Hedesswitid

 JUNE 1983Self~zero a.co/d.c. voltmeter

Microcomputer organ interface

NEW AND FREE FROM GSC.
NEW an exciting range of projects to build on the EXP300 breadboards.
NOW anybody can build electronic projects using "Electronics-by-numbers", its as "Easy as A, B, C with G.S.C!"
FREE project
MUSICAL DOORBELL OF THE 3RD KIND
You've seen the film, now haunt your visitors with the tune!
Each time the doorbell is pushed the eerie tune plays out, then switches off to conserve battery power.

HOW DO YOU MAKE IT.

Pur FREE project gives you clear "step-by step" instructions. For example "take
Resistor No. 1 and plug it into hole numbers B45 and B47".
"Take IC No. 1 and plug it into hole numbers E35 to E42 and F35 to F42, (pin 1 on the IC goes into F35)'
"Take. . "Well! why not "clip-the-coupon" and get your FREE step-by-step instruction sheet and your FREE 12 projects with each EXP300 bought and your FREE catalogue and.

EXPERIMENTOR GREADBOARDS

The largest rance of breadboirds from GSC
Tach hole is identified by a letter/number system
EACH NICKEL SII vEa CONTACT CARRIES A LIFE.TIME GUARANTEE.
All modular construction mesns that any Experimentor breadboard can be 'snap-loched' together to build breadboards of any size.

The 'one chip' breadboard
Takes 8, 14, 16 and up to 22 pin IC's Has 130 sontact points including 2 bus EXP350
The beginners The 'beginners.
breadboard' For limited perio you can have FREE 12 'Electronics by Numbers' PROJECTS

Expsu0

The most 'widely bought' breadboard
The most 'widely bought' breadboard
Don't miss out on our 'NEw AND FREE' projects They can be built on the EXP300

Expsoo
The Hobbyist microprocesser board
EXP650
The 'one.chip micrporocesscr' board
EXP48
Snapsion' four extra bus bars
PE6
The wltimate breadboard kit
PB100
The most kit for the least money

NEW AND FREE FROM G.S.C. 24 HOUR SERVICE.

Tel (0799) 21682 with your Access, American Express, Barclaycard number and your order will be put in the post immediately.
TO ORDER JUST CLIP THE COUPON.

Experimentor Breadboards	Unit Price inc. $P \& P+15 \%$ VAT	Quantity Required
Exp 325	£3.16	
Exp 350	£4.83	
Exp 300	$¢ 8.05$	
Exp 600	£9.48	
Exp 650	£5.75	
Exp 48	¢3.73	
PB 6	£13.80	
P8100	¢17.53	
NAME ADDRESS		
I enclose cheque/PO for \mathbf{f}...		
Debit my credit card No..		
Expiry date ..		
Please send free catalogue: Tick \square Dept. 7P		

GLOBAL SPECALTIES COROANTLO

GSC Unit 1 . Shire Hill Ind. Estare Satfron Waicen, Essex, CB11 3AO Telex 91747 .

Infra-red scan of the earth from Meteosat, by Mike Christieson, with the north at the bottom. Large red area is Sahara.

NEXT MONTH

Norman McLeod - one of the few radio engineers involved in campaigning for new stations outside the BBC and IBA - suggests how new radio services can be accommodated and up-dates technical thinking on the subject.

Direct coupling to the telephone line gives better security and lower error rate than acoustic coupling in a duplex modem design using standard data channel frequencies.

In "representing logic with mixed intentions", M. B. Butler argues that by emphasising the distinction between logic and voltage, mixed logic eliminates confusion caused by forcing a fixed relationship between the two.

[^0]
Wirelesssworld

SCRIPT - OR AD LIB?

PRECISION ANALOGUE VOLTMETER
 by W. J. Hownshy

33 LETTERS TO THE EDITOR
Motwlat pyaamulifie? cym

37 PROGRAMMABLE EPROM ERASER

DESIGN COMPETITION

43 NETWORK DESIGN BY CALCULATOR

by hamil Krazs
TIMING DATA TRANSFER
bu phillo Raykel

ENIGMA

FORTH COMPUTER
Wy Bran Mondrmte

c) ASSEMBLY LANGUAGE PROGRAMMING

SATELLITE TV AERIAL ALIGNMENT
MICROCOMPUTER ORGAN INTERFACE AND MUSIC EDITOR

CIRCUIT IDEAS

Gavacllance in-wollaye comvehas

NEWS

COMMUNICATIONS COMMENTARY

JUDGEMENT AND PROGNOSIS
NEW PRODUCTS

And then buy from us! Electronic Brokers, a leading supplier of Electronic Test and Measuring Equipment,
has been established for over sixteen years. Our Distribution Division handles the major names in the industry: Philips, Fluke, Hameg and I.C.E. These products are stocked in depth at our premises in Central London, ready for

Philips Electronic Test \& Measuring Equipment

Philips PM5712 Pulse Generator Smail light weight, compact and portabie unit sultable for laboratory use Range 1 Hz to 50 MHz . Three pulse modes plus norm or inverted selection Repetition, delay durat on and amplitude selectable. TTL compatible. Extensive faciuties for ex
triggering and synchronous gating ¢ 846

Full Product range
Full Product rang
PM3207 Oscilloscoportatle 4 digit, autoranging
triggering $\mathrm{MHz}, 5 \mathrm{mV} / \mathrm{dv}$. dual trace wit. pM3219 Oscilloscope 50 MHz , 2mV/div. General pur PM3219 Oscilloscope 50 MHz . 2mV/div dual trace
 routine and 15 mV RMS sensitivity , 1 GHz and the PM6668-02 [£551] has a high stability TXCO stabilit
E290

Philips PM2521 DMC

Multi-function test bench DMM for lab and workshnp use. DC accuracy 0.03%, with
resolution to $10 \mu \mathrm{~V}$ 1nA and 10 ms on a 4 resolution to $10 \mu \mathrm{~V} 1 \mathrm{nA}$ and 10 ms on a 4 digit LCD display Auto ranging, truc RMS.
relative reference, dB , frequency and time measurements. Optional accessories measurements. Optional accessories £338

E172
c385
5
Philips PM6667-01 Counter High resolution, 7 digit LCD display, computing counter ranging from 10 Hz to 120 MHz . Auto triggering on all waveforms and duty cycles. Self diagnosis

PM3256 Cscilloscope - as PM3254. plus delayed PM5107 Fweep and aternate time base. PM5107 Function Generator - sine, square, wave, low PM5 132 Function Generator-as PMS 1 31 , plus pos and neg pulses. adjustable duty cycle

Philips PM3254 75MHz
Dscilloscope -
Performance packed scope that you can carry into tough service environments Fast trigger circuits meet all applications to over 100 MHz . TTL triggering is standard. A triggerview 3rd channel and fuil $X-Y$ display facilit,es. Tough light weight compact package with shoulder strap £1092

- Philips PM321750MHz Oscilloscope
High ZmV sensitivity, dual trace, $8 \times 10 \mathrm{~cm}$ display with small spot size, high light output and illuminated graticule, auto trigger mode, TV triggering on line and frame. Full X display facilities. Comprehensive second time base facility. Compact dimensions and low weight E933
. 6933

Philips PM5131 Function Generator
High performance, O .1 Hz to $2 \mathrm{MH}_{2}$ generator with sine, triangular and square waveforms. Stepped and variable output attenuation. Vernier frequency adjustment. Variable DC offset. Internal and external sweep facilities. TTL output. Ideal for educational, service and general purpose laboratory use. E395

PM5501 Pattern Generator - 5 different PAL 2196 PM5519 IPatterns for colour and black/white TV 1 patterns, electronic tuning C295 PM5705 use £595 Supporting accessories available
£296

prompt despatch to all parts of the Country. Electronic Brokers offer full technical support and expert advice on all aspects of electronic test and measuring. Visitors are welcome to our showroons where all products are on display and demonstration. For customers wishing to order by phone, we offer a 24 hour answering service.

Essextinu

Basic Sustem

1) RS232 Interface

- $481 / 0$ Lines

If Powerful National
Auto 8073 Processo

1) Autostart Operation with Watchdog Timer

W Up to 16 K Byte EPROM
EPROM Programmer If Accommodates

PRICE $£ 185$
Excluding V.A.T. $£ 185$ able Substantial quanntity disce.K Cariage within

Essex Electronics Centre

Wivenhoe Park, Colchester, Essex CO4 350 Telephone: Colchester (0206) 865089

Digital

Imagine the ideal hand held test set. A minimum of controls. A50 (0) An oscillator that covers the audio spectrum in a Test Set single sweep.

A level meter that measures directly in dBs over 74dBs. And a frequency counter that reads the oscillator or meter input.

Small enough to operate anywhere, and precise enough for any professional application.

The Loft TSl is manufactured by the Phoenix Audio Laboratory Inc., and distributed exclusively by Turnkey.
It's price 249.00 .
Call us now for more information.

Brent View Road LONDON NW9 7EL 01-202 4366

mentumetrics

A great variety of tools ano sets to help you turn mos any Metric fastener or adjusting screw you're likely to en counter... hex socket set screws and cap screws, hex nuts hex head cap screws, and whatever.

All tools precision made for exact fit. Bright nickel chrom nutdriver shafts and protective black oxide finished he socket screwdriver blades. Plastic (UL) handles shaped for perfect grip and balance.
FIXED HANDLE NUTDRIVERS

NUTDRIVER SHANKS \&
HEX SOCKET SCREWORIVER
BLADES for use interchangeably
in Series 99 plain and ratchet
type handles.

No. 99-PS. 51 -mm
No. 99-PS-41-MM (10 Metric nutdrive
shanks,
shanks,
and handle)
 (7 Metric hex (1) socket blades, 1. handle)

Replacement Blades and Shanks sparately avalable for 99 Series Sets
Full cataiogue avalable on request

Tel

U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

MINI-MULTI TESTER NEW
De luxe pocket size precision moving - 4000 o.p.v. Battery included 11 instant ranges measure:
AC volts $1050,500,1000$
DC amps $0-250 \mu \mathrm{~A}, 0-250 \mathrm{~mA}$
£6.50

Resistance 0 to 600 K ohms.
Post 65p
50,000 o.p.v. $£ 18.50 .7 \times 5 \times 2 \mathrm{in}$. Post $£ 1$

PANEL METERS

$50 \mu \mathrm{a}, \quad 100 \mu \mathrm{a}, \quad 500 \mu \mathrm{a}, 1 \mathrm{ma}$ $5 \mathrm{ma}, 50 \mathrm{ma}, 100 \mathrm{ma}, 500 \mathrm{ma}, 1$ $\begin{array}{ll}\operatorname{amp}, 2 \text { amp, } 25 \text { volt, VU } \\ 21 / 4 \times 2 \times 11 / 4 \text {. Stereo } & \text { VU }\end{array}$ $31 / 4 \times 15 / 8 \times 1$ in. $\mathbf{£ 4 . 5 0 \text { Post } 5 0 p}$
RCS SOUND TO LIGHT CONTROL BOX
Complete ready to use with cabinet size $9 \times 3 \times 5$ inf 27
3 channel. 1000 watt each. For home or disco Input 200 mV to 100 watt. AC 200/250V. Post £
 screw or bayonet $£ 2$ each. Post $£ 1.50$ per six. "FUZZ" lights, red, blue, green, amber, 240V. $£ 23$. Post $£ 1$ 200 Watt Rear Reflecting White Light Bulbs. Ideal for
Disco Lights, Edison Screw. 6 for $£ 4$, or 12 for $£ 7.50$. Post £1.50. Suitable panel mounting holders 85 p.

RCS "MINOR" 10 watt AMPLIFIER KIT £14 This kit is suitable for record players, guitars, tape
playback, electronic instruments or small PA systems playback, electronic instruments or Smale
Two versions available: Mono, $\mathbf{f 1 4 ;}$ Stereo, $£ 20$ 10W per channel; size $91 / 2 \times 3 \times 2 \mathrm{in}$. SAE details. Full instructions supplied. 240V AC mains. Post $£$ RCS STEREO PRE-AMP KIT. All parts to build th is
pre-amp. Inputs for high, medium or low imp $\mathbf{£ 3 . 5 0}$ per channel, with volume control and PC Board Post 650

MAINS TRANSFORMERS

250-0-250V 80mA, 6.3V 3.5A. 6.3V 1A			£8.00
350-0-350V250mA	${ }^{64 C T}$		£12.00 £2
220 V 25 m		220 V 45 ma 6 V 2	¢p 4.00 El
$250 \mathrm{~V} 60 \mathrm{~mA}, 6 \mathrm{~V} 2 \mathrm{~A}$			44.75 fl
Step-Up	240 V	20w	E12.00
GENERAL PUR	OSE	VOLTAGE	
Tapped outputs av			Price Post
2 amp . 3. 4. 5. 6, 8, 9,	10, 12, 15,	5 and 30	E8.00 ¢2
$1 \mathrm{gmp} .6,8,10,12,16$	18, 20, 24,	, 36, 40, 48, 60	5.00 E2
2 amp . 6. 8, 10.12.16	18, 20, 24,	, 36, 40, 48,60	£10.50 ¢2
3 mmp 6, 8, 10, 12, 16	18, 20, 24,	, 36, 40, 48, 60	¢12.50 $¢ 2$
5 amp . 6, 8, 10, 12, 16	8. 20.24	, 36, 40, 48, 60	¢16.00 ¢2
5-8-10-16v. $1 / 2$ amp	¢2.50 E1	15-0.15V. 1 amp	¢4.00 £1
6 V . $1 / 2 \mathrm{mmp}$.	82.00 £ 1	15-0-15V. 2 amps	¢4.50 £1
6-0-6V. 1/2 amp.	63.50 ¢1	20 V 1 amp	¢4.00 £1
9 V 250me.	¢1.50 ¢1	20-0-20V 1 amp	4.50 £1
9 V . 3 amp	f4.50 ¢1	20-40-60V 1 mmp	¢4.50 ¢2
9-0.9V. 50 na	¢1.50 ¢ 1	25-0.25V 2 amps	E5.50 EP^{1}
$9-0.9 \mathrm{~V} .1 \mathrm{amp}$	¢ 3.50 ¢1	28 V 1 amp Tw	E8.00 ¢ $¢$
10-0-10V. 2 mmps	¢4.00 ¢ 1	$30 \mathrm{~V} 11 / 2 \mathrm{amp}$. 50 f1
$10.30-40 \mathrm{~V} 2 \mathrm{2mps}$	64.50 ¢1	$30 \vee 5 \mathrm{amp}$ and	
12 V .100 rr -	¢1.50 ¢ 4	17-0-17 2a	E5.50
12 V .750 me	$\underline{62.50} £ 1$	$35 \vee 2 \mathrm{mps}$	44.50
12 V 3 amps	E4.50 51	TOROIDAL 30-0-3	
$12-0-12 \mathrm{~V}$. 2 amps	$\mathbf{8 4 . 5 0}$ ¢1	and $20-020 \mathrm{~V}$	¢10.00 ¢2
CHARGER TRANS	Post	RECTIFIERS	
$6-12$ volt ${ }^{\text {a }}$ a	¢ $4.50+\mathrm{E}^{2}$	$6-12$ volt 2 a	¢1.10+80p
12 volt 4a	C6.50+f2	6 -12 vott 4a	$12.00+80 \mathrm{p}$

OPUS COMPACT

SPEAKERS £22 pair Post f 2

TEAK VENEERED CABIN

$11 \times 81 / 2 \times 7 \mathrm{in}, 15$ watts
hm or 8 ohm
OPUS TWO $15 \times 101 / 2 \times 7 \frac{3}{4}$ in 25 watt 2-way system $£ 39$ pair. Post $£ 3$ LOW VOLTAGE ELECTROLYTICS Wire ends $1 \mathrm{mf}, 2 \mathrm{mf}, 4 \mathrm{mf}, 8 \mathrm{mf}, 10 \mathrm{mf}, 16 \mathrm{mf}, 25 \mathrm{mf}, 30 \mathrm{mf}, 50 \mathrm{mf}, 10$ $\mathrm{mf}, 250 \mathrm{mf}$. All 15 volts. $22 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 25 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 47$ $\mathrm{mf} / 10 \mathrm{v} ; 50 \mathrm{mf} / 6 \mathrm{v} ; 68 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} / 25 \mathrm{v} ; 100 \mathrm{mf} / 10 \mathrm{v} ; 150$
$\mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 200 \mathrm{mf} / 10 \mathrm{v} / 16 \mathrm{v} ; 220 \mathrm{mf} / 4 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} ; \quad 330$ $\mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 200 \mathrm{mf} / 10 \mathrm{v} / 16 \mathrm{v} ; 220 \mathrm{mf} / 4 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} ; 330$
$\mathrm{mf} / 4 \mathrm{v} / 10 \mathrm{v} ; 500 \mathrm{mf} / 6 \mathrm{v} ; 680 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 1000 \mathrm{mf} / 2.5 \mathrm{v} / 4 \mathrm{v} / 10 \mathrm{v}$ $1500 \mathrm{mf} / 1 \mathrm{v} ; 2200 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 3300 \mathrm{mf} / 6 \mathrm{v} ; 4700 \mathrm{mf} / 4 \mathrm{v}$. $500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p} .1200 \mathrm{mF} 76 \mathrm{~V} 80 \mathrm{p}$.
 $1000 \mathrm{mF} 12 \mathrm{~V} 20 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 50 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$.
$2000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 30 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} 60 \mathrm{p} ; 1500 \mathrm{mF} 100 \mathrm{~V} .20$. 2200 mF 63 V 90 p . $2500 \mathrm{mF} 50 \mathrm{~V} 70 \mathrm{p} ; 3000 \mathrm{mF} 50 \mathrm{~V} 65 \mathrm{p}$; 4700 mF 63 V £ $1.80 .4700 \mathrm{mF} / 40 \mathrm{~V}$ f 1
NON POLARISED CAPACITORS - REVERSIBLE $1 \mathrm{mF} 250 \mathrm{~V} 25 \mathrm{p} ; 1.5 \mathrm{mF} 100 \mathrm{~V} 25 \mathrm{p} ; 2.2 \mathrm{mF} 250 \mathrm{~V} 30 \mathrm{p} ; 3.3 \mathrm{mF}$ $100 \mathrm{~V} 40 \mathrm{p} ; 4.7 \mathrm{mF} 100 \mathrm{~V} 40 \mathrm{p} ; 10 \mathrm{mF}$

$$
\begin{aligned}
& \text { HIGH VOLTAGE ELECTROLYTICS } \\
& 2 / 500 \mathrm{~V} \text { L5p } \quad 32+32+16 / 350 \mathrm{~V}
\end{aligned}
$$

$$
\begin{array}{lllll}
2 / 500 \mathrm{~V} & 45 \mathrm{p} & 32+32+16 / 350 \mathrm{~V} & 90 \mathrm{p} & 8+16 / 450 \mathrm{~V} \\
8 / 450 \mathrm{~V} & 45 \mathrm{p} & 100+100 / 275 \mathrm{~V} & 65 \mathrm{p} & 16+16 / 350 \mathrm{~V} \\
\hline
\end{array}
$$

$$
\begin{array}{llll}
8 / 450 \mathrm{~V} & 45 \mathrm{p} & 32+32+16 / 350 \mathrm{~V} & 90 \mathrm{p} \\
\hline 8+16 / 450 \mathrm{~V} \\
16 / 350 \mathrm{~V} & 45 \mathrm{p} & 150+200 / 275 \mathrm{~V} & 65 \mathrm{p} \\
\hline 6+16 / 350 \mathrm{~V} \\
\hline 20 & 70 \mathrm{p} & 32+32 / 350 \mathrm{~V}
\end{array}
$$

$$
\begin{array}{llll}
16 / 350 \mathrm{~V} 45 \mathrm{p} & 150+200 / 275 \mathrm{~V} & 70 \mathrm{p} & 32+32 / 350 \mathrm{~V} \\
32 / 500 \mathrm{~V} 95 \mathrm{p} & 32+32+32 / 325 \mathrm{~V} & 75 \mathrm{p} & 32+32 / 500 \mathrm{~V}
\end{array}
$$

$$
\begin{array}{lll}
32 / 350 \mathrm{~V} 50 \mathrm{p} & 50+50+50 / 350 \mathrm{~V} 95 \mathrm{p} & 50+32 / 500 \mathrm{~V} \\
50 / 450 \mathrm{~V} & 50 \mathrm{~V} & 8+8 / 500 \mathrm{~V}
\end{array}
$$

$$
\begin{aligned}
& 50 / 450 \mathrm{~V} 95 \mathrm{p} \text { 8+8/500V } \quad \text { f1 } 80+40 / 500 \\
& \text { CAPACITORS WIRE END High Voltage } \\
& .001, .002, .003, .005, .01, .02, .03, .05 \mathrm{mfd} 400 \mathrm{~V} 10 \mathrm{p} .
\end{aligned}
$$

$$
\begin{aligned}
& .001,002,003, .005, .01,02,03,05 \mathrm{mfd} 400 \mathrm{~V} 10 \mathrm{~F} \\
& 1 \mathrm{MF} 400 \mathrm{~V} 15 \mathrm{p} .800 \mathrm{~V} 20 \mathrm{p} .1000 \mathrm{~V} 25 \mathrm{p}
\end{aligned}
$$

$$
\begin{aligned}
& .22 \mathrm{MF} 350 \mathrm{~V} 12 \mathrm{p} .600 \mathrm{~V} 20 \mathrm{p} .1000 \mathrm{~V} 30 \mathrm{p} .1750 \mathrm{~V} 50 \mathrm{p} . \\
& 47 \mathrm{MF} 15 \mathrm{~N} 10 \mathrm{~m} 400 \mathrm{~V} 250 \mathrm{~V} 300.1000 \mathrm{~V} 60 \mathrm{o} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& .22 \mathrm{MF} 350 \mathrm{~V} \text { 12p. } 600 \mathrm{~V} 20 \mathrm{p} .1000 \mathrm{~V} 30 \mathrm{p} .1750 \mathrm{~V} 50 \mathrm{p} . \\
& .47 \mathrm{MF} 150 \mathrm{~V} 10 \mathrm{p} .400 \mathrm{~V} 25 \mathrm{p} .630 \mathrm{~V} 30 \mathrm{pp} .1000 \mathrm{~V} 60 \mathrm{p} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { 47MF } 150 \mathrm{~N} 10 \mathrm{p}, 400 \mathrm{~V} 25 \mathrm{p} .630 \mathrm{~V} 30 \mathrm{p} .1000 \mathrm{~V} 60 \mathrm{p} . \\
& \text { TRIMMERS 30p F, } 50 \mathrm{pF}, 10 \mathrm{p} .100 \mathrm{pF} \text {, } 150 \mathrm{pF} 20 \mathrm{p} .500 \mathrm{pF} 30 \mathrm{p}
\end{aligned}
$$

$$
\begin{aligned}
& \text { MICROSWITCH SINGLE POLE CHANGEOVER 40p } \\
& \text { GFARED TWN GANGS } 365+365+25+250 F £ 2 \text {. }
\end{aligned}
$$

$$
\text { GEARED TWIN GANGS } 365+365+25+25 \mathrm{pF} \text { £2. }
$$

$$
\text { BRASS SPINDLE EXTENDERS 85p. Couplers } 65 \mathrm{p}
$$

$$
\text { VERNIER DRIVE DIALS, } 36 \mathrm{~mm} \text { f2.50, } 50 \mathrm{~mm} \text { £3 }
$$

$$
\begin{aligned}
& \text { VERNIER DRIVE DIALS, } 36 \mathrm{~mm} \text {. Reverse Vernier drive } 90 \text {. } \\
& \text { SLOW MOTION DRIVE } 190 \text {. } \\
& \text { TRANSISTOR TWIN GANG. Jadanese Replacement } £ 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { TRANSISTOR TWIN GANG. Japanese Replacement } £ 1 \\
& \text { SOLID DIELECTRIC 100pf } £ 1.50,500 \text { pf } £ 1.50
\end{aligned}
$$

$$
\text { SOLID DIELECTRIC 100pf } £ 1.50,500 \text { pf } £ 1.50
$$

HEATING ELEMENTS, WAFER THIN (Semi Flexibie) Size $11 \times 9 \times 1 / 8 i n$. Operating voltage $240 \mathrm{~V}, 250 \mathrm{~W}$ approx.
Suitable for Heating Pads, Food Warmers, Convector Heaters, Propagation, etc. Must be clamped between
two sheets of metal or ceramic, etc.
ONLY 60p EACH (FOUR FOR E2) ALL POST PAID.

NEW baker Star sound

MODEL	INCHES	OHMS	watts	TYPE	Price	POS
MAJOR	12	4-8-16	30	HI-FI	116	$\underline{12}$
SUPERB	12	8 8-16	30	HI-FI		$\underline{\square}$
AUDITORIUM	12	8 8-16	45	HI-FI	924	67
AUDITORIUM	15	-16	60	HI-Fl	¢37	(2)
GROUP 45	12	4-8-16	45	PA	116	67
GROUP 75	12	4-16	75	PA	120	$\underline{\square}$
GROUP 100	12	e-16	100	Guitar	$\underline{56}$	E
DISCO 100	12	8-16	100	Disco	E26	E2
GROUP 100	15	-16	100	Guitar	¢35	02
DISCO 100	15	-16	100	Disco	635	12
BAKER AMPLIFIERS BRITISH MADE						

4 channel 8 inputs, dual impedance, 50 K - 600 ohm 4 channe

 mixing, volume, treble, bass. Presence controls, Master volume BAKER 150 Watt AMPLIFIER 4 Inputs £99 for 4 iscoineque, Vocal, Public Address. Three speaker oulter indidual ndividual volume controis esponse $25 \mathrm{~Hz}-20 \mathrm{kHz}+34 \mathrm{~B}$ Integral Hi-Fi preamp separate Rass \& Treble Size - $16^{\prime \prime} \times 8^{\prime \prime} \times 5 /^{\prime \prime}$. Wt $-14 \mathrm{lb}^{\prime}$ Master volume control. British made. 12 months' guarantee. 240v A.C mains or 120 V to order. All transistor and solid state. Post $£ 2$ 100 Volt Line Model fila. MONO SLAVE gou.New Stereo Slave $150+150$ wbitt 300 watt Mono £125. Post $£ 4$. Comptete Disco 150W. Twin console + amplifier + twin peakers. 230 . Carriage E30.
ELECTRONIC ECHO CHAMBER f85. Post $£ 2$
BBD Delay System $30 \mathrm{~m} / \mathrm{sec}$ to $200 \mathrm{~m} / \mathrm{sec}$. Variable echo and direct sounds. Maintenance free. 240V AC
DiSCO GRAPHIC MIXER EQUALISER €95. Post E2 display, headphone monitor, mic + override switch. RCS offers MOBILE PA AMPLIFIERS. Outputs 4-8-16 ohans 20-watt RMS 12 v DC, AC $240 \mathrm{v}, 3$ inputs. 50 K
40 -watt RMS 12 V DC, AC $240 \mathrm{v}, 4$ inputs. 50 K E46 PP $£ 2$.
$E 75 \mathrm{PP} £ 2$ Mic 1; Mic 2; Phono; aux. outputs 4 or 8 or 16 and 100v line 60 -watt RMS, Mobile 24 volt DC \& 240 -voh AC mains. inputs $50 K$,
3 mics +1 music. Outputs $4-8-16$ ohm +100 volts line $£ 95$ PP $£ 2$ Battery only Portable PA Amplifier 10 w complate mike and parties. Shoulder strap feature $£ 25$ post $f 2$

R,C.S. 100 watt R.M 4 Channel mixing. Master treble, bass and volume suits 4816 phm Disco group. EITS. Carr. so ins. WATI VALVE AMPLIFIE 3 mixer inputs, $4-8-16$ ohm, 100 volt line. 5 controls, 2 mic inputs plus input switchable for mic, phone,

FAMOUS LOUDSPEAKERS

 SPECIAL PRICES| MAKE | MODEL | SIZE | WATTS | OHMS | PRICE | POST |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Wharfedale | TWEEIER | 4 n | 30 | 8 | £7.50 | 11 |
| GOODMANS | TWEETER | 31/2in | 25 | 8 | f4 | f1 |
| AUDAX | TWEETER | 4 in | 30 | 8 | f6.50 | ¢1 |
| AUDAX | MID-RANGE | 4 l | 50 | B | $\underline{67.50}$ | £1 |
| SEAS | mid-range | 41/in | 100 | 8 | ¢12.50 | £1 |
| AUDAX | WOOFER | 51/2 | 25 | 8 | f10 | 11 |
| GOODMANS | Hifax | 71/2×41/4 | 100 | 4/16 | E27 | 12 |
| G00DMANS | WOOFER | 8 in | 25 | $4 / 1$ | f6.50 | 11 |
| G00DmaNS | H8 | 8 in | 60 | * | ¢12.50 | 11 |
| Wharfedale | WOOFER | 8 in | 30 | - | 63.50 | 9 |
| CEEESTION | OISCO | 10in | 50 | $8 / 16$ | ¢19 | 62 |
| G000maNS | HPG | 12in | 120 | 45 | 820.50 | 8 |
| G00DMANS | GR12 | 12 in | 30 | 815 | 27.50 | 8 |
| G00DMANS | HPD | 12 in | 120 | 45 | E270. 50 | 8 |
| goobmans | HP | 15 in | 250 | 1 | f\% | 5 |
| G000mans | HPD | 18 in | 230 | 1 | 50 | 4 |

SPEAKER COVERING MATERIALS. Samples Large S.A.E.
BA.F. LOUDSPEAKER CABINET WADDING 18 in wide 3 sp ft
MOTOROLA PIEZO ELECTRIC HORN TWEETER, 33sin. square
ES
f10
CROSSOVERS. TWO-WAY $3000 \mathrm{c} / \mathrm{s} 30$ watt 8 £3. 100W E4.
3 -way $950 \mathrm{cps} / 3000 \mathrm{cps} .40$ watt rating. f4. 3 way 60 watt $\mathrm{f6}$. 100 W fa 4 ohm, $5 \mathrm{in}, 7 \times 4 \mathrm{in}, \mathcal{Z} .50$: $61 / \mathrm{in}, 8 \times 5 \mathrm{in}, E 3$; $8 \mathrm{in}, E 3.50 .61 \mathrm{hin} 20 \mathrm{~W} .7 .50$. $8 \mathrm{ohm}, 2 \% \mathrm{in}, 3 \mathrm{in}, \underline{E} ; 5 \times 3 \mathrm{in}, 6 \times 4 \mathrm{in}, 7 \times 4 \mathrm{in}, 5 \mathrm{in}, \dot{2} .50 ; 61 / 2 \mathrm{in}, 20 \mathrm{~W} \mathbf{~} 7.50$

$15 \mathrm{ohm}, 21 / 4 \mathrm{in}, 31 / 2 \mathrm{in}, 5 \times 3 \mathrm{in}, 6 \times 4 \mathrm{in}, \underline{2} .50 .61 \mathrm{hin} 10 \mathrm{~W} \mathrm{Es} . \sin \mathrm{EA}$. 10 in f.

R.C.S. LOW VOLTAGE STABILISED

POWER PACK KITS

All parts and instructions with Zener diode e3.95. Post 65p
mains transformer 240 V a.c. Output 6 or $71 / 2$ or 9 or 12 V d.c.
up to 100 mA or less. Please state voltage required.

Specifications (Direct Output): BGW Model 620B OUTPUT POWER
200 watts minımum sine wave contınuous power output per channel with both channels driving 8 -ohm loads over a power band from 20 Hz 1020 kHz The maximum Total Harmonic Distortion at any power leve from 250 milliwatts to 200 watts shall be no more than 025%

1 kHz Power 240 watts into 8 ohms per channel, both
channels operating. 025% Total Harmonic Distortion
Intermodulation Less than 0 06\% from 250 milliwatts to Distortion rated power
Small Signal $\quad+0,-3 \mathrm{~dB}, 1 \mathrm{~Hz}$ to 70 kHz
FrequencyResponse $\quad+0,-025 \mathrm{~dB}, 20 \mathrm{~Hz}$ to 20 kHz
Humand Norse Level: Better than 100 dB below 200 watts lunweighted, 20 Hz to 20 kHz
Damping Factor Greater than 120 to 1 at 8 ohms and 1 kHz D.C Offset Voltage Less than 10 millivolts tat output terminals) Load Impedance Designed for any load impedance equal to or greater than 4 ohms

Specifications (Direct Output): BGW Model 320B OUTPUT POWER
100 wat:s minimum sine wave continuous average power output pet channel with both channeis driving 8 ohm loads over a power band from 20 Hz to 20 kHz . The maximum Total Harmonic Distortion at any power level from 250 milliwatts to 100 watto shall be no more than 0.2\%

1 kHz Power 105 watts irito 8 ohms per channel, both channels operating. 0.2\% Total Harmonic Distortion

Intermodulation Less than 005% from 250 milliwatts to Intermodulation
Sistortion. rated power
Small Signat
FrequencyResponse $+0,-025 \mathrm{~dB} 20 \mathrm{~Hz}$ to 20 kHz
Hum and Noise Level Better than 100 dB below 100 watts (unweighted 20 Hz to 20 kHz)

Damping Facto: DC Offset Voltage
Load Impedance
Greater than 150 to 1 at 8 ohms and 1 kHz Less than 10 millivolts (ar output terininals) Designed for any load impedance equal to or greater than 4 ohms

For further information on these and other BGW amplifers. contact Nikkı Antoniou Theatre Projects, 10 Long Acre. London WC2E 9LN Ie 240541

Quartz Oscillators

DII. compatible conligurations
C.MOS and TTL outputs

Wide temperature ranges
Frequencies one pulse per day to 60 MHz
Many standard frequencies from stock
Interface
Quartz
Devices
Limited

29. Market Sireet

Crewkerne Somerset tai $87 \mathrm{7J}$

Crewkerne (0,460) 74433 Telex 46283 inface y

WW - 021 FOR FURTHER DETAILS

WW - 005 FOR FURTHER DETAILS

ELECTRON GUNS
 TV TUBE COMPONENTS

If you are Rebuilding or Manufacturing TV Tubes - We are the leading suppliers of Electron Guns and TV Tube Components to the TV Tube Industry. We specialise in all aspects of Electron Mount Technology.
Our product range includes more than 250 gun types for Colour, In Line, Mono and Display Tubes along with Mount Parts, Bases, Getters, Sealoffs, and all other associated items for TV Tube Production. A Full Technical Back-up and Advisory Service is available to all customers Worldwide.
Please request our current catalogues and Data Information.

2 SWAN STREET ALCESTER WARWICKSHIRE B49 5DP B49 5DP
ENGLAND

Telephone: (0789) 764852764100. Telex: 312354 Grifem G

DPUS SUPPLIES WE HAVE MOVED TO NEW LARGER PREMISES. PLEASE NOTE OUR NEW ADDRESS AND PHONE NUMBERS

Now that we have moved to larger premises we have the space to store these superb units and can offer them to "Wireless World" readers at this fantastic price. These superb terminals built to industrial specification by a world famous manufacturer feature:- * Prestel * Built in modem receive at 1200 baud/transmit at 75 baud * G.P.O. approved * ${ }^{\prime \prime}$ green anti-reflective screen ${ }^{*}$ Angled display for desktop viewing * Page format 24 lines/40 characters * Security lock - authorised perscnnel only * Slimline dimensions depth 14.1 inches, width 11.9 inches, height 7.6 inches * Attractive beige case with black trim
LIMITED QUANTITY AVAILABLE ONLY
LI $9!$ BRAND NEW AND BOXED + CARR \& VAT

TO ORDER ADD CARRIAGE AT £7 PER UNIT AND VAT @ 15\% AND SEND YOUR ORDER TO: OPUS SUPPLIES, 158 CAMBERWELL ROAD, LONDON SE5 OEE

Miniature type (22 mm diam.). Counting up to 15 turn "Helipots". Brand new with mounting instructions. Only $£ 2.50$ each. * VARIACS' - SPECIAL PURCHASE \rightarrow We now have a stock of used but excellent condi-
tion, fully tested, variable $(0-260 \mathrm{~V})$ transformers at tion, fully tested, varia
the following ratings.
BERCO (enclosed) $2 A$... BERCO \{non-enclosed) 8A. $£ 25.00+£ 2.50 \mathrm{pp}$ BERCO (non-enclosed) 10A $\mathbf{f 2 8 . 0 0 + £ 2 . 5 0 ~ p p ~}$ ZENITH (enclos ed) 8A $\mathbf{£ 2 6 . 0 0 + £ 2 . 5 0 ~ p p}$ $\frac{\text { Phase variacs POA O WHTMETERS }}{t}$
Switchable 1W \& 10W FSD. Internal $3.5 \& 8$ Ohm load impedances. Housed in grey enamelled case output provision. $£ 10(+£ 1)$.
HEATHKIT Model AW-IU. Internal load switchable 3, 8, 15 \& 600 Ohm . Meter scaled 0.50W (+dB scale). 5 Ranges from 5 mW -50W FSD. Mains powered. $\mathrm{f} 25(+\mathrm{f} 1$).
MARCONI TF893A. 1 mW -10W Full scale in 5 ranges. Impedances $2.5-20 \mathrm{~K}$ Ohm in 48 steps. GPO JACK SOCKEY STRIPS 20-WAY Type 320 GPO JACK SOCKEY STRIPS. 20-WAY Type 320 (3pole) $£ 2.50$ ea. Type 520 (3-pole with switching contacts) $£ 4$ ea. Please include 35 p each for postage on these. GPO type 316 jack plugs for
above 20 p ea. ($10+$ post free). Plus VAT please. Also recent stock of new, mint condition 720 Type. £6 each.
\rightarrow CONSTANT YOLTAGE TRANSFORMERS \star 'ADVANCE VOLSTAT: Type. Model MT140A $150 W$. Price each $£ 20+$ VAT $+£ 2$ carriage.
P. F. RALFE ELECTRONICS

10 CHAPEL STREET, LONDON, NW1 TEL: 01-7238753

MUNGE SCOPES - SREML Cita
 A bulk purchase of Advance series 'scopes enables

 anteed units as follows.OS 200020 MHz dual-trace. $10 \mathrm{mV} / \mathrm{cm}$. (2002Y \& 2003 X P.I.s) $£ 200$. OS2100 30 MHz dual-trace. $10 \mathrm{mV} / \mathrm{cm}$. (plug-in units as above) $£ 230$.

STORAGE. $2005 \times$ plug-in $£ 316$
N.B. All these prices INCLUDE 15% VAT. Securicor despatch if required + £10 ea. We also have in stock various optional plug-in units such as Differential (50 uV) Y-amp., Sweep-delay X-amp, etc. Please call for de tails. For full spec SAE please.
ADVANCE VM77D Millivoltmeters. 1 mV .45 MHz . Reduced to $£ 25$ WOELKE ME104C. Wow \& Flutter Meter $£ 90$
AIRMEC 4 Trace Display Oscilloscope Type 279 (17" CRT) MARCONI TF2343A Quantization Distortion Meter.
MARCONI TF2015 AM/FM Signal Generator. $10-520 \mathrm{MHz}$. HEWLETT.PACKARD Multi-Function Digital Meter. 3450A SERVOMEX VLF =unction Gen. 002 Hz -2KHz. Variable Phase. HEWLETT-PACKARD AM Signal Generator. $10-480 \mathrm{MHz}$. 608C TELONIC 1006 Sweep Generator. $450-850 \mathrm{MHz}$.
TGL Spectrum Analyser Types SA108 \& $102.0-500 \mathrm{MHz}$ Brand new units. Use with CRO having external X-input. POA

BEL $\%$ HOWEL
 MICROFACHE VIEWERS
 cent small Suantiry size $9 \times 5^{\prime \prime}$. R

SWEEPERS
TELONK Sweep generator system type 2003 . Fitted with Marker, attenuatcr, Detector plugin units and Generator covering $800-1500 \mathrm{MHz}$. E325
t DISC CARTRIDEES
BASF 12 -Segment Single Hard Disc Cartridges.
plus stock. £20 ea

MUIRHEAD

t FACSINILE UNTTS $*$ MUFAX 'COURIER' facsimile receiver type K441-CH and transmitlent condition.
PLEASE NOTE. All the pre-owned equipment shown has been carefully tested in our workshop and reconditioned where necessary. It is sold in first-class operational condition and most items carry a three months
guarantee. For our mail order customers we have a money-back scheme Repairs and servicing to all equipment at very reasonable rates. PLEASE ADD 15\% VAT TO ALL PRICES.

\star DCPOWER SUPPLIES \star

APT. Ex-computer supplies. Program variability 6 30 V DC (secondary taps \& resistor). Connections supplied. Three sizes available, 5A, $7^{1 / 2}$ A \& 10A Prices $£ 20, £ 25$, and $£ 30$ respectively ($p \& p \mathrm{f} 3.50$).
FARNELL. Current limited. 13-17VDC @ 2A £15. 27 32V@1A£10.12V@1A£10 (-£1.50 p\&p). COUTANT5V@5A(7×5 $\left.\times 3^{\prime \prime}\right) . £ 20(+£ 1 p \& p)$ VARIABLE 0-30V@1A. Volt-metered. $\mathbf{£ 2 5}(+\mathbf{E} 1$ FARNELL 5 V switching @ 60 Amps. (Measures $13 \times$ $\left.5 \times 6^{\prime \prime}\right)$. Recent special purchase $£ 50$ only $(+$
p\&p). MULLARD Dual $\pm 12 \mathrm{~V} @ 1 \mathrm{~A} @ 0.4 \mathrm{~A}, \mathbf{£ 1 0}(+£ 1)$.

$\star *$ STEPFER motois $\star *$

Brand new stock of 'ASTROSYN' Type 20PM A055 stepper motors. 28V DC 24 steps 20PM 15 oz -in torque@ 100 PPS . Body length $21 / 2^{\prime}$ diameter $2^{\prime \prime}$, shaft $1 / 4^{\prime \prime}$ diam $\times 4^{1 / 4^{\prime \prime}}$ spirally threaded. Weight $160 z$. Price each $£ 15$ (p\&p 50 p). Connections supplied.

t MILL.VOLT MESNMEMET, MALOGKE MARCONI TF2600. Twetve ranges $1 \mathrm{mV}-300 \mathrm{~V}$ FSD. Wide-band to 10 MHz . MARCONI TF2603. Frequency range b0kHz 1.5 GHz . High Sensitivity from 300 uV . MARCONI TF2604. Electronic Multi-meter AC/DC 300 mV Full scale to $300 \mathrm{~V}(1 \mathrm{kV} D C)$. Re sistance ranged. AC Frequency range 20 Hz 1500 MHz .

T BRUEL \& KJOER \rightarrow
Model 2006 Heterodyne Voltmeter. AM/FM/ Voltage measurements to 240 MHz .
\star
CLAUDE LYONS 240V AC REGULATORS
Small quantity available of constant voltage mains regulators. Continuous current rating $5 A$. Model no. CVR-1200. Input 204-252V. Output adjustable $200-254 \mathrm{~V} \mathrm{AC} \pm 0.3^{\prime} \% .45-65 \mathrm{~Hz}$. Condition as new.
(Dims- $1^{\prime \prime} \times 7^{\prime \prime} \times 6^{\prime \prime}$. Weight 20 Kgs). Price $£ 95$ ea. (Dims-11" $\times 7$

+ Carriage $£ 5$.

015011

 WHEN IT COMES TO POWER FOR RACKS IT MUST BE OLSON
RADIOCDDE CLOCKS

are powerful and comprehensive instruments which receive, decode and analyse time-coded standard frequency transmissions to provide accurate, secure and completely automatic time/calendar or synchronisation systems.

Applications

- Automatic master clock and slave controller. Synchronisation of separate equipment and events. Programmable energy management system.
- Computer clock/calendar with battery backup.
- Data logging and time recording
- Process and equipment control.
- Broadcasting, Astronomy, Navigation.

Satellite tracking.
If you have a time or synchronisation problem, write or phone for further details of our portable and new microcomputer-controlled Radiocode Clocks.

Circuit Services
Unit 19, Parkengue, Kernick Road Industrial Estate Penryn, Falmouth, Cornwall - Falmouth 76007

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be inade to order

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAY'S INN ROAD, W.C.1. Phone: 01/837/7937
Telex: 892301 HARTRO G
WW - 020 FOR FURTHER DETAILS

TELESCOPIC MASTS

Pneumatically operated telescopic masts.
25 Stendard models: ranging from 5 metres to 30 metres.

Hilomast Ltd

THE STREET HEYBZIDGE - MALDON ESSEX CM3 7MB ENGLAND
Tel MALDON (0621) 56480
Telex No 995855 .

NEW DIECAST BOXES extend Eddystone's comprehensive range

Eddystone Radio now introduce new boxes to supplement their exten sive range - types 27134P, 26908P and 29830 P .

Features include:

* Reduced radius corners.
* Options of shallow or deep flanged lids.
* Optional base plate for use as a shallow enclosure

ALL AT KEEN PRICES.

Details on application.

Eddystone Radio Limited
 Member of Marconi Communication Systems Limited

Alvechurch Road. Birmingham B31 3PP. England
Telephone: 021-475 2231 Telex: 337081
A GEC Maconi Electronics Company
WW - 062 FOR FURTHER DETAILS

Cotswold Electronics Ltd.
Unit T1, Kingsville Road, Kingsditch Trading Estate, Cheltenham GL51 9NX
Tel: 0242-41313
Telex: 897106
Sales Office in U.S.A
Peacock Alley 116, 1 Padanaram Road, Danbury, CT 06810 U.S.A 203-797-8698. Telex: 710-456-9984

Thanet Electronics ICOM
143 Reculver Road, Herne Bay, Kent
Tel: 02273 63859. Telex 965179

Ameron industrial

\star POWER RESPONSE DC $-45 \mathrm{KHz} \pm 1 \mathrm{~dB}$

* OUTPUT POWER IN EXCESS OF 1.5KW INTO 2.75 Ohm LOAD
(CONTINUOUS R.M.S.)
* D.C. OUTPUT 20 AMPS AT 100 VOLTS OR 2KVA
* HARMONIC DISTORTION LESS THAN 0.05% DC- 20 KHz AT 1 kW INTO 6 OHMS
* PLUG-IN MODULES: CONSTANT VOLTAGE/CURRENT, PRECISION osCILLATORS
* UNIPOLAR AND BIPOLAR DIGITAL INTERFACES, FUNCTION GENERATORS AND MANY OTHERS.
\star OUTPUT MATCHING TRANSFORMERS AVAILABLE TO MATCH
VIRTUALLY ANY LOAD.
* FULL OPEN AND SHORT CIRCUIT PROTECTION GUARANTEED STABLE INTO ANY LOAD.
\star TWO UNITS MAY BE CONNECTED TO PROVIDE UP TO 4kW
\star INTERLOCK CAPABILITY FOR UP TO EIGHT UNITS.
* 3-YEAR PARTS AND LABOUR WARRANTY.
\star UNITS AVAILABLE FROM 100VA-12KVA.

For full details on all Amcron Products write or phone Chris Flack

LOW COST PROFESGIONAL TEGT INSTRUMENTE

WW - 053 FOR FURTHER DETAILS

SAMSONS

(ELECTRONICS)LTD.
9-10 Chapel Street, Marylebone, London NW1 5DN Telephone: 01-262 5125 21-23 Bell Street, London, NW1 Telephone: 01-723 7851

14' ${ }^{\prime \prime}$ COLOUR MONITORS

Due to a special purchase we can now sell these first class monitors at greatly reduced prices.
Specification: RGB and Sync inputs. 12 Meg bandwidth Vertical and horizontal shift controls. Ideal for BBC micros, etc. Mounted on strong rigid chassis and supplied WITH isolation transformer. Take advantage now while stocks last. $£ 145$ + VAT

For postal details ring 01-262 5125.

WW - 056 FOR FURTHER DETAILS

The new microprocessor controlled EP8000 Emulator Programmer will program and emulate all EPROMs up to 8 k $\times 8$ sizes, and can be extended to program other devices such as $16 \mathrm{k} \times 8$ EPROMs, Bipolar PROMs, single chip microprocessors with external modules.
Personality cards and hardware changes are not required as the machine configures itself for the different devices.
The EP4000 with $4 \mathrm{k} \times 8$ static RAM is still available with EPROM programming and emulation capacity up to $4 k \times 8$ sizes.

- EP8000 8k x 8 Emulator Programmer $£ 695+£ 12$ delivery © BSC8 Buffered emulation cable - £49 SA27128 Programming adaptor - £69 SA25128 Programming adaptor - £69 EP4000 4k x 8 Emulator Programmer - £545 + £12 de-

FEATURES

- Software personality programming/emulation of all EPROMs up to $8 \mathrm{k} \times 8$ bytes including 2704, 2708, $2716(3), 2508,2758 \mathrm{~A}, 2758 \mathrm{~B}, 2516,2716,2532,2732$, 2732A, 68732-0, 68732-1, 68766, 68764, 2564, 2764. Programs 25128, 27128 with adaptors.
No personality cards/characterisers required.
* Use as stand alone programmer, slave programmer, or EPROM development system.
- Checks for misplaced and reversed insertion, and shorts on data lines.
Memory mapped video output allows full use of powerful editing facilities.
韍 Built-in LED display for field use.
4 Powerful editing facilities include: Block/Byte move, insert, delete, match, highlight, etc.
W Comprehensive input/output - RS232C serial port, parallel port, cassette, printer O/P, DMA.
- Extra $1 \mathrm{k} \times 8$ scratchpad RAM for block moving.
livery BSC4 Buffered emulation cable £39 BP4 (TEXAS) Bipolar PROM Module - £190 Prinz video monitor - £99 UV141 EPROM Eraser with timer - $£ 78$ GP100A 80 column printer - £225 GR1 Centronics interface - £65

GP Industrial Electronics Ltd.

Tel: Plymouth (0752) 332961
Telex: 42513

Unit E, Huxley Close, Newnham Industrial Estate, Plymouth PL7 4JN

P8000 - THE PRODUCTION PROGRAMMER

 THAT HANDLES ALL NMOS EPROMS
2704

2708
2716(3)
2508
2758A
2758B
2516
2716
48016
2532
2732
2732A
68732-0
68732-1
68766
68764
2764
2564
MK2764
25128
27128

Write or phone for more details

GP Industrial Electronics Ltd.

Tel: Plymouth (0752) 332961
Telex: 42513

Unit E, Huxley Close, Newnham Industrial Estate, Plymouth PL7 4JN

Out of this world for value!

Not our extroberrestilal filend, but a versatile bench power supply -

-the ET30/2
Pre a modest price it will provide you with:
2 outputs of 0 to 30 volts d.c. at 1 amp or 2 autputs at 0 to 15 volts d.c. at 2 amps or 0 to 30 voits d.c. of 2 amps or 0 to 60 volts d.c. af 1 amp or 0 to 15 volts d.c. of 4 amps .

APOLOCO LIMITED, 90 KING STREET, NEWCASTLE, STAFFS, ST5 1JB Phone: 0782620519 WW - 058 FOR FURTHER DETAILS

TORODDAS

The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size weight, lower radiated field and, thanks to I.L.P., PRICE.
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.
*Gold service available. 21 days manufacture for urgent deliveries.
*Orders despatched
within 7 days of
receipt for single or
small quantity orders.
*5 year no quibble guarantee.

The benefits of ILP toroidal transformers
il toroidal transtormers are only halt the weight and height of their laminated equivalents and are avaliable with 110 V .220 V or 240 V primares coced as tollows
ImpORTANT: Regulalion - All voltages quoted are FULL LOAD. Please add regulation ligure to secondary voltage to obtain oft load vothage.
For 110 V primary insert " 0 "in place of "X" in type number
For 220 V primary (Europe) inser " 1 " in place of " X " in type number
For 240 V primary (UK) insert " 2 " in place of " X " in rype number
Aiso available at Electrovalue, Maplin, Technomatic and Barrie Electronics.

For mail order please make your crossed cheques or postal orders payable to ILP Electronics Ltd. Barclaycard/Access welcome. Trade orders standard terms.

BROADCAST MONITOR RECEIVER $150 \mathrm{kHz}-30 \mathrm{MHz}$

We have taken the synthesised all mode FRG7700M communications receiver and made several well-thought-out modifications to provide a receiver for rebroadcast purposes or checking transmitter
to communications and news gathering use.
PRINCIPAL MODIFICATIONS: Radically redesigned front end stages yielding improved noise figure and overload levels. TOIP -2 dBm (originally -21 dBm) Flat audio frequency response on both AM and SSB \& Lower AM distortion * Balanced audio line output \star Buffered IF output for monitoring iransmitted modulation envelope on an oscilloscope \star
The receiver is available in free standing or rack mounting form and all the original features are retained. The new am detector board achieves exceptionally low distortion: THD, $200 \mathrm{~Hz}-6 \mathrm{kHz}$ at 90% modulation $-44 \mathrm{~dB}, 0.6 \%$ (originally $-20 \mathrm{~dB}, 10 \%$).
Stereo Disc Amplifier 3 and $4 \star$ Peak Deviation Meter \star Programme and DeviaStereo Disc Amplier $\mathbf{t i o n}$ Chart Recorders $\$$ Stabilizer \star Frequency Shift Circuit Boards $\star 10$ Outlet Distribution Amplifier \star Peak Programme Meter Illuminated Boxes, Circuit Boards and Ernest Turner Movements. \star Stereo Microphone Amplifier.

SURREY ELECTRONICS LIMITED
The Forge, Lucks Groen, Cranieigh, Surroy GUs $78 G$. Tat: 0483275997

WW - 054 FOR FURTHER DETAILS

The North of England's own computer systems, peripherals and software exhibition...

CDMPEC
 NORTH'83 Belle Vue, Manchester. June 21-23, 1983.

If your company owns or is thinking of buying a computer, visit COMPEC NORTH '83, the only exhibition in the North of England for serious computer users and DP professionals.
On show will be mini- and micro-computers, small business systems, software, printers, terminals, other peripherals, telecommunications equipment and word processors. This exhibition offers you an unequalled opportunity to meet and discuss with the experts, hardware and software best suited to your company's requirements.
Opening times are: Tuesday June 21, 10am-6pm Wednesday June 22, 10am-6pm Thursday June 23,10am-4.30pm

Apply now for your FREE ADVANCE REGISTRATION TICKETS

WW - 045 FOR FURTHER DETAILS
hit performance hit competilive hi:

OSCILLOSCOPES CO 1303D and 1303G - DC to 5 MHz - $10 \mathrm{mV} / \mathrm{div}$ with Var Atten

- 4 int . sweep speeds 10 Hz to 100 KHz
- Int. and Ext. Sync.
- Prices from just over $\mathbf{£ 1 3 0}$
- Direct Deflection Terminals on "D" can monitor RF to 450 MHz .
- " G " monitor range $1.81054 \mathrm{MHz}, 1$ to 500 W direct plus Two Tone Generator
- Ideal for SSB, AM, CW etc.

RC OSCILLATOR
AG 202A

- 20 Hz to 200 KHz
- Sine and Square wave
- 10 V rms from 600 ohms
- $>60 \mathrm{~dB}$ of O / P attenuation
- Large Scale and smooth precise tuning
- Ext Sync.
- AG 20310 Hz to $1 \mathrm{MHz}<0.1 \%$ Distortion
- SG 402 AM SIGNAL GENERATOR
- 100 KHz to 30 MHz in 6 Bands
- Large clear freq dial
- 100 mV of variable O/P with Int. and Ext. AM
- Prices from approx. $\mathbf{£ 6 6}$

VARIABLE
POWER SUPPLIES
PR 601A and PR 602A

- Output 0-25V/3A
- 3 Preset Voltages

Large Accurate Merer

- Auto constant I protection
- Visual indication of .
overload

- VOLT OHM METER VT 108

- DCV, ACV and Ohms with 30 sec. memory
- 15 Hz to 5 MHz Bandwidth - Battery or AC Adapter lopt.
- Prices from approx $\mathbf{£ 9 9}$

Also AVAILABLE a range of more than 20 Oserloscopes irom to 100 MH Real Time, Digital Storage, Battery Portable, X-Y and Programmable
meters - Variable Power Supplies - Noise meters - Signal Sources, AF RF. Function, Sween. TV Pattern and Stereo-Wow and Flutter etc. etc Ask for FREE Data and Prices

House of Instruments Clition Chambers, 62 High Street Satfon Walden Essex CB10 1EE

Tel: (0799) 24922 Telex 818750

GET B POMEB

Most pre-amp modules can be driven by the PSU driving the main powet arnp A separate PSU 30 is available purely for pre amp modules if required for
E5.47 tine VAT, Pe-amp and mixing moduies in 18 different variations
Please send for dela
Mounting Boards
Mounting Boards
For ease of construction we recommend the B6 for modules HY6-HYY 13 fl 105

Model Number	For Use With	$\begin{array}{\|l} \text { Prica inc. } \\ \text { VAT } \end{array}$
PSU $21 \times$	1 or 2 Mr 30	¢11.93
PSU41x		£13.83
PSU42x	1 $\times \mathrm{H}^{2} 128$	£15.90
PSU 43x	$1 \times$ MOS 128	¢16.70
PSU51x	$2 \times \mathrm{HY128.1} \times$ HY244	£17.07

Mod Number	For Use With	Price inc VAT
PSU 52x	$2 \times \mathrm{H}^{\times 124}$	${ }^{517.07}$
PSU 53x	$2 \times \mathrm{MOS} 128$	£17.86
PSU 54 x	1× $\mathrm{H}^{\text {Y } 248}$	517.86
PSU 55x	+ \times MOS248	¢19.52
PSU $71 \times$	$2 \times \mathrm{HY} 244$	£21.75

Model Number	For Use With	Pica ine VAT
PSU 72 x	$2 \times \mathrm{HY} 248$	¢22.54
PSU 73x	' x HY364	f22.54
PSU $74 x$	$1 \times \mathrm{HY} 368$	¢24.20
PSU 75x	$2 \times \operatorname{MOS} 248$; MOS368	¢24.20

$\begin{aligned} \text { Please note } & X \text { in part no. indicates pritmary voltage. Please insert " "O" in place of } \\ & X \text { for } \$ 10 \mathrm{~V} \text {."1" in place of } X \text { for } 220 \mathrm{~V} \text {, and " } " \text { " in place of } X \text { for } 240 \mathrm{~V}\end{aligned}$

WITHALOT OF HELP riom
 OPr

PROFESSIONAL HI-FI THAT EVERY ENTHUSLAST

 CAN HANDIE...
Unicase

Over the years ILP has been aware of the need for a complete packaging system for it's products, it has now developed a unique system which meets all the requirements for ease of assembly, adaptability, ruggedness, modern styling and above all price.
Each Unicase kit contains all the hardware required down to the last nut and bolt to build a complete unit without the need for any special tools.
Because of ILP's modular approach, "open plan" construction is used and final assembly of the unit parts forms a compact aesthetic unit. By this method construction can be achieved in under two hours with little experience of electronic wiring and mechanical assembly.

