ELECTRONICS COMPUTNG COMMUNICATIONS BROADCASTING AUDIO AND VIDED

wireless

Digital tracking filters

PET data acquisition
Eprom derclopmentaid
Logic \& computer languages

TEK | MULTI-PURPOSE | SO ADVANCED |
| :--- | :--- |
| OSCILLOSCOPE | THEY COST YOU LESS |

The 'Scope. 60 MHz .
 Bandwidth

2200 SERIES

The new price/performance standard.
Two new 60 MHz , dual trace oscilloscopes offer unprecedented value in both initial and life cycle costs. Already listed as a "product of the year", these instruments provide ideal general purpose scope characteristics at a price/performance previously unachievable.

Improved manufacturing techniques have made this possible without sacrificing quality, or reliability, after all it carries the TEKTRONIX brand.

Lightweight (13.5lbs)
60 MHz bandwidth
Dual trace
Full feature triggering
Alternate delayed Sweep (2215)

FREE

A 36 page book on the XYZ's of using a 'scope and our Portable's Broadsheet. UK \& Eire only Name
Position
Company
Address

Tektronix UK Limited

PO Box 69, Harpenden, Herts. AL5 4UP
Tel: Harpenden 63141 Telex: 25559
Regional Telephone Numbers: Maidenhead 062873211 , Manchester 0614280799 , Livingston 32766, Dublin 850685/850796

Computer-generated image of robot arms generated by Alan Barr of Raster Technologies Inc. of North Billerica (represented by Sintrom Electronics in the UK) using their model One/20 colour graphics controller.

NEXT MONTH

Scott Murray takes the lid off the wave theory of matter as it was developed by the Copenhagen School. Physics and metaphysics must be distinguished and kept separate. Schrodinger's "wave mechanics" has nothing to do with mystical "matter waves": that was the second great philosophical error of 1930's physics.
Bob Coates looks at microprocessor registers from a programming point of view in a tutorial article introducing assembly-language programming.
It has been postulated that power amplifiers with high open-loop output impedance and large feedback factor are more likely to produce intermodulation distortion at the loudspeaker interface. With the aid of computer simulations, this possibility is examined for contemporary amplifier circuits.

[^0]BROADCASTING ELECTRONICS AUDIO

SATELLITE TV SYSTEM

by M. Tominson

MATCHING TUNING DIODES

by M. Maccelewshl

EPROM DEVELOPMENT AID

by G. A. C. Eetmidy

NEWS

Pantmponanger Electronchose Mesal adin clampdown

LOGIC AND COMPUTER LANGUAGES

by. C .8 B . Allar

EVENTS

COMMUNICATION NEWS

42	TWO-METRE TRANSCENER - 3
45	UTERATURE RECENED
46	MODULAR PREAMPLFIER
Hy L.L. Lisisey Hoon	

PCI 1002 IEEE THERMOCOUPLE CONVERTER

The PCI 1002 is a 12 Channel IEEE compatible thermocouple converter having two input ranges of $\pm 10 \mathrm{mV}$ or $\pm 100 \mathrm{mV}$ F.S.D. selected by an internal switch. It has 12 Bit resolution of the A to D converter giving a resolution of 0.06 deg.C on 10 mV range and covers all common thermocouple types.

Cold Junction Compensation is provided giving a resolution of $0.2^{\circ} \mathrm{C}$ on 100 mV range and $0.02^{\circ} \mathrm{C}$ on 10 mV range.

Linearising software in Basic using optimised coefficients for ranges and thermocouple types.

Two other channels are provided via BNC input sockets on the front panel. Input ranges are I/V for 10 mV range and $\pm 10 \mathrm{~V}$ for 100 mV range.

CIL MICROSYSTEMS LTD
DECOY ROAD, WORTHING, SUSSEX
TEL: 210474.

Electronic Brokers are Europe's leading Second UUser Equipment Company. We carry large stocks of the very latest test equipment which is refurbished in our own service laboratories and calibrated to meet the manufacturer's sales specifications. When you buy used equipment from Electronic Brokers, it can be yours in just days. No waiting for manufacturers lengthy production schedules. All equipment is fully guaranteed.

ANALYSERS Hawlett Packard $141 \mathrm{~T} / 8552 \mathrm{~B} / 8555 \mathrm{~A} 10 \mathrm{MHz} 18 \mathrm{GHz}$ $\kappa 9750.00$ 332A Distortion Meter $5 \mathrm{~Hz}-600 \mathrm{KHz}$ ¢495.00	1821A Timebase Plug in \quad ¢1000.00 Philips PM3232 Dual Beam 10 OHHz \&495.00 PM 3234 True Dual Beam Storage Oscilioscope 10MHz New CRT E1750.00 PM 324450 MHz 4 Charnel Delay T'Base
3582A Spectrum Analyser $0 \mathrm{02Hz} .255 \mathrm{KHz}$ £6350.00 54204 Digital Signal Analyser c/w Digita	Tektronix. 21 3 Miniscope/DMM Batwery 1 MHz
Fitter 54470日, A/D Converter 54410A 84074/8412A Network Analyser	$\begin{aligned} & \text { ⑨75.00 } \\ & \begin{array}{l} \text { 305 Portable battery scope/[MMM OT.00 } \\ 5 \mathrm{MHz} \\ \text { T922 } 01 \end{array} 15 \mathrm{MHz} \text { DT Scooe Diff input } \end{aligned}$
8557 A Spectrum Analyser 001 350MHz	2000 Trolley tor 400 Seres $\quad \mathbf{E 1 5 . 0 0}$
Marconi £3000.00	7313100 MHz Storage Manframe
TF2331 Distortion Meter $201 \mathrm{lz} \quad \begin{aligned} & \text { 20KHz } \\ & \text { ¢475.00 }\end{aligned}$	7603100 MHz Maintrame $\quad \begin{aligned} & \text { ¢2225.00 } \\ & \mathbf{£ 1 3 0 0 . 0 0}\end{aligned}$
Solartron	544050 MHz Mantrame ${ }^{\text {c }} \mathbf{5 1 0 0 0 . 0 0}$
1172 TFA	544150 MHz Variable Persistance Storage Mainframe
$49 \uparrow$ Spectrum Analyser 10 MHz 40 GHz £7000.00	71041 GHz Scope Maintrame E $\mathbf{1 0 0 0 0 . 0 0}$
492 (opt 01.2. 3) Spectrum Analvser 50 KHz 220 GHz	7704 A Scope DC-200MHz Manframe £1950.00
492 P [opt. 01.2, 3] Programmahle Version of 49 . £20000.00	7613 Storage Scope Manframe. DC $100 \mathrm{MHz} \quad \mathbf{£ 2 6 0 0 . 0 0}$
7L5 Soectrum Analyser 2 2 Hz 5MHz	7834 Storage Scope Mamframe DC. 400 MHz
	7854 Waveform Processing Scope
£5750.00	DC. 400 MHz ¢8250.00
7 L 13 Spectrum Analyser 7 KHz 18 GHz	7904500 MHz Manframe $\mathrm{E4500.00}$
7L14 Spectrum Analyser 10 KHz 186 GHz	S1 Sampling Head As New $£ 450.00$ 7014 Digital Counter plug-in 525 MHz
(59450.00	$£ 850.00$
7 L 88 Spectrum Analyser 15 GHz -60GHz	PE015 HV Probe ${ }^{\text {c295.00 }}$
TR502 Tracking Generator flor 7 L	OMG3 Storage Dscilosccipe Fitted with
	$\begin{aligned} & 2 \times V 4 \text { Plug ins to give } 4 \text { Trace } 15 \mathrm{MHz} \\ & \mathbf{£ 1 3 5 0 . 0 0} \end{aligned}$
series] E3250.00	RECORDERS
$5 L 4 \mathrm{~N}$ Spectrum Analvser 20 Hz .100 KHz	Hewlett Packard
7001/F2 Logic Analyser in 7704A	$70404 \times$ Y Reconder 1 Vinch POA
Mainframe £4950.00	Plotter T Base Metric c1150.00
BRIDGES	Watenabe.
Marconi TF1 313A0 1\% LCA Bridge $\quad £ 775.00$	WTR 2816 Channel Chart Recorder c950.00
	SICNAL SOURCES
TM4520 Set of Inductors $\quad \mathbf{E 3 5 0 . 0 0}$	Howlett Packard.
Wayne Karr 8642LCRO 1% \&795.00	42044 Decade LF Oscillator 10 Hz .1 MHz 1 mV 10 V into EOOS? £695.00 GO6B AM Signal Generator 50KHz
DVM's AND DMN ${ }^{\text {P }}$	65 MHz AMD-95\% £850.00
Datron 1041 Multifunction DVM with options 01 True PMS ACO2 4 Wire ohms B01-BCS output $£ 550.00$ 1059 Bench OMM $51 / 2$ digit OC and True RMS AV volt.s and curfent + resistance C700.00	
Solartran. 7055 Microprocessor DMM Scale Length $20.000 ~ A C / D C$ volts. resistance $1 \mu \mathrm{~V}$ resolution $\mathbf{E 4 9 5 . 0 0}$	Marconi. TF144H/4 AM Signal Generator 10 KHz . 72 MHz 2 V 2 V $£ 750.00$ TF20028 AM/FM 10 KHz 88 MHz \qquad
FRERUENCY	¢1200.00
COUNTERS	TF21200 0008 Hz 100 KHz Waveform Generator $£ 900.00$
Hewlett Packard 5340 A 8 Diglt $10 \mathrm{~Hz} 18 \mathrm{GHz} \quad \mathbf{£ 3 7 5 0 . 0 0}$	TF2? 70 B Synchronizer for FF 2002 B $£ 500.00$
Marconi TF2431 8 Digit 200MHz Unused $\mathbf{£ 2 0 0 . 0 0}$ TF2432 8 Digit $520 \mathrm{MHz} \quad$ ع275.00	TF2008 AM/FM 10 KHz 510 MHz built in sweeper Dutput O 2 V V 00 mV §3500.00 TF2016 - TF2173 Synchroniser AM/FM
OSCILLOSCOPES	$10 \mathrm{KHz}-102 \mathrm{MHz} \quad \mathbf{£ 2 0 0 0 . 0 0}$ TF2169 Pulse Modulat.or for use with
Hewlett Packard	TF2015 TF TF2016 E200.00
182T Storage Mainframe ¢1400.00	TF 20nO AF Signal Sourre $\mathbf{5 5 7 5 . 0 0}$
1809 A 100 MHz 4 Channel Plug In £2000.00	TF 2015 - TF 2171 Generator E Sunturonsor ¢1850.00

WIRELESS WORLD JANUARY 1983

	ع1650.00	
550.00	TG501 Jimemark Generator $\begin{gathered}\text { Esf50.00 } \\ \text { TM515 Mantrame [} 5 \text { widel } \\ \text { E350.00 }\end{gathered}$	
16456 Stereo Generator eas	TEKTRONIX TV TEST EQUIPMENT	
9081 AM FM Phase and Pulse Synthesized 5.520 MHz		
Radiometer		
TEKTRONIX PLUG INS		
	149 ANTSC TV Test Sg Gen EE550.00 $1485 C$ PALNTSC Dual Standar	
7 A 13 IIt Comparator Amp DC		
74164 Sngle Trace Amp oc.-225MHz		
$7 \mathrm{Al8}$ Dual Trace Amp oc. 75		
220t Amo DC 1 MH		
	MISCELLANEOUS	
E1250.00	Brual \& Kiaer	
78534	Ferrograph	
Dual 1 mebase for	Fluke	
14 Diqual Counter 525MHz E850		
7 7S14 Dual Trace Delay		
TEKTRONIX TM500		
SERIES		
25MHz Counter $\begin{aligned} & \text { EA50.00 } \\ & \text { E600.00 }\end{aligned}$	59308A HP IB Timing Generator $\mathbf{E 2 7 5 0 . 0 0}$	
00501 Digtal Delay FG501 Function Generator E495.00		
Sc50a 15 MHz -		
${ }_{\text {1 }}^{15 \mathrm{MHz} \text { Oual Trace Scope }}$		
SC504 80M Mz Dual Trace Scope		
O		
Electronic Brokers Limited		
51/55 Kings Cross Road Nay		
DNDON NC1K		
Telephone: 01-2783451 Mrsouce		
Latest Second User Test Equipment Catalogue now o.st. Send for your FREE copy wW - 200 FOR FURTHER DETALLS		

HF COMMUNICATIONS RECEIVERS
FOR

POINT TO POIHT/TRAMSPORTABLE

AND
MARIIIE SYSTEMS

DESIGHED AND MANUFLCTURED TO HIGHEST IITERMATIOMAL SPECS

Fully Synthesised
10 Hz or 100 Hz steps Continuously Tuned 50 KHz to 30 MHz Modes LSB/USB/CW/AM/FSK Stability $\quad \pm 1$ part in $10^{7 / 0} \mathrm{C}$ Tuning Keypad/Spin/Decade
Power Supplies
$110 \mathrm{~V} / 240 \mathrm{~V}$ AC and 24 V DC

WE ANNOUNCE NEW MODELS
(a) SR 520 To meet new C.E.P.T. Spec for Ships Main Receiver.
(b) SR 522 with Preselector for Point to Point/Transportable.
(c) SR 530 As (a) above but MICROPROCESSOR/KEYPAD controlled, 200 channel memory, Scanning.
(d) SR 532 As (c) above but for Point to Point/Transportable. OPTIONS. Full Remote Control by VHF Radio or Telephone Line, Dual Diversity, FSK Demodulator and 600 ohm Line Amplifiers.

SEND FOR TECHNICAL BROCHURES TO:
VIGILANT COMMUNICATIONS LTD, UNIT 5, PONTIAC WORKS, FERNBANK ROAD, ASCOT, BERKS, ENGLAND
TELEPHONE: (0344) 885656 TELEX: 849769 VIGCOM G

WW - 014 FOR FURTHER DETAILS

P.\&R. COMPUTER SHOP

IBM GOLFBALL PRINTERS from E70 EACH + Y.A.T.
*BRAND-NEW LA36 DEC WRITERS-SALE $£ 200$ EACH
*BRAND-NEW LA 180 DEC WRITER-SALE $£ 300$ EACH
CENTRONIC 779 PRINTERS $-£ 325+$ V.A.T.
CENTRONIC 781 PRINTER - $£ 350+$ V.A.T.
POWER UNITS, 5 -VOLT 6 -AMP- 20 EACH
FANS, PCBs, KEYBOARDS AND LOTS MORE
COME AND LOOK AROUND
SALCOTT MILL, GOLDHANGER ROAD
HEYBRIDGE, MALDON, ESSEX
PHONE MALDON (0621) 57440

ambit's new autumn/winter catalogue

is OUT NOW! SMM
$\sum_{\text {PAGES }}$
Sin

ALL THE ‘USUAL' BITS (Rs, Cs, Tr's, ICs etc) + ALL THE TRICKY BITS
at all good newsagents or direct

* TOKO COILS, INDUCTORS, LC FILTERS
* PCM FILTERS, VHF/UHF HELICAL FILTERS
* UNELCO CAPACITORS
* PCI INTELLIGENT LCD MODULES
* TOKO SWITCHES : F SERIES/R7000 SERIES
* ALPS POTENTIOMETERS AND

KEYSWITCHES

* TOYO-TSUSHO COAX RELAYS FOR TX/RX
* CRYSTAL FILTERS, CERAMIC FILTERS
* WELLER SOLDERING IRONS
* COOPER TOOLS
* TEST EQUIPMENT
* BOOKS, MANUFACTURERS' HANDBOOKS
* HARDWARE, CASES, PANELWARE, ETC.
* MODULES, R\&EW KITS
* RF POWER DEVICES

ORDERS SUBMITTED USING STOCKCODES DESPATCHED WITHIN 8 WORKING HOURS

* PHONE ORDER SERVICE - (NO MACHINES!)

$$
8 \text { AM - } 7 \text { PMM MON }- \text { SAT }
$$

* COMPUTER ORDER SERVICE - 'REWTEL'

6 PM - 9 AM 300 BAUD/RS232 (IT MAY BE 24 HRS BY THE TIME YOU READ THIS) 0277230959

WW - 007 FOR FURTHER DETAILS

Epetronic Brokers DECSALE

Scoop purchase of factory refurbished Anderson Jacobson AJ832 daisy wheel printers complete with full keyboard, integral stand, and RS232 interface. Utilising the famous QUME Printer Mechanism. NOW ONLY £750

Hazeltine 1420
 Special purchase of Hazeltine Vou's - manufacturer's surplus

* All 128 ASCll Codes
* 94 Displayable Characters including

Lower Case

* High resolution using 5×8 Dot

Matrix

* Typewriter-Style Keyboard Layout
* 15-Kriter-Style Kumeric Pad including [+]
* $[-]$ and Enter
* User-defined Video Presentation

Hi/Lo Intensity, Blink or Non Display

* Cursor Addressing and Sensing
* EIA interface
* Eight Transmission Rates up to 9500 Baud
* Twelve Operator Function Keys
* Non-Glare Screen
* Self Test

ONLY £350

Also available from time to time - HAZELTINE 1510 E550 New Winter ' $\mathrm{B} 2 / 83$ Catalogue now out. Send for your FREE copy now. ADD 15\% VAT TO ALL PRICES HAZELTINE 1410 E295 HAZELTINE $1510 \quad \mathbf{E 5 5 0}$ HAZELTINE 1520 E625
t. Sond for your FREE copy

Electronic Brokers Ltad., $61 / 65$ Kings Cross Road, LondonWCTX 9LN. Tel:01-2783461. Telex 298694 $1=-1$ Electronic Brokers 1

WW - 022 FOR FURTHER DETAILS

pantechnic

THE POWERFET SPECIALISTS

POWERFET AMPLIFIER MODULES

MODEL	POWER RANGE (Continuous RMS)	TYPICAL LOADS	PRICES (one off)
	$50 W-150 W$		
PFA 100	$100 W-300 W$	$4 \Omega, 8 \Omega$	$£ 17.35$
PFA 200	$250 W-600 W$	$4 \Omega, 8 \Omega$	$\mathbf{E 2 3 . 8 7}$
PFA 500	$200 W-300 W$	$2 \Omega, 4 \Omega, 8 \Omega$	$\mathbf{£ 4 2 . 0 0}$
PFA HV		$4 \Omega, 8 \Omega, 16 \Omega$	$\mathbf{£ 3 4 . 3 0}$

Key features: - RELIABLE
(LINEAR
FAST

- QUIET
- BRIDGEABLE
- STABLE

LOW COST
Powerfet freedom from thermal runaway and secondary breakdown
Secondary breakdown $1 \mathrm{M} / \mathrm{THD}<0.01 \%$ full power (mid-band THD down to 0.0015%)
Slew rate $>30 \mathrm{~V} / \mu \mathrm{S}(45 \mathrm{~V} / \mu \mathrm{S}$ typical)
Signal to noise ratio 120 dB
Without extra circuitry
Unconditionally
10 watts to 20 watts per $£$, depending on model and quantity
As they stand these modules suit most P.A. and industrial applications and satisty all foreseeable audiophile requirements. (The HV is aimed at digital audio.) Where aspects of performance fail to meet specific requirements (e.g. in speed or power) low-cost customising is often a possibility. Alternatively entirely new boards can be produced.

ALSO-
PAN 20 - Ultra-low-noise/distortion, mono preamp board, $\mathbf{6 6 . 7 6}$ PAX $2 / 24-2$-way active crossover board (24 dB /octave) plus regulators, $\mathbf{9 . 7 0}$ THE HEAT EXCHANGER-New, super-efficient heatsink; handles 300 W or 1.2 kW when blown; $7 \mathrm{in} . \times 4 \mathrm{in} . \times 21 / 4 \mathrm{in}$., $\mathbf{£ 7 . 5 0}$

This is just a fraction of the new products available from Pantechnic - check us out!

Prices exclude V.A.T
Carriage 75p

Panice and Dolivery
ANTECNNIC (Dopt WM12)
170 WOOLTON STBEET
LIVERPOOL L25 5NH
Tol: 051-498 8485

Technical Enquiries Phil Rimmer
01-601 657

INSTANT PRINTED CIRCUITS!!

Make your own - to professional standards - within minutes using either "Fotolak" Light-sensitive Aerosol Lacquer or Pre-coated board. No Darkroom or Ultra-violet source needed!
$\begin{array}{ll}\text { Fotolak aerosol } & £ 2.50(30 \mathrm{p}) \\ \text { Ferric Chloride } & \text { (}\end{array}$
Copper-clad Fibre-glass Boards

Pre-coated Fibre-glass Board
$8^{\prime \prime} \times 41 / 2^{\prime \prime} \ldots £ 1.75(25 p) \quad 16^{\prime \prime} \times 9^{\prime \prime} \ldots £ 7(60 p) \quad 24^{\prime \prime} \times 18^{\prime \prime} \ldots £ 18(£ 1.70)$ $8^{\prime \prime} \times 9^{\prime \prime} \ldots . . . \mathrm{£} 3.50(45 p) \quad 24^{\prime \prime} \times 12^{\prime \prime} \ldots \mathrm{f} 13$ (f 1.20) Eurocard £ 1.25 (25 p) Double-sided Board (all sizes) add 20\%
Postage individual items in brackets. Maximum charge $£ 2$ per order
12V FLUORESCENT LIGHTING! FANTASTIC BARGAIN!
21"' 13-watt Batten Type (complete with tube) £6 (£1.20)
Kit Form: £5 (£1.20). Inverter Transformers only:£1 (30p)
WHITE HOUSE ELECTRONICS pra sands. penzance troo gtt
Telephone: Germos (073-676) 2328

PGOTUTOR ANALOGUE		
ASSEMBLY LANGUAGE The ideal way to learn machine language and becom a single 28 -pin l.C. As featured in this, and subsequent issues of WW. COMPLETE KIT £39.87 PCB, Programmed 68705 and all parts		INER uainted with the n ANALOGUE INTERFACE £9.39 PCB and all components
PCB only $£ 4.35$ Prog. $68705 £ 21.98$ Data $£ 1.95$	ALL PRICES	PCB only £1.73
	$\begin{aligned} & \text { INCLUDE VAT } \\ & \text { ADD 45p } \\ & \text { POSTAGE } \end{aligned}$	16-way Jumper Lead £2.35
MAGENTA ELECTRONICS LIMITED (W13) 135 Hunter Street, Burton-on-Trent, Staffs. DE14 2ST, 02-83-65435		

WW - 65 FOR FURTHER DETAILS

SEMICONDUCTORS

VALVES

311

WW - 021 FOR FURTHER DETAILS

Happy Memories

Part Type
4116 200ns
4116250 ns
4816 100ns For BBC comp
4164 200ns
2114 200ns Lower Power
2114 450ns Low Power
4118250 ns
6116 150ns CMOS
2708 450ns
2716 450ns 5-volt
2716 450ns three-rail
2732 450ns Intel type
2532 450ns Texas type

6522 PIA $\quad \mathrm{E} 3.98 \quad 7805$ res $\quad .50 \quad 7812$ res $\quad .50$
Low-profile IC
sockets:

1 off 25-99 100

		up
.83	.72	.66
.75	.65	.60
2.45	2.10	1.95
4.95	4.45	4.20
1.15	1.00	.90
.95	.85	.80
3.25	2.85	2.65
3.70	3.20	2.95
2.60	2.25	2.10
2.60	2.25	2.10
5.75	5.00	4.65
3.75	3.25	3.00
3.75	3.25	3.00
Z80A-CTC	$\mathbf{f 3 . 2 5}$	
7812 res	.50	

Soft-sectored floppy discs per 10 in plastic library case: 5 -inch SSSD f17.00 5 -inch SSDD f19.25 5 -inch DSDD f21.00 8 -inch SSSD £19.25 8 -inch SSDD £23.65 8 -inch DSDD £25.50 74LS Series TTL: Large stocks at low prices with D.I.Y discounts starting at a mix of just 25 pieces. Write or phone for list.

Please add 30p post and packing to orders under $£ 15$ and V.A.T. to total
Access and Barclaycard welcome : 24-hour service on 054-422 618
Government and Educational Orders welcome £15 minimum
Trade accounts operated : Phone or write for details
HAPPY MEMORIES (WW) Gladestry, Kington Herefordshire HR5 3NY Telephone: 054-422 618 or 628

ANGLIA INDUSTRIAL AUCTIONS

Specialist Auctioneers to the
Radio and Electronic Industry
5 Station Road, Littleport, Cambs. CB6 10E
Telephone: Ely (0353) 860185

AUCTION SALES

of over 700 Lots
Electrical Components \& Equipment Large and Small Quantities

Forthcoming sales to be held on the following dates:

12th January, 1983; 16th February, 1983; 23rd March, 1983; 27th April, 1983; 1st June, 1983; 6th July, 1983; 10th August, 1983; 14th September, 1983; 19th October, 1983; 23rd November, 1983.

Catalogues available 10 days prior to sale, price 60p inc. p\&p or for each sale for a year f5.

Entry forms on application. Although entries for cataloguing may be received up to 17 days before the date of the sale, customers are advised to enter early.

WHAT ARE YOU DRIVING?

INDUCTION LOOP TRANSMITTERS VIBRATOR/SHAKERS SERVOMOTORS MAGNETS

CRIMSON ELEKTRIK POWER AMP MODULES HAVE DONE IT ALL

CHOOSE our acclaimed Bipolar Modules for the best in Hi - Fi . These modules have been widely used by professional bodies. They are high slew, low t.h.d. devices without need for the output fuses that spoil fidelity. They have instantly resetable 'electronic fuse' and are L-bracket mounting for flexi installation.
CHOOSE Our Mosfet Modules for the most difficult loads. These modules are rugged and make ideal line step-up transformer drivers. They respond down to d.c. and make excellent servo-driving devices. They have low d.c. offset drift due to j fet inputs

B	TYPE	MAX. O/P	SUPPLY	VOLTAGE		PRICEINC.
I	POWER	TYP.	MAX.	THD TYP.	V.A.T. \& POST	

Export - no problem. Please write for quotation or quote your Visa/Master Charge card number.

HEAVY D JTY POWER AMPLIFIERS

FREEPOST, 9 Claymill Road, Leicester, LE4 7JJ, England

WAITORDELECTHONCS
CARDIFF ROAD, WATFORD, ENGLAND MAL ORDER, CALLERS WELCOME.
Matiord (09P3 $0588 / 9$. Telox: 8956095

VAT
We stock thousands more items. It pays to visit us. We are situated behind Watiord Foo
Neareat Underground/BR Station: Watford High Street.
Opon Monday to Saturday: 9.000 m to 6.00 pm . Ample Free Car Parking space available

TAG-END CAPACITORS: 64V: 2200 139p, 3300 198p; 4700 245p; 50V $2200110 \mathrm{p}: 330015$
160p; 25V: $220090 \mathrm{p}: 3300$ 58p; $4000,470098 \mathrm{p} ; 10,000320 \mathrm{p} ; 15,000345 \mathrm{p} ; 16 \mathrm{~V} \cdot 22,000350 \mathrm{p}$

POLYESTER CAPACITORS: Axial Lead Type $400 \mathrm{~V}: 1 \mathrm{nF}, 1 \mathrm{n} 5,2 \mathrm{n} 2,3 \mathrm{n} 3,4 \mathrm{n} 7,6 \mathrm{n} 811 \mathrm{p} ; 10 \mathrm{n}, 15 \mathrm{n}, 18 \mathrm{n}, 22 \mathrm{n} 12 \mathrm{p}: 33 \mathrm{n}, 47 \mathrm{n}, 68 \mathrm{n}$ 18p; 150n 20p; 220n 30p; 330n $42 \mathrm{p} ; 470 \mathrm{n} 52 \mathrm{p} ; 680 \mathrm{n} 1 \mathrm{uF}$ ' $88 \mathrm{p} ; 2 \mathrm{u} 282 \mathrm{p}$. 42p: 1u5 45p; 2u2 48p; 4u7 58p. 1000v: $1 \mathrm{nF} 17 \mathrm{p}: 10 \mathrm{nF}$ 30p: 15 n 40 p : $22 \mathrm{n} 36 \mathrm{p}: 33 \mathrm{n} 42 \mathrm{p}: 47 \mathrm{n}, 100 \mathrm{n} 42 \mathrm{p}$.				'SIEMENS pcb Type Miniature poly. Capscitors 250V:		BC119 ${ }_{\mathrm{BC}}^{\mathrm{BC} 137}{ }^{\mathrm{BC}}$ BC142/3 BC147B BC 148 BC 148 B BC1488
POLYESTEA RADIAL LEAD CAPACITORS: 250V 10n, 15n, 22n, 27n 6p: $33 \mathrm{n}, 47 \mathrm{n}, 68 \mathrm{n}, 100 \mathrm{n}$ 7p: 150n, 220 n 10p: 330~ 470 ก 13p: 680n 19p; 1u 23p; 1u5 40p; 2u2 46p.						
TANTALUM BEAD CAPACITORS 3sV: 0. IuF, $0.22,0.33$ 15p: $0-4,0.068$ 18p; 15. 35p: 22 30p; 33, 4740p: 100 						${ }_{\text {c }}^{\text {A }}$
MYLAR FLL CAPACITORS 100V: 1 MF . $2,4,4 \mathrm{nF}, 10,6 \mathrm{p} ; 15 \mathrm{nF}, 22$ 30N. 470 . 4 inp. 50 V .						
				Telephone orders by Access. Just through, we do the rest		$\begin{aligned} & \text { BC184 } \\ & \text { BC182L } \\ & \text { BC183L } \\ & \text { BC184L } \\ & \text { BC18667 } \\ & \text { BC212 } \\ & \hline \end{aligned}$

[^1]

$3300,4700 \mathrm{pF}$$\quad \begin{aligned} & 30 \mathrm{p} \text { each } \\ & 60 \mathrm{p} \text { each }\end{aligned}$

RAM
ROR
BBC
MICRO
4816AP
100ns

225 p

 1 W 2% Metai Film

 RESISTORS Network S.IL 7 Commoned 18 pins) 100%, $68001,1 \mathrm{~K} 2 \mathrm{k} 2,4 \mathrm{~K}$

DIODE

 \qquad
 N

 225

Quartz Crystals

Stocks of standard items exceed a quarter of a million. Individual units to the tightest specification made to order.

This technology is avalable now from

Interface
Quartz Devices Limited
${ }_{29}$ Market Street Crewkerne Somerset tais 8 JJ

Crewkerne (0460) 74433 Telex 46283 inface

WW - 027 FOR FURTHER DETAILS

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

BROADFIELDS \& MAYCO DISPOSALS

21 Lodge Lane, N. Finchley, London, N.12. 5 mins from Tally Ho corner Telephone 445 2713/0749
(9461)

WW - 035 FOR FURTHER DETAILS

TIME WRONG?

MSF CLOCK is ALWAYS CORRECT - never gains or loses, SELF SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds, auto GMT/BST, leap year and parallel BCD (including Weekday) output, receives Rugby 60 KHz atomic time signals, built-in antenna, 1000 Km range, TIME RIGHT, £69.60.
60 KHz RUGBY RECEIVER, as in MSF Clock, serial data output for computer, etc, decoding details and ZX81 listing for LOCAL, GMT and SIDEREAL time, £22.20.
V.L.F. 7 EXPLORE $10-150 \mathrm{KHz}$, Receiver $£ 19.40$.

EXCITING $100-600 \mathrm{KHz}$? Converter to $3.5-4 \mathrm{MHz}$ £18.70.
Antenna Noise Bridge, $1-150 \mathrm{MHz}, 2-1000$ ohms, $£ 18.60$.
Each fun-to-build kit (ready made to order) includes all parts, printed circuit, case, instructions, postage, etc., monev back assurance so GET yours NOW.

CAMBRIDGE KITS

45 (WN) Old School Lane, Milton, Cambridge

Bigger and Better

the colourful Wilmslow Audio brochure - the definitive loudspeaker catalogue!

Everything for the speaker constructor - kits, drive units, components for HiFi and PA
50 DIY HiFi speaker designs including the exciting new dB Total Concept speaker kits, the Kef Constructor range, Wharfedale Speakercraft, etc.
Flatpack cabinet kits for Kef, Wharfedale and many others.

* Lowest prices - Largest stocks *
* Expert staff - Sound advice *
* Choose your DIY HiFi Speakers in the comfort of our * two listening lounges
(Customer operated demonstration facilities)
* Ample parking *

Send $£ 1.50$ for catalogue
(cheque, M.O. or stamps-orphone with your credit card number)

* Access - Visa - American Express accepted * also HiFi Markets Budget Card.

35/39 Church Street, Wilmsiow, Cheshire SK9 1AS
Lightning service on telephoned credit card orders!

WW - 025 FOR FURTHER DETAILS

RADIDCODE ㄷㅁ몽

are powerful and comprehensive instruments which receive, decode and analyse time-coded standard frequency transmissions to provide accurate, secure and completely automatic time/calendar or synchronisation systems.

Applications

Automatic master clock and slave controller.
Synchronisation of separate equipment and events
Programmable energy management system
Computer clock/calendar with battery backup.
Data logging and time recording
Process and equipment control.
Broadcasting, Astronomy, Navigation.
Satellite tracking.
If you have a time or synchronisation problem, write or phone for further details of our portable and new microcomputer-controlled Radiocode Clocks.

Circuit Services, 6 Elmbridge Drive
Ruislip, Middlesex. Ruislip 76962

The answer is almost certainly no, unless you've got your hands on a brand new Keithley 132C.

The latest addition to a trend-setting range of handheld units from Keithley Instruments, the 132 C is a $31 / 2$ digit meter with TRMS, TEMP and 0.25% DCV accuracy.
Key features include
OAC and DC amps from 1μ A resolution to 2 amps full scale
Qhms from 100 ms resolution to $20 \mathrm{M} \Omega$
DC Volts ($\pm 0.25 \%$ reading +1 digit)
TRMS AC Volts from $45-500 \mathrm{~Hz}$ range ($\pm 1 \%$ reading +9 digits)

- Temperature Range: $-20^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$\left(\pm 3 \%+1\right.$ digit), $150^{\circ} \mathrm{C}$ to $1370^{\circ} \mathrm{C}(\pm 3 \%$ of
reading), Type K non-linearized, $1^{\circ} \mathrm{C}$ resolution
For more information get in touch now. You'll find it pretty hot stuff!
Model 132 F available for those requiring fahrenheit scales

Keithley Instruments Lid
1 Boulton Road Reading Berkshire RG2 ONL Telex 847047

Audio Measuring Instruments, Audio Amplifiers, Loudspeakers and Loudspeaker Components for the professional and enthusiast

RADFORD AUDIO LTD.

10 BEACH ROAD
WESTON-S-MARE, AVON BS23 2AU
TEL. 0934416033

WW - 031 FOR FURTHER DETAILS

The lightweight mast with 101 applicetions

The smoothly operated QTM Mast comes fitted with handpump or can be vehicle mounted with 'Power Pack' for extension and retraction. Available in a range of heights up to 15 metres, the OTM mast can provide the ideal answer
for

- Mobile Radio Telephone
- Police Mobile HO (UHF)
- Field Telecommunications

Environmental - gas
sampling collector

- High level photography
- Floodlighting
- Meteorology
- Anemometer and Wind
- And a host of other uses

CLARK MASTS

Find out more about the QTM series by writing or phoning:
UK. Evergreen House, Ringwood Road Binstead, Iste of Wight.
England PO33 3 PA
Tel Isle of Wight (0983) 63691 EUROPE
GENK TECHNICAL PRODUCTS NVIW.W Woudstraat 21, 3600 Genk. Belgium
Telefoon 011-380831
Telex 39354 Genant B

EP4000

EPROM EMIUATOR PROGRAMMER

The microprocessor controlled EP4000 will emulate and program all the popular EPROMs including the 2704, 2708, 2716(3), 2508, 2758, 2516, 2716, 2532 and 2732 devices. Personality cards and hardware changes are not required as the machine configures itself for the different devices. Other devices such as bipolar PROMs and 2764 and 2564 EPROMs are programmed with external modules.

The editing and emulation facilities, video output and serial/parallel input/output provided as standard make the EP4000 very flexible to allow its use in three main modes:

- As a stand alone unit for editing and duplicating EPROMs.

Items pictured are: EP4000 Emulator Programmer - $£ 545+£ 12$ delivery; BSC buffered simulator cable - £39; MESA 4 multi EPROM simulator cable £98; 2732A Programming adaptor £39; 2764 Programming adaptor - £64; - 2564 Programming adaptor - £64;

- As a slave programmer used in conjunction with a software development system or microcomputer.
- As a real time EPROM emulator for program debugging and development (standard access time of the emulator is 300 ns).

Data can be loaded into the $4 \mathrm{k} \times 8$ static RAM from a pre-programmed EPROM, the keypad, the serial or parallel ports and an audio cassette. Keypad editing allows for data entry, shift, move, delete, store, match and scroll, and a $1 \mathrm{k} \times 8$ RAM allows temporary block storage. A video output for memory map display, as well as the built-in 8 digit hex display allows full use of the editing facilities to be made.

BP4 (TEXAS) Bipolar PROM Programming module - £190
Also available (not shown): VM10 Video monitor - £99; UV141 EPROM Eraser with timer - £78; GP100A 80 column Printer - £225; Pl100 interface for EP4000 to GP100A - £65.

VAT should be added to all prices

Write or phone for more details

GP Industrial Electronics Ltd.

PRINTED CIRCUITS FOR WIRELESS WORLD PROJECTS

Audio compressor/imiter-Dec 1975-1 s.s. (stereo) Cassette recorder-May 1976-1 s.s
Audio preamplifier-November 1976-2 s.s
Additional circuits-October 1977-1 s.
Stereo coder-April 1977-1 ds 2 s s
ow distortion disc amplifier (stereo)-September 1977-1 s.s
Low distortion audio oscillator-September 1977-1 s.s
Synthesized f.m. transceiver-November 1977-2d.s. 1 s.s
Morsemaker-June 1978-1 d.s
Metal detector-July 1978-1 d.
Oscilloscope waveform store-October 1978-4 ds
Regulator for car alternator-August 1978-1 s.s
Wideband noise reducer-November 1978-1 d.s
ersatile noise generator-January 1979-1 s.s.
High performance preamplifier-February 1979-
Distortion meter and oscillator-July 1979-2 s s
Moving coil preamplifier-August 1979-1 s.s
Multi-mode transceiver-October 1979-10 d s
Amplification system - Oct. 1979-3 preamp 1 poweramp
Digital capacitance meter-April 1980-2 s.s.
Colour graphics system-April 1980-1 d.s.
Audio spectrum analyser-May $1980-3 \mathrm{~s} \mathrm{~s}$
Multi-section equalizer-June 1980-2 s.s
Floating-bridge power amp- Oct $1980-1 \mathrm{~s} \mathrm{~s}(12 \mathrm{~V}$ or 40 V)
Nanocomp 6802 or 6809 - Jan., July, 1981 - 1 d.s. 1 s.s. ...
Cassette interface - July, 1981 - 1 s.s....
Eprom programmer - Jan., 1982
Modular frequency counters - March, 1981 - 8 s .s
Opto electronic contact breaker (Delco) - April, 198
CB synthesiser - Sept. - 1 d.s.
VAT and UK
M. R. SAGIN, NANCARRAS MILL, THE LEVEL CONSTANTINE, FALMOUTH, CORNWALL

WW - 030 FOR FURTHER DETAILS

It's so easy and tidy with the Easibind binder to file your copies away. Each binder is designed to hold 12 issues and is attractively bound and blocked with the WIRELESS WORLD logo.
Price U.K. $£ 4.30$ including postage, pack ing and V.A.T.
Overseas orders add 25 p per binder
Nat. Giro No. 5157552.
Please allow $3 / 4$ weeks for fulfilment of order.
Payment by ACCESS/BARCLAYCARD/ VISA. Send coupon below detailing credit card no. and signature.
Why not place your order now? Send the completed coupon below with remittance payable to

Easibind Ltd., 4 Uxbridge St. London, W8 7SZ.

Order Form WIRELESS WORLD
renclose P.O/cheque value. BLOCK LETTERS PLEASE Name Address.
\square PM COMPONENTS LTD VALVE \& COMPONENTS SPECIALISTS

integrated circuits

SEMICONDUCTORS				$\begin{aligned} & 80159 \\ & \text { BDI66 } \end{aligned}$	${ }^{0.565}$
AAY12	0.25	вс1738	0.10	BD182	0.78
${ }^{\text {ACC12 }}$	${ }_{0}^{0.22}$	${ }^{\text {BCCI74 }}$	0.09	${ }_{80201}^{80202}$	0.83
${ }_{\text {A }}$	0.20	${ }^{\text {BC17 }}$	0.09	${ }_{\text {BD203 }}$	0.78
AC128K	0.32	${ }_{\text {BC178 }}$	0.15	${ }_{80} 804$	0.70
AC141	0.28	BC182	0.10	BD222	0.48
${ }_{\text {ACl }}{ }_{\text {ACl }}$	0.34	${ }^{\text {BC1822LB }}$	0.10	${ }^{802235}$	0.48
${ }_{\text {AC17 }}{ }^{\text {A }} 18$	${ }_{0}^{0.23}$	${ }_{\substack{8 C 183 \\ 8 C 183}}$	${ }_{0}^{0.09}$	${ }_{\text {BC232 }}$	0.38
${ }_{\text {AC }}$ C176K	0.31	${ }_{\text {BC }}$	-09	${ }_{8}$	-35
AC187	0.28	BC204	0.10	BD234	0.35
AC187K	0.28	ВС2078	0.13	BD2	0.45
AC	0.25	BC208B	0.13	BD237	0.40
AC188K	0.37	BC212	0.09	BD238	0.40
${ }_{\text {ADI }}{ }^{\text {A }} 14$	0.90	${ }_{8 C 2}{ }^{1212}$	0.09	8D241	0.40
${ }_{\text {ADI }}{ }^{\text {Ab }}$	${ }_{0}^{0.70}$	${ }^{\text {BC212LA }}$	0.09	${ }^{80242}$	0.50
${ }_{\text {AD161 }}$	0.33	${ }_{8 C 213}$	0.09	${ }_{\text {BD3 }} 76$	0.32
AD162	0.39	BC214	0.09	B0410	0.55
AD1615	${ }^{0.30}$	BC214C	0.09	80434	0.55
${ }_{\text {A }}{ }^{\text {A }}$	0.75	${ }^{8 C 2144}$	0.09	804	0.50
	0.35	BC237	0.10	${ }^{80438}$	0.500
	${ }_{0}$	BC2374	0.09	${ }^{80506}$	0.50
${ }_{\text {AF }} \times 127$	0.32	${ }_{8 \mathrm{BC} 238}$	${ }_{0} 0.09$	${ }_{\text {B05 } 20}$	0.08
AF139	0.40	BC239	0.12	${ }^{80538}$	0.88
${ }_{\text {AF }}^{\text {AF } 239}$	0.42	${ }^{\text {BC251A }}$	0.12	B0597	0.78
${ }_{\text {All }}$	${ }_{200}$	BC2524	0.15	${ }_{\text {B06969 }}$	1.10
AU107	1.75	${ }_{\text {BC2 } 258}$	${ }^{0.39}$	${ }_{80707}$	0.00
AU110	2.00	BC284	0.30	BD×32	1.50
${ }^{\text {AUCII }}$	2.95	BC300	0.30	8 F 115	0.35
BCTO7	0.10	${ }^{\text {BC3 }} 301$	0.30	${ }^{8 F 127}$	0.24
${ }_{\text {BCO }}$	0.11	${ }^{\text {BC303 }}$	028	8 BF 54	0.12
${ }_{\text {BC1 }} 108$	0.10	${ }_{\text {BCL }}$	$\stackrel{0.09}{0.09}$	${ }_{8 \times 150}$	0.27
	0.11	вС3078	0.09	${ }^{\text {BF167 }} 6$	0.24
${ }_{\text {BC109 }}$	- 0.12	${ }^{86 C 327}$	0.10	${ }^{81} 173$	
ВСС1998	0.12	${ }_{\text {BCC323 }}$	0.10	${ }_{8 \times 178}^{81}$	0.28
${ }^{\text {BCI }} 109 \mathrm{C}$	0.12	вс338	0.09	8F179	0.36
BCO^{14}	0.11	BC347A	0.13	${ }^{\text {BF1 } 190}$	0.28
${ }_{\text {BC17 }}$	${ }_{0}^{0.19}$	-	- $\begin{aligned} & 0.35 \\ & 0.20\end{aligned}$	${ }_{8 \mathrm{BF} 182}^{\text {BF/ }}$	0.29
BC119	0.24	${ }_{8}^{85} 527$	0.20	${ }_{8 F 183}$	0.29
, BC125	0.28	BC547	0.10	BF194	0.28
${ }^{\text {BC141 }}$	0.35	${ }^{\text {BC548 }}$	0.10	${ }^{\text {BFI } 185}$	0.29
${ }_{8 C 142}$	0.21	${ }_{\text {BC5540 }}$	0.08	${ }_{8 F 195}$	0.11
BC143	0.24	$8 \mathrm{BC557}$	0.08	${ }_{8 F 196}$	0.11
${ }^{\text {BC147 }}$	0.09	BC557A	0.08	${ }^{\text {BFP197 }}$	0.11
(${ }_{\text {BC1 }}^{\text {BC148 }}$	${ }_{0}^{0.09}$	${ }_{\text {BC558 }}$	${ }^{0.088}$		${ }_{0.14}$
BC1488	0.09	ВССү33A	1.80	BF200	0.40
BC149	0.09	BD115	0.30	${ }^{\text {BFF241 }}$	0.15
${ }^{8 C}$	-	${ }^{\text {BDP }} 116$	0.80	${ }_{\text {BFP245 }}$	0.30
${ }_{8 C 159}$	0.09	¢8124P	0.39		0.28
BC150	0.28	BD132	0.35	BF257	0.28
	$\stackrel{0.15}{0.15}$	${ }_{80135}^{80133}$	- 0.40	${ }_{\text {BF259 }}$	- 0.28
BC171	0.09	BD136	0.30	8F2	0.28
71 A	0.10	BD1	0.32	${ }^{85273}$	0.13
${ }_{8 C 178}^{8 C 178}$	${ }^{0.10}$	${ }^{8 D} 138$	0.30	${ }^{85733}$	0.34
${ }^{\text {BC172 }}$	- 0.10	${ }^{80139}$	0.32		
${ }_{\text {BCL172C }}$	0.10	-	0.30 1.10		0.37

DIODES

AA119
BA102
BA115
BA 145
BA15
BA 144
BA155
BA156
BA157
BAX13
BAX16
BB105
BT151
BY12
BY12
BY13
BY16
BY17
BY17
BY1

$\begin{array}{ll}\text { IN } 4003 & 0.04 \\ \text { IN } 4004 & 0.05 \\ \text { IN } 4005 & 0.05 \\ \text { IN } 4006 & 0.06 \\ \text { IN4007 } & 0.06 \\ \text { IN4148 } & 0.02 \\ \text { IN4448 } & 0.10 \\ \text { IN5401 } & 0.12 \\ \text { IN5402 } & 0.14 \\ \text { IN5403 } & 0.12 \\ \text { IN5404 } & 0.12 \\ \text { INS405 } & 0.13 \\ \text { IN5406 } & 0.13 \\ \text { IN5407 } & 0.18 \\ \text { IN5408 } & 0.16 \\ \text { ITT44 } & 0.04 \\ \text { TTT923 } & 0.15 \\ \text { ITT2002 } & 0.10\end{array}$
742 SERIES
SN76666N 0.70
TA7O61AP 3.55
TA71 TA $A 108 \mathrm{P}$
TA7120P
TAl130P
T
 8015
$8 D 16$
$8 D 19$
$8 D 18$
80
BF362
\qquad

TDA2522
TDA2523
1.95
1.95
1.95
1.95
1.95
1.25
2.15
2.15
1.15
2.95
2.96
2.95
3.50
2.50
1.95
2.80
1.35
3.95
1.95
2.96
2.75
H
2.50
H

${ }_{8 F 363}{ }^{\text {8F362 }}$
BF371
8 F 394
BF422
BF457

R2008B
R2010

CRT TUBES
A selection available
Prices on request.
3BP1 £10 D14-210GH 5BHP11 £35 D14-1200GH 5BKP1 £30 D14-260GH 13BP4 E35 95447GM

DATA \& EQUIV. BOOKS

Transistor Data Books including Japanese types. Two books, $8 . .60$ pair.	I.C. DATA 800kS LIN i covering Op Amps LiN 2 covering Regulators E4. 95 eech

PHONE
 0474813225 3 LINES MEOPHAM GREEN, MEOPHAM, KENT DABOOQY WEST ST G

A SELECTION FROM OUR 1714

4 Watt
7 Watt
11 Watt
17 Watt

ZENER DIODES

BZY88 0.07

TUERMISTORS BATERIES
VA1040 0.23 TV Power M
VA1104 0.70 batiories
$\begin{array}{ll}\text { VAAB65 } & 0.105 \\ \text { V Vich7 } & 0.25\end{array}$

CALLERS WELCOME

\star ENTRANCE ON A227
50 YDS SOUTH OF MEOPHAM GREEN CAR PARKING AVAILABLE OPEN MONDAY TO FRIDAY 9a.m. 5.30p.m.
A 24 HOUR ANSWERPHONE SERVICE \star.

UK ORDERS P\&P 50p PLEASE ADD V.A.T. AT 15\%

Keesthase

 ContactsCLEAN
BY USING

DIACROM SPATULA

No other cleaner has all these advantages:-

1. Only 100% pure natural diamond grans are uttised.
. Blades are treated with hard chrome to reinforce the setting of the diamond grains to obviate loosening or breakaway during use This process atso prevents clogging of the diamonded surface by residues resulting from use
2. All diamonded blades are rectified to ensure an absolutely smooth surface by eliminating diamond grains which may rise above the surface. This eliminates all excessive
scratching during use
3. All clamond grains are rigidy calibrared to ensure a perfectly uniform grain size of either 200. 300 or 400
4. The chrome gives a very weak co efficient of friction and the rigidity of the nylon handie is calcurared to permit proper utilisation and yet pliant enough to avoid undue pressures on
highly delicate relays.
Grain size 200 , thickness $55 / 100 \mathrm{~mm}$. both faces diamonded. For quick cleaning of industrial elays and switchnng equipment etc
Gran size 300 , thickness $55 / 100 \mathrm{~mm}$ both faces diamonded. For smaller equipments. Ihe tolephone relays computer relays eic
contacte Two close contacis tacing each other can be ndvidually cleaned because face of the spatula is abrasive

Sole Distributors for the United Kingdom SPECIAL PRODUCTS (DISTRIBUTORS) LTD 81 Piccadilly, London W1V OHL. Phone: 01-629 9556 As supplied to the M.O.D. U.K.A.EA.. C.E.G.B. British Rail and other Public Authorities; also major industriad and electronic users throughourt the Unitod Kingdom WW - 024 FOR FURTHER DETAILS

RADIO HANDBOOK

bvorr

by Robinson
by Robinson
by King
RADIO \& TV SER
RADIO \& ELECTRONIC LABORATORY H/B
by Scroggie
by Bellamy
COMPUTER VISION
by Ballard
THE ART OF ELECTRONICS
PUBLIC ADDRES
by Capel

PRICES INCLUDE POSTAGE \& PACKING

THE MODERN BOOK CO

Specialist in scientinc and technical books
15/21 PRAED ST., LONDON W2 1NP
PHONE: 01-402 9176 - Closed SATURDAY 1 p.m.
Please allow 14 days for reply or delivery
WW - 005 FOR FURTHER DETAILS

PORTABLE COMPUTER CENTRE

Transam
Microsystems Limited
59/61 Theobalds Road, London WC1. Tel: 01-405 5240

WW - 045 FOR FURTHER DETAILS

RECHARGEABLE BATTERIES

PRIVATE \& TRADE ENQUIRIES WELCOME
Full range available to replace 1.5 volt dry cells and 9 volt PP type batteries, SAE for lists and prices. £1.45 for booklet, "Nickel Cadmium Power," plus catalogue.

* New sealed lead range now available * Write or call at:
SANDWELL PLANT LTD.
2 Union Drive, Boldmere
Sutton Coldfield, West Midlands, 021-354 9764
After Hours 0977616913
WW - 039 FOR FURTHER DETAILS

WIRELESS WORLD JANUARY 1983

RETAIL • MAIL ORDER • EXPORT • INDUSTRIAL \& EDUCATIONAL

TRIO 20 MHZ DUAL TRACE 'SCOPES
140mm Tube: ac to $20 \mathrm{MHz}: 5 \mathrm{mV}$
Sensitivity CH2Inert. Sensitivity: CH2 Invert:
CS1820 Oelayed sweep: 0.2μ sec to 0.5 sec 5 weep

Modes CHI. CH2 OUAL and ADO.
 inc. VAT inc
(UKC/P $\mathbb{C} 4$)
CS 1566A NOR. AUTO. VIOEO:
$0.5 \mu \sec$ to 0.5 sec 5 weep:
Mades CHI. CH2. ALT. CH
List Price Our Price
$£ 368.00$
inc. VAT
(20.299
(UK C/P£4) inc. VAT

ANALOGUE MULTIMETERS - GENERAL RANGE

BANANA 15 range pocket 20K/Volt plus cont. buzzer [illus) $£ 20.64$
ET 10214 range $2 \mathrm{~K} /$ Voll pocket $£ 5.95$ ETS 11 range pocket $4 \mathrm{~K} /$ /voll
S6.50 NH56R 22 range packet $20 \mathrm{~K} /$ Voll YN360TR 19 range plus Hfe tes 20K/Volt KRT5001 16 range 10 amp DC range double $50 \mathrm{~K} / \mathrm{Volt}$ ST303TR 21 range plus He Test 20K/VoH AT1020 18 range Oeluxe 2Ky and 95

generators

[UK C/P £I]
All models $220 / 240 \mathrm{~V}$ AC
AVOIO 4 band Sine/SO output
TE22DMax distorlion 1\% 20H2
LAG27 Max distortion 0.5-1\% [LEADERI 1OHZ.IMHZ LaG120A 5 band 10 Hz . 1 MHZ Sine/SQ $0.05-08 \%$ dist. LAG125 As LAGI 20 A but 0.02% dist. [LEADEA]

TE200 100 KHZ I I00 MHZ 6 band (300 MHZ harm) \quad £49.95 I450MHZ harml LEAOER E71.30 FUNCTION |All Sine/SO/Triangle/

5020A 1 HZ - 200 KHZ ISABTROMICSI TG100 1HZ 100 KHZ (THANOAR) TG102 0.2HZ 2 mHZ (THAMDAR) $£ 90.85$

TMK500 23 range plus 12A BC plus cont. buzzer 30k/Voll | £23.95 |
| :--- | 168 m 36 range large scale IOA 360 TR 23 range large scale 10A AC/DC Het test 50 meg ohm. IKVAC/OC $100 \mathrm{~K} /$ Volt $\quad £ 36.95$ Choose Irom UK's largest range

AF Function \& Audio

PULSE
G105 $5 \mathrm{HZ}-5 \mathrm{MHZ}$ Various 4001 Uitra-variable D 5 HZ 5 MHZ (GSCI
Also in stock
LOM 17020 HZ -20KHZ distortion FG13000.002HZ-2MHZ Sweep unction generator $£ 377.20$ (SG231 100MHZ FM signal generator CR740 AES/CAP/INO Bridge $£ 171.35$ VT72 FET mullimeler and transistor LTC907 Sinnal injeclor/racer 147.20 LTC907 Signal inj

100 KHZ TO 30 MHZ

6 Band Trio RF Generato
Int/Ext M00. Variab
Am int 400 Hz MOD.
SPECIAL PRICE SHELO_{2}^{2} ?

2

MALOGUE ULTIMETERS

PROFESSIONAL RANGE (UKC/P £1.20) All teaturing AC/DC Volts/Current MAJOR 20K 29 range 20K/V. $21 / 2$ A DC $121 / 2 \mathrm{~A} A C$ IPANTEC \quad E33.90 MAJOR 50K 29 range 50K/V.
C40.25 21/2 AD 121/3A AC IPANTEC| $£ 40.25$ PAN3001 34 range 40K/V. 5 A
AC/DC 50 Meg. IPANTECI $£ 59.80$ Also 500 KHZ - 500 MHZ signal injector and 3 range cap. meter PAN3003 42 range 1 Meg/V. 5A AC/DC 1 HA FSD (PANTEC) E66.70
(NOTE 3001 \& 3003 Electronic |NOTE 3001 \& 3003 Electroni
Protection Mirror Scales!

