products, it has now developed a
unique system which meets all the requirements for ease of assembly, adaptability, ruggedness, modern styling and above
all price.
all price.
Each Unicase kit contains all the hardware required down to
the last nut the last nut and bolt to buil
need for any special tools.
Because of ILP's modular approach, "open plan" construction
is used and tinal assembly of the unit parts forms a sompact is used and final assembly of the unit parts forms a compact
aesthetic unit. By this method construction can be achieved in aesthetic unit. By this method construction can be achieved
under two hours with little experience of electronic wiring and mechanical assembly.

Hi Fi Separates

UC1 PRE AMP UNIT: Incorporates the HY78 to provide a,
"no frills", low distortion, ($<0.01 \%$, stereo control unit, no trilis , low distortion, ($<0.01 \%$), stereo control unit, monitor facilities. This unit trovides the heart of the hi fi
system and can be used in conjunction with any of the UP system and can be used in conjunction with any of the UP
Unicase series of power amps. For utimate hum rejection the
UC1 draws its UC1 draws its power from the power amp unit.
POWER AMPS: The UP series feature a clean line front panel incorporating on/off switch and concealed designed to compliment the style of the UC1 preamp. Performance eof each unit which includes the appropriate
power supply, is as specified on the facing page.
Power Slaves

Our power slaves, which have numerous uses i.e.

Our power slaves, which have numerous uses i.e.
instrument, discothequee, sound reinfor cement, feature in addition to the hif fi series, front panel input jack, level control, and a carrying handle. Providing the stallest,

TO ORDER USING OUR FREEPOST FACILITY
Fill in the coupon as shown, or write details on a separate sheet of paper,

 payment mar be made by access or barclaycard if

Please send me the foll
Total ourchase price
I enclose Cheque \square Postal Orders \square Int. Money Order \square
Please debit my Access/Barclaycard No.
Name
Addre

NoContest!

The SC61 waveform analuser from Sencore stands head and shoulders above any other oscilloscopes for speed, accuracy and versatility even from semiskilled operators - and we're prepared to come round and prove it.

For an on-site test and more information Mike Dawson 01-897 6446.
4, Fieldtech Fieldtech Heathrow Limited Humting Heathrow $\begin{aligned} & \text { Huntavia House 420 Bath Roa } \\ & \text { Longford Middlesex UB7 OLL }\end{aligned}$ Telex: 23734 FLDTEC G

Wreleassworld

Editor:
PHLIIPDARINGTON
$01-6613128$ PHI-661 3128

Deputy Editor:

 GEOFREY SHORTER, B.Sc.Technical Editor:
MARTIN ECCLES 01-661 8638

News Editor: AVID SCOBI

Drawing Office Manager: Drawing Office 01-661 8690
Technical Illustrator:

Advertisement Manager:
BOB NIBBS, A.C.I.I.
01-661 3130
BARBARA MILL
$01-6618640$

Northern Sales: HARRY AIKEN
$061-8728861$

Midland Sales: BASIL McGO

Classified Manager: BRIAN DURR
$01-6613106$
IAN FAUX

Production:
BRIAN BANNISTE Make-up and copy $01-6618648$

Publishing Director
DAVID MONTGOMERY 01-661 3241

Engineering, not politics

Even in the pre-war days when Japanese industry was best known for its imitative tendencies, its imitations were often better products than the originals. Modern Japanese engineering demonstrates little need to take other nactions ideas and h made Japan an industrial giant. Japan have gained a formidable reputation for quality - to the extent that they now dominate world markets in several important groups of product. With the xception of those Western companies who possess reputations for high quality, European and American firms tend to see the reply to imports from the Far East in political, rather than in commercial an engineering terms. They require th voluntarily and frequently ask politicians to apply pressure to that end. An approach as negative as that to the imbalance of trade can surely not succee over a long period. In reply to huge redress the balance by exporting, not politicking. Admittedly, it is not easy to sell to the Japanese but, according to the Department of Trade, "formal barriers are disappearing and the desire of the Japanese policy - is on the way out. Import tariffs on over 2000 products have now been reduced to a lower level than those of European countries or the US'
In common with any other In common with a ny other
manufacturers, the Japanese want the best products at the lowest price. If a UK exporter can supply well-designed products, either to fill a gap in Japanese production or to beat local efforts on An important point to watch is that the
customer must be given what he wants, not what the vendor thinks he ought to want. Time and time again, Western makers of, for example, audio equipment which they thought were sensible and attractive, in spite of the fact establishe by the successful marketing of Japanese products that customers prefer satin chrome, coloured lights and masses of knobs and switches. Presentation is a matter of taste and
This office recently received a note from a maker of illuminated switches, in which he claimed that his company has taken massive orders from Japan and is now going into Hong Kong. The custome switches are visually attractive to them, they are reliable and are cheaper to buy than locally made types: there is therefore a ready sale for them in Japan. British industry began the industrial revolution and was abe to dominate
markets when it was possible to tell markets when it was possible to tell they should want it. In the words of Adam Smith: we "founded a great empire for the sole purpose of raising up a people customers". Perhaps more of our manufacturers had recognised a good deal earlier that the world has developed while they were not looking, and will not now buy equipment that is not designed and made with customers in mind. George Moore said that "a man travels the world over in search of what he need and returns home to find it". Perhaps we could reduce the number of homing customers by making sure they find what they need here, not what we feel they should need.

COMMUNICATIONS COMMENTARY

C.B. market collapse?

The Home Office tells me that fewer new CB licences were issued during the first
quarter of 1983 than the number of licences that lapsed. At the end of April with 313,318 at the end of November with 313,318 at the end of November
1982. The percentage of renewed licences seems to vary widely from month to month: 42% in October 1982 ; 72% in November; and only 27%; in December. Fiion lost $£ 700,000$ in the year to March 1983 and the firm has since disposed of the division "for a nominal sum", blaming the collapse of the CB radio market". The Japanese radio communications industry seems to be setting its sights on the para-miltary field with increasing em-
phasis on such products as v.h.f.lu.h.f. manpack equipment providing digital encryption. European communications firms have long been worried at the prospect of a
full-scale entry of Japan into defence full-scale e
electronics.

Antennas galore!

have to confess that I did not attend CAP 83 (Third International Conference on Antennas and Propagation, London, his omission by ploughing (or at least skimming) through the two thick volumes of papers (IEE Conference Publication 219). This is no lightweight matter: 193
papers filling 961 pages from authors papers filling 961 pages from authors Aboul-Atta to Zi Shen Lui in volume 1 and . Y. Ahmed to Z. W. Zhang in volume 2!). One really does wonder how many of the delegates managed, in four days, to
absorb almost 200 papers. - or indeed whether thereby they learned much that was of vital importance to them. These large international conferences, free from he constraints of "commercial" extibiions do tend to take off into the stratosphere or, more appropriately in this case,
he ionosphere. Radio propagation and aerials (to get back on the editorial waveength of Wireless World) are both subjects hat envelope themselves in an unusual degree of mythology and mysticism. I hasome thoroughly practical papers among the 193 but it could be argued that, since hese come over clearly from the printed page, attendance was possibly not the optimum learning process. It is always said, of course, that the most interesting discus-
sions at conferences are those that take place out in the bar rather than in the conference hall. Experience tends to support that view - although the more memorable conversations seldom seem to
relate to conference topics! relate to conference topics!
The difficulty for the reader (or delegate) is to decide what really
is new and what is not. ICAP 83 included some useful invited survey papers, though apparently prepare
other contributions
A. W. Rudge of ERA Technology Ltd in "Current trends in antenna technology and prospects for the next decade" highlights three major themes, the influence of environmental factors, the impact of
v.1.s.i. electronics and the continuous v.1.s.i. electronics and the continuous
search for improved characteristics. He aptly quotes Professor Mayes of the University of 1linois: "The popular conception in 1950 was that electromagnetics was a mature field and that it was improbable
that any new discoveries remained to be made in the field of antennas. The development of frequency-independent antennas was certainly evidence to the contrary. Today similar sentiment seems to be prevalent. History shows it prudent to be
sceptical." 193 papers suggests there must still be rich ore to be mined in these subjects.

Moral persuasion?

The BBC took the opportunity, as hosts of the 17th European DX Council Conference, to launch another strong attack on the 10% increase in "jamming" of h.f.
broadcasts by the USSR since the Polish crisis of December 1981. Douglas Muggeridge, managing director of BBC External Broadcasting, protested "The h.f. bands are very congested. There is more broadA conference is soon to be held, the first session in 1984, with the task of trying to plan and regularize this position. Its job is made extremely difficult, if not imposible, by the large amount of 'deliberate, harmful interference' - better known as shortwave bands.
Many people have not been aware of the extent to which this is a worldwide problem. Every country that broadcasts on h.f. and all who listen on h.f. are affected.
Perhaps there may be a solution. If there is not, then it is difficult to see how any order can be brought out of the chaos that exists certain times of the day
The BBC apparently hopes that "moral persuasion", plus the fact that the USSR is be well received throughout the world may prove a powerful argument to reduce jamming. Keith Edwards presented data showing co-channel and adjacent-channel amming as monitored in Vienna and at current problem. This is particularly true on the 15,17 and 21 MHz broadcast bands, with between $70-80 \%$ of channels (preWARC 1979) affected from about 1200 to 1800 hours on 17 MHz , over 60% on all statistical data show the massive use made of the 6 MHz broadcast band. Although

WARC 1979 gave Western broadcasters much less additional spectrum than they sought, over 30 countries are already using
the new frequencies despite the WARC the new frequencies despite the WARC
agreement not to do so until after the 1984 86 planning conferences. There are also a number of countries using parts of the spectrum not allocated to broadcasting.
China, for example, has quit out-of-band China, for example, has quit out-of-band operation at 7.0 to 7.1 MHz but is no
using many channels around 8.3 MHz ! A happier prospect arises from the use of satellite feeds. The BBC are using digital audio at 128kilobits (two adjacent
$64 \mathrm{~kb} / \mathrm{s}$ speech channels) to distribute pro$64 \mathrm{~kb} / \mathrm{s}$ speech channels) to distribute programmes via satellite to overseas relays;
these links have uniform frequency resthese links have uniform frequency res-
ponse to 6 kHz , distortion around 1% or less and $s: n$ ratio of about 50 dB . One result is that the BBC may soon reduce long distance h.f. coverage from the UK of
areas better served from the relay bases of areas better served from the relay bases of
the BBC or the Foreign \& Commonwealth the BBC or the Foreign \& Commonwealth land; Caribbean Relay (Antigua); East Mediterranean Relay (Cyprus); Far Eastern Relay (Singapore); Eastern Relay (Masira)
and (later) a possible relay at Hong Kong, and an East African Relay in the Indian Ocean.

Stereo all ways

A new twist to the American a.m.-stereo fight between the four competing systems has een given by demonstrations at NAB multisystem a.m. stereo tuner, type TU S77AMX, that uses a Japanese-manufacin any of the four systems. A.m.-stereo in the USA has been delayed by the FCC "leave it to the market place" decision. By April 1983 there were 50 stations using the Harris system, around 30 -plus
with Kahn, six using Motorola and three with Kahn, six using Motorola and three
using Magnavox out of some 4600 com mercial a.m. stations. However, retail price of the Sansui tuner is around $\$ 400$ and their car radio tuner around $\$ 50$. Even with multisystem decoding it will still be vidually to make the difficult choice between the four systems.

Mercurial thoughts

I do not know what the new Mercury communications network will do for British business - but it must already be helping ours. That is if the three yery very glossy advertising brochures that have come my way are anything to go by. They proudly proclaim: "Mercury is the new force in communications. .. it exists to acilitate the dynamic interchange of ideas
that are vital to your business . . Mercury that are vital to your business ... Mercury
means communications. At the speed of thought". The global village, I am told, is
o longer a concept but a reality. Pages filled with large colour pictures of eggs, a honeycomb and a small globe in the palm a giant hand. All this represents "a new pproach to communications for the ' 80 s nd beyond".
Just the thing presumably for the busi-
nessman who has caught a chameleon innessman who has caught a chameleon, inends to put it inside an egg-shell after
slicing the top off with his chisel, and is not afraid of being stung by bees. Or is my dynamic interchange of ideas failing me?

In brief

Costs of the NASA Space Telescope proect may exceed $\$ 1000$-million instead of the original estimate of \$435m and in unlater... Launch of the second Tracking and Data Relay Satellite (TDRS) is being delayed in the hope that NASA can find out what went wrong with the first launch
last March...A spate of fraud and cheatng - "doctoring" and "massaging" data - in scientific research papers has led to Nicholas Wade of the New York Times claiming: "It is not just a matter of rotten apples in the barrel but something to do with the barrel itself" \ldots the opportuni-
ties to cheat are becoming more frequent because of the readiness of laboratory chiefs to put their names to papers
prepared by junior colleagues with little or prepared by juni
no supervision".

AMATEUR RADIC

Planning the bands

The problems of spectrum regulation are bands. There have been some gains 7000 to about 7030 kHz or so is now refreshingly clear of Radio Beiling (Radio Peking) in the evenings and has become a far more usable piece of spectrum. The upper
part of the world "exclusive" 7000 part of the world exclusive
7100 kHz however, still includes broadcast "intruders" such as Radio Tirana on 7065 kHz .
But there is increasing unease within the amateur movement over the future of "volFor very many years mandatory subband allocations have been part of North American amateur licensing in the USA
and Canada, to provide exclusive A1A and Canada, to provide exclusive A1A
(c.w.) segments and also in connection (c.w.) segments "incentive licensing", whereby higher "grades" are given access to additional segments of the bands. Until the immediate post-war period no attempt was made to segment the fre-
quency bands available to British amaeurs. In 1948 the RSGB set-up a working party (I was a member) which, inter-alia, (our first effort was so unpopular that we promptly revised it). Basically this folowed North American practice in locating
exclusive A1A segments at the low-freexclusive AlA segments at the low-fre-
quency ends of the bands, and later quency ends of the bands, and later
formed the basis of the IARU Region 1 recommendations. These also took into account the then still rare use of r.t.t.t.y., although neither
official regulatory bodies.
As the years have gone by the band-plan has been extended to v.h.f. and u.h.f. bands and covers more and more modes and special activities, offering protection to minority interests, such as "raynet" emergency services, beacons, space satelworking, repeaters and dividing bands into simplex channels, etc.
The IARU decided that, in view of the
Then limited (50 kHz) bandwidth, there should different reasons the Home Office has temporarily similarly restricted UK operation on 18 and 24 MHz). Where countries, such as South Africa, have declined to follow these recommendations, both IARU
Region 1 Bureau and the RSGB officials Region 1 Bureau and the RSGB official to reconsider their decision. Being primarily a c.w. operator, I personally benefit from the new IARU recommendations, but nevertheless it does raise important mat
ters of principle: are such organizations as ters of principle: are such organizations as
the IARU justified in assuming a "regulatory" role that goes well beyond the original concepts of "voluntary bandplanning" without first providing greater "accountability" to those whose activities are
being restricted? Individual amateurs have being restricted? Individual amateurs have
no direct control over IARU decisions, member societies have one vote per member, regardless of the size of the individual societies
The
The 1983 IARU statistics show that there are now roughly 1.8 -million amateur
radio operators world-wide, using 1.4-million stations. Licensed members belonging to IARU member-societies are, however under 450,000 , despite the fact that 22% of the countries make membership of their national society an obligatory condition of
the licence. The RSGB is listed as having as members, precisely 50% of the UK's 40,000 licensed amateurs, of whom the majority are v.h.f.--only operators. In such circumstances can "voluntary bandplan-

No r.m.s. power!

W. J. Omer, G3DOJ, who lectures in electrical and electronic engineering in
higher education, is concerned to find that some 90% of his students believe that power in an a.c. circuit can correctly be
defined as an r.m.s. quality. The term r.m.s. Watts has been creeping into th iterature for the past 20 years - stem
ming largely from the audio field where it first came to be used to distinguish be tween "continuous average output" rat
ings and "music power" ratings (now ings and "music power" ratings (now
tending to be replaced by "dynamic tending to be replacem less demanding peak envelope power rating.
Beall Omer has for some time been wag ing virtually a one-man crusade against 'r.m.s. power' which, since the definition
of r.m.s. voltage and current in an of r.m.s. voltage and current in power, is a technical nonsense. He notes that 'r.m.s. power' has spread from the audio field to r.f. amplifiers and transmit
ter ratings in the editorial and advertisin ter ratings in the editorial and advertising
columns of many technical journals. When challenged some writers and firms have dismissed his objections as semantics while others insist that power is an r.m.s. quan tity. To Bill Omer, r.m.s. watts is as ludi crous as 'average feet'.
A problem for the transmitter enginee
is that "continuous wave" or c.w. ha come to mean the A1A mode which is far from continuous. Nevertheless there do seem very good reasons for not using eithe watts (r.m.s.)!

Notes and news

Since June 1 the Home Office has imposed a 50 per cent increase in the annual ama teur radio licence fee: from $£ 8$ to $£ 12$. This means that with RAE, Morse Test fees, training fees, travelling expenses, etc, it
now costs around $£ 50$ or more to obtain ${ }^{\text {n }}$ Class A transmitting licence issued for pur poses of "self-training, inter-communica tion and technical investigations". It seem regrettable that at a time when emphasis being placed on the need to encourage
expansion of "sun-rise industries" such expansion of sarriers are being erected, affectin particularly the younger enthusiasts, o those who may later be seeking employ ment in the still-expanding communic tions field.
people who can recall actually humber Eckersley announcing that they were lis tening to "Two Emma Toc (2 MT) Writtl testing", The historic callsign, converte to G2MT, was due to come on the air o
July 2 and should be heard frequently this year. The Home Office has re-allo cated the callsign at the request of the recently formed "Marconi Radio Society", formed by enthusiasts at the Stanmor headquarters of Marconi Space and D fence Systems.
The RSGB has decided to hold futur annual National Amateur Radio Exhibi tions and Conventions at the National Ex hibition Centre in Birmingham. The 198 dates are April 28-29.

PAT HAWKER, G3VA

Typewriter to daisywheel printer

With an Olivetti Praxis typewriter, this interface makes one of the cheapest word-processing printers around. It can be used with any microcomputer fitted with an RS232 or RS423 port.

A typewriter-printer offers a number of advantages over a conventional daisy-
wheel printer with no keyboard. For example, headings can be added to its output and margins set from the keyboard without the requirement to send special control codes from the computer, although his can be done if required. When not in use as a printer the typewri
The typewriter chosen for conversion here is the Olivetti Praxis series compact typewriter which was one of the first electronic typewriters and is well proven. commercially available printers and has turned out to be an excellent choice for this application. It is available in two versions, the Praxis 30 and the Praxis 35. Both feature interchangeable daisywheels,
automatic correction of the last ten characters typed, and cartridge ribbon loading with a choice of correctable, carbon or fabric ribbons. The two models are almost identical but the 35 has a typehead position indicator and keyboard
selection of 10,12 or 15 characters per selection of 10,12 or 15 characters per
inch. Type pitch on the Praxis 30 is preset in the factory by means of links on the circuit board.
Daisy-wheel printers are in general
much slower than their much slower than their dot-matrix or use where letter quality output is required. They are not ideal for day to day listing of programs because of their relatively low speed. The basic typewriter mechanism is capable of a maximum print speed of
around 8 to 10 characters per second and around 8 to 10 characters per second and
so a standard baud rate of 75 was chosen for the computer-interface to give a print speed of 7.5 characters per second.
A special feature of the interface is the
provision of an elecronic paper provision of an electronic paper sensor on the typewriter to halt the computer output
when the paper has run out. This feature is seldom provided even on high cost printer but has been found to be invaluable when errors are made in estimating the length of text that can be printed on a page. operates on a matrix scanning principle. Each of the matrix columns is pulsed low

Neil Duffy, M.SC., M.I.I.E.E. is a lecturer in the
department of electrical and electronic department of electrical and electronic
enigneering of Heriot-Wart University,
Edinburgh.

Ribbon cable
from keyboard column

$\underset{+}{\mathrm{CN}_{3}}$

When a data word is received by the uart it generates a high-going data-ready signal which turns off Tr_{1} releasing the short Capacitor C_{1} charges up towards 5 V and at the end of a time period of approximately 70 ms reaches the timer threshold voltage level. The output from the 555 goes low and resets the data-ready signal from the uart. Transistor Tr_{1} turns on, discharging imer trigger voltage. The 555 output then everts to the high state. The data-ready signal from the uart is used to strobe data to the keyboard via IC 9 .
The eprom is used to convert the incoming ASCII code from the computer the keyboard rows at the correct time. The contents of the eprom are shown in Table 2. The eprom is programmed to cause the ypewriter to print spaces in place of ACII codes for which the daisy-wheel has no corresponding symbol. ASCII codes
from 0 to 32 are programmed to cause the ypewriter to set and clear tabs, margins and so on.
During typewriter carriage-return/linefeed operations the data output from the computer must be halted by setting egative the clear-to-send (CTS) line onits loss caused by the typewriter buffer verflowing. When a carriage return signal is received from the computer, $\mathrm{IC}_{10 \mathrm{~b}}$
fig. 2. Incoming serial data from the parallel data in a form suita the for connection to the keyboard matrix of typewriter. IC 1 is a section of an MC1489 ine-receiver devic
latches with its $\overline{\mathrm{Q}}$ output low. The $\overline{\mathrm{Q}}$ output is reset to the high state when S_{1} on the interface is pressed or when the typewriter has completed a line-feed
operation. This latter is detected by monitoring an existing limit switch on the line-feed mechanism
For the handshake circuit to operate correctly, the typewriter must perform a print head has returned to the left margin before performing a line-feed and thus operating the limit switch. If this is to happen the computer has to output a the correct sequence. Because there is no convention for the sequence the interface has to allow for both possibilities. This is done by connecting a link on the interface to 127 or from locations 128 to 255 on the eprom. The data in the first set of locations is identical to that in the second except that in the second set, incoming carriage-return commands cause the printer to carry out a
line-feed operation and line-feeds cause it o carry out a carriage-return.
The paper sensor is a reflective opto-
switch device with built-in infra-red led. Resistors R_{1}, R_{3} and the sensitivity adjusting potentiometer R_{2} are mounted to the sensor mounting bracket. The paper-low signal from the sensor is fed back along the ribbon cable to the interface card.
Pap Paper-low signals are inhibited by IC indicates that a carriage return has been received from the computer. If the paper is low, then at the end of the current prin line $\mathrm{IC}_{1 \mathrm{Ia}_{2}}$ latches with its Q output low. Led ${ }_{1}$ lights and Tr_{2} is turned off sending
the CTS line to the computer negative to prevent any further data transfer. $\mathrm{IC}_{10 \mathrm{a}}$ is restored to the high state by pressing S after feeding a fresh sheet of paper into the typewriter. If S_{1} is pressed when the pape
low signal is
still active then a further line low signal is still active then a further line
of text will be printed. A -5 V supply for the collector resistor of Tr_{2} is provided by the negative-voltage generator IC_{11}. Not that the CTS signal taken from Tr_{2}
collector is not a full-specificiation RS 232 collector is not a full-specifciawinn in terms of voltage swing but perfectly adequate for the short cable likely to be required.

Construction

There is a shortage of space inside the typewriter casing so the interface wa housed outside in a small metal box. It connects to the typewriter via a 40-way

ribbon cable which passes through the gap
between the typewriter top and bottom covers.
The prototype interface was constructed on a Eurocard circuit board using the
Verowire interconnection technique. The 40 -way cable header which mates with the ribbon cable from the typewriter is mounted on the end of the interface board and protrudes through a slot cut in the side
of the case. The cable header serves to locate one end of the board. The other end is attached to the case by two screwed spacers. A DIN socket attached to the case provides the RS232 connection to the computer and a flying lead from this circuit board.
A $22 \mu \mathrm{~F}$ tantalum bead capacitor decouples the power supply at the ribbon connector and $0.01 \mu \mathrm{~F}$ decoupling capacitors are fitted to the board, one

Fig. 3. Output from the computer is halted by this sensor circuit when the paper runs out. This feature is often not provided even
on high ccost printers. IC is on high-cost printers. IC C_{8} is a 74 LS 132 abd
IC a 74 LSO3. A suitable opto-switch is type 1C9 a 74 LSO3. A suitable opto-switch is type
307-913 from RS Components.
capacitor for every two i.cs. Remember when connecting wires both to the
typewriter and to the interface that some of the i.cs are static-sensitive m.o.s. devices. The photoelectric sensor is fitted onto a bracket mounted underneath the typewriter platen roller and views the paper through a hole cut in the paper guide F. 6)

Commissioning the interface With the interface disconnected from the typewriter, feed a sheet of paper into the typewriter and monitor the voltage at pin, 1
of the connector at the end of the ribbon
cable. Adjust \mathbf{R}_{2} until the voltage just fall to 0 V . Give the potentiometer a furthe should now same direction. The voltag removed.
Table 1: Links 1 and 4 in this table set up the uart for the expected serial data format. Link 5 selects appropriate data from the
eprom for the expected carriage-return line-feed sequence from the computer (see line-fee
text).
Link Function Low (0V) High (+5 V)
1 character 7 bits 8 bits
$2 \begin{aligned} & \text { length } \\ & \text { parity }\end{aligned}$ enable inhibit
3 even parity odd even
$4 \begin{aligned} & \text { enable } \\ & \text { stop bit }\end{aligned} 1$ bit 2 bits
$5 \begin{gathered}\text { select } \\ \text { CR-LF } \\ \text { seque }\end{gathered}$
LF-CR CR-LF

Fig. 4. 40-way ribbon cable connects the interface to the underside of the typewriter wires in the ribbon are onnected to +5 or to OV either at the interface end or he typewriter end. This
helps to prevent crosstalk between the signal wires.

Test the connections to the typewriter by shorting out rows and columns at the connector on the end of the ribbon. Check by referring to Fig. 1 that the typewrite prints the correct character to the computer RS232 port and powered up, preferably from an independent 5 V
supply. Press S_{1} to reset IC_{10}, ensure that the led goes out and the CTS line to the computer goos high. A short program loop should be written to send a continuous
stream of characters to the interface. Do stream of characters to the interface. Do
not forget that it will be necessary to configure the computer for the correct baud rate. The row outputs from the interface
should be monitored to ensure that the appropriate row is pulsed low (use scilloscope or else a led in series with turn by sending an appropriate character to select each one. The interface should now be connected
to the typewriter. Data should be sent by
the computer to test the entire character

The computer should be configured to
utput both carriage-return and line-feed output both carriage-return and line-feed
characters whenever a new line is required. To check the sequence of the carriage-return and line-feed characters, position the print head at the right hand margin and send the typewriter a return signal from
he computer. Check that the print head returns to the left margin before a line-feed takes place. If the line-feed occurs first, hen link 5 should be changed (see Table). Led $_{1}$ should flash during the carriageeturn period and computer output should
Finally check that the paper-out circuit is operating correctly by ensuring that the led lights and the CTS line goes low at the nd of the line following a paper-out condiion being detected.

Modifying the typewriter

To attach the ribbon cable to the typewriter it is necessary to remove the typewriter top cover and the keyboard assembly. The pivoting cover on top of the typewriter should first be removed by
swinging it upward and springing one of its ends away from the retaining bar on to which it is clipped. The other end can then be unclipped and the cover removed. The knobs on either end of the platen roller sould then be removed by unscrewing hem.
Next the four top cover retaining screws
should be removed from the underside of he typewriter and the top cover taken off. Undo the two retaining screws at either side of the keyboard and lift the keyboard to unplug the cables from its underside. The cable connectors are easily distinguished so there is no need to mark them for later re-assembly. The keyboard assembly consists of two circuit boards spacers. The three nuts that fasten the circuit board to the spacers should be removed and the keyboard assembly unfolded. The ribbon cable should now be soldered to the main circuit board as
shown in Fig. 4 so that it emerges from between the two boards when they are folded together again. During re-assembly, take care to position the flexible ribbon to the print head so that it is not under tension when the head is at the extremes of
its travel. It is necessary to cut away some projections on the inside of the top cover to prevent damage to the cable when the cover is refitted.

Praxis typewriters are available through Wilding Office Equipment and other Olivetti $£ 290$ for the Praxis 35. Programmed eprom are available from the author at 18 Carnoustie Gardens, Glenrothes, Fife KY6 $2 Q B$ for $£ 9.60$ each including postage and as a bit from Technomatic L can be obtained

Table 2: Eprom converts data received by the uart into a code to select the typewriter typewriter response to each incoming ASCII code. Data for eprom locations 80 to FF is dentical to data in locations 00 to $7 F$ with the exception of location $8 A$ with data 36 and
location $8 D$ with data B. location $8 D$ with data $B 7$

Addr	Data	Char									
00	00		20	3E	Spc	40	44	0	60	46	£
01	00		21	3 E	Spc	41	61	A	61	21	a
02	00		22	42		42	56	B	62	16	b
03	00		23	3 E	Spc	43	7B	c	63	3B	c
04	00		24	3E	Sp	44	63	D	64	23	d
05	00		25	51	\%	45	5B	E	65	18	e
06	00		26	5E	\&	46	64	F	66	24	f
07	00		27	75		47	70	G	67	3D	g
08	2 E	B. Spc	28.	74	(48	$4 E$	H	68	OE	h
09	07	Tab	29	73)	49	6 C	1	69	2 C	i
OA	B7	Express	2 A	41	*	4 A	4 D	J	6A	${ }^{00}$	j
OB	00		2B	69	+	4 AB	4 C	K	6B	0 C	k
OC	00		2 C	13	,	4 C	4B	1	6 C	OB	1
OD	36	Return	2 D	32	-	4 D	54	M	60	14	m
OE	00		2E	12		4 E	55	N	6 E	15	n
OF	00		$2 F$	43	1	4 F	6B	0	6 F	2 E	0
10	00		30	33	0	50	6A	P	70	2A	p
11	00		31	01	1	51	59	Q	71	19	9
12	00		32	02	2	52	5C	R	72	1 C	r
13	00		33	03	3	53	62	S	73	22	5
14	00		34	04		54	5D	T	74	1D	t
15	00		35	06	5	55	6 D	U	75	2 D	u
16	00		36	05	6	56	7 C	,	76	3 C	
17	00		37	1E	7	57	5A	H	77	1 A	r
18	17	${ }_{1}^{18} \mathrm{Spc}$.	38	35	8	58		x	78	3 A	x
19	OF	M.Rel.	39	34	9	59	65	Y	79	25	y
1A	$1 F$	M.Left	3A	4 A	:	5A	79	z	7 A	39	
1B	27	M.Right	3B	OA	;	5B	3 E	Spc	7 B	3E	Spc
1 C	2 F	Tab set	3 C	3E	Spc	5 C	3E	Spc	7 C	3E	SpC
10	3 F	Tab clr	3 D	29	$=$	5 D	3 E	SpC	7 7	3 S	SpC
1 E	28	S.Lock	3E	3 E	Spc	5 E	3 E	SpC	7 F	3 E	SpC
IF	30	Repeat	3 F	72	?	5 F	45		75	10	Del

WIRELESS WORLD AUGUST 1983

Aerial inefficiency at sea

Innovation in marine aerials is badly needed: British thought in this area has been 'fossilized' for 50 years. But North Atlantic sea trials earlier this year of new Britishdesigned components have shown 'excellent results.' This is the third of John Wiseman's startling revelations on the state of marine aerials.