Hi Fi Separates

UC1 PRE AMP UNIT: Incorporates the HY78 to provide a "no frills", low distortion, ($<0.01 \%$), stereo control unit, providing inputs for magnetic cartridge, tuner, and tape/ monitor facilities. This unit provides the heart of the hifi system and can be used in conjunction with any of the UP Unicase series of power amps. For ultimate hum rejection the UC1 draws its power from the power amp unit.
POWER AMPS: The UP series feature a clean line front panel incorporating on/off switch and concealed indicator. They are designed to compliment the style of the UC1 pre-amp. Performance for each unit which includes the appropriate power supply, is as specified on the facing page.

PowerSlaves

Our power slaves, which have numerous uses i.e. instrument, discotheque, sound reinforcement, feature in addition to the hi fi series, front panel input jack, level control, and a carrying handle. Providing the smallest, lowest cost, slave on the market in this format.

UNICASES					
HIFI Separates					Price inc. VAT
UC1	Preamp				£29.95
LP $1 \times$	$30+30 \mathrm{~W} / 4-8 \Omega$	Bipolar	Steree	H.F	£54.95
UP2X	$60 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	HiF,	£54.95
UP3X	$60 \mathrm{~W} / 8 \Omega$	Bipolar	Mono	$\mathrm{H}_{1} \mathrm{~F}_{1}$	£54.95
UP4X	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	$H_{1} F_{1}$	£74.95
UP5 \times	$120 \mathrm{~W} / 8 \Omega$	Bpolar	Mono	HIFI	£7495
UP6x	$60 \mathrm{~W} / 4-8 \Omega$	MOS	Mono	$\mathrm{H}_{1} \mathrm{~F}$	¢64.95
UP7X	$120 \mathrm{~W} / 4-8 \Omega$	MOS	Mono	H, F	¢84.95
Power Slaves					
UST X	$60 \mathrm{~W} / \Delta \Omega$	Bipolar	Power	Slave	$£ 59.95$
US2 x	$120 \mathrm{~W} / \mathrm{A} \Omega$	Biporar	Power	Slave	£79.95
US3 x	$60 \mathrm{~W} / 4-8 \Omega$	MOS	Power	Slave	¢69.96
US4 x	$120 \mathrm{~N} / 4-8 \Omega$	MOS	Power	Slave	£89,95

[^1] (U.K.) All units except UC1 incorporate our own torodal transformers.

CX80 ocourur MATRIX PRINTER

At last a low-cost Colour Matrix Printer for Text, Graphics, Histograms, Colour VDU Dumps, etc.

> Colour printout is quickly assimilated, makes graphics more understandable and is an ideal medium for the presentation of complex data or concepts.

Compatible with most microprocessors, prints in 7 colours - sophisticated internal programme makes the CX80 easy to use.
Dot Addressable +15 user programmable characters, 96 ASCII and 64 graphics characters in rom. Centronics interface with RS232 and IEEE488 options. Apple II interface gives dot for dot colour dump. New viewdata interface prints out two pages side by side in full colour. See Prestel 200650.

The CX80 is a product of our own design and development laboratories. It represents a British breakthrough in colour printer technology. Colour brochure on request. OEM pricing available.

The lightweight mast with 101 applicetions

The smoothly operated QTM Mast comes fitted with handpump or can be vehicle mounted with 'Power Pack' for extension and retraction. Available in a range of heights up to 15 metres, the OTM mast can provide the ideal answer for

- Mobile Radio Telephone - Environmental gas
- Police Mobile HO (UHF) sampling collector
- Field Telecommunications - High level photography
- Floodlighting
- Meteorology
* Anemometer and Wind
- And a host of other uses Measurement

CLARK MASTS

Find out more about the QTM series by writing or phoning UK. EUROPE
CLARK MASTS LTD. IWW) GENK TECHNICAL PRODUCTS N.V IW.W Evergreen House, Ringwood Road Binstead, Isle of Wight.
England PO33 3PA Woudstraat $21,3600 \mathrm{Ge}$ nk Belgium

Tel: isle of Wight (0983) 63691 Telefoon 011 380831

Telex 86686

RETAIL • MAIL ORDER • EXPORT • INDUSTRIAL • EDUCATIONAL
DIGITAL MULTIMETERS (UK c / P Free)

| |
| :--- | :--- | :--- |

PFM200A 200 mHz hand hald pockel 8 digit

811048 Allolu 50 bench 2 rangen 800 miz 87.50 881039 dipil LEO bench 2 ranges 100 MHZ 8077.00
 TFO40 88 digil $\mathrm{LCO} 40 \mathrm{MHz} \quad$ E126.50
 -Dopional carry cise E0.84
Prescalers-Extonded range of most counter TP8000 800 MHZ
$\mathrm{TP1000} 16 \mathrm{HZ}$

ELECTRONIC INSULATION TESTER VF $501500 \mathrm{~V} / 0-100 \mathrm{~m}$ with carry case
MULTIMETERS (UKC/P 65P
C708150k/V21 ranges
kange doubler loa 1 CC
SPECML Paict
pectial paice

TMK 50023 ranges $30 \mathrm{~K} / \mathrm{V}$. 12 A OC plus nl. buzz
NH56R 20K/V. 22 range pocket EU102 14 ranqe $2 \mathrm{~K} / \mathrm{V}$ pocket
830A 26 range 3IK/V. IOA AC/OC overload protection, atc
36007 A 23 range $100 \mathrm{~K} / \mathrm{V}$ Large scala
10A AC/OC Plus Hi
AT1020 18 range 20K/V Deluxe plus Hie

rn 3cotr 19 range 20K/V plus His taster

VARIABLE POWER

SUPPLIES
PP241 0/12/24V. 0/1
${ }_{\text {E }}^{1 \text { A. }}$
PP2433 mp verrion $\mathbf{E 5 9 . 9 5}$
PS I307S $8 / 15 \mathrm{~V} 7$ amp twin moter $£ 24.95$
 LOGIC PROBES

301 EDGWARE ROAD, LONDAN w2 18N. TEL: Of-7243564
404/400 EDGWAREROAD. LONOON w2. TEL:0i-723 1008

SIGMAL GENERATORS

FUMCTION : All sing/zaulre/riangle/TTL. Atc $£ 90.00$ $\mathrm{TG} 1001 \mathrm{HZ}-100 \mathrm{KHZ}$
PULSE
T6105 Var Ious facililles $5 \mathrm{HZ}-5 \mathrm{mHz}$ £90.00
166.75

AUDID: Mulliband Sinis/Square LAE27 10 Hz 101 M Hz ÁG202A 20 Hz 10200 KHz ILisi $194.50 \mid$ ${ }^{\text {RF }}$
 18617100 KHz to 150 mHz
audio - hf • Function • pulse OSCILLOSCOPES

Full spacilication any modal on requesi. Saf by pos. 'HM' Sorlos HAMEG: 'SC' THANDAR: 'C8'Series ThiO: '3' Serles CROTECH SINGLE TRACE

tester C/P $\mathrm{c}_{\mathrm{m}}^{2} .00$. $£ 177.10$ SC110A Mmiauro HM103 15 MHZ 2 mV. 6×7 display pius

DUAL TRACE (UK G/P £4.00)
 £303.60
$\mathbf{\&} 269.50$ 3131 Dual $15 \mathrm{MHZ}+$ component testar £276.00 C8 1566 Dusl 20 MHZ All lacillilies |List £401.351 in M204 OUall 20 MHZ plus componant laster $£ 349.50$ CS 1820 Dual 20 MHz with extra facilitias OPTIONAL PROBE KITS |LIEE50B.30| £485.00 $\begin{array}{lclr} & 11 & £ 7.95 & \times 10 \\ \times 1-\times 10 & £ 10.50 & \times 100 & £ 16.95 \\ & & \end{array}$ HIGH VOLTAGE METER
Direct reading 0/40 KV. 20K/VOIL. IUK C/P 8501823.00

DIGITAL CAPACITANCE

 METER0.1 pt to 2000 mid LCO 8 ranges DM6013 E52.75 (Carry case £2.55)
TRANSISTOR TESTER
Olract reading PNP: NPM, etc.
TC1
(UK C/P 65pl

Accurate Digital Multimeters at

Exceptional Prices

28 RANGES, EACH WITH FULL OVERLOAD
PROTECTION BUZZER AND BATTERY SCALE

Add 15% to your order for VAT. P\&P is free of charge. ARMON ELECTRONICS LTD.
Cottrell House, 53-63 Wembley Hill Road. Wembley, Middlesex HA9 88H. England

Payment by cheque with order

y 533

6FT. PARABOLIC DISHES FROM ONLY £85 plus v.a.t.

6 ft . dia. dishes, feed horns and electronics for use in 4 GHz satellite reception. GaAs Fet transistors, SMA connectors, P.T.F.E., etc. available. Please send s.a.e. for full details and data sheets.

Harrison Bros.
Electronic Distributors
22 Milton Road, Westcliff-on-Sea, Essex SS0 7JX Tel. Southend (0702) 332338

available on request，free of charge．

Those who are involved in cabling and interconnection of audio，video，data and instrumentation signals will find this catalogue an invaluable tool．
The experience of over a decade in this field has been applied to the selection of a range of components and equipment－ many of which are now exclusive to FFD．

CONTENTS

AUDIO 國Adaptors 四 Attenuators 四 Connectors 再 Curly Cables ${ }^{[0]}$ Faders 70 Headphones and Headsets Intercoms（ifi）Jackfields［ifi Level Meters and Drivers（囲）

囘 Terminal Blocks 四
 Filters 四 Jackfields（四 Patch Cords 四）
DATA 四 Coaxial Cables 四 Connectors Fibre Optic Cables，Connectors，Line Drivers and Multiplexers Jackfields 㑑 Multi－pair Cables Patchcords
STUDIO EQUIPMENT諫 Active Monitoring Loud－
speakers Balancing Amplifiers ${ }^{(100}$ Distribution Ampli－ fiers
STUDIO ACCESSORIES Wirioct Injection Boxes Fish Poles 阶 Goosenecks phone Stands and Booms 四 Warning and Status Lamps WIRING AIDS 南 Cable Markers Ties and Fixings 四 De－
 Sleeves and Fitting Tools pers and Cutters
HARDWARE 囲Cabinets 囲 Cable Winders ${ }^{[0}$ Duracell Batteries 四 Equipment Housings 四 Mains Connectors and Filters MainsTesters Racks Test Probes fifio

Fif FUTURE FLM DEVELOPMENTS

36／38 Lexington Street，London WIR 3HR，England．Telephone：01－437 1892／3．
Telex： 21624 ALOFFD G．Cables：Allotrope－London Wl．

Looking for a Distortion Measurement System?

The Amber model 3501 is quite simply the highest performance, most featured. yet lowest cost audio distortion and noise measurement system available.

It offers state-of the-art performance with THD measurements to below 0.0008% (-102 dB). maximum output level to +30 dBm and noisé measurements to below -120 dBm .

It has features like automatic operation. optional balanced input/output and powerful IMD measurement capability. It includes comprehensive noise weighting with four user changeable filters. Unique features like manual spectrum analysis and selectable bandwidth signal-to-noise measurements.

The 3501 is fast, easy to use and its light weight and small size make it very portable. It can even be battery powered:

- 1 Amber Electro Design Inc. 4810 Jean Talon West. Montreal. Canada H4P 2N5. Telephone (514) 7354105

King to-day for a demonstration

Scenic Sounds Equipment Limited

Model 467
The $31 / 2$ digit hand portable True RMS DMM with LCD digital and analogue display - another Simpson first in the UK.
The world famous 260^{\prime}
The Simpson analogue multimeter that is the world's largest selling $A M M .27$ ranges cover $A C$ and $D C$ volts, $D C$ current, resistance and dB

Clamp-on Testers The new 296.2 for faster testing of motors, transformers and circuits. All models measure up to 300 Amps AC RMS. now see the rest
Write now for technical information on our full range of precision instruments

Bach-Simpson (U.K.) Limited,
nant Estate, Wadebridge, Cornwall, PL27 6HD
Telephone: (020881) 2031 Teiex: 45451

The Mental 280 Development System

uses the MOST POWERFUL LANGUAGE OF ALL - direct ASSEMBLER MNEMONICS MENTA has VISUAL AIDS to program development which the big systems lack: a TV display of PROGRAM, REGISTERS and STACK, single-step operation (watch the cursor move from instruction to instruction, see the register contents change, observe stack operations. atc, BUGS can be wad or without BREAKPOINTS. Designed originally for operation is supported too - Wicroprocessing. MENTA is a complex CONTROLLER in its own right, like any other $\mathbf{Z 8 0}$ system. with practical, commercial applications in OBOTICS. Features include CASSETTE INTERFACE ASSEMBLER EDITOR. SerIal DISASSEMBLER. with SOURCE -CODE LISTING. MODULES AVAILABLE Universal Input/ Output Device
Analogue to Digital Converter Digital to Analogue Converter D.C. Motor and Current Buffer Switching Input Module Analogue/ Digital Pupil Reader....

Thandar
 74208020 mkg Logic Analyser

Dataman Designs Retrofit for 7,42080

Gives R.S 232 output facility for printed STATE and TIMING diagrams. Also DISASSEMBLES in 2.80 .6502 or 6800 mnemonics onscreen or to primer $\mathbf{E 2 9 5 . 0 0}$ Olivetti Typewriter Interfaces
for ET121 and ET221 machines which permit the typewriter to be us ad as a DAISY CENTRONICS PARA Computers implementing the RS2 processing and letter-writ ing! Same price, fitting free if request ed (you pay carriage on

Wetra-Vialet Eprom Erasers from

Adequate performance pries

$£ 33.00$

LOMBARD HOUSE

Softy Epram Programmer/Emulatar

SOFTY has functions equal. at least. to equipment which sells for over E500. SOFTY EMULATES AND SOFTY will copy any of these EPROMS to any other). SOFTY has a personality switch. SOFTY will copy any of the powerful editing - such as iNSERT. DELETE. SHIFT- BLOCK and many other facilitiestoo many to list here. RS 232 SERIAL and CENTRONICS PARALLEL routines for INPU and OUTPUT are standard. 24 PIN DIL PLUG. SOFTY is used as a DEVELOPMENT EMULATOR CABLE WITH 24 PIN DIL PLUG. SOFTY is USEd
SYSTEM for new products or just as a STAND-ALONE EPROM PROGRAMMER.

CORNWALL ROAD,
DORCHESTER, DORSET DTP RX.
Telephone: Dorchester (0305) 68066 Telex 418442 DATAMAN
Prepaid orders normally shipped by return
Prepaid orders normally shipped by return UK. Carriage Free on Orders in
Prices include tirst-class recorded post in UK. excess of f50.00
Securicor. Red Star. etc. at extra cost.
Sat should be added at current rates.
Add E2.50 if lass

Shure microphone mixers． Compact．Portable．Robust．Reliable． The combination you want to see． The mix you want to hear：

M267 For professional broadcasting， recording and sound reinforcement．

M268 For P．A．，paging，professional standard tape recording and as an add－on to existing systems．

Editor:

PHILIP DARRINGTON
01-661 3128

Deputy Editor: GEOFFREY SHORTER, B.Sc.

Technical Editor:
MARTIN ECCLES
01-6618638

News Editor:
DAVID SCOBIE
01-661 8632

Drawing Office Manager:
ROGER GOODMAN
01-661 8690
Technical lllustrator: BETTY PALMER

Advertisement Manager: BOB NIBBS, A.C.I.I. 01-661 3130

BARBARA MILLER
01-661 8640
JULIAN BIDLAKE
01-661 8641
Northern Sales:
HARRY AIKEN
061-872 8861
Midland Sales:
BASIL McGOWAN
021-356 4838
Classified Manager:
BRIAN DURRANT
01-661 3106

IAN FAUX
01-6613033
Production: BRIAN BANNISTER
(Make-up and copy) 01-661 8648

Publishing Director DAVID MONTGOMERY 01-661 3241

Script - or ad lib?

Technology advances at such a rate, and the possibilities for changes in life-styles proliferate to such an extent, that the broad view of a new society - a perceived, intentional direction for development scarcely exists.
There is discussion; books and articles are written, there is even a Minister for Information Technology - a term which seems to cover a great many activities only tenuously connected with information: yet no document in the public domain propounds any kind of lucid policy on future development in, at any rate, our own field.
In place of action, there is reaction; instead of assertion, there is reply; and it seems that there is a plethora of means, but no clearly defined end. A flood of affordable computing power has, in spite of at least ten years' notice, taken those who bear responsibility for the direction of effort by surprise, and the predictable result is that communication of all kinds telephones, data, videotext - is developing in an amorphous, uncontrolled manner, which, if it is left alone for much longer, may be uncontrollable.

It cannot be said that there is an agreed, imposed policy, but what passes for it is nearly always drafted after the event in reply to a development that is already under way. Clearly, it is not only potential, if slow-moving, users of the new technology who need to be educated in its use, but also those who should be channelling development towards a goal.

Some of this may be the result of the 'solution seeking a problem' type of
evolution in technique which is now common. For example, the emergence of teletext from its original role in transmitter control into the field of domestic information display was extremely slow, simply because a market for it had to be created: there was no perceived requirement for teletext before the possibility existed. Now it is available, but it is under-used and does not fit easily into any probable over-all scheme of communications.

In the same way, the somewhat aimless insistence that schools must possess microcomputers is a panic measure, taken several years too late, to cope with the entirely predictable availability of cheap computers. No one had demanded that computers should be designed to enable schoolchildren to be taught programming or logic. If that had been the case, it seems unlikely that we would now have thousands of future computer users who will have to unlearn Basic in favour of structured language.

We need a comprehensive, imaginative view of the future of society in which electronics technology is developed to order, in which demand comes before its satisfaction. If this does not come about, and since almost anything is (it seems) now possible, society will be ordered by technology: what engineers can do people will be required to employ.

To formulate a policy for the desirable exploitation of techniques that do not yet exist is not exclusively a political exercise. Technologists must be in consultation with government so that politicians are informed on what is possible and are able to take the broad view. Only after that should development of the technology begin, when there is a part for it to play. The play must come before the actors, and we need a good script.

Precision analogue voltmeter

Suitable for making measurements in a.c. and d.c. circuits and for some uses in audio, this design overcomes one of the drawbacks of conventional analogue instruments - drift.

Despite all the advantages, real and claimed, for the digital voltmeter, the analogue meter still has a definite role to play in radio and electronic engineering. Not that the author has anything against integrated circuits or digital displays, far from it; but it does seem all too easy to get carried away with the fashion instead of recognising the needs of the end user.

Yet there are some clear cases where the accuracy and fine resolution of digital meters offer a considerable step forward in measurement. Examples of some of these are strain gauges, weighing machines, temperature measurement and the indication of static or slowly varying quantities.

On the other hand, the digital meter is quite inappropriate when one is measuring a variable quantity where the rate of change may be as important as the absolute value of the quantity being measured.

Another situation in which the analogue meter has a decided ergonomic advantage is the one in which several similar quantities are being monitored simultaneously. One can quickly assimilate that all are about the same, the odd one out being immediately obvious and 'tweaked' as required. High-resolution digital meters would no doubt all read slightly differently and the odd one adrift would not be nearly so apparent.
In the author's workshop both analogue
and digital meters are used; and recently in the course of a general upgrading exercise it was decided to rebuild the equipment containing the analogue meter and to see if economic improvements could be made. The old instrument had given good service; it was based on a long-tail pair circuit

by W. J. Hornsby,
 M.I.E.R.E

using fets (Wireless World, May 1968). Its input resistance was 50 megohms which was quite adequate, but it was subject to zero drift needing frequent manual correction during an evening at the workbench.

The starting point of the new design was to list the advantages of the digital meter

Fig. 1. Complete circuit of the voltmeter. Component values for the input divider are shown for the $50 \mathrm{M} \Omega$ version, with values for a $10 \mathrm{M} \Omega$ version given in brackets. These resistors should be 1% tolerance types or better. $C_{i n}$ allows the meter to read a.c. signals standing upon a d.c. bias. The 7650 is a chopper-stabilised op-amp offering a low input offset voltage and wide bandwidth.
and the deficiencies of the analogue model and form a schedule of items requiring attention if the new analogue design was to be an improvement.

Generally, for good quality instruments of either type there are differences to a greater or lesser extent in price, robustness, accuracy, input resistance, establishment of polarity, zero-drift characteristics and power consumption.

The task therefore was to produce a new analogue meter circuit which retained all the good qualities of the old but offered a better degree of satisfaction in as many of these characteristics as possible.

Design aims

Three very important criteria had to be met. The final product had to be relatively inexpensive, it had to consist of readily available components in standard values and it had to be suitable for home construction.

The original input resistance of 50 me gohms was probably as high as could be reasonably expected using standard switches and glass fibre p.c.bs. Nevertheless some users may prefer the industry standard of 10 megohms; and as will be seen later, there are certain advantages from adopting this or even a lower resistance. The design of the input divider should be such that a common shunt can

Fig. 2. Power supply options for the voltmeter. The unit may be powered directly from a split supply, either ground-referenced or floating; from a 9 V battery with an op-amp to provide a centre rail; or else from a single +5 V supply, with a d.c.-to-d.c. converter i.c. such as the ICL7660 to generate a negative rail.

Fig. 3. Any of the power supply options can by accommodated on the author's p.c.b. For a 9 V battery supply, a 741 op-amp is fitted at the I_{5} position; R_{25} is connected between points 3 and 11, R_{26} between points 3 and 15; point 2 is linked to point 13, point 6 to point 12, point 4 to point 11 and point 7 to point 14. For a single-rail 5V supply, an ICL 7660 is used for $I C_{5} ; C_{9}$ should be fitted between point 2 and point 4, its positive terminal to point $2\left(R_{25}\right.$ and R_{26} are not required); and links should be added between points 3 and 13, 5 and 9, 8 and 14.
be applied to the input for the measurement of current or to test dry-cell activity for instance.
One factor affecting both the price and robustness of moving-coil instruments is the quality of the meter movement. Traditionally, good quality instruments use sensitive movements giving f.s.d. (full-scale deflection) at low currents, but they are rather delicate. So what are the objections to using a more robust, higher-current movement with an amplifier?
Possibly the most annoying failure of active analogue meters is drift. The more one has to amplify small signals, the more one amplifies this undesirable effect. The most serious zero-drift errors occur at the front end because these are amplified by the remainder of the circuit. Therefore the first amplifier must be a good one. It must also have an input resistance several orders of magnitude greater than the input divider chain, and this is not easy to achieve. The author came to the conclusion that the digital boys had got it right with chopper front-ends, but the only chopper i.cs readily available had insufficient input resis-
tance and the inverse feedback ratio would have meant that the meter would make an ideal signal injector! The next stage was to look for a self-zeroing chopper op-amp.
A search revealed an i.c. whose input current was guaranteed less than 10 pA and was said to be typically of the order of lpA. This looked a possibility but it was designed not for zero drift but for minimum offset between the input terminals (typically $0.7 \mu \mathrm{~V}$). However, in a feedback op-amp circuit if the offset is zero and one input is referenced to zero then one has a self-zeroing amp!
The other difficulty with the more robust type of meter movement is mechanical stiffness. This can be shown on a robust meter by slowly bringing it up to a set voltage and noting the reading, then bringing it slowly down to the same value. In all probability a difference in scale reading will be shown.
It is noticeable however that some instruments used for measuring alternating quantities are quite crude yet capable of following the signal quite well because the movement is 'kicked' every half-cycle by the input. A similar effect could be achieved in a d.c. meter by adding to the d.c. signal an a.c. component of low value but sufficient to overcome the stiffness. As an added bonus the chosen i.c. (ICL 7650) has its oscillator output conveniently brought out, an ideal starting point for this a.c. on d.c. "wobble".

The 7650 also has a facility for preventing saturation of its output by effectively pulling up one input pin with the other just before limiting occurs (implemented by connecting pin 4 to pin 9), thus improving the speed of recovery from overload. This facility should not be used here, since it is better to see that the meter is in overload than to suffer an incorrect reading.

Digital meters are self-polarising, allowing one-handed operation if one lead is clipped to a convenient reference point. An analogue meter could achieve the same advantage if it were designed as an a.c. type with the non-linearity usually associated with these meters removed, although some means of showing the
polarity would then be required. This leads to the conclusion that a one-hand a.c.-d.c. design is possible leaving rangeswitching as the only manual operation. Even this could be automated, but this would present problems in maintaining the input resistance and would add appreciably to the cost.
If an a.c. signal to be measured stands on top of a d.c. bias, then a blocking capacitor is necessary at the input. This is most easily accomplished by adding an auxiliary input terminal buffered by a capacitor. This facility is not easily implemented automatically in this design and it was considered that further complication of what is essentially a simple circuit was not worth the expense. Remember that this capacitor must charge through the input divider and will take some time in view of the high input impedance. Also, during this time the meter will try to read the d.c. value of the bias. This may cause a temporary overload condition until the input capacitor has charged.

There is one further problem to be overcome in an a.c./d.c. design and that concerns form-factor correction. A simple meter and rectifier assembly will read the mean value of an alternating quantity, whereas it is usually the r.m.s. value which is required. In most electronic meters, including digital types, a separate gainadjusted amplifier is provided for this purpose and has to be switched in. If this design is to be truly 'one-hand, no switching' then a means of detecting an a.c. signal and automatically adjusting the gain (at least for sine waves) must be provided.

Circuit description

The circuit diagram of the instrument is shown in Fig. 1. IC_{1} is an operational amplifier which automatically arranges for minimum offset between its input terminals. Since one terminal is referenced to zero through the input divider the stage is self zeroing. It is arranged to have a gain of 10 or 3.3 to give the $\times 1 / \times 3$ facility. This stage is essentially a preamplifier and can be frequency compensated.
IC_{2} is the main amplifier feeding the rectifiers and the meter; its gain is set at about 5 by \mathbf{R}_{11} and \mathbf{R}_{12}. Since the rectifiers are in the feedback loop of the i.c., their forward voltage drop and non-linearity are reduced by a factor equal to the open loop gain of the amplifier, to negligible proportions.

Each time the output of IC_{2} passes through zero it must jump a step voltage equivalent to the voltage drop of two meter diodes in series, and the time taken to do this is a function of the slew rate of the amplifier. When this time becomes a significant part of the signal being measured then overall accuracy suffers. It is for this reason (and to limit the output swing) that germanium diodes, not silicon, are recommended for the meter circuit. In the author's case a batch of surplus diodes was obtained and those with the best forward-to-reverse ratio were chosen.
IC_{3} is a comparator obtaining its power supply from the 0 and 5 V rails only. Its inverting input is centre-referenced be-
tween these supplies by \mathbf{R}_{15} and \mathbf{R}_{16}. Its non-inverting input is connected to the 5 V supply by R_{14} and the output of IC_{2} by R_{13} such that when the output of IC_{2} is zero then IC_{3} is balanced. If the output of IC_{2} goes positive then IC_{3} turns on Tr_{1}, which lights the red led, and at this time Tr_{2} will be cut off. If the output of IC_{2} goes negative Tr_{2} will light the green led and Tr_{1} will be cut off. D_{5} and D_{6} ensure that each transistor turns off fully when necessary (so that only one led will be lit at any one time). In this way the polarity of the input signal is indicated. The use of a single supply rail for IC_{3} ensures that it will not be affected by any imbalance between the positive and negative supplies.
The output of IC_{2} does not remain static at zero volts' because it is constantly trying to self-zero around the meter diode voltage-drop, being prompted to do so by the small switching spikes at its output as a result of its internal circuitry. Since negligible current passes through the meter no reading results, but this 400 mV swing at the output of the i.c. (though not across the load) triggers IC_{3} and causes both leds to light, giving a useful 'on' indication. In addition because this swing is considerably in excess of any offset present in IC_{3} it is not necessary to provide offset adjustment for IC_{3}; and because it is a comparator as distinct from an amplifier there is no need for the frequency compensating capacitor usually associated with this type of i.c.
A second output of IC_{3} is taken to D_{7} and D_{8} where it is rectified and used to charge C_{8}. This voltage is used to operate the electronic switch $\mathrm{IC}_{4} . \mathrm{IC}_{3}$ must have a cmos output stage to give sufficient output swing for this purpose
The operation of the electronic switch is as follows. Assume first the condition of either an a.c. input or the circuit in an idle condition. Both leds will flash at the signal rate or in sympathy with the self-zeroing efforts of IC_{2}. Now the DG308 requires cmos input conditions: that is, it will operate when the input to the switching terminals is about two-thirds of the supply voltage. In this circuit the DG308 is connected across the full positive and negative supplies but its switching terminals for switches 1 and 2 are already at half the supply (0 V) because they are tied there by R_{21}. When C_{8} charges from the output of IC_{3} its voltage is added to this so that the potential is raised sufficiently to operate the switches.
S_{1} connects R_{10} in parallel with the main load resistor R_{9} to lower the load value and hence increase the current in the meter giving form-factor correction ($\times 1.1$) to convert the mean value reading to r.m.s. The output voltage of IC_{2} changes only by the additional voltage drop across the meter; the voltage across the load does not change because this is determined by R_{11}, $R_{12} . S_{2}$ holds S_{3} in the off condition to prevent its operation via $\mathrm{R}_{23} . \mathrm{LED}_{3}$ and R_{22} can be added to indicate that S_{1} and S_{2} have operated. This is something of a luxury, however (particularly in a battery operated model), although it can be useful during testing.
If we now assume that a d.c. condition is connected to the input then the output of

Fig. 4. The author's printed circuit, shown full-size. The large amount of copper left on the board helps to keep it stable; it also improves thermal tracking between components, minimising the effect of thermally generated e.m.fs. Note the guard-ring around the input pins of the 7650 to prevent current leakage from adjacent tracks. This ring is not at earth potential but at the feedback potential recommended by the manufacturers.

Fig. 5. Component layout for the printed circuit of Fig, 4.
IC_{3} will be steady causing the appropriate led to light. In addition, C_{8} will not be charged through D_{7} and D_{8} and as a result will discharge through R_{21} until it assumes 0 V . In this case S_{1} and S_{2} will not be operated. With S_{2} normal S_{3} will operate to the 5 V positive rail via R_{23}. S_{3} connects the clocking oscillator from IC_{1} (which swings from 0 V to nearly 5 V) to the control terminal of S_{4} which will be caused to operate and release at the clocking rate of $200 \mathrm{~Hz} . \mathrm{S}_{4}$ in turn connects and disconnects R_{8} in parallel with the main load resistor R_{9}. This action imparts a 200 Hz
wobble to the meter although its effect is not observed by the user. This is used to overcome stiffness in the meter movement.
Once again the output voltage of IC_{2} changes only by the change in voltage drop across the meter; the voltage across the load is still held constant by \mathbf{R}_{11} and \mathbf{R}_{12}. The current in the meter changes according to whether S_{4} is operated or not at any instant. The mean value of $R_{\mathbf{8}}, R_{9}$ is that at which the meter is calibrated.

The reader will notice that the value of the wobble current is proportional to the reading being observed. This is no prob-

lem however because if the reading is so low that the wobble is ineffective then it is time to change to a lower scale! It is essential that the wobble is reduced to zero at no-input to prevent its causing the slightest variation in the output of IC_{2}; this might otherwise feed through and trip IC_{3} at low d.c. readings, changing the circuit over to the a.c. mode. It is for this reason also that the wobble cannot be applied any further forward in the circuit.
From the above it will be seen that the meter circuit assumes an a.c. input condition when idle. If a d.c. condition is input then C_{8} must discharge through R_{21} to convert to d.c. measurement. The time taken to do this is a function of the voltage at which the DG308 switches release. If R_{21} is too low then C_{8} may have difficulty in charging.

If the change over time is critical (for instance in assembly testing) then R_{21} could be made variable and adjusted to the optimum point. In the unlikely event that a DG308 is obtained which operates at the static half-way potential it will be necessary to connect the lower end of \mathbf{R}_{21} to a high resistance potential divider across the whole supply so that under d.c. measurement conditions the potential on the DG308 switching terminals is just below the operating level. This condition was not met in the samples used by the author.

No meter movement protection was included in the circuit because under operating conditions the output of IC_{2} limits at about twice the f.s.d. All the i.cs will withstand the full supply potential at their input terminals, so the only danger is overload at the circuit input terminals (which will withstand up to 5 mA input current). Overall protection therefore is a function of the protection resistor \mathbf{R}_{2}.

Variations on a theme

Now that we have seen the full circuit we can see also how it can be built in different versions.

The utility model for d.c. use consists of IC_{2} and the meter with no rectifiers. R_{11}, R_{12} can be adjusted to give the gain required and only a single load resistor is required. There is no polarity indication and the input leads need to be reversed for the two polarities of input.

Fig. 6. Wiring the input selector switch S_{1}. It is essential to use switch-wafers with good insulating properties: a suitable choice is a pair of miniature wafers type 327-349 from RS Components, together with a shaft assembly 327-311. Position 7 on the switch is for use with the author's resistancemeasuring unit.

The economy model includes the meter rectifiers allowing one-handed operation; but there is no polarity indication nor any form-factor correction.
The popular model includes $\mathrm{IC}_{3}, \mathrm{Tr}_{1}$, $\mathrm{T}_{\mathrm{r}_{2}}$ and the leds but nothing from C_{7} onwards. We now have polarity indication but no form-factor correction.
The GT model includes IC_{4} giving form-factor correction and wobble if the oscillator output of IC_{2} is used. This circuit would be suitable for d.c. and a.c. measurements provided the frequency was limited to a few hundred hertz.

Finally there is the de luxe model, which incorporates the full circuit, giving an acceptable response well into the audio range.

Any of these versions may be built on the suggested p.c.b.

Input divider and preamplifier

Several factors including the input divider, the protection resistor, the internal roll-off and the device input capacitance restrict the gain at higher frequencies. Nevertheless, the performance particularly on one selected range can be extended well towards the top of the audio spectrum if both the first amplifier and frequency compensation are included.

To expect IC_{2} to provide all the gain well into the audio range is not practical because of the low gain-bandwidth product of the device when driving the meter. It is necessary to reduce its gain and to add IC_{1} to compensate. Both amplifiers because of their internal circuitry produce small switching spikes at their outputs, so it is desirable that the second of the two amplifiers should have the lower gain to reduce the possibility of the spikes produced by IC_{1} being amplified by IC_{2} to the extent that they look to the meter circuit like an a.c. signal.

For the best possible response, we also need to use the lowest acceptable value of
input divider and if brave enough, dispense with the protection resistor R_{2}.

The p.c.b. includes spaces for fitting four components $\mathrm{R}_{6}, \mathrm{C}_{3}$ and $\mathrm{R}_{7}, \mathrm{C}_{4}$ across R_{4} and R_{5} respectively. These components effectively reduce the value of the lower feedback resistors as the frequency increases, thereby increasing the gain of the stage. This cannot be fully effective on all ranges because of the variable effect of the i.c. input conditions on the input divider.

To give the best margin of safety the author recommends that the circuit is built with both IC_{1} and IC_{2} fitted. Then for d.c. and 50 Hz only, use either a $50 \mathrm{M} \Omega$ or $10 \mathrm{M} \Omega$ divider (whichever is preferred) and a $1 M \Omega$ protection resistor. If a.f. measurements are contemplated then use a $10 \mathrm{M} \Omega$ divider or even scale down by 10 ; use no more than $100 \mathrm{k} \Omega$ protection (or strap out the protection resistor and restrict the input switch to positions 2 to 6 ; and finally experiment with the feedback components to correct one range accurately. The feedback capacitors of course have no effect upon the d.c. measuring capability.

The author has built two versions. One is mounted in bench equipment for d.c. measurements only. It has an input divider of 50 megohms and $100 \mathrm{k} \Omega$ protection. The second, a portable model, includes the resistance measuring unit to be described in a later article. It uses a $1 \mathrm{M} \Omega 2$ input divider and $10 \mathrm{k} \Omega$ protection (50 V on the lowest range). This input configuration means that a system switch can be used for voltage, current and resistance (Fig. 8 shows the connections). The response of this meter is reasonably flat up to about 6 kHz on all ranges without correction. By making $\mathrm{C}_{3}(\times 1) 820 \mathrm{pF}$ and $\mathrm{C}_{4}(\times 3) 220 \mathrm{pF}$ the response on the 100 mV range is better than 2% (one scale division) up to 20 kHz . With correction at this frequency the 1 V range is 6% high and the 10 mV range about 10% high.

Power supply options

There are three convenient methods of powering the circuit (Fig. 2.) and any may be fitted to the p.c.b. (Fig. 3). The simplest is to connect $+5 \mathrm{~V}, 0 \mathrm{~V}$ and -5 V supplies to points B, C and D respectively. This allows the circuit to be groundreferenced.

Fig. 7. Probes for r.f. and d.c. measurements. Components should be mounted as close to the probe tips as is practicable.

For the second option a 741 i.c. is used as IC_{5}. A 9 V dry battery can then be connected across B and D. The non-inverting input of IC_{5} is then referenced at half this supply (4.5 V) and the i.c. is used as a unity gain follower, its output providing the 0 V centre point. This method is convenient and inexpensive for portable instruments where ground-referencing to the supply is not required.
The third option allows the use of the instrument with a single 5 V supply. In this case a 7660 negative voltage converter is used for IC_{5}. This i.c. mirrors the +5 V supply to produce -5 V . It contains an oscillator and rectifier assembly to produce a negative output which is adequate, though only under lightly-loaded conditions. It is for this reason that IC_{3} and the leds are driven from the +5 V supply directly. IC_{5} has only to feed $\mathrm{IC}_{1}, \mathrm{IC}_{2}, \mathrm{IC}_{4}$ and the 1 mA meter current.
The whole circuit excluding the leds consumes 6 mA at f.s.d. The total consumption is therefore a function of how high the user is prepared to push the value of the led series resistors to reduce the led current. Only one led is lit at a time, and with 330 ohms in series the total current is of the order of 12 to 15 mA .

Construction

This design was centred around a 1 mA meter. Those used by the author were surplus voltmeter types with the voltage multiplier resistors removed. Beware of current types, however: with their shunts removed, these are rarely found to have ImA movements.
Although the component count has been kept to a minimum, the parts used should be of the best quality available. There is no point in having test equipment which is inferior to the items being tested. A glass fibre p.c.b. is essential and the input switch should be of ceramic construction or of a suitable modern insulating material especially if the 50 megohm version is contemplated. A suggested p.c.b. is shown in Fig. 4, the associated component layout in Fig. 5 and the input switch in Fig. 6.

A point to note about the p.c.b. is that the 7560 i.cs have a guard ring around their input terminals (pins 4 and 5) to prevent the possibility of leakage from adjacent pins. This ring is not at earth potential but at the feedback potential, as recommended by the manufacturers.

Although the circuit itself is stable it was found with the prototypes that there was pickup from the meter leads inside the
plastic case when the p.c.b. was attached to the meter. To overcome this a screening board of ordinary p.c.b. material was fitted between the circuit p.c.b. and the meter and attached to the circuit board by soldering at the corners.

Construction is fairly straightforward. It is best to fit the links first to make access easier. In the prototypes the connections to the board were made by means of stand-up loops soldered to the p.c.b. Leads to the $\times 1 / \times 3$ switch were screened because they lay across the board; this was done by placing them inside the sheath of a piece of coaxial cable with the core removed. The input divider resistors were arranged around two wafers of a 1-pole 12-way switch. Careful siting or screening may be necessary to prevent stray pickup or interaction with the circuit board.

The author's bench model has a meter movement of the type that includes two mountings intended for small incandescent lamps to illuminate the scale. Two very small leds were mounted on stand up wires so that they just showed above the opaque part of the cover, bringing them into the same viewing area as the scale. Two lamp leads were already provided and two more were added. The leds were held close to their bodies and the leads bent forward and downward to get a 'soft' right angle turn. The bulb clips were removed from their mountings for soldering to prevent the plastic case melting.

Calibration

To calibrate the instrument, a good quality voltmeter (digital?) and a variable voltage source are required. In addition, if a.c. and audio facilities are to be provided then a signal generator with a calibrated output will be needed.

First set all the trimming resistors to half way and the $\times 1 / \times 3$ switch to $\times 1$. Give the construction a final check and then power up the circuit. At this point both leds should glow as IC_{2} hunts about its zero. Switch the input to the 10 V scale and apply +5 V to the input. The red led should light and the meter indicate some where about half scale. Adjust R_{4} for exactly centre scale. If an oscilloscope is available and is connected between 0 V and the output of IC_{2} the wobble will be observed as the changing potential across the meter. The wobble should not be observed
across $\mathbf{R}_{11}-\mathbf{R}_{12}$ proving that the load voltage is held constant by these resistors and that only the current is changing due to the changing load $\mathrm{R}_{9}-\mathrm{R}_{8}$.

Now operate the $\times 3$ switch and increase the applied voltage to 15 V , this time adjusting R_{5} for centre scale. Reverse the input leads and check that the reading is the same as before, but that the green led is now lit. Inequality between the positive and negative readings is more likely to be due to leakage in the meter rectifiers than to unequal amplification in the i.cs.

Using the same procedure check the readings on the other scales using appropriate input voltages. Any inconsistencies between ranges are likely to have arisen from inaccuracy in the input divider, leakage effects (especially in the $50 \mathrm{M} \Omega$ version), or else stray pickup in the test leads. Some variation can be expected but this should not be too significant in a well constructed circuit.

To set up the a.c. ranges, begin with a low frequency (about 50 Hz). To ensure minimum stray pickup, terminate the generator leads in a low impedance. Select a suitable range and apply the generator. Check that both the leds are lit, and that the meter reading is somewhere near that which is expected, then adjust R_{10} to give the correct reading (LED_{3} if fitted will also be lit at this stage).

Calibration at the higher audio range will only be appropriate if suitable input divider and protection resistor are used. Switch to the chosen range, adjust the values of C_{3} and C_{4} to give the desired result, remembering to test with the meter in its final casing.

R.f. measurements

A useful addition for radio engineers might be the means to measure r.f. voltages. It is a simple task to construct an r.f. probe (Fig. 7); this produces a voltage equivalent to the peak-to-peak value of the signal.

Component notes

$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{5}$, and C_{6} should be radial-lead polycarbonate types. $\mathrm{C}_{7}-\mathrm{C}_{11}$ are miniature tantalum bead capacitors. For the close tolerance resistors, a range of 0.5% metal film resistors is available from Ambit International. Cermet trimmers are recommended for the variable resistors. The integrated circuits may be obtained from RS

LIVING AND PARTLY LIVING

In your March editorial you write . . . "the performance of audio systems is at the stage where it takes a collection of instruments to measure the difference between the original and the reproduction". This may be true in Quadrant House, with its wall to wall waterfalls: out on the shop floor it is quite a different story, or lack of story.
After many years in a London garret I have moved to a mansion in the country. The equipment, rich in character, which I have been using has been banished and I am under orders to buy a conventional system.
Virtually no technical information is available from any dealer, either the smart store in SW1 or 3 , or the specialists within a 10 -mile radius of my home. The only loudspeaker response figure I have managed to find is 16 dB down at, I think, 50 Hz , making the 3 dB point at 400 Hz , or telephone quality.
The only listening room I have found was almost a cube, lined with peg-board. It brought back memories of long-dead aunts as the speakers were switched. Mellow, crisp, or the language associated with the days of Henry Hall.

I have designed, in my time, a lot of equipment for broadcasting authorities, and have never heard the words "it sounds all right". Is there any manufacturer of complete audio systems who is not fudging his data sheets?

T. Roddam

London.

DESIGN FOR LIVING

Have you noticed how difficult it can be for a person in a wheelchair to hold a coherent conversation with the person pushing?
In these noisy times it invariably entails the pusher having to bend over or pull the chair back, with the "pushee" craning his or her neck for both to hear.

I have wondered whether there is any mileage in producing a simple two-way device with throat microphone and earpieces to facilitate easy conversation in these circumstances. I am sure this can only make life easier for both the disabled and the people who have to push them. P. Sivers

London W 10.

PHASE-SHIFTING OSCILLATOR

In the article in February 1982, Mr Rosens states that 'consumer-grade' variable resistors gave trouble owing to poor contact.
C_{0} and R_{0} in the all-pass, phase-shifting circuit can be interchanged. In the oscillator, this step allows an ordinary twin-gang capacitor to be used for the fine control of the frequency, as shown in the diagram. A welcome contrast with Wien-bridge and bridged-T oscillators is that the common connection (frame) of the capacitor does not have to be isolated from 0V. Resistors \mathbf{R}_{0} can be switched in decades (or semi-decades, if desired) for the coarse control. Closetolerance resistors are more readily obtainable than are close-tolerance capacitors, facilitating the use of a common scale for all the frequency ranges.

If the maximum value of C_{0} is 530 pF , for example, then R_{0} must be $15 \mathrm{M} \Omega$ for Mr

Rosens's lowest frequency of 20 Hz . The opera tional amplifiers should have field-effect input stages.
W. Pleass

Saffron Walden
Essex

BBC ENGINEERING

May I quote from Pat Leggatt's interesting and informative article in the November issue, ' BBC Engineering 1922, onwards'. In the radio and television studios, and in outside broadcasts, producers have nearly all the technical facilities they need, with very satisfactory quality and reliability, to give their creative ideas full scope.
The word 'quality' struck a sore point. I have written on three occasions to the BBC regarding poor picture quality from video tape sources, and received only one, and that unsatisfactory, excuse. Perhaps Mr Leggatt or any other BBC engineer can explain through this journal how such degradation can occur.
It is the quality of video tapes and, more recently, the effects machines to which I object. The tapes exhibit poor bandwidth, chroma noise and dropouts. Many new items using the so called e.n.g. system are of worse quality than can be made by an amateur using his domestic video recorder. Perhaps this is excusable given the 'one off circumstances of news items. Surely, however, it is inexcusable to occupy almost half the spectrum to 1 GHz to put out four tv channels, capable of excellent quality, then bandwidth limit the signal source? Or to install high-power transmitters with large aerials and to coerce the public to use good aerials and receivers, then to transmit noisy programme material.

What has happened, why do we see sparkling quality from cine film then life through a juddery haze from tape?. The poor resolution from tape must produce fatigue, hence disinterest, even in a viewer who does not consciously perceive the inferior quality, as the eye continuously attempts to focus on an impossible subject. Could this be the reason many advertisers stick to cine film?

The BBC has an unsurpassed history of excellence and 'firsts', as Mr Leggatt describes, including the digital video recorder, and yet years
after video tape was introduced into tv broadcasting the standards are actually falling, not improving. The independent channels have led the way to poor video, no doubt because of cash restraints.
I write this letter not because I dislike the BBC but because I greatly respect its standards and enjoy the product. Please, whoever is concerned with picture quality, don't stoop to the American level.
R. G. Brown

Notts

AUDIO SWITCHING

The design constraints Mr Robinson (Letters, January 1983) is working under are not fully known but there may exist usable means round his problem of switching audio at logic levels.
First choice might be to investigate the DG202,212,221 family (Siliconix of ten second sourced by Harris). Apart from the internal latches these perform as his diagram. The DG221 has internal latches but the switch sense is inverted.

Another way might be to try a DG308 and a resistive drive from an open collector output as in the sketch. It relies on the switching threshold of the device lying within the range of 3.5 to 5 volts. Indeed a similar trick may be possible with 4016/4066 types if the switching threshold lies within a similar range on a 10 V supply.

Finally, if level shifting is required, the 74C907 open drain p-channel buffer could be used to replace the three resistors and transistor shifter which was shown.
Allen Mornington-West
Lockerley
Hampshire

BINAURAL RECORDINGS

For some time now the manufacturers of large portable stereo receivers have been offering some kind of processed stereo, with a variety of names implying width or depth. The effect is certainly interesting. I thought perhaps the arrangement described by J. H. Buijs (Wireless World November, 1982) might produce this, or similar, effect.
However, it was obvious from even a cursory glance that there is something odd about the circuit he provides. For example, why use three different kinds of op-amps, and why mix opamps that use a single supply with those that require a dual supply? Further investigation reveals a number of other oddities, such as:

- The "power" transistors following the input stage are not needed. Mr Linsley Hood, for example, has been using TL072 amplifiers in a 600 ohm system without difficulty, and has described his work in Wireless World.
- The 1 microfarad capacitors driving the second pair of amplifiers are not needed. The input impedance of the stage is high, and the driving impedance is below 5 ohms. With dualsupply amplifiers in the first stage, the common mode voltage is essentially zero at this point.
- The corner frequencies for the second pair of amplifiers are both below 10 Hz . The 2 k 2 resistor could be replaced by the 330 ohm resistor and the circuit made frequency-independent without producing an audible difference.
- When the first stage amplifier is switched from inverting to non-inverting, its gain changes from -3 to $+10 / 13$, and not +3 as might have been expected. This will result in non-symmetrical cross-talk which cannot be corrected for by this circuit.
- When the third stage amplifier is switched from inverting to non-inverting, its gain changes from -1 to $+1 / 2$, not +1 as might have been anticipated. This does not correct the gain error in the input stage.
It may also be that the switch is labelled incorrectly - the author's discussion of the cross-talk circuit (Fig. 7) indicates that the required inputs for loudspeakers are L and $-\mathbf{R}$. This would seem to indicate anti-phase crosstalk. With the input switch as shown, whether or not the gains of the various stages are correct, the cross-talk will be in phase when the switch is in the loudspeaker position.
In spite of these shortcomings, I was still interested enough to build the circuit. Rather than use a switch for headphones/speakers, I made two versions of the circuit, one with the phase inversions and one without, and with the stage gains kept symmetrical. Each version used the quad amplifier TL074.
With in-phase cross-talk the effect is scarcely detectable. With anti-phase cross-talk the stereo image seems a little wider, but the effect is very subtle.
To improve on this situation, I constructed the circuit shown. This circuit may be regarded as an op-amp version of the "sound source width" control given by Mullard in their Transistor Audio and Radio Circuits book. My version is adjustable from full in-phase cross-talk to

$$
f_{o} / f_{o b}=\frac{c-v_{s}}{c-v_{o b}}
$$

If, as in the e-m case, the velocities w.r.t. the medium are not known, it should be noted that if v_{s} and $v_{o b}$ are much smaller than c, them by Binomial theorem,
$\frac{c-v_{s}}{c-v_{o b}}=\left(1-v_{s} / c\right)\left(1+v_{o b} / c+\ldots\right)$
$\approx 1-\frac{\left(v_{\mathrm{s}}-v_{\mathrm{ob}}\right)}{\mathrm{c}}=\frac{\mathrm{c}-\left(\mathrm{v}_{\mathrm{s}}-\mathrm{v}_{\mathrm{ob}}\right)}{\mathrm{c}}=\frac{\mathrm{c}-\mathrm{v}_{\mathrm{rel}}}{\mathrm{c}}$
(If $v_{r e}$ is small, $f_{o b} \approx f_{o}$ even if v_{s} and $v_{o b}$ are not small).

On the subject of Mr Kennaugh's point about destructive interference, surely photons don't fail to explain it any more than e-m waves do? The energy still has to escape somehow. As for polarization, why shouldn't photons be polarized somehow?
D. Hall

Coventry

MODULAR PREAMPLIFIER

In November 1982 you published an article by Mr J. L. Linsley Hood on a modular preamplifier, using bootstrap filters with a 3 rd order response, as described in the appendix on p. 64, giving four equations each for high and low-pass sections. Invevitably, these are duals of each other.

I liked these circuits and performed some algebra on them. In addition to considerable simplification, the algebra revealed that if Mr. Hood's recommendations for the design of these filters are followed, then one can come unstuck.

Dealing with the high-pass filter and rearranging the third equation, a quadratic in $y\left(=\mathbf{R}_{1} / \mathbf{R}_{2}\right) \quad$ is obtained, namely $y^{2}+y\left(2-C_{2} /\left(C_{1} \cdot Q^{2}\right)\right)+1=0$. Since the quotient of the coeffs of the y^{2} term and the constant equals 1 , it follows that the two roots are mutually reciprocal, i.e. that one should be able to interchange R_{1} with R_{2} (C_{1} and C_{2} for the lowpass), which was verified experimentally without any change in the performance of the filter.
Assuming that a Q of not much less than $\sqrt{ } 2$ is desirable for steepness of cutoff, for y real we get $\mathrm{C}_{2} / \mathrm{C}_{1} \geqslant 8$. One can see immediately that a ratio of 10 would be advantageous, bearing in mind the cost of odd sized values of capacitors. Substituting $\mathrm{C}_{2} / \mathrm{C}_{1}=10$ it is found that, for y positive, $2<\mathrm{Q}^{2}<2.5$, conveniently in the desired range.
With $\mathrm{C}_{2} / \mathrm{C}_{1}=10$ and solving for y , it is found that, for $Q^{2}=2-2.4$, there is a linear relationship expressible as $Q^{2}=(7.8-y) / 2.6, y$ lying between 1 and 2.62. A choice of $y=2.2$ is again advantageous, as 2.2 is a multiplier in all the 'series' and provides easy choice of resistors (capacitors for the low-pass). This value of y in turn fixes $Q^{2}=2.15$ with $Q=1.47$.
Summarising, we have: $C_{2} / C_{1}=10$, $R_{1} / R_{2}=y=2.2=R_{2} / R_{1}$, and $Q^{2}=2.15$, with duality defining the low-pass configuration as in Fig. 16 in the article. It is worth repeating here that equ. (i) imposes constraints on the C_{2} / C_{1} ratio, reflecting on y, Q and the turnover frequency. Just selecting Q and y as indicated by Mr Hood can lead to an unrealisable filter
After some small computation and defining $R_{n} C_{n}=1 /\left(2 . \pi . f_{n}\right)-$ ' n ' standing for the normal roll off frequency/time constant relationship and substituting for C_{2} and R_{1} (from their ratios) one obtains: $\mathrm{C}_{1} \mathrm{R}_{2}(\mathrm{HI})$ $=C_{n} R_{n} / \sqrt{2} 22 \times Q^{1 / 4} \quad$ and $\quad C_{1} R_{2}(L O)=$ $\left(C_{n} R_{n} / \vee 22\right) x Q^{1 / 4}$, the last term in Q being a 'correction factor' insisted upon by all the experimental filters! This construction gives a maximum peak of about 5 dB .