GORTABLE TV COLOUR GENER MC10I
 MC10I 8 piterns/dols/lines elc Buill in nicade Pat nicads Pal 8 UHF only. Comple wilh charger case and laads

VARIABLE
 POWER

SUPPLIES
Mains input Valis/ $/$ Amps meter (UKK C/P \& 1)
PP241 1012 (24 Voll PP241 0/12 12/24 Voll
0/1 amp R正
 0/3 amp. $£ 59.95$ PS1307 PS1307S twin meter B-15V 0/7A

DIRECT READ TEMPERATURE TM301-50 C to +750 C CD readout. Complete thermocouple 568.43

DIRECT READ HV PROBE

OSCILLOSCOPE PROBE
KITS UKC/P 50pper 1 to 3

BNC plug $\times 1$	35
x1. $\times 10$	\&10.50
$\times 109$	ع16.95

DECADE BOXES

RSB2 32 value hesis box. 1 ohm to 4 Merg. \quad £18.50 CSB20 20 value Cap. box. 470 pl
to $1 \mu \mathrm{~F}$
$£ 21.00$

CLAMPMETER

0/1K ohm: 9 ranges
LOW COST DIGITAL MULTIMETERS $31 / 2$ DIGIT LCD HAND HELD DMM'S ISW = slide switch: PB = push-bulton: UK C/P 65p all models

"KD2

megohm (RSI
$-\mathrm{KD55C} 28$ 月a
megohm
[RS]
-601
[PB]
AC/OC 20 megonm
OSCILLOSCOPES (UK C/P Single trace £3 ea.

HM307 Single frace 10MHZ 5mV:0.5 micro sec. Plus built in component tester $6 \times 7 \mathrm{~cm}$ display 1 HAMEG) $\quad \mathbf{1 5 8 . 7 0}$ Optional Case 3030 Single trace $15 \mathrm{MHZ} 5 \mathrm{mv} \cdot \mathrm{E}_{5} \mathrm{E} 40$ micro sec. Plus built in componenl tester 95 mm tube. Trig. to 20 MHZ |CROTECH C172.50 $0 \mathrm{MHZ} 5 \mathrm{mV}: 0.5 \mathrm{micra}$ secs. B $\times 10 \mathrm{~cm}$ display (HAMEG) \quad C253.00 $\mathrm{HM203/4}$. As above but $2 \mathrm{mV}+$ Algebraic add [HAMEG] $\mathbf{C 2 7 6 . 0 0}$ CSI562A Oual 10 MHZ 10mV. 20 $1 \mu \mathrm{sec}$. 140 mm tube ITRIOI $£ 276.00$ 3131 Dual trace 15 MHZ trig. to 35 MHZ $5 \mathrm{mV}: 0.5$ micro sec. 130 mm tube plus 3034 Battery-mains dual trace 15 MHZ trig. to 20 MHZ built in Nicads. 5 mV 0.5 micro secs (CROTECH) E414.00 Eliminator charger optional $£ \mathbf{£ 3 6 . 0 0}$ HM204 New model with component tester Dual 20 MHZ delayed sweep: trig to 40 MHZ . 5 mV . 11 mic ro sec $8 \times 10 \mathrm{~cm}$ display IHAMEGI £419.75 (Dptionai case £21.85) SC1 10A Mew model IDMHZ battery

FREQUENCY COUNTERS

(UKC/PE1)

PFM200A Pocket B digit LED 200MHZ 10 mV ITHAMOARI
Max 5050 MHZ 6 digit LEO Max 50 50MHZ 6 digit LED Packet |GSC|
Max 550 Sigit LED Pocket [GSC] 8110A8 digit LED 2 range 100MH7 Bench |SABTRONICSI £77.00 $8610 A 8$ digit LED 3 range 600MHZ.
Bench ISABTRONICSI Bench |SABTRONICSI $\mathbf{~ M a x ~} 1005 \mathrm{SHZ}$-100MHZ 8 digit
 Bench [SABTRONICS] £113.85

SCOPE ADD ON UNITS

LTC905 Semiconductor curve Iracer

HZ65 Component tester
(HAMEG] $£ 27.95$
(UK C/P G5p)
Amateur radio and CB test
equipment. TV pattern
generators Palan Sec

8000B 9 digit LEO 3 range 1000 MHZ Bench ISABTRONICSI $£ 178.00$ TFO 408 digit LCO 40 MHz [THANDARI £126.50 TF200 8 digit LCD 2 range 200 MH 2 THANDARI
Thandar prescalers for any counter. Thandar prescalers for any counter Up 10200 MHZ
$\begin{array}{ll}\text { TP } 600600 \mathrm{MHZ} & £ 43.13 \\ \text { TP1000 with P/S } 1 \mathrm{GHZ} & £ 73.00\end{array}$
873.00

$\begin{array}{ll}\text { AF series carry case } & \text { £6.8. } \\ \text { AC adaptors ITF Series } & £ 5.65\end{array}$
B series AC adaptors
Alr models probe kits $\quad £ 7.95$

LOGIC PROBES/

MONITOR
Sabtronics LP 10 10MHZ probe £28.50
\qquad
 GSCIM1 $£ 56.90$
 ESCOP1 Oigital pulsor
Single/ $100 \mathrm{pps} £ 58.50$

CX80 colour MATRIX PRINTER

New low price $\mathbf{£ 7 9 5}+$ V.A.T.

At last a low-cost Colour Matrix Printer for Text, Graphics, Histograms, Colour VDU Dumps, etc.

Colour printout is quickly assimilated, makes graphics more understandable and is an ideal medium for the presentation of complex data or concepts.

Compatible with most microprocessors, prints in 7 colours - sophisticated internal programme makes the CX80 easy to use.

Dot Addressable +15 user programmable characters, 96 ASCII and 64 graphics characters in rom. Centronics interface with RS232 and IEEE488 options. Apple II interface gives dot for dot colour dump. New viewdata interface prints out two pages side by side in full colour. See Prestel 200650.

The CX80 is a product of our own design and development laboratories. It represents a British breakthrough in colour printer technology. Colour brochure on request, OEM pricing available.

Integrek limited

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.

Full Information from:

HARRIS ELECTRONICS (London)
 Phone: 01-837/7937 Telex: 892301

LASTCHANCE AT THISPRICE. METALFILM RESISTORS 1% Tolerance. $1 / 4$ Watt

| |
| :---: | :---: | :---: | :---: | :---: |

WW - 043 FOR FURTHER DETAILS

FAST FOURIER TRANSFORM

for the PET and Apple microcomputers

Machine code subroutine permitting high-resolution frequency analysis at an unprecedentedly low cost. Suitable for research and O.E.M. use.
\star Interfaces to BASIC and Pascal
. Compact fixed-point data storage \star 80dB dynamic range
\star Transforms 256 points in 4 seconds

Further details from
Structured Software
23 Redcar Drive
Eastham, Wirral
Merseyside L62 8HE
Please specify PET, Apple Pascal or Apple BASIC

BUILD A PAIR OF MICRO MONITORS!

Just a few hours easy and
interesting work and you'll have
a surerb pair of compact
loudspeakers for about half the price of equivalent 'assembled' models.
The Wilmslow Audio Micro

The Micro Monitor kit contains all the components needed - a pair of cabinets in flat-pack form - accurately machined for easy assembly, all drive units, crossover networks, acoustic wadding, grille foam, velcro, nuts and bolts, etc. No electronic or woodworking knowledge required simple, foolproof instructions supplied. The cabinets can be stained, painted or finished with iron-on veneer. Dimensions of assembled cabinet: $32 \times 24 \times 20 \mathrm{cms}$. Suitable for amplifiers of $20-50$ watts.

Price: $\mathbf{£ 1 1 2 . 9 5}$ per pair including VAT. Carriage and insurance $£ 5.50$

8

0625529599
35/39 Church Street, Wilmslow, Cheshire SK9 1AS Catalogue - £1.50 post free

Lightning service on telephoned credit card orders!

WW - 026 FOR FURTHER DETAILS

WW - 032 FOR FURTHER DETAILS

The Keithley 179A

An Ensurfor

Specification... Versatility... Accuracy Price. In almost every major area the new 179A - a $41 / 2$ digit bench/portable DMM from Keithley Instruments sets some pretty impressive standards:
O 20 amp capability O Full function: 27 ranges including true RMS AC Measurement - Year's guarantee on spec 0.04\% DC accuracy IEEE option Large display and $10 \mu \mathrm{~V}$ dc resolution.
For those requiring 10 times more sensitivity and an analogue output there's the 177, a unit with similar specification to the 179A. Both models are part of a vast range of test equipment from one of the world'sleading manufacturers.
For more information fill in the coupon at the bottom of the page.

0 Alternatively, phone our Instant Information

Service on
0734864784 now.

KEITHLEY

Keithley Instruments Litd
1 Boulton Road Reading Berkshwe RGั2 ONL.
Telephone (0734) 861287
Telex 847047

Id like to know more. . .
Name
Position
Company
Address

Telephone

GET BC
 W3:

Most preamp modules can be driven by the PSU driving the main power amp
A separate PSU 30 is avalatie purely for pre amp modules if required ior
E5.47 inc. VAT) Pre-amp and mixing modules in 18 different vatations.
Mounting Boards
For ease of construction we recommend the B6 for modules HY6-HY 13 f 105
linc. VATI) and the $\mathbf{B 6 6}$ for modules HY66-HY78 $£ 1.29$ linc VAT)

Modal Number	For Use With	Pice inc VAT	Modal Number	For Use With	Price inc. VAT
PSU $21 \times$	1 or $2 \mathrm{H} \times 30$	¢11.93	PSU $52 \times$	2 * पर128	[17.07
PSU A1x	1 or 2 HY60, $1 \times \mathrm{HV} 6060$ 1 \times HY 124	¢13.83	PSU 53 x	$2 \times$ Mes 128	¢17.86
PSU 42 x	1. HYI28	£15.90	PSU'54x	1. HY 248	¢17.86
PSU 43 x	$1 \times \operatorname{MOS} 128$	£16.70	PSU 55x	$1 \times \operatorname{MOS} 248$	¢19.52
PSU $51 \times$		£17.07	PSU71x	$2 \times \mathrm{HY}{ }^{14}$	¢21.75

Model Number	For Use With	Price inc. VAT
PSU 72 x	2 x 142488	F22.54
PSU $73 \times$	1 x - v 364	t22.54
PSU 74x	1. wy 368	124.20
PSU $75 \times$	$2 \times \mathrm{MOS248.1}$, Mas 368	[24.2

[^2]
WITHALOT OF HELP mon O 랄 ELECTRONICS LTD

PROFISSIONAL HIFIT THAT EVERY ENTHUSIIAST CAN HANDIL... Unicase

Over the years ILP has been aware of the need for a complete packaging system for it's products, it has now developed a unique system which meets all the requirements for ease of assembly, adaptability, ruggedness, modern styling and above all price.
Each Unicase kit contains all the hardware required down to the last nut and bolt to build a complete unit without the need for any special tools.
Because of ILP's modular approach, "open plan" construction is used and final assembly of the unit parts forms a compact aesthetic unit. By this method construction can be achieved in under two hours with little experience of electronic wiring and mechanical assembly.

Hi Fi Separates

UC1 PRE AMP UNIT: Incorporates the HY78 to provide a "no frills", low distortion, ($<0.01 \%$), stereo control unit, providing inputs for magnetic cartridge, tuner, and tape/ monitor facilities. This unit provides the heart of the hifi system and can be used in conjunction with any of the UP Unicase series of power amps. For ultimate hum rejection the UC1 draws its power from the power amp unit.
POWER AMPS: The UP series feature a clean line front panel incorporating on/off switch and concealed indicator. They are designed to compliment the style of the UC1 pre-amp. Performance for each unit which includes the appropriate power supply, is as specified on the facing page.

Power Slaves

Our power slaves, which have numerous uses i.e instrument, discotheque, sound reinforcement, feature in addition to the hi fi series, front panel input jack, level control, and a carrying handle. Providing the smallest, lowest cost, slave on the market in this format

UNICASES					
HIFI Separates					Price inc. VAT
UCI	Preamp				£29.95
LP1X	$30+30 \mathrm{~W} / 4-8 \Omega$	Bipolar	Sterec)	Hif.	f54.95
UP2x	$60 W / 4 \Omega$	Bipolar	Morio	HiFi	¢54.95
UP3X	$60 \mathrm{~W} / 8 \Omega$	Bipoldr	Mono	$\mathrm{H}_{1} \mathrm{~F}$	£54.95
UP4X	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	$H_{1} \mathrm{~F}_{1}$	£74.95
UP5X	$120 \mathrm{~W} / 8 \Omega$	Bipolar	Mono	HiFi	£74.95
UP6X	$60 W / 4-8 \Omega$	MOS	Mono	$H_{\text {IF }}$	± 64.95
UP7X	$120 W / 4-8 \Omega$	MOS	Mono	H,F	£84.95
Power Slaves					
USIX	$60 \mathrm{~W} / 4 \Omega$	Bipolar	Power	Slave	$¢ 59.95$
US2X	$120 \mathrm{~W} / 4 \Omega$	Brpolar	Power	Slave	¢79.95
US3X	$60 \mathrm{~W} / 4-8 \Omega$	MOS	Power	Slave	£69,96
US4 X	$120 \mathrm{~W} / 4-8 \Omega$	MOS	Power	Slave	$¢ 89.95$

Please note x in part number denotes mains voitage. Please insert O in place of X for 110 V .'1' in place of X for 220 V (Europe), and '2' in olace of X for 240 V (U.K.) All units except UC1 incorporate our own toroidal transformers.

Pond Cottage
The Green, Harefield
Middlesex UB96NP England
Tel: Harefield (0895 82) 2771
Telex: 938527 EPICEN G

The SM81 has been quite a shock to me, not only from when I first tried it out, liked it, and decided to buy a pair, but also a year later when I discovered from the brochure that the mic. was an electret.

Shure Brothers have always had a good name for robustness and reliability, and electrets are usually thought of as a low cost alternative to regular capacitor mics. with some sacrifice in sound quality.

With the SM81 Shure have produced an unique combination together with a transparency of sound and freedom from coloration, distortion and noise comparable with other manufacturers' traditional condenser models costing a lot more. The switchable bass roll-offs and attenuator are helpful extras as well, and missing from my other favourite choice of cardioid costing around double the price.

Recording classical music is a tough test for microphones and my SM8ls earn their keep successfully as very useful additions to my kit of mics., both for distant and close pickup if required.

Tony Faulkner is a leading freelance independent recording engineer based in London who records around 50 classical music albums each year.

Editor PHILIP DARRINGTON 01-661 3128
Deputy Editor GEOFFREY SHORTER, B.Sc. 01-6618639
Technical Editor MARTIN ECCLES 01-6618638
News Editor DAVID SCOBIE 01-661 8632
Drawing Office Manager ROGER GOODMAN
Technical Illustrator BETTY PALMER
Advertisement Manager BOB NIBBS, A.C.I.I. 01-661 3130
BARBARA MILLER 01-6618640
Northern Sales HARRY AIKEN 061-872 8861
Midland Sales BASIL McGOWAN 021-3564838
Classified Manager BRIAN DURRANT 01-661 3106
IAN FAUX 01-661 3033
Production BRIAN BANNISTER (Make-up and copy) 01-661 8648

Early link or cemented future?

The UK's desire not to lose out in the broadcast satellite export market in the mid-1980s has resulted in a proposal of "elegance and ingenuity" with the potential of a world standard being thrown out by both Sir Antony Part's advisory panel and the Government.

Of the only contender beside the BBC and IBA, the panel's report says "We are particularly attracted by the elegance and ingenuity of this proposal and we recognise that the authors of it have relevant technical experience. However, we have concluded, with some regret, that the time available between the presentation of this Report and the autumn of 1986 is much too short to allow for the further evaluation, development and international negotiation that would be required to make it a practical proposition in time for the projected start of DBS." And that's about as much space as the $£ 35,000$ report gives to the idea.

This appears to have been said because prototype equipment is not developed to the same degree as that of the other two contenders, the BBC and IBA. But Plymouth Polytechnic's scheme outlined on the next two pages - could have been brought to readiness very quickly given the money says its proposer Martin Tomlinson (News, page 34). The
techniques are already in use in military satellites (Dr Tomlinson has himself worked on Skynet 4 until recently) and equipment could presumably have been quickly adapted had there been enough enthusiasm for it.
We do not think the matter should rest there. As the EBU will try to settle on a European standard soon this year, they should make certain they have proper information on how quickly such a system can be evaluated. The EBU has so far shown a broadminded attitude over sound coding. Last September it resolved in favour of a Type A coding - the equivalent of six sound channels multiplexed onto a subcarrier - but they had agreed, as the Report points out, to keep open the door for reconsidering the merits of a Type C coding "if it could be shown within the timescale to be preferable in technical performance and to be in an adequately advanced state of development." (The IBA finalised on the C-type t.d.m. between-picture coding for MAC; besides its eight-channel capacity and superior technical performance it also has a $20 \mathrm{Mbit} / \mathrm{s}$ capacity when pictures are not required.) The EBU should do the same for Plymouth, even though it's not a member.

Satellite tv system
 has digital-analogue phase modulation

Abstract

Last month the government's advisory panel on technical transmission standards for satellite broadcasting came down in favour of the IBA's multiplexed analogue scheme. But a third proposal, described by the panel as elegant and ingenious, was rejected because four years was "much too short" to make it a practical proposition. That proposal, unlike those from the IBA and BBC, was excluded from the panel's report and is published below for the first time.

Being a hybrid digital/analogue method this proposal combines the advantages of digital and analogue transmission. The advantages that accrue due to digital transmission are limited impairments due to noise, straightforward implementation of time-division multiplexing, and the possibility of encryption which may be required for a subscriber type of service. Transmission of an analogue component ensures bandwidth efficiency and a demodulated signal-to-noise ratio that improves as the transmission signal-to-noise ratio is increased.
The standard proposed here provides 4.7 MHz of luminance bandwidth and 1.9 MHz of colour difference bandwidth. It is assumed that the colour difference channels alternate on each line so that the vertical resolution is equal to half that of the luminance channel. In addition, the standard provides a $2 \mathrm{Mbit} / \mathrm{s}$ sound channel and a $2 \mathrm{Mbit} / \mathrm{s}$ data channel allowing for expansion or new applications in the future.
The demodulated luminance and chrominance channels have equal signal-tonoise ratio and, unlike f.m. PAL signals, suffer equal degradation during impaired transmission conditions. Sound and data channels have the same error rate and provide a small margin over the luminance and chrominance channels. Output signal-to-noise ratio offers an improvement of 4 to 6 dB over standards based on analogue frequency modulation.

The transmitted signal is on a single phase-shift-keyed carrier which can be transmitted through a saturating satellite transponder without impairment. Although phase modulation is a departure from currently used methods for satellite tv transmission, digital phase-shift-keyed carriers are commonplace on satellite data links. Moreover the increased bandwidth that is provided for luminance and chromi-

Martin Tomlinson B.Sc. Ph.D. M.I.E.E. is head of the communication engineering department at Plymouth Polytechnic
nance channels is of benefit for higher definition receivers. Additional signal processing is required in the receiver but this is not excessive when compared to the signal processing that is carried out in domestic video cassette recorders.

by M. Tomlinson

The method is believed to be original and a provisional patent application is currently being filed by Plymouth Polytechnic.

Transmission method

For transmission efficiency the luminance and chrominance signals are each coarsely quantized into 16 amplitude levels and coded as in p.c.m., although the error signals from the quantization process are retained for transmission as well. Thus the important information is binary coded into four-bit p.c.m. words and these are transmitted digitally to the receiver. The quantization error signals are transmitted as analogue quantities simultaneously with the digital data. Sound channels are transmitted entirely digitally in a composite six-channel $2 \mathrm{Mbit} / \mathrm{s}$ stream, and an additional 2 Mbit /s digital stream is provided. Luminance, chrominance, sound

[^3]and any data signals are time-division multiplexed as a composite $60 \mathrm{Mbit} / \mathrm{s}$ digital stream. The analogue quantization error signals from the p.c.m. process are time-division multiplexed and phase modulated on the carrier at low level along with the digital data, so that the analogue and digital information are simultaneously transmitted using the same carrier. As the analogue modulation is at low level, no errors are caused to the digital information.

At the receiver, assuming no transmission errors, the p.c.m. components of the luminance and chrominance signals are faithfully reproduced noise-free into one of 16 amplitude levels. The analogue signals produce the fine detail information and although these are not received noise-free, the effect of this noise is limited to low levels. When the fine detail signals (plus noise) are added, the noise voltage at maximum can only be $1 / 16$ th of the total maximum signal reconstituted in the receiver, as shown in Fig. 1. Consequently if the analogue information is received at 11 dB signal-to-noise ratio, the output reconstituted ratio is improved by 24 dB $\left(20 \log _{10} 16\right)$ to become 35 dB .

Signal format

The transmitted signal consists of a carrier that is eight-level phase modulated at a symbol rate of $20 \mathrm{Msymbol} / \mathrm{s}$, bandlimited so that it may be transmitted without undue distortion in the satellite transpareter. The symbols are transmitted in ten symbol frames as shown in Fig. 2; the frame length is 500 ns corresponding to a 2 MHz rate. Each frame contains five luminance symbols and two chrominance symbols. Each of these carries three bits of the fourbit p.c.m. samples plus a phase modulated analogue component limited to the range $\pm \pi / 16$ radians. These symbols have the state space diagram shown in Fig. 3. The three symbols remaining in the frame carry the sound and spare data bits plus the remaining luminance and chrominance

Fig. 1. Encoding the transmitter illustrating formation of a hybrid representation of the signal amplitude at a sample point.
bits time multiplexed. These carry no analogue information and have the state diagram shown at the bottom of Fig. 3.
To summarise symbols 1, 3, 5, 7 and 9 carry luminance analogue and digital information. Symbols 2 and 6 carry luminance and chrominance digital information time multiplexed, plus chrominance analogue information. Symbols 4 and 8 carry luminance and chrominance digital information. Symbol 10 carries, the luminance, sound and spare data channel digital information.

In the receiver, Fig. 4, each 500 ns frame

Fig. 3. State diagrams illustrate different phases of phase modulated carrier. Digital diagram bottom, analogue/digital diagram, top.
is demodulated and the digital information fed to a digital demultiplexer and the analogue information to an analogue demultiplexer. The luminance and chrominance data bits are gathered together and the appropriate four-bit words fed to d-a converters to form 16 level p.a.m. samples. Analogue quantization error sig-

Fig. 2. Structure within each 500ns frame of digital bit stream formed at the encoder.

Fig. 4. Each 500 ns frame is demodulated and fed to digital and analogue demultiplexers.
nals from the analogue demultiplexer are added to the p.a.m. samples to form luminance and chrominance p.a.m. samples. Luminance samples at a rate of 10 Msam ple/s are filtered to a bandwidth of 4.7 MHz . Chrominance samples at a 4Msample/s rate are filtered to a bandwidth of 1.9 MHz . The digital demultiplexer also has sound and data channel output ports at $2 \mathrm{Mbit} / \mathrm{s}$.

The initial phase reference for the phase demodulator is provided by a short trailing signal at the beginning of each line. Thereafter, phase tracking is done on the symbols on each frame that carry no analogue information. With these symbols, the data information is stripped off and the residual phase error used for tracking. Frame and symbol timing is provided at the beginning of each line by the training signal.

One potential source of crosstalk is in-ter-symbol interference if the overall amplitude and phase response goes outside specification. The system can be readily designed so that the receiving earth station, which is the one most likely to be outside specification, has a minimal effect on the overall response. Even so, it may be prudent to rearrange the order of the luminance and chrominance symbols so that symbols 1-5 are luminance symbols carrying analogue information, symbols 8 and 9 are chrominance symbols carrying analogue information separated by symbol 6 which carries sound data and symbol 7 which carries only digital information. Symbol 10 carries only digital information. In this way the possibilities of crosstalk intersymbol interference are minimized.

MNON

Before joining Plymouth Polytechnic in May 1982, Martin Tomlinson was in the satellite communications division at the Royal Signals and Radar Establishment, Malvern. His work there involved R\&D in spread-spectrum modems for satellite communication and e.c.c.m. satellite signal-processing transponders, later followed by development of requirements and specifications of NATO N and Skynet IV satellites. Prior to RSRE he worked for
Plessey Telecommunications Research, Maidenhead, on satellite
communications system modelling,
R\&D of advanced digital modems and modulation techniques for data transmission.

Matching tuning diodes

The usual criterion for matching variable capacitance diodes in f.m. receiver r.f. stages is that appropriate capacitances at certain voltages should be as close as possible. Good results may be achieved using a computer, especially when characteristics of diodes do not seem to be matched.

Variable capacitance diodes are widely used as tuning devices. The BB104 is a typical device for f.m. receiver front ends but the manufacturers' specifications do not fully describe characteristics of the diodes. For example, the BB104B is defined as

$$
\begin{gathered}
C_{a t ~ 3 v}=34 \ldots 39 p F \\
C_{3 v} / C_{30 v}=2.5 \ldots 2.8
\end{gathered}
$$

Using this data it is impossible to predict the mistuning of circuits. The results obtained during tests carried out on eight samples of BB104B and seven samples of BB104G show that mistuning may be estimated at 500 kHz , see Table.
by A. Maciejewski, M.Sc.

The other criterion for diode matching assumes that capacitance ratio differences should not exceed a certain value, say 0.03 . For the case discussed here:

$$
\frac{\mathrm{C}_{1}^{\prime}}{\mathrm{C}_{1}^{\prime \prime}}=\alpha(1) \quad \frac{\mathrm{C}_{2}^{\prime}}{\mathrm{C}_{2}^{\prime \prime}}=\alpha(2) \quad \frac{\mathrm{C}_{3}^{\prime}}{\mathrm{C}_{3}^{\prime \prime}}=\alpha(3)
$$

$$
\alpha(k)-\alpha(n) \leqslant 0.03 \text { for } k, n=1,2,3
$$

Theoretically, maximum mistuning of circuits using diodes matched in accordance with this criterion is $\mathrm{D} / 2=375 \mathrm{kHz}$ and
occurs for $\propto(1)=1, \quad \propto(2)=1.03$ and $\propto(3)=1$.

Front-end alignment

Assume that the tuning voltage and the desired frequencies range between 3 and 20 V and $\mathrm{F}_{1}=88$ and $\mathrm{F}_{3}=108 \mathrm{MHz}$ respectively, that the intermediate frequency $\mathrm{I}=10.7 \mathrm{MHz}$, and that the BB104 capacitances $\mathrm{C}_{1}, \mathrm{C}_{2}$ and C_{3} (treated as resultant capacitances of two serially-connected capacitors) will be measured at $3,8,20 \mathrm{~V}$ respectively. (The BB104 is a common-cathode double capacitance device. An opposing connection is used to reduce capacitance variation versus r.f. signal.)

Thompson＇s equation says

$$
\mathrm{F}=1 / 2 \pi \sqrt{\mathrm{LC}}
$$

so one can calculate $\mathrm{C}_{\max } / \mathrm{C}_{\min }$ ratio in the oscillator circuit，as

$$
\begin{equation*}
\frac{C_{\max }}{C_{\min }}=\frac{C_{7}+C_{1}}{C_{7}+C_{3}}=\left(\frac{F_{3}+I}{F_{1}+I}\right)^{2} \tag{1}
\end{equation*}
$$

and the resonant circuit parallel capaci－ tance C_{7} in Fig． 2

$$
\begin{equation*}
\mathrm{C}_{7}=\frac{\mathrm{C}_{1} \cdot\left(\mathrm{~F}_{1}+\mathrm{I}\right)^{2}-\mathrm{C}_{3}\left(\mathrm{~F}_{3}+\mathrm{I}\right)^{2}}{\left(\mathrm{~F}_{3}+\mathrm{I}\right)^{2}-\left(\mathrm{F}_{1}+\mathrm{I}\right)^{2}} \tag{160}
\end{equation*}
$$

（ 160 is line number in the Basic program）．
The same value of C_{7} is always achieved as a result of the circuit alignment no matter what method has been applied．However， the method mentioned above is easily rea－ lized by computer．

Calculations for the r．f．amplifier are similar，

$$
\begin{equation*}
\frac{C_{5}+C_{1}}{C_{5}+C_{3}}=\left(\frac{F_{3}}{F_{1}}\right)^{2} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{5}=\frac{C_{1} \cdot F_{1}^{2}-C_{3} \cdot F_{3}^{2}}{F_{3}^{2}-F_{1}^{2}} \tag{150}
\end{equation*}
$$

Thus we have the r．f．amplifier and the oscillator circuits exactly adjusted at the ends of the range．Now the most important question is what is going on with the fre－ quencies at around the middle of the range．On calculating C_{5} and C_{7} we can easily find the resonant frequencies for tuning diode capacitances equal to C_{2} by rearranging the equations（1）and（2）for the oscillator and the r．f．amplifier respec－ tively．

For the oscillator

$$
\begin{gather*}
\frac{\mathrm{C}_{7}+\mathrm{C}_{1}}{\mathrm{C}_{7}+\mathrm{C}_{2}}=\left(\frac{\mathrm{F}_{2}+\mathrm{I}}{\mathrm{~F}_{1}+\mathrm{I}}\right)^{2} \\
\mathrm{~F}_{2}+\mathrm{I}=\mathrm{H}_{2}=\left(\mathrm{F}_{1}+\mathrm{I}\right) \sqrt{\frac{\mathrm{C}_{1}+\mathrm{C}_{7}}{\mathrm{C}_{2}+\mathrm{C}_{7}}} \tag{180}
\end{gather*}
$$

and for the r．f．amplifier

$$
\begin{align*}
& \frac{C_{5}+C_{1}}{C_{5}+C_{2}}=\left(\frac{F_{2}}{F_{1}}\right)^{2} \\
& F_{2}=F_{1} \sqrt{\frac{C_{1}+C_{5}}{C_{2}+C_{5}}} \tag{170}
\end{align*}
$$

On having calculated the frequencies F_{2} stored as $\mathrm{Q}(\mathrm{K})$ we have to sort them in increasing order so that the best set of diodes is easily chosen．The less the dif－ ference among the F_{2} frequencies the bet－ ter is the set for the r．f．amplifier；also the frequency H_{2} for the oscillator should be

[^4]as close to $\mathrm{F}_{2}+\mathrm{I}$ as possible．
One thing must be taken into consider－ ation：normally an r．f．stage is aligned not at the edges of the range but at points，say， $F_{1}+0.2\left(F_{3}-F_{1}\right)$ and $F_{3}-0.2\left(F_{3}-F_{1}\right)$
（in our case it makes 92 and 104 MHz ），so the difference in F_{2} for matched diodes is reduced by half．Mistuning curves shown for the alignment methods mentioned above justify this statement．

Practical results

The data required for the calculations of C_{1}, C_{2} and C_{3} are measured in the test circuit shown，using the Hartley oscillator， frequency counter and regulated voltage source for measurements．Oscillator fre－ quencies F_{1}, F_{2} and F_{3} for different diode voltages，together with the other data （program lines 80 and 40），are used by the Basic program to calculate C_{1}, C_{2} and C_{3} （program lines 110－130）．Values of C_{1} and C_{3} are then used to align all LC circuits and to determine parallel capacitances： C_{5} for the resonant circuit and C_{7} for the oscillator（program lines 150－160）．Calcu－ lated values of C_{5} and C_{7} together with C_{2} determine resonant circuit frequency F_{2} and the oscillator frequency H_{2} for the diode capacitance C_{2} ．This way the three diode capacitances C_{1}, C_{2} and C_{3} are trans－ ferred into the single parameter F_{2} ．（Dif－ ference between H_{2} and F_{2} is approxi－ mately constant．）After sorting F_{2} into increasing order（program lines 230－310） we get the print－out of desired data．

The Basic program shown prints the order number，diode index，selective cir－ cuit resonant frequency，difference in kHz between the current frequency F_{2} and the preceding frequency F_{2} ，and the oscillator frequency H_{2} ．

Advantages of the method

1．The method enables presentation of capacitances measured in three points in the form of the single parameter．

2．The method makes selection of diodes possible which would otherwise be re－ jected by the use of the proportion crite－ rion．This may not be clear at first glance so consider the following case：

Two diodes have nearly the same capaci－ tance versus voltage characteristics．The
continued on page 33

	Diode number	C_{1}	C_{2}	C_{3}	$\mathrm{Q}(\mathrm{K})=\mathrm{F}_{2}$	D	$R(K)=\mathrm{H}_{2}$
1	1016	18395	13225	3×23	9．70500E＋9s	\bigcirc	$9.723005+34$
2	$1) \leqslant B$	19198	13093	85c8	$9.707905+04$	$2!$	$9.722105+04$
3	110 B	18593	13325	8579	9.709605004	26	$9.724705+04$
4	112 B	23959	$140<0$	9641	$9.71<305-04$	$\ulcorner 7$	$9.731 \Delta 9 \mathrm{t}+34$
5	133 B	18277	13028	8540	9.725 วา5－0＾	88	$9.74010 \mathrm{E}+04$
6	1118	21019	15135	9785	$9.73190 こ+74$	69	$9.747005+38$
7	1.35 G	18793	13292	9 679		27	$9.749705+74$
8	1.15 G	19573	1319？	Qくつ3	$9.7375095+04$	29	$9.752605+94$
9	107 B	23773	14581	9440	$9.738505+014$	21	$9.75470 \mathrm{E}+04$
10	103 B	21245	14030	9699	9.7 97605 +04	11	$9.75570 E+04$
11	1146	13793	13258	g679	$9.74110^{5}+04$	κ	$9.75530 \mathrm{E}+74$
12	1026	19114	13453	9790	$9.780505+n 1$	$1 \wedge$	9．757715 +04
13	109 B	21595	15027	9899	$9.768705+74$	61	$9.7 \times 3875+04$
14	113 G	$19!14$	13391	8734	$9.749505+94$	9	9．7Kロプロ＋04
15	$1) 4 \mathrm{G}$	19353	13093	8568	$9.808905+24$	593	$9.921035+04$

Eprom development aid

It would be much simpler if program being developed for the Nanocomp eprom could be developed in those memory locations in which it is to reside.

Used in conjunction with the eprom programmer described in the January issue, this device was developed as part of a system based on the Nanocomp.
When a program is being developed for inclusion in the Nanocomp eprom, it is normally necessary to develop it a little at a time, and burn it progressively using the programmer. Thanks to the ability of the 6809 to support position-independent code, this is a workable method, at least with the 6809 version of the Nanocomp. However, it would be much simpler if the program could be developed in the memory locations in which it is to finally reside, and this is the purpose of the development aid.
The device is used as follows. First the monitor eprom is transferred from the Na nocomp to the socket on the development aid. The 24 -pin plug on the aid is then plugged into the Nanocomp in place of the eprom. It is also necessary to connect a probe to a read/write signal: pin 10 of a

Circuit description

The circuitry is fairly simple. All the lines from the 24 -pin plug (and the probe) are buffered, as eight 2114 chips and the eprom might well overload an unbuffered system. The address bus is buffered by two 74LS367 hex buffers, permanently enabled. The data bus is connected to a 74LS245 octal transceiver chip, which is enabled by the chip select signal, the direction being controlled by the read/write line. Finally, the control signals read/write and chip select are buffered using a 74LS04, inverters being chosen since the read/write signal needs to have its complement available.
Address lines A_{0} to A_{9} go to all the ram chips. Lines $A_{10} \& A_{11}$ go to a 74LS138 decoder, where they are gated with a select signal to provide chip select signals for the four 1 K blocks of ram. The eprom is connected directly to the buffered address lines, except that provision is made to short pin 18 to ground for use with 2516s.
The chip select signals to the 74LS138 and to the eprom are switchable. In the ram only position, the 74LS138 is fed
directly from the buffered chip select signal, and the eprom chip select line is held permanently high. In the other position, the 74LS138 is fed from chip select gated with read/write so that the ram only responds to write cycles; and the eprom is similarly fed from chip select gated with the complementary read/write signal so that it only responds to read cycles. A 74LS32 is used for this gating. Lastly, the data lines are simply connected to the data pins of both the ram and the eprom.

Construction

The device was built using wire-wrapping on a 3.75 by 5 in piece of plain matrix board. Twenty-gauge tinned copper wire was used for the power supplies, ground on the bottom of the board and +5 V on top. This ensures a low impedance for the supply lines and the device has worked perfectly up to now with only one $10 \mu \mathrm{~F}$ tantalum capacitor decoupling the power lines, though it would doubtless be better practice to provide some disc ceramics as well. Connections to the system are via the 24-pin plug, except for the read/write probe which is an RS miniature clip-on probe to enable connection to be made to a convenient i.c. pin. The board is mounted on a plywood base with four 4BA screws, using plastics tube as spacers, which is both cheap and fairly shakeproof. The switches are all on a dual in-line package: a compact arrangement, but remember not to switch S_{3} without S_{4} - though no great harm is likely to result from a failure so to do. Switch S_{2} is not used.
Although the device was developed with the Nanocomp mainly in mind, it has been used with an Acorn Atom as well, again using the Nanocomp programmer. In this way programs for the Atom user-rom socket can be developed easily; and any other way would in fact be difficult, since the 6502 processor does not support posi-

tion-independent code.

The copy program is very simple, but may be of interest; when testing the device for the first time it is helpful to know that the software works.

START	LDX	$\# \$ 7000$
LOOP	LDA	, \mathbf{X}
	STA	, $\mathbf{X}+$
	CMPX	$\# \$ 8000$
STOP	BNE	LOOP
BRA	STOP	

This assembles as follows: 8E 7000 A 684 A7 $80 \quad 8 \mathrm{C} 800026$ F7 20 FE . The "dynamic stop" at the end is important: it ensures that the microprocessor is not
addressing the monitor when the switches are changed over. If this precaution is not taken corruption of the memory is likely to result, and the hardware might be unjustly suspected of being faulty. To copy part of the monitor only it is of course sufficient to change the addresses 7000 and 8000 .

It ought to be a simple matter to adapt this program to the 6802 version, but experience makes me wary of guaranteeing even the simplest program I have not actually tried.

Finally, it is a good idea to set all unused bytes to FF , as further programs can be added later without the need to erase the chip.

continued from page 31

only difference is that $\mathrm{C}^{\prime \prime}$ is, in the whole voltage range, 1 pF less than the capacitance C^{\prime}. If for 3 and 20 V the $\mathrm{C}_{1}{ }^{\prime}$ and the $\mathrm{C}_{3}{ }^{\prime}$ are 20 and 10 pF then $\mathrm{C}_{1}{ }^{\prime \prime}$ and $\mathrm{C}_{3}{ }^{\prime \prime}$ will be 19 and 9 pF respectively. Dividing $\mathrm{C}^{\prime} / \mathrm{C}^{\prime \prime}$ gives $\alpha(1)=1.05$ and $\alpha(3)=1.1$, i.e. the difference of ratios is 0.05 . According to the previously described ratio criterion it makes the pair unmatched. From our as-
sumption it is enough to add the fixed capacitance of 1 pF (it can be realized by $\mathrm{C}_{5}{ }^{\prime \prime}$ - Fig. 1) and the ideal alignment of circuits incorporating C^{\prime} and $\mathrm{C}^{\prime \prime}$ will be achieved.
3. Usage of two identical diodes for the r.f. amplifier and for the oscillator gives mistuning of

$$
\begin{aligned}
\mathrm{D} / 2=\left(\mathrm{H}_{2}-\mathrm{I}-\mathrm{F}_{2}\right) / 2 & =(97.200-97.050) / 2 \\
& =75 \mathrm{kHz}
\end{aligned}
$$

(data from the Table, diode no. 1).
The method makes possible selection diodes for the r.f. amplifier and the oscillator. From the Table we can select diode no. 5 for the r.f. amplifier and diode no. 3 for the oscillator; that allows a mistuning $\mathrm{D} / 2=1.5 \mathrm{kHz}$. Note: exchanging diodes between the r.f. amplifier and the oscillator results in a mistuning of $\mathrm{D} / 2=(97.401-97.096) / 2=150 \mathrm{kHz}$.

10	REM ****	Frogram for matchirig caperitarice ditodes
20	FILES	$5=$ LFR, $6=$ CRil)
30	DTM	$\mathrm{F}(100), \mathrm{d}(100), \mathrm{Fi}(100)$
40	TNFWYT6	$\mathrm{F} 1, \mathrm{~F} 3, \mathrm{I}, \mathrm{FO}, \mathrm{CO}$
50	LET	
60	LET	$k=2$
70	F'EM *****	Fean iridate, last diata is 0, 0, 0, 19
80	INFOIT\# 6	$\mathrm{F}^{\prime}(\mathbb{K}), \mathrm{F}^{5}, \mathrm{FG}, \mathrm{F}$,
100]F	$F^{\prime}(\mathrm{K})=0 \operatorname{coto~220}$
110	L.ET'	
120	LET	
130	LFT ${ }^{\text {T}}$	
140	FEM ****	Court-selective circuit arus oscillator frequericias
150	LET	C $5=(C 1 * F 1 * F 1-C 3 * F 3 * F 3) /(F 3 * F 3-F: * F i)$
160	L.FT	
170	LET	
180	LET	
190	1.ET	$L=k+\cdots+1$
200	TF	K $\quad 100$ coto 30

210	KEM ****	Start of sorturis
220	IF	K< 4 Coto 330
230	LET	$M=1$
240	FOR	$r=2$ TOL 2
250	IF	
260	L.ET	$M=0: \geq+F^{*}(K): Z 2=Q(K) ; Z 0=F(K)$
270	LET	
280	LET	
290	NEXT	K
300	FF\% ****	Tes sorting completeri?
310	IF	$M=0$ cinT0 230
320	FEM ****	Frinit out resslat
330	LET	O(1) = W(2)
340	FOF	$\mathrm{K}=2 \times 0 \mathrm{~L}$
350	L.FT	
360	FEEM ****	For hettor reactaralitu i.f.is getttraters from Fi(K)
370	FRTMTE	R-1.F(K) G(K), D R(IN I
390	NEXT	15
390	STOF	
400	Ean	

Satellite tv standards

The Part report, recommending that UK satellite broadcasting should use the IBA's Mac transmission encoding method, has had a cold reception from the BBC. "Our worry", says BBC engineering director T . B. McCrirrick, "is that the UK will end up being the only country using Mac, but we do not criticize the system." On the other hand, the IBA say that being a totally new system Mac could lead to the design of a domestic satellite-tv adaptor common to the whole of Europe. "The start of direct broadcasting by satellite", says the IBA, "is a logical time to introduce a standard capable of satisfying tv requirements well into the future."

Despite the long-term attractiveness of Mac and its potential as a world-wide standard, the BBC say its introduction could diminish the financial viability of direct satellite broadcasting. Germany and Spain use Pal and the French plan future tv sets capable of processing both Secam and Pa so the short-term prospects of Enhanced Pal in Europe are good from a programming point of view.

Sir Antony Part's advisory panel not only commends the technical quality of Mac but also considers it commercially attractive to both consumers and manufacturers. The BBC claim that acceptance of Mac would increase the cost of sets, reduce the potential market for British manufacturers and slow down the introduction of satellite broadcasting into Europe.
Both Mac and Enhanced Pal can be transmitted using f.m., thus conforming to the WARC 1977 plan for satellite broadcasting, and have the potential for at least six sound channels using a digital modulation. Teletext is possible with both systems, but multiplexed analogue component (Mac) signals lend themselves to f.m. transmission and provide better high-definition pictures on large screens given that suitable receivers are used, and recording studios continue their trend towards digital signal processing.

Initially, Enhanced Pa is attractive through its compatibility with existing Pal decoders - an antenna and downconverter are all that is required to receive pictures. Mac will require a more elaborate converter including a decoder with r.g.b. outputs to provide pictures better than current ones; a cheaper compromise would be a converter with a Mac-to-Pal circuit and r.f. modulator driving the set's antenna input. Future sets will have their own decoders.

The IBA warn that by the time the current 405 -line television service is wound down it will have been in service longer after the decision to abandon it than when
it was the primary UK standard, proving that changing standards is a slow process. Recent market research shows that cabling Britain in the near future could be expensive and the Part report sees satellite and cable tv working hand in hand. Satellite tv, being a means of linking commercially viable cable tv areas with the added attraction that unviable areas will still have an improved tv service, may be insurance for the early acceptance of cable tv with the assurance that existing broadcast organizations will have at least some say in programming.

The British Radio and Electronics

Equipment Manufacturers' Association issued a statement soon after saying that it welcomes the Mac recommendation. They say that medium-term prospects of a panEuropean satellite-broadcast standard based on British technology - with the possibility of the rest of the world following suit - must be attractive to the country at large.

In multiplexed analogue component, luminance and chrominance signals are in component or non-composite form, compressed and transmitted in time-division multiplex. For luminance the $53 \mu \mathrm{~s}$ active line is compressed to $40 \mu \mathrm{~s}$, increasing base-bandwidth by $4 / 3$ times maximum v.f.; chrominance compression ratio is $8 / 3$ increasing the 3 dB bandwidth from 1.3 to 3.5 MHz .

Part rejects "elegant and ingenious' alternative

Claims in the Part report that an "elegant and ingenious" alternative to Mac and EPal is a non-runner because of the 1986 deadline are rejected by project leader of the only other contending system, Dr Martin Tomlinson. Speaking on behalf of Plymouth Polytechnic's department of communications engineering, Dr Tomlinson said, "Given the funds, I have no doubt that we could meet the deadline and offer the UK a system that could put us ahead of the world in satellite tv broadcasting long into the future. Most of the technology required for our system already exists."
The IBA's main argument for their Mac system is that its long-term future benefits outweigh the advantages of a compromise
in the transition period, and it seems that Plymouth Polytechnic's digita//analogue system offers an even better long-term future and an equally attractive short term compromise.

Asked about time scales, Dr Tomlinson said, "We could be carrying out satellite broadcast tests within three months, given the incentive". The Part report admits that the team has the relevant technical experience, so that leaves more than three years for further evaluation development and international negotiation - a time scale that could have been reduced had the Polytechnic received positive recognition earlier. "Besides being the most forwardlooking of the three systems involved, ours

Machining small batches of components on its own using robots, computers and numeri-cally-controlled machine tools, this so-called unmanned factory is the first of its kind in Britain. The idea for this 600 Group factory at Colchester, opened late in November by Industry Secretary Patrick Jenkin, was approved by the Callaghan Government in 1979. Costing $£ 3 M$, more than half of which came from Government sponsorship, this unit is at present a 'show factory' illustrating automation, but it will eventually run around the clock with only a skeleton staff in the unsocial hours.

offers 100% secure encryption for subscription tv - being digital - and should not impede the introduction of cable tv", he adds.

Dr Tomlinson, formerly a main element in the design team of the UK's latest defence satellite Skynet 4, was first made aware of prospects of a new DBS system while working at RSRE, Malvern when the Department of Industry approached the Establishment for their ideas. With the experience of intensive work on Skynet 4's signal processing transponder, he says "Designers of telecommunication systems have long since seen the merits of digital transmission, so many of the techniques required to implement our system already exist."

During investigations by the Part advisory panel, Plymouth polytechnic received a phone call saying that an evaluator would look into their proposal during November, but further contact was not made. They
were not invited to demonstrate their system alongside the other two, perhaps because their lack of funds and experience in public relations tempted them to imply that setting up a demonstration might be impractical. An impartial investigation into the best long-term solution for satellite broadcasting would ignore these incumbencies. On 29 November, a week after the Part report's publication the only information Dr Tomlinson had about results of the report was through us; after contacting the DoI he was allowed a free copy.

Had E-Pal been proposed, one could have seen reasons for a lack of interest in Plymouth Polytechnic's proposal but the panel's interest in Mac implies that this system has not had the airing that it deserves.

- Details of the new satellite tv system are reperted exclusively on pages 28 and 29 of this issue.

Delay for cellular radio?

One of three main contenders for the cellu-lar-radio licence claims that if Ferranti or Racal win, the supply of equipment may be restricted. Chairman of Cellular Radio Ltd, Lord Orr-Ewing, said "We believe that to grant a licence to a radio manufacturer would be a mistake . . . to substitute the present monopoly with another form of monopoly is contrary to the Government's declared intention. Absolutely fundamental is the right of all companies capable of manufacturing to be free to tender for cellular radio work."

Of the three, only Cellular Radio Ltd is not an equipment manufacturer. Though Plessey have applied for an exclusive agreement with AT \& T to manufacture AMPS equipment, they are not applying for an operating licence.

The Government is expected to announce who wins the second licence by the end of this parliamentary session, but a report commissioned by the DoI evaluating the rival applicants had still not been delivered at the time of writing.

CRL are committed to the AMPS system, developed by AT\&T and which is in trial use in Chicago. AMPS is comparatively easy to adapt for use in the UK, says CRL who have obtained a full specification of the system, as it would be adapted, from AT\&T. They feel that AMPS is the only system worth considering and they have said they will pull out altogether if it were not adopted. They pour scorn on the MATS-E system which they point out is still only on paper, though it is the system selected by the Ferranti-led group and backed by Pye Telecom and Philips and by CIT Alcatel. MATS-E is criticized for
using an off-air queuing method which contacts the caller when the connection is made. In an extreme case this could result in answering machines in conversation with each other. Such a queuing system has been used by the Deutches Bundespost in its Metz-C system. MATS-E supporters claim that AMPS uses poor spectrum man-
agement and that the "easy adaptation" for UK use would require major redesign of the system. They also claim that MATS-E is the most efficient system and is the only one capable of handling the projected 23,000 subscribers in London by 1990. They say that the system is most in line with CEPT proposals which could lead to a pan-European 900 MHz system (CEPT are not expected to complete the definition of a European system until the end of 1986). Racal with Millicom have developed their own system and a fourth system, Nordic, developed in Sweden, has no backers in the UK yet but has much European support and is thought to be the system that BT are looking closely at in their evaluation. The successful applicant will have to negotiate with BT over the system to be used.

The cellular system could provide every car or mobile user with a telephone. Areas are divided into cells of about a square mile, each having its own transmitter with frequencies mutually excluded from those in adjacent cells. Computer-controlled switching at the transmitter/receiver hands on calls between cells and automatically selects the frequencies to connect the calls. Proposed band is 900 MHz which will not be free from Government use until 1985 when cellular radio is due to start. There could be as many as 1,000 telephone channels with 25 kHz spacing. The American system uses 30 kHz spacing, hence the need for adaptation.

A nose for ideas

Through many years sniffing, mammals have developed a highly sensitive olfactory system capable of discriminating between many odours. Using what may be a similar system, researchers at Warwick University have developed an electronic nose to test their hypothesis that to make fine distinctions between complex odour mixtures without the need for highly specialized receptors, the olfactory system has feature detection using broadly-tuned receptor cells organised in a convergent neurone pathway.
The electronic simulation relies on principles of pattern clarification derived from artificial intelligence work. The sensing elements, which do not have to be highly specific receptors, are semiconductor gas sensors made to have overlapping odorant response distributions by varying doping levels. Outputs from three Figaro TGS sensors are arranged in a circuit so that the ratio of their outputs can be derived and passed to memory circuits via a window comparator.
The device responds to a wide variety of odours but has to be calibrated by exposing it to various odours and locating the response in the memory. Using three
transducers the system can mimic the discrimination of the mammalian olfactory system at a gross level, but a nose that can make fine discriminations should be of interest as a quality control device in industries concerned with flavours, perfumes and odours, according to K . Peraud and G. Dodd. Their findings are described in volume 299 of Nature, 23 September 1982, pages 352-5.

Illegal transmission

Amendments to the Wireless Telegraphy Act put forward in the recent Telecommunications Bill provide for a limited police power to arrest illegal radio transmitter users without warrant. Members of the Radio Interference Service, as well as the police, would have the power to seize apparatus for the purpose of proceedings, and the Secretary of State would control. the sale and possession of specified wireless telegraphy equipment.

In their summary of wireless and telegraphy provisions in the November Bill - intended to rationalize and update penalties and introduce powers to enable more effective law enforcement - the Home Office say "the opportunity to implement the Government's decision to abolish the Advisory Committee on Radio Interference has also been taken.
"To reduce or prevent interference, the Secretary of State will have the power to control the sale and possession of specified equipment, as well as current powers allowing prohibition by order the manufacture and importation of such equip-

clamp-down

ment." The Home Office claim that this will help curb illicit c.b. apparatus but do not comment on further aspects of this form of control.
Other than for two offences made triable
either way, increased penalties for existing offences are not proposed, but under the Criminal Justice Act of 1982 the maximum fine for unlincensed use of a transmitter will be raised to $£ 1000$ from $£ 400$. Proposed powers of seizure will enable police or the RIS to apply to the court through a civil procedure for the forfeiture of illegally possessed apparatus, offering an alternative to conviction in some cases.

and POUNC may lose

telecoms

Embedded in the Telecommunications Bill - intended to "give effect to the Government's policy of creating a new structure for telecommunications and further the introduction of competition" - are plans to restrict the Post Office Users' National Council to dealing with complaints concerning postal matters.

According to the Bill, the POUNC have been criticized for "lacking teeth" but
rather than giving them dentures, the Government wants to replace them by the new Director General of Telecommunications who will have the power to provide remedies when investigation of user complaints discloses unsatisfactory performance by licencees.
POUNC, who have often provided information supplementing reports from BT concerning fragile matters, finds gaps and confusion in the Bill and wonders how the new Director can possibly be judge, jury and advocate representing the small user.

Peaceful electronics front

Formation of a steering group and a set of aims, including encouraging industry to convert from military to civilian production, are results of the first Electronics for Peace meeting on 20 November. Action coordination, linking like-minded engineers and providing technical information for those working towards disarmament complete the set of aims, which are still open to discussion. The steering group is now busy organizing a larger meeting in London for March. Tel: (Ascot) 21167.

Leads for cable tv

Total expenditure on US cable tv advertising is less than that of a single daily newspaper in Los Angeles. As a percentage of the national total it amounted to less than 0.1% in 1981, according to a report forecasting the cable tv advertising market until 1987 by Knowledge Industry Publications.

The figures are likely to expand slowly with a small boost in subscribers when more than 20 national programming services start up, delivered by satellite to the local cable systems, but by 1987 advertising revenue will only represent about 1.5% of all advertising expenditure. A further forecast to 1990 sees that figure rise to only 2% of the total expenditure. As the advertising revenue will not pay for the services
for many years to come, many cable programme providers will cease to operate.
A big rival to advertising-supported cable services is the subscription channel. One pay-tv service, Home Box Office, with more than 9 million subscribers, spends more on productions than all the advertising-supported networks combined. In addition cable viewing even to those homes wired up for cable is only 10% of the total viewing audience, most preferring the broadcast networks. The 10% must be divided up amongst all the cable services. There may be some lessons here for potential British cable services. The report, Cable Television Advertising Market, 1982-87, is available in the UK from IPI, 134 Holland Park Avenue, London W11.

Micro money

To further encourage microelectronics in industry, the Dol's MAP project is to receive a further $£ 30 \mathrm{~m}$ spread over three years. Kenneth Baker MP, Minister for Information Technology, making this announcement said "in only a few years, microelectronics has moved from being a laboratory curiosity to being a basic industrial tool essential to commercial survival. Map has been a significant factor in this achievement, but a lot more needs to be done."
The extra funds will continue Map's momentum for three years after the end of last year when the $£ 55 \mathrm{~m}$ previously allocated runs out. The scheme's main intention is to raise the awareness of microelec-
tronics in industry by providing funds for projects and consultancy. Since its start in 1978, Map awareness events have attracted 160000 attendees and over 2200 consultancies have received aid.

