EGTRONICS COMPUTING COMMUNICATIONS BROADCASTING AUDIO AND VIDEO wireless

word
 DECEMBER 1982 80p

Picotutor

Software crisis

 Computer net onkin. Digital recording cistortion Compact disc
Directional power meter TIM10

leads by a head

For colour brochure contact.
FARNELL INSTRUMENTS LIMITED WETHERBY LS22 4DH TELEPHONE (0937) 61961 TELEX 557294 FARIST G

- Single detector head covers wide frequency and power band
- 25 MHz to 1 GHz ■ 20 mW to 100 W and VSWR from 1 to 3
- Head can be used 1.5 m from meter (e.g. inside closed car boot)
- Fully portable - works from internal battery or vehicle battery
- Mains adaptor/charger and rechargeable battery available
- Manufactured, tested and inspected to Min. Def. Std. 0524.

Photographed by Michel Mathieu, the front cover shows a ThomsonCSF laser diode for fibre communication systems.

NEXT MONTH

J. Tait discusses tracking digital filters for servosystems in which synchronous generation and filtering provide accurate feed back conditioning over wide frequency ranges.
Program development for the Nanocomp eprom is simplified by a method for developing software in the locations it is intended for, shows G. Bettridge in Eprom development aid.
Data acquisition on a Pet, by two authors involved with education, describes circuits and software for reading analogue and digital signals on a microcomputer widely-used in research and teaching.
Matching tuning diodes by \mathbf{A}. Maciejewski gives a program for selecting variable-capacitance diodes for use in critical circuits such as the r.f. and oscillator u.h.f. receivers.

Current issue price 80p, back issues lif available) $£ 1$, at Retail and Trade Counter, Units 1 \& 2, Bankside Industrial Centre, Hopton Street, London SE1 Available on microfilm; please contact editor.
By post, current issue £1.23, back issues (if available) $£ 1.80$, order and payments to EEP General Sales Dept., Quadrant House, The Quadrant, Sutton, Surrey SM25AS.
Editorial Advertising offices: Quadrant House, The Quadrant, Sutton, rant House,
Surrey SM2 5 S.
Telephones: Editorial 01-661 3500. Ad Telephones: Editorial
vertising 01-661 3130.
Telegrams/Telex: 892084 BISPRS G.
Tolegrams/Tolox: 892084 BISPRS G.
Subscription rates: 1 year $£ 14$ UK and Subscription re
f17 outside UK.
f17 outside UK.
E11.70 outside UK. year £9.35 UK and Distribution: Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Telephone 01-661 3500.
Subscriptions: Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone: 044459188. Please notify a change of address.
USA: $\$ 44$ surface mail, $\$ 98.30$ airmail. USA: subscriptions from IPC B.P., Subscriptions Office, 205 E.42nd Street, NY scriptio
10017.
USA mailing agents: Expediters of the Printed Word Ltd, 527 Madison Avenue, Printed Word Ltd, 527 Madison Avenue,
Suite 1217, New York, NY 10022. 2nd Suite 1217, New York, NY 10022.
class postage paid at Now York. class postage paid at New York.
(C) IPC Business Press Ltd. 1982 ISSN © IPC Bu
00436062.

BROADCASTING world

FACTORIES OF THE FUTURE

\square
W2 A REALISTIC QUALITY?

INPROVING THE VIEWING EXPERIENCE

by E. Nall

NEWS

DISTORTION IN DIGITAL RECORDINGS

W4. Mrata

FAT LOGIC MAPS - FROM LULL TO KARNAUGH

by M. Matwat

BOOKS

hnaeryround fable communication

THE NEW BUREAUCRACY

3)

COMMUNICATION

PICOTUTOR ASSEMBLY LANGUAGE TRAINER

(iyll Contes

ENGINEERING AND SOCIETY

N OUR NEXT ISSUE

TWO-METRE TRANSCENER

$6 / 4$ LETTERS

- NON-BINARY LOGIC CIRCUITS

M C. W. Poss
m MORSE DECODING BY MICROCOMPUTER
bup Sargent
HOW WILL CD AFFECT AUDIO DESIGN?
my W. Watcult

COMPUTER NETWORKS

byP. Wantot

CIRCUIT IDEAS

D/ DISC DRNE CONTROLLERS

W) P. R. Wathinman

DES INTRODUCTION TO VDUS
WE. Caram
RANDOM ECHOES
by Emote

NEW PRODUCTS

INDEX TO ADVERTISERS

CX80 colour MATRIX PRINTER

New low price $\mathbf{£ 7 9 5}+$ V.A.T.

At last a low-cost Colour Matrix Printer for Text, Graphics, Histograms, Colour VDU Dumps, etc.

> Colour printout is quickly assimilated, makes graphics more understandable and is an ideal medium for the presentation of complex data or concepts.

Compatible with most microprocessors, prints in 7 colours - sophisticated internal programme makes the CX80 easy to use.
Dot Addressable + 15 user programmable characters, 96 ASCII and 64 graphics characters in rom. Centronics interface with RS232 and IEEE488 options. Apple II interface gives dot for dot colour dump. New viewdata interface prints out two pages side by side in full colour. See Prestel 200650.

The CX80 is a product of our own design and development laboratories. It represents a British breakthrough in colour printer technology. Colour brochure on request. OEM pricing available.

Also available in kit form and alternative versions, i.e.: battery or mains. With or without frequency meter
Literature on these units, R.F. Sig. Gen., T.H.D. meters, MVMT, Function Generators and many other instruments is available on request.

TELERADIO ELECTRONICS, 325 FORE STREET, LONDON N9 OPE Telephone 01-8073719 Closed'Thursdays

LASTCHANCE ATTHIS PRICE METALFILM RESISTORS 1% Tolerance. $1 / 4$ Watt

WW - 072 FOR FURTHER DETAILS

THESOURE of all good used testequipment

Electronic Brokers are Europe's leading Second User Equipment Company. We carry large stocks of the very latest test equipment which is refurbished in our own service laboratories and calibrated to meet the manufacturer's sales specifications When you buy used equipment from Electronic Brokers, it can be yours in just days. No waiting for manufacturers lengthy production schedules. All equipment is fully guaranteed.

ANALYSERS

Howlett Packard
35B0A Spectrum Analyser $5 \mathrm{~Hz}-50 \mathrm{KHz}$ $141 \mathrm{~T} / 8552 \mathrm{~B} / 8555 \mathrm{~A} 10 \mathrm{MHz}$-18GHz 0.00 332A Distortion Meter 5 Hz -600K 3582A Spectrum Analyser
$0.02 \mathrm{~Hz}-25.5 \mathrm{KHz}$ $542 \mathrm{Lz}-5.5 \mathrm{KHz}$ © $£ 495.00$.02 5420 A Digital Signal Analyser c/w Digital
Filter $54470 \mathrm{~A}, ~ A D D C o n v e r t e r ~$
54410 A B4O7AB41 2A Network Analyser P.O.A 8SO5A Network Analyser 500KHz-1 $\mathbf{\text { £1950.00 }}$ 8557 A Spectrum Analyser 0 . $£ 21500.00$ TF2331 Distortion Meter $20 \mathrm{~Hz}-20 \mathrm{KHz}$ Solartron
1172 TFA Tekeronix $7001 /$ F2 Logic Analyser in 7704A

BRIDGES

TF1245/TF1246 G Meter 40KHz-50KHz TF1 $313 A 0$ i\% LCRBridge $£ 775.00$ TM4520 Set of Inductors £345.00 Rohdo 8 ehwarz.
RoT [BN61
$100 \mathrm{j} \mathrm{H} .2 .2-285 \mathrm{KHz}$........... $\mathbf{3 9 5 . 0 0}$ Waynokerr c785.00 SR268 Source \& Detector .

DVM's AND DMM's

1041 Multifunction DVM with options
01-True RMS AC 02-4 Wire ohms.
B01-BCS output . . 550.00 B01-BCS output
1059 Bench DMM $1 / 2$ digit DC and True RMS AV volts and current + resistance $\quad £ 700.00$ Fluk: 700.00

日300A $51 / 2$ Digit DC only $1 \mu \mathrm{~V}$ sensitivity 5
ranges to 1100 V . PMilips ${ }^{5}$ 23-01 LED 31/6 Digit DMM . 895.00 PM 2523801 artron.
7055 Microprocessor DMM. Scale Length
20,000. $\mathrm{AC/DC}$ volts, resistence. $1 \mu \mathrm{~V}$
resolution.
FREQUENCY

COUNTERS

Howlatt packard 5340 A O Digit $10 \mathrm{~Hz}-18 \mathrm{GHz}$. . . £3750.00 Marconi TF2431 8 Digit 200 MHz Unused $£ 200.00$

OSCILLOSCOPES

HM412 20 MHz Time Base Deiey AS NEW
CONDITION. CONDITION
$182 T$ Storace Mainframe-
1809 10 10 MHz 4 Channel Piu £1400.00 i B21 A Timebase Plug in £2000.00 Philips
PM3
PM2 \& 1000.00 ¢495.00 PM 3234 True Dual Beam Storage 1750.00 PM 324450MHz 4 Channel Delay 'i'Base WIRELESS WORLD DECEMBER 1982
Tekeronix.
475 Dual Tr

SIGNALSOURCES

TEKTRONIX PLUG INS

 7413 Diff Comparator Amp. DC: 105 MHz A16A Single Trace Amp. OC A18 Dual Trace Amp. DC-7 AL2 Diff Amp. DC-1MHz 10 © A2c9 Oual Trace Amp. DC-1GHz $\quad 525.00$ 7B50 Timebase E275.00 7853A Dual Timebase For use in 7600 series
7829 a Dual Timebase For use in 7900
$\mathbf{1 5 0 0}$ 7014 Digital Counter, $525 \mathrm{MHz}, \quad £ 850.00$ 51 Sampling Head (unused) … £450.00

TEKTRONIX TM500 SERIES

$0 C 5034125 \mathrm{MHz}$ Counter $\quad £ 200.00$ C505A 225MHz Counter $\quad \mathbf{8 6 0 0 . 0 0}$ G501 Function Generator 0 OO \quad £495.00 FG504 Function Generator 0.001 £275.00 G508 Pulse Generator 5 Hz -50M1 $\mathbf{8 9 5 0 . 0 0}$ SC5O2 15 MHz Dual Trace Scope SC5O4 BOMHz Dual Trace Scope $£ 1250.00$ 250MHz $\mathbf{£ 8 5 0 . 0 0}$ $1050 \mathrm{MHz}$.

Electronic Brokers I

Electronic Brokers Limited 61/65 Kings Cross Road LONDON WC1X 9LN Telephone: 01-278 3461 Telex: 298694 Elebro

Latest Second User Test Equipment Catalogue

WW - 015 FOR FURTHER DETAILS

Bigger and Better for 1982
the colourful Wilmslow Audio brochure - the definitive loudspeaker catalogue!

Everything for the speaker constructor - kits, drive units, components for HiFi and PA.
50 DIY HiFi speaker designs including the exciting new dB Total Concept speaker kits, the Kef Constructor range, Wharfedale Speakercraft, etc.
Flatpack cabinet kits for Kef, Wharfedale and many others.

* Lowest prices - Largest stocks *
* Expert staff - Sound advice *
* Choose your DIY Hifi Speakers in the comfort of our * two listening lounges
(Customer operated demonstration facilities) * Ample parking *

Send $£ 1.50$ for catalogue
(cheque, M.O. or stamps - or phone with your credit card number)

* Access - Visa - American Express accepted * also Hifi Markets Budget Card.

8
0625529599

35/39 Church Street, Wilmslow, Cheshire SK9 1AS

Lightning service on telephoned credit card orders!

WW - 048 FOR FURTHER DETAILS

	HONETWELI PROKIMTY DETECTOR integral amplifer, \&v. D.C. E3.50 ea PHOTO CONDUCTIVE CELL $\mathbf{f 1 . 2 5}$ High-power Cdscell, 600 MW for control cifcuits Resistance 800 ohm to 4 K Max volls 280 Size $1 / 2 x$ $1 / 2 n$. RIBBON MICROPHONE with pre-amp on chassis. E1.75.		ULTRA SDNIG TRANSDUCERS SOKCS. Complele on 18 in. Screened cable, 11.75 each; pars $\mathbf{E L} .55$ ULTRA SONIC TRANSMITTER. Compiete unit funcased requires 1.5 V), $£ 325$ foster dynamic MICROPHONES. 200 Ohm impedance Moving coil. Complete on chassus $\mathbf{E 1 . 1 5}$ рair.
U.M.F MODUATORS Latest type, adjustable. ideal for computers with data citcuit Size $3 \times 2 / 2 \times 1$ inch Ontve3. 50 in screened case	LM3B0 Amplifier . 850 M3IBN HI-Slew Op. Amp. 1.50 LM323K. 5v. 3-amp, reg LMSION Volt, follower	miniature highQUALITY FANS Whisper Model" by Roton. Low-power consump thon (less than 10 watts) Slient running. 115 v . Itwo in series for 230 w)	STEREO CASSETTE Machanisms 6 or 12 volt. Complate with Heads t Erase and Solenoid. Brand now c5.50 8.
mintature eoge NDICATOR METER With illuminated dial scale $0-10$. FS. 0.100 microamp Size $1 / 2 \times 1 / 2 \times 1 / 2$ deep. Only 11.55.	LM311H High Pert. Volt, Comparator $£ 1.00$ LM384N, 5-watil Amp $£ 1.20$ M393N Dual Com 7905 Reg. -5 V \qquad $15 p$	5060 Hz Size $4 / 2 \times 4 / 2 \times$ 1/2In ONLY 66.50 EACH incl. VAT. BRANO NEW 50% less than manuiacturer's price	
MDNSANTO Half-rich Display High Intensity f1 each set of 4 £3.50 Common anode 14 Pin Oil Packzge	stereo cassette tape READS. Ouality replacement lormost recorders with mount:ng plate Record/Replay Ez .8o marriott tape heads Quarter track Type \qquad	MEWLETT PACKARD DISPLAYS $50 \% 2.7650$ MIGH EFFICIENCY AND VERY BRIGM) Only $£ 1.00$ each	$\begin{aligned} & \text { EX-MOTOROLA } \\ & 5 \text { + 5-WATT } \\ & \text { CAR } \\ & \text { STEREO } \\ & \text { AMPLIFIERS } \end{aligned}$ Complete and lested units \qquad
BRIDGE HECTIFIER 800 PIV 35 amps $11 / 2 \times 1 / 2 \times 1 / 2 \mathrm{n}$. 63.50	(each). XRPS36 Record/Replay XESII Erase (each) E1.00 -	Halt-inch red common anode will replace Dt 70.14 -pin Dil.	Supplied as two built units $(5 \times 2 \times 2 \pi .1$ with circunt and dara Only 65 parr. includes pre-amp
mationil P. 8080 A Chips 8216 INA146 DIODES Full spec, but no polarity band Per $1,000 \ldots . \quad .10$ MINIATUAE MP C potentiometers. Modei M2. High-quality. 5% spindles. All values. 41 ahms-47k only 60 each per 10: 50p each det 100 40 peach	rechargeagle bATTERIES VARTA 36 volts DEAC. M:AH $225 \quad$ I1.50 DRYFIT 6 -volt. 4.5 amp f1.50 XIAL FIITER $10.7 \mathrm{mc} / \mathrm{s}$. 12.508 separation. $1 / 2 \times 1 / 4 \times 1$ inch 87.00 $100 \mathrm{KC} / \mathrm{S}+1 \mathrm{meg} . \mathbf{3 - p 1 0}$		ON KEYPAD A compact 12 -button keypad suitable for use with Keyboard extend its functions plus four extra keys Supplied beand new A 3×4 non-encoded sungle mode keyboard
QUANTITY OISCOUNTS on ALL items (unless stated), 15% per $10,20 \%$ per $50,25 \%$ per 100. All items BRAND NEW (unless otherwise stated).			
		EXPORT enquiries invited	Transonics Mono 1400
Callers to: 404 EDGWARE ROAD, LONDON W2 2 ED ALL MAIL ORDERSIEXPORT ENQUIRIES 11/12 PADDINGTON GREEN, LONDON, W2			

TELESCOPIC MASTS

Eleatronia Brokers

Pnêumatically operated telescopic masts. 25 Standard models, ranging from 5 metres to 30 metres.

N

SYSTEM
$11 / 23 \mathrm{CPU}, 128 \mathrm{~KB}$ MOS, Dual RLO2 and Control OLV1 $1 J$ and DUV
Cabinet
NEW
⑪,500
PDP 11/24 SYSTEM
$11 / 24$ CPU, $256 K B$ MDS. Dual RLO2 and
Control, Cabinet. VT100 Console Control, Cabinet. VT 100 Console $\mathbf{~ E 1 8 , 0 0 0 ~}$ PDP 11 V03 SYSTEMS
$11 / 03 \mathrm{CPU}, 64 \mathrm{KBMOS}$, Console Interface, Duat RxO Floppy Disk Drive, Low cabinet on Castors
£ 1,525

Hilomast Ltd

THE STREET HEYBRIDGE - MALDON ESSEX CM9 7NB ENGLAND Tel. MALDON (0621) 56480

Telex No. 995855

KONTAKT

The European name of Aeroso Excellence. Special cleaners for al electrical contacts and switches.

Kontakt 60

Dissolves oxides and sulphides Dissolves oxides and sulphides, of metal abrasion. Protects against erosion. Ensures perfect contacts.

Kontakt 61

Special cleaning, lubricating and anti-corrosion fluid for NEW (non oxydised) and specially sensitive contacts. An excellent lubrican for all electrical and electro mechanical systems.

Spray Wash WL

A rapid cleaner for reliable wash ing and degreasing of electrical equipment and components. For removal of dirt, grease, oil, solder ing residues and other impurities

also AVAILABLE:

A COMPLETE RANGE OF INDUSTRIAL AEROSOL SPRAYS
SK10 Soldering Lacquer, K75 Cold Spray, K70 Plastic Spray, K88 Oil Spray, K701 Vaseline Spray, K90 Video Spray, K33 Graphite Spray, K100 Antistatic Spray, K101 Fluid Spray and, of course, Positiv 20 positive photo resist for printed
circuits.

Details from

Special Products Distributors Ltd.

Tel: 01-629 9556. Telex: 26500 (answerback RACEN). Cab W1

Available from stock NOW:

farad	1.0farad	1.0 FARAD
SUPZRCAP	SUPTRCAP	SUPERCAP
	$\begin{gathered} \text { 1703 } \\ \substack{+ \\ \text { Programmable } \\ \text { Tuner Chip }} \end{gathered}$	
IONTH	1 WEEK	1DAY
Only part of the		
Anglia range of		
NEC components		
Burdett Road, Wisbech, Cambs, PE13 2PS Telephone 094563281 Telex 32630 ANGLIA		comp

WW - 061 FOR FURTHER DETAILS
WW - 056 FOR FURTHER DETAILS

EX81 MACHINE CODE?

ZX.ASZMIC rom transforms ZX81 into an Assembly Language programming unit

\curvearrowleft FULL~SCREEN EDITOR

Sixteen shift keys take you into a world with a word processor feel. A blink cursor moves at your command to control insertion, rubout, line or string deletion, autoscroll \& page flip up or down. Text block operations. Ultra-fast editing
© MULTI~FILE SYSTEM
Declare as many files as you like, with any names you like, \& they are automatically handled by the Operating System. Merge them, delete them, print, save \& load them \& edit them by name. Superb flexibility with a simple but powerful sygtem

- TOTAL ASSEMBLER

Full Z 80 mnemonics, unlimited length labels, ORG \& EQU directives, proper assembly listings with errors flagged on screen or printer. Relocatable object code \& options to acilitate cross-assembly. Interpretive immediate execution available.

* POWERFUL DEBUG

All the usual dump, modify, fill \& copy commands; plus breakpoints, single stepping, context control, the convenience of interpretive execution mode, full use of the names in your program, Command Macros, autodump, and full operating system interface.
$』$ HI RES GRAPHICS
255×144 resolution under program control to give you truly convincing graphics With the power \& flexibility of assembler you can really use this high definition.

© MUCH,MUCH MORE

Repeat function on all keys. Double height titling on printer. Lots of extras. But more important than all these features, attractive though they are, is the fact that ZX. ASZMIC is an integrated development gystem in which everything fits together to give you a tool which can satisfy the professional programmer by aimplifying all stages of the program development process. It is excellent for those who are taking the first steps into real programming but the more expert you become the better you realise just what ASZMIC can do for you. If you are at all interested in machine code it will be worth your while to find out more.

Comprocsys limited

I enclose 539.95 . Please rush me ZX. ASZMIC + manual

 NAME.\qquad

Sole UK agente:- CAPITAL COMPUTERS LTD 1 Branch Rd, Park St, St Albans ALl 4RJ Phone: 0727 72917. Chequee payable to COMPROCSYSASZMIC AC ww

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD. W.C. $1 \quad$ Phone: $01 / 837 / 7937$ Telex: 892301 HARTROG
WW - 057 FOR FURTHER DETAILS

TV TUBE REBUILDING

Faircrest Engineering Ltd. manufacture a comprehensive range of equipment for processing all types of picture tubes, colour and mono. Standard or custom built units for established or new businesses. We export world-wide and have an excellent spares service backed by a strong technical team

Full training courses are individually tailored to customers requirements

For full details of our service contact Neil Jupp

FAIRCREST ENGINEERING LTD.

4 Union Road, Croydon, CRO 2XX 01-684 1422/01-684 0246

WW - 067 FOR FURTHER DETAILS

WRONG TIME?

MSF CLOCK IS ALWAYS CORRECT - never gains or loses, SELF SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds, auto GMT/BST, leap year and parallel BCD (including Weekday) output, receives Rugby 60 KHz atomic time signals, built-in antenna, 1000 Km range, RIGHT TIME, f69.60.
60KHZ RUGBY RECEIVER, as in MSF Clock, serial data output for computer, etc., decoding details and ZX81 listings for LOCAL GMT and SíIDEREAL time, £22.20.
V.L.F.I EXPLORE $10-150 \mathrm{KHz}$, Receiver £19.40.

200KHz Converer, for any Medium Wave receiver, £19.80. Signal Generator, $10 \mathrm{~Hz}-200 \mathrm{KHz}$, sine, square, $£ 19.70$.
Each fun-to-build kit (ready made to order) includes all parts, printed circuit, case, instructions, postage, etc., money back assurance so GET yours NOW.

CAMBRIDGE KITS

45 (WM) Old School Lane, Milton, Cambridge. Tel: 860150

AVO DIGIMINOR 2000
An ideal tool for maintenance applications. An economically priced instrument with a special buzzer socket for simple continuity testing without reference to the display.

AVOMETER 2001
Features a socket specifically for current testing Comprehensive ranges, with unit and mode displayed on LCD. Ensures a valic current measuring mode is selectedany discrepancy is signalled by an alarm.

AVO VEHICLE TEST 2002
Designed with co-operation from a world leader in vehicle manufacture and service Accessory kit allows temperature and charging current testing. Heavy duty test leads and comprehensive handbook available.

The AVO 2000 Series is the hand held dmm range you'd design for yourself, incorporating a combination of design features unmatched by any manufacturer in the UK.

There are direct entry prod facilities which, combined with the weight and size of the instruments, allow for true one-handed operation. The $3^{1 / 2}$ digit LCD is located at the base of the instrument to make the most of the available light. And positive slide switches are incorporated to give simple, dustproof, range selection.

The lead set is fully shrouded at both plug and socket end for improved safety and there is a special hook for PCB testing in the standard set. Heavy duty test leads are also available. The 2000 Series incorporates a three position stand, non slip safety pads and can be supplied in either a 'Test and Carry' case or a 'Walk and Work' harness.

It takes Britain's leading dmm manufacturer to appreciate the needs of the dmm user ... worldwide. AVO 2000 Series is the result. Contact us or your usual distributor for further detailed information.

mulineters wher pite GXCe Gnce

certainly less than you think. A bulk purchase has enabled us to offer these superb, fully auto-ranging, $31 / 2$ digit multimeters at a special low price

Supplied complete with batteries. test leads, spare fuse and instruction manual.

Full auto-ranging on both voltage and resistance Current measurement up to $10 A D C$ and $A C$ Unit and range automatically displayed Auto polarity and auto zero Only 5 mW dissipation-200 hours continuous use Zero adjust key to correct for test leads
Audible continuity test function
Range hold function
Audible over-range indication

WEST HYDE

West Hyde Developments Limited Unit 9, Park Street Industrial Estate Aylesbury, Bucks HP20 1ET
Telephone: (0296) 20441. Telex: 83570 W HYDE G
Please send me___SK-6110 Multimeters.
l enclose a cheque/PO for $£$
Please debit my Access/Barclaycard Account No.

Signature:
Name: \qquad
Address:

Credit card or account customers may telephone orders

PRINTED CIRCUITS

 FOR WIRELESS WORLD PROJECTSAudio comoressor//imiter-Dec 1975-1 s.s (stereo)
Cassette recorder-May 1976 - $1 \mathrm{~s} . \mathrm{s}$
Audio compander-July 1976-1 s.s
Audio preamplifier-November 1 y/6-2 s.s
Additional circuits-October 1977-1 s.s
Stereo coder-April 1977-1 d.s. 2 s.s
Low distortion disc amplifier (stereo)-September 1y/7-1 s s
Low distortion audio oscillator-September 1977-1 s s.
Synthesized $f \mathrm{~m}$. transceiver-November 1977-2d.s. 1 s.s
Morsemaker -June 1978-1 d.s.
Metal detector-July 1978-1 d.s
Oscilloscope waveform store-October 1978-4 ds
Regulator for car alternator-August 1978-1 s.s.
Wideband noise reducer-November 1978-1 d s
Versatile noise generator-January 1979-1 s.s
200 MHz frequency meter-January $1979-1 \mathrm{ds}$
High performance preamplifier-February 1979-1 s
High performance preamplifier-February 1979-
Distortion meter and oscillator-July 1979-2 s.s
Distortion meter and oscillator-July $1979-2 \mathrm{~s} . \mathrm{s}$
Moving coil preamplifier-August $1979-1 \mathrm{~s} . \mathrm{s}$.
Multi-mode transceiver-October 1979-10 d.s.
Amplification system-Oct. 1979-3 preamp 1 poweramp
Digital capacitance meter-April 1980-2 s.s
Colour graphics system-April 1980-1 d.s.
Audio spectrum analyser-May 1980-3 s.s.
Multi-section equalizer-June $1980-2$ s.s.
Floating-bridge power amp-Oct. $1980-1$ s.s. (12V or 40 V$)$ Nanocomp 6802 or 6809 - Jan., July, 1981 - 1 d.s. 1 s.s. .
Cassette interface - July, 1981 - $1 \mathrm{~s} . \mathrm{s}$.
Eprom programmer - Jan., 1982
Modular frequency counters - March, 1981 - 8 s.s.
Opto electronic contact breaker (Delco) - April, 1981 - 2 s.s.
Opto electronic contact breake
CB synthesiser - Sept. -1 d.s
Electronic ignition - March, $1982-1$ s.s...
dilled. Prices include VAT and UK postage. Airmail add 30%, Europe add 10%. Insurance 10%. Remittance with order to:

M. R. SAGIN, NANCARRAS MILL, THE LEVEL CONSTANTINE, FALMOUTH, CORNWALL

WW -059EORFURTHER DETALS

a proven top-
quality design
that you'll be proud of
Each kit contains all cabinet components, accurately machined for easy assembly, speaker drive units, crossovers, wadding, grille fabric, terminals, nuts, bolts, etc.
The cabinets can be painted or stained or finished with iron-on veneer or self adhesive woodgrain vynil
Easy foolproof assembly instructions supplied. Set of constructor leaflets sent free on receipt of large S.A.E

Prices: CS1 (As 101) $\mathbf{£ 1 1 0}$ pr.inc. VAT, plus carr./ins. £ 5.50 CS 1 A (simplified L.S3/5A) $\mathbf{f 1 0 3}$ pr. inc. VAT, plus carr./ins. E 5.50 CS3 (as 103.2) $\mathbf{1} 129$ pr. inc. VAT, plus carr./ins. £10.00 CS5 (as Cariton li) $£ 192$ pr.inc. VAT, plus carr./ins. $£ 15.00$ CS7 (as Cantata) £250 pr. inc. VAT, plus carr./ins. £18.00

B
The firm for Speakers

Who but the people who made the micro possible could help you understand it?

TheTexasInstruments Electronic Library.

An in-depth series in understanding today's world of electronics.

The Understanding Electronics Series was specially developed and written to give you an in-depth knowledge of this world.

Each book is comprehensive, yet easy to understand. As informative for the electronics buff as for someone who's simply interested in what's going on today.

Together the library will give you the most complete range of titles available. Take advantage of our introductory offer and choose the book, or books you want from the titles below. You'll find whole new worlds of advanced technology unfolding before you
Everything you've always wanted to know about: 1. Understanding Electronic Control of Energy Systems. lst edition. Ref. LCB 6642. Covers motor, generator, power distribution, heating, air conditioning, internal combustion engine, solar and nuclear systems. Softhound 272 pages. £3.95.

2. Understanding Electronic Security Systems.

1st edition. Ref. LCB 7201. A complete guide covering the basics of hard wired, photosensitive, infrared, ultrasonic and nicrowave systems and their use in different applications. Softhound 128 pages. $£ 3.95$.

3. Understanding Solid State Electronics.

3rd edition. Ref. LCC 3361. The principles of solid state theory. It explains electrical movement, with intermediate tuition on the applications of solid state devices. Softhound 282 pages. $£ 3.95$
4. Understanding Digital Electronics. Ist edition. Ref. LCB 3311 . Describes digital electronics in casy-to-follow stages. It covers the main families of digital integrated circuits and data processing systems. Softhound 260 puges. £3.95.
5. Understanding Microprocessors. lst edition. Ref. LCB 4023. An in-depth look at the magic of the solid state chip. What they are, what they do. Applications of 8 -bit and 16 -bit microprocessors; and design from idea to hardware. Softhound 288 pages. $£ 3.95$.

6. Understanding Computer Science. 1st edition. Ref.LCB 5471.

 This book tells you in everyday English how today's computer has been developed, what goes on inside it, and how you tell it what to do. Softhound 278 pages. $£ 3.95$.
7. Understanding Communications Systems.

Ist edition. Ref. LCB 4521. An overview of all types of electronic communications systems. Softbound 282 pages. £3.95.
8. Understanding Calculator Maths. Ist edition. Ref. LCB 3321. Brings togerher the basic information-formulae, facts, and mathematical tools-you need to "unlock" the real power of the hand-held calculator. Suftoound 230 pages. £3.95.

9. Understanding Optronics. Ist edition Ref. LCB 5472.

Optronics is the application of light and electronics to perform a wide range of useful tasks. From car headlights to missile guidance systems. Softbound 270 pages. £3.95.

10. Understanding Automotive Electronics.

1st edition. Ref. LCB 577 L . Learn how electronics is being applied to automobiles. How the basic mechanical, electrical and electronic functions and the new microprocessors and nuicrocomputers are being applied in innovative ways for vehicle drive train control, motion control and instrumentation. Softbound 288 pages. $£ 3.95$

How to order

Fill in the coupon below or if someone else has already used it, simply: 1. L.ist reference numbers and quantities required.
2. Calculate total order value. Add $£ 1.50$ for postage and packing 3. Send the list, plus your cheque payable to Texas Instruments Ltd, PO Box 50, Market Harborough, Leicestershire. Allow 30 days for delivery.

Texas INSTRUMENTS

VHF FM MOBILE RADIO

! And it's British !

MODEL CT210

* APPROVED TO MPT 1301 \star MODULAR CONSTRUCTION \star RANGE OF ACCESSORIES

MODEL CT210
\star MADE IN U.K. \star COMPETITIVE PRICE \star MULTI-CHANNEL CAPABILITY

Export and Dealer Enquiries Welcome

Com-Tek (MIDS) LTD. 506 Alum Rock Road - Birmingham B8 3HX
Telephone: 021-3266343
Telex: 337000
WW - 044 FOR FURTHER DETAILS

The liehtweight mast with 101 applicetions

The smoothly operated OTM Mast comes fitted with handpump or can be vehicle mounted with 'Power Pack' for extension and retraction. Available in a range of heights up to 15 metres, the OTM mast can provide the ideal answer for:

- Mobile Radio Telephone Environmental-gas
- Police Mobile HO (UHF) sampling collector
- Field Telecommunications
- High level photcgraphy
- Floodlighting
- Meteorology
- Anemometer and Wind
- And a host of other uses Measurement

CIARK MASTS

Find out more about the QTM series by writing or phoning: u.K

CLARK MASTS LTD..(W.W.)
Evergreen House, Ringwood Road, Binstead. Isle of Wight.
England PO 33 3PA
Tel: Isle of Wight (0983) 63691 EUROPE
GENK TECHNICAL PRODUCTS N.V (W.W.) Woudstraat 21. 3600 Genk, Belgium
Telefoon 011-380831
Telex: 86686

TOROIDALS

The toroidal transformer is now accepted as the standard in industry, overaking the obsolete laminated type. Industry has been quick to recognise the advantages toroldals offer in size, weight, lower radiated field and thanks to I.L.P., PRICE.
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline TYPE \& sefiles \& \[
\begin{gathered}
\text { SECONDARY } \\
\text { Whts }
\end{gathered}
\] \& \[
\begin{array}{|c|}
\hline \text { RAMS } \\
\hline \text { Curem } \\
\hline
\end{array}
\] \& PIICE \& \multicolumn{5}{|l|}{- 294 TYPLS TO CHOOSE FROM!} \\
\hline \[
\begin{gathered}
30 \mathrm{VA} \\
70 \times 30 \mathrm{~mm} \\
04 \mathrm{~kg} \\
0
\end{gathered}
\] \& \[
\begin{aligned}
\& 1 \times 010 \\
\& 1 \times 010 \\
\& 1 \times 011 \\
\& 1 \times 012
\end{aligned}
\] \& \[
\begin{gathered}
6.6 \\
9.9 \\
9.942
\end{gathered}
\] \& \[
\begin{aligned}
\& \begin{array}{l}
2.50 \\
1.6 \\
1.25 \\
1.05
\end{array}
\end{aligned}
\] \& £5.12 \& \& AYS Of MALL \& \[
\begin{aligned}
\& \mathrm{F} \text { RECLI } \\
\& \text { QOEA }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { PTYOI } \\
\& \text { TYOR }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { SSNGLE OR } \\
\& \text { DERS }
\end{aligned}
\] \\
\hline Reoulation \& 18013 \& - \(15 \cdot 15\) \& \({ }^{100}\) \& \& \multicolumn{5}{|l|}{\(\star\) S YLER NO QUibble coarentel} \\
\hline \& \(1{ }^{15}\) \& \({ }_{\substack{22+22 \\ 25+25}}^{\text {coin }}\) \& (1) \(\begin{aligned} \& 0.88 \\ \& 0.50\end{aligned}\) \& \& \& \& \& \& \\
\hline \multirow[t]{8}{*}{\[
\begin{gathered}
50 \mathrm{VA} \\
80 \times 35 \mathrm{~mm} \\
0.9 \mathrm{KP} \\
\text { Regulaticn } \\
13 \% \\
13 \%
\end{gathered}
\]} \& 18017 \& \(30 \cdot 30\) \& 050 \& \multirow[t]{3}{*}{} \& TYP \& \multicolumn{2}{|l|}{SEAIES \(\underset{\text { NO }}{\text { SECONDAAY }}\)} \& \multirow[t]{2}{*}{\begin{tabular}{l}
RMS \\
Cutren
\end{tabular}} \& PBICE \\
\hline \& \(2 \times 010\)
\(2 \times 011\) \& \(\stackrel{5 \times 6}{9+9}\) \& \({ }_{2}^{4} 16\) \& \& \& \multirow[t]{2}{*}{\({ }^{6 \times 012}\)} \& \multirow[b]{2}{*}{12. 12} \& \& \multirow[t]{2}{*}{} \\
\hline \& \(2 \times 012\) \& \(\pm \substack{12+12 \\ 15+15}\) \& 2.08 \& \& \multirow[t]{6}{*}{} \& \& \& 938 \& \\
\hline \& \({ }_{2 \times 0}^{2 \times 0}\) \& \({ }_{\substack{15+15 \\ 18+18}}\) \& \({ }_{1} 1.38\) \& \multirow[t]{2}{*}{£5.70} \& \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& 625 \\
\& 511 \\
\& 450 \\
\& 450
\end{aligned}
\]} \& \multirow{3}{*}{\(£ 9.20\)} \\
\hline \& \(2 \times 0\) \& \({ }^{22+22}\) \& 1, 1.13 \& \& \& \& \& \& \\
\hline \& \({ }_{\substack{2 \times 016 \\ 2 \times 017}}\) \& \({ }_{\substack{25+25 \\ 30+30}}\) \& \({ }_{0}^{1.83}\) \& \& \& ¢ \& 25025
\(30+30\)

0 \& \&

\hline \& ${ }_{2 \times 1029}$ \& ${ }^{1,10}$ \& (0.45 \& \& \& | 6×018 |
| :---: |
| 6×0726 |
| 60 | \& ${ }_{\substack{35 \\ 40+45}}$ \& ¢ \& \multirow[t]{2}{*}{}

\hline \& $|$| 2×2029 |
| :--- |
| 2×030 | \& ${ }_{290}^{220}$ \& 0.32

0.20 \& \& \& \& ${ }_{45}^{40} 45$ \& 2602 \&

\hline \multirow[t]{8}{*}{} \& \multirow[t]{2}{*}{${ }^{3 \times 010}$} \& $\stackrel{\substack{6+6 \\ 9+9}}{1}$ \& \multirow[t]{2}{*}{6.64

4.44} \& \multirow[b]{3}{*}{f6.08} \& \multicolumn{2}{|r|}{\multirow[t]{2}{*}{}} \& \multirow[t]{2}{*}{$$
\begin{gathered}
50+50 \\
170 \\
200 \\
200
\end{gathered}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 225 \\
& 204 \\
& 202 \\
& 0.93 \\
& 093
\end{aligned}
$$
\]} \& \multirow[t]{3}{*}{}

\hline \& \& ${ }_{\substack{9+9 \\ 12+12}}$ \& \& \& \& \& \& \&

\hline \& \& $15+15$ \& 266 \& \& \multirow[t]{7}{*}{\[
\left\lvert\, $$
\begin{gathered}
300 \mathrm{va} \\
10 \times 5 \mathrm{va} \mathrm{~m} \\
265 \mathrm{~m} \\
\text { Regualion } \\
6 \%
\end{gathered}
$$\right.

\]} \& \multirow[t]{3}{*}{\[

m $$
\begin{aligned}
& 7 \times 01 \\
& 7 \times 014 \\
& 7 \times 019 \\
& 7 \times 015
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{$15+15$} \& \multirow[t]{3}{*}{\[

$$
\begin{gathered}
1000 \\
80 \\
8832 \\
688
\end{gathered}
$$
\]} \&

\hline \& \& ${ }^{18.18}$ \& ${ }_{1}^{222}$ \& -P/ETi 69 \& \& \& \& \& \multirow[t]{3}{*}{}

\hline \& \& ${ }_{25+25}^{22+22}$ \& 1.61
1.60
1 \& $\stackrel{\text { Varale }}{ }$ \& \& \& \multirow[t]{2}{*}{} \& \&

\hline \& 边3017 \& $\underset{\substack{30+30 \\ 10}}{ }$ \& \[
$$
\begin{aligned}
& 133 \\
& 182 \\
& 072
\end{aligned}
$$

\] \& \& \& 7x016 \& \& \[

$$
\begin{aligned}
& 682 \\
& 600 \\
& 500 \\
& 500
\end{aligned}
$$
\] \&

\hline \& ${ }_{\substack{3 \times 028 \\ 3 \times 129}}$ \& (100 \& $$
\begin{aligned}
& 072 \\
& 036 \\
& 036
\end{aligned}
$$ \& \& \& \& \multirow[t]{2}{*}{$\substack{\begin{subarray}{c}{3+3 \\ 40+35 \\ 40+40} }} \\{\hline} \end{subarray}$} \& \multirow[t]{2}{*}{500

428
375} \& 210.17

\hline \& 3×3030 \& 240 \& \& \& \& 年02765 \& \& \& -

\hline \multirow[t]{4}{*}{$$
\begin{aligned}
& 120 \mathrm{VA} \\
& 90 \times 40 \mathrm{~mm} \\
& 1.2 \mathrm{~kg} \\
& \text { Regulation } \\
& \hline 11 \%
\end{aligned}
$$} \& 9×10 \& \& 000 \& \multirow[b]{3}{*}{f6.90} \& \& \multirow[t]{2}{*}{coly} \& \multirow[t]{2}{*}{${ }_{50} 5$} \& \multirow[t]{2}{*}{(3.00} \& \multirow[t]{2}{*}{}

\hline \& ${ }_{4} 8011$ \& $\underset{12+9}{9+12}$ \& ${ }^{6.66}$ \& \& \& \& \& \&

\hline \& 4 $\begin{aligned} & 4 \times 012 \\ & 4 \times 013\end{aligned}$ \& cotis \& \& \& \& ($\begin{aligned} & 7 \times 29 \\ & 7 \times 030\end{aligned}$ \& 240 \& 36
1
18 \&

\hline \& \& ${ }^{18,18}$ \& ${ }_{2}^{3.33}$ \& \multirow[t]{5}{*}{} \& \multirow[t]{6}{*}{} \& \multirow[t]{2}{*}{8×016

80017} \& \multirow[t]{2}{*}{$\underset{\substack{25+25 \\ 30+30}}{ }$} \& \multirow[t]{3}{*}{| 1000 |
| :---: |
| 833 |
| 714 |
| 14 |} \& \multirow[b]{3}{*}{f13.53}

\hline \& 4×015
4×16 \& ${ }_{2}^{22+22}$ \& 272 \& \& \& \& \& \&

\hline \& \& $c30+3035+35$ \& 200 \& \& \& | 88018 |
| :--- |
| 8×80 |
| 8×026 |
| 8 | \& ${ }_{\substack{35 \\ 35+35}}$ \& \&

\hline \& ${ }_{\substack{4 \times 018 \\ 4 \times 028}}$ \& ${ }_{\substack{35+35 \\ 110}}$ \& 171

109 \& \& \& | 88026 |
| :--- |
| 8×025 |
| |
| 0 | \& \& ¢ 625 \& \multirow[t]{2}{*}{}

\hline \& \& | 220 |
| :--- |
| 240 | \& O

0
0
0 \& \& \& ${ }_{8}^{8 \times 8033}$ \& (10.50 \& [5. 5.00 \&

\hline \& \& 240 \& \& \& \& $\underset{\substack{8 \times 4 \times 28 \\ 8 \times 288}}{ }$ \& 110 \& 454 \&

\hline ${ }_{10 \times 4 \mathrm{VA}}^{10 \times \mathrm{mm}}$ \& (\& $\underset{\substack{9.9 \\ 12+12}}{1}$ \& ¢ $\begin{aligned} & 8.69 \\ & 6.69\end{aligned}$ \& \multirow{8}{*}{\[
£ 7.91

\]} \& \& \[

\left|$$
\begin{array}{l}
8 \times 209 \\
8 \times 3030
\end{array}
$$\right|
\] \& 220

240 \& 227
208 \&

\hline ${ }^{1.8 \mathrm{Kg}}$ Regulaion \& 5x013 \& \& ${ }_{4}^{5.34}$ \& \& \multirow[t]{6}{*}{} \& \multirow[t]{7}{*}{} \& \multirow[t]{7}{*}{$$
\begin{aligned}
& 30+30 \\
& 35+35 \\
& 3+50 \\
& 0+40 \\
& 4+45 \\
& 50+50 \\
& 55+55 \\
& 120 \\
& 220 \\
& 240
\end{aligned}
$$} \& \multirow[t]{7}{*}{} \& \multirow{7}{*}{}

\hline $8{ }^{\text {8, }}$ \& 5×015 \& ${ }_{\substack{22+22}}^{25}$ \& 363 \& \& \& \& \& \&

\hline \& ${ }_{\substack{5 \times 16 \\ 5 \times 017}}$ \& \& | 3.20 |
| :--- |
| 2.65 | \& \& \& \& \& \&

\hline \& (5×1018 \& $\substack{3+35 \\ 40+40^{\text {a }} \text { - }}$ \& 228
200 \& \& \& \& \& \&

\hline \& \& ${ }_{\substack{40+40 \\ 110}}$ \& \& \& \& \& \& \&

\hline \& \& ${ }_{220}^{220}$ \& 0.72
0.66 \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

IMPOATANT: Aegulation - All vottages quoted ars FULL LOAD. Please add regulation figure to socondary voltage to obtain ott load voltage.
The benefits of ILP toroidal transformers
ILP toroidal transtormers are only half the weight and height of their laminated equivalents, and are available with $110 \mathrm{~V}, 220 \mathrm{~V}$ or 240 V primaries coded as follows For 110 V primary insert " 0 " in place of " X " in type number
For 220 V primary (Europe) insert " 1 " in place of " X " in type number
For 240 V primary (UK) insert " 2 " in place of " X " in type number
How to order Freepost:
Use this coupon, or a separate sheet of paper, to order these products, or any products trom other ILP Electronics advertisements. No stamp is needed if you address to Freepost Cheques and postal orders must be crossed and payable to iLP Electronics Lid Access and Barclaycard welcome. All UK orders sent within 7 days of receipt of order for Access and Barclaycand weacome
single and small quantity orders.
Single and smair quantity orders.

Please send
Total purchase pricePostal Orders \square
Int. Money Order
Debil my Access/Barclaycard No
Name
Address

Signature

Post to: ILP Electronics Ltd., Freepost 5, Graham Bell House,.Roper Close Canterbury CT2 7EP, Kent. England
lephone Saies (0227) 54778: Technical (0227) 64723: Telex 965780
EA $\begin{aligned} & \text { (a division of } \\ & \text { ILP Electronics L.d) }\end{aligned}$
EA $\begin{aligned} & \text { (a division of } \\ & \text { ILP Electronics L.d) }\end{aligned}$ TRANSFORMERS WW-085 FOR FURTHER DETAILS

EP4000

EPROM EMULATOR PROGRAMMER

The microprocessor controlled EP4000 will emulate and program all the popular EPROMs including the 2704, 2708, 2716(3), 2508, 2758, 2516, 2716, 2532 and 2732 devices. Personality cards and hardware changes are not required as the machine configures itself for the different devices. Other devices such as bipolar PROMs and 2764 and 2564 EPROMs are programmed with external modules.

The editing and emulation facilities, video output and serial/parallel input/output provided as standard make the EP4000 very flexible to allow its use in three main modes:

- As a stand alone unit for editing and duplicating EPROMs.
- As a slave programmer used in conjunction with a software development system or microcomputer.
- As a real time EPROM emulator for program debugging and development (standard access time of the emulator is 300 ns).

Data can be loaded into the $4 \mathrm{k} \times 8$ static RAM from a pre-programmed EPROM, the keypad, the serial or parallel ports and an audio cassette. Keypad editing allows for data entry, shift, move, delete, store, match and scroll, and a $1 \mathrm{k} \times 8$ RAM allows temporary block storage. A video output for memory map display, as well as the built-in 8 digit hex display allows full use of the editing facilities to be made.

Items pictured are: EP4000 Emulator Programmer - £545 + £12 delivery; BSC buffered simulator cable - $£ 39$; MESA 4 multi EPROM simulator cable £98; 2732A Programming adaptor £39; 2764 Programming adaptor - £64; - 2564 Programming adaptor - £64;

BP4 (TEXAS) Bipolar PROM Programming module - £190
Also available (not shown): VM10 Video monitor - £99; UV141 EPROM Eraser with timer - £78; GP100A 80 column Printer - £225; \qquad Pl100 interface for EP4000 to GP100A - £65.

VAT should be added to all prices

GP Industrial Electronics Ltd.

Unit E, Huxley Close, Newnham Industrial Estate, Plymouth PL7 4JN

Write or phone for more details

GP Industrial Electronics Ltd.

ambit
 INTERNATIONAL

THE MOST COMPREHENSIVE RANGE OF COMPONENTS, KITS AND MODULES IN THE WORLD \& THERE'S ONLY ROOM FOR A FRACTION HERE, GET THE CATALOGUEAND FIND THE REST

2 MOSEET of stages MOSFET Mixer,
fitet PiN Dioone AGC. Tuning voltage
for $88.108 M H Z$ is 2.8 V . Buttored Lo Outbut, AGC inpu
$145 \times 70 \times 24 \mathrm{~mm}$

7255 The latest complete FM Tunarhead trom AF input to
stereo output. MOSFET AF stages, $H A 11225$ IF and
oder
225s spacial offer price $£ 30.00$ plus VAT
'edited' and shank 911225A is the 7230 crited and shrunk into s screasnec
matal case, $97 \times 56 \times 24 \mathrm{~mm}$. unit is cosenel $97 \times 56 \times 24 \mathrm{~mm}$, The

Thitect to use with | Stock No | | |
| :--- | :--- | :--- |
| 40.91225 | Buile | 1.24 |
| 20.82 | $25+$ | | 944378 Hyperti' series decoder module sudlo preamp with 26/3BkHZ pAlior tore fint fitering. $\begin{array}{llll}\text { Stock NO. } & & 1.24 & 25+{ }^{2} \\ 40.04378 & \text { Built } & 19.95 & 18.05\end{array}$ DFCM500 wide range digital frequenc capacitance meter. Frequency ranges;

0. $1 \mathrm{MHz}, 1-50 \mathrm{MHz}$ and 80.500 MHz .8 dicif O. $1 \mathrm{MMz}, 1-50 \mathrm{MHz}$ and 80.500 MHz 8 digit
O display, mains or Ni-Cad battery operation
Stock No.

1.24 $\begin{array}{llll}40.01500 & \text { Kit } & 95.95 & 86.50\end{array}$ AUTOBRIDGE ranging power meter. Complete Kit: All PCefsboard mounted components, meters, casp | (undratiod) transformer erc. |
| :--- |
| Stock No $40-40400$ |

FET DIP OSCILLATOR
An essential piece of test equipment for the RF construtior GDO or WM function covern
215 MHz in flus renges. Audio and meter indication. Kit includes, fibre glass PCB, all com.
ponemts, all hardware, punch, painted and screen
printed case, wire erc. for coits and printed scale. $\begin{array}{llll}\text { Stock No: } \\ 40.16215 & \text { Kit } & 1794 & 25+ \\ & & & \end{array}$ 10.MHz SSE GENERATOR PCB All components, eight-pole erystal
filter
Stock No. $€ 29.65$

R\&EW PROJECT AND DATABRIEF PCBs High quality glass fibre printed circuit boards

\& Electronics Wortabriafs Putlircuit boards \& Electronics World.
27 MHz Deviation Mater

TV Pate

MCl 145151
2 mPre
KB4417 (Undrilied)
0.30 V PSU
2 mPAMk

ULN 3859 (
SSB Exciter
SSB Exciter
HA12017

2m PRE-AMP
2mPRE-AMP
V ory compact low. noiss MOSFET 2 m pre.
amp. Gain 22 d . Noise figure: less than 1.5 dB
amp. Gain 22d8. Noise figure; less than 1.5 d
$1 / \mathrm{mand}$ ofp impedance; 50 ohm size; 34×9
$\times 15 \mathrm{~mm}$ From Aprl| 82 ReEW

$\begin{array}{llll}\times 15 \mathrm{~mm} \text {. } & \text { From April } 82 \text { R\&EW. } & 1.24 & 25+ \\ \text { Stock } \\ 40.14400 \quad \text { Kit } & 2.55 & \end{array}$
70 cm PRE.AMP

2 m POWER AMP
20 watt 144 MHz linear power amplifier. $10 d \mathrm{~B}$ gain. 2 W indut 20 W output. Automatic
swithed relay By-passes power amp in recaive
mode Oeveloped from original class C version switched rolay. By-passes power amp in receive
mode Oeveloped from original casss C version
in Dec 81 A\&EW. High power output relay, $\begin{array}{lll}\text { Predrilled hearsing. } & \\ \text { Soly. } \\ \text { Slock No. } & 1-24 & 25+ \\ 40-14421 \text { Less Preamp } & 28.50 & 25.65 \\ 40-14422 \text { Wirh Preamp } & 30.40 & 27.36\end{array}$

AND THERE'S PLENTY MORE IN THE CATALOGUE 7Op inc. RFTAIL SHOP OPENING FOURS Monday to Thursday 8.30-6.30

NOW IN STOCK MF 10 - National's new Dual Friday 8.30-8.30 Saturday 9.00-5.30 Switched-Capacitor Filter

Access + Barclayc ard orders accepted Price $\mathbf{£ 5 . 0 5}$

ALL PRICES SHOWN EXCLUDE VAT. P\&P 50p per order. AMBIT INTERNATTIONAL DEPT. WW 200 Marth Fervire Rand, Brentuand, Essen TELEPHONE (STO 0277) 230909 TELEX 995194 AMBIT G POSTCCOE CM144SG

BUILD A PAIR OF MICRO MONITORS!

interesting work and you'll have
a sureerb pair of compact
loudspeakers for about halt the price of equivalent 'assembled' models.
The Wilms/ow Audio Micro
Monitor will stand comparison with any speaker of similar size (at any price!). Don't take our word for it - call for a

The Micro Monitor kit contains all the components needed - a pair of cabinets in flat-pack form - accurately machined for easy assembly, all drive units, crossover networks, acoustic wadding, grille foam, velcro, nuts and bolts, etc. No electronic or woodworking knowledge required simple, foolproof instructions supplied. The cabinets can be stained, painted or finished with iron-on veneer. Dimensions of assembled cabinet: $32 \times 24 \times 20 \mathrm{cms}$. Suitable for amplifiers of $20-50$ watts.

Price: $\mathbf{£ 1 1 2 . 9 5}$ per pair including VAT. Carriage and insurance $£ 5.50$
 Animi ${ }_{0625}^{829599}$ The firm for Speakers

35/39 Church Street, Wilmslow, Cheshire SK9 1AS
1982 Catalogue $-£ 1.50$ post free

WW - 050 FOR FURTHER DETAILS

Sowter

Transformers

With 40 vears' experience in the design and manufacture of several hundred thousand transformers we can supply

AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE YOU NAMEIT! WE MAKEIT! OUR RANGE INCLUDES

Microphone transformers (all types), Microphone Splitter/Combiner transformers, Input and Output transformers, Direct Injection transformers for Guitars, Multi-Secondary output transformers, Bridging transformers, Line transformers Line transformers to G.P.O. Isolating Test Specification, Tapped impedance transformers (all types), Miniature transformers, Microminiature transformers for PCB mounting, Experimental transformers, Ultra low frequency transformers, Ultra linear and other transformers for Transistor and Valve Amplifiers up to 500 watts, Inductive Loop Transformers, Smoothing Chokes, Filter, Inductors, Amplifier to 100 volt line transformers (from a few watts up to 1,000 watts), 100 volt line transformers to speakers, Speaker matching transformers (all powers), Column Loudspeaker transformers up to 300 watts or more.
We can design for RECORDING QUALITY, STUDIO QUALITY, HI-FI QUALITY OR P.A. QUALITY. OUR PRICES ARE HIGHLY COMPETITIVE AND WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS. Many standard types are in stock and normal dispatch times are short and sensible
OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES, MIXING DESK MANUFACTURERS, RECORDING STUDIOS, HI-FI ENTHUSIASTS BAND GROUPS, AND PUBLIC ADDRESS FIRMS. Export is a speciality and we Send for our questionnaire which when completed, enables us to past, etc. tions by return.

E. A. Sowter Ltd.

E. A. SOWTER LTD. (Established 1941) : Reg. No. England 303990 The Boat Yard, Cullingham Road, lpawich IP1 2EG, Suffolk P.O.Box 36, Ipswich, IP1 2EL, England Phone: 047352794 and 0473219390

Telex 987703G Sowter

Thandar's unoeatable price/perormance combinatior means avery engineer, serviceman and echnician can erjoy the benefits offull performance portable test instruments. Zuality and reliability has been prought to a wide range of low cost instrumentation From multi-
meters through to logic analysers Thandar have applied the knowledge gained through a historv of innovative electronics to give you robust instruments with professional specifications versatile enough for bench or field use at prices that are hard to beat.
Most of the products in the range
can be combined with accessories which expand applicat วาะ beyond the realms of lows cost testing. Mains or batte y ojeration anc low waight make them truly the most portable instruments available today. All Thandar instruments carry a one-year warranty.

PUTTING THE BEST WITHIN YOUR GRASP

VERTICAL RANGE FROM 3-10 SOCKETS ALL EX-STOCK! SPECIALS TO ORDER

WHEN

 IT COMES TO POWER FOR RACKS IT MUST BE OLSON

THE RELAY RACE IS ON!

We have relays of all types, to cater for most of your requirements. Listed is a selection.

PLUG-IN (BPO 3000), BPO 1000 MINIATURE LEVER KEYS, CRADLE TYPE DIL REED, PC SERIES 65 POWER RELAY MR16 SERIES, PCB MOUNTING RP SERIES, SR26 TYPE, B15 TYPE, $07+12$ SERIES, KL SERIES, 5G SÉRIES, 35 SERIES CRADLE TYPE, 29 SERIES.

SAFEBLOC 250V. A.C. (single phase mains) ONLY £5.45 - NO EXTRAS!

Contact us for detailed stocklist
Trade and Export enquiries welcome

Cartentery Cartensell Cartoreny
CROTECH Oscilloscopes
These are brand-new instruments

5 mV built-in
component tester $£ 150$ 303315 MHz 1 Trace 5 mV battery operation
303415 MHz 2
Trace 5 mV battery operation $£ 360$ 313115 MHz 2 Trace 5 mV built-in component tester $\mathbf{6} 240$ 333730 MHz 2 Trace 5 mV with signal delay 391

Prices exclude d

uset, guaranteed test equipment,
callibrated to manufacturers' original specification.
Carston Electronics Ltd., Shirley House, 27 Camden Road,
London NWi SNR. Tel: 01-2675311. Telex:23920(Hours Monday to Fridăy 9.30 am 105.00 pm - lunch $1-2 \mathrm{pm}$). Prices exclude delivery \& VAT.

MIDWICH COMPUTER CO LTD
DEPT WW, RICKINGHALL HOUSE, RICKINGHALL, SUFFOLK IP22, THH
TELEPMONE (0379) DISS 89875 1

LOW PGET PROFEGEIONAL TEGT INETAUMENTS

WW - 016 FOR FURTHER DETAILS

GONRTEEANA XLR CONNECTORS

Line Female A3F
Line Maie A3M
61.59
$E 136$

Chassis Fermale O3F
Chassis Male D3M
3.04
E1. 19

(T) NEUTRIK $\begin{array}{lr}\text { Latchless Chassis NC3-FZ } & \text { C0.67 } \\ \text { Line female NC35CC } & \text { ©1.34 }\end{array}$
 XLR CONNECTORS
 $\begin{array}{llll}\text { ¢1.34 } & \text { Latchless Chassis Male NC3-MZ } & \text { Line Male NC3-MC }\end{array}$ Fernale Chassis NC3-FP $\quad \mathbf{E 1 . 6 5} \quad$ Chassis Male NC3-MP XLR LNE MAIN SERIES XLRLNE 11 C XLRNE

 BELCLERE AUDIO TRANSFORMERS EN643 Ratio $1+1.6 .45+6.45$. Frea. $40 \mathrm{HZ}-25 \mathrm{KHz}$. PRI $150 / 600 \mathrm{n}$.
$£ 4.15$
$E 1.30$

 WW-089 FOR FURTHER DETAILS

Superbattachécases atno-nonsenseprices!

With a saving of $£ 10$ on normal retail price this is a reader offer you just cannot afford to miss!

The 'Expander' is illustrated opposite ($171 / 2$ " $\times 121 / 2$ $\times 41 / 2^{\prime \prime}$) and is available in a choice of three prestigious colours.

The cover is tough, easy to clean 'poly' which is stitched and welded for durability.

The interior is fully lined and pocketed in a matching colour.

Maximum security is offered by the dual combination locks

The 'Executive' $\left(171 / 2^{\prime \prime} \times 121 / 2\right.$ " $\times 3 \frac{1}{2}$ ") is identical in every respect except the deletion of the expander facility. This offer carries a 'no-quibble' money back guarantee

QUALITY ATTACHÉ CASES FROM

WW - 079 FOR FURTHER DETAILS

An Approved Professional Source.

 Teliphone: Orpington (0689) 27099. Telex: 896141.

DIL compatible configurations
CMOS and TTL outputs
Wide temperature ranges
Frequencies one pulse per day to 60 MHz Many standard frequencies from stock

More details of specifications from

Interface
Quartz
Devices
Limited
29. Market Street

Crewkerne
Somerset tai8 7uu
Crewkerne (0460) $7 \$+33$ Telex 4288 inface

WW - 058 FOR FURTHER DETAILS

RADIDCODE CLDCKS

are powerful and comprehensive instruments which receive, decode and analyse time-coded standard frequency transmissions to provide accurate, secure and completely automatic time/calendar or synchro nisation systems

Applications

Automatic master clock and slave controller.

- Synchronisation of separate equipment and events Programmable energy management system. Computer clock/calendar with battery backup. Data logging and time recording. Process and equipment control. Broadcasting, Astronomy, Navigation.
Satellite tracking
If you have a time or synchronisation problem, write or phone for further details of our portable and new microcomputer-controlled Radiocode Clocks.

Circuit Services, 6 Elmbridge Drive
Ruislip, Middlesex. Ruislip 76962

WW-087 FOR FURTHER DETAILS

Sinclair ZX Spectı

16K or 48K RAM... full-size movingkey keyboard... colour and sound.... high-resolution graphics... From only モ125!

First, there was the world-beating Sinclair ZX80. The first personal computer for under $£ 100$.

Then, the ZX81. With up to 16 K RAM available, and the ZX Printer. Giving more power and more flexibility. Together, they've sold over 500,000 so far, to make Sinclair world leaders in personal computing. And the ZX81 remains the ideal low-cost introduction to computing.

Now there's the ZX Spectrum! With up to 48 K of RAM. A full-size moving-key keyboard. Vivid colour and sound. Highresolution graphics. And a low price that's unrivalled.

Professional powerpersonal computer price!

The ZX Spectrum incorporates all the proven features of the ZX81. But its new 16K BASIC ROM dramatically increases your computing power.

You have access to a range of 8 colours for foreground, background and border, together with a sound generator and high-resolution graphics.

You have the facility to support separate data files.

You have a choice of storage capacities (governed by the amount of RAM). 16 K of RAM (which you can uprate later to 48 K of RAM) or a massive 48 K of RAM.

Yet the price of the Spectrum 16K is an amazing $£ 125$! Even the popular 48 K version costs only $£ 175$!

You may decide to begin with the 16 K version. If so, you can still return it later for an upgrade. The cost? Around $£ 60$.

Ready to use today, easy to expand tomorrow

Your ZX Spectrum comes with a mains adaptor and all the necessary leads to connect to most cassette recorders and TVs (colour or black and white).

Employing Sinclair BASIC (now used in over 500,000 computers worldwide) the ZX Spectrum comes complete with two manuals which together represent a detailed course in BASIC programming. Whether you're a beginner or a competent programmer, you'll find them both of immense help. Depending on your computer experience, you'll quickly be moving into the colourful world of $Z \times$ Spectrum professional-level computing.

There's no need to stop there. The ZXPrinter-available now- is fully compatible with, the ZX Spectrum. And later this year there will be Microdrives for massive amounts of extra on-line storage, plus an RS232 / network interface board.

Key features of the

 Sinclair ZX Spectrum- Full colour-8 colours each for foreground, background and border, plus flashing and brightness-intensity control.
- Sound-BEEP command with variable pitch and duration.
- Massive RAM-16K or 48K.
- Full-size moving-key keyboard-all keys at normal typewriter pitch, with repeat facility on each key.
- High-resolution-256 dots horizontally x 192 vertically, each individually addressable for true highresolution graphics.
- ASCII character set-with upper-and lower-case characters.
- Teletext-compatible-user software can generate 40 characters per line or other settings.
- High speed LOAD \& SAVE-16K in 100 seconds via cassette, with VERIFY \& MERGE for programs and separate data files.
- Sinclair 16K extended BASICincorporating unique 'one-touch' keyword entry, syntax check, and report codes.

The ZX Printeravailable now

Designed exclusively for use with the Sinclair ZX range of computers, the printer offers ZX Spectrum owners the full ASCII character set-including lower-case characters and high-resolution graphics.

A special feature is COPY which prints out exactly what is on the whole TV screen without the need for further instructions. Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZX Printer connects to the rear of your ZX Spectrum. A roll of paper (65 ft long and 4 in wide) is supplied, along with full instructions. Further supplies of paper are available in packs of five rolls.

The ZX Microdrivecoming soon

The new Microdrives, designed especially for the ZX Spectrum, are set to change the face of personal computing.

Each Microdrive is capable of holding up to 100 K bytes using a single interchangeable microfloppy.

The transfer rate is 16 K bytes per second, with average access time of 3.5 seconds. And you'll be able to connect up to 8ZX Microdrives to your ZX Spectrum.

All the BASIC commands required for the Microdrives are included on the Spectrum.

A remarkable breakthrough at a remarkable price. The Microdrives are available later this year, for around $£ 50$.

ZX Spectrum software on cassettes-available now

The first 21 software cassettes are now available directly from Sinclair. Produced by ICL and Psion, subjects include games, education, and business/ household management. Galactic Invasion...Flight Simulation... Chess. History ...Inventions ...VU-CALC...VU-3D ... 47 programs in all. There's something for everyone, and they all make full use of the Spectrum's colour, sound and graphics capabilities. You'll receive a detailed catalogue with your Spectrum.