In addition, from equ. 1 and 4 of the article, by eliminating frequency, we have: $\mathrm{C}_{3} \mathrm{R}_{3}$ $(\mathrm{HI})=\mathrm{C}_{1} \mathrm{R}_{2}(1+\mathrm{y})=3.2 \mathrm{C}_{1} \mathrm{R}_{2} \quad$ and $\quad \mathrm{C}_{3} \mathrm{R}_{3}$ $(\mathrm{LO})=\mathrm{C}_{1} \mathrm{R}_{2}(1+y) \mathrm{Q}^{2}=6.9 \mathrm{C}_{1} \mathrm{R}_{2}$.
If maximum flatness is required in the response, then it is best to use a lower resistance for R_{3} than obtained from the equations and use a trimmer pot, as the response peak is strongly dependent on the precise values of the two resistors and two capacitors - and their ratios - of the bootstrapped filter.
Construction: For a high-pass filter with a cutoff frequency f_{n} of $1250 \mathrm{~Hz}, \mathrm{R}_{\mathrm{n}} \mathrm{C}_{\mathrm{n}}=127 \mu \mathrm{~s}$, giving $C_{1} R_{2}=127 /(\sqrt{2} 2 x 1.21)=22.4 \mu$ s or $1 n F$ and 22 kohm . $\mathrm{C}_{2}=10 \mathrm{C}_{1}=10 \mathrm{nF} \quad$ and $\mathrm{Rl}=2.2 \mathrm{R}_{2}=48 \mathrm{kohm} \quad$ (a high 47 k). $\mathrm{C}_{3} \mathrm{R}_{3}=127 \mathrm{x} 3.2 \mu \mathrm{~s}$, or 22 nF and 18 k 4 , a 16 k re-
(a) High-pass

sistor and a 4 k 7 trimmer, say
Finally, a band-pass filter using two bootstrap filters in cascade fit easily enough in terms of the relative interface impedances and can be constructed with a dual TL072 op-amp, over the audio frequencies and higher. Overall ripple can be within about 0.5 dB .
$\mathrm{R}_{\mathrm{n}} \mathrm{C}_{\mathrm{n}}=$ Time constant of desired cutoff.
$\mathrm{C}_{1} \mathrm{R}_{2}=\mathrm{R}_{\mathrm{n}} \mathrm{C}_{\mathrm{n}} / 5.68$
$\mathrm{R}_{1}=2.2 \mathrm{R}_{2}$
$\mathrm{C}_{2}=10 \mathrm{C}_{1}$
$\mathrm{C}_{3} \mathrm{R}_{3}=3.2 \mathrm{C}_{1} \mathrm{R}_{2}$
$\mathrm{C}_{1} \mathrm{R}_{2}=\mathrm{R}_{\mathrm{n}} \mathrm{C}_{\mathrm{n}} / 3.87$
$\mathrm{C}_{2}=2.2 \mathrm{C}_{1}$
$\mathbf{R}_{1}=10 \mathrm{R}_{2}$
$\mathrm{C}_{3} \mathrm{R}_{3}=6.9 \mathrm{C}_{1} \mathrm{R}_{2}$
P. A. Duval

Theydon Bois
Essex

The author replies:
I would like to thank Mr Duval for his comments, which I have read with interest. The summary of the design data which was given on page 64 of the November, 1982 Wireless World, was not intended as a complete design programme, though the equations quoted are correct and adequate.
The full mathematical anlysis of this circuit in its high-pass and low-pass forms was given by me in Electronic Engineering (July 1976, pp5558), from which the design summary was extracted. The calculated and measured performance of these filters, as so described, was checked over a range of Qs and operating frequencies, with several different component relationships, and was found to agree with the predicted transmission within 0.2 dB , which satisfied me that my calculations and formulae were indeed correct.
If it would be of interest, I have worked out a suitable programme to allow the performance of this filter to be calculated using either a Texas TI58/59 programmable calculator or a Hewlett Packard HP-65. For the sake of completeness, I have done the same exercise for the Sallen and Key design, which shows up the differences between these filters at the higher attenuation levels.
I would like to take the opportunity, while writing, to remedy some of the errors and omis sions which had crept into this series of articles, and to which my attention has been drawn.
Power amplifier WW August 1982.
I had omitted the types of some transistors. Tr_{1}, $\operatorname{Tr} 2=\mathrm{BC} 447$. $\mathrm{Tr}_{5}, \operatorname{Tr} 6=\mathrm{MPSA}-93$ (the base connections of these were shown reversed on the p.c.b. layout Fig. 21) $\operatorname{Tr}_{12}=2 \mathrm{SJ49}$. Tr_{4}, $\operatorname{Tr}_{7}=$ BF259. $\mathrm{Tr}_{13}=\mathrm{BC} 212$. $\operatorname{Tr}_{10}=\mathrm{BC} 182$ (not on outpu: heat-sinks). I had also shown C_{3} and

(b) Low-pass
its associated zener the wrong way round. Sorry! The supply line bypass capacitors can be made as large as the constructor wishes, and these can be bypassed by small non-polar capacitors $(0.1 \mu \mathrm{~F})$ with advantage. The majority of these errors were corrected by $W W$ in September 1982, p63
On a more theoretical note, in my description of the design of the power amplifier, July '82, p66, I had referred to the need for a wide bandwidth and good linearity in an amplifier in which positive feedback was to be used, in that p.f.b. will worsen these characteristics. This is true. However, if any significant amount of p.f.b. is to be applied in a circuit using both p.f.b. and n.f.b., it is essential the bandwidth of the p.f.b. loop must be less than that of n.f.b. one, or otherwise the amplifier will oscillate at some frequency at which the n.f.b. has disappeared.

In the design shown, this p.f.b. bandwidth limiting function is performed by R_{26} and C_{15}. I am grateful to my correspondent, Prof. M. D Cherry, of Monash University, for a reminder on this point.
Ls protection circuit
In the p.c.b. layout, Fig. 26, $\mathrm{IC}_{1}(74 \mathrm{C} 02)$ is shown viewed from the top, and pin 6 should be connected to pin 7 , and to 0 V . In the diagram this is obscure. However, since National Semiconductors, who appear to be the sole UK suppliers of the 74 compatible c.m.o.s. i.c.s. of this type, appear to be phasing these out in favour of the similar but much faster ' $74 \mathrm{HC}-$-' series, and as an initial step have substantially increased the cost price, it is prob ably worthwhile to amend this p.c.b. layout to use the similar, but much cheaper CD4001 i.c., which has a different pin layout.

Microphone amplifier

Tr_{11}, which is not specified, should be a 2 N 5457

Rumble filter

C_{43}, the input bypass capacitor, should be $1000 \mathrm{pF}(\ln F)$ not $1 \mu \mathrm{~F}$.
Finally, the overall performance, at 1 kHz and IV rms should have been quoted as 'less than 0.01% - not 0.10 .

DISCUSSING RELATIVITY

Should inquiry into relativity theory be en couraged? J. Kennaugh (Letters, March 1983) complains of the inaccessibility of the theory's consequences to mechanistic explanations. Could this not reveal a degree of misconception with regard to the theory's foundations? At the point of departure of the argument for the special theory are the two conjectures which Einstein dubbed "postulates" in his paper of 1905^{1}. The first postulate, not at variance with the conventional laws of mechanics, is by Einstein's own admission, incompatible with the second, which offers utter frailty in the face of the challenge of potential empirical refutation. From these conjectures, the theory is developed under the constraints of mathematical rules, devised as an artifact of the intellect to form a closed, internally consistent logical system. Thus the theory is not necessarily matched to the realities of the physical world nor, indeed, to the requirements of concepts, which constitute intellectual effort, to accommodate to physical observations.
On encountering difficulties in adapting the consequences of the theory to the intrusion of facts we can adopt one of two approaches; we reject it as of no further assistance to our endea-
vours in interpretation and understanding, and seek to construct a new theory, or we contrive to protect the old theory. The adoption of the latter course may appear to be questionable if we would claim commitment to the scientific method, and might seem to imply some alternative concern as our motivation. The pursuit of this suggestion could prove of interest elsewhere, but for the present let us take note of a remark reported recently in the press, of Professor David Bohm: "But the question is whether physicists will regard explanation as important at all. The trend in physics at the moment is to discount concepts and only to take seriously what you can compute with equations" ${ }^{2}$.

Now let us make a conjecture of our own. If astronomers employing refined techniques of measurement should acquire evidence which supported the contrary to the second postulate, i.e. that each emitting body is fixed in its individual medium of energy dispersion; if this should be brought about, or perhaps some other observations be made to the same effect, are we then to accept that a certain section of the scientific community would disdain from taking the reports seriously?

Could not J. Kennaugh and, indeed, many others, suffer from misconceptions not only of relativity theory, but of the expectations we have of physicists? These people receive considerable encouragement in material terms for their somewhat exotic and extravagant activities; but should inquiry into relativity theory be encouraged, as well? Could we hope to see the debate developing further in these pages, perhaps? The open-minded policy of the editorship would appear to be, indeed, encouraging.
Colin Francksen
Farnborough,

Hampshire.

References

1. "Zur Elektrodynamik bewegter Korper", A. Einstein, translation from Ann.d. Phys 17, 891921 (1905), in "The Principle of Relativity", Dover Publications Inc., New York 1952.
2. "Why Einstein was wrong about light", Danah Zohar, The Sunday Times, London, 20 March 1983.

GRAVITATIONAL WAVES

Beginning with the publication in Wireless World (Oct. 1978) of Dr L. Essen's "Relativity and Time Signals", I had been following closely the lively discussion regarding the validity of certain postulates of Einstein's theory of relativity (the twin paradox, etc.) and other such important topics which you kindly had given space in your magazine. I, as well as many other of your readers, appreciate the fact that though Wireless World is essentially a technical publication it, nevertheless, is giving room - when other doors are seemingly closed - to writers of differing views particularly when the subject of discussion is fundamental theory. This is an excellent example for not separating practice from theory and thus involving technologists with current problems even if related indirectly to their fields.

Equally I congratulate you on the new series of articles by Dr W. A. Scott Murray dealing with the various problems of modern physics and the hidden contradictions seriously undermining its seemingly imposing outer structure. Certainly, this is the way to let the layman feel that all is not not the word of God and therefore lead him to question rather than
to accept blindly as a word of faith, all the stuff pumped into his mind since early school days.

However, the real reason I am writing you concerns an article related to our discussion that had appeared in Scientific American (The Gravitational Waves from an Orbiting Pulsar, Oct. 1981) which should be of special interest if its conclusions are accepted to be true. In this article, the writers claim to have proved beyond doubts: the "existence of gravitational waves" and of settling the question of "relativity of time" or the "twin paradox" as it is known in popular relativity parlance. For over a period of six years they had been measuring the decaying orbits of the binary pulsar PSR 1913+16 and found the accumulated shift in the time of periastron passage amounts to be about 0.04 second a year. According to their argument (and relativity), the source of energy for gravitational radiation belongs to orbital motion. And if this loss of energy is very large, such as is the case with this pulsar system, then it leads to a measurable decrease in orbital period which they had successfully detected.

After further explanation of "time dilation" and how it was proved by experiments involving atomic clocks flown by jets, they conclude that this orbital decay is caused by gravitational radiation and not due to possible collisions with stellar gas or other matter such as is the case with an artificial earth satellite orbit decaying mainly because of collisions with molecules in the upper atmosphere. Also there is no mention of the fact that part of the decay can be caused by loss of mass by the pulsar due to ordinary conversion of mass into radiant energy or the mass lost through the agency of the mysterious and very strong radiowave pulses from the pulsar. The authors finally hint that other workers are trying to detect these very weak radiations in the laboratory when suitable equipment become available. Surely many await the results of these experiments as the factors mentioned above would then be ruled out.

I appreciate possible comments from Dr Essen or from other interested readers regarding 'this new development as I am personally still not in total sympathy with all the claims of Einstein's theory of relativity. Such responses may indeed be reassuring if only to keep the door open - which has been so, thanks to WW! M. Zaman Akil

Safat, State of Kuwait
17th April 1983.

RED SHIFT

Nicholas Kirk's letter on the "Red Shift" (WW February 83) questioning whether it might not result from simple loss of energy rather than expanding universe is very interesting.

Had it not been for the semi-religious appealing idea that all things must have started from a single point, would all that effort have gone into the "expanding universe"? One can almost suggest starting a research which has as its starting point the assumption that light loses frequency in proportion to the distance it covers. And by a well-known amount too!
G. Kubba

Putney
Mr N. K. Kirk echoes exactly my own queries in his letter (Wireless World February) but for different reasons.

My first point is of general principle. We are told that there is no such thing as perpetual
motion. Whenever there is relative motion between two things which have interaction between them (for example photons in gravitational fields) then energy is given up, which frequently manifests itself as loss of velocity.

My second point is connected with the experimental evidence to support Einstein's theory that light is refracted by very strong gravitational forces. The refraction of photons passing very close to the surface of the sun shows that photons are affected by gravity.

Can anyone conclusively demonstrate that the velocity of photons, as they pass through the gravitational fields of inter-galactic space more or less continuously for many millions of years is absolutely and utterly unaffected by so doing, because this is an essential requirement for the receding universe theory if it is to be based on observed spectral red shift.

On the other hand, if the velocity is reduced by some finite amount during its enormous journey, it would produce an apparent spectral red shift.
J. Snowden

Managing Director
Rediffusion Service (Singapore)

SENSITIVE?

I have come upon one or two cases of people who have acute sensitivity to electricity and to electrical devices, such as television sets, computers, radios, electric lights, etc. I would be very interested to hear from any readers who experience this effect, or who find even the presence of electricity disturbing. I wish to make a study of this condition and any reports that readers send me will be treated with complete confidentiality.
Michael Shallis
Department for External Studies
University of Oxford

CABLE AT MILTON KEYNES

Speaking as a user of the Milton Keynes cable tv system for the past two years, I have found the reliability of the system leaving a lot to be desired, since the system has failed on average once every two or three weeks. If it should fail after $6.00 \mathrm{p} . \mathrm{m}$., then it would remain out of service till next day, and even when it was working the quality was well below broadcast standard - as measured using Marconi tv a.t.e. For all this, every user contributes $£ 12$ p.a. towards its up-keep - the argument being that you get a better picture from the cable than "off air"; in reality this is not true. Although Milton Keynes is in a fringe area, it is still possible to get a better picture from a modest loft-mounted Yagi.

In addition to the overall poor picture quality, the system also radiates very badly into the 2 m amateur band: most of this radiation comes from poorly screened distribution amplifiers.

It is to be hoped that the Milton Keynes system does not set a precedent for future systems and that others learn by its flaws.

Fibre optics would be the obvious answer to some of the problems, but the more complex a system gets, the more likely it is to fail, so all in all I intend to stick to my little Yagi in the loft (which cost me $£ 5.50$), to save myself $£ 12$ p.a. and still have a better picture.
Tim Forrester
Milton Keynes
Bucks

A programmable eprom eraser

Discipline for wayward eproms: a companion-piece for the eprom programmer described by the author in the April and May 1982 issues

Literature on programming eproms is readily available from manufacturers: timing, voltage levels, loading factors and so on are all well-defined. But on the subject of erasure there is only brief mention of the need to use hard ultraviolet . . . integrated dosage ten wattseconds per square centimetre ... and then there follows a warning to the effect that all locations must be fully erased before the device is reprogrammed. Several graphs are reproduced which purport to demonstrate the effect of under-exposure, but there is nothing to say what this means - or why it should be avoided.

Before an eprom can be re-programmed it must be exposed to ultra-violet radiation of a short wavelength (hard u.v.), which raises each memory cell to a logic 1 level. If an eprom is set to all-0 and then erased, it is not surprising that the logic 1 level is reached at different times during the u.v. exposure - particularly when one considers the very small dimensions of the conductors on the silicon. Figure 1 represents a novel way of demonstrating the program-cycle: the hysteresis curve normally associated with mechanics and the properties of magnetic materials. Under the influence of temperature and bus-loading, the threshold of logic will shift (as with most logic devices) and this is said to be the reason for the need to overerase. The erasure rule is to give the eprom four times the clearing time (i.e. the time

by H. S. Lynes

to reach logic 1 level). This is sometimes expressed as $\mathrm{T}+3 \mathrm{~T}$, where T is the time taken to erase the least-eager bit. Thus if the slowest bit takes eight minutes, the correct exposure will be 32 minutes. Where eproms are to be reprogrammed regularly, it is recommended that they

Fig. 1. The program-erase cycle of an eprom. The shaded area may vary with temperature, voltage and bus-loading.

Fig. 2. The ultra-violet tube with its wiring and the relay interface. The two time indicators shown dotted are optional.
should be set to logic 0 and colour-coded for the time the slowest bit takes to clear.

Unfortunately it is difficult to check the logic-state of the eprom whilst it is in an eraser - they are usually just light-tight boxes with timers. It is possible that many eproms are 'under-erased' because of this and because time is always pressing.

The eraser described here can be made programmable - and it is perfectly feasible to make it intelligent so that the correct exposure may be given and data presented to the operator for future reference. There is plenty of scope for research into pattern sensitivity and it may be noted that some eproms do erase in alternate groups of 16 locations.

Construction

The author's eraser is shown in the photograph. The case can be metal, as the prototype, or wooden. An aluminium box 20 cm by 7.5 cm was covered with a sheet of paxolin to style the lid and to provide insulation for the steadying hand whilst the drawer is opened. The drawer slide and handle were obtained from a rack module, to simplify construction of the

Fig. 3a. A light-dependent resistor monitors the output from the ultra-violet tube. The optional capacitor is a tantalum type.

Fig. 3b. The light-dependent resistor assembly.

Fig. 4. Preparing the zero insertion force i.c. sockets for the author's do-it-yourself multi-layer circuit board.
precision part. A flexible ribbon cable joins the z.i.f. (zero insertion force) sockets on the drawer to the switches, relays and electronics contained within the case. Mounting the choke for the u.v. tube externally on the side opposite the drawer provides some stability and reduces the effect of its magnetic field. Modern chokes, however, do get hot and it may be necessary to prevent hand-access. The choke is rated for 8 W , although the most commonly available 'replacement' u.v. tubes are nominally 4W. They are estimated to have a useful life of 5000 hours and the effect of increasing their power will be to reduce this slightly unlike conventional tubes they have no phosphor to overload or contaminate. Take care not to touch the quartz envelope as this will lead to premature failure. Suitable chokes can be obtained through trade electrical suppliers, usually 'to order' and at a cost of about $£ 3$. With an 8 W choke the total erasure time will be in the order of 15 to 30 minutes. A v.d.r. transient-suppressor should be wired across the choke to reduce interference. For the same reason, the mains supply should be separate from that of the microprocessor if possible. The tube supply is switched by a 'continental' relay with both poles in series, protected by a CR network as shown in Fig. 2. This diagram also shows the port interface and the reed switch used as drawer interlock. A 47 ohm resistor is placed physically close to the reed to prevent line-capacitance problems, making it necessary to use a 15 V supply.
It is usual to have a 'snap' action to the drawer over the last 5 mm of closure during this the interlock should operate. The action was achieved by a strong spring

Fig. 5. Detail of the method of sealing the light-tight drawer. Good sealing is essential to prevent damage to the eyes and skin from the short-wavelength ultraviolet radiation.
and a roller. It may be found necessary to strengthen the case to ensure the parts remain perpendicular throughout the travel. No provision has been made for the eraser to be used without the host processor since this would remove the safety aspect of the drawer switch. It is essential to have complete regard to safety since the tube radiation is harmful to eyes and skin.

In the prototype a motor-driven timer was wired across the tube circuit as a check on tube-life and also to calibrate the electronics. If only a tube-life check is required an electrolytic (mercury) indicator may be wired across the (12 V) relay. As a further check on tube operation a light-dependent resistor was included (Fig. 3a) suitably buffered and protected from the effects of the u.v. by 2 mm of glass. It should be placed close to the z.i.f. sockets - three sockets will fit under the tube. Although it is only a go/no-go indicator it must be fairly close to the tube since l.d.r.s do not respond greatly to the u.v. and blue parts of the spectrum. If possible shield the l.d.r. from the tube heaters, which could give a false indication since they will emit plenty of infra-red. When the tube is working the l.d.r. resistance will be typically 700 ohms. The dark resistance is about $1 \mathrm{M} \Omega$.

Wiring the z.i.f. sockets

A neat solution has been found to the problem of wiring a large number of similarly-connected sockets: they can be wired on two layers of Veroboard stripboard, with the first row of pins connected to (say) the top board and the remaining rows to the bottom board. In the case of most i.c. sockets there is insufficient lead-length to reach the second board, but with care in purchasing it is possible to obtain z.i.f. sockets with longer leads. They must be dismantled and filed flat to remove the anti-wicking mouldings as this gives just sufficient lead-length for a
neat solder connection. Fig. 4 shows the stages in construction. The finished 'layered' p.c.b. is strong and shows high insulation resistance after treatment with clear cellulose (car-paint type) where the second row connections pass through the first p.c.b. The connections to the CS pins have to be made separately so that the i.c.s may be enabled individually. Make certain the z.i.f. socket is working correctly when it is reassembled prior to mounting on the p.c.b. - removal is not easy!

The drawer seal (Fig. 5)

It is essential that the unit is made completely light-tight and it is recommended that the drawer be doublesealed so it may be safely opened beyond the point where the interlock operates. A double seal is achieved by making a second aperture about 6 mm inside the main door - an inner door is shut against this by means of a flexible seal, for which black paper is ideal. The main door should be considerably larger than the drawer aperture and the facing surfaces should be matt black. It is important to light-proof the seams of the box: again, black paper or the backing from a roll-film may be used. Note that ozone is produced by the action of u.v. on oxygen - a means of ventilation should be provided if this would consitute a hazard.

Internal circuitry (Fig. 6-Fig. 8)

The prototype contains all the port buffers, several leds and a bleeper as well as the mains (u.v.) relay and the power supply relay. Another relay was incorporated as there were insufficient poles on the mode selection switch (this switch selects the power and $\overline{\mathrm{CS}}$ pins for

Table A

Connections between the 6522 and 25 -way " D " connector. The pin numbers are moulded on the connector. The sequence changes at PB_{1} to aid wiring.

Pin 1	$C A_{1}$	Pin 11	$C B_{1}$	Pin 8	BIRQ (backplane
2	$C A_{2}$	12	$C B_{2}$	17	IRQ
3	$P A_{0}$	13	$P B_{0}$	16	-
4	$P A_{1}$	25	$P B_{1}$	15	0 V
5	$P A_{2}$	$2+$	$P B_{2}$	14	+5 V
6	$P A_{3}$	23	$P B_{3}$		
7	$P A_{4}$	$2=$	$P B_{4}$		
8	$P A_{5}$	21	$P B_{5}$	For concatenated timer operation	
9	$P A_{6}$	20	$P B_{6}$	$P B_{6} \& P B_{7}$	
10	$P A_{7}$	19	$P B_{7}$	must belinked	

Table B
Port designations for the 6522.

Table C
40-way ribbon-cable identification. No. 1 is tracer.

1	PA4	13	PC0	25	PB2	29	PA	mode selector switch (truth table shown below) bleeper
2	PA5	14	PA1	26	PB5	30	PA6	
3	PAO	10	OV	27	PB4	31	PA5	
4	PA6	16	PC1	28	PB3	32	CA1	
5	PA7	17	PC2	split ribbon here		33	PA1	No. 1 select No. 2 select No. 3 select photo-detector
6	OV	18	PC3			34	PA2	
7	PC7	19	PB7			35	PA3	
8	PC6	20	-5V			36	PAO	
9	PA3	21	+12V			37	$+5 \mathrm{~V})$	parallel wiring necessary because of cross-section of copper conductor.
10	+5V	22	PB0			38	$+5 \mathrm{~V}$	
11	PA2	23	PB6			39	OV	
12	+15V	24	PB1			40	OV	

1-28 inclusive go to 8255
$29-40$ inclusive go to 6522 via D-Connector, see also Table A.

Fig. 6. Wiring the mode selection switch. The numbers 18/1, 20/2 and so on refer to pin connections to the z.i.f. sockets. For example, 20/2 denotes pin 20 of the second z.i.f. socket. Relay A is a sensitive (high resistance coil) relay controlled by the switch: it provides a convenient means of switching pin 20 of the z.i.f. sockets and by means of a simple capacitor charging system it produces a positive-going CA_{1} pulse. Relay A is shown in the energised state because the mode switch is drawn in the 2708 position. The switching associated with pin 19 and pin 21 of the z.i.f. sockets carries power supplies: the switch wafers used must be break-beforemake types. The relay supply is not switched as it provides switch-position data by means of the four diodes associated with PA_{6} and $P A_{7}$.
the three eprom types). The extra relay changes the $\overline{\mathrm{CS}}$ pin connections and provides an interrupt if the switch is moved after the program has started. There is a fourth position of the modeswitch which prevents connection to the eproms so that different devices may be erased to save time, if necessary; this position is labelled "timer only" and the user is prompted to enter the desired time in the range of 1 to 99 minutes via the keyboard. The switch position is initially checked by program by means of the diode network connected to PA_{6} and PA_{7} of the 6522. Note that some switch-banks must be break-before-make types. Table C identifies the ribbon cable that forms the only connection between this unit and the microprocessor: it is conveniently split to 37 -way and 25 -way subminiature ' D ' connectors.

Operating features

The following features were incorporated for convenience in operation and program development: one l.e.d. corresponding to each $\overline{\mathrm{CS}}$, one l.e.d. corresponding to each supply rail, and a single l.e.d. to indicate when the appropriate supplies were connected to the z.i.f. sockets. A small self-oscillating bleeper was incorporated for prompting and a filtered direct-viewing window for the u.v. emission.

Software hints

Using the programmer described in my previous articles (Wireless World April and May 1982), I found that I had a lot of checking to do - ensuring that all locations are set to hexadecimal FF is not easy. A "Space?" program was developed to search for consecutive FF bytes. With 2716 and 2532 devices, blocks can be left blank and used later. For convenience in slotting-in data I arranged to make the program display the starting and stopping addresses of the blanks - but since FF can occur in a genuine program it is necessary to provide some form of usercontrol. This difficulty is overcome by asking the operator to define the minimum number of contiguous bytes to be found. Thus the screen is not cluttered up with odd FF locations when the data table is to be slotted in (requiring, say, five bytes).

With care this same program can be used for checking the erasure of eproms by setting the number of contiguous bytes to 1 (unity) and also checking for any areas which are known to be faulty or which have failed to erase in a given time. This check will normally occur every halfminute and makes use of two facilities available in another peripheral outside the 6800 family - this is the 6522 versatile interface adaptor (v.i.a.) by Rockwell. Table A gives the port-designation for a 25 -way " D " connector. The 6522 is used here as a peripheral port and a timer combined. Thus in this project two peripheral i.c.s are used: the 8255 for address and data and the 6522 for chipselects, relay and interfacing as well as an interrupter by combining the two 16 -bit ϕ_{2} dividers. A further description of the 6522

Fig. 7. Address decoding for the 8255 and 6522.
is given in the appendix although readers are urged to obtain a copy of the Rockwell booklet which covers this i.c. The basic connections were given in the previous articles, but there are some additions; Fig. 7 and Fig. 9 cover both the 8255 and the 6522.

Appendix: the 6522

The 6522 versatile interface adaptor is a dual eight-bit bi-directional port, with two 16-bit presettable counters and a shiftregister (which is not used in this application).

It features programmable interrupt which can be used to effect intervals from

Fig. 8. Address selection switching: this fits into the address-decoding circuit of Fig. 7.
microseconds to hours if the two timers are joined. For longer delays it would be possible to use the longest interval to decrement a number set in ram and restart the interrupt time - however for intervals extending over several days a real-time clock is probably a better solution.
There are 16 registers which may be addressed 0-F; these are decoded from A700 to A70F. It is suggested that constructors should mark the Rockwell

H. S. Lynes was educated at Shiplake College, Henley-on-Thames and at Merton Park College of Further Education, where he obtained an HNC in electronics. Afteçan apprenticeship at the Electrical Research Association, Leatherhead, he adapted to various roles in both sales and R \& D including a short spell when he operated his own company. At present he is employed in technical sales for a large electronics company and is based in the Midlands.

booklet with the addresses against each register. Note that the booklet refers to decimal numbers for the registers and that register 11 (actually A70B) is described on pl3 and pl6. The 6522 requires a system clock signal ϕ_{2}, a RESET, CS and R/W in addition to the data-bus and four low-order address lines, which connect to the Register Select pins. For interrupt control of the processor the $\overline{\text { IRQ }}$ output should be buffered as in Fig. 9 - the led output is useful for program development though not essential.

The two timers are each 16-bit and may
be concatenated by a hardware link PB_{6} PB_{7} and by software using two registers: A702 (to make PB_{7} an output) and A 70 B (to make timer 1 put a square-wave on PB_{7} and timer 2 accept an input on PB_{6}). This takes two of the ports but is a small price to pay for the facility. Note that the timer accuracy is a function of the system clock alone, although very short delays will be modified by the software handling of the interrupt.
In the author's system ϕ_{2} is 625 kHz and this produces satisfactory delays from microseconds to over 1 hour. For systems

Fig. 11. Block diagram of the 6522 "versatile interface adapter" showing features used in this project. Note that both ports may be bit-programmed as inputs (although $P B_{6}$ and $P B_{7}$ are 'lost' to the timer function). The interrupt lines $C A_{1-2}$ and $C B_{1-2}$ are not all bi-directional. The input to timer, is from the system clock and it is essential that this is not prescaled since it is used to enter register data along with CE and R/W (see also Fig. 9).

Fig. 10. Interface for Interrupt. The led is useful during program development.
with ϕ_{2} at 1 MHz , delays will be shorter by a factor of 0.625 if the same time-values are used. To keep things simple, timer 1 division is kept at FFFF_{16} which represents a division of 65536_{10} making output at PB_{7} about 9.5 Hz . The necessary delays may be obtained by writing to timer 2 provided the v.i.a. and processor have been configured correctly. It is wise to determine a "time-factor" by entering a large division and determining the delay. For my system the timer 2 factor is 4.74 per second. Thus for a one minute delay the value to be written into timer 2 is 4.74×60 $=284_{10}$. In hexadecimal this is $011 \mathrm{C}_{16}$, but this is not the value to be written to timer 2 : Rockwell insist on reversing the time value, so the entered number will be $1 \mathrm{C} 01_{16}$. With the system suitably conditioned and with a "service IRQ" routine there will be an interrupt one minute from the start of the countdown. Note that there is an interrupt flag register A70D ${ }_{16}$ which contains seven source flags (only the one from timer 2 is used here) together with a master flag which only clears when all the other flags have been removed.
To guard against the possibility of the mode-switch being altered by mistake, it is wise to make use of the CA_{1} interrupt line using the relay contacts shown at the bottom of Fig. 6. This puts a positive pulse on CA_{1} and causes an interrupt to occur if A 70 C is properly configured with A 70 E enabled.

MNT

The author's eprom eraser. On one end of the cabinet is the handle of the light-tight drawer; on the other is mounted the choke for the ultra-violet tube.

Footnote

Since the earlier articles appeared, Fairchild have ceased to supply the 2708 . Perhaps it was not made clear that the 25 V program pulse is only critical when programming 2708s; however, there may be some improvement in reliability through adhering to the rise and fal! characteristics which the buffer circuit ensures.

There's still time to enter

To design an electronic device to help the disabled was the brief we gave our readers in setting the competition; and from the entry registrations already received, it seems clear that a good number of ideas of real value to the handicapped are on the way.

One entrant who is himself disabled is Mr Bernard Nock, of West Bromwich. Mr Nock, an electronics teacher, has some difficulty in getting around; although not perhaps in the way you might at first think. His difficulty, he says, is operating the rather fiddly dashboard switches in his car. He's working on a solution, and it will probably come in the shape of a kind of hand-held key-pad which would plug in to the wiring loom of the car, perhaps underneath the bonnet, to extend the electrical controls of the vehicle to somewhere more accessible. The advantage of a plug-in unit would be that it could be removed easily when the time came to sell the car. However, Mr Nock may not be confining himself just to straightforward logic devices and relays: with speech-synthesis chips and voice recognition techniques developing so fast, he is day-dreaming about the possibility of a voice-controlled car. There are cars that talk now, so why shouldn't they listen too?

The ability to get about is something that many disabled people cannot take for granted; and so cars and mobility feature in quite a number of proposals. Among them, no doubt, will be the entry from Mr Frederick Box of Yardley Wood. Mr Box is a former Lucas employee who started his own business, Autronics Ltd, when he was made redundant; and he tells us he has a number of bright ideas under consideration for the competition.
In Porthcawl, Mr Gerald Don is busy dealing with an everyday frustration for many arthritic people - the business of getting in and out of their front doors. Most door locks require fairly nimble fingers to open and close them, but if you have arthritic hands it can be difficult even to get hold of the key. Mr Don's project is a simple conversion for a standard Yale or similar type of lock, enabling it to be opened by a hand-held infra-red transmitter. Additional receivers inside the house would enable the user to let visitors in without having to get up and go to the door. To ensure
security, the user would have a secret code-number to punch in.
Some related problems are being tackled in an entry to be submitted by Hudson-Gillen Associates of Ipswich. Tony Hudson and Pat Gillen are working on an automatic control system to help disabled people within the home. The system is to include an assistance alarm for use in emergencies. And Mr Martin Roantree, an electronics engineer who works in Harlow, is designing a 'sound sensor' to help the blind in what he hopes will be a wide variety of ways.
Several competitors are putting in useful work on what might be termed navigational aids for the blind. Guide dogs may be an effective aid to getting about, but they are quite expensive to train and maintain. Whether electronics can render them obsolete yet remains to be seen; but among the bids

so far are an electronic direction finder from Mr John Wheable of Stanstead Abbotts, a microprocessor-based ultrasonic guidance system from Dr Tony Heyes of the Blind Mobility Unit at Nottingham Universty, and an electronic 'blind man's compass' from computer consultant Mr Charles Laine of Marlow.

An aid for the blind of a different sort is being devised by electronics engineers David Joseph and Graham Norman of Applied Robotics Ltd in East London. This one is to enable blind people to identify the contents of tins and packages before opening them, without the use of braille.

The cost of microcomputer chips has lately fallen to the extent that it makes economic sense to use them even in relatively trivial applications, and computer techniques will undoubtedly be evident in many of the
entries to the competition. The physically disabled are as interested in computers as anyone else; and a project which promises help for some of them is going on at the Department of Biomedical Physics and Bioengineering at the University of Aberdeen. Dr Michael Bolton and his colleagues are developing a device which will enable people without the use of their hands to operate a conventional computer by mouth-pressure.
Behind the entry from Mr Phil Pickersgill, an electronics engineer who lives in Wokingham, was in approach recently from a speech therapist who needed an aid for patients suffering from a disability known as continuous speech. These people are unable to put in the pauses which should separate their words and their speech is hard to understand. An hour of training with the speech therapist every week does help but it is often not enough. With the therapist's cooperation, Mr Pickersgill is now testing prototypes of his device, which allows the patient to practise at home. If he forgets to pause, it buzzes a gentle reminder.
If all this has prompted some ideas for a contribution of your own, there may still be time to send in your entry. We have asked competitors to register their wish to take part by June 30th, 1983, although they have until October 1st to complete their designs and submit them to the Editor. Registering an entry does not commit you to any particular project - and indeed several of our entrants are still keeping their options open.
One stipulation we make is that the device must be an electronic one. In other words, new kinds of tin-opener are not eligible; unless, that is, they involve something like robotics perhaps. With computer projects, we would want to see more than just the software. More information, together with a list of the rules and an entry form, appears on page 98 of this issue.

Entry is open to all, including individuals, schools, colleges and professional design teams. The prizes are substantial enough to be an encouragement even to the busiest engineers, whether professional or amateur; but we hope that the real winners will be the disabled themselves. In that sense, even the unsuccessful entries may be successful.

Network design by calculator

Using a TI-59 calculator to design equalizing networks for filters

Equalizing networks are frequently desirable to provide equalization for filter characteristics in transmission systems. This article gives a new program which computes the component values of the equalizer in the form of a bridged-T network of any structure. A circuit suitable for lowpass and bandpass filters respectively is given in Fig 1. According to the theory of four-terminal networks, the bridged-T may be considered in the form as given in Fig. 2, since the values of L_{2} and C_{2} are the dual of C_{1} and L_{1} respectively. With a little computation, the attenuation $\alpha(\omega)$ of the equalizing network can be put in the form
$\alpha(\omega)=10 \log \frac{\left[2 \mathrm{~K}_{5}+\left(\mathrm{K}_{3}^{2}+\omega^{2} \mathrm{~K}_{4}^{2}\right)\right]^{2}+\left(2 \omega \mathrm{~K}_{4} \mathrm{~K}_{5}\right)^{2}}{4\left[\mathrm{~K}_{3}+\left(\omega \mathrm{K}_{4}\right)^{2}\right]}$

Here, the parameters K1, . . K5 may be computed according to the network applied. For the networks as given in Fig. 1, the expressions for K are summarized in Table l, where all components are normalized to the resistance Z.

The program is based upon the approximation of two normalized values. \mathbf{R}_{1} and C_{1} are used in the first case, whereas in the second case the approximation of three

by Kamil Kraus

values are taken R_{1}, C_{1} and L_{2}, supposing only the attenuation α at a given frequency ω is known. The initial guess of parameter values influences how rapidly the iterations converge. In the first case considered, the iteration process takes about 11 minutes and about 18 minutes in the second one. The program encounters 431 steps.
To be able to examine the program quickly the following example is given.

Fig. 2. Duality of L and C allows bridged- T to be shown in this standard form.

Fig. 1. Suitable circuit to equalize lowpass (a) and bandpass (b) filters, using bridged-T network.

Input values

STO 00: 0
STO $03: \omega_{0}=6.912455 .10^{5} \mathrm{rad} / \mathrm{s}$
STO 04 : $\omega=6.725680 .10^{5} \mathrm{rad} / \mathrm{s}$
STO $05: \mathrm{C}_{1}=1.10^{-9}$
STO $14: \Delta C_{1}=1.10^{-10}$
STO $15: \Delta R_{1}=0.01$
STO 16 : INV 2nd $\log 0.085$
$1 \alpha=0.85 \mathrm{~dB}$
$\Delta=1.10^{-7}$ to $\mathrm{X} \geqslant \mathrm{t}$

Computed values

$\mathrm{R}_{1}=85.5$
$C_{1}=4.47 .10^{-11}$
$\mathrm{L}_{1}=0.0468$
$\mathrm{R}_{2}=263.2$
$\mathrm{R}_{2}=2.082 .10^{-6}$
$\mathrm{C}_{2}=1.005 .10^{-6}$
$\mathrm{L}_{2}=1.005 .10^{-6}$

$$
\stackrel{\vdash}{\mathrm{H}}
$$

Ω
F
$\omega_{0}{ }^{2}=1 / L_{1} C_{1}$

Program to compute component values of network for lowpass and bandpass filters

LRN
RCL 1
INV $2 n d x \geqslant$ t
A
2nd Lbl A
2nd St. Flg 0
RCL 4: RCL $3=x^{2}-1= \pm$ STO $6 X^{2}$ STO 7
RCL $0 \times$ RCL $4 \times$ RCL $5=$ X 2 SUM 7
RCL $6 \times$ RCL $0=: \mathrm{RCL} 7=$ STO $7 \times$ RCL $6=$
STO $8+1=$ STO 10
RCL $0 \times$ RCL $5 \times$ RCL $7=$ STO 9
2nd A'
2nd Lbl 2nd A^{\prime}
RCL $9 \times$ RCL $10 \times$ RCL $4 \times 2=$ X 2 STO 11
RCL $4 \times$ RCL $9=$ X 2 STO 12
RCL $8 X^{2}$ SUM 12
$2 \times$ RCL $10=$ SUM 12
continued on page 54
Table 1
Constants for expression of
attenuation $\alpha(\omega)$

Fig. 1(a)
$K 2=\frac{K I R_{1}}{K I^{2}+\left(\omega C_{1} R_{1}\right)^{2}}$
$K 3=K 1 K 2$
$K 4=K 2 C_{2}$
$K 4=K 2 C_{1} R_{1}$
$K 5=1 \times K 3$

Fig. 1 (b)
$K 2=\frac{K I L_{2}}{\left(K 1-\omega^{2} C_{1} L_{2}\right)^{2}+\left(K 1 \omega L_{2} / R_{1}\right)^{2}}$

```
\(\mathrm{K} 3=\omega^{2} \mathrm{~K} 1 \mathrm{~K}_{2} \mathrm{~L}_{2} / \mathrm{R}_{1}\)
\(K 4=K 2\left(\omega^{2} C_{1} L_{2}-K 1\right)\)
\(K 5=1+K 3\)
```


Timing data transfer

A simple technique for measuring the speed of data transmission between microcomputers.

Undoubtedly, although fibre-optic transmission systems are growing rapidly in importance, the most popular techniques for interlinking localized computers are still based upon the use of some form of wire cabling. The speed of transmission that can be achieved with cable systems depends upon the type of cable used, the nature of the interface circuits that are employed and higher level factors such as the type of software data exchange protocols and error checking that is performed on the data.

We have recently been involved in the interlinking of a variety of different microcomputer systems ${ }^{1,2}$. The work that has been undertaken was orientated towards an investigation of the use of multiple microprocessor networks as a means of improving the user interface with microcomputer database systems: experiments designed to measure the speed of data transmission between some of the component computers arose as an ancillary interest and gave rise to a simple technique for measuring data transfer speed.

Measuring procedure

During the transmission of data between two micros, one acts as the transmitter while the other acts as the receiver of data. A third microcomputer, attached to the transmitter, can be used to measure the duration of the data transmission transaction, and is referred to as the timer. The experimental arrangement is depicted schematically in Fig. 1(a). Communication between the timer and the transmitter is via an appropriate i/o port within the latter: if such a port is not available, a specially designed memory-mapped interface can be fitted. For simplicity, the systems to be described are all based upon a suitable i/o port within the transmitter and, in all cases, the ports that have been used provide t.t.l. compatible signal levels. Most of the experiments have involved the use of a MOS Technology 6522 Versatile Interface Adapter (VIA) ${ }^{3}$.

The measuring process depends upon the transmitter changing the status of an i/o line just before the commencement (and just after the termination) of data transmission - see Fig. 1(b): a program running in the timer monitors the status of this i/o line. When it detects the high-tolow transition it starts counting upwards from zero, continuing until the program subsequently detects the low-to-high transition which indicates the end of data

Department of Computer Science, Teeside Polytechnic.
transfer. The value of the count contained within the timer can then be used to compute the data transmission period, T , which may be achieved by the use of a previously prepared calibration graph(s). Alternatively, the known execution times of the program instructions can be used to calculate a loop cycle speed for the timer program, which can then be used as a multiplicative conversion factor.
The timer program used in the measurements is shown in Table 1. It is written in 6502 assembler code, which is subsequently run on a Commodore PET

by Philip Barker Ph.D.

microcomputer ${ }^{4,5}$. It could easily be converted to run on other 6502 based systems (KIM, APPLE, AIM, etc.) by changing the addresses of the data direction register (DDR), user port (USER), print subroutine (PRINT) and the value assigned to the location counter at the start of the assembly.
The program uses the PET's 6522 VIA pin (PA0) for its connection to the transmitter. Zero page locations 0,1 and 2 are used to store the count value. Once the program has been activated, it goes into a wait state until the status of pin PA0 goes low: as soon as this happens it enters its counting state until forced out of this when PA0 goes high again. Notice that prior to entering the wait state the program disables all interrupts (using the SEI instruction) to prevent the c.p.u. being called upon to perform any other ancillary tasks (for example, keyboard scan, clock update) while the data transmission period is being measured. Once the timing loop has terminated, system interrupts are again enabled (via the CLI instruction).

To test the program, an arrangement similar to that shown in Fig. 1(c) was used. The timer program was employed simply to measure the length of time for which a debounced switch circuit was held on: after each timed interval the contents of memory locations 0,1 and 2 were examined and a total count value then computed. The results of some typical experiments are presented in Table 2(a). A graph of the total loop count was then plotted against the elapsed time as recorded by the stopwatch, these results being shown in Fig. 2(a). The timer program's loop execution time, as derived from the graph, is thus $36 /\left(22.7 \times 10^{5}\right)$ which is equivalent to 1.6×10^{-5} seconds.

The alternative approach to estimating the timer program's loop cycle time depends upon a knowledge of the speed of execution of each of its component instructions. These are usually tabulated in programming manuals or hardware system specifications ${ }^{6}$ for the 6502 chip. For the instructions involved in the timer program the relevant values are:

> LDA 4 cycles
> AND 2 cycles
> BNE 2 cycles
> INC 5 cycles
> BNE 3 cycles

The BNE instruction can take 2,3 or 4 cycles - depending upon whether the branch is taken and whether the branch operation involves crossing a page boundary. Since no page boundaries are crossed the values to be used in this case are 2 and 3. A value of 2 is used for the first BNE instruction since this branch is never taken - at least, until the end of the interval
(a) Experimental arrangement

(b) Transmitter i/o pin status

(c) Timer test circuit

Fig. 1. Measurement technique using microcomputer as timer. Changes in status of i/o time at (b) determine counting period, test circuit for timer being shown at (c).

Fig. 2. Graph of time against total loop count gives loop execution time for 3000 and 8000 series PET micros.
being timed. A value of 3 is used for the other BNE instruction since this branch is virtually always taken - except when SUMH and SUMU are incremented.
The approximations used in the above formulation for the total number of cycles are reasonable since, if one assumes that the microcomputer clock speed is such that one cycles takes one microsecond, then the loop cycle time is easily calculated to be 1.6×10^{-5} seconds. This is in reasonable agreement with the value derived by the graphical approach.
In the data transmission experiments both a 3000 and an 8000 series PET have been used as a timer. Converting the 3032 program (see Table 1) for operation on the 8032 computer only required changing the address of the PRINT routine from \$CAIC to \$BBID. Timing experiments analogous to those performed with the 3032 computer could then be conducted with the 8032 system. The results are shown in Table 2(b) and are presented graphically in Fig. 2(b). From this graph, the loop cycle time can be estimated as $36 /\left(22.9 \times 10^{5}\right)$, that is, 1.6×10^{-5} seconds. This agrees closely with the value observed for the similar program running on the 3032.

From the experiments described in this section it is easy to see that the timer program offers a convenient means of measuring data transmission speeds. It is limited, however, in that the smallest time interval it could measure would be about 16 microseconds, which means that in our experiments we could not measure transmission speeds faster than about 16 Mby tes/s (PET-to-INS8060 transfer) or 2048 Mbytes/s (PET-to-PET transfer). However, because the transmission speeds involved in our systems are well below these limits this inherent limitation of the timer is of little concern.

Some data transfer measurements

Three different examples of microcomputer interconnection are described here. Two of these involve the use of parallel interfaces: in one case the standard IEEE488 port is used ${ }^{7}$ while in the other the direct linking of i/o ports is employed. The third example involves the use of a serial interface involving the use of a one byte buffer.
PET-to-PET transfer. The arrangement of the equipment for this transfer operation is shown schematically in Fig. 3. In this experiment, the data lines associated with the IEEE port of the 8032 were directly linked to the corresponding data lines of the IEEE port on the 3032 PET. A third PET system, another 3032 (not shown), was used as the timer. The transmitter then used its PA6 output line to interconnect with the timer's PA0 input pin. Some of the other user-port lines within the transmitter and receiver were employed as control lines to effect the handshaking of the data presented on the lines of the IEEE port. Four control lines were used: DAV (data valid), EOT (end of transmission), ACK (data acknowledge) and RFD (ready for data), implemented via user port connections PA0, PA2, $\mathrm{PAI} / \mathrm{CA} 1$, and PA3 respectively. In the case of the ACK signal a choice between CA1 and PAl at the transmitter end of the link could be used to decide whether this was (CA1) or was not (PA1) latched.

The details of the transmitter and receiver programs (in both BASIC and assembler) are given elsewhere ${ }^{1}$, and may be used to send the contents of memory locations $\$ 2000$ through $\$ 2 \mathrm{FFF}$ across the data link from PET1 to corresponding locations within PET2. Inspection of locations 0,1 and 2 in the timer yielded the results shown in Table 3(a). The transmission experiment was repeated five times giving an average count value of 26369 , which gives a transmission time for the experiment of $26369 \times 1.6 \times 10^{-5}$, or 0.422 second. Since a total of 4096 bytes was transferred during this interval, the average transmission speed was therefore 9706 bytes/s.
PET-to-INS8060 (SC/MP) transfer. The experimental arrangement for this transfer
is shown in Fig. 4. Notice that the pins used for interfacing the INS8060 are t.t.1.compatible ${ }^{12,13}$ and so could be directly connected to the appropriate user port pins of the PET. This approach was not used because we wished to investigate the additional programming overhead associated with using a serial-in-serial-out (siso) register as a buffer.

The way in which this interface works is as follows. The PET uses its serial shift register (which is a part of the 6522 VIA) to put data (serially) into the SN74LS91 buffer. When this operation has been completed, the PET signals 'data valid' to the SC/MP through the latter's SENSE-B input line. The SC/MP then generates clock pulses (on its FLAG-0 line) and strobes the data out of the buffer into its extension register via its serial input pin (SIN). After eight strobe pulses, the SC/MP acknowledges receipt of the data via its FLAG-1 line, which is attached to the PET's PAI input pin. When the transmitter has passed across all the data, it signals the end of transmission by driving the EOT line high, which causes an interrupt in the SC/MP, causing it to jump to a special interrupt handling routine. Notice that because of the SC/MP architecture (and the mode of operation of the PET shifter) the passage of a data byte from transmitter to receiver causes bit reversal. Thus, it is important for the transmitter to reverse the bit pattern of all the data bytes before they are transmitted. This is done (for all of the data) prior to entry to the data transmission loop and so the time required to do this does not contribute to the data transfer interval. The programs for the transmitter (in 6502 assembler) and the receiver (in INS8060 assembler) are presented elsewhere ${ }^{1}$.

The SC/MP system used for the experiments had available only 256 bytes of ram in which to store data. In view of this, only a limited volume of data could be transferred to it. The results for the transfer of 256 bytes of data from the PET (locations $\$ 2000$ through $\$ 20 \mathrm{FF}$) to the $\mathrm{SC} / \mathrm{MP}$ are presented in Table 3(b): the average value for the count is 12443 which corresponds to a data transfer interval of 0.199 and, since only 256 bytes were transmitted, the average data transfer rate was thus 1286

bytes/s. Notice that the ratio of 9706 (parallel transfer) to 1286 (serial transfer) is 7.55 . As might be expected, byte serial transfer is about eight times slower than byte parallel exchange.

Z80-to-PET transfer. For these experiments a SOFTBOX system was used ${ }^{10}$. This is essentially a plug-in hardware device that is designed to provide the PET microcomputer with access to the CP/M operating system ${ }^{2}$: the control software necessary to run the system is supplied on a 5.25 in floppy disc: a disc unit is thus essential in order to use the SOFTBOX interface. The way in which the unit attaches to the PET's IEEE bus is illustrated schematically in Fig. 5. As can be seen from this diagram, for these experiments, an 8032 PET was used as a timer - interconnection of the two PETs was achieved via the PA0 user port line on each of the machines.

Within the SOFTBOX is housed a Z 80 microprocessor that runs at a clock speed of 4 MHz . In addition, there are 60 Kbytes of ram and rom to store the CP / M BIOS code 2. The Z80 communicates with the PET's IEEE bus via two Intel 8255 peripheral support chips ${ }^{11}$, the interconnections between the PET and the Z 80 being illustrated in Fig. 6. When the Z80 system become active, it takes over control of the PET's disc drive and printer (see Fig. 5). The PET itself then acts as a dump terminal to the Z80 system.

In addition to storing the CP/M BIOS code, the rom contained in the SOFTBOX provides many other useful routines. They may all be accessed by user programs running on the Z 80 memory space via a series of jump vectors located at address $\$$ F003 and above. Two useful entry points within the rom store are PEEK and POKE - the POKE routine transfers data from the Z80 memory space across to that of the PET via the IEEE bus, and PEEK is complementary to POKE. This entry point can thus be employed to move data in the reverse direction - from the PET back to the Z80. In both cases, the Z80 register pairs BC, DE and HL are employed to hold the relevant transfer parameters: B and C specify the size of the memory image involved, while the relevant source/target addresses are held in DE (for the PET) and HL (for the Z80). Details of the architecture of the Z80 (and Intel 8080) are given ${ }^{3}$. A simple program for performing timed data transfer from the $\mathrm{Z80}$ across to the PET is depicted in Table 4.

The program is written in 8080 assembler. First, a 4096 byte region of memory is initialized. Each byte within the defined area (with base address SBDATA) is set to the arbitrarily selected value $\$ A B$. The POKE entries immediately following the initialization loop then set the data direction register of the PET and also put the signal level on PA0 to logic high. The call to the dynamic debugging tool (DDT) is then used to check that the data area has been set up correctly; it also provides a processing interrupt that enables the timer program running on the 8032 to be put into a wait state. When the program in the Z80 is restarted it uses a series of POKE
commands to (a) start the timer counting, (b) pass across the data to the PET, and subsequently, (c) switch off the timer by forcing the 3032's PA0 line into a high logic state. As in the previous experiments, processor interrupts are disabled prior to the data transfer steps and re-enabled immediately after it.

The timer count values extracted from the 8032 zero page locations (0,1 and 2) are presented in Table 3(c). As was the
case in the other experiments, measurements were repeated five times in order to check their reproducibility, giving an average count value of 40273. The data transfer interval calculated from this value is thus 0.644 s which corresponds to a transfer rate of 6360 bytes $/ \mathrm{s}$.
The program presented in Table 4 runs within the environment of the CP / M dynamic debugging package ${ }^{2}$, which was used to take advantage of the interrupt

Table 1. Program for using PET as timer, convertible for use with other 6502 micros.

facilities provided by the RST 7 instruction. To prove that the environment provided by DDT did not influence the speed of transmission, a further experiment was conducted. This necessitated re-writing the transfer program in such a way that the RST 7 calls could be dispensed with. Instead, the same effects were achieved through appropriate use of the CP / M BDOS routines for console output (CONOUT) and input (CONIN). CONOUT was used to display a prompt character on the 3032 screen. The Z80 processor then went into a wait loop until a pre-defined escape character (${ }^{\star}$) was typed on the 3032 keyboard. When the prompt character was displayed, the 8032 timer was started and the escape character then typed - thereby releasing the Z80 for its data transfer activity. The results obtained using this approach are listed in Table 3 (d). As there is no significant difference between the results in Tables 3(c) and 3(d) we conclude that the DDT package did not influence the speed of execution of the program shown in Table 4.

A final set of experiments was conducted to see if the speed of transfer for

PET-to-Z80 transmission was the same as that which was observed for Z80-to-PET transfer. To do this a new program was written, similar to that shown in Table 4, except that, instead of using the SOFTBOX POKE entry, it used the PEEK routine for block data transfer. The results of this set of experiments are presented in Table 3(e). Comparing these results with those of Tables 3(c) and 3(d) suggests that transfer in this direction is about 10% slower - probably due to the different ways in which the PEEK and POKE firmware is implemented within the SOFTBOX unit.

It is interesting to observe that parallel data transfer using the standard IEEE-488 bus (Z80-to-PET) is about 30% slower than that encountered in the other parallel transmission technique (PET-to-PET) that was used. This discrepancy is probably due to the additional overhead associated with the need to specify listener/talker addresses when transmitting data over an IEEE bus.

The maximum speed of transmission that can be measured using this simple method is given by the relationship

Table 2. Results of timer calibration.

(A) 3032 PET

TIME	SUMU	SUMH	SUML	Total	Rounded Total $\times 10^{-5}$
5	04	BE	38	310,840	3.1
10	09	AB	19	633,625	6.3
20	13	96	77	$1,283,703$	12.8
30	10	$1 F$	A3	$1,908,643$	19.1
40	26	04	97	$2,491,543$	24.9
Weight	65,536	256	1		

(B) 8032 PET

TIME	SUMU	SUMH	SUML	Total	$\begin{aligned} & \text { Rounded } \\ & T o t a l \times 10^{-5} \end{aligned}$
5	05	17	6 B	333,675	3.3
10	09	75	64	619,875	6.2
20	13	32	8C	1,258,124	12.6
30	10	25	79	1,975,673	19.7
40	26	36	AB	2,504,363	25.0
Weight	65,536	256	1		

A: PET TD PET TRANSFER				
Expt. No.	SUMU	SUMH	${ }^{\text {S }}$ SUML	Total
1	00	66	FE	26,366
2	00	67	00	26,368
3	00	67	00	26,368
4	00	67	00	26,368
5	00	67	00	26,368
Weight		256	1	26,369 (Av)
B:PET TD SC/MP TRANSFER				
Expt. No.	SUMU	SUMH	SUML	Total
1	00	30	A1	12,449
2	00	30	96	12,438
3	00	30	9 B	12,443
4	00	30	95	12,437
5	00	30	A1	12,449
Weight		256	1	12,443 (Av)
C: SOFTBOX TO PET - CASE A				
Expt. No.	SUMU	SUMH	SUML	Total
1	00	90	5B	40,283
2	00	9 D	4F	40,271
3	00	90	4 F	40,271
4	00	90	40	40,269
5	00	90	51	40,273
Weight		256	1	40,273 (Av)
D: SOFTBOX Expt. No.	TO PET SUMU	CASE 8 SUMH	SUML	Total
1	00	90	49	40,265
2	00	90	51	40,273
3	00	90	4A	40,266
4	00	90	48	40,267
5	00	90	61	40,289
Weight		256	1	40,272 (Av)
E. PET TO SOFTBOX				
Expt. No.	SUMU	SUMH	SUML	Total
1	00	B1	C2	45,506
2	00	B1	82	45,490
3	00	B1	CC	45,516
4	00	B1	D5	45,525
5	00	B1	BF	45,503
Weight		256	1	45,508 (Av)

$\mathrm{S}=\mathrm{V} / 1.6 \times 10^{5}$ bytes $/ \mathrm{s}$, where V is the volume of data (in bytes) that is passed.

In the experiments that have been described above a fairly expensive timing element was used - far too costly to dedicate solely for timing measurements. However, where such machines are used as general laboratory tools ${ }^{12}$ an approach of this type is not unreasonable. Indeed, in the machines used in our laboratory the timer software shown in Table 4 is permanently
held in a rom module fitted to the microcomputer's memory-expansion sockets. This rom module also contains a variety of other useful firmware that is frequently required for other laboratory applications; for example, terminal emulation, data smoothing, pattern matching and so on.

Those situations that do not permit the use of a general purpose laboratory microcomputer (as described above) would require a less costly approach - easily achieved through the use of less expensive single board microsystems. Indeed, we have used a KIM micro ${ }^{13}$ to perform exactly the same measurements that were undertaken by the 3032 and 8032 timer systems - at about one seventh the cost. If need be, further substantial cost reductions for the timer system could be achieved by simply wiring up a 6502 c.p.u., a 6522 VIA, some rom and a simple read-out system.
The author is grateful to Small Systems Engineering Ltd (UK) for their encouraging help and invaluable assistance during the preparation of this paper. He is also

$$
\text { continued on page } 58
$$

The author

Philip Barker is a Principal Lecturer in the Department of Computer Sciance at Teesside Polytechnic. He is a graduate of the University of Wales, a Member of both the ACM and the IEEE, and a Fellow ofboth the British Computer Society and the Royal Society of Chemistry. His research interests lie in the area of human-machine interaction, and he has undertaken a number of studies of the user interface with computer systems. The research topics in which he is currently interested include: author languages for computer assisted instruction (CA1), applications of CAl to the problems of the disabled, query languages for database systems, intelligent interfaces and image processing for videodise systems.

Table 4. Program for timing transfer from 280 to PET.