Corrections

Digital polyphase sinewaves, by N. Darwood in the November issue, page 65, contained some misprints. The first paragraph of column 3 should read:

For a 5 -phase program, $\mathrm{N}=5$, and $\omega=$ $2 \pi / 5$. This makes $I=\sin 2 \pi / 5-\sin 2.2 \pi / 5$ $+\sin 3.2 \pi / 5-\sin 4.2 \pi / 5$ which totals 0.73 . f may be found by selecting a step size. As the step size is I.f, suppose that we would like to make this 1°, i.e. 360 steps per cycle. I.f is then 0.075 radians and as we have established that I is 0.73 , f is 0.024 .
And in Table 4 the $-f^{3}$ and f^{5} terms in the sin row should be displaced one column to the right.
Binaural recordings and loudspeakers, November issue, contains errors in the captions for Figs $2 \& 11$; in the last, "loudspeaker" should be for "headphone".
The transformers in the Simple low-frequency oscilloscope design of September were from Radio Components Specialists (see advertisement), using two 6.3 V windings in series and RadioSpares, using a 4.5V transformer stock number 207267, flash tested to 2 kV , for the tube heater. The author advises us that the x and y drive transistors may need heat dissipators, and that the sawtooth timing capacitor should be 10 nF value. Resistors in the tail transistor base circuit should be interchanged in the x-amplifier, not the y-amplifier as given on page 77 , November issue

Logic and computer languages

Abstract

If logical connectives are regarded as functions rather than operations, mechanization is simplified. Logically, all one needs to cover the field is the NAND or NOR operation. Using two computer languages Basic and Forth, some implications are examined together with some correspondences.

The very first lesson that we have a right to demand that logic shall teach us is, how to make our ideas clear; and a most important one it is, deprecated only by minds who stand in need of it. - C.S. Pierce

All that simple logic - the logic embodied in machines that perform arithmetic - can be reduced to one basic form. The two logical connectives with which we are most familiar are AND and NOT, where the compound

PANDQ
is only true if both P and Q are true, and the compound

P OR Q

is only false is if both P and Q are false. These two forms are related by De Morgan's rules

POR Q equals NOT
(NOT PAND NOT Q)
P AND Q equals NOT
(NOT P OR NOT Q)
and so either AND or OR is superfluous, in the sense that one can be expressed in terms of the others. All one needs is NOT (i.e. NOT TRUE is FALSE, and vice versa).

The four key logical connectives are normally taken to be AND, OR, the CONDITIONAL, and the EQUIVALENCE or BI-CONDITIONAL. The compound

PEQUALS Q

is only true if both P and Q are true or if both P and Q are false; whereas the only time the conditional

PIMPLIES Q

is false is when P is true and Q is false. In other terminology, the conditional is true if \mathbf{P} is a sufficient condition for Q . For example, if one has a monitorless computer, one must have a television, but if one has a television one does not have to have a monitorless computer. The various ways in which these connectives are related to the truth or falseness of P and Q are shown in Table 1, where 1 indicates true and 0 indicates false.

We can create our own rules to relate

by Boris Allan

these other two connectives to AND and OR:

P EQUALS Q equals P AND Q OR NOT (P OR Q)
 P IMPLIES Q equals NOT P OR Q

and it is easy to see that wherever there is an AND, one could substitute the equivalent expression using OR, and vice versa. Note, however, the ubiguitous NOT, and so it seems that all is needed to construct any logical formula is one connective, and the negator (NOT). It seems that if we could in some way derive the negator from one of the connectives, we could reduce all of logic to just that one connective.

Charles Pierce found such a connective in a paper written circa 1880; a connective which meant 'neither . . . nor . . .', known usually as NOR, and is defined in one way as

P NOR Q equals NOT (POR Q) equals NOT P AND NOT Q

(the last from De Morgan's rules). The truth table for NOR is simple, the only time P NOR Q is true is when both P and Q are false. The possibility of a reduction was rediscovered by H. M. Sheffer in 1913, but Sheffer used a different connective which meant not P or not Q, usually known as NAND, defined by

> P NAND Q equals NOT (P AND Q) equals NOT P OR NOT Q

Table 1. Key logical cónnectives

P	\mathbf{Q}	AND	OR	IMPLIES	EQUALS
1	1	1	1	1	1
1	0	0	1	0	0
0	1	0	1	1	0
0	0	0	0	1	1

Table 2. Basic logical connectives

P	Q	NAND	NOR
1	1	0	0
1	0	1	0
0	1	1	0
0	0	1	1

(see De Morgan's rules). Pierce chose his symbol for NOR " \downarrow ", called Pierce's dagger, and Sheffer used " β " for NAND, Sheffer's stroke.

Why are these two connectives so powerful? What do they have which means that they can be 'more basic' than the other connectives? If you examine Table 2, you can see that if P and Q are both true then the result is false, and if P and Q are both false then the result is true. Remembering that the use of OR or AND required the use of NOT (and NOT could not be derived from these two connectives), then when it is stated that

> NOT P equals P NOR P
> equals P NAND P
all you need is NAND or NOR.
To complete this section
P AND Q equals NOT (P NAND Q)
POR Q equals NOT P NAND NOT Q
P NOR Q equals NOT
(NOT P NAND NOT Q)

or

P AND Q equals NOT P NOR NOT Q
POR Q equals NOT (P NOR Q)
P NAND Q equals NOT
(NOT P NOR NOT Q)
and this is the reason why logical circuits can be constructed merely out of NAND or NOR gates. As NAND and NOR gates are usually the simplest gates to fabricate, and as all other gates can be derived from either of these two it is easy to see why theory and practice have - in this case meshed. Nicod in 1917 showed that the whole of logical calculus could be based on a single axiom using the Sheffer stroke as the only symbol; and in the second edition of Principia Mathematica (1925) Bertrand Russell suggested that Nicod's formulation be substituted for the original formulation.

Set of basic routines

Instead of writing P NAND Q we could write NAND (P, Q) just as we write NOT(P), though often we lose the brackets in the last-mentioned case. This might seem rather pointless, but at least it emphasizes that logical connectives are really functions, functions which produce a value. The programming language Lisp

Table 3. Notational equivalences

FULL	SHORT
NAND	s
NOT	n
AND	a
NOR	d
OR	0
EQUALS	e
XOR	x
IMPLIES	i

used in artificial intelligence is a functional language, in that the language is merely a set of functions which can be used to define other functions. Lisp is - we are told - a very useful and flexible language, but not readily available on most small computers, and so I will use Spectrum Basic to obtain similar results.
Spectrum Basic differs from some other Basics in that when a function is being defined, the function can have more than one parameter (the function $\operatorname{NAND}(\mathrm{P}, \mathrm{Q})$ has two parameters, P and Q). But as all function names can only be identified by one letter, we have to rename the logical connectives. Table 3 shows the equivalences to be used; most are self-explanatory except d for NOR (from Pierce's dagger) and s for NAND (from Sheffer's stroke), and XOR is the only new connective. XOR stands for exclusive-or and exists as a connective in some Basics, and most machine codes; $\operatorname{XOR}(\mathrm{P}, \mathrm{Q})$ is true if P and Q differ (i.e. one is true and the other is false) and is the opposite of EQUAL (i.e. EQUAL (P, Q) is $\operatorname{NOT}(\mathrm{XOR}(\mathrm{P}, \mathrm{Q}))$.

To give a feel for this new form of notation, consider De Morgan's rules.

> OR(P,Q) equals
> NOT(AND(NOT(P),NOT(Q)))
> AND(P,Q) equals $\operatorname{NOT(OR(NOT(P),NOT(Q)))}$
which shows the structure well, and then try the new one-letter method (without the brackets)

> oPQ equals nanPnQ aPQ equals nonPnQ
and finally try to relate this to the original formula

ePQ equals oaPQnoPQ

This extremely concise and readily mechanized method was invented by the Pole J. Lukasiewicz and is called Polish notation. That this method is easily mechanized is shown in List 1, which consists of a series of definitions of logical functions using NAND as the primitive functions (i.e. s, i.e. FN s). NAND is a primitive because it is the only function which has to be given a value from outside the system - in this case a simple multiplication (true is 1 , false is 0). To assist in the interpretation of these functions, here they are in a more expanded form - except NAND -

[^5]$70 \mathrm{XOR}(\mathrm{P}, \mathrm{Q})$ is
NOT(EQUALS(P,Q))
$80 \operatorname{IMPLIES}(\mathrm{P}, \mathrm{Q})$ is $\mathrm{OR}(\mathrm{NOT}(\mathrm{P}), \mathrm{Q})$
and for those who feel that the use of a multiplication to give values for $\mathrm{FN} s(P, Q)$ (i.e. $\operatorname{NAND}(P, Q)$) is not quite right, it is possible to substitute line 10 , and add another line at, say, 5

```
5 DIM a (2,2): LET a(1,1)=1:LET
    \(\mathrm{a}(1,2)=1: \mathrm{a}(2,1)=1:\) LET
    \(a(2,2)=0\)
10 DEF FN s \((P, Q)=a(P+1, Q+1)\)
```

In arithmetic machines we would not even need to have such a definition of s (NAND) if it was wired for logic.

To calculate a truth table for a new logical formula, for example, the hypothetical syllogism

((P IMPLIES Q) AND (Q IMPLIES R)) IMPLIES (P IMPLIES R)

(If (if P then Q) and (if Q then R) then (if P then R) is a more familiar way of expressing the syllogism), we could start

IMPLIES(AND(IMPLIES

 (P,Q),IMPLIES(Q,R)),IMPLIES(P,R)) and turn it intoiaiPQiQRiPR

is a sociologist who writes about the implications of the newer and older technologies, with special emphasis on computing. Trained as a scientist in the 1960s, he has taught at many levels from remedial maths in secondary modern schools to Fortran programming in universities. At present he lectures in the Department of Social Science, Manchester Polytechnic.
if you wish, and then - in immediate mode -

PRINT FN i(FN a(FN i(P,Q),FN $\mathrm{i}(\mathrm{Q}, \mathrm{R})), \mathrm{FN} \mathrm{i}(\mathrm{P}, \mathrm{R})$)

for various values of $\mathrm{P}, \mathrm{Q}, \mathrm{R}$.

Reversing the notation going forth

Suppose that instead of writing the definition for equals (line 60) in a Polish notation, we reversed the notation, left out the brackets and commas, and produced

$P Q E Q U A L S$ is $P Q N O R P Q A N D ~ O R$

in what is naturally called reverse Polish notation. In evaluating this formula (on the right-hand side) we would take the
parameters in order, and as we reached a function use the parameters for that function. In this new notation the hypothetical syllogism becomes

P R IMPLIES Q R IMPLIES P Q IMPLIES AND IMPLIES

but, weark, to what purpose?
If the hypothetical syllogism is studied, we can notice first of all the utter simplicity (all we do is move down the line) and wonder if this simplicity could be used to some advantage, just as Lisp uses the functional form to advantage). Lisp is rarely implemented on small computers, but lately a language which uses the reverse Polish form has become reasonably common. The language is Forth, and Listing 2 is a set of basic Forth words, equivalent to functions, which covers the same ground as the program in List 1.

I will not give a detailed explanation of Forth, but I'll pick up points as I go through. Line 0 defines a new set of functions which will be called by the generic term logical, and line 1 is no more than a remark. Lines 2 \& 3 define two constant values, that is true has the value 1 and false has the value 0 , these values being unchangeable. Lines 4 and 5 define two words (DUP2 and UNDER2) which manipulate items on the stack - the stack is the place valves such as P or Q are stored before operating on them by the functions/words such as NAND. For example consider the hypothetical syllogism: place P and Q on the stack, and then apply the function IMPLIES leaving the result on the stack (but losing P and Q); then place Q and then R on top of the result, use IMPLIES on Q and R , another result (that is two results); do it yet again for P and Q (three results); the function AND is then applied to the top two results (there are no parameters to put on the stack); finally use IMPLIES on the results of the AND, and the first IMPLIES. In the colon definition

List 1

10DEF FN sP, Q $=1-P^{*} \mathrm{Q}$
$20 \mathrm{DEF} \mathrm{FN} \mathrm{n}(\mathrm{P})=\mathrm{FN} \mathrm{s}(\mathrm{P}, \mathrm{P})$
30 DEFFN a(P, Q $)=\mathrm{FN} \mathrm{n}(\mathrm{FN} \mathrm{s}(\mathrm{P}, \mathrm{Q}))$
40 DEF FN d $(P, Q)=F N$ a(FN $n(P), F N n(Q))$
50 DEF FN o $(P, Q)=F N n(F N d(P, Q))$
60 DEFFN e(P,Q) $=\mathrm{FN}$ o(FN a $(P, Q), \mathrm{FN}$ d $(P, Q))$ 70 DEFFN $\times(P, Q)=F N n(F N e(P, Q))$ $80 \operatorname{DEF} \operatorname{FNi}(\mathrm{P}, \mathrm{Q})=\mathrm{FNo}(\mathrm{FN} \mathrm{n}(\mathrm{P}), \mathrm{Q})$

List 2

SCR 201
0 VOCABULARY LOGICAL
1 (LOGICAL CONNECTIVES BASED ON
THE NAND RELATIONSHIP)
1 CONSTANT TRUE
0 CONSTANT FALSE
4 : DUP2 OVER OVER ;
: UDER2 ROT ROT ;
NAND * 1 SWAP -
: NOT DUP NAND ;
: AND NAND NOT:
9 : OR NOT SWAP NOT NAND ;
10 : NOR OR NOT;
11 : XOR DUP2 OR UNDER2 NAND AND ;
12 : EQUALS XOR NOT
13 : IMPLIES SWAP NOT OR
14 : IS IF "'TRUE"CR ELSE."'
FALSE "CR THEN ;
15 ; S (VERSION 3)
(lines 6 to 14) the word being defined is the first in the string (for example NAND in line 6) and the remainder up to the semicolon defines what it is the word does - in line 6 , takes the top two numbers off the stack, multiplies them together, puts a one on top of the stack, swaps the one with the result (so the result is on top), and subtracts the top of the stack from the second on the stack (i.e. subtracts the result of the multiplication from one). Apart from lines 11 and 14 the instructions should be obvious in their intent - line 14 looks at the number on top of the stack, and if it is one, TRUE is printed, else FALSE, and then the next thing is done. For example, these words would enable you to ask

TRUE FALSE IMPLIES

and be told

> FALSE
> OK
and in a similar manner for more complex formulae.

In the Basic listing, the order in which the functions were defined followed closely the order given in Forth. In Forth, however, NAND had to be defined before any other word used it, and NOT had to be second, because to use a word before it is defined is inadmissable. In Basics generally the order in which the functions are defined is immaterial, which means that one can define IMPLIES before one knows how to define NOT or OR (though they must be defined at some point).

Functional v Elemental

Lisp and Basic proceed in a functional manner in the manipulation of logical connectives, exemplified in the expression

for the hypothetical syllogism

IMPLIES (AND(IMPLIES(P,Q), IMPLIES(Q,R)),IMPLIES(P,R))

When coming to interpret the meaning of this expression the language analyser will encounter IMPLIES, a function it will recognise as having two parameters - it will store this information for later use, probably on a stack. The analyser will then encounter the first of the parameters, which is itself a function AND, so it stores this information, and finds that the first parameter of AND is another IMPLIES, store that away. This latest IMPLIES can operate immediately on two real parameters P and Q, and that result now becomes the first real parameter for the AND, the second real parameter is the result of IMPLIES on two parameters Q and R, and so on . . .

This is a tedious process to go through, though easy enough on a computer, and requires two stacks: one stack to store the functions, and one to store the parameters and results. In the Fig. the hypothetical
syllogism is decoded into a tree, and a functional language goes through the tree from the top downwards - this is the way in which normal, non-computer languages work. It is easier to work from the bottom upward?

An elemental language such as Forth works from the bottom line upwards - see diagram for example

PR IMPLIES Q R IMPLIES P Q IMPLIES AND IMPLIES

and only needs one stack, because the user has already decoded the order in which the functions are to be applied. This is also why a word in Forth can only be defined in terms of words already known to the system; it makes it far easier for the system even if more tedious for the user.
Finally, a concrete example of the hypothetical syllogism:

IF ((If Boris then human) and
(If human then mortal))
THEN (If Boris then mortal)

January 4-7
Noise, its measurement, analysis and control; four-day course at the City University, Northampton Square, London EC1. Details from Dr J. S. Anderson at the University, 012544399 ex. 4203.

January 5-14
Five two-day short courses on Pet/CBM microcomputers, at Department of Electronic and Electrical Engineering, University of Salford, Salford M5 4WT. Tel. 061-736 5843 ex. 248.

January 5

Microwave tube or solid state device? IEE Colloquium, Savoy Place, London WC2. Tel. 01-241 1871.

January 6
Seeing with long-wavelength eyes. 18th Appleton Lecture by Prof. A. P. Anderson. IEE, Savoy Place, London WC2.

January 7
Superconducting generators. IEE/IoP
Colloquium at 14.00 h , Savoy Place, London WC2.

January 10

Non-linear control system design techniques in attitude control. IEE Colloquium, 10.30 h , Savoy Place, London WC2.

January 11

Reliability of automotive electronic systems and components. IEE Colloquium, 17.30 h , Savoy Place, London WC2.

January 11

Electronic revolution comes to your car. IEE Lecture by M. H. Westbrook, 19.30 h , SEB, Waterloo Road, Uxbridge, Middlesex. Details from R. M. Bennett, Tel. 01-567 5621.

January 12

Short range communications systems and techniques. IEE Colloquium, 17.30 h , Savoy Place, London WC2.

Jæuuary 12

Higher definition graphics for UK teletert. IEE Lecture by D. Brockhurst and M. Dyer, 17.30h, Savoy Place, London WC2.

January 12

Field emission of ions from liquid metals. IEE Discussion Meeting, 14.00 h , Savoy Place, London WC2.

January 12
Telecommunicate or travel. IEEIE Lecture by R. C. Smith, 19.00 h , Oxford Polytechnic, Headington, Oxford. Details from IEEIE 018363357.

January 13
Man/machine interface using GKS, the new graphical standard. IEE Colloquium, 10.30 h , Savoy Place, London WC2.

January 13
Computer recognition of speech. IEE younger members' lecture by R. Bell, 19.00 h , at Marconi Avionics, Airport Works Site, Rochester, Kent. Details from G. F. Simms, Tel. 0444457301 ex. 31.

January 14
Testing custom devices. IEE Colloquium, 17.30h, Savoy Place, London WC2.

January 17-21
Visodata 83, Audio visual media and data systems for education and communication. Congress and exhibition. Details from Münchener Messe- und Ausstellungs GmbH, Messegelande, Postfach 1210 09, D-8000 München 12, Germany.

January 18

The Photon Connection. IEE Faraday Lecture presented by STC. Kelsey Kerridge Sports Hall, Cambridge. Two presentations, 10.30 h and 19.00 h .

January 18
Millimetre waves. IEE Colloquium, 17.30 h , Savoy Place, London WC2.

Radio in cells

The recommendation of the Merriman Committee that the Home Office should make available to the land mobile radio services virtually all of the prime international television broadcasting v.h.f. bands seems oddly out of phase with the current developments in the advanced "cellular" systems for mobile radio. Within a few years these will be exploiting the very large chunks of spectrum space made available for the mobile services at WARC 1979. Using the more advanced techniques now being planned, the spectrum above 860 MHz can provide two-way communications for hundreds of thousands of users.
Indeed if the present applications to develop large cellular systems are granted, there will be room for vastly more two-way mobile communications than by expanding the current private mobile radio channels using individual base stations working on fixed channels to relatively modest numbers of mobiles over ranges up to about 20 to 35 km . Several British firms and consortia, including British Telecom/ Securicor and Air Call, intend to operate large cellular systems. Motorola say they will manufacture suitable equipment at Basingstoke.

Overseas, considerable experience of cellular systems has been gained both in the field trials run by Bell Laboratories in Chicago since about 1978 for AMPS (Advanced Mobile Phone Service) and the operational system made by NEC for the Japanese telecommunications agency NTT in Tokyo. Another contender is the Nordic Mobile Telephone system.
Claimed in 1980 as the "world's first cellular system", the Japanese system uses a number of base stations sited in regular cells or lattices throughout the city and suburbs of Tokyo using frequencies above 800 MHz . Each base station is designed to have coverage to about 10 km in the suburbs. Initially the service covers 23 districts of Tokyo.
The distinctive feature of all cellular systems is that they are arranged so that a vehicle remains linked to the normal telephone system with coversations continuing virtually uninterrupted when the vehicle crosses a cell boundary and is automatically re-assigned new frequency channels. Unlike the long-established "extended-coverage" systems on v.h.f./a.m. and frequency off-sets, the base stations operate on entirely different frequencies.
In the NTT system the vehicles automatically transmit location registration signals which are stored at the electronic switching centre (that is to say the mobile telephone exchange) so that vehicles can be called selectively by the base station in the cell in which they are actually travelling.

Base stations have 25 watt transmitters and mobiles 5 watt units.
The Chicago field trials of AMPS were based on ten cells covering about 2100 square miles of downtown and metropolitan area of Chicago. The system was tested by about 100 Bell System employees over a period of several years. When a vehicle crosses a cell boundary a command signal from the switching centre reassigns the channels, making full use of microprocessors and fast-acting frequency synthesizers.

The attraction of cellular or lattice systems from the viewpoint of frequency spectrum management is that the use of u.h.f. in compact areas permits the use of the same radio channel many times over within a single large city, allowing much more intensive use of the spectrum.

Spectrum saving

Cellular techniques for improving spectrum use also form a crucial part of the 10.5 GHz microwave multipoint local distribution plans for the Mercury digital network being set up in the UK for voice and data transmission for business users. For the $2 \mathrm{Mbit} / \mathrm{s}$ cellular networks within cities, digital equipment is being supplied by Telettra of Italy. The main Mercury inter-city networks will make use of digital fibre optics. Two main cable rings based in London, Birmingham and Bristol in the south of England, and Leeds, Manchester and Liverpool in the north, together with expected satellite links to North America form part of this first major "private" telecommunications network.
There can be little doubt that UK mobile radio is still far from the end of its growth potential. By 1980 there were some 15,300 p.m.r. licences covering 18,500 base stations and over 260,000 mobile units, with a growth rate of about 10% a year. For comparison, over 350,000 c.b. licences were issued in its first year, each covering a maximum of three units, and with a large number of non-licensed users. Although British industry appears to have largely abandoned hopes of competing with imported 27 MHz equipment, a 934 MHz transceiver, priced at about $£ 250$, is being marketed by a Mildenhall firm.
The Merriman Committee interim report dismisses the value to mobile radio frequencies above 600 MHz and curiously makes no reference to the potential of cellular systems, using frequencies internationally available to the land mobile services. Key factor seems to be price; for a small organisation making heavy use of two-way radio in a local area it is still usually cheaper to run an independent base station - but wasteful of spectrum.

Careers in e.m.c?

It was probably the coming of v.h.f. television in the 1930s that first really brought to prominence the many problems of what has now become known as electromagnetic compatibility or e.m.c. - basically the difficulty of mixing together different types of electrical and electronic equipment without creating mutual problems. Topics that come together nowadays to form the "buzz" topic of e.m.c. are ignition interference, suppression of radiation from electrical motors and thermostats, harmonic radiation or direct breakthrough from local transmitters, simultaneous operation of transmitters and receivers from the same ship or vehicle or site, close proximity of complex electrics in spacecraft effects of the electromagnetic pulse (e.m.p.) following a nuclear explosion in the upper atmosphere, protection against lightning and other transient overvoltages, effective shielding or screening of equipment, and biological responses to non-ionizing electromagnetic radiation. Already you can make a career of being "an electromagnetic compatibility specialist engineer".

As might be expected this new discipline already has its own international conference circuit. I am reminded, for instance, that the fifth symposium and technical exhibition on electromagnetic compatibility is being held at Zurich on 8-10 March, 1983 with a formidable three-stream presentation of no less than 110 high-level scientific and technical papers plus five workshops. In an opening session on the "environment" the Polish Institute of Telecommunications is to report on an m.f. composite radio noise survey in Poland; Sheffield University has a paper "Ariel-4 observations of power-line harmonic radiation over North America and its effects on the magnetosphere"; followed by a Japanese university paper on "charge neutralization for a space shuttle" and a Canadian paper "Impact of lightning beams on a tall structure". Sessions on interference models, propagation and wave coupling, nuclear e.m.p., biological effects of exposure to r.f. radiation, power electronics, e.m.i. in microelectronics, spectrum management are all included in this crowded three-day event. Indeed one can think of very few people in communications and electronics whose work is not affected by one or more of these topics. And that is where questions begin to rise - should we encourage an all-embracing topic such as e.m.c. to become a highly specialized discipline of its own? Or would it not be better to aim at greater awareness of e.m.c. among all design engineers? Many of the current problems in consumer electronics, for instance, have known solu-
tions, but still appear to be disregarded. When these excellent Swiss conferences began e.m.c. was still considered an integral part of electronic design. It would be a pity to see them becoming too specialised or too academic.

Too public a key?

Some time ago, I surveyed developing techniques for message and data encryption, highlighting the furious debate that arose over the security of the National Bureau encryption standard ("Electronic cryptography", September 1980 issue, pages 44-9). Based on a non-linear algorithm, 56bit main key, 18 data manipulation stages and 16 internal coding keys, it was generally considered that a 56 -bit key - though secure for normal commercial purposes - could not be regarded as computationally secure against a really determined attack.
The alternative, and then still not fully developed, "public-key" systems were being advocated as providing greater security, as well as offering considerable operational advantages not available from more conventional systems.

Since then public-key systems have begun to be marketed amidst a growing spate of suggestions that not all are as secure as originally thought. A recent issue of Electronics Letters (14 October 1982) contained a strong warning from Belgium in respect of the Markle-Hellman public-key knapsack algorithm, including doubts whether there are useful knapsacks or conversely whether all useful knapsacks can be cracked. As long as this question is not answered positively the use of the knapsacks, even with interative transformations, is not recommended for cryptography. The same issue however included a new fast decipherment algorithm for RSA public-key systems from Philips in Belgium, and also a technique for the implementation of digital signatures for RSA from Israel. A. Shamir, the " S " of RSA has also raised the question of breaking the Merkle-Hellman cryptosystems. There does now seem a cloud over some of the public-key techniques.

In Brief

US Navy is to renew development of e.l.f. systems for communicating with submarines using a 28 mile underground aerial and a new 56 mile above-ground aerial. Previous work was halted when residents complained of possible radiation hazards .

RCA have developed the first commercial communications satellite with a solidstate transponder. Each of 28 transponder amplifiers has an output of 8.5 watts from gallium arsenide devices . . .

Incentive licensing

An increasing number of British amateurs feel that the licensing system in the UK does not encourage licensees to continue theoretical or practical study of communications technology beyond the level required to obtain a pass mark in the Radio Amateur's Examination, as currently administered by the City \& Guilds of London Institute. Formerly, home construction of transmitters and ancillary equipment, with the subsequent problems of debugging and maintaining them, meant that many amateurs not employed in the electronics industry acquired considerable practical know-how, to a degree not necessarily acquired in operating factory-built and pro-fessionally-serviced equipment.

While formerly most amateurs favoured the British once-and-for-all type of examination, today more are prepared to consider seriously the various incentive systems found in many overseas involving graded examinations that provide additional frequencies and facilities.

In the USA for example there are five grades: novice, technician, general, advanced and extra classes each requiring technical examinations at different levels. In the USSR many listeners begin by operation of club stations, but many obtain a "novice" licence for c.w. s.s.b. and a.m. on $1850-1950 \mathrm{kHz}$ with not more than 5 watts input (EZ prefix). Such a licence can be obtained at 14 years of age. At 16 they can apply for a v.h.f. licence for all bands above 30 MHz (in practice 144 MHz upwards) but also covering 1.8 and 28 MHz (R prefix). Neither novice nor v.h.f. licence involves a Morse test although one finds many R prefix stations using c.w. on 28 MHz often with good operating standards. For the main h.f. licences there are three separate categories invoiving different restrictions on power, bands and modes. The first-class licence covers all h.f. bands but requires special permission to use r.t.t.y. Power limit is 200 watts input. Another grade has a power limit of 40 watts .

A feature of the Russian system is that examinations are taken at the nearest regional radio club where "qualification commissions" consists of experienced local amazeurs selected by the local radio sports federation. It is even possible to become a "Master of Sports of the USSR" via ama-
teur radio contests! The problem of how accurately to judge true "champions" is currently the subject of much earnest debate. There can be little doubt that the Russian system is designed to encourage both technical and operating skills. A great deal of Russian amateur equipment is home-built, often to designs in Radio magazine - but one also has the impression that considerable store is set on building up a large reserve of first-rate cw operators. Indeed, despite the number of articles having political or military orientation in Russian and East European radio journals, it often appears that this part of the world is closest to the traditional interests of amateur radio.

RSGB move

After almost 40 years in Bloomsbury, central London, first in Little Russell Street and then in Doughty Street, the RSGB has moved its headquarters to larger premises at Alma House, Cranborne Road, Potters Bar near Barnet, Herts (Potters Bar 59015). In its annual report to June 30 , 1982 the Society records a membership increase of about 10% from 29,337 to 32,215 . However there were signs that as the year ended the rate of increase is falling, with a higher than usual drop-out rate perhaps reflecting the economic recession.

Here and there

The Ariel Radio Group, comprising radio amateurs working for the BBC, is currently celebrating the 50th anniversary of the start of BBC External Services on 19 December, 1932. Club stations using the special callsigns GB2BBC, GB3BBC and GB8BBC are all working from central London, G3BBC in west London and GB4BBC from Caversham, near Reading throughout December.

In filing application with the FCC to operate two geostationary communications satellites an American firm, Cablesat General Corporation, is proposing to include an amateur radio network transponder in each satellite. Uplink frequency about 5.65 MHz , downlink about 3.4 GHz . North American amateurs with 2 m dish aerials and 10 watt r.f. power would be able to work through the satellites. APRL have been asked to co-ordinate their use. If the FCC approves application a 1985 launch is planned.

SA-AMSAT has been conducting the balloon tests to obtain practical experience in airborne transponders and telemetry beacons and this project is not directly concerned with possible future satellite projects.

PAT HAWKER G3VA

Two-metre transceiver

These two sections of Tim Forrester's multi-mode transceiver are frequency demodulation and synthesizer modules. A further circuit diagram - for the power section constituting module 3 - concludes last month's article.

Rounding off last month's article, the circuit below shows the main power supply and transmitter output stage of module 3. Some modules have their own regulators fed from the main supply on this board.

Module 4, the f.m. i.f. section, has the smallest board but carries out the following functions,

- f.m. signal demodulation
- s.s.b./f.m. gate and squelch
- S-meter drive for f.m. receive
- noise-blanking on s.s.b.
- audio power amplification
- s.s.b./f.m. routing to the audio power amplifier.
Despite the number of functions the board carries out only one adjustment is required, for the f.m. discriminator. With the exception of the LM380 a.f. power amplifier, IC_{402}, the circuit is fed from a TO92-packaged 8 V regulator, IC_{405}.

An SL6600, IC 400 , carries out f.m. de-

by T. D. Forrester, G8GIW

modulation. This device has a mixer to convert 9 MHz down to around 100 kHz and provides adjustable squelch but requires no tuned circuits. The squelch output on pin six of this i.c. goes low when the phase-locked loop f.m. demodulator locks; the signal-to-noise ratio at which it locks is determined by a mute control on the front panel. Fast time constants of this device allow it to be used for both f.m. and s.s.b. muting.

In the prototype, a 9.09 MHz crystal was used for the second conversion oscillator giving a second i.f. of 90 kHz . The p.1.1. f.m. demodulator is set to 90 kHz by adjusting C_{404}. Around 100 kHz is preferred for the second i.f. although limits are between 80 and 500 kHz . Choosing a fre-
quency other than 90 kHz will mean that the timing and loop-filter components $\mathrm{C}_{403,404,405}$ and $\mathrm{R}_{400,401}$ will have to be changed.

Only three parts of the quad analogue switch, IC_{401}, are used. Two form a singlepole change-over to select the source for the a.f. power amplifier and the thitd is used as a squelch gate to cut off the audio output when no signal is present.

The receive-converter input signal on 9 MHz is split two ways on this board; part of the signal is fed to the f.m. demodulator and the rest goes to a 9 MHz r.f. amplifier consisting of $\mathrm{IC}_{403,404}$, then to a diode rectifier, $D_{400,401}$, used to convert the r.f. signal into d.c. to provide this amplifier's a.g.c. and to drive the S meter.

When s.s.b. is selected, Tr_{402} drastically shortens the time constant of the f.m. S meter and s.s.b. noise blanker feed and the output is used to drive the receiveconverter noise blanking gate. The a.f.

power amplifier is simple, using an LM380 i.c. to provide an output of around 2 W .

To align this module, C_{404} is adjusted to obtain the best audio quality. If the busy lamp (to be discussed) will not light, i.e. the f.m. demodulator will not lock, the v.c.o. frequency may be adjusted by changing C_{403} and fine tuned by changing the value of R_{402}.
Any quartz crystal of around 27.3 MHz working at its fundamental frequency of near 9.09 MHz should be suitable for the second conversion oscillator. In the prototype a 27 MHz crystal intended for remotecontrol applications was used.
A diode, D_{402} is connected between the power feed for the receive converter and the mute-control input to mute the receiver immediately after the transmitter is switched on.

Part of module 4 - f.m. i.f. mute and a.f. switching circuits with the audio-power amplifier C_{400} carries out f.m. demodulation and $/ C_{401}$, a quad analogue switch, forms two singlepole change-overs to select the audio source, and a squelch gate. The fourth gate is not used.

Synthesizer logic - module 5

This module is designed around an SAA1058 32/33 prescaler and SAA1056 (Mullard) or LN1031 p.l.I. synthesizer which is a dual-modulus device with serial control. As the 1058 is only guaranteed to 125 MHz , a further faster e.c.l. device, the

MC10231 dual flip-flop, divides the incoming signal by two.

SAA 1056 is a programmable divide-byN counter, with reference oscillator and programmable divider, phase comparator and lock detector, currently costing under $£ 5$. To program the SAA 1056 , a 17 -bit serial-data word with clock and a DLEN signal are necessary; this presents no problem due to the microprocessor controller.

The synthesizer works in 10 kHz steps at 135 MHz , with a means of pulling the reference oscillator to give continual coverage in 100 Hz steps. Since a divide-by-two pre-scaler preceeds the main programmable counter, the reference frequency in the SAA 1056 is 5 kHz . With a 4 MHz reference crystal it is necessary to divide by 800 by setting the reference-select input, pin 3 , to a $1(+5 \mathrm{~V})$ on IC_{502}, and the referencecontrol bit to a $0(0 \mathrm{~V})$. Through changing these two signals it is possible to select any of four dividing ratios shown in the table.
The output of the SAA 1056 phase comparator is buffered by $\operatorname{Tr}_{501,502}$ while IC_{503},

Control bit	Reference select	Dividing ratio	Reference frequency (kHz) with 4.00MHz clock
			25
1	1	100	10
1	0	400	5
0	1	800	5
0	0	8000	0.5

The filter board was mounted on the lid of module five's metal case directly above the synthesizer control logic. These components do not appear in the list.

should be mounted off the p.c.b. on the side of the metal case; the tab of this device is 0 V so an insulating washer is not required. The TL081, IC_{503}, is powered with a 15 V supply from the microprocessor bcard to allow an output swing of around 13 V .

For the synthesizer i.c. to produce 135 MHz , it needs to be programmed with a 17-bit binary word as shown in the diagram.

For example to produce 135 MHz , then as the swallow counter sees 67.5 MHz , due to the divide-by-two prescaler, n needs to be $67.5 \mathrm{MHz} / 5 \mathrm{kHz}=13500$

Note that the 5 kHz is the channel spacing divided by two. Although there are two separate counters in the device, as shown above, it is convenient to consider them as one 15 -bit counter.

So, to cover from $135-137 \mathrm{MHz}$ only the 9 least significant bits needs to change, and this fact is used to advantage in the microprocessor, which also drives the control lines of the synthesizer.

The threshold of IC_{500} is adjusted by R_{501}, to set the input at about mid-logic level so any signal coming in from the v.c.o. through T_{500} will toggle this device; ideally an e.c.l. pre-amplifier could be used here, but due to size restriction this is not possible.

Data inputs to the synthesizer (Data, Clk, Dlen), along with the regulated +15 V feed and the transmit inhibit line, all pass through a filter board, which is attached to the lid of the metal box. This is necessary to give greater filtering, and due to lack of space on the end of the metal box for usual 1000 pF lead-through capacitors.

LITGR/ATMRE REGEIVED

The Electronic Industries Association catalogue of EIA and JEDEC Standards is available in the UK from American Technical Publishers Ltd, 68a Wilbury Way, Hitchin, Herts SG4 0TP. WW 400
Thyristors and triacs in TO-220 packages is the self-explanatory title of a short-form catalogue from Siemens Ltd, Siemens House, Windmill Road, Sunbury-onThames, Middlesex TW 16 7HS. WW 401

Programming roms is explained in a booklet from Data IO. Various devices are described in some detail, which makes it a useful reference source as well as the data range of apparatus for rom programming. Booklet is available from Microsystems Services, 11 Duke Street, High Wycombe, Bucks HP1 3 6EE. WW 402
SEI publish a list of feerrite cores and accessories which gives their equivalents for the Mullard range. Salford Electrical Instruments Ltd, Times Mill, Heywood, Lancs. WW 403
Handbook for television subtitles, 2nd edition, published by the IBA in association with Oracle Teletext and the University of Southampton includes experiences gained from regular Oracle subtitling and the occasional subtitling of live programmes. Results of further research at Southampton by Robert Baker and Andrew Lambourne are included (WW News, September 1981). The Handbook is available free from IBA Engineering Information Service, Crawley Court, Winchester, Hants SO21 2QA. WW404

Catalogue of Babani Books oincludes something for nearly everyone in electronics, from the beginner to some useful reference books such as books of transistor equivalents and substitutes, and one on the 6809 microprocessor. Bernard Babini (publishing) Ltd, The Grampians, Shepherds Bush Road, London W6 7NF. WW405
The MEDL Microwave Materials and Components, catalogue has nine sections including coaxial and wave-guide circulators and isolators; waveguide loads, gaskets and load transitions; ferrite and dielectric materials; substrates; and ferrite Torriductor cores. Marconi Electronic Devices Ltd, Doddington Road, Lincoln LN6 0LF. WW 406
Lane Components Catalogue is in two sections, the first deals with fuseholders, fuse links, potentiometers, ferrites and resistors, but the second, and longer, is entirely devored to connectors from a variety of manufacturers and includes a large number of multi-pin and edge connectors. F. C. Lane (Components) Ltd, Slinfold Lodge, Horsham, W. Sussex RH13 7RN. WW407
Two design catalogues for mosfets are available from Siliconix. One deals with the Mospower range and the other with fets in general. Both include data sheet specifications and application notes. Siliconix Ltd, Morriston, Swansea SA6 6NE. WW408
Cranfield Product Engineering Centre, part of the Cranfield Institute of Technology, has designed or redesigned a number of products which have led to reduced costs or improved sales. Their service and facilities are outlined in a glossy brochure from CPEC, Cranfield,

Bedford MK43 0AL. WW 409
Equivalents for a wide range of Motorola linear i.cs are listed in a booklet which gives direct replacements having identical connections, packages and electrical characteristics. Also listed are 'similar' replacements which may differ in package, pin connections or specification, but perform an equivalent function. Booklet compiled by Axion Electronics Lid, Turnpike Road, Cressex Estate, High Wycombe, Bucks HP12 3NR. WW 410
Consumer Integrated Circuit Handbook is a collection of data sheets for all the Plessey i.cs used in radio, tv and for remote control. The 220-page book is available from Plessey Semiconductors Ltd, Cheney Manor, Swindon, Wilts SN2 2QW. WW 411
Educational kits from simple circuitry to microprocessor applications are described in a catalogue from ELE Ltd. They use plug-in breadboards for the components in a series of modules which lead the student to complex analogue or digital circuits. Educational Division, ELE Ltd, Eastman Way, Hemel Hempstead, Herts HP2 7HB. WW 412
The Register of Engineering Designers has been launched by, but will be independent from, the Institution of Design Engineers. It is intended to list those engineers who "by their skill, creativity, knowledge and experience, should be recognised as being at the spearhead of this nation's drive to create wealth and prosperity for the continuance of our culture and way of life it is not an endorsement or recognition of institutional membership or of qualifications obtained, academic or otherwise". Institution of Engineering Designers, 'Courtleigh', Westbury, Wilts BA13 3TA. WW 413

Modular preamplifier

The first two parts of this article (October and November) described the basic system, tone controls, filters and a head amplifier. This part continues the development into a complete unit, including the 'scratch' reducer

THE first two sections of the article described the general philosophy of the design and the major circuit modules such as the gramophone pick-up equalization and the tone-control circuitry. There remain, however, several other parts of rather more specialized interest which I will deal with now, together with some comments on points which arose during the building of the prototype.

Microphone amplifier

Having the facility to mix the several inputs to the preamp. leads to the possibility of, for example, adding a spoken commentary to a tape accompaniment to a slide show, in addition to the more straightforward possibilities of taping direct from microphone. A low-noise microphone amplifier makes a very useful addition to the system in such cases.
Although a balanced-input circuit, using an input long-tailed pair as in the RIAA circuit, offers the possibility of a very lowdistortion configuration, a straightforward single-transistor input arrangement can give very acceptable results, and I have shown such a circuit - very similar in general form to that which I had described in an earlier cassette recorder ${ }^{3}$ but with one or two small changes, aimed mainly at reducing intermodulation effects due to wide-bandwidth noise components - in Fig. 17. This fits easily on to small printed-circuit board, which can be mounted close to the microphone input terminals. In the prototype preamp., these are mounted on the bottom left of the front panel so that the incoming cables shall be
as convenient as possible to the righthanded person. I have also chosen this as the main chassis earthing point, to lessen the possibility of mains 'hum' pick-up at this very sensitive point.

A four-pole change-over switch is used to route the output of the microphone amplifier into aux. 2 input, and to earth the inputs to both channels when the mic. amplifier is not in use: two gain options

by J. L. Linsley Hood

($\times 50$ and $\times 100$) are provided by the switch S_{32}. If different gain levels are more appropriate to the microphones in use, \mathbf{R}_{87} is adjustable over the range $10-100 \mathrm{k} \Omega$ without ill effect. The output trimmer pots $\mathrm{PR}_{7 \mathrm{ab}}$ are provided to allow the d.c. output level to be set sufficiently close to 0 V to permit switching without clicks. The t.h.d. of the circuit is less than 0.03% at the threshold of clipping (approx. 10 V r.m.s.) and the equivalent input noise resistance is around 700 ohms, which should be entirely adequate for this application. The current consumption is of the order of 3 mA /channel.

Moving-coil head amplifier

There is a growing preference among the seekers after perfection in the reproduction of gramophone records for movingcoil type pick-up cartridges as the input

Fig. 17. Microphone amplifier.

transducer. From personal observation, the reason for this preference appears to be a somewhat greater dynamic channel separation, which leads to a rather more 'three-dimensional' quality to the reproduced sound. Also, there is undoubtedly a greater difference in sound quality between differing makes of pick-up cartridges than there is, say, between different power amplifiers of comparable quality, and some of the m.c. pickups are indeed very pleasing to listen to.

However, by comparison with the normal moving-magnet or variable-reluctance type of cartridge, the normal m.c. unit has a very low output signal voltage, typically in the range $50 \mu \mathrm{~V}$ to $200 \mu \mathrm{~V} / \mathrm{cm} / \mathrm{s}$ groove modulation velocity, and require a low output load impedance - typically 50 ohms. For these reasons, some form of 'head amplifier' or step-up transformer is normally required as an interface between the m.c. cartridge and the RIAA input stage of the amplifier. Transformers can be quite good, and offer the lowest noise alternative, but they are often prone to induced mains hum pickup problems, and are felt by some to give some loss of musical detail.

To be adequate in this application, a separate head amplifier should have an input noise resistance which is preferably less than 30 ohms. Since a typical smallsignal transistor, in an optimized circuit configuration, would have an equivalent input noise which is probably around 300 ohms, one early approach to the solution of this problem was to design the input stage so that there were ten (or more) input transistors connected in parallel, each with its own input capacitor, emitter and base bias networks. However, this seemed a rather clumsy way of resolving the difficulty, and recent designs have, in general, relied on the use of single transistors having an adequately low effective input-noise resistance. In this context, it will be found that many of the $4-5$ ampere mediumpower transistors in the TO-126 and TO220 encapsulation make very satisfactory input devices for this type of circuit, though some experimentation to determine the best value of collector current is worthwhile if this area is explored.

The circuit shown in Fig. 18 is based on the use of a Motorola BD435, and the measured input noise resistance, with the input shorted, was within the range 20-25 ohms, at the maximum ($\times 60$) gain setting. The lower gain ($\times 30$) is selectable by the switch S_{28} and will probably be appropriate for most of the m.c. cartridges in the upper range of output levels. T.h.d. of this circuit is of the order of 0.03% at 100 mV r.m.s. output, and very much less than
this at the typical output levels in use. Very great care is necessary in the layout of the wiring to this unit, from the input sockets to the selector switch, and thence to the head amp. board, if 50 Hz induced hum is to be avoided. This will manifest itself as a hum-free output when the inputs are open but an annoying buzz when the low impedance cartridge is connected across these. The simplest answer would be to make the unit a separate add-on assembly, but it is practicable to build it in, if care is taken with the layout.

For similar reasons, and also to avoid including any unwanted noise currents in the input circuit, it is strongly recommended that single-point earthing is used, and a suitable p.c.b. layout is shown in Fig. 19. The input 5 V regulator prevents supply-line signal components from causing difficulties at the high-gain RIAA stage input. Because of the very low circuit impedances, no specific screening is necessary, though prudence suggested, in the prototype, that it should be mounted on the far side of a vertical metal plate from the remainder of the preamp. circuitry.

Stereo image-width module

It has been argued in these pages that for the optimum enjoyment in headphone listening some degree of blending of the two stereo channels is desirable, and there are other circumstances, such as the transfer of an original 'stereo' signal on to a single track of tape, where some mixing is necessary. There are many ways by which this could be done, but the circuit arrangement of Fig. 20(a) will work, and will give unity at all settings, and also a constant, low, output impedance.

The thought has long been in my mind that it would be an interesting experiment to try to enhance the image separation between a pair of stereo channels, in that this might make the same difference as an extra amount of money spent on a more carefully engineered pickup cartridge. The rather sinful thought was also in my mind that it might allow some entertaining effects, though these were not in the minds of the programme producers.

The type of circuit shown in Fig. 20(b) has long been known to instrumentation engineers as a means of reducing 'common mode' signals, and it would work, in the form shown, as a means of enhancing channel separation. The circuits of Figs. 20(a) and 20(b) could therefore be combined to give the variable blend - separate arrangement shown in Fig. 21, and this does indeed work as intended. The channel width control pots, $\mathrm{PR}_{8 \mathrm{a}-\mathrm{b}}$, are ganged so that both channels move inwards in synchronism, and the resistor R_{109} is inserted between the mid-points to prevent an excessive degree of separate signal enhancement. If a spare switch contact was available, this could be switched across in the 'blend' position to allow a true mono output.
The resistors $\mathrm{R}_{101}, 102,105$, 106 are to prevent the op-amp inputs from being open circuited during switching, and the resistors $\mathrm{R}_{103}, 104$ and capacitors $\mathrm{C}_{61}, 62$ are included (they have no effect on the per-

Fig. 18. Moving-coil pickup head amplifier. See text for advice on wiring.

Fig. 19. Board layout for circuit of Fig. 18.
formance of the circuit otherwise) to prevent the capacitance to earth of the necessary screened leads, leading to the 'channel-separation' potentiometer and 'blend/separate' switch, causing IC_{12} to become unstable at certain settings of PR_{8}.

In use, the circuit has proved quite interesting in the modifications which it has allowed to the channel separation 'as received'. On an f.m. radio signal, it is found that a noticeable reduction in background noise can sometimes be obtained by a small degree of blending between channels, without a major loss of 'stereo' effect. On the other hand, the increase in image width causes an increase in f.m. background noise, as expected. On records, or other low-noise programme sources (and my reactions to f.m. radio are somewhat influenced by the fact that my best 'local' station is 90 miles away) an increase in channel separation can have some quite dramatic effects, especially on 'pop' music (where the indignation of the purists will be deflected) and on 'electronic' music where a large degree of channel separation is often specially desired. Somewhat to my surprise, even with some degree of separation enhancement, the central image is still retained, apparently unaffected, even though the off-centre instrument locations

Fig. 20. Circuit to blend or separate stereo channels. Circuit at (a) mixes two channels, while (b) enhances separation.
are more definitely spread out, as the sound-stage is widened. It also makes my moving magnet cartridge sound rather more like my more expensive moving-coil unit.

Impulse-noise blanker module

Among my l.ps there are some, dating from the early to mid-1950s, which have acquired surface scratches which generate sufficiently loud 'crashes' from the speakers that the known advent of certain
damaged areas on the disc discourages the playing of otherwise artistically satisfying performances.

A commercial unit for 'eliminating' record scratch noises made a brief appearance some years ago, and stimulated my own interest in such a device. Having played with these circuits, my appreciation of the possibilities is now more firmly based, and is the reason for the inverted commas above (and perhaps the lack of commercial success of the equipment mar-

Fig. 21. Circuits in Fig. 20 combined to form complete 'image-width' module.
keted). There are many problems in this field, but perhaps the chief one is that there is no such thing as a standard scratch width. One consequence of this is that there is no universally appropriate length of time during which the signal feed through the amplifier should be suppressed.

Measurements on a number of scratched records (including one which was deliberately vandalized 'in the interests of science') showed noise pulse lengths ranging from about $0.3-7 \mathrm{~ms}$. Most of the minor, relatively low-amplitude ticks due to dust in the groove, or small groove wall blemishes - many of which were due to the impact of the stylus on a dust particle on a previous playing - lie within the range $0.3-1 \mathrm{~ms}$ duration. However, these are a lesser problem than those groove injuries which cause the loud and disconcerting bangs and crashes. These lie in the range $2-7 \mathrm{~ms}$, or sometimes even longer. If the system adopted is chosen to interrupt the signal path for the duration of the noise pulse, the question then arises as to what should be substituted for the signal during this period. If the length of noise blanking was, for example, 0.3 ms , then it would be feasible to hold the signal waveform at the point prior to the noise pulse to fill in the gap, but if the blanking duration were extended to 8 ms in order to cope with the worst-case noise pulse, which would by definition be the one that the user would most wish to avoid, then it would be very improbable that the signal waveform level would still be at the same point 8 ms later, which could give a larger discontinuity on restoration of signal than if a zero level had been substituted.

Fig. 22. 'Noise-blanker' circuit.

It will be appreciated from the foregoing that it is an unrealistic expectation to suppose that all noise pulses from this type of source can be excised silently and unobtrusively, unless one tailors the equipment to deal only with a certain very narrow class of minor defects. Within this limitation, however, it is possible to make a useful contribution to the comfort of the listener during the playing of records with this type of surface damage.
The circuit adopted, after a certain amount of experimentation during which my intentions were modified by experience, is shown in Fig. 22. In this, IC_{15} is a straightforward unity-gain, inverting amplifier with a junction fet acting as a switch in the input limb. Because of the very low signal voltages present at the 'virtual earth' input to the inverting amplifier, there is no significant signal modulation of the gatesource potential. Also, the small nonlinearity of the f.e.t. conducting resistance is swamped by the 33 k input limb resistor (R_{115}). For these reasons, the harmonic distortion of this circuit arrangement is very low (less than 0.01% at 10 V r.m.s. output). The input signals from both channels are passed, via an input differentiating network ($\mathrm{C}_{65}, 66$ and $\mathrm{R}_{109}, 110$) into the fast mixer IC_{142}, whose output is again differentiated and d.c.-restored across D_{9}. Because it cannot be specified in what phase the interfering noise pulse will occur, the input mixer $\mathrm{IC}_{14 \mathrm{a}}$ is followed by an inverter $\mathrm{IC}_{14 \mathrm{~b}}$, whose output is coupled through a similar differentiating network to the d.c.-restorer diode D_{10}.

These two positive-going noise spikes are added in the first Or gate of IC_{16} (a c.m.o.s. quad-Or), and fed to the second gate circuit which acts as a positive pulse generator, in which the output, once tripped by the input signal, is held high during the discharge cycle of C_{69} and R_{117}. The values chosen will give a pulse duration of about 8 ms , but this could be altered, at the discretion of the user, by his choice of the RC time-constant. This posi-tive-going pulse is applied simultaneously to the gates of the f.e.t. switches ($\mathrm{Tr}_{15},{ }_{16}$) in both channels, since it is improbable that only one channel will be affected by groove damage. However, this again is a decision the user may wish to make for himself, since a completely independent dual-channel unit with, perhaps, a variable blanking pulse length by adjustment to R_{117}, is certainly perfectly feasible.

As I had mentioned above, the question of what one should use to fill the excised gap in programme, is debatable. However, within the circuit, as it stands, there is the possibility of making the op-amp IC_{15} store a signal voltage level at the point at which it stood at the moment when the f.e.t. was made open-circuit (by the +15 V positive pulse applied to its gate), by returning the resistors $\mathrm{R}_{118}, 119$ to the points labelled P and Q in Fig. 22. This will make the 470 pF integrating capacitors have an effective time-constant, for holding the input signal voltage, of several seconds. This approach, though, may be without benefit except on short pulse excision times.
The question of whether it would be
useful to have some type of signal delay in the line, to allow the pulse generator to operate prior to the arrival of the noise spike on the signal line, was decided, mainly on grounds of cost and signal distortion, in favour of the simple integration capacitor across the inverting amplifier, which somewhat 'slugs' this in comparison with the noise pulse detection circuits built around IC_{14}. The threshold trigger level is adjustable by PR, and for best results should be set so that the circuit will just trip on the incoming noise pulse. The third Or gate is used to drive an led to give a visual indication of the action of the circuit. To make the flash more readily visible, this gate is also connected to act as a pulse-lengthener, giving an output pulse length of about 200 ms . This led also allows the user to check that the pulseblanking circuit is not operating at unwanted times on legitimate signal transients.

After all this, the question must be asked: How effective is it in use? I must confess, after a lot of experimentation, that I was a little disappointed that it was not possible to make a circuit which will remove all clicks unobtrusively. It is certainly possible to remove some of them, in that the led will occasionally flash, when the circuit is in use, without the cause having been audible at all. On the other

Fig. 23. Simple signal-level meter (one for each channel).

Fig. 24. Recommended supply distribution method to avoid inter-module supply coupling.
hand, even while dealing with a continuous range of scratch widths, which is typical of any normal scratched record, a correct trigger setting will give a substantial improvement. For example, on an early record of the Sibelius 2nd symphony - rather badly affected by the passage of the years - with a volume control setting chosen so that the maximum peak signal levels, as determined by a commercial Instantaneous Peak Drive Indicator, lay between 1-3 watts, some of the noises associated with scratches gave rise to peak drive levels in the range $10-30$ watts, which although brief in duration, were predictably disconcerting to listen to. With the noise blanker module in use, at the same volume control settings, the peak noise levels registered were less than 1 watt, and were occasionally quite inaudible, at trigger level settings which were chosen so that no spurious triggering occurred on programme.

After the construction of this preamp, and the subsequent completion of the circuit description given above, it had been my intention simply to sit back and enjoy the use of it as a rather better and more versatile addition to the domestic record playing equipment, while I returned to other more pressing, if less enjoyable, domestic tasks. However, an unresolved question still remained as to whether, within the limitations of the relatively simple circuit arrangement shown in Fig. 22 , it would be possible to organize the circuit time-constants so as to remove the minor, but irritating, ticks and pops due to dust, or the imprints on the groove walls of former particles trapped during previous playings, which measurements had indicated would lie in the 0.3 -1ms duration, so some further experiments were made.

