Wrefossumit
 APRIL 1983

Viewdata display module
 Viewdat display module
 Viewdat display module

$$
\begin{aligned}
& 900 \text { oringat(0,0) arekseco }
\end{aligned}
$$

$$
\begin{aligned}
& 930 \text { p.atri2,001 } \text {, Searifity } \\
& \text { 940 inpurto } 0 \text {, Cissilication ? } \\
& \begin{array}{l}
950 \text { p.atcí } t 6,16)^{\prime} e \\
550
\end{array} \\
& 560 \text { P. at(} 12,16) \mathrm{c} \\
& \text { 970 inpur os calexy ? } \\
& 990 \text { it gik<'? }
\end{aligned}
$$

$$
\begin{aligned}
& 1010 \text { ji for assiseiling ViTrak Ha* } \\
& \text { 1020 3ial:09328560.5ice } \\
& \text { chrs51400 }
\end{aligned}
$$

Digital tape timer

The P-G-520H

Cover shows viewdata display module described in this issue together with ViCom experimental videotext computer by Deaconhouse Ltd. ViCom executes telesoftware which is first captured in the ram that forms part of the videotext display module that could be located in ViCom or the tv receiver.

NEXT MONTH

A microcomputer using the structured language Forth, and rapid data storage and retrieval on floppy disc. Standard disc drives are used.
Decoder for receiving data and television pictures from the amateur television satellite UOSAT. Cleans up weak signals for display on television screen.
Digital voltmeter module for microcomputers, monitoring voltages at eight points and providing an alarm signal if set limits are exceeded.

Accelerometer intended for use in cars but with many other uses - precision levels, earthquake detector, heel indication for yachts and intruder alarms.
Current issue price 80p, back issues (if available) $£ 1$, at Retail and Trade Coun ter, Units 1 \& 2, Bankside Industrial Centre, Hopton Street, London SE1 Available on microfilm; please contact editor
By post, current issue $£ 1.23$, back issues (if available) $£ 1.80$, order and payments to EEP General Sales Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS Tel: 01.6618668.
Editorial \& Advortising offices: Quadrant House, The Quadrant, Sutton, rant House,
Surrey SM2 5AS.
Telephones: Editorial 01-661 3614. Ad Telephones: Editorial Telex: 892084 BISPRS G
Telex: 892084 BISPRS G. §17 outside UK.
Student rates: 1 year £9.35 UK and $£ 11.70$ outside UK.
Distribution: Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Telephone 01-661 3248.
Subscriptions: Oakfield House, Perry mount Road, Haywards Heath, Sussex RH16 3DH. Telephone: 044459188 Please notify a change of address USA: $\$ 44$ surface mail, $\$ 98.30$ airmail Business Press International
Subscriptions Office, 205 E. 42 nd Street, NY 10017.
USA mailing agents: Expediters of the Printed Word Lid, 527 Madison Avenue Printed 1217, New York, NY 10022. 2nd Suite 1217, New York, NY 100
class postage paid at New York.
© Business Press International Ltd 1983 ISSN 00436062

27 KNOW-HOW: RESOURCE OR PROPERTY?

28
TRACKING SATELLITES WITH A MICROCOMPUTER
by I. P. Jefferson
32
HIGH-IMPEDANCE ELECTRONICSby R. D. Purves
EPROM SINGLE-CHIP MICROCOMPUTERS
by M. D. Bacon
38 VIEWDATA DISPLAY MODULE
by D. N. Pim
42
COOLING ELECTRONIC EQUIPMENT
by M. Young
COMMUNICATIONS
Meteor-trail bouncer Terman legacy CB intererence

LETTERS TO THE EDITOR

Logic maps Michelson-Morley Deus ex machina

49 CIRCUIT IDEAS

Op-amp tester Synchronous delector 2×81 monitor

55
 NEWS OF THE MONTH

hif hazards Sal/network Superconducking transistor

58 DIGITAL TAPE CLOCK
 by Per C. Andersen

60 HAZINESS AND ITS APPLICATIONS
by W. A. Scoft Murtay
63 ASSEMBLY LANGUAGE PROGRAMMING
PEAK-TO-PEAK BAR/DOT INDICATOR
by A. J. Ewins
TWO-METRE TRANSCEIVER
by T. D. Forresterdesign an elactronic aid for the disabled
IBM SELECTRIC-TO-TRS8O INTERFACE A. T. Scarpelli
80
NEW PRODUCTS
Caesium standard Industrial computer Disc control 82

VERTICAL RANGE FROM 3-10 SOCKETS ALL EX-STOCK!
SPECIALS TO ORDER

WHEN IT COMES TO POWER FOR RACKS IT MUST BE OLSON

5-7 LONG STREET LONDON E2 8HJ TEL: 01-739 2343 TELEX 296797

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAY'S INN ROAD, W.C. 1
Phone: 01-837 7937
Telex: 892301 HARTRO G

HEMN HITCHIN SG5 1JE
Tel: (0462) 33031 Chosed all dey Wednesdar
Professional quality electronic components, brand new and fully guaranteed. Mall order by return of post. Cash/Cheque/POs or Banker's Draft with order, payable to weicome. Trade and export enquiry welcome. P.\&P. add $45 p$ to all orders under $£ 10$. Telephone your Access orders, using our 24-hr. Ansaphone service. Please send SAE for full price list.
VAT - All prices exclusive of VAT - Please add 15% to total cost including P.\&P.

UQUID CRYSTAL
DISPLAY MODULES
5Dgits, o. A5" FM, SW, MW
MHz, KHz Annunciators
Sample and Hold Capability
Reset Cap
Reset Capability
25 Selectable IF
25 Selectabiat
Prescaler Available
Incandescent Backlighting
Supply Voltage $5 \times$
Supply Voltage $5 v$
Operating Current
PCIM 176 Digital Meter Mod.15
$31 / 2$ digits. 0.5 '
200 mV Full Scale Input
Guaranteed ' O ' Reading
Single 9 Operation
Power Consumption 20mW
Accuracy $0.15 \%,+1-1$ Count
Aemperature drift $80 \mathrm{ppm} / \mathrm{C}$
Low Battery Indicator
All modules are supplied with 50
Data Sheer.
FIBRE OPTIC
POLYMER CABLE

A 10 m coil of 1 mm core opticel fibre cable sheathed in black polyethylene for protection $\mathbf{£} 4.95$

8" FLOPPY DISK DRNES
Secondhand, manufacturad by
$C D C-400 \mathrm{KByta}$ SSSD
Only EBO inc. YAT

$\underset{\substack{\text { Escuricor } \\ \text { ES }}}{ }$

50+ CASES FOR SPECIALISTS referred by JENSEN

Designed for the professional electronic technician requiring a complete set of tools in a compact package

50 professional tools. VOM Test meter optional. metric tools
Also available (JTK 16 mm)

See these cases together with more than 20 other complete specialist tool kits and a complete range of over 30 empty cases in the Jensen catalogue available on
Special Products Distributors Limited 81 Piccadilly, London W1V OHL
Tel. 01-629 9556 Cables: Speciprod, London, W. 1
WW - 050 FOR FURTHER DETAILS

茥:

6FT. PARABOLIC DISHES FROM ONLY £85 plus v.a.t.

6 ft dia. dishes, feed horns and electronics for use in 4 GHz satellite reception. GaAs Fet transistors, SMA connectors, P.T.F.E., etc. available. Please send s.a.e. for full details and data sheets.

Harrison Bros.

22 Milton Road, Westcliff-on-Sea, Essex SS0 7JX Tel. Southend (0702) 332338

The QUAD 34

Provides everything
that the serious music
listener needs to obtain
maximum enjoyment from disc, radio, tape and compact disc
at the standard of quality for which QUAD has been
famous for more than
thirty years.
QUAD ${ }^{\text {类 }}$
for the closest approach to the original sound

For further details and the name and address of your nearest Quad dealer write or telephone The Acoustical Manufacturing Co. Ltd., Huntingdon, Cambs., PE18 7DB Telephone: (0480) 52561

EP4.000

EPROM EMULATOR PROGRAMMER

The microprocessor controlled EP4000 will emulate and program all the popular EPROMs including the 2704, 2708, 2716(3), $2508,2758,2516,2716,2532$ and 2732 devices. Personality cards and hardware changes are not required as the machine configures itself for the different devices. Other devices such as bipolar PROMs and 2764 and 2564 EPROMs are programmed with external modules.

The editing and emulation facilities, video output and serial/parallel input/output provided as standard make the EP4000 very flexible to allow its use in three main modes:

- As a stand alone unit for editing and duplicating EPROMs.

Items pictured are: - EP4000 Emulator Programmer - $£ 545+£ 12$ delivery; BSC buffered simulator cable - $£ 39$; MESA 4 multi EPROM simulator cable £98; 2732A Programming adaptor £39; 2764 Programming adaptor - $£ 64$; - 2564 Programming adaptor - $£ 64$;

- As a slave programmer used in conjunction with a software development system or microcomputer.
- As a real time EPROM emulator for program debugging and development (standard access time of the emulator is 300 ns).

Data can be loaded into the $4 \mathrm{k} \times 8$ static RAM from a pre-programmed EPROM, the keypad, the serial or parallel ports and an audio cassette. Keypad editing allows for data entry, shift, move, delete, store, match and scroll, and a $1 \mathrm{k} \times 8$ RAM allows temporary block storage. A video output for memory map display, as well as the built-in 8 digit hex display allows full use of the editing facilities to be made.

BP4 (TEXAS) Bipolar PROM Programming module - £190
Also available (not shown): VM10 Video monitor - £99; OV141 EPROM Eraser with timer - £78; GP100A 80 column Printer - $£ 225$; Pl100 interface for EP4000 to GP100A - £65.

VAT should be added to all prices

- Checks, Programs, Compares up to 8 devices simultaneously
- Handles all NMOS EPROMS up to projected 128 K designs with no personality modules or characterisers - See list
- Easy to use, menu driven operation for blankcheck, program, verify, illegal bit check, checksum, self-test
- Constant display of device type, mode and fault codings
- Individual socket LED indicators for EPROM status
- Comprehensive EPROM integrity checks - Illegal bit check, data and address shorts, constant power line monitoring
* Full safeguard protection on all sockets
- Automatic machine self-test routine
- Powered down sockets
- Cost effective price - £695 + VAT
- Available from stock

2704
2708
2716(3)
2508
2758A
2758B 2516 2716 48016 2532 2732 2732A 68732-0 68732-1 68766 68764 2764 2564 MK2764

GP Industrial Electronics Ltd.

Tel: Plymouth (0752) 332961
Telex: 42513
Unit E, Huxley Close, Newnham Industrial Estate, Plymouth PL7 4JN

Test Instruments from Stam

These instruments have all the features, accuracy and reliability you would expect from professional-quality equipment at less than you might expect them to cost

3½-DIGITAL MULTIMETERS

Both these instruments have the following features:
Only two input terminals, common to all functions.
Overload protection, autozero, autopolarity, over-range and low battery indications

- Basic 0.3\% DCV accuracy.
- Supplied with test leads, spare fuse, 9V battery and operator's manual

DMM2500

(bench model) Push-button operation providing 24 ranges in 5 modes.
± 2 A A.C. $/$ D.C
$\pm 1000 \mathrm{~V}$ A.C./D.C 200Ω to $20 \mathrm{M} \Omega$ resistance Re-settable overload circuit breaker 2000 hours operation from 9 V battery
Size: $155 \times 120 \times 57 \mathrm{~mm}$

DMM2200B

(hand-held model)
2 Teflon-bushed rotary switches providing 21 ranges in 5 modes.
± 2 A A.C./D.C.
± 1000 V A.C./D.C
2000Ω to $20 \mathrm{M} \Omega$ resistance 1000 hours operation from 9 V battery
Size: $165 \times 110 \times 43 \mathrm{~mm}$

$£ 49.95$

 incl.VAT plus p\&p at $£ 1.00$1
DIGITAL LOGIC
 PROBE DLP50

- Wide frequency range: DC to 50 MHz - Minimum detectable input pulse width of 10 nsec - High input impedence of 10 megohms
- Compatible with DTL, TL and CMOS in a wide range of power supply voltages of 4.5 to 30 V D.C
- Protected up to ± 120 V D.C./A.C in input signal plus audible warning function
- Rugged, modern plastic-housed unit supplied packaged in a de-luxe moulded plastic carrying case, with ground lead. IC-clip lead and operator's manual
- Size: $195 \times 26 \times 16 \mathrm{~mm}$ with 800 mm power lead
$£ 44.95$ incl:Var puss sepat fl100

All these instruments are guaranteed against defective parts/workmanship for 12 months. If not satisfied, please return within 14 days for full refund The telephone number for Access/Barclaycard orders, enouiries and literature is 080363822 , Ext.8.
 P Post to: Sifam Ltd, Woodland Road. Torquay. Devon TQ2 7AY
Please send me
Total purchase price
enclose Cheque \square
Please debit my Access/Barclaycard No

Postal Order \square
Name Int. Money Order \square
Address
Signature
Please allow up to 28 days for delivery Official orders accepted from colleges schools companies etc

WW - 026 FOR FURTHER DETAILS

KEF
 IT'S

 ConstructorSeriesSpeakers

SO
EASY
Have fun, save money, building a Kef design
with a
Wilmslow Audio
CS Total kit.
No electronic or
woodworking
knowledge
necessary and
the end result is
a proven top-
quality design
that you'll be proud of
Each kit contains all cabinet components, accurately machıned for easy assembly, speaker drive units, crossovers, wadding, grille fabric,
terminals, nuts, bolts, etc
The cabinets can be painted or stained or fin ished with iron-on veneer or self adhesive woodgrain vynil.
Easy foolproof assembly instructions supplied. Set of constructor leaflets sent free on receipt of large S.A.E
Prices: CS1 (As 101)
$\mathbf{£ 1 1 0} \mathbf{p r}$ inc. VAT, plus carr./ins. E 5.50 CS1A (simplified LS3/5A) £103 pr. inc. VAT, plus carr./ins. E 5.50 CS3 (as 103.2) $£ 129$ pr. inc. VAT, plus carr./ins. $£ 10.00$ CS5 (as Carlton II) £192 pr.inc. VAT, plus carr./ins. £15.00 CS7 (as Cantata) $£ 250$ pr. inc. VAT, plus carr./ins. £18.00


```
                                    8
                                    025529599
```

35/39 Church Street, Wilmslow, Cheshire SK9 1AS Cataloque - $£ 1.50$ post free

Lightning service on telephoned credit card orders!

WW - 016 FOR FURTHER DETAILS

PICOTUTOR \& ANALOCLE INTERFAGE

ASSEMBLY LANGUAGE TRAINER

The ideal way to learn machine language and become acquainted with the new
"single chip" control oriented microprocessors. 1.8K of EPROM, 20 I/O lines, 112 bytes of RAM and a timer all in single 28 -pin I.C. As featured in this, and subsequent issues of WW.

COMPLETE KIT £39.87
PCB, Programmed 68705 and all parts

PCB only $£ 4.35$	MNL ORDEA OMIY
Prog. 68705 £21.98	INCLUDE VAT
Data $£ 1.95$	ADD 45p

PCB only $£ 1.73$
16-way Jumper Lead $£ 2.35$
MAGENTA ELECTRONICS LIMITED (W15) 135 Hunter Street, Burton-on-Trent, Stafís. DE14 2ST, 02-83-65435

WW - 048 FOR FURTHER DETAILS

Ameron industrial

POWER RESPONSE DC $-45 \mathrm{KHz} \pm 1 \mathrm{~dB}$.
OUTPUT POWER IN EXCESS OF 1.5KW INTO 2.75 Ohm LOAD (CONTINUOUS R.M.S.)

- D.C. OUTPUT 20 AMPS AT 100 VOLTS OR 2KVA
- HARMONIC DISTORTION LESS THAN 0.05\% DC-20KHz AT 1kW INTO 6 OHMS
PLUG-IN MODULES: CONSTANT VOLTAGE/CURRENT, PRECISION oscillators
- UNIPOLAR AND BIPOLAR DIGITAL INTERFACES, FUNCTION GENERATORS, AND MANY OTHERS.
- OUTPUT MATCHING TRANSFORMERS AVAILABLE TO MATCH

VIRTUALLY ANY LOAD
FULL OPEN AND SHORT CIRCUIT PROTECTION GUARANTEED STABLE INTO ANY LOAD

* TWO UNITS MAY BE CONNECTED TO PROVIDE UP TO 4kW

INTERLOCK CAPABILITY FOR UP TO EIGHT UNITS

- 3-YEAR PARTS AND LABOUR WARRANTY.

UNITS AVAILABLE FROM 100VA-12KVA

QUALITY, PERFORMANCE,VALUE ...the extra is DURABILITY

HM103......£158
Single trace $2 \mathrm{mV} / \mathrm{cm}$ 10 MHz , Component Tester.

HM203-4.......£264
Dual trace $2 \mathrm{mV} / \mathrm{cm}$
20 MHz , Alg Add, Invert X-Y, Component Tester

HM204......£365
Dual trace $2 \mathrm{mV} / \mathrm{cm}$ 20 MHz , Alg Add, Invert Delay T/B, Var hold-off Peak Auto Trig to 50 MHz , X-Y, Single Shot, Z Mod, Component Tester

HM705......£588
Dual trace $2 \mathrm{mV} / \mathrm{cm}$
70 MHz , Alg Add, Invert, Signal Delay, Delay T/B Single Shot, Var hold-off, 14KV P.D.A. C.R.T

For free data sheets of the full range contact
Prices U.K. list ex. VAT

England
HAMEG LTD
74-78 Collingdon Street,
Luton, LU1 1RX
Tel: (0582) 413174/Telex: 825484
West Germany HAMEG Gmbh
6 Frankfurt am Main 71,
Kelsterbacher Str. 15-19
Tel: 0611/676017 Telex:0413866

France
HAMEG S.A.R.L.
5-9 Avenue de la Republique
94800 Villej uif,
Tel:678.09.98/'́elex:270705

United States

HAMEG, INC
HAMEG, $88-90$ Harbor Rd
88-90 Harbor Rd. ' . Y. 11050
Port Washington,
Phone: 516.883.383\%/516.883.6428

Spain
HAMEG IBERICA S.A Villaroel 172-174
Barcelona-36
Tel:230.15.97
MTM

WW - 060 FOR FURTHER DETALLS

The new 1983 edition of the Texas Instruments Power Semiconductor Data Book contains full data on the complete range of Tl Power Transistors, Darlingtons, Triacs and Thyristors. Complete the coupon to receive a copy of this 900 page, bestseller ex-stock. Price $£ 9.00$ plus p \& p

TEXAS
INSTRUMENTS

\square

PRINTED CIRCUITS

 FOR WIRELESS WORLD PROJECTS| dio compressor/limiter-Dec. 1975-1 s s (stereo) | ¢4.25 |
| :---: | :---: |
| Cassette recorder-May 1976-1 s.s | $\underline{5.00}$ |
| Audio compander-July $9976-1$ s s | ¢4.25 |
| Audio preamplifier-November 1976-2 s.s | E8.50 |
| Additional crrcuits-October 1977-1 s s | ¢4.00 |
| Stereo coder-April 1977-1 ds 2 s s | c8.50 |
| Low distortion disc amplifier (stereo) - September 1977-1 s .5 | ¢2.00 |
| Low distortion audio oscillator-September 1977-1 s.s | £3.50 |
| Synthesized f m transceiver-November 1977-2d.s. $1 \mathrm{~s} . \mathrm{s}$ | £12.00 |
| Morsemaker-June 1978-1 d.s | £4.50 |
| Metal detector-July 1978-1 ds | £3.75 |
| Oscilloscope waveform store-October 1978-4 d s | £18.00 |
| Regulator for car alternator-August 1978-1 s.s. | $£ 2.00$ |
| Wideband noise reducer-November 1978-1 d.s | ¢5.00 |
| Versatile noise generator-January 1979-1 s.s | ¢5.00 |
| 200 MHz frequency meter-January 1979-1 d.s. | ¢7.00 |
| High performance preamplifier-February 1979-1 s s | ¢5.50 |
| Distortion meter and oscillator-Juty 1979-2 s s. | ¢5.50 |
| Moving coil preamplifier-August 1979-1 s s | ¢3.50 |
| Multi-mode transceiver-October 1979-10 d.s. | ¢ 35.00 |
| Amplification system-Oct. 1979-3 preamp 1 poweramp | £4.20 each |
| Digital capacitance meter-April 1980-2 s.s. | £7.50 |
| Colour graphics system-April $1980-1 \mathrm{ds}$. | $£ 18.50$ |
| Audio spectrum analyser-May 1980-3 s s | £10.50 |
| Mult-section equalizer - June 1980-2 s s . | ¢8.00 |
| Fioating-bridge poweramp-Oct. 1980 - 1 s.s (12 V or 40 V) | ¢4.00 |
| Nanocomp 6802 or 6809 - Jan., July, 1989-1 d.s. | E9.00 |
| Cassette interface - July, 1981-1 s.s. | 61.50 |
| Eprom programmer - Jan., 1982 - 1 d.s. | E4.50 |
| Logic probe - Feb., 1981-2d.s. | f6.00 |
| Modular frequency counters - March, 1981-8 | £20.00 |
| Opto electronic contact breaker (Delco) - April, 1981 - | 54.00 |
| CB synthesiser - Sept - 1 d.s. | E6.00 |
| Electronic ignition - March, 1982 | |

Boards and glassfibre roller-tinned and drilled. Prices include VAT and UK postage. Airmail add 30\%, Europe add 10\%. In surance 10%. Remittance with order to
> M. R. SAGIN, NANCARRAS MILL, THE LEVEL CONSTANTINE, FALMOUTH. CORNWALL

CROTECH Oscilloscopes
These are brand-new instruments
303015 MHz 1 Trace
5 mV built-in
component tester $\mathbf{£ 1 5 0}$
303315 MHz 1 Trace
5 mV battery
operation \quad 〔280
303415 MHz 2 Trace
5 mV battery
operation £3
3131 15MHz 2 Trace
5 mV built-in
component tester f240
333730 MHz 2 Trace
5 mV with signal
delay
391 eliminator $\mathbf{5 2}$
Prices exclude delivery and VAT.

used, guaranteed test equipment, callifated to manufacturers' original specification.

Carston Electronics Lrd., Shirley House, 27 Camden Road. London NW1 SNR. Tel:01-2675311. Telex:23920(Hours Monday to Friden 9.30 an to 5.00 pm - lunch 1 - 2 pm). Prices exclude delivery $\$ \mathrm{ViT}$

Essextinu Basic Sustem
 RS232 Interface

* $481 / 0$ Lines
powerful National
\& INS 8073 Processor
Autostart Operation
If with Watchdog Timer
* Up to $16 K$ Byte EPROM

Accommodates Instant ROM ${ }^{\text {Ac Modules }}$

PRICE EXCLUDING VAT: $£ 185$ SUBSTANTIAL OUA DISCOUNTS
CARRIAGE WITHIN THE UK: $£ 2$

PLEASE SEND FOR FULL INFORMATION
is an ideal choice for data The Essex Tiny Basic Compuntrol systems. Its crystal conacquistion and interrupts provide while the watchdog timer trolled timer and critical events, while can be entered and fast response reliable operation. Progral and then be copied into ensures from an RS232 terminal, aM modules may be used tested . Alternatively, Instant ROM modram storage. EPROM.Ang development and for program sto INSTANT ROM' is the trademark of Greenwich

Essex Electronics Centre

E

Wivenhoe Park, Colchester, Essex CO4 3SQ Telephone: Colchester (0206) 865089

WW - 019 FOR FURTHER DETAILS

Abstract

Pye Europa MFsFM high-band sets, complete but less mike and cradle. $\mathbf{£ 9}$ each plus $\mathbf{£} \mathbf{2}$ p.p. plus VAT Pye M294 high-band FM sets, complete but less mike, speaker and cradle. $£ 150$ each plus $\mathbf{£ 2}$ p.p. plus VAT Pye Reporter MF6 AM high-band sets, complete but less speaker and cradle. $\mathbf{£ 9 0}$ each plus $\boldsymbol{£ 2}$ p.p. plus VAT. yike oympic Pye Westminster W 15 FM G band $42-54 \mathrm{MHz}$ sets, unused and like new, but less mike, speaker and cradle. $\mathbf{E 6 5}$ each plus $£ 2$ p.p. płus VAT Pye Westminster W 15 AMD mid-band multi-channel sets, no mikes, speakers or cradles. $\mathbf{£ 4 5}$ each plus $\mathbf{£ 2}$ p.p. plus VAT Westminster W15 AMD mid-band crystalled and Pye Wer converted to $129.9 \mathrm{MHz}, 130.7 \mathrm{MHz}, 130.4 \mathrm{MHz}$. Very good condition. £120 each plus $\mathbf{E} \mathbf{2}$ p.p. plus VAT Pye Westminster W 15 AMD high-band and low-band sets available. Sets complete but less mikes, speakers and cradles. $\mathbf{£ 7 0}$ each plus $£ 2$ p.p. plus VAT. gear. Sets complete and in good condition. £45 each plus E_{2} p.p. plus VAT Pye base station F30 AM, low band and high band available, remote and local control. Prices from $\mathbf{E 2} 20$ plus VAT. Pye base station F401 high-band AM, tocal control, fully solid state, complete but less mike. $\mathbf{£ 2 7 5}$ each plus $\mathbf{£ 1 5}$ p.p. plus VAT

Ye base station receiver R402 high-band FM 148 each plus $\mathbf{E 5}$ p.p. plus VA Pye base station F9U, remotely controlled, 5 Watt output, UHF ($440-470 \mathrm{MHz}$), single channel. $£ 90$ each plus $£ 5 \mathrm{p} . \mathrm{p}$. plus VAT. spacing, single channel, local control. £250 each plus $£ 15$ p.p. plus VAT

Pye Beaver M254 high-band FM sets, 15 Watt, robust mobile radiotelephones for industrial use, sets complete but less Crystals, as new condition. $\mathbf{E 1} 20$ each plus $£ 2$ p.p. Pye base station receiver F27 AM, crystalled on 116.46 MHz , can be recrystalled on air band. Unused condition. $\mathbf{£ 1 5}$ each plus $\mathbf{£ 5} \mathbf{p}$.p. plus VAT. Pye AC200 mains power unit for Olympic or Reporter, automatic standby power facility with trickle charging and built-in quartz digital clock. $£ 95$ each plus $£ 5$ p.p. plus VAT

B. BAMBER ELECTRONICS
 GOVERNMENT AND MANUFACTURERS' SURPLUS

5 STATION ROAD LITTLEPORT CAMBS CB6 1QE
 Telephone: Ely (0353) 860185

Pye AC power supply unit AC25PU, speciatly designed fo use with the Europa series mobiles, power output 13.2 volt 5 amp. New condition. £45 each plus $\mathbf{E 5}$ p.p. plus VAT
Pye PC1 radiotelephone controller, good condition, two only at $£ 50$ each plus $\mathbf{£ 2}$ p.p. plus VAT
Pye Tulip microphone as used on most base stations and e15 plus f 1 p.p. plus VAT channel, int speaker tone receiver, $440-470 \mathrm{MHz}$, single channel, in. speaker and aerial. Requires 9 -volt battery With service manual. $£ 6$ each plus $£ 1$ p.p. plus VAT.
Pye PF2 Pocketfone 70, all types available, AM, FM, UHF, completed with battery, mike and aerial. $\mathbf{£} 65$ each plus $\mathbf{£} \mathbf{2}$ p.p. plus VAT.

Pye PF1 Pocketfone battery-charger type BC14, 12 way
with meter f10 each plus f1 p.pylus VAT with meter. $£ 10$ each plus $£ 1$ p.p. plus VAT
Pye PF5012 UHF handhelds, crystalled on 466 MHz , com plete with ni-cads. $£ 140$ each plus $£ 2$ p.p. plus VAT. plugs and sockets, unused. £4 each plus f1 p.p. plus VAT

MAINS TRANSFORMERS

$0-240 \mathrm{~V}$ input tapped 5000 V 0.125 amp . $\mathbf{£ 2 0}$ plus $\mathbf{£ 8} \mathrm{p} . \mathrm{p}$. plus VAT.
0.240 V input 50 V 20 amp . $£ 25$ plus $£ 8$ p.p. plus VAT $0-240 \mathrm{~V}$ input tapped 14 KV 2 mA . $£ 20$ plus $£ 8 \mathrm{p}$.p.plus VAT $0-240 \mathrm{~V}$ input tapped 700 V 1.2 amp . $\mathbf{£ 2 0}$ plus $\mathbf{£ 8} \mathbf{p . p}$. plus Mains isolating transformer, 500VA 240 V input, 240 V C.T output, housed in metal box. £15 each plus $£ 6 \mathrm{p} . \mathrm{p}$. plus VAT. Mains isolating transformer, 240 V tapped input, 240 V 3 amp, plus 12 V 0.5 amp output. $\mathbf{£ 2 0}$ each plus $\mathbf{£ 6} \mathbf{~ p . p . p l u s ~}$
Advance Volstat transformers, type CVN200/5, input 24 or 28 V DC via inverter, output 220 or 240 V RMS 150 watt, 50 Hz . $\mathbf{£ 1 0}$ each plus $\mathbf{E} 4$ p.p. plus VAT
Variacs $2 \mathrm{amp}, 5 \mathrm{amp}, 8 \mathrm{amp}, 15 \mathrm{amp}, 25 \mathrm{amp}$, used but good condition. From $£ 10$ each.
Marconi AM/FM signal generator, type TF995A/3/S (CT402), 1.5-220 MHz, good condition' with copy of service manual. $£ 95$ each plus $£ 15$ p.p. plus VAT.
Avo valve tester, type CT160 (22 valve bases) with copy of manual. £20 each plus $\mathbf{£ 6}$ p.p. plus VAT
VAT

Advance signal generator Type C2 $\mathbf{£ 2 5}$ plus $£ 5$ Pp. plus VAT.
irmec modulation meter, Type 210 . $\mathbf{5 7 5}$ plus $\mathbf{5 5}$ p.p. plus Rhode \& Schwarz UHF test receiver BN1525, 280-940 MHz. $£ 50$ each plus $\mathbf{£ 1 5}$ p.p. plus VAT
Marconi HF Spectrum analyser. Type OA1094A/S 0.30 MHz . £100 plus VAT (buyer collects).
ddystone receiver, Type $770 \mathrm{U} 144-500 \mathrm{MHz}$. $£ 155$ plus $£ 5$ p.p. plus VAT

45 omex AC voltage stabiliser, type AC2, 240V @ 9 amp Servomex AC voltag plus VAT
mp. $£ 75$ each plus f15 stabiliser, type AC7, 240V @ 20 Samwell \& Hutton T.V. Wobbulator, type 78M, 16-230 $\mathbf{M H z}$. £ 35 each plus $£ 15$ p.p. plus VAT. Rhode \& Schwarz power signal generator 0.1 to 30 MHz , Type BN41001, E50 plus E10 p.p. plus VAT
Rhode \& Schwarz wide band signal generator 10 Hz to 10 hiod \& \& SN40861. £50 plus VAT.

Meguro signal generator, type MSG-230E, $16 \mathrm{KHz}-50$ MHz. £ 130 plus $£ 10$ p.p. plus VAT
Rhode \& Schwarz Polyskop Type SWOB BN4244, 0.5 MHz to 400 MHz . £150 plus £ 15 p.p. plus VAT
Computer-grade electrolytic capacitors, screw terminals $25,000 \mathrm{mfd}$., 33 volts, brand new. E1 each plus 50p p.p lus VAT
60 amp alternator and general noise filters for use in vehicles. £1 each plus 50 p p.p. plus VAT
used plus VAT
AT C test clips, 28-way and 40 -way, gold plated. $£ 2$ each plus 30p p.p. plus VAT.
quipment wire, size $7 / 0.2 \mathrm{~mm}$, colour yellow, 500 -metre eels. $£ 4$ plus $£ 1$ p.p. plus VAT
Z80-CPU, Z80-P10, Z80-CTC. $£ 1.85$ each plus 30p p.p. plus at.
Scotch video tape, $1^{\prime \prime} \times 10^{\prime \prime}(25.40 \mathrm{~mm} \times 910 \mathrm{~mm})$, brand new. $£ 5$ each plus $£ 2$ p.p. plus VAT.
Power units, 70 volt @ 8 amp, 20 volt @ 3 amp. Brand new Beryllium block mounts for CCS 1 valves, etc. $\mathbf{£ 1 0}$ each plus $£ 1$ p.p. plus VAT

ELECTRONIC COMPONENTS
TELECOMMUNICATION EQUIPMENT

PRACTICALLY ALL THE PARTS FOR WIRELESS

The Spring ' 83 catalogue continues to expand to meet the needs of the electronics user - from the novice enthusiast to the professional aerospace designer.

AT YOUR NEWSAGENT OR DIRECT

ambit international

200 North Service Road,
Brentwood, Essex CM14 4SG Telephone (Consumer Sales/Enquiries) 0277-230909 - Telephone (Industrial Sales/Enquines) 0277-231616 Telex 995194 AMBIT G Data 24 hrs (RS232/300baud) 0277-232628 REWTEL

- Prices exclude VAT except where otherwise shown
- Postage and Packing 60 p per pre-paid order
- Orders submitted using Ambit Stock Codes will be processed first
- Orders for in-stock items processed same day
- Hours - (consumer sales) 8am-7pm Mon-Sat: (Industria) 8am-6pm (Mon-Fri)

WW - 041 FOR FURTHER DETAILS

WW - 025 FOR FURTHER DETAILS

SINEWAVE INVERTERS -FROM CARACAL 200-1000 VA

Caracal offer you the U.K.'s widest range of high-quality static inverters. Our inverters are used in many countries throughout the world wherever a reliable and stable source of A.C. power is needed for computers, communications, instrumentation, etc. They are also frequently used for mobile or marine applications where only a D.C. source is available.

Caracal inverters employ modern pulse width modulation technology which is replacing obsolescent tuned-type (ferroresonant) inverters, by giving higher efficiency throughout the load range, very low standby current, and lower weight.

We have a large range of models and options, at competitive prices, to suit your exact requirements.

19-INCH RACK MOUNTING

Now all inverters are also available in 19 -inch chassis form for rack mounting.

CARACAL
 Export enquiries welcome

CARACAL POWER PRODUCTS LIMITED 42-44 SHORTMEAD STREET, BIGGLESWADE, BEDFORDSHIRE Telephone: 0767260997

TLLLAUNCH TND

Go and see.

It's a 50 -yard walk from the Barbican's Hall to the Porter Tun Room.

And we've there-and back buses on the hour, every hour, betwixt Kensington and the Barbican for those interested in Circuit Technology and the A.E.S

Top: Fibre Optics (so far); Middle C.T., Bottom A.ES. Amphenol; Amplicon; Belling \& Lee; Bentham Instruments; BicC General Cables; Cossor Electronics; Oynacast intemationa; Eaing Beck Eurotec Deutsch; Honeywell Control; Hopkin \& Williams; ITT Cannon; ITT Components; Lambda Photometrics; Laser Lines; Leetec; MCP Electro Optics; McMichael; Melles Griot; Norbain Electro Optics; Optical Fibres; Oriel Scientific; Pilkington Fibre Optic Technologies; Pirelli General; Techniques; Rofin; SIRA; Standard Telephone \& Cables; Suhner Electronics; Systems Production; TBL Fibres; Thomson CSF; Time \& Precision; Vickers Instruments; Walmore; York Technology,

AB Electronic Products Group; AEG Telefunken (UK); AMF Potter and Brumfield; AM: Microsystems: AVX; Able Systems; Adcola Products. Allen
Bradley Electronics: Alma Components (ESY) Alusett UK. Ambar Bradley Electronics; Alma Components (ESY), Aluset
Components: Amplicon Electronics; Analog Devices: Anders Electrical: Angla Components, Aerial Pressings; Asles Electronics (Europe), Armon Electronics: Arrow Hart (Europe); Ashburton Resistance Co.: Ashcrott Electronics: Assman Electronics; Astralux Dynamics; Augat; BFI Electronics; BICC General Cables, BICC Vero Electronics, Bach Sirmpson (UK), B and R Electrical Products; Banco Record Tools; fwo Bauch: Beiclere: Beli \& Howell,
Black Star Boxer Marketing: Brandenburg. Brticent International; Britimpex: Black Star; Boxer Marketing; Brandenburg, Briticent International; Britimpex;
British Standards Institution; Broyce Marvid; AFButgin \& Co CGS Resistance Co.: CRP Electronics; Calex Electronics; Cambion Electronic Products, Cambridge Electronic Ind.: Campbell Colinns; Capital Electronic Developments; Celab; Centronic, Cherry Electrical Products: Ciba-Geigy
Plastios Division: Citec; CP Clare Electronics; Coden Engineering: Collett Plastics Division; Citec, CP Clare Electronics; Coden Engineering; Collett
Terminals: Compstock Electronics; Conductive Products; Contraves Industrial Products; Cooper Tools; Corintech; Corning (Electrosil Division); Coutant Electronics: Cox: Critchley Brothers, Custom Cases: DAT Engineering Co. DAU (UK), Dage Eurosem, Danavox (Great Britan); Dannridge UR; Datacapture: Data International Incorporated; Datac: Daturr: S Davall \& Sons:
Dean Electronics; Diamond H Controts; Digitran UK; Drake Iransformers: Dubilier Components; Duracell UKK. Duralith Corporation; ERG Components: ETRI Fans; East Grinstead Elec. Electronic Components Ind. Fed., Electronics Weekly; Electrautom; Electronic Components; Electroplan; Electrothermal. Engineering: Enclosure Technology; English Electric Valve Co., G English
Electronics; Exacta Crcuits: R R Electronics; Farnell Electronic Components: Electronics; Exacta Circuits; FR Electronics; Farnell Electronic Components: Electronics, Fieldtech Heathrow, Flair Electronic Systems; GE Electronics (L.ondon); General Instrument Microelectronics, Genrad; Gentech International; Gitech; Gould Power Supplies UK; Graphic Electronics; Greendale Electroniss; Greenpar Connectors: Gresham Lion; Groatmoor; Hakuto International UK; Harmin Electronics Europe, H and T Components; H B Electronics; Harvis
Systems, Harrow Scientific; Harting Eiektronik: Harwin Engineers SA: Hawke Electronics: Hayden Laboratories; Healey Meters; Hesto (Henkels Stocko), Highland Etectronics; Hinchiey Engineering Co.; Hitachi Denshi (UK); Hitachi Electronic Components (UKK), Hivolt Capacitors; Holden and Fisher: Holsworthy Electronic (Sales), Honeywell Controt Systems; House of Instruments: Howells Radio: Hunting Hivolt; Hybrid Systems; Hypertac; I and J Cannoni STC Components Group; iT Semiconductors: IT Swiches (UK): Imhof Bedco Stand Products; Industrial Science; Imo; Instelec: The Institution of Elec. Engs: ; Intel Electronics Group, International Rectifier Co. (GB); Intersil Datel (UK); Intime Electronics: Irlandus Circuits; Iskra, Ivc Counters, Jackson Brothers, Kelvin impex, Kemo, Klectronics; Lawtronics; Leonische Drahtwerke AC Numberg. Lee Green Precision Inds.; Lerno UK; Light Soldering Developments: Littex; Littefuse (GB); Londex; Longs; Lyons Instruments; 3M United Kingdom; Microtesting; The McMurdo Instrument Co.; Marconi Instruments; Metway Electrical Industries; Micro Circuit Engineering; John Minister Instruments; Mitsubishi
Electric (UK): Motex Electronics; Mostek (UK) Moulded Electronic Electric (UK): Motex Electronics; Mostek (UK); Moulded Electronic
Components Int. Mullard; Murata Erie Electronics; NF Electronics; NSF; National Panasonic (UK); Neohm (UK); Newport Components, Nietronix OK Machine \& Tool (UK); Optima Enclosures; Oxley Developments: PSP Electronics: Papst Motors; Parmeko; Pelco (Electronwss; Pickering Electronics Plessey Circuits; Plessey Connectors; Plessey Hybrids; Plessey Sermionductors: Porescap (UK); Powerhne Electronics. Powertron. Precicontact, \& Eqecisioimmeta Precision instruments; Pretormations (Magnets); Pressac; Print Sevice BV Protech BPL; Protronic 24; Pulsetek; Pye Unicam; Quadrant Meter Company; Quiller Components; RF Components; RS Components; Racal Dana
Instruments; Radatron; Radiatron Components; The Radio Resistor Instruments; Radatron; Radiatron Components; The Radio Resisto Company; Radio \& Electronics World (AMBIT); Radiotronic (UK); Rainford
Metals: Raytheon Semt Conductor: REMO Components Group; Redpoint: EG

G Reticon, RIFA AB; Richo International; Rittal, Roadrunner Electronic Products; Rockwell; Saford Electrical instruments; Sealectro; Seltek Instruments; Schrof UK; Semelab; Semiconductor Specialists (UK); Serntech; Sternice, Siemens; Sifam; Siliconix; Souriau (UK), Spectrol
Reliance; Sprague Electric (UK), Star Systems (RHB); Steatite Insulations; Retiance; Sprague Electric (Stor, Star Sustems (inhberlexit-Icore; Suvicon;
Stocko Stocko (MMeta, Works); Stotron; Sultex; Supernexit-Icore; Suvicon; Techmatoon: Techni Measure, Tekelec Components; Teknis: Teledyne Philbrick; Tele Haase Stevergerate-GmbH; Telonic Berkeley (UK); Tempatron ennco Distributon: Thapdar Electronics: Thame Components; Thomson CSF: Thorn Brimar, Ioday Electronics, Townsend Coates; Transradio, Trident
Engineering; IJltra Electronic Components; United Electronics; VS! Electronics (UH): VTM (UK); Vako Electronics; Variohm Components; Varta Vishay Resistor Products (UK), Vitramon. "W"Electronics: WKR: Wallis Electroncs; Weiwyn Electric; Weir Electronics; Wescorp Europe. Wessex Advanced Switeling Prods:; West

The stand numbers for all three events are given in the Morgan-Grampian catalogue. And so are detaits of all the conference programmesatall three events.

We're working like Trojans for the industry

 as a whole - and not just YOU.This is no ordinary exhibition week
All the key industry influences will be attending our seminars and conferences.

All the folks with vacancies (or with CV'!) will be parading the aisles.

All ...well; in simple terms, 'The Show' is the recognised annual occasion when everyone gets together to swap news, views, trends and friends. Freely

The Tobie Awards

The pre-eminence of 'TheShow' is augmented by its 'TOBIE' awards - to be presented, this year, at the Electronics Shows' Ball at the Dorchester.

Last year's winners were
NEW PRODUCT OF THE YEAR Ferranti FAB-2 Ferranti Electronics Ltd. RESEARCH ACHIEVEMENT OF THE YEAR Laser Gyro !nertial NavigationSystemEXPORTER OFTHE YEAR Sinclair Research Ltd. ELECTRONIC APPLICATION OF THE YEAR Songuard Burglar Alarm Eurolec Group Ltd. PERSONALITY OF THE YEAR Robb Wilmot, ICL DISTRIBUTOR OF THE YEAR Memec Ltd.
And this year? Watch E.T.'s space!
In short, if you don't make it to London the industry will be all Greek to you

How to get to the Barbican/Kensington Exhibition Centre/Porter Tun Room.

The Barbican: Tube to BarbicanStation. 400 yards straight ahead from the exit. And you're there. Kensington: Tube to Kensington High Street Walk through shopping arcade. Turn right, and right again In 100 yards you've made it.
Porter Tun Room: Leave 'The Show' Turn left into Beech Street. And it's 50 yards on the right past the cross roads.
Remember-on the hour, every hour, there are buses from Kensington to the Barbican. Fuil details on your ticket and in the catalogue; both free. And it beats horse-riding any day.

To: Pat Rusted, The Hub, Emson Close, Saffron Walden, Essex, CB1 01 HL
Please send me a free season ticket to The All-Electronics/ECIF Show, Circuit Technology and Fibre Optics. \square
Please send me a free 'Morgan-Grampian' catalogue for all three shows, for which I enclose postage stamps for p \& p (26p please).
Please send me details of the various seminars and conferences running during 'the week.' \square
Name
Company

For catalogue please attach 26 p in stamps lightly by their corner to this coupon
THE ALL-ELECTRONICS/ECIF SHOW. THE BARBICAN. APRIL 19-21, 1983. FIBRE OPTICS '83. THE PORTER TUN ROOM. APRIL 19-21, 1983. CIRCUIT TECHNOLOGY '83. KENSINGTON EXHIBITION CENTRE.APRIL 18-20,1983.

The Hub, Emson Close, Saffron Walden, Essex, CB10 1 HL Tel: (0799) 26699 Telex: 81653

SPECIFICALLY DESIGNED FOR THE

280

BASED SYSTEM 4,6 OR 8 MHz

This MACHINE CYCLE LOGIC STATE ANALYSER gives a logic state map of 37 active pins of the CPU to a depth of 2048 (or 4096*) machine cycles leading up to a preset conditional break. Passive, timed by the target system clock, the analyser samples the address, data and control buses simultaneously with the CPU and stores them with an elapsed M cycle and clock count. Specific machine cycles may be excluded to increase the apparent memory depth. Up to FFF delay on start/ end acquisition condition true.
*Available with 2 K or 4 K memory depth and 4,6 or 8 MHz speeds. FULL SPECIFICATION AND DETAILS

SEYKR

LIMITED
First Floor, 18A Bridge Street, Godalming, GU7 1HY. Telephone 0486820924

WW - 032 FOR FURTHER DETAILS

RADIOCODE 드몽

are powerful and comprehensive instruments which receive, decode and analyse time-coded standard frequency transmissions to provide accurate, secure and completely automatic time/calendar or synchronisation systems

Applications

- Automatic master clock and slave controller.
- Synchronisation of separate equipment and events.

Programmable energy management system.

- Computer clock/calendar with battery backup
- Data logging and time recording
- Process and equipment control.
- Broadcasting, Astronomy, Navigation.
- Satellite tracking.

If you have a time or synchronisation problem, write or phone for further details of our portable and new microcomputer-controlled Radiocode Clocks.

TOROIDAS

The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to I.L.P., PRICE.
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.
*Gold service available.
21 days manufacture for urgent deliveries.
*Orders despatched within 7 days of receipt for single or small quantity orders.
*5 year no quibble guarantee.

The benefits of ILP toroidal transformers
ILP toroidal transformers afe only halt the weight and height of their laminated equivalents and are available with 110 V . 220 V or 240 V primaries coded as follows
IMPORTANT: Regulation - All vollages quoted are FULL LOAD. Please add regulation figure to secondary For mail order please make your crossed cheques or postal orders payable to ILP Electronics Ltd. Barclaycard/Access
voltage to obtain of load voltage.
For 110 V primary insert " 0 in place of " X " in type number
For 220 V primary (Europe) insent " 1 " in place of ' X " in type number.
For $240 V$ primary (UK) insert 2 in place of ' x in type number
Also available at Electrovalue, Maplin, Technomatic and Barrie Electronics.
welcome. Trade orders standard terms.

Post to ILP Electronics Lid. Graham Bell House Roper Close Post to ILP Electronics LId. Graham Be
Canterbury CT2 7EP Kent. England

WW - 021 FOR FURTHER DETAILS

TEONEX ELECTRONIC VALVES AND SEMICONDUCTORS

SERVING THE WORLD FOR 30 YEARS

We specialise in the supply of Industrial Valves of British, European and USA manufacture, and semiconductors from the Philips Group.
Many types, including obsolete and obsolescent types, always available from stock.

For further details, contact Mrs. Janet Lowy.
T.O. SUPPLIES (EXPORT) LTD., 2A Westbourne Grove Mews, London WII 2RY. Telephone: (01) 7273421 Telex: 262256 Answerback TOSPLY G

WW - 020 FOR FURTHER DETAILS

WW - 008 FOR FURTHER DETAILS

INSTANT PRINTED CIRCUITS!!

Make your own - to professional standards - within minutes using either "Fotolak"' Light-sensitive Aerosol Lacquer or Pre-coated board. No Darkroom or Ultra-violet source needed!

Postage individual items in brackets. Maximum charge $£ 2$ per order
12V FLUORESCENT LIGHTIMG! FANTASTIC BARGAIN!

ScheTronics Limited

We offer the following services

* Repair and calibration of precision electronic test equipment
\star Prototype wiring of P.C.Bs
\star Technical drawing facilities
\star Second user test equipment for sale

> Unit 10, Dunstall Estate
> Crabtree Manorway Belvedere, Kent DA17 6 AW
> Telephone: $01-3119657$

[^0]
The lightweight mast with 101 applications

The smoothly operated QTM Mast comes fitted with handpump or can be vehicle mounted with 'Power Pack' for extension and retraction. Available in a range of heights up to 15 metres, the OTM mast can provide the ideal answer for

- Mobile Radio Telephone Environmental - gas
- Police Mobile HQ (UHF) sampling collector
* Field Telecommunications
- High level photography
- Floodlighting
- Meteorology
- Anemometer and Wind And a host of other uses Measurement

CLARK MASTS

Find out more about the QTM series by writing or phoning
U.K.
CLARK MASTS LTD . WW W.
Evergreen House Ringwood R

Evergreen House. Ringwood Road
Binsiead Isle of Wight.
England PO33 3PA
Tel Isle of Wight (0983) 63691

EUROPE

GENK TECHNICAL PRODUCTS NVIWW Wourstraat 21. 3600 Genk. Belgium
Telefoon 011 -380831
Telex 39354 Genant B
lelex 86686

CET BIG POW3i

the third generation
Due to continous improvements in components and design \|LP now launch the largest and most advanced generation of modules ever.

WE'RE INSTRUMENTAL IN MAKING A LOT OF POWER

In keeping with ILP's tradition of entirely self-contained modules featuring, integral heatsinks, no external components and only 5 connections required, the range has been optimized for efficiency, flexibility, reliability, easy usage, outstanding performance, value for money.
With over 10 years experience in audio amplifier technology ILP are recognised as world leaders.

Most preamp modules can be driven by the PSU driving the main power amp
A separate PSU 30 savailable purely for pre amp modules it required for A separate PSU 30 , savalable purely for pre amp modules it requiked Please send to deta
Mounting Boards
For ease of const fuction we recommend the $\mathbf{B 6}$ tor modules HY6-HY
linc VAT) and the $\mathbf{B 6 6}$ for modules HY66-HY $78 \mathrm{Et.29}$ (inc. VAT)

$\begin{aligned} & \text { Model } \\ & \text { Number } \end{aligned}$	For Use With	$\begin{gathered} \text { Price inc. } \\ \text { VAT } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Model } \\ \text { Number } \end{array}$	For Use With	Price atw VAT
PSU 21x	10.2H830	¢11,93	PSU 52x	2* HY 124	£17.0?
PSU41x	10.2 HY60.1 1 + HY6060. $1 \times$ HY 124	£13.83	PSU 53x	2n MOS 128	117.86
PSU 42 x	1. HY128	£15.90	PSU 54x	1 x HY248	f17.86
PSU $43 x$	1 \times MOS 128	E16.70	PSU 55x	$1 \times$ MOS248	$£ 19.52$
PSU 51x	2. Hy $1281 \times$ HY244	¢17.07	PSU $71 \times$	$2 \times \mathrm{H}^{2} 244$	[21.75

[^1]MOSFET MODULES

Protection Able to cope with complex loads withour the need for veiv special
Slew rate Protection circuitry ltuses will suffice $20 \mathrm{~N} / \mu \mathrm{s}$ Rise time 3 Ls . $5 / \mathrm{N}$ ratio 100 db
Fiequency resporse (-3dB) $15 \mathrm{~Hz}-100 \mathrm{KHz}$. Inpur sens 1
'NEW to ILP' In Car Entertainments
Wono Pomer Boaster Amplifier to increase the output of your existing cad radio or cassetie nlaver to a numinal 15 watts rms

Robur consur
Mounts any where in
Automatis switchio
Oulpul power maximum 22 w peak into 4Ω
Frequency response (-3dB) 15 Hz to 30 KHz . T. H.D. 0.1%, at 10 W 1 KHz
S/N rallo \{DIN AUDIO) B0dB, Load impedance 3 , inout Sensitivity and impedance tselecti.
Size $95 \times 48 \times 50 \mathrm{~mm}$. Weight 256 gms.

C1515
£17.19 (inc. VAT
Size $95 \times 40 \times 80$ Weight 410 gms

Modal Number	For Use With	Price inc VAT
PSU. 72 x	FY 348	¢22,
PSL 73 x	- 4.4364	122.54
PSU 7.4 x		-2.20
PSU $75 \times$	2, Mas. 48 1- M 2536 B	t24.27)

WITHALOT OF MELP from

PROFESSIONAL HIIFI THAT EVERY ENTHUSLAST CAN HANDLE...
 Unicase

Over the years ILP has been aware of the need for a complete packaging system for it's products, it has now developed a unique system which meets all the requirements for ease of assembly, adaptability, ruggedness, modern styling and above all price.
Each Unicase kit contains all the hardware required down to the last nut and bolt to build a complete unit without the need for any special tools.
Because of ILP's modular approach, "open plan" construction is used and final assembly of the unit parts forms a compact aesthetic unit. By this method construction can be achieved in urider two hours with little experience of electronic wiring and mechanical assembly.

Hi Fi Separates

UC1 PRE AMP UNIT: Incorporates the HY78 to provide a "no frills", low distortion, $(<0.01 \%)$, stereo control unit, providing inputs for magnetic cartridge, tuner, and tape/ monitor facilities. This unit provides the heart of the hi fi system and can be used in conjunction with any of the UP Unicase series of power amps. For ultimate hum rejection the UC1 draws its power from the power amp unit
POWER AMPS: The UP series feature a clean line front panel incorporating on/off switch and concealed indicator. They are designed to compliment the style of the UC1 pre-amp. Performance for each unit which includes the appropriate power supply, is as specified on the facing page

Power Slaves

Our power slaves, which have numerous uses i.e. instrument, discotheque, sound reinforcement, feature in addition to the hi fi series, front panel input jack, level control, and a carrying handle. Providing the smallest, lowest cost, slave on the market in this format.

UNICASES					
HIFI Separates					Price inc. VAT
UC 1	Preamp				£29.95
LP $1 \times$	$30+30 \mathrm{~W} / 4-8 \Omega$	Bpolar	Siereo	H.Fi	£54.95
UP2 X	$60 W / 4 \Omega$	Bipolar	Mono	HiF)	£54.95
UP3x	$60 W / 8 \Omega$	Bipolar	Mono	HiF.	£54.95
UP4X	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	HiF,	£74.95
UP5 X	$120 \mathrm{~W} / 8 \Omega$	Bipolar	Mono	HIF_{1}	£74.95
UP6X	60W/4-8 Ω	MOS	Mono	$H_{1} \mathrm{~F}_{1}$	£64.95
UP7X	120W/4-8	MOS	Mono	$\mathrm{H}_{1} \mathrm{~F}_{1}$	$£ 84.95$
Power Slaves					
USIX	$60 \mathrm{~W} / 4 \Omega$	Bipolar	Power	Slave	$£ 59.95$
US $2 x$	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Power	Slave	£79.95
US3 X	$60 \mathrm{~W} / 4-8 \Omega$	MOS	Power	Slave	£69.96
USAX	$120 \mathrm{~W} / 4-8 \Omega$	MOS	Power	Slave	¢89.35

\footnotetext{
TO ORDER USING OUR FREEPOST FACILITY
Fill in the coupon as shown, or write details on a separate sheet of pape quoting the name and date of this journal. By sending your order to our address as shown at the bottom of the page opposite, with FREEPOST clearly shown on the envelope, you need not stamp it. We pay postage for you. Cheques and money orders must be crossed and made payable to I.L.P Electronics Ltd. if sending cash, it must be by registered post. To pay C.O.D please add $£ 1$ to TOTAL value of order

PAYMENT MAY BE MADE BY ACCESS OR BARCLAYCARD IF
REQUIRED

WW - 012 FOR FURTHER DETAILS

Twice again: Shure sets the standard for the industry!

Introducing two new microphone mixers

Ten years ago - with the introduction of the M67 and M68-Shure set the standards of the industry for compact, portable micro-
phone mixers. Shure is now introducing two new mixers with features and improvements that will make them the new industry standards.

For Professional Broadcasting Both TV and Radio-in the studio and for remote broadcast applications.

For Professional Recording

For Professional Sound Reinforcement
For more complex public address systems.
With all these new features:

- Switchable, fast-attack limiter
- LED peak indicator
- All inputs switchable for mic or line
- Simplex power
- Greater headphone power
- Built-in battery supply
- Lower noise
- Reduced distortion
and all of the famous M67 original features.

M268

For Public Address and Paging In hotels, schools, churches, community centers, hospitals, etc.

For the Serious Tape Recording Enthusiast

As an Add-On Mixer for

 Expandiag Current EquipmentWith all these new features:

- Lower noise
- Dramatic reduction in distortion
- Mix bus
- Automatic muting circuit
- Simplex power
and all of the famous M68 original features
Both new models include the same ruggedness and reliability that have made the M67 and M68 the top-selling mixers in the industry.

For complete information on the M267 and M268 send in for a detailed product brochure (ask for AL669).
The Sound of the Professionals ${ }^{\text {® }}$
SHUNE
For full details write to:
HW. International, Eccleston Road, Tovil Maidstone, Kent ME15 6AU. Tel: 062259881.

wireless world

Editor:

PHILIP DARRINGTON
01-661 3128

Deputy Editor:
GEOFFREY SHORTER, B.Sc. 01-661 8639

Technical Editor:
MARTIN ECCLES
01-6618638

Nows Editor:
DAVID SCOBIE
01-661 8632

Drawing Office Manager:
ROGER GOODMAN
01-661 8690
Technical Illustrator:
BETTY PALMER
Advertisement Manager:
BOB NIBBS, A.C.I.I.
01-661 3130

BARBARA MILLER
01-661 8640

Northern Sales:
HARRY AIKEN
061-872 8861

Midland Sales:
BASIL McGOWAN
021-356 4838

Classified Manager:
BRIAN DURRANT
01-661 3106

IAN FAUX
01-661 3033

Production:

BRIAN BANNISTER
(Make-up and copy)
01-661 8648
Publishing Director
DAVID MONTGOMERY
01-661 3241

Know-how: resource or property?

When the committee of the UK's Independent Review of the Radio Spectrum sent out a letter last year inviting people to contribute evidence, it put forward some new and interesting questions for consideration. One was whether decisions on spectrum allocations and frequency assignments should be influenced by value judgements of the "worth" of the services and transmissions in question. This obviously implied a need for assessing the different claims within society for spectrum space. Another question was whether frequency assignments should be determined or influenced by market forces - for example, by treating spectrum space as an economic quantity and charging rent for it or auctioning it off to the highest bidder.

These two possible approaches to the disposal of frequencies are obviously ideologically opposed. As such, they could almost have been laid out as part of the agenda for the ideological battle of the UK's coming General Election, for much of this battle will be between different value judgements on the right way to apportion scarce resources. They belong, respectively, to the opposing principles of political power and economic power.

But the radio spectrum is only one example of how these different attitudes reach into the whole body of electronics and communications technology. Electronics manufacturing, in contrast to making shoes or breakfast cereals, is a perpetual race to get ahead in specialized technical knowledge - or that amalgam of applied physics and empirical practices we like to call know-how. In business you must keep up with your competitors in know-how or you will do badly and perhaps fail. In international diplomacy you must keep up with your adversary in the ability to deploy such know-how as a military threat.

All political parties in Britain declare that electronics know-how is important to the economic future of the country and that it should be disseminated as rapidly as possible. But the Right and Left extremes differ fundamentally on the best way of
using it for the good of the people, because they see it in different ways.

The Right, believing in the essential beneficence of the free market, think that know-how should be acquired under the stimulus of commercial compeition. The process of demand in a free market ensures that people get from the technology what they really want from it. Meanwhile, the know-how is a property, rightfully belonging to the entrepreneur because he made the effort to possess it in the first place. Then, after a period of commercial exploitation, it eventually becomes common knowledge, to be consigned to the text-books, and so ceases to be a property with valuable ownership rights.
The Left, believing in government intervention rather than market forces, think of know-how as a resource that should be applied directly to the collective benefit, not through the selective processes of the market. They dispute the Right's view that everyone gets what he wants in a free-market system simply through demand. They argue that demand is artificially generated by entrepreneurs, by using advertising, for example, to create wants that will blot out awareness of real needs. This artificially created demand is actually what the entrepreneur finds convenient and profitable to sell, and the know-how behind the products follows the same selective pattern.

Experience has shown that know-how produced under the stimulus of competition in free-market economies is more advanced than that obtained under state control in centralized economies. The issue, however, is not about absolute levels of know-how in different systems but about alternative ways of distributing this resource or property to the benefit of society. The problem applies equally in the less developed countries of the Third World. It is too serious to be left to the outcome of party political contests and deserves more concentrated attention than it gets at present from just academic studies and technology assessment organizations.