RS232/network interface board

This interface, available later this year, will enable you to connect your ZX Spectrum to a whole host of printers. terminals and other computers.

The potential is enormous. And the astonishingly low price of only £20 is possible only because the operating systems are already designed into the ROM.

Sinclair Research Ltd, Stanhope Road, Camberley, Surrey GU15 3PS.
Tel: Camberley (0276) 685311.

How to order your ZX Spectrum

BY PHONE-Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day. BY FREEPOST - use the no-stamp needed coupon below. You can pay by cheque, postal order, Access,

Barclaycard or Trustcard
EITHER WAY-please allow up to 28 days for delivery. And there's a 14-day money-back option, of course. We want you to be satisfied beyond doubt - and we have no doubt that you will be.

To: Sinclair Research, FREEPOST, Camberley, Surrey, GUI5 3BR. Order				
Qty	Item	Code	Item Price §	
	Sinclair ZX Spectrum-16K RAM version	100	125.00	
	Sinclair ZX Spectrum - 48K RAM version	101	175.00	
	Sinclair ZX Printer	27	59.95	
	Printer paper (pack of 5 rolls)	16	11.95	
	Postage and packing: orders ufder £100	28	2.95	
	orders over £100	29	4.95	
			Total £	
Please tick if you require a VAT receipt \square				
* l en	*Please charge to my Access/Barclaycard/Trustcard account no.			
as applicable				
Signature				
PLEASE PRINT				
Name: Mr/M				
Address				
$\perp \mid 1$				
FREEPOST-no stamp needed. Prices apply to UK only. Export prices on applicat				

Amcron industrial
\star POWER RESPONSE DC $-45 \mathrm{KHz}+1 \mathrm{~dB}$
\star OUTPUT POWER IN EXCESS OF 1.5KW INTO 2.75 Ohm LOAD (CONTINUOUS R.M.S.)
\star D.C. OUTPUT 20 AMPS AT 100 VOLTS OR $2 K V A$

* HARMONIC DISTORTION LESS THAN 0.05\% DC-20KHz AT 1kW INTO 6 OHMS.
* PLUG-IN MODULES: CONSTANT VOLTAGE/CURRENT, PRECISION oscillators.
* UNIPOLAR AND BIPOLAR DIGITAL INTERFACES, FUNCTION

GENERA TORS, AND MANY OTHERS

* OUTPUT MATC̄HING TRANSFORMERS AVAILABLE TO MATCH̄ VIRTUALLY ANY LOAD.
\star FULL OPEN AND SHORT CIRCUIT PROTECTION GUARANTEED STABLE NTO ANY LOAD
* TWO UNITS MAY BE CONNECTED TO PROVIDE UP TO 4kW
* INTERLOCK CAPABILITY FOR UP TO EIGHT UNITS.
* 3-YEAR PARTS AND LABOUR WARRANTY.
* UNITS AVAILABLE FROM 100VA-12KVA.

For full details on all Amcron Products write or phone Chris Flack
Model - M600
P.O. BOX 3
ATTLEBOROUGH

NORFOLK NR17 2 PF
Tel: 0953-452477

PROFESSIONAL INDUSTRIAL ELECTRONICS WW - 031 FUR FURTHER DETAILS

SOME RECENT TV CHASSIS Servicing notes on the Thom TX9 and HitachiNPBCO chassis.

A VINTAGE TV RESTORATION

How an HMV Model 905, dating from 1938, was restored to working order.

TEST REPORT

A review of the Manor Supplies Mk. V test pattern generator.

MILLER ON WORKSHOPS
Service departments vary from the mythical to the abysmal.
Chas E. Miller on some he's worked in or visited over the years.

QUICK CHECKS - PYE 725 CHASSIS
How to tackle basic faults on this and related Pye solid-state colour chassis.
PLUS ALL THE REGULAR FEATURES

INSTANT PRINTED CIRCUITS!!

Make your own - to professional standards - within minutes using either "Fotolak" Light-sensitive Aerosol Lacquer or Pre-coated board. No Darkroom or Ultra-violet source needed!

Ferric Chloride........... $£ 0.60$ (45p) Acetate Sheet............... £0.15 (15p)

Copper-clad Fibre-glass Boards: Single-sidedf2 ft. sq. (45p) Double-sided.... $\mathbf{E 2} 25 \mathrm{ft}$. sq. (60 p)
Pre-coated Fibre-glass Board:
 $8^{\prime \prime} \times 9^{\prime \prime} \ldots . . . \mathrm{£} 3.50(45 \mathrm{p}) \quad 24^{\prime \prime} \times 12^{\prime \prime} \ldots \mathrm{f} 13(\mathrm{£} 1.20) \quad$ Eurocard $\mathrm{E} 1.25(25 \mathrm{p})$

Double-sided Board (all sizes) add 20\%
Postage individual items in brackets. Maximum charge $£ 2$ per order
12V FLUORESCENT LGGHTMG! FANTASTC BARGAN!
21" 13-watt Batten Type (complete with tube) 6 (f 1.20) Kit Form:f5 (£1.20). Inverter Transformers only:f1 (30p) WhITE HOUSE ELECTRONICS pra sanos, penzance troi str Talephens: Bameo (073-678) 2328

\section*{| H° | RADFORD |
| :--- | :--- |}

Audio Measuring Instruments, Audio Amplifiers, Loudspeakers and Loudspeaker Components for the professional and enthusiast

RADFORD AUDIO LTD.
10 BEACH ROAD WESTON-S-MARE, AVON BS23 2AU

TEL. 0934416033
TRIO 20 MHZ DUAL TRACE 'SCOPES
140mm Tube: OC to $22 \mathrm{MHz}: 5 \mathrm{mV}$ Sensitivily: CH2 Invert:
CS1820 Oelayed sweep: $0.2 \mu \mathrm{sec}$ to 0.5 sec 8 weep.
Modes CHI. CH2. OUAL and ADO.
List Price Our Prica $\begin{array}{ll}\text { List Price } & \text { Our Price } \\ £ 539.00 & £ 420.00 \\ & \end{array}$ inc. VAT in
(UKC/P£4) CS 1565A NOR. AUTO. VIDEO: 0.54 sec to 0.5 sec sweep: Modes CHI. CH2. ALT.CHOP an List Price Dur Price
E368.00 £368.00
inc. VAT
L 299
SAVE $£ 69$
2 YEAR GUARANTEE (UK C/P E4) inc. VA

```
[180]
```


Hand Held Models $3 / 2$ Digit LCO (UK C/P 65p)
12925 range 0.8% basic 10 A AC/0C rotary switches |Keithley| \quad E79.35 130 as model 129 but 0.5 obasic
(Also see abovel
£ 102.35 Bench Models $31 / 2$ dight LCO unless stated (UK C/P 90p)

ANALOGUE MULTIMETERS - GENERAL RANGE Low cost reliable meters |All supplied wilh batts/leads) (UK 6/P 55p)
BANANA 15 range pocket $20 \mathrm{~K} / \mathrm{Volt}$ plus cont. buzzer fillus) $£ 20.64$ ETIO2 14 range 2kNol pocke $\mathbf{E . 5 . 5 0}$ NH56R 22 range pocket 20K/Vo Yn360TR 19 range plus He tes KRT5001 16 range 10 amp OC range double 50K/Volt
ST303TR 21 range plus He ST303TR 21 range plus He Te $20 \mathrm{k} / \mathrm{Volt}$ AT1020 18 range Oeluxe 2 KV £.16.95 -

GENERATORS $\begin{gathered}\text {. } \mathrm{C} \text { * Pulse }\end{gathered}$

(UK C/P E1)

auol
AUDIO 4 band Sine/SO output
TE22DMax distorlion 1\% 20HZ $E 59.95$
LAG27 Max distortion 0.5-1\%
LLEAOEAI 10HZ-1MHZ $£ 86.25$ LAGI 20 A 5 band 10Hz-IMHZ Sine/SO $0.055 .0 .8^{\%} \%$ dist. $£ 146.00$ LAG125 As LAGI 120A Dut 0.02\% dist. (LEADERI AG203 10HZ.1MHZ 5 band $£ 273.00$ Sine/SO (Thiol) RF (All with hint/Ex mot E129.95
oulput]
TE200 100 kHz - 100 MHZ 6 band [300 MHZ harm|
 FUNCTION (AII Sine/SO/Triangle/ TTL etc.).
5020 (HZ 200KHZ ISABTRONICSI T6100 lHZ - 100KHZ (THANOAA) $£ 90.00$ TG10202HZ 2MHZ [THAMOAR1 £90.85
TG102 0.2HZ 2MHZ (THANOAAI)

THAK500 23 range plus 12 A OC pius cont. buzzer 30K/Volt $£ 23.95$ 168 m 36 range large scale 10 A AC/DC 50K/Volt AC/DC Hfe lest 50 meg ohm 1KV AC/0C $100 \mathrm{~K} / \mathrm{Volt}$ Choose from UK's largest range

PULSE
TG105 5HZ - 5MHZ Various outputs (THANDAR) 5 MHZ [GSC]

Also in stock

LDM17020HZ-20KHZ distortion meter \quad E281.75 FGI 3000.002 Hz 2 mhz sweep \quad E377.20 LSG231 100 MHZ FM signal generator CR740 RES/CAP/INO Bridge VT72 FET multimeter 171.35 Her2 FET. multimeter and transistor LTC907 Sinnat injector/race 147.20 transistor checker

100 KHZ TO 30 MHZ
6 Band Trio AF Generator $\mathrm{Int} / \mathrm{Ext}$ M00. Variable $0 / \mathrm{P}$ to 100 mV Am int 400 Hz MOO.
sfecit paice $£ 59.95$
 (UK C/P 52) VAT AG202A matching 20 HZ to 200 KHZ
Audlo Generator £ 78.00 inc. VAT (UK C/P E2)

ANALOGUE

 MULTIMETERS

PRDFESSIONAL RANGE (UK C/P £ 1.20) All featuring AC/DC Volis/Current and Ohms ranges with Batis/leads MAJOR 20K 29 range 20K/V. 21/2A DC 121/A AC IPANTEC) E33.50 MAJOR 50 K 29 range $50 \mathrm{~K} / \mathrm{V}$ 21/2A OC 121/2A AC IPANTEC) £40.25 PAN3001 34 range 40K/V. 5A AC/OC 50 Meg. [PANTECI £59.80 Also 500 KHZ - 500 MHZ signal injector and 3 range cap. meter
PAN3003 42 range 1 Meg/V. 5A
AC/OC 1 सA FSO (PANTECI
NOTE $3001 \& 3003$ Electronic
MNOTE 3001 \& 3003 Electron
Protection Mirror Scales)

PORTABLE TV COLOUR

 MC1018 optutrns/dots/ines etc. Bulit in
nicads. Pal 8 UMF only Complation nicads Pal 8 UFff only. Comple nicadi Pal 8 Uhf onlyd Complat
with charger. case and leads.

VARIABLE
 POWER

SUPPLIES

Mains Input-Volts/
Amps meter (UK C/P $£ 1$)
Amps meter (UK C/P © 1
PP241 $0 / 1212 / 24$ Volt
PP2410
D/I amp

PP2430/12. 12/24 Voll. 0/3 amp.
PS 1307
 PSI307S twin meter 8-15V 0/7A
\qquad

DIRECT READ

 TEMPERATURE TM301-50 C to +750 C LCO readout. Comple thermocouple $£ 68.43$

OSCILLOSCOPE PROBE

KITS UK C/P 50p per 1 to 3 ALSO AT HENRYS RAOIO. 404/40S EDGWARE ROAD. LONDON W2
WE ARE CAN 6 DAY A WEEK-CALL NAND SEE FOR XOUESELF!
HM307 Single frace 10MHZ $5 \mathrm{mV}: 0.5$ micro sec. Plus built in component tesikr $6 \times 7 \mathrm{~cm}$ display (HAMEG) $£ 158.70$ Optional Case 3030 Single trace $15 \mathrm{MHZ} 5 \mathrm{mV}: 0.5$ micro sec. Plus buit in component testar 95 mm lube . Trig. to 20MHZ ICROTECHI HM203/3 Oual 20MHZ: Trig. to 3OMHZ 5 mV : 0.5 micro secs. $8 \times 10 \mathrm{~cm}$ display [HAMEG]
HM203/4 As
E253.00 Algebraic aod [HAMEG] £276.00 CSI562A Oual IDMHZ 10mV.
lif sec. 140 mm tube TTHIO! $£ 276.00$ 3131 Oual trace 15 MHZ trig. to 35 MHZ 5 mV : 0.5 micro sec. 130 mm lube plus component tester. $\quad £ 276.00$ 3034 Battery.mains dual irace 15MHZ rig. to 20WHZ built in Nicads. 5 mV 0.5 Mcrosecs.(CHOTECH) E414.00 Eliminator charger optional \quad £36.00 HM204 New model with component testor Qual 20MHZ delayed sweep: trig保 O419.75 SC1 104 New model 10 MHZ bitery porlable lomy 01 un ?" All lacilities ITHANDARI £ 171.00

(UK C/P \&1)
PFM200A Pocket 8 digit LEO 200MH2 10mV (THANOAA Max 50 50MHZ 6 digit LEO Pocket IGSC]
Max 550 digit LEO Pocket [GSC] $£ 97.7$ 8110 A 8 digit LE0 2 range. 100 MHz . 8610 A 8 digit LED 3 range 600 MHZ Bench (SABTRONICS) $£ 94.00$ Max 1005 HZ -100 MHZ 8 digit ench LEO [GSCI $£ 97.75$ Bench (SABTRONICS) £113.85

SCOPE ADD ON UNITS

LTC905 Semiconductor curve tracer
filtus)MLEADEAI $£ 95.45$
© : $\begin{aligned} & \text { (Iltus) (LEADE } 1 \\ & \text { (UKC/P 85p) } \\ & \text { HZ65 Compone }\end{aligned}$

Amateur radio and CB
equipment. TV pattern
generators Pal and Sec am in
stock. - Ask for details.

 megohm |RS| ${ }^{-K 055 C} 28$ Hange 10A AC/OC 200 megohm |RS| $£ 41.50$
 tester ['AS) \quad E43.50 plus Hife Testar |RS| E69.95 -0M2350 21 range miniature auto ranging $(S W)$ ¢55.00
OSCILL OSCOPES IUK C/p Single trace $£ 3$ ea.

FREQUENCY COUNTERS (anl models baltery pperated)

800089 digil LEO 3 range 1000 MHz Bench (SABTRONICS) E.178.00 TFO 408 digit LCO 40 MHZ (THANOAR) E.126.5 TF20N B digit LCO 2 range 200mH2 Thandar prescalers for any counler up to 200 MHz
TP600 600 MHz
$\begin{array}{ll}\text { TP1000 wilh P/S IGHZ } & £ 43.13 \\ & £ 73.00\end{array}$ OPTIONS
TF series car ry case AC adaptors (TF Series) All models prove kits
LOGIC PROBES/ MONITOR

Samironics LP 10 GSCLP2 1.5MHZ probe
 GSCLMM1 monitar $[8$ to 16
pin $|C ' s|$
$\mathbf{~} 33.00$ GSCDP 1 Oigitat pulsor.

Give

No matter how much or how little you've spent on your audio system, upgrade the cartridge and you'll upgrade the sound you get.

But with so many cartridges to choose from, how do you solve the problem of making the best choice?

Simple - with 'the Shure Solution'.
In the Shure range you'll find a cartridge perfectly matched to your hi-fi; a cartridge that will improve the performance of even the very best system; and a cartridge priced so that you can spend whatever you think your audio's worth.

A BETTER CARTRIDGE-A BETTER SOUND.
For a personal recommendation contact:
Shure Electronics Ltd. Eccleston Road, Tovil, Maidstone, Kent ME15 6AU. Tel: 062259881.

Editor

PHILIP DARRINGTON
01-661 3128

Deputy Editor GEOFFREY SHORTER, B.Sc. 01-661 8639

Technical Editor
MARTIN ECCLES
01-661 8638

News Editor
DAVI SCOBIE
$01-6618632$

Drawing Office Manager
ROGER GOODMAN
Technical Illustrator BETTY PALMER

Advertisement Manager
BOB NIBBS, A.C.I.I.
01-661 3130

BARBARA MILLER
01-6618640

Northern Sales
HARRY AIKEN
061-872 8861

Midland Sales
BASIL McGOWAN
021-356 4838
Classified Manager
BRIAN DURRANT
01-661 3106
IAN FAUX
01-661 3033

Production

BRIAN BANNISTER
(Make-up and copy)
01-661 8648

Factories of the future

As IT82, the government focus for information technology, expires amid mixed feelings, Britain is faced with the question of what action to take, if any, over its place in the market for microcomputer-based information processing systems. Market share in this area is surely set to fall, particularly when the Japanese collaborative programmes in electronics and computing technology begin to take effect; one source suggests that UK trade deficit could be as high as a billion pounds by 1990 . To reverse this, protect the jobs of the existing i.t. industry, and insure against restrictions in the supply of high-technology components on the right terms by overseas competition (compounded by reported secrecy in US v.l.s.i.c. work), J. Alvey and a committee of eleven urge speedy implementation of their Programme for Advanced Information Technology. The study, commissioned by the DoI, was catalysed by the competitive threat of Japan's "Fifth generation" computer programme.

Taking evidence from 115 organizations, the committee identify the "enabling technologies" that designers need to interface machines with humans, to organize and process information, and to build them in a way that is competitive in the market place. To create more powerful information processing systems with more effective human interfaces that at the same time are easier to build and use, requires a strong domestic capability in software engineering, advances in v.l.s.i. and human interface technology, and "intelligent knowledge-base systems" that use inference to apply knowledge.

The committee focuses on the supply of computer systems - hardware and software - to provide tools for producing i.t. systems using software engineering techniques that will put the UK into position as a worid software leader by the end of the 1980s. Automatic software production, c.a.d. for v.l.s.i. data or knowledge bases of available hardware and software, and both local and wide area networks to collaborating teams, all go to form a so-called Information Systems Factory. To obtain sufficient expertise, collaboration between industry and research bodies is essential, requiring government support and direction (a directorate within the DoI is likely). But the chief task is recruitment.

Too many courses in tertiary education do not match industry's need for highly
skilled engineers having a wide appreciation of computer science and knowledge of both hardware and software (a point Ivor Catt makes elsewhere in this issue). The supply of graduates with the relevant skills needs increasing by at least 1,200 and 90 teaching jobs, and both polytechnics and the TEC must step up training. At the postgraduate level, new courses and teaching jobs are required for studentships and fellowships (250-300 a year). As well as strengthening courses at the masters level, the committee recommends 50 studentships at the doctorate level to enable industry to sponsor students on four-year sandwich courses. And for people already on the job a case is made for on-site instruction via the proposed communication network, with the potential of development into a "distributed college" linking industry with the academic sector.

This skilled work force could be built up rapidly for the programme; but Britain does not have the people in anywhere near the numbers and skill levels required to translate it into products. The key to this is action in the educational sphere. It is no good just providing schools with microcomputers; that merely produces a generation of poor Basic programmers, says the committee - Universities are already having to give remedial education to entrants with A-level computer science. The languages taught must be chosen with the future in mind.
The programme recommends spending $£ 70$ million for software engineering, $£ 90$ million for v.l.s.i.c.s (excluding radiation-hardened v.h.p.i.cs for defence work), £58million on prototype "demonstrators, £44million on human interface technology, $£ 26$ million on knowledge-base systems, £25million on c.a.d., $£ 19$ million on a communications network, and $£ 20$ million on education and training. This totals $£ 352$ million pounds over five years and on the basis of a 100% government funding for academic support, 90% industry funding where wide dissemination of results is required, and 50% otherwise, the government is being asked for roughly two thirds funding. (Industry will have to find much larger amounts as results are translated into marketable products.)

A start date of 1 April 1983 is recommended for the programme, but the costings reveal a more immediate sense of urgency - two million pounds is allocated to education and communications for spending this year. Will the government fund it? And how quickly will academia respond?

1 Theories and miracles
2 Electromagnetic analogy
3 Impact of the photon
4 A more realistic duality?
5 Quantization and quantization
6 Waves of improbability
7 Limitation of indeterminacy
8 Haziness and its applications
9 State of physics today

A MORE REALISTIC DUALITY?

Abstract

Instead of trying to ignore Planck's quantum hypothesis because it conflicts with electromagnetic theory, suppose we were to afford it more than lip-service - what then? New situations would arise that could be tested by experiment.

I have suggested that an experiment in the interference of light which was first performed as long ago as 1909 might profitably be repeated with modern pho-ton-counting light detectors. Its purpose would be to explore whether or not a simple alternative concept might be offered in place of the currently-accepted, but philosophically dubious, doctrine of the wave/particle duality of light. The experiment is neither expensive by modern standards nor particularly difficult, but it would require great care; it would require tests to ensure that the apparatus was dealing with single photons rather than with naturally-radiated bunches of photons forming coherent wave-trains. Of the various phenomena in light which could be chosen for test, interference in a space interferometer would seem to afford the greatest facility for detailed analysis and the least scope for dissentient arguments.

It would be very wrong to pre-judge the outcome of this experiment, and we should be careful to avoid doing so. We should also remember that there may be other conceptual alternatives to the duality doctrine to be considered besides this one. This one seems to be the simplest, but that doesn't mean that it is necessarily correct; we may have to try several before Dame Nature smiles on us. For these reasons I have said that I cannot yet offer an alternative doctrine, at any rate with confidence. We really must have recourse to experiment here. Nevertheless it is interesting and quite exciting to speculate as to how the subsequent developments might go if the concept were upheld that light radiation consists of photons travelling at velocity c, and light "waves" consist of periodic variations of photon density, as Einstein once auggested. Without commitment, we may explore some of the consequences which might follow if that concept were true.
The first point to be cleared up is the business of light travelling happily in a vacuum, where - by the Michelson-Morley experiment - there is no physical ether medium for light waves to undulate

by W. A. Scott Murray, B.Sc.,Ph.D.

in. Waves of the newly-postulated type, which are statistical manifestations of varying photon density, do not require a medium for propagation. Sound waves in air, on the microphysical scale, consist of variations of the density of gas molecules above and below the mean air density, and it is this mean density which establishes the velocity-zero of the "medium" through which, we say, the waves travel. In the case of light there is no mean density; even within a solid crystal such as a diamond the photons are travelling by direct or devious routes through the space (that is, the vacuum) berween the adjacent crystal ions. On this concept, then, a wave crest would correspond to a maximum of photon density, while at a wave trough there would be no photons.

The number of photons involved in a light-wave is staggering to comprehend. In a typical medium-wave radio broadcast transmission one half-cycle of radiation a millionth of a second's worth - will contain about 10^{25} photons. It is not surprising that with such numbers of photons around their average density adds up to a very smooth and precisely-defined waveshape indeed. That is why the wave theory provides such an accurate description of the behaviour of radio radiation and even of ordinary, visible light. On the other hand, as we move up through the spectrum past the ultra-violet and into the x ray region, individual photons become heavier and contain more energy, so that in consequence there tend to be fewer of them. In the end there are no longer enough photons present for their average density to establish a reasonably accurate wavelike shape; in such cases x-rays and gamma-rays are found to behave like particles and to show no obvious wave characteristics, and we say that such situations "require quantum treatment". Now we can begin to see why.
This experimental observation is enti-
rely consistent with the photon-waves proposal, but diametrically opposed to the continuity concepts of electromagnetic theory. The proposed mechanism is very different from that of sound waves. At sufficiently high altitudes the effective continuity of air as a wave-propagating medium breaks down and sound is no longer transmitted; individual air molecules are still present and travelling at tremendous speeds, but their motions are random. By contrast, the photons of natural light are generated and travel together thereafter in a systematic way, whose statistical effect is that of a partiallycoherent wave system. In this manner the photon-waves concept is able to explain not just to describe - the wavelike behaviour of light in those low-energy situations where the electromagnetic analogy works to a high degree of approximation, and it is able to explain equally well the particulate behaviour of light in situations where electromagnetic theory fails. There would seem to be a prima facie case for taking the concept further, and for performing some of the fundamental experiments that would be required in order to test it in the laboratory.
The celebrated wave-like properties of light which led to the general acceptance of the wave theory in the 19th century are principally those of refraction, diffraction, and interference. According to the photonwaves concept all these phenomena are manifestations of group behaviour - that is, of the behaviour of photons in quantities so large that the wave theory is valid as an approximation. Greater detail is not appropriate here, except perhaps to say that it seems a distinction can be made between pure diffraction, due to the deflection of photons in the near vicinity of material objects such as prisms, slits or gratings, and pure interference, due to "exclusion" forces acting between individual photons in space. Practical situations tend to involve combinations in varying amounts of the effects of pure diffraction and pure interference. Because their mechanisms would seem to differ,
the possibility arises that suitable experiments might be able to separate the two effects and thereby quantify both.

Such experiments would be quite new. Although we now have photoelectric detectors that can record the arrivals of individual photons, the general acceptance of the duality doctrine has effectively inhibited a systematic re-exploration of this area. Suffice it to say that even if they have been performed, no such experiments have ever been reported in the published literature. Perhaps we should not be too surprised at this. The particular experiments that we have been considering would constitute steps towards determining the size and physical structure, if any, of a photon, and few suggestions would be more likely to excite ridicule in the scientific hierarchy than a proposal to investigate the physical properties of an entity so fundamental as a photon! Such a proposal would cut right across the accepted dogma of modern physics, which holds that because of the "completeness" of the quan-tum-mechanical theory we already know all that we shall ever be able to know about these fundamental matters .

Now: what do we know about photons? By the harsh discipline of experument before fundamental experiments became unfashionable - we have been taught that light is radiated in packages or quanta. From the photoelectric experiments in particular we realise that these quanta do not dissipate in flight but remain complete as units, as if they were particles. As particles, we call them photons. From the same experiments we deduce also that photons carry physical energy and physical momentum, the amount of this energy and momentum determining the colour of the photon. To our surprise we conclude (because both photons and "waves" travel at the same velocity and therefore must have constant relative phase) that an individual photon does not possess a frequency or a wave-length - which is not what we were taught at school! And we note as a point of great significance that the only means by which we can detect light (in the retina of ur eye, on a photographic plate or film, by photocell, or by photosynthesis in plants) is by some variant of the photoelectric effect. Summa: we deduce the wavelike properties of light, sometimes; whenever we detect light we seem to be detecting photons.

It is photons, not electromagnetic waves, which eject electrons from lightsensitive materials, and it is worthwhile to ask a few "improper" questions about the photoelectric process. (This, of course, is new and heretical work not approved of by the hierarchy.) If one considers the collision of a single photon with a single, isolated electron and takes the standard, accepted expressions for the energy and momentum of each, and then equates photon energy with electron kinetic energy, photon momentum with electron momentum after collision - that is, if one applies the Conservation Laws to the encounter as if it were an ordinary mechanical collision - then the sum does not work out. A single line of working within the compe-
tence of any sixth-form physics student leads to the result that, whatever the energy of the photon and whatever the mass of the electron (or other particle), the velocity of the electron after the collision must always be twice the speed of light.

Clearly that result is nonsense. We have two choices. On the one hand we can accept the verdict of conventional doctrine, that the question was an "improper" one that should never have been asked that is, that photons and electrons are mystical, hazy entities, amorphous and structureless, and that one cannot envisage an encounter between them as if it were an ordinary mechanical collision. "Ask a silly question, receive a silly answer" is the kind of supercilious comment that one might expect. On the other hand we can hold fast to the conservation laws - for it is the conservation laws, and not mechanics, that conventional doctrine is seeking to by-pass here - and say that the result of our very simple calculation is correct: the situation cannot happen, and we are to interpret the result to mean that an encounter in which an isolated electron absorbs the entire energy of any photon cannot take place.

The reason why it can't take place is as simple as the calculation itself: a photon carries far more energy per unit translational momentum than any ordinary "material" particle can contain kinetically. A third object must be present to absorb the excess energy and allow the mechanical energy and momentum equations to balance. What would happen if no material particle besides the electron were present? Energy and momentum must still be conserved in the encounter, and the obvious way for this to happen is for a second photon to be radiated, from the point of impact, to carry away the excess energy.

By now probably someone is screaming that I am giving free rein to fantasy, or at least inventing in a thoroughly unscientific way. How can I dare to treat photons and electrons as if they were ordinary mechanical particles when "everybody knows" that both photons and electrons are wave systems that just don't behave like that? I'm sorry to be so tiresome about it, but they really are particles, you know, and according to experiment they do behave like that. I have been describing to you a commonplace phenomenon known as the Compton effect. A. H. Compton applied this same, purely mechanical reasoning to the encounters of gamma-ray photons with electrons in 1923 - after Planck, but before the Copenhagen school got going with their doctrines of matter-waves, statistics, and haziness - and his calculations were confirmed exactly by experiment. There is no indication whatever of wavelike properties of either photons or electrons in the Compton effect. Also, the conservation laws are obeyed.

Thus far the discussion has concentrated on checking the photon-waves concept against various aspects of the experimental evidence, and I assure you that it can be submitted to, and pass, many other such tests that I don't have space to go into here. I would like to go forward now to
report on two new developments that follow from the concept. They suggest alternative interpretations of two details familiar from electromagnetic theory, and represent two differing degrees of conflict with that theory.
The Compton effect as Compton treated it involves the collisions of photons with free electrons, but at the temperatures we normally encounter very few electrons are truly free; almost all of them are "bound" in one way or another - usually by electrical forces - to individual atoms or within the general crystalline structure of a conducting or semi-conducting material. When a photon collides with an electron in the presence of a third, massive body (and the minimum such body is a proton, nearly 2000 times heavier than the electron), no secondary photon need be radiated to balance the books. The third body enables the excess energy to be absorbed and the Conservation equations to be satisfied, subject to two very interesting mechanical conditions: one is that almost all the photon's energy must be absorbed by the electron, which takes off at very high speed and leaves the heavy supporting structure almost standing still; the other condition is that the direction of the electron's motion must be al right-angles to the incident photon's track to within a few hundredths of an angular degree.

Those results constitute an entirely straightforward, new explanation of the photoelectric effect, calculable to any accuracy one pleases on the purely mechanical basis that both photons and electrons are particles whose interactions obey the conservation laws. It is truly and literally a quantum-mechanical calculation. Since no light waves or matter-waves are involved the conventional "quantum mechanics", so called, will have none of it. It does not

Continued on page 87

Summary

Although it would be wrong to prejudge the outcome of modern low-lightlevel experiments it is legitimate to speculate on the consequences of a positive result. The wave-like behaviour of "photon-waves" can be accounted for by making a small number of working assumptions which can themselves be tested by experiment (not discussed in detail. Their particle-like behaviour can be explained by purely mechanical arguments - by applying the conserva tion laws to collisions between photons and electrons treated as particles. The highly successful work of Compton in 1923 can be extended to provide new and simple explanations of the photoelectric effect and of the ionization of the atom the latter again is not discussed in detaill. These argumants raise conflicts with electromagnetic theory, as is to be expected; but the crucial conflict is raised by the statement of the new theory that an isolated electron - a "point charge" - does not radiate energy when accelerated, as electromagnetic theory has always asserted that it must. This particularly important issue could also be put to experimental test.

IMPROVING THE "VIEWING EXPERIENCE"'

Digital signal processing finds ways of getting better quality television pictures without sacrificing system compatibility. In this report Tom Ivall looks at some of the papers presented at IBC82, the recent international broadcasting convention at Brighton.

Channel 4 arrives like a cheeky young gatecrasher at Auntie Beeb's sixtieth birthday party, where everyone pretends not to notice, while outside a threatening-looking gang of satellites, cables and videos peer through the window, grinning in anticipation of the havoc they are going to make of such dignified occasions. The broadcasting engineers and manufacturers - highly sophisticated operators who know the difference between a video and a v.t.r. look on at this little scene with restrained amusement, secure in the knowledge that they can supply whatever technology is necessary to keep the audio-visual fodder flowing smoothly into the great maw of a consumer-happy public.

Or so it seems, to judge from the stream of new ideas presented by engineers at the recent International Broadcasting Convention - held, appropriately enough, in that fairground of evanescent pleasures, Brighton. With the strong likelihood that artistic talent will be spread even thinner in the promised multi-channel future and that programme standards will, on the whole, decline, the broadcasters have fallen back on the safe thought that they can always stimulate the jaded palate of the viewer by prosthetic means. What the public now needs, in the words of one IBC contribution, is "the enhanced viewing experience". This does not mean 'the smel-

by Tom Ivall

lies' or 'the feelies' - yet - but simply improving the quality of the pictures and the sound.
The big question is, how can this be done compatibly, without having to replace hundreds of millions of tv sets all over the world working on the established NTSC, PAL and SECAM transmission standards?
A big step was taken, it appears, when digital coding standards for television studio equipment were agreed and formalized by the CCIR earlier this year. Briefly, this means keeping the video information in the component, as against composite, form of a luminance signal (Y) and two colourdifference signals (\mathbf{U} and V) and sampling these at rates of 13.5 MHz for Y and 6.75 MHz for U and V . The samples are digitally encoded at eight bits per sample and all of this results in a serial bit stream of $216 \mathrm{Mbits} / \mathrm{s}$ (see page 41 , May issue).
This standardization agreement is not merely a matter of making things better for the broadcasters by improving the performance and simplifying the operation of their equipment. It opens a window to a whole new vista in television engineering. According to C. P. Sandbank, head of the BBC's research department, it brings

about a new approach to television systems practice by allowing "the processing and storage of tv programmes in a way not constrained by the limitations of the broadcast standard" and is a timely trend when many new forms of tv distribution are emerging as alternatives to conventional terrestrial broadcasting.

The constraining "broadcast standard" is, of course, NTSC, PAL or SECAM, according to area. In the view of F.H. Steele and K. R. Barratt of Sony Broadcast, a serious constraint is due to the composite nature of the video signals. Although effective and robust for transmission purposes "it is now generally accepted that NTSC, PAL and SECAM composite signals not only add their own impairments - particularly cross colour and cross luminance - but also greatly inhibit much of the desirable picture processing". And, in a reference to video developments outside of broadcasting, "it is entirely possible that the broadcaster, remaining dependent on composite signals, may well find himself alone in this respect by the end of this decade".
In short, picture quality for the viewer can almost certainly be improved by digital signal 'pre-processing' at the transmitter, using compatible techniques that do not interfere with existing transmission standards. Other IBC speakers made it clear that digital signal 'post-processing' could also be added compatibly to the tv receiver, to improve the picture by overcoming cross colour, cross luminance, largearea and inter-line flicker, line crawl and the obtrusive visibility of the raster.

One of the major IBC contributions in this area was from the Philips laboratories in both the UK and the Netherlands. A group of six researchers described a range of experiments and equipment intended for examining many possible improvements, from cleaning up the present European 625 -line transmissions to highdefinition transmissions on 1249 lines with a wideband transmission medium. (See also November's News, page 76.)

To clean up the existing transmissions the Philips people are addressing themselves to two main problems: first, the picture impairment due to luminance and chrominance band sharing (cross colour, cross luminance, loss of detail due to filters); and secondly, impairment due to large-area flicker, inter-line flicker and line aliasing.
The approach to luminance/chrominance separation in the receiver is based on
comb filters employing one or more field delays. These give good results on stationary pictures but do not eliminate cross colour resulting from motion effects, where possibly some kind of movementadaptive process could be used, with the decoder reverting to a notch filter at certain levels of motion. An optimum solution, according to the researchers, appears to be a line-delay comb filter in the encoder at the transmitter and a field-delay comb filter at the receiver. For best results the encoder filter would only be inserted when movement occurs.

Their technique for removing large-area and inter-line flicker is based on the use of picture stores. An experimental receiver includes two fields of storage. Luminance and chrominance signals are fed into the store at the normal 50 Hz rate and fed out to the display at a 100 Hz rate. Results so far show that "excellent reduction of largearea flicker is obtained without serious impairment of motion portrayal'". Removing inter-line flicker is not so easy, as the use of the store results in jerking effects on moving scenes, but here movement-adaptive switching between sequences may prove to be effective.

Work on removing line aliasing and the Kell factor effect is not so advanced but the researchers think it is worth pursuing. Results so far suggest that signals could be originated on a 1249 -line standard and "filtered as part of the down-coding process such that the compatible signal has reduced aliasing components".

This idea of standards conversion within the existing transmissions is the next step up in the Philips programme for picture quality improvement. Obtaining the desired "enhanced viewing experience", however, depends on having at the receiver a large-area display (about $1 \mathrm{~m}^{2}$) on which the human eye would be able to resolve about one million elements - an improvement in resolution capability of about three times. Present experiments are based on originating a 1249 -line, 50 field $/ \mathrm{s}$, $2: 1$ interlaced picture with a 25 MHz video bandwidth. And of course the large-screen display would have a similar definition.

The big question, however, is whether these signals could be compressed into the bandwidth of the existing television channels. To give full information about every element the transmission would have to exceed the Nyquist rate for the normal 8 MHz channel. However this would not be necessary as coding systems could be devised to take advantage of the redundancy in the picture, either spatial or temporal.

Such possibilities for reducing bandwidth requirements for colour television signals are being investigated by the IBA, and their G. J. Tonge presented some aspects of this work at the convention. The present approach is based on the principle that the spatio-bandwidth properties of a typical television system are not well matched to those of the human eye. For example, the spatial resolution available for a moving image is the same as it is for a stationary image - but the eye doesn't need this. Also, if the sampling in each
field is orthogonal then the resolution attainable on diagonal frequencies is greater than it is on horizontal and vertical frequencies, but the properties of the eye favour the opposite.

The technique used to exploit these characteristics is based on "three-dimensional" digital filters - meaning filters which not only limit bandwidth horizontally in the picture, as do ordinary analogue filters, but vertically and temporally as well. So the useful bandwidth can be represented diagrammatically as a volume. The shape of this volume is therefore chosen to match the properties of the eye. For example, on the criteria mentioned above, the spatial resolution is arranged to reduce with increasing temporal frequency and the diagonal resolution to be slightly worse than the horizontal or vertical resolution.

The three-dimensional digital filters constructed so far incorporate two field delays, four line delays and 35 coefficient taps. The system requires pre- and postfiltering and first experiments have been made from component $\mathrm{Y}, \mathrm{U}, \mathrm{V}$ signals sampled at $13.5,6.75$ and 6.75 MHz respectively. Mr Tonge reported that "the results obtained indicate that commencing with 18 MHz luminance sampling an extended definition signal should result from this sampling".

However, if such attempts at bandwidth compression based on redundancy and the properties of the eye do not prove successful in practice, the Philips workers have another plan up their sleeves. They suggest that two normal television channels should be used to provide the higher information rate needed for a single "high fidelity" tv programme. This could be done in such a way that one of the two channels would carry a completely compatible signal for all standard tv receivers.

The information to be transmitted could be separated into the two television channels in terms of space, time or video spectrum. So far the work has concentrated mainly on spectral separation. In this respect it coincides with similar work by the BBC's research department on improvements to the PAL system to give higher quality pictures for future direct broadcasting by satellites. The essence of "extended PAL", as the BBC call it, is that in the encoder the spectrum of the luminance signal is split and the high frequency part of this is shifted up in frequency so that it no longer shares the chrominance band.

Details were given at Brighton by P. A. Ratiff and A. Oliphant. In the encoder the chrominance modulation is the same as in a conventional encoder. The luminance signal, however, is split into two frequency bands, Y_{1} below about 3.5 MHz and Y_{2} above 3.5 MHz , by a complementary bandsplitting filter. The Y_{1} signal is added directly to the modulated chrominance signal. The Y_{2} signal is frequency-shifted by multiplying it by the colour subcarrier frequency and high-pass filtered to remove unwanted components near zero frequency. The shifted signal is then added to the low-frequency and chrominance components to give the complete extended PAL signal, which occupies a bandwidth
of about 10 MHz .
This frequency-sbifting process can also be thought of as suppressed-carrier singlesideband modulation of the Y_{2} signal onto the the colour subcarrier. Other frequencies could be used for frequency shifting, but the colour subcarrier is particularly convenient because it is available with accurately known phase in both the encoder and the decoder. It is also a frequency chosen for minimum visibility, so that any residual subcarrier in the modulated signal causes little impairment. Furthermore the use of only one subcarrier frequency precludes the possibility of intermodulation occurring between two subcarriers, which could produce visible low-frequency beat patterns on the decoded picture.

In the receiver's decoder the chrominance is demodulated in the conventional way. The composite signal is low-pass filtered to give the low-frequency luminance Y_{1} and high-pass filtered to give the shifted high-frequency luminance Y_{2}. This signal is shifted back to baseband by multiplying by the subcarrier frequency and low-pass filtered to remove unwanted components near $3 \mathrm{f}_{\mathrm{sc}}$. The two components Y_{i} and Y_{2} are then added together to reconstitute the complete luminance signal.

The 'extended PAL' signal is compatible with conventional PAL and can be received on existing colour tv receivers; its main advantage is the reduction of cross colour. However, the Philips two-channel experiments in spectral separation differ from the BBC's scheme in that the higher frequency part of the luminance band is not restricted to about 2 MHz and is not transmitted in the same channel.

In one system reported on by Philips the separation point was at 3.8 MHz . This enabled a low-band quasi-compatible PAL signal with colour-out-of-band to be formed. The high-band signal was then transposed by mixing with a $2 \mathrm{f}_{\mathrm{sc}}$ reference to occupy the 0 to 5 MHz region of the second channel. At the receiver the lowband signal is decoded in the normal way to produce $\mathrm{Y}, \mathrm{U}, \mathrm{V}$ components with substantially reduced cross colour. The signal from the second channel is mixed with $2 \mathrm{f}_{\mathrm{sc}}$ to reproduce the high-band luminance component. Finally the two Y components are combined to form a single wideband luminance signal.

In this type of approach the quasi-compatible signal gives "a significant reduction of cross colour". But it is also causes a noticeable loss of resolution and this is permanent as far as standard receivers are concerned. This could be overcome in the two-channel approach by changing the configuration so that the low-band signal has a completely normal PAL specification. In this case the luminance information would be transmitted through both channels. It would therefore be possible to use the second chrominance-free component to achieve separation of luminance and chrominance, with consequent reduction of cross colour in a high-fidelity receiver.

These experiments suggest, according to the Philips workers, that "two-channel systems are possible in which one channel
carries a signal that is compatible with the PAL (or other standard) specification". This compatible signal could not only be handled by any existing receiver but could also be processed to give an enhanced quality image by the methods outlined above.
Professor B. Wendland of the University of Dortmund, Germany, discussed the possibility of improving picture quality by getting rid of some of the deficiencies of conventional television scanning. For example, interlacing produces heavy aliasing in moving parts of the picture, bad vertical resolution, inter-line flicker and line crawl. One way of avoiding these problems would be to use sequential scanning. At the same time the main advantage given by interlacing, namely reduction of large-area flicker, could be retained by the use of digital picture stores.

In this proposal the picture is sequentially scanned with 1250 lines and the resulting video signal is two-dimensionally band-limited by a digital filter. It is then converted to a 625 -line interlaced picture by a scan converter using a digital store. This signal is transmitted and is compatible with existing 625 -line television receivers. In any tv receivers designed for the new system, however, the 625 -line signal is re-converted by a scan converter and interpolating two-dimensional filter into a sequential 1250 -line picture. By means of the digital store in the receiver the picture is displayed at twice the normal rate so that large-area flicker is prevented.

The first practical result, according to Professor Wendland, is a "fairly high improvement' of picture quality with no line crawl or 25 Hz flicker. Scanning is free from aliasing and picture detail reproduction is good, especially for details with horizontal contours of high contrast. In addition Professor Wendland described a system of "offset sampling" (in which the sample positions are offset in adjacent lines) which, with pre- and post-filtering, "gives an impressive improvement of resolution for fine vertical structures".

With so much digital signal processing in the air for television broadcasting, one thing that seems almost inevitable is the microprocessor-based television set. But what could it do any better than an ordinary tv set? Well, apart from any developments at the transmitting end, it would seem from an IBC paper by H. M. Jacobsen, of the Technical University of Braunschweig, Germany, that improvements might be made to the received picture quality by adaptive digital signal processing under programmed control. His idea is to introduce variable equalization in the composite video signal channel and adjust this automatically according to reception conditions causing picture impairment (noise, reflections, propagation anomalies etc.).

The received composite video signal is digitized and passed into a digital signal processor under the control of a microprocessor. Luminance and chrominance components are first separated and then passed through equalizers which, when ordered by switching signals, can sharpen up rates of change in this video information. For

example, Mr Jacobsen suggests that "it seems reasonable to sharpen the chrominance edges if the rise-time exceeds 500 ns ". The microprocessor program causes the signal-to-noise ratio to be measured during blanking intervals and also obtains information on the properties of the signal source. From this data the qualization process is controlled adaptively.

If television is a strong contributory factor in child illiteracy, as recent studies suggest, it is faintly ironic that the broadcasters are bending all the might of their technology to refine the appearance of text presented on the tv screen. "You may not be able to read it but at least we'll make it look nice for you" would seem to be the policy. Of course, the graphic designers employed by broadcasters have an influence here. Apparently those in the BBC don't care for the jagged kind of text produced by electronic character generators and prefer to stick to conventional television typography based on artwork. Not to be outdone, the engineers of the BBC's research depar tment have come up with an answer to the problem of electronic coarseness, and the results were demonstrated at Brighton.

Apparently, master data on type founts is available from many type foundries in high-resolution digital form. This master information has been filtered and subsampled, using BBC software, to produce fount data for characters of reduced resolution in sizes appropriate for television for example 20 to 50 picture lines for a capital ' M '. The filtered characters are represented by a range of grey-levels which reproduce edges as smooth transitions between the background and the character, rather than the abrupt changes usual with electronic character generators. As a direct result the typographic integrity of a parti-
cular fount is maintained even at small character sizes. Fine serifs are accurately reproduced and inclined strokes and curves are free from jagged edges. All practical character sizes can be derived directly from the master data.
The next step, perhaps, is to try and make these beautiful shapes actually mean something to the illiterate. Can technology do anything for semiology?

To return to the original topic of digital standards for studio equipment, one of the latest examples of such digital equipment was shown in the exhibition and described in a paper: a 'line array' telecine machine just introduced by Marconi Communications Systems. In this machine the camera tubes or flying-spot scanners of earlier technology are replaced by three (red, green, blue) c.c.d. image sensors in the form of linear arrays. These devices provide a very simple method of scanning film because the vertical scan is produced entirely by continuous motion of the film. Horizontal scanning in each line array of 1024 photosensitive elements is obtained by digitally controlled stepping of a shift register.

During a television line a charge accumulates in each charge element proportional to the light falling on it. In the subsequent horizontal blanking interval the charge from each element is transferred to a corresponding location in a shift register by momentary operation of a gate. The contents of the shift register are then clocked out serially during the active line period, in the form of analogue sample pulses at 19 MHz clock frequency. After clamping, the signal from each sensor is applied to a 5.5 MHz low-pass filter to produce a continuous video signal and eliminate the 19 MHz components. Then each signal, $R, G \& B$, passes to an a-d converter in readiness for digital processing.

Here the R, G, B signals are first converted to parallel digital signals of 11 bits per sample - 11 bits providing the necessary amplitude resolution for gamma correction. Subsequently the coding is the standard eight bits per sample mentioned earlier. Gamma correction and masking are performed by logarithmic conversion, multiplication/matrixing and exponential conversion. After this process the R,G,B signals are matrixed to give a luminance, Y, and two colour difference signals, $B-Y$ and $R-Y$, each of eight bits per sample.

The scanning process of the machine produces complete frames sequentially scanned. These are converted to pairs of interlaced fields in four field stores - two fields for Y and two shared by $B-Y$ and $\mathrm{R}-\mathrm{Y}$ multiplexed. Digital vertical and horizontal aperture correction is applied to the Y signal, followed by d-a conversion of all three signals. Finally, R,G,B signals are formed by de-matrixing to feed out to a standard PAL, NTSC or SECAM encoder. According to R. Matchell of Marconi, this digital telecine provides "the highest picture quality combined with predictable drift-free performance which is maintained from day to day without the need for routine line-up".

Focus on standards

A local area network standardization project team recommends that there should be "massive" Government support for a three-year project to develop UK capabilities in lans. Local area networks usually serve large organisations with possibly many distributed computers and workstations, interlinked so that they may share a database and communicate with each other.

The three main approaches to lans are the extended bus, typified by the Ethernet, the ring system as used in the Cambridge Ring, and the star system used in conjunction with digital private telephone exchanges. The lan report, submitted to the Focus committee of the DoI, suggests that the Department should sponsor pilot installations involving interconnection between current examples of data and text-oriented lans with wide-area networks, with similar internetworking being tried between pabx systems and both Ethernet and Cambridge ring networks.
There are not yet any formally recognised standards for "integrated service" local networks. The report suggests that in this area "the UK could be established as a world leader in the manufacturing, marketing and use of integrated service networks," and that the DoI should invite suppliers to bid for parts of a combined technical and marketing activity towards that aim.
The DoI is recommended to further activities on lan standards. It is considered vital that standards be developed in accordance with the requirements of the open-system interconnection model of the International Standards Organisation (one of the functions of the Focus standards committee has been to fund delegates to attend ISO meetings and those of the IEEE 802 committee, both of whom are investigating standards for lans).

The lan project team were reporting to the Focus Committee set up by the Department of Industry in April 1981 to identify areas in information technology standards and related work which are of "strategic" importance to the UK. The Committee identified 14 significant areas for attention but there are three paramount topics on which the others depend: opensystem interconnection (OSI), local area networks (lans) and videotex.

Perhaps the most crucial area for standardizing is the open system communication, the concept that any data processing system should be able to communicate readily with any other. The committee suggests that standards for such systems must be international and need to be adopted by all parts of the computer and
telecommunications industries. To ensure that this can happen, the standards need to be developed in a non-partisan form and be in the public domain. The only way that these requirements can be realistically fulfilled is through such international bodies as the ISO.

Applications for open-system interconnection cover data communications standarization and processing support services, which would ensure that the various services required could be supported by networks. Typical uses for o.s.i. systems include text processing, electronic mail and such open-access systems as electronic fund transfer and accommodation or airline reservations.

The advantages of agreed standards for o.s.i. are legion. Economic efficiency for the user is one. A user will be able to purchase whatever computer system that is appropriate to suit his needs, confident that it will be able to communicate with other systems within or outside the user's organisation. Suppliers of equipment will be able to specialise without running the risk that their equipment might become outmoded by another communications system. This could give a boost to the computer and telecommunications industries.

In teletext, the problem is not so much which standard to adopt but which standard other countries will adopt. The US offer a giant market for a prestel-like system. However, the telephone company AT\&T have announced that they have adopted a system similar to Telidon. Grandly titled the "North American Standard", Prestel marketing countered it by promoting the "World System" on the pretext that Prestel has now been selected for a dozen countries around the world.
If the US market is 'open' then Prestel has a very good chance of successful sales as the hardware is a lot less expensive than that for Telidon.
The Committee has initiated an information technology standards unit which has already commissioned a survey of user needs in o.s.i. to help identify the priorities for specific tasks in supporting and developing the use of IT standards in industry and research establishments. Four broad subject areas have been chosen, each with its own manager: communications and switching standards; applicationsupport standards such as presentation, file transfer, terminal handling and standards not specific to any application; appli-cation-dependent standards such as office automation, electronic fund transfer and other standards specific to a task; and lan standards. The unit will operate for the next three or four years.

Words into pictures

Computer graphics is one of the fastest growing segments of the microcomputer software market according to the recently appointed director of Digital Research's renewed European assault Paul Bailey. In response, the company plans to make its graphics-based software as successful as its word-based CP/M operating system, despite informed and aggressive competition in the same field.

If the plan succeeds, presumably the equivalent of the current $3000 \mathrm{CP} / \mathrm{M}$-compatible programs will be available in graphics form and all conforming to one standard. It is not claimed that these products will comply with ISO and ANSI standards, but they "will incorporate emergent graphics standards" laid down by these two organizations.
Contracts with Honeywell and ICL for their CP/M system have no doubt helped to incite the company's European offensive but at the conference announcing the plans, the emphasis on computer graphics was hard to miss. Reading between the lines, computers of the future intended for productive purposes will not give prompts in words, but will present the operator with easily assimilated images which will speed up reaction time and theoretically increase productivity.

Brokers break new ground

The second-user test gear company Electronic Brokers, claimed by its managing director Peter Fraiman to be the largest of its kind in Europe, has taken another step in its diversification into new product marketing by acquiring the sole franchise for a range of Philips test equipment. Equipment to the value of around $\mathfrak{£ 2 0 0 , 0 0 0}$ will be stocked by EB at the Kings Cross Road warehouse and showroom.

EB is now 15 years old, having started in the classic 'one man and a dog' manner to buy, recondition and re-sell test gear. During the last 10 years, the emphasis has shifted to professional instruments and, in the last five, to the computer field. The company is now at the point where it inhabits its own offices, showroom, workshop and warehouse in Central London, and supports its own standards room under the wing of Mike Jones, technical director.
The original suggestion that EB should handle Philips equipment came from Philips themselves - a compliment to the company's performance and management. EB intend to concentrate the new products side of their range on Philips. "A distributor" said Peter Fraiman, "should understand a maker's equipment intimately, and to achieve that you need to specialize".

One of the more informative displays seen at the recent Computer Graphics exhibition showed how a raster-scan colour graphics system works The Ramtek 6211 terminal used for this diagram can show 16 colours from a palette of 64 but a technique used by Bradford University showed simply how additional tones of these colours could be produced by omitting colour elements to enhance the display.

Stereo tv experiments

The BBC has at last admitted they have been running tests for stereo sound on BBC2 tv channel from the Crystal Palace transmitter. The method they have selected transmits a second discrete sound channel in addition to the main channel, similar to that used in Germany. The main channel consists of a sum of the left and right signals and the second channel the right-hand channel information only. A control sub-carrier included in the main channel identifies the type of transmission - stereo, mono or two seperate channels which could be used for two different languages. The additional f.m. sound carrier was set at various frequencies around 300 kHz from the main carrier.

Earlier tests using the system caused a certain amount of interference which included buzz on both sound channels, interference from the second sound channel on the main channel and patterning on the picture. To minimize these effects and provide a signal compatible with ordinary receivers they needed to reduce the main sound carrier to 10 to 13 dB below the vision carrier level; the second sound carrier was reduced even further to between 16 and 22 dB below the vision carrier. The trouble with this was that viewers in fringe reception areas could not receive a sufficiently strong second sound signal. Another drawback to such a low level for the second sound carrier is that the design of a suitable receiver becomes more difficult.

The principal rival to the two-channel sound approach is the f.m./f.m. system developed by NHK, with an f.m. main carrier, f.m. subcarrier and a.m. control subcarrier. For stereo the f.m. subcarrier is used for the difference or ' S ' component. Under some conditions there can be a severe degradation of the signal/noise ratio
though there is very little impairment to the vision channel.

The selection of one system over another seems to have political rather than technical overtones. As the PAL patents run out there could be an inrush of cheap Far-East tv sets and one way to overcome it was to incorporate some new system into the PAL set; the Germans have a number of patents on the two carrier sound system. If the f.m./f.m. system were to be adopted, there would be no restrictions on Japanese manufacturers.
The BBC point out that they are still at a very experimental stage and there is no commitment to introduce stereo sound for the BBCs terrestrial tv service or to adopt any particular system, but the results of the current investigation should assist the BBC in its future planning.

Electronics for peace

The inaugural meeting of the Electronics for Peace network is on Saturday November 20th at Langley Hall, Church Road, Bracknell, Berks, starting at 10.30 in the morning. Details are available from Anne Yarwood, a founder member of Electronics for Peace, who is investigating the impact of the link between electronics and arms on the Berkshire community, telephone: 0990 (Ascot) 21167. The oneday meeting will have wide-ranging discussions dealing with possible 'conversion' of military electronics to peaceful and productive purposes.

- Concerned about the massive and increasing involvement of the electronics industry with military projects, Steve Holmes and Tim Williams, both electronics engineers who themselves once worked on defence equipment, started Electronics for Peace, along with Anne Yarwood.

Private BT - Good, says Jenkin. Bad, says Stanley

In answer to criticism about the denationalization of British Telecom, Patrick Jenkin said that unprofitable services such as telephones and call boxes in rural areas would be continued. In a paper distributed to MPs to explain the Government's proposals, Industry Secretary Jenkin confirmed that the sale of 51% of the shares in BT would be an election issue and no final decision would be taken until after a general election. "BT's licence will ensure that everyone who has access to telephone services at present will continue to have access in the future" say the paper.

On the profits from the service Mr Jenkins sidesteps the issue of whether the money would be reinvested in the Corporation by saying that giving BT freer access to private capital means that customers would not have to bear such a large proportion of cost of new investment. Other issues such as the maintainance of the 999 emergency service and provision of new services to the most remote areas are "being considered at the moment".
Strongest criticism of the scheme has come from the Post Office Engineering Union. Bryan Stanley, it general secretary, has said that the privatization of BT is "divisive and against the interests of the community as a whole". Despite Mr Jenkin's assurances, Mr Stanley still believes that rural areas are threatened with a 'telecom blight' which could have serious implications in development areas, reflecting back on the business community by reducing their market penetration and affecting decisions on business location.

Mr Stanley claims that according to information leaked from a government 'think tank' meeting, it is the Government's intention to cut the workforce of BT by 20% or nearly 50,000 workers, and that this is one of the main purposes of getting BT into the private sector. He said that "far from being 'freed' by privatization, BT is set to be shackled so that its competitors can have a free rein to plunder its most profitable services. It is ludicrous for an expanding industry to have to reduce its workforce when customers are demanding more and better services".

According to the leaked papers, BT would only be allowed to expand if it:

- had the finance to do it (Government controlled)
- achieved a target rate of return (Government controlled)
- had the employees to do it (after the 20% cut)
- meet other criteria (determined by the Government and enforced by an office of Telecommunications).
If the corporation were to act on a purely commercial basis it would no longer be obliged to buy British, warns Mr Stanley, and there could be further losses to the

British information technology industry "It is by no means certain that the attempt to private BT will succeed. If the attempt failed or went badly, BT would be left in an even worse position in the future in a permanent state of uncertainty. But whatever happens ultimately, the Government is ensuring that BT and national telecommunications policy, will be in a state of flux for many crucial years to come".

One-line telecine

Though charge transfer devices, long set for use in domestic tv cameras, have not found a place in broadcast quality cameras, they can now be used as line sensors in telecine equipment. A full two-dimensional array requires half-a-million elements, but a single-line sensor needs only about 1,000 picture elements, with the motion of the film past the sensor providing the vertical scan.
Such a scheme has been held up in the
past by the lack of a suitable line-array sensor. Another difficulty has been that lines are scanned sequentially but need to be displayed interlaced, so a standards converter with a large memory is needed. But the rapidly falling cost of electronic storage and the availability of control microprocessors has made a charge transfer line-array telecine at last viable according to Rank Cintel, who are making machines under licence from the BBC.
An advantage of such a system is that film can be run at various speeds without loss of picture quality (except at the extreme of viewing the film at 400 frames a second). A fourth optical channel, in addition to RGB signals, that is sensitive to infra-red light, can be used to detect dirt particles on the film. Such noise can then be eliminated from the transmitted image.

The BBC/Rank Cintel telecine uses analogue signals with digital control, but another system using totally digital video system is described in our IBC report, page 34.

News in brief

Blumlein biography. The 40th anniversary of the death of Alan Blumlein has reawakened interest in the pioneer inventor who was much involved in the early history of television and in stereo sound recordings through his work at EMI. F. P. Thomson has been writing a biography now for nine years and there has been some criticism of the delay in getting it finished. In answer, Mr Thomson has told us that he has found some very interesting material about Blumlein's father and maternal grandfather who had much influence on him. His research into the family has taken F. P. Thomson into such fields as mediaeval tapestry when he found the coat of arms of the Blumlein family of Strasbourg in a 500 -year-old tapestry. All this has taken time, he says, and the illness of both Mr Thomson and his wife has also caused delays. The biography is now expected to be published in mid-1984.

A "support information retrieval system" is being developed by Systems Designers Ltd, for use in London's air traffic control centre. The system will be capable of providing several hundred pages of text and graphics information in 16 foreground and background colours for up to 300 terminals. The information includes meteorological conditions, runway allocation, communication frequencies, aircraft holding patterns and much more. The network is doubled so that two pages are available to each operator and still provide a single channel in the event of a failure. The system will be run from a continuously operating Tandem minicomputer which
will also have access to other computer databases including that of the Met Office. Fibre optic cables will transmit the data to each display position, chosen for their immunity from electrical interference, and freedom from radiation. The complete system will take two years to install.
Sessions on design principles, customer needs and case studies are part of the first UK seminar on semi-custom i.c. applications at the Ashridge Management Centre on 19 \& 20 November. According to the organizers, Academic Media Inc, main emphasis of the seminar is on practical aspects of semicustom i.cs and aims are to give consultants the background required to assess the impact of technological developments, advances in design techniques and new application areas. The organizers can be contacted on 01-947 4069.

IBA have designed microprocessorbased test equipment to measure the phase noise and the purity of signal from a uhf tv transmitter. Maintenance automatic test equipment or MATE incorporates a specially developed frequency synthesiser and precision u.h.f. demodulators to provide accurate measurements of broadcast transmitters. Compact, portable MATE is to be marketed by Continental Microwave. The APT140 numerical control coumputer system for machine tools, developed by British Aerospace, is to get commercial exploitation by Compeda. Capable of controlling five-axis machining, it combines the advantages of interactive graphics with the best features of the a.p.t. computer language.

DISTORTION IN DIGITAL RECORDINGS

Physical measurements for subjective assessments of reproduced sound obtained by a new method enable distortion in p.c.m. processors to be compared with that of analogue tape recorders.

This article presents measurements of non-linearities in analogue and digital recordings with comments on the sound qualities of both recordings.

Some pulse-code modulation recorders now in use are inexpensive compared with professional analogue tape recorders and even commercially available for the hi-fi market. In a similar way to the debates about valve and transistor amplifiers, the sound qualities of analogue and digital recordings are currently the talk of recording engineers. What data are there for quantifying such qualities?

A new method is used for measuring non-linear distortion in analogue and digital recordings. The method uses composite rectangular pulses as the test signal that permits transfer-function shapes to be predicted directly from non-linear distortion figures given by the measurement ${ }^{1}$. Before going on to the description of such distortions in digital and analogue recordings, the non-linear distortion (n.l.d.) figures and the predicted transfer

by Yoshimutsu Hirata

function shapes in transistor and valve amplifiers are presented so that readers may appreciate the measurement method.

Fig. 1 shows typical examples of the distortion figures of top-class transistor amplifiers. Amplifier A shows an s-type non-linearity, subjectively judged as "soft or glossy". Amplifier B shows a bow-like non-linearity, subjectively judged as "live or strong". Amplifier C shows a relatively small non-linearity and is subjectively judged as "clear or definite".

For comparison Fig. 2 shows the distortion figures of valve amplifiers. One can see s-type non-linearities in these amplifiers. The amount of distortion in these valve amplifiers is large compared with that in the top-class transistor amplifiers used for Fig. 1. Soft distortion, as repre-

[^0]sented by the s-type non-linearity, makes music sound "rich", "round" or "fat", which though likely to appeal to some people is unlikely to appeal to the hi-fi purist. One can also observe crossover distortion in amplifiers \mathbf{E} and F , usually only found in push-pull type amplifiers a remarkable result for such small input signal levels.
In listening to music the input of an amplifier can be either the output of a pickup cartridge which traces the waveform in the groove of a disc surface or that of a replay head which picks up the flux waveform recorded on magnetic tape. Usually, a signal being recorded in a disc or tape has passed through a master tape recorder, often considered to be the weak link in the current sound record/reproduce system ${ }^{2}$. Distortions in analogue recording depend on both tape speed and coating.

Distortion figures of three types of analogue tape recorders are given in Fig. 3, the Ampex A80, an open-reel type for professional use, the Sony TC-5550-2 open-reel

type, intended for battery operation, and the TC-K555 cassette type, using metal tape. As the desirable level of input voltage for these analogue tape recorders is not uniform, the abcissa of the distortion figure is given by different scale, viz. input voltages V_{1} are given by the number indicated on the abcissa multiplied by the values of K shown. A common feature in the form of the non-linearities in these analogue tape recorders is the s-type nonlinearity, which is typical of soft distortion.
The distortion in analogue tape recorders is principally generated by the magnetic saturation of tape coatings such as gamma-phase iron oxide $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$, gamma-phase ferric oxide with small amounts of cobalt and other metals, chromium dioxide $\left(\mathrm{CrO}_{2}\right)$, metal, and so on. There are variations between nominally similar tape coatings, but details are kept secret by tape manufacturers.
Distortion figures relating to tape coatings are shown in Fig. 4. In the measurement a cassette tape recorder Technics M77 was used with the bias point for tape coatings being tuned. As seen, the metal tape is superior to others. The sound of a
metal tape is subjectively judged as "clear or cold" in contrast to that of metal oxide tapes. It should be mentioned that the distortion depends also on the instrument being used, provided that a tape speed and coating are the same. Thus, the rank of distortion figures for metal oxide tapes may change when a tape recorder is changed.
In the process of digital recording, an analogue signal is converted into digital form by using an analogue-to-digital converter prior to recording. In the replay process, the recorded data are converted into analogue form using a digital-to-analogue converter. When recorded data are not missed, due to drop-out in the recording medium for example or when the error correction system is complete, the input of a d-to-a converter is the same as the output from an a-to-d converter. Thus distortions in a digital recording are reckoned to be from the p.c.m. processor which consits of input and output low-pass filters, a sample-and-hold circuit, and converters.