3000	$=$	TOPET	EQU 3000H	;TARGET ADDRESS FOR DATA
2000	$=$	SBDATA EQU 2000H		SOURCE ADDRESS OF DATA
E84F	$=$	UPORT	EQU 59471	;PET USER PORT ADDRESS
E843	$=$	DDR	EQU 59459	;PET DATA DIRECTION REGISTER
0001	$=$	N1	EQU 1	
F069	$=$	POKE	EQU 0F069H	;SOFTBOX POKE ROUTINE
1000	$=$	NSEND	EQU 4096	;NUMBER OF BYTES TO SEND
0100		ORG 100H		
0100	3E30	BEGIN M	MVI A,30H	
0102	210020		XIH,SBDATA	;LOAD SOURCE ADDRESS
0105	36AB	FILL: $\begin{array}{ll}\text { M } \\ & \text { IN } \\ & \text { C } \\ & \\ \\ \end{array}$	MVI M,0ABH	;MOVE VALUE TO MEMORY
0107	23		NXH	
0108	BC		MP H	;ALL DONE?
0109	C20501		NZ FILL	
		:INITIALISE TIMER		-
010C	010100	LXIB,N1		
010F	$1143 E 8$	LXID,DDR		
0112	215101	LXI H,DDRVAL		
0115	CD69F0		CALL POKE	;SET PET DDR
0118	010100	LXIB, ${ }^{\text {1 }} 1$		
011B	114FE8	LXID, UPORT		
011E	215201	LXIH,TMRSTOP		
0121	CD69F0	CALL POKE		;SET PA0 HIGH
0124	FF		RST 7	CALL TO DDT
0125	00	BRK1: N	NOP	;PUT TIMER IN WAIT STATE
		:SEND DATA TO PET MICROCOMPUTER		
0126	F3			;DISABLE INTERRUPTS
0127	010100	$L X \mid B, 1$		
012A	114FE8	LXID, UPORT		
012D	2155301	LXIH,TMRGO		
0130	CD69F0	CALL POKE XIB NSEND		;START TIMER
0133	010010			
0136	110030	LXID, TOPET		
0139	210020	LXI H,SBDATA		;SEND DATA TO PET
013C	CD69F0	CALL POKE		
013F	010100	LXIB, 1		
0142	114FE8	LXID,UPORT		
0145	215201	LXIH,TMRSTOP		
0148	CD69F0			;STOP TIMER
014B	FB		El	;ENABLE INTERRUPTS
014C	FF	BRK2:	RST 7	;CALL DDT
014D	00		NOP	
014E	C30000		JMP 0	; WARM START
0151	01	DDRVAL: DB 1		
0152	01	TMRSTOP: DB 1		
0153	00	TMRGO: ${ }_{\text {ENB }} 0$		
0154				

Fig. 6. Arrangement for transferring data between 280 in SOFTBOX and 6502 in PET.

$$
\begin{array}{ll}
\text { C-IEEE control lines } & \text { p.p.i- - programmable peripheral interface } \\
\text { D-IEEE data lines } & \text { PA,PB,PC etc - Ports A,B,C }
\end{array}
$$

Enigma

A detailed examination of the German World War II cipher machine and the cracking of the code.

In 1974, Group Captain Winterbotham was authorized to publish The Ultra Secret War. This book ${ }^{1}$ - and a stream of publications following it - revealed that during the Second World War the Government Code and Cipher School at Bletchley Park (BP) had managed to decrypt a substantial part of all the messages sent by the Germans via radio. How the information so obtained was put to use for the Allied Forses under the code name Ultra has been well documented by Ronald Lewin ${ }^{2}$. Most of these intercepted radio messages were encrypted by using the Enigma cipher machine. The German High Command had an even more complicated and safer device than Enigma, called Geheimschreiber (secret writer) which was an on-line encryption unit combined with a teleprinter. Plaintext was typed in and appeared as printed plaintext at the other end. The Geheimschreiber was intended to be used on land-lines which were available in most cases between the more or less permanent locations of the High Command. The system could be used via radio as well. Nevertheless, it can be safely stated that the majority of messages BP operated on were in Enigma-cipher. The publicity that has been given to the work at BP has made Enigma a well-known device, although the descriptions of Enigma that can be found in literature remain rather superficial, e.g. by Jones ${ }^{3}$.

Enigma, how it works

Explaining the principles of cryptography is outside the scope of this article. An introduction into this fascinating field has been given by Hawker ${ }^{4}$, and very thorough treatment with lots of historical background is provided by Kahn ${ }^{5}$. Modern developments in cryptography are discussed by Diffie and Hellman ${ }^{6}$ who provide an extensive bibliography. It suffices to state that Enigma works on the principle of substitution: for every letter in the plaintext a different letter is substituted as ciphertext. An extra feature is that the alphabet, from which the substituted letters are taken, is changed with every step.
The machine is housed in a wooden box measuring $34 \mathrm{~cm} \times 28 \mathrm{~cm} \times 15.5 \mathrm{~cm}$ and weighs 12 kg (Fig.3). According to Bauer, the wooden box indicates that the machine described here was used by the German Navy; the Army and Air Force had their Enigmas in metal boxes. Figure 4 shows Enigma with the lid in the upright position, ready for use.

The data to be encrypted is entered via the keyboard. It is to be noted that the

By D. W. Rollema, PAOSE

keyboard contains no keys for figures: where these appear in the plaintext, they are first written out in letters. When a key is depressed, the letter to be substituted in the ciphertext is indicated by a glowlamp illuminating one of the letters in the round windows. So when key D is depressed, for instance, an O may light up as the substitution.
The electrical path between the keys and the glowlamps is not a straightforward one, and changes every time a key is depressed as shown in Fig.5, taken from the operating manual, Fig.2. Here key Q is depressed. Current from the battery flows via contact 46 of key Q to a pair of jacks, also marked Q (see also Fig.6). When no plugs are inserted, the jacks are jumpered by contact 45 . The current now continues through contacts on a set of five static and moving rotors 44 , the ones on the extreme right and left being the static ones, called Eingangswalze (entry rotor) and Umkehrwalze (reversing rotor) respectively. The current is returned here and traverses the rotors again and on to another pair of jacks E. Here the plug at the end of a cord is
inserted. The plug at the other end guides the current via jack pair W on to glowlamp W and from there finally back to the battery.

So depressing key Q in this example lights up lamp W. By following the current path the reader can easily discover that

Fig. 2. Instruction manual for the use of Enigma.

Fig. 1. Mr Arthur Bauer, PAOAOB, in his shack at Diemen near Amsterdam. He is the owner of the Enigma machine that forms the subject of this article. For his amateur radio contacts, Mr Bauer uses exclusively German World War II communication equipment Here he is seen typing on a "Hellschreiber" teleprinting machine. Behind the Hellschreiber, a 1937 transmitter can be seen.
 carrying Enigma in one hand and a box with two extra rotors in the other.
depressing key W would result in lamp Q being lit. This mutual relationship between keys and lamps is essential in the process of decrypting a ciphertext.

Figure 6 shows the arrangement of jackfield and cords (Stecker). There are 26 pairs of jacks and 13 cords to connect them. In practice only ten of the cards would be used: the six jack pairs without a plug inserted are automatically jumpered, as shown for jack pair Q in Fig.5. The plugs have two pins of different diameter so they can be inserted in only one way. All the rotors (Walzen) can be removed from the machine, except for the entry rotor, as can be seen in Fig.7: this has 26 contact pads arranged in a circle. The reversing rotor is normally left in the machine and has 26 contact pins that protrude from the surface under the action of springs, as symbolically indicated in Fig.5. It sits on the shaft that can be seen in Fig. 7 on the left.

Between the entry rotor and the reversing rotor, a set of three other rotors is inserted, taken from a total of five. The two remaining rotors are kept in a small wooden box (Fig. 3 and 4). The rotors are first rigged on the shaft (Fig.8) and then inserted in the machine: Fig. 9 shows the rotors in place on their shaft. By moving the lever on the extreme left in Fig.9, the complete set of rotors is compressed together so that the sliding contact pins on one side of a rotor touch the contact pads on the adjacent one. Each contact pin on one side of a rotor is internally connected to a contact pad on the other side. The arrangement of these internal connections is different for each of the five rotors.

As mentioned earlier the current path between keys and lamps is changed at each key depression. Each time a key is depressed, the rotor on the right moves one twentysixth of a revolution. That means that all contacts move up one step. After 26 key depressions the rotor has made a complete turn and at that moment

Fig. 4. Enigma ready for use with the box for extra rotors on the right.
the rotor in the middle moves one step. When the middle rotor also has completed a revolution, the rotor on the left moves one step, so that after $26^{3}=17,576$ key depressions, a certain combination of rotor setting will he repeated. Figure 7 shows the mechanism. Three levers, each having a forked shape at their top end, move upwards when a key is depressed. The fork of a lever can engage the toothed wheel at the side of a rotor and move this wheel one step (see Fig.10), which happens with the right rotor every time a key is depressed. For the middle and right rotors the levers are prevented from engaging with the toothed wheel. To engage these, the forked lever not only has to move upwards, but inwards - towards the shaft of the rotors - as well. Excessive inward motion is prevented by the lever coming to rest against a ring on the adjacent rotor to the right of it. In Fig.8, this ring can be seen on the side nearest the matchbox. The lever is free to move in only one position of the rotor to the right of it, where the ring is notched in figure 08 in Fig. 8.

Apart from the fact that three rotors have to be selected from five and each of the three rotors can be put into each of the three possible positions in the machine, the Germans introduced one more variable. If the rotor shown in Fig. 8 is placed in

Fig. 6. Arrangement of plugs and jacks. Note contact pins of different size jacks preventing insertion the wrong way round.

Fig. 5. This page from the instruction manual shows the path of the electric current in Enigma.
the machine in the position on the right, it is clear that when the lever for the middle rotor is at position 08, it can move the middle rotor one step. Now there is not a fixed relationship between the ring with the numbers and the body of the rotor carrying the contacts: the ring can be turned with respect to the rotor, as shown in Fig.11. It is obvious that this then changes the relationship between the inner wiring of the rotor and the notch position at which the adjacent rotor is moved one step forward.

Figure 8 also shows a knurled wheel that protrudes through the metal top that normally covers the mechanism of Enigma when in use (Fig.4). By means of these wheels, the cipher clerk can move the rotors to any starting position, indicated by the figures on the rings showing in the windows next to the wheels. This permits the operator to set the key for a message to be enciphered, as explained later.

As has already been mentioned, Enigma operates only on letters; nevertheless, figures are used to indicate the position of the rotors and also the keys used for encipherment. Here a simple one-to-one relationship exists between the 26 letters of

the alphabet and the figures 1 to 26 . To help the cipher clerk, this relationship is put on the instruction card inside the lid of the machine (Fig.12).

Using Enigma

The cipher instructions for using Enigma were changed from time to time and different procedures could be in use within the Air Force, the Army and the Navy. Figure 13 shows the title page of the instructions for Enigma, issued on January 12, 1940. For each month, a list was issued with Tagesschlüssel (keys of the day); one for each day. Figure 14 shows part of a page from the encryption manual with an example for the fourth day of the month. The key of the day contains three elements. The first is the Walzenlage i.e. the numbers of the rotors (I to V) to be used and the position where they are to be put in the machine. In this example, rotors I, III and II are to be used in that sequence from left to right. Then there is the Ringstellung (setting of the rings on the rotors); in the example the rings are to be set to 16,11 and 13. The third element is the Stecker (plugs and jacks). The example shows which pairs of jacks are to be connected by cords, ten of the thirteen cords being used. This completes the key of the day. All Enigmas that were used in a radio network were set to the same key at 0000 hrs, according to these instructions.

When the cipher clerk is handed a message to be encrypted, he first replaces all figures by letters (e.g. drei for 3). The clerk now selects one of the Kenngruppen (marker groups) shown in Fig. 14 bottom right; the group OPW for instance. He may change the sequence e.g. into POW and add two fill-in characters, purely arbitrarily chosen. The resulting group of five letters is entered on the message form. In the example, the group might be ZAPOW.

The clerk now selects a Grundstellung (initial setting) of three letters, e.g. WEP. This corresponds to figures 230516 and he sets the three rotors accordingly. This setting is different for each message and for each part if the message consists of more than one part (it was forbidden to select as settings groups such as AAA ZZZ, words, abbreviations, callsigns, traffic indications such as QRM, letters that follow each other on the keyboard such as ERT or those in alphabetical order e.g. ABC or CBA). The cipher clerk then selects a Spruchschlüssel (message key), also of three characters, for which the same rules apply, say XFR (2406 18). This group is keyed in and the three letters that are indicated by the glowlamp (e.g. HFI) are entered at the top of the message form, together with the three letters of the Grundstellung. So this group may look like WEP HFI. Finally the cipher-clerk resets the three rotors according to the message key XFR and starts typing the text to be encrypted. He reads aloud the lamps lighting up and an assistant enters the ciphertext on the message form. He does so by arranging the ciphertext into groups of five letters. The form can now be handed to a radio operator for transmission.

The cipher-clerk at the receiving end
first has to set his Enigma to the key of the day used for encryption of the message. This may be a different day from the one on which the message was encrypted. The cipher-clerk therefore looks for the marker group ZAPOW that was transmitted from the top of the message form. He deletes the fill-in characters Z and A . The remaining group POW is put into alphabetical order OPW. Referring now to his table of keys of the day, he finds that the marker group belongs to the fourth day of the month. He then proceeds to set his Enigma according to the day key for day 4 .

He now sets the three rotors to the initial setting WEP (230516) which he also reads from the received message. Now he types in the group HFI, that follows the Grundstellung. He then reads the message key XFR from the lamps. The rotors are next set according to the message key XFR (24 06 18). Engima is now ready for decrypting the message and the cipher-clerk text is typed in, group by group. The plaintext is read from the glow lamps and an assistant enters it on a new message form.

The complicated system of initial setting and using a message key does not add any more security to the system than that already provided by the key of the day, because once the key of the day is known, all information regarding initial setting and message key can be found immediately from the received message. It must be assumed that the Germans added the complications of initial setting and message key to confuse an intercepting cryptanalyst trying to find the key of the day from the contents of the message.

The procedure outlined in the manual of 13 January, 1941 contained at least two modifications from the one issued on 8 July, 1937, according to Lt. Col Lisicki in ref.7. It is possible that issues before that on 8 July, 1937, have also differences. In accordance with that older instruction manual, the initial setting formed part of the key of the day and was taken from the table for the relevant date. It remained the same for 24 hours, and was not sent with the message. Instead, the cipher clerk, after setting Enigma to the key of the day, adjusted the rotors according to the Grundstellung, read from the table, e.g. 01 1222. He now selected a message key, say XFR and entered this twice on the keyboard. This yielded two cipher groups of three letters, e.g. HFI KLB and these were written on the message form to be transmitted. Then he reset the rotors according to the message key XFR (24 06 18) and proceeded to key in the plaintext. Decryption proceeded as described previously, except that the Grundstellung was not read from the message as received, but from the table of keys of the day. After setting Enigma accordingly the group HFI KLB was keyed in and this provided XFR XFR, twice the message key. Decryption started after setting the rotors according to the message key. The double encryption of the message key turned out to be a blessing to the Polish and British cryptanalysts, as we will see later.

Lisicki ${ }^{7}$ states that on September 15, 1938 the German Army and Air Force

Fig. 7. The shaft with three rotors has been removed from Enigma. The actuating levers and entry rotor at the right can now be seen.

Fig. 8. Rotors with contact pins on one side and pads on the other. Note the notch in the ring with the numbers at position 08 .

Fig. 9. Looking into Enigma with the cover lifted. The shiny cylinder to the left of the rotors is the reversing rotor
changed the system. The Grundstellung was no longer used for the whole day, but the cipher clerk chose a different one for each message which he entered on the message form in plaintext. The rotors were then set to this Grundstellung and the message key was entered twice, as before. The resulting encrypted message key was also entered on the message form. When the war started, the double encryption of the message key was replaced by a single one.
Not being a cryptologist, I fail to see how the Grundstellung, changed for every message, but transmitted in plain text, could be an improvement over the 1937 system. There the Grundstellung was not sent and had to be found out by the intercepting cryptanalyst, even though that once found, it could be used for the whole day and not for just one message

History of Enigma

The principle of Enigma was patented in 1919 by a Dutchman, Hugo Alexander Koch. The ideas developed by him were feasible, but not very practical. The true pioneer was an engineer from Berlin, Dr Arthur Scherbius. By July 1923, Scherbius was on the board of the Chiffriermaschinen Aktiengesellschaft (Cipher Machines Corporation), which had been established at 2 Steglitzer Strasse, Berlin, to make and market the invention which Scherbius christened Enigma ${ }^{2}$. The Scherbius model, which went through various stages of improvement, contained many of the basic concepts finally incorporated in the Germans' military versions. David Kahn ${ }^{5}$ has recorded that Scherbius exhibited the Enigma at the 1923 Congress of the International Postal Union, and the following year got the German Post Office to exchange Enigma-enchiphered greetings with the Congress.
Scherbius produced an elaborate sales pamphlet in English under the title "The Glow-Lamp Ciphering and Deciphering Machine Enigma". Unfortunately the commercial world in the twenties had no use for ciphers: the businessmen of the world, to which Scherbius' pamphlet was addressed, showed no enthusiasm. Scherbius himself went bankrupt and his patents passed into other hands ${ }^{2}$.
The German military forces were the first to detect and exploit Enigma's possibilities for the purpose of making her military communications more secure. They had good reasons. In the years following her 1918 defeat and the Treaty of Versailles, Germany had a good deal to hide. A system which enabled military messages to be transmitted in an apparently unbreakable cipher was irresistible. So on 9 February, 1926 the latest Scherbius model was introduced into the German Navy. It is logical that the Navy came first, as radio is the only way for ships to communicate and is open to interception by the enemy. The Army can always use the telephone. In 1928 the German Army also adopted Enigma, although the machine did not possess the jackfield at that time: this feature was introduced by the Army in 1930 and the Navy followed in
1934. In 1935, the Air Force adopted Enigma as well. By that time, the commercial model of Enigma had been withdrawn from the market.

It is dangerous to use a cipher system over a long period and so it is necessary to make alterations to prevent interceptors finding ways to crack the cipher. The instructions for using Enigma were revised from time to time, but the machine itself was regularly updated as well. Three rotors were used up to 15 December, 1938. Then the German Army and Navy added two rotors, enlarging the number of possible combinations. There are ten ways of selecting three rotors to be placed in the machine out of a total of five and the three selected can be put in the machine in six different ways. The Navy added a seventh rotor in 1938 and shortly before the outbreak of war even an eighth one. Five were kept in the box and three in the machine. Three rotors can be selected out of eight in 56 different ways.

As the war progressed, further modifications were deemed desirable, especially for the radio traffic with submarines in the Atlantic. These were attacking the Allied convoys and were directed entirely by radio by Grand Admiral Dönitz from his submarine command centre. It was, of course, vital that these command lines were not compromised by the Allied forces cracking the cipher. Therefore, the German Navy introduced a new version of Enigma on February 1, 1942, which had provision for a fourth rotor, to the left of the three existing ones. In this fourth position, and only there, was inserted what the Germans called a "Greek rotor", designated "Alpha". From March 1, 1943, a second Greek rotor, "Beta", which could change places with 'Alpha', was put into operation. "Gamma" followed later that year and so increased the number of "Greek rotors" to three. The fourth one came in 1944.

By the end of the war, several new models of Enigma were under test. for instance, a new standard machine to be used by the Army, model "M-5" and a considerably improved model "M-10" for the Navy. I have found no evidence that these new versions were actually introduced.

Cracking the Enigma cipher

Before we turn our attention to the ingenious ways that were found to decrypt Enigma-enciphered messages without knowing the key of the day and the message key, it is interesting to get some idea of how many different keys Enigma can provide. German wartime cryptologist Waldemar Werther gives the following estimate.
For each setting of the three rotors, the period after which the same current path through the rotors reappears is given by $26^{3}-26^{2}=16,900$.
The number of permutations with three rotors is six. The three rings can be set in $26^{3}=17,576$ different ways. From the 13 cords with plugs only ten were actually used; the number of different cord connections is about 150.7×10^{12}. The total number of keys is, of course, the product of these figures and this works out at the astronomical figure of about 4.5×10^{22}. Note that this is with only three rotors! When the number of rotors is increased the number of combinations rises considerably (as we have seen, the Navy finally used up to eight rotors plus four "Greek" rotors).

Some people think that with a modern digital computer it should be possible to "test" all of these possibilities to find the correct one used for a message, but even with a very fast machine this would take decades to accomplish. This is quite apart from the question of how the computer, without any human intervention, is to know when the correct setting has been found.

No, this was not the way cryptanalysts tackled the problem. Their approach was a more subtle one in which certain peculiarities of Enigma were exploited to the full. We will mention two. As the same key secting was used both for encryption and decryption reciprocity had to exist between cleartext and ciphertext. If for instance, encrypting the character "A" resulted in an " S " in the ciphertext, then an " S " in the clear text would have become an "A" when enciphered (provided it had been in the same place in the text, of course). Similarly a character can never become itself when encrypted.

The first cryptanalysts who succeeded in

cracking the Enigma cipher were Polish: Lt. Colonel Dr. Tadeusz Lisicki was personally involved and he gives a fascinating account of it^{7}. It is a little known fact that the Polish secret service had no difficulty in reading the Russian ciphers used in their military wireless communication during the war between Russia and Poland (1918 to 1920). The resulting information was used by the Polish High Command in a way very much like Ultra was in the North African battle during World War II, and proved to be instrumental in bringing victory to Poland. The Polish cryptanalysts were also at home with the ciphers used by the German Army and Navy from 1918 onwards. This comfortable situation for Poland lasted until the Germans introduced Enigma. For several years the Polish cryptographic service struggled to find ways to crack the Enigma machine cipher, but all currently known methods failed. It was then decided to reinforce the department with young men, not hampered by traditional thinking and with a good knowledge of mathematics and the German language. The university of Posen ran a special course on cryptography and this was attended by twenty students who were in their last two years of mathematics. Three of these bright young students joined the Polish cryptographic service in 1932 and already by early 1933, had succeeded in decrypting German messages sent by radio!

It should be realised that the civilian model of Enigma had been on the market for some years and such a machine was in the possession of the Poles. Nevertheless, the military version had several new features and certainly the internal wiring of the three rotors was unknown to the Polish cryptanalysts.

Crucial for the success was the German encipherment procedure at that time in which the Tagesschlüssel (key of the day) also contained the (initial setting) which remained the same the whole of that day. The cipher clerk picked a Spruchschlüssel (message key) of three characters for each message. As mentioned earlier, this threecharacter message key (XFR in the previous example) was keyed in twice, with the machine set according to the key of the day: the resulting cipher group of six characters was sent as the beginning of the ciphertext. This meant that the first and the fourth character originated from the same character of the message key. The same applies for the second and the fifth and the third and the sixth character. The German cipher clerks in those days often used message keys like AAA, ABC, etc., which were later forbidden. Given a sufficient number of messages sent with the same key of the day, this enabled the Polish cryptanalysts to find the message keys and also the plaintexts.

The internal wiring of the rotors was determined in a similar manner. This was accomplished using the fact that keying in the message key twice meant that the rotor on the right moved six steps. The middle rotor moves only after 26 steps of the right one. So there is a chance of 21 in 26 or about 81% that typing in the message key moved only the rotor on the right. The
middle, left and fixed reversing rotor in that case can be considered as a fixed current path. It certainly was not as easy as it may seem from this simplified story (it would be out of place to go into details here, as they are so well explained by $\mathrm{Li}-$ sicki ${ }^{7}$ but the young Polish experts succeeded in finding the internal wiring of the rotor on the right. The three rotors often changed places and so eventually all of them had been in the right position often and long enough to allow their inner secrets to be solved.

As already mentioned, the encipherment procedure was changed in 1938 (initial setting changed with every message, but entered in the clear on the message form) and later that year, a fourth and fifth rotor were introduced. This posed new problems for the Poles. Two methods were introduced to find the rotor settings and plug and jack arrangement for a series of messages. One was a mechanical device called "Bomba" and the other was based on the use of stacks of punched cards.

Lisicki relates how the Germans made a characteristic cryptographic blunder that enabled the Poles to find out the internal wiring of the fourth and fifth rotor. The SD (Sicherheitsdienst) also used Enigma, but the plaintext was first encrypted using a hand cipher before it was submitted to Enigma. The Poles could not read the decrypted Enigma messages and concluded the SD was using a different system, unknown to them. This situation continued until the word eins ("one") popped up in one of the decrypted texts. The Poles realised that the cipher clerk had been given a ciphertext containing the figure " 1 ": as Enigma cannot operate on figures, " 1 " was written out in full and then encrypted. The Poles very quickly succeeded in cracking the hand cipher and from then on the SD messages could be read as well. When the German Army and Air Force introduced the fourth and fifth rotor in 1938 the SD did the same, but without changing the encipherment procedure! That is to say, the SD kept on using a fixed initial setting for a whole day. So there were two different systems used side by side and this enabled the Poles to find out the inner connections of the two new rotors.

Failure by the enemy to stick to the ground rules of cryptography is often the key to success for the intercepting cryptanalyst.

Another failure in the same category as the one just related is for a message to be sent by radio in a relatively simple hand cipher, for instance by a secret agent on enemy territory, and then retransmitting the same message in a higher-level cipher over a radio network. This is a basic mistake that should never be made in cryptography, but it happened in WW II. A third example also stems from WW II. The German commanders had to send in daily reports on the condition of their unit; e.g. logistics, etc. If nothing particular had happened, the commander might send Nichts zu melden (nothing to report). Of course the signal was encrypted by Enigma. If Bletchley Park next day received a message of the same length from that unit and which was known not to be

Fig. 12. Inside the lid of Enigma. From top to bottom we can see the holder for spare lamps. Then a dark green glass for covering the lamps in bright sunlight to improve readability. The white sheet containing instructions for the maintenance of Enigma and a conversion table from letters to figures at the bottom. Finally two spare cords with plugs.
involved in any action, then a good guess might be that the message was again Nichts zu melden. If the guess was right, it would be a simple matter to find the key used. The cryptographical mistake made here is that such short messages should always be stuffed with meaningless characters to increase the length.

We return now to the Polish secret service. With war becoming imminent, the Poles decided to share their knowledge with the French and British Secret Services. This happened in a series of meetings. The British and French each received a Polish-made Enigma as well. The one for the Government Code and Cipher School arrived on the evening of 16 August at Victoria Station, carried by the Frenchman August Bertrand, and it was personally handed over to Colonel Stewart Menzies, the then Deputy Head of the British Secret Service ${ }^{2}$. So when the war broke out a few days later and the GCCS moved to its wartime station at Bletchley Park, it started its operations on a firm base. Not only was it familiar with the strategies developed by the Poles for cracking the Enigma cipher, it also had details of the "Bomba" and an actual Enigma machine.

There still remained a lot of work to be done. To be able to crack a cipher or code, a certain minimum number of messages in that cipher or code is required. Cryptologists call it the "critical mass". The more messages that are sent using a certain cipher, the greater the chance it will be

Fig. 13. Instruction manual for encryption using Enigma.

Fig. 14. Page from the encryption manual showing an example of the Key of the Day.
cracked by the enemy cryptanalysts. It is therefore mandatory not to use the cryptosystem for too long a time. As we have seen, the Germans made changes to the system several times, before and during the war, while Enigma was in use. One such change occurred when the number of rotors was increased from five to eight for

Enigma encrypted signals between submarines in the Atlantic and their home base in Germany. This made Bletchley Park "blind" until May, 1941. On the seventh of that month, a German trawler called München was captured. This ship transmitted weather messages from off the Lofoten. Enigma was destroyed by her German crew, but the instruction manuals for its use fell into the hands of the British. Two days later, 9 May, 1941, an even better catch was made. After having attacked an outbound convoy south of Greenland, German submarine U110 was forced to the surface and Captain Julius Lemp surrendered. A boarding party retrieved intact the eight-rotor Enigma and cipher documents from the submarine. Bletchley Park now possessed the Enigma settings for the next two months. By the end of that period, the "Bombs" at Bletchley Park (developed after the Polish "Bomba") had been adapted to the 336 different rotor positions that are possible with eight rotors instead of the 50 with five rotors. This meant that BP was no longer "blind" to the Hydra cipher, as it was called by the Germans.

Another black-out occurred on 1 February, 1942. On that date cipher Triton was introduced with the submarines in the Atlantic. This meant that a fourth rotor, called "Greek rotor alpha", was added to the left of the existing three rotors in Enigma, increasing the period after which Enigma returned to the same substitution alphabet from 16,900 to 439,400 . No wonder BP was in trouble! It was eleven months later, at the beginning of December, 1942, that the cryptanalysts succeeded in breaking the Triton cipher for the very first time. There were initially long delays in deciphering, but from January 1943 onwards, decrypts became faster and more regular. As already mentioned, another 'Greek" rotor, Beta, was introduced on 1 March, 1943. The progress in the art of cryptanalysts that had been made at Bletchley Park can be demonstrated by the fact that this new cipher was broken into by the twentieth of that same month!

Prof. Rohwer ${ }^{7}$ gives a fascinating analysis of the Battle of the Atlantic. He shows that at each black-out of Bletchley Park, convoy losses increased dramatically. To understand this one should know that the extensive Anglo-American radio traffic with convoys was conducted in Naval Cypher 3, an old hand code that was used for too long and as a result was broken into by the Germans. Grand Admiral Dönitz therefore knew exactly when convoys were to sail and what courses they steered.

Acknowledgement

This article could not have been written without the help from Mr Arthur Bauer, who made his Enigma machine, together with the instruction books, available to the author for inspection and photography.

Mr. Horst Werner, DJ2HN, of Grefrath, Germany, brought ref. 7 to the attention of the author. This book contains the conference papers read at an international convention in Germany in November 1978 under the theme Die Funkaufklärung und ihre Rolle im Zweiten Weltkreig (Radio Reconnaissance and its Role in World War II).

Finally, the author thanks Mr A. R. Crook, who reviewed the manuscript and corrected his Dutchman's English where necessary.
$0 \sim 0$

References

1. F. W. Winterbotham: The Ultra Secret. Weidenfeld and Nicholson, 1974.
2. Ronald Lewin: Ultra goes to war, The Secret Story. Hutchinson of London, 1978.
3. R. V. Jones: The Secret War, New York: Methuen, 1978.
4. Pat Hawker: "Electronic cryptography.

Codes, Ciphers and Computers." Wireless
World, September 1980.
5. David Kahn: The Codebreakers, The Story of Secret Writing. New York: MacMillan, 1967. 6. Whitfield Diffie and Martin Hellman:
"Privacy and Authentication: An Introduction to Cryptography." Proceedings of the I.E.E.E., Vol 67, No. 3, March 1979.
7. Jürgen Rohwer und Eberhard Jäckel: Die Funkaufklärung und ihre Rolle im Zweiten Weltkreig. Motorbuch Verlag, Stuttgart, 1979.
continued from page 43

RCL $12 \mathrm{X}^{2}$ SUM 11
RCL $9 \times$ RCL $4=X^{2}$ STO 12
RCL $10 X^{2}$ SUM 12
RCL $12 \times 4=$ STO 12
RCL 11 : RCL 12=STO 13-RCL 16= \pm
INV $2 n d x \geqslant t$
C
B
2nd Lbl B
2nd If Flg 0
2nd C^{\prime}
2nd D'
2nd Lbl 2nd C'
RCL 14 SUM 5
RCL 15 SUM 0
a
2nd Lbl 2nd D
RCL 14 SUM 5
RCL 15 SUM 0
RCL 2 SUM 1
D
2nd LbID
RCL 4 : RCL $3=x^{2}-1= \pm$ STO $6 \times$ RCL
$1=$ STO 7

RCL $4 \times$ RCL $6 \times$ RCL $1:$ RCL $0=X^{2}$ STO 8
RCL $4 X^{2} \times$ RCL $5 \times$ RCL $1-$ RCL $6=X^{2}$ SUM 8
RCL $7:$ RCL $8=$ STO 7
RCL $4 x^{2} \times R C L 6 \times R C L 7 \times R C L 1: R C L$
$0=$ STO 8
RCL $4 X^{2} \times R C L \quad 5 \times R C L \quad 1-R C L \quad 6=\times R C L$
$7=$ STO 9
$1+$ RCL $8=$ STO 10
2nd A.
2nd Lb|C
2nd If $\operatorname{Flg} 0$
2nd B'
E
2nd Lbl 2nd B
RCL 5 : RCL $17=$ STO 5
RCL $0 \times$ RCL $17=$ STO 6
RCL $3 x^{2} \times R C L 5=1 / \times$ STO 7
RCL $17 \times X^{2}:$ RCL $6=$ STO 8
RCL $17 \mathrm{X}^{2}$: RCL $7=1 / \mathrm{X}$ STO 9
RCL $17 X^{2} \times$ RCL $5=$ STO 10
R/S INV SBR R/S
2nd Lbl E
RCL $0 \times$ RCL $17=S T O 0 \quad R_{1}$ band-
$\begin{array}{ll}\text { RCL } 0 \times \text { RCL } 17=\text { STO } 0 & \begin{array}{l}R_{1} \text { band } \\ \text { pass }\end{array}\end{array}$

RCL 5 : RCL $17=$ STO 5
RCL $1 \times$ RCL $17=$ STO 6
RCL $3 X^{2} \times$ RCL $5=1 / X$ STO 7
RCL $17 \mathrm{X}^{2}$: RCLO $=$ STO 8
RCL $17 \mathrm{X}^{2}:$ RCL $6=1 / \times$ STO 9
RCL $17 \mathrm{X}^{2}$: RCL $7=1 / \mathrm{X}$ STO 10
RCL $17 X^{2} \times R C L 5=S T O 11$
R/S INVSBRR/S
LRN

Input

STO $00 \mathrm{R}_{1}$
STO 01 L
STO $02 \Delta L_{2}$
STO $03 \omega_{0}$
STO 04ω
STO $05 \mathrm{C}_{1}$
STO $14 \Delta C_{1}$
STO $15 \mathrm{R}_{1}$
STO $1610^{0.1 \text { a }}$
STO 17 Z
Δ to $X \geqslant t$. By a bandpass L_{2} must be less than 1.

Forth computer

Abstract

In describing memory and i/o interface circuits surrounding the 6809 microprocessor, Brian Woodroffe introduces more features of his FIG Forth computer in this second article.

The system may be used in partial form. Operating-system and language software exist in eprom, so the computer will work without a floppy-disc drive. Many computers use eprom as a bootstrap to load an operating system from disc, making a disc drive mandatory. Although omitting the disc drive reduces cost by almost half, virtual-memory features of Forth are lost, resulting in a significant degradation of performance. Fewer than one third of the memory devices are essential. Parity-error checking may be omitted. When the system is turned on, it only demands 16 K of ram and as more is added the memory map is changed on line, Table 1 (see over).

Circuit description

Memory. Eproms containing fixed instructions of the Forth machine and M6809 peripherals pose few problems. These devices occupy the top 16 K memory locations because the 6809 reset vector is in this area and decoding is simple using a dual two-to-four-line demultiplexer i.c. (LSI39). Dynamic ram occupies the remaining 48 K addresses from 0000 to BFFF. Logic i.cs used to glue the main items together are low-power Schottky devices, chosen for their speed and low power consumption. Standard t.t.1. parts could be used, except in the timing chain for the dynamic rams and on the microprocessor memory and address buses; nmos microprocessor parts have very low driving capability and low-power Schottky inputs require less current than standard t.t.l.

Dynamic rams consist of an X-Y matrix of capacitor storage cells. Access to a bit (storage cell) is gained by first addressing the matrix row. This address is clocked in by the falling edge of the row-address strobe (RAS) and data from all 128 cells in the row are transferred to row buffers. When the column-address strobe (CAS) is true, i.e. low, the column address on the address pins selects one of the row buffers, causing its data to be passed to the output pin. Timing constraints on these actions are fortunately not stringent relative to the time available in a processor cycle

Multiplexing of the 14 address lines onto the seven address pins is done with an 13242 multiplexer. In this design, writing is carried out by the early-write cycle. Within the early-write cycle the write signal is made true before the column-address strobe acts. When CAS becomes true, data on the data input overwrites that of the selected row buffer. Then when the address strobes become false, data from the row buffers are returned to their res-

by Brian Woodroffe

pective cells, so writing the input data into the X-Y matrix.

Two clocks, E and Q, divide the 6809 processor cycle into four parts. The first quarter of the cycle is used to precharge the rams and as dynamic rams consume most power when the row-address strobe is applied, the selected bank of rams only receives this strobe on the rising edge of clock Q . The address multiplexer is then switched by a delayed Q-clock edge to apply column addresses, leaving sufficeint settling time before the E-clock acts.

During a reading cycle the columnaddress strobe is made true half way through a cycle (rising edge of E Clock) so that data may be made available by the RAS-selected rams, through the LS245 buffer, to the M6809 before its set-up time. All of the rams receive CAS but only those receiving RAS pass data to the bus.

Read cycle

During a writing cycle data is not made available by the M6809 until the second half of the cycle so CAS is delayed until the falling edge of the Q signal.

Refresh generator

Storage cells in dynamic rams, being capacitors, lose their charge so they must be 'refreshed'. Any memory action refreshes the selected row through data being read into the refresh buffer and returned at the end of the cycle. Unfortunately, program flow will not normally refresh all the ram rows in the allotted time of 2 ms and a refresh generator is required.

There are three ways of refreshing rams. In burst refresh, normal processor action is suspended and the refresh generator cycles through all 128 rows (for a 16 K ram) and returns control to the processor for the remainder of the 2 ms . This results in the processor stopping for 128 memory cycles (85μ s at the clock speed used). Such a time lapse is unacceptable in this application for the disc drive can require communication with the microprocessor once every $32 \mu \mathrm{~s}$ during sector read/write operations.

So, distributed refreshing is required, that is, each successive row is refreshed at 14μ s intervals. Distributed refresh generators demand that the processor does not have access to memory while the row is refreshed. The processor may be stopped for this period but a more efficient method is to use a circuit that recognizes when the processor is not using memory and performs what is called a distributed hid-den-refresh cycle. This method was chosen.

The refresh generator divides time into 14 cycle quantums using an LS 163 counter and generates a refresh-request signal once each period ($14 \mu \mathrm{~s} \times 128$ cycles $=1.7 \mathrm{~ms}$). By monitoring address lines $\mathrm{A}_{14,15}$ during the first quarter cycle, the generator knows when the processor does not require access to memory. Having recognized this it generates a refresh-request signal and the I3242 multiplexer places the refresh address on the ram address lines and all row-address signals are set true for a quarter of a processor cycle. During the refresh cycle the column-address strobe is false to inhibit the rams. The address multiplexer advances for the next address and the generator does not demand further refreshes since a flip-flop is set.

It is unlikely that the M6809 will make 14 consecutive memory cycles since all instructions except NOP, SEX and DAA provide non-memory cycles. Should this happen, the refresh flip-flop being reset

Table 1. Example of how the memory map may be changed when more than 16 K of ram is used.

FORTH HEX
SMAXDUP@4000+SWAP!
SODUP@4000+SWAP!
SP! SMAX DUP@4000-SWAP!
RODUP@4000+SWAP!
TIBDUP@4000+SWAP!
-FIRST@DUP@4000 + SWAP !
-LIMIT@DUP@4000+SWAP!
FIRST DUP PREV! USE!
DPMAXDUP@4000+SWAP!
DECIMAL
(allow more data stack)
(move data stack)
(reset data stack)
(move return stack)
(move terminal input buffer)
(move Forth virtual memory buffers)
(IE 'FIRST' and 'LIMIT')
(point virt. memory pointers to virt. memory)
(move limit of dictionary up)
(return to decimal arithmetic)
and the counter carry being set (refresh quantum finished), processor action is suspended by a dummy direct-memory-access cycle which guarantees a non-memoryaccess cycle.

Parity checking

Capacitance used to store data in dynamic rams is so small that naturally occurring charged particles (alpha particles) have a charge great enough to corrupt data should they hit a cell. Improved coatings on dy-namic-ram dies have reduced this effect to give an error rate below $0.1 \% / 1000 \mathrm{~h}$ for 16 K dynamic memories ${ }^{5}$. It is impractical to include error correction in small 8bit memories but parity checking to halt the processor when an error occurs is not.

An odd-parity bit, generated by an LS280 parity checker when a byte is written into memory, is stored with the other eight bits. During the write-cycle the parity-ram data output is in its high-impedance state and the floating EO input is high. The parity device output is clocked into the ram input and correct parity is looked for when memory is read. On reading, the data output drives the parity checker and the error signal is passed to the error latch with the row-address strobe signals. If an error exists, the RAS line concerned is latched, a led indicates which memory bank contains the error, and the processor halts.

Memory speed and drive

Input characteristics of dynamic ram are quite different from those of t.t.l. Ram inputs are capacitive, which especially affects signals common to many inputs like RAS, CAS and WE, and they require little direct current. When driven directly from low-power Schottky t.t.l. these inputs can cause considerable overshoot that can result in exceeding device specifications and longer access times through the time taken

for the voltages to level out.

To reduce ringing, some form af matching is required. Series matching is most appropriate since it does not increase static loading. The ideal driver would produce a slightly under-damped response but because t.t.l. drive characteristics are asymmetric a compromise had to be made in the resistance value. Control signals are driven from LS37 clock drivers to ensure adequate drive toward the 5V rail. Resistance values are not critical for this relatively slow memory and the original even worked faultlessly with no damping resistors and standard LS00 drive.

On analysing the timing requirement of the ram/M6809 interface I noticed that the most readily available 200 ns rams leave a lot of spare time - so much so that these devices could theoretically be run with a 666 ns cycle time instead of the standard lus. This was, of course, tried. Not only was it tried with the faster M6809A processor but also with the standard device. In both cases functioning was faultless. This is not to say that all 1 MHz parts will run at higher speeds but certainly 200 ns access time rams will work at 1.5 MHz . So for the cost of a new crystal the through-put of the system was improved by 50%.

Peripherals

To ensure that 1 MHz peripheral devices such as the 6821 peripheral-interface adapter and the 6850 communication-interface adapter operate correctly, the memory-ready signal (MRDY) is used. Whenever peripherals are addressed MRDY is held false by an LS 122 monostable multivibrator which extends the memory-access time. An M6850 communication device forms the RS232 interface and the clock frequency for it is crystal derived. Currently the 1.5 MHz c.p.u. clock only allows $1800 \mathrm{bit} / \mathrm{s}$ and an external baud generator is an attractive proposition. Both -5 and +12 V supplies are used for
the RS232 interface. Current from the -5 V supply is so low that the RS232 driver has an active current limiter; the +12 V drive is resistive.
Many of you will not have an RS232 terminal and will wish to use a separate keyboard and domestic tv. The keyboard interface will accept any 7bit parallel input signal with active-low most-significant-bit and active-low-going strobe and request signals. Two spare hand-shake lines on the p.i.a. and an output port could form a Centronics-type printer port.
An EF69364A video i.c. provides timing signals necessary for a 625 -line tv; a 96364B device will provide signals timed for 525 -line tv . Control code for the video i.c. is supplied through an LS157 quad two-to-one-line multiplexer and for normal display characters (p.i.a. B $\mathrm{D}_{7}=0$) a fixed control code is set. When control characters (hexadecimal 0 to F) are used the p.i.a. supplies the relevant code through the multiplexer (p.i.a. $\mathrm{B}_{7}=1$) to the EF69364. As the c.r.t. gun scans the screen, the EF69364 selects the character to be displayed from the display ram and latches it into an LS273.
The video i.c. was designed for use with ram that has separate data input and output lines (2101 ram) so the circuit was modified to allow 2114 rams with common i/o to be used. Character-code from LS273 and row information from 69364 is supplied as an address to a character rom (a specially programmed 2716 eprom). Each character position is allocated a $7-$ wide-by-12-high character block.

Referring to last month's article, the signal name at pin 6 of IC_{41} is active low and should read $\overline{\mathbf{R}}$, as should the signal name at the junction of IC_{47} pin 2 and IC_{45} pin 3. On page 57 , pins 13,12 and 5 of the LS175 should be labelled $\mathrm{Y}_{0}, \mathrm{Y}_{1}$ and Y_{2} respectively.
A set of three programmed roms is available from Brian Woodroffe at 632 Queensferry Road, Edinburgh for $£ 23.50$ inclusive. Technomatic (see advertisers' index) will supply all i.cs mentioned in this article.
Disc-drive interfacing is described in the next article.

References

5. E. Westifield, Memory system strategies for soft and hard errors, Wescon '79.

continued from page 48

indebted to Keith Frewin, who wrote the SOFTBOX software, for providing roms 385 and 386.

References

1. P. G. Barker, Data Transmission Between Micros, Electronics and Computing Monthly, 2(5), 1982, 21-25 and 46-49.
2. P. G. Barker, Introducing CP/M, Electronics and Computing Monthly, 1982, in press.
3. A. Osborne and J. Kane, An Introduction to Microcomputers: Volume 2 - Some Real Microprocessors, Osborne \& Associates Inc, California, 1978, Chapter 10, pp29-49.
4. Commodore Business Machines Litd., CBM PET 3032N Professional Computer User's Manual, Publ. No. 320856-3, June 1979.
5. Commodore Business Machines Ltd., CBM PET Series 8000 User's Guide, Publ. No. 320894, 1981.
6. MOS Technology Inc., MCS6500 Microcomputer Family Hardware Manual, Publ. No. 6500-10A, 2nd Edition, January 1976.
7. E. Fisher and C. W. Jensen, PET and the IEEE-488 Bus [GPIB], Osborne/McGrawHill, California, 1980.
8. National Semiconductor Corporation, SC/MP Technical Description, Publ. No. 4200079B, September 1976.
9. 10. Williamson and R. Dale, Understanding Microprocessors with the Mk 14, The Macmillan Press, Bristol, 1980.
1. Small Systems Engineering Ltd., 2-4 Canfield Place, London NW6 3BT, UK, SOFTBOX User Manual, Revision 3, 1981.
2. J. Kane and A. Osborne, An Introduction to Microcomputers: Volume 3 - Some Real Support Devices, Osborne \& Associates Inc., California, 1978.
3. P. G. Barker, Computers in Analytical Chemistry, Pergamon Press, Oxford, 1982, in press.
4. MOS Technology Inc., KIM-1 Microcomputer Module User Manual, Publ. No. 6500-15B, 2nd Edition, August 1976. No. No

Assembly language programming

With the aid of examples, Bob Coates describes further instructions for the 6805 microprocessor. Memorizing these is not important - some instructions are hardly ever used - but being familiar with them will help later.

Instruction ADD adds the contents of the accumulator to the contents of a specified memory location. For example

AE00	LDX	\#0
A613	LDA	\#\$13
D60785	ADD	$\$ 785, \mathrm{X}$
83	SWI	

will add the accumulator to the contents of address 785. As previously shown, this is AE so the result in the accumulator should be Cl after SWI and the C bit should be clear.

Add memory/carry to accumulator, ADC. Analogous to ADD, this instruction adds the contents of the memory location and the carry bit of the condition-code register to the accumulator contents. The carry bit will normally have been set by a previous ADD or ADC instruction. This allows numbers of greater than 8 bit to be added together and is often referred to as being multiple precision.
To demonstrate, the program shown in Table 1 adds two 16 bit numbers by placing the first number in address locations 50 and 51 and the second in locations 52 and 53 then placing the result in locations 54 and 55 . Of the two bytes required for each 16bit number, the most significant is placed in the lower memory location and the least significant above it. Before running the program, place the two numbers to be added in locations 50 to 53. Using 12C4 and 5678 as the two numbers, the result in locations 54 and 55 should be 693C (check using the Picotutor mo function).
The program works by adding together the least-significant digits in locations 51 and 53 first and storing the result in location 55. ADD is used here since the carry bit contains no relevant data, but the bit will be set by the instruction in this case through, the result of adding C4 and 78 being 3 C and a carry indication. Next the two most significant bytes are added together along with the carry bit. Adding 12 and 56 will give 68 but with the carry bit this becomes 69 .

This principle can in theory be extended to add any number of multiples of eight
bits, adding the least-significant byte first and working upward; this is how computers perform arithmetic operations on very large numbers. Correct operation of this program relies on the fact that STA and LDA instructions between the ADD and ADC instructions do not affect the condi-tion-code register. How various instructions affect this register must be taken into account when writing a program. Effects of instructions on the condition-code register are shown in the instruction table and one can see that STA and LDA do not affect the carry bit (C).

by R. F. Coates

Subtract memory from accumulator, SUB/SBC. These instructions, the latter subtracting memory from the accumulator with a borrow indication, operate in a similar way to the addition instructions. With SBC the carry bit is used to indicate a borrowed digit from the previous subtraction step. Two l6bit numbers can be subtracted as in Table 2 and the program may be extended to operate on any number in multiples of eight bits as with the addition program of Table 1. Here the 16bit number in locations 52 and 53 is subtracted from the number in locations 50 and 51 , the result being placed in 54 and 55. For example, subtracting 1234 from 5612 gives 43DE.

Addition and subtraction programs for 16bit numbers using 6800/6809 and Z80 microprocessors are shown in Tables 3 and 4 respectively. These processors have 16 bit addition and subtraction facilities which make multiple-precision arithmetic much faster using shorter programs

These four instructions perform logical operations on data in the accumulator.
AND. Accumulator and memory or an immediate byte are subjected to an AND operation and the result is stored in the accumulator. Bit Z in the condition-code register is set only if the operation results in all zero bits and bit N of the c.c.r. is set if bit 7 of the result is set, i.e., the result is negative.

BIT. Bit test is the same as AND but only the condition-code register is affected; the accumulator holds its original content.
ORA. Accumulator and memory or an immediate byte are subjected to an OR operation and the result is in the accumulator. Bits N and Z of the condition-code register are set or cleared as appropriate.
EOR. Accumulator and memory or an immediate byte are subjected to an exclusiveOR operation and the result is in the accumulator. Bits N and Z are set or cleared as appropriate.

A short example of the AND instruction is as follows.

030	A655	LDA	$\# \$ 55$
032	A40F	AND	$\# \$ 0 \mathrm{~F}$
034	83	SWI	

The operation is clearer when the numbers are converted to binary form.

lst number	0101	0101	$\$ 55$
2nd number	0000	1111	$\$ 0 \mathrm{~F}$
result of AND	0000	0101	$\$ 05$

A bit in the result is only set when corresponding bits in the two numbers are set. If the Picotutor register key is used to examine the registers after running the program, both N and Z bits in the c.c.r. will be clear (represented by a dash) and the accumulator will contain 05 .

Now change the AND op-code in the program to ORA (A4 to AA) and run it again. If a bit in either or both numbers is set, that bit will be set in the result, i.e.
lst number $01010101 \$ 55$
2nd number $00001111 \$ 0 \mathrm{~F}$ result of OR 01011111 \$5F

Finally, change ORA to EOR (AA to A8). If a bit in one number but not the other is set, that bit will be set in the result.

| lst number | 0101 | 0101 | $\$ 55$ |
| :--- | :--- | :--- | :--- | :--- |
| 2nd number | 0000 | 1111 | $\$ 0 \mathrm{~F}$ |
| result of EOR | | | |

CMP, CPX. These instructions compare the accumulator and the index register respectively, with memory. N, Z, and C bits of the c.c.r. are set or reset as appropriate. The operation subtracts the memory content from the accumulator or index
register value but the register is not modified, e.g.

A643	LDA	$\# \$ 43$
A143	CMP	$\# \$ 43$
83	SWI	

loads the accumulator with 43 and 43 is subtracted from it by the CMP instruction. The result of the subtraction is zero and so the Z bit is set and N and C bits are cleared; the accumulator still contains 43.

Two jump instructions complete this section. These instructions are used when the normal sequence of program execution is to be broken and execution continued from some other point.
Jump unconditional, JMP. We have already used JMP to terminate examples and restart the monitor program.
BC80 JMP $\$ 80 \quad \begin{aligned} & \text { jump to monitor } \\ & \text { start }\end{aligned}$
This example uses direct addressing. Extended and indexed addressing may also be used but immediate addressing may not.

AE80	LDX	$\# \$ 80$
FC	JMP	$0, \mathrm{X}$

would have the same results as the first example.
Jump to subroutine, JSR. A subroutine is a separate section of program which may be called from different places in the main program, as expalined in the February issue. The jump part of the operation is the same as for JMP, but the address of the instruction directly after the JSR is stored on the stack so that at the end of the subroutine the program knows where to return to. Examples of this will be given.

Read/modify/write instructions

Addressing modes are different when studying these instructions. For extended and indexed addressing modes, 16 bit offsets are not used although theoretically there is no reason why they shouldn't be (16bit offsets are used on the 6809). But this group is used for modifying memory or i/o locations and since these locations are all below FF on the 6805 , offsets greater than eight bits are unnecessary.

Two addressing modes, inherent (A) and inherent (\mathbf{X}), are used to modify the accumulator or index register rather than memory. The following programs demonstrate all the instructions in this section. After execution the register key should be used to examine the appropriate register and the C bit in the condition-code register if it is affected by the instruction. Ram location 60 will contain the result in the third example.

Inherent (A)

030	A680	LDA	$\# \$ 80$
032	4C	INCA	
033	83	SWI	
Inherent (X)			
040	AE80	LDX	$\# \$ 80$
042	5C	INCX	
043	83	SWI	
Direct			
050	A680	LDA	$\# \$ 80$
052	B760	STA	$\$ 60$
054	3C60	INC	$\$ 60$

05683 SWI
Increment, INC. The three previous examples illustrate use of the increment instruction, incrementing the accumulator, index register and memory location 60 respectively. In the last case memory location 60 is loaded with 80 before being incremented. In all cases the result should be 81 . The condition-code register carry bit is not affected by this operation but if bit seven of the result is one, bit N is set, and the Z bit is set if the result is zero. Changing the first line operand from 80 to FF results in wrap around, i.e. incrementing FF gives 00 and consequently the Z bit is set.

Code for this set of instructions must be carefully written. Direct and indexed modes are represented as expected with the mnemonic in the op-code/mnemonic field and the direct address or offset and suffix in the operand/address field, i.e.
INC $\$ 60$
INC $\$ 60, \mathrm{X}$
but with inherent modes the register representation should directly follow the instruction mnemonic and the operand field left empty, i.e. INCX. A computer assembler will interpret INC X as INC 0,X which is indexed, no-offset mode, and convert the instruction to machine code 7C instead of 5 C .

Further instructions in this section can be seen in operation by inserting them in place of INC in the previous three examples.

Decrement, DEC, is the reverse of increment and decrementing 00 will result in FF. Clear, CLR, results in 00 being written into the specified register/memory location. With complement, COM, the state of each bit in the register or memory location is inverted, e.g.

| | $\$ 46$ | 01000110 |
| :--- | :--- | :--- | :--- |
| becomes | $\$ B 9$ | 10111001 |

Negate, NEG, calculates the two's complement of a number by subtracting the register or memory content from zero, e.g. $00-02=$ FE. Logical shift left, represented by LSL, shifts all bits in the register or memory location to the left, i.e. bit 7 of the number goes into the c.c.r. C bit, bit six of the number replaces bit 7 , bit 5 replaces bit 6 and so on until a zero goes into bit 0 . While trying out this example it may help to convert the hexadecimal numbers to binary form on paper; use different numbers, some with bit seven set, others with bit seven cleared, to see the effect on the condition-code register.

Rotate left, ROL, is similar to shift left but instead of zero being entered into bit zero of the register or memory location, the original content of the c.c.r. C bit is entered. If two ROL instructions are performed bit seven will first enter the c.c.r. carry-bit position and on the next ROL the carry-bit, originally bit seven, goes to bit zero of the register or memory location hence the term rotation. Nine consecutive rotate-left operations give a full rotation and conditions are the same as they were at the start.

Logical shift right, LSR, and rotate right, ROR, are similar to LSL and ROL
respectively but they work in the opposite direction. Arithmetic shift right, ASR, is the same as LSR but instead of a zero entering bit seven, the original bit seven status is retained. Shift and rotate instructions are illustrated in the instruction tables shown on page 64 of Wireless World, April, in the Boolean operation column.
Test for negative or zero, TST, only affects the condition-code register. N and Z bits are set or cleared according to whether the register or memory-location value is negative (bit seven is one) or zero.

Control instructions

Only inherent addressing mode is used with control instructions. Inherent instructions require no operand so they are only one byte long.

Transfer A to X, TAX, duplicates the content of the accumulator in the index register and TXA duplicates the index register in the accumulator, e.g.

A655	LDA \#\$55
AEAA	LDX \#\$AA
83	SWI
97	TAX
83	SWI

In this example the first SWI provides a break after loading the accumulator and index register so that the register key may be used to confirm the operation. Pressing the en key continues the program after the first SWI. Now the register key may be used to check that both registers contain 55. TAX may be replaced with TXA and its operation examined in the same way.
Set carry bit, SEC, and clear carry bit, CLC, allow the condition-code register carry bit to be altered. With the return from subroutine instruction, RTS, if a subroutine is called by a jump or branch instruction (JSR or BSR), the return address is stored on the stack and the stack pointer is moved down by two bytes; the return address is the address of the instruction immediately following JSR or BSR.
A return from subroutine instruction, always the last instruction in a subroutine, causes the stack pointer to return to its original position by taking from it the return address. The return address is placed in the program counter and program execution proceeds. In this way the main routine is always restarted at the correct point even though the same subroutine may be called at different points in the program.
Reset stack pointer, RSP, sets the stack pointer to address 07 F . When the power is turned on the stack pointer is automatically initialized with 07 F , which is the highest ram address in the 6805. Normally, manipulation of the stack pointer is not required.
No operation, NOP, does nothing but use two bytes of memory and take two clock cycles to execute. Despite that it is useful. In precise timing applications, no operation can be used to set a period to within two clock cycles ($1.9 \mu \mathrm{~s}$ at maximum clock frequency) and it can be used to provide gaps in programs under development so that further instructions may be added later.
The last four instructions in this section
concern interrupts. An interrupt discontinues the normal program flow to execute a program section called an interrupt-service routine (similar to a subroutine) and is used when a function outside the normal program requires immediate attention. When an interrupt occurs all the registers are stacked (saved) so that the main program can continue from where it left off after the interruption has been dealt with; an interrupt can occur anywhere in the program. A 'vector' or address of the start of the service routine is taken from an eprom location. The location of the vector is specified by the manufacturer.

