LECTRONICS COMPUTING COMMUNIGATIONS BRDADCASTING AUDIO AND VIDEO

Australia A\$ 2.70
Canada C $\$ 3.25$
Denmark DKR. 33.25 Germany DM. 7.00 Geece DRA. 190.00 Holtend DFL. 8.50 Italy 13700 New Zealand N2\$3.00 Norway NKR. 26.00 Singapore MS 5.50 Span PTS 275.00 Swractand FR. 7.00 b. C a . $\$ 3.75$

MPU-controlled

 transeeiver

Interfacing the nanocomp

Technological choices for the UK

Autoranging nf. millivoltmeter

True r.m.s. or average responding
Autoranging or manual
LED rangeindication

IEEE488 interface available.

Hold Teromenenality
Small size
Operates from a,c. mains or external.d.c.

High sensitivity
Low power consumption
Linear dB scale

Programmable
details from
himel

Front cover is the microprocessorcontrolled amateur transceiver featured in this issue by T. D. Forrester, photographed by Alan McFaden with special effects by Lasercolor.

NEXT MONTH

Morse decoding by micro computer, by J. P. Sargent, uses a 567 tone decoding and seven-bit clock to time incoming signals Morse code is interfaced to a $\mathrm{ZX81}$ via a p.i.o. chip. Machine code routines use this data to provide up to 9 lines of text.

Leading Japaneséresearch engineer Y. Hirata, gives measurements of non-linearities in four p.c.m. processors and compares them with those from three analogue tape recorders.
Logic maps, by N. Darwood, gives the history of methods for showing logical truth - from 13th century Lull to present-day Karnaugh maps.
Picotutor-microprocessor assembly language trainer designed by Bob Coates of Nanocomp fame assumes no previous experience of microprocessors.

Current issue price 80 p , back issues (if available) £1, at Retail and Trade Counter, Units 1 \& 2, Bankside Industrial Centre, Hopton Street, London SE1. Available on microfilm; please contact editor.
By post, current issue $£ 1.23$, back issues (if available) $£ 1.80$, order and payments to EEP General Sales Dept,, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.
Editorial \& Advertising offices: Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.
Telephones: Editorial 01-661 3500. AdTelephones: Editorial
vertising 01-661 3130 .
vertising 01-661ex: 892084 BISPRS G
Subscription rates: 1 year $£ 14$ UK and Subscription ra
f17 outside UK
Student rates: 1 year £9.35 UK and £11.70 outside UK.
Distribution: Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Telephone 01-661 3500.
Subsciptions: Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone: 044459188. Please notify a change of address.
USA: $\$ 39$ surface mail, $\$ 98.30$ airmail. US subscriptions from IPC B.P., Subscriptions Office, 205 E.42nd Street, NY 10017.

USA mailing agents: Expediters of the Printed Word Ltd, 527 Madison Avenue, Suite 1217. New York, NY 10022. 2nd Suite 1217, New York, NY class postage paid at New York.
class postage paid at New York. 00436062 .

ELECTRONICS
wireless BROADCASTING AUDIO

WIRING TECHNOLOGY OF THE PAST
32 INTERFACING THE NANOCOMP
by R. Coates
35

TWO-METRE TRANSCEIVER

by T. Forrester
39 BINAURAL RECORDINGS AND LOUDSPEAKERS
by J. Butis

COMMUNICATIONS

Prolect Raver Piccolo susiemb umateur digltal storeo
44 ENGINEERING AND SOCIETY
by R. Howes

BBC ENGINEERING - 1922 ONWARD
by P. Leggatt

52 MEMORY SYSTEMS

by L. Macarl

CIRCUIT IDEAS

Eprom proxammer
Speed regulatar
Smake detector

MODULAR PREAMPLIFIER

by J. L. Linsley Hood

DIGITAL POLYPHASE SINEWAVES

by H. Darwood

66 LETIERS Digital fintistor con 70 DISC DRIVE CONTROLLERS Ly J. R. Wankinson

NEWS

Computing whth Forth/HDTV/Cabie TU

78
 PROGRAMMABLE GPIB TO SERIAL INTERFACE
 by C. day

SINGLE IC FSK MODEM/EVENTS

\square

EPROM EMULATOR

by P. Nicholls
porsamal compater Tisc urlue

Sowter Transformers

With 40 years' experience in the design and manufacture of several hundred thousand transformers we can supply

AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE YOU NAMEIT! WE MAKEIT! OUR RANGE INCLUDES

Microphone transformers (all types), Microphone Splitter/Combiner transformers. Input and Output transformers, Direct Injection transformers for Guitars, Line transformers to G.P.O. Isolating Test Specification, Tapped impedance matching transformers, Gramophone Pickup transformers, Audio Mixing Desk transformers (all types), Miniature transformers, Microminiature transformers for PCB mounting, Experimental transformers, Ultra luw frequency transformers, Ultra linear and other transformers for Transistor and Valve Amplifiers up to 500 watts, Inductive Loop Transformers, Smoothing Chokes, Filter, Inductors, ampilfier to 100 volt line transformers (from a few watts up to 1,000 watts), 100 volt line transformers to speakers, Speaker matching transformers (all powers), Column Loudspeaker transformers up to 300 watts or more.
We can design for RECORDING QUALITY, STUDIO QUALITY, HI-FI QUALITY OR P.A. QUALITY. OUR PRICES ARE HIGHLY COMPETITIVE AND WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS. Many standard types are in stock and normal dispatch times are short and sensible.
OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES, MIXING DESK MANUFACTURERS, RECORDING STUDIOS, HI-FI ENTHUSIASTS, BAND GROUPS, AND PUBLIC ADDRESS FIRMS. Export is a speciality and we hend for our questionnaire which, when completed, enables us to post quota; Siond by for our q

E. A. Sowter Ltd.

Manufacturers and Dasignera
E. A. SOWTER LTD. (Established 1941) : Reg. No. England 303990 The Boat Yard, Cullingham Road, Ipswich IPi 2EG, Suffolk P.O. Box 36, ipswich, IP1 2EL, Engiand Telex 987703G Sowter

Stocks of standard items exceed a quarter of a million. Individual units to the tightest specification made to order.

Interface
Quartz
Devices
Limited

29 Market Street
Crewkerne
Somerselta: 8 7JU
Crewkerne (0460) 74433
Telex 46283 inface g

Electronic Brokers are Éurope's leading Second User Equipment Company. We carry large stocks of the very latest test equipment which is refurbished in our own service laboratories and calibrated to meet the manufacturer's sales specifications When you buy used equipment from Electronic Brokers, it can be yours in just days. No waiting for manufacturers lengthy production schedules. All equipment is fully guaranteed.

ANALYSERS

Hawlett Packard
3580A Spectrum Analyser $5 \mathrm{~Hz}-50 \mathrm{KHz}$ 141 T/8552B/B555A 10MHz-180 £495.00
8407A8412A Network Anolyser
£1950.00
Marcon
TF2331 Distortion Meter $2 \mathrm{OHz}-20 \mathrm{KHz}$
Solartron
1172 TFA
¢ 4000,00
Tektronix
7001/F2 Logic Analyser in 7704 Mainfreme 4950.00
 Plug in 1 KHz -1BOOMHz Plug in . . 57500.00

BRIDGES

Marconi
TF1245/TF1246 Q Meter 40KH2-50K
 FREQUENCY COUNTERS

Hewlett Packard
$5340 A B$ Digit $10 \mathrm{~Hz}-18 \mathrm{GHz}$... £3750.00 Marconi Digit 10Hz-18GHz TF2432 8 Oigit 520 MHz £275.00

DVM's AND DMM's

$8300 \mathrm{~A} 51 / 2$ Digit OC only $1 \mu \mathrm{~V}$ sensitivity 50 ranges to 1100 V
Philips
PM2523-01 LED 31⁄2 Digit DMM . £95.00
Philips 2523 -01 LED 3½ Digit DMM . £95.00 Solartron.

7055Microprocessor DMM. Scale Length 20,000. AC/DC volts, resistance. 14 V

OSCILLOSCOPES

 Philips
M3232 Oual Beam 10MHz £495.00 PM 3234 True Dual Beam Storage 1750.00 PM 324450 MHz 4 Charnel Oelay T'Base

Taktronix.
475 Dual Trace 200MH2 Portable $£ 2000.00$ 7313100 MHz Storage Mainframe 25.00 7603 100MHz Mainframe. $\quad \mathbf{1 3 0 0 . 0 0}$ 54050 MHz Mainframe £1000.00 54150 MHz Variable Persistance Storage
Mainframe. 77044 200MHz Mainframe c/w 7A22 Diff. Amplifier, 7A26 Oual Chennel, 7880
Timebase and 7B85 Delaying Timebase 7904500 MHz Mainframe $£ 4500.00$
7014 Oigital Counter plug- in 525MHz 8 434 MHtion 01 Storage Oscilloscope
25 MHz P6015 HV Probe 22250.00
.$E 255.00$ Telaquipment
OM63 Storage Oscilloscope Fitted with $2 \times V 4$ Plug ins to give 4 Trace 15 MHz cT 71 Curve traceres450.00 Texscan. c495.00

TEKTRONIX PLUG INS

5448 Dual Trace Amp DC-50MHz $\mathbf{8 4 0 0 . 0 0}$ 5842 Delay Timetase....... 8600.00 7 A13 Diff. Comparator Amp. OC-105MHz $7 A 16 A$ Single Trece Amp. $0 C-225 \mathrm{MHz}$ フäв Dial Trace Amp. DC-75MHz, £450.00 $7 A 己 2$ Diff. Amp. DC-1MHz 10~V/Div

E525.00 7 A29 Dual Trace Amp. DC-1GHz 1250.00 710 Timebase For use in 7104 E 1200.00 7815 Delay Timebase for use in 7104 7850 Timebase $£ 275.00$ 78534 Dual Timebase For use in 7600 $\mathbf{\Sigma 4 8 5 . 0 0}$ 7B85 Delaying Timebase \&900.00 7892A Dual Timebase For use in 790000 7014 Digtal Counter. 525 MHz . 8550.00 ${ }^{2} 1$ Sampling Head (unused) ©575.00

RECORDERS

Howlett Packard
$7040 A X-Y$ Recorder 1 V/inch POA
7035 X X-Y Recorder. POA
7045A X-Y Plotter T'Base Metric 1150.00
Watanabe.
WTR 2816 Channel Chart Recorder
2950.00

30472 Channel $2 \mathrm{~cm} / \mathrm{HR}-60 \mathrm{~cm} / \mathrm{MIN}$

SIGNAL SOURCES

Hewlett Packard. 1mV-10V into 600Ω ES95.00 $606 B$ AM Srgnal Generator. 50 KHz
65 MHz . AM $0-95 \%$ \&50.00 $608 F 10-455 \mathrm{MHz}$ AM/PCM Modulation $0.1 \mu \mathrm{~V}-1 \mathrm{~V}$ output..... $0.1 \mu \mathrm{~V}-0.224 \mathrm{~V}$ £1000.00 651 B Test Oscillator. $10 \mathrm{~Hz}-10 \mathrm{AH}-\mathrm{zz}$
$01 \mathrm{mV}-3.16 \mathrm{~V}$ $3320 A$ Frequency Synthesizer D.01Hz 13MAz........................... 8616 Stgna Generato e2000.00 8620C + B6250B Sweep Oscillato Marconi.
2000.00 Marcont. P.O.A. 72 MHz . $2 \mu \mathrm{~V}-2 \mathrm{~V}$.............. $\mathbf{8 7 5 0 . 0 0}$ TF2002B AM/FM 1OKHz-BAM+z $£ 1200.00$ TF21 $200.000 \mathrm{BHz}-100 \mathrm{KHz}$ Waveform TF2170B Synchronizer for TF2002B TF995B/2 AM/RM 200KHz-200MHz $E 65.00$
 TF2008 AM/AM 10 KHz 210 MHz bult in sweeper. Output 0. 2 V V-200mVE3500.00 TF2016 + TF2173 Synchroniser AM/FM 10KHz-120MHz,
TF2169 Pulse Modulator for use win TF2015 or TF2016200.00 TF 2000 AF Signal E200.00
E365.00 TF 2015 + TF2171 Generator \& TF $2015+$ TF 2171 Generator \& 1850.00 phillipe.
PM6456 Stereo Generator. ©250.00
Madiomater \quad SMG1 Stereo Generator £375.00
Talonic
£375.00
Talonic
8750.00

TEKTRONIX TM500

 SERIESOM5Q2A True RM S $31 / 2$ digit OMM
-M502A True RMS 31/2 digi OMM E200.00 DCSU3A 125 MHz Counter. $\mathbf{\Sigma 5 0 0 . 0 0}$ DC505A 225MHz Counter 8600.00 D0501 Digital Delayor on 1 O495.00 FG501 Function Generator $0.00 \mathbf{5 3 7 5 . 0 0}$ FG503 Function Generator $1 \mathrm{~Hz}-3 \mathrm{MHz}$ FGSO4 Function Generator $0.001 \mathrm{~Hz}-550.00$ PG50B Pulse Generator $5 \mathrm{~Hz}-5 \mathrm{MMHz}$
 €1000.00 SC504 80MHz Dual Trace Scope $£ 1250.00$ SG503 Sinewave Generator 250 KHz - $\mathbf{C 9 5 0 . 0 0}$
250 MHz 250 MHz \qquad 1050 MHz . TG501 Timemark Generator ©950.00

TEKTRONIX TV TEST

EQUIPMENT

141A PAL Test Signai Generator £1750.00 148 PAL Insertion Test Generator $\mathbf{£ 4 0 0 0 . 0 0}$ 1421 PAL Vectorscope © 1250. 1481CPAL Waveform

1485C PALINTSC Dual Standerd Waverorm MontorE2950.00 5HR 1 Wetm Monitor £950.00 NTSC + PAL + RGBJe3800.00

MISCELLANEOUS

Bruel E Kjaar
C975.00
Oymar
085 AF Power meter $20 \mathrm{~Hz}-30 \mathrm{KHz}$ OHW-50W input imp 1.2.1000 $\Omega_{\text {£250.00 }}$
Farrograph
Fluke
Fluke $883 \mathrm{AC/DC}$ Differential £615.00 945 AB Null Detector ع610.00 3010A Logictester. Self Contained Portable. Full Spec on Request . 88500.00 Hewlett Packard.
8403A Modulator Fitted With 8732 P PIN MODULATOR 1500.00 3482H Power Sensor $100 \mathrm{KHz}-4$. 2GHz. AS NEW 8745 A S Parameter Test Set. Fitted with 11604A Universal Arms 0.1-2GHz $\mathbf{C 2 7 5 0 . 0 0}$ 5930BA HP-IB Tirning Generator. ©300:00 Marconi.
TF2162 M.F. Attenuator O-111 dB
Fosor PFower Meter DC- E185.00 E525.00 TF2500 AF Power Meter. 7 ranges 100 m .00 watts to 25 watts .
ahde and Schwarz
MSC Stereo Coder. $30 \mathrm{~Hz}-15 \mathrm{KHz} \mathrm{E} 500.00$ Schaffner Shackman
ع275.00 Tektronlx
91 Constant Amplitude Sig. Gen. 350KHz$100 \mathrm{MHz} 2 \mathrm{mV}-55 \mathrm{~V}$... E250.00 106 Square Wave Generator 1ns risetime 284 Pulse Generator 70 pS risetime $\mathbf{\varepsilon 9 5 0}$
 Please note: Prices shown do not include VAT or carriage.

VERTICAL RANGE FROM 3－10 SOCKETS ALL EX－STOCK！ SPECIALS TO ORDER

OLSON ELECTRONICS LIMITED

BUILD A PAIR OF MICRO MONITORS！

Just a few hours easy and
interesting work and you＇ll have a superb pair of compact
joudspeakers for about har price of equivalent＇assembled＇ models． models
Me Wirmsiow Audio Micro with any speaker of similar sizen with any speaker of similar size
lat any pricell Don＇t rake our word for it－call for a demonstration！

The Micro Monitor kit contains all the components needed－a pair of cabinets in flat－pack form－accurately machined for easy assembly，all drive units，crossover networks，acoustic wadding，grille foam，velcro， nuts and bolts，etc．No electronic or woodworking knowledge required－ simple，foolproof instructions supplied．The cabinets can be stained， painted or finished with iron－on veneer．Dimensions of assembled cabinet： $32 \times 24 \times 20 \mathrm{cms}$ ．Suitable for amplifiers of $20-50$ watts

35／39 Church Street，Wilmslow，Cheshire SK9 1AS

1982 Catalogue－$£ 1.50$ post tree
Lightning service on telephoned credit card orders ${ }^{\prime}$

WW－ 043 FOR FURTHER DETAILS

WW－ 014 FOR FURTHER DETAILS

SINEWAVE INVERTERS －FROM CARACAL 200－1000 VA

Caracal offer you the U．K．＇s widest range of high－quality static inverters．Our inverters are used in many countries throughout the world wherever a reliable and stable source of A．C．power is needed for computers，communications， instrumentation，etc．They are also frequently used for mobile or marine applications where only a D．C．source is available．

Caracal inverters employ modern pulse width modulation technology which is replacing obsolescent tuned－type（ferro－ resonant）inverters，by giving higher efficiency throughout the load range，very low standby current，and lower weight．

We have a large range of models and options，at competitive prices，to suit your exact requirements．

19－INCH RACK MOUNTING
Now all inverters are also available in 19 －inch chassis form for rack mounting．

CARACAL POWER PRODUCTS LIMITED 42－44 SHORTMEAD STREET，BIGGLESWADE，BEDFORDSHIRE Telephone： 076781361

Eceptronio Brokers DECSALE

WORO PROCESSORS
SPECIAL PURCHASE OF THE BEST SELUNG OEC WS7B WORO
＊VT7B 32KB Video Data Processor
＊RX01 Dual Floppy Disk Drive
＊Mounted in mobile unit with stor age
＊Includes completa WP Software
package

gY8TEMS

PDP11V03 SYSTEM
$11 / 03$ 32K日 Processor including
Console interface PXV1 1 Duai Foppy Oisk
Low Cabinet on Castors
RT111 Lcence
DISK DमIVEs
FX118DRX01＋Unibus Cul
RXV118DRXO1＋Unbus Ct
RXV1180 RX01＋LSICt
RXBE R）CO
RX8E RXO1＋POPBCU
RX21180 RXO2＋Unibus CJ P P 28 FXO + PDP Ct ．
RKO6 14 MB Adct－on
RK611 RK06＋CtI
RKO7 28MBAdd－on
RK 71 RKO7 + Cul
pROCE8SOR8
POPGA－2D532KWMOS（NEW）
PDP8A－4008KWCore．
PDP11／0410\％＂32KBMOS
PDP11／34A12日KBM0S
PDP1 1／34A256KBMOS
PDP11／4096KWCore，KT110
PDP11／44256KBMOS
ppp11 $\times 44$－CB256KB．TU58．
PDP $1 / 70512 K B M O S[N E W]$
KMC11A Auxiliary Processor ．．．．
PRINTERS／TERMINAL
LA36 OECwriter II20mA
LA36 DECwriter IIS232
LA36 DECwriter II RS23
LA34 OECwriter IV
LA180－PD Paralle
DECprinter（NEW）
LA180－ED RS232 DECprinter
NEW
VT50 OECscope 2．OmA
VT50 DECscope RS？32
Vraphics DECscope
VTS5 Gr
（NEW）
 DUP11 DA SynctronousI／F KLQEAsynchronous（日E）． KL8JA ASychronous［8E，BA］

 PDPBA－205 Processor 10 32KWMOS［NEW］
PDPBA－4OO Frocessor，
BKW POPBA－400 Frocessor，gKW
CORe，KMBAA OKC8AA Core．KM
KCBAA，OKC8AA
KrogrammersConsole KCBAA ProgremmersC KM8AA Dption Module ． MMBAABKWCore Mernory．
MM AB $16 K W$ Core Mernory MMBAB16KWCore Mernory MXBE Dual Foppy \＆CU（NEW） Px28 Duai Foopy and Ct（NE oprion AR1116channelav BA11FE expander box BA1 1 LF Expander box OH11ACMultiplexor
OH11AOMultiplexar

OL11WAsynchronous
DM110A Line Adaptor
DR1 1 KDigitall／O
OU1 1 DA Synchronous interface
DUP11DA Synchronous interface
D 211 AMultipiexor
OZ118Muttiplexor
FP11A Foating Point
P111 FFoating Point（11／60）
H720Power SLicpt，
H744 Power Supply
H745 Power Supply
H754Power Supply
H754Power Supply
H7758BBattery Back－up
H775CB Battery Back－up $(11 / 34)$ ． H7750BDBartery Back－up（11／44） KE11A Extended Antherntic KG11ACRCmodule．
KIT1 1 HBus Interface．
KK11A Cache Memory．．．．．．．．．．．．．．．．．．．． 50
KT11DMemory Management（NEW）£1，500
KW11P ProgrammableClock
KW11PProgrammableClack

¢395 ¢525 ¢750
¢175
¢275
¢325
E175
¢225
£1，750
£1，500
E275
£275
E500
¢995
¢750
¢995
£1，450
¢750
c995
£1，325
c825
£3，250
E4，000
£1，250
¢250
C395
¢525
¢425
¢525
¢750
1，395
c995
£1，500
1，975
E175
£125
c90
¢175
¢495
¢695
£695
¢625
E595
¢465
¢250
¢1，500
¢750
¢150
ع345
£325

DISY MIEEI REINTER NEW LOW PRICE

Scoop purchase of factory refurbished Anderson Jacobson AJ832 daisy wheel printers complete with full keyboard integral stand，and RS232 interface．Utilising the famous QUME Printer Mechanism
NOW ONLY E750

MA 4 ITHMEMDUS GAVEUPTOE1\％

Manufacturer＇s
surplus－ALL
BRAND NEW BOXED

HAZELTINE 1510
［MLP £8日0］．Only£550
HAZELTINE 1520
［MLP £1050］．Only £625
HAZELTINE 1552
［MLP £8OO］．Only£395
HAZELTINE 1410
［MLP £475］．Only£295 HAZELTINE 1420
［MLP £515］．Only £350
New Autumn＇ 82 Catalogue now out．
Send for your FREE copy now．
Carriage and Packing extra
Electronic Brokers Ltd．，61／65 Kings Cross Road， LondonWC1X 9LN．Tel：01－2783461．Telex 298694
 WW－ 203 FOR FURTHER DETAILS

IEEE PROGRAMMABLES from TIME

9814 IEEE PROGRAMMABLE VOLTAGE STANDARD
A higher performance voltage standard with 4 ranges from 0.1 volt to 10 volt output. Accuracy is 0.01% and the resolution of setting is 1 in 200,000 . Output resistance is less than 0.01 ohms, and output current adjustable $20 \mathrm{~mA}-200 \mathrm{~mA}$. Temperature coeff is less than $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and long term stability better than 50 ppm per year. Full manual control is available via front panel controls. Available for benchtop use or $19^{\prime \prime}$ rack mounting.

9316 IEEE PROGRAMMABLE VOICE

A high quality speech synthesizer which has a 280 word vocabulary. By suitable programming via the IEEE bus it is possible to output single words, phrases and sentences. The vocabulary has been chosen to be applicable to many ATE applications.

- 9815 IEEE PROGRAMMABLE SCREWDRIVER

The unit has been designed to overcome the problems of adjusting large numbers of multi-turn trimmers in ATE systems. The screwdriver is fully programmable via the IEEE bus with 3 speeds of rotation and 2 selectable torque values available. The unit is supplied complete with a flexible drive shaft and drill chuck into which various adjusting tools can be located.

9810 IEEE/PROGRAMMABLE POWER SUPPLY

0.33 V in 0.1 V steps. Local or remote (IEEE) operation. Fully programmable on the IEEE bus with 3 settable current limits $1 \mathrm{~mA}, 10 \mathrm{~mA}$ and 1.1A. A dual version of the 9810 is also avalable. The unit is 3 Euro units high and standard 19" rack mounting width.

9812 IEEE PROGRAMMABLE SWITCH

24 double pole changeover switches are available with full IEEE control. Each switch is rated at 1 Amp, 30V dc or 100 V ac. Thermal emfs have been minimised to less than $1 \mu \vee$ per switch. All outputs are on the rear panel along with the IEEE address selector switch and bus connector. Manual control of the switches is also provided via a set of front panel switches which also incorporate LED indicators

9811 IEEE PROGRAMMABLE RESISTANCE
0-1 Megohm in 1 Ohm steps, fully programmable via the IEEE bus. Accuracy is 0.1% over most of the resistance range. Resistors are rated at 1 watt each. An attractive feature is the option to switch to local operation when the output resistance can be set up manually via front panel switches

An entire range of low-cost high-
 performance
 instruments

 sabtronios
 Making Performance Affordable

Happy Memories

part type

4116 200ns
4116250 ns
4816 100ns For BBC comp
4164 200ns
2114 200ns Low power
2114 450ns Low power
4118 250ns
6116 150ns CMOS
2708 450ns
2716 450ns 5 volt
2716 450ns three rail
2732 450ns Intel type
2532,450ns Texas type
$\begin{array}{lrrrrr}\text { Z80A-CPU } & \text { £4.35 } & \text { Z80A-P10 } & \text { £3.25 } & \text { Z80A-CTC } & \text { £3.25 } \\ \text { 6522 PlA } & £ 3.98 & 7805 \text { reg. } & .50 & 7812 \text { reg. } & .50\end{array}$ $\begin{array}{lllllllllllll}6522 & \text { P|A } & £ 3.98 & 7805 \text { reg. } & & .50 & 7812 & \text { reg. } & & .50 \\ \text { Low profile IC sockets: Pins } & 8 & 14 & 16 & 18 & 20 & 22 & 24 & 28 & 40\end{array}$ $\begin{array}{lllllllll} & \text { Pence } & 9 & 10 & 11 & 14 & 15 & 18 & 19 \\ 25 & 33\end{array}$
Soft-sectored floppy discs per 10 in plastic library case
5 inch SSSD £17.00 5 inch SSSD $£ 19.255$ inch DSDD $£ 21.00$ 8 inch SSSD £19.25 8 inch SSDD £23.65 8 inch DSDD £25.50

74LS series TTL, large stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or phone for list.

Please add 30p post and packing to orders under $£ 15$ and VAT to total
Access \& Barclaycard welcome
24-hour service on (054 422) 618
Government and Educational orders welcome $\mathbf{£ 1 5}$ minimum Trade accounts operated, 'phone or write for details

```
HAPPY MEMORIES (WW)
Gladestry, Kington
Herefordshire HR5 3NY
Tel: (054 422) 618 or 628
```


Signature
Name: \qquad
Address: \qquad

Credit card or account customers may telephone orders.

No matter what panel meter you may be looking for we can give you the meter you want. The Bach-Simpson range of standard models represents the largest selection of meters you will find anywhere. See our new catalogue and you will see what we mean You may of course, have a need for customised meters. Do you require special sensitivities, special movement ballistics or special scales?
No problem! you tell us we can supply.
With our UK manufacturing facilities and our new Mod-Centre, we can pioduce meters to meet your requirements
If you would like to know more - write or 'phone now and ask for Colin Williams.

Bach-Simpson
Bach-Simpson (U.K.) Limited,
Trenant Estate, Wadebridge, Cornwall, PL276HD. Telephone: (020881) 2031 Telex: 45451

WW - 015 FOR FURTHER DETAILS

BASIC ELECTRONICS

```
by Grob
MUNICATION CIRCUITS, READY, REF, MANUAL
byMarkuS
popular circuits ready ref. manual
by MarkUS ENCYCLOPAEDIA OF INTEGRATED CIRCUITS
by Buchsb8UM
by Tsub INTEGRATED ELECTRONIC
INTRO TO PASCAL 2ND EDITION
ByWolst' CODE AND BETTER BASIC
by Stewarl 
BYTSAORGOCESSOR SYSTEM DESIGN VOL II
bICROPROCE
```


THE MODERN BOOK CO.

```
Specialist in scientific and technical book
PHONE: 01-402 \(9176^{\text {. Closed SATURDAY } 1 \text { p. }}\).
Please allow 14 days for reply or delivery
```

WW - 037 FOR FURTHER DETAILS

P.\&R. COMPUTER SHOP
 IBM GOLFBALL PRINTER 3982, £70 EACH + VAT

NEW CENTRONIC 779 PRINTERS, $£ 325$ + VAT
NEW CENTRONIC 781 PRINTERS, $£ 350$ + VAT
LA DECK WRITERS MODS. $35,36 \& 180$, FROM $£ 325+$ VAT. ALL NEW
NEW CIFA VDUs. 1 ONLY £300 + VAT
POWER UNITS 5 VOLT 6 AMP, £20 EACH
FANS, PCBS, KEYBOARDS AND LOTS OF ODDS \& ENDS.
COME AND LOOK AROUND
SALCOTT MILL, GOLDHANGER ROAD
HEYBRIDGE, ESSEX
PHONE MALDON (0621) 57440

THE QUAD FM4; SEVEN PRESET STATIONS; STORED AND RECALLED UNDER THE CONTROL OF A DEDICATED MICROPROCESSOR, WITH A LEVEL OF AUDIO PERFORMANCE LIMITED ONLY BY THE QUALITY OF THE INCOMING SIGNAL. DECEPTIVELY SIMPLE AND ORIGINAL, AS ONE WOULD EXPECT FROM QUAD.

Simply write or phone for more information to
The Acoustical Manufacturing Co. Ltd., Huntingdon, Cambs. PE18 7DB. Telephone: (0480) 52561.

WW - 041 FOR FURTHER DETAILS

	HONETWEL PROXIMITY OETECTOR integral PMOTO CONOUCTIVE CELL, 5125 . High-power Cdscoll. 600 MW , for control citcults Rasistance 800 ohm to 4 K . Max votis 240 Size $1 / 2 \times$ 1/2in. mibidon michophone with pre-amp. on chassis. f1.75.		 Complete on 18 in . Screaned cable, £1.7s ThaMSMITEER COmplete unit funcased requires 1.5V1, 23.25. FOSTEF DYMAMIC MICRDPHONES. 200 ohm impesdance. Moving coil Complete on chassis. $£ 1.75$ pair.
U.H.E MODULATORS Catesit type, adrustable, ideal for cemputers. 5 with dota circuit Dnly 6 . 50 In scraened case	'LM380 Amplifier 85p LM318N Hi-Slew Op. Amp LM323K, 5v, 3-amp, reg LM310 Volt Followe LM310N Volt. Follower	MINLATURE HIGH QUALITY FANS Whisper Model" by Roton. Low-power consumption \{less than 10 watts!. Silent rumning. 115v two in serles for 230 v .).	THEREO CASSETIE Machanisms of 12 volt. Complete with Heads + Erasa and Solenoid. Brand new \qquad E5.50.
minlature eoge IMOLCATOA METEA With illuminated diat scale 0-10. F.S.D. 100 microamp Size $1 / 2 \times 1 / 2 \times 1 / 2$ deep. Daly $\mathrm{f1.65}$	Amp M311H High Pert.Ellt. Comparator $\quad \$ 1.00$ LM384N, 5-watt Amp $£ 1.20$ LM393N Duat Com. 7905 Reg. $-5 v$.. 60p	$50 / 60 \mathrm{~Hz}$. Size $41 / 2 \times 41 / 2 \times$ 1/2in ONLY E6.50 EACH incl V.A.T \qquad BRAND NEW 50% less than manufactur. er's price	
	STERED CASSETTE TAPE HEADS Quality replacement for most recorders with mounting plate. Record/Replay az.on manRIOT TAPE hEADS Querter track Type XRPS18 Record/Replay	HEWLETT-PACKARD DISPLAYS 5002760 HIGH EFFICIENEY ANO VERY BRIGH Only £1 00 each	EX-MOTOROLA 5 + 5-WATT CAR STERED AMPLIFIERS Complete and tested units. Medium snd Long Wave.
bridge hectifer 800 PIV 35 amps $1 / 2 \times 1 / 2 \times 1 / 2 \mathrm{in} .63 .50$		Set of 6 for CS Half-inch red common anode will roplace DL7014-pin Oil.	Suppliad as two buill units $15 \times 2 \times 2$ nn. with circuit and data. Drly 65 pair. includes preamp.
MATOMAL P.8000A Chips 8216. \qquad 51.5 limin oll Full spec. but no polerity band. Per 1,000 510 MINIATURE MP.C. POTENTIOMETERS. Model M2. High-quality, 5\% tolerance, 2 -watt, with lin, spindes All values, per $10 ; 50 \mathrm{p}$ each per 100 ; 40p rach	RECHARGEABLE BATTERIES VARTA 3.6 volts DEAC M/AH $225 \quad$ f1.50 DRYFIT 6-volt, 4.5 mmp . \qquad XTAL FILTER $10.7 \mathrm{ml} / \mathrm{s}$. 12.50 8 separation, $11 / 2 \times 1 / 4 \times 1$ inch 57.00 $100 \mathrm{KC} / \mathrm{S}+1 \mathrm{meg} 3$-pin		ON KEYPAD A compact 12 -button keypad suitable for use with Keyboard extend its functions plus four extra keys. Supplied brand new 1. A 3×4 non-encoded single mode keyboard
QUANTITY DISCOUNTS on ALL items (unless stated), 15\% per 10, 20\% per $60,25 \%$ per 100. All items BRAND NEW (unless otherwise stated). DELIVERY from stock - Add post 350 per order. TELEX 262284 EXPORT enquiries Transanics invited Mono 1400			
		1008/9	
Callers to: 404 EDGWARE ROAD, LONDON W2 1ED ALL MAL ORDERS/EXPORT ENQUIRIES 11/12 PADDINGTON GREEN, LONDON, W2			

RADIDCODE CLDCKS

are powerful and comprehensive instruments which receive, decode and analyse time-coded standard frequency transmissions to provide accurate, secure and completely automatic time/calendar or synchronisation systems.

Applications

- Automatic master clock and slave controller.
- Synchronisation of separate equipment and events. Programmable energy management system. Computer clock/calendar with battery backup. Data logging and time recording. Process and equipment control. Broadcasting, Astronomy, Navigation. Satellite tracking.

If you have a time or synchronisation problem, write or phone for further details of our portable and new microcomputer-controlled Radiocode Clocks.

KONTAKT

The European name of Aerosol Excellence. Special cleaners for all electrical contacts and switches.

TV TUBE REBUILDING

Faircrest Engineering Lid. manufacture a comprehensive range of equipment for processing all types of picture tubes colour and mono. Standard or custom built units for estab lished or new businessies. We export world-wide and have an excelient spares service backed by a strong technical team

Full training courses are individually tailored to customers requirements

For full details of our service contact Neil Jupp

FAIRCREST ENGINEERING LTD.

4 Union Road, Croydon, CR0 2XX 01-684 1422/01-684 0246

WW - 034 FOR FURTHER DETAILS

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

BROADFIELDS \& MAYCO DISPOSALS

21 Lodge Lane, N. Finchley, London, N. 12.5 mins. from Tally Ho corner Telephone 445 2713/0749

WW - 045 FOR FURTHER DETAILS

The lightweight mast with 101 applications

The smoothly operated QTM Mast comes fitted with handpump or can be vehicle mounted with 'Power Pack' for extension and retraction. Available in a range of heigints up to 15 metres, the QTM mast can provide the ideal answer for:

- Mobile Radio Telephone
- Environmental - gas
- Police Mobile HQ (UHF) sampling collector
- Field Telecommunications
* High level photogräphy
- Floodlighting
- Meteorology
- Anemometer and Wind - And a host of other uses Measurement

CLARK MASTS

Find out more about the QTM series by writing or phoning: U.K. EUROPE
CLARK MASTS LTD. (W.W.)
Evergreen House. Ringwood Road. Binstead. Isie of Wight. England PO33 3PA
Tel: Isle of Wight (0983) 63691 Telex 86686

MIDWICH HAS MOVED! OUR PRICES HAVE TOO - DOWN!

In order to maintain our standard of service and house our ever growing range of stock, we've moved to larger premises. You can still use our old telephone number for a limited period, but please make a note of our new one and To celebrate the move we have reduced our prices still further. We know th will displease our competitors, but we'd rather please our customers.

NB - NO SURCHARGE ON CREDIT CARD ORDERS.
Be happy - move with Midwich. And remember, we always try to give you the best deal and the best service. If we fail just let us know-we will always try to make amends

MEMORIES ** NEW LOWER PRICES **

14 Low Power 200 ns	0.80	*2732 350 ns	4.40	- 4164 200ns (Ti)	4.65
- 2708 450ns	2.79	-2532 450 ns	3.80	*4816/4516 100ns	2.69
- 2716 450ns (5V)	2.10	-4116 200 ns	0.70	- 5516 200ns	9.38
-2716 350ns (5V)	3.59	- 4116150 ns	1.10	-6116P3 150ns	3.85
- 2716 450ns (3 rail)	5.95	-4118150ns	338	"6116L.P3 150ns	5.75
-2732 450ns	3.75				

BBC MICRO UPGRADE KITS ** NEW LOWER PRICES **

 BBCA Aralogue inout kit (IC73. $77+$ SKE) $\quad 6.70$
BBC5' Seral VO and RGB $\mathrm{kit}(\mathrm{CC74}, 75+\mathrm{SK3}, 4) 11.45$ BBC6 Expansion bus and tube $\quad 6.25$ kII (IC71, $72,76+$ PL11. 12)
MOST KITS ARE NOW EX-STOCK
*** We've done it again! Massive price reductions an LPS and CMOS ****

Davice	Prica	Device	Price	Device	Price	Device	Price	Device		Price			
- 280 famil		-W01391 KIT	45.50	3.6864MHZ	2.95	74LS SERIES		245		0.69			
- 280CPU	2.95	-W01393 KT	45.50	4 MHZ	1.45	00	0.10	251		29			
- Z80ACPU	3.45	-WD1395 KIT	45.50	6 MHZ	1.45	01	0.11	257		0.34			
- 280 CTC	2.84	- W01397 KII	85.50	8 MHZ	1.70	02	0.11	259		0.57			
- 2880 ACTC	2.95	(KGTS INCLUOE		9.6804 MHz	1.85	03	0.11	266		0.19			
- z80adart	5.70	F0179x + W02143				04	0.11	273		0.58			
- ZB0ADMA	11.95	+ W01691)		CMOS $4000 \cdot{ }^{-6}$		05	0.11	279		0.58			
- 280 PID	2.75			SERIES		08	0.11	283		0.39			
-780APIO	2.95			4001	0.10	09	0.11	365		0.29			
- 780AS10-0	11.99	MISC SUPPORI		4001	0.10	10	0.11	366		0.29			
-280AS10-1	11.99	- AY3-1015	2.99	4002	0.12	12	0.11	367		0.29			
'ZBCASIO-2	11.99	AY3-1270	7.95	4007	0.15	13	0.15	368		0.39			
-MK3886	11.00	- AY-8910	5.96	4011	0.11	14	0.29	373		0.59			
-MK3886-4	14.47	- AY5-1013	2.99	4012	0.15	15	0.12	374		0.64			
6800 FAMILI		- AY5-3600	7.85	40!3	0.24	20	0.12	390		0.48			
-6800	2.99	- DP8304 4.50		4015	049	21	0.12	393		0.41			
-6802	3.49			4016	0.19	27	0.12						
-6803C	12.10	-MC1488 0.55		4020	0.49	28	0.12	OIL s	ats 10				
-6809	8.45	-MC1489 0.55		4023	0.15	30	0.12	protile					
-6810	1.12	- MC3446 2.95		4024	0.31	32	0.12	Pins Tin	Gold	W/W			
-6821	1.20	-MC3480 $\quad 7.85$		4025	0.16	37	0.12	87	22	25			
-6840	3.95			4027	0.23	38	0.12	14	29	35			
-6845	6.75	-MC3487 2.95		4028	0.49	40	0.12	16	31	35			
-6850	1.40	-MC14411 6.94		4040	0.49	42	0.27	$18 \quad 13$	33	52			
80	1.07	$\begin{aligned} & \text { - MC14412 } \\ & \text { RO3-2513L } \end{aligned}$	799	4042	0.4	47	0.34	$20 \quad 14$	35	60			
-6887	0.80		6.99 5	4046	0.64	51	0.14	$22 \quad 17$	40	70			
- 68488	9.11	- R03-2513u	5.98	4047	0.49	54	0.14	$24 \quad 19$	42	70			
䉼	5.62	OVM CAIPS		4049	0.24	74	0.16	$28 \quad 25$	54	80			
-6843	13.99			4050	0.24	75	0.19	4029	81	99			
-68800	6.30	- ZNA 50 KIT	17.35	4051	0.44	76	0.17	OHL JUM	PERS				
.68802 .68821	19.11			4052	0.59	83	0.34	Single	ndod 2				
-68822	2.29 2.00			4060	0.50	85	0.47	14 PIN		1.40			
-68840	4.70	umears		4066	0.29	86	0.15	16 P P/		1.80			
-68850	2.86	LM3008 Lm	0.25	4069	0.15	9	0.28	24 PiN		2.35			
		LM311N	0.89	4071	0.14	93	0.25	40 PIN		3.25			
6500 Family		LM319N	2.14	4073	0.14	109	0.27	Double Ended 6 -					
-6502	3.45	LM324N	0.30	4075	0.14	122	0.35						
-6520	2.99	LM348N	0.59	4081	0.15	123	0.35	14 PIN		1.90			
-6522	3.19	Lms55N	0.16	4093	0.25	125	0.24	16 PIN		2.05 3.10			
-6532	5.95	LM556CN	0.45	4508	1.29	126	0.25	40 PIN		4.85			
8080 family		LM741 (8 P1N)	0.14	4511	044	132	0.39						
${ }^{808085 A}$		LM747CN	0.64	4512	0.49	136	0.23	Oouble Ended 12"					
. 8212	4.40	LM7488 P PN)	0.34	4518	0.39	138	0.27	14.81 N		2.00			
-8216	0.60	LM725CN	3.20	4520	0.48	139	0.29	16 PIN		2.15			
- 8251	3.19	regulators		${ }_{4}^{4526}$	0.69	148 151	0.89 0.39	24 PIN		3.25			
-8255	2.95	7805	0.39	$\begin{aligned} & 4541 \\ & 454 ? \end{aligned}$	0.98	153	0.28	$40 \mathrm{PIN} \quad 5.10$					
		7812	0.39			155	0.34						
BUFFERS		7815	039			156	0.34	Double	Inded				
81 LS95	0.90	78.05	029			157	0.25	14 PIN		2.05			
81 LS97 81597	0.90	78.15		Na Hor dericesavaluble		158	0.29	24 PIN		3.40			
81 LS97 81 LS98	0.90 0.90					161	0.35	40 PIN		5.25			
8726A	1.20	7905055				163	0.34						
8728A	120	7915×055		çSRA		165	0.54	IERO InSERTION					
8795	135	LM309K 0.89				166	0.63	force	ckits				
8797A	1,35	LM317K 3.20				173	0.64	24 PIN		5.95			
8198	1.45	$\begin{array}{ll}\text { LM323K } & 4.95 \\ \text { LM338K } & \text { P0A }\end{array}$		OFFEis		174	0.40	28 PIN		7.40			
	data conyerters		175			0.44	40 PIN		8.80				
					LM338K POA				191	0.44			
- ZN425	3.45	192	0.4	25 Way			ORS						
- ZNM27	5.99	UHF monulutops		21-4L-20	0.14	193			0.44	MALEM	ORS		
- ZN428	4.75	8MHZUM1233	4.40	6891	0.73	194	0.34	MALE-MA					
- 7 TN432	13.00			82.6	0.15	195	0.34	MALE-FE					
- 7 - 2 H43 3 /8/819	25.90			74.505	0.10	221	0.54	M $36^{\circ} \mathrm{CA}$					
- ZN447/8/9	P0A	CRYSTALS		74.510	0.10	240	0.55	MAIES					
- UP07002	4.35	1 MHZ	2.90	74 S74	0.13	241	0.85	MALES ${ }^{\text {cos }}$	ALE				
FLOPPY OiSC		1.008 MHZ 18432 MHZ 2.4576MHZ	2.90	74.5157	0.16	24	0.84			6.25			
		2.20			243	0.64	ENDED	${ }^{18}$					
-F01771	17.12		2.45			244	0.59	CABLE					

F01771 Dala sheets avallable on astensked items. Please telephone for prices and details.

[^0]WW - (148 FOR FURTHER DETAILS

CX80 ocoun MATRIX PRINTER

At last a low-cost Colour Matrix Printer for Text, Graphics, Histograms, Colour VDU Dumps, etc.

Colour printout is quickly assimilated, makes graphics more understandable and is an ideal medium for the presentation of complex data or concepts.

Compatible with most microprocessors, prints in 7 colours - sophisticated internal programme makes the CX80 easy to use.

Dot Addressable +15 user programmable characters, 96 ASCII and 64 graphics characters in rom. Centronics interface with RS232 and IEEE488 options. Apple II interface gives dot for dot colour dump. New viewdata interface prints out two pages side by side in full colour. See Prestel 200650.

The CX80 is a product of our own design and development laboratories. It represents a British breakthrough in colour printer technology. Colour brochure on request. OEM pricing available.

IITECREK LIMITED
Portwood Industrial Estate, Church Gresley
Burton-on-Trent, Staffs DE11 9PT
Burton-on-Trent (0283) 215432. Telex: 377106

Bigger and Better for 1982 the colourful Wilmslow Audio brochure - the definitive loudspeaker catalogue!

Everything for the speaker constructor - kits, drive units, components for HiFi and PA.
50 DIY HiFi speaker designs including the exciting new dB Total Concept speaker kits, the Kef Constructor range, Wharfedale Speakercraft, etc.
Flatpack cabinet kits for Kef, Wharfedale and many others.
\star Lowest prices - Largest stocks \star

* Expert staff - Sound advice *
\star Choose your DIY HiFi Speakers in the comfort of our \star two listening lounges
(Customer operated demonstration facilities) \star Ample parking *
Send $£ 1.50$ for catalogue
(cheque, M.O. or stamps-orphone with yourcredit card number)
* Access - Visa - American Express accepted *
also HiFi Markets Budget Card.

The firm for Speakers
35/39 Church Street, Wilmslow, Cheshire SK9 1AS
Lightning service on telephoned credit card orders

WW - 042 FOR FURTHER DETAILS

EUROPEAN FLOPPY DISK DRIVES AT ATTRACTIVE PRICES
 $+2 / 3$ height 5.25 inch drives

All reconditioned, as new, with 3 month warranty Single-sided $£ 100+£ 3$ carriage + VAT $=£ 118.45$ CWO ea.
Double-sided $£ 160+£ 3$ carriage + VAT $=£ 187.45$ CWO ea.
$+8^{\prime \prime}$ floppy drives, reconditioned, as new with 3 months' warranty

Single-sided $£ 210+£ 6$ carriage + VAT $=£ 248.40$ CWO ea.
Double-sided $£ 270+£ 6$ carriage + VAT $=£ 317.40$ CWO ea.