Fig. 5 shows the distortion figures of four p.c.m. processors, the PCMF1 (made in 1981, 14bit and 16bit linear), PCM 100
(1979, 14bit linear), DN035R (1979, 16bit linear) and XD60 (1982, 12bit floating point, 14bit output). The amount of distortion in A (16bit mode) is very small, which competes with the top-class transistor amplifier in linearity. Generally speaking, distortion due to the conversion error or quantization error increases with decreasing input signal level, which is similar to the crossover distortion in pushpull amplifiers. Such distortions are easily detected and disliked.
At present, sound qualities of digital recordings are widely spread: some are superior and some are inferior to that of analogue tape recording using professional equipment. The reduction of distortion in analogue tape recording depends on the development of tape coating material and one of the answers is metal tape. In digital recording, distortion could be reduced by the efforts of i.c. designers.

References

1. Hirata, Y., Quantifying amplifier sound, Wireless World, October 1981, p. 49.
2. Moir, J., 'Just detectable' distortion levels; Wireless World, February 1981, p. 32.

LOGIC MAPS - FROM LULL TO KARNAUGH

The progress of methods of showing logical truths, from a 13th century monk, by way of Lewis Carroll, to the Marquand/Karnaugh map used by logic designers today.

We begin in the Thirteenth Century. The Spanish monk Ramon Lull wanted to demonstrate religious truths, and began a chain of events by enclosing attributes of God in circles. He then showed the combinations: God is merciful and wise, kind and wise, all-knowing and merciful etc., as lines on a diagram, as in Fig. 1. It was an original idea for finding combinations of things, and the diagram had the added attraction that it "perplexed disbelievers".

About 1600 , realising the importance of Lullian diagrams, Liebnitz dreamed of an algebra by which disputes would be resolved by calculation. Lullian diagrams were used as part of natural science for 500 years, until Euler.

Euler

In 1760 Euler overlapped appropriate circles, which by now were also used to enclose classes of non-pious things. For instance, if all four-legged animals were herded into circle A of Fig. 2 and all things that fly were in circle B, then the Euler circles, because they did not overlap, demonstrated that there are no four-legged flying things. Figure 2 also demonstrates the conjunction - all Bs are C and, some Cs are B .

Lewis Carroll ${ }^{1}$ wrote "Apparently it never occurred to him (Euler) that something that hasn't the attribute cannot be shown on this diagram".

Venn

In 1850, Venn ${ }^{2}$ solved this problem and with the same stroke united all the circles into one. The gist of the method is to overlap all the circles and shade the empty areas. Figure 3 (a) corresponds to Fig. 2.

Figure 3 (b) shows that the Venn diagram of two circles, i.e. for two classes \mathbf{A} and B, has four areas.
$\bar{A} B(\operatorname{Not} A$ and $B)$
$A \bar{B}(A$ and Not $B)$
$\bar{A} \bar{B}(\operatorname{Not} A$ and $\operatorname{Not} B)$
$A B(A$ and $B)$

Lewis Carroll wrote of the Venn diagram "After shading some areas, the class $\bar{A} \bar{B}$, outside his diagram, is allowed the rest of infinite space to wander around in. However, when the class is empty, Mr Venn evades shading this area by a footnote - ('I have not troubled'). My solution is to enclose the diagram in a square box, the enclosure then represents the Universe."

The Venn diagram usually uses overlap-

by N. Darwood

ping circles. It is easy to draw three overlapping circles to show eight areas. But to show 16 areas by overlapping four circles A, B, C and D is a puzzle the reader may care to try. Venn resorted to ellipsis. Even so, for five classes A to E, a sixth ellipse was needed, which had to be drawn inside all the others. It represented the outside of one of the classes. Lewis Carroll wrote "For six classes A to F, Mr Venn suggests "the best plan would be to draw two such five (A to E) diagrams, one for F and one for Not-F''. This, however, would give one area which two classes would, somehow, have to share. Above six Mr Venn does not go".

Carroll

He then explains how the diagram of Fig. 4 may be constructed for eight classes. Figure 4 (a) is for four; for eight Fig. 4 (b) is drawn in each compartment.

Marquand and Boole

In 1881 the torch was passed to Alan Marquand ${ }^{3}$ who published the Logical Map shown in Fig. 5 (a), which is the one used today. It is now called the Karnaugh Map ${ }^{4}$, but then empty squares were shaded, whereas in Fig. 5 (b) and (c) nonempty squares are shaded.

In 1884 Boole published his Algebra

Fig. 1. Diagram due to Ramon Lull, who evidently enjoyed a comprehensive understanding of God.
which fulfilled Liebnitz's dream. Boole was a professor of Probability Theory and in probability the values range from 1 (for true), through all the fractional values less than 1 , to 0 (for false). For example, the probability of drawing an ace from a pack of cards is $1 / 13$. On drawing two cards the probability of drawing an ace and a 4 is

$$
\frac{1}{13} \cdot \frac{1}{13}=\frac{1}{169}
$$

The mystery (the explanation is nowhere in the literature, and electronic engineers often wonder) why Boole used + for or, evaporates when we consider the probability of drawing either an ace or a 4 , which is $1 / 13+1 / 13$.

He began his algebra by allowing only the two extreme truth values, true or false, i.e. 1 or 0 for statements. The variables A, B, C etc., now stand for Boolean statements. A Boolean statement is a statement which can only be true or false. Nowadays,

Fig. 3. Three overlapping Venn circles, with empty areas shadded, are equivalent to Fig. 2. At (b) two-class Venn diagram shows four areas, including universe outside.

Fig. 2. Euler circles.
we employ the Laws of Thought ${ }^{5}$ to manipulate compound Boolean statements. Some laws, because they are based on language, are obvious - consider the compound And statement: it is raining (A) and it is not raining ($\overline{\mathrm{A}}$). This is written

(b)

Fig. 4. Lewis Carroll's Logical Map for four classes at (a); for eight, (b) is drawn in each square.

(a) Marquand

(b) Karnaugh

(c) Veitch
algebraically $\mathrm{A} \overline{\mathrm{A}}$. Obviously, the truth value of this And statement is always false, i.e., zero. Hence the law, $A \bar{A}=0$. This law has a name; in fact, all the laws have names. For instance, the Idempotent Law states that the following two statements are equivalent:
"It is raining and it is raining"
"It is raining"
Hence $\mathrm{A} . \mathrm{A}=\mathrm{A}$.
Some laws only appear obvious because they are based on mathematics: e.g. $0+A=A$, similarly $0 . A=0$, also $1 . A=A$. Another instance is $A(B+C)=A B+A C$. Now having learnt the rules, to simplify $\overline{\mathrm{A}}(\mathbf{A}+\mathbf{B})$ we proceed as follows

$$
\begin{aligned}
\overline{\mathrm{A}}(\mathbf{A}+\mathrm{B}) & =\overline{\mathrm{A}} \overline{\mathrm{~A}}+\overline{\mathrm{A}} \mathbf{B} \\
& =0+\overline{\mathrm{A}} \mathbf{B} \\
& =\overline{\mathbf{A}} \mathbf{B}
\end{aligned}
$$

We all feel at home with $A+\bar{A}=1$; for instance, it is true that it is raining (A) or it is not raining (\bar{A}). But no one at first,
and few ever, feel at home with the final law

$$
A+B C=(A+B)(A+C)
$$

However, by substituting $\overline{\mathrm{A}}$ for C , it gives

$$
\begin{aligned}
A+B \bar{A} & =(A+B)(A+\bar{A})=(A+B) \cdot 1 \\
& =(A+B)
\end{aligned}
$$

Now although $A+B \bar{A}=A+B$, we cannot subtract A from both sides, because having done so would result in $B \bar{A}=B$; e.g., It is Tuesday and not raining $=$ It is Tuesday, which is only true if it never rained on Tuesdays.
Finally, out of the four basic arithmetic functions,,,$+- \times$ and divide, this leaves fractions to consider. We may define
A / B as $\mathrm{A}+\overline{\mathrm{B}}$
then $\quad \mathrm{A} / \mathrm{A}=\mathrm{A}+\overline{\mathrm{A}}=1$
also $\quad \mathrm{A} / \mathrm{l}=\mathrm{A}+\overline{1}=\mathrm{A}+0=\mathrm{A}$.

(a) $A B$

(b) 80°

(c) $A D^{\circ}$

(d) $A^{\prime} B+B D^{\prime}+A D^{\prime}$

(e) $A^{\prime} B+A D^{\prime}$

Fig. 6. Simplification of $\bar{A} B+B \bar{D}+A \bar{D}$ into $\bar{A} B+A \bar{D}$ by means of Karnaugh map. This diagram used for up to four variables.

Fig. 7. New
diagram showing number of patterns in Karnaugh map for n variables and number of marked (true) cells.

Fig. 5. Three modern logic maps.

(a)

(b)

0	1	3	2
4	5	7	6
12	13	15	14
8	9	11	10

(c)

Fig. 8. Completed Veitch map. Map at (c) is decimal version of (a).

This seems promising, especially when we derive

$$
1 / A=1
$$

Perhaps, by analogy with $\mathbf{A . A}=\mathrm{A}$ we could tolerate the cancellation law, which is

$$
\frac{A B}{B}=\frac{A}{B}
$$

but, unfortunately, to expand the simple expression

we multiply the numerator and divide the denominator, by A. This means that the fraction becomes more complex.
In summary, values are restricted to 0 and 1 , addition and multiplication is valid, subtraction is meaningless and fractions are no help at all.

Using the Karnaugh map

To show the use of the map, consider simplifying

$$
\bar{A} B+B \bar{D}+A \bar{D}
$$

Here, there are three terms to plot, i.e., $\overline{\mathrm{A}} \mathrm{B}, \mathrm{B} \overline{\mathrm{D}}$ and $\mathrm{A} \overline{\mathrm{D}}$; see Fig. 6 (a), (b) and (c). Superimposing these three patterns, Fig. 6 (d), gives the plot of the original expression from which it can be seen that the plot is equivalent to
$\overline{\mathrm{A}} \mathrm{B}+\mathrm{A} \overline{\mathrm{D}}$
See Fig. 6 (e).

Fig. 9. Back to Lull. A five-variable Veitch map.

Hence, $\bar{A} B+\bar{B} D+A \bar{D}=\bar{A} \bar{B}+A \bar{D}$. The reader may care to show by plotting the expressions, that $A D+B C+B \bar{D}+D \bar{C}$ simplifies to $A D+B+D \bar{C}$.

Five variables. Now a pattern consists only of $1,2,4,8,16 \ldots$ squares; hence, if the map contains say five marked squares then it consists of a combination of two or more patterns. How many patterns are there for n variables? The triangle in Fig. 7, published for the first time, tabulates the results. The analogy with Pascal's Triangle is that an element is formed from the sum of twice the element above plus the element to the left of it. A row of Pascal's Triangle sums to $2^{\text {n }}$, which is the number of squares on a map, whereas a row in Fig. 7 sums to $3^{\text {n }}$ which is the number of patterns on that map.

On a Karnaugh map, the position of the variables around the map is chosen so that as we move along an axis only one variable at a time changes (corresponding edges are joined together). By using this arrangement, which is binary Gray code, all rectilinear abutted cells on a four-variable map form a pattern. One would assume all patterns are of this form: however, for a fivevariable map two four-variable maps are drawn along-side each other in the manner of Venn. And the idea falls down.

To further the story, we need to complete the Veitch Map of Fig. 5 (b) by first entering the minterm of each cell as shown in Fig. 8 (a) and (b). Then convert binary to decimal as shown in Fig. 8 (c). This diagram differs from the Cartesian co-ordinate plane since, in the Cartesian plane, two numbers X and Y are required to specify a point on the plane, whereas one number on the Veitch map is unique to one point; conversely every integer corresponds to a unique position.

Now ever since Euler, logical maps have consisted of areas of different shapes and sizes, depending upon whose map it is. But, having arrived at the notion of the Veitch Map we can now construct a dia-
gram which allows logical truths to be more readily demonstrated, as in Fig. 9.
The diagram is, of course, Lullian.

References

1. Lewis Carroll, Symbolic Logic. Republished by Dover Press Inc. N.Y. 1958
2. Venn, Philosophical Magazine. July 1880
3. Marquand A., On A Logical Diagram For N

Terms. Philosophical Magazine. November 1881
4. Karnaugh M., A Map Method For Synthesis of Combinational Logic. Trans IEE \underline{E}.
November 1953
5. Boole, The Laws of Thought. Dover

Publications. 1884

[^1]Underground radio communication

Leaky Feeders and Subsurface Radio Communications, by P. Delogne. 283 pp , hardback, Peter Peregrinus (for IEE), £28. $0-$ 906048-77-X.

Underground radio propagation has been a vexing subject of investigation since the early 1920s, but it was not until 1956 that the breakthrough of this communications barrier came with the demonstration in the USA of what is now known as the "leaky feeder" principle for artificially propagating vhf signals through tunnels. Even then, it was another ten years before further progress was made, with the commencement of separate scientific studies in Belgium and the UK. In a short while powerful American effort, which had been concentrating on direct "through the earth" propagation at low frequencies for possible mine rescue applications, was alerted to the new developments and was making important theoretical contributions.

By 1978 in UK mines alone there were over 100 underground radio systems installed using leaky feeder principles, and still no text-book referred to the subject or even gave more than a passing reference to the problems of underground radio communication in general. Then one of the two leading theoreticians in the work (Prof J. R. Wait, then of Boulder, Colorado) suggested to the other (Prof P. Delogne, of Belgium) that he should remedy this unsatisfactory situation. It is a blessing that Delogne agreed to undertake the task, for this very commendable book is the outcome.

The prospective reader with a practical or "systems-oriented" interest should not be daunted by the academic background of the author. Abstruse mathematical treatments there certainly are, drawing on the publications of himself and $W_{\text {ait }}$ (and their respective coworkers) and necessarily so in such a serious work. But these are confined to a single (the longest) chapter which the reader is invited to skip if he does not feel up to it. Even so, the theoretical derivations are interspersed with important conclusions and discussions which should be noted by any serious reader; these sections are helpfully indicated by asterisks.

The book commences with an introductory chapter which effectively summarizes its whole scope. "Through-the-earth" as opposed to tunnel propagation is not to be treated, nor are surface applications of leaky feeders - two points that might be in doubt from the title. A brief historical survey concludes this chapter.
There follows the main theoretical chapter almost half the text of the book - dealing primarily with propagation in tunnels either bare or containing simple axial conductors. The coupling of dipoles, both electric and magnetic, into these fields is also considered here.

This leads on naturally to a chapter on modeconversion, the essence of leaky-feeder and associated techniques. The concluding two chapters are more practical, dealing separately with applications in the HF and VHF / UHF bands. It becomes clear here that the author is not only a theoretician. The systems he describes in most detail are naturally those that he himself has engineered, using his patented techniques of discrete mode converters or of "leaky sections" instead of continuous leaky feeders. Further useful material on mobile aerials is included here, and advice on the positioning of leaky feeders. On the
investigative side, the final chapter cites an obscure but remarkable student thesis describing work carried out in the Paris Metro in which 15 different types of leaky feeder were studied over a range of frequencies.
Although the author does not claim to introduce a great deal of unpublished material, even the (rare) knowledgeable reader familiar with all the literature will find a new enlightenment in his commentaries; he has reconciled differing theoretical approaches and finally resolved any confusion in terminology that remained.
The very full bibliography lists 180 references up to 1980 , including 27 from the Belgian school and an astounding 51 out of Boulder. It possibly includes every paper of significance published up to 1979.
If there is a weakness it is in the treatment of repeater systems. This aspect receives only ten pages, even though repeater symbols feature prominently in the dust-cover design; but the author may rightly feel that this is a subject for a separate work. His explanation that such techniques are disfavoured in continental Europe for their dependence on the continuity of mains power ignores the fact that every UK coal-mine system has an endurance of three days against such failure on the insistence of the Inspectorate of Mines and Quarries. On the important question of cumulative repeater noise, he is mistaken in suggesting that fewer repeaters of higher gain are preferable; the opposite is generally the case, because of the over-riding effect of span loss. On the associated question of cumulative intermodulation effects he contents himself with (righty) disagreeing with one paper cited, whereas a fuller analysis of the problem by himself would have been most valuable.
An unfortunate optical illusion in Fig 3,11 may at a cursory glance confuse the fact that the curves actually cross, and so rob the author of the valid point he is making about the advantage of the leaky-sections technique.
This book is essential reading for the systems engineers of all manufacturers and undertakings concerned with practical leaky feeder communication. Equally, every academic involved in research in this or related fields will need to have it to hand for constant reference. And the subject will, one hopes, now find its rightful place in student curricula. Paul Delogne has fulfilled his task admirably.
D. J. R. Martin

Computing is Easy by David Parker and Martin Hann, 113 pages. Butterworth Group, £3.95 paper cover.

Beginner's Guide to Microprocessors by E. A. Parr, 218 pages. Newnes $£ 3.95$ paper cover.

Control in Hazardous Environments by R. E. Young, 111 pages. Peter Peregrinus $£ 12.00$ paper cover.

James Clerk Maxwell A Biography by Ivan Tolstoy, 184 pages. Canongate Publishing $£ 9.95$ hard cover.

How to Identify Unmarked ICs by K. H.
Recoor. Babani $£ 0.65$ paper cover.
Feedback Design of Systems with Significant Uncertainty by M. J. Ashworth, 246 pages. Wiley, $£ 15.50$ hard cover.

Electronic Servicing - 1 by Rhys Lewis 278 pages. Macmillan Press £5.95.

Reliability and Maintainability in Perspective by David J. Smith, 243 pages. Macmillan $£ 15.00$ hard, $£ 8.95$ paper cover.

Microwave Field-effect Transistors - theory, design and applications by Raymond S.
Pengelly, 470 pages. Wiley $£ 15.50$ hardcover.
Electronic Checkbook - 2 by Knight, 112 pages. Butterworth Group, $£ 2.95$ hardcover.

Electronic Checkbook - 3 by Knight, 105 pages. Butterworth Group, $£ 3.50$ hard cover.

International Video Yearbook 1982/83 by Angus Robertson, 731 pages. Blandford Press, $£ 25$ hard cover.

Electronic Equipment Reliability - 2nd
Edition by J. C. Cluley, 177 pages. Macmillan, £6. 50 paper cover.

Energy in Electromagnetism by H. G. Booker, 360 pages. Peter Peregrinus, $£ 25$ hard cover.

Electronic Music Circuits by Barry Klein, 302 pages. Prentice Hall, $£ 12.70$ paper cover.

Digital Logic Circuits by Robert G. Middleton, 308 pages. Prentice/Hall, $£ 12.70$ paper cover.

Microprocessor Systems Design by Edwin E. Klingman, 349 pages. Prentice/Hall, $£ 22$ hard cover.

Microcomputer Design and Construction by Alan Clements, 520 pages. Prentice/Hall, $£ 18.95$ hard cover.

How to Get Your Electronic Projects Working by R. A. Penfold, 81 pages, Babani, $£ 1.95$ paper cover.

Designing Microprocessor-based
Instrumentation by Joseph J. Carr, 323 pages. Prentice/Hall, £17.55 hard cover.

30 Solderless Breadboard Projects - 1 by R. A. Penfold, 149 pages. Babani, $£ 2.25$ paper cover.

Fiber Optics by Waldo T. Boyd, 221 pages. Prentice/Hall.

Amateor Television Handbook - 2 by Trevor Brown, 97 pages. BATC Publications, $£ 2.40$ paper cover.

Supervisory Remote Control Systems by R. E. Young, 195 pages. Peter Peregrinus, $£ 12.75$ hard cover.

Understanding Digital Logic Circuits by Robert G. Middleton, 392 pages. Prentice/Hall, $£ 12.50$ paper cover.

Electronic Components and Systems by W. H. Dennis, 258 pages. Butterworth Group, $£ 12.50$ hard cover.

Phase Noise in Signal Sources by W. P. Robins, 321 pages. Peter Peregrinus, $£ 28$ hard cover.

Integrated Circuits by William C. Till and James T. Luxon, 462 pages. Prentice/Hall, $£ 24.70$ hard cover.

Alphanumeric Displays by G. F. Weston and R. Bittleston, 194 pages. Granada, $£ 16.50$ hard cover.

Handbook of Semiconductor and Bubble Memories by Walter A. Triebel and Alfred E. Chu, 401 pages. Prentice/Hall, $£ 18.70$ hard cover.

Radio Handbook by William I. Orr, 1200 pages. Prentice/Hall, $£ 24.45$ hard cover.

Radio and Television Servicing 1981/1982 models by R. N. Wainwright, 738 pages.
Macdonald, $£ 19.50$ hard cover.

Tools of the Mind by V. Stibic, 297 pages. North Holland Publishing, $\$ 35$ hard cover.

Computer Programming in Cobol by Melinda Fisher, 202 pages. Hodder \& Stoughton, £2.95 paper cover.

Understanding Digital Electronics by R. H. Warring, 156 pages. Lutterworth Press, $£ 6.95$ hard cover.

Public Address Handbook - 2nd Edition by
Vivian Capel, 238 pages. Keith Dickson Publishing, $£ 7.95$ hard cover.

Wind/Solar Energy by Edward M. Noll, 264 pages. Prentice/Hall, £9.05 paper cover.

UK CB Handbook by Alan C. Ainslie, 150 pages. Newnes, $£ 3.95$ paper cover.

Microshop Series vol 8 (index) by Trevor Toms, 207 pages. Phipps Associates, $£ 9.95$ paper cover.

Radio Control for Modellers by R. H.
Warring, 132 pages. Lutterworth Press, $£ 6.95$ hard cover.

Aerial Projects by R. A. Penfold, 84 pages. Babani, £1.95 paper cover.

Servicing Radio, Hi-Fi and TV Equipment by Gordon J. King, 205 pages. Newnes, $£ 5.95$ paper cover.

Apple Personal Computer for Beginners by Seamus Dunn and Valerie Morgan, 257 pages. Prentice/Hall, £6.95 paper cover.

Microprocessor Data Book by S. A. Money, 264 pages. Granada, £16 hard cover.

Practical Handbook for Valve Radio Repair by Chas E. Miller, 221 pages. Newnes, $£ 13$ hard cover.

Interfacing to Microprocessors and Microcomputers by Owen Bishop, 147 pages. Butterworth Group, $£ 4.95$ paper cover.

Microcomputer Experimentation with Mos
Technology Kim - 1 by Lance A. Leventhall, 467 pages. Prentice/Hall, £14.35 paper cover.

Microprocessor Circuits vol. 1 by Edward M. Noll, 109 pages. Prentice/Hall, £7.45 paper cover.

Microshop Overview vol. 1 by John Phipps, 140 pages. Phipps Associates $£ 9.95$ paper cover.

Software Development 2nd Edition, 1127 pages. Texas Instruments, $£ 12.90$ paper cover.

Influence of Microelectronics on
Measurements Instruments and Transducer
Design (conference proceeding), 296 pages.
IERE, £37.50 paper cover.
Fibre Optics (Conference proceedings), 200 pages. IERE, £27 paper cover.

Video and Data Recording (Conference proceedings), 405 pages. IERE paper cover.

Electromagnetic Compatibility (Conference proceedings), 322 pages. IERE., $£ 35$ paper cover.

Digital Circuits - Ready Reference by John Markus, 162 pages. McGraw-Hill, \$12:50 paper

Communications Circuits - Ready Reference by John Markus. McGraw-Hill, $\$ 12.50$ paper cover.
Special Circuits - Ready Reference by John Markus, 234 pages. McGraw-Hill, $\$ 12.50$ paper cover.

Popular Circuits - Ready Reference by John Markus, 216 pages. McGraw-Hill, $\$ 12.50$ paper cover.

Electronics Projects - Ready Reference by 'John Markus, 181 pages. McGraw-Hill, \$12.50 paper cover.

Electronics TEC Level II by D. C. Green, 150 pages. Pitman, $£ 4.95$ paper cover.

Transmission Systems TEC Level II by D. C. Green, 148 pages. Pitman, $£ 4.95$ paper cover.

Electronics TEC Level III by D. C. Green, 207 pages. Pitman, $£ 5.50$ paper cover.

Essential Electronics - an A-to-Z Guide by George Loveday, 257 pages. Pitman, £5.95 paper cover.

Information Technology \& People, vol. 1, 299 pages. Citech (Uxbridge), $£ 20$ hard cover.

November 23-25
2nd International Conference on Semi-custom
ICs. West Centre, London SW6. Details from
Prodex (Seminars) Ltd, 79 High Street,
Tunbridge Wells.

November 25

Fibre Optics Forum. ERA Technology are investigating the potential market for short range fibre optic systems, particularly sensors for automation and process control. Details from Robert Stafford 0372374151.

November 25
Chemicals in the Electronics Industry:
IMRA/IEE Symposium at the Cafe Royal,
Regent Street, London. Details from IMRA, 11
Bird Street, Litchfield, Staffs WSI 3 6PW.

November 25

Hi-Fi TV - Bigger, Better Pictures: Royal
Television Society Lecture at IBA, 70
Brompton Road, London SW3, 7pm.

November 26-28

Pie in the Sky? A Royal Television Society symposium examines impact of satellite and cable distribution. At BBC Broadcasting House, Manchester.

November 26-December 5

International Exhibition of Inventions, also
Special Techniques. New Exhibition and Conference Centre, Geneva. Secretariat: International Exhibition of Inventions, 8 rue du 31-Decembre, CH-1207 Geneva.

November 29

British Aerospace Industry. Lecture at the Institute of Mechanical Engineers, 1 Birdcage Walk, London SW1. Details: Fellowship of Engineering, 2 Little Smith Street, London SW1.

November 29-30

Robotics and Artificial Intelligence;
information from State-of-the-Art Ltd, Victoria House (M9), Southampton Row, London WC1B 4EF. Also in Paris, Nov 25/26.

November 29.30

Fibre-optics and Lasers; conference sponsored by Technology Transfer Society and the Technical Marketing Society of America. Russel Hotel, Bedford Square, London WC1
Details from State-of-the-Art Ltd.

December 2

Prestel: Lecture by J B Millar of BT. Room 612,
Ashby Building, Stranmillis Road, Belfast.
Details from IEEIE, 2 Savoy Hill, London WC2R 0BS

December 7
Photon Connection: IEE Faraday Lecture, presented by STC as part of their centenary celebrations. Great Hall, Unversity of Exeter. Three presentations at $10.30 \mathrm{am}, 2$ and 7.30 pm .

December 8-9

IT 82 Conference review, Barbican Conference Centre. Online Conferences Ltd, Argyle House, Northwood Hills, Middlesex HA6 ITS.

December 9

Technical Picture Quality: Royal Television Society discussion. 7pm at IBA, 70 Brompton Road, London SW3.

December 9

Word Processors in the Microchip Office:
IEEIE Lecture, Norfolk College of Art and
Technology, Tennyson Avenue, King's Lynn, 7.30 pm .

December 13-15
Automatic Testing and Test Instrumentation:
International conference and exhibition. The conference is devoted to CADMAT systems. Metropolitan Convention Centre, Brighton.
Network Exhibitions Ltd, Printers Mews,
Market Hill, Buckingham MK18 1JX.

December 14

Electronics in Motor Vehicles: IEEIE Lecture at IEE, Savoy Place, London WC2, 6pm.

14 December

50 Years in Communication: IEEIE lecture by E G W Miller of BBC Scotland. At SSEB, 75 Waterloo Street, Glasgow, 7pm.

December 14

The Photon Connection (see December 7) two presentations at The Dome, Brighton, 2.30 and 7 pm .

December 15-17
Remote Sensing and the Atmosphere: Annual conference of Remote Sensing Society at the University of Liverpool. Details from Dr A Henderson-Sellers, Geography Department, University of Liverpool, PO Box 147, Liverpool L69 3BX.

THE NEW BUREAUCRACY

Three anti-technology forces in society - the bureaucracy, management and the pure scientists - are coming together under the banner of software in their rearguard battle against the rising power of technology and the technocracy.

What is the nature of the relationship between the manager and the technocrat? Do they, hand in hand, mutually trusting, mutually supporting, venture bravely into a prosperous future? Does the manager never doubt his technocrat's loyalty? Does the technocrat never doubt his manager's loyalty?
My twenty years' experience in ten companies in Britain and the USA indicates that there is deep hostility and fear between manager and technocrat. Currently the manager holds the upper hand and fights a nervous rearguard action against the rising technocrat.
In the early days, a factory was owned by the man who managed it, controlled it and understood all the details of its operation. But later, in the industrial revolution, business and industry became larger and more complex, and the owners began to lose detailed knowledge of their operation. The introduction of the joint stock limited liability company allowed ownership to be fully divorced from the understanding. A professional managerial class developed which knew all the details and was therefore able to make the crucial decisions.

Power passed from the owners to the management, because as J. K. Galbraith says in The New Industrial State, power is where the most complex decision making is. Whereas nominally the owner, the stockholders, still had control, in reality because of their ignorance they could only "ratify" the decisions made by the management. In his book The Practice of Management Peter Drucker describes how Henry Ford behaved like an industrial Canute when he tried to keep power out of the hands of his professional management, virtually bankrupting his company in the process. Today, as Henry Ford showed, stockholders can only obstruct the actions of company management, nothing more.
The latest shift is in high technology industry, where most complex problems and decisions are technological, so that power should now move from management to the technocracy. We can see bitter battles during the transfer of power, re-enacting what had happened in the Ford company during the previous transfer of control from owner to manager. For example, during my first year in one computer company, employees within the design department who had more than four years of design experience were driven out of the company. Also, it was common to categorise those engineers

[^2]
by Ivor Catt

above a certain level of qualification and experience as temporary (contract engineers), the idea being that a manager can have someone working for him at more than his own salary provided he is described as temporary

The generally near-bankrupt conditions of most high technology industries can be attributed to the Canute-like rearguard action by management against a new rising power elite called the technocracy. This tankruptcy is both financial and technological. High technology industry not only loses money at an unprecedented rate; it also fails to innovate to any significant degree. We must look through the barrage of propaganda to the reality in order to see this.
The Henry Ford syndrome affected only some companies during the previous transfer of power. The reason why the present transfer from management to technocracy is so much more acrimonious is because management, already badly paid in Britain, look forward to a greatly circumscribed role in the future, short on money and prestige; very much the role of the doorman at the swank hotel.
According to Galbraith, after a transfer of power to the new group who make the most complex decisions, the old, declining group can only act obstructively. For example, Henry Ford obstructed the work of his rising managerial class. Today, similarly, the declining managerial class obstructs the work of the new, rising technocracy.

In the past, management would wax
enthusiastic about simplistic pseudotechnical questions - for instance the alleged brilliance of the technically ignorant Weinstock, head of GEC, Britain's biggest high technology company, when he demanded of his chief engineer that he reduce the number of valves in the television they manufactured from three to two. As background to the story, it did not need to be said that the chief engineer, being technical, would not know, first that two valves cost less than three, and secondly that a cheaper television would sell better.

Onto the scene of this rearguard battle comes software, a simplistic new pseudotechnology with no technical content, administered by programmers who are as ignorant as management when it comes to engineering. There are virtually no socalled 'computer science' degree courses in this country containing any physics or engineering. The arrival of software is a heaven-sent aid to management in its battle to limit the work of technocracy, particularly because software, the modern clerk's job, is in fact low level management work.

It is in the interest of both management and of programmers to play down and limit technology, and they do this by developing the myth that software is technical, possibly the new technology, putting around such false phrases as "software engineering" and "information technology", although software has no engineering content and the information industry has no technical content, and employs almost exclusively programmers with no knowledge of engineering or even of school physics.

It is a simple matter for the new management-programmer axis to ensure that no new product will be allowed which does not contain at its centre a general purpose (von Neumann) computer, so ensuring that every product or activity in the future will mimic the data processing systems of the past on which both today's managers and programmers cut their teeth. As the cost of such a machine falls, the technically ignorant programmer, egged on by the technically, ignorant manager, infiltrates deeper and deeper into the design of the engineer and freezes it into one particular structure - a structure which is expensive in software overhead, is unreliable, and also runs slowly. Since the machine runs slowly, having at its core a slow microprocessor, more and more engineering activity has to be off-line rather than real-time and the divorce from physical reality, always the objective of the bureaucrats, gathers pace. As in the past the bureaucrat would function in a false, simplistic model of reality, so the new, slow, off-line machine functions in a false, simplistic model of reality. Pressure is then put on reality to conform, and this pressure is exerted by programmers without knowledge of reality, that is, without knowledge of either physics or engineering.

Software is the weapon which the bureaucracy uses to infiltrate into the heart of technology in order to control it and stop it from developing.
In Britain, after many years of inaction, the government recently pumped large amounts of money, into what it called the microelectronics revolution. Virtually all of this money has now been subverted into teaching a whole generation how to program, always in the language called Basic, the language most far divorced even from the reality of the old von Neumann computer. But none of the government intended subsidy of the microelectronics revolution found its way into hardware or engineering.
By "von Neumann computer" I mean a machine where one instruction is obeyed at a time and the use of content-addressable memories, also called associative memories, is not allowed. In a contentaddressable memory you can call up words of a certain type, rather than having to call for a word by its physical location, as in ram.

Most software techniques turn out to be devices to make up for the defficiency of content-addressable memory. In the 1940s, unlike today, it was technically very difficult to build a content addressable memory, so the von Neumann team did not include one in their machine. Today we refuse to use them because the ancients did not use them.

So far, we have seen that the bureaucracy and also management in industry join forces with software in order to subvert and control technology and stop it from advancing.
Up to the present time another quite

distinct battle has been fought between the pure scientist and the technocrat. You will all be familiar with this battle, between sacred scientific search after truth on the one hand and profane technological search after profit on the other. In the range from sacred to profane, pure mathematics
stands at the most sacred end of the spectrum, then comes applied math, then physics, then engineering. Now the mathematicians, being divorced from the profit motive, found it difficult to make a living. However, a decade or two ago, some of these technology-free individuals

Pyramidal battlegrounds

Properly, the technocracy should form a pyramid with the older, more experienced technocrats at the apex and the new, bright young graduates at the bottom.

The True Technical Hierarchy
Overall control and direction will properly come from technically well-qualified engineers with ten to twenty years of design experience. The mature engineer will not only control the way in which major modules in the system are interconnected, but will also direct the detailed design within each module. (A module may be a computer memory, or a correlator, etc.) Management properly becomes merely a service in high technology industry, much as the shareholders do not figure very much in the operation of companies today. Management, like security or health care in a company, is important but not pre-eminent. This is the background against which the present confused reality in high technology industry can be viewed.
Because management maintains the myth that it is still in control, a structure develops as shown.

I once worked in a reasonably small project (\$5 million spent in two years, some 40 years employed in it) which because of the above farcical structure had six levels of authority in the administrative tree. One company in Los Angeles at the time, with less than 200 employees, had 12 levels in its heirarchy. This kind of situation results from a defunct management structure trying to sit on top of the real high-technology hierarchy.
In large projects in Britain today, the attempt to make the above structure look more reasonable takes the following course.
The work of the technocracy is (incorrectly) broken up into

- The interconnection of major modules.
stooped to programming in order to earn a crust. They discovered that a lack of knowledge of physics and engineering was no handicap, that programming had no technical content, so, reassured, they called themselves computer scientists (although programming is not a science) and talked about such things as "cybernetics", the "information revolution", and so forth. Without realising it, they were exploiting the fact that the limited technologies of the 1940s and 1950s had led to a very awkward machines, the von Neumann computer, which required the services of large numbers of clerks (programmers) to get useful work out of it.

The fact that many out-of-work mathematicians took up programming meant that software ended up on the side of pure science in its century-old battle against profane applied science.

Programmers managed to get inside the colleges both in Britain and the USA, something digital electronics has still today failed to do, and set up departments in what they called computer science, which must be a false name because in such "departments no science or computer hardware is taught, only programming. Further, entrants to such university departments are not required to have any qualification in physics or engineering.

In Britain, the bureaucracy is populated at its upper levels by the old pre-industrial

ruling class, and by tradition they despise management in industry. However, the class origins of the bureaucracy are widening, and both the bureaucarcy and management in industry see software as a useful weapon to fend off the growth of technology.

Software unites three previously separake groups, the bureaucracy, industrial management, and the pure scientists, all of whom are opposed to technology.

If we want to prevent such a powerful anti-technology axis from developing, we must ensure that at least the upper levels in the programming industry have some knowledge of technology so that they will

This is then called systems engineering, or just "systems".

- Design within one module. This is called engineering, or "design".
There is a grain of truth, but little more, in the idea that the interconnection of large modules is a more sophisticated engineering task than the microscopic design within one module.
The technocracy is then truncated, and the upper Systems portion taken down and laid alongside the Engineering portion

Presumably because it is thought that the interconnection or large engineering modules involves only paths through which information flows, nothing more (it being believed that we live in the information age); the Systems triangle above is populated with young programmers with no engineering competence, while the engineering competence is relegated to the Engineering trapezium on the right.

- Management, because it identifies with software and indeed contains many programmers within itself, then attempts to control (curb) the technocracy, Engineering, at second hand, via Systems. Communication through the dangerous, abrasive interface between Engineering and Management is reduced to a minimum.

Following a divide-and-rule policy, management presides over a field of battle, where each individual in Systems has been allocated a sparring partner in Engineering. One pair will do battle over the autopilot, another pair over the computer, etc. At the top, the head of Systems fights a major battle for control with the head of Engineering. Since obviously little product of value resuits from all this, the head of one unit has to be fired as scapegoat periodically, say once per year. Again paradoxically, this is usually the head of Systems, the senior programmer, since the head of Engineering controls the real machine rather than merely sheafs of hopeful paper specifications. However, in some projects the pattern is one of alternately firing the head of system and the head of engineering, who dutifully fight to the death as required.
None of this pervasive madness within our major high technology projects is ever discussed or admitted. The cost in human misery is incalcuiable, while the direct cost to Britain in waste in major weapon and other projects runs in billions of pound per year rather than hundreds of millions.
come to think in terms of using it rather than merely fearing it as a threat. In the British context, this would be achieved by legislating against any college giving a degree in computer science if the course contained no scientific or technological material, as is the case in virtually all computer science degrees today. There is no possibility that the present industry, containing as it does personnel 98% of whom have no knowledge of technology, will be able to exploit the gigantic potential of digital electronics into the future.

The nature of information

In 1964 Marshall McLuhan discussed the massive increase in the flow of electronic information, and developed the idea that in the future this information would be an important commodity to be bought, sold and processed. For him, information was any signal of any kind. However today, the so-called information industry restricts information to verbal information, a sequence of words and numbers. This restriction in the type of information we are willing to handle cuts us off from the massive potential service that digital electronics offers.

To illustrate the point, I shall ask a question. Suppose that a flying aircraft sends out radar pulses which bounce off other aircraft, or the ground, and return. Are the returning pulses information? If they are, it follows that an information technologist or computer scientist must be qualified in technology, or else the industry will not be able to relate to its potential. If however the returning pulses are not information, then we need to set up a new industry, an "electronic signals" industry, which will have far greater prospects in the future that the small, bureaucratically structured information industry.

In general, electronic signals will cause machinery to act, and only rarely will these signals be verbalized and put into a form which can be fed into a line printer and processed by a von Neumann-type computer program. Our present insistence that signals should all be of the von Neumann computer-input and computeroutput form is hampering our develoment and turning our industry into a mere adjunct of the bureaucracy.

Background reading

J. K. Galbraith, The New Industrial State. Houghton, Mifflin, Boston, 1967.
Peter Drucker, The Practice of Management. Harper \& Row, New York, 1954.
I. Catt, Computer Worship, Pitman, London, 1973. p48.
I. Catt, Dinosaur among the data? New

Scientist, 6 March 1969.
I. Catt, Wafer-scale integration, Wireless World, July 1981, p57-9.
I. Catt, A South-sea bubble about to burst? Computer Weekly, 3 Nov. 1977.
Anon, The New Bureaucracy, Wireless World, February 1981, p31.
I. Catt, Management against innovation,
fournal of the Business Graduates Association in Britain, vol. 6, Summer 1976, p.4-6.
M. J. Wiener, English Culture and the Decline of the Industrial Spirit. Cambridge University Press, 1981.

Tetrode klystron

It has been said that it was after the advent of steam that the greatest progress was made in the design of sailing ships. Be that as it may, it is interesting to note that at the 1982 International Broadcasting Convention at least two of the most interesting new developments were in the form of thermionic devices. Thomson-CSF described their new TH539 tetrode for m.f. broadcasting that is capable of delivering no less than one megawatt of carrier power. And if you still think in terms of receiving-type valves it may be a shock to lean that the TH539 has a heater taking 30 V at 900 A and an anode current of 90 A at 13 kW !

But a more fundamentally radical development is the new single-cavity u.h.f. "klystrode" developed by Varian. This, as the name implies, is half klystron and half tetrode and offers the possibility of developing a high-power, Class B, linear amplifier for vision or sound transmissions, as a means of improving overall conversion efficiency. Early power klystrons in vision service were only about 25 per cent efficient at peak sync. output. Since collector current remains unchanged regardless of the input waveform the true conversion efficiency, in terms of kilowatts consumed from the supply mains related to output, was only a few percent. Since then considerably higher efficiencies have been achieved both in the basic klystron design and by the use of pulsers to reduce collector current at other than sync. periods (EEV devices tested on the BBC Crystal Palace transmitters have achieved 70 per cent, measured on the basis of peak sync. output) but the klystrode appears to be the first klystron-type device to offer the possibility of Class B operation. But already, for m.f., all-solid-state sound radio transmitters are now available up to 10 kW output.

All digital?

While in the communications field the main emphasis - as noted at Racalex 82 - is on the extension of digital techniques into the analogue domain, it was evident at IBC82 that the vogue phrase now is not "all digital" but "component coded". The separation of luminance and chrominance signals is the key feature of the new generation of integrated camera/recorders using $1 / 2$-inch M -format (VHS) tape or the $1 / 2$ inch Beta-format or the Bosch prototype unit with $1 / 4$-inch CVS cassettes. At IBC82 most of these equipments were working on the 625 -line standard.

Component-coding is also the key to the IBA's MAC (multiplexed analogue component) system that resulted at IBC in many BBC-IBA clashes at a not particularly enlightening level. Philips showed what can
be done with 625 -line PAL when you have three field stores in every receiver but so far even this fails to overcome cross-effects on movement, though certainly in other respects the digital processing overcomes flicker and interline flicker and provides a really excellent still picture. But for true wide-screen, high-definition television one had to go to the closed-circuit demonstration of the Sony system working on the proposed NHK standard of 1125 lines, $60 \mathrm{~Hz}, 5: 3$ aspect ratio. Magnificent, near cinema-film quality, but little hope of finding spectrum space for its 30 MHz or so of component-coded video, at least in Europe. I came away from Brighton feeling that priority should be given in Europe to raising the field rate on all transmissions to at least 60 Hz - it is only when you see 50 and 60 Hz systems working side by side that you realise that, as brightness of colour pictures increases, large area and interline flicker are becoming more and more obtrusive.

Excess radio officers

The original Wireless World, then under the title The Marconigraph, was directed primarily towards the many young radio officers who have been carried on all large sea-going merchant ships since before World War I. It is remarkable how many of the pioneers of radio communications began their careers as brass-pounders.

Today, radio and electronic officers are facing something approaching a crisis. Not only are owners seeking to change the present regulations relating to the compulsory carrying of ROs on coastal ships of more than 1600 tons, but also there has been a dramatic decline in the number of ships, what with the recession and the rise of the super-tanker and the container vessels. Many newly-trained ROs are finding it near impossible to obtain berths and are often taking jobs not requiring Morse operating skills. Yet Morse remains supreme for low-power and emergency communications. I was reminded of this talking to Lady Virginia Fiennes, base operator of the three-year Transglobe expedition at Racalex 82. Both in the Arctic and Antarctic, the notoriously poor radio propagation, with polar cap absorption, multipath and other effects, meant that most of her contacts with her husband Sir Ralph Fiennes and co-explorer Charles Burton were made using hand Morse sent slowly to counter the worst polar conditions. Yet her long-distance contacts with Cove Radio and Portishead Radio, using relatively high-power and good aerials, were on s.s.b. In an emergency or when portable it is still often more useful to have a Morse key than either a microphone or a qwerty keyboard.

Spectrum share-out

Odd things indeed are happening in the field of r.f. spectrum management these days. The interim report of the Merriman committee has not only recommended giving to "land mobile" all and more than they could possibly have sought - denying to British viewers the entire Bands 1 and 3 - but it is being claimed that cellular radio, tried and tested in Japan and the USA, is some entirely new form of technology that will be the responsibility of the Department of Industry rather than the Home Office.

While it can be argued that the present broadcasters have less need than the communications industry of v.h.f. (internationally recognized as economically and technically the most suitable band of frequencies for terrestrial television broadcasting) past experience underlines the inadvisability of one country departing so radically from the ITU frequency table even though footnotes inserted at WARC 1979 enable this to be done. Police and ambulance communications were prematurely put into the radio broadcasting band. East Europe has sound broadcasting around 70 MHz . Australia originally used Band 2 for television and that delayed v.h.f./f.m. radio and led to other problems.

Transmitter manufacturers will find it more difficult to sell v.h.f. transmitters overseas where these bands will most certainly continue to be the prime television bands. The British public will have no chance of any future development of new standards or systems for terrestrial broadcasting with the four u.h.f. networks already allocated. Educational channels, local community channels, higher definition channels cannot be fully met by satellite or cable. In the past the introduction of new systems has depended upon the availability of alternative bands of frequencies. It will be said that broadcasters have an axe to grind but the fact remains that the public's benefit from the use of a natural resource will be far less in the UK than in almost any other country in the world. Most people would agree that in the past the balance has been weighed too heavily in favour of the broadcasters - but if the Merriman report is accepted it is the land mobile service that will have more than it needs.

Pulses on m.f.

A number of interesting papers on communications and broadcasting topics were presented by guest speakers at a recent two-day antenna symposium run by C\&S Aerials. For example J. H. Bote (Birmingham University) described work on automatic, microprocessor-controlled aerial matching units based on simple L net-
works, suitable for use with any whip aerial over the range 1.6 to 30 MHz . Unlike a comparable system described last year by Dr M. J. Underhill (MEL) in connection with his "quiet tuning" system and using a two-stage pre-matching technique, this is a single unit device, having larger values of L and C (up to $250 \mu \mathrm{H}$ and 9500 pF).

Another presentation, by Professor E. D. R. Shearman, was on sea-state detection using radio echoes from sea waves and ships from an installation in Wales, using the active-loop receiving aerial array developed by C\&S Aerials. The system has proved able to detect echoes from seawaves and ships at much greater range than conventional microwave radars. He believes the system may come to be used quite widely for ship tracking.

Early in the morning of September 21, big-dish signals from the American Stanford installation finally broke through into the UoSAT command receivers and control of the satellite was re-established. For five months UoSAT would not respond to commands due to the simultaneous activition of both beacon transmitters desensitizing the receivers. All systems appear to have survived and it is hoped to re-activate the full experimental programme of scientific studies, including the use of the c.c.d. television camera.

Propagation study

September proved a month of exceptional propagation conditions on v.h.f. and u.h.f. but with some correspondingly disturbed h.f. conditions. Although the high peak of solar activity of cycle 21 lasted unusually long, at least $21 / 2$ years, critical frequencies this autumn are averaging about 1.5 MHz lower than in 1981, representing an average lowering of maximum usable frequencies for ionospheric reflection of roughly 5 MHz . The extremely good tropospheric propagation conditions during the second half of September has resulted in CCIR study group 5 seeking information through the RSGB propagation studies committee of contacts of more than 1000 km on $144 \mathrm{MHz}, 500 \mathrm{~km}$ on 432 MHz and 250 km on $1296 / 2304 \mathrm{MHz}$. There were massive auroral events on September 6 and 26 and, on the 22 nd, critical frequencies remained below about 4 MHz .

Microwave record

An Italian amateur, Nicola Sanna, IOSNY on a visit to the Valencia area of Spain is believed to be the first amateur to break the 100 km barrier on the 10 GHz band while making three super-refraction contacts over the largely-sea path to the Rome area last July. First contact was with IOYLl over a distance of 1101 km followed by a contact with IWOBFZ (1117 km). Then a second contact with IWOBFZ was made from a high location to the west of Valencia over a 1166 km path.

A group of microwave enthusiasts from Oxford University took their equipment to Alderney, Channel Islands and succeeding in making mainland contacts on $1.3,3.4$, 5.7 and 10 GHz . Attempts to span the sea path on 24 GHz were not successful.

Rain-scatter contacts have now been made by Clive Elliott, G4MBS on 5.7 GHz but appear much rarer than on 10 GHz .

The new h.f. bands

Restricted use of the new 18 and 24 MHz became possible on October 1 and a few British stations have been heard. The 10 MHz band which was opened last January is proving an excellent band for short, medium and long-distance contacts though one finds, in the evenings, that only a few windows remain usable by amateurs among the many high-power "fixed-service" and Russian coast radio stations. Such stations are not due formally to quit the band for several years yet built seems unfortunate that 10,100 to $10,150 \mathrm{kHz}$ seems even more heavily occupied than the neighbouring frequencies, a situation which has encouraged New Zealand amateurs to seek an extension to $10,200 \mathrm{kHz}$ with the object of making the band width wide enough to accommodate s.s.b. as well as c.w./r.t.t.y.

Using a home-built 25 -watt transmitter in a band in which "dx pile-ups" are rare, I have found it easy going with a simple long-wire aerial to work Canada, Guadaloupe, Australia, Antartica and Japan though one notices that skip distances change rapidly and signals may suddenly fade out or build-up rather quicker than usually experienced on 14 MHz .

50 MHz ?

Amateurs, if not broadcasters, have reason to be grateful to the Merriman Committee which has firmly recommended that an allocation somewhere between 50 and 50 MHz should be made available when Band 1 television ceases. The committee also recommends that closure of the 405 line televison services should be brought forward to 1984 rather than 1986. This augments the earlier announcement that some British amateurs are being granted
permission to use 50 MHz outside of broadcasting hours.

This will be extemely good news to those enthusiasts who have made so many long-distance cross-band contacts with North and South America during the peak of sunspot cycle 21 . It will ensure that British amateurs will be watching for unexpected ionospheric-reflected openings and/or transequatorial propagation (t.e.p.) at all phases of the sunspot cycle.

Nevertheless the new band, if the recommendations are accepted, will have the drawback that it cannot, in Region 1, be an international allocation and is unlikely to be available in many other European countries. This could mean that, as for $70-\mathrm{MHz}$, the Home Office may be unwilling to make the band available to Class B licensees.

Russian licences

Several of those who argue that h.f. bands should be open to British amateurs without a Morse test, regardless of international regulations to the contrary, have been suggesting that code tests have been abolished in Japan. This is not the case, only restricted low-power h.f. licences are code-free and these are justified under international regulations as being unlikely to cause interference outside of the Japanese islands. Indeed, many Japanese amateurs are fine c.w. operators.

There is, curiously enough, a viewpoint that the traditional approach to the hobby is now to be found mainly in the USSR, where the vast majority of amateurs still use home-built equipment, including many multi-band transceivers. Russia has several classes of licence, including a "novice" licence (EZ-type prefix) for c.w./s.s.b./a.m. operation with 5 watts input on $1850-1950 \mathrm{kHz}$ available at the age of 14. There is a v.h.f. licence (prefix begins with an R) for all bands above 30 MHz but also allowing use of 28 and 1.8 MHz . Although no code test is required, many of these stations use c.w. on 28 MHz for world-wide contacts. The regular h.f. licences include no less than three categories with technical and Morse examinations taken at the nearest regional radio club. Russian amateurs are among the most skilled c.w. operators of any national group. The USSR has about 30,000 amateur stations, including club stations, and roughly some 100,000 short-wave listeners, many of whom regularly operate from the club stations. Many eagerly seek technical information from other countries and I have been surprised on a number of occasions to learn in the course of contacts that at least some Russian amateurs regularly read Wireless World and other British amateur and professional journals.

PAT HAWKER, G3VA

PICOTUTOR ASSEMBLY-LANGUAGE TRAINER

Abstract

Machine-code programs run hundreds of times faster than their Basic equivalents and take up significantly less memory space, but they are difficult to write. Assembly language simplifies machine-code programming by allowing hexadecimal-form microprocessor instructions to be written as mnemonics. This simple and economical trainer - designed to illustrate assembly-language programming - can be used for simple control applications.

Most home computers are programmed in what is known as a high-level language, usually Basic, which is fairly consistent between different types of computer and relatively easy to learn as it uses Englishlike words. But high-level languages are not the native languages of microprocessors and they require a program called an interpreter or compiler to convert Englishstyle language into binary words that can be used by the processor concerned.
There are many applications, particularly in the field of process control and microprocessor-based consumer products, where high-level languages are not used. In these applications, where control rather than computing is the main concern, programming in high-level language can be much more difficult than programming in machine code; but the difficulty of programming using binary numbers remains.
To make machine-code programming easier, a low-level assembly language is used. This enables the programmer to work with English-related instructions, or mnemonics, which can be converted directly into the equivalent machine-code instruction. Conversion is preferably carried out using an assembler program, but it is possible to assemble by hand using a conversion table when working on a shoestring.

Programs written using assembly language are much more efficient, use significantly less memory space and run faster than equivalent programs written in any high-level language. This can be very important in real-time applications, where even a millisecond can be a long time. Assembly language programming is best learnt by writing programs on a microcomputer and watching them operate. These programs will initially be from existing examples, but later you can generate your own.
The unit described is designed for use with a series of tutorial articles intended to teach assembly language from the ground up and containing many such examples. Each microprocessor has its own specific assembly language and hence for practical reasons the planned articles will be based on the Motorola 6805 used in the Picotutor, but will also refer to the Intel 8080 ,

by R. F. Coates

Zilog Z80 and other eight-bit microprocessors in the Motorola range. Examples written in a general form should allow them to be run on any microcomputer system provided that it has facilities for machine-code programming and is based on one of the microprocessors mentioned.
The Picotutor is designed with price and
ease of construction in mind. Only three i.cs are used on the main single-sided circuit board, and one of these is a voltage regulator. Construction should present no problems, even for readers with no previous experience. A second and equally simple circuit board demonstrates how a microprocessor can generate and read analogue signals.
One of the microprocessors of the latest generation was chosen for the Picotutor

Elements of a micro

Microprocessor operation is sequential, i.e. instructions are taken from memory and executed one by one, and some means of timing the sequence of operations is required. The clock used for this is usually controlled by a quartz crystal because of the accuracy required; frequencies vary between about 500 kHz and 10 MHz , depending on the type of processor used.
Temporary data storage is provided by random-access memory. Data in this type of memory may be modified by the c.p.u. and is lost when the power is removed.

The sequence of instructions that form the program are stored in a read-only memory. Some roms are programmed irreversibly, others may be erased using ultraviolet light and reprogrammed. Both types retain data when the power is removed and every computer requires a memory of this type even if it only contains a program to tell the processor how to load the main program into ram from a storage medium.

Finally, one has to be able to read and modify data within the microcomputer, hence the input/output or i / o section. This may be a keyboard input and tv-screen output in the case of a home computer, or simply logic-compatible lines for reading switches and driving relays, etc.
All of these elements have to be connected together so that data can be transferred between them and that is the purpose of the collection of interconnections called the system bus.
For a microprocessor trainer such as Picotutor all five of these elements are required; c.p.u., clock and i/o are essential in any system; ram is required not only for holding temporary data but also for storing programs that the operator will wish to write and run; and eprom is required to hold a monitor program. This tells the microprocessor how to read the keypad, drive the display, store programs entered and run them when requested.

because the number of components required would be as low as possible, hence the resulting unit would be easy to construct and physically small. Microprocessors of this type containing rom are much cheaper than those containing eprom but the rom has to be programmed during the manufacture of the device so tooling charges levied by the manufacturer make it unviable in quantities of less than about 1000. The Picotutor uses an eprom-based processor. This means that once the unit has fulfilled its original purpose, it may be modified for other applications.

The device finally chosen, a Motorola MC68705P3, is a member of the 6805 family of microprocessors with a pruned 6800 c.p.u. Extra instructions are included to improve its performance in control applications and it has 1.8 K byte of eprom, 112 bytes of ram and 20 pins that can be individually programmed as inputs or outputs.

Circuit description

Referring to the circuit diagram, IC_{1} is the 68705 microcomputer. As a special pro-
grammer is required for this device, it is assumed that the processor contains the monitor program (see components list) and that the 21 V programming-voltage input is tied to the positive rail regulated at 5 V by IC_{3}.

A crystal is normally used to control the clock but with this microprocessor a resistor may be used in its place. Many applications do not require the accuracy of a crystal so the reduction in cost outweighs the 10% loss in timing accuracy in this case. The resistor concerned is R_{1} and a value of $15 \mathrm{k} \Omega$ gives a clock frequency of about 800 kHz .

The reset pin is used to start processing from a known point at switch-on and to regain control if a programme has an error and crashes or runs out of control. An internal resistor from reset to V_{cc} and the capacitor C_{3} cause the reset pin to be held low momentarily at switch-on to cause the reset function to take place. When reset approaches V_{cc}, as C_{3} is charged up, the c.p.u. starts to run the monitor program. When operating, pressing S_{1} will have the same effect.

Interrupt (int) and timer pins are used for interrupting the current program to run a program of higher priority, and to time or count external events. These are not used in the basic unit but are tied to +5 V through $\mathrm{R}_{2,3}$ and brought out to external pins.

This leaves the 20 input/output lines. Eight of them are not used by the monitor and go straight to two spare i.c. sockets. These can be used to connect the lines to external circuitry such as the analogue in.terface described later, or an led array and dil switch can be plugged into them to demonstrate input/output techniques. A 10 -element led array is used here, as these are commonly available, but only 8 elements are used.

The other 12 lines are used to interface to the keypad and display. Twelve though is not enough so IC_{2} is added to increase the number of lines available. Pins PC_{0-3} are programmed by the monitor to be outputs and drive the four inputs of IC_{2}. This is a t.t.l. 4-to-10 line decoder with ten outputs normally at a logical 1. However, one of the outputs will be at a logical 0 .

The keypad is manufactured with its keys arranged as a matrix of six columns and four rows, giving 24 keys, and when a key is pressed a short occurs at the column/row intersection for that key. Any one of the rows can be taken low by the appropriate code from $\mathrm{PC}_{0.3}$ and if a key on that row is pressed, the output from IC_{2} overrides the pull-up resistor and takes the PB input low.

If the processor now reads the PB lines it will find one of these low, indicating that a key is pressed. By knowing which row is activated and which column is being pulled low, it can determine which key is being pressed.

By activating each row in turn, the complete keypad can be scanned.

To drive the display, the other six outputs of IC_{2} are used and $\mathrm{PB}_{0.7}$ are programmed by the monitor as outputs. The

Which one, is determined by the four-bit binary number on $\mathrm{IC}_{2}{ }^{\text {'s }}$ inputs. If this number is 0000 then outpul 0 will be low, for 0001 , output 1 will be low, and so on up to output 9 . So the four input lines are expanded to 10 output lines.

Consider first how the processor reads the keypad. When the monitor program wishes to read the keypad, the 8 lines PB_{0} to PB_{7} are programmed by it to be inputs. The resistor network pulls all of the inputs to a logical $1(+5 \mathrm{~V})$.
display contains eight or nine digits, depending on the type used, of seven segments and a decimal point. Only six of the digits are used in this design and the common cathodes of each digit are connected to the six outputs of IC_{2}. The segment anodes of the digits are multiplexed together on the display and the eight connections (seven segments and decimal point) are taken to PB_{0-7}.
To light up a digit, the appropriate cathode is taken to 0 V depending on outputs PC_{0-3}. If PB_{0-7} are all logical 1 outputs, the anodes will be connected to +5 V through the current limiting resistors of R_{1-8} and all the segments of that digit light. The PB outputs can only source a very small current when at a 1 and so have no effect.
If any of the PB_{0-7} outputs are programmed to a 0 , they are capable of sinking sufficient current through the resistor to pull the anodes nearly to 0 volts, so there will be no current through that segment and it will not light. Therefore a digit can be made to light the appropriate segments to form an alphanumeric character. This can be done for each digit in turn according to the code from $\mathrm{PC}_{0.3}$. Clearly only one digit at a time can be displayed and the keypad cannot be read when the display is lit.
If each digit is lit in turn, the keypad read, and the process repeated at high speed, the whole operation appears continuous to the operator, except for a slight flicker apparent from the display.
Circuit IC_{3} provides a regulated +5 V supply from an external power source which should be greater than +7 V d.c. and capable of supplying 200 mA . The regulator is capable of taking +30 V on its input but if the input voltage is higher than $10 \mathrm{~V}, \mathrm{IC}_{3}$ will probably require a heat sink.

To be continued

As the microprocessor ic. used in the Picotutor has its own ram, rom and i/o section, the only other components required are a keyboard, a voltage regulator, a four-to-ten-line decoder, display/drivers and a few passive components.

ENGINEERING AND SOCIETY

Technological choices facing the UK in the regeneration of society, and the part engineers have to play, was discussed in the first part of this article. This final part is concerned with the legacy of humanism and the possibilities of social reform to attain a 'sustainable future'.

Peter Hartley has discussed in fairly general terms the issues of engineering education and social responsibility ${ }^{13}$. He has found that humanism, which involves the 'conquest of nature' is the dominant ideology of modern times; it exists in both capitalist and socialist societies, and its agent is engineering. In engineering, unlike the other learned professions, the practitioner bases his professional judgements not on ethical but on technical criteria. The engineer thus fails to take full responsibility for the consequences of his professional activities. To correct this, it is not sufficient to broaden the engineering curriculum by adding extra courses, it must be radically changed. This change would involve the use of systems analysis to deal with the social effects of engineering; the aim being to design a permanently sustainable social system.

Dr Hartley uses the term humanism to represent the philosophy behind the conquest of nature. I prefer the term 'scientism', a word coined by C. S. Lewis to denote the uncritical acceptance of scientific aims and methods as good in themselves. He attacked scientism in his science fiction trilogy Out of the Silent Planet (1938), Perelandra (1943) and That Hideous Strength (1945), and his philosophical position underlying the trilogy is given in The Abolition of Man (1943). Here he says "Man's power over Nature turns out to be a power exerted by some men over other men with Nature as its instrument". This is quoted by Hartley and is central to Hartley's whole argument.

Humanism as a 'religion' of our time has been analysed by Ehrenfield, one of Hartley's references. It involves a supreme faith in human reason to solve human problems by both rearranging the world of nature and the affairs of men. The use of the word humanism causes confusion since it is not necessarily connected with being humane nor with the study of the humanities. Its historical origin lies in the belief that the natural world has been arranged by God for the benefit of man. In the Renaissance, humanists were those who studied Greek and Roman classics, God became dethroned and man exalted. Organised religion in the West with its talk of our "dominion over all the earth, and over every creeping thing that creepeth upon the earth" (Genesis $1: 26$), finally brought forth godless humanism.

The Jewish and Christian view that nature is there for the sole benefit of man is discussed in a 'classic' ecological paper by Lynn White ${ }^{14}$. "Our present science and technology are so tinctured with orthodox Christian arrogance toward nature that no solution for our ecologic crisis can be ex-

by R. W. Howes
M.Sc., M.Ed., M.I.E.E.

pected from them alone. Since the roots of our trouble are so largely religious, the remedy must also be essentially religious, whether we call it that or not. We should ponder the greatest radical in Christian history since Christ: Saint Francis of Assisi, who was so clearly heretical that the Franciscan Order tried to suppress accounts of their founder's beliefs. He believed in the virtue of humility - not merely for the individual but for man as a species. His view of nature and of man rested on a unique sort of pan-psychism of all things animate and inanimate, designed for the glorification of their transcendant Creator, who in the ultimate gesture of cosmic humility, assumed flesh, lay helpless in a manger and hung dying on a scaffold".

The exploitation and abuse of 'Brother Ox ' and other animals has always existed but it has taken the 20th century to produce species extinction on a massive scale by destruction of habitat and by hunting, to use millions of animals in laboratory experiments, and to replace the traditional husbandry of the mixed farm by the mass production techniques of factory farming. We all want cheap food, but on what terms? Tristan Beresford, a farmer and a writer on farming affairs, has commented on factory farming "A sweated pig, an abused fowl, a shorn sheep sent over a mountain pass, suffer as all animals suffer - as wild animals suffer, even to death, with none to relieve the pain. But their sufferings are not cumulative. They do not suffer for one another. But man exploiting animals, and other men by their acquiescence keeping exploitation going, degrade themselves. This degradation is cumulative and indelible. By condoning exploitation we do ourselves an injury. We harden our hearts. We assert the primacy of greed for gain, of ends rather than means. We arrogate to ourselves mastery over life - nothing higher than we. We have the technology and we are the masters" ${ }^{15}$.

This example shows that humanism is not necessarily humane but that it is also an article of faith for most people in industrial societies. Its main tenets are that all problems are soluble, either by technology or by social or political means ('social engineering'), some resources are infinite and those that are not have substitutes, and that, whatever happens, human civilisation will survive. To flavour these tenets at their optimistic best the book The Doomsday Syndrome by John Maddox is recommended, or the 'no limits to growth'
science journalism of Adrian Berry.
If the humanist tenets are correct, why is Utopia so long in arriving? The usual, but humanistically inadmissible, answer to this is that the delay is due to faults in human nature, which become aggravated in the large scale technologies and centralized control of industrial society. As Professor John Gofman, formerly with the US Atomic Energy Commission, pointed out in 1970 "The environmental crisis is not really a diversion from what might be regarded as the truly important issues of our time - poverty, war, racism, Man's general inhumanity to Man. Rather, it is a manifestation of the ultimate retribution that faces a society which, at best, can be charitably said to be free of a system of human values and, at worst, possessed of a grossly inverted set of values centering around human greed and human power over other humans. There is an unbridled Madison Avenue hucksterism bent upon the creation of products and the diversion of energies into activities, both of which are totally unrelated to worthwhile human needs and goals".