Three types of interrupt are possible with the 6805 . As will be explained later, the processor has its own timer that may be used to interrupt programs. Secondly a software-interrupt instruction, SWI, causes an interruption resulting in the registers being stacked and the program counter being loaded with the vector at eprom addresses 7 FC and 7 FD ; in the Picotutor these locations hold the monitor program starting address. When the continue key is pressed the monitor takes the register content from the stack and continues running the program keyed in.
The third type is called a hardware interrupt. If the INT pin of the 68705 is taken low, program execution is stopped after completion of the current instruction, the registers are stacked, and the program counter is loaded from addresses 7 FA and 7FB. These will have been programmed with the starting address of the interruptservice routine. Hardware and timer interrupts may be masked if the main program is too important to be broken off, bit I in the condition-code register indicating the mask status. If bit I is set, any interrupt from the INT pin or internal timer will be inhibited. Interrupts are dealt with immediately if the I bit is clear.

Clear interrupt mask, CLI, and set interrupt mask, SEI, are two instructions that allow the c.c.r. I bit to be altered by a program. Sections of a program that may not be interrupted are preceded with SEI and terminated with CLI.
An interrupt-service routine always ends with a return from subroutine instruction represented by RTI. This instruction is similar to RTS but as well as taking the return address from the stack, RTI also takes the contents of the accumulator, con-dition-code and index registers.

Branch instructions

The power of microprocessors lies in their ability to take one course of action if certain conditions exist or another course of action if they don't exist. Conditional branch or jump instructions allow this by examining bits in the condition-code register. When a specified condition is not true sequential programming continues, but if the condition is true, control is passed to an address specified in the instruction operand, e.g.

	LOOP	LDA
	DECA	\#\$05
	BNE	LOOP
	SWI	

This program loads the accumulator with 05 then decrements the accumulator (DECA) so that it contains 04. Branch-if-not-equal-to-zero, represented by BNE, causes a branch if the last instruction affecting the c.c.r. Z bit did not result in zero. As shown in the instruction table, DEC affects the N and Z bits according to the result of the decrement but other c.c.r. bits are not affected. Only if the result of the decrement is zero is the Z bit set; the BNE branch instruction examines this bit and causes a branch if the Z bit is clear. When the Z bit is set the program carries out the software-interrupt instruction SWI.

Where the program branches to is indicated by the source-code label in the operand field of the branch instruction, here called loop, and the program will branch to the instruction where this label appears in the label field. This is on the line of DECA so this instruction will be executed again, decrementing the accumulator value from 04 to 03 . The branch instruction is again encountered and the Z bit checked and so another branch back to DECA occurs. Looping continues until the accumulator is decremented to zero, resulting in the Z bit being set. Branching will now not occur and the software-interrupt instruction passes control back to the monitor program. Although it means the same thing, this type of instruction is referred to as a conditional jump in $\mathrm{Z80}$ and 8080 microprocessor terminology, rather than a conditional branch.
The way in which the processor is told where it must jump or branch to in machine code has yet to be resolved. With the 8080 this is straightforward; the singlebyte op-code for the jump instruction is followed by two bytes containing the jump address. An additional form for the Z 80 is a relative jump. Motorola processors only have this form of jump.

In relative jumps a single byte following the op-code is an offset value representing the number of bytes to be branched backwards or forwards from the current program-counter position (the program counter points to the instruction after the branch). In the example the branch instruction requires two bytes and the decre-ment-accumulator instruction one byte so
to branch from the SWI address to the address of DECA requires an offset of -3 . Byte two of the branch instruction contains this value.

So far only 8 bit bytes containing unsigned values from 00 to FF (0 to 255 decimal) have been considered. But it is possible to indicate the sign of any binary number using the state of the most-significant bit. In signed binary, 11111111 represents $-127,01111111$ represents $+127,00000001$ is +1 and 10000001 is -1 . Signing eight-bit numbers in this way limits their magnitude to 127 though.

To calculate the address to which a branch instruction must branch to, the signed-binary offset must be added to the program counter after it has been incremented to point to the instruction after the branch. Signed-binary addition of the numbers eight and five is as follows.

00001000	$(+8)$
00000101	$(+5)$
00001101	(sum, +13$)$

And addition of eight and minus five,

00001000	$(+8)$
10000101	(-5)
10001101	(sum, -13$)$

Clearly this is incorrect. To add signedbinary numbers correctly the processor would have to perform extra actions depending on the sign of the number, which would result in valuable processing time being wasted. Representing the signedbinary number in two's complement form solves this problem.

One's complement

In one's complement representation all positive integers are represented in their correct binary form, i.e. +6 is represented by 00000110 . But the number's complement, -6 , is represented by complementing each bit. Each zero is changed to one and each one to a zero so -6 is 11111001 . The addition of +8 and -5 is now
00001000
$(+8)$
11111010 (-5)
00000010 (sum, +2 with 1
carried)
which is nearer but still incorrect.
Two's complements and the ins and outs of branching are subjects of the next article.

Satellite TV aerial alignment

A microcomputer program for field installation engineers to use on site

The coming of direct television broadcasting by satellite is likely to present considerable difficulties for aerial installers. It has been found (for instance, by early users of the Canadian Anik satellites) that positioning dish aerials by hand is certainly possible; but guesswork alone will not obtain the pointing accuracy of 0.5 degrees which is generally accepted as the required standard. In Europe, one interested group took two weeks to locate OTS-2 using blind search methods. Another group depended upon an outside contractor to make North-South markings on the aerial site prior to their own arrival. The markings were eventually found to have a massive error of 15 degrees and repeated observations had to be made to correct it. Other groups, however, have found that a search may take as little as a few minutes if the satellite is a powerful one - such as those in the Soviet Gorizont series. A spectrum analyser may often be the sole means

by N. L. H. Cresdee

of alignment or the primary means of alignment.
A further problem is that it is desirable to align dish aerials to the assigned position of the satellite rather than its actual position. Satellites now in orbit are allowed to drift up to 0.1 degrees from their assigned positions before thrusters are fired to bring them back. Although errors here may not disrupt reception of a satellite transmission they will degrade the quality of the picture.
To align satellite receiving aerials systematically, it is necessary to know the precise position of the receiving site. From this it is possible to calculate the azimuth and elevation of the required satellite. Consulting maps could be a laborious
process, however, for a professional engineer installing aerials on a large scale. An alternative might be the use of a marine satellite navigator. It is now possible to buy one for under $£ 1000$; and in view of the fact that it could be used for several generations of satellites, the engineer might look upon it as a vocational investment. Another possibility is a magnetic compass or a gyro-compass; but for a magnetic compass it would be necessary to make corrections by consulting current lists of angles of magnetic declination. There might be local magnetic irregularies to take into account, such as the electricity board's transformer next door.
The single biggest problem is transferring bearings to the aerial system. If a compact gyro were placed on the aerial plaform and true North located using the gyro read-out, this would probably resolve the difficulty.
When accurate co-ordinates for the recontinued on page 71

Program listing from a ZX Printer. The screen display asks for the latitude and longitude of the receiving site. It then produces a scrolling list of satellites together with the calculated ranges and aerial bearings. From these the user can make a selection.

Microcomputer organ interface and music editor

Alphanumeric entry format for organ music is capable of handling the conventional deviations from the musical score, together with other elements of musical expression. Data representing music played on the organ may also be recorded and edited.

This interface connects a Nascom $2 \mathrm{Z80}$ microcomputer to an electronic organ or pipe organ with electric action, and allows three modes of operation.

Read. Music played on the organ is stored in "data format" within the computer ram (memory requirement about 2 K bytes per minute).
Play. Music stored in data format can be replayed by the computer, with speed and registration changed if desired. Simultaneously, the organ may be played normally, enabling a player to practise duets.
Translate. Music typed in on the Nascom keyboard direct from score using the "entry format" described is translated by the computer into data format. "Pages" of up to 11 lines in entry format can be edited on the v.d.u. and up to ten such pages can be stored for later recall.
Recordings can be edited at various levels in any of the three modes. In particular, any section of a recording in data format can be corrected, deleted, repeated or replaced by a section of another recording, during play mode. The three modes of operation may be interchanged to produce a continuous recording.

Music played on the organ is read from a cascade of 4021 registers (read mode). Data is recorded only at an "event", when the status of a register changes, and comprises the numbe and revised status of the appropriate registers together with the "duration" (the number of frames) between successive events.

Play mode operates the organ via a cascade of 4094 registers. Thus, for example, 24 pairs of registers provide a 192bit-wide bidirectional bus to the organ console. The c-mos registers accommodate a range of console operating voltages.

The computer is interrupt-driven by an external oscillator which defines the frame rate. Connection to the computer is via two peripheral i/o ports.

Software comprises about 5 K bytes written in Z 80 machine code. Some use is made of the Nascom 2 monitor (NAS-SYS

by D. R. Easson

3). In the software listing, the play and read routines are designated AP, the translate routine MC and the edit routines E. Various software manipulations are listed in Appendix II.

Hardware

The circuit has two modes, read and play, set by $\operatorname{RD}(M)$ or $\operatorname{PLY}(M) \cdot \operatorname{RD}(M)$ reads 23 bytes per frame from the 4021 registers via port A. PLY(M) reads 24 bytes via port B to the 4094 registers (the first byte of the 24 is spurious and is lost, but the extra byte allows the c.p.u. output to be timed by FP). The byte counter can be rearranged, in general, for counts of N and $\mathrm{N}+1$, where N is the number of register pairs.

Fig. 1 shows how the cascades of registers convert the eight-bit parallel ports A and B of the Nascom 2 into an 8 N bit parallel interface to the organ console. The electronic organ for which the system was developed uses 12 V switching of a matrix of 1,500 transistor switches for the tone keying, whilst the stop and piston switching is via t.t.l. (part of a piston capture system). The 4094 registers, divided between a 12 V board and a 5 V board, can drive both sets of switches without extra buffers. Diodes prevent conflict between the register outputs and console keying contacts, allowing duets to be played by the organist and the microcomputer.

The serial data transfer is accomplished by signal CP (Fig. 2), from a 4047 astable at about 0.5 MHz . The frame rate is controlled by FP from another 4047. The two oscillators do not need to be locked and FP is given a range of $20-120 \mathrm{~Hz}$ to allow variation of replay speed. It takes about 0.5 ms to transfer one frame of 23 bytes. The speed of the software is such that this could be halved by increasing CP to 1 MHz , but except on a much larger system only a purist would bother about
this. (The BSX20 pull-ups between the boards introduce a delay of about $0.25 \mu \mathrm{~s}$ which could easily be reduced. As it is, the circuit will run up to about 0.7 MHz CP).

The c-mos parts should have buffered outputs, as in the Signetics HE4000B device family, for example. Devices with unbuffered outputs can cause excessive delays.

The circuit is synchronized to CP by 4013(1) when enabled by FP on its data input. Signal CPRB rises half a CP period later and this causes a serial shift towards and into port A (read mode). After eight periods of CP the first byte is in port A

Interface and music editor

- The Nascom 2 or 3 is ideal for this interface but it could be easily adapted for any 280A machine with two parallel ports. A good machine code monitor is helpful.
- Frequent scanning of the computer keyboard in play mode is required for the edit functions, achieved on the Nascom 2 by using the NAS-SYS 3 monitor routine $\operatorname{IN}(D F 62 H)$ as part of the frame output routine.
- Pages in entry format can be saved as a high-level source code, suitable for later re-working. A disc-based system would be more convenient for such use. - Entry format is easy to learn. The two-character note codes (C3 for middle C etc.) are an established standard for organ music. Most of the stop and note value codes are obvious.
- The standard manual compass for organs is now five octaves, C1 to C6 161 notes) on each of two or more manuals; Pedal compass is about $21 / 2$ octaves C1 to F3 or G3 (30 or 32 notes). The organ that the interface was designed for was built to simulate an earlier classical instrument for which its four octave compass would be fypical, but the additional registers could easily be accommodated.
- Two-character codes are converted by a look-up table. A conversion factor is added to or subtracted from the ASCII codes to keep the table reasonably compact. Converted codes are two-byte addresses in the table, the contents of which are the corresponding register and bit numbers.
- The most recent development of this device is a Forth vocabulary which works on a theme in data format to produce polyphonic extemporizations. Some harmonization rules are included.

Fig. 1. Register and control line circuit has 4021 c-mos registers to convert the status of groups of eight contacts on the organ console into bytes transferred to the microcomputer PIO (port A). Similarly, output bytes from the PIO (port B) operate the organ via 4094 latches, so that 23 register pairs from a 184-bit bidirectional


```
4021 PL low for serial shitt, high to load para!le! !asynchronous)
4094 EO enable when high (tri-state)
4 0 9 4 ~ S T R ~ J a t e ~ t o ~ s t o r a j e ~ r e g i s t e r ~ w h e n ~ h i g h ~ ( a s y n c h r o n o u s )
* 2\times49 note keybocrd plus }30\mathrm{ note pedal
* * or as required
```


register, whilst count eight in the bit counter produces count one in the byte counter. Count eight also strobes the first byte asynchronously into port A latch.

Further bit counts are inhibited by $\overline{\text { STR }}$ $\overline{\mathrm{A}}$, and 4058 (B) produces a negative-going STROBE handshake pulse to the Nascom MK 3881 PIO working in input mode (mode I). The rising edge of this pulse activates the interrupt request. The i / o READY line is then reset (low). When the c.p.u. has read the data the READY line is again raised and this sets 4013(2). This enables the bit counter to be cleared on MRA when CP is high. The first CPRB of the next byte is therefore delayed by at least half of a CP period, which ensures that timing is not critical.

When the 23 rd byte has been read into the port A latch, 4013(1) is cleared by the byte counter on CD_{1}. The circuit stays inactive, apart from the clearing of the byte counter by $\overline{\mathrm{FP}}$, until the next frame.

In the play mode, operation is generally
the same except that an extra byte is allowed so that the c.p.u. output can be initiated and timed by interrupts generated by FP. The Nascom PIO (port B) operates in output mode (mode O). In this mode, the output cycle is started by the execution of a c.p.u. output instruction. The first byte read into the first 4094 play register is spurious and eventually lost, but the corresponding READY from the Nascom PIO enables it to accept ST$\overline{\mathrm{R} O B E}$ from the interface. Thus the usual PIO output logic is reversed and the interface requests data from the c.p.u. And with this arrangement the handshake lines are commoned in pairs, as shown in Fig. 2.

The signal which clears the bit counter also forms PLB, which loads the data from the PIO into the port B 4021 after the handshake READY goes high. Signal $\overline{\text { FP }}$ also forms STRPLY which strobes the 4094 play registers into their latches (each frame is held in the latches for one FP period, i.e. until the end of FP).

Data format

The data format is (starting at 1343 or 3343)

FF MM NN ppl qq1 pp2 qq2 . . . FF
and where FF is the frame byte, MM, NN are the most and least significant bytes of the null frame count (NFC) between events (thus duration is represented by NFC +1), pp_{n} are the numbers (singlebyte addresses) of registers to be reset after delay MM NN (delay after the final frame byte is always AA AA), and qq_{n} are updated statuses of registers pp_{n}.
In read mode, each frame defines an event and has at least one set of register data pp qq. Register statuses may be defined more than once during a frame (only the final status will be output when the event occurs).
The null frame count and the frame byte provide a relative time code. Frame byte addresses are used as edit points (see Editing).

Fig. 2. In read and play multiplex control circuit, bytes are defined by the bit counter and the PIO handshake lines, whilst the frame length is determined by the byte counter. Z80A microprocessor at 4 MHz can transfer 23 bytes in about 0.25 ms . Frame rate is equal to the frequency of FP.

Entry format

There are two types of entry. One defines events, which may be any number of notes to be played and/or released, stops to be drawn or cancelled, thumb pistons to be pressed or released (don't forget to release them!). Care is needed not to release notes which are not on - the organ isn't good at playing negative data. (An exception is the entry L for lift which releases all keys and pedals which may be on). And the other defines durations between events in terms of note values.

Events are defined by

- directory character (e.g. P, H, R, T or S for Pedal, Hauptwerk, Rugpositiv, Thumbpiston or Stop respectively)
- two-character note, piston or stop code (e.g. C3, GD or P8 for Middle C, the General Disable or Prinzipal 8^{\prime} respectively)
- further character for black notes to indicate sharp (Z) or flat (])
- final - if the event is a release (i.e. subtract).
Examples
PCl
HC3Z- Release Hauptwerk C3*
RA3] Play Rugpositiv A36
TE3 Press Thumbpiston 3 in group E
SHP8 Draw Hauptwerk Prinzipal 8'
TGD Press Thumbpiston General Disable

TGD- Release Thumbpiston General Disable
L Release all keys and pedals (this is useful but introduces redundant data if the registers are reset in the same frame).
A page may be repeated using ED77 (having escaped from play mode if used by the direct command ".") or edited on the v.d.u. before the repeat if desired.

Durations are indicated by the directory character type ";" and defined by the appropriate note value between events at a rate of 16 or 32 frames per quaver. + and - add or subtract one frame each and thus allow agogic accents. Examples:

$; \mathrm{Q}$.	indicates a dotted quaver (see comment ${ }^{\star}$ below)
$; \mathrm{C} .+++$	indicates a dotted crotchet
$; \mathrm{M}---$	plus $3 / 16$ or $3 / 32$ of a quaver indicates a minim reduced by $3 / 16$ or $3 / 32$ of a quaver

Note values are H, D, S, Q, C, M, R (for semibreve) and B, but dotted breves are not permitted at 16 frames per quaver, nor are dotted semibreves at 32 frames per quaver. *Each group must end with a space. (Elsewhere, spaces are optional between code groups). The number of minus signs must not reduce the duration to zero or negative frames, e.g. $\mathrm{H}--$ at 16 frames per quaver is not permitted. Rests are indicated in the same way.

The end of a page is indicated by ":". This is translated as the final delay AA AA. The appearance of the screen with a two-octave chromatic scale in entry format and all edit indicators is shown in Appendix 2.

Roy Easson, B.Sc(Econ), M.Inst.P., spent the early part of his career at the Royal Aircraft Establishment and then moved to industry, mainly with Standard Telephones and Cables Ltd. In 1970 he joined the staff of the National Research Development Corporation where he has been associated with the sponsorship of projects ranging from the Sinclair flat cathode ray tube to the suppression of noise from gas turbine exhausts by active methods ("antisound"). The activity described in these articles has been recreational.

Operation

The software is entered from the back-up store between locations 0 C 80 and 2000 H . Execution from 0D40 (by typing ED40) displays a series of options, after the first of which part of the program is transferred to the top of user ram (F600-FFFF). The address FFFF is then displayed in the K block position (see Editing section). For each option, type the appropriate single character response. The options are:

1. Play from 1343 or 3343 ? (The lastmentioned allocates 8 K of ram if required for storage in entry format).
2. Play, read or translate?
3. (If play) Manual 1 , manual 2 or both? (If translate) Save or restore? Which leads to:
Save (restore) which page (0-9)?
You may escape from any mode to the NAS-SYS 3 by typing ".". Subsequent execution from 0D40 returns to option 2 above. Save and restore also return to NAS-SYS 3 to allow on-screen editing. Translation into data format is effected by executing from 0D74 for the first page and subsequently from 0D77. Invalid directory entries or duration codes (see entry format section) abort the translation and display the error message ER on the bottom line.
For editing, several memory location addresses are displayed during operation:

Read

- address of the frame byte following the last event
Play - address of the frame byte following the last event (four successive frame byte addresses are scrolled)
- addresses of up to four frame bytes at selected edit points (see later)
- address of the top of a block of data temporarily saved by K (see later)
Translate - address of the frame byte (in data format) at the start of the relevant page (i.e. after execution from 0D74 or 0D77).
Editing during play and read modes is effected by a number of direct commands, summarized in the next section. Software manipulations are summarized in the Appendix.
During the preparation or editing of a recording, data should be saved in the back-up store, at prudent intervals, from address 1340 up to the final address displayed in play mode, plus 2 (the two extra bytes always comprise the duration AA AA, used as an indication to prevent some of the edit routines from chewing up the program). Ten pages in entry format are included (between 140A and 21B9). It is therefore straightforward to continue the translation of a piece from a cold start, some of which is in the back-up store even if it is partly in data format and partly in entry format.

Editing

Entries in entry format can of course be edited under NAS-SYS 3. The user may translate, listen to and edit a page in entry
format repeatedly if desired, using the direct command A (Again - see Appendix I for descriptions of this and other direct commands).

Recordings in data format are edited in play mode by noting edit points (using the direct commands S, 2 and N , aided if necessary by P, I, D, B, F and C). Once the edit points have been noted sections of recordings can be deleted, repeated or replaced by sections of other recordings, not necessarily of the same length, using the direct commands J, M, K and E.
Any part of a recording may be altered or corrected note by note using the note code tables in the program listing and the NAS-SYS 3 M command.

The direct commands for read mode allow a recording to be made in episodes by a player, with rehearsals of or repeated attempts at each episode. (Translate mode can be used for any really troublesome episodes!)

Direct commands

Play mode

Full stop (return to NAS-SYS Monitor)
B Backward jump by about one line, or to start if appropriate
F Forward jump by about one line (protected against end of data field by AA AA)
R Restart from the beginning (or from address set at 1055/6) (MSB at 1056)
P Pause (indicated by Pon screen)
I Increment to next event (including during PorS or 2)
D Decrement to previous event
C Continue after pause
S Slow down to $1 / 3$ speed and note an extra address
2 As for S but with another noted address (address $2 \geqslant$ address S)
N Normal speed (after S or 2) leaving the extra address
K Keep the block of data between addresses noted at S and 2, starting at D000 and displaying address of top of block kept
M Memorize two addresses noted by S and 2 (for use with E)
E Edit. This inserts a block stored by K between two further addresses noted by S and 2. (The "further addresses" may be noted first and memorized by M.) If the two addresses of the insert point are the same, E may be repeated for multiple insertions of the kept block.
J Join between addresses noted at S and 2 the upper bound being set to C 000 (K before is optional but of course without K the intermediate data is lost), see note below.
0 Transfer to read mode starting from the point in the datafield where you leave play mode
5 Introduce irregularity (each duration is incremented, decremented or left unaltered without changing the average speed. Use N to restore to normal. This command provides an indicator on the display).
A Prepare to translate Page Again (sets PDP and CF to start of page, with delay AA AA after the start-of-page address)
Read mode
Full stop (return to NAS-SYS monitor)
R Restart (i.e. try again) from last C unless . is used
0 Transfer to play mode, starting from the address set at 1055/66 (normally 1343 or 3343 as address of first register to be recorded)
P Pause (this disables read mode without returning to the monitor $-\sec \mathrm{C}$ and R)
C Continue after P (see R)
Note If J is used after K but it is then desired to restore the data to the original, set $1018 / 9$ to
displayed block length ($=\mathrm{XXXX}$-D000) 1.s. bit first, set S and 2 to the required point; type E.

Software to operate the interface in read, play and translate modes will be described in a later article.

Appendix 1. Software manipulation

Routines directly executable from NAS-SYS 3
ED40 Initiate play, read or translate modes
ED74 Translate first page in entry format
ED77 Translate subsequent pages in
entry format
E1030 Play mode
EllB0 Read mode
E112A Block transfer to lower address
EllAA Block transfer to higher address
EF999 Clear screen and retitle
Note Block transfer routines are used by the direct commands K, J and E but may also be used independently (e.g. for making room for an additional register change during an event) by setting the scratchpad as indicated:
1010/1 (BB,AA) lowest source address AA BB
1012/3 (HH,GG) highest source address GG HH
1014/5 (DD,CC) lowest destination address CC DD.
Highest destination address is displayed and stored at $1016 / 7$ (1.s.bit first). Block length is stored at 1018/9. Transfers include both of the limiting addresses.

Modifications

- Check or alter PDP: inspect or change scratchpad entries at the following addresses (l.s. bit first);

Play mode 1055/6
Read mode F645/6
Readmode F627/8 (after pause and continue)
ED74 FD04/5
ED77 10A4/5 (as also set by "." from play mode)

- Set date: see MC21*
- Cancel scrolling address in play mode: delete CD 60 FA at $107 \mathrm{~B} / \mathrm{D}$ (Substitute 000000 , see AP32^)
- Enable play mode to operate without routines held at top of ram: cancel scrolling address (see above)
- Cancel decoded PDP in Read Mode: delete CD 6011 at 12A8/A (substitute 000000 , see AP39*)
- Reduce short durations with the direct command S: insert 2B at 12F2 (substitute for 00 (NOP) see E3*)
- Vary size of jump with direct command F : alter number at FEOC (see E6^)
- Vary speed ratio with direct commands S and 2: alter number of 19 s at $12 \mathrm{EA} / \mathrm{FO}$ (one for 2:1, see E3*)
- Vary frames per note in entry format: alter values as shown on MC6*
- Insert routines "clear screen and retitle" after ED40: insert CD 88 F9 at FEA5/7 (don't do this if you want to save pages in entry format), see AP39.5*
- Alter upper bound for direct command J: alter m -s. bit of upper bound address at 100 l (see E5*)
- Make ED74 and ED77 return to NAS-SYS 3: alter 0F08/A from C3 D8 F5 to DF 5B 00 (see MC7 and AP39.5*)
*Numbers refer to pages in the software listing.

Appendix 2 Screen display

```
Nascom Orga, Interface DKE Da/0&/G
400% 3077 3545
```


Programmable panpot

Designed for microprocessor control, this panpot steers a monophonic signal into two channels, depending on the value of a four-bit binary word. This gives 16 soundstage locations. One i.c. is a quad true/complement buffer with resistors added to form a digital-to-analogue converter, and the other i.c. has two transconductance circuits operating as current-controlled amplifiers.

Circuit behaviour shown is for resistor values derived from theory; these have yet to be confirmed as the best in practice This design could possibly be extended to four channels - any suggestions on this would be most welcome.
John Lawson
Cheltenham
Gloucestershire

T.t.l.-to-cmos converter

Output of this circuit for driving cmos devices using a t.t.l. signal swings to within 0.2 V of the 5 V supply rail and will satisfy clock requirements of a microprocessor. The output load of a 7406 is formed by a p-n-p transistor whose base is driven by the inverter-input signal.
Paul Thompson
Department of Psychology
Glasgow University

Frequency-to-voltage conversion

This versatile circuit for frequency-tovoltage conversion at frequencies too low for analogue conversion can be used for frequency-ratio measurements, energy-topower conversion, etc. A clocked shift-register chain sees a logic 1 if the input signal caused a rising edge in the previous clock cycle, so the ratio of 1 s to 0 s in the register, represented by the analogue output, will be proportional to the ratio of the clock and input frequencies
For frequency-to-voltage conversion the clock would be a reference frequency of, say, 1 Hz and the input frequency would be less than 1 Hz . If the register supply voltage is 10 V then each volt at the output represents 0.1 Hz . Resolution is determined by the number of shift-register stages and accuracy of around 99% can be achieved with the circuit shown; precision resistors and a stabilized supply can im-

Binary input m.s.b.			I.s.b.	$\begin{gathered} \text { Gain }(\times 1 / 16) I_{0} / I_{\mathbf{s}} \\ \mathrm{L} \\ \hline \end{gathered}$		
0	0	0	0	0	15	full right
0	0	0	1	1	14	
0	0	1	0	2	13	
0	0	1	1	3	12	
0	1	0	0	4	11	
0	1	0	1	5	10	
0	1	1	0	6	9	
0	1	1	1	7	8	centre
1	0	0	0	8	7	
1	0	0	1	9	6	
1	0	1	0	10	5	
1	0	1	1	11	4	
1	1	0	0	12	3	
1	1	0		13	2	
1	1	1	0	14		
1	1	1	1	15	0	full left

prove this figure
Originally this circuit was designed for energy-to-power conversion with a pulse representing 5 kWh occurring at most once every three seconds and at least once every

Capacitance-to-voltage converter

Designed to allow capacitors to be measured using a digital multimeter, this circuit uses synchronous detection with fet switches and gives good linearity with high noise immunity. Resolution on the 100 pF range is 0.1 pF with a 3 -digit meter. Most digital meters operate with a 50 Hz ramp so the frequency applied to the capacitor-un-der-test is 1000 Hz or 1 Hz to avoid display flicker. Four-terminal connections for the unknown capacitor eliminate stray capacitance effects and a neutralizing control allows nulling, even with no test capacitor connected on the 100 pF range; two standard 50Ω cables of one metre long may be used.
Three i.cs on the left form a function generator giving a triangular waveform with rounded tops. For polarized capacitors and measuring the capacitance of re-verse-biased semiconductor junctions the output signal may be lifted above the zero line using S_{1}. The second part of the circuit forms the measuring amplifier and synchronous detector. Driven through the capacitor, the measuring amplifier differentiates and inverts the ramp giving a trapezoidal output. An inverter is added to give full-wave synchronous rectification. Fet switches are driven by the hysteresis multivibrator and a further inverter provides balanced switching. Three decade steps are set in the measuring amplifier
section and S_{2} in the function generator divides the measuring frequency by 1000 .

Output of the detector is made symmetrical by a potentiometer in the fet drains to stop 2 Hz jumps in the d.m.m. connected to the analogue output. Stray capacitance between the generator and measuring amplifier is neutralized through a 3.3 pF capacitor using the neutralizing control; if need be, the capacitor may be made slightly larger. The same arrangement reduces capacitive feedback of the measuring amplifier. Overcompensation here results in instability and perfect compensation is not achieved because of opamp imperfections and stray feedback but this is not a problem in practice. Final setting is regulation of the generator output using the calibration control and a 1% capacitor on the 100 pF range.

Semiconductor junctions may be measured which makes the instrument suitable for matching diodes for say, diode mixers. Ideally, with a triangle waveform at the input of the differentiator, a normal capacitor will give a squarewave output whose amplitude is proportional to the capacitance value but if a linear voltage-dependent capacitor is introduced the output waveform will have sloping tops (first waveform). After rectification the output is a linear triangle waveform superimposed on d.c. so the voltage/capacitance characteristic can be monitored by connecting an oscilloscope to the wiper of the detector symmetry control. In practice the voltage/-

capacitance characteristic has square-law properties due to field-effect phenomena (second waveform). Diodes are matched when their oscilloscope patterns are the same.
Parallel damping of the unknown capacitor does not influence readings because the synchronous detector is phase sensitive and 90° out of phase results in zero d.c. output. Resulting ripple is harmful on the 1 Hz range but not using 1000 Hz unless parallel damping is too high in which case the detector will overload. This condition is detected by turning the range switch. Wiring capacitance around the range switch should be kept as small as possible.
W. B. de Ruyter

Leiden
Netherlands

Existing technology to speed up cable tv

Three of four draft standards for cable tv are now complete and reasons for delay of the fourth are announced. Speaking at the opening of the Applications of Fibre Optics Conference in London, Mr John Butcher MP junior Industry Minister said "draft British standards for multi-channel downstream (outgoing) PAL-1 tv with sound and teletext, multi-channel downstream f.m.-stereo radio channels and upstream tv signals using PAL-1 have been sent to the British Standards Institute and will shortly be available for public comment".

These standards are drafted for application to coaxial cable systems and according to DoI, systems based on optical fibres can readily meet standards defined for the interface at the head end and at the subscriber's equipment, but additional standards may be needed as optical-fibre technology advances.

Speaking earlier at the press launch of the International Cable and Satellite Television Conference, John Butcher outlined aspects of Government policy without, he said, revealing what is in store in the White Paper on cable tv due in April or early May. He said "We have been urged from several sources to insist on the use of fibre-optic cable, which is a British invention. In the longer term there is no doubt that fibre optics will predominate,
but it is still an infant technology with a long way to go. It needs considerable development work.
"There are no services envisaged in the wideband cable systems which cannot be provided on coaxial cable. If the expansion of cable is to happen it must be funded by commercial interests, so we can hardly insist on optical fibre where it is not economical or has no practical justification. We are supported in this view by the UK cable manufacturers.
"The real argument is about network design - the tree and branch, the system used in the USA, or the alternative approach, the star-switched system where this country is a world leader. The starswitched system looked more flexible and better able to provide the most advanced services, but unfortunately the switches at the heart of this technology exist only in laboratories and in one or two pilot schemes. It is not yet clear that they can be manufactured in sufficient numbers to make switched systems economically viable, given that they may be between a half and one and a half times more expensive than tree and branch systems."

As to the view that satellite broadcasting and cable tv are competitors, Mr Butcher says "I see them as complementary." BT said that it would make the best out of any decision that was made on cable tv and that

Compiled from two-dimensional images produced by scanning-tunnelling microscopy, this picture shows a silicon surface with hills and valleys 0.6 nm apart that have never been seen before. Two rhomboidal cells can also be seen. The technique gives a vertical resolution of $10^{11} \mathrm{~m}$ and was developed at IBM's Zurich Research Laboratory in Switzerland to show surface topographies of solids down to atomic level in three dimensions. Future applications include studies of electronic properties of surfaces, the structure of absorbed molecules, growth, structure and electrical properties of thin overlayers such as oxides and the imaging of magnetic structures.
it was not annoyed that coaxial cable might be used.

The Technical Working Group set under the chairmanship of Dr Eden has not been able to complete draft standards for handling signals used by direct broadcasting by satellite because "it was not until November that the decision was made to adopt MAC-C for UK satellite broadcasting and the decision has led to the need to study the application of this signal over wideband cable systems" says the DoI.

Provision of draft standards for two-way data is complicated by the wide range of such services being developed. Draft standards for two-way data channels "which appear to have the most immediate application", such as the BT Packet Switchstream service, Teletex and Prestel, are expected to appear over the next six months.

Mobile services

The World Administrative Radio Conference for the Mobile Services, WARC-MOB-83, completed its updating task on 13 March after three weeks of deliberation. A main task of the conference was to review radio-regulatory provisions for mobile and mobile-satellite services, last reviewed by WARC 79. New regulations take effect from January of 1985.

Considerable changes have been made concerning distress and safety at sea, mainly with regard to the Future Global Maritime Distress and Safety System (FGMDSS) developed by the International Maritime Organization for introduction in the 1990s. Provisions for frequencies required by this new system have been made, resulting in changes in frequency allocations and regulations concerning distress and safety calls. An emergency position-indicating radio beacon for satellite characteristics of other emergency beacons have been reviewed. Detailed regulatory and operational provisions for the FGMDSS have not yet been introduced and responsibility for the system rests with IMO.

Further changes have been made to accommodate, among other things, digital selective-calling of ships and coastal stations for distress alerts ans traffic control, and the introduction of the aeronautical mobile satellite service.

A larger World Administrative Radio Conference for the mobile services is planned for 1987. Two smaller conferences, possibly early in 1985, will concern Region 1 (Europe and Africa).

Government money for computer research

Government backing for the $£ 350 \mathrm{~m}$ Alvey computer research programme is approved, but with the reservation that all work carried out in industry should receive 50% funding as opposed to Alvey's recommendation that some projects should attract 90% backing. In a statement to the House of Commons on 28 April, Industry Secretary Patrick Jenkin MP said "we have considered this last recommendation closely, but have decided that 90% government funding does not secure sufficient industrial commitment and could lead to the programme becoming divorced from industry's needs."

The report of the Alvey Committee (see Factories of the Future, Wireless World, December 1982) recommends a programme of collaborative research between industry, the academic sector and other research organizations, concentrating on four main areas of 'advanced information technology'. These areas are software engineering, v.l.s.i., $\operatorname{man} /$ machine interfaces and artificial intelligence.

The extent of the Government's contribution to the Alvey project depends on
industry making its contribution and upon the programme's technical progress. Mr Jenkin said, "the Alvey report proposed that academic institutions should carry out some $£ 50 \mathrm{~m}$ of research over five years, and industry the remaining $£ 300 \mathrm{~m}$. The full cost of this to the government would be around $£ 200 \mathrm{~m}$. This money will be provided by the DoI, the Department of Education and Science and the Ministry of Defence. The Department of Education and Science will fund research through the Science and Engineering Research Council, mainly in the Universities. The DoI will provide the major portion of the Government's funds and will carry overall responsibility for the management of the programme"
A new Directorate within the DoI headed by Mr Brian Oakley, currently Secretary of the SERC, will coordinate the programme. Staffed by people from industry and supported by SERC and appropriate Government departments, the Directorate will report to a small supervisory board chaired by Sir Robert Telford, head of Marconi.

Satellite tv from two directions

Two seven-year agreements have recently been signed for use of Britain's first commercial communications satellite - one by the BBC and the other by British Telecom. The satellite concerned, Unisat, is to be used by both companies for tv distribution but on different bases. BBC will use the satellite for broadcast $t v$ on two separate high-power channels - there are only two high-power channels available - and BT will use part of Unisat's telecommunications capacity for distributing cable tv programmes.

The BBC says that Unisat will provide enough power to broadcast to the UK and parts of western Europe and that reception in the UK will be possible using a dish of less than 1 m diameter. Of the two channels available, DBSI will be a subscription channel carrying mainly feature films and DBS2 will have an "international flavour".

Not keeping all its eggs in one basket, BT said that the satellite will be but one of the facilities used by it to distribute tv programmes and feature films to local cable-tv networks. The company will also use the telecommunications channel for video-conferencing and data, facsimile and telephone speech/data transfer. In signing the agreement, Mike Ford, British Telecom International's chief executive for
international business services said "we are looking at ways in which other organizations could use part of our capacity in Unisat." United Satellites Ltd (Unisat) is jointly owned by BT, British Aerospace and GEC.

Unisat, or strictly speaking Unisat 1 , consists of three satellites, only one of which will be operational. A second satellite will orbit the earth on standby and the third will stay on earth as a safeguard. The two space-bound satellites will be launched into a 36000 km orbit during the second and fourth quarters of 1986 but the decision on how to launch the spacecraft has yet to be made; one option is Europe's Ariane and the other an American apparatus called the space-shuttle.

Cable tv white paper

The following are extracts from a statement made by Home Secretary Mr Whitelaw concerning the Government's White Paper on the Development of Cable Systems and Services published on 27 April.
"The White Paper sets out a plan of action for future cable development. Central to this plan is the creation of a new statutory Cable Authority. Work is now starting on the preparation of a Bill to be introduced at the earliest practicable date. The Cable Authority will have two main roles: to award franchises to cable operators for the provision of cable services, and to exercise supervision over those services in the manner which the stress five particular aspects.
"First, pay-per-view. The Government has decided not to follow the Hunt Report in excluding this method of financing cable services. Cable operators have made it clear that they attach much importance to it and we believe that over a wide field, pay-per-view can be allowed without damage to BBC and ITV services and the many viewers who rely and will continue to rely on them. To protect the interests of those viewers, the Cable Authority will have the duty to exclude from pay-perview events customarily covered by BBC or ITV.
"Secondly, that restriction is in addition to the ban which, adopting the Hunt recommendation, we propose on the acquisition by cable of exclusive rights for the great national sporting events, such as the Cup Final.
"Thirdly, advertising. We follow the Hunt report in proposing that the Cable Authority should adopt an advertising code which in essential particulars would follow the existing IBA code. Arrangements for clearing the copy of advertisements would follow broadly the pattern for those on independent broadcasting. On the amount of advertising, we depart from Hunt in preferring to limit advertising on cable, on channels broadly comparable to ITV, to the amount allowed on ITV currently six minutes an hour on average. Channels wholly or mainly devoted to classified or other advertising will however be allowed, and these limits will of course not apply then.
"Fourthly, foreign programme material. Here we intend that there should be from the outset more stringent obligations than Hunt proposed on the use of British programme material. The Cable Authority will be required to see that a "proper proportion" is shown on each channel as appropriate; to work towards a progressive increase in that proportion as United Kingdom production capacity grows; and to report progress regularly to the Government. We are anxious to maintain and develop the strong national production capacity which the BBC and ITV have helped to create.
"Fifthly, the Government is anxious that the Cable Authority should ensure high standards of cable programme services. The same rules regarding good taste and decency as apply to BBC and IBA programmes will apply to all cable channels. There will be no exception for channels with electronic locks. As the White Paper says, so-called adult channels have no place on the sort of cable systems which the Government wishes to see develop.
"Finally, in the period before the legislation is enacted we are anxious to maintain and continue the momentum for cable development, through interim arrangements, of two kinds. First, the Government will be prepared, under existing powers, to authorise a limited number of new cable systems - not more than 12
as pilot projects, each covering a maximum of about 100,000 homes. Projects will be chosen for offering a positive contribution to advanced technology, a comprehensive range of programme services and a capability of interactive services. Secondly, we propose to allow cable relay operators to offer new programme services over their existing systems for a transitional period Where necessary the obligation to relay BBC and ITV services on the cable will be dropped, provided operators offer their customers alternative means of reception
at no extra cost. No application under either of these interim arrangements will be entertained until Parliament has debated and approved the White Paper.
"Mr Speaker, the Government believes that the White Paper offers an acceptable and well-balanced set of proposals. This will give cable an excellent opportunity for development, with the stimulus that this will provide for advanced technology. At the same time they will protect public broadcasting services and those who rely on them. I commend them to the House.

Stereo-sound tv tests - BBC looks again

Following stereophonic-tv test transmissions using a second sound carrier the BBC is looking into an alternative method using digital techniques. Based on the method used for stereo tv in Germany, the twocarrier system transmitted outside service hours toward the end of 1982 (see News, December 1982) was said to be 'workable' but the BBC feels that the digital system might be better
"Preliminary assessments indicate that the digital option could give a better compromise between compatability and ruggedness" says the BBC (ruggedness presumably refers to the digital signal's chances of survival). There's no hurry, though, for the BBC also say that stereo tv sound via broadcast satellite in 1986 could precede terrestrial two-channel sound with television.

Results of the 1982 tests, in which the second f.m. sound carrier is around 7dB below the main sound carrier some 300 kHz away, confirm expectations that
sound-channel crosstalk is not a problem and that patterning caused by beats between the carriers can be kept to a tolerable level. But the method can cause buzzing on some existing receivers regardless of the second-carrier level and this fact seems to account for the not over-enthusiastic statement that "All in all it appears that a system of this type might give a largely satisfactory service, but investigations into alternatives are continuing".

Direct-dial carphones

Paving the way for the introduction of the cellular mobile telephone service in 1985, BT is to supply automatic radiophone sets to allow motorists to make telephone calls directly from 14 April. The company is also extending its automatic radiophone service to the south east in what it calls the

Areas expected to be covered by the $B T$ automatic-Radiophone service before the end of this year. Users of the service can make telephone calls directly from their cars.
first step in setting up a national network.
Much of Britain is expected to be corered by the new service before the end of this year (grey areas on map). Phasing out of existing operator-based carphone services will then begin in these areas ready for 1985. Equipment for Telecom Emerald, as the service is called, will be supplied to BT by Marconi and cost around $£ 2250$. In London, the mobile Radiophone service waiting list is not expected to end until cellular radio gets underway.

continued from page 62

ceiving site have been obtained it is pussible to calculate the required azimuth and elevation figures very rapidly with a home computer. The program presented here for the Sinclair ZX Spectrum (16 K) will calculate values for 33 satellites in about half a minute. The program may be expanded or contracted as required and it could be adapted to run on other computers. The read-out could be recorded by a mini-printer and hard copies given to the customer for future reference.

Computer program

Line 80 is a REM statement to enable the computer to search for the program, which may be kept on a standard C5 cassette. Lines 110 to 125 ask the user to input the latitude of the receiving site in degrees, minutes and seconds. An audible prompt is provided. The figures are converted into radians by lines 130 and 135. Line 140 represents the latitude in its complete decimal form. The procedure is repeated for the longitude by lines 150 to 180.

Lines 900 to 970 define the various
string variables to be used. Line 1020 is a constant used in computing the elevation and range of the satellite; and lines 1030 to 1036 are the various range constants measured from the centre of the Earth. Line 1150 indicates the number of pages of information to follow: a 'scroll?' prompt allows each to be viewed in turn. The names and positions of other satellites may be substituted for those listed in the DATA statements, but the names should be abbreviated if necessary to a maximum length of eight characters to avoid cramping the display.

Lines 3510 to 3530 convert the satellite longitude and the receiving station co-ordinates into radians. Lines 3550 to 3625 compute the azimuth bearing of the satellite and convert it to degrees and the lines following do the same for the elevation. Lines 3660 and 3670 give the range in nautical miles and kilometres and line 3680 displays the complete results.
The program will hold, in practical terms, for receiving points at up to 81° North (or South), or points up to 77° if angles of elevation below 5° are excluded.

It does not take account of the fact that the Earth is not a perfect sphere; however, the most prominent gravity gradients resulting from this are at $79^{\circ} \mathrm{E}$ and $101^{\circ} \mathrm{W}$, neither of which will affect calculations relating to satellites that can be observed from the UK.

Further reading

IBA Technical Review No. 10, An Engineer's Vade Mecum; and No. 11, Satellites for Broadcasting. Independent Broadcasting Authority.
P. J. Rainger and G. J. Phillips. Direct broadcasting by satellite for the United Kingdom, $B B C$ Engineering No. 115, September 1980.

Martin, James. Communication Satellite Systems, Prentice Hall 1978.

Direct Broadcasting by Satellite. Report of a Home Office study, HMSO, 1981.

The I.T.U. World Adminstrative Radio Conference 1977. HMSO.

Wilson, R.J.P. Land Surveying. Macdonald and Evans, 1971.

Using the sun

Since the earliest days of radio the major problem for installations in remote locations or intended for mobile or portable operation has been less the generation of the radio-frequency power, whether by spark, valve or transistor, than economic provision of the basic electrical power.
Disposable and rechargeable batteries and even fuel-cells; hand, pedal, wind, water, petrol, diesel generators; thermoelectric generators, gas or solid fuelled; small nuclear generators, etc: all have been used, but all tend to impose limitations of cost or weight or logistics, or reliability. The main thrust of current effort is towards further exploitation of solar power, both for space and terrestrial applications, despite its inherent limitations when used in day/night situations.
While conversion efficiencies are gradually improving, most recent developments are aimed at new fabrication techniques to reduce cost compared with high-purity single-crystal silicon. Although initially amorphous and semicrystalline photovaltaic devices provided lower conversion efficiencies, recent developments are beginning to reverse the situation. One major attraction of amorphous silicon is that large-area cells can be fabricated.

Matsushita Electric have developed a new screen printing process which is claimed to be half the cost of Sunceram 2 solar cells and provides a conversion efficiency of 12.8 per cent.

In laboratory work, the American company Semix Inc claims to have developed semicrystalline silicon devices with conversion efficiencies of 17 to 18 per cent, equivalent to the maximum figure for singlecrystal silicon (more typically 12-13 per cent) and compared to about 10 per cent for thin-film amorphous-silicon. Again, this fabrication technique should, it is claimed, halve the cost of photovoltaic diodes.

A different approach to solar energy, still at an early stage, is photo-assisted electrolysis of water with the aid of semiconductors. Two recent developments could make this technique a serious rival to the photovoltaic silicon cell: better semiconducting photoelectrodes and improved treatment of electrode surface to stabilize it against deterioration. The renewed interest in photoelectrolysis has been led by Bell Labs who are responsible for several of the key inventions.

For terrestrial applications, solar generators are ineffective from dusk to dawn unless used to keep charged large-capacity storage batteries. The UK is at a disadvantage, compared with some countries, in annual sunshine statistics and, perhaps more importantly, the average hours of
peak sunshine. Both the IBA and BBC have experimental solar-power systems for low-power television relays, but in each case including a wind generator. The IBA installation at Bossiney, Cornwall includes a solar-array providing some 780 -watts in full sunlight, and has functioned satisfactorily for over 18 months.
In New Zealand, the Broadcasting Corporation of New Zealand (BCNZ) began using photovaltaic generators, in conjunction with storage batteries, for low-power tv transposers as early as 1976. Both BCNZ and the US Department of Energy have reported some failures with silicon encapsulated panels, mainly due to green spot corrosion between cells, although with some failures of individual cells. However the storage batteries have presented rather more reliability problems than the 30 -watt solar array. BCNZ admit that the batteries have sometimes run down during winter. They had been assured by local inhabitants that the area chosen for the first installation was ideal for solar power; only later did they discover that the location was notoriously subject to heavy fogs and had the local nickname of "Little Siberia".
Practical use of solar generators for recharging batteries for military manpack h.f. Clansman transceivers is currently being evaluated by the British army with American-fabricated silicon solar cells in Plexiglass-protected arrays designed by Tactical \& Navigational Systems Ltd. Two 12 by 9 inch panels can charge 28 V batteries at 400 mA in bright sunshine falling to about 200 mA in dense cloud. For tactical or infiltration communications advantages of solar generators are the absence of noise and their "invisibility" to infra-red target sensors etc.
J. M. Osborne, G3HMO, of the South London Science Centre, recently reminded me that what is believed to have been the "world's first" sun-powered transmitter/receiver system was used successfully by him as long ago as September 1954 when with a single pointcontact transistor as a crystal-controlled oscillator and a two-transceiver receiver he made contact with amateur stations a few miles away on 1.8 MHz . Power came from an array of 16 selenium photo cells which provided just 4.5 volts at about 3 mA .

Chip receivers

The trend towards packaging the entire heart of radio receivers on to a single chip continues. For paging receivers, including the selective-call facilities, at least two manufacturers have adopted directconversion techniques to overcome the difficulty of forming i.f. bandpass filters
directly on the chip. However a new i.c. device (Mullard/Philips TDA 7000) retains the superhet approach but with the unusually low i.f. of 70 kHz , permitting the use of simple resistance-capacitance i.f. filters that are integrated on to the chip. A feedback technique reduces wide-deviation, broadcast-type signals ($\pm 75 \mathrm{kHz}$) to a more manageable $\pm 15 \mathrm{kHz}$ deviation. Apart from the device, a complete receiver requires only one tunable resonant circuit, 14 ceramic capacitors and (for loudspeaker output) an audio amplifier. It is claimed that receivers for f.m. broadcast, two-way or paging applications can be made small enough to fit into a wrist-watch, pen, calculator or key ring.

The bipolar TDA7000 is suitable for carrier frequencies between 1.5 and 110 MHz , and has some 280 integrated circuit elements. With 4.5 volts, consumption is 8 mA with the audio section able to deliver 70 mA into a 22 kilohms load. A lowervoltage, lower-consumption version (3-volt nominal) is promised soon.
Rather more orthodox is an alternative device (TEA5570) intended for a.m./f.m. domestic or car radios featuring very simple switching (one d.c. contact to ground) between a.m. and f.m. For a.m. signals, the device incorporates a doublebalanced mixer suitable for h.f. reception to 40 MHz .

The 13th Montreux

Technical sessions planned for the 1983 Montreux television conference (May 28 to June 2) put much more emphasis on "round table" panel discussions than in the past, with fewer individual papers to be presented. The sessions reflect current topics of interest with emphasis on cable tv networks and home terminals, 12 GHz direct broadcast satellites, high definition and enhanced tv systems, digital studio and recording systems. Many of the papers offered have been designated "supporting papers" and will be published in the conference book. The organisers list some 175 firms participating in the exhibition. Sunday, May 29, is to include a series of six high-definition tv demonstrations from six European broadcasting organisations SSR Switzerland; ORF Austria; SFP France; TSS USSR; BBC UK; and RAI Italy.

Figures issued recently by BREMA underline the remarkably buoyant state of the tv and video market with a record 2.934million colour tv sets delivered to the UK market in 1982 (2.57 -million in 1981) including 571,000 teletext type sets predominantly UK made. Video recorder UK deliveries in 1982 at 2.235 -million (1981 1.035 -million) even exceeded US sales.

Syledis and 432 MHz
The problem of spectrum sharing between pulsed radio-navigational and radar signals and communications and broadcast signals has existed for many years. Loran on 1.9 MHz has now been phased out in the North Atlantic (although an experimental sea-surface radar uses this frequency off the Welsh coast). The Russian "Woodpecker" over-the-horizon radar continues to follow the m.u.f. up and down the h.f. band. In recent years there has been increasing mutual interference between radio amateurs using the 432 MHz band and the Syledis system of precise position location which functions over an extended u.h.f. range by means of tropospheric scatter propagation. Syledis, developed by Sertel, has been proving very attractive for North Sea oil and gas field operations, including seismic surveys, platform installation, pipe-laying and other sub-sea installations and inspections. These are all operations that require accuracies of about ± 5 metres at up to 200 miles from land, considerably greater accuracy than is normally provided by Decca Main Chain and Pulse 8 systems.

Syledis coverage is roughly twice line-ofsight, using beacon equipment that can be installed on the platforms. Although a hy-perbolic-mode receiver was introduced in 1981, the usual mode of operation is direct range/range measurement with beacons switched on by the mobile unit when a fix is required.

The system began to be used in the North Sea about 1977-78 and in 1979 it was decided to establish Syledis chains covering the northern, central and southern areas of the North Sea. The Home Office designated 431 to 434 MHz for the North Sea operations, primary frequencies being 432.563 MHz (central), 432.513 MHz (Southern) and 432.463 MHz (northern) with secondary frequencies $432.383,432.303$ and 432.144 MHz .

In the southern sector, the Dutch PTT first authorized the use of 432.563 MHz but later, following mutual interference with radio amateurs, changed first to 408 MHz , where further problems arose, and then to 437.5 MHz .

British radio amateurs have access, but only on a "secondary" basis, to 430 to 440 MHz (with a number of restrictions). Not only are they obliged to accept the broadband Syledis interference, which unfortunately is mainly in the weak-signal, longdistance 432 to 433 MHz sector of he
band, but also since Syledis is a "primary user" they have an obligation to avoid using the six frequencies listed above for the North Sea chains, where transmissions could cause interference.
Syledis is clearly a system that will stay and expand. The Home Office has rejected an RSGB request to change the "secondary" status of British amateurs or to allocate different frequencies to Syledis.

Telecoms history

Everyone interested in the development of technology will find exhibits of real interest in "Telecommunications - a technology for change" galleries on the first floor of The Science Museum in South Kensington. The new galleries, opened on March 15 by Prince Charles have been made possible by financial support from STC. This year marks the centenary of the setting up of a small London office of their original parent company, Western Electric. The new exhibits, however, range widely and are by no means a "com-pany-sponsored" type of display. It covers selectively some 150 years development, the pre-Morse electric telegraph systems of Oersted, Wheatstone and Cooke, the whole span of telephony, radio, television and data transmisssion.

One notes nostalgically the gleaming brass and ebonite of early radio and cable, early magazines including a Wireless World cover for February 1915, wartime equipment such as the German airborne E10K (FuG10) and the British time-divisionmultiplex microwave No 10 set as well as early and current (Yaesu) amateur radio equipment, including the National 1-10 super-regen v.h.f./u.h.f. receiver of about 1936. A National h.f. HRO receiver however is dated as "circa 1935" which would apply to the original HRO-Senior but not to the HRO-MX exhibited. This used the 6.3 -volt metal valves and was a 1940-44 model. A German "suitcase" clandestine transmitter-receiver appears to be an early wartime model similar to the model used to illustrate a leaflet showing the police the appearance of German equipment. It would be extremely interesting to know its history since it could well have been the set left at Victoria Station in 1939 for Arthur Owens ("Snow").

It was by using the equipment meant for Owens that the "Double-Cross" operation was initially set up and lasted throughout the war, with virtually the entire German spy network controlled by the British Security Service.

Here and there

An Amsat-UK question on home computer ownership to its 1500 members produced over 300 replies. Three models ac-
counted for almost 50 per cent of the computers: Acorn-BBC Model B (61); Sinclair ZX81 (60); and Sinclair ZX-Spectrum (31). Other models that reached double figures were: E.A.C.A. Genie (19); Dragon Data "Dragon" (16); Commodore Pet (14); Nascom 2 (10); and Tándy TRS80 (10). The total of 316 home computers represented some 30 different models from 24 firms plus 5 homebuilt units.
John Graham, G3TR, a former president of the RSGB and a pioneer of British air traffic control (licence number 13), has died, aged 75.

The 80 -strong Bromsgrove club is to operate a 24 -hour station at the Foxlydiate Hotel, Tardebigge on June 21 with the special call GB1BOY to mark the first birthday of Prince William. It is the first time a local club has been authorized to use the GBl prefix.
A new h.f. beacon on 10.144 MHz has been set up by DARC at Norden, West Germany specifically to provide information on auroral propagation conditions on v.h.f. It will operate in A1A mode daily from early afternoon to late evening. Transmissions will include a series of long dashes, 20 second dashes indicating no auroral observed, 10 seconds when auroral propagation is expected.

In brief

Over 1500 attended the 1983 National VHF Convention at Sandown Park, Esher, an increase of about 300 on 1982 . . The San Marino prefix is now T77 instead of M1 or 9AI ... The reciprocal licensing agreement made between UK and Rhodesia has recently been cancelled by the Zimbabwean telecommunications authorities . . . A new six-metre beacon, ZSISIX is now operating from Piketbere near Cape Town on 50.945 MHz (16 watts power to ground-plane aerial, 807 metres above sea level) . . . An Amateur-Television exhibition organised by the British Amateur Television Club is being held at The Post House, Leicester on Sunday, May 22, 1983 and will include demonstrations of fast- and slow-scan and narrow-bandwidth tv and the BATC ourside-broadcast unit, trade and book stands etc . . . A Malta " 9 H " group of v.h.f./u.h.f. enthusiasts have organised a 144 MHz contest for the period June 1 to June 15 with the possibility of Sporadic E contacts with UK amateurs ... The Danish Society EDR have their 1983 summer camp about 10 km from Grenaa, July 9 to 17 . . June mobile rallies include: June 5 Spalding; June $13 \mathrm{El}-$ vaston Castle, near Derby and HMS Mercury, near Petersfield; June 19 Skelmanthorpe, near Huddersfield; and June 26 Longleat.

PAT HAWKER, G3VA

Judgment and prognosis

Abstract

Modern physics has suffered from 50 years of domination by mysticism, in the belief that the success of the statistical quantum mechanics provided evidence of the soundness of the Copenhagen "quantum theory". Once that myth is exploded the achievement of a simpler, more realistic, physical theory of matter becomes a possibility. Surely it is worth a try?