We at sea are not the only people who have been forced by an unfavourable environ
ment, to operate low-frequency transmit ters into aerials less efficient than the textbook optimum. The photograph on this page shows a trench transmitter of the First World War, operating on wavelengths between 500 and 2000 metres with
an aerial only a metre above the ground, and a range of 3 or 4 km . With an aerial of specified 40 foot length and 15 foot height,

Fig. 1. This I.f. trench transmitter operated into an aerial only a metre above ground, bu others workd from aerials inside the trench. (20watt Mk 3 transmitter, 1917 , has singlevalve tunied-anode oscillator, but a second valve could be s
power. HT supplied by 1,000 -volt battery or induction coil.)

Fig. 2. Those whose experience of a storm at sea is a rough ride to Calais on a stabilized passenger ferry can have little idea of the force of a North Atlantic winter gale. (Photo: P. F. Barber, Scarborough)
by J. J. Wiseman
range was up to 80 km . Even from this inadequate aerial, a useful service was stil obtained, even more remarkable considering the primitive receivers of those day Other 1914-18 War transmitters worke

Fig. 3. Top-loaded unipole aerial of Scandinavian origin. The stays add to the top capacitance, also to the leakage. Has little height. (Ph
into aerials actually inside the trench, below ground level, operating at 80 to 100 metres wavelength
The efficiency of the 500 kHz marine aerial depends, as for any other other, on its height and dimensions; the special ariable factor in the marine environment is leakage. A correspondent (WW Febaerial height of 0.1λ, at perhaps 40 or 50% efficiency is about the least we can hope to get away with, and at 500 kHz this correponds to 60 metres, an impossible heigh. ut according to a BBC Research Depart 963: ". . . a capacitative top is often added to a low aerial with the object of increasing the radiation resistance. In this ase, a large top changes the current distribution on the vertical portion of the aerial pproximately quadrupling the radiation resistance . . ". This might lead to the
 sited on available structures. ('Dumont
photographed at Cr. Couronne, 1983.)

Fig. 5. This stubby mast accounts for 5% of 2 erial capacitance, 2% of its radiation, and
30% of its cost 1 It makes no econ functional sense. Cargo cult design. ('lle de functional sense. Cargo cult design. 'Ille de
la Reunion,' French flag, b. 1969,16671 g.r.t. photographed at Rouen, 1983.)
hope that, with a good capacitive top, one could work with an aerial only 15 metres
high with useful efficiency. We will get some lift over ground-level figures because the base of the aerial is already well elevated by the hull of the ship. Figures $3 \& 4$ show about the least and the most that can
be done about 'tops' on an average ship be done about 'tops' on an average ship.
The bizarre arrangement in Fig 5 has all the correct ingredients, but has got them upside down: the money has been invested in the wrong end of the aerial. As well as improving radiation resistance, the 'top'
improves the L/C ratio, minimizing arcing. As manufacturers keep on supplying transmitters specified to match aerials of " 250 to 750 pF ", and shipyards tend to 8 supply aerials toward the lower end of the 80 to 400 pF range, the 'top' can only help,
avoiding tuning difficulties particularly at the low end of the 405 to 535 kHz band.

Fig. 6. Traditional British feedthrough set up, unchanged since the days of sil
movies, photographed in 1983 .

Fig. 7. Abbreviated version for a quick
cheap job on a 900-ton supply vessel failed repeatedly at sea. (Australian flag,
photographed in Tasmania, 1976.,

If the $R C$ product is too small, charge put into the aerial each cycle may leak away almost as fast as it can be supplied (R is parallel leakage). Time between peaks is
longer at lower frequencies. This is further good reason for making C as larg as possible. But what can be done about R ? The standard British feedthrough insulator arrangement, unchanged since 1930
is at its best and at its worst in is at its best and at its worst in Figs 6 and
7. The strain insulators are also standard British issue. Their presence adds to

\&

Fig. 8. German 10-foot-tall glass-fibre feedthrough trunk shown on its side.
Intelligent design, efficient and unobtrusive. Requires no safety fencing. Intelligent design, efficient and unobtrusive. Requires no safety fencing.
Might benefit from a few rain cones along the shaft. Dieckmann \& Klapper, Gerätebau
GmbH, Hamburg.)

Fig. 9. Simple and effective conical skirts o
common British telegraph pole insulators, in use for nearly a century pole insulators, recently adopted for marine use, Figs. 10

fig. 10. Tough German aerial strain insulator using skirt principle. Rated at 50 kV (dry) at 500 kHz z. 700 kg tensile load
mass 1.5 kg . (Dieckmann \& Klapper.)
leakage, and cancels any useful effect the bells might have. In earlier times the trunking (Fig 6) would have been made o oiled teak, and could have contributed to
the overall insulation. These days it is soggy plywood, even steel.
British thought in this area has been fossilized for 50 years; there has been re luctance to innovate or to produce an aerial hardware requiring much manufacturing. Books like "101 Things a Boy Can of this kind of feedthrourg for. The end sometimes unglazed and porous, ab sorbing water, and usually sealed with cork washers. A British firm makes a sol-vent-based silicone preparation which
causes water on the surface of a ceramic insulator to collect in small drops, prevent ing formation of a conductive film. It re quires oven curing. I have never seen it 'bitumastic strap' insulator, a yard-long
tough rubber thong, worked on this prin ciple, although it might have fried a A German-made feedthrough trunk, based on a tough glass-fibre tube, is up to three metres long (Fig 8); polyester stays are available to brace it. There is minima
shunt capacitance, small surface area, an a long way indeed to leak or arc. It is rated at 30 kV at 500 kHz . A neat arrangement: beats soggy plywood, and probably doesn't cost much more.
The insulator shown in Fig 9, with it
deep skirt, has been on British telegrap deep skirt, has been on British telegraph
poles for nearly 100 years - simple and effective. Only recently has a German firm adapted the principle to insulators for marine use, Fig 10 . The same idea is seen again on the base of a Russian mast
in Fig 11 . Why has it taken so long? The feedthrough insulator of Fig 12 with metal jacket and metal rain cone, was photographed on the British cruiser, HMS Belfast. If the Navy had advanced ideas, they did not see
merchant fleet.
But British ingenuity, neglected as it may be, is still very much alive and well, and living in Britain.
Recently patented, British developed feedthrough and aerial link insulators
(Figs 13 \& 14) with protective mantles o elegant design have undergone testing by elegant design have undergone testing by a
national h.v. laboratory and sea trials in the North Atlantic in winter with excellen
results, see Fig 15. The shrouding domes results, see Fig 15. The shrouding dome are made of transparent high impact plas-
tics. The feedthrough unit is held to the bulkhead by non-metallic nylon bolts, and a stream of air blown into the inner dome to prevent penetration by moisture, warmed as well if necessary to preven
icing. The link insulator unit has a vaned icing. The link insulator unit has a vaned,
wind-driven rotating outer dome, running on non-metallic rollers. Water entering is thrown out through small holes in the ro tating part. With salt-water spray directed into the gap between inner and oute domes for 30 minutes in laboratory tests,
flashover occured at 57 kV . An unprotected insulator under similar conditions began to spark over at 11 kV .
In Morth Atlantic sea trials, carried ou on a British tanker from late January to early April, one aerial retained its British the other being supplied with the domed shrouding mantle assembly. The day-today log kept shows typically an equal 4 A up either aerial in dry weather, but 'tuning impossible' with the standard aerial in bad
weather, while the modified aerial was still drawing a good 2.8 A , from the same 100 watt transmitter at 500 kHz . Later, link insulators with protective mantles wer added to that aerial, with further improve ment in results. While the standard aerial
drew only 0.5 , the modified aerial took 3.9A. What more can man do? Perhaps combine the best features of several of the systems described, no more.

Fig. 11. Base of Russian mast showing three deep-skirted rain cones on the central 1983.)

Fig. 13. Recently-developed British
Fig. 13. Recently-developed British
feedthrough assembly with dual-domed protective mantle. Moisture is expelled protectomes by air blower. (By P. F. Barber,
frarborough.)

Fig. 12. Metal-jacketed naval feedthroug cruiser, now museum. Plumbing suggests it might have been air blown.

Fig. 14. British invented link/strain insulator assembly with protective shrouding. Windassembly with protecting outer dome expels water by centrifugal action. (P. F. Barber,
Scarborough.)
fig. 15. Sea trials with one feedthrough protected, the other traditional. In later trials protected link insulators added. In bad weather at
380 miles, on 380 miles , on
500 kHz , US coastguard gave tetyically OSAT from traditional
side, OSA4 from protected side,
sian same transmitter
Had the usual Had the usual
shunting strain insulator been present traditiona
side would have side would have
fared even worse fared even wor
(P.F. Barber,
S.arborough (P.F. Barber,
Scarborough.)
rimental difficulties encountered in accurately determining both the distance betwe medium, so only the amplitude is considered here. Thus D is set equal to one and the exponential time dependence may be dropped:

$$
\begin{equation*}
\mathrm{p}=\frac{\rho \mathrm{ck}}{4 \pi \mathrm{r}} \mathrm{Q} \tag{3}
\end{equation*}
$$

where p and Q are r.m.s. amplitudes. Both spherical radiation and free-field conditions are implicit in equation 3, and the discussed when the practical application of this theory is considered
The free-field voltage sensitivity m of transducer used as a microphone is the ratio of the open-circuit voltage output to the free-field sound pressure p :
$\mathrm{m}=\mathrm{e}_{\mathrm{d}} / \mathrm{p}$.
(4)

The transmitting voltage (or current) response, $s_{v}\left(s_{i}\right)$, of a transducer used as a speaker is the ratio of the sound pressure at unit distance from the transducer to the voltage applied across (or the signal terminals:
$s_{v}=p / v$ or $s_{i}=p / i$.
Combining equations $3 \& 4$

$$
\mathrm{m}=\frac{4 \pi \mathrm{re} \mathrm{e}_{0}}{\rho \mathrm{ckQ}} .
$$

a distance r from the device. Network (a) represents a transmitter or loud sound pressure p at the output. Network (b) represents a receiver or microphone input produces an open-circuit voltage e at the output terminals. Equation 1 may then be written
$\mathrm{i} / \mathrm{p}=\mathrm{Q} / \mathrm{e}_{0}$.
For those unfamiliar with acoustic termiology, the rate of flow in the medium from source is

$$
\dot{Q}(t)=\int_{A} u(t) \cdot d A
$$

where A is the area of the vibrating surface and $u(t)$ is the velocity of that surfact
Generally, for simple harmonic motion

$$
Q(t)=Q e^{j \omega t}
$$

where Q is the strength of the source. A ow frequencies a loudspeaker cone may be strength is simply the effective area multiplied by the cone velocity. The acoustic pressure p at a distance r from this source is inversely proportional to r , if spherica spreading is
the equation

$$
p(t)=\frac{\mathrm{j} \rho \mathrm{k}}{4 \pi \mathrm{r}} \mathrm{Q} \mathrm{e}^{\mathrm{j}(\omega t-\mathrm{kr})} \mathrm{D}(\mathrm{r}, \theta, \phi)
$$

ρ is the density of the medium, c is th sound speed, $\mathrm{k}=\omega / \mathrm{c}$ is the wave number o cribing the directivity of the source with arguments r, θ, ϕ in spherical co-ordinates. For this discussion directivity is neglected as once the sensitivity has been found in the straight-ahead direction it is a simple
matter to rotate the source and measure the relative response in other directions and so determine the beam pattern. Phase angle may be retained in these calculation but is generally neglected because of expe-

Combining the first two by eliminating S_{C} gives
$\mathrm{M}_{\mathrm{A}}=\mathrm{D}_{\mathrm{CA}}-\mathrm{D}_{\mathrm{CB}}+\mathrm{A}_{\mathrm{Cb}}-\mathrm{A}_{\mathrm{CA}}+\mathrm{M}_{\mathrm{B}}$ But $M_{B}=S_{B}+K_{B}$ and substituting for from the third equation leads to
$\mathrm{M}_{\mathrm{A}}=1 / 2\left(\mathrm{D}_{\mathrm{CA}}-\mathrm{D}_{\mathrm{CB}}+\mathrm{D}_{\mathrm{BA}}+\mathrm{A}_{\mathrm{CB}}-\right.$ $\mathrm{A}_{\mathrm{CA}}-\mathrm{A}_{\mathrm{BA}}+\mathrm{K}_{\mathrm{B}}$
The receive sensitivity of the microphone has now been found in terms of distances ciprocity factor. The rest is plain sailing. Using equations $13 \& 14$

$$
\mathrm{S}_{\mathrm{C}}=\mathrm{D}_{\mathrm{CA}}-\mathrm{A}_{\mathrm{CA}}-\mathrm{M}_{\mathrm{A}} \text { and }
$$

$$
\mathrm{S}_{\mathrm{B}}=\mathrm{D}_{\mathrm{BA}}-\mathrm{M}_{\mathrm{A}}-\mathrm{A}_{\mathrm{BA}}
$$

and by reciprocity:

$$
M_{B}=S_{B}+K_{B} .
$$

The transmit sensitivity of the speaker and the reversible device are now known. The speaker and microphone may not be reciprocal. For instance, an electret microphone usually has a built-in preamplifier so obviously not reversible, and as the termi-
nals of the transducer are not directly accessible the impedance cannot be calculated. However, if either or both of these transducers are reversible the remaining sensitivities are easily found:

$\mathrm{S}_{\mathrm{A}}=\mathrm{M}_{\mathrm{A}}-\mathrm{K}_{\mathrm{A}}$

$\mathrm{M}_{\mathrm{C}}=\mathrm{S}_{\mathrm{C}}+\mathrm{K}_{\mathrm{C}}$
These last six equations give absolute calibrations for each of the transducers, ob tained without a reference transducer. Th measurements and calculations must b at first glance the process may seem dious. But the amount of experimenta work is no greater than carrying out thre separate frequency response procedure using a standard transducer, while the cal culations are simple arithmetic and easil If practicable, some easing of the workloa can be achieved by making distances and drive voltages constant for all tests.

Measurement techniques

 Before the calibration procedure can beginthe impedance of each transducer must be found as a function of frequency so tha the reciprocity factor can be calculated. a bridge is not available the simple circuit of Fig. 3 generally provides satisfactory
results. To keep errors low, R should be results. To keep errors low, R should be
low resistance $(R<Z|Z| 100)$ if th low resistance
transducer is a high impedance device, an the impedance obtained from $|\mathrm{Z}| \approx \mathrm{V}_{1} R / V_{2}$. If the transducer is a low impedance device then R should be a high resistance ($R>100|Z|$) and the impeda
obtained from $|Z| \approx V_{3} R\left(V_{1}-V_{3}\right)$. Most transducers have very low electro mechanical coupling coefficients so no special precautions need be taken, provided the active face is not pointin directly at a nearby reflecting surface
Some devices such as piezoelectric twee ers are very efficient, and any obstacl within several wavelengths may affect the measured impedance. A sensible proce

Fig. 3. In the absence of a bridge the input mpedance of a transducer may be across a series resistor.
air, allowing it to swing freely. If the imdance does not appear to change as the uch as tweeters, whilst not requiring a abinet for their operation, should be ounted as they will be in service, because he presence of baffle will affect both imedance and sensitivity at frequencies he wavelength.
The basic measurement set-up is shown in Fig. 4. The hardware need not be ophisticated, but before discussing the nd the necessary conditions must be considered.
Measurements should be made in the far-field of the transducers, which means hat the projector is assumed to be a point and the receiver is assumed sufficiently mall that the wavefront may be consid ered plane over the transducer face. As ooth have finite size there must be suffiient distance between them before the orking rule the minimum distance hould be $\mathrm{a}^{2} \mathrm{f} / \mathrm{c}$ or 5 a , whichever is the greater, where a is the maximum dimenion of the larger transducer and c is the sound speed. In ane e include the . The size ctive face of the transducer, as any discontinuity can act as a secondary
source.
The free-field condition is generally the most difficult to deal with, and essentially oradiate spherically with no disturbance by boundaries or obstacles within the field of interest. In principle the receiving ransducer should not distort the wavefront, but there is little that can be done to There are a number of ways to tackle the free-field problem:

- measure in an anechoic chamber
- measure out of door

4 - measure in a room and correct for reverberation by calculation or signal

- meacessing in
- measure in a room and ignore room effects.
The effect of reverberation is to introduce ripples into the measured requency
response. If the ultimate in precision is not required it is generally possible to estimate the mean level, and (5) may prove satisfactory. An anechoic chamber is not usually available, so weather permitting, (2) may be the best compromise. Solution
requires specialized instrumentation or vast computing power, but an interesting discussion of a typical tech-
ique is given in reference 6. The pulse method (3), is described in detail in referances 2 and 3 , but the principle is summarized here. vel from transmitter to receiver by paths travels fairly slowly in air it is possible to transmit short tonebursts and measure the received signal before reflections reach the receiver, Fig. 5. It is usual to use a gating and sampling system to achieve this result, result in accuracies better the 0.5 dB . If a gated signal generator is not available, a imple fet switch can be constructed, as described in reference 2
Maximum pulse length is determined by flected path length. The minimum pulse length is determined either by the risetime (and therefore the bandwidth) of the ransducers or by the time constant of the detector. As frequency becomes lower a
longer pulse is needed to encompass a sufficient number of cycles, and the method becomes unuseable when the wavelength approaches the differences between direct and reflected path lengths. In averageThe maximum pulse repetition rate is determined by the time it takes for reflections to decay to negligible amplitude. These times may be calculated, but are easily set empirically by direct observation f the signals.
Frily checked by far-field conditions are with equation 3. If the transmitter is driven at constant frequency, constant voltage, and the receiver output voltage
measured as a function of distance, this voltage is then inversely proportional to distance.
The total transmission chain should be linear, with no saturation effects. It is not generally appreciated that the acoustic
medium itself may become non-linear at high pressure amplitudes, especially at high frequencies or when the transmission path is constricted as in a horn. Testing for proportionality between transmitter drive oltage and receiver output wil check for noise ratio.

Fig. 4. Minimum instrumentation is a signa generator and unter and a means of
frequency count monitoring the transmitter drive level and receiver output voltage.

Peter Dobbins begarin his career as a echnician apprentice with BAC, Hurn, obtaining a City \& Guilds qualification
n aeronautical radio and instrumentation at day release and evening classes. His first professaiona contact with acoustics was at Ultra
Electronics, Greenford, where he Electronics, the evelopment of
worked on the devel transducer arrays for sonobooys. He joined BAe at Weymouth (formerly
Sperry Gyroscope) in 1976 to work in electronics design, but transferred to the underwater technology department in 1981. Since then he has gained an from the Open University, and has recently been elected a member of the Institute of Acoustics. In 1982 he specialist transducer group at BA , and is now a senior engineer working on nderwater acoustic transducer and array design, with interests in longrange propagation and non-linear
generation of low frequency sound

Reciprocity must also be confirmed. It is not possible to check that the individua measurements on the acoustic field, but it is possible to test the combined transmit ter/receiver chain, simply by measuring the transfer admittance in both directions With two transducers in their final measurement positions drive one, noting the
input current i_{1} and measure the output input current i_{1} and measure the outpu connections and measure the new input current, i_{2}, and output voltage, \boldsymbol{e}_{2}. This
should be repeated at a number of frequenshould be repeated at a number of frequen cies over the range of interest. If $i_{1} / e_{1}=i_{2} / e_{2}$ may be regarded as reciprocal.
Making the calibration measurements is straightforward. It is assumed that contin uous rather than pulsed signals are being
used and that some suitable location has used and that some suitable location has
been found, perhaps out of doors, enabling free-field and far-field conditions to be met. Typically the transducers under tes will be two loudspeaker drivers and microphone, one of the speakers being
used as the reversible device, taking care to used as the reversibe device, takeagers.
distinguish between the two speakers The first job is to select the frequencies to be used, and common practice is to hav third-octave steps, the sequence being 1
1.25, $1.6,2,2.5,3.15,4,5,6.3,8,10$ etc keep to the same frequencies for each set measurements.
The speaker and reversible device should be positioned, pointing directly to wards one another, at the appropriate free as possible to reduce the effect of reflec tions. The distance between the transduc ers should be measured. Measure from the diaphragm, if exposed, otherwise from the plane of the baffle or front of the mounting
structure. Instrum
Instrumentation is set up as in Fig. 4 using the speaker as transmitter and re-
versible device as receiver in the first test. There are no special requirements of the signal generator and three-digit accuracy is adequate for the frequency counter. The hi-fi unit, and to get the best signal-tonoise ratio the drive level should be as high as possible, subject to linearity, transduce power handing neighbours
One point about the detector. The
theory described here applies specifically to open-circuit output voltage, so the detector input impedance must be much greater than the output impedance of the transducer or results will be meaningless.
It is not necessary to have seperate instruments to measure transmit and receive voltages, but it does make the work less complicated
Once the equipment is operating satis-
factorily the drive voltage and factorily the drive voltage and received
voltage must be noted at each frequency of interest. This procedure is then repeated with the speaker as transmitter and microphone as receiver, and finally with the reversible device as transmitter and microphone as receiver. The required
sensitivities can then be calculated from equations.

Results

Repeated and careful reciprocity measurements can result in a sensitivity accur-
acy of 0.5 dB or better, but real life tics is not that exact. The transducers hemselves are not particularly stable. Their sensitivity will certainly vary with temperature. More importantly, the radiaion resistance is proportional to the den-
sity of the air and the speed of sound, both sity of the air and the speed of sound, both
of which can change with temperature pressure and humidity. This change will be reflected in the input impedance, and

Fig. 5. In suppressing echoes by pulse
technique, the transmitted pulse is short enough to allow the received signal to be
measured before the arrival of reflections. conditions. Additionally, density is in luded directly in the reciprocity relationship. The density of air can var from less than 1.0 to over $1.3 \mathrm{~kg} . \mathrm{m}$ hich represents an uncertainty in equ Another potential lected in the theory, is absorption. Gene ally the dissipation of acoustic energy in ai ue to mechanisms such as molecular r waion and viscous losses is low enough e ignored. At high audio frequencies, relative humidity the attenuation due to absorption may be as high as 1.0 dB pe metre.
Thes These, and many other imponderables mean that an accuracy of better than 1 or
dB cannot be guaranteed in uncontroll conditions. This, however, is more tha adequate for most domestic application where the main requirement is to ensure that the frequency response of a transduce is essentially flat, and that there are n
unwanted resonances. It is unlikely tha these results can be bettered with a cal brated microphone under similar cond tions.

References

1. Leo L. Beranek. (1954 'Acoustics' Ch 2. P. D. Hiscocks, Measuring tran ducer directivity Wireless World, vol. 84 1978. No. 1512, pp. 61-66.
2. R. N. Grubb. Non-echoic acoustic mea surement with theHP 3582 A , Wireles
W orld, vol. 86,1980 . No. 1531, pp. $45-49$. 4. L. D. Luker and A. L. Van Buren, Phase calibration of hydrophones, \mathcal{F} Acoust. Soc. Am., vol.70, 1981. No. 2, pp .516-9.
3. W. R. MacLean, Absolute measurement of sound without a primary stanpp. 140-6.
4. R. B. Randall and J. Hee, Cepstrum analysis. Wireless World, vol. 88, 1982. No 1553, pp. $77-80$, No. 1554, pp. $88-90$ and
No. 1556, pp. $78-80$.

Appendix: units

Rationalized MKS units have been used throughout this article, which is something of a novelty in acoustic circles. In under water acoustics MK is in general use, but
the Navy sticks by the traditional fathoms knots, kiloyards, millibars and so on. Hi-f people seem happy to use a simila mixture, with an annoying habit of quoting sound levels in decibels without stating terms like Noy, Sone and NEF mean, as used by environmental noise and architectural acoustics people.
Conversions between imperial, c.g.s.
and MKS units are straightforward, but and MKS units are straightforward, bu
take care over whether to add or subtract take care over whether to add or subtract
when dealing with decibels. One worth 1 rembering is $=-0.8 \mathrm{~dB}$ relative to 1 m .

It is customary to specify air at a tem pheric pressure in defining standards coustic intensity, impedance, pressure and so on. Under these conditions the den sity of air is $1.21 \mathrm{kgm}^{-3}$ and the speed sound is $343 \mathrm{~ms}^{-1}$, giving for the standar characteristic impedance of air $\rho \mathrm{c}=41$ ture and pressure are known to exist in particular situation, the above value should be used for the solution of prob lems.

The commonly used reference standard of intensity for airborne sound is 10^{-12}
watt m^{-2}, which is approximately th intensity of a 1 kHz pure tone that is barel audible to normal human ears. This corre sponds to an effective (root mean square) pressure 0
$\mathrm{p}=\sqrt{1 \mathrm{p} \mathrm{c}}=\sqrt{415 \times 10^{-12}}=2 \times 10^{-5} \mathrm{Nm}_{-2}$
The diagram gives the relationships be tween the most commonly used reference pressures. Although calculations are made
much easier by keeping to MKS units

Reference pressure levels in common use
and the relationships between them.
throughout the results may be expressed in any convenient units A simple example demonstrates its use
$S=110 \mathrm{~dB}$ re $1 \mathrm{~Pa} / \mathrm{V}$ at lm
$=110-26=84 \mathrm{~dB}$ re $2 \times 10^{-5} \mathrm{Nm}^{-2} / \mathrm{V}$
$=110-100=10 \mathrm{~dB} \mathrm{re} 1 \mathrm{bar} / \mathrm{V}$ at 1 m
$=110-120=-10 \mathrm{dP}$
$=110-120=-10 \mathrm{~dB}$ re $1 \mathrm{~Pa} / \mathrm{V}$ at 1 m .
A more complicated conversion migh
be as follows. A loudspeaker manufacture states that the sensitivity of one of his ucts is
96 dB at 1 yard for 0.6 W input.
Experience suggests that the reference pressure is probably $2 \times 10^{-3} \mathrm{Nm}^{-2}$. If th impedance is nominally 8Ω an input powe of 0.6 W requires a drive of 2.2 V .
$20 \log 2.2=6.9 \mathrm{~dB}$ relative to 1 V .
The sensitivity is thus
$\mathrm{S}=96-6.9=89.1 \mathrm{~dB}$ rel. 2×10^{-5}
$\mathrm{Nm}^{-2} / \mathrm{V}$ at 1 yard
Subtract 0.8 dB to refer to lm
$\begin{aligned} & \mathrm{S}=89.1-0.8=88.3 \mathrm{~dB} \text { rel. } 2 \times 10^{-5} \\ & \mathrm{Nm}^{-2} / \mathrm{V} \text { at } \mathrm{lm}\end{aligned}$
And subtract 94 dB to refer to 1 Pa
$\mathrm{S}=88.3-94=-5.7 \mathrm{~dB}$ rel. $1 \mathrm{~Pa} / \mathrm{V}$ at 1 m .

How to make electric charge from a radio wave

A wave in free space can be persuaded to enter a transmission line where its velocity may be reduced whilst still conserving its field pattern. If the transmission line is formed into a closed circle it may be spun at the same angular velocity as that of the wave to produce an electrostatic field in the laboratory, just as from a charged surface, but the primary energy is entirely in the wave field. Which then is the more fundamental, charge or field - do we really need two criminals where one may suffice?

In recent years there have been a number of controversial articles in Wireless World which are fundamental to wireless and wired communication. One is often tempted to comment in the letter column but it is entertaining to sit back and wit ness battles which, too frequently, are resimilar battlegrounds in days gone by. will not enter directly into the controver sies, although it may be clear in which direction my sympathies lie, but I will present a little conundrum and show how with simple apparatus that can be con structed at home by many readers of Wireless World.
What is
What is electric charge? What is it made of and why does it have, and appear to electric field, whatever that may be? If you do not like the concept of an electric field but prefer to live in my old friend Sandy Scott Murray's particulate world, substiphotons, whatever they may be. The ans wer that charge is simply an excess o deficit of electrons, is not sufficiently fundamental. What is the nature of the charg on a single electron? Even if the electronic charge is made of miniscule sub-particles
which defy discovery the same question remains: what is charge, is it a special sor of green cheese which acts as the source of an electric field? Its only purpose seems to be to support the field, or complex of virafter all it is a very old concept that predates Friday's work on fields. At the present time we appear to have two separate unknown criminals who trave hand-in-hand, the electric charge and th
electric field. Can we not form a mode electric field. Can we not form a mode
which causes the two criminals to coalesc and thereby remove at least one of the unknowns?
tart by considering an imaginary expe
by R. C. Jennison
riment using some of the radiation that has been around since the time of the 'big bang. The the universe is thought to be the dying remnant of immaculately conceived radiation which cannot be associated with the radiation from particulate matter. We can pick up some of this radia it down a transmission line in which the velocity of propagation of the disturbance depends on the dielectric properties of the line. In principle the dielectric constan can be as high as we wish so that the disturbance moves at a velocity in a transmission line is given by the reciprocal of the square roo of the product of the inductance and capacitance per unit length, which is

$$
c^{\prime}=(\mathbf{L C})^{-1 / 2}=(\mu \epsilon)^{-1 / 2}=c /\left(\mu_{\mathrm{r}} \mathrm{E}_{\mathrm{r}}\right)^{1 / 2},
$$

the same as for an electromagnetic wave in the medium when no conductors are pre sent). Coil the line around so that the cir cumference is precisely one wavelength in the line, Fig. 1(a). We now have to work very quickly bur rimember experiment at this stage! Chop a section out of the line which carries exactly one wavelength and couple the input of the section immediately to the output of the same section, (b). We now uous transmission line of one wavelength circumference. The radiation will quickly decay but we can at least imagine a transmission line with very low losses so th the wave circulates for a finite time.
You may not care for the idea of changing the connection or quickly, so if you the arrangement in Fig. 2 where two isol tors are used to achieve the same result.