+ Also a few US made $51 / 4^{\prime \prime}$ ' single-sided floppy drives at $£ 60$ ea. $+£ 3$ carriage and VAT $=£ 72.45$ CWO ea. Note all prices are CWO and cheques/POs should be made payable to: "WW READERS ACCOUNT"

Manuals are $£ 20$ ea. post paid or $£ 5$ if ordered with drives
Circle enquiry number below for details

MELKUIST LTD

35A GUILDFORD STREET
LUTON, BEDS.
TELEPHONE: LUTON 416028 TELEX: 825828 MLKST-G
WW - 058 FOR FURTHER DETAILS

Sinclair ZX Spectı

16K or 48K RAM... full-size movingkey keyboard... colour and sound.... high-resolution graphics...

 From only f125!First, there was the world-beating Sinclair $\mathbf{Z X 8 0}$. The first personal computer for under £100.

Then, the ZX81. With up to 16K RAM available, and the $Z \times$ Printer. Giving more power and more flexibility. Together, they've sold over 500,000 so far, to make Sinclair world leaders in personal computing. And the ZX 81 remains the ideal low-cost introduction to computing.

Now there's the ZX Spectrum! With up to 48 K of RAM. A full-size moving-key keyboard. Vivid colour and sound. Highresolution graphics. And a low price that's unrivalled.

Professional powerpersonal computer price!

The ZX Spectrum incorporates all the proven features of the ZX 81 . But its new 16K BASIC ROM dramatically increases your computing power.

You have access to a range of 8 colours for foreground, background and border, together with a sound generator and high-resolution graphics.

You have the facility to support separate data files.

You have a choice of storage capacities (governed by the amount of RAM) 16K of RAM (which you can uprate later to 48 K of RAM) or a massive 48 K of RAM

Yet the price of the Spectrum 16K is an amazing $£ 125$! Even the popular 48 K version costs only $£ 175$!

You may decide to begin with the 16 K version. If so, you can still return it later for an upgrade. The cost? Around £60.

Ready to use today, easy to expand tomorrow

Your ZX Spectrum comes with a mains adaptor and all the necessary leads to connect to most cassette recorders and TVs (colour or black and white). Employing Sinclair BASIC (now used in over 500,000 computérs worldwide) the ZX Spectrum comes complete with two manuals which together represent a detailed course in BASIC programming. Whether you're a beginner or a competent programmer, you'll find them both of immense help. Depending on your computer experience, you'll quickly be moving into the colourful world of $Z \times$ Spectrum professional-level computing.

There's no need to stop there. The ZX Printer - available now - is fully compatible with the $Z X$ Spectrum. And later this year there will be Microdrives for massive amounts of extra on-line storage, plus an RS232 / network interface board.

Key features of the Sinclair ZX Spectrum

- Full colour-8 colours each for foreground, background and border, plus flashing and brightness-intensity control
- Sound-BEEP command with variable pitch and duration.
- Massive RAM-16K or 48K
- Full-size moving-key keyboard-all keys at normal typewriter pitch, with repeat facility on each key.
- High-resolution-256 dots horizontally x 192 vertically, each individually addressable for true highresolution graphics.
- ASCII character set - with upper- and lower-case characters.
- Teletext-compatible-user software can generate 40 characters per line or other settings.
- High speed LOAD \& SAVE-16K in 100 seconds via cassette, with VERIFY \& MERGE for programs and separate data files.
- Sinclair 16K extended BASICincorporating unique 'one-touch' keyword entry, syntax check, and report codes.

The ZX Printeravailable now

Designed exclusively for use with the Sinclair ZX range of computers, the printer offers ZX Spectrum owners the full ASClI character set-including lower-case characters and high-resolution graphics.

A special feature is COPY which prints out exactly what is on the whole TV screen without the need for further instructions. Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZX Printer connects to the rear of your $Z X$ Spectrum. A roll of paper (65 ft long and 4 in wide) is supplied, along with full instructions. Further supplies of paper are available in packs of five rolls

The ZX Microdrivecoming soon

The new Microdrives, designed especially for the $Z X$ Spectrum, are set to change the face of personal computing.

Each Microdrive is capable of holding up to 100 K bytes using a single interchangeable microfloppy.

The transfer rate is 16 K bytes per second, with average access time of 3.5 seconds. And you'll be able to connect up to 8 ZX Microdrives to your ZX Spectrum.

All the BASIC commands required for the Microdrives are included on the Spectrum.

A remarkable breakthrough at a remarkable price. The Microdrives are available later this year, for around $£ 50$.

How to order your ZX Spectrum

RS232/network interface board

This interface, available later this year, will enable you to connect your ZX Spectrum to a whole host of printers, terminals and other computers.

The potential is enormous. And the astonishingly low price of only $£ 20$ is possible only because the operating systems are already designed into the ROM.

ZX Spectrum

Available only by mail order and only from

كirnclair

Sinclair Research Ltd,

Stanhope Road, Camberley,
Surrey, GU15 3PS
Tel: Camberley (0276) 685311

BY PHONE-Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day. BY FREEPOST - use the no-stamp needed coupon below. You can pay by cheque, postal order, Access,

Barclaycard or Trustcard
EITHER WAY-please allow up to 28 days for delivery. And there's a 14-day money-back option, of course. We want you to be satisfied beyond doubt - and we have no doubt that you will be.

To:	lair Re	, GUI5 3BR. Order		
Oty	Item	Code	$\underset{\Sigma}{ } \text { Item Price }$	Total £
	Sincla	100	125.00	
	Sincla	101	175.00	
	Sincla	27	59.95	
	Printe	16	11.95	
	Posta	28	2.95	
		29	4.95	
			Total £	
Please tick if you require a VAT receipt \square				
*\| enclose a cheque/postal order payable to Sinclair Research Ltd for £				
*Please charge to my Access/Barclaycard/Trustcard account no.*Please delete/complete				
as applicable				
Signature				
PLEASE PRINT				
Name: Mr/Mrs/				
\|Address				
		WRW811		
FREEPOST-no stamp needed. Prices apply to UK only. Export prices on applicatio				

HF COMMUNICCTIOHS RECEIVERS

 FOR
POINT TO POINT/TRANSPORTABLE

 ANDMARIIE SYSTEMS

DESIGUED AND MANUFACTURED TO HIGHEST IHTERMATIOMAL SPECS

FULLY SYNTHESISED -10 Hz or 100 Hz STEPS
CONTINUOUSLY TUNED-50KHz to 30 MHz
MODES
STABILITY
TUNING
POWER SUPPLIES
-LSB/USB/CW/AM/FSK or TELEX
$- \pm 1$ PART IN $10^{7} /{ }^{\circ} \mathrm{C}$
-SPIN WHEEL or DECADE
$-110 / 240$ A.C. and 24V D.C.
OUTSTANDING PERFORMANCE
AND RELIABILITY
HIGHLY
COMPETITIVE PRICES
WORLD WIDE AGENTS NOW
BEING ESTABLISHED
SEND FOR TECHNICAL BROCHURES TO:
VIGILANT COMMUNICATIONS LTD, UNIT 5, PONTIAC WORKS, FERNBANK ROAD, ASCOT, BERKS, ENGLAND TELEPHONE: (0344) 885656
TELEX: 849769 VIGCOM 6

WW - 040 FOR FURTHER DETAILS

Eurekal

This revolutionary New Blue LED, the ESL 50B2, from Anglia Components is a miracle of scientific tenacity previously thought to be light years away.
Its applications in science and industry are unlimited. Development quantities are available ex-stock.

THE PARTS YOU NEED - fast!

TIME WRONG?

MSF CLOCK is ALWAYS CORRECT - never gains or loses, SELF SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds, auto GMT/BST, leap year and parallel BCD (including Weekday) output, receives Rugby 60 KHz atomic time signals, built-in antenna, 1000 Km range, TIME RIGHT, £69.60.
60KHZ RUGBY RECEIVER, as in MSF Clock, serial data output for computer, etc, decoding detailsiand ZX81 listing for LOCAL, GMT and SIDEREAL time, E22.20.
$\mathbf{2 0 0 K H z}$ Converter, for any Medium Wave receiver, $£ 19.80$.
Signal Generator, $10 \mathrm{~Hz}-200 \mathrm{KHz}$, sine, square, £19.70.
$\mathbf{1 0 - 1 5 0 K H z}$ Receiver $£ 19.40$. Antenna Nolse Bridge $£ 18.60$.
Each fun-to-build kit (ready made, to order) includes all parts, printed circuit, case, instructions, postage, etc, discount offer, money back assurance so GET yours NOW.

CAMBRIDGE KITS
45 (WL) Old School Lane, Milton, Cambridge. Tel: 860150

Audio Measuring Instruments, Audio Amplifiers, Loudspeakers and Loudspeaker Components for the professional and enthusiast

RADFORD AUDIO LTD.

10 BEACH ROAD
WESTON-S-MARE, AVON BS23 2AU
TEL. 0934416033

Telephone 094563281 Telex 32630 ANGLIA G

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for $10-$ 14 days' delivery. Other Ranges and special scales can be made to order.

Full Information from:
HARRIS ELECTRONICS (London) 138 GRAY'S INN ROAD, W.C. $1 \quad$ Phone: 01-837 7937 Telex: 892301 HARTO G

WW - 018 FOR FURTHER DETAILS

PRINTED CIRCUITS

FOR WIRELESS WORLD PROJECTS

```
Audio compressor/limiter--Dec 1975-1 s.s. (stereo)
Cassette recorder-May 1976-1 ss
Audio compander-July 1976-1 s.s.
Audio preamplifier-November 1976-2 s.s
Additional circuits-October 1977-1 s.s
Stereo coder-April 1977-1 d.s 2 ss
Low distortion disc amplifier (stereo)-September 1977-1 s.s
Low distortion audio oscillator-September 1977-1 s.s.
Synthesized f.m transceiver-November 1977-2 d.s. 1 s.s. Morsemaker-June 1978-1 d.s
Metal detector-July 1978-1 d.s
Oscilloscope waveform store-October 1978-4 ds
Regulator for car alternator-August 1978-1 s.s.
Wideband noise reducer-November 1978-1 d.s
Versatile noise generator-January 1979-1 s.s.
200 MHz frequency meter-January 1979 -1 d s
High performance preamplifier-February 1979-1 s.s Aigh performance preamplitier-February 197 s . Moving coil preamplifier-August 1979-1 s.s. Moving coll preamplifier-August 1979-1 s.s.
Multi-mode transceiver-October 1979-10 d Amplification system-Oct. 1979-3 preamp 1 poweramp Digital capacitance meter-April 1980-2 s.s Colour graphics system - April 1980-1 d.s. Audio spectrum analyser-May \(1980-3 \mathrm{~s} \mathrm{~s}\)
Multi-section equalizer-June 1980-2 s.s.
Floating-bridge power amp-Oct. \(1980-1 \mathrm{~s} \mathrm{~s} .(12 \mathrm{~V}\) or 40 V )
Nanocomp 6802 or 6809 - Jan., July, 1981 - 1 d.s. 1 s.s.
Cassette interface - July, 1981-1 s.s..
Eprom programmer - Jan., 1982 - 1 d.s.
Logic probe - Feb., 1981 - 2 d.s
Modular frequency counters - March, 1981 - 8 s.s
Opto electronic contact breaker (Delco) - April, 1981 - 2 s.s.
CB synthesiser - Sept. - 1 d.s
Elactronic ignition - March, 1982 - 1 s s.
Boards and glassfibre roller-tinned and drilled. Prices include VAT and UK postage. Airmail add \(30 \%\), Europe add \(10 \%\). Insurance \(10 \%\). Remittance with order to
M. R. SAGIN, NANCARRAS MILL, THE LEVEL CONSTANTINE, FALMOUTH, CORNWALL
```

4.25
£5.00
£4.25
$£ 8.50$
£4.00
£8.50
E2.00
$£ 3.50$
$£ 12.00$
$E 4.50$
$£ 3.75$
£18.00
$£ 2.00$
£5.00
$£ 5.00$
$£ 5.00$
$£ 5.00$
$£ 7.00$
£5.50
$£ 5.50$
$£ 5.50$
$£ 5.50$
$£ 3.50$
$£ 3.50$
$\mathbf{3 5}$
£4.20 each
$£ 7.50$
10.50
$£ 8.00$
£4.00
89.00
£1.50
£4.50

GOULD OSCILLOSCOPES SET A HICHER STANDARD

ThenewGould OS300 Dual Trace 20MHz'Scope
 A tough, professional instrument you can trust - at a price you can afford! \star Max. sensitivity $2 \mathrm{mV} / \mathrm{cm}$. * Stepped and continuously variableattenuator and timebasecontrols. *D.C. coupled triggering and "active" T.V. sync separator. *'Add' and 'Invert' for differential GOULD

 measurements. $\star \mathrm{X}-\mathrm{Y}$ facility. Built to do more - safely, reliably and for longer.Ask for our 8-page data sheet for full details and applications information.

Electronics \& Electrical Products
Gould Instruments Division
Roebuck Road, Hainault, IIford, Essex IG6 3UE. Telephone: 01.500 1000. Telex: 263785

Transformers

THE COTSWOLD "BUDGET RANGE" OFFERS BUILT-IN QUALITY COUPLED TO A RELIABLE DELIVERY SERVICE MOST TYPES FROM STOCK

IEC 65 VDE 0550 BS 415 TO ORDER

PHONE
TELEX, WRITE
FOR DATA SHEET
AND PRICE LIST
Cotswold Electronics ltd.
Unit T1, Kingsville Road, Kingsditch Trading Estate, Cheltenham GL51 9NX Tel: 0242-41313

Telex: 897106
Sales Otfice in U.S.A.
Peacock Alley 116 , Paver
16, 1 Padanaram Road, Danbury, CT 06810 U.S.A. 203-797-8698. Telex: 710-456-9984

INSTANT PRINTED CIRCUITS!!

Make your own - to professional standards - within minutes using either "Fotolak" Light-sensitive Aerosol Lacquer or Pre-coated board. No Darkroom or Ultra-violet source needed!

Fotolak aerosol................... $\mathbf{£ 2 . 5 0 (3 0 p)}$ Developer. \qquad Ferric Chloride................... $£ 0.60$ (45p) Acetate Sheet $£ 0.15$ (15p)
£0.30 (15p)

Copper-clad Fibre-glass Boards: Single-sidedf2 ft. sq. (45p) Double-sided
$£ 2.25 \mathrm{ft}$. sq. (60 p)
Pre-coated Fibre-glass Board:
 $8^{\prime \prime} \times 9^{\prime \prime} \ldots \mathrm{£} 3.50(45 \mathrm{p}) \quad 24^{\prime \prime} \times 12^{\prime \prime} \ldots \mathrm{£} 13(\mathrm{£} 1.20) \quad$ Eurocard $£ 1.25(25 \mathrm{p})$

Postage individual items in brackets. Maximum charge $£ 2$ per order.
WHITE HOUSE ELECTRONICS
P.O. Box 19, Praa Sands, Penzance TR20 9TF

Telephone: Germoe (073-676) 2329

Ameron INDUSTRIAL
 OUTPUT POWER IN EXCESS OF 1.5 KW INTO 2.75 Ohm LOAD

POWER RESPONSE DC $-45 \mathrm{KHz} \pm 1 \mathrm{~dB}$. D.C. OUTPUT 20 AMPS AT 100 VOLTS OR 2KVA

HARMONIC DISTORTION LESS THAN 0.05% DC-20KHz AT 1kW INTO 6

UNIPOLAR AND BIPOLAR DIGITAL INTERFACES, FUNCTION GENERATORS. AND MANY OTHERS

FULL OPEN AND SHORT CIRCUIT PROTECTION GUARANTEED STABLE
BE CONNECTED TO PROVIDE UP TO 4kW
YBILITY FOR UP TO EIGHT UNITS.
3-YEAR PARTS AND LABOUR WARRANTY.
\star UNITS AVAILABLE FROM $100 \mathrm{VA}-12 \mathrm{KVA}$.

EX81 MACHINE CODE?

ZX ${ }^{\text {ASTMIC }}$ rom transforms ZX81 into an

Assemenloly Language programming unit

- FULL~SCREEN EDITOR

Sixteen shift keys take you into a world with a word processor feel, A blink cursor moves at your command to control insertion, rubout, line or string deletion, autoscroll \& page flip up or down, Text block operations. Ultra-fiat editing

© MULTI FILE SYSTEM

Declare as many files as you like, with any names you like, othey are automatically handled by the Operating Syatem. Merge them, delete them, print, save \& load them, \& edit them by name. Superb flexibility with a simple but powerful syatem.

- TOTAL ASSEMBLER

Full 280 mnemonics, unlimited length labels, ORG \& EQU directives, proper assembly listings with errars flagged on screen or printer. Relocatable object code \& options to facilitate cross-asuembly. Interpretive immediate execution available.

- POWERFUL DEBUG

All the usual dump, modify, fill of copy commands; plus breakpoints, aingle stepping, contest control, the convenience of interpretive execution mode, full use of the name* in your program, Command Macros, autodump, and full operating aystern interface.
© HI RES GRAPHICS
255×144 resolution under program control to give you truly convincing graphice With the power \& flexibility of assembler you can really use this high definition.

- MUCH ,MUCH MORE
kepeat function on all keys. Double height titling on printer, Lots of extrail. But more important than all these features, attractive though they are. is the fact that ZX, ASZMIC is an integrated development aystem in which everything fits together to give you a tool which can satisfy the professional programmer by simplifying all atages of the program development process. It is excellent for thome who are taking the first steps into real programming but the more expert you become the better you realise jutt what ASZMIC can do for you. If you are at all intereated in machine code it will be worth your while to find out more.

Comprocsys limited

I enclose $\$ 39.95$. Please rush me ZX. ASZMIC + manual NAME
\qquad

Sole UK agente:- CAPITAL COMPUTERS LTD.
1 Branch Rd, Park St, St Albans ALl 4RJ
Phone: 0727 72917. Chequee payable w COMPROCSYS/ASAMIC AKC Ww

FM/AM 1000s with Spectrum

Analyser - we call it the SUPER-S
A portable communications service monitor from IFR, light enough to carry anywhere and good enough for most two-way radio system tests.
The FM/AM 1000s can do the work of a spectrum analyser, oscilloscope, tone generator, deviation meter modulation meter, signal generator, wattmeter, voltmeter frequency error meter - and up to five service engineers who could be doing something else!

A PRACTICAL TOP UP! MM-100 MULTI-METER

Simply replaces the protective lid of the FM/AM 1000s. It includes a modified probe. PB-114, and a built in speaker unit with independent volume control for audible response to signal measurement. This practical 'top up' will perform the following functions.
Sinad: Measurements for 1 kHz tone ($\pm 20 \mathrm{~Hz}$)
Distortion: To 30%
DC Volts: Up to 300 volts and up to
 800 volts when the $\times 10$ probe is used
AC Volts: 600 VRMS maximum for frequencies between 25 Hz and 25 kHz
Ohms: Using the modified probe, part number PB-114
Ohms can be measured on scales $\times 1$ to $\times 10 \mathrm{~K}$
\% AM Measured on the RF signal applied to the
FM/AM-1000 unit
OPTIONAL ACCESSORIES
A choice of R.F. power attenuators and protective
carrying cases

For further information contact Mike Taylor

IFR precision simulators
Fieldtech
Heathrow Ltd Huntavia House 420 Bath Road West Drayton Middlesex UB7 OLL Tel 01-8976446 Telex 23734 FLDTEC G

FOR THE SPECIAL ATTENTION OF

CAMERA FLASH GUN \star MOTOR DRIVE $\star 8 \mathrm{~mm}$ CINE CAMERA \star CASSETTE RECORDER \star CALCU . LATORS \star PERSONAL STEREOS \star TOYS AND ALI HEAVY USERS OF BATTERIES

GENUINE OFFER THAT CAN SAVE YOU AT least £100 (SUBJECT TO USAGE)

SPECIAL AUTUMN OFFER FROM Stotron (Bournemouth)

Distributor of High Technology Devices

RECHARGEABLE BATTERIES
with genuine Sanyo Multicharger. Full manufacturers' warranty. Save on ordinary throw-away batteries by using top quality Sanyo Cadnica batteries and genuine Sanyo charger. For all high power electrical and photographic equipment.

* THIS IS A SPECIAL LIMITED DURATION OFFER WITH MAJOR SAVINGS $\boldsymbol{*}$

PACK 1: Normal Price: $£ 15.89+$ P\&P SPECIAL PRICE: $£ 14.95$ incl. P\&P 4. HP7 (AA) N-3U 0.5Ah, plus NC 1230 MULTICHARGER

PACK 2: Normal Price: $£ 20.04+$ P\&P \quad SPECIAL PRICE: $£ 15.95$ incl. P\&P 4 HP11 (C) N-2U 1.2 Ah, plus NC 1230 MULTICHARGER

PACK 3: Normal Price: $£ 20.54$ + P\&P SPECIAL PRICE: $£ 16.95$ incl. P\&P 4 HP2 (D) N-1U 1.2Ah, plus NC 1230 MULTICHARGER

FEATURES:

a) One full recharge costs less than $1 / 10$ th penny per battery. b) Sanyo NC 1230 Multicharger is fully B.E.A.B. approved to BS3456 and is safe to charge overnight.
c) Typical saving over ordinary batteries, e.g. Tape Recorder:

PACK 1
PACK 2

After 50 charge	After 100 charge
discharge cycles	After 300 charge
discharge cycles	
discharge cycles	

£32 £64 £192
PACK 3
£240
£132
Even greater savings attainable in very high consumption equipment
d) Expected minimum life 500 cycles or five years
e) Totally leakproof and simple to use

ORDER WITH CONFIDENCE FROM:

Stotron (Bournemouth)

20/22 POOLE HILL, BOURNEMOUTH DORSET BH2 5PS

STATE PACK NUMBER WHEN ORDERING
Private Customers: CHEQUE/P.O./CASH Trade Customers: TELEX 417280 RONTEC

GOMPUNAR Maratousto

 THE 'ATLADINS' CAVE OF COMPUTER AND ELFGTRONIC EQUNPMENT
FIARD

 DISK DRIVFSDiablo/DRE Series 3025 mb fully refurbished medla and sof
Top load $\$ 295$.
PSU for 2 drives E125
Dlablo -Dre 44A-4000A or 4000B $10 \mathrm{mb} 5+5$ removable pack new and refurbished from $\mathbf{E 9 9 3}$.
CDC 80 mb removable pack DEC RM03 media and sottwar compatilble brand new from $£ 2,950$.
Honeywell $5+510 \mathrm{mb}$ drives $£ 450$ good s / h condilion
For more information on controllipra, expansions a
go sub systems contact sales oftice.

DISTMET

The UK's FIRST free of charge, 24 hr . public access data base. Get information on 1000's of stock items and order via your computer and credit card. On line now, 300 baud. CCITT tones, full duplex, fully interactive. DON'T MISS THOSE BARGAINS CALL NOW, IT'S FREE

COMPOYJE 'CAB'
All in one quality computer cabinet with Integral switched mode PSU.
Malns filtering and twin fancooling. Malns flitering and twinfancoolin OEC PDF8 computer system cost 1 l and desloned io pun 24 hours per day 1000^{\prime} s of pounds screened and will dellver a massive $+5 v D C$ at 17 amps $+15 v D C$ at 1 amp and $15 v \mathrm{DC}$ at 5 amps. The unit is fully enclosed with removable top lid, twin fan cooling, mains enclosed with removable top trip swltch, 'power on' and 'run' LED's, alumlnlurm front panel and rear cable entrys. Give your system that professional finish for only $\mathbf{\$ 9 . 9 5}+£ 9.50$ carr. - Dim. 19 wide $16^{\prime \prime}$ deep $10.5^{\prime \prime}$ high. Usablearea $16^{\prime \prime}$ w. 10.5" $\mathrm{h} .11 .5^{\prime \prime} \mathrm{d}$ Units are In good but usedcondition 240 or 110 v working-
complete with data Large stocks of PDP 8 spares - enquire.

 disk drives utilise the fine $7100 \& 72008$

SUPER SCOOP

CHNTHONICS 739-8

The "Do everthing Printer at a price that will NEVER be repeated Standard Centronics interfaca, fu spacing for word processor applications columns, single sheet, roll or sprocket paper handling pius SAVE
 Interface Cable E10.00
RS232 Converter $\mathbf{\$ 4 5 . 0 0}$ £250 give you 100% bus compatability with most drives available today, the oniy difference being our PRICE and the supert manufacturing quality. The 7100 single sided \& 720 double sided drive accept hard or soft sectoring IBM or ANSI stapdard giving a massive $0.8 \mathrm{MB}(7100) \& 1.6 \mathrm{MB}(7200)$ of storage. Absolutely SHUGART, BASF, SIEMENS
warranty.
7100 single sidea
$\mathbf{\varepsilon 2 2 5 . 0 0}+9.50+$ vat
 ull technical manual $\mathbf{£ 2 0 . 0 0}$ alone $\mathbf{\$ 9 . 0 0}$ with drive, refund of difference on purchase HUG
SHUGART $\mathrm{s} / \mathrm{h} 800-28^{\prime \prime}$ Drive's 110 v 50 Hz motor $£ 160$ + £9.50 car.
Removed from working equipment but untested. SA120 Alignment disk's $£ 9.95$

TBLETYPE ASBB3 1 I/O TERMMIATS

Fully fledged industry standard ASRA 33 dat terminal. Many features including ASCII keyboard and printer for data I/O auto data detect circuitry. RS232 serial Internace. off line data preparation and ridiculously cheap and reliable data storage. Supplied good condition and in working order Options: Floor stand $£ \mathbf{1 2 . 5 0}$ + VAT KSR33 with 20 ma loop interface $£ 125.00$

SOFTI 2

The amazing SOFTY 2. The complete "toolkit"

 Displays, Emulates ROM, RAM and EPROMS of the 2516,2532 variety, Manyotherfeatures include keyboard, UHF modulator. Cassette interfaceetc. Functions exceed capaunits costing 7 times the price! Only
E/ 69.00 pp £1.95 Data sheet on real

RGA FULIY GASHD

 ASCII CODED KEYBOARDS TANOERJWE OWIO ETC.
Straight from the USA made by the world
tamous RCA CO the VP600 Series of cased famous RCA Co, the VP600 Series of cased
freestanding keyboards meet all requirements freestanding keyboards meet all requirements
of the most exacting user, right down to the of the most exacting user, right down to the
price! Utilising the latest in switch technology. Guaranteed in excess of 5 million operations. The keyboard has a host of other features
including full ASCII 128 character set user definable keys, upper/lower case, rollover protection, single 5 V rail, keyboard impervious toliquids and dust TL or CMOSoutputs, ev
an on-board tone generator for keypress an on-board tone generator for keypress
feedback and a 1 year full RCA backed guarantee.
VP601 7 bit fully coded output with delayed
strobe, etc.
VP611 Same as VP601 with numeric pad
VP506 Serial, RS232, 20MA and TT outputwith6 selectable BaudRates

VP616 Same a VP606 with VP616 Same as VP606, with numeric pad | Plug and cable for VP601, VP611 $£ 2.25$ |
| :--- |
| Plug for VP606, VP616 |
| 1044 | Plug for VP606, VP616 £2. 10 ORDER NOW OR SEND FOR DETAILS

MAINS FILTERS

Professional type mains fitters as used by "Main Frame" manufacturers. Ideal for curing fit one now and cure your problems.
Suppression Devices SA5A
Corcom Inc F1886 up 1020 amp load $\mathbf{£ 9 . 5 0}$
Corcom Inc F 1900 upto 30 amp load E/2.25

RECHARGEABLE batteries

CYCLON type D001 sealed lead acid maintenance free $2 v 2.5$ ah. will deliver at only $£ 2.95$
SAFT VR2C SAFI VR2C size 'C' $1.2 v 2$ ah. nickel

D.C. POWER SUPPLY SPECLALS

Experimentor
$+12 v @ 800 \mathrm{ma}$ $+12 v @ 800 \mathrm{ma}-.12 v @ 800 \mathrm{ma}$. $+24 \mathrm{v} @ 350 \mathrm{ma}$. $5 \mathrm{v} @ 50 \mathrm{ma}$. floating. Dim $160 \times 120 \times$ 350 mm . All outpuis fully regulated and short circuit proof. Removed from working £ $14.50+\varepsilon 2.50 \mathrm{pp}$ POWER ONE CP143 super compact unit giving continuous output of $5 \mathrm{v} @ 5 \mathrm{amps}$ dim. $215 \times 67 \times 80 \mathrm{~mm}$. BRAND NEW and guaranteed Only $£ 21.00+£ 1.50 \mathrm{pp}$.
CUSTOMPOWERCOS5 $5 \mathrm{v} @ 3 \mathrm{amp}$ Very compact unit dim. appro $60 \times 90 \times 190 \mathrm{~mm}$. CUSTOMPOWERCO55 5 v @ 3 amp. Very compact unitdim. approx semi open chassis,
¢11.95 + pp 1.25
 3 amps. $+12 \mathrm{v} @ 1$ amp and $-12 \mathrm{v} @ 300 \mathrm{ma}$. Crowbar overvoltage protection and
current limit. Fullytested. Dim $70 \times 165 \times 320 \mathrm{~mm}$. Complete with Circuit only $\mathbf{1 2 . 9 5}$ $+\Sigma 2.00 \mathrm{pp}$.
PERIPHERAL SYSTEM SUPPLY. Fully cased unit supplied in a Brand new or little used condition Outputs give $5 \mathrm{v} @ 11$ amps " + " $15-17 \mathrm{v} @ 8$ amps " - " $15-17 \mathrm{v} @ 8$ amps and " + " $24 \mathrm{v} @ 4 \mathrm{amps}$ All outputs are crowbar protected and the 5 volt output is fully regulated. Fan cooded Supplied tested, with circuit $\mathbf{E 5 5 . 0 0}+£ 8.50$ carr. outputs give 5 volts @ 50 amps $+12 v @ 5$ amps $-12 v @ 10$ amps. All output are fully regulated with crowbar overvoltage protection on the $5 v$ output Supplied with circuit and tested. Ex-Equip. 110 v AC input. Only $£ \mathbf{4 9 . 9 5}+$ carr. $£ 10.50$

66\% DISCOUNT

ELECTRONIC COMPONENTS \& EQUIPMENT
Due to our massive bulk purchasing programme which enables us to bring you the
best possible bargains, we have thousands of I.C.'s. Transistors, Relays, Cap's. P.C.B.'s. best possible bargains, we have thousands of I.C.'s. Transistors, Relays, Cap's. P.C.B.'s.
Sub-assemblies, Switches, etc. etc suriplus to our requirements. Because we don't have sufficient stocks of any one item to include in our ads., we are packing all these items into the "BARGAIN PARCEL OF A LIFETIME" Thousands of components at giveaway prices! Guaranteed to be worth at least 3 times what you play plus we always include something from our ads, for unbeatable value! Sold by weight
$2.5 \mathrm{kls} £ 4.25+\mathrm{pp} £ 1.25$
$5 \mathrm{kls} £ 5.90+\mathrm{pp} £ 1.80$
10kls£10.25 + pp £2.25
20kls $£ 17.50+\mathrm{pp} £ 4.75$

9" Monitors

DT10 Monitor a complete MOTOROLA $9^{\prime \prime}$ video monit
an attractive meta
case Deep $16^{\prime \prime}$ wide and 1

lo deed $16^{"}$ wide and 11 " 75 hm composite ideo input with a bandwidth of 18 mhz . A seperate internal PSU delivers 5 v dc for external use and 12 vDC forvideomonitor: The case has sufficient room inside for mounting other units such as $5^{\prime \prime}$ disk drives etc. Internal pots give full control over all monitor functlon ondition. 240vAC operation $\mathbf{5 S . 0 0}$ Carriage and insurance 10.50
MOTOROLA $9^{\prime \prime}$ open chassis monitor. Standard 240 V AC with composite 750 hm Monitors are ex equipment and although unguaranteed they are all tested prior to despatch, and have no visible burns on the screens. Dim approx $9^{\prime \prime} \times 9^{\prime \prime} \times 9^{\prime \prime}$. Supplied complete with mains and input lead Ideal ZX81 etc or giving the tele back to the familyt
Black and White phosphor $£ \mathbf{3 5 . 0 0}+£ 9.00$ Carr.

SBMICONDUCHOR

GRAB BACB'

 Mixed include transistors digital, linear, I.C.'s triacs, diodes, gridge reck, etce efull spec with manufacturer's markings, fully TTL 74 Series A gigantic purchase of en across the board range of 74 TTL series I.C.'s enables us to offer $100+$mixed "mostly TK" grab bags at a price which two or three chips in the bag guaranteed all I.C.'s full spec. $100+\mathbf{E 6 . 9 0}$ $200+E 1230300+E 1950$

300 BAUD DATA MODFMS

 standard EX GPO $2 \mathrm{a} / \mathrm{b}$ data MODEMS Modem operates on standard CCITT tones With full auto answer facilities. Will switch toANSWER ORORIGINATE. StandardRS232 connections. Ideal networks. DISTEL etc Complete with data. Untested but good condition $£ 55.00$ carr. $£ 8.50$.

1200 BAUD
 DATA PUMP MODEMS

\qquad lines" Designed to work in pairs at any baud rate upto 1200 fullduplex (4 wire circuit) or
duplex (2 wire circuit). Features include duplex (2 wire circuit). Features include
remote test facilities. RS232 i/o lines etc Supplied with data in working order, but le case cover $£ 65.00+£ 4.50$ carr.

OLIVETHI TH300

 REDUCED TO CLEAR\qquad hole paper tape punch and reader. Unit operates at 150 baud in standard ASCII. I columns printer for a MICRO etc. 120 with with data, untested, unguaranteed $\mathbf{£} \mathbf{5 . 0 0}$

DEFLM ELE CTRAHILS

 E20.00 Wher We reserve the right to change prices and specifications without notice. Trade, Bulk and Export enquiries welcome.64-66 Melfort Road, Thornton Heath, Near Croydon, Surrey \square name 01-689 7702-01-689 6800 Telex 27924

EP4000

The microprocessor controlled EP4000 will emulate and program all the popular EPROMs including the 2704, 2708, 2716(3), 2508, 2758, 2516, 2716, 2532 and 2732 devices. Personality cards and hardware changes are not required as the machine configures itself for the different devices. Other devices such as bipolar PROMs and 2764 and 2564 EPROMs are programmed with external modules.

The editing and emulation facilities, video output and serial/parallel input/output provided as standard make the EP4000 very flexible to allow its use in three main modes:

- As a stand alone unit for editing and duplicating EPROMs.

Items pictured are: EP4000 Emulator Programmer - $£ 545+£ 12$ delivery; BSC buffered simulator cable - $£ 39$; MESA 4 multi EPROM simulator cable £98; 2732A Programming adaptor £39; 2764 Programming adaptor - £64; - 2564 Programming adaptor - £64;

- As a slave programmer used in conjunction with a software development system or microcomputer.
- As a real time EPROM emulator for program debugging and development (standard access time of the emulator is 300 ns).

Data can be loaded into the $4 \mathrm{k} \times 8$ static RAM from a pre-programmed EPROM, the keypad, the serial or parallel ports and an audio cassette. Keypad editing allows for data entry, shift, move, delete, store, match and scroll, and a $1 \mathrm{k} \times 8$ RAM allows temporary block storage. A video output for memory map display, as well as the built-in 8 digit hex display allows full use of the editing facilities to be made.

BP4 (TEXAS) Bipolar PROM Programming module - £190
Also available (not shown): VM10 Video monitor - £99; UV141 EPROM Eraser with timer - £78; GP100A 80 column Printer - £225; Pl100 interface for EP4000 to GP100A - £65.

VAT should be added to all prices

DISTRIBUTORS REQUIRED

EXPORT ENQUIRIES WELCOME

Write or phone for more details

$\begin{gathered} \text { temo } \\ \text { No. } \end{gathered}$	
	SANDEAS OSCILIATOR tye CLCZ-4
5	8 a K ELECTHONIC VOLTM ETEA qype 240
55	
${ }_{5}^{56}$	GENERAL RADIO FAEQUENCY/OISCRIMINATOR METER TYP 1142 A
	HEWLITT PACKAAD MEMOAY OISPLAY TYPe 5488A with Conthol type 548888 and
ค	
	keither feguateo
	Branoen iuhgh high vol
	NOENSURGH HIGH VO \times POWER UNIT TVe
10012 Units)	
	GOOMHZ DECADE DVIIDE TYY 9010 -
	A A S AESONANCE EREOUENCY METER 3-5OOMHZ WAM BNB3I22 P50
	PHILIPS VIDEO COLOU FMEST STO
	$100 \mathrm{MHZ}+1-1 \%$ RF $0 / \mathrm{P} 3 \mathrm{mV}$ pk-pk
	日RANOENBURG REGULATEO HIGH VOLTAGE. P.U. TYpe $928 \mathrm{~B} .0-1000 \mathrm{KV}$; O-1MA E150 ADVANCE PULSE GENERATOR type PG50020
	ADVANCE SIGNAL GENERATOR LF PYe SiA 15 Hz -200KHZ
	ADVANCE BATCH COUNTER YPo 4841
	ADVANCE SIGNAL GENERATOR WPe E2 IOOKHZ.100MMZ
	PYE SCALAMP 4OKV RMS Max ELECTROSTATIC VOLTMEIER
	RANK ABENAE. HT. METER O-30\%V

flease checx ayallabity begore ofoeaing

MARCONI AM/FM SIGNAL GENERATOR type TF1066B/6S 10-470 MHZ I GENERATOR typ Carriage f6.

WAYNE KERR COMPONENT BRIDGE typ 8521 (CT 375) Resistance 1 mOhm - 1000 MegOhm Capacitance 1pF - 5000Kuf Induc tance $1 \mu \mathrm{H}=500 \mathrm{kH}$. With copy of manue ONLY $£ 40$ each. Carriage f 6

AVO VALVE TESTER type CT160 (22 valve bases) with copy of manual $\mathbf{£ 2 0}$ each. Carriage £6.

AVO TRANSISTOR ANALYSER type CTAA with copy of manual $\mathbf{E} 20$ each. Carriage $£ 6$.

AVO SIGNAL GENERATOR No. 2 AM/FM AA $0.45-225 \mathrm{MHZ}$; $\mathrm{FM} 20-100 \mathrm{MHZ}$ with copy of manual $\mathbf{E 7 5}$ each. Carriage f6

MARCONI COUNTER/FREQUENCY METER TF 1417/2 with Convertor type TF 2400/TM7265 500 MHZ E35 each. Carriage $\mathrm{C6}$.
TELETYPE PRINTERS KSA33 - ASCII Key board £50. ASR 33 - as above with 8 -bit Punch

DATA MODEM

COLUNS TMX 202G
15/230V Operation
Complete with
ONLY £25 *ach
P\&P £5
ISOLATING
TRANSFORMEA
240 V input 240 V
Output 1300 Watts
$\mathbf{£ 1 5}$ each. Carr. $\mathbf{E} 6$
10% DISCOUNT ON ALL ORDERS RECEIVED BY SEPTEMBER 30th
For further details please contact
NE SQUARE WAVE AUDO GENEEATOR type TE-22, $20 \mathrm{HZ}-$
200 KHZ ONLY f35 £ 4
\qquad Russlan Type 4324 $A C / O C$ volts; $A C / D=$ current; ohms, etc 2.50 eac

BARCLAYCARD (VISA) and ACCESS taken. Official orders welcome
CALLERS VERY WELCOME STRICTLY BETWEEN 9am-1pm and 2-5pm Monday to Saturday inc

A REAL TIMESAVER FOR ONE-OFFS AND SHORT RUNS NEW STICKY TEMPLATES (Pat. Ponding)

\qquad

INEXPENSIVE self-adhesive clear acetate TEMPLATES - especially designed to ELIMINATE TEDIOUS MARKING OUT of panals and instrument cases when mounting POPULAR CONNECTOR TYPES. Simply peel off protective backing and APPLY DIRECTLY to the surface to be worked, then cut and drill to outlines and centres shown. SAVES HOURS of work- PLUS - makes Stickiss. Will not harm existing finishos, in fact PROTECTS AREA around cut-out Sticki PREVENTS harm existing finishas, in friat Pand drills skidding. INVALUABLE on LAYOUT SKETCHES and drawings too.
Send $£ 5.40 \mathrm{incl}$. VAT P\&P for selection pack (90 templates) or ask for leaflet, sample and order form to

FUTRONICS TECHNOLOGY (UK) Ltd. 15 North Avenue, London W13 8AP
Or telephone 01-991 0070 (Answerphone service)

All units $£ 6$ carriage. Plus V.A.T. on tota

TELEPHONE NO. READING 669656

SOUND INVESTMENT

LIMITED QUANTITY पPUS SUPPLIES BRING YOU AN RGB COLOUR MONITOR

 AVILABLE FOR USE WITH B.B.C., MICRO, APPLE, WITH R.G.B. COLOUR CARD, etc.Specification: The VMC 22 Colour Monitor is designed to meet the high reliability and performancestandards associated with the games, data and computer colour graphics industries
Input levels: Video-TTL compatible either +ive or -ive going for RGB (IC37416 -ive going 7417 + ive going)
Composite Sync: TTL compatible either + ive or -ive going set by PCB link. Separate sync (Frame and line) TTL compatible +ive going = (Frame and line) 1 LL co
video response 10 MHz
video response 10 MHz .
Deflection: Scanning systems, 625 line 50 Hz and Deflection:
525 line 60 Hz
Scan linearity: Errors less than 5\%.
Scan geometry: Errors less than 3\%
High voltage: 25 KV .
X radiation: Less than $0.5 \mathrm{MR} / \mathrm{h}$
X
After months of negotiation we have finally secured the computer user's dream. We have bought the complete manufacturer's production of these superb British made R.G.B. Colour Monitors and can offer them to you at this unrepeatable price. This offer, available to readers of Wireless World" also includes a FREE isolating transformer. So with a little of your time and our buying power you can save pounds. $22^{\prime \prime}$ colour TV purposes the C.R.T. and scan coil assembly are separate from the chassis. The lugs of the C.R.T. allow it to be mounted in a sitandard 22 colour cabinet or a unit of your own design. The unit The monitor has been fully tested and adjusted prior to packing thus simplifying assembly. A comprehensive instruction sheet will be supplied with each unit.

A computer supplies company have established an enviable reputation for reliable service and value for money - so pick up your telephone and discuss your supplies requirement with us.

LOCKABLE DISC FILING BOXES: To hold 40 Minis $£ 18.00$ To hold $408^{\prime \prime}$ Discs $E 21.00$
$808^{\prime \prime}$ Discs ${ }^{11.00}$
OISC MAILERS: $\quad £ 28.00$ Mini $\quad{ }^{60 \mathrm{p}}$ LECTERN DESK TOP LECTERN
ADJUSTABLE WITH ADJUSTABLE WITH
MOVABLE CURSOR

ONLY £19.95
HOW TO ORDER

ATHANA FLOPPY DISCS

MINIS WITH PREE
PLASTIC LIBRARY CASE \& HUB RINGS

S/S S/D	£17.95 for 10
S/S D/0	£19.95 for 10
D/S O/D	E23.50 for 10
S/S 77 Track	E26.50 for 10
S/S 96 Track	$\underline{528.50}$ for 10
8' DISCS	
S/S S/D	¢15
S/S D/D	E24.50 for 10
D/S D/0	E25.50 for 10
HARD SECT OTHER DIS	AND ALL VAILABLE

RAM BARGAINS PART 1 off 25-99 100

 $4116-200 \mathrm{~ns}$416250 $4116-250 \mathrm{~ns}$
$2114-300 \mathrm{~ns}$ $2114-300 \mathrm{~ns}$
$2114-450 \mathrm{~ns}$ 2114-450ns
2114-L-200ns 4516-100ns $\begin{array}{llll}\text { BBC RAM } & 3.10 & 2.95 & 2.80\end{array}$ $\begin{array}{llll}4164-200 \mathrm{~ns} & 4.80 & 4.604 .20\end{array}$ $\begin{array}{llll}6116-150 \mathrm{~ns} & 4.20 & 3.95 & 3.50 \\ 2716-5 \mathrm{~V} & 450 \mathrm{~ns} & 2.40 & 2.15 \\ 2.00\end{array}$ $2716-5 v-450$ ns 2718 Tri
Rail Rail
$2732-450 \mathrm{~ns}$ $\begin{array}{llll}2732-450 \mathrm{~ns} & 3.05 & 3.75 & \overline{25} \\ 2532-450 \mathrm{~ns} & 3.95 & .75\end{array}$ $\begin{array}{lllll}2532-450 \text { ns } & 3.95 & 3.75 & 3.25 \\ 8080 \mathrm{~A} & 1.90 & 1.70 & -\end{array}$ $\begin{array}{lrrr}8080 \mathrm{~A} & 1.90 & 1.70 & \\ 8212 & 1.40 & 1.30 & - \\ 25-\text { WAY O SOLDER }\end{array}$ CONNECTORS
25P $\quad \mathrm{El} .30$ each 25S £1.50 each OTHER DEVICES AVAILABLE PLEASE RING FOR QUOTE

MANUFACTURED BY OPUS IN U.K. AVAILABLE FROM OUR CENTRAL WAREHOUSE,

DEEKS

$\star 5$ MODELS
AVAILABLE AVAILABLE-
CHOOSE WITHIN YOUR BUDGET - CREAM \& BROWN CO-ORDINATING PANELS \star
\star DRAWER FOR DISC STORAGE \star \star MOBILE \star
\star AMPLE SPACE FOR hardware and PERIPHERALS \star
\star through Shelf
FOR DISC DRIVES, PAPER FEED, FILES \star
SEND S.A.E. FOR YOUR FREE COLOUR BROCHURE

HApple 2 users 16k printer buffer card - which saves your complete time. Serial and parallel

Send for spec. and price R.G.B. lead for B.B.C. Micro only $£ 9.95$ + VAT
Carriage should be added to prices at the following rates: Monitor £10; Discs 85p; Rams 50p; Filing Boxes/Lecturns £2; Deaks £10. Please add carriage as applicable and then VAT at 15% to total and send Cheque/P. Order payable to "Opus Supplies" to Dept. W.W., Opus Supplies, 10 Beckenham Grove, Shortlands, Kent BF2 2 . order Hotline: $01-4645040$ (24-hour service) or 01-464 1598. Access and Barclaycard accepted. If you are not completely satisfied return the goods within 14 days and you money will be refunded.