Tracking satellites with a microcomputer

This fully-automatic system will track amateur or weather satellites continuously using a PET microcomputer to control antenna azimuth and elevation.

Before the advent of cheap home computers, tracking amateur satellites involved the use of several graphs and tables, followed by time-consuming calculations. This effort can now be replaced by a computer program such as the one described here. The program runs on an average microcomputer (the Commodore PET) and has the following features:

- the whole system is simple to operate
- only the minimum essential orbital information is required from the user, all other satellite information being inbuilt
- the computer updates its orbital data as necessary, and is capable of operation for an indefinite length of time unattended
- the computer automatically drives electromechanical rotators for altitude and azimuth of directional antennae
- the program predicts the availability of the selected satellite and indicates for how long it will be within range.
Two popular methods of tracking satellites are available to the amateur. The first, the Oscarlocator, is a purely manual technique and is therefore of no use in this application. It consists of a polar projection of the northern hemisphere and an acetate sheet with an orbital path drawn on it. When correctly positioned, it allows the orbital path and the azimuth angle to the satellite to be read off.

The other method, due to the American amateur W5PAG, consists of drawing up azimuth and elevation charts (see Fig. 1):

1. The great circle angle (i.e. the angle subtended at the centre of the Earth) between the receiving station and the point on the Earth below the satellite (the "sub-satellite" point) is calculated:

$$
\begin{equation*}
D=\cos ^{-1}\left(\frac{R}{R+h} \cos y\right)-y \text { degrees } \tag{1}
\end{equation*}
$$

where D is the great circle angle, y is the elevation angle of the satellite at the station, R is the Earth radius (6375 km) and h is the altitude of the satellite.
2. Next, the latitude of the point on the first bearing (say 0 degrees) which corresponds to the elevation angle y is given by
$\sin B=\sin a \cos D+\cos a \sin D \cos C(2)$
by I. P. Jefferson B.Sc., G4IXT
where B is the latitude of the sub-satellite point, a is the latitude of the receiving station and C is the bearing to North (in this case 0 degrees).
3. Finally, the corresponding longitude of the sub-satellite point is calculated:

$$
\begin{equation*}
\sin L=\frac{\sin C \sin D}{\cos B} \tag{3}
\end{equation*}
$$

where L is the difference in longitude between the sub-satellite point and the receiving station.

Thus the latitude and longitude of a point corresponding to a particular elevation have been calculated, on a heading of due North (0 degrees). It is now necessary to calculate points on other headings at the same elevation angle. (Note that it is only necessary to calculate points for headings $0-180$ degrees since the chart is symmetrical). The whole procedure is then repeated for different
elevation angles up to 90 degrees.
Having drawn the charts it is necessary to know the sub-satellite point in order to use them. This can be found as follows:

$$
\begin{equation*}
\sin \mathrm{b}=\sin (360 \mathrm{t} / \mathrm{T}) \sin \mathrm{U} \tag{4}
\end{equation*}
$$

where b is the latitude of the subsatellite point, t is the length of time in minutes since the satellite crossed the equator travelling North (the EQX time) and T is the satellite orbit period at inclination angle U to the equatorial plane.
The corresponding longitude is given by

$$
\begin{equation*}
1=\cos ^{-1}[\cos (360 \mathrm{t} / \mathrm{T}) / \cos \mathrm{b}] \pm[\mathrm{t} 4] \tag{5}
\end{equation*}
$$

The factor $t / 4$ is due to the rotation of the Earth: the Earth rotates $1 / 4$ degree every minute. When the orbit is retrograde, i.e. U greater than 90 degrees, $\mathrm{t} / 4$ is added.
To complete the charts, it is now necessary to take values of t from, say, l minute to 115 minutes (a complete orbit) and substitute in (4) and (5) to find the orbital path.
The graphs plotted will give the antenna azimuth and elevation for the satellite concerned. For any other satellite,

Fig. 1. Example of a chart showing the bearing necessary to direct an antenna towards a point at a given latitude and longitude.
different graphs would have to be drawn.
Although this method could be used by a computer, storing all calculated values in a "look-up" table, it would be very inefficient and time consuming to do so. A better approach is to calculate the information required at the time it is needed, for that particular time only. Obviously the computer will have to be able to do the calculations rapidly for this to be accurate. The PET is adequate in this respect.

Calculated tracking

The requirement is to produce values of azimuth and elevation for a given satellite at a specific time, as quickly and accurately as is possible. In order to do this, some basic information is needed:
a) The satellite's orbital period.
b) The longitude increment at the equator per orbit.
c) The inclination of the orbit to the equatorial plane.
d) The apogee and perigee of the orbit.
e) A reference orbit, i.e. the time and longitude of an equator crossing, travelling in a particular direction (generally North).
f) The latitude and longitude of the receiving station.
g) The time in GMT.

All of the above from (a) to (d) inclusive are fixed and can be built into the program. The remaining data must be supplied by the user when the program is run. For amateur radio and weather satellites, the apogee and perigee differ by about 1% or less, so the orbits can be assumed to be circular and an average height used in calculations.
Using modifications to formulas (4) and (5) we can calculate the latitude and longitude of the sub-satellite point. Replacing symbols with the variable names used in the program, from (4),
$\mathrm{PHI}=\sin ^{-1}\left[\sin (\mathrm{CLIN}) \times \sin \left(\frac{2 \times \pi \times \text { MI }}{\mathrm{PE}}\right)\right]$
where $\mathrm{PHI}=$ latitude in radians of the sub-satellite point
CLIN $=$ orbital inclination
$\mathrm{MI}=$ number of minutes since EQX
$\mathrm{PE}=$ orbital period in minutes
From (5), THETA equals
$\cos ^{-1}\left(\frac{\cos [2 \pi(\mathrm{MI})] /(\mathrm{PE})}{\cos (\mathrm{PHI})}\right)+\frac{2 \pi(\mathrm{MI})}{1440}$
where THETA= longitude in radians of the sub-satellite point.

Now consider a system of vectors in three dimensions. Taking the vectors from the centre of the Earth to the receiving station and to the satellite (Fig. 2), the vector difference between these two give the vector from the receiving station to the satellite (displaced to the centre of the Earth). If we use spherical polar coordinates, we can draw this on a cartesian system with the centre of the Earth as origin (Fig. 3).

$E R T H=$ earth radius.
$E R T H+H T=$ earth radius + orbital height.

The conventional way of specifying longitude is to use degrees West of the Greenwich meridian. However, we are using values of THETA in the opposite direction, so they must be modified as below. Similarly, degrees latitude conventionally increase from the Equator outwards, but the PHI angles above are opposite and must be modified suitably.

Modified values:

$$
\begin{array}{ll}
\mathrm{PD}=(\pi / 2)-\mathrm{PHI} & \mathrm{TD}=(2 \times \pi)-\text { THETA } \\
\mathrm{FI}=(\pi / 2)-\mathrm{LAT} & \mathrm{TE}=(2 \times \pi)-\text { LONG } \tag{8}
\end{array}
$$

where
$\mathrm{PD}=\phi^{\prime} \quad \mathrm{TD}=\theta^{\prime} \quad \mathrm{FI}=\phi \quad \mathrm{TE}=\theta$
LAT $=$ receiving station latitude.
LONG $=$ receiving station longitude.
Notation:
r is the vector to the receiving station from the centre of the Earth.
\mathbf{r}^{\prime} is the vector to the satellite from the centre of the Earth.
\mathbf{p} is the vector from the receiving station to the satellite.

Now the components of the vector r are

$$
\begin{aligned}
& \mathrm{X}=|\mathbf{r}| \cos (\mathrm{TE}) \sin (\mathrm{FI}) \\
& \mathrm{Y}=|\mathbf{r}| \sin (\mathrm{TE}) \sin (\mathrm{FI}) \\
& \mathrm{Z}=|\mathbf{r}| \cos (\mathrm{FI})
\end{aligned}
$$

and similarly for \mathbf{r}^{\prime}

$$
\begin{aligned}
& \mathbf{X}^{\prime}=\left|\mathbf{r}^{\prime}\right| \cos (\mathrm{TD}) \sin (\mathrm{PD}) \\
& \mathbf{Y}^{\prime}=\left|\mathbf{r}^{\prime}\right| \sin (\mathrm{TD}) \sin (\mathrm{PD}) \\
& \mathrm{Z}^{\prime}=\left|\mathbf{r}^{\prime}\right| \cos (\mathrm{PD}) .
\end{aligned}
$$

If the components of the vector p are $\mathrm{X}_{\mathrm{p}}, \mathrm{Y}_{\mathrm{p}}, \mathrm{Z}_{\mathrm{p}}$ then:

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{p}}=\mathrm{X}^{\prime}-\mathrm{X} \\
& \mathrm{Y}_{\mathrm{p}}=\mathrm{Y}^{\prime}-\mathrm{Y} \\
& \mathrm{Z}_{\mathrm{p}}=\mathrm{Z}^{\prime}-\mathrm{Z} .
\end{aligned}
$$

Theoretically, this vector is all that is necessary to track the satellite since it is easy to work out the spherical polar

Fig. 3. Vector diagram.
coordinate angles, and these could be fed directly to the antenna rotators. However, in practice it is difficult to define these angles at the receiving station, since they relate to the cartesian coordinate system previously shown, based at the centre of the Earth. At the receiving station it is convenient to refer to angles of elevation from the horizontal and azimuth angles from due North, so these must be supplied by the program.
Since we are using vector notation, it is simple to find the angle between the vector r and the vector p using the dot product:

$$
\mathbf{r} \cdot \mathbf{p}=\mathbf{r} \mid \mathbf{p} \cos \mathrm{E}
$$

Therefore

$\cos E=\frac{X X_{p}+Y Y_{p}+Z Z_{p}}{\sqrt{X_{p}^{2}+Y_{p}^{2}+Z_{p}^{2}} \sqrt{X^{2}+Y^{2}+Z^{2}}}$
This gives the angle E between the two vectors. Since the horizontal plane at the receiving station is perpendicular to the vector r, by taking ($\pi / 2$)-E we can get the angle of elevation required for the antennae (Fig. 4).

Fig. 4. How angle of elevation for the antenna is derived.

It is more difficult to extract the azimuth angle from due North using any similar method, but it is relatively simple to apply equation (2) if the great circle angle D can be found. This is an easy matter, since it is the angle between vectors \mathbf{r} and \mathbf{r}^{\prime}. It can be found using the dot product as follows:

$$
\cos \mathrm{D}=\left(\mathrm{X} \mathbf{X}^{\prime}+\mathrm{Y} \mathrm{Y}^{\prime}+\mathrm{Z} \mathbf{Z}^{\prime}\right) / \mathbf{r} \mathbf{r}^{\prime}
$$

where $\mathrm{r}=$ ERTH (Earth radius) and $r^{\prime}=$ ERTH + HT (Earth radius + orbital height). See Fig. 3.
Simple manipulation of equation (2) will give the azimuth bearing angle if all the information which is now known is substituted in.

Using the method described, we now would have all of the information required to track the satellite accurately without having to draw any graphs. All that remains to be done is to present this information in suitable form to the antenna rotors.

Rotator driving

Two rotators are necessary to track the satellite, one to elevate the antennae and one to rotate them to the correct bearing. In the prototype system these rotators were not of the same manufacture, and operated on different principles, so separate methods of interfacing were required for each.

The type SU2000 azimuth rotator. This rotator is controlled electronically, and uses a potentiometer mechanically coupled to the rotating shaft to provide feedback to the control box. When a switch (not shown) is closed for a short period, the circuitry is activated, and the voltage on the control potentiometer is compared with that on the feedback potentiometer. The rotator then turns one way or the other until the difference is reduced to zero.

The voltage range on the control potentiometer is about $0-6 \mathrm{~V}$ d.c. and operation is linear, with 0 V corresponding to 0 degrees and 6 V to 360 degrees. To control the rotator the computer must therefore apply a voltage between 0 and 6 V (corresponding to the desired position) to the control potentiometer connections, and close the activating switch for a short time (typically $1 / 4$ second). Rotation will then stop automatically at the desired position.

The type 2050 elevation rotator. This rotator uses two a.c. motors operating synchronously, one driving the rotator shaft and the other driving a disc in the control box. Operation is as follows. A second disc, with a notch in it, is turned by hand to the required position. This causes a 3-position switch which rubs against the disc's perimeter to move either left or right. The switch connects an appropriate a.c. phase to the two motors, and applies power to them. The two motors rotate synchronously, until the control box driven disc with the switches attached reaches the position of the notch in the manually-turned disc. When this happens, the switch actuator springs into the notch, the switches go "off" and the motors both stop. In this manner, the rotator shaft follows the position of the manual disc.

In order to control this rotator from the computer, a feedback potentiometer was coupled mechanically to the driven disc

Fig. 5. The two most-significant bits of the PET's output word are used to control the two rotators. RLA, controls the power to the elevation rotator. RLA $_{2}$ activates the azimuth rotator's control box.

Fig. 6. A d-to-a converter (such as the Ferranti ZN425E) provides a control voltage for the azimuth rotator. The two spare bits of its 8 -bit input are connected to logic 1. A similar d-to-a converter is used in the control of the elevation rotator.
and the switches disconnected. Phase switching to the motors was achieved with relays.
Computer control consists of: a) generating a voltage corresponding to the required position and comparing it with the voltage from the feedback potentiometer. Depending upon the result, an appropriate relay activates.
b) applying power to the motors, which will switch off automatically when the feedback voltage corresponds to the required position.

Control interface

The PET output port is bi-directional and can be programmed as inputs or outputs. At power-up the port defaults to inputs and floats "high". This means that the interface must have a "do nothing" function when presented with all lines logic 1 . Also, the port is an 8 -bit port, so the accuracy of the output number is limited, especially since two of these bits are needed to specify which rotator the information applies to. Hence six-bit precision data is used for the rotators, giving about 6 degrees accuracy for azimuth and 3 degrees for elevation. This is quite adequate since the antenna -3 dB beamwidth is not better than about 30 degrees.

The two "control bits" used were the most-significant bits of the PET's output word, arranged as:

(ADR) (DAV) X X X X X X

where X indicates remaining bits for data

$$
\begin{aligned}
& \text { ADR - address bit } \\
& \text { DAV - data valid bit }
\end{aligned}
$$

A simple arrangement of logic is all that is necessary to control the two rotators using the above codes as data, and driving small switching relays, as in Fig. 5.
For the azimuth control box, a direct voltage must be derived from the PET's output word and applied to the control connections on the control box. Basically, all that is needed is to use a digital-toanalogue (d-to-a) converter to obtain a voltage which corresponds to the output word, adjust its amplitude with a variablegain amplifier, and apply the result to the appropriate connection points. A suitable circuit is shown in Fig. 6.

The elevation rotator needs a more complex control circuit, since a decision must be made as to which way to connect
the a.c. phases to rotate the motors in a particular direction. The voltage from the feedback potentiometer in the control box is compared with a voltage derived from the PET output port via another d-to-a converter. The supply phase to the motors is then switched in a manner such that they rotate to reduce the voltage difference to zero. A problem is to stop the circuit oscillating about the zero position. This is overcome by allowing a "guard band" around zero where both phases are switched off, and the motors do not rotate. The circuit used is shown in Fig. 7.

The input voltage and feedback voltage difference is amplified by the difference amplifier. If the resultant voltage is above +0.6 V then diode D_{1} conducts, Tr_{1} switches 'on' and RLA_{3} switches one particular phase to the motors. The motors rotate in a direction such that the feedback voltage decreases, until the difference output falls within the 1.2 V guard band provided by the forward voltage drop across diodes D_{1} and D_{2}. When this happens, neither D_{1} or D_{2} conducts and the motors stop, since both phases are switched out. Similarly, for an initial negative output from the amplifier, D_{2} conducts, TR_{2} is 'on' and the motors rotate in the opposite direction to before, increasing the feedback voltage until the difference lies within the guard band.

Complete interface

In order that the PET output word can change whilst either of the rotators is turning, it is necessary for both sections of the circuitry to have their particular data word latched as long as it is needed. The PET can individually update the latches as necessary.

A typical output sequence is as follows:

ADR	DAV	azimuth rotator	elevation rotator
0	0	STOP	GO
0	1	STOP	STOP
1	0	GO	STOP
1	1	STOP	STOP

11000000 Both rotators OFF, data zero on latches.

10000000

11010000

10010000

11010000 Both rotators OFF, data 16 on latches, 16 latched in elevation latch.

11001000 Both rotators OFF, data 8 on latches, 16 latched in elevation latch.
00001000 Latch 8 into azimuth rotator latch, activate rotator. 16 latched in elevation latch.

Fig. 7. The control circuit for the elevation rotator. The relays switch a.c. to the motors.

Figure 8 shows the block diagram of the interface, which includes all the circuits previously described. The latches are controlled by the circuit Fig. 5, taking their latch instruction from the outputs of the AND gates.

Computer program

A full description of the program would be rather long, since it contains many simple features such as input/output routines. Therefore the following comments are confined to basic outlines and references to particular points where necessary. The subroutines are listed below, with the exception of one or two which are trivial.

Time output routine (lines 100-140)
The PET's inbuilt time clock function is utilised, with times converted to decimal (DT) for ease of manipulation. Some string calculations are performed, and the time is 'POKED' directly onto the screen as $\mathrm{HH}: M \mathrm{M}: S \mathrm{~S}$ in the top right-hand corner.

Latitude/longitude conversion subroutine (lines 150-195)
Latitude and longitude values needed for calculations are input at various points in the program, and this routine takes degrees and minutes as DDDMM in string form, checks that the input is not rubbish, and returns the decimal equivalent of the input in degrees.

Main program (lines 200-580)
This section is not a subroutine. It defines some variables, e.g. Earth radius in Mm,

Fig. 8. Outline of the interface connections.

ERTH, and also some trig. functions. It interrogates the user for all the necessary information then uses part of lines 700-830 to set remaining variables.
Satellite data calculation (lines 640-830)
Contains data used by the main program.

Lines 1010-4010

This section starts with some screen graphics, then uses some of the other subroutines to calculate all of the tracking data. It outputs information to the screen and uses the rotator driver subroutine to track the satellite concerned. The program cycles continuously in this section.

Time since EQX subroutine

(lines 5000-5060)
Uses the decimalised real time (DT) and decimalised equator-crossing time (EXT) to find the time in minutes since the satellite crossed the equator (MI).

Subsatellite (etc.) subroutine

(lines 5070-5270)
This subroutine uses equations (6) to (12) to calculate spherical coordinates, vectors and finally the satellite elevation angle from the receiving station.

Acquisition of signal subroutine

(lines 5280-5340)
Finds the time when the satellite elevation angle is positive, i.e. when the satellite is above the radio horizon. It does this by substituting times since equator crossing in the above subroutine, starting with one minute then incrementing by one minute until the correct time is found.
Equator crossing data subroutines (lines 5570-5620, 5630-5680)

These two subroutines find equator crossing times and longitudes for orbits other than that given as reference by the user. One does this for orbits previous to the reference orbit (or if the reference orbit is in the future, to find the current orbit), and the other for orbits after the reference.

Bearing subroutine (lines 5700-5780)
Calculates the satellite azimuth angle from the receiving station, using calculations described on page 17. Lines 5735 \& 5737 are necessary to avoid division-by-zero errors in subsequent stages. Subroutine returns a decimal angle in degrees.

Loss of signal subroutine

(lines 5860-5900)
Similar to acquisition of signal subroutine in operation.

Rotator driving subroutine

(lines 6000-6120)
Reduces accuracy of output words to 6 -bit precision, for reasons described earlier. The next function is to send out pulses to give the control logic of the interface the necessary addressing information and the data word indicating the required antenna position. When this has been done, both rotators are told to deactivate on completion of rotation.

Further reading

Evans, D. S. and Jessop G. R. VHF-UHF Manual, pp. 9.1-9.15. Radio Society of Great Britain.
The Best of Oscar News, vol. 1: AMSAT-UK
Oscar News, Winter 1980, No. 32: AMSATUK.
Getting to know Oscar: American Radio Relay League.
Kennedy, G. R. Weather satellite picture processor, Wireless World May 1980, p. 41.

A listing of Mr Jefferson's program can be supplied by the Wireless World editorial office on receipt of a large stamped addressed envelope. Please mark your envelope "Tracking satellites with a microcomputer".

High-impedance electronics

Following the description of voltage followers in the last issue, the author discusses the generation and measurement of currents down to 1 nanoamp.

Instead of measuring the voltage signal from a high-impedance source, it is often more appropriate to measure the short-cir cuit current with an operational current-to-voltage converter (Fig. 1(a)). For example, the open-circuit voltage from a photodiode is a markedly nonlinear function of the incident illumination; in fact it saturates at $500-600 \mathrm{mV}$ as the junction becomes "real" earth and the virtual earth of a current-to-voltage converter, its junction voltage is fixed at zero and saturation cannot occur. In monitoring very low light levels, saturation is not likely to be a problem, but there is a second advantage of the photogalvanic mode, again arising from the constancy of junction voltage. In the photovoltaic mode the junction capacitance has to be charged or discharged by the photocurrent whenever the light signal changes; the rise time is consequently poor. In the photogalvanic mode the rise time is essentially that of the operational amplifier.

The value of the feedback resistor in Fig. 1(a) is often fixed by consideration of the magnitude of the current signal and the desired voltage output, since $\mathrm{E}_{\text {out }}=-\mathrm{I}_{\mathrm{in}} \mathrm{R}_{\mathrm{f}}$. When very small signals are to be measured the noise behaviour of the circuit should dictate the design. An elementary howler is to choose a rather small value of R_{f} on the grounds that its Johnson voltage noise (proportional to the square root of R_{f}) should be small. Actually it is the Johnson current noise that matters; this is inversely proportional to the square root of R_{f}. From the noise equivalent circuit ${ }^{1}$ (Fig. 1b) the signal to noise ration can be written down as
$\mathrm{S} / \mathrm{N}=\mathrm{I}_{\mathrm{in}} /\left\{\mathrm{E}_{\mathrm{a}}^{2}\left[1 / \mathrm{R}_{\mathrm{f}}+1 / \mathrm{R}\right]^{2}+\mathrm{I}_{\mathrm{a}}^{2}+4 \mathrm{k} T \Delta \mathbf{f} / \mathrm{R}_{\mathrm{f}}\right\}^{1 / 2}$
where the last term in the denominator is the square of the previously mentioned Johnson current noise. Although the balance of the three contributing factors depends on the properties of the amplifier used, it is clear that S / N is an increasing function of \mathbf{R}_{f}. In particular, to avoid unduly multiplying the amplifier noise voltage E_{a}, R_{f} should be at least equal to the resistance R of the signal source. Since \mathbf{R} is often not known (except perhaps that

Department of Pharmacology, University of Otago, Dunedin, New Zealand

by R. D. Purves, Ph.D

it is known to be large) the natural tendency is towards huge values of R_{f}. Neurophysiologists routinely use values of 500 $1000 \mathrm{M} \Omega$ to measure picoamp currents flowing through molecular pores in cell membranes.

A common modification to the basic current-to-voltage converter is the use of a tee network in the feedback loop (Fig. 3). Here $\mathbf{R}_{\boldsymbol{f}}$ is the largest conveniently available value, say $100 \mathrm{M} \Omega$, but its effect is multiplied by attenuation in the tee. If, as is usual, R_{1} and R_{2} are much smaller than R_{f}, then the output signal is $-\beta \mathrm{I}_{\mathrm{in}} \mathrm{R}_{\mathrm{f}}$, where β is the attenuation ratio ($1+$ $\mathbf{R}_{1} / \mathbf{R}_{2}$. For example, with $\mathbf{R}_{1}=99 \mathrm{k}, \mathbf{R}_{2}$

Fig. 1 (a) Operational current-to-voltage converter. (b) Noise equivalent circuit. E_{a} is the amplifier's r.m.s. voltage noise, I_{a} is the amplifier's r.m.s. current noise and l_{f} is the r.m.s. Johnson current noise of the feedback resistor. $I_{f}=\vee 4 k T \Delta f / R_{f}$, where k is Boltzmann's constant, T the temperature and Δf the noise bandwidth.
$=1 \mathrm{k}$ and $\mathrm{R}_{\mathrm{f}}=100 \mathrm{M} \Omega$, the tee behaves like a $10 \mathrm{G} \Omega$ resistor. The signal to noise ratio, unfortunately, is unimpressed by this synthetic resistor and takes the value given by Eq. 1 for the actual value of R_{f} used. Thus a real resistor is better than a synthesized one of equivalent value. Similar conclusions apply when offset and drift are analysed.

A further pitfall of the tee network relates to loop gain. Extravagant values of attenuation in the tee may leave insufficient gain for proper feedback action, especially since R and R_{f} form a second attenuator in the feedback path. A typical operational amplifier has an open-loop low frequency gain of about 10^{5}. If we choose β $=1000$ and $R_{f} / R=9$, the loop gain is only $10^{5} /\left[\beta\left(1+R_{f} / R\right)\right]=10$. This dangerously small loop gain will become even smaller above the amplifier's first corner frequency ($10-40 \mathrm{~Hz}$), and the circuit

Fig. 2. Photodiode and an equivalent circuit. The photocurrent generator is shunted by a diode and the junction capacitance. The terminal voltage is limited by forward biasing of the diode. For the terminal voltage to change, the photocurrent must charge or discharge the junction capacitance.

Fig. 3. Tee network in feedback path of current-to-voltage converter.

Fig. 4 (a) A simple current source. (b), bootstrapped current source with fet operational amplifier.

Fig. 5. Howland current pump.
ceases to behave as a current to voltage converter.
The only advantages of the tee network are that it may obviate the need for an additional stage of voltage gain and that range switching can be carried out at low impedance (by switching the values of R_{1} and \mathbf{R}_{2}). The second advantage is an important one, since attempts to switch resistors in the $G \Omega$ range with an ordinary wafer

Fig. 6. Improved Howland current pump.
switch are unlikely to be greeted by success.

Nanoampere current sources

To provide a controlled current of the order of 1 nA one might turn to the circuit of Fig. 4(a). For certain purposes this simple strategy might suffice but if the load current has to remain substantially constant in the face of variations in $\mathbf{R}_{\mathbf{L}}$ then we would require $R_{s} \gg R_{L}$. For example, if R_{L} ranges from 0 to $100 \mathrm{M} \Omega$, then for a current variation of 1% we must take \mathbf{R}_{s} as $10 \mathrm{G} \Omega$. Such resistors are both expensive and hard to obtain. Furthermore, if we now require currents of $10-100 \mathrm{nA}$, the voltage source of Fig. 4(a) will have to take inconveniently large values ($100-1000 \mathrm{~V}$).

The solution to these problems is often to be found by bootstrapping, shown in its starkest form in the active current pump of Fig. 4(b). In its originator's well-chosen phrase ${ }^{2}$ "this deceptively simple circuit" produces an output current E / R_{s}, independent of the magnitude of R_{L}. Readers may like to test their wits by analysing the mode of operation.

The most important parameter characterizing a current pump is its output resistance, which should be as high as possible. Conceptually, it may be determined by setting the command signal to zero, replacing R_{L} by a voltage source E^{\prime}, and then calculating the current I^{\prime} drawn from this

Fig. 7. A three-amplifier current pump. The resistance of the signal source does not affect the output resistance.
source. The output resistance is $\mathrm{E}^{\prime} / \mathrm{I}^{\prime}$; in Fig. $4(b)$ it is $R_{s}(1+A)$ where A is the open-loop low frequency gain of the amplifier. Another parameter is the output bias current in the absence of a command; for Fig. 4(b) this is $V_{o s} / R_{s}$ where $V_{o s}$ is the amplifier's input offset voltage.

Despite its charm, the circuit of Fig. $4(b)$ is rarely used because it needs a floating signal source. The familiar Howland current pump ${ }^{3}$ seems more promising at first sight. In Fig. 5 one or more of the resistors is adjusted to give the "balance" condition $R_{2} R_{4}=R_{1}\left(R_{3}+R_{s}\right)$. Then $I_{\text {out }}$ $=-E R_{2} / R_{1} R_{s}$, independent of the load R_{L}. However the output resistance of the Howland pump is sharply degraded by small departures from the balanced state, since the output terminal is shunted by \mathbf{R}_{3} and R_{4}. The resulting shunt current must be very accurately compensated by additional drive to R_{s}. Again, the balance condition depends on five resistors which usually span a wide range of values. Differential aging and temperature effects on resistance are therefore difficult to control, and the Howland circuit needs frequent rebalancing to maintain a high output resistance.

A much better circuit (Fig. 6) is one found in most commercial current pumps for neurophysiological use. It is derived from the Howland design by interposition of a fet voltage follower at point X of Fig. 5 , to remove the shunting effect of R_{3} and R_{4}. The balance condition is now $\mathrm{R}_{1} \mathrm{R}_{3}=$ $\mathrm{R}_{2} \mathrm{R}_{4}$. Three of these resistors can be of the same value and type (e.g. 10 k metal oxide), the fourth being the next lower preferred value in series with a cermet trimmer. Resistor \mathbf{R}_{s} is generally $10-100$ $M \Omega$, the exact value being immaterial to the balance condition. An extra advantage of his circuit over the Howland pump is that the follower allows the voltage applied to the load to be monitored at the terminal labelled $\mathrm{E}_{\text {out }}$.

In Figs. 5 and 6 the source resistance of the command signal is in series with one of the gain-determining resistors. Both circuits would in practice need an input buffer stage to isolate the "working part" from changes in source resistance. An alternative three-amplifier configuration ${ }^{4}$ in Fig. 7 has a spare input terminal for the command signal. This circuit may be understood by recognizing that A_{2} is a differential amplifier whose output is a lowimpedance replica of the voltage across R_{s} and thus a direct measure of the output current. This signal is compared with the command by A_{3}, which forces the output current to take the command value.

References

1. Motchenbacher, C. D. and Fitchen, F. C. Low Noise Electronic Design. Wiley, 1973. 2. Fein, H. Passing current through recording glass micropipette electrodes. IEEE Trans.
Biomed. Electron., vol. BME-13, pp211-212, 1966.
2. Smith, J. I. Modern Operational Circuit Design. Wiley, 1971.
3. Purves, R. D. Microelectrode Methods for Intracellular Recording and Ionophoresis. Academic Press, 1981.

Eprom single-chip microcomputers

Using microcontrollers which have program in eprom, enabling program development by means of an emulator.

Far too many constructional articles involve building a small central processing unit and a bit of extra hardware, and then plugging in a preprogrammed eprom, or alternatively the use of a device which is in fact a preprogrammed microcontroller acting as a digital clock, printer controller or whatever. I suspect that, even if slightly greater expense is involved, many people would like to be able to build things like this for themselves and then start tinkering. What follows is an attempt to indicate how, given certain not-too-expensive hardware, the 'tinker factor' can be put back into home electronics.

Microcontrollers have tended to be very low-key products, despite their wide use in industry for low-grade computing. There are two principal reasons for this. First, most of them are programmed during manufacture, at the mask level, and while

by M. D. Bacon, M.A.

this is economic if one is contemplating making 50000 washing machines, it is of less than no interest to the one-off user. Second, microcontrollers have very little ram, typically 64 or 128 bytes and, unlike microprocessors, cannot normally store a program in this ram and then execute it which is how general-purpose computers work. This tends to make development of programs a job for a specialized development system, which is expensive.
Recently microcontrollers have become available which contain their program as

Fig. 1. Emulator section of programmer 8035 is type of 8748 without eprom
eprom. They are currently about $£ 13$ each and up (as speed and memory size increase) and are becoming widely available. This article confines itself to the baseline machine, the Intel/NEC 8748.

The 8748 is a 40 -pin package with an impressive die visible through the u.v. erasure window. It runs on a 5 V supply and contains 1 kilobyte of eprom, 64 bytes of ram (which has particularly convenient addressing modes), an 8 -bit timer with interrupt, 2 testable inputs, 1 interrupt input, single-step capability, 28 -line input/output ports, a bidirectional bus port which can be latched, a clock generator, and various useful special functions. The device can be made to do almost all the essential functions of a controller, using in addition only seven passive components and about three square inches of Veroboard.

Fig. 2. Programmer control circuit.

As readers of Ivor Catt will know, microcomputing is a slow process in electronic terms. However, most microcontroller applications are also very slow; clocks require a resolution of seconds; printer mechanisms require time slots of hundreds of microseconds. If one considers the following list of microcontroller jobs, it will be quickly seen that the external hardware is the limiting factor on speed: burglar alarms; central and solar heating controllers; cassette deck controllers with parallel to serial interface; temperature measurement using thermocouples, with software linearization; special function calculators (such as the Picotutor); interfacing of keyboards and displays to general-purpose microcomputers.

It need hardly be said that the limitations on the one hand of a maximum of 128 bytes of ram and, on the other, of a maximum practical signal handling capacity of about 25 kHz , defines where the microcontroller gives way to the microprocessor or to a discrete logic. Within these limits, however, system design becomes largely a matter of obtaining all the input signals as t.t.1. level, buffering the outputs where necessary, connecting all inputs and outputs to appropriate pins of the 8748 and then sitting down to write the program.

To write the program . . . and there is the difficulty. Programs require development, that is, testing and modifying until they work. As mentioned earlier, this presents problems with a microcontroller.

The major thrust of this article is to present a small circuit, shown in Fig. 1, which enables microcontroller program development to be carried out using an eprom emulator such as that recently described as Wireless World ${ }^{\star}$. It uses a version of the 8748 which lacks the eprom memory and uses an external memory for its program, the 8035 . Used in conjunction with the eprom emulator, it provides a model of the 8748 which has only two limitations; the bus port is used to fetch
${ }^{\star}$ Eprom emulator, by Peter Nicholls, Sep-. tember, 1982.
program and cannot be latched, and 4 pins of port 2 are also used for program address. This is not in practice as serious as it may appear, since the bus port is usually used with memory-mapped devices (of which two are shown in the applications) and this use is not affected; the four pins of port 2 are usually used to drive a special p.i.o. device, the 8243 . This is provided in the development circuit, and is particularly convenient because it requires oniy five lines to connect to the $8035 / 8748$ and provides four 4 -bit ports, each of which can be used as input or output and each line of which has 4 mA drive-except for port 7 which can source 20 mA . The 8243 is operated by special 8748 instructions and, unlike a normal p.i.o., requires no base address or control register settings.

To use the development board, the emulator is used as usual to hold, and alter as required, the development program. Connections are then made between the $8035 / 8243$ and the equipment which it is intended to control. There are many possible ways of doing this, such as using a $40-$ way dual-in-line plug to which all the 8035 leads except the crystal (pins 2 and 3) are connected. This is a simple in-circuit emulator. Another approach, favoured by the author, is to fit the development board with an edge connector to which all useful lines are brought out. This enables prototype equipment to be built on ordinary Veroband and plugged straight in.

The problem then arises, once a successful program has been developed, of programming the actual 8748 to be used. This is not easy, because address and data lines are multiplexed and the program pulse is rather complex. The solution adopted, once the hardware complexity of adapting a normal programmer was

Fig. 3. Programming is carried out one page of four at a time. Thumbwheel switch selects page.

STATE	P5	P6	P1	DURATION	OTHER OUTPUTS	NOTES
1	A	F	INPUT	$\begin{aligned} & \text { UNTIL } \\ & \text { INT-N } \end{aligned}$	If not VERIFY, FAII light ends cycle	Initial state \& final state-insert or remove SCEM
2	0	F	11	$50 \mu \mathrm{~s}$	EA light on during PROGRAMMING	Select \& activate PROGRAM mode
3	0	F	OUTPUT ADDRESS	$50 \mu \mathrm{~s}$		
4	4	F	LATCH ADDRESS	$50 \mu \mathrm{~s}$		RST-N goes high
5	4	F	OUTPUT DATA	50 Hs		Uses MOVP3 A@A instruction
6	4	B	${ }^{\prime}$	50 us		PROG goes low
7	4	3	'	$50 \mu \mathrm{~s}$		- Vdd goes to 25V
8	4	5	$"$	50 Hs	PROG light	Vdd at 25V: PROG at 23 V PROGRAMMING occurs
9	4	B	11	$50 \mu 5$		As state 6
10	4	F	INPUT	50رs		Change P1 first
11	C	F	"	50 us		Wait for VERIFY DATA to become Vallo
12	[F	READ DATA	$10 \mu \mathrm{~s}$		READ (\& VERIFY)
13	0	F	INPUT	50 us		Wait for lines to steady if fin. GO STATE T:ELSE GO STATE 3

Total program time 13 seconds per page
realised, was to build a programmer as a peripheral driven by the development board. By doing this as, as shown in Figs 2 and 3 , a minimum of extra hardware is required. The most expensive part is a zero-insertion-force socket, and under normal circumstances the careful hobbyist, who will not be doing much programming, can dispense with this in favour of a much cheaper quick-eject socket.

In use the 8748 is programmed one page (1 page $=256$ bytes) at a time; this arises out of the modest data handling of the instruction set, which dislikes mixing program and data. The 8748 has four pages of eprom, number 0 to 3 , and the page to be programmed is set up by a thumbwheel switch or dipswitch as shown.

The programming algorithm (see listing) is then placed in the emulator page 0 , i.e. from 000 up . This listing gives a very simple programming routine; it is not claimed to be ideal, but it gives the beginner something to work from - in fact, a chance to tinker.

The page of data to be programmed, regardless of what page it is to appear in in the 8748 , is then loaded into page 3 of the emulator, where it takes advantage of a quirk of the instruction set. The emulator is connected to the development and programming board, and the system powered up. The programming board requires 25 V at approximately 50 mA . A switching supply is not advised due to possible interference: if a suitable supply is not otherwise available, dry batteries to a total of 24 nominal volts provide an alternative. Whatever the supply, it should not exceed 26 volts under any circumstances, not fall below 24 during programming.
On power up, the Fail led should come on and all others stay out. As a test, the Interrupt switch which starts programming should be operated. The Fail led should go out while the switch is closed, and come on immediately when it is released while the EA led glows dimly. After thirteen seconds the EA led goes out and the Fail led blinks. Now the Fail led should go out, the EA and Program leds come on, and the Program led should vary
in brightness as the value of the data being programmed varies. At the end of the cycle the other leds go out and the Fail led blinks. The page number may them be changed, new data placed in Page 3, and the program cycle repeated. If the Fail led lights during the cycle one or more addresses have mis-programmed.
Fig. 4. Adding 8 -bit a-to-d converter.

All the time the 8748 is socketed and power applied the circuit applied to pins 2 and 3 should be oscillating at around 3 MHz , and a square wave should be emitted from Pin 11: if these are missing, there is a fault. A $2.5-3 \mathrm{MHz}$ crystal may be substituted for the inductor if available. Programming requires a slower clock than normal running, and this has been taken into account in the oscillator and the programming algorithm.

Expansion of the 8748 is dealt with very thoroughly in the Intel manual, which is essential reading in any case, but some specific examples are given here. There are two types of expansion; direct, in which microcontroller pins are used as inputs or outputs and retain output values until they are changed, and memory-mapped.
In memory-mapping, the bus port is used with a 74LS373 (for t.t.1.) and/or a 74C373 (for c.m.o.s.). This octal latch is used to latch an address during a MOVX instruction. In the simplest case, setting one address bit to 1 (i.e. addresses 01, 02, $04 \ldots 80$) is used as a chip select for a particular device, and a Nand gate may be used as shown in Fig. 4 in conjunction with RD-N and an address line to read from a unique device. In the case of the alphanumeric displays dealt with later, the lowest two address lines select a digit within a display, and the next six lines are used to select a particular display. The

Fig. 5. Using several a-to-d converters for high-speed operation.

Prom programming routine - listing

Addres	Dat							
000	0410	0004	2000	0004	0000	0000	0000	0000
010	23AA	3D23	FF39	3EBA	0005	2300	3F04	1 A 00
020	2300	3D23	FF3F	FA39	1468	2344	3D14	FA
030	E339	1468	23BB	3E14	6823	333E	1468	2355
040	3 E 14	7023	BB3E	23FF	3914	6823	FF3E	1468
050	23 CC	3D14	6809	ABFA	E3DB	9680	1 1FA	C690
060	2300	3D04	2600	0000	BCOA	EC6A	9300	0
070	BD64	BE64	EE74	ED72	9300	0000	0000	
80	2300	3F04	5C00	0000	0000	0000	0000	O
90	23AA	3D23	003F	1470	23 FF	3FBF	2014	
AO	9 CO							

scheme can be extended to address up to 256 devices using decoders.

In this way, using the bus port, one or more a-to-d converters can be added to a system and used to measure temperature (using a thermistor bridge or a device such as the AD590), position (using linear rotary potentiometers) or electrical quantities. The recently introduced Ferranti ZN447, 448, 449 series interface very simply; if only one is required and the bus is otherwise unused, as in the first diagram; if other devices share the bus, or more than one a-to-d is required, as in the second. If several channels require to be scanned fairly slowly, then another port can be used with an analogue multiplexer to select a channel prior to conversion. A conversion then requires about 50 microseconds total, so even if quite a lot of channels are being scanned and data is being transmitted to tape or printer each channel can be looked at several times a second. Indeed, as mentioned earlier, the speed of printer or tape recorder is what slows down the system.
If a high throughput is required or it is necessary to read data on several channels simultaneously, the arrangement of Fig. 5 can be used. Here, all the converters start converting together and can then be read out as required. This technique, used in

Fig. 6. Interface to drive intelligent alphanumeric display.
conjunction with a parallel data link and, perhaps, the faster 8749 processor, can achieve total rates in excess of 50000 samples per second.
Such an arrangement can be used to improve the performance of a general-purpose microprocessor based machine by freeing it from the low-grade tasks involved in operating a-to-d converters and channel selectors.
Memory-mapping can be applied to the driving of the recent generation of intelligent alphanumeric displays, which are driven like ram and accept ASCII coding. Figure 6 shows an interface for one such display, based on the same principle as the multiple a-to-d technique but Nanding a positive write strobe with an address line to give the chip select function. These devices are not cheap - they cost around £4 per digit all in - but can display the alphabet in capitals as well as punctuation marks, which 7 -segment displays are unable to do. If a prototype board using these devices is detachable from the rest of the system, pull-up resistors should be fitted on all lines, since they use high-output c.m.o.s. devices, which are prone to selfdestruct if static appears on a pin while the device is powered up.

At the other end of the scale, the novice user is urged to return to the early ages of computing and drive a line of eight leds via a suitable buffer from port 1 . Then, in developing a program, at any point where

it is desired to check the value of the accumulator or a register, code may be inserted to cause the value of the byte in question to be output to the led line, followed by a software halt (a jump back to the same line.) Once this part of the program is known to be satisfactory the output and halt may be moved to the next convenient stopping point, and so on. Alternatively, each part of the program can be made to output a specific code and halt for a second or so before continuing, so that execution can be watched at slow speed. Singlestepping is covered in the manual.

Finally, a simple interface to 240 V line is shown in Fig. 7, using the MOC3020 opto-isolated triac, which has 7.5 kV isolation. It is recommended that the line circuitry be remote from the processor board and linked only by the two lines from 8243 to optocoupler. If zero-crossing switching is desired, this can be arranged by applying a negative pulse to the processor interrupt at each zero crossing, and using this to synchronize the turning on of the triacs. Alternatively, by introducing a delay using the timer, phase-angle control may be used in software, with approximately 1° resolution.

Fig. 7. Solid-state relay using optoelectronic triac. Switches up to $8 A$ at 240 V a.c.

The fundamental and essential manual for the 8748 is the MCS-48 User's Manual, Intel Part No. 98-270, available from Rapid Recall, Rapid House, Denmark St., High Wycombe, Bucks, most recently for $£ 13.22$ including p. \&p. The 8748, 8035 and 8243 in numerous performance versions are also available from this source.

The NEC second-source is available from MultiComponent, formerly ITT, and at the same address, viz. Edinburgh Way, Harlow, Essex. ITT inform me that they are perfectly happy to deal with the general public even for small quantities, and can supply almost everything mentioned in this article; any deficiencies can easily be made up from the advertising section of Wireless World.

Notes

The circuitry mentioned in the text has been built with little trouble on Veroboard, but an artwork for a p.c.b. for development board and programmer can be supplied reasonably quickly if required. An 8748 assembler to run on ZX81 is under development.
\cdots

Viewdata display module

Abstract

This display module allows a home computer to shed some of its display processing load and display colour text and graphics in teletext format. Red, green, blue and sync video outputs are provided and the display is controlled by either a serial or parallel link from the host computer. With the addition of a modem, the module can be programmed to display data directly from a viewdata computer.

This module performs all the necessary display functions for a viewdata terminal. Video and tv sync outputs are generated for direct connection to a colour monitor or via a PAL encoder and u.h.f. modulator to an ordinary colour tv set. Data input to the module can be either serial or parallel and consists of characters for display or control commands to the module. The module was originally designed to be connected to a host computer to relieve it of some of the burdens of display processing; it could easily be used with a home computer to provide viewdata and/or display capability.

by Dennis N. Pim

The display module is controlled by an 8048 microcomputer (8748 eprom version). Changes in the software for this processor allow much flexibility in the operation of the module. For example, in my prototype the module receives serial data at 4800 baud and any word whose most significant bit is set to logic 1 is decoded as a command rather than a character for display. Simple software changes could be incorporated so that the module directly displays the serial data (with par-

Display module is designed for use with home computer to provide videotext display at 4800baud, but software changes could allow a level one Prestel display of 1200 baud directly from a viewdata computer.
ity) at 1200 baud arriving from a viewdata computer.
In the present version, the module can also perform simple editing functions such as scrolling up or down, clear to end of line, and clear to end of page. All or part of the display can also be read by the host computer as can the current cursor location on the screen. Once again the software allows other special functions to be pro-

[^2]
grammed for specific applications thus freeing the host computer from time-consuming display operations.
The module has four page stores, and any of these can be selected for display and/or updating. It is possible therefore to write a new page whilst another page is being displayed and only display the new page when it is complete.
Used in serial input mode, the module has available a general-purpose input/output port. Serial commands enable this port to be read or written; individual bits can be selected as input or output.

Before considering the full circuit of the module, look at the operation of the video generator integrated circuit.

Video generator

The display module uses the GIM AY39735 interlace/non-interlace video generator to generate the tv signals. This i.c. provides the necessary circuitry to generate a full composite tv sync and the red, green and blue video outputs. It contains a character rom and can address up to eight pages of ram store, although in this application only four pages can be used. The i.c. generates the usual viewdata format of 24 rows and 40 columns, and implements all the BT Prestel terminal specification display facilities. It is driven by a 6 MHz clock and has a set of tristate address and data lines to connect to the display rams. A

R/W signal drives the page store selected by three binary tristate store select lines.

Within each video frame there are four time slots that are indicated by the state of two outputs from the chip. These are

TSOO - reading from ram. This occurs under control of the video generator between lines 48 and 288 and is when the display is active.
TSO1 - writing to ram when teletext lines are written to the page store during frame flyback. Not used in this application.
TS10 - spare.
TS11 - data interchange period. During this period the video generator can receive commands from the control processor (lines 23 to 47).
During lines 289-6 the video generator is inactive. In addition, the video generator data and address lines are tristate during every line flyback period. This occurs approximately $56 \mu \mathrm{~s}$ from the start of the line sync pulse to approximately $16 \mu \mathrm{~s}$ after the start of the next pulse, a total time of about $24 \mu \mathrm{~s}$ each line. Because the video generator frees the address and data lines during line flyback the 8048 processor can have access to the display rams during this time for updating/reading. The 24μ s window gives enough time to read/write one character to the display store.

During time slot TS11, the display chip is enabled to receive commands from the controlling microprocessor by placing 111XX0XXX on the address lines ($\mathrm{X} \equiv$ either logic state). The required command code is then set up on the data bus bits 0 to 6 and bit 7 of the bus is used to strobe the command into the display chip. Some of the functions that can be controlled in this way are

clear screen

half-screen expansion
select displayed page
display tv picture or text
select teletext/viewdata mode
select mix mode
cursor on/off (the cursor - a flashing underline - is displayed at any ram location whose most significant bit is set to 1 ; only seven bits are required for each character display).
The figure shows the video generator in a conventional configuration addressing one $1 \mathrm{~K} \times 8$ display ram.

Circuit description

The circuit has to cater for the following operations.

- Reading and writing from one 1 K block of one of the two 2 K rams forming the four page stores by the video generator. (Writing is required for page clear.)
- Reading and writing from one 1 K block of one of the two 2 K rams by the microcomputer.
- Selection of one 1 K block of ram for display by the video generator.
- Selection of one 1 K block of ram by the microcomputer (not necessarily the same block as that being displayed).
- Sending commands directly to the video generator from the microcomputer during time slot TS11.
- Receiving serial or parallel data or commands from the host computer.
- Sending serial data to host computer.

The video generator data bus is connected to the data buses of two 2 K rams, (cmos in the prototype) and the 8048 data bus. The address bus of the display chip is connected to the ram address lines A0 to A9. (Address line A3 is fed via a tristate buffer whose function is explained later). The 8048 supplies address information for the display ranıs from its multiplexed bus using an eight-bit latch. Address information is latched into this chip by the 8048 ALE line and presented to the address bus when required by a low signal on bit 4 of port 2 . Bits 0 and 1 of port 2 provide the required two remaining higher-order ram address lines A8 and A9.
The two 2 K rams provide four pages of display. Page selection for display is achieved by the SSO and SS1 binary tristate outputs of the video generator. SSO selects the lower or upper half of each ram via the A10 input and SS1 selects one of the two chips via their $\overline{C S}$ inputs. Reading or writing to each page by the microcomputer is achieved by bits 2 and 3 of port 2 connected to the ram A10 and CS inputs respectively.
The video generator provides a tristate R / \bar{W} line that can be directly connected to the ram write strobe (the video generator needs to write to the rams for the clear screen function). Unfortunately the WR strobe of the 8048 is not tristate, hence this output cannot also be connected directly to the ram $\overline{\mathrm{WE}}$ inputs. It is therefore connected to the enable input of a tristate noninverting buffer whose input is connected to the output-enable signal of the address latch (8048 port 2 bit 4) so that the WR strobe is applied to the rams only when they are accessed by the processor. This, as well as providing the required tristate write strobe, prevents the write strobes produced whilst the processor is sending a command to the video generator from corrupting the contents of the rams.
Also, so that the 8048 can send commands to the video generator, the ram outputs must be tristate during the slot TS11. Hence it is not possible to permanently ground the ram OE inputs and a read strobe has to be supplied to them. The video generator does not have a read strobe output, but the SS2 page-select line creates one. This tristate line is only held low during the display period (assuming one of pages 0 to 3 are being displayed). The SS2 line therefore provides the required read strobe and is connected to the ram $\overline{\mathrm{OE}}$ inputs. This is why only four pages of ram can be used in this application. The 8048 does have a read strobe ($\overline{\mathrm{RD}}$) but this like the write strobe is not tristate and hence another buffer is used to provide a tristate strobe in the same way as for the WR line.

Sync pulses from the video generator are fed via a monostable to the test zero (T0) input of the processor. This input receives positive-going pulses at the start of line flyback, arranged to be about $10 \mu \mathrm{~s}$ wide by the $27 \mathrm{k} \Omega / 100 \mathrm{pF}$ monostable timing components. The processor therefore knows that it can have access to the display rams from $56 \mu \mathrm{~s}$ to $80 \mu \mathrm{~s}$ after the leading edge of

Dennis Pim, B.Sc.(Eng), Ph.D., M.I.E.E. lectures in electronics at the Open University. He obtained his degrees from University College London, where his Ph.D. research was concerned with various aspects of simulation. Before joining the O.U. in 1981 he spent four years with Rediffusion on the design and production of television receivers, becoming viewdata project leader. Resulting from his work at Rediffusion Dr Pim is now involved with research in the field of home information/entertainment systems.
this pulse. (The next line pulse does of course appear on the T0 input during this time window).

Video generator commands

The time slot outputs of the video generator (TS1 and TS2) are and-ed together using a spare inverter and a spare tristate buffer to provide a signal on the processor's test-one input (T1), which is logic high during time slot TS11, when the video generator is enabled to receive commands.
Because the processor might access the display rams during any line flyback, including those occurring during time slot TS11 when the video generator is enabled to receive commands, it is important to prevent the video chip from responding to data on the data bus intended for the rams. (It is possible to select a ram address which activates the video generator during this time slot). This situation is prevented by effectively breaking the display's A3 address line during a processor read or write using a tristate buffer which is disabled by bit 4 of the processors port 2. If the processor is required to send a command to the video generator, the required enabling address of $111 \mathrm{XX} 0 \times \mathrm{XX}$ is set up on the address bus by the four $22 \mathrm{k} \Omega$ pullup resistors on address lines A6 to A9, and by setting bit 5 of port 2 to zero thus providing the required logic 0 on address line A3. During time slot TS11 the ram outputs are tristate and the processor can then send a command to the video generator via the data bus, using data bit 7 as a strobe.

Inputs

Two ways to input characters or commands are provided. Port 1 of the 8048 can be used as an eight-bit parallel input. In

Display module requires power supplies of +5 V at 200 mA and +12 V at 80 mA . Both processor and video generator are driven by same 6 MHz clock. Deaconhouse Ltd, of 57 Guildford Street, Chertsey, Surrey (tel. 09328 66015) will supply $85+155 \mathrm{~mm}$ double-sided boards to the pattern given in the final article.

Cooling electronic equipment

Heat is an enemy of electronic circuits. This article discusses the various methods for removing heat from equipment including heat sinks, convection, cooling fans and air conditioning.

It has long been known that one of the biggest enemies of electronic equipment is heat. It is surprising that heat dissipation, or the removal of heat from circuits, is normally a secondary consideration or even an annoying necessity during the final stages of housing the electronics. It is hoped that this article will highlight some of the points to be considered in the area of ventilation in electronic packagings, as well as to show how ventilation requirements can be calculated to ensure a benign environment for electronics.

Possibly the easiest to understand and the most practicable method of cooling is the use of a heat sink. Large slabs of metal or even the equipment enclosure itself can be put in direct contact with the heat source. The amount of heat transferred in this way can be calculated by using
Fourier's Law:

$$
Q=\frac{K A \Delta T}{L}
$$

where $\mathbf{Q}=$ heat transferred per unit time $\mathrm{A}=$ area perpendicular to the heat flow through which the heat is passing
$\mathrm{L}=$ thickness of body of matter through which the heat is passing
$\Delta \mathrm{T}=$ the temperature difference between the hot and cold sides of the substance through which the heat is being transferred.
$K=$ specific co-efficient of conductivity.

It can be seen that L should be as small as possible, and A as large; hence the thin cross-section and the fins of heat sinks.
There are many kinds of heat sinks on the market today, for just as many applications, ranging from 'clip-on' models for single transistors to models weighing many tons for large transformers.
The majority of electronics equipment manufactured today is cooled by the action of convection. If the heat source is too great for convected air to remove sufficient heat, resulting in an unacceptable temperature rise of the electronics, the designer should consider using a forced draft unit, probably in the form of an axial fan.
Let us consider Graph 1. The vertical

[^3]
By Michael Young

Graph 1. The relationship between heat loss and airflow.

Graph 2. Back-pressure and airflow relationship to aid fan selection.
axis represents heat losses within the system. In many cases it is often sufficient to approximate this to the total electrical consumption of the equipment to be cooled. Determine the acceptable temperature rise of the air flow. This is measured in degrees Kelvin above ambient. A good guide is that 10 K is almost always appropriate. The required air flow can be read from the graph. As an example, let us suppose we have a piece of equipment running on 240 volts and consuming 6.25 amps. The total energy consumption and heat dissipation will be $240 \times 6.25=1500$ watts. Anticipating an acceptable terperature rise of 10 K , the air flow required to achieve the desired criteria will be approximately 230 cubic feet per minute ($\mathrm{cfm}, 1$ cubic ft . ≈ 28.3 litres). Consider a fan unit, standing in free air (represented by point A on Graph 2). At this point, the fan is working hardest and is passing as much
air as possible, in this case above 100 cfm . The resistance to air flow or back pressure is almost negligible. If the same fan is placed horizontally on a surface (represented by point B in Graph 2), air flow, in theory, is zero. In practice however, a slight air flow will be experienced from the vortex created by air displacement of the fan blades on the upper surface. Back pressure is the minimum required for zero air flow, and our example shows that this will be in the region of 0.3 inches of water. In the laboratory, back pressure can be measured using a manometer. Points C and D on the graph give the upper and lower points of back pressure relating to the optimum operating range, and the air flow from any fan can be deduced by the measurement of pressure rise and reference to its characteristic curve.
Multiple fans may be used if a single fan cannot cope with the required airflow. However a second fan will only assist the first by about 20%, and additional fans by proportionally less. One further calculation of the required airflow should take into account the amount of free space in the housing. If half the space is occupied by the circuitry then the airflow should be doubled; if three-quarters then the requirement should be multiplied by three. this is a rule-of-thumb which works well in practice.
When maximum cleanliness and additional cooling is desired, the use of a blower unit fitted to the enclosure is recommended. This will ensure that clean, filtered air passes into the rack, efficiently maintaining a positive pressure against the ingress of dust.
For hot, humid or otherwise hostile environments, air conditioning a sealed enclosure is a solution. Units are available to fit specific racking systems such as the 19 inch. Their heat transfer is usually measured in British thermal units per hour $(\mathrm{Btu} / \mathrm{Hr})$ and can be calculated by multiplying the wattage of the equipment by a factor of 3.4. (The conversion factor to kJ is 3.6 as $1 \mathrm{Btu} \approx 1,055 \mathrm{~kJ}$.)
It is hoped that this article has given the reader some understanding of the behaviour of heat and its dissipation in electronic equipment cooled either by simple heat sinks, natural convection in basic instrument housings or forced draft units and air conditioners. Simple calculations will determine the amount of heat that requires removal to achieve the desired working temperature and thus a long working life of each component.

Meteor-trail bouncers

Back in the 1950s, a good deal of interest was aroused by the Janet project of the Canadian Defence Research Board which showed that the highly ionized trails left by meteors entering the earth's upper atmosphere can sustain two-way communication at h.f. or v.h.f. for periods lasting sometimes for several seconds, but more usually for a matter of milliseconds. Because of the vast number of meteors that enter the atmosphere each day - with the number peaking during the regular meteor shower periods - the Canadians showed that by using 600 words per minute "burst" transmissions, triggered by a path opening, it was possible to handle teleprinter traffic at roughly normal speed. This early work used carrier powers of about 100 watts at 50 MHz with 5-element Yagi aerial arrays.
Because the meteor trail reflections occur roughly 85 to 115 km (70 miles) above the earth at about the same height as Sporadic E, the maximum range of both modes of reflection is about 2000 km but meteor scatter is far more consistently available. It is claimed that burst meteorscatter traffic is extremely difficult to intercept, to the degree where even unenciphered traffic is virtually secure.

Although in the 1960s and 1970s little was published about the developing use of meteor-trail communications, other than by amateurs snatching brief contacts, sometimes at high speed but without computerized or "triggering" facilities, it became evident a few years ago that NATO has been using meteor-burst military systems (Comet) since the late 1960s. More recently there has been increasing use of these techniques for specialized applications, for example by the US Department of Agriculture. In 1981 Telecom Inc marketed a computer-controlled system using a data rate of 4800 bits $/ \mathrm{s}$ and a 1 kW transmitter. Scientific Radio Systems Inc have also now developed an SRM-500 series of terminals operating in the 40-50 MHz band using 1 kW at the base stations, 300 W at the remote terminals. A 5 -element Yagi is used at the master station but smaller aerials down to a dipole at the remote terminal. The more powerful the set-up, the less the "waiting time" between bursts and the higher the average rate of transmission. Computer technology is used for packet formatting, buffering and error correction. Typically, ionized trails have a length of about 25 km and act as "directional aerials" to give a footprint for a given path roughly about 25 miles long and 5 miles wide, making it extremely difficult to intercept or jam the system. Waiting time between bursts seldom ex-
ceeds a few minutes even in the nonshower periods. Some 50,000 high-energy meteors fall into the upper atmosphere every second, of which one may open a particular path.

Terman's legacy

Few men can have so influenced the study of radio communications, broadcasting and electronics as Frederick Emmons Terman, who died in December aged 82. His work as Professor of Electrical Engineering at Stanford University, California led to the pre-eminence of Silicon Valley as the centre of so much advanced electronics, dominated by his former students. But it is as author of "Radio Engineering" first published (in the UK) in 1934 - that his fame spread quickly throughout the world as the 688 -page book became the "bible of the profession.