Now take stock of the situation. We have a single loop of transmission line which originally contained no energy other han that associated with its rest mass but which now contains an additional packet of pure electromagnetic energy whose origin present universe, about $15,000,000,000$ years ago. This energy, in the good oldashioned concepts of wireless, is in the orm of an electromageric we ectric and g a sinusoidal patter of electric and nd are travelling around the loop at the anguid velocity c^{\prime}. The fields are not coming directly from the electrons in the conductors of the transmission line but these electrons mirror the passage of the
wave as they are influenced by the induction from the waves whose origin we have traced. The frequency at which the wave circulates around the loop is the same as hat of the original received signal, say 300 GHz in round figures, whereas the dielectric to only a tiny fraction of its original length
We are now ready to perform the final rrick. Take the little loop containing the wave and spin it, about an axis through its which the wave is travelling, increasing the speed of rotation until it is rotating anticlockwise at exactly the same angular peed as the wave is rotating clockwise. The trapped wave is now precisely at rest line is spinning round at high speed. It is in fact spinning at $-\mathrm{c}^{\prime}$, very much less than the free space velocity of light c , so that from the point of view of the mechanics the principle is d
as indeed we shall shortly see.
as indeed we shall shortly see
If we now examine the space in close
poximity to the little loop we find a static electric field. It is not a standing wave but anuly stationary, unvarying field, the in

(a)

Fig. 1. A wireless wave from the origina

 'big bang' radiation is picked up on afolded dipole and fed into a 300 ohm transmission line, as shown (a). In principle, the coiled section may be
removed and connected full circle whilst the wave is still in the line (b).
direction (say +) in one part of the line, a naximum in the other direction (say -) the two quadrant points in between. Renember that this is the field that we originally trapped from space and the lectrons in the wires are simply slaves to its influence. Relative to the centre of the
disc, it is in fact a static dipole field for the particular configuration of the experiment in which both conductors are in the plane of the disc, one of slightly smaller radius han the other. Relative to the laboratory upper and lower halves.
Returning to the fundamental point raised at the beginning of this article, we have produced a static field but where are the charges which provide the source of that field? There are none; the electrical electronic charges in the conductors are simply catalytic. We have essentially produced a 'charge' from the electromagnetic wave, for one cannot differentiate between the static field that we have produced and distribution of 'real' electric charges on a stationary ring in the laboratory.

Practical demonstration

It may well be that you consider that all the above is a lot of academic guesswork and that nothing like it could be achieved in practice. To prove the point I constructed wo demonstration systems. One of these uses inexpensive and readily available
electronic components and can be built quite easily at home. To this end the frequency is scaled down to the sub-audio range but the apparatus could still, in principle, contain a wave from the virgin past. The apparatus and its implications have 15, 1982, pp.405-8.
To achieve exceptionally slow velocities of propagation in a transmission line it is usual to increase the permeability and permittivity μ_{r} and ϵ_{r} or equivalenty to
increase the capacitance and inductance per unit length by the use of 'lumped' circuits, in which discrete large values of L
and C are cascaded to form a continuous line of discrete sections. The physical prin electromagnetic principles as those in continuous distributed line which for a equivalent propagation velocity would require impractical values of permittivit the set of lumped circuits in the apparatus to be described form a dense medium, whereas at low frequencies the molecules in a 'continuous' dielectric behave, on a microscopic sca
The arrangement uses a lumped-circuir transmission line in which there are 32 sections giving a total delay of 120 ms . Th inductors are small 1:1:1 transistor coup ing transformers (RS Components) with
their windings connected in series to in crease the inductance. The capacitors are $1 \mu \mathrm{~F}$ polycarbonate types from the same supplier. There is a small loss of the order of 1 dB in each section of the line and small linear repeater amplifiers are included in the circuit to compensate for this loss.
These repeater amplifiers consist of an f.e.t. input stage feeding a bipolar output stage and the gain is set to compensate for the loss in the adjoining section of line The complete line is looped on itself in Fig. 3.

Energizing the linear repeater amplifiers in the completely closed circular loop causes an oscilation to build up in which sinusoidal wave with a period of approximately 120 ms propagates around the
system in a clockwise direction. A slight roll-off in the response of the system, to gether with the maintenance of just sufficient gain to compensate for the losses ensures that the waveform remains sinu the cycling sinusoidal wave places the system in the general category of phase locked particles ${ }^{\star}$, the particular mode corresponding to one complete wavelengt around an annular system. It is possible to inject a signal into the system to initiate th
circulation of the wave but one canno differentiate such a wave from that result ing from self-oscillation, and the last mentioned serves equally well to demons trate the phenomenon under discussion.
The whole system is arranged mechani The whole system is arranged mechani-
cally in a well-balanced configuration on strong laminated plastics disc, and powe to the repeaters is supplied from two smal 9 volt batteries strapped symmetrically be hind the disc. At the centre of the disc there is a hub which is firmly attac
small variable speed electric motor
Upon energizing the repeater amplifiers, a travelling wave moves round the system in a clockwise direction and the travelling field may be sampled at take-off poin

* Jennison, R. C. and Drinkwater, A. . . . Phys. A. vol. 10 1977. pp. 167 .79. Jennison, R C. I. Phys. A. vol. i1 1978 , pp. 1525-33. J Phys. A. vol 131980 pp. 2247-50. Second Ox ford Quantum Gravity Conference (Lond 405-8. Wireless World vol. 85 1979, June pp. 42

32 elements give a sufficiently close ap proximation to a continuous line and detected passing each of these points. An alternative display system consists of a set of red light-emitting diodes, each of which
glows on the passage of the positive crest glows on the passage of the positive crest
of the wave, and a set of green light-emit of the wave, and a set of green light-emit-
ting diodes, each of which glows on the passage of the negative troughs. When rest the disc then exhibits a circle of rapidly flickering red and green lights corresponding to the circular r r
the wave system at about 8 Hz
The disc is now spun in an anticlockwis sense at such an angular frequency that it is precisely equal and opposite to that of the wave. At this velocity, the wave, whils still travelling relative to the disc, becomes
stationary in the laboratory. The resulting stationary in the laboratory. The resulting
potentials may be sampled to confirm the stationary state of the field system, but the most vivid demonstration of its state is given by the light-emitting diodes which form two stationary arcs, as shown on the
front cover, one of positive (red) and the other of negative (green) potential relative to the centre. With careful adjustment of the speed of rotation, this static dipol electric field may be maintained in definitely in the laboratory.
It should be stressed that the effect is
truly that of a static field and neither truly that of a static field and neither rapidyy reversing field, as in standing wave
systems, nor a stroboscopic artefact. The crests and troughs of the are truly brought of the travelling wave are truly brought to rest in the laboratory
and indeed it is possible to reverse the original direction of propagation, withou reflection, by increasing the rotational speed of the motor.
An interesting conceptual problem then arises with regard to the magnetic field of the wave. The particular apparatus des
cribed here is not designed in such a way that the magnetic field may be sampled and there can be two schools of thought on whether or not it is also stationary. On argument is that as the charges are n
moving in the laboratory moving in the laboratory there oughe to ment is that as the travelling wave has magnetic field in phase with the electric field this magnetic field should appea stationary when the electric field is ren

Fig. 3. Artificial delay line whose construction is described in the text in which a wave runs in the clock kwise direction. Rotation of the system in an anticlockwise direction at the same
in angular frequency as that of the wave produces a static field. Red and green light-emitting
diodes, connected at the points marked + and , indicate the stationary wave, as on the diodes, connected
dered stationary. It appears that the first argument is fallacious for it ignores the motion of the system relative to the wave whereby the Maxwellian property of the wave system should break down even when the velocity, relative to the observer, is reduced to zero.

This demonstration is crude but very enlightening. We have got rid of one of the criminals who were travelling hand-inNature probably has a of this article. achieving the same thing by so convoluting the electromagnetic field in the unique mechanism of electron-positron pair pro-

action that a perfect system is forme Which has all the stable and wonderf concept of charge which is now fully in grained in our conception of the properties of matter
Having formed a static field from a travelling electromagnetic wave I am quite in Wireless World, that if I hurl it around on a string it will give rise to freely prop gating electromagnetic waves at the frequency of rotation, the energy coming from my muscles as I whirl the string. however, you ask me what these electro along with Feynman, that I have not the faintest idea. It is a pity that some of the classical apparatus has disappeared from modern teaching. It is my belief that every budding researcher should be given a gold minutes every day. Ultimately someon may really explain the phenomenon whic keeps the leaves apart.

UTHRATURI

RECEIVED Over 40 different types of coaxial cables fo
data transmission, radio and microwave tre quency transmission and communications are listed in a brochure from Greenpar Connectors
PO Box 15 , Harlow, Essex, CM20 2ER.
WW40
A tutorial manual describes the generation of graphics using Regis (remore graphics instruc
tion set) for use with the VT1 25 terminal. Th VT125 Regis Primer consists of 11 chapters 130 pages and provides a full description of each command or function will worked examples and illustrations. 5 from Rapid Terminals,
Denmark Street, High Wycombe, Bucks HP1 Denmark Street, High Wycombe, Bucks WW402
2ER.
'Magnetic materials and components' is fanges of Mo -permalloy powder magnetic cores and other iron powder cores, tape-wound cores,
and other magnetic materials. WWalmore and other magnetic materials. Walmore, who
issued the folder as well as stocking other manuissued the folder as well as stocking other manu-
facturers' magnetic materials, also manufacture ferrite toroidal cores for use in switching power supplied. Walmore Electronics Ltd, 11 Bet
terton Street, London WC2H 9BS.

The Toolrange catalogue in its latest 1983/84 edition is even bigger than its predecessors, lising to test instruments and other production aids. Anything from tweezers to power drills. Toolrange Ltd, Upton Road, Reading, Berk
WG404

SATN and TK!SATN, two publications from Software Arts, are for users of Visicalc and TK!Solver data processing packages. Availab from Software Arts Products Corp,
Lane, Wellesley, MA 02181, USA. WW40
Photomultiplier tubes (with high efficiency arc rubidium-caesium types), according to litera-
ture from Thorn EMI Electron Tubes Ltd Bury Street, Ruislip, Middlesex HA4 7 TA. The new tubes are plug-in replacements for the olde
ones in the Thorn EMI range.
WW40

CRCUTT DEEAS

Direct reading cable

reflectometer

This circuit measures the length of a cable by comparing the delay of a reflecwith a standard time interval.
A $20 \mu \mathrm{~s} 2 \mathrm{~V}$ square wave is driven into the cable from 75Ω and a fast dual comparator

NE521 and nand gate give 0 output during he period that the waveform is between $1 / 2$ and $11 / 2 \mathrm{~V}$. During negative half-cycles ing edges on an open circuit triggering it. The resulting waveform is amplified and clipped, filtered to leave only average d.c., and applied to a digital panel meter. Zero cable length gives approximately IV d.c.;
$=10 \mathrm{~ms}$. Open/short circuit indication is 10ns. Open/short circuit indication is parator with the higher ($11 / 2 \mathrm{~V}$) threshold ust before the falling edge of the drive waveform.
J. Andrew Suter

London

Predictable relay

oscillator

A single relay connected to interrupt it own supply simply behaves like a buzzer And the same is true for a pair of relays connected so that each cuts the supply to oscillator employed by British Telecom uses three relays, as described by Atkinson (Telephony II, page 304): The relays are arranged in a ring, so that each when ener gized cuts the supply of its predecessor parallel, to delay release. When power is applied to the ring there is a short and unpredictable struggle, followed by regular cyclic oscillation.

A predictable two relay oscillator is hor S open (Except for B_{2} - sorry).

This arrangement cannot act like a buzzer because of the toggle action. Thus relay A cannot cancel its instruction to relay B at once, but instead its changeover contac must move right across its gap. Output can quency is $3-10 \mathrm{~Hz}$, depending on obvious
factors. A relay oscillator will usually be started
by the contact S when output is required, by the contact S when output is required,
so start-up is of interest. The version illusso start-up is of interes. The
trated has entirely predictable start-up, heerfully for 20 years in a private tele phone exchange.
M. McLoughlin

Haberdashers' Aske's School
Elstree

CIRCUMTP IDEEAS

Opto-coupled trigger for electronic ignition
This circait is designed to improve th discharge ignition systems using thyristor as the discharge element. This is accomplished using an opto-thyristor which, while providing an enhanced drive to the
discharge s.c.r. requires a reduced drive discharge s.c..r., requires a reduced drive
from the points circuit. This circuit has been tested with both the Marston (Jan 1970) and Cooper (March 1982) circuits described in Wireless World.
One of the problems in ignition design is that of the gate sensitivity of the discharge
thyristor; if it is high the circuit can be triggered by transients and the s.c.r. is more costly. If it is low, large RC value are needed in the differentiator circuit, which may upset timing at high revs. This circuit avoids these problems by RS as 308-001 or the GE H11C4/Monsanto MCS2-400. It is a 6 -pin d.i.l. package. A A 100 mA gate-sensitivity s.c.r. is used with a $2.2 \mathrm{k} \Omega$ resistor mounted directly from gate to cathode. When the opto-s.c.r.
is triggered current flows via the 220Ω resistor until the conventional s.c.r. fires. The opto-s.c.r. then self commutates, effectively giving d.c. gating. Components C_{1} and R_{3} are chosen to give best suppresion of transients over a wide temperature sitivity of the opto-s.c.r. but would in-

Economical monitor

 conversionMany recent teletext colour tvs can be used as RGB-input monitors as this interface for BBC computer and a tv set using the TDA3560 series colour-decoder i.cs hows. Synchronization signals from the relay to switch RGB minals to dour-pole f the TDA3561 and route computer sync. signals to line and field timebases. The p -n-p transistor forces the TDA3561 data/video control terminal to the data state and might be used to disable the i.f./detector outputs of this computer are not standard video levels and require attenuation; long connecting leads should be avoided since synchronization output is t.t.t.1.
Teletext decoders are often fed by the
composite-video signal sent to the tv composite-video signal sent to the tv decoder also receives computer synchronization signals at its video input. With some makes of receiver, switching to teletext mode will remove interlace flicker on the computer display. Check that the receiver modification.
Richard Norwoo
London SE25

crease the light drive required for opera tion at low temperatures. If the unit is to be potted C_{1} should be increased in value to cope with the increased coupled dV/dr The drive circuit is basically that used by Cooper with revised differentiator value
and a diode in inverse parallel to the 1.e.d. in the opto-s.c.r. The circuit has been in operation for several months and has P. J. Dining false triggering urnopfield Newcastle upon Tyne

Non-volatile

ram module

A non-volatile ram module can be con structed using a low-power static chip and a few additional components. The basic requirement for non-volatility is to maintain the static ram in a standoy mod cuit or when the external power supply is switched off. The stand-by mode is achieved by maintaining about 3 to 5 volts on the supply pins of the ram and by holding the chip enable line, $\overline{\mathrm{CE}}$, within low-power static rams, such as the low-power static rams, such as the
HM6116LP-4, draw only $4 \mu \mathrm{~A}$ in a standby mode. Thus small mercury cells may be used as a 'power' supply that will last theoretically, for years. It is important that the stand by cells do not drain down to the switched off. It is also important that no voltage exists between any two pins of the non-volatile ram module when unpo wered.
The circuit shown achieves all these requirements. Three 1.4 V mercury cell tential of about $4 V$ on the chip in the absence of external power. The OA4 diode, in series with the cells, protects pins of the chip (except GND) are main pins of the chip (except GND) are mained at the positive supply rail potential
tain through $47 \mathrm{k} \Omega$ resistors. To isolate the mod-

he from external circuitry when the external supply is switched off, a transistor witch is placed in the GND line. The presence of an external supply turns the
ransistor 'on' and its absence turns it 'off'. he OA47 diode in series with the tranistor prevents the mercury cells from discharging through R1 and the transtor's base-collector diode.
N.B.: The $6116,2 \mathrm{~K}$ by 8 bit, low-power tatic rams come in many guises; some
ower power than others. The following information may be of some help:

HM6116P-3 150 ns access time, 180 mW ctive, $100 \mu \mathrm{~W}$ stand-by P-4 200 ns access time, 180 mW HM6116LP-3 150 ns access time, 160 mW active, $20 \mu \mathrm{~W}$ stand-by
HM6116LP-4 200ns access time, 160 mW active, $20 \mu \mathrm{~W}$ stand-by
These are pin-equivalent to the 2716 A. J. Ewins

North Harro Middlesex

Two-signal bargraph

Here is a circuit which enables two sig nals to be displayed on one driver/display. which provide linear, logarithmic or VU response. The simplest arrangement is to use a dot mode display and mulitplex the two input signals at high speed. Two leds are thus lit and represent each of the input signals. A stereo VU meter can therefore plexer uses two sections of a 4066 analogue switch and three inverter gates to form a clock oscillator. The remaining gates of the
4066 can be used to give an alternative 4066 can be used to give an alternative display format by switching the display
driver between dot and bar modes in synchronism with the input multiplexer. One input signal is then represented as a bar and the other as a dot. Clearest indicaexceeds that of the bar. This arrangement was used to provide simultaneous display of peak and r.m.s. values of an audio signal.
Richard Golding
Shrewsbury

saund-panarator interface. Pins nine and 15 of this tircuift diea in the Mey and is of this etrcuirtidea in the May issue are thensposed and so are their 4.pght sames.

Shortcuts in analysis

Next time you need to determine the voltage or current in a circuit, one of these shortcuts may save you time. Calculations are saved and the possibility of making an error is reduced.

Several simple but powerful network nalysis shortcuts can be easily applied to veduce circuit calculations. These include and Norton equivalent circuits and the superposition principle. Quite often, they are overlooked, and circuit problems are solved using more tedious methods. This and gives you an opportunity to check your understanding with a short quiz.

Voltages and current dividers

Perhaps the simplest shortcut is based on he voltage and current divider effect. The voltage divider effect allows one to calculate the voltage or IR drop across any resisor in a series circuit without first finding he current. For example, the $I R$ drops cross R_{1} in Fig. 1, is obtained using the expression

$$
\frac{\mathrm{V}_{\mathrm{IN}} \mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}},
$$

and equals two volts. In general, the voltage across any series resistor is obtained by multiplying the source or input
voltage times the resistor of interest and voltage umes the resistor of interest and of the circuit. In many circuit applications, resistors
are connected in parallel to form current are connected in parallel to form current
dividers as shown in Fig. 2. The current dividers as shown in Fig. 2. The current
divider principle allows one to quickly dedivider principle allows one to quickly de-
termine the current in each branch. The formula is analogous to the voltage divider with one important difference: the reciprocal of each resistor is used. For example, Fig. 2(a), the branch current through R_{1} is found using the formula

$$
\mathrm{I}_{1}=\frac{\mathrm{I}_{\mathrm{T}} \times \frac{1}{\mathrm{R}_{1}}}{\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}}
$$

The particular case involving just two parallel branches occurs frequently as shown in Fig. 2(b). Resulting expressions are

$$
\mathrm{I}_{1}=\frac{\mathrm{I}_{\mathrm{T}} \times \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \text { and } \mathrm{I}_{2}=\frac{\mathrm{I}_{\mathrm{T}} \times \mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}}
$$

For these special cases, each branch current is found by multiplying the opposite branch resistor times the total current and
then dividing by the sum of the branch then dividing by the sum of the branch
resistors. In Fig. 2(b), $\mathrm{I}_{1}=3 \mathrm{~mA}$, using the above shortcut. When using the current

Wesley Vincent is an electronics engineer in
Bringhurst, Indiana.

by Wesley A. Vincent

divider principle, there is no need to find the voltage across the resistor before branch currents are found. Calculations re saved, and the possibility of making an ror is reduced.

Thévenin and Norton theorems

 Frequently in circuit analysis, we are interested in determining how the voltage varies at two terminals. In the amplifier'circuit, for example, the effect of changing circuit, for example, the effect of changing
the load resistor may be required. Thevenin's theorem reduces circuits using resistors, capacitors and inductors, along with voltage or current sources to a simple series circuit. To illustrate the theorem,
the circuit in Fig. 3 is used as an example. the circuit in Fig. 3 is used as an example.
To find the Thevenin voltage, denoted V_{TH}, first open the terminals $\mathrm{a}-\mathrm{b}$ for the network on the right and then calculate the open circuit voltage without R_{L} connected. For this circuit, V_{TH}, is found using
the voltage divider

$$
\frac{\mathrm{V}_{\mathrm{iN}} \times \mathrm{R}_{3}}{\mathrm{R}_{1}+\mathrm{R}_{3}} \text { or } 3 \mathrm{~V} \text {. }
$$

Note that, with the terminals $a-b$ open, no current exists in R_{2}, so it has no effect in
determining the Thevenin voltage. The Thévenin equivalent resistance, $R_{T H}$, is determined by calculating the equivalent
resistance seen looking into the terminals

Fig. 1. Voltage divider consists of a voltage source and series resistors. (Positive
current notation is used in this article.)

Fig. 2. Current dividers formed with paralle
branch resistors. branch resistors.
a-b with the voltage source shorted. Fo the circuit shown, $\mathrm{R}_{\text {TH }}$ is the parallel com equals $2.5 \mathrm{k} \Omega$. If current sources are pre sent in a circuit, they are opened (renin equivalent circuit in Fig 3 , it's eas now to calculate the output voltage across the terminals $\mathrm{a}-\mathrm{b}$ as R_{L} varies. All that's needed is application of the oltage divider principle as discussed in the last section.
More complex circuits are reduced in a More complex circuits are reduced in
similar manner, even though $V_{T H}$ and $R_{T H}$ may be more difficult to determine. But it's easier than the alternative of solvin simultaneous loop equations for each dif ferent value of R_{L}

Another useful circuit theorem, called of the Thévenin circuit and is shown in Fig. 4. The Norton current source, denoted I_{N}, is the current through the terminals a-b if they were shorted. The equivalent resistance, R_{N}, is the resistance seen
looking into the terminals a-b with any voltage sources shorted or current sources removed from the circuit. The Norton equivalent circuit is particularly useful for determining the current through differen oad resistors connected to the output terminals.

Superposition principle

One of the most powerful circuit analysis tools is the concept of superposition. This more than one voltage or current sourc and allows the total response from a circuit to be found as the sum of each source acting alone

Fig. 5. Using superposition to find the dc circuit (a), determining the effect of $V_{S S}(b)$ and determining the effect of V_{D} (c).

$$
v_{a-b}=v_{a-b_{1}}+v_{a-b_{2}}=5 v \text { (final value) }
$$ Fig. 6. Using superposition with a current

and voltage source. Original circuit (a), circuit with current source open (b), and
circuit with voltage source shorted (c).

The usefulness of superposition is demonstrated by finding the d.c. bias on the gate terminal of the j-fet amplifier in hrough the gate terminal of the j-fet, and its effects will be considered negligible in the calculations.) The effect of each source acting alone is determined from the circuits shown in (b) and (c). The responses
from each circuit are added together to give a gate voltage of 4 V for the circuit in (a). The gate voltage can be found almost by inspection using this technique. It's important to note that, except for the source under consideration, other votage rent sources are opened.
Figure 6 illustrates the use of superposition, along with voltage and current dividers, when a current source is present. In
(b), the current source is first removed, (b), the current source is first removed,
and the output across terminals $\mathrm{a}-\mathrm{b}$ is found. Here, the voltage divider principle is used with R_{1} and the parallel combina: tion of R_{2} and R_{L}. In (c), the voltage source is shorted, and the current divider principle is applied to find the output circuits in (b) and (c) are determined, their results are added to give the output voltage for the original circuit in (a). For the ircuit shown, the voltage across the terminals $\mathrm{a}-\mathrm{b}$ is 5 V .

Capacitors and inductors

All of the circuits in this article contained only resistors. But all the shortcuts discussed apply to circuits containing ca-
pacitors and inductors as well. Instead of esistance, reactance is used and impedance replaces combinations of resistors and resistance.

Forth computer

Construction tips for the 6809-based Forth computer - part four.

Most of the prototype version of this com-
puter was constructed on one wire-wrap board. The number of signal buses rendered anything other than a multilayer tion without splitting the circuit into sections. Splitting the circuit was rejected to eliminate buffers associated with long cable runs. Wire wrapping provides connections at least as good as solder joints
through cold welding between the wire and edges of the pin.
All main memory, refresh circuit, microprocessor rom and interface i.cs are mounted on the main 229 by 178 mm oard, as are the video-display processor RS232 driver are built on two 16 -pin dip headers. User-port hardware and the discdrive interface between the floppy-disc controller and the drive are housed on a second wire-wrap board. There are many
connections on the board so a powered wrapping tool, a stripping tool and different coloured wires for different funcions are useful. Copper-clad board was used for the power supply, which should be constructed before the main processor Dynamic ram takes little static current
but substantial pulses, reaching toward
Brian Woodroffe works in research and de-
Brian Woodroffe works in rese
velopment at Hewlett Packard.

Voltage transients at the 4116 dynamic
rams showing from top to bottom the E rams showing from top to bottom the E
clock signal and $+12 V,+5 V$ and $-5 V$
supply lines with a 200 Is/div timebase.
tween each four devices. Decoupling capacitors for the 5 V rail were used throughou the design at the rate of one 100 nF compo nent for each six i.cs. As with the RAS seems robust since the ram was initially built and worked without decoupling (see photograph).
This is a large project and all construction errors were found to be the result of either miswiring or plugging in the i.c.s.
wrongly. Dynamic rams I currently use wot very hot when I plugged them in back-to-front. Construction should start with a minimum system, i.e. c.p.u., p.i.a., eproms and a 16 K ram. At switch on, the lamp connected to the p.i.a. B-port D_{0} line
will go on then off. The state of this lamp. will go on then onf. state of i / o data on the
then monitors the line. Ram-select lamps will stay off. V.d.u. hardware is self-contained so an idea of it performance can be seen on a tv screen
without involving the main processor as the video i.c. generates its own characters. Connection of the parity circuit to HALT should only be made after the ram circuits are known to work, i.e. when the system ready message can be displayed
consistently. Should the RS232 connection fail to work, the most likely cause, especially if a signal at the a.c.i.a. output can be seen on resetting, is that data lines on pins two and three are crossed. Another problem could be that the RS232 terminal

Other components
$\begin{array}{lll}\text { 2N2222 } & 5 & \text { video, RS232 output transistor } \\ \text { 1N450 } & 2 & \text { video, R23232 output diodes } \\ \text { 2N2907 } & 1 & \text { RS232 output transictor } \\ \text { L.e.ds } & 4 & \text { RS }\end{array}$
Power supply
$\begin{array}{ll}\text { L.e.ds } & 4 \\ \text { Ler } \\ \text { 6.00Mz crystal } \\ 1.008 \mathrm{MHz} \text { crystal }\end{array}$ parity checking, high-efficiency red
DIP headers for video and RS232 output
25-pin D-rype onneetor for RS232 output
Single-pole two-way switch for display-pa
Shnge-pote two-way switch for display-page select
Thre, 6 -way insulation-displacement connectors
Vero $07-0130$ Wire-wrap board Vero $07-0130 \mathrm{~A}$ wire-wrap board
Wire-wrap pins 11 packet), wire, tool, un-wrap tool and wire

Notes
Memory circuit was designed using Mostek MK4116-3 data

\section*{Disc interface
 | Type | Oty | Pins | Comments |
| :---: | :---: | :---: | :---: |
| LS244 | 2 | 20 | octal buffer |
| LS123 | 2 | 14 16 | standard t.t.1. quad NAND, o.c. dual monostable multivibrator |
| LS161 | 1 | 16 | 4 -bit binary counter |
| LS163 | 1 | 16 | 4 -bit binary counter |
| LS74 | 1 | 14 | dual D bistable multivibrator |
| LS14 | 1 | 14 | hex inverter, schmitt |
| LS04 | 1 | 14 | hex inverter |
| K1160 | 1 | 14 | 8 MHz oscillator (Motorola) |
| LS138 | 2 | 16 | 3 -to-8 line decoder |

Other components
Wire-wrap socket, 14 pin (4 off)
Wir-wrap socket, 6 pin (10 off)
Wire-wrap socket 10 pin Wire-wrap socket, 20 pin
Wire-wrap board 176 by 110 mm , e.e. Vero $02-02012 \mathrm{H}$ -
34-way insulation-displacement connector
34-way insulation-displacement to drive
Disc drive, e.g. Teac FD50A (up to 4) Pins for above connector (AMP60617-1. $60619-1,4$ off
Decoupling capacitors, 100 n (6 off)
Decoupling capactor Decoupling capacitor, 100μ
Input resistors, $333(4$ off) Input resistors, 2200 (4 offi)
Timing resistors, 30 k (2 off) Timing capacitor, $2 \mu 10 \mathrm{~V}$
Timing capacitor, $33 \mu 10 \mathrm{~V}$

Alternative oscillator components Hex inverter, LSO4
Resistor, 464 (2 off) Capacitor, 20 p
Crystal, 8 MHz

takes too much current from the -5 V supply, an indication being that the rams which disappear when the RS232 terminal disconnected. Forth response OK is receded by the stack depth.
The problem of driving capacitive loads
with 1.s.t.t.1. outputs showed up as un dershoot in signals passing from the in-
terface board to the controller. Although the prototype worked with the undershoot, it was cured by taking an inverted version of the required signal
back to the main board and inverting it
here with a spare 1 stt ll ste. Capaci tance of the insulation-displacemen connection between the two boards was avoided in this way. Spare connections on he inter-board connector should be near active signals, Although for 8 K of memory one gets compiler and operating system and programming and execution unit there is stil ne to be done. I think that games ar ters for the definition of a problem to be solved is often as difficult as solving the problem. Forth is particularly suited to games programs - the Byte game contes Reference
10. A. Saunton-Angus, Cosmic conquest, Byte,

Further reading

C. H. Ting, Systems Guide to Fig-Forth Mountain View Press. Forth Dimensions, Forth Interest Group, Box 1105, San Carlos, CA94070 (hous rian WVoodroffe ing up disc operations and way of speed rates so that faster units such as the Sony Microdrive and 8in drives can be used with the Forth computer. Descriptions will fol-
low.