Scientism and its effects

Both scientism and humanism are terms for a belief shared by most people, whether pro- or anti-technology, in industrial societies. Scientists are not necessarily believers in scientism and being on the 'inside' of science may be in a better position to reject it. A major analysis of scientism has been presented by Professor John Ziman ${ }^{16}$. As a leading figure in the SISCON/STS movement, he is concerned with STS (Science, Technology and Society) education, or rather the lack of it. "In the absence of any deliberate discussion about science, science education is naively 'for' science, without qualification or limitation as to its reliability, scope or relevance. More by what it leaves out than by what it actually says, science (as taught) is deeply imbued with scientism. It reinforces without question or comment, the widespread sentiment that science should be the only authority for belief and the only criterion for action". Ziman argues that this has led science to take on the trappings of a religion, complete with its high priests - the technocrats - who provide the only reliable advice. But the scientist, as scientist, is ill equipped by his science to make responsible decisions on political and social matters. "Every form of social action is constrained by imperfect knowledge of the situation, the short time available for cogitation, and the multitudinous possibilities of wickedness and folly".

Since all engineers get basic education in science, and are taught engineering as an applied science according to the Finniston

Report, they are likely to be imbued with scientism. They also have to contend with a popular view in which science is seen as creative and humane, like pure mathematics, whereas science-based technology is often seen as debased and destructive (in terms of TV programmes 'Tomorrow's World' versus 'Horizon' perhaps). However, as an engineer's experience on the job increases, he starts to appreciate how little science can tell him about complex systems and their interactions, how varied are the technical options in any given problem, and how intractable are the ethical dilemmas associated with intervening in the real world. Far from being a technocrat, he probably feels 'on tap, rather than on top'. Technologists are needed by society, of course, as were scribes or blacksmiths in earlier ages. In positions of high responsibility in industry or government there are few technologists compared with people trained in law, accounting and business. Real power lies not with the technologists but with the rich, the bold and the clever - and their friends - just as it always has.

S̄cience is taught as if it had a high intrinsic worth but is otherwise morally neutral and value free, but this is no longer how it and its products are seen. For young people especially, physics is the bomb, chemistry is pollution and biology is germ warfare. Others still see pure science as neutral but liable to be abused when it is applied. Yet others see technology as still neutral but liable to produce bad unforseen side-effects. Many feel that progress cannot be stopped and that whatever technically can be done, will be done. This is illustrated by the remark by J. Robert Oppenheimer on the atomic bomb 'It was technically sweet, so we had to go ahead and do it'.

The Manhattan Project should remind us that science and technology cost a great deal of money and that you get what you pay for. For example, what do we pay for in the UK? In the UK R and D budget for 1982 more than half the money goes to defence, and of the remainder more than 20% goes to the AEA for civil nuclear power. Most industrial nations would show a similar breakdown, with the bulk going to defence, space and nuclear R and D, and what is left going mainly to economically motivated research. Health, welfare and environmental protection do not tend to get much \mathbf{R} and \mathbf{D} funding. It is not surprising that with these financial inputs we get appropriate outputs - outputs characterized, as Professor Steven Rose points out, "by the continued escalation and technological innovation of the arms race, the technological gigantism of such projects as the space race and Concorde, and by the lop-sided economic and social development which characterizes almost every country in the world". Since society, or rather certain groups in society, can decide on the outputs, this means that science loses its moral neutrality and technology loses its inevitability. Science and technology are planned and if we do not like the results, it is time we got in on the planning act. Isn't this
what a democratic society is supposed to be all about?

In 1961, in his farewell speech to the nation, President Eisenhower warned about the influence of the military-indust-rial-complex (MIC). Its activities in the electronics field have been the subject of lively debate in the editorial and correspondence columns of Wireless World during the last four years. A recent book ${ }^{17}$ by Lord Zuckerman, formerly Chief Scientific Advisor to the British Government, places much of the blame for the uncontrolled exploitation of new scientific knowledge on the technologists, who did not simply act as the servants of politicians and military chiefs but themselves initiated new developments and created new demands. As current examples of the weapons technologists pre-empting political decisions he gives Chevaline, the Polaris missile updated to defeat a Soviet ABM system which did not exist, and Trident, the Polaris replacement. He concludes: "A new future with its anxieties was shaped by technologists, not because they were concerned with any visionary picture of how the world should evolve, but because they were merely doing what they saw to be their job".

The activity of the MIC in developed countries tends to distort developing countries whose leaders are often military dictators who are firmly plugged into an overdeveloped world of electronic surveillance systems, computer printouts and helicopter gunships. Arms sales to the Third World and to all the oil rich states of the Middle East provide a vital source of revenue and employment to Western and Eastern governments, suggesting that modern industrial societies need, or at least choose, the Cold War and the arms race as ways of absorbing their surplus production.

The civilian equivalent of the MIC is found in large-scale capital-intensive complexes, usually subsidized by the taxpayer, such as nuclear power and road transport. John Tyme ${ }^{18}$ argues that the scale of these technocracies is now such that there are no effective checks or balances on them within the UK system of government. This characteristic of our age he calls the technological imperative. Its component parts are the technology itself, the firms who invest in and build and use the hardware, the technologists who provide the expertise and whose careers are dependent on the industry, a 'lobby' based on the industry to influence MPs and others in government, an 'interest section' within the relevant government department which co-operates with the lobby so that decisions are made in its favour, and finally those journalists who attempt to persuade their readers with repeated slogans in favour of the lobby such as 'Road haulage is efficient, being door-to-door, while rail haulage is inefficient' or 'Electricity generated from nuclear power is cheaper than that generated from any other source'. In spite of reports by House of Commons and House of Lords Working Parties and Select Committees on the mode of operation of these complexes, the
professional lobbyists can still get to work, prating about freedom and sheltering their profligacy behind the excuse of consumer demand, to flatten all protest.

These features of modern industrial society manifest the scientism, in its naive form of materialism, that has been evident since the Industrial Revolution. Lord Clark ${ }^{19}$ in his chapter entitled Heroic materialism quotes Wordsworth's poem on the arrival of the night shift:

Within this temple, where is offered up
To Gain, the master idol of the realm,
Perpetual sacrifice.
Clark comments: "Lots of squalor, and, in the luxury, something parasitical. One sees why heroic materialism is still linked with an uneasy conscience. It has been from the start". A recent critic echoes this when he says: "In the nominally Christian West the political establishments, which for centuries have openly worshipped money and profit and ignored the fundamental teachings of Jesus, do in fact sense in Marxism a moral challenge to their shallow and corrupted values and it makes them very uncomfortable"
However, as I pointed out in a letter to Physics Bulletin (December 1979), the state capitalism of the East shows a face even less acceptable than the individual capitalism of the West. Both these forms of capitalism are wasteful and exploit natural resources beyond the limits of sustainability, and are committed to giant industrial systems beyond the limits of human scale. The Soviet experiment in socialism went off the rails long ago and in the rush to become a major industrial power after 1917 the USSR embarked on a large-scale experiment in 'social engineering' which involved death and misery for millions of its subjects. Perhaps there is no genuine conflict based on ideology ('freedom' versus 'socialism') between the two superpowers who represent the two forms of capitalism. Each needs the other as an excuse for holding together its sphere of influence and for justifying the activities of its MIC.

The problem of reform

It is easy to criticize, but very difficult to reform industrial society. A change towards a sustainable society with reduced input of energy and resources and reduced output of goods will involve a reduction in the material 'standard of living', although it could increase the 'quality of life'.
In considering changes in technology it is important to separate out those sectors of society which are likely to benefit and those which are likely to suffer 'disbenefit'. To give one example only, the majority of the UK population does not have the discretionary use of a car, as even now less than 60% of households are car owning. A curtailment of private transport in order to improve public transport would reduce the standard of living of the car owners. This is unlikely to be accepted voluntarily because the decisions in society are made by car owners who are quite prepared to inflict the disbenefits of their use of cars on others. Even those without cars will say they want cars because they wish to enjoy the advantages of mobility

Full Product range:-
8022B $31 / 2$ digit handheld DMM, with 8105.00

$$
\begin{aligned}
& 8062 \mathrm{~A} \\
& \text { Full Supporting } \\
& \text { accesilable avile }
\end{aligned}
$$

The Fluke, Hameg and ICE products shown above are available from Electronic Brokers in addition to the Philips range which we have recently introduced. As a company with many years experience in the Test \& Measurement field, Electronic Brokers are able to offer full technical support as well as demonstration facilities on the premises. All orders are despatched promptly. Contact us for full details (24 hour telephone answering service).

Electronic Brokers Limited 61/65 Kings Cross Road London WClX 9LN Tel: 01-278 3461 Telex 298694 Elebro G

The QUAD 34

Provides everything that the serious music
listener needs to obtain maximum enjoyment from disc, radio, tape and compact disc
at the standard of quality
for which QUAD has been
famous for more than
thirty years.

for the closest approach to the original sound
and convenience. Disbenefits, including the fact that UK road casualties are equivalent to those produced by a continuing, medium-sized war, are not seen as relevant. This collective degradation, which results from a large number of individuals trying to maximize their own advantage, is an example of what Garrett Hardin calls "the tragedy of the commons", the phrase originating from the overgrazing of common land. Hardin argues that such problems, which also include the arms race, cannot have a technical solution and can only have a social one, such as 'mutual coercion mutually agreed upon'. This last tends to work in small village-sized communities but not in large urban ones.
If change towards a sustainable society is unlikely to come about by democratic means, it might be enforced by circumstances. It could even be imposed by an anti-technology totalitarianism - some sort of neo-feudalism arising from the devastation of nuclear war. Stemming from scientism, there is the widespread assumption that the future is under our control. We believe that we can reshape the environment, cure the ills of the human body including cancer, manipulate human behaviour and even the human brain, bypass evolution, and, when spaceship earth will serve us no more, move out into new habitats in space. But in fact our power to control the future is very limited. Circumstances may well arise which will force us in directions we do not regard as acceptable. Even if nuclear war is avoided, resource scarcity and structural unemployment could lead to a polarization of society, both within the UK and also between developed and developing countries which will lead to conflict. Rather than wait for a catastrophic change later, it is advisable to start a planned reduction in inputs now.

The scope of systems analysis

Hartley sees systems analysis as necessary to the design of a permanently sustainable social system. Certainly there is a need to think creatively about the system as a whole, but the engineering discipline of systems analysis tends to be used to optimize a partial system model. The systems analyst decides on the system boundaries and sees himself set apart from the problem which he investigates as a neutral observer, using standard techniques such as PERT (Program Evaluation and Review Technique) and CBA (Cost Benefit Analysis).

The Club of Rome report 'Limits to Growth' used a systems approach for their 'world dynamics model', but as their critics pointed out the model was too highly aggregated (e.g. no one can starve unless everyone starves) to be a valid prediction. However, the model was intended to produce changes in policy to avoid its more unpleasant scenarios, and many of its critics all too obviously had a vested interest in ensuring that no such policy changes were made. The system boundary in this model was presumably intended to include the policy makers.
Failures in man-made systems have
shown that it would be arrogant to think we can manage and plan systems whose total structure is not understood, many of whose interactions are completely unknown, and of which we form a part. If we look for sustainable systems, living organisms and eco-systems provide examples. These do not operate by a linear chain of cause and effect but by cyclical patterns of feedback loops. Homeostasis and harmonious interaction rather than continued growth characterize their behaviour. The continual economic growth of our industrial systerms would correspond to cancer.
The instabilities in industrial society are increased by those who are able to use technology to promote their own shortterm interests at the expense of the longterm interests of the society as a whole, as the 'tragedy of the commons' shows. The problem is how to control large-scale technologies, and how to build into the process systemic checks and balances. This will not be easy. In the infancy of a technology, e.g. the internal combustion engine, it is difficult to predict its social impact; and in its maturity it is difficult to change, as society and other technologies have adapted to it.

Some suggestions have been made earlier which may be relevant. These include a much more open decision-making process, more citizen participation in planning, a reduction in scale of new projects and, of course, a new sense of social responsibility by the technologist. David Collingridge ${ }^{20}$ has developed a theory of decision making in which a decision about technology made under conditions of ignorance should still be reversible even when the technology is fully developed. His case studies include aspects of the arms race and also the lead-in-petrol issue. The problem of the continued monitoring of advanced technologies has been considered by the Council for Science and Society. Experts available are seldom, if ever, impartial, and should be considered instead as committed advocates. At Walter Patterson, spokesman on nuclear matters for Friends of the Earth, has said, "I am sometimes accused of being emotional in opposing nuclear power, but you should just see the emotional commitment of the nuclear lobby".
Systems analysis clearly does not go far enough if genuine participation in technological decision-making is required. The system analyst is still an external expert and the analysis itself is a logical process which is not entitled to make value judgements, even though science is often used to disguise or legitimize biased decisions (often in favour of some 'technological imperative'). Such a decision is not acceptable to those people on the receiving end, simply because they played no direct part in reaching it. Decisions involving value judgements are thus political, not technical, and should be recognized as such.

Current measures in engineering education

From the late 1960s onwards, various university courses were started in the USA

> In our next issue

Eprom development aid describes a method for developing Nanocomp eprom software in the locations for which it is intended, removing the problem of software juggling. Deviser of the method, G Bettridge, includes a small copy program in his description.
In a description of a servosystem, J. J. Tait demonstrates another advantage of digital filtering over a a alogue methods. Synchronous generation and filtering provide accurate feecbeck conditioning over wide frequency ranges.
Basic program simplifies calculations and presents data in tabular form in A. Maciejewski's article on matching tuning diodes.

Data acquisition on a Pet is discussed by two authors involved with microcomputers in education - Harvey and Hills. Circuits and software are for multiplexed reading to ten or 12 -bit analogue signâls and 8 -bit digital information, using controi lizes easily synthesized by other microcomputers.

> Also in this issue. . Boris Allen looks at the logic of logic elated to computer languages, Tim Forresters' third article gives regulator and f.m. i.f. modules of his twometre transceiver, and John Watkinson discusses data integrity - the final subject in his illustrated description of disc drives.
> Dec 15
dealing with STS issues. A good example is the work done by the College of Engineering at the University of Utah ${ }^{21}$. This book includes in its extracts 'The tragedy of the commons' by Garrett Hardin.

The interdisciplinary courses of the Open University are justly famous and the following are particularly relevant: The technology foundation course T 101 which, from its first tv programme 'Facts are not enough', stresses the importance of values in technological choices (its predecessor T 100 pioneered the study of 'not just the how, but the why and should of technology'); T 263 (originally T 262) on design and technology; T 361 on the control of technology. Many other OU courses are relevant, including several systems courses.
The Science in a Social Context (SISCON) project was set up in 1973/4 among several universities and polytechnics. It has produced a large number of course units and is coordinated by the Department of Liberal Studies in Science at Manchester University. Some teaching material has also been produced by the General Education in Engineering (GEE) project (Bath University). SISCON's extension into Colleges of Further Education, schools and elsewhere is planned via its progeny the STS Association (STSA) which was inaugurated in 1979. The STSA Support Centre is at Newcastle-upon-Tyne Polytechnic. These projects have found that there is still resistance to STS studies from some single-subject specialists. The latter tend to fall into two groups, the old fogies who oppose from conservatism and the young thrusters who oppose because of their total confidence in their discipline and complete dismissal of anything outside it, i.e. from scientism

The Engineering Responsibility Forum was set up in 1978 by some IEE members. It has now become the Engineering and Society Group of the Management and Design Division of the IEE. Its scope is convervation of resources, responsibility to the community, the image and role of the engineer, the impact on the environment including aesthetics etc., the implications of change, and national engineering manpower requirements.
Several UK engineering courses are concerned with the design and practice of appropriate technonology, often in a Third World context, e.g. Department of Engineering, Warwick University; Depart ment of Engineering, Reading University; Department of Mechanical Engineering, Queen Mary College (University of London); School of Engineering Science, Edinburgh University. Several others are doing research work on renewable energy sources, e.g. University College Cardiff, Brighton Polytechnic.
Mention should also be made of the following organizations, even though some of them are not directly connected with engineering: The Conservation Society, Friends of the Earth, The Council for Science and Society, Social Audit, Intermediate Technology Development Group, Industrial Common Ownership Movement, Parliamentary Liaison Group for

Alternative Energy Strategies, Science in Society Project (Association for Science Education), Society, Religion and Technology Project (Church of Scotland), Society for Social Responsibility in Science.

Conclusions

This article has discussed some of the issues raised by the statement by C. S. Lewis 'Man's power over Nature turns out to be a power exerted by some men over other men with Nature as its instrument', and has considered the implications this has for the professional activities of engineers. Several quotations have been given which show that 'many thoughtful people in positions of responsibility' realise that in the long-term industrial societies are not sustainable on this planet and that worldwide industrialization will lead to a further degradation and possible destruction of the biosphere. What was once the province of 'subversive' eco-freaks is almost becoming the new conventional wisdom. A recent OECD (Organisation for Economic Cooperation and Development) report entitled 'Economic and Ecological Interdependence' warns of impending ecological disasters resulting directly from economic exploitation, and asks "If short term advantage destroys the resource base what could be more uneconomic? In the UK, there have been reports such as the 1981 Monopolies Commission report which was highly critical of the CEGB forecasts which were being used to justify the massive nuclear power programme. However, although politicians may give lip-service to the slogan Small is beautiful, the proposal that industrial societies should drastically reduce their energy and resource inputs is dismissed as Utopian. The problem of confronting the powerful vested interests that benefit from the present system and that oppose any fundamental institutional change has yet to be faced.
This raises the question of the values underlying industrialization, in particular the fact that we get the science and technology we pay for, and so can choose our possible futures. Because of this, science cannot be considered as morally neutral and purely objective, and technology is not an unstoppable juggernaut. In the largescale technologies and the centralized bureaucracy of a modern industrial state, participation by the citizen in decision making is minimal. Using a 'whole-system' approach, we need to explore the untidy and unpredictable middle ground between old large scale industries and AT village size communities, where participation tends to be effective. In the medium-term some of the former might end up by being almost fully automated (e.g. mining, steel production), small-scale technology-based industries may continue to thrive, but the structural unemployment among the unskilled and the young will remain a problem. Two aspects of RAT philosophy may help here. The need exists for labourintensive activities, such as repair, recycling, reclamation of land, restoration of buildings for food production. Secondly, we should think of new concepts of work,
far removed from the philosophy of the Manpower Services Commission, possibly in the form of initiatives such as those recommended by the Council for Science and Society. We need to heal the disastrous divorce between brain, hand and heart which seems to characterize the 20th century. This may involve an entirely new relationship between man and the rest of nature, which will be an essentially religious one.
Looking at the short-term future, we must realise that most people are not willingly going to see their standard of living fall. A major drive towards a softer-technology future carries within it the possibility of an eco-Fascism (soft technology with hard politics). We should recognize that most people, even if they had the option, prefer life in high-rise flats and office buildings to the rigours of hill farming, and like spending their money on cars and electric tin openers. We should remember that past ages when people lived more in tune with nature were also characterized by callous brutality, unrelievable pain and the ever-present threat of untimely death. Today such horrors tend to be localized, for those of us in the UK, to repressive regimes far away.
The engineer should realise that if he refuses to concern himself with the social implications of his work because this is being 'political', such a refusal is still a political stance because it constitutes a defence of the status quo. The implicit politics of energy consumption is shown by Ivan Illich's remark "If you tell me how fast you travel, I'll tell you who you are"

To alleviate the problems of industrial societies and those of the Third World, and to move gradually towards more sustainable futures, we are going to need more, but different, technology rather than less. As Robert Pirsig has told us, "The flight from and hatred of technology is self-defeating. The Buddha, the Godhead, resides quite as comfortably in the circuits of a digital computer or the gears of a cycle transmission as he does at the top of a mountain or in the petals of a flower. To think otherwise is to demean the Buddha - which is to demean oneself'. $\sim \sim \sim$

References

13. P. Hartley. Educating engineers: an ecological viewpoint. Wireless World Dec. 1981, p. 83-85.
14. L. White. The historical roots of our ecologic crisis. Science, vol. 155, 1967, p. 1203-7.
15. T. Beresford. We plough the fields: British farming today. Harmondsworth, Penguin Books, 1975.
16. J. Ziman. Teaching and learning about science and society. Cambridge University Press, 1980.
17. S. Zuckerman. Nuclear Illusion and Reality. London, Collins, 1982.
18. J. Tyme. Motorways versus Democracy. London, Macmillan, 1978.
19. K. Clark. Civilisation. London, BBC, 1969.
20. D. Collingridge. The Social Control of Technology. Milton Keynes, Open University Press, 1981.
21. N. de Nevers (Ed). Technology and Society. Reading, Massachusetts, AddisonWesley, 1972.

TWO-METRE TRANSCEIVER

These transmit converter and power-amplifier/regulator modules are part of a multi-mode two-metre transceiver. The microprocessor-controlled design comprises ten modules, the first of which was described in the November issue.

The transmit converter, module 2, is similar to the receive converter in that it uses the same type of helical filter and an MD108 mixer. It would have been possible to use the same mixer and helical filter for transmitting and receiver but despite the extra cost I decided to keep them separate to avoid the risk of instability caused by transmitter r.f. being fed back through the receive path and into the transmitter amplifier.

The 9 MHz transmitter i.f. signal from module 7 yet to be described is amplified from -30 dBm to -5 dBm by a class A amplifier based on a 2 N 3866 . Should the synthesizer lose its lock, this amplifier can be turned off, so disabling the transmitter. The amplified 9 MHz signal is then passed through a -6 dB pad to the MD108 transmit mixer.

An amplifier similar to the one used in the receiver feeds the mixer, through a -6 dB pad, with +7 dBm of local oscillator drive at 135 MHz . The mixer output provides approximately -25 dB of local-oscillator rejection so the local-oscillator level at the mixer output is approximately -20 dBm while the wanted signal is -18 dBm (see transmitter block diagram).

Local oscillator and difference signals $(126 \mathrm{MHz})$ are removed by a helical filter which also limits the transmitter bandwidth to the two-metre band and makes it impossible to accidentally tune the transmitter to the difference frequency due to the relatively low bandwidth of the filter.
In between the mixer and helical filter is a class A amplifier, Tr_{201}, which provides +14 dB gain to compensate for the filter loss and present a reasonable level of -10 dBm to the next stage.

Transistors 202 and 203 are both 12 dB class A amplifiers whose collector currents are set to 40 mA each by the $1 \mathrm{k} \Omega$ potentiometers, \mathbf{R}_{213} and \mathbf{R}_{217}. in the base cir-

by T. Forrester, G8GIW

cuits. Tr_{203} has a broad band-pass pair before passing the signal on to Tr_{204} and Tr_{205}, whose quiescent collector currents are 7 mA adjusted by R_{227} and R_{231}; the output power of Tr_{205} is around $11 / 2$ to 2 watts.

Power for the transmit converter is a 10 V regulated supply from the power change-over circuits, module 3. Bias for Tr_{205} and Tr_{204} is further regulated at 5 V before being fed to the bias diodes, D_{200}, 201, which are mounted in thermal contact with their respective transistors.

This unit is the most difficult to align due to the number of trimmers etc. It could be replaced by a ready made module, but at the time of writing their cost is prohibitive and they tend to be class-C types which are unsuitable for s.s.b.

The ideal instrument for aligning this unit is a spectrum analyser but this type of equipment is not likely to be available to the average constructor; the simplest alter-
native is to use a diode probe and gradually move down the amplifier chain, tuning for a peak. A second alternative is to a use receiver with an adjustable attenuator, etc.

Although these are not particularly scientific techniques, they should be sufficient, providing that care is taken not to introduce instability during tuning by the presence of the probe. If trouble with instability is experienced when using a diode probe an absorbtion wavemeter may be loosely coupled to the stage being tuned.

The prototype was initially aligned using a spectrum analyser and found to be stable, regardless of trimmer adjustments etc., so little trouble should be experienced.

Transistors 200 and 204 have clip-on heat sinks fitted, while Tr_{205} is attached to a copper heat-sink. Components associated with $\mathrm{Tr}_{204}, \mathrm{Tr}_{205}$ are assembled in a point to point manner to keep lead lengths as short as possible.

Circuit-board mounting methods and filtering techniques used for module 1 apply here also.

Power section-module 3

This module contains the transmitter final stage, the start relay (a relay which feeds the power to the entire transceiver), and some of the power change-over circuits. Transistor switches are used to change the power feeds over from the exciters to the receive sections, while a 12 V feed to the

Fig. 1. Transmit-converter block diagram. The helical filter and Schottky-diode mixer used in the receive converter are duplicsted here as switching them between circuits may cause instability due to r.f. feedback through the receive path to the input of the transmit amplifier.
transmitter power amplifier is permanent because a transistor switch here would lead to inefficiency.
Two regulated 10 V power lines are provided from this unit, one switched, Tr_{302} etc., and one unswitched, Tr_{30} etc. The unswitched 10 V line is used to power the synthesizer, tone burst and a.f. pre-amplifier, while the switched 10 V line is used to power the transmit converter, final stage power-amplifier bias and antenna changeover relay. The 12 V rail direct form the start relay, RL_{300}, is switched by a single transistor, Tr_{304}, to the receive converter.
Transistor 300 associated with the start relay is to overcome a problem associated

Fig. 3. Block diagram of power-supply distribution and transmitter power amplifier. This module contains the start relay and uses transistor power switches to change over feeds from the exciters to the receive sections.

with using a wafer switch with a break-before-make action and diode D_{300} provides reverse-polarity protection. When the transceiver is turned off the base of the relay transistor is shorted to earth, so turning the transceiver off, but when the mode switch is in any position other than off, Tr_{300} is turned on and the relay operates, leaving the switch earth pole free to inhibit the 1750 Hz tone burst in other modes, when the tone burst is not required.
The main relay-switched 12 V supply also feeds separate regulators on the display and microprocessor boards.

The power-amplifier stage is a conventional 2N6083 transistor, Tr_{308}, with forward bias to give 10 mA collector current which is set by adjusting the 22Ω resistor, R_{310}, in the bias chain. Output power is indicated on an S-meter driven by the circuit around diodes 306, 307.
On the prototype, a three-position switch marked scan, high and low was included to adjust the output of the power amplifier. This switch operated a miniature relay controlling a 10 dB pad between the driver and power amplifier stages.

Power distribution and switching for the s.s.b. exciter/receiver and f.m. exciter is

handled by separate regulator units and switches on the voltage-controlled oscillator board, module 6 . This section is permanently powered by an unswitched 12 V supply from the f.m. i.f. board of module 4.
Capacitors 300, 301, 307 and 308 are used to tune the power amplifier. This amplifier is best tuned using a two-tone signal in the s.s.b. mode but good results can be obtained by tuning for maximum power on f.m.

Transistor 308 is mounted on a heatsink attached to the p.c.b. Diode 305 makes contact with the heatsink - made from $1 / 8 \mathrm{in}$ sheet or extruded aluminium in an 85 mm -long L shape - to stabilize the operating point. A small cut-out, the length of the heatsink, is made on one side of the p.c.b. to allow clearance for the vertical side of the sink.
When the power regulators have been constructed, it is a good idea to check their regulation and output-voltage capabilities. A load resulting in about 250 mA current should be connected to each output in turn and the voltage monitored. Changes in voltage between load and no-load should be less than 5 mV .
Transistors 302 and 305 should be mounted on the side of their metal shielding box with mica washers and insulating bushes, otherwise they will overheat.

To be continued

DEATH OF ELECTRIC CURRENT

In August 1982, page 60, I discussed a serious anomaly in classical electromagnetism which, if unresolved, must force us to reject the conventional view of the subject as invalid. I asked eight leading experts to comment. Three did, but one of these asked that his comments remain unpublished. The second reply, by Professor Abdus Salem, was as follows:
"Dear Dr Catt, I am sorry I cannot write to the Journal as you suggest, since you seem to be having a private discussion in which it would be fruitless to enter for an outsider.
With kindest regards, Yours sincerely, Abdus Salam."
I am very grateful to Professor J. Brown, CBE for the third reply, Letters, October.
Brown does not seem to grasp the problem, which is that $1 / 30$ nanosecond after the state shown in the diagram, electric charge must have reached a distance 1 cm further to the right, ahead of the wavefront's position shown in the diagram. To get there, the charge must travel at the speed of light in a vacuum so as to be in place to sustain the newly appearing electric flux. It is not good enough for ten times as much charge to travel at a tenth of the speed; the correct charge would have to travel at the full speed.

The letter from Dr J. Brown, CBE, was published in Wireless World, October 1982, along with a letter from F. N. H. Robinson, who makes the same elementary error, which is that if I have promised to deliver one dozen eggs to Oxford, one hour from now, Oxford being 100 miles away, there is no point in despatching ten dozen eggs in a vehicle which travels at only 10 mile/h. I must find a way to transport eggs at 100 mile/h.
Today, 80% of electronics is digital, and the primitive in digital electronics is a logic step travelling from one gate to the next. The reigning theory must cope reasonably with this, Theory C (Wireless World, Dec. 1980) does so perfectly, and no other theory does.

In answer to R. T. Lamb's letter, WW Oct 1982, I never attributed the existence of the electron to Maxwell. The four axioms that I stated in my August 1982 letter do not mention the electron. Later on in my letter I adopt conventional parlance, which embraces the electron. However, the content of what I said remains equally disastrous for the conventional view if for " n electrons" you read " n coulombs of charge".
"Classical electromagnetism" is not Maxwell taken out of deep freeze. Rather, it is the Maxwell view embellished by later luminaries.
Lamb goes on to write, "Electrostatic theory requires that electric flux lines terminate on charges, but this is not always so for the electromagnetic wave." By this statement, he sets himself apart from the whole tradition in electromagnetic theory. Can he supply any reference or expert to support this extraordinary statement, that a line of electric flux does not have to terminate on electric charge?
Ivor Catt
St Albans
Herts

Although Ivor Catt has again been rather dropped on (Letters, October), he should regard that as a small price to pay for the privilege of being instrumental in exposing the shortcomings of our current physical theories.

Almost everyone's picture of the behaviour of a radio dipole is of electrons rushing from one end of it to the other, and back again, once in every r.f. cycle; it is easy to see that in order to travel anything like two half-wavelengths in one r.f. cycle the average velocity of the electrons would have to be something like c , the velocity of light. But if one does the sums the result turns out to be not like that at all. A heavy electric current - one that makes a copper wire too hot to touch - corresponds to an electron flow of only about one millimetre per second, irrespective of the gauge of the wire.

So it would seem that the rapidly-moving "lines of force" of Heinrich Hertz's radiation field cannot be connected to the real electric charges that are carried by real, slow-moving electrons. They must terminate instead on imaginary charges which oscillate at the speed of light, or at least at velocity v where, as Dr Brown says, " v is the velocity with which the wave moves", which is as near to c as makes no matter. Nobody at my school told me that the "charges" of electromagnetic theory, which give rise to the electromagnetic radiation field, were imaginary charges .
The feature that I find amazing is that your correspondents do not seem at all disturbed by the difference - only a factor of 10^{12} or so! which they agree exists between the values of the charge velocity according to the two theories. It isn't a matter of mixing models or of likes and dislikes; one at least of the theories must be wrong. So why not be honest and admit it?
Scott Murray
Cloughton
Yorks

I have followed Mr Catt's correspondence about his new theory of current flow with great interest, even if without a full understanding. As indeed I have the sentiments of those who think it possible that Einstein was not quite right in some of his conceptions. And moreover have often wondered myself.

It is extraordinary how mankind has made so much of his progress starting from ideas that later were contended to be quite wrong. For instance, how the 'flat earthists' of long, long, ago, went on their voyages of discovery and all came out right in the end. But, all based on notions that experience subsequently showed were not quite right. So with this in mind I am working hard to get into such mental state as will allow me to follow Mr Cat's new thinking.
Brought up as I was in the days of the goldleaf electroscope, I can imagine how a source of potential can be applied to a conducting surface and spread out over it. As one can drop oil onto water and watch it spread out. I expect the new theory explains this, but that I have failed to grasp it.

Where I have failed miserably, in Mr Catt's terms, is to be able to visualize (because for such as myself, visualization is the only tool) how charges originate and subsequently dispose themselves, where both the surfaces concerned are non conductors. In other words. I go back as far as rubbing the ebonite rod with the cat's fur.

What is it that comes from where, and, what is sitting on what?

How I wish simplicity still ruled.
Ouida Dogg
Hurstpierpoint
West Sussex

THEORIES AND MIRACLES

Wellard (August 1982, p.57) appears to claim that the phenomenon of Cerenkov radiation contradicts special relativity. His fallacy lies in confusing the speed of light in a medium (exceeded when emission occurs) with that in vaccum, which is greater and which cannot be exceeded according to relativity.
T. B. Tang

Cambridge

ELECTROMAGNETIC ANALOGY

Dr Murray's very interesting article in the Heretic's Guide series, implies that scientific opinion was opposed to a null-result from the Michelson-Morley experiment of 1880.
It should be remarked that while the fringe shift reported then could be dismissed as experimental error, Miller's more refined measurements in 1933, confirming the shift, had to be assigned to an 'unknown disturbance' in order to invalidate them.
A null result appears to have been not merely acceptable but mandatory.
H. Wright

Northampton

FOIL LOOP ANTENNA

I was interested to read in your September issue of the use of a small loop antenna at 3.5 MHz as I have been using a smaller single-turn unbalanced loop to replace the rod antenna on a Band II portable f.m. receiver. This has resulted in a marked reduction both in distortion from standing waves and body capacity effects. In this area, which is near the Wrotham transmitter, cross-modulation splashing is common on Radio 3 but can be removed by a second, loo-sely-coupled loop tuned as an absorption wavetrap.

The loop can be made in any convenient way and have sufficient bandwith to make variable tuning unnecessary. Mine, cut from cooking foil, was stuck to the polythene lid from a food carton. The tuning capacitor is a short strip of foil on the reverse side below the gap in the loop. Output can be taken from two taps on the loop. The whole assembly is mounted on the back of the receiver.

H. S. Ffennell

Gravesend

Kent

WHY REPEATERS?

I would like to report an interesting phenomenon observed recently on the 2 metre band:

For some time now the local two-metre repeater and its nearest neighbour have been off the air for a variety of reasons, technical and otherwise. Bad news, one would think, for the average 144 MHz f.m. operator, but tuning through the top half of the band reveals quite the opposite to be true. What were once lifeless simplex channels are now buzzing with activity, operating standards have improved dramatically, the need for increased simplex range has prompted many amateurs to improve both their antenna systems and equipment performance and the misbehaviour often heard on repeaters has disappeared from the band. While never doubting the technical splendour of our repeater network I cannot help asking myself: what do repeaters really contribute to amateur radio?
Paul Russell, G4BWQ

University of Sussex

Brighton

THE ETHER

It is a pity that even radical scientists such as Drs Aspden and Murray (October 1982 issue) hold to the conventional but quite erroneous view that the Michelson-Morley result means that Maxwell's ether cannot exist as a universal frame of reference. There is in fact no requirement for Dr Aspden's ingenious special terrestrial rest-frame, and it is likely that the existence of some kind of "ether" has an important bearing on the duality problems raised by Dr Murray.

Einstein was the first to state that if the (Poincare) principle of relativity was to be universal, then all kinds of physical interaction had to have the same upper limiting propagation velocity as that of light, and so would obey the Lorentz transformations. Few would now argue with that conclusion, though it was a very bold one at that time. Illogically, he then threw out the causal baby with the ethereal bath-water by claiming that the concept of a unique, universal frame of reference was "not required": this was like announcing that where Ohm's law rules supreme, physical conduction mechanisms are not necessary! It is implicit in this denial of causality that relativistic effects are only artefacts of observation, which leads to the paradoxical consequences described by Dingle, Essen and others.

Einstein later saw his mistake: "More careful consideration teaches us that special relativity does not compel us to deny the ether . . ." (1), but 1920 was already too late: the ether had gone the way of caloric and phlogiston and was fit only for ridicule. The mere mention of the name now produces hysteria in an audience of
physicists. Nevertheless, the (almost ignored) publications of Ives, Builder and Prokhovnik ($2,3,4$) show in detail how the principle of relativity and all its consequences follow necessarily and solely from the concept of a single, universal frame of reference with its attendant upper limiting velocity for energy propagation.

It is open to speculation whether the mechanism of the "ether" is a Machian one involving the aggregate of matter in the Universe, or a Newtonian one involving some structured property of an underlying "absolute" space as favoured by Aspden, or some quantized-general relativistic fusion of the two, or indeed something else. What is quite certain, however, is that there is no conflict whatsoever between the principle of relativity and the concept of a unique substratum as reference frame for all energy transfer: the latter is a necessary and sufficent physical, causal basis for the former.
W T Morris

Teddington

Middlesex

(1) Einstein, A; Relativity and the Ether Lecture at Leyden, May 5, 1920 - English trans. by G B Jeffery \& W Perrett; Sidelights on Relativity (Methuen, 1922)
(2) Turner, D \& Hazelett, R; The Einstein Myth and the Ives Papers (Devin-Adair, 1979) - A complete collection of Ives's papers and other material.
(3) Builder, G; Ether and relativity, Australian Journal of Physics, vol. 11, pp. 458-480, 1958.
(4) Prokhovnik, S J; The Logic of Special Relativity (Cambridge University Press, 1967: 2nd Edn. by New South Wales University Press, 1978)

Einstein's theory precludes belief in the ether by making the observer, rather than the ether itself, the frame relative to which all physical laws are to be formulated. W T Morris challenges this and says that ether and relativity are compatible. He refers to Builder's 1958 paper 'Ether and Relativity', for example, a paper which suggests a causal physical process by which clocks are retarded in dependence upon their speed relative to an absolute frame of reference. The conclusion is that the ether and relativity are mutually permissible.
Yet, if this is so, Nature provides the ether as the fundamental physical reality and man provides relativity as the philosophical veil which clouds what is there and makes it difficult to discover the causal basis of other phenomena by reference to the ether.
W. T. Morris says 'there is no requirement for Dr Aspden's ingenious special terrestrial reference frame', though he concedes that an ether may have an important bearing upon the wave-particle duality problem raised by Dr Murray. Yet, my theory is based on the fact that this special lattice-structured ether frame plays an essential role in determining the photon mechanism. Nature surely does not offer us alternatives. The doctrine of the wave-particle duality needs to be reinterpreted. This is possible if we accept electromagnetic wave theory without assuming energy to be transferred by the wave process. The ether is a sea of energy, a resource which can be topped up or tapped anywhere as statistical photon events involving the lattice are triggered under the constraint of a balance of momentum. Non-radiation of energy
by electromagnetic waves, a direct contradiction to the Larmor process, is the very characteristic which permits us to have a quantum theory.

Indeed, it was the assumed non-radiation of energy by the electron, when accelerated, that allowed Einstein in his earliest writings to correlate $\mathrm{E}=\mathrm{Mc}^{2}$ and the relativistic increase of mass with speed. We cannot have duality, as $W \mathbf{T}$ Morris suggests. There is no room for compromise in Nature. If technology is to progress and if this depends upon the choice between ether and relativity, then we must march firmly under the 'ether' flag.
H Aspden
Southampton

CLASS S

I would like to make a few comments on A. M. Sandman's article "Class S, a novel approach to amplifier distortion" (Wireless World, September, 1982).

It seems strange to refer to the amplifier as Class S, as this classification is usually reserved for r.f. switching amplifiers similar to the bet-ter-known Class D amplifiers, except that the switched voltage waveform is applied to a lowpass filter which allows only the d.c. and very low frequency components to appear at the load. As far as I am aware Class S was invented by Bedford in 1932 (US Patent 1874159).

Certainly, lower distortion can be achieved for a given voltage swing by employing high impedance loads, hence the long established use of "bootstrapping" and constant-current sources to give high a.c. loads in voltage amplifiers. These techniques are not, however, the substance of Mr Sandman's article. The voltage amplifier based around A_{1} is essentially irrelevant and the power amplification is achieved by the differential trans-admittance amplifier \mathbf{A}_{2}. This circuit is a variant of the well-known Howland current source.
These circuits are fairly simple examples of the use of multi-loop feedback, and often find application in active impedance matching which eliminates the noise contribution which would result from the use of passive terminations. In this case, an ideal balanced "bridge" does tend to give rise to an infinite input impedance. However, as might be expected the use of positive and negative feedback loops poses a problem of amplifier stability when the frequency dependent open-loop gain and common-mode input impedances are taken into account. Unless very high-quality amplifiers are employed, such methods are usually only successful at very low frequencies.

Re-drawing Mr Sandman's circuit as Fig 1, where the distortion D is introduced as a disturbance input after the op-amp, we obtain the following relationship (assuming that the opamp is ideal, with the open-loop gain A being very large)

$$
V_{L}=\frac{R_{L}\left(R_{1}+R_{2}\right)}{R} \cdot V_{s}+\frac{R_{1} R_{L}}{A R} \cdot D
$$

where $R=R_{1} R_{2}+R_{1} R_{L}+R_{2} R_{L}$
Hence the voltage transfer function only approaches unity as R_{L} approaches infinity. Using the values given in Fig 4 of the original article, $\mathrm{V}_{\mathrm{L}}=0.82 \mathrm{~V}_{\mathrm{s}}+3 \times 10^{-8} . \mathrm{D}$, which does appear to give an improvement in distortion of ≈ 280 times over a single-loop negative feedback amplifier (i.e. using a reduction factor of $1 / 1+A \beta$).

However, when the amplifier is taken as being less than ideal, that is finite common and differential imput impedances, and a finite cmrr are taken into account, this improvement is greatly reduced. The wide discrepancy between these very low distortion figures, and those achieved in practice are due to two factors. Firstly, the inherent time delays in feedback 'systems (hence the advantage of feed-forward systems), and secondly the application of analysis based on linear models, whereas crossover distortion is a non-linear effect. To a simple approximation, in the Class \mathbf{B} cross-over region the open-loop gain of the system falls to zero, and no amount of feedback is going to stabilize the system. Also during the cross-over region, the collapse of feedback around A_{2} causes the input impedance of the trans-impedance amplifier to drop from infinity to a low value. This will have a detrimental effect on the voltage amplifier A_{1}, resulting in voltage spikes which would be absent if A_{1} was driving a passive load. When these effects are taken into account Mr Sandman's circuit offers little advantage over conventional single-loop amplifiers.
Fig. 1

$$
A_{0}=10^{5}
$$

Fig. 2
Owing to the finite slew rate (another example of a non-linear process) of the op-amp the use of a simple Class B emitter followers at the amplifier output gives rise to noticeable cross-over distortion even with feedback. It can be reduced considerably by inserting a resistance ($50-100 \Omega$) between the bases and emitters of the transistors. Even so, with 741 op-amps, a large-signal bandwidth of only about 1 kHz is attainable. A better approach is to use complementary common-emitter output stages, as in Fig 2. In this way, for small output currents, the output transistors are turned off, and the opamp provides all of the output current. At higher output currents, the external transistors conduct, and the contribution of the op-amp is limited to approximately $0.7 / \mathbf{R}_{\mathbf{B}}$. The quiescent current of the op-amp biases the external transistors, and hence greatly reduces the range of crossover.
A study of multi-loop amplifiers and their possible effects on reducing amplifier non-linea-
rities would no doubt prove useful, since it is an area which seems relatively uncharted, and I hope that further work will attempt to present solid theoretical and experimental evidence of their advantages.
N. M. Allinson,

University of Keele,
Staffordshire.

CABLE vs RADIO FOR TELEVISION

In your editorial in the October Wireless World you cited the release of radio channels as one advantage of cable TV. But the closing down of the present broadcast TV service would have to wait (I hope) until substantially all of the country had been provided with the cable system. I live in a village within 10 miles of a substantial city but in which there is no gas supply - how long would it be before cable TV comes here?
Another point which is usually overlooked (or suppressed) is that the development of modems for data transmission has made it possible for the ordinary telephone line to handle the other services such as electronic funds transfer (shopping at home), communication with a computer (working at home) and remote meter reading. The mention of such services as a reason for installing broad-band cable is therefore spurious.
D. A. Bell

Beverley
North Humberside

COST-EFFECTIVE ELECTRONIC IGNITION

Since 1965 I have used a Lucas TAC unit (circuit similar to that of D. J. Cope, 'Letters' Dec. 1980). It gave good service for 130,000 miles in a Rover 2000 and then, with another distributor, a further 25,000 miles in an Austin Maxi. During its time in the Rover the same points in the original distributor were used with occasional minor (1 or 2 'thou') adjustments for heel wear; spark plugs were changed - only after persuasion by service manuals - three or four times in the 130,000 miles; suppressor leads were not changed. The same performance pattern was being followed with the now two years old Maxi until it recently failed to start! The fault was traced to an open circuit resistor in the first transistor collector (and high-voltage transistor base) circuit due, it appears on examination, to corrosion. Replacing the resistor restored the sparks. However, confidence then impaired, I arranged, as Mr Cooper suggests, for quick change reversion to conventional ignition.

Certainly the electronics schemes are kind to contacts, but if correct timing is to be maintained, heel wear still needs occasional checking; surface finish on the cam lobes must be an important factor in the rate of heel wear. Incidentally, the conventional system's contacts dealing with several amperes results in 'pitting and piling' as tungsten is transferred, thus defeating d.i.y. checking with feeler gauges, but if timing and dwell are adjusted correctly the need for contact set replacement may not be as frequent as garages would like us to believe.
As correspondents have suggested, the ordinary car user is unlikely to notice any performance advantages for complex ignition equipment
because the conventional system can provide adequate energy for even moderately maintained engines although sophisticated ones, or even transistor-assisted contacts, may cope better with difficult conditions. My recent experience, when time and chemistry combined to leave me sparkless, made me wonder whether even this modest addition of components to assist the contacts is warranted - three resistors and two transistors to fail in the unkind environment of a car's engine compartment. Is the possible failure of extra components too high a price to pay for less frequent timing and dwell checks? Nevertheless, after 17 years of reliable service I shall keep the TAC unit installed to save anxiety over that molten tungsten at the contact breaker.
Alan A. Tomkins
Stourbridge
West Midlands

The various articles and many letters on electronic ignition which have appeared in Wireless World over the years prompts me to seek an opinion from readers on their use in modern engines fitted with emission control systems. I refer in particular to the Land Rover in which up to three independent and separate systems may be met, depending on the market for which it was produced. In general, the devices used recycle the gases from the crankcase, petrol tank and exhaust system back through to inlet manifold to reduce atmospheric pollution. Part of the system design means that the tick-over speed is higher than usual and a special distributor is fitted with a wider variation in ignition timing, giving a 6° retard at tickover and normal centrifugal advance at higher engine speeds. One of the special features of the distributor appears to be a 57° dwell angle with a small variation tolerated.
In the past, on older models, a capacitive discharge unit built from a Sparkrite kit has been used without any problems, but reliable starting in hot wet or dry weather overseas and the usual cold climate of the UK. The unit was capable of being switched from electronic to Kettering and appeared to cause the engine to run much more smoothly using the former with less burning of the contact breaker, but I would not like to express an opinion on any petrol consumption improvement.
However, I have no wish to argue the pros and cons in this context, but as these emission control devices are probably incorporated in many modern cars to meet local or overseas regulations, I would be interested to know if there is any problem using electronic ignition particularly in respect of the unusual retarded ignition, the close tolerance dwell angle and if it would degrade or perhaps improve the polution caused by an internal combustion engine.
N. L. Smith

Stoke-on-Trent
Staffordshire

LEAKY FEEDER RADIO SYSTEMS

Dr Martin in his interesting article on Leaky Feeder Communication, WW June 1982, refers to work carried out in South African mines around 1978. In 1960 the SA Chamber of Mines asked the undersigned to design and produce prototype transceivers for use with the Protea rucksack-type rescue appliance. I proposed a
s.s.b. system, operating at about 70 kHz , and predicted that conductors, in particular railway lines, would greatly extend the range. S.s.b. was chosen because it is most efficient with regard to battery power, and 'amplitude' radio noise is much lower underground. In the event of an emergency, machines generating such noise could be shut down. Frame aerials are cumbersome, as Dr Martin states, but were no problem since the slave sets had the frame wound round the rucksack and the SA Chamber of Mines came up with the bright idea of putting the frame wires in a large inflatable rubber tube that wedged itself in the tunnel walls at the master station. This allowed rail and pedestrian traffic to pass through the loop. The relative number of turns of wire in the slave and master frame :aerials was adjusted to present approximately the same impedance so that the slave and master transceivers were identical, an important point under emergency conditions.
The transceivers used some cunning circuitry and s.s.b. filters and were very simple, the low radic frequency used greatly assisting the filter design. Subsequently models were produced using ferrite rod aerials and the s.s.b. 'phasing' method and gave a similar performance. The transceivers provided a p.e.p. of about 6 W and a s / n ratio of 10 dB with an input signal of about $0.6 \mu \mathrm{~V}$.
The SA mines are more extensive than those in most countries and tests were carried out in both gold and coal mines. Mainly due to the presence of conductors, particularly railway lines, clear speech was obtained over distances up to a few miles and no nulls were noted when rotating the slave frame aerials. This led us to suggest that in tunnels where there are no railway lines suitable conductors should be provided to assist in propogating the signals. Also direct injection of the signals into the railway lines at the master station could well be advantageous.

Subsidences and rockfalls in mines do not usually break railway lines or, if they do, the broken ends of the lines are usually near together and the transmission loss is not greatly increased. However leaky feeder cables are relatively fragile and easily broken and considerably attenuation is introduced at a break. This is a serious disadvantage since a rockfall causing an emergency could disrupt the communication system required for such an emergency.
F. G. Clifford

Wynberg
South Africa

The article by Dr Martin in the June 1982 issue of Wireless World was most interesting to myself and my employer. We have been involved in the application of radio in an underground environment for the last three years. During this time we have installed radio equipment in 50 coal and metalliferous mines in Australia and New Zealand. One installation in particular, covers a length of 10 miles from the portal to the coal face. The results that have been achieved lead us to believe that in time, radio will become the preferred method of underground communications.

The type of leaky feeder used by this company is 300 ohm ribbon in a sheath. No particular attention is paid to the placement of the line. Water on the leaky feeder is the worst problem, having the effect of reducing the system range. Up until the present time we have not used a coaxial feeder; however, it is being considered for future installations.

Our equipment operates on 27 MHz a.m. for voice mode and 40 MHz f.m. for control mode, typical powers used ranging from $0.5 \mathbb{W}$ to $5 \mathbb{W}$. Using this equipment the distance over which a hand-held unit base station can communicate reliably is 2000 yards. Hand-held to hand-held units use the feeder in the parasitic mode over a distance of 800 yards.

Experience has taught us that no two sites perform the same and that there is much more "art" than "science" involved in the application of radio in an underground environment. Although many phenomena appear to defy explanation, the usefulness of the system has been proved. This company is engaging in research to improve operation of underground radio; we are investigating the use of repeaters instead of multiple base stations and are examining different modes of modulation.
D. Hughes

Illawarra Communications
Wollongong
NSW

POOR DEAL FOR AMATEUR RADIO

I object, as many pre-1947 A-licence holders will, to Mr Reay's Sept. 1982 view that I have my Nov. 1938 amateur radio transmitting licence under false pretences. Mine was granted under the regulations then in operation, which included the compulsory passing of the Morse code test. Luckily I have been able to respond to the annual invitation to renew ever since. I should add that my experimental receiving licence was first granted in Dec. 1920 in my father's name, on account of my youth (now 77). Pre-WW 2 we had of necessity to build and learn to use our own equipment if only because commercial equipment was almost unobtainable and certainly out of most people's price range.

The majority of professional radio engineers, however exalted, regard amateur radio as their hobby to be shared with others "suffering from the same disease from which there is no cure" (my definition of amateur radio) and they will bend over backwards to help the "pure amateur". Unfortunately, during the years, I have come across - and suffered from - at least three profesional radio engineers whose boast was that they had individually come into amateur radio just to show us twerps "how it should be done properly."

If the Editor decides to use this letter may I take the opportunity to ask who in the UK started the use of the American 1938 amateurs' habit of asking "What is your handle, Old Man?" Since 1947 and certainly of recent years, no v.h.f. band QSO - even the first - seems considered complete without the question being asked "What is your handle OM for the log?" This information seems more important than, to me, the information in the original CQ call of the QTH of the caller and the direction in which the beam is pointed, or the direction from which replies to that call are expected or hoped for. Some do give the "square" from which the $C Q$ call is originating, but not the beam direction; if they did an awful lot of time and frustration would be saved and avoided. 73s \& CU all on animated colour s.s.t.v.
R. F. G. Thurlow G3WW

Wimblington
March
Cambs.

SOLENOID FIELDS

I feel that I must pass comment on the article "Electric Fields in a Solenoid Coil" from the August issue. Whilst I agree with the result, I must dispute the arguments used.
The use of 'voltage' is incorrect in this case. Voltage is the scalar potential of the electric field vector \mathbf{E}, and its existence is conditional on the curl of $\mathbf{E}(\nabla \times \mathbf{E})$ being zero, which is only true for time invariant fields:

$$
\begin{equation*}
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial \mathrm{t}} \tag{1}
\end{equation*}
$$

B is magnetic flux density vector, which is only zero for a time-invariant field.
The result given in the article can be arrived at by:
Noting radial electric field $=0$. This can be seen by considering the integral of \mathbf{E} over a closed, cylindrical surface which shares its axis with the solenoid. Neglecting end effects, axial field will be constant along length of solenoid so that applying Gauss s theorem (which is a corollary of Maxwell 2: $\nabla \times \mathbf{H}=\mathbf{J}+\dot{\mathbf{D}}$) with net charge equal to zero, we conclude that radial electric field is zero.

- Circumferential field obtained by applying Maxwell 1 (integral form Φ E.dl= $\mathbf{i} \mathbf{B} . \mathrm{ds}$) to circular loop contained within surface of solenoid:

$$
\begin{equation*}
E_{\phi a} 2 \pi a=j \omega \phi \tag{2}
\end{equation*}
$$

with a as coil radius, d the separation between turns, using nomenclature of the article.
Noting that the conductor forming the coil (assumed perfect, infinitely thin, close wound) constrains the electric field to be normal to the windings (no electric field can exist at surface of a perfect conductor), and from above the electric field is tangential to the solenoid surface, hence

$$
\begin{align*}
& E_{z a} / E_{\phi a}=\cot \psi \tag{3}\\
& \cot \psi=2 \pi a / d
\end{align*}
$$

which is equation 1 from article.
From equations 2 and 3 we can determine the axial electric field at surface of coil:

$$
\begin{align*}
& \mathbf{E}_{\mathrm{za}}=(\cot \psi) j \omega \phi / 2 \pi \mathrm{a} \\
& \mathbf{E}_{\mathrm{za}}=j \omega \phi / 2 \mathrm{a} \tag{4}
\end{align*}
$$

It is easy to develop equations for electric field at a radius less than that of the coil.

The authors state that it is difficult to define a unique terminal voltage for the coil if it is loosely wound. This is an understatement - it is impossible to define the terminal volts for any coil carrying a.c., since voltage, by definition, does not exist. What happens, is that the 'voltage' perceived using a voltage measuring device becomes more sensitive to the measurement technique if we use a loosely wound coil.

I do not suggest that the field vectors $\mathbf{E}, \mathbf{D}, \mathbf{J}$, B and H really exist (see the excellent article "The Electromagnetic Analogy" from the same issue), but if we are going to use this model, we must abide by the rules.
P. Bramley

United Peripherals Ltd
Winsford
Cheshire

NON-BINARY LOGIC CIRCUITS

Abstract

Non-binary integrated circuits that increase processing capability of bipolar l.s.i. circuits could have considerable impact in situations where the number of pin connections is limited. By using both multiple quantized current and voltage levels information capacity can be increased by up to 18 times.

Increasing demands on the capability of logic circuits to provide multi-function operation using the minimum number of connections has produced some interesting alternative concepts. Practical non-binary integrated circuits increase the information processing capability of bipolar I.s.i. devices perhaps four to ten times. Other areas of application, especially process control and systems requiring some positive indication of mode, are described showing the extreme flexibility of the nonbinary concept.
Non-binary techniques using multiple quantized current levels or voltage levels can be considered "first-kind" non-binary systems. The subject of this article is a combination of both - perhaps it may be considered "second-kind" non-binary. But before looking at non-binary techniques, compare a typical tri-state device and its function with non-binary, because the tri-state circuit can be modified to work in a simple non-binary mode.
In a tri-state device, two of the states are the normal logical 0 and 1 conditions and the third is a high-impedance or off condition, allowing the output to be controlled by some other source, by parallel or bus operation. Alternatively, the output could be taken to a mid-point bias level via some suitable current source so that the third state is designated, and the chip will pull up or down from that mid-point. Here we are, back to a 'three-designated levels' system, converting as it were from binary to non-binary using a bias network. Figure 1 shows a simplified switching arrangement for a tri-state device and a typical integrated circuit. Non-binary techniques are particularly useful and economic where multichannel process or mode controls are required, the object being the use of a single conductor for each channel plus a single common connection, with excellent noise immunity and positive mode indication. In general, it is usually convenient to use a non-binary converter to return the commands to multifunction binary logic within the confines of the active machine or processor.

The basic concept of a second-kind nonbinary system is shown in Fig. 2: the same method is used for both the digital data application (a) and the process control application shown in (b). The basic commands are voltage levels on line $x-x$ and

Clive Ross, MIERE, works with NormalarGarrett Ltd, Yeovil.

by C. W. Ross

the required feedback of information (status or data) exists as current changes within that line.
Circuit V_{1} establishes voltage levels for the line and I_{1} detects current flow in that line, for the transmitting end. At the receiving end, circuit V_{2} detects and translates these voltage levels back into binary format. A programmable current sink circuit I_{2} produces the current level changes in the line to form a feedback signal (positive status indication or data).

One of the interesting features about non-binary techniques is that the active elements are basically simple and easy to implement in integrated form. There are obviously limitations to the number of increments of current and voltage that can be used. As an introductory exercise consider two current levels and three voltage states as a basis for discussion.

Digital data application

From a purely digital point of view there are a great many options for the non-binary concept using a single wire per chan-
nel and a common earth.
Figure 3 shows a simple configuration using two converters, a comparator and two-state current sinking. Obviously there could be multi-state current sinking and multiple comparators, but let's keep it simple here to properly demonstrate the features of the non-binary concept.
The two-bit digital-to-analogue converter and the a-to-d converter can be implemented very simply using a minimum of readily available integrated circuits. Looking from left to right in Fig. 3, the two-bit converter plus the offset buffer generate four distinct voltage levels for the control line V_{c}. The offset buffer conveniently applies some low potential to the line for zero input bits to allow the current sink to operate properly for all states. The comparator detects current changes in the line by using a reference input derived from a constant current network.

On the receiving end of the line, the discrete voltage steps are level shifted and fed to a simple a-d converter which feeds a two-to-four decoder and four gates. The data inputs are enabled by the binary output of the a-d converter, one of the data lines being selected according to the

Fig. 1. In a tri-state device the third state is an off-state to allow the output to be controlled by another source. An alternative non-binary approach is to use a mid-point bias level as a third state.

Fig. 2. Basic commands in a multistate data application (a) or process-control (b), are voltage levels on the line selected by V_{1} and detected by V_{2}, while status or data feedback is provided by 1_{2}, detected by $1 /$.
voltage state of the line V_{c}. The constantcurrent sink switches at data rate and the selected data appears at the left hand end of the line at the output of the comparator. In this case, four sets of data can be interrogated in sequence and read out remotely, at the end at which the selection is programmed using a single line plus common.

Process control application

Consider a typical case for non-binary control logic. A magnetic tape recorder system has three operational modes and up to 24 channels. The bias current in the head circuit during the record mode needs to be detected at some convenient thres-
hold and the information fed back as a positive indication at the remote control box. The three operational modes are

- playback (normal)
- record
- playback from record head (sync.)
while the self-test mode is
- h.f. bias current in head circuit to exceed a pre-determined threshold, and control lamp at sending end as a positive record indication.
In a 24 -channel system, 24 conductors and one common are required, one conductor per channel for the four modes and a common conductor serving all channels. For high noise immunity, 10 volt command increments may be used.

Fig. 4. Three voltage states and two current states are used in this tape recorder control system. This voltage sending end senses the current states.

0 volts \equiv normal playback +10 volts \equiv playback from record head +20 volts \equiv record.
For the positive indication in record mode there are in addition to the voltage states, two current states:
0 to $0.5 \mathrm{~mA} \equiv$ record bias current zero or below required value and $5.0 \mathrm{~mA} \equiv$ record bias current normal or above.
Therefore, in this case, five conditions are satisfied using a single control line. Obviously more options are available if two current states are available for two voltages, say.
Look now at some circuits to perform these functions, first the sending end. A three-state voltage and two-state current system is shown in Fig. 4. At the sending end, a switch selects the voltage level appropriate to the function required, and a current sensor with two states determines the acknowled gement signal.
In this example, when the highest potential of the command group is selected the acknowledgement signal at the receive end changes the terminating impedance of the line and the current sensor at the sending end detects this condition and produces a visual indication. A 1 Hz supply alternating berween 0 and +20 V is used for the lamp, producing a flashing warning indication.

Data buses

When the record position is selected (20V) the flasher bus is connected via the diode to the indicator lamp. When the command line current rises due to a logic decision at the receiving end terminating the command line with a low resistance,
the transistor pulls up and saturates, applying a steady voltage to the lamp. The diode allows independent operation of the flasher supply during this condition.
At the receiving end, a circuit is required that will translate the voltage levels

Fig. 5. This receiving end uses simple comparators to translate the voltage levels back to binary form and a final current acknowledges command completion.

Command	Voltage state	Current state	Visual indication D_{1}	D_{2}
Standby	$0 \pm 0.5 \mathrm{~V}$	$0 \pm 100 \mu \mathrm{~A}$	\cdots	-
Forward propulsion on velocity low Forwara propulsion on velocity normal	$+10 \pm 2 \mathrm{~V}$	0 to $+500 \cup \mathrm{~A}$	-	G
Reverse propulsion on velocity low	$-10 \pm 2 \mathrm{~V}$	$+15 \mathrm{~mA} \pm 20 \%$	G	G
Reverse propulsion on velocity normal	$-10 \pm 2 \mathrm{~V}$	$-15 \mathrm{~mA} \pm 20 \%$	R	R

Fig. 6. Very simple system with two-colour leds has three voltage levels and three current combinations.
back into binary form. Again there are many ways of implementing the conversion. A set of fairly simple comparators is required and a means of applying a binary current sink, controlled by some final event to acknowledge that the chain of command is complete. Figure 5 shows a typical circuit for the receiving end.

The ratios of R_{1}, R_{2} and R_{3}, R_{4} are chosen so that Tr_{2} and Tr_{4} saturate at control line potentials of 10 and 20 V respectively. (These transistors actually start to switch at lower potentials but proper saturation is attained at the control potentials used.) The diode has the important function of avoiding ambiguity of output B when Tr_{4} and Tr_{5} function. The transistors are a dual in-line array for convenience, their function is a crude form of twin comparator. When the record command is received $(+20 \mathrm{~V})$ the bias current in the record head circuit rapidly rises to operational value and Tr_{1} is turned on using the half-wave rectifier network detecting record head current. Transistor Tr_{1} turn-on provides the current sinking action on the control line.
An interesting variation on these circuits is shown in Fig. 6, where the sending end circuit is extremely simple. In this version there are three potential states and three current conditions, giving additional capability for positive indication. The l.e.d. is a dual bi-colour type, red/green, one of the most useful configurations available.
Where pure logic functions are required the concept is similar, but the actual circuits at each end will be designed to fit the particular application. Non-binary systems need not be unidirectional in terms of current and voltage, but the application will often dictate the configuration.

At the present time when conventional binary logic devices are in such wide use, along with a sprinkling of tri-state, nonbinary devices could have considerable impact in those areas where there are obvious limitations to the number of pins used in medium and large-scale integrated circuits. A practical second-order non-binary system could have over 18 times the information capacity of its binary counterpart - something that will bring a smile to the system engineer's face but dismay to the trouble-shooters!

MaN

Wireless World binders

Readers who prefer to keep their copies of Wireless World whole, rather than have them bound into volumes with outcovers and advertisements, may like to know that we have reached an agreement with Easibind Ltd, who will supply binders. Each binder holds six complete issues, is blocked with the title on the spine and is extremely durable. Packets of stickers to denote the year are supplied with each binder.
Send orders, with cheques for $£ 4.30$ made out to Easibind Limited, to Eardley House, 4 Uxbridge Street, London W8 7 SZ . Overseas readers should include an extra 25 p to cover postage costs.

MORSE DECODING BY MICROCOMPUTER

Abstract

Using a 567 tone decoder and a seven-bit clock to time incoming signals, Morse code is interfaced to a ZX81 via a Z80A p.i.o. chip. Machine code routines use this data to provide up to nine lines of decoded text.

The ZX81 uses the 280A microprocessor for both the servicing of the television display and for computing. The display is handled on an interrupt driven basis, which means the processor is unavailable for computing for a large proportion of the time. Since the decoding procedure requires reasonably accurate timing of the Morse signals, the use of a software timer would introduce an unacceptable level of timing errors because of the necessity to regularly service the display. A hardware clock was therefore implemented, which required an interface between it and the ZX81. Of the several purpose-built chips available, a Zilog Z80A p.i.o. chip was chosen because the necessary compatible signals are available directly from the edge connections on the ZX81 p.c.b. Software to accomplish the decoding is based on the flow diagram by Kyriazis*.