The classical theories of matter and mechanics have been demonstrated by experiment to be incomplete when applied on the microphysical scale. The misnamed "wave mechanics" is a disciplined calculus of probabilities of a particular kind, appropriate to the prediction of particle motion on a statistical basis from given initial conditions, and it is not a physical theory in the true, accepted sense. The indisciplined, non-physical wave theory of matter, as expressed in the Copenhagen doctrines analysed in the series, has been thoroughly disproved, is not credible, and should be rejected. Thus we physicists now discover to our surprise, interest, horror, or shame, depending on our temperament, that today we do not possess a fundamental theory of matter on which we can rely.

Wanton disregard of the scientific method, leading to its replacement by uninhibited mathematical speculation, enabled the insidious philosophies of Copenhagen to take root in modern physics. The wave theory of matter excuses its many obvious and abject failures by means of a dogma of its own transcendental correctness, more after the manner of a religion than a science. Students are actually taught that "for fundamental reasons" its basic precepts cannot be tested by experiment, and that it is in some way improper to ask questions about fundamental matters. Science must henceforward be content with statistical descriptions of physical events, because on its own admission the One True Faith can provide no explanations of them: they are to be accepted as miracles. The cheerful evasion of logical rules, disdain for concepts and conceptual models, and complete subservience to ma-
thematical formalism, are symptomatic of our present disease.

When Michael Faraday began his life's work electricity was mysterious and magnetism a separate mystery. Today one is surrounded instead by all-pervading, mystical "waves", by an indeterminate Nature, and, worst of all, by a general attitude of acceptance of the logical contradictions which have followed on

by W. A. Scott Murray B.Sc.Ph.D.

inevitably from indisciplined thinking. This widespread, uncritical acceptance can be overcome only by a conscious effort of will; yet given the will to recover, our present problem seems neither more nor less difficult than was Faraday's. His approach was that of the true scientist, carefully and systematically clearing a path through a jungle of mysticism. His understanding of Nature violated no principles of logic and became as sound as could be achieved before the discovery of the electron. Let us emulate him. Experimental test must be the arbiter. We have seen the disastrous consequences which have followed from believing otherwise: the present-day conceptual obscurity in the fundamentals area has been very largely man-made. We have been warned.

A few simple, key experiments are asking to be done, all of them relevant to the practical verification of the more obvious consequences of the quantum
hypothesis. Naturally this writer would be delighted to see results which confirmed the general line of argument as presented, for the route which has been mapped out has the advantages of simplicity and directness. We might already be very nearly home. But there is no cause for dismay if we are not; one has no reason to expect one's guesses to be right first time. The important point is that experiments of this kind should now be performed and their results studied with care and an open mind. One cannot predict the outcome of any one of them, since the questions embodied in them have not been asked in quite this form before, but one can predict with confidence that a fresh approach in this area will lead to a succession of invigorating surprises. Nature has a habit of responding to sensible questions, even though her response may not always be quite what we expected. That is why natural philosophers throughout the centuries have remained dedicated men.

What, then, constitutes a sensible question? The current confusion in our fundamental theory and thought is so great that we cannot tell whether or not any question is "sensible" until it has been put to experimental test. Thus the existence, unresolved, of the duality paradox in light tells us that this is an area in which we do not know all the answers beforehand. Such experiments are long overdue. It is not just a matter of deciding between the rival wave and corpuscular theories of light, because without substantial modification neither theory can meet the demands of previous experiments. The line taken in the fourth article (Wireless World, December 1982) was a compromise but a consciously biased one. It carried the
photon hypothesis to a conclusion and faced the consequences of so doing: "If light consists of photons but behaves like waves, then here is a possible mechanism and these are the results to be expected from our proposed experiments". It may be that the concept of a discrete photon is completely false, in which case we must look elsewhere for a truer concept. But whatever the truth of the matter may be, we shall never go forward if we do not ask such questions.

We are probably even further from the truth in our conventional concept of the nature of matter, because the Copenhagen doctrines have been even more strongly developed, and accepted, with respect to matter than with respect to light. Indeed, their dogma flatly forbids us to ask questions about the nature of matter; to do so would overstep the competence of the Quantum Mechanics and therefore be "improper". Consequently, as I remarked earlier, we are today entirely without a fundamental theory of matter: the nearest thing we now have to a conceptual model of an electron is the Copenhagen "wavepacket", a thoroughly-disproved and misleading flight-of-fancy and (although perhaps no more fanciful than the mathematical electron of Dirac, that foresees its own future)! That this state of affairs should have been allowed to persist for the past 50 years does not speak too well of the performance of our professional leaders - the so-called "scientific establishment" - over those same 50 years. We desperately need at least some theory of microphysical matter, preferably one that we can believe in

What form would such a theory be likely to take? It would seem that it must acknowledge the essential granularity of microphysics which is so clearly indicated by experiment, and that in consequence it may not involve, except perhaps by way of macroscopic approximation, the old fieldtheory concepts of spatial continuity or of "waves". Im short, it must be a true Quantum Theory from the outset, rather than an illogical amalgam of continuity and discontinuity. Likewide, bearing in mind what we have discovered about the difference between inanimate physics and animate metaphysics, we may also require it to be a Physically Realistic theory, strictly consistent both externally and internally with the conservation laws: no more "virtual processes" and non-physical working parameters, please! There is much to be said for returning to older, firmer grounci and this time completing, rather than superseding, neo-classical mechanics; that is, accepting concepts which are postPlanck but pre-Copenhagen.

The crux of the matter is one's attitude of mind. Consider the following dictum:-
"The continued success of the wavemechanics proves the soundness of the Wave Theory of Matter, of which the wavemechanics is the mathematical formulation."
That statement expresses the currentlyaccepted, "received" view. It seems to be an axiom (self-evident truth) until one notes that although the statistical quantum mechanics is capable of providing superbly accurate predictions of the measurable re-

"Sandy" Murray retired from the Scientific Civil Service in 1982. Having served in the Royal Navy during the second half of World War II, he took a first degree with honours in physics at Manchester under P. M. S. Blackett and a second in radio astronomy. In the course of obtaining the first UK radar echoes from the moon at Jodrell Bank, he discovered the Faraday rotation of radio waves in the ionosphere. He joined the Royal Radar Establishment in 1954, where the most enjoyable of his tasks was designing, and for ten years directing, the 45ft Malvern satellitetracking radar, all of whose activities were at the frontier of unmanned spaceflight. That project itself was one consequence of a joint experiment with the Post Office, in which the first-ever transatlantic satcom signals were received in England via Echo 1; its other consequence was the Goonhilly Downs station.
Thus Dr Murray, although a lifetime professional physicist, has never been an academic. The subject-matter of this series has been under development steadily and in detail ever since his undergraduate days, but it is only in the past few years that he has found enough spare time to consolidate it. He believes that the job needed doing, but that in the nature of things it could only be done by an informed outsider.
sults of scientific experiments, the Copenhagen quantum theory or wave theory that apparently underpins it is, frankly, not credible as a theory in physics. Here in one sentence we have two contradictory aspects of current thought, one very positive, the other very negative, as far apart as the concepts of waves and particles. It is important to understand what this contradiction really means, so let us take a topical example.

At the time when this article goes to press there is much excitement among physicists, because it is thought that Dr Alain Aspect in Paris, working with Professor Bohm of Birkbeck College, London, may at long last have resolved a parados that was first mooted by Einstein, Podolski and Rosen (E-P-R) in 1935. According to one report, Aspect's team "has proved that quantum theory is right and relativity theory is wrong". The short answer to that claim is that it is unfounded: Special Relativity theory is not actually under test in such experiments, because in them nothing physical is ever
required to move at or faster than the speed of light. (I find it amazing that people who should know better go on ignoring this simple, fundamental point, but ignore it they do, and in so doing they happily perpetuate the contradiction we are now examining.)

E-P-R experiments are no more than two-particle variants of Heisenberg's "reduction of the wave-packet", which as I have previously suggested is not really a puzzle at all (Wireless World, March 1983). The story went like this, you will remember. Since you know - and don't ask me how you know, ask Heisenberg - that only one photon is involved in your experiment, and if you have already detected a photon at one place, then you can deduce for sure that neither you nor anyone else will be able to detect that same photon elsewhere. Such an obvious deduction doesn't seem all that clever, but Heisenberg introduced imaginary " ψ-waves" to explain it in his own peculiar way, and found himself left with an apparatus full of ψ-waves when the real photon was detected. Getting rid of those time-expired ψ-waves proved embarrassing to those people who believed in them and helped to sort out the metaphysicists from the physicists, in this case the Bohrs from the Einsteins.

In the E-P-R case we are concerned with the behaviour of closely-related particles, such as the pair of identical photons that radiate away from an electron/positron annihilation. Experimentally, presumably because of their common origin, it is found that if one of these photons has the property " x " or " y ", so has the other. It follows that if I have detected one of them and found it to have been an "x", I can tell my colleague on the other side of the lab. that his photon was an " x " too. Again that doesn't seem to be particularly clever; no prediction is involved, and no physical action is postulated between the photons. But Bohr argued that by the in flight act of observing my photon I have tampered with a ψ-wave system which is common to both photons - and that in doing so, by some kind of remote "action", I have altered the physical behaviour of my colleague's photon. Einstein et al disagreed, and used Copenhagen's own "quantum" arguments to prove their point in a famous thoughtexperiment. Dr Aspect and his team now hope to support Bohr by demonstrating a physical action that travels faster than photons. Question: what physical action?

What it amounts to is this. As formulated, the statistical quantum mechanics does not acknowledge the existence of any physical mechanism that could cause a physical event to take place - anywhere. Therefore, although its mathematical operations seem in some as-yet unexplained way to be correlated with phenomena that occur in Nature, they cannot be concerned with causes. Nevertheless, physical science could very reasonably be asked to explain that correlation, which is an observational fact. (It is simply not good enough to assert that photons will be detected somewhere "because the proba-bility-amplitude for detecting photons there is greater than zero". Television sig-

nals still don't reach my roof aerial because of Maxwell's equations!) What the quantum mechanics actually can do, without violating any old conservation laws or even overriding the much-maligned but ancient human faculty of common sense, is to quantify the precision of our knowledge about natural events. It does this very well indeed. But every attempt to attribute a capability for physical action to its mathematical "operators" leads straight into absurdity, so consistently that it cannot be due to coincidence. That is the evidence.
Now the idea that the quantummechanical "wave function" ψ does not in fact describe the behaviour of microphysical entities, but only the limits of human knowledge of their behaviour, is anathema to every quantum theorist for reasons that are not difficult to understand. While sympathising, one should not allow such sensitivites to stand in the way of progress. The positive indications are just as significant as the negative ones. For example, the field-theory type mathematical formulation of the quantum mechanics is well suited to handling the transmission within its field of the imprecision of knowledge a metaphysical quantity which is distributed and continuous in space and time. So that aspect at least of the theory's success can readily be explained: "probability" dissipates into space and time exactly like a wave-system! ${ }^{\star}$
The inverse aspect is also worth examining. The master-texts of the quantum mechanics, the Schrödinger equations, explicitly incorporate the conservation laws
of classical physics. That is their link with physical reality. And then, as a byproduct of their original "wave" ideas - which are no longer necessary or relevant - they superimpose upon these laws of motion certain variations or "spreads" which correspond to the essential indeterminacy of physical measurements. That makes sense, too, as a description of our knowledge. Yet, if one subtracts out the indeterminacy (on the ground that one is now seeking to evaluate physical facts, rather than the limits of our knowledge about them), it seems that something more than the classical laws may remain, concealed within the "quantum" formulation. What is that something?

Specifically, in what systematic, underlying way do the experimentallyverified predictions of the quantum mechanics - an interestingly small proportion of all its "predictions", by the way - differ from those of updated neoclassical physics? (Surely in the 1980s we can stop comparing our newest, tentative, exploratory ideas with Victorian electromagnetic theory?) My guess is that the difference between neoclassical physics and "quantum physics" when properly reconciled will be found to be very small indeed, but that every one of the concepts revealed as differences between them will turn out to be fundamental and tremendously important. These differences will represent or embody the laws, principles, and physical forces, at present unknown and unsuspected by us, in accord with which the real world of microphysics operates.

With these thoughts in mind I have looked again, critically and very carefully, at places where the experimental evidence of microphysics diverges from the classical mechanics of Galileo and Newton, only a few high points of which have been mentioned in these articles, and the following are my provisional findings. I have encountered no justification for the cur-rently-established view that the fundamental workings of Nature are mystical and necessarily incomprehensible by mankind. The law of causality would seem to be obeyed straightforwardly by all inanimate matter; the Copenhagen myth to the contrary arose out of a confusion of thought that can be identified. The striking phenomenon of quantisation (type two), as it appeared in Bohr's original quantisation of the atom, occurs much less frequently than is commonly supposed: maybe it predominates in four places, maybe five, in all microphysics. It has nothing to do with indeterminacy or "probability", but on the contrary it is a precise process. I believe it to be explainable generally by postulating the existence of a powerful short-range
\star Howbeit, it is a wave-system of a very unusual kind. The method of transport of "probability" (in the form of $\psi \times \psi)$ through a Schrödinger field - according to Schrödinger's own mathematics - is not that of wave-propagation, but of flow. Accepting that, his analogy is every bit as good as Maxwell's. But the "flux" in an electrostatic field is not in physical motion as is the water in hydrodynamics; such theories are not explanations of Nature, but analogies that happen to employ similar mathematics.
force, which is almost certainly allied to the known "strong" force of nuclear physics (whose law may not be negative-exponential with distance), and which is to be superimposed upon the operations of classical long-range electric and magnetic forces rather than to replace or supersede them. This proposed "quantum" force would seem to be in some way cyclic in its nature, and to be associated intimately with the dynamic mechanical structure of material particles.
Such concepts can be provided with substantial support on both theoretical and experimental grounds. Much of the crucial experimental evidence is already to hand, requiring only reinterpretation, while more evidence is there for the gathering, given the will to gather it. It is a question of attitude of mind. Then the concepts need to be put together, to form a theory - a realistic quantum theory - in which the proposed quantum force would be a physical force, not a metaphysical force, and the electron dispensing it would be a real, physical entity, not a ghost. We would then have to deal with physical theories, not miracles. So why do we not simply accept that the elementary particles of physics really are particles, not waves, and get on with the job?

The question of the nature of matter and radiation, which lies at the core of fundamental physics, is but one facet of a much broader problem in natural philosophy. Since the crisis has two levels I conclude on a more general note. It is probably no accident that the great reaction away from realism in physics had its origin during the post-war period 1925-1935, that same decade during which European music, art and poetry also kicked over the traces of their classical disciplines and entered a phase of irrationality from which they are only now beginning to recover. That context may help to explain the aberration, but it does not excuse it. All the indications explored in this series support the view that the Copenhagen myths, although undoubtedly propounded by their originators in complete sincerity, constitute one of the biggest hoaxes of self-delusion of the twentieth century: and that we have not only allowed ourselves to fall for them but have continued in them, fascinated by their mystique while in our hearts knowing them to be nonsense. We really have no excuse for this, today.

MN

AT AES 8

Rather grandly we thought that we must try to catch the 'spirit' of the exhibition, to look for trends and test the health of the electronics industry. After visiting each stand in turn, the general impression was that there were a lot of switch-mode power supplies and membraneswitched keyboards. There was little indication of any specific trend apart from the obvious ones; integrated circuits are getting even larger, microprocessors are getting into more diverse applications. Many of the exhibitors seemed to be sitting on their laurels, or have not chosen to launch new products at the AES. However here are some exceptions
Several new opto-electronic products were on display at the AEG-Telefunken stand particularly led bargraph displays These include a control i.c. and require only a supply voltage and an analogue input voltage to operate. WW300

Low cost metal-film resistors, and various multi-turn trimming potentiometers were featured on the Allen Bradley Electronic's stand. WW 301.

Among the standard 19in racking systems offered by Alusett UK Ltd, were some new cooling fans mounted to fit into the racks. One-unit high assemblies can draw $90 \mathrm{~m}^{3}$ air per fan to give optimum cooling performance in the minimum space. WW 302.

New to the Ambar Components Ltd catalogue were some Fujitsu 64 K cmos eproms which are available at only $£ 4.98$ each (as long as you buy one thousand). WW303

Up to 5,000 2 -input gates can be incorporated in the 3 -micron family of semi-custom gate arrays from AMI Microsystems Ltd. They have also produced a 16 -bit integrated work station for j.c. development.WW304

A range of switch-mode power supplies, based on standard p.c.b. sizes, are manufactured by Power Products in Youghal, Ireland. The multi-output supplies offer a claimed efficiency of greater than 75% and may have overvoltage, crowbar or power foldback protection. Particular attention has been paid to isolating the input and output circuits by separating the tracks on the p.c.b.s. The supplies are available in the UK from
Amplicon Electonics who also can provide supplies which fit into the

WW 320

WW 323
available space in a product.WW305

Astralux were displaying an improved point-to-point wiring pen for the Quick-Connect system The features which are claimed to give more reliable and faster wiring are the provision of positive location for the wire which passes through an eye in the top of the pen; the system allows the operator to see that the wire has engaged properly, and the head of the tool provides tactile feedback to prevent the user from pushing too hard Astralux also manufacture data acquisition reed relays and market telecom jacks and sockets. WW306

Cetronic make a wide range of mains interference suppression filters, and wound components

WW 302
and are now offering to design and make filters, chokes, hand-wound toroids, r.f. and ferrite-cored transformers to a customer's specification. Cetronic
Components Ltd. WW307

Compstock were very proud of the latest edition of their catalogue, with passive capacitive and resistive components from Matsushita, Allen, Bradlev, STC, Filmcap, WIMA and Union Carbide. WW308

Another range of switching power supplies, made in the UK, come from Coutant. They offer a standard ML range of multi-output supplies, and the SL 1 to 1.5 kW range. They can produce a prototype for a supply not already available, in seven days. WW309

The Datacapture data acquisition range has been expanded to include the Thermalog which can monitor 16 thermistors with $\pm 0.2^{\circ} \mathrm{C}$ accuracy. The Digilog input data logger has 48 parallel binary inputs, four 12-bit counter inputs, two 24 bit counter inputs and four optoisolated external trigger inputs. Both units include software for display, read and write routines. Datacapture Ltd. WW310

A wide range of keyboards, including the aforementioned membrane keyboards were on display at the Cherry Electrical Products Ltd stand. Emphasised was their willingness to customdesign keyboards. WW311

EEV's stand featured Lucid liquid crystal displays of both the wisted nematic and the dye phase change variety. There were a number of custom l.c.ds and a 5×7 matrix display suitable for many applications. Also on display was their latest c.c.d. tv camera of use for industrial, security and robotic applications. English Electric Valve Company Ltd. WW312

Miniature loudspeakers with Mylar diaphragms are newly produced by G. English Electronics. They have a stated frequency response of 20 to 20 kHz with 30 and 100 mW versions. They can be incorporated into headphones, portable receivers, domestic and office audio sound reproduction systems. G. English also had Mylar capacitors and were offering to make up cables for interconnecting equipment to any required specification.WW313

Among the vast array of l.s.i. circuits from Ferranti (anything from a t.t.l. circuit to a 16 -bit microprocessor, as well as all the custom-designed u.l.a. facilities) what caught our attention was the ZN415, a single chip radio which
only needed six external components to receive mediumand longwave transmissions and drive headphones. Now all we need is an f.m. version with a stereo decoder - all on one chip, of course! Also on the Ferranti stand was a $31 / 2$-digit digital voltmeter i.c. ZN 451 which could be used with a signal conditioning circuit to remove zero errors and give readings with $l \mu \mathrm{~V}$ resolution There were also a number of new telecom i.cs including the ZNPCM3 a single channel coder/decoder that has digital filters, time-slot assignment capability and operates from a single 5 V supply all within a 28 -pin package.WW314

Electrically alterable roms that can be changed a word at a time were featured on General Instruments Electronics' stand; also new to their catalogue was a voice synthesiser module and the PIC1654 microcomputer which has a built-in 512×12-bit rom, on an 18 -pin chip. This is said to be especially suitable for control management. WW315

Gresham Powerdyne Ltd have extended their range of power supplies to include a number of open-frame switch-mode supplies as well as variable output supplies and power products in DIN cassette and Eurocard
format. WW316
Harris-MHS have signed an agreement with Intel and are producing the 16 -bit cmos 80 C 86 microprocessor which rose to fame through its use in the IBM micro.WW317

Several new ranges of switches were on show at the Hamlin Electronic Europe Ltd stand, particularly a range of miniature solid state switches, Mini-Mos, which use v-mos circuits and opto coupling to give high-speed switching with 2.5 kV input-tooutput isolation; all within a 6-pin d.i.1. miniature package. WW318

Recording instruments are appropriately the speciality of the House of Instruments (Anglia) Ltd, who offer more than 20 oscilloscope models, flat bed and strip chart recorders, as well as a wide range of meters and signal generators. On their stand, they featured the Houston Omniscribe strip chart recorder which uses a direct pen-drive servo that improves servo response and eliminates gearing. Versions are available for one or two channels, automatic pen lift, remote chart control, imperial or metric versions and multiple span. Charts are 297 mm wide and up to 30 m long.WW319

WW 305

WW 307

WW 319

WW 309

WW322

WW312

WW 324

Up to 512 input or output circuits may be controlled with the Omron MIR programmable controller which has an integral keyboard for programming with 26 different program instructions. The input/output modules may be selected from a wide range which includes a-to-d and d-to-a converters and fast counters. A typical system with 112 input/outputs which may be mixed control and data recording modules, and with 4 K -words of eprom program costs less than $£ 1,800$. IMO Precision Controls Ltd. WW320

International Rectifier announced at the Show additional ranges to their Hexfet series of power mosfets. A low profile TO39 series which conforms to British and American military specifications. The four-pin d.i.l. mosfets are now rated at up to 200 V . They may be stacked end-toend to make up arrays of switches in automatic test equipment, or to drive displays and solenoids.WW321

A new range of push-button code switches, including a miniature switch with a built-in display, was on display at the IVO Industries Ltd stand. IVO have also announced a microprocessorbased control unit, the NP 100 which may be used for monitoring, calculating and recording as well as controlling machinery. WW322

Noted for their range of variable filters, which has now been expanded to include a number of computer-controlled Butterworth, linear phase and elliptical filters, Kemo Lid have used their expertise in filters to build a lowfrequency communications receiver. The Metcom receiver operates in the 0.1 to 100 kHz band and it boasts a resolution of $\pm 1 \mathrm{~Hz}$. The receiver functions as a frequency-selective voltmeter with variable bandwidth, and -3dB bandwidths of $250 \mathrm{~Hz}, 1 \mathrm{kHz}, 4 \mathrm{kHz}$ and 8 kHz . Output s / n ratio is typically 60 dB .WW323

New from Marconi Instruments was a 'true-RMS' voltmeter which was microprocessor controlled to give direct digital readout of voltage signals between 5 Hz and 25 MHz . Its autoranging capability allows it to measure voltages from 2 mV to 700 V and it offers a choice of V , dBV and dBm units. For p.c.b. manufacturers, they were offering an automatic testing station which could point out faults in tracks or components and highlight the faults on a v.d.u. display of the p.c.b. while retaining a full history of each board in the computer memory.WW324

In our next issue

Community radio has no fixed frequency allocatiors as yet but could be accommodated by low-power transmitters sharing frequencies on a grid system s milar oo that forcellular radio telephones, according to a study by Norman McLeod.

In a subject that can

 provoke heated argument, often from deep-seated prejudice, M. B. Eutler argues for representation by mixed logic anc the abandonment of the fixed convention of positive and negative icgic.
Growth in home

 computing underlines the need for a reliable low-cost means of transmitting data by telephone. Des Richards describes a 300 baud full-duplex modem that can be used in auto-answer mode.
On sale 15 June

CONVERSATION

One of the criticisms frequently aimed at television, and even at old fashioned steam radio, is that potted entertainment in the home has killed the art of conversation. If this art implies some specially intellectual type of discourse, I can only say I'm glad it's dead but I doubt if television killed it.

But, if the "art of conversation" just means talking to each other, I wonder what kind of families these critics belong to. Take almost any family group not watching telly. Are they chatting away? No, they've run out of something to say; so Mum is knitting, Dad's puzzling over the Sunday Telegraph crossword and everyone else has found something to do. Then Dad remembers that "Last of the Summer Wine" is on BBCl and switches on the telly. Mum then remembers that variety show on ITV, and we immediately have a lively discussion about which programme to watch.

Even when this is over there will be regular comment about the programme as it progresses, usually timed to kill the punch line of a tv comic's joke, to mask some vital dialogue in the play you are watching or cause any distraction from any serious programme that may be showing.

If you should be watching television in company and a particularly talented singer or instrumentalist appears in the programme, a casual remark that you appreciate the talent can ruin the whole enjoyment. Everyone agrees with you and collectively gives you a complete account of the life of the artiste - marriages, illnesses, sons and daughters, accounts of performances - until the performance is over. And you wish you had kept your big mouth shut. I expect I'm one of the worst offenders.

I see no sign that television is killing conversation. On the contrary, it is conversation that is killing television - unless, of course, the programme material is so poor that it is not worth mentioning, and then everyone keeps quiet.

ANYBODY SEEN MY VIDEO?

Eddy Spinks says that most of his customers have videos at home; so he's going to make a video about his firm's revolutionary microprocessor-controlled chip frying machine for them to show on their tellies. He was also telling me about his company's splendid security system, whereby the security guard can keep an eye on any location in the plant by simply watching it on the video.

He's a bit of a "Clever Dick", Eddy Spinks. He knows how to use modern technology. He's not too particular about the use of technical terms, and there are thousands
like him; but what do they think a video is? the programme, the v.c.r. or the c.c.t.v. system?

Mind you, "video" is a word that was being misused by people who should have known better long before the likes of Eddy Spinks ever heard it. I used to think it was an adjective, applied to a signal carrying visual information. We referred to a video signal to distinguish it, for example, from an audio signal. By inference, we then referred to "video frequency" on the basis that the video signal occupied a significantly wider bandwidth than the audio signal.
And then the word was used very carelessly even in technical circles. Any old wideband amplifier would be described as a video amplifier whether it was used in a visual display application or not. One famous manufacturer even produced a "video oscillator", and an electronic counter by another manufacturer was equipped with a "video amplifier" that was really a pulse regenerator and not an amplifier at all.

Perhaps, then, we shouldn't be too hard on Eddy Spinks; even though the word "video" is not a noun. I'm not going to bother what a video is. I've just illicitly recorded the Peer Gynt suite on my audio, and I'm going to listen to it.

PICTURE LANGUAGE

There I was standing in the radio and television department of the John Lewis department store, quietly watching the snooker on about a dozen television screens, when I was suddenly accosted by an elderly woman who demanded to know, "Which is the volume control?" It was a mistake to ask me. The John Lewis radio and television department is staffed by exceedingly well-mannered well-dressed Asian gentlemen, who would have been pleased to answer her question. I, on the other hand, am a boorish, scruffy European, and I did not take kindly to being asked in a somewhat impatient manner what I considered to be a damn silly question.

However, as I pointed out the volume control on one of the receivers to the lady, I realised that the question was not quite so silly as it seemed at first. On our old valve colour telly - and I daresay on her old valve colour telly - the names of the controls were spelled out in plain English. The volume control was marked "volume", and the fact that it also included the on/off switch caused no confusion to anybody. The picture controls marked "contrast" and "brilliance" were also quite familiar. I must admit that controls marked "chroma" and "hue" were a bit confusing - chroma controlled the colour saturation and I'never did discover what the hue control did. Then, of course, there were the channel selector push buttons, and the only confu-
sion there arose from the discrepancy between the number of buttons and the number of available stations; this is even worse on a modern set.

The controls on the modern all-solid-state colour television receivers in the John Lewis radio and television department are not nearly so simple. There seems to be a conviction among designers of all commodities that ordinary members of the public can no longer read and write. Plain words are being abandoned and little symbolic pictures are used instead. Even the easy ones are not always so clear. One is sometimes unsure of that picture of a little gent unless there is a picture of a little lady to compare it with. So what chances does the designer have in drawing pictures of abstract concepts such as the meaning of television receiver controls?

Apart from lots of channel selector buttons, most modern television receivers seem to have only four controls. There is a control identified by a picture of a paddlewheel and another with a picture of a partial eclipse of the moon. These are, of course, the brilliance and contrast controls, although you cannot be sure which is which. Then there is a çontrol with a picture of three vertical sausages. This is actually the colour saturation control - we have to use this picture because ordinary people would not understand the meaning of a technical term like chroma. Finally there is the volume control that our lady in the shop was looking for; this is denoted by a picture of a wedge of cheese.

On reflection, the surprising thing is the. way in which most of us fully accept and understand these funny little symbols, which bear very little relation to the concept that they are intended to describe. The old adage that a picture is worth a thousand words doesn't seem to apply to the pictures on the control panel of an average tv.

DAWNE INSTRUMENTS \& ELECTRONICS
Shields Road, Bill Quay, Gateshead. NE10 ORS
INSTRUMENTS BY POST

Cash with order please.
Price includes delivery and VAT
(qty) INST 1 at $£ 59.50$ each $£$ (qty) INST 2 at $£ 17.25$ each $£$ (aty) INST 3 at $£ 36.51$ each $£$ (qty) INST 4 at $£ 7.48$ each $£$ (qty) INST 5 at $£ 14.95$ each $£$ (qty) INST 5 at $£ 16.67$ each $£$ (qty) INST 6 at $£ 100.62$ each $£$ (qty) INST 7 at $£ 44.28$ each $£$ (qty) INST 8 at $£ 50.02$ each $£$

TOTAL $£$

I enclose cheque/postal order to cover cost of the instruments and carriage.
I wish to pay by Visa/Access. Please charge to my account.
My card number is

A selection of Test equipment available from Dawne Instruments \& Electronics

1. Global DP1 Digtal Pulsar Hand Held Pulse Generator Pulse width TTl $1.5 \mu \mathrm{sec}$. \pm $30 \% \cdot \operatorname{cmos} 10 \mu \mathrm{sec} \pm$ 30%. Rise time 100 n sec Fall time $\Pi L<500 \mathrm{n}$ secs cmos $<8 \mu \mathrm{sec} @ 1$ megohm pulse current 100uA. £59.50
2. Giobal Protoboard 100. Ideal for Prototyping and custom Circuit Applications. $£ 17.25$
3. Global LP. 1 Logic Probe Hand Held trouble shooting Instrument. TLCMOS Application Memory Facility use up to 50 sec . 10 MHZ

Circuit Powered. $£ 36.51$ 4. HM 101R Multimeters. 11 ranges covering $A C$ and DC Volts/Current and OHMs Input 2000 OHMs / Volt Complete with Test Leads. £7.48
5a. HM 102R Multimeter. 18 ranges covering $A C$ and DC Volts/Current OHMs and dB's. Input 20,000 OHMs/ Voit. £14.95 b. HM 102BZ, as 102 Plus Audible Continuity Buzz, and 10 amps Current. $£ 16.67$ 6. KM 450 Temperature Meter. Range $-30^{\circ} \mathrm{C}$ to $450^{\circ} \mathrm{C}$. Digital Display. $1^{\circ} \mathrm{C}$
resolution. Price includes surface Probe and Battery. £100.62
7. HC601 Digital Multimeter. 26 Range push button covering AC/DC Volts/ Current. OHMs, $3^{1 ⁄ 2} 2$ Digit 0.6% D.C. Volt Accuracy 200 hour battery life. Complete with Battery and Test Leads. £44.28 8. MIC3300A Digital Multimeter. 20 Ranges Rotary Switch 3½ Digit 0.8\% covering AC/DC Volts/ Current Resistance Diode Test. 10 AMP Current Range. £50.02

WW - 071 FOR FURTHER DETAILS

LOW DISTORTION AUDIO SIGNAL GENERATORS

Also available in kit form and alternative versions, i.e.: battery or mains. With or without frequency meter.

Literature on these units, R.F. Sig. Gen., Function Generators and many other instruments is available on request.

TELERADIO ELECTRONICS, 325 FORE STREET, LONDON N9 OPE
Telephone 01-807 3719 Closed Thursdays

METAL FILM RESISTORS
$1 / 4$ Watt, 1% tolerance, 3 p each. 89 Values, E24, see left. Minimum order f20. Minimum 10 pcs per value. VAT, P\&P incl.
 £25.30
SPECIAL 'POP' PACK 100 pcs: $100 \mathrm{R}, 1 \mathrm{~K}, 4 \mathrm{~K} 7,10 \mathrm{~K}, 47 \mathrm{~K}$, $100 \mathrm{~K}, 1 \mathrm{M} .50 \mathrm{pcs}: 330 \mathrm{R}, 470 \mathrm{R}, 1 \mathrm{K5}$, $2 \mathrm{~K} 2,3 \mathrm{~K} 3,22 \mathrm{~K}$. Total $1000 \mathrm{pcs} . £ 28.50$. One of each
pack $£ 50$ only ORION SCIENTIFIC LTD - 16 Orange Street - London WC2H 7ED

Versutower:
 A range of telescopic towers in static and mobile models from 7.5 to 36 metres with tilt-over facility enabling all maintenance to be at ground leve!.

Designed in accordance with CP3 Chapter V: part 2: 1972 for a minimum wind speed of 85 mph in conditions of maximum exposure and specified by professionals world-wide where hostile environments demand the ultimate in design. quality and reliability.

Suitable for mounting equipment in the fields of:
Communications
Security surveillance - CCTV
Meteorology
Environmental monitoring
Geographical survey
Defence range-finding
Marine \& aero navigation
Floodlighting
Airport approach lighting
Further details available on request.

Strumech Engineering Limited,
Portland House, Coppice Side, Brownhills, Walsall, West Midands WS8 7EX, England.
Telephone: Brownhills (05433) 4321. Telex: 335243 SEL G.

NEW AND FREE FROM GSC.

NEW an exciting range of projects to build on the EXP300 breadboards.
NOW anybody can build electronic projects using "Electronics-by-numbers", its as "Easy as A, B, C with G.S.C1'

FREE project

MUSICAL DOORBELL OF THE 3RD KIND You've seen the film, now haunt your visitors with the tune!
Each time the doorbell is pushed the eerie tune plays out, then switches off to conserve battery power.

HOW DO YOU MAKE IT.

Our FREE project gives you clear "step-bystep" instructions. For example "take
Resistor No. 1 and plug it into hole numbers B45 and 847'
"Take IC No. 1 and plug it into hole numbers E35 to E42 and F35 to F42, (pin 1 on the IC goes into F35)"
"Take. . "Well! why not "clip-the-coupon" and get your F REE step-by-step instruction sheet and your FREE 12 projects with each EXP300 bought and your FREE catalogue and.

EXPERIMENTOR BREADBOARDS

The largest range of breadboards from GSC.
Each hole eidentified by a letter/number system
EACH NICKIL SILVER CONT ACT CARRIES A LIFE-TIME GUAAANTEE.
All modulas construction means that any Experimentor breadboarc can be 'snap-locked' together to build breadboarcs of any size.

The 'one chip' breadboard The one chip' breadboard
Takes B, 14,16 and up to 22 pin IC's Has 130 contact points including 2 bus

Exp350 The 'beginners. breadboard' For limited period you can have FREE Numbers' PROJECTS

Exp3u0

The most 'videly bought' breadboard Don't miss out on our 'NEW AND FREE' projects
They can by built on the EXP300 They can be built on the EXP300

EXP600

The Hobbyst microprocessor' board
EXP650
The one choo microprocessor' board
EXP4B
Snaps on'fyur extra bus bars
P85
The ultimate breadboard kit
PB100
P100
The most ki for the least money

NEW AND FREE FROM G.S.C. 24 HOUR SERVICE.
Tel (0799) 21682 with your Access, American Express, Barclaycarc number and your order will be put in the post immediately.
TO ORDER JUST CLIP THE COUPON.

Experimentor Breadboards	Unit Price inc. $P \& P+15 \%$ VAT	Quantity Required
Exp 325	E3.16	
Exp 350	£4.83	
Exp 300	¢8.05	
Exp 600	¢9.48	
Exp 650	f.5.75	
Exp 4B	£3.73	
PB 6	£13.80	
PB100	¢17.53	
NAME .. \|		
ADDRESS		
I enclose cheque/PO for f ...		
Debit my credit card No..		
Expiry date		
Please send free catalogue: Tick \square Dept. 7P		

GSC Unit 1. Shire Mill Ind. Estate Taltephone (0799) 21682. Telox 817477. Dept. 7P

AUDIBLE WARNING DEVICES

Besson) Solid state Banshees, Cybertones, Solotones, Bleeptones, Minibleeps, etc Delivery ex-stock. Singles supplied. Send for lists Wirewound Resistors (Ostorne) 5w 7w $11 \mathrm{w} 17 w$ from f 10.60 per 100 Cartridge Fuses (Beswick) Anti-surge. Quick blow Ceramic from £3.80 per 00. Carbon film resistors $1 / 4 \mathrm{w} 5 \%$, 50 per 900 (min. per value), $1 / 2 \mathrm{w}$ 5% f1 per 500 (min. per value), $1 \mathrm{w} £ 1$ per 100 (min. per value). Polysty rene Caps, Various $£ 1$ per 200 (min. per value). Send or phone for lists of values available
Marker Sleeves: Pvc, silicone rubber, neoprene, etc., from $£ 3.80$ per 1,000. Elma range of 'Class' Collet knobs and accessories. Crimp terminals small or large quantity, competitive prices. Pcb self-adhesive guides 185 mm wide lengths to your requirements. Smoke and heat fire alarms (20 only) robust 1.5 kgs . 240 v , f21 each. All prices quoted are plus carriage and VAT (15%)

Write, call or phone (0732) 851345
 NOVAPRODUCTS (APB Ltd)
 Crystalate Works, Golden Green, Tonbridge, Kent TN11 OLH

TEST EQUIPMENT

```
Tek. CA Plug-in
```

Takk. 7313 100 MHz Storage Main Frame
H.P. 7870 Plug ${ }^{-10}$. 6920 Meter Calibrators.

Pecker 5000 A Eprom Programmers - as now
Solartron A203 DMM AC
AD-YU 406 H Phasemeter
Tek. Type 109 Pulse Generator
ek. Type 109 Pulse Genera
Fluke 8000 A 312 digit DMM
Fluke 8600A $4 / 2$ digit DMM
E.H. 132LPulse Genarator

Avo Model BMk. 5 - as new
Avo Model 8X Panclimatic.
Avo Model
Avo Model 8 Mk. III
Ever Ready Avo Case
Rotronics 150 KHz Sine/Sa. Sig. Gen
Telequipment DM64 Storage Scope.
Systron Donner 625 A8 Digit 50 M Hz Timer/Counter

Racal Dana 9514100 MHz Countir IEEE - as new
Systron Donner $773444 / 2$ digit DMM IEEE - as new
Singer Gertsch Synchro Standard
Synchro Bridge
Phase Angle Vol
MESL. 12.4 to 1 BGGHz Sweeper
Radiometer SMG1 Stereo Generstor
H.P. Sampling Plug -in type 18
luke 8022A 500 Frequency
R \& S DPU 110 dbs Attenuator
IT Power Card PSU's various, fro
R \& S HUZ Field Strength Meter
Telequipment D75, V4\& S2A 50 MHz Scope

Telequipment $\mathrm{OB3}, \mathrm{~V} 4 \&$
Venture Printer Type DP

Sign Electronics Distortion Factor Meter
Hedin -20° to $150^{\circ} \mathrm{C}$ Furnace
Digitiser with table
Philips Gas Chromatography Systom.
Philips 920.5 Computer
Flann WG $160-90 \mathrm{dbs}$ rotary Attenuator - Unused
Brand New 62 Key Keyboards
Tek. 132 Plug-in PSU
Aluminium Storage Boxes
Carriage additional : All prices exc. V.A.T
TIMEBASE
94 ALFRISTON GARDENS
G, SOUTHAMPTON SO2 8FU
TEL: 431323 (0703)
Callers welcome
Access, Barclaycard : Telephone your order WW - 067 FOR FURTHER DETAILS

pantechnic

THE POWERFET

 TPECALISTSPOWERFET AMPLIFIER MODULES
$\left.\begin{array}{lccc}\text { MODEL } & \begin{array}{c}\text { POWER RANGE } \\ \text { (Continuous RMS) }\end{array} & \text { TYPICAL LOADS } & \text { PRICES (one off) } \\ \text { PFA 100 } & 50 W \mathrm{~W}-150 \mathrm{~W}\end{array}\right)$

As they stand these modules suit most P.A. and industrial applications and satisfy all foreseeable audiophile requirements. (The HV is aimed at digital audio.) Where aspects of performance fail to meet specific requirements (e.g. in speed or power) low-cost customising is often a possibility. Alternatively entirely new boards can be produced.

ALSO-

PAN 20-Ultra-low-noise/distortion, mono preamp board, $£ 7.61$
PAX 2/24-2-way active crossover board (24dB/octave) plus regulators, $\mathbf{5 9 . 7 0}$ THE HEAT EXCHANGER-New, super-efficient heatsink, handles 300 W or 1.2 kW when blown; 7in. $\times 4 \mathrm{in} . \times 21 / 4 \mathrm{in}$., $£ 7.50$

This is just a fraction of the new products available from Pantechnic check us out!

WW - 064 FOR FURTHER DETAILS

THIS MONTH'S SPECLIL OfFER COMPLETE STEREO CASSETTE DECK

These tatest designs from the drawing board of John Linsley-
Hood, engineered to the very highest standard, represent the very best that is available on the kit market today. The delicacy and transparency of the tone quality enable these amplifiers to in the commercial market-place and even exceed the high stan dard set by tis earlier 75 watt design.
Three versions are offered, a 30 -wt
Three versions are offered, a 30 -watt with Darlington output transistors, and a 35 . and 45 watt, both with Mosfot outpul
devices. All are of identical outside appearance which is de signed to match and stack with our Linsley-Hood cassettere re
ser
corder 2. As with hart kits the constructor's interests have been looked As with all Hart kits the constructor's interests have been looked
after in a unique way by reducing the conventional (and boring) wiring almost to the point of extinction.
Any of these kits represents a most cost-effective route to the
very highest sound quality with the extra bonus of the enjeyment of building a sophisticated piece of equipment
toyment or building a sophisticated piece of equipment.
30 watt Darlington amplifier, fully integrated with tone controls
and magnetic pick-up facility Total cost of all parts is $£ 81.12$ and magnetic pick-up facility. Total cost of all parts is $\mathbf{£ 8 1 . 1 2}$ Special offer price for complete kits is $\mathbf{£} 65$.
35-watt Mosfet amplifier. Total cost of parts $\mathbf{~ C 9 8 . 4 1}$. Special offer
for complete kits $£ 79.50$.
45-watt Mosfet amplifier. Total cost of parts E 104.95 . Special
offer price for complete kits $\mathrm{E83} 50$ offer price for complete kits $\mathbf{8 3 . 5 0}$.
(Reprints of original Articles from Hi-Fi News 50p. Post free No
VAT.
Reprints of MOSFET article 25p. No V.A.T. Post free
'P.W. WINTON' TUNER AND AMPLIFIER

Snazzy matching slimline tuner and amplifier in beautiful wooden cabinets. These Ted Rule designs are tor the enthusiast.
Tuner covers LW. MW. SW. FM and TV sound! Digtal frequency Tuner covert LW, MW, SW, FM and TV sound! Digital frequency
readout with clock and timer features. FM has 6 section front end and switchable bandwidth for exceptional fringe area performance. Amplifier has Toroidal transformer. Mosfer outnut stages. 50 watts per channel and got a cracking review in Practi-
cal Wireless
Tuner. Complete Kr
 LINSLEY-HOOD CASSETTE RECORDERS

We have done two kits to this design, one using the original car
casserte
mechanis cassette mechanism and the newer version using a very high quality ront loading deck. This new deck has an excellent W \& F
performance and fitted with our latest Sendust Alloy Super Head gives an increditle frequency range (with good tape you
can see 23 KHz on oursl). can see 23 KHz on ours I)

Linsley-Hood Cossette Recorder $1 \ldots \ldots . . . \quad £ 75.00$

 Roprints of "WW" Articles.................994.90
Hitachi Oscilloscopes

performance, reliability, exceptional value

 and immediate delivery![^2]
MARK 1983 WITH GAPS IN CIRCUIT FILES WELL-PLUGGED

WIRELESS WORLD CIRCARDS last year benefited many 'new generation' readers who bought at 1976 bargain prices + 10% discount for 10 sets! Most sets are still available although companion volumes CIRCUIT DESIGNS 1, 2 and 3 are out of print (CIRCARDS sets 1 to 30).

> The Offer stands, so order now your sets of $127 \times 204 \mathrm{~mm}$ cards in plastic wallets. These unique circuit cards normally contain descriptions and performance data of 10 tested circuits, together with ideas for modifying them to suit special needs.

[^3]To Electrical-Electronic Press
General Sales Department
Room 108
Quadrant House
Sutton
Surrey SM2 5AS

[^4]Please send me the following sets of
Circards
.£2 each,
£18 for 10 post free.
Remittance enclosed . payable to BUSINESS PRESS INTERNATIONAL LIMITED Name (Please print)

Address (Please print).

Pye Europa MF5FM high-band sets, complete but less mike and cradle. $£ 90$ each plus $£ 2$ p.p. plus VAT speaker and crad le. $£ 150$ each plus $£ 2$ p.p. plus VAT
Pye Reporter MF6 AM high-band sets, complete but less spaeker and cradie. $£ 90$ each plus $£ 2$ p.p. plus VAT.
Pye Olympic M201 AM high-band sets, complete but less
mike, speazer and cradie. 90 each plus $f 2$ p, plus VAT mike, spezker and cradle. $\mathbf{£ 9 0}$ each plus $£ 2$ p.p. plus VAT. and like new, but less mike speaker and cradte 665 each plus $£ 2$ p.p. plus VAT
Pye Westminster W15 AMD mid-band multi-channel sets, no mikes, speakers or cradles. $£ 45$ each plus $£ 2$ p.p. plus VAT.
Pye Westminster W15 AMD mid-band crystalled and converted to $129.9 \mathrm{MHz}, 130.1 \mathrm{MHz}, 130.4 \mathrm{MHz}$. Very good condition. $£ 120$ each plus $\mathfrak{£ 2}$ p.p. plus VAT.
Pye Westminster W15 AMD high-band and low-band sets
available. Sets complete but less mikes, speakers and available. Sets complete but less mik
cradies. $£ 70$ each plus $£ 2 \mathrm{p}$ p. plus VAT.

ye Westminster W30 AM low-band sets only, no control | gear. Sets comp |
| :--- |
| $2 \mathrm{p} . \mathrm{p}$. plus VAT |

Pye base station F30 AM, low band and high band avail able, remote and local control. Prices from $\mathbf{f 2 2 0}$ plus VAT. Pye base station F401 high-band AM, local control, fully
solid state. complete but less mike. $£ 275$ each plus $£ 15$ solid state. C
p.p. plus VAT
p.p. plus VAT.

Ye base station receiver R402 high-band FM 148 each plus $\mathbf{£ 5}$ p.p. plus VAT. Pye base station F9U, remotely controlled, 5 Watt output, UHF ($440-470 \mathrm{MHz}$), single channel. $\mathbf{£ 9 0}$ each plus $\mathbf{E 5}$ p.p. plus VAT.
Pye base s:ation F412 UHF ($440-470 \mathrm{MHz}$), 25 KHz channel spacing, single channel, local control. $£ 250$ each plus $£ 15$ p.p. plus VA

Pre Beavar M254 high-band FM sets, 15 Watt, robust mobile radiotelephones for industrial use, sets complete but less crystals, as new condition. $\mathbf{£ 1 2 0}$ each plus $£ 2$ p.p.
plus V.A.T.
Pre base station receiver F27 AM, crystalled on 116.46 $\mathbf{M H z}$, can be recrystalied on
Pye AC200 mains power unit for Olympic or Reporter automatic stand by power facility with trickle charging and built-in quartz digital clock. $£ 95$ each plus $£ 5$ p.p. plus
VAT.

Pye PC1 radiotelephone controller, good condition, two Only at $£ 50$ each plus $£ 2$ p. p. plus VAT. Pye Tulip microphone as used on most base stations and Cl, 2400 ohm with pet switch. $£ 15$ plus $£ 1$ p.p. Plus VAT. ye PF1 UHF FM Pocketfone receivers, $440-470 \mathrm{MHz}$. single channel, int. speaker and aerial. Supplied complete with rechargeable battery and service manual. $\mathbf{f 6}$ each plus $£ 1$ p.p. plus VAT.
Yellow) f2 each for Pye PF1, used but good condition, Rx Yellow) $£ 2$ each $T \times$ (Red). $£ 3$ each plus $£ 1$ p.p. plus VAT.
 Pye Pocketfione PF1 Battery Chargers, type BC5 single charger, brand new. $\mathbf{E 2 0}$ each plus $£ 1$ p.p. plus VAT Pye single sideband HF Mobile Radiopelephone, type
SSB130M, to0 W P.E.P. output, 6-channel, 2-15 MHz. complete and new condition but less power unit. $£ 250$ plus $£ 10$ p.p.plus VAT.
Pye fixed station transmitter, type T100 FM, 'G' band 38.6 . $50 \mathrm{MHz}, 100 \mathrm{~W}$ output. 25 KHz channel spacing. New Condition. $£ 100$ each plus $£ 10$ p.p. plus VAT
Pye Pocketfone 70 type PF2UB, UHF Portables, complete with battery, aerial \& mike, good condition. £80 plus VAT
yers Pockeffone 70 type PF2FM, low band, FM portables, sets complate but less battery, aerial \& mikes, good condition. $£ 50$ plus VAI
Pye Pocketfone 70 type PF5, UHF portables, complete with batteries, good condition. $£ 45$ plus VAT
ye Pocketfone 70 battery chargers type BC11A, automatic charger, will accept up to 8 batteries/units, good
condition. 335 plus VAT. Pye Base Station type F9AM, remotely controlled, 5 watt output, high band $\&$ low band available. $£ 90$ each plus VAT: 'Lynx' closed circuit TV camera, 625 lines, video or RF output, VHF channels 2, 3, 4, good condition, complete With lens. $£ 45$ each plus V MAINS TRANSFORMERS
Mains isolatiog transformer, 500 VA 240 V input, 240 V C.T output, housed in metal box. $£ 15$ each plus $\mathbf{£ 6} \mathbf{p}$.p. plus Mains isolating transformer, 240 V tapped input, 240 V 3 amp, plus 12 V 0.5 amp output. $£ 20$ each plus $£ 6$ p.p. plus Advance Voistat transformers, type CVN200/5, input 24 or
28 V DC via inverter, output 220 or 240 V RMS 150 watt,

Marconi signal generator type TF1064B/5, AM/FM cover ing three ranges 68-108, 118-185 and $450-470 \mathrm{MHz}$, good condition with service manual. $£ 125$ plus VAT.
Marconi signal generator type TF2002AS, MF/HF AM/FM olid state $10 \mathrm{kHz}-72 \mathrm{MHz}$ in 8 ranges, good condition with service manual. $£ 400$ each plus VAT.
Cossor oscilloscope type CDU150 twin beam, solid state, Marconi AM/FM signal generator, type TF995A/3/S CT402) 5.520 MHz signal generator, fype TF995A/3/S manual. £95 each plus E15 p.p. plus VAT. Airmec milivolt meter, Type 301. 550 plus $£ 2$ p.p. plus Advance signal generator Type C2. $£ 25$ plus $£ 5$ p.p. plus Airmec modulation meter, Type 210 . $\mathbf{£ 7 5}$ plus $\mathbf{£ 5} \mathbf{p}$ p.p. plus Marconi HF Spectrum analyser, Type OA1094A/S 0-30 MHz . £ 100 plus VAT (buyer collects).
45 ame pluc votage stabiliser, type AC2, 240V (a) 9 amp Servomex AC voltage stabilise
amp. $£ 75$ each plus $£ 15$ p.p. plus VAT Rhode \& Schwarz power signal generator 0.1 to 30 MHz , Meguro signal generator, type MSG-230E, $16 \mathrm{KHz}-50$ MHz £ 130 plus E 10 p.p. plus Rhode \& Schwarz Polyskop Type SWOB BN4244, 0.5 MHz to 400 MHz . $£ 150$ plus $\mathbf{£ 1 5}$ p.p. plus VAT
$25,000 \mathrm{mfd}$., 33 volts, brand new. $£ 1$ each plus 50 p p.p plus VAT.

60 amp

vehicles alternator and general noise filters for use in Modern telephones, type.p.plus 746 , with dials, colour grey, used but good condition. $£ 8$ plus $£ 1$ p.p. plus VAT. VAT. clips, 28 -way and 40 -way goldplated. $£ 2$ each plus C test clips, $28-w$
30p p.p. plus VAT
Equipment wire, size $7 / 0.2 \mathrm{~mm}$, colour yellow, 500 -metre eels. £4 plus £1 p.p. plus VAT. 436 valved, DC to 6 MHz bandwidth. $£ 50$ plus VAT
power units, 70 volt @ $8 \mathrm{amp}, 20$ volt (1t 3 amp . Brand new but no details, $£ 20$ each plus $£ 8$ p.p. plus VAT. plus $£ 1$ p.p. plus VAT.

B. BAMBER ELECTRONICS

GOVERNMENT AND MANUFACTURERS' SURPLUS
5 STATION ROAD
LITTLEPORT CAMBS CB6 1QE
Telephone: Ely (0353) 860185

ELECTRONIC COMPONENTS TELECOMMUNICATION EQUIPMENT TEST GEAR

01-452 1500 Tpchnomatic Ltid
 $01-4506597$

BBC Micro Computer System

 JFFICIAL DEALERPlease phone for availability

BBC Model B £399
(incl. VAT)
Carr £8/unit
Model A to Model B upgrade kit $\mathbf{£ 5 0}$ Fitting charge $£ 15$ Individual upgrades also available
TELETEXT ADAPTOR £195 WORDWISE 8K ROM £39 TORCH Z80 DISC PACK $£ 780$ WORD PROCESSOR 'VIEW' 16K ROM £52

FLOPPY DISC INTERFACE

incl. 1.2 Operating System
£95 \& $£ 20$ installation
BBC FLOPPY DISC DRIVES
Single Drive 51/4' ${ }^{\prime \prime} 100 \mathrm{~K} £ 235+£ 6$ carr Double Drive $51 / 4^{\prime \prime} 800 \mathrm{~K} £ 799+£ 8$ carr.

BBC COMPATIBLE DRIVES

These are drives with TEAC FD50 mechanism
and are complete with power supply SINGLE: 100K $£ 190$; $200 \mathrm{~K} £ 260$; 400K $£ 340$ DUAL: 200K £360; $400 \mathrm{~K} £ 490 ; 800 \mathrm{~K} £ 610$ DRIVE CABLES: SINGLE $£ 8$ DUAL $£ 12$ DISC MANUAL \& FORMATTING DISKETTE
£17.50
Phone or sent for our BBC leatiel

BUSINESS, EDUCATION AND FUN SOFTWARE IN STOCK-

BBC BOOKS

no VAT)
Basic on BBC $\mathbf{£ 5 . 9 5}$
30 House Basic $£ 5.95$
Programming the BBC Micro $\mathbf{£ 6 . 5 0}$ BBC Micro An Expert Guide $£ 6.95$ Assy Lang Prog. for BBC $£ 8.95$ 6502 Machine Codes for Beginners $\mathbf{£ 6 . 9 5}$

CASSETTE RECORDER
BBC Compatible Cassette Recorder with Counter and Remote Control
$\mathbf{E 2 6 . 5 0}+\mathbf{E 1 . 5 0}$ carr
Cassette Leads £3.50
Computer Grade Cassettes
$\mathbf{£ 0 . 5 0}$ each. $\mathbf{£ 4 . 5 0}$ for $10+\mathbf{£ 1}$ carr

MONITORS

MICROVITEC 1431 14in Co,setlour Monitor $\mathbf{£ 2 4 9 + £ 8}$ carr MICROVITEC 203120 in Colour Monitor $£ 319+£ 8$ carr KAGA 12 in RGB Monitor $\mathbf{£ 2 5 5 + £ 8}$ carr
Lead for KAGA RGB £10
SANYO Hi Res Green Monitor $\mathbf{£ 9 9 + \mathbf { £ 6 } \text { carr }}$

NEC PC 8023 BE - C
100CPS, 80 cols dogic Seeking
Forward and Reverse Line Feed
Proportional Spacing, Auto Underline, Hi-Res and Block Graphics, Greek Char. Set Only $£ \mathbf{3 4 5}+£ 8$ carr

2,000 fan fold sheets $91 / 2^{\prime \prime} \times 11^{\prime \prime} \mathbf{£ 1 3 . 5 0 + £ 3 p \& p}$

PRINTERS

SEIKOSHA GP 100A 80 cols 30 CPS Full ASCII and Graphics $10^{\prime \prime}$ wide paper Now only $\mathbf{£ 1 8 0}+\mathbf{f} 6$ carr GP250A £235 + £8 car

RUGBY ATOMIC CLOCK

This 280 micro controlled clock/calendar receives coded time data from NPL Rugby. The clock never needs to be reset. The facilities include 8 indepenmelody or alternatively these can be used for electrical switching. A separate timer allows recording of up to 240 lap times without interrupting the count. Expansion facilities provided
ee July/August ‘82 ETI for details

MICROTIMER
6502 Based Programmable clock timer with , 224 switching times/week cycle

- 24-hour 7-day timer
* 4 independent switch outputs directly
interfacing to thyristor/triacs
$\star 6$ digit 7 seg . display to indicate real time, ON/OFF and Reset times
* Output to drive day of week switch and status LEDs.
Full details on request. Price for kit $\mathbf{£ 5 7}$

 D CONNECTORS
$\left.\begin{array}{c}\text { No. of ways } \\ 15 \\ 25 \\ 37\end{array}\right)$
 Solder
 Hoods $90 \mathrm{p} 85 \mathrm{p} \quad 90 \mathrm{p} 100 \mathrm{p}$
IDC 25 way plug 385 p . Socket 450 p TEXTOOL ZIF SOCKETS 24-pin 55.75 DIL SWITCHES
${ }^{4}$ Wway 70 g

-

CONNECTOR SYSTEMS

MPER LEADS Ribbon Cable with Headers	
$\begin{gathered} 1 \text { end } \\ 2 \text { ends } \end{gathered}$	
$24^{\prime \prime}$ R Ribbon Cable with Sockets	
25-way	$\begin{aligned} & \text { obon Cable with D. Conn } \\ & \text { lale 500p } \quad \text { Female 550p } \end{aligned}$

AMPHENOL CONNECTORS

\qquad Solder £5.25 IDC £4.95 36-way socket Centronics Parallel 24-way pin IDC $£ 5.20$ 24 -way plug IEEE Solder $£ 5$
IDC $£ 4.75$ 24-way socket IEEE Solder $\mathbf{f} 5$

RIBBON CABLE

CABLE

MICRODOCTOR

This is not a logic analyser or an oscilloscope It tests a microsystem and gives a printed reprint on RAM, ROM and $1 / 0$ - it will print
memory map, search for code, check dataiine shorts and operates peripherals. Microdoctor complete with psu, printer probe cable and two configuration boards

NEW COMPREHENSIVE CATALOGUE AVAILABLE
PLEASE SEND FOR PRICE LIST

MULTIMONITOR THE ONE INSTRUMENT!