300baud full-duplex modem

Direct-coupled modem described in the July issue has a separate circuit board for the auto-answer protocol required by CCITT

This unit provides the interface between the telephone line and the equipment and is suitable for both private wire circuits
and the public switched network It and the public switched network. It
also provides the necessary isolation of dangerous voltages and the transmission of the required signals together with the autoanswer protocol required by British Telecom in accordance with CCITT recommendation V25. The isolation is is isolated by a discrete-component optocoupler D_{2} and Tr_{1} and both the a.c. signal isolation and d.c. terminating conditions are achieved by a reed relay and isolating hybrid transformer (which will carry a
primary current of up to 120 mA d.c. without causing transmission loss to the signal path).
Operation is as follows. The ringing current is detected by D_{2} and Tr_{1}, and
equipment side of the hold transformer This gives the silent period of 1.8 to 2.5 seconds as required by V25. When IC returns to its stable state the negative-
going output triggers IC_{22} which has a time

by Des Richards

constant of within 3.3 ± 0.7. This operates RL_{3} to switch the secondary of the transformer to the output of the 2100 Hz
oscillator, to feed tone at -12 dB to line. oscillator, to feed tone at -12 dB to line. This is another requirement of V25, to disable any echo suppression equipment as used on the telephone trunk and
international circuits. When IC_{2} returns to its stable state it triggers IC_{26} to switch RL_{2} and give another silent period of $75 \pm 20 \mathrm{~ms}$. This completes the autoanswering protocol and the secondary of the transformer is fed via RL_{2} and RL_{3} to The 2100 Hz os

WIRELESS WORLD AUGUST 198

Wein-bridge circuit with a thermistor to stabilize its amplitude. The output level of the oscillator to line should be less than
-10 dB and is normally set at -12 dB .

Power supply

The mains input is fully isolated from the d.c. outputs and protected by a 100 mA anti-surge fuse, in the author's circuit. Regulated to give outputs at +12 and -12
volts, there are no adjustments necessary and the voltages should be as specified ± 0.5 volts. The supply is capable of upplying a total of 25 VA and can power a number of modems. A straightforward cir-
cuit and board layout are obtainable from the editorial office.

Construction

The complete modem was designed to be housed in two four-inch, 3U high rack modules, one being the power supply and
the other containing the auto answer unit and the modem. The power supply p.c.b. mounts on the side of the module and all the components, except mains transformer are mounted on this board.
A modified rear plate has been made to separate connector to the d.c. outputs. An

IEC 3-pin connector is used for the mains supply and a 24 -way connector for the d.c. supplies. The mains socket and fuseholder should be fully shrouded and all wiring to both ends.
The modem unit is built in the second module with two p.c.bs mounted on either side of the unit. The holding transformer is mounted on the base plate between the are made by a 24 - inay and out of the unit the rear of the module
boards should no
components mount directly on the boards,
with the exception of the l.e.ds which wired to the front panel. are painted black Th with epoxy resin and painted black. This method gives greate detect circuit than would be achieved by using a d.i.1. opto-isolator, and thus meet BT specifications for p.c.b. spacing within protection barriers. Again, all connection to the p.c. b., switch and rear connector bridging of the protection barriers created by the opto-coupler and the isolating
ransformer.
鲑 600 ohm in pedance type with $1+1: 1$ turns ratio.

The Reticon switched-capacitor filter shown in the fuly circuit can be obtained from Reti
con's UK agent EGEG Instruments, at 34 con's UK agent EGGG Instruments, at 34
Market Place, Wokingham, Berks RGll 2PP (tel. 0734 788666) for $£ 8.50$. A com plete kit of parts including transformer and printed circuit boards is being organised by the author - send a stamped and addressed envelope for details to 18 Tulsa Close, Berryhill,
Stoke-on-Trent ST2 9PT.

LETTIERS

AERIALS AT SEA
It is hard to understand the logic of Mr
Benyons' statement (Letters, WW, May, 1983) that it is "unfair" to look at Soviet ships' aerials because these ships are "under military
control". I would like to point out that: "By no means all Soviet bloc ships have "good" aerials. As General Booth said to the
Salvation Army band, "why should the devil have all the best tunes?", so why should the "red peril" have all the best aerials?

- The experience of the Falklands war shows
that Britsh ships are also under "strict military that British ships are also under "strict military
control". Even Mr Benyon would wish them the best possible radio communications capability. Could it be that the USSR has better trained engineers than we have, not subject to the dollar
veto of penny-pinching shipowners, nor rubberstamp government supervision?
Mr Benyon correctly perceives that short aerials lack much radiation resistance, but 1
don't see his 20 foot vaulting pole aerial as being any "great leap forward", for the following
reasons. reasons.
All existing marine transmitrers, at 500 kHz ,
rely on the aerial to provide the tank circuit ely on the aerial to provide the tank circuit
capacitance. The helical whip has none. Only low driving-point impedance will confer
Onacial
Ony it would be necessary to provide feeders and matching coils, introducing more losses than gains. Marine transmitters, unlike their broadcast counterparts, are
paraphenalia at present.
fical helical wound aerial of of points out that a vercal equivalence, should be a minimum of 0.05 wavelength long. At 600 metres, that comes to
30 metres, so nothing is height problem. The same book in the area of the some helical antennas have acted as Tesla coils with high power transmitters and have actually Back to the drawing board, Mr Benyon.
John Wiseman
Hawthorn
Victoria, Australia

ELECTROMAGNETIC

DOPPLER

In the answer to Mr D. Hall (June letters) I

It represents a boat on a lake. Waves are being enerated and are propagating across the lake at constant velocity. The point of interest is that there is no way of telling whether the boat is
stationary or is moving, the reason being that tationary or is moving, the reason being that and that is unaffected by the velocity of the
Toat. The fruency is the number of waves passing the boat in unit time. Clearly the faster the boat moves in the same direction as the waves
the less waves will overtake it in unit time. If the less waves will overtake it in unit time. If
there are two boats travelling across the lake at different velocities they will experience different
fequencies and if we call the velocity of propa.

gation C then the formula is:

$$
\frac{f_{1}}{f_{2}}=\frac{c-v_{1}}{c-v_{2}}
$$

This is a general formula for any two ob servers; observing the same wave. If one of the may be conventionally described the source he The wavelength which the source would have produced if it had not been moving is a nonexistent parameter, because the source appear even to no observer at the source. No only is the propagation velocity constant, but so is the wavelength. The difference in frequency is due purely to tie fact that the velocities of the
two observers relative to the waves are different. I claim that this model for water also holds for sound waves and therefore cannot be the sam for e.m. waves without violating the constantMr Hall suggests that the e.m. Doppler equation is only an approximation and should more accurately be as equation 1 . This cannot be so
because the second order terms such as because the second order terms such
$\mathrm{v}_{2}\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right) \mathrm{c}^{2}$ cannot be expressed purely terms of the relative velocity ($\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right)$. If accu it would also mave detected dether drift the relativistic Doppler equation is supposed to b accurate even when v is very close to c and the term it contains is $(\mathrm{c}-\mathrm{v}) / \mathrm{c}$.
Mr Hall's point about photons, waves and interference I accept. Ill go away and think about it. J. Kennaugh
Callington

Cornwall

DIGITAL TAPE CLOCK The following alternative method for producing
the 'forward' and 'reverse' inputs to the the forward and reverse inpust to the 'length-of-tape' timing disc, with a quartercycle 'phase' difference between them, as simply shown in Fig.1. If these sensors' outputs are a 90 Hz version of the forward and reverse signals results. This can easily be counted down Also Iam unable t Also I am unable to understand the buffering
circuitry for the 'length-of-tape' opto-coupler. I would use a circuit like that of Fig.3., with ositive feedback for jitter-free operation. M. S. Farmiloe
Camberwell

London

A HERETIC'S GUIDE TO MODERN PHYSICS
Tut, tut, Mr Coleman of July! A photon of
visible light has a wavelength? If it did not bounce back and forth between and amongst its neighbours it would simply keep going in a straight line without a wav energy carried by a bouncing building block doesn't bounce at all, does it? The building blocks merely play "pass the parcel", and the
parcel moves linearly if spewed out of a laser parcel moves linearly if spewed out of a laser,
otherwise it is split up providing the so-calle square-law effect which is part of an expansion of a spherical surface.
As I said in my letter of July it takes particle an impossible amount of work to make a wave. A wave is an integrated effect of a lot or moving particles. It is hoped that there is no
some mental mix-up here with spin velocity, some mental mix
which determines the amount of energy within the particle and thus its relativistic mass, and thus in turn the gravitational gradient in th
immediate environment of the particle? immediate environment of the particle? vidual photon can remove even a conductio electron from a metal, at least not in these parts:
its spin velociry would have to te so its spin velocity would have to be so high the
catastrophe was being approached, somewhere near the boundary of the universe perhaps? of course it takes a wave, an integration of a lot of bouncing building blocks, and therein lies the
strength of wave mechanics which sadly explain nothing more than the cause of an effect at the
subjective level subjective level of apparency, delightfull
demonstrative of a shallow and superfici demonst
analysis.

Until the specialists of this world come to
ealise and thus accept that the absolutes are really asymptotes, modern science will remain uck in its glorious mud. I have in mind absond the basic building block. The asymptotes an not be reached because a multiple lamina n of short Planck's constants gets there first. Space, of course, is purely reactive, ther
eing no friction within chaos: only genuin ally-fledged masses can demonstrate friction ork, in their interactions so demonstrating evice, is an energy-store out of which mass ondenses.
How I w How I wish that the specialists of this world would stop their silly
ames A. MacHarg
Wooler
continue to read with interest Dr Scort Murray's series on modern physics. However, I rgument in the 7 th par
He points out that it is possible, after the vent, to determine the position and momentum an electron "to any accuracy we please". He dicates that the electron's behaviour was determinate, and that it must have obeyed the law lse. Later, though, he admits that he is unable to
prove that the law of causality is obeyed hroughout inanimate nature, although there is evidence against that assertion. Herein lies he flaw, for we can only determine the past
roperties of the electron if the law of causality properties of the electron if the law of causality electron was and what it was doing by knowing
where it has been subsequently and what interwhere it has been subsequently and what interapply, then we would still be faced with the indeterminacy of instantaneous observation, so
an argument that assumes causality cannot be an argument that assumes causality cany.
used to refute any doctrine to the contrary. Almost 30 years ago I was taught by my professor of physics that causality was the un-
derlying assumpion in the study of physics. This meant that, given a knowledge of the cau-
This and sal relationships governing inanimate matter, it would be possible to predict the future from a
knowledge of the present, which was the goal of the Victorian physicist. The indeterminacy principle, we were told, strikes not at causality but at our knowledge of the present. If that is certainties to probabilities. Perhaps I move in the wrong circles, but I have not met anyone who seriously contested that interpretation. I
have to admit that much of my working life has been spent among engineers.
Ren spent am
British Telecom
Milton Keynes

> Dr Scott-Murray's articles on a heretic's guide
o modern physics have clearly shown that the Copenhagen philosophies and mathematica theories of statistical wave mechanics have lef
scientists without a fundamental theory of mat ter.
Probably the most glaring error made by th Copenthagen school is thelium is a special type of quantum

liquid, to which they have devoted many papers and given many names: Liquid Helium II, Landau's two-fluid liquid, Bose-Einstein	price to
	1. Specia
:The common sense approach of Farad	2. Inserting common time into Special Rela-
Newton, and Galieo, recommended by Dr.	tivity's equations
Scott-Murray, easily deduces	speed of light. ${ }^{\text {3. This daft answer means that either Special }}$
powder. It is a fle	ity's
liquid. Scientific studies of all the pro	
	Special Relativity's
demonstrates that superfluii	, common
transparent amorphous powder whic $3^{\circ} \mathrm{C}$ below its boiling point; hence it	
dly subliming powder.	
Because university stud	-
isticians, they have to believe that	?"
der is a form	
ity properties.	1. Special Relativity is true. (main theme).
doesn't behave like other liquids.	3. But stationary B can be regarded as
	and moving
an electron. I can explain the ph	
ic	
concept and I can explain the behav	Either con
	6. Special
	8. Special Relativity is true. (main theme).
inators in compl	
ntieth century"	letal
When I left Cambridge (with	
	\% m
photon, wave mechanics and	
d, but thirty years of scienifific experimen	A. H. Winterfl
and study has shown to me that	
nons and rotons are myths and superiluid h -	
lium is, as one would expect by common se solid helium in the form of a very fine pow	
When this powder melts at 2.2 K it abso	D
latent hear (the λ effect) and becomes norm	
liquid helium which b	Although I applaud your initiativ
P. Holland	
Egremont, Cumbria.	
	purposes, where th
that Dr Scort Murray's series of	that publication of their design is preclu
physics has ended, I hope that you will conti	
why not name it, "Frontier Physics". The	arin
no doubt others like myself who buy your	many
journal not for its electronics but solely to enjo	
, of course, the Letters section in whi	sab
eas can cer	
tainly stimulate one's own thoughts.	As an example
It is a pity that physics has become	
me	
Idn't convince others. However, I did	
physics.	(i) is a linear readout instrument which
The closed loop is an argument. It consi	
bem	
ch	
mple	
be used to prove that time	r the degree of wear on a gra
1. Spe	a s
2. Its equations show that time dilat	
equations cannot be wrong.	硣
herefore time must dilate.	be the coil
In a scientific journal recently, the closed lo	the line to a spraying nozzle.
used to show that the cost of accepting	The designs originate

Relativity's equations are wrong or that ommon time is wrong.
wrong.
6. Special Remmon time must be wrong. In the past, the closed loop has been used to hallenging question, "Of two uniformlyaster?" The closed loop gives the well-known 1. Special Relativity is rrue. (main theme).
2. Moving A ticks slower than stationary B. 3. But stationary B can be regarded as
moving and moving A can be regarded as stationary (by the principle of relativity). than A Relativity is.
6. Special Relativity cannot be wrong. Special Relativity is true. (main theme) ble argument. of course, the above anamis eem obviouly sill. bece they are presented skeleal form. When the closed loop is by no means obvious, you must look carefull A. H: Winterflood

Muswell
London
DESIGN COMPETITION compeution for electronic devices to assist the
disabled devices will not be entered. This is because the purposes, where their commercial value is such that publication of their design is precluded. Ir ind be useful if your journal could also act of these devices. In these devices would be prepared to spend some of disabled people, but cannot reveal how the As an example, Hydraulics Research Ltd has ion the dis sensor". At present the devices exist in two
(i) is a linear readout instrument which can b their degrees of maturity, or the proportion can, for example, indicate on an analogue field. sees a plant. This is intended for incorpor ion into a "robot" crop sprayer, when the
load would be the coil of a solenoid valve in
simple measurements of crop cover during proiect which was intercen evaluate the pro ertion which leaf canopy provides irom sion
erosion by heavy rainalli, and version (ii) is natural extension of the resulting design into commercial application.
Both versions will shortly be available fron
Churchill Controls Ltd of Headley Road East, Woodley, Reading.
One of my colleagues has commented tha
modified versions of these devices might be very useful to blind or partially sighted people. Such applications would be outside our experience but we would be pleased to discuss them with anyone who could provide a specification for
what is needed, or would like to incorporate one of these sensors in a design of their own. D. K. Fryer

Wallingford
Oxfordshire

I was interested to see that one reader has come
up with the idea of informing blind persons the contents of cans and packages without opening them. No further information was given.
I should like to suggest (if this is not the method used) that it would be a simple matter to 'read' the bar codes that are appearing increasingly on modern packaging by means of
light reader: decoding the information and re moving extraneous information normally used in stock control; and presenting the edited in formation to the blind person by means of
voice synthesizer through a private earpiece. Being completely without technological raining I would nevertheless suggest that in this day of the Chip it would not be beyond the realm of possibility to produce a fairly light-
weight pack which could be worn like a handbag over the shoulder and weigh about the
same.
Once the technique had been perfected there
is no reason why bar-code labels could not be used in other circumstances to aid the blind to read. We already see these codes on the edges of supermarket shelves and on packaging. Why he same manner. Naturally a monotonous Daek 'voice' would never replace the enioyment of
ilent reading as Braill offers but this would be silent reading as Braille offers but this would be

deal for official pamphlets for the blind, direc| Devereaux |
| :--- |
| Digns and other informatory instructions. |

Devereaux
West Midlands

WAVES IN SPACE

vor Catt (March, 1983) says "the voltage is half what one would expect". The curious point
me is on what he bases his expectations. If the charged line is regarded as a voltage source of connected to another impedance Z_{0} through the switches, as in the accompanying sketch, then The viniage is exactly what one would expect. act that the charged line is an energy storage device (electrostatic field) and not a source of e.m.f. which implies energy conversion. It is
worth adding that the impedance technique also nables one to predict occurrences when the Z of the olong line is not equal to that of the arged line.
As to the
tic energ claimed paradox that "electromag netic energy promptly rushes, away from the
examine Poynting's vector in the charged line
atter the switches are closed, he will find th long line, that is, from left to righ.
It is possible to regard the condition of the charged line as the result of interference be
tween two waves travelling in tions, just as one can treat a straight line as the arc of a circle of infinite radius. There are time when they are useful models of reality. The re paradox of the article is the question of wher
$M r$ have been all this time. To my knowledge, the Royal Air Force used this approach to transmis
sion lines as pulse generato no doubt that the technique goes back much further in time.
R. . Lamb Milton Keynes
(Vhorged line z_{2}

I refer to Mr Catt's article in the March 198
In a letter, I could not hope to reproduce the great body of scientific and engineerin knowledge that has amply demonstrated the Equations or of Einstein's treatment using special relativity. If the theory is so seriously flawed it is surprising that we can design and build antennas and microwave devices
Nevertheless, I cannot let Mr Catr's analysis of te pulse generator go unchallenged, especially as
it is so easy to demolish his arguments. Firstly, if a piece of charged coax. really has
equal and opposite waves running in each direc tion why are they not attenuated by the losses in the line? After all in one second each of his waves would have
in lossy coax. Secondly, if
coax. I can still charge up the line. Why do no these waves of which he the line. Why do no space? Or, at least, the high-frequency components of the pulse to which the antenna will be
matched. The conventional solution to his 'exotic'
problem can be found by solving the transmis sion line equations for a cable under the stated starting conditions (see reference). As this is rather tedious and since Mr Catt seems to prefer
hand waving to mathematics I will at least hand waving to mathematics 1 will at least
demonstrate where the 2 m pulse length comes $\underset{\text { from. }}{ }$
extra length of line is connected to he 1 m line, charge starts to move down the new ine ehrough its distributed capacitance of the
goes. (Maxwell's equations applied to co as it it
gircuits goes. (Maxwell's equations applied to circuits
show us that capaciors connected together share their charge). This leaves a void which the $10 \mathrm{~V}(1 \mathrm{~m})$ line fills. The void propagates towards he open end of 1 m line at the speed of the line.
The charge close to the open end of the line will The charge close to the open end of the line will
be liberated at a time equivalent to 1 m of line
and will take 1 m to propagate to the other end, and will take 1 m to propagate to the other end, Reference: B
pp. $345-349$.
explaining the 2 m length of the pulse The pleasing aspect of the above argument uccesful electro-magnetic theory to produce If Mr Catt has so much more insight into electro-magnetic theory than the rest of us it is gicrowave devices that demonstrate his superior understanding.
Timothy C. Webb
Timothy C. Web
Colum
I was not too sure whether I should be amused Space" in which he parts artictele on "Waves electromagnetic energy in a static electric filled when I reminded myself that the date was 1 April. It had never occurred to me, even remo tely, that a magnetic field could be directly
caused to exist by the presence of an electric field. However, being sympathetic to the idea that all things appear to be possible in this day further and read on.
The production of a voltage pulse in a tran mission line which is half the amplitude and piece of coaxial cable, can form the basis of number of interesting experiments. Fo example, Mr Catr's travelling pulse can be
converted back into a static charge again if his coaxial cable is terminated into an open circuit but with a pair of switches 1 metre from the en as shown in Fig. 1. When the switch at B D , it will of course, be reflected (double back o itself); however, if switch C, is opened at th no great drama ensues but we tre trailing edge metre piece of statically charged coaxial cable before. It is also interesting to consider wh circuit. This time the pulse will be anverte into one of twice the current at zero voltage and the leading and trailing edges will be locke together and oscillate back and forth convertin
the pulse between a current at zero voltage and voltage at zero current until this activity decay due to losses.
However, perhaps it would be more interes metre of coaxial cable is made superconductin and instead of isolating switches at C , a sho circuiting switch is provided as shown in Fig. 2 leading and trailing edges meet, electrons zero votage, will continue to flow around the metre coaxial circuit as a direct current.
would, perhaps, be better to say that currens drifts around, because depending on curre struction of the coax., it could take hours fo any single electron to work its way around the
circuit. It should, of course, be remembered

Fig. 1.

LETTIERS

hat as no voltage is present, the density of the electrons in the closed circuit is the same as that
in the remainder of the uncharged transmission ine.
this force, and measure it. If we consider an electron in orbit around the atomic nucleus, and we replace the electrostatic
force which keeps it in orbit with a gravitationa one of the same strength, then a human observer, since he would be accelerating at the
same rate as the electron, would not be able to same rate as the electron, would not be able detect any force acting on the electron, or any-
where in its vicinity, thus, he would conclud that the electron was under inertial conditions, and would not see any e.m. waves emitted indeed, if he did see such a phenomenon, he
would be unable to account for it. In order fo such a system to radiate energy in the form o e.m. waves, I would suggest that it would be
sufficient for the electron to collide with some other particle e.g. a photon or another electron other particle e.g. a photon or another electron.
Then, a force could be detected by the observer on the electron, and he would conclude th energy had been given to the electron, and e.m. raised the level of the system as a whole. P. . . Griffiths,
Reford, Reford,
Nots.

THE NEW

BUREAUCRACY

I could write at length to refure D. W. Scott's extraordinary assertion in March, 1983 Letters, that None of us (programmers) likes the vo trying to circumvent it." Those experienced in the art know this to be false.
I shall limit myself to a simple test of loyalty for Scott and other programmers who might them.
As an accredited MAPCON consultant, the government pays up to $£ 3,000$ of my consulclient are that the system he installs contain von Neumann machine. Please would Scott and other forward-looking programmers write to
Wireless World to the effect that MAPCON should remove the following paragraph from
page 9 of their book entitled "Guidelines for page 9 of their book entitled "Guidelines for Feasibility Study Grants, March, 1982 ."
"Note that the use of the word "microelec-
tronics" implies electronic large-scale inte-
tronics implies electronic large-scale inte-
grated circuits (LSI) of at least the complex-
ity of microprocessors. Applications which
solely use medium and small scale integrated solely use medium and small scale integrated
circuits (MSI and SSI) do not fall within the scope of MAPCON This quote relates neatly to my first paragraph on
cember, 1982.
Ivor Catt
St Albans
St Albans
Hertordshire

MIXED LOGIC

On page 29 of the July issue, M. B. Butler writes "A new symbol is introduced to indicate application of a conver the 'flag' This is not a new symbol. The second most commonly used standard for drawng logic d page 8 "4.4.1 A small, open, right triangle, at the
point where a signal joins a logic symbol
indicates that the line's 1 -state (activating) with respect to that logic s.
positive potential (current).
The competing, and much better, symbol is the small circle. The de factio standard for logic
diagrams, US MIL-STD-806B, 26 Feb. 1962 diagrams,

used in 80% of logic diagrams today, says or | used in |
| :--- |
| page 4 |
| es. |

page 4.5 .3 .1 A small circle at the input to any (L) input signal activates the function Conversely, the absence of a small circue indicates that the relatively high (H) inpu
sismal activates the function. ${ }^{\text {sin }} 5.3 .2 \mathrm{~A}$ small circle at the symbol output indicates that che output terminal of the indicates fhat tion is relatively low (L). This
activated function
small circle shall never be drawn by itself o On page 32, Butler writes
" \ldots an oblique 'slash' is placed across an line over which a logical not operation has Butler should withdraw this proposal, be cause it contradicts MIL-STD-806B, page 8 and elsewhere, which defines the oblique slash
as indicating multiple lines. This has gained a degree of acceptance in the industry.
The main thust of Butle's article degree of acceptance in the industry.
The main thrust of Butler's article is to introduce the good philosophical approach outline in Tony Casser's article,
1980. It is a pity that neither writer govember credi to S. U.S.MIL-STD-806B for originating it. My approach to this important and neglected
subiect is contained in the chapter "Choice of type of logic symbols" in my book Digital
Electronic Design Vol. 2, pub. C.A.M. Publishing, 1979 . U.S. MIL-STD-806B is the best, and that I am willing to supply copies at cost.) Ivor Catt
St. Albans
St. Albans
Hertordshire

WOODPECKER

n June 1983 issue of $W W$, Pat Hawker described the "woodpecker" as following "the the m. u.f., I would have thought that it follows, more precisely, the optimum traffic frequency.
No doubt I will be corrected if am wrong. $\stackrel{\text { P. Thompson }}{ }$
Lancashire

ORGAN INTERFACE

We have been asked to point out that a actions, similar in principle to that described in chese articles, has been marketed by Christie Music Transmission Systems Limited, Colches-
er, since 1979. This orginally used a 32Kbyte ter, since t999. This orginally used a 32 K byte
ram and tape back-up but is now available with 64 K memory and disc back-up, giving uninterupted solid-state recording or playback for blexity of the music). A full length item can be saved or loaded from disc in 3 seconds, and a short item using less han 9 K bytes, requiring only one track of the
disc, is dealt with in half a second. Provision is isc, is dealt with iems to give a recital of several hours duration.

BOORS

Developments in Teletext (IBA Technical Review No. 20): Independent Broadchester, Hampshire SO21 2QA. Teletext users who have noticed the mysterious pages of apparent rubbish lurking here and there in the Ceefax and Oracle services will be aware that development of the UK Teletext system still continues. This col-
lection of articles describes some of the lection of articles describes some of the
advanced techniques now in use and some that are still to come. Subjects covered include the preparation of subtitles for deaf viewers; alpha-geometric coding
methods for transmitting high-definition methods for transmitting high-definition character set to give alternative alphabets. Guide to amateur radio: 19th edition, by Pat Hawker G3VA. 154pages. Radio Cranborne Road, Potters Bar, Hertordshire EN6 3JW. Price £2.75, by post 3.44, paperback. This new edition has been expanded to include some of the eur radio, rules and regulations as well as echniques and equipment. An excellent suide for the newcomer.
VHF/UHF Manual: fourth edition, edited by G. R. Jessop, G6JJP. Radio Society of Grear Britain. 528 pages. Price £8.50, by post $£ 10.31$ worldwide, hard backs. This handbook provides practical information for amateur bands from 30 MHz to the microwave region. The new edition has been revised extensively - notably the chapters on propagation and space communications, which should
Teleprinter Handbook: second edition, dited by A. G. Hobbs, E. W. Yeomanson and A. C. Gee. Radio Society of Great 13.84, hardback. Conversing by teleprinter might be thought a rather unsoiable method of communicating, but it has its enthusiasts. What is surprising techniques being used in other areas of
amateur radio is that it confines itself almost exclusively to the care and operation of electromechanical equipment. It might communications would want to make use of his home computer. But apart from a nine-page chapter describing the construction (using standard t.t.1.) of a v.d.u. for radio-teleprinter use, there is nothing
about AMTOR or packet -switching or indeed about computers or computer techniques at all.
Nothing Local about it: London's Local Marion Boyars Publishers and Comedia, E3. $^{2} .95$ paper cover. BC Radiophonic Workshop by Desmond Briscoe \& Roy Curtis-B.
BBC $£ 7.75$ paper cover.