Although Sinclair are unwilling to disclose details about the duration and frequency with which the display is serviced,

by J. P. Sargent

earthed screen between the primary and secondary. The ZX81/Z80A p.i.o. combination produced a great deal of r.f. interference, about which more will be said later. Signals are amplified using a 748 opamp with manual gain control and fed to the 567 tone decoding chip. With the components selected, the chip has a bandwidth of approximately 14% of the centre frequency of the tones; for 1000 Hz the acceptance bandwidth is approximately 140 Hz . For reliable decoding the receiver should have comparable stability.
Timing. A clock implemented using a RS components programmable timer operated to provide a seven-bit binary output. Each of the bits are then sent to both a mark latch and a space latch, to provide a temporary store for the binary output from the clock, and are enabled by the mark signal and the space signal respectively. The

this must be dictated by the British tv standards. Thus an interrupt must be issued with a frequency of 50 Hz , and the time required to service this interrupt must be less than 20 ms . This places a maximum rate of 50 tone/no-tone transitions on the incoming Morse signals, decoding then taking place during the periods normally reserved for computing. As the processor may be in the interrupting routine when a transition occurs, the clock timing when either a mark or space has finished must be stored until the processor is free to read the data. This is achieved by latching the clock reading.

The circuit consists of three main sections.
Tone decoding. Output from the recording socket of the receiver feeds into a miniature a.f. transformer which has an

[^3]speed at which signals are decoded depends on the clock period. Although an automatic software speed control was incorporated by Kyriazis, decoding was less prone to error if a manually-selected speed control was used by varying the period of the clock.
Interfacing. A Zilog 280A p.i.o. chip takes the seven bits of data from each of the latches, plus one bit to indicate whether a mark or space is present, to the p.i.o. ports A and B respectively. The chip requires two lines to address it as an input/output port and one line for the chip enable. The i/o request line, clock, RD and M1 are already present on the ZX81 p.c.b. edge connections.
The ZX81 does not fully decode the i/o port addresses internally and address lines $\mathbf{A}^{7}, \mathrm{~A}^{6}$ and A^{5} may be used directly for the

[^4]addressing of the p.i.o. chip. In this configuration, A^{5} is used for the chip enable (CE), A^{6} is used for port B / A select (B/A) and A^{7} is used for command/data select (C/D). Thus for example, sending 0FFH to port 9 FH selects the command register of the p.i.o. chip, port A, mode 3 operation, and at the same time the remaining bits $\mathrm{A}^{4}-\mathrm{A}^{0}$ stay high which should deselect any of the ZX81 internal ports. The Z80A p.i.o. chip is used in its mode 3 configuration with all the port data bits as inputs. Refer to the appropriate Zilog technical manual for further details about the chip. It is then a simple matter of addressing ports 1 FH or 5 FH to read in data from the mark or space latch respectively.

Software

So that the computer has the necessary speed and compactness to fit into 1 K of memory the program was written in machine code. It is based on that given by Kyriazis with important modifications to accommodate

- the display routines of the ZX81
- the hardware configuration of the

ZX81/Z80A p.i.o. combination

- the hardware timing routine
- and the deletion of the automatic speed control.
The program starts displaying on line nine and gradually fills the screen upwards, scrolling each time a new line appears.

Character printing is accessed by executing a RST 10 H instruction with the A register of the processor containing the character to be printed. The SCROLL and PRINT AT routines are accessed by calling addresses 0 C 0 EH and 08 F 5 H respectively, details in "Understanding your ZX81 rom," by I. Logan (Melbourne House, 1981).

The flow diagram of Kyriazis is modified by replacing all references to the Test Input routine by a call to two important subroutines which read in the data from their respective latches. Each of which waits until the end of a mark or space is detected before returning with the timing of the mark or space to the main body of the program. As the latches are activated by the mark/space rising edges, data are only held for a period which depends on the length of the following space for the mark data, and the length of the following mark for the space data. Therefore the program must read this data in before new data arrives; this is the main factor limiting the rate at which Morse can be decoded.
It is not known how long the RST10H, SCROLL or PRINT AT instructions take.

With the $\mathrm{Z80A}$ running at 4 MHz the longest non-interrupted section of the program excluding these routines will execute in less than 1 ms .

The program may be entered into the ZX81 using the following:
1 REM 000... 367 ZEROS... 00000
2 LET L=USR 16514
3 FOR I = 16514 TO 16879

4 INPUT X
 5 POKE I,X
 6 NEXTI

and executing a GOTO 3 instruction. After entering, program lines 3-6 may be deleted and the program saved in SLOW mode. The machine code occupies 366 bytes, leaving room for about nine lines of text for the display of the Morse code. The table contains a list of the bytes in decimal

```
062 255 211 159 211 159 211 223 211 223 205 021 065 001 001 015
033000 000 024 045 205 061 065 132 103 203 063 203 063 203 063
184}0056002024 232 205 089 065 133 111 120 203 063 189 056 007
124}133103 046 000 024 222 124 203 063 184 203 017 038 000 151
024 003 205 089 065 133 111 203 063 203 063 184 048 017 205 061
065 103 120 203 063 188 056 035 125 140}1111 038 000 024 227 121
254 001 040 006 205 010 065 205 010 065 046 000 038}000
065 103 120 203 063 188 048 244 151 024 157 120 203 063 128 189
220}01
025}0056016197 229 205 014 012 006 008 014 000 205 245 008 030
```



```
0490000009}12
219}0031087 230 127 095 150 048 002 198 128 254 121 048 042 203
122}0040237115 209 225 201 229 213 033 236 065 219 095 087 230
127}09515015048002 198 128 254 121 048 006 203 122 032 237 024
226}2219095 203 127 032 250 024 006 219 031 203 127 040 250 230
127}0095062121024 205 001 006 023 021 011 003 029 009 031 007
024010}02700400500802501801301500202014030 012 022 020
019}0048056060062063047039035033 032 046 106 045 076 053
186}122115071071085082 055 000 000 038 039 040 041 042 043 044
045046}047048048049050051 052 053 054 055 056 057 058 059 060
```


which should be poked into memory beginning at address 16514 .

Construction

The ZX81/Z80A p.i.o. combination produced a great deal of r.f. interference and careful precautions had to be incorporated to reduce interference to the incoming signals. The most important steps were the use of a shielded audio transformer in the input stage and having the entire assembly housed in an earthed metal box. In addition it was necessary to ensure that the ZX81 was provided with a good earth to the box.
Connection of the Z80A p.i.o. to the ZX81 was achieved by means of a 50 -way ribbon cable terminated with a 50 -way Speedbloc edge connector. These were subsequently cut down to 46 ways to fit the edge connections on the ZX81.

Operation

Hardware timing of the Morse signals is the only practicable method by which the ZX81 could simultaneously decode the Morse and maintain a continuous display. Although this makes decoding more vulnerable to interference than when using software timing where digital filtering techniques can be used, it was found that the 567 was very efficient at locking onto even weak signals. Effective suppression of locally generated r.f. interference and the narrow bandwidth of the 567 combined to give accurate decoding under most conditions.

HOW WILL THE COMPACT DISC AFFECT AUDIO DESIGN?

The nature of disc-playing equipment has always affected the design of related equipment. As the Compact Disc has different characteristics to the analogue disc, the design of the rest of the audio chain may be affected.

Whereas low frequencies in analogue discs are limited to those for which groove space is available, and to those which are not filtered out for lack of it, the situation with the Compact Disc is that far more bass range is generally possible. Most of the low frequency content of analogue pickups is noise and so a rumble filter is employed, particularly where reflex loudspeakers are used. A Compact Disc (CD) will achieve more wanted signal and less noise in the range below 50 Hz , and one would not wish to lose signal because of a rumble filter. However if a bass reflex loudspeaker is employed without rumble filter, the bass driver coil could be driven out of the linear region of the magnetic gap, as large amplitude low frequency signals can now reach it. This is already true for at least one "digital" AD, where the cannon shots recorded during a rendition of the Tchaikovsky 1812 overture with a low fundamental of 6 Hz cause bass reflex loudspeakers to "bottom", producing a most unrealistic sound, even at moderate pressure levels. Thus far from being a large power handling device at low frequencies, the reflex system becomes an embarrassment. Therefore the closed box loudspeaker will, in my opinion, become more favoured as a result, and the rumble filter will die out.

Larger loudspeaker systems capable of reasonable sound pressure levels at low frequencies are presently the exception rather than the rule, possibly because of the filtering out of low frequencies recorded onto the AD by recording engineers and thus a general lack of good low frequency signals. The greater signal and lower noise of $C D$ will cause more of these larger loudspeakers to be designed and sold, and a change in design of those presently available. Apart from bass reflex becoming anathema, steep cut-off rates or 'high-order alignments' will also be less favoured, because bass transient response suffers. I believe that the closed-box equalized active woofer (e.g. refs 1) will become more favoured, and that the subwoofer market will increase.

The effective dynamic range of $C D$ depends on the number of bits used to encode signal levels; 16 bits is presently favoured as a maximum, for while 20, 22 and 24 bits have also be mentioned, the limitations of present technology restrict the choice to 16 or below. Sixteen bits in the binary system represent numbers 0 65,535 . The least signal is that signal

by R. I. Harcourt B.Sc., M.I.E.E.

represented by alternating 0 s and 1 s , and the greatest that represented by alternating 0 s with 65,535 . Thus the ratio of greatest-to-least signal is $65,535: 1$, or a range of 96 dB . The likely, more common, 14bit system has a dynamic range of 12 dB less, or 84 dB . The dynamic range of the power amplifier and loudspeaker system should therefore be increased for maximum fidelity. In the power amplifier, the signal-to-noise ratio is often less than even 84 dB , let alone 96 ; but it should be a simple matter to improve on the figure. Whether such a range is in fact achieved will depend on the audible range in the listening environment, and on listener preferences.

There is presently some debate as to the lower limit of sound pressure level which is audible as a signal in the presence of ambient noise, and whereas the ambient noise level in a living room may be 40 dB s.p.1. or more, recent work has suggested that the "cocktail party" effect enables the ear to hear as low as 4 dB s.p.l. in such an environment (ref. 2). This establishes the minimum desired maximum s.p.l. from a CD system as $84+4=88 \mathrm{~dB}$. Such a figure is achieved at present. The same criterion applied to a 16 bit system would require s.p.ls of $96+4=100 \mathrm{~dB}$, and larger presentday systems can achieve this figure, using reasonably efficient loudspeakers. If the criterion is in fact that the minimum s.p.1. is the ambient figure, then even a 14 bit system requires $40+84=124 \mathrm{~dB}$ spl as a maximum, which is not often presently attained. The truth will depend on market reaction, and will lie somewhere between these extremes; there will be those who would consider that a large dynamic range was undesirable and "too loud" in a living room. Thus there will be some demand for a general uprating of amplifier power possibly the instanteous/continuous power ratio will increase - of loudspeaker efficiency, and of drive unit power handling.
Lack of noise in a conventional sense distinguishes $C D$ from $A D$; there is no surface noise nor is there any rumble. However errors can occur in the digital chain, due to extraneous factors such as impulsive interference or surface damage to the record. It is possible for these to cause brief, high-amplitude transients, or even extended high-amplitude noise, and these could be severely damaging to the loudspeaker tweeters. Better CD
electronics will include error correction and interleaving to eliminate the effects of surface damage to the signal, but this may not be universally true. Only experience will tell, but it may be that loudspaker and amplifier designers will have to take steps to prevent damage caused by uprating components, and to prevent discomfort by shutting down the signal. Of course this should best be done within the digital electronics of the CD player, but poorly designed players may exhibit the problem.

There is an additional noise problem, namely that the operation of a CD player in the vicinity of a broadcast receiver will most probably cause interference to reception. That digital electronics can interfere with reception is well known by those readers who have operated a home computer while trying to listen to a portable radio in the same room. However the simple cure for this is to turn off the CD player when listening to the radio. More serious may be interference picked up by a tape recorder while recording from CD. I expect the record industry will be delighted if this happens.

With a larger dynamic range, adequate shielding of the input-stage electronics from interference will take on a new importance, especially with the broadband modulated pulse spectrum of digital interference. The present difficulty of many home computer manufacturers in shielding digital electronics from causing excessive spurious radiation is a guide here, and the solution will lie in part with the amplififer design, not just with CD player shielding. To the phenomena "fridge plop", "hf burble" and broadcast TV breakthrough will now be added "CD whistle" if designers are not careful. The problem will be the rectification by input stage base-emitter junctions of electromagnetically induced noise, and while the solutions should be well known, they are not always present in current designs.

MON

References

1. Loudspeaker system design, S. Linkwitz, WW May/June 1978.
Synthesis of loudspeaker mechanical parameters by electrical means, a new method for controlling low-frequency loudspeaker behaviour; K. E. Stahl, f. AES Sept 1981. 2. Dynamic Range Requirement for Subjective Noise-Free Reproduction of Music; L. D.
Fielder; 69th AES Convention, preprint 1772, May 1981.

COMPUTER NETWORKS

It will soon be feasible for every home to contain a computer system interlinked via local area networks to ground stations and then to satellites. In principle, such an arrangement could provide a social communication medium far more powerful than any of its speech counterparts.

The range of computer systems that can be constructed increases substantially as soon as the designer starts to replicate any of its basic components, memory, processor or i/o subsystem. It is quite common to find computers containing two, three or even more central processors linked together in ways that enable particular types of computational task to be undertaken. A twin processor system might use one for conventional processing and a second to act as a controller for a memory management system. Similarly, a computer designed for vector processing might contain 50 to 100 interlinked c.p.us. Such an arrangement would enable many computations to be performed simultaneously, vastly improving the speed at which computer data processing can be achieved.
Producing interlinked computing facilities often requires connecting together many different types of hardware unit. The methods used will obviously depend on the geographical proximity of the elements to be connected, the way in which their activity is to be coordinated, and the architecture of the systems involved. Nowadays, proximity doesn't really present any significant problems because by means of satellite communication networks it is feasible to link together computers distributed anywhere on the earth's surface. At the other extreme, through the use of integration technology, t'ie production of single circuits containing many central processors is a realistic possibility. Between these two ends of the spectrum a variety of other types of interconnection is possible.

The detailed nature of the connection made between individual processing elements within multiple processor configurations depends criticically on separation. This enables four basic categories of system to be distinguished.

Geographically distributed - as in a conventional distributed computer network with elements separated by significant distances - perhaps thousands of miles.
Locally distributed - linked by means of short-haul communication systems called local area networks, residing in the same building or site.
Proximally distributed - located within the same laboratory or room, or within a single machine. Office automation systems, robots and multi-dimensional process control applications are common examples.
Closely connected - on the same

[^5]by Philip Barker

printed circuit board or within the same integrated circuit.

As well as micros, minis and mainframes, computer systems technology embraces super-computers ${ }^{1}$ based on the highly parallel interconnection of many processing elements to produce multiple c.p.u. configurations and array processors. The latest trend in this domain is the use of "ultra-computers ${ }^{2 "}$ consisting of thousands of interlinked elements. The motivation for connecting computing elements together, of course, lies in the exceptionally high speeds of computation through parallelism, greater reliability through redundancy, and more flexibility as a result of dynamic sub-task allocation. Computers linked together in this multiprocessing way are usually located within close proximity, often within the same room.

A distributed processing system is an interconnection of many geographically dispersed digital sub-systems, see diagram on page 75 , each has certain processing capabilities and communicates with other sub-systems through the exchange of messages of various sorts - a more rigorous list of criteria has been given elsewhere ${ }^{3}$. Within such a system each host node may have its own local operating system and applications software, which may be unique to that node. The various hosts will communicate with each other using common message-transmission protocols.

Two commonly used techniques for transmission of information around a network - message switching and packet switching - are described in more detail later.
An important feature of the network is that the route information takes from an originating node to destination node is not guaranteed; it will be influenced by the state of the network at any time. To the user the system will present a common command language through the network operating system. This will usually provide a set of high-level commands that enable the user to control the services and facilities that the network offers - for example Create, Send, Fetch, Find to control the manipulation of files of stored data, Database XYZ to establish connection with a particular remote data base system, and so on.

There are many factors that must be evaluated in order to choose the most suitable topology - the arrangement of links and nodes within a network. One factor likely to influence this choice is the type of participation required by each of the nodes. Thus it is possible for a node to act exclusively as a consumer of resources, exclusively as a provider of resources, or as both a consumer and a provider of resources, or as both a consumer and a provider of network resources. Depending on the likely resource utilisation and the way in which nodes need to communicate with each other, about half-a-dozen different types of network topology are commonly used, diagrams at the top of page 75 .

The term computer

 networking describes digital systems interconnection over substantial distances. The geographical distribution of computers or nodes in the network - its topology - will usually not influence its operation or the functions it is designed to perform. Thus, computer A might be located in London, B in Paris, C in New York and D in Oslo. Sometimes there will be more than one direct link between given nodes as in the case of A and D to provide greater overall system reliability. In distributed computing the computational tasks to be performed are serviced by the resources of the network as a whole rather than those associated with any particular node. Laboratory data collected by an acquisition system attached to computer D could be transmitted to computer A for processing; and the results sent to computers B and C for storage. Retrieval requests for inspection of particular items of data could arise from users of any of the four computers. Distributed processing of this type offers high availability, greater reliability, improved work throughput and response time, distributed processing storage and retrieval, load levelling and resource sharing, greater security, and system modularity.

In the point-to-point arrangement of A the link may be either a private wire or a shared line, as in the public switched telephone network. The multipoint system requires that several nodes share the same link, one designated as the controller and the others as tributory stations, B. The controller manages network traffic by polling, i.e. inviting other stations to send messages in turn, usually over non-switched leased lines. In a centralized star system all users communicate with a central point with supervisory control over the system, C.
Peripheral nodes can only communicate with each other via the central controller which provides a central message switching service for other nodes. In supervising real-time process monitoring applications a hierarchy of computers controls various processes, synchronizes them and reports their status D. Both microcomputers and minicomputers can occupy the lower levels of the tree structure with perhaps a mainframe or large minicomputer at the top. A loop or ring arrangement is economical when several remote stations and host processors are located near to each other - e.g. within the same building or plant, E. When stations are dispersed over long distances and line costs too expensive a multi-star network is often used in which there are several supervisory or exchange points, each having a local cluster of attached nodes, F. Properly designed, distributed networks can increase reliability as a failure at one node does not affect the rest of the configuration. Where continuous communication is important, a fully distributed network in which every point is connected to several neighbouring ones may be preferred, G. Detailed traffic analysis determines where links are required.

The network structures shown represent the most common types of discrete network architecture. Using these as building blocks, two, three or more networks having topologies similar to that shown in diagram G may be interconnected to form a highly distributed arrangement of nodes. Logically, such an arrangement would appear as two separate networks linked at particular points, but because the individual networks require to retain various attributes of autonomy, and because they differ considerably from each other in their characteristics, special modes of interconnection are required. Nodes used to interlink networks of different types in this way are called gateway nodes, whose design has been described by a number of people ${ }^{4}$. In particular, Ball ${ }^{5}$ describes one such gateway that connects the University of Rochester to the Arpa network in the USA.

Computer networks are classified by any of a wide range of possible attributes: by topology (star, tree, loop) control discipline used (centralized or distributed), type of information carried and the mechanisms for transmitting it (message or packet switching), data links employed (cable, twisted pair, optical fibre, radio etc), and the nature of the computers. Of the many different kinds of network that currently exist, those that depend on con-
ventional telecommunication links are probably the most popular - some examples of this category are discussed next.

Message and packet switching networks

Of the three basic methods of routing communications traffic from a source to a destination within a computer network circuit switching, message switching and packet switching - circuit switching is similar to the public switched telephone network, where the switching centre establishes a direct connection between nodes in the network. Once established these may then carry on one-way or two-way communication. There is then minimal delay between the transmission of a message and its arrival at its destination. When communication is complete, the switching centres disconnect the circuit and restore the system in readiness for other connections. Circuit switching often requires long connect times and ties up transmission capacity for long periods because of a fundamental property of circuit switching once a path is determined through the network nodes, all traffic between a source and destination pair then follows the same path.

An alternative mode of transmission which does not require a fixed route between source/destination could have many advantages. Two possibilities exist - depending on the volume of data to be transmitted: message switching and packet switching. In message switching, each item of data is sent into the network as a discrete unit and then routed to its destination. A message makes its way through the network to the destination whose address is specified in the header. Each station in the network uses an appropriate routing algorithm to decide which node the message has to go to next to reach its destination. As some stations may be busy, a message may often have to be stored at intermediate nodes before it is passed on. For this reason, an arrangement such as this is often called a store and forward system.

Packet switching is similar to message switching and is used when large volumes of information are to be transmitted. At the source station a large message is subdivided into a series of fixed-length segments called packets of size 1,000 to 8,000 bits. Each packet has a unique number asso-

ethernet-TYPE CARRIER-SENSE MULTIPLE ACCESS

Bus organisation

Collision detect algorithm

Numbers denote field widths in bits
ciated with it which enables the reconstruction of the complex message at the destination, and whose format is not unlike that of a message, as shown in the format diagram.

Each packet is treated individually and

MESSAGE \& PACKET STRUCTURE

forwarded along the route with shortest transmission delay. Packets are checked for errors at each node along the way by an error-checking field contained in the packet. When errors are detected packet re-transmission is requested. Because long messages are broken up and sent over different routes, it is possible for them to arrive at their destination more quickly. Furthermore, because intermediate nodes in a packet-switched network only have access to segments of the whole, they are unable to assemble the complete message. Thus if data encryption is not being used, transmission by this technique ensures greater privacy of data.

Videotex networks

Originally introduced to provide low-cost public data and information retrieval networks based on either broadcast television signals or switched telephone links,
videotex systems are intended primarily for use as public information utilities, and are thus designed around a single treestructured data base ${ }^{6}$. Modified television sets implement a variety of menu selection techniques to facilitate information retrieval operations.
The information providers' terminal is responsible for entering data into the data base and ensuring its correctness. The arrangement of components is essentially a star network with the computer at the centre and the terminals and videotex data base attached as peripheral nodes. This type of equipment is used for the provision of in-house information systems - for a laboratory, operations room or sales office. In addition to their prime use as retrieval tools, the two-way communication capability of many of these systems enables the implementation of a wide variety of electronic mail and electronic publishing facilities. On a larger scale such systems provide global or national information utilities.

Local area networks

Normally, the distances involved in local area networks fall in the range of 0.1 to 10 kilometres. ${ }^{\text { }}$ Unlike the two kinds of networks described previously, local area systems do not use any of the global com-mon-carrier communications resources except by way of special gateway nodes. Furthermore, most lan transmission techniques attach little, if any, priority to data privacy. Instead, messages and data are publically broadcast over the data link at high speed. The intended recipient's address accompanies this data. In principle, only the addressed receiver should then listen-in to the transmission, but there is no easy way of enforcing this selectivity. If a high level of privacy/security between partners is required, then appropiate cryptographic techniques must be employed to achieve this. As in the case of conventional networks, gateway nodes can be constructed to permit the interconnection of several local nets. These may be either of the same type or of a different kind. Gateways also provide the means whereby local area systems can be attached to global common-carrier data links.

Local area networks employ one or other of three basic types of topology:

- shared bus architecture
- ring structure, or
- star configuration.

The first two are undoubtedly the most common. A number of schemes employ the bus or multidrop topology of case B -Z-net, Wangnet, Perinet, Cluster/One and Econet are typical examples but probably the most well-known network of this type is Ethernet ${ }^{8}$ produced by Xerox, Intel and DEC.
Ethernet implementations use a single shielded coaxial cable to transmit data at rates up to $10 \mathrm{Mbit} / \mathrm{s}$ using baseband signalling. Because all devices communicate through this single cable, the problem of access priority arises. Simultaneous transmission by two or more devices is prevented by means of an access control
protocol called carrier-sense multiple access with collision detection. Before transmitting, each device inspects the status of the data link; if it is clear then transmission takes place, otherwise the device tries again later. Should two devices attempt to transmit simultaneously, their messages will obviously collide. If a collision takes place then a flag is set at each of the network nodes to indicate this state of affairs. After delaying for a randomly determined duration, each of the transmitting devices involved in the collision then attempts to re-transmit its message. The structure of the information packets transmitted along the cable carried in the packet is variable and can be much larger - usually from 46-1500 bytes'.

The other popular approach to local area networking is the ring structure, for example Transring, Polynet, Xinet, and Toltec, all with a topology similar to that illustrated in case F. One of the most wellknown pioneering implementations of this type of network was developed at Cambridge University ${ }^{10}$. Each node in the Cambridge ring contains three basic items: a repeater, a station unit and an access box.

Data flows unidirectionally between the network nodes as a train of packets, each of total size 38 bits, as depicted in the ring diagram. Each one contains a framing bit (which is always set to one), two address fields, 16 data bits and various indicator fields. Bit 2, for example, is used to reflect whether a packet is full or empty.
The simplest implementations of this network system are based on standard twisted-pair cables (two pairs) to connect adjacent network nodes. Cables of this type permit data rates up to $10 \mathrm{Mbit} / \mathrm{s}$ to be achieved fairly easily; signal repeaters located at each node are separated by intervals of approximately 100 metres. These are an integral part of the station units through which devices access the ring. The function of a repeater is to extract phase-encoded signals from the ring and demodulate them into clock and data signals that are then passed to the station logic. The repeater also accepts signals from the station hardware, combines them with incoming data and then modulates the result onto its output lines. The station unit is responsible for handling data packet framing logic, receive/transmit logic, parity

CAMBRIOGE RING

Packet structure

Response bits
Destination absent
Packet accepied
Destination deaf
Destination busy
checking and delay logic. In addition, it also provides facilities for configuring the ring, for example station address assignment. One station, the monitor station, has special significance; it continuously checks the status of the network and responds in an appropriate way to error conditions and systems failures. Its other functions include specifying the number of data packets circulating in the ring and keeping statistics on network performance and loading. The repeater/station units are the same for each node in the system. Different devices are accommodated by means of the access box, of which the host side is tailor made for each type of device. Three types of interface are supported: polled, interrupt driven and d.m.a. (direct memory access)
The access control mechanism used by the Cambridge ring is based on the empty slot principle. When a transmitter wishes to send data to a destination it has to wait for an empty data packet or slot. The transmitter station must thus scan bit 2 of incoming packets to locate an empty one. When it finds an empty packet, the data to be transmitted is transferred into bit positions 20 to 35 . Source and destination addresses are then added, the response bits each set to one and the packet then marked as full (bit 2 is set). The packet then flows around the ring to its destination mode where it may be flagged (bits 36 and 37) as accepted, ignored, busy or rejected, as in the diagram. It then travels on around the ring back to the source station from which it was originally sent. The transmitter can then mark the packet as empty. If the destination was busy, the sending station can attempt to retransmit its data after a suitable time delay.

Both the Cambridge ring and the Ethernet system represent two similar but different approaches to local area networking, their essential differences lying in the topology and access control methods employed; ultimately, these determine the applications for which they can be used. They are similar in that they are both digital baseband systems, but this is also one of their major limitations. As demand for office automation; security and image processing systems increases there is growing interest in local area networks capable of carrying video signals. These cannot be handled by baseband systems and so require the use of broadband technology.

The difference between baseband and broadband technologies is the way in which data is carried between the network nodes. Broadband systems encode data on one of several existing carrier signals dispersed across the bandwidth of the coaxial cable, about 400 MHz . In contrast, data carried in baseband networks uses its own carrier and the cabling used usually has a lower bandwidth, about 50 MHz . Thus a broadband lan can carry many data signals, perhaps hundreds simultaneously, while baseband networks support only one. Furthermore, broadband operation can support both analogue and digital information transfer in parallel bands. Thus, video, voice and conventional digital data can be transmitted over the same circuit
should an application require this.
An example of a broadband local area network is Wangnet, using 350 MHz coaxial cable. Two cables are used: one for transmitting and a second for receiving. Like Ethernet, Wangnet employs a bus topology and carrier sensing with random re-try to resolve signal collisions. Several parallel channels (or bands) are available. In the Wang band - for linking together Wang equipment - speeds of up to $12 \mathrm{Mbit} / \mathrm{s}$ can be used. Within the interconnect band, primarily intended for connecting other manufacturers' devices to Wang processors, transmission speeds ranging from $300 \mathrm{bit} / \mathrm{s}$ up to $64 \mathrm{kbit} / \mathrm{s}$ are available. In addition to these there is a third band which is allocated 42 MHz of the available bandwidth for video channels.

Despite the growing interest in broadband local area networks, it is unlike $\operatorname{cin}^{2} n t$ in the short term they will become as popular as baseband systems - even though they offer significantly greater potential. However, many producers of lan systems are able to cater for both requirements; Ungermann-Bass, for example, offer $\mathrm{Net} / \mathrm{One}$ in compatible baseband and broadband forms.

Physical data links

When a distributed computer network is constructed the locations of the nodes have to be specified and connected together before data transmission takes place. These physical data links may be constructed from a variety of communication media. Three obvious approaches to data link construction are based on metallic conductors, optical fibres or wireless transmission. Simple twisted pair cables as used for digital PABX telephones, can sustain a bandwidth of about 1 MHz . Coaxial cables used in baseband local area networks (for example 50 ohm RG58C/U cable) can achieve bandwidths up to about 50 MHz , while those used for broadband systems (such as 75 ohm RG59/U cable) are capable of extending this limit to about 400 MHz . Although metallic cables have been the most widely used medium for the construction of physical data links, the optical fibre is now becoming popular.
Although there are many advantages to optical fibre cables, for computer data networks, there are some disadvantages. One of these is their limited scope within networks having the case \mathbf{B} multidrop topology. Such networks require the availability of inexpensive T-taps and optical mixers to facilitate low energy-loss fibre interconnection. Unfortunately, currently available devices rarely permit the connectivity of a multidrop network to exceed a value of about ten devices. Because of this, fibres have most often been used for high speed point-to-point applications. Optical fibres are also being employed in local area networks, but their greatest use is in star and ring systems.
Of the wireless types of links that have been used for computer data transmission, microwave examples are probably the most well known, though extensive use has been made of infrared techniques. ${ }^{12}$ One of the
most rapidly developing types of data link for computer communications is on the use of satellites. ${ }^{13}$ An interesting experiment ${ }^{14}$ currently underway in the UK, project Universe, is designed to combine groundbased Cambridge rings located at six different sites with satellite links. Its aim is to produce a high bandwidth data channel for computer interconnection. Each of the sites is to be equipped with a ground station containing a 3 m dish aerial, a 14 GHz radio transmitter and 11 GHz receiver to provide a two-way link to a satellite operated by the European Space Agency positioned in the geostationary orbit, $36,000 \mathrm{~km}$ over Gabon. The local area networks at each site connect together the computing devices and link them to their associated ground station. This arrangement enables every computer at a particular site to communicate with any other computer at that site via the lan; computers at different sites can also communicate with each other via the satellite links.

References

1. Supersystems for the 80 's, IEEE Computer, volume 13, November 1980.
2. Schwartz J. T., Ultracomputers, $A C M$ Trans. on Programming Languages and Systems, vol. 2, October 1980, p.484-421. Schaefer D. H. \& Fischer J. R., Beyond the supercomputer, IEEE Spectrum, vol. 19, no. 3, March 1982, p. 32-37.
3. Enslow P. H., What is a "distributed" processing system? IEEE Computer, vol. 11, January 1978, p.13-21.
4. Higginson P. L. \& Hinchley A. J., Problems of linking several networks with a gateway computer, in Proc. of the European Computing Conference on Communications Networks, p.453-65. (Online Conferences, ISBN 0-903796-05-8, 1975). Walden D. C. \& Rettberg R. O., Gateway design for computer network interconnections, in Proc. of the European Computing Conference on Communications Networks, p.113-28. (Online Conferences, ISBN 0-903796-05-8, 1975).
5. Ball, J. E., Feldman J., Low J. R., Rashid R. \& Rovner P., Rochester's intelligent gateway: system overview, IEEE Trans. on Software Engineering, vol. SE-2, December 1976, p.321-8.
6. Ball A. J. S., Bochman G. V. \& Gecsei J., Videotex networks, IEEE Computer, vol. 13, December 1980, p.8-13. 7. Saal H. J., Local area networks, possibilities for personal computers, Byte, vol. 6, October 1981, p. 92-112.
7. Xerox, Intel and DEC, Ethernet - A Local Area Network, data link layer and physical layer specifications, September 1980.
8. Boad A., Modular Ethernet, Systems

International, vol. 10, March 1982, p.28-30.
10. Hopper A., The Cambridge Ring - A Local Network, in Advanced Techniques for Microprocessor Systems (Ed: Hanna F. K.). Peter Peregrinus ISBN 0-906038-31-1, 1980. p.67-70.
12. Gfeller F. R. and Bapst U, Wireless in house data communication via diffuse infrared radiation, Proc. IEEE, vol. 67, November 1979, p. 1474-86.
13. Edelson B. I., Marston B. and Morgan W. L.; Greater message capacity for satellites, IEEE Spectrum, vol. 19, March 1982, p.5664.
14. Project Universe links computers through satellite, SERC Bulletin, vol. 2, Autumn 1981, p. 20.

723-based regulator goes down to OV

Low-voltage power supplies for experimentation and design are often required to give outputs lower than 2 V . For such applications the 723 regulator in its standard configuration is disqualified despite its versatility and accuracy. The configuration shown provides outputs down to around 0 V and offers improved linearity.

The second amplifier, normally connected as a voltage follower, is used as an inverter. Output and reference voltages fed to the inverting input through $\mathbf{R}_{4}, \mathbf{R}_{5}$ are compared with the reference voltage at the junction of R_{2} and R_{3}. Consequently, the output voltage increases as the voltage at B decreases and reaches its greatest value when the voltage at B is zero.

Alternatively, the output voltage is zero when the voltage at B reaches a predetermined value. Taking the ratio of the actual and total values of R_{1} as K and the maximum output voltage as $\mathrm{V}_{\text {max }}$, networks R_{2}, R_{3} and R_{4}, R_{5} may be calculated. Where

$\mathrm{V}_{\text {ref }}=7.15 \mathrm{~V}$ and $\mathrm{K}=0.95$ as the first 5% of the potentiometer track is usually inaccurate and therefore discounted, $\mathrm{C}=$ $\mathrm{V}_{\text {max }} / V_{\text {ref }}$ and

$$
\mathrm{R}_{3}=\mathrm{R}_{2} /(1+\mathrm{l} / \mathrm{C}+1 / \mathrm{K})
$$

and $R_{5}=R_{4} C / K$.

Component values shown provide 1.8 A up to 25 V . Maximum output current may be altered by changing the value of R_{7} where $\mathrm{I}_{\max }=0.6 / \mathrm{R}_{7}$. Capacitor $\mathrm{C}_{1} \mathrm{im}$ proves the frequency response.
P. Pazov

London

Wow and flutter reduction in video players

Wow and flutter performance of v.t.r. audio channel is usually poor because of the mechanical nature of the replay system. Synchronization of the video head to the video track on tape is achieved with the aid of a 25 Hz control signal recorded on a separate track. The basis of this idea is to synchronize this signal to a stable reference and apply correction to the audio signal from the tape.
Block diagram shows the audio and control-replay heads advanced along the tape path by the same amount of time as the delay lines 1 and 2 to retain lip synchronization. The control signal from tape is passed through delay-line 2 to one input of
a phase detector. The other input is fed from a stable 25 Hz reference. Output of the phase detector is fed to a v.c.o. to drive the delay lines. A phased-locked loop is thus formed from the output of delay line 2 , the reference, and the delay-line drive. As the audio signal is passed through a similar delay line this will also be synchronized to the reference.

Soft synchronization, shown as a broken line, may be needed for long-term correction of the reference speed to that of the speed tape. No circuitry exists, but delay line 1 would be an analogue charge transfer type and, as the control signal is a square wave, delay line 2 would be a shift register. The v.c.o. and phase detector would be a p.1.I. i.c
W. K. Todd

Colchester

Accurate 555 control

Theoretically, this circuit works over a $10^{6}: 1$ frequency range using normal CR values and gives linear frequency control over a range of $2: 1$. Temperature changes within the device operating range have little effect on the output.

The secret lies in setting the fixed-resistor ratios, for which $R_{C}=n R_{A}, R_{B} \ll R_{A}$ and $\mathbf{R}_{V} \ll R_{C}$. Resistor R_{P} is low enough to drive two t.t.l. loads, while

$$
\mathrm{f}_{\max }=\frac{1.46}{\operatorname{CR}_{A}\left(\frac{\mathrm{n}}{\mathrm{n}+1}\right)}
$$

with frequency in Hz , resistance in $\mathrm{M} \Omega$ and capacitance in $\mu \mathrm{F}$.
J. A. Fryer

Bristol

CIRCUTT IDEAS

Hall-effect keyboard with serial output

Mechanical keyboard switches do not stand up to prolonged use without giving some problems. As contacts become dirty and oxidized, switch bounce increases but this can be avoided by using sealed goldplated switches or reed switches or, for little more expense, Hall-effect keys with integral i.cs. Each key has four connections, ground, power and two open-collector outputs. When keys are operated the outputs pull low either intermittently or for the duration of the key depression depending on whether pulse or level Halleffect i.cs are used.

The circuit scans 14 lines all of which are normally held high by pull-up resistors. When a key is pressed two of these lines are pulled low. The four-bit binary address of each is latched in the two 74LS75 i.cs. The upper line of the pair, as shown in the diagram, is latched in latch A, the lower one in latch B. The rom code depends on the coding of the keyboard switches and for this reason is not given.
Three extra address lines on the rom can be connected to level rather than pulse keys and used as modifier inputs with a suitable rom program, eg; shift, control or function.
A serial interface is included. Extra expense is justified by the reduced number of
connecting wires and increased flexibility The RC oscillator is set to 16 times the required data rate; the minimum rate is governed by the hall-effect i.c. pulse-width as the encoder circuit is driven by the same clock. The maximum bit period of the serial interface must be less than the pulse width to ensure correct key detection. As the pulse width is usually 1 ms or more, any rate over 1200 baud can probably be used.
Time delay introduced by R_{1} and C_{1} must be longer than the Hall-effect i.c. pulse width to ensure that each key depression gives only one encoded output.
P. N. C. Hill

Chichester

Automotive thermostat control

This otherwise familiar circuit uses a coil of copper wire as a temperature-sensing element to electronically control an electrical cooling fan and thus improve engine efficiency.

In my case, water constantly circulates through the hot-water supply to the car heater so this was the best place to fit the sensor, which is made from 92 metres of 32 s.w.g. enameled copper wire securely wound round the 25 mm copper water pipe in three layers. On the prototype, the coil was 66 mm long and gave a resistance of about 68 ohms at $25^{\circ} \mathrm{C}$. Power for the circuit may be taken from the generator/ battery supply as the sensing circuit is a bridge.

Under cold conditions the bridge is unbalanced and the voltage drop across R_{1} is less than that across R_{2} so the i.c. input is positive and the output thus off.
As water temperature increases, the re-

sistance of R_{1} increases at the rate of $0.4 \% /{ }^{\circ} \mathrm{C}$. When the voltage across R_{1} is greater than that across R_{2}, the i.c. output changes state, energizes the relay, and turns the fan on. Resistor R_{5} sets the temperature at which the fan turns on and R_{6} reduces hystresis.

Negative feedback through C_{1} and decoupling capacitors C_{2} and C_{3} help to reduce the effects of interference. Resistor R_{1} and the zener diode provide transient protection.
D. A. Fownes

Wolverhampton

Smoke detector

Resistance changes due to smoke in ionized air are detected by a mosfet in this sensitive circuit. Two radium-226 tablets are used to ionize air gaps; one gap is a detector and the other a reference. Ionized air has a lower resistance than non-ionized air so an n-channel mosfet may be used to detect resistance changes.
When smoke enters the detector gap, the air resistance increase raises the mosfet gate, and hence source, voltage until the comparator turns on and is held on by the clamping diode D . In this case a relay is used to drive an alarm and a potentiometer is used to set the switching level.
M. R. Mirabedini

Tehran
Iran

Memory-write protection for the $\mathbf{Z 8 0}$

Many of the new generation of 16 -bit microprocessors incorporate some form of memory protection for systems software. This crucial software is often placed in ram to make the system more versatile. In the event of a program failing to operate correctly due to a software bug the processor will be interrupted if it tries to overwrite the system memory area. With older processors such as the $\mathbf{Z 8 0}$, no such protection exists. A total system crash will probably occur, unless of course this useful circuit has been incorporated.

If the Z 80 tries to write into a protected block of memory, a non-maskable interrupt will be generated, causing the Z80

to jump to the interrupt service routine at 0066 (hex). The routine can then return control to the system monitor to allow one to investigate the cause of the error. 0066 should be in the protected area of ram, or in eprom, otherwise the service routine could be corrupted.
A. C. Dickens

Cambridge

4k Block protected	Connect Z80 NMI to	Connect E to	Connect E_{1}
$0000-0 F F F$	Y_{0}	$+5 V$	A_{15}
$1000-$ 1FFF	Y_{1}	$+5 V$	A_{15}
$2000-2 F F F$	Y_{2}	$+5 V$	A_{15}
$3000-3 F F F$	Y_{3}	$+5 V$	A_{15}
$4000-4 F F F$	Y_{4}	$+5 V$	A_{15}
$5000-5 F F F$	Y_{5}	$+5 V$	A_{15}
$6000-6 F F F$	Y_{5}	$+5 V$	A_{15}
$7000-7 F F F$	Y_{7}	$+5 V$	A_{15}
$8000-8 F F F$	Y_{0}	A_{15}	$0 V$
$9000-9 F F F$	Y_{1}	A_{15}	$0 V$
A000-AFFF	Y_{2}	A_{15}	$0 V$
B000-BFFF	Y_{3}	A_{15}	$0 V$
$C 000-$ CFFF	Y_{4}	A_{15}	$0 V$
$D 000-$ OFFF	Y_{5}	A_{15}	$0 V$
E000-EFFF	Y_{6}	A_{15}	$0 V$
F000-FFFF	Y_{7}	A_{15}	$0 V$

DISC-DRIVE CONTROLLERS

Data buffering and enhancements are main topics of the second of two articles in which John Watkinson describes disc-drive controllers and how their two main elements -data-handling and drive coordination sections - are controlled by sequencing logic.

Error-checking circuits insert check words at the end of data words written onto the disc. Following this a 'postamble' of zeros is written to protect the data block on the disc from transients caused by the write current turning off.

The data-circuit clock is derived from incoming data during reading but when writing the data clock may be crystal controlled, in which case the disc's rotational speed will be critical. This problem is reduced in a servo-surface disc drive where the data clock may be phase-locked to the servo track.

Data buffering. Words read from a disc appear at regular intervals and must be transferred to the memory as they are read since the disc cannot stop. Similarly, during writing, the drive needs to be supplied with data words exactly when it demands, or the disc format will be incorrect. Should either of these processes fail, a 'data-late' error will occur.

In a realistic computer system, the demands on memory come from many sources. The c.p.u. requires instructions, and there may be many different d.m.a. devices, such as tape drives and communications units, between which the system must arbitrate. In these circumstances it is impossible to guarantee immediate access to the memory by the disc subsystem so error-free operation is ensured by using a data-buffering silo made up of first-in-first-out arrays. Figure 10(a) shows the silo configuration during a disc read and Fig. 10(b) that during a disc write. Multiplexers are used to reconfigure the silo.
The system takes advantage of the time required by the drive to read preambles and headers. Figure 11(a) shows the silo contents during a read, which starts with the silo empty and Fig. 11(b) shows the silo contents during a write, which must start with the silo full. The sequencer fetches data from the memory before allowing the drive to start writing.
As the silo contains a variable amount of data, it is necessary to have two wordcount registers, one which counts d.m.a. transfers with the memory and one which counts words transferred to or from the drive. This is of no consequence to the programmer, as both registers are loaded simultaneously by hardware and only the memory word count can be read by the system. When the memory word count overflows no further memory access is necessary, and when the drive word count overflows the drive function is about to terminate. Referring to Fig. 11, these two events take place at different relative times, dependent on the function.

With modern high-density disc drives, the data rate can be so high that even with a silo the host c.p.u. cannot cope. In this

by J. R. Watkinson, M.Sc.

case, sectors on the disc can be interleaved so that every other block is used in a contiguously addressed transfer, and two revolutions are necessary to transfer one track. Figure 12 shows an interleaved track and the associated silo action. Disc interleaving should not be confused with memory interleaving, which is designed to make memory faster; if a disc drive is to be run with non-interleaved sectors, the memory may have to be interleaved.

A typical four-bit f.i.f.o. is shown in Fig. 13. In every cell, together with data, is a validity bit which when set indicates that the cell contains data. Each cell also has logic which monitors the state of its own valid bit and the one of the cell above. Data is presented to the input and clocked, to load the first cell and set the first valid bit. Logic associated with the second cell senses that its own valid bit is clear, but that the one in the cell above is set. Under these conditions only, the second cell latches the data from the first, sets its own valid bit and clears that of the first cell. The third cell now senses the same conditions and so on until the data has arrived at the last cell. The valid bit of the last cell acts as a data-ready signal and the valid bit of the first cell acts as an input-ready signal (data valid = input not ready).

Fig. 9. Position confirmation is carried out according to above flow-chart. The decoder of Fig. 8 determines when the output of the serializer, Fig. 7, contains the appropriate words from the header which are then compared with the contents of the disc address registers in the subsystem. Only if correct header is found and read will data transfer take place.

Fig. 11. During reading, the d.m.a. logic keeps the silo as empty as possible whereas during writing the silo is initially filled and kept as full as possible until the memory word-count overflows.

Fig. 10. To guarantee that the drive can transfer data in real time at regular intervals (determined by disc speed and density) the silo provides buffering to the asynchronous operation of the direct memory access process. At (a) the silo is configured for reading from a disc and at (b) for writing on a disc.

If a second word is clocked into the input, it will ripple down as far as the penultimate cell, because the last cell already has valid data. As soon as the first word is clocked out, the second will move down to the output. The time taken for data to ripple through the silo is appreciable, and depends on the number of cells which is typically 64 or 128 . This time is not important if the rate at which data can be loaded or read is higher than the data rate of the drive.
Silo chips are connected in parallel to make a data buffer of the appropriate word length. As no two silo chips will ripple down at the same speed, it is necessary to AND together all of the input and output-ready signals. Figure 14 shows an 18 -bit silo with two parity bits constructed from four-bit f.i.f.o. devices.

Figure 15 is a block diagram of a typical disc controller which can be split into two areas - one consisting of d.m.a. logic and the other drive-control circuits designed around the structure and format of the disc drive. Where a manufacturer offers a range of disc drives and c.p.us., the cost of developing for each drive-type a controller for each type of c.p.u. would be prohibitive. The solution is to separate the controller circuits into drive-dependent and host-dependent circuitry with a standard interface between them. The dividing line is shown dotted in Fig. 15.

Each family of c.p.u. has a d.m.a. and silo unit close to the memory bus, and each type of drive has a local set of control logic. As shown in Fig. 16, there is a standard mass storage bus linking the components. Some of the subsystem control registers will now be in the drives, and a section of the mass storage bus is required to select and communicate with them, in addition to that required for data transfer. With such a system it becomes relatively easy to add an arbitration unit between two or more standard buses and a drive, resulting in a dual- or multi-port drive. Arbitration is such that while a drive is performing a function for one port, the other is locked out. When the port using the drive has finished, a port-release function is issued, which allows the drive to enter a neutral state where it will then lock to the port issuing the next function. An overriding hardware switch will release the port automatically a few seconds after the last function in order to prevent the drive locking indefinitely to a failed system. Most multiport drives have an operator control which allows the arbitration to be overridden so that the drive permanently locks to the selected port. This would be used for example where two non-related computers share a dual-port drive solely as backup for their own drives in case of a failure.
Enhancements. A basic disc controller can be enhanced in a number of ways where performance is more important than the extra complication and cost.

Fig. 13. The action of a four-bit first-in-firstout device with relevant input/output signals. Each cell carries four data bits and one data-valid bit.

Fig. 12. Layour of an interleaved data track which artificially slows down high-density disc drives by requiring two revolutions for each data track to be written or read. The silo is used to spread the time available to the main processor to transfer data for each block.

Fig. 14. An 18 -bit silo with two parity bits constructed from five 4 -bit f.i.f.o. devices. Strobe-in and strobe-out lines are connected in parallel but owing to a synchronous nature of fi.f.o. devices, input and output ready signals have to be subjected to an AND function to ensure that all bits in the word can be loaded or read together.

Scatter-gather data transfer. Swapping techniques are used in a time-sharing system whereby programs in use are temporarily put on disc to make room in immediate memory for programs being executed. In a real system, the incoming program will not necessarily be the same size as the outgoing one, and the memory management unit may have to map the program to non-contiguous memory pages.

A conventional disc controller with its automatically-incrementing memoryaddress register can only address contiguous memory with one function, so a separate transaction is required for every area of physical memory, Fig. 17(a). The solution is to provide the disc controller with a memory-management unit, so that the automatically incrementing register generates a virtual address which is contiguous and relocated to non-contiguous physical addresses if necessary.

If memory pages of the main c.p.u. memory-management system are the same size as blocks on the disc, the same set of relocation constants can be loaded into the disc controller, to swap in or out a program, and into the c.p.u. to execute it. The process whereby the disc controller takes non-contiguous memory data and makes it contiguous on disc is known as scatter-gathering. Fragmentation of physical memory by time sharing different sized programs ceases to be a problem, as both disc and c.p.u. have contiguous virtual memory for each program, regardless of the physical code distribution, Fig. 17(b).
'Intelligent' controllers. The disc controller described so far has required the physical disc address of stored data to be specified, whereas programmers request data in the form of named files. The conversion process relies on an area of the disc known as the directory, which is a cross reference table between file names and physical addresses, as well as a protection system that only lets authorised users access files. A part of the disc-operating system known as the device driber uses the directory to provide requested files. In the case of frequently used information, the memory may contain a copy of the directory to reduce access time. The device driver has to know the physical structure of each drive type, i.e. the number of cylinders, tracks and sectors, and must satisfy the protocol required by the drive when issuing functions.
In large systems it may be more effective to relieve the main c.p.u. of extra processing needed for file handling. The disc controller now becomes a computer in its own right, dedicated to the transfer of disc files, and the main c.p.u. asks for files by name only. The next and final topic in the disc series is data integrity.

4 Fig. 15. Block diagram reviewing disccontrol logic. Logic can be split into two sections, one d.m.a. logic and data silo designed to suit the memory bus of the main processor, and the other drivecontrol circuits designed around the structure and format of the drive concerned.

Fig. 16. This configuration, whereby processor-specific logic is implemented once only for several drives, is achieved by separating diagram of Fig. 15 along the dotted line. This makes for a more cost effective system. Only one drive can transfer data at a time but this is adequate for many microcomputer configurations. Where the main processor can tolerate high data rates two buses may be used in conjunction with dual-port drives.

Fig. 17. In (a), where a particular program becomes non-contiguous in memory a separate disc transfer is required for each contiguous section. In (b), the addition of a relocation unit to the disc subsystem allows a single disc transfer to be mapped to non-contiguous memory.

INTRODUCTION TO VDUs

In the second part of his primer, the author discusses methods of gaining access to the video ram while maintaining a flicker-free display, and describes some of the integrated-circuit video-display controllers available.

In the simple video system described last month, there is bound to be conflict over what has access to the video ram. If the user's system can gain access at any time then, during that time, the video circuitry is unable to do so. The result of this is a noticeable flash on the character generator. The problem becomes severe when the user writes several lines of text or a whole screen in one go. In all but the lowest-cost systems, this form of free access is unacceptable and there are several ways round it.

Access during blanking. The easiest method to use is to give the video circuitry access to the video ram all the time it needs it, and restrict user access to the horizontal and vertical blanking periods. With this technique, the user has access for less than 25 per cent of the time. The actual implementation can be done by the video hardware or the user's software: with the latter, the display-enable line can be taken to a pin of an input port on the user's system. When the system wishes to access the video ram, it has to poll this input line until it is in a blanking state, when the ram can be addressed.
This has the advantage that, when a big output to the screen is required and the flash can be tolerated, it can be done without hardware alteration. To implement in hardware is more difficult: one method is to force the user's system-ready line inactive on attempted video-ram access, until blanking starts. Careful design is needed to avoid synchronization problems.

Shared access. It is possible to arrange the hardware so that the user can access the video ram at all times (Fig. 4) by sharing the time taken for each character clock between the video and the user. If the character clock has a period of 600 ns , 300 ns can be allowed for each of the two users. The negative edge of the character clock is used by the control circuitry to increment the video ram address, which is ready before the next positive edge of the clock. At that point, the multiplexer switches so that this memory address is fed to the address pins of the video ram. This switching takes a maximum of 27 nanoseconds for a 74LS157 device. If the video ram has a maximum access time of 150 ns , then the data will be ready at the output of the video ram 124ns before the next negative clock edge. When the latter occurs, this data is clocked into the video latch, where it remains until the next negative edge - i.e. for a full 600 ns . During the first half of this period, the user has access to the video ram, having 283ns to write data in, or clock data out into a user latch.

by Colin Carson

Shared access needs faster rams and, because the characters out of the character generator are delayed by $11 / 2$ character clocks, the cursor and display-enable signals have to be equally delayed. Shared access must be used for video systems where flash on screen and delays in processing cannot be tolerated.

Control circuitry

Until recently, the control circuitry was normally built up from t.t.l. counters and gates, the screen format being fixed. With the advent of l.s.i., the c.r.t. controller came onto the market to replace the majority of the control logic. The first chips, such as the Thomson 96364, still had a fixed format, but the newer chips are fully programmable. Three different controllers will be considered here.

Thomson 96364. This chip has a fixed format of 16 lines of 64 characters, and runs at standard UK scan rates. Ten memory address lines are available to drive the 1024 bytes of video ram required to make up the chosen screen format, and three row address lines to drive a 5×7 matrix character generator, with one free scan line between each row of characters. Horizontal and vertical syncs are mixed internally and would have to be split for direct-drive monitors. Although there is an on-board oscillator driven by a crystal, character clock has to be provided and
turned off whenever the INI pin requests. Normally the 96364 will scroll text at the bottom of the page, although by doubling the video ram, a two-display page system can be employed. The cursor flashes at 2 Hz and can be moved in all four directions by issuing a code onto the cursor control lines. By strobing data into these pins, the 96364 can erase a page or line, as well as moving the cursor. Available for under ten pounds, the Thomson chip is now a little dated.

Intel 8275. this is a buffered video controller, its video ram being part of the user's system memory. There are two buffers inside the controller, each eighty bytes long. When the c.r.t. controller starts to generate a picture, it sends an interrupt to the user's processor which instructs the latter to fill up one of the buffers with the bytes from video ram which correspond to the first row of text. If there are 64 characters per row, then 64 bytes have to be written into the buffer. The c.r.t. controller proceeds to reissue each byte at character clock rate, for each of the scan lines making up the row of characters. Before the last scan line is reached a further interrupt ensures that the second buffer is filled with the bytes for the next row. Hence, each character row on the screen uses alternate buffers. Apart from buffer refills, the video ram and hence the user's bus is free - it is up to the user to ensure that the buffers are filled in as short a time as possible. The video interrupts have a

Fig. 4. shared access to video by time multiplexing.

Valid video ram address

high priority: the 8275 is programmed to know how many bytes it is expecting from each refill and, if this number is not achieved, the screen goes blank. The 8275 does have five programmable registers, but the waveforms it generates are not as flexible as those produced by a 6845 .

Because it is up to the processor to fill the buffers, the processor can decide where to get the bytes from. Normally the software will keep a table of pointers, with the first pointer being the start address of the block of video ram making up the first line on the screen, the second pointer for the second line and so on. Changing the pointers is one easy way of scrolling, and setting all the pointers to be the same would generate a picture with every line on the screen the same.

Character and screen attributes. An 'attribute' is an enhancement, such as underline, which can be added to characters or the whole screen. Typical attributes are reverse video (where all that is black becomes white and vice versa), underline, varying intensities or colour, flash and combinations of these. The 8275 can implement most of these attributes automatically by recognizing special codes in the video ram. They are often called field attributes because all the characters following the attribute have that enhancement until a new field attribute is encountered. Suppose part of a text displayed was "A CAT" where cat was to flash, but all succeeding text is normal - the bytes corresponding to this might be:

41H 20H	F4H	43H 41H54H	
A SPACE	FLASH	C A \quad T	F8H
	NORMAL		

When the c.r.t. controller recognizes an attribute, in this case by bit seven being set, it puts them into separate buffers. The software must ensure that the main buffers
get their full quota or suffer screen blanking.
Motorola 6845. Unlike the Thomson chip, this c.r.t. controller can be programmed to run at scan rates other than that of standard television. Like most modern peripheral chips, its programmability is via internal registers, rather than pins on the chip, and is compatible with the 6800 processor bus. The simplest version of the 6845 has nineteen internal registers, mainly write-only, one of which is an address register. To access register five, say, 5 is written onto the address registers. Until that is changed, all further communication is with register five. On powerup, it is up to the user's system to initialize all the registers and, for this reason, programmable c.r.t. controllers can be clumsy to use in a system which does not use a microprocessor. Such a situation would need additional hardware, such as a small prom and counter which, on reset, loads bytes into the controller's registers, and would severely limit flexibility to what is in the initialization prom. The 6845 is extremely versatile - in the horizontal scan, the frequency, sync. width, number of characters and the time from end of sync. to start of video are all programmable. So are the number of rows, vertical sync. rate, time from the end of sync. to video and the number of scan lines per row. Two of the registers define the position of the cursor on the screen, and there is programmable height and flash rate. There is also a light pen input to the chip which, when activated, copies the contents of the memory address lines into two readonly registers.

Scrolling. The 6845 has twelve video-ram address lines and so can access 4 K of memory, enough for two large pages of text. Bearing this in mind, scrolling can be implemented in two ways. Firstly the user's processor, on detecting that the screen is full, can copy each byte on the
screen into a new video ram position equivalent to the text scrolling up one line. This, however, places a heavy burden on the processor and should really be avoided.

The second technique is to tell the c.r.t. controller to start taking bytes from a different block of video ram rather than the block right at the beginning. Imagine that blocks of 80 characters were positioned in video ram, with the first byte of each row having the addresses $000 \mathrm{H}, 050 \mathrm{H}, 0 \mathrm{~A} 0 \mathrm{H}$, etc. Before a scroll occurred, the c.r.t. controller would start taking bytes from address 000 H at the top of each page. After one scroll that first address would become 050 H , and so on. The 6845 can handle this, having two registers defining the address of the first byte. This considerably reduces processor overheads: to implement a scroll, four bytes (two address, two data) are issued to the c.r.t. controller. The video ram is considered as a sphere with the screen being a window on the surface of the sphere, movable in the north/south direction. Occasionally the microprocessor will have to clear areas of video ram, when a new clean line is needed for a scroll. The 6845 cannot be used when each line on the screen can be a number of contiguous bytes in the video ram. To cope with this, a different type of c.r.t. controller is needed, such as the Intel 8275.

Several manufacturers make the 6845 and updated versions which offer more facilities, and recently the price has dropped below $£ 15$ for one. It should be remembered that it is not easy to use the 6845 without a processor controlling it, and calculating the bytes with which it is to be loaded is not straight-forward. However, I consider the 6845 the most programmable and useful of all the c.r.t. controllers I have considered.
Although there are now a handful of c.r.t. controllers on the market, for a oneoff design of a fixed format screen, discrete logic is still cheaper.

Continued from page 33

require the obscurely transverse waves of "electric force" of electromagnetic theory to account for the observed behaviour of a radio dipole or television \mathbf{H}-aerial, but it explains the transverse induced current that is, the transverse motion of photoelectrons - in a simple and natural way. The reception of radio energy, like the detection of all light, is seen to depend on the mechanical photoelectric mechanism; in accord with experiment there is no indication anywhere that light in transit in vacuo is influenced by electric or magnetic fields or that photons are electromagnetic. Finally, when the mechanism is applied to the Rutherford/Bohr/Sommerfeld model of the hydrogen atom it provides, for the first time, a mechanically-plausible description of what happens when an atom absorbs or radiates a light quantum.

As early products of the proposed pho-ton-waves concept these examples may be thought to represent substantial successes.. But one can't make scientific omelettes without breaking scientific eggs and we are now going to shatter an egg that has been
around for a very long time. That same logic of particle mechanics and observance of the conservation laws which once explained the Compton effect, and which has now described the photoelectric mechanism of the detection of light and radio energy, leads equally surely to the inverse statement: a photon cannot be radiated by an isolated electron, but only by a "Planckian oscillator". This is likely to lead to a firstrate argument, because according to the electromagnetic theory an isolated "point charge" (ie, an electron) must radiate electromagnetic energy when it is accelerated, while according to the tale I have been telling you it does not and cannot.
This very long-standing prediction of the electromagnetic theory has never been tested in the laboratory, although the means for testing it have been available for half a century. The radiation due to electrons being accelerated in an ordinary electron gun (as in a television picture tube) should be detectable with a sensitive radio receiver - in fact it might be expected to interfere with radio reception -
but no such interference has ever been reported. (To forestall a probable objection, let me say that neither the so-called synchrotron radiation nor man-made x radiation seems to be due to the acceleration of isolated electrons.)

An experiment on these lines could be performed quite easily, and it might be thought very important. It would provide an opportunity to test the mechanical quantum concept against electromagnetic theory on an issue unclouded by the mystical arguments of wave/particle duality. If it should turn out that an electron circulating mechanically around an atomic nucleus has no tendency to lose energy and "run down" - as electromagnetic theory has predicted that it must run down - then one of the founding premises of modern quantum theory would turn out to have been a. false lead.

It is time we took a look at quantization, which by itself is easy to understand, and at some of the very odd ideas that grew out of it when Alice re-visited Wonderland, during the years 1925 to 1930 .

ROBOTICS

I've just returned from one of those IERE lectures, this time on Robotics. Of course, real-life robots (if you will pardon the expression) are far removed from the science fiction, super intelligent, "Metal Mickey" facsimile of a human being. It also became evident that they are totally ignorant of those laws of robotics about not hurting human beings, etc.

The industrial robot is, in fact, usually more nearly comparable with a single human arm and possibly hand, operating under microcomputer control. It is, therefore, a fairly versatile system, capable of handling a variety of tools, ranging, for example, from a paint spray gun to a welding torch (with obvious distinction between light and heavy-duty types). Incidentally, it seems that the Japanese define the robot differently from the Europeans, including any computer-controlled or n.c. machine; perhaps that is how they claim to have more robots.
The lecture included several films of robots in the automotive industry. They were shown doing paint spraying and spot welding jobs, as well as carrying out more skilled functions such as precision cutting of glass-fibre panels, the fettling and shaping of castings and precision drilling of sheet metal pressings.
In each of these last three modes of operation the robot is programmed to perform its routine alternatively on work pieces in two separate work stations. The unused station is unloaded and reloaded by hand while the robot exercises its skill on the work piece in the other station.
During the course of the lecture and subsequent questions it became apparent that the major cost in setting-up the robot is that of getting the computer software just right. This can take a very long time, mainly in the correction of inertia errors when the system is run up to full speed. It seems that, in the later stages of proving the system, it is necessary to drive the robot at full speed with engineers/programmers in close attendance - inside the safety barriers.
In the event of a timing error in the digital feedback circuit or some similar malfunction, the robot arm may be waving a highly dangerous tool about at some speed and with superhuman strength. And remember, when you're inside a safety barrier it becomes an obstruction that makes escape more difficult. One may conclude, therefore, that essential qualifications for a robot programmer include considerable physical, as well as mental, agility and more than a fair share of courage.
As electro-mechanical devices, the robots are quite remarkable, simulating the
action of a human arm and hand to a fascinating degree. But, compared with an actual human (or even a chimp) they show a marked lack of dexterity and versatility; moreover the human can be reprogrammed in a few minutes by simply persuading him or her to co something else. Is it not, therefore, something of an anomaly that the only human operators we saw in the films were doing the labouring jobs, such as loading and unloading work stations, while the skilled jobs were being done by the robots?

And here comes the punchline. Although we have machines that can perform almost any of the precision operations required in engineering production, designing a robot capable of grabbing a casting from a random barrow load, turning it round the right way and shoving it into the fettling jig is just a bit too difficult for the present state of the art.
From our lecture it would appear that personnel for the robotic production unit are the brave, athletic programmers and the labouring jig loaders. But, surely, the programmer's job finishes when the labourer's job starts. Are they the same chaps?

THE CASHLESS SOCIETY

We used to call them credit cards, but now they've been fitted with magnetic stripes it seems that there is no limit to what can be done with a plastic card and a computer.
We've become accustomed to the facility for drawing cash from the bank with a card-operated dispenser and the use of the magnetic stripe in point of sale operations; so nobody is surprised to see those frustrating card-operated pay 'phones at railway stations and airports - easily distinguished as the only ones available for use without queuing. We can obviously expect all sorts of card-operated vending machines and other automatic trading systems in the near future.
Until recent developments, however, possible electronic forgery has been a major problem, for the re-programming of two inches of tape track is child's play to those young computer wizards knocking about everywhere. Foreign systems have been announced with laser-readable data stores or embedded semiconductor memories based on ccd, eprom, ram, ewe, dog, cat or whatever initials take your fancy. But the highly secure card actually in your pocket is more likely to employ a special magnetic stripe based on a British system for permanently encoding an identity number in the mag. tape during its manufacture.