A lesson in ergonomics from AVO

AVO DIFIMINOR 2000
An ideal tool for maintenance applications Aneconomically priced instrument with a specia buzzer socket for simple ontinuity testing without reference to the display.

AVOMETER 2001

Features a socket specifically for current testing Comprehensive ranges, with unit and mode displayed on LCD. Ensures a valid current measuring mode is selectedany discrepancy is signalled by an àlarm

AVO VEHICLE TEST 2002
Designed with co-operation from a world leader in vehicle manufacture and service. Accessory kit allows temperature and charging current testing. Heavy duty test leads and comprehensive

The AVO 2000 Series is the hand held dmm range you'd design for yourself, incorporating a combination of design features unmatched by any manufacturer in the UK.

There are direct entry prod facilities which, combined with the weight and size of the instruments, allow for true one-handed operation. The $31 / 2$ digit LCD is located at the base of the instrument to make the most of the available light. And positive slide switches are incorporated to give simple, dustproof, range selection.

The lead set is fully shrouded at both plug and socket end for improved safety and there is a special hook for PCB testing in the standard set. Heavy duty test leads are also available. The 2000 Series incorporates a three position stand, non slip safety pads and can be supplied in either a 'Test and Carry' case or a 'Walk and Work' harness.

It takes Britain's leading dmm manufacturer to appreciate the needs of the dmm user . . . worldwide. AVO 2000 Series is the result. Contact us or your usual distributor for further detailed information.

Archcliffe Road, Dôvèr, Kent CT17 9EN. Telephone: 0304 202620. Telex: 96283

wireless world

Editor

PHILIP DARRINGTON
01-661 3128

Deputy Editor
GEOFFREY SHORTER, B.Sc.
01-661 8639

Technical Editor

MARTIN ECCLES
01-661 8638

News Editor
DAVID SCOBIE
01-661 8632

Drawing Office Manager
ROGER GOODMAN
Technical Illustrator
BETTY PALMER

Advertisement Manager
BOB NIBBS, A.C.I.I.
01-661 3130

BARBARA MILLER
01-6618640

Northern Sales
HARRY AIKEN
061-8728861

Midland Sales
BASIL McGOWAN
021-356 4838
Classified Manager
BRIAN DURRANT
01-6613106
IAN FAUX
01-661 3033

Production

BRIAN BANNISTER
(Make-up and copy)
01-6618648

Wiring technology of the past

In the aftermath of Hunt it will be important to keep the technical options open according to John Butcher MP, Under Secretary of State for industry, speaking to the Television and Radio Industries Club. He was referring to the choice of system architecture by potential cable system operators - tree or multistar. Taken at face value, this may sound a flexible policy.

A tree structure is suited to broadcast distribution; it evolves outwards to feed additional customers by sub-division of its branches. Coaxial cables are the natural choice for tree structures where up to 30 channels per cable can be tapped off. But as a recently issued NEC report* points out in a 20 -year look ahead, they have a very limited capability of providing two-way switched services involving wideband signals.

An alternative based on a multi-fibre tree structure would be very expensive in terms of optical switching and connectors. But a multi-star fibre arrangement - akin to the current telephone network - would allow an unlimited number of one-way channels to be accessed. And more importantly for the future the configuration readily provides full twoway capability; there is no need for encryption, and administration of charging for television channels is simpler.

If a network is required quickly, available technology and economics will favour coaxial cables rather than optical fibres. But a decision in favour of largescale use of fibre would, says the NEC working party, in itself create a more
economic fibre solution.
It would be a tragic waste of the opportunity offered by a two-way switched broadband system if we were to allow this cabling to be dictated by the needs of entertainment broadcasting or narrowcasting alone. The varied facilities of a combined telecommunication and broadcast network, preferably digital, with exciting possibilities of computer-based interactive services in business and in learning, could act as a lubricant for efficiency and national well-being, now and in the foreseeable future. The technology is advancing rapidly; development is still in hand on certain aspects, and many relevant standards have yet to be internationally agreed. There is thus a danger, says the NEC study, that by moving too fast, the UK could go it alone and lose out on export markets.

The opportunity both at home and abroad may not be realised. On the same occasion, John Butcher said BT and its competitors may have to adopt "an evolutionary approach rather than set off with a state-of-the-art switched interactive system, with the high initial costs involved and the risk that the technical
breakthroughs may not take place in time to justify the confidence of investors." As the Guardian report of 30 th September confirmed, this means reliance on coaxial cable feeds rather than optical fibres . . .

[^1]
INTERFACING THE NANOCOMP

The popular Nanocomp microcomputer interface can be expanded by adding further p.i.a. devices and by connecting the interface board described in the October 1981 issue.

For the Nanocomp microprocessor to pass information to and from additional devices it is necessary to bring out connections from its three buses. The eight data bus lines are of course needed as these are used in the transfer of data to and from the peripheral devices. Some address lines may also be required; for instance, the G821 needs A0 and A1 to select its internal registers. An address decoding signal will also be required to position the device at an appropriate place in the processor's memory map. On the Nanocomp, the 74LS138 decodes addresses; fortunately there are four outputs spare (five on the 6809) so these can be used to select this number of peripheral devices.

The addresses of the outputs of the 74LS138 are given in Fig. 1. The outputs are normally at logical 1, but go to 0 for the second half of the processor cycle if the microprocessor generates an address in the ranges indicated.

Although it's possible with these processors to address up to 65,536 different memory locations this is far more than can be used on a simple device like the Nanocomp; so some of the address lines are ignored in the decoding logic. Consequently the address range occupied by a particular device may be more than required. For instance, the on-board p.i.a. requires four consecutive memory locations given as $4000-4003$. But because of the partial address decoding, it will respond to all addresses in the range 4000 4 FFF , the four-byte sequence repeating itself 1024 times.

Similarly, the maximum address that can be used is 7FFF and not FFFF as would be expected, as the most significant address line (A15) is not used. So each of the outputs corresponds to a 4096 byte block in the memory map.

The spare outputs should be adequate for most purposes but if more are required a second or further 74LS138 can be added to split down one of the original outputs into eight, the connection details being given in Fig. 2.

A word of warning though: the processor cannot drive a limitless number of peripheral devices without buffering. Between seven and ten devices is the maximum, and there are four on the original board. If this figure is likely to be exceeded then all bus lines brought out should be buffered. Referring to Fig. 3, the data bus can be buffered with a single 74LS245, a bidirectional buffer, the direction being controlled by the read-write line. For the address and control lines, 74LS244s can be used as

by R. Coates

control lines, 74LS244s can be used as these bus lines are outputs only. Each device can buffer eight lines, but the precise number required depends on the application.
The easiest place to make the bus connections on the Nancomp is on the underside of the processor socket, with connecting leads as short as possible. Pin numbers of the relevent bus lines are given in Fig. 4.

Adding an additional p.i.a.

A further p.i.a. is the simplest expansion that can be made: a fairly useful one as well as being cheap. The original chip served a triple purpose of driving the display and reading the keyboard, as well as being available externally. This meant certain limitations in its use; if more than eight uncommitted lines were required for external use, the keyboard and display could not be used as part of the user program. Adding a second p.i.a. means that this one is completely free, leaving the original to cope with the keyboard and display.

Fig. 5 gives the connections associated with the 6821 p.i.a. One the bus side, all connections except 'chip select' input is taken to the equivalent pin on the $6802 / \mathrm{s}$ chip; the 'chip select' input is taken to any one of the spare address decoding outputs of the 74LS138. And that is the p.i.a. connected. Addresses of the various internal registers are in the same sequence as the original, but the base address will depend on the 74LS138 output used.

6522 versatile interface adapter

An alternaiive to the 6812, more powerful but just as simple to connect, is the 6522 versatile interface adapter. Although an upgraded version of the 6821, it is not manufactured by Motorola, but is one of the 6500 microprocessor family from MOS Technology. Normally, mixing devices from one manufacturers processor family with another can lead to problems; bus structures and timing are usually quite different. Fortunately, the 6500 family are based on the 6800 , the 6502 microprocessor being a scaled down version of the G800, and therefore peripheral devices in the two families are completely interchangeable.
Circuit connections to the 6522 are shown in Fig. 6; the only difference is that four address lines are required instead of
two to access the 16 internal resisters. The peripheral side connections are identical to the 6821. Further details of the 6522 can be found in the Interfacing Microprocessors articles*; a copy of the manufacturers data sheet is also recommended.

Cuban interface board

Although analogue-to-digital converters for analogue input signals and digital-toanalogue converters for generating analogue outputs could be connected either to the p.i.a. or directly to the Nanocomp bus, a neater solution by way of the interface board described in the October 1981 issue. Designed for 6500 -based systems, it is equally suitable for the Nanocomp. The facilities provided are a 6522 v.i.a, a 16 -

* October 1981, pages 34-9, November, pages 59-62 and December, pages 71-5.

Table 1. A-D conversion, channel INO

LDS \#\$1OFF	Initialize stack pointer
STAA \$6010	Start conversion, channel INO
LDAA \#\$10	Wait for 100s
DECA	
BNE LOOP	
LDAA \$6010	Get conversion data
SWI	Do software inter-

Table 2. D-A Conversion
LDAA \#\$80 Load accumulator with desired value
STAA $\$ 6020$ Store in D-A JMP \$7D97 Return to monitor

Table 3. Voltage tracker

$\left.\begin{array}{lll}\text { START } & \text { STAA } \$ 6010 & \begin{array}{l}\text { Start conversion, } \\ \\ \\ \\ \text { Lhannel INO }\end{array} \\ & \text { LDAA } \# \$ 10 & \text { Wait for } 100 \mu \mathrm{~s}\end{array}\right)$

Table 4. VIA Test

LDAA \#0	Set port A as inputs (all bits to 0)
STAA \$6003	SDAA \#\$FF
Set port B as	
outputs	
STAA $\$ 6002$	(all bits to 1)
LDAA \$6001	Read port A
STAA $\$ 6000$	Store in port B
BRA LOOP	And repeat

channel analogue-to-digital converter and a single digital-to-analogue converter.

Connection is mainly a matter of taking the appropriate bus connections shown on the interface board circuit diagram to the appropriate pin on the Nanocomp processor chip; Fig. 4 shows the pin numbers. But note several points. Number 02 corresponds to E on the $6802 / 9$, NRST is the reset line (RST), and NWDS, NRDS, BLK on the interface board are not used.

One modification is required to the interface board for use with the 6802, but not with the 6809. Addresses can occur on the address bus which are not valid memory addresses. For instance, when an INX instruction is executed, the index register's contents will appear on the address bus but this is obviously not a proper address. For devices on the bus to
decide what is a memory address and what is irrelevant data, the valid-memoryaddress signal from the processor is used. This line will only be at a 1 -level if the address bus contents are a valid memory address. This signal must therefore be gated into the address decoding circuitry to prevent spurious accesses to the interface board. This only requires a simple modification: the track to pin 1 of $1 \mathrm{C}_{5}$ on the interface board should be broken, and pin 1 connected to v.m.a. on the 6802, see Fig. 7. Later Motorola microprocessors such as the 6809 do not senerate these spurious addresses and so this modification is not required.

The interface board requires a section of the memory map 256 bytes long and this can be set anywhere in the memory by the block and page selector switches that is not
© MPU bus connections

Name	6802	6809
D0	33	31
D1	32	30
D2	31	29
D3	30	28
D4	29	27
D5	28	26
D6	27	25
D7	26	24
A0	9	8
A1	10	9
A2	11	10
A3	12	11
A4	13	12
A5	14	13
A6	15	14
A7	16	15
A8	17	16
A9	18	17
A10	19	18
A11	20	19
A12	22	20
A13	23	21
A14	24	22
A15	25	23
E	37	34
VHA	5	-
RW W	34	32
RST	40	37
IRQ	4	3

already used by the Nanocomp. The block switch is the most significant digit in the four digit hex address, but remember, as A15 is not used in the Nanocomp, only positions $0-7$ may be used. The page switch is the next most significant digit of the address.
In the examples given later, the board is assumed to be at $6000-60 \mathrm{FF}$, which means block $=6$ and page $=0$.
As the address setting is unlikely to be changed, wire links could be used instead of the block and page switches, but note when working out which selector lines are 0 or 1 the 74LS136 is an exclusive -or gate, and not an exclusive nor-gate as shown in the circuit diagram.
Power for the interface board can be taken from the original power supply but the extra load will cause an increase in heat dissipation and ventilation should be adequate. A larger heat-sink may be required for the regulator.
The interface board will clearly not fit inside the original Nanocomp case, but a deeper case, RS number 509-276, will accept both boards. As the front panel sizes are almost identical, the original front panel can be used with a little modification.

Driving the Cuban

Some sample source code programs are given to show how to read an anologue input signal, how to set an analogue output level, and how to read and drive the v.i.a. peripheral lines. Only the mnemonics are given, not the machine-code, as this differs in some cases between the 6802 and 6809.

First, the analogue to digital converter. The ADC0817 is a 16 -channel 8 -bit anal-

ogue-to-digital converter. That is, it has 16 analogue inputs, any one of which can be selected and the analogue voltage on it converted to an 8 -bit value which can then be read and used by the microprocessor.

To measure a voltage, the converter must be told by the microprocessor to initiate a conversion on a specified channel. It takes about 100μ s for this particular chip to perform the conversion, so there must be a wait of greater than this before reading the result. The conversion is initiated by the processor writing to one of the 16 a d allocated memory locations (what data is written doesn't matter). The location written to determines the channel on which the conversion takes place; 6010 corresponds to channel IN0, 6011 to channel IN1, and so on up to channel 1N15 at 601 F .

A $100 \mu \mathrm{~s}$ software delay loop should then be entered and then the conversion result obtained by the processor reading any one of the $16 \mathrm{a}-\mathrm{d}$ addresses.

Table 1 gives the listing of a simple program to read channel INO.

After the software interrupt, accumulator A can be examined to determine the digital value proportional to the input voltage. This will be between 00 for zero input voltage and FF for a full scale (or greater) voltage. Full scale is defined as the voltage across the reference input pins of the ADC0817, and is set by the LM317 regulator and the 100 ohm potentiometer to between approximately 1.9 and 3.2 volts.

Digital-to-analogue converter

Digital to analogue conversion is the reverse of the above, and allows the microprocessor to generate an analogue voltage proportional to a binary value by simply writing a binary value to the d -a converter address.

The program in Table 2 gives a half fullscale output at the analogue output. Changing the contents of accumulator A changes the output voltage.
The program of Table 3 combines the two converters by reading the analogue input and setting the analogue output to the same value. The program then loops back and up-dates the output continuously, until "reset" is pressed. A variable voltage source on the input and a voltmeter on the output should confirm correct operation. When working correctly, adding an ASL A instruction after reading the a-d gives a voltage doubler!

Versatile interface adapter

The 6522 v.i.a. is similar in many respects to the 6821 p.i.a. but includes extra features such as two 16 -bit timers and a shift register for serial communication. To access the greater number of internal registers therefore needed, the device occupies 16 consecutive memory locations, as opposed to the 6821's four. In this example the addresses are $6000-600 \mathrm{~F}$.

Consider the 16 peripheral data lines and their programming.

Each eight-bit peripheral port has a data direction register (DDRA, DDRB) for specifying whether the peripheral pins are to act as imputs or outputs. A logical 0 in a bit of the data direction register causes the corresponding peripheral pin to act as an input; a 1 causes the pin to act as an output.

Each peripheral pin is also controlled by a bit in the output register (ORA, ORB) and an input register (IRA, IRB). When programmed as an output, the voltage on the pin is controlled by the corresponding bit of the output, the voltage on the pin is controlled by the corresponding bit of the output register: a logical 1 causes the out-
put to go high, and a zero causes the out put to go low. Data may be written into the output register bits corresponding to pins which are programmed as inputs, but in this case the output signal is unaffected.
Reading a peripheral port causes the contents of the input register (IRA, IRB) to be transferred onto the data bus. The B register operates similarly to the A register; however, for pins programmed as outputs there is a difference. When reading IRA, the level on the pin determines whether a 0 or 1 is sensed. When reading IRB however, the bit stored in the output register ORB is the bit sensed. Thus for outputs which have large loading effects and which pull an output 1 down or which pull an output 0 up, reading IRA may result in reading a 0 when a 1 was actually programmed, and vice-versa. Reading IRB, on the other hand, will read the 1 or 0 level actually programmed, no matter what the loading on the pin.

To program the device, first set up the direction of each line with the data direction registers. DDRA is at address 6003 and DDRB at 6002 . The outputs can now be programmed, or the inputs read at 6001 for port A and 6000 for port B. This is simpler than for the 6821 which requires the setting of a bit in the control register to determine whether access is to the direction or data registers, which are at the same address.
The listing in Fig. 4 shows a simple test program for the v.i.a. Port A lines are all inputs and port B outputs. The program continuously reads port A and stores the data in port \mathbf{B}, so the outputs reflect the state of the inputs.
Connecting inputs to +5 V or around while monitoring the equivalent output with a meter or oscilloscope should confirm correct operation.

TWO-METRE TRANSCEIVER

 Design of a microprocessor-controlled transceiver with I.s.b., u.s.b. and f.m. simplex,repeater and reverse modes is described with which automatic scanning of the 14-to
146 MHz band or up to nine memorized channels is possible. This first article covers
specifications, operation and the front-end module.

It was my intention from the outset of this project about three years ago that the transceiver described here should be versatile yet uncomplicated and easy to duplicate. During the development stage components became available which simplified the design of the transceiver and the modular method of construction chosen made their inclusion a simple matter. There are currently commercially available modules which would further simplify the transmitter section even more, but as yet their cost is prohibitive. Should their price fall to a reasonable level they may easily be included.
The prototype was constructed using discrete-logic gates to control the synthesizer and displays, etc., but it soon became apparent that microprocessor control would be advantageous. Use of a microprocessor meant that many of the features found on commercial transceivers, and some additional ones, could be incorporated at the expense of time required to write the software, and that the number of i.cs used could be reduced from more than 30 to six, thus simplifying the construction.

Each module has its own p.c.b. and is housed in a screened rectangular box. Six of these modules form the transceiver, one is the microprocessor circuit and the remaining three are the display-driver, toneburst and a.f.-preamplifier boards.
While the resulting design is not the ultimate by professional standards, it is good value for money and is certainly competitive with currently available amateur transceivers.

by T. Forrester, G8GIW

Operation

As the transceiver is primarily intended for mobile use, the number of controls are kept to a minimum while retaining flexibility, partly in the interests of road safety. The transceiver is curned on by the mode control and the appropriate mode selected at the same time; the microprocessor starts up immediately and sets the synthesizer and display with the last used frequency, after which it scans the controls.
With the transceiver in its 'normal' mode tuning carried out using up/down buttons on the microphone causes the synthesizer to step up or down in 100 Hz or 25 kHz steps. If the up or down button is kept pressed the synthesizer continues stepping at a gradually increasing rate until the button is released.
The volume control doubles as a fre-quency-step selector. Pulling the knob gives 100 Hz steps and, if required, the s.s.b. noise-blanking facility. Steps of 25 kHz are obtained when the volumecontrol switch is in its normal position.
When scan mode is entered with the receiver set for normal operation, i.e. not in memory mode, the transceiver scans the band and stops for six seconds on any channel whose signal lifts the squelch. If the transceiver is taken out of the scan mode during these six seconds it will remain on that frequency. Pressing the skip button at this point will result in the channel in question being passed over on the next scan of the band. The skip button

does not work when the unit is in memory mode. To remove a channel from the list one sets the transceiver for normal operation, tunes to the channel concerned and presses the skip button.

This feature of being able to skip certain channels while scanning the band has been found to be particularly useful if one does

not wish to listen to repeaters or similar stations.

If certain favourite channels are to be memorized, it is only necessary to tune them in using the up-down buttons, enter memory mode, select a suitable position in the memory using the memory switch and then press memory-write button. The channel previously tuned to will then be displayed and sent to the synthesizer. Up to 9 channels can be memorized and, if required, scanned.

When repeater mode is selected the 1750 Hz tone burst is automatically turned on, and when the unit is set to transmit the shifted transmit frequency is automatically displayed and the tone burst operated. Likewise for reverse repeater, the appropriate frequencies are displayed and no retuning is required.

While the operating frequency is being changed by means of the up-down buttons on the microphone, a 'peep' is emitted from a transducer mounted inside the transceiver. This feature is useful when driving since the frequency change can be judged by counting the peeps.

When the transceiver is in scan mode the peep generator is disabled, as its continual peeping as the synthesizer changes
channel would be annoying, if not distracting while driving a vehicle.

Modules

Each module is numbered as follows and any components referred to in the circuit descriptions will be preceded by the number of the module in which they are used.
1 receiver converter, 144 to 9 MHz
2 transmit converter, 9 to 144 MHz 3 transmit power amplifier and power regulators
4 t.m.-i.f. discriminator, squelch, noise blanking and a.f. power amplifier 5 synthesizer logic
6 synthesizer v.c.o. and power switching
7 s.s.b. 9 MHz transceiver and exciter
8 microprocessor control and interfaces 9 frequency-display driver
101750 Hz tone-burst generator and receive a.f. preamplifier

Units one to seven are housed in separate screened boxes measuring 160 by 50 by 26 mm . Modules five and six share the same box while modules 8,9 and 10 are attached directly to the transceiver chassis and are not in screened cases. The modules are described in the above order.

Receive converter - 1

The front end of any high performance receiver is perhaps the most critical component, with the possible exception of the frequency synthesizer, so these two elements justify extra care in design. This receive converter is the end result of six months' work, and gives excellent results.

Criteria for a good receiver, besides the obvious low noise figure and frequency stability are good dynamic range, i.e. reluctance to overload and cross-modulate in the presence of strong signals, and secondly good adjacent-channel rejection. Unfortunately most mass-produced amateur transceivers are built to a price, with one or two exceptions, and their perform-

ance when subjected to strong signals can leave a lot to be desired.

To overcome these problems, a different approach to the usual configuration comprising mosfet preamplifier, mosfet mixer, ceramic i.f. filter, etc., is used which gives excellent performance for a modest outlay. Most of the cost is tied up in the mixer and i.f. filters.

The receive converter comprises the usual modules, but individual parts are tailored to ensure good performance.

The antenna it matched to the r.f. preamplifier, Tr_{100}, to obtain the best noise figure for a conventional tuned circuit. The r.f.-preamplifier drain load is a readily

available three-stage helical filter which has an ideal bandwidth for the 2 -metre band. This filter is transformed from its nominal impedance of 500Ω to 50Ω by T_{101} (trifilar wound) to match the mixer impedance.

The mixer in this receive converter is the SRA 1 H type which requires +17 dBm (approximately 45 mW) of local-oscillator drive. This mixer has a typical third-order intercept point of +17 dBm and a conversion loss of $7-8 \mathrm{~dB}$. To overcome this loss and maintain a good overall noise figure an i.f. amplifier is used directly after the mixer, Tr_{101}. To ensure that this i.f. amplifier does not overload a power f.e.t. is used (third order output intercept point +30 dBm). An added benefit of using this type of f.e.t. (U309) is that its input impedance is 50Ω. It is important for the proper operation of a switching mixer such as the SRA1H, that the i.f. port is kept terminated with 50Ω. A 6.8 pF capacitor, C_{105}, and $51 \Omega, \mathrm{R}_{105}$, resistor maintain 50Ω at high frequencies.

This i.f. amplifier gives 10 dB gain, which is just enough to overcome the mixer loss, and its output is matched to the $9 \mathrm{MHz} 12 \frac{1}{2} \mathrm{kHz}$ crystal filter by another trifilar transformer, T_{102}. All three transformers in this module are identical. Use of a high-quality crystal filter at this point is important as it provides all the f.m. receive selectivity and aids the ultimate rejection on s.s.b. Ceramic filters are usually not good enough.

After the first i.f. filter comes a lownoise i.f. amplifier using another BF981, Tr_{102}, with a tuned-drain load. Its output splits two ways; one goes directly to the f.m. i.f. strip and the other goes to the s.s.b. receiver unit through the noiseblanking circuit shown at the bottom right-hand side of the diagram.

The noise-blanking circuit is placed between the f.m. and s.s.b. filters to restrict its sampling bandwidth to $121 / 2 \mathrm{kHz}$ thus preventing i.f. cross modulation from strong signals on nearby frequencies. Local-oscillator drive for the mixer is amplified by a class-A amplifier using a

Analyses of transceiver performance all use 10dB/div vertical sensitivity and 145 MHz centre frequency, except (a) which has 136.5 MHz centre frequency. Synthesizer output shows noise floor at approximately $-70 d B$ (a), two-tone s.s.b. intermodulation with wide sweep at 10 W p.e.p. (b), extraband spurious signals at full power (c), inter-band spurious signals at full power (d), and two-tone intermodulation distortion with narrow sweep at 10 W p.e.p. (e).

2N918 transistor, Tr_{103}. If an MD108 or similar type of mixer is used instead of the SRA1H, then a 10 dB pad should be inserted between the local-oscillator driver and mixer to reduce the drive to +7 dBm . Using a MD108 mixer will save about $£ 10$ but at the cost of 10 dB or so on the thirdorder intercept point. As it is described here, the circuit gives a third-order intercept point of -1 dBm and a noise figure of between approximately 1.8 and 2 dB .

Failure to use 1 nF chidtype bypass capacitors or to mount them directly on the leads of the BF981 fets may lead to instability and in consequence a poor noise figure.
Receiver alignment is easy due to the ready-aligned helical filter and broadly tuned 9 MHz i.f. amplifier, so it should

only be necessary to peak the tuned circuits for maximum signal (including the helical) and trim the f.m. discriminator.

An overall block diagram of the receiver is shown and details the individual component parts, and the signal flow paths for both s.s.b. and f.m.
The $5 \mathrm{k} \Omega$ potentiometer, R_{118}, sets the noise blanking threshold and initially should be set to the minimum voltage required to turn Tr_{104} off, so providing minimum noise blanking action and maximum signal to the s.s.b. i.f. This p.c.b. is fastened into the screened box by means of four tapped stand-off bushes fitted one in each corner.
All power and low-frequency signals to all modules in the design are filtered by means of 1 nF lead-through capacitors, although they may not be shown on the circuit diagrams. These lessen the possibility of spurious r.f. feedback paths and so increase the repeatability of the design.

To be continued

BINAURAL RECORDINGS AND LOUDSPEAKERS

Analysing reproduction of binaural recordings through loudspeakers leads to the development of circuitry for their correct reproduction, and which also gives out-of-head localization for stereo headphone reproduction.

Binaural recordings are made with two microphones situated in the ears of a dummy head. As a consequence of this recording technique, reproduction should take place through headphones. One of the drawbacks of this system is that it is restricted to personal reproduction. To make the improvement in sound location over conventional stereo enjoyable by more than one person at a time without having to use several headphones, reproduction through loudspeakers has to be possible.

The standard recording and reproduction procedure is depicted in Fig. 1, where the microphones of the dummy head feed signals of the appropriate magnitude and phase position to the headphones. When the binaural recording is reproduced over loudspeakers, the situation as is drawn in Fig. 2 arises. The microphones send the same signals as before to the loudspeakers, but now each loudspeaker produces its own pressure pattern at the ears of the listener. The left loudspeaker generates the sound pressures L_{1} and R_{1} at the left and right ear respectively. The right loudspeaker generates the sound pressures L_{r} and R_{r}. Adding up the corresponding pressure phasors, the left phasor L leads the right phasor by a small angle γ, which is not equivalent to the original phase angle ϕ. This shows that when loudspeakers are used for the reproduction of a binaural recording, much of the directional information is lost.

Fig. 1. Standard recording and reproduction procedure. Microphones of dummy head feed signals of appropriate nagnitude to the headphones.

by J. H. Buijs

The cause of this loss of information is the existance of a double cross-feed, one at the microphones of the dummy head and the other at the loudspeakers. The situation can be improved by introducing a signal R_{1}^{\prime} in the right loudspeaker. This signal \mathbf{R}_{1}^{\prime} should be equal to $-\mathbf{R}_{1}$, so that R_{1} is cancelled. In the left loudspeaker a signal $L_{r}^{\prime}\left(=-L_{r}\right)$ should be introduced for the same reason.

The result of such an operation can be gathered from Fig. 3, in which a similar analysis is given as in Figs 1 and 2. Signal L consists of the addition of the phasors L_{1} and $L\left(R^{\prime}\right)$, and the signal R is formed by the phasors R_{r} and $\mathrm{R}\left(\mathrm{L}^{\prime}{ }_{\mathrm{r}}\right)$.

A more detailed analysis reveals that the angle between L_{l} and $L\left(R_{1}^{\prime}\right)$ is equal to $180-2 \delta^{\circ}$, where δ is the phase angle between the phasors of the sound pressure at the left and the right ear caused by one of the two loudspeakers. This situation is drawn in Fig. 4, where $\alpha=180-2 \delta^{\circ}$ and one can see that

$$
\tan \zeta=\frac{\mathrm{L}\left(\mathbf{R}_{1}^{\prime}\right) \sin \alpha}{\mathrm{L}_{1}+\mathrm{L}\left(\mathbf{R}_{1}^{\prime}\right) \cos \alpha}
$$

As $L\left(\mathbb{R}_{1}^{\prime}\right)$ is the same signal as L_{l} but

Fig. 2. When binaural recording is used for binaural recording reproduction, much of the directional information is lost.
adapted twice by the cross-feed function $\mathrm{H}(\mathrm{f})$, one can also write

$$
\zeta=\operatorname{arc} \tan \frac{|\mathrm{H}(\mathrm{f})|^{2} \sin 2 \delta}{1-|\mathrm{H}(\mathrm{f})|^{2} \cos 2 \delta}
$$

Because the same applies for the stimulus for the right ear R, the phase angle between L and R is equal to the phase angle between L_{1} and R_{1}, and is therefore correct. The amplitude of signal L is
$\sqrt{\left(\mathrm{L}_{1}+\mathrm{L}\left(\mathrm{R}_{1}^{\prime}\right) \cos \alpha\right)^{2}+\left(\mathrm{L}\left(\mathbf{R}_{1}^{\prime}\right) \sin \alpha\right)^{2}}$
$=\sqrt{\mathrm{L}_{1}{ }^{2}\left(1-|\mathrm{H}(\mathrm{f})| \cos ^{2} 2 \delta\right)^{2}}+$
$\left.\overline{\left(L_{l} \mid\right.}|\mathrm{H}(\mathrm{f})| \sin 2 \delta\right)^{2}$
$=\mathrm{L}_{1} \sqrt{1+|\mathrm{H}(\mathrm{f})|^{2} \cos ^{2} 2 \delta-2 \mid \mathrm{H}(\mathrm{f}) \cos 2 \delta}+$

$$
=\mathrm{L}_{1} \sqrt{1-2|\mathrm{H}(\mathrm{f})| \cos 2 \delta+\left.\mathrm{H}(\mathrm{f})\right|^{2}}
$$

From this one can conclude that correct reproduction of binaural recordings through loudspeakers is possible provided that the cross-feed function between the two ears of the observer is known, and can be reproduced electronically. Also, an am-plitude-correcting circuit will have to be designed in view of the equation for the amplitude of the stimulus, as derived above. If one assumes that the loudspeakers are placed along lines which make an angle of 45° with the perpendicular to

Fig. 3. Signal L consists of addition of phasors L_{1} and $L\left(R_{1}^{\prime}\right)$ and the signal R is formed by phasors R_{r} and $R\left(L_{r}^{\prime}\right)$.

Fig. 4. Angle between L_{1} and $L\left(R_{1}^{\prime}\right)$ is equal to $180-2 \delta^{\circ}$, where δ is phase angle between phasors of sound pressure at left and right ear caused by one of two loudspeakers.

Fig. 8. Cross-feed function of Fig. 7, itself derived from the work of Wiener and Shaw.

Fig. 9. Because transfer function $L_{g}{ }^{2}$ enhances frequencies over 200 Hz by 12 dB a correction circuit gives approximate compensation, as above.
the line between the left and right ear, one can turn to research by Wiener ${ }^{1}$ and Shaw ${ }^{2}$ for the determination of the crossfeed function. The results obtained by Shaw are reproduced in Fig. 5, which form an extension in frequency range of the measurements performed by Wiener.
When these data are normalized to the ear canal pressure at 0° angle, Fig. 6 results. The value for the time delay between the signal for the left and right ear originating from the same loudspeaker is from Bauer ${ }^{3}$.
From similar data originating from Wiener, Bauer designed a circuit drawn in Fig. 7 to simulate the cross feed. In this circuit

$$
\mathrm{V}_{\text {Lout }}=\mathrm{L}_{\mathrm{g}} \mathrm{~V}_{\text {Lin }}+\mathrm{V}_{\text {Rin }} \mathrm{R}_{\mathrm{g}} \mathrm{e}^{\mathrm{j} \phi}
$$

and
40

Fig. 5. Results obtained by Shaw for determination of cross-feed function assuming loudspeakers placed along lines making 45° with perpendicular between left and right ear.

Fig. 6. When data of Fig. 5 are normalized to ear-canal pressure at 0° angle this results. Value for time delay between left and right ear originating from same loudspeaker is from Baver.

Fig. 7. Bauer designed this circuit to simulate cross feed from Wiener's data.
where L_{g} and R_{g} and ϕ are the transfer functions, as displayed in Fig. 8.
The input signals for the cross-feed generator to arrive at the loudspeaker signals for reproduction of binaural recordings are
and

$$
\begin{aligned}
& V_{\mathrm{Lin}}=\mathrm{L} \\
& \mathrm{~V}_{\mathrm{Rin}}=-\mathrm{R}
\end{aligned}
$$

which leads to

Fig. 10. Correction circuits give approximate compensation to $L_{g}{ }^{2}$ transfer function of Fig. 9.

After inversion of $V_{\text {Lout }}$ and reproduction of these signals by loudspeakers, the sound pressure at the ears is

$$
\begin{aligned}
\mathrm{V}_{\mathrm{L}}= & \mathrm{L}_{\mathrm{g}}\left(-\mathrm{L}_{\mathrm{g}} \mathrm{~L}+\mathrm{R}_{\mathrm{g}} \mathrm{Re}^{\mathrm{j} \phi}\right) \\
& +\mathrm{R}_{\mathrm{g}} \mathrm{e}^{i \phi}\left(-\mathrm{L}_{\mathrm{g}} \mathrm{R}+\mathrm{R}_{\mathrm{g}} \mathrm{I} \mathrm{e}^{\mathrm{j} \varphi}\right) \\
= & -\mathrm{L}_{\mathrm{g}}{ }^{2} \mathrm{~L}+\mathrm{R}_{\mathrm{g}}{ }^{2} \mathrm{Le}^{2 i \phi}
\end{aligned}
$$

and $V_{R}=-L_{g}{ }^{2} R+R_{g}{ }^{2} R^{2 i \phi}$.

Further corrections

From the previous section the general form of the sound pressure at the ears is

$$
\mathrm{V}_{\mathrm{car}}=\left(-\mathrm{L}_{\mathrm{g}}{ }^{2}+\mathrm{R}_{\mathrm{g}}{ }^{2} \mathrm{e}^{2 \mathrm{ii} \mathrm{\phi}}\right) \mathrm{V}_{\mathrm{in}},
$$

which can also be written as $\mathrm{V}_{\text {ear }}=$ $\left(-\mathrm{L}_{\mathrm{g}}{ }^{2}+\mathrm{R}_{\mathrm{g}}{ }^{2} \cos 2 \omega \mathrm{~T}+j \mathrm{R}_{\mathrm{g}}{ }^{2} \sin 2 \omega \mathrm{~T}\right) \mathrm{V}_{\text {in }}$ where ω is frequency in radian $/ \mathrm{s}$ and T is time delay between left and right ear as given in Fig. 8. This signal consists of $\mathrm{V}_{\text {in }}$ and the 2 T -delayed signal, $\mathrm{V}_{\text {in }}$. One can compare this with the effect of reproduction of monophonic recordings via two loudspeakers, since the sound pressure at the ears now consists of the signal $\mathrm{L}_{\mathrm{g}} \mathrm{V}_{\text {in }}$ and the T-delayed signal $\mathrm{R}_{\mathrm{g}} \mathrm{V}_{\mathrm{in}}$. Now a signal consisting of $\mathrm{V}_{\text {in }}$ and a delayed version of $V_{\text {in }}$ with a delay smaller than 30 ms is perceivd as a single signal only consisting of $V_{\text {in }}$ (Haas phenomenon ${ }^{4}$). This indicates that L_{g} determines the sound quality.
As the transfer function $\mathrm{L}_{\mathrm{g}}{ }^{2}$ enhances the frequencies above 200 Hz by up to

In practice. . .

The use of the circuit for "stereophonic headphones" results in an astonishing improvement in reproduction of stereophonic programs via headphones, since the sound seems to originate outside instead of inside the head. The use of the circuit for "binaural loudspeakers" leads to life-like positioning of the sound. hecordings of aircraft passing overhead sound so realistic that one is tempted to look up in search for the airplane. One person I demonstrated the circuitry to said, on reproducing the sound of weves at a beach: "It sounds as if I'm standing in the water." which indeed it did. It's difficult to describe the acoustic results of reproduction of binaural recordings via loudspeakers; one should try it to be convinced that this is a way toward better sound reproduction. - JHB

Fig. 11. For headphone reproduction of stereophonic recordings, circuit includes compensation for rise in $L_{g}{ }^{2}$ transfer function above 200Hz. Switch is in headphone position.

Piccolo players

The wartime rush to adapt for radio communication the teleprinter or Teletype system originally developed for line operation remains an example of the danger of making use of technology standards for a different purpose without a fundamental rethink. Compared with alternative forms of machine telegraphy, including high speed Morse and the Hellschreiber system, conventional r.t.t.y. with five-unit code and frequency-shift keying has always demanded, if error rates are to be kept low, a very good signal-to-noise ratio, freedom from interference and multipath effects, and preferably diversity reception. To minimize these problems, the seven-unit code and other error-correcting tech niques, including automatic repetition, have come into widespread use, though clearly these are palliatives rather than cures.

Many years ago it was recognized that under difficult radio conditions an improvement was possible by the use of multi-tone signalling. J. V. Beard and A. J. Wheeldon (Point-to-Point Telecommunications June 1960, pp.20-48) showed that two-tone a.m. transmission could offer substantial improvement over f.s.k. in conditions of selective fading, weak signals and interference. However, a series of counter-attacks on two-tone transmission, based on results over high-power point-topoint circuits, appeared soon afterwards, since when binary f.s.k. has remained the dominant system for h.f. - though with at least one notable exception.

Since October 1962, the Communications Engineering Department of the Foreign \& Commonwealth Office (formerly Diplomatic Wireless Service) has been using the Piccolo system based on multiple frequency-shift keying as the basis of its main h.f. network that links more than 50 British embassies to Hanslope Park, near Newport Pagnell. The original Piccolo system, with no less than 32 tones, imposed stringent requirements on frequency stability but, due to signal integration techniques using resonant LC filters, it could produce clean copy from signals almost buried in noise. It was thus far more suitable than conventional f.s.k. for use with relatively low-power transmitters located in residential areas, often with a flag-pole-type aerial. Harold Robin, Don Bayley and J. D. Ralphs made many attempts to interest British firms and organizations in the system and for a time Marconi undertook to market equipments built by D.W.S. More recently, manufacture and marketing has been by Racal, although clearly it has never been an easy task to introduce a relatively costly, noncompatible system. By 1968, by which time the Mark III unit was being intro-
duced, I was lamenting in print on the reasons why Piccolo went flat and on the general lack of interest in this technically elegant British system.
Recently a new Mark VI system has been developed that reduces the number of tones from 32 to 6 for ITA-2 and 12 for ITA-5 (Radio and Electronic Engineer Vol. 52, no. 7, pp.321-330, July 1982). Although this clearly loses a little in basic performance, it halves the bandwidth requirements and reduces the formerly extremely stringent frequency stability requirements. It also makes for rather lower capital costs and permits the use of either forward error correction or automatic request for repeats. Combined with the Piccabell selective calling system that summons an off-duty operator for urgent traffic, it remains one of the few technically successful attempts to match r.t.t.y to simple low-power h.f. circuits. But it remains to be seen whether the Mark VI system (to be marketed by Racal as the LA1117 modem) will at last achieve the wider commercial acceptance that the Foreign Office engineers have always felt it deserved, but which has so far always eluded the earlier models.

Project Raven

Much though some engineers may regret it, the British communications industry has become increasingly coupled to meeting military or "defence" requirements; a market that has (so far) not been under pressure from Japan and one in which a good deal of expertise has been acquired by British design teams. A major Australian project, born in 1976 and due in service in 1986, "Project Raven," covering e.c.m.-resistant h.f. and v.h.f. vehicle and manpack tactical systems for ranges up to 2000 miles, looks like bringing major contracts to Plessey Australia (with Plessey UK participation). In 1981 "project definition" contracts were awarded to both Plessey and Racal Milcom but the latest A\$7million contract for design and establishment of production facilities has been won by Plessey who hope it will lead to production contracts worth $\mathrm{A} \$ 150 \mathrm{M}$ to $\mathrm{A} \$ 200 \mathrm{M}$.

Technically an interesting feature of the Plessey proposals is the use of electronic null steering of simple twin aerials to provide some 40 dB rejection of a single jammer as an electronic-counter-counter-measure. Null steering as an antijam protection system is considered now feasible even for manpack v.h.f. sets and may be extended to h.f. In general Plessey engineers argue that while simple frequency hopping systems are of considerable value against an unsophisticated opponent they are particularly vulnerable to d / f-assisted attack. They list priorities for e.c.c.m. in
the following order: imperceptibility; inscrutability; physical invulnerability; and electromagnetic invulnerability. A simple null-steering technique for h.f. communications was described at the recent IEE conference "H.F. communication systems and techniques" by J. K. Webb (Mitre Corporation) using a quadrature phaseshift channel with an auxiliary aerial.

Secrets of Hut 6

In the decade since the disclosure of the breaking of the German Enigma cipher machine (as well as the Abwehr and police hand ciphers and the Italian machine cipher) in the books by Gustave Bertrand "Enigma" and Frederick Wintherbotham "The Ultra Secret", there have been a spate of further books and memoirs of the fascinating Bletchley Park operation. But most of the insider books have reflected the views of the Intelligence analysts and distribution people of Hut 3 rather than those of the actual cryptanalysts of Hut 6, who were responsible for codebreaking, or the signals people and radio operators who intercepted the traffic. Few of the many authors, with the exception of Bertrand whose teams were in France and not at B.P., have been in any position to draw conclusions of permanent value to the black arts of codebreaking and Sigint.

For this reason it seems a pity that a new book "The Hut Six Story" by Gordon Welchman (published in the USA by McGraw Hill and in the UK by Allen Lane) has attracted less public interest and fewer reviews than the earlier books. For Welchman joined the B.P. team of cryptanalysts in 1939, worked in Hut 6 and later became Assistant Director of Mechanization. After the war, his plans for the peacerime GCHQ were largely rejected but instead of returning to the academic field he entered industry, joined the brain drain in 1947, and for many years worked in the field of communications systems planning for The Mitre Corporation, the US Federal Research Centre, etc. concerned with battlefield communication systems etc.
The earlier accounts, while differing in the credit given to the Polish and French cryptographic organizations, have largely supported the idea that Enigma could always be cracked by rigorous mathematical attack when backed up by some prior knowledge of the machines. Most (Bertrand's excepted) played down the role of Hans-Thilo Schmidt, the German who provided the French with a mass of information on Enigma ciphering procedures. Few have shown any clear understanding of why the German cryptographers had every reason to believe their system was totally secure in those pre-computer days.

Gordon Welchman shows that while in deed Enigma had fatal flaws, it would nevertheless have been impregnable against a purely mathematical attack. Unfortunately for the Germans they introduced a number of strengthening elements progressively with the result that Hut Six was normally in possession of, or could deduce, plaintext "cribs" and could "guess" likely key letters from their knowledge of the short-cuts of "lazy" operating procedures of the German cipher operators. Even so, Welchman maintains, the whole operation might have come to a sudden stop had the Germans taken more steps to ensure that the Enigma machines were used in accordance with the basic rules of cryptography (for example, never re-encode the same plaintext in different keys, never use standard long addresses, etc). It is worth recalling that B.P. never succeeded in breaking the Gestapo (SD) Enigma. He also emphasises the importance of good liaison between Hut 6 and the main Y intercept stations as well as the role of traffic analysis when the messages remained unread.

He believes that the Ultra secret was kept too long with the result that many lessons that could have been learned from B.P. have been lost.

He also reflects the view that engineers and administrators have too readily accepted the view that cryptosystems can be made secure by increasing the number of key permutations to a total beyond that which could be examined by computer in a reasonable time, pointing out that many system contained short-cuts.
Not every communications man would agree with all of his outspoken and often provocative comments but his revelations of the tight-rope on which Bletchley Park walked, and the conclusions he draws from this, make this a book of current as well as historic interest, with a high technical content.

435MHz digital stereo

First experimental transmissions from an amateur station of digital stereo audio signals in the UK (and possibly in Europe) were made on August 8 by Angus McKenzie, G30SS in Finchley, North London with the help of G8UQX and G6BYH. The co-operating station, that of A. G. Goddard, G3NQR, in Harrow, first monitored the incoming signals to assist in set-
ting the pulse levels and then recorded them on video tape. Subsequently the tape was replayed through G3NQR's amateur tv transmitter back to G3OSS where the incoming signals were decoded back to high-quality stereo and also recorded for a second time. The recovered speech and tone signals included long passages that were virtually perfect though with rather more errors on the second generation tape.

The experiment highlighted several critical factors including the vulnerability of digital transmissions to multipath smearing of the pulses. Adjustments to the transmitter were also critical, though it was demonstrated that the digital audio could be well received at signal strengths below those required for good tv reception. Tests over longer distances at higher power are planned and later it is hoped to use the 1296 MHz band.