The merits of the first edition were recognized from the outset; "a book of outstanding merit . . a book which will have instant appeal to engineers, amateur or professional . . . it is rarely that a book of such merit appears" are some of the phrases in just one typical review. Further titles "Fundamentals of Radio", "Measurements in Radio Engineering" appeared later but it was the successive editions of "Terman's Radio Engineering" that dominated the world scene for so many years. Professor Terman maintained his early links with amateur radio, advising on the old "Jones Radio Handbook" that still survives some 20 editions later as "The Radio Handbook". Stanford University, similarly, remains an educational centre with an unusual record of practical development, including, for example, the first s.s.b. without pilot carrier experiments in 1946 by Villard. As Electronics has written: "Few men can be said to have left a living and growing legacy of such impressive magnitude. The industry has good reasons to remember and cherish the name of Frederick E. Terman".

World broadcasting

There is a paradox about radio broadcasting across frontiers: many people in the UK thoroughly enjoy listening at night to BBC World Service and resented the transfer of the service last year to the more directional aerials at the FCO site at Orfordness; on the other hand the prevalence of super-power external broadcasting transmitters, including Orfordness, is a prime cause for the chaotic and unsatisfactory state of m.f. bradcasting in Europe. The USA with its "clear channels", day-time-only, stations, highly-directional
aerials and maximum of 50 kW provides listeners with far more interference-free choice and so underlines the importance of good frequency-spectrum management. In the very early days of broadcasting America learned the hard way that there must be firm regulation of transmitting facilities no matter how de-regulated the programmes may be. But for well over a year a real threat to North American nighttime a.m. broadcasting has been evident in the Cuban response to the proposal, strongly backed by the White House, to set up a powerful Radio Marti m.f. service directed at Cuba. In turn Cuba threatened to build a total of $187 \mathrm{~m} . \mathrm{f}$. transmitters, including some of 500 kW . Last August, Cuban transmissions showed up temporarily on some of most cherished American "clear channels", confirming an earlier NAB conclusion that many American stations would experience a dramatic loss of night-time coverage if the Marti plan went ahead.
Nevertheless the White House continued to assign high priority to Radio Marti and sought authorization from Congress to spend $\$ 7.5$-million for this purpose, against growing opposition on the part of some Congressmen. The 1982 bill however has been pushed aside - and it will now need a new bill in 1983 if the project is to go ahead. Most American broadcasters fervently hope it won't.
External broadcasting can be an expensive business. The Grant-in-Aid cost of the BBC Overseas Service, excluding expenditure on relay stations operated by the FCO, but including the cost of the monitoring service at Caversham, has been given as: 1977-79 £32.2-million; 1978-79 £37.2-million; 1979-80 £42.9-million; 1980-81 £55-million; 1981-82 $£ 62.8$-million; 1982-83 (estimated) £71-million. And these figures may not cover all of the substantial cost of electrical power.
Many aspects of frequency planning for h.f. broadcasting are due to be examined in a two-part World Administrative Radio Conference in January 1984 and autumn 1986. The problem of international jamming seems certain to be raised once again - but unlikely to be solved. Communications engineers as well as broadcasters may well be affected by this WARC.

Interference from CB

The introduction of legal Citizen's Band operation on 27 MHz f.m. in November 1981 did not at first have any great effect on the rising number of complaints, made by viewers and listeners, of interference to television and radio reception. The dramatic increase in 1981: from about 200 per month in January 1981 to 2200 per month
in December, continued in the early months of 1982 until complaints reached a peak of 4952 in March, but then began to fall back. By December 1982 they were down to 2590 , although this was still a higher total than for any "illegal" month during 1981. It is interesting to note the marked falling off of complaints in December just about one year after the introduction of the CB licence. Could it denote that many enthusiasts are not renewing their licences? What percentage of complaints stem from a.m. equipment has not yet been released. In the twelve months to September 1982 there were 2300 prosecutions for illegal use of transmitters.

The privatization of British Telecom, under the Telecommunications Bill, brings into question whether BT will continue to be responsible to the Home Office for interference investigations. BT have already raised this matter with the Home Office, according to a Parliamentary reply.

Those examinations!

Despite criticisms over the past few years of the Radio Amateurs' Examination there appears to be surprisingly little pressure for reform on the part of the RSGB. The society ascribes the agitation largely to "misleading comments" in various technical journals. It is claimed that with three members of the RSGB (nominated by the Society's Education Committee) on the advisory committee of the City and Guilds "the Society is able to keep a watching brief on the conduct of the examination and to ensure that the syllabus reflects changes taking place in amateur radio techniques . . great care is taken in the preparation of the examination questions, and the Society's representatives assist and advise on this at every stage."

It is not my wish to pick a quarrel with the RSGB's education committee but, until CGI are prepared to show that none of the current questions are as ambiguous or as patently unanswerable as those that have been quoted previously in this column, many people are likely to remain unconvinced that all is well with the RAE.

There is, for instance, still no comment on the question of why there should be a relatively low "pass" mark coupled with the award of "credit" and "distinction" grades in what is intended as a qualifying test. Indeed CGI has gone farther down
this path by instituting annual "Bronze Medal wards" to the most outstanding candidate or candidates in the examinations! For the May 1982 RAE, Christopher Dracup, Richard Keith Freeston and William George Winteridge have been named as recipients of the award. Congratulations to all three - but surely this is a strange way of conducting a test intended to discover whether candidates are competent to operate a transmitter without affecting other services, in order to participate in a hobby intended to provide self-training.
A problem that will face Class A candidates is the unmanning of so many British Telecom coast stations where it has been possible to take Morse tests throughout the year. This will presumably still be possible at the ten Marine Radio Surveyor's Offices but one wonders for how long. Yet, as some countries show, it is possible to use tape recorders to carry out supervised examinations without the examiner being a qualified operator. In the USA, the ARRL has petitioned the FCC to permit the use of volunteers in the amateur licence examinations, made possible under the provisions of the recent Public Law 97-259.

The Guernsey amateur radio society are proud of the results being achieved by their young RAE course tutor, John Morris, GU6BG1. Still under 18 years old, he has already tutored 14 members of the society to success. All nine of his pupils for the December examination, aged 14 upwards, passed, bringing the number of Guernsey schoolboy-amateurs to seven. His pupils, however, are not all young; they have included a retired doctor.

50 MHz operation

Since February 1, 40 British Class A amateurs have been permitted to operate between 50 and 52 MHz outside of television broadcasting hours. These include three stations in Northern Ireland, three in the Channel Islands, ten in Scotland, five in Wales and nineteen in England. The Home Office has disappointed Class B (144 MHz and above) licensees by ruling that "cross-band" operation with the 50 MHz stations must be confined to those holding Class A licences.

The GB3SIX 50 MHz beacon on Anglesey began transmitting on a 24 -hour basis at the end of December and has been reported in Nova Scotia, Canada and Connecticut, USA despite the marked decline of sunspot activity this season. Longdistance paths in a southerly direction continue to open quite frequently and the beacons in French Guiana, Brazil and South Africa have been well received, and many long-distance two-way contacts achieved.

Old-timers depart

Douglas Johnson, G6DW, died in January a few months before he reached the 60th anniversary of obtaining his licence in 1923. A former adviser to the RSGB on legal matters, he had been an ardent longdistance operator for many years and had contacted over 500 different Australian amateurs.

Bill Browning, G2AOX, who in 1924 was the only manufacturer of radio receivers in the City of London, died in December. As a result of a spinal injury in a power boat race, he became very active in the Radio Amateur Invalid and Blind Club of which he was president for many years. In the early days of Oscar he developed a very simple tracking system for low-orbit satellites.

In brief

More repeaters on v.h.f. and u.h.f. bands are expected to be licensed shortly (Phase 5 and 6) . . When the STS-9 Space Shuttle launch takes place next September one of those on board is expected to be Dr Owen Garriott, W5LFL who has been seeking permission to take with him a 144 MHz handheld transceiver. Plans are going ahead to organize amateur radio contacts on an orderly basis . . . The FCC is now authorizing the operation of automatic beacons of up to 100 watts without a control operator being on duty, a previous requirement . . . a Californian cable company has been fined $\$ 2000$ for "signal leakage in excess of that permitted by the rules" and $\$ 4000$ for "failing to correct harmful interference to amateur radio operators". This follows the company's failure to reduce interference following complaints . . A Hollywood amateur has had his licence revoked for violating FCC rules on transmission of "obscene, indecent or profane words, language or meaning". His defence that the language was not obscene by Los Angeles community standards, and was the kind of language that had for a long time been used by amateur operators, was rejected . . . The White Rose mobile rally at the University of Leeds is being held on March 27 . . . the Swansea rally at the Patti Pavilion (next to St Helens Cricket Ground) is on April $10 \ldots$ RSGB VHF Convention at Sandown Park Racecourse, Esher is on March 26 . . Former members of the RAF's Civilian Wireless Reserve, formed in 1938, are invited to join s.s.b. nets on the first Monday in each month (3760 $\mathrm{kHz}, 2200$ local time) or second Monday in each month (7050 kHz).

PAT HAWKER, G3VA

SEMICONDUCTOR MUSEUM

I wonder how many subscribers to your excellent magazine have noticed the sad disappearance of the British germanium transistor? I am sure that many of your readers can remember the days when the transistor was but a young upstart trying to steal some of the market from the respectable and revered valve.
In those days, Britain possessed her own transistors, and weird and wonderful they were. Named for their appearance, the red and white spots, and the "top hats", were uniquely British. Alas, such eccentric marvels are virtually unobtainable nowadays, superseded by drab devices with standardized American nomenclature and packaging.
Perhaps few of your readers mourn the disappearance of those colourful early types, and perhaps few have even noticed that they are gone. A quick scan of the advertisements in this issue will soon reveal that only a few AC and AD types survive to break the monopoly of the 2 N series. Personally, I find that the variety of shapes, sizes, and colors of the first British devices is quite fascinating, and I am atiempting to establish a small "museum" of these transistors. If any of your readers has some such early germanium types, or data books or sheets which describe them, I would be very grateful if they would write to me.
Andrew Wylie
18, Rue de Lausanne
1201 Geneva
Switzerland

HERETICS' GUIDE TO MODERN PHYSICS

I have thoroughly enjoyed Dr Scott Murray's heretical Guide to Modern Physics for it has reawakened my earlier misunderstandings of undergraduate physics.

My thoughts, however, were jolted by the statement that "if you believe in ghosts and miracles you have missed your vocation; you should have been a theologist not a physicist."

Until now I had no idea that Schrodinger and his colleagues were leading me down the slippery metaphysical path to an acceptance of these phenomena. But surely, theology and physics are not intended to be mutually exclusive but may be combined under a single philosophy. I can content myself with a somewhat hazy explanation of both areas.

Perhaps physical particles are made up from more basic thought or information particles put together in a certain way. This is just as our concept of area is created from the orthogonal addition of two lines, each of some length but of no width or area.

It is not surprising, therefore, that physical measuring instruments which are set up to measure two-dimensional "area" are unable to provide readings of invisible lines of single dimension. Furthermore the thought or information particle building block hypothesis makes phenomena such as trans-kinetics quite easy to explain.
Perhaps physical material can be dismantled into its thought-particle components and reassembled elsewhere at will, although will is presumably made of thought particles too.

We clearly now require a framework for thinking about thought. An analogous technique has been developed for interpretive language control of modern computers; program commands, addresses and data are all arranged to flow through the same wires in an ordered way.

We may extend the computer analogy another step. Perhaps we are permitted to interact with the daily world only through a high-level computer program, called, if you like, "Newton's Laws" whereas others (God or prayer perhaps) can use a more powerful assembler language that produces apparent miracles with ease. This is simply because the high level program controls the physical dimension whereas the low level program controls the thought dimension.

Just a thought.
Dr Brian T. Evans
Watford
Herts

RS232/CURRENT LOOP

The following comment on the useful article by L. Macari, February 1983 might be of help.

I designed and constructed a similar interface for communication between two computer systems where the emphasis was a requirement for optical isolation. The link showed every sign of successful operation though with infrequent, but serious, loss of data. This was eventually traced to the fact that the residual "zero" current of the loop still generated sufficient opto-coupling to create occasional errors, despite the fact that all components of both drivers and isolators, were proprietary brands.

The solution was to add a 1 k resistor across the optical diode to ensure that the "zero current" voltage generated at that diode was less than its conduction threshold. As an additional precaution, I also included a reversed diode across the opto isolator diode to protect against inadvertant reversed connection.
B. Fisher,

Dista Products Ltd,
Speke
Liverpool

DEATH OF ELECTRIC CURRENT

I have progress to report.
D. W/. Bell, who is not given to wasting words, said in his letter (October 1982) that the role of mathematics in physics "is essentially predictive" and concluded his letter "But if one accepts the logic of mathematics, one can accept the logic of mathematical models." It is clear from the introduction to his paper that Hertz would have agreed with Professor Bell; in fact Bell has explained the motive for every experiment performed by Hertz between 1886 and the time of his untimely death on the first day of 1894 at the age of 36 . By accepting the logic of Maxwell's mathematical model of an ether, Heaviside and Poynting were the first scientists to realise that Maxwell's equations predict that the source of a current in a wire was located in the surround-
ing field. Hertz agreed with the mathematical reasoning of the Heaviside-Poynting theory "as the correct interpretation of Maxwell's equations."

Catt's critics, although not accepting the logic of Maxwell's mathematical model, have all based their criticism on the fact that Maxwell's equations predict the phantom existence of his displacement current. Maxwell's own definition of his displacement current is in Art. 111 of his Treatise, dealing with the phenomenon of induction of electricity through non-conductors.
"Electric Displacement. When induction is transmitted through a dielectric, there is in the first place a displacement of electricity in the direction of the induction. For instance, in a Leyden jar, of which the inner coating is charged positively, and the outer coating negatively, the direction of the displacement of positive electricity in the substance of the glass is from within outwards.

Any increase of this displacement is equivalent, during the time of increase, to a current of positive electricity from within outwards, and any diminution of the displacement is equivalent to a current in the opposite direction."

In other words, only during an acceleration or deceleration of the velocity of electric displacement does Maxwell's displacement current manifest itself. Maxwell said in Art. 62 that all electric currents flow in closed circuits, and in Art. 305 that as all currents ol conduction must flow from a high to a lou potential, conduction currents cannot flow in closed loops. I have suspected that all current loops are closed, and more importantly caused by, a displacement current, for instance in the induction of electricity from the primary to the secondary winding of a transformer. Hertz's paper seems to confirm this is so. The present confusion in electromagnetic theory lies in our failure to differentiate berween electric displacement and displacement current; the latter only manifests itself when the momentum of the former either accelerates or decelerates.

Ivor Catt's Heaviside Signal or Poynting Vector travels through space at the constant velocity of light, and is therefore by Newton's first law of motion, inert. It is a form of perpetual motion, and will travel through space at its constant velocity forever, unless acted upon by a polarized force. Newton defined inertia as a 'latent' or potential force. If a body at rest or travelling at a constant velocity is either accelerated or decelerated, its equal and opposite reaction to a polarized force causes its latent force to be transformed into an active force, because a force is the product of a mass and an acceleration or deceleration. Maxwell's electric displacement also travels through his ether at the constant velocity of light in free space in the form of a wave of displacement or strain of his ether, and like the Heaviside Signal, will do so forever unless a polarized force, such as a conductor, decelerates the electric displacement and changes it into a displacement current. When the displacement of the potential energy of the ether is accelerated from a state of rest to the velocity of light, the resultant strain is in the form of a displacement current during the period of accelera-
tion. When a wave of electric displacement of the intensity of the ether's potential energy suffers a deceleration after its flight through space at a constant velocity, the electric displacement's kinetic energy is transformed into an electromotive force which produces a displacement current. The e.m.f. causes a displacement current to penetrate the surface of a conductor of electricity, say an aerial.
In the case of very-low-temperature superconductivity, I believe Maxwell's equations and his mathematical model predict that the wire presents an impenetrable barrier and perfectly frictionless surface of slip to the electric displacement in the neighbourhood of the wire, and the current is inert and flowing in a closed loop at a constant velocity in the surrounding field only. As the temperature of the wire increases, the wire's surface loses its properties, and the reactive centripetal force of the surrounding ether aimed at the centre of the wire, decelerates the momentum of the electric displacement by forcing it to penetrate the surface of the wire, producing a displacement current in the wire. The permittivity, or modulus of electric elasticity of the ether surrounding the individual atoms of the mass of the wire must decrease as the wire's temperature increases. The flow of heat is a form of displacement current.

Hertz's paper raises many questions which are sure candidates for the immediate application of Dr Murray's Doctrine of the Improper Question. If a current of conduction is caused by the penetration into the wire by displacement current, is the current when steady, travelling at a constant velocity longitudanally through the length of the wire, or, as Max well's equations predict, acting vertically through the surface of the wire only?

Should we call the electric current in a conductor the Catt Effect?
M. G. Wellard

Kenley,
Surrey

I refer to the letter from Mr Ivor Catt in the WW for February 1983. He asked me to look at his diagram on p. 80 WW December 1980. I have now been able to do this, courtesy of the WW reprint service.

It has taken me several days (and sleepless nights) to see what was in his mind, and do not mind admitting I got off to what I think was a false start in what I intended to say by reply, because I think he has made a mistake in what he invites me to do. So if he does not mind I am going to do two things my way.

Firstly, that 50 ohm bit that he wants to put in the upper plate; I am going to do so loosely, so that it can be removed without touching it, by means of a sudden surge of gravity, or a puff of wind, or an angel on wings, so that whatever portion of the total charge is residing on it goes with it, leaving a gap in the surface. What was one charged capacitor is now two smaller ones, each carrying less than half the original charge.

Secondly I am not, in the interests of simplicity, going to use a length of coax., but rather to employ two parallel conductors of a spacing which entites them to the nominal qualification of 50 ohms, erected in the way he asks for. What have I got now? No more or less than two terminal posts, one for each capacitor, each of the same sign and potential.

We can do as we please in the way of rearranging these charges from external sources.
What we have not got is a pair of conductors so placed and utilized that they can be said to be exhibiting a Z of 50 ohms to any external influence. So they are not by my reckoning an accurate substitute for the 50 ohm resistor we got the angels to take away.
What I will join in and say, is that of course in charging and discharging these two capacitors, or the original one for that matter, at the velocity of light or thereabouts we do have a time lapse from terminal to the most remote part of the conducting surfaces concerned, which does not help me to consider the behaviour of frictionally induced charges on insulators.
O. Dogg

Hurst pierpoint,
Hussocks,
West Sussex.

FACTORIES OF THE FUTURE

I noted with pleasure the letter in your February issue about the forthcoming course in Information Systems Engineering at the University of Bradford. Professor D. P. Howson was one of the first students in a postgraduate course which I introduced in the University of Birmingham in, I think, 1959. I am not sure what this says about the speed of response in Academe, but at least it shows that we lay sound foundations.
D. A. Bell

Professor Emeritus of Electronic Engineering, University of Hull

SCIENCE AND POETIC IMAGINATION

I wish to take issue with the over-simplistic view of scientific innovation versus academic qualifications proposed by S. Frost (WW) Letters, Feb, 1983, p.60).
The factors of inventiveness and scholarly attainment are too independent to hold a simple inverse relationship. The realms of the academically qualified contain many people who are immensely inventive and many who are not. Amongst those who lack qualifications there are some who are very inventive and a vast majority of those who are not.
Scientific and technical innovation are generally achieved by groups of workers comprising a mirture of abilities (both academic and technical). Furthermore, most developments at the forefront of technology can only be made by those who understand their fields in depth, a requirement that is rarely met without advanced education. I observe that the development of vertically aligned magnetic particles in tape and disk storage media - an idea much praised by S. Frost - was attributed to a Professor Iwasaki of Tohoku University (WW Feb, 1983, p.35). This is hardly the unqualified, poetically-inclined, home inventor that S. Frost would regard as most likely to make such a discovery.

Finally, with regard to Lucretius, it should be pointed out that some of this philosopher's more significant blunders were not the result of inability to test his conclusions, but rather a conse-
quence of mere faulty logic
P. A. Stockwell

London

DEUS EX MACHINA

I read with interest your February editorial, entitled "Deus ex machina", in which the argument ran:

- the idea of x existing is horrific
- therefore x cannot exist.

In the editorial x was the thinking, artistic, humorous computer but the general structure of the argument is very comforting and since reading the editorial I have been able to show conclusively that nuclear weapons and the Sun newspaper do not exist.
I would, however, like to take you to task on the question of the appreciation of humour. It is very possible that my children are particularly thick, but I have noticed that they have had to be taught how to appreciate a pun or joke (as distinct from slapstick). I don't think that at the age of five they would properly appreciate a nonsense poem without the proper facial grimaces of the reader. I think I could program a computer to recognise a nonsense poem and respond accordingly, given the same manpower that has gone into programming (teaching) my children.
C. W. Hobbs

Sussex

Wireless World of February, 1983 raises some interesting points, some philosophical, rather than technical. Here's my two-penn'orth, although I can't hope to be as philosophical as A. C. Batchelor was in his letter.

Your editorial interests me, first of all. The one piece of classic English fiction wihich exploits, better than any other, the idea of artificial 'human life' is Mary Shelley's Frankenstein. In this, the brilliant scientist creates a living golem, from spare parts, but cannot endow his creation with a soul. Thoughts, emotions yes; an immortal soul - no. Perhaps with this began the 'commonplace conceit' of which you speak in your editorial.

Beware, however, of categorically declaring something to be an impossibility, as you do when you exclude the possibility of a thinking, feeling computer. Admittedly it appears highly unlikely, but then so would everyday twentiethcentury technology to a mediaeval peasant. The trouble with the Doctrine of the Improper Question, is that it's OK until an unexpected Improper Answer clouts you round the back of the neck, as did Galileo's answers clout the Roman Catholic Church.

Which brings me to your charge of sacrilege. That is a purely subjective idea. To some sects, a simple, life-saving blood transfusion is sacrilegious. Possible closer to what most of us could call sacrilege, is the current trend towards worshipping The Computer; but you don't need me to tell you this, when you have Ivor Catt!

However, on to other matters. It saddens me when I see people at each other's throats, in the way that Peter Gregory seems to be at the CBers' (Letters column). His letter seems to be yet another example of the merry-go-round of mud slinging which seems to go on within our so-called 'fraternity' of radio amateurs, sparked off, no doubt, by the attitude of professionals to
us (see Pat Hawkers' commentary on Prof. Beynon's opinion of UOSAT). Everyone has to have someone to kick; G3s have G6s; new boys have old buffers; f.m. mobile operators on 2 m have the guys who use S20 for morse; everyone has the CBers, and the CBers presumably go home and kick the cat!

The CB lobby, by its failure to campaign for what it really wanted, i.e. at least the FCC specifications (40 channels, $4 W$, a.m./s.s.b., no antenna restrictions, etc.), campaigned for, got, and were split in two by "a CB service on 27 MHz ", which happened to be just about incompatible with anything else under the sun. To give the appearance of being forwardlooking and responsive to public pressure, the Government rushed in a system which ignored one of the basic aspects of two-way radio efficiency - the receiver, as a result of which we now have cheap, imported transceivers flooding the market at less than $£ 20$ a throw, which get swamped as the merest suggestion of a strong signal.

I cannot approve of misuse of the radio spectrum, but I think two points should be borne in mind: everything ever invented has been misused at some time, and the current Government would commit collective harakini sooner than legalize something that people were already doing illegally. Sadly the existence of pirates on $27 \mathrm{MHz}, 6.6 \mathrm{MHz}$, or as intruders on our amateur bands, indicates that the Government may well be totally out of touch with what people want from two-way radio. M. E. J. Wright's scrambled-egg of a letter seems to have more than a grain of truth in it!

Long may your excellent magazine flourish, including the forum of your letters page, but please, by the way, spare me the inaccurate use of the term deus ex machina. It was a device for getting us out of rather than into trouble.
Paul Thompson
Southport
Merseyside
It is very fine what was written in your Editorial in WW of January 1983, but unfortunately you do nothing else but express an idea, a thought, a conjecture which comes from the extrapolation made about the future by what is known now in our present. The chromosomes, which hand on our human features from generation to generation, are of finite number and composition, and the brain that comes from them is a biological machine which, with its ten thousand million neurons, is clearly too complex to understand now without the aid of computers.

It is as if several thousands of years ago, at the time that the wheel was invented, someone had extrapolated the idea that never in the future anyone could be able to build an automobile using it.

The computer - and the Von Neumann-cycle computer is only one of the infinite number of computer structures (and the brain is another) - is the "wheel" of our brain.

Please, don't extrapolate so much from it, now!
Dante Vialetto
Castellanza
Italy
If, as your February editorial asserts, a willingness to perform actions for the sole benefit of others distinguishes men from beasts, then computers are more human than bestial. Everything they do is for the benefit of others - ourselves!

It can, of course, be objected that this doesn't make a computer human, because willingness implies consciousness, but computers are not conscious. In theory, however, a computer can easily be made conscious, that is, able to distinguish between 'self' and 'not-self'. There is every reason to believe that this will eventually be done, for ordinary commercial purposes. At present we have to make our computers. How much easier if they could be programmed to replicate themselves. Already a computer can be made to control the machinery which makes other computers, in a blind, mechanical way. However, as von Neumann explained, it is perfectly straightforward, in theory, to educate a computer so that it knows how to replicate itself and is motivated to do so.

To effect this, the computer is given a technical description of a machine just like itself, but with a built-in instruction to make identical machines. All these 'offspring' will arrive into the world with a knowledge of what they are and a motive to reproduce. They would need operating mechanisms and much information about the world. The mechanisms are being developed by robotics engineers and the knowledge, though vast, is just straightforward technical stuff.
In principle, then, a conscious, self-replicating machine is quite feasible. Of course, such a machine still isn't human. It doesn't fall in love, respond to poetry, and so on. Arguably the only reason why humans have acquired these emotional abilities is that they help to ensure the continuance of the race. A self-replicating machine wouldn't need them.

Whether a machine could be programmed to feel emotion may at present be a theological question rather than a technical one. Some inklings of the answer can be obtained by asking another theological question: Could God make such a machine? Being omnipotent, presumably He could. If so, then human beings, too, can reasonably be regarded as programmed self-replicating mechanisms. This emotion has been rendered more plausible by the discovery of the human organism's program in the form of the genetic code. This apparently contains all the baic information needed to allow a one-celled embryo to develop into a being with emotions, given ti- right environment in which to grow up and learn.

An intelligent machine, equipped with a knowledge of the world about it and a motivation to replicate itself would doubtless utilize human resources of the world as well as the inanimate ones. Present trends show that it would have no difficulty in bribing mankind to work for it by providing the wherewithal to make human life pleasant. Eventually, the machines would just take over. Whether they allowed human life to continue is an open question. They would have little difficulty in eliminating it since humans have already created the weapons needed for self-destruction.

One explanation of the absence of contact with alien life forms is that this is what happens to all advanced civilizations. After all, the probability is high that somewhere around the billions of suns of the Galaxy life evolved long before it did here. So where are 'they'? Even with the limited machinery for space travel at present envisaged here the Galaxy could be colonised in a few million years. So if 'they' are not here, they must have succumbed to the machines.

Why, then, are the machines themselves not
here? Perhaps they, too, evolve, and decide that a program of blind replication needs changing. Or perhaps they decide that, time being no object, the most efficient method of colonization is to spread the seeds of primitive life about the universe, knowing that these will give rise to intelligent organisms which will design self-replicating computers, which will take over.

For deus ex machina read deus in machina. G. W. Short

Croydon

MEMORY WRITE PROTECTION

I would like to suggest that, due to substantial oversight, the circuit as described by A.C. Dickens (Circuit Ideas, December 1982) fails spectacularly to achieve its desired aim.

Firstly, the Z-80 machine cycle, in common with that of most computers, does not perform the test for an interrupt (be it $\overline{\mathrm{NMI}}$ or INT) until completion of the execution of the current instruction. In the light of this fact, it can be seen that (with the circuit as outlined) a potentially destructive MemoryWrite will have been effected before the system can respond.
Secondly, should a Write be made to the system memory area (by, for example, a PUSH to the "protected" system stack during the interrupt service routine), then a further non-maskable interrupt will occur. This will, of course, cause another call to the interrupt service routine, necessitating a further System-MemoryWrite, and a non-maskable interrupt will yet again ensue. The system will become, in effect, nothing but an expensive oscillator.

Finally, since the circuit responds to any write cycle, then a spurious activation of the interrupt will occur during an OUT instruction if the upper address lines (ie. the contents of the A or B registers) appear to be the appropriate addresses.

In conclusion, this circuit will require much modification if it is to perform its designated task satisfactorily
P. Hart

Computer Centre
South Cheshire College,
Crewe
Cheshire.

LOGIC MAPS

As one who has long objected to the confusion between Venn and Euler diagrams, so assiduously encouraged by schools' examination boards, I must express my delight on reading the article, Logic maps - from Lull to Karnaugh (Wireless Word, Dec. 1982), by N. Darwood. This brief resume of the historical development of such diagrams has great educational value. However, there are several inaccuracies in the article which mar the good intent of the work.

Of minor concern, his bibliography is in error on two points. Firstly, I believe that Euler's circles were first used in his Lettres á une Princesse d'Allemagne, which were written in 1761 (not 1760) and published in 1768. Secondly, Boole's The Laws of Thought, was published in 1854 (not 1884), and reprinted by Dover Publications in 1958. In any case, the ideas elaborated
in that book were first put forward in his Mathematical Analysis of Logic, (Cambridge 1847), reprinted Oxford 1948), a work published before he was appointed to the Chair of Mathematics (not Probability Theory) in Queen's College, Cork. An account of Boole's life can be found in W. Kneale, "Boole and the revival of Logic", Mind, 1vii (1948), pp. 149-75. Whilst setting the chronology to rights, I might also point out that Leibniz was not born until 1646, and so, in 1600 , was dreaming neither of his ars combinatoria, nor of his calculus de continentibus et contentis.
More serious is Darwood's misreading of Venn and Boole. Despite the comments of Lewis Carroll (C.L. Dodgson), Venn does not insist on circles (or eclipses) for his diagrams, nor does he ignore situations involving more than six classes.
"With employment of more intricate figures we might go on for ever. All that is requisite is to draw some continuous figure which shall intersect once, and once only, every subdivision. The new outline thus drawn is to cut every one of the previous compartments in two, and so just double their number. There is clearly no reason against continuing this process indefinitely" (Symbolic Logic, London 1881, p.106)
He goes further in a footnote on ppl08-9, "It will be found that when we adhere to continuous figures, instead of the discontinuous five-term figure . . . there is a tendency for the resultant oullines thus successively drawn to assume a comb-like shape afier the first four or five. . . . Thus the fifth term of the figure will have two teeth,.. and so on, till the $(4+\times)$ th has 2^{x}. There is no trouble in drawing such diagrams for any number of terms which our paper will find room for."
It is not the geometry of his diagrams that cannot cope with large numbers of classes, rather it is the perception of the human eye and the human brain.
"the visual aid for which mainly such diagrams exist is soon lost on such a path."
What is more, Venn's diagrams, unlike those of Carroll, Marquand, Veitch or Karnaugh, would maintain the contiguity of all areas belonging to any one class.

Regarding Boole, there are several mistakes. In The Laws of Thought, the variables are introduced as classes, just as Venn and Euler had interpreted their areas, and as most European logicians from Leibniz back to Aristotle had interpreted their symbols. This is the logic of the syllogism, the classical predicate calculus. The objects which Darwood calls "Boolean statements" are propositions, the domain of the functions of the classical propositional calculus. Boole called these "abstract" or "secondary propositions", regarding them as statements about the truth values of propositions, or rather "primary propositions", which were about things (i.e. classes). He introduces secondary propositions as a model of his algebra, although he interprets them in terms of classes, regarding his symbol " \times " as denoting the class of times at which some proposition, \mathbf{X}, is true. Later in the book he offers, as another model, an interpretation of the variables as measure of the probability of events.

As to the "mystery" of why Boole uses "+" for disjunction, Boole himself writes (regarding classes).
". . . we have expressed the operation aggregation by the sign,$+ \ldots$ " (p.33).
What would be more natural for a mathemati-
cian than the use of the sign of addition for aggregation? Earlier, Leibniz, in his Non Inelegans Specimen Demonstrandi in Abstractis uses the sign " O " for something like the union of sets.
Lastly, in his exposition of Boole's algebra, Darwood seems to confuse the modern mathematical conception of a Boolean Algebra with the algebra of Boole. The former uses " + " in a way which can be interpreted as inclusive alternation, i.e. " $\mathrm{A}+\mathrm{B}$ " means " A or B or both A and B ".
On this basis, he is correct when, having derived

$$
A+B \bar{A}=A+B
$$

from

$$
\mathrm{A}+\mathrm{BC}=(\mathrm{A}+\mathrm{B})(\mathrm{A}+\mathrm{C})
$$

he refuses to subtract A from both sides to obtain the incorrect
$B \bar{A}=B$
Boole, however, takes disjunction in an exclusive sense.
"The expression, "Either y 's or $z ' s$," would generally be understood to include things that are y 's and z 's at the same time, together with things that come under the one but not the other. Remembering, however, that the symbol + does not possess the separating power . . . we must resolve ary disjunctive expression which may come before us into elements really separated in
thought, and then connect their respective expressions by the symbol.+ " $(p .56)$
In other words, " $\mathrm{A}+\mathrm{B}$ " is only a well-formed expression in Boole's system if we have already assumed the truth of $\mathrm{B}=\mathrm{BA}$. Then, of course, it is not surprising that we can deduce the true statement $\mathrm{B} \overline{\mathrm{A}}=\mathrm{B}$. On Boole's interpretation, subtraction will work in his system as it does in ordinary algebra.
As a final point, it is possible to fill the gap between Lull's use of linked circles, for in De Censura Veri (1555), Ludovicus Vives uses a diagram to indicate that if all B is A , and all C is B, then all \mathbf{C} is \mathbf{A}. If one compares this with an Eulerian diagram of the same proposition, then the link is clear.
H. Tennant

Holbeach
Lincolnshire

MICHELSON MORLEY

The saga of the M.M. experiment must surely be one of the strangest tales in the history of science. It is a story of such monstrous oversights and omissions that when those defects are repaired the experiment is found to prove exactly the opposite of that which is taught.

In the 1887 paper 1 M.M. admit to an earlier experimental omission, the effect of the aborration of light in the transverse axis, which was pointed out by M.A. Potier. They also admit that it was an analysis by H.A. Lorentz which led to the idea that the transverse axis would reduce the originally anticipated result by half.
At the present time we are not taught that it was Lorentz who did half of the calculations for M.M. and we must remember that at the time Lorentz wanted a particular amount of length contraction, the reason being that he would repair the equations of J.C. Maxwell.

Did Lorentz secretly predict a null result to himself: If he did, and on the evidence he surely must have, then he certainly did not divulge his ideas to M.M. otherwise they would have claimed a comfortable experimental confirma-
tion instead of the nebulous uncertainty that science has tried to sweep under the carpet ever since.
Let us pretend that there was in fact a null result, let us further pretend that Lorentz did not fully appreciate the implication of Fig. 1 in the supplement of the paper which describes graphically just how aberration of light occurs.
The mathematic of the experiment was designed to reveal the difference in time taken by both rays of light in their respective paths.
The error made by M.M. was that they did not measure, directly, the difference in arrival time of the light wavefronts. They chose instead to interpret a phase difference in light waves as being the same thing as a measure of a difference in time.
A phase difference is a proportion of a wavelength expressed either as a spatial displacement or alternatively as an angular displacement which in itself is a form of spatial displacement. The introduction of time into the notion of phase difference is clearly ridiculous for it would allow phase difference the dimensions of velocity.
So, we now have a situation where we have slid, with magnificant ease, from the mathematic comparison of time into the experimental comparison of distance and there is no bridge joining the two things.
Now we must consider the experiment in the terms in which it was conducted, those of wave theory and practice.

First let us deal with the transverse axis. There are two points of view to be considered.
To an observer moving with the experiment the light is seen to travel straight out and back to its origin but to an observer at rest in space the light covers a triangular path as a result of the aberration which occurs when light is reflected into a sidways path by a moving mirror.

Now, the important thing to remember is that both observers are looking at the same ray of light and that they both see the same number of waves. The phenomenon of aberration extends the wavelength on the triangular path by an amount which conforms to the Lorentz transform. Regardless of the velocity of the experiment it is quite impossible for the number of waves in this axis to vary.

In the longitudinal axis we have again two observers looking at the same thing, one sees two equal paths and the other two unequal length paths but they both see the same number of waves. There is no mystery here because it is well known that with the Doppler effect there is, whether light be blue or red shifted, an additional element of red shift which accords with the Lorentz transform ${ }^{2}$. Because the wavelengths are extended and because that fact has been overlooked it became popularly accepted that the length of the experiment itself varies with velocity.

So, we see that by using interferometry and invariant length the experiment must always yield a null result.

Had length in fact varied as supposed by Lorentz then the result would have been both obvious and spectacular.

What will the scientific establishment do to rectify their error? Or will they just sit tight and hope that reason will continue to be driven away from the explanation of Nature?
A. Jones,

Swanage,
Dorset.

1. Philosophical Magazine December 1887. 2. Einstein's Universe, N. Calder.

Op-amp tester gives good/bad indication

Full op-amp parameter tests are complex and in most cases only an indication of whether or not the device is good or bad is required. Malfunctioning is mainly due to misuse which results in one of three conditions

- constant output at either supply rail
- offset voltage (V_{OS}) too high
- offset current (I_{OS}) too high.

In general an input overload will result in both $V_{O S}$ and $I_{\text {OS }}$ being excessive but if the second-stage differential pair is affected, an excessive $V_{O S}$ with normal $I_{O S}$ is possible. Defects such as abnormal offset drift or input noise are due to manufacturing or aging and are more difficult to determine.
A good/bad indication of the three conditions listed above is given by the circuit shown, which consists of a 1 kHz Wienbridge oscillator designed around a 741 opamp. Diodes are used to stabilize the output at about 2 V pk-pk as distortion is unimportant, and attenuators feed around 85 mV to the device under test (d.u.t.). Operating with a gain of 100 in inverting mode, the d.u.t. gives an output of 100 times the sum of $V_{O S}$ and the oscillator signal. Two resistors R in series with the d.u.t. input transform the input offset current into an equivalent $V_{\text {OS }}$ so the output consists of an 8.5 V -amplitude signal while a d.c. shift of $100 \mathrm{~V}_{\text {OS }}$ or $100\left(\mathrm{~V}_{\mathrm{OS}}+\mathrm{R}_{\mathrm{OS}}\right)$ occurs depending on the switch position.

Two 311 comparators convert the d.u.t. output into pulses driving leds which have equal intensity when the d.c. shift is zero. Comparator values are chosen so that one led is extinguished when d.c. shift is greater than 15 mV or the d.u.t. output

remains at either supply rail. Comparator levels may be increased to test older jfet op-amps with offset voltages around 15 mV .

After testing the op-amp with the switch closed, open the switch and one of the lamps will extinguish if $\mathrm{I}_{\mathrm{OS}}>\mathrm{V}_{\mathrm{OS}}+15 \times$ $10^{-3} / \mathrm{R}$. Limitations of the tester are the use of fixed 12 V supply rails and that offset current detection is not sensitive enough for jfet op-amps unless R is made very large, say $10 \mathrm{M} \Omega$.

Small plug-in p.c.bs shown suit different i.cs. In practice only a few boards are necessary since a number of op-amps have identical connections $(741,301,309$, CA3130, CA3140, LF356, LF357). For dual and quad op-amps, p.c.bs with terminal rows representing each op-amp element may be used as shown; individual elements are tested by turning the board.

Oscillations that can occur with fast comparators such as the 311 are suppressed by 500 pF input capacitors.
D. Baert

State University
Ghent

Sampling synchronous demodulator

This circuit offers a superior signal-tonoise ratio to that provided by the usual arrangement of a single op-amp switched between the inverting and non-inverting modes. Signals are demodulated by sampling positive peaks with S_{1} and negative ones with S_{2}, averaging these voltages and subtracting them with a differential amplifier. The output voltage is thus equal to the pk-pk input voltage, i.e. twice that of a conventional circuit. Sampling-pulse width can be adjusted to minimise output ripple at the switching frequency, which is often a source of noise when demodulating slow rise-time signals. Spike injection from the switches is integrated by the filters and appears as a simple offset voltage which is easily nulled.

The circuit was developed for use with a photo multiplier in a chopped-beam photometry system. Linearity of the prototype
was within 1% of readings in the range $30 \mu \mathrm{~V}$ to 3 V r.m.s. using a DG200 for $\mathrm{S}_{1,2}$ and TL081C amplifiers. Low-drift devices such as OP-05s are required to maintain this performance over a useful temperature
range and for demanding applications an instrumentation amplifier should be used.
D. J. Faulkner \& P. West

Institute of Ophthalmology
London

Low battery indicator

Many battery operated instruments make use of a simple zener regulated supply to maintain peformance during the life of the battery. If the zener current is monitored as shown warning will be given when the battery voltage falls below $V_{z}+V_{b e}$. In some cases the addition of $V_{b e}$ may be significant and V_{2} should be reduced accordingly.
R. D. Homerstone

Daventry

Preamplifier using discrete op-amps

Today's audio designs with six figure gains are a bit of transistor over-kill. The two stage-gain block compromises first-stage linearity in order to obtain a virtualground output. Hence, the need for large amounts of purifing feedback. Now may just be the time for that last look at a simple design before i.cs and their excessive gain/feedback dull our receptors of fine music. Here is a single-stage differen-tial-gain block which optimizes gain and linearity and that eliminates the need for feedback. Output provided will drive most power amplifiers, being around two thirds of that obtained with simple two-stage designs.
Open-loop gain for the ' n-p-n' configuration is 278 with a bandpass limit of 50 kHz . With a dual 24 V supply, clipping is above 12 V and open-loop distortion less than 0.5% at line level. Virtual-ground output is obtained using an inverting amplifier in an h-configuration. In a dual-h configuration, second-order harmonics are

cancelled in the output stage and remaining distortion products are largely evenorder.

No turn-on thumps occur if all diodes
are "kept alive" by a $\pm 2.5 \mathrm{~V}$ supply. I discovered a "de-thumper" action for the power supply but it will not perform with regulator ics. An oversize click suppressor capacitor around $0.02 \mu \mathrm{~F}$ across the turnon switch will pass sufficient current to give a ± 2.5 volt power supply output. Any voltage change above that value will find a balanced demand and no audible output. Point of clarification:
A balanced circuit, such as the single-h, is inherently non-thumping at turn-on, when powered by a non-regulated power supply. There are turn-on clicks, however, that are problems to some. The oversize capacitor will give maximum protection against them with the added advantage of a low level warm-up.
George C. Hill
Richmond
Indiana

Quadrature clock generator

Usual circuits for generating quadrature signals quarter the frequency of the input signal - this circuit generates true quadrature signals at half the input-signal frequency using an equal mark-to-space ratio source. Latches shown are edge triggered.

S. Sondergaard

Edinburgh

Cycle protection

With this device fitted, turning the wheels of a bicycle or tampering with the lights will trigger an alarm which may only be turned off by a BNC connector. A rise in the base voltage of Tr_{1} triggers the alarm timer and enables the output modulator. This is normally prevented by a ground path at D_{2} cathode through the dynamo and $L P_{1,2}$ (the bridge rectifier isolates the dynamo when stationary).

Capacitor C_{1} is included to stop the batteries being switched from charge to supply each half cycle when the lights are on. Resistor 1 limits the charging current and D_{1} switches the batteries off when the dynamo reaches normal speed. Resistors
$\mathrm{R}_{2,3}$ and C_{2} prevent the alarm being switched off by S_{2} once initiated (unless the 'key' is used).

The complete circuit and batteries are mounted in the frame tube under the saddle. Switch 2 protrudes from the tube under the saddle - the alarm buzzer is mounted under the seat - and switch 3 sounds the horn when the BNC connector is in position. Under normal conditions the 'key' may be removed after turning the alarm off.

Experience of failures due to light-duty wiring and connector problems leads me to stress the importance of a robust construction.
J. Ashby

Cottingham
North Humberside

Monitor for ZX81

Video signals from the ZX81 can be used to drive monitors without a video buffer amplifier provided that connecting leads are shorter than a metre. Short cables have around 50 pF capacitance and may be driven directly by the computer u.l.a. if the monitor's 75Ω terminating resistance is switched out. Damage to the u.l.a. and ringing are prevented by the 68Ω series resistor. Cable lengths within the computer should be taken into account.
P. Gascoyne

Wantage
Oxfordshire

Electronic mains switching

Switching peripherals on and off while a microcomputer system is running is precarious in that transients produced can cause changes in memory. Initially, the cost of a transformer makes this zero-voltage switching circuit for driving up to eight mains outlets seem expensive, but further sets of eight outlets only need one latch, eight switches, transistors and triacs and a handful of resistors each. With minor modifications, cost could be reduced by replacing the isolating transformer with an auto-transformer or potential divider.
Transformer provides 5 V to drive t.t.l. circuits and 16 V to drive high-power triacs with insensitive gates; lower voltages may be used with more sensitive triacs down to about 7.5 V when the voltage regulator's function will be affected. A squarewave driving the first transistor is derived from

the mains positive half-cycle using either a zener or three ordinary diodes with a highvalue resistor and transistor buffer stage (the base resistor may not be needed).

On the squarewave negative transition, the first two i.cs form a short pulse which latches logic levels in the 74373 depending on the switch positions. Outputs of this i.c. drive the triacs through buffer tran-
sistors; values of resistors in the buffers will depend on the sensitivity of the triacs used. The squarewave negative transition is used as latching will occur nearer to zero volts than when the positive edge is used. All elements of the circuit are connected to the mains.
M. Selce Sutton

Simulating iron-cored components.

Designed to simulate iron-cored components on an analogue computer, this variable circuit models square-loop hysteresis using Schmitt triggers and a summing amplifier. Output amplitude and hysteresis of each cmos trigger are variable, with negative feedback controlling the hysteresis loop.
Setting is best done by trial and error using an XY oscilloscope and a piece of tracing paper with the required loop drawn on it.
D. H. Rice

Bishop's Stortford
Herts

Power-amplifier testing

Cheap half-watt loudspeakers can be connected to power amplifiers up to 30 watts for testing purposes using a series bulb. If this power is exceeded or the amplifier fault gives a d.c. output, the lamp blows leaving the speaker intact. At low power the lamp has little audible effect.
C. Richardson

University of Hull

Zero dot for bar graph

Possible ambiguities in bar-graph readings caused by all elements being extinguished when the input is zero can be prevented by adding a zero light-emitting diode. The transistor extinguishes the zero led when any other diode is lit, its collector resistor being chosen to suit the required zero-led current. This circuit was used with the LM3914.
P. Gascoyne

Wantage
Oxfordshire

Announcing a
NAJORCATADGUE from Electronic Brokers-
Distributors of Philips Fluke Distributhrsog Ice Hammy ge

Middle East Wire \& Wireless Ltd.

TILEMAN HOUSE, 131 UPPER RICHMOND ROAD, PUTNEY, LONDON SW15. TEL: 785 6422, TELEX: 261768 MEWIRE G.
FULL RANGE OF VHF/UHF RADIOTELEPHONES
BASE/MOBILE/HAND-HELD AND MARINE RADIOTELEPHONES

VHF/UHF HAND-HELD TRANSCEIVER 4 WATT POWER, 6-CHANNEL CAPABILITY RUGGED CONSTRUCTION FOR PROFESSIONAL USE COMPACT, FIT IN YOUR HAND

WW - 080 FOR FURTHER DETAILS

Three-terminal superconductor

A superconducting device that operates in a similar way to a high-speed switching transistor but in a much smaller space and at $1 / 100$ of the power was experimentally demonstrated at the IBM Thomas J. Watson Research Centre, New York, in January. Dubbed the quiteron, the invention is the first device to make use of the nonequilibrium superconductivity phenomenon known as heavy quasi-particle injection tunneling. It is also the first device of its kind that can both amplify and switch, giving it the potential for applications in digital and analogue circuits.

Still in the experimental stage, the quiteron consists of two tunnel junctions formed by three thin films of superconducting material separated by two thinner films of insulating material. Electrical energy through one tunnel junction drives the central conducting layer into a non-

Alternating layers of superconducting (S) and insulating materials form a device with characteristics similar to those of a highspeed semiconductor transistor but based on entirely different principles.

Inventor of the superconducting 'transistor', Sadeg Faris, holding a wafer containing experimental samples (look for a full stop).

Superconductor layer S_{2} is driven into a non-equilibrium state by I_{i}, resulting in a drastic modification of acceptor current l_{a}.
equilibrium state and the second junction represents the central conducting layer's state.

Switching speeds of less than 300 ps and small and large-signal gains of ten and three respectively are not astounding but taking into account projections that the device could be scaled down to lateral di-
mensions of $0.1 \mu \mathrm{~m}$ with a power consumption of $1 / 100$ that of current high-speed semiconductors, the quiteron could represent a breakthrough. Non-latching operation and insensitivity to stray magnetic fields are inherent.

A short-term strong point of quiterons - provided that they can be economically manufactured - is that they can be used to form the equivalent of a current v.l.s.i. circuit since they have three terminals and invert the input signal. Superconducting devices such as the two-terminal Josephson junction might require an i.c. technology that has to be developed from the ground up. The quiteron was described at the Applied Superconductivity Conference held at Knoxville, Tennessee, in December of 1982. Authors of the paper were S. Faris, S. I. Raider, W. J. Gallagher and R. E. Drake.

Another million for Sinclair

Sinclair Research, said to be worth $£ 136 \mathrm{~m}$, recently declared itself as the first company in the world to sell a million home computers. Excluding 600000 computers manufactured under licence by Timex in the USA, this figure has been reached in three years and the company says that this may only be the beginning since even Britain - with more computers per head than any country in the world - has only one computer for each 20 homes.

Whether this optimism is justified remains to be seen. A report issued by Mintel claims that by the end of $1985,10 \%$ of British households will have a home computer. Virtually every month sees the
introduction of a new home computer and the situation is now far more volatile than it was when Sinclair's ZX80 was introduced in 1980. But the Henry Ford of the home computer world is reported to be selling off around $£ 13 \mathrm{~m}$ of his industry, part of which will help finance a personal interest - an electric car.

Following a decline in watch sales and the loss of a deal involving Nimsio 3D cameras, the future of the Timex plant in Dundee where the Sinclair Spectrum is manufactured is in doubt. Timex intend to move work in Dundee to France, with a consequent loss of jobs in Scotland. The European Communities Commission issued a statement saying that it plans to investigate French government grants to the Timex company in Besancon.

Computer data via satellite - a demonstration

Project universe - devised by the Government, universities and industry to demonstrate the viability of high-speed communication between computers by satellite received its inauguration on 22 February at Info 83. Combining ground-based Cambridge rings and other types of local-area network with OTS satellite links, the project involves the use of six UK Earth stations operating at above 10 GHz to send and receive data between remote computers at $1 \mathrm{Mb} / \mathrm{s}$.

Each computer can communicate with other computers through the local-area
network, or with remote computers through the satellite link, at a rate 100 times faster then is possible using current telephone lines. The system is likely to run for two years, when OTS is expected to cease functioning. The six Earth-station sites are at the Universities of Cambridge and Loughborough, University College London, the Marconi Research Centre (Chelmsford), Essex, BTs Martlesham Heath, Suffolk and at SERC's Rutherford Appleton Laboratory in Chilton. Funders of the operation are BT, DoI, GEC-Marconi Research, SERC and Logica.

Proposals for non-ionizing radiation limits

New UK limits for exposure to e.l.f., r.f. and microwave radiation are proposed in a consultative document from the National Radiological Protection Board. Written in response to a request from the Health and Safety Executive for advice on non-ionizing radiation, the publication proposes a mean specific energy absorption rate in the whole body of $0.4 \mathrm{~W} \mathrm{~kg}^{-1}$ for microwave and r.f. radiation. The current UK limit of IW kg^{-1}, recommended by the Home Office and Medical Research Council, has stood for around 20 years and presumably the Health and Safety Executive will use the document in its final form as the basis for new regulations.

Hand-held radio transmitters, intruder alarms and proximity devices emitting less than 7W "may be regarded as harmless" says the board, but they should be designed so that they cannot deliver more than $4 \mathrm{~W} \mathrm{~kg}^{-1}$ to the eye for long periods. R.f. and microwave hazards to people with pacemakers are unlikely provided that the limits shown in the table are observed. "Higher levels of exposure may cause some types of pacemaker to revert to a 'fixed' mode of operation" say the board. People with pacemakers working in power-line frequency fields greater than $2 \mathrm{kVm}^{-1}$ or in any field that is likely to exceed the limits in Table 2 should seek medical advice - some makes of pacemaker are affected more than others.
Estimating exposure hazards in the near field remains a problem. Here it is advised that "Under reactive near-field conditions, limits on power density are difficult to interpret and r.m.s. electric and magneticfield strength limits should be used. Until more information is available neither of these limits should be exceeded."
The Board suggests that for r.f. and microwaves, measurements of power density should be made with equipment capable of averaging values over a period of less than 1 s and at less than 5 cm from the radiation source. In periods of less than six minutes, the energy density to which a person is exposed should not exceed 360 times the prescribed power density levels. How to deal with moving antennas and mixed frequencies are outlined and the board advises that any exposure producing a sensation of warmth or auditory sensation such as those that can result from intense pulses of microwave radiation should be avoided.
In circumstances where the mean specific energy absorption rate in the whole body does not exceed $0.4 \mathrm{~W} \mathrm{~kg}^{-1}$ and a peak of $4 \mathrm{~W} \mathrm{~kg}^{-1}$ in a volume smaller than $1 \mathrm{~cm}^{3}$ averaged over less than six minutes, exposures to higher power densities
or field strengths are permissible. "This relaxation" says the board "is likely to apply in the frequency range 3 kHz to 300 MHz under near or restricted field conditions, but the incident power density on any part of the body should not exceed ten times the prescribed limits, and field strengths should not exceed 3.16 times these values."
Exposure to power-frequency fields $(50 \mathrm{~Hz})$ of less than $10 \mathrm{kV} \mathrm{m}^{-1}$ is regarded by the board to be acceptable and exposure to fields of up to $30 \mathrm{kV} \mathrm{m}^{-1}$ is considered unlikly to be harmful. "Apart from the 50 Hz power frequency" says the board "there are very few applications in the e.l.f. range and there is little information
that can be used as a basis for limiting exposure."

According to the foreword, "In general, the Board bases its advice on a scientific consensus of opinion about established facts. In the case of the biological effects of non-ionizing electromagnetic radiations many observations that might appear significant are proving difficult to confirm." Some of these observations are argued summarily in the document and some are listed as references. Of course persons seriously considering offering comments on the document will also do their own research. The Board invites comments on the proposals before 1 July 1983, but due to "scientific uncertainties", it intends to keep the position under review. Copies of Proposals for the Health Protection of Workers and Members of the Public against the Dangers of Extra-Low Frequency, Radiofrequency and Microwave Radiations: A Consultative Document are available from HMSO for $£ 2$.

Permissible limits for continuous exposure to radio frequency and microwave radiations as proposed by the NRPB. For "general populations", levels are almost identical to those of the recent/y approved America National Standards Institute safety guidelines (C9). The curve dips at between 30 and 300 MHz because of body resonances.

Proposed limits for continuous exposure to r.f. and microwaves for adults (top) and the general population including children (bottom).

Frequency range (Hz)	Power density W m^{-2}	R.m.s. electric field strength V m	R.m.s. magnetic field strength A m
3k-3M	-	600	-
3M-30M	$9000 / \mathrm{f}^{2}$	1800/f	5/f
$30 \mathrm{M}-100 \mathrm{M}$	10	60	0.16
$300 \mathrm{M}-1.5 \mathrm{G}$	f/30	3.5 Vf	9.4.10 ${ }^{-3} \mathrm{~V} \mathrm{f}$
1.5G-300G	50	140	0.36

Frequency range (Hz)	Power density W m		
$3 \mathrm{k}-3 \mathrm{M}$	-	R.m.s. electric field strength Vm	R.m.s. magnetic field strength
$3 \mathrm{M}-30 \mathrm{M}$	-	600	Am^{-1}
$30 \mathrm{M}-100 \mathrm{M}$	10	$1800 / \mathrm{f}$	-
$100 \mathrm{M}-1 \mathrm{G}$	f	10	60
$1 \mathrm{G}-300 \mathrm{G}$	100	$6 \mathrm{~V} \mathbf{f}$	$5 / \mathrm{f}$

A voice from

The digital speech synthesizer aboard Uosat is now fully operational and the project team expect to get long-awaited pictures from the spacecraft c.c.d. camera during March. The speech synthesizer, the first device of its kind to have been used in space, is a National Semiconductor Digitalker. Operating under the control of Uosats primary computer, the synthesizer has been carrying operational telemetry information and experimental data. With the help of the published calibration equations, the strings of spoken figures from Uosat can be decoded to give (for example) the amount of solar particle radiation, the current being supplied by the solar cells, or the temperature in the spacecrafts batteries. The project team hope that the availability of data in this readily accessible format will help to stimulate interest in space science among schools and colleges as well as individual amateurs.

Speech transmissions were at first being made at weekends using Uosats general data beacon on 144.825 MHz . Threeminute periods of speech could be heard alternating with data transmissions and a bulletin of satellite news in teleprinter codes. The beacon should be receivable anywhere on unmodified v.h.f. amateur radio equipment with no more than a fixed pair of crossed dipoles. On some passes even a hand-held v.h.f. receiver may be adequate, according to the Surrey team. The other significant transmitter, the engineering data beacon on 435.025 MHz , can also carry speech, but a much more sensitive receiving installation is needed to pick it up.

Other systems aboard Uosat now in operation include the microwave beacons on 2.401 and 10.47 GHz , intended for propagation experiments when the

Government backs AMPS

An 'advanced' version of the American AMPS cellular-radio system is given the Government's seal of approval. In answer to a Parliamentary question, Mr Kenneth Baker MP, Minister for Information Technology, said "It is with world markets in mind that the Government decided to endorse the system choice made by BT, Racal Millicom and Sectel and the development of an advanced version of the AMPS system to be known as Total Access Communication System (TACS)."

Racal Millicom put forward a technical description of an improved version of AMPS in their successful bid to be chosen as providers of the second national cellular radio network (see News, February). The system is used in the US and therefore classed as a known quantity, unlike its main contender MATS-E which seems to be technically superior. BT say that there is little difference between the systems evaluated and that they are delighted with the decision. TACS has the advantage that it will allow cellular radio to get off the ground quickly.

In brief

Finland plans to have a two-way cable tv system operational by early 1985. Scandinavia's largest tv manufacturer Salora announced that they are to supply a two-way pay tv system, including the head-end electronics and set-top decoders, for a network expected to serve about 22000 homes in Tampare city. The deal to supply equipment for the coaxial network is worth

Wolverhampton Polytechnic has chosen equipment computer graphics equipment conforming to Canada's Telidon standard to help students become familiar with high-resolution computer graphics and viewdata. In doing so, it has become the first UK polytechinic or university to instal equipment of this kind. Their system is being used to create animated graphics, 35 mm slides, overhead projection films and video-tape material. Information for an in-house viewdata service is also being produced on the system.

Change of company name

The name of our parent company has been changed from IPC Business Press Ltd to Business Press International Ltd. This change has been made, say our proprietors, to reflect the wide range of markets covered by the 100 publications of the company, and to identify its position as the world leader of business publishing.

A digital tape clock

An electronic replacement for the mechanical counters used in many tape recorders.

The lack of precision of ordinary mechanical tape-counters and a need for something more than numbers relating to locations on the tape were among the motives behind the present design. It is basically a digital clock measuring tape running-time in minutes and seconds. Although it was devised for a ReVox A77, it could be used with almost any reel-to-reel tape recorder, with few modifications. The accuracy of the counter is close to one part per thousand, measured on a $101 / 2$ inch reel with a $3600 f t$ tape. This means a deviation of only six seconds from one end of the tape to the other at $19.05 \mathrm{~cm} / \mathrm{s}$.
Two optical sensors are used in the unit. One measures the length of tape passing and the other directs the counters to count up or down according to whether the tape is moving forwards or rewinding. A third sensor may be added to detect clear leader for an automatic reset and start of the clock.

Fig. 2. Timing disc for length-of-tape transducer.
\&ig. 1. The length-of-tape transducer.
Fig. 3. Method of detecting tape motion.

Fig. 7. The counter/display section. The

The length-of-tape transducer is assembled from three parts: a rubber-coated brass roller with ball-bearings, a plastics timing-disc and the optical sensor itself. The physical dimensions are shown in Fig. 1. The brass roller was turned to a circumference of 32 mm and then coated with rubber to a circumference of 33.9 mm . The rubber is necessary to ensure good tape contact and to prevent slipping and skewing. If liquid rubber is not available, strips of a suitable adhesive tape could be used; but care should be taken that the ends do not overlap and that the adhesive is strong enough to keep the ends from peeling after
continued on page 62

4Fig. 6. This circuitry links the optical tape sensors and the function switches of the tape recorder with the counter/display section shown in Fig. 7.