WIRELESS WORLD AUGUST 1983

Introduction to Video by D. K. Matthewson,
175 pages. Bernard Babani $£ 1.95$ paper cover. 175 pages. Bernard Babani $£ 1.95$ paper cover. Stone 118 pages. M. Stone $£ 9.85+65$ p p\&p paper cover. Television Engineers Pocket Book by Malcolm
Burrell \& S. 114 pages. cover.
Tower's International Digital IC Selector by
paper cover. 246 pages. Foulsham $£ 9.95$
paper cover.
Interface Pr
C. Hallgren International 180.35 paper cover. Radio Antennas by Stephen Gibson. 165 pages.
Prentice Hall International $£ 11.85$ paper cover Prentice Hall International $£ 11.85$ paper cover Medical Association Nuclear War by British Medical Association. 188 pages. Wiley $£ 4.50$
Digital PLL Frequency Synthesizers (Theory and Design) by Ulrich L. Rohde. 494 pages.
Prentice Hall International £44. Prenuce Lecal Tecommunications by J. M Griffiths. 265 pages. Peter Peregrinus $£ 19$. Broadcasting and Society 1918 -1939 by Mark Pegg. 293 pages. Croom Helm Ltd $£ 14.95$ hard cover.
Bond Graphs for Modelling Engineering
Systems by Alan Blundell. 151 pages. Wiley Systems by Alan Blundell. 151 pages. Wile
$£ 16.50$ hard cover. E16.50 hard cover.
Ritchie. 168 pages. $£ 10.95$ hard cover RF Circuit Design by Chris Bowick. 176 pages. Prentice Hall International $£ 17.20$ paper cover. 150 pages. Comedia $£ 3.50$ paper cover. CBasic Users Guide by Adam Osbourne, Gordon Eubanks, Martin McNiff, 212 pages McGraw-Hill £11.95 paper back. Ferrell. 224 pages. Gilfer Associates Inc $(\mathrm{PO}$ Ferrell. 224 pages. $\operatorname{Bilifer}$ Associates inc
Box 239,52 Park Avenue, Park Ridge, The World Wired Up by Brian Murphy. 154 pages. Comedia $£ 3.50$ paper cover. What's this Channel Four? by Simon Blanchard and David Morley. 186 pages.
Comedia $£ 3.50$ paper cover. Annual Reporí and Handbook 1983 by BBC 240 pages. BBC $£ 4.50$ paper cover. Television \& Radio 1983 by IBA. 224 pages.
Independent Broadcasting Authority $£ 3.50$ paper cover.
Handbook of Antenna Design by A. W Rudge, K. Milne, A. D. Olver, P. Knight. 945
pages. Peter Peregrinus hard pages. Peter Peregrinus hard cover. Power of Speech (History of STC) by Peter
Young. 221 pages. George Allen \& Unwin Yo. ${ }^{\text {Young. }}$
Fiction Stranger than Truth by N. Rudakov.
175 pages. N. Rudakov (PO 175 pages. N. Rudakov (PO Box 723 , Geelong,
Vic 3220 , Australia) $\$ 10$ paper cover Popular Circuits Electronics Projects
Digital Circuits
Communication Circuits
and Special Circuits (Ready Reference series) by J. Markus. $161-216$ pages. McGraw-Hill
e9.50 each £9.50 each paper covers. Electronics: A Course Book for Students by
G. H. Olsen. 425 pages. Newnes $£ 17.50$ hard

Practical Electronic Building Blocks -2 by R. A. Penfold. 94 pages. Babani $£ 1.95$ paper cover. Computer Programs for Electronic Analysis \&
Design by Dimitri S. Bugnolo 261 pages. Prentice Hall £15.25 paper cover.

Microcomputer Experimentation with the
Synertex SYM-1 by Lance A. Leventhal. 500 pages. Prentice Hal 19.7 paper cover.
Basic \& Pascal in Parallel by . J. Wainwrigh 60 pages. Babani $£ 1.50$ paper cover. ZX Spectrum User's Handbook by R. J.
£6,.95 paper cover.
STD Bus Interfacing by Christopher A. Titus, STD Bus Interfacing by Christopher A. Titus,
Johnathan A. Titus \& David G. Larsen. 286 Johnathan A. Titus \& David G. Larsen.
pages. Prentice Hal \&11.15 paper cover Interfacing to Macroprocessor \&
In
icrocomputers by Owen Bishop. 147 pages. Newnes, $£ 4.95$ paper cover. X 8000 Handbook by Martin L. Moore. 390 pages. Prentice Hall $E 11.95$ paper cover.
Basic Handbook second edition, by David A. Lien. 480 pages. Compusoft $\$ 19.95$ paper cove Assembly Language by Randy Hyde. Prentice
Hall $£ 16.95$ paper cover. Introduction to Electronic Speech Synthesis by Neil Sclater. 134 pages. Prentice Hall E7. 60 paper cover.
Electronically Speaking: Computer Speech Greneration by John P. Cater. 230 pages Prentice Hall £12.70 paper cover.
2-80 Microprocessor Advanced Interfacing J. C. Nichols, E. A. Nichols \& K R. Musson. 347 pages. Prentice Hall 116.95 paper cover. Microprocessors and Microelectronics by Ian Williamson. 171 pages. Cambridge Learning $£ 6.50$ paper cover.
6502 Assembly Language Subroutines, by
Lance A. Levanthal \& Winthrop Saville. 550 Lance A. Levanthal \& Winthrop Saville. 55 pages. McGraw-Hill. 10.50 paper cover.
Interface Proiects for the TRS- 80 by Richard Interface Projects for the TRS-80 by Richa
C. Hallgre.. 152 pages. Prentice Hall. £11
paper cover.
Practical Interfacing Techniques for
Microprocessor Systems by James \mathbb{W} \& William E. Long, 401 pages. Prentice Hall TRS-80 Model II Assemble TRS-80 Model III Assembly Language by
Hubert S. Howe 344 pages. Prentice Hall £14.40 paper cover.
Radiation safery of laser products, BS4803
 European Electronic Component Distributor Directory by Mackintosh Consultants. 464
pages. Benn Electronics Publications $£ 37.50$ ${ }_{\text {New Technology and Industrial Change by }}^{\text {pap }}$ Ian Benson and John Lloyd. Kogan Page £4.95 paper cover.
Newton
's Error by A. H. Winterflood. 72 pages. From H. K. Lewis \& co, 136 Gowe-
Street, London WC1E $66 \mathrm{~S} £ 3$ paper cover. Street, London WC1E 66S \&3 paper cover.
Transient Analysis Aided by Network Theorems by Harry E. Stockman. 176 pages. Sercolab (PO Box 78, Arlington, Mass. 0 . 1 .
USA) $\$ 13.30$ (abroad $+10 \%$) soft cover. USA) $\$ 13.30$ (abroad $+10 \%$) soft cover. Telegraphy on Stamps by W. C. L. Gorto
pages. Picton (Citadel Works, Bath Road,
Chippenham, Wilts) 95 pence paper cover. Cabspenham, Wiltss 95 pence paper cover.
Art of Programming the $16 \mathrm{~K} \mathbf{~ Z X 8 1}$ by M. Art of Programming the 16 K ZX81 by M.
James $\& S$. M. Gee. 125 pages. Babani $£ 2.50$ James $\& S$.
paper cover
Computer-A ${ }^{\text {paper cover. }}$ Computer-Assisted Home Energy Management by Paul E. Field. 182 pages. Sams $\$ 15.95$ paper cover.
 James. 138 pages. Babani $£ 2.50$ paper cover. Literature Received this month appears on pages
$38 \& 73$.

Ultrasonic ranging for robots

Simple ultrasonic transmitters and receivers with microprocessor control can give a robot the capability of determining the distance of objects near to it, even in a noisy environment.

Ultrasonic transducers provide highly directional characteristics which permit
the construction of a ranging system that the construction of a ranging system that
operates on principles similar to those of radar.
radar. underlying principle is simply to measure the time intervin of ultrasonic pulses. I have used momentary bursts with a fundamental frequency of 40 kHz . The velocity varies with temperature, pressure etc, and the greatest accuracy can only be obtained if these factors are taken into
account. However over the comparatively short range of the system it is doubtful that any normal variations of these factors will significantly affect the measurement.
The time interval between the transmitted and reflected pulse is a linear
function of the distance. If we call the velocity of sound V , and the target range I then the timing interval δt is $2 \mathrm{r} / \mathrm{V}$. Thu the accuracy of the measurement depend chiefly on the accuracy of the time measurement. We need now to examine computer into useful sensory information Most robots incorporate a microcomputer to convert incoming data, from sensors, and from instructions in the contro program, into responsive actions. The

by H. W. Gleaves

complex relationship between input data and output action is determined by th software of the control unit
Hardware. A block diagram of the sensing unit is shown below. The ultrasonic transmitter is a simple c-mos squarewave
oscillator which may be adjusted a few kHz each side of the chosen frequency of 40 kHz . The squarewave output is fed through a c-mos analogue transmissio gate and transmitted in short bursts. The receiver is a combination of op-amp designed to amplify and filter the ver
weak received signals. The overall gain of the receiver is over 80 dB . The amplified signal is fed to a comparator whic switches very rapidly between 5 V and 0 V on the receipt of a signal. This output is used to interrupt the robot's computer. I
decided to compromise between hardware and software by using the computer to count the time delay. Other parameers such as pulse width and p.r.f. were chose to suit the application and may be varie for different ranges, etc.
Only two connections were needed

Block diagram of the ultrasonic frequency ranging system.
 on a machine using two ranging. I believe that robot software will need to be comsiderably different
from normal computer software, since from normal computer software, since
unlike a computer a robot has very unlike a computer a robot has very
poorly defined data entering its system. "Because of the employment difficulty, I took A-level mathematics and physics at night school. From there
lentered Old Swan technical college to finally receive a diploma in
telecommunications."
between the ranging sensor and the computer. I used an Acorn system 1 microcomputer which has proved to be vertically stacked boards with the upper one having a hexadecimal keyboard for programming. Only one bit of an 8 -bit port was used to pulse the transmitter on for a period determined by the software.
The output from the receiver is connected to the microcomputer's interrupt request, IRQ, terminal and will interrupt the processor whenever sounds containing a 40 kHz component are detected. The IRQ on the 6502 microprocessor used in the
Acorn system 1 may be ignored or acted upon, the choice being under software control, depending on whether the interrupt disable bit' in the 6502 status register is set or clear. The software is designed so that while the transmitter is active, the interrupt is disabled and as soon interrupt is enabled. At the moment when the interrupt is enabled, a special test register is cleared and an 8 -bit register starts counting. As long as the test register remains clear, the counter continues to
increment. When an interrupt signal is received the test register is set to FF_{16} and

the count stops. The processor returns to the main program but the count register distance measured.
The effect of noise. Ideally only one measurement is required as described there are inevitably extra noises that could trigger false readings. I have given a fuil explanation of the mathematical method used to determine the probability of noise
affecting readings in the appendix. It is sufficient to say here that if a number of measurements are taken, then a certain proportion of them will give the same reading while noise will add random compared, those that have the same reading most often will indicate the true distance while the other readings may be ignored. For example, I set up the ransducers some 150 mm away from a fixed object. With no ambient noise, 32 repeated the experiment while jangling a bunch of keys about 100 mm away from the ransducers. There was a wide diversity of measurements but the most common value, occurring, seven times, was the
correct value, identical to that in the first experiment, while the remaining values were random, with no value occurring more than three times.
Software. A machinè-code program is ses the range measurement technique discussed. Two versions are included for wo processors; the 6502 and the Z80. I the mode of the acquired data. Users of other processors may be able to compile

WIRELESS WORLD AUGUSTT 1983

Flowchart for FDA Ifrequency distribution analysis). R_{1} and R_{2} are two range values the range table. R_{1}^{2} and \hat{R}_{2}^{2} are the frequency of occurrence in the table of R_{1} and R_{2}.
similar programs by referring to the flowsimilar programs by referring to the flow-
charts. 'Mode' on the 6502 can process block of data up to 255 bytes length. Th program will determine the value that occurs most frequently and place this in with the frequency stored at address 0022 If all the values in the table are different, a value of 01 is placed in the 'Error' address, 0024.
The

The first value is taken from the top of the table. The number of times the sam count is then compared with the next count derived in the same way and the value corresponding to the greater of the table. If, during the process of the table. If, during the process two to 01 if subsequently another count is greater, then Error is reset to 00 .
The program for the Z80 is very similar. It can process a block of data longer than single value occurs more than 255 times
NVT (number of values in a table)
subroutine. This subroutine accepts an 8bit number that has previously been stored at address 002 E and then determines how often it appears in the table of value stored in ram. The count is stored in 002 F , contains the value of the length of the table $(+1)$, so if the table contains 32 values the
number 21_{16} is stored; 0208 and 0209 (in low-byte/high-byte order) In the (in low-byte/high-byte order). In my
system, the table started at 0300 and ended at 0320 so addresses 0208 and 020 contained 00 and 03 respectively

0200	LDA*®®	A9 00
0202	STAZ 2F	85 2F
0204	tax	AA
0205	LDAZ 2E	A5 2E
0207	CMPX 0 S00	DD 0003
020 A	BEQ 06	F0 © 6
020	InX	Es
020 D	CPX*21	E®. 21
020F	bne fo	DE F6
0211	RTS	60
0212	INCZ 2 F	E6
0214	JMP 020 C	4 Coc

FDA (frequency distribution analysis) subroutine. This analyses the data
obtained by the range sampling process obtained by the range sampling process,
and then gives the true value for the range of the object in the robot's path. It works by internally examining the frequency distribution of the data and determining the range value that occurs most often, i.e., it is finding the peak of the histogram
of the data. The program uses the NVT of the data. The program uses the NVT
subroutine explained above, and also makes use of the 6502 X and Y registers. After calling this subroutine (JSR 0217), the value that occurs most often is found in
address 0034 . This is the measured rang address 0 may be used to direct the robot or fo any other purpose. The start address of the table must be the same as that used in the NVT routine and it is important that the table is the same length or gross errors will the table +1 , as in the NVT routine
www.ameri

Hobbyist's spectrum analyser

Television tuner module and oscilloscope form the basis of this useful and versatile piece of test-gear

Home experimenters occasionally have a chance to lift their activities to a new and previously unattainable level. The catalyst pacitance diode television tuner and the piece of equipment is the spectrum analyser. This article looks at these tuners and their power supply requirements in some
detail and shows how to take the first steps detail and shows how to take the first steps the expensive all-singing all-dancing commercial spectrum analysers. This project is one where results can be obtained almost
from the beginning and where each stage from the beginning and where each stage
can provide the facilities for building and can provide the facilities for building and
checking the next. The final result should be limited only by the patience, care and enthusiasm of the constructor.
But first of all, what is a spectrum ana-
lyser and what can it do? Essentially it lyser and what can it do? Essentially it
shows an instant picture of the position shows an instant picture of the position
and the strength of every signal in a selec-

by Roy Hartkopf

ted frequency band. It shows what radio and television stations are on the air, their strength and frequency. It instantly de-
tects spurious or harmonic radiation from tects spurious or harmonic radiation from ter. It can help to trace and identify electrical noise and interference, and it can make the building and alignment of filters and
Fig. 1. Power and control-voltage supplies
for the tuner module. Tuner is swept across for the tuner module. Tuner is swept across
its range by a waveform derived from the timebase of an oscilloscope; after. rectification its i.f. output is applied to the
vertical deflection input. Network at the collector of Trition provides correction for the
non-linearity of the tuner's tuning collector of tr, provides correction
non-lifearity of the tuner's tuning
characteristic.
high frequency amplifiers a matter of minutes instead of days. The principle on which the spectrum
analyser works is simple. By applying a sawtooth waveform, preferably taken from the oscilloscope itself, to both the oscilloscope deflection circuits and the tuner we cause the tuner to sweep over part or the
whole of its range in synchronism with the spot moving across the oscilloscope screen. At the same time a rectified output from the tuner is applied to the vertical amplifier of the oscilloscope causing a vertical spike to appear at any frequency where
there is a signal. Since the height of this there is a signal. Since the height of this
spike is proportional to the strength of the signal we have a picture or panorama of all the activity in this frequency band. One cannot work entirely without tools and the major requirement in this case is
an oscilloscope. The simplest home-made one will do because although we may be

iewing frequencies of hundreds of megahertz the oscilloscope is coping only with slow as possible. About 25 sweeps per much flicker
The other major item is the television tuner itself. It must of course have voltage controlled tuning and preferably cover both the v.h.f. and u.h.f. television bands.
The most useful bands are from about 100 The most useful bands are from about $100-$
220 MHz and $450-850 \mathrm{MHz}$. The tuner mentioned in this article is a Philips menc2060 but any other type could equally well be used.
Once the printed circuit board is made the assembly of the components should be
done in stages, beginning with the power supplies. The 12 volt positive and negative supplies are quite standard and since the current required from the negative supply is likely to be very low - even allowing for future additions - only one $1000 \mu \mathrm{~F}$ capa-
citor was used for smoothing. The third supply is used for the voltage-variable capacitor tuning and consists of a tripler circuit which generates about 50 V . The voltage used for tuning must be extremely
stable: a voltage change of about 25 V tunes stabe u.h.f. section over 400 MHz , a rate of 16 MHz per volt; so a jitter of even 1 mV will cause a frequency jitter of 16 kHz . There are integrated-circuit voltage stabilizers specially made for television tuners lead device in a TO- 18 case. The positive lead is connected to the case so be careful about shorts when using a heat sink. With a small clip-on heat sink the device will carry about 6 mA comfortably and drop voltage, which is critical. To prevent any possibility of the TAA 550 dropping out of regulation it is wise to allow for a minimum current of a couple of miliamps oo be flowing through it at all times. This

Basic instrument can be enhanced by additions such as heterodyne mixers and filters to provide additional frequena logarithmic amplifier to give a wide-range ogarithmic amplifier to give a wide-range
calibrated display, and switched handpass filters to select an appropriate i.f.
bandwidth.

Simple comb generator The comb generator gets its name from the fact that the pattern it produces on spectrum analyser resembles an ordi
nary hair comb with its prongs pointing vertically upward. Because these 'prongs' are harmonic multuples of the fundamental frequency it follows that the frequency difference between each
one and the next must be exactly th one and the next must be exactly th
same, the same as the fundamental fre quency of the oscillator. So if they are evenly spaced across the screen we can be certain the sweep is linear (except for possible variations between the spikes,
so the more spikes within reason the so the more spikes within reasonental
better). If we know the fundament frequency we can get a quick indication of the total range of the sweep and if w also know the frequency of any indi"frequancy pulet"" ta messure any other signal.

Fig. 2. Output from a typical comb generator as seen on the home-made
spectrum analyser. Uneven spacing spectrum analyser. Uneven spacing
between the 'prongs' is corrected by adjustments described in the text; height difference is unimportant. Bumps at the
bases of the spikes may indicate tuner overloading.

Fig. 3. Same comb as in Fig. 2, but atter correction for linearity. Note improvemen in spacing between the spikes on the right hand side. Dispray co
with 10 MHz spacing.
can be drawn by transistor Tr_{1}, so the load resistor should be at least $8 \mathrm{k} \Omega$. On the small plug-in board we can temporarily se one of the trimmers (the one which has a wire link in series rather than a zene
diode) to $8 \mathrm{k} \Omega$ and, without soldering in any of the zener dodes, plug the board into its place.
The range-setting resistors R_{3} and R_{4} have to be adjusted and it is necessary to substitute two trimmers to determine the
final values. Use two 100 k pots, set them about mid-range and solder them to inchlong tails of wire which can be soldered into the holes for the resistors. Any tran

sistor which will stand the 32 V rail will do for Tr_{1} but select one for a very low gain (50 or even less). A high-gain tanistoscan make subsequent adjustments imposApart from the power transformer the only components external to the board are the v.h.f.-u.h.f. switch (if required) and $\mathrm{R}_{2} . \mathrm{R}_{2}$ is a critical component because it
controls the centre position of the sweep. A good quality 10 -turn pot should be used; or if that is too expensive or hard to get use a ten turn trimmer, the kind used in presetting push-button television tuners.
Otherwise the control will be too sensitive. Otherwise the control will be too sensitive.
R_{2} sets the voltage applied to the non\mathbf{R}_{2} sets the voltage applied to the non-
inverting input of the op-amp; and the circuit is adjusted so that, with the slider of R_{5} grounded, R_{2} can vary the tuner voltage through the full range from 0 to 30 V . This is achieved by adjusting the trimmers
which temporarily replace R_{3} and R_{4} whilemeasuring the voltage on the collector of

Tr_{1}. Remember to set the a g . trimmer R_{1} to give about 25 V to a.g.c. trimmer pin (or pins as the case may be). Finally make up a rectifying circuit with a couple of signal diodes and a 100Ω resistor as shown in Fig. 1 and connect it between the tuner output and the oscilloscope probe
Having connected the sawtooth waveform driving the oscilloscope to R_{5}, set the sweep to a very low speed (about one sweep every five seconds, put the voltme ter on the collector of Tr_{1} and adiust R_{5}, the shift control R_{2}, and if necessary,
everything else, until the tuner control voltage is sweeping through the full 30 V Then increase the sweep frequency enoug to give a readable trace and put a signal within the frequency range into the tuner One or more spiks on the trace should

The same linearity correction should be effective on more than one band. This
shows a u.h.f. display from 500 to 850 MHz shows a u.h.f. display
with 50 MHz spacing

If the oscilloscope sweep speed is too fast as it is here, the tuner frequency may still This can arise because voltage-controlled tuning circuits usually incorporate some capacitance for stability, for example, C_{x} in
Fig. 1.

analyser is working

The next job is to make a comb generator (see box 00). When this is connected to the tuner the display should resemble that hown in Fig. 2. The main purpose of the comb generator is to help in optimising the linearity of the sweep. Note how in Fig. 2
the spikes are crowded together at the left the spikes are crowded together at the left
and spread out at the right. This indicates that the same control voltage change causes more tuning shift at the beginning of the sweep than the same change causes at the finish. To put this right, zener
diodes are fitted to the small plug-in board to modify the load resistance for Tr_{1}. As the voltage across the load increases the diodes will successively conduct, reducing the load resistance and compensating for tivity. tivity.
Now we can eas linear. Remove the small plug-in board, readjust the trimmer from $8 \mathrm{k} \Omega$ to about $15 \mathrm{k} \Omega$ and wire in the first zener. Use a mer in series with it to the maximum $50 \mathrm{k} \Omega$ and replace the board. Now fiddle the load trimmer and R_{5}, and if necessary R_{2} and the rest, until the display is similar to what it was before. Use R_{2} to make sure there
are no harmonics off the right hand side of the screen. Now close up the spacing until a centimetre or so on each side of the
screen is clear and reduce the resistance of the trimmers in series with the 15 V zener then all the harmonic spikes except the last two on the right should move to the left. If either of the last two moves the zener oltage is too low. Try one of, say, 18 V . 1 hree or more of the right hand spikes you get the voltage correct, adjust the trimmer until the third spike from the right has exactly the same spacing as the frst two. With any lu so now be correct.
nother zener diode the same way with hifts only the spie, selecting one which orrectly, until the display is simily spaced hown in Fig. 3. If you are very and the tuner has both are very unlucky and the tuner has both v.h.f. and u.h.f. in board for the other range; but in every case experienced so far (several tuners have been tried) the same compensation settings are adequate for both ranges. The more rate the correction; but three are usually enough, at least for a first attempt. As a final check, make sure that with all zeners conducting the load current is about 4 mA If it is more and the regulation is droppin out then increase the level at R_{5} and try again.
The basic spectrum analyser is now mplete, although it still has a number of mitations. It is uncalibrated, it is not very sensitive, it has a restricted frequenc for re and the l.c. bandwidn is too broad for some applications. But by progressi filters, a logarithmic amplifier to improve the sensitivity and the range, heterodyne mixers to extend the frequency range and alibrated variable sweep the final resu enthse limied or the patience and thusiasm of the constructor

The ELC2060 tuner is available for $£ 8.63$ including inland postage and v.a.t. from Shoeburyness, Esse SS3 Bishopsteignton, Shoeburyness, Essex SS3 8AF.

Did Morse get it right? A statistical background to the code

Morse speed in words-per-minute presupposes a defined mean word. A value for this can be derived from an analysis of Samuel Morse's own data. Recent trials support the original work for English but not for French or German. Certain aspects might even have surprised the great man himself.

Morse code must be reasonably familiar to f the finer points of its structure and certain practical difficulties in its application might not be immediately obvious to he non-specialist. In particular, there is an inherent uncertainty in relating transmiswords per minute. The last-mentioned introduces the concept of a standard word length which must be statistically derived from an analysis of plain language text, ween one language and another. This article looks at present-day practices and reates these to statistical data available for English and five other European languages. The need for such a reappraisal can be justified by the increasing use of and the like, which, with their capability for greater precision in code formation, has led to a general desire to define transmission speed more closely and more uniast. past.

tatistical beginnings

By the early 1830s Samuel Morse had become fully aware of the potential that a variable code would offer in arranging shorter combinations of signals to be alloalphabet and it is recorded ${ }^{1}$ that a visit to a local newspaper printing room enabled iim to deduce from the number of type pieces held for each letter of the alphabet he relative frequency of use. From this of short and long signals specifically designed to maintain the product of character length and frequency at a more constant. evel than would otherwise be the case, and
hereby to produce the shortest messages thereby to produce the shortest messages
overall. Morse's original code (not quite the same as that in use today, see Appenix) together with the letter frequency able he compiled are given in Reference 1. For the immediate task of providing a basis for calculation, it is necessary to state
here the parameters of the mark-space here the parameters of the mark-space
structure as follows. The dot length (period) can be regarded as the basic element and the dash is given a length equal o three dots. The spaces between the elements within one character are equivalent to one dot and the spaces between charac-
ters are given three dots duration. Words * On this fasis a lit count 62 redi WW sept 83 fogg 62
are separated by seven dot elements. For brevity, the term bit is used synonymously to half the bit rate (baud or bit per second). The length of a morse character can be expressed in terms of the number of do the letter A (dot dash) can be said to comprise five bits. However, as one character cannot follow another without inserting a space of some kind, it is preferable to in

by A. S. Cheste
 M.I.E.E., G3CCB

clude the standard inter-character. space three bits) as part of the letter itself bringshows a range from four to 16 with a mean value of 11.23 bits. The full range of bit counts is given in the Appendix.

Random code

When letters are selected at random they appear, by definition, at uniform relative
frequency and a mean five-letter word in code is equal to five times the mean letter plus four bits to make up the remainder of the word space. Taking a rounded value for the mean letter as 11.2 bits, the mean word comes to $5 \times 11.2+4=60$ bits. numerically equal to the bit rate or twice the dot rate. Figure characters also can usually be regarded as random in their occurrence and a similar analysis to that or letters gives the mean character length group (including word space) comes to $5 x$ $17+4=89 \mathrm{bits}$. Speed in word $/ \mathrm{min}$ can then be shown to be equal to $1.35 \times$ dot rate.
English language
The fact that plain text does not make use of all letters of the alphabet with unilorn setting a value for the mean (plain language) word. It is safe to say, however, hass the figure is bound to be significantly less than the value for the random case,
otherwise there would be no benefit to be gained from the use of a variable length forsel the letters of the.
code and, in fact, the ratio of the two figures can be regarded as a measure of achievement in optimizing the design. trials it must be conceded straight away that a standard word for a plain language
does seem to have established itself already: a scrutiny of published material shows a concensus for a nominal standard of 50 bits (including word space) and the word 'Paris' is sometimes quoted as representing this value. Frequently the informa-
tion is given directly in terms of word/min tion is given directuy in terms of word $/ \mathrm{min}$ $2.4 \times$ dot rate ($1 \mathrm{word} / \mathrm{min}=50.60$ baud). Seldom is the reader provided with
any basis for the figures quoted and variaany basis for the figures quoted and variations do appear from time to time not only
in the literature but in the observed calibration of automatic keyers and practice tapes.
It was against this background that I felt
the need to satisfy myself that any standard the need to satisfy myself that any standar being quoted, and in particular the
word, had a reasonably sound statistical basis for its application and had not established itself merely by common usage. A the same time, it had to be admitted that

Crossword - by N. Darwood Using the digits 1 to 8 each row and
each column adds up to eight. The first clue, and its consequencies for the top row, is given. No entry
guessed. Solution next issue.
ven if a 'better' result were to be found there might still be a case for retaining a of easy standardization, providing the figure did not depart too far from reality. To derive a standard word for plain language it is necessary to combine the bi
count for each letter with its relative frequency of occurrence to obtain a measure of the overall effectiveness of the letter in a ong run of text. Relative letter frequencie must, of course, be estimated by statistical
trial and in the first instance I selected three quite different sources of available data.
The first was the original frequency able 1 compiled by Samuel Morse around
1830 and reproduced in ref. 1. The second was taken from a work ${ }^{2}$ on crypto graphy by H. F. Gains first published in the late 1930s, which not only provided two sets of data by different analysts (Meaker and Ohaver) on English but data on five other European languages as well dence following publication of an article ${ }^{3}$ by a beginner operator describing his attempts to relate the dot rate on his automatic keyer to est at $12 \mathrm{word} / \mathrm{min}$. It was not in the least of the exercise might be, but in the even the results proved to be so gratifying that I undertook a count of letter frequencies myself to provide extra data for analysis. The method used for this exercise and the Given suitable data on letter frequencies, the procedure to determine the length of the standard word was the same for al sources of material. For all letters designated r_{1} to r_{n} the product of bit count x_{r}
and frequency f_{r} gave a table of values from which an overall mean letter size could be calculated. In the usual notation, the mean value x is

$$
\bar{x}=\frac{1}{N} \sum_{r=1}^{n} x_{r} f_{r}
$$

where N is the size of the sample. Defining the mean word as comprising five mean letters plus four extra bits to make up the
word space, a value for the standard word was calculated. The results of the exercise using letter frequency data from the five sources listed are given in Table 1. The total dispersion of the mean over the five results is gratifyingly small considering the A global mean value for the mean word comes to 49.4 bits and is unchanged (to three significant figures) when the data points are restricted to the middle three values.

Other languages

In addition to two sets of data on English, reference 2 provides letter frequency tables for five other European languages. The exercise to find a value for the standard word was extended to include these lanin Table 2. Data for French, Italian and Spanish were compiled from a count made by the author, but the origins of data for

German and Portuguese are said to uncer tain. The results show significantly low values of the mean word for French and German relative to the other language trials, including English. This seems likely to
be due to the fact that the frequency table for German shows zero count for letters J Y, Q, and Z (all long symbols in morse) while the count for letter E (the shortes symbol) was the highest encountered ove
all languages. The relatively low value fo French cannot be so easily explained with zero count for K and W (letters of around average size in morse) but a fairly hig count for E. Spanish and Portuguese producing equal results, are the only to word exceeding 50 bits.

The standard word

Results for English show a value for the mean word estimated over five trials a 49.4 bits with an overall anspersioule doub therefore that a standard word of 50 bit will meet all normal requirements for the measurement of morse speed in Engish. Of the five other languages, Italian, Span-
ish and Portuguese all show values for the
mean word within $\pm 1 \%$ of 50 bits whic Value can be accepted as the standard fo smaller samples.