By making R_{117} a variable resistor, it was practicable to provide an adjustable blanking period, with the input ends of R_{118} and R_{119} connected to points ' P ' and ' Q ' so that the signal level was held during the noise pulse at the previously existing potential.

The problem then remained of ensuring that the trip circuit would trigger on the arrival of the unwanted noise pulse due to the dust particle, without triggering on wanted signals.

To be continued

Fig. 25. Socket wiring scheme.

$$
\begin{aligned} & \text { invar } \\ & \text { Philips } \end{aligned}
$$

niliss p^{40}
erseratos pulse

smart Counters lab and perpormadecade counters lab
for your field
in the

 op and

$$
\begin{aligned}
& \text { 蜜 } \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$ $\sum_{2} 248.00$

$$
\begin{aligned}
& \text { Ritips }
\end{aligned}
$$

Tracking digital filters for servosystems

Synchronous generation and filtering provides accurate feedback conditioning over wide frequency range.

For a discrete-time filter algorithm, the frequency response effected is necessarily relative to the sampling frequency, which need not remain constant. This is inherently exploited in "data processing" but its potential in real time to achieve tracking of frequency response to frequencies of interest is rarely mentioned. In cases where tracking filters have been employed, the appropriate variable sampling rate has usually been generated artificially by circuitry specific to the application. The weakness of this approach is that small deviations in the sampling frequency can often cause unacceptably rapid phase changes in a sharp filter response. Outlined below is a generalized system philosophy for use in servo-control wherever the driving signal is periodic and relative feedback conditioning is desirable.
Fig. 1 depicts the generalized synchro-nous-generation-and-filtering type of approach. The master clock frequency may vary with time in any fashion - linear, logarithmic, repetitively, randomly swept or even stepped - according to the application. This clock defines both the period of the driving waveform and the sampling rate of the feedback filter, thus guaranteeing accurate tracking of the effective filter frequency response with the driving frequency spectrum over a range limited only by hardware capability. Careful design of the filter algorithm permits any form of harmonic cut or particular harmonic selection in the feedback signal. Most notably, many servosystems are driven by sinusoidal functions and generate harmonics which cannot be removed and are unwanted information in the feedback path. SGF permits precision feedback of only f_{0} components, but anti-aliasing filters must be included with some degree of lowtolerance tracking depending on the range required.

The potential is illustrated by the following example.

Application to seismic vibrators

In one form of seismic survey, several hydraulic servosystems are simultaneouly vibrated over a swept frequency range of $7: 1$ or more. Closed-loop phase compensation is necessary within each vibrator due to the considerable errors introduced by the compressability of hydraulic fluid and by driftcompensation mechanisms. Problems arise in that non-linear couplings between each

by J. J. Tait

servo and the ground being driven cause heavy harmonic distortion in the mechanical output and plague attempts to keep the fundamental component in phase using any ordinary phase detection technique. The second and third harmonics are particularly troublesome and obviously cannot be removed by fixed filtering.

Distortion in itself is not a problem as reflected signals are later correlated against the "pilot" signal, but it is imperative that each vibrator's fundamental component remain accurately in phase with this pilot.) An SGF filter is thus used to block harmonics in the feedback path over the entire sweep range, with the master clock inputting samples to an interrupt-driven, microprocessor-based type of low-pass digital filter.

Implementation

Fig. 2 depicts the filter system for seismic vibrators and similar servosystems. Fig. 3

Fig. 1. In this "synchronous generation and filtering" approach the clock frequency defines sampling rate of feedback filter.

Fig. 3. Non-recursive interrupt-driven filter program with cyclic sample storage in ram.

Fig. 2. An SGF filter block harmonics in the feedback path over the sweep range.

The inherent consistency of phase and amplitude response as the fundamental sweeps and the absence of regular calibration make digital filtering a far better prospect than any sophisticated analogue equivalent. There are doubtless a multitude of applications in control engineering, research, design and testing where this general system concept will prove to be an extremely useful tool. Possible applications include impulse response measurement within noisy systems by correlated frequency insertion, start-up and subsequent phasematching of synchronous motors to mains supplies, variable-speed tape decks, as well as frequency coding, numerical control and power generation.

is a typical non-recursive, interrupt-driven filter program with cyclic sample storage in ram. It is important that the latest output sample only be released on arrival of the next input sample, creating a fixed additional phase lag equal to $2 \pi \mathrm{~m} / \mathrm{n}$ radians at f_{0} where n / m is the number of

Fig. 4.Filter response is calculated to give phase lead of $2 \pi \mathrm{~m} / \mathrm{n}$, to cancel lag in Fig. 3.
filter samples per fundamental period. (Immediate release of the latest sample would give a fixed time delay between input and output of the filter, constituting a sampling frequency-dependent phase lag significant at high frequencies.) Careful calculation of filter response to give a phase lead of $2 \pi \mathrm{~m} / \mathrm{n}$ at f_{0} yields zero overall phase change. This is generally very much easier to do with non-recursive algorithms and there is the bonus of guaranteed stability. Fig. 4 shows such a response calculated for $\mathrm{n} / \mathrm{m}=20$, i.e. a phase lead of 18 degrees at f_{0}, derived from two ideal band-passes and limited to 26 coefficients by application of a Hamming window. Also tabulated are the coefficients for 16bit operation. Second and third harmonics are cut by 28 dB and 35 dB respectively, and the simple phase detection circuitry is then able to maintain phase accuracy of the mechanical output to the order of a few degrees.

Any microprocessor's operating speed is severely limited by multiplying algorithms and a parallel array multiplier such as the MPY8AJ from TRW is needed as an addressable device. For example, working in 16bit arithmetic and with 20 filter coefficients a 280 A alone could only handle sampling rates up to about 100 Hz , useful for frequencies up to, say, 5 Hz . With an addressable multiplier its capability is extended to well above 1 kHz sampling. Still higher rates require micro-programmable logic, possibly with a microprocessor to handle power-up loading, house-keeping, normalization and transient pick-up. Low sample rates can be enhanced by use of linear interpolation circuitry as shown in Fig. 5; this is itself a discrete-time analogue filter and its frequency response must be taken into consideration.

Fig 5. Low sampling rates can be improved on by linear interpolation circuit, itself a discrete-time analogue filter.

Electronic
 breath
 analyser

A new instrument can give a breath analysis which is as accurate in its estimation of the alcohol blood level as a laboratory tested blood sample. It has the advantage of giving a virtually instant result.

It uses an absorption line in the infrared, and the various steps in the measurement sequence are controlled by a microprocessor. There are four fundamental steps, two measurements on the subject's breath and two on a mixture of inert gas and ethanol at a reference concentration. The measurements are interleaved, so the instrument is in effect recalibrated for each measurement, and the effect of any zero drift is eliminated. The microprocessor ensures that the absorption chamber is purged with clean air between the steps: it also receives signals that satisfactory samples have been taken, and if not, lights a warning lamp so that the step may be repeated. Apart from this the whole sequence is effectively automatic, and the instrument does not require a medically or scientifically trained operator.

The infra-red radiation passing through the sample is chopped with a rotating sector plate, and filtered to a narrow band around the absorption line. The detector is followed by an amplifier and synchronous (i.e. phase-sensitive) detector, and the rectified analogue quantities obtained passed to an a-to-d converter and stored. The stored numbers are then manipulated by the microprocessor to give an answer in the desired units. Accuracy throughout is up to that of eight-bit arithmetic.
The answer appears on an l.e.d. display and also as hard copy as a print out on a strip of paper, a form free from human error and therefore suitable for presentation as evidence in court. Normally four copies of the print-out will be provided. An internal quartz clock allows the printout automatically to carry the time and date. The instrument is mains-driven and will normally be left switched-on continuously: an internal secondary battery gives a 4-hour carry over of time and date information if there is a mains failure.
Marshall Wood of Croft-on-Tees, Darlington, are the design consultants for the project, and will be manufacturing the units for Camic, of North Shields, a firm of automobile gas analysers.

- The manufacturers said recently that they expect every police force in the country will have such a device by the end of the year. This statement was considered reasonable by the Home Office who add that Lion Laboratories, as well as Camic, have approval to supply these "evidential. breath-testing devices", not to be confused with electronic screening devices currently used.

Dividing by fractions

Main feature of this circuit for dividing by fractions is its wide frequency range. It uses two 4722B programmable timers and a 4046 B phase-locked loop i.c. allowing direct multiplication of the input frequency by a fraction. The timer section is connected for harmonic synchronization.
Output frequency of the first timer f_{01} is

$$
f_{o l}=\frac{m}{M+1} f_{i n}
$$

where $1 \leqslant \mathrm{~m} \leqslant 10$ is the harmonic number and $1 \leqslant M \leqslant 255$ is the programmed counter
modulus. For the second timer

$$
f_{o 2}=\frac{m}{N+1} f_{\text {out }}
$$

As $f_{01}=f_{02}$ is a function of the p.l.1.,

$$
\mathrm{f}_{\text {out }}=\frac{\mathrm{N}+1}{\mathrm{M}+1} \mathrm{f}_{\text {in }}
$$

So the input signal is multiplied by a fraction $(\mathrm{N}+1) /(\mathrm{M}+1)$ and 65025 is the number of possible frequencies.

Kamil Kraus
Rokycany
Czechoslovakia

Electronic contact breaker

Using the on-state characteristic of vmos fets to provide a constant-current source, this circuit provides dynamic ballast and eliminates the need for a ballast resistor. This means that the optimum primary-coil current is adjusted automatically to compensate for supply voltage variations which is particularly useful when starting with an almost flat battery. A faster build up of
current through the coil at high engine speeds is inherent, as vmos devices present a low on-resistance until a preset current limit is reached, hence reducing the drop in spark voltage. This ability to maintain a high spark voltage at high engine speeds is also a feature of capacitor-discharge systems but these have the disadvantage of increased complexity. Suitable vmos devices are, however, still fairly expensive.
M. J. Hooper

Coventry

Bicycle lighting

A simple circuit combines battery and dynamo bicycle lighting and uses the high internal inductance of the dynamo to give good current regulation when driving a low-resistance load. Measurements on a Lucifer dynamo* with a nominal and normal output of $6 \mathrm{~V}, 3 \mathrm{~W}$ gave characteristics shown in the graph. Together with the non-linear bulb resistance, this gives a

fairly constant load current of about 0.5A so a slightly smaller front-lamp bulb using 100 mA less current allows a NiCd back-up. battery to be charged.
The dynamo is isolated from the bicycle frame by, say, a piece of rubber tubing and the battery, designed to be charged continuously at 100 mA , supplies the lights for at least 30 min when fully charged. The double-pole switch prevents excessive charging which would occur when the lights are off and the dynamo running. Open-circuit bulbs should be replaced promptly and shorting of the cells is to be avoided; a fuse will protect cells from acci-
dents occurring when they are fitted.
Increased efficiency can be obtained by replacing the four diodes shown in the bridge by Schottky types such as BYV19s. This system has been used for an hour a day for several months without problem.
R. J. Grover

Manchester

* Measurements of speed vs voltage for a Miller dynamo are included in the first of two letters, in the October 1978 and fanuary 1979 issues, discussing B. J. Pollard's circuit idea of fune 1978.

5×1 N500AAF
NiCd cells HP7 size

Multiple-line telephone indicator

Incoming calls are indicated using this monitor circuit which detects bell voltages greater than 3 V alternating on any line. An audible alarm and light-emitting diode indicate an incoming call while other l.e.ds indicated which line the call is on. Alarm signals are held by the circuit for a few seconds to help the operator identify the line concerned. Six lines are used in the prototype, each with an identical input circuit and individual opto-coupler to isolate the circuit from the lines. Parallel connection of the lines with possible signal detereoration and loss of privacy is not required.

Each input has a $2 \mu \mathrm{~F}$ blocking capacitor and $10 \mathrm{k} \Omega$ resistor to reduce line shunting. This results in a low opto-coupler transfer ratio - compensated by a $10 \mathrm{M} \Omega$ resistor on the output transistor collector. Delayed switching is provided by a $1 \mu \mathrm{~F}$ capacitor over the opto-device output transistor to continue the indication for about 10 s after the incoming signal ceases. Less than half a second passes before the circuit responds to an incoming signal. Light-emitting diodes indicate the incoming signal, the delay period and the presence of a signal on any line at the output of the gate.

Simple expansions envisaged are increasing the number of input lines, using the output to drive a relay switching bells and/or lamps, and battery back up.
H. T. Wynne

Glasgow

Short-circuit locator with navigation aid

On complicated circuit boards especially those using buses, only half the job of short-circuit location is finding on which track the fault lies. Where the short is not visible the only way of finding it may be to cut tracks until the node concerned is isolated. This circuit is the simplest and most effective solution found while attempting to locate such a fault without cutting tracks.
To use the probes, current must flow through the tracks containing the short, see diagram. Where tracks are arranged as
a grid, as on memory boards, a voltage applied to any two tracks on the array is sufficient; with open-ended tracks, the supply is connected to each end of the track. The probes are placed on the track a short distance apart and the l.e.d. indications noted. When the voltage of probe 1 is higher than that of probe 2 , the red diode lights and when the polarity of the voltage across the probes is reversed the green diode lights; equal probe voltages may cause both to light. Shorts are located by moving the probes along the track and observing where the indication changes.

Experiments with 25μ m-thick copper layers on p.c.bs with a standard reflow solder thickness showed that 0.38 mm wide tracks have a resistance of about $15.7 \mathrm{~m} \Omega / \mathrm{cm}$. A current of between 40 and 50 mA through the track provides sufficient voltage to operate the indicator with probes about 1 cm apart. Solder layer I use is about $15 \mu \mathrm{~m}$ thick and has 11.5% the conductivity of the copper. Calculated value for bare tracks of $12.2 \mathrm{~m} \Omega / \mathrm{cm}$ and measured value of $15.7 \mathrm{~m} \Omega / \mathrm{cm}$ with solder suggest that this layer may be neglected. Suitably modified, either the probe supply or a 5 V source from the board under test may provide the test voltage.

Within two minutes, this method located a short on a 32 -i.c. memory board which eluded all attempts using standard methods.

J. E. Tully

Stourbridge
Worcs

Binary-to-ascii converter

Unable to locate a miniature four-digit hexadecimal display, I devised this circuit to convert four-bit hexadecimal words into their seven-bit ascii equivalent to drive displays such as the DL414.

Z80-based 2516 programmer

Grayson noticed that the software he sent us for an eprom programmer to attach to the Wireless World scientific computer (Circuit Ideas, November 1982) was an early version and has a basic error despite the fact that it was given in assembly lan-
guage. The subroutine at 0380 assumes that DE contains the current screen location, but this location is used as the ram pointer.

This routine uses BC as the ram pointer and checks data for FF bytes which need not be programmed. Verification is performed to ensure that the eprom location has been properly erased i.e. reads FF.

010010	LD BC, 1000	Start of ram Start of eprom
210060	LD HL, 6000	
0A		
FE FF	LD A, (BC)	Get byte from ram
2801	CP FF	Is if FF?
77	JRZ, 01	Yes, skip programming
BE	LD(HL), A	Otherwise program byte
2804	CP(HL)	Verify eprom byte
CD 80 803	CALL 0380	OK, jump
C7	RST 00	Otherwise CR and print HL
03		Return to monitor
23	INC BC	Point to next ram byte
78	INC HL	Point to next eprom location
FE 18	LD A, B	Get high byte of ram pointer
20 EC	CP 18	Finished?
C7	JRNZ, EC	No, loop
	RST 00	Otherwise return to monitor

Binary input is fed to a 4008 four-bit full adder, the output of which is equal to the input for values of less than nine. Three upper bits of the ascii word are provided by a 4585 magnitue comparator, whose outputs change from ascii three to four when the input exceeds nine. At the same time the two's complement of nine is added to the input resulting in the subtraction of nine from the four low-order output bits (see table).
I. Macalindin

Cupar
Fife

Input word	ASCII output	Hex display
0000	30	0
001	31	1
\vdots	\vdots	\vdots
1001	39	9
1010	41	A
\vdots	\vdots	\vdots
1111	46	\dot{F}

Don't waste good ideas

We prefer circuit ideas with neat drawings and widely-spaced typescripts, but we would rather have scribbles on "the back of an envelope" than let good ideas be wasted.
Submissions are judged on originality or usefulness - not excluding imaginative modifications to existing circuits - so these points should be brought to the fore, preferably in the first sentence. Minimum payment of $£ 20$ is made for published circuits, normally early in the month following publication.

Quantization and quantization

Abstract

The discussion broadens to encompass "matter" in addition to "radiation", by examining what the term quantization means. Dr Murray discovers a novel and important method of distinguishing between science fact (physics) and abstraction (metaphysics).

I am in favour of realism in physical thinking, and against twentieth-century mysticism. The doctrine of the duality of light as currently taught to physics students - that light consists sometimes of waves and sometimes of particles or "quanta", even though its wave particle forms are incompatible and mutually exclusive - strikes me as mysticism of the most blatant kind. I have suggested resurrecting an alternative view, attributable to Einstein, that light "waves" as inferred experimentally are manifestations of systematic variations in space and time of the density of photons: that is to say parti-cle-like entities carrying energy and momentum' and travelling at the speed of light. The proposal leads to simple explanations of many well-known phenomena of light, but one is not surprised to find it in sharp conflict with electromagnetic theory.

Whether or not this particular alternative to electromagnetics and the duality doctrine, which may be called the photonwaves concept, will stand up to meticulous scientific inquisition is not at this moment of very great consequence since other alternatives are to hand, although perhaps none has quite the same appeal of simplicity. The concept could be tested experimentally and it would be prudent to speculate no further until the suggested experiments have been performed. I propose now to leave the paradox of the duality of light and to refer to it only in the context of its effect on the remainder of modern physics - in particular in the context of the consequential and even more mystical postulate of the duality of matter.

From now on in this review the terms quantum theory, quantum mechanics, and quantization will appear frequently, so it would be convenient to begin by defining what they mean. Unfortunately that is not easy, because they mean different things to different people and sometimes - shades of duality! - they even mean different
things to the same person at different times or even at the same time. We are about to enter territory where "double-think" is the rule rather than the exception, and my purpose is, so far as I am able, to hack a path of old-fashioned scientific realism through a mystical jungle of confusions, non-sequiturs, and straight logical impossibilities. There are at least three different current uses of the word quantization, and we shall be philosophically safer if we understand what each of them means, how they differ from each other, and why.

by W. A. Scott Murray B.Sc., Ph. D.

The first "quantization" to see the light of print was probably the one connected with Planck's original quantum hypothesis. It can be discussed in terms of a famous thought-experiment that we shall return to later in another context. Visualize, if you please, a beam of light falling to a half-silvered mirror set at an oblique angle to the beam. Of the light which falls on the mirror, some is reflected and enters a detector which we may consider to be an ideal photoelectric cell; the rest passes through the mirror and continues straight on indefinitely, into deepest space beyond our ken. The question being asked is, how much of the light is reflected into the detector, and how much is transmitted away and for ever lost to us?

For so long as light was believed to consist of electro-magnetic waves in an ether fluid there was no problem here; there was no restriction on the relative heights (amplitudes) of the reflected and transmitted wave crests. The reflected wave could be increased and the transmitted wave could correspondingly be decreased by any amount desired; in particular, there was
nothing to prevent an adjustment being as small as one chose to make it. In mathematical terms we say that the light intensity, being the square of wave amplitude, could be changed continuously. By way of contrast, if light energy is really packaged into quanta as the experimental evidence so clearly demands, then the smallest adjustment that can be made is when one quantum, which was otherwise to have been transmitted and lost, is now reflected (and therefore detected) instead. The' smallest possible change is now finite one quantum - and we say that such changes are mathematically discontinuous.

Now if the light beam is bright enough to be visible, so that millions of quanta are being detected every micro-second, the gain or loss of one quantum isn't going to make much practical difference: the change of intensity is still effectively continuous. That is no longer so however in cases where quanta are in short supply (as in very weak light or in the case of very energetic quanta such as gamma rays). In the ultimate case, if there is only one quantum present the question of whether it is reflected or transmitted is unequivocal: either it is reflected and detected or it isn't, 1 or 0 , yes or no. This is quantization type one. It arises because light comes in the form of discrete particles or quanta and is not wavelike. There is nothing indeterminate or hazy about it; it must be one of the most precise processes we can possibly imagine.
We can, if we insist on doing so, muddy these clear waters with a fog of irrelevances: we can say, truthfully, that the outcome is in doubt before the event, because we cannot predict before the event whether that particular quantum will be reflected or transmitted by the mirror. From this it is usually argued, according to established physical doctrinę, and I hold - utterly in error - that our inability to predict the outcome is proof that the
mechanism of the reflection of light by the mirror is fundamentally "indeterminate". For the moment I will suggest two thoughts to ponder on this issue, one old and one new.
The older thought is that we cannot predict which way a particular quantum will go because we don't know about the conditions of its encounter with the mirror surface in sufficient detail; for instance, we don't know beforehand whether it will hit one of the silver atoms or pass between them. As we shall discover when we come to discuss Heisenberg's "indeterminacy principle", there are good, non-mystical reasons why we cannot predict whether or not it will hit a silver atom; but broadly speaking, and without yet defining too tightly what we mean by hitting and missing, it is reasonable to say that those quanta that hit will be reflected, and those that miss will pass through. There would seem to be a fairly obvious causal connection here between hitting and bouncing, or missing and penetrating. The mere fact that we humans cannot predict the outcome in a particular case - because we are unable to measure its initial conditions - does not imply that the reflection process at the mirror surface is imprecise or indeterminate in any way. How could it imply that?

The new thought I introduce (at any rate I believe it to be a new thought) is this: there is no indication anywhere in physics that Nature ever makes a prediction! The whole idea of prediction is foreign to Nature and introduced by Man. It is in the nature of living matter - at all levels - to build enzymes, protein-coats, nests, aqueducts and aeroplanes for its own convenience. It does this by decreasing entropy locally at the expense of its environment (eg. energy profligacy, pollution), without violating the second law of thermodynamics overall. The desire to make predictions as an essential element in the management of one's surroundings is seen to be merely one aspect of this characteristic of life. Decisions which follow are not necessarily rational, nor are consequent actions always "determinate".
In clear contrast to this, all the evidence of observational and experimental physics tells us that inanimate Nature, the Nature of the physicist, takes no account of the future or of the past but "lives only for the present". The outcome of a physical interaction would seem always to be the strictly causal result of the integration of the conservation laws (expressed in terms of physical forces) over the ever-changing total situation at time now. The futuristic concepts of "will", "purpose", "intent", and also "prediction", are non-physical attributes of living matter, and physical Nature is not concerned with them. In line with ordinary linguistic usage we may properly call concepts of this kind metaphysical - transcending physics. This is the sense in which I shall use the word metaphysics from now on.

Once we have understood that prediction, the greatest aim of all science, does not in fact form part of the working of the kind of Nature with which physical science
is concerned, a major source of confusion is identified and dealt with. It becomes easier to put our inability to make certain kinds of prediction, especially in the microphysical domain, into its proper perspective. Nature can get on very well without us! Overwhelming experimental evidence supports the view that the principal denizens of this smallest domain, atoms and molecules, protons and neutrons, electrons and light quanta (or photons), are quantized in the sense used originally by Planck: they are discrete, physical entities having real, free-standing existence independently of each other and of any observer, human or deputy. Moreover, the fact that an electron is so light that we cannot measure exactly where it is without disturbing it does not mean that the electron's location is not precisely defined; nor does it require that there must be anything indeterminate about the electron itself as a particle, or about its interactions with other particles. A lot of nonsense has been written about such things, by people who should have known better.

I have been labouring these issues because conventional doctrine takes the diametrically opposite view of every one of them. We shall discover the reasons for this when we come to review the origins of the quantum-mechanical theory. The point we have picked up here is that the word 'determinate" is not synonymous with "predictable by mankind". The arrogant assumption that it is has given rise to much philosophical trouble in physics. Let us be clear about our own humble position in the scheme of things: we may not be able to predict the reflection or transmission of any particular photon, but there is every reason to suppose that the behaviour of that photon is determined, and precisely determined, by causality and the conservation laws. Certainly there is no experimental evidence to suggest that it is not, whatever current doctrine, dogma, or "theory" may say.

So there we are. We have examined one meaning of the word quantization and found that it has to do with the essential granularity of microphysics. Electrons and photons behave like very tiny particles. Either you detect them or you don't: you never detect half an electron or three-quarters of a photon. That is all there is to it. Whether or not one can predict the outcome of a microphysical event is a completely different ball-game; the limiting accuracy of our predictions has nothing to do with whether light consists of particles or of waves. There really is nothing mystical here, and we need not be confused about it unless we choose to be.

The second historical meaning of quantization arose out of a famous piece of fundamental work by Niels Bohr. Visiting Manchester as a young exchange student, he came across the experiments and reasoning that led to Rutherford's atomic model - negatively-charged electrons circulating perpetually like tiny planets around a heavy, positively-charged nucleus. He also found that Rutherford's very clever and competent research team
were stuck on two points which threatened to wreck their pretty model. There seemed to be no reason why the electrons should circulate in those particular orbits whose frequencies corresponded to the observed spectra of the light emitted by the atoms; and there seemed to be nothing to prevent an atomic system from running down like an unwound clock, as the electrons radiated their orbital energy away into space. The last-mentioned effect was predicted by the all-powerful electromag. netic theory on the grounds that a circulating electron is an "accelerated point charge", which according to that theory must radiate continuously. (Between ourseives, you may recall, we have grounds for believing that electromagnetic theory may have been wrong on that point, but that wasn't suspected in 1912 and we needn't go into its consequences until we are ready.)

Bohr was unusually well-placed to tackle these problems because he had recently made an advanced study of Planck's stillnew quantum hypothesis, which said that (contrary to another statement of electromagnetic theory) the evidence of experiment is that light energy is not radiated continuously but in discrete packages. Bohr applied this as-yet unexplained hypothesis to the Rutherford atom, but in so doing he also applied a completely new and additional postulate of his own. "Light energy is quantized into packages; how would it be if all energy were quantized into packages?" he generalized.

As a first shot one could postulate that the energies of electrons in atomic orbits were quantized in this way, by assuming that only certain discrete energy-levels or states were permitted inside the atom. Inevitably, this postulate enabled the atomic spectra to be explained in principle; but the explanation was a brute-force one, ad hoc and untidy, since the packages of energy turned out to be of differing, awkward sizes. Bohr then examined the other properties of these permitted orbits and found that their angular momenta progressed evenly, in equal steps; always and for all atoms the step size was the same curious quantity $h / 2 \pi$. (For the specialist I will remark that this h is Planck's constant, as derived in his quantum hypothesis, while the 2π converts the dimensions of h from those of "action" - erg-seconds - to those of anular momentum). Atomic spectra could now be calculated from the Rutherford atomic model on the basis that the angular momenta of the planetary electrons, rather than their orbital energies, were quantized into systematic, discrete values. No explanation was offered by Bohr as to why angular momentum should be quantized: the assumption was to be justified by its spectacular results.

There can be no disputing the brilliance of this piece of work by Bohr in the year 1913, and what I next have to say must not be construed as detracting from it. That is not my intention. I wish merely to pinpoint what Bohr actually did.

Planck's quantization (type one) we have already found to mean simply that light
continued on page 73

IDEAS FORUM

On a number of occasions I have found that noone makes quite the component I would have liked for an application, and that the design solution turns out to be disappointingly complicated for no other reason. Often in such a case the device could be a Schottky t.t.l. or c.m.o.s i.c. and would simply be a rearrangement of onchip components or gates already well-proven. This means that development of the chip should not pose any serious problems and the device could be manufactured easily enough.
This letter has been triggered by one such example. I am currently designing some equipment involving logic working from a +5 V supply, and some audio circuits. To keep costs down, the audio circuits use $\pm 5 \mathrm{~V}$ supplies, requiring only the addition of an extra fairly small -5 V supply derived from the same centretapped transformer secondary. The logic controls the audio by c.m.o.s. switches, either 4016 or 4066 , with $V_{D D}$ and $V_{S S}$ at +5 V and -5 V .

Now the rub is that level shifters are needed to translate Schottky t.t.l. signals to $\pm 5 \mathrm{~V}$ logic swings needed by the analogue switches. This is not terribly hard; a p-n-p transistor and three resistors do the job (Fig. 1), but this niggles the switches themselves, and the number of them - four transistors and 12 resistors per switch package - increases manufacturing costs.

What makes the situation most frustrating is that the i.c. manufacturers have themselves already solved the problem elsewhere in the 4051, 4052 , and 4053. These i.cs are cheap, and contain 4066-type switches and level shifters which do exactly the job I need done. They also contain a few gates, but that is not too relevant to this point, except that gates can also be included easily

The conclusion is obvious. Take a 4066. Put it in a 16 -pin package instead and add the third V_{EE} power supply pin and level shifters. This leaves one pin spare, and the only remaining question is what to do with it (leaving pins unsued is in my view a crime). It is not necessary to look very far for a solution to this! Some of my switches are controlled directly by microprocessor output port bits. If the switch i.cs also contained transparent input latches with the remaining pin as a strobe (active low to connect directly to the address decoder), they could interface directly with the data bus and save me the cost of a port register as well! For situations where the switches are to be controlled directly by the input lines, the strobe is simply tied permanently low.

Thus arose my invaluable but cheap, and unfortunately imaginary, analogue switch i.c. (Fig. 2), with d.c. specification basically those of the $4051 / 2 / 3$. They'd sell millions, and I could have been happier.

All this brings me to wonder how often other WW readers have had comparable thoughts in different applications, and whether WW could usefully serve both i.c. manufacturers and users by providing a forum for such ideas, perhaps as an extension to the Circuit Ideas columns. I would love to hear comments from $W W$,* its readers, and the manufacturers on this.

Finally, in fairness to Analogue Devices, I must point out that the AD7590 does pretty well exactly the job mine does, but compared with 4000 -series switches it is a relatively expensive high performance device capable of operating from $\pm 16 \mathrm{~V}$ supplies

Alan Robinson

London N11

* We will gladly collect together readers problems, and solutions where proffered, in a regu lar way given encouraging response - ed.

CLASS S

Mr Allinson's interesting letter (December) raises several points. I deal with them under his numbering.

1. Another altogether different class S may have been invented by B. D. Bedford in 1932 but neither I nor anyone I know had heard of it. As recycling and conservation is now in fashion I suggest that we recycle Mr Bedford's class S and associate the name with my circuit on the grounds of under-utilization!

From Mr Allinson's description the Bedford circuit sounds like class C with a filter added, hardly worth a class name to itself.
2. A2 may be a variant of the Howland circuit but it is novel, although the really novel feature of the scheme is the paralleling of the voltage and current drives to a load for the first time. However as now appears the voltage amplifier, far from being irrelevant, is vital.
3. Because the voltage source with its very low impedance is connected directly to the noninverting input (my Fig. 4), A2 has no positive feedback applied to it. It is thus inherently stable.
4. Mr Allinson's figures of an improvement of 280 times or 49 dB runs counter to his general argument and strongly support the worth of the scheme. It is quite true that during the crossover region the load seen by A1 drops to about that of the load proper. But provided that the voltage amplifier can handle this i.e. that its output impedance is low, a quite achieveable target, the spikes can be negligable. There is of course nothing to stop A2 being designed with less crossover distortion. Contrary to the belief of British industry's managers, we design engineers have to pay our telephone bills in cash and
even eat sometimes and so commercial considerations stop me publishing an improved and more practical class S circuit!
5. This in the conventional sense is not a multiloop amplifier. Finally I stand by my equations which clearly show that the problem of distortion can be pushed onto the voltage amplifier with all the advantages this has
A. Sandman

London NW3

FREE SATELLITE TV?

When satellite television finally arrives, and I point my dish skywards, and only watch foreign broadcasts, will I still need to take out a licence?

Logic tells me "No, of course not", but a lifeume's experience of paying taxes on this sceptred isle makes me hazard a guess that I'll be required to take out not one - but two of them!
Douglas Byrne
Ryde, IoW

HERETICS GUIDE TO MODERN PHYSICS

I would like to echo M. G. Wellard's approval of the open-minded attitude taken by Dr Murray in his articles. I think, though, that he (Wellard) is being somewhat hard on Cerenkov and, for that matter, the Nobel Award Committee, my understanding of the situation is this. The speed of light is

$$
c=\frac{1}{V \mu_{0} \mu_{\mathrm{r}} \epsilon_{0} \epsilon_{\mathrm{r}}}
$$

For light in free space, μ_{r} and ϵ_{r} are unity. This is the value for c used in the calculation for relativistic mass, and so on.
In the case of a medium other than free space μ_{r} and ϵ_{r} are greater than unity resulting in the speed of light through that medium being reduced.

This means that a particle can travel through that medium faster than light can without violating relativity.

It seems straightforward to me, or is this kind of idea going to come under the scrutiny of Dr Murray?
B. D. Runagle

Burton on Trent
Several readers rose to the defence of the "crank Cerenkov", and I must apologise for drawing them into my private war with the Establishment. They all gave the official explanation of why the Cerenkov effect does not invalidate special relativity. B. G. Bainbridge, B. J. C. Burrows, F. MacAlister and K. Wood all wrote briefly. J. S. Lindfoot hopes being a heretic will not exempt contributors from the standard of competence expected from others. D. RawsonHarris dealt at some length with Dr Murray's Heretic's Guide.
My letter was a reaction to a book I had read through several times very carefully. The book, Fiction Stranger Than Truth, is published in Australia by N. Rudakov. The Fiction of the book's title is Einstein's theory of special relativity. Rudakov has dissected Einstein's 1905 paper with the skill of a surgeon, phrase by phrase, sentence by sentence, and equation by equation. His book is not suitable reading for ardent Relativists. He begins with a comprehen-
sive analysis of the Establishment's success in repressing all forms of criticism of its heroes and their theories, and he has collected, over a period of many years, more than enough evi dence to show that the physics Establishment is in the hands of ideological extremists. Rudakov cites a review of H. Aspden's book, Modern Aether Science: Aspden is a crackpot, it says, and his book should not be acquired by libraries.

As Rudakov mentioned the Establishment's treatment of the late Herbert Dingle, I have since read Dingle's book Science at the Crossroads. This is a chronicle of Dingle's failure to extract from individual members of the Establishment, a simple answer to a simple question. His last failure was recorded in Wireless World July 1981 under the name of Wilkie. I first suspected the Establishment might be exhibiting symptoms common to all totalitarian states when I read in Relativity and Time Signals by L. Essen (Wireless World, September 1978) "The theory is so rigidly held that young scientists who have any regard for their careers dare not openly express their doubts." McCausland, in his comments accompany Dingle's article (October 1980) mentioned the "special provision" of editors of journals swearing allegiance to the Establishment, and quoted an article by Davies "Why Pick on Einstein" published in New Scientist. The New Scientist later published a short article summarising letters arising from Davies's article, headed Einstein 6, Cranks 1. We are the Greatest! I have deduced from a study of the behaviour of the Establishment of a country under the control of political extremists, that suppression of criticism is scientific proof that the theory - that the man in charge is there for the benefit of his charges - is seriously flawed, and I can only assume that the physics Establishment is suppressing criticism for the same reason, and is not defending a scientific theory at all. Herschel and Babbage formed the British Association in 1833 to destroy the corruption of the Royal Society. A repeat performance is overdue. Wireless World is now the only outlet for criticism of modern theory.

I have already given a simple mathematical analysis of special relativity based on Fourier's theory of dimensions, in my appreciation of Maxwell. Maxwell began his Treatise with an explanation of Fourier's theory, and in his chapter headed Dimensions of Electric Units, he analysed his electric and magnetic units, their products and ratios, into the three fundamental units of mass, time and length to show that the number of electrostatic units in one electromagnetic unit had the dimensions of a velocity, the velocity of light in free space. I cannot see how Maxwell could have developed his equations without the assistance of Fourier's theory. Using Fourier's theory, every quantity and equation of relativistic dynamics is absurd, and at least one third of Nobel Prizes for physics were awarded for theories and discoveries tha cannot possibly fulfill Nobel's motive for his endowment. Cerenkov discovered his effect in 1934, but he had to wait 24 years for his prize because he was dismissed as a crank until someone amended Relativity

Einstein attempted in his theory to justify Michelson and Morley's interpretation of their experiment, which implied that light did not obey Newton's laws of motion. Helmholtz had proved mathematically that the law of the conservation of energy could be derived from

Newton's laws of motion. This is why Maxwell insisted that electromagnetism was a dynamic science, and why he succeeded in constructing a mathematical working model of his ether using the equations of dynamics. Therefore Maxwell's equations predict that light obeys Newton's laws of motion. But Michaelson and Morley implied that it didn't, and they also implied that light did not obey the law of the conservation of energy. The simplest way to avoid conforming to Newton's laws of motion is to vary the dimensions of the fundamental units of time and length.

There are two possible explanations of Michaelson and Morley's interpretation of their experiment. Either light suffers a temporary loss of kinetic energy when passing an observer, or the observer loses kinetic energy when passing a wave of light. As Einstein could only predict the velocity of light he chose the first explanation. His measuring rod represents the dimensions of the fundamental unit of length and the time between each tick of his clock represents the duration of the fundamental unit of time. There is a reason why he chose to multiply the dimensions of the fundamental unit of length by Lorenz's factor $\sqrt{ } 1-(\mathbf{v} / \mathbf{c})^{2}$, which is less than one when you move, and divide the duration of the fundamental unit of time by the same factor. A velocity has the dimensions of L/T, and if Einstein reversed his mathematical operations, the velocity of light would increase. Special relativity is a very simple theory. An observer is forbidden to travel at a velocity in excess of that of light, because light would then travel backward.

The formula given by B. D. Runagle is due to Maxwell. The value of the quantity ϵ has been inverted in the SI system of units. Maxwell would have expressed this equation (squaring both sides) as $c^{2}=\epsilon / \mu$ in free space. ϵ is the ratio of the electromative intensity E , to the corresponding electric displacement D. Maxwell called this ratio "the coefficient of electric elasticity of the medium" (Art. 60 of his Treatise). This coefficient varies inversely as the specific inductive capacity, k . The electromotive intensity E is by analogy the stress in an elastic medium which produces a strain, the electric displacement of the medium, D. The ratio $E / D=\epsilon$ is the electrical equivalent of the mechanical ratio, stress/strain $=$ Young's modulus of elasticity. μ is the ratio of the magnetic induction B to the magnetic force H , and represents the density of the electromagnetic medium Magnetism is a flywheel effect of the medium with an electric current as its axle, and any change of the medium's density would change the flywheel moment of inertia. The equation $c^{2}=\epsilon_{\mathrm{r}} \epsilon_{0} \mu_{\mathrm{r}} \mu_{0}$ tells us that the square of the velocity of light is directly proportional to the electromagnetic medium's elasticity or pressure, and inversely proportional to its density, just as the square of the velocity of a sound wave is directly proportional to the air pressure and inversely proportional to the air density (see equation 4 of Aspden's Ether article, October 1982). The energy of the air at every point of a sound wave is half kinetic and half potential. In Art. 792 Maxwell proved mathematically "that at every point of the wave the intrinsic energy of the medium" is half kinetic and half potential. Presumably Maxwell as a crank.

I cannot understand the scientific meaning of the phrase "a medium other than a vacuum", if there is no medium in a vacuum. If light passes
through a vacuum under the influence of a negaive electrostatic field, light's velocity exceeds that of its 'constant' velocity in a vacuum, and a vacuum under the influence of a positive electrostatic field reverses this effect. If light passes through a hollow electromagnet in a vacuum in the same direction as the flow of the magnetic flux, the apparent velocity of light is in excess of its 'constant' speed. If light is directed against the flow of magnetic flux, its apparent velocity is below its 'constant' speed. This is a Doppler effect caused by the kinetic energy of a moving medium. Both ϵ and μ are ratios. Why then should the suffix r apply to a medium, and the suffix o apply to nothing, when their difference merely depends on changes of $\mathrm{E}, \mathrm{D}, \mathrm{H}$ and B? Maxwell said in Art. 428: "Magnetic induction is a directed quantity of the nature of a flux, and it satisfies the same conditions of continuity as electric currents and other fluxes do." The equation of continuity was discovered by mathematicians investigating the motions and strains of liquid media. To legitimately apply an equation of continuity to a system, a scientist should first be satisfied that a system has a continuous supply of a medium. The only medium to satisfy Maxwell's conditions is Aspden's continuum of positive electrostatic potential energy, if the word 'positive' is used to avoid all ideas of negative quantities.

Fiction Stranger Than Truth is available from the publisher, N. Rudakov, PO Box 723, Geelong, Vic. 3220, Australia. Price, including p\&p Australian \$12. M. G. Wellard

IMPACT OF THE PHOTON

Dr Scott Murray (Impact of the photon, WW October) believes that a single photon of radiation is unable to produce interference with a later arrival. He might be right. No doubt the experiment of G. I. Taylor would be worth repeating with modern equipment.

However, I see no reason why successive, single, photons shouldn't produce interference effects. To produce interference one uses an interferometer (or a simple doubly-reflecting system) in which the two interfering beams have
(a) zero longitudinal displacement
(b) zero lateral displacements
(c) zero time displacement.

It is well-known that interference between two beams of radiation can still be obtained if (a) isn't quite satisfied, namely, if the two beams aren't quite the same lengths. In the case of light, the interference fringes look 'washed out' the blicks aren't quite black and the whites aren't quite white.

It is not so well-known that interference can still be obtained if (b) isn't quite satisfied, namely, if the two equal beams are laterally displaced. In the case of light, the fringes again look washy

It doesn't appear to be known whether interference can take place if (c) isn't quite satisfied, namely, if any two photons don't arrive at their rendezvous at the same instant. My guess is that when Taylor made his experiment the disturbance of one photon lasted long enough to cause interference with its following photon.
In my opinion, if the above interference experiment were repeated with a stabilized laser as light-source, and sufficient time was allowed for
a single photon's disturbance to die away before the arrival of its successor, then and only then will Dr Murray's prediction come true
A. H. Winterflood

London N 10
Ideas about the fundamental nature of e.m. radiation, electromagnetism, the ether, elementary particles and so on become ever more diffuse. Contributions to WW over several years by Jennison, Wellard, Aspden and others are all fascinating but leave many of us lesser mortals more confused than ever. So many of the conflicting views seem eminently reasonable, at least until the next one comes along!

The latest by Aspden and Scott-Murray, (WW October, 1982), are likely to fuel the fires of the duality argument, i.e. waves vs photons. A unifying theme might possibly arise from phase-locked cavity research at the University of Kent, (WW June, 1979). Professor Jennisons' enormously impressive work does however seem to require an acceptance of relativistic concepts which may be claimed by some physicists to involve paradoxes which are difficult to resolve.

Perhaps someone (possibly Prof. Jennison?) might agree to draw the threads together and show in summary form how these differing ideas could be reconciled or, at least, how they may have common ground. The last may be the most important; quite possibly each of the learned contributors has glimpsed a little bit of the truth. For example it does seem possible that phase-locked cavities could co-exist with Aspden's ether, the last mentioned perhaps providing a reason for the finite and specific value of the velocity of e.m. propagation in space. Adopting a "Machian" approach, should we not after all suspect that " c " can only be due to the presence of space and therefore to some property it must possess?
If one accepts the remarkably elegant and persuasive arguments for $p-1$ cavity electrons, is it not probable that all fundamental particles are similar, though presumably having differing trapped radiation frequencies? In this event the inertia of matter and what we call mass (i.e. the inertial behaviour of matter), are both explainable in terms of the internal mechanistic properties of the constituent particles. Where then does this leave gravity? That delightfully vague concept of the distorting effects of mass on the enveloping space no longer seems tenable. Mass as such is not even real any more, it is simply a symptom of inertia which is an inevitable property of a p-l cavity!

Thus p-l cavities perhaps need ether so that the trapped radiation fields can somehow interact with the surroundings to generate distortions which the relativists would presumably regard as distortions of space (the ether?) caused by the presence of mass. If these distor tions could be shown to propagate, that may be gravity!

The possible existence of a family of p-1 cavities having differing though specific sizes also needs to be explained. Does the presence of one size cause interations with the surroundings which will give rise to another size; the specific sizes perhaps being influenced by whatever determines the specific value of "c"?. Finally, with a family of p-l cavities, do we say that the smallest must be the ultimate fundamental particle?. It would be ironic if this turned out to be a photon!.
All this is very amateurish and speculative you may say. But then, can you do any better? If I have to believe in an expanding universe, I
would at least prefer whatever is expanding to have some definable properties!
M. G. T. Hewlett

Midhurst
W. Sussex

ELECTRONIC IGNITION

Following recent correspondence on CD igni tion systems, readers may be interested in my experience. I built a kit (Jermyn Industries) in 1973 and fitted it to my Vauxhall Victor FD, then one year old. I have had no faults or failures. Starting has always been at first touch. Hence batteries have lasted well, my third being bought last winter.
No electronic or electrical maintenance has been needed. A garage once replaced the contacts by mistake so I am on set number two. From time to time I reset the gap and check timing. The gap needs no cleaning and shows no wear. Plugs also last well but have been replaced after an estimated 20,000 miles use.

The real message after nine years is reliable starting requiring virtually no maintenance for an outlay of around $£ 10$.

J. M. Osborne

ILEA South London Science Centre
With reference to electronic ignition, the question of misfiring at certain engine speeds has been mentioned from time to time.

I found misfiring was due to the inverter oscillator locking in frequency, at various multiples of the ignition firing occuring when the oscillator would "pull" no more and changed, or tried to lock to the next notch. At these specific speeds the oscillator tended to "hunt" and spikes in the system degraded the firing pulse.

I used mostly 40506 thyristors in the few units I built, and theoretically a very small capacitor can couple enough energy to fire these. However, given a cause I up-rated the coupling values until the problem disappeared. I trust this may be of some help to others with the same problem.

G. Pirie

Craigavon
County Armagh

Mr Watkinson could not be aware of all the facts when he wrote his letter (WW November). I should be obliged for the opportunity to set the record straight and to correct some false impressions.

I had not hitherto regarded main distributors as normal retail channels of supply; nevertheless I extended my enquiries to them for the specified i.c. These included Quarndon Electronics who offered 54LS01J in lieu of SN 5401 J within a reasonable minimum order value of $£ 5$. It was soon apparent to me however
that to buy the i.c. on its own (I had already acquired TIL31 and TIL81) would make it a relatively expensive component. Taken together with the cost of catalogues, postage, etc." incurred during my enquiries (expenditure which, incidentally, would have enabled me to replace the conventional points several times over) I concluded the opto-electronic contact breaker could not be a cost-effective addition to my 4 cylinder car. It was a simple economic decision to abandon it (for the present at any rate) and did not imply any criticism of the author's choice of the component.

On the other hand, if Mr Cooper's ignition unit was to remain cost-effective, as he obviously intended it should, I considered it advisable to find a source for the transformer he specified without the hassle and expense involved in shopping for the SN5401J. It seemed at the time to be a sensible action to seek this timely direction. In the light of the reaction it has provoked I am now not so sure. Needless to say, Mr Cooper was unstinting in the help he gave. I was particularly gratified to learn that he at least appreciated the difficulties in procurement that can sometimes confront the non-professional.

In the case of the opto-electronic contact breaker, it made little sense to me to publish a circuit in April 1981 and then to follow it up ten months later with a deal of further information in response to "several enquiries" which, in my humble opinion, could have been anticipated having regard to the universal appeal of a circuit with an automotive application. Moreover, if what was stated in February 1982 needed to be said at all, it would have been better, and indeed more helpful, to have said it when the circuit was presented to readers. But as Mr Warkinson so rightly comments, you cannot satisfy everybody all the time. I do hasten to assure him, however, that I was not among those who would presume to question his judgement about components which he regarded as crucial to the reliable operation of the circuit in the hostile environment intended for it. I am sorry that as a result of my letter he should therefore feel it incumbent on him to defend it yet again.
J. E. Stevenson

Purley
Surrey

TAPE VOICES

With reference to Mr Stein's letter in the October issue, the existence of these voices has really been attributed to known physical effects, such as broadcast breakthrough, and people's ability to find form in random noise.
David Ellis has researched the subject at great length under a scholarship awarded by a Cambridge college, and reluctantly found very little evidence for any paranormal happenings. His researches are available in a book The Mediumship of the Tape Recorder (ISBN 0 95060240 X) for $£ 2.25$ from him at Fernwood, Nightingales, West Chiltington, Pulborough, West Sussex RH20 2QT. The book includes practical details which enable readers to perform their own experiments.
Another reference on this subject is by Professor W. R. Bennett, in Scientific and Engineering Problem Solving with the Computer (Prentice Hall 1976 ISBN 013795807 2). This is really a book on computing. He mentions the Voices, in an exercise on non-linearity, but an earlier section on generating random text mes-
sages from "probability sieves" is extremely interesting. You type in one or two pages from works by a certain author, and the computer produces pages of random letters with a similar probability distribution. When the book was written, it was only possible to get a third-order matrix. Even so, quite a few words were obtained, and those words were similar to those favoured by the author chosen. If someone were to adapt these techniques using a micro equipped with hard disc, then considerably more striking results could be achieved than those available to Prof. Bennett using two 16 K minis working together. No doubt someone unaware of this work may one day decide that his computer is in contact with the dead.
John de Rivaz
Truro
Cornwall

THE RIGHT FORMULA

In reply to Ronald G. Young's letter, November issue, the answers to the questions he posed for me are

1) a theory which does not predict practical results has no practical use
2) $R=E / I$ by definition.

As to his third paragraph, I would assure him that by the word 'instrumentalist', (see his book "Conjectures and Refutations", RKP, 1963, p100,) Karl Popper does not mean people who use instruments like oscilloscopes and computers. The brilliant Wireless World editorial of July 1981 mentions instrumentalism, and puts Young's position into historical perspective.

As to my bitterness about instrumentalists, I give good reason in my September 1982 letter.
Those college professors, institution officials and Nobel prize winners who (unlike me) get salaries, expense accounts and fringe benefits from electromagnetic theory - I understand that the dinners for potentates in the IEE are very lavish - are seen in the recent Wireless World debate entitled "Dispacement Current" and "Death of Electric Current" to be abysmally ignorant of their subject, and yet those same people as referees of learned journals, have for ten years exercised their power by preventing me from publishing my results in any learned journal in Britain or the USA, including journals of the IEE, IEEE, Inst. Phys.

Some Wireless World readers will be surprised to learn that during 25 years of work, I have never succeeded in publishing any of my work in any British learned journal. The defences against new information are particularly strong in Britain. The Inst. Phys. broke their contract with us to publish the paper. "The History of Displacement Current" (later published in Wireless World March 1979) when they discovered that it contained new information. If one did not become bitter over such a scenario, when would one?

The arrogance of the ignorant power brokers in our society seems limitless when it comes to suppressing scientific advances by Catt, Heaviside, Galileo etc. The ability to manoeuver one's way to the top of the IEE or Inst. Phys. is no justification for suppressing advances in the disciplines which generate the financial base of those institutions. If these people resent their good faith being questioned, then I look forward to being invited to publish in their journals and lecture in their halls.

Further reading

1. T. Jaynes, Foundations of Probability Theory and Statistical Mechanics, from Delaware Seminar in the

Foundation of Physics, ed. Mario Bunge, SpringerVerlag Berlin 1967. (Library of Congress no. 67. 16650). First chapter "What makes theories grow?" pp. 77-83.
pp. O. Heaviside, Electrical Papers Vol. 1. Macmillan London 1892, pp. vii-x. Heaviside discusses the way in which his publications were blocked. It includes "Perhaps it was thought that official views were so much more likely to be right that it was safe to decline the discussion of novel views in such striking opposition thereto. There seemed also to be an idea that official views, in virtue of their official nature, should not be controverted or criticised . . ."
Ivor Catt
C.A.M. Consultants

AMATEURS...AND CB.

I see from "Letters" in November's WW that Mr Wood, of the Home Office, announces that nine stations were traced and closed down for illegal broadcasting in 1981. Is he trying to disable us all with mirth? Really Mr Wood, this must represent the precentage of offenders who turned themselves in because of a guilty conscience. There must be many more "pirates" than that in the London area, per square mile, mostly using sections of the ten and two-metre bands. In my limited experience, the HO couldn't catch a mouse in a mouse trap.

Here is an example; a mini-cab firm, based at a garage at the Circle, Carshalton, controls its cars with modified citizens band sets on 28.00125 MHz . At least two amateurs notified the Home Office with the details, including the address. A month or so later, an official paid a visit to the garage, but as luck would have it, none of the 18 or so drivers were working, and the controller was using his set on the legal UK CB frequencies. The offical told him to change his illegal high-gain aerial for a regulation one, and left. An amateur friend of mine called at the garage to inform the owner that he was illegally occupying an amateur frequency. The man said he did not realize that that was the case (I have heard amateurs informing him of this fact on two occasions) and promised to have all his rigs modified to go below the CB frequencies. He also claimed to have been arrested twice for using a linear amplifier; he is still using it and, three months on, still using 28.00125 MHz .

If cases as blatant as this are difficult to bring to justice, then I can only conclude that the HO has its hands tied with absurd requirements for "conclusive" evidence. Meanwhile, I often hear CBers make reference to the " 6.6 MHz band" and "the a.m. channels" as if they were a natural and legal alternative to the UK system.

So, Mr Wood, if you need a lead to begin clearing the airwaves of pirates, ask the amateurs; they must each know of the whereabouts and the activities of more illegal stations than the HO prosecuted in 1981.

J. Baldwin

Ashtead
Surrey

AND BAND 1 . . .

The letter by Mr Laven (page 65, October issue), and recent broadcasts by the RSGB's GB2RS news, is most gratifying if only offering a crumb to we v.h.f. people. The recommendations of WARC viz a viz v.h.f. as a definition should put 4 m (70 MHz band) and/or 6 m (50 MHz band) within the group of all Class B licence holders. That some very experimental outside-broadcasting-hours-only licences are, or have been, issued (to Class A holders only) is at least a step in the right direction.

However Mr Stacey, G8BXO, in the letter following the above-mentioned suggests 48 to 48.6 MHz , on the very worthy grounds of harmonic interference. Whilst I must agree with some form of 6 m activity, and concede his grounds for his choice, I say that it's less than the 50 to 52 MHz band mentioned by Mr Laven (haven't we lost enough?), and that because it's the third harmonic into 2 m band, it should not be used. Anyone who has used the 23 cm converters (i.f. output on 2 m band) in a contest will know the problems. Furthermore, if we were on 48 to 48.6 we'd not be able to do serious tropospheric work over the Atlantic - I understand that the USA uses $50-52 \mathrm{MHz}$.
D. R. Coomber, G8UYZ

Leeds
N. Yorkshire

AND BALLOONS

Having read a news item which stated that a South African radio-ham club was about to launch a balloon carrying a relay station powered by solar cells. The increase in cost over an orbiting relay at 100 km when compared with a 200 mb drifting balloon at under 13 km is not much, but the launch is so much cheaper, and if Ghost-type balloons are used a stay in the air of two years or more is possible. Its tracking is easier as it will appear stationary in the short term and one could get away with pre-set aerials and not need continual tracking as for a satellite.

My idea is to use the balloon not only to carry the relay but also to carry Ghost experiments for the Met. Office. Not only would the worldwide Weather Watch get data but the hams would get a reduced launch cost. There would be chance of more launches worldwide with possible bal-loon-to-balloon links to increase range. The Weather Watch would gain from reduced launch costs if the relay had its cost split, or even better if amateurs did the data receiving using an add-on to their normal receiver, storing data on compact cassette and then sending them onto a central Met. Office. The more receivers the better as this would cover data losses. Having many disadvantages this is nevertheless a good way to build up experience until standby jump space becomes cheaply available from Nasa or ESA. (Has anyone ever tried the Russians?)
G. A. Cockburn

Edinburgh

STICKY WINCHESTER

I suppose there will always be more than one explanation for the origin of any nickname, so here's another one for Winchester (in connection with "Disc drives" WW Sept. issue), from an article in the American magazine:
"The Winchester nickname for rigid drives comes, as does much of the technology, from the trail-blazing IBM which in 1973 brought out its model 3340. It was a dual drive with planned twin storage capacity of 30 megabytes each. The 30-30 configuration reminded some of the rifle; though IBM soon upped capacity to 35 and then to 70 megabytes, the name stuck."
Electronics 10 Feb 1981, page 98.
R. Camp

Brentwood
Essex

CARTRIDGE ALIGNMENT

What an unfortunate misunderstanding. In no way did I contradict R. J. Gilson's articles on Cartridge Alignment. May I take each of the paragraphs in his August 1982 letter in turn?