Equipment used included AKG condenser microphone, Sony PCMF-1 digital processor with the digital bit stream superimposed on a PAL-compatible video waveform, Microwave Modules ATV transmitter with average power of about 1.5 watts and two 21 -element Tonna aerial arrays at 68 ft above ground level. Receiver comprised GaAs fed mast-head pre-amplifier, Microwave Modules up-converter feeding a Panasonic NV7000B VHS video recorder. Output from the VCR goes to a domestic colour ty set for waveform examination and analogue audio outputs go to KEF 105 series II loudspeakers from a stereo amplifier. Stereo audio is sampled at 44.056 kHz with 16 -bit coding and a potential 90 dB s.n.r. from 10 Hz to 20 kHz . The bandwidth is about 3 MHz with the 435 MHz transmission compatible with $625-$ line tv standards. G30SS is equipped for PAL colour tv transmission and has been received at distances up to 50 miles.
While such digital audio is aimed at high-quality reproduction, it seems relevant to point out that intelligible speech can be transmitted digitally at much lower bit rates since amplitude variations contribute remarkably little to basic intelligibility. 3-bit or 4-bit coding of speech at about 8 kHz sampling rate could provide an effective weak-signal communications system on the amateur microwave bands.

Bands released

Since October 1, UK amateurs have been permitted limited access to the WARC1979 bands at 18 and 24 MHz (18.068 to 18.168 MHz and 24.89 to 24.99 MHz) on a strictly non-interference basis. Restrictions include AlA (c.w.) mode only, maximum carrier power 10 watts, horizontallypolarized aerials only with zero gain relative to a half-wave dipole (i.e. no verticals or beam arrays). At the same time the new microwave bands at $47,75.5,142$ and

250 GHz became available to UK amateurs. It has also been announced that a limited number of Class A amateurs will be authorized to operate between 50 and 52 MHz outside of television broadcasting hours. There is also to be an experimental relaxation, initially applying to special event (GB) stations only, on the sending of greetings by non-licensed persons over amateur stations.

On the other hand, British amateurs within 100 km of London are being requested not to use the sub-band 431 to 432 MHz , which is being made available to the private mobile radio service in the London area, and in future amateurs may find themselves sharing 10.25 to 10.4 GHz with a commercial data network which becomes the primary user.

Here and there

The City \& Guilds of London Institute will in future hold three instead of only two Radio Amateurs' Examinations each year. Next examinations will be in December 1982 and March and May 1983. There is however little sign yet of any reforms to the examination syllabus or paper.
Winner of the 1981 RSGB National Field Day trophy was the Racal Amateur Radio Group (B section). Leading singleentry station ("Bristol Trophy") was the Great Western Contest Group. Other leading clubs were Gravesend Amateur Radio Society ("Gravesend Trophy"), Glenrothes and District Radio Club (leading Scottish entry) and the Maidenhead club ("Frank Hoosen Trophy").
The Ipswich Radio Club announces that arrangements have been made for students to sit the RAE at Kesgrave and Claydon Adult Centre, the High School, Kesgrave, Ipswich IP5 7PB. Enrolments by mid-October for the December examination.

Reg Cole, G6RC

An old-time but apparently ever-young radio amateur, Reg Cole G6RC, an active operator on the bands for well over 50 years, has died, aged 81 years. Until his retirement, Reg Cole was company secretary of George Newnes Ltd, now part of the IPC Group of companies. During World War I he trained as a radio officer in the merchant marine and during World War II was first a Voluntary Interceptor for the Radio Security Service, then served at Hanslope Park until he became one of Lord Sandhurst's group of operators on the Secret Service clandestine links with France and the Low Countries. He put this experience to good use on the amateur bands in the post-war period, becoming one of the UK's leading DX operators.

PAT HAWKER, G3VA

The responsibility of engineers to society is often discussed in the abstract: here, Robin Howes deals with the subject in a more tangible manner. In this, the first of two articles, he relates the question of responsibility to the current industrial and political state of the UK.

You have probably heard of the nuclear engineer who, when asked about the social implications of nuclear power, said: "I'm here to stop you freezing in the dark, not to talk about it". His attitude is often thought commendable, and it is also thought, perhaps unjustly, that unless an engineer is competent at his job his views on social responsibility are irrelevant anyhow.

Let us pass from the individual engineer to one view of industrial society as a whole: "We are all in a car and the car is in motion. Nobody has found out how to steer it, but some groups have, for a long time, been making detailed studies of the steering linkage. It has been found that small changes in direction are a bit easier to understand and to influence, and the ride seems to be smoother, when a foot is kept hard on the accelerator. Hitherto this has never proved catastrophic because the car has been moving about a wide plateau. Someone looking out of the dirty windscreen thinks he can see the edge of a precipice ahead and suggests they slow down. The others criticize his knowledge of the steering mechanism; they are affronted by his suggestion. Looking out of the window is a waste of time and talking like that alarms the passengers. A majority would prefer that there aren't any edges." Should the engineer get on with his job on the steering linkage or should he look through the window as well?
To avoid debating definitions the following should suffice for the purpose of this article. Science is about finding things out and technology is about making things. Technology predates the rise of experimental science in the 17 th century, as the building of Stonehenge and the feats of Roman architecture show. Technology today involves both applied science and traditional know-how, and in common usage the term technology is often synonymous with engineering. Both approach problems via systems analysis, design and modelling. Engineering, like medical practice, can also be regarded as an art in which an almost intuitive feel for the material world which has been developed by practice may be more important than systematic knowledge provided by scientific research. A recent textbook ${ }^{2}$ speaks of electronics as a simple art, a combination of some basic laws, rules of thumb, and a large bag of tricks. As these authors would probably be the first to point out, you cannot learn electronics just by reading books. For a more philosophical approach

by R. W. Howes,
M.Sc., M.Ed., M.I.E.E.

there is the remarkable book by Robert Pirsig": "There is no manual that deals with the real business of motor cycle maintenance, the most important aspect of all. Caring about what you are doing is considered either unimportant or is taken for granted... In that strange separation of what man is from what man does we may have some clues as to what the hell has gone wrong in this twentieth century."

Three options for the UK

If one looks at possible futures for the UK or similar industrial country, there are, broadly speaking, three options. The first is the high-technology future, which was first promoted in the 1960s although envisaged by science fiction years before. Apart from actual advances in military and space technology, including the moon landing in 1969, there was the hope of an automated, leisured society, dependent on the use of computers, the hope of electricity 'too cheap to be worth metering' provided by nuclear power, and the hope of using new cereal crops as a 'green revolution' to save the Third World from famine. From a purely technical point of view, such projects were usually outstanding successes; from a social and often economical point of view they were frequently outstanding failures. To take an example directly familiar to most people in Britain, one of the planners' dreams which came to fruition in the 1960s was a solution to the housing problem - the building of multimillion-pound complexes of high rise flats. These are now being blown up because they are too expensive to run and too vandalized to use. This is a classical example of the tunnel vision of experts who are blind to the social and even economic effects of their work, and is the result of trying to find a purely technical solution, a 'technical fix', to a systems-type problem.

In retrospect, such experts seem to have acted as if deficient in common sense and even in common humanity. The economic growth of the 1960s was fuelled by cheap, imported oil, which encouraged a profligate use of energy and which promoted technologies for the production of goods that were far more wasteful of energy and resources than ever before.

The second option rejects the first one as technocratic fantasy and disengages itself
completely from the industrial concept of economic growth. It promotes a society that is sustainable in the long term because its energy and resource inputs are renewable. Its technology is variously described as low, soft, alternative, intermediate or appropriate. The rather different meanings of these terms have been discussed by David Dickson ${ }^{4}$ and others. Perhaps the best term is 'appropriate technology' as it immediately raises the key issue - appropriate for whom? It is important to realise that alternative technology (AT) can be just a technical fix for the affluent in a consumer society, e.g. solar panels for the suburban householder and tidal power for the CEGB, but that its true realisation involves an alternative society. AT used to be the prerogative of commune dwellers, 'a bunch of middleclass misfits playing at being farmers', as one critic said, and the 'brown-bread-andsandals brigade'. Today many professional engineers are working in the AT field, but its large-scale adoption in our present industrial society is clearly politically inadmissible, and most people would not want it.

The third option is a compromise between the other two and involves a gradual transition towards a more sustainable society, meanwhile trying to ameliorate the effects of present high technology. It still has made very little headway politically in the UK, where politicians still seem hooked on the 1960 s mirage of unending economic growth, and see the current recession as U-shaped rather than L-shaped. An essentially middle-of-the-road report by Gerald Leach ${ }^{5}$ considered the energy inputs required for low to modest growth scenarios and concluded that waste reduction, recycling and conservation measures would enable modest growth to occur without the high energy inputs forecast by the Department of Energy and the CEGB. This removes the need for a major nuclear power programme, which in any case is now becoming increasingly suspect on purely economic grounds. On thermodynamic grounds alone it is wiser to save a kilowatt than to supply an extra one, and as energy consultant Amory Lovins has said, 'Instead of opening the bath taps even wider, it's better to put the plug in'.
In an important article which promoted the Engineering Responsibility Forum, John Endersby ${ }^{6}$ discusses the ills of contemporary industrial society and makes some proposals for their improvement. He quotes from an earlier book by Meredith

Thring": "Very many thoughful people in positions of responsibility, including British MPs, senior civil servants, teachers and business executives are well aware that society is heading for disaster, but are forced to stifle their subversive thoughts since their job is to uphold the status quo". Professor Thring has proposed a Hippocratic Oath for engineers in which they vow to use their professional skills only on projects which will better mankind. This immediately involves a value judgement by the engineer on what constitutes betterment and which sectors of mankind are to be bettered, since conflicting interests between the sectors involved is usual. Professor Thring has also considered the long-term implication of energy policy ${ }^{8}$: "One is inevitably forced to the conclusion that an essential condition for our grandchildren's life is that the rich countries bring their energy consumption per capita down to about the present world average figure over the next 30 years". This means a reduction from about 5 kW per head towards 500 W per head. As Thring says, "What is right for our grandchildren is always uneconomic and almost always impolitic".

In their pursuit of the chimera of economic growth, politicians of both left and right maintain a 'conspiracy of silence' about these issues. Their short-term efforts to relieve the symptoms have been described as an obsessive re-arrangement of the deck chairs of the Titanic.

British industry

When we look at British industry it is apparent that business as usual in the 1960s sense will not come again. By 1980 the industrial sector produced only 40% of the total goods and services. But the growing service sector cannot make good the loss of industrial export markets and the rise in imports, especially since we still import nearly half our food. Nor is a transition to a 'post-industrial society' likely to be the panacea for our ills.

Although the recession has produced massive unemployment among unskilled workers, the UK policy of capital-intensive energy growth has continued. The alternative would be a switch to a policy of energy and resource conservation which would be labour-intensive, and which could involve repair of goods which were made to last. An EEC study in 1977 on the potential for substituting manpower for energy showed that this change would provide more than enough jobs to compensate for those lost in the manufacturing industries.

Small firms are known to be a source of new jobs but the recession has meant that many small businesses have gone bankrupt. The now discredited dogma of the 1960s was that the merging of smaller firms into industrial giants was the way to produce goods efficiently. The age-old wisdom that about 500 people was the appropriate number for any corporate enterprise such as a school, an army battalion or a factory was ignored. In many large businesses it was found that what was
saved in economies of scale was more than lost socially by poor industrial relations. In contrast to the poor record of large firms is the fine innovative record of small tech-nology-based firms. These have had the double benefit of small size and a high proportion of engineers among their managers.

The rest of British industry does not share this happy state. The editorial in Electronics and Power (journal of the IEE) of July 1978 pointed out: "One of the more enduring myths about British industry is that British goods are best, and that it is only their high prices, caused by low productivity, which makes them hard to sell. In fact there is growing amount of evidence that the reverse is true, and that, compared with the products of the other industrial nations, British goods are poor value and sell only because the depressed state of the British economy makes them cheap". This attempt to compete by low price instead of by quality may reflect the low esteem which the British establishment has for engineering skills as opposed to financial acumen. The engineer is still seen as the man with grease under his fingernails. The Finniston Report ${ }^{9}$ commented: "Although Britain is a nation rich in creative talent, it has been weak in the commercial realisation of its own engi-neering-based innovations or in the adoption of innovations originating elsewhere". The Repert also criticized UK engineering education. The prestigious engineering schools of the Continent, such as the German Technische Hochschule, are based on the 'Technik' philosophy which involves the practical application of knowledge and the synthesis of technical, human and commercial factors. By contrast, in the UK engineering is treated as a branch of applied science. "This militates against an effective marriage between the theory and application and fails to give students a sufficiently wide outlook. In consequence, employers have often taken the attitude that few engineers are properly equipped to take on broader managerial responsibilities and have employed them instead as providers of technical services, thereby closing the vicious circle".

British politics

It must be admitted that the regeneration of industry and indeed the regeneration of national life is not helped by the British political establishment. The editorial in Electronics and Power of July 1979 stated: "The idea that increased energy consumption is a necessary condition of any increase in overall wellbeing, seems, in spite of all the evidence against it, to be an unchallengeable assumption as far as many of our policy makers are concerned. Indeed, there is a strong tendency to regard as politically suspect all those, no matter how respectable, who promote the opposite view". This can go to ridiculous extremes, as when the relatively respectable and certainly for from subversive conservation group Friends of the Earth are called Friends of the Kremlin. This is not to deny the fact that since the environmen-
tal movement cuts right across the political spectrum its fringes include some neoMarxists, who, like homeless fleas, leapt into environmentalism when the corpse of sociology grew cold.

Politicians like a single solution to their problems, such as the current enthusiasm for nuclear power to solve the energy problem and for the Trident missile to solve the defence problem. Engineers know that there is never a single solution to a problem, only an optimal solution that may change with time and circumstance. Since the political decision-making process is secret, there are no checks and balances operating to help arrive at an optimal solution and to monitor the process afterwards. The British tradition of governmental secrecy, which Lord Croham, until recently Britain's top civil servant, describes as "The most secretive administrative system in the Western World", must be a major reason for the persistent backing of losers in high technology. Two notorious examples are Concorge and the AGR, which will produce a net loss of $£ 2000$ million each, according to Professor David Henderson. Part of the blame must lie with the engineers concerned who have been able to ride their hobbyhorses at the taxpayers' expense and did not have to defend their case in open debate with their peers, as occurs in 'advocacy planning' in the USA.

A recent report from the National Consumer Council ${ }^{10}$ points out that official secrecy in Britain conceals far more than that small sector of government concerned with national security. The operation of central government and nationalized industry is hidden from those whom the official view seems to consider the most subversive group of all - the citizens of this country. Secrecy, combined with the lobbying of vested interests, tends to produce faulty decisions, especially in high-technology projects with long lead times. This is not because the politicians and their senior civil servants are venal or incompetent; they may well be talented and dedicated. Part of the problem is that the whole system is too big, and so remedies must perforce be political in nature. Among those which have been suggested are regional devolution to overcome the 'diseconomies' of scale, proportional representation to break the stranglehold of a two-party system where the two sides of the House of Commons echo the two conflicting sides of industry, and, thirdly, a freedom of information act on the lines of that in Sweden or the USA to promote genuine as opposed to purported open government. Industrial deadlock could be broken by some genuine form of worker participation. Both the CBI and the TUC are opposed to industrial democracy of the type which works so well in West Germany, and which ironically was forced on the Germans by the British occupying power.

These political remedies are not so far removed from the proposals of Endersby and Thring. In case these two engineers should be thought of as crying in a wilderness otherwise only inhabited by
middle class self-sufficiency freaks, the work of the Council for Science and Society should be mentioned. The members of the Council, founded in 1973, include engineers such as Sir Monty Finniston, Sir Bernard Lovell and, prior to his death in 1979, Professor Dennis Gabor, in company with other distinguished individuals from the universities, management and the trade unions. The Council has produced several reports, including one on the problem of monitoring large scale technologies ${ }^{11}$, such as nuclear power, aerospace and the chemical industry, which mention the need to protect 'whistle blowers'. At present in the UK these tend to be people already at the top of their professions or who have retired; engineers like Sir Martin Ryle and Sir Kevin Spencer, scientists like Professor Joseph Rotblat and Professor Patricia Lindop. More recently, the Council has produced a report which tackles the issues involved in questions like "Are we on the brink of the post-industrial society, a world of leisure and information technology? ${ }^{12}$ Such questions tend to mask the real issues which are inevitably political:

Who is going to control the new technology, for what purposes will it be used, and who will benefit?

The essentially middle-of-the-road conclusions of the Report reject three possible scenarios, these being only slight change from the present situation, or a shift of 90% of the work force into service industries, or total breakdown of society (as a result of high unemployment, and leading to a dictatorship of left or right). The Report recommends further study of four areas of changing concepts to work, these being the producer co-operatives of Mondragon in Northern Spain, trade union participation in planning in Scandinavia, the Lucas Aerospace shop stewards 'Alternative Corporate Plan', and full employment for life provided by certain large Japanese companies. The Japanese experience is often thought to be inappropriate to the UK due to racial and cultural differences. But Japanese subsidiaries in the West, including the UK, which use local line managers and labour do as well as the parent companies in Japan. Their industrial relations are far superior to most UK companies.
Significantly, the Report also concludes that until we fully reject the exploitation and inhumanity of the Industrial Revolution and root out the philosophical principles to which it gave birth, we will not recover our energy and confidence. Nivy

References

1. The Open University Technology Foundation Course T100. Study Guide to 'The Limits to Growth'. Milton Keynes, OU Press, 1971.
2. P. Horowitz and W. Hill. The Art of Electronics. Cambridge University Press, 1980. 3. R. M. Pirsig, Zen and the Art of Motorcycle Maintenance. London, Bodley Head, 1974.
3. D. Dickson, Alternative Technology and the Politics of Technical Change. London, Fontana, 1974.
4. G. Leach et al. Low Energy Strategy for the U.K. London, International Institute for Environment and Development, 1979. 6. J. C. Endersby, Who needs people? Electronics and Power 25, 397-400 June 1979. 7. M. W. Thring. Machines - masters or slaves of man? Stevenage, Peter Peregrinus, 1973. 8. M. W. Thring. A World Energy Policy. Electronics and Power 23, 701-704 Sep 1977. 9. Sir Monty Finniston, Engineering Our Future, H.M.S.O., 1980.
5. R. Delbridge and M. Smith (eds). Consuming Secrets: A Report for the National Consumer Council London, Burnett Books, 1982.
6. The Council for Science and Society. Superstar Technologies. Chichester, Barry Rose, 1976.
7. The Council for Science and Society. New Technology: Society, Employment and Skill. London, Council for Science and Society, 1981.

BBC ENGINEERING, 1922 ONWARD

> November 14th 1982 sees the 60th anniversary of the BBC's first broadcast Although there is only a psychological magic about round-number anniversaries, there is perhaps justification for a look back over the past decades and a look forward to those in store.

The essence of broadcasting is, of course, the programmes. But, as in any industry, production and distribution is founded on engineering; and the past 60 years have seen a very fruitful relationship between engineering and programme developments, each offering challenges and opportunities to the other.
The history of BBC engineering can fairly be called a success story. In case this sounds immodest, coming from a BBC pen, I would say that the ingredients of success were there from the beginning and that failure to exploit these would have been a surprising waste of opportunities. Let us examine what these initial ingredients were.
Broadcasting was one of the first major users of the brand new technology of electronics. It was a technology which clearly had great potential for development and it was therefore attractive to resourceful and inventive engineers.
Broadcasting in the UK was founded on

Mr Leggatt is Head of Engineering Information

by Pat Leggatt

public service ideals and with the philosophy of aiming for the highest achievable standards, both in programme and engineering terms. This philosophy meets with general public approval, so that engineers and others in broadcasting feel that their best efforts are appreciated and fulfil a worthwhile social need.

The product (that is the programmes) can be of such variety as to suit all tastes for much of the time and is therefore in continuing and increasing demand. Engineering developments contribute directly to more and better programmes, and hence receive general support.

The benefits of good engineering have always been recognized within the BBC and financial investment has been adequate to secure continuing expansion and improvement. The required scale of investment, in terms of cost per head of the audience, is not very large and it has been possible, therefore, to direct engineering developments towards high qual-
ity rather than the lowest cost. So BBC engineering started healthily, has grown healthily and seems set for healthy maturity.

Wireless before broadcasting

Wireless communication originated in the 1880's with the experiments of Hughes and Hertz, based on the earlier theoretical studies of Clerk Maxwell. Before the close of the nineteenth century, Marconi had established himself in England and was doing imaginative work to increase the reliability and range of the new medium; he succeeded in transmitting signals across the Atlantic in 1901.

For this early work, spark transmitters were the norm and the detector usually employed was the coherer, in which metal filings were induced to 'cohere' under the influence of incoming radiation and hence provide a low-resistance current path for a bell or relay. Being an on-off device, the coherer could be used only for digital signals, such as Morse code.

In the early 1900s attention was turned to wireless transmission of telephony. For
this a continuous carrier wave was required and the first systems employed modulated high-frequency alternators and electric arcs. Recognizable speech was transmitted by these means, but the quality must have fallen well short of today's standards.
Shortly before World War 1, the triode valve, developed from Lee de Forest's Audion, began to be used for generation of continuous carrier waves. The relatively pure waveform produced, and the comparative ease of modulating such a source with speech signals, opened the way to wireless speech transmissions of reasonable quality. Receivers during this period employed crystal detectors, or Marconi's magnetic detector, in which the changing magnetic state of an endless loop of soft-iron wire served to demodulate incoming signals. Wireless was, of course, very largely used as a means of communicating with ships at sea and the magnetic detector proved far more mechanically stable than the more sensitive crystal detectors, whose cat's whiskers were easily jolted out of adjustment by the rolling and pitching of a ship.

The military necessities of the 1914-18 war gave a considerable boost to wireless development. Engineers fully appreciated the virtues of the valve and the French ' R ' valve in particular was an outstanding development in terms of performance and stability, together with the Marconi ' Q ' valve. The widespread use of valves in transmitters and receivers, and the development of tuned-circuit arrangements of reasonably good sensitivity, made usable wireless equipment available on a mass production basis.

Start of broadcasting

After the war, a lot of military wireless equipment and components came on the general surplus market and was eagerly bought up by amateur enthusiasts keen to try the intriguing new technology for themselves. Many people built crystal or valve receivers, but of course there was not much of interest for them to receive. The regular time signals (in Morse) from the Eiffel Tower had been transmitred since 1909, and were a useful facility for checking that a receiver was actually working: but they were of limited entertainment value.

Realising that there was a gap to be filled, an enterprising Dutchman commenced in 1919 a regular schedule of Sunday evening transmissions of music and speech which became known as the 'Hague Concerts'. These were much welcomed by listeners in the UK, as well as in Europe, and indeed were financed for a time by British listeners, following an appeal by Wireless World, and by contributions from the Daily Mail. The entertainment potential of broadcasting was appreciated also by UK industry: 1920 saw the Dame Nellie Melba recital from the Marconi transmitter at Chelmsford, followed in 1922 by the Marconi stations 2MT at Writtle, near Chelmsford, and 2LO in London. Also in 1922, two other industrial companies set up broadcasting facilities - Metropolitan

Marconi's 2MT transmitter at Writtle in 1922.

Vickers in Manchester and the Western Electric Company in Birmingham.

Thus it came about by 1922 that a number of organizations had seen and acted on the potentialities of entertainment broadcasting, primarily as a necessary aid to establishing a market for receivers. Many of these were eager to jump on the band-wagon and the time had come for some co-ordination and regulation.

Formation of the BBC

To bring order out of threatening chaos, the Postmaster General, who had refused to license any more independent stations, told those manufacturers wishing to be involved to get together to form a single company for broadcasting. Agreement was
reached at a meeting at the Institution of Electrical Engineers at Savoy Hill, London and the British Broadcasting Company was formed. Six large manufacturers combined in this venture, Marconi's, Metrovick, Western Electric, GEC, BTH and the Radio Communication Company, with John Reith as the General Manager.

The new BBC took over existing studios and transmitters, hitherto operated by the individual manufacturers. Its first broadcast was from the 2 LO station in London on 14 November, 1922, with 5IT in Birmingham and 2ZY in Manchester on the following day.

The BBC remained a commercial company until 1 January 1927 when it was reconstituted with a Royal charter as the British Broadcasting Corporation.

Early engineering

Apart from operating the existing studios and transmitters, the first task of the Engineering Department was to spread coverage over the country. By 1924 there were nine main stations and eleven relay stations. Public interest and demand was very buoyant, and in 1925 there were nearly a million licence payers and no doubt many unlicensed listeners.
Although the main engineering efforts after the start of broadcasting were directed to such basic necessities as providing acceptable quality from the studios and distributing programmes as widely as possible throughout the country, there was time too for more innovative work. In 1925, for example, transmitters in London and Daventry were paired for an experimental transmission of stereo sound from an operatic performance, although it was to be forty years before these efforts bore final fruit in the form of regular stereo programme transmissions.
Expansion of radio. At the beginning, the various stations in different parts of the country transmitted their own individual programmes from their own studios. This was indeed local radio, one more thing in
broadcasting that is not as new as we may think today. It was not long before a 'simultaneous broadcast' system of lines was established, enabling all transmitters to radiate a common programme as a network when required. Soon after this, a high-power, long-wave station, 5 XX, was built at Daventry, giving coverage of much of the country and giving listeners a national alternative to the regional programmes from the existing stations.
Another important step forward was taken with the opening, in 1932, of the Empire Service, broadcasting to the world on short waves. One of the first broadcasts in this service was the Christmas message from King George V on 25th December 1932.

The higher-power main transmitters were obtained from commercial suppliers, but no manufacturer could offer lowpower equipment for the relay stations. Accordingly, these were designed in the newly-formed Development Section of the BBC Engineering Department. Later, they designed high-power, 50 kW transmitters, again because none were available from commercial sources.

Testing for the 1937 Coronation television transmissions from Apslay Gate.

The first broadcasting engineers had to be resourceful men. Not only were they continually breaking fresh ground on the technical front, but those operating the transmitters and studios were often called upon to fulfil announcer duties and even to act as 'uncles' in the children's programmes. What with this, and the fact that the first chief engineer Peter Eckersley had himself provided much of the entertainment on the original 2MT programmes, one wonders why it has since become necessary to have an army of producers, writers and performers to put the programmes across: perhaps they should have left it to the engineers!

The other important task for engineers in early days was to improve the quality of sound from the studios. Microphones needed much attention and a lot of cooperation between the BBC and industry was devoted to improvements over the original carbon granule types. One of the better new developments was the Magnetophone from the Marconi company. This gave a considerable improvement in quality, although requiring very skilled personal attention in that the voice coil was attached by pieces of cotton wool impregnated with vaseline. If the studios became too warm, the vaseline melted and more had to be applied: perhaps this was what gave rise to a skilled operator becoming known as 'dab hand'.

Studio acoustic plays a vital part in determining transmitted sound quality. Virtually nothing was known of these techniques when broadcasting began, and much early research effort was devoted to the subject. Many of the fundamental principles were established at this time, and BBC Research Department maintains a strong and continuing effort in this field at the present day.
For the first eight years of the BBC's existence, all programmes were broadcast
live. Although some programmes were recorded on disc by commercial recording companies for special purposes, programme production and scheduling suffered from the very severe handicap that no operational recording apparatus was available. Although the magnetic tape recording seems now to be the modern successor to disc, it was a magnetic system which was first used within the BBC. This was the Blattnerphone, using steel tape as a medium, which was introduced in 1930. It was five years later, in 1935, that disc recording was first employed, supplemented in 1936 by the Philips-Miller mechanical (not photographic) sound-onfilm system.

From the early 1930's, then, all the fundamental ingredients for broadcasting were there: studio and outside broadcast origination equipment of acceptable quality; recording systems; and increasingly country-wide and world-wide transmitter networks. From then on, the story of radio up to the present day is one of improvement, expansion and sophistication. One should mention highlights such as the enormous improvements in audio quality in all parts of the chain, from studio acoustics to loudspeakers; the introduction of v.h.f. and stereo; the expansion of programme networks at home and overseas and the start of local radio; the use of digital programme links between studio and transmitter; and the start of digital sound recording. All these things represent 'very much more' and 'very much better', but all rest on the foundations completed by 1930 .

Television

The first BBC transmissions of television took place in 1926, when experimental broadcasts of pictures from Baird's 30 -line apparatus were carried by the 2LO transmitter. There were further tests in
succeeding years and in 1932 the BBC set up a 30 -line television studio in the newly built Broadcasting House.

A rather different form of 'television' was experimentally transmitted in 1928. This was the Fultograph slow-scan, stillpicture system, wherein radio signals from a medium wave transmitter actuated a facsimile paper printer. Recognizable pictures could be reproduced at the rate of about one every five minutes, but the system created little public enthusiasm.

During the 1930 's, Baird up-graded his system to 90, 120 and 180 lines. In 1938 the BBC set up a purpose-built television studio and transmitter at Alexandra Palace, including Baird equipment, now operating on 240 lines. Also installed at Alexandra Palace was 405 -line equipment from the Marconi-EMI company. This was an entirely electronic system, as opposed to Baird's electro-mechanical devices, and side-by-side trials revealed it to be much superior. Accordingly, after a few weeks of alternate transmissions by the Baird and EMI systems, the former was abandoned and transmissions from January 1937 continued on the EMI system alone.

The engineers and the programme makers quickly learnt the potentialities and limitations of the equipment; and quickly built up a body of increasingly sophisticated production techniques. In May 1937 quite comprehensive outside broadcast coverage was given to the Coronation of King George VI, a very ambitious verture at that early stage in television history.
Expansion of television. During the 193945 war, the frequency requirements of radar had to override those of television, and the service was closed down for the duration. It opened again in June 1946, in time to cover the Victory Parade on 8 June: the BBC television service was the first in

Europe to re-open after the war. In 1946 the television service had only the two studios at Alexandra Palace and two o.b. units. The one transmitter covered only the London and Home Counties area and there were little more than 20,000 viewers.

As had earlier been the case with radio, television suffered very much from the lack of any recording systems. Much research and development effort was applied to the problem and a workable system of recording television pictures on film was in use tentatively by the end of 1947, with an improved version being in regular service in 1949.

The scene was then set for the big expansion of television which the public wanted. Television transmitter coverage was extended to the major regional population centres and increasingly into more remote areas of the country. New studios were established, first at Lime Grove in West London, later in the purpose-built Television Centre and in numerous regional cities. Outside broadcast equipment and operations multiplied, taking events from anywhere in the country and even-
tually from overseas. Great improvements were made in the quality and sophistication of programme origination equipment, including of course the introduction of magnetic video tape recording which freed programme makers from so many shackles of location and time scheduling. Ever-extending links, including satellites, gave comprehensive national and international programme distribution and exchange, with standards convertors of continuallyimproving quality.

Particularly notable were the start of the competitive commercial television service in 1955; and the second BBC programme in 1964, coincident with the start of $625-$ line television in the u.h.f. band. The introduction of colour on BBC2 in 1967, the first colour service in Europe, was perhaps the biggest single engineering change since television began.

Teletext, offering an entirely new information service riding on the back of the television signal, started in 1974 and heralded the first real public availability of the information technology which is so much in the news today.

Broadcast engineering today

So where are we now after 60 years of broadcast engineering? On the programme production front I would say that we have reached the point where engineering does not seriously limit the range and nature of programme making. In radio and television studios, and in outside broadcasts, producers have nearly all the technical facilities they need, with very satisfactory quality and reliability, to give their creative ideas full scope.

Programme making is now constrained more by limitation of resources. There may not be enough studios, o.b. units, tape recorders and the like to satisfy all programme demands, but this of course comes down to economics. In the end it is the consumer who has to pay for the equipment, plus of course the artists' fees and the non-engineering costs, and somewhere there are economic, social and political limits to the overall cost of broadcasting.

While programme-origination facilities - may have reached a very acceptable state of development, the same cannot be said of programme distribution. Here there is still much engineering work to be done, even before whe start to consider the new satellite
and cable systems which the near future holds in store.

The u.h.f. television networks today cover 99\% of the population of the United Kingdom and v.h.f. radio networks cover 97% (or 95% in stereo). M.f./l.f. radio networks provide lower percentage coverages, dropping appreciably lower still after dark. The television and v.h.f. radio percentage coverage in the upper nineties may seem acceptable at first sight, bui it must be remembered that every 1% of the population not covered represents half a million people.
It is a source of frustration and distress to transmitter network planning that the half million people unserved with television, for example, refuse to move together into one convenient mass. They are, of course, distributed
throughout the country, often in very small communities, and it has so far taken about 600 television transmitters to achieve 99% coverage. Further relay stations are being provided for communities down to 500 people, and in the mid-1980's groups as small as 200 will be catered for. This television transmitter development programme is handled by the BBC and the IBA as a joint project and represents a major continuing effort over many years. Only eleven groups of four channels are available in the u.h.f. broadcasting bands and very elaborate planning is needed to enable the hundreds of stations to be operated without mutual interference. BBC Research Department have built up a computer-based frequency-planning system, taking account of geographical and topographical features, which enables maximum use to be made of these scarce frequency resources.

In sound radio, the m.f./l.f. bands are increasingly overcrowded and subject to foreign interference. The BBC is effecting marginal improvements here and there, but in general it is not possible to do anything very significant and it is to v.h.f. radio that major development efforts are directed. Current work includes the addition of a vertically-polarized signal to the existing horizontally-polarized transmissions, offering considerable benefit to users of portable and car radios with vertical rod aerials. Another important project is the continuing spread of stereo transmission throughout the country, progress on this being determined primarily by availability of digital audio p.c.m. links to the appropriate transmitters.
But the prime requirement for development of v.h.f. radio is availability of more frequency channels in the v.h.f. Band II. Without these it is not possible to provide the additional networks to avoid the current necessity for sharing of a v.h.f. channel by Radio 1 and Radio 2, by Radio 4 and educational programmes, and to provide Radio 4 v.h.f. coverage in the national regions of Scotland, Wales and Northern Ireland. Furthermore, we need additional frequencies to accommodate about 100 relay transmitters, which are needed to fill the gaps in existing v.h.f. coverage.

The v.h.f. Band II is, by international agreement, to be extended up to 108 MHz for broadcasting use, but the Home Office timetable for re-locating the emergency and mobile services using the upper part of the band at present is disappointingly slow. It appears that real progress on v.h.f. coverage is going to have to wait until 1990 or thereabouts.
So our 60 years have brought us to a very satisfactory state of studio and o.b. origination quality and facilities, although improvements and refinements will, of course, continue; but availability of television and radio services to all the public is by no means complete and much work remains to be done to improve this.

The first priority of BBC engineering in 1922 was to extend coverage and, while enormous progress has been made, it remains a priority today.

The future

It is fashionable nowadays to talk of 'the technological revolution'. The term has become a cliché which all decent men now avoid, but it cannot be denied that it is in some senses a true one.
Certainly, there are technological developments now in progress which will profoundly change the broadcasting scene. There will not be dramatic technological revolution - there never has been one but in the next few years we shall all become increasingly aware of major changes and new opportunities.

Wider choice

The first and the most publicly obvious area of development will be the provision of additional programme channels. In television, the start of the 4th channel (ITV's second programme) is upon us and this will complete the exploitation of terrestrial broadcasting in the u.h.f. Bands IV and V. The obsolete 405 -line television services in the v.h.f. Bands I and III are in process of being closed down and it is possible, although not yet decided ${ }^{\star}$, for Band III to be re-engineered to provide a fifth 625-line television network, perhaps on a regional basis. No other v.h.f. or u.h.f. spectrum is allocated for television broadcasting, so that four television programme networks with the possibility of a fifth will be the long-term limit of terrestrial transmission. Provision of these additional channels represents 'more of the same' rather than any technological innovation.

On a different level (literally!) is the introduction of direct broadcasting by satellite (d.b.s.). Satellite reception on a domestic basis has indeed been made feasible by recent technological advances, although these are refinements of techniques already used in the communications field rather than a current new development. With most other European countries, the UK has been allocated five d.b.s. channels in the 12 GHz band and the first two of
*But see interim report of Merriman Inquiry, News

Prototype dish for satellite television broadcasts.
these will be made available for two new BBC programme services from 1986. The remaining three UK d.b.s. channels will no doubt be allotted in future years. The year 1986 will therefore see six broadcasting television programme channels in the UK, with the possibility of the total rising to ten in future years.

The number of television programmes available could increase even further as the proposed wide-band cable systems come into operation. In theory at least, a wideband cable system could carry thirty or forty television channels and to this can be added the choice of programmes available in the homes of people equipped with video-cassette or disc players. As one final tit-bit, it will be possible for some satellite receiver owners who are willing to spend a bit more money to receive programmes from foreign satellites in addition to those of the UK.

Quality improvements

Improvement of the technical quality of vision and sound has been a continuing

BBC satellite up-link terminal coupled to standard radio-link van.

process since broadcasting began. But there arenow more opportunities for particular advances stemming from the "technical (r)evolution".
Satellite broadcasting, for example, offers such advancement opportunities. The effective video bandwidth which can be modulated onto a 27 MHz satellite channe is, at about 10 MHz , appreciably wider than the 5.5 MHz offered by existing terrestrial transmissions; and this wider bandwidth can readily be exploited to remove some of the defects of the present PAL signals. Conventional PAL employs ingenious interleaving of the brightness (luminance) and the colour (chrominance) components of the signal, but exhibits some degree of mutual interference between luminance and chrominance, resulting in the flashes of false colour on finely detailed patterns (cross chrominance) and moving dot patterns on sharp edges (cross luminance). Both these cross effects are minimized by restricting the luminance bandwidth of the PAL signals in the receiver, but this results in limited picture definition and leaves some of the cross effects still apparent.
The wider satellite bandwidth will enable us to transmit luminance and chrominance signals separately, so that cross effects are eliminated without the need to restrict luminance bandwidth. The Research Department has evolved a system known as Extended PAL to achieve this, offering satellite pictures of full 5.5 MHz resolution with no cross colour or cross luminance distortions. With Extended PAL transmissions, existing receivers could still be used and would enjoy freedom from cross colour and cross luminance; while a new receiver, designed to exploit Extended PAL to the full and embodying a high-resolution cathode-ray tube display, would give the additional benefit of appreciably sharper pictures.

The IBA has also devised a system to exploit video satellite bandwidths. Known as Multiplexed Analogue Components
(MAC), the IBA system also offers freedom from cross colour and cross luminance, although in the form proposed there would be no significant improvement in picture definition.

Both Extended PAL and MAC provide separate transmission and reception of luminance and chrominance components. Given this, modern digital storage and sig-nal-processing techniques offer the possibility of standards conversion within the receiver at a cost which would be acceptable in a domestic product. The implication of this is that picture signals, although still transmitted in 625 line 50 field/s form, could be converted in the receiver and displayed on a higher standard with, say, 1250 lines or 100 field/s or both. Although there would be no mere information transmitted, a display with much less visible line structure and free from flicker could be subjectively far more pleasing. Considerable research effort has gone into these possibilities, with the hope that a large, bright, high resolution display device will appear in due course to do justice to such advances.

The longer-term goal is, of course, true high-definition television (h.d.t.v.) whose picture would be actually generated and transmitted on high line and field rates and would thus genuinely carry more information. The difficulty is that real h.d.t.v. would require a bandwidth of some 30 MHz and is thus beyond the capacity of currently-planned satellite channels in the 12 GHz band, unless it could be accepted that two or three 12 GHz channels could be employed for a single h.d.t.v. signal: but this seems an uneconomically lavish use of the available spectrum.

Progress towards broadcast h.d.t.v. must be either in considerable advances in bandwidth-comparison techniques, or in the use of a higher-frequency (say 40 GHz) satellite broadcasting band where more spectrum space could be available. But such high frequencies are very susceptible to absorption by rain or snow storms, so the viability of this approach must be in doubt. The ingenuity of BBC engineers, and others, will certainly be focused on these problems in the years to come. Not only are there intriguing possibilities for improvements in picture quality, but sound signals also can be expected to show dramatic advances. A satellite broadcasting channel will accommodate, in addition to wider-bandwidth picture signals, a number of high-quality digital sound channels. BBC proposals, for which it is hoped soon to receive international agreement, envisage six such sound signals with each of the two satellite channels, of which two would form a pair for stereo sound accompanying the television picture, with the remainder affording a vehicle for highquality stereo radio programmes.

The advent of the BBC satellite broadcasting channels in 1986, therefore, will see the first direct transmission of digital sound and the first opportunity for broadcast stereo television sound in the UK.

The BBC, some years ago, conducted experiments in the terrestrial transmission
of digital sound signals. These were not very successful due to digit corruption by multipath (reflected signal) effects and it is difficult to see how this problem could be overcome. Satellite signals are not, of course, subject to multipath distorticn.
BBC investigations into the possiblities for stereophonic sound on terrestriallytransmitted television are accordingly based at present on analogue methods Onair experiments with a dual sub-carrier analogue system are currently in hand, the critical factor to be assessed being the absence of interference to existing, moncphonic, television receivers. The addition of stereo sound to terrestrial television will surely come, but is likely to be some years in development. Even when a satisfactory transmission system is agreed, a long and expensive programme of work will be needed to provide a stereo sound distribution system from the studio centres to the country-wide transmitter network.

Other forms of distribution

Distribution by wideband cable (optical fibre or co-axial) and by video dise could be free from the bandwidth restrictions which limit the capabilities of terrestrial and, to a lesser extent, satellite broadcasting. The extent and the time scale of implementation of these new media cannot at present be forecast with any certainty, but the potential is there for exploitation of

Extended Pal. Top picture shows part of Test-Card F as seen in the studio. Second frame is picture as normally seen with existing equipment-distortions in the frequency bars are evident. Third picture is picture transmitted by Extended Pal but received on conventional equipment. Final frame shows result of E.Pal transmissions and E.Pal decoder.
many of the ideas which are being generated by engineers with broadcast applications in mind.
Development of cable systems, in particular, leads some people to forecast the eventual demise of broadcasting. But from an engineering standpoint, cable is simply another means of programme distribution and there is no fundamental reason why broadcasting (and the BBC in particular) should depend for its existence on distribution by radiated signals. BBC engineering will adapt in the future, as in the past, to whatever technological advances are appropriate to the time and will no doubt be ready to exploit the potentialities of cable or any other distribution methods. This is not to say that the BBC is now considering setting up or operating a cable system on its own account, any more than it plans to build and launch its own satellite, but it can be expected to continue to play a significant role in the technological development of distribution systems of the future.

Programme origination

Extension and refinement of digital techniques will surely be the dominant theme in the development of studio origination equipment. BBC engineering research and development has been in the forefront of many advances in this area and will certainly continue to be so, both nationally in collaboration with British Industry and in the international sphere, where co-operation and standardization are so important.

The main advantages of digital signals and equipment are reliability and resistance to distortion. These virtues are of great importance to a large broadcasting organization, where breakdowns or signal impairment are expensive hindrances to the tightly-knit flow of programme production: but, like many virtues, they are perhaps a little unglamorous. More obviously exciting are the opportunities offered, not so much by digitization as such, but rather by the ease and economy with which digital signals can be stored and manipulated. Once a picture signal can be held in store and made available for manipulation, all sorts of possibilities present themselves in the way of special effects, graphics, standards conversion, noise reduction, removal of blemishes and programme editing. Digital storage is also fundamental to the development of information systems such as teletext and the radio-dara system for identification of radio programme signals.

In the early 1920 s, BBC engineering seized on the new technology of electronics and carried it forward in the broadcasting field with enthusiasm and innovation. In the early 1980s, we are once again in the fairly early stages of what is virtually a new technology, that of microelectronics and digital processing. Once again, a broad vista of new opportunities opens up before us and the next 60 years of BBC engineering promises to be as exciting as the first.

CNO

MEMORY SYSTEMS

An introduction to the common types of memory cell and array, with their characteristics, and the application of memory to microprocessors

In a computer both instructions and data are stored in various kinds of memory, whose design depends on the type of storage needed, whether it is permanent, semi-permanent or temporary, and on whether the stored information can be examined at random or in some kind of sequence. This two-part article outlines the memories most often used with microprocessors.
To illustrate the structure of a simple memory, Fig. 1(b) shows eight storage locations, each capable of storing one bit, i.e. an 8 bit memory or an 8×1 bit memory. If each cell in the memory (Fig. $1(\mathrm{a})$) is a simple Nor gate memory, it is possible to arrange control and data lines so that the state of the data line is latched on to the memory when the $\overline{\mathbf{W}}$ line is low as shown in the diagram.

When eight cells are combined in a single memory circuit, some means of selecting the cell required for writing or reading must be available. A 3 -line-to-8line decoder is the simplest way to provide the necessary address lines internally from the three external address lines, each output line from the decoder selecting a single cell of the memory. The $\overline{\mathbf{W}}$ (write enable) and $\overline{\mathrm{S}}$ (device select) lines determine whether the data is being written or read and whether the circuit is selected or not.
Although there are no commercial memories with as few cells, the same principles apply to larger configurations. When the number of words stored is large, more than one decoder will be used and a row/column matrix will be used to select a particular word in the memory. As an example, the 4096×1 bit memory has 12 address lines. These are split into two 6 -line-to-64-line decoders. The outputs from the two decoders will then be combined so that any two together will allow one word (in this case one cell) to be accessed.

Timing diagrams

Although it may appear to be the wrong order to look at timing diagrams for the read cycle before those of the write cycle, it is more convenient to do so because the diagram is simpler than that for the write operation. It must, therefore, be assumed that the memory has been loaded with data.
Read cycle. To access one item of data the address of the location in memory must be present as a binary pattern on the address lines, and must remain stable during the time the data is being read, as in Fig. 2. If the memory device has not previously been

The author is at the Paisley College of Technology, working in the Microelectronics Educational Development Centre.

by L. Macari

selected by pulling $\overline{\mathbf{S}}$ low, this must now be done. If the data lines have tristate outputs they will remain at high impedance for a time t_{s} - the select time, after which valid data will appear on the data lines. The time between valid address and valid data is known as the access time t_{a} for the memory and is specified as a maximum value.

If the address is now changed, the data lines will remain steady for a time t_{HA} the 'data-hold' time after an address change. Taking $\overline{\mathrm{S}}$ high causes the new and possibly changing data to remain on the data lines for a time t_{d} - the disable time, after which the lines will return to a high-impedance state.
Write cycle. It is usual for the 'write enable' control on a memory to be an active-
low signal, so when data is to be placed in the memory at a given address the address must be given time to settle and locate the required word in the memory. The time allowed for in Fig. 3 is known as tsU(A) the address set-up time, which can be zero for some devices. After $\mathrm{t}_{\mathrm{SU}(\mathrm{A})}$, the writeenable line can be made active and must remain active for at least t_{w} - the smallest write-pulse width. If the memory device is not selected, SEL must go low for at least $\mathrm{t}_{\mathrm{SU}(\mathrm{S})}$ before the write-enable goes off again. The time $t_{S U(S)}$ is the set-up time for select.