Table 1. Results of five independent trials to
English.

Origin	Sample size	Mean word
		(bits)
Morse	1066,400	49.8
Gains (Meaker)	10.000	49.5
Gains (Ohaver)	10.000	49.3
Chester	10.000	49.3
Wood	1,798	49.3

French and German deviate much more from the 50 bit standard at -4.8% and -7.4%, respectively, and it may be wort considering whether any additional trial should be undertaken on these language to verify the low Given a standerd
the word Paris is often used to represent this value. Whether it is really necessary to quote an actual example of a 50 bit word donally recognisale words of this

$$
\begin{aligned}
& \text { Morse symbols and bit content in } \\
& \text { cluding inter-character space tosether } \\
& \text { with frequency count. Taken from the } \\
& \text { Sunday Times of } 18 \text { July } 1982 \text { using a } \\
& \text { wide range of material by different } \\
& \text { writers, But specialist subjects were } \\
& \text { wvoided, as were passages containing } \\
& \text { undue repetition of proper names and }
\end{aligned}
$$

```
frequent use of forcign words.
mavined result is from a total sampl
f 10,000 letters. Following the style of
Che, relative frequencies are given a
dropping the decimal point gives the
actual count.
```

$\left.\begin{array}{llll}\text { Letter } & \text { Morse symbol } & \begin{array}{c}\text { Bit } \\ \text { content }\end{array} \\ \text { Relative }\end{array}\right)$
from which to choose. It was during a search through a list of suitable candidates on the fact that the word Morse is one of precisely 50 bits (including word space)
and, being more than relevant to the

Table 2. Results of trials to determine the mean word
Language Origin $\underset{\text { size }}{\text { Sample }} \underset{\substack{\text { Mean } \\ \text { word }}}{\text { Word }}$

German	Uncertain	Not given	46.3
French	Gains	10,000	47.6
ralian	Gains	10,000	49.7
Spanish	Gains	10.000	50.7
Portuguese	Uncertain	Not given	50.4

ubject in hand, could hardly be bettered an international standard.

Morse practice and test criteria

 Traditionally, morse speed for plain lansuage transmission is estimated by marking off groups of five letters in a passage of text (ignoring word spaces) and thensending the passage normally arfanged in sending the passage normaly arranged in,
groups of five and the counting of 'words' is then straightforward. It is common practice to send code at a rate some 20% lower than that for plain language with the intention of presenting the same overall Whether this practice is entirely justified is arguable but a quantitative measure of one aspect of the problem is given in the following paragraphs.

Table 3. Standard words for three categories of morse against corre dots per second = halfa bit rate).

	Plain	Code	Figures
Standard word (bits)	50	60	89
Ratio			
wpm/dot rate	2.40	2.00	1.35

Given a standard word length for each of the three categories of morse, it is simple of find the corresponding ratio of transmis sion speed in word $/ \mathrm{min}$ to dot/s. Table 3
gives standard word lengths derived from the data produced in this article with the required ratio. The dot rate for plain language can be adjusted down if necessary by 1% since the mean word length for English estimated by trial has been found to be tain other languages, the dot rate could be much greater in error; see the results for hese in Table 2 .
When using automatic keyers, the dot rate can readily be set to a level corresponding to the required word speed. In
such cases, it may be useful to remember few equivalents such as 24 word $/ \mathrm{min}$ in plain language corresponds to $10 \mathrm{dot} / \mathrm{s}$. It s also interesting that this same dot rate will produce a speed in code of 20 word/ test in plain and code would have to be sent at word speeds in the ratio 24/20 to represent the same 'pace' to the operator. The method, however, would not take into account the difference in letter predictabil-
ity between the two categories of text and it could be argued that if plain text in the operator's own language is easier to cop than random code at the same dot rate, should be increased to redress the balance. Unfortunately, this aspect is difficult to quantify and seems to depend on the individual operator's training and experience. An exercise which started out to test the
validity of the 50 bit standard word has validity of the 50 bit standard word has
shown the figure to agree with the result of statistical trials to within about $\pm 1 \%$ for English and three other European lan guages. But unfortunately, the standar doesn't seem to fit the German or Frenc
languages as well as the others and users in languages as well as the others and users
these countries may wish to conside whether conformance to a round-figure standard is more important than precis alignment with the result of one statistical
trial. More generally, and especially for trial. More generally, and especially for non-European languages, the problem of gether by the universal adoption of dot rate as the only reliable measure of the 'pace' o transmitted morse.

References

1. C. Cherry, On Human Communication, p.35. Wiley, New York; Chapman \& Hall, London.
2. H. F. Gains, Cryptanalysis, appendix Dover Publications. 1956 New York. 3. I. T. Wood, The true measurement of
morse speed, Short Wave Magazine, vol 39, February 1982.

NEWYS

Liquid crystals add colour to monochrome c.r.t.

A solution to the problem of producing
colour display devices with a high enough colour display devices with a high enough
resolution for measuring instruments and computer displays has been developed by Tektronix in the form of a monochrome c.r.t. with a two-colour liquid crystal switch. This is not the first display of its
kind, but the developer claims to have solved the problem of colour-switch speed. Tektronix manufacture their own tubes and the liquid crystal switch is described as 'proprietary' but Fred Rose, information
officer of Tektronix UK, could not tell us officer of Tektronix UK, could not tell us in plain terms whether or not his company
manufactures the device. "We have tried to clear up one or two ambiguities" he said, "but Tektronix are not prepared to release any more details. The display is ready to be used and I speculate that we could see it incorporated in one of our
products within the next twelve months." The display has the same resolution as current monochrome tubes and does not suffer from convergence problems. A high contrast ratio is claimed, as is ruggedness through the absence of a shadow mask and clear about the price of such a display and will only say that it is "potentially low cost." Phosphor coating on the tube is plain with two separate emission peaks
that are typically, but not limited to, red

Heatless laser etching

A new phenomenon has been discovered which allows organic polymers and biolo-
gical materials to be etched by laser with out heating. Called ablative photodecomposition by its IBM discoverer R Srinivasan, the phenomenon could be used to directly etch images in photolithographic i.c. fabrication, which would greatly
simplify the production process by eliminating the image development stage using photosensitive layers and chemical solvents. In the medical field, the phenome
non could mean precise laser surgery,

since cuts are determined solely by the geometry of the beam and, because heat with laser surgery is eliminated. Using far-ultraviolet lasers, Srinivasan found that an intensity threshold exist above which "numerous small molecules
are suddenly ejected from the irradiated area of the material". High intensity is no directly responsible for the etching effect. Srinivasan believes that absorbed radiatio probably breaks chemical bonds betwee atoms in the organic material producin

smaller molecules that vaporize at relat vely low temperatures. These smaller molasules carry away excess energy from thence Pulses of 12 ns at 1 Hz or higher from 193 nm argon-fluoride excimer laser wer used in Srinivasan's experiments. Othe experiments using this type of laser hav shown that ultraviolet radiation may be the key to submicron lithography.

Heatless laser etching could be used to dirrectly etch images, leff, in
eliminating the usual image development chage using photosensitive layers and icrograpolvents. This scanning-electron film with 5 um-wide lines etched using a phenomenon known as ablative photodecomposition. With biological and above a certain intensity threshold causes excess energy to be carried away in ejected
molecules and the material remains cold. - W.

Potential for heatless laser etching in these cuts in cartilage tissue. Heating and charring caused by commonly used visible and infrared lasers, left, is not apparent in the 250 u wido
was cut using a far-ultraviolet laser and the ablative photodecomposition phenomenon. Geometry of the cut is

Erasable optical disc
 Using an enhancement to existing record-

 playback optical storage systems, Matsu shise has developed the world's first optical Sensitivity of the disc is high enough to eal time, its capacity is one gigabyte and an be erased and recorded over one mil ion times which makes it suitable for both ideo and computer storage applications This would seem to make both perpendiNews) and metal-powder tape obsolete but is too early to compare such factors as cost-per-bit of storage, portability of media nd manufacturing costs. Matsushita do not indicate that theirThe erasable disc
earch and development project, has a tellurium suboxide layer the same as used n existing optical-disc record/playback ystems. Heating this layer results in it changing its reflective properties (see
March News). But by adding metals such as germanium, indium and lead to the suboxide layer and using two separate laser earms, the change in reflectivity caused by

Submillimetre-wave telescope

Work has begun in Hawaii on the world's wavelengths shorter than 1 mm . Due to be completed in 1986, the telescope will help xplain the formation of new stars, the ature of quasars and the evolution of gaEducation Research Council, "will have the opportunity to study complex molecules in space which may provide the key life itself."
SERC, who are building the telescope in conjunction with the Netherlands Organi-
zation for the Advancement of Pure Science, says requirements are pushing microwave technology beyond the limits of current applications. Detectors using ele-
 line phase is converted to a low-reflectivitamorphous state; during erasure, te poposite occurs. Two semiconductor lasers are used - a $0.83 \mu \mathrm{~m} 8 \mathrm{~mW}$ device for ecording and playback and a $0.78 \mu \mathrm{~m}$ 10 mW type for erasure - with a common
ments as small as $1 \mu \mathrm{~m}^{2}$ and cooled to a few degrees above absolute zero have been deat submillimetre wavelengths - that of the eceiver sensitivity. Engineering and installation of the telescope is being carried out at SERC's Rutherford Appleton
Laboratory by a team working in collaboration with universities and observatories in the UK and Netherlands including the Mullard Radio Astronomy Observatory at Cambridge University and the council's tor Tolerance of the 15 Fm -diameter paraboloid distortions due to gravity when the antenna is turned.

the effectiveness of a highly eccentric or bit, and to demonstrate the practicabilit
of using an onboard microcomputer fo managing and monitoring the satellite's operation.
The tele
The telecommunications module consists of four main transponders, the firs 435.175 MHz downlink of 145.828 MHz Transponder L 2 , uplink 435.165 MHz downlink 145.838 MHz : Transponder H uplink 435.025 MHz , and downlink
145.978 MHz : Transponder H 2 uplink 145.978MHz: Transponder H 2 uplink
435.030 MHz , downlink 145.973 MHz . There is also an Amsat net and calling frequency with an uplink of 435.040 MHz and a downlink of 145.936 MHz . The general beacon is transmitted at 145.810 MHz and an engineering beacon at 145.987. At be fully oriented toward the sun - battery charging is low and so the beacons are only being activated for short periods. The sa ellite has an expected life of three years. Ariane $\mathrm{L} 7,8$ and 9 launchers have been
assigned to Intelsat V satellites $\mathrm{F}, \mathrm{F} 8$ and assigned to Intelsat V satellites F7,F8 and August, 4 November 1983 and January 984 respectively.

Satellite news trial

To give a valuable early indication of benefits from using satellites on a commercial scale in the future", BT are to carry out a three month trial distributing news and information by satellite starting in Telegraph Co (Extel) will send speech and data from BT's Fleet building in London o its nine regional offices in the UK via
 perience of locating and using small satelwill also be gained from the trial. Receivenly dish anteninas of one or 1.8 m diameter will be used at the regional offices.

Microphone on a chip

Using its recently developed zinc-oxide thin-film deposition technique, Honeywell has produced a microphone with microelectronics on a single silicon substrate, which is said to give better performance, ensitivity and reliability than current ceramic microphones at a fraction of the
cost. Compared with ceramic devices which lose sensitivity at around 20 Hz , the integrated zinc-oxide device operates at requencies down to 0.1 Hz . Honeywell say their 6.5 by 6.5 mm 'mike-on-a-chip' can detect lubar, at which pressure the signaland lighter than its ceramic counterpart measuring typically 6.5 by 12.5 mm exluding electronics and leads.
Zinc-oxde thechniques used produce a substance with characteristics

Data-base for

telecomms

Abstracts and references to articles from more than 250 international periodicals, congress proceedings and reports are con tained in a data base for the telecommuni cations industry recently brought on line by a Dutch company, Samsom Data Syste-
men bv. Including some 100000 bibliographic references dating from 1976, the data base also contains information on 250000 products, 7000 systems and 18000 companies. The service is conveyed through the Euronet, Tymnet, Telenet, channels. Search languages used are Com-mon-Command Language, CCL, which was developed for the Commission of European Communities, and the IBM-reSytem known as Stairs.
 received mayday signals from a radio
distress beacon and an air/sea search carried out. The beacon was later found in the wardrobe of a man living in Erskine
near Glasgow.

Two new data banks covering electronic satellite equipment produced in Europe components, Spacecomps, have bee opened by European Space Agency Information Retrieval Service. These bank are produced by ESA Research and Tech nology Centre in the Netherlands and by
ESA-IRS. Computers holding the in ESA-IRS. Computers holding the in-
formation are based in Italy and liked to all major national/international data tranmis sion networks and ESANET

In brief

During June, the Radio Regulatory De partment was transferred from the Hom Industry but the Broadcasting Departmen and Directorate of Telecommunicatio stay with the Home Office. The Radi Regulatory Department is responsible for band planning and general policy on the use of the UK radio spectrum, civil radi ternational frequency negotiations and liai son with foreign administrations. RRD also has general responsibility for th Wireless Telegraphy Acts, including thei
enforcement, and control of interference

Corrections

Precision analogue voltmeter in W. J. Horns by's design, June 1983, the junction of D_{7} and
D_{8} should be linked to $\mathrm{R}_{17}, \mathrm{R}_{18}$ and IC_{3} by $0.47 \mu \mathrm{~F}$ capacitor (C_{7}) and not by a dire
connection as shown in Fig. 1. Also omitte connection as shown in Fig. . Also omitted
from Fig. 1 was a $68 \mu \mathrm{~F}$ capacitor $\left(\mathrm{C}_{10}\right)$ acros the positive supply. Both components are
shown correctly on the printed circuit layout. In the resistance measuring unit (July issue), \mathbf{R}_{2} the resistance measuring unit (July iss
(1803) should be a fixed-value resistor.
F. P. Cing frequency meter. In the article by F. P. Caracausi on page 36 (March issue), or second line of the centre column, for MCP read
MST. On page 37 , line 13 should read "fron the timing module" not the counting module Line 4 under the subheading "TTiming," MCE goes low, not high. Line eight under "timing
MCE also goes low if. . In the caption under MCE also goes low if...In the caption und
Dr Caracausi's picture, he works at the Cass Centraace di Risparmio and not as printed. I Fig. 1, the pin marked 17 on the display should
be 7 . Fig. be 7 . Fig. 2, the pin marked 5 on the IC_{1}
should be 15 , and finally in Fig. 6 , the inputs marked DP on the counting module should have the same designation as the inpuuts sfom th
scaling circuit to which they are connected. Mixed logic. M. B. Butler tells is he Mixed logic. M. B. Butler tells is he made
two errors in his July articl (page 28 et seq.)

- in Fig. 18 the flag or two errorsin his Buily article (page 28 er seq.)
- in Fig. 18 the flag or polarity indicator
was missed of the 7427 gite was missed off the 7427 gate, and also off the
first output marked A in Fig. 27. But to first outpur marked A in Fig. 27. But to
come clean we also made a few. In Fig. 8 ,
negate the C symbols in both output funcnegate the C symbols in both output func-
tions; and Fig. 9 refers to the third point in tions; and Fig. 9 refers to the third point in
the summary, not the fourth (delete 'be-
low'). In Fig. 15 case (vi), transpose the A owd'. In Fig. 15 case (vi), transpose the A
and \mathbf{B} columns, and in Fig. 16 make the bottom output of the voltage table \mathbf{H}, not \mathbf{L}
Insert the symbol 1 in the lower three alternative rectangles of Fig. 17, and finally note that IC_{31} in Fig. 28 is an or-gate, not a nand-
gate.

Assembly language programming

To avoid extra processing time, microprocessors manipulate negative numbers in twos complement signed binary form. In this fifth article, converting such numbers, branching and bit manipulation conclude the section on microprocessor instructions for the 6805.

In twos complement conversion, positive numbers are represented as before but negative numbers are a ones complement
with one added. For minus five,

 nes complement 00000101 wos complement 11111010 Adding plus eight and minus five becomes | +8 |
| :--- |
| -5 | 11111011 -5 and the binary sum of plus three is now

The branch instruction expects to find a
The wos complement value in the immediate and execution proceeds from the new address. When assembling, the assembler (or you if you are programming by hand) must calculate this value and insert it in he object code. Assembled, and with the last month,

> LDA $\# \$ 05$ LOOP DECA SNE SWI SWOP
becomes
$\begin{array}{ll}030 & \text { A605 } \\ 032 & 4 \mathrm{~A}\end{array}$
LDA \#\$05
032
033
036
26
BNE LOOP
SWI
where xx is the twos complement offser. One calculates the offset by subtracting the ranch address of the instruction following he branch (035) from the branch destinaion address (032)

$\$ \$ 32$	
$\$ 0011$	0010
result	(1) 00011110101
1111	1101

In hexadecimal, the result is
 imaginary borrowed number. During exe-
cution, the two bytes of the branch instruction enter the c.p.u. from program memory and the program counter is incremented. The program counter will now ontain 35 (hex.). The bunt is met, the program
$\begin{array}{llll}\$ 035 & 000 & 0011 & 0101 \\ \$ F D & (111) & 1111 & 1101\end{array}$
result $\$ 032$ (1) 00000110010
branch instruction to hop to the desired BEQ LABEL1

LABEL1 BRA LABEL2

LABEL
A second method is to use a combination of the complement of the branch instruc tion required and a jump. Extended jumps will allow the program to jump anywher in memory

BNE JMP LABEL
 (next instruction)

BYPASS

LABEL

When the branch-not-equal-to-zero (BNE) condition is true, the program branche past the jump and executes the next in-
struction, in effect iust continuing the sequence. If the condition is not met, JMP is executed and the program can jump any where in the memory. Combining BNE and JMP amounts to a jump-if-equal-tozero instruction.
To summarize, when assembling by a branch offset is reqe object code wher program and fill in required, assemble the the branch calculator addresses then us in the offsets.

Branch instruction range. There are 1 branch instruction for the 6805, excluding bit-test-and-branch dection They all require two bytes, the op code and the eight-bit offset. None of them affect the condition-code register; only one addressing mode applies, which is relative. Branch always, BRA, is an unconditional Branch, that is, a branch will always occur when this instruction is encountered
Branch never, BRN, a branch instructio which never causes a branch, has the dubious function of performing a two-byte no-operation which takes the same time a
two NOP instructions. Its only value is two NOP instructions. Its only value is
with the cmos 6805 where it only requires
three cycles to execute so timing delays ca be se
two.

Branch to subroutine, BSR, unconditionally branches to a subroutine and is th same as BRA except that the retur adder is
Branch if lower or same, BLS, causes a branch when either C or \mathbf{Z} bits in the condition-code register are set. If a comparison (subtraction) is performed prior to same, the Z bit will be set. When the number in the accumulator or index regis ter is less than the number being subtracted from it, a borrow value occurs and the C bit is set, i.e.

CPX \#\$12

will cause a branch if the index register contains 12 or less.
Branch if higher, BHI , is the complemen of BLS, causing a branch if both C and Z bits are clear,
Branch if interrupt pin low, BIL, allows the interrupt input to be used as an extra input line if the interrupt mask is set interrupt signal is logical 0 .
Branch if interrupt pin high, BIH, causes a Branch if interrupt pin high, BIH, causes logical 1.
Remaining branch instructions cause a branch depending on the condition of jus one of the condition-code register bits. The half-carry bit is set as a result of carcumulator with instructions ADD ADC, and is used in decimal arithmetic ADC, and is
BCC Branch if carry clear, which may also ereferred to as branch if higher or same, BHS.
BCS Branch if carry set, which may also be referred to as branch if lower, BLO
BNE Branch if not equal to zero, i.e. when the \mathbf{Z} bit is clear.
BEQ Branch if equal to zero, i.e. when the Z bit is set.
BHCC Branch if half carry clear
BHCS Branch if half carry set
BPL Branch if plus, i.e. if N bit is clea BMI Branch if minus, i.e. if N bit is set.

BMC Branch if interrupt mask, bit I, is clear
BMS Branch if interrupt mask is set

Bit manipulation

The final section of the instruction set covers bit-manipulation instructions for
the 6805 . Although the Z 80 has similar instructions, 6800,6802 and 6809 type microprocessors do not. Bit-manipulation instructions fall into two categories - bi set/clear and bit-test and branch. They are intended for manipulating i/o port data for which may for instance drive a relay, or for
esting the status of an input line which may be connected to say a switch causing branch depending on its state. As thes nly direct addressing is allowed, which means that they can only be used to perate on addresses in the range 00 to FF Bit setclear. Any bit in any byte i de set to a one or cleared to zero usin these instructions. They are two-byte in sructions consisting of the op-code and direct address and their mnemonics uired in the operand field, the number of he bit to be operated on, between zero and even, and the direct address of the byt which contains the bit. BSET $3, \$ 32$ wir cause bit 3 of address location 32 to be set fies the bit-set instruction op-code and 32 goes into the second byte of the instruc tion. From the instruction-set table (WW April 1983, page 64) the op-code is calcu-
 three, n is three which gives $10+6$ so the assembled version of the above instructio

1632 BSET 3,\$32
and it can be tried out using this example $\begin{array}{llll}040 & 3 F 32 & \text { CLR } & \$ 32 \\ 042 & 1632 & \text { BSET } & 3, \$ 32\end{array}$

When the program finishes, check the ontents of address location 32 using the ight because the address was cleared beore bit three was set.
bit number
76543210
3200001000
Bit test and branch. Instructions BRCLR it test and branch. Instructions BRCLR specified bit in a byte in address range 00 to FF is clear or set respectively. These are hree byte instructions. The first two bytes the op-code modified by the bi s with bit set/clear. Byte three holds the wos complement branch offset. Three rguments are required in the operand eid, the bit number, the direct address and the branch labers, e .

pp-codes for bit-manipulation in-
Op-code Mnemonic Op-code Mnemonic

The op-code for BRSET is 2 n and in this case n is seven which gives a hexadecimal result of 0 E . Provided that bit seven of ddress 00 is set to one, this program banches to the label loop, i.e. back to the start of the same instruction, and re-
peatedly executes the same instruction unil the branch condition is not met.
Address 00 is the eight-bit i / o port on the 68705. In Picotutor, this port is connected to the eight-way dual-in-line switch switch. At switch on this port is automatcally set as eight input lines and if the witch for bit seven is open a pull-up resistor in the processor makes this bit appear as a 1 (set) when address 00 is read. When sor input pin is connected to 0 V so bit seven appears as a 0 (clear) when address 0 is read.
If the program is run with the switch pen, the branch-if-bit-set instruction is the monitor program is no longer operating it. With the switch closed the branch-if-bit-set condition is no longer true as bir seven is clear so the loop is broken and we nexrens, but to the monior re-entry point so the Picotutor dash prompt is displayed.
Branch offsets may be calculated on the Picotutor even though the function was designed for two-byte numbers and not hree. For three-byte bit-est-and-branch must be decremented by one, as in the following key sequence
$\begin{array}{ll}\text { Key } & \text { Display } \\ \text { bc } & \mathrm{S} \\ 040 & \mathrm{~d}\end{array}$
040 FE
where the offset minus one is FD. Having 0 calculate op-codes for bit manipulation , sts all combinations of -
Programming techniques are the subject of

In brief...

Paisley College are to receive a $£ 63,000$ Research Council for research into ferrite Research Council for research into ferriteloaded microwave i.cs operating at fre-
quencies between 20 and 100 GHz . Several i.cs have already been built by research student David Sillers who will "spend some time at Philips and BT research laboratories, who are both collaborating in his work,
Four carrots for the Berlin International
Audio and Video Fair 1983, 2 to 11 September - the world's smallest studioquality u.h.f. pocket transmitter from Senheiser, a professional mobile video recorder from Grundig for teaching, research work, information services and advertising, Hitachi's SHS recorder giving
8 h of uninterrupted film from a standard 4h tape and Sony's Beta camera/recorder weighing 2.5 kg and giving three recording hours from a standard cassette.

Two-metre transceiver

Besides helping one understand operation of the transceiver, this description of software which completes the multi-mode transceiver design - will aid software modification.

Abstract

Transceiver software consists of a main subroutines in sequence, as shown in flowchart form in the March issue, page 39 Conveniently, this technique allows cer tain routines to be bypassed by simply control program. Removing a subroutine during program development was simply a matter of taking out three or four bytes in the main control program, which is useful lies is not sure where a program erro les. program calls suatine. When the main gram calls repeater mode, the repeater broutine sets the peripheral interface controls-enable signal, pin 36 of IC

Eprom starts at 1800 hexadecimal and software breaks down into these main sofware breass down pratdown routines were
routines. Irase and
cover in the April issue

by T. Forrester, G8GIW

one. Machine code for setting the p.i.a. Aport for input and activating controls-en1995. This code, used each time controls are tested, stores the status of the controls in the accumulator. If bit zero is clear, repeater mode is bypassed but if bit zero is set the processor tests for receive by
looking at bit one of the p.i.a. A-port. A one' on this line tells the program that the transmitter is to receive and that no shift is required so repeater mode is left.
Bit zero being at 'one' indicates that transmitting and a negative 600 kHz shift JSR NVE are required. On return from
the negative-shift subroutine, JSR NVE, the program loops, testing bit one of the Aport until a 'one' is detected to indicate hat receiving is required. At this point the program jumps to the positive-shifting leaves the repeater subroutine. Software detects whether the transceiver is set for transmit or receive by addressing C_{803} (see March issue, page 41) which passes the status of press-to-talk, up-frequency, down-frequency, squelch-open tween locations 1880 and 188A enables IC_{803} through pin 33 of the processor and loads the buffered switch signals into the accumulator. This code is used every time the status of up/down, transmit/receive
squelch and power-on controls is required. Repeater routine is between memory location 1831 and 1844.
-Reverse repeater subroutine. This subroutine is more complex than the previous one because the receiver is quency in repeater mode, so when reverse repeater mode is entered the frequency has to be restored to its original value. While receiving in reverse repeater mode, the subroutine has to call all the routines nor tuning up/down, scan and erase, to allow the band to be tuned.
On entering the reverse repeater routine, software tests for transmit or receive If receive is detected, the program jumps
to the negative-shift subroutine, JSR NVE, used in repeater mode to subtract 600 kHz . Detection of a transmit condition causes the program to jump to the simplex
routine JSR SIMP routine, JSR SIMP, and loop so long as the transmit condition exists; this disables the
rest of the controls. Simplex routine is

located between 1879 and 187F and uses the subroutine between 1880 and 188A to lest the p.t.t. line. When the transceiver is -600 kHz , another for receive and reverse repeater mode (see flow chart).
Scan subroutine. On entering this subroutine from the main program, the first operation tests to see if scan has been selecgramme. When scan mode is selected the software looks at the squelch status signal entering pin 6 of IC_{803}; squelch open, i.e. signal present, is represented by a one on the line. If a signal is present the test rou-
tine is carried out to see whether the next frequency to be monitored is to be skipped over or not. If the frequency is to be skipped, the synthesizer is moved to the next channel and control is passed back to the scan routine.
Now the program again checks for the 12 is loaded into the accumulator and then stored in the first temporary location TEMP1) at address 002 F . The value 12 loaded into temporary-location one determines how long the transceiver monitors mented. Delay value 12 , currently held in location 195B may be changed to increase Pr decrease the delay as desired.
Pressing the skip button while monitoring a frequency in scan mode results in the

repeater and skip modes which do not perate in the memory mode. Memory subroutine is best dealt with by breaking it down into unitseach providing a function. Unit one is a memory scan, which takes requency data from memory-frequency quence. Two bytes are used for each frequency - one byte controls the 100 Hz steps while the other controls the voltage-
frequency being included in the skip look up table by means of the frequency-add
subroutine, FADD. Next time the synthesubroutine, FADD. Next time the synthe-
sizer stops at this frequency the tes subroutine will cause it to be bypassed Not pressing the skip button while monitoring a frequency causes the program to jump to a delay loop (JSR WT2) afte mented. Delay loop WT2, located betwee 1913 and 1936, decrements ram locatio 0015 from 00 FF to zero and is carried ou 15 times.

While in the WT2 loop, the program monitors the power line and on detection
of the set being switched off causes 8 E be loaded into ram location 0014: this operation puts the processor in its stop mode. After leaving the WT2 delay loop the program tests whether scan mode is
still required and if so tests the temporary location at 002 F for zero. When the TEMP1 test for zero is true, program jumps to the scan-up subroutine, JSR SCNU, located between 1980 and 19A2 Scan-up routine increments the synthe frequency limits for scan mode. Location 1991 currently holds E4 to set the highest frequency of a scan to 145.9999 MHz . An increase of one unit represents an increase in the top frequency. of 10 kHz . Similarly lowest frequency of 144 MHz .
With present hardware the maximum and minimum frequencies are 146.270 and 143.700 MHz . To widen these limits, wiring of $\mathrm{IC}_{800,001}$ shown on page 39 of the March issue would have to be modified. Memory subroutine. This subroutine is
the most complex, encompassing all of the other subroutines except those for reverse
ase up fewn,

scan

controlled crystal oscillator in 100 Hz steps up to 9.9 kHz . If a particular memory frequency is in use the set will wait for a period determined by the number of time
that the outine at 191D is called using code between 1A94 and 1AA2. The current program calls the routine at 191D four times.
Unit two looks at the channel switch and compares it with the last position of the
switch stored in ram location switch stored in ram location 001A
(CHNO 001A). If the two are the same nothing happens but a difference between the two causes the stored channel number to be updated. The processor then loads the index register with the content of the
memory location corresponding to the channel-switch position using a subroutine called MORT located between 1B07 and 1B16. Data for the synthesizer and
 sizer using a dat-output routine abbre-

[^1]

600 kHz from synthesizer data stored in 0010. Hexadecimal value 3 C is the equivalent of 600 kHz in this case. Both of thes DOP, to modify the synthesizer and display.