1. All the information on my June 1982 diagram came from several space-consuming sketches. It does make a difference to the geometry (mis-quoted) - by simplifying. For instance, C / L and the $\sin O$ equation can literally be seen in the diagram if the omitted lines are visualized.
2. One or two popular magazines suggest the use of lengthy formulae for determining tracking errors and distortion for arms of different length. A short cut is provided by taking C/L and $(p+q) / 2 L$ and then fixed proportions into account.
3. I thought it might be interesting that whenever B, the innermost groove radius, is greater than p in my diagram it must appear to the left of the datum line. Knowing only Gilson's figure off the cuff, I used it as an example. No difference in status is implied.
4. $\mathbf{p q}=213^{2}-200^{2}=5369$. O from his formula $4 \mathrm{~b}=21.9^{\circ}$ (Again I treated this as an example - no proposal has yet been universally accepted - and have to assume here that $4380 / \mathrm{c}$ is not known) $\sin 21.9^{\circ} \times 2 \times 213=159$ (sin $\mathrm{O} 2 \mathrm{~L}=\mathrm{p}+\mathrm{q})$ so the troublesome $\mathrm{pq} / \mathrm{p}=(\mathrm{p}+$ q) - \mathbf{p} becomes $5369 / \mathrm{p}=159-\mathrm{p}$. For the less rusty this yields 49 and 110 (rounded off). Thus at the very least we have a supportive procedure.
5. Subject to the points already made, I could not agree more here.
An example of the possibilities that are opened up with the new visible facts is the formula $\mathbf{B}=\sqrt{\mathrm{L}^{2}-\mathrm{x}^{2}}-\sqrt{\mathrm{D}^{2}-(\mathrm{x}-\mathrm{A})^{2}}$ where A and B respectively represent the 15.5 and 7 mm dimensions on Gilson's gauge, $\mathrm{L}=$ eff. length, $\mathrm{D}=$ spindle to pivot dist. and $\mathrm{x}=$ $(\mathbf{p}+\mathbf{q}) / 2$. The constructor is able from this to mark out a hole in just the right place to suit his turntable and "any required overhang rule" (from Gilson's penultimate paragraph Nov. 81). The validity of this formula can be checked by letting $\mathbf{A}=\mathbf{p}$ or q.
I have superimposed the outline of the gauge on a copy of my first diagram where even this becomes clearer.
P. E. Cryer

Thornlie
Western Australia

THE DREAM OF OBJECTIVITY

Your Editorial comment on my letter in last December's issue suggests that my criticism of your Editorial could be quite mistaken since I am using the word 'phenomenon' incorrectly. Also, a further letter in the February issue equally misconstrues my argument (from M. J Walker).

Now the words 'phenomena' and 'phenomenon' are not very widely used these days. They belong more to the vocabulary of the early empiricist philosphers like Locke, Berkeley, Hume and Kant, who were fond of using such words as 'mind', 'ideas', 'impressions', 'intuitions' and 'apperceptions', etc.

These philosophers operated by using a pen, desk, books and chair. They were attempting to describe our knowledge, or perhaps better said, understanding of the world and universe, only by contemplation, i.e. without actually making any experiments at all, with objects, to discover how these behaved under various circumstances, and thus obtain clues as to their constitution, and the natural laws which they could demonstrate. As the modern sciences have shown, though, they grossly over-simplified the situation. Thus Berkeley, for instance, highly critical of scientists and their 'insensible particles' became firmly and too easily convinced that we can properly say that we only really know or perceive our own perceptions (for which he considerably altered the meaning of the word 'idea') which he considered to be entirely mental or 'in the mind'. He then simply concluded (as also did Ronald Knox, in M. J. Walker's letter) that when we were not perceiving the 'ideas' of an object, they must be a collection of 'ideas' being perceived in the mind of God. This conclusion, which I, for one, would not draw today, whilst giving good support to the Establishment, traditional theology and morality, did not at all advance our understanding of the constitution and behaviour of objects at all, i.e. develop any vocabulary to help us master our environment. It is also nonsense to write or talk of seeing or perceiving perceptions. As Ryle has said "a person cannot talk of 'seeing looks', since 'look' is already a noun of seeing". In fact, it was not until men began to experiment more systematically with objects that the sciences began to develop, and our vocabulary for dealing with the objects around us began to acquire deeper foundations.

I do not think, then, that there is any special problem about subjectivity or objectivity, especially regarding the application of scientific method. Subjectivity is only the expression of an individual viewpoint, and provided that normal observers are able, and are permitted, to exchange viewpoints, they can always move towards a greater objectivity, and thus broaden their understanding. This procedure should only be limited by abnormalities in the observer, such as colour blindness, etc., and these can usually be detected and allowed for.

We mostly tend to deal, nowadays, with words which are the result of operating with some quite sophisticated objects in specialized laboratories. It is, in my opinion, partly through the use of such words, developed by scientific experiment, theory, and sound engineering practice, that we, as human beings, can come to have more thoroughly objective and honest dealings with each other.
Peter G. M. Dawe
Oxford

MODULAR PREAMPLIFIER

I found part 1 of J. L. Linsley Hood's description of his modular preamplifier very interesting. I like his modular approach, and I agree with his comments on the various possible arrangements for equalization. However, there seems to be a discrepancy somewhere in the discussion of the noise level of his equalization module. With the input to the circuit of Fig 6 short-circuited, the base of each input transistor sees 270 ohms to 0 V at audio frequencies (R_{10}, R_{16}), and there is 220 ohms between the emitters (PR_{5}), This makes a total of $270+270+$ $220=760$ ohms series resistance between the externally-applied short-circuit and the two base-emitter junctions of the input transistors. The input noise resistance of the stage (with short-circuited input) must always be greater than this actual resistance of 760 ohms. Yet Table 2 quotes a measured input noise resistance of 450 ohms , which is impossible with the circuit of Fig 6. (The change from "RIAA" equalization to the flat response used for the measurement would not alter the input noise resistance significantly if \mathbf{R}_{16} remained unchanged.)
I suspect that the measurement may have been made without \mathbf{R}_{10} and PR_{5}, and possibly with a lower value of R_{16}. But in any event, the noise of the circuit will be adequately low in practice - given good components. (To avoid the risk of PRs $_{5}$ going noisy, it would be better to omit it and obtain adjustment of the output voltage - if necessary - by injecting an adjustable current into the junction of R_{16} and C_{14}; say through $10 \mathrm{M} \Omega$ from a preset connected between the +15 V and -15 V supplies.)

I'm sure your readers would wish to know that the illusive BC447/BC448 transistors Mr Linsley Hood has used in many of his recently published circuits have Jedec equivalents 2N2907A/2N5551.

G. Dagnall

Four Oaks
Sutton Coldfield

I must apologise for the somewhat misleading text of my article of October 1982 (pages 35 and 36), in which I referred to the noise resistance of the discrete component configuration I had employed as the amplifier stage for the equlization module.
. My target and measured noise figure referred to the gain block itself, with the base of TR_{1} connected to the zero volt line, and the equalization network (\mathbf{R}_{15-19} and \mathbf{R}_{25} and C_{15}) replaced by a $10 \mathrm{k} / 100 \mathrm{ohm}$ feedback arrangement. A number of LF351 and TL071 operational amplifiers tested in the same circuit configuration gave effective noise resistance values (with inputs short-circuited) of the order of 2.0 to 4.5 kilohm for the same measurement conditions, which I felt was less good than one might wish for this particular application, though quite adequate for later stages.

Obviously, whatever gain block one employs will be influenced by the external resistor elements connected to its input or feedback terminals, and, fortunately in the case of an equalization network, by its bandwidth characteristics.
J. L. Linsley Hood

Taunton
Somerset

Data acquisition on a Pet

Interface circuits and programs for reading both analogue and digital data using a Pet microcomputer，together with brief specific descriptions for 12， 10 and eight－bit analogue－to－digital converters．

Main factors that determine choice of an analogue－to－digital converter for data－ acquisition are accuracy and conversion speed．An increase in accuracy means an increase in the number of bits in the digital－word output and hence an increase in the time taken for the conversion．If an analogue multiplexer is used before the converter input to capture a set of data，the overall conversion time is multiplied by the number of variables to be monitored．
If the amount of data to be acquired is small and the computer random－access memory is small，it may be necessary to transfer the incoming data directly into a back－up memory for later processing by the computer．
Although 16－bit a－to－d converters are available，they are expensive and line－ shielding and power－supply requirements for them are rigorous and add considerably to circuit costs／complexities．For the majority of a－to－d applications the readily available and inexpensive i．c．converters discussed here suffice．

Precise a－to－d conversion

Twelve－bit converters such as the Intersil 7109 provide the greatest precision of the devices examined but have the slowest operation．The maximum sampling rate for this device is about $1 / 30$ s per channel． But this long conversion time means that computer programs for acquiring the data may be written in a high－level language such as Basic without the need for additional delays to allow the converter to catch up with the computer．
With the CBM Pet computer a user port attachment and small machine－language program allow the 7109 device to be used． This machine language，List 1 ，sets bits 6 and 7 of port E810 as outputs．Lines at E84 F are inputs in the default condition so it is not necessary to set them using a program．

Output lines are data request，high byte and low byte；data request is also used to change channels．Inputs are eight data lines and a zero－channel indicator．Figure 1 shows the circuit diagram，in which the clock line is used to reset the multiplexer． This set up is most convenient when the converter i．c．does not have its own clock．

With twelve－bit converters the analogue multiplexing method shown in Fig． 1 is only appropriate when slow sampling rates
The authors are in the School of Engineering at Trent Polytechnic．

by E．D．Harvey and D．A．Hills

List 1．Routine for setting up user port when using a 7109 analogue－to－digital converter with a Pet microcomputer．

78			SEI		disamile intertupts
AE	11	E． 8	LDX\＄EEAI		preserve coritrol register
A 9	38		L．DA\＃${ }^{\text {S }} 38$		
8 D	11	E． 8	STASEB11	；	oririg in direction register
AD	10	E． 8	LDA DE810		
09	co		OWA\＃${ }^{\text {co }}$	；	set up two most significarit bjts as outputs
81	10	E． 8	STAdFEE10		
8E	11	E8	STXFE811	；	restore usual stiatus to control resister
58			CLI	；	routijne firrisheri
A9	EC			；	set Ce：2 as output
8D	4 C	E8	STASEEAC		
60			FTS		routires ends

List 2．Program called by USR function for use with a Ferranti ZN433 analogue－to－digital converter and CBM 3032 computer．

380	20	D2．	D6	JSF	\＄060\％	（form－firen riumber）
383	A9	10		LDA	\＃ 9.10	
385	8D）	4E：	E8	STA	\＄E84E	（iriditalize clock pulses）
388	A^{9}	9F		L．DA	\＃す\％ 9%	
389	8D	4A	E $]^{\prime}$	STA	¢E．84A	（irutialize clock pulses）
380	A9	00		L．DA	\＃ $\mathbf{W}_{0} 0$	
38 F	8D	48	E． 8	STA	\＄E848	（juintialize clock pulses）
392	A9	FF－		LDA	\＃ SFFF $^{\text {F }}$	
394	85）	40	E8	STA	\＄EB40	（cista request）
397	20	EA	03	JSF	\＄03EA	（riel 3s）
39 A	A9	F7		LDA	\＄$\$ \mathrm{FF}$ \％	
39 C	80	40	E 6	STA	制： 9340	（remove reanest）
39 F	20	EA	C3	JSFi	\＄ 0 SEA	
$3 A_{2}$	88			DE：Y		
3 A3	D0	DE：		EiN：	\＄383	
3A5	18			Cl．C．		
3AC	AD	10	E8	L．DA	\＄E．810	（veas nigh bute）
$3 A^{\prime}$	29	co		AND	－ SCO^{0}	
3AE：	2 A			FiOI．．		
3 AC	2 A			Fiol．		
3 AD	2 A			FOOL．		
3AE	AC	41.	E． E	LDY	\＄E．84F	（read low bute）
3E：1．	20	60	Da？	JSF：	\＄D 26 D	（comvert to floatirig poirit rio）
3E4	A9	00		1．0円	\＃\＄${ }^{10} 0$	
3E：6	8 D	4E：	$E 8$	STA	生E84E	（remove clock）
3E9	60			FTS		（exit）
3E：A	A9	0 A		LIDA	\＃\＄0A	（selay subroutirie）
3EC	85	EFF		STA	\＄EFF＇	
3EE	85	CO		STA	\＄ C 0	
3 CO	C6	CO		DEC	\＄C0	
3 C 2	D0	Fil		ENE：	\＄3C： 0	
304	C． 6	EF		DECC	\＄EFF：	
3 C 6	D0	Fs		ENE：	\＄3C0	
308	60			ETS		

On a similar basis, it would be possible to use a group of converters with a single analogue input to provide more rapid sampling rates. The practicality of these multiple converter circuits is realizsed when the cost of faster precision converters is compared with that of the Intersil 7109.
Ten-bit devices such as the Ferranti ZN433 i.c. offer more speed and less precision. As these devices require clock pulses from the computer, a versatile
interrupt line is required. On the CBM computer this is easily provided by the CB2 signal of the 6522 v.i.a. To reduce other line requirements for a multiple system, channel change and data request signals may be combined, as it is inconceivable that it would be required to visit a channel without reading data. The ZN433 samples continuously, and a single frame can be obtained when requested. If a reset to zero channel is required, this can
be provided by including a monostable in the clock-pulse line; by turning off the clock and waiting for a short time, the monostable then resets the multiplexer to zero channel. The circuit shown in Fig. 2 includes this addition.
The Basic USR function is useful in connection with this type of converter and a program in 6502 machine code is given in List 2. It is capable of sampling the converter in about 10 ms , but a more

Arithmetic routines used appear at different locations in the various CBM computers as follows.

Basic version	1	$2 / 3$	4
fixed point	DB6D	D6D2	C92D
floating point	D278	D26D	C4BC

appreciable delay occurs due to the machine conversion routines used. Before entering the sequence, the USR function must be set to the starting byte. Data may then be obtained by the Basic statement,

A=USR (channel):PRINTA.

High-speed devices
Eight-bit converter i.cs such as the National Semiconductor ADC0804 provide high speed conversion with lower precision, but it is unusual to require both precision and speed. A conversion time of $30 \mu \mathrm{~s}$ is possible, and the connection to the computer port is greatly simplified. A built-in clock facility is desirable and some 8 -bit devices can be interfaced directly to the address and data buses of the microcomputer without a peripheralinterface adaptor. This is especially useful when other commercial computers without p.i.a. facilities are used (e.g. Apple II, TRS80).

The machine-code program is now important, and it must avoid the use of involved subroutines, e.g. USR function calls and floating-point arithmetic. Data must be stored in a protected region of memory which is most conveniently addressed by the indirect facility of the continued on page 78

Fig. 3. In a transient-recorder application of this digital multiplexer with handshaking, computer requests data byte then resets recorder's data-ready flag. Computer than requests next byte, and so on, taking about 200 ms for 1 Kbyte of data using a machinecode program.

List 3. Program for taking data from a free running source using a 6502 computer with CBM $2 / 3$ Basic.

350	78			SET				
351	AD	4F	E8	LDA	\$E.84F	Scomputer	data	Port)
35.4	F 0	1.6		EEER	\$36C			
356	A\%:	08		L.DX	+ 508			
350	D6	E9		DECC	\$E:8, X			
354	AD	4F	E8	LDA	\& E8AF			
350	81	E 8		STA	(\$Ei3,	x)		
35F	20	EC	03	JSR	felay	\$3EC		
362	ES	E: 6		LDA	\$58, X			
364	D0	F2.		ENE:	4.358			
366	CA			DE:X				
367	CA			DEX				
368	D0	EE		ENE	\$35, 8			
36 A	58			CLI. I				
36E:	60			RTS				
36 C	AC,	12	E8	L.DY	\$E.B12.	(stop key	ador	55)
36 F	C8			INY				
370	F0	DF'		EEQ	\$35!			
372	58			CLI				
373	60			FTS				

Optional delay subroutine

3EC	A 9	00	LDA	* $\$ 00$	
3EE	85	DO	STA	\$DD	
3 C 0	A0	01.	LDY	* \$ 0.1	(adiustable)
3C2	88		DE:Y		
3 C 3	D0	FD	ENE:	\$3C2	
3C5	C. 6	D ${ }^{\text {P }}$	DEC	\$DD	
3 C 7	00	F 7	ENE:	\$3C.0	
305	60		FTS		

Introduction to v.d.us

James Tully looks into operational conditions, especially ergonomic, and into health and safety questions of display units. A previous article in this series, by Colin Carson, dealt with internal control.

As an increasing number of people begin to use display units in their everyday work, certain problem areas become apparent. An awareness of these areas leads to often simple avoidance measures and greatly improves the effectiveness with which a v.d.u. can be used; factors affecting readability are reflection, glare, flicker, focus, brightness and certain distortions of the image.

Reflection and glare

Glare may be caused directly by, or may be reflected from, the c.r.t. face. Direct glare is usually caused by the brightness or contrast controls being adjusted too high, or to a fault condition. Reflected glare can present considerable problems because of the height and angle of the c.r.t. face relative to the viewer.

Direct and reflected glare are affected by ambient lighting conditions in different ways. Acceptable screen brightness under high lighting conditions may seem too bright under reduced lighting conditions and reflected glare may disappear altogether under conditions of very dim illumination. Screen brightness and contrast can often by adjusted without too much difficulty to match the average illiumination level of the room (300 to 500lux recommended ${ }^{1}$). Reflection, however, is more difficult.
There are a number of techniques for the reduction of reflective glare. The simplest and least expensive is to position the v.d.u. until the reflected glare disappears. If this results in the operator facing the light source then direct (contrast) glare will result due to the contrast ratio between the light source and the v.d.u. screen, and this will not be acceptable. A detachable keyboard may help, since screen and keyboard positions may be adjusted independently, allowing good body posture to be maintained. Alternatively, a variety of filter methods may be used on the c.r.t. face including polarizing filters and etching. These can produce good results but are expensive. A third method is to surround the equipment with a baffle to shade the screen from direct light.

Flicker

One of the most serious effects upon longterm viewing of a v.d.u. monitor is that of flicker. The effect is more pronounced
during certain fault conditions but may be noticed under normal operation.
Electron bombardment of screen phosphor in a c.r.t. system exhibits the characteristics shown in Figure 1 (ref. 2).

Screen illumination increases to a maximum or saturation value during electron bombardment of the phosphor (fluorescence) and decays either exponentially or hyperbolically after bombardment has ceased (phosphorescence). The 'persistence' of the phosphor is the decay time to 10% of the peak value.
In a raster scanned system, where excitation consists of short pulses at regular

by J. E. Tully

time intervals, the peak illumination level will not occur as a result of a single pulse, but a gradual build up occurs over a period of time (the "accumulation process"). This build up leads to a stable state where the illumination level is represented by a sawtooth waveform with a constant average value, Fig. 2.
This periodic variation in luminance exhibits itself as flicker and its magnitude is defined by

$$
\mathrm{F}=\frac{\mathrm{L}_{\max }-\mathrm{L}_{\min }}{\mathrm{L}_{\text {ave }}}
$$

where $L_{a v e}=\int^{T} L(t) d t$ and $T=1 / f_{r}$, with f_{r} the refresh frequency.
From this it can be seen that flicker may be reduced by either:

- using a longer persistance phosphor, or
- increasing the display refresh frequency.
Short-persistence phosphors with refresh frequencies around 30 to 40 Hz may produce flicker effects which interact with the natural oscillatory movements of the eye to give apparent movement effects ${ }^{3}$. Long-persistence phosphors produce a smearing effect when an image is moved from one part of the screen to another. These phosphors are also associated with shorter tube life. Further information on common phosphors is given in the Table.

Flicker, in addition to causing rapid fatigue, can trigger seizures in those who suffer from epilepsy. Not all epileptics are affected in this way but it should be determined from medical sources whether the person is subject to seizures before working with this type of display.
The effect of interlace, whilst allowing more information to be displayed on the screen, is to increase flicker unless the correct phosphor is used. Most of the commonly used phosphors are not suitable for interlaced use (see Table).

Direct health considerations

Since the introduction of the v.d.u. into the office environment there has been concern as to health and safety aspects associated with working with v.d.us. over a prolonged time period; and many questions have been asked regarding long-term viewing. Foremost among operator fears is probably the question of eye damage of one form or another. The most sensitive part of the eye is the fovea, a small area $\left(1 \mathrm{~mm}^{2}\right)$ at the centre of the retina containing only cone cells which each correspond to a unique nerve fibre. The action of the eye is to rotate the eyeball until the desired image is centred on the fovea. Because the fovea is so small, the eye scans the area of interest with tiny oscillatory movements to keep moving the image across the fovea. This relative movement of the image on the retina is essential ${ }^{4}$ (although we are not aware of it) and if artificially stopped, the image disappears after a few seconds. Another involuntary

Fig. 1. Fluorescence builds up during electron bombardment until it reaches saturation; phosphorescence decays after the bombardment has ceased.

Characteristics of common phosphor types in monitors (ref. 8)

Type	Colour	Persistence	Remarks
P4	White	Med/Short (60 $)$	Low cost, good focus, objectionable flicker during interlaced operation
P31	Green	Med/Short (38Good focus, may be easier to view for long periods, objectionable flicker dur- ing interlaced operation.	
P39	Yellow/-		

Poor focus, suitable for interlaced operation, moving cursor appears to smear.
movement of the eye is a result of rod cells around the periphery of the retina which, in daylight, act as movement detectors around the extremes of the visual range and act as a trigger to rotate the eye toward an object which enters the visual field, centering the image on the fovea. Colour is perceived by a number of different types of cone cells which respond to blue, green and red light.

Fatigue and "eye strain"

The v.d.u. does subject the eye to unnatural stresses which are likely to result in fatigue of the eye and in general tiredness. V.d.u. operators occasionally complain of such things as burning sensations in the eye, impaired vision, twitching of eye muscles, headache, etc. These symptoms, which may collectively be called "fatigue", are afftected by lighting conditions of the room, general stress level of the person, brightness of the screen, boredom, noise level and posture. Eye fatigue does not, therefore, necessarily indicate that the source of the problem is visual.

If distractive movement takes place beyond the c.r.t. screen but within the field of vision, the eye will involuntarily rotate to investigate. This involves a change in focal length and fatigue will result if persistent visual interruptions occur. The effects of visual distraction are made more serious when the c.r.t. phosphor produces light of a prime colour only, since during the distraction other cone cells are activated temporarily.

In common with most electronic display devices the v.d.u. relies upon generated

[^6]light rather than reflected light as used by more conventional display systems (e.g. ink and paper). This raises new problems relating to the long-term visibility of the display and its effects on the viewer or operator. Because of the nature of the image produced and the thickness of the glass at the face of the c.r. tube, the image appears to take on a certain "depth". Coupled with the characters having slightly fuzzy edges compared to printed material, this forces the eye to continually adjust its focal length, searching for the correct focal plane. This is an unusual and unnatural stress for the eye and is tiring after a prolonged period. The problem is further affected by an estimated 20 to 30% of the population having inadequately-corrected visual defects ${ }^{1}$.

Other factors affect the rate at which a person tires when operating a unit, including the difference in illumination levels between the characters on the c.r.t. and a printed page to be copied or compared, screen effects such as brightness, focus and flicker, and room environment conditions such as temperature and humidity.

Radiation and implosion hazards

It is true that dangerous voltages are applied to and are generated by a v.d.u. It is also true that ionizing radiation may be generated internally in some c.r.ts. This is mainly in the case of colour tv monitors where the extra energy associated with higher final-anode voltages may produce a certain level of leakage x-ray radiation. The radiation is confined to a screened area within the monitor section around the line output transformer or voltage multiplier. Measurement of radiation levels at the outer screen have been shown to be minimal and below general background radiation levels due to natural sources. Other, non-ionizing radiation including ultra-violet have been shown to be similarly insignificant ${ }^{5}$.
Early c.r.t. monitors and television receivers employed a separate implosion guard between the viewer and the tube face consisting of either a thick toughened piece of glass or a thinner sheet of perspex, or sometimes a thin flexible plastic material bonded between two pieces of glass. Problems encountered with this system were dust entering behind the guard, loss of transmitted light; and reflected light from both surfaces of the guard. Modern monitors generally use a plastic membrane attached to the front of the c.r.t. or a bonded faceplate, ensuring adhesion to national safery standards.

Rest periods are essential to a person

Fig. 2. Flicker associated with raster-
scanned screens is caused by this sawtooth variation in illumination.
involved in continuous v.d.u. viewing, and should be taken away from the screen to enable the eye to focus on objects of varying distances, particularly long distances and to allow normal colour variations to be viewed. However, it has not been determined for precisely how long a display unit should be viewed before a rest period should be taken; this is a question currently being asked by representative of various industrial bodies ${ }^{6}$, and is the subject of extensive international debate.

Environmental considerations

Lighting. The reading of a printed image is usually helped by the increased contrast associated with high illumination levels, while v.d.u. reading requires lower illumination due to the self luminous nature of the display. As both reading sources are usually required in the same room, a basic incompatibility exists requiring special precautions to be taken.

General lighting should be indirect with direct local lighting of printed material. If fluorescent lights are used, they should be parallel with the sides of the unit (not parallel with the screen) and should be fitted with diffusers. If ambient lighting levels are too high, increasing screen brightness in an attempt to maintain visibility will result in reduced resolution making viewing very difficult.
Immediate surroundings. The area behind the screen on the far side from the viewer should be free of movement and if possible should be of an illumination and colour which roughly approximates to the average of the screen ${ }^{7}$.

The equipment should be positioned such that reflected glare and the effects of dazzling light sources are minimized. It would be useful to mask any unwanted light sources if no better method could be found.

Although some background noise is inevitable in a room with a number of people, it should be minimized in the interests of reducing the number of distractions with associated loss of concentration and refocusing of eyes.
Room temperature and humidity. In a room containing numerous pieces of electronic equipment, the room temperature may easily rise above comfortable levels if inadequate attention is not paid to air conditioning and ventilation.
In general it is preferable for equipment to produce low heat levels and to be placed in a position allowing natural convection rather than to introduce forced cooling into a room, as this is noisy and may cause draughts. A slight air movement may, continued on page 72

Picotutor assemblylanguage trainer

Versatility of this small assembly-language training aid is demonstrated in showing how Picotutor can be used as a digital voltmeter by adding a small analogue i/o board. Construction and operation of the main board and a description of the analogue board are included in this second article.

Ease of construction for the Picotutor was considered of paramount importance and for many readers the component-position illustration and parts list given last month should suffice. Most of the following tips are peculiar to the Picotutor assembly and should be read before construction.
The processor - the last component to be mounted - is sensitive to static charges and should be mounted in a socket, partly because it is the most element of the circuit.

Resistor networks used have a spot on them to indicate the common pin. If preferred, each network may be replaced by eight individual resistors mounted on end with their tops connected together and taken to the pin one position.
Only 16 connections on the display are used. The left-most connection, when viewed from the front, is unused. A 12 mm length of tinned-copper wire is soldered to each display connection before mounting. When mounted on the board using these lengths of wire, the display may to tilted to a suitable viewing angle, but care must be taken not to damage the display or lift the p.c.b. tracks. This component should be mounted next to last.
When construction is complete, a d.c. supply of between seven and ten volts may be connected to the supply terminals. Successful construction will result in a dash on the display at the sixth digit from the right; this is the right-most digit used on the Picotutor. Supplies of up to 30 V may be used but the three-terminal regulator may require a heat sink.

Operation

At switch-on and atter pressing the reset button S_{1}, the monitor program will respond with an indication that the system is ready to accept a command from the operator by displaying a dash at the lefthand side of the display.

Command keys are two and three-letter keys on the keypad. Memory open, or mo, is used to open a memory location and allow the operator to examine or modify data in it. Pressing the mo key will result in a memory-open sign in the form of an Π at the right-most position on the display.

The system is now waiting for a address to be entered.

The 68705P3 can address up to 2048 locations in the hexadecimal range 000 to 7FF. Hexadecimal keys on the Picotutor are indicated by single characters in the range 0 to F . Random-access memory locations in the 68705 are from 010 to 07 F . Addresses 010 to 023 are used by the monitor program and an area at the top of the ram must be allowed to store a small group of microprocessor registers called the stack. Operator programs may occupy memory locations between 024 and about 0 BF .

by R. F. Coates

After pressing the mo key, enter the address 024 , and the data contents of this address will be displayed on the two rightmost digits of the display. These two hexadecimal digits represent one byte (8 bits) of data. After switch on, data in the ram will be random so the number displayed may be any between 00 and FF.

Pressing a hexadecimal key will now result in its value being entered into the system and shown on the display as the right-most data digit. The original leftmost data digit is shifted out and disappears from the two-digit data display. Entering a second digit will shift the first digit entered to the left and a data byte consisting of the two digits entered will be displayed with the last entered digit on the right.

A depression of the key with an arrow pointing to the mo key - the step-up key - will open the next memory location and allow it to be altered on command and pressing the key with an arrow in the opposite direction, the step-down key, will open the previous memory location; pressing either of these keys will result in an according change in the display address indication. If any other key is pressed while in command mode, the mode will change and the dash prompt will reappear.

When an address-location alteration is made the monitor program checks that the memory responds to the change, which should always be the case when ram alterations are made. An attempt to alter an unalterable eprom location (try 100) will result in an error message on the display; pressing any key will return the dash prompt required before all commands.

Now enter the following test program byte-by-byte by entering two digits then pressing the step-up key followed by the next byte, and so on, while in memoryopen mode. The starting address, entered first, is not important but if in doubt use 030.

9C 4F AE 2383 4C 20 FC

When program entry is complete, press any command key or the reset key to return the dash prompt.
The next step is to run the program, which entails passing control from the monitor to the program just entered, for which the go key is used. When pressed, this key causes a G prompt on the right of the display which is an indication that the program starting address is requested. On entry of the last digit of the starting address, in this case 030, the program runs.

Seemingly instantaneously, the program runs and control is passed back to the monitor by a software-interrupt instruction resulting in the return of the dash prompt. This program clears the c.p.u. accumulator and places the value 23 in the

With the switch toward the terminal block, the board acts as a digital-to-analogue converter. A 5V supply is provided by the regulator on the main board through a separate lead. The ribbon-cable connector is plugged into the switch socket on the main board with the display removed.
index register. Pressing the registerdisplay key, marked reg, displays the processor-register contents when a soft-ware-interrupt instruction is encountered. This program-debugging function can be used to check that the program entered has run successfully.
The first register displayed holds condition code and isn't important in this article. Pressing the step-up key will display the accumulator, signalled by an A on the right of the display, which should hold 00. Another step up will signal the index register and display its contents, which should be 23. The next step up will show the program-counter value, which should be 35 , and a P on the right of the display. Press step up again to return the dash.
Now press continue, abbreviated con on the keypad, and the program will run from where it left off resulting in an increment of the accumulator. Again a software interrupt passes control back on the monitor. On examining the registers, 01 should be found in the accumulator. This process of incrementing and looping can be repeated indefinitely.
Remaining keys are marked hdh, representing the number-base conversion function, and bc which is used for calculting branches. These keys are programming aids. The first converts hexadecimal numbers to decimal and vice versa as follows.

Press hdh, which results in blanking of the display, and enter a four-digit decimal number on keys zero to nine with leading zeros as required. Now press the stepdown key and the hexadecimal equivalent of the number entered will be displayed.

As shown, the analogue interface circuit operates as a digital-to-analogue converter. Software in the Picotutor converts values entered on the keypad into analogue output voltages up to 5.1 V. Using the switch and an external connection (see text), the circuit acts as an analogue-to-digital converter. Software included demonstrates how the system can be used as a digital voltmeter.

Any key will return the prompt.
For hexadecimal-to-decimal conversion, press the hdh key and enter a four-digit hexadecimal number using keys zero to F then press the step-up key to obtain the number's decimal equivalent.
The conversion routine can handle numbers in the decimal range 0 to 9999 ; numbers outside this range and decimal numbers containing digits A to F will result in an error message.

Analogue interface components
ZN425E (Ferranti)
CA3140 (RCA)
$10 \mathrm{k}, 1 / 8 \mathrm{~W}$ or greater
10k presets
220 n electrolytic, 10 V
1μ electrolytics, 35 V
Single-pole changeoveı p.c.b. mounting switch with 0.15 in pin spacings.
16-way dil jumper lead connector
8-pin dil i.c. socket
5 -way vertical p.c.b.-mounting terminal connector with 0.2 in pin spacings

Key bc initiates a routine for calculating the two's complement offset required for branch instructions and will be described later.

Analogue interface

This small circuit board is connected to the processor A port using a ribbon cable plugged into the switch socket and can be connected to function as either an anal-ogue-to-digital or digital-to-analogue converter.

Construction is straightforward: IC_{2} is a static-sensitive device and mounted in a socket. Main connections between the two boards are through a 16 -conductor ribbon cable with insulation-displacement type connectors on each end. Ready-assembled cables are preferred as clamping the plugs to the cable requires a special tool. The plug may be either soldered directly onto the anaolgue board or used with an i.c. socket. Component positions are shown in the photograph.
Voltage generation. A program for generating analogue voltages is included in the Picotutor software and may be used to check the operation of the interface board as follows.
Two wires link the Picotutor 5 V output and analogue board 5 V input and connect the main supply to the $\mathrm{V}+$ terminal on the analogue board. Ground connection is made through the ribbon cable, the plug of which fits into the switch socket on the main board. The processor should be cap-
able of driving the bar display but if problems are encountered, the display may be removed (pin one on socket and plug mate). Set the analogue-board switch in the d-to-a position, i.e. with slider towards the terminal block, and connect a voltmeter between $A_{\text {out }}$ and ground terminals on the interface block.
Switch on the power, which results in a dash on the display, and key in go $0 C E$ which is the starting address of the voltagegenerator program. The display should now show 0.00 and the voltmeter should read 0 V . Key in 510 , which should appear on the display, and calibrate the analogue-
board output using R_{3} to give 5.1V on the meter. Voltages between 0.00 and 5.10 can now be set on the keyboard and represented on the display. Pressing reset will break the program.
Digital voltmeter. Software is included in the picotutor to allow it to be used as a digital voltmeter with the interface connected as an analogue-to-digital converter.

Set the interface in its a-to-d position and link terminal positions $A_{\text {out }}$ on the interface and int on the main board. Terminals $\mathrm{A}_{\text {in }}$ and +5 V on the interface board should alsi, be linked and R_{2} turned fully clockwise. Switch on and key in go OCB to initiate the voltmeter program, causing the display to read 0.00 . With these connections, R_{2} may be used supply a variable input voltage to aid testing to give readings of up to 2.55 V . Accuracy of the readings is determined by the tolerance of the ZN425 conveter reference voltage.
With the interface link between terminals $\mathrm{A}_{\text {in }}$ and +5 V removed and R_{2} turned fully anticlockwise, any analogue signal from 0 to 2.55 V between terminals 0 and $\mathrm{A}_{\text {in }}$ will be shown on the display. Pressing the reset button stops the program.
A tutorial series introducing assemblylanguage programming will explain basics hardware and software design and include descriptions of various instruction sets. How to write programs to perform mathematical operations, convert codes and drive peripheral lines and interface devices such as the 6821 p.i.a. will be discussed, and operation of the analogue board and Picotutor detailed. Subroutines for binary-to-decimal and decimal-to-binary conversion, multiple-precision multiplication, division, addition and subtraction - and for simulation of the 6800 DAA instruction not available on the 6805 - will also be explained.

A hexadecimal list of software for the

 Picotutor can be obtained by sending an s.a.e. to Wireless World Picotutor, Room L303, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Complete kits or separate parts are available from Magenta Electronics (see advertisers' index).
Checklist

O Correctly adjust contrast and brightness controls. Suggested method: reduce contrast to minimum, adjust brightness then increase contrast. Black level should be just below threshold.
O Attention to room lighting. Do not use very bright lighting. Use desk lamps for illumination of printed material. Run fluorescent lamps parallel with v.d.u: sides and fit diffusers.
O Position v.d.u. for minimum ref-
lected glare but avoid operator facing a light sourse. Choose antireflective coating on c.r.t. whenever possible.
O Select phosphor persistance for desired application.

- Avoid visual distractions within operators field of vision.
O Select keyboard, desk and chair for good posture. A detachable keyboard is useful for this.
O Take rest periods away from the v.d.u. if possible.
continued from page 69
however, be beneficial as higher than normal dust concentrations can build up between the viewer and the screen, due to the high static charge at the c.r.t. face.

Temperature and humidity are important factors if only because continuous concentration at a v.d.u. screen can reduce
the blink rate - this is especially important with contact lens wearers. Suggested room temperature is 22 to $26^{\circ} \mathrm{C}$, with a relative humidity of 50 to 55%.

References

1. Cakir, A., Hart, D. J. and Stewart, T. F. M. Visual Display Terminals, Wiley, 1980.
2. Tubes de Rayons Cathodiques (Cathode-ray tubes), Thompson-CSF Tubes Division, Publication DTE 064, March 1979.
3. Rosenthal, S. and Grundy, J. Visual display units, nightmare to the operator?, Ophthalmic Optician 6 January, 1979.
4. Hilgard, E.R., Atkinson, R. C. and Atkinson, R. L. Introduction to Psychology, 5th edn. Harcourt Brace Jovanovich, New York, 1971.
5. Birnbaum, R. Health Hazards of Visual Display Units, TUC Centenary Institute of Occupational Health, March 1978.
6. McKee, B. The health and safety factor. Contact, no.33, February 1979.
Gourlay, C. Using Display Terminals. Market Report no. 12 ECC Publications, April 1979.
7. Andrews, I. and Pearce, B. VDUs-casting a light into the darkness, Computing Europe, October 4th, 1979.
8. Design of CRT Monitors. Plessey

Components. Application note AN26010, November 1978.

Interpretation of the "quantum" concepts

The mystical concept of duality in light was paralieled in 1925 by the even more mystical postulate of a particle/wave duality in matter. In this area confusion and "double-think" now reign supreme, and clarification is long overdue. Three completely different meanings are ascribed impartially to the single word "quantization". In its first sense (Planck) it refers to the natural consequences of the fact that the physical world is granular on the microphysical scale: both matter and radiation behave as if they were composed of independent, indivisible particles. Quantization in this sense means simply that a photon is either reflected or not reflected at a mirror surface - yes or no, definitely and without half-measures. The question of whether or not the outcome of the encounter can be predicted before the event is not related to quantization. That question has two important philosophical branches: (a) accurate prediction depends on detailed knowledge of the experimental conditions, and (b) prediction is never indulged in by inanimate

Nature, but on the contrary is an activity characteristic of living matter only. This much-ignored truth enables one to distinguish between physics and metaphysics, and also between inanimate determinism and predictability; fallure to maintain such distinction was the first serious philosophical error of modern physics.

The second historical meaning of "quantization" referred to the postulate (Bohr, 1913) that mechanical workingparameters such as energy and momentum may also be in some way granular, and that they may be exchanged between physical entities only in steps of discrete size. An attempt to rationalise this postulate by attributing quantization to the action of "matterwaves" proved abortive, but by convention that failure is not normally admitted or taught. The third common meaning of the word may be taken to refer to a mystical mechanism offered by way of "explanation" of any phenomenon by the wave theory of matter.
energy comes in packages which have all the experimental characteristics to be expected of discrete particles; on the scale of atoms and photons the physical world is granular in its nature. Bohr's quantization (type two) is totally different: it does not have to do with microphysical entities as such, either as to their size or their particulate form, but refers to the apparent restriction of a mechanical working parameter, in this case angular momentum, to certain universally-discrete values. One quantization acknowledges that
microphysical entities are discrete, selfcontained and indivisible; the other postulates that the laws of mechanics are essentially discontinuous in their operation. The only connection between these two completely different meanings of the word quantization is that thinking in terms of the one led Bohr's imaginative mind toward the concept of the other.
In retrospect Bohr's proposal was far more earth-shaking than Planck's, because while Planck's could be accepted by the overthrow of a theory, painful though
that might be for the theory's supporters, Bohr's has never been explained. The conclusion was drawn generally, and I shall suggest prematurely, that ordinary mechanics had failed and that a new quantum mechanics in which energy, momentum, and angular momentum were in some mysterious way quantized must take its place. How else could the orbital electrons in the Rutherford atom be prevented from eradiating away their energy and coalescing with the nucleus? (Might there not be an alternative explanation?)

As I have said, no satisfactory explanation of Bohr's quantization has ever been forthcoming. Current doctrine adjures one to accept the outcome without explanation, on the grounds that "for fundamental reasons" it cannot be explained.

In the microphysical domain of atoms and electrons we physicists are to deal henceforth in miracles: for a miracle is a physical occurrence for which we can offer no physical explanation. Inventing "mat-ter-waves" in an attempt to provide a rationale was an abject failure, but it led to a third common meaning of the word quantization, unconnected with the other two; we may define it as "A panacea which purports to explain any microphysical phenomenon, indiscriminately, in terms of the mystical tenets of the wave theory of matter". The subornment of physical thinking during the 1930's to the beliefs of the adherents of this theory is the final incredible tale I have to tell, but first I shall have to describe what the theory is about and explain where it came unstuck, and why. That in itself makes a fascinating story.

Architecture of an electronic book

Rapidly increasing paper cost and advances in semiconductor and software technologies are prompting practical alternatives to the wood, glue and dye-based objects we know as books. Books intended to be read serially can conceivably be stored in a central bank and the information in them disseminated through networks similar to the ones currently being used as up-to-the-minute newspapers. But data manipulation necessary for electronic reference books, educational text books and technical manuals may require a different approach, mainly due to the need to search for information within them and because of their often specialised nature.

According to a recent proposal,* such books would be contained in plug-in roms and read on a flat-screen display. Perhaps anticipating the question, "Why not use an optical disc?", its authors remind us of the recent implementation of a 4 Mbit waferscale rom which could be ready for manufacture in the mid-1980's.
"Current state-of-the-art flat-screen display technology suggests that it will be possible to house the display, keyboard,
*Architecture of an electronic book, 7. M. Murray \& K. J. Klingenstein, IEEE Transactions on Industrial Electronics, vol. IE-29, Feb. 1982, pp.82-91
system-processor chips and a substantial number of rom structures each containing text and graphics for an entire book will fit into a package approximately the size of a conventional book," but the authors don't speculate on a possible introduction date.

Apart from saving trees, the book envisaged will also provide an efficient means of accessing information and make searching for concepts embedded in the text possible. In search mode, the processor thumbs the pages and presents the desired information either page by page or as page numbers with or without an extract of text
from the page concerned.
Word-based encoding techniques give a factor of between three and five reduction in the amount of memory required over character-based encoding and straight-line approximation methods used allow engineering drawings and text-book illustrations to take up the same amount of memory as text, page-for-page. Roms of the type envisaged that lend themselves to storing high-resolution pictures are not expected to be available in the 1980's but the optical disc is suggested as a possible alternative.

Memory systems

Abstract

Read-only memory provides non-volatile data storage, making it indispensable to microprocessor. This two-part introduction to the characteristics and application of memories to microprocessors by L. Macari concludes with manufacturers and userprogrammable rom.

Read-only memories receive data only once or a small number of times compared with the number of read operations. It provides non-volatile data storage, which makes such memories important parts of microprocessor and digital systems. Some of these memories, which are all of the random-access type, must be programmed at the manufacturing stage, while others can be programmed by the user.
A simple example of a read-only memory is the diode matrix, shown in Fig. 5 (a). Although it is not used in today's computers, its basic principles are clearly illustrated, making this type of circuit a good introduction to the concept of fixed data storage.
A cell in the diode matrix shown consists of a diode or a space, representing 0 and 1 respectively. The diagram shows an 8 -bit $\times 4$-bit array in which each vertical data line is a diode-resistor And gate. Since only one of the horizontal word lines will be pulled low at any instant of time, the presence or absence of a diode will determine the state of the data line.

Two examples of cells of semiconductor roms are shown: fusible-link rom, (a), and the mask-programmable type at (b).

The fusible-link rom is supplied with all
The author is with the Microelectronics Educational Development Centre at Paisley College of Technology.

Fig. 6. 74S288
fusible-link memory programming.

Fig. 5. Read-only memories. At (a) is a diode matrix, at (b) a fusible-link cell and at (c) a mask-programmable memory cell.

links unbroken: the programming procedure is to apply suitable voltages to the device to break the links, producing the necessary pattern of 1 s and 0 s in the memory.

Where large quantities of the same program are required, the mask-programmable device is of value. This type of rom has the data placed on it as part of the manufacturing process, the result of which is to produce some mosfet devices with thick insulation between the gate and the active device. Normal-thickness insulation gives rise to a device which can switch as usual, whereas the device with thick insulation will not switch when voltage is applied to the gate. This is therefore the means of producing is and $0 s$ in the memory.

UV-erasable memories. These roms are user-programmable and, as the name suggests, can also be erased and reprogrammed instead of being discarded when it is discovered that the stored data is incorrect. The devices are widely used and lend themselves particularly to the development stage of any microprocessor system.

Each memory cell consists of a single, insulated-gate fet. In this case there are two gates, both electrically isolated from one another and the semiconductor material. If a voltage of the order of 25 V is applied across the substrate and either the source or the drain, so that the avalanche effect takes place, high-energy electrons can be injected through the insulating medium to charge up the gate electrodes. This causes a change in the operating point of the transistor and since the charge is stored in a good insulator it does not leak away, providing the cell with a charge which is seen as a logic-level change when that cell is addressed.
Applying the high-intensity ultra-violet radiation to the transparent window in the i.c. package provides the necessary stimulation of the insulation structure to permit the charge to disperse. Repeated exposure to the u.v. source not only causes the stored charge to disperse but causes the impurity atoms in the semiconductor material to disperse a little and change the characteristics of the fet. This makes the device more difficult to program and there is eventually a stage where it becomes impossible to reprogram the device at all.

Programming roms

Fusible-link roms. An example is the 74 S 288 , shown in Fig. 6, which is a 32×8 bit rom with tristate outputs. When unprogrammed, all bits are set to zero, so the programming procedure open-circuits the required links to change those bits from zero to one. If a particular bit has not been changed, it can be altered at a later date, but bits cannot be altered once they have been programmed. In this device the links are made of titanium-tungsten wire.

The i.c. package has the normal address and data lines and an active-low select line. No other signats are required for the purpose of programming. The programming

Fig. 7. Programming 2716 u.v.-erasable rom.
procedure is carried out one bit at a time at each address, passing over bits which do not need to be altered. While the SEL line is high, the required data line is pulled low, and all other data lines connected to +5 V through 3.9 k resistors. The V_{CC} supply to the i.c. is now altered to +10.5 V . The SEL line is now brought low and held low for the programming time, as indicated on the diagram. Before carrying out any further programming, one can check each bit.

UV-erasable roms. A typical example of this type is the 2716 in Fig. 7, which is a $2 \mathrm{~K} \times 8$ bit rom. In addition to the usual address data and select line, this device has an output-enable pin and a programming supply pin: the chip enable CE serves as a programming pin. This type of rom has all bits set to 1 when delivered from the manufacturer, and programming changes the required data bits to 0 . Erasure, using
a u.v. source, resets all the bits to 1 as before. The advantage of the 2716 rom is that, except for the programming supply, the other signals required during programming are standard t.t.l.-level signals.
In this case, the procedure can be used to program simultaneously all bits which have to be changed at one address. The V_{pp} pin is connected to +25 V instead of +5 V , which is its normal operating level: output-enable, $\overline{\mathrm{OE}}$, is set to a logic 1 . On setting up the required address, the data is applied to the data pins and the $\overline{\mathrm{CE}}$ line is now taken high for a period lasting from 50 to 55 ms .
The data can be checked and the programming pulse applied again, if the data has not been entered correctly. Usually, the more the rom is erased, the more difficult it is to reprogram the memory and some limit would be placed on the number of attempts made to write data into the memory.
vivo

Data integrity in disc drives

Abstract

Eighth part of this series details hardware and software required to ensure that data stored can be retrieved without corruption. Growing impact of computer technology on everyday life means these considerations have never been more important.

A typical disk drive has circuitry not essential to the normal processes to detect fault conditions. The most common kinds are:
O Write current without write gate - if current passing through any head is detected when no write function is taking place, there is an error. Heads are retracted and write circuitry disabled.
O Write gate and no transitions - current reversals in the head are monitored during writing and their absence indicates an error.
This error detection circuit has to be disabled during an address mark write see part 7 for definition.
O Multiple head select - by forward biasing isolating diodes in the matrix, as shown in part 2. Bias current can be measured to ensure that only one head is selected at any one time.
O Incorrect write current - (Part 2 showed that it was necessary to program the write current as a function of the cylinder address to compensate for change in the head flying height) - current is measured to ensure it is as specified.
The consequences of these errors vary from system to system, but typically the immediate function would be aborted, and the error bits would be made available to the host system. Many drives have an 'unsafe' indicator which would illuminate under these circumstances. No further functions would be possible until a drive clear is sent to reset the error conditions.
The subsystem contains parity generating and checking circuits which ensure that any corruption of data between drive and memory is detected. Again the detection of such an error would abort the current function, but a controller clear might also be required to recover, depending on where the error was found.

The latest microprocessor-based drives contain extensive diagnostic circuitry and firmware which checks out all functions every time the drive is run up. Some have dedicated tracks on the disk called field engineer cylinders, to verify the write and read capabilities of the heads before the drive comes on-line. These cylinders are beyond the address range of the positioner in normal operation. On a Winchestertype drive where the disc is not normally
removed, this is the only way that the drive can be tested without overwriting customer data on the stack.

Media integrity

In the same way that magnetic tape is subject to dropouts, magnetic discs suffer from surface defects whose effect is to corrupt data. The shorter wavelengths - employed as disc densities increase - are affected more for the same size of defect. Attempts to make a perfect disk suffer from a law of diminishing returns, and

by J. R. Watkinson M.Sc.

eventually a state is reached where it becomes more cost-effective to expend capital in a subsystem which can handle defects.

There are four main methods of handling media defects, whose common goal is to make their presence transparent to the computer user. These vary in cost of implementation, and each find application on subsystems of different complexity. More than one of the techniques described here
may be combined in a particular application.
Bad-block files. When a particular disc is first made known to an operating system, a process is started which writes known patterns everywhere on the disc, and verifies the surface by reading them back. Following this the system labels the disc with a volume name, and sets up a directory structure which keeps a record of every file subsequently written. The physical disc address of every block which fails to verify is allocated to a file which has an entry in the disc directory. In this way, when the first or subsequent genuine data files come to be written, the bad blocks appear to the system to be in use storing a fictitious file, and no attempt will be made to write there. Some discs have dedicated tracks where defect information can be written during manufacture or by subsequent verification programs, and these permit speedy construction of the bad-block file. Field engineers take pains not to overwrite these bad-block tracks when using test programs. Software prevents the system attempting to write files there.

In association with bad-block files, many drives allocate bits in each header to indicate that the block is bad. If a data

Fig 1. Before writing on a disc, the block usage bit map is searched for contiguous free space equal to or larger than the cluster size. The first available space is the second cluster shown at (a) in the bit map but the next space is unusable because

a| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | etc | \rightarrow | | | | | | |, the presence of a bad block (b) destroys the contiguity of the cluster - one bad block causes the loss of a cluster.

Fig. 2. The bad block in this example has a physical sector of 28. By setting a skip sector flags in the header this and subsequent logical blocks have a one added to their sector addresses, and the spare block is brought into use.

Technique	Data loss per defect	Software overheads	Hardware overheads		Application
Bad block files	One cluster	Simple. Bad blocks are allocated to a fictitious file.	No extra hardware required thus it can be used on any equipment.	Traditional approach. Reliable. Most smarter techniques revert to this when capacity exceeded.	
Sector skipping	One block	Special verification program quired to write skip headers.	Slight increase in disc control logic complexity, but no incompatibility Reverts to bad block files if skip with existing buses and protocol.	Useful for new medium capa- city drives for use on existing	
bus system.					

transfer is attempted at such a block, the presence of these bits causes a 'bad sector error', which aborts the function. Properly used, this technique gives excellent protection against media defects. The only drawback is the amount of storage wasted by one defect. Part 7 showed that contiguously addressed blocks only require one function to be issued for a multi-block transfer and for this reason the system associates contiguous blocks into clusters: the presence of one bad block prevents the use of a whole cluster. Fig. 1 shows how blocks are formed into a bit map which is searched to find free space.
Sector skipping. When this principle is implemented, space is allocated at the end of every track for a spare data block, which is not normally accessible to the system. Where a track is found to contain a defect, the affected block becomes a skip sector. In this block, the regular bad block bits will be set, but in addition, a bit known as the skip sector flag is set in this and every subsequent block in the track when the block with the skip sector flag is encountered the effect is to add one to the desired sector address for the rest of the track, Fig. 2. In this way the bad block is unused, and the track format following the bad block has effectively slid along the track, which will eventually bring the spare block into use. All blocks subsequent to the bad block need the skip sector flag set to cater for a data transfer which begins after the bad block. Using this approach, the presence of a bad block does not cause the loss of a cluster, but it does require some extra hardware. A second defect in any one track, statistically much less likely, would cause the system to revert to the regular bad block file protection, described earlier.
Defect skipping. The two techniques described so far have treated the block as the smallest element. In practice, the effect of a typical defect is to corrupt only a few bytes. The principle of defect skipping is that media defects can be skipped over within the block so that a block containing a defect is made useable. The header of each block contains the location of the first defect in bytes away from the end of the
header, and the number of bytes from the first defect to the second defect, and so on up to a maximum in this example of four defects, Fig. 3. Each defect contains a fixed number of bytes of normal preamble code (all zeros for m.f.m. or 33 hex for $2 / 3$ code - see part 2) followed by a sync byte. The skip is positioned so that there is sufficient undamaged preamble between the defect and the sync byte to re-synchronize
the data separator v.c.c. Each defect lengthens the block, causing the format of subsequent blocks to be placed further along the track. A space left at the end of each track allows a reasonable number of skips to be inserted.

The position of defects is purely physical, and the sector in which a given defect may show up depends on the format used on the disc. To store the position of defects

Fig. 3. in block containing three defects, the header contains parameters which specify how much data is to be written before each skip (a). To allow for lengthening over an error-free block (b), the track contains spare space at the end which is an error-free track (c). Four skips have caused the spare space to be used up in (d).

Fig. 4. The track descriptor record keeps a record of defects independent of disc format (top). Positions of the defects stored are used by the formatter to establish the positions relative to the format used. With the middle format, the first defect appears in sector 5, but the same defect would be in sector 4 for the bottom format. The second defect falls where a header would be written in top example so header is displaced for sector 10. The same defect falls in the data area of sector 8 in the bottom diagram.

Fig. 5. The first bad block in each track is
revectored to the spare block at the end of the track. Unlike skip sectoring, subsequent good blocks are unaffected, and the replacement block is read out of sequence. The second bad block on any one track is revectored to one of a number of spare tracks.
independently of format, a track descriptor record is written at the beginning of each track, which contains information about the position of defects relative to index. The t.d.r. is written by a special engineers program (a "scanner") which verifies the disc a track at a time. The formatter program must then refer to the t.d.r. to find the defect positions and calculate their positions relative to the format.

Fig. 4 illustrates the principle. Once the disc is scanned and formatted in this way defects are transparent to the system, unless there are more defects in one track than the skipping mechanism can handle, in which case the system reverts to the bad block file mechansim. This is rarely necessary in practice.

On reading a block containing a defect, data are read until the count specified in the header is reached. The data transfer then pauses until the sync byte at the end of the skip is detected, when it resumes. During a write, the skip has to be written during the interruption of the data transfer.