If the correct data is to be placed in the chosen memory location then input data must be valid for a time $t_{S U(D)}$ before WRITE goes high again. The data must also be held valid for a time ${ }^{t_{H}(D)}$ - the data-hold time, after the WRITE signal is made inactive. (This time can also be zero.) The address must also remain valid for a time

Fig. 1. A simple memory. At (a), a single cell of the memory, using Nor gates: when Write is low, data is latched in. Eight such cells are used in the 8 bit memory at (b), which is provided with a decoder, deriving eight cell addresses from three input lines. Data is always at the output. In a real memory, input and output data lines are multiplexed to give a single data line.

Fig. 2. Timing of a 'read' cycle of operations.
$t_{H(A)}$ - the address-hold time, after the WRITE is made inactive.
Some memory devices have more than one select line. In such cases, all the select lines must be in their active states for the memory read or write functions to be performed.
The terminology used here for the various time delays of the read and write cycles is not standardized, each manufacturer using different terms. What is important is that the diagrams and the significance of the various propagation times be taken account of when a memory system is to be matched to a given processor running at a particular clock frequency.

To choose a speed to suit the microprocessor and the clock rate at which it runs, it is necessary to examine the manufacturer's data to see how many clock cycles are involved in read or write operations and to choose the speed of the memory to be faster than this time.

As an example, the 8085 A-2 micropro-

Microcomputer memories fall into a number of diffarent categorias, semiconductor and magnetic being the most common types: large computers use the same technologies for data storage. These are some of the terms used to describe memories and their operation.

Coll

A device within a memory which can store a single bit of information, e.g. a filp-flop. A memery consists of an array of cells.
Storage capachy
The total number of cells contained in the memory device, i.e. the total capacity in terms of bits.

Word

One or more cells within the memory which contain one item of data. The memary consists of a number of thase units of data (usually a power of 2). Some data sheets quote the number of words and the size of the words instead of the capacity. Some memories have as few as one bit per word. Four-bit and gight-bit words are the other most common sizes of memory words.

syte

The term used for an aight-bit word. Examples are: 4096×1 bit memory, which can store 4096 words of 1 bit length, and which has, therefore, capacity of 4096 bits: 1024×8 bit memory, storing 1024 words of 8 bit length, i.e. 1024 bytes, with a capacity of 8192; 32 $\times 8$ bit memory, with 32 bytes of storage, i.e. 256 bits.

Addras:

The unique number which identifies a particular word in memory is known as the address of that word. If the memory can store 2^{N} words of data, there are N address lines to the device, so that each of the 2^{N} possible binary patterns applied to the address lines will tocate a data word.
A 4096×1 bit memory has 12 address lines.

Glossary

A 1024×4 bit memory has 10 address lines. A 32×8 bit memory has 5 address lines.

If a memery is to be of any value, it must be possible to place data in it and at some other time examine the data. Some memories are designed so that these operations cen be performed with equal ease, while others are designed for more permanent storage and the placing of data is only performed once, or at most a few times, in the memory's life.

Write operation

This is the ferm used to describe the placing of data in a memory and is also known as a store operation.

Read operntion

This is the means whereby the information stored. in the memory is obtained at the data terminals of the device, In memories where read and write operations are performed with equal oase, it is usual to have a control line to determine what operation is being performed. This signal line is usually ac-tive-low for a write operation end is labellad \bar{W} or sometimes R/W.

fiend and write cyclo times

The eycle time is the minimum time which can be taken between successive operstions of the same kind.

Rendom access

A memory for which the location of the data does not affect the time taken to write or read the data is known as a random-access memory.

Sequontial access

If the data is stored in some sequential device, such as a shift register or magnetic tape, then access time to a particular data position depends on the position.

Feadwrite momory

Memory for which read and write operations are performed with equal ease. Memory known as ram is really read/write memory.

Read-only memory

The data in this type of memory is stored using techniques which are usually different from those used to read the data back from the memory.

- Mask programming is done at the mariufacturing stage and the data storage is permanent.
- Fusible-link roms are constructed of arrays of transistors with links. which can be 'blown' by the application of suitable voltages. The blown and non-blown links constitute the is and Os in the memory.
- Ultra-violet-erasable roms. This type of memory has a transparent window over the semiconductor in the i.c. packege. Application of suitable voltage levels program the is and 0 os which are then retained even when the supply is removed. When it is required to replace the data in the rom it is irradiated with u.v. light, which erases the data stored and makes it possible to write new data to the memory.
When data is erased frequently it becomes progressively more difficult to store data in the memory.
- In electrically-erasable roms, the write operation is still a different operation, but it can be performed without removing the i.c. from the system and requires only the application of the correct voltage levels.

Core-store memory

Memory which makes use of a ferrite ring for each date sell, the direction of magnetization of the cell determining the binery state of the data stored.

Non-volatile memory

Memory which retains its data when the supply is removed (or fails) is known as non-volatile memory. Rom and core. and all magnetic memory is non-volatile. Ram can be made non-volatile by placing back-up batteries on the memary boards to provide for the event of supply failure.

Fig. 3. 'Write' cycle timing. Terminology varies with manufacturers.

Fig. 4. Using both ram and rom with a micro. $4 K \times 1$ bit ram blocks at (a) are made into a $4 K \times 8$ bit memory and $2 K \times 8$ bit roms are similarly arranged as in (b). All these $4 K$ blocks are then connected as in (c).
cessor can use a 5 MHz internal clock. The processor expects valid data two clock cycles after the address has been set up. This is a time of 400 ns , so the access time of the memory devices used with this processor must be shorter than this, 350 ns being a satisfactory figure.

Connecting to a processor

Figure 4 (a) shows, as an example, a system requiring a monitor program in rom, which is 4096 words in length and written into two $2 \mathrm{~K} \times 8$ bit roms. If the rest of the 64 K memory space is to be fully utilized with read/write memory, using 4 K $\times 1$ bit memories, how can such a system be arranged, assuming that the rom is to use the bottom 4 K of memory space?
The ram chips have 12 address lines and a single data line, while the roms have 11 address lines and eight data lines. $4 \mathrm{~K} \times 8$ blocks of ram can be made up by connecting the address lines of eight $4 \mathrm{~K} \times 1$ bit rams in parallel and using one chip for each of the eight data positions. The $2 \mathrm{~K} \times$ 8 bit roms can be made into a $4 \mathrm{~K} \times 8$ bit block, requiring 12 address lines, by taking the address line All to the two S lines on the rom devices using the gating circuit shown. This can now be drawn as a $4 \mathrm{~K} \times 8$ block of rom, with an active-low select line.
How are all the $4 \mathrm{~K} \times 8$ blocks to be connected to the 16 address lines to use up the full amount of the memory space? First of all, parallel all the address lines on the 4 K memory blocks in Fig. 4 (b) and connect these to the least significant 12 bits of the address bus on the processor. The four remaining address bits can now be taken to a 4-line-to-16-line decoder whose outputs are active low. Each of these outputs can be used to select a 4 K block of memory, D0 being used for the rom and D1 - D15 for the ram devices. The relevant control lines for reading and writing would then be connected to the sections of memory as required.

MNO
To be continued

Meteosat high-resolution images

Table 2 on page 62 of Mike Christieson's August article, describing add-on circuits for his weather-satellite receiver, consists of three eight-bit words. The circuit of Fig. 5 on page 83 of the October, issue should sense these three words but is actually shown wired to sense three different words. Readers who find it difficult to work out what the correct wiring should be may obtain a photocopy of the correct diagram by sending an s.a.e. to Wireless World Meteoset, Room L303, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. The original weather-satellite receiver, designed for Tiros N high-resalution images, was described in the November/December 1981 and January 1982 issues.

	110010	LD DE, 1000	;Start of ram
	210060	LD HL, 6000	;Start of eprom
	1 A	LD A, (DE)	;Get byte
NEXT	77	LD(HL), A	;Program it
	BE	CP(HL)	; Verify
	2804	JRZ,SUCCESS	
	CD 8003	CALL 0380	;New-line \& print HL
	C7	RST 0	;Return to monitor
SUCCESS	13	INC DE	;Next byte
	23	INC HL	;Next eprom address
	7 C	LD A,H	
	FE 68	CP 68	;Finished?
	20 F0	JRNZ, NEXT	;No - continue
	C7	RST 0	;Return to monitor

Logic table for 2516

$C E$	OE	$V_{p p}$	Output	Mode
L	L	+5	$D_{\text {out }}$	read
H	H or L	+5	high Z	standby
pulsed L-to-H	H	+25	$D_{\text {in }}$	program
L	L	+25	$D_{\text {out }}$	program verify
L	H	+25	high Z	program inhibit

Z80-based 2516 programmer

This simple programmer has few components, is easy to operate, and can be used to verify 2516 eproms. Originally designed for the Wireless World scientific computer, it can easily be modified to suit other Z80based systems.
MREQ4 is an 8 K page-select signal for address area $6000-7 \mathrm{FFF}$ though any other unused select signal covering at least 2 K of memory can be used. When this line goes low, read line $\overline{R D}$ remains high and the monostable is triggered, resulting in a positive 50 ms pulse on the chip-enable input and forcing latching of the processor data and address lines through a low wait signal.

Verification of the byte is possible since decoding and propagation delays result in the read signal going low before the memory-request signal so the monostable is inhibited. Now, the eprom output enable is active and data is gated onto the bus.
As the write signal arrives too late to produce the processor wait signal, wait is not carried out until the next cycle, i.e. an op-code fetch. Also wait inhibits the processor's dynamic ram refresh signals. To avoid spurious programming, the 25 V supply to pin 21 should be applied after, and removed before, the 5 V supply to pin 24 of the eprom.

Specifically for the scientific computer, bus request and wait signals should be separated, with the last-mentioned connected to +5 V through a $2.2 \mathrm{k} \Omega$ resistor and linked to a spare pin on the expansion socket. Bus request is tied to +5 V using the $47 \mathrm{k} \Omega$ resistor already on the board.

Single-byte programming is carried out using the ALT command. The routine for all 2048 locations shown takes about 100 seconds and uses the Mk III monitor.
Vincent M. Grayson
Haywards Heath

Gray-to-binary converter

Whilst the Gray to binary converter proposed by J. J. Mouton (Circuit Ideas, October 1981 issue) undoubtedly produces the correct conversion, it is inefficient in terms of component count. This is a direct result of the generation of a wealth of redundant terms, a problem which increases with the number of bits being used in the system. A ten-bit converter, for example, would require 45 exclusive-Or gates.
An alternative circuit is given in Fig. 1, which merely requires one gate fewer than the number of bits in the code. This drastic reduction in parts is possible because,
as with And and Or gates, a combinational network using several exclusive-Or gates in cascade to increase the number of inputs also allows these inputs to be interchangeable. Considering part of J. J. Mouton's circuit, Fig. 2, a term D has been generated from input A being exclusive Ored with input B, which has further been exclusive Ored with input C. The Boolean expression for this is
$A_{\text {out }}=\bar{A} \cdot B \cdot \bar{C}+A \cdot \bar{B} \cdot \bar{C}+\bar{A} \cdot \bar{B} \cdot C+A \cdot B \cdot C$.
Exclusive-Or gate 1 may be eliminated by exclusive-Oring the already derived output B with the input A. The only difference is that to produce the A output, input terms A and C have been exchanged yielding the term

$$
A_{\text {out }}=\bar{A} \cdot B \cdot \bar{C}+\bar{A} \cdot \bar{B} \cdot C+A \cdot \bar{B} \cdot \bar{C}+A \cdot B \cdot C
$$

which is equivalent to the previous expression. This principle can be propagated through each successive bit, eliminating the redundant gates and producing the circuit of Fig. 1 which may be expanded to any number of terms.
P. Gladdish

Holbrook

Derbyshire
Here is a more elegant solution to the bi-nary-Gray interconversion logic; if the original idea had interest, this smaller implementation presumably has greater interest. I cannot claim any originality in the design (e.g. "Switching theory in space technology", pp. 75-76, 1963). The im-

proved circuit, Fig. 3, is in the same form as the original, although this is not intended as parody.

A number in binary with n bits has a corresponding Gray code with n bits. The number zero is represented by all bits zero in both codes. When any number is incremented the binary code changes one or

more bits in a connected sequence, including the l.s.b. The corresponding Gray code changes only one bit, the one corresponding to the highest changed bit in the binary sequence. Code interconversion may be achieved as shown.

P. Kirkby

Ipswich

Automatic intensity control for leds

To save power and reduce glare at low ambient-light levels this simple circuit keeps luminance roughly proportional to incident illumination over more than two decades. Operation of the circuit is unnoticeable even with rapid changes of illumina-
tion and the circuit consumes no current when the display is blanked; thermal effects are imperceptible.

The original circuit running from a 10 V supply produced sufficient brightness to be easily readable in bright daylight, except with direct sunlight on the display, using a high-brightness orange two-digit display. Resistor R_{1} was chosen to suit the
l.d.r., used behind a mask with a $1 \mathrm{~mm}^{2}$ aperture. Lowering $\mathbf{R}_{\mathbf{3}}$ reduces the minimum led current. Due to the necessity to monitor the current through at least one led, segment c must be used in conjunction with any other except f.
M. G. Rainer

St Ives
Cambridgeshire

Clock-triggered triangular generator

In the circuit of G. Tombras (June 1982, page 60) output signals of the two CD4013 act as control signals to the analogue switches. From his circuit diagram $+5 v$ and OV represent high and low signalstates respectively. But c.m.o.s. analogue switches permit peak input-signal voltage swings within the full supply voltage range; peak input-signal voltage swings outside this range cannot be transmitted.

The circuit is easily adapted by logic
level shifters which can be simply inserted between the 0 output of the D-flip flops (CD4013) and the control inputs of the analogue switches (CD4016) to act as interfaces between the different logic levels, $\mathrm{H} \equiv+5 \mathrm{~V}$ and $\mathrm{L} \equiv 0 \mathrm{~V}$ of the output signals of the CD4013 on one hand and that of the valid control input signals ($\mathrm{H} \equiv$ 0 V and $\mathrm{L} \equiv-5 \mathrm{~V}$) of the CD4016 on the other.
C. C. Odukwe

Gelsenkirchen-Buer
Germany

Speed control for small motors

Designed initially for use in a floppy-tape transport mechanism, this circuit senses back-e.m.f. for speed control. Unlike similar circuits, this one also detects current and can differentiate between motor voltage due to back-e.m.f. and that due to
resistive loading. In addition, a t.t.1.-compatible on/off input with active braking and independent speed and damping controls are provided. The on/off transistor is a 2 N1893 and the braking diode D is a 1N4148. The value of R depends on the supply voltage.
P. H. Pazov

London

In our next issue

Morse decoding by microcomputer, by J. P. Sargent, uses a 567 tone decoding i.c. and seven-bit clock to time incoming signals. Morse code is interfaced to a 2×81 via a p.i.o. chip. Machine code routines use this data to provide up to 9 lines of text

A leading Japanese research engineer, Y. Hirata, discussed the distortions in analogue and digital recordings, gives measurements of non-linearities in four p.c.m. processors, and compares them with results from three anaiogue tape recorders.

Logic maps, by N. Darwood, gives the history of methods for showing logical truths - from 13th century Lull to present-day Karnaugh maps.

To introduce computer networks, Philip Barker describes some of the current approaches used to link together two or more computer systems.

Picotutor is a microprocessor assembly language tra ner, described by Bob Coates, the Nanocomp designer, and assumes no previous experience of microprocessors.

On sale Nov 17

Rescurarchol and Dinvalo

smax

36. 6

complem

complosion

1

MODULAR PREAMPLIFIER

The basic system described in the first article is developed by the addition of further modules - tone control, bass and treble filters and a headphone amplifier. Part one

 dealt with power supply, pickup amplifier, mixer and impedance converter.

Although the system described in the first part of this article will work very well when the programme sources, the loudspeakers, and the listening conditions are all as good as one would wish, it is, unfortunately, in the nature of things that for part of the time in some circumstances, and all of the time in others, it will be desirable to modify the signal in its route from source to listener. I am, therefore, going to describe some of the more conventional of these signal-modification modules in this part of the series: these are the tone control, the treble filter, and the rumble filter. Since it may be useful at this stage, I am also giving details of the headphone amplifier. These circuits are all based on dual, low-noise, low-distortion operational amplifiers wherever the signal level allowed, and are all, with the necessary exclusion of the headphone amplifier, unity-gain, non-inverting stages, so that they may be included, or omitted, as desired - either in the constructional stage, or by subsequent switching.

Tone control

Tone-controls have been the source of some debate among the 'hi-fi' fraternity over the past decade, with the purists insisting that the signal should be accepted, or rejected, as it stands. However, for those of us who are a little less pure, the nature of our tinkering with the frequency response is still an interesting question, and there are a number of options from which to choose. Figure 9 shows the types of frequency response adjustment offered by these.
Barandall. This circuit, originally described in these pages by P. J. Baxandall, over thirty years ago ${ }^{1}$ is still the most popular circuit of this type and is used in the majority of audio amplifiers, the world over, in one or other of its contemporary forms. The practical shortcomings of the circuit (a) are mainly that it does not allow any scope for selective adjustment of the frequency response, except for raising or lowering the signal level at bass or treble, though the frequencies at which the lift or cut can be made may be adjusted by switching the capacitor values, as I had done in an earlier amplifier ${ }^{2}$. Also, with standard dual-gang potentiometers, it may not be possible to achieve a level frequency response, simultaneously, in both channels, by any setting of the pots. Finally, although the continuously variable quality

by J. L. Linsley Hood

of the adjustment is valuable, it does make it more difficult to return to a previously found combination of control positions.
Graphic equalizer. The basic intention of the arrangement at (b) is a good one - that the received frequency spectrum should be divided up into eight or nine octave bands, within which the gain of the system can be individually adjusted, as required, by individual, calibrated-slider potentiometers. Alas, in the way in which it is normally implemented, with each octave band being selected by one or other of a group of LC tuned circuits, the transient response of the arrangement, to a square-wave or stepfunction input, is both complex and unnatural. Moreover, the frequency res-

Fig. 9. Adjustments of frequency response offered by various types of tone-control circuit. Baxandall - still the best known is at (a): no selective adjustment of any band is possible. Graphic equalizer at (b) adjusts frequency bands, but can distort waveforms. Slope control, shown at (c) broadly similar to Baxandall, but whole response is varied. At (d) is the step frequency adjustment, which would be useful, but additional'steps would not be of equal size. Response (e) is 'Clapham Junction' which is a development of (d) in which steps are additive.
(c)

(d)
(b)

ponse, with all of the sliders set 'level' at any point other than the precise mid-position, is likely to be exceedingly ragged. These major limitations, in the bulk of units of this type, have earned the arrangement the reputation of being more for the lover of sound than the lover of music.
Slope or tilt control. This concept (c) has recently been proposed, as a means of giving a small but continuous skew to the frequency response, to correct for the sound appearing over-'toppy' or bass heavy, and it does offer some unobtrusive benefits in use. However, like the Baxandall, it does not offer any opportunity to make an adjustment, perhaps quite small, to a particular part of the frequency response where some improvement is required.
Step trequency adjustment. Having contemplated this point for some years, the conviction has grown on me that it
(a)

would be most useful to be able to switch into circuit some arrangement which would give a small, say 3 dB , platform-type lift or cut operating downwards or upwards from some specified frequency, in the manner shown in (d). If such lifts or cuts were truly additive, it might be possible both to correct an overall programme balance, if it seemed bass or treble dominant, but also to achieve a measure of selective equalization.

A single-frequency bass or treble lift or cut can be obtained with the switchedfeedback network arrangements shown in Fig. 10(a) and (b), though these circuits would only be appropriate for a single step up or down. If the values of R_{a} and R_{b} were chosen to give a lift or cut of, say, 3 dB it would be found that a subsequent RC block switched into circuit would give only, say, a further 2 dB of adjustment, and so on, with progressively diminishing effect.
'Clapham Junction'-type tone control. If it were possible to make a multiple frequency step tone-control circuit, in which each of the steps was identical in amplitude, and in which the results were truly additive, the result could be a family of options of the type shown in $9(\mathrm{e})$, giving a whole range of possible frequency response paths down which the user could steer his ultimate frequency response curve, in the manner of a train negotiating a railway junction. This would allow a certain measure of discreet doctoring of the frequency response curve, in a predictable and reproducible fashion and, since it could be implemented in a feedback path having a limited phase excursion, the transient response would be free of ringing,
in Fig. 12. This relatively simple implementation of the basic intention of 9(e) does have one, not unacceptable, characteristic which is that the lift is partly achieved by a depression of the remainder of the spectrum, such that a +3 dB shelf centred on, say, 400 Hz would raise the part of the frequency spectrum below this frequency by 2.5 dB , while lowering that above it by 0.5 dB , and so on, in the manner in which I have shown in Fig. 11.

If need be, the gain control can be used to restore the status quo, or it can simply be accepted as a combination of shelf and slope. A small elaboration of the switching network to remove an equal element of resistance from both arms each time an RC element was introduced into circuit would correct for this, but by this time, I felt that the circuit and its associated switching had grown complex enough. The small capacitor (C_{28}) across the bass circuit op-amp is to avoid possible troubles due to unpredictable inter-wiring stray coupling capacitances.

Putting the two successive phase-inverting stages in series fulfils the original stipulation that each module in the preamplifier should have unity gain, and be non-inverting. In the prototype, I have used noninterlocking, push-button, double-pole change-over switches, which can be operated without clicks; indeed, the whole tone control may be switched in and out of circuit noiselessly, to compare 'with' and 'without'. Also, the wish that a flat response should be given with all switches out, and with corresponding pairs in, both singly and in multiples, has been met in practice. My only major regret was that, in designing the p.c.b., I had not gone to the extra trouble of designing the wiring to the switches so that all I had to do was to plug them into the board. However, this regret faded once I had completed the task of wiring it up, and had put right the three or four erroneous connexions to the switches shown up by square-wave testing, in which certain pairs did not cancel!

Variable-slope treble filter

While some form of tone control stage can be useful in trimming the overall characteristics of the unit, the maximum slopes possible will not exceed $6 \mathrm{~dB} /$ octave, and there may be occasions when some more drastic modification is desired. The circuit of Fig. 13 is a three-element active filter, in (which the slope can be varied from -6 dB / octave up to a maximum $-20 \mathrm{~dB} /$ octave optimally flat response. The circuit I have used is based on a 'bootstrap' filter design, though a three-element Sallen and Key filter could equally well be used with a unity-gain, non-inverting amplifier element. I have chosen to use a 'bootstrap'

Fig 11. Amplitude-frequency response given by circuits of Fig 10 (c) and (d).

filter circuit because I invented it and, in consequence, have a large amount of design calculations in a form which are intelligible (to me).

For the convenience of those who may wish to employ the circuit arrangement to give different cut-off frequencies, I have appended the design details at the end of the article. These also cover the circuit component values for the rumble filter which uses the same circuit configuration. A variable-slope circuit at which the pivot frequency (by which I mean the turn-over point) is constant, can be obtained by returning the third-stage integration capacitors (C_{41} and C_{42}) to the top of the slope pot. Unfortunately, this arrangement does not give quite such a good transient response, at all settings of the slope control, as the circuit shown. IC_{8} is used as a unitygain buffer stage to preserve the constant line impedance required by following

Attenuation role of rumble filter.

62
stages. The input resistor R_{64} is necessary to prevent the input seeing an open-circuit when the cancel switch (S_{23}) is open.

Rumble filter

This uses a similar three-element bootstrap filter circuit to that of the treble filter, and is shown in Fig. 14.
Since the presence of a small hump in the bass response curve is less significant audibly than the same peak in the treble response, I have calculated the circuit values for a slightly higher ' Q ', to give a steeper attenuation rate below the nominal 28 Hz transition frequency. I have shown the measured gain/frequency characteristics of the prototype, over the range 9 Hz (the lowest frequency from my signal generator) to 1 KHz in the Table. Calculations show a valúe of -43 dB at 6 Hz , and -49 dB at 5 hz , which should give an adequate rejection of turntable v.l.f. components.
In use, the circuit shows very little detectable I.f. coloration, but does remove, very effectively, occasional rumbles from poor discs.

There is no particular preferred position in the post-mixer signal chain for either the treble or rumble filters. They can be inserted wherever it is mechanically or electrically convenient.

Headphone amplifier

My views on headphone listening underwent a change, some few years ago, when I built for a friend a high-quality
class A headphone amplifier, in which I had done the very best job that I then knew how, in order to preserve the greatest amount of information obtainable from the groove. Listening to some records through this amplifier was a delightful, and occasionally revealing experience, and showed - perhaps because I was tempted to listen at a somewhat greater sound level than I would have chosen (or would have

been permitted!) on loudspeakers things which I had not previously heard on the discs in question.
It also, and I suppose there must be a fly in every ointment, showed that some records, which I had previously thought to be very good, had substantial unobserved faults - such as the most irritating (once heard) background breathing of a noise reduction circuit, where the increase in hiss once the music increased in volume reminded me strongly of listening to a string quartet playing on a shingle sea shore, where the waves came in as soon as the instruments began to play, and receded again when they stopped.

However, on balance, 1 think a good headphone amplifier is a 'good thing', and preferably should be placed ahead of the power amplifier, to shorten the audio chain. The snag, for me, was that I already had a very good, though complex, headphone amplifier, and I wanted one which was equally good but simpler to

Fig. 13. Variable-slope treble filter using bootstrap circuit (see appendix).
build. Fortunately, the low-distortion i.c. allows a simplification in this area too, and allows a smooth transient response on resistive and reactive loads, and a distortion below 0.01% on all loads down to 8 ohms, up to 3 V r.m.s. output. The amplifier will operate in class A under almost all headphone load conditions, especially
since the lower-impedance 'phones will generally require a smaller output voltage swing.
To avoid the possible injection of asymmetrical signal components into the smoothed and regulated 15 V supply lines used to feed the remainder of the preamplifier, I have drawn the large current ($40-50 \mathrm{~mA} /$ channel) supply to the output transistors from the unregulated $\pm 25 \mathrm{~V}$ line in the power supply unit. This does not contribute any measurable 50 or 100 Hz component to the output, though I confess that I was tempted to put in an extra pair of $7815 / 7915$ regulators just to feed the headphone amplifiers. The gain of four seems about the right value to give a similar level on 'phones or on speakers through the power amplifier.

I have shown the circuit diagram for this unit in Fig. 15. The output transistors (four in all, since only one channel is shown) are mounted, with insulating washers, on a piece of aluminium sheet, some 6×2 in overall, bent into a U-shape to take two transistors on either side. No further mounting fixtures are then required for this plate, which can be painted black, with advantage. The voltage regular i.cs in the power supply can employ a similar heat sink.

Fig. 14. Rumble filter for different cut-off frequencies - see appendix.

Fig. 15. Class A headphone amplifier - one channel shown.

In the next part of this article, I will describe the head amplifier for use with moving-coil pick-up cartridges, the microphone amplifier, the stereo imagewidth control - which will allow an increase in channel separation as well as a blend facility, the impulse noise-blanker circuit, which allows a useful reduction in the intensity of the annoying clicks and bangs which occur repetitively on a scratched gramophone record, and the sig-nal-strength metering circuit.

References

1. Baxandall, P. J. Wireless World, October 1952, pp402-405.
2. Linsley Hood, J. L. Hi-Fi News and Record Review, January 1973, pp60-63.

Appendix

The calculations below refer to the diagrams in Fig. 16, and are calculated to give a unity-gain system with a $0 d B$ point at f_{0}
Any second-order active filter with a Q value greater than 0.707 will have a frequency response peak at the value I have defined as f_{0}. If a third RC leg is added to restore the gain at this point to unity, the ultimate slope above or below this point can be increased. The optimally flat Butterworth characteristic is given by a thirdorder filter of this type with a Q of $\sqrt{ } 2$, which will give an ultimate attenuation slope of $-18 \mathrm{~dB} /$ octave. The Q can, however, be pushed a bit higher than this without the excursions above and below the datum line becoming too great. For example, a Q of 2.0 in this circuit will give a final slope of about $-20 \mathrm{~dB} /$ octave, with only about a 0.4 dB ripple.
The practical calculations from these formulae can best be done by deciding the desired \mathbf{Q} and the ratio y , and then seeing whether the required frequency of turn-

over can be given with preferred R and C values. If this is not the case, a different value of y can be used as the basis for a further attempt. Because the original calculations were made with the mathematically convenient assumption that the amplifier was an ideal, unity-gain, noninverting stage, with high input impedance and low output impedance, and because many of the recent operational amplifier i.cs approximate quite closely to this ideal over the audio passband, these formulae
allow the implementation of a whole range of steep-cut filters which can be based on these op-amp i.cs.
A. minor word of warning should be added. This type of filter may act as an oscillator if it is installed with its input circuit open, because of the positive feedback path through $\mathrm{C}_{2} \mathrm{R}_{1}$ or $\mathrm{R}_{2} \mathrm{C}_{1}$. A small value of capacitor or an appropriate resistor connected across the input will prevent this, if the circuit calls for input switching, as in Fig. 14, where C_{43} is added. -
continued from page 41

Fig. 12. Aplitude responses of Fig. 11 circuit
for both headphone and loudspeaker switch positions.

12 dB , a correction circuit has to be constructed to obtain a "flat" amplitude response. In Fig. 9 the turnover frequencies are determined graphically. The resulting frequency response is given as well and shows that deviations from the design ob-
jective are smaller than 2 dB , which is considered sufficient. A circuit which realises the desired frequency response is given in Fig. 10. The total circuitry is given without further comment in Fig. 11, except that a switch is included for use of the
circuitry for "stereophonic headphones" as well as "binaural loudspeakers" (ref. 3). The frequency responses are given in Fig. 12.

For those who want to enioy life-like sound reproduction, a description of a home-construction binaural microphone can be found in reference 5 .

WN

References

1. F. M. Wiener, Diffraction of a progressive sound wave by the human head. Journal of the Acoustical Society of America, vol. 19 1947, pp. 143-6.
2. E. A. G. Shaw, Ear canal pressure generated by a free sound field. Fournal of the Acoustical Saciety of America, vol. 39 1966, pp. 465-70.
3. B. B. Bauer, Stereophonic earphones and binaural loudspeakers. Journal of the Audio Engineering Society, vol. 9 1961, pp. 148-51.
4. N. V. Franssen, Stereofonica (Philips Technical Library). Dutch edition: Centrax, 1962; also available in English.
5. G. A. Nelson, Build a binaural mike set. Audio May 1976, pp. 34-8.
See also Towards true stereophony, by "Toneburst". Wireless World, Sept 1969, pp. 423-4.

DIGTAL POLYPHASE SINEWAVES

Arithmetical generation by computer program of any number of sinewave phases

The digital generation of a two-phase sine and cosine waveform was described in an earlier article*. In summary, the method, proposed by Pierre Diederich, was to as sign initial values to the sine and cosine waveforms. Then for each step to compute the next values by adding a proportion of the cosine to the current value of the sine and subtracting the same proportion of the sine from the current value of the cosine. Supposing the proportion chosen was a half (0.5) this could be expressed in a computer program as:

```
\(10 \mathrm{~S}=\mathrm{n}: \mathrm{C}=\mathrm{m}\)
20 Output S, C
\(30 \mathrm{~S}=\mathrm{S}+0.5^{\star} \mathrm{C}\)
\(40 \mathrm{C}=\mathrm{C}-0.5^{\star} \mathrm{S}\)
50 GOTO 20
```

When run, this procedure produces the amplitude of a sine wave. It can be shown to be an approximation of the sum to two angle formulae thus:

$$
\sin (A+f)=\sin A \cdot \cos f+\sin f \cdot \cos A
$$

If f is small, $\cos f=1$ and $(\sin f) / f=1$ or $\sin f=f$ (in radians). Substituting,

$$
\sin (A+f)=\sin A+f \cdot \cos A
$$

Returning to the program, the wave form may be inverted, seeming to run backwards by interchanging the + and signs. The output gives a stepped version of the waveform and a D-to-A converter may be used to give an analogue signal. The step size is 0.5 radians, giving 12.5 steps for a cycle. other step sizes may be chosen by altering the value of f (see Appendix). For example a value of 0.1 could be chosen to give a program:

```
10S=0:C=1:f=0.1
20 Output S,C
30 S = S + f*C
40 C=C - f* S
50 GOTO 20
```

This step size of 0.1 radians gives 62.8 steps per cycle in the output wave form. The amplitude of the waveform can be specified by altering line 30 to read $S=S$ $+f(C+A)$ where A is the required peak amplitude. As each step takes the same amount of computer time, altering the step size (f) changes the frequency of the output wave. The frequency will depend on the speed of the computer used.
*N. Darwood, "Accurate sine-wave oscillator", Wireless World, June 1981.
Table 1. Three-phase software

[^2]by N. Darwood

In the program for generating three phases, A, B and C are the phases, each $2 \pi / 3$ apart. The initial conditions set are A $=0, B=\sin 2 \pi / 3$ and $C=\sin 4 \pi / 3$. The step size was chosen as $\sqrt{ } 3$.f where f is the fraction used in the program. The presence of $\sqrt{ } 3$ is coincidental as will be seen later.

Table 2. 7-phase software

$\mathbf{A}=0$	$\left(=\sin \left(0^{\star} 2 \pi / 7\right)\right)$
$\mathbf{B}=0.78$	$\left(=\sin \left(1^{\star} 2 \pi / 7\right)\right)$
$\mathrm{C}=0.97$	$\left(=\sin \left(2^{\star} 2 \pi / 7\right)\right)$
$\mathrm{D}=0.43$	$\left(=\sin \left(3^{\star} 2 \pi / 7\right)\right)$
$\mathrm{E}=-0.43$	$\left(=\sin \left(4^{\star} 2 \pi 7\right)\right)$
$\mathrm{F}=-0.97$	$\left(=\sin \left(5^{\star} 2 \pi / 7\right)\right)$
$\mathrm{G}=-0.78$	$\left(=\sin \left(6^{\star} 2 \pi / 7\right)\right)$

$10 \mathrm{~A}=\mathrm{A}+\mathrm{f}^{\star}(\mathrm{B}-\mathrm{C}+\mathrm{D}-\mathrm{E}+\mathrm{F}-\mathrm{G})$
$B=B+f^{\star}(C-D+E-F+G-A)$
$C=C+f^{*}(D-E+F-G+A-B)$
$D=D+f^{*}(E-F+G-A+B-C)$
$\mathrm{E}=\mathrm{E}+\mathrm{f}^{*}(\mathrm{~F}-\mathrm{G}+\mathrm{A}-\mathrm{B}+\mathrm{C}-\mathrm{D})$
$\mathrm{F}=\mathrm{F}+\mathrm{f}^{*}(\mathrm{G}-\mathrm{A}+\mathrm{B}-\mathrm{C}+\mathrm{D}-\mathrm{E})$
$G=G+f^{*}(A-B+C-D+E-F)$
80 Output A, B, C, D, E, F, G
90 GOTO 10
The seven-phase generator shown above is in its longer version and computing time can be saved by reducing it. To explain the short form, consider the coefficient of f for phase A. From Table 2 this is B - C +D $-E+F-G$. We can call this I (for initial value) and then look at the coefficient for B, which is $C-D+E-F+G$ $-A$ which is equal to $B-(A+I)$ and which becomes the new I. Similarly the coefficient for C is $D-E+F-G+A$ $-\mathbf{B}$ which is equal to $\mathbf{C}-(\mathbf{B}+\mathrm{I})$. Thus we can generate all the coefficients for the short form of the program. The initial value of I may be found from $I=B-C+$ $D-E+F-G$. In trigonometrical terms this is

$$
I=\sin \omega-\sin 2 \omega+\sin 3 \omega-\ldots
$$

where ω is 2π divided by the number of phases (N).
Surprisingly, considering it came from an approximation, I is found to be $\sin \omega /(1$ $+\cos \omega)$ where $\omega=2 \pi / \mathrm{N}$. This has the golden property that the inverse of I is $\sin \omega /(1-\cos \omega)$, which may be shown as follows:

$$
\begin{gathered}
=\left(1+\sin \omega=1-\cos ^{2} \omega\right. \\
=(1-\cos \omega) \\
\therefore \frac{\sin \omega}{1+\cos \omega}=\frac{1-\cos \omega}{\sin \omega}
\end{gathered}
$$

Table 3. 7-phase software, short form program
A to G have the same initial values as in Table 2.

$$
\begin{aligned}
& I=B-C+D-E+F-G \\
& \approx 0.48 \\
& 10=A+I^{\star} f \\
& I=B-(A+I) \\
& B=B+I^{\star} f \\
& I=C-(B+I) \\
& C=C+I^{\star} f \\
& I=D-(C+I) \\
& D=D+I^{\star} f \\
& I=E-(D+I) \\
& E=E+I^{\star} f \\
& I=F-(E+I) \\
& F=F+I^{\star} f \\
& I=G-(F+I) \\
& G=G+I^{\star} f \\
& I=A-(G+I) \\
& 150 \text { Output } A, B, C, D, E, F, G \\
& 160 \text { GOTO } 10
\end{aligned}
$$

For a 5 -phase program, $\mathrm{N}=5$, and $\omega=$ $2 \pi / 5$. This would make $I=\sin 2 \pi / 5-\sin$ $2.2 \Omega / 5+5$ in $3.2 \Omega / 5-5$ in $4.2 \Omega / 5=$ 0.73 , f may be found by selecting a step size. As the step size is I.f., suppose that we wpould like to make this 1°, i.e. 360 steps per cycle. I.f. is then 0.075 rasdians and we have established that I is 0.73 so f is 0.024 .

Appendix

Let $\sin (n)$ be the value of the sine wave at step n and assume the following procedure.

$$
\begin{aligned}
& \mathbf{S}(0)=0 \\
& \mathbf{C}(0)=1 \\
& \mathbf{S}(1)=\mathbf{S}(0)+\mathbf{f} . \mathbf{C}(0)=\mathbf{f} \\
& \mathbf{C}(1)=\mathbf{C}(0)-\mathbf{f} \cdot \mathbf{S}(0)=1 \\
& \mathbf{S}(2)=\mathbf{S}(1)+\mathbf{f} \cdot \mathbf{C}(1)=\mathbf{f}+\mathbf{f}=2 \mathbf{f} \\
& \mathbf{C (2)}=\mathbf{C}(1)-\mathbf{f} \mathbf{S}(1)=1-\mathbf{f}^{2}
\end{aligned}
$$

\ldots and so on. It is found that the coefficients of f at step n are the values in row n of Pascal's Triangle. This is shown in Table 4.

Table 4. Analysis

Step						
0	11					
1	1	1				
2	1	2	1			
3	1	3	3	1		
4	1	4	6	4	1	
5	1	5	10	10	5	1
\sin		f	$-\mathbf{f}^{3}$		$+\mathrm{f}^{5}$	
cos	1		$-\mathbf{f}^{\mathbf{2}}$		$+\mathrm{f}^{4}$	

TELETEXT DECODER

Readers may be interested in two further modifications to the Wireless World teletext decoder, following those given in the October issue.
(V) Addition of board IV involved the removal of ICl which, upon inspection, supplied 0V to \mathbf{R}_{4} via pin 10 . While the decoder will still operate without this connection being made, it is preferable to restore the connection to 0 V , thus giving the correct time constant and greater noise margin at this point of the circuit. Readjustment of VR_{2} will then be necessary.
(VI) In the original decoder design, the memory-address converter functions correctly only for row addresses within the text display area, i.e. rows in the range $0-23$. If the detected five-bit row address corresponds to n, one of the remaining rows in the range $24-31$, this 'row' will appear in columns $33-40$ of rows $n-24, n-16$ and $n-8$ due to the operation of the code converter during the display period (WW Feb. 1976 p.50). A simple modification to prevent such information being written into the memory is as follows: isolate $70(11)$, feed 20(12) and 20(2) to the inputs of a 2 input Nand gate whose output is connected to $70(11)$. This disables write pulses at $70(8)$ during the detected illegal rows.
Ken Drew
Nottingham

THE RIGHT FORMULA

Mr K. Wood cites an example in Letters, September 1982, which was not the one I had in mind. The one that intrigued me was a throwaway remark by Patrick Moore that an American observatory (I failed to catch the name) had observed the products of a supernova expanding at ten times the speed of light. I do not believe any valid explanation has as yet been put forward for the phenomena.

Mr O. B. Balean has figures closely paralling my own. What is not clear to me is why it is a mathematical 'figment'! It seems an awful lot of mass to 'lose', yet plainly it does not exist. Perhaps it is 'relativistic mass' which is the figment.

Mr Ivor Catt seemed rather tetchy! I suppose it must be rather frustrating when adjudicators demand 'proof' and he simply doesn't have any! Why is he so bitter about 'instrumentalists'? Is there any way of working with electronics without using instruments? He implies he uses a sampling oscilloscope and certainly uses a computer. His remark that 'today, hardly anyone can successfully assemble lns logic' is highly suspect, since pulse circuitry is peculiarly adaptable to analysis by computers and checking by multiple-beam oscilloscopes. Is it really true that Mr Catt's theory came before he had found out how to do the job?

What is a 'theory', anyway? I read his letter and find he uses the word to mean (a) an equation, (b) an aid to understanding, (c) an extension of electromagnetic concepts and (d) a new way to view the phenomena. All in one letter! Surely the engineering comes first. Later on, the academics follow along, as always a few years behind! After all, isn't the whole fun of electronics the fact that we don't know how anything really works, we just know that if we
do so'n'so, such'n'such happens and on such slender bases huge industries grow.
I would merely ask Mr Catt two questions. What is the use of a theory if it doesn't predict what a circuit will do?
The second question is an equation:

$$
\begin{aligned}
& \mathrm{E} \\
& \mathrm{R}
\end{aligned}=?
$$

Ronald G. Young
Peacehaven
Sussex

NIKOLA TESLA

Martin Berner is, perhaps, right to chide me gently for seeking a second centennial for the famous N. Tesla (WW, Letters, Sept., 1982, p.41). However, I do feel that Tesla is more to be respected for his work than for the accident of birth. Meanwhile we have about ten years in which to debate this point in regard to his radiofrequency spark generator of 1892. Martin Berner also reflects the hope that many histori: ans must cherish - that somebody else will tackle the more difficult subjects! Tesla's writing makes excellent reading, but it is terribly short of vital technical information. I am sure it would be much easier to write about the less-known and certainly deserving Elihu Thomson, simply because Thomson wrote more clearly and more factually. And Thomson also had the grace to cite ${ }^{1}$ the earlier work of Rowland in 1889, who used a Ruhmkorff coil as high voltage source. Classen seemed to be doing much the same in Germany in 1890^{2}, but more effectively by using an air-blast on the highvoltage spark. Classen acknowledges Rijke ${ }^{3}$ (1862) for this idea, one of the most fruiful contributions to the technology of spark transmitters, as far apart as Australia and the Eiffel Tower. Its widespread application may actually have been helped by the difficulty of establishing patent rights on a blast of air! Tesla's patent agents neatly avoid this kind of problem in his patent 645,576 of 1900; for they were wise enough to include a disclaimer on the actual apparatus itself. I suspect that this may well have helped the Supreme Court to find in his favour, even if his claim seems to have little technical merit to support it.
Desmond Thackeray
University of Surrey
Guildford

Rerefences

1. Electrician, 44, (1899, Nov. 3), 40, Elihu Thomson
2. Annalen, 39, (1890), 647, H. Classen (reference supplied by Alan Douglas)
3. Pogg. Annalen, 117, (1862), 276, Rijke

IT'LL DO, PERHAPS

I was very interested in the August letters headed "It'll do - or will it?": so much that I have felt impelled to join in the argument.

Mr Feeney complains, quite rightly, about two faults which he feels should not have happened. The replies are jewels of their kind and should be framed and hung in every sales manager's office.

Mr Bennett carefully evades the main issue in the design he is defending. Surely he can see
that if a fuse goes high resistance, for any reason, and by doing so causes damage to the components it is supposed to be protecting, then the design is at fault. The bit about this being the only case that they know about is a refrain heard so often by purchasers of electronic equipment in this country that the majority of us can join in after the third or fourth note. His last line is worthy of further study. Why was production stopped? Perhaps the product got a bad name for some reason or other and didn't sell too well.
Mr Topping's reply is a much more upmarket version. Here again there is not the slightest intention of accepting the criticism and doing something about it. Instead we are treated to a short advertising blurb, followed by praises for the designer of the self-destructing amplifier (again the main point is evaded. A fuse should protect by its absence, not destroy), and we discover that the design in question had a market life of only four years. All interesting stuff to an industrial archaeologist no doubt, but it doesn't make the product any better.
Following this excursion Mr Topping finally gets down to his own product. In the first paragraph on this subject he appears to accept full responsibility for the equipment, in spite of it being of Japanese manufacture. This is as it should be. If you sell a product, it is your responsibility. Full marks here. But what follows? An argument based on what is known as the absent authority. The authority in this case is the specification referred to and it is absent because Mr Topping keeps it so (presumably with good reason). Again the main point is evaded. The switch failed, Mr. Topping, and any number of closely typed bits of paper won't change that fact. The moral of all this is plain to see. Complain to a British manufacturer and if you get a reply at all it will be one of the above. I worked with electronic instruments for nine years at one factory and felt that the society of psychical research would have been interested in the number of unique events which happened to us. At no time can I recall a single manufacturer offering to do something about it.

I suggest that the manufacturers take note and listen to their customers while they still have some, or they will go the same way as the cotton mills and motor bikes.
H. E. Hicks

Nether Kollett
Lancs

AMATEURS AND CB

Contrary to Mr Clayton's assertion (Letters, Wireless World, August, 1982) illegal broadcasting stations are traced and those involved are, where possible, prosecuted.

Mr Clayton was certainly misinformed if he was told - not by Home Office officials incidentally - that the Home Office would not authorise prosecutions. We do. A pity that you did not check this allegation with us.

In 1981, nine such stations were involved in successful prosecutions and 14 people were convicted; further prosecutions are being undertaken this year.
A. Wood

Chief Press Officer
Home Office

DIGITAL CONTROL OF THYRISTORS

I read with some interest the article by Dr Pardoe on digital phase control of thyristors (WW, Sept. 1982, p. 45). The system has some similazity with that described in the article by myself and N. M. Allinson (Microprocessor Controlled Lighting System - WW, April 1982, p. 36). Since our article was concerned with lighting control desks rather than lighting dimmers, I would like to take this opportunity to expand on the principles of phase-control dimmer design.