THERMOCOUPLE MONITOR
THERMOCOUPLE SIMULATOR
STRAIN GAUGE MONITOR

VOLTMETER

VOLTAGE CALIBRATOR

MILLIVOLT SOURCE

11 INPUTS - 3 OUTPUTS

Auto zero
Auto range
Thermocouple
Linearisation for all common types
Strain calculation
Automatic recalibration
Battery backup memory for vital functions

By combining the power of a Z 80 microprocessor, and sophisticated analogue circuitry, the MULTIMONITOR gives you all these features, making it the most effective test instrument yet. As well as the $41 / 2$ Digit Local Display the Multimonitor carries

ScheTronics Limited

Repair and calibration of test equipment
SPACE SALE - WE NEED THE SPACE - DO YOU NEED THE EQUIPMENT?

Siemens 17 MHz Osc/Det pair 175.00
Siemens 1.6 MHz Level Osc. Rel 3W231/233/234 as new
250.00

Siemens 1.2MHz Osc/Det.
pair 100.00
Siemens Level Difference Meter D2003
. 300.00
Siemens 100 MHz Return Loss Bridge R273 .700 .00
Siemens Pegamat System 1.6 MHz sweep/lock facility
1.000 .00

Siemens Pegamat Separate Units e.g D2010/S2010/B2004
and othersNo reasonable offer refused
Hatfield Level Meter $100130 \mathrm{~Hz}-30 \mathrm{KHz}$
Hatfield Psophometer
80.00

STC 0.16 KHz Selective Level Meter 100.00
STC Psophometer (Telephone) ... 75.00
STC Sweep Set + Recorder
150.00

STC White Noise Generator
.50 .00
STC Attenuator 600 Ohm 70.00

Advance 15 MHz Counter Timer TC12 75.00
Advance J1.
30.00

Advance J 2
40.00

Dynamco Digital Voltmeter
25.00

Marconi Transmission Measuring Set MF.........................100.00
Marconi Valve Voltmeter TF2600 .. 70.00
Sullivan Inductance Bridge ... 40.00
Anritsu Attenuator 500 MHz 300.00
W \& G EPM1 Milliwatt Test Set 300 MHz 600.00
W \& G 1350 KHz Osc/Det ... 100.00
W \& G 14 MHz Osc/Det
JJ Lloyd Wheatstone Bridge ... 40.00
Kienzle Printer

ALL PRICES PLUS V.A.T. \& CARRIAGE
Unit 10, Dunstall Estate, Crabtree Manorway
Belvedere, Kent DA17 6AW
Telephone: 01-3119657
WW 070 FOR FURTHER DETAILS

PIEOTUTOR \& FICRME

ASSEMBLY LANGUAGE TRAINER The ideal way to learn machine language and become acquainied with the new "single chip" control oriented microprocessors. 1.8 K of EPROM, $20 \mathrm{I} / \mathrm{O}$ lines, 112 bytes of RAM and a timer all in a single 28 pin IC As featured in this, and pin .C. As issur and subsequent issues of WW

68705 DATA f1. 95

ANALOGUE INTERFACE

COMPLETE KIT £9.39
16 WAY LEAD £2.35 extra
cost effective
ELEGTRONT IENITIOS

Complet kit for this efficient C.D. system featured in March '82 WW. Includes: Case, improved PCB, ferrite transformer core, winding wire, all components, hardware and instructions.
£14.92 ${ }_{4}^{\text {PRP }}$
All prices include VAT. Add 45p P\&P. Mail Order only.

MAGENTA ELECTRONICS LIMITED (W18)

135 Hunter Street, 8urton-on-Trent, Statis. DE14 2ST, 028365435
WW-072 FOR FURTHER DETAILS

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

Sowter Transformers

With 40 years' experience in the design and manufacture of several hundred thousand transformers we can supply

AUDIO FREQUENCY

TRANSFORMERS OF EVERY TYPE

 YOU NAMEIT! WEMAKEIT! OUR RANGEINCLUDES$$
\begin{aligned}
& \text { Mcrophone transformers (all types). Microphone Splitter/Combiner transfor } \\
& \text { mers. Input and Output transformers, Direct Injection transformers for Guitars }
\end{aligned}
$$ Multi-Secondary output transformers, Bridging transformers, Line transformers Lime transformers to G.P.O. Isolating Test Specification, Tapped impedance matching transformers, Gramophone Pickup transformers, Audio Mixing Des, transtormers (all types), Miniature transformers, Microminiature transformers for PCB mounting, Experimemal transformers, Ultre low frequency transiormers, Ulre linear and other transformers for Transistor and Valve Amplifiers up to 500 watts, Inductive Loop Transformers, Smoothing Chokes, Fiter, Inductors, Amplifier to 100 voit inexransiormers from a few watts up to 1,000 watis, 100 volt line transtormers to speakers, Speaker match or more We can design for RECORDING QUALITY. STUDIO QUALITY, HI-FI QUALITY OR PA. CUALIT. OUNTITICS AND EVEN SINGE ETRANSFORMERS MORY STand OF SMALL GUANTIES AND EVEN SiNGLE ThANSFORMEnS, Many standard types are in stock and normal dispatch times are short and sensible.

OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES MIXING DESK MANUFACTURERS, RECORDING STUDIOS, HI-FI ENTHUSIASTS BAND GROUPS, AND PUBLIC ADDRESS FIRMS. Export is a speciality and we have overseas clients in the COMMONWEALTH, E.E.C., USA, MIDDLE EAST, etc. 'tions by return.

E. A. Sowter Ltd.

E. A.SOWTEA LTO. (Entoblhhed 1941) : Rea. No. Encland 303990 The Boat Yard, Cullingham Road, Apawleh IP1 23c, SuHolk P.0. Box 38, pawich, ip 2z, Enfland Tolox 987703cSowtor

WW - 015 FOR FURTHER DETAILS

Marconi Type R1020 Hinged Antenna Column. Easy to raise Easy to lower

OTHER MARCONI SUPPORT STRUCTURES

Include the MATHWEB* Lattice Antenna Mast Type R1010, and the Triangular Section Tubular Steel Self Supporting Tower Type R1060.

For more information talk to Chris Pettitt, Marketing Manager, Antenna Systems Division.

* MATHWEB is a registered trademark of the BP Group

Marconi

Communication Systems

Antenna Systems Division

Marconi Communication Systems Limited,
Lane Works, Waterhouse Lane, Chelmsford CM1 20X, England Tel: 024567111 Telex: 99201

WW - 050 FOR FURTHER DETAILS

ELEGTROVALIE FIRST FOR NASCOM 3

Highly recommended for its versatility and reliability, this latest Nascom micropro cessor can be the foundation of a superb professionally styled system of excitingly useful applications and development Nascom suppliers, ready to deliver y
Nascom 3 Microprocessor

Nascom 3 Micr oprocessor
(to drive monitor or TV set)
(to drive monitor or
Monitor for above
Nascom Dual Dise Drive SS/DD
(takes standard $5^{1 / 4^{\prime}}$
Nascom High Capacity Dual Driv
Nascom 2 in kit form inc keyboa
Nascom 2 in kit form
DID YOU KNOW that for almost 20 years Electrovalue have been foremost suppliers of components, etc, costing from pennies to hundreds of pounds? So why not send for our latest price list and see why it pays to buy from us.

ELECTROVALUELTD.

Head Office, Mail Order and Shop: 28A St Judes Road, Englefield Green, Egham Surrey TW20 OHB. Egham (STD 0784: London 87) 33603: Telex 264475. North 4945).

EV Computing Shop, 700 Burnage Lane, Manchester (061-431 4866).

Gin MONITOR in
with into, EZZS. with info. E2S
Matching ASC Matching ASC 11 coded querty Kevboaro with
Numeric Keypad and
 12in MONITO
f20 emch. With matching with Numeching ASC 11 coded QuERTY KEYBDARO
wit
Qupad
24 function keys: fis the POWER POWER UNIT. 240 v input; outputs $\times 5 \mathrm{v} / 15 \mathrm{a}$
+2 NVI 5a; $24 \mathrm{v} / 3 \mathrm{a} ;$ Ef0 each. INSTRUMENT CASE, standard degp $\times 10 \mathrm{in}$ high, 25 esch.
FLOPPY DISK DRIVE Bin. by日lactronics; EFS sech P\&PE
WO MEMOREX INCDTERM with drive electronics. 25 way Canno inpuloutput socket 240 operation; $£ 150$.
CENTRONIX PRINTER operation; If2S. Carr flat
HARD DISK DRIVES by OAT Front load; E 125 gach
TEKTRONIX STORAGE Screen size $81 / 2 \mathrm{in} \times \mathrm{X}^{61 / 2 n: E 455}$
TEKTRONIX HARO COPY UNIT used with 4010 senes computer display terminats:
Ea75.

Item No.
1 TEKTRONIX OSCILLOSCOPE type T935A Dual Trace 35MHZ Oe Iay SILeep As new
TEKTRONIX STORAGE OSCILLOSCOPE Type 549 E55 Trace 30MHZ Dual time base
HEWLETT PACKAR DSILLOSCOPE 140A with 14250 Sampling Verteal Amp OC-IGHZ Gen \& 1410 A
COSSOROSCLLLOSCOPE 5 TEKTRONIX OSCILLOSCDPE $585 A$ with B2 Plug-in Ou 6 Trace B5MHZ Duaf TB SOLARTMON OSCILLOSCOPE type COI400 Dual Trac 15 MHZ
8 \& $\&$ AUDIO FREQUENCY SPECTROMETER tyPe
 2HZ-200KHZ. POWER METER TF 1020 AN .50 ohm ...
10 MARCONR.
1 MARCON A.F. POWER METER TFI 152 range 500 hm 12 MARCONI POWEA METER THP TFB93A MARCONI FM/AM SIGNAL GENERAT OR TFYSASS F160 22OMHZ AM/FMMOd
MARCONI FM/AM SIG 220 MHZ AM/FM Mod MARCONI FMIAM SIGNAL GENERATOQ TTEOC. 12 20M HZ AM/FM Mod.

Stockists of NEW SCOPEX AND SAFGAN OSCILLO
SCOPES. Also many other ITEMS OF TEST ERUP SCOPES. Also many other ITEMS OF TEST EQUIP
MENT AND COMPONENTS In stock For turther de tails contact OWAYNE STEWART.

17 MARCONI FMAM SIGNAL GENERATOR TF1066B// 10
470 MHZ Int \& Ext AM FM Mod

20 MARCONI VACUUM TUAC
21 MARCONI VACUUMM TUBE VOLTMEER TFIDA1B....... 270
22 MARCDNI DISTORTION FACTDR METER TFIL2F 100
23 MARCONI SENSITIVE VALVE VOLTMETER IF2600 1 OHZ
24 ADVANCE FM/AM SIGNAL GENERATOR SGG3F 575
24 ADVANCE FM/AM SIGNAL GENERATOR SG63F. 5

26 ADVANCE SIGNAL GENERATOR type 62150 KHZ
27 ADVANCE DUAL STABIIIZED DC SUPPLY TyPE PP3 0 -

29 HEWLET PACKARD 4318 POWER METER with head

31 HP . PULSE GENERAIOR TYP BOO1A 100HZ-200KHZ EYS
32 HP $5210 A$ FREQUENCY METERFM DISCRIMINATOR

34 H.P CALORIMETRIC POWER METER MOdes 434A \quad ET3 35 BODNTON FM-AM SIGNAL GENERATOR type 202H. 54
$216 M H Z$ with 207 H UNIVERTOR to extand rang from 1000 HZZ W5MHZ. 5 .
RACALARMEC FM-AM MODLLATION METER TyPE 4090 3-1500MHZ 38 METRIC

39 PHILLPS WOBBULATDR type $287755-220 \mathrm{MHZ} \& 440$
883 MHZ
40 TELONIC SWEEP GENERATOR type SO3M $440-920 \mathrm{MHZ}$
4) WTANDARD If GENERATOR with 12 Fixed IFS ffor TV

41 STANOARD If GENERATOR with 12 Fixed Ifs lfor TV
42 KAY SWEEP \& MARKER GENERATOR TVPE 1500 C . 20 HZ -
43 SIGN ELECTRONICS OISTDRTION FACTOR METER 4 WAYNE KERR UNIVERSAL BRIDGE type PEEANCE ADAPTOR O221 BRIDGE B221 with IOW IM 46 WAYNE KERA UNIVERSAL BRIDGE CT533 (B221) with 47 LOW IMPEDANCE ADAPTOR Q221A Late style EULSE GENE RATOR
 Sinde/dOubie DIISE I IN WORKING ORDER
EOUMENT IN Please chack availability betore ordering, Carnage ali units,
£7. VAT to be added to total of Goods and Carriage. S.A.E.

STEWART OF READING 110 WYKEHAM ROAD, READING, BERKS RG6 1PL Telephone: 073468041

SMC/CCJ1 Dipole Centre Junction, high strain capability (600 KGs) power rating up S0239 sockets, other connectors available.
mound Lighter duty version of CCJ supplied with all hardware, in S0239 and BNC connectors. Weight 120 grammes.

SMC/P1 Strain insulator $81 / 2^{\prime \prime}$ OA in carbonloaded polypropelene, very light (80 grammes), virtually indestructible.

©

weight Strain insula

SMC/AJU light duty centre junction designed for use with twin wire type feeders, $31 / 2^{\prime \prime}$ OA.

A complete range of porcelain and pyrex strain, egg, and feedthrough insulators ex-stock.
SMC also stock a complete range of antenna wires, coaxial cables, connectors and rigging accessories, stocked in commercial quantities at competitive prices. Export enquiries welcome.

SOUTH MIDLANDS COMMUNICATIONS LTD.

RUMBRIDGE ST., TOTTON
SOUTHAMPTON' SO4 4DP

Telex: 477351 SMCOMM G
Tel: Totton (0703) 867333

WW - 061 FOR FURTHER DETAILS

THEFT!

During the period of the recent All Electronics Show, a car owned by Vic Saunders of Tecnicad Ltd, 20/22 Poole Hill, Bournemouth BH2 5PS was broken into and several persona! items were stolen.

Vic reported the incident to the Metropolitan Police at King's Cross, N1, for amongst many items stolen was his briefcase containing all the enquiries made at the show. Disaster!

Were you one of those who enquired? If so, contact Vic on Bournemouth 294448. Naturally he'd be pleased to hear from you.

CASLSILLDHIU ouick, neatandeasy:

It's so easy and tidy with the Easibind binder to fite your copies away. Each binder is designed to hold six issues and is attractively bound and blocked with the WIRELESS WDRLD logo. Price U.K. £4.30 including postage, pact
Overseas orders add 35 per binder.
Nat. Giro No. 5157552.
Please allow $3 / 4$ weeks for fultilment of order
Payment by ACCESS/BARCLAYCARDNISA. Send coupon below detailing credit card no. and signature.
Signature.
Why not place your order now? Send the completed coupon below with remitrance payable to:
Easibind, $\mathbf{4 2}$ Hoxton Square, London N1 6NS
Order Form WIRELESS WORLD
ears required
BLOCK LETTERS PLEASE
Name
(1)

SEMICONDUCTORS

	2.50
BD159	0.86
BD 166	0.55
BD179	0.72

TA
TB
T

PHONE 0474813225 P. M. COMPONENTS LTD 3 LINES MEOPHAM GREEN, MEOPHAM, KENT DABOQY

TELEX

966371 PM COMP

DECADE OSCILLATOR

LEVELL ELECTRONICS have a range of oscillators covering frequencies from 0.02 Hz to 2 MHz .
There is a FUNCTION GENERATOR that provides sine, square, triangular, pulse and ramp waveforms with high
 output levels over a wide range.

Low-distortion RC OSCILLATORS are available with analogue tuning and sine and square-wave outputs.

The digital tuned series are as detailed below:

FREQUENCY	0.2 Hz to 1.22 MHz on four decade controls.
ACCURACY	$\begin{aligned} & \pm 0.02 \mathrm{~Hz} \text { below } 6 \mathrm{~Hz} \text {. } \\ & \pm 0.3 \% \text { from } 6 \mathrm{~Hz} \text { to } 100 \mathrm{kHz} \text {. } \\ & \pm 1 \% \text { from } 100 \mathrm{kHz} \text { to } 300 \mathrm{kHz} . \\ & \pm 3 \% \text { above } 300 \mathrm{kHz} . \end{aligned}$
SINE OUTPUT	5 V r.m.s. down to $30 \mu \mathrm{~V}$ with Rs $=$ 600Ω.
DISTORTION	$<0.15 \%$ from 15 Hz to 15 kHz . $<0.5 \%$ at 1.5 Hz and 150 kHz .
METER SCALES	2 Expanded voltage and $-2 /+4 \mathrm{dBm}$.
SIZE \& WEIGHT	$260 \times 180 \times 180 \mathrm{~mm} .5 .4 \mathrm{~kg}$.
TG66B Battery Model £295	TG66A Mains and Battery Model $£ 310$

Send for data covering our range of instruments. Prices are plus carriage, packing and VAT.
LEVELL ELECTRONICS LTD.

PRACTICALLY ALL THE PARTS FOR WIRELESS

INCLUDING
$3 \times £ 1$ VOUCHERS

The Spring ' 83 catalogue continues to expand to meet the needs of the electronics user - from the novice enthusiast to the professional aerospace designer.

AT YOUR NEWSAGENT OR DIRECT

ambit INTERNATIONAL

200 North Service Road,
Brentwood, Essex CM14 4SG
Telephone (Consumer Sales/Enquiries) 0277-230909 - Telephone (Industrial Sales/Enquiries) 0277-231616 -
Telex 995194 AMBIT G
Data 24hrs (RS232/300baud) 0277-232628REWTEL

- Prices exclude VAT except where otherwise shown
- Postage and Packing 60p per pre-paid order
- Orders submitted using Ambit Stock Codes will be processed first
- Orders for in-stock items processed same day
- Hours - (consumer sales) 8am-7pm Mon-Sat: (Industrial) 8am-6pm (Mon-Fri)

To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication.
Please Use Capital Letters

If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below.

OVERSEAS SUBSCRIPTION AGENTS

Austrafla: Gordon 8 Gotch (Australasia) L
380 Lonsdale Sireet. Melbourne 3000. Vietol

Belgium: Agence et Mossageries de la Press 1 Rue de la Petite-ILE Brussels 7

Canada: Davis Cliculation Agency. 153 St. Clair Avenue West. Toronto 195 Ontario
Cyprus: General Press Agency Lid, 131 Prodromou Street.
4528. Nicosia

Donmark: Dansk Bladdistribution. Hovedvagtsgade 8 , Dk. 1103 Kobenhavn.
Finland: Rautakiria OY Koivuvaarankuja 2. 01640 Vantaa 64 , Finland.
France: Dawson-France S.A., B.P.40, F-91121. Palaiseau

Germany: W.E. Saarbach GmbH, 5 Koln

Greece: Helleni Distribution Agency, P.O. Box 31 8, 248 Syngrou Avenue.

Hollend: Van DitmarN.V. Holland: Van DitmarN.V. Amsterdam 1004

Japan: Western Publica hons Distribution Agency. 170 Nishi-Okubo 4-chome, Shinjuku-Ku Tokyo 160

Lebanon: Levant Distri. butors Co.. P.O. Box 1181 Makdesi Sireet. Halim Hanna Blde. Beifut

Mataysla: Times Matarsla: Times
Distibutors Sdn. Bha Distributors Sdn. Bha limes House, Singapole 9. Malaysia.
Matra: W.H.Smith Continemat Lid. 18a Scots Stueet, VaHela
New Zeeland: Gordon 8 Gotch (New Zealand) Lid. 102 Adelaide Road. Wellington 2

Nigerla: Daily Times of Nigeria Ltd, 3 Kakawa Street. P.O. Box 139. Lagos
Norwav: A/S Narvesens Kioskompsni. Bertrand Narvesens vei 2. Osto 6

Portugel: Livaria Bertrands.a.r. 1 Apartado 37, Amadora
8 outh Africe: Centual Nows Agency Lid, P.O. Box 1033, Johannesburg

8pain: Comercial Atheneum 9.s. Consejo de Clento. 130-136 Barcelona 15

8 weden: Wonnogten Wlillams A B. Fack S-104, 28 Stockholm 30
8 witzerland: Naville \& Cle SA, Rue Levrier 5-7. CH-1 211 Geneve 1 Schmidt Agence AC
Savogelstrasse 34. 4002 Basle
U.S.A : John Barlos Business Press Internationa 205 East 42nd Streot, New York, N.Y. 10017 Gt Britain, Channel Islands, N Ireland or the Isle of Man

BUSINESS REPLY SERVICE
Licence No 12045
WIRELESS WORLD
Reader Enquiry Service

Oakfield House
Perrymount Road
Haywards Heath
Sussex RH16 3DH
England

Enquiry Service for Professional Readers

WIRELESS WORLD Wireless World, June 1983 WW 8366
Please arrange for me to receive further details of the products listed. the appropriate reference numbers of which have been entered in the space provided.
Name
Name of Company

Address

Telephone Number

PUBLISHERS USE ONLY			A/E			

Position in Company
Nature of Company/Business
No. of employees at this establishment
I wish to subscribe to Wireless world
VALIDFOR SIX MONTHS ONLY

Wireless World: Subscription Order Form

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:

Subscription Manager, Business Press International Ltd, Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH, England

Enquiry Service for Professional Readers ONLY.

WIRELESS WORLD Wireless World, June 1983 WW 8366
Please arrange for me. to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided. Name .

Position in Company

Name of Compeny

Address

Telephone Number

Nature of Company/Business
No. of employees at this establishment

VALID FOR SIX MONTHS ONLY

Postage
will be
paid by
Licensee

Do not affix Postage Stamps if posted in Gt Britain, Channel Islands, N Ireland or the Isle of Man

BUSINESS REPLY SERVICE
 Licence No 12045

WIRELESS WORLD
Reader Enquiry Service
Oakfield House
Perrymount Road
Haywards Heath
Sussex RH16 3DH
England

Wireless World Subscription Order Form Wireless World, June 1983 Ww 8366

UK subscription rates
1 year: £14.00
Overseas 1 year: $£ 17.00$
Please enter my subscription to Wireless World for 1 year
I enclose ramittance value. made payable to BUSINESS PRESS INTERNATIONAL Ltd.

Name
Address

OVERSEAS ADVERTISEMENT AGENTS

Hungary Mrs. Edit Bajusz, Hungexpo Advertising Agency, Budapest XIV, Varosliget - Telephone : 225008 -
Telex: Budapest 22-4525 INTFOIRE

Italy Sig. C. Epis Etas-Kompass, S.p.a.
Servizio Estero, Via Mantegna 6, 20154 Milan - Telephone 347051 -
Telex: 37342 Kompass

Japan Mr. Inatsuki, Trade Media - IBPA
(Japan), B212 Azabu Heights, 1-5-10
Roppongi, Minato-Ku, Tokyo 106 -
Telephone : (03) 585-0581

United States of America Ray Barnes

- Business Press International

205 East 42nd Street,
New York, NY 10017-Telephone:
(212) 6895961 - Telex: 421710

Mr. Jack Farley Jnr., The Farley Co.
Suite 1548, 35 East Wacker Drive,
Chicago. Illinois 60601 - Telephone
(312) 63074

Mr. Victor A Jauch.
Elmatex International.
P.O. Box 34607.

Los Angeles Calif. 90034 U.S.A.
Telephone: (213) 8218581
Telex: 18-1059.
Mr. Jack Mentel, The Farley Co., Suite 605
Ranna Building. Cleveland, Ohio 4415 -
Telephone: (216) 6211919
Mr. Ray Rickles, Ray Rickles \& Co.,
P.O. Box 2008, Miami Beach, Florida

33140 - Telephone : (305) 5327301
Mr. Jim Parks, Ray Rickles \& Co., 3116 Maple Drive N.E., Atlanta, Georgia 30305. Telephone: (404) 2377432

Mike Loughlin, Business Press Internationa 15055 Memorials, Ste 119, Houston. Texas 77079 - Telephone: (713) 7838673

[^5][^6]

WW - 039 FOR FURTHER DETAILS

Continuity and resistance 0.9 meg ohms in two ranges Complete with test prods
and instruction book showing how to and instruction book showing how to
measure capaciry and induciance as wel Unbelievable value at only $£ 6.75+60$ p and insurance.
FREE Amps
rat FREE Amps range kit to enable 10 amps, directly on the 0.10 scale. It's free if you purchase
quickly, but if you alt eady own Mini- Tester and would tike one. send $£ 2.50$.
VENNER TIME SWITCH Mains operated with 20 amp switch, one on and one off per 24 hrs. repeats doily automatically correcting for the lengthen
ing or shortaning day. An expensive time switch but you can have is for only $\mathbf{£ 2 . 9 5}$. These are wothout case but we can supply
 this into a normal 24 hir ime switch but with the added advantage of up 12 on/orts per 24 hrs. This makes an Price of acaptor kit is $\mathbf{E 2 . 3 0}$.

THERMOSTAT ASSORTMENT
10 different thermastats. 7 bi-metat types and 3 liquid tvpes. devices againt in front of the element of a the stal if the blower fuses; appliance stats, one for high temp. eratures, others adjustable over a range of temperatures which could include $0-100^{\circ} \mathrm{C}$. There is also a thermostatic pod whic ice stat wersed, an oven stat, a calibrated boller stat, finally an loft could frotect your pipes from freezing. Separately, these thermostars could co
the parcel for $£ 250$

50 THINGS YOU CAN MAKE

Or do and still have hundreds of parts for future jobs. LEARN the practical way with our 10 kilo parce! of us
ful parts. Minimum? 000 items includes panel meters, ful parts. Minimum ${ }^{1}, 000$ items includes panel meters,
timers, 1 hermal trins, relays, switches, motors, drills, tap, and dies, tools, thermostats, coils, condensers, resistors, etc Parcel with data on 50 prolects.
YOURS FOR ONLY $£ 11.50$ plus $£ 3.00$ post.

3 CHANNEL SOUND TO LIGHT KIT

Complete kit of parts for a three channel sound to light unit
controlling over 2000 watts of lighting Use this al home if you controing gover
wish but it is plenty ruggeds enough for disco work The unit is housed in an at ractive two tone metal case and has controls fo
each channel and a master on off The audio innut and output are by "' sockets and three panel mounting fuse hol ders provide thyristor protection. A lour pin piug and socket facilitate ease of cornecting lamps. Special irice is $£ 14.95$ in kit form or $£ 25.00$ assembled and rested
MULTI-CHANNEL or ROBOT CONTROLLER This is two kits. The 8 channel transmitter kit and the 8 channel receiven knt: Each kit comes with diagrams and notes, The data shows how to drive reverse and steer two or to vo The data shows how to divive, reverse and steer two or more $\mathbf{6 9 . 5 0}$ for both ixits.
'BIG EAR'
As in December Hobby Electronics. Designed originally for walls or from long distances. Complete kit including the case

TANGENTVAL BLOW HEATER
2.5 Kw quiet,
efficient instan
hearing from
heating from
$230 / 240$ volt
mans Kit consists
of blower as
illustrated, 2.5

element, contrcl switch and deta all tor $£ 495$. post $£ 1.50$ CAR STARTER AND CHARGER KIT In an emergency you can start car off mains or bring your
battery up to full charge in a couple of hours. The kit com prises 250 war: mains transiormer, 40 amp bridge rectifter, in the evening, fox it up or leave it on the shelf in the garage.
J.BULL(Electrical) Ltd. (Dept. WW), 3436 AMERICA LANE, Establathed
30 YEARS MAIL ORDER TERMS: Cash, P.O. or cheque with order. Orders under E10 add 60p service charge. Monthly account orders accep ted from night. Havward:: Heath 10444 / 454563 . Bulk orders. write tor quote.

MINI MONO AMP on p.c.b., size $4^{\prime \prime} \times 2$ approx. Fitteci volume contiol and a hole
for a tone control should you require it. The amplifier has three
transistors and we est umate the output to be 3 W rms.
More technical data will be More techrical data will be
included with the amplitier Brand new, pertect condition. offered at the very low price of
f 1.15 each, or 10 for $£ 10.00$.

COMPUTER PRINTER, ONLY £4.95
YOUR LAST CHANCE
Japanese made Epson 310 - has a self starting brushless drive moto

8 POWERFUL BATTERY MOTORS
(all different) For models, maccanos, drills
remote control planes, toats etc. $£ 2.95$.
12v MOTOR BY SMITHS Made for use in cars, these are se
wound and they become more nowerful as load increases. Size a gooo \ddagger length of $1 / 4$ spindle
 price $\mathbf{~} \mathbf{~ D i t t o , ~ b u t ~ d o u b l e ~ e n ~ d e d ~} \mathbf{£ 4 . 2 5}$ Do, but peranent magnet, £3.75 EXTRA POWERFUL 12 v MOTOR Made to work battery lawnmower, this probably develops up to compressor, etc etc. $\mathbf{E 6 . 9 0}+£ 1.50$ post GO KART MOTOR
24 Volt operated easily vary speed and reverse - terrific nowe 24 Volt operated easily vary
Price $£ 9.50+£ 1.50$ pust.

A COMPETIIION OPEN TOALL WIRELESS WORLD READERS WITH $\& 8000$ IN CASH PRIZES

Design an Electronic Device to help the Disabled

Could you design a piece of equipment to help a disabled person? If so, you would - in addition to undertaking this worthy task - be eligible to win a substantial cash prize.
Our competition is open to individuals or groups resident in the UK. You register your entry using the form below, sending it to the Editor to arrive at his office not later than June 30th 1983. The designs themselves must be submitted to his office by 1st October 1983.
Entries, which will be judged by a group of eminent engineers and doctors, must consist of the following:- a statement of the design objectives; an overall description of the device; detailed circuit descriptions and diagrams; a model of the device or a model of a unique aspect of the design sufficient to demonstrate its feasibility.
The finalists will be invited to London to talk over their entries with the judges and be awarded their prizes. The prizes are:

1 st prize $\mathbf{£ 2 , 5 0 0}$ 2nd prize f1,500

 and the 4 runners up will be awarded prizes each of £1,000 To make sure you haveyour entry form now!
"DESIGN AN ELECTRONIC DEVICE TO HELP THE DISABLED" LIST OF RULES

The competition is open toll K residems on

Entrants can be individualsor groups. provided which musi he returned io the Wireless World Editurial I) epartment by the prowided when mushe returned the wireless worm Cditonathepartment ov All entrans agree togive Wireless World first serial publication rights to an article describing the entry
Allentrants indeminty Wireless. World from any liabilite in respect ol injury to people or damage tuppoperty arising from the use of the design All submined denigns must be the mignal All subnussions shuuld consision
Astatement of designobjective
An overall deseription of the
device
Detailed circuil descriptions and
diagrams
Amodel of the device or the unique aspect of the design feasibility
Ore design will be judged on:
Originality and benefit to the handicapped
b) Potential for production
c) Filegance of engineering design

Electronies conter
Simplicity of operation
Freedom fromexcessive
maintenance
Safety.
Siftware The judges decision is linal
All designsmust he sulmated ten the All designsmust he sulmated to the Wireless Wiri
October 198:3
October 198.) totravel to a venue in Iandon sometime during Nivember and December 198:3 to demonstrate their despon. All custs will be paid by the inumal.
Empluvers ol Business Press International are not allowed toente thiscompetition

wireless world
 COMPETITION ENTRY FORM

Name of competitor
Address

Telephone (home)
(business)
I intend to enter the competition and to abide by the rules as laid down in the May 1983 issue of Wireless World
lunderstand that, in order to qualify, my entry must be in the hands of the judges by 1 st October, 1983

Signature_
Date
Please send this form, as soon as possible, to
The Editor, WIRELESS WORLD
Room L302, Quadrant House, The Quadrant
Sutton, Surrey SM2 5AS.
Receipt of the form will beacknowledged

Electronic Brokers are Europe's leading Second User Equipment Company. We carry large stocks of the very latest test equipment which is refurbished in our own service laboratories and calibrated to meet the manufacturer's sales specifications. When you buy used equipment from Electronic Brokers, it can be yours in just days. No waiting for manufacturers lengthy production schedules. All equipment is fully guaranteed.

Datron
1059 Be
RMS AV Doh DM 5 1/2 digit DC and True E700.00 Fluke
502A $61 / 2$ digit DMM Solartron. 7055 Microp
20.000 AC resolution.

OSCILLOSCOPES

Hawlett Packard
 1821 A Timebase Plug in $\leqslant 1000.00$ Philips
PM3232 Dual Beam 10 MHz ... £495.00
PM 3234 True Dual Beam Storage PM 3234 True Dual Beam Storage
Oscilloscope 10 MHz New CRT E1500.00 Tektronix.
Tektronix.
213 Miniscope/DMM Battery 1 MHz 305 Portable battery scope/DMM, 1 5 MHz , delay T'Base........1200.00 468 Dual Trace 100MHz with Digital T922-01 15 MHz DT Scope Diff. tiput 15.00 2000 Trolley for 400 Senies, \&120.00
7313100 MHz Storage Mainframe 7603 100Мін Maintrame...E2225.00 5223 Digital Storage 10MHz...E20000.00 544050 MHz Mainframe...E1000.00 544150 MHz Variable Persistance Storage
Mainframe
$\mathbf{E 1 6 0 0 . 0 0}$ 7704 A Scope DC-200MHz Mainframe
7613 Storage Scope Mainframe

$0 \mathrm{C}-100 \mathrm{MHz}$ | 7633 Mutimode Storage Scope Manframe |
| :--- |
| $0 \mathrm{C}-100 \mathrm{MHz}$ |
| , 4500.00 | 7834 Storage Scope Mainframe $\mathbf{~} \mathbf{7 2 0 0 . 0 0}$ frame 7854 Waveform Processing Scope

$\mathbf{O C - 4 0 0 \mathrm { MHz }} \mathrm{EP00.00}$ OC-400MHZ
7904 Opt $02.03500 M H Z . \quad . \quad E 5000.00 ~$
E550.00

TEKTRONIX PLUG INS

 We stock a complete range of Plug Ins or use with 7000 and 5000 series Mainframes.
SIGNAL SOURCES

Howlett Packard.
$612 \mathrm{~A} 450-1230 \mathrm{MiHz}$. AM or Pulse
Modulation. Output 0.1 $\mu \mathrm{V}-0.5 \mathrm{~V}$ £ $\mathbf{1 5 0 0 . 0 0}$ Moduation. Dutput
$61689.8 .4 .2 G H z ~ i n t ~ o r ~ e x t ~ P C M / P M ~$
E1000.00 651 B Test Dscillator $10 \mathrm{~Hz}-10 \mathrm{MHz}$. $\mathbf{8 4 1 5 . 0 0}$
$0.1 \mathrm{mV}-316 \mathrm{~V}$ 3320A Frequency Synthesizer. 0.01 Hz - 13 MHz
 B690日 Sweeper Mainframe with 86988
Plught $0.4-110 \mathrm{MHz}$
$\mathbf{E 4 0 0 0 . 0 0}$

Marcani.
T-111 0 20Hz-2OKHz Low Distortion with TFבOO2B with TF21 70 Synchion $\mathbf{\Sigma 5 7 5 . 0 0}$ 10 KHz -8BMHz AM/FM Modulation TF21200.0008 $\mathrm{Hz}-100 \mathrm{KHz}$ W Wveform 00 Generator sweeper. Dutput $0.2 \mu \mathrm{~V}-200 \mathrm{mV}$ £ 3500.00 TF2169 Pulse Modulator for use with
TF2015 or TF2016 Philips.
£250.00

Racal

3081 AM, FM, Phase and Pulse Synthesized $5-520 \mathrm{MHz}$.............2200.00
Radiometer
SMG1 Stereo Generator ….... £375.00

TEKTRONIX TM500

SERIES

AF501 8andpass Filter/Amplifier. 5400.00 AM501 Dp Amp Gain 10,000 £300.00 AM502 Diff. Amp Gain 1 - 100K £500.00 DM502A TrueRM S $31 / 2$ digit DMM 5250.00 DC503A 125MHz Counter $\Sigma 475.00$ DC505A 225MHz Counter E600.00 1 MHz Function Generator $\mathbf{5 3 7 5 . 0 0}$ FG501 A Function Generator $0.002 \mathrm{~Hz}_{2}$ 2MHz -11 MHz
C 425.00 E275.00 PG505 Pulse Generator $1 \mathrm{~Hz}-100 \mathrm{KHz} \mathbf{E 4 5 0 . 0 0}$ PG506 Calibration Generator £1650.00 SC502 15 MHz Dual Trace Scope $£ 1000.00$ SC504 80MHz Dual Trace Scope 1250.00 SG503 Sinewave Generator 250 KHz 250 MHz
£950.00 TG501 Timemark Generator £950.00
TM515 Mainframe $[5$ wide $]$.... $\mathbf{~} 350.00$
TEKTRONIX TV TEST EOUIPMENT
£1750.00

148 PAL Insertion Test Generato 1485C PAL NTSC Duel Standar £4000.00 Waveform Monitor. £2950.00 651HR 12 PAL Colcur Monitor (Mint) $\mathbf{E 3 2 5 0 . 0 0}$
655HR-1 TV Colour Picture Monitor
 E1800.00

MISCELLANEOUS

Bruel Kjae Qatalabs
DL901 Transient Recorder 750.00 DL905 Transient Recorder … £995.00 Ferrograph c235.00 Fluke 515 A Portable Calibrator DC/AC and Resistance with DC Resolution $0.2 \mu \mathrm{~V}, \mathbf{E 1 7 5 0 . 0 0}$ 760A Meter Calibrator £2950.00
883 AC/DC Differential 883 AC/DC DifferentialE615.00 3010A Lagictester. Self Contained Hewlett Packard.
5340 A Counter $10 \mathrm{~Hz}-18 \mathrm{GHz} 8$ Digit 8403A Modulator Fitted With 8730 PP PN MODULATOR $\quad \mathbf{1 5 0 0 . 0 0}$ 8482H Power Sensor 100KHz-4.2GHz. AS
NEW
£250.00 9745A S Parameter Test Set Fitted with $11604 A$ Universal Arms 0.1-2GHz 82750.00 Marconi. TF2162M.F. Attenuator. D-111d8 E180.00

Aacal
or Milivoltmeter £495.00
£3500.00 Schaffner Tektronix 509 KV Insulation Tester. . £765.00 Tektronix
106 Square Wave Generator 1 nS risetime
$10 \mathrm{~Hz}-1 \mathrm{MHz}$ without accessories $£ 175.00$ 10H2-1M1 2 without accessories. £175.00
$577 / 01$ Curve Tracer $\quad £ 3000.00$ 833 Data Comms. Tester \quad E925.00 2701 Step Attenuator $50 \Omega 079 \mathrm{~d} 8$ in 1 d 8
. 295.00

Please note: Prices shown do not include VAT or carriage
Electronic Brokers $1=1$

Electronic Brokers Limited 61/65 Kings Cross Road LONDON WC1X 9LN Telephone: 01-278 3461 Telex: 298694 Elebro G

 THE 'ALADDINS' CAVE OF COMPUTER AND ELWCTRONIC EQUIPMENT

HARD DISK DRIVES

disk drive for DEC RKO5. NOVA. TEXAS
DRE $44 \mathrm{~A} 4000 \mathrm{AB} 10 \mathrm{mb} 5+5$ all E995.00. Call sales oftice for details

5 AMP MAINS FILTERS

caused by mains interference. Matchbox size-Up to 5
amp 240 v load. As recommended by the ZX81 newsamp 240 v load As recommended by th
letter. Suppression Devices SD5A 55.95 .

DISTEL ©

The UKS FIRST free of charge, 24 hr . public access data base. Get information on 1000's of stock items and order via your computer and credit card. On line now, 300 baud. CCITT tones, full duplex, fully interactive
DON'T MISS THOSE EARGAINS GALL NOW, IT'S FREE $01-8831.55$ weak 84 hre

COMPUTER 'CAB'

All in one aua computer

mode PSU Mains fittering, and twin fan cooting

 Originally made for the famous DEC PDP8 computer system costing thousands of pounds. Made to run 24 massive +5 vDC at 17 amps , +15 v DC at 1 amp and -1 DC at 5 amps. The complete unit is fully enclosed with removable top lid, filtering, trip switch, 'Power' and 'Run LEDS mounted on Ali front panel, rear cable entries, etc 240 v operation complete with full circuit and tech man Give your system that professional finish for only $\varepsilon 49.95$ + Carr. Dim. $19^{\prime \prime}$ wide $16^{\prime \prime}$ deep 10.5" high E49.95 + Carr. Dim. 19" wide $16^{\prime \prime}$ deep
COOLTIG FAMS
 with our range of BRAND NEW protessiona cooling tans ETRI $99 x$ uOI inger quard $£ 9.95$ GOULD JB-3AR Dim $3^{\prime \prime} \times 3^{\prime \prime} \times 2.5^{\prime \prime}$ compact BUHIER 69.11.22. 8 miniature reversible tan. Uses a brushless servo motor tor extremely high air flow, almost silent running and guaranteed 10,000 hr life. Measures only $62 \times 62 \times 22 \mathrm{~mm}$. Current cost 52.00 OUR PRICE ONLY £12.95 complete with data. MUFFIN-CENTAUR standard $4^{\prime \prime} \times 4^{" \times} \times 1.25^{\prime \prime}$ Gan SUPDPlied tested EXEQUIPMENT 240 v at $£ 6.25$ or 110 v at $£ 4.95$ or BRAND NEW 240 v

SUPER DEAL? NO - SUPER STEAL!?

The FABULOUS 25CPS TEC Starwriter
Daisy wheel printer at a fraction of its original cost. BRAND NEW AT ONLY£499-

Made to the very highest
Spec. the TEC Stawriter FP1 500.25 features a heavy duty die cast
chassis and DIABLO typ print mechanism giving
superb registration and
orint quality. Microprocessor electronics Compatitility plus Bi
directional printing. 10 or 12 pitch, 136
or 163 chars per line, full width 381 m
friction or single sheet paper, - Order now or call sales office for more information and print sample Please speciry RS232 ow CE
Supplied complete with FREE dust cover and daisy whee Optional extras RS232 data cable $\mathbf{\varepsilon 1 0 . 0}$
$\mathbf{\Sigma} 2.50$ - Tractor feed option $\mathbf{\Sigma 1 2 0 . 0 0}$

BPCRARGRABLE BATIPRIB8

CYCLON type D001 sealed lead acid

 maintenance free $2 v 25$ an. will deliver over300 amps on short circuit!! Brand new at

DATA MODEMS

Jainge of EX TELECOM data modems. Made to
remith most stringent spec and designed to operate
for 24 nis per day Units are made to the CCITT tone spec. With RS232 i/o levels via and warking condition with data Permission and working condition withection to PO lines. MODEM 13 A compact, async, same size as over 2 wires, but call mode only $£ 75.00$ MODEM 2B/C Fully fledged, up to 300 baud auto switching, ideal networks etc. Just 2 wire connection to comms line. £85.00 MODEM 20-1 Compact unit for use with transmit - 1200 baud receive. Auto answer £130.00
MODEM 20.2 same as $20-1$ but 75 baud
receive 1200 baud transmit $£ 130.00$ receive 1200 baud transmit $£ 130.00$
MODEM 20.3 Made for data rates up to baud in full duplex mode over 4 wire circu
half duplex mode over 2 wires $£ 130.00$ half duplex mode over 2 wires. $£ 130.00$

DSFLAM -ELETTRUNIES

D.C. POWER SUPPLY SPECLALS

Experimentors PSUEx-GPO unit all slicon electronics. Outputs give +5v@2 amps

 350 mm . All outputs fully regulated and short circuit proof. Removed from workingequipment, but untested. Complete with circuit. Transformer guaranteed. Only equipment, but untested. Complete with
E14. $50+£ 2.50 \mathrm{pp}$.
CUSTOMPOWER $C O 555$ @ 3 amp. Very compact unit dim. appro $\times 60 \times 90 \times 190 \mathrm{~mm}$. E11.95 +
MINISYSTEM PSU Ex equipment unit ideal for the small micro Outputs give $5 \mathrm{v} @$ $3 \mathrm{amps}+12 \mathrm{v} @ 1 \mathrm{amp}$ and $\cdot 12 \mathrm{v} @ 300 \mathrm{ma}$. Crowbar overvoltage protection and $+£ 2.00 \mathrm{pp}$. PERIPHERAL SYSTEM SUPPLY. Fully cased unit supplied in a Brand new or little used condition. Outputs give $5 \mathrm{v} @ 11$ amps " + " $15-17 \mathrm{~V} @ 8$ amps " $-15 \cdot 17 \mathrm{~V} @ 8$ amps
and " + " $24 \mathrm{v} @ 4 \mathrm{amps}$ All outputs are crowbar protected and the 5 volt output is fully regulated. Fan cooled. Supplied tested with circuit $\$ 55.00+$ £8.50 carr. regulated. Fancooled. Supplied tested, with circuit $55.00+\varepsilon 8.50$ carr.
MAIN FRAME SUPPLY. A real beefy unit designed for MINI or MAINFRAME use outputs give 5 volts @ 50 amps $+12 \mathrm{v} @ 5 \mathrm{amps}-12 \mathrm{v} @ 10 \mathrm{amps}$ All output are fully regulated with crowbar overvoltage protection on the 5 v output. Supplied with circuit

66\% DISCOUNT
ELECTRONIC COMPONENTS \& EQUIPMENT

Due to our massive bulk purchasing programme which enables us to bring you the

 best possible bargains, we have thousands of I.C.s. Transistors, Relays, Cap's, P.C.B.'s, Sub-assemblies. Switches, etc. etc. surlplus to our requirements. Because we don'have sufficient stocks of any one item to include in our ads, we are packing all these have sufficient stocks of any one item to include in our ads, we are packing all these
items into the "BARGAIN PARCEL OF A LIFETIME" Thousands of components at giveaway prices! Guaranteed to be worth at least 3 times what you play plus we always giveaway prices Guaranteed to be worth at least 3 times what you play
$2.5 \mathrm{kls} \mathrm{E} 4.25+\mathrm{pp} £ 1.25$
$5 \mathrm{kls} £ 5.90+\mathrm{pp} £ 1.80$
$20 \mathrm{kls} £ 17.50+\mathrm{pp} £ 4.75$

ATI PRICTS PLUS VAT

video mONITORS

MOTOROLA 9 ", open chassis monitor. Standard $240 \vee A C$ with composite 750 hm
video input, bandwidth in excess of 18 mhz . video input, bandwidth in excess of 18 mhz
Monitors are ex equipment and although Monitors are ex equipment and although
unguaranteed they are all tested prior to despatch, and have no visible burns on the despatch, and have
screens ${ }^{2} 9^{\prime \prime} \times 9^{\prime \prime} \times 9^{\prime \prime}$. Supplied complete with mains and inpur tead the ZX81 etc. or giving the tele back to the
family! 8iack and white phosphor. $\mathbf{£ 3 5 . 0 0}$

12" CASED. Made by the British KGM Co Designed for continuous use as a data
display station, unit is totally housed in attractive brushed aluminium case with OFF. BRIGHTNESS and CONTRAST controls mounted to one side. Much
attention was given to construction an reliability of this unit with teatures such as supply, all components mounted on wo fibre glass PCB boards -
ease ofervice, many -wernalcontrolsior 75 ority etc. The monitor accepts standard socket on rear panel. Bandwidth of the uni is estimated around 20 Mhz and will display Units are secondhand and may have screen burns. However where burns exist they are
only apparent when monitor is switched oft. Although unguaranteed all monitors are tested prior to de spatch. Dimensions approx. 14 "high $\times 14^{\prime \prime}$ wide by $11^{\prime \prime}$ deep. operation. OWLYE4S.OO PLUSE9.50 CARR. $14^{\prime \prime}$ COLOUR superb chassis monitor mad by a subsidiary of the HITACHI Co. Inputs
are TTL RGB with separate sync. and will plug direct into the BBC micro etc Exceptional band width with good 80 co
detinition. Brand new and Complete with full data \& circuit 240 V ONIVE 199.00 PLUS E9.5O CARR
SEMICONDUCTOR 'GRAB BAGS'

Mixed Semis amazing value contents

include transistors, digital, linear, I.C.'s triacs diodes, bridge recs., etc. etc. All devices
quaranteed brand new full spec with man quaranteed brand new full spec. with facturer's markings, fu
$50+£ 8.95 \quad 100+E 5.15$.
ThL 74 Series A gigantic purchase of an C.'s enables us to ranger of 74 TLL series "mostly TL" grab bags at a price which two or three chips in the bag would nnormally
cost to buy. Fully guaranteed all I.C.'s fuli

OLIVEITI TH300
 REDUCED TO CLEAR

 perates at 150 baud in standard ASCII. Ideal as a cheap printer for a MICRO etc. 120 with data, untested, unguaranteed $£ \mathbf{\$ 5 . 0 0}$
DEGSAL
 a selection from our huge stocks． All items reconditioned unless otherwise stated．

DEC PDP11／70 EQUIPMENT

SPECIAL BULK PURCHASE OF $11 / 70$ PROCESSORS，PERIPHERALS AND OPTIONS EX DEC－MAINTAINED SITE enabling us to offer a wide variety of onfigurations and add－ons．Please let us know your requirements

DEC UNIBUS SYSTEMS
PDP11／24 SYSTEM
$11 / 24$ CPU，256KB MOS．Dual RL02 \＆Control，Cahinet，VT1 00 Console NEW £15，750
PDP11／34A SYSTEM
£13，725
PDP11／34 SYSTEMS
11／34 CPU．128KB MOS，Dual RK05 and Control，Cabinet，LA36 Console $£ 6320$

PDP8A／RL01 SYSTEMS

SPECIAL PURCHASE－IMMACULATE AS NEW CONDITION
8A400－BR Processor complete with

KK8A CPU	$2 \times$ RLO1AK Disk Drives
MM8AB 16KW Core	RLBA Controller
KC8AA Programmers Panel	H967 4ft cabinet
KMEAA Option module	$\mathbf{8 4 7 5 0 . 0 0}$

DKCBA

DEC LSI PROCESSORS

11／03LX KD11HA CPU，KEV11 EIS／FIS．BDV11AA Terminator／Bootstrap BA1 1 N $51 / 4$ Chassis with Backplane and Power Supply No memory included NEW 51200
11／O3N KD1 10 CPU，KEV11 EIS／FIS，BDV1 1 AA Terminator／Bootstrap． BA11R $51 / 4$ Chassis with Backplane and Power Supply，MSV11DD 32k．W MOS NEW £1495

ANDERSON JACOBSON
AJ832 Daisy Wheel Printer 300 baud with Keyboard and Integral Stand EIA／RS232 interface
AJ860 Matrix Printer 1200 baud with Keyboard and Tractor Feed Good quality print－out with true descenders．Desktop model EIA／RS232 Interface
AJ212 Acoustic Couplers 300 baud，originate only
TEXAS PORTABLE
Texas 745 Portable Terminal with integral acoustic coupler
$E 125$

C 850

FLOPPY DISK DRIVES

$R \times B E$	$\mathbf{E 9 9 5}$
$R \times V 11$	$\mathbf{E 9 9 5}$
$R \times 28$	£1450
$R \times 2 ? 1$	$\mathbf{E 1 4 5 0}$

OEC MULTIPLEXORS

DH 11 AC
DH 11 AD
£2，500
£2，750 OZ11B £995 DZ110 £995

DEC OPTIONS

AR11 ADConv．$£ 750$
BA11LF Expander Box $\mathbf{8 8 2 5}$
DB11A Bus Repeater $£ 525$ OD11CK Backplane $£ 275$ DR11CI／O E295
DU11DA Synch $1 / O \quad \mathbf{E 5 2 5}$
FP11A F／Point $£ 1,500$
KE11日EAE
KJ11A Stack Limit
KK11A Cache
KMC11A Aux．Proc．
KT110 Mem．Mgt．
KW11LRTC
M9301 YF Bootstrap

DEC MEMORY

11日Y Core Box	
MM1 1DP 32KB Core	
MS11JP 32KBMOS	E375
MS11KE64KBMOS	，500
MS11L8 128KB MOS	2500
MS11LD256KB MOS	$\varepsilon 750$
MS11ME 256 KBMDS	$£ 1250$
DEC PDP8A SERIES	
8A205日R Processor	£1，750
8A625日N Processor	0
MMBAB 16KW Core	5995
MSECB 32kW MOS	$¢ 750$
DKBEARTC	6150
KCBAA Prog．Panel	¢275
KK8F CPU Module Set	$\Sigma 575$
KlBJA Asynch．I／O	¢275
KTEA Mem．Mgt．	$\Sigma 495$

DEC PRINTERS AND TERMINALS
LA34 DECwriterIVEIA 300 baud $£ 425$
A36DECwriterll20mA 5295
LA36 DECwriter II RS232
LA1 80－PDDECprinter I［NEW］ LS120DECwriter IIIEIA 1200 baud VT50 DECscope 20mA VT50DECscope RS232 VT105 Graphics Terminal VT131AB VT132

HAZELTINE VDUS
 Hazeltine 1500
 （recon）£325
 Hazeltine ESPRIT （recon） $\mathbf{£ 3 9 5}$
 Hazeltine 1520 £625
 Executive 80
 （recon）From 6675

$£ 325$
$\Sigma 495$
$£ 750$
E 199
$\varepsilon 225$
$£ 950$
$⿷ 995$
$£ 875$ 1,375 2375 － 500 $£ 500$ $£ 750$ 1250

1，750 £595 £125 £1，500 6875 $\varepsilon 750$ £75 $\propto 175$
，250
5750
£150
£275 $£ 575$

627
£495

SCOOP PURCHASE OF TEKTRONX CRAPHICS EOUIPMIENT HUEESAVINES FROM NEW PRICES ONLY SLIGHTLY USEO－COVEREO EY FULL WARRANTY

TEKTRONIX COLOUR GRAPHICS

TEKTRONIX 4027 COLOUR GRAPHICS TERMINAL providing full colour graphics and
alphanumerics，Plot 10 compatible
＊ 8 displayatle colours from pallette of 64
＊full screen crosshair cursor
＊ 34×80 display［2720 characters］
－ 120 user－defined patterns
RS232 Interface with up to 9600 baud transmission
range of options available
OUR PRICE $£ 5250.00$

Other Tektronix Graphics Equipment currently available：－

4006－1 HIGH RESOLUTION GRAPHICS DISPLAY TERMINAL
Alphanumeric Mode： 35×74 characters
［63 ASCll character set）
Graphics Matrix： $1024 \mathrm{X} \times 1024 \mathrm{Y}$
Baud Aate： 75 thru 4800 Interface
$⿷ 1525$
4010－1 HIGH RESOLUTION GRAPHICS DISPLAY TERMINAL
Alphanumeric Mode： 35×74 characters 63 ASCll character set）Graphics Matrix：1024X $\times 1024$ Baud Fate： 110 thru 9600 Interface：Standard RS232 Thumbwheel crosshair cursor Integral Stand

52750

4014－1 and 4015－1 HIGH RESOLUTION BIG［19＇］
SCREEN GRAPHICS DISPLAY TERMINALS

4014－1 £6950 4015－1 £7250

4051 DESKTOP COMPUTER
High resolution Graphics and Alphanumerics，Зこкв Memory． ntegral Cartridge Tape Drive £2250

4952 OPT． 2 JOYSTICK

for 4050 series］sensitive cursor－control with ． 1% accuracy
4662 INTELLIGENT DIGITAL PLOTTER
Microprocessor Controlled high speed plotting up to 10×15＂with built－in joystick control． IEEE general purpose interface £1800
4663 INTELLIGENT DIGITAL PLOTTER
Microprocessor Controlled high speed
Standard RS232 interface． 4000

606 DISPLAY MONITOR

Appointments

Advertisements accepted up to 12 noon Tuesday, May 31st, for July issue, subject to space available.

DISPLAYED APPOINTMENTS VACANT: $£ 15.50$ per single col. centimetre (min .3 cm). LINE advertisements (run on): $£ 3$ per line, minimum $£ 20$ (prepayable).
BOX NUMBERS: $£ 3$ extra. (Replies should be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS).
PHONE: IAN FAUX, 01-661 3033 (DIRECT LINE)
Cheques and Postal Orders payable to BUSINESS PRESS INTERNATIONAL LTD. and crossed.