Black areas must hove a nun reflecting surface
Fig. 4. Timing disc for tape motion sensor.
dotted connections may be included to prevent count-downs below zero when rewinding.

Fig. 5.Pin connections for the 75189 (top view).

1 Theories and miracles
 2 Electromagnetic analogy
 3 Impact of the photon
 4 A more realistic duality?
 5 Quantization and quantization
 6 Waves of improbability
 7 Limitation of indeterminacy
 8 Haziness and its applications
 9 State of physics today
 Haziness and its applications

Abstract

How belief in the wave theory of matter and the indeterminacy of Nature - coupled with a third (gross) philosophical error, the wilful confusion of measurement with fact - so undermined the discipline of experimental and logical thought that the chaos in modern physics became complete.

It is often said that the indeterminacy of a physical measurement arises as a natural consequence of the postulated wave-like properties of matter itself and that it affords proof of those properties, but that is not so. Heisenberg himself was ambivalent about it: his preferred derivation of the Indeterminacy Principle was on wavetheory lines that took an electron to be a "wave packet" of de Broglie-type matter waves, whereas his arguments in demonstration took a light quantum to be a wave system but envisaged an electron to be a particle. In fact it is not necessary even for the light to consist of waves, because the Compton effect (which provided the basis of Heisenberg's own illustrations of the Principle) does not require waves for its physical explanation, as already discussed. The indeterminacy does not follow from any postulated wave-like properties of matter or light, but simply from the essential granularity or "quantization" (type one) of microphysical Nature - that is, from the fact that one's most fundamental measuring instruments, electrons and photons, behave like discrete, indivisible, selfconsistent particles, of small but finite mass.
The wave theory actually entered the philosophical lists by means of a characteristically specious argument in the following manner. If, despite all the contrary evidence, an electron were to consist of a wave packet of matter waves, then the shape of that wave packet might perhaps be arbitrary. (After all, nobody has ever seen an electron). Axiomatically a wave packet is distributed in space, so that one cannot really define its position - that is, where its exact centre is - especially if it is a long wave-packet. On the other hand if it is a short one its position will be better defined, but in the nature of things it can then contain only very few waves. This means that its wavelength must be ill-defined, and according to the duality doctrine an electron's apparent wavelength as
a wave system is to be associated inversely with its mechanical momentum as a particle. (The premise I refer to here is $\mathrm{p}=\mathrm{h} / \lambda$). So this concept seemed to fit Heisenberg's indeterminacy formula like a glove: if an electron were a wave packet, then its position and momentum would be mutually indeterminate for natural reasons. The indeterminacy would lie not with our measurements but within the structure of the electron itself. In that case,

by W. A. Scott Murray B.Sc., Ph.D.

note well, our human failure to make precise predictions of its behaviour would arise simply because the electron's behaviour was itself imprecise or "indeterminate".

The attractiveness of this idea lies in the way in which it places the reason for our difficulties so firmly elsewhere; if Nature herself is indeterminate, how shall the physicists be blamed? It would provide a balm for nettled professional pride and a sop to human vanity if it were true, but of course it isn't. We cannot allow that an electron must become long and thin or short and fat according to the way in which we may choose to perform an experiment; that proposal conflicts with the general and consistent experimental evidence that electrons are indistinguishable. Nor do electrons dissipate like wave packets, any more than photons do. And between ourselves we have already rejected the doctrine of the indeterminacy of Nature on the logical ground of the unlimited precision of retrospective measurement. Appealing though it may have seemed to some people, that scheme just isn't on.

Nevertheless the concept of an electron as a wave packet persists. It leads directly
to the established "doctrine of haziness" - the erroneous doctrine that fundamental physical particles are essentially and necessarily structureless, amorphous, and of indeterminate size and shape. The philosophical error which allowed that doctrine to flourish was the blandly false identification of the true, physical extent of the structure of a particle with the vague, probabilistic boundaries of our knowledge of its position. The error was made possible by the continued association of the statistics of position measurement with the mythical probability waves of the wave theory of matter - the mistake that has already been exposed in the "Reduction of the wave packet".

How can I be so sure that the identification was wrong? I offer two proofs, both independent of wave theory. One is that the form of a particle is a physical matter while our knowledge of its location is a metaphysical matter, and as before we may not identify chalk with cheese. The other is that the imprecision of a measurement ($\Delta \mathbf{x}$) is not to be identified with imprecision in the quantity measured ($\delta \mathbf{x}$) - more especially when, as in this case, the measuring instrument is granular or "quantized" and in that sense imperfect. It is like claiming that a precision-ground ball bearing is nonspherical and faulty because one can't measure its diameter very accurately with a domestic rule!
That last misidentification (of measurement with fact, $\Delta x=\delta x$) is such an obvious error that it should not be accepted from a sixth-form student; yet here we have found apparently-responsible physicists and teachers of physics not only perpetrating it, but perpetuating it for fifty years! From their contemporary writings there are grounds for suspecting that it, and the corresponding misidentifications in the case of momentum ($\Delta \mathrm{p}$), energy (ΔE), and time (Δt), may have been made wilfully by the Copenhagen School in the 1930s, rather than through ignorance of
the philosophical issues involved. This is not to impute to those concerned any motives other than the highest: they were genuinely seekers after fundamental truth. But it does seem that they may have been carried away by the sheer excitement of the new ideas that were developing in natural philosophy, and entranced by the mysticism into which these ideas were so inexorably leading them. They wanted the world of electrons and photons to be mystical and mysterious. Their picture of that world could be summed up fairly accurately as follows:

-Everything in microphysics is indeterminate (or hazy).
 -Everything in microphysics is "quantized" (or precise).

Unless care is taken over the definition of terms these two statements are mutually contradictory. (An example of their conflict was developed in the, $W W$ June 1982 article, page 81). I have argued that the first is untrue and I could argue similarly about the second, but instead I will tell a fairy story and leave the judgement to you.
Once upon a time a young man was measuring the speeds at which beta particle (fast-moving electrons) were being ejected from radioactive atomic nuclei. He found that their energies varied smoothly over at least a ten-to-one range, which surprised him because he had expected to find instead a series of sharp energy values like a line spectrum in light. On the other hand, gamma rays (photons) that left the nuclei at approximately the same time did show a line spectrum, which was interpreted as evidence that the internal structure of the nucleus is "quantized" (type two) into definite energy levels like a Rutherford/Bohr pianetary atom, only more so.

I think everybody would agree that atomic nuclei are quantized (type one), in that every nucleus is constructed out of a definite number of discrete particles, protons and neutrons, that can be recognised in the free state by their consistent properties and behaviour. But according to the new ideas the mechanics of everything small is also quantized (type two), and because the atomic nucleus is very much smaller than the complete atom, a fortiori should the mechanical energy and momentum within the nucleus be quantized. Yet the beta radiation, which is associated with the radioactive decay of one neutron into a proton inside the nucleus, apparently is not quantized. It was an article of the new faith that it should be quantized "Therefore", said the quantum theorists, "the conservation of energy must have failed (Niels Bohr); or, alternatively, the experimental evidence of the beta decay must be wrong".
Wolfgang Pauli saved the day, by postulating the existence of a completely unexpected neutrino or "small neutral particle" which had about the same mass as an electron but no electric charge. Such a particle, he suggested, would not show up in any ordinary particle counter or photograph. So: if one neutrino were to be emitted along with every radioactive beta electron, nobody would ever be able to
detect the fact; but the invisible neutrino would carry away energy too, so that it and the beta electron, between them, could possess the quantized line spectrum of energy that the theory demanded although the visible beta electron did not. (The failure to quantize the sharing of this energy between the neutrino and the beta electron in fixed proportions was not explained).

Now if you feel this to be a somewhat implausible, ad hoc suggestion, designed to make the experimental facts agree with the theory and not far removed from a confidence trick, be sure I share your suspicions. The question before us is: Do we believe in neutrinos? We would not be alone if we didn't. Neutrinos are essential to the modern quantum theory, however, and their existence is assumed as a matter of course when describing nuclear reactions, yet not even their owners seem to be very sure about them. When first invented by Pauli they had about the same mass as an electron (so as to share the missing energy equitably, on average); then suddenly it was proved that they could have no rest mass, but must be like some kind of non-radiant, indetectable photon. However, to make up for that they must be spinning - "but not mechanically, of course, since there is no structure there to spin". More recently it has been declared that they probably do have rest mass but very, very little (actual amount unspecified), and that there must be at least four different kinds of them. It does not add up to a very convincing story.
From the theorists' viewpoint the delightful thing about neutrinos is that they are virtually indetectable. Being so light, and electrically neutral, it is said that most of them fly right through the planet Earth, touching neither nucleus nor electron and leaving no trace of their passage. (There is another logical inconsistency here too, but we needn't labour every one!). Very occasionally a particle counter registers inside a 12 ft -thick steel box near the target area of the big CERN accelerator at Geneva, and this effect, like some others, is attributed to a neutrino collision because "it couldn't be anything else". Then one day the astrophysicists discovered that, according to current theory, the Sun should be pouring out neutrinos at a calculable, fabulous rate; and accordingly an
enormous neutrino detector was built in the United States especially to look for them, deep below ground in a diamond mine where unidentified particles would be unlikely to be mistaken for neutrinos and confuse the results.
That experiment was reported in 1976. It detected fewer than one-tenth of the neutrinos of solar origin that it was expected to detect, and maybe none; there is no assurance that the very few nuclear reactions that it did detect were actually due to neutrinos. The astrophysicists have been sent away to do all their sums again. But why should the poor astro-physicists take the blame for this negative result? What if Pauli's adventurous speculation should have been wrong, and his postulated neutrino never existed after all? To the theorists such a thought really is unthinkable: for if, after weighing the evidence, we were to determine that on balance of probabilities we did not believe in neutrinos, then we would be suggesting that the atomic nucleus might not be "quantized" (into discrete energy levels, type two). And that thought in its turn would strike at the roots of every modern theory about the physics of elementary particles.

Now I said at the beginning that little was to be gained by attacking established theories and thereby triggering all their devotees into uncompromising battle in their defence. That line is, in modern parlance, "counter-productive". It is much better to examine miracles - physical phenomena that we do not in truth understand, although our various theories may be willing to offer glib but scarcely plausible "explanations" of them at the drop of a hat. Surveying modern physics, it is in the territory of the elementary particles that miracles are thickest on the ground. Vast sums of money and immense efforts of mind have been spent on particle physics over the past fifty years. Each new atom smasher, when eventually it is made to run, generates a host of new problems but solves no old ones. There has been no credible outcome from all this outlay. Instead, we find all manner of hypothetical entities cluttering the contemporary letterpress "as charmèd quarks, evincing isospin", for example - concepts which are supported by no physical evidence, untested and in principle untestable experimentally. (Pau-

Indeterminacy and elementary particles

The influence of the wave theory was paramount in the arguments which led to the denial of causality. The most obvious example of this - also historically the first - was the doctrine that an electron, as an elementary physical particle, was amorphous and structureless because it was "really" a wavepacket of de Broglie waves. The logical error at the centre of this is identifiable as such without difficulty. Thereafter the technique of bending experimental results to fit in with pre-conceived theoretical notions became established, with the general acceptance of the ad
hoc postulate of the neutrino. The wilful misinterpretation of the meaning of the Indeterminacy Principle then heralded a final rejection of physical discipline, leading to the invention of "virtual processes" which violate the conservation laws whenever convenient, as exemplified by the "prediction" of the meson. Having got away to such an inauspicious start the study of elementary particles had little chance of recovery; the rather obvious failure of theoretical physics in this area, due to its domination by "quantum" metaphysics and mysticism, is scarcely surprising.
li's neutrino gave only a first glimpse into this modern fantasy world.) Particle physics today is in an almost impenetrable mess, infinitely more confused and less coherent now than it was when Chadwick discovered the neutron in 1932. I wonder why?
It seems to me possible that the lamentable state of this area of physics may reflect, and indeed be the consequence of, its domination by the metaphysical ideas of the "quantum theory" of the Copenhagen School. A quotation from a popular modern textbook (no names, no pack-drill!) may provide a convenient example for analysis:-
"Because of the Heisenberg uncertainty principle in quantum mechanics, a particle cannot have a definite position in space-time and a definite energy and momentum. The more localised the particle is in space-time, the larger the uncertainty in its energy and momentum. So that, virtual processes which do not conserve energy and momentum can occur over very small intervals in space and time by virtue of the Heisenberg uncertainty principle, provided they are followed by processes which ensure conservation of energy and momentum for the whole process." (My italics)
There, good friends, you have it all. The student is being told, ex cathedra, that it is legitimate for him to postulate any "virtual process" in his theories (by which is invariably meant a process that violates the conservation laws) provided he is not found out! Perhaps, philosophically, we have asked for this: we live in an indisciplined, lawless age, where logical consistency and honesty are no longer demanded. The fundamental error in the passage quoted, which is no misprint but a faithful transcription of currently-established doctrine, lies in the statement that a particle "cannot have" a definite position in space-time and a definite energy and momentum; here is the false doctrine of the Indeterminacy of

Nature, rather than the legitimate indeterminacy of measurement.
That the misinterpretation was deliberate is well evidenced. In 1935, by an exact application of the "virtual process" argument quoted above, Hideki Yukawa "predicted" the likely existence of a mesotron or meson (medium-sized particle) - a manifestation of nuclear binding energy which might appear externally in the guise of a discrete particle when an atomic nucleus was disrupted. The meson was duly discovered experimentally and its track photographed two years later, an obvious and brilliant success for the doctrine of haziness. Unfortunately some 35 different kinds of meson are now known (by count dated 1973), and the mechanism of the conservation-dodging "virtual process" as it was argued by Yukawa can reasonably account for only one of them.
The unexplained plurality of mesons represents only the tip of the iceberg. The total of recorded elementary particles exceeds 85 (1973 figure) ${ }^{\star}$. I consider myself to be just as radical a thinker as the next man, not at all old-fashioned, and I am quite willing to believe that the 60 or more of the particles currently listed which have immeasurably short life-times - in the trade they are sometimes called "resonances" rather than particles, with good reason - are simply the undifferentiated, non-specific explosion debris of subnuclear disintegrations: isolated, fastflying packages of energy which are of the wrong mass to form themselves into mechanically stable or partially-stable structures (\equiv "particles"), and which are actually dissipating, spreading out into space and effectively vanishing before our very eyes. (This would correspond to a loss of detectable energy from the local system, although the conservation law would not be violated in the universe as a whole). I
would not expect such ephemeral, neu-trino-like things to be "quantized".

What of the remaining elementary particles, of at least 25 known species, whose lifetimes range from the 10^{-10} seconds or so of the principal baryons to the all-time stability of the proton and the electron? (Why are they stable? Why are all the others unstable?). The established dogma of today's "quantum theory" holds that it is improper to ask (or answer) questions about their structures, which can never be observed; but what about their masses, which are very accurately measurable? How, and why, are the masses - or internal energies - of these elementary particles, building-blocks of the physical world, related to each other? Current microphysical theory offers no answers to such fundamental questions, and has made only one memorable prediction (the "omega minus" particle, forecast by extrapolation). It invented a series of qualities for elementary particles which, it held, "must be" quantized plus/minus like spin and therefore "must be" conserved. One of these qualities it called parity. It did not even blush when the first honest experiments showed that parity was not conserved. Instead it went on to devise via relativity theory, if you please! - yet another indetectable particle, a tachyon which always travels faster than light . . .
In view of the immense efforts that have been expended in its area, current microphysical theory would seem to have been something of a failure. "Microphysical entities are hazy", we are told by eminent men, "and one should not ask oldfashioned questions about them". Surely such haziness is more likely to lie in human minds than in fundamental physics?

* Over 200 now, ten years later. Is this progress?
continued from page 59

Mr Andersen, who lives in Denmark, works as a field engineer installing and reparing computer systems. He retains a keen interest in planning and constructing his own designs.
a while. At a tape speed of $19.05 \mathrm{~cm} / \mathrm{s}$ the roller will make 5.619 revolutions per second. The timing disc, which is mounted below the roller, has 16 slots (Fig. 2) and therefore produces an output frequency of $5.619 \times 16=89.912 \mathrm{~Hz}$. This is counted down to 0.999 Hz , which is near enough to 1 Hz . The transducer was mounted in place of the tape tension arm.
The tape motion sensor is located underneath the right-hand reel motor (Fig.3). Its timing disc and timing components (Fig. 4) are designed to output a pulse train when the machine is in the play mode and to supply a logic 'high' to the control circuits in the fast wind and rewind modes. It is important that the disc is made as accurately as possible and that the components are chosen appropriately: otherwise the circuit may not detect the exact moment when the tape stops moving, especially if the direction of tape travel is changed directly from one way to the other.
Interfacing the tape recorder function switches to the control togic is done by
using the quad line receiver $\operatorname{SN} 75189$, which is useful for this purpose because its imputs can withstand up to $\pm 30 \mathrm{~V}$. Equivalent devices are DS1489 (National Semiconductor) and MC1489 (Motorola).

The counter-display section is conventional, except that it is capable of counting both up and down and that the minutes progress to 99 instead of 59 . In the present design it was considered undesirable that the minutes counter should go below zero if a rewind beyond the initial starting point took place. Therefore the dotted circuitry was added to ensure that the minutes counter stops at zero when rewinding. In the prototype, this feature was made optional by inserting a dil switch pack. Reset is derived either from a manual switch or from an optional clear leader detector. The variable resistor is adjusted for a 50% duty-cycle at pin 7 of the LM311 during rewind.
The clock requires a stable power supply of 5 V at IA. Proper bypassing of the logic, especially the counters, will be necessary.

Assembly language programming

Many microprocessors respond to over 100 machine-code instructions - the 6809 responds to 1464 - and remembering these instructions in hexadecimal form is for most impossible. Assembly-language memory aids used to overcome this programming difficulty are the subject of Bob Coates' second tutorial article.

Hexadecimal-form numbers discussed at the end of last month's article improve the legibility of binary codes used by the processor but illustrate machine code and not assembly language. The following example demonstrates the progression from machine code to assembly language.

- Load accumulator with data in hexadecimal address 40
- Add accumulator contents to data in address 41
- Store the result in address 42

Binary-form numbers used by the 6805 microprocessor to carry out this program are as follows

10110110
01000000
10111011
01000001
10110111
01000010
This is the only number form that the processor can understand instructions but the binary instructions may be represented in hexadecimal form as follows.

B6 40 BB 41 B7 42

Hexadecimal numbers are easier to assimilate and make programming mistakes easier to spot. Instructions entered on the Picotutor keypad in hexadecimal form are converted to binary by part of the proces-sor-eprom monitor program before they are stored in memory for subsequent use by the microprocessor. Hexadecimal-form numbers are not the ideal solution to the programming problem though; the 6805 has 205 instructions and the 6809 has 1464 and remembering these in hexadecimal form remains difficult to say the least.

Instruction-code mnemonics

As a memory aid, each instruction is assigned an abbreviation relating to the language familier to the operator (in this case English). These assembly-language instruction names are called mnemonics and should in some way describe the function of the instruction. All manufacturers provide a set of mnemonics for their microprocessor instruction sets. There is nothing special about the mnemonics cho-
sen and one could invent one's own but it makes sense to adhere to a standardized set.

Usually the mnemonics chosen are obvious. For instance with the 6805 a loadaccumulator instruction is represented by LDA and jump-to-subroutine is represented by JSR. Unfortunately some are not so obvious; with the 6800 , transferring the contents of accumulator A to accumulator B is quite logically TAB but transferring the contents of accumulator A to the con-dition-code register is represented by TAP. With the Z80 microprocessor EXX

by R. F. Coates

meaning exchange alternate registers doesn't leave one much the wiser either.

Fortunately, 6805 mnemonics are fairly obvious and apply to equivalent instructions on all eight-bit microprocessors from Motorola which helps one apply experience gained with one microprocesor to another; in machine-code terms instructions used with processors in the range may vary but mnemonics used to represent them stay the same. Standard Zilog and Motorola mnemonics will be used in this series. Computer assemblers usually require a prefix or suffix to denote hexadecimal numbers; these symbols, usually a $\$$ prefix or an H suffix, will only be used where necessary.

Using 6805 mnemonics, the previous example is written in assembly language as

> LDA 40
> ADD 41
> STA 42
with abbreviations LDA, ADD and STA representing load accumulator, add and store accumulator respectively. Like the hexadecimal-to-binary conversion performed by the Picotutor, translation between assembly-language mnemonic programs known as source code and hexadecimal machine-language programs known as object code is a task that can be performed by a microprocessor. Assem-bly-language programs are usually keyed directly into a microcomputer and
translated by an 'assembler' program but such translations are involved and outside the scope of Picotutor. Consequently, our source programs are translated manually using a conversion table.

Programming tables

Microprocessor manufacturers produce tables giving all the instruction mnemonics with their machine-code equivalents such as the ones shown for the 6805. These tables, essential for assembly-language programming, are usually included in microprocessor data sheets.

With mnemonics added, our simple program is now more understandable but is still not self explanatory. Comments added to explain the program flow will make its operation clear and ease reference to the program at a later date. To do this, a table is drawn with columns representing various statements or 'fields' or the instructions. Column headings from left to right are as follows.

Label field

Operation code or mnemonic field Operand or address field Comment field
Labels, like comments, are optional and are used to make the programs easier to read. They indicate points in the mnemonic source file such as the start of a subroutine which is jumped to from a different part of the program. This point will have to be specified in the machine-language object code as an address but as this address is not known before the program is assembled it is substituted by a label. The label indicating the start of the routine is also used in place of the address (in the address field) of the instruction that causes

Instruction tables for the 6805. Most $>$

register/memory instructions use two operands, one for the accumulator or index register and the other obtained from memory. Read-modify-write instructions read a memory location or register, modify or test its contents and send the modified value back to memory or the register. When certain conditions are met, branch instructions divert the program. Bitmanipulation instructions are described in the text and control instructions control the processor during program execution.

Register/memory instructions

Function	Mnem.	Addressing Modes																		Baalean Operation	Condition Code				
		Immediate			Direct			Exiended			Indexed (No Offset)			$\begin{gathered} \text { Indexed } \\ \text { (8.8it Offset }) \end{gathered}$			$\begin{gathered} \text { Indexed } \\ \text { (16-8it OHset) } \\ \hline \end{gathered}$								
		Op	\#		Op	*		Op	\#			H	,	N	Z	C									
Laod A from Memary	LDA	A6	2	2	86	2	4	C6	3	5	F6	1	4	E6	2	5	D6	3	6	$M \rightarrow A$	-	\bullet	A	1	\bigcirc
Lood X from Memory	LDX	AE	2	2	BE	2	4	CE	3	5	FE	1	4	EE	2	5	DE	3	6	$M \rightarrow \bar{X}$	-	\bigcirc		-	\bigcirc
Store A in Memory	STA	-	-	-	B7	2	5	C7	3	6	F7	1	5	E7	2	6	D7	3	7	$A \rightarrow M$	-	-	,	\cdots	\bigcirc
Store X in Memary	STX	-	-	-	BF	2	5	CF	3	6	FF	T	5	EF	2	6	DF	$\overline{3}$	7	$X \rightarrow M$	-	-		,	\bigcirc
Add Memary 10 A	ADD	$A B$	2	2	BB	2	4	CB	3	5	FB	1	4	EB	2	5	DB	3	6	$A+M \rightarrow A$		\bigcirc	1	\wedge	\wedge
Add Memory and Corry to A	ADC	A9	2	2	B9	2	4	C9	3	5	F9	1	4	E9	2	5	D9	3	6	A. $M+C \rightarrow A$,	-	\wedge	\wedge	\wedge
Subtract Memary	SUB	A0	2	2	B0	2	4	C0	3	5	F0	,	4	EO	2	5	D0	3	6	$A-M \rightarrow A$	-	-	\wedge	\wedge	\wedge
Subtroct Memory fram A with Borrow	SBC	A2	2	2	B2	2	4	C2	3	5	F2	1	4	E2	2	5	D2	3	6	$A-M-C \rightarrow A$	-	-	\therefore	,	\wedge
AND Memory to A	AND	A 4	2	2	84	2	4	C4	3	5	F4	1	4	E4	2	5	D4	3	6	$A \cdot M \rightarrow A$	-	\bullet	\cdots	A	\bullet
OR Memory with A	ORA	AA	2	2	BA	2	4	CA	3	5	FA	1	4	EA	2	5	DA	3	6	$A V M \rightarrow A$	0	\bigcirc	\bigcirc	\wedge	-
Exclusive OR Memory with A	EOR	A8	2	2	B8	2	4	C8	3	5	F8	1	4	E8	2	5	D8	3	6	$A \oplus M \rightarrow A$	-	-	\wedge	A	-
Arthmetic Compore A with Memory	CMP	Al	2	2	81	2	4	Cl	3	5	F1	1	4	E1	2	5	D1	3	6	$A \rightarrow M, A \rightarrow A, M \rightarrow M$	-	-	\wedge	\wedge	\wedge
Arithmetic Compore X with Memory	CPX	A3	2	2	83	2	4	C3	3	5	F3	1	4	E3	2	5	D3	3	6	$X-M, X \rightarrow X, M \rightarrow M$	-	-	\therefore	\wedge	\wedge
8it Test Memory with A (Logical Compare)	817	A5	2	2	85	2	4	C5	3	5	F5	1	4	E5	2	5	D5	3	6	$A \cdot M$	-	-	\wedge	\wedge	-
Jump Unconditional	JMP	-	-	-	BC	2	3	CC	3	4	FC	1	3	EC	2	4	DC	3	5	$\mathrm{EA} \rightarrow \mathrm{PC}$	-	-	-	-	\bullet
Jump to Subroutine	JSR	--	-	-	BD	2	7	CD	3	8	FD	1	7	ED	2	8	DD	3	9	$P C \rightarrow(S P), E A \rightarrow P C$	-	-	\bigcirc	\bigcirc	\bullet

Read/modify/write instructions

Function	Mnem.	Addressing Modes															Boolean Operation	Condition Code				
		Inherent (A)			Inherent (X)			Direct			Indexed (No Ofset)			Indexed (B-Bit Offset)								
		Op	*		Op	*	-	Op	\#	-	Op	*	=	Op	\#	-		H	1	N	Z	c
Increment	INC	4 C	1	4	5C	T	4	3 C	2	6	7 C	1	6	6C	2	7	$\bar{A}+1 \rightarrow A_{i} X+1 \rightarrow X_{;} M+1 \rightarrow M$	-	-	\wedge	\wedge	\bullet
Decrement	DEC	4A	1	4	5A	1	4	3A	2	6	7A	1	6	6A	2	7	$A-1 \rightarrow A ; X-1 \rightarrow X_{;} M-1 \rightarrow M$	-	-	\wedge	\wedge	-
Clear	CIR	4F	1	4	5 F	1	4	3 F	2	6	7 F	1	6	6 F	2	7	$0 \rightarrow A_{i} 0 \rightarrow X_{i} 0 \rightarrow M$	-	-	0	1	-
Complement	COM	43	1	4	53	1	1	33	2	6	73	1	6	63	2	7	$\bar{A} \rightarrow A, \bar{X} \rightarrow X, \bar{M} \rightarrow M$	-	-	A	\wedge	1
Negare (2's complement)	NEG	40	1	4	50	1	4	30	2	6	70	1	6	60	2	7	$0-A \rightarrow A, O-X \rightarrow X, O-M \rightarrow M$	-	-	\wedge	\wedge	\wedge
Rotote Lett Thru Carry	ROL	49	1	4	59	1	4	39	2	6	79	1	6	69	2	7	$\square \leftarrow 67 \square \square \square \mid-60 \leftarrow \square$	-	-	\wedge	\wedge	\wedge
Rotate Right Thru Carry	ROR	46	1	4	56	1	4	36	2	6	76	1	6	66	2	7	$[C \rightarrow \square 7][] \mid] \mid B 0 \rightarrow[C]$	-	-	\wedge	\wedge	\wedge
Logical Shift Left	LSL	48	1	4	58	1	4	38	2	6	78	1	6	68	2	7		-	-	\wedge	\wedge	\wedge
Logical Shif! Right	LSR	44	1	4	54	1	4	34	2	6	74	1	6	64	2	7	$0 \rightarrow \square 07 \mid \square \square \square \square \square 0 \rightarrow C$	-	-	0	\wedge	\wedge
Arithmetic Shift Right	ASR	47	1	4	57	1	4	37	2	6	77	1	6	67	2	7	[6]	-	-	\wedge	\wedge	\wedge
Test for Negative or Zera	TST	4D	1	4	5D	1	4	30	2	6	7D	1	6	6 D	2	7	M-O	-	\bullet	A	8	-

Controi instructions

Function	Mnemanic	Inherent			Booleon Operation	Condition Code				
		Op	*	-		H	1	N	I	C
Transfer A to X	TAX	97	1	2	$A \rightarrow X$	-	-	-	\bigcirc	-
Transfer X to A	TXA	9 F	1	2	$x \rightarrow A$	-	-	\bigcirc	-	\bigcirc
Set Carry Bit	SEC	99	1	2	$1 \rightarrow C$	-	-	\bigcirc	\bigcirc	-
Cleor Corry Bit	CLC	98	1	2	$0 \rightarrow C$	\bullet	-	-	-	0
Set Interrupt Mask Bit	SEI	98	1	2	$1 \rightarrow 1$	-	1	-	-	-
Cleor Interrupt Mask Bit	CLI	9 A	1	2	$0 \rightarrow 1$	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc
Saftware Interrupt	SWI	83	1	11	$P C, A, X, C C \rightarrow(P C)$	-	1	\bullet	-	\bigcirc
Return from Subroutine	RTS	81	1	6	$(\mathrm{SP}) \rightarrow \mathrm{PC}$	-	-	\bullet	-	\bigcirc
Return from Interrupt	RTI	80	1	9	$(\mathrm{SP}) \rightarrow \mathrm{PC}, \mathrm{A}, \mathrm{X}, \mathrm{CC}$?	?	?	?	$?$
Reset Stack Pointer	RSP	9 C	1	2	\$7F \rightarrow SP	-	-	-	-	\bullet
No-Operation	NOP	90	1	,	None	\bullet	\bigcirc	-	-	-

Branch instructions

Function	Mnemonic	Relative Addressing Mode			Bronch Tast	Condition Code				
		Op	*	-		H	1	N	2	C
Bronch Alwoys	BRA	20	2	4	None	\bigcirc	-	\bullet	-	-
Bronch Never	BRN	21	2	4	None	-	-	\bullet	-	\bigcirc
Branch IFF Higher	BHI	22	2	4	CV2 $=0$	-	\bullet	\bigcirc	-	\bigcirc
Branch IFF Lower or Same	BLS	23	2	4	$C V Z=1$	\bullet	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Bronch IFF Carry Clear	BCC	24	2	4	$C=0$	-	\bigcirc	-	-	\bigcirc
(8ronch IFF Higher or Some)	(BHS)	24	2	4	$C=0$	-	\bigcirc	\bigcirc	-	\bigcirc
Branch IFF Carry Set	BCS	25	2	4	$C=1$	-	-	-	\bigcirc	\bullet
(Branch Iff Lower)	(BLO)	25	2	4	C $=1$	-	-	-	-	\bigcirc
Bronch IFF Not Equal	BNE	26	2	4	$2=0$	-	-	-	-	\bigcirc
Bronch Iff Equal	BEQ	27	2	4	$2=1$	-	-	-	\bullet	\bigcirc
Branch Iff Half Corry Clear	BHCC	28	2	4	$\mathrm{H}=0$	-	-	-	-	\bigcirc
Branch IfF Half Corry Set	BHCS	29	2	4	$\mathrm{H}=1$	-	\bigcirc	-	\bigcirc	-
Bronch IfF Plus	8PL	2 A	2	4	$N=0$	-	-	-	-	\bigcirc
Bronch IFF Minus	BMI	28	2.	4	$\mathrm{N}=1$	\bigcirc	\bigcirc	-	-	\bigcirc
Branch IFF Interrupt Mosk Bit is Clear	BMC	2 C	2	4	$1=0$	-	-	-	\bigcirc	-
8ranch IFF Interrupt Mask 8it is Set	BMS	2 D	2	4	$1=1$	-	-	-	-	-
Branch IFF Interrupt Line is Low	BIL	2 E	2	4	$\underline{R} Q=0$	-	-	-	\bigcirc	\bigcirc
Branch IFF Interrupt Line is High	BIH	2 F	2	4	$\mathrm{iRQ}=1$	-	-	-	\bullet	\bigcirc
8ranch to Subroutine	BSR	AD	2	8	None	-	-	-	-	\bigcirc

Condition code symbols
M Malf Corry (Irom bit 3)
1 Interrupt Mask
N Negative (sign bit)
2 Zero
Corry/Borrow

- Not Affected Test and Set if True, Cleared Otherwise ? Load CC Register from Stock
$0 \quad$ Bit $=0$ (cleared)
1 Bit $=1$ (Set)

Boolean operation symbols
0 Cleored
M Memory
A Accumulotor
x Index Register
n Bit \#
Arithmetic Plus
Arithmetic Minus

- Logical AND
$\stackrel{\text { - }}{\sim} \quad$ Logical Inclusive OR
$\oplus \quad$ Logical Exclusive OR
\rightarrow Is Transferred to

Other symbols
Op Operations Code (Hex) Number of MPU Cycles

* Number of Program Bytes

Mnem. Mnemonic Abbreviation
A Accumulator
$X \quad$ Index Register

Bit manipulation instructions

Function	Mnem.	Addressing Modes						Boolean Operation	Condition Code				
		Bit Set/Clear			Bit Test and Branch								
		Op	*		Op Code	*			H	1	N	2	C
8ranch IFF Bit n is set	BRSET n ($\mathrm{n}=0.71$	-	-	-	2 - n	3	10	$M_{n}=1$	-	-	-	-	.
Branch IFF Bit n is clear	BRCLRn ($\mathrm{n}=0 \ldots 7$)	-	-	-	$01 \cdot 20 n$	3	10	$M_{n}=0$	-	-	-	-	\wedge
Set Bit n	BSET $\cap(\mathrm{n}=0.7)$	10•2•n	2	7	\cdots	-	-	$1 \rightarrow \mathrm{Mn}$	-	-	\bigcirc	-	-
Clear bitn	BCLR $n(\mathrm{n}=0.7)$	11-20n	2	7	-	-	-	$0 \rightarrow \mathrm{Mn}$	-	-	\bigcirc	-	\bigcirc

the program to jump to the subroutine. Labels should be limited to six characters as this is the maximum allowed by most computer assemblers.

The operation-code column (mnemonic field) contains the instruction mnemonic and the operand column (address field) contains any further information required for the instruction to be carried out. In our program all instructions require additional information to specify ram addresses of the data to be acted upon. With instructions such as load accumulator where data is not loaded from an address location, the required data byte is specified immediately after the operation code in the object-code program. Other instructions may require no further information, such as TAB on the 6800 which transfers the contents of accumulators A and B. Table 1 shows the program in its expanded form.

Numbers shown in this and subsequent tables are in hexadecimal form unless otherwise indicated. Microcomputer assemblers often require a dollar symbol or letter H to identify hexadecimal numbers.
This is a complete assembly-language source program, and the next step is to assemble it. This requires two further columns in the table to list the machine-code equivalent of the instruction and the hexadecimal address at which the program is to be stored in the microcomputer memory. Ram addresses from 24 to 6F (hexadecimal) are available in the Picotutor to store such programs. Addresses 40-42 are used to store data and the program must not overlap these so the obvious place to store the program is at the beginning of the memory, address location 24.

But should we enter the program and then run it, the processor will look for another instruction after the last one in the program and find only random data which will make it run out of control (ram locations can setule at any value after switch on). This could corrupt either the program or data and the Picotutor reset button will probably have to be pressed to direct the processor back to the monitor program. A more orderly way of terminating the program is to end it with a jump back to the monitor which will allow the result of the operation to be examined. Such a jump instruction is

JMP START Jump to monitor start

The start label in the operand/address field represents the monitor restart address which will vary according to the microprocessor and monitor program used. On the Picotutor, this address is 80 . With machine-code equivalents included, the program is as shown in Table 2.

Table 2. When assembly is complete, two further columns contain addresses and instructions in hexadecimal form.

Address	Machine code	Label	Op-code	Operand	Comments
24	B640	ADDTWO	LDA	40	load accumulator from address 40
26	BB41		ADD	41	add to contents of 41 store result in 42
28	B742		STA	42	jump to monitor start
$2 A$	BC80		JMP	START	

In this example, each instruction requires two bytes, one the operation code (op-code) and the other the data address, so when we fill in the hexadecimal numbers for the program address, each line increments by two (left-hand column). The number of bytes for each instruction varies between one and three according to the number of bytes of additional information that the instruction requires.

From now on, all tables shown will be in this form. It is wise to adopt this method of constructing tables not only because it helps one understand the flow of the program, but also because computer assemblers produce such tables. Printed programming forms are available.

Running the program

To run the previous program on the Picotutor, the machine code (object code) must be entered first at the specified addresses. After switch-on a dash at the left-hand side of the display indicates that the unit is ready to accept a command, so press the memory-open key (mo) which will result in the seven-segment equivalent of an m appearing on the display, indicating that a three-digit address is awaited. When the first address of the program is entered, 024 , irrelevant data will be displayed. The first byte of the program, B6, is now entered and the step-up key (an arrow) pressed to close location 24 and open location 25 . Byte 40 is now entered, and the process repeated until the last byte of the program, 80 , is entered at memory location 02B. Now the reset button is pressed to terminate the memory-open command.

Keying in mo 024 and pressing the step up key will allow the program to be checked. Providing that new data is not entered, pressing the step up or down keys will not alter the contents of the address locations. Before running the program, data that the routine has to act upon must be entered. For this example memory locations 40 and 41 are filled with 04 and 05 respectively. Now, with the dash sign

Table 1. Writing assembly language as a table with comments makes it easily understood.

Label	Op-code	Operand/address	Comments
ADDTWO	LDA	40	bad accumulator from address 40 add it to the contents of address 41, store result in accumulator
	ADD	41	store result at address 42
	STA	42	

displayed, press the go key and type in the starting address of 024 . The dash should now reappear.

When the go key is pressed and the starting address entered, the microprocessor stops running the monitor program and runs the program starting at the specified location. The monitor program, keyboard and display stop functioning during this time until the last instruction is reached when control is returned to the monitor program and the dash reappears. If the program is correct, the location storing the result of the addition (mo 042) will hold the value nine. Try running the program again but with different values in locations 40 and 41, remembering that the numbers added and hence the result are in hexadecimal form.

Other microprocessors. Two accumulators are available on 6800 and 6809 processors, so the program has to specify which one is to be used. Our example uses accumulator A as follows.

1000	B61040	LDAA	1040
1003	BB1041	ADDA	1041
1006	B71042	STAA	1042
1009	7E7D97	JMP	START

Data addresses require two bytes (10401042) whereas only one byte was needed in the previous program because high-order address bytes of 00 do not need to be specified for the 6805 (explained later). Monitor start address 7D97 in the last line of the program is for the Nanocomp (see Wireless World, January and July 1981) and will need to be altered to suit the computer concerned.

For the Z80 the program needs to be altered slightly as it is not possible to add the accumulator contents directly to those of a memory location. Instead a pair of general-purpose 8-bit registers are loaded with the address of the data and the accumulator content is added to data in the memory location whose address is contained in the register pair, Table 3.

Points to note in this version are that load mnemonic LD is used for both loading and storing and requires two operands, the first signifying the destination and the second the source. The first line means load the accumulator with the contents of memory location 2040. Parentheses are used to indicate that the register is to be loaded with data contained at the address location specified. In line two, parentheses are not used so the HL register pair is loaded with address value 2041 for use as a

Table 3. $\mathbf{Z 8 0}$ assembly language equivalent of Table 2.

2000	$3 A 4020$	LD	A,(2040)	load acc. from address 2040
2003	214120	LD	HL,2041	load second operand address into HL
2006	86	ADD	A,(HL)	add acc. to operand pointed to by HL
2007	324220	LD	$(2042), A$	store result at address 2042
$200 A$	$C 30000$	JP	0000	jump to monitor start

pointer for the add instruction. The fourth line stores the contents of the accumulator at address location 2042.

Operand addresses are written with the low-order byte first when assembled - a common source of errors when assembling manually. Addresses and the monitor-start location may need altering to suit your system.

Addressing modes

We have already seen that it is necessary to address memory locations to retrieve or store data, but so far only one method for the 6805 has been described. Six basic addressing modes available on Motorola products are

> immediate
> extended
> direct
> indexed
> inherent
> relative.

Immediate. In this addressing mode the operand of the instruction is present in the byte immediately following the op-code of the instruction in the object code. A hash sign immediately before source-code operand denotes this form of addressing, for example A66F LDA \#6F will load the accumulator with value 6 F . The operand is always eight bits on the 6805, but on other processors it may be 16 bits. On the Z80 for example 214120 LD HL, 2041 loads the HL register pair (two by eight bits) with the 16 bit value 2041 . Op-code 21 requires two further bytes, 4120 , to form a 16 bit operand. Sixteen-bit operands are sometimes used with 6800 and 6809 processors.

Extended. Here, two bytes immediately following the op-code represent the address of data to be used as the operand. These bytes form a 16bit address for Z80 or 6800/9 processors or an 11 to 13bit address for various versions of the 6805 (remaining bits are unused). For example B61040 LDAA 1040 will load accumulator A with the contents of address 1040 . Absence of a prefix implies extended as opposed to immediate addressing. This mode is known as absolute addressing with the Z80 and brackets differentiate it from the immediate mode, e.g. 3A4020 LDA, (2040).

Direct. This is a version of extended addressing. If the most-significant byte of an extended address is 00 then direct addressing can be used and the most-significant byte need not be specified, resulting in a one byte saving in memory space. Although the range is limited to addresses 0000 to 00 FF , this mode can save a considerable amount of memory space on the 6805 since operand addresses are usually in ram or i/o ports within this range. An
example of direct addressing for the 6805 is B640 LDA 40.
An extension to this idea on the 6809 is an eight-bit direct register which holds the most-significant address byte. Instead of being fixed at 00 , this byte may be altered by the program. There is no equivalent to this mode on the Z80.
Indexed. In direct and extendedaddressing modes, the address of data which forms the operand is specified but here the address is contained in an index register called a pointer. A similar concept used with the $\mathbf{Z 8 0}$ appeared earlier - 86 ADD A,(HL) - where the accumulator content is added to data in an address location pointed to by two bytes in the HL-register pair.
But with indexing it is also possible to specify an offset which is added to the contents of the index register to form the effective operand address. This offset is contained in an immediate byte(s) for the 6805 as follows.
AE7

AE78	LDX	\#78
E604	LDA	$4, X$

In the first line, the eight-bit index register is loaded with immediate operand 78 and the second line loads the accumulator with the contents of memory address 7C $(78+4)$ without altering the index register contents. Sixteen-bit offsets may also be used; for example

AE78	LDX	\#78
D60146	LDA	$146, \mathrm{X}$

will load the accumulator from address 1BE. Operation codes E6 and D6 are used to signify eight and 16 bit offsets respectively. A special case exists when the offset is zero in that F6 LDA $0, \mathrm{X}$ replaces E600 LDA 0,X. Operation code F6 for indexed addressing with no offset is peculiar to the 6805.

The 6800 has a 16bit index register but only allows eight-bit offsets. Although the 6809 has only two index registers (X and Y), two stack pointers (S and U) may be used as index registers; indexing modes of this processor are beyond the scope of this article. The Z80 has two 16bit index registers, IX and IY.
Inherent. This type of addressing is used when it is obvious from the nature of the instruction that no further operand or address is required to complete it, as for example with SEI, set interrupt mask, RTS, Return from subroutine, and CLRA which clears the accumulator.
Relative. Branch and conditional-branch instruction use relative addressing. With these instructions, sequential processing stops and the program branches either forward or backward to another point depending on the value of a displacement
byte. The displacement byte is a signed two's complement number which is added to the program counter after it has been incremented to point to the next sequential instruction. This byte allows branches of between 127 and -128 steps from the current program position by modifying the value in the program counter.

With the 6809 , displacements represented by 16 bits may be used allowing the program to branch to any position in a 65Kbyte memory.

The six addressing modes above apply to all the processors that I have mentioned (8080 has no relative-addressing mode). In addition, the 6809 has many more addressing modes but for our purposes, the ones covered will suffice. Two further addressing modes are only available on the 6805.

Bit set/clear. This allows a single bit of any byte in address-page zero ($0000-00 \mathrm{FF}$) to be set or cleared without affecting any other bit in that byte.
Bit test and branch. A specific bit of any byte in address-page zero may be tested and cause a branch or not, depending on the result of the test.
These two modes are useful in control applications since they allow single i / o lines to be specified. A similar form of bit manipulation is possible using the Z80.

Handbook of Antenna Design, Volume 1, Editors: A. W. Rudge, K. Milne, A. D. Olver, and P. Knight, 708 pages, Hardback, Peter Peregrinus, £42. Written by a multi-national group of antenna experts, this book constitutes volume 15 of the IEE Electromagnetic Waves Series. It presents the principles and applications of antenna design with particular emphasis on recent developments. Fundamental theory and analytical techniques are explained in detail where appropriate and there is extensive design data with examples of practical application. A wide range of antennae are dealt with from very low frequencies to millimetric waves and from satellite communications to radar and broadcasting.

Complete Guide to Videocassette

Recorder Operation and Servicing, By
John D. Lenk, 365 pages, Hardback, Prentice-Hall, 119.50 .
This book provides a practical approach to servicing and trouble-shooting v.c.rs with special emphasis on Beta and VHS recorders. Starting from basic principles, the author describes an easy step-by-step method to service the machines including a section on any special tools that may be required and their operation. An American book, it describes NTSC machines, but it is applicable to PAL systems.

Peak-to-peak bar/dot indicator

Depending on the frequency of the input, the instrument provides a led bar or moving-dot display of pk-pk voltage

The circuits presented here are for a 31-led bar/dot meter which indicates the peak-topeak range of signals with frequency content from 0 to 10 kHz and amplitudes between $\pm 1.5 \mathrm{~V}$ peak. At frequencies

by A. J. Ewins

ing over the peak-to-peak levels of the input signal. The display may be generally likened to that of a signal on the ' y ' axis of an oscilloscope with no timebase. The display is able to indicate both the a.c. and d.c. content of a signal, the d.c. content of a signal with a high-frequency component merely shifting the displayed bar in the direction of the d.c. offset.

The circuit of Fig. 1, on its own, produces a bar display extending over the range of the two input voltages, V_{1} and V_{2}, where $+2.5 \mathrm{~V}>\mathrm{V}_{2} \geqslant \mathrm{~V}_{1}>-2.5 \mathrm{~V}$. When an input voltage is applied simultaneously to V_{1} and V_{2}, a single dot is displayed which indicates the amplitude of the applied voltage. The circuit of Fig. 2 produces two output voltages, $\mathrm{V}_{\min }\left(\mathrm{V}_{2}\right)$ and $\mathrm{V}_{\max }\left(\mathrm{V}_{1}\right)$, representing the peak negative and peak positive values of the signal applied to its input. The circuit has a gain of $5 / 3$ to amplify input signals of $\pm 1.5 \mathrm{~V}$ peak to an output level of $\pm 2.5 \mathrm{~V}$.

Circuit operation

The heart of the circuit of Fig. 1 is the d-to-a converter i.c., ZN425E. With a suitable clock oscillator (see Fig. 3) at its clock input, the five most significant bits of its 8 bit counter output are used to multiplex the 31 leds via the two c.m.o.s. multiplex i.cs, 4051 and 4052 , and the p-n-p and $n-p-$ n transistors. Whether or not a led is turned on as it is addressed is determined

Fig 3.Clock oscillator.

Fig. 2. Modification to produce two outputs.
by the logic level on the INH input of both multiplex i.cs. The ZN425E also produces a 256 -step analogue ramp voltage output in sequence with its digital counter. Buffered by the first op. amp., amplified by a factor of about 2 and offset by the second op. amp., the resulting output is a negative ramp falling from +2.5 V to -2.5 V . (The 'offset' control can be used to produce a negative ramp of 5 V pk -pk anywhere between $\pm 5 \mathrm{~V}$, enabling the centre zero of the display to be shifted from one end of the scale to the other.) This ramp voltage is mixed with the two input voltages, V_{1} and V_{2}, separately, and applied to two comparators. The result of this is that when the instantaneous value of the ramp voltage (inverted) lies outside the range of V_{1} and V_{2}, the INH level is at logical ' I ' and an addressed led will be off. When the instantaneous value of the ramp voltage lies inside the range of V_{1} and V_{2}, the INH level is a logical ' 0 ' and an addressed led will be turned ON. Thus only those leds which give an indication of an analogue voltage between V_{1} and V_{2} are lit as they are addressed. One comparator is referenced to zero volts and the other to a small negative voltage. This ensures that just one led is lit, giving a dot display, when V_{2} equals V_{1}.
The four 2N2905 transistors are connected as emitter followers when addressed and provide a constant current source to the leds. The value of the constant current is determined by the common 20 ohm emitter resistor and the voltage applied to the transistor bases. The 'brilliance' control determines the base voltage and hence controls the value of the constant current, which may be adjusted to any value between 0 and 200 mA . The eight n -p-n transistors act as switches to sink this current through the selected led. The average current that a led sees is $1 / 32$ of the constant current value. The leds used in the original design were end-stackable types from Farnell Electronic Components, types CQX10-4 (red), CQX11-4 (green) and CQX12-4 (yellow). Although shown as single transistors, for convenience, the TIS151 devices are in fact Darlington pairs from Texas Instruments. An alternative to these transistors would be an

array i.c. such as the ULN2801A, which is an 18-pin device containing 8 n -p-n Darlington pairs intended for just such an application.

Only 31 leds are used in the display, though 32 are addressable. The reason for omitting the first led is twofold. Firstly, the first led is always dimly lit due to the finite time of the fly-back of the ramp voltage; secondly, 31 leds give a very convenient display with one used as a zero indication, and fifteen in each positive and negative direction providing an indication in 100 mV steps. The resolution of the display is, in fact, better than 100 mV . This results from a graduation in the illumination intensity of adjacent lens as the signal level changes from one 100 mV step to the next. When the signal level lies exactly halfway between 100 mV steps at, say, 350 mV , then the adjacent 300 mV and 400 mV leds will each be half lit. It is possible to estimate when one led is $1 / 4$ lit and the adjcaent led is $3 / 4 \mathrm{lit}$. A resolution of about 25 mV can thus be achieved.
Finally, using the dock oscillator of Fig. 3 , the leds are scanned about once every $21 / 2 \mathrm{~ms}$.

200

Several volumes have been added to the range of technical literature published by Texas Instruments. Among them are new data books on mos memory deivces, microcomputer components and power semiconductors and an educational guide to applications of electronics in motor vehicles. A booklet describing these and other technical publications is available from Texas Instruments Ltd, P.O. Box 50, Market Harborogh, Leicester.

A new Sprague Semiconductor Chip catalogue is now available from the company's UK chip distributor, Hy-Comp Ltd, at 7 Shield Road (Ashford Industrial Estate), Ashford, Middlesex, TW 15 1AV.

A 12-page catalogue from BICC-Vero describes the range of pluggable telephone connectors designed by the company for British Telecom. The connectors have features which, according to the makers, make them suitable for other applications, such as with sensors, keyboards and handheld controllers. BICC-Vero Connectors, Parr, St Helens, Merseyside.

A directory covering more than 200 product categories is contained in a guide to British manufacturers of electronic capital equipment. The booklet is available free of charge from the Electronic Engineering Association, Leicester House, 8 Leicester Street, London WC2H 7BN.

Microprocessor systems and instruments for energy management are among many new additions to a large catalogue of equipment available for rental from Livingston Hire Ltd, Shirley House, 27 Camden Road, London NW1 9NR.

Two-metre transceiver

Comprising a.f. amplifier and tone generator circuits, this section of the multi-mode transceiver is the tenth and final module. Wiring information completes the hardware description in this penultimate article.

In addition to providing a tone burst and a.f. preamplification, module 10 generates a 'pip' when the frequency is changed. Dual monostable IC_{1000} is wired to give outputs of around 2 s and 100 ms to initiate tone-burst and pip signals respectively. Two-second pulses enable the tone-burst oscillator formed by half of IC_{1001} through a diode OR gate, the resulting signal appearing at pin 3 of IC_{1001}. Before leaving the module, the tone-burst signal is filtered and attenuated by $\mathrm{R}_{1009,1010}$ and $\mathrm{C}_{1005,1006 \text {. A potentiometer sets the tone- }}$ burst level feeding the f.m. microphone amplifier.

To prevent operation of the tone burst in any mode other than repeater, the 2 s monostable is disabled at pin 13 of the i.c. by a low signal from the mode switch. This disable signal comes from the switch wafer used for driving the start transistor of module 3.
The other half of the dual monostable provides a short pip which drives a miniature ear-piece located behind the front panel to indicate frequency changes. Pulses from this half of the monostable also turn the tone-burst oscillator on through the diode-OR gate but now the output is directed through a different NAND gate to the earpiece. When data is

by T. D. Forrester, G8GIW

sent to the synthesizer by the microprocessor, $\mathrm{D}_{\text {len }}$ control line goes high; this line is used to trigger the pip monostable through buffer transistor Tr_{1001}. In scan mode, the buffer transistor is inhibited to avoid the annoyance of continual pips.

Tone-burst frequency is set at 1750 Hz by R_{1008}. To set the frequency, pin 12 of IC_{1001} may be taken high so that the oscillator runs continually. A conventional a.f. preamplifier formed by Tr_{1002} lifts the level of the audio signal to suit the a.f. power amplifier. Gain of this stage is adjusted using R_{1013}.
Front-panel wiring is detailed in the diagram. The mode switch used has two wafers each with two-pole, six-way

Tone-burst generator block diagram shows how the oscillator is gated to provide both a 1750 Hz signal for the repeater and a short audible tone indicating changes in frequency.

Wiring diagram for the multi-mode transceiver front panel. Mode switch is a four-pole sixway type and channel switch is a single-pole twelve-way type, of which only nine ways are used. The $100 \mu \mathrm{~A}$ edgewise meter and these switches (Mini Maka) are available from RS Components. Sub-miniature toggle switches are used for normal/memory and scan high/low controls, one a single-pole change-over type (53-00200) and the other a doublepole change-over type (53-00201). Miniature push-button switches (53-00300) are used for memory-write, skip and up/down mike controls. Both potentiometers include double-pole pull-to-make switches (48-25320 log., 48-25319 lin.). These components can be obtained from Ambit using part numbers in brackets.
contacts so a spare pole is available for enhancements.

As can be seen from the photographs, the transceiver is constructed as two halves above and below a centre plate made from $1 / 8 i n$ aluminium alloy. On the top left-hand side of this plate is the microprocessor
p.c.b. and directly in front of it the display-driver board. To the right of it is the screened transmit-converter module and to the right of that the transmitter final stage, start relay and power regulators, also screened. Teko boxes were used to house the modules.

Four more screening boxes are mounted on the underside of the plate housing from left-to-right the v.c.o. and synthesizer, s.s.b. receive-transmit/f.m.-exciter, re-ceive-converter and f.m. i.f. modules. The module on the back of the transceiver houses an inductively-coupled band-pass filter and the antenna change-over relay. As all the r.f. modules are screened separately, there is no reason why the layout described should be adhered to but in terms of access and ease of construction, the module positioning described is believed to be optimum.
Front and rear panels are also made from $1 / 8 \mathrm{in}$ aluminium sheet and secured to the tapped centre plate by 8BA screws. Aluminium sheet of 20 s.w.g. was used to

Transceiver modules

1 receiver converter, 144 MHz to 9 MHz November 1982

2 transmit converter, 9 MHz to 144 Mhz December 1982
3 transmit power amplifier and power regulators December 1982/f anuary 1983
4 f.m.-i.f. discriminator, squelch, noise blanker, a.f. power amp fanuary 1983
5 synthesizer logic fanuary/February 1983
6 synthesizer voltage-controlled oscillator, power change over February 1983
7 s.s.b. 9 MHz transceiver, 9 MHz f.m. exciter February 1983
8 microprocessor control and interfaces March 1983
9 frequency-display driver March 1983
$10 \mathbf{1 7 5 0 H z}$ tone-burst and receive a.f. preamp April 1983
make a base plate and three-sided cover. Letter transfers were used to annotate the front panel which is protected by a tough plastic film.

Software

Flow charts illustrated here break down the main program given last month to help one understand how the transceiver operates. Mnemonics relate to assembly language used for the transceiver program.

Referring to the erase flow chart, if squelch lifts while the transceiver is scanning, the microprocessor checks whether or not the channel concerned is to be ignored (skipped). If so scanning continues but if not, scanning stops for a while. Pressing the skip button during this pause will cause the channel to be skipped over on the next scan.
A subroutine called Erse erases channels from the skip list as follows. During normal operation, i.e. with the set tuned to the desired frequency using the up/down buttons, it is possible to erase a certain frequency by tuning it in and pressing the skip button. This causes the microprocessor to search through its skip list and compare the frequencies in it to the one tuned. When the values match, the frequency in the skip list is overwritten with a zero. On the next scan, the microprocessor stops at this frequency to allow one to listen in.

Two buttons on the microphone allow the set to be tuned up or down in frequency for both normal operation and memory storage. Frequency increments depend on the position of the $100 \mathrm{~Hz} / 25 \mathrm{kHz}$ switch ganged to the volume potentiometer. In the up/down flow chart, a subroutine called sort tests which direction the frequency is to be stepped in and whether the steps are 100 Hz or 25 kHz . If either the up or down button is kept pressed, the rate at which the frequency steps up or down increases until the button is released.

To be concluded.

Design an electronic device to aid the disabled

A recent visit to a travelling showcase of aids for the disabled indicated how simple many of the devices were: levers to extend normally difficult-tooperate switches or dials; clamps to grip jars or bottles so that they may be opened more easily; various rods and hooks to aid people to dress themselves. At the other end of the scale, microcomputer hardware and software are being used in imaginative ways to aid severely handicapped people: providng voices to those unable to speak and enabling those unable to move to interface with the world.

Many examples spring to mind; the Possum allows, by the use of simple push switches, the disabled to operate a computer. We have received details of a single-board microcomputer which has been used to operate switches on the reception of whistle tones. The well-known Turtle enables children unable to move to experience spatial dimensions by directing the robot around the floor. And computer graphics can perform a similar function on $a_{1} t v$ screen. We have reported in the News pages recently the Viewscan system which can scan printed matter and display it on a c.r.t. with enlarged characters for the par-tially-sighted; we also reported on the micro-controlled wheelchair designed by Dan Everard for use by his daughter who suffers from spinal muscular atrophy.

This last example brings us to an important point. The chair was designed to help a specific person even though it would be of use to many others. Entrants in the Wireless World 'Design an electronic device to help the disabled' competition should be encouraged to contact the people who need the aids, to find out what those needs are and to work in cooperation with the 'end user' so that these objectives are best fulfilled. It would be pointless to re-invent the wheel, so it is well worth checking that the device being designed does not already exist. On the other hand there may be ways of improving the wheel so that it runs more smoothly or is easier to use.

Communication is of course one problem. The autobiography of Joey Deacon needed three people to write it: Joey himself, his friend Harry, who was the only person able to interpret the sounds that Joey made, and a third who could operate a typewriter with one finger. Christy Brown was discovered to be a fine poet after he had learned to communicate by typing with his foot. It must be horrifyingly frustrating to have an intelligent mind trapped inside an incapable body: Joey and his friends were cared for in a mental institution not because of their mental disabilities but chiefly through their inability to communicate.
Physical mobility is always a problem. For example, many disabled people need to wear elastic stockings but there is no device readily available to help them to get them on or off unaided. This is outside the scope of our competition but it does illustrate a simple problem in search of a solution. Reward toys, like the teddy bear whose eyes light up when a deaf child speaks, are in great demand, as are all toys that offer physical or mental exercises to disabled children. Other aids for the deaf include visual feedback systems, which can give a c.r.t. display of received sound, especially speech.
It should be noted that most electrical and electronic devices overcome disabilities of 'normal' people. Our voices can only propagate a certain distance. To extend the range we need to amplify it or to carry it through wires. Machines supply the strength we lack or can carry us at speeds we cannot run. Various optical devices enable us to see further or observe things that we cannot see. Calculators are useful when we run out of fingers to count on and computer memories can store vast quantities of data which may be recalled and manipulated in ways beyond the scope of human brains. Aids for the disabled are really just extensions of the same techniques; they enable the handicapped to do things that they otherwise cannot do.