Our first article described the complex nonlinear relationship between conduction angle and the perceived light output. Since the function is very difficult to synthesize using analogue methods, most analogue dimmers I have come across use a linear ramp. This allows the ramp generator circuitry to be kept quite simple and easy to align. Since the mains voltage and frequency is subject to variation a simple openloop generator is not adequate. To overcome these problems the ramp generators are enclosed in a negative feedback arrangement which allows stabilization of both ramp height and linearity. Using components of reasonable tolerance and a reasonable circuit design, analogue dimmers can be built which require no adjustments.
The major problem in designing lighting dimmers is arranging for all channels to track each other; this is readily achieved by using one ramp generator (or its digital equivalent) to drive many comparators. The ramp generator can then be made quite sophisticated without increasing significantly the cost of the system. The article by Dr Pardoe uses a separate oscillator and counter arrangement for each channel This oscillator frequency is not locked to the mains frequency and is dependent upon the tolerance of two passive components. Assuming that the oscillator is running at 50 Hz , a 2% variation in mains frequency will result in the loss of 2-3 bits at the maximum power end of the control range. Given a 5% tolerance in the components used in the oscillator circuit will give to a rough approximation a 5\% tolerance in oscillator frequency which is well outside frequency limits permitted on the mains supply. The most marked effect on the oscillation frequency tolerance will be poor tracking between separate channels on the mid power control range when $\mathrm{dL} / \mathrm{d} \phi$ is at its greatest where L is luminous intensity and ϕ conduction angle (See WW April 1982, p. 37, Fig. 4).
As Dr Pardoe points out, in order to eliminate motor creep and light flicker the ramp generator (analogue or digital) must be synchronized to the zero volt crossing points of the mains. The trial trigger circuit shown by Dr Pardoe does, in fact, produce one pulse per half mains cycle; whilst this trigger method is entirely satisfactory for essentially resistive loads (lamps, heaters) it is inadequate for inductive loads. When switching inductive loads, current will still be flowing through the switching devices at zero voltage crossing points of the mains. Since a simple pulse may occur during the 'reverse' current period incorrect operation would result. This problem may be overcome by using a train of gate pulses and, to prevent spurious triggering, no gate pulses should occur between the zero crossing point of the mains and the desired
trigger point.
The equation given for the current in the primary of the pulse transformer is correct; however, the energy stored in the pulse transformer is dissipated in the diode across the primary. Assuming a suitably rated transistor, removal of the diode will allow the stored energy to produce additional gate drive.

While Dr Pardoe's circuit does provide a simple and cheap means of digitally controlling conduction angle in phase control, I would not recommend its use in a multi-channel system because of the tracking problems already mentioned. Additionally in a multi-channel system I believe that a solution based on our article would produce a cheaper system, since only one oscillator and counter are used for many channels and there will be no possibility of resolution loss.
J. D. H. White

University of Keele
Staffordshire

CITIZENS' BAND

I would like to reply to Mr Briggs and Mr Hewlett in July Letters: I will deal with the main points only.

When Mr Briggs says that there is nothing political about the CB pirates, what he means is that there is nothing consciously political about them. Nevertheless, whether they know it or not they are engaged in a political act; which is a revolt against an arbitrary power which had wrongly denied them a CB service.

I agree that not all CB users are young and that the f.m. service does have some technical merit. I did not mean to imply otherwise and I am sure M: Steedman didn't either.

I am accused of being petulant, which means complaining and impatient; but if more people were impatient and complained abour problems a lot more fiercely then the problems would be solved a lot more quickly.

Mr Hewlett says that he can "get enough of the other thing" from the rest of the media, but as far as CB is concerned this does not appear to be true. I am not aware that any other part of the media has discussed the true causes of illegal CB interference, so if $W W$ did not discuss them they would not be discussed at all; and the chance to learn from the experience would be lost.

In my letter in the March issue I was trying to make a very serious point, which is that the interference caused by illegal CB has a political cause; and that part of that cause is the tyranny of an unelected, unaccountable, unscrupulous higher-civil-service, which is immune to rational argument. Jo Grimond, MP, has described the civil service in the following way; "Rigid, non-elective, hierarchical, cautious, secretive, conformist, narrow, furthering the interests of an apparatus and the careers of those within it."

Now let us see how this is relevant to the CB issue, and let us begin with a principle laid down by Burke 200 years ago;
"Those who give and those who receive arbitrary power are alike criminal, and there is no man but is bound to resist it to the best of his power . . . It is a crime to bear it when it can
be rationally shaken off. Law and arbitrary power are in dreadful enimity., 3
The public service exists for the public; not the public for the public service. This means that if a citizen asks a public servant to do something the public servant must do it or show cause why not or resign. If he does none of these things he neglects his duty and should be disciplined or sacked.

A CB service was first requested in the mid1970s, but the Minister and Parliament were too busy to look into the matter and so it was left to civil servants to decide.

The officials concerned neither gave permission for CB nor gave a good reason why not nor resigned. They therefore neglected their duty ' and exercised abitrary power. The people who wanted to use CB then had no choice but to take direct action, and in so doing they were merely obeying Burke's dictum. They were resisting the arbitary power of the Home Office to the best of their ability; and it would have been a crime to have borne it when it could be rationally shaken off,
S. Frost

Edinburgh

References

1 Community Politics, 1976, p. 138
2 "Rule of Law," Conservative Political Centre, pp 19 \& 39.
3 "Rule of Law," frontspiece.

SPREADING

My letter in the October 1981 issue on the above subject has provoked some comment in subsequent issues, and that is a good thing.

Some correspondents have made the mistake of confusing the subject of "splatter" with the subject of "spreading". Until the amateur radio movement recognises that the two phenomena are separate and distinct, and learns to study each phenomenon separately and in isolation, they will not come to a proper understanding of either. My letter in the Oct. ' 81 issue, acting on the principle of "one thing at a time", referred to spreading - just that - and it would be desirable to confine discussion for the present to that subject.

Now, so far as spreading is concerned, I am saying that a single-sideband transmitter properly and correctly operated and occupying no more than 3 kHz of spectrum space, may nevertheless appear on a receiver, if assessment is made by S-meter readings in conjunction with dial frequency calibration, to be occupying more than that space, possibly much more; I am saying that this is not because the transmitter is radiating energy over the wider band, but is due to an effect in the receiver itself due to a combination of the effects of selectivity and a.g.c. There can be no doubt about the truth of that statement. It can be demonstrated by mathematical analysis and verified by experiment; there is also a fair bit of secondary evidence which backs it up.

Once the truth of this proposition is accepted it must necessarily follow as a corollary that it is impossible to tell from S-meter readings and dial calibration (with no other evidence) how much spectrum space a transmitter is actually occupying.

Consider the following simple exercise as an aid to thought. Refer to Fig. 1 which shows an elementary receiver to which has been added a digital frequency meter connected to the h.f. oscillator, the S -meter having been replaced with a vacuum-tube voltmeter or similar instrument as shown. Assume further that there is a crystal oscillator on the bench some short distance away putting out a signal of comfortable strength. The receiver is operated in the first instance without the benefit of agc, that is to say, under manual r.f. gain control.
Tune the receiver across the crystal frequency and plot output voltage (read from the v.t.v.m.) versus frequency, maintaining the receiver at a constant level of sensitivity. You will obtain a curve rather like Fig. 2. This is a selectivity curve for the receiver under this set of conditions. There is a whole family of such curves, and the parameter of the set of curves is the r.f. gain of the receiver, howsoever it be defined quantitatively. To emphasize this point I have shown (Fig. 3) four such curves A, B, C and D, extracted from the family, in descending order of receiver sensitivity.
Switch on the a.g.c. and tune across the crystal frequency f_{x} as before, commencing well below f_{x} and proceeding to well above f_{x}. Coming along the curve of Fig. 2 (re-drawn in Fig. 4) you proceed to the point R. Here the a.g.c. takes control, the point \mathbf{R} being determined by the voltage-delay of the a.g.c. system. Tuning higher in frequency the a.g.c. maintains the output constant, until finally we exit from the control of the a.g.c. at point S and continue along the original selectivity curve. Someone, expert in the Red Herring Department, will want to argue with me about the practical niceties of a.g.c.; some other time, please!
The output meter shows substantial output

across a band of frequencies $\Delta \mathrm{f}$. This does not mean that the transmitter under scrutiny is actually radiating energy across the whole of the band Δf. The transmitter (in this case a crystal oscillator) is radiating energy on one single frequency only, viz. f_{x}. Only a very stupid person would attempt to argue that, because the output meter shows a substantial reading across a band of frequencies, this is proof that the transmitter is transmitting over the whole of that band of frequencies.
What has all this to do with a single-sideband transmitter? If you can understand the above reasoning, then you can understand why a single-sideband transmitter radiating over a 3 kHz bandwidth can provoke your S -meter to a substantial reading over a band of 8 or 10 kHz , or even more: the principle is the same in both cases.
One further point - I should have said earlier that when you traverse the section RS in Fig. 4 as described above you are in effect hopping from one selectivity curve to another. This is indicated in the sketch. There is, of course, an infinite number of such curves, so that it is a smooth transition.
And finally - you will note that if you turn up the r.f. gain and allow the a.g.c. to control the receiver, the impression of broadness is enhanced, because you are working across a curve such as A (Fig. 3). But if you turn down the r.f. gain control the apparent broadness is reduced, because you now work across a curve such as C or D. A single-sideband transmitter will exhibit the same effect - naturally - and the effect may easily be observed by a competent operator.
R. C. Yates

Charlestown
N.S.W.

WIDE-RANGE NOISE GENERATOR

With reference to Mr Ian Hickman's article in the July 1982 issue of Wireless World, I should like to suggest that if the 28 -stage digital noise generator really works with a shift register pattern of $2^{28}-1$ different states (the maximum length), this can only be the case because theoretical limitations are compensated by electronic anomalies. Obviously, these "shortcomings" may go completely unnoticed in practice and therefore the object of my letter is not to imply that the design is incapable of producing a wide range of very useful and interesting noise effects. Nevertheless theory and implementation (however elaborate) of this shift-register application show several doubfful points worth mentioning. In this respect it is, for instance, revealing that the practical implementation as given in Fig. 3 does not indicate where the second Ex-Or-input comes from. A correct feedback configuration is far more difficult to find than is suggested in the mathematical "explanation".

The first incorrect statement is that in the general case a maximum-length sequence can always be obtained by using an Ex-Or gate with two inputs only: one from the last register stage, the second from "the correct earlier stage". This applies only to shift registers with up to seven stages, but the 8 -stage case already invalidates the above "theorem". When an 8 -stage implementation is used, eight different feedback configurations can be envisaged. In each case let us examine the sequence starting with the 11111111-state, the Ex-Or output determining the first bit (most left).
With both inputs coming from the 8th stage (most right), the Ex-Or will always turn out a zero and the sequence will never come back to the 11111111-state again; with the second ExOr input connected either to the 7th or to the lst stage output, the sequence will have a length of 53; using either the 6th or the 2nd stage output, the sequence will have a length of 217 (which is still far less than the maximum $2^{8}-1=255$); finally using the 4 th stage output, the pattern will have a length of only 12 . As a matter of fact, maximum length shift register sequences can always be obtained, but the feedback function should generally apply to more than just two stages.

The second erroneous statement is that the maximum-length pattern will establish itself, provided at least one of the shift register stages comes on with a 1 -output. Let us once again consider the relatively easier case of an 8 -stage shift register and let the feedback function be taken from the 8th stage and the 5th stage. It can now easily be discovered that four different sequences are possible: one is 217 long and contains 1111111, the second is 31 steps long and contains the 11111011 -state, the third is seven steps long and contains 10011101, the last one is the indefinitely repeating 00000000 -state. When the shift register operating conditions are normal, one sequence (e.g. the one which contains the 11111011 -state) will never jump to a different sequence (e.g. the one which contains the 11111111-state).
This clearly demonstrates that much more careful analysis is needed in order to establish whether in the particular case of a 28 -stage shift register the maximum-length sequence of $2^{28}-1$ can be obtained with an Ex-Or gate having only two inputs! By the way, a full 2^{N} sequ-
ence can also be obtained, but this requires a feedback function a little bit more elaborate than just an Ex-Or array connected in a parity check configuration!

The two misinterpretations should immediately have come to the mind of the author when he observed the (unexplainable?) peculiar circuit behaviour (long start-up effect, periods of silence alternating with hiss, apparent jumps from one sequence to another etc. . . .). May I suggest this could probably be explained by shortcomings in the circuit design (e.g. power supply rating too low, or decoupling near the i.cs insufficient, or spike pick-up by the unconnected gate inputs supposed to be at the high level, or wrong time constants giving long lasting amplifier saturation effects after power turn-on, . . .)?

More detailed information on the actual circuit layout might have been helpful, together with photographs and oscillograms. I doubt very much whether this circuit is easily reproducible! Faulty operation may arrange matters!

Maybe Mr Hickman could reveal the actual feedback function, as it should have been indicated in his Fig. 3, in order to obtain really the longest sequence (starting with the all-zero condition when an Ex-Or invert gate is used) . . . It would also be fruitful to analyse how much this longest sequence is actually off the maximum length of $2^{28}-1$. Even if the difference between projected and actual length turns out to be small, it should still be emphasised that the electronic implementation wouldn't fully exploit the lower frequency range, the values of the coupling capacitors in the filter, attenuator and output circuits as shown in Fig. 4 are too small, except for exclusive audio use: when the filter is set to 10 Hz low-pass, the result is actually rather a band-pass! In applications other than audio this might limit the circuits effectiveness.

One might ask the question whether, for audio purposes, a shorter shift register wouldn't have given comparable results when designed correctly! Apart from these remarks, fundamental from a theoretical point of view, it goes without saying that Mr Hickman's circuit can be very instructive for musical applications.
G. J. Naaijer

Louviers
France

The author replies:

Before dealing with the points raised by Mr Naaijer I should like to correct one or two minor graphical errors which crept into the article as published

In Fig. 1(a) the second input to the exclusive Or gate should be labelled "From m" ${ }^{\text {th }}$ stage Q output", where m is of course less than n.

In Fig. 3, the input to pin 12 of IC_{10} should come from pin 13 of IC_{8}.

In Fig. 4, R_{35} and R_{36} are the two sections of $22 \mathrm{k} \Omega$ twin-gang potentiometer, and references to R_{35} or R_{36} in Fig. 5 and throughout the text should read " R_{35} / R_{36} ".

The references to " R_{34} " in the 25 th line of the third column of page 40 and in the last two paragraphs of the article should read " $\mathrm{R}_{35} / \mathrm{R}_{36}$ ",

The negative end of C_{3} in Fig. 6 should go to 0 V chassis.

The author should have made it clear that following normal practice, all unused gate inputs in Fig. 3 are returned to +5 V via a $1 \mathrm{k} \Omega$ resistor.

Turning now to Mr Naaijer's letter, he questions whether a shorter shift register would be
adequate. A 28 -stage register was arrived at from the following considerations.

It was desired to have white noise with a Gaussian amplitude distribution available to as high a frequency as conveniently possible, say 100 kHz . It was clear that the necessary number of stages would be of the order of 25 , and a modest clock frequency of around 5 MHz is convenient when using a simple And gate oscillator employing standard t.t.l. gates. As stated in the article, Gaussian noise is obtained if the sequence is filtered with a cut-off frequency lower than $f_{\text {clock }} / \mathrm{n}$, i.e. lower than $5 \mathrm{MHz} / 25$ or 200 kHz . Thus Gaussian noise is available up to about 100 kHz as required. At the low-frequency end of the range, the frequency of the lowest spectral line in the output is of little interest in itself: the important consideration is the spacing between spectral lines at the lowest frequency of interest. This was taken as 10 Hz , and the possibility of external bandpass filtering with a Q of 100 was catered for. The 3 dB bandwidth would then be 0.1 Hz . Now using SN7495s, six devices would provide a 24 stage register and the maximal length pattern would repeat at approx. 0.3 Hz . Thus the spacing between the spectral lines would be greater than the filter bandwidth and the noise would not (in this admittedly extreme case) appear white.

Adding a seventh 7495 provides a 28 stage register, giving a spacing between spectral lines of 0.02 Hz , which is quite adequate. It is interesting to note that Beastall, in his white-noise generator design, published in Wireless World in March 1972, used a 31 stage register (although 32 stages were available in the i.c.).
The purpose of the article being to describe the design and use of a white noise generator, the subject of maximal length shift registers was touched on only very briefly. The article did not, or was not intended to, imply that for any length shift register, two suitable tappings can be found to give a maximal length sequence with a single Ex-Or gate. This is not always the case. I admire Mr Naaijer's industry in working through all the possibilities for an eight stage register, but a correct feedback configuration is not, as he suggests, difficult to find. It is simply derived from any of the tables of irreducible polynomials published in the literature. These do not bear out Mr Naaijer's statement that "the feedback function should generally apply to more than just two stages" except in the sense that there are numerous possible feedback arrangements for most register lengths, all giving maximal length sequences. However for register lengths of 2 to 34 stages inclusive, there is a single Ex-Or configuration giving the maximal length sequence in 20 cases, including 28 and 31 stage registers. The remaining 13 cases require three or more taps, including lengths 8 (as noted by Mr Naaijer), 24 and 32. For length 28 the correct taps are stages 28 and 3 or stages 28 and 25 ; the one arrangement provides the same maximal length sequence as the other but with the bit sequence in the reverse order.
It is not always realized that the maximal length sequence is not unique. Even a register as short as five stages can (with the appropriate feedback arrangements) produce six different maximal length sequences, though only one of these (plus its time reverse) can be obtained with a single Ex-Or gate feedback arrangement.
Mr Naaijer has pointed out that there is a problem with the circuit as published, and perceptive readers will have noted the cause. On rereading the article it was immediately apparent to me that if the arrangement produced the intended maximal length sequence, then the sequence would commence immedi-
ately. For, ignoring the degenerate 'all-zeros' case, any other possible combination of register contents at switch-on is by definition a valid member of the maximal length sequence, which will therefore continue from that point. The problem was the tendency of the register contents to come up as all-zeros at switch-on. A section of IC_{10} was therefore included as an inverter with the intention of making all 1 s the degenerate case, but unfortunately this does not have the desired effect. One could alternatively use the correct Ex-Or gating instead of the ExOr arrangement shewn, and arrange to load a 1 into at least one register stage at switch-on. But a simpler modification which I have tested and incorporated is to invert the inputs to the Ex-Or gate as well as its output. With this arrangement, the all zeros case in the register looks like the all ls case to the Ex-Or gate, and the circuit commences the maximal length sequence immediately as expected. By connecting \mathbf{R}_{2} directly to pin 10 of IC_{8} instead of pin 6 of IC_{10}, two spare Ex-Or gates are available and these were used to invert the outputs of stages 25 and 28 of the register, i.e. pins 13 and 10 of IC_{8}.
I do not know how long the non-maximal length sequence produced by the circuit as published is, but it must be said that none of the brief tests I was able to conduct in the frequency domain could distinguish between the noise produced and that produced using the correct maximal length sequence. Nevertheless I am grateful to Mr Naaijer for pointing out the snag, to which there is, as I have indicated, a convenient and simple solution.

OPTO-ELECTRONIC CONTACT BREAKER

In your Letters column of September 1982 Stevenson complains that he was unable to obtain the i.c. specified for my opto-electronic contact breaker, and transformer for Rod Cooper's c.d. unit.

I can assure him that in the case of the i.c. that component is crucial to the reliability of the circuit. I have written before in WW that the environment in which automotive electronics have to work is far from ideal, and it is not unreasonable to specify a 54 -series device in an engine-mounted application. Like Rod Cooper, I am conscious of the need to specify obtainable parts, but there is a converse argument which suggests that sticking to parts from the corner shop stultifies design. This notwithstanding, I wrote on p. 67 of the February 1982 issue the name of a Texas Instruments supplier (Quarndon Electronics) and many more spring to mind. Quarndon were kind enough to confirm today by telephone that the SN5401N is in stock and available to anyone.
If one assumes that Stevenson missed the February issue, I would still question whether he had exhausted all possibilities until Rod and/or myself had been consulted. Criticism for failing to provide that for which one has not been asked is hard to accept. Mr Stevenson should be aware that, as authors, we cannot hope to satisfy everyone all the time, but we do feel responsible for our designs, and can usually help.
J. R. Watkinson

Reading

DISC-DRIVE CONTROLLERS

Control logic, the penultimate subject in the disc-drive series, divides into data-handling and drive-coordination sections. These sections, and how they are controlled by sequencing logic, are discussed here.

Essentially, disc-drive control logic does not vary much from one drive design to another, but because of the wide price/performance range and changes in technology, one cannot assume that all the features mentioned here will be found in all disc-drive units.

Control logic can be thought of as having two main sections - one for controlling the disc subsystem, including circuits for obtaining subsystem status information, and the other for handling data to be stored or retreived. These sections are coordinated by sequencing logic.

Execution of a function by the disccontrol logic requires a complex series of steps determined by logical decisions made between each step. Sequencing logic resembles a processor with subsystem functions as instructions and the steps as states.

As with central processors, sequencers can be implemented either with combinational logic or with rom-controlled microsequencers, but unlike c.p.us, sequencers have to work in real time and keep in step with the disc's rotation. Figure 1 shows the essentials of a romcontrolled sequencer.

Control and status. Excluding operator controls, disc drives are controlled entirely by functions and parameters loaded into registers in the subsystem. How the registers are loaded is not unique to disc drives and is therefore not discussed here.

Table 1 shows a list of functions performed by a typical disc subsystem and Fig. 2 depicts the most common functions, read, write and write verify. In Fig. 2(a), the disc is altered by data being read from memory and written into it, and changes in memory occur when data are read from the disc, Fig. 2(b). Neither memory nor disc is altered when written data are being verified. In this operation, data are read from the disc and compared word-forword with data in memory.

Not all disc subsystems have the verify function; in some computer systems data verification is carried out by the main processor at the expense of some processing time.

Figure 2 also illustrates parameters necessary for a data transfer, namely the starting address in memory, the starting address on the disc, and the amount of data to be transferred.

Figure 3 shows a typical register set for a disc subsystem. Most units use directmemory access (d.m.a.) techniques to transfer data to and from memory without involving the processor. To do this, the
John Watkinson, M.Sc., is with Digital Equipment Co .

by J. R. Watkinson

d.m.a. logic needs to know the physical starting address of the memory area to be affected by the transfer. This address is loaded into the memory-address register which increments automatically every d.m.a. cycle so that sequential memory locations are accessed. A word-count register controls the amount of data to be transferred. As it is relatively easy to detect when a register contains zero using hardware, it is often arranged to load the two's complement of the desired word count into the register, which increments every d.m.a. cycle. When the register overflows to zero the transfer is complete.
The starting address of a selected disc must be specified in three dimensions,
namely desired sector, desired head and desired cylinder. One disc transfer may consist of many contiguous disc blocks, and the desired disc address registers can be arranged to increment as each block is completed. As the disc turns, the desired sector address increments first, until the highest numbered sector is reached. When this block is completed, the sector address is reset and the desired head register incremented. The next track is now in use. This process may continue until the highest numbered head reaches the highest numbered sector. In this case both desired head and sector registers reset and the desired cylinder address increments.

Not all units have this feature. The change in cylinder address causes a cylinder difference signal and implies a seek (explained in the May issue of Wireless World). Before the transfer can continue

Fig. 1. Disc-control sequencer using rom control. Each address generated by the program counter results in one or more control signals being sent to the system. At the same time the event which causes the program to advance to the next step is selected by the input multiplexer. Certain addresses cause a conditional jump and if the conditions are satisfied, a new non-sequential address is loaded into the program counter from the jump-address rom. More advanced units have stack registers enabling them to call subroutines and return afterward.

Fig. 2. Three major data transfer functions performed by a
disc subsystem. Write-verify function, (c), is not always used.

the positioner has to move on to the next cylinder. The process is only terminated by a word-count or disc-address overflow.
Disc drives work with blocks of data, and hardware is necessary to prevent malfunction if a specified word count is not a multiple of the block size. When reading, if the word count overflows before the end of a block, the transfer to memory stops but the drive continues to the end of the block to read the error-checking character there. When writing, the disc-control logic pads a partially written block with zeros to retain the standard disc format before the check character. The purpose and operation of check characters will be discussed in the next article. Figure 4 shows the flow-chart for the automatic disc-address incrementing algorithm.

Status circuits give the operating system information about the operation of the drives. The boundary between control and status is difficult to define, since the status path can be thought of as a feedback mechanism for the control process.
On completion of a data transfer function, the status circuits inform the operating system that the disc subsystem is no longer busy by way of an interrupt; as with d.m.a. techniques, the c.p.u. is not involved with the data transfer and will be performing useful processing. Following the interrupt, the operating system will read the disc subsystem's status register. If all is well, a ready bit is set, but in the event of a malfunction, an error bit will also be set. There are many conditions which could cause such an error signal.

Fig. 3. Register set of a typical disc drive. Composite error is set by the change of state of an OR gate with inputs representing many possible error conditions.

The error bit in the status register is an OR function of all of them, referred to as the composite-error bit.
In a 16 -bit system, the ready and error bits are often bits 7 and 15, since these are the sign bits of the low byte and the word respectively. Using 'test' or 'test-byte' instructions, the processor status word will become negative if the sign bit is set. A conditional branch instruction whose outcome is determined by the processor status is then used to determine the program flow. When an error occurs, the system branches to a routine to read the subsystem error register to find out what has gone wrong.

In the case of a non-data-transfer function, such as a seek or search, the drive will become ready when the operation is complete. Non-data functions can take place simultaneously with a data transfer in a multi drive subsystem, and upon their completion it is necessary to know which drive has become ready. This could be achieved by selecting each drive in turn using the unit-select register in a process

Fig. 4. Disc transfers may extend over several disc blocks without the need for each one to be addressed individually. The disc address increments automatically as long as there are words left to transfer.
known as polling, but this is wasteful of processing time. A better alternative is to use the summary register, which contains one bit position for each drive in the subsystem.
When a change of status occurrs in one or more drives, a bit pattern is present in the summary register. Any bit present here will cause an interrupt, and the system has only to read the summary register to find out which drive requires attention. When one of the drives has a fault, the composite error bit will be set, as will a bit called drive error in the subsystem error register. If so, the unit number specified in the summary register has to be loaded into the drive select register. If the c.p.u. now reads the drive-error register, it will obtain the status of the affected drive. Figure 5 shows a typical service-routine flow-chart. Action taken as a result of an error varies from one operating system to another, but typically the error conditions would be recorded in the operating-system error log, and then attempts would be made to clear the error condition by issuing drive-clear or controller-clear commands. Positioning errors normally result in a recalibrate function prior to repeating the failed function.

Hardware failures, such as power-

Fig. 6. Format of a typical disc block in relation to the count process used to establish the head's position in the block at any time. During reading the count is derived from data read but during writing the count is derived from the write clock.
supply faults, cause the system to discontinue use of the drive concerned and send appropriate messages to the operator. Such a failure in the swapping disc will usually cripple the whole computer, as the time-

Fig. 5. Flow-chart describing the handling of disc subsystem status registers following an interrupt. Interrupt may have resulted from the controller on data-transfer completion, from a drive completing a function not involving data transfer or from an error condition. More than one drive may have an attention condition at once.
sharing process cannot proceed. Action taken to recover from data errors will be detailed later.

Position verification. Before a data transfer can take place, the selected drive must physically access the desired disc block and confirm its position by reading the header. At the end of an implied seek, should one be required, the positioner circuits declare that the heads are on track and settled. The desired head will have been selected by the head matrix, and the next step is to perform a search along the track by comparing the contents of the current-sector, or 'look-ahead' register with the contents of the desired sector register. When the two are equal, the head is about to enter the desired block. Figure 6, the format of a typical disc track, shows that between blocks are placed address marks, which are areas of steady magnetization that generate no read pulses and can be detected by the read circuits.

Following address-mark detection, the data separator starts to synchronize to the header preamble. Any a.g.c. in the read channel will stabilize at this time. Toward the end of the preamble the data separator will be locked to the read signal and will generate zeros (assuming modified f.m.) and the separate bit clock.

Serial data is converted to parallel form by the serializer, Fig. 7, which is based on a shift register. The serializer also has the ability to convert parallel data to serial form for writing operations. Preamble zeros are clocked down the shift register in the serializer by the bit clock, and in due course the sync-byte's pattern shifts through and is recognized by the syncbyte decoder. When this takes place a divider is enabled, which divides the bit clock by the word-length to give a word count, or in some cases a byte count. The word count is decoded by part of the sequencing logic to enable the various steps which take place synchronously with the disc.
Figure 8 shows decoding necessary for the disc format shown in Fig. 6. The first

Table 1. Abbreviated list of functions performed by a disc drive. Only one data-transfer function can take place at a time, but other functions can be performed by different drives in the subsystem at the same time.

header word is the cylinder address, and this is compared with the contents of the desired-cylinder register. The second header word contains both the sector and head addresses of the block, which are also compared with the desired addresses.

Fig. 7. Conversion between parallel data used by the computer and serial data used by the disc takes place in the serializer which reconfigures itself for either reading or writing.

Some header formats contain extra information such as bits which specify the density of data in the following block, passwords which are used in high security systems and information about media defects in the data area. Each header finishes with a cyclic-redundancy check character

Fig. 8. Decoding for the disc format shown in Fig. 6. As the count is reset several times during a block, the same decoder can be used for a number of purposes. During writing, preambles and sync. bytes must be included but this is not necessary during reading.
which confirms its validity. Only if the header contained the right addresses and was read correctly will the data transfer take place.
Figure 9 will show a flow-chart for the process of position verification. Automatic reading of the header by the sequencer should not be confused with the read'header command used to place the contents of the selected header in the memory. This is usually only used after a write-header command, to verify that the disc has been formatted properly.

Data transfer. During a data block read, the serializer and sequencer are employed again. As with the header, zeros from the data preamble are clocked into the shift register until the sync. byte is detected, when the next bit will be the first data bit in the block. On every word, the output of the shift register goes around the loop in the serializer and is loaded into the latches. The d.m.a. logic now has finite time to send the word to memory before the next word arrives from the disc. When the word-count decoder decides that the last word in the block has been transferred, check words are sent to the error-checking logic. A description of this operation will be given.

During a write function, header checking is repeated as it is important not to write in the wrong place on a disc. A write process is a little more complex than the read because preambles, sync. bytes and postambles have to be written together with the actual data. To write the preamble, again assuming modified f.m., the serializer is held clear ty the sequencer.
At the end of the preamble, the sync.byte pattern is loaded into the shift register. Data words are then loaded into the shift register from memory in order to write the block.
To be continued

Ace computer, ace language?

The most important characteristic of the programming language Forth is that it is a "threaded interpretive language", and not that it uses reverse Polish notation, as frequently reported elsewhere. But in terms of how a Forth computer is received it is interesting to look at Forth and how reverse Polish notation is used. The following analysis is based on experience with a pre-production prototype of the Jupiter Ace computer (News, October issue), and was sent to us by Boris Allan. "I hope the Ace succeeds," he tells us, "it is a very brave initiative, but I do not know whether it will; what I do know is that Ace Forth is the best implementation on small computer I have seen".

Reverse Polish notation seems to imply that it is in some way back-to-front - the accompanying description uses reverse Polish in the definition of F and so on, and the order does not seem unreasonable. It only becomes "unreasonable" when thinking purely numerically. To have to use $23+$ to perform the calculation $2+3$ may seem odd, though if it is introduced as "take 2 then 3 and then add them together" then it is much more reasonable. Though Forth is very useful for the numerical, its strengths become more apparent at a higher level of abstraction; yet the Jupiter Ace is aimed at the cheap end of the market. So to what extent is the strange mode of approach a problem?

It is only strange if it is approached in a way which makes it seem strange - the definition of the Forth word "F" (see panel) does not seem strange. The operation $23+$ only becomes strange when we say that it is equivalent to $2+3$, and not when we say that it is equivalent to take 2 and then 3 and add them together. This strangeness is not long-lasting.

A far more important problem with Forth is the ways in which restrictions are placed upon defining and redefining words, and it is the complexity of these manipulations that are far more telling for Forth as an introductory language. To make it easily usable, the defining, redefining, and editing of Forth words needs conceptual simplification. This is where the Ace scores over most other systems.

Ace Forth introduces new words EDIT, LIST, and REDEFINE, which make the changing of Forth words simple for the user. LIST F would produce BAR BLIP BAR BLIP BLIP CR and EDIT F would produce a similar listing, and allow one to edit the listing. After editing there would be an extra version of F on the VLIST (the new version), and if we then entered RE-DEFINE then Forth would search through the words in the dictionary (ie those on the VLIST) and substitute the
new definition of F for the old definition (as if we changed a page in our loose-leaf manual). If a word is defined by use of a word not yet defined, there is no way this
illegal definition can appear on the VLIST.
It is easy to crash most Forth systems because the checks on what the pro-

Forth: a threaded interpretive language

If the instructions in a repair manual are "unscrew the nut holding the wurble plate to the ding box, but only after disconnecting the mains supply to the ding box, otherwise you will be electrocuted" there will be a fair number of fatalities. In a t.i.l. the manual has to be written in a sensible order. "First, disconnect the mains supply to the ding box; second, unscrew the nut holding the wurble to the ding box" so that there are no nasty surprises. It is safe to read ahead in the manual because it makes the whole operation that much slower, and how far forward is it possible or necessary to read?
Forth and other t.i.l.s take the sensible approach to reading the manual because it is simpler, and you always know where you are. Any computer program is no more than a set of instructions, and sometimes the same set of instructions are repeated - a truly ignorant person might have to be told, on each occassion, how to unscrew a nut. The manual might then read "First, disconnect the mains supply (see page 1) to the ding box; second, unscrew the nut (see page 2) holding the wurble to the ding box", where the "(see page . . .)" instructions are pointers to other places in the book. That is, we have the name of the operation, and then the location of the instructions with that name (if there was only one operation per page, the page number alone would be sufficient).

The manual itself is an operation - repair a Thing - and is composed of smaller operations, which can then be seen to be composed of even smaller operations, until one reaches certain primitive operations, those which have to be left undefined, eg "pick up a screw-driver". As one goes through the manual new operations are defined before one uses them in terms of the operations which are included in the latest, more complicated, operation. This again is what happens to a t.i.l. (For more details consult Threaded Interpretive Language, by R. G. Loeliger. Byte Books, 1981.) It is now possible to understand any Forth program. Here is a line of program taken from "Starting Forth," by Leo Brodie (Forth Inc, 1981):

F
We know that this is an instruction to do something and so we also know that somewhere the instructions to accompany F will be found. They are

BAR BLIP BAR BLIP BLIP CR thus whenever we come across F, the computer will think BAR BLIP BAR BLIP BLIP CR. There are three new named instructions here, and BAR means

MARGIN 5 STARS
whereas BLIP nieans
MARGIN STAR
and CR is a primitive which means "carriage return". MARGIN is defined as

CR 30 SPACES
(on an 80 column printer or vdu), so BLIP
misses 30 spaces and prints out one star, and BAR misses 30 spaces and prints out five stars, so that F (which is BAR BLIP BAR BLIP BLIP CR) will print out.

$$
\begin{aligned}
& \star \star \star \hbar \star \\
& \star \\
& \star \star \star \star \star \\
& \star
\end{aligned}
$$

a trivial application but one which is totally transparent. To print out a large F, one types F - - could it be easier?

It is possible to program in this manner in Basic especially one which allows the user to use meaningful names for functions and procedures (though the applications in Forth - what are called "words" - are closest to functions in other languages). In Forth, however, the process of defining words is done there and then, and is done in what might be called, in Basic, "instant mode". Most forms of Basic will not allow you to enter (say) function definitions instantly, though it is possible to PRINT in immediate mode. In Forth, to define the meaning of F one enters

F BAR BLIP BAR BLIP BLIP CR ; where the colon means a word is to be defined (the next word in line) and semi-colon means that is the end of the definition. Try that in Basic; it is possible, but more complicated, using subroutines.
In most versions of Forth if one enters VLIST, an index is produced of all words so far defined and in the order in which they were defined. The order is important because the user of the manual (ie the Forth system) is incapable of looking forward in the manual to find a definition (one can only look back). If in the word F, one of the defining words (eg BLIP) had not already been defined the definition would be invalid. In terms of the output from a VLIST, a word can only be defined in terms of words which are lower down the list. What happens then when a manual is updated, and an improved method of unscrewing nuts is given?
Depending on the manual, various things could happen. If the manual was a loose-leaf manual, the old set of operations could be taken out to be replaced by the new set, and if each new set of instructions started on a new page, the insertion would be that much easier. An alternative method would be to mark the old instructions with a note, "see amendment sheet 14 ", so that on going to page 2 you would be redirected to the new set of instructions. Once done, the first is less work to use than is the. second.

In conventional Forth systems, neither of these methods (or their equivalents) can apply. To change the definition of F so that it will be put closer to the left-hand-side of the screen, all that appears to be necessary is to alter the definition of MARGIN (as BAR and BLIP, and thus
grammer can do are few; it is simple to over-write the words in the dictionary, and for the system to disappear in a puff of smoke. Such things on the Ace didn't succeed. Steve Vickers (the language designer) explains that there were two modes of running programs in Forth on the Ace, FAST and (the default) SLOW. SLOW

F, both depend upon MARGIN in their own definitions), eg
:MARGIN CR 5 SPACES:
which is simplicity itself. However, this doesn't work.

If MARGIN is redefined and you ask for a VLIST, MARGIN will be at the top of and further down (lower than BLIP, BAR, or F) another occurence of MARGIN. If you type at the console

MARGIN 10 STARS
You will find a space of 5 blanks and then 10 stars. If you now key F , the output will be exactly the same as the original version. When the computer comes across F within the body of coding for F there are pointers to the places at which the code for BLIP and BAR can be found. BLIP and BAR still point to the original coding for MARGIN - ie with 30 spaces. The introduction of a new definition for MARGIN has not affected anything earlier, and so all the old pointers are unaltered - they can only point backwards, never forwards. Without doubt this is a major problem.
Another problem concerns program development and the editing of source material. Suppose that we define MARGIN with 5 spaces, try it out, and then decide that perhaps it would be better with 10 spaces (then 8 spaces, then . .), what happens? Under VLIST (unless one is careful) a large number of competing and conflicting definitions of MARGIN will appear. It is possible to FORGET MARGIN (ie erase the last definition) but often it is the kind of action which is easily forgotten. The way in which a source record is kept of the definitions (on what are termed "screens") can in itself lead to problems.
Consider this word, and its definition,
: LOOP-TO-12 130 DO I. CR LOOP; which prints out numbers from 0 to 12 (the point means print out the last number mentioned, in this case the loop counter I). If that is stored on a screen, and the EDITOR used, the EDITOR redefines I to an edit command, and so every time LOOP-TO-12 is used the word will use the redefined version of I (as per its use in the EDITOR). Unless one is careful more complex interactions can occur.

For a t.i.l. to work most effectively what is needed is a processor which is able to efficiently point to locations which point to locations which point to locations which . . More technically what is needed is a processor with sophisticated addressing modes. The common Z80 or Z80A micro-processor is not known for its sophisticated addressing - the opposite in fact - and though the also popular 6502 is slightly better, there is little to choose between them. The recent Motorola 6809, as used in the Tandy Color Computer and the Dragon, seems to be a chip which would fit the t.i.l. philosophy well.

BORIS ALLAN
mode means that everything that can be checked, is checked (eg the stack overwriting), and FAST means that all checks are off (useful when you know it works) and the program runs 25% more quickly.

Forth is an inherently compact efficient language and is not far short of the speed of machine code for some applications, and twice as slow at worst. The standard Ace comes with 3 K bytes of ram, which may not seem a great deal but as Forth programs are so compact it is worth far more in terms of equivalent storage for a Basic program. The Ace will be able to use the Sinclair 16 K ram pack in any case, so storage of programs presents no problem, and the cassette system is simplicity itself to use. The Z80A chip used is not the best for Forth - the 6809 is better suited but Altwasser and Vickers say they knew the Z80A inside out and back to front -
and it worked.
Forth is excellently suited for control applications, and so the Ace might be bought for that. Success might partly depend on how many interfaces to the outside world are produced; though as many of the ZX81 (etc) devices seem to be already compatible perhaps this has been partly solved already.

A possible further demerit is the claim that Forth as a language can promote the datk syndrome ("design at the keyboard") in that, because one has to get the basics right first, the overall structure gets lost. I think that datk is valid and though it may not be "structured" in the sense of topdown programming, it does lead to efficiency of coding - top-down programming inherently leads to verbosity in programs.

Advice to dbs panel

The advisory panel considering technical transmission standards for direct broadcast satellites is accepting advice until early November. The panel, headed by Sir Antony Part once permanent secretary at the Department of Trade and Industry and now chairman of Orion Insurance, includes Roger Griffiths, professor of electronics at Loughborough University, and Alan Day, professor of economics at LSE, with consultant Bernard Rogers as an assessor. Secretary is P. R. Birch, DoI, 29 Bressenden Place, London SWIE 5DT, tel. 01-213 5810. The short notice, according to the Home Secretary in a parliamentary answer, is to enable "the necessary receiving equipment to be ready in time for the projected start of d.b.s. in 1986."

Uosat back in operation

The amateur radio satellite Uosat has been given an "off" command through the large radio telescope dish of the Standord Research Institute, California. Uosat became uncommandable in April this year when both its 145 and 435 MHz transmitting beacons were switched on together. This swamped the command receiver and no further commands could be passed.

Now, the University of Surrey is in full command. All telemetry has been tested and found to be correct as it was originally left in April. Test and analysis programs are being dumped on to the F100 spacecraft computer for future use in the Phase 3 programmes. The 1800 on-board compu-
ter is having its software checked to ensure that no false command will be accepted and thus cause the same fault.

The system transmits at various rates during weekday passes but for the next few weeks, at weekends, transmissions will be at 300 baud. Amsat-UK and the University of Surrey invite suggestions from readers on what the data rate should be at weekends to stimulate maximum interest. They would also be grateful for hard copies to be sent to the University for evaluation.

Information on Uosat and Amsat-UK can be obtained from Amsar-UK, London E12 5EQ, by sending a stamped addressed envelope. There is also a guide to operating Oscar available for $£ 1$ and the latest satellite information will be included.

After a "perfect countdown" to the launch of Marecs B on 10 September, announced ESA said "an anomaly led to a lower tragetory than required".

HDTV-on-Sea

Visitors to the International Broadcasting Convention at Brighton had a good opportunity to assess the high definition colour television system which NHK, the Japanese Broadcasting Corporation, has been developing over the past few years. Sony were demonstrating a camera, monitors, a v.t.r. and a large-screen projector, all working on the 1125 -line, 60 field/s standard proposed by NHK. The pictures are said to contain five to six times the amount of information provided by current NTSC, PAL and SECAM services, but although the images were undoubtedly superior they did not seem as impressive as one might expect from doubling the number of lines and sextupling the video bandwidth to 30 MHz . Of course, the relationship between subjective picture quality and objective definition parameters is not a linear one and probably there is a law of diminishing returns here.

Sony's camera uses three 1 -inch Saticon tubes with an optical beam-splitter, giving R, G, B signals with a resolution of 1200 television lines. The 17 and 24 in colour monitors are based on Trinitron display tubes with a fine-pitch vertical grille (300 , and $400 \mu \mathrm{~m}$ respectively); while the projector, using red, green and blue 9-inch tubes, throws a picture on a 2000 by 1200 mm screen. Recording on the 1 -inch v.t.r. is by the f.m. method using Y, U, V signal components with a luminance bandwidth of 22 MHz and chrominance band-
width of 10 MHz .
Of course all this was closed-circuit television, as there does not seem much likelihood of transmitting a 30 MHz video bandwidth until direct broadcasting satellites get going. In the meantime it seems more likely that HDTV will have useful applications in the production, distribution and projection of motion pictures. Sony claim that the picture quality "fully matches that of 35 mm motion picture film." (But this is not a new idea: older readers in the UK will remember Norman Collins's film production company High Definition Films of some 30 years ago.)

Nevertheless there is no reason why high definition equipment of this kind should not "be used in the studio well before the capacity to transmit such signals becomes established", in the words of Charles Sandbank, head of the BBC's re-
search department. Indeed if signal processing electronics become cheap enough, it might also be possible to use high definition techniques with advantage in the receiver (the transmission system remaining unchanged and compatible with existing standards). As Mr Sandbank remarked, in his paper on future broadcasting developments, for signals "derived from a high definition studio standard and pre-filtered for compatible 625 -line transmission, up-conversion to a higher line standard, e.g. 1250, with adaptive interpolation may also be worthwhile."
However, the same speaker very sensibly pointed out that high definition television broadcasting in the full sense really awaits the time when large-area domestic displays capable of doing justice to a standard with more than 1000 lines" become commonplace components."

Wireless telephones legal

Rumours that the Government were about to licence sale of wireless telephones were confirmed recently by the Department of Industry. The previous "liberalization" schemes of November last year covering extension telephones and modems, and of last May covering callmakers/repeating diallers with integral modems, are now extended to include "cordless" telephones, as the DoI call the wireless extensions to distinguish them from radio telephones.

"Some manufacturers have the u.l.a. made for them to the specification of the computer," says Oric computer designer P. T. Johnson of Tangerine Computer Systems, "rather than designing the u.l.a. around it". Like many popular computers Oric 1 is based on a 6502 microprocessor and a u.l.a., but unlike others it provides an eight-colour facility together with ? SK of user ram for $£ 100$. A printer and disc drive are promised for the near furure, as is a $£ 60$ modem to interface with videotex svstems.

The devices have to be tested for confor mity with technical guide 47 , which for a "small charge" is available from J. Jeans, BTHQ, ICS214, 45 Moorfields, London EC2Y 9U, tel: 01-432 9347 (the small charge turns out to be £10). There is a hefty charge for testing; probably between $£ 3,000$ and $£ 5,000$ will be required before testing begins. In defence of such amounts BT say that ordinary telephone testing already costs around $£ 2,000$ (three samples are assessed) and additionally there are r.f. and security aspects to take into account.

Interim frequency allocations up until 1986 are 1632 to 1792 kHz for transmitting and 47.45 to 47.55 MHz for receiving.

Interim Merriman

The Merriman spectrum review committee recommends that the 405 -line tv service should be closed by the end of 1984, years earlier than planned. They suggest that the best use of these v.h.f. bands would be for mobile services -radio-telephones and internal and operational communication for the broadcast authorities. The mobile radio allocation plan should be developed in consultation with manufacturers and users by the end of 1983, as should plans for the broadcast ancillary services, to be implemented progressively, starting in 1985. Having considered some of the alternatives, such as community tv and a full channel of teletext, the review committee considered that all tv services would be best served by existing and proposed schemes such as satellite and multi-channel cable services.