And it is these cards that are going to bring us the cashless society. I know that's so because Eddie Spinks explained it to me as he drove through a world famous tunnel now equipped with the very latest compu-ter-controlled gate system.
"It's called a stored-value card," he said, taking the familiar-sized plastic rectangle from his waistcoat pocket and handing it to me.
"When you buy it, they stick it in an encoder," he went on, "and they load it up to the value you pay for. That one was twenty quid.
"At the toll gate you shove it in a slot at the front of the card reader, and the machine grabs it and checks both the permanent identity code and the stored value. If they are OK it deducts the toll charge from your card, indicates the new stored value on the led readout, gives you your card back and opens the gate."
I was going to ask what happens if the card runs out of money, when we rounded a bend and I realized that we were rapidly approaching the toll gates. Now for a demonstration.
My companion selected the 'automatic' bay with the shortest queue, and we approached the toll gate at an intermittent crawl as each car stopped to pay the toll. The driver in front of us overshot the card terminal and had to reverse. He then positioned his car more than an arm's length from the slot, so that he had to open the door, release his seat belt and lean far out to reach it. He inserted his card, which was returned to him in a second or so, and the toll gate opened. He thankfully drove off.

I could imagine myself in the same predicament. But not Eddie Spinks; he had already opened his window and was exactly on course. As we rolled slowly forward I proffered his card, with the conviction that he would stop in precisely the right position. He ignored the card, and the car did not actually come to standstill at all. With one smooth movement he tossed a handful of coins forward into the huge cash hopper beside the card terminal and the toll gate lifted just before the car bonnet reached it.
"As long as you throw in the correct toll charge the computer sorts it out," he told me as we accelerated away, "but it doesn't give change."

I felt cheated

"But, what about this card?" I asked, handing it back to him more positively. He took it and returned it to his pocket.
"Sorry," he said. "Cash is quicker. I bought the card because I do occasionally get caught without change - and anyway it might help me develop the patience that we'll all need if that cashless society really happens."

ELECTRICAL CONNECTORS FOR FIBRE-OPTIC LINKS

 These connectors splice dual fibreoptic cables with transducers embodied within them and mate with nine-pole sub-miniarure D type connectors providing an optical link with electrical input/output. Depending on the version of connector used, the two plastic fibre-optic cables may transmit, receive or operate as a duplex line. According to the manufacturers, the connectors split, cut, finish and align the cable in a process taking about 30 s for an untrained person. A key supplied with the connector then locks the reusable assemblies. A version of the connector without transmitters or receivers is also available. Thomas and Betts Ltd, Sedgwick Road, Luton, Bedfordshire LU4 9DT.WW301

TELEPHONE-TOVIEWDATA IC

Further integration of Mullard's viewdata system is provided by an i.c. for converting analogue telephone-line signals for use with their Lucy microprocessor peripheral i.c. Including an eighthorder receive band-pass filter, carrier-detection high-pass filter, fourth-order post-detection filter and transmit low-pass filter, this nmos device replaces six i.cs, 52 passive components and three transistors claims the manufacturer. As a result a viewdata decoder conforming to UK Prestel and CCITT V23 standards can be made using two i.cs - Lucy and this device dubbed Lucinda. Mullard Ltd, Mullard House, Torrington Place, London WClE 7HD.
WW302

MINIATURE ICS

Eleven popular dual and quad opamps and comparators and the 555 timer i.c. are manufactured in miniature packages by Raytheon These devices may be used for hybrid circuits with the advantage that they are fully tested, as opposed to unencapsulated chips which are only partially tested in wafer form. They have preformed leads and lend themselves to flowsoldering techniques. Seven dual op-amps, two quad op-amps, two dual comparators and the timer mentioned above are currently available. Raytheon Semiconductor UK, Howard Chase, Pipps Hill Industrial Area, Basildon, Essex SS14 3DD.
WW306

TEST EQUIPMENT

Mobile transceiver, videotext and video test equipment has recently been added to the range offered by Rohde and Schwarz. First are the SMFP2 and SMFS2 mobile transceiver testers for performance checking, adjustment and repair of a.m., f.m. and p.m. sets. Fourteen measurements may be made on transceivers from 0.4 MHz to 1 GHz either manually, on the SMFS2, or under computer control through the IEC bus on the SMFP2,
Videotext signal parameters such as eye height, half-eye height and amplitude - measurements required for the quality assessment of videotext signals - may be measured on the DZF tv-data distortion meter. Finally, two video-signal generators with v.i.t.s. inserters have been introduced to test studio tape recorders, domestic video recorders and tv sets. The first is the SPF2 model 8 for manual use and the second the SPF2 model 9 for automatic measurements. Rohde and Schwarz UK, Roebuck Road, Chessington, Surrey KT9 1LP
WW303 304305

HAND-HELD THERMOMETER WITH NEEDLE THERMOCOUPLE
 Readings between - 50 and

 $+500^{\circ} \mathrm{C}$ are given on a small temperature meter from Thermocouple Instruments which costs around $£ 50$ (excluding vat) complete with a needle-type probe. Model 505 gives readings to within1% on a $31 / 2$-digit l.c.d. for about 600 hours between changes of the PP3-type battery used. Optional thermocouples include ones for measuring air temperature and flexible types for surface temperature measurement. Also included in the price is a "strong, purpose-designed cardboard storage case". Thermocouple Instruments Lid, Pentwyn, Cardiff CF2 7XJ.
WW307

TORQUE METER

Telemetry techniques are used in Torqtel, transmitting data from strain gauges clamped on the shaft to an adjacent antenna. Designed by Loughborough consultants, the set consists of clamp-on torque sensors, transmitter and battery packs and a telescopic receiving antenna and receiver with analogue meter. Outputs for tape and chart recorders are provided. RDP Electronics Ltd, Grove Street, Heath Town, Wolverhampton WV10 0PY
WW308

FUNCTION GENERATOR

Arbitrary-form, sine, square and triangle waves from 1 mHz to 20 MHz can be generated on the Hewlett Packard HP3314A. Inputs are provided for amplitude and frequency/v.c.o. modulation and the output may be phase-locked to a reference. The signal may be continuous or gated and bursts of up to 2000 waveforms in integer steps made. Microprocessor control provides automatic calibration, self test, and coordination of either manual or HP-IB control
Arbitrary waveforms, set manually using one knob and a external oscilloscope, are compiled using up to 150 vectors which can be individually modified. HewlettPackard Ltd, Nine Mile Ride, Easthampstead, Wokingham, Berkshire RGll 3LL
WW309

INTERFERENCE

FILTERS

Mains born interference suppression is provided by a series of IEC sockets with filters intended to protect electronic equipment. Versions of the FN326 filters are available for $1,3,6$ or 10A loads and with solder tags, flying leads or blade tags. Lyons Instruments, Ware Road, Hoddesdon, Herts EN119DX.
WW310

SAMPLE-ANDHOLD IC

Acquisition time for this 12 -bit accuracy sample-and-hold i.c. is 1μ s for a 10 V signal. The 14 -pin HA5320, from Harris
Semiconductor, includes a hold capacitor and costs $£ 7.51$ in quantities of 100 or more for commercial applications. Harris Semiconductor, 153 Farnham Road, Slough, Berkshire SLl 4XD.
WW311

ELECTRONIC FILTERS

Two modules in the Barr and Stroud EF5 range can be combined in one frame to act as independent high or low-pass filters or as one band-pass or band-stop filter. Current modules, on which high/low-pass filtering is switch
selectable, cover digitally-selected frequencies from 0.01 Hz to 99.9 kHz with either Butterworth 48 dB /octave or elliptic 80 dB /octave responses. An adapter for controlling all functions through the IEEE-488 bus is available. Bart and Stroud Ltd, 4 Saville Row, London WIX IAF.
WW312

LOGIC SWITCHES

Enclosed rotary switches with contacts representing binary and binary complement words are available from NSF with a variety of terminations including solder connections, pins for p.c.b. mounting, pins for wire wrapping

and a standard Scotch-flex connector. Model CBS switches, with 3VA resistive-load ratings, can be obtained in 12, 16, 24 or 32 position form and stops may be adjustable or as specified by the customer. NSF Ltd, Keighley, Yorkshire BD21 5EF
WW313

Single-pole 10-way dil switches are available from ERG Components. These are break-before-make switches with contact ratings of

7.5VA, which may flow soldered and cleaned with solvents. ERG Components, Luton Road
Dunstable, Bedfordshire LU5 4LJ. WW314

OP-AMP WITH VMOS OUPUT

Inductive and capacitive loaddriving capabilities are claimed for the 1461 vmos-output op-amp from Teledyne Philbrick. A slew rate of $1.2 \mathrm{kV} / \mu \mathrm{s}$ and 115 dB open-loop voltage gain make the device suitable for use as an accurate audio amplifier and in video applications including yoke driving and signal distribution. Output voltage and current ratings are $\pm 34 \mathrm{~V}$ and $\pm 750 \mathrm{~mA}$ respectively; maximum input-bias current is 100 pA . The amplifier unity-gain bandwidth is 15 MHz . Teledyne Philbrick, Heathrow House, Bath Road Cranford, Middlesex TW5 9QQ WW315

> Professional resders are invited to request further details on iterns featured here by entering the appropriate WW reference number(s) on the mauve reply-paid card.

Marconi Type R1020 Hinged Antenna Column. Easy to raise Easy to lower

OTHER MARCONI SUPPORT STRUCTURES

Include the MATHWEB* Lattice Antenna Mast Type R1010, and the Triangular Section Tubular Steel Self Supporting Tower Type R1060.

For more information talk to Chris Pettitt, Marketing Manager, Antenna Systems Division.

* MATHWEB is a registered trademark of the BP Group

Marconi

Communication Systems

Antenna Systems Division

Marconi Communication Systems Limited,
Lane Works, Waterhouse Lane, Chelmsford CM1 2QX, England
Tel: 0245353221 Telex: 99108

PORTABLE COMPUTERS
The most powerful pocket computer on earth?
SHARP
PC-1500
Colour
Computer

16K ROM extended BASIC. 3.5K RAM (expandable). QWERTY keyboard. Dot matrix display. With clock, calendar, alarm and around 30 scientific functions. CE-150. 8K ROM graphics BASIC. 4-colour printer/plotter and cassette interface. Prints virtually any drawing with 360° control.
PRICES, including V.A.T and FREE software voucher
PC-1500 Computer plus $£ 20$ voucher...
$f 169.95$
CE-150 Colour Printer plus $£ 20$ voucher
149.95

CE-155 8K RAM Expansion module plus $£ 10$ voucher
$£ 79.95$
CE-159 8K RAM/ROM with battery back-up plus $£ 10$ voucher $£ 89.95$
CE152 Custom Cassette Recorder plus $£ 5$ voucher $£ 39.95$
CE-153 140-key Software Board plus $£ 10$ voucher £79.95
CE-158 RS-232C Interface plus $£ 20$ voucher E149.95

Software

CE-15A Applications Program Tape
£14.95
MiCROL 1500 EXECUTIVE ready-to-run, full-feature Database, plus a wide range of customising features enabling you to create your own business applications programs (e.g. stock control, mailing lists) in MiCROL 1500 PROCOS 'Visicalc type' system answers 'What if?' questions and analyses trends ... $\mathbf{£ 1 9 . 9 5}$ MiCROL 1500 STATIX Adds statistics to the 1500.
$£ 19.95$
$£ 9.95$
1982/3 catalogue of Casio watches, calculators and musical instruments available on request

CASIO FX-801P
The future has arrived ONLY £349
High-speed computer with integral micro-cassette data control and hard copy printer monitoring
Everything you need, in an area smaller than this page. This truly portable, complete SYSTEM needs no peripherals on lengths of cable. Batteries last 250 hours (only display), or 5,000 lines (display and printing). Typewriter-style QWERTY keyboard, plus all the advanced functions of the FX-702P

CASIO FX-702P $£ 79.95$

Plus FREE MiCROL Professional
Programming Pack, worth $\mathbf{£ 9 . 9 5}$
BASIC programming. Up to 1,680 program steps, up to 226 memories, all protected

55 scientific functions. Subroutines, 10 levels. FOR/NEXT looping, 8 levels. Edit, debug and trace modes. 240 hours battery life. $17 \times 165 \times$ 8 mm .176 g .
FA-2 cassette interface/adaptor £19.95. FP-10 hard copy printer £44.95. MiCROL 702 PROCOS'Visicalc type' system, on tape $£ 24.95$.

CASIO FX-700P

 £79.95TRULY POCKET SIZE. BASIC programming. QWERTY keyboard. Up to 1,568 program steps, up to 222 memories, up to 10 program areas, all protected.
25 scientific functions. Subroutines, 8 levels. FOR/NEXT looping, 4 levels. $9.8 \times 165 \times 71 \mathrm{~mm}$. 118 g . FA- 3 cassette interface $\mathbf{6 2 2 . 9 5}$. FP'12 printer $\mathbf{£ 4 9 . 9 5}$.

BASIC FOR BEGINNERS

CASIO PB-100

£69.95

Learn As You Go
Now you can enter the exciting world of computers with this easy-
 to-understand system and fully instructive manual
LEARN with this easy-to-follow introduction to personal computers. FOLLOW the step-by-step examples and USE the programs supplied, or write your own. QWERTY keyboard. Up to 544 program steps, up to 94 memories, expandable to 1,568 steps $/ 222$ memories, all protected. $9.8 \times 165 \times 71 \mathrm{~mm}$. 116 g . OR-1 1 K RAM expansion E 11.95 . FA-3 cassette adaptor $£ 22.95$.
Prices include post and packing. Delivery normally by return of post. Send cheques, P.O., or phone your Access/Barclaycard/Visa card number to:

his performance his casempetitive his

THE 'ULTIMATE' 200 SERIES CDF GENERATORS

- 100\% Frequency Setting Accuracy
- External Frequency Measurements to 100 MHz
- Compensation against Environmental conditions
- Response Analysing Capabilities
- Sweep with Precision Start/Stop settings
- Microprocessor measurements with Trigger and Gate
- Pulse Generator Performance
- AM and FM Mod., Internal \& External
* Phase for Servo and Control Tests
- Sine ${ }^{2}$ (Haversine) Waveforms
- "One Shot" facility

PLUS they are also FUNCTION GENERATORS with: 0.002 Hz to 11 MHz bandwidth $-20 \mathrm{~V} p-\mathrm{p}$ O / P with 90 dB of attenuation - Sine, Square, Triangle, DC O/P and Offset, Burst and Pulse with Symmetry control-1: 1000 VCO - Coarse/Fine tuning.

Fully Guaranteed for 1 Year and comes complete with Manual and Mains Lead.
FREE Data and Prices on Request NEWTRONICS Prices from less than $£ 300$.

EUROPEAN FLOPPY DISK DRIVES AT ATTRACTIVE PRICES

$+2 / 3$ height 5.25 inch drives
All reconditioned, as new, with 3 month warranty
Single-sided $£ 100+£ 3$ carriage + VAT $=£ 118.45$ CWO ea.
Double-sided $£ 160+£ 3$ carriage + VAT $=£ 187.45$ CWO ea.
$+8^{\prime \prime}$ floppy drives, reconditioned, as new with 3 months' warranty
Single-sided $£ 210+£ 6$ carriage + VAT $=£ 248.40$ CWO ea.
Double-sided $£ 270+£ 6$ carriage + VAT $=£ 317.40$ CWO ea.

+ Also a few US made 51/4" single-sided floppy drives at $£ 60$ ea. $+£ 3$ carriage and VAT $=£ 72.45$ CWO ea.
Note all prices are CWO and cheques/POs should be made payable to: "WW READERS ACCOUNT"
Manuals are $£ 20$ ea. post paid or $£ 5$ if ordered with drives
Circle enquiry number below for details

MELKUIST LTD

 35A GUILDFORD STREET LUTON, BEDS.TELEPHONE: LUTON 416028 TELEX: 825828
MLKST-G
WW - 047 FOR FURTHER DETAILS

ScheTronics Limited

For repair and calibration of test equipment.
We also have selected pieces of second user LF/HF equipment for sale, including:
Hewlett Packard Vector Voltmeter 8405A
STC Sweep Set Audio/Broadcast plus recorder
STC Psophometer CCIT Telephone Filter
W \& G EPM $1 \mathrm{Z}=75 \mathrm{Ohms}$
Anritsu Attenuator MN54A
Siemens Level Osc. 3W 231/233/234
Siemens Pegamet spares
Unit 10, Dunstall Estate
Crabtree Manorway
Belvedere, Kent DA17 6AW
Telephone: 01-311 9657

WW - 070 FOR FURTHER DETAILS

SWITCHES

 f1.4. S7401 4POT E 75; 72111 P 3 W E140, COT 87p: S7301 3POT 71 p; S7203OPDT 960 DUAL IN HiNE ES3 3 make/8533 break 62p; 8225 DPDT 1.34 throw 2P SOS2 549; 4P SDS4 95p; 6P SDS6 \&1.38; 8P SOS8 $£ 1.67$ 10 P SOSO 2.10.LOW $\cos T \mathrm{D}+1$

METERS

Laeds ange or yypes
PANEL MOUNTING in 50. 100, 500 HA ; 1. 5. 10. 50,100

MULTIMETERS

ELEGTROTALUE
FOR SERVICE YOU CAN TRUST
1 MORE IC SUPER SAVERS 1

7400		7489	159	74LS38	15	741519340	4015	40
	11	7489	28	741542	28	74LS 19539	4016	20
7401	11	74791	${ }^{3}$	741547	5	${ }_{74 L 5196} 48$	4017	35
7402	12	7492	${ }^{5}$	7415	1	74.5197 60	硅	45
7403	12	7493	26	74.5573	18	$74 L S 22151$	4019	
7404	13	7494	3	741574	18	74LS240 56	4020	4
7405	15	7495	5	741576		${ }^{7} 4152415$	4022	40
7406	20	74100	${ }_{80}$	$74 \mathrm{LS85}$	48	${ }_{7445243} 7$	4023	14
7407	20	74104	40	74L586	20	741524460	4024	32
7408	14	74107	22	74LS90	27	741524585	4025	14
7409 7410	14	74121	24	74LS92	3	741525156	4026	80
7410	14	74123	40	$74 L 593$	24	74 LS253 43	4027	20
74.3	18	74125	34	7415107	40	74.525736	4028	39
7414	20	74126	33	$74 L 5112$	22	7415259 日4	4029	46
7420	15	74141	61	7415123	${ }^{38}$	${ }^{74 L 5266} \quad 28$	4030	16
7430	14	74151	40	74LS125	2	74 LS273 60	4041	4
	14	74154	60	${ }^{74} 15126$	27	741527940	4042	40
7442	32	74155	39	74.5132	40	7415299250	4043	40
7443	60	74156	40	7415136	25	741536734	4044	40
	${ }^{60}$	74157	30	74LS137	110	74 LS368 24	4046	46
744	36	74190	48	74.5138	30	74LS373	4049	23
7448	40	74192	48	74LS139	35	74 LS374 68	4050	23
7459	14	74193	4	74LS145	70	74 LS378 60	4060	45
7451	14	74393	95	74.5148	6	74 LS393 60	4069	14
7454	4	7415		74LS151		cmos	4070	14
7460	14			74LS153	40	$4000 \quad 90$	4071	1
7470	24	74.5	11	${ }^{74 L 5155}$	${ }_{38}^{38}$	$4001 \quad 10$	4081	4
7472	26	74L504	12	74LS157	30	$4002 \quad 12$	4082	14
2473	28	74LS05	12	74LS161	37	400650	4093	20
474	23	${ }^{74} 4508$	12	74LS163	36	$4007{ }^{14}$	4510	4
7475	32	74LS10	12	74LS164	43	4008 40	4511	46
7476	30	74LS11	12	74LS165	50	4009 24	4514	120
8480	${ }^{3}$	74LS14	30	74LS166	90	$4010 \quad 24$	4516	53
7882	6	74LS20	12	74LS173	56	$4011 \quad 12$	4518	40
7483	38	74LS30	12	74LS174		4012 15	4520	60
7485	60	74LS32	14	74LS175	40	$4013 \quad 20$	4543	120
7486	20	741537	14	74LS191	50	$4014 \quad 46$	4583	130

RESISTORS

1/4, $1 / 3,1 / 2,3 / 4$ watt-all $2 p$ each, 10 of one value $15 p$.
 10 tor 700 .

Large sae brings latest 1gp enlarger price ust free

POTENTIOMETERS

 switch E1.44. SLIOERS 58 mm , low cost $10 \mathrm{~K}-1 \mathrm{M}$ log only 29 p . Sid 58 mm mono
$4 \mathrm{K7} 7-1 \mathrm{M}$ lin or log 36 p , stereo matched $\mathrm{f1} 2 \mathrm{~L}$. Graduated bezeis 36 p PAESET min. 10 mm diad. Horizontal or vert. 100 ohms- 1 M ea13p,Cermes 10 mm dia Honz. or Vert. 100 -1 M ea 24p, Cermet rectilinear type
100Ω IM ea $\mathbb{1} .06$. PLESSEY MPW moulded carbon 47Ω-2Ms ea 59 p .

- Normal Despatch within 24 hours.

CAPACITORS

$5,7,10,12,15,18,22,27,33,390$ F $12 \mathrm{pp;} 47,56,68,82,100,120,150$,
$180,220,270,330,390,470,560,680,820 \mathrm{p} ; 1 \mathrm{n}, 1 \mathrm{n} 2,1 \mathrm{n} 5,1 \mathrm{n} 8,2 \mathrm{n} 2$

 $1 \mathrm{n}, 1 \mathrm{n5}, 2 \mathrm{n}, 3 \mathrm{n} 3,6 \mathrm{p} ; 4 \mathrm{n} 7,6 \mathrm{n} 8.8 \mathrm{n} 2$. $10 \mathrm{n}, 12 \mathrm{n}, 15 \mathrm{n}, 18 \mathrm{n}, 22 \mathrm{n}, 27 \mathrm{n}, 3 \mathrm{n}$ $39 \mathrm{n}, 4 \mathrm{~nm} 7 \mathrm{p} .82 \mathrm{n}, 100 \mathrm{n} 9 \mathrm{p} ; 120 \mathrm{n}, 150 \mathrm{n} 11 \mathrm{p} ; 180 \mathrm{n}, 220 \mathrm{n} 12 \mathrm{p}: 270 \mathrm{n}, 330 \mathrm{n}$
 soacing $2 \mu 235$
depth stocks.
ELECTROL YTICS NON-Dotar (for LS X-Overs) 50 V peak $2 \mu \mathrm{~F}$ 2 mp ; 4 HF

 | $6.8 / 40,10 / 25,22 / 10,10 \mathrm{p} ; 10 / 40,22 / 25,47 / 1011 \mathrm{p}: 47 / 25 / 63 \mathrm{p}, 100 / 10$ |
| :--- | :--- |
| $13 \mathrm{p}: 10 / 63,7 / 63$ | 220/10, 220/16 16p; 220/25 18p; 220/40 20p; 470/10, 470/16, 470/25: 1000/63 76p: 2200/40,4700/1673p.

1/63,2.2/63, 4.7/63 10p: 10/63, 22/63 8p: 22/40, 47/16 10p; $47 / 4012 \mathrm{p}$
 LARGE CANS SIEMAENS
 TANTALUM
 LOW Leakage All single ended $0.1 / 50,0.22 / 50.0,47 / 50,4.7 / 3511$ p; $1 / 50,2,2 / 50,4.7 / 5011 \mathrm{p}, 10 / 16$.
$22 / 611 \mathrm{p} ; 10 / 35,22 / 10,22 / 16.22 / 35,47 / 6,47 / 1012 \mathrm{p}, 47 / 16,100 / 6$
\qquad CATALOGUE 70p POST FREE INC. 70p REFUNO VOUCHER

Please mention this magazine when ordering or writing

- VAT - additional at 15% on aH UK ordars
wards. Under add 40 p inc. VAT. Normal despatch. 75 inc. VAT and upOISCOUNTS CWO orders over $\mathrm{E} 23.00-5 \%$, over $\mathrm{E} 57.50 \ldots 10 \%$ orders pard for by crodit cardl

ELECTROVALUE LTD

2A St Jude's Moed, Englafield Green, E ham, Surrey TWzo out (STD 074; London 87) 33603; Telex 264175. or Bumage, Manchester M19 1NA
Computing a
700 Burnage Lane, Manchester 1061-431 4866

N

SERIES 600

The D\&R SERIES 600
range of professional
mixing consoles has found
its way into hundreds of
(hospital) broadcast studios,
discotheques, clubs, entertain-
ment and outdoor Public Address
systems and recording studios.
Available in 6, 12, 18 or 24 channel
configuration with, as standard, separate
balanced mic, and line inputs, insertion points,
gain, three band tone controls, two auxiliar lines,
pan-pot and linear fader, plus pre-fade-listening and overload LED
per channel. The output section includes four master faders, echo return and phones controls and two large V.U. meters.
Optional XLR-3 connectors, 48 voli phantom powering, stereo
channels with R.I.A.A. correction, talkback, fader controlled start switches, balanced outputs and 24 volt D.C. mains powering are available.
D.S.N. MARKETING LTD, Westmorland Road, London NW9 9RJ

VISA

D\&R Electronica was founded over 10 years ago with the aim of developing and manufacturing high quality mixing consoles for the studio and entertainment industry with a special emphasis on value for money design engineering. The result is a range of five basic models with a large number of channel configurations and options. All models are highly flexible in use and give the best quallity possible at fodays state of technology. SERIES 200 - A small mixer specially designed for four track recording. SERIES 600 - A range of mixers for live ampllification, broadcast studios and two track recording.
SERIES 400 - 'In-Line' mixing consoles for budget 4,8 or 16 track recording. SERIES 1000 - A range of comprehensive 'In-Line' consoles for protessional recording studios.
SERIES 8000 - Top of the range 'In-Line' consoles with integral patch bay for top recording studios. A large number of ancilliary signal processing units complement the D\&R programme

Please complete this coupon for futher detalls:
D\&R Series $200 \square$ D\&R Serles 600
\square D\&R Serles $400 \square$ D\&R Series 1000
\square D\&R Series $8000 \square$ D\&R Ancilliary Equipment
\square BULLET Ioudspeaker components \square VITAVOX loudspeaker equipment \square HELIOS mirror balls
NAME
ADDRESS

NO SPECIAL OFFERS!
NO PRICE REDUCTIONS!
STILL BEST VALUE!
FUNCTION GENERATOR
TYPE TG301
£156

FREQUENCY	0.02 Hz to 2.1 MHz in 7 decade ranges
WAVEFORMS	Sine, Square, Triangle, Pulse and Ramp
DC OFFSET	Variable up to $\pm 10 \mathrm{~V}$ from 50Ω
MAIN OUTPUT	60 mV to 20 V peak to peak from 50Ω source
VCF (EXT. SWEEP)	$1000: 1$ frequency ratio by application of 10 V p-p
Send for full technical specification together with details of our Voltmeters, Oscillators and other test instruments. The price is ex works excluding V.A.T.	

YC1000L

JOIN THE MICRO REVOLUTION WITH THE YC1000L DATA LOGGER

This new laboratory grade instrument features microprocessor control for increased versatility. Its many functions include - a frequency counter (0.02ppm accuracy), a precision AC/DC voltmeter, a thermal sensor and a programmable timer. The test results may be read direct from the digital display or recorded on the integral logger.

Price $£ 725+$ VAT

PMR HIGHBAND

 "COMPACT SMC1015L1"

The SMC1015L1 "compact" VHF highband transceiver is currently available ex-stock at realistic prices. Why pay more? We are satisfied that our standard of construction matches or exceeds that of the leading names. Models available: Single Channel, Multi-Channel and also Hand-Held Unit.

BASIC ELECTRONICS

by Grob

COMMUNICATION CIRCUITS, READY, REF, MANUAL
by Markus
Price: $\mathbf{1 1 0 . 5 0}$
by Markus
by Markus
ENCYCLOPAEDIA OF INTEGRATED CIRCUITS
by BUCh sbaum
DIGITAL INTEGRATED ELECTRONICS
by Taub
INTRO. TO PASCAL 2ND EDITION
by Welsh
MACHINE CODE AND BETTER BASIC
byicrowart MOPROCESSOR DEVELOPMENT \& SYSTEMS
By TSAM
MICROPROCESSOR SYSTEM DESIGN VOL II

* PRICES InClude postage and packing

THE MODERN BOOK CO.
 Specialist in scientific and technical books $15 / 21$ PRAED ST., LONDON W2 1NP
 PHONE: $01-4029176$. Closed SATURDAY 1 p.m
 Please allow 14 days for reply or delivery

WW - 093 FOR FURTHER DETAILS

WW - 060 FOR FURTHER DETAILS

[^6]o obtain further details of any of re coded items mentioned in the ditorial or Advertisement pages f this issue, please complete one r more of the attached cards ntering the reference number(s). 'our enquiries will be passed on to ie manufacturers concerned and ou can expect to hear from them irect in due course. Cards posted rom abroad require a stamp. hese Service Cards are valid or ix months from the date of ublication.
'lease Use Capital Letters
f you are way down on the irculation list, you may not be etting the information you equire from the journal as oon as you should. Why not lave your own copy?

Co start a one year's subscription 'ou may apply direct to us by ising the card at the bottom of his page. You may also apply to he agent nearest to you, their iddress is shown below.

OVERSEAS SUBSCRIPTION AGENTS

 fethourne 3000 , Victoriaions Distribution Agency. 170 Nishi-Okubo -chome. Shinjuku-Ku. Tokyo 160
Lebanon: Levant Distiibutors Co., P.O. Box 1181 Makdesi Street, Halim Hanna Bldg, Beirut

Malaysia: Times Distributors Sdn. Bhd Times House. 390 Kim Seng Road. Sing apore 9, Malaysia

Malta: W. H. Smith Continental Ltd. 18a Scots Street, Valleta

Now Zealand: Gordon \& Gotch (Now Zealand) Lid 102 Adelaide Road, Wellington 2
Nioerla: Daily Times of Nigeria Ltd, 3 Kakaw Street, P.O. Box 139 Lagos

Norway: A/S Narvesens Kioskompani, Bertrand Narvesens vei 2, Oslo 6

Portugal: Livaria Bertrand s.a.r. 1 Apartado 37, Amadora

South Africa: Central Nows Agoncy Lid, P.O. Box 1033, Johannesburg
spain: Comercias Atheneum s.a. Consejo de Ciento. 130-136 Barcelona

Sweden: Wennegren
Swed on: Wennegren
Williams A B, Fack S-104 25 Stockholm 30

Switzeriand: Navilio 8 Cie SA, Rue Levrier 5-7. CH-1211 Geneve 1 Schmidt Agence AG Savogelstrasse 34, 4002 Basle
U.S.A.: John Barios, IPC Business Press, New York, N.Y. 1001

Postage will be paid by Licensee

Do not affix Postage Stamps if posted in Gt Britain, Channel Islands, N Ireland or the Isle of Man

BUSINESS REPLY SERVICE
 Licence No 12045

WIRELESS WORLD
Reader Enquiry Service
429 Brighton Road
South Croydon
Surrey CR2 9PS

Enquiry Service for Professional Readers

WW	WW.	WW
Ww	WW.	ww
WW	WW.	Ww
WW	WW	ww
WW	nw	ww
WW	WW.	ww
WW	nw.	ww
WW	WW	ww
ww	WW	ww
ww	WW	ww
Ww	WW:	WW
ww	WW	ww
ww	ww.	ww
ww	WW	WW
ww	WW.	ww
ww	Ww	WW

WIRELESS WORLD Wireless World, December 1982 WW 8272
Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.

Name

Name of Company

Address

Telephone Number

PUBLISHERS USE ONLY			A/E			

Position in Company
Nature of Company/Business
No. of emnlovees at this establishment . .
I wish to subscribe to Wireless World \square
VALID FOR SIX MONTHS ONLY

Wireless World: Subscription Order Form

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:
 To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:
 To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:
 To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:

Subscription Manager, IPC Business Press, Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH, England

Enquiry Service for Professional Readers ONLY.

Postage will be paid by Licensee

WIRELESS WORLD Wireless World, December 1982 WW 8272
Please arrange for me toreceive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.

Wireless World \quad Subscription Order Form \quad Wireless World, December 1982 WW 8272

UK subscription rates
USA \& Canada subscription rates
1 year: £14.00
Overseas 1 year: £17.00
Please enter my subscription to Wireless World for 1 year

I enclose remittance value.. payable to
IPC BUSINESS PRESS Ltd.

Name
Address

OVERSEAS ADVERTISEMENT AGENTS

Hungary Mrs. Edit Bajusz, Hungexpo
Advertising Agency, Budapest XIV,
Varosliget - Telephone : 225008
Telex: Budapest 22-4525 INTFOIRE

Italy Sig. C. Epis Etas-Kompass, S.p.a. Servizio Estero, Via Mantegna 6, 20154 Milan - Telephone 347051 -
Telex: 37342 Kompass

Japan Mr. Inatsuki, Trade Media - IBPA
(Japan), B212 Azabu Heights, 1-5-10
Roppongi, Minato-Ku, Tokyo 106 -
Telephone : (03) 585-0581

United States of America Ray Barnes
*IPC Business Press 205 East 42nd Stree
New York. NY 10017 - Telephone
(212) 6895961 - Telex : 421710

Mr. Jack Farley Jnr., The Farley Co.,
Suite 1548. 35 East Wacker Drive,
Chicago, Illinois 60601 - Telephone
(312) 63074

Mr. Victor A Jauch.
Elmatex International,
P.O. Box 34607.

Los Angeles Calif. 90034 U.S.A.
Telephone: (213) 8218581
Telex: 18-1059.
Mr. Jack Mentel, The Farley-Co., Suite 605
Ranna Building, Cleveland, Ohio 4415 -
Telephone: (216) 6211919
Mr. Ray Rickles, Ray Rickles \& Co.
P.O. Box 2008, Miami Beach, Florida

33140 - Telephone : (305) 5327301
Mr. Jim Parks, Ray Rickles \& Co.,
3116 Maple Drive N.E., Atlanta, Georgia
30305. Telephone : (404) 2377432

Mike Loughlin. IPC Business Press,
15055 Memorials. Ste 119, Houston, Texà 77079 - Telephone : (713) 7838673

Canada Mr. Colin H. MacCulloch,
International Advertising Consultants Lid. 915 Carlton Tower, 2 Carlton Street, Toronto 2 - Telephone (416) 3642269

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; vertical-align: top; width: auto; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; " colspan="6" rowspan="4"></td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;"></tr>
<tr style="border-top: none !important; border-bottom: none !important;"></tr>
<tr style="border-top: none !important; border-bottom: none !important;"></tr>
</tbody>
</table>
<table-markdown style="display: none">| | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | |
| | | | | | |
| | | | | | |</table-markdown></div>
 The 2001 sweeps the board at only $£ 110$

Get all the waveforms you need -1 Hz to $\cdot 1 \mathrm{MHz}$ in five overlapping ranges: stable, low-distortion sine waves, fast rise/fall-time square waves, high linearity triangle waves - even a separate TTL square wave output. Plus high- and low-level main outputs. An applied DC Voltage at the Sweep input can shift the 2001's frequency: or sweep up to 100: 1 with an AC signal A pushbutton activates the DC Offset control, which shifts the output waveform up or down on command.
For value for money the 2001 sweeps the rest off the board. For immediate action - The G.S.C. 24 hour, 5 day a week service Tel: (0799) 21682 and give us your Access, American Express, Barclaycard *price excluding P\&P and 15\% VAT

Goods despatched within 48 hours.

Global Specialties Corporation (UK) Limited, Dept. 7HH Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AO

| Model 2001 Sweepable
 Function Generator | $£ 129.95$ (inc. P\&P
 and 15% VAT) | Onty
 Reqd. |
| :---: | :---: | :---: | :---: |\quad| For FREE catalogue |
| :--- |
| tick box |

[^7]Barclaycard/Access/American Express No exp date

WW - 081 FOR FURTHER DETAILS

Nal			\star RF SIGMAL GEMERATORS a M \& Audio O/P. $1 \mathrm{lV}-100 \mathrm{mV}$ output. Price ch E50 inc. VAT. , sbo inc. VAT and cary our usual 90-Day Warranty. In both ses please add $£ 2$ each for carriage.
Miniature type (22 to 15 turn "Heli mounting instruct	SPECIAL PURCHASE OF TEKTRONIX acuportable oscmlloscopes		
KAY SONA-GRAPH Model 7029A Audio frequency spectrograph. $5-16000 \mathrm{~Hz}$. C/w type 6076 C Scale Magnifier plug-in unit. In good working condition	plifirir 11 mV cascaded. 2.4 ns risetime. these units in first-class operational condition complate with three months' guar Qntee, for a once only prict of 8750		大 MIU-YOLT MEASUREWENT, ANLOCUE MaAconitizisoo. Tweive ranges imv-300 V FSD. Wide-band to 10 MHz MXACONI TF2804. Electronic Multi-meter. AC/DC ranged. AC Frequency range 20Hz-1500MHz.
ALDIO WATIMETERS Switchable 1W \& 10W FSD. Internal 3.5 \& 8 Ohm load impedances. Housed in grey enamelled case $6 \times 6 \times 3^{\prime \prime}$. Large easy to read $3^{\prime \prime \prime}$ sq. meter. Scope output provision. $\mathbf{£ 1 0}(+£ 1)$.	MARCONI Component Bridges. Models TF1313 and TF2700 in stock. ADVANCE VM77D Millivoltmeters. $15 \mathrm{~Hz}-4.5 \mathrm{MHz}$. 1 mV Full scale -300 V		
HEATHKT Model AW-IU. Internal load switchable $3 ; 8,15 \& 600 \mathrm{Ohm}$. Meter scaled 0 -50W $1+d \mathrm{~B}$ $3,8,15 \& 600$ Ohm. Meter scaled F scale). 5 Ranges from 5 mW -50W FSD. Mains powered. $\mathbf{E 2 5}(+$ E1).	ARMEC Wave Analysers Models 853 and 248 A CENIRONICS P P Printer, one only, AND Type 663 Printer. ROHDE \& SCHWARZ SDR Signal Generator. $300 \mathrm{MHz-1}$ - GHz . HEWLEIL PACKARD 608C Signal Genorator. 10.480 MHz AM		
GPO JACK SOCKET STRIPS. 20-WAY TYPE 320 (3. pole) E2.50 88. Type 520 (3-pole with switching contacts) E4 ea. Please include 35p each fol above 200 ea. $(10+$ post free). Plus VAT please Also recent stock of new, mint condition 720 Type. - 66 each.	Disc drives. Brand new surplus stock at fraction of list price. tally model 2200 Line Printers. BASF Single disc cartridges.		
	PLEASE NOTE. All the pre-owned equipment shown has been carefully tested in our workshop and reconditioned where necessary. It is sold in st-class operational condition and most items carry a three months garaite for our mail order customers we have a money-back schems. ADD 15\% VAT TO ALL PRICES.		

MANUFACTURERS \& DISTRIBUTORS

SNAIL BLOWERS manufactured BY SMITHS INDUSTRIES. Average air output 950 C.F.M. complete with G.E.C. 4 pole 220/240V A.C. cont. rated motor. Approx. size of blower $111^{\prime \prime \prime} \times 7^{\prime \prime \prime}$ duct output size $7^{\prime \prime \prime} \times 4^{\prime \prime}$ approx. $£ 115$ for $10+$ VAT, $£ 520$ for $50+$
VAT, $£ 950$ for $100+$ VAT, $£ 4,300$ for $500+$ VAT. Sample sent for $£ 12.50+£ 2.50$ p $\&$. VAT, E950 for 100
(E17.50 inc. VAT).

150 WATT HINCHLEY DROP THROUGH TRANSFORMER. Input $220 / 240 \mathrm{~V}$ A.C. Outpu $30-0-30$ with 14 V tap. Width $96 \mathrm{~mm} \times 80 \mathrm{~mm} \times 54 \mathrm{~mm}$ deep, inc. winding, etc. 90 mm
 £2,800 for
inc. VAT).

60 WATT HINCHLEY DROP THROUGH TRANSFORMER input $220 / 240 \mathrm{~V}$ A.C. output 25 $0-25 \mathrm{~V}$ with 15 V tap width $85 \mathrm{~mm} \times 71 \mathrm{~mm} \times 35 \mathrm{~mm}$ approx. total depth inc. winding, ett.
78 mm . Weight 1.5 kgs . $£ 45$ for $10+$ VAT, $£ 205$ for $50+V A T$
$£ 370$ for $100+$ VAT 78 mm . Weight 1.5 kgs . $£ 45$ for $10+$ VAT, $£ 205$ for $50+$ VAT, $£ 370$ for $100+$ VAT,
$£ 1,700$ for $500+V A T, \notin 3,100$ for $1,000+$ VAT, $£ 11,200$ for $4,000+$ VAT. Sample sent $£ 1,700$ for $500+$ VAT, $£ 3,100$ for 1,000
for $£ 5+£ 1.50$ p\& $(\mathbf{~} 7.48$ inc. VAT).

BICC CAPACITORS $15 \mathrm{MFD}+5 \% 350 \mathrm{~V}$ R.M.S. WKG $50 \mathrm{~Hz}-40+70^{\circ} \mathrm{C}$ with internal resistor £10 for $10+$ VAT, £ $£ 2$ for $50+$ VAT, $£ 76$ for $100+$ VAT, $£ 350$ for $500+$ VAT Sample price $\mathrm{E1.20}+50 \mathrm{p}$ p\&p (E1.95 inc. VaT).

50 WATT FINNED HEAT SINKS 83 mm long $\times 39 \mathrm{~mm}$ wide $\times 30 \mathrm{~mm}$ high drilled to take BD 250 B or similar device $£ 18$ for $50+$ VAT, $£ 33$ for $100+$ VAT, $£ 150$ for $500+$ VAT $£ 270$ for $1,000+$ VAT, $£ 1,200$ for $5,000+$ VAT. Sample 10 sent for $£ 5+£ 1$ p\& $\mathrm{f}(\mathbf{£ 6 . 9 0}$
inc. VAT)
N.E.C. TANTALUM CAPACITORS. $6.8 \mu \mathrm{~F}$ @ $16 \mathrm{~V} \pm 20 \% \mathrm{E} 45$ for $1,000+$ VAT

MINLATURE SKELETON PRESETS. Horizontal mounting. 220R @ $0.1 \mathrm{~W} .5 .1 \mathrm{~mm} \times$ 10.2 mm pitch. £35 for $1,000+$ VAT

DIN SOCKETS 5 pin 180° chassis mounting. $£ 60$ for $1,000+$ VAT.
MINIATURE OSMOR REED RELAY. 12 V D.C. coil. N/O reed pull in current $200 \mathrm{~m} / \mathrm{a}$. $£ 20$ for $100+$ VAT, E 180 for $1,000+$ VAT, $£ 800$ for $5,000+$ VA
Sample 10 sent for $£ 2.50+50 \mathrm{p}$ p $\&(£ 3.45$ inc. VAT).

RADIALL BNC 75R standard plug. Gold plated centre contact £34 for $50+$ VAT, £62 for $100+$ VAT, $£ 280$ for $500+$ VAT. Sample 10 sent for $£ 7.50+50$ p p\&p ($£ 9.20$ inc. VAT)

Terms C.W.O. Please add 5\% to all orders for carriage plus 15\% VAT. Export enquiries welcome. We find it impossible to advertise all we stock. Please telephone or write for further enquiries. Personal callers always welcome.

POO	O) ${ }^{\text {ch }}$	ALOGUE TERFACE
The ideal way to learn machine language and becom "ssingle chip" control oriented microprocessors. 1.8K of EPROM, 20 I/O lines, 112 bytes of RAM and a timer all in a single 28 -pin I.C. As featured in this, and subsequent issues of WW. COMPLETE KIT £39.87 PCB, Programmed 68705 and all parts		AINER cquainted with the ANALOGUE INTERFACE f9.39 PCB and all components
PCB only $£ 4.35$ Prog. $68705 £ 21.98$ Data $£ 1.95$		PCB only f1.73
	ADD 45p POSTAGE	16-way Jumper Lead £2.35
MAGENTA ELECTRONGS LIMITED (W12) 135 Hunter Street, Burton-on-Trent, Stafis. DE14 2ST, 02-83-65435		

WW - 055 FOR FURTHER DETAILS

LIGHTNING

DO YOU NEED:- Electronic components, Tools, Test Equipment, Cases, Cabinets and Hardware etc. IN A HURRY? THEN YOU NEED:

LIGHTNING Electronic Components.
WHY?
Because LIGHTNING Strikes out where others fail
Express Despatch All Low Prices
In Depth Stock All New Guaranteed Goods from Leading Manufacturers
With all that going for us, going to you can you really afford to be without a copy of our brand new exciting CATALOGUE?

Many Prices Reduced - Many More Stock Lines
Send for YOUR Copy Now, ONLY 70p Post Paid
LIGHTNING ELECTRONIC COMPONENTS

U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

BSR DE LUXE AUTOCHANGER $£ 18$

HEAVY METAL PLINTHS

 Post £2Cut out for most BSR or Garrard decks.
Silver grey finish, black trim. Size $16 \times 13^{3 / 4 i n}$ DECCA TEAK VENEERED PLINTH. Post $£ 1.50$ Superior finish with space and panel for
small amplifier. Board is cut for B.S.R.
small amplifier. Board is cut for B.S.R. boards cut out for Garrard $£ \mathfrak{F}$. Tinted plastic cover $£ 5$ TINTEDPLASTIC COVERS

TINTED PLASTIC CO			
$177 / 8 \times 131 / 8 \times 31 / 4 \mathrm{in}$.	£5	$181 / 4 \times 12^{1 / 2} \times 3$ in.	E5
$171 / \times 93 / 8 \times 31 / 2 \mathrm{in}$.	¢ ${ }^{\text {¢ }}$	$14^{3 / 8} \times 12^{1 / 2} \times 2{ }^{17} \mathrm{kin}$.	£5
$161 / 2 \times 15 \times 41 / 2 \mathrm{in}$.	f5	$165 \times 13 \times 4 \mathrm{in}$.	${ }^{65}$
$17 \times 12^{7 / 8} \times 3^{1 / 2} \mathrm{in}$.	¢5	$141 / 2 \times 1318 \times 2^{3 / 4 i n}$.	f5
$225 \times 137 / 8 \times 3$ in	£5	$171 / 4 \times 13^{3 / 4} \times 41 / \mathrm{kin}$.	£5
$211 / 2 \times 141 / 4 \times 21 / 2 \mathrm{in}$.	± 5	$21 \times 13^{3 / 8 \times 41 / 8 i n .}$	¢5
$23^{3} / 4 \times 14 \times 37$ in ${ }^{\text {a }}$.	65	$30 \frac{3}{4} \times 13^{3 / 8} \times 31 / 4 \mathrm{in}$.	$\underline{5}$

BSR SINGLE

PLAYER DECKS BSR P170 RIM DRIVE QUALITY DECK
Manual or automatic play

Precision ultra slim arm.
Black with silver trim, stereo ceramic cartridge BSR P204 SINGLE PLAYERS SPECLAL OFFERS Two speed $33 / 45 \mathrm{r}$. p.m. hi-fi decks with stereo cartridges, cueing device and snake arm
Ceramic - 240 V AC $£ 15$ or 9 V DC f 18 Magnetic - 240 V AC $£ 20$ or 12V DC f24 THE "INSTANT" BULK TAPE ERASER £9.50 Post 95p Suitable for cassettes and all sizes of tape reels. AC mains $200 / 250 \mathrm{~V}$. Hand held size
with switch and lead (120 volt to order). will also demagnetise volt to order) computer tapes

Head Demagnatizer only E5

BATTERY ELMINATOR MAINS to 9 VOLT D.C

Stabilised output, 9 volt $400 \mathrm{~m} . \mathrm{a}$. U.K. made in plastic case with screw terminals. Safety overload cut out. Size
$5 \times 3^{1 / 4 \times 2^{1 / 2}} \mathbf{1}$. Transformer Rectifier Unit. Suitable $5 \times 3^{1 / 4} \times 2^{1 / 2} \mathrm{in}$. Transformer Rectifier Un
Radios, Cassettes, models, E4.50. Post 50 p
DE LUXE SWITCHED MODEL STABILISED. £7.50. PP £1. 3-6-71/2-9 volt 400 ma DC max. Universal output plug and lead. Pilot light, mains switch, polarity switch.

DRILL SPEED CONTROLLER/LGHT DIMMER KIT. Easy build kit. Controls up to 480 watts AC mains, E3. PP 65 p.
DE LUXE MODEL READY-BUILT 800 watts. Front plate DE LUXE MODEL READY-BUIL
fits standard box, $£ 5$. Post 65 p.
ENI 131/2x8in. LOUDSPEAKERS Model 450, 10 watts R.M.S. with crossover; 3 ohm or 8 ohm "rossover; 3 ohm" or 8 ohm. 8 E6.50. Size $18 \times 19 \times 6 \mathrm{in}$. Post $\mathrm{£1.50}$. Post $£ 1.50$

RELAYS. 6 V DC 95p. 12 V DC £1.25. 18V £1.25. 24 V £1.30 BLANK ALUMINIUM CHASSIS. $6 \times 4-£ 1.45 ; 8 \times 6-£ 1.80$; $10 \times 7-£ 2.30$; $12 \times 8-£ 2.60$; $14 \times 9-£ 3$; $16 \times 6-£ 2.90$; $16 \times 10-£ 3.20 .14 \times 3 \mathrm{f1.80}$. All $21 / 2 \mathrm{in}$. deep. 18 swg ANGLEAL. $6 \times 3 / 4 \times 3 / 4 \mathrm{ain} .18 \mathrm{swg}$. 30p.
 $14 \times 3-75 p ; \quad 10 \times 7-95 p ; 12 \times 8-\mathrm{f} 1.10 ; 12 \times 5-75 p ;$
$16 \times 6-\mathrm{E} 1.10 ; 14 \times 9-\mathrm{E} 1.45 ; 12 \times 12-\mathrm{f1.50} ; 16 \times 10-\mathrm{f1.75}$; ALUMINIUM BOXES, $4 \times 4 \times 11 / 2 £ 1.4 \times 21 / 2 \times 2 £ 1.3 \times 2 \times 1 £ 1$.
 BRIDGE RECTIRER 200 V PIV 2 a £1. 4 a £1.50. $6 \mathrm{a} £ 2.50$. TOGGLE SWITCHES SP 40p. DPST 50p. DPDT 80p. MINIATURE TOGGLES SP 40p. DPDT 60p.
RESISTORS. 10Ω to 10 M . $1 / 4 \mathrm{~W}, 1 / 2 \mathrm{~W}, 1 \mathrm{~W}$, 2 p : 2 W 10 p
HIGH STABIUTY. $1 / 2 \mathrm{w} 2 \% 10$ ohms to 1 meg 10 p . HIGH STABIUTY. $1 / 2 \mathrm{w} 2 \% 10$ ohms to 1 meg. 10 p . WIRE-WOUND RESISTORS 5 watt, 10 watt, 15 watt $20 p$. PICK-UP CARTRIDGES SONOTONE 9TA 2,50 . BSR Stereo Ceramic SC7 Medium Output £2. SC12 £3. GP310-GP233-AG3306, GZ. A.D.C., OLM $30 / 3$ Magnetic £5 GOLDRING G850 f8.50, G800 £8.50. STYLUS most popular Acos, Sonatone, BSR, Garrard Philips Diamond £1.20 VALVE OUTPUT Transformers (small) sop. Medium.£1.50 SUB-MIN MICROSWITCH, 50p, Single pole cnangeover. ANTEX SOLDERING IRON ' $C^{\prime} 15 W$ 4.60. 25W ' $\times 25$ ' £4.70. JACK PLUGS Mono Plastic 25p; Metal 30p.
JACK PLUGS Stereo Plastic 30p; Metal 35p. JACK PLUGS Stereo Plastic 30p; Metal 35p.
JACK SOCKETS Mono 25p. Stereo 30p. JACK SOCKETS Mono 25p. Stereo 30p.
FREE SOCKETS - Cable end 30p. Metal 45p. FREE SOCKETS - Cable end 30p. Metal 45p.
2.5 mm and 3.5 mm JACK SOCKETS 25p. Plugs 25 p . 2.5 mm and 3.5 mm JACK

Sockets 3-pin, 5 -pin 15p. Free Sockets 3-pin, 5-pin 25 p Plugs 3-pin 20p; 5-pin 25p; Speaker plugs 25p; Sockets 15p. PHHSNO PLUGS and SOCKETS ea. 20p.
Free Socket for cable end 20p. Screened Phono Plugs 25p. 300 ohm TWIN RIBBON FEEDER 10 P Yd
300 ohm to 75 ohm AERLAL MATCHING TRANSFORMER f 1. U.H.F. COAXIAL CABLE SUPER LOW LOSS, 25p yd. COAX PLUGS 30p. COAX SOCKETS 20p. Lead Sockets 65 p .
NEON INDHCATORS 250 V , round 30 p . Rectangular 45 p . NEON INDHCATORS 250 V , round 30 p . Rectangular 45

POTENTIOMETERS Carbon Track

$5 \mathrm{~K} \Omega$ to 2 MA . LOG or LIN. L/S 50 p . DP 90p. Stereo L / S
£1.10. DP $£ 1.30$. Edge Pot 5 K . SP 45 p .

MINI-MULTI TESTER NEW
De luxe pocket size precision moving
coil instrument. Impedance + Capacity - 4000 o.p.v. Battery included. DC volts $5.25 \quad 250500$.
DC volts $5.25,250,500$.
DC amps $0-250 \mu \mathrm{~A}, 0-250 \mathrm{~m}$
£6.50

Resistance 0 to 600 K ohms.
Da Luxe Range Doubler Model

NEW PANEL METERS $\mathbf{£ 4 . 5 0}$

$50 \mu \mathrm{a}, 100 \mu \mathrm{a}, 500 \mu \mathrm{a}$
$1 \mathrm{ma}, 5 \mathrm{ma}, 50 \mathrm{ma}, 100 \mathrm{ma}$ $500 \mathrm{ma}, 1 \mathrm{amp}, 2 \mathrm{amp}$ 25 volt, VUMeter
$21 / 4 \times 2 \times 11 / 4$
Stereo VU meter

$31 / 4 \times 15 / 8 \times 1$ in

RCS SOUND TO LIGHT CONTROL BOX

Complete ready to use with cabinet size $9 \times 3 \times 5 \mathrm{in}$. 57 Input 200 mV to 100 watt. AC $200 / 250 \mathrm{~V}$. Post $£$ OA KII OF PARTS $£ 19.50$, LESS CABINET $£ 15$
Disco bulbs 100 watt, blue, green, yellow, red, amber, Rope lights. 4 channel, 11 f with controller $£ 33$. PP $£$ "FUZZ' lights, red, blue, green, amber, 240 VAC . $£ 23$ 200 Watt Rear Reflecting White Light Bulbs. Ideal for
Disco Lights, Edison Screw. 6 for $£ 4$, or 12 for $£ 7.50$. Post Disco Lights, Edison Screw. 6 for $£ 4$, or 12 for
£1.50. Suitable panel mounting holders 85 p .

RCS 'MINOR"' 10 watt AMPLIFIER KIT $£ 14$ This kit is suitable for record players, guitars, tape playback, electronic instruments or small PA systems. two versions available: Mono, E14; Stereo, 20 . Specil-
Full instructions supplied. 240V AC mains. Post $£ 1$ RCS STEREO PRE-AMP KIT. All parts to build this pre-amp. Inputs for high, medium or low imp entrol and PC Board $\mathbf{£ 2 . 9 5}$ MAINS TRANSFORMERS

 GENERAL PURPOSE LOW VOLTAGE

OPUS COMPACT

SPEAKERS £22 pair Post £2

TEAK VENEERED CAB $11 \times 81 / 2 \times 7$ in, 15 watts

50 to 14000 cps .4 ohm or 8 ohm
OPUS TWO $15 \times 10^{1 / 2} \times 7 \frac{3}{4}$ in 25 wat
2-way system E 39 pair. Post E 3

$1 \mathrm{mf}, 2 \mathrm{mf}$, mG ELECTROLYTICS Wire ends $\mathrm{mf}^{f}, 250 \mathrm{mf}, 4 \mathrm{mf}, 8 \mathrm{mf}, 10 \mathrm{mf}, 16 \mathrm{mf}, 25 \mathrm{mf}, 30 \mathrm{mf}, 50 \mathrm{mf}, 100$ $\mathrm{mf} / 10 \mathrm{v} ; 50 \mathrm{mf} / 6 \mathrm{v} ; 68 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} / 25 \mathrm{v}$ $100 \mathrm{mf} / 10 \mathrm{v} ; 150 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 200 \mathrm{mf} / 10 \mathrm{v} / 16 \mathrm{v} ; 220$ $\mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 1000 \mathrm{mf} / 2.5 \mathrm{v} / 4 \mathrm{v} / 10 \mathrm{v}: 1500 \mathrm{mf} / 6 \mathrm{v} /$ $10 \mathrm{v} / 16 \mathrm{v} ; 2200 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 3300 \mathrm{mf} / 6 \mathrm{v} ; 4700 \mathrm{mf} / 4 \mathrm{v}$. $500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p} .1200 \mathrm{mF} 76 \mathrm{~V} 80 \mathrm{p}$. $1000 \mathrm{mF} 12 \mathrm{~V} 20 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 50 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$. 2000 mF 6V 25p; 30 V 42 p ; $40 \mathrm{~V} 60 \mathrm{p} ; 1500 \mathrm{mF} 100 \mathrm{~V}$ £1.20. 2200 mF 63V $90 \mathrm{p} .2500 \mathrm{mF} 50 \mathrm{~V} 70 \mathrm{p} ; 3000 \mathrm{mF} 50 \mathrm{~V} 65 \mathrm{p} ;$ 4500 mF G4V £2. 4700 mF 63 V f 1.20

HIGH VOLTAGE ELECTROLYTICS HIGH VOLTAGE ELECTROLYTICS $\begin{array}{lll}2 / 500 \mathrm{~V} & 45 p & 32+32+16 / 350 \mathrm{~V} \\ 8 / 450 \mathrm{~V} & 45 p & 100+100 / 275 \mathrm{~V}\end{array}$ $\begin{array}{lll}8 / 450 \mathrm{~V} & 45 \mathrm{p} & 100+100 / 275 \mathrm{~V} \\ 16 / 350 \mathrm{~V} & 45 \mathrm{p} & 150+200 / 275 \mathrm{~V}\end{array}$ $\begin{array}{lllll}16 / 350 \mathrm{~V} & 45 \mathrm{p} & 150+200 / 275 \mathrm{~V} & 65 \mathrm{p} & 8+16 / 450 \mathrm{~V}\end{array}$ $\begin{array}{lllll}3 / 2 / 500 \mathrm{~V} & 95 \mathrm{p} & 220 / 450 \mathrm{~V} & 70 \mathrm{p} & 16+16 / 350 \mathrm{~V}\end{array}$ | $32 / 350 \mathrm{~V}$ | 50 p | $32+32+32 / 325 \mathrm{~V}$ | 75 p |
| :--- | :--- | :--- | :--- |
| $22+32 / 350 \mathrm{~V}$ | | | | $50 / 450 \mathrm{~V} 95 \mathrm{p} \quad 50+50+50 / 350 \mathrm{~V} 95 p$ $32+32 / 500 \mathrm{~V}$

$50+50 / 300 \mathrm{~V}$ CAPACITOH'S WRE END HIghVoltage
$.001, .002, .003, .005, .01, .02, .03, .05 \mathrm{mfd} 400 \mathrm{~V} 5 p$.
22 MF 350 V . 400 V 10 p .600 V 15 p .1000 V 25 p.
.47 MF 1500 V 10 p .400 V 20 p .630 V 30 p .1000 V 60 p.
TRIMMERS 30pF, $50 \mathrm{pF}, 10 \mathrm{p} .100 \mathrm{pF}$, 150 pF 20 p . 500 pF 30p MICROSWITCH SINGLE POLE CHANGEOVER 40p.
TWN GANG, $120 \mathrm{pF} \mathrm{f1} 500+.200 \mathrm{pF}$ £ 1
GEARED TWIN GANGS 25pF 95 p
GEARED $365+365+25+25 \mathrm{~F}$
GEARED $365+365+25+25 \mathrm{pF}$ f 1
SOUD DIELECTRIC 100 pf $\mathrm{f} 1.50,500 \mathrm{pf}$ fi 50
HEATMG ELEMENTS, WAFERTHI 1.50
HEATING ELEMENTS, WAFER THIN (Seml Flexiblel
Size $11 \times 9 \times 1 / 2 \mathrm{in}$. Operating voltage $240 \mathrm{~V}, 250 \mathrm{~W}$ approx Size $11 \times 9 \times 1 / 8 i n$. Operating voltage $240 \mathrm{~V}, 250 \mathrm{~W}$ approx.
Suitable for Heating Pads, Food Warmers, Convector Suitable for Heating Pads, Food Warmers, Convactor
Heaters, Propagation, etc. Must be clamped between Heaters, Propagation, etc. Must be
two sheets of metal or ceramic
two sheets of metal or ceramic, etc.
ONLY 80 EACH (FOUR FOR E2) ALLL POST PAID.

NEW baker Star sound
high power full range quality loudspeakers British made exceptional reproduction. Ideal for Hi-Fi, music P.A. or discotheques. Thes oudspeakers are recommended where high power handling is high flux
 results. The high flux
ceramic magnet ensures clear respons
MODEL $\begin{array}{lll}\text { MODEL } & \text { NNCHES OHAS } \\ \text { MANOR } & 12 & 4-8-16\end{array}$ OELUXE MK
SUPERB SUPERB AUDITORIUM GROUP 45 GROUP 75 GROUP 100 DISCO 100
GROUP 100 OISCO 100

BAKER AMPLIFIERS BRITISH MADE

NEW PA150 MICROPHONE PA AMPUPER f129
4 channel 8 inputs, dual impedance, $50 \mathrm{~K}-600$ ohm 4 channel mixing, volume, treble, bass. Presence controls, Master volume BAKER 150 Watt AMPLIFIER 4 Inputs 889 For Discotheque, Vocsl, Public Address, Three speaker outlets
for 4,8 or 16 ohms. Four high gain inputs, 20 mv , 50 K ohm for 4,8 or 16 ohms. Four high gain inputs, 20 mv , 50 K ohm.

Individual volume controls "Four channel" mixing. 150 watts 8 ohms R.M.S. Music Power. Slave output 500 M.V. 25 K .0 ohm | Response $25 \mathrm{~Hz}-20 \mathrm{kHz} \pm 3 ₫ \mathrm{~B}$, Integral Hi-Fi praamp separate |
| :--- |
| $16^{\prime} \times 8^{\prime \prime} \times 5^{\prime \prime} 2^{\prime \prime}$. Wt -141 b : Master |

 volume contro. Brins or 122 V o order. All transistor and solid state. Post $£ 2$. MOND SLAVE VERSION $£ 75$. 100 Volt Lino Modol £104. Post $£ 2$. Now Storeo Slave Model $150+150$ watt f 125 . Post $£ 4$.

ldeal for PA systems, Discos and Groups. Two inputs, RCS offors MOBILE PA AMPLIFERS. Dutputs 4-16 ohme 20-wath RMS 12v DC, AC $240 \mathrm{v}, 3$ inputs. 50 K
£46 PP ©
Mic 1. Mic 2. Phono aux output 4 or 8 or 15 and 100w line PP
00 -wint RMS, Mobile; 24 volt DC $\& 240$-volt AC mains. inputs 50 K 3 mics +1 music. Dutputs $4-8$ - 16 ohm +100 votts line Es5 PP $\ddagger 2$
Battery only Portable PA Amplifier 10w max. Includes mike and
speaker, OK for meetings, crowd control, stalls, fotes, traders
-Rattes, etc. Batteries inc 100 waft Robust
VALVE AMPLIFIER
4Channel mixing. Master
controls. 5 Speaker outlets,
group. £izs. Carr. \& ins. $£ 15$
FAMOUS LOUDSPEAKERS
"SPECIAL PRICES"

Maxe	MOOEL	SLZE	WATTS	OHMS	PRICE	POST
SEAS	TWEETER	4 s	50	1 d	6.50	E1
GDODMANS	TWEETER	3Y/2in	25	\%	E4	E1
AUDAX	TWEETER	4 in	30	8	E5.50	E1
SEAS	MID-MANGE	4in	50	1	27.50	£1
SEAS	MID-RANGE	5in	0	1	512	E1
SEAS	mid-range	41/2in	100	1	812.50	E1
G000 mans	Hifax 7	$71 / 2 \times 4 / 4$	100	(N1416	127	62
G000mans	WOOFER	3 In	25	41	68.50	E1
goodmans	He	8in	00	!	f12.50	f1
RIGONDA	GEMERAL	10in	15	c	E5	$E 2$
AUDAX	WOOFER	10in	50	\%	416	62
goodmans	HPG	12in	120	45	123.50	$\underline{\square}$
G000 MANS	G月12	12\%	50	315	127.50	E2
G000mans	HPD	12in	120	815	f29.50	$E 2$
G000.MAMS	HPO	1tin	230	-	60	4

SPEAKER COVERING MATERIALS. Samples Large S.A.E.
B.AF, LOUDSPEAKER CABINET WADOING 18 in wide 35 ft
 100 watts. No crossover required. 4-8-16 ohm, $73 / \mathrm{k} \times 31 \mathrm{kin}$. CROSSOVERS. TWO-WAY $3000 \mathrm{c} / \mathrm{s} 30$ watt $8 \mathrm{E3}$. 100 W Ef.
3-way $950 \mathrm{cps} / 3000 \mathrm{cps} .40$ watt rating. 84.3 way 60 watt ft. 100 W et 3-way $950 \mathrm{cps} / 3000 \mathrm{cps} 40$
LOUDSPEAKER BARGANS
3 ohm, 5in, $7 \times 4 \mathrm{in}, ~ £ 2.50 ; 61 / 2 \mathrm{in}, 8 \times 5 \mathrm{in}, £ 3 ; 8 \mathrm{in}, \ldots 3.50 .10 \mathrm{in}, 65$
 $8 \mathrm{in}, \mathrm{f4} .50$: $10 \mathrm{in}, \mathrm{E5} ; 12 \mathrm{in}, 25$.