The competition is very straightforward. All you need to do is fill in and send us the entry form which just indicates that you are interested in taking part. The form must be returned before June 30th. The actual design must be submitted to the Editor by 1st October, 1983. An entry must include a statement of the design objectives; an overall description of the device; detailed circuit description and diagrams; a model of the device or that unique part of it which demonstrates its operation and feasibility. The judges will be a group of eminent engineers and doctors and they will be looking for originality and benefit to the handicapped; the potential for production; elegance or engineering design; the electronic content; design reliability and freedom from excessive maintenance; simplicity of operation and the safety of the device. They are also looking for a specifically electronic device so a software package will not be acceptable, although software may be necessary to operate the hardware and should be included if this applies. The competition will be coordinated from the Wireless World editorial office and we are planning to include progress reports on the projects in these columns.

Useful contacts may be found through local council offices or libraries who can put you in touch with disabled peoples centres or homes. REMAP, Engineering Help for the Disabled, has 90 branches throughout the UK. Their headquarters are at 25 Mortimer Street, London W1N 8AB. They have a large panel of engineers who are working for the disabled and are willing to offer help and advice.
It should be noted that aids for the handicapped need a fundamental approach to tackling a problem and that devices can be produced which are not only helpful for the disabled but may improve ergonomically facilities for us all. Please enter the competition. You may produce a device which is of great help to many people.

A full list of the rules and an application form are included in our advertisement on page 108.

In praise of software

Like the old "nature vs nurture" controversy it is always fun to return to "software vs hardware". Professor Zissos would have us beware of systems swaddled in software (or some such phrase), and whilst it is all too true that the software overhead on many systems is intolerable it does not follow that junking that software will improve matters. In practice this term "software" covers two rather distinct sets of tools, programming languages and operating systems, and it is as well to consider them separately. We'll start with programming languages.
The pristine argument against the use of high-level programming languages is that a skilled machine code programmer using the native instruction set of a computer can write a program that is significantly more efficient (in terms of execution time or storage occupancy or both) than will be generated as object code by a high-level language compiler. The assertion is doubtless true. Unfortunately its utility depends on the availability of "skilled machine code programmers". Such scant evidence as we have suggests that only 25% of those who call themselves so skilled can in fact do better than a compiler. In addition, the demand for programmers is increasing at about 50% annually, whilst the supply is increasing by only 18% annually. That increased supply, is, too, at the novice, unskilled, end of the spectrum of expertise.

So the systems designer and implementor who chosses to rely on machine coding of the applications package just faces the hurdle of hiring adequately skilled programming staff. And then, in a sellers' market, of retaining them.
The immediate advantage of choosing a high level language such as Pascal or Fortran for applications programming is that the implementor has a choice from a much larger pool of skills. It just is a fact of life that the number of good Pascal programmers on the market is much greater than that of machine code programmers. And they are not such prima donnas either!

But a number of other advantages accrue fromt he use of a high level language. If partway through the production run it is economic to replace the microprocessor chip by another then the software does not have to be rewritten but only recompiled As staff changes it is necessary for newcomers to familiarize themselves with the existing applications programs so as to be able to maintain and modify them. This is much easier and quicker if these programs are written in a high level language, because programs written in a high level language are a little more self-documenting.

Also, they neither depend on the local features of a particular chip nor on a particular programmer's quirks in laying out data structures, etc.

The penalty of using a high level language then will be a slower executing program and usually a more extensive object program requiring more rom to accommodate it. Should execution time be critical it is usually passable to substitute a faster microprocessor chip, at extra cost. The relevant question is whether, over the total lifetime of the system, the initial cost of a faster microprocessor and of added rom exceeds the savings gained from the use of a high level programming language. Remember, programmers expect regular salary increases, chips don't.

Should it be the case that the system under consideration is already employung the fastest technology available then it will

H. D. Baecker

be necessary to stick with machine coded programs. It is precisely those users stuck with this need who will be most predatory on the market for skilled machine code programmers and will determine the costs incurred by others. It would therefore be prudent to rely on alternative programming talent.
It is true that you will find some extremely gifted programmers in academic or civil service posts where the salaries are significantly below market norm, so clearly salary is not the only determinant in attracting and holding talent. Further investigation will show that the freedom to experiment in these positions is the attraction, situation that cannot prevail in the successful completion of economic application packages. Under conditions of politically imposed "wages freeze" one can predict that talent will migrate to academic, etc., from the marketplace.
Now to the question of operating systems. As long as a given processor is executing only a single process or task the whole time the presence or absence of an operating system can be a matter of taste. The moment two or more processes share the processor an operating system is mandatory in order to schedule access to processor resources by the processes and to protect the processes from mutual interference. The question of whether or not to employ an operating system is then empty,

[^4]the question becomes whether to use the vendor's standard operating system, or whether to turn to an off-the-shelf product available from some software house for that microprocessor, or whether to write one's own system.

The usual objection to a vendor's operating system is that it is too rich, too extensive, for the needs of the present project. This may be so, but it is usually possible to generate a local version of the system that includes only those facilities needed locally. Indeed, this freedom may be an important factor in choosing a particular microprocessor. Software house operating systems often have the advantage that compatible versions are available for several ranges of microprocessors, making processor substitution easier. The supposed advantage of writing one's own operating system, that it will contain nothing but the bare bones required for the job and so will interpose no unnecessary overhead, is illusory. Six months hence the next upgrade of the microprocessor system will demand a new function of the operating system, and since the private operating system was so specifically designed to eliminate overhead there will be no hooks to hang the new function from.
Implementation and installation decisions in computing are rarely made solely on the basis of technical merit. Computers are tools, and other concerns of the tool users have to be satisfied. There is no doubt that the world's most widely sold computer architecture is not the world's most efficient or powerful or elegant. But its original vendor was deemed financially secure enough to proffer the support needed by customers. In implementing a microprocessor based system it may be that doubling the hardware cost of the basic system may have a negligible effect on the sale price, that software and engineering support costs are far more significant. If this is the case, and if the costs of seniors and actuators are fixed, then minimizing the initial and ongoing software costs may be the most practical way to economize.

Such a turn of events should come as no surprise. The most successful, the most reliable, technological system we have, one we take obsolutely for granted most of the time, is the worldwide telephone system. Its success and reliability depend not on local innovativeness but on slavish standardization. We are a bare 32 years beyond the commissioning of the first general purpose electronic digital computers, and it may seem premature to throttle development by adopting standardized tools, such as existing high level languages or operating systems.

IBM Selectric to TRS80 interface

Abstract

Along with an assembly language program which is kept in high memory, this interface is all that is needed to have letter-quality printing. As the printer uses typing elements that can easily be changed, what more could a computerist want? Speed? Not so fast, it prints at 60 words a minute, but oh what print, says Tony Scarpelli.

Brian Bateman has already shown how to interface a TRS80 computer to a five-level teletype. His article» inspired me to design and build my own interface that uses relatively inexpensive hardware and even cheaper software to drive an IBM Selectric I/O printer. If less than $\$ 500$, which includes the printer, turns you on then read on.
I was in the market for a printer. I had to choose a unit that was either dot matrix or letter-quality. As I was into writing articles, I decided on high quality printing;

by Anthony T. Scarpelli

but, a new letter-quality printer can run into the couple of thousands of dollars. Then an ad from CFR Associates of Newton, NH caught my eye, who were selling used IBM Selectric I/O printers for $\$ 395$. That was inspiring, and I ran down there and picked a unit up that was taken out of a Wang word-processing system.

These printers contain the driver solenoids that select the various characters and do the other normal functions such as spacing and printing. The unit was in great shape and probably still had a few more thousands of miles of printing left in it, and only a few minor adjustments got it printing excellently. A call to my local IBM representative got me an account and the ability to get manuals and parts with no hassle; and with great speed. A list at the end of the article gives the numbers of the manual and tools needed to do any type of

1. Originally from a Wang word processor system and ending up as a surplus bargain, this IBM Selectric I/O printer can be used as a letter quality printer in a computer system. Though it can be used as a keyboard as well as a standard typewriter, in this application it is strictly an output device.

2. Not much power is needed to drive the function solenoids, and during initial testing they can be manipulated by hand.

3. Character-select solenoids determine which character is to be printed and are held-in as the print solenoid is energized. Function solenoids are on the right. Tab and back space are not used in this application, but could easily be put into service.

4. Carriage movement detector coil detects pulses from the gear which rotates as long as the carriage moves. Pulses are amplified and integrated to produce a signal used by the computer to detect this movement.

Tony Scarpelli is senior biomedical electronics technician at the Maine Medical Center in Portland, Maine, the largest hospital in the largest city in the state. He collaborates with other hospital departments in the design of various electronic projects, such as interfaces that connect computers to various types of medical equipment, and is presently working on a computerized environmental control unit for quadraplegic patients. His electronic career started at the age of three when his father introduced him to a crystal radio. Most of his work has been in medical electronics, repair, and research. He has gone from valves, through transistors and integrated circuits, and has finally landed in the world of computers. He has published computer programs, reviews, and other material in a number of American journals. Fluent in Z80, 8080, and 6502 assembly languages, as well as Basic, Forth, and Mumps, he edits a computer club newsletter, Byte Babble, and spends most of his free time at the keyboard writing programs, articles, and learning new computer languages. He feels that people have only just begun to touch on the computers potential, and its use as a mind amplifier is still to be fully realized.
adjustment on these IBM machines. The manual is essential for an understanding of this very complicated mechanism, and for any troubleshooting in case of malfunction.

With the machine working, and with the circuit supplied with the unit, I started on the design of the hardware circuits to drive the solenoids. I am a simple person so I decided to make the circuit as simple as possible so that even I would be able to understand it. I also wanted to make it from parts from my local Radio Shack \dagger store so that I wouldn't have to wait six weeks just to get an i.c. If you have the parts on hand, or have a less expensive outlet for the parts, by all means go that route if you wish. I just happen to have a store in town.
The printer has six character-select solenoids, and five other function solenoids that would have to be driven by the computer. I decided that each of the function solonoids would get an output port. The printer also has a carriage-movement detector which would also get a port. I use this detector to speed up the printing by

[^5]holding up the program during carriage returns. When the carriage returns from a great distance, you don't want any printing going on, but when it has to return from a short distance, you don't want to wait for a timing loop to finish.

When you want to have your computer talk to the outside world, the first thing you have to decide is whether you want to use ports or use a memory-mapped system. If you go memory mapped, that is the computer thinks anything external is just part of its memory, you have to deal with 16 address lines. Because this wasn't necessary and would only add complexity and expense to the system, I decided on ports which only use eight address lines. There are 255 ports available with these eight addresses, and as no. 255 is already used by the TRS80, and no. 254 is used by my speed-up circuit, I used numbers 247 to 253 . These are easy to decode as we shall see in a minute.

The next consideration as far as the outside world is concerned is that all address lines and data lines have to be buffered. This does two things: it helps protect the output of the computer, and it gives the output more drive capability. Fig. 1 shows all the buffered lines that are
 signation OUT*, for example, is how Radio Shack indicates an active low signal - it is easier to type than the normal way, you can see. Other than the eight address lines and eight data lines, only OUT*, which indicates something is going out of a port, $I N^{\star}$, which indicates something is coming in, and SYSRES*, which is the system reset, are the only computer-generated signals needed.
Fig. 2 shows the first port I designed and will be used as the example of how all the ports work, and also how you can go about getting your own computer to touch the outside world. First give the port a number, in this case 253 , or FD in hexadecimal and 11111101 in binary. I called it the space port as it will drive the space solenoid. It is decoded with an eight-input nand gate: when all its inputs go high the output goes low. As line A1 is the only low line, we can make it high by going through an inverter so that only when the address FD is on the address bus will the output of the gate go low. In the assembly language program, the instruction OUT (C), A causes data in the A register to be put onto the data bus iust after the address in the C register is put onto the address bus, while

Fig. 1. Buffer i.cs interface the expansion port of the TRS80 to the printer driver circuits. Thev increase the drive output from the computer and help keep any problems occuring in the driver from reaching the computer. Also shown are the bank of capacitors distributed around the board for filtering and de-spiking, a necessity for t.t.l. integrated circuits.

at the same time the OUT* line goes low. In Fig. 2, a space was given the hex number, FE, which is 11111110 in binary, of which bit five is 1 . FE is the data in the A register so what happens is this: when that instruction is encountered, first the address FD in the C register goes out on the address bus. So the output of the eightinput gate goes low. Then the data FE in the A register goes out on the data bus, and we pick up D5* (bit 5) which has been inverted by IC_{4} and present it to the D input of a D flip-flop, as you can see from Fig. 1. (There was no real reason to use bit 5; I just needed a 1 here.) Then the OUT* line goes low, and as this line is connected to one input of an or-gate and the output of the eight-input gate is connected to the other the output of this or-gate goes low. Now the 74LS74 flip-flop transfers any level on its D input to its Q output when its clock input goes from low to high. So after a short time the instruction is finished and the OUT* line goes back high and thus causes the or-gate to go back high and the 0 on the D input gets put onto the input of the inverter just before all the data disappears. So that little bit of data has been saved or latched by the D flip-flop and can now be used to good purpose: to cause the output of the inverter to go high, which thus turns the driver transistor on and pulls in the space solenoid. Of course, if the solenoid stayed pulled in, all we would get would be spaces, so the assem-

Parts list

IC1, 2 74LS367 hex 3-state buffer
IC3, 24 74LS368 hex 3 -input inverter buffer
IC4, 6, 15 74LS32 quad 2 -input or-gate
IC8, 12, 1719 23 74LSO4 hex inverter
IC5, 9, 10, 13, 14, 18, 20 74LS30 8 -input
nand-gate
IC7, 11, 16 74LS74 dual D-type flip-flop
IC21, 22 74LS175 quad D flip-flop
IC25 LM 3900 quad Norton op-amp
Tr_{1} to $\mathrm{Tr}_{11} \mathrm{n}$-p-n transistor (RS2018)
R1R11 100Ω
R12, 14, 17, 22 10k Ω
R13 47k Ω
R16 150k Ω
R18, 19, $201 \mathrm{M} \Omega$
R21 12k Ω
R15 330
R23 100k Ω p.c.b. control
C1-10 $10 \mu \mathrm{~F} 35 \mathrm{~V}$ electrolytic
C11-29 50nF ceramic
C30, $314.7 \mu \mathrm{~F} 35 \mathrm{~V}$ electrolytic
C32 10 nF ceramic
SO1-19 14-pin wire-wrap sockets
SO20-27, 16-pin wire-wrap sockets
SO28 22-pin dual edge-card socket
Experimental p.c. board
16-pin DIP jumper cable
$4 \times 81 / 2$ in i.c. perforated board
TRS80 edge connector

IBM parts list

Selectric l/O typewriter, model 745
Service manual, no241-5737-0 (\$9.40)
Adjustment parts manual, no.241-
59990-0 (\$4.10)
Parts No./Price list, Form No.S241-
51558-4 (\$0.55)
Cycle tool, part no. 9900427 ($\$ 0.60$)
Gauge, part no. 9900575 (\$11.50)
Typing element ANSI-OCR-B, part no. 1167185 (\$18)

Fig.7. Character port circuit accepts more than one data line. The seven address lines are decoded for port number F7H. When this port is addressed, the signals on the six data lines are sent to the character driver solenoids. A six level or correspondence code is used to determine the character to be printed.
bly language program has some timing to do and also some unlatching, but we'll get to that shortly.
This is about the simplest way for your computer to communicate with the outside world in a structured way. Fig. 3 to 6 are similar except for the address decoding and the input and output connections. Fig. 7 shows the character port and is very similar to the others but has six data inputs and will drive all the character select solenoids at the same time. One of the ques-
tions I had about driving transistors was whether these latches could drive a power transistor directly. The fan out for these 74 LS 175 s is the same as an inverter, and I haven't had any drive problems at all. Fig. 8 is the carriage movement port. When this port is addressed, and the output of the carriage movement detector is low, and the $I \mathrm{~N}^{\star}$ line is low, a high is sent out on D1, thus nothing happens. However when the carriage is moving, a low goes out on D1, which is detected by the program, and

RS-PIN	Signal	44-pin
1	RAS*	1
2	SYSRES*	A
3	CAS*	2
4	A10	B
5	A12	3
6	A13	C
7	A15	4
8	GND	D
9	A11	5
10	A14	E
11	A8	6
12	OUT*	F
13	WR*	7
14	INTAK*	H
15	RD*	8
16	MUX	J
17	A9	9
18	D4	K
19	IN*	10
20	D7	L
21	INT*	11
22	D1	M
23	TEST*	12
24	D6	N
25	A0	13
26	D3	P
27	A1	14
28	D5	R
29	GND	15
30	DO	S
31	A4	16
32	D2	T
33	WAIT*	17
34	A3	U
35	A5	18
36	A7	V
37	GND	19
38	A6	W
39	$+5 v$	20
40	A2	X

5. In the driver transistor board the ribbon cable going off toward the top goes to the diode board in the printer, the other ribbon cable to the interface board. The twisted pair is for power.

6. Diode board inside the printer already had diodes connected across the solenoids, and this saved installing them on the driver board. If this board is missing on your unit, you must install diodes across the solenoides to protect the transistors.

7. This shot shows the orginal breadboard during the design stage of the interface. If the circuit works like this, it will definately work when it's neat!

8. This is what the completed interface board looks like. All the i.cs are numbered, and there is a connector available for future expansion. The ribbon cable coming off the bottom goes to the driver transistor board, and the other goes to the computer.

9. Wirewrapping method is good to use when doing a one-off board using a lot of i.cs. I used wire that doesn't need to be stripped first: the process of wrapping cuts the insulation.

10. This is what the bottom of the completed wirewrapped board looks like. All the i.cs are numbered, and four different coloured wires are used, blue for ground, red for $+V$ and white and yellow for the signals.

Photographs: Anthony and Bonnie Scarpelli
causes a delay loop to hold up the program. We'll get into the program shortly to see how this works exactly.

The carriage movement detector, Fig. 9, is one i.c. long, using a quad LM3900 opamp. The detector coil is connected to an amplifier that picks up the small sine wave produced by the gear which revolves whenever the carriage is in motion. A second amplifier produces a square wave which then goes into an integrator and gives a d.c. level output. This level is detected by a comparator to produce a t.t.1.level output to the input of an inverter. A small potentiometer on the negative input of the comparator adjusts the trigger level. If you don't have a small control, two fixed resistors can be used after you have found the right ratio.

The only hardware left to discuss are the driver transistors. Fig. 10 shows what is in the printer, and also how the driver transistor is connected into the system. A 25 V transformer, rectifier, and capacitor is all that is needed to power the solenoids. The driver transistor board is simple to construct, and hs a connector on it that goes to the interface board. Plus 12 volts goes to this board for the carriage movement de-
tector. The ribbon cable goes out to a connector, which then goes to the diode board in the printer. This diode board, photo 6 , has all the wiring that goes to the solenoids, and my ribbon cable goes directly to it. The +25 V supply which is more like 35 V out of the unloaded power supply, is also connected to this board.

Interface board construction

Transistor-transistor logic is very noisy to work with and the kind of construction used in my original blendboard, Fig. 1 doesn't help. Cute, and all we need is a little tomato sauce. But if you can get it to work like this, you have a better chance of it working in the final version. Although I installed a number of capacitors on my semi-final version, I had to put on a whole bunch more so that practically every i.c. had a 50 nF connected to its power connections, plus some $10 \mu \mathrm{~F}$ on each power bus. I probably overdid it, but it is a very quiet board now, and all wirewrapped. The sockets were stuck on the board with hotmet glue and all numbered, both on the sockets themselves, and on the bottom of the board. All pin 1s were given a small piece of wire insulation for identification. This is very helpful when wirewrapping
during those late and wee hours of the morning. I wirewrapped with the OK tool that eliminates stripping the wire, and really speeds up the process, photo 9 . You can only wrap two levels due to the height of the recommended eight wraps. But this is sufficient, and the redundancy increases the reliability of the wrap; I have yet to find a bad wrap after hundreds of pins.

The board as shown in photo 8 shows the completed interface. It holds 25 sockets and the motion-detector components. The cable from the computer is soldered to a 44pin connector with wirewrap pins (see Table). The cable is the only component that I didn't get from Radio Shack, but can be purchased from Hobby World, (see parts list). I used the 44-pin connector because they are easy to get, and also this will allow me to add various peripherals and more memory to the system by building a motherboard and connecting it to this single connector. You can see in photo 10 bottom of the completed board, a little more organized, but it still could use some sauce.

To be continued with assembly language program.

WINCHESTER DISC CONTROLLER

Designed for many of the popular Winchester interfaces, the Intel 82062 controller translates parallel data from a microprocessor to a $5 \mathrm{Mbit} / \mathrm{m}$ m.f.m. encoded serial bit stream. It also provides the drive control logic and control signals, and integrates much of the logic needed to implement a Winchester disc control subsystem.

The 82062 is controlled by the host c.p.u. with six high-level commands: Restore, Seek, Read Sector, Write sector, Scan i.d. and Write format. It can transfer multiple sectors and operates in $128,256,512$, and 1024 -byte sector lengths. It has a 7-byte sector length extension for external error correction. All this is housed in a standard 40 -pin d.i.p. and operates from a single 5 V power supply. MEDL Distribution, East Lane, Wembley, Middlesex HA9 7PP.

WW301

CAESIUM FREQUENCY STANDARD

Accuracy of 3 in 10^{11} is claimed for the FE-5440 caesium beam primary frequency standard. It uses a comparison-and-control system in which a caesium transition frequency $(9.19 \ldots \mathrm{GHz})$ is used to stabilize the output frequency of a voltage controlled quartz crystal oscillator of $14.59 \ldots \mathrm{GHz}$. The synthesizer permits instantaneous setting of frequency to within 2×10^{-12}. Rugged construction ensures that it meets military standards for reliability, test, construction and r.f.i, and the modular approach means that any module may be changed within 15 minutes. The caesium beam tube lasts for at least three years.

WW301
The instrument is also provided with a time clock to give hours, minutes and seconds with seconds and minutes pulses which may be output to drive external clocks. Other putputs are standard and sinusoidal frequencies of 5 MHz and 1 MHz and a square-wave output of 3 MHz . Wessex Electronics Ltd, 114-116 North Street, Downend, Bristol BS16 5SE.

WW302

SOLDER FUME EXTRACTOR

Solder fumes can cause respiratory problems so it is important that they should be kept away from the faces of those people who are continually using soldering irons. The Adcola Polysorb MK2 incorporates iwin variable-speed fans to draw the fumes away from
an operator and pass them through an active charcoal filter. As a bonus the unit also provides a controllable light and an output socket for power, either 240 or 24 V .

The unit is metal with steel support poles to attach it to the bench. It runs on a.c. mains rated at 240V. Adcola Products Ltd, Adcola House, Gauden Road, London SW 4 6LH.

WW303

MANUALSPREPARED

Having a good product to market isn't necessarily the end of the road Presentation is also important and this includes technical literature and manuals. Woodcote Technical Services specialize in the production of technical manuals for the instruction and training of machine operators and fitters. Their service includes technical illustrations, sales literature and
other literature for mechanical, electrical and electronic equipment Woodcote aims to provide the end user with a full appreciation and understanding of the often very complex equipment he has just purchased. To do this it is necessary to improve the effectiveness of the information required rather than merely recording it. Good illustrations should be supported by a minimum of clear, concise text, a principle that is often ignored in technical manuals, Woodcote Technical Services, Bramshott House, 139 High Street, Epsom, Surrey KT19 8 EQ .

WW304

DECOUPLED ANTENNAE

A radiation pattern that is absolutely horizontal and not 10 15° above the horizon is claimed for the AEA Isopole omnidirectional antennae which are used in the 2 m and 70 cm bands. The reason for this achievement is the feed line decoupling system with cones that prevent any radiation from the feed line. This means that distant f.m. transmitters and repeaters can be reached which would otherwise require a very large vertical omnidirectional or a beam antenna. Two models are available: the

Isopole 144 and the Isopole 440 which cost $£ 32.50$ and $£ 49.00$ respectively, including v.a.t. ICS Electronics Ltd, PO Box 2 ,
Arundel, West Sussex BN18 0NX. WW305

DVM EVALUATION KIT

To permit prospective customers to evaluate the capabilities of the ZN451 digital voltmeter, Ferranti have produced an evaluation kit.
The monolithic d.v.m. has a facility whereby external components may be included into the auto zero loop; output signals are provided to control external auto zero switches so that op.amps or other signal conditioning circuits can be included in the loop to boost input impedance or improve sensitivity down to 1.999 mV full scale. The kit and further details are available from Ferranti Electronics Ltd, Fields New Road, Chadderton, Oldham, Lancs OL9 8NP.

WW306

COMPUTER CONTROL FOR $£ 170$

Chum One comes with its own operating system, keyboard and alphanumeric one-line display. It may be programmed in Basic or in Z80 machine code to provide machine control or data logging and it may be used in education.

The standard unit consists of four analogue inputs, one analogue output, 16 programmable digital inputs/outputs, four programmable timers/counters, a serial digital input and a serial digital output. Up to 6 K of non-volatile ram is provided and the function of the computer can be altered instantly by inserting a programmed eprom into the external top socket. Programs and data can be loaded or saved on cassette tape through the serial input/output. Warwick Design Group, 12 St George's Road, Leamington Spa, Warwicks CV31 3AY.

WW30\%

THICK-FILM

 LOW PASS FILTERSA range of audio-band low-pass filters have been designed by Toko for use with digital audio equipment. The PAL0900 series are all 20 kHz active filters which are intended to optimise the phase response from p.c.m. coded digital audio discs. They are available with a variety of terminating impedances and with stopband attenuations up to -95 dB . Ambit International, 200 North Service Road, Brentwood, Essex CM14 4SG

WW308

GRAPHICS GENERATORS

Designed to be adapted to almost any 8 or 16 -bit microprocessor the GVP (for Graphics Video Processor) 65 is a single board circuit which can generate a 512×512 pixels display interlaced or 256×256 non-interlaced. It can plot at up to $1,500,000$ dots $/ \mathrm{s}$, can generate ASCII character which may be tilted or changed in size and pictures may be coloured using 4,913 pre-programmed colour patterns. The commands include pen/eraser selection, pen/eraser up or down, clear screen, light pen handling instructions, memory access and writing, block drawing in different sizes, vector drawing, colour and intensity selection, colour mapping, mixing and removing, characters or figures may flash on and off and there are synchronizing and configuration commands.
GVP 65 generates t.t.l. compatible RGB, B/W and composite sync video signals Many GVPs can be synchronized together to build up a picture image. Greatech Electronics Ltd, Hay Lane, Braintree, Essex CM7 6ST.

WW309

SCREW STARTERS

One of the bugbears of assembly and maintenance of electronic equipment is the limited access to the screws that hold it together. We can usually get them out, but the difficulty is in re-assembly. Screw starters which can grip the screw

while it is being positioned are very useful and three are available from Toolrange. The D2 is for slotted screws, the PD-10 for cross-slot (Phillips) heads. These are both pocket-sized with a pen-clip. The D -1 is longer and double-ended for both slotted and Phillips heads Toolrange Ltd, Upton Road, Reading, Berks RG3 4JA

WW310

If you would ilke more

 information on any of the items featured here, enter the appropriate WWreference number(s) on the mauve reply-paid card.

WORDS

I dare say we all use certain words without bothering too much about their meanings. They sound right and seem to fit the context and, indeed, fall into common usage; yet sometimes the accepted meaning is far from that given in the dictionary.

The most useful ones are not in the dictionary at all, and they can be given any meaning that happens to be appropriate. Take the noun "snodgett", for example. Do you know what a snodgett is? No, of course you don't, but it is a very handy universal word to use as the name of almost anything when you can't think of what to call it.

A snodgett on your car chassis gets in the way of your spanner when you are struggling with the nut that holds your broken exhaust pipe. Or, in contrast, the are four quite handsome snodgetts on the ornamental wall clock over our fireplace. And again, there is the snodgett in a video amplier's frequency response that causes overshoot on a fast rise pulse.
It's a very handy word, "snodgett". I strongly recommend that you take it into your vocabulary and use it whever you get stuck for a suitable noun. Eddie Spinks has a universal adjective, "hydrofluvious", but I think it sounds a bit pompous.
However, it was not the non-dictionary words that prompted this literary outburst so much as the misuse of well-established words. In particular, have you noticed how the word "sophisticated" is now fashionable as a kind of universal adjective to imply some degree of vague cleverness associated with its subject. It appears in all kinds of technical sales literature and even in serious technical articles. We frequently read of sophisticated techniques, circuits, machines and the like. And I must confess to having used the word myself in such context without really appreciating its meaning. But, being a bit of a pedant, when I realized my ignorance I looked up the word in the Concise Oxford Dictionary. The entry reads:
Sophisticate (v.t. \& i.) involve in sophistry; mislead thus; deprive of simplicity; make artificial (p.p.) worldly-wise; adulterated (wine, etc).

Not very nice, is it? I see now why these "very sophisticated" computer systems often seem to be full of anomalies, using advanced technology (whatever that means) to achieve results that seem utterly inconsequential. Are they actually intended to mislead? And, as for these "highly sophisticated" weapons that we read about - one wonders whether they are designed to deceive the enemy or the chaps at the sending end. Probably the only one to be deceived is the fool who looks up the word in the dictionary. Everyone else assumes a meaning relating
to cleverness of design, which is just what the authors intend.

WORDS AND MUSIC MAESTRO

They're at it again with gimmicky automobile electronics. This time it's not an entirely Japanese venture but the new British Leyland Maestro. I overheard a fragment of a television programme the other day in which there was a short piece of leaked information about this car, which, I gather, has not even been announced under the Maestro name yet.
Anyway the programme included a statement that the more superior versions would feature an audio readout of dashboard information. Do we call this a "Speakout"? This feature is, of course, in addition to such refinements as electric windows and remotely controlled door mirrors.

As I understood the announcement, the car will speak out such information as speed, fuel level, engine temperature etc., but the report was brief and gave no information about the way in which the driver interrogates the system.

Perhaps no interrogation is necessary. Perhaps the thing is programmed to blurt out the information at preset intervals or when an alarm situation occurs; e.g., "We're nearly out of petrol!" Perhaps it announces the speed as each decade multiple m.p.h. is reached - either accelerating or decelerating. If so, it could be quite dramatic when you have just pulled out of a lay-by and you are trying to reach the speed of the traffic before the dual carriageway peters out.
In the report that I heard, there was no mention of a microprocessor, but you may be sure that the whole system depends on at least one of these devices. No modern electronic system amounts to much without one. So we are naturally led to speculate on the conversational ability of the car of the future as more-and-more data processing power is compressed into smal-ler-and-smaller devices.

I read quite recently about a Japanese heavy goods vehicle with solid-state television cameras mounted at "blind" locations on the truck body and a c.r.t. in the cab to augment the conventional rear-view mirrors. We also read of computer programmes for interpretation of the signals from t.v. cameras to exact meaningful information and act upon it. At present such systems are confined to the field of metrology and machine-tool control, but who knows what the future may bring.
With the general trend towards the use of high technology for totally frivolous purposes, it is possible that the techniques mentioned will one day be combined to enable the car itself to utter those helpful comments currently made by ones pas-
sengers; e.g., "All clear left . . . if you're quick", "That's a police car you're overtaking" and "Why is that fool dripping with water shaking his fist?"
Such technical developments could ultimately do away with the need for passengers altogether, and one could, perhaps, look forward to the optional electronic "hitch-hiker" which gives an authentic account of all the lifts he's ever thumbed while you are trying to listen to the test match commentary on Radio 3.

GETTING THE MESSAGE

One of the advantages of the printed (as against spoken) word is its immunity to the effects of mispronunciation, extraneous noise, imperfect hearing and, in the case of telecommunications, frequency limitations and distortion.

I was not surprised to read, therefore, about a miniature alphanumeric terminal, complete with keyboard, v.d.u. screen, and printer, for use with mobile radio. The article said it is for applications where integrity of the message is very important. It offers most of the advantages one associates with the telex, and perhaps it is another step in a trend towards transmission of written information rather than relying on speech.
It is bound to be more reliable because the transmitted signal is so much simpler. When you come to think of it, spoken language is an extraordinarily complex way of communicating, even by comparison with the arbitrary shapes of the letters in our alphabet. In the face-to-face conversational environment the sounds are supported by facial expression and gestures, which are inevitably lost in sound-only transmission. So, for communication of information, as distinct from emotion, the trend is to the Telex and Teletext and Viewdata.

Or is it? I've just read a feature about computer controlled voice recognition systems and electronic speech synthesizers. This is really high technology stuff, where the human operator speaks to the machine and the machine talks back. I must admit that the voice recognition systems described were mainly concerned with access-control applications and carcase grading in an Australian abattoir. But the prediction was the development of voice operated data terminals, where you interrogate the computer verbally and its synthetic voice answers.

If the computer misunderstands your accent, no doubt it will ask you to "spell it out" using the approved phonetic alphabet. And if you misunderstand, I recommend you call for a print out - unless, of course, you are using the telephone, when it will probably end up with smoke signals.

Electronic Brokers are Europe＇s leading Second User Equipment Company．We carry large stocks of the very latest test equipment which is refurbished in our own service laboratories and calibrated to meet the manufacturer＇s sales specifications． When you buy used equipment from Electronic Brokers，it can be yours in just days．No waiting for manufacturers lengthy production schedules．All equipment is fully guaranteed．

ANALYSERS

tewlett Packar
141 T／8552B／8554B． $100 \mathrm{KHz}-1250 \mathrm{MHz}$ $141 \mathrm{~T} / 8552 \mathrm{~B} / 8555 \mathrm{~A}$ 1OMHz－1 BGHz
$\mathbf{E 9 3 0 0 . 0 0}$

35B2A Spectrum Analyser

 jOO4A Signature Analyser E550．00 Fiter 54470 B ，A／D Converter 54410 Cl 3407A18412 A Network Analyser 34444 Tracking Gen For use with 195540.00 $3558 B$ Spectro E2100．00 MarconiTF2337 Autamatic Distortion
Analyser．．．．．．．．．．．．．．．．．．．．．．．．．．．．． Solartron Tektronix
4A501 opt 01 ．Distortion $10 \mathrm{~Hz}-100 \mathrm{KHz}$ to Less than 0.0025% ． $10 \mathrm{~Hz}-100 \mathrm{KHz}$ DF9 Display Formatter For 7001 ．E850．00 1EEEE／GPIB／ASCII Channe E1000．00 Analyser 492 （opt 01 08）Spectrum A． $\mathbf{\Sigma 7 0 0 0 . 0 0}$ $50 \mathrm{KHz}-220 \mathrm{GHz}$ ．．．． 13000.00 of 492 E20000．00 $\left\{\begin{array}{l}\text { Track } \\ 5 \mathrm{MHz}\end{array}\right.$ 1 Hz ．Gen］and L 3 ［50』 input］ $20 \mathrm{~Hz}=\mathbf{~} 7300.00$ $\mathrm{Hz}-1.8 \mathrm{GHz}$
.$E 6000.00$
c7500．00 ع9450．00 E9850．00 E 3200.00 E3250．00 E2350．00 £2450．00

BRIDGES

1313 0．1\％LCR Bridge	C775．00
TM4520 Set of Inductors	C350．00
Wayne Kerr	
B642LCR0．1\％	¢795．00
SR 268 Source \＆Detector．	c875．0

DVM＇s AND DMM＇s

1059 Bench DMM 5 1／2 digit DC and True
c700．00
Solartron

OSCILLOSCOPES

Hewlett Packard
1332A High Quality CRT Display
9．6×11．9cm＿E1250．00 T＇Base and probe power $\quad \mathbf{~} \mathbf{2 5 0} \mathbf{0 . 0 0}$ 1809A 100 MHz 4 Channel Plug in $\mathbf{E 2 0 0 0 . 0 0}$ 182 ィ A Timebase Piug in ．．．．．．£1000．00 Philips
PM3232 Dual Beam 10 MHz ．．．．．£495．00 PM 3234 True Dual Beam Storage
Dscilloscope 10 MHz New CRT．£ 1500.00 Tektronix．
Tektronix
213 Miniscope／DMM Battery 1 MHz
305 Portable battery scopo／DMM 975.00
$5 \mathrm{MHz} \ldots . . . \quad$ E975．00 delay T＇Base．．．．．．．．．．．．．．1200．00 468 Dual Trace 100 MHz with Digital
Storage （ 10 MHz ］Delay T＇Base． $\mathbf{E} 450.00$ Storage $[10 \mathrm{MHz}]$ Delay T Base，£4950．00
475 Dual Trace 200 MHz Portable T922－01 15MHz DT Scope Diff，input 200C Trolley for 400 Series ．．．．．$£ 120.00$ 100
E2225．00 62225.00
.1450 .00 5223 Digital Storage 10 MHz ．．．．．．£2000．00 544050 MHz Mainframe ．．．．．． 1009.00 544150 MHz Variable Persistance Storage
Mainframe．．．．．．．．．．．．．．．．．．．．
71041 GHz Scope Mainframe 7104 1GHz Scope Mainframe 7704 A Scope DC－200MHz Mainframe 7613 Storage Scope Mainfram 7633 Multimode Storage Scope Mainframe
DC -100 MHz E． 4500.00 7834 Storage Scope Maintrame
$0 \mathrm{C}-400 \mathrm{MHz} .000 ~$ 7844 Dual Beam 400MHz Mainframe
7854．Waveform Processing Scope
DC－400M Hz 7904 opt $02,03500 \mathrm{MHz} \ldots 5350.00$ Telequipment DM63 Storage Oscilloscope fitted with D1016A Dual Trace 20MHz As New ess．00

SIGNAL SOURCES

Hewlett Packard．
GO8E 10－480MHz．AM or Pulse
Modulation．Output $0.1 \mu \mathrm{~V}-1 \mathrm{~V}$ £1000．00 612A $450-1230 \mathrm{MHz}$ ．AM or Pulse
Modulation．Output $0.1 \mu \mathrm{~V}-0.5 \mathrm{~V}$ \＆ 1500.00 $616 \mathrm{~B} 1.8-4.2 \mathrm{GHz}$ int or ext PCM／FM 0.00

651 B Test Dscillator， $10 \mathrm{~Hz}-10 \mathrm{MHz}$.
$0.1 \mathrm{mV}-3.16 \mathrm{~V}$ $0.1 \mathrm{mV}-3.16 \mathrm{~V}$
3320 F Fequency Synthesizer． 0.01 Hz .00
13 MHz 8690B SweeperMainframe with 86995.00 Plug In． $0.4-11.0 \mathrm{MHz} \ldots . .$. ．£4000．00

Marconi．

F2000 $20 \mathrm{~Hz}-20 \mathrm{KHz}$ Low Distortion
dB Attenuator in 0.1 dB steps $\mathbf{E 5 7 5 . 0 0}$
TF2002B with TF2170 Synchronize
$10 \mathrm{KHz}-88 \mathrm{MHz}$ AM／FM Modulation \quad ． 1700.00
TF21200．0008 Hz－100KHz Waveform Generator $1 / \mathrm{FM} 10 \mathrm{KHz}-510 \mathrm{MH} 2$ bult in TF2008 AM／FM $10 \mathrm{KHz}-510 \mathrm{MHz}$ bult in
 TF21 69 Pulse Modulator for use with
E2200．00 philips．
M6456 Stereo Generator．．．．．．©250．00
Pacal
AM，FM．Phase and Pulse Synthesized $5-520 \mathrm{MHz}$
Radiometer
E375．00
TEKTRONIX PLUG INS
We stock a complete range of Plugins
for use with 7000 and 5000 series
Mainframes．

TEKTRONIX TM500

SERIES

AF501 Bandpass Filter／Amplifier ．£400．00 AM501 Op Amp Gain 10，000 £300．00 AM502 Diff．Amp Gain 1 － $100 \mathrm{~K} £ 500.00$ DM502A True RM S 31／2 digit DMM $£ 250.00$ DC503A 125 MHz Counter ．．．．．．£450．00 DC508A 10 Hz － 1.3 GHz 9 Digit $\mathbf{\Sigma 9 0 0 . 0 0}$ FG501 Function Generator $0.001 \mathrm{Hz-} .00$
$\mathbf{\Sigma 3 7 5 . 0 0}$ 1 MHz £375．00 FG MHz ．
$£ 425.00$ $\mathrm{z}-11 \mathrm{MHz}$
£425．00 FG503 Function Generator $1 \mathrm{~Hz}-3 \mathrm{MHz}$ FG504 Function Generator 0.001 Hz－5：00 $40 \mathrm{MHz} \ldots$. PG505 Pulse Generator $1 \mathrm{~Hz}=100 \mathrm{KHz}$ SC502 15 MHz Dual Trace Scope 1000.00

SC504 80 MHz Dual Trace Scope $£ 1250.00$ SG503 Sinewave Generator 250 KHz
$250 \mathrm{MHz} . ~$ TG501 Timemark Generator ．．．．．．£950．00
TEKTRONIX TV TEST

EQUIPMENT

141 A PAL Test Signai Generator $\mathbf{E}^{71750.00}$ 148 PAL Insertion Test Generator $£ 4000.00$ $1485 C$ PAL／NTSC Dual Standard Waveform Monitor E2950．00 651HR 12 PAL Colour Monitor［Mint］ 655HR－1 TV Colour Picture Monitar $\mathbf{£ 3 8 0 0 . 0 0}$ 656HRPAL／SECAM Monitor ．．．．E3900．00 available

MISCELLANEOUS

Bruel EKjaer
Ferrograph
£975．00
RTS 1 Yest Set
C295．00
Fluke
515 A Portable Calibrator DC／AC and
Resistance with DC Resolution 0．2 $\mathrm{\Sigma} \mathrm{~V} 1750.00$
883 AC／OC Differential …．．．．．．．．モ515．00 845 AB Null Detector．．．．．．．．．．．610．00 Portable．Full Spec．on Request ．．$£ 8500.00$ Hewlett Packard．
5340 A Counter $10 \mathrm{~Hz}-18 \mathrm{GHz} 8$ Digit
3750.00 8403A Modulator Fitted With 8732B PIN
MDOULATDR
£1500．00 8482H Power Sensor $100 \mathrm{KHz}-4$ NEW E250．00 8745 A S Parameter Test Set，Fitted
50300 or £300．00 Marconi．
Schatfner．Attenuator．D－111dB £165．00
NSG 509 5KV Insulation Tester ．．．．£785．00 Tektronix
106 Square Wave Generator 1 nS risetime $1 \mathrm{OHz}-1 \mathrm{MHz}$ without accessories ．．£ 175.00 284 Pulse Generator 70 pS risetime $\mathbf{\Sigma 9 5 0 . 0 0}$ 832 Data Comms．Tester．．．．．．．．925．00 833 Data Comms．Tester， 1350.00 2701 Step Attenuator 50 s 20.79 dB in 1 dB
steps．DC to 2 GHz
 Please note：Prices shown do not include VAT or carriage

> Cersulowers
> A range of talescopic towers in static and mobile models from 7.5 to 36 metres with tit-over facility enabiling all maintenance to be at ground level.

Designed in accordance with CP3

- Chapter V: part 2: 1972 for a minimum wind speed of 85 mph in conditions of maximum exposure and specified by professionals world-wide where hostile environments demand the ultimate in design quality and reliability.
Suitable for mounting equipment in the fields of:
Communications
Security suvveilance - CCIV Meteorology
Environmental monitoring
Geographical survey
Defence range-finding
Marine \& aero navigation
Floodighting
Airport approach lighting
Further details available on request.

Strumech Engineering Limited,
Portland House, Coppice Side,
Brownhills, Walsall, West Midands,
WS8 7EX, England.
Telephone: Brownhills (05433) 4321
Telex: 335243 SEL G.

P.\&R. COMPUTER SHOP

IBM GOLFBALL PRINTERS from £70 EACH + V.A.T.

*BRAND-NEW LA36 DEC WRITERS - SALE £200 EACH
CENTRONIC 779 PRINTERS - $£ 325$ + V.A.T
CENTRONIC 781 PRINTER - $£ 350+$ V.A.T.
POWER UNITS, 5-VOLT 6-AMP-£20 EACH
FANS, PCBs, KEYBOARDS AND LOTS MORE
COME AND LOOK AROUND
SALCOTT MILL, GOLDHANGER ROAD
HEYBRIDGE, MALDON, ESSEX
PHONE MALDON (0621) 57440

\title{

DEGSAL a selection from our huge stocks. All items recondifioned unless otherwise stated.
 SPECIAL BULK PURCHASE OF $1 / / 0$ PROGESSORS, PERPHERALS AND OPTIONS EX DEC MAINTAINED SITE enabling us to ofter \exists wide varety of DEC SYSTEMS
 PDP11/23 SYSTEM
 $11 / 23$ CPU, 128 KB MOS, Dual RLO2 \& Controi. OLVI 1, d ine inte riace. NEWE10,975
 PDP11/24 SYSTEM
 $11 / 24$ CPU, 256 KB MOS. Dual RLo2 \& Control. Cabinet VT1 OO Console NEWE15,750
 PDP11/34A SYSTEM
 £13,725
 WT78 Word Termiral and Processor RX01 Dual Floppy D: : Orive Dabio £2950
 $11 / 03 L \times K D 11 H A$ CPU, KEV11 EIS/FIS, BDV1 1 AA Termen ator/8oozstrap,
BA11N5 © ChasSIS with Backplane and Power Supply NL nemory included NEWE1200
 11/O3N KD11OCPU, KEV11 EIS/FIS, BDV11AA Termineur r'Buotstrap. BA11R5 Chassis with Backpione and Power Sufply. ME/11DD 32kW
 NEWE1495
 SREGIAL URCHASE BAANO NEW SUAPLUS
 DEC PDT11/130 PROGRAMMABLE DATA TERMINAL COMPRISING:
 * VT100 with Advanced Video Option \& Printer Port
 * VT100 with Advanced Video Option \&

* integral LSI Processor with 32 K RAM
 * Integral dual TU58 mini cartridge
 Fantastic value whether for use
 £995

 \section*{DEC PDP11/70 EQUIPMENT}

 \section*{DEC PDP11/70 EQUIPMENT}

 \section*{WS78 WORD PROCESSOR}

 \section*{WS78 WORD PROCESSOR}

 \section*{LSI PROCESSORS}

 \section*{LSI PROCESSORS}

 \section*{V4 10-8 C S}

 \section*{V4 10-8 C S}

 RX1 1 Dual FDD withUnbus Ctif (NEW)
RXV il Dual FDD with Obus CtI (NEW)
 RX8E Dual FDD with PDP8 Ct: (NEW)
 PX2 11 Dual FDD with Unibus CtI (NEW)
 RX28 Dual FDD PDP8 CII (NEW)
 RK05J Add-on Disk Drive
 RK11D RKO5J with Unibus CtI
 RKO5F Add-on Drive [Double Density]
 RK06Add-on Drive
 RKE: 1 RKO6 with Unibus Ctl
 RKO? Add-on Drive
 RK71 1 RKO7 with Unibus CtI
 RMOミAdd-on Drive (NEW)
 F.JMO2RMOE withUntbus Ct RMO3Add-on Drive [ASNEW]
 RWMO3 RMO3 with Massbus Ct
 REMOSRMO3 withVAXCtI
 RPOE Add-on Drive
 RJPO6 RP06 with Unibus CtI
 RWPD6RP06 with Massbus Ct

DEC PRINTERS AND TERMINALS
 DEC PRINTERS AND TERMINALS
 ANDERSON JACOBSON
 AJ832 Daisy Wheel Printer 300 baud with Keyboard and Integral Stand
 EIA/RS232 interface
 $£ 750$
 AJ860 Matrix Printer 1200 baud with Keyboard and Tractor Feed
 Gool quality print-out with true descenders Desktop model
 EIA/FS232 interface
 £595
 E125
 \begin{tabular}{|c|c|c|}
\hline LA34 DECwniter IV EIA 300 ba

LA36 DEEwr ter $\| 20 \mathrm{~mA}$ \& $$
\begin{aligned}
& £ 425 \\
& £ 295
\end{aligned}
$$ \& Hazelt.ne 1500 (recon)

\hline LA36 DECwriter Hif ${ }^{\text {de3 }}$ \& £325 \& £325

\hline LA180-PD DECprinter (INEW) \& £495 \& zelt ne 1510 (NEW

\hline LS120 DECwriter ill Ela 1200 haud \& £750 \& £550

\hline VT50DECscooe 20 mA \& £199 \& eltine 1520 (NEW)

\hline ODECscope RS232 \& £225 \& £625

\hline VT105 Graohics Terminal \& £950 \&

\hline
\end{tabular}

SGOOP PUAGHASE OF TEKTRONIX CRAPHIGS ECUDPMENT

 HUGE SAVINGS FROM NEW EMGES ONLY SLIGHTLY USEDGOVERED BY FULL WARPANTY GRAPHICS TERMINALS COLOUR GRAPHICS DESKTOP COMPUTERS PLOTTERS MONITORS 4006-1 HIGH RESOLUTION GRAPHICS DISPLAY TERMINALAlphanumeric Mode 35×74 characters
(63 ASCll character set)
Graphics Matrix $1024 \times$
Graphics Matrix $1024 X \times 1024 Y$
Baud Rate 75 thru 4800 Baud Rate: 75 thru 4800 Interface. Standara RS232/Avithatigh
$\mathbf{£ 1 5 2 5}$

4010-1 HIGH RESOLUTION GRAPHICS DISPLAY TERMINAL
Alphanumeric Mode: 35×74 characters [63 ASCII character set]
Graphics Matrix: $1024 \mathrm{X} \times 1024 \mathrm{Y}$ Baud Rate: 110 thru 9600 Interface. Standard RS2 Thumbwheei crosshair cursor intergral Stand
$£ 2750$

4014-1 and 4015-1 HIGH RESOLUTION BIG (19") SCREEN GRAPHICS DISPLAY TERMINALS
Alphanumeric Mode up to 133×64 characters
(94 ASCll character set or 188 ASCIl + APL on model 4015
Graphics Mode: 4096X $\times 4096$ Y
[includes enhanced graphics option] Interface Standard RS232
Thumbwheel crosshair cursor Integral Stand
 $4014-1$ £6950 4015-1 £7250 4016-1 25' Screenmodel E8950
4027 COLOUR GRAPHICS TERMINAL

Providing 8 displayable colours from a palette of

 64 colours. and 120 user defined patterns Interface. Standard AS232 Baud rates up to 9600 $£ 5250$4051 DESKTOP COMPUTER PROVIDING
High resolution Graphics and Alphanumerics, £2250

4662 INTELLIGENT DIGITAL PLOTTER
Microprocessor Controlled high speed plotting up
to 10 " $\times 15^{\prime \prime}$ with built-in joystick control
IEEE general purpose interface
$£ 1800$
4663 INTELLIGENT DIGITAL
PLOTTER
Microprocessor Controlled high speed plotting up to \times ce with built-in oystick contro Sandard RS232 Interface
$£ 4000$
HIGH RESOLUTION DISPLAY MONITORS
606 DISPLAY MONITOR
5" CRT, 5 ml Spot size, XY amplifier DC
to 3 MHz , 2 -axis amplifier DC to 10 MHz $£ 650$

606A DISPLAY MONITOR as above £875
606B DISPLAY MONITOR $£ 950$

611 STORAGE DISPLAY MONITOR

$11^{\prime \prime}$ CRT, Storage view time 15 mins plus, XY amplifier Programmable $£ 1450$

Winter '82/83 Catalogue now out. Send for your FREE copy now
Electronic Brokers Ltd., $61 / 65$ Kings Cross Road London WCIX 9LN. Tel:01-2783461. Telex 298694

THANDAR PORTABLE TEST BENCH

A wide rangeof high performance instruments, at prices that arehard to beat, puts professionaltzst capability on your bench.
COUNTERS-TF200 10Hz to 200MHz; TF040 10 Hz to 40 MHz ; PFM200A 20 Hz to 200 MHz (hand-held rodel); TP 500 prescales to 600 MHz ; TP 1000 Prescales to 1 GHz .
MULTMETEES-TM351 0.1\% 31/2digit LCD; TM3530.25\% 31/2digit LCD; TM355 0.25\% 31/2digit LED; - M3540.75\% 31/2digit LCD (hand-held model); TM451 0.03\%41/2 digit with autoran ing and sample hold.
OSCILLOSCOPE-SCT10A 10MHz, 10 mV sensitivity, 40 mm CRT with 6 mm graticule divitions.
THERMOMEIERS - TH301-50 ${ }^{\circ} \mathrm{C}$ to $+750^{\circ} \mathrm{C}, 1^{\circ}$ resolution; TH302 $-40^{\circ} \mathrm{C}$ to $+1100^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{F}$ to $+2000^{\circ} \mathrm{F}, 0.1^{\circ}$ and 1° resolution. Both accept any type K thermocouple. GENERATOHS-TG100 1 Hz to 100 kHz Function, Sine, Square, Triangle Wave; TG102 0.2 Hz to 2 MH z Function, Sine, Square, Triangle Wave; TG105 5 Hz to 5 MHz Pulse, Free Run, Gated ar Triggered Modes.
LOGIC ANALYSERS - TA20808 channel 20 MHz ; TA2160 16 channel 20 MHz .
ACCESSOR ES - Bench rack, test leads, carrying cases, mains adaptors, probes,

Send for our latest catalogue and price list. ThandarElectronicsLtd,
_ondon Road, St. Ives,
Junting Jon, Cam bridgeshirePE174HJ.
Telepho e (0480) 64646. Telex 32250.

ELECTRONICS LIMITED PUTTING THE BEST WITHIN YOUR GRASP
WW - 058 FOR FURTHER DETAILS

IF YOU MISS E.T. - YOU'RE PROBABLY NOT TUNED IN

ELECTRONICS TODAY INTERNATIONAL - THE MAGAZINE FOR †HE INFORMED ENTHUSIAST.

AUDIO EXTRA

Hi-Fi need not mean High Finance. Let Electronics Today International help you choose your Hi-Fi system with its 8 PAGE PULL-OUT GUIDE to the best buys in RECORD DECKS, CASSETTE DECKS, CARTRIDGES, AMPLIFIERS, SPEAKERS and TUNERS.

FOUR SPECIAL PROJECTS FOR THE AUDIO ENTHUSIAST TO BUILD: * a new type of POWER AMPLIFIER - better performance and cheaper components

* a BALANCED INPUT PREAMPLIFIER - low noise on long cables.
* a NOISE REDUCTION unit - broadcast quality compressor/limiter
* UPGRADE your existing amplifier - replace the power supply with our stabilised unit

PLUS CONFIGURATIONS basic circuit design. ZX81: full software listing of music and sound effects for the ZX81 soundboard. TECH TIPS readers ideas. READ / WRITE: readers' views. DATA SHEET: organ chips. PseudoROM RAM replacement for 8 K ROM with battery back-up.

ALL IN THE MAY ISSUE OF E.T.I. - AT YOUR NEWSAGENT NOW!

				5172	424 T	elex.s	46708			
VALVES 										

Uninterruptible Power Supplies

UPS CVT Reliability 125 va to $50 \mathrm{kva}, 50$ or 60 hz
STANDBY POWER. Invaluable for winding down a computer programme on mains failure and wherever continuous power is essential.
STABILISATION. $\pm 3 \%$ Vital to combat mains voltage fluctuations and ensure the operation of equipment at peak efficiency. Frequency stabilised $\pm 0.1 \% 47$ to 65 Hz . TRANSIENT ATTENUATION. Provides suppression of mains born interference (spikes). Model above $£ 795$

Line Conditioners
 from
 £150
 and Voltfilt $\begin{aligned} & \text { from } \\ & £ 114\end{aligned}$

For more information, cut the coupon.
Galatrek International, FREEPOST, Scotland Street, Llanrwst, nr. Llandudno, Gwynedd LL26 OAL, BRITAIN Tel No: 0492-640311/641298, Telex: 617114 A/B Galahu Made and Designed in Britain by Galatrek

ALATREK

Please send me full details of your range of voltage stabilisers, filters, cut outs, generators andCVT's
Please send mefulidetails of UPS
Please send mea requirement check sheet
Consultation with GalatrekEngineer
Name
Position
Company
Address
TelNo \qquad
Trade \square OEM \square (please tick where appropriate)

WW - 009 FOR FURTHER DETAILS

NEW! ICOM ICH2 SYNTHESIZED FM HANDPORTABLE

The 1 CH 2 is the first of a new breed of synthesized hand-held radio transceivers. Being synthesized, it requires no crystals to be set on to frequency. All that is required is to lift a recessed panel on the top of the set and cut the correct diodes to program the set to one or two channels. Duplex or simplex is obtained in the same way. This really is a boon to the busy dealer and convenient for the customer who wants those extra few sets "yesterday'
The ICH 2 is very versatile, coming complete with a rechargeable ni-cad pack, small mains charger, rubber helical antenna, earphone and strong spring belt clip. Optional extras include: A speaker/ microphone, cigarette lighter plug 12 V charging lead, 12 V convertor to operate direct from the car supply, leather and leatherette cases, various different types of slide on/off battery packs both rechargeable and dry and a desk charger that fast charges some of the battery packs in 1 to $11 / 2$ hours. The battery packs slide on and off very easily, enabling a spare to be carried in your pocket and an exchange made in the field. Sizes are $6.5^{\prime \prime} \mathrm{H} \times 2.6^{\prime \prime} \mathrm{W} \times 1.4^{\prime \prime} \mathrm{D}$, weighing 1.1 lb . Power output is $1-3$ watts and covers a frequency range of $164.975-174.975 \mathrm{Mhz}$, duplex or simplex
Retail price is 269 pounds each plus VAT. We are also looking for dealers for general distribution. More details from
Thanet Electronics © ICOM
143 Reculver Road, Herne Bay, Kent
Tel: 02273 63859. Telex 965179
WW - 037 FOR FURTHER DETAILS

QUANTITY DISCOUNTS on ALL items (unless stated), 15% per $10,20 \%$ per $50,25 \%$ per 100. All items BRAND NEW (unless otherwise stated)

DELIVERY from stock - Add post 35 p per order.
EXPORT enquiries
TELEX 262284
Transonics
Mono 1400
01-723 1008/9
Callers to: 404 EDGWARE ROAD, LONDON W2 1ED ERS/EXPORT ENQUIRIES 11/12 PADDINGTON GREEN

Add 15\% to your order for VAT. P\&P is free of charge.
ARMON ELECTRONICS LTD.
Cottrell House 53-63 Wembley Hill Road, Wembley, Middlesex HA9 8BH, England Telephone 01-9024321 (3 innes)

TELEX No 923985

pantechnic

THE POWERFET SPECIALISTS

POWERFET AMPLIFIER MODULES

```
MODEL
```

POWER RANGE
(Continuous RMS)
$\begin{array}{lr} & \text { POntinuous RM } \\ \text { PFA } 100 & 50 \mathrm{~W}-150 \mathrm{~W} \\ \text { PFA } 200 & 100 \mathrm{~W}-300 \mathrm{~W}\end{array}$
PFA 200
PFA 500
PFA HV
$250 \mathrm{~W}-600 \mathrm{~W}$ 200W-300W

TYPICAL LOADS

$$
\begin{aligned}
& 4 \Omega, 8 \Omega \\
& 4 \Omega 8 \Omega
\end{aligned}
$$

$$
\begin{aligned}
& 4 \Omega, 8 \Omega \\
& 4 \Omega, 8 \Omega
\end{aligned}
$$

$$
2 \Omega, 4 \Omega, 8 \Omega
$$

$$
4 \Omega, 8 \Omega, 16 \Omega
$$

PRICES (one off)

$\mathbf{£ 1 7 . 3 5}$
 $£ 23.87$

f42.00 $£ 34.30$

Key features:

- RELIABLE
- LINEAR
- FAST

BRIDGEABIE

- STABLE

LOW COST

Powerfet freedom from thermal runaway and secondary breakdown
TID zero, IM/THD $<0.01 \%$ full power (mid-band THD down to 0.0015\%)
Slew rate $>30 \mathrm{~V} / \mu \mathrm{S}$ ($45 \mathrm{~V} / \mu \mathrm{S}$ typical)
Signal to noise ratio 120 dB

- Without extra circuitry

Unconditionally
10 watts to 20 watts per \mathbf{E}, depending on model and quantity

As they stand these modules suit most P.A. and industrial applications and satisty all foreseeable audiophile requirements. (The HV is aimed at digital audio.) Where aspects of performance fail to meet specific requirements le.g. in speed or power) low-cost customising is often a possibility. Alternatively entirely new boards can be produced.

ALSO

PAN 20-Ultra-low-noise/distortion, mono preamp board, $\mathbf{E 6} .76$ PAX $2 / 24$ - 2-way active crossover board ($24 \mathrm{~dB} /$ octave) plus regulators, $\mathbf{£ 9 . 7 0}$ THE HEAT EXCHANGER-New, super-efficient heatsink; handles 300 W or 1.2 kW when blown; 7in. $\times 4$ in. $\times 21 / 4 \mathrm{in}$., $\mathbf{£ 7 . 5 0}$

This is just a fraction of the new products available from Pantechnic -check us out!