Tapping their own drum

After just a month of production in their new factory, the inventors of an electronic drum synthesizer had orders worth over $£ 250,000$, secured by the new company's New York distributor. Developed two years ago the drum kit, as it is called, has touch-sensitive pads that trigger production of sounds: rhythms are not programmed in as with conventional rhythm generators. Its four main touch pads trigger bass drum, snare, nigh and low tomtoms and secondary pads operate high-hat, closed high-hat and variable crash/ride cymbals. It also incorporates a rhythm unit which can be set to trigger the high-hats with variable tempo and time signature modes. Sound levels of each effect is adjustable and outputs allow direct interface with multitrack mixing desks. Associated instruments can be used individually or triggered by the device, for instance the Clap gives a wide range of clap effects, gun shots, explosive and other white noise effects, while another gives tympani effects.

The electronics design aspects were the work of Clive Button who teamed up with Mike Coxhead, who otherwise runs a building renovation firm, "Its a bit of a

departure from my own business" says Coxhead "but I'm glad we got it on the market before anyone else got the idea". His inital investment of $£ 30,000$ for the prototype has paid off and he's now after $£ 1$ million orders by the end of year.

Micro arithmetic leaves UK in cold

Floating-point arithmetic for new microprocessor systems, the subject of IEC publication 559, defines ways to perform binary floating-point arithmetic, whether realized entirely in hardware, software or a combination. The need for this world standard comes from booming international trade in microprocessor systems say the IEC, and a divergence of national practices could act as a brake. In defining a family of commercially feasible ways for new microprocessor systems to perform floating-point arithmetic, the IEC say the benefits will be "enhanced portability and capability programs; direct support for execution-time diagnosis of anomalies, smoother handling of exceptions, and interval arithmetic at a reasonable cost; and development of standard elementary functions, high precision arithmetic and coupling of numerical and symbolic algebraic computation".

It specifies 32 and 64 bit formats, results for arithmetic operations, conversions between integers or decimal strings and float-ing-point numbers and between different formats, as well as exceptions and their handling, including non-numbers. The standard is based on an IEEE 754 draft and was prepared in just over a year by the
microprocessor sub-committee of the IEC semiconductor devices committee. The UK did not vote explicitly in favour of publication of this standard, though the USA, USSR, Japan and most of Europe did. And we haven't been able to contact anyone from the sub-committee yet there were no UK members.

Basicode by radio
 In an attempt to find a universal version of

 the computer language Basic which would allow different computers to 'talk' to each other and to be able to load the same programs from a single source, Dutch radio has developed Basicode, a list of reserved words common to nearly all versions of Basic. A large number of the more popular home and hobby computers may be easily adapted to load programs written in Basicode. Earlier this year Radio-Nederland started broadcasting computer programs on the English-language programme Media Network, as did NOS on the domestic Hobbyscoop programme. They found that for shortwave 300 baud was the maximum rate for reliable reception but they also transmit locally on medium wave at 1200 baud and have had reports of successful recording of data from neighbouring Germany. Use of Basicode on amateur v.h.f. bands has now been approved by the Dutch telecommunications authority.Radio Nederland has published a book listing the Basicode reserved words and protocol and giving hardware and software adaptations which may be needed to use the system with a number of popular computers. The book and a cassette of programs written in Basicode are available at cost price (from Europe this is 25 guilders, about £5) from Basicode, Administrative Algemeen Secretariat, NOS, PO Box 10, 1200 JB Hilversum, Netherlands.

The Hunt is up

The findings of the Committee of Inquiry into cable television suggest that there should be few controls and that cable and programme providers can provide as many channels as they like. The report recommends the setting up of a supervisory, franchising authority. There would be no restriction on the quantity of advertising. Each franchise should cover an area of not more than half a million homes. Present providers of cable services would no longer be obliged to carry BBC and ITV programmes though any new service would.
These recommendations do not seem to provide the 'licence to print money' that many potential cable providers were looking for. It does not suggest a national standard for cable services (the Eden Inquiry is looking into cable standards). The main, and most controversial, point is that there is no distinction between the cable providers and the programme providers. If they were separated, there could be a national plan to give interactive services over the whole country. With the current plan, there will be no cable service in the less populated areas for a long time.

Fast a-2-d converter

Research into high-definition television at NHK laboratories has produced an 8 -bit analogue-to-digital converter with a maximum sampling rate of almost one gigabit per second.

Corrections

Circuit modelling by microcomputer by R. I. Harcourt, August 1982. The graphs published were inadvertently printed in place of some more recent ones. In the examples used, the 'phase degree' axes should be shifted by 180° to correct the graphs.

Simple, low-frequency oscilloscope. There are one or two changes to the circuit diagram of this instrument, which was described in the September issue. The top contact of the sweep-speed selector switch should be removed, and the $10 \mathrm{k} \Omega$ and $3.3 \mathrm{k} \Omega$ resistors on the base of the tail transistor in the Y amplifier should be interchanged. The author also asks us to point out that the 470 nF capacitor in the -2 kV line (not +2 kV) should be of 1200 V working and the $1 \mu \mathrm{~F}$ should be 600 V , not 6000 V .

PROGRAMMABLE GPIB-TOSERIAL INTERFACE

Remote programmable facilities dispense with some of the switch packs used in the earlier talker/listener interface design.

A data byte on the internal instrument bus may be loaded into the octal latches of the comparator chip. In the acceptor-data state, the byte corresponding to the end-of-text character is clocked into the F524 by the rising edge of STB3, applied to the CP input. This signal is derived from the RXST 96LS488 output in the same way as STB1 and STB2. The RXST and RXRDY handshake is completed through and-gate 4 and multiplexer IC_{12}. When the instrument receives an unlisten command, and provided one of the other three functions is addressed, $\overline{\text { ENBL }} 3$ returns high, so I_{11} drives the $\mathrm{S} 0, \mathrm{~S} 1$ inputs low, putting the 74F524 into the compare mode. Appendix 1 gives a more detailed description of the 74 F 524 operation. In this mode the 74F524 compares the eight-bit data input with that data latched internally. If the bytes do not match the equals ($=$) output will stay low. But if there is a true comparison the internal open-collector driver turns off and the output floats passive high through the $10 \mathrm{k} \Omega$ pull-up resistor. During talker active the three state condition on inverter I_{13} is removed, and a passive high on the 74 F 524 output results in an active low on the end-or-identify line. The assertion of $\overline{\mathrm{E}} \overline{\mathrm{OI}}$ concurrent with the transmission of the final data byte in a character string can be treated by the controller, and listeners active on the bus as an end-of-text terminating message.
Interface as an active listener. After initialization, the interface may then be addressed as an active talker or listener for the serial/parallel or parallel/serial conversion of data. The interface becomes listener addressed after receipt of the following remote messages: UNL, MLA and MSA 0 . When MSA 0 is received a falling edge at the 96 LS488 LA $\overline{\mathrm{D}}$ output inverts through the nand-gate 1 , producing a rising edge at the CP inputs of the dual D type latch IC_{7}. The CP pulse clocks the low outputs from I_{1} and I_{2} to the Q outputs of the D-type latches. The A0 \& 1 address inputs of the 74LS139 select the O0 outputs of IC_{8}. The ENBLO output of $\mathrm{IC}_{8 \mathrm{~b}}$ provides a low select input to IC_{12}. This establishes a TBRE/RXRDY handshake signal between the u.a.r.t. and the 96LS488. The 96LS488 RXST output drives the uarts TBRL input through I_{5}, the selected O 0 output of $\mathrm{IC}_{8 \mathrm{a}}$ and the nand-gate 5. The TBRE output from the uart is used as an enabling input to gate 5 , whichensures that $\overline{\mathrm{TBRL}}$ will not go low until the transmit register has serially encoded and transmitted the data byte present at the TB1-8 inputs. This

by Chris Jay

Abstract

This second part completes the description of a programmable modification to the 488 parallel-to-serial in teriace. Featured in the July issue of WW, it was conceived as a low-cost interface solution for instruments with a sorial data link such as an RS232C part. When configured to a keyboard and addressed es a talker, characters typed on the keys are converted by the interface from serial to parallel data and transmitted over the bus data lines. A printer interfaced to the bus is addressed as a listener; data bytes received are serially encoded and fed to the serial input port of the printer. The interface used 13 i.cs including a 96 LS488 to perform interface functions and message decoding, an IM6402 uart for the serial/parallel encoding of data, and an MC14411 as a frequency reference for serial transmission and reception at four linkselectable rates. During the talker-active state the interface couid automat ically recognize an end-of-text character, and assert the EOI line concurrant with the transmission of the final data byte in the character string.

completes the RXST/TBRL handshake for the asynchronous transfer of data bytes to the uart transmit buffer register. Data bytes present on the GPIB data lines are inverted onto the internal instrument bus by IC_{3} which is enabled by the active low signal LACSENBF.

Interface as an active talker. To program the interface as an active talker the sequence of UNL, MTA and MSA 0 is sent. The TA $\overline{\mathrm{D}} 96 \mathrm{LS} 488$ output goes low and latches the code 00 into the dual D type latch IC_{7}. The $\overline{\mathrm{ENBL}} \mathrm{NB}_{\text {output of }} \mathrm{IC}_{8 \mathrm{~b}}$ goes low, and when inverted by I_{8} produces a high enable signal for nand-zate NG2, so the inversion of TXST may drive the $\overline{\text { DRR }}$ uart input. Also, the output of I_{8} enables and-gate seven establishing a DR/TXRDY handshake between the uart and 96LS488. When the interface enters the talker active state the TACSENBF sig nal goes low. The 74F240 enable inputs and the uart receive register disable input goes low. Parallel data serially encoded from the RS232C input is inverted to drive the bus data lines by IC_{4}. The uarts data ready output drives the 96LS488 TXRDY input high, via and-gate seven, to inform listeners active on the bus that a data byte
is valid. When this data byte has been taken the 96LS488 decodes the bus handshake lines to set TXST high. This assertion is inverted by gate 6 to drive the uarts $\overline{\mathrm{DRR}}$ input low. When low the uart permits the next serial data input to be received without overrun error. Transmission of data bytes continues until the end-of-text character is sent. Transmission of the final data byte results in a data match with the contents of the 74F524. The EQU $(=$) will be pulled passive high by the $10 \mathrm{k} \Omega$ pull-up resistor. Inverter I_{13}, which has been enabled drives the EOI line low, concurrent with the transmission of the final data byte in the character string. The controller-in-charge may recognize this end-of-text message, regain control of the bus and un-address the instrument until it is required to talk again.

Serial poll capability

The instrument interface has the capability to generate a service request and respond to a serial poll. If, during the serial encoding or decoding of data bytes, a framing, parity, or overrun error occurs, the output of nor-gate 8 goes low. The cross-coupled latch of gates $9 \& 10$, set during a power on master reset, will drive the 96LS488 $\overline{\text { RSV }}$ (request for service) input low. The 96LS488 responds by asserting the service request line. The controller-in-charge may regain control of the bus to conduct a serial poll, and hence determine the source and cause of the service request. To perform a serial poll, the controller asserts the $\overline{\mathrm{ATN}}$ bus line and issues an UNL message to prevent active listeners responding to status bytes as though they were data bytes. The serial poll enable message is sent over the data lines and each instrument capable of responding to a serial poll will sequentially receive its talk address. The controller removes the assertion on line $\overline{\mathrm{AT}} \overline{\mathrm{N}}$ and listens to the bus for the instrument, to issue a status byte. When the interface is in the serial poll active state, the SPASENBF output from or-gate 3 goes low. The 74 F 240 half of IC_{10} drives the data lines 13 with the inverted IM6402 outputs of PE, OE and FE. Note to relieve the threestate on these outputs the 6402 status flag disable input must be disabled low. The output of the SPAS-enabled $\overline{\mathrm{E}} \overline{\mathrm{OI}}$ inverter drives the EOI bus line inactive high. This signal is not asserted by the instrument during serial poll active state. The requested service output $\overline{\mathrm{R} Q S}$ from the 96LS488, wire-or'ed to data line 7, will go active low, indicating that the interface originated the service request. When the

status byte is read by the controller the STST 96LS488 output goes high then low, pulsing the STRDY input low then high through inverter I_{10}. So as the status byte is read the local handshake STST to STRDY is automatically driven. From the format of the status byte the controller program may determine the error that occured during encoding and transmission or reception. If an error resulted in one of the error flags going active high then it will
be necessary to issue a clear message to the interface before normal operation can be resumed.

Clearing the system

There are two ways of clearing the instrument interface. On the application of power the RC network of $10 \mathrm{k} \Omega$ and $10 \mu \mathrm{~F}$ reset the 96LS488 and the uart. The uart may be cleared remotely on the receipt of a device clear or selected device clear mes-

Table 5a. UART control register, MSA 1

DAB 1	DIO1	DIO2	DIO3	DIO4	DIO5	DIO6	DIO7	DIO8
	SBS	EPE	PI	CLS1	CLS2	\mathbf{x}	\mathbf{x}	\mathbf{x}

Control The following inputs are used to set the control register status when register the CRL input goes high.

CLS1, Character length select - these two inputs select the character length CLS2 according to

Character length
CLS 1
CLS2

5	6	7	8 bits
L	H	L	H
L	L	H	H

PI Parity inhibit. A high level inhibits parity generation, parity checking and forces the PE status flag output low. This input overrides the EPE input.

EPE
Even parity enable. When the PI is set low a high level on the EPE input generates and checks even parity conversely a low level selects odd parity.

SBS
Stop bit select. This input selects the number of stop bits. The number of stop bits added to the transmitted character also depends on the character length selected by the CLS1 and CLS2 inputs. The following table lists the number of stop bits selected versus the character length and state of the SBS input.

Table 5b. Data speed generator latch, MSA 2
DAB 2

DIO1	DIO2	DIO3	DIO4	DIO5	DIO6	DIO7	DIO8 Data Rate
0	0	0	x	x	\times	x	$\times \quad 75$
1	0	0					300
0	1	0					600
1	1	0					2400
0	0	1					1200
1	0	1					4800
0	1	1					4800
1	1	1					19200

Chris Jay is senior design engineer at Marian Electronics, Stroud,
Gloucestershire. Joining GCHO in Cheltenham as a trainee technician straight from school, he obtained City and Guilds (Telecommunications) and HNC qualifications at day release and evening classes. These qualifications helped him qualify as a mature student for a full-time degree course at Essex University. On graduation in 1977 he joined Texas Instruments as part of the engineering design effort on the 9911 DMA controller chip. Preferring to be involved with device applications he joined Linotype paul in Cheltenham where he designed computerized file storage equipment for the newspaper and printing industries. He left to join Fairchild's Bristol design centre in 1980, where he wrote this article.
that the user may clearly see the current addressed state of the instrument. The return-to-local 96LS488 input is permanently wired to V_{cc} through a $10 \mathrm{k} \Omega$ resistor.

Ideas for further development

Although the interface circuit was designed to have a number of useful features this design could be developed for increased functional capability. With the addition of a 74150 multiplexer circuit and

Table 6

S0	S1	Operation 0
0	Hold register retains data in shift	
0	1	Read_read contents in regis- ter onto data bus
1	0	Shift - Allows serial shifting
1	1	on next rising clock edge Load - load data on bus into register

use of three of the unused outputs of IC_{13}, a significant increase in the number of rates available may be achieved, see Fig. 3. Four address inputs S0, S1, S2 and S3 of the 74150 may be driven from the Q0-3 74LS374 latch outputs. Address inputs may select any one of the clock outputs F116 of the MCl 14411 . If the E input is permanently low and the Z output is connected to the TRC and RRC inputs of the IM6402, the outputs F1-16 wired to multiplexer inputs I0-15 may be individually selected to provide a clock input to the uart. The A and B inputs to IC_{6} can be wired to the Q4 \& 5 outputs of IC13, 74LS374. The two-to-one multiplexer of OG3, OG4 and AG2, shown in Fig. 2 may be dispensed with. A full description of the MC14411, including a table of the clock frequencies at the outputs F1-16, may be obtained from the Motorola publication "European cmos selection".

Appendlx 1

The 74F524 is a new addition to Fairchild's Fast family. It is a registered (latched) comparator with bidirectional eight-bit I/O and an independant serial data I/O. When data is stored internally the device may compare a byte offered to its parallel eight-bit data input, and generate an equivalence, greater than or less than output, for a programmed mode input of magnitude, or two's complement

compare. The three comparison outputs are all open-collector, and designed to be pulled passive high when asserted. This makes it convenient for cascading with other 74F524 devices. These outputs are enabled by a logic low on the $\overline{\mathrm{SE}}$ input. The S0 and S1 address inputs permit register loading, reading, data holding and shifting. Format of S0 and S1 is shown in Table 6. The mode input may be set high or low depending on whether the design requires magnitude or two's complement comparison. There is a single clock pulse input; the rising edge on this pin can load data into the register, or shift the contents by one bit from the CSI input to the CSO output. Pin configuration is shown in Fig. 4.

Appendix 2

Serial poll: The serial poll is a mechanism by which instruments capable of talking may individually send information pertaining to their current status over the data lines. The controller may interrupt events on the bus to invoke a serial poll either in response to a service request initiated by the instrument or as an autonomic process initiated by the controller's command program. The service request line may be used by the instruments to request attention from the controller and may be likened to the use of an interrupt line to generate an interrupt and divert processing during the execution of the computer program when attention is required by a peripheral component.
Parallel poll: The parallel poll can have a distinct speed advantage over the serial poll because a single status bit from eight individual instruments may be read by the controller simultaneously. The end-oridentify line is used by the controller as the identify line (this line is also used by talkers active on the bus for end-message, so it has a a dual purpose). Any instrument capable of listening will be assigned a data line by the controller onto which it will declare its status bit during the parallel poll active state. Notice that two or more instruments may use a single line as a wired-or function. The controller will configure the instruments to respond to a parallel poll in the following way.
The instrument will be addressed to listen. The controller will send the parallel poll configure message which conditions the instrument to expect the following parallel poll enable message, and its format determines how the instrument responds during the active state. Data bits on lines $5,6 \& 7$ of the PPE message are set to 110 . Data line 4 will contain a parity bit. A true comparison with the device-dependant individual status message will produce an affirmative parallel poll response during the active state. A false comparison between the line 4 bit received in the enable message, and the i.s. message results in no response to the identify message. The remaining bits of the enable message on lines 1, 2 \& 3 will contain a one-of-eight code which will assign one line for transmission of the compare bit during a poll response. If the bit pattern were 000 , the response would occur on data line 1, 001 would yield a response on 2 , and so on.

Bidirectional interface

On the RS232 port of this GPIB-toRS232 send-or-recelve interface converter, data ratos can be set by switches or are software programmable in the range 50 to 19200 bit/s. The RS488, distributed by Electroplan, has a 40 -character input buffer and provides an RS232 clear-to-send signal. Price of the interface is under E200. Electroplan Ltd, PO Box 19, Orchard Road, Royston, Herts SG8 5HH.
WW501 for further details

Single i.c. for f.s.k. modem

Data transmission by telephone line remains the most convenient and cheap method of conveying digital information over medium and long distances despite its slowness, hence interest in modems. Advanced Micro Devices are to manufacture an i.c. that requires only a handful of noncritical components, some switching and level conversion logic, and an acoustic coupler or direct-coupling arrangement to form a modem that can be switched to suit one of four standards.

The Am7910, whose application is outlined in the diagram below, has built-in a-to-d and d-to-a converters and all processing, including filtering, is done digitally under the control of a crystal, so drift problems due to ageing and temperature change are not inherent and adjustments not required. Five mode-select inputs set the maximum data rate at 300,600 , or $1200 \mathrm{bit} / \mathrm{s}$ and select one of nine modes
shown in the table.
When set to operate to either Bell 202 or CCITT V23 standards, and say, acknowledgement and control signals may be returned to the sender on remaining bandwidth while the sender continues to transmit at $1200 \mathrm{bit} / \mathrm{s}$.

An auto-answer facility meeting Bell and V25 specifications is also built in. Upon receipt of a signal at its ring input, a silence interval is followed by an answer tone at the transmit-carrier output. T.t.1.-compatible terminal-control signals such as dataterminal ready, request to send, clear to send and carrier detect are provided, with appropriate delays.

To aid testing, the device can be set to operate in one of ten loop-back modes, in which transmitter and receiver sections are set to operate on the same channel or frequency and either the analogue output and input connected together for local testing

Transmit ter

Receiver

or the digital data lines connected externally to allow testing of the local modem using a remote one.
Although this 28 -pin n-mos device will not be in full production until the beginning of next year, samples of out-of-specification i.c.s should be available now.
WW500 for further details.

	Modem	configurations	
Standard	Bit/s	Duplex	Features
Bell 103	300	full	originate
Bell 103	300	full	answer
Bell 202	1200	haif	
Bell 202	1200	half	line equalizer
CCITTV 21	300	full	originate
CCITTV 21	300	full	answer
CCITTV 23 mode 2	1200	half	
CCITTV 23 mode 2	1200	half	line equalizeI
CCITT V23 mode 1	600	half	

October 27

Application of viewdata to transaction
processing; one day seminar in central London. Details from Modcomp, Molly Millars Lane, Wokingham, Berks.

October 28

Modern tv chassis - philosophy and circuits:
Royal Television Society meeting, 7pm at IBA,
70 Brompton Road, London SW3.

November 2

Commencement of programme broadcasting on Channel 4

November 9

Comex 82, Radio communications exhibition, Saxon Inn, Northampton. Organised by the Federation of Communication Services, 70 Church Road, London SE19.

November 10

Industrial robotics; IEEIE lecture, White
Horse Hotel, Dorking, Surrey. IEEIE 2 Savoy
Hill, London WC2R 0BS.

November 11

Newspeed - news without paper. Royal
Television Society meeting on TVS news
gathering system. 7pm, IBA, 70 Brompton
Road, London SW3.

November 18-19

Industrial applications for distributed computing: conference at National Computing
Centre, Manchester and sponsored by SERC.
Details from F. Chambers, Logica, 64 Newman
Street, London WIA 4SE.

November 20

Electronics for Peace Network: Inaugural
meeting in Bracknell, Berks. Further details from Tim Williams, Telephone: 0732864882.
November 23-25
2nd International Conference on Semi-custom
ICs. The West Centre, London SW6.
Organised by Prodex (Seminars) Ltd, 79 High
Street, Tunbridge Wells.
November 25
Hi-Fi TV - Bigger, Better Pictures: Royal
Television Society lecture at IBA, 70 Brompton
Road, London SW3 at 7pm.
November 26 - December 5
1lth International exhibition of inventions combined with the first International
exhibition of special techniques. New
Exhibition and Conference Centre, Geneva.
Details from the Secretariat, International
Exhibition of Inventions, 8 rue du 31 -
Decembre, CH-1207 Geneva, Switzerland.

This board programs a 2716 eprom with software developed on the emulator described in the September and October issues. A small printer provides hard copy of the software under development. Only two i.cs are required for the programming board, one for conversion from 5 to 25 V and the other to determine the programming-pulse length.

Only a relatively simple circuit is required to transfer software evolved using the emulator into an eprom since the program-ming-control software and key are included in the main-board design already published.

To program a 2176 or any of its close relatives, addresses and corresponding data are presented to the 'empty' device and each byte is held for 50 ms . This programmer addresses the eprom sequentially, as is usual. A 50 ms pulse coinciding with the 'data-hold' period is applied to the

by Peter Nicholls, M.A.

eprom's program input, pin 18, while pin 21 of the i.c., V_{pp}, is held at 25 V . The 25 V supply, present at pin 21 while the eprom is being programmed, must not be applied to the i.c. in the absence of a 5 V supply, otherwise the eprom will be damaged.

Operation

Referring to Fig. 1, control software on the emulator board first switches flag 1 high

Flg. 1. 2716/2516-eprom programming board shown connects directly to emulator board and requires only 5 V supply. A 25 V supply is generated on the board by IC_{11}. Monostable $1 C_{10}$ generates 50 ms programming pulses.
when the ' e ' key is pressed. Transistors $\mathrm{Tr}_{2,4}$ switch the 25 V program voltage to the 2716 socket. The software continues, doing nothing more than reading all the 6116 ram's data onto the bus in sequence.

A few nanoseconds after the point in the read cycle where the 6116's chip-select input goes low, IC_{10} is triggered to provide two opposite pulses. Negative pulses, at pin 9, are applied to the processor's NHOLD input and, while low, cause the system buses to become static. When IC_{10} reverts, the processor goes into the next read cycle, and so on until the eprom is full. Positive pulses are fed to the eprom's program-pulse input.

Transistor Tr_{3} only allows pulses to pass to the processor's hold input after the e key has been pressed and until programming is completed. Without this blocking transistor, transmit and receive functions of the emulator will not work while the programming board is connected and display problems will be encountered with some functions.
Power supply. Figure one also shows the switching-regulator circuit used to provide a 25 V programming voltage from a 5 V supply. The inductor shown may be made using 56 turns of 32 s.w.g. wire on an RM6/250 pot core. Both regulator and pot core are available from RS Components.

Before the programmer is used the programming voltage should be set to within half a volt of 25 V at pin 21 of the eprom socket. This is done with a temporary $10 \mathrm{k} \Omega$ load resistor connected between pin 21 of the programming socket and ground (pin 12). The programming board should be connected to the emulator, the ' e ' control key pressed, and the potentiometer adjusted to give the required voltage at pin 21. Under the same conditions but with the flag input low, the voltage reading at pin 21 should be close to 4.3 V .

Connection to the main board

A 24 -pin dil socket, which may be either a standard or zero-insertion-force type, mates with the header plug on the lead from the emulator board. Three other connections to the programming board may be made through a four-way cable, plug and socket. I used an RS467 611 socket shell, with 467589 terminals, and a 468080 right-angle plug in my version.

Boards produced using the available overlays (and those boards from PKG Electronics) have four holes for this connector to the right of IC_{1}. From top to bottom, the connections are flag 1 , no connection, $\overline{\mathrm{CS}}$ and NHOLD. Removal of the unused plug pin and fitting of

Table 1. Modification to the programming software. With the original software*, the e prompt did not occur until one second after e had been keyed. Uninitiated operators pressing the e key again within 1s to try and get some response on the display would find their software overwritten with FF bytes. The e prompt appears as soon as the key is pressed with the software modifications shown. Blank spaces in lines 36 and 45 should be ignored since the original software at their locations remains unaltered.

36	75.040000															
37	C0	[:4	07	C9	C. 1	C 1.	C 1	E. 4	9F	90	40	C4	04	c:9	Co	6.4
38	00	C. 9	C1	$E 9$	30	9 C	E: 4	C. 4	013	36	C4	00	32	C6	01	36
39	D4	0 F	98	05	36	8F	02	90	F. 4	C 4	00	07	C. 4	03	C9	2 A
40	C4	63	C9	2E	C. 4	2 F	C9	2 C	C4	2E:	C9	2E:	C 4	0%	C.9	2 F
41	c4	7F	C9	28	0.4	05	37	¢:4	[2\%	33	$3 F$	C. 4	0 E :	C9	CO	[.4
42	00	C9	C, 1	36	C9	30	36	32	C9	31.	32	[4	FF	CE	01	36
43	D4	0 F	98	07	36	8F	02	90	F 4	90	1 D	C\%	08	36	C6	01
44	8 F	02	32	0.1	C. 1	31	60	98	04	01.	32	90	F 1.	36	01	C1
45	30	60	98	As				E. 6								

* The author asks us to point out that the tenth byte along line 21 of the main program shown last month read 69 but should have read B9.
a blanking plug in the socket will ensure that the connector cannot be fitted the wrong way round.
Before the eprom to be programmed is inserted, the 5 V supply should be switched on and the emulator and programming boards connected together. Now, with a blank eprom in the socket and a developed program in the emulator's memory, the \mathbf{e} key is pressed. This initiates the programming sequence, consisting of 2048 cycles of about 50 ms each. When programming is complete, the display will show 'burnt'.

If the software written into the emulator is not intended to fill the eprom, set the
display to show the first unused address and press the e key twice within one second. The prompt will amend to F and each unused byte of ram will be lcaded with FF immediately before the byte concerned is programmed into the eprom; otherwise, the programming sequence remains the same.
Should software in the emulator have to be programmed into the remaining space of a partially full eprom, the emulator ram should be filled with FF before the eprom is inserted ready for programming. When the procedure is finished, the display will show 'burnt'. Removing the three-pole

Table 2. Control and character-generator software for driving a small printer mechanism to provide listings of the emulator's ram. As shown, the relocatable printer routine between lines 45 and 60 follows on at the end of the modified programming routine shown in this article. If the programming software shown in the October issue is to be used, line 45(a) at the end of this listing should be used instead of line 45. If the modified programming routine is to be used without the printer, line 45(b) shoulc be used. This leaves the eighth control key without a function and the program jumps back to the start of the monitor if it is pressed. Blank spaces should be ignored and decimal line numbers shown correspond with those given in the original listing. Lines 98 to 102 are character generator tables.

45									C4	06	37	C4	10	33	C.4
46	C9	35	C9	36	C9	30	C9	3D	c9	3 E .	C9	3 F	C9	C0	C4 44
47	07	C4	00	C9	4.	C4	08	C9	40	06	D4	10	98	FE	06 D4
48	10	9 C	FE	\%	00	1.:	1.	1 C	1.	01	02	40	70	70	7070
49	01	C3	80	C.9	30	C.4	01.	70	01	C3	80	co	31	C4	01.70
50	01	C3	80	C.9	32	C 4	01.	70	01	c3	80	c9	33	C_{4}	0170
51	01	C3	80	[:9	34	C6	01.	D4	OF	01	40	70	70	70	7001
52	C3	80	C9	37	54	01	70	01	C3	80	C9	38	C4	01.	7001
53	C3	80	C9	39	04	01	70	01	C3	80	c9	3 A	90	04	9095
54	90	A1.	C 4	01	70	01.	C3	80	C. 9	3 E	C4	30	01.	06	D4 20
55	9 C	FE:	06	D4	20	98	FE	C1	80	c:	co	C4	AE:	8 F	00 [4
56	00	C9	Co	06	D4	20	9 C	FE	06	04	20	98	FE	40	E: 4 3F
57	98	06	C4	01.	70	01	90	D5	C 1	C 1.	E4	9E:	98	04	C4 41
58	C 9	4.	ES	40	98	02	90	E8	36	D4	OF	98	05	36	[1 41
59	98	$A C$	06	D4	10	98	FE	8F\%	Ec	C4	00	07	C1.	C	E. 49 E
60	9 C	FA	C.4	00	37	64	00	33	$3{ }^{\circ}$.
98	3E	45	49	51	3E	00	21.	7 F	01.	00	2.	43	45	49	3142
99	41	51.	69	46	0 C	14	24	7 F	04	72	51	51	51	4 E	1E. 29
100	49	49	06	40	47	48	50	60	36	49	49	49	36	30	4949
101	4A	3 C	3 F	48	48	48	$3 F$	7F	49	49	49	36	3 E	41	414.1
102	22	7F	4.	41.	22	1 C :	7 F	49	49	49	41	7F:	48	48	4840
45(a)	08	08	08	08	08	$0 ¢$	08	08	C.4	06	37	54	1. 0	33	0.400
45 (b)	30	60	98	AS	01.	36	90	E6		00	3	$0 \cdot 4$			3 FFF

connector carrying flag 1 , chip-select and hold will speed up the FF-filling process by eliminating the 50 ms delay at each address. Now, the required program can be typed into the emulator from a specified address, the connector replaced, the eprom inserted and the e key pressed once. This transfers the new program, leaving data already in the eprom unaltered.
It is not possible to read back the contents of an eprom with this basic tool so it is wise to keep copies of programs on tape if future software expansions or modifications are envisaged.

Printer-mechanism control

Minor software modifications and a little additional hardware allow a small printer mechanism to be driven by the emulator to produce whole or partial listings of the emulator's memory contents. Discounting the printer and its 24 V power supply, it is estimated that additional electronic components will cost about $£ 2$.
Printing is initiated by a spare control key marked p mentioned in the first article. Referring to Fig. 2, transistors five and six switch the 24 V supply to control the paper when the p key is pressed. Transistors seven to ten drive and brake the motor.

The i.c. used for display driving on the emulator board, IC_{3}, consists of seven Darlington transistors. When the printer is operational, this i.c. is used to drive the heads so prompt characters are not shown on the display. In this case, the printer in action provides sufficient prompting.

Character generation and synchronization with the print-head traverse are carried out by software for which there is ample space in the 2 K monitor eprom. Using software in this way keeps costs to a minimum.

Operation

Before the printer is used, the 24 V supply should be set by adjusting the potentiometer in the 12 V regulator's ground lead. When the printer is connected, the a key is used to set the displayed address to the beginning of the program to be printed and the p key is then pressed. Printing continues until address 7 FF is reached unless the p key is redepressed for around a half of a second. When printing is completed, the print head positions itself at the left-hand side of the carriage and out of contact with the paper so that the software record can be fed through and torn off.
It is important to note that the metallized paper used is at 24 V with respect to the 0 V line of the emulator so damage is likely to result if the paper touches any conducting element of the system while still in the printer. Covers will be needed not only to prevent access to mains voltages but also to prevent the paper touching any conducting part of the system.

The PU245-L20 printer mechanism used with the original system prints twenty columns of 5 -by-7-dot characters on 60 mm -wide electrosensitive paper in roll form and is available from Farnell

Fig．2．Hard copy of the emulator ram＇s contents was obtained using a small，cheap printer mechanism connected as showr＇．The display－driver i．c．consisting of seven Darlington drives the print head so display prompts are not given during printing．Numbers 1 to 12 refer to connector pins on the single－sided boards available．

$2 马-シ i$
里： 2
ごこうFこと
こFFF＝「F
戸テこ戸Fご戸

Sample of the PU245 printer＇s font which is under software control．

Electronic Components Ltd，Canal Road， Leeds LS 12 2TU，or from GMT Electron－ ics，Newport House， 22 Hartfield Road， London SW19 3TD under the code name 10E 012 LE．The print head has seven vertical dots and software is used to deter－ mine the character dot width．
Etched but undrilled boards for the pro－ grammer and printer electronics are avail－ able from PKG Electronics，Oak Lodge， Tansley，Derbyshire for $£ 4$ each including postage．Undrilled boards for the emulator are also available at $£ 8$ each inclusive，as are programmed eproms at $£ 5$ inclusive， from the same source．These eproms con－ tain the printer routine．
Photocopies of the track layouts and component positions can be obtained by sending a large s．a．e．to Wireless World Emulator，Room L303，Quadrant House， Sutton，Surrey SM2 5AS．

MNO

Wireless World index

The index for last year＇s volume of Wireless World is available for 75 pence，postage included，from General Sales Dopartment，IPC Electrical－Electronic Press Lid， Quadrant House，Sutton，Surrey． Indices back to 1973 are available for the same price，except that for 1977 which cosis f 1.20.

PERSONAL
 COMPUTER

Basic language in HewlettPackard's portable computer is part of a 48 K operating system supplemented by 16 K of ram, expandable up to 24 K , and up to three plug-in rom modules of 8 or 16 K . As the unit is battery powered, memory contents are retained when the computer is switched off and the real-time clock can be used as an alarm clock or to turn on the computer and run a program at a set time. The 32 character sections of 96-character lines shown on a dot-matrix l.c.d. may be scrolled from side to side. Programs and data stored on magnetic strips capable of holding 1.3 K bytes are read by a transducer in the computer, or alternatively peripherals with much larger magnetic memories may be used. Of the 169 instructions in the operating system, 147 are Basic commands, statements or functions; program, data and appointment files can be named, saved and made to interact with each other. Every key on the 254 by 127 by 32 mm unit is redefinable and may be given a new label using snap-on overlays. Peripherals include printers and plotters. Hewlett-Packard Ltd, Nine Mile Ride, East Hampstead,
Wokingham, Berks. WW301

LOW-COST IMBYTE DISC DRIVES

Up to 1.2 Mbyte of formatted data can be stored on a half-height $51 / 4$ in disc drive costing under $£ 400$ excluding vat. Called the YD380T, this double-sided, double-density drive comes from the Japanese company Ye-Data who also manufacture a standard-height $51 / 4$ in drive capable of holding 800 Kbyte of formatted data and costing £325, the YD280. An eight inch version, the YD180, with a capacity similar to the 380 T costs under $£ 400$ and uses IBM or equivalent diskettes. When used as double-density drives, the two 1.6Mbyte drives, the 180 and 380 T , transfer data at 500 K bits/s and have average access times of 91 ms and average latency times of 83 ms . These drives are intended for original-equipment manufacturers are are thus uncased and without power supply.
Systems consisting of one 8 in drive and one high-density $51 / 4$ drive, or two of the latter, are also available. A CP/M compatible discoperating system for either size of drive may be used to transfer

existing software from one size of drive to the other, or existing software on 8 in disc can be converted by the importer if two $51 / 4$ in high-density drives are to be used. Vincelord Ltd, Suite 2, 26 Charing Cross Road, London WC2.
WW302

CMOS A-TO-D CONVERTER

An 8-bit microprocessorcompatible analogue-to-digital converter called the ADC830 is manufactured by Datel-Intersil (Intersil Datel in the UK). Conversion time is 100μ s and the device, with external adjustment, gives a maximum error of $\pm 1 / 2$ l.s.b. Outputs may be switched to a high-impedance state. Intersil Datel (UK) Ltd, Snamprogetti House, Basing View, Basingstoke, Hants RG21 2YS.
WW303

STORAGE SCOPE FOR LESS THAN $£ 1,000$

According to Gould, the OS1400 20 MHz digital-storage oscilloscope is the first of its kind for under $£ 1000$ since their first one in the early seventies. This dual-channel instrument has pre-triggering from 0 to 100% and post-storage trace expansion facilities and may be used as a real-time oscilloscope. Its storage capacity is 1 K by 8 -bits, giving vertical and horizontal resolutions of 1 in 256 and 1 in 1024 respectively; a dot-joining facility giving linear interpolation between samples is incorporated. Display modes allow freezing of the display

at the end of a triggered sweep, immediate freezing of the display, data and display refresh on triggering and a rolling-display mode in which the pre-trigger storage facility may be used. A version with X, Y and pen-lift outputs for use with a plotter is also available. Gould Instruments Ltd, Roebuck Road, Hainault, Ilford, Essex IG6 3EU.
WW304

EIGHT-CHANNEL MULTIPLEXER

Eight analogue and/or digital timerelated signals may be viewed at once on a single-channel
oscilloscope using the 8001 from Global Specialities. Multiplex rate and overall gain are variable as is the trigger level between $\pm 5 \mathrm{~V}$, triggering being taken from the first channel and available as a t.t.l. compatible signal at the output. Each channel has an input impedance of $1 \mathrm{M} \Omega$, will accept levels of $\pm 5 \mathrm{~V}$, and has a flat response to 12 MHz down 3 dB at 20 MHz . Channels may be viewed individually by stepping manually, viewed all at once, or one of two groups of four may be displayed. Its price is $£ 225$ excluding vat. Global Specialities Corp., Shire Hill Industrial Estate, Saffron Waldon, Essex CB11 3AQ. WW305

ZX INTERFACE

Digital and analogue i/o modules for control and sensing applications using the ZX80 and 81 computers are made by RD laboratories. These modules connect to the computer through one of two main interfaces, one at $£ 15$ for carrying two modules and one at $£ 40$ for carrying up to eight modules. Five modules ranging in price from $£ 27.50$ to $£ 34.49$ are available for digital i / o, analogue input, output and multiplexing, and light-pen connection. RD Laboratories, 5 Kennedy Road, Dane End, Ware, Herts SGl2 0LU.
WW306

DIGITAL
 CAPACITANCE METER

Highest and lowest of eight ranges on Metertech's MT301 hand-held capacitance meter are $2000 \mu \mathrm{~F}$ and 200 pF respectively. The meter's readings are given on a half-inch high $31 / 2$ digit l.c.d. with $0.5 \%, \pm 1$ digit error on the lowest range with 0.1 pF resolution. At $£ 69$, the instrument includes test clips and batteries; a case is available for $£ 6$. Centemp Instruments Co., 62 Curtis Road, Hounslow, Middlesex TW4 SPT.
WW307

P.W.M. I.C. FOR REGULATORS

Two i.cs designed for driving power mosfets in switched-mode power supply applications are manufactured by Siliconix and a vailable through Semiconductor Specialists. The PWM25 and PWM27 are 16-pin devices containing an error amplifier, flipflop, oscillator, pulse-width modulator and voltage regulator for controlling drive-signal frequency and pulse width. The

PWM25 has two outputs which are low in the off state; in the PWM27, the outputs are high in the off state. A shut-down function is included. The same distributors have recently introduced a range of low-noise op-amps from Raytheon, the RC714 series, that require an input bias current of typically $\ln A$. Semiconductor Specialists (UK) Ltd, Carroll House, 159 High Street, Yiewsley, West Drayton, Middlesex
UB7 7XB
WW308

FIBRE-OPTIC DATA LINK

Designers wanting to evaluate the many advantages of fibre-optic data-communication links over their electrically-conducting counterparts can do so with a kit from Burr Brown. Two
RS232/20mA-compatible
transmitter/receiver boards and two 33 -metre lengths of fibre-optic cable are main elements of the $£ 299$ kit. Burr Brown International Lid, Cassiobury House, 11-19 Station Road, Watford, Herts WD1 1EA. WW309

ROM USING RAM

Lithium batteries are used to retain data in 2 K byte of data in cmos ram for around 10 years in a product called Memic-L from Camel. Connection of the 102 by 61 by 25.4 mm device to the computer is through a 30 cm long 24 -way cable so more than one unit may be used on boards with sockets that are close together such as used in the Apple. Function switches are used to select the upper or lower half of memory or the whole 2 K , depending on the type of system, and access time is said to be better than 200 ns . Each device is supplied with instructions for $£ 29.95$. Cambridge Microelectronics Ltd, 1 Milton Rd, Cambridge CB4 IUY. WW310

AMBISONIC DECODER

Besides decoding UHJ ambisonic recordings, such as used on records from Unicorn and Nimbus, the AD2 also enhances standard stereo. It consists of a board measuring 100 by 100 by 25 mm intended to fit into existing hi-fi equipment and includes a control for compensating for different speaker layouts. Currently available recordings are two channel but the decoder will also be suitable for three-channel UHJ recordings. (See, for example, NRDC surround-sound system by M. A. Gerzon, WW April 1977 page 36.) The AD2 costs $£ 49.45$ including vat Minim Audio Ltd, Lent Rise Road, Burnham, Slough SLl 7NY.
WW311

> Professional readers are invited to request further details on items featured here by entering the appropriate WW reference number(s) on the mauve reply-paid card.

U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

HEAVY METAL PLINTHS

Cut out for most BSR or Garrard decks.
Silver grey finish, black trim. Size $16 \times 13 \%$ in Post $£ 2$ DECCA TEAK VENEERED PLINTH. Post $£ 1.50$ small amplifier. Board is cut for B.S.R. E4$£ 5$ $183 / \mathrm{ain} . \times 141 / \mathrm{kin} \times 4 \mathrm{in}$. Black/chrome facia trim. Also with TINTED PLASTIC COVERS

BSR SINGLE

 PLAYER DECKS BSR P170 RIM DRIV QUALTY DECK Manual or automatic play Black with silver trim, stereo ceramic cartridge E20 BSR P204 SINGLE PLAYERS SPECIAL OFFERS Two speed $33 / 45 \mathrm{r} . \mathrm{p} . \mathrm{m}$. hi-fi decks with stereo Ceramic - 240 VAC f 15 or 9 V DC $£ 18$ Magnetic-240V AC $£ 20$ or 12V DC $£ 24$THE 'INSTANT" BULK TAPE ERASER E9.50 Post 95p Suitable for cassettes and all sizes of tape with switch and lead (120 volt to order). Will also demagnetise small tools computer tapes.
Head Demagnetiser only $\mathrm{E5}$
BATTERY ELIMINATOR MAINS to 9 VOLT D.C.
Stabilised output, 9 volt $400 \mathrm{~m} . \mathrm{a}$. U.K. made in plastic case with screw terminals. Safety overload cut out. Size
$5 \times 31 / 4 \times 2^{1 / 2 i n}$. Transformer Rectifier Unit. Suitable Radios, Cassettes, modeis, £4.50. Post 50p.
DE LUXE SWTTCHED MODEL STABILISED. $£ 7.50$. PP $£ 1$ $3-6-71 / 2-9$ volt 400 ma DC max. Universal output plug
and lead. Pilor light, mains switch, polarity switch.

DRIL SPEED CONTROLLERLIGHT DIMMER KIT. EaSY build kit. Controls up to 480 watts AC mains, E3. PP 65p. fits standard box, f5. Post 65p.