CAB CASSETTE MECHANISM. 12 V Motor Storeo Head 95

R.C.S. LOW VOLTAGE STABILISED

POWER PACK KITS
E3.95. Post 65p All parts and instructions with Zener diode printed circuit, mains transformer 240 V a.c. Output 6 or $71 / 2$ or 9 or 12 V d.c.

B

CHILTERN ELECTRONICS

HIGH STREET, CHALFONT ST. GILES, BUCKS. TEL. 0240771234

Our new Computer Shop offers the largest range in Europe of Computer Peripherals

MOTOROLA 9in. MONITORS

Once again we can offer these beautiful little monitors at fraction of usual price. Ideal for a micro-mains in, standard com posite video, and very wide bandwidth for $80 \mathrm{ch} / 1$ or more. Free with each unit a 5 volt 3 amp regulated psu, mains input.

Only £34 + VAT
Carriage $£ 7.50$
With technical manual.

ASCII KEYBOARDS

Professional 84 key keyboards from mainframe systems. Inductive switch keys. Full ASCII set, with parallel TTL output. Numeric and cursor contl. clusters. Full circuits included.
$\mathbf{£ 3 0}+$ VAT
A few available brand new with case for $£ \mathbf{4 5}+\mathrm{VAT}$. Postage $£ 4$.

PERTEC MAGTAPE DRIVES

The bargain of the year - these industry standard 9 -track units include psu and all read/write logic and easy to interface to a Micro. Up to 22MBytes of storage!
Cost new $£ 2,200$. Ours are in used condition but guaranteed OK.

Callers only.

Only $£ 90$ plus VAT.
Some 1600 cpi Phase Enc
models for $£ 199+$ VAT.

NEW 12in. GREEN SCREEN

A brand new 12 in . green screen monitor of the highest professional specs. Bandwidth better than 15 Mhz. Very high engineering standard
Mounted in attractive anodised aluminium case.
Mains/Composite video inputs. Extra PSU for keyboard.

Original cost $£ 300+$
Our price NEW £80 + VAT.
Carriage $\mathbf{£ 1 2 . 5 0}$

IBM FLOPPY DISKS

Standard single sided 8 in floppy disk drives ex-IBM equipment
We regret we have no information on these, hence the ridiculous price.

> £65 each + VAT
> Carriage $£ 7.50$

ODDS AND ENDS

Centronics Aphenol 36w. plugs. £10 for 6.
£100 for 100
RS232 25-way Cannon pl. with cable top.

Male or female $\mathbf{£ 1 0}$ for 5
Teletype paper rolls, and paper tape rolls $\mathbf{£ 2}$.
New reels certified.
Mag Tape full size $\mathbf{£ 8}$.
Add VAT and postage.

KEY-EDIT VIDEO DISPLAY

A beautiful 12 in . green screen monitor and unencoded QWERTY keyboard all mounted in compact attractive VDU case. Built to highest standards for mainframe systems - mains/ composite video inputs.
Video bandwidth better than 14 Mhz.
A real bargain, these are almost new

$$
\mathbf{£ 1 0 0}+\mathrm{VAT} .
$$

CENTRONICS PRINTERS

At last - these well-known industry standard line printers at a price you can afford.
Parallel ASCII in, 165 cDs , heavy duty for large volume print.

Model 101A. £200 + VAT Fully overhauled with stand.

For callers only.

DEC WRITERS LA35/6

Now at last you can add a professional printer terminal to your micro at a price of a cheap import. These famous printers cost $£ 1,000+$ from manufacturer. RS232 serial 300 baud Print speed $60 \mathrm{ch} . / \mathrm{sec} \mathrm{U} / \mathrm{L}$ case. Almost new ex-demo with integral stand.

Also available with keyboard $£ 300$ + VAT

DRI 5 Mb DISK DRIVES

These are the later version of the famous Series 30. Capacity is increased to 5.6 Mb per cartridge, exchangeable. Standard interface, RK05 compatible.

Usual price $\mathbf{£ 3 , 0 0 0 +}$
Our price band new only £420 + VAT.
DRI 3029 PSU $+/-15 v$. for above drives, new $\mathbf{£ 5 0}+\mathrm{VAT}$.

Carriage extra

REGULATED POWER SUPPLIES

LAMBDA. All 230 v . input.
5 volt 5.8 amp 12
5 volt 10 amp \qquad
12 volt 10 amp $\quad . \quad$.
12 volt 15 amp $£ 25$
24 volt 14 amp \qquad .£25

LOW COST BARGAINS

5 volt 3 amp $£ 8+£ 2$ postage
5 volt 6 amp $£ 10+£ 3$ postage

LOWEST PRICES IN U.K.!

ADVANCE SWITCHMODE

5 volt 10 amp $£ 25$ 5 volt 20 amp $£ 40$ 5 volt $\mathbf{6 0}$ amp $\mathbf{£ 4 0}$
5 volt 100 amp $\mathbf{f 6 0}$
DISK DRIVE PSU
New DRI 3029 output +/-, 15 volts 8 amps reg..................... $\mathbf{£ 5 0}$

TRANS. 500 VA 230/110v.
Brand new, cased...................£12

Please add 15\% VAT. Phone for carriage costs.
Thousands of one-off bafgains also available for callers - we are open 6 days a week 9 a.m. -5 p.m. We also stock full range of DEC systems and spares from PDP11/03 to VAX 11/780, all available immediately ex-stock. Please telephone for details or ask for our catalogue. Access Cards accepted.
For further information on any of above items or carriage cost call Chris Kinsey on 0240771234.

WW - 082 FOR FURTHER DETAILS

 readouts of peak power delivered for the protection of both the
loudspeaker and the perceived quality of sound. Gives instant indication even for peaks of only five microseconds' duration. Unit uses CMOS technology, is self-contained and battery Only f17.40 plus VAT

VERTICAL FRONT LOADING CASSETTE DECK VFL910

This deck is used in our Linsley-Hood Cassette Recorder 2 and has every possible feature to ensure top notch performance Recorder" by A. J. Ewins. 12v DC Servo Feedback Motor
VFL210 Deck. Fitted with MS16 Sendust Altoy Super Mead $\mathbb{E} 1.99$
FEED YOUR MICRO BYTES WITH OUR SOLENOID CONTROLLED CASSETTE

Front loading deck with full solenoid control of all functions Fitted 3 -digit mernory counter and Hall IC Motion Sensor, Stan dard orase and stereo R/P Heads. Cheapest price ever for all these features. Only $£ 38.20$ plus VAT. Full technical specification

LINSLEY-HOOD 100 WATT POWER AMPLIFIER We heve done two kits to this design, one using the original car
cassette mechanism and the newer version using a very high
quality front loading deck. This new deck has an excellemt $\&$ \& F cassette mechanism anct. This new dect has an excellem W \& F
quality front loading deck
performance and fited with our latest Sendust Alloy Super performance and fitted with our lateast Sendust Alloy Super
Head gives on incredible frequency range (with good tape you Head glves on incredibl
can see 23 KHz on ours). Unsley-Hood Cassette Recorder 1................E75.00

Telephone: Oswestry (0691) 2894

Personal callers are always very welcome but please
note that we are closed all day Saturday
Our complate kit f our Linstey-Hood Cassette Recorder 2. Kit includes all parts fo wo power amplifiers with large heatsink area, huge power E114.4s but our special introductory price for all parts bough together is onty $\mathbf{£ 1 0 5 . 5 0}$.

HIGH QUALITY REPLACEMENT CASSETTE HEADS

4 1 41

Do your tapes lack troble? A worn head could be the problem. Fitting one of our replacernent heads could restore perfiormance
to better than newl standard mountings make fitting essy and our TCI Test Cassette helps you set the azimuth spot-on. We are the actual importars which means you get the benefit of lower prices for prime parts. Compare us with other suppliers and seel Gor use on Doiby machines and are ex-stock.
HCZ0 Permalloy Stereo thead. This is the standard head fited es HCZo Permalloy Stereo Heed. This is the standard head fitted ss
Original equipment on most decks 25 oripinal equipment on most decks 4.25
 HS16 Sendust Alloy Super Head. The best head we can find.
Longer life than Permalloy, higher output than Forrite, fantastic
 HO5514-rrack Head for auto-reverse or quadrophonic use. Full
specification record and playback head Please consult our list for technical data on these and other
Special Purpose Heads.

SPECIAL OFFER

Replacement heads for SONY machines
Firsac Quality Stereo head with special base to fit Sony decks.
These are only available while stocks last. 30 buy now to Trade price aveilable on 10 or more.

HART TRIPLE-PURPOSE TEST CASSETTE TC1

One inexpensive test cassette enables you to set up VU level head azimuth and tape speed. invaluable
heads. Oniy $£ 3.80$ plus VAT and $50 p$ postage.
Tape Head De-magnetser. Handy cassette size mains opereted unit prevents build up of residust heed magnetisation causing
noise on playback..

CASSETTE MOTORS

Erand Now Governed 12v DC Tape Ortve Motor Type mamlAs used in SF925 and many other decks. 40 mm Oia $\times 35 \mathrm{~mm}$ Long, Shath 10.5 mm long $\times 2 \mathrm{~mm}$ Ois. $6 \times 2.5 \mathrm{~mm}$ Mounting Holes on 26 mm PCD on shaft end faco. Antl-cloctwise rotation at ancod speod o
Lenco CRV/FFR.
We heve a small quantity of spare motora for these deciks at $£ 6$ ilarge), 30p (Small).

Full details of the entire range of HART products is contalned in
our illuatrated lists.
Ask for your FREE copy NOW.
us hive three IRCs to cover the cose from overseas but please let irmail. In a hurry? A telephone order with credit card number placed Plasse add part cost of post, packing and insurance as follows:
inland
overseas

Orders $u p$ to $£ 10-50 p$
Orders $£ 10$ to $£ 49-£!$

ALL PRICES PLUS VAT

DAROM SUPPLIES Dept. AW. Telf (0925) 64764

4 Sandy Lane, Stockton Heath Warrington, Cheshire, WA4 2AY

sabtronics

FREQUENCY METERS
8 digit:

* Convenient single input for entire range
t Big easy to read LED display
* Excellent sensitivity
+ 10MHz crystal controlled timebase
t Battery or mains operated
t 3 switch selectable gate times
8110A........ 20Hz-100MHzf67
8610A....... 20Hz-600MHzf82

9 digit:

- 9 digit resolution for more precise readings
t Excellent 30 mV sensitivity up to 1 Ghz * 3 switch selectable gate times * 10 MHz crystal controlled timebase * 2 separate inputs for added versatility * Front panel sensitivity control

Add 15\% VAT on all prices correct at 1-5-82 E \& OE cash with order or credit card Carriage f1 for all orders

LOW-NOISE GASFET PREAMPLIFIERS RF LINEAR POWER AMPLIFIERS

TYPE 9002 TWO-STAGE GASFET PREAMPLIFER. Noise factor 0.7 dB . Gein 10-35
dB. variable. Ch. group A 21-34, 8 39-51 or CO 49-68. Masthend/local TWO-STAGE GASFET STRIPLINE PREAMPLFIER. NT ANO PACKING

TWO-STAGE GASFET STRIPLINE PREAMPLIFER. N.F.
$10-35 \mathrm{~dB}$, variable. Aligned to specified frequency in the range 250
500 500 MHz . masthead/local use... POST AND PACKING lacaluse $15 \mathrm{~V}+\mathrm{DC}$. N.F. 1.0 dB . Gain $10-30 \mathrm{~dB}$. variable. masthead POSTANO PACKING RF PREAMPLIFIER. Aligned to your apecifiad frequency in the range POST AND PACKING 3.0 dB. Gain RF PREAMPLFIER. $1 \mathrm{KHz}-100 \mathrm{MHz}$ without tuning. N.F. 3.0 da. Gain 40 dB . Increases sensitivity of instruments by 100 simes

TYPE SOSA 1500 MHz FREOUENCY DIMIDER BY 10 Durdes inpur fravencies in tha range $100-1500 \mathrm{MHz}$. by 10 . May be used ahead of trequency meters and counters to increase the frequency of measuroment.
Enables UHF oscillators to be phaselocked to high-stability reference to be phase-ocked to a lower frequency PHASE-LOCKED SIGNAL SOUACE using low-frequency referonce crystal. Specity output in the range $1-800 \mathrm{MHz}$. Output $10 \mathrm{~mW} .+10$ VMOS WIOEBAND LINEAR POWER AMPLIFIER POST AND PACKING 30 KHz -60 MHz with out tuning. 4 watts max. AF output. Power gain 10 dB VMOS WIDEBAND LINEAR POWER AMPLFIER 30 MHz-200MHZ without tuning. 4 watts max. RF output. Power gain 10 da. LINEAR POWER AMPLIFIER. Tolevision bands IV and V. 4 wett R output. 3-ztago. 50 mW . YMOS LINEAR POWER AMPLIFIER. 20 Wath RF OUtDUL Algned to your specified trequency in the range $1-400 \mathrm{MHz}$ POST ANO PACKING VMOS LINEAR POWER AMPLIFIER. 80 watrs $A F$ Output. Aligned to your specified trequency in the range $1-400 \mathrm{MHz}$. Integra. maina VMOS WIDEBAND LINEAR POWER AMPLIFIER. 20 WOST AND PACKIN $10 \mathrm{KHz}^{-60} \mathrm{MHz}$ without tuning. Power gain 10 dB . Integral maini power supply -.. VMOS WIDEEAND LINEAR POWER AMPLIFIER. 20 wetts RF OUtDu $30 \mathrm{MHz}-200 \mathrm{MHz}$ without tuning. Power gain 10 dE . Integral mains power supply ...
FM TRANSMITTER. B8-108 MHz. 50 watte RF output..............ing
FM TRANSMITTER. $88-108 \mathrm{MHz} .50$ watts RF output with intogra mains power supply ..
PHASE-LOCKED SIGNAL SOURE USing MOW OUTD $10 \mathrm{~mW}+$ ${ }^{2} 8.50$ £1.50 248.50
$£ 2.00$ $\begin{array}{r}64.50 \\ \\ \hline 2.00\end{array}$ £120.00 $\begin{array}{r}120.00 \\ \hline 18.00\end{array}$ 120.00
54.00 8180.00

TVPE 9004 [180.00 1180.00 58.00
810.00 10000 820.00
58.00

EASE ADO V.A.T. 15\% ON TOTAL

RESEARCH COMMUNICATIONS LTD.
UNT 3, DANE JOHN WORKS, GORDON ROAD, CANTERBURY, KENT CT1 3PP TELEPHONE: CANTERBURY (0227) 56408

Happy Memories

Soft-sectored floppy discs per 10 in plastic library case: 5-inch SSSD £17.00 5-inch SSDD £19.25 5-inch DSDD £21.00 8-inch SSSD £19.25 8-inch SSDD £23.65 8-inch DSDD £25.50 74LS Series TTL: Large stocks at low prices with D.I.Y discounts starting at a mix of just 25 pieces. Write or phone for list.

Please add 30p post and packing to orders under $£ 15$ and V.A.T. to total
Access and Barclaycard welcome : 24-hour service on 054-422 618
Government and Educational Orders welcome - $\mathbf{E 1 5}$ minimum

Trade accounts operated : Phone or write for details

HAPPY MEMORIES (WW)
 Gladestry, Kington

Herefordshire HR5 3NY
Telephone: 054-422 618 or 628

Tel: 10462) 33031
Shopopon Mon. Snt. $9 \mathrm{a} . \mathrm{m} .5 .30 \mathrm{p} . \mathrm{m}$
Closed all dar Wiodnesty return of post.
Electronice
Ltad.
Official ordess from echools, colleges and universitiee welcome. Trade and export enquiry P.\&P. Add
P.EP. add 45 p to all orders under $\mathrm{E10}$. Tolephone your Access orders, using our $\mathbf{2 4 - h r}$ VAT - All prices excluelive of VAT - Please edd 15% to total cost including P. \& P. No VAT on export orders or books.

WW-023 FOR FURTHER DETAILS

COMPUTER APPRECIATION

86 High Street, Bletchingley, Redhill, Surrey RH1 4PA - Tel: Godstone (0883) 843221

8MM Selectric (golftall) terminal, Keyboard printer similar to Model 735, but complete with keyboard and
 SP LO Hy Yype $1 / 45 \mathrm{cps}$ daisy wheel printer
SPERRY-REMINGTON Word Processora. Comprining a dual cassette tape drive together with an IBM IBM) using OUME Procassor Model MAGNAll. Microprocessor based magnatic card syatem (compatible with new generation word processors such as OLYMPIA ES Series. Printing speed le 45 cpa with FACIT Model 4070 high speed (75 cpa) paper tope punch with parallel TTL intertace275 FACIT Model 4070. As above, but BRAND NEW and in orlginal packing intertace
FACIT Model 4020 Paper Tape Reader. Companion to Model 4070 punch. 300 cps , pareellel interface E2s0 OAABLO Series 30 removable Disc Drive. 2.5 megabyto with industry standerd interface. These drives are notod for their reliabllity and esay maintenance. Hardwere, sothere and media compatible with the OEC
RKO5. COntrolers are available for DEC Unibus, Q -bus, NOVA, S 1000 and other machines at POWER SUPPY for sbove...EES ES5 WANGCO T1000 Series Oisc Drives. Various modols from
SYSTME RKOF UNIBUS CONTROLLER COMplete with a DIA PIO Sed in "es now" condition.. CALCOMP Model 563 AO Drum Plotter. Step size 0.1 mm . Immeculate condition ADLER Correspondence quality $1 / O$ Yypowriter..

DAROM SUPPI_ISS Dept: AW -Tel: (0925) 64764

4 Sandy Lane, Stockton Heath, Warrington, Cheshire WA4 2AY SAFGAN British Made Scopes A range of high-performance, economically priced scopes featuring:

OSCILIOSCOPES tuf FUTURE sents
 BY LEADER

All Models feature.
\star Dual Trace
\star-inch rectangular CRT
\star Max. sensitivity $500 \mu \mathrm{~V}$
\star TV-V, TV-H sync.
\star ALT trigger
\star Hold OFF variable
\star X Y Facility

* Preset Sync.
\star Z Modulation
\star Includes 2 XI/XIO Probes
LBO 524 features Delayed
WW - 092 FOR FURTHER DETAILS

LANGREX SUPPLIES LTD
 Climax House, Fallsbrook Rd., Streatham, London SW16 6ED
 SEMICONDUCTORS

				EGRATED CIRCU												
BASES																

GET
 MEB

Due to continous improvements in components and design ILP now launch the largest and most advanced generation of modules ever.

WE'RE INSTRUMENTAL IN MAKING A LOT OF POWER

In keeping with ILP's tradition of entirely self-contained module eaturing, integral heatsinks, no external components and only 5 connections required, the range has been optimized for efficiency flexibility, reliability, easy usage, outstanding performance, value for money.
With over 10 years experience in audio amplifier technology ILP are recognised as world leaders.

Module Number	Output Power Watts rms	$\begin{gathered} \text { L.oad } \\ \text { Impedance } \\ \Omega \end{gathered}$	$\begin{aligned} & \text { DISTC } \\ & \text { T.H.O. } \\ & \text { TYQ at } \\ & \text { 1KHz } \end{aligned}$	$\begin{aligned} & \text { ORTHON } \\ & \text { IM. } \mathrm{CO} \\ & \text { GOHz } \\ & 7 \mathrm{KHz} 4 . \end{aligned}$	Supply Voltage Tvp	$\begin{aligned} & \text { Size } \\ & \mathrm{mm} \end{aligned}$	$\begin{aligned} & \text { WT } \\ & \text { gms } \end{aligned}$	$\begin{aligned} & \text { Price } \\ & \text { inc. } \\ & \text { VAT } \end{aligned}$
Hrs313	15	4.8	0.015\%	<0.005\%	± 18	$76 \times 68 \times 40$	240	L8,40
HY6is	30	4.8	0.015\%	<0.0064\%	± 25	$76 \times 68 \times 40$	240	$\underline{59.55}$
14Y6iter	$30 \cdot 30$	4.8	0.015\%	<0.006\%	+25	$120 \times 78 \times 40$	420	C18.69
irviz	60	4	0.01\%	<0.006\%	± 26	$120 \times 78 \times 40$	410	¢20.75
HYP188	60	8.	0.01\%	< 0.006%	\pm	$120 \times 78 \times 40$	410	¢20.75
-19244	120	4	0.01\%	<0.006\%	± 35	$120 \times 78 \times 50$	520	¢25.47
$\mathrm{H}^{\times} 248$	120	8	0.01\%	<0.006\%	± 50	$120 \times 78 \times 50$	520	¢25.47
H- H_{364}	180	4	0.01\%	<0.006\%	± 45	$120 \times 78 \times 100$	1230	¢ 38.41
M Y 368	180	8	0.01\%	<0.006\%	± 60	$120 \times 78 \times 100$	1030	¢38.41

Protection Full load Ine. Slew Rate. $15 \mathrm{v} / \mu$ s. Risetime 5 sus . S / N ratio: 100 db
Frequency response ($1-3 \mathrm{aB}$) 15 Mz - 50 kMz . Input senshivigy: 500 mV rms.
PRE:AMP SYSTEMS

Modula Number	Modula	Functions	Current Required	Price inc. VAT
HV6	M.no pre amo	Mric/Mag. Cariridge/T uner/Tape/	10 mA	¢7.60
HV66t	Stereo pre amp	Mic/Mag. Cartr dge/Tuner/Tape/ Aux • Vol/Bass/Treble/Batance	20 mA	f14.32
H273	Guital dre amp	Ino Guitar (Bass tead) and Mic * sepurate Volume Bass T 'eble +M . x	20 mA	f13.36
HY78	Stereo pre amp	As MY66 less ione controts	20 ma	¢14.20

Most pre amp modules can be driven by the PSU driving the main power amp. 5.47 (nc. VAT Preamp and mixing modules is different varid

Piease send for detals.
Mounting Boards
For ease of construction we recommend the $\mathbf{8 6}$ for modules HY6-HY $13 £ 1.05$
anc. VAT) and the $\mathbf{8 6 6}$ for modules $\mathrm{HY} 66-\mathrm{HY} 78 £ 1.29$ (inc. VAT)
POWER SUPPLY UNITS (Incorporaling our own toradal transforme

Moded Number	for Use with	Price inc VAT	Model Number	Foit Use With	Pries inc. VAT
PSU 21x	1or2 2 YY30	¢1.93	PSU 52x	$2 \times 4 \mathrm{H} 124$	[17.07
PSU $41 \times$	$10.2 \mathrm{HY60.1} \times \mathrm{HV} 6060.1 \times \mathrm{HY} 124$	¢13.83	PSU 53x	$2 \times \mathrm{MOS128}$	¢ 17.86
PSU 42x	$1 \times$ HY 128	£15.90	PSU 54 x	$1 \times \mathrm{HY} 248$	¢17.86
PSU 43x	$1 \times \mathrm{MOS} 128$	f16.70	PSUU 55x	1 * MOS248	£19.52
PSU $51 \times$	$2 \times \mathrm{Mr} \mathrm{128,1} \mathrm{\times HY244}$	¢17.07	PSU71x	$2 \times \mathrm{HY} 244$	¢2: 2.75

[^8]
WITHALOT OF HELP rnom ELECTRONICS LTD

PROFESSIONAL HIFFI THAT EVERY ENTHUSIAST CAN HANDLE...
 Unicase

Over the years ILP has been aware of the need for a complete packaging system for it's products, it has now developed a unique system which meets all the requirements for ease of assembly, aclaptability, ruggedness, modern styling and above all price.
Each Unicase kit contains all the hardware required down to the last nut and bolt to build a complete unit without the need for any special tools.
Because of ILP's modular approach, "open plan" construction is used and final assembly of the unit parts forms a compact aesthetic unit. By this method construction can be achieved in under two hours with little experience of electronic wiring and mechanical assembly.

Hi Fi Separates

UC1 PRE AMP UNIT: Incorporates the HY78 to provide a "no frills", low distortion, ($<0.01 \%$), stereo control unit, providing inputs for magnetic cartridge, tuner, and tape/ monitor facilities. This unit provides the heart of the hifi system and can be used in conjunction with any of the UP Unicase series of power amps. For ultimate hum rejection the UC1 draws its power from the power amp unit.
POWER AMPS: The UP series feature a clean line tront pane I incorporating on/off switch and concealed indicator. They are designed to compliment the style of the UC1 pre-amp. Performance for each unit which includes the appropriate power supply, is as specified on the facing page.

Power Slaves

Our power slaves, which have numerous uses i.e. instrument, discotheque, sound reinforcement, feature in addition to the hi fi series, front panel input jack, level control, and a carrying handle. Providing the smallest, lowest cost, slave on the market in this format.

UNICASES					
HIFI Separates					Price inc. VAT
UC1	Preamp				$\overline{\text { E } 29.95 ~}$
LPIX	$30+30 W / 4-8 \Omega$	Bipolar	Stereo	Hif:	E.54.95
UP2X	$60 \mathrm{~W} / 4 \Omega$	Bipoiar	Mono	HiF:	¢54.95
UP3X	$60 \mathrm{~W} / 8 \Omega$	Bipolar	Mono	HiF	¢54.95
UP4X	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	HiF	$£ 74.95$
UP5X	$120 \mathrm{~W} / 8 \Omega$	Bipolar	Mono	HiFi	$£ 74.95$
UP6X	60W/4-8	MOS	Mono	HiFi,	E64.95
UP7X	120W/4-8	MOS	Mono	HiFF_{1}	¢ 84.95
Power Slaves					
USIX	$60 \mathrm{~W} / 4 \Omega$	Bipolar	Power	Slave	$£ 59.95$
US2X	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Power	Slave	£79.95
US3 X	60W/4-8	MOS	Power	Slave	$£ 69.96$
US4 X	120N/4-8ת	MOS	Power	Slave	$£ 89.95$

[^9]

TO ORDER USING OUR FREEPOST FACILITY
Fill in the coupon as shown, or write details on a separate sheet of paper, quoting the name and date of this journal. By sending your order to our address as shown at the bottom of the page opposite, with FREEPOST clearly shown on the envelope, you need not stamp it. We pay postage for you. Cheques and money orders must be crossed and made payable to I.L.P. Electronics Lid. if sending cash, it must be by registered post. To pay C.O.D. please add f 1 to TOTAL value of order.
PAYMENT MAY BE MADE BY ACCESS OR BARCLAYCARD IF REQUIRED

\qquad Total purchase price __________ I enclose Cheque \square Postal Orders \square Int. Money Order \square Please debit my Access/Barclaycard No.

Address

Signature

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, N. Finchley, London, N. 12.5 mins. from Tally Ho corner Telephone 445 2713/0749
(9461)

WW - 066 FOR FURTHER DETAILS

पPUS SUPPLIES dISC DRIVE DISCOUNTS

ONLY £199 + carriage and VAT

51/4 $4^{\prime \prime}$ Dual side, dual density 350 K.Bytes formatted FD250

ONLY £149 + carriage and VAT

Unbelievable savings on these high quality industry standard disc drives. Manufactured in the U.S.A. by Pertec Corporation. These factory fresh drives are supplied with a 90-day warranty and are ideal for use with most current microcomputers subject to the availability of suitable disc drive controllers.
We are sorry that these details are so brief - but we have only just bought the drives - do telephone us for further details - you will not be disappointed!

$12^{\prime \prime}$ RGB Colour Monitor

ONLY £199.95 + carriage
and VAT
Limited quantity available Superb resolution
Precise colour registration Call for details

«. RGB COLOUR MONITOR vouanareme

LIMITED QUANTIT
AVILABLE
FOR USE WITH
B.B.C., MICRO,
APPLE,
WITH R.G.B.
COLOUR CARD,
etc.
Specification: The VMC 22 Colour Monitor is designed to meet the high reliability and performrence standards associated with the games, ciated with the games, data and computer colour graphics industries.
Input levels: Video-TTL compatible either + ive Input levels: Video-TTL compatible either +ive
or -ive going for RGB (IC37416 -ive going 7417 + ive going).
Composite Sync: TTL compatible either +ive or -ive going set by PCB link. Separate sync: (Frame and tine) TTL compatible +ive going = video response 10 MHz .
Deflection: Scanning systems, 625 line 50 Hz and 525 line 60 Hz .
Scan linearity: Errors less than 5%.
Scan geometry: Errors less than 3\%
High voltage: 25 KV .
X radiation: Less than $0.5 \mathrm{MR} / \mathrm{h}$.

After months of negotiation we have finally secured the computer user's dream. We have bought the complete manufacturer's production of these superb British made R.G.B. Colour Monitors and can offer them to you at this unrepeatable price. This offer, available to readers of "Wireless World" also includes a FREE isolating transformer. So with a little of your time and our buying power - you can save pounds. For shipping purposes the C.R.T. and scan coil assembly are separate from the chassis. The lugs of the C.R.T. allow it to be mounted in a standard 22" colour TV cabinet or a unit of your own design. The unit is assembled by plugging the wires from the chassis to the tube, soldering the input connector, power connector and isolating transformer. The monitor has been fully tested and adjusted prior to packing thus simplifying assembly. A comprehensive instruction sheet will be supplied with each unit.
HOWTO
SEE US AT THE NORTHERN COMPUTER FAIR
ORDER

BELLE VUE, MANCHESTER. NOV. 25-27, STAND 426

Carriage should be added to prices at the following rates: Monitor £10; 12"Monitor $\mathfrak{f 7}$; Disc Drives $£ 7$. Please add carriage as applicable and then VAT at 15% to total and send Cheque/P. Order payable to "Opus Supplies" to Dept. W.W., Opus Supplies, 10 Beckenham Grove, Shortlands, Kent BR2 OJU. Telephone order Hotiine: $01-4645040$ (24-hour service) or $01-4641598$. Access and Berclaycard accepted. If you are not completely satisfied return the goods within 14 days and your money will be refunded.
[8:4
FRSTINTHE WORLD
The ICM－12，synthesized，marine
hand－portable radio

WW－ 062 FOR FURTHER DETAILS

FORPEOPTE whodonthave MONHITOBURN

MEM PROGRAMME DEVELOPMENT CENTRE £499 Very cleverly，our PDC helps you spot any bugs in programmes before you bum up to 4 EPROMS at a time．（It accommodates $2 k$（ 2716 family） 4 k （2532 family），4k（2732 family）EPROMS and E ${ }^{2}$ PROM（HITACH 48016）． Very surprisingly，it＇s all yours for the break－through price of $£ 499$ ．Send this coupon for the full story and details of your nearest dealer．And stop wasting time and money．
FTATURES INCLUDE：EPROM or host computer loading through RS232 interface to 4 k battery backed RAM；pre－programmed instruction menu；Hexidecimal，Motorola 6800 assembly language or ASCll code：interactive editing and simulation；interfaces through 20 mA or RS232 loop link to any peripheral．
$\triangle E L A$

SN76660N 0.80
SN76666N 0.70
TA7061AP 3.96

ートー

TA
TA
TA
TA
TA
TA

SEMICONDUCTORS

R2008B R2010B R20

${ }^{2 S} \mathbf{2 S 2 3 4}$

in4003	0.08
IN4004	0.06
in4005	0.06
｜N4006	0.06
｜N4007	0.06
（N4148	0.02
IN4448	0． 10
1N5401	0.12
iN5402	0.14
IN5403	0.12
1 N 5404	0.12
｜N5405	0.13
1N5406	0.13
｜N5407	0.16
IN5408	0.16
$1 T T 44$	0.04
17923	0.15
ITT2002	0.10

CRT TUBES
 A selection available．

 Prices on request． $\begin{array}{lll}\text { 3BP1 } \\ \text { 5BHP11 } \\ \text { £ } 10 & \text { D14－210GH }\end{array}$ $\begin{array}{llll}\text { 5BHP11 } & \text { E35 } & \text { D14－1200GH } \\ \text { 5BKP1 } & \text { E30 } & \text { D14－260GH }\end{array}$ 13BP4 E35 95447 GMDATA \＆EQUIV．BOOKS

Transistor Data Book includ． ing Japen－ ase types．Two books， 2.60 palr．	$\begin{aligned} & \text { I.C. DATA } \\ & \text { BOOKK } \\ & \text { UN } 1 \text { covering } \\ & \text { Op Amps } \\ & \text { LN } 2 \text { covering } \\ & \text { Regulators } \\ & \text { CA. } 85 \text { ech } \end{aligned}$

PHONE P．M．COMPONENTS LTD SELECTRON HOUSE，WROTHAM ROAD
 TELEX
 0474813225 3 LINES MEOPHAM GREEN，MEOPHAM，KENT DABOQY

 965966

 965966}

A SELECTION FROM OUR STOCK OF BRANDED VALVES

\begin{tabular}{|c|c|c|c|c|}
\hline A1714 \& 18.5 \& E1148 \(\quad 1.00\) \& EF93 0．86 \& GZ33 4.50 \\
\hline A1998 \& 11.50 \& EA50 1.00 \& EF94 0．65 \& GZ34 \(\quad 2.15\) \\
\hline A2087 \& 11.50 \& EA76 1．85 \& EF95 1.00 \& GZ37 \(\quad 4.50\) \\
\hline A2134 \& 17.50 \& EA79 1．96 \& EF97 0.90 \& HAA91 1.00 \\
\hline A2293 \& 6.50 \& EAA91 0．e0 \& EF98 0.90 \& HABC80 0.90 \\
\hline A2426 \& 17.50 \& EABCBO 0．80 \& EF183 0．65 \& H8C90 0.75 \\
\hline A2521 \& 21.00 \& EAC91 2.50 \& EF194 0．65 \& HBC91 0.80 \\
\hline A2599 \& 37.50 \& EAF42 1.20 \& EF731 1．00 \& HF93 0.75 \\
\hline A2900 \& 11.50 \& EAF801 1.40 \& EF732 1.00 \& HF94 0．00 \\
\hline A 3042 \& 24.00 \& EB34 1．50 \& EF800 11.00 \& HK90 \\
\hline AC／HL／D \& 4.00 \& E84 12.00 \& EF804S 9．80 \& HL2K 3.50 \\
\hline ACP \& 4.00 \& E891 0.52 \& EF805S 9．05 \& \begin{tabular}{ll}
HL23DD \\
HL4． \\
\hline
\end{tabular} \\
\hline AC／PEN \& 4.00 \& EBC33 2.50 \& EF806S 9．85 \& HL41
\(H\) \\
\hline AC／THI \& 4.00 \& EBC41 1.15 \& EF812 0．65 \& \begin{tabular}{ll}
HL4100 \\
HL42DD \\
\hline
\end{tabular} \\
\hline AC／VP1 \& 4.00 \& E8C81 0．85 \& EFL200 1．50 \& \begin{tabular}{ll}
HL42DD \\
HL90 \& 3.50 \\
\hline
\end{tabular} \\
\hline AC／VP2 \& 4.00 \& EBC90 0.78 \& EH90 \& \begin{tabular}{ll}
HL90 \\
HL92 \& 1.50 \\
\hline
\end{tabular} \\
\hline AC2／PEN \& \& EBC91 0．75 \& EK90 0．72 \& HL133／DD 3.50 \\
\hline \& 6.00 \& EBF33 2.50 \& EL32 0.50 \& HR2

H23

\hline AH221 \& 39.00 \& EBFRO 0.50 \& $\begin{array}{ll}\text { EL33 } & 4.00 \\ \text { L34 } & 1.98\end{array}$ \&	HY90
1.00	

\hline AH238 \& 39.00 \& EBF83 0.50 \& EL34 1.98 \&	HY90
HVR2	
1.00	

\hline AL60 \& 6.00 \& EBFF65 0．95 \& EL34 Mullard \&	HVR2
KTBC	
7.00	
1.00	

\hline ARP12 \& 0.70 \& EbF89 0.70 \& 136 2．96 \& | K18C | |
| :--- | :--- |
| $\mathrm{KT33C}$ | |
| | |
| | |
| 1.50 | |

\hline ARP34 \& 1.25 \& E8F93 0．95 \& | EL36 | |
| :--- | :--- |
| EL 37 | $\mathbf{1 . 5 0}$ |
| 100 | | \& $\begin{array}{ll}\text { K1736 } & \mathbf{2 0 0} \\ \mathrm{KT} 36\end{array}$

\hline ARP35 \& 2.00 \& EEL1 1.50 \& EL37 9.00 \& $\begin{array}{ll}\text { KT36 } & \\ \text { K }\end{array}$

\hline AZ31 \& 2.00 \& ${ }_{\text {ERL21 }}$ \& $\begin{array}{ll}\text { EL38 } & 8.00 \\ \text { EL41 } & 2.00 \\ \end{array}$ \& $\begin{array}{ll}\text { KT44 } & 4.00\end{array}$

\hline 8163 \& 2.00 \& EC52 0．78 \& | El41 | 2.00 |
| :--- | :--- |
| $\mathbf{2 l 4 2}$ | |
| | |
| 182 | | \& KT45 4.00

\hline BS450 \& 67.00 \& EC80 4．25 \& EL42 2.00 \& KT61 ${ }^{\text {K }}$

\hline BT5 \& 49.50 \& EC81 4.50 \& EL81 \& $\begin{array}{ll}\text { K1663 } & 300 \\ \text { KT63 } & \mathbf{2 0 0}\end{array}$

\hline BT19 \& 32.50 \& EC86 1.00 \& EL82 0.58 \& KT63 USA 2.00

\hline 8179 \& 12.50 \& EС88 \& EL83 ${ }^{\text {ELSO }}$ \& KT66 GEC 9.00

\hline CIK \& 18.00 \& EC90 0.70 \& EL84 0.0 .09 \& | KT66 GEC | |
| ---: | :--- |
| KT67 | 15.00 |
| 1.00 | |

\hline C3JA \& 16.00 \& EC91 $\quad 7.00$ \& EL85 4．80 \& KT77 Gold Lion

\hline C1108 \& 55.00 \& EC92 1．25 \& EL86 0．\％5 \& K177 Gold Lion

\hline C1134 \& 17.50 \& EC93 0.00 \& EL90 0.88 \& KT81 $\quad 7.50$

\hline C1148A \& 80.00 \& EC95 $\quad 7.00$ \& EL91 8.00 \& K181 USA 7.00

\hline C1149／1 \& ${ }^{89} 900$ \& EC97 ${ }^{\text {E }}$ \& $\begin{array}{ll}\text { EL95 } & 0.70 \\ \text { EL183E } & 3.50\end{array}$ \& KT88 GEC

\hline C1534 \& 32.00 \& $\begin{array}{ll}\text { EC8010 } \\ \text { ECC32 } & 3.00 \\ 3.00\end{array}$ \& $\begin{array}{ll}\text { EL183E } & 3.50 \\ \text { EL183P } & 3.50\end{array}$ \& K188 GEC 11.50

\hline CBL31 \& 2.00 \& $\begin{array}{ll}\text { ECC32 } & 3.00 \\ \text { ECC33 } & 3.00\end{array}$ \& $\begin{array}{ll}\text { EL360 } & \mathbf{7 . 9 5}\end{array}$ \& KT88 Gold Lion

\hline CL30 \& 2.00 \& \& EL504 1.40 \& KTw61 2.00

\hline CL33 ${ }^{\text {CMG25 }}$ \& 2.00
9.00 \& ECC81 ${ }_{\text {EC81 }}$ \& EL508 1．90 \& KTW62 2.00

\hline CVNos P \& Prices \& ECC81 Mullard \& EL509 3．75 \& KTW63 1．50

\hline on requ \& \& 1.10 \& EL519 4.50 \& KTZ63 128

\hline 063 \& 1.20 \& ECC82 0．56 \& EL802 1.40 \& L63 K 1.00

\hline DAF91 \& 0.45 \& ECC82 Philips \& EL821 10．35 \& $\begin{array}{lll}\text { L102／2K } & \text { 2．00 } \\ 120 / 2 \mathrm{~K} & 12.00\end{array}$

\hline DAF96 \& 0.68 \& 1.10 \& EL822 10．36 \&

\hline DC70 \& 1.75 \& ECC83 0．0\％ \& EM1 4.00 \& LCF200 1．35

\hline ${ }_{\text {DC90 }}$ \& 1.20 \& ECC83 Multard 1.35 \& | EM4 | |
| :--- | :--- |
| EM34 | $\mathbf{7 . 0 0}$ |
| 1.50 | | \& LCH200 1．35

\hline （4 \& 12.00 \& Eccs3 Philips \& EM35 $\quad 1.50$ \& LFigs 1.00

\hline OCX4－5 \& 00 \& 1.10 \& EM80 0.70 \& LFL200 1．35

\hline \& 25.00 \& ECC84 0.50 \& EM81 0.70 \& LY500A 1．75

\hline DET10 \& 8.00 \& ECC85 0.60 \& EM84 $\quad 1.10$ \& M502A 133.00

\hline DET22 \& 28.00 \& ECC86 1.45 \& EM85 $\quad 1.10$ \& M537A 160.00

\hline DET24 \& 39.00 \& ECC88 0.65 \& EM87 $\quad 1.10$ \& M5143 158.00

\hline DET25 \& 22.00 \& ECC88 Mullard \& EMM ${ }^{\text {co3 }} \mathbf{2 . 5 0}$ \& M8079 6.00

\hline DF91 \& 0.45 \& Eccal 1.80 \& EN10 \& M9083 ${ }^{\text {M }}$

\hline DF92 \& 0.50 \& Ecc91 2.00 \& EN32 10.50 \& $\begin{array}{ll}\text { M80991 } & \text { 7．50 }\end{array}$

\hline DF96 \& 0.05 \& ECC180 0．72 \& EN91 0.95 \& $\begin{array}{ll}\text { M8091 } & 7.50 \\ \text { M9096 } & 3.00\end{array}$

\hline D＋63 \& 1.20 \& ECC189 0．78 \& EN91（SO） 2.50 \& M8096 $\quad 3.00$

\hline D＋777 \& 0.50 \& ECC801S 3.50 \& EN92 4.50 \& M8098 320

\hline DH79 \& 0.58 \& ECC803S 3.50 \& ES1500 115.00 \& M8899 ${ }^{4.00}$

\hline DH149 \& 2.00 \& ECC804 0.80 \& ET1 11.00 \& M8100 2.88

\hline DK91 \& 0.90 \& ECC007 1.95 \& EY51 0．80 \& M8136 7.00

\hline DK92 \& 1.20 \& ECC808 2.28 \& EY81 0.60 \& M8137 5.50

\hline DK96 \& 2.50 \& ECC2000 12.00 \& EY83 1.50 \& M8161 5.50

\hline DL35 \& 1.00 \& ECF80 0.72 \& EY84 8．00 \& M8162 5.50

\hline DL63 \& 1.00 \& ECF82 0．e0 \& EYbaw 10.00 \& M8163 3.85

\hline DL70 \& 2.50 \& ECF86 1．25 \& EY86／87 0．50 \& M8190 3．85

\hline DL73 \& 2.50 \& ECF200 1．85 \& EY88 0.60 \& M8195 3.00

\hline DL91 \& 1.50 \& ECF202 1．85 \& EY99 3．50 \& M8196 3.25

\hline DL．92 \& 0.60 \& ECF801 0.06 \& EY500A 1.50 \& M8204

\hline DL93 \& 1.10 \& ECF804 6.00 \& EY802 0.70 \& M8223

\hline DL96 \& 2.50 \& ECFBO5 2.50 \& EZ35 0.50 \& | M8224 | 2.00 |
| :--- | :--- |
| M8225 | 2.00 |

\hline DiS10 \& 8.00 \& ECF806 10.28 \& EZ40 \&	M8225	
ME1400	2.00	
4.00		

\hline DLS 16 \& 10.00 \& ECH3 $\quad 2.50$ \& E241 1．25 \& ME1401 29.50

\hline DM70 \& 1.10 \& ${ }^{\text {ECH34 }}$ \& ${ }_{\text {E280 }}$ \& ME1403 29.50

\hline OM1 ${ }^{\text {co }}$ \& 2.78 \& | ECH35 | |
| :--- | :--- |
| ECH42 | 1.00 |
| 1.00 | | \& E290 0．98 \& ME1501 14．00

\hline OY51 \& 1.00
1.20 \& ECH81 \& FW4／500
2．00 \& MS4B $\quad 5.50$

\hline DY86／87 \& 0.58 \& ECH83 0.78 \& FW4／800 2.00 \& Mu14 1.50

\hline DY802 \& 0.60 \& ECH84 0.08 \& G1／371K 30．00 \& N37 ${ }^{13.50}$

\hline E1T \& 9.00 \& ECH2000 1.50 \& G55／1K $\quad 9.00$ \& ${ }_{\text {N78 }}^{\text {N／}}$

\hline E55L \& 21.50 \& ECL80 0．00 \& G180／2M 9.00 \& OAF 0.0

\hline E80CC \& 7.00 \& ECL82 0.05 \& G240／2D 9.00 \& OAZWA 1．50

\hline E80CF \& 10.00 \& ECL83 ${ }^{1.15}$ \& G400／1K 14.00 \& ${ }^{\text {OA3 }}$

\hline E8OF \& 9.50 \& ECL84 0.74 \& GC108 17.50 \& OR2WA 1.25

\hline E80， \& 9.50 \& ECL85 0．09 \& GC100 17．50 \& OC2 2.50

\hline E81CC \& 3.50 \& ECL86 0.74 \& GC10／4B 17．50 \& $\mathrm{OC}^{\text {O }}$－ 150

\hline E81L \& 12.00 \& ECL305 0.69 \& GC10／4E 17．50 \& $\mathrm{OC3}^{0} 31.50$

\hline E82CC \& 3.50 \& ED5100 3.50 \& GC12／4B 17.50 \& OMS^{1}

\hline E83CC \& 3.50 \& EF22 2.50 \& GD86W 6.00 \&	OM4
M	

\hline E83F \& 3.50 \& EF37A 2.00 \& GDT120M 5.00 \& OM6

\hline E86C \& 9.50 \& EF39 $\quad 1.00$ \& GE10 $\quad 9.00$ \& OM6 1．50

\hline E88C \& 6.00 \& EF41 3.50 \& GN4 $\quad 6.00$ \& OM9 ${ }^{\text {ORP43 }}$

\hline E88CC \& 2.60 \& EF42 2.50 \& GN10 $\quad 15.00$ \& ORP43 ${ }^{\mathbf{2} .50}$

\hline E90CC \& 5.00 \& EF50 1．50 \& GR10G 4.00 \& ORP50 $\quad 3.96$

\hline E92CC \& 2，00 \& EF55 2．20 \& GR10 4.00 \& P61 $\quad 2.50$

\hline E90F \& 9.09 \& EF1 1.50 \& GS10C $\quad 12.00$ \& P41 2.50

\hline E91H \& 3.50 \& EF72 1.20 \& GS10H 12.00 \& ${ }_{\text {PABC8 }}$

\hline E92CC \& 2.50 \& EF73 1.00 \& GS12D 12.00 \& РС88 0.75

\hline E130L \& 13.00 \& EF80 0.58 \& GT1C 17.00 \& ${ }^{\mathrm{PCO8}} \mathrm{CO}$

\hline E180CC \& 6.50 \& EF83 3.50 \& GT1C S／S 13.00 \& $\begin{array}{ll}\text { PC92 } & 0.81 \\ \text { PC97 } & 1.10\end{array}$

\hline E182CC \& 9.00 \& EF85 $\quad 0.50$ \& GTE175M 8.00 \& | PC8900 | 1.10 |
| :--- | :--- |
| 1.10 | |

\hline E180F \& 6.25 \& EF86 0.70 \& ${ }_{\text {GU20 }}{ }^{\text {GT150W }} 1.00$ \&

\hline E186F \& 8.50 \& EF86 Mullard 1.50 \& $\begin{array}{ll}\text { GU20 } & 70.00 \\ \text { GU50 } & 11.50\end{array}$ \& PCCOA 0.40

\hline E288F \& 19.50 \& EF89 ${ }^{\text {¢ }}$ \& GXU1 13．50 \& PCC85 0.54

\hline E283CC \& 7.50 \& | EF89 | |
| :--- | :--- |
| EF91 | 0.85 |
| 1.25 | | \& GXU3 24.00 \& PCC88 0.70

\hline E288CC \& 13.50

16.00 \& | EF91 | |
| :--- | :--- |
| EF92 | $\mathbf{1 . 2 5}$ | \& GXU50 12.50 \& PCC89 0

\hline
\end{tabular}

$0 V O 8-100$	
OY3－125	30.50
QY4－250	®．
OY4－400	
QY5－500	
O206－20	32
R10	4.00
R16	12.00
R17	1.50
R18	4.00
R19	1.20
R20	1.20
RG1－125	3.50
RG1－240A	
RG3－250A	
RG3－1250A	
－1	
	10.00
RK－20a	12.00
RL16	1.50
RPL16	1200
RPY13	2.50
RPY43	2.50
RPY82	250
RR3－250	37.00
RR3－1250	05.0
RS613	45.00
RS685	30.50
RS688	52.15
S6F17	9.00
S6F33	35.00
S11E12	38.00
S30／2K	12.00
S104／1K	10.00
S109／1K	16.00
S130	3.00
SC1／800	5.00
SC1／1200	5.
SC1／1400 12.00	
SC1／2000	
SP2	1.50
SP41	5.00
SP42	3.00
ST11	1.50
STV280/80	
SU42	3.50
T82．5／3000	
$\begin{aligned} & \text { TB2-300 } \\ & \text { TD1-100 } \end{aligned}$	
	19.00
TDO3－10F	
	28.
TD3－12	4.00
TP25	1.50
TSP4	7.00
$\pi 11$	1.50
$\pi{ }^{1} 21$	14.50
$\pi 22$	14.50
TY2－125A 45.00	
Tr4．400	6.00
TY－6000A 250.00	
TY8－600W 280.00	
TYS2／250 ${ }^{375000}$	
U18－20	
$419 \quad 11.96$	
$\cup 22$	1.00
U24 2.00	
$\begin{array}{ll}\mathrm{U} 26 & 0.80 \\ \mathrm{U37} & 0.00\end{array}$	
441	0.70
$450 \quad 2.00$	
454	4.50
U82 3.00	
$\cup 191$	0.70
U192 1.00	
U193	0．05
U 251 1．00	
U294	0.00
$\checkmark 3010.58$	
U801	0.75
UABC80 0．85	
UAF42	1.00
UBFE0 0.00	
UBC41	1.28
UBC81 1.00	
U8F89	0.00
UBL29 1．25	
$\begin{array}{ll}\text { UCC8A } & 0.70\end{array}$	
ucces	0.60
UCF80 1.00	
UCH21	1.20
UCH41 1.20	
UCH42	1.35
UCH81 0．85	
UCL82	0.00
UF41 1．15	
UF42 1.15 UF80 0.15	
UFE9	1.10
UL41	2.25

ZENER DIODES

 $82 \times 610.15$6 V 27558 V 2 V 1
10 V 11 V 12 V 13 V 6 V 27 V 8 V 29 V 10 V 11 V 12 V 13 V
15 V 16 V 18 V 20 V 22 V 24 V 27 V 30 V
33 V 36 V 39 V 47 V 5 V 56 V 68 V 75 V 33 V 36 V 39 V 47 V 51 V 56 V
$\mathrm{BZY} 88 \quad 0.07$
$2 \mathrm{V7} 3 \mathrm{~V} 3 \mathrm{VV} 3 \mathrm{~V} 9 \mathrm{AV3}$

THERMLITOAS MTEaiss

\qquad
 ${ }_{2}$

 B9A Skirted
0.30
0.30
0.150
0

 ${ }^{14}$ Pir Dilla OCTAL
CAAS
G9A PCB
－

Mคッ2？

NW్రీg

0.18
 $\begin{array}{ll}10 \mathrm{~K} & 0.24\end{array}$
 $\begin{array}{ll}\text { R47．4K7 } & 0.18 \\ 5 K 6-12 K & 0.19\end{array}$

7 Watt
11 Watt
17 Watt

 281
201
$2 D 21 \mathrm{~W}$
2526
$2 \mathrm{L42}$
2225
$3 A 147 \mathrm{~J}$
3 AA167M
$3 A 2$ AN NOM
88 多名

 \title{
CALLERS WELCOME
}
 \title{
CALLERS WELCOME
}

＊ENTRANCE ON A227

50 YDS SOUTH OF MEOPHAM GREEN
CAR PARKING AVAILABLE
OPE N MONDAY TO FRIDAY Ya．m．．5．30p．m．

UK ORDERS P\＆P 50p PLEASE ADD V．A．T．AT 15\％

EXPORT ORDERS WELCOME．CARRIAGE／POST AT COST

WW-090 FOR FURTHER DETAILS
*BRAND-NEW LA36 DEC WRITERS-SALE $£ 200$ EACH *BRAND-NEW LA 180 DEC WRITER-SALE $£ 300$ EACH CENTRONIC 779 PRINTERS $-£ 325+$ V.A.T.
CENTRONIC 781 PRINTER-E $350+$ V.A.T.
POWER UNITS, 5 -VOLT 6-AMP- 20 EACH
FANS, PCBS, KEYBOARDS AND LOTS MORE
COME AND LOOK AROUND
SALCOTT MILL, GOLDHANGER ROAD HEYBRIDGE, MALDON, ESSEX PHONE MALDON (0621) 57440

WW-025 FOR FURTHER DETAILS \square reprints
If you are interested in a particular article/ special Feature or advertisement published in this issue of

WIRELESS WORLD

why not take advantage of our reprint service Reprints can be secured at reasonable cost to your own specifications providing an attractive and valuable addition to your promotional material. (Minimum order 250.)
For further details contact
Michael Rogers, IPC .Electrical-Electronic Press Ltd. Phone 01-661 3036 or simply complete and return the form below.

To Michael Rogers, Reprints Department Quadrant House, The Quadrant Sutton, Surrey SM2 5AS
I am interested in
copies of the article/ advertisement headed featured in

WIRELESS WORLD

on page(s)
in the issue dated
Please send me full details of your reprint service by return of post
Name
Company
Address
 \title{
P.\&R. COMPUTER SHOP
 \title{
P.\&R. COMPUTER SHOP
 IBM GOLFBALL PRINTERS trom E70 EACH + V.A.T.
 8
}

CLEF alectronic MUSIC

\qquad

\qquad | \mathbf{E} | SIX | $71 / 8$ |
| :---: | :---: | :---: |
| Comp | 234 | 266 | | Comp | 234 | 266 |
| :---: | :---: | :---: |
| Full | 398 | 42 | MFD 820 . 695

ANGLIA INDUSTRIAL AUCTIONS

Specialist Auctioneers to the Radio and Electronic Industry
5 Station Road, Littleport, Cambs. CB6 10E Telephone: Ely (0353) 860185

AUCTION SALES

of over 700 Lots
Electrical Components \& Equipment Large and Small Quantities

Forthcoming sales to be held on the following dates:
1st December, 1982; 12th January, 1983; 16th February, 1983; 23rd March, 1983; 27th April, 1983; 1st June, 1983; 6th July, 1983; 10th August, 1983; 14th September, 1983; 19th October, 1983; 23rd November, 1983.

Catalogues available 10 days prior to sale, price 60p inc. p\&p or for each sale for a year £5.

Entry forms on application. Although entries for cataloguing may be received up to 17 days before the date of the sale, customers are advised to enter early.

WW-074 FOR FURTHER DETAILS

TEST EQUIPMENT

All prices exc. VAT. Carriage extra
 TIMEBASE 94 ALFRISTON GARDENS SHOLING, SOUTHAMPTON SO2 8FU
 TEL: 431323 (0703)

Callers welcome
Access, Barclaycard
Telephone your order

\square The NEW KEF Constructor Series

A new generation of drive units from KEF is now available to the home constructor.
KEF's drive units have been improved in terms of reducing audible colouration as a result of the detailed analysis of speaker vibrational characteristics, using computer aided techniques.
Now the improved units and complete technical data on them are available to you to build a system to your own design or to use in any prescribed combinations to complete a system designed by KEF.
DRIVE UNITS

Compact, base/mild range unlt,
sultable for use in elther a compact full range system, or as a speciallsed mid range unit in
multi-way system.

Low frequency unlt with foll-stressed expanded polystyrene dilaphragm and highly compliant surround, sulteble for totaly enclosed box. reflex
transmission line hom and other spectallsed low Transmission line, hom
trequency applications.

The Speaker Engineers

KEF Electronics Ltd., Tbvil, Maidstone, Kent ME15 6QP. Telephone: (0622) 672261. Telex: 96140.

Please send me complete technical data of KEF Drive Units

[^10]Address:

GOMPUMA WARH:OUS3

FARD DISK DRIVAS

 DISIMET

 DISIMET}Dlablo/DRE Serles 302.5 mb . fully refurbished DEC RK media and software compatable. Front load $\mathbf{5 S 0}$ Top load 295
Dlablo -Dre 44A-4000A or 4000B $10 \mathrm{mb} 5+5$ rëmovable pack new and refurbished from $\mathbf{\Sigma 9 9 5}$.
CDC 80 mb removable pack DEC RM03 media and software compatible brand new from $\mathbf{E 2 , 9 5 0}$
Honeywell $5+510 \mathrm{mb}$ drives $\mathbf{£ 5 0} \mathbf{5 0} \mathrm{good} \mathrm{s} / \mathrm{h}$ condition. For more information on controllars, expansions a
go sub systems contact sales office.

The UK's FIRST free of charge, 24 hr . public access data base. Get information on 1000's of stock items and order via your computer and credit card. On line now, 300 baud. CCITT tones, full duplex, fully interactive. DON'T MISS THOSE BARGAINS

CALL NOW, IT'S FREE!
01-683 1133 maxian per day

COMPUTER 'CAB'

All in one quality computer cabinet With integral switched mode PSU. Originally made for the famous
 Originally made for the famous
DEC PD and designed to 24 hours pering 1000's of pounds, screened and will defiver a massive +5v DC at 17 fully $+15 v D C$ at 1 amp and -15 v DC at 5 amps . The unit is fully enclosed with removable top lid, twin fan cooling, mains fittering, trip switch, 'power on' and 'run' LED's, aluminium front panel and rear cable entrys. Give your system that professional finish for only $\mathbf{8} \mathbf{4 9 . 9 5}+$ wide $16^{\prime \prime}$ deep $10.5^{\prime \prime}$ high. Usablearea 1

COOLING FANS
range of professional tansvac working DIM $92 \times 25 \mathrm{~mm}$ BRAND NEW
ourprice 89.95
BUHLER 89.11.22 micro miniature $8-16 \vee D C$reversible fan. Measures only $62 \times 62 \times 22 \mathrm{~mm}$
Uses a brushiess DC servo motor almost silentrun ning ideal portable equipment, life in excess
of 10,000 hours. BRAN NEWof 10,000 hours. BRAND NEW manufacturesprice $£ 32.00$ our price $£ 12.95$MUFFIN/CENTAUR cooling fans DIM $120 \times$
$120 \times 38 \mathrm{~mm}$ tested ex equipment 240 v E6. 25115ve495 + p\&p $£ 1.90$
KOOLTRONICS Powertul snail type blowergives massive air movement with centrifugalrotor DIM as a cube $8^{\prime \prime} \times 8^{\prime \prime} \times 6^{\prime \prime}$ air aperture2.5an $\times 2$
$2.5^{\prime \prime}$ with flange fixing. BRAND NEW 110 5 50 Hz$2.5^{\prime \prime}$ with flange fixing. BRAND NEW 1
ac working ONLY $£ \% .95+£ 1.90$ p\&p
SUPER SCOOP

CESNTRONICS 739-2

 repeated StandardCentronics interface, ful Interface Cable $£ 10.00$

The amazing SOFTY 2. The complete "toolkit" for the open heart software surgeon. Copies,
Displays, Emulates ROM, RAM and EPROMS of the 2516,2532 variety. Manyotherfeatures include keyboard, UHF modulator. Cassette units costing 7 times the price! Only $\$ 169.00$ pp \& 1.95 Data sheet on rea

RCA FULIY CASED ASCII CODBD KHYBOARDS

10EAL

 TAMOETINE OHIOETC, Straight from the USA made by the world famous RCA Co., the VP500 Series of cased freestanding keytoards meet all requirement of the most exacting user, right down to the price! Utilising the latest in switch technology, Guaranteed in excess of 5 milion operations The keyboard has a host of other featuresincluding full ASCII 128 character set, user including full ASCII 128 character set, use
definable keys, upper/lower case, rollover protection, single 5 V rail, keyboard impervious toliquids anddust. TLL orCMOS outputs, even an on-board tone generator for keypress feedback and a 1 year full RCA backed Guarantee.
VP801 7 bit fully coded output with delayed strobe, etc.
VP811 Same as VP60 1 with numeric pad
VP506 Serlal, RS232, 20MA and TTL E54.95 output with 6 selectable BaudRates $\mathbf{6 6 4 . 2 6}$ VP616 Same as VP606, with numeric pad Plug and cable for VP601, VP611 E2. E84. 34 Plug for VP606, VP616 \& 2.10

The "Do everything Printer" at a price that will NEVER be 8pacing for word processor appllcations, 80-132 olumns, single sheet, roll or sprocket paper handling plus and

MAINS FILTERS

"Mainflat Main rrame" manufacturers. Ideal for curing fit one now and cure your problems. upto 5 amoload $E 5.95$
Corcom Inc F1886 up to 20 ampload $\mathbf{E 9 . 5 0}$ Corcom Inc F1900 upto 30 ampload $\mathbf{E / 2 . 2 5}$

TELLHTYPE ASB3S I/O TERWMTALS

FROMEIS5 + CAR + VA Fully fledged industry standard ASR̄33 data terminal. Many features including ASCII
keyboard and printer for data I/O auto data keyboard and printer for data I/O auto data delect circuitry. AS232 serial interface. 110 baud, 8 bit paper tape punch and reader for of line data preparation and ridiculously good condition and in working order Options: Floor stand $£ \mathbf{1 2 . 5 0}+$ VAT KSR33 with 20 ma loop interface $\mathbf{1} \mathbf{2 5 . 0 0}+$ Sound proof enclosure $£ 25.00+$ VAT

RECHARGRABLE BATTERIES

CYCLON type D001 sealed lead acid maintenance free $2 v 2.5$ ah. will deliver at only $\mathbf{£ 2 . 9 5}$
SAFT VR2C
size 'C' $12 v 2$ ah nickel cadmium EI.50 each 10 for $\mathbf{E I} I .50$

D.C. POWER SUPPLY SPECLALS

Experimentors PSU Ex-GPO unit all silicon electronics. Outputs give +5v@2 amps. $+12 v @ 800$ ma. $-12 v @ 800 \mathrm{ma}+24 \mathrm{v} @ 350 \mathrm{ma}$. $5 v @ 50$ ma. floating. Dim $160 \times 120 \times$
350 mm . All outputs fully regulated and short circuit proof. Removed from working equipment, but untested. Complete with circuit Tansformer guaranteed. Only

50 pp.

£14.50 +

POWER ONE CP143 super compact unit giving continuous output of $5 \mathrm{v} @ 5 \mathrm{amps}$ dim. $215 \times 67 \times 80 \mathrm{~mm}$. BRAND NEW and guaranteed Only $£ 21.00+\varepsilon 1.50 \mathrm{pp}$. CUSTOM POWER CO555V@ 3 amp. Very compact unit dim. appro $\times 60 \times 90 \times 190 \mathrm{~mm}$ E11.95+pp 1.25 Ex equipment unit ideal for the small micro Outputs give 5 v MINI SYSTEM PSU Ex equipment unit ideal for the small micro. Outputs give $5 \mathrm{v} @$
3 amps. $+12 v @ 1$ amp and $-12 v @ 300$ ma. Crowbar overvoltage protection and $3 \mathrm{amps} .+12 \mathrm{v} @ 1$ amp and $-12 \mathrm{v} @ 300 \mathrm{ma}$. Crowbar overvoltage protection and
current limit. Fully tested. Dim $70 \times 165 \times 320 \mathrm{~mm}$. Complete with Circuit only $\mathbf{£ 1 2 . 9 5}$ current limit.

+ £ 2.00 pp .
PERIPHERAL SYSTEM SUPPLY. Fully cased unit supplied in a Brand new or little used condition. Outputs give $5 \mathrm{v} @ 11$ amps, " + " $15-17 \mathrm{~V} @ 8$ amps, " - " $15-17 \mathrm{v} @ 8$ amps regulated. Fan cooled. Supplied tested with circuit $\mathbf{\Sigma 5} 5.00+£ 8.50$ carr MAIN FRAME SUPPLY. A real beefy unit designed for MINI or MAINFRAME use outputs give 5 volts @ $50 \mathrm{amps}+12 \mathrm{v} @ 5$ amps. $-12 \mathrm{v} @ 10 \mathrm{amps}$. All output are fully regulated with crowbar overvoltage protection on the 5 v output. Supplied with circuit and tested. Ex-Equip. 110 v AC input. Only $£ 49.95$ + carr. $£ 10.50$.