Prices exclude V.A.I
Carriage 75p

Technieal Enquirios Phil Rimet

WW - 070 FOR FURTHER DETAILS

CHILTERN ELECTRONICS

INCREDIBLE SCOOP PURCHASE OF SUPERB HIGH RESOLUTION

9" VIDEO MONITORS

Look at these features:
$\star 18 \mathrm{Mhz}$ Bandwidth

* Over 85 Chars/line resolution
* P31 Green Screen
\star Composite Video i/p
\star Mains 230v
\star Antireflective Faceplate
\star Attractively styled case
Why pay $£ 120$ or more?
BRAND NEW IN MAKER'S CARTONS AT THE AMAZING BARGAIN PRICE OF $£ 78$ vat extra, carriage $£ 5$
Quantity discounts/dealer enquiries welcome

THE IDEAL MATCH FOR YOUR MICRO
High Street, Chalfont St Giles, Bucks HP8 4OH
Telephone 02407 71234. Telex 262284

01-452 1500 Trecinomatic Ltid 01-450 6597

WORD PROCESSOR 'VIEW' 16K ROM £52

BBC Model B £399 (incl. VAT)
Carr $£ 8$ /unit Model A to Model B upgrade kit $£ 50$
Fitting charge $£ 15$
Individual upgrades also available
TELETEXT ADAPTOR £195 PRESTEL ADAPTOR E90 2nd PROCESSOR $6502 £ 170$ 2nd PROCESSOR Z80 £290

FLOPPY DISC INTERFACE
incl. 1.0 Operating System $\mathbf{£ 9 5}$ \& £20 installation

Phone or send for our BBC Ieatled

BBC FLOPPY DISC DRIVES

Single Drive 51/4" 100K £235+£6 carr Double Drive $51 / 4^{\prime \prime}$ 800K $£ 799+£ 8$ carr.

BBC COMPATIBLE DRIVES

These are drives with TEAC FD50 mechanism and are complete with power supply SINGLE: $100 \mathrm{~K} £ 190 ; 200 \mathrm{~K} £ 260 ; 400 \mathrm{~K} £ 340$ DUAL: 200K £360; 400K £490; 800K £610

ACORN SOFT/BBC SOFT/GAMES PADDLES IN STOCK

OFFICIAL BG DEALER

CASSETTE RECORDER

Ferguson 3TO7
£26.50 $+£ 1.50$ carr
Cassette Leads $£ 3.50$
$£ 4.50$ for $10+£ 1$ carr

MONITORS

MICROVITEC 1431 14in Colour Monitor $\mathbf{£ 2 4 9 + £ 8 \text { carr }}$ MICROVITEC 203120 in Colour Monitor $£ 319+£ 8$ carr SANYO 14 in Colour Monitor RGB $£ 255+£ 8$ carr Lead for SANYO RGB $£ 10$ SANYO 12 in Hi Res Green Monitor $\mathbf{£ 9 9 + \mathbf { E 6 } \text { carr }}$

ACORN ATOM

Basic Built £135. Expanded £175 (Carr $£ 3$ per unit)
Atom Disc Pack $£ 299+£ 6$ Carr
3 A 5 v Regulated PSU $£ 26+£ 2$ Carr $3 A 5 v$ Regulated PSU $£ 26+£ 2$ Carr
Phone or send for our BBC Atom list

EPSOM MX 80 and 100F/T3
MX 8080 CPS 80 cols MX 100100 CPS 136 cols Logic Seeking, Bidirectional Bit Image Printing, 9 $\times 9$ Matrix Auto Underline MX 80 F/T3 £325 MX 100 F/T3 £430 ($\mathrm{E} 8 \mathrm{Carr} /$ Printer)

NEC PC 8023 BE - C 100CPS, 80 cols Logic Seeking, Bi directional,
Forward and Reverse Line Feed,
Proportional Spacing, Auto Underline
Hi-Res and Block Graphics, Greek Char Set Only $£ 320+£ 8$ carr.

PRINTERS

SEIKOSHA GP 100A 80 cols 30 CPS Full ASCII \& Graphics $10^{\prime \prime}$ wide paper Now only $£ 190+£ 6$ carr. Ask for details on GP 250A

Parallel Printer lead for BBC/Atom to
2,000 fan fold sheets $91 / 2^{\prime \prime} \times 11^{\prime \prime} £ 13.50 \times £ 3 \mathrm{p} \& \mathrm{p}$

CONNECTOR SYSTEMS

RUGBY ATOMIC CLOCK

This 280 micro controlled clock/calendar receives coded time data from NPL Rugby. The clock never needs to be reset. The facilities include 8 independent alarms and for each alarm there is a choice of melody or alternatively these can be used electrang sup to 240 lap times without interrupting the count. Expansion facilities provided

See July/August ETI for details
Complete Kit $£ 120+£ 2$ p\&p

MICROTIMER

6502 Based Programmable clock timer with $\star 224$ switching times/week cycle $\star 24$-hour 7 -day timer
$\star 4$ independent switch outputs directly interfacing to thyristor/triacs
$\star 6$ digit 7 seg. display to indicate real time, ON/OFF and Reset times

- Output to dr

Full details on request. Price for kit $£ 57$

MICRODOCTOR

This is not a logic analyser or an oscilloscope. It tests a microsystem and gives a printed reprint on RAM, ROM and $1 / O$ - it will print memory map, search for code, check dataline shorts and operates peripherals. Microdoctor complete with psu, printer probe cable and two configuration board
£295

PLEASE SEND FOR PRICE LIST

SOFTY II INTELLIGENT PROGRAMMER
The complete microprocessor development system for Engineers and Hobbyists. You can develop programs, debug, verify and commit to ful editing facilities permit bytes, blocks of bytes changed, deleted or inserted and memory contents can be observed on ordinary TV. Accepts most $+5 v$ Eproms
Softy II complete with PSU, TV Lead and Romulator lead £169

UV ERASERS

JV1B up to 6 Eproms $£ 4750$ UV1T with Timer $£ 60$ UV140 up to 14 Eproms $£ 61.50$
UV141 with Timer $\mathbf{1 7 8}$ (Carr £2/eraser) All erasers are fitted with mains switches and safety interlocks.

TRAINER KITS

6502 Junior Computer. 6802 Nancomp I 6809 Nancomp II 1802 Micro Trainer. Z80 Menta (fully built and documented) Full details on request

SPECIAL OFFER	
2114 L	80 p
$2716(+5 \mathrm{~V})$	250 p
2532	
$4116-2$	350 p
$4164-2$	80 p
6116 p	450 p
	350 p

BOOKS

(NoVAT p\&p fil

CMOS Cook Book Programming the 780 Z 80 Microcomp Handbook Programming the 6502 6502 Assy. Lang... 6502 Applications. 6502 Software Design $\begin{array}{r}\text {.. } £ 9.05 \\ \hline 10.25\end{array}$ large selection of databooks interfac ing books, books on BBC, etc in stock Ask for our list.

 Cat. No. 98A. Noise weighting fiters for CCIR/ARM cto each

BECKIMN TNANS COUNIER DILS

Miniature type (22 mm diam.). Counting up to 15 turn "Helipots". Brand new with to mounting instructions. Only $£ 2.50$ each
\rightarrow VARIACS' - SPECIAL PURCHASE \star
We now have a stock of used but excellent condi tion, fully tested, variable $(0-260 \mathrm{~V})$ transformers a the following ratings.
BERCO (enclosed) 2A

 ZENITH (enclosed) $8 \mathrm{~A} .28 .00+£ 2.50 \mathrm{pp}$ Also evailable, small quantity of Heavy Duty and 3 Phase Variacs. P.O.A. WATIWETERS
$3.5 \& 80 \mathrm{hm}$ Switchable 1W 81 10W FSD. Inter enamelled case load impedances. Housed in grey enamelled case
$6 \times 6 \times 3^{\prime \prime}$. Large easy to read $3^{\prime \prime}$ sq. meter. Scope output provision $£ 10(+£ 1)$
HEATHKIT Model AW-NU. Internal load switchable 3, $8,15 \& 600 \mathrm{Ohm}$. Meter scaled $0-50 \mathrm{~W}(+\mathrm{dB}$ scale). 5 Ranges from 5 mW -50W FSD. Mains powered. $£ 25(+£ 11$.
MARCONI TF893A. 1 mW -10W Full scale in 5 ranges. Impedances
Direct calibration in Watts and dBm. $\mathrm{E} 05(+£ 2)$. GPO JACK SOCKET STRIPS. 20-WAY Type 320 (3 pole) $£ 2.50$ ea. Type 520 (3-pole with switching contacts) £4 ea. Please include 35p each for postage on these. GPO type 316 jack plugs for
above 200 ea. (10+ post free). Plus VAT please. Also recent stock of new, mint condition 720 Type, $£ 6$ each.
\star PHILIPS RF SIGNAL GENERATOR $\star \star$
As new condition Philips PM 5326 . AM/FM RF SigAs now conator covering o. $1-125 \mathrm{MH}$. Integral 5 digit ties. 1 only availabie.

A bulk purchase of Advance series 'scopes enable us to offer the following fully reconditioned, gua
anteed units as follows.
OS2000 20 MHz dual-beam. $10 \mathrm{mV} / \mathrm{cm}$. (2002Y \& 2003X P.I.s) $£ 200$. OS2100 30 MHz dual-beam. $10 \mathrm{mV} / \mathrm{cm}$. (plug-in units as above) $£ 230$ OS 220025 MHz dual-beam. $10 \mathrm{mV} / \mathrm{cm}$ STORAGE. 2005X plug-in E 31 B .
N.B. All these prices INCLUDE 15% VAT. Securicor despatch if required + £10 ea. We also have in stock various optional plug-in units such as Differential (50 UV) Y-amp., Sweep-delay X-amp, etc. Please call for de tails. For full spec SAE please.
ADVANCE VM77D Millivoltmeters. $15 \mathrm{~Hz}-4.5 \mathrm{MHz}$. 1 mV Fuil scale $-\mathbf{3 0 0 \mathrm { V }}$ ACE55
WOEIKE ME 104 C Wow \& Flutter Meter 895
AVO Type 1 LCR Component Bridge
WAYNE KERR AF Signal Generator Type S121 475
AIRMEC Wave Analysers Models 853 and 248A.
CENTRONICS P1 Printer, one only. AND Type 663 Printer ROHDE SCHWARZ SDR Signal Generator. $300 \mathrm{MHz}-1 \mathrm{GHz}$. HEWLETT PACKARD 608 C Signal Generator. $10-480 \mathrm{MHz} \mathrm{AM}$ MARCONI Component Bridge Model TF2700. (LC\&R) OKIDATA CORP Series 3300 Hard-Disc Drives.
TALLY Model 220 Line Printers.

BELL 8 MOWELI

Type SR5 Screen size 9×5 cent small quantity now avail. E55 \rightarrow SWEEPERS
TELONIC SWe日p generator system type 2003. Fitted with Marker, attenuator, Detector plug in units and Generator covering 300-1500MHz. $\mathfrak{e z 2 5}$
DISC CARTRIDGES
BASF 12 -Segment Single Hard Disc Cartridges. Brand new surplus stock.

MUIRAENO

* FACSINHE UNTS t MUFAX 'COURIER' facsimile re ceiver type K441-CH and transmitters K400 AMCH in stock in excel lent condition.

PLEASE NOTE. All the pre-owned equipment shown has been carefully tested in our workshop and reconditioned where necessary. It is sold in first-class operational condition and most items carry a three months' guarantee. For our mail order customers we have a money-back scheme. Repairs and servicing to all equipment at very reasonable rates. PLEASE ADD 15\% VAT TO ALL PRICES.
\star DC POWER SUPPLES \star

1. APT.10459/8. Stabilised Regulated supplies. New preset output voltages between 6 and 30 V DC (state requirements) $\pm 4 V$ approx. Three sizes available, $5 A, 71 / 2 A \& 10 A$. Prices $£ \mathbf{2 0}, \mathbf{£ 2 5} \& \mathbb{£ 3 0}$ respectively (plus postage $£ 2, £ 2.50$ and $£ 4$)
2. Mullard Dual supplies. Pos/Neg 12V @ 1 A \& 0.4A. Dimensions $9 \times 4 \times 5^{\prime \prime} . £ 10$ ea. (+ £ 1 p\&p). 3. Farnell Current limited. 13-17V DC @ 2A. £15. 27 32VDC@1A. £15 (+£1 p\&p)
3. Lambda LXS Series supplied 110 V AC Input. 5V @ 14A. $£ 20(+£ 2.50$ p\&p). Various other voltages . Coutant $5 / 6 \mathrm{~V}$ @ 5 AA . Small size $\left(7 \times 5 \times 3^{\prime \prime}\right)$. $£ 20$ (+£1).
4. Variable 0-30V@1A. Volt-metered. $£ 30$.
5. Farnell 5V Switching. 60A. £85.

* RF SICMAL GENERATORS

ADVANCE TYDE E2. $100 \mathrm{kHz}-100 \mathrm{MHz}$. Internal AM \& Audio O/P. $1 u \mathrm{~V}-100 \mathrm{mV}$ output. Price each $£ 50$ inc. VAT.
TAYLOR Type 68A/M. $100 \mathrm{kHz}-240 \mathrm{MHz}$. Interna Modulation. $\mathbf{6} 60$ inc. VAT
Ald of these units are in full working condition cases please add $£ 2$ each for carriage.

FSD. Wide-band to 10 MHz
 SD. Wide-band to 10 MHz

MARCONI TF2603. Frequency range 50 kHz 1.5GHz. High Sensitivity from 300 uV .

AC/DC 300 mV Full scale to $300 \mathrm{~V}(1 \mathrm{kV} D C)$ Re sistance ranged. AC Frequency range 20 Hz 1500 MHz

C BRUEL \& KJOR t

Model 2006 Heterodyne Voltmeter. AM/FM Voltage measurements to 240 MHz

CLAUDE LYONS 240V AC

 REGULATORSSmall quantity available of constant voltage main regulators. Continuous currant rating 5 A. Mode no. CVR-1200. Input 204-252V. Output adjustable $200-254 \mathrm{~V}$ AC $\pm 0.3 \%$. $45-65 \mathrm{~Hz}$. Condition as new (Dims- $11^{\prime \prime} \times 7^{\prime \prime} \times 6^{\prime \prime}$. Weight 20Kgs). Price 595 + Carriage ex.

PAN \& TILT HEADS were used for CCTV Cameras heavy duty weight about 75 lbs will give 360° Pan 8 Tilt as two reversible 240 v motors approx height $19^{\prime \prime}$ will adapt for Dish mount, oxt soiled due to outdoor use, £65. VIDEO TAPE REC Philips type N1500 colour, RF in AC $50 \mathrm{c} / \mathrm{s} 140$ wetts sin waver AC $50 \mathrm{c} / \mathrm{s} 140$ watts sine wavo rotary type, 245 . RADIOSONDE UNITS British Mk. Il new cond. With chart \& circ req $90 / 2 \mathrm{v}$ DC Ix on $27 \mathrm{Mc} / \mathrm{s}$, var 300 Uv to 10 v RMS into 600 ohm , Valve Voltmeter 30 MilliN to var 300 Uv to 10 V RMS into 600 ohm , Vaive Voitmeter $30 \mathrm{Mill}, ~$ to 100 v FSD in 7 ranges, Distortion meas set 20 c to $20 \mathrm{Kc}, 3$ ranges 10,30 8100% new condition with handbook 8 leads for $200 / 250 \mathrm{v}, \mathrm{f} 115$. HIGH VOLTAGE TS 240 I/P O/P 15/20 or 25Kv in fitted wood case size $9 \times 7 \times 13^{\prime \prime}$ with leads, uses vibrator contact breaker, £27. MARCONI TF1102 oxt AM modulators will handle sine, sq or video up to $300 \mathrm{Mc} / \mathrm{s}$ with book, £25. FREQ CONV. I/P 240 v O/P $115 \mathrm{v} 400 \mathrm{c} / \mathrm{s} 1$ phase sine wave 100 watts new solid state unit by Roband, $£ 115$. OSC AMP UNIT comprises 150 watt valve amp 8 var freq AF Osc 30c to 30Kc as O/P voltmeter and adjustable O/P impedance down to 16.7 ohm for 240 v in table case, $£ 115$. TRIX AC CABIN SPK UNITS size $17 \times 31 / 2 \times 21 / 2^{\prime \prime}$ as $4 \times 3 \times 3^{\prime \prime} 3$ ohm spk units, $\mathbf{6} 6.50$. POWER UNITS 240 v I/P provides O/P of 28v DC up to 15 amps semi reg load range $4 / 15$ a complete in case $7 \times 7 \times 16^{\prime \prime}, \mathrm{E} 38$. METERS Record circa scale
 $200 / 250 \mathrm{v} 50 \mathrm{c}$ size $4 \times 4 \times 31 / 2^{\prime \prime}$ new, f15. Also freq meters $45 / 65 \mathrm{c} / \mathrm{s} 230 \mathrm{v}$ $2^{1 / 2^{\prime \prime}}$ dia, $£ 11.50$. Also misc panel meters mixed 4 for $£ 6.50$. COAX CABLE UR57 HD 75 ohm 10 mm osd, £4.50 for 10 mt , 30 pmt over this new. RTTY TERM UNIT Redifon CSF unit 445/470kc reqs 25 Mill/V drive from 50 ohm, shift $400 / 1000 \mathrm{c} / \mathrm{s}$, standard $80-0-80$ O/P reqs ext
power unit with handbook good cond., f65. RECT. No. $7110 / 200 / 250 \mathrm{v}$ power unit with handbook good cond., £65. RECT. No. $7110 / 200 / 250 \mathrm{v}$
or 12 v DC I/P provides $80-0-80 \mathrm{v}$ at 30 Ma , 12 v etc can also be used to give 240v AC O/P from 12v DC I/P up to 40 watt in fitted wood case with circ, $\mathbf{\text { 8 }} \mathbf{8 . 5 0}$. H.F. Tx AMP UNITS ex A/C TX $2 / 18 \mathrm{Mc} / \mathrm{s} 100$ watts inc two 4×150 s req ext drive $\&$ power with circ etc in case $8 \times 8 \times 12^{1} / 2^{\prime \prime}$, £27. CCTV System Philips medical system with high grade lens \& Plumbicon tube, $19^{\prime \prime}$ mon cable, etc, with circs., $\mathbf{\text { f165. METER 0/100 }}$ amps DC with shunt $41 / 2^{\prime \prime}$ £11.50. AERIALS Army 60 meter wire dipoles new £6.50. Also PYE 70/73Mc/s Ground plane aerials new 50 ohm f25 callers. MORSE KEYS min type for A510 new cond., f3.50. conds, parts from Marc, etc., Radar Speed meas equip.
Above prices incl. Carr./VAT, goods ex equip. unless stated new, allow 14 days for delivery. SÁE with enquiry or $2 \times 151 / 2 p$ stamp for List. 30.

A.H. SUPPLIES
 122 Handsworth Road, Sheffield S9 4AE Telephone: (0742) 444278

Happy Memories

Registered in England 1179820

267 \& 270 ACTON LANE LONDON W4 5DG Tel. 01-747 1555/01-994 6275. Telex: 291429

Stabilised Power Supplies.
Switched-mode and Linear.
Brand New, Unbeatable Prices.
Hundreds in stock.
Coutant, Gould, Lambda, Farnell, ITT, Gresham etc.
S.A.E. for latest list.

D TO A CONVERTERS ${ }_{15 \mathrm{MHz}}$, 8BIT

By Micro Consultants Ltd, 50Ω cable drive op. Linearity 0.25%, max 0.125% typ. Settling time; $2 V$ step $70 n S$ typ. $2 M V$ step $50 n S$ colour television transmission standard. Diff. gain 0.5% diff phase shift 0.5% types rad 802 and MC2208/8. Unused. Ex-maker's pack.

SPECIAL OFFER PRICE $£ 10.00$

TRANSFORMERS
$3-0-3 \mathrm{~V} 100 \mathrm{~mA}$ $5-0-5 \mathrm{~V} 400 \mathrm{~mA}$ $6-0-6 \mathrm{~V} \quad 100 \mathrm{~mA}$ $6-0-6 \mathrm{~V} 250 \mathrm{~mA}$ $0 / 6-0 / 6280 \mathrm{~mA}$ $8-0-8 \mathrm{~V} 400 \mathrm{~mA}$ $9-0-9 \vee 75 \mathrm{~mA}$
9-0-9V 3A
$11 \mathrm{~V} 2 \mathrm{~A}, 22 \mathrm{~V} 1 \mathrm{~A}$
12-0-1250mA
$12-0-12 \mathrm{~V} 100 \mathrm{~mA}$
12 V 130 mA
12-0-12V 250 mA
$12-0-12 V$
$12 \mathrm{~V} 1 A 5$
$13 V+6.5 V$ Sec 2 Am
0-12-0-12 96VA
15 V 100 mA
$0 / 12-0 / 12500+500 \mathrm{~mA}$
$9-0-9 V$
$9-0-9 \mathrm{~V} 1$ Amp
12-0-12V 1 Amp
15-0-15V 1 Amp
15 V 100 mA
17 V 300 mA
30,24,20,15,12,2 Amp
6.3V 1.5 Amp
$6-0-6 V 1.5 \mathrm{Amp}$
20-0-20 400 mA
22-0-22 50 mA
$24 V 100 \mathrm{~mA}$
24 V 250 mA
$25 \mathrm{~V}+6.2 \mathrm{~V}$ Sec 1.6 Amp
30,24,20,15,12,2 Amp
9-0-9 2 Amp
12 V 2 Amp
20-0-20V 2 Amp
$30-0-30 \mathrm{~V} 2 \mathrm{Amp}$
30 V 250 mA
30-25-0-25-30 1 A6
0-2-4-6-8-10 5A
£8.00

VIDEO GAME BOARD

FIELD GOAL VIDEO GAME
by Taito a top quality board, complete with 6800 CPU system system with 2715 EPROMS with circuit diagram plus all connections for either colour or Black \& White monitors (TV Sets). Price $£ 20.00$ + VAT $£ 3$, P\&P $£ 2.55$
POWER SUPPLY KIT
to suit + circuit diagram
Price: $\mathbf{£ 1 5 . 0 0}$

+ VAT £2.25, P\&P £ $£ .45$
2×22 Way Gold Plated Double Sided D. 156" edge Connectors to suit Video Boards.
Price: $\mathbf{£ 1 . 6 0}$ per pair.
+ VAT 24p P\&P included
The Complete Kit $£ 46.00$ inc.
Full Details on Application.

Switchcraft Cannon Connectors 3-pin plug. Free hanging
£1.20
A3F 3-pin socket. Free hanging with lock
£1.32 D3F 3 -pin Socket. Female chassis mounting with lock

D3M 3-pin Socket. Male chassis mounting

BLACK PLASTIC BOXES
$75 \times 50 \times 25 \mathrm{~mm}$
$80 \times 60 \times 40 \mathrm{~mm}$
$90 \times 70 \times 40 \mathrm{~mm}$
$115 \times 75 \times 30 \mathrm{~mm}$
$110 \times 90 \times 45 \mathrm{~mm}$
$170 \times 100 \times 50 \mathrm{~mm}$
$200 \times 120 \times 80 \mathrm{~mm}$

\section*{${ }^{\mathbf{5}} \mathbf{6 0 . 6 5}$
 ${ }_{60.92}^{60.95}$
 ${ }^{6} \mathbf{E 0 . 9 9}$
 E0.90
 | ع1.185 |
| :--- |
| ع. |
 ${ }^{6} \mathbf{E} .55$}

filters

3 Phase 20 AM Filters 433 V $50 / 60 \mathrm{~Hz}$ Phase to Phase 250 V AC $50 / 60 \mathrm{~Hz}$ Phase to Neutral mfr. by Corcom Chicago II., USA.,
£15 oach.
Single Phase Filter 30 Amps 125 V 60 Hz by Potter $\mathbf{5 5 . 0 0}$
Sprague Filter 2×30 Amp 250 V $\mathrm{AC} 60 \mathrm{~Hz} £ 10.00$
Erie Mains Filters 3 and 5 Amp 250 V AC $50 \mathrm{~Hz} \mathbf{f 4 . 0 0}$
All the above mentioned Filters are brand new. Carriage extra.

SPECIAL OFFERI 0.1\% TOL
resistors. The following values available. 2K, 3K, 10K, 30K, 1 Mega ohms. Welwyn or Filmet. Price 30p each.

CERMET PRESETS 15p each
10A 250 V AC ILLUMINATED ROCKER SWITCH
Red, DP ST $26 \times 30 \mathrm{~mm}$ rectangular snap-in type. $\mathbf{£ 0 . 7 5}$
18A 250 V AC ILLUMINATED ROCKER SWICH
(Amber). $14 \times 30 \mathrm{~mm}$ rectangular snap-in type. SPST £0.30 LCON ILLUMINATED SWITCHES
2PCO Latching $\quad \mathbf{1 1 . 5 0}$ 2PCO Latching
$\underset{\substack{\varepsilon 1.50 \\ \epsilon 1.50}}{\text { f. }}$ 2PCO Momentary
$\mathbf{8 0 . 5 0}$
Lenses available in red or white only.
MAIL ORDER: Gds + 15% VAT,

plus VAT-inclusive Ad M/pkg/post:			
1/4Kg	1.30	$\mathbf{4 K g}$	3.90
$1 / 2 \mathrm{Kg}$	1.70	5 Kg	$\mathbf{4 . 2 0}$
$1 / \mathrm{Kg}$	2.20	6 Kg	4.40
1 Kg	2.55	$6-10 \mathrm{Kg} 5.00$	
2 Kg	3.00	Over $10 \mathrm{Kg}:$	
3 Kg	3.45	Quote	

ALUMINIUM BOXES

AB7 $5.25 \times 2.50 \times 1.50 \mathrm{in} .(133.4 \times 63.5 \times 38.1 \mathrm{~mm})$
AB8 $4 \times 4 \times 1.5 \mathrm{in}$. $(101.6 \times 101.6 \times 38.1 \mathrm{~mm})$
AB9 $4 \times 2.25 \times 1.5 \mathrm{in}$. $(101.6 \times 57.2 \times 38.1 \mathrm{~mm})$
AB10 $4 \times 5.25 \times 1.5 \mathrm{in}$. $(101.6 \times 133.4 \times 38.1 \mathrm{~mm})$
AB11 $4 \times 2.50 \times 2 \mathrm{in}$. $(101.6 \times 63.5 \times 50.8 \mathrm{~mm})$
AB1 $23 \times 2 \times 1 \mathrm{in}$. $(76.2 \times 50.8 \times 25.4 \mathrm{~mm})$
AB13 $5 \times 4 \times 2 \mathrm{in}$. $(152.4 \times 101.6 \times 50.8 \mathrm{~mm})$
AB14 $7 \times 5 \times 2 \mathrm{in}$. $(177.8 \times 127.0 \times 50.8 \mathrm{~mm})$
AB15 $8 \times 6 \times 3$ in. $(203.2 \times 152.4 \times 76.2 \mathrm{~mm})$
AB16 $10 \times 7 \times 3$ in. $(254.0 \times 177.8 \times 76.2 \mathrm{~mm})$
AB17 $10 \times 4.50 \times 3 \mathrm{in} .(254.0 \times 114.3 \times 76.2 \mathrm{~mm})$
AB18 $12 \times 5 \times 3$ in. $(304.8 \times 127.0 \times 76.2 \mathrm{~mm})$
AB19 $12 \times 8 \times 3 \mathrm{in}$. $(304.8 \times 203.2 \times 76.2 \mathrm{~mm})$
BLUE REXINE. COVERED ALUMINIUM BOXES
RB1 $6 \times 4.50 \times 2.5 \mathrm{in}$. $(152.4 \times 114.3 \times 63.50 \mathrm{~mm})$
RB2 $8 \times 5 \times 3$ in. $(703.2 \times 127.0 \times 76.2 \mathrm{~mm})$
RB3 $9 \times 5 \times 3.50 \mathrm{in}$. $(228.6 \times 127.0 \times 88.9 \mathrm{~mm})$
RB4 $11 \times 6 \times 4$ in $(279.4 \times 152.4 \times 1015 \mathrm{~mm})$
RB5 $11 \times 7.50 \times 4.50 \mathrm{in} .(279.4 \times 190.5 \times 114.3 \mathrm{~mm})$

This advertisement is mainly of our excess stockbolding. We also have excellent stocks of semiconductors, hardware, cables etc. etc. Four further details send for our lists and retail price catalogue, phone or visit our shop. All prices are exclusive of VAT (and P\&P) Minimum Mail Order $£ 5.00$ + P\&P + VAT. Government departments, schools, colleges, trade and export welcome.

QPUS SuPPLIES SPECIAL OFFERS

DISC DRIVE DISCOUNTS

FD 514-8in. S/S D/D DRIVE FORMATTED 600KBYTE £149

\star FD $650-8 \mathrm{in}$. D/S D/D DRIVE FORMATTED 1.2 MBYTE $£ 199$
\star CASE TO HOLD TWO DRIVES WITH COSSOR POWER SUPPLY FAN AND CARRYING HANDLES-BRAND NEW-ONLY £99.95
A Special Purchase allows us to offer a limited quantity of these items at this remarkable price. The drives are manufactured by Pertec - are Shugart compatible and have a 90day warranty.

51/4in. DISC DRIVES

CANNON S/S D/D 40-TRACK
Formatted 175kByte-ONLY £129.95
TEAC 55F D/S 80-TRACK - Formatted density 00k - double density 800k ONLY £229

* Ideal for use with BBC and other leading micros
* Full warranty
* Slimline latest technology
\star See us at Midland Computer Fair 28-30 April - Stand $508 \star$ Bingley Hall, Birmingham

22IN. RGB COLOUR MONITOR ONLY $\mathrm{E}^{29} 95$

Stocks of our 22-inch Uncased Colour Monitor are now diminishing fast - to avoid disappointment order now!

NN THEMAGIC BOARD $p_{\text {RESS }}^{\text {sion }}$

Add-on memory for your BBC MICRO
Simply plug into a spare Eprom socket - fits inside your micro. Gives up to 16 k of additional ram - 64 k of Eprom. Takes the following $2716 / 2732 / 2764 / 6116 / 5516$. Supplied with full software instructions.

To order add carriage at the following rates: Monitor $£ 10$, Drives and Case $£ 7$, Board free; and V.A.T. at 15% menm to total; send your order to: OPUS SUPPLIES, 10 BECKENHAM GROVE, SHORTLANDS, KENT.

IEEE PROGRAMMABLE LOW OHM RESISTANCE 9819

PLATINUM RESISTANCE $\star 0.01$ OHMS-10KOMS THERMOMETPY
Other IEEE programmable units, Power Supply, Precision Voltage and Current sources, 24 way relay switch, AC/DC Voltage Calibrator, Screwdriver.
ד TIME ELECTRONICS LIMITED, BOTANY INDUSTRIAL ESTATE, TONBRIDGE, KENT Telephone: 0732 355993. Telex: 95481

WW - 039 FOR FURTHER DETAILS

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

BROADFIELDS \& MAYCO DISPOSALS

21 Lodge Lane, N. Finchley, London, N.12. 5 mins. from Tally Ho corner Telephone 445 2713/0749

Spring Reductions

on the following items ex stock

MARKER SLEEVING (Nova), colour coded, most sizes and materials; competitive prices
CARTRIDGE FUSES (Beswick), good selection of types and ratings at discount prices (30%)
AUDIBLE WARNING DEVICES (Besson) Solid-State Banshees, Cyber tones, Bleeptones, Bleeptester, etc.
SAMPLES if any at quantity rate
WIRE WOUND RESISTORS (Osborne), 5W, 7W, 11W, 17W; 116 different values and ratings in stock at special prices
ELMA RANGE of knobs and accessories; lowest prices
CRIMP TERMINALS, small or large quantities
CARBON FILM RESISTORS; $4,000,000$ must go, mainly $1 / 16 \mathrm{~W}$ and $1 / 4 \mathrm{~W}$ also available: $1 / 2 \mathrm{~W}, 1 \mathrm{~W}$ and 2 W ; really low prices

Tonbridge, Kent TN11 0LH

WW - 005 FOR FURTHER DETAILS

CX80 colour MATRIX PRINTER

New low price $\mathbf{f 7 9 5}+\mathrm{V} \cdot \mathrm{A} \cdot \mathrm{T}$

At last a low-cost Colour Matrix Printer for Text, Graphics, Histograms, Colour VDU Dumps, etc.

Colour printout is quickly assimilated, makes graphics more understandable and is an ideal medium for the presentation of complex data or concepts.

Compatible with most microprocessors, prints in 7 colours - sophisticated internal programme makes the CX80 easy to use.

Dot Addressable + 15 user programmable characters, 96 ASCII and 64 graphics characters in rom. Centronics interface with RS232 and IEEE488 options. Apple II interface gives dot for dot colour dump. New viewdata interface prints out two pages side by side in full colour. See Prestel 200650.
The CX80 is a product of our own design and development laboratories. It represents a British breakthrough in colour printer technology. Colour brochure on request. OEM pricing available.

Portwood Industrial Estate, Church Gresley Burton-on-Trent, Staffs DE11 9PT Burton-on-Trent (0283) 215432. Telex: 377106

DC MICROVOLTMETER

VOLTAGE RANGES
$\pm 3 \mu \mathrm{~V}, \pm 10 \mu \mathrm{~V}, \pm 30 \mu \mathrm{~V}$.
Accuracy $\pm 1.5 \%$ rdg. $\pm 1.5 \%$ range $\pm 0.15 \mu \mathrm{~V}$.
Drift $<0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. Noise $<0.3 \mu \mathrm{~V}$ p-p on $3 \mu \mathrm{~V}$.
Input resistance 100 M on $\mathrm{V},(\mathrm{mV})$; 1 M on $\mathrm{mV}, \mu \mathrm{V}$.
CURRENT RANGES
$\pm 3 \mathrm{pA}, \pm 10 \mathrm{pA}, \pm 30 \mathrm{pA}$
Accuracy $\pm 2 \%$ rdg. $\pm 1.5 \%$ range $\pm 0.2 \mathrm{pA}$.
Drift $<0.3 \mathrm{pA} /{ }^{\circ} \mathrm{C}$. Noise $<0.5 \mathrm{pA}$ p-p on $3 p A$.
LIN/LOG RANGES
On $m V, \mu V$ and $n A, p A$ LOG ranges
$\pm 30 \%$ fsd equals $\pm 3 \mu \mathrm{~V}$ and ± 3 pA approx.
$\pm 60 \%$ fsd equals $\pm 30 \mu \mathrm{~V}$ and $\pm 30 \mathrm{pA}$ approx.
$\pm 100 \%$ fsd equals $\pm 300 \mathrm{mV}$ and $\pm 300 \mathrm{nA}$ approx.
On V LOG the voltages are 1000 times greater. RECORDER OUTPUT
$\pm 300 \mathrm{mV}$ at fsd. Source resistance $4.7 \mathrm{k} \Omega$
POWER SUPPLY
One type PP9 battery or equivalent, life 1000 hrs . SIZE \& WEIGHT
$180 \times 260 \times 140 \mathrm{~mm} .3 \mathrm{~kg}$. Meter scale 120 mm .

Cotswold Electronics Ltd.

Unit T1, Kingsville Road, Kingsditch Trading Estate, Cheltenham GL51 9NX
Tel: 0242-41313
Telex: 897106
Sales Office in U.S.A.
AVEL LINDBERG INC
Peacock Alley 116, 1 Padanaram Road, Danbury, CT 06810 U.S.A
203-797-8698. Telex: 710-456-9984
WW - 077 FOR FURTHER DETAILS

Sowter Transformers

With 40 years' experience in the design and manufacture of several hundred thousand transformers we can supply:
then in the

AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE YOU NAMEIT! WE MAKEIT! OUR RANGE INCLUDES

Microphone transformers (all types), Microphone Splitter/Combiner transformers. Input and Output transformers, Direct injection transformers for Guitars, Multi-Secondary output transformers, Bridging transformers, Line transformers, Lne transformers to G.P.O. Isolating Pickup transformers, Audio Mixing Desk matching transformers, Gramophone Pickup transformers, Aud transformers for PCB mounting. Experimental transformers, Ultra low frequency transformers, Ultra linear and other transformers for Transistor and Valve Amplifiers up to 500 watts, Inductive Loop Transformers, Smoothing Chokes, Filter, Inductors, Amplifier to 100 volt line transformers (from a few watts up to 1,000 watts), 100 volt line transformers to speakers, Speaker matching transformers (all powers), Column Loudspeaker transformers up to 300 watts or more.
We can design for RECORDING QUALITY, STUDIO QUALITY, HI-FI QUALITY OR P.A. QUALITY. OUR PRICES ARE HIGHLY COMPETITIVE AND WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS. Many standard types are in stock and normal dispatch times are short and sensible.
OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES, MIXING DESK MANUFACTURERS, RECORDING STUDIOS, HI-FI ENTHUSIASTS, BAND GROUPS, AND PUBLIC ADDRESS FIRMS. Export is a speciality and we Send for our questionnaire which, when completed, enables us to post auotations by return.

E. A. Sowter Ltd.

Manufacturers and Designers

E. A. SOWTER LTD. (Established 1941) : Reg. No. England 303990 The Boat Yard, Cullingham Road, Ipswich IP1 2EG, Suffolk P.O.Box 36, Ipswich. IP $12 E L$ England Phone: 047352794 and 0473219390

Telex 987703G Sowter

To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication.
Please Use Capital Letters

If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below.

OVERSEAS SUBSCRIPTION AGENTS

Postage will be paid by Licensee

Do not affix Postage Stamps if posted in Gt Britain, Channel Islands, N Ireland or the Isle of Man

BUSINESS REPLY SERVICE
Licence No 12045

WIRELESS WORLD
Reader Enquiry Service
Oakfield House
Perrymount Road
Haywards Heath
Sussex RH16 3DH
England

Enquiry Service for Professional Readers

WW	ww..	WW.
Ww. . .	WW. .	WW.
WW	WW	ww.
ww	ww.	WW
Ww	WW.	WW
Ww	WW	ww
ww	ww	ww
ww	WW	ww.
ww	WW.	ww
WW	ww.	WW
Ww. . .	ww.	ww
WW.	WW ...	WW.
WW.	WW. . .	ww
ww . . .	WW...	WW.
ww.	WW...	WW.
ww . . .	ww...	Ww....

WIRELESS WORLD Wireless World, April 1983 WW 8364
Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.

Name

Name of Company

Address

Telephorie Number

PUBLISHERS USE ONLY			A/E		

Position in Company
Nature of Company/Business .
No. of employees at this establishment
I wish to subscribe to Wireless World \square
VALID FOR SIX MONTHS ONLY

Wireless World: Subscription Order Form

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:

Subscription Manager, Business Press International Ltd, Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH, England

Wireless World Subscription Order Form Wireless World, April 1983 Ww 8364

OVERSEAS ADVERTISEMENT AGENTS
 Hungary Mrs. Edit Bajusz, Hungexpo Advertising Agency, Budapest XIV. Varosliget - Telephone: 225008 Telex: Budapest 22-4525 INTFOIRE
 Italy Sig. C. Epis Etas-Kompass, S.p.a. Servizio Estero, Via Mantegna 6, 20154 Milan - Telephone 347051 Telex: 37342 Kompass

Japan Mr. Inatsuki. Trade Media - IBPA
(Japan), B212 Azabu Heights, 1-5-10
Roppongi, Minato-Ku, Tokyo 106 -
Telephone : (03) 585-0581

United States of America Ray Barnes ${ }_{i}$
*Businness Press International
205 East 42nd Street,
New York, NY 10017 -Telephone:
(212) 6895961 - Telex: 421710

Mr. Jack Farley Jnr., The Farley Co.,
Suite 1548, 35 East Wacker Drive.
Chicago. Illinois 60601 - Telephone
(312) 63074

Mr. Victor A Jauch.
Elmatex International.
P.O. Box 34600°.

Los Angeles Calif. 90034 U.S.A.
Telephone: (213) 8218581
Telex: 18-1059.
Mr. Jack Mentel, The Farley Co., Suite 605
Ranna Building, Cleveland, Ohio 4415 -
Telephone: (216) 6211919
Mr. Ray Rickles, Ray Rickles \& Co.,
P.O. Box 2008, Miami Beach, Florida

33140 - Telephone : (305) 5327301
Mr. Jim Parks, Ray Rickles \& Co.,
3116 Maple Drive N.E., Allanta, Georgia 30305. Telephone : (404) 2377432

Mike Loughlin, Business Press Internationa 15055 Memorials, Ste 119, Houston, Texas 77079 - Telephone: (713) 7838673

Canada Mr. Colin H. MacCulloch, International Advertising Consultants Lid. 915 Carlion Tower, 2 Carlton Street. Toronto 2 - Telephone (416) 3642269

[^6]
t's elementary. Just look at the 3030 at $£ 154$ and the $\mathbf{3 1 3 1}$ at $£ 250$, both are 15 MHz scopes with $5 \mathrm{mV} /$ Div maximum deflection coefficient. And the Dual Trace 3131 has matched $X-Y$, Algebraic Add and Subtract, and TV Trigger, all selected on easy to use clearly marked push buttons.

But that's not all, both incorporate a Component Tester, yes, even the Single Trace 3030, for the in or out of circuit testing of semiconductor and passive devices. With the resultant characteristic being displayed directly on the CRT.

Therés only one thing left to say
Do you want a Violinist?
For full details just fill in the enquiry card or call us direct

Cratech hinstruments Limited
5 Nimrod Way Elgar Road Reading •erkshire RG2 0EB • United Kingdom
Telephone. (0734) 866945 Telex: 847073 POWLIN G

Digital
Imagine the ideal hand held test set. A minimum of controls. A10.0 An oscillator that covers the audio spectrumin a Test Set single sweep.

A level meter that measures directly in dBs over 74 dBs . And a frequency counter that reads the oscillator or meter input.

Small enough to operate anywhere, and precise enough for any professional application.

The Loft TSl is manufactured by the Phoenix Audio Laboratory Inc., and distributed exclusively by Turnkey.

It's price 249.00 .
Call us now for
more information.

Brent View Road LONDON NW9 7EL 01-2024366

MANUFACTURERS \& DISTRIBUTORS

MICROSWITCHES V3 TYPE. We have in stock over 50,000 various types, i.e. Button Lever and Roller. Low force or standard allow us to quote against your requirements.

MATSUSHITA HIGH-QUALITY 12-VOLT DC CASSETTE DRIVE MOTORS. Size 30 mm dia. $\times 20 \mathrm{~mm}$ high, drive shaft 7 mm long $\times 2 \mathrm{~mm}$ dia. approx. No load current, $40 \mathrm{~m} / \mathrm{a}$ VA. $£ 875$ for $5,000+$ VAT. $£ 1,600$ for $10,000+$ V.A.T Sample 10 sent for $£ 3+£$ P. and P. (£ 4.60 inc. V.A.T.).

AUTONNIC PUSH-BUTTON TUNER. $4 \times$ Med. Wave, $1 \times$ Long Wave plus manual control. Overall length 14 cm , depth 5 cm , height 33 mm . Excellent unit for the manu facture of a competitive car radio. $£ 15$ for $10+V$ A.T.; $£ 68$ for $50+$ V.A.T.; $£ 125$ for \vee A.T. Sample sent for $£ 2+£ 1 P$. and P. ($£ 3.45$ inc. V.A.T)

BRITISH-MADE TRANSFORMER. Input 240 V at 50 HZ , output $12 \mathrm{~V}-0-12 \mathrm{~V}, 1 / 2 \mathrm{amp}$. with built-in thermal overload output, p.c. mounting; $£ 25$ for $10+$ V.A.T.; $£ 115$ for 50 + V.A.T.; $£ 210$ for $100+$ V.A.T.; $£ 950$ for $500+$ V.A.T.; $£ 1,700$ for $1,000+$ V.A.T. Samples sent for $£ 3+75 p$ P. and P. (E4.31 inc. V.A.T.).
150-WATT HINCHLEY DROP-THROUGH TRANSFORMER. Input 220/240V. A.C., output 30-0-0 with $1 \angle \mathrm{~V}$. tap width $96 \mathrm{~mm} \times 80 \mathrm{~mm} \times 54 \mathrm{~mm}$ deep inc winding, etc., 90 mm $30-0-0$ with 1 V . tap widh 96 mm 108 V. A.T.; $£ 350$ for $50+$ V. A.T.; $£ 620$ for $100+$ V.A.T.; $£ 2,800$ for $500+$ V.A.T.; $£ 5,100$ for $1,000+$ V.A.T. Sample sent for $£ 9+£ 2$ P. and P. (£12.65 inc. V.A.T.).
50-WATT FINNED HEATSINKS, 83 mm long $\times 39 \mathrm{~mm}$ wide $\times 30 \mathrm{~mm}$ high drilled to take BD250B or similar device; $£ 18$ for $50+V . A . T$.; $£ 33$ for $100+V . A . T$. $£ 150$ for 500 + V.A.T.; $£ 270$ for $1,000+$ V.A.T.; $£ 1,200$ for $5,000+$ V.A.T. Sample 10 sent for $£ 5+£ 1$ P. and P ((E6.90) inc. V.A.T.)

REED RELAY. Complete with coil. Operating voltage 12 V . D.C. at $20 \mathrm{~m} / \mathrm{a}$. Reed n / o once energised the reed will not open until the supply voltage drops below 5 volts. Approx. $£ 20$ for $f 100+$ V.A.T.; $£ 180$ for $1, C 00+$ V.A.T.; $£ 800$ for $5,000+$ V.A.T.; $£ 1,450$ for $10,000+$ V.A.T. Sample 10 sent for $£ 2.50+50 \mathrm{pP}$. and P ($£ 3.45$ inc. V.A.T.)
RADIALL BNC 75R STANDARD PLUG. Gold-plated centre contact; $£ 34$ for $50+$ V.A.T. f 62 for $100+$ V.A.T.; E 280 for $500+$ V.A.T. Sample 10 sent for $\mathrm{f} 7.50+50 \mathrm{p}$ P. and P £62 for $100+$ V.A.
$(£ 9.20$ inc. V.A.T.).

Terms c.w.o. Please add 5% to all orders for carriage plus 15% V.A.T. Export enquiries welcome. We find it impossible to advertise all we stock. Please telephone or write for welcome. We find it impossible to advertise all we s
further enquiries. Personal callers always welcome.
TYSSEN ST., LONDON, E. 8
TEL: 01-2495217
TELEX: 8953906 EECO.G

Specifications (Direct Output): BGW Model 620B OUTPUT POWER
200 watts minimum sine wave continuous power output per channel with both channels driving 8 -ohin loads over a power band from 20 Hz to 20 kHz The maximum Total Harmenic Distortion at any power leve from 250 millwatts to 200 waits shall be no more than 025%

1 kHz Power 240 watts into 8 ohms per channel, both channels operating. 025% Total Harmonic Distortion

Intermodulation Less than 006% from 250 milliwatts to Distortion rated power
Small Signal
Frequency Response
Hum and Noise Level
Damping factor DC Offset Voltage Load Impedance
$+0 .-3 \mathrm{JB}, 1 \mathrm{~Hz}$ to 70 kHz
$+0-025 \mathrm{~dB} \quad 20 \mathrm{~Hz}$ to 20 kHz
Better than 100 dB below 200 watts furiweighted. 20 Hz to 20 kHz
Greater than 120 to 1 at 8 ohms and 1 kHz Less than 10 miflivolts (at output terminals) Designed for any load impedance equal to or greater than 4 ohms

Specifications (Direct Output): BGW Model 320B

 OUTPUT POWER100 watts minimum sine wave continuous average power output per channel with both channels driving 8 ohm loads over a power band from 20 Hz to 20 kHz The maximum Total Harmonic Distortion at any power level from 250 milliwatts 10100 watts shall be no more than 02\%

1 kHz Power 105 watts into 8 ohms per channel. both channels operating. 02% Total Harmonic Distortion
intermodulation
Distortion
Small Signal
Frequency Response
Humand Noise Leve
Damping Factor
DC Offsel Voltage Load Impedance

Less than 005% from 250 milliwatts 10 rated power
$+0,-3 \mathrm{~dB}, 1 \mathrm{~Hz}$ to 50 kHz
$+0 .-025 \mathrm{~dB}, 20 \mathrm{~Hz}$ to 20 kHz
Better than 100 dB beiow 100 watts (unweighted 20 Hz to 20 kHz) Greater than 150 to t at 8 ohms and $: \mathrm{kHz}$ Less than 10 millivolts (at output terminals) Designed for any load impedance equai to or greatet than 4 ohms

For turther information on these and other BGW amplifiers contact Nikk Antoniou Theatre Projects, 10 Lond Acre, London WC2E GLN Tel 2405411

Current sensor from LEM
 of Geneva

- For isolated measurement of ac, dc and pulsed currents
- Isolation test voltage 5 kV
- Aperture for primary current: $\varnothing=10 \mathrm{~mm}$
- Temperature range $0-50^{\circ} \mathrm{C}$
- Range of measurements $0 \pm 150 \mathrm{amps}$. Nominal rating: 100 amps
- Accuracy: $\pm 1 \%$ of I_{N} from0 -50 Hz
- Internal resistance 30Ω
- Response time: $<1 \mu \mathrm{sec}$
- + and -15 V dc required for measuring circuit
- PCB mounting - size $45 \times 35 \times 32 \mathrm{Hmm}$
- Smaller currents measured by using multiple primary turns

Other models available

- 200, 250. 300, 400, 600, 1,000, 1,500, 3,000 and 10,000 amps rating
- with or without built-in power supply
- with or without built-in primary bar
- with isolation up to 30 kV
\square for measuring voltages up to 5 kV
- with bandwidth up to 500 kHz . (3 db)

Small quantities available ex-stock by post from the manufacturer:
LEM S.A. 140 chemin du Pont-du-Centenaire, 1228 Plan-les-Ouates
Geneva. Switzerland tel. Geneva 713001 telex 429422 lem ch

Detailed descriptions available from

C. G. Wedgwood \& Company Lid

14 King's Road, Wimbledon, London SW19
tel. (01) 5406224 telex no 8954665 gits ret wedgwood
WW - 074 FOR FURTHER DETAILS

WW - 081 FOR FURTHER DETAILS

Head Demagnetiser only BATTEAY ELIMINATOR MAINS to 9 VOLT D.C

Stabilised output, 9 volt $400 \mathrm{~m} . \mathrm{a}$. U.K. made in plastic case with screw terminals. Safory overload cut out, Size
$5 \times 31 / 4 \times 2^{1 / 2 i n}$ Transformer Rectifier Unit. Suitable $5 \times 31 / 4 \times 2^{1 / 2 i n}$. Transformer Rectifier Unit
Radios, Cassettes, models, $£ 4.50$. Post 50 . Radios, Cassettes, models, $£ 4.50$. Post 50 p .
DE LUXE SWITCHED MODEL STABILISED. $£ 7.50$. PP £ DE LUXE SWITCHED MODEL STABILISED. E7.50. PP E1.
$3-6.71 / 2-9$ voit 400 ma DC max. Universal output plug $3-6.7 / 1 / 9-9$ voit 400 ma DC max.
and lead. Pilot light, mains switch, polarity switch.
DRILL SPEED CONTROLLERUIGHT DIMMER KIT. EaSY buil kit. Controls y p to 480 watts $A C$ mains, E3. PP 65 p.
DE LUXE MODEL READY-BUULT 800 watts. Front plate DE LUXE MODEL READY-BUIL
fits standard box, f5. Post 65 p .
EMI $131 / 2 x 8 \mathrm{in}$. LOUDSPEAKERS

Model 450A, 10 watts R.M.S. with moving Sale

 or 8 ohm. "Final Clearance".SUITABLE BOOKSHELF CABINET
f6.50. Size $18 \times 11 \times 6 \mathrm{in}$. Post $\mathrm{f1} 150$
RELAYS. $6 \mathrm{~V} D C$ 95p. $12 \mathrm{VDC} \mathrm{f} 1.25 .18 \mathrm{~V} £ 1.25 .24 \mathrm{~V} £ 1.30$ ALUMINIUM CHASSIS. $6 \times 4-\mathbf{£ 1 . 7 5}$; $\quad 8 \times 6-\mathbf{f 2 . 2 0}$
 ALUMINIUM PANELS. $6 \times 4-55 p ; 8 \times 6-90 p ; 14 \times 3-90 p$ $\mathbf{0 \times 7 - £ 1 . 1 5 ; ~} \quad 12 \times 8-\mathbf{£ 1 . 3 0 ;} 12 \times 5-90 p ; 16 \times 6-£ 1.30$ ALUMINIUM BOXES, $4 \times 4 \times 11 / 2 \times 1.20$. $4 \times 21 / 2 \times 2$ £ $\mathbf{£ 1 . 2 0}$ $3 \times 2 \times 1 \quad £ 1,20$. $6 \times 4 \times 2 \quad £ 1.90 .7 \times 5 \times 3 \quad £ 2.90$. $8 \times 6 \times 3$ £ $10 \times 7 \times 21 / 2 £ 3.60 .12 \times 5 \times 3 £ 3.60 .12 \times 8 \times 3 £ 4.30$ BRIDGE RECTIFIER 200 V PIV 2 a £ $1.4 \mathrm{a} £ 1.50$. 6 a £2.50. TOGGLE SWITCHES SP 40p. DPST 50p. DPDT 60p. MINIATURE TOGGLES SP 40p. DPDT 60p.
RESISTORS. 10Ω to $10 \mathrm{M} .1 / 4 \mathrm{~W}, 1 / 2 \mathrm{~W}$. $1 \mathrm{~W}, 2 \mathrm{p}$; 2W 10p; Low ohm 1 watt 0.47 to 3.9 ohm 10 p
WIRE.WOUND RESISTORS 5 watt, 10 watg 15 watt 20 PICK-UP CARTRIDGES SONOTONE 9TAHC $£ 3.80$.
BSR Stereo Ceramic SC7 Medium Output \mathcal{E}. SC12 $£ 3$ PHILIPS PLUG-IN HEAD. Stereo Ceramic. AU1020 (G306 GP310 - GP233 -AG 3306, £2. A.D.C., QLM $30 / 3$ Magnetic £5 GOLDRING G850 £6.50, G800 £8.50. STYLUS most Cerami Acos, Sonotone, BSR, Garrard Philips Diamond $£ 1.20$ ea. MAGNETIC STYLUS, Sony, JVC, Sanyo, Goldring, VALVE OUTPUT Transformers $£ 14$; 30W $£ 18$; 50 W £20; 100W £24. Post f2. SUB-MIN MICROSWITCH, 50 p, Single pole changeover,
ANTEX SOLDERING IRON 'C' 15 W 年4.60. 25 W ' $\times 25$ ' $\mathbf{E 4 . 7 0}$. WAFER SWITCHES. $1^{1 / 4}$ dia. 60 p ea.
1P 12W $2 \mathrm{ZP} 2 \mathrm{~W} ; 2 \mathrm{P} 6 \mathrm{~W} ; 3 \mathrm{P} 4 \mathrm{~W} ; 4 \mathrm{P} 2 \mathrm{~W}$; 4 P 3 W .
FERRITE ROD. $6^{\prime \prime} \times 1 / 1^{\prime \prime}, 6^{\prime \prime} \times 3 k^{\prime \prime}, 8 \times 5 / 16^{\prime \prime} 40 \mathrm{p}$
XLR Lead Plug $£ 2.40$. Lead socket $£ 2.75$
XLR Lead Plug $£ 2.40$. Lead socket $\mathbf{£ 2 . 7 5}$
XLR Chassis Plugg $\mathbf{£ 2 . 2 0}$. Chassis Socket $£ 2.55$.
BANANA 4 mm Plugs/Sockets red/black 20 p
BANANA 4mm Plugs/lockets, red/black Mono Plastic 25p: Metal 30p.
JACK PLUGS Stereo Plastic 30p; Metal 35p.
JACK SOCKETS Mono 25p. Stereo 30p.
FREE SOCKETS - Cable end 30p. Metal 45p. 2.5 mm and 3.5 mm JACK SOCKETS 25p. Plugs $25 p$. OIN TYPE CONNECTORS
Sockets 3-pin, 5-pin 15p. Free Sockets 3-pin, 5-pin 25p. Plugs 3-pin 20p; 5-pin 25p; Speaker plugs 25p; Sockets 15p PHONO PLUGS and SOCKETS ea. 20p; Double sockets 30p Free Socket for cable end 20p. Screened Phono plugs 25 p
UHF PLUGS 50p. Sockers 50p Reducers 300 ohm TWIN RIBBON FEEDER $10 \mathrm{p} y \mathrm{~d}$.
300 ohm to 75 ohm AERIAL MATCHING TRANSFORMER $£ 1$ U.H.F. COAXIAL CABLE SUPER LOW LOSS, 25p Yd. COAX PLUGS 30p. COAX SOCKETS 20p. Lead Sockets 65p NEON INDICATORS 250 V , round 40p. Rectangular 45p.
POTENTIOMETERS Carbon Track
$5 \mathrm{k} \Omega$ to $2 \mathrm{M} \Omega$. LOG or LIN. L/S 50p. DP 90p. Stereo L/S
$\mathrm{f1.10.DP} \mathrm{f1} 130$. Edge Pot 5 K . SP 45p.
 MINI-MULTI TESTER NEW De luxe pocket size precision moving coil instrument. impedance 11 instant ranges measure:
DC volts $5.25,250,500$.

E6.50 AC volts $10,50,500,1000$. DC amps 0-250 $\mu \mathrm{A}, 0-250 \mathrm{~mA}$
Re Luxe Range Doubler Model, \qquad 50,000 o.p.V. $£ 18.50 .7 \times 5 \times 2 \mathrm{in}$. Post f 1
43 Ranges, $1,000 \mathrm{~V}, \mathrm{AC}-\mathrm{DC}, 20 \mathrm{meg}$, etc.