NO REVOLUTIOM BUT THESE FIRMS PUT OUT A 'MAYDAY'!

SENIOR DESIGN ENGINEER to development analog process and instrumentation using Discrete components largely for chemical industry to supervise production and to write documentation. Must be capable, practical person living near Enfield. Salary up to $£ 15,000$ p.a. + executive transport.
DESIGN ENGINEER to develop digital circuits for television and video applications including frame-stores, standards interconversion and data encryption, or develop systems for base and mobile stations for various applications. Must be experienced and qualified engineer. Up to $£ 14,000$ p.a. in North Berks.
CHIEF ENGINEER to lead a team designing varied computer peripheral equipments using TTL CMOS and based on 8085 s. Must have man-management experience, over and above technical competence and appropriate qualifications. Up to $£ 14,000$ p.a. plus extras. Herts

DESIGN ENGINEER to develop precision emission spectroscopy gear which is interferometer based and also uses Fourier Transforms designing hardware and writing software for microprocessors to control the whole process. May be young but must be brilliant and well qualified. Salary to $£ 12,000$ p.a. in N.W. Kent.

GROUP LEADER to write software and design some hardware for chart records, graph plotters and data recording products based mainly on Motorola microprocessors. Besides qualifications and sound experience, must be able to galvanise and motivate his team. Salary to $£ 15,000$ p.a. on Sussex coast.
DESIGN ENGINEER to develop radio communication management systems applying both digital and RF techniques and a Programmer to write programs using M6805 development aids to control the systems. Salary to $£ 11,000$ p.a. in Wilts.

Graduates with relevant experience don't sit around!
Ring or send your c.v. to their chosen agents.

Charles Airey Associates

Tempo House, 15 Falcon Road, Battersea, London SW11 2PJ Telophone: 01-223 7662 or 2286294

U M I S T

RESEARCH IN ANALYTICAL MICROWAVE SPECTROMETRY

Applications are invited from persons holding a first or upper-second class honours degree, to study for PhD in the design and construction of a microwave rotational spectrometer for the determination of water in microwave mixtures, supported by Shell Internationale Petroleum Maatscheppij B.V. Applicants must be practically oriented and have experience of the theory and practice of digital and radio-frequency circuit design. Experience at microwave frequencies is desirable, but training can be given in this area.
Applications including a full curriculum vitae and the names of two referees should be sent to Dr J. F. Alder, Department of Instrumentation and Analytical Science, UMIST, PO Box 88, Manchester M60 10D. Please quote reference IAS/S3/AU.
(2122)

Appointments

Appointments

CUT THIS OUT!

Clip this advert and you can stop hunting for your nex appointment. We have a wide selection of the best appointments in Digital, Analogue. RF Microwave. Micro processor, Computer. Data Comms and Medical Elec tronics and we're here to serve your interests.
Call us now for posts in Design, Sales. Applications or Field Service, at all levels from $£ 6,000 \cdot £ 16,000$.

- Technomark

11 Westbourne Grove. London w2. Te: :01-229 9239

CHIEF ELECTRONICS ENGINEER

To join a small highly motivated research and development team responsible to the Managing Director for all aspects of circuit design including component specifications, loudspeaker enclosures and test specifications from design to production stage.
The Company is involved in the manufacture and marketing of amplifiers, electronic effects and accessories in the music industry both in the U.K. and overseas.
Candidates must possess high technical qualifications and be experienced in an audio research and development environment. An active interest in live music would be advantageous together with the ability to communicate with non-technical people.
An attractive salary will be offered according to age, qualifications and experience.
Please send full c.v. to
MR. S. H. MERCER, MANAGING DIRECTOR
CARLSBRO SOUND EQUIPMENT LTD.
CROSS DRIVE, KIRKBY-IN-ASHFIELD
NOTTS. NG17 7LD

TELECOMMUNICATIONS TECHMICLIN EMGIMEER

Up to $£ 9,240$

Edinburgh
This opportuntty is in the Branch of the Directorate of Telecommunications which has responsibility for the telephone and other administrative communication systems within the Scottish Office and which provides a consultancy service on all aspects of communications to the fire and health authorities.
The work will involve assisting in the detailed planning of administrative telecommu nication systems; liaison with other Departmental groups; British Telecom, the Emergency Services and equipment suppliers, drafting of technical specifications the preparation of detailed information for feasibility studies; arranging field trials and practical tests of new equipment; and technical administrative work concerned with radio frequency allocation, radio clearance and transmitter licensing.
Candidates must have either TEC or SCOTEC Higher Certificate in Electronics, Telecommunications or similar discipline or City and Guilds Full Technological Certificate (Technicians Certificates Parts \& II and III) in Telecommunications or Higher National Certificate in Electrical/Electronic Engineering or Council of Engineering Institution's Certicic Erectristion requirement for regisiration as a Technician Engineer CEI (TEng CEI) or an equivalen or higher acceptable qualification
In addition all candidates must have an aggregate of at least 10 years' recognised training and experience which may include up to three years' full-time study and should include at least four years' experience in communications engineering in one or both of the following fields: (a) Telephony and line communications including voice, data, teleprinter and facsimile systems, large and small PABX equipments and British Telecoms full range of facilities; (b) Radio communications including VHF and UHF radio schemes, radio links, radio paging systems, and motile radio contro systems.
Senior ex-Service personnel with recognised exemptions from the above qualifications by the TEC/SCOTEC or City and Guilds of London Institute, and the relevant experience in a senior technical capacity will be considered.
Electrical engineering graduates with an aggregate of at least four years' profes sional training and experience in the relevant fields may also apply
Starting salary (under review) $£ 7,930-£ 9,240$ according to qualifications and exper ience. Promotion prospects. RELOCATION ASSISTANCE MAY BE AVAILABLE
For further details and an application form (to be returned by 10 June, 1983), write to Scottish Office, Personnel Division, Room 110, 16 Waterloo Place, Edinhurgh EH1 3DN or telephone 031-556 8400 Ext 4317 or 5028. Please quote ref. TIT/85. Scottish Office

Botswana

Chief

Telecommunications Maintenance Officer

Up to $£ 16,000$ p.a. substantially tax-free
A challenging post with the Department of Civil Aviation in a democratic multi-racial developing country in southern Africa.
Duties

* First line supervisor of the technician in charge at Gaborone, Francistown and all out stations.
* Involvement in the installation and maintenance of ILS and VHF-DF equipment.
* Instruction of local techniques including the development of practical workshop courses for radio maintenance technicians.

Qualifications

Applicants, preferably aged between 40 and 55 years, should have successfully completed basic and advance training in VOR and DME equipment at an internationally recognised institution. A minimum of five years' experience in the installation and maintenance of the above equipment is necessary together with successfully completed training in advanced ILS and VHF-DF equipment.
A broad engineering background in the maintenance of various communications equipment, including teleprinters, is also essential.
Benefits include free passages, generous paid leave, children's holiday visit passages and education allowances. Basic salary attracts tax-free gratuity en completion of three year contract.
For full details and application form ring Linda Mitchell on 01-222 7730 extension 3714 or write quoting YX/108/WW.

Crown Agents

The Crown Agents for Oversea Governments \& Administrations
4 Millbank, London SW 1P 3JD.

THE AMERICAN BROADCASTING CO.

requires

EXPERIENCED ENGINEERS

with good knowledge of U-matic VTRs and television practices. The successful applicants would join a small team of dedicated engineers working on a shift pattern, operating and maintaining a wide range of T.V. broadcast equipment. Some overseas travel is also required.
The company offers competitive salaries with a pension scheme and BUPA. Please send a C.V. and salary requirements to:

> Miss Patti Davies
> Broadcast Operations and Engineering American Broadcasting Company
> 8 Carburton Street, London W1P 7DZ

Appointments

BORED ?

Then change your job!

1) Film-TV Equipment

Instailation and maintenance of studio and TV UK and abroad
2) Satellite Communications

Test Engineers required with experience of digital circuitry. $£ 7,700$. Surrey.
3) Microcomputers and

Peripherals

4) Data Communications

Service of microprocessor-based equipment
¢8,000+ car Reading.
5) Service Personnel
(RAF, RN, Ammy)
We heve many clients interested in employing ex-service fitters and technicians at sites throughout the UK. Phone for details.
6) $£ 500$ per week

We are paying very high rates for contract design and test engineers who have a background in RF, MICROWAVE, DIGITAL ANALOGUE or SOFTWARE, at sites throughout the
UK. Hundreds of other Electronic and Computer Vacancias to $£ 12,500$ Phone or write: Roger Howard, C.Eng.
CLINEDEN CONSULTANTS
87 St. Leonard's Rosd, Windsor, Berks.
Windsor (07535) 58022 (5 lines)

Electronic Engineer to Lecture on Broadcast Technology

The IBA Harman Engineering Training College in Seaton, Devon, provides professional specialist training for IBA Engineers. We now need an additional Engineer to prepare lecturing and training material and deliver lectures on specific areas of broadcast technology.
You should be qualified to degree level (or equivalent) in Electrical/Electronic Engineering or Physics and have at least five years' recent experience in Electronics. Experience in the field of broadcast engineering would be an advantage as would some experience of lecturing
Starting salary is within a range rising to $£ 11,283$ per annum. Re-location expenses to the Seaton area will be paid, where appropriate.

IBA

INDEPENDENI
BROADCISTING
AUTHORITY

- An Equal Opportunities Employer

Applicants should write or telephone for an application form quoting reference WW/801CC to Glynis Powell, Personnel Officer, IBA, Crawley Court, Winchester, Hampshire SO21 2QA. Telephone Winchester (0962) 822270.

UPVITN

World-wide Television

UPITN - the world's leading television news agency - requires technistaff for its new production facility opening soon in Central London cal staff for its new production facily fast-paced working environmen Successful applicants will enjoy a lively, tast-paced wore than 200 broad distributing the leading news stories of the day to more than casters world-wide. Shift work on a seven-day fortnight is in itractive salary and pension scheme is offered. Positions open inan attr
clude:
VIDEO TAPE EDITORS: Experience in the operation of "C" Format one inch and Sony BVU equipment will be required. Successfisl applicants must have the ability to work well under pressure, meet tight deadlines, and be able to work on a wide variety of programme material ranging and be able to work on a wide variety of programme to a weekly half-hour documentary.
MASTER CONTROL OPERATORS: Applicants for these positions should be capable of booking and co-ordination of domestic and international television circuits and able to maintain quality control standards during transmissions. A knowledge of standards conversion techniques will also be required.
MAINTENANCE ENGINEERS: A working knowledge of a wide range of modern television equipment including VTRs, Digital Standards Convertmodern television and studio equipment will be required. Successful applicants will be expected to develop and implement a programme of planned will be expected to develop and UPITN "on the air" with emergency mainten

Applications to:

> Robert Howes
> Manager, Technical Facilities
> UPITN Corporation
> 48 Wells Street, London, W. 1

LOGEX
 ELECTRONICS RECRUITMENT

Spacialists in fied \& Custome Engneeng appoint

 ments, all locations and disciplinesLogex House, Burleigh, Stroud Gloucestershire GL5 2PW 0453883264 \& 01-290 0267 (24 hours)
> \& Services
> The professional CV people Quick
> * Efficient

> We prepare cop-quality résumes at a price you can afford
> For further information write/phone:
> CV Services
10 Wilton Road, Hitchir, Herts SG5 1SS Tel: Hitchin (0462) 31836

Ministry of Defence

Civilian Instructional Officers Grade III

Royal Air Force Cosford, Cranwell, Sealand

A number of posts at the above units are open to men and women fully skilled in the listed trades, able to teach and supervise trainees. Appropriate City and Guilds Certificate, ONC or equivalent is desirable though not essential. Selection by trade test and interview. Salary, presently under review, $\mathrm{f} 6,756$ p.a. rising to $£ 8,115$ p.a. Pensionable employment with limited prospects of promotion to posts with a salary maximum of $£ 10,319$ p.a.

Electronics/Avionics

To teach Airborne Electronics equipment, instrumentation and telecommunications.

Avionics

To teach Airborne Electronics equipment and instrumentation. RAF COSFORD, Wolverhampton, West Midlands, WV7 3EX

Electronics/Avionics

Programming, timetabling external visits, and instructional support in the Electrical Power Systems Engineering Laboratory.
RAF CRANWELL, Sleaford, Lincs, NG34 8HB

Avionics

To teach Electronic principles and equipment to MOD Craft Apprentices.

RAF SEALAND, Deeside. Clywd, CM5 2LS

Further particulars and application forms may be obtained from the Civilian Administration Office at the address relevant to the post being applied for.
Closing date for receipt of completed application forms: June 13, 1983.

BOX NOs.

Box number replies should be addressed to:
Box No...
c/o Wireless World
Quadrant House
The Quadrant
Sutton, Surrey, SM2 5AS

SENIOR MARINE ELECTRONICS ENGINEER

with knowledge of installations and repair of VHF, MF/HF Redio-Telephones, Telex, Radar, Automatic Pilots, Gyro and Sat. Nav. Based in London but with periods of time working overseas.
Please apply in writing with c.v. to Ms. Branda Barmard, Telosonic Marine Limited, E0/62 Brunswick Contre, Marchmont Street, Londan, W.C.1.

We offer a rare opportunity to live in Oxford and work with a team of experienced systems designers, developing our next generation of computer and instrumentation products.

Our current very successful microcomputer family includes a state-of-the-art network system and new developments will make use of 16 -bit processors and gate-array technology. Our products are designed to maintain our reputation for high standards of quality and reliability.

Engineers contribute to development projects from concept through to production handover. Projects are normally tackled by small teams, providing maximum involvement and opportunities for responsibility at project leader level.

Previous experience should include a good degree and at least two years' experience in industry. including work with microprocessors and low-level software design. A knowledge of analogue hardware or a high level language would be an advantage.
We offer modern office accommodation and a salary range of $£ 8,500$ to $£ 13,000$ per annum depending on experience. An attractive range of benefits include: 25 days paid holiday; free BUPA, life and disability insurance; a pension scheme and generous help with your relocation to this area.

If you are interested in this vacancy please contact Denise Howells on Oxford (0865) 726136 or write for an application form, quoting ref: HD/WW5

$$
\begin{aligned}
& \text { PESEARCH MACHINES } \\
& \hline \text { MICROCOMPUTER SYSTEMS } \\
& \hline
\end{aligned}
$$

Electronic Engineers What you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $£ 5000-£ 15000$.
If you wish to make the most. of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL PERSONNEL SERVICES, 12 Mount Ephraim,
Tunbridge Wells, Kent. TN4 8AS

Please send me a TJB Appointments Registration form
Name
Address
Tel: 089239388

Classified

ATE CONTROLLER

This new appointment will involve you in all aspects of planning, engineering and running the automatic test facility, the hardware for which has now been ordered. The position will entail a considerable amount of in-house liaison, involvement in programming for all products, design and manufacture of jigs, etc, as well as day-to-day running of the section, direction and supervision of standard documentation.
You will be a Degree/HND level Electronics Engineer with 5-10 years' in-depth experience of test of complex products, together with a background of programming and running ATE.

TEST ENGINEERS - STUDIO PRODUCTS
 Qualified Engineers are required for test and quality assurance duties on our exciting range of broad-

 cast TV studio products. You would be involved in testing and checking to spec., sophisticated studio products such as colour cameras and digital test equipment.You should be qualified to at least HND/HNC level and be familiar with modern digital and analogue circuitry. At least three years' experience since qualifying is considered essential for the present level of vacancies.

Competitive salaries, backed by free life and health insurance plus
contributory pension scheme. Generous financial assistance with
relocation where appropriate to help successful candidates move
to Andover, located in a pleasant part of rural Hampshire within easy reach of London and the South Coast.
Please write or telephone our Personnel Department on Andover (0264) 61345 for an application form or alternatively let us have full details of your background and experience.

Electronics Technician
 Advanced colour-sorting equipment London Attractive salary package

If you've gained at least two years' experience in an R\&D environment and have a recognised electronics qualification, this is an excellent opportunity to further your career with an award winning high-technology company which is a clear leader in its field.
We design, develop and manufacture sophisticated electronic colour-sorting equipment for applications in the food processing industries. Our products are in use in some 100 countries worldwide, with export sales accounting for over 90% of our turnover.
To help maintain our lead, we now seek an Electronics Technician with an R\&D or, possibly, relevant Services background to join our R\&D project team currently engaged on
within a genuinely multi-disciplinary environment, you can expect to be involved in areas such as optical measurement and mechanics in addition to general electronics. Key requirements include a good knowledge of analogue and microprocessor-based electronics, an adaptable approach to the job, and the ability to operate effectively as part of a team.
If you meet this specification, we'll offer you an attractive salary package plus the chance to make your mark in an exceptionally interesting technical development role.
Either ring for more information or write with brief personal, career and salary details to: The Group Personnel Manager, Gunson's Sortex Limited, Fairfield Road, London E3 200. Tel. 01-980 4888.

ARTICLES FOR SALE

WAVEGUIDE, Flanges and Dishes. All standard sizes and alloys (new material only) from
stock. Special sizes to order. Call Earth Stations, stock. Special sizes to order. Call Earth Stations,
01.228
7876,22 Howie Street, London SW11 4 AR . brators, Standards. Milivolmeters. Dynamome-
ters. KW meters. Oscilloscopes. Recorders. Sigters. KW meters. Osweep, low distortion, true
nal generators swe
RMS, audio, FM, deviation. Tel. 040376236 . (1627

LAMPS AND CABLE. Large amount of lamps and cable for sale - all types and sizes, domestic and industrial. Telephone MIRAGE LIGHTING on HITCHIN (0462) 733388 tetween 10am-7pm.
(1809)

ASSISTANT ENGINEER

Required by the Manor Mobile Recording Unit. HGV licence and some experience of live recording would be advantageous.

Please telephone
(08675) 77551
(2102)

ELECTRONIC COMPONENTS

Large ex-stock selection at highly competitive prices. Write at once for our comprehensive catalogue and
price list.

DENEPAC LIMITED
Bridge House
181 Queen Victoria Street
EC4V 4DD

We have selected these positions from the many briefs we receive from companies who operate in high technology fields. A much larger selection is also available

SERVICE ENGINEERS

c. £8,000 plus car Central Scotland

To provide a range of support services to customers of a substantial high technology company, including engineering of modifications for avionic equipment and test gear on electro optics, radar and navigational systems. You should have at least an HNC in electronics and some experience in these fields. Quote Ref: 1489.

CUSTOMER SUPPORT SUPERVISOR

 £10,000East Midlands
Our client is a leading British designer and manufacturer of micro-computing systems and requires a mature person to assist in the management and training of a team of technicians involved in the maintenance and repair of mini/micro computers (Vacancies also exist at Technician level at up to $£ 8,500$ p.a.) Quote Ref: 1310

FIELD SERVICE ENGINEERS £9,000 plus car

South East, Midlands, North Scotland Ex-H.M. Forces? Your experience could be ideal for this client, a manufacturer of commercial communications equipment, such as word processors and computer terminals. You will be travelling around maintaining customers' equipment on their premises, after training by the company. If you already have about a year's similiar experience, let's hear from you, too. Quote Ref: 219.

TEST/TEST METHODS ENGINEERS c.e8,000
 South East

Part of a group of systems companies, this client designs, develops, manufactures and installs capital electronics equipment for customers in about 150 countries. An established career structure exists for engineers ($\mathrm{min} . \mathrm{HTEC} / \mathrm{HNC}$) with three years in ATE on design or programming or production test areas, to devise test methods for digital equipment. Quote Ref 1343.

TEST ENGINEERS

c.e8,500

S. London and Surrey

Rapidly expanding because of increased civil and military projects, this client needs minimum C \& G plus experience in analogue and digital circuitry. You must be capable of fault finding down to component level (from PCBs to ATE level) Quote Ref: 1304

TECHNICAL SUPPORT ASSISTANT ¢8,000 plus car
 South East

A leading manufacturer of sophisticated office equipment has an interesting opportunity to work with a specialist team in achieving and monitoring defined technical standards amongst field service personnel, with special regard to training Min. G \& G Pt 3, plus clean driving licence, willingness to travel and ability to get along with people, are main requisites Quote Ref: 1493

FIELD ENGINEERS

810,000 plus car

Bases throughout British Isles
Britain's leading manufacturer of minicomputer business systems needs efficient and reliable engineers to help continue its amazing growth record. We want to hear from you if you have experience on any minicomputers or peripherals (and especially PDP 11s) Quote Ref: 1452

FIELD SERVICE ENGINEERS

 c. $£ 8,000$ + car, + overtimeLondon \& South
An important company in the field of communications needs people with sound electronics servicing background to maintain customers' equipment which includes pocket paging systems operating on LF and HF frequencies and duplex intercom systems. Full product training will be given but you should have a good knowledge of transistorised circuitry Quote Ref: 1321

If you would like to hear more about any of the above posts, fill in the coupon, indicating clearly the appropnate reference number(s)
Post the coupon to Stuart Tait, The Lansdowne Appointments Register, Park House, 207 The Vale, London W3 7QB. Tel: 01-7436321 (24 hr answering London
All posts are open to men and women

Lainsdowne
 Appointments Repister

I am interested in post number(s)
I am interested in your regisier
Name
Job Title
Home Address

Our service is completely confidential for both
companies and jobseekers.
WW/16/5/83

ARTICLES FOR SALE

ELECTRONIC INDEXING TABLE AND ACCESSORIES £295

Rohde \& Schwarz items at $£ 75$: Selektomat, Audio Frequency Spectrograph, Decade Exciter HS 1205, HS 1208, HS 1206, A3b Modulator NA60. Several Large Variacs. Small Lab Balance and Weights, £25; Tektronix $100 \mathrm{Mc} / \mathrm{s}$ Scope, £195; Time/Mark Generator, 589 ; Marconi Q Meter, £39; Micromatch Transformer 4 Mecade, £45; Marconi VHF Alignment decade,
Oscilloscope, $£ 79$; Small Lab Oven, $£ 49$ Oscilloscope, £79; Small Lab Oven, £49; Pressure Gauges, 14 ; Variable Stabilised
PSUs, e.g. $50 \mathrm{v}, 15 \mathrm{~A}, ~ £ 85$; superb pre-war PSUs, e.g. $50 \mathrm{v}, 15 \mathrm{~A}$, 185 ; superb pre-war
German Capacitance Bridge, new condiGerman Capacitance Bridge, new condt-
tion, offers; Watson Microscope, $\mathbf{c s 9}$. tion, offers; Watson Microscope, 589.
Early British Rocket Sections, collectors' Early British Rocket Sections, collectors
items. Surface "Flatness' Gauge, accuracy in micro-inches, $\mathbf{1 3 5}$. One or two Oscilloscopes, Signal Generators, etc
$040-376236$

TEXAS TLL DATA BOOK

Vols 1 \& 2 1983, £18.50
ELECTRONICS ENGINEER'S REFERENCE BOOK by Mazda, 1983
£56.00
PUBLIC ADDRESS HANDBOOK by V. Cape ${ }^{\text {f }}$ £8.95
DOMESTIC VIDEOCASSETTE RECORDERS - A SERVICING GUIDE by S. Beeching
£15.00
INTRODUCTION TO MOS LSI DE-
SIGN by J. Mavor £16.50
INTRODUCTION TO DIGITAL FILTERS by T. J. Terrell £7.50 INTRODUCING MICROPROCESSORS byI. R. Sinclair £6.50
ADVANCED GRAPHICS WITH THE SINCLAIR ZX SPECTRUM by I. O. Angell £10.95
LYNX COMPUTING by i. Sinclair
WORLD RADIO T.V. HANDBOOK by J. M. Frost £12.00 1983 THE RADIO AMATEUR'S HANDBOOK by A.R.R.L. $\quad £ 10.00$

\star ALL PRICES INCLUDE POSTAGE \star

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST of British and American Technical Books

19-21 PRAED STREET

 LONDON W2 1NPPhone 01-402 9176
Closed Saturday 1 p.m
Please allow 14 days for reply or delivery

THE SCIENTIFIC
WIRE COMPANY
P.O. Box 30, London, E. 4 ENAMELLEO COPPER WIRE

SWG	11 b	802	402	202
8 to 29.	2.76	1.50	. 80	. 60
30 to 34	3.20	1.00	90	. 70
351040.	3.40	200	1.10	80
41 to 43	4.75	2.60	2.00	1.4
47	8.37	5.32	3.19	2.50
48 to 49.	15.96	9.58	6.38	3.69
SILVER PLATED COPPER WIRE				
14 to 30	6.50	3.75	220	1.40
TINNEO COPPER WIRE				
14 to 30.	3.38	2.36		. 90
Prices include P\&P, VAt and Wire Data. SAE for list. Dealer enquiries walcome. Reg Office: 22 Coningsby Gardens 190631				

LINSLEY HOOD DESIGNS

75W att and 100 W amps
Audio Signal Generators
75Watt amp p.c.b
100Watt Mosfet p.c.b
p\&p 500
S.A.E. for leaflets

TELERADIO ELECTRONICS 325 Fore Street, London N9 OPE

VALVES, PROJECTOR Lamps, 5000 types, list 75 p, world wide export. Cox Radio (Sussex) Lid The Parade, East Wittering, Sussex. Phone (024 366) 2023.

DON'T MISS OUR VALVE LIST! Send 25p + L.S.A.E. Today; Billington valves, 23 lrwin Drive, Horsham, RH12 $1 \mathrm{NL} .10 \mathrm{p}+$ Sae for component clearance list. (No callers).
quipment. Over 500 sets in stock from $\mathbf{2 8}$. Send 50 p for illustrated catalogue (including $£ 1$ voucher) Weirmead Ltd 129 St. Albans Road, Watford Herts. Tel: Watford (0923) 49456 . (1974) ENCAPSULATING EQUIPMENT FOR coils, transformers, components, degassing silicone rubber, resin, epoxy. Lost wax casting for brass, bronze, silver, etc. Impregnating coils, transfor mers, components. Vacuum equipment, low cost used and new. Also for CRT regunning metallis ing. Research \& Development. Barratts, Mayo
Road, Croydon CR0 2OP $01-6849917$. 9678 .

COMMUNCATIONS - ENGINEERING ATANATIONAL LEVEL Upto£10,460

Radio Frequency Regulation

Opportunities exist in the Radio Regulatory Department which is responsible for regulating the use of the radio frequency spectrum with in the UK - operating within the framework of national legislation and conforming with the Radio Regulations of the International Telecommunications Union. The successful candidates will be involved in the study of radio propagation, the planning and regulation of frequency bands allocated to broadcasting, fixed, mobile, and space services; the application of computer techniques to frequency assignment, the operation of an international frequency monitoring service, the specification and type-approval of equipment for mobile and fixed services; and the development of equipment for detection, measurement and suppression of radio interference, and technical advice on licensing. Ref: T(R)85.

Radio Communications

An opportunity exists in the Mobile Radio Section which has technical design authority for the mobile radio, personal radio, radio alerting system and other specialised radio applications for the police forces and fire brigades in the Home Office Scheme; and has responsibility for the management of radio frequencies for the emergency services and for liaison with police and fire services in order to establish their requirements for telecommunications systems and equipment

The successful candidate will undertake and organise theoretical and practical R\&D studies either conducted internally or by contract with Industry or Universities, and aimed at improving the police and fire radio communications through improved techniques and new technology. Ref: T(S) 85.

Candidates must have a degree in electrical/electronics or communication engineering or applied physics or have passed the Council of Engineering Institutions Part 2 examination in appropriate subjects or have an equivalent qualification. They must have at least 2 years professional training or the equivalent experience and will be required to demonstrate a breadth and depth of knowledge and some relevant experience of radio and advanced technology communications systems, or computers or
similar electronic systems.
Starting salary (including £1220 Inner London Weighting) in the range £8085-£10,460 according to qualifications and experience.
Relocation assistance may be available For further details and an application form (to be returned by 10 June 1983) write to Civil Service Commission, Alencon Link,
Basingstoke, Hants RG21 1JB or telephone Basingstoke (0256) 68551 (answering service operates outside office hours) Please quote appropriate reference.

LOUGHBOROUGH UNIVERSITY OF TECHNOLOGY

WORKSHOP TECHNICIAN

Applications are invited for this new post in the Department of Computer Studies. The successful candidate should have HNC, HND, or equivalent and 6-10 years' experience in the field of microprocessors, electronics or digital systems in the first instance.

Salary on Grade 6 scale $£ 6532-£ 7802$ (under review). The appointment is for three years.

Requests for further particulars and application forms to Dr C. H. Machin, Department of Computer Studies, University of Technology, LOUGHBOROUGH Leics LE11 3TU

SOUTHERN DERBYSHIRE

 HEALTH AUTHORITYMANOR HOSPITAL, UTTOXETER ROAD DERBYOE3 3NB

ENGINEERING ELECTRONICS

 TECHNICIAN IIITo carry out maintenance, repair and modification of electronic equipment used in medical and engineering applications. The successful applicant will be expected to undertake necessary medical gas equipment. A current drivmedical gas equipment. A current car are ing licence and possession of a cal are
essential. Applicants should be qualified to O.N.C. or equivalent standard and have at least three years' experience in a similar position of responsibility
Application form and further details from: Mr. D. Hargreaves, Assistant District
(Ref. No. 895)

RACAL COMmUNICATON RECENERS

 $500 \mathrm{kc} / \mathrm{s}$ to $30 \mathrm{mc} / \mathrm{s}$ in 30 bands $1 \mathrm{mc} / \mathrm{s}$ wide, RA17 MK11E 100 RA17L $\mathrm{f150}$, RA117E E 225 . New metal louvied cases for above $\mathrm{fz5}$ ach. All raceivers are air tastad and dust cover. in fair used condition. RACAL SYMTHESIS-
ERS (Decade frequency ERS (Docadd frequency genercatol) MA3508 Solid state
for use with MA79 - RA117 - RA217 - RA1217 ETC

 $1 \mathrm{mc} / \mathrm{s} 150 \mathrm{khz}$ f 100 to $£ 150$. EDOYSTOME RECENVER TYPE ECSSL 77 K Solid state, single channei. SSB , manns or
battery powerad. 1.6 to $27.5 \mathrm{mc} / \mathrm{s}$ and $400,535 \mathrm{khz} \mathrm{f} 10$ with manuai. REDIFON SSE RECEIVER TYFE R M99 Solid state, 10 fixed channeis, range 1.5 to $30 \mathrm{mc} / \mathrm{s}$ and 255 kh to 525 khz , power mains or battery, complate with ISB
adaptor ARU $10 \mathrm{~A}, \mathrm{f} 100$ with manual. REDIFON TIIA AU OIO TELEPAINTER CONNERTOR Solid state, tested with cIICUit E25. CREE TYPE 5 TELEPRIMTER 50 and 75 bauds for use with above convertor E 25.
OSCHLIOSCOPES
cosson coulso $35 \mathrm{mc} / \mathrm{s}$, twin berm, solid state $£ 195$ with manual. TEKTRONIX ©2 Solid slate. porable with intamal battery pack, $15 \mathrm{mc} / \mathrm{s}$, dual trace E350. CT436
DUMM BEAM Ooscilloscape $6 \mathrm{mc} / \mathrm{s} 775$ TEKTRONIX 67 A $100 \mathrm{mc} / \mathrm{s}$, dual trace, solid stete $£ 350$ with manual MARCONI TFYe SIGNAL GENERATOAS From $2 \mathrm{mc} / \mathrm{s}$ or $1.5 \mathrm{mc} / 3$ to $220 \mathrm{mc} / \mathrm{s}$. AM.FM. A. m f 100, A 3 f 100 , A5 f 150 $85 £ 250$ with manuais. TFZOOSA Two tone signal source
audio $E 150$ IF2S06 DIFFERENTAL DC VOIT METER 0 to $1100 v 0 \mathrm{hs}$ floo. TF2002 AM SIGNAL GENERATOR $10 \mathrm{kc} / \mathrm{s}$ to $72 \mathrm{mc} / \mathrm{S}^{\mathrm{E}} \mathbf{E 4 0 0}$ Tramas FM and AM signal generator.

 FCAMON METEA and TF1246 Dscill ator E200 H.P SIGNAL GEMERATOR EzOA 7 to 11 gigs EIOO. H.P. SIGMAL
GENERATOR EOE $10-42 \mathrm{mc} / \mathrm{s}$ - $\mathbf{~ G 7 0 .}$ MARCONI AF WAT METER CTH M01 Absorption, 200 microwatts to 6 watts in 10 rangigs switched, 250 hms to 20 K ohms f45. TRwas AF WATI METER 1 mithwatt to 10 watts 2.50 hms to 20 K
Ohms in 48 sleps
f65. THYRISTOR TEST SET. CTES Voltages up to 2 KV f100. TEKTRONIX MOOZA GBAPHIC COMPUTER TERMMMA with joystick £1200 TEKTROMIX woot hard copy unit for use with above 5450 Both unin
for £1550. RACAI DIGTAL COUNTERS. TYPE 501 M $125 \mathrm{mc} / \mathrm{s}$ f50. RACAI EB6 COUMTER $35 \mathrm{mc} / \mathrm{s}$ f50 VAT ANO CARAIAGE ON ABOVE ITEMS EXTRA All items are bought direct from H.M. Government, bein SAE surplus equipment Price is ox works JOHNS MOMO, Wration of any item. ROAD EAST, BIRKENSHAW, BRADFORD BDII 2ER ROAD EAST, BIRKENSHAW, BRADFORD BD11 2ER

INVERTERS
High-qually DC-AC; also "no break" (2ms) static switch, 19im. rack. Auto Charger.

Interport Mains-Store Ltd. P0B 51, London, W11 3BZ

Tel: 01-727 7042 or 0225310916
(9101)

BLLLINGTON VALVES, Electronic valve specialists (also bulk suppliers of transistors). SAEIRC for quotation on your requirements. We offer Send $25 p+$ L.S.A.E. For our valve listing (Includes money off voucher). 23 Irwin Drive, Horsham, RHI2 1NL. No callers.

> FOR SALE. Philips FM stereo generator PM6456 current list price $£ 460$ (incl). Calibrated and checked by suppliers. Near new condition $£ 250$ ono. Mr E. Rice, 68 Vernon Drive, Stanmore, Middlesex HA7 2 BT. Tel: $01-4273034$.

Abstract

FACSIMILE SYSTEM comprising Muirhead K400 -D transmitter, K-401-D receiver, K-346 cryssal Morris Bolton 52384 . (2127)

Abstract

PRODUCTION SERVICE. Short run assembly, wiring, printed circuit design. All types of electrical, electronic, electro-mechanical products. Prototype Alled Electronics Lid, 28 Upper Richmond Road SW 15 2RX. 2110)

RANK CINTEL MARK VI Flying Spot Slide Scanner including Philips PM5530 pulse generator and monochrome picture monitor, but less waveform monitor and encider. Can be seen working Systems, Lowestoft 0502512338

FERROGRAPH ATU + RTS- 2 tape machine test and alignment centre. Boxed, as new. cost $£ 750$, but accept $£ 495$ o.n.o. (01-643 5608 eve./weekends

TO MANUFACTURERS, WHOLESALERS

 BULK BUYERS, ETC.
LARGE QUANTITIES OF RADIO. TV AND

ELECTRONIC COMPONENTS FOR DISPOSAL
SEMICONDUCTORS, all types, INTEGRATED CIRCUITS, TRANSISTORS, DIODES, RECTIFIERS, THYRISTORS, etc. RESISTORS, C/F, M/F, W/W, etc. CAPACITORS, SILVER MICA, POLYSTYRENE, C280, C296, DISC CERAMICS, PLATE CERAMICS, etc.
ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE, CABLES, SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFORSCREWS,
MERC.
ALL AT KNOCKOUT PRICES - Come and pay us a visit ALADDIN'S CAVE TELEPHONE: 445 0749/445 2713 BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, North Finchley, London, N. 12

ANY FREQUENCY 2-50 MHz FOR $£ 5$ inc

New factservice for C.W.O. only (state holder style). Clock cillaters for microprozessors in stock from $£ 9.30$. MčKnight Crystal Co Ltd, Mardley Industrial Estate Hethe, Southampton SG46ZY Tel. 0703848961

ARTICLES WANTED

WANTED

Test equipment, receivers valves, transmitters, compo nents, cable and electronic scrap, and quantity. Prompt service and cash. Member of A.R.R.A.

M \& B RADIO
 86 Bishopsgate Street
 Leeds LS 1 4BB
 053235649

SURPLUS

Top prices paid for surplus, redundant and obsolete test equipment, factories
Also quare
Also quantities of components. where in the United King dom. TIMEBASE
94 Alfiston Gardens
Sholling. Southampton SO2 8FU
Telephone: (0703) 431323

WANTED

Redundant/surplus electronic compoequipment. Telep
computer spares.
Prompt service and payment. J. B. PATTRICK 1/193 London Road Romford, Essex Romford 44473

WANTED

Redundant test equipment - valves, plugs and socking equipment ros etc.

Phone: Johns Radio 0274684007
84 Whitehall Road
East Birkenshaw
Bradford BD11 2ER

ANTIQUE

Unused and boxed In large quantity

Tsutom Yoshihara C1-105, Deguchi-cho 34 Suita-shi, Osaka 564 JAPAN
(2055)

WANTED

Scrap and re-usable mainframe computer and industrial electronic equipment.
E.M.A. Telecommunications Engi neers, Orford, Woodbridge, Suffolk. Tel. 039-45 328
(1720)

TURN YOUR SURPLUS Capacitors, Transistors, etc., into cash Coniact COLES.
HARDING \& CO., 103 South Brink, Wisbech, HARDING \& CO., 103 South Brink, Wisbech, Cambs. 0945584188 . Immediate settlement. We also welcome the opportunity to quote for com-
plere factory clearance.
(9509

WANTED: Design and possible manufacture of complete unit for transmisting a narrow beam of Microwave in the low Gigahertr range. Also complete unit for transmitting high-power 25 kHz Ultrasound. Write for further information to Burrabella Pty. Ltd., SMoon Street, East Burwood,
(2082
Victoria 3151, Australia.

BATCH PRODUCTION PC assembly to sample or drawings, any quantity. Stagecraft (Electronics)
Ltd, 3 , Churchfield Rd, Acton $W 36 \mathrm{BH}$. Tel: (01) 9933660 .
BATCH PRODUCTION wiring and assembly to sample or drawings. McDeane Electricals L.d 19b. Station Parade, Ealing Common, London
W5. Tel: 01-992 8976.

FREE PROTOTYPE of the finest quality with EVERY P.C.B. artwork designed by us. Comperitive hourly rates, and high standard of work.
HALSTEAD DESIGNS LIMITED. Tel. Halstead (0787) 477408. (2126)

CAPACITY AVAILABLE

TW ELECTRONICS LTD

THE PCB ASSEMBLERS

More and more companies are investi gating the advantages of using a profes-
sional subcontractor. Such an undertaksional subcontractor. Such an undertak ing requires certain assurances.
TW are able to satisfy all of them quality, competitive pricing, firm delivey and close co-operation with the cus tomer.
Assembled boards at 100% inspected before flow soldering and reinspected after automatic cropping and cleaning. Every batch of completed boards is issued with a signed certificate of confor
mity and quality - our final assurance. mity and quality - our final assurance.
For further details, contact us at our
works:
Blonhoim Induatrial Par Bury st. Edmunda
Suffolk IP33 3UT
Telephone: 02843931 (1466)

t

t
ten
ing
alli
an
$\left\lvert\, \begin{aligned} & \text { ing } \\ & \text { all } \\ & \text { An } \\ & \text { an }\end{aligned}\right.$ aned fields. sidered

$$
\text { Wireless World, Box } 2097
$$

TV PICTURE TUBES. If you have interest in setuing up a TV rube rebuilding plant we offer our consultancy service backed by more than 30 years experience. We will provide equipment new or used. Layout and fullest quality training. We also offer all component parts of every type for all tubes. Our service is worldwide and a joint participation venture may be considered in some
countries. Box No. 2095 .

SMALL BATCH PCBs, produced from your art work. also DIALS, PANELS, LABELS. Camera
work undertaken. FAST tails: Winston Promotions, 9 Hatton Place, London ECIN 8RU. Tel. 01-405 4127/0960. (9797)

FOR THE BEST PCB SERVICE

 AVAILABLEE Circuit Dasign \& Devalopmant
Digital and Anglogue
\star Artwork Layour
A Artwork Layout
Wrack of the hightast standard by
draughtsmen. No minimum charge.
\& Board Manuffecture
\$ Board Manurfacture
Prototype to semi-production. excellent rates,
24-hour prototype service from filmwork.
CWiring a Assembly
PCB assembly, wiring
PCB assembly, wiring and cable forming by
qualified staff
実 Toult

DESIGN AND DEVELOPMENT, ANALOGUE, DIGITAL, RF AND MICROWAVE
CIRCUIT AND SYSTEM DESIGN. Also PCB design, mechanical design and prototype/small
batch production. - Adenmore Limited, 27 batch production. - Adenmore Limited, 27 Longshot Estate, Bracknell, Berks. Tel:
Bracknell (0344) 52023.
DESIGN SERVICES. Electronic design developmert and production service available for digital and analogue instruments. RF Transmitters and receivers, telemetery and connrol systems. 20 years' experience. R.C.S. Electronics, Wolsey Road, Ashford, Middlesex. Phone Mr Falkner 53661
TURN YOUR SURPLUS Capacitors, transistors, etc, into cash. Contact COLES-HARDING \& Co, 103 South Brink, Wisbech, Cambs. 0945-4188. Inmediate settlement. We also welcome the opportunity to quote for complete fac-
tory clearance.

PCBS \& PANEL LABELS to your requirements. Design - Prototypes - Production. G. N. Siee Custom Products, 78 Derry Grove, Thurnscoe, Romernam, Yorks S63 OTP. (1892)

(1892)
C.A.D. BUREAU for all your p.c.b. design requirements from single sided to multi layer at a super fast turnround time. High precision film
artworks, dot matrix plots, colour pen plots, erc. For further details contact McGaw Associates on 0202824083 (Dorset)

PHONE YOUR CLASSIFIEDS TO IAN FAUX ON 01-661 3033

TECHNICIAN

Technician required to assist in our video service area with repair and modifications of airborne video recorder systems.
Candidates will also be involved in the building of test and demonstration equipment.
Applicants will preferably be studying at ET3/ET4 level and be prepared to continue their studies on a day-release basis.
It is likely that the successful candidate will have $2 / 3$ years experience in digital and analogue circuitry, will already live within daily travel of our site and will hold a current driving licence.
Conditions of employment are attractive and include medical insurance scheme, free lunches, good pension and life assurance arrangements
If you require further details please contact:

Mrs M. Berrow
Personnel \& Training Manager
John Hadland (PI) Ltd.
Newhouse Road
Bovingdon
Hemel Hempstead
Herts HP3 0EL

AGENTS

DISTRIBUTORSHIPS

required from prominent British instrumentation manufacturers to sell in Canada under sole agency basis

Contact Tradeport Electronics Group, 3768 Bathurst Street, Suite 317, Downsview, Ontario, Canada M3H 3M7. Tel. (416) 629-9661. Telex: 06217828 TRDPRT TOR
(2104)

BOX NOs.

Box number replies should be addressed to:
Box No.
c/o Wireless World
Quadrant House
The Quadrant
Sutton, Surrey SM2 5AS

TENDERS

BEXLEY LONDON BOROUGH

DISPOSAL OF REDUNDANT 2-WAY RADIO TELEPHONE SYSTEM

The Council is offering for sale its redundant 2 -way radio-telephone system (supplied by Burndept system (supplied by Burnopep Elec
of:
1 No. F6B8FM RZ Fixed Station with talk-through
7 No. A3EORZ Remote Control Units
30 No. BE385 Dash Mount Mobiles including speakers and fixing units No. Power Supply Unit (all units are excluding crystals)
Tender forms which are available from Technical Services Secretary Sidcup Place, Sidcup, Kent (Tele phone No. 01-303 7177, extension 8205), must be returned to the Chie Solicitor by not later than noon on Wednesday, June 1, 1983

CLASSIFIED ADVERTISEMENTS

 Use this Form for your Sales and Wants
PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

To "Wireless World" Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate $£ 3$ PER LINE. Average six words per line. Minimum $£ 20$ (prepayable)
- Name and address to be included in charge if used in advertisement
- Box No. Allow two words plus f 3
- Cheques, etc., payable to

BUSINESS PRESS INTERNATIONAL LTD. and crossed

NAME
ADDRESS

-					
$1 .$					
1					
			REMITTANCE	VA.LUE	ENCLOSED

Company Registration No. 151537° (England), Registered Office, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

COMPUTER APPRECIATION

86 High Street, Blatchingley, Redhill, Surrey RH1 4PA - Tel: Godstone (0883) 843221
PDP $11 / 23$ SYSTEM comprising NEW processor, 64 KB memory, $2 \times$ DLV11 serial interface, NEW XYLOGIL
Model 510 disc controller and twin DRE Model 32005 MB disc drives (one new one as new) media and software compatibie with AK05 and emulating $4 \times$ RK05 drives. Compact and powerful desk too system PDP $11 / 03$ SYSTEM comprising LSI $11-1$ processor, 64 KB memory, $2 \times$ DLV 11 serial interface, REV 11 cabinet and uses a 9×6 backplane. With RT 11 ticence. Price includes NEWBURY LABS. Model 24×80 VDI IMS 8000 SYSTEM. 4 MHz Z80 based machine with S100 bus and running under, CPM. Comprising 80 KB printer. Desk mounted and as new (manutactured 1981). IMS originated the $S 100$ bus, and this machio
 EXAS INSTRUMENTS Model 771 MICROCOMPUTER SYSTEM. Comprising VDU screen and keyboard with
integral thermal printer ('Silent 700^{\prime} type), and dual $8^{\prime \prime}$ floppy disc drives Based on TMS 9000 it 16 bit processor and with 64KB memory. This machine is essentially the same as the TMAM-9001 development system which currently solls at over f9000, atthough the TMAM-9001 has different software
NCR Model 8130 MICROCOMPUTER SYSEM. NTEL 8080 based machine with 64 KB (with parity a battery back-upl, whin dual density fioppy disce drives, VDU. Model 4501180 cps bi-directional nine w was bought from the Official Receiver. There is no software, but adaptation to run CPM should not be mpossible. The machine is believed to be in good running order and there are several spare cards. This system will not be readvertised.
INTEGRATED COMPUTER SYS
IN BOBO TRAINER Suitcase mounted training system with HEX keyboard and a variety of $1 / O$ lincl. motor, speaker, thermistor). Currently around f 1000 new $\mathbf{E} 150$
TALIY TALIY Model 16 printer with serial interface. 180cps. Curent new price is over f 1600 . This printer, and thature praphics TEXAS KSTR UMENTS Model 810 Serial Interface As new. MANNESMAN-TALLY Model MBOMC Serial Materix Printer. 200 cps , 80 column, bidirectional
TALLY Model 2000 Matrix Line Priner with Data Products intertace. C pionai siann

HONEYWELL L 1000 keyboard-printer. Brand now terminal with TALLY 1612 mech anism
NEWBURY DATA Model 24×8 VDU. Serial interface (RS232) to 9600 Baud. Upper case characters. MELLOR DATA (DATAMEDIA INC.) VDU. 24×80 with detached keyboard, upper/lower case character, Ybiü

 CPT CASSE TYPER. Dual casserte based word processor with IBM Goltball I/O typewriter Together with
many working spares. DOES NOT INCORPORATE: floppy discs, hard discs, VDU, colour monitor etc E350 many Working spares. DOES NOT INCORPORATE: floppy discs, hard discs, VDU, colour monitor atc... 5350 easy to maintain. Absolutely compatible with DEC RKO5 COntrollers for DEC Ond DATA GENERAL are available from DILOG and XYLOGIC, and for S100 from NEWFONS LABS A very attractive alternative to Winchesters for small scientific systems FULLY REF URBISHED
 removable cartridge. Compact ($25^{\prime \prime} \times 16 \times 5$) and with configurable sectoring. Will run on same controllers
as DIABLO Series 30 . CDC Model 9427 HAWK 10 MB disc drive. With one fixed platter and one top-loading cartridge With 5000
sectoring. In working order controller for Q-bus is available and they have successfully installed these drives for us in the past
CALCOMP Model 563 AO graph ptoter. With 0.1 mm step size. Easy to interface to any computer CALCOMP Model 563 AO graph piotter. With 1 mm step size. Easy to interface to any computer $\quad \mathbf{~} \mathbf{5 2 7 5}$ DATA ELECTRONICS INC Model 3637 magnetic tape cartridge drive 1600 bpi . Capacity up to 10 MB per Cartridge. "Over 40,000 sold.
FACIT Madel ma20 Paper Tape Reader with electronics but no power supply
FACITM Mdel 4070 Paper Tape Punch. High speed (75 cps) punch with parallel $T 11$ interface 4070 punch $\mathbf{£} \mathbf{5 2 5}$ UNIVERSAL INSTRUMENTS CORP. CNC WREWRAP TOOL. Automated wir $T 1$ interface by General Automation SPC-12 With Tally tape reader. Manufactured 1976
CDC Model $94008^{\prime \prime}$ fioppy disc drives. Standard interface PER PAIR PLEASE NOTE: • VAT and carriage extra; all items *Visitors welcome, but by appointment please. " We are keen to bid competitively for good secondhand or surplus equipment

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 102-111

	PAGE
Aero Electronics (AEL) Ltd.	
Ambit International	
Analogue Associates	
Antex (Electronics) Ltd. Cover IV	
Apoloco Ltd. Armon Electronics Ltd. 22	
Audio Electronics... 10Avel Lindburg (Cotswold Electronics)..............	
Bach Simpson .. 24	
Bamber, B., Electronics	87
Barrie Electronics Lid.	
Black Star Ltd.	
Broadfields \& Mayco Disposals............................ 90	
Bull, J. (Electrical) Ltd...................................... 97	
Carston Electronics Ltd. Loose Insert	
CIL Microsystems Lid. 90	
Circuit Services.	8
Clark Masts Ltd... . . 21	
Clef Products (Electronics) Lid. 15
Colomor Electronics Ltd. 84	
Compec North '83	16
Computer Appreciation 112	
Computer Fair.	92
Control Universal Ltd. 6	
Crotech Instruments Ltd. 97	
Easibind Ltd.. 94	
Eddystone Radio.. 10	
Electronic Brokers Lid.2, 3, 99, 101 Electronic Equipment Co. \qquad	
Electroustic Lid.. 24	
Electrovalve Ltd. .. 93	

OVERSEAS ADVERTISEMENT AGENTS
rance 2 Belgium: Norbert Hellin, 50 Rue de Chemin Veat, F-9100, Boulogne, Paris.

Hungary: Ms Edit, Bajusz, Hungexpo Advertising Agency, Budapest XIV, Varosliget.
Telephone: 225008 - Telex: Budapest 22-4525
inTFOIRE

Haly: Sig C. Epis, Etas-Kompass, S.p.a. - Servizio Estero, Via Mantegna 6,20154 Milan
Telephone: 347051 - Telex: 37342 Kompass.

	PAGE
Farnell Instruments Future Film Development 23	
Global Specialities Corp (UK) Ltd. Cover II, 83 GP Industrial Electronics Lid. $12,13$	
Griftronic Emission Lid	
Harris Electronics (London) 8	
Harrison Bros. Electronic Distributors 22 Hart Electronic Kits Ltd. 85	
Hemmings Electronics and Microcomputers 17	
Henry's Computershop..................................... 91Hilomast Ltd. 9	
House of Instruments Lid. 17 H.W. International.. 26	
ILP Electronics Ltd. 15, 18, 19	
Langrex Supplies Ltd... 96Levell Electronics Ltd.	
Magenta Electronics Ltd Marconi Communications Systems Midwich Computer Co. Lid.	
Nova Products (APB Lid.) 84	

Japan: Mr. Inatsuki, Trade Media - IBPA (Japan), B. 212. azan: Mrights, 585 Roppongi Minato-ku, Tokyo 106

United States of America: Ray Barnes, Business Press Inter national Ltd, 205 East 42nd Street. New Y
Telephone (212) 867-2080 - Telex: 238327 K, NY 10017 -
Jack Farley Jnr., The Farley Co., Suite 1584, 35 East Walk Drive, Chicago, illionois 60601 - Telephone (312) 63074. Victor A. Jauch, Elmatex International, P.O. Box 34607, Los Angeles, Calif. 90034, USA - Telephone (213) 821-8581-

Jack Mantel, The Farley Co., Suite 650, Ranna Building, Cleveland, Ohio 4415 - Telephone (216) 6211919
Ray Rickles, Ray Rickles \& Co., P.O. Box 2028, Miami Beach, Florida 33140-Telephone (305) 5327301
Tim Parks, Ray Rickles \& Co., 3116 Maple Atlanta, Georgia 30305. Telephone (404) 2377432.
Mike Loughlin Business Press International, 15055, Memorial Ste 119, Houston, Texas 77079 - Telephone (713) 7838673
Canada: Colin H. MacCulloch, International Advertising Consultants Ltd., 915 Cariton Tower, 2 Carlton Streat, Toronto 2 - Telephone (416) 3642269.

- Also subscription agents.
- Printed in Great Britain by QB Ltd, Sheepen Place, Colchester, for the proprietors, Business Press International Ltd, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS
 \& Co. CANADA: The Wm. Dawson Subscription Services Ltd; Gordon \& Gotch Lid. SOUTH AFRICA: Ceneral UNITED STATES: Eastern News Distribution Inc., 14 ch Floor, 111 Eighth Avenue, New York, NY 10011

IF YOU'RE UNLUCKY THESE NEW ANTEX SATIN CHROME TIPS COULD LAST YOU 50\% LONGER

But if you're rather more lucky, it could be as much as 300% increase in working life!
After extensive market research, Antex have produced a satin chrome finish that forms a non-wettable barrier between copper substrate and solder lasting longer, and eliminating any tinning problems with the workface.
New satin chrome tips will now be fitted to all models. It's one more Antex advance in the science of soldering.
Send for details of the full range now.

[^0]: Current issue price 80 p , back issues (if available) $£ 1$ at Retail and Trade Counter Units 1 \& 2 Bankside Industrial er, Units \& 2 , Bankside industrial Centre, Hopton Street, Londo contact Availab
 editor.
 By post, current issue $£ 1.23$, back issues By post, current issue $£ 1.23$, back issues
 (if available) $£ 1.80$, order and payments to EEP General Sales Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS Tel: 01-661 8668.
 Editorial \& Advertising offices: Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.
 Talephones: Editorial 01-661 3614. Advertising 01-661 3130 . See leader page. Telex: 892084 BISPRS G
 Subscription rates: 1 year $£ 14$ UK and £ 17 outside UK.
 Student rates: 1 year £9.35 UK and Et1.70 outside UK.
 Distribution: Quadrant House, The Qistribution: Quadrant House, The Quadrant, Sutton, Sur
 Telephone 01-661 3248 . House, PerrySubscriptions: Oakfield House, Perry-
 mount Road, Haywards Heath, Sussex mount Road, Haywards Heath, Sussex
 RH16 3DH. Telephone: 0444 59188. Please notify a change of address.
 USA: $\$ 44$ surface mail, $\$ 93.80$ airmail. Business Press International,
 Subscriptions Office, 205 E.42nd Street, NY 10017.
 USA mailing agents: Expediters of the Printed Word Ltd, 527 Madison Avenue, Suite 1217. New York, NY 10022. 2nd class postage paid at New York.
 © Business Press International Ltd 1983 ISSN 00436062.

[^1]: Please note X in par i number denotes mains voltage. Please insert ' O ' in place at X for 110 V . 1 ' in place of X for 220 V (Europel, and ' 2 ' in place of X for 240 V

[^2]: Hitachi Oscilloscopes provide the quality and performance that you d expect from such a famous name, in a newly-extended range that represents the best value for money avalable anywhere.

 V-152F 15MHz Dual Trace
 V-202F 20 MHz Dual Trace V-203F 20 MHz Sweep Delay V-302F 30 MHz Dual Trace V-352F 35MHz Dual Trace V-353F $\quad 35 \mathrm{MHz}$ Sweep Delay V-5199 50 MHz Dual Timebase. Mini-Portable
 Prices start from around $£ 250$ (ex. V.A.T.) including 2 high-quality probes and a 2 year warranty. We hold the range in stock for immediate delivery.
 For colour brochure giving detailed specifications and prices ring (0480) 63570 Reltech Instruments, 46 High Street, Solihull. W. Midlands, B91 3TB

[^3]: 1 Basic Active filters 2 Switching Circuits, comparators and Schmitts (But these gaps cannot be filled) *
 6 Constant current circuits 7 Power amplifiers 8 Astable circuits 9 Optoelectronics 10 Micro power circuits 11 Basic logic gates 12 Wideband amplifiers 13 Alarm circuits 14 Digital Counters 15 Pulse modulators 16 Current differencing amplifiers - signal processing 17 Current differencing amplifiers - signal generation 18 Current differencing amplifiers - measurement and detection 19 Monostable circuits 20 Transistor pairs 21 Voltage-to-frequency converters 22 Amplitude modulation and detection 23 Reference circuits 24 Voltage regulators 25 RC oscillators-1 26 RC oscillators - 227 Linear cmos-1 28 Linear cmos-2 29 Analogue multipliers 30 Rms/log/power laws 31 Digital multipliers 32 Transistor arrays 33 Differential and bridge amplifiers 34 Analogue gate applications - $\quad 35$ Analogue gate applications-2.
 *Photocopies only: 3 Waveform generators 4A.C. meassurement 5 Audio circuits @ £3.20 each set

[^4]: Company Registered Number: 151537 (ENGLAND)
 Registered Office: Quadrant House, The Quadrant
 Sutton, Surrey SM2 5AS

[^5]: Canada Mr. Colin H. MacCulloch.
 International Advertising Consultants Lid. 915 Carlton Tower, 2 Carlton Street,
 Toronto 2 - Telephone (416) 3642269

[^6]: *Also subscription agents