The disc control logic in a defect-skipping drive needs a good deal of agility to cope with such a flexible format and the use of conventional combinational logic would not be feasible. One successful implementation of defect skipping uses a microsequencer constructed from bit-slice chips.
Revectoring. A refinement of sector skipping which permits the handling of more than one bad block per track without the loss of a whole cluster is revectoring. A bad block caused by a surface defect may only have a few defective bytes, so it is possible to record highly redundant information in a bad block. On a revectored disc, a bad block will contain in the data area repeated records pointing to the address where the data displaced by the presence of the defect can be found, the spare block at the end of the track will be used to replace the first bad block in a track. In this case the spare block will be read within the same disc revolution. Unlike sector skipping, however, the block is read out of sequence which puts extra demands on the controller. In the less frequent case of more than one defect in a track, the second and subsequent bad blocks revector to spare blocks available in an area dedicated to the revectoring process. Fig. 5 shows the principle. In this case a seek is necessary to locate the replacement block. The low probability of more than one bad block per track means that the delay caused by

Error Mechanisms

Mechanisms responsible for data corruption in disc storage fall into three categories - failure or marginal performance of components, of the disc medium, and of the environment. These mechanisms may combine to cause errors, which may be either "hard" or "soft": a hard error is a failure which can be duplicated at will be repeating the conditions which gave rise to the error, while a soft error is a failure which cannot be duplicated at will and which contains a statistical element. Any or all of the three mechanisms may combine to cause errors, as the following example illustrates. The read preamplifier of a disk drive has a drifting component which is starting to lower the gain of the circuit. First thoughts suggest that the process would continue until the drive would suddenly cease to work - a hard error by definition. In practice this does not always happen. The presence of noise in the system means that as circuit gain falls, probability of data corruption rises. The observed effect is that soft errors occur and increase in frequency as the hardware deteriorates.

A certain amount of noise in a system is beneficial because it gives rise to symptoms prior to total failure. Each error found is entered into the system error log, and in many cases regular study and correlation of the soft errors in the error log allows repair before the failure becomes total. In this example the error log might show that soft errors on a particular drive were affecting the even-numbered heads but not the oddnumbered heads. An engineer familiar with the drive would replace the head matrix which connects to heads on one side of the T-block, as this is the most likely failure. This replacement can thus be made during scheduled maintenance rather than disrupt normal operation of the system, which continues running with only a slight speed degradation owing to the error recovery process.
revectoring seeks has an insignificant effect on overall system speed. The use of an intelligent disc controller is highly desirable for this kind of approach, as the operating system is then relieved of a significant software overhead.

All of these techniques can prevent data corruption caused by known disc defects. The Table compares the resources required by each technique.
As disc technology advances, manufacturers often introduce new drives which are plug-compatible with existing mass
storage buses and require minimal software changes so that customers' investment in both hardware and software is protected. In this context, sector skipping and defect skipping are attractive, as both are transparent to the operating system once the format of the tracks is established; both however, add to the complexity and cost of each drive. Where a totally new bus structure is to be designed, revectoring is the natural choice, as all of the intelligence is controller resident and the dumb drives required must be less expensive. For less powerful machines, the controller intelligence can be transferred to operating system software to give a lower capital cost.

To be continued

Data acquisition on a Pet

continued from page 67

6502 microprocessor. After acquisition, these data may be processed in the usual way, as timing is no longer critical.
An example of such a program is given in List 3. The requirement here was that the program should not start sampling data until the first non-zero byte had been obtained. Then 1 K byte of memory is filled as indexed indirectly by bytes BA to Cl . If multiple inputs are required, analogue multiplexing is appropriate.

Reading digital information

Many instruments will provide a digital output, either in b.c.d. or pure binary form. Automatic transfer of data from instruments to a microcomputer such as the CBM avoids much labour, permits fast data-transfer and eliminates errors. An example of an application where this is needed is when a rapidly varying signal initially in analogue form, needs to be captured and the rate of change is too rapid for an 0804 converter i.c. under computer control, to provide correct data. In such cases, the event must first be recorded on a transient recorder. The authors have used two transient recorders to capture rapidly varying parameters in an impact test. When the test was completed, information from each recorder was transferred to the computer for processing. The circuit used for this is shown in Fig. 3 and its extension to a variety of other applications is obvious. A four-input digital multiplexer is shown, designed to interface with Datalab type DL901 recorders, which require handshaking at each data-frame transfer.

This technique requires the complter to issue a request signal for the first byte of data and to reset the data ready flag of the transient recorder after the byte has been received. The computer may then request the next byte and the process is repeated for 1 K byte. This transfer of data is usually accomplished in about 200 ms for the IKbyte transfer using machine code. MN/

AMATEUR TEXT TRANSMITTER

Amtor contains everything needed to convert an amateur radio station and personal computer into a fully operational data communications system. It contains an f.s.k. modem together with a microprocessor to handle the data transmission. It uses its own seven-bit code with 35 characters that have constant-ratio combinations, i.e. the same number of positive and negative elements. This allows for simple error detection by testing the ratio on each character. Error correction is also provided in its A-mode by including a 'request for repeat' signal if the information is received incorrectly.

An RS232/ASCII interface connects Amtor to the computer, or ASCII terminal. It can be used to transmit and receive standard rtty, to transmit morse code, and as a modem to connect computers directly. Transmit tones are crystalcontrolled frequencies of 1,445 (mark) and $1,275 \mathrm{~Hz}$ (space). Full control is available through the computer, so there are no front panel controls on the unit. Amtor costs $£ 275$ inclusive from ICS Electronics Ltd, PO Box 2, Arundel, West Sussex BN 18 0NX

WW301

VIDEO COLOURBALANCE METER

The VCM7-700 enables video cameramen to accurately control exposure with the use of oscilloscopes or waveform monitors. It also enables the operator to check and adjust the colour balance of the camera without elaborate test equipment. The meter can provide greater accuracy and is more practical than

an oscilloscope, it is claimed, and with its internal filter system the meter can measure light levels in the presence of colour information or high frequency noise. The VCM $7-700$ can also be used as a quality check the operation of video links. Invotron Ltd, 2a Brookfield Avenue, Blackrock, Co. Dublin, Eire.

WW302

THYRISTOR WITH MOS GATE

High impedance and fast switching of a power mosfet are combined with regenerative latching action in Motorola's t-mos thyristor.
Derived from the vertical structure of t-mos with the substrate doping changed from $n+$ to $p+$ to give a

Motorola's suggestion for t-mos thyristor symbol
$\mathrm{n}-\mathrm{p}-\mathrm{n}-\mathrm{p}$ layer structure, it is equivalent to a two-transistor analogue of a thyristor controlled by an n-channel mosfet. Designed for high-speed switching of high current the device may be used for logic control of power supplies, and fluorescent lighting. The first device to be introduced, MCR1000, controls voltages up to 600 V with a gate trigger of 3 V . Current rating is 15A r.m.s with a surge capability of 90 A . Switch-on speed is 200 ns and switch-off, 6 uns. Motorola Ltd, York House, Empire Way, Wembley HA9 0PR.
WW303

PCB MAKER

In the CM1000 Circuit Maker a film positive master, which produces a positive image of the circuit without a negative, is placed over the circuit layout in a frame
and exposed by a photoflood bulb The film is developed and a similar process used to transfer the image to a copper surface of the p.c.b. using paint-on photoresist. The kit includes 12 sheets of 'autopositive' film, a frame, photoflood bulb, developing dishes, thermometer, six double-sided p.c.bs, chemicals and solder flux which also acts as a protective lacquer, cost $£ 59.95$, which works out at $£ 5$ for each board produced. A replacement kit for the consumable products means that further boards halve that price. Electrolube Ltd, Blakes Road, Wargrave, Berks RG10 8AW WW304

SNAP MOUNTING PCB SWITCHES

A rotary "pre-set" (!) switch, snap mounted onto a p.c. board and turned by screwdriver, measures only 10 mm dia and 3.5 mm deep. The switch may be operated from either end of the rotor and so may be switched from outside the equipment through an access hole in the casing. Two and three position models are available, rated at $100 \mathrm{~mA}, 50 \mathrm{~V}$. For small quantities the switches cost about 8p each from NSF Ltd, Keighley, Yorkshire BD21 5EF

WW305

INSTANT BNC

The TwistOn r.f. coaxial connectors could not be easier to fit. After the cable is trimmed and stripped, one end is inserted into the connector and the connector is
screwed onto the cable. No crimping or solder required. The idea is used for BNC plugs, bulkhead or panel-mounted receptacles and u.h.f. line jacks. (A u.h.f. plug needs to have the nose of the centre conductor crimped but still uses no solder.) Prices for the BNC connectors are $£ 2.05$ each and for the u.h.f. $£ 1.92$, from Intime Electronics Ltd, Colemans Bridge, Witham, Essex CM8 3HP WW306

PROGRAMMABLE CRYSTAL OSCILLATOR

Fifty-seven different frequencies can be generated within a single device housed in a standard 16 -pin dual in-line package. Frequencies range from 0.002 Hz to the basic at crystal frequency; three models

have crystals base frequencies of $600 \mathrm{kHz}, 768 \mathrm{kHz}$ and 1 MHz Calibration tolerance is $\pm 100 \mathrm{ppm}$ with a temperature stability of $\pm 150 \mathrm{ppm}$ from -10 to $+70^{\circ} \mathrm{C}$. Two outputs, the crystal frequency and the programmed divided frequency, are available simultaneously and both are compatible with bipolar or c-mos circuits. The device may be used for such applications as data rate generators, in modems, timers and as computer clocks. IQD Crystal Electronics Ltd, 29 Market Street, Crewkerne, Somerset WW307

RC SUPRESSOR

The compact PMR209 series of suppressors are made in such a way that the resistor element is an integral part of the capacitor, being formed in the processing of the metallised layer of the capacitor winding. Values in the series range from 47 to 470 nF . They are

designed for protection and supression in 50 or 60 Hz a.c. mains or pulse circuitry. RIFA AB,
Market Chambers, Shelton Square, Coventry.
WW308

LOW-COST LOGIC ANALYSER

A self-contained logic analyser bridges the gap between a simple logic monitors and expensive multifeature analysers. The LA-12 has a 16-word memory that captures the state of the 16 logic events before or after the trigger event. Trigger and clock may be qualified to comply with user's system requirements. Once captured each data word can be stepped through the 20 -segment
1.e.d. display and can be analysed in terms of a 12-bit binary code, a hex code or a decimal code, as well as a timing diagram. Clock rates of 10 MHz or over can be used. As the unit measures $190 \times 65 \times 150 \mathrm{~mm}$ and weighs less than 0.5 kg it may be fitted into a toolkit or briefcase. The LA- 12 costs $£ 279+$ vat from Reltech Instruments, Coach Mews, St Ives, Cambridge PE17 4BN.

WW309

AC CIRCUIT MODELLER

$\mathrm{AC} / \mathrm{MP}$ is a software package for solving the simultaneous linear equations associated with circuit design. Suitable for use with any CP / M microcomputer the
programme includes files, file editing, search and plotting capabilities for frequency response. Functions include gain, phase, input and output impedances, and bandwidth. Frequency response curves, \log / \log scaled, are printed on a normal printer. All passive and active components can be incorporated into circuit models with up to 32 nodes, typically an eight-transistor circuit. Processing speed is enhanced by optimally coded inner loops using macroassembler. The c.a.d. package is available for $£ 125$ inclusive from Harcourt Systems, 9A Keswick Road, Orpington, Kent BR6 0EU. (See also "Circuit modelling by microcomputer," WW, August 1982.)

WW310

The wider public has not yet been convinced of the need for the information and services (currently put at well over 200,000 frames-full of uneven range and variable datedness) and many of those who have toyed with the idea have not found the cost structure sufficiently attractive. Commerce and industry, however, used as they are to the costs of other electronic information and communication services, and more confident that the 'product' of the service can meet their needs, have increasingly seen the value of the system in either public or private forms.
O The company whose computers are at the heart of the London Stock Exchange's Topic videotex system with well over 1000 terminals, Modecomp, used the exhibition to launch ViewTracs a new mainframe transaction processing system via viewdata.
This enhancement for the Modcomp ViewMax private videotex system extends the information display and entry data facilities at the terminal by allowing interaction with a transaction processing system running in an external computer. In this mode Viewtracs provides the facility to front-end an existing complex mainframe application. WW500 O A new VME version of ICL's Bulletin private videotex system is announced for use on its larger mainframes. Bulletin has a window facility to enable viewdata users to access normal data files and applications on their viewdata tv sets. Improvements to the Bulletin
system include messaging facilities, improved editing, and what is called 'interactive up-date' enabling up-dates to be passed automatically between data files and the viewdata base. WW501
On the o.e.m. level, Mullard showed visitors how its Lucy unit has been joined by Lucinda (New Products, December) to reduce the number of integrated circuits needed in a viewdata decoder. Lucinda is an n-mos device which as well as replacing a number of filters and limiters, replaces six i.cs and many discrete components needed for coupling the dialling pulses to Lucy. Between them they cut the number of i.cs needed by up to 25. WW502
O Switzerland's videotex service is planned to start in Bern and
Zuürich in September next year, Digital Equipment Corporation reported the details of its share, with STR (the Swiss ITT company) and the Canadian Infomart organisation, it will be equipped with two VAX11/780 at each centre, and feature keyword search. WW503
A live demonstration of British Telecom's next generation Picture Prestel used a 4065 system on GEC Computers stand. Other demonstrations included the Zycor MicroView, an intelligent package to provide viewdata, Dialcom, PSS Databases, Euronet and Dialog facilities, and the Infotron Supermux 790 network concentrator designed to make the most efficient use on data communications. WW504

SYSTEMS DEVELOPMENTS

O Equipments and systems which are the basis of Aregon International's worldwide sales of videotex were on show. As well-as the basic IVS- 3 product there was also the recently announced IGS-1 gateway system, Salescom and Officecom for viewdata office communications, including mailbox, display of hand-written input and management graphics using geometric displays. Aregon also took part, along with Telidon company Infornart of Canada, on the stand of the Digital Equipment Company to show their combined videotex opportunities. WW505

O Among companies with IBMrelated products was Brown's Operating Systems Services, the "Brown's Box" viewdata interface with IBM mainframes firm. New lines are the BDU, a full-colour asynchronous terminal enabling a viewdata user to switch between a standard $24+80$ character screen and $20+40$, for viewdata operating mode, and the VPM, a mainframe viewdata package which aiiows the presentation of existing mainframe information in a viewdata/Prestel format. It provides a viewdata editing interface to store information on a page database, including sub-routines to retrieve the data pages and to merge the information with customer data. WW506

O Also with an IBM tie, the Maidenhead-based systems firm MicroScope, unveiled two new systems. One, called Videogate, is an intelligent network concentrator said to provide all the tools required for users of IBM systems to implement, cost effectively, any size of interactive private videotex system. It emulates Prestel gateway and interfaces to the IBM systems via standard IBM X25 software under NCP. The other is Space Agent, a micro-based videotex reservation and accounting system for the operators or for others in the travel, tour or holiday sector. Using a four-port controller called Teleport, Space Agent provides a service for typically 80 or more travel agent terminals. WW 507 O A first sight of the latest version of its PVS-990 private viewdata system was provided by Mars Group Services. The system, which runs on the Texas Instruments DS990 range, now has an 80 column option and claims enhanced electronic mail facilities, kept within the user-friendly area by naming the features by familiar self-explanatory names like "carbon copy" and "recorded deliver". WW508
O Computex Systems, with its private videotex system of the same name, had new software, including support of a high resolution graphics microcomputer as a terminal device, as well as Teldir, a telephone directory system and Ctxmail, a new electronic mail system. WW509

TERMINAL \& ADAPTERS

O At the terminal end of the market, the Plessey integration of the normal telephone function with that of Prestel or private videotex in one unit, first revealed in its Vutel instrument, has been updated in a Mk II version by addition of a detachable full alphanumeric keyboard and printer interface. The new model continues with the $51 / 2$-in monochrome screen, builtin numeric pad, two-page memory and several telephone sophistications. (Plessey also has its IBIS integrated business videotex
system package based on the PDP11 processor, to provide keyword search, strong security by password control, and access regulation.) WW510
O Viewdata Electronics (VEL) presented the Comptex 80 intelligent terminal offering programmable autodialler, automatic frame access, bulk update, tele-software transcoder and extensive off-line editing when used with the VEL intelligent keyboard. The internal magazine of up to 100 pages forms a carousel which can be cycled, for display purposes, at mixed speeds and with different effects under the control of a menu program. WW511 O Cameron Communications, handling Barco products in the UK, reinforced its line-up of general videotex products for professional and business use with some custom-designed item. There was for instance the CV33 Telidon/Prestel unit, shown accessing several of the Canadian services such as Faxtel complete with alphageometric graphics. Another was a CV33 terminal with the 'Simplicty' touch-screen keying facility, and a third was a CV33 40/80 unit able to access the Dow Jones service from the US. WW5 12 Tandata improved their styling and design for the alphanumeric viewdata adaptor, TD1100, at $£ 225$ plus vat can make up a package with a colour monitor and printer to suit many business needs, says the firm. It has a qwerty keyboard as before but with greater spacing, more keys and improved keys layout. WW5 13
O From its South Wales plant Sony previewed its viewdata adaptor, designed to link up with the recently-launched KX20PSI monitor in the firm's Profeel modular television system, to give this concept a viewdata facility. The 14 inch KTX1400UB terminal has been upgraded so it can be used with a wider range of message and edit keyboards. A new Sony printer

SM1-7020UB can produce up to six frames in black-on-white paper on one A4-sheet. WW5 14
O Datawand seeks to do away with number and character dialling by replacing them with specially developed bar code. Pre-selected pages are printed in a directory of barcodes and the electronic wand gives the signal with a simple stroke of the tip across the wanted page's code. The wand plugs into the standard keypad socket of the terminal. The suppliers, Ubaward Ltd, claim that this is not only 50 times faster than keying but gives a dramatic reduction in line and connection charges as a result. WW515
O Integrex, the company with the first colour printer for viewdata, demonstrated its follow-up black-and-white version, the VMX80. Two-page store (in both models) leaves the terminal free for use while the printing-out is under way. WW516

FINNISH
 DIMENSION

The Finnish private system, Mistel, is available in the UK from InterCom Data Systems, who distribute it here under licence from Bell Information of Antwerp. It runs on DEC's range of mincomputers and on VAX and has also been developed for the Honeywell Level 6 range. As well as Prestel it can support alphageometric and photographic frame generation and it allows service programs (calculations, frame generation from nonvideotex bases, interaction with other systems etc) to be connected to the videotex pages. InterCom also has a Nokia terminal which, with Mistrel, can display the mosaic, geometric and photographic images "sometimes all three on the same frame." WW517

O Another launch with a Finnish cohnection at Wembley was the Systel system, presented jointly by Datema, the UK bureau and systems company, and Perkin Elmer. Systel Oy of Finland developed the software for the system on Perkin Elmer equipment, jointly with Viewdata AB in Sweden. It runs in a multiprogramming environment and can operate concurrently with other applications software. Access to IBM and other mainframes is made possible via a variety of emulators, including IBM 3270. Special features include automatic bar chart generation, keyword search, and 'picture building' with dynamic curser control, and there are other options. WW518 O Denmark's Christian Rovsing company, whose CR80 is the basis of the Danish Teledata videotex trial, has announced the extension of its private videotex system to enable it to handle Telidon, the Canadian standard. The Danish system uses a form of keyword search and, in the CR80XX 25 packet switching package, connections can be made not only to British Telecom's PSS but also to international systems such as Euronet, as well as to Prestel and other systems via gateways. Its modular design philosphy enables the CR80 system to be expanded on-site to keep pace with growth requirements. WW519
O Telidon, described as the North American PLP Standard is the basis of products handled in Britain by Poulter Computervision Systems, who showed the Image Creation Terminal spotted by WW earlier this year (May issue, page 40). It claims a 'palette' increased to 35,000 colour combinations with 16 of them able to be used simultaneously on the screen while creating data. The compatibility with PAL tv enables quality graphics to be transferred to a variety of presentations such as 35 mm slides, videotape, solid-state "slides", etc. New from Poulter was the GCl 100 stand-alone computer, designed for the marketing, advertising and communicators industry. Its functions include graphics and data creation based on the 709E/AT\&T standard, dual terminal handling both Telidon and Prestel, computer terminal able to access other databases, and word processing ability - all for $£ 8750$. WW520

One thing was very clear at the Viewdata 82 Exhibition, while progress on the residential market side of Prestel may be sluggish - recent initiatives may change this - there is no sign of slackening in the pace of business equipment developments and sophistications. - Owen Ascroft.

THE WEAKEST LINK

They now have an intelligent telephone exchange in our office building: I think BT call it the Monarch. It is very impressive, with a great many facilities that must be extremely useful to anyone who knows how to drive it.

For a start it has a push button keypad instead of a dial so that one's fingers no longer suffer. Its attractive features include the ability to remember the last number you keyed in, and this can be reselected by pressing a single button. Very useful if the number is engaged and you are trying it at intervals. There are all sorts of other facilities, such as the ability to transfer your calls to someone else's extension without even picking up your handset; or, conversely, you can pick up a call intended for another extension without leaving your desk if nobody else answers it. Moreover, the switching system is software controlled, so that each installation can be programmed to suit the subscriber's requirements.

But the snag is that there are no plain language instructions on the instrument. So it is only the enthusiast who really knows how to take advantage of all the goodies. Indeed the facilities provided can lead into mild trouble. One of my colleagues remarked that he was wondering why nobody rang him up one morning, when he discovered that a glowing l.e.d. beside the 'sounder' button means it is switched off not on. The light flashes to indicate a call, but he did not notice that.
One is led to the conclusion that these intelligent telephones are just another example of the way in which the advanced technology makes life more complicated, not simpler. But it could be that we are at a halfway stage, where the technology has not yet advanced enough.

There was a programme on television the other day about computer-controlled speech synthesis systems; and I have written articles myself about systems capable of interpreting human speech. I must admit that they were somewhat restricted, with a vocabulary of only about sixty syllables; but great things develop from small beginnings.

Perhaps the day will come when such devices are developed to the degree where the spoken word becomes the normal way of communicating with computers. And perhaps British Telecom will adopt such systems on a grand scale. Instead of a complex instrument with its l.e.d.s and push buttons, the telephone on your desk will be a simple compact unit with no manual controls.

When you lift the handset there will be no dialing tone. Instead a synthesized
voice will say, "Number please?" You ask for a number anywhere in the world and the computer system connects you instantly. Or, if it happens to be engaged, you simply tell the system to keep trying and call you back.
Of course, we all know that such simplicity will never be introduced in reality. High technology warrants visible evidence when the subscriber is paying for it, and it is certain that the equipment on your desk will get more elaborate rather than simpler.

Actually I do not have an intelligent telephone on my desk. By and large I am quite happy with my stupid one. I would be glad, however, if we could do away with that irritating cable between the instrument and the wall connection. It seems a pity that signals that have been carried by such advanced multiplex systems, with microwave links, satellites and fibre optic techniques to preserve their integrity, should finish their journey (or start it) on a grotty bit of wire lying on the office floor, tripping people up.

This is the weakest link in my system, and if it could be replaced by a radio link, electromagnetic coupling or some similar channel I would gladly do without the magic computerized switching systems.

LISTEN TO THAT SPEC!

Do you remember when the term "high fidelity" described the quality of the sound that came out of the loudspeaker? When we played gramophone records on high quality instruments in cabinets designed to look like pieces of furniture?
It's not so long ago as you might think. We have such a machine in our sitting room. It employs all-solid-state electronics, it plays stereo or mono records and it can receive a.m. or stereo f.m. wireless waves. It also has a special socket at the back that enables you to connect it to the stereo cassette recorder in our portable radio to make illicit tapes from borrowed discs without paying royalties. Quite modern really. But you won't see many in the shops like it now.
They call 'em music centres now and they've gone all technical. At a recent press reception to announce a big share issue for an electronic engineering company the stock broker, who had a much better speaking voice than the engineers, was explaining the finer technical points of the equipment to the non-technical city journalists. He referred to a rack mounted u.h.f. transmitter as "that thing like glorified hi-fi" and everyone understood.

He was right. Domestic audin equip-
ment nowadays is a bit forbidding, with moving coil meters on brushed aluminium panels, and all those knobs and switches. Sales literature often contain technical performance specifications that you wouldn't expect members of the general public to understand. (Come to think of it, even experienced engineers find a lot of it not too meaningful).

I suppose that there are still those among us who like their canned music to have a "lovely mellow tone", as my Aunt Kitty used to say, but there is clearly a fashionable status advantage in owning a rack mounted quadraphonic system with a megawatt peak music power output (whatever that is). They sell them opposite my office in a shop boasting an anechoic demonstration room on the first floor. I ventured into this chamber the other day in a desperate search for an assistant to sell me a calculator battery. He turned out to be a zealot, dedicated to the conversion of humanity into a race of audio enthusiasts.
"Do you like music?" he asked, "Try these on." He steered me to a confortable chair and fitted an enormous pair of stereo headphones over my ears.

I listened to superb quality jazz piano, Count Basie I think, but only for a about ten seconds because he pressed a button which switched from tape to disc, and I heard a tiny fragment of the last movement of Beethoven's Pastoral Symphony, then a few bars of some deafening rock and roll. I removed the 'phones (why do they call 'em cans), and explained that I just wanted a calculator battery.

As he led me downstairs to the shop he told me of the wonders of his audio equipment. "Thirty watt amplifiers with less than 0.001% distortion,' he claimed.
"How do you measure it?" I asked. He answered by slapping the sales leaflet on the shop counter and pointing to the relevant clauses of the performance specification, translated from the Japanese. Ah well, ask a silly question!
"But the loudspeakers must introduce about two per cent distortion," I said.

He gave me a long suffering look and held up the leaflet. "This equipment does not include the loudspeakers."

He handed me my battery and change for a fiver in silence. I left the shop with the feeling that his true hi-fi buffs do not actually listen to the music. Perhaps they enjoy looking at the stereo waveforms on double beam oscilloscopes.
Incidentally, I noticed that the upper 3 dB frequency limit of these amplifiers was specified as 20 kHz . Not much use to us humans but probably fascinating for that HMV dog. Is that what the trade mark is all about?

The latest advances in micro processor technology provide the CR4002 with on board intelligence to automatically test and rectify system, tape or operational errors. 24 hours continuous recording for tape of between 4 and 40 channels of communications. Built in user selectable self checking pilot tone and voice operation and multi-lingual talking clock. Modular construction with single or dual tape transports to meet the most stringent security requirements.
Industrial Data Systems, Unit F. 28 Regeneration House, School Road, Acton, London NW10 6TD
Telephone 01-961 4289, Telex 21879G.

Industrial Data Systems

01-452 1500 Technomatic LTid 01-450 6597

BGO Micro Computer

Please phone for availabiliy

MEMORY UPGRADE

8×4816 AP- 3 100nS $£ 21.60$
F.D. INTERFACE KIT

BBC Model A £299
BBC Model B £399
(incl. VAT) Carr £8/ unit
Model A to Model B upgrade kit $\mathbf{£ 5 0}$ Fitting charge $£ 15$
ANALOGUE PORT KIT IC 73 SK6 $£ 7.30$ RS423 \& VDU Port Kit £10.80

All mating Connectors with Cables in stock.
Full range of ACORNSOFT, PROGRAM POWER \& BUGBYTE SOFTWARE AVAILABLE
Phone or send for our BBC leaflet

BBC FLOPPY DISC DRIVES

Single Drive 51/4 ${ }^{\prime \prime}$ 100K £235+f6 carr Double Drive $51 / 4^{\prime \prime} 800 \mathrm{~K}$ £ $799+£ 8$ carr.

BBC COMPATIBLE DRIVES

These are drives with TEAC FD50 mechanism and are complete with power supply

SINGLE: 100K £190; 200K £260; 400K £340 DUAL: 200K £ 360 ; $400 \mathrm{~K} £ 490$; $800 \mathrm{~K} £ 610$

PRINTER \& USER PORT KIT IC 69, 70, 71 PL9, $10 £ 9.50$ Bus \& Tube Port Kit $£ 6.50$

OFFICIAL BBG DEALER

CASSETTE RECORDER

Ferguson Cassette Recorder $\mathbf{f} 24.50+\mathbf{f} 1.50$ Carr Cassette Leads $£ 3.50$ Computer Cassette 0.50 each $£ 4.50$ for $10+£ 1$ carr

MONITORS

BMC BM1401 $14^{\prime \prime}$ Colour Monitor RGB Input 18 MHz Bandwidth f240 + f 8 Carr
Hi Res Green Monitor
Antiglare screen $£ 99+£ 6$ carr

MICROVITEC $1431 \mathrm{M} / \mathrm{S} 14$ Colour Monitor RGB input E269 + $\mathbf{E} 8$ carr
RGB lead for BMC $£ 8$
Composite Videolead E3.50

ACORN ATOM

Basic Built $£ 135$. Expanded $£ 175$

 (Carr $£ 3$ per unit)Atom Disc Pack $£ 299+$ £6 Carr 3A 5v Regulated PSU £26 + E2 Carr Phone or send for our BBC Atom list

RUGBY ATOMIC CLOCK

This 280 micro controlled clock/calendar receives coded This 280 micro controlled clock/calendar receives coded
time data from NPL Rugby. The clock never needs to be time data from NPL Rugby. The clock never needs to be
reset. The facilities include 8 independent alarms and for each alarm there is a choice of melody or alternatively these can be used for electrical switching. A separate timer allows recording of up to 240 lap times without interrupting the count. Expansion facilities provided.
See July/August ETI for details. Complete Kit $£ 120+£ 2$ p\&p

MICROTIMER

6502 Based Programmable clock timer with
$\star 224$ switching times/week cycle
24-hour 7-day timer

* 4 independent switch outputs directly interfac-
ing to thyristor/triacs
* 6 digit 7 seg. display to indicate real time, ON IOFF̈ and Reset times
* Output to drive day of week switch and status LEDs.
Full details on request. Price for kit $\mathbf{£ 5 7}$

D CONNECTORS

Anglad
Solder
Anglad
Hoods

RS 232 CONNS (25 way D)		
$24^{\prime \prime}$ Single end Female $\mathbf{£ 6 . 0 0}$	$24^{\prime \prime}$ Single end Male...... $\mathbf{£ 5 . 5 0}$	
24"' Fernale-Female $£ 11.00$		
24"' Male-Male $£ 10.00$ 24 Male-Female $\mathbf{£} . . .$. 11.50		
DIL HEADERS		
Solder 10C		
	Type	Type
14 pin	4000	1009
${ }^{16 p i n}$	500	119p
24 pm	1000	1509
40 pin	200p	

15	
CONNEGTOR	
36 way Solder Type Plug (centronix type)	550\%
36 way Solder Socket	550
36 way IDC Plugitronix (ypet	sap
	5009
24 way Soider Pug dief type)	500\%
24 way Solder Socket 24 way IOC Plug	$\begin{aligned} & 500 p \\ & \\ & \hline 0050 \end{aligned}$

24 way Solder Soc
24 way 10 C Plug

CONNECTORS	$\xrightarrow{\text { EDGE }}$

MICRODOCTOR

This is not a logic analyser or an oscilloscope. It tests a microsystem and gives a printed reprint on RAM, ROM and $1 / O$ - it will print memory map, search for code, check dataline shorts code, check dataline sho
and operates peripherals. Microdoctor complete with psu, printer probe cable psu, printer probe cabl
and two configuration and tw

NEW COMPREHENSIVE CATALOGUE AVAILABLE PLEASE SEND FOR PRICE LIST

SOFTY II INTELLIGENT PROGRAMMER
The complete microprocessor development system for Engineers and Hobbyists. You can develop programs, debug, verify and commit to EPROMS or use in host computer by using softy as a romulator. Powerful editing facilities permit bytes, blocks of bytes changed, deleted or inserted and memory contents can be observed on ordinary T
Softy II complete with PSU, TV Lead and Romulator lead $£ 169$

UV ERASERS

UV1B up to 6 Eproms $\mathbf{£ 4 7 . 5 0}$ UV1T with Timer $£ 60$ UV140 up to 14 Eproms £61.50
UV141 with Timer $\mathbf{E 7 8}$ (Carr £2/eraser) All erasers are fitted with mains switches and safoty in-
terlocks. terlocks.

TRAINER KITS

6502 Junior Computer. 6802 Nancompl 6809 Nancomp II. 1802 Micro Trainer. Z80 Menta.. (fully built and documented)
Full details on request

- special offer $\begin{array}{lr}2114 \mathrm{~L} & 80 \mathrm{p} \\ 2716(+5 \mathrm{v}) & 250 \mathrm{p} \\ 2532+250 \\ 41162 & 350 \mathrm{p} \\ 4164-2 & 80 \mathrm{p} \\ 6116 \mathrm{P} & \mathbf{4 5 0 p} \\ & 350 p\end{array}$

BOOKS

No VAT p\&p E1)

 CMOS Cook Book CRT Controller H/Book Programming the 280 . Z80 Microcomp Handbook ….... $£ 11.50$ Zrogramming the $6502 \ldots$.......... $\mathbf{£ 6 . 9 5}$ 6502 Assy Lang 6502 6502 Applications 6502 Software Design 6502 Games............................. $\mathbf{£ 1 0 . 2 0}$ Large selection of databooks, interfacing books, books on BBC, etc in stock.Ask for our list. Ask for our list.

75

it to	2114 L	80 p
wer-	$2716(+5 \mathrm{v})$	250 p
d or	2532	350 p
	41162	80 p
	$4164-2$	$450 p$
	6116 P	350 p

N

For PURE SOUND our dynamic trio is unbeatable~and so is the price!

These superb digital audio components are manufactured by a respected British company - just look at these star points:-

- Extremely low cost
- 96dB dynamic range
- 16 bit resolution
- Completely self-contained (no adjustments)
- Micro-processor compatible

1 Audio Digitiser 2 Audio Deglitcher 3 Audio D-A Converter

For further information write or telephone the manufacturers: Delta Music (1) Ltd, Decoy Road, Worthing, Sussex BN14 8ND Tel: Worthing (0903) 210626

CHILTERN ELECTRONICS

HIGH STREET, CHALFONT ST. GILES, BUCKS. - Totophone 0240771234

VIDEO MONITOR AND PRINTER BARGAINS

Motorola 9-Inch Monltors

Once again we are able to offer these beautiful little monitors at a fraction of usual price. Ideal for a micro-composite video input, mains operation, and a wide band width that will display a crisp 80 characters per line or more.
FREE Bonus-5-volt 2 -amp reg. ONLY e34 plus V.A.T
power supply with every monitor
Carriage $£ 7.50$

Daisy Wheel Printers

Diablo Hy Type Daisy Wheel Printers in excellent condition but no outside case. Cost f1400.

Our price $\mathbf{£ 3 0 0}+$ VAT. Carr. $\mathbf{f} 20$

Professlonal ASCII Keyboards

84-Key Keyboards as used on large mainframes

- Inductive/Hall Effect Switches.
- Parallel TTL ASCII out.

Numeric and cursor control keypads.

* Full ASCII set - ideal for home system. Full data

Only $£ 30$ plus V.A.T. Postage $£ 4$

Centronics Printers

We have a fow of the famous Model 101 line printers available at a fraction of original cost. Standard parallel interface, print speed 165 cps

Only £200 + VAT

Our new retail shop is now open six days a week, with thousands of item avallable st a fraction of original cost. Monitors, Printers, Power Supplies, Proto type Cerds, Computer Desks and much more.

MANUFACTURERS \& DISTRIBUTORS

MATSUSHITA high quality 12 volt D.C. Cassette Drive Motors. Size 30 mm dia. x 20 mm high, drive shaft 7 mm long $\times 2 \mathrm{~mm}$ dia approx. No load current 40 M/A. $£ 13.50$ for $50+$ VAT, $£ 24$ for $100+$ VAT, £ 108 for $500+$ VAT, $£ 190$ for $1,000+$ VAT $£ 875$ for
$5,000+$ VAT, $£ 1,600$ for $10,000+$ VAT. Sample 10 sent for $£ 3+P \& P(£ 4.60$ inc. VAT). ,00 + VAT, 11,600 for $10,000+$ VAT. Sampie 10 sent for $\mathrm{LJ}+$ -

AUTONNIC Push-button Tuner. $4 \times$ MED Wave $1 \times$ Long Wave plus manual contro Overall length 14 cm , Depth 5 cm , Height 33 mm . Excellent unit for the manufacture o or $500+$ VAT, $\mathbf{£ 1 , 0 2 0}$ for $\mathbf{1 , 0 0 0}+$ VAT, $£ 2,300$ for $\mathbf{2 , 5 0 0}+$ VAT. Sample sent for $\mathbf{£ 2}$ £1 P\&P /£3.45 inc. VAT).

FRIEDLAND No. 30-37 10 inch 200/250V a.c. Underdome Bell. Coil 2850 ohms curren促 for $40+$ VAT. Sample sent for $£ 10+£ 2$ P\&P ($£ 13.80$ inc. VAT)

MICROSWTCHES V3 Type. We have in stock over 50,000 of various types i.e. Button Lever \& Roller, Low Force or Standard allow us to quote against your requirements

RADIO/TUNER KNOBS. Pointer Type. Push on for $0.25 i n$ shaft with standard fla 19 mm dia. $\times 20 \mathrm{~mm}$ high. Latest design in siver with sik touch tinish. E16 for $200+$ VAT, E 37 for 500 + VAT, $£ 1$ for $1,000+$ VAT. VAT. Sample 10 sent for $£ 1+50$ p P\&P ($£ 1.73$ inc. VAT)

STEREO CASSETTE FRONT LOADING REPLAY MACHANISM. For in car entertain ment. Complete with motor and pre-amplifier. Manuf. in UK under ilcence of STAAR S.A. $£ 45$ for $10+$ VAT, $£ 205$ for $50+$ VAT, $£ 375$ for $100+$ VAT, $£ 1,700$ for $500+$ VAT. Sample sent for $\mathrm{f} 5+\mathrm{f} 1.50 \mathrm{P} \& \mathrm{P}$ ($\mathbf{\mathrm { E }} 7.48 \mathrm{inc}$. VAT).

HUNTS CAPACITOR TYPE L551/1/. Fixed paper dielectric discharge $10 \mathrm{mfd} . \pm 10 \%$ 250 V a.c. WKG $-30^{\circ}+70^{\circ} \mathrm{C}$. $£ 10$ for 10 +VAT, $£ 23$ for $25+$ VAT, $£ 43$ for 50 + VAT, $£ 78$ for 100 +VAT, $£ 355$ for 500 + VAT. Sample sent for $£ 1.25+50$ p P\&P ($£ 2.02$ inc. VAT).

HUNTS ZS28 MOTOR START ${ }^{2}$ RUN CAPACITOR. $2 \mathrm{mfd} . \pm 15 \% 440 \mathrm{~V}$ a.c. Cont. Rated. $£ 15$ for 10 +VAT, $£ 35$ for 25 +VAT, $£ 65$ for 50 +VAT, £120 for $100+$ VAT, £325 for $300+$ VAT. Sample sent for $£ 2+60$ p P\&P $\{£ 2.99$ inc. VAT $)$

REVERSIBLE GEARED MOTOR. Manf. by CAOUZET * RPM 240 volt 50 Hz with uni versal T drive. $£ 35$ for $10+$ VAT, £ 162 dfor 50 + VAT, $\mathfrak{f 3 0 0}$ for $100+$ VAT, $\mathbf{£ 1 , 2 5 0 \text { for }}$ $500+$ VAT. Sample sent for $£ 3.75+75 p$ P\&P ($£ 5.17 \mathrm{inc}$. VAT)

Terms C.W.O. Please add 5\% to all orders for carriage plus 15\% VAT. Export enquiries welcome. We find it impossible to advertise all we stock. Please telephone or write for further enquiries. Personal calles
Electronic Equipment Co.
SPRINGFIELD HOUSE TYSSEN ST, LONDON EE EL 01-249 5217 EL O1

ELEGTROVALUE

- 24 HOUR NORMAL DESPATCH TIME
ESTABLISHED 196
- ALL GOODS GUARANTEED BRAND NEW AND TO SPECIFICATION
APPOINTED SIEMENS DISTRIBUTORS

BOXES

VEROBOX CASES

po give
projet
ABS,

SEMICONDUCTORS

NN NONNNNNNNNNNNNNNNNNNNNNNNNNNNN
ถనถ刃

METERS
PANEL MOUNTiNG in $50,100,500 \mu \mathrm{~A}: 1,5,10,50,100$,
$500 \mathrm{~mA}, 1 \mathrm{~A}$ either model.

POTENTIOMETERS
Carbon Rotary (P20) 100 ohms - 4 M 7 lin,
$2200 \mathrm{hms}-2 \mathrm{M} 2$ log. 32 p , each W. witch
87 p . Dual gang (JP20) $4 \mathrm{~K} 7-1 \mathrm{M} 2$ lin, or
SLIDERS
58 mm , low
58 mm , low cost 10 K 1 M log only 29 p . Std
58 mm mono $4 \mathrm{K7}-1 \mathrm{M}$ lin. or log 74 p
stereo matched $£ 1.25$. Graduated bezels 34 p
Pach.
PRESET
Min 10
1M 13p
Preser Cermet rectilinear type 89P 100 nhm
-1 El E. 06 each
Preset Cermet 10 mm

RF Chokes
$1,1,1,4.7$
$42 \mathrm{p}, 100$
$470 \mu \mathrm{H}, 1 \mathrm{mH}$

SOLDERING IRONS
Also large stocks of bits, desoldering
devices, accessories, etc.
ANTEX C-240V $£ 4.60 \mathrm{~N}: \times 25-240 \mathrm{~V}$
 SOLDER $500 \mathrm{gm} / 18 S W G$ E7.60N: Desolder

SWITCHES

 E1.64: S7203 DPDT $96 \mathrm{p}:$: Push Burton min.
8531 make/8533 break 62 p : 8225 DPDT OUAL IN LINE ERG colou coded 0.3"×
 ONSO4 EOp: DNS 08 E1.00
LATEST PRICE UST
\qquad 70p post free with price list.

RESISTORS

of one value 15 p 2% Mullard metar film 5.1 ohms -300 K 5 p

$5 \% \mathrm{ch}$. 10 of one value 40 D . mound 3 E 3 values

ELECTROVALUE LTD

[^7]Also in Manchoster for personal shoppers

Co.nputing Shop North:

toroldats

The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and thanks to I.L.P., PRICE

Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a short lead time on quantity orders which 7 DAYS together with a short lead time on quantity orders which
can be programmed to your requirements with no price penalty.

type		$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline \text { VEOARY } \\ \hline \end{array}$		PRICE	$\star 294$ TYPES TO CHOOSE PROM!					
$\binom{30 \mathrm{VA}}{70 \times 30 \mathrm{~mm}}$	\|r $\begin{gathered}1 \\ 1 \\ \times 011\end{gathered}$	9+9	250 1.66	£5.12						
045 kg	${ }_{1 \times 012}$	${ }_{1}^{12+12}$	125		SMALL OUANTITY ORDERS					
${ }_{\text {Regubaton }}^{\text {18\% }}$	${ }^{1 \times 013}$	($15+15$ $18+18$	${ }^{1} 808$	10	$\star 5$ Year no quibble goarantee					
	(1x015	${ }_{25}^{22+22^{2}}$	068 0680 060							
$\begin{gathered} 50 \mathrm{VA} \\ 80 \times 3 \mathrm{Am} \\ \left.\begin{array}{c} \text { negk } \\ \text { Requalion } \\ 13 \% \end{array}\right) \end{gathered}$	2×010	30	050			SEReS 5	${ }_{\text {SECONDAPY }}^{\text {Vols }}$	Curren	PPICE	
	${ }_{2 \times 011}^{2 \times 012}$	${ }_{(12+12}^{9+9}$	278 208	£5.70						
			166					$\begin{aligned} & 938 \\ & \hline 650 \\ & \hline 6.25 \\ & \hline \end{aligned}$		
	${ }_{2 \times 0}^{2 \times 0}$		+138	25.75130					£9.20	
		${ }_{\text {che }}^{25}$	1.00	边				8.50 3.75		
		${ }_{\substack{30 \\ 110}}$	083 0 0	тоиa 88 O5			coinc$30+30$ $35+35$			
	$\begin{aligned} & 2 \times 2089 \\ & 2 \times 2020 \\ & 2 \times 30 \end{aligned}$	$\begin{aligned} & 220 \\ & 240 \end{aligned}$	$\begin{aligned} & 0.220 \\ & 020 \\ & 020 \end{aligned}$			${ }_{6}^{6 \times 026} 5$	an $45+40$ 45	281 2.50		
80 VA $90 \times 30 \mathrm{~mm}$ Regulation 12%				f6.08			50+50	2, 2. 25		
							${ }_{2}^{220}$	204 102 093		
			${ }_{2}^{266}$		$\begin{gathered} 300 \mathrm{VA} \\ 110 \times 59 \mathrm{~mm} \\ 2.6 \mathrm{Kg} \\ \text { Regulation } \\ \text { cion } \end{gathered}$	${ }_{7}^{7 \times 013}$	15.15 1000			
		${ }_{\substack{18+18 \\ 22+22}}$	222	-protig					£10.17	
		${ }_{25}^{25}$	1.60	$\stackrel{\text { Wrat }}{ }$		$7 \times 015$$7 \times 016$				
		$\underset{\substack{30+30 \\ 110}}{ }$	+139				$\xrightarrow[\substack{25+25 \\ 30+30}]{\substack{ \\\hline}}$	${ }_{5}^{6.00}$		
		220 200	036 033 03				$\substack{35+35 \\ 40+40}$	4.28 3.75		
		290				${ }_{7} 7 \times 0025$	$45+45$	3.33	-	
${ }_{\substack{120 \times 4 \\ 90 \times 0 \mathrm{~mm}}}^{12}$	${ }_{4 \times 17}^{4 \times 00}$	- $\begin{gathered}6+6 \\ 9+9\end{gathered}$	1000 666 506	f6. 90		7033	${ }_{110}$	${ }_{\substack{3 \\ 3.72 \\ 2.72}}$		
Reguvaion	4×012	$12+12$ $15+15$	500 4.00 4.02			$\pm$$7 \times 020$ 7×030	220 240	; 36		
			272			$\left\lvert\, \begin{aligned} & 8 \times 16 \\ & 8 \times 017\end{aligned}\right.$	$25+25 \quad 10.00$			
	± 0	${ }^{22+22}$	${ }_{2}^{2} 26$	1812						
	40017	cos$30+30$ $35+35$	2.00	Telacm 98		退8018				
			+1.19						£13.53	
	${ }_{\substack{1 \times 2929 \\ 4 \times 30}}^{4}$	${ }_{240}^{220}$	0.54 0 0			${ }_{\substack{8 \times 033 \\ 8 \times 042}}$		($\begin{aligned} & 500 \\ & 4 \\ & 4\end{aligned}$	10xatice	
V							${ }_{210}^{110}$	4.54 227		
	5×013	(12+12		£7.91		${ }_{8 \times 10}^{60}$	${ }_{220}^{20}$	208		
Regalaion	${ }_{\substack{5 \times 0}}^{5 \times 0}$	${ }_{18}{ }^{18+18}$	444						£16.13	
8\%		${ }_{25}^{22+22}$	${ }_{3}^{3.63}$				$\substack{35+35 \\ 40+40}$ 10			
	16		266	, ware tas			$40+40$ $45+45$ 5			
	5x118	$35+35$ $40+40$	228 200 8			9x033	cot $\begin{gathered}50+50 \\ 55+55\end{gathered}$			
		110	145			9x028	110	${ }_{5} 568$		
	5×30	${ }_{248}^{220}$				¢ ${ }_{\substack{\text { 9x029 } \\ 9 \times 30}}$	${ }_{220}^{220}$	- $\begin{array}{r}286 \\ 260\end{array}$		

ImPORTANT: Regulation - All voltages quotad are FULL LOAD. Plaase add regulation figurs to secondary voltage to obtain ofl load vollage.
The benefits of ILP toroidal transtormers
ILP toroidal transtormers are only half the weight and height of their laminated equivalents, and are available with $110 \mathrm{~V}, 220 \mathrm{~V}$ or 240 V primaries coded as follows For 110 V primary insert " 0 " in place of " X " in type number
For 220 V primary (Europe) insert " 1 " in place of " x " in type number
For 240 V prımary (UK) insert " 2 " in place of " X " in type number
How to order Freepost
Use this coupon, or a separate sheet of paper, to order these products, or any products from other ILP Electronics advertisements. No stamp is needed if you address to Freepost. Cheques and postal orders must be crossed and payable to ILP Electronics Lid. Access and Barclaycard welcome. All UK orders sent within 7 days of receipt of order for single and small quantity orders.
Also available at Electrovalue, Maplin and Technomat

Please send
Total purchase price
I enclose Cheque $\square \quad$ Postal Orders $\square \quad$ Int Money Order
Debit my Access/Barclaycard No.
Name
Address

Signature

Post to ILP Electronics Lid.. Freepost 5, Graham Bell House, Roper Close

Transformers

THE COTSWOLD
"BUDGET RANGE" OFFERS BUILT-IN QUALITY COUPLED

TO A RELIABLE
DELIVERY SERVICE
MOST TYPES FROM STOCK

IEC 65 VDE 0550

BS 415
TO ORDER
PHONE
TELEX, WRITE
FOR DATA SHEET
AND PRICE LIST

Cotswold Electronics Ltd.

Unit T1, Kingsville Road, Kingsditch Trading Estate, Cheltenham GL51 9NX
Tel: 0242.41313
Telex: 897106
Sales Office in U.S.A.
Peacock Alley 116, 1 Padanaram Road, Danbury, CT 06810 U.S.A.
203-797-8698. Telex: 710-456-9984
WW - 023 FOR FURTHER DETAILS

TAMESER			
TYPE 1	PCB MOUNTING - SPLIT BOBBIN 6VA, 240 V INPUT, 12-0-12V OUTPUT		
PRICES:	$\begin{aligned} & 1-25 \\ & 100-249 \end{aligned}$	at $£ 1$ each at 67p each	26-99 at 75p each $250+$ at 65 p each
TYPE 2	PCB MOUNTING - SPLIT BOBBIN $\begin{array}{ll}35 \mathrm{VA}, 240 \mathrm{~V} \text { INPUT; } & \text { OUTPUT } 1-15 \mathrm{~V} \text { at } 1 \mathrm{~A} \\ & \text { OUTPUT } 2-20 \mathrm{~V} \text { at } 1 \mathrm{~A}\end{array}$		
PRICES	$\begin{aligned} & 1-25 \\ & 100-249 \end{aligned}$	at f 2 each at $£ 1.58$ each	$26-99$ at $£ 1.80$ each $250+$ at $£ 1.54$ each

PRICES SHOWN EXCLUSIVE OF VAT
The items are available from STOCK
P\&P ORDERS UNDER $£ 20$ PLUS $£ 2$
ORDERS £20 to £250 PLUS 10\%
ORDERS OVER £250 POST FREE
Available from
VANDERHOFF COMMUNICATIONS LIMITED
Bermuda Road, NUNEATON, Warwickshire
Telephone: 0203-341111
WW - 068 FOR FURTHER DETAILS

2K x 8 NON-VOLATILE RAM

DON'T WASTE TIME \& MONEY ON EXPENSIVE EPROM PROGRAMMERS \& ERASERS
DON'T LOSE YOUR PROGRAM EVERY TIME YOU SWITCH OFF

* WD 2716 \& WD 2516 are directly pin compatable to 2716 \& 2516 EPROMs
* Built-in 10-year Li thium Power Source
\star Three modes selectable by top link Read/Write
 an all-British product. Write only
WARWICK DESIGN GROUP, 12 ST. GEORGE'S ROAD
LEAMINGTON SPA CV31 3AY. (0926) 34311

Volume purchase from Acorn brings massive savings for you!

Cash in on our misfortune! Over $£ 50$ offan Atom Microcomputer

We recently made a bulk purchase of over 800 Acorn Atoms for sale overseas. The deal fell through! We are now offering those Atoms to you at the price we paid for them.

The Atom normally retails at $£ 174.50$ inc. VAT we are offering it to you at a mail order price of only $£ 115$ inc. VAT - an incredible saving of $£ 59.50$ plus a free power supply and software worth over $£ 20$.

The Computer

The Atom has 2 K of RAM and 8 K of ROM but of course this car be boosted enormously.

The computer has a full sized keyboard laid out in a conventional way. To use it just connect the power supply and a cable into the aerial socket of a TV set.

As well as integral sound output and direct cassette and TV interface, a wide range of additional interface boards are available to fit inside the casing. Extra 64 K RAM, Colour, Printer, Laboratory, Cassette, $6522,80 \times 25$ VDU, Analogue, Econet etc etc allowing the user to build a very sophisticated application machine. Full details of all accessories, disc pack, software etc are supplied with each machine

The language used by the ATOM is BASIC, the language used by most personal computers.

The Atom's version is very fast, making it ideal for real time applications.

Word Processing

Expansion Cards

It has all the normal functions you would expect plus many powerful extensions making it very easy for you to operate and write your own programs.

The Atom is fully guaranteed. There are 80 nationwide authorised service centres. Just clip the coupon below or ring 01-930 1612 with your credit card number. Computer Marketplace Ltd.
20 Orange Street, London WC2H 7ED
To: Computer Marketplace Ltd. 20 Orange Street.
| London WC2H 7ED
| Please send me__(qty) Acorn Atoms at $\{115$ including p\&p/ins.
Total t \qquad
I enclose my cheque.
Please debit my Aceess/Barelaycard

Block Letters Please
NAME
ADDRESS: \qquad

TOMORROW'S TOOLS TODAY

GLOBAL SPECIALTIES CORPORATION

G.S.C. (UK) Limited Dept 7D

Unit 1, Shire Hill Industrial Estate Saffrón Walden, Essex CB 11 3AQ Telephone: Saffron Walden (0799) 21682 Telex: 817477

Instant frequency indication from 5 Hz to 100 MHz ; no range selection problems; a brilliant 8-digit LED display; mains or battery operation; an accuracy of 4 parts per million ± 1 count; and totally automatic operation - all this for only f 105 with GSC's new Max-100 frequency counter.
Just take a look at our spec. Where else could you find anything similar at the price? *Frequency range $5 \mathrm{~Hz}-100 \mathrm{MHz}$ *Input impedance 1 M shunted by 10 pF *Sensitivity 30 mV from 1 KHz up to $50 \mathrm{MHz} ; 120 \mathrm{mV}$ r.m.s. over full frequency range *Timebase accuracy ± 4 parts in 10^{6} (from 5 to $45^{\circ} \mathrm{C}$) *Maximum aging rate 10 parts in 10^{6} per year. *Over-frequency indication *Low-battery-power alarm *Operates from dry or rechargeable cells, an external 7.5 to 10VDC supply, or a car battery (via an adaptor) *Dimensions: $45 \times 187 \times 143 \mathrm{~mm}$ *Options: 12 V adaptor; battery eliminator; r.f. antenna, low-loss r.f. tap, carrying case.
Fill in the coupon for further details \qquad

 | MAX 100 | FREO. COUNTER | Unit price inc P\&P 15\% VAT £124.20 | UHon | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Name
Address
| enclose cheque/P.O. for £ or debit my Barclaycard/Access/ American Express card no __ exp date FOR IMMEDIATE ACTION - The G.S.C. 24 hour, 5 day a week service Telephone (0799) 21682 and give us your Barclaycard, Access, American Exp ess number and your order will be in the post immediately For Free catalogue tick box 061 FOR FURTHER DETAILS

IN USE IN DESIGN LABS \& EDUCATIONAL ESTABLISHMENTS AROUND THE WORLD

COMPONENTS IN TAMWORTH

UV1T

Powerful, compact unit to erase up to six EPROMs quickly and safely. $16-60-\mathrm{min}$ ute electronic timer
£59.13 + V.A.T
UV1B
As above but without timer £46.95 + V.A.T
Carriage paid (U.K.) Send cheque or official order for prompt delivery.
Asso available in London from:
Technomatic Lld
Henrys Radio
Ambit International

umbit INTERNATIONAL

THE MOST COMPREHENSIVE RANGE OF COMPONENTS, KITS AND MODULESIN THE WORLD \& THERE'S ONLY ROOM FOR A FRACTION HERE, GET THE GATALOGUEAND FIND THE REST.