PANEL METERS

$50 \mu \mathrm{a}, 100 \mu \mathrm{a}, 500 \mu \mathrm{a}, 1 \mathrm{ma}$
$5 \mathrm{ma}, 50 \mathrm{ma}, 100 \mathrm{ma}, 500 \mathrm{ma}, 1$ amp, 2 amp, 25 volt, VU $21 / 4 \times 2 \times 1 \frac{1 / 4}{}$. Stereo VU

£4.50 Post 50p

RCS SOUND TO LIGHT CONTROL BOX
Complete ready to use with cabinet size $9 \times 3 \times 5 \mathrm{in}$ 3 channel, 1000 watt each. For home or disco
Input 200 mV to 100 watt. AC $200 / 250 \mathrm{~V}$. Post $£ 1$ Input 200 mV to 100 watt. AC
OR KIT OF PARTS $£ 19.50$. LESS CABINET $£ 15$ Disco bulbs 100 watt, blue, green, yellow, red, amber, screw or bayonet $£ 1.85$ each. Post $£ 1.50$ per six.
Rope lights, 4 channel, 11 ft with controller $£ 33$, PP £ "FUZZ lights, red, blue, greon, amber, 200 Watt Rear Reflecting White Light Buibs. Ideal for Disco Lights, Edison Screw. 6 for $£ 4$, or 12 for $£ 7.50$. Post Disco Lights, Edison Screw. 6 . Suitable panel mounting holders $85 p$.
RCS "MINOR" 10 watt AMPLIFIER KIT £14 This kit is suitable for record players, guitars, tape playback, electronic instruments or small PA systems
Two versions available: Mono, $\mathbf{£ 1 4}$: Stereo, $\mathbf{£ 2 0}$. Speci Two versions available: Mono, £14; Stereo, £20. Speci fication instructions supplied. 240 V AC mains. Post $f 1$
RCS STEREO PRE-AMP KIT. All parts to build thi
pre-amp. Inputs for high, medium or low imp $£ \mathbf{£ 3} 50$
per channel, with volume control and PC Board Post 65p

MAINS TRANSFORMERS

$250-0-250 \mathrm{~V} 80 \mathrm{~mA}, 6.3 \mathrm{~V} 3.5$
$350.0-350 \mathrm{~V} 250 \mathrm{~mA}, 6.3 \mathrm{~V} 6$
220 V 25 ma GV amp E 2.50 .
$250 \mathrm{~V} 60 \mathrm{~mA}, 6 \mathrm{~V} 2 \mathrm{~A}$
AUTO

OPUS COMPACT

SPEAKERS E22 pair post $£ 2$
TEAK VENEERED CABINET
$11 \times 81 / 2 \times 7 \mathrm{im}, 15$ watts
50 to $14,000 \mathrm{cps} .4$ ohm or 8 ohm
OPUS TWO $15 \times 101 / 2 \times 73 / 4$ in 25 watt
2-way system $£ 39$ pair. Post $£ 3$
LOW VOLTAGE ELECTAOLYTICS Wire ends

$1 \mathrm{mf}, 2 \mathrm{mf}, 4 \mathrm{mf}, 8 \mathrm{mf}, 10 \mathrm{mf}, 16 \mathrm{mf}, 25 \mathrm{mf}, 30 \mathrm{mf}, 50 \mathrm{mf}, 100$ $\mathrm{mf}, 250 \mathrm{mf}$. Ali 15 volts. $22 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 25 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 47$
$\mathrm{mf} / 10 \mathrm{v} ; 50 \mathrm{mf} / 6 \mathrm{v} ; 68 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} / 25 \mathrm{v} ; 100 \mathrm{mf} / 10 \mathrm{v} ; 150$ $\mathrm{mf} / 10 \mathrm{v} ; 50 \mathrm{mf} / 6 \mathrm{v} ; 68 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} / 25 \mathrm{v} ; 100 \mathrm{mf} / 10 \mathrm{v} ; 150$
$\mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 200 \mathrm{mf} / 10 \mathrm{v} / 16 \mathrm{v} ; 220 \mathrm{mf} / 4 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} ; 330$ $\mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 200 \mathrm{mf} / 10 \mathrm{v} / 16 \mathrm{v} ; 220 \mathrm{mf} / 4 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v}: 330$ $1500 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} ; 2200 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 3300 \mathrm{mf} / 6 \mathrm{v} ; 4700$
$\mathrm{mf} / 4 \mathrm{~V}$. $12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p} .1200 \mathrm{mF} 76 \mathrm{~V} 80 \mathrm{p}$ $1000 \mathrm{mF} 12 \mathrm{~V} 20 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 50 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$.
$2000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 30 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} 60 \mathrm{p} ; 1500 \mathrm{mF} 100 \mathrm{~V}$ £ 1.20. $2200 \mathrm{mF} 63 \mathrm{~V} 90 \mathrm{p} .2500 \mathrm{mF} 50 \mathrm{~V} 70 \mathrm{p} ; 3000 \mathrm{mF} 50 \mathrm{~V} 65 \mathrm{p}$;
4500 mF 64 V \& 4700 mF 63 V £1. $20.4700 \mathrm{mF} / 30 \mathrm{~V} 75 \mathrm{p}$. 4500 mF 64 V £2. 4700 mF 63 V £1.20. $4700 \mathrm{mF} / 30 \mathrm{~V} 75 \mathrm{p}$. NON POLARISED CAPACITORS
$1 \mathrm{mF} 250 \mathrm{~V} 25 \mathrm{p} ; 1.5 \mathrm{mF} 100 \mathrm{~V} 25 \mathrm{p} ; 2.2 \mathrm{mF} 250 \mathrm{~V} 30 \mathrm{p} ; 3.3 \mathrm{mF}$ $100 \mathrm{~V} 40 \mathrm{p} ; 4.7 \mathrm{mF} 100 \mathrm{~V} 40 \mathrm{p}$; $10 \mathrm{mF} 63 \mathrm{~V} 40 \mathrm{p} ; 32 \mathrm{mF} 50 \mathrm{~V} 25 \mathrm{p}$; 7 mF 50 V 40 p .
HIGH VOLTAGE ELECTROLYTICS

$\begin{array}{lllll}2 / 500 \mathrm{~V} & 45 p & 32+32+16 / 350 \mathrm{~V} & 90 \mathrm{p} & 8+8 / 500 \mathrm{~V} \\ 8 / 450 \mathrm{~V} & 45 \mathrm{p} & 100+10275 \mathrm{~V} & \mathbf{8 5} & 8+16 / 450 \mathrm{~V}\end{array}$ $\begin{array}{lllll}8 / 450 \mathrm{~V} & 45 \mathrm{p} & 100+100 / 275 \mathrm{~V} & 65 \mathrm{p} & 8+16 / 450 \mathrm{~V} \\ 16 / 350 \mathrm{~V} & 45 \mathrm{p} & 150+200 / 275 \mathrm{~V} & 70 \mathrm{p} & 16+16 / 350 \mathrm{~V}\end{array}$ | $16 / 350 \vee$ | $45 p$ | $150+200 / 275 \mathrm{~V}$ | 70 p |
| :--- | :--- | :--- | :--- |
| $16+16 / 350 \mathrm{~V}$ | | | |
| $32 / 500 \mathrm{~V} 95 p$ | $220 / 450 \mathrm{~V}$ | 95 p | $32+32 / 350 \mathrm{~V}$ | $\begin{array}{llll}32 / 500 \vee 95 p & 220 / 450 \mathrm{~V} & 95 \mathrm{p} & 32+32 / 350 \mathrm{~V} \\ 32 / 350 \mathrm{~V} 50 \mathrm{p} & 32+32+32 / 325 \vee 75 & 32+32 / 500 \mathrm{~V} & £ 1.80 \\ 50 / 450 \mathrm{~V} 95 \mathrm{p} & 50+50+50 / 350 \mathrm{~V} 95 \mathrm{p} & 50+50 / 300 \mathrm{~V} & 50 \mathrm{p}\end{array}$ CAPACITORS WIRE END High Voltage

.001,.002, .003, .005, .01, .02, .03, . 05 mfd 400 V 5 p .1 MF 200 V 5 p .400 V 10 p. 600 V 15 p .1000 V 25 p.
.22 MF 350 V 12 p .600 V 20 p .1000 V 30 p .1750 V 50 p. .47 MF 150 V 10 p .400 V 20 p .630 V 30 p .1000 V 60 p . TRIMMERS $30 \mathrm{pF}, 50 \mathrm{pF}$, $10 \mathrm{p} .100 \mathrm{pF}, 150 \mathrm{pF} 20 \mathrm{p} .500 \mathrm{pF} 30 \mathrm{p}$. MICROSWITCH SINGLE POLE CHANGEOVER 40p 50pF Single gang 95p. GEARED TWIN GANGS 25pF 95p $365+365+25+25 \mathrm{pF} £ 1$

HEATING ELEMENTS, WAFER THIN (Semi Flexible)
 Size $11 \times 9 \times 1 / 8 \mathrm{in}$. Operating voltage $240 \mathrm{~V}, 250 \mathrm{~W}$ approx Suitable for Heating Pads, Food Warmers, Convector Heaters, Propagation, Etc. Must be clamped between
 two sheets of metal or ceramic, etc. ONLY 600 EACH (FOUR FOR $£ 2$) ALL POST PAID.

NEW baker Star sound
high power full range quality loudspeakers. British made. Ideal for Hi-Fi, music P.A. or discotheques. These louddiscotheques. These loud-
speakers are recommended speakers are recommended
where high power handling where high power handling
is required with quality re-

MODEL	INCHES	OHMS	WATTS	TYPE	PRICE	POST
MAJOR	12	4-8.16	30	HI-FI	f16	
SUPERB	12	8-16	30	Hi-Fi	¢26	$\underline{\square}$
AUDITORIUM	12	8-16	45	HI-FI	f24	$\underline{4}$
AUDITORIUM	15	8-16	60	HI-FI	¢37	62
GROUP 45	12	4-8.16	45	PA	f16	E2
GROUP 75	12	4-8-16	75	PA	f20	62
GROUP 100	12	8-16	100	Guitar	£26	¢2
DISCO 100	12	8 8-16	100	Disco	f26	62
GROUP 100	15	8 8-16	100	Guitar	£35	02
DISCO 100	15	8-16	100	Disco	535	\underline{L}

BAKER AMPLIFIERS BRITISH MADE

NEW PA150 MICROPHONE PA AMPURER f 129 4 channeł 8 inputs, dual impedance, $50 \mathrm{~K}-600$ ohm 4 channel mixing, volume, treble, bass. Presence controls, Master volume BAKER 150 Watt AMPL.IFIER 4 Inputs $£ 99$ For Discotheque, Vocal, Public Address. Three speaker outlets for 4,8 or 16 ohms. Four high gain inputs, $20 \mathrm{mv}, 50 \mathrm{~K}$ ohm. Individual volume controls "Four channel" mixing. 150 watts 8
ohms R.M. Music Power Slave output 500 M.V. 25 K .0 hm . ohms R.M.S. Music Power. Slave output 500 M.V. 25K.ohm.
 volume contral British made 12 months' guarantee 240 V A. mains or 120 V to order. All transistor and solid state. Post $£$? MONO SLAVE 580.100 Volt Line Model f114. Post $£ 2$. New Stereo Slave $150+150$ watt 300 watt Mono f125. Post f4.

BAKER
 50 WATT AMPLIFIER

 E69 Post f2
 Ideal for PA systems, Discos and Groups. Two inputs Mixer, Volume Controls, Master Bass, Treble and Gain. RCS offers MOBILE PA AMPLIFIERS. Outputs 4-8-16 ohms Mic 1: Mic 2; Phono; aux, outputs 4 or 8 or 16 and 100w line 60 -win RMS, Mo bile 24 volt DC 8240 -vott AC mains, inputs 50 K . 3 mics +1 music. Outputs $4-8-16$ ohm +100 votts line E\$5 PP \mathbb{Z}. Battery only Portable PA Amplifier 10w max. Includes mike and speaker, OK for meetings, crowd control, stalls, fetes, traders, parties, etc. Batteries included (6 of $\mathrm{U} 2 \mid$ £2 7.50 post E .
 R.C.S. 100 watt R.M.S VALVE AMPLIFIER 4 Channel mixing. Master treble, bass and volume controls. 5 Speaker outlets, group fizs. Carr $\&$ ins f group. Eizs. Carr. \& Ins. flis. 60 WATT VALVE AMPLIFER, 3 mixer inputs, $4-8-16$ ohm, 100 volt line. 5 controls 559 . post f4

FAMOUS LOUDSPEAKERS

 'SPECIAL PRICES| MAKE | MODEL | SIZE | Watts | OHMS | PRICE POST | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Wharfedale | TWEETER | 4 in | 30 | | $\underline{7.50}$ | 1 |
| G00DMANS | THEETER | 31/2in | 25 | 8 | ¢ 4 | 11 |
| AUDAX | TWEETER | 4 lin | 30 | 8 | 66.50 | 11 |
| AUDAX | MID-RANGE | 4 in | 50 | 8 | 67.50 | $f 1$ |
| SEAS | MID-RANGE | 41/2in | 100 | 8 | ¢12.50 | $f 1$ |
| AUDAX | WOOFER | 51/2 | 25 | 8 | f10 | 51 |
| G00Dmans | HIFAX | $71 / 2 \times 11 / 4$ | 100 | 4/416 | 227 | 12 |
| G00DMANS | WOOFER | 8 B | 25 | $4 / 8$ | f6.50 | $f 1$ |
| G00DMANS | HB | 8 in | 60 | 8 | f12.50 | 12 |
| Wharfedale | WOOFER | Bin | 30 | 8 | 59.50 | 62 |
| AUDAX | WOOFER | 10in | 50 | 8 | $f 16$ | 62 |
| GOODMANS | HPG | 12in | 120 | $8 / 15$ | 129.50 | 82 |
| GOODMANS | GR12 | 12in | 90 | $8 / 15$ | $\underline{27.50}$ | $\underline{62}$ |
| gOODMANS | HPD | 12in | 120 | $8 / 15$ | $\underline{62950}$ | 62 |
| goodmans | HPD | 18in | 230 | 8 | f00 | 14 |

SPEAKER COVERING MATERIALS. Samples Large S.A.E. is
B.A. LOUDSPEAKER CABINET WADDING 18 in wide 35 p is
 100 watts. No crossover required. $4-8$-16 ohm, $786 \times 318 \mathrm{ch}$ 3 -way $950 \mathrm{cps} / 3000 \mathrm{cps}$. 40 watt rating. $\mathbf{E 4} .3$ way 60 watt $\mathrm{f5} .100 \mathrm{~W} \mathrm{fs}$. LOUDSPEAKER BARGAINS. Please enquire, many

$15 \mathrm{ohm}, 2^{1 / 3 i n}, 31 / 2 \mathrm{in}, 5 \times 3 \mathrm{in}, 6 \times 4 \mathrm{in}, \mathfrak{f} 2.50 .61 / \mathrm{in} 10 \mathrm{~W} f 5$. 8 in ff $25 \mathrm{ohm}, 3 \mathrm{in}, \dot{\mathrm{E}} ; 5 \times 3 \mathrm{in}, 6 \times 4 \mathrm{in}, 7 \times 4 \mathrm{in}, \underline{2}, 50$. $120 \mathrm{ohm}, 31 / \mathrm{in}$ dia. $f 1$.

R.C.S. LOW VOLTAGE STABILISED

POWER PACK KITS
E3.95. Post $65 p$
All parts and instructions with Zener diode printed circuit,
mains transformer 240 V a.c. Output 6 or $71 / 2$ or 9 or 12 V d.c

R•E•E•L POWER

ONE BILLION WATTS IN STOCK

YOUR SINGLE SOURCE FOR
 AMERICAN VALVES - R.F. TRANSISTORS \& SEMICONDUCTORS BRANDS BY ALL LEADING MANUFACTURERS

WRITE, CALL OR TELEX ALLAN MCCRONE FOR FURTHER DETAILS
(0522) 42631/4

TELEX 56175
RICHARDSON EIectronics (Europe) Ltd.

WW - 084 FOR FURTHER DETAILS

WW - 078 FOR FURTHER DETAILS

WE PURCHASE

Surplus component stocks, redundant materials, obsolete computers, for cash.
We also collect - distance no object. Just call:

C. T. Electronics (Acton) Ltd.

267 \& 270 Acton Lane, London W4 5DG
Telephone: 01-747 1555; 01-994 6275. Telex: 291429

STEPPING MOTOR XYZ MACHINE. Complete with microprocessor controller and software prograrmmed to engrave alphaber and numbers. Also features easy operaror-- programmable XYZ sequences ro e engrave, drill or cut out special shapes and logos.
XY axis travel $200 / 170 \mathrm{~mm}, 220 \mathrm{~mm}$ Mixed character sizes on a label from 1.99 mmm hish. XY axis travel $2000170 \mathrm{~mm}, 222 \mathrm{~mm}$. Mixed character sizes on a labed from 1.99 mm high Qwerty keyboard, 20 character liquid crystal display. Machine supplied complete and ready to
PRICE $£ 2,350$ manufacture labels. J.A.F. GRAPHICS

70 Leek Road, Congleton, Cheshire CW12 3HU - 026025127

SAMSONS

9-10 Chapel Street, Marylebone London NW1 5DN 21-23 Bell Street, London, NW1 01-262 5125 \& 01-723 785

MUFFIN FANS SPECIAL OFFERII

 $41 / 2 \times 41 / 2 \times 11^{8} 8^{8} E 4.75$ inc $\left.\begin{array}{l}\text { ind }+ \text { postage } \\ \text { Radiospares price }\end{array}\right)$ Radiosp
E14 5011

PLEASE ADD 15% TO ALL ORDERS INC. CARR
12 or 24 VOLT

12v	24	
0.5	0.25	2.42
1.0	0.5	3.19
2	1	4.25
4	2	4.91
5	2.5	6.78
6		7.69
8	4	8.98
10	5	9.82
12	6	10.89
16	8	12.97
20	10	17.46
30	15	21.69
60	30	

50 VOLT RANGE
60 VOLT RANGE
Amps
0.5
10
2.
30
4
6
8.
10
12

AUTO STEPDOWN TRANSFORMERS
$240 / 110$ Votts $80-2250$ watts Regular stock hine Types 80.1500 watts are fully
shrouded. Fitted with American two or three pin socket outlets and 3 -core 240 y mains lead Types 1750 and 2250 watts are steel cased with two American socket
Outlets Neon indicator three core outlets Neon indicator, three core mains lead and carrying handle Send SAE for
price list and further details American sockets, plugs, adaptors also available

HINCHLEY MAINS ISOLATOL
rim 240 V Sec 240 V 250 watts. Open frame TRANSFORMEAS shrouded top panel connections. Sec can be wired to give $120-0.120 \mathrm{~V}$ ERS, carr £5. VAT $£ 4.50$

Brand naw monitors, 14" scraen, RGB input 525 lines 50 meg sync level. 60 frames sumption 70 watts. Ideal for use with the BBC computer. Special offer price $£ 145$ + VAT. POWERFUL GEARED NOTORS
110 i input but supplied with FREE transio mer, 200 prm $351 \mathrm{~b} / \mathrm{fin}$ torque ${ }^{\circ}{ }^{\prime \prime} 8^{\prime \prime}$ output shaft hysical size approx. $9^{\prime \prime} \times 5^{\prime \prime} \times 5^{\prime \prime}$ reversible
Bargain prical E 13 inc. VAT and carr. SPECLAL OFFER: HIGH POWER AMPLFER TRANSFORMERS Pri tapped $120-240 \mathrm{~V}$ sec tapped $34-29-0-29$
34 a 5 amps and 46 V 1 A . Open frame type. Tag connection. Size $5 \times 4^{4} / 2 \times 4$ ins. $£ 9$ inc. postage
and VAT. LATEST PURCHASE COMPUTEA GRADE TRANSFORMERS. Conservatively rated. All
Primaries 220.240. No. I secs. 27V $10 \mathrm{~A}, 9 \mathrm{~V}$
$3 \mathrm{~A} .15 \mathrm{~V} 12 \mathrm{~A} \times 2$ Separate windings. $\mathrm{f3} .50$

 No. 6 sec 27.5-0-27.5V 1.2A and 7.0-7 No. 717 V 1 A E2 P\&P 75D.
No. 813 V 3 A Bnd 15 V 1 A E3.50. P\&P E1.25 No. 9 18V 2A E2.50. P\&P E1.
No. 10 sec. $29-28-27-0-27-28-29 \mathrm{~V} 350 \mathrm{M} / \mathrm{A}{ }^{\circ} \mathrm{C}$
 No. 12. 27 V iA 22 V
No.

 No. 14 Tapped $12-15-27 \mathrm{~V} 1 \mathrm{~A}$ E2. P\&P 75 p . BV $500 \mathrm{M} / \mathrm{A} 50 \mathrm{~V} 40 \mathrm{M} / \mathrm{A}$ EZ. P\&AP E1 No. 16. Tapped 14-15-16V $2 A$ \&P. P\&\&P $£ 1$
No. 17. Tapped $166-37.38-39-41-42-43 V$ core $\dot{2}$.
12" MONTORS
Monochrome Composite Video input $300 / 75$ ohm, suitable for 80 -column, packed in atrac-
tive blact cases. sidemounted controls, E45
inc. VAT. Callers only.

UNIVERSAL TRANSFORMER Parmeko High-Grade Transformer. Tapped at
7 V and 21 V plus 1 V and 3 V . The desion of these transformers is such that iV 1024 V in nelvolt seps can be obtained. Conservar
vely rated at 3.5 Amps . Price $£ 7.50$ inc. car vely rated
and VAT.

SAFETY TRANSFORMER
Parmeko Transformer rated at 800W continshockproof yellow case with sturdy carrying handle and either 1 or 2 outlets. Internal safety uses plus 2 spare

	H.T. TRANSFORMERS All are Parmeko potted style. All prices include VAT \& carr No. 1, PRI 110 V 220 V 240 V SEC. $350-325-0-$ 325-350V 120 M/A EB 75 No. 2, PRI 110 V 220 V 240 V . SEC $400-0-400 \mathrm{~V}$ 180M/A E6. 75. No 3. PRI 110 V 220 V 240 V SEC $408-201-0-$ 201-408V $500 \mathrm{M} / \mathrm{A} \$ 7.25$ No. 4, PRI 110 V 220 V 240 V SEC $400-0-400 \mathrm{~V}$ 150M/A and $150-0.150 \mathrm{~V} 20 \mathrm{M} / \mathrm{A} £ 6.50$. No. 5, PRI 110 V 220 V 240 V SEC. $250 \mathrm{~V} 35 \mathrm{M} / \mathrm{A}$ $375 \mathrm{~V} 10 \mathrm{M} / \mathrm{A} 10-0-10 \mathrm{~V} 4 \mathrm{~A} 10 \mathrm{~V} 1 \mathrm{~A} 15 \mathrm{~V}$ 100M/A $\times 26.3 \mathrm{~V}$. 3 A 6.3 V .15 AMP $£ 7.50$ LOUDSPEAKERS High-grade speakers, Bin., 30 W max. power. A bargain at only $£ 6.95$ inc carr and VAT SPECLAL OFFER OF EAIE ELECTROLYTIC CAPACTTORS 22.000 MFD 63 V DC WKG E4. 50 inc. postage and VAT 6800 MFD 100 V DC WKG E2. 50 inc. postage and VAT 3600 MFD 150 V DC WKG $\frac{22.50 \mathrm{inc} \text {. postage and VAT } 10,000 \text { MFD } 16 \mathrm{~V}}{\mathrm{OC} \text { WKG five for } \mathrm{f} 2.50 \mathrm{inc} \text { postage and VAT }}$ 100 MFD 25 V OC WKG tan for $\mathrm{E1}$ inc postage and VAT 4.7 MFD 50 V DC WKG ton for 750 , inc. postage and VAT 22,000 MFD 10 V DC WKG five for $E 2.50$ inc postage and VAT UNIVERSAL ISOLATION TRANSFORMERS GPO spec, open frame, terminal block connections. PRI tapped 100-110-200-210-220-230$240 \cdot 250 \mathrm{~V}$. SEC tapped $220-230-240 \mathrm{~V} 600$ watts. Can be used in reverse. Weight 191b. £15. Carr £2.80 + VAT £2.67 PARTRIDGE OPEN FRAME TERMINAL BLOCK CONNECTIONS PFI tapped 0-110.115-120-220-240V SEC 240 V 1500 watts Can be used in reverse. £28.50, cars £4 + VAT £4.88 BERKSHIRE TRANS CO. Totally enclosed with 2 American 3 -pin sockets mounted on front panel. PRI $115-220-240 \mathrm{~V}$. SEC $115 \mathrm{~V}, 1,000$ watts Can be reversed. Suit able for recording studios, laboratories, workshops, using 115 V USA equipment. £25, cart £3.50 + VAア £4.28. CONSTANT VOLTAGE TRANSFORMERS LARGE SELECTION OF CVTs BY FAMOUS MAKER $190-260 \mathrm{~V}$ in 6 V 15 W out $190-260 \mathrm{~V}$ in 12 V 15 W out BY FAMOUS MAKER $190-260 \mathrm{~V}$ in 12 V 15 W out $190-20 \mathrm{~V}$ in 115 V 50 W out $190-260 \mathrm{~V}$ in 115 V 100W out 90.135 V in 240 V 200 W out All prices include VAT and cari WW. 10
SPECLAL OFFER 20-way 7-contact GPO Jack Fieids in perfect condition, as new. A real bargain at only $£ 6.50$ inc. carr. and VATIII	
1000W INVERTERS Brand new-as used by United Nations. Fantastic unit-very durable 12 V inpu1. 240 V 50 HZ output. 275.00 inc. carr and VAT	
Pri tapped $220-240 \mathrm{~V}$ sec 240 V 500 watts. Open frame type, top panel connections. Ex-equipment, but in perfect condition, $£ 15$, carf $£ 3$, VAT E2.70.	
High-grade E.H.T. Tranny, PRI 240V, sec. $10.000 \mathrm{~V}, 18 \mathrm{M} / \mathrm{A}$. Probably used for boiler ignition but with 101 other uses III ${ }^{25}$ inc. carf. 8 VAT	
8 MFD 1000 V 0 C WKG. E3, P\& P 1 I. VAT 60 D 8 MFD 350 V DC WKG E1.25, P\&P 50 p . VAT 26 p . 6 MFD 350 V DC WKG $\mathcal{M} 1$, P\&P 50 p, VAT 22 p . 4 MFD 500 V DC WKG. E1, P\&P 50 p, VAT 22 p .2MFD 600 V WKG. 60 p , P\&P 20p, VAT 12p. 1 MFD $1000 \mathrm{~V} D C$ WKG 60 p, P\&P 20 p . VAT 12 p . MFD 600 V DC WKG 5 for $£ 1.50$, P\&P 50 p , VAT 30 p .0 .25 MFD 500 V DC WKG. 5 for £1.25, P8, P30 p VAT 16 D .0 .1 MFD 1500 V DC WKG. 5 for £1.25, P\&P 50p. VAT 16p. 2 MFD 100 V DC WKG. 10 for E1.50, P\&\&P 75p, VAT 33p. Tubular metallised paper caps 20 MFD 350 V DC WIKG with elip E3, P\&P 50p, VAT 52p.	
LOW CURRENT LT TRANSFORMERS Open frame clamped type, split bobbin. All primaries 240V No. 1 sec tapped 12-15-20-24$30 \mathrm{~V} 750 \mathrm{M} / \mathrm{A} \mathrm{f4}$. No. $2 \mathrm{sec} 9-0-9 \mathrm{~V} 1 \mathrm{~A}$ and 6.3 V $200 \mathrm{M} / \mathrm{A} £ 2.50$. No. $315-0.15 \mathrm{~V} 600 \mathrm{M} / \mathrm{A}$ and $6.3 \mathrm{~V} 200 \mathrm{M} / \mathrm{A}$. No. 4 sec 12-0-12V $750 \mathrm{M} / \mathrm{A}$ and $6.3 \mathrm{~V} 200 \mathrm{M} / \mathrm{A}$ f4. No. $5 \sec 13 \mathrm{~V} 1 / 2 \mathrm{~A}$ £ 1.50 . No $6 \sec 8 \mathrm{~V} 1 / 2 \mathrm{~A} 6.3 \mathrm{~V} 600 \mathrm{M} / \mathrm{A}, 6 \mathrm{VV} 300 \mathrm{M} / \mathrm{A}, 50 \mathrm{~V}$ $40 \mathrm{M} / \mathrm{A} £ 2.50$. No. $7 \mathrm{sec} 17 \mathrm{~V} 1 / 2 \mathrm{~A}(\mathrm{DC}) £ 1.75$. No. 8 sec . No. 9 sec 18 V 2 A E4. No. 10 sec 24 V $2 \mathrm{~A} £ 4.50$. No. $11 \mathrm{sec} 15 \mathrm{~V} 2 \mathrm{~A} £ 3.50$. All prices include postage and VAT	

 WKG E75p. P\&P 25 p .6 MFD 300 V AC WKG
E1.50. P\&P 50 D .4 MFD 350 V DC WKG. 50 p . E1.50. P\&P 50 p. 4 MFD 350 V DC WKG. 50 p
P\&P 25p. 2 MFD 350 V DC WKG. 40 p . P\&P 20p H.T. TRANSFORMERS lude VAT \& carr potted styie. All prices in No. 1, PRI 110 V 220 V 240 V SEC. $350-325-0$
$325-350 \mathrm{~V} 120 \mathrm{M} / \mathrm{A} 5 \mathrm{~F} 75$ Nom PRI 110 V 220 V 240 V . SEC $400-0-400 \mathrm{~V}$ oo 3, PRI 110 V 220 V 240 V SEC $408-201-0 \mathrm{O}$
$01-408 \mathrm{~V} 500 \mathrm{M} / \mathrm{A} 9725$ $50 \mathrm{~m} / \mathrm{A}$, 220 V 240 V SEC $400-0-400$ No. 5, PRI 110 V 220 V 240 V SEC 250 V 75V $10 \mathrm{M} / \mathrm{A} 10-0-10 \mathrm{~V} 4 \mathrm{~A} 10 \mathrm{~V} 1 \mathrm{~A}$ 15V $100 \mathrm{M} / \mathrm{A}$

LOUDSPEAKERS bargain at only $£ 6.95$ inc. carr and $\forall A T$. ELECTROLYTIC CAPACTTORS 2nd VAT 6800 MFD 100 V DC WKG E2. 50 inc. 2.50 inc. postage and VAT 10,000 MFD 16 V nd VAT 4.7 MFD 50 V DC WKG inc postage C. postage and VAT 22.000 MFD for 75 DC

UNIVERSAL ISOLATION TRANSFORMERS tions. PRi tapped $100 \cdot 1100-200-210-220-230-$
240.250 V . SEC tapoed $220-230-240 \mathrm{~V}$ watts. Can be used in reverse. Weight 191b.

TERARTRIOGE OPEN FRAME PFI tapped 0.110.115-120. 220-240V SEC 240 £28.50, carf $£ 4+$ VAT $£ 4.88$

BERKSHIRE TRANS CO

 ets mounted on front panel. PRI 115-220-240 25. Carr $£ 3.50$ + VAT $£ 428$CONSTANT VOLTAGE
LARGE SELECTION OF
$90-260 \mathrm{~V}$ in 6 V 15 W out
$90-260 \mathrm{~V}$ in 12 V 15 W
$190-260 \mathrm{~V}$ in 12 V 15 W out
$190-260 \mathrm{~V}$ in 115 V 50 W ou
190-260V in 115 V 100 W out
All prices include VAT and cari WW. 90

Suitable for RS232 or IEEE 488
Analogue/Digital inputloutput

In Software

Data Acquisition
Wave Generation
Analogue Alarm Features
ASCll or Binary Data Format Off-line Data Storage

In Hardware

8 Analogue Inputs
4 Analogue Outputs
4 Relays
2×8 Bit l/O Ports
32 RAM Option
4 K RAM Standard

MICROSYSTEMS LTO

CIL Microsystems Ltd., Decoy Road, Worthing, Sussex BN14 3ND. Tel: Worthing (0903) 210474. Telex: 87515 WISCO GATT CIL. WW - 083 FOR FURTHER DETAILS

TWO NEW HANDHELD DIGITAL MULTIMETERS

$200 \mu \mathrm{~A}$ - 10 AMP AC-DC
 28 RANGES EACH WITH FULL OVERLOAD PROTECTION

SPECIFICATION

- Mode select: Push button
- AC DC current: $200 \mu \mathrm{~A}$ to $10 \mathrm{~A}-6$ Ranges
- AC voltage: 200 mV to $750 \mathrm{~V}-5$ Ranges
- DC voltage: 200 mV to $1000 \mathrm{~V}-5$ Ranges
- Resistance 200Ω to $20 \mathrm{M} \Omega-6$ Ranges
- Input impedance: 10Ms
- Display: $31 / 2$ Digit 13 mm LCD
- Overload protection: All ranges
- Battery: Single PP9 type (included)
- Battery life: 200 hours
- Dimensions: $170 \times 89 \times 38 \mathrm{~mm}$
- Weight 400 g inc battery

OTHER FEATURES:

Auto polarity, auto zero, battery-low indicator, ABS plastic case with tilt stand, battery and test leads, spare fuse and operators manual included. Optional carrying case.

318 Kempshott Lane, Basingstoke Hants RG22 5LT
ELECTRONICS LTD

9in. MONITOR in attractive case; accepts
Composite Video $+1-4$ volts; with info, $\mathbf{£ 2 5}$ each.
Matching ASC11 coded QUERTY KEYBOARD with Numeric Keypad and 27 function keys E25 each, D and p. $£ 5$. THE PAIR $£ 40$. 2 in . MONITOR, cased with info; accept
Composite Video $+1-4$ volts; 20 onch. With Matching ASC11 coded QUERTV KEY keys: $\mathbf{f 3 5}$ the pair. keys; $\mathbf{E 3 5}$ the pair.
OWER UNIT, 240. POWER UNiT, 240 v input; outputs $\times 5 \mathrm{v} / 15 \mathrm{a}$
$+24 \mathrm{~V} / 1.5 \mathrm{a}:-24 \mathrm{~V} / 3 \mathrm{a}$; 12 anch.
INSTRUMENT CASE, standard 19 in. width \times 16in. deep $\times 10$ in high: 55 , 19
16in. deep \times Ding high, 55 aach.
FLOPPY DiSK DRIVE, Bin., by Control Data
Corp 240y Corp; 240v input with control electronics E95, p. and ${ }^{\text {E.E5. }}$.
TWO Bin. FLDPPY DISK DRIVES by Incoterm with drive electronics mounted in case, 25 . way Cannon input/output socket. 240 V operation; ${ }^{\text {f175 }}$. 240 V operation; $\mathbf{£ 1 2 5 , \text { cart. } £ 1 4}$ CALCOMP 563 DIGITAL PLOTTER with CAL COMP 905 OFFLINE PLOTTER CONTROL LER, in very good condition and working
order; $\mathbf{E 3 5 0}$, carr. extra. C.L. Type 7181 VDU w TEKTRONIX HARD COPY EKTRONIX HARD COPY UNIT Type $4610-1$ can be used with 4010 series computer display terminals: $\mathbf{E 3 7 5}$

1 Tem No, 1 TELEQUPMENT OSCILLOSCOPE TYpe D83 $2 \begin{aligned} & \text { dual trace, } 50 \mathrm{MHz} \text { delay sweep. } \\ & \text { TEKTRONIX OSCILLOSCOPE }\end{aligned}$
dual trace 25MT OSCILLOSCOPE Type D67A
\qquad

$$
109 \mathbb{1}_{N}^{N}
$$

$$
\begin{aligned}
& 141 \text { WA } \\
& 142822 \\
& 142
\end{aligned}
$$ AMBA REGULATED POWER SUPRLY 10 Max.:

211

\qquad

42 ERNST TURNER 6 in. ELE 43 ER
48 VO
48 VOLTMETERMOR MOU 32 . O -10kC
AVO MULTIMETER MOD 48 A 50 SO
54 LM
AV
\qquad AVO TRONSISTOR TESTER TM.................... 57 lead
60 PYE

90 Avo

$$
\begin{aligned}
& \text { AVO VALVE TESTER Type CT160, } 22 \text { valve } \\
& \text { bases } \\
& \text { AVO HIGH-VOLTAGE DC MUULTIPIIER } \begin{array}{l}
\text { vor }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { AVS VALVE IESTER Yype CH60, } 22 \text { valve } \\
& \text { BaVO HIGH-VOLTAGE DC MULTIPLIER for }
\end{aligned}
$$

$$
\begin{aligned}
& \text { AVO HIGH-VOLTAGE DC MULTIPLIER for } \\
& \text { 20,000 ohm/volt meters.. } \\
& \text { GENERAL RADIO CAPACITOR 2000v dc. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 20,000 ohm/volt meters. } \\
& 6 \text { GENERAL RADIO CAPACITOR 2000v dc, } \\
& 110 \mathrm{mfl} \\
& \text { d }
\end{aligned}
$$

$$
\begin{aligned}
& 110 \mathrm{mtd} \text { E } 10 \\
& \text { MARCONISANDERS MICROWAVE POWER } \\
& \text { METER Type } 6598 \text { with thermistor mount type }
\end{aligned}
$$

$$
\begin{aligned}
& \text { METER Type } 6598 \text { with thermistor mount type } \\
& \text { 6046B, } 0.5 \mathrm{MHz-11GHz}
\end{aligned}
$$

$$
110 \text { NARDA PEAK POWER METER Model 66A3A }
$$

$$
\begin{aligned}
& \text { Mo bolometer. }{ }^{\text {MARCONITIVE VALVE VOLTME TER }} \\
& \text { TYpe TF260, } 10 \mathrm{~Hz} 210 \mathrm{MHz}, 1 \mathrm{mV}-300 \mathrm{v} \text { fsd E75 }
\end{aligned}
$$

$$
\begin{aligned}
& 145 \text { TEKTRONIX OSCILOSCOPE TYP } 581 \text { A with } \\
& 175 \text { TYpe } 82 \text { plug-in dualtrace } 85 M H z \text { E160 } \\
& \text { TINSLEV WHEATSTONE BRIDGE TYPE } 405
\end{aligned}
$$

$$
\begin{aligned}
& \text { Type } 82 \text { plug-in, dual trace 85MHz } \mathbf{8 1 6 0} \\
& 175 \text { TiNSLEY WHEATSTONE BRIDGE Type } 405 \\
& \text { (Post Oftice pattern) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Post Office pattern) } \\
& \text { CROPICO THERMOCOUPLE POTEN. } \\
& \text { TIOMETER TVOAPA }
\end{aligned}
$$

$$
\begin{aligned}
& \text { TIOMETER TYOE P4 } \\
& \text { RACAL H.F. SELECTIVE ANALYSER Type }
\end{aligned}
$$ AMBA REGULATED POWER SUPPLY Model HIVOLT TYPE 30PMSR HIGH-VOLTAGE MARCONIT, O-3OKV: POWER METER TYP F1020A/1,50 ohm METER TYDE \& K AUDIO FREQUENCY SPECTROMETER EKTRONIX STORAGE DISPLAY UNIIT TYP 611, screon size $81 / 2 \times 61 / 2$ in........... 496 Ype 312A ...775 567 with 3 S76 sampling dual trace and 3177 A sampling sweep and 6 R1A digital unit...... $\mathbf{£ 4 0 0}$ TEKTRONIX OSCHLOSCOPE TYpe 5618 with 3A74 (4 tracel and 383 delayed sweep time

base
.. 196 EQUIPMENT IN WORKING ORDER Please check availability before ordering. Carriage all units,
$\mathrm{f7}$; VAT to be edded to total of Goods and Carriage. S AE Piease check
f7. VAT to be
for LISTS.

STEWART OF READING 110 WYKEHAM ROAD, READING, BERKS RG6 1PL Telephone: 073468041

Callers welcome 9 a.m. to 5.30 p.m. Monday to Saturday inclusive
WW - 056 FOR FURTHER DETAILS

Dwight Cavendish

So why do we put a protection circuit indicator on our amplifiers?

[^7]Dwight Cavendish Company Limited

WW - 082 FOR FURTHER DETAILS

GOMPUHAR WTAH:OUST

THE'ALADDINS' GAVE OF COMPUTER AND ELECTRONIC EQUPMENT

HARD DISK DRIVES

Naw
DRE 44A/4000AB $10 \mathrm{mb} 5+5$ all configurations fro
5 AMP MAINS FILTERS

DISIEL ©

The UK'S FIRST free of charge, 24 hr . public access data base. Get information on 1000's of stock items and order via your computer and credit card. On line now, 300 baud. CCITT tones, full duplex, fully interactive
DON'T MISS THOSE BARGAINS CALL NOW, IT'S FREE! 01-8831133 week 24 hrm

Compute 'cais'

Abstract

cabinet with integral switched Originally, Mains filtering, and twin fan cooling system costing thousands of pounds.

 hours per day the PSU is fully screened and will delive massive $+5 v$ DC at 17 amps, De al 5 amps . The complete unit is fully enclosed with LEDs mounted on Ali front panel, rear cable pntries et etc. Units are in good but used condition - stpplied fo Give your system that professional finish for only £ 49.95 + Carr. Dim. $19^{\prime \prime}$ wide $16^{\prime \prime}$ deep $10.5^{\prime \prime}$ high Useable area 16 "w 10.5Also available LESS PS

caused by mains interference Matchbox size-Up to 5 amp $240 \vee$ load. As recommended letter. Suppression Devices SD5A

COOLITG FANS

Keep your hot a frand NEW profession

ETRI $99 \times$ UOI Dim $92 \times 92 \times 25 \mathrm{~mm}$. Miniature $240 \vee$ equ
finger guard $£ 9.95$.
tinger quard $\mathrm{EAP}^{2.95}$.
GOULD JB-3AR Di
very quiet running 240 v operation. NEW $£ 6.95$
BUHI.ER 69.11.22. 8 -16 V DC micro
miniature reversible
sen Uses a brushless
miniature teversiotremely high air flow,
servo motor for extrent
almost silent running and guaranted 10,000 hr life. Measures only $62 \times 62 \times 22 \mathrm{~mm}$
Current cost $£ 32.00$ OUR PRICE ONLY
C12.95 complete with data.

\qquad

8" FLOPPY DISK DRIVES

Unbelievable value the DRE $71008^{\prime \prime}$ floppy disk drives utilise the finest technology to give you 100% bus compatibility with most drives avaliable superb manufactur drive accept hard or soft sectoring IBM or ANSI standard ormats giving a massive 0.8 MB (7100) $1.6 \mathrm{MB}(7200$) of storage. Absolutely
SHOL 7100 Single sided $\mathbf{£ 2 2 5} .00$ + Carr. 7200 Double sided $\mathbf{£ 2 9 5 . 0 0}+$ Carr Optional accessories: Full technical manual $£ 20.00$ alone $£ 10.50$ with drive. Refund .

SUPER DEAL? NO - SUPER STEAL!!
 The FABULOUS 25CPS TEC Starwrite

Daisy wheel printer at a fraction of its original cost. BRAND NEW AT ONLYE499+

Made to the very highest
spec. the TEC Starwriter spec the TEC SLarwriter
FP1 $500-25$ features a heary duty die cast
chassis and DIABLO type print mechanism giving
supert registration and print quality Micro pracessor electronics
offer full DIABLE/Q compatibility plus B
directional printing Iriction or single sheet paper,- orrder now or call sales office for more
intormation and print sample. Please specity RS232 or CENTRONICS interface information and print sample. Please specity
Supplied complete with FREE dust cover and daisy wheel Supplied complete with FREE dust cover
Optional extras. RS232 data crable 10.0
$\mathbf{\varepsilon} 2.50$. - Tractor feed option $£ 120.00$ so. Carriage \& Ins. (UK

BRCHARGBABL BATIERIES CYCLON type D001 sealed lead acid
maintenance free 2 v 2.5 ah will deliver over maintenance free $2 v 2.5$ ah wilh deliver ove 300 amps
only E2. 95

DATA MODEMS

range of EX TELECOM data modems. Made to most stringent spec and designed to operate
for 24 hrs per day Units are made to the
 a 25 way D Skt Units are sold in a tested may be required for connection to PO lines. MODEM 13 A compact, async, same size as relephone base. Up to 300 baud, full dup
over 2 wires, but call mode only $\& 75.00$ MODEM 2B/C F flly fledged, up to 300 baud async. ANSWER \& CALL modes, auto answer,
auto switching ideal networks etc. Just 2 wire auto switching, ideal networks etc.
connection to comms line $£ 85.00$
MODEM 20-1 Compact unit for use with
PRESTEL or full duplex 2 wire link 75 baud transmit-
\& 130.00
MODERA $20-2$ same as $20-1$ but 75 baud receive 1200 baud transmit $£ 30.00$ MODEM 20-3 Made for data rates up to 1200 baud in full duplex mode over 4 wire circ
half duplex mode over 2 wires. $£ 130.00$
.
D.C. POWSA SUPPLY SPECLATS
 350 mm . All outputs fully regulated and shot circuit proof Removed from working E/4. 50 CUSTOMPOWERCO55 5 v @ 3 amp. Very compact unit dim appro $60 \times 90 \times 190 \mathrm{~mm}$ K $11.95+\mathrm{pp} £ 1.25$. 3 amps $+12 v @ 1$ amp and $-12 v @ 300$ ma. Crowbar overoltage protection and PERIPHERAL SYSTEM SUPPLY. Fully cased unit supplied in a Brand new or little used condition. Outputs qive 5 v @ 11 amps " + " $15-17 \mathrm{v}$ @ 8 amps" "-" $15 \cdot 17 \mathrm{v}$ @ 8 amps and " + " $24 \mathrm{v} @ 4$ amps All outputs are crowbar protected and the 5 volt output is fully regulated. Fan cooled. Supplied tested. with circuit $\mathbf{E S 5 . 0 0}+$ £8.50 carr. MAIN FRAME SUPPLY. A real beefy unit designed for MINI or MAINFRAME use outputs give 5 volts @ 50 amps $+12 v @ 5 \mathrm{amps}-12 v @ 10$ amps. All output are and tested Ex-Equip. $110 v$ AC input Only $\mathbf{£ 4} 95$ +

66\% DISCOUNT

ELECTRONIC COMPONENTS \& EQUIPMENT
Due to our massive bulk purchasing program
best possible bargains, we have thousands of
Sub-assemblies, Switches, etc etc. surlplus Suve sufficient stocks of any one item to include in our ads., we are packing all these items into the "BARGAIN PARCEL OF A LIFETIME" Thousands of components at giveaway prices' Guaranteed to be worth at least 3 times what you play plus we always lude something from our ads. for
$2.5 \mathrm{kls} £ 4.25+p p \mathrm{E} 1.25$ $2.5 \mathrm{Kls} \times 4.25+\mathrm{Pp} £ 1.25$
$10 \mathrm{kls} £ 10.25$ + Pp $£ 2.25$

TBLETYPE ASBB3
I/0 THRMMTALS
Fully fledged industry standard ASR33 da terminal. Many features including ASCII keyboard and printer for data I/O auto data
detect circuitry. RS232 serial interface. 110 detect circuitry. RS232 serial interface. baud. 8 bit paper tape punch and reader
off line data preparation and ridiculously cheap and reliable data storage. Supplied good condition and in working order Options: Floor stand $\mathbf{E 1 2 . 5 0}+$ VAT KSR33 with 20 ma loop interface $\mathbf{1} \mathbf{1 2 5 . 0 0}+$ KSR33 with 20 ma loop interface $£ 125.00+$
Sound proof enclosure $£ 25.00+$ VAT

SOFTY 2

The amazing SOFTY 2 . The complete "toolkit"

 for the open heart software surgeon. Copies, Displays, Emulates ROM, RAM and EPROMSof the 2516,2532 variety. Manyother features of the 2516,2532 variety. Manyother features intertace etc. Functions exceed capabilities of

ATL PRICES PLUS VAT

VIDHO MONITORS

MOTOROLA 9" open chassis monitor Standard 240 V AC with composite 18 mhz . video input, bandwidth in excess of 18 mhz. unguaranteed they are all tested prior to screens. Dim approx $9^{\prime \prime} \times 9^{\prime \prime} \times 9^{\prime \prime}$. Supplied complete with mains and input lead. Ideal 2X81 etc. or giving the tele back to the
family! Black and white phosphor. $£ 35.00$ + £9.00 Carr.
12 " CASED. Made by the British KGM Co Designed for continuous use as a data display station, unit is totally housed in an attractive brushed aluminium case with
OFF, BRIGHTNESS and CONTRAST controls mounted to one side. Much attention was given to construction and eliability of this unit with features such as supply, all components mounted on two fibre glass PCB boards - which hinge out ease of service, many inte:nal controls fo inearity etc. The monitor accepts standard 75 ohm composite video signal via SO239 is estimated around. 20 Mhz and will display most high det araphics and 132×24 lines. Units are secondhand and may have scree burns. However where burns exist they are
only apparent when monitor is switched of Although unguaranteed all monitors are tested prior 10 despatch. Dimensions approx. 14 high $x 14$ wide by 240 deep operation. OWLY E45.00 PLUS E9.50 CARR 14" COLOUR superb chassis monitor made by a subsidiary of the HITACHI Co. Inputs plug direct into the B8C micro etc. Exceptional bandwidth with good 80 co
definition Brand new and guaranteed. working. Dim. $14^{\prime \prime} \times 13^{\prime \prime} \times 13$
ONLYEI99.00 PLUSE9.50 GARR

SEMICONDUCTOR 'GRAB BAGS'
Mixed Semis amazing value contents, include transistors, digital, linear, I.C.s triacs diodes, bridge recs., etc. etc. All devices
guaranteed brand new full spec. with manu acturer's markings, fully guaranteed. $50+E 2.95100+E 5.15$.
TTL 74 Series A gigantic purchase of an "across the board" range of 74 TLL ser
C's enables us to offer $100+$ mixed C's enables us to offer $100+$ mixed
"mostly TL" grab bags at a price which or three chips in the bag would nnormally

OLIVEIMI TFSOO

 REDUCED TO CLEART hole paper tap output terminal with integral8 operates at 150 baud in standard ASCII. Ideal as a cheap printer for a MICRO etc. 120 columns. Serial data i/o Supplied complete
BINGLEY HALL, BIRMINGHAM 28-30 APRIL 1983
 Thurs \& Fri loam - 6pm

Presented by COMPUTER Comparting

This event is the first of its kind in the Midlands, and gives you the opportunity to see and compare the enormous range of personal and home computers, small business systems, microcomputers, software packages, cassettes and scores of the very latest computer games - try them for yourself - decide how much, or how little it takes to build up your own personal computer system.

PHONE P. M. COMPONENTS LTD 0474813225 SELECTRON HOUSE, WROTHAMROAD 3 LINES MEOPHAM GREEN, MEOPHAM, KENT DABOOY

MARK 1983 WITH GAPS IN CIRCUIT FILES WELL-PLUGGED

WIRELESS WORLD CIRCARDS last year benefited many 'new generation' readers who bought at 1976 bargain prices $+10 \%$ discount for 10 sets! Most sets are still available although companion volumes CIRCUIT DESIGNS 1, 2 and 3 are out of print (CIRCARDS sets 1 to 30).

> The Offer stands, so order now your sets of $127 \times 204 \mathrm{~mm}$ cards in plastic wallets. These unique circuit cards normally contain descriptions and performance data of 10 tested circuits, together with ideas for modifying them to suit special needs.

[^8]To Electrical-Electronic Press
General Sales Department
Room 108
Quadrant House
Sutton
Surrey SM2 5AS

Company registration in England
Quadrant House, The Quadrant,
Sutton, Surrey SM2 5AS
Reg. No 677128
Please send me the following sets of
Circards.. E 2 each,
£18 for 10 post free.
Remittance enclosed payable to BUSINESS PRESS INTERNATIONAL

Name (Please print).
Address (Please print)

A COMPETITION OPEN TOALL WIRELESS WORLD READERS WITH $£ 8000$ IN CASH PRIZES

Design an Electronic Device to help the Disabled

Could you design a piece of equipment to help a disabled person? If so, you would - in addition to undertaking this worthy task - be eligible to win a substantial cash prize.
Our competition is open to individuals or groups resident in the UK. You register your entry using the form below, sending it to the Editor to arrive at his office not later than June 30th 1983. The designs themselves must be submitted to his office hy 1st October 1983.

Entries, which will be judged by a group of eminent engineers and doctors, must consist of the following:- a statement of the design objectives; an overall description of the device; detailed circuit descriptions and diagrams: a model of the device or a model of a unique aspect of the design sufficient to demonstrate its feasibility.
The finalists will be invited to London to talk over their entries with the judges and be awarded their prizes. The prizes are:

1st prize $£ 2,500$ 2nd prize $£ 1,500$

"DESIGN AN ELECTRONIC DEVICE TO HELP THE
DISABLED" LIST OF RULES
The competition isupentol K revidentsonl
 pranided which mum be returned tuthe Wireless Warld F.durlal Department on the All ent rants agree togive Wireles. Hirld lis at serial publication rixhts wan armite describing the entrs
Allentrants indemnify Hireless. World from ans habiluty in respect in in fury operple or damage toproperts arising from the lise th the design
Alsuhmited designs must be the urignal work whe the ram or entrants and must mut Il-ubursium shuld ansisi of A statement of designobjectives
b) Anoveralldeseription of the
e) Detailed circuit descriptions and diagrams
d) A model of the device or the unique aspect of the desisn suffecient todemonstrateits
Teasibilits.
a) Originality and benefit to the handieapped
Potential for production
Fhegance of engineering design
Eleetronics conten
Design reliability
Sumplicits of oberation
Freedomirom
maintenance
h) Safety
sutware
accethed
£1,000
To make sure you have the maximum time to undertake your design, return your entry form now!
and the 4 runners up will be awarded prizes each of

wireless world
 COMPETITION ENTRY FORM

Design an electronic device to help the disabled"

Name of competitor-
Address

Telephone (home)

(business)

! intend to enter the competition and to abide by the rules as laid down in the April 1983 issue of Wireless World
I understand that in order to quaify. my entry must in the hand of the judges by 1 st October 1983.

Signature

Date
Please send this form, as soon as possible, to
The Editor, WIRELESS WORLD
Room L302, Quadrant House, The Quadrant
Sutton, Surrey SM2 5AS.
Receiptof the form will be acknowledged.
'P.W. WINTON' TUNER AND AMPLIFIER

Snazzy matching slimline tuner and amplifier in beautiful wooden cabinets. These Ted Rule designs are for the enthusiast.
Tuner covers LW, MW, SW, FM and TV soundl Digita I frequency readout with clock and timer features. FM has 6 section front end and switchable bandwidth for exceptional fringe area per-
formance. Amolifier has Toroidal transformer. Mosfer output stages, 50 watts per channel and got a cracking review in Practi-
cal Wireless. Tuner. Complete Kr .
LINSLEY-HOOD CASSETTE RECORDERS
 cassette mechanism and the des it mechanism and the newer version using argery hig performance and fitted with our latest has an excellent W \& F ad gives an incredtible frequency range (with good tape you
see 23 KHz on oursl). Linsiey-Hood Cassette Recorder 1 875.00
insley-Hood Cssete Recorder
WW" Articles 70p. No VAT
Please Note: New Phone Number: (0691) 652894
Personal callers are always very welcome but please note that we are closed all day Saturday

THIS MONTH'S SPECIAL OFFER COMPLETE STEREO CASSEIE DECK

Brand-new high-quality stereo cassette unit with built-in record and play electronics. Ideal for use with any hi-fi system or music centre. Only a single 9 volt $J C$ supply is required to power the who e unit.
Microphone and line inputs are provided on both channels and the line output will feed into any normal hi-fi amplifier. Erase and bias is provided by an ultrasonic oscillator, automatically switching to the correct level when a chro ne or ferric cassette is put in place. Overall size $180 \mathrm{~mm} \times 130 \mathrm{~mm} \times 73 \mathrm{~mm}$. Complete with 3 -digit counter.
We value this deck at about £30. OUR VERY SPECIAL PRICE INCLUDING VAT AND POSTAGE - THIS IS ALL YOU PAY - ONLY £18.34 (while stocks last).

nel

Oo your tapes lack treble? A worn head could be the problem fiting one of our replacement heads could restore performance our TC1 Test Cassette helps you set the azimuth spot-on. We are he actual importers which means you get the benefit of lower prices for prime parts. Compare us with other suppliers and seel
The following is a list of our most popular heads, all are suitable for use on Dolby machines and are ax-stock. HC20 Permalloy Stereo Hesd. This
original equipment on most decks HMgo High Beta Permalloy Hoad. A hard-waring.............25 formance head with metal capability 66.20 HS16 Sonduat Alloy Super Head. The best head we can find.
Longer life than Permalloy, higher output than Ferrite, fantastic frequency response ... 20
HO5514 Track Head for auto-reverse or quarophoic Ho551 4-Track Head for auto-reverse or quadrophonic use full
specification record and playbeck head........................ Please consult our list
Special Purpose Heads.

STUART TAPE CIRCUITS

These circuits are just the thing for converting that old valve tape deck into a useful transistorised recorder. Tota
system is a full three head recorder with separate record and replay sections for simultaneous off tape monitoring We also stock the heads. This kit is well engineered bu does not have the detailed instructions that we give with our more recent designs. We would not therefore recom.
mend if to beginners. Reprints of the original thee articies 45p. Post free. No VAT

HART TRIPLE-PURPOSE TEST CASSETTE TC1
One inexpensive test cassette enables you to set up VU level.
head azimuth and tape speed. Invaluable when fitting now
heads. Only $£ 3.80$ plus VAT and 50 p postage.
Tape Hoad Da-magnetiser. Hsndy casserte size mains operated unit prevents build up of residual head magnetisation causing

CASSETTE MOTORS

Brand Now Governed 12v DC Tape Orive Motor Type MMI As use As used in SF925 and many other decks 40 mm Dia $\times 35 \mathrm{~mm}$ Long, Shatt 10.5 mm long $\times 2 \mathrm{~mm}$ Dia. $6 \times 2.5 \mathrm{~mm}$ Mounting Holes on 26 mm PCD on shaft end face. Anti-clockwise rotation at rated speed of 2200 RPM . Free run current 25 mA . $\mathbf{5} .85$ each Lanco CRV/FFR.
We have a small quantity of spare motors for thas? decks at $\mathrm{E6}$
each complete with drive pulley Spare belts for FFR or CRV 90 p (Large), 30p (Small).
our illustrated lists.
our illustrated lists.
Ask for your FREE copy NOW
Enquiries for lists are also wall
us have three IRCs to cover the cost of surface post or 5 IRCs iet airmail.
in a hurry? A telephone order with credit card number placed before 3 p.m. will be despatched THAT DAYI
Front loadiog deck with full solenoid control of all functions including
Fitted 3 -dig t memory counter and Hall IC Motion Sensor. Standard erase and stereo R/P Heads. Cheapest price ever for all these features. Only $\mathbf{£ 3 8 . 9 0}$ plus VAT. Full technical specification

LINSLEY-HOOD 100 WATT POWER AMPLIFIER
Our complete ktt for this brilliant new design is the same size as Our Linsley Hood Cassette Recorder 2. Kit includes all parts for supply and speaker protection circuit. Total cosi of all parts is supply and speaker protection circuit. Total cosil parts bought
f114.46 but our special introductory price for all pars E114.48 buf our special
together is only E105.50.
$\begin{array}{ll}\text { INLANO } & \text { OVEREAS } \\ \text { Orders up to } 510-50 \mathrm{p} & \text { Postageas }\end{array}$
Orders up to E10-50p Postage at cost plus $£ 2$
Orders $£ 10$ to $£ 49-£ 1$ ostageat cost plus $£ 2$
Orders over $£ 50-£ 1.50$
ALL PRICES PLUS VAT
LASTCHANCE ATTHIS PRICE. METALFILM RESISTORS 1% Tolerance, $1 / 4$ Watt

100 R	1 k	10k	100k
1108	1 k 1	11 k	120
${ }_{1300}^{1204}$	$1 / 2$ 1×3 1×3	${ }_{1}^{12 k}$	${ }_{1}^{120 \%}$
1508	11.5	15 k	150k
160 A	:k6	16k	${ }^{1600}$
1808	1 kB	18 k	180*
2008	2 k	20 k	20
2208	2 k 2	$2{ }^{2 k}$	${ }^{2200}$
2408	2 c 4	${ }^{24 k}$	240k
2708	2 k 7	${ }^{27 k}$	270k
300R	3k	${ }_{3}^{30 k}$	330k
3300	${ }_{3 \mathrm{k}}^{6}$		
3500 f	${ }_{3 \mathrm{k} 9}$	39 k	
4308	4×3	${ }^{43 \mathrm{k}}$	
470 R	$4{ }^{4 \times 7}$	47k	470k
5100 F	${ }_{5}$	56k	560 k
5608	Ski	62k	
680R	6 k 8	${ }^{681}$	680k
750 H	7 l 5	75k	
${ }_{910 \mathrm{O}}^{120 \mathrm{a}}$	${ }_{961}$	${ }_{91 \mathrm{k}}$	1 M

ONLY 3p EACH
High Quality High Stability. Hug* Strength.
Minimum order £20 89 Values (E24) VAT, p\&p inctusive \&23.00

ORION SCIENTIFIC PRODUCTS LTD.

Audio Measuring Instruments, Audio Amplifiers, Loudspeakers and Loudspeaker Components for the professional and enthusiast

RADFORD AUDIO LTD.
10 BEACH ROAD
WESTON-S-MARE, AVON BS23 2AU
TEL. 0934416033

Appointments

Advertisements accepted up to 12 noon Tuesday, April 5th, for May issue, subject to space available.

DISPLAYED APPOINTMENTS VACANT: $£ 15.50$ per single col. centimetre (min. 3 cm). LINE advertisements (run on): $£ 3$ per line, minimum $£ 20$ (prepayable).
BOX NUMBERS: $£ 3$ extra. (Replies should be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS). PHONE: IAN FAUX, 01-661 3033 (DIRECT LINE)
Cheques and Postal Orders payable to BUSINESS PRESS INTERNATIONAL LTD. and crossed.

ALWAYS AHEAD WITH THE BEST!

£5,000-£18,000

\star Experienced in: Mini/Microprocessor Hardware or Software; Digital and Analogue circuitry; RF and Microwave techniques?
\star Where does your interest lie: Image Processing; Automation; Datacomms; Radar; Nav-Aids; Video; Medical: Telemetry; Simulation; Satcom; Local Area Nets; Computers; Weapons; Communications?
\star There are opportunities in: Design; Test; Service: Sales; Systems; Production; Quality and Research for Engineers and Managers.
\star First call: MIKE GERNAT or JOHN SANDERS on 076384 676/7.
"HI-FLIERS" WANTED READY FOR "TAKE-OFF'
Senior Development Engineer to take design of real time microprocessor systems for video picture processing all the way from specification through to de-bugged delivary to client covering hardware (P.C.B. lavout and prototype construction included) and eoftware (high level and Assembler). Must be highly qualified with experience of casting video and display techniques would be useful.

To £12,000
s for peri-
Computer Hardware Engineers to design digital and analogue interfaces for peripherals to mini and micro computers. Must be graduates with at least or trainer knowledge much appreciated.
Central Berks
Salary up to $£ 12,000$ p.a.
Commissioning and Test Engineers for a wide range of signal processing and digital video standards converters. Must have video and digital test experience and at least O.N.C.