LTITRATMRE RECEIVED

A comprehensive 64 -page catalogue of radio-frequency interference filters for mains power an
other uses has been published. It lists 120 filters from a plug-and-socket model to keep noise ou of home computers or hi-fi to a 800 A power
filter or a 32 -line filter for data transmissio filter or a 32 -ine inter for data transmission
which can handle 9.6 Kbitr . Belling Lee Intech which can handle 9.6Kbits. Belling Lee Intech
Lrd, 240 Great Cambridge Road, Enfield EN
30 . WW407
viated DOP. Locations 1B71 to 1BE2 hold controlling the synthesizer converts binary

to condensed multiplexed b.c.d. to drive the display. Every time the frequency is changed in any mode, the data-output subroutine is used.
Unit three takes
Unit three takes the frequency in use places it in the memory locations pointed to by the channel switch then the program jumps back to unit two to send the data to the synthesizer. Unit four allows repeater and provides the way out of memory mode, restoring the original operating frequency. When the program is in memory mode, the original operating frequency is stored in ram locations 0012 and 0013 fo synthesizer and voltage-controlled oscilla tor data respectively
$\pm 600 \mathrm{kHz}$ subroutines. Postive shift, PVE and negative-shift, NVE routines resid in locations 18AB to 18B5 and 18A1 to

3Qw.
The first issue of the Electronics for Peac
Journal reports on the first national conference of the Electronics for Peace movement and in cludes articles son the reliabikoty of digitally
and controlled weapons, the dangers of Ada, the
computer language designed for use by the US Department of Defence, which could be errorprone. On the positive, and peaceful, side there is an article on information networks at the domestic level. Membership of Electronics fo
Peace, including a free subscription to the Jour Peace, including a free subscription to the Jour-
nal, is $5 \$$ ($£ 3$ for the unwaged) to Steve Holmes, 151 Courthouse Road, Maidenhead, Berks SL6 Stepping motors and suitable drives and some useful design features explained in a four-page
brochure . Evershed and Vignoles Ltd, Acton Lane, London $W 45 \mathrm{HJ}$.
Television and audio spare parts, especially for the Rank Bush/Murphy equipment forms
the core of the Mastercare catalogue, which also the core of the Mastercare catalogue, which also
has service aids and tools, instrument and test

Four lesser routines remain. The first, cated between 18B6 and 18CD, takes th requency down in 25 kHz steps and the second between 18CE and 18E7 takes the requency up in 25 kHz steps. Two simila outines causing 100 Hz steps up and dow
equipment and various accessories and othe components. Mastercare Components, 653
London Road, High Wycombe, Bucks HP11 London
1PH. icrowaye products including ferrite ded Microwave products including ferrite devices,
valves, noise generators, noise standards and valves, noise generators, noise standards and
power units are fully illustrated in a produc guide. There are precise descriptions of five different types of waveguide circulators/isola tors, together with information on transitions/i-
soducers, and a design service. Nore Microwav soducers, and a desigg service. Nore Microwave
Ldt, 36 Towerfield Road, Shoeburyness, sS3 9 SH.
Training schemes for schools, college and ap prentice use are described fully in a bookle illustrate circuits which can be built and emonstrated to a class or group. Students can ery simple to advanced studies in microwaves digital electronics, control and automation, and mmmunications. Taran International Ltd
and Raynham Rog. Road, Bishop's Stortford, HW41 A 'budget range' of toroidal transformers with dual secondary windings rated at 9 to 240 V and ingle 110,220 or 240 V primaries, or a double the manufacturers who have also published he manufacturers who have also pubished a td, Kingville Road, Kingsditch Trading Es-
WW413 , WW The Bi-Pack semiconductor catalogue costs $£ 1$
(including postage) but does include some useful information such as pin-outs for a number of devices. Despite the title, there are a number of
are in locations 18 E 8 to 18 FA and 18 FB to 180D respectively. These routines may be modified to make the set operate with any channel spacing. Readers considering
modifying the software will find the Motorola MC146805E2L microprocessor applications manual helpful.
Photocopies of p.c.b. track diagram and component positions can be obuained by sending a large s.a.e. to Wireless World Transceiver,
Room L303, Quadrant House, The Ouadrant, Sutton, Surrey SM2 5AS. Programmed eproms at $£ 8$ and software listing at 1.50 including UK postage and vat are available from T. Forrester, 125 Seven Way,

Modules

1 Receiver converter, 144 MHz to 9 MHz No 2 Transmit converter, 9 MHz to 144 MHz De3 cember 1982. pp. 61 1-63
3 Transmit power amplifier and power regula-
tors -December 1982 pp. $61-63$ January 1983 pp. 42 -45
4 Discriminator, squelch, noise blanker, a.f. 5 power amp January 1983 pp. $42-45$ ${ }_{6}$ pp.42-45
6 Synthesizer voltage-controlled oscillator, power change over February 1983 pp. 38 -41
7
9 MHz s.s.b. transceiver, 9 MHz f.m. exciter February 1983 pp. $38-41$. 8 Mirroprocesssor control and interfaces 9 March 1983 pp. $39-42$ (river March 1983 pp. $39-42$
10 - 750 Hz tone-burst and receive a.f. pre-amp 1750 Hz tone-burst and receive a.f. pre-amp
April $1983 \mathrm{pp} .69-7 \mathrm{l}$ odules and data books. Bi-Pack Semiconducors, PO Box 6,6A High Street, Ware, Herts G129A The Zehntel p.c.b.b.-handling robot can identify teart station or a repair bench to within 0.5 mm . Motion is six axes is claimed to be unique. Details in a brochure from Zehntel Litd, 62 Tanners Drive, Blakelands, Milton Keynes
MK14 5BP.
folder-full of 34 different sections make up A folder-full of 34 didterent sections make up
the Verospeed catalogue which offers over 5,000 components from 120 matufacturess. New sections are cable accessories, data books, compu-
ter accessories and opto-electronics. Verospeed, tanstead Road, Boyatt Wood, Eastleigh, Hants SOS 4ZY. Automated design and production facilities are
available to designers of electronic equipment. These and the test facilities, all claimed to be at highly competitive prices, are described in a
brochure from Tasbian Ltd, 2 Burrington W ay Plymaouth, Devon PL5 3LS. \quad WW417
The preliminary product brief for the Zilog $8 / 16$-bit devices with many added instructions including signed and unsigned multiplying and ivision, on-chip countertimers, two versions access channels. All versions include paged memory management to address 512 K bytes while two of them can cope with 16 M bytes.
Also from Zilog is a user's manual for the Z8000 loating-point emulation package. Zilog (UK) tdd, 43 Moorbridge Road, Maidenhead, Berks Ltd, 43 M
SL6 8PL.

NENV PRODUCTS

Audio oscillator with ultra-low distortion Less shan 0.0005% distortion is.
claimed for the Bang \& Olufen TG8 audio oscillator. Intended for circuit testing, test-gear calibration
and production-line producr testing, its typicial distorotion is 0.0000 15% (harmonic) over the
audio range 20 Hz to 20 kHz . The

instrument is also a signal generator
for 1 Hzzo 100 kHzzand has a wide

from 3 mV to 10 V checked
apans from 3 mV to 10 V checked against a
buil--in vollmeter. Daviid Bisset Litd, 22 Lutron LLane, Redbourne, Hetrs AL3 W WY

Autodial modem Any compurer that uses the $5-100$
bus can be fited with the Modem. bus cani
100 which provides a completer autodial viewdatata modem and display driver on a single card. It
gives full colour display ourput. gives full colour display outpu.
The card includes an 8749 microprocessor, on board ram and rom and a calendar clock which
 cheaper ((495) alternative is Pratule (Programmable receive and
ransmit telephone line equipment transmit telephone line equipment)
built around 2 Z 80 processor, wiht rom and ram programs modem buffering, autodial and answering etc, using single bye commands.
Pratte also interfaces with he 100 bus. High Technology Electronics LAd, 303 Portswood
Road, Southamplon SO2 1 ILD. Road, Sou
WW302

Multi-counter A dual-chanel faciity on the
Norma D3655 counter enables frequency ratios and time intervals to be measured. The measuring period of 10 Ims , 1 mm , 1 sand 10 s
 range 10 Hz to 10 MHz . A self-ress facility checks on the internal

scillator. D3655 is available with nerface and so can be insked in with a data processing system. Cropico Ltd, Hamporon Road, Croydon, Surrey CR9 9 RU
WW303

Controlled soldering A emperature range of 216 to
$422^{\circ} \mathrm{C}$ may be regulated 10 within ${ }^{\circ} \mathrm{C}$ using a slim, lighweight, micro-ipped soldering iron along
with he Une ngar 9000 control uni tat incorporates aled bar-graph temperature display and the ability 10 calibrate it at the work station. nd temperature recovery and the iron is supplied with a variety of interchangeable, iron-clad, chrome plated dips. HB Electronics L ww304

Speech synthesized to order
nflexion, tone and clarity of thfexion, tone and claritiy oy adiusted when using the TI the distributors. Phrases for industrial control, alarm systems measuring equipment, remote

claimed for the diodes including low spikes, low electromagnetic interference requiring little or no
RC damping, and low dissipation when compared with Schistatky devices. The RUR-810 series are
single rectifiers while the RURsingle rectifiers while the RUR
D 810 are double i.cs with a common cathode. Rated for a forward current of 8 A with a
maximum forward voltage drop maximum forward voltage drop of
0.89 V , the maximum reverse voltage is 200 V . Voltage rating vary for different diodes in the
series from 100 to series from 100 to 200 V r.m.s.
Reverse recovery time is less than 35ns. VSI Electronics (UK) Ltd, WIRELESS WORLDAUGUST 1983

Horsecroft Road, Harlow, Essex CM19 SBY
WW306

Very nice dear, but what's it for? A compani with a problem is
Regisbrok of Reading who have samples of a very sensitive humidity sensor - so sensitive, chey say, that it will detect the
moisture in exhaled breath at a distance of 0.6 m . It is battery powered and pocket sized with an
adjustable mounting bracket Th sensing grid consists of interleaved gold filaments on a ceramic substrate. There is an integra alarm bleeper which is not
triggered if the gold elements shorted together. The alarm stops when the sensing grid is wiped dry. The problem is: what can
done with it? A first prize of champagne, with ten runners up to get the sensor itself, for the best suggestions, serious or imaginative,
which should be sent to Regisbrook which should be sent to Regisbrook
Ltd, Studio House, 215 Kings Road, Reading, Berks RG1 4LS.
WW307

Infrared emitters Two gallium-aluminium arsenide
i.r. diodes emit radiant flux at a i.r. diodes emit radiant flux at a
wavelength of 880 mm . They are designed to have better coupling efficiency with silicon photodiodes and to be particularly suitable for use in pused applications. Output
in pulsed operation is 100 mW , and for continuous operation 10 mW .
The C 86038 E has a glass lens to The C86038E has a glass lens to produce a a arrow beam, while the
C86038E/F has a flat glass window and no lens. The devices may be used in high-speed sorting and indicators, collision protection, optical coupling and isolation, data transmission and in photoelectric
smoke detection. RCA Solid State, Lincoln Way, Windmill Road, Sunbury on Thames, Middlesex TW 16 7HW
WW308

Accelerometer

 withstands 10000 g A miniature transducer for the measurement of acceleration 125 weighs less than half a gram. The active semiconductor straingauge bridge gives a full scaleoutput of 250 mV Built-cin range stops and damping provide the ability to cope with high g. Static and dynamic measurement is
available in various ranges from 5 to available in various ranges from 5 to
5000 g , with a temperature range of -5 to $120^{\circ} \mathrm{C}$. Its ability to operate at 10000 g overrange
makes it suitable for automotive

The beginners' pack, while said to be fun to play, teaches the elements
of the workings of compurer, of the workings of computer
hence the tille of the game hence the title of the game -
Computer. Additional packs increase the number of 'memory jits' and variables up to a
professional' level. Computer is made in cut-out cardboard. eginners' pack is $£ 1$ from N . arwood Ltd, Halfacre, Stroud WW312.

Connections
verified
When a p.c.b. has been wireWhen a p.c.b. has been wire-
wrapped there follows a tedious system of checking the interconnections to make sure that
all is correct before populating the all is correct beefore populating the
board with expensive i.cs. A way of overcoming this is to use

interconnect verifiers which are made in d.i.1. i.c. packages and incorporate arrays of 1 .e.ds with
one to indicate the status of each one to indicate the sa.
pin, from eight to 48 . By grounding one pin all the l.e.ds on one node are lit; incorrect connections will also be lit and points not connected,
which should be, are not lit. Dim displays would indicate poor connections. This technique would not be suitable for mass production
where a test rig would be set up, but offers a low-cost alernative for board development and for small batches. Track Equipment
Corporation, PO Box 3181, Nashua, New Hampshire 03061 WWA. 313
Driver for stepper
motors
pecifically designed to drive small magnet stepper motors, the
UCN4202A i.c. uses a full-step double pulse driver that optimizes he efficiency of the motor torque.

MICRO PRODUCTS

Local processor

 The problem of waiting for maincomputation can be overcome by e use of the AP500 array processor from Analogic. The unincorporates the MC68000 $16 / 32$ it processor and uses 32-bit ives it a very high speed: the manufacturers quote its ability to nvert a 100 by 100 matrix in 649 ms . Using a technique of
distributed control of memory, input/output and arithmetic, the entral processing section can ru high-level language or assembly
language programs. 128 K bytes of program memory are available in he basic version, expandable up to 6 K by 32 -bits which can be xpanded to 912 K 32 -bit words. The processor may be used for dar data processing, seismic uclear magnetic resonance spectroscopy, image processing,
spech analysis, and testing and ontrol procedures. It need only interrupt the host computer if a retain pattern is detected among has been compiled
Interfaces enable it to be used as peripheral device, as a co-ocal-area network. For many pplications it could be used as a tand-alone computer. Analogic
Ltd, The Centre, 68 High Street td, The Centre, 68 WW314

Eprom programmer A microprocessor-controlled eprom designed to work with all popular m.o.s. eproms. The EP8000 includes all the necessary the various eproms in software and the instrument adapts itself automatically for emulating or programming a specific device. It
provides a video output so that the user can examine the contents, which may also be displayed a line-at-a-time on the eight-character
display built in. Serial and/or parallel i / o buses are provided Data can be loaded from a pre programmed rom, through the
serial or parallel ports or from an audio cassette. GP Industrial Electronics Ltd, Unit E, Huxley Plymouth PL7 4 4JN.

Modular computers with BBC Basic A series of microcomputer modules
constitute the Cube range which,

despite their title, are not cube shaped but built on Eurocards.
Intended for industrial and control pplications, the core of the system icrocomputer based around a 6502 or a 6809 processor. Included on the board are four memory sockets which can hold, for Basic or other language interpreter in rom, and ram which can retain its contents with the help of a back
up battery mounted on the board po battery mounted on the board board calendar clock. The computer cards plug into a rack
which can also accommodate a wi range of input/output control
modules and interfaces, including modales and interfaces, including
black and white or colour video output, cassette and disc
controllers, keyboard inputs, contritional memory
addinputs, and Control Universal have agreement with Acorn Computers
to use their firmware including then ${ }_{\text {BBC Basic interpreter. This mean }}$ that a control computer incorporating BBC Basic can be pu
together a a lower cost than buying together at a lower cost than buyin
the Acorn/BBC computer. To get all the facilities of the BBC it would indeed cost more using this
modular approach, but for
industrial use it is probable industrial use it is probable that
many of those facilities are not meeded, as all extensions are compatible with each other, and with the Acorn BBC micro.
An extension board called An extension board called
Beebex which plugs into the 1 MHz -bus port on the BBC has slots for many of the Cube range of
modules. Up to 1 Mbyte of memory modules. Up to 1 Nbyte of memory
may be added with battery back-up to provide what the makers call a 'silicon disc'. Control Universal
Ltd, Unit 2 , Andersons Court, Ltd, Unit 2, Andersons Court,
Newnham Road, Cambridge CB3 9 EZ . (This address may be temporary as the company is
looking for more area to expand into.)
WW 316

Daisywhee Interface Those who are unable or unwilling
to tackle the RS232C interface for an Olivetti Praxis typewriter,
featured on page 24 , might be featured on page 24 , might be
interested in another already buik interested in another already bu
Designed with the Acorn/BBC computer in mind, it is suitable for
any computer with an RS232C $/ 423$ any compurer with an RS232C/423
outlet operating at 300 Baud. Full outter operating at
handshake and busy signalling is incorporated and the printing speed
is 10 to 12 characters/s. The slim unit may be unobrrusively fitted to the side of the machine and there is no interference with normal operation as a typewriter. Inclusive
price with easy-to-follow fiting price with easy-10-follow firting
instructions is 669 , from Timtom
Micro Micro, 9 Itton Road, Penylan,
WW317

Logical design Developed at Brunel University and implemented by the same
designers at Cirrus designers at Cirrus Computer
Hilo-2 features gate-level and Hilo-2 features gate-level and
function-level logic design simulation and timing verification.
It is a high-speed universal logic It is a high-speed universal logic
design simulator and is a powerful doel for integrated circuit design, according to GenRad who market
it. Tests may be simulated and it. Tests may be simulated and
validated and all functions validated and all functions
modeled by using the menu-driven interface. The system runs on 32 -
bit virual memory con bit virtual memory computers
Reduction in i.c. design and development time is claimed for Hilo- 2 which may be used in
coniunction with the GenR conjunction with the Gen Rad
v.1.s.i. test system. Included in software is hazard spike analysis, 'worst case' modelling, interactive design analysis and hierarccical
simulation for managing complexity of a design. Implementations are available for
Vax 780 , Vax 730 and other Cax 780 , Vax 730 and other
computers. GenRad Ltd, Norrey computers. GenRead Ltd, Norrey
Drive, Maidenhead, Berks.
WW318 WW318

Your own customised Communications Monitor

The vast range of available options allows you to customise the FM/AM 500 MicroMonitor to suit your specific needs, and weighing in at just 16 lbs your 'field-tests can now be precisely that!
For a practical demonstration to prove our point contact:-
Mike Dawson on 01-897 6446.

WW - 009 FOR FURTHER DETAILS

HEMMINGS EIEGrooxcs

ـ ت

为

WW - 042 FOR FURTHER DETAILS

Anglia Industrial Auctions

Specialist Auctioneers to the Radio and Electronic Industry

5 STATION ROAD, LITTLEPORT, CAMBS CB6 1QE

 Telephone: ELY (0353) 860185
AUCTION SALES

OF OVER 700 LOTS

Including: Electronic and electrical equipment, components, test gear, radio telephones, laboratory equipment, valves, transistors, scrap and general works effects.
Forthcoming sales to be held on the following dates:
October 19th, 1983, November 23rd, 1983, January 11th, 1984 February 15th, 1984, March 21st, 1984, April 25th, 1984

May 30th, 1984, July 4th, 1984
Catalogues available 10 days prior to sale, price 60 p inc. p.\&p. or for each sale for a year $£ 5$ (10 sales)
Large stocks of electronic components, test gear, radio telephones, transistors, etc, are offered for sale on tender. Please apply for forms

WW - 053 FOR FURTHER DETAILS

U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

NEW baker Star sound

BAKER AMPLIFIERS BRITISH MADE

为 FAMOUS LOUDSPEAKERS

ELECTRNC

SHOCK 2 WAYS TO RECOVERY

ACT AT ONCE - DELAY IS FATAL

GET IT - READ IT - PRACTISE 1.4 BE READY TO SAVE A LIFE. SOMEONE MIGHT SAVE YOURS.

Display the ELECTRICAL REVIEW shock first aid chart ($356 \times 508 \mathrm{~mm}$) supplied in thousands to destinations world-wide. Recent deliveries include consignments to companies in Papua New Guinea, Dubai, United Arab Emirates, The Philippines, apart from UK commercial and industrial, educational Central Government, Local Authorities' orders.

Carry the ELECTRICAL REVIEW pocket-size shock card ($92 \times 126 \mathrm{~mm}$) designed to help safety and training officers, medical and welfare personnel; all who weifare personnel; al called to save a life. Always pocket your card; there's a pocket your card; there's a the back.

ACT AT ONCE-DELAY IS FATAL!

To Electrical-Electronic Press	Please send......copylcopies as indicated
General Sales De Room 205	Pocket Card@ 70p each inc VAT
Quadrant House	Paper Chart @ $£ 1.00$ each post free
Sutton SM2 5AS	Card Chart @ $£$ ¢2.00 each post free
England	Discounts: $\begin{aligned} & 100+\text { copies } 10 \% \\ & 500+\text { copies } 15 \% \end{aligned}$
Company Registered Number: 151537 (ENGLAND Registered Office: Quadrant House, The Quadrant Sutton, Surrey SM2 5AS	(Overseas surface and air mail rates supplied on application.)

eneral Sales Department
Room 205
Sutton SM2 5AS
Surrey
Company Registered Number: 151537 (ENGLAND)
Registered OOffee: Quadrant House, The Quadrant Sutton, Surrey SM2 5AS

Please send.......copy/copies as indicated Pocket Card @ 70p each inc VAT Pard Chart @ $£ 1.00$ each post free Plastic Chart @ $£ 3.00$ each post free
$100+$ copies 10%
$500+$ copies 15%
on application.)

P.\&R. COMPUTER SHOP

IBM GOLFBALL PRINTERS from E70 EACH + V.A.T
INTERFACE FOR IBM GOLFBALL £40 + V.A.T.
*BRAND-NEW LA36 DEC WRITERS-SALE $£ 200$ EACH + V.A.T. CENTRONIC 779 PRINTERS-E325 + VALA.T. CENTRONC 781PRINTER-E350 + V.A.T.
POWER UNITS 5 -VOLT $6-A M P-E 20$ EACH PANS, PCBs, KEYBOARDS AND LOTS MORE 8-INC'H IBM FLOPPY DISC DRIVES.

COME AND LOOK AROUND
SALCOTT MILL. GOLDHANGER ROAD PHONE MALDON (0621) 57440

WW - 050 FOR FURTHER DETAILS

The lightweight mast with 101 applications

The smoothly operated OTM Mast comes fitted with handpump or can be vehicle mounted with Power Paghs up to 15 metres, the OTM mast can provide the ideal answer

- Mobile Radio Telephone Environmental - gas

Police Mobile HO (UHF) sampling collector

- Field Telecommunications - High level photography
- Floodlighting - Meteorology
- Anemometer and Wind
- And a host of other uses
suremen

CIARK MASTS

WW - 041 FOR FURTHER DETAILS

CONCEPT 09 Microcomputers

British designed microcomputer systems that bring together the prooperating system. The cost-effective solution to software development

8 SKILLICORNE MEWS • QUEENS ROAD • CHELTENHAM • GLOUCESTERSHIRE GL5O 2NJ • Telephone: Cheltenham (0242) 510525

WW - 056 FOR FURTHER DETALLS

WW - 055 FOR FURTHER DETALL

If you can buy it cheaper we'll refund the difference:
 This month's offer is another winner -a
 Lynx, Oric, Apple II, Apple III and IBM etc.

consignment of 14" R.G.B. colour monitors betore in the U.K. Suitable for use with BBC Micro,

RGB MEDIUM RES $£ 199.00$

 STMC - seoparaides SNC On ReB. Features, Onloft

RGB HIGH RES $£ 299.00$
Resolution, 580×235 Pixels.
Display, 80 characters $\times 25$ lines, Slot pitch 41 mm .
Input, Video - RGB Analogue with TL input
SYNC - Separate SYNC ONRGB,
reatures, On/Off switch with pilot light.
Brightness control. Power, 220/240V $50 / 60 \mathrm{~Hz}$
IBM COMPATIBLE $£ 349.00$
Spec as above with IBM interface.

TEAC DISC DRIVES

TEAC 55F-51/"" D/S 80 track Forma

 density 400 K Double density 800 K . only $£ 229.00$ Case to hold two drives with power supply and blanking plate. only $£ 39.95$ Ribbon lead to connect one drive to BBC. $\quad \mathbf{\Sigma 1 2 . 0 0}$ Dual Ribbon lead \quad £15.00 Power lead to connect on e drive to BBC. $\quad \mathbf{5 5 . 0 0}$ ldeal for use with BBC Micro. Full warranty. Low power consumption. Slimline latest technology.
CANON DISC DRIVES

MDD $610651 / 4^{\prime \prime}$ S/S 40 track. Formatted single density
100K. Double density 200 K . Case to hold single drive. 89.95 Leads as with TEAC DRIVES

THE ORGANIZER DESK

At last a desk designed for the personal user. Full size desk. Suitable for all leading micros. On castors. Teak tinish. DEALER ENQUIRIES INVITED. only £49.50

DOGFIGHT

If you have a BBC 32 K with any $O . S$. become a flying ace with our wonderful new game Dogfight. An exciting 2 player game with 8 levels of difficulty. only 88.65

12" GREEN SCREEN MONITOR
One year warranty, ex stock delivery, 18 MHZ , Phono connector. Limited quantity. only $£ 69.95$ Lead to connect to BBC

Because, if you find someone who's cheaper. we'l find someone refund the difference.

NASHUA FLOPPY DISCS
Minis
Minis
S/S S/D
8" Discs
S/SS/D £16.95for 10 S/SS/D E 17.95 for 10 D/SD/D £22.95for 10 D/SD/D $£ 24.95$ for 10 D/S 80 Track 224.95 for 10 With full 5 year warranty All mini discs have hub rings and a FREE plastic library case
$8^{\prime \prime}$ DISC DRIVES SHUGART
COMPATIBLE
FD514 S/S Dual density. Formatted 600K Byte $\begin{gathered}\text { only } £ 149.00\end{gathered}$ FD650 D/S Dual density, Formatted 1.2M Byte 5199.50 Pertec 90 dáy warranty. only $£ 199.50$

Case to hold 2 drives - complete with power supply
only $£ 99.95$
and fan.

VIEW DATA TERMINALS

Prestel, Built in modem. G.P.O. approved, slimline * Our price pedge only applies to the JVC monitor
*Our price pledge only applies to the JVC monitor To order: Add carriage at the following rates:Discs 85 p . Other goods $£ 7.00$. Add VAT at 15% to total and send your order to:

DPUS SUPPLIES

158, Camberwell Road, London SE5 OEE
tel: 01-701-8668 (3 lines) 01-703-6155/6
Government and educational orders welcome

PROVED IN SERVICE THROUGHOUT THE WORLD EDDYSTONE MODEL 1837/2

LOW COST, HIGH STABILITY COMMUNICATIONS RECEIVER 100 kHz to 30 MHz

* Capable of operation under the most stringent conditions of service, professional and military
* Manual tuning plus accurate digita frequency readout and high stability working with Eddystone patent digital lock
- Complies fully with MPT Specifications 1201, and 1204: CEPT Draft Recommendations and DEF 133/L2
* Provides inexpensive teleprinter terminal when fitted with
Model 1529 FSK Unit Model 1529 FSK Unit

Details on request

Eddystone Radio Limited Member of Marconi Comimunication Systems Limited
Alvechurch Road, Birmingham B31 3PP,
Telephone: $021-4752231$ Telex: 337081

Postage will be

paid by
Licensee
To obtain further details of any of the coded items mentioned in the oditorial or advertisement pages this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and ou can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These service cards are valid for ix months from the date of publication.
Please use capital letters
If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why no have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you: their address is shown below.
overseas subscription
Australio: Go
AGENT

$$
\begin{aligned}
& \text { Canada, Davis. Cicculation } \\
& \text { Can }
\end{aligned}
$$

tran: A.D.A., 151

UUSINESS REPLY SERVICE

Licence No CY258
WIRELESS WORLD
Reader Enquiry Service
Oakfield House
Perrymount Road
Haywards Heath
Sussex RH16 3DH

WW.	WW.
Ww	ww
ww.	ww.
ww	ww
ww.	ww
ww.	wW
ww.	WW.
ww	ww.
ww	ww
ww	ww
ww	ww.
ww.	ww.
ww.	ww.
ww.	ww
WW	
WW.	WW.

WIRELESS WORLD Wireless World, August 1983 WW 8368
Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the Name.

Name of Company
Address :

Tetephone Number
PUBLISHERS
USE ONLY
Position in Company.
Nature of Company/Business.
No. of eminioyees at this establishment
VALID FOR SIX MONTHS ONLY

Wireless World:
Subscription Order Form
To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:

Subscription Manager,
Business Press International Ltd,
Oakfield House, Perrymouth Road Haywards Heath, Sussex RH16 3DH United Kingdom

Wireless World Subscription Order Form Wireless World,August 1983 ww 8368

Name.

Address.

Reader Enquiry Service
Oakfield House
Perrymount Road
Haywards Heath
Sussex RH16 3DH

UK subscription rates	USA \& Canada subscription rates
1 year: £14.00	1 year: $\$ 44.00$
Overseas $\quad 1$ year: £17.00	

Please enter my subscription to Wireless World for 1 year
I enclose remittance value.. payable to
BUSINESS PRESS INTERNATIONAL Ltd.

USA \& Canada subscription rates
1 year: $\$ 44.00$
\qquad
\qquad

OVERSEAS ADVERTISEMENT
Hungary Ms. Edit Bajusz, Hungexpo Advertising Agency. Budapest XIV Telex: Budapest 22-4525 INTFOIRE

Italy Sig. C. Epis Etas-Kompass, S.p.a. Servizio Estero, Via Mantegna 6, Telex : 37342 Kompass

Japan Mr. Inatsuki, Trade Media - IBPA (Japan), B212 Azabu Heights, 1-5-10
Roppongi, Minato-Ku, Tokyo 106Telephone : (03) 585.0581

United States of America Ray Barne *Business Press International 205 East 42 nd Street
New York. NY 10017-Telephone:
(212) 6895961 - Telex: Jack Farley Jnr., The Farley Co. Suite 1548, 35 East Wacker Drive, Chicago: Illinois 60601 - Telephone: (312) 63074

Victor A Jauch,
Elmatex International
P.O. Box 34607
P.O. Box 34607 ,

Los Angeles Calif. 90034 U.S.A Telephone: (213) 8218581 Telex: 18-1059.
Jack Mentel, The Farley Co., Suite 605, Ranna Building, Cleveland, Ohio 4415 Telephone: (216) 6211919
Ray Rickles, Ray Rickles \& Co P.O. Box 2008, Miami Beach, Florida 33140 - Telephone : (305) 5327301 Jim Parks, Ray Rickles \& Co.. 3116 Maple Drive N.E., Allanta, Georgia 30305. Telephone: (404) 2377432 Mike Loughlin, Business Press internation 15055 Memorials, Ste 119, Houston, Tex 77079 -Telephone: (713) 7838673

Canada Colin H. MacCulloch,

 International Advertising Conisultants Lto 915 Carlton Tower, 2 Carton Street,Toronto 2 -Telephone (416) 364226
 ww - 030 FOR FURTHER details

RADIOCODE CLDCKS SRLELEMs

MARK 1983 WITH GAPS IN CIRCUIT FILES WELL-PLUGGED

WIRELESS WORLD CIRCARDS last year benefited many 'new generation' readers who bought at 1976 bargain prices + 10\% discount for 10 sets! Most sots are still avallable although companion volumes CIRCUIT DESIGNS 1, 2 and 3 are out of print (CIRCARDS sets 1 to 30).