BAND 2 TUNERHEADS (Varicap Tuning)
MOSFET of stages MOSFET mixer,
 outbut $A G C$ MD
$145 \times 10 \times 24$ $\begin{array}{lllll}\text { Slock No. } \\ 40.05804 & \text { Bit } & 24.95 & 19.65\end{array}$ 7255 the latest complete FM tunerhead from RF input to sitereo output.MMSFET RF
siages, HAl1225: £30.00 plus VAT
 911225A The $911225 A$ is the 7230 ertited and shrunk into a screenes
motal case, $97 \times 56 \times 24 \mathrm{~mm}$ The unit is ideativ suited to use with
svnthes ised tuner systems.24
Stock No
No $40-91225$ Built $\quad 20.82 \quad 16.25$ 944378 HYpertil ser 19 secoder module
 audio preamp with $26 / 38 \mathrm{kHz}$ pilor tonge fintering
 40.04378 Built $19.95 \quad 18.05$ DFCM500 Wide range digtral frequency capacitance meter Frequency ranges: Capacirance meter Frequency ranges,
0. 1 MHZZ 1.50 MHHz and 80500 MHz B digit
ED display, mains or Ni. Cad battery operatio

autobridge
An Automatic power rracking VSWR and self.

 fET DIP OSCILLATOR
 constructor GOO or WM function coverin
215MHz in five ranges Audio and metor
nodicait

 10.MHz SSB GENERATOR

R\&EW PROJECT AND DATABRIEF PCBS High quatity glass fibre prinitag circuit boards
for proiects and Databriefs published in Radio

2 mPRE AMP
Very compactiow noise MOSFET 2 mpre pre
amp. Gain 22 ac . Noise figure: less than 1.5
 40.14400

70 cm PRE-AMP

SiOck No.	Kit	$\begin{array}{lll}1.24 & 25+ \\ 40.07000\end{array}$	$\mathbf{3 . 9 0}$
.60			

$2 m$ POWER AMP
20 watt 144 MHz lingar power amplifier. 10 ab
gain, 2 W input-20W outpul Automatic gain, 2W input. 20W output Automatic
switched relay By-passes power amp in receiver switched relav. By-passes power amp in rectiver
mode. Developed from original class C version in Dec 81 R\&EW High oowar output relay. $\begin{array}{lll}\begin{array}{l}\text { Pro-dritled heatsink, optional RX preamp } \\ \text { Kn } \\ \text { Sily, } \\ \text { Siock No }\end{array} 1.24 & 25+\end{array}$

AND THERE'S PLENTY MORE IN THE CATALOGUE 7Op inc.
RETAIL SHOP OPENING HOURS Monday to Thursday 8.30-6.30 Friday 8.30-8.30 Saturday 9.00-5.30

NOW IN STOCK MF10 - National's new Dual (Access + Barclaycard orders accepted)
ALL PRICES SHOWN EXCLUDE VAT. P\&P 50p per orde

AMBIT INTERNATIONAL DEPT. WW

TELEPHONE (STO 0217)-230909 TELEX 995194 AMBIT
POSTCODE CM1A4SG

FEBRUARY 22, 23, 24

1983's premier exhibition of sound reinforcement, public address, communications equipment and services.

CUNARD INTERNATIONAL HOTEL Hammersmith, London, W6

10 a.m. to 5 p.m. Admission free

See the latest in Amplifiers, Microphones, Loudspeakers, Mixers, Equalizers, Intercoms, the finest of Public Address systems, Background Music, Paging, Hotel and Hospital communications systems
*Plus - a series of practical seminars to assist all users.

Organised by
ASSOCIATION OF SOUND AND COMMUNICATIONS ENGINEERS LTD, 4 Snitterfield Farm, Grays
Park Road, Stoke Poges, near Slough SL2 4HX
Telephone: 075339455
WW - 067 FOR FURTHER DETAILS

ScheTronics Limited

For repair and calibration of test equipment.
We also have selected pieces of second user LF/HF equipment for sale, including
Siemens 100 MHz Reflection Coefficient R273 £850 Siemens Pegamat Systems/Part Systems/Spares P.O.A.
Anritsu Attenuator MN54A 75 Ohms
J.J. Lloyd Wheatstone 4 Dial BR2

Hewlett Packard Digital Voltmeter 3480A

Unit 10, Dunstall Estate
Crabtree Manorway
Belvedere, Kent DA17 6AW
Telephone: 01-311 9657

WW - 049 FOR FURTHER DETAILS

RETARDED ACTION-AT-A-DISTANCE
 The Change of Force with Motion

G. BURNISTON RROWN

Ampère's laws and radio experiments are used to find the velocity and acceleration terms in the force-formula for two charged particles. When this is applied to uncharged particles in a spherical Universe, the origin of Newton's First and Second laws, the force of inertia, the gravitational red-shift, and the perihelion advance of the planets is made clear. At very high speeds, the corrective term found by Bucherer to he necessary for agreement with experiment, is used as a factor in the force-formula. In this way a unitication of dynamics and electromagnetisn is attempted

This book promises to be one of the most profound new reanises on the fundamentals of phusics in this generation ... a totally new approach to physics. one that returns physics to the business of the "causes of senstble eftects

THOMASGBARNES
Professor Emerins of Physics. University of Texas
Hard Back, $150 \mathrm{pp}, 33$ Figs, ISBN No: $00014378 \mathrm{I} 4+$ Price $£ 9.95$
Ohtainable from
Cortney Publications. $95-115$ Windmill Road. Luton. Beds. or any Bookseller

THE 'ALLADINS' CAVE OF COMPUTER AND ELLCTHONIC EQURMEENT

FARD DISK DRTVES
 Dlablo/DRE Serles 302.5 mb , fully refurbished D media and soltware compatable. Front load $\mathbb{S 5} 50$.
 Top load 2295
 PSU for 2 drives $E 125$.
 Diablo-Dre 44A-4000A or $4000 \mathrm{~B} 10 \mathrm{mb} 5+5$ removable pack new and refurbished from $\mathbf{£ 9 9 5}$
 CDC 80 mb removable pack DEC RM03 media and sottwar compatible brand new from $\mathbf{E 2 , 9 5 0}$
 Honeywell 5+5 10 mb drives $£ 950$ good s / h condition. For more information on controllers, expansions go sub systems contact sales office.
 DISIMT(C)
 The UK's FIRST free of charge, 24 hr . public access data base. Get information on 1000's of stock items and order via your computer and credit card. On line now, 300 baud. CCITT tones, full duplex, fully interactive.
 DON'T MISS THOSE EARGAINS CALL NOW, IT'S FREE!
 01-683 1133 weenk has
 COMPUTER 'GAB'
 All in one quality computer cabine with integral owitched mode PSU. Mains filtering and twinfancooling Originally made for the famous DEC PDP8 computer system co and desioned to run 24 hours costing 1000's of pounds and designed to run 24 hours per day. The PSU is fully screened and will deliver a massive $+5 v$ DC at 17 amps, screened and will deliver a massive +5 vDC at 17 amps, +15 vDC at 1 amp and $-15 \mathrm{v} D C$ at 5 amps . The unit is fully enclosed with removable top lid, twin fan cooling, mains filtering, trip switch, 'power on' and 'run' LED's, aluminium front panel and rear cable entrys. Give your system that professional finish for only $£ 9^{\prime \prime} .99^{\prime \prime}+£ 9.50$ carr. - Dim. $19^{\prime \prime}$ wide $16^{\prime \prime}$ deep $10.5^{\prime \prime}$ high Usablearea $16^{\prime \prime}$ w. 10.5" $\mathrm{h} .111 .5^{\prime \prime} \mathrm{d}$ Units are in good but usedcondition 240 or 110 v working- complete with data Large stocks of PDP8 spares - enquire

COOLITG FATS

Keep your Hot Pars con

ETRI 99 XUO1 Miniature equipment fan 240
vac working DIM 92×5. complete with finger guard Makers price $£ 16$ our price $8 .{ }^{\circ}$
BUHLER 69.11 .22 micro miniature 8.16 vDC
reversible fan. Measures reversible fan. Measures only $62 \times 82 \times 22 \mathrm{~mm}$. Uses a brushless DC servo motor almost silent orice 3200 hours BRAND NEW manuractures price£32.00 our price $1 / 2.95$
 1150 E4. $93+$ p\& 1.90
KOOLTRONICS Powertul snail type blower gives massive air movement with centrifugal
rotor DIM as a cube $8^{n} \times 8^{n} \times 6^{n}$ air aperture $25^{\prime \prime} \times$ $2.5^{\prime \prime}$ with flange fixing. BRAND NEW 110 V 50 Hz $2.5^{\prime \prime}$ with flange fixing. BRAND NEW 1
ac working ONL YE $9.98+£ 1.90$ p\&p

CENTRONIC8 739-8

repeated Standard Centronics interface, full graphics, 4 type onts with high definitlon \& proportional spacing for word processor appilications, $80-132$
columns, single sheet, roll or sprocket paper handling plus much more. Availableonly fromDISPLAYELECTRONICSata ridiculous price of only $£ 299.00$
Options: carriage 8 insurance $£ 10.00$ Interface Cable $£ 10.00$ Interface Cable 10.00
RS232 Converter $\mathbf{8 4 5 . 0 0}$

8" FLOPPY DISK DRIVES

- Unbelievable value the DRE $7100872008^{\prime \prime}$ give you 100% bus compatability with most drives available today, the only difference double sided drive accept hard or soft sectoring IBM or ANS! standard giving a SIEMENS etc compatable. Supplied BRAND NEW with user manual and 90 da warranty.
100 single sided.
$\mathbf{£ 2 2 5 . 0 0}+8.50+$ vat
200 double sided ..95.50 carr + vat
full technical manual $\mathbf{£ 2 0 . 0 0}$ alone $\mathbf{£ . 0 0}$ with drive, refund of difference on purchase
of drive.
SHUGART s/h 800-2 8" Drive's 110 v 50 Hz motor $£ 160+89.50$ carr.
Removed from working equipment but uniested. SA120 Alignment disk's $\boldsymbol{£ 9} 9$

SUPER SCOOP

SOFTY 2

The amazing SOFTY 2. The complete "toolkit" for the open heart software surgeon. Copies, Displays, Emulates ROM, RAM and EPROMS
of the 2516,2532 variety. Many otherteatures include keyboard, UHF modulator. Cassette interface etc. Functions exceed capabilities of E169.00 pp 1.95 Data phet

RCA FULLY CASED
ASGI CODHD KMYBOARDS

TAMOERIME OWIO ETC,
Straight from the USA made by the world
famous RCA Co. the VP600 Series of case freestanding keyboards meet all requirements of the most exacting user, right down to the price! Utilising the latest in switch technology
Guaranteed in excess of 5 million operations. Guaranteed in excess os of million operates including full ASCII 128 character set, use definabe keys, upper/lower case, rollover toliquids and dust, TTL or CMOSoutputs, even an on-board tone generator for keypress feedback and a 1 year full RCA backed guarantee.
VP601 7 bit fully coded output with delayed strobe, etc
VP811 Same as VP601 with numeric pad
VP506 Serial, RS232, 20MA and TT outputwith 6 selectable BaudRates VP616 Same as VP606, with numeric pad
Plug and cable for VP601, VP61 1 £2.25 Plug for VP606, VP616£2. 10

Post, Packing and Insurance E1.9s

MAINS FILTERS

Professional type mains filters as used by
"Main Frame" manufacturers. Ideal for curing those unnerving hang ups and data glitches fit one now and cure your problems.
Suppression Devices SA5A upto 5 amp load E5.95
\qquad E9.50
$\mathbf{E} 12.25$

THLETYPE ASEBZT I/O Tempmanats

 Fully fledged industry standard ASRB3 3 data terminal. Many features including ASC keyboard and printer for data l/O auto data detect circuitry. RS232 serial interface 110 baud, 8 bit paper tape punch and reader for off line data preparation and ridiculously cheap and reliable data storage. Supplied good condition and in working orderOptions: Floor stand $£ \mathbf{1 2 . 5 0}+$ VAT KSR33 with 20 ma loop interface $\mathbf{E} \mathbf{1 2 5 . 0 0 +}$

RECHARGEABLE BATTERIES

CYCLON type D001 sealed lead acid maintenance free $2 v 2.5$ ah. will deliver maintenance free $2 v 2.5 \mathrm{ah}$. will deliver

 over 300 amps on short circuit!! Brandat only $\mathrm{Ez.9s}$ at only E2.9s
SAFTVR2C size 'C' 1.2 V 2 ah. nickel
cadmium $£ 1.50$ each 10 for $£ 11.50$

D.C. POWER SUPPLY SPECIALS

Experimentors PSU Ex-GPO unit all silicon electronics. Outputs give +5 v @ 2 amps.
 squipment, but untested. Complete with circuit. Transformer guaranteed. Only
竍 £14. $50+£ 2.50$
POWER ONE CP143 super compact unit giving continuous output of 5 V @ 5 amps. dimm $215 \times 67 \times 80 \mathrm{~mm}$. BRAND NEW and guaranteed Only $\mathbf{2 1 1 . 0 0}+\varepsilon 1.50 \mathrm{pp}$
CUSTOM POWERCO55 Semi open chassis, full crowbar overvoltage protection. eested Ex Equipment. ${ }^{6} 11,95+\mathrm{pp}$
 current limit. Fully tested. Dim $70 \times 165 \times 320$ mm. Complete with Circuitonly $/ 2.95$ + +2.00 pp PERIPHERAL SYSTEM SUPPLY. Fully cased unit supplied in a Brand new or little
 requlated. Fan cooled Supplied tested with circuit $E 55.00+\varepsilon 8.50$ carr. MAIN FRAME SUPPLL. A real beety unit designed for MINI or MAINFRAME use outputs give 5 volts @ 50 amps $+12 v @ 5$ amps- $-12 v @ 10$ amps All output are fully
regulated with crowber overvoltage protection on the $5 v$ output Suplied with circuit

66\% DISCOUNT

ELECTRONIC COMPONENTS \& EQUIPMENT

Due to our massive bulk purchasing programme which enablos us to bring you the
best possibie bargains, we have thousands of $1 . C$ C. S Transistors Relays Cap', P.C.B:'
 Sub-assemblies, Switches. etc. etc. suriplus to our requirements Because we dont items into the "BARGAIN PARCEL OF A LIFETIME" Thousands of components at giveaway prices! Guaranteed to be worth at least 3 times what you play
include something from ourads, for unbeatable value! Sold by weiant
$2.5 \mathrm{kis} £ 4.25+p p £ 1.25$
$2.5 \mathrm{kis} £ 1.25$ + pp £1.25
10kls 10.25 + pp £2.25
10
5k18 55.90

9" Monitors
 DT10 Monitor

 a complete MOTOROLA $9^{\prime \prime}$ housed inhoused in
an attractive metal

case DIM approx

10° deep $16^{\prime \prime}$ wlde and
 high. The monitor has a 75 ohm composite video input with a bancwidth of $18 \mathrm{mhz} A$ seperate internal PSU delivers 5 v dc for case has sufficient room insideomonitor. The other units such as $5^{\prime \prime}$ disk drives etc. Internal pots give full control over all monitor functions Supplied in a tested, as new or little used condition. 240 vAC operation $\mathbf{5 5 5 . 0 0}$ Carriage and Insurance £10.50
MOTOROLA 9 " open chassis monitor.
Standard $240 \vee$ AC with composite 75 Standard 240 VAC with composite 75 ohm
video input, bandwidth in excess of 18 mhz video input, bandwidin excess although unguaranteed they are all tested prior to despatch, and have no visible burns on the screens Dim approx $9^{n} \times 9^{\prime \prime} \times 9^{\prime \prime}$. Supplied complete with mains and input lead Ideal ZX81 etc or giving the tele back to the family! Black and White phosphor $£ 35.00+£ 9.00$ Carr.

SEMICORDUCTOR

 "GRAB BAGS' Mixed Semis amazing value contents triacs, diodes, bridge recs, etc etc. All devices quaranteed brand new full spe with manufacturer's markings, fullyguaranteed, $50+\mathbf{E 2 . 9 5} 100+E 5$, 15 TrL 74 Serles A gigantic purchase of an "across the board" range of 74 TL
series I.C.'s enables us to ofter 100 series I.C.' s enables us to offer 100+ mixed "mostly TTL" grab bags at a price
which two or three chips in the bag would normally cost to buy Fully guaranteed all I.C.'s full spec $100+\mathbf{\Sigma 6 . 9 0}$

300 BAUD
 DATA MODFMS

standard EX GPO $2 a / b$ data MODEMS

 Modem operates on standard CCITT tones with full auto answer facilities. Will switch to ANSWER orORIGINATE. StandardRS232 connections Ideal networks. DISTEL etComplete with data Untested but good condition $£ 55.00$ carr. $£ 8.50$.

1200 BAUD

DATA PUMP MODEMS

Compact unit for use with private or "Dial up
lines" Designed to work in pairs at any baud lines Designed to work in pairs at any baud duplex (
remote tost facilities. RS232res include Supplied with data in working order, but les case cover $£ 5.00+£ 4.50 \mathrm{carr}$.

OLIVETHI TESOO REDUGED TO CLEARR

hole operates at 150 baud in standard ASCII as a cheap printer for a MICRO etc. 120 withe with data, untested, unguaranteed $\mathbf{£} \mathbf{6 5 . 0 0}$

DEFLMT ELELTRONHES

Card order $£ 10.00$. Minimum BONA FIM E20.00 Whin We reserve the right to change prices and specifications without notice. Trade, Bulk and Export enquiries welcome.
64-66 Melfort Road, Thornton Heath, Near Croydon, Surrey
01-689 7702-01-689 6800 Telex 27924

F

WW - 071 FOR FURTHER DETAILS

ELECTRUC

2 WAYS TO RECOVERY

ACT AT ONCE - DELAY IS FATAL

GET IT - READ IT - PRACTISE 1.4
be READY TO SAVE A LIFE. SOMEONE MIGHT SAVE YOURS.

Display the ELECTRICAL REVIEW shock first aid chart ($356 \times 508 \mathrm{~mm}$) supplied in thousands to destinations world-wide. Recent deliveries include consignments to companies in Papua New Guinea, Dubai, United Arab Emirates, The Philippines, apart from UK commercial and industrial, educational, Central Government, Local Authorities' orders.

Carry the ELECTRICAL REVIEW pocket-size shock card ($92 \times 126 \mathrm{~mm}$) designed to help safety and training officers, medical and welfare personnel; all who might find themselves called to save a life. Always pocket your card; there's a useful two-year calendar on the back.

ACT AT ONCE—DELAY IS FATAL!

To IPC Electrical-Electronic Press Ltd., General Sales Department,
Room 205,
Quadrant House,
Sutton, SM2 5AS,
Surrey,
England.
Company registered in England No 677128. Registered Office Quadrant House, The Quadrant Sutton, Surrey SM2 5AS

Please send. copy/copies as indicated
Pocket Card @ 70p each inc VAT
PaperChart @ 70p each post free
Card Chart @ £1.40 each post free
Plastic Chart @ £2.10 each post free
Discounts: $100+$ copies 10%

$$
500+\text { copies } 15 \%
$$

(Overseas surface and air mail rates supplied on application.)

WW - 024 FOR FURTHER DETAILS

NO SPECIAL OFFERS! NO PRICE REDUCTIONS! STILL BEST VALUE!

FUNCTION GENERATOR TYPE TG301

FREQUENCY
WAVEFORMS
DC OFFSET
MAIN OUTPUT
VCF (EXT. SWEEP)
0.02 Hz to 2.1 MHz in 7 decade ranges

Sine, Square, Triangle, Pulse and Ramp
Variable up to $\pm 10 \mathrm{~V}$ from 50Ω
60 mV to 20 V peak to peak from 50Ω source
1000:1 frequency ratio by application of 10 V p-p

Send for full technical specification together with details of our Voltmeters,
Oscillators and other test instruments. The price is ex works excluding V.A.T.
electaonics lid.

Postage will be paid by Licensee

Do not affix Postage Stamps if posted in Gt Britain, Channel Islands, N Ireland or the Isle of Man
To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication.

Please Use Capital Letters

If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below.

OVERSEAS SUBSCRIPTION AGENTS

Australia: Gordon \& Gotch (Australasia) Lid. 380 Lonsdale Stieet. Melbourne 3000. Victoria	Japan: Western Publica tions Distribution Agency. 170 Nishi-Okubo 4-chome, Shlnjuku-Ku, Tokyo 160
Belgium : Agence et Messageries de la Presse, 1 Rue de la Petite-ILE Brussels 7	Lebanon : Levant Disti butors Co., P.O. Box 1181 Makdesi Street. Halim Hanna Bldg. Beirut
Canada : Davis Cliculation Agency, 153 St. Clair Avenue West. Toronto 195 , Ontario	Malaysia: Times Distributors Sdn. Bhd. Times House. 390 Kim Seng Road.
Cyprus: General Piess Agency Ltd, 131 Prodromou Street, P.O. Box 4528, Nicosia	Singapore 9, Malaysia. Malta: W. H. Smith Continental Ltd, 18a Scots Street, Valleta
Denmark: Dansk Bladdistribution, Hovedvagtsgade 8 , Dk. 1103 Kobenhavn.	Now Zealand: Gordon \& Gotch (New Zealand) Lid. 102 Adelaide Road. Weilington 2
Finland: Rautakiria OY, Koivuvaarankuja 2 , 01640 Vantea 64, Finland.	Nigeria: Daily Times of Nigeria Lid, 3 Kakawa Streat, P.O. Box 139. Lagos
France: Dawson-France S.A., B.P.40, F-91121. Palaiseau	Norway: A/S Narvespns Kioskompani, Bertrand Narvesens vei 2, Oslo 6
Germany: W.E.Saarbach GmbH, 5 Koln 1. Follerstiasse 2	Portugal: Livaria Bertrands.a.t.l Apartado 37, Amadora
Greece: Hellenic Distribution Agency. P.O. Box 31 5, 245 Syngrou Avenue. Neal Smyini, Greece.	South Africa: Central News Agency Lid. P.O. Box 1033, Johannesburg
Holiand: Van Ditmap N.V., Oostelijke Handelskade. 11. Amsterdam 1004	Spain: Comercial Atheneums.b. Consejo de Clento, 130-136 Barcelons 15
India: Internatlonal Book House, Indian Mercantile Mansion Ext. Madame Cama Road. Bombay 1	Sweden: Wennegien Williams A B. Fsck S-104, 25 Stockholm 30
Iran:A.D.A., 151 Khiaban Soraya, Tehran	Switzerland: Naville 8 Cie Sa, Rue Levrier 5.7. CH-1211 Geneve 1 Schmidt Agence AG,
Israel: Stelmatzky's Agency Lid. Citrus House. P.O. Box 628, Tel Aviv	Savogelstrasse 34. 4002 Basle
italy: Intercontinental s.a.s. Via veracini 9. 20124 Mllano	U.S.A.: John Barios, IPC Business Press, 205 East 42 na Sticet. Now York, N.Y. 10017

Enquiry Service for Professional Readers

WW...	WW.	WW.
WW	Ww.	
ww	WW.	WW.
WW	WW.	WW
ww	WW.	ww
WW	Ww.	
WW	WW	WW
Ww	WW	WW.
Ww	WW	WW
WW	WW	WW
WW . .	WW	WW
ww	WW.	WW
WW	WW	WW
ww.	WW .	WW
ww.	WW.	WW
WW. . .	WW.	WW

Subscription Manager, IPC Business Press, Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH, England

WIRELESS WORLD Wireless World, January 1983 WW 8361
Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.
Name
Name of Company

Address

Telephone Number

PUBLISHERS USE ONLY			A/E			

Position in Company
Nature of Company/Business
No. of emniovees at this establishment.
I wish to subscribe to Wireless World \square
VALID FOR SIX MONTHS ONLY

Wireless World: Subscription Order Form

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:

Enquiry Service for Professional Readers ONLY.
WIRELESS WORLD Wireless World, January 1983 WW 8361

	Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.
WW . . . WW . . . WW	Name .
WW . . . WW . . W W .	
WW . . . WW . . . WW .	
WW . . . WW . . . WW .	Name of Company
MW . . WN . . W .	Address
WW . . . WW . . . WW .	
WW . . WW . . W	
WW . . W . . . WW.	Telephone Number
WW . . . WW . . . WW	
WW WW . . WW.	Nature of Company/Business
WW . . . WW . . . WW	No. of employees at this establishment
WW ... WW . . . WN	
WW . . . WW . . . WW.	
WW . . . WW . . . WW .	

UK subscription rates
1 year: £14.00
Overseas 1 year: $£ 17.00$

USA \& Canada subscription rates 1 year: $\$ 39.00$

Please enter my subscription to Wireless World for 1 year

I enclose remittance value... pade payable to
IPC BUSINESS PRESS Ltd.

Name

Address

IPC BUSINESS PRESS Ltd.

Wireless World Subscription Order Form Wireless World, January 1983 WW 8361
WIRELESS WORLD
Reader Enquiry Service 429 Brighton Road South Croydon Surrey CR2 9PS

OVERSEAS ADVERTISEMENT AGENTS

Hungary Mrs. Edit Bajusz, Hungexpo Advertising Agency. Budapest XIV.
Varosliget - Telephone : 225008 -
Telex: Budapest 22-4525 INTFOIRE

Italy Sig. C. Epis Etas-Kompass, S.p.a. Servizio Estero. Via Mantegna 6, 20154 Milan - Telephone 347051 -
Telex : 37342 Kompass

Japan Mr. Inatsuki, Trade Media - IBPA
(Japan), B212 Azabu Heights, 1-5-10
Roppongi, Minato-Ku. Tokyo 106 -
Telephone : (03) 585-0581

United States of America Ray Barnes,
*1PC Business Press 205 East 42nd Street,
New York. NY 10017 - Telephone
(212) 6895961 -Telex : 421710

Mr. Jack Farley Jnr., The Farley Co.
Suite 1548, 35 East Wacker Drive
Chicago. Illinois 60601 - Telephone:
(312) 63074

Mr. Victor A Jauch,
Elmatex International.
P.O. Box 34607 ,

Los Angeles Calif. 90034 U.S.A.
Telephone : (213) 8218581
Telex: 18-1059.
Mr. Jack Mentel, The Farley Co., Suite 605,
Ranna Building, Cleveland, Ohio 4415 -
Telephone: (216) 6211919
Mr. Ray Rickles, Ray Rickles \& Co.,
P.O. Box 2008. Miami Beach. Florida

33140 - Telephone : (305) 5327301
Mr. Jim Parks, Ray Rickles \& Co..
3116 Maple Drive N.E., Atlanta, Georgia 30305. Telephone : (404) 2377432

Mike Loughlin, IPC Business Press, 15055 Memorials, Ste 119, Houston, Texas 77079 - Telephone : (713) 7838673

Canada Mr. Colin H. MacCulloch, International Advertising Corisultants Lid., 915 Carlton Tower, 2 Carlton Street, Toronto 2 - Telephone (416) 3642269

[^8]
Designed and Built in Britain
 Manufacturers of the Famous VOYAGER - The Worlds FIRST Oscilloscopes
 Tubeless Oscilloscopes

14D15	15 Mhz DUAL TRACE 5 mV SENSITIVITY Most Versatile Scope	f+VAT
14 D10V	10 Mhz DUAL TRACE 2 mV SENSITIVITY with a Line	250
4S6	Selector for TV Video 6 Mhz SINGLE TRACE 10mV SENSITIVITY Very Easy to Use	260
		148

Prices Include-Probes. Mains Plug Packing-Carriage (Uk Mainland)
SCOPEX Instruments Ltd.
PIXMORE HOUSE,
PIXMORE AVE
Letchworth,Herts, SG61HZ
PHONE

WW - 016 FOR FURTHER DETAILS

DAWNE INSTRUMENTS \& ELECTRONICS
Shields Road, BIII Quay, Gateshead. NE10 ORS.

INSTRUMENTS BYPOST

A selection of Test equipment available from Dawne Instruments \& Electronics

1. Fluke Digital Multmeter Type 8022B. (6 functions) 25\% D.C accuracy. Battery operated. Complete with carrying case and test leads. Price $£ 112.70$ inc. VAT + carriage.
2. Global 650 MHZ U.H.F frequency counter 5 HZ to 650 MHZ. Two inputs. Selective gate times. 0.1 1010 seconds. Minimum sensitivity 40 mV RMS (at 1 KHZ). Price $£ 288.65$ inc. VAT + carriage.
3. Trio CS 1352 Mains/Battery portable oscilliscope bandwidth DC to 15 MHZ . Sensitivity $2 \mathrm{mV} /$ Div. Time base $0.5 \mathrm{~m} \mathrm{Sec} /$ Div to 0.5 secs/Div. Price $£ 473.80$ inc. battery, VAT + carriage. 4. Thurlby Bench Power Supply type PL 310 voltage range 0 to 30 volts. Current range 0 to 1 amp . Variable course and fine controls. Full overload protection. Price $£ 132.25$ inc. VAT + carriage.

Cash with order please
Name
.._(qty) INST 1 at $£ 112.70$ each £
(aty) INST 2 at 288.65 each $£$ Address
\qquad (aty) INST 3 at $£ 473.80$ each $£$
\qquad
Total £

I enclose cheque/postal order to cover cost of the instruments and carriage

If you require data sheets, please send stamped addressed envelope.
Dawne Instruments \& Electronics, Shieids Road, Bill Quay, Gateshead NE10 ORS Telephone: 0632380557

START 1983 WITH GAPS IN CIRCUIT FILES WELL-PLUGGED

WIRELESS WORLD CIRCARDS last year benefited many 'new generation' readers who bought at 1976 bargain prices + 10\% discount for 10 sets! Most sets are still avaliable although companion voiumes CIRCUIT DESIGNS 1, 2 and 3 are out of print (CIRCARDS sets 1 to 30).

> The Offer stands, so order now your sets of $127 \times 204 \mathrm{~mm}$ cards in plastic wallets. These unique circuit cards normally contain descriptions and performance data of 10 tested circuits, together with ideas for modifying them to suit special needs.

[^9]U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

BSR DE LUXE AUTOCHANGER $£ 18$

 Plays 12 'Ma or 1 , A A highAuto or
quality unit backed by BSR reliability. Stereo Ceramic Cartridge. AC 200/250V. Size Above motor board $33 / 4 \mathrm{in}$. Below motor board $21 / 2$ in

HEAVY METAL PLINTHS

 Post f 2 Cut out for most BSR or Garrard decks.Silver grey finish, black trim. Size $16 \times 133 / 4 \mathrm{in}$. 44 DECCA TEAK VENEERED PLINTH. Post £ 1.50 Superior finish with space and panel for
£5

$183 / 4 \mathrm{in} . \times 14^{1 / 4 i n} \times 4 \mathrm{in}$. Black/chrome facia trim. Also w

 boards cut out for Garrard $£ 3$. Tinted plastic cover $\mathbf{E 5}$ TINTED PLASTIC COVERS| $177 / 6 \times 13^{1 / 2} \times 31 / 4 \mathrm{in}$. $171 / 4 \times 9^{3 / 8} \times 3^{1 / 2 i n}$. $16^{1 / 2 \times 15 \times 41 / 2 i n}$. $17 \times 12^{7 / 8} \times 3^{1 / 2}$ in. $225 / 8 \times 13^{7 / 6} \times 3 \mathrm{in}$. $211 / 2 \times 141 / 4 \times 21 / 2 \mathrm{in}$. |
| :---: |
| | |
| | |
| | |
| | |
| | |

$$
\begin{aligned}
& \begin{array}{lr}
& \text { Post } \mathrm{f2} \\
181 / 4 \times 12^{1 / 2} \times \text { 3in. } & \mathrm{E5} \\
14^{3 / 8} \times 12^{1 / 2 \times 27 / 8 i n . ~} & \mathbf{E 5}
\end{array} \\
& 181 / 4 \times 121 / 2 \times 3 \mathrm{in} . \\
& \begin{array}{l}
165 / 8 \times 13 \times 4 \mathrm{in} \text {. } \\
141 / 2 \times 13^{1} / 8 \times 2
\end{array} \\
& \begin{array}{l}
14^{1 / 2} \times 13^{1 / 8} \times 2^{3 / \mathrm{ain}} . \\
17^{1 / 4} \times 13^{3 / 4} \times 4^{1 / 8 i n} .
\end{array} \\
& \begin{array}{l}
171 / 4 \times 13^{3 / 4} \times 41 / 8 i n . \\
21 \times 13^{7} / 4 \times 41 / 8 \mathrm{in} . \\
30^{3} 4 \times 13^{3} 4 \times 31 / 2 i
\end{array}
\end{aligned}
$$

BSR SINGLE

PLAYER DECKS BSR P170 RIM DRIVE QUALITY DECK
Manual or automatic play
Precision ultra slim arm.
Black with silver trim, stereo ceramic cartridge
BSR P204 SINGLE PLAYERS SPECLAL OFFERS Two speed $33 / 45$ r.p.m. hi-fi decks with stereo cartridges, cueing device and snake arm
Ceramic -240 V AC $£ 15$ or 9 V DC $£ 18$ Ceramic - $240 \mathrm{VAC} £ 15$ or $9 \mathrm{VDC} £ 18$
Magnetic $-240 \mathrm{VAC} £ 20$ or $12 \mathrm{VDC} £ 24$
THE "INSTANT" BULK TAPE ERASER £9.50 Post 95p Suitable for cassettes and all sizes of tape reels. AC mains 200/250V. Hand held size with switch and lead (120 volt to order) Will also dema
Head Demagnetiser only $£ 5$.
BATTERY ELIMINATOR MAINS to 9 VOLT D.C
Stabilised output, 9 volt $400 \mathrm{~m} . a$. U.K. mado in plastic case with screw terminals. Safety overload cut out. Size
$5 \times 3^{1 / 4 \times 21 / 2 i n . ~ T r a n s f o r m e r ~ R e c t i f i e r ~ U n i t . ~ S u i t a b l e ~}$ $5 \times 31 / 4 \times 21 / 2 i n$. Transformer Rectifiar Unit. Suitable DE LUXE SWITCHED MODEL STABILISED. E7.50. PP £1 $3-6-71 / 2-9$ volt 400 ma DC max. Universal output plug
and lead. Pilot light, mains switch, polarity switch. DRILL SPEED CONTROLLER/LIGHT DIMMER KIT. Eas build kit. Controls up to 480 watts AC mains, E3. PP 65p.
DE LUXE MODEL READY-BUILT 800 watts. Front plate DE LUXE MODEL READY-BUIL
fits standard box, £5. Post 65 p .

EMl 131/2x8in. LOUDSPEAKERS Model 450, 10 watts R.M.S. with moving coil tweeter and two-way "Final Clearance". Sale Price E8 SUITABLE BOOKSHELF CABINET

RELAYS. 6 V DC 95 p . 12 V DC E1.25. 18V E1.25. 24 V E1.30 BLANK ALUMINIUM CHASSIS. $6 \times 4-£ 1.45 ; 8 \times 6-£ 1.80$; $10 \times 7-£ 2.30 ; \quad 12 \times 8-£ 2.60 ; 14 \times 9-£ 3 ; 16 \times 6-\mathbf{f 2 . 9 0}$; $16 \times 10-£ 3.20 .14 \times 3 £ 1.80$. All $21 / 2 \mathrm{in}$. deep. 18 swg .
ANGLE ALI. $6 \times 3 / 4 \times 3 / 4 \mathrm{in} .18$ swg. 30 p . ANGLE AL. $6 \times 3 / 4 \times 3 / 4 \mathrm{in}$. 18 swg . 30 p ALUMINIUM PANELS, $18 s w g$. $6 \times 4-45 p ; 8 \times 6-75 p$;
 ALUMINIUM BOXES. $4 \times 4 \times 11 / 2 £ 1.4 \times 21 / 2 \times 2 \mathrm{f1} .3 \times 2 \times 1 \mathrm{£} 1$ $6 \times 4 \times 2 £ 1.60$. $7 \times 5 \times 3$ £2.40. $8 \times 6 \times 3 £ 2.50$. $10 \times 7 \times 21 / 2 \mathrm{£}$.
 BRIDGE RECTFIER 200 V PIV $2 \mathrm{a} £ 1$. 4 a £1.50. $6 \mathrm{a} £ 2.50$. TOGGLE SWITCHES SP 40p. DPST 50p. DPDT 60p. MINLATURE TOGGLES SP 40p. DPDT 60p. RESISTORS. 10Ω to 10 M . $1 / 4 \mathrm{~W}, 1 / 2 \mathrm{~W}, 1 \mathrm{~W}, 2 \mathrm{p}$: 2 W 10 p HIGH STABILITY. $1 / 2 \mathrm{w} 2 \% 10$ ohms to 1 meg .10 p .
WIRE-WOUND RESISTORS 5 watt 10 watt, 15 wa PICK-UP CARTRIDGES SONOTONE 9TA \&2.50 watt 20p. BSR Ster Cramic SC7 Medium Ourputf2 PHILIPS PLUG-IN HEAD. Stereo Ceramic. AU1020 (G30 GP310-GP233-AG3306, £2. A.D.C., QLM $30 / 3$ Magnetic $£ 5$. GOLDRING G850 £6.50, G800 £8.50. STYLUS most popular Acos, Sonatone, BSR, Garrard Philips Diamond $£ 1.20 \mathrm{ea}$. LOCKTITE SEALING KIT DECCA 118 . Complete VALVE OUTPUT Transformers (smali) 90p. Medium. $\mathbf{E 1 . 5 0}$ SUB-MIN MICROSWITCH, 50 p, Single pole changeover. ANTEX SOLDERING IRON 'C' $15 W$ \& 4.60 .25
JACK PLUGS Mono Plastic 25p; Metal 30 p . JACK PLUGS Mono Plastic 25p; Metal 30p.
JACK PLUGS Sterso Plastic 30p; Metal 35p. JACK PLUGS Ster日o Plastic 30p; Metal 35
JACK SOCKETS Mono 25p. Stereo 30p. JACK SOCKETS Mono 25p. Stereo 30p.
FREE SOCKETS - Cable end 30 p . Metal 45p FREE SOCKETS - Cable end 30p. Metal 45p.
2.5 mm and 3.5 mm JACK SOCKETS 25p. Plugs 25p. DIN TYPE CONNECTORS
Sockets 3-pin, 5 -pin 15p. Free Sockets 3-pin, 5-pin 25p Plugs 3-pin 20p; 5-pin 25p; Speaker plugs 25p; Sockets 15p. PHONO PLUGS and SOCKETS ea. 20p.
Free Socket for cable end 20p. Screened Phono Plugs 25p 300 ohm TWIN RIBBON FEEDER 10 p yd.
300 ohm to 75 ohm AERIAL MATCHING TRANSFORMER E1. U.H.F. COAXIAL CABLE SUPER LOW LOSS, 25p Yd NEON INDICATORS 250 V , round 30p. Rectangular 45 p.

POTENTIOMETERS Carbon Track

 f1.10. DP $£ 1.30$. Edge Pot 5 K . SP 45p. MINI-MULTI TESTER NEW coil instrument. Impedance +Capacity -4000 o.p.v. Battery included. DC volts $5.25,250,500$. AC volts $10,50,500,1000$ £6.50 DC amps $0-250 \mu \mathrm{~A}, 0-250 \mathrm{~mA}$. Post 50 p esistance 0 to 600 K ohms
De Luxe Range Doubler Model
$50,000 \mathrm{o}$. p.v

NEW PANEL METERS $£ 4.50$

50ца, 100
$1 \mathrm{ma}, 5 \mathrm{ma}, 50 \mathrm{ma}, 100 \mathrm{ma}$ $500 \mathrm{ma}, 1 \mathrm{amp}, 2 \mathrm{amp}$ 25 volt, VU Meter
$21 / 4 \times 2 \times 11 / 4$
Stereo $V U$ meter
$31 / 4 \times 15 / 8 \times 1$ in.
RCS SOUND TO LIGHT CONTROL BOX
Complete ready to use with cabinet size $9 \times 3 \times 5$ in. 27
3 channel, 1000 watt each. For home or disco Input 200 mV to 100 watt. AC $200 / 250$ V. Post f1

Disco bulbs 100 watt, blue, grean, yellow, red, amber, screw or bayonet $£ 1.85$ each. Post $£ 1.50$ per six. Rope lights, 4 channel, 11 ft with controller $£ 33$. PP $£ 1$.
"FUZZ" lights, red, blue, green, amber, 240 V AC. $£ 23$. 200 Wart Rear Reflecting White Light Bulbs. Ideal 200 Watt Rear Reflecting White Light Bulbs. Ideal for
Disco Lights, Edison Screw. 6 for $£ 4$, or 12 for $£ 7.50$. Post Disco Lights, Edison Screw. 6 for $£ 4$, or 12 f
f 1.50 . Suitable panel mounting holders 85 p.

RCS 'MINOR' 10 watt AMPLIFIER KIT £14 This kit is suitable for record players, guitars, tape playback, electronic instruments or small PA systems fication 10 W per channel; size $91 / 2 \times 3 \times 2 \mathrm{in}$. SAE details Full instructions supplied. 240 V AC mains. Post $£ 1$ RCS STEREO PRE-AMP KIT. All parts to build this pre-amp. Inputs for high, medium or low imp MAINS TRANSFORMERS
$\mathbf{E 5 . 0 0} \mathrm{f} 2$

$320-0-350 \mathrm{~V} 250 \mathrm{~mA}, 6.3$ $220 \mathrm{~V} 25 \mathrm{ma} 6 \mathrm{~V} \operatorname{lamp} \mathrm{ER}$ 250 V 50 mA 6 V 2 A

220 V 45 ma 6 V 2 Am
AUTO 115 V to 240 V 150 W £9. 250 W £10. 400 W f11. 500 W £12.00 GENERAL PURPOSE LOW VOLTAGE

OPUS COMPACT

SPEAKERS £22 pair post $£ 2$

TEAK VENEERED CABI
$11 \times 81 / 2 \times 7 \mathrm{in}$, 15 watts
OPUS TWO $15 \times 101 / 2 \times 7$ ohm
OPUS TWO $15 \times 101 / 2 \times 73 / 4$ in 25
2-way system $£ 39$ pair. Post $£ 3$

LOW VOLTAGE ELECTROLYTICS Wire ends
$1 \mathrm{mf}, 2 \mathrm{mf}, 4 \mathrm{mf}, 8 \mathrm{mf}, 10 \mathrm{mf}, 16 \mathrm{mf}, 25 \mathrm{mf}, 30 \mathrm{mf}, 50 \mathrm{mf}, 100$ $\mathrm{mf}, 250 \mathrm{mf}$. Alf 15 volts. $22 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 25 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 47$ $\mathrm{mf} / 10 \mathrm{v} ; 50 \mathrm{mf} / 6 \mathrm{v}: 68 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} / 25 \mathrm{v}$
$100 \mathrm{mf} / 10 \mathrm{v} ; 150 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 200 \mathrm{mf} / 10 \mathrm{v} / 16 \mathrm{v} ; 220$ $\mathrm{mf} / 4 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} ; 330 \mathrm{~m} / 4 \mathrm{v} / 4 \mathrm{v} \cdot \mathrm{ve} 1500 \mathrm{~m} ; 68$ $10 \mathrm{v} / 16 \mathrm{v} ; 2200 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 3300 \mathrm{mf} / 6 \mathrm{v} ; 4700 \mathrm{mf} / 4 \mathrm{v}$ $500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p} .1200 \mathrm{mF} 76 \mathrm{~V} 80 \mathrm{p}$. $1000 \mathrm{mF} 12 \mathrm{~V} 20 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 50 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$. 2000 mF 6 V 25 p ; 30 V 42 p ; 40 V 60 p ; 1500 mF 100 V f 1.20. $2200 \mathrm{mF} 63 \mathrm{~V} 90 \mathrm{p} .2500 \mathrm{mF} 50 \mathrm{~V} 70 \mathrm{p} ; 3000 \mathrm{mF} 50 \mathrm{~V} 65 \mathrm{p}$; 4500 mF 64 V £2. 4700 mF 63 V £1.20
HIGH VOLTAGE ELECTROLYTICS
HIGH VOLTAGE ELECTROLYTICS
$2 / 500 \mathrm{~V} \quad 45 \mathrm{p} \quad 32+32+16 / 350 \mathrm{~V} 90 \mathrm{p}$
$\begin{array}{lllll}8 / 450 \mathrm{~V} & 45 \mathrm{p} & 100+100 / 275 \mathrm{~V} & 65 \mathrm{p} & 8+16 / 450 \mathrm{~V}\end{array}$
$\begin{array}{lllll}16 / 350 \mathrm{~V} & 45 \mathrm{p} & 150+200 / 275 \mathrm{~V} & \text { 70p } & 16+16 / 350 \mathrm{~V} \\ 32 / 500 \mathrm{~V} & 95 \mathrm{p} & 220 / 450 \mathrm{~V} & 95 \mathrm{p} & 32+32 / 350 \mathrm{~V}\end{array}$
$\begin{array}{lllll}32 / 500 \mathrm{~V} & 95 \mathrm{p} & 220 / 450 \mathrm{~V} & 95 \mathrm{p} & 32+32 / 350 \mathrm{~V} \\ 32 / 350 \mathrm{~V} & \mathbf{5 0 p} & 32+32+32 / 325 \mathrm{~V} & 75 \mathrm{p} & 32+32 / 500 \mathrm{~V}\end{array}$
$\begin{array}{lllll}32 / 350 V & 50 \mathrm{p} & 32+32+32 / 325 \mathrm{~V} & \mathbf{7 5 p} & 32+32 / 500 \mathrm{~V} \\ 50 / 450 \mathrm{~V} & \mathbf{9 5 p} & 50+50+50 / 350 \mathrm{~V} & \mathbf{9 5 p} & 50+50 / 300 \mathrm{~V}\end{array}$ CAPACITORS WIRE END High Voltage
$.001, .002, .003, .005, .01, .02, .03,05 \mathrm{mfd} 400 \mathrm{~V} 5 \mathrm{p}$.
1MF 200 V 5 p .400 V 10 p .600 V 15 p . 1000 V 25 p .
.22 MF 350 V 12 p .600 V 20 p .1000 V 30 p .1750 V 50 p.
47MF 1500 V 10 p .400 V 20 p .630 V 30 p .1000 V 60 p .
TRIMMERS $30 \mathrm{pF}, 50 \mathrm{pF}, 10 \mathrm{p} .100 \mathrm{pF}$, 150 pF 20 p .500 pF 30 p
MICROSWITCH SINGLE POLE CHANGEOVER 40 p MICROSWITCH SINGLE POLE CHANGEOVER 40p
TWIN GANG, $120 \mathrm{pF} \mathbf{£ 1} .500+200 \mathrm{pF} \mathrm{E} 1$
GEARED TWIN GANGS 25pF 95p
GEARED $365+365+25+25 \mathrm{pF}$ 1
TRANSISTOR TNIN GANG
SOLID DIELECTRIC 100 pf $£ 1.50,500$ pf $£ 1.50$
HEATING ELEMENTS, WAFER THIN (Semi Flexible) Size $11 \times 9 \times 1 / 8 i n$. Operating voltage $240 \mathrm{~V}, 250 \mathrm{~W}$ approx
Suitable for Heating Pads, Food Warmers, Convector Suitable for Heating Pads, Food Warmers, Convector
Heaters, Propagation, etc. Must be clamped between Heaters, Propagation, etc. Must be clamped between ONLY 60 p EACH (FOUR FOR f2) ALL POST PAID.

NEW baker Star sound
high power full range quality loudspeakers British made exceptional reproduction. Ideal for Hi-Fi, music P.A. or discotheques. These loudspeakers are recommended where high power handling is required with quality
results. The high flux

MODEL	INCHES	OHMS	Watrs	TYPE	PRICE	POST
MAJOR	12	4-8-16	30	HI-FI	f14	12
DELUXE MK II	12	8	15	HI-FI	f14	12
SUPERB	12	$8-16$	30	HI-FI	f24	$\underline{\square}$
AUDITORIUM	12	$8-16$	45	HI-FI	f2	57
AUDITORIUM	15	8-16	60	HI-FI	[34	$\underline{\square}$
GROUP 45	12	4-8-16	45	PA	E14	$\underline{2}$
GROUP 75	12	4-8-16	75	PA	¢18	$\underline{7}$
GROUP 100	12	8-16	100	Guitar	$\underline{4} 4$	¢2
DISCO 100	12	8-16	100	Disco	f24	¢2
GROUP 100	15	8-16	105	Guitar	E38	$\underline{5}$
DISCO :00	15	8-16	100	Disco	532	$\underline{2}$

BAKER AMPLIFIERS BRITISH MADE

NEW PAI5O MICROPHONE PA AMPURER E129 4 channel 8 inputs, dual impedance, 50 K - 600 ohm 4 channel intro, BAKER 150 Watt AMPLIFIER 4 Inputs $\mathbf{E 9}$ For Discotheque, Vocal, Public Address Three speaker outlets
for 4,8 or 16 ohms. Four high gain inputs, $20 \mathrm{mv}, 50 \mathrm{~K}$ ohm. Individual volume controls "Four channel" mixing. 150 watts 8 ohms R.M.S. Music Power. Slave output 500 M.V. 25 K .0 hm Response $25 \mathrm{~Hz}-20 \mathrm{kHz} \pm 3 \mathrm{JB}$. Integral Hi-Fi preamp separat Bass control. British made 12 months" guarantee. 240 v A.C mains or 120 V to order. All transistor and solid state. Post $£ 2$.
MOND SLAVE VERSION $£ 75.100$ Volt Line Model f104. Post $£ 2$. New Stered Slave Model $150+150$ watt $\mathbf{£ 1 2 5}$. Post f 4
BAKER £69
50 WATT 50WATI

deal for PA systems, Discos and Groups. Two inputs PCS offers MOBILE PA AMPUIFIERS OAS, Treble G̣ain
RCS offers MOBILE PA AMPLIFIERS. Outputs 4-8-16 ohms 20-watt RMS 12v DC, AC $240 \mathrm{v}, 3$ inputs. 50 K

 60 -watt RMS, Mobile 24 volt OC \& 240 -volh AC mains. inputs 50 K 3 mics +1 music. Dutputs 4-8-16 ohm +100 volts line $£ 5 \mathrm{PP} £ 2$
Battery only Portable PA Amplifier 10w max. Includes mike and speaker, OK for meetings, crowd control, stalls, fe1es,
parties, etc. Batteries included (6 of U 2$) £ 27.50$ post $£ 2$.

R.C.S. 100 watt Robust

VALVE AMPLIFIER
Channel mixing. Master
treble, bass and volume
controls. 5 Speaker outlets,
suits $4.8,16$ ohm. Disco
group fizs. Carr. \& ins. f1s

FAMOUS LOUDSPEAKERS

'SPECIAL PRICES

MAKE	MODEL	SIZE	Watts	OHMS	PRICE	PO
SEAS	IWEETER	4in	50	8	69.50	$f 1$
G000mANS	TWEETEA	31/2in	25	B	f4	f1
AU0AX	TWEETEA	4 in	30	8	f6.50	¢1
SEAS	MID-RANGE	4in	50	8	£7.50	$f 1$
SEAS	MID-RANGE	5 in	80	8	f12	f1
SEAS	MID-RANGE	41/2in	100	8	f12.50	¢1
G000MANS	hifax	$71 / 2 \times 41 / 4$	100	4/6/16	¢27	12
GDOOMANS	WOOFER	8 Bin	25	41	f6.50	$f 1$
GODDMANS	HB	8 in	60	8	f12.50	$f 1$
Wharfoale	WOOFER	Bin	30	1	$\underline{69.50}$	52
AUDAX	WOOFER	10 in	50	8	f16	07
G000mans	HPG	12in	120	$8 / 15$	£29.50	57
G000MANS	GR12	12 in	90	$8 / 15$	$\underline{67.50}$	2
G000MANS	HPO	12 in	120	$8 / 15$	f 79.50	$\underline{2}$
G000mANS	HPD	18 in	230	8	f\%o	64

SPEAKER COVERING MATERIALS. Samples Large S.A.E
A.F. LOUOSPEAKER CABINET WADDING 18 in wide $35 p$

MOTOROLA PIEZO ELECTRIC HORN TWEETER, 33 hin. square $£ 5$ 100 watts. No crossover required. $4-8.16 \mathrm{ohm}, 738 \times 31 / \mathrm{min}$ CROSSOVERS. TWO-WAY $3000 \mathrm{c} / \mathrm{s} 30$ watt 8 EJ . 100 W f4. 3. Way $950 \mathrm{cps} / 3000 \mathrm{cps} .40$
LOUDSPEAKER BARGAINS

 Bin $\mathbf{E 4} 50$ 10in $\mathbf{5 5}$: $12 \mathrm{in} \mathbf{f 5}$
8in, $\mathbf{E 4 . 5 0}$; $10 \mathrm{in}, \mathbf{E 5} ; 12 \mathrm{in}, \mathbf{f 6}$.
$15 \mathrm{ohm}, 21 / \mathrm{in}, 31 / 2 \mathrm{in}, 5 \times 3 \mathrm{in}, 6 \times 4 \mathrm{in}, \mathbf{E 2 . 5 0}$.

CAR CASSETTE MECHANISM. 12 V Motor Stereo Head $\mathrm{f5}$
R.C.S. LOW VOLTAGE STABILISED

POWER PACK KITS
£3.95. Post 65p
mains transformer 240 V a.c. Output 6 or $7^{1 / 2}$ or 9 or 12 V dit

Appointments

Advertisements accepted up to 12 noon Tuesday, January 4th, for February issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 15.50$ per single col. centimetre (min .3 cm). LINE advertisements (run on): $£ 3$ per line, minimum $£ 20$ (prepayable).
BOX NUMBERS: $£ 3$ extra. (Replies should be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS). PHONE: IAN FAUX, 01-661 3033 (DIRECT LINE)
Cheques and Postal Orders payable to IPC Business Press Ltd.

ALWAYS AHEAD WITH THE BEST WISHES!

£5,000-£18,000

* Experienced in: Mini/Microprocessor hardware or Software; Digital and Analogue circuitry; RF and Microwave techniques?
* Where does your interest lie: Image processing; Automation; Datacomms; Radar; Nav-Aids; Video; Medical; Telemetry; Simulation; Satcom; Local Area Nets; Computers; Weapons; Communications?
\star There are opportunities in: Design; Test; Service; Sales; Systems; Production; Quality and Research at engineer and management level. * First call: Contact MIKE GERNAT on 076384 676/7 (usually until 8 p.m.)

SHORT-LISTED WITHOUT EVEN APPLYING!

That's how it is when you register with Beechwood. Complete our application form, then just sit back and let the opportunities come to you - and they will! Our experience is wide - so are our contacts. This is just a selection from our range of vacancies.