66\% DISCOUNT

ELECTRONIC COMPONENTS \& EQUIPMENT
Due to our massive bulk purchasing programme which enables us to bring you the best possible bargains, we have thousands of I.C.'s, Transistors, Relays, Cap's, P.C.B.'s,
Sub-assemblies, Switches, etc. etc. surlplus to our requirements. Because we don't Sub-assemblies, Switches, etc. etc. suriplus to our requirements Because we don't
have sufficient stocks of any one item to include in our ads, we are packing all these items into the "BARGAIN PARCEL OF A LIFETIME" Thousands of components at giveaway prices! Guaranteed to be worth at least 3 times what you play plus we always include something from our ads. for unbeatable value!! Sold by weight.
$2.5 \mathrm{Kls} £ 4.25+\mathrm{pp} £ 1.25$
$10 \mathrm{kls} £ 10.25+\mathrm{pp} £ 2.25$
5kis $£ 3.90$ +pp $£ 1.80$

9" Monitors

 DT10 Monlt a complete MOTOROLA 9"video monitor housed in an attractive metal
case DIM approx
 high. The monitor has a 75 ohm composit video input with a bandwidth of $18 \mathrm{mhz} A$ seperate internal PSU delivers 5 v dc for external use and $12 \vee \mathrm{DC}$ for video monitor. The case has sufficient room inside for mounting other units such as $5^{\prime \prime}$ disk drives etc. Internal pots give full control over all monitor function
Supplied in a tested, as new or little used condition. 240 VAC operation $\mathbf{5 5 . 0 0}$ Carriage condition 240 VAC oper
and insurance $£ 10.50$
and insurance $£ 10.50$
MOTOROLA 9 " open chassis monito Standard $240 \vee$ AC with composite 75 ohm
video input, band width in excess of 18 mhz Monitors are ex equipment and although unguaranteed they are all tested prior to despatch, and have no visible burns on the screens. Dim approx $9^{\prime \prime} \times 9^{\prime \prime} \times 9^{\prime \prime}$. Supplied Complete with mains and input lead. Ideal Zx81 etc or giving the tele back to the family!
Black and White phosphor $£ 35.00+£ 9.00$ Carr.

SEMICONDUCTOR 'GRAB BAGS'

Mixed Semis amazing value contents

 include transistors, digital, linear, I.C.'striacs diodes, bridge recs, etc. etc. All triacs diodes, bridge recs, etc etc. All
devices guaranteed brand new full spe devices guaranteed brand new full s
with manufacturers markings, fulty guaranteed $50+\boldsymbol{\text { Th }} 74$ Series A $100+\boldsymbol{5} .15$ "TL 74 Series A gigantic purchase of an series I.C.'s enables us to offer $100+$ mixed "mostly TTL" grab bags at a price which two or three chips in the bag
would normally cost to buy. Fully guaranteed all I.C.'s full spec. 100

300 BAUD

 DATA MODEMS
standard EX GPO 2a/b data MODEMS.

 Modem operates on standard CCITT tones with full auto answer facilities. Will switch to ANSWER orORIGINATE. StandardRS232 connections. deal networks. Complet with data. Untested but good condition $£ 55.00$ carr. $£ 8.50$.
1200 BAUD DATA PUMP MODEMS

 lines" Designed to work in pairs at any baud rate upto 1200 fullduplex (4 wire circuit) orha duplex (2 wire circuit). Features include remote test facilities. RS232 i/o lines etc. Supplied with data in working order, but less
OLIVETTII TEHOO

REDUCED TO CLEERR

Complete input output terminal with integrals

 hole paper tape punch and reader. Unitoperates at 150 baud in standard ASCIL. operates at 150 baud in standard ASCII.
as a cheap printer for a MICRO etc 120 as a cheap printer for a MICRO etc, 120
columns, Serial data i/o. Supplied comp with data, untested unguaranteed $\mathbf{£ 5 5 . 0 0}$ All prices quoted are for U. K. Mainland paid cash with order in Pounds Stirling PLUSVAT. Minimum ordervalue $\mathbf{2 . 0 0}$, Minimum Credit E20.00 Where post and packing nin account orders from Government depts. Schools, Universities and established $15-5.30$ We reserve the right to change prices and specifications without notice. Trade, Bulk and Export enqulries welcome.
64-66 Melforit Road, Thornton Heath, Near Croydon, Surrey \square man 01-689 7702-01-689 6800 Telex 27924

Gersumouers
 A range of telesconic towers in static and motile models from 7.5 to 36 metres with tit-over facility enabiling all maintenance to be at ground level.

Designed in accordance with CP3 Chapter V: part 2: 1972 for a minimum wind speed of 85 mph in conditions of maximum exposure and specified by professionals world-wide where hostile environments demand the ultimate in design. quality and reliability.

Suitable for mounting equipment in the fields of:
Communications
Security sunveillance-CCTV
Meteorology
Environmental monitoring
Geographical survey
Defence range-finding
Marine \& aero navigation
Floodlighting
Airport approach lighting
Further details available on request.

Strumech Engineering Limited, Portland House, Coppice Side, Brownhills, Walsall, West Midlands, WS8 TEX, England.
Telephone: Brownhills (05433) 4321.
Telex: 335243 SEL G.

The NEW KEF Constructor Series

The ideal design of a loudspeaker system involves the detailed and scientific study of the enclosure, drive units and crossover network. By applying computer aided techniques to the questions of enclosure volume, band width, efficiency, power handling capacity, probable system location and required directional characteristics, KEF have prepared detailed designs for the home constructor. All this experience is now available to you - to help you build your own system - successfully and at the right price.

LOUDSPEAKER DESIGNS Model CS5

This floor standing loudspeaker, based on the KEF Carlton, can provide remarkably sharp stereo imaging due to a novel method of minimising inter-unit time delay, and will produce a full frequency range with outstanding clarity and low distortion.

Model CS7

A new three way design
 incorporating the B139, which was the world's first flat diaphragm loudspeaker. The system offers an extended bass response and excellent power handling capability, with the three drive units being combined through a computer designed crossover network to give a very smooth frequency response characteristic with finely detalled reproduction of critical mid-range:information.

Making it together
KEF Electronics Ltd., Tovil, Maldstone, Kent ME15 6QP. Telephone: (0622) 672261. Telex: 96140.

Please send me details of KEF Systems Designs

Name:
Address:

START 1983 WITH GAPS IN CIRCUIT FILES WELL-PLUGGED

WIRELESS WORLD CIRCARDS last year benefited many 'new generation' readers who bought at 1976 bargain prices $+10 \%$ discount for 10 sets! Most sets are still avallable although companion volumes CIRCUIT DESJGNS 1, 2 and 3 are out of print. (CIRCARDS sets 1 to 30).

> The Offer stands, so order now your sets of $127 \times 204 \mathrm{~mm}$ cards in plastic wallets. These unique circuit cards normally contain descriptions and performance data of 10 tested circuits, together with ideas for modifying them to suit special needs.

1 Basic Active filters 2 Switching Circuits, comparators and Schmitts (But these gaps cannot be filled)
6 Constant current circuits 7 Power amplifiers 8 Astable circuits 9 Optoelectronics 10 Micro power circuits 11 Basic logic gates 12 Wideband amplifiers 13 Alarm circuits 14 Digital Counters 15 Pulse modulators 16 Current differencing amplifiers - signal processing 17 Current differencing amplifiers - signal generation 18 Current differencing amplifiers - measurement and detection 19 Monostable circuits 20 Transistor pairs 21 Voltage-to-frequency converters 22 Amplitude modulation and detection 23 Reference circuits 24 Voltage regulators 25 RC oscillators-1 26 RC oscillators - 227 Linear cmos-1 28 Linear cmos-2 29 Analogue multipliers $30 \mathrm{Rms} / l o g / p o w e r ~ l a w s ~ 31$ Digital multipliers 32 Transistor arrays 33 Differential and bridge amplifiers 34 Analogue gate applications - $1 \quad 35$ Analogue gate applications-2.

```
To IPC Electrical-Electronic Press Ltd.,
Góneral Sales Department,
Room 108,
Quadrant House,
Sutton,
Surrey, sM2 5AS
```

Company registration in England Quadrant House, The Quadrant,
Sutton, Surrey SM2 5AS
Reg. No 677128

Please send me the following sets of Circards: £2 each,
£18 for 10 post free.
Remittance enclosed payable
to IPC BUSINESS PRESS LTD.
Name (Please print)
Address (Please print)

Appointments

Advertisements accepted up to 12 noon Tuesday, November 2nd, for December issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 15.50$ per single col. centimetre (min .3 cm). LINE advertisements (run on): $£ 3$ per line, minimum $£ 20$ (prepayable).
BOX NUMBERS: $£ 3$ extra. (Replies should be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS). PHONE: IAN FAUX, 01-661 3033 (DIRECT LINE)
Cheques and Postal Orders payable to IPC Business Press Lid.

ALWAYS AHEAD WITH THE BEST! E5,000:18,000

* Experienced in: Mini/Microprocessor hardware or Software; Digital and Analogue circuitry; RF and Microwave techniques?
* Where does your interest lie: Image processing; Automation;

Datacomms; Radar; Nav-Aids; Video; Medical; Telemetry; Simulation
Satcom; Local Area Nets; Computers; Weapons; Communications?

* There are opportunities in: Design; Test; Service; Sales; Systems;

Production; Quality and Research at engineer and management level.

* First call: Contact MIKE GERNAT on $076384676 / 7$ (usually until 8 p.m.)

R.F. DESIGN ENGINEER

HattieldR.F. System Components are supplied to leading Companies in the Aerospace, Communications and Defence industries. The continuing expansion of our product range demands a capable Electronics Engineer to be involved in New Product Design and Development, from initial conception to final production.
A sound theoretical background is required, together with a practical understanding of R.F. Engineering to 1 GHz or above. It is anticipated that the successful candidate will have a degree in Electronics and at least three years' experience in a development and manufacturing environment. Such experience should include:

Active and passive analogue circuit design from dc1 GHz .
Construction and testing of R.F. circuits.
R.F. measurement using spectrum and/or network analysers.
The company offers a substantial benefits package including attractive salary, free life cover, contributory pension scheme and private patients plan. Where appropriate, assistance with relocation will be considered to an area which offers the combination of City, Country and Coastal life.
For an application form please write or telephone:

Mrs P. A. Haxby
Personnel Officer
W \& G Instruments Limited
Burrington Way
Plymouth, Devon PL5 3LZ
Telephone: Plymouth (0752) 772773

TEST EQUIPMENT ENGINEERS

Rediffusion Consumer Manufacturing design and manufacture a full range of advanced specification colour television receivers and monitors.
We are looking for experienced Test Equipment Engineers to help us maintain our industry lead in sophisticated computer-controlled test gear for production testing of our new products. Future test equipment will be an interesting mix of digital and analogue circuitry aimed at both simplifying and speeding the production testing operation.
If you are experienced in both digital and analogue testing techniques, particularly with a television background and are seeking an exciting future in a stimulating engineering environment, we'd like to hear from you.

These positions are based in our Chessington Engineering Centre but some visits to our factories in the North-East and Lancashire will be required at infrequent intervals. Salaries are obviously dependent on qualifications and experience, but will reflect the importance of future test gear projects to the company's long-term development.

Interested? . . . Then write or phone

Harry Brearley

Rediffusion Consumer Manufacturing Ltd
Fullers Way South
Chessington, Surrey KT9 1HJ
Telephone: 01-3975411
REDIFFUSION

At HM Government Communications Centre, we're applying the very latest ideas on electronics and other technologies to the problems of sophisticated communications systems, designed to enable and protect the flow of essential information

The work is of the highest technical challenge offering full and worthwhile careers to men and women of high ability, on projects covering the following areas of interest:-

RADIO - from HF to microwave, including advanced modulation systems, propagation studies, applications of Microcircuitry.
MAGNETICS SIGNAL ANALYSIS
SYSTEMS ENGINEERING
Applicants, under 30 years of age, should have a good honours degree or equivalent qualification in a relevant subject, but candidates about to graduate may also apply.

Appointments are as Higher Scientific Officer $(£ 6,840-£ 9,126)$ or Scientific Officer ($£ 5.422-£ 7,399$) according to qualifications and experience. Promotion prospects.

For an application form, please write to the
Reverultent Ottleer, (Dept. W/W12), EDM Covermment
Communications Centre, Hanslope Park Milton Keynes, MK19 7BH

VTR
 MAINTENANCE ENGINEERS

Salary in the range $\mathbf{£ 1 4 , 0 0 0}$ to $£ 17,800$

Independent Television News Limited has vacancies for experienced VTR Maintenance Engineers in their Central London Studios.
The successful candidate will join an expanding team of specialists responsible for the maintenance of VPR2B, ACR25B, VR1200C and BVU800 machines, together with associated control and editing systems.
The salary upon appointment will be dependent upon the degree of relevant experience on the equipment listed. Previous maintenance experience with C-Format machines is, however, essential.
Excellent conditions of service including generous pension scheme and free life assurance.
Please telephone the Personnel Office, on 01-637 3144 for an application form, quoting reference number 302015.

FIELD MAINTENANCE ENGINEER

Bacchus are the world's leaders in the supply of high quality discotheque sound and lighting systems to International hotel companies. Due to expansion, a vacancy exists for a highly competent, resourceful electronics engineer who will have total responsibility for the first-class maintenance of discotheque installation in Europe, Middle East and Scandinavia.

Based in London, the position necessitates extensive foreign travel for a great deal of the year. The successful candidate will most probably be under 30 years old and single.
Remuneration will be at least $£ 10,000$ p.a. plus profit sharing. Please apply, in writing, to David Payne, Managing Director Bacchus International Discotheque Services, 64-66 Glentham Road, London SW13.

BBG

BROADCAST ELECTRONICS ENGINEER
The BBC's Engineering Training Department is situated in the Worcestershire countryside and includes modern well-equipped Radio and Colour Television Studios. There are excellent welfare and club facilities.

Duties: Maintaining a full range of professional radio and television broadcasting equipment. This includes modifications to and commissioning of broadcast quipmen, the repa and recalibration op spopiste priate guidance will be given to candidates who are unfamiliar with B8C equipRent.
Requirements: A good technical knowledge
A degree from a British University in electronics or electrical enginearing. HND, HNC, or higher TEC Diploma in Electrical or Electronic Engineering Some TEC Higher Certificates may be acceptable depending upon course content).
C\&G Full Technological Certificate in Telecommunications.
Salary, depending upon experience, in the range of $£ 6,524-£ 7,114$ rising to $£ 8,839$ plus 10\% Shift Allowance.
Pensionable post. Relocation expenses considered.
"We are an Equal Opportunities Employer"
further detalls: If you would like to hear more and receive an application form, urease send a stamped addressed envelope of at least $9^{\prime \prime} \times 4^{\prime \prime}$ to Head of Tecticm, please send a stamped addressed envelope of at least 9 "x4 to head of Technical Evesham, Worcs. WR11 4TF, or telephone (0386) 45123 extn. 226, quoting reference number 82 E 4075 WW . Closing date for return of application forms, 14 days after publication.
(1876)

INNER LONDON EDUCATION AUTHORTTY TELEVISION CAMERA OPERATOR

The Television Centre produces a range of educetional programmes distriburted in the form of videocasasttes, sound cassectes and 16 mm film. It has a colou sound mbrer, Amper yprz's esel, a moblio unit and a bettery porteble.
A vacancy has arisen for a television camera operator to work princtpalty in the atudio but also in the monochrome training studio, in location video recording the mobile Unit and, when not required to work whth camerte, whth other technical eections.

Applicante should have had some form of truining and preferably practical experience.
Further detalis of the poet are avallable from the Chief Engineer': Office at the Telovision Centre (8229986).
Application forms from the Education Officer (EO/Estab, 1B), Room 306, The envelope. Completed torms to be returned by 1st December 1982
ILEA is an Equal Opportunity Employer.
Salary range (ST $1 / 2) £ 5,214$ to $£ 7,974$ phus $£ 1,284$ London Welghting Allowance.

Electronics Engineers

put yourself in a Customer Engineering role with the market leader in Medical Instrumentation...

Respiratory Care, Ultrasound imaging,
Cardiovascular, Patient Monitoring,
Computerised Patient Management Systems, Perinatal Monitoring-just some of the vital medical instrumentation product applications that have made Hewlett Packard a market leader.

And it's that range of high technology products that makes the role of the Customer Engineer attractive.

We currently have two vacancies-one based on Manchester covering the North and one based on Winnersh in Berkshire, for the South. Both positions will be responsible for providing an on-site maintenance service to
customers. Ideally you'll be qualified to HNC/
TEC/C\&G and will have some sound relevant experience in instrumentation servicing.
We offer: Good salary

- 2 litre GL car
- Christmas bonus
- Profit sharing
- Non Contributory Pension
- Free life insurance

And good career opportunities
For either vacancy please write or phone for an application form to: The Personnel Department Hewlett-Packard Ltd, Trafalgar House, Navigation Road, Altrincham, Cheshire, Tel: 0619286422.

HEWLETT
PACKARD

TV STUDIO PROJECT ENGINEERS

Our Systems Division is responsible for the design and construction of studios and OB vehicles for customers throughout the world. To cope with the increasing demand for these projects, we urgently require another two project engineers.

You should have experience in television broadcasting, either from the engineering or operational aspect.
Occasional travel is involved home and overseas.
Very competitive salaries are offered together with free permanent health insurance, contributory pension scheme and generous relocation assistance where necessary.

For further information please contact our Personnel Department either in writing or by telephone on Andover (0264) 61345.

INTERNATIONAL SERVICE MANAGER IN A MULTI-NATIONAL COMPANY BASED IN SWEDEN

LKB-Produkter AB require an English-speaking SERVICE MANAGER to co-ordinate service aspects and implement Service Policy for the LKB Group, based at the Head Office in Sweden.

Applicants should have a sound knowledge of digital and analogue electronics, together with experience of microcomputers, interfacing and the setting of Service Policies. One or more European languages an advantage.

The successful candidate will have line service personnel reporting to him, making field and man management experience essential. He will report to the manager of the Bromma Division in Stockholm. International Service training and the production of Service documentation are part of the responsibility.

Conditions of employment are commensurate with the position. Please give brief details of experience when requesting an application form from:

Mrs. D. Duff
LKB INSTRUMENTS LIMITED
232 Addington Road
Selsdon, South Croydon
Surrey, CR2 8YD
Tel: 01-651 5313

Appointments

a 2.0 GeV high current electron storage ring is in operation at the Daresbury Laboratory of the Science \& Engineering Research Council in North Cheshire. It is used as a source of sychrotron radiation by a wide range of scientists from British and Overseas universities,

A physicist or an engineer with experience of high power radio frequency systems and who has an interest in accelerators is required to join a small team which is developing the electron storage ring and studying its behaviour. The storage ring uses a $500 \mathrm{MHz}, 250 \mathrm{~kW}$ ri system and the injector includes a 300 MHz electron linac.

The work will consist of experimental and theoretical studies of instabilities in the electron beam and interaction of the beam with the If system, and also will include development of new or modified rf devices to improve the intensity of the electron beam.

The appointment will be made in the grade of Higher Scientific Officer or Professional and Technology Officer Grade II. The salary range for HSO is $£ 6,840$ - $£ 9,126$ and PTO II $£ 6,868$ - £9,241.

Applicants (male or female) should be below 30 years of age, have a good honours degree in physics or electrical/ electronic engineering and at least two years relevant postelectronc engineering and at least wo years relevan graduate experience. The successful candidate with an
engineering background will be appointed as PTO II, or with scientific background as HSO. There is a non-contributory superannuation scheme, a generous leave allowance and a flexible working hours scherne.

CLOSING DATE 29rh November 1982
For further information please write or telephone Mr. V. P. Suller on Warrington (0925) 65000 Ext. 209

Application forms may be obtained from and should be returned quoting reference number DL/802 to:
The Personnel Officer,
Daresbury Laboratory, Science and Engineering Research Council, Daresbury,
Warrington,
Cheshire, WA4 4AD.

ELECTRONIC DESIGN ENGINEERS

We are a small highly successful manufacturing company specialising in RF communications, digital and low frequency analogue equipment.

We require young highly motivated engineers wishing to develop their experience. The ideal candidate must have complete confidence in his ability.

- Starting salary $£ 10 \mathrm{~K}+$ (neg)
- $371 / 2$ hour week. Overtime available.
- Pay reviews every 6 months.
- Pleasant working environment
- Location near City of London.

Contact Keith Penny on (01) 2500894

Technicians in Communications

GCHO We are the Government Communications Headquarters, based at Cheltenham. Our interest is R \& D in all types of modern radio communications HF to satellite - and their security.
THE JOB All aspects of technician support to an unparalleled range of communications equipment, much of it at the forefront of current technology.

LOCATION Sites at Cheltenham in the very attractive Cotswolds and elsewhere in the UK; opportunities for service abroad.
PAY Competitive rates, reviewed regularly. Relevant experience may count towards increased starting pay. Promotion prospects.
TRAINING We encourage you to acquire new skills and experience.

QUALIFICATIONS You should have a TEC Certificate in Telecommunications, or acceptable equivalent, plus 2 years' practical experience.
TRAINEE RADIO TECHNICIANS Persons suitably
qualified and under 22 but with no practical experience may apply for our training scheme.
HOW TO APPLY For full details on this and information on our special scheme for those lacking practical experience, write now to

Recruitment Office
GCHQ, Oakley, Priors Road, Cheltenham
Glos. GL52 5AJ J
or ring
024221491
ext 2269

NATIONAL BROADCASTING SCHOOL DEPUTY CHIEF ENGINEER

The national broadcasting school, which provides training for Independent Broadcasting under the auspices of the IBA, seeks a Deputy Chief Engineer.
The Engineering Department, as well as maintaining the schools six broadcast capable studios and ancillary areas teaches engineering and technical operations.
We are looking for applicants aged between 25 and 40 , with a recognised technical qualification, several years experience in operating and maintaining modern sound broadcasting equipment and the ability to pass on this knowledge. Previous experience in local radio and teaching would be an advantage.
Applications, in confidence, to the chief engineer, NBS, 14 Greek Street, London W1.
(1877)

CUT THIS OUT!
Clip this advert and you can stop hunting for your next appointment. We have a wide selection of the best appointments in Digital, Analogue, RF, Microwave, Microprocessor, Computer, Data Comms and Medical Electronics and we're here to serve your interests.
Call us now for posts in Design, Test, Sales or Field Service, at all levels from $£ 6,000-£ 16,000$.
(1) Technomark

11 Westbourne Grove, London W2. Tel: 01-229 9239

£25,000?
 1. RADIO SYSTEMS ENGS

Pianning and design of line-of-slght, troposcatter and satellite communications aystems. Several companies. To $£ 14,000$ - Essex/London/Hants/Dorset/Berks. 2. DESIEN ENGIMEER (+25) With working knowledge of optics and ibre optics for microprocessor-based To £12,000-Surrev.
3. DESIGN EMGIMEERS $1+251$

For AM, FM and TV broadcast transmit ters using a wide range of technologies M 0 U
4. SOFTWARE ENGINEER For graphice ond imaging displa systems using LSI 11 and 8086
5. IINSTALLATION AND

COMMISSIONING ENGS
For radio and TV broadcast transmitters and computer aystems. To f15,000 overseas, to E9,000 UK.
8. CDNTRACTDESTH ENES

Long, lucrative contracts for RF, Analogue, Digital, Microwave and software engineers. Up to $\mathbf{£ 4 0 0}$ per week - many areas.
putervacancieter electron
Phone or write: Roger Howard C.Eng., M.I.E., R.E., M.I.E.E. CLIVEDEN CONSULTANTS 87 St. Leonard's Road Windsor, Berk Windsor (07535) 57818/58022 24-hour service (1640)

CLIVEDEN

P.C. WERTH UMMITED

 AUDIOLOGY HOUSE 45 NIGHTINGALE LANE LONDON, SW12 8SU
ELECTRONICS ENGINEER

Interesting occupation in friendly working environment, for an Electronics Engineer to service microprocessor. controlled acoustic equipment. Ability to work unaided and knowledge of digital systems essential.

For more information contact:
Mr. Ritchie, 675-5151

P.M.R. FIELD SERVICE ENGINEERS

Vacancies exist for qualified engineers with at least five years experience in this field. Based in Croydon, our company services most major manufacturers' equipment in London and SouthEast England. Competitive salaries offered

Please ring
Mr J. D. Mathews on 01-680 1585
(1851)

PART-TIME MAINTENANCE ENGINEER

Required for Country Recording Studios
Please ring (08675) 77551
(1881)

If you're on our list...

COMMUNICATIONS DESIGN DRAUGHTSMAN
 Telemetry, Microwave, O/S plant

 COMMUNICATIONS TRALNERS 8 -10 years' experience in administration and co-ordination, development and evaluation of training programmes (Arabic speaking helpful)TELEPHONE SWITCHING ENGINEERS 10 years' experience in special apparatus/ exchange equipment (GTE No. 2 EAX C-1 G TX-400, North Telecom SL-1, SG-LA and

West. Elec. D-2000) RADIO ENGINEERS Microwave, $\mathrm{HF} / \mathrm{VHF} / \mathrm{UHF}$ systems DATA TRANSMISSION SYSTEMS ENGINEERS
CCTV AND SURVEILLANCE SYSTEMS ENGINEERS RF ENGINEERS
Frequency planning and Computer Aided Interface Analysis OUTSIDE PLANT/LROPP ENGINEERS

...make sure you read this list...

- High tax free salaries
- One year renewable contracts
- Free food
- Air-conditioned accommodation
- Medical and life insurance
- Regular fare paid UK leave
- Wide range of leisure facilities
- Sterling salary

Our client is a well established Service Organisation who has been operating throughout the Eastem Province of Saudi Arabia for many years. If you have the required experience and a degree, or other relevant qualifications, send a comprehensive C. V. to Peter Jenson, or telephone 01-637 3185 for an application $\mathrm{MOXON} \begin{gathered}\text { form quoting ref: } 1039 / \text { WW. } \\ \begin{array}{c}\text { Moxon Dolphin and Kerby Ltd } \\ 178-202 \text { Great Portland }\end{array}\end{gathered}$
 \& KERBY
international recruitment

Electronic EngineersWhat you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $£ 4000$ to $£ 12000$ p.a.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL PERSONNEL SERVICES,
12 Mount Ephraim,
Tunbridge Wells, Kent. TN4 8AS.

Tel: 089239388

Please send me a TJB Appointments Registration form:
Name
Address

Appointments

Service Engineer
 £9,000 plus Company Car and Annual Bonus

W \& G Instruments Limited are among the world leaders in the supply of
Telecommunication Measurement and Test Equipment.

To maintain their high level of customer service in an expanding business, they need more Test and Service Engineers based at their Greenford Office.

Applicants should have an HNC/HND or equivalent plus a minimum of 4 years' experience in fault diagnosis and repair of analogue and digital equipment.

The position will involve some travel to customers' installations in the U.K. for service and calibration work.

Good working conditions and opportunities for career development.

Video Engineers Engineering Technicians

CBS/Fox Video, a world leader in the pre-recorded video cassette market, has established the largest tape duplication facility outside the USA at Perivale, West London.
Significant growth has created additional openings for video engineers and technicians. Initially, you will be involved in the maintenance of $1 / 2^{\prime \prime}$ video recorders but can expect to move on to broadcast standard equipment. Training, both on-the-job and external, broadcast standard equipment
will be given where necessary.
Salary will be negotiated in line with qualifications and experience.
You could be a recent college leaver who has completed an
ONC/HNC in electronics or a similar subject, a television repair engineer, or an experienced video engineer.
Please send a detailed cv, including a telephone number for contact purposes, to Harry Lister, CBS/Fox Video, Unit 1 , Perivale Industrial Park, Greenford, Middlesex UB6 7 RU.

TRINITY HOUSE LIGHTHOUSE SERVICE, LONDON ELECTRICAL ENGINEER
 GRADE PTO II SALARY £9,021-£10,328 p.a.

Applicants must have had a sound training in radio and light current work associated with UHF, VHF and MF communications, remote monitoring and control systems. Experience in detailed planning, preparation of procurement specifications and drawings, manufacturers' acceptance testing, field trials and commissioning is essential.

Some knowledge of landline signalling techniques, simple computer programming and micro-technology would be an advantage.

Possession of a degree in electronics/radio engineering or equivalent is required.
Generous leave allowance, pension scheme and flexible working hours.
Apply to The Establishment Officer, Trinity House Lighthouse Service, Tower Hill, London EC3N 4DH or Telephone 01-480 6601 Ext. 289. (1812)

An exceptional opportunity exists immediately for two engineers to join a new company based in modern premises at Slough that is about to launch a new and unique signal conditioning product.

Our client has secure financial backing from a wellestablished electronics group and the growth prospects both for the company and its employees are substantial.

analogue design engineer to $£ 12,500$

This position will appeal to an engineer who whilst having a good knowledge of analogue circuitry (DC300 MHz) to Degree/H.N.D. level, enjoys a practical hands on approach and is highly self motivated. He will be responsible for the support of the existing product and the development of new products that contain a high degree of innovation.

PROTOTYPE TEST ENGINEER to $£ 10,500$

An experienced engineer who will not only build and test the prototype models but must be capable of identifying any design problems as they occur. Although academic qualifications are not important it is unlikely that the successful applicant will be under 30. A top-grade analogue technician, ready to move into development work will probably handie this demanding task.

Initial interviews will be held at our Windsor office and therefore in the first instance write or telephone

Roger Howard, C.Eng., M.I.E.E.

CLIVEDEN CONSULTANTS
87 St. Leonard's Road, Windsor, Berks, SL4 2BZ
Windsor (07535) 58022 (5 lines) 57818 (2 lines)
(1887)

CLIVEDEN

LASER-SCAN LABORATORIES LTD

We are among the World Leaders in the manufacture of Computer Controlled Laser Deflection Systems and have won the 1982 Queen's Award for Technology

IN-HOUSE
 COMMISSIONING ENGINEER

Required to work in a team testing and aligning the Company's precision laser plotters and digitisers. A working knowledge of TTL is essential, and knowledge of microprocessors an advantage. Industrial experience of both digital and analogue circuitry is necessary and experience in the use of lasers and associated optics would be useful. Education qualification to a minimum of HNC in Electrical and Electronic Engineering is required.
To the successful applicant we can offer pleasant working conditions, competitive salaries, non-contributory sickness scheme and other fringe benefits.

[^11]
enthusiastic video
 Post Production Engineer

required to be our number two engineer on weekly Channel Four alternative news programme. We are looking for someone with an interest in computer technology and graphics, in addition to previous television engineering experience at same level.

ACTT rates will apply Contact: Sally Randle
Diverse Production Ltd. 6 Gorleston Street, London, W. 14 Telephone: 01-6024102 (1878)

LOUGHBOROUGH UNIVERSITY OF TECHNOLOGY

Workshop Technician

Applications are invited for this new post in the Department of Computer Studies. The successful candidate and $6-10$ years' experience in the field of microprocessors, electronics or digital systems.
Salary on Grade 6 scale $£ 6532$-£7802 (under review). The appointment is for three years.
Requests for further particulars and application forms to Dr C. H. Machin Department of Computer Studies, Uni versity of Technology, Loughborough Loughborough

Leicestershire

ELECTRONICS OPPORTUNITIES

Development Engineer $£ 8,500$
Design for production, data communication systems, small company with planned systems
Design Engineer $\mathbf{6 8 , 5 0 0}$
Machine to control systems. Microprocessor interface
Development Engineer $£ 9,000$ Digital hardware and micro-soft ware design

For further information ring
Ken Hoare - 03843-4436 Jonathan Lee Technical Recruitment
62 Hagley Road, Stourbridge

LOGEX ELECTRONICS RECRUITMENT

pocialists in Fie

 ments, all locations and disciplines.Logex House, Burieigh, Stroud Gloucestershire GL5 2PW 0453883264 \& 01-290 0267 (24 hours)

R \& D OPPORTUNITTESS. Senior level vacan cies for Communications Hardware and Software salaries offered. Please ring David Bird at Redif: fusion Radio Systems on 01.8747281 at Redif.

UNIVERSITY OF LEEDS. Electronics Technician Grade 3 required in the Department of Physiology. The person appointed would be required under the supervision of the Electronics Engineer to assist in the construction and maintenance of electronic equipment associated with research and teaching of biological studies. Must sketches. Applicants should hold ONC or equivalent qualifications and have relevant experience Salary is in the range of $£ 4672-£ 5473$ p.a. (under review), according to qualifications and experience. Applications stating age, qualifications and full experience, together with the names and addresses of two referees should be addressed to Mr. E. French, Departmental Superintendent, Department of Physiology, Medical and Dental
Building, Leeds LS2 9NQ.

PROGRAMMERS MICROCOMPUTER APPLICATIONS
 €7700 то $£ 10500$
 ACCORDING TO EXPERIENCE, OXFORD BASED

Research Machines is a leading UK manufacturer of microcomputer systems, selling mostly to the education and scientific market sectors.

We are expanding the groups which develop new products for our chosen market areas, and wish to recruit programmers with first hand knowledge of at least one of those areas. The successful applicants will work on the implementation of new application-related software tools for our current and future microcomputer systems. General requirements are:
\square at least 2 years programming experience, preferably on microcomputers;
\square experience of at least one high-level language (e.g. Pascal) and assembler;
\square successful completion of at least one software implementation project;
\square degree, or equivalent desirable;
\square understanding of microcomputer hardware would be an advantage.
Specific vacancies, and their particular requirements, are:

Education Products
 (please quote Ref. EP5)

Two vacancies exist for people interested and experienced in the use of microcomputers in schools and colleges. We will be developing further our range of software tools to assist the growing number of people producing educational software as well as providing software for use in the classroom. Knowledge of BASIC and teaching experience is desirable.

Laboratory Products (please quote Ref. LP5)

We have two vacancies for people interested
and experienced in laboratory applications of microcomputers. We will be developing new software and hardware to help satisfy the needs of our research and laboratory customers.

Graphics Applications (please quote Ref. GP5)

Our microcomputers have a high-resolution graphics capability. We will be developing software to support its use in a variety of applications, and developing interfaces to a number of graphics peripherals.

Knowledge of assembler essential, and of BASIC or FORTRAN desirable. Experience of peripheral interfacing desirable.

CP/M Packages (please quote Ref. CP5)

Since our microcomputers run the industry standard CP/M operating system, there is a wide variety of software packages available from other suppliers. They often require tailoring to make the best possible use of the features of our computers. The job comprises surveying the field of available packages, selecting the best available, implementing them and subsequently supporting them. A desire to see good solutions for a range of applications, from information retrieval to spreadsheets, is important for this job.
We offer a particularly attractive range of benefits, including good salary, 25 days paid holiday, free BUPA, life and disability insurance, pension scheme, and help with relocation expenses where relevant.
If you are interested in one of these vacancies please contact Pat Kember by 'phone or letter for an application form, quoting the appropriate reference.

RESEARCH MACHINES
 MICROCOMPUTER SYSTEMS

RESEARCH MACHINES LTD Mill Street, Oxford OX2 ()BW, Tel: (0865) 726136

ARTICLES FOR SALE		
RIBBON CABLE, PLUGS AND CONNECTORS The very best quality. Proven manufacturer. Plugs and connectors sold singly or in quantities. Cable sold by the metre or by the roll Ring or write: T.A.D. SUPPLIES 5-10 Eastman Road London W3 Tol: 7400058	ENCAPSULATING EQUIPMENT FOR coils, transformers, components, degassing silicone rubber, resin, epory. Lost wax casting for brass, bronze, silver, etc. Impregnating coils, transformers, components. Vacuum equipment, low cost, used and new. Also for CRT regunning mecallising. Research \& Development. Barratts, Mayo Road, Croydon CR0 2QP. 01-684 9917. (9678) LAMPS AND CABLE. Large amount of lamps and cable for sale - all types and sizes, domestic and industrial. Telephone MIRAGE LIGHTING on HITCHIN (0462) 733388 between 10am-7pm.	TELERADHO For low cost instruments. Freq meters, audio \& RF generators. Distortion analysers, etc. Assembled \& kits. Illustrated lists sent on request. 325 Fore Streat, Edmonton London N9 OPE Tel: 01-807 3719

Classified

OPPORTUNITIES WITH MICROWAVE COMMUNICATIONS
MCL provide a wide range of microwave link equipment for the UK'and export markets. We are part of the M/A COM GROUP of companies who have sales in excess of $\$ 800$ million and are specialist suppliers to the broadcast companies, public utilities and security organisations both in the United Kingdom and overseas.
Due to continued expansion we are able to offer many interesting and challenging opportunities to
 personnel.

DEVELOPMENT Senior Circuit Design Engineer - ideally mid 20's to mid 30's with a minimum HNC level qualification -- must have several years relevant design experience in Baseband IF and RF circuitry. Some experience in digital techniques would be advantageous. Salary would not be a limitation for the right applicant. Junior Circuit Design Engineers with minimum of 18 months experience in industry designing baseband IF or RF circuitry.

Salary c. $£ 7-10 \mathrm{k}$

PRODUCTION

Production Engineers with several years experience of production problems on Video and or Telephony Microwave Systems. Experience with production control methods would be an advantage.

Salary c. $£ 8$-10k

MARKETING

Marketing Engineers to prepare and submit quotations for Microwave Video and Telephony Equipment. Training will be given in System Engineering and there are excellent career development prospects with opportunities for overseas travel.

Salary c. $£ 7-10 \mathrm{k}$
All the ahove posts will carry excellent fringe benefits including free BUPA and assistance with relocation if required.
Please apply with brief career summary to date, quoting reference BM 3 ' 82
To: VILMA NYSS
PERSONNEL MANAGER MICROWAVE COMMUNICATIONS LIMITED DUNSTABLE LU5 4SX BEDFORDSHIRE TEL: 0582601441
If you would like to know more about these opportunities or our company, please telephone our Chief Engineer Tony Tooley on 0582872385 or our Marketing Director Brian Meade on 044285 470, outside office hours.

Perforated Metals Screens, Plastics, Wire Meshes, Sifting Media, Cable Tray, Gratings, direct from Manufacturer's Stock. We can cut to size.

We specialise in one-offs or large quantities.

GRAEPEL PERFORATORS

 LTDUnit 1-B, CHARLES STREET Dept WS, WALSALL, STAFFS WS2 $9 L 7$

POWER V MOS-FET TECHNOLOGY

We specialise in all aspects of this important subject. A comprehensive service is offered to individual or OEM users, including: * Hitachi Supertex and RCA V MOS-FET from stock.
\star V MOS-FET power modules from stock. * Compatitive prices 1120 watt modules £15.45, 1 off)

* Printed circuits and kits.

T Data books and application notes. Cataiogue/sample data and advice service. Catarogue/somple data sent free (50 p ptamp
appreciated towards post and packing) Phone 0251422303 and ask Richard W. about your application requirement or write:

AUDIO TECHNOLOGY Freopost, Chureh Crookham Aldershot, Hents. GU13 0BR

THE SCIENTIFIC WIRE COMPANY				
P.O. Box 30, London, E. 4				
ENAMELLED COPPER WIRE				
SWG	11 b	802	407	$20 z$
8 to 29................		1.50	. 0	. 60
30 to 34	3.20	1.00	. 90	. 70
35 to 40..............	3.40	2.00	1.10	. 0
41 to 43	4.75	2.60	2.00	1.48
$47 \ldots$	0.37	5.32	3.19	2.50
4810 49...............	15.96	9.5*	6.38	3.68
SILVER PLATED COPPER WIRE				
14 to 30...............	6.50	3.75	2.20	1.40
TINNED COPPER WIRE				
14 to 30	3.38	2.36		. 90
Prices include Pep, VAt and Wire Data. SAE for list Dealar enquiries welcome. Reg Office: $\mathbf{2 2}$ Coningsby Gardens				

INVERTERS

High quality DC-AC. Also "no
break" (2ms) static switch,
19' rack. Auto Charger.

COMPUTER POWER SYSTEMS
Interport Mains-Store Ltd.
POB 51, London W11 3BZ
Tel: 01-727 7042 or 0225310916 (9101)

BUSINESS OPPORTUNITIES

BRISTOL

Established 30 years TV, Video and Elec. Bus. $£ 15,000$ inc. f. and f., vans and w/s equip. Lease or freehold. $3,500 \mathrm{sq}$. ft. 1,000 colour, 30 video. S.A.V. and r. stock.

Box No. 1856

Wireless Technicians Openings in servicing and maintenance Up to £8,058

Our business is to install and maintain the communications equipment used by the Police and Fire Brigades in England and Wales - some of the latest you'll find in operation anywhere
We now have a number of vacancies at our Service Centres in various parts of the country, for Wireless Technicians with practical skills in locating and diagnosing faults in a wide range of equipment, from computer-based data transmission to FM and AM radio systems
The work provides excellent opportunities for extending your technical expertise, with specialised courses and training to keep you up-to-date on developments and new equipment. There are also opportunities for day release to gain higher qualifications. You would be based at a Service Centre in one of the following locations: Harrow, Middlesex; Wigan, Bridgend, Mid Glamorgan; Newmarket; Cranbrook, Kent; Basingstoke; Leeds; Marley Hill, Newcastle upon

Tyne: Halesowen, Birmingham Bridgwater, Somerset; Nottingham; Colwyn Bay, Clwyd, Tavistock. Devon, Bishop's Cleeve, Cheltenham: Andover, Hants.
Applicants, male or female, must be qualified to at least City \& Guilds Intermediate Telecommunications standard, and possess a current driving licence. (Some travelling will normally be involved.) Registered disabled people can, of course, apply. Salary will be on a scale of $£ 5,972$. £8,058, with generous leave and noncontributory pension scheme. (Unfurnished rented accommodation may be available in certain circumstances,) Good prospects for promotion
If you are interested in working with us, please write or telephone for further details and application form to: Miss M. Andrews, Home Office, Directorate of Telecommunications, Horseferry House, Dean Ryle Street, London SW1P 2AW. Tel: 01-2118515

"'IIKE HENS' TEETH"

So our clients commented recently in relation to RF Engineers -
We agreed that grod RF Engineers are indeed in short supply - by the same token they can command high salaries and therefore be rather discerning when choosing a new career.

The client in question are not actually involved in the field of poultry detection, but do offer some excellent opportunities in job content and value and in remuneration and benefits.

Their unique technical environment covers a multitude of diverse disciplines working together in small project teams.

If you are an RF Engineer who would like to get out of the run and into a free range environment, telephone Paul Hecquet on 0444647301 or write to him with brief C.V. quoting Ref: $5 / 48$.
(1629)

The Electronics Recruitment Company

18 Station Road, Burgess Hill, West Sussex RH15 9DE
04446 47301/2/3/4

MATV
 Systems Engineer £9,000 plus car

As one of the country's foremost retailers of consumer electronics, we have strong technical and commercial interests in television and video. With new branches opening as part of a steady expansion programme, we need to ensure the best TV reception at every location. The chief responsibility of this post will be to visit branches determining local conditions, specifying and designing aerial distribution systems to meet the appropriate standards. The successful applicant will also be responsible for remedial and maintenance work on existing installations, liaising with sub-contractors where necessary.

We would expect a $C \& G$ or equivalent qualification in Electronics, and at least 4 years' experience in the design of complex aerial distribution systems.

This is an important new position for which self-motivation and initiative are essential - you will be working unsupervised and away from the Stevenage base for the greater part of a 39 hour, 5 day week.

If you wish to relocate, we will provide generous assistance as part of an attractive benefits package which also includes a company car and discounts on all products.

For more information or an application form, please phone Linda McBreen, Dixons Photographic UK Ltd.,
Camera House, Cartwright Road, Stevenage,
Herts. Telephone Stevenage (0438) 4371.

ELECTRONIC TEST ENGINEERING

Having infroduced an extended new product range many of which are micro-processor based, Marconi Instruments has once again confirmed itself as Europe's leading manufacturer of measurement systems and automatic test equipment. Our products are selling throughout the world to all leading users in the electronics and aerospace industries and we are naturally developing further innovated designs.

A key role in our organisation is that of test engineering, where a group of professional engineers are responsible for the development of sophisticated methods and software for the manufacture of our products. We are now looking for experienced Engineers and are particularly interested if you have experience in the following disciplines:

IEEE Bus Control Systems - ATE Programming Test Techniques

Whatever your level of experience we would like to hear from you. We can offer an excellent salary plus a wide range of company benefits, including relocation expenses where appropriate

For further details contact Mr. J. Prodger, Recruitment Manager, Marconi Instruments Limited, Longacres, St. Albans, Herts Telephone: St. Albans (0727) 59292 ext. 369.

ARTICLES FOR SALE

NEWBURY 7004/5 VDUs RS232/Current Lopp. Printer Port, complete with Data and power cables plus terminators. Page/scroul mode, edit mode. Line page transmission, as new. List Price £895. Our Price £399 only plus VAT. Many other Screens, Printers anc complece syse 021 -771 1888

NEW ELECTRONIC ORGAN KeyeriGenerator IC. Greally simplifies construction of quality orgens. Very economical. Also various very cheap surplus organ parts. - S.A.E. details: Ron Coates, 2 Boxhill Nurseries, Boxhill Rond, Tad worth, Surrey, K20 7JF.

GWM RADIO LTD., 40142 Portand Road, Worthing, Susser (Tel: 34897). Marconi television effects: Amplifier, B00-3733-01; pattero generator, B00-3434-01. Imput timing equalizer, 300 -$3739-01$; power distribution unit, $3000-3738-01$; pettern generator control panel, BO1-3734-01. Quantiry 3 each item. Apperently unused. Apply for furtber decails.

COMPONENT CLEARANCE: resistors, capacitors, relays, transistors, ICs, hardware etc. ect. $5 \mathrm{Kgs}. \mathrm{55.75}$.10 Kgs £9.50. $20 \mathrm{Kgs} £ 15.50$. Post free. Transformers: 12 V 4 amp twice $£ 5$. P\&P P $£ 2$. Access, Barclaycard. Weirmede Ltd, 129 St Al bans Road, Waaford, Herts. Tel. Warford (0923) . 49456.

LINSLEY-HOOD new $80-100$ watt amplifier, components and PC board availabie now. Other ${ }_{325}$ modules to follw. Sac for ${ }_{802}^{37}$ Fore Street, Edmonton, London N(1822) BRIDGES, waveform/ransistor analysers. Calibrators, Standards. Millivolumeters. Dynamometers. KW meters. Oscilloscopes. Recorders. SigRMS generacors sM seep,

XWD RADIO EQUIPMENT over 500 sets in stock from $£ 8$. Send 500 for illusurated catalogue (including ${ }^{\text {E1 }}$ vourher). Weirmede Lid, Warford (0923) 49456.

ELECTRONIC AND MECHANICAL

 SUB-CONTRACTING SERVICESWe are asmsil orgs
offering the following

+ Circuit design and devolopment
+ PCB Assembly - large or small quantitie - PCB layouts + Prototype facilities
+ Top quality at sensib
+ Good dalivery times
 FELPHAM, W SU88EX, PO 227 hB
Teiephone: 024-3e9 387

ARTICLES FOR SALE
TO MANUFACTURERS, WHOLESALERS BULK BUYERS, ETC. LARGE QUANTITIES OF'RADIO. TV AND ELECTRONIC COMPONENTS FOR DISPOSAL
SÉMICONDUCTORS, all types, INTEGRATED CIRCUİTS, TRANSISTORS, DIODES, RECTIFIERS, THYRISTORS, etc. RESISTORS, C/F, M/F, W/W, etc CAPACITORS, SILVER MICA, POLYSTYRENE, C280, C296, DISC CERAMICS, PLATE CERAMICS, etc.
ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE, CABLES, SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFORMERS, atc

TEI PRES - Come and pay us a visit ALADUIN'S CAVE
TELEPHONE: 445 0749/445 2713
BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, North Finchley, London, N. 12
${ }^{(5 \text { minutest } 1 \text { Tom Tally Ho Corner) }}$

BANKRUPT STOCK

Approximately 15019 inch XY black and white monitors, manufactured by Electroholme of Canada.
Brand new, in their original cartons. New cost over $£ 150$ each. Open to any sensible offer for the lot.

Telephone: 0604858075

PHASEMETERS

- $0.1 \mathrm{H}_{2}$ to 100 KHz in one range.
 Wave shape tolorsant (Sine to pulse) Centre zero or LH zero sccale options.
$0.5 V$
Secorder output, Synch. output. C.5V Procradd output Sy
Small sizd inoxpensive
Write or phone for infor

JELVALELTD.
104 Marrahalswick. Lane St. Albans, Herts
St. Albenn (OT27) Abert

CAPACITY AVAILABLE

TW ELECTRONICS LTD

THE PCB ASSEMBLERS
More and more companies are investi-
gating the advantages of using a professional subcontractor. Such an undertaking requires certain assurances.
TW are able to satisty all of them quality, competitive pricing, firm delivey and close co-operation with the customer.
Assembled boards at 100% inspected before flow soldering and reinspected after automatic cropping and cleaning. Every batch of completed boards is issued with a signed certificate of conformity and quality - our final assurance. For further details, contact us at our new For furth
works:

Bienhelm Industifal Park Bury St. Edmunda
Suffolk IP33 3UT
Telephone: 02843931 (1466)

ELECTRONIC DESIGN SERVICE. Immediate capacity available for circuit design and development work, PC artwork, etc. Small batch Lid., 1 A Eva Road, Gillingham, Kent. Tel: Medway (0634) 577854 .
BATCH PRODUCTION PC ASSEMBLY to sample or drawings any quantity. S.C. (Electronics) Ltd, Unit 7, Carew St. Ind. Estate, Cam-
berwett SE5 9DF. 017371422 (1815)
BATCH PRODUCTION wiring and assembly to sample or drawings. McDeane Electricals L.d, 19b Station Parade, Ealing Common, London
W5 Tel: 01-992 8976 (169

BONDNNG TY YOKES TO TUBES? Using Temp. Res., Hot meth? If not - why not? efficiency. Used by the largest relurbishing companies. Lower material cost than any hotmelt manufacturer. For H.M. Guns/Slugs. Write or phone for quote.

> 'JAMES' BOND Adhesives Prestwick Carr Fanm Pontaland, Nowcastle on Tyne, NE20 SUB Telephome: 0651-2300

STORNO RADIOS (seven). Less crystals. Batterics included plus five spares, three chargers; lots of spare parts. Good working order and condition, used until recendy - now surplus. Bids are invited for this equipment. - Please ring A.
Clement on $0642-546411$ (Teesside) for full deClement on $0642-546411$ (Teesside) for full de-
tails.

CLASSIFIEDS

TO
IAN FAUX
ON
01-661 3033

SERVICES

CIRCOLEC

THE COMPLETE ELECTRONIC SERVICE

Artwork, Circuit Design, PCB Assembly, Test \& Repair Servica, O.A. Consultancy Prototypes, Final Assembly.
Quality workmanship by professionals at economic prices.
Please telephone 01-767 1233 for advice or further details.
1 FRANCISCAN ROAD
TOOTING, LONDON SW17

P.C.B. Artworks

FAST TURNRDUND
Cost effective specialist layout and
master a artwark WILIIAMS ARTWORK, GRAYS LANE,
MORETON-IN-MARSH, GLOS. MORETON-IN-MARSH, GLOS (1887)
O 386-840121-to 9p.m

PSB
 LAYOUT DESIGN
 +í , QUALITY ARTWORK
 FAST DELIVERY • REASONABLE RATES PHONE FREOS ARTWORK SERVICE 01-607-3169

DESIGN AND DEVELOPMENT. ANALOGUE, DIGITAL, RF AND MICROWAVE CIRCUIT AND SÝSTEM DESIGN. Also PCB design, mechanical design and prototype/small 103 Liscombe, Bracknell, Berks. Tel: Bracknell 52023.

SMALL BATCH PCBs produced from your artwork. Also DIALS, PANELS, LABELS. Camera work undertaken. FAST TURNAROUND. Detauls: Winston Promotions; 9 Hatton Plac
London ECIN 8RU. Tel. 01-405 4123/0960.

TURN YOUR SURPLUS Capacitors, transistors, etc, into cash. Contact COLES-HARDING \& Co, 103 South Brink, Wisbech, Cambs.
$0945-4188$. Immediate setulement. We also wel-0945-4 188. Immediate settlement. We also wel-
come the opportunity to quote for complete factory clearance

FOR THE BEST PCB SERVICE AVAILABLE

- Circuin Design \& Development

Digital and Anslogue

- Artwork Layour

Work of the highest standard by experienced
draughtsmen. No minimum charge
draughtsmen. No minimum charg

- Board Manufacture

Prototype to semi-production, excellent rates,
24-hour prototype service from filmwork. CWiring \& Ascombly
PCB assombly, wiring and cable forming by
qualified staff. FTrert
Full test facilities available. One or all services avait-
able, no order too smatl. able, no order too small.
Please telephone Chel Please telephone Chelms.
ford (0245) 357935, or write to HCR Electronics, The In. \qquad dustrial Unit,
Chelmasford.

BOARDRAVEN LTD.

PRINTED CIRCUTT BOARDS
Manufactured to your specifications. Single/dou
ble sided. Very speedy deliveries on proter and quantity. Master layouts if required Consect:
J. K. Har
J. K. Marrison, Carnaby Induatrial Estate. Brid
lington, North Humberside YO15 3 OY . Tole photen : $(0282) 78788$.

DESIGN SERVICES. Electronic design de velopment and production service available for digital and analogue instruments. RF Transmitters and receivers, telemetery and control systems. 20 years' experience. R.C.S. Electronics, Wolsey Road, Ashford, Middlesex. Phone Mr Falkner 53661 .

ARTICLES WANTED

WANTED!

all types of scrap and REDUNDANT ELECTRONIC \& COMPUTER MATERIALS
with precious metal content
TRANSISTORS \& PRINTED CIRCUIT BOARDS TO COMPLETE COMPUTERS
the commercial SMELTING \& REFINING Co. Lidd. 171 FARRINGDON ROAD LONDON EC1R 3AL Tel: 01-837 1475 Cables: COMSMELT, EC1 Works: R.ECKMEY. NT. LEICESTER

SURPLUS

Top prices paid for surplus, redundant and obsolete test equipment, factories cleared.
Also quantities of components immediate settlement. We will call any TIMEBASE
M Altriston Gerde
Shailing, Southempton SO2 FFU Tolephone: (0703) 431373

WANTED

Test equipment, receivers valves, transmitters, components, cable and electronic scrap, and quantity. Prompt service and cash. Member of A.R.R.A.

M \& B RADIO
 86 Bishopsgate Street Leeds LS1 4BB
 053235649

WANTED

Scrap and re-usable mainframe computer and industrial electronic equipment.
E.M.A. Telecommunications Engineers, Orford, Woodbridge, Suf folk. Tel. 039-45 328.

WANTED: Redundant test equipment - re ceiving and transmitting equipment - valves plugs and sockets - syncros, etc. Phone: John's
Radio, 0274684007,84 Whitehall Road East Birkenshaw, Bradford BD11 2ER. (1723)

WANTED FOR CASH: 7F7, 7N7, 53, 6L6 metal, 304 TL , 4 CX 1000 A , all transmitting, special purpose valves of Eimac/Varian. DCO Jersey 07032, USA.

CROTECH OSCILLOSCOPES NATIONWIDE AVAILABILITY LOCAL TO YOU.

London \& Home Counties Audio Electronics Carston Electronics Ltd Kentwood Electronics Ltd R.T. \& I. Lid Precision Instruments
Laboratory Ltd

Wales \& Wes
Glevum Instruments Ltd Gloucester

East Anglia
Marshlon Electronics
Black Star Ltd

Midiands \& North
Northern Instruments Ltd Leads
Burdon Industrial Instrumentation Lid

Electronic Measurement
Services
Radio Telephone Service
Scotiand
Datascan Ltd

1pswich

St. Ives

Newcastle-underLyme

Manchester Derby

Inverness

Tel: 047375476 Tel: 048062440

TBI: 0532791054

Tel: 0782616631
Tel: 0612734653
Tel: 033241235

Tel: 0463222876

Crotech hinstruments Limited

WW - 027 FOR FURTHER DETAILS

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 117-127

PAGE	PAGE
Acoustical Mfg. Co. Ltd. 58	GAS Electronics.. 7
Aero Electronics .. 14	Global Specialities Corp. (UK) Ltd. 97
Ambit International 4, 18	GP Industrial Electronics Ltd............................16, 17
Analogue Associates ... 28	Greenwood Electronics Ltd. Cover iv
Anglia Components ... 6	
Antex Electronics Cover iii	
Armon Electronics Ltd. 14	Hall Electric Ltd. ... 24
Audio Electronics.. 29	Happy Memories ... 103
Avel Lindberg (Cotswold Electronics) 20	Harris Electronics (London) 8
	Hart Electronic Kits Ltd. 102
	Hemmings Electronics and Microcomputers 104
Bamber B. Electronics...................................... 112	Henry's Radio .. 4, 22
Barrie Electronics Ltd. ... 97	Hilomast Ltd. .. 5
Baydis ... 20.	House of Instruments Ltd. 94
Black Star Lid. ... 22	Hunter Cases ... 22
Broadfield \& Mayco Disposals............................. 108	
	ILP Electronics Ltd. 15, 106, 107
	Interface Quartz Devices Ltd. 25
Cambridge Kits Carston Electronics.. 21	Intergrex Ltd. ... 2
Chiltern Electronics .. 100	
Circuit Services... 25	KEF Electronics Ltd. 113,115
Clark Masts Ltd.. 15	Keithley Instruments Litd. .. 25
Clef Products (Electronics) Ltd............................ 112	Keisey A coustics Ltd. ... 22
Colomor Electronics 101	Kelsey Acoustics Ltd. ... 22
Comprocsys Ltd ... 6	
Computer Appreciation 104	
Com-Tek (Midlands) .. 14	Langrex Supplies Ltd....................................... 105
Crotech Instruments Ltd. 128	Levell Electronics Ltd. 96
	Lighting Electronic Components........................... 98
Darom Supplies102, 104 . 98	
Dataman Designs.. 23	Magenta Electronics 98
Display Electronics.. 114	Marconi Communication Systems ... 101
DSN Marketing Lid .95	Marco Trading ... 94
	MEM Electronics ... 110
Electronic Brokers Lid. 3, 5, 57	Midwich Computer Co. Ltd. 21
Electronic Equipment Co. 98	Modern Book Co., The...................................... 96
Electrovalue... 95	Monolith Electronics Co. Ltd.............................. 94
	Olson Electronics Ltd. 20
Farnell Instruments \square Cover ii	Opus Supplies 109
Flight Electronics Ltd. ... 8	Orion Scientific Products Ltd............................... 2

OVERSEAS ADVERTISEMENT

AGENTS:
France \& Belgium: Norbert Hellin, 50 Rue de Chemin Veat, F-9100, Boulogne, Paris
Hungary: Mrs Edit, Bajusz, Hungexpo Advertising Agency, Budapest XIV, Varosliget.
Telephone: 225008 - Telex: Budapest 22-4525
INTFOIRE
Italy: Sig C. Epis, Etas-Kompass, S.p.a. - Servizio Estero
Via Mantegna 6, 20154 Milan.
Telephone: 347051 - Telex: 37342 Kompass.
Japan: Mr. Inatsuki. Trade Media - IBPA (Japan), B.212. Azabu Heights, 1-5-10 Roppongi, Minato-ku, Tokyo 106. Telephone: (03) 5850581.
United States of America: Ray Barnes, IPC Business Press, 205 East 42 nd Street, New York. NY 10017 - Telephone: (212) 867-2080. Telex: 238327
Mr Jack Farley Jnr., The Farley Co. Suite 1584, 35 East Valker Drive, Chicago, Illinois 60601 - Telephone: (312)
Mr Victor A. Jauch, Elmatex International, P.O. Box 34607, Los Angetes, Calif. 90034, USA - Telephone (213) 821 8581 - Telex: 18-1059.

PAGE
Pantechnic
113

PM Components...10,111
P. \& R. Computer Shop.. 112Radford Audio Ltd.28

Radio Component Specialists
.99
.98

Reprints 112
Research Communications Ltd. 103
105
RST Valves
12
Sagin, M. R. 108
Samsons (Electron 108
. .94
.96
Sescom Inc.
30
Shure Electronics Ltd. 26, 27
South Midlands Communications Lid.
18
18
Sowter, E. A. Ltd.18
. .115
.14
Strumech Engineering Ltd 14
Technomatic Ltd 92,93
Teleradio Electronics Ltd.2
. .28Television Magazine ..Tempus.
Teloman Products Ltd. .2
91
Texas Instruments 13
Thandar Electronics Ltd. Thanet Electronics 110Thanet Electronics 112
Thurlby Electronics (Reltech Instruments)
Thurlby Electronics (Reltech Instruments)
Time Base Lid. 113
Valradio Ltd. 108
Watford Electronics 10, 11
West Hyde Developments Lid. 12
.28
White House Electronics 4, 12, 18
Wireless World Circards .101, 103

Mr Jack Mentel, The Farley Co., Suite 650, Ranna Build. ing, Cleveland, Ohio 4415-Telephone: (216)6211919. Mr Ray Rickles, Ray Rickles \& Co., P.O. Box 2028, Beach, Florida 33140 - Telephone (305) 5327301 . Atlanta, Georgia 30305 . Telephone: (404) 2377432. Atlanta, Georgia 30305 . Telephone: (404) 237 Mike Loughlin, IPC Business Press, 15055, Memorial Ste 119, Houston, Texas 77079 - Telephone (713) 7838673.
Canada: Mr Colin H. MacCulloch, International Advertis ing Consultants Ltd., 915 Carlton Tower, 2 Carlton Street, Toronto 2 - Telephone (416) 3642269.

* Also subscription agents.
suldering Station safe 24 volt temperature controlled minature dering, variable tip temperature $65-430^{\circ} \mathrm{C}$:istatic earth connection, with XS
TC- 30 watts. R.R.P. £ 40.50

Model C-

Made to professional standards

Contans Model XS-25 watts. Works well from a 12 volt battery fits any car boat or caravan The iron is fitted with two heavy gauge crocodile clips, a booklet 'How to Solder'. All pack into a durable
R.R.P $£ 5.50$

Model XS-25 Watts
General purpose soldering
R.R.P. $£ 4.70$
50. 24 and 12 valts RR.P $£ 4.80$

Model SK1 kit
A complete kit for miniature work contains Model C iron fitted with a No 104 bit plus 2 alternative bits, a ree of solder Heat Sink and a booklet 'How to Solder' All fits into a plastic base with a

Model CCN-15 Watts

SK6 Soldering kit Contains model XS230 iran - 25 watts general purpose soldering. 1 metre of Cored Solder, a bookle 'How to Scider' and the ST4 stand. R.R.P. £6. 35

SK5-BP and SK6-8P Soldering kits fitted with safety plugs $\begin{array}{ll}\text { SK5-BP R.R.P } £ 710 \\ \text { SKG-BP } & \text { RRP } £ 720\end{array}$

The TC82-a significant development in temperature controlled soldering

The new Oryx TC 82 has features unique to any temperature controlled precision soldering iron. Available in $24 \mathrm{~V}, 50 \mathrm{~V}, 115 \mathrm{~V}$ and $210 / 240 \mathrm{~V}$ models, the TC 82 has a facility allowing the user to accurately dial any tip temperature between $260^{\circ} \mathrm{C}$ and $420^{\circ} \mathrm{C}$ by setting a dial in the handle without changing tips.

> This eliminates the need for temperature
> measuring equipment. You get faster and better soldering.

For 24 V models a special Oryx power unit connects directly to the iron and contains fully isolated transformer to BS3535, a safety stand, tip clean facility and illuminated mains socket switch.
The Oryx TC 82 is also extra-safe. Removing the handle automatically disconnects the iron from power source. Other TC 82 features include: Power-on Neon indicator in handle; burn proof cable; choice of 13 tip styles.

And more good news

The Oryx TC 82 iron costs only $£ 13.00$ (+VAT) and the power unit for 24 V operation $£ 23.00$ (+VAT), The TC82 240 volt is also available as a 30 watt general purpose iron at only $£ 4.95$ (+VAT).

[^12]
[^0]: Dr Hirata is now an independent researcher working in Tokyo.

[^1]: M. Darwood..

 Although not a writer by trade; N. Darwood has had over 40 articles published in the technical press. This has enhanced his career which began as a radio technician in the Forces. He then progressed from a computer maintenance ongineer through development to become a computer-hardwara designer. In 1973 he formed a Com-puter-design Consultancy company and has since done work for many large companies, including Plessey, Decca, Marconi and EMI.

 His published works range from the practical imultiple error detection with a single parity bit - The abacus method of converting क logic-diagram from AND/OR to NAND - decimal Gray-code digital sinewave generation), to the interesting (decision tables theory - Boolaan fractions history of the Karnaugh mapi. He has 'modernized' Lewis Carroll's Game of Logic into a board-game, which makes the game sideal: teaching-aid for today's digital logic, and besides being fascintik. ing as a pastime it is useful for the practicing electronic engineer.

[^2]: This article is an expansion of the New Bureaucracy theme of the February 1981 leader, developed for "The Software Crisis, aast October's conference organised by the Netherlands software associat
 New material has been added for this article.

[^3]: *Morse decoding' by N. Kyriazis. Wireless World, February 1981, page 44-6.

[^4]: J. P. Sargent is at the H. H. Wills Physics Laboratory, University of Bristol.

[^5]: Dr Barker is in the department of computer science at Teesside Polytechnic.

[^6]: WW - 073 FOR FURTHER DETALLS

[^7]: Name
 | enclose PO/Cheque for $£$
 Address
 or debit my

[^8]:

[^9]: Please note x in part number denotes mains voltage. Please insert ' O ' in place of X for 190 V . 19 ' in place of X for 220 V (Europe), and ' 2 ' in place of X for 240 V (U.K.) All units except UC1 incorporate our own toro idal transformers.

[^10]: Name:

[^11]: Application forms obtainable from:
 Personnel Officer, Laser-Scan Laboratories Ltd, Cambridge Science Park, Milton Road, Cambridge CB4 4BH. Telephone: (0223) 69872.
 (1800)

[^12]: Greenwood Electronics Limited, Portman Road, Reading, Berkshire RG3 INE. Telephone: (0734) 595844. Telex: 848659