To £10,000 p.a.
Senior Design Engineers to work on industrial data acquisition monitoring and control systems with associated test equipment with an amphasis on hardware with at least two years' experience of real time microprocessors and knowledge of assembler and high level structured languages. Must have H.N.C. at least and R.C.A. 1802
background would help. background would help. Northiants

And the salary? GOOL

Charles Airey Associates

 Tempo House, 15 Falcon Road, Battersea, London SW11 2PJ Telephone: 01-223 7662 or 2286234(1357)

LEADING INTERNATIONAL SOUND AND LIGHTING SUPPLIERS

Require an assistant to the technical director to plan and install and occasionally service sophisticated sound and lighting installations worldwide.
Candidates should have creative ability, commonsense and at least one year's industrial experience as well as an electronics degree. Extensive travel is involved and we expect the ideal candidate will be aged approximately 25 and single.
Salary $£ 9,000-£ 10,000$ p.a. (negotiable) plus profit sharing scheme. Reply to:

John Leefe

TALIAN HOLDINGS LTD.
64/66 Glentham Road, London SW13 9JJ

SERVICE MANAGER

ELECTRONIC SECURITY PRODUCTS RETAIL STORE

Supervise small production line, purchasing materials establishing regular sources of supply and supervision of staff of four technicians. Applicant required possess strong engineering and practical background in manufacturing procedures, reliability tests, cost estimates, etc.
RF communication and telephone systems experience is essential. Qualified applicants only. Good future. Salary will depend on experience starting with $£ 7,500$ as negotiable salary minimum.
Please reply in writing giving details of qualifications and career to date, to Box 2022.

Appointments

Electronics Engineers Communications

Marconi Space and Defence Systems, Military Communications Division, are rapidly expanding their Portsmouth operations. New buildings are being erected in response to important new contracts. Now additional experienced staff qualified to Degree/HND/HNC level are required to lead or operate within teams in the following areas

- PV Crypto Crypto Advanced Systems
- Naval Systems - Baseband

The precise grades and experience required vary according to the individual project. The following skills, however are particularly relevant

- Analogue/digital hardware design
- Software development and preparation
- Software/hardware development and integration
- Design engineers for LSI based project
- Innovative digital design

Our salary scales match the high standards of qualifications experience and ability demanded we offer a comprehensive range of benefits together with relocation assistance if required.
Phone Portsmouth 674019 for further information and an application form. Alternatively, you can write to Jack Burnie, Marconi Space and Defence Systems Limited, Browns Lane, The Airport, Portsmouth, Hants. quoting ref: BL 21
(All posts open to men and women)

Marconi

Space \& Defence Systems

BRITISH ANTARCTIC SURVEY Radio Officer (Marine)

A vacancy exists for a Radio Officer (Marine) to serve initially aboard the Antarctic Research Vessel RRS John Biscoe. The successful applicant will be required to commence duties on 1 June. Voyages are normally seven months long and the vessel will sail from the United Kingdom on 21st June.
RRS John Biscoe's primary role is to support shipborne marine biology and associated oceanography in the southern ocean. She has a secondary responsibility to resupply Antarctic land stations as well as to support scientific parties in the field.
Candidates should possess valid certificates of proficiency recognised by the Department of Trade and have served the necessary sea time to work a single-handed station.
Salary: In the scale $£ 7,773, £ 8,291, £ 8,398, £ 8,640 \ldots$ to $£ 10,917$ per annum. In addition an allowance of $£ 1,200$ is payable for periods of service spent south of Montevideo.
For further details and an application form please write stating full qualifications and experience to:
The Establishment Officer, British Antarctic Survey; High Cross, Madingley Road, Cambridge CB3 OET.
Please quote Ref: BAS 75
Closing date: 30 March, 1983

NATURAL ENVIRONMENT RESEARCH COUACIL

LOUGHBOROUGH UNIVERSITY OF TECHNOLOGY WORKSHOP TECHNICIAN

Applications are invited for this new post in the Department of Computer Studies. The successful candidate should have HNC, HND, or equivalent and 5-10 years' experience in the field of microprocessors, electronics or digital systems in the first instance.
Salary on Grade 6 scale $£ 6532$ - $£ 7802$ (under review). The appointment is for three years.

Requests for further particulars and application forms to Dr C. H. Machin, Department of Computer Studies, University of Technology, LOUGHBOROUGH Laics LE11 3TU.
(2025)

Channel 4 Engineering

VIDPOTAPE EDITOR-Ref EG/7

A Videotape Editor who is experienced in the operation of time code editing systems is required to work in our editing suite. Applicants must be able to demonstrate a detailed working knowledge of broadcast videotape editing.

J HR

An opportunity exists for an individual who has an electronicloperational background, to make a start in the television engineering department of Channel 4. Applicants should either possess a qualification in electronics or mechanical engineering, or experience in a broadcasting engineering department

Write enclosing a full C.V. and quoting the relevant reference number to The Personnel Department. Channel 4 Television. 60 Charlotte Street, London W1P 2AX by 25th March 1983
Chonne/ 4 is an equal opportunity emoloyer: applications are welcome from candidates regardiess of marita. status, race, nationality, ethnic of national origins, or sex, and from registered disabled persons

CHANNEL FOUR TELEVISION

Book Pditor

The Radio Society of Great Britain requires a second book editor to work on zew and existing publications in its expancting range.
Applicants should have at least two years' relevant book or magazine experience and a knowledge of radio and electronics. They should be able to assume responsibilities for all aspects of book production from manuscript to bound copies, while working under minumum supervision.

The position is a good opportunity to take up a creative and responsible role in a small but highly successful publisher. It offers a competitive salary and excellent working conditions.

2038

[^9]
Appointments

CAREER OPPORTUNITY WITH TOP BRITISH MICRO MANUFACTURER ELECTRONICS TECHNTCIAN
PRODUCTION ENGINEERING
G5.8K-8.7K
DEFENONGONACE AND EXPRERINCE,OXFORD BASLD

CHIEF MAINTENANCE ENGINEER

required for factory manufacturing musicassettes and computer software. Some experience of Audio Techniques as well as Electronics to HNC standard or equivalent would be essential.

This responsible position would be ideal for someone with an interest in the maintenance of machinery from computers to packaging machines.

Please write with full career details to:

Malcolm Shepherd

 BiBi Magnetics Ltd 101/105 Plough Road London SW11 2BJ(2029)

ELECTRONICS TECHNICIAN

The post involves the routine maintenance of an Elscint wholebody CAT Scanner as well as other associated electromedical equipassociated electromedical equip-
ment. Applicants should have ment. Applicants should have wide experience in analogue and digital servicing together with a working knowledge of micropro cessor programming techniques.

The post is graded as Medical Physics Technician II or III depending on experience and qualifications (Entry to Technician II grade is open to applicants who have served at least two years as a Technician III)

Salary scales from 1 st April, 1983 MPT || £7,386-£9,212 p.a. $+£ 997$ o.a. London Weighting; MPT II £6,132-£7,926 р.а. + £997 р.a. Lon don Weighting

Please apply for an application form without delay to: The Secre tary, Department of Clinical Mea surement Westminster Hospital 65 Romney Street London SW1 or 'phone 01-828 9811 Ext. 2640.
(2041)

BOX NOs.

Box number replies should be addressed to

Box No
c/o Wireless World Quadrant House The Quadrant
Sutton, Surrey SM2 5AS

BORED ?

Then change your job!

1) Test Equipment Controller

Plan and procure test equipment and control a team of test equipment engineers. To $£ 12,670$ team of
Hants.

2) Maintenance Engineer

start an in-house test of communications equipment - then move to field service when tully conversant. To $88,000+$ car - London. 3) Service Engineer

Analogue and digital detection and alarm systems. Middx-Essex - to £8,000
4) Test Engineer
in-house work on modems and data commu nications systems. To 87,500 - Bucks.
5) Service Personnel
(HAF, RN, Army)
We have many clients interested in employing ex-service fitters and technicians at sites throughout the UK. Phone for details.
6) E 500 per week

We are paying very high rates for contract design and test engineers who have a back round in RF, MICROWAVE, DIGITAL, ANALGUE or SOFTWARE, at sites throughout the UK.

Hundreds of other Electronic and Computer Vecencies to $£ 12,500$
Roger Howard, C.Eng.M.I.E.E., M.I.E.R.E. CLIEDEN CDMSULTANTS
87 St. Leonard's Road, Windeor, Berks Windsor (07535) 58022 (5 lines)

CLIVEDEN

UNIVERSITY COLLEGE CARDIFF DEPARTMENT OF PHYSIOLOGY

ASSISTANT EXPERIMENTAL

OFFICER (ELECTRONIC INSTRUMENTATION)

The department, which has an active neuroscience-based research programme, requires a person with design experience to work in collaboration with the academic staff in the development and maintenance of equipment for research laboratories Degree in electronics an advantage This post offers a challenging oppor developing the latest electronic tech cology in a biomedical environment
Salary range: OR IB $£ 5,550-£ 9,370$ p.a Duties to commence as soon as possible.
Applications (2 copies), together with the names and addresses of two referees, should be forwarded to the Vice-Principal (Administration) and Registrar, University College, PO Box 78, Cardiff CF1 $1 \times L$, from whom further particulars may be obtained. Closing date 15th April, 1983. Ref: 2532.

ELECTRONICS ENGINEERS FOR BROADCAST TELEVISION

Ampex Corporation is the leading world manufacturer of professional video/audio recording equipment and a wide range of associated broadcast products, including computer controlled editing systems, cameras, digital effects and vision switchers
We are looking for:

SYSTEMS PROJECT ENGINEERS

To join our innovative project team involved in the design, installation and commissioning of TELEVISION STUDIO AND OUTSIDE BROADCAST VEHICLE PROJECTS.
The Broadcast Systems Group based in Reading supplies complete studio and mobile systems to broadcast installations worldwide
The appointments involve occasional overseas travel for on-site commissioning.
Key requirements are:

* Thorough knowledge of video and audio principles - HNC/Degree Electronics preferred * Experience in broadcast television industry
\star Previous knowledge of TV Systems would be an advantage

FIELD SERVICE ENGINEERS
 (based in UK or Italy)

Electronics engineers to work on the installation and maintenance of television studio equipment at customer sites throughout Europe, Africa and the Middle East.
Key requirements are:
\star Thorough knowledge of electronic engineering - HNC/Degree Electronics preferred $\star 3$ years' experience in a television studio/production environment with specific experience of either videotape or studio equipment, e.g. cameras, switchers, etc
\star Availability to travel throughout Europe, Africa and the Middle East, together with ability to work on own initiative while away from base.
Attractive salaries and other benefits, including pension, life assurance and permanent health scheme, Bupacare option, product training, overseas allowances and relocation expenses as appropriate.

Please 'phone or write Maureen Brake
Ampex Great Britain Limited Acre Road, Reading RG2 00R Berkshire, England
Tel: Reading (0734) 875200
(2028)

ELECTRONIC DESIGN ENGINEERS

We are a small highly successful manufacturing company specialising in RF communications, digital and low frequency analogue equipment.
We require young highly motivated engineers wishing to develop their experience. The ideal candidate must have complete confidence in his ability.

- Starting salary $£ 10 K+(n e g)$.
- 3712-hour week. Overtime available.
- Pay reviews every 6 months.
- Pleasant working environment.
- Location near City of London.

Contact Keith Penny on (01) 2500894

SCOTTISH OFFICE
 DIRECTORATE OF TELECOMMUNICATIONS

WIRELESS TECHNICIAN

(£5,972-£8,058)

Applications are invited for two posts of Wireless Technician in the Central Services Department of the Scottish Office. The posts are based in East Kilbride and Edinburgh.
Candidates-must have a sound theoretical and practical knowledge of Radio Engineering and Radio Communications equipment both fixed and mobile, in the frequency range HF to 2 GHz . They must also be able to use test equipment and simple machine tools. A sound basic knowledge of digital techniques would be an advantage. They should have a minimum of 3 years' appropriate experiencé and should hold an Ordinary National Centificate in Electronic or Electrical Engineering or a City and Guilds of London Institute Certificate in an appropriate subject or a qualification of higher or equivalent standard. Some assistance may be given with relocation expenses.
A valid UK driving licence is essential
Application forms and furtier information are obtainable from Scottish Office Personnel Division, Room 110, 16 Waterloo Place, Edinburgh EH1 3DN (quote ref PM (PTS) 2/1/83 (031556 8400 Ext 4317 ö 5028)).
Closing date for receipt of completed application forms is 11 April, 1983.

Appoinments

T Senior Engineer - Vision Control

We are looking for a Senior Engineer to lead the Vision Control section at The Television Centre, Mold, which is part of the impressive Theatre Clwyd complex, where we are currently completing the installation of a second studio.
Experience in broadcast television is an essential requirement, and familiarity with Link 110 and 120 cameras would be a distinct advantage.
Salary, including supplements, is $£ 11,884$ per annum, and assistance towards the cost of relocating to this very attractive part of Wales may be available.
Suitably qualified candidates should write for an application form, enclosing a self-addressed envelope and quoting reference WW/146 to The Personnel Manager, HTV Limited, The Television Centre, Cardiff CF1 9XL.

Network Supervisor

Channel 4 Television requires a Network Supervisor at their transmission centre in Charlotte Street.
The successful applicant should be fully conversant with all aspects of television technical operations, and will have occupied a position of responsibility within a broadcast television environment.
He/she is the senior technical operations staff member on shift who will deputise for management in their absence. Excellent salary and promotion prospects.
Please write giving details of pastexperience, age and salary to ThePersonnelDepartment, (Ref EG (6), Channel4 Television, 60 Charlotte Street, London W1P 2AX by 25th March 1983

Channel 4 is an equal opportunity employer: applications are welcome from candidates regardless of marital status. race, nationality, ethnic or national origins, or sex, and from registered disabled persons.

NORWEB-MID LANCASHIRE AREA
 THIRD ENGINEER (TELECOMMUNICATIONS) AREA ENGINEERING DEPARTMENT

There is a vacancy for a Third Engineer (Telecommunications) in the Area Engineering Department, Hartingdon Road, Preston.
Applicants should hold an appropriate degree, HNC, or full Technological Certificate, and should have had basic experience which will allow the person appointed to make a significant contribution to the installation, commissioning and future maintenance of a comprehensive microprocessor-based telecontrolled system. Experience will be gained in the wide variety of telecommunications equipment presently in use in the ESI.
Salary, $£ 7,044-£ 10,675$ p.a. plus $£ 292$ p.a. responsibility payment.
Applications obtainable from: The Manager, Mid-Lancashire Area, Norweb, Hartington Road, Preston, Lancashire PR1 8LE by 8th April, 1983.

BRITISH ANTARCTIC SURVEY Radio Technician/ Operators

Radio Technician/Operators who have experience in maintenance and operation of HF and satellite communications are required to work single-handed at stations in the Antarctic.
Because of the isolated situation of Antarctica the ability to work on their own initiative is absolutely essential. Applicants should appreciate that they will be solely responsible for all aspects of communications. Ability to operate to MRGC standard with some knowledge of maritime procedures is also necessary. Appropriate training on specific equipment will be given if required.
The period of employment will be from 4 July, 1983, until Spring 1986 which entails working in Antarctica for two consecutive winters.
Applications are invited from single men (to work mainly overseas) who are physically fit and aged between 22 and 35 . Salary: from $£ 5,709$ per annum, plus annual increments. Also Antarctic allowance of $£ 586$ per annum. Accommodation provided whilst overseas. Clothing, messing and canteen are provided free on bases and free messing on voyage.
For details and an application form please write to:
The Establishment Officer
British Antarctic Survey
High Cross, Madingly Road, Cambridge C83 0ET
Please quote ref BAS 74
Closing date 13th April, 1983
NATURAL ENVIRONMENT RESEARCH COUNCIL

GOODHEAD PUBLICATIONS LIMITED require an EDITOR
 for its monthly magazine, Amateur Radio

An experienced radio amateur is preferred, although not absolutely essential. Editorial experience a definite asset. Freelance Editor would be considered.
Write, with a brief cv to the Executive Editor, Chris Drake, Goodhead Publications Limited, 27 Murdock Road, Bicester, Oxon OX6 7RG. Telephone: Bicester (08692) 44517.

CUT THIS OUT!

Clip this advert and you can stop hunting for your next appointment. We have a wide selection of the best appointments in Digital. Analogue. RF. Microwave. Micro. processor. Computer. Data Comms and Medical Elec. tronics and we're here to serve your interests.
Call us now for posts in Design. Sales. Applications or Field Service, at all levels from $£ 6,000 £ 16,000$
(i) Technomark

Westbourne Grove. London W2. Tel. O1-2299239.

PSION (in)

ELECTRONICS TECHNICIAN ENGINEER

Psion is a substantial and rapidly growing microcomputer applications house.
We require an electronics technician/engineer to support design staff in the following areas:

- Construction of prototype equipment, both electronic circuits and enclosures.
- Maintenance of in-house equipment.
- Control of workshop and component stock.

The successful applicant will have at least 5 years' experience in an electronics design environment. Salary range $£ 7.000-$ $£ 11,000$ per annum depending on skill, experience and ability to work with a minimum of supervision.

PSION LTD., 2 Huntsworth Mews, Gloucester Place, London NW1.
 Telephone: 01.723 6919 or 01-7239408

County Surveyor's

M1 Strengthening phase 1, 1983/4

Provision of a site Radio Telephone System
Applications are invited from companies wishing to be considered for the supply and maintenance of a site radio telephone system, on the basis of a short term hire contract. The equipment is to be used for a period of approximately 16 weeks on the above mentioned contract on the M1 in Bedfordshire.
Companies wishing to be considered should apply to:
The County Surveyor, County Hall, Cauldwell Street,
Bedford MK42 9AP. Tel: Bedford 63222 extension 34

SENIOR VT ENGINEER

A vacancy exists at our Glasgow studios for an experienced VT Engineer.
Experience in the operation and maintenance of $V T$ equipment is essential and preference will be given to those familiar with the operation of Ampex equipment, eg., AVR2, RES, ACR25, VPR2B, etc.
Academic qualifications to at least HNC (electronics) or equivalent will be expected. The salary is $£ 11,673$ per annum and is reviewed annually. In addition, service increments increase the salary by 10% in three stages over seven years.
The company operates an excellent contributory pension scheme with free life assurance and attractive staff conditions of employment.
Interviews will be held in Glasgow and travelling expenses reimbursed at interview. Generous relocation expenses will be available to the successful candidates where necessary.
Those with the necessary qualifications should write or telephone for an application form to the Recruitment and Training Officer.

2025

Scotish Television, Cowcaddens, Glasgow G2 3PR.

Electronics Research at the University of Essex

Graduates who have (or final year students who expect to obtain) a first or upper second class honours degree are invited to apply for research leading to a higher degree (M.Sc., M.Phil. or Ph.D.) in the following areas:
Acoustic Noise and Vibration Cancellation (adaptive micropro-cessor-controlled systems); Audio Engineering (high-precision digital signal processing, system transparency, stereol; Circuit Design Studies (circuit theory, fault diagnosis, sensitivity effects, CAD, filter realisations); 'Digital Transmission for Telecommunications (filters, line codes); Interactive Systems (handwriting analysis, computer graphics, personal databases); Microcomputer Systems (embedded microcomputer applications, micro-programming, architectures); Microwave and Millimetre Wave Propagation (scattering from precipitation particles, space frame radomes); Optical Communications (detectors, noise processes, signal design, switching); Picture Coding and Processing (data reduction, adaptive filtering, motion estimation, feature extraction); Satellite Communications Systems (business systems, protocols, data and video services, inter-modulation studies); Telecommunication Switching Systems and Software (computer control, software production. teletex and viewdata). Visual Displays and Television Engineering (computer graphic input systems, stereo, colour, and high-precision displays).
Further information and application form available from: Dr J. K. Fidler, Chairman, Department of Electrical Engineering Science (ref Jan/2), University of Essex, Wivenhoe Park, Colchester CO4 3SQ.
(2027)

ABticles for sale

Advance AM/FM Signal Generator SG63E needed to complement existing laboratory facilineering U.C.D., Upper Merion Strect, Dublin 2. neering
Tire.
BRIDGES, (2016) BRIDGES, waveformetransistor analysers. Callbrators, Standards Millivoltmeters. Dvnamome ters. KW meters. Oscillosiopes. Recorders SigKMS, audio, FM, deviation Tel. 040376236.162

Word Processor Clearance Sale. BDP(Qume Daisy-wheel printer, 2 discs; 595 . Adter SE2000Golfball printer, single disc; 5450 . Kalle Infortec VAT Autorvpe, Haywards Heath (0444) 414484 ind 454377 Aupe, Haywards Heath (0444) $41+38$

nd 45437

TV TUBE Rebulding Plant. Due to trustrated xport Rebulding Plant. Due to trustrated ment available at half price. Western-Whybrow Engineering, The Square, Marazion, Cornwall Telephone (0736) 710456 . Marazion, Cornwall

Chortlisted without even applying

That's how it is when you register with Beechwood. Complete our application form, then just sit back and let the opportunities come to you - and they will Our experience is wide - so are our contacts. This is just a selection from our range of vacancies.

DESIGN ENGINEERS - HERTS - To f14,000. Qualified to degree level with a solid background in RF or Microwave or automatic test equip
ment design. ment design

PRODUCT SUPPORT ENGINEERS

 SUSSEX based + traval U.K. and Overseas - Attractive salaries + overtime and site allowances. A number of vacancies exist for Engineers to design and install modifications to various military simulators, premises. The modifications can vary premises. The modifications can vary ware/Hardware changes. The technology varies between analogue and digital micro-based systems.
ELECTRONICS ENGINEERS - BERKS. Salarios in the $£ 7,000$-to- $£ 14,500$

 range. Engineers qualified to at least HNC/Degree level are required by a company in the forefront of techperience required in the area of digital perience required in the area of digital messaging systems, analogue, power hardware design, military ATE, RF; communication systems.DIGITAL DESIGN ENGINEERS SOUTHERN COASTAL AREA IN ENG. AND - Salaries in the $£ 7,500$ to ience. A leading company on experequce. A leading company supplying equipment to the defence and civil in-
dustry in the U.K. and abroad is looking for well-qualified digital engineers with experience in high speed Signal Processing. FFT techniques and Special Purpose ATE.

AVIONICS ENGINEERS - HANTS Salaries negotiable from $£ 7,000$ to Graduates with at least two years' experience in Avionics/Systems/Radar design and development are required for a major U.K. company in the forefront of technology.

ELECTRONICS AND SOFTWARE ENGINEERS -- To £ $£ 7,000$ - For companies based in various tocations in
LONOON \& HOME COUNTIES / WEST COUNNTRY HOMECOUNTES WEST COUNTRY ' DORSET / WALES ' HNC/Degree level Engineers with experience in analogue/digital/ microprocessors / avionics / satellites communications / RF / microwave / computers / process control/ instru-
mentation control eng/ATE.
R.F.DESIGN ENGINEERS HEREFORDSHIRE - Salaries in the $£ 8,000$ to $£ 10,000$ range + relocation
assistance. Here are opportunities for assistance. Here are opportunities for
degree level Engineers in the 25-35 age group to work for a small lively company working at the forefront of R.F. technology. Situated in the beautiful Herefordshire countryside, you will be surprised at the lower cost of housing.

SYSTEMS ENGINEERS - BRISTOL Salaries attractive + relocation. A major company involved in high technology space projects are looking for experienced graduate level Engineers with experience in controt theory solar array, configuration. EW
systems, communications systems, suidance systems and spacecraft systems.

PROCESS ENGINEERS / SCIENTISTS PROJECT LEADERS - LONDON AREAS COUNTES SCOTLAND AREAS. Up to E15,000 or beyond. emiconductors or devices.

SYSTEMS ENGINEERS
DORSET AREA - Salaries from $£ 6,500$ to 8.500 depending on experience Graduate Engineers under 28 years of age with one to four years' experience in the design and development of systems, specification and control of hardware/software development activities, and proving that the system as developed meets requirements of the customer.

For an application form, please send your coupon.co George A. Low Beechwood Appointments Register. FREEPOST. London W3 $9 B R$ (no stamp required)

WW 4/83

ARTICLES FOR SALE

Perforated Metals Screens, Plastics, Wire Meshes, Sifting Media, Cable Tray, Gratings, direct from Manufacturer's Stock. We can cut to size.

We specialise in one-offs or large quantities.

graepel perforators LTD

Unit 1-B, CHARLES STREET Dept WS WALSALL, STAFFS WS2 9L2 Tei. $0922611644 / 611414$. Toiex 335291

SULLIVAN Thermistor Bridge f59. Heterodyne Bridge Detector £39. EMI Disc Recording blanks 100 £150. Laboratory oven £49. Labgear TV Pattern Generator $£ 45$ gear Pall compressor pump £ 20 . $500 \mathrm{lbs} / \mathrm{sq}$. in. receiver $£ 25$. Watson soolbs/sq.in. receiver f 25 . Watson
lab microscope f89. Centrifuge lab microscope f89. Centrifuge
f49. Brinell Hardness Tester f98. E49. Brinell Hardness Tester $£ 98$. Ultrasonic Leak Detector £59. 4KW Diesel Generator £195. Water pumps £12-£98. Sullivan Mirror Galvanomoter f39. Audio Analyser $£ 65$. 220MHz Sweep Generator $£ 79$. EMI Audio Sweep Generator E65. Record Clip-on Ammeter/voltmeter/Recorder $£ 79$. Marconi TF I225A Noise Receiver E59. Plug-ins Cossor 1078 £15 ea. Pye $200,000 \mathrm{M}$ /ohm meter, ElL twenty-million M/ohm meter £35 ea. A few oscilloscopes and other

RF, AF, sweep generators
040-376236

PCB/ELECTRONIC ASSEMBLY

to sample or drawing. Short or continuous runs. Any quantity. 100% inspected. Special rates for small companies or large quantities. Fast urnaround and local deliveries if required.

AUTRONICS, 23 Regency Gardens
Yardley Wood, Birmingham B14 4JS
021-4744638

SITUATIONS VACANT

Production Engineering

DOLBY LABORATORIES, the world famous audio noise reduction company, was founded by an engineer. We are a company that believes in engineers and engineering. Small enough for you to make a contribution, we have a track record of innovation and quality.

Production Engineer $19,000+$

The person appointed will join a small team which provides technical support to the production department. Responsibilities include assembly and test procedures, and interfacing with sales and design engineers on product improvements and new product introductions The successful applicant will ideally be a graduate electromechanical engineer experienced in electronic assembly. $\mathrm{He} /$ she may also have particular knowledge of ATE

Production Technician c $£ 7,000$

To support the production engineers by building jigs, debugging prototypes, running maintenance schedules and coping with day-to-day equipment failures.
Qualifications: HND or equivalent and some practical experience of an electronic nature.

Write or telephone PHIL MARSHALL, Dolby Laboratories Inc. 346 Clapham Road, London SW9.
01-720 1111

DCDolby

Royal Marsden Hospital Downs Road, Sutton, Surrey

Medical Physics Technician
 Grade IV

required to work as part of a technical group in the busy Radiotherapy Department of this postgraduate teaching hospital.
The successful candidate will be involved mainly in the work of the new T.B.I. Unit. Applicants should possess ONC, HNC, HND or similar qualification in electrical engineering or electronics. This post is for a fixed-term period of one year only.
Salary scale from 1st April $1983 £ 5767$-£7394 per annum.
Candidates wishing to discuss the post further should contact Mr Edser, Radiotherapy Department, Tel: 01-642 6011 Ext. 280. Application form and job description available from the Personnel Department, Royal Marsden Hospital, Fulham Road, London SW3. Tel: 01 3528171 Ext. 446/447

ARTICLES FOR SALE

LINSLEY HOOD DESIGNS
 75-100w AMPLIFIERS

AUDIO SIG. GENERATORS
DISTORTION ANALYSERS
SAE for leaflets
TELERADIO ELECTRONICS
325 Fore St., Edmonton N9 OPE TEL: 8073719

RIBBON CABLE, PLUGS AND

 CONNECTORSThe very best quality. Proven manufac-
turer. Plugs and connectors sold singly or in quantities. Cable sold by the metre or by the roll Ring or write:
T.A.D. SUPPLIES

5-10 Eastman Road
Lond on W3
Tel: 7400058

ARTICLES FOR SALE

TO MANUFACTURERS, WHOLESALERS BULK BUYERS, ETC.

 LARGE OUANTITIES OF RADIO. TV AND ELECTRONIC COMPONENTS FOR DISPOSALSEMICONDUCTORS, all types, INTEGRATED CIRCUITS, TRANSISTORS DIODES, RECTIFIERS, THYRISTORS, etc. RESISTORS, C/F, M/F, W/W, etc CAPACITORS, SILVER MICA, POLYSTYRENE, C280, C296, DISC CERAMICS, PLATE CERAMICS, etc
ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE, CABLES, SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFORMERS, etc
ALL AT KNOCKOUT PRICES - Come and pav us a visit ALADDIN'S CAVE
TELEPHONE: 445 0749/445 2713
BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, Nortt Finchley, London, N. 12
(1613)

QUARTZ CRYSTALS IN 24 HOURS ANY FREQUENCY 2-50 MHz FOR f 4 inc

New fast service for C.W.O. only (state holder style)
Clock oncillators for microprovessors in stock from $£ 9.30$
McKndert Crystal Co Ltd, Hardley Industrial Estate
Hene, Southampton SG4 6ZY Tel. 0703848961

POWER V MOS-FET TECHNOLOGY

We specialise in all aspects of this important subject. A comprehensive service is offered t individual or OEM users, including * Hitachi Supertex and RCA V MOS-FET from stock.
\checkmark VIOCk MOS-FET power modules from stock. * Compotitive prices (1zo watt modules f15.45, 1 off)

* Printed circuits and kits.

غ Data books and application notes.
\star Design, evaluation and advice service. Catalogue/sample data sent tree (50p stamp appreciated towards post and packing). Phone 0251422303 and ask Richard Walsh
about your application requirement or write
about your application requirement or writ
AUDIO TECHNOLOGY
AUDIO TECHNOLOGY
Aldorshot, Hants. GU13 OBR

THE SCIENTIFICWIRE COMPANY				
P.O. Box 30, London, E. 4				
ENAMELLED COPPER WIRE				
swg	116	soz	$40 \times$	202
8 to 29.		1.50		50
30 to 34			. 90	70
351040.	3.90	200	1.10	80
41 to 43...	4.75	200	200	1.42
	1.37	5.35	3.19	2.50
481049.	15.96	9.58	6.38	3.69
SIIVER PLATED COPPER WIRE				
14 to $30 \ldots$	6.50	3.75		1.40
TINNED COPPER WIRE				
14	3.38			
Prices include PaP, VAt and Wira Data. SAE for list. Desler enquiries welcome. Reg Office: 22 Coningsby Gardens				

BILLINGTON VALVES

Electronic valve specialists (also bulk supplies of transistors) SAE/RC for quotation on your requirements. We offer an unrivalled service supplying rare/obsolete valves. Send 25 p and L.S.A.E. for our valve listing (includes money or
voucher) 23 Irwin Drive, Horsham RH12 1NL voucher)
No callers.
ENCAPSULATING EQUIPMENT FOR coils, transformers, components, degassing silicone rubber, resin, epory. Lost wax casting for brass, bronze, silver, etc. Impregnating coils, transformers, components. Vacuum equipment, low cost, used and new. Also for CRT regunning metallisRoad, Croydon CR0 2QP. 01-6849917. (9678)

LAMPS AND CABLE. Large amount of lamps and cable for sale - all types and sizes, domestic and industrial. Telephone MIRAGE LIGHTING on HITCHIN (0462) 733388 between 10am-7pmi
(1809)

DONT MISS OUR VALVE LIST! Send 25p and L. S.A.E. Today; Billington Valves, 23 Irwin Drive, Horsham RHI2 INL. IO and

VALVES, PROJECTOR Lamps, 6000 types, list
E7S, World wide export. Cos Radio (Sussex L Led. 366) 2023. East Wittering, Sussex. Phone (1921)

RACAL COMNUNICATIONS RECEIVERS
$500 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s} 1 \mathrm{Mhz}$ wide. RA17L-£175 RA117E - $£ 225$. A few sets available as new a brated in our workshop, supplied with ful manual, dust cover, in fair used condition New black metal louvred cases for above sets $£ 25$ each. RABSO - ISB - SSB - £75. RA218SSB - ISB and fine rune for RA117-£50 TRANSWITTER ORIVE ONT OSB - FSM - CW f150 AERIAL TUNING UNIT and protection uni MA197B - £25 to E50 DECADE FREQUENCY GENERATOR MA3s0B Solid state synthesiser for MA79 or RA117 - RA217 - RA1217 - £150 to $£ 200$. MAZ50-1.6mc/s to $31.6 \mathrm{~m} / \mathrm{s}$ - $£ 150$ (New) MAZzig - precision frequency stan
dard - $5 \mathrm{mc} / \mathrm{s} \mathrm{mc} / \mathrm{s} 100 \mathrm{khz}-\mathrm{f} 100$ to f 250 dard - $5 \mathrm{mc} / \mathrm{s} 1 \mathrm{mc} / \mathrm{s} 100 \mathrm{khz}-£ 100$ to $£ 250$ RACAL MA152 - Standing wave ratio indicator. FX2mc/s - $25 \mathrm{mc} / \mathrm{s}$ Power up to 1000 watts
-50 ohms - Auto rip switch - Transistor mains $100-250 A C$, new and boxed - £40
RACAL COUNTER $836(9036) 32 \mathrm{mc} / \mathrm{s}$ TML circuit design - tested with manual - $£ 50$ to $\mathrm{f75}$ design - tested with manual Twin Beam - Solid State - E 175 with manual TEXTRONIC OSCILLOSCOPE 647 and 6A7A Soind State $-50 \mathrm{mc} / \mathrm{s}$ and $100 \mathrm{mc} / \mathrm{s}$ bandwidth - E 250 and $£ 350$. Tested, circuit and instructions RACAL COUNTER 801 M- 125 MC -S $£ 50$
ImAGE INTENSIFIERS - Mullard - G.E.C or E.E. Type XX 1060 very high gain self-focusing image intensifier assembly for night visio systems. Minimum luminance gain 35,000 Supplies in original box (used) with data sheet supplies in (f 12 ea . $\mathrm{P}+\mathrm{VAT}=£ 5.25$).
All items are bought direct from HM Govern ment, being surplus equipment. Price is ex works. SAE for all enquiries. Phone for appoint ment for demonstration of any item John Radio, Whitehall Works. 84 Whitehall Roa East, Birkenshaw, Bradford BD11 2ER. (10274) 684007 V A. T. and Carriage extra

INVERTERS

High-quality DC-AC; also "no hreak" (2ms) static switch, 19 in . rack. Auto Charger.

Interpont Malins-Store Lttd. POB 51, London, W11 3B2
Tel: 01-727 7042 or 0225310916

WIRELESS WORLD 1968-81. (Few missing) Excellent condition. $£ 40+$ carriage. 15 copies Excellent condition. 1930 's, 40 's including 2 RF straight set, Wil liamson Amplifier, Golden Jubilee issue
(1982
Phone Bristol (0272) 733837 .

PCBS \& PANEL LABELS to your require ments. Design - Prototypes - Production. G N. Slee Custom Products, 78 Derry Grove, phone (0709)89525.

Electro-Acoustic Product Development Engineer
 c. $£ 11,000$
 The advent of digital switching systems allied to the rapid development in microprocessor technology means that tomorrow's telephone will provide a highly versatile communications medium. "New Generation' telephones will incorporate such aspects as large scale data memory, automatic call and recall options, visual displays, loud speaking facilities etc.
 Our client, an international market leader in the field of telephone design and manufacture, is committed to an exciting product development programme and now needs to strengthen its engineering team through the appointment of an experienced Electro-Acoustic Engineer.
 This position will be of interest to qualified engineers, degree level or equivalent, with several years' revelant experience in the design and development of electro-acoustic products. Successful applicants will be expected to demonstrate a high degree of design innovation to meet the critical low cost requirement associated with the high volume production of moulded components and small electro-mechanical assemblies while ensuring optimum acoustic performance.
 This represents an exceptional
 opportunity to join a small, multi-disciplined team of professional engineers working within the framework of a large organisation situated in the North London area. In addition to an attractive salary, the company offers relocation expenses where appropriate.
 RF Development Engineers
 Our client would also like to meet RF Development Engineers to work on a future range of Personal Communications products incorporating state-of-theart technology up to 1 GHz .
 Whatever your level of experience, if you are qualified to degree level or equivalent and have a sound knowledge of analogue r.f. circuit design, our client would be interested in hearing from you.
 In the first instance please telephone for an application form or write with full $\mathrm{c} . \mathrm{v}$. stating in a covering letter any companies to whom you do not wish your application forwarded, to: B. Kelly, Moxon Dolphin \& Kerby Ltd.,
 178-202 Great Portland Street,
 London WIN 5TB.
 Tel 01-631-441l quoting
 ref: $\mathrm{BK} / 955 / \mathrm{W}$.
 N
 (TV)

CLASSIFIED ABVERTISEMENTS Use this Form for your Sales and Wants

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

To "Wireless World" Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate $£ 3$ PER LINE. Average six words per line. Minimum f20 (prepayable)
- Name and address to be included in charge if used in advertisement
- Box No. Allow two words plus $£ 3$
- Cheques, etc., payable to

BUSINESS PRESS INTERNATIONAL LTD and crossed

NAME...

ADDRESS

FIELD SERVICE ENGINEERS

(Based in Italy)

Exciting opportunities for qualified Electronics Engineers to work on the installation and maintenance of Television Studio Equipment at customer sites throughout Italy and Africa.
Key requirements are:
\star A sound knowledge of Electronic Engineering Degree/HNC or equivalent
\star At least 3 years' experience in a Television Studio/Production environment, with specific experience of both Quad and Helical Scan, VTR, TV Camera and Switcher Engineering

* Availability to travel extensively throughout Italy and Africa and ability to work on own initiative while away from base
Attractive salary package and other benefits to include overseas allowances and relocation expenses.

Please write or 'phone
Maureen Brake at: Ampex Great Britain Limited Acre Road, Reading RG2 0QR Berkshire, England Tel: Reading (0734) 875200

SERVICES

CIRCOLEC

THE COMPLETE ELECTRONIC SERVICE

Artwork, Circuir Design, PCB Assembly, Test \& Repair Service, Q A. Consultancy Prototypes, Final Assembly
Quality workmanship by professionals at economic prices
Please telephone 01.767 1233 for advice or further detaiis.
1 FRANCISCAN ROAD
TOOTING, LONDON SW17

山illiヨாาร

P.C.B. Artworks

FAST TURNROUND To ensure immediate turnround of your
artwork contact JULIAN WILLIAMS WILLIAMS ARTWORK, GRAYS LANE MORETON-IN-MARSH, GLOS. Tel: MORETON-IN-MARS'H 51444

LAYOUT DESIGN QUALITY ARTWORK FAST DELIVERY - REASONABLE RATES PHONE FREOS ARTWORK SERVICE

01-607-3169

DESIGN SERVICES. Electronic design de velopment and production service available for
digital and analogue instruments. RF Transmit ters and receivers, telemetery and contro systems. 20 years' experience. R.C.S. Electronics Wolsey Road, Ashford, Middlesex. Phone Mr Falkner $\$ 3661$.
TURN YOUR SURPLUS Capacitors, tran sistors, etc, into cash. Contact COLES.HAR DING \& Co, 103 South Brink, X'ishech, Cambs. 0945-4188. Immediate settlement. We also wel come the opportunity to yuote for complete fac tory clearance.
SMALL BATCH PCBs produced from your artwork, Also DIALS, PANIFLS, LABELS. Camera work undertaken. FAST TURNAROUND. Detals: Winston Promotions, 9 Hatton Place, London ECIN 8RU. Tel. 01-405 4123/0960.

PRINTED CIRCUIT BOARDS

Manufacturers from A/W or film, sma or large quantities, average turnaround two weeks.

MAYLAND PCB CO. LTD. Maylandsea
 Chelmsford, Essex CM3 6AB

Tel. (0621) 741560
DESIGN AND DEVELOPMENT. ANAL OGUE, DIGITAL, RF AND MICROWAVE CIRCUIT AND SYSTEM DESIGN. Also PCB design, mechanical design and prototype/small Longshot Estate, Bracknell, Berks. Tel Bracknell (0344) 52023.

1983 RADIO AMATEURS HANDBOOK

by ARRL
Price: $£ 10$
WORLD RADIO TV HANDBOOK 1983 ROBOTS AND ROBOTOLOGY bY
Warring, R.H Price: $£ 7.95$
INTERNATIONAL DIGITAL I/L
SELECTOR by Towers, T. D.
PRACTICAL DESIGN OF DIGITAL
CIRCUITS by Kampel, I.
DIGITAL ELECTRONICS CIRCUITS
and systems by Morris, N
THE ART OF ELECTROCe: $£ 5.50$
Horowitz, P. Price: $£ 15.95$ MICROPROCESSOR DATA BOOK by Money, S. Price $£ 17.00$ HANDBOOK OF ELECTRONIC CALCULATIONS by Kaufman, M.
MICRO COOKBOOK Vol. 1 FUN.
DAMENTALS, Lancaster, D
UNIX THE BOOK by Banahan M Price $£ 7.50$
\star ALL PRICES INCLUDE POSTAGE \star

THE MODERN BOOK CO.

BRITAIN'SLARGEST STOCKIST

19-21 PRAED STREET

 LONDON W2 1 NPPhone 01-4029176
Closed Saturday 1 p.m
Please allow 14 days for reply or delivery
(2023)

TW ELECTRONICS LTD

THE PCB ASSEMBLERS
More and more companies are investi gating the advantages of using a profes ing requires certain assurances.
TW are able to satisty all of them quality, competitive pricing, firm delivey and elose co-dper omer
Assembled boards at 100% inspected before flow soldering and reinspected after automatic cropping and cleaning.
Every batch of completed boards is
sued with a signed certificate of confo sued with a signed certificate of confo
mity and quality - our final assurance. For further details, contact us at our new works

Blenheim Industrial Park Bury St. Edmunds Suffolk IP33 3UT
Telephone: 02843931 (1466)
ELECTRONIC DESIGN SERVICE. Inmediate capacity available for circuit design and di velopment work, prototype producton welcome - E.P.D.S. Lid. IA Eva Road, Gillingham, Kent Tel Medwav (0634) 577854.

BATCH PRODUCTION wiring and assembly 10 sample or drawings. Mcineane Electricals Li.
19 h Station Parade, Ealing Common, London W's. Tet: 01-992 8976 .

BATCH PRODUCTION I'C assembly to sample or drawings, any quantity. Stagecraft (Electronics) Lid, Unit 7, Carew Sireet ndustrial Estare,

BOX NOs.

Box number replies should be addressed to:
Box No
c/o Wireless World
Quadrant House
The Quadrant
Sutton, Surrey, SM2 5AS

WANTED

Test equipment, receivers valves, transmitters, components, cable and electronic scrap, and quantity. Prompt service and cash. Member of A.R.R.A

M \& B RADIO

86 Bishopsgate Street Leeds LS1 4BB
053235649

WANTED

Scrap and re-usable mainframe computer and industrial electronic equipment.
E.M.A. Telecommunications Engineers, Orford, Woodbridge, Suffolk. Tel. 039-45 328.
(1720)

SURPLUS

Top prices paid for surplus, redundant and obsolete test equipment, factories cleared
Also quantities of components. Immediate settlement. We wi
where in the United Kingdom.

TIMEBASE
94 Alfriston Gardens
Sholling, Southampton S02 8 FU
Telephone: (0703) 431323

WANTED
Redundant/surplus electronic compo nents and equipment. Telephone and computer spares
Prompt service and payment.
J. B. PATTRICK
(Electronics) (193 London Road
Romford, Essex
Romford 44473
(1979)

> WANTED
> Redundant test equipment receiving and transmitting equipment - valves. plugs and sockets - synch ros etc.

> Phone: Johns Radio
> 0274684007
> 84 Whitehall Road
> East Birkenshaw
> Bradford BD11 2ER (2049)

WANTED: Redundant test equipment - relugs and transmitting equipment - valves Rado, 02746844007 . $8+$ Whitehall Road East,
Binkenshaw. Bradiord BD 1121 ER
(1723)

COMPUTER APPRECIATION
86 High Street, Bletchingley, Redhill, Surrey RH1 4PA - Tel: Godstone (0883) 843221 IMS 8000 SVSTEM $4 M H 2$ Z80 based machine with $S 100$ bus and tunning under CPM. Comprising 80 Kbyte
static RAM, twin $8^{\circ "}$ floppy disc drives, ELBIT Model $1920 \times$ VDU and FEXAS INSTRUMENTS MOdel 810 printer. Desk mounted and in immaculate condition. Manufactured 1981. and $1 E X$
sed ma.
1450118 NCR Model 8130 MICROCOMPUTER SYSTEM. INTEL 8080 basal machine with 64 KB memory (and battery back-upl, twin dual density floppy disc drives, VDU, Model $4501180 \mathrm{c} . \mathrm{p.s}$. . bi-directional nine wire
matrix printer with additional facilities for reading bar-coded ledger cards. The system is 2 years old and futl software and maintenance support is available from NCR
TEXAS INSTRUMENTS Model 771 MICROCOMPUTER SYSTEM Comprising VDU screen and keyboard with
f550 integral thermal printer. Dual $8^{\prime \prime}$ floppy discs. Based on TMS9900 16 bit microprocessor and having $64 \mathrm{Ek5}$ $\cdots M E M O R E X$ Model 2278 VDU EBCDIC coded VDU, 24 lines $\times 80$. These modern (1979) VDUs are particu larly suitable for rebuilding around a single board computer or as a low cost terminal. Comprising, detached keyboard with single chip encoder, either of a standard type MOTOROLA or BALL BROS 12 monitor, $+12 \mathrm{Vat} 3 \mathrm{~A})$. Cased f40 Selectric (Golitaill terminal. Keyboard printer similar to Model 735, but complete with driver electronics \because LOGABAX LX 180 keyboard printer with serial interface. 180 c .p.s. heavy duty dot matrix printer $\because \operatorname{LOGABAX}$ Model LX 180 printer with parallel interface and without keyboard. Early model. *TALLY Model 2000 high-speed (200 I.p.m.) matrix printer with Data Products interface. With (optiona *HONEYWELL Model L 1000 Keyboard printer. With seriat interface operating at 110,300 BRAND NEW This printer is soid together with another secondhand unit suitable for spares ${ }^{-}$SPERRYY REMINGTON Word Processor. Comprising a dual cassette tape drive Golfball vo typewriter. Offers very useful stand alone word processing facilities for less than the cost of CTP CASSE TYPER. Word Processor similar to above but more compact and with better facilities. Sold
together with a complete and working SPARE electronics module containing SPARE tape drives...........
E350

Abstract

SteWLETT PACKARO Modet HP4C pocker calculator complete with card reader, Drinter, memory mod *CDC Model BR8A2R Dual Density Flopoy DIsC Drives (8) ¢295 mounting cabinet complete with 24 V power supply and rack stides HEWLETT PACKARD Model 7905A. 15 Mbyte Disc Drive for 3000 S. *DDE Model 4000A disc drive with ICL interface. CDC Model 9427HR HAWK Disc Drive. With one fixed platter and one top loading cartidge (n).... $\mathbf{E 1 7 5}$ having a combined capacity of 10 megabytes. The fixed platter features soft sectoring These widely used drives are compatible with many controllers for many processors including PDP 11 controllers from ARROW -CDC Model 9414 FALCON 10 Mbyte Disc Drive. Intended as a companion to the HAWK, but without removable cartridge. Compact low cost alternative to a Winchester riAbLo series 30 removable disc drive, $\mathbf{2 . 5}$ megabyte with industry standard interface. These drives are noted for their reliability and easy maintenance. Hardware, media and software compatible with DEC RKO5J, Controllers available at low cost from XYLOGICS and several others. Fully refurbished POWER SUPPLY for above WANGCO Model T 1222 . Lowest cost hard disc drive Drive. One fixed and one removable platter. Industry standard interiace. - YYLOGICS interface for Q. BUS PDP11 dirve 14 drive with standard SMD interface 40 megabyte. drives for us in the past. avalable at low cost, and they have successtully instane.....es WANGCO Modet 1025 WANGCO Tape Drive as above but PE 1600 b DATA ELECTRONICS INC. Model $3637.45 B C 1 E$.S2 magnetic tape ter. 4 track read-atter-write head and capacity up to 10 megabytes. DEC Papertape Reader/Punch. Late model, but without controller. DEC Papertape Reader/Punch, Late model, but without controller FACIT Model 4020 .

 Please note: ltems only marked * and " (callers only) are included in our sale at very substantial pricereductions - VAT and carriage extra on all items - Callers welcome, but by appointment only please.

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 110-120

OVERSEAS ADVERTISEMENT AGENTS

France $\&$ Belgium: Norbert Hellin, 50 Rue de Chemin Veat,

Hungary: Ms Edit, Bajusz, Hungexpo Advertising Agency, Budapest XIV, Varosliget
Telephone: 225008 - Telex: Budapest 22-4525

Italy: Sig C. Epis, Etas-Kompass, S.p.a. - Servizio Estero,
Via Mantegna 6,20154 Milan. Telephone: 347051 - Telex: 37342 Kompass.

PAGE

Farnell Insiruments
Cover 11
Nova Products.
92

Galatrek International
GP Industrial Electronics Lid...
15
6,7
98

6,7
.98

Olson Electronics .2
94 Global Specialties Corp. (UK) Letd................................ 15 Oric Products International Lid... 3 Greenweld

Hameg Ltd	9
Happy Memories	92
Harris Elecrronics (London)	2
Harrison Bros. Electronic Distributors	4
Hart Electronic Kits Ltd.	109
Hemmings Electronics and Microcomputers	4
Henry's Radio	88
Hilomast Lid.	13
H. W . International	26

ILP Electronics Ltd
$21,24,25$
Integrex Ltd
Interface Quartz Devices Lid.

JAF Graphics

Kelsey Acoustics

Langrex Supplies Ltd.
Levell Electronics Lid

[^10]Oric Products International Ltd 94
3
Orion Scientific Products Led. 109
Pantechnic 89
PM Components 104,105
$\ldots . . .84$
Radford Audio Ltd. 109
.99
Radio Component Specialists 99
92
100
Ralfe, P.F., ElectronicsRichardson Electronics ... 87
RST Valves 800

RT Valves

12

Samsons (Electronics) Ltd.. 101
Sche Tronics Lid
Seyker Ltd
South Midlands Communications Lid
Sowter E. A. Lid.
Special Products Distributors Lid
Stewart of Reading
Strumech Engineering Lid
Surrey Electronics Ltd.
Technomatic Ltd
90, 91
Texas Instruments Lid
Thandar Electronics
.12
. .86
Thandar Electronic
.86
.88
Thearre Projects
.98
Thurlby Electronics (Reltech) 100
Time Electronics Lid. .. 94

Watford Electronics..11
Wedgewood. C.G. \& Co Ltd.
10, 11
White House Electronics .. 98
Wilmslow Audio
Wireless World Circards 106
Wireless World Competitions

> Japan: Mr Inatsuki, Trade Media - IBPA (Japan), B. 212. Azabut Heights, 1-5-10 Roppongi, Minato-ku, Tokyo 106. Telephone: (03) 5850581

> United States of America: Ray Barnes, Business Press Inter national Ltd, 205 East 42 nd Street, New York, NY 10017 Telephone (212) 867-2080 - Telex: 238327
> Jack Farley Jnr. The Farley Co., Suite 1584, 35 East Walker Drive, Chicago, Illionois 60601 - Telephone (312) 63074 . Angeles Calif 90034 USA - Telephone (2131 821-8581 Angeles, Calif. 90034 , USA - Telephone (213) 821-8581
Telex: 18-1059.

Jack Mantel, The Farley Co., Suite 650, Ranna Building, Cleveland, Ohio 4415 - Telephone (216) 6211919. Ray Rickles, Ray Rickles \& Co., P.O. Box 2028, Miami Beach Florida 33140 - Telephone (305) 5327301
Tim Parks, Ray Rickles \& Co., 3116 Maple Drive N.E Atlanta, Georgia 30305. Telephone (404) 2377432.
Mike Loughlin Business Press International, 15055, Memorial Ste 119, Houston, Texas 77079 - Telephone (713) 7838673.

Canada: Colin H. MacCulloch, International Advertising Consultants Ltd.. 915 Carlton Tower, 2 Carlton Street, Toronto 2-Telephone (416) 3642269.

* Also subscription agents.

Printed in Great Britain by QB Ltd., Sheepen Place, Colchester, For the Proprietors, Business Press International Ltd., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. (C) Business Press International Lid 1983. Wireless World can be obtained abroad from the following: AUSTRALIA and NEW ZEALAND: Gordon \& Gotch Ltd. INDIA: A. H. Wheeler \& Co. CANADA: The Wm. Dawson Subscription Service Ltd, Gordon \& Gotch Lid. 10.

YOÚRE LOOKING AT 31 ANTEX SOLDERING IRONS!

The secret is in the range of bits for each model, from 19 mm down to 0.5 mm ! No screws to seize up - push-on bits which cover the elements to save time and energy.
The new range of Antex irons come with or without safety plugs fitted. They are tougher than ever, and about twice as efficient as conventional designs.

Specify low wattage, low leakage

Our products are w.del distributed by wholesalers and retalere :hroughout the UK. Please try your loca, dealer
Please send literature and price list to:

ANTEX (Electronics) Ltd

Mayflower House, Plymouth, Devan.
Tel: 10752) 66737718 Telex: 45296

TRADE PRICES from กำはㄴㅐㅔ Look at these examples from our huge range.

Code	Description	Cat. Page	Retail Price Incl. VAT	Min. Trade Qnty.	Price Each for Min. Tr. Quantity excl. VAT
XB54J	Aerial Rotator	25	£39.95	5	£29.00
YG00A	Ni-Cad AA 500mAh	26	£1.25	50	75p
FB15R	Electrolytic 2.2uF 63 V	90	10p	500	4.5p
FB22Y	Electrolytic 10uF 25 V	90	9p	1000	3.5p
FB49D	Electrolytic 100uF 25 V	90	$14 p$	500	$6.5 p$
FB73Q	Electrolytic 470uF 25 V	90	30 p	250	12p
FB83E	Electrolytic 1000uF 25V	90	40p	250	17p
FB96E	Electrolytic 4700uF 25 V	90	£1.25	50	58p
YG41U	27 MHz Rubber Duck	99	£4.75	25	£2.95
XG13P	1.5 m CB Aerial	99	$£ 13.95$	5	$£ 8.45$
LB72P.	2-Station Intercom	102	± 8.75	10	£4.95
HF85G	1/4in. Jack Plug plastic barrel	142	19p	500	9p
HF88V	1/4in. Jack Plug stereo plastic barrel	142	28p	250	15p
HF87U	1/4in. Jack Plug metal barrel	142	39p	250	22p
HF89W	1/4in. Jack Plug stereo metal barrel	142	45p	250	$28 p$
RW67X	13A nylon Mains Plug British	157	79p	100	45p
WL27E	LED 0.2in. Red ${ }^{\text {- }}$	182	12p	500	$6 p$
WL28F	LED 0.2 in . Green	182	19p	500	$10 p$
WL29G	LED 0.2in. Orange	182	33p	250	19p
WL3OH	LED 0.2in. Yellow	182	17p	500	9p
RK07H	Panel Meter 100uA	197	£2.95	25	£1.95
RK09K	Panel Meter 1 mA	197	£2.95	25	$£ 1.95$
RK19V	Panel Meter VU	197	£2.95	25	$£ 1.95$
YQ47B	Dual VU Meter	197	£3.90	25	£2.30
YR84F	Professional Plugblock	201	£6.95	10	£4.95
RX96E	20 mm Fuse Holder	250	45p	250	24p
M10R-M1M	Metal Film 0.4W 1\% Resistor	262	2p	1000	$1 p$
FW00A-FW09K	Rotary Potentiometers linear	265	45p	250	32p
FW21X-FW29G	Rotary Potentiometers log	265	45p	250	32p
QL80B	1 N4148	270	4 p	1000	2p
QL22Y	741C 8-pin DIL	270	23p	500	12p
QH66W	NE555	270	21p	500	12p
QQ06G	4164 64K dynamic RAM	271	£5.99	100	£3.84
BL18U	DIL Socket 14-pin	336	$11 p$	500	7.5p
BL17T	DIL Socket 8-pin	336	9 p	1000	4.5p
WF14Q	Stereo Headphone with slide volume controls	342	$£ 7.99$	10	£4.95
FH00A	Sub-min Toggle Switch SPDT	347	70p	100	45p
FH04E	Sub-min Toggle Switch DPDT	347	$99 p$	100	59p
FF73Q-FF76H	Rotary Switch break before make	348	$74 p$	100	$46 p$
FH42V.FH45Y	Rotary Switch make before break	348	70 p	100	42p
YW938	1000 ohm per volt Multimeter	362	£4.85	25	£2.95
YW68Y	20,000 ohm per volt Multimeter with Transistor Tester	363	£16.25	5	£10.45
BR75S	Box-joint Insulated 41/2in. Cutters	370	£6.93	10	£4.45
BR78K	Box-joint Insulated 41/2in. Pliers	371	$£ 5.72$	10	£3.95

Most items in our catalogue are available at competitive trade prices; the bigger the quantity the better the price. If you find the example prices attractive, then contact us now with your requirements for a quotation. Phone Southend (0702) 55291 l or write to us at P.O. Box 3, Rayleigh, Essex, SS6 8LR. Please ask for trade sales desk

Copies of our catalogue are available in all branches of W.H. Smith. price $£ 1.25$. In case of difficulty, send $£ 1.50$ to our mail-order address. Overseas price £1.90.

Maplin Electronic Supplies Ltd.

All mail to P.O. Box 3, Rayleigh, Essex SS6 8LR. Tel. (0702) 552911 Shops at 159 King St., Hammersmith, W6. Tel 01-748 0926. Lynton Square, Perry Barr, Birmingham. Tel: 021-356 7292. 284 London Road, Westcliff-on-Sea, Essex. Tel. (0702) 554000 Shops closed all day Monday.

WW 4/83

[^0]: WW - 049 FOR FURTHER DETAILS

[^1]: Please note: $\begin{aligned} & X \text { in part no indicates primary voltage. Please insett "O in place of } \\ & \\ & X \text { for } 110 \mathrm{~V} \text {. in place of } X \text { for } 220 \mathrm{~V} \text {, and"? in place of } X \text { for } 240 \mathrm{~V}\end{aligned}$

[^2]: Video generator provides the usual 24 row $\times 40$ column tv text display implements Prestel terminal facilities. Video i.c. contains character rom and addresses four pages of ram in the application described.

[^3]: Michaei Young is a member of the technical advisory team at Imhof-Bedco Standard Products Ltd.

[^4]: H. D. Baecker is in the dept of computer science, University of Calgary, Canada

[^5]: *Using five-level teleprinters with a TRS80; by Brian Bateman, Microcomputing, Jan, 1980
 †Tandy in the UK.

[^6]: *Also subscription agents

[^7]: Well you see, the amplifier is inherently so robust that you might never know that it was operating into an adverse load. in fact it copes with anything in hetween a dead short and open circuit. And once you have corrected the load the amplifier automatically reverts to "normal" working

 This is just one of many features on our ne ${ }^{2} \mathrm{u}$ range of 19 rack mounted or stand alone audio power amplifiers The system comes complete in powers up to 500 W with a variety of options and at a pnce which won't shock you

 For further details about our new range of f.e.t amplifiers. drop us a line or phone (4840-21.5778

[^8]: 1 Basic Active filters 2 Switching Circuits, comparators and Schmitts (But these gaps cannot be filled)
 6 Constant current circuits 7 Power amplifiers 8 Astable circuits 9 Optoelectronics 10 Micro power circuits 11 Basic logic gates 12 Wideband amplifiers 13 Alarm circuits 14 Digital Counters 15 Pulse modulators 16 Current differencing amplifiers - signal processing 17 Current differencing amplifiers - signal generation 18 Current differencing
 amplifiers - measurement and detection 19 Monostable circuits 20 Transistor pairs 21 Voltage-to-frequency converters 22 Amplitude modulation and detection 23 Reference circuits 24 Voltage regulators 25 RC oscillators - $1 \quad 26$ RC oscillators - 227 Linear cmos - 128 Linear cmos - $2 \quad 29$ Analogue multipliers $30 \mathrm{Rms} / \mathrm{log} / \mathrm{power}$ laws 31 Digital multipliers 32 Transistor arrays 33 Differential and bridge amplifiers 34 Analogue gate applications - 1 Analogue gate applications - 2 .
 *Photocopies only: 3 Waveform generators 4A.C. measurement 5 Audio circuits @ $£ 3.20$ each set

[^9]: Piease mite with full CV to David Evans, General Manager, Radio Socrery of Great Britain, Alma House, Cranbome Road, Potters Bar Hers EN6 3JW, marking your envelope "Confidential"

[^10]: Magenta Electronics
 Maplin Electronic Supplies Led
 Middle East Wire \& Wireless Lid.
 Midland Computer Fair
 Midand Computer Fair
 Midwich Computer Co.