SENIOR AF/MICROWAVE ENGINEER: 812.000 St Stery negotioble in the
 Engineers in the 25 -to-45 age range with
experience of designing RF and microwave amplifiers, predominantly from HF-X Eand. The person selected will head up a small but fast-growing
team within a smatl progressive private Company which rewards initiative. ELECTRONHCS ENGINEERS: BERKS. laries in the $£ 7,000-\mathrm{to}-\mathrm{f14,500}$ range. Engineers qualified to at least HNC/Degree
level are required by a company in the forefront of technotogy for detence applications. Expertence required in the
area of digital messaging systems, ogue, power supply units. weapon control systems, hardware design, miliTarATE, RF/COmmunicationsysiems. TECHNHCIANS: For companios based In LONDON, HOME COUNTES, WALES. BRISTOL, N. WEST ENGLAND, SCOT. perience. Engineers/Technicians with experience in computers, peripherals, communication systems, tost equipELECTRONICS ENGINEERS: SURREY. Solarias In the Ea,000-to-f 13,000 range. HNC/Degree level Engineers in the 24-35 age range are required by a world leader
in defence systems for high performance logic design, microprocessor-based Appoin hours).
systems, bit silce realitme processors. fast analogue circuit design, design of subsystems and companent design. ESSEX. Salleries In the $88,000-\mathrm{to}-\overline{\mathrm{E}} 14,000$ range, depending on experience. A
major company in the UK requires De major company in the UK requires De-
gree level Engineers with experience in gree ernas, live and data compunication mobile radio and generally communica tion systems operating at all frequency MICRIOWAVE ENGINEERS: NORTH HERTS. Salaries up to $£ 17,000$. A maio UK organisation is looking for qualified Engineers to work on microwave com-
munications systems, circuit design, an tenna design and EMC analysis.
BROADCAST TV and CCTV ENGINEERS LONDON. Salaries negotlable Engineers are required to service and maintain equipment from a variaty of manufactur
ers. OESS ISN/SYSTEMS/PROJECT ENGI NEERS: To $£ 17,000$. For companies basad In various locations in LONDON Ond HOME COUNTES, DORSET, WEST EAST ANGLLA, SCOTLAND. HNC/Degree level Enginears with experience in analogue, digital, microprocessors, evionics, satelites. communications, RF
Microwaves. computers. process control, instrumentation, control engi-
neering. ATE.
Name.

Address

wW1/83

APPOINTMENṪS REGISTĖR

Appointments

Trainee Broadcast Engineers

We are responsible for broadcasting the programmes of Independent Television, Channel Four and Independent Local Radio. The continued growth of our broadcasting services means we have a number of vacancies for Trainee Broadcast Engineers who, on completion of their training, will work in a challenging and secure environment.
The selected candidates will embark on our 18 -month residential training course which commences in June, 1983. It will be conducted at our Training College, in Devon, and also at the Newcastle Polytechnic. The Course is designed to give you a training in broadcast engineering that is second to none. During the Course we will pay all your fees, accommodation and meals. Applications are invited from men and women who are qualified, or about to qualify, to $\mathrm{HND} / \mathrm{HNC}$ level in Electrical or Electronic Engineering or the City and Guilds Full Technological Certificate in Telecommunications. Consideration will also be given to applicants holding a CNAA Degree and to those holding Higher TEC or Higher ScoTEC Certificates in Electronic Engineering or similar disciplines.
Your salary while training will be $£ 6,263$ per annum. On the satisfactory completion of training, your salary will be $£ 7,930$ and will rise by annual increments to $£ 9,850$ per annum; further progression to $£ 12.209$ per annum is possible. Employment benefits include a free life assurance and personal accident scheme, a contributory pension scheme, generous relocation expenses and subsidised mortgage facilities.

INDEPMNDEN1
BROMDC:MTINO,
AL"THORITY
For a fully illustrated booklet and application form, please write to Mike Wright, Personnel Officer - Engineering Regions, IBA, Crawley Court, Winchester, Hants, SO21 2QA. Or telephone the Personnel Office between 9 a.m. and $4 \mathrm{p} . \mathrm{m}$. on Winchester 822574 or 822273 on any weekday.
Application forms must be returned by Friday, 21st January. 1983.

TECHNICAL SERVICE ENGINEERS

to $£ 13,000$

We have clients throughout the country seeking engineers who are at present working in a field support role. Here are a few examples; we have many more on file
Herts.
With opportunithes for worldwide travel, you will provide a range of after sales technical services for electronic control systems
Ref: 982

Hants.

You will have had practical experience with British Telecom systems in analogue and digital networks, especially transmission and signalling techniques. Ref: 940
Dorset
Based in a low-cost rural location, you will use British Telecom systems knowledge of transmission and signalling to service a range of clients. Ref: 939
If you would like to hear more about any of

Regional
the above posts, fill in the coupon, indicating clearly the appropriate reference number(s). Post the coupon to: Stuart Tait,
The Lansdowne Appointments Register Park House, 207 The Vale, London W3 7QB Tel: 01-743 6321 (24 hour answering service) All posts are open to men and women.

Lansdowne
 Appointments Register

1 am interested in post number(s)
1 am interested in your register
Name
Job Title
Home Address

11 Quality Engineer

Provide quality engineering support for test and production. Review software and hardware test parameters. Circ
2) Applications Emincow

Provide technical support to talecommuor tions tes equipmesi. pportunity £10,300 - Middx.
3) Sarvica Enginear

Service of sophisticatad audio distribu tion systems. Circa $£ 8,000$ - Herts.

4) Sarvice Engineer

Service of colour and monochrome mo nitors and VDUs. Circa $£ 8,000$ - Herte

5) Service EngIneer

Service of computer peripherals based on 8080-Z80 to £6,843 - Slough.
6) Contract Design Engineors

Hundrods of other Electronic and Computer Vacancies to $\mathbf{2 5 0 , 0 0 0}$

Roger Howard, C.Eng write:
CLIVEDEN CONSUITMTB
87 St. Leonard's Roed, Windsor, Bertes. Windsor (07535) 58022 (5 mine ${ }_{(1840)}$
CLIVEDEN

UNIVERSTTY COLLEGE, CARDIF OEPARTMENT OF PHYSIOLOCY

ASSISTANT EXPERIMENTAL OFFICER
 (Electronic Instrumentrie

The Department, which has an active neuroscience-based research pro gramme, requires a person with dosign experience to work in collaboration with the academic staff in the development and maintenance of equipment for re ics an advantage. This post offers a chal lenging opportunity for those interested in developing the latest electronic tech nology in a biomedical environment Salary range: OR IB $£ 5,550-\mathrm{f} 9,370$ p.a Duties to commence as soon as pos sible.
Applications $(2$ copies), together with the names and addresses of two referees, should be forwarded to the Vice Principal (Administration) and Reglatrar University College, P.O. Box 78, Cardiff, CF1 $1 \times \mathrm{L}$, from whom further particulara 12, 1983. Ref: $2494 . \quad$ (1906)

ELECTRONIC ENGINEER

required to become involved in equipment for use by physically and mentally handicapped people. Experience/interest in aress of digital design, communications computers, medical electronics re quired. Interesting range of work in small company environment and in pleasant location.

GRANGE ELECTRONICS LTD.
 STONE LANE, WIMBORNE DORSET, BHZI IHD

(1913)

LOGEX ELECTRONICS RECRUITMENT

Specialists in Field \& Customer Engineering apocoin ments. all locations and disciplines.

Logex House, Burlaigh, Stroud Gloucestershire GL5 2PW 0453883264 \& 01-290 0267 (24 hours)

OMAN TELEVISION MAINTENANCE TV ENGINEERS

THE SULTANATE OF OMAN, which operates a progressive nation wide Television service, is seeking versatile, experienced Television Engineers. We are looking for well-qualified Engineers to play a part in Oman's exciting expansion and development plans.

Think about joining a friendly, expert team working both inside and outside modern studios to maintain equipment in perfect operational condition. The job includes handling the latest TV Cameras, both Format C and B one-inch VTRs and most up-to-date ENG Equipment.

Oman, a beautiful country on the South-East Arabian Peninsula, is an attractive place to live, with a superb coastline, fine beaches and a magnificent landscape. It offers a wide range of social and leisure activities.

TOP SALARIES

Oman Television still offers the best contract conditions in the region, with excellent salaries in the range 800 to 1400 Omani Rials per month. The Rial is linked to the US Dollar. Exchange rates are subject to fluctuation, but taking one Rial as equivalent to PDs. Stg. 1.67, 1400 Rials a month works out at PDs. Stg 28,056 a year or Pds.st 539 a week free of personal income tax. We also offer 48 days annual leave, free family accommodation, free air tickets for you and your family at the beginning and end of the contract as well as a return ticket every year. If you stay with us for two years or more, you receive a gratuity.

Currently we have vacancies for ENG, VTR, OB, Studio, TC Sound maintenance Engineers and Lighting technicians.

If you are interested in this challenging and rewarding work, write with your details to:

> Chief Engineer,
> Oman TV, Post Box 600, Muscat, Sultanate of Oman.

Appointments

QualityEngineers General \& Components

Mitel is a world leader in the highly competitive telecoms market, with systems and equipment that are at the leading edge of technology. The microprocessor-based SUPERSWITCH@ PABX family stands unsurpassed in terms of quality, reliability and cost-efficiency.

Maintaining that level of quality assurance is a vital task, undertaken at Mitel by Engineers with several years' experience (founded on ONC or C\&G), including time spent on analogue, digital and transmission testing. The team enjoys our progressive and demanding environment.

Todary we are looking for more engineers with a general telecoms background, and for several individuals with a specific knowledge of Component Testing.

We offer very attractive salaries, together with the many benefits of a successful international organisation including relocation assistance where appropriate to this scenic part of Gwent.

Please write with details of your career to date to:-
David Morgan, Human Resources Manager, Human Resources Department, Mitel Telecom Ltd.,

ELECTRONICS ENGINEER

Interesting occupation in friendly working environment, for an Electronics Engineer to service microprocessor controlled acoustic equipment Ability to work unaided and knowledge of digital systems essential.

For more information contact:
Mr. Ritchie, 675-5151
(1863)

WIRRAL HEALTH AUTHORTTY

 DISTRICT WORKS DEPARTMENT
SENIOR ELECTRONICS TECHNICIAN (M.P.T. III GRADE)

Required to carry out servicing, repair and testing of medical electronic equipment under the direction of a Chief Electronics Technician. The successful applicant will be expected to work at various hospitals within Wirral Heahh Authority, and the possession of a car would be an advantage.
Applicants should be qualified to O.N.C. or equivalent standard and have at least three ears' experience in a similar position of res ponsibility.

Salary scaid: $\mathbf{5 5 , 5 3 6 - £ 7 , 1 5 5}$ per annum
Gwent, NP6 4YR.

UNIVERSITY OF OXFORD

Electronic Technician

The Department of Nuclear Physics invites applications for the post of electronic technician (Grade 5). Duties of the post will include the maintenance of a wide range of electronic instrumentation such as precision power supplies, oscilloscopes, amplifiers and A.D.C.s and the development and construction of specialised instruments for use in the department's programme of nuclear structure research.

Candidates should be qualified to HNC (or equivalent) level and possess experience in this or a closely related field.

The post is pensionable and carries with it an entitlement to 8 weeks' paid leave a year. Salary on scale f6,000-f7,016.

Applications, stating qualifications and experience, and naming two referees, should be sent before January 10, 1983 to the General Administrator, Department of Nuclear Physics, Keble Road, Oxford OX1 3RH.

1927

ROYAL OPERA HOUSE

requires

ASSISTANT SOUND ENGINEER

We are looking for an engineering graduate with broadcasting or similar experience. Candidates must be prepared to work long unsocial hours as there is considerable involvement in productions in addition to the engineering responsibilities.

Applications in writing to the Personnel Manager, Royal Opera House, Covent Garden, WC2.
(1918)

IMPORTANT NOTICE

As of January 1st, 1983, The Electronics Recruitment Company will be based from new premises in Lewes. The address and phone number will be:

TEMPLE HOUSE
25/26 HIGH STREET, LEWES, EAST SUSSEX BN7 2LU
Telephone: Lewes (07916) 71271
This move has been made in order to provide a fuller range of services to the electronics industry.
Our new premises will have facilities for large scale interview/training or lecturing activities where a client will have a self-contained and private suite within our own offices
To discuss our services telephone
Communications Division - Mike O'Reilly, Paul Hecquet
General Electronics Division - Les Tidy
Sales \& Marketing Division - Francesca Robinson
Recruitment Advertising - Paul Hecquet

Appointments

ELECTRONICS ENGINEERS
 FOR AUDIO SYSTEMS

Are there any really good electronics engineers specialising in audio systems left in this country. If there are - we need them. Maybe you have a flair for audio electronics and do not know it. Why not come to talk to us, and find out?

We are interested in harnessing microprocessors, fibreoptics, servo control, etc., to audio systems and have a whole lot of advanced instrumentation to help further this aim. But we also need engineers who really understand what a hum loop is and how to design low noise, wide band amplifiers.

The work is hard; the hours are long; but the results are satisfying.
If you feel ready to take up a challenge get in touch with us NOW.

G.T.M. Limited, 4 Doman Road, Camberley, Surrey GU15 3DF

NAD

R \& D ENGINEERS

Rapidly expanding consumer electronics firm seeks experienced engineers for their research centre in North London.

Qualifications: Minimum 6 years' experience. BSC in electronics (or equivalent).

Experience: Wide range of circuit design in analog circuitry (preferably in audio). Familiarity with microprocessor and other digital circuitry. Use of programmable calculators or computers desirable. Should be flexible, co-operative and able to work independently.

Job Description: Circuit development and complete systems design of audio and video products to prototype stage, evaluation, testing.

ELECTRONIC TECHNICIANS

Qualified electronic technicians with experience in consumer electronics also needed.

For more information contact: BARBARA FELTHAM NAD RESEARCH ADASTRA HOUSE 401-405 NETHER STREET LONDON N3 1QG

Appointments

T.V. Engineer for Saudi Arabia

Salary: $£ 14,000$ to $£ 17,000$ p.a. tax free

HCA International Ltd are recruiting personnel to staff the Saudi Arabian National Guard Hospital, Riyadh, Saudi Arabia. This is a new 500 bed acute care hospital. A TV Engineer is required for this project, to be responsible for maintenance and alignment of various types of television equipment/ systems, including TV cameras, monitor systems and video tape recorders

Applicants must have a degree in electronic engineering or closely related field, a minimum of 5 years practical experience and a thorough
understanding of system set-ups and use of test equipment.

Benefits include
2 year single status contract, renewable by mutual agreement

- Air passages
. Air conditioned, furnished accommodation
50 days leave per year
憲 End of contract bonuses
Ex Excellent facilities for sport and recreation
Salary will be paid in Saudi Riyals - exchange rate at the time of going to press - 5.5 Saudi Riyals to the pound

Please apply in writing with full details of qualifications and experience to:
Jim Hawkins
HCA International Ltd
49 Wigmore Street
London W1H 9LE

Employment agency
reg no SE(A) 4698

HCA
 International Ltd

VIDEO ENGINEER

Rediffusion Consumer Manufacturing Ltd is seeking an experienced video engineer to join a small team working on a wide variety of projects associated with video cassette recorders, video cameras, video disc players and colour TV receivers and monitors. Assessment reporting is an important part of this team's function and the ability to express oneself, both verbally and in writing, is essential.
Our Laboratories are situated in Chessington, within easy commuting distance of the Surrey countryside. An attractive salary and the usual big company benefits are offered to suitably qualified and experienced engineers. If you believe you can make an effective contribution to our future video projects please write to or phone

Mr Harry Brearley
Rediffusion Consumer Manufacturing Ltd.
Fullers Way South
Chessington, Surrey KT9 1 HJ
Phone: 01-3975411

REDIFFUSION

DEVELOPMENT ENGINEERS SATELLITE TELEVISION CABLE TELEVISION

We are a medium-sized company, employing approximately 200 in the Cambridge Electronic Industries group of companies, specialising in the design of television distribution equipment and associated electronic products.
Due to expansion we are seeking engineers to work in our modern, well-equipped laboratory and take responsibility for seeing projects through from initial conception to final production
We envisage that successful candidates will be aged $23-35$ with an electronics degree, at least 2 years' experience in a research and development environment and detailed experience of, or a keen interest in, one of the following
\star Analogue circuit design from D.C. to $1 \mathrm{GH}_{2}$
\star Television signal processing
\star Cable distribution of television signals

* R.F. Communications

We offer competitive salaries and good working conditions, a 37-hour week, 25 days' annual holiday and a contributory pension scheme. Relocation assistance will be considered where appropriate
Please send full c.v. to: Mr C. G. Houghton, Personnel Manager Labgear Limited, Abbey Walk, Cambridge CB1 2RQ.

Premier international electronics companies - very secure and expanding in North, South, East and West of London and Home Counties - require professional senior staff (including departmental heads). Re-location allowance up to $£ 3,000$.

ELECTRONIC ENGINEERS

Electronic engineers required with degree - H.N.C. - tech. cert. - O.N.C. Almost any background required but software and hardware experience will bring salary of absolute minimum of $£ 6,500$ p.a. and could be up to $£ 11,000$ p.a

ELECTRONIC DESIGN/DEVELOPMENT

Engineers required with experience of circuit or component design or development for microwave equipment or digital logic or computer peripherals or electronic packaging or film technology or telecommunications. Also above for up-dating in modern techniques. Salaries up to $£ 11,000$

SOFTWARE PROGRAMMERS \& ENGINEERS

Engineers or mathematicians required for development of commissioning and design proving programmes from assistant to team leader level. Salaries up to $£ 12,000$ p.a.
Please contact by telephone, or letter, to discuss companies and possibilities. Rickmansworth 770431 (Ansafone after 5 p.m.) or telephone Watford 49456 any time.

Appointments

Engineers \& Scientists

 £9,126
Communications R\&D... ...the leading edge

At HM Government Communications Centre we're applying the very latest ideas on electronics and other technologies to the problems of sophisticated communications systems, designed to enable and protect the flow of essential information

The work is of the highest technical challenge. offering full and worthwhile careers to men and women of high ability, on projects covering the following areas of interest:-

RADIO - from HF to microwave, including advanced modulation systems, propagation studies, applications of Microcircuitry.
magnetics Signal analysis
SYSTEMS ENGINEERING
Applicants, under 30 years of age, should have a good honours degree or equivalent qualification in a relevant subject, but candidates about to graduate may also apply

Appointments are as Higher Scientific Officer ($£ 6,840-£ 9.126$) or Scientific Officer ($£ 5,422-£ 7,399$) according to qualifications and experience. Promotion prospects

For an application form, please write to the
Recruitment Officer, (Dept. W/W13), HM Government
Communications Centre, Hanslope Park
Milton Keynes, MKI9 7BH

COMMUNICATIONS MANAGER

United Press International, a fast-expanding international press agency, have a vacancy in their London-based Communications Department for a Communications Manager. The position requires an applicant who has had some managerial experience, or who has been warking at a senior level. Knowledge of time division multiplexers, facsimile receivers and transmitters and basic British Telecom practices would be advantageous. Responsibilities would include the maintenance of our TDM systems the overseeing of our UK and European news, data and telephoto networks, and would include some travel, particularly in Northern Europe. The salary associated with this position would be awarded according to the experience and suitability of the candidate accepted for this position.

For further information, please write to
Miss L. J. Walker
Communications Administrator
United Press International
8 Bouverie Street
London EC4Y 8BB

CAPITAL

APPOINTMENTS LTD
CAPITAL HOUSE 29-30 WINDMILL STREET LONDON W TP 1HG
TEL: 01-637 5551

THE UK's No. 1 ELECTRONICS AGENCY

Design, Development and Test to $£ 14,000$
Ask for Brian Cornwell Ask for Brian Cornwell
SALES to $£ 15,000$ plus car Ask for Maurice Wayne
FIELD SERVICE to $£ 12,000$ plus car Ask for Paul Wallis
We have vacancies in ALL AREAS of the U.K.
Ask for a Free Jobs L ist

Askfora Free Jobs List
Telephone: 01-6375551 (3 lines)

ITN

SENIOR MAINTENANCE ENGINEERS

Salary in the range $£ 14,000-£ 17,800$ p.a.
ITN LTD. has vacancies for Senior Maintenance Engineers in the following Maintenance Sections at ITN House, London, W. 1

VISION MAINTENANCE

(Ref. 4302001)

We are seeking an experienced maintenance engineer to work in the Vision Maintenance Section and have primary responsibility for establishing and co-ordinating the routine alignment of the whole Studio/Central Area complex.
These areas have recently been re-equipped with an interesting range of state of the art equipment
The position presents a challenge to an engineer of good broad-based experience in Television Engineering who is interested in modern vision testing techniques.

SOUND MAINTENANCE

(Ref. 305007)

The successful candidate will join the small specialist team responsible for the maintenance of a varied range of audio equipment including sound mixing desks and associated studio sound equipment.
The section is also responsible for our film and video dubbing suites, including a Necam automated system and various talkback and communication systems.

The starting salary will be dependent upon the degree of experience in the appropriate Broadcast environment
Applicants should be qualified to HND or equivaleht
Generous pension scheme; free life assurance.
ITN is an equal opportunities employee
Please telephone the Personnel Office on 01-637 3144 for an application form quoting the relevant reference number.

FIELD SERVICE ENGINEER

NORTH LONDON

Instrumentation laboratory is a market leader in the design and manufacture of a range of sophisticated instruments used extensively in clinical and industrial laboratories.
Currently a vacancy exists for a Field Service Engineer to service and maintain our range of Biomedical instruments located in the North of London area.
Ideally candidates should be educated to HNC/City and Guilds
(Electronics) level, and have a sound working knowledge of modern electronics. Previous experience is desirable, but comprehensive training will be offered to the successful candidate.
An attractive salary will be offered, together with excellent conditions and benefits which include a quality company car, and pension and private health care schemes.
For an application form, please telephone or write to:

Miss S. M. Houghton
Instrumentation Laboratory [UK] Ldd
Kelvin Close, Birchwood Warrington, Cheshire, WA3 7PB Tel: 0925810141

INSTITUTE OF CANCER RESEARCH

A RESEARCH ASSISTANT
 (MEDICAL IMAGING)

is required to join a group working on ultrasonic image analysis and tissue diagnosis. The requirement will be to help develop research instrumentation and computing techniques towards forms appropriate to clinical trials and possible commercial development, and to take day-to-day responsibility for their operation. The work will be based at the Royal Marsden Hospital, Sutton, Surrey, which has good staff amenities. Appointment will be made, depending on qualifications and experience, at a point ($£ 5,600$ - $\mathrm{f} 8,675$ pa) plus Lehdon Allowance of $£ 557$ p.a. Candidates should hold a degree, HND, HNC or equivalent qualification in Physics, Electronic Engineering or a related subject.
Applications in duplicate with a full c.v. and the names and addresses of two referees should be sent to the Secretary, Institute of Cancer Research, 34 Sumner Place, London, SW7 3NU, quoting ref.
301/B/27. 301/B/27.
(1910)

YOUNG, ENTHUSIASTIC
Communications Engineer
Interested in aerial design Ideal career opportunity with scope for advancemen Salary A.Q.E.
BANTEX LIMITED
Tel. 01-965 0941

R \& D CPPORTUNITIES. Senior level vacan cies for Communications Hardware and Software Engineers, based in West Sussex. Competitive
fusion Radio Systems on 01.8747281.

트투TOSONIO PROJECT ENGINEERS/ MANAGERS

£7K-£10K + CAR

The Systems Engineering Division of ELECTROSONIC wish to recruit an experienced project Engineer/Manager to be responsible for a wide range of projects, both at home and abroad.
The projects will include industrial and commercial dimming, TV and theatrical lighting, hotel and conference centre low voltage systems, audio and audio visual systems.
The Company, a world leader in its field, manufactures a wide range of lighting, audio and audio visual products, and has extensive manufacturing facilities capable of handling virtually every stage of the production for both standard and special products in house.
The successful applicant will probably be qualified to H.N.D. or degree level and will have experience in one or more of the above fields, but of more importance, is his or her drive and ability to take a project from the drawing board to final completion on site. Vacancies also exist for Installation Engineers
The sary offered will depend upon experience, but will be in the range of $£ 7,000$ to $£ 10,000 \mathrm{p}$.a. Other fringe benefits will include the use of a company car and overseas allowances.
Applicants should telephone or write to: R. L. C. STINTON, C.Eng., M.I.E.E. Director, Systems Engineering Division Electrosonic Ltd, 815 Woolwich Road London SE7 8LT. Telephone: 01-855 1101
(1921)

Bloomsbury Health Authority

The Royal National Throat, Nose and Ear Hospital Gray's Inn Road, London, W.C. 1

The Audiological Physics Department invite applications for the following Medical Physics posts:
EARMOULD TECHNICIAN to join two others working on the individual production of high-quality earmoulds for hearing aids. Experience in similar techniques an advantage, such as in the field of dental applications, and there is scope for development of new methods and materials.
ELECTRONICS TECHNICIAN to join others on the maintenance and development of audiological equipment of all kinds. Candidates should have minimum qualification of OTEC or equivalent with relevant experience and an interest in electro-acoustics.
Salary according to age, qualifications and experience on MPT Scale plus London Weighting.
Application forms and job descriptions from Senior Administrative Assistant, Audiology Division. Telephone Number 01-837 8855, ext. 133.
(1915)

[^10]
ANALOGUE ENGINEER

CIRCA £10,000

NORTH WEST
MatEval, the world's leader in fully automatic ultrasonic inspection systems, requires an additional analogue engineer to join a team of electronic engineers currently engaged in applying computer-controlled robots to the ultrasonic inspection of carbon fibre composites for the aerospace industry.
The candidate for this exciting opportunity should be qualified to at least HNC level in an engineering or science subject. The company are looking for someone with a minimum of 4 years experience in the design of RF analogue circuitry, preferably in the 0.5 to 30 MHz range. The successful candidate will be expected to apply his or her knowledge to the MatEval range of microprocessor controlled flaw detectors.

Free BUPA and relocation expenses will be provided by the company. Applications, in writing or by phone, should be made to Phil Osborne at the following address:

MATEVAL LIMITED
GARRETT FIELD
BIRCHWOOD SCIENCE PARK
BIRCHWOOD
WARRINGTON WA3 7BH
Telephone 0925810606
ADVANCED TECHNOLOGY IN ULTRASONICS

ARTICLES FOR SALE

Manufacturer's Clearance Scoop

V24 CCITT Modems (with echo suppress)
Universal Counters, DC to
700 MHz , laboratory accuracy
Portable Telex machines with memory
Components, etc., etc., etc.
(0202) 736106

For further information
(1904)

FOR SALE

Ex-government CIZ Transmitter Receiver Quantity available Export only
A. H. Thacker \& Sons Ltd. High Street, Cheslyn Hay Near Walsall, Staffs. Tel: Cheslyn Hay 413300

(1930)

HYDROKIT
Hydraulic Flypress Conversion

Complete Hydraulic Kits comprising: Power Pack Control Valve. Ram,
Hoses and Fittings. SuitHoses and Fittings. Suit-
able for may applica-
tions including Flypress able including Flypress
tons ineisions Working
Conver Conversions Working pressure 2,000 p.s.i. $2-10$
tons Stroke 4 in. Adjusta-
ble relief valve. Power tons. Stroke 4in. Adjusta
ble relief valve. Power
pressure and return.

PRICE FROM $£ 428$
"HYDROKITS" ARE COMPLETE
Just remove arm of press and operate screw valve (all supplied). fill with hydraulic oil and connect to power source, 13 amp or 3-phase

LINSLEY-HOOD new 80-100 watt amplifier, components and PC board available now. Other modules to follow. Sae for literature. Teleradio, 325 Fore Street, Edmonton, London N9 073719

COMPONENT CLEARANCE: resistors, capa citors, relays, transistors, ICs, hardware, etc., etc free. Transformers: 12 V 4 amp twice $£ 6$. P\&P $£ 2$ Access, Barclaycard. Weirmede Lid, 129 St Al bans Road, Watford, Herts. Tel. Watford (0923) 49456 (1832

ENCAPSULATING EQUIPMENT FOR coils, transformers, components, degassing silicone rubber, resin, epory. Lost wax casting for brass, bronze, silver, etc. Impregnating coils, transformers, components. Vacuum equipment, low cost, used and new. Also for CRT regunning metallis| ng. Research \& Development. Barratts, Mayo |
| :--- |
| Road, Croydon CR0 2QP. 01-684 9917. |
| (9678) |

TRAINEE RADIO OFFICERS

First-class, secure career opportunities

A number of vacancies will be available in 1983/84 for suitable qualified candidates to be appointed as Trainee Radio Officers.

If your trade or training involves Radio Onerating. you qualify to be considered for a Radio Officer post with the Composite Signals Organisation

- Candidates must have had at least 2 years' radio operating experience or hold a PMG. MPT or MRGC certificate, or expect to obtain this shortly

On successful completion of between 36 and 42 weeks specialist training. promotion will occur to the Radio Officer grade

Registered disabled people may be considered.
SALARY \& PROSPECTS
TRAINEE RADIO OFFICER: $£ 4,357$ at 19 to $£ 5,203$ at 25 and over. On promotion to Radio Officer: $£ 5,968$ at 19 to $£ 7,814$ at 25 and over. Then by four annual increments to $£ 10,662$ inclusive of shift working and Saturday and Sunday elements.

For full details please contact our Recruitment Officer on Cheltenham (0242) 21491 Ext. 2269

Recruitment Officer, Government Communications Headquarters, Oakley, Priors Road, Cheltenham, Gloucestershire
GL52 5AJ

ARTICLES FOR SALE

POWER V MOS-FET TECHNOLOGY
We speciatise in all aspects of this important subject. A comprehensive service is offered to individual or OEM users, including: \star Hitachi Supertex and RCA V MOS-FET from
stock.
$\star V$ MOS-FET power modules from stock. ¿ Competitive prices (120 watt modules £15.45, 1 off)
\& Printed circuits and kits

* Data books and application notes. Catalogne/sample data sent free t50p stamp appreciated towards post and packing). Phone 0251422303 and ask Richard Walsh about your application requirement or write

AUDIO TECHNOLOGY
Frespost, Church Crookham
Aldershot Hante. GU13 0Bn

LINSLEY HOOD DESIGNS
 75-100w AMPL IFIERS

AUDIO SIG. GENERATORS DISTORTION ANALYSERS SAE for leaflets

TELERADIO ELECTRONICS

325 Fore St., Edmonton N9 OPE
TEL: 8073719 (1762)
PROTOTYPE PLASTIC CASINGS, vacuum formed to your requirements. Four-D Lid., 25 Burnett Park, Harlow, Essex. Phone 027929246.

FARNELL L30/2 bench power supply, 0-30 volts, $0-2 \mathrm{amps}$, metered, as new with manual, 185. - Tel: 01.9033000

FOR SALE. Wireless World, 1945-1981, offers - Derby 766654 evenings.

Perforated Metals Screens, Plastics, Wire Meshes, Sifting Media, Cable Tray, Gratings, direct from Manufacturer's Stock. We can cut to size

We specialise in one-offs or large quantities
GRAEPEL PERFORATORS LTD
Unit 1-B, CHARLES STREET Dept WS, WALSALL, STAFFS WS2 9LZ Tel. 0922 611644/611414. Telex 335291

C W Cameron Ltd is one of Europe's leading Visual Communications Companies.
We are curently strengthening our Engineering Service facility Included in our range of products are such items as time Base Generators Caption Generation Equipment, Display and Projection Equipment and Videotex Terminals

SENIOR ENGINEER

Salary Negotiable Reading Based A Senior Electronics Engineer is required to head a small team providing technical assistance and maintenance support to our network of dealers and OEM customers throughout the UK Experience of one or more of the types of equipment detailed above would be a distinct advantage as would appropriate technical qualifications.
The successful candidate will exhibit the enthusiasm and dedication necessary to meet the challenge of the Company's wide product range. The post requires an amount of travel to outside installations.

Cameron
Communication
Communications

Please write in the first instance for an application form quoting reference $\mathrm{A}^{\prime} 5 \mathrm{WW}$ to. Mr JF Cowan.
Personnel Manager
C W Cameron Lid
Burnfield Road
Glasgow G46 7TH

university college of swansed

Digital Audlo Research

Applications are invited for the vacancy of Research Assistant in the Department of Electrical and Eectronic
Engineering. Candidates should have a good honours degree in a relevant subject and industrial experience. Suitable candidates may be able to register for a higher degree. The work will involve the design and testing of very high-accuracy ADCs and DACs and the use of digital signal processing techniques

The appointment, which will be tenable from the soonest date that can be arranged, will be for one year, renewable for up to a further two years and will be at a commencing salary of £5,550 per annum plus USS/USDPS benefits
Informal enquiries may be made to Dr R. A. Belcher, but application forms (2 copies) and further particulars must b obtained from the Personnel Off
University College of Swansea,
Singleton Park, Swansea, SA2 BPP, to which office they should be returned by Friday, January 14, 1983.
(1938)

BOX NOs.

Box number replies should be addressed to

Box No
'n Wireless World
Quadrant House
The Quadrant
Sution
Surrey SMz 5AS

UNIVERSITY COLLEGE, CARDIFF DEPARTMENT OF PHYSIOLOGY

ASSISTANT EXPERIMENTAL OFFICER
 (Electronic Instrumentation)

Applications are invited for the above post - design experience essential, degree in electronics an advantage. Salary range: ORIB $£ 5,550$ to $£ 9,370$ p.a. Duties to commence as soon as possible.

Applications (2 copies), together with the names and addresses of wo referees, should be forwarded to the Vice-Principal (Administra (ion) and Registrar, University College, P.O. Box 8, Cardiff CF1 1 XL from whom further particulars may be obtained. Closing date: January 12, 1983. Ref: 2494
(1906)

Due to expansion a further
 VIDEO ENGINEER

is required for bench and field work.
Duties involve the repair, maintenance and installation of profes sional television equipment. Candidates should be familiar with 3-tube colour cameras, U-matic format video recorders and associated equipment.
Whilst a technical qualification is desirable, an interest in the job coupled with at least 5 years experience is required.
Salary commensurate with experience.
Telephone: Mr Stone or Miss Whittick on 01-450 1313

WANTED

Scrap and re-usable mainframe computer and industrial electronic equipment.
E.M.A. Telecommunications Engineers, Orford, Woodbridge, Suffolk. Tel. 039-45 328.
(1720)

SURPLUS

Top prices paid for surplus, redundant and obsolete test equipment, factories cleared.
Also quantities of components. Immediate settlement. We will call anywhere in the U

TIMEBASE

94 Alfriston Gardens
Shalting, Southampton S028FU
Talephona: (0703) 431323 WANTED: Redundant test equipment - re plugs and sockets - syncros, etc. Phone: John's Radio, 0274 684007, 84 Whitehall Road East, Birkenshaw, Bradford BD11 2ER.

WANTED: Pre-1939 bound copies of Wireless World. Also early radios and components. Oaklands, Bulmershe Road, Reading. 64869.

CAPACITY AVAILABLE

TW ELECTRONICS LTD

THE PCB ASSEMBLERS

More and more companies are investigating the advantages of using a professional subcontractor. Such an undertak. ing requires certain assurances
TW are able to satisfy all of them quality, competitive pricing, firm delivey and close co-operation with the cus tomer
Assembled boards at 100% inspected before flow soldering and reinspected after automatic cropping and cleaning Every batch of completed boards is ismity and quality - our final assurance mity and qu For further details, contact us at our new works

Blenheim industrial Park Bury St. Edmunds Suffolk IP33 3UT
Telophone: 02843931 (1466)

BATCH PRODUCTION PC ASSEMBLY 10 sample or drawings any quantity. S.C. (Electronberwell SE5 9DF. O1-737 1422.

BATCH PRODUCTION wiring and assembly to sample or drawings. McDeane Electricals L. 4 , wy Station Parade, Ealing Common, London ELECTRONIC DESIGN SERVICE. Immediate capacity available for circuit design and developrien , Id $1+$ Eva Road, Gillingham, Kent Tel: Med way 0634) 577854 .

BUSINESS OPPORTUNITIES

Unique Aerial Location: West London Last remaining roof-top location on es-
tate of five 20 -storey blocks of flats near Kew Bridge. Excellent facilities including equipment store with power-supply, in return for three-year licence. For further information contact M. A. Cummins, Borough Valuer's Dept. London Borough of Hounslow, Civic 4DN Te 4DN. Telephone: 01-570 7728, Ext 3453,

PHONE

 YOURCLASSIFIEDS
TO
IAN FAUX
ON
01-661 3033

ARTICLES FOR SALE

TO MANUFACTURERS WHOLESALERS

 BULK BUYERS, ETC.
LARGE QUANTITIES OF RADIO. TV AND

 ELECTRONIC COMPONENTS FOR DISPOSALSEMICONDUCTORS, all types, INTEGRATED CIRCUITS, TRANSISTORS,
DIODES RECTIFIERS, THYRISTORS, etc. RESISTORS, C/F, M/F, W/W, etc, CAPACITORS, SILVER MICA, POLYSTYRENE, C280, C296, DISC CERA MICS, PLATE CERAMICS, etc.
ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE CABLES, SCREENED WIRE, SCAEWS, NUTS, CHOKES, TRANSFOR
ALL AT KNOCKOUT PRICES - Come and pay us a visit ALADDIN'S CAVE TELEPHONE: 445 0749/445 2713
BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, North Finchley, London, N. 12
(1613)

RACAL COMMUNICATIONS RECEIVERS

$500 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s} 1 \mathrm{Mhz}$ wide RA17L - $£ 175$ RA117E- £225. A few sets available as new at £75 extra. All receivers are air tested and calibrated in our workshop, supplied with full
manual, dust cover, in fair used condition. Now manual, dust cover, in fair used condition. Now
black metal louvred cases for above sets $f 25$ black metal louvred cases for above sets $£ 25$ each RaSB - ISB - SSB - 775 RNO18-
SSB - ISB and fine tune for RA117 - 50 TRANSMITER ORNE UNIT RATg. 15 mC E $30 \mathrm{mc} / \mathrm{s}$ - SSB - ISB - DSB - FSM - CW f150 AERLAL TUNING UNIT and protection uni MA197B - £25 to f50. DECADE FPEQUENCY GENERATOR MA3508 Solid state synthesiser
for MA 79 or RA117 - RAZ17 - RA1217 - f150 for MA19 or RA117 - RA217-RA1217 - $£ 150$
to $£ 200$. MA2SO - $1.6 \mathrm{mc} / \mathrm{s}$ to $31.6 \mathrm{~m}=/ \mathrm{s}-£ 150$ to $£ 200$. MAZSO - $1.6 \mathrm{mc} / \mathrm{s}$ to $31.6 \mathrm{me} / \mathrm{s}-£ 150$
(New). MAZ59G - precision frequency stan(Now). MANSSG - precision frequency stan-
dard - $5 \mathrm{mc} / \mathrm{s} \mathrm{lmc} / \mathrm{s} 100 \mathrm{khz}$ - f 100 to $£ 250$ dard - $5 \mathrm{mc} / \mathrm{s} 1 \mathrm{mc} / \mathrm{s} 100 \mathrm{khz}$ - f 100 to to E 5 c -
RACAL MA152 - Standing wave ratio indicaRACAL MA152-Standing wave rato
tor. FX2mc/s - $25 \mathrm{mc} / \mathrm{s}$ Power up to 1000 watts mains $100-250 \mathrm{AC}$, new and boxed - $£ 40$. RACAL COUNTER B36 (9036) $32 \mathrm{mc} / \mathrm{s} \mathrm{TL} \mathrm{circuit}$ design - tested with manual - $5550 \mathrm{~m} / \mathrm{s}$ -
OSCILIDSCOPES COSSOR CDU150 $-35 \mathrm{~m} / \mathrm{s}$ Twin Beam - Solid State - $£ 175$ with manual. TEXTRONIC OSCILLOSCOPE 647 and 647A Solid State $-50 \mathrm{mc} / \mathrm{s}$ and $100 \mathrm{mc} / \mathrm{s}$ bandwidth - $£ 250$ and $£ 350$. Tested, circuit and instructions RACAL COUNTER $801 \mathrm{M}-125 \mathrm{Mc}$-S 550 IMAGE INTENSIFIEAS - Mullard - G.E.C. or E.E. Type XX 1060 very high gain seff-focusing image intensifier assembly for night vision
systems. Minimum luminance gain 35000 systems. Minimum luminance gain 35,000 supphes in original box (used) with data sheets $-£ 12$ ea. (P\&P $+V A T=£ 5.25$)
All items are bought direct
Al items are bought direct from H.M. Governworks SAE for all enquiries. Phone tor appointment for demonstration of any item John's Radio. Whitehall Works, 84 Whitehall Road East, Birkenshaw. Bradford BDII 2ER. Tel. 10274) 684007 V.A.T. and Carriage extra.

DWAYNE STEWART STEWART OF READING 110 WYKEHAM ROAD READING RG6 1PL Telephone: Reading 073468041

for all types of electronic equipment and components Send SAE for lists
Callers welcome Monday to Saturday incl. 9am to 5.30 pm . (1929)
RIBBON CABLE, PLUGS AND CONNECTORS
The very best quality. Proven manufac or in quantities. Cable sold by the metre or by the roll
TA.D. SUPPLIES
5-10 Eastman Road London W3
Tel: 7400058 (1840)

P.C.B. DRILLS SOLID CARBIDE

Most sizes
NEW 65p, REPOINT 50p +30 p P\& P
All enquiries, orders and cheques to TOMTEK ELECTRONICS
BOX NO 1928 Box No 1928

THE SCIENTIFIC WIRE COMPANY

 P.O. Box 30, London, E. 4

INVERTERS
High quality DC-AC. Also "no break" (2ms) static switch, 19'' rack. Auto Charger.

COMPUTER POWER SYSTEMS Interport Mains-Store Ltd. P0B 51, London W11 3BZ Tel: 01-721 7042 or 0225310916 (9101)

CANADA RADAR ENGINEERS
 radar engineers

SENIOR and INTERMEDIATE
Required for vacancies in Canada Must have X BAND experience MARINE and/or AVIONICS Preference given to persons with knowledge o
DIGITAL PROCESSING and CFAR CIRCUITRY Writen details should be mailed to:
W. \& H. E. GRIFFITHS LTD पONDELAY COTTAGE 158 COBHAM ROAD Tal:0990 24580 Trimarasa492

Telequipment double beam, twin timebase, delay, calibrator, etc. f165; Scrugun electric screwdriver/spanner, etc., rapid assemdriver/spanner, etc., rapid assem-
bly, clutch-driven head, $\mathbf{£ 3 0}$; pneubly, clutch-driven head, $\mathbf{£ 3 0}$; pneu-
matic nail/staple gun, ideal packmatic nail/staple gun, ideal pack
aging, furniture, shopfitting, etc. aging, furniture, shopfitting, etc.
f100 (f300); industrial micro scope, f125; photographic equip ment, various. Twin timebases and delay unit for D56/D55 A scopes, £35; Norgren 25 micron filters, £15; pressure regulators, £10; pressure switch, £12; 4 KW standby diesel generator, $£ 195$ Deuterium arc power supply, $\mathbf{£ 4 5}$ Wow/flutter meter, £75; precision gasglow meter, £29. Advance gen erator, 12 pre-settable frequencies, erator, $30 \mathrm{kc} / \mathrm{mc}-30 \mathrm{Mc}$.

040-376236

SERVICES

CIRCOLEC

THE COMPLETE ELECTRONIC SERVICE
Artwork, Circuit Design, PCB Assembly, Test \& Repaĭ Service, Q.A. Consultancy, Prototypes, Final Assembly
Quality workmanship by professionals at economic prices.
Please telephone 01-767 1233 for advice or further details.
1 FRANCISCAN ROAD TOOTING, LONDON SW17

BOARDRAVEN LTD.

PRINTED CIRCUIT BOARDS
Manufactured to your specifications. Single/dou-
ble sided. Very speedy deliverias on prototypes
and quantity. Master layouts if required.
J. K. Harrison, Garnaby Induatrial Estate, Bridlington, North Humberside V015 3aY, Tolo-
phone: $(0262) 78788$.
(1168)

REPAIR AND CALIBRATION

oscillescopes and counter-timers caitrated
against instrumeniation with pertormance traceable
Conformance Certificates avalable tor $Q A$
\qquad
PROTOTYPE DEVELOPMENT SYSTMS
Waiton-on- House. 44/46

layout design QUALITY ARTWORK
fast delivery-reasonable rates phone freos artwork service
01-607-3169
ARTICLES FOR SALE

LAMPS AND CABLE. Large amount of lamps and cable for sale - all yypes and sizes, domestic and indusirial. Telephone MIRAGE LIGHIING on HITCHIN (0462) 733388 between I0am-7pm

DESIGN SERVICES. Electronic design development and production service available for digital and analogue instruments. RF Transmitrers and receivers, telemetery and control Wolsey Road, Ashford, Middlesex. Phone Mr Falkner 53661

TURN YOUR SURPLUS Capacitors, tran sistors, etc, into cash. Contact COLES-HAR DING \& Co, 103 South Brink, Wisbech, Cambs. 0945-4188. Immediate settlement. We also welcome the opportunity to quote for complete fac-
tory clearance.

DESIGN AND DEVELOPMENT. ANALOGUE, DIGITAL, RF AND MICROWAVE CIRCUIT AND SYSTEM DESIGN. Also PCB design, mechanical design and production. - Adenmore Limited, Unit 103 Liscombe, Bracknel!, Berks. Tel: Bracknell (0344) 52023. (656)

SMALL BATCH PCBs produced from your art work. Also DIALS, PANELS, LABELS. Camera work undertaken. FAsions, 9 Hatton Place, Detals: Winston Promotions,
London ECIN 8RU. Tel. 01-405 4123/0960.

Hifachi Oscilloscopes
 performance, reliability, exceptional value and immediate delivery!

Hitachi Oscilloscopes provide the quality and performance that you'd expect from such a famous name, in a newly-extended range that represents the best value for money available anywhere

V-152F 15 MHz Dual Trace
V-202F 20MHz Dual Trace V-203F 20 MHz Sweep Delay V-302F 30MHz Dual Trace V-352F 35MHz Dual Trace V-353F 35 MHz Sweep Delay

V-134 10 MHz Tube Storage Oscilloscope
V-650F $\quad 60 \mathrm{MHz}$ Dual Timebase. Trigger View (illustrated)
V-1050F 100 MHz Quad Trace, Dual Timebase V-209 20 MHz Dual Trace, Mini-Portable V-5019 $\quad 50 \mathrm{MHz}$ Dual Timebase. Mini-Portable Prices start from under $£ 250$ (ex. V.A.T.) including 2 high-quality probes and a 2 -year warranty. We hold the range in stock for immediate delivery
For colour brochure giving detailed specifications and prices ring (0480) 63570 . Reltech Instruments, 46 High Street, Solihull, W. Midlands, B91 3TB

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 100-111

Printed in Great Britain by QB Lid., Sheepen Place, Colchester, and Published by the Proprietors IPC ELECTRICAL-ELECTRONIC PRESS LTD., Quadrant House, The Quadrant, Sutton, Surrey SM2 SAS, telephone $01-6613500$. Wireless World can be obtained abroad from the following: AUSTRALIA and NEW ZEALAND: Gordon \& Gorch LId. INDIA: A. H. Wheeler \& Co, CANADA:
The Wm. Dawson Subscription Service Lid, Gordon \& Gotch Lid. SOUTH AFRICA: Central News Agency Lid: William Dawson \& Sons (S.A.) Lid. UNITED STATES: Eastern News
Discribution Inc., 14th floor, 111 Eighth Avenue, New York, N.Y. 10011.

WW-002 FOR FURTHER DETAILS

The Real Computer System

ORIC PRODUICTS INTERNATIONAL LTD STM Suninghill, Ascot, Beiks SLLT 7 SE.

TRADE PRICES
 from กำลp.l|n

 Look at these examples

 Look at these examples from our huge range.

 from our huge range.}

Code	Description	Cat. Page	Retail Price Incl. VAT	Min. Trade Qnty.	Price Each for Min. Tr. Quantity excl. VAT
XB54 」	Aerial Rotator	25	$£ 39.95$	5	£29.00
YG00A	Ni-Cad AA 500 mAh	26	£1.25	50	$75 p$
FB15R	Electrolytic 2.2uF 63 V	90	10 p	500	4.5 p
FB22Y	Electrolytic 10uF 25 V	90	9 p	1000	3.5p
FB490	Electrolytic 100uF 25 V	90	14 p	500	6.5 p
FB73Q	Electrolytic 470uF 25 V	90	30p	250	12p
FB83E	Electrolytic 1000 F 25 V	90	40p	250	17p
FB96E	Electrolytic 4700uF 25 V	90	£1. 25	50	58p
YG41U	27 MHz Rubber Duck	99	£4.75	25	£2.95
XG13P	1.5 m CB Aerial	99	£13.95	5	£8.45
LB72P	2-Station Intercom	102	$£ 8.75$	10	£4.95
HF85G	1/4in. Jack Plug plastic barrel	142	19p	500	9 p
HF88V	1/4in. Jack Plug stereo plastic barrel	142	28p	250	15p
HF87U	1/1/in. Jack Plug metal barrel	142	39p	250	18p
HF89W	1/4in. Jack Plug stereo metal barrel	142	45p	250	22p
RW67X	13A nylon Mains Plug British	157	79p	100	45 p
WL27E	LED 0.2in. Red	182	12p	500	6 p
WL28F	LED 0.2 in . Green	182	19p	500	10p
WL29G	LED 0.2 in . Orange	182	33p	250	19p
WL30H	LED 0.2in. Yellow	182	17 p	500	9 p
RK07H	Panel Meter 100uA	197	£2.95	25	£1.95
RK09K	Panel Meter 1 mA	197	£2.95	25	£1.95
RK19V	Panel Meter VU	197	£2.95	25	£1.95
YQ47B	Dual VU Meter	197	£3.90	25	£2.30
YR84F	Professional Plugblock	201	£6.95	10	£4.95
RX96E	20 mm Fuse Holder	250	45p	250	24p
M10R-M1M	Metal Film 0.4W 1\% Resistor	262	2p	1000	1 p
FW00A.FW09K	Rotary Potentiometers linear	265	$45 p$	250	32 p
FW21X-FW29G	Rotary Potentiometers log	265	45p	250	$32 p$
QL80B	1N4148	270	4 p	1000	2p
QL22Y	741 C 8 -pin DIL	270	23p	500	12 p
QH66W	NE555	270	$21 p$	500	12 p
QQ06G	4164 64K dynamic RAM	271	£5.99	100	£3.98
BL18U	DIL Socket 14-pin	336	11p	500	7.5 p
BL17T	DIL Socket 8-pin	336	9 p	1000	4.5 p
WF14Q	Stereo Headphone with slide volume controls	342	£7.99	10	£4.95
FHOOA	Sub-min Toggle Switch SPDT	347	70p	100	$45 p$
FH04E	Sub-min Toggle Switch DPDT	347	99p	100	59p
FF73Q-FF76H	Rotary Switch break before make	348	74 p	100	46 p
FH42V-FH45Y	Rotary Switch make before break	348	70p	100	42 p
YW93B	1000 ohm. per volt Multimeter	362	£4.85	25	£2.95
YW68Y	20.000 ohm per volt Multimeter with Transistor Tester	363	£16.25	5	£10.45
BR75S	Box-joint insulated 41/2in. Cutters	370	£6.93	10	£445
BR78K	Box-joint Insulated 4/1/2in. Pliers	371	$£ 5.72$	10	£3.95

[^11]

Copies of our catalogue are available in all branches of W.H. Smith, price $£ 1.25$. In case of difficulty, send $£ 1.50$ to our mail-order address. Overseas price $£ 1.90$.

Maplin Electronic Supplies Ltd.

All mail to P.O. Box 3, Rayleigh, Essex SS6 8LR. Tel. (0702) 552911 Shops at 159 King St., Hammersmith, W6. Tel 01-748 0926. Lynton Square, Perry Barr, Birmingham. Tel: 021-356 7292 284 London Road, Westcliff-on-Sea, Essex. Tel. (0702) 554000 Shops closed all day Monday

Please note our mail-order dept. will be closed over Christmas from 11 a.m. Thursday, 23rd December, till 9 a.m. Tuesday, 4th January.

[^0]: Current issue price 80 p , back issues lif Current issue price 80p. back issues lif available) E1, at Retail and Trade CounCentre, Hopton Street, London SE1. Available on microfilm; please contact Availab
 By post, current issue $£ 1.23$, back issues (if available) $£ 1.80$, order and payments to EEP General Sales Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.
 Editorial Advertising offices: Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.
 Tolephones: Editorial 01-661 3500. Advertising 01-661 3130 .
 Telegrams/Telex: 892084 BISPRS G
 Subscription rates: 1 year $£ 14$ UK and
 f17 outside UK. Student rates: 1 year f9.35 UK and F11 70 outside UK
 Distribution: Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Telephone 01-661 3500 .
 Subscriptions: Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone: 044459188. Please notify a change of address. USA: $\$ 44$ surface mail, $\$ 98.30$ airmail. US subscriptions from IPC B.P., Subscriptions Office, 205 E.42nd Street, NY 10017.

 USA mailing agonts: Expediters of the Printed Word Ltd, 527 Madison Avenue, Suite 1217, New York, NY 10022. 2nd class postage paid at New York
 (C) IPC Business Press Ltd. 1983 ISSN 00436062 .

[^1]: K N N N N
 AF139
 AF178
 4

[^2]: Passe note Xin part no. indicates primary volzage Piease insert X in place of

[^3]: Advantages of the proposal

 - Increased luminance bandwidth - Increased chrominance bandwidth
 - Increased output signal-to-noise ratio
 - No crosstalk between luminance and chrominance signals
 2Mbit/s composite sound channel
 - Encryption easily provided
 - Equal luminance and chrominance s / n
 Provision of a spare data channel.

[^4]: Capacitances in femtofarads，frequencies in kHz

[^5]: 20 NOT(P) is NAND (P, P)
 30 AND (P, Q) is $\operatorname{NOT}(\operatorname{NAND}(P, Q)$)
 $40 \operatorname{NOR}(\mathrm{P}, \mathrm{Q})$ is
 AND(NOT(P),NOT(Q))
 $50 \mathrm{OR}(\mathrm{P}, \mathrm{Q})$ is $\operatorname{NOT}(\mathrm{NOR}(\mathrm{P}, \mathrm{Q}))$
 60 EQUALS (P, Q) is
 OR(AND(P,Q),NOR(P,Q))

[^6]: engineering at the University of Bradford, where he gained M.Sc. and Ph.D. degrees, specialising in visual communication and microprocessor system design. Ho has worked on computers and televison systems for Ferranti, UKAEA and Rediffusion, and is now technical manager of Britannia Computers.

[^7]:

[^8]: *Also subscription agents

[^9]: 1 Basic Active filters 2 Switching Circuits, comparators and Schmitts (But these gaps cannot be filled)
 6 Constant current circuits 7 Power amplifiers 8 Astable circuits 9 Optoelectronics 10 Micro power circuits 11 Basic logic gates 12 Wideband amplifiers 13 Alarm circuits 14 Digital Counters 15 Pulse modulators 16 Current differencing amplifiers - signal processing 17 Current differencing amplifiers - signal generation 18 Current differencing
 amplifiers - measurement and detection 19 Monostable circuits 20 Transistor pairs 21 Voltage-to-frequency converters 22 Amplitude modulation and detection 23 Reference circuits 24 Voltage regulators 25 RC oscillators - $1 \quad 26$ RC oscillators - 227 Linear cmos-1 28 Linear cmos-2 29 Analogue multipliers 30 Rms/log/power laws 31 Digital multipliers 32 Transistor arrays 33 Differential and bridge amplifiers $\quad 34$ Analogue gate applications - $1 \quad 35$ Analogue gate applications-2.
 *Photocopies only: 3 Waveform generators 4A.C. measurement 5 Audio circuits @ $£ 3.20$ each set

 To IPC Electrical-Electronic Press Ltd., General Sales Department,
 Room 108,
 Quadrant House,
 Sutton,
 Surrey, SM2 5AS

 Company registration in England
 Quadrant House, The Quadrant,
 Sutton, Surrey SM2 5AS
 Reg. No 677128

 Please send me the following sets of Circards: £2 each,
 £18 for 10 post free.
 Remittance enclosed payable to IPC BUSINESS PRESS LTD.

 Name (Please print)
 Address (Please print)

[^10]: BRIDGES, waveform/transistor analysers. Cali brators, Standards. Millivoltmeters. Dynamome ters. KW meters. Oscilloscopes. Recorders. Sig. nal generators - sweep, low distortion, true RMS, audio, FM, deviation. Tel. 040 376236. (1627

[^11]: Most items in our catalogue are available at competitive trade prices; the bigger the quantity the better the price. If you find the example prices attractive, then contact us now with your requirements for a quotation. Phone Southend (0702) 552911 or write to us at P.O. Box 3, Rayleigh, Essex, SS6 8LR. Please ask for trade sales desk