The Offer stands, so order now your sets of $127 \times 204 \mathrm{~mm}$ cards in plastic wallets. These unique circuit cards normally contain descriptions and performance data of 10 tested circuits, together with ideas for modifying them to suit special needs.

1 Basic Active filters 2 Switching Circuits, comparators and Schmitts (But these gaps cannot be filled)
1 Basic Active filters 2 Switching Circuits, comparators and Schmitts (But these gaps cannot be filled
6 Constant current circuits 7 Power amplifiers 8 Astable circuits 9 Optoelectronics 10 Micro power circuits 11 Basic logic gates 12 Wideband amplifiers 13 Alarm circuits 14 Digital Counters 15 Pulse modulators 16 Current differencing gamplifiers -signal processing 17 Current differencing amplifiers - signal generation 18 Current differencing
a
21 amplifiers - measurement and detection 19 Monostable circuits 20 Transistor pairs 21 Voltageto-frequency converters $\begin{array}{llllll}22 \text { Amplitude modulation and detection } & 23 \text { Reference circuits } & 24 \text { Voltage regulators } & 25 \mathrm{RC} \text { oscillators }-1 & 26 \mathrm{RC} \\ \text { oscillators }-2 & 27 \text { Linear cmos }-1 & 28 \text { Linear cmos }-2 & 29 \text { Analogue multipliers } 30 \text { Rms/log/power laws } & 31 & \text { Digita }\end{array}$ osciliators -2
multipliers
applications -2 . Transistor arrays
and applications- 2 .
*Photocopies only: 3 Waveform generators 4A.C. measurement 5 Audio circuits @ $£ 3.20$ each set

```
To Electrical-Electronic Press
    Room }10
    Quadrant Hous
    Sutton
    Surrey SM2 5AS
Company Registered Number: 151537(ENGLAND).
Reqiso,Surrey SM25AS
Sutton, Surrey SM2.5AS Sutton, Surrey SM2.5AS
```

Please send me the following sets of Circards.. 10 post free.
Remittance enclosed \qquad to BUSINESS PRESS INTERNATIONAL LIMITED Name (Please print) Address (Please print). \qquad

FROM STOCK AT PRICES THAT DEFY COMPETITION! AC GEARED MOTORS
DC MOTORS DC MOTORS
MICRRSWITCHES
RELAYS RELAYS
REED SWITCHES SOLENOIDS A.C. O D.C.
PROGRAMME TIMERS C.F. BLOWERS
ATCAPAITORS
STROBE KITS STROBE KITS
FLASHUBES
LASTCTORS FLASHTUBES
CONTACTRS
SYNCHRONOUS SYNCHRONO
MOTORS
Phone in your enquiries

GEARED MOTORS

COMPRESSOR
 BLOWERNACUUM PUMP
 INSULATION TESTERS NEW
 SANGAMO WESTON TIME SWITCH

| Ample parking space
 Sowroon open | 57 BRIDGMAN ROAD, CHISWICK, LONDON W4 5BB, 01-995 1560 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Sorday-Friday | |

London WC2H 7JJ
ACCOUNT CUSTOMERS MIN. ORDEA £10
LOW COST PAOFESGIONAL TEST INSTRUMENTE

Modem Kit

 Only £39.95¿ CCITT standard

* 300 baud full duplex
\& Direct connection
Direct connection - greatly reduces data loss associated
with acoustic couplers \star Powered from phone lines therefore no power supply - required coupled data in and data out for intrinsically safe
operation. Build it yourself for $\mathbf{£ 3 9 . 9 5}$ including VAT and postage (note case not included). Racom Ltd., Dept. B

81 Cholmeley Road, Reading. Berks RG1 3LY
Tel: 073467027
WW - 049 FOR FURTHER DETAILS

Appointments

Advertisements accepted up to 12 noon Tuesday, August 2nd, for to space available.

DISPLAYED APPOINTMENTS VACANT: $£ 17$ per single col. centimetre (min .3 cm). LINE advertisements (run on): $£ 3.50$ per line, minimum $£ 25$ (prepayable).
BOX NUMBERS: $£ 5$ extra. (Replies should be addressed to the Box Number in the advertise ment, c/o Quadrant House, The Quadrant, Sutton, Su
PHONE: IAN FAUX, 01 -661 3033 (DIRECT LINE)
Cheques and Postal Orders payable to BUSINESS PRESS INTERNATIONAL LTD. and crossed.

ALWAYS AHEAD WITH THE BEST!

£5,000-£18,000

\star Where does your interest lie: Communications; Computers; Weapons; Radar; Sonar; Data-Comms; Signal Processing
Medical; Telemetry; Simulation; Satcom; Local Area Nets; ATE?
\star Experienced in: Mini/Microprocessor Hardware or Software; Digital and Analogue circuitry: RF and Microwave techniques?
\star There are opportunities in: Design; Test; Sales and Service for
Engineers and Managers.

* Act now: Just dial 100 and ask for FREEFONE JOBLINE or send your c.v. to:

Electronic Test Engineers/Technicians
 Aplicants should be ed to $\mathrm{HNC} / \mathrm{HTC}$

Racal Radar Defence Systems part of the Raca Electronics Group is undergoing a period of rapid we need to recruit a number of Test Technicians and Test Engineers at the following locations in Surrey New Malden, Chessington and Hersham, and at eicester.
The Company manufactures a wide range of products aimed principally at the Defence Industry military displays and ECM and ESM systems.
The Test Department is responsible for the test and diagnostic functions on a wide range of complex rada equipment using high quality manual and automatic test equipment.

Apland should be educated to HNC/HTC of radar and/or microwave systems.
Conditions of employment are excellent including a competitive salary, five weeks holiday, and company pension and life assurance scheme.
Interested? Then phone me on: 01-397 5281 or alternatively write with brief details of qualification experience and current salary to:
Mr P N Willis,
Senior Personnel Officer,
Racal Radar Defence Systems Ltd
Davis Road, Chessington, Surrey.

FIELD SERVICE ENGINEER

LKB Instruments Limited, the UK subsidiary of a major international scientific instrument company is further expanding its range of products for the diagnostic clinical cher mistd market and as a result a vacancy exists for a Field Service

Applicants should have a sound knowledge of digial and analogue electronics, and field service ex perience in clinical or medical instrumental diagnostics would be a distinct advantage.

The work involves the repair and maintenance of instrumentation situated mainly in Hospitals and University Laboratories. Preference will be given to applicants living in the London area.

Conditions of employment are excellent and in addition to a good basic salary and company car, the company has a profit-sharing scheme, BUPA particpation and four weeks' annual holiday
Contact Mrs. D. Duff, for Application Form
LKB INSTRUMENTS LIMITED
South Croydon, Surrey CR2 8 YD
Tel: 01-651 5313

RF SERVICE ENGINEER

We are responsible for all aspects of sales, service and warranty in Europe for the Plasma Therm range of RF generators, plasma processing equipment and inductively coupled plasma systems throughout UK, Europe and Scandinavia. The Plasma Therm product range is a market leader in its field and has an enviable track record of profit able growth and product innovation
THE JOB. RF service engineer based in London to rovide RF service and technical support throughout UK, Europe and Scandinavia. The candidate should be a self starter, willing and able to work on his own, and be able to trouble-shoot and solve problems in the field.
REMUNERATION. The right candidate will be offered an attractive financial package to include a performance-related bonus scheme, pension and a company car
Applications and cvs should be addressed to:
Mr J. F. Stackhouse
PLASMA THERM LTD.
Kangley Bridge Road, Sydenham
London SE26 5AR

CUT THIS OUT!

Technomark
 in heatiduanaters:

VIDEOTECHNICIAN

SENIOR AUDIO TECHNICIAN

 Communication skills both written

AUDIOTECHNICIAN

Oue to tour ever increasing growhw enow nedd another Audio Technician to join the senvicing and the reparitng of high quality hitif equipment. The above positions offer competitive, negotiable salaries on the basis of age
and experience,
Con atractlive benefits packege and the opportunity of joining a ompany that is progressive in its outlook.
(no agencies)
Pat Mann, AKAI (UK)
Hasilememe Heathow Est
Partway Hounsion Mid

Hi-Fi/Video

E.L.A.C. REQUIRE AN

ACOUSTIC ENGINEER

Electro Acoustic Industries Limited, a progressive and expanding Company, require an enthusiastic Engineer to assist in the development of loudspeakers for all purposes, covering a range from specialst teecomm.
cations HiFi, M.O.D. Marine to 'In Car' entertainment. The successful candidate will be aged between 25 and 35 years and have had some practical experience in the design and application of test equipment. Experience in
the use of Bruel \& Kiaer frequency measuring equipment is particularly relevant.

Write including a C.V. to
MR.R.N. WALTON
TECHNICAL DIRECTOR
ELECTRO ACOUSTIC INDUSTRIES LTD TOTTENHAM
TOTTENHA
N15

Test \& Calibration Engineers

 Qe 10

Having introduced an extended new product range, many of which are microprocessor based. Marconi Instruments has once again confirmed itself as Europe's leading systems. Our products are selling throughout the world and we systems. Our products are selling throughout the world and w
are naturally developing further new and innovative designs.

Key role in our organisation is that of our Luton based very wivision, where a group of Technicians satisfy and calibration of cust equipment. equipment

hen you join our team you will quickly become involvingly responsible for work assignments produing many different kinds of propriety

rospecis are excellent. The Division is part of a large company with its main Instrument Design/Manufacturing Base at St. Albans, a Microwave Plant at Stevenage and a further substantial Design Manufacturing Group at promoting men and women from within, as future Salesmen. Managers and Engineers.
 are excellent are dependent upon experience and ability Progress for and regular overtime is normally available. Progress for competent engineers and technicians can b
rapid. Relocation assistance is available in cases. Special consideration is given to 'ex-forces' personnel
hatever your level of experience we would like to hear from you. Cut out the coupon and send it to John Prodger, Recruitment Manager, Marconi St. Albans AL4 0BR. Tel: (0727) 59292

Name

Address
Tel. No.
Years Experience
Present Salary:

$£ 6,000$	$£ 7.000$	$£ 8,000$	Over
\square	\square		
\square	\square	\square	

Qualifications
(2143)

Present Job

\section*{| LEEDS WESTRRN HEATH AUUTHORIT, |
| :--- |
| THE GENERAL INFRMMARY AT LEEDS | MEDICAL PHYSIC TECHNICIAN
 \qquad}

$$
\text { Closing date: 29:n Jupr. } 1893 . \quad \text { [22099] }
$$

LOGEX ELECTRONICS RECRUITMENT $0453833264401-2900267$

RF ENGINEER

TO CARE ABOUT A PRODUCT THAT CARES FOR THE USER

YORKSHIRE

c£11,000
Our client, Tunstall Telecom, designs and manufactures the UK's most used emergency communications system for the elderly or infirm.
The increasing demand for greater flexibility and mobility of use has created the need for a further RF Engineer.
The work will be on varied low power RF frequency projects and will involve significant theoretical and practical design.
You will work in co-operation with other areas of R \& D and part of the task will be to liaise with the Home Office
The position will suit someone with proven design experience from a commercial background, a degree and most of all a mature approach to cost effective and producible design work.
Apart from an excellent negotiable salary and benefits package with relocation assistance where necessary) this is an opportunity o make a very personal 'stamp' on a product that will have a very beneficial effect on the elderly and infirm within the country

To discuss this position in greater detail telephone or write to Paul Hecquet on Lewes (07916) 71271.
(2274)

Electronic EngineersWhat you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $£ 5000-£ 15000$
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL
Please send me a TJB Appointments Registration form
PERSONNEL SERVICES,
12 Mount Ephraim,
Tunbridge Wells,
Kent. TN4 8AS.
Kent. TN4 8AS.
Tel: 089\% 39388
TJB

Name

Address.

Appointments

Premier international electronics companies - very secure and expanding in London and the south of England - require professional senior staff
fincluding departmental heads). Felocation allowance up to $\mathrm{e} 3,000$. ELECTRONIC ENGINEERS

ELECTRONIC DESIGN/DEVELOPMENT

SOFTWARE PROGRAMMERS \& ENGINEERS
nginers ormaty
\qquad
SELECTION \& TRAINNG CONSULTANTS Tel: Wattord 49456

Medical Physics

Technician

Rare opportunity to join the R\&D team at B8W Loudspeakers in Sussex
The successful candidate will be involved with he design and development of both loudspeaker drive units and comp in house compuer and laser interferometer.
Applicants should be educated to at least HNC standard and preferably have experience of electronics and acoustics. A thorough understanding of the operation of a loudspeaker ystem is essential.
The salary is negotiable. Please apply in writing to Stephen Roe

B\&W LOUDSPEAKERS LTD Elm Grove Lane, Steyning, West Sussex
required in the Physics and Radiotherapy Departmerits. The appointed person will be responsible for the supervision of a pleasantly situated, well-equipped electronics
workshop and the maintenance and service of an in teresting variety of radiotherapy equipment. The Department has 3 cobalt treatment machines, 150 kv and 300 kv X-ray units, a Philips 10 mv linear accelerator
and a simulator. Current developments include the and a simulator. Current developments include the
installation of a Philips 5 mv linear accelerator and caesium Selectron unit.
Applicants should hold ONC, HNC or similar qualification in electrical engineering or (preferably) in electronics,
and have relevant technical experience particularly with Philips linear accelerators. To be appointed on to the MPT2 scale applicants should have served at least years as MPT3 or equivalent. Salary scale $£ 8,383-£ 10,209$
per annum.
Application form and job description available from the Application form and job description available from the

CAMBRIDGE HEALTH AUTHORITY Physics Department
Addenbrooke's Hospital, Hilis Road, Cambridge
Medical Physics Technician Grade II

($£ 7,386-£ 9,212$)

An electronics rechnician is required to provide maintenance and support services to the CT Head Scanner at Addenbrooke's Hospital and to electro-
medical equipment in the Thoracic Surgical Unit, medical equipmen
Papworth Hospital.
Applicants should hold an appropriate HNC or equivalent qualification and have several years experience advantageous).
For further details contact Mr P. E. Ward, Principal
Physics Technician, at the above address. Tel: (0223) Physics Technician, at the above address. Tel: (0223 Application for
Application form and job description from the

VHF/RadioEngineer

Middle East

Our client, involved in several major projects overseas, require mmediately to advise and monitor an important harbou system. Emphasis is on VHF and port safety services contro Candidates should be graduates in an appropriate
discipline, preferably with membership of a professiona institution, and have relevant experience in VHF radio field. In background, applicants skilled in liaison and consultancy practices, preferably gained
mmediate interview and postin The post attracts an excellent ax-free salary package of
c. $£ 24,000$ together with usual overseas benefits, including free furnished accommodation,
company car and medical cover. company car and medical cover.
Candidates, aged $30-45$, must hold relevant degree to qualify for interview.
Please write initially with full career details to Confidential Reply Service, Ref. DSV 8760 ,
Austin Knight Limited London, Austin Knight Limited, London,
W1A iDS
Applications are forwarded to
the client concerned, therefore
companies in which you are not
interested should be listed in a
covering letter to the Confidentia
Austin
Advight Advertising

BORED ?

Then change your job!

1) Film-TV Equipment

2) Microcomputers and

Peripomerat
Servere fngueersse
 4) Data Communications

Rogon orw write:
CLIVEDEN COMSULTANTS
CLIVEDEN

BOX NOs
Box number replies should
be addressed to:
Box No......... World
C 10 Wireless Wor
Clo
Quadrant touse
The Ouadrant
The Quadrant
Sutton,;Surrey, SM2 5A

Appointments

() PIONEER

A SAFETY/TECHNICAL CO-ORDINATOR

Pioneer High Fidelity (GB) Limited is a very successful and expanding company in the electronic consumer industry. We market a
wide range of Hi Fi, Car Audio and Video products.
 A vacancy now exists in our eechnical Deranises in Greenford,
Technical Co-ordinator at our new premoder
Middlesex.
The Middlesex.
The iob entails the submission of new products to B.E.A.B. for
approval, liasing with our factories in Japan and with the United approval iasing Authorities and the writing of technic
Kingdom Safety Auth
bulletins for our dealers and authorised service centres. bulietins for our dealers and authorised service eentres.
The successful dapplicant should be fully conversant with BS-415
safety standards, applicable to domestic electrical equipment, and safety standards, applicable to domestic electrical equipmen,
should have had at least two years experience in this field. Should have had at least two years' experience in this field.
He/she should be qualified tor H. N.C. or equivalen standard in
electronics and electronics and preferably with at least three years' experience in
domestic HiFi and/or Video equipment. Some experience in technidomestic Hirf and/ or video equipment. Some experience
cal writing is aso essential.
Benefits include competitive salary, four weeks' holiday, subsidised Benefits include competitive salary, four weeks' holiday, subsidised
restaurant, contributory pension scheme and private health cover.
For further information or an application form, please contact:
Mrs C. A. Burridge, Pioneer High Fidelity (GB) Limited
Field Way, Greenford, Middx. UB6 BUZ. Tel: $01-5755757$

ELECTRONICS ENGINEER

Rediffusion Music require an Electronics Engineer with a minimum of five years' experience in the professional
audio field, covering real time and high speed magnetic audio field, covering real time and high speed magnetic
tape duplicating systems. The successful candidate will be involved with the
design, development and technical back-up of studio and factory production equipment. Should be qualified
to degree or HND level, and will be expected to have to degree or HND level, and will be expected
proven supervisory and communication skills. For application form please contact:

Mrs Joanne Jarvis
Personnel Officer
Rediffusion Business Electronics Ltd.
Music Division
Cray Avenue
Cray Avenue
Orpington
Kent
Tel: Orpington 32121

INNER LONDON EDUCATION AUTHORITY oarning Resources iran
Television Centre
Thackeray orad
Battersea SW8 3 TB
ENGINEER - ELECTRONIC MANTENANCE Salary range: (ST2) $£ 7,035$ to $£ 7,974$ plus $£ 1,284$ London Weighting
Allowance. The ILEA's Television Centre produces a wide range of educational
programmes programmes on viveo and audio cassettes.
Ther Maintenance section numbers fout efrsons and a vacancy has arisen
for an engineer with a sound knowlegge of the principles af colour

 training.
An ingering degree, TEC or other equivalent qualifications are
desirable. Application forms from the Education Officer (EO/Estab. 18), Room 365 ,
The County Hall, London SE1 $7 P B$. Please enclose a stamped and addressed foolscap envelope. Completed forms to be returned by May 4 ,
1983 . tLEA is an equal opportunitios employer.
ILE

FIT1
TELEVISION AUDIO MAINTENANCE LIMITED
TECHNICAL TRAINING OFFICER Television Audio Maintenance (TAM) is an expanding national Teievision Audio Maintenance (TAM) is an expanding nav)
Division of the Telefusion Plc Group (E80 millionturnover)
providing Vider providing a VideorTV/Audio after sales service to leading electrical retailers, all of whom are household names. This interesting and challenging new appointment will be of
interest to engineers of City and Guilds Technician Education or equivalent who wish to broaden their experience across a wide range of modern merchandise and manufacturers. Applicants sh
experience.
The work involves conducting Central and Regional Courses,
preparing material to be used by our national network of Local prewaring material to be used by our national network of Local
Trainers, providing technical servicing advice to our 50 Trainers, providing technical servicing advice to our 50
Service Departments and liaising with manufacturers. The Service Departments and liaising with manuiacturers. The
position is based at Blackpool. Considerable travelling is involved.
Salary is negotiable. Company car plus other fringe benefits. eply with full details to:
Mr. R. M. Beaton, Group Personnel Manager,
Telefusion Plc, Telefusion House, Preston New Road,
Blackpool, Lancs.

THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY
OEPARTMENT OF ELECTRICAL AND COMMUNICATIONS ENGINEERING PROFESSOR AND ASSOCIATE PROFESSOR (2 VACANCIES)

 Hasters Degree atite further study, has pecentiy

 stimuliate and opursue research and ma
neering emplovers and the protession.
SALARY: $\begin{gathered}\text { Professor } \\ \text { Associate Professor }\end{gathered}{ }_{\text {K2 }}^{\text {K2,.84 }}$

 Yeat, education fires and assistance towards schoo fees, tree housing. Salary contin-
Uation and medical schemess are availabie.

SALFORD COLLEGE OF TECHNOLOGY
DEPARTMENT OF ENGINERRING
LECTURER IN ELECTRONICS
(AUDIO/MUSIC RECORDING)
Lecturer required from 1 September, 1983 , to assist in the development
of new three year full-time Diploma course in Music Recording Technology.
Candidates must have a degree in Electronics or Physics and should have
practical experience of analogue and digital equipment. An ability and/or

 time day courses in Electronics and related studies. as son as possible)
Further cotails snd popllication forms to be returned es
are

STUDIO 99 VIDEO Required a furth
VDDFI ENGINEER
for bench and field work
Duties involve the maintenance nd installation or or prossional
video equipment. A candidate should be familiar with three tube
colour cameras w-Matic format
video recorders and associated video recorders and associated
equipment. Whilst a technical qualification is
desirable, a minimum of five desirable, a minimum of five
years experiencis is equired. This
is an interesting job requiring a
in is an interesting job requiring a
higi
hotivel of experise and self.
motivation. If you can match up to these
expectations we would like to hear
frem trom you.
Company veicle provided, salary
commensurate with experience. Please contact Mr Stone or Miss
Whittick on $01-450$ 1313

TRANSMITTER/ STUDIO ENGINEERS LONDON BASED
 Beccrivooro

ELECTRONICS ENGINEER

commited to Third
Wordid Development

fite for details

TOWHLEE EMPORIUM

 ELECTRICAL ELECTRONIC $\&$
MECHANICAL COMPONENTS

 WIRELESS WORLD AUGUST 1983

Challenging Opportunities with Sony Broadcast Ltd.

We are one of the World's leaders in the professional broadcast industry with our international headquarters for Europe, the Middle East and Africa located in North Hampshire. Continued growth and success has resulted in the

Field Service Engineer
To be engaged in the service and repair of our extensive range of equipment, including video cameras, VTRNCR's, and editing control systems. A high leve customer visits throughout our marketing territory.
Senior Quality Assurance Engineer
To join a small team responsible for the evaluation of product performance. customisation. This will involve liaison with customers and the ability to effectively maintain this interface is essential.
Applicants, aged 25 plus, should have a background in broadcast television equipment supported by a relevant electronics qualification.
We offer a first class working environment in our prestigious engineering employment, which include Company Pension/Life Assurance Schemes and private medical cover.
If you are interested please write with details of present salary and career to date to: David Parry, Assistant Personne/ Officer, Sony Broadcast Limited City Wall House, Basing View, Basingstoke, Hampshire RG21 2LA. Telephone Basingstoke (0256) 55011

Sony Broadcast Ltd.
City Wall House
Basinn View Bas Basing View, Basingstoke Hampshire RG21 2LA United Kingdom Telephone (0256) 55011

UNIVERSITY COLLEGE
LONDON

Classified

The Papua New Guinea University of Technolog
Department of Electrical and Communications Engineering

Lecturer

Applications are invited for the above position in the Department of
Electricaland Communications Engineering.
 a mateur radio techniquess or satelitite co
A higher degree would be an advantage.
SALARY:- Lecturer K16,020 - K17,870
(K1=£.
Appointment level will depend upon qualifications and experience

 seduction fares and assistance towardss, school fees. Freb
er
protection plan and medical benefit schemes are available. Detailed applications with curriculum vitae together with the names and
addresses of three referess and telephone contact should be received by: The Registrar, PNG University of Technology, Private Mail Bag, Lae,
Papua New Guinea by 31st August, 1983.

HIGHLAND HEALTH BOARD DEPARTMENT OF MEDICAL PHYSICS AND BIOENGINEERING, RAIGMORE HOSPITAL, INVERNESS SENIOR TECHNICIAN/ TECHNICIAN Electronics Section A vacancy exists for a Senior Technician or Technician (MPT Grade III or IV). The work involves design, construction, repair and maintenance as well as clinical involvement. Salary is: Grade III £6132-£7926 Grade IV £5171-£6798 National Health Service Conditions of Service. A full job description and application form can be obtained from Area Personnel Officer, Highland Health Board, Reay House, 17 Old Edinburgh Road, Inverness. For additional information contact Mr. A. R. Bowley, Deputy Director. Tel: Inverness (0463) 34151, Ext 276 or 277.

F © CAPTAL APPONTMENTSLTD
THE UK's No. 1 ELECTRONICS AGENCY
If you have HNC /TEC or higher qualifications and are
looking for a job in design, test, coustomer service, tech-
Telephone now for our free jobs lis
We have vacancies in all areas of the UK Salaries to $£ 15,000$ pa
01-6375551 or 01-6369659
Or if you prefer send a FULL CV to
CAPITAL APPOINTMENTS LTD
29-30 WINDMILL STREET, LONDON W1P IHG

CRHARTZ CRYSTALS IN 24 HOURS
ANY FREQUENCY 2-50 MHz FOR £5 inc
$\begin{aligned} & \text { New fact_service for C.W.O. only (state holder style). } \\ & \text { Clock oscillators for microproeessors in stock from } £ 9.30 \text {. }\end{aligned}$
Meknight Crystal Co Ltd, Hardley Industrial Estate

lassified

WANTED

Test equipment, receivers,
valves, transmitters, compo-
nents, cable Vents, cable and electronic
nerap, and ayatity scrap, and quantity. Promp
service and cash. Member o
A.R.R.A. A.R.R.A.

M \& B RADIO
 Leos
05323549

COMPUTER APPRECIATION

will shortly be moving to Oxford
Prior to our move we shall be selling by auction our entire stock on August 15th. Lots (many without reserve) will include: Complete systems (by DEC, Hewlett Packard, NCR Toxa Instruments); VDU Terminals (by Newbury Labs, Hazeltine and others); Hard and Floppy disc drives; DEC peripherals; Microscopes; Lasers; Printers (daisy Hard Recorder. TEKTRONICS Model 335 oscilloscope; Word processors; paper tape equip-
ment by FACIT, CLARY, TALLY; plotters, cardreaders, monitors, modems
Catalogues available (price $£ 1$ incl. postage) from
Catalogues available (price E1 Blethingley, Redhill, Surrey RH1 4PA
Tel: Godstone (0883) 843221
Lawrences, Norfolk House, High Street, Bletchingley, Surrey

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 94-103

Hungexpo Advertisx: Budapest 22-4525	

THE WORLD'S FIRST AND ONLY AUTOMATIC MICROPHONE SYSTEMFROM SHURE.

Whenever someone has something to say in public, it's often the microphone system that makes or breaks their speech.

Clicks. Pops. Crackles. Background noises and missed syllables. Just a handful of the hazzards that can turn a speaker's finest hour into a fiasco.

Which is why we'd like to introduce you to something completely new - the Shure AMS. Microphone, mixer and advanced logic technology, combined in a totally dedicated system.

In short-a sound revolution

WhKI Spiectis

At the heart of the AMS are anglesensitive microphones. Speak into any one of them within its own 120° 'window of acceptance' and it turns on; change the surrounding audio conditions

and it compensates. Quickly. Quietly. Automatically.

The rear panel of every AMS mixer features logic terminals that not only give unprecedented flexibility but also eliminate many of the usual adjustments and controls.

As a result no other unit sets up as quickly; handles as easily. And for larger gatherings, AMS mixers combine simply to effectively control over 200 mics

The new Shure Auto matic Microphone System It makes speeches not mistakes.

FERRANTI ZN4SI EVALUATION KI"

If you're the sensitive type, check out the new ZN451 DVM.

Measuring microvolt signat levels is easy with the new ZN451 DVMIC. It's the first DVM that auto-zeroes external signal conditioning circuits to give full-scale readings as low as $\pm 1.999 \mathrm{mV}$ with no zero adjustment.

Two logic outputs are provided to control external analogue switches, allowing op-amps and other circuits to be put inside the auto-zero loop and have their offsets cancelled by the ZN 451 's digital auto-zero system.

Use the ZN451 with pressure transducers, thermocouples, strain gauges or any low output transducer.

To make it even easier there's the ZN 451 Evaluation Kit, which contains everything* you need to makea 2 mVDVM , available from your Ferranti distributor price $\$ 29.50 \mathrm{inc}$. VAT.

Distributors:

Celdis, Reading, Tel: 0734585171
Farnell Electronic Comps, Leeds, Tel: 0532-636311
Intel Electronics, Henlow,
Tel:0462 812505
STC Electronic Services, Harlow, Tel: 027926777
Midwich Computer CO, Bickinghall Tel: 0379898751
Semicomps, Keighley, Tel: 053565191
Semicomps, Kelso, Tel: 057324366
Swift-Sasco, Crawley, Tel: 029328700

Ferranti Electronics Limited,
Fields New Road, Chadderton Oldham OL 98 NP England.
Tel: 061-624 0515 and 061-6246661 Telex: 668038

[^0]: - 052 FOR FURTHER DETAIL

[^1]: 72