EMI 131/2x8in. LOUDSPEAKERS Model 450, 10 watts R.M.S. With moving coil tweeter and two-way crossover; 3 ohm or 8 ohm. SUITABLE BOOKSHELF CABINET E6.50. Size $18 \times 11 \times 6 \mathrm{in}$. Posi $£ 1.50$ 88

RELAYS. 6 V DC $95 p .12 \mathrm{~V}$ DC £1.25. 18 V £1.25. 24 V £1.30 $10 \times 7-f 730$: $12 \times 8-\uparrow 760$, $14 \times 9-£ 3.16 \times 6-£ 1.80$ $16 \times 10-£ 3.20,14 \times 3 £ 1.80$. All $21 / \mathrm{in}$. deep. 18 swg . ANGLE ALU. $6 \times 3 / 4 \times 3 / a \mathrm{in} .18 \mathrm{swg} .30 \mathrm{p}$.
ALUMINIUM PANELS, 183 sig . $6 \times 4-45 \mathrm{p}$; $8 \times 6-75 \mathrm{p}$: $14 \times 3-75 p ; \quad 10 \times 7-95 p ; \quad 12 \times 8-£ 1.10 ; \quad 12 \times 5-75 p ;$
$16 \times 6-£ 1.10 ; 14 \times 9-£ 1.45 ; 12 \times 12-£ 1.50 ; 16 \times 10-£ 1.75$.
 $6 \times 4 \times 2$ £ 1.60 . $7 \times 5 \times 3$ £2.40. $8 \times 6 \times 3 \quad £ 2.50$. $10 \times 7 \times 3 £ 3$. $12 \times 5 \times 3 € 2.75$. $12 \times 8 \times 3 £ 3.60$. All with lids, (inch sizes) TOGGLE SWITCHES SP 40 p. DPST 50 p. DPDT 60 p . MINIATURE TOGGLES SP 40p. DPDT $60 p$
RESISTORS, 10Ω to 10 M . $1 / 4 \mathrm{~W}, 1 / 2 \mathrm{~W}, 1 \mathrm{~W}, 2 \mathrm{p}: 2 \mathrm{~W} 10 \mathrm{p}$. HIGH STABILITY. $1 / 2 w 2 \% 10$ ohms to 1 meg .10 p . WRE-WOUND RESISTORS 5 watt, 10 watt, 15 watt 20 p . PICK-UP CARTRIDGES SONOTONE 9TA $£ 2.50$ BSR Stereo Ceramic SC7 Medium Output $£ 2$. SC12 $£ 3$. P4iLIPS PLUG-IN HEAD. Ster*o Ceramic. AU1020 (G306 GOIDRING G850 f6 50, GB00. DB., SLM 30/3 Magnetic E5. GOLD ING G850 ES. Acos, Sonatone, BSR, Diamond f1.208a
VALVE OUTPUT Transformers (smali) 90 p.
SUB-MIN MICROSWITCH, 50 p , Single pole changeover ANTEX SOLDERING IRON 240 V 15W £4.60. $25 \mathrm{~W} £ 4.70$. JACK PLUGS Mono Plastic 25p; Metal 30p.
JACK PLUGS Stereo Plastic 30p; Metal 35p. JACK PLUGS Stereo Plastic 30p; Metal 35p.
JACK SOCKETS Mono 25p. Stereo 30 p . FREE SOCKETS - Cable end 30p. Metal 45p. 2.5 mm and 3.5 mm JACK SOCKETS 25p. Plugs 25 p Sockets 3-pin 5 -pin 15 p
. PHONO PLUGS and SOCKETS ea. 20p. ree SMUG and SOCKETS ea. 20p 300 ohm TWIN RIBBON FEEDER 10 p yd Phono Plugs 25p. 300 ohm to 75 ohm AERIAL MATCHING TRANSFORMER $£ 1$. U.H.F. COAXIAL CABLE SUPER LOW LOSS, 25p yd. COAX PLUGS 30p. COAX SOCKETS 20p. Lead Sockets 65p.
NEON INDICATORS 250 V , round 30 p . Rectangular 45 p .

POTENTIOMETERS Carbon Track

$5 \mathrm{k} \Omega$ to $2 \mathrm{M} \Omega$. LOG or LIN. L/S 50p. DP 90p. Stereo L/S
f1.10. DP $\mathrm{f1.30}$. Edge Pot $5 K$. SP 45p.

MINI-MULTI TESTER NEW

coil instrument. Impedance + Capacity 4000 o.p.v, Battery included. 11 instant ranges maasu
DC volts $5.25 .250 ; 500$.
DC volts $5.25,250,500$.
AC volts $10,50,500,1000$.
£6.50
DC amps $0-250 \mu \mathrm{~A}, 0-250 \mathrm{~mA}$. Post 50p
Resistance 0 to 600 K ohms.
De Luxe Range Doubler Model

NEW PANEL METERS $£ 4.50$

$50 \mu \mathrm{a}, 100 \mu \mathrm{a}, 500 \mu \mathrm{a}$
$1 \mathrm{ma}, 5 \mathrm{ma}, 50 \mathrm{ma}, 100 \mathrm{ma}$,
$500 \mathrm{ma}, 1 \mathrm{amp}, 2 \mathrm{amp}$
25 volt, VU Meter.
$21 / 4 \times 2 \times 11 / 4$
Stereo VU meter

RCS SOUND TO LIGHT CONTROL BOX

Complete ready to use with cabinet size $9 \times 3 \times 5$ in. 27
3 channel, 1000 watt each. For home or disco Input 200mV to 100 watt. AC $200 / 250 \mathrm{~V}$. Post $\mathrm{E1}$
OA KIT OF PARTS $£ 19.50$, LLESS CABINET $£ 15$
Disco bulbs 100 watt, blue, green, yellow, red, amber, screw or bayonet fi.85l, each. post fi.50 oer six.
Rope lights, 4 channel, 11 ft with controller 240 V . PP
"Fuzz" lights, red, blue, green, amber, 240 V AC. £23. 200 Watt Rear Reflecting White Light Bulbs. Ideal for 65 p. Suitable panel mounting holders 85 p.
RCS "MINOR" 10 watt AMPLIFIER KIT £14 This kit is suitable for record players, guitars, tape playback, electronic instruments or small PA systems fication 10 W per channel; size $91 / 2 \times 3 \times 2 \mathrm{in}$. SAE details. Full instructions supplied. 240 V AC mains. Post $f 1$ RCS STEREO PRE-AMP KIT. All parts to build this pre-amp. Inputs for high, medium or low imp
per channel, with volume control and PC Board $£ 2.95$ Can be genged to make multi-way stereo mixers Post 65 p MAINS TRANSFORMERS
$250-0-2500 \mathrm{~V} 0 \mathrm{~mA}, 6.3 \mathrm{~V}$
$350-0.35 \mathrm{~V} 250 \mathrm{~mA}, 6.3 \mathrm{~V}$
$220 \mathrm{~V} 25 \mathrm{ma} 6 \mathrm{~V} \operatorname{lamp} \mathrm{E}$.
250 V 60 mA .6 V 2 A
3.5A 6.3 V
VACT

220 V 45 ma fy 2
$50 \mathrm{~V} 60 \mathrm{~mA}, 6 \mathrm{~V} 2 \mathrm{~A}$
Post
E5.00 $£ 2$
E12

AUTO 115 V 10240 V 150 W \&9. 250W E10. 400W \& 11.500 W ع12.00 $£ 2$ GENERAL PURPOSE LOW VOLTAGE

Tapped outputs oveileble			Price Pont$28.00 \text { £2 }$
$1 \mathrm{mmp} .6,8,10,12,16,18,20,24,30,36,40,48,60$			
			¢8.00 £2
2 amp .6 6, 10, 12, 16	18, 20, 24, 30	36. 40, 48, 60	110.50 £2
3 amp . 8, 8, 10, 12, 1	18, 20, 24, 30,	36, 40, 48, 60	E12.50 ¢2
$5 \mathrm{mmp} .6,8,10,12,16$,	18. $20,24,30$	36, 40, 48, 60	E18.00 ¢2
5-8-10-16V. $1 / 2 \mathrm{amp}$.	92.5080 p	15-0.15V. 2 amps	E3.78 ¢ 1
6V. $1 / 2 \mathrm{amp}$.	2.00 ¢1	20 V 1 amp	$E 3.00$ ¢1
$6-0.6 \mathrm{~V} .1^{1 / 2} \mathrm{mmp}$.	$83.00{ }^{51}$	20-0.20V 1 amp	53.50 ¢1
9 V .250 mm .	81.50 80p	$20.40-60 \mathrm{~V} 1 \mathrm{amp}$	¢4.00 $£ 2$
9 V .3 amp	E3.50 fl	25-0.25V 2 smps	44.50 £1
9.0 .9 V . 50 ms	11.50 80p	28 V 1 amp Twice	f5,00 £2
10-0-10V. 2 amps	$83.00{ }^{1} 1$	$30 \mathrm{~V} 11 / 2 \mathrm{amp}$	E3.50 ¢1
10-30-40V. 2 a	E3.50 E1	30 V 5 amp and	
12V. 100 ma	81.5080	17-0.17 2s	50 £2
12 V .750 ms	52.0080 p	35 V 2 amps	C4.00 ह1
12 V 3 emps	£3.60 E1	TOROIDAL $30-0.30$	
12-0.12V. 2 amps	E3.50 E1	and $20-020 \mathrm{~V} 1 / 2 \mathrm{a}$	£10.00 £2
CHARGER TRANS	Pout	RECTIFIERS	
8.12 volt 3 a	64.00+E2	6-12 volt 2 s	$1.10+80 p$
6-12 yolt 4 s	21.50+c2	8.12 voli 49	$2.00+80 p$

OPUS COMPACT

SPEAKERS E22 pair Post $£ 2$
TEAK VENEERED CABIN
$11 \times 81 / 2 \times 7$ in, 15 watts
OPUS TWO 15×101 or 8 ohm
OPUS TWO $15 \times 101 / 2 \times 73 / 4$ in 25 watt
2-way system £39 pair. Post $£ 3$

LOW VOLTAGE ELECTROLYTICS Wire ends
$1 \mathrm{mf}, 2 \mathrm{mf}, 4 \mathrm{mf}, 8 \mathrm{mf}, 10 \mathrm{mf}, 16 \mathrm{mf}, 25 \mathrm{mf}, 30 \mathrm{mf}, 50 \mathrm{mf}, 100$
$\mathrm{mf}, 250 \mathrm{mf}$. All 15 volts. $22 \mathrm{mf} / \mathrm{kv} / 10 \mathrm{v}, 25 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{~s}, 47$ $\mathrm{mf}, 250 \mathrm{mf}$. All 15 volts. $22 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 25 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 47$ $25 \mathrm{v} ; 100 \mathrm{mf} / 10 \mathrm{v} ; 150 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 200 \mathrm{mf} / 10 \mathrm{v} / 16 \mathrm{v} ; 220$ $\mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v}: 1000 \mathrm{mf} / 2.5 \mathrm{v} / 4 \mathrm{v} / 10 \mathrm{v} ; 1500 \mathrm{mf} /$ $6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} ; 2200 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 3300 \mathrm{mf} / 6 \mathrm{v} ; 4700 \mathrm{mf} / 4 \mathrm{v}$
$500 \mathrm{mF} 12 \mathrm{v} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p}: 50 \mathrm{v} 30 \mathrm{p} .1200 \mathrm{mF} 76 \mathrm{~V} 80 \mathrm{p}$. $1000 \mathrm{mF} 12 \mathrm{~V} 20 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 50 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$. $2000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} 60 \mathrm{p} ; 1200 \mathrm{mF} 100 \mathrm{~V}$ £1.20. $2200 \mathrm{mF} 63 \mathrm{~V} 90 \mathrm{p} 2500 \mathrm{mF} 50 \mathrm{~V} 70 \mathrm{p} ; 3000 \mathrm{mF} 50 \mathrm{~V} 65 \mathrm{p} ;$
$4500 \mathrm{mF} 64 \mathrm{~V} \mathcal{E} 2.4700 \mathrm{mF} 63 \mathrm{~V}$ £ $1.20 .4700 \mathrm{mF} / 40 \mathrm{~V} 85 \mathrm{p}$. HIGH VOLTAGE ELECTROLYTICS $\begin{array}{lllll}2 / 500 \mathrm{~V} & 45 \mathrm{p} & 8+8 / 450 \mathrm{~V} & 75 \mathrm{p} & 32+32+16 / 350 \mathrm{~V} 90 \mathrm{p} \\ 8 / 450 \mathrm{~V} & 45 \mathrm{p} & 8+8 / 500 \mathrm{~V} & \mathrm{f} 1 & 100\end{array}$ $\begin{array}{llllll}8 / 450 \mathrm{~V} & 45 \mathrm{p} & 8+8 / 500 \mathrm{~V} & \text { f } 1 & 100+100 / 275 \mathrm{~V} & 65 \mathrm{p} \\ 16 / 350 \mathrm{~V} & 45 \mathrm{p} & 8+16 / 450 \mathrm{~V} & 75 \mathrm{p} & 150+200 / 275 \mathrm{~V} & 70 \mathrm{p}\end{array}$ $\begin{array}{llllll}16 / 350 \mathrm{~V} & 45 \mathrm{p} & 8+16 / 450 \mathrm{~V} & 75 \mathrm{p} & 150+200 / 275 \mathrm{~V} & 70 \mathrm{p} \\ 32 / 500 \mathrm{~V} & 72+32 / 350 \mathrm{~V} & 50 \mathrm{p} & 220 / 450 \mathrm{~V} & 95 \mathrm{p} \\ 32 / 350 \mathrm{~V} & 50 \mathrm{p} & 32+32 / 500 \mathrm{~V} & 180 & 32\end{array}$ $\begin{array}{lllll}32 / 350 \mathrm{~V} & 50 \mathrm{p} & 32+32 / 500 \mathrm{~V} & \mathrm{f1.80} & 32+32+32 / 325 \mathrm{~V} 75 \mathrm{p} \\ 50 / 450 \mathrm{~V} & 95 \mathrm{p} & 50+50 / 300 \mathrm{~V} & 50 \mathrm{p} & 50+50+50 / 350 \mathrm{~V}\end{array}$ CAPACITORS WRE END High Vottage $50+50+50 / 350 \mathrm{~V} 95 \mathrm{p}$ $.001, .002, .003, .005, .01, .02, .03, .05 \mathrm{mid} 400 \mathrm{~V} 5 \mathrm{p}$. .1 MF 200 V 5 p .40 V 10 p .600 V 15 p .1000 V 25 p.
.22 MF 350 V 12 p .300 V 20 p .1000 V 30 p .1750 V 50 p. .47 MF 1500 V 10 p .400 V 20 p .630 V 30 p .1000 V 60 p. TRIMMERS $30 \mathrm{pF} 50 \mathrm{pF}, 10 \mathrm{p}$. $100 \mathrm{pF}, 150 \mathrm{pF} 20 \mathrm{p}$. 500 pF 30 p . MICROSWITCH SINGLE POLE CHANGEOVER 40p.
TWIN GANG, $12 \mathrm{CpF} £ 1.500+200 \mathrm{pF} £ 1$. TWIN GANG, $12 \mathrm{CpF} £ 1.500+200 \mathrm{pF} \mathrm{£} 1$
GEARED TWIN GANGS 25 pF 95 p
GEARED $365+365+25+25 \mathrm{pF}$ £1
GEANEISTOR TMN $+25+25 \mathrm{PF} \mathrm{E}$ SOLID DIELECTR C 100 pf $£ 1.50$, 500pi $£ 1.50$
HEATING ELEMENTS, WAFER THIN (SemI Flexlble) Size $11 \times 9 \times 1 /$ in. Operating voltage $240 \mathrm{~V}, 250 \mathrm{~W}$ approx.
Suitable for Heating Pads, Food Warmers, Convector Heaters, Propagation, etc. Must be clamped between Heaters, Propagation, etc. Must be clamped between
two sheets of metal or ceramic, etc. NEW baker Star sound high power full range quality loudspeakers British made
reproduction. Ideal for Hi-Fi, music P.A. or discotheques. These discotheques. The recommended where high power handling is required with quality esults. The high flux ceramic magnet ensures clear response.

BAKER ARAPLIFIERS BRITISH MADE

 NEW PA150 MHCROPHONE PA AMPLIFER $£ 129$

 4 channel 8 inputs, dual impedance, $50 \mathrm{~K}-500$ ohm 4 channel maxing, volame, treble, bass. Presence controls, Master volume BAKER 150 Watt AMPLIFIER 4 Inputs $\mathbf{E 8}$ for Discor sque, Vocal, Public Addrass. Troe spoakor oulors for 4, 8 or 16 ohms. Four high gain inputs, $20 \mathrm{mv}, 50 \mathrm{~K}$ ohm. Individual tolume controls "Four channal" mixing. 150 watts 8 ohms R.M. S. Music Power. Slave output $500 \mathrm{M} . \mathrm{V}$. 25K.ohm. Response \& $\mathrm{Hz}-20 \mathrm{kHz} \pm 3 \mathrm{~dB}$. Integral Hi-Fi preamp saparate valume control. British made 12 months' guarantes 240 V A. mains or 120 V to order. All transistor and solid state. Post $£ 2$. MONO SLAYE VERSION $£ 75.100$ Volt Line Medel f104. Post $£ 2$. Now Stereo Slave Model 150 + 150 watt £125. Post £4.
BAKER $£ 69$ Post $\mathbf{\varepsilon} 2$

50 WATT
AMPLIFIER

deal for PA systoms, Discos and Groups Two inputs Mixer, Volume, Controls, Master Bass, Treble Gain RCS offors MOBILE PA AMPLIFIEAS. Outputs 4-8-16 ohms 20-wath RMS 12 V DC, AC $240 \mathrm{v}, 3$ inputs. 50 K
40 wan RMS $12 \mathrm{DC}, ~ A C 24 \mathrm{v}, 4$ inputs 50 K 45 PP $£ 2$.
75 PP $£ 2$ 40-wart RMS 12v DC, AC 240v, 4 inputs. 50K ETS PPE2
 3 nics +1 music. Outputs $4-8-16$ ohm +100 vols line f 95 PP $£ 2$ Batery only Portable PA Amplifier 10w max. Includes mike and speaker, OK for meatings, crowd control, stalls, fotes, traders. PCS 100 . Baterios included (6 of U2) $£ 27.50$ post $£ 2$.
R.CSS. 100 WEHR Rob
VALVE AMPLIFFEA

4 Channel mixing. Master
trekle, bass and volume
controls. 5 SFeaker outlets, suits $4,8,16 \mathrm{chm}$. Disco

FAMOUS LOUDSPEAKERS

"SPECAAL PRICES"

MAKE	MODEL	SIZE	WATTS	OHMS	PaICE	
SEAS	TWEETER	4 in	50	8	f9.50	¢1
G000mANS	TWEETER	$31 / 2 \mathrm{ln}$	25	8	¢4	$E 1$
AUDAX	TWEETEA	4 in	30	8	£6.50	$f 1$
SEAS	MID-RANGE	4 in	50	A	£7.50	f1
SEAS	MID-RANGE	5 in	80	8	£12	f1
SEAS	MID-RANGE	41/21n	100	8	f12.50	$f 1$
G000mans	HIFAX 7	$11 / 2 \times 41 / 4$	100	4/8/16	622	[21
GOODMANS	WOOFER	81 n	25	$4 / 8$	f6.50	f1
GODDMANS	HB	8 in	60	8	f12.50	£1
RIGONDA	GENERAL	10 in	15	8	E5	12
SEAS	WOOFER	10in	50	8	f16	12
GOCDMANS	HPG	12in	120	$8 / 15$	$\underline{29} .50$	62
GOODMANS	GR12	12in	90	815	$\underline{27.50}$	62
GOODMANS	HPD	12in	120	215	129.50	$\underline{4}$
GOODMANS	HPD	12 in	230	,	1800	E4

A.F LOUOSPEAKER CABING WADDINO Lain w.A.

MOTOROLA PIEZO ELECTRIC HORN TWEETER, 33 3in. square E5 10) watts. No crossover required. 4-8-16 ohm, $73 \times \times 31 \mathrm{ksin}$ CROSSOVERS. TWO-WAY $3000 \mathrm{c} / \mathrm{s} 30$ wati $8 \mathrm{E3}$. 100 W E4. We, 950 cDS 3000 cps 40
OUDSPEAKER BARGANS
3 ohn. $5 \mathrm{in}, 7 \times$ <in, $\mathbf{~} 2.50 ; 61 / 2 \mathrm{in}, 8 \times 5 \mathrm{in}, \mathrm{E3} ; 8 \mathrm{in}, \mathbf{£ 3 . 5 0}$. $101 \mathrm{in}, \mathbf{£ 5}$. ohn, 25 inn, 3 in, $\mathrm{E2} ; 5 \times 3 \mathrm{in}, 7 \times 4 \mathrm{in}, \operatorname{Sin}, \dot{E} .50$; $61 / 2 \mathrm{in}, 8 \times 5 \mathrm{in}, \mathrm{Es}$; 8in, fiso; 10in, E5; 12in, E6.
$25 \mathrm{ohm}, 3 \mathrm{in}, \mathrm{G2} ; 5 \times 3$ in, $7 \times 4 \mathrm{in}, \mathbf{2 2 . 5 0} .120 \mathrm{ohm} .31 / \mathrm{in}$ dia. $\mathrm{f1}$.
CAR CASSEETIE MECHANISM. 12 V Motor Stereo Head f 5

R.C.S. LOW VOLTAGE STABILISED

POWER PACKKITS

Plits and instructions with Zener diode prin. Post 65p mains transformer 240V a.c. Output 6 or $7^{1 / 2}$ or 9 or circuit, to 100 mA or less Please. Output 6 or $7 / 2$ or 9 or 12 V d.c.

QUALITY OSCILLOSCOPES, THE RANGE FOR EUROPE!

Y: Bandwidth DC-10MHz (-3dB) - Sensitivity 5 mV -20V/ cm ($\pm 5 \%$)
X: Timebase $0.2 \mathrm{~s}-0.5 \mu \mathrm{~s} / \mathrm{cm}(\pm 5 \%)$ - Triggering $2 \mathrm{~Hz}-30 \mathrm{MHz}$ (3 mm) - Built in component tester - Calibrator - Screen $6 \times 7-2 \mathrm{kV}$.

Y: Bandwidth DC-20MHz (-3dB) - Sensitivity 5 mV -20V/ $\mathrm{cm}(\pm 3 \%)$ - Dual trace
X : Timebase $0.2 \mathrm{~s}-40 \mathrm{~ns} / \mathrm{cm}$ incl. x 5 Magn . - Trigger 3 Hz -
$30 \mathrm{MHz}(4 \mathrm{~mm})-X$ - operation - Calibrator - Screen $8 \times$ $10 \mathrm{~cm}-2 \mathrm{kV}$.

For free data sheets of the full range contact:

HM307.4£138

HM203 £220
HM412 £350
Bandwidth DC-20MHz (-3dB) Sensitivity $2 \mathrm{mV} / \mathrm{cm}$ $20 \mathrm{~V} / \mathrm{cm}(\pm 3 \%)$ Timebase $40 \mathrm{~ns} / \mathrm{cm}$ Triggering DC $\cdot 40 \mathrm{MHz}$ $(5 \mathrm{~mm})$ Algebraic Add., Sweep Delay, x 5 Mag., Overscan Ind., Var. Holdoff, Single Sweep.

HM705 £580
Bandwidth DC-70MHz (-3dB) Sensitivity $2 \mathrm{mV} / \mathrm{cm}$ $-20 \mathrm{~V} / \mathrm{cm}(\pm 3 \%)$ Timebase $5 \mathrm{~ns} / \mathrm{cm}-2.5 \mathrm{~s} / \mathrm{cm}$ - Triggering DC $100 \mathrm{MHz}(5 \mathrm{~mm})$. Algebraic Add Sweep Delay, $x 10$ Mag. Alt. Trigger, Trig. After Delay, CRT 14 kV .

pantechnic thepowerfes SPECIALISTS

POWERFET AMPLIFIER MODULES

The people at Pantechnic have been designing with powerfats since they first became commercially available. Their experience of powerfot amplifiers, coupled with their insight into the sources of non-linearity often neglected by others, has resulted in a new range of powerfet amplifiers that are fast, tough, linear and chasp.

MODEL

PFA 100
PFA 200
PFA 500
Cower Range 50 W -150W $4 \Omega, 8 \Omega$
$4 \Omega, 8 \Omega$
NOTES
Physically small
$30 \mathrm{~mm} \times 79 \mathrm{~mm} \times 108 \mathrm{~mm}$ High Watts per f ratio 25A continuous output current
5 dB dynamic headroom Drives 70 V line direct

Key features:

- RELIABLE - Powerfet freedom from thermal runaway and secondary
breakdown
- FAST - down to $0.0015 \% /$ Slew rate $>30 \mathrm{~V} / \mu \mathrm{S},(45 \mathrm{~V} / \mathrm{HS}$ typica

QUIET - Signal to noise ratio 120dB
BRIDGEABLE - $(100,200,500$ without extra circuitry)

- STABLE - Unconditionally

LOW COST - 10watts to 20 watts per f, depending on model and quantity
As they stand these modules suit most P.A. and industrial applications and satisty
 all forese日able audiophile requirements. The HV is aimed at digital audio.) Where aspects of performance fail to meat specific requirements (e.g. in speed
or power) low cost customising is often a possibility. Alternatively entirely new or power) low cost custom
boards can be produced.
boards can be produced.
Pantechnic make more than just PFAs. Loudspeaker protection boards and the quietest, lowest distortion preamp boards currently available are just two of an ever-expanding range.

Pantechnic sell high quality power supply and other components at excellent prices.

CHECK US OUT

WW - 077 FOR FURTHER DETAILS

A.B. Dick Magna II WORD PROCESSORS at $£ 850$ plus V.A.T.

45 cps Qume Printer
8 BK Working Store
Thin Window Display
Permanent Storage on Magnetic Cards
Limited stock of ex-demonstration machines factory reconditioned by manufacturer to 'as new' standard

AUTOTYPE (The 2nd-User W.P. Specialists)
1 Church Street Cuckfield, Sussex
Haywards Heath (0444) 414484 and 454377
WW - 069 FOR FURTHER DETAILS

ORDER YOUR FAVOURITE AUDIO ACCESSORIES BY MAIL

SEND FOR YOUR FREE COPY OF OUR 1982 CATALOG

OVER 250 ITEMS
INCLUDING DIRECT BOXES, MIC-SPLITTERS. SIGNAL PROCESSING, AUDIO MODULES. TRANSFORMERS MANY OTHER ACCESSORIES

WITH TECHNICAL DATA \& USE DIAGRAMS

We Ship the fastost \& most convonlent way for youl Most Shlpments from Stock

SESCOM, INC.
RETAIL SALES DIVISION
1111 Las Vegas Bivd. North

WW - 052 FOR FURTHER DETAILS

Three of the best

 №rThe world famous $\mathbf{2 6 0}$
The Simpson analogue multimeter that is the world's
largest selling AMM 27 ranges cover $A C$ and $D C$ volts, largest selling AMM 27 ranges cover $A C$ and $D C$ volt DCcurrent, resistance and dB. Model 467
The $31 / 2$ digit hand portable True RMS DMM with LCD digital and analogue display - anather Simpson first in the UK.

60ft TELESCOPIC MAST \& VAN FOR HIRE

The vehicle to meet hundreds of uses, some of which are high level photography and observation, radio receiving and transmitting, field study, floodlighting, meteorology, wind measurement and many, many other uses.

now see the rest

Write now for technical information on our full range of precision instruments

Telephone: (020881) 2031 Telex: 45451

Git 818
 pome:

Most pre-amp modules can be diven by the PSU driving the man power dmp A separate PSU 30 is avallabie purely for pre amp modules if required for 65.47 (inc. VAT) Pre-amp and mixing modules in 18 different variations.

Please send tor details
Mounting Boards
Fop ease of construction we recommend the $\mathbf{B 6}$ for modules $\mathrm{HY6}$ - HY 13 E 1.05
For ease of construction we recommend the $\mathbf{B 6}$ for madules HY6-HY
(inc. VAT) and the $\mathbf{B 6 6}$ for modules $\mathrm{HY} 6 \mathrm{~B}-\mathrm{HY} 78 \mathrm{fI} .29$ (inc. VAT).
POWER SUPPLY UNITS Incorporating our own toroidal transformest

Modal Number	For Une With	Price inc. VAT	Model Number	For Use With	Price inc. VAT
PSU $21 \times$	1 ¢12 +830	¢ 11.93	PSU 52x	2×114124	£17.07
PSU41x	1 O. 2 HY60. $1 \times$ HY6060. $1 \times \mathrm{HY} 124$	£13.83	PSU 53x	$2 \times \mathrm{MOS} 128$	¢17.86
PSU 42 x	$1 \times$ HY128	£ 15.90	PSU 54x	$1 \times \mathrm{HY} 248$	¢17.86
PSU $43 x$	1. MOS 128	E 16.70	PSU 55x	$1 \times \mathrm{MOS} 248$	${ }_{\text {¢19,52 }}$
PSU51x	$2 \times$ HY $\$ 28.1 \times$ HY244	E17.07	PSU $71 \times$	$2 \times \mathrm{HY} 244$	£21.75

[^3]| Module Number | Output Power Watts rms | $\begin{gathered} \text { Load } \\ \text { Impesdsnce } \\ \Omega \end{gathered}$ | distortion | | Supply Voltage Typ | Size mm | $\begin{aligned} & \text { WT } \\ & \text { gms } \end{aligned}$ | Price inc. VAT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | $\begin{aligned} & \text { T.H.D } \\ & \text { Typat } \end{aligned}$ $1 \mathrm{KHz}$ | $\begin{gathered} \mathrm{M} \mathrm{D} \\ 60 \mathrm{~Hz} / \\ 7 \mathrm{KHz} 4: 1 \end{gathered}$ | | | | |
| MuS 328 | 60 | 4.8 | <0.005\% | <0.006\% | ± 45 | $120 \times 78 \times 40$ | 120 | 230.41 |
| MOS 248 | 120 | 4.8 | <0.005\% | $<0006 \%$ | ± 55 | $120 \times 78 \times 80$ | 450 | 134.86 |
| MOS 364 | 180 | 4 | <0,005\% | <0.006\% | ± 55 | $120 \times 78 \times 100$ | 1025 | 145.54 |

Protection Able to cope with complex loads w thout the need for very special
cuitry tuses will suffice).
Frequency response (-3d(B) $15 \mathrm{~Hz}-100 \mathrm{KHz}$. Inpue sensitivity $500 \mathrm{~m} / \mathrm{Im}$
'NEW to ILP' In Car Entertainments
${ }^{C} 15$
Mono Power Booserer Amplitier to ioclesese the output ol vour exsst ng car rabic
or cassecte raver
verv easy to use.
Robuss conssuction
£9. 14 (inc. VAT)
Mounts any where in c
Automalic switch on
Outpul power maximum 22w peak inio 4Ω
Frequency response (-348) 15 Hz to 30 KHz , T. H. D. 0.1% ar 10 m 1 KHz
7 N ratio (DIN AUDIOI 80dB, Load Impedance 3Ω
Size $95 \times 48 \times 50 \mathrm{~mm}$. Weight 256 gms .
C1515
£17.19 (inc. VAT
size $95 \times 40 \times 80$. Weight 410 gms.

Model Number	For Use With	Price inc. VAT
PSU $72 \times$	$2 \times$ HY248	f22.5a
PSU 73 x	I + HY364	122.54
PSU $74 \times$	$1 \times \mathrm{Mr} 368$	¢24.20
PSU 75x	2 + MOS248. $1 \times$ MOS368	¢24.20

WITHALOTOF HELP rom ON.

PROFESSIONAL HIFFI THAT EVERY ENTHUSIAST CAN HANDLE...
 Unicase

Over the years ILP has been aware of the need for a complete packaging system for it's products, it has now developed a unique system which meets all the requirements for ease of assembly, adaptability, ruggedness, modern styling and above all price.
Each Unicase kit contains all the hardware required down to the last nut and bolt to build a complete unit without the need for any special tools.
Because of ILP's modular approach, "open plan" construction is used and final assembly of the unit parts forms a compact aesthetic unit. By this method construction can be achieved in under two hours with little experience of electronic wiring and mechanical assembly.

Hi Fi Separates

UC1 PRE AMP UNIT: Incorporates the HY78 to provide a "no frills", low distortion, $(<0.01 \%)$, stereo control unit, providing inputs for magnetic cartridge, tuner, and tape/ monitor facilities. This unit provides the heart of the hi fi system and can be used in conjunction with any of the UP Unicase series of power amps. For ultimate hum rejection the UC1 draws its power from the power amp unit.
POWER AMPS: The UP series feature a clean line fiont panel incorporating on/off switch and concealed indicator. They are designed to compliment the style of the UC1 pre-amp. Performance for each unit which includes the appropriate power supply, is as specified on the facing page.

Power Slaves

Our power slaves, which have numerous uses i.e instrument, discotheque, sound reinforcement, feature in addition to the hi fi series, front panel input jack, level control, and a carrying handle. Providing the smallest; lowest cost, slave on the market in this format.

UNICASES					
HIFI Separates					Price inc. VAT
UC1	Preamp				¢29.95
LP1X	$30+30 W / 4-8 \Omega$	Bipolar	Stereo	$H_{1} F_{1}$	£54.95
UP2X	$60 W / 4 \Omega$	Bipolar	Mono	H, F,	$€ 54.95$
UP3X	60W/8 Ω	Bipolar	Mono	H, F	¢54.95
UP4X	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	$H_{1} F_{1}$	$£ 74.95$
UP5 X	$120 \mathrm{~W} / 8 \Omega$	Bipolar	Mono	H, F	£74.95
UP6 X	$60 \mathrm{~W} / 4-8 \Omega$	MOS	Mono	$H_{\text {H }} \mathrm{F}_{1}$	£64.95
UP7X	120W/4-8ת	MOS	Mono	HiF	£84.95
Power Slaves					
USIX	$60 \mathrm{~W} / 4 \Omega$	Bipolar	Power	Slave	¢59.95
US2 X	120W/4 Ω	Bipolar	Power	Slave	£79.95
US3 x	$60 \mathrm{~W} / 4-8 \Omega$	MOS	Power	Slave	£69.96
US4X	$120 \mathrm{~N} / \mathrm{A}-8 \Omega$	MOS	Power	Slave	$¢ 89.95$

[^4]

The brains we're talking about are the printed
circuit, silicon-chip variety and you'll find them
(thinking hard) in the vast range of exhibits at The
Northern Computer Fair. The show covers the fields of
personal computing, home computing, small business systems and associated software, through computer books to video games, with a special attraction being the $Z \times 81$ Sinclair Village. So whether you're a businessman (or woman) who needs to keep up to date with the latest developments in this fascinating field, a die-hard computer enthusiast, or simply interested in the subject, you'll find what you're looking for at the Northern Computer Fair.
Ticket prices at the door are $£ 2.00$ for adults and $£ 1.00$ for children under 16, but special party rates are available for 20 people or more with the organiser admitted free. For more information contact IPC Exhibitions, Surrey House, 1 Throwley Way, Sutton, Surrey SM1 4QQ. Tel: 01-643 8040. ics Ltd.
Official orders from schoois, colleges and universities welcome. Trade and export enquiry W.\&P. add 60 p to all orders under $\mathrm{E10}$. Telephone Y VAT - All prices exclusive of VAT - Please add 15% to total cost including P.\&:P
No VAT on export orders or books.

74LSTM LSI36

\square ${ }^{25} \mathrm{p}$ LS366A

 $\left.{ }_{800}{ }_{80}{ }^{2}\right]_{0}^{1}$

PRINTERS
EPSON MX8OF/T EPSON MX80F/T
Typel
Typall
As Type I but including High
Resoution 日it lmage Printinn
960 dots/line
Type
E 960 dots/line
Type II
As Type il but incluct As Type II but includes Super
\& Subscipts Auto Underlining
fisizs and tralics
Securicor Carriage on all Printers
36 W Connector $1 D C$ £4.60 OPTO ELECTRONICS 3mm Red TIL 209 3 mm Red TIL 209
3mm Green LD37C Panel Clip
5 mm Red CaY40L 5 mm Green, Yellow
Panel Clip Pam Square Re
Green, Yellow
Tri-cotour V518P Tri-colour V518P
Red Fashing CQX21

IC SOCKETS
 14 pin
16 pin
18 pin 20 pm
22 pin
24 pin
28 pin \qquad on Forc
24 pin
40 pin

CONNECTORS

(Solder Bucke)
 Entry)
$80 p$
$84 p$ $\begin{array}{lll}15 \text { way } & 135 p & 155 \mathrm{p} \\ 25 \mathrm{way} & 205 \mathrm{p} & 235 \mathrm{p} \\ 37 \text { way } & 220 \mathrm{p} & 270 \mathrm{p}\end{array}$ 37 way Femarle Wrap) 25 way Male

PROFESSIONAL OSCILLOSCOPES BY

[^5] from Martron PARK STREET, PRINCES RISBOROUGH, BUCKS. (08444) 4321

	35 MHz
	- 1mv-10V divariable
	- 0.02us 0.5sidiv varable
	(ex
	Alltrgeer TV SYNC ADOINVERT $X Y$ \% mod
	- $8 \times 100 \mathrm{molsplay}$ GkV

5 mV ?UV div variable

To: MARTRON LTD., Park Street, Princes Risborough, Bucks.

[^6]$$
\text { Tel. (08444) } 4321
$$

Large range of types in stock; also probes. ads, accessories, etc PANEL MOUNTING in 50, 100, 500wA; 1, 5, 10, 50, 100 500 mA : 1 A either model.		peach, 10 of one value $15 p$. 1 ohms - 300K 5 p each, 10 of one value 40 p . W, most E 12 values $\mathbf{t} .2$ ohms to $8 \mathrm{~K} 29 p$ each.
		POTENTIOMETERS CARBON ROTARY (P20) 100 ohms- 4 M 7 lin 220 ohms - 2 M 2 log 32 P or with switch - 87p: Dual gang (JP20) $4 \mathrm{~K} 7-2 \mathrm{M} 2 \mathrm{lin}$. or log gep or with switch $\mathbf{£ 1 . 5 0}$.
	4000 4000	SUDERS 58 mm , low cost $10 \mathrm{~K}-1 \mathrm{M}$ log only 29 p ; Std 58 mm mono 4K7-1M lin or $\log 74 \mathrm{p}$, stereo matched $£ 1.25$; Graduated bezels 38p. PRESET min. 10 mm dia. Horizontal or vert. 100 ohms- 1 M ea 24 p . type 89 p ; 100 N - 4 M ea. £1.06. PLESSEY MPW moulded carbon 47Ω 2M2 ea. 59p.
		SIEMENS Touch dimmer I.C. \mathbf{E}. $14 .^{\text {. }}$ Dsta 30p or FREE on request with I.C.
		SIEMENS Led bar Driver UAAT80 1.05 .
ANTEX C-240V $£ 4.50 \mathrm{~N}$; $\mathrm{ET} .55 \mathrm{~N} ;$ ST4 STIBC E 1.70 N . ORYY 50 watt temp. controlled $£ 13.75 \mathrm{~N}$; Stand $£ 4.00 \mathrm{~N}$ SOLDER $500 \mathrm{gm} / 18 S W G$ E7.60N; Desoider braid 1.5 m 540 .	CAPACITORS POLYSTYRENE, SIEMENS 5\% Tolerance. 160 V $5,7,10,12,15,18,22,27,33,39 p F 15 p ; 47,56,68,82,100,120,150$, 180, $220,270,330,390,470,560,680,820 \mathrm{pF}$; $1 \mathrm{n}, 1 \mathrm{n} 2,1 \mathrm{n} 5,1 \mathrm{n} 8,2 \mathrm{n} 2$ 2n7, 3n3, 3n9, 4n7 10p; 5n6, 6n8, 8n2, 10n 13p.	NICAD CHARGERS For PP3 - NC75G £4.95N; for AA, C or D - NC1230 68.20N; Power Units MWB8 $3 / 4.5 / 6 / 7.5 / 9 / 12 \mathrm{~V}$; 13 A fitting 300 mA out f3 45; HC244R DC Stabillsed $3 / 6 / 7.5 / 9 \mathrm{~V} 400 \mathrm{~mA}$ out $\mathbf{E s} .25$.
PROFESSIONAL KEYBOARD	CERAMIC Very small. 1.8, 2.2, 2.7, etc. up to in $5 p$ each. 1 n 5 , 2 n 2 , 3n3, 4n7, 6 п 85 p; 10n, 22n 8p. 33n, 47n 7p; 100n 8p. POL YESTER. SIEMENS LAYER-TYPE 7.5 mm laad spacing 100 V $1 \mathrm{n}, 1 \mathrm{n} 5,2 \mathrm{n} 2,3 \mathrm{n} 3,8 \mathrm{p} ; 4 \mathrm{n7}, 6 \mathrm{n} 8,8 \mathrm{n} 2,10 \mathrm{n}, 12 \mathrm{n}, 15 \mathrm{n}, 18 \mathrm{n}, 22 \mathrm{n}, 27 \mathrm{n}, 33 \mathrm{n}$. $39 \mathrm{n}, 47 \mathrm{n} 7 \mathrm{p} ; 56 \mathrm{n}, 68 \mathrm{n} 7 \mathrm{p} ; 82 \mathrm{n}, 100 \mathrm{n} 9 \mathrm{p} ; 120 \mathrm{n}, 150 \mathrm{n}, 11 \mathrm{p} ; 180 \mathrm{n}, 220 \mathrm{n}$, 25p: 15 mm spacing $2 \mu \mathrm{~L}$ 100V 69p; In -depth stocks.	SWITCHES - wavectang. Type CK-1P/12 way: $2 P / 6 \mathrm{~W}: 3 \mathrm{P} / 4 \mathrm{~W}: 4 \mathrm{P} / 3 \mathrm{~W} 48 \mathrm{o}$ MIIN. TOGGLES - S7101, SPDT 57p; S7201 DPDT B7p; S7301 3PDT
		 throw 2P SDS2 549: 4P SDS4 95p; 6P SDS6 $£ 1.36$; 8P SDS8 £1.87: 10P SDSO 52.10 . LOW COST D-H. C 4 DNSO4 65p; 8P DNS08 \&1.
	ELECTROLYTICS NON-polar (for LS X-overs) 50 V peak $2 \mu \mathrm{~F} 26 \mathrm{p}$; $4 \mu \mathrm{~F}$ 28p; 6. 8, 10, 16 1 F 32p; 25 $\mu \mathrm{F}$ 37p; 40, 60 5 F 59p; 100 $\mu \mathrm{F}$ 69p.	
	POLARISED, SIEMENS OR MULLARD FOR QUALTTY (4 F FV) $1 / 63,2,2 / 63,4,4 / 63,6,8 / 40,10 / 25,22 / 10,10 \mathrm{p} .10 / 40,22 / 25,10 / 40$ 47/40, 100/25, 100/40 15p; 220/10, 220/16 18p; 220/2518p; 220/40 200 PLUGGABLE SIEMENS Single ended	DRDERS CAN BE
to range plastic doxes G range professio		
		VAT - edditional of 15% on aH U.K. ordery FREE POSTAGE and packing on U.K. C.W.O. orders 65.75 inc. V.A.T. and upwards. Under add 40 p inc. V.A.T
VEROBOX CASES valued project ABS, light grey top; dark grey bottom +2 anodised panels	PLUGGABLE SIEMENS single ended : 420 , $4 / 16$ 10p; 47/40 12p: 220/16. 220/25 13p; 470/6.3 $15 \mathrm{p} ; 470 / 10$ 18p; 470/16 18p; 470/25 22p; 470/40 25p; 1000/1022p; 1000/16 24p; 1000/25 40p.	Discounts do not apply to 'Not' items /shown by N after the price, or to orders paid for by credit card)
	LARGE CANS - SIEMENS	
$205 \quad 140040$	$\begin{array}{llll}\text { LARGE CANS S } \\ \text { 2200/63 £1.77; } 4700 / 40 \text { E1.78; } 4700 / 63 & \text { E2.96; } 4700 / 100 & \text { £5. }\end{array}$ $10000 / \uparrow 6$ £ 1.93; 10000/25 £2.78; 22000/16 £3.20; 22000/25 £4.73.	Headquarters for mail orders and shop ELECTROVALUE LTD 28a St. Jude's Rosd, Englefield Green, Eghem, Surrey TWzO 0HB. Telephone Egham (STO 0784; London B7) 33603; Telex 25475. Northern Branch (personal shoppars only) 600 Burnage, Manchaster M19 1NA. Computing at: 700 Burnage Lane, Manchester (061-431 4866) WW- 10
$\begin{array}{lllllll}180 & 120 & 39 & 21037 & \mathbf{4 4 . 1 1}\end{array}$	$0.1 / 35,0.22 / 35,0.47 / 35,1 / 35,2.2 / 1613 \mathrm{p} ; 2.2 / 35,4.7 / 1616 \mathrm{p}: 10 / 6.3$ 180: 4.7/35, 10/16, 22/6.3, 10/25 18p; 22/i6, 22/25, 33/10, 47/6.3, 100/3	
$\begin{array}{llll}60 & 21041 \\ 80 & 21042 & 8.3 \\ 46.3\end{array}$	LOW LEAKAGE All single ended $0.1 / 50,0.22 / 50,0.47 / 50,4.7 / 3511 p ; 1 / 50,2.2 / 50,4.7 / 5011 p ; 10 / 16$,	
	DELVERY BY RETURNALL TEMS EX STOCK	

PUBLIC ADDRESS AND INDUSTRIAL SOUND SYSTEMS "FROM THE SPECIALISTS"

here are four suggestions from our extensive range (send Cheque/P.O.), U.K. only.

- School fetes, athletic meetings, horse shows

* Pistol Grip 10 watts (RMS) Robust - Range up to 400 m . still day

Allin a case
attery

- 12 watts (RMS)
* Weight with carrying case 14.5 kg . (32 lb.)
- C/w Microphone floor stand and tripod stand
t Tone and volume controls
- Idealfor conferences, schools, political, halls and speakers

OUR RANGE INCLUDES MAINS AND MAINS/BATTERY AMPLIFIERS; HORN, COLUMN LINE SOURCE AND BOX SPEAKERS: CABLE ORUMS: BACKGROUND MUSIC MACHINES; MICROPHONES AND STANDS

Please send $£ 1$ for full catalogue with hints for installations (GOVERNMENT, COMPANIES, SCHOOLS PLEASE WRITE)

WW - 088 FOR FURTHER DETAILS

4 TRANSFORMERS O mpardim
CONTINUOUS RATING
MAINS ISOLATORS

50 VOLT RANGE $2 \times 25 \mathrm{~V}$ tapped secs. Volts availabie 5, 7, $8,10,13,15$,
$25,30,33,40$ or $20 \mathrm{~V}-0$-20V or $25 \mathrm{~V},-25 \mathrm{~V}$

Amps			
Ref.	50 v	$\mathbf{2 5 v}$	$\mathbb{£}$
102	0.5	1	$\mathbf{4 . 1 3}$
103	1	2	5.03
104	2	4	8.69
105	3	6	10.36
106	4	8	14.10
107	6	12	18.01
118	8	16	24.52
119	10	20	$\mathbf{3 0 . 2 3}$
109	12	24	36.18

60 VOLTRANGE

- COMMUNICATIONS TEST EQUIPMENT \star MARCONI TF2002. AM Signal Generators. $10 \mathrm{KHz}-72 \mathrm{MHz}$. Also 2002A/S available AM/FM MARZONTF.
MARCONI TF995A. 2-216MHz. AM/FM £200 MARCONI TF1066B/1. AM/FM Signal Genera tor, $10-470 \mathrm{MHz} 0.2 \mathrm{VV}-200 \mathrm{mV}$ output. FM De MaRCONITF995A5. AM/FM Signal Generator - Narrow deviation model 995 covering 1.5 $220 \mathrm{mHz} \cong 450$
- MARCONI TF1064B/5. FM Signal Generator covering in three ranges $68-108,118$-185 and $450-470 \mathrm{MHz}$. Modulation FM fixed deviations of 3.5 and 10 KHz . AM fixed 30% £225
- MARCONI TF791D. FM Deviation meter $£ 185$
* 'DOLBY' MOISE WEICHTTNG FILTERS

Cat. No. 98A. Noise weighting filters for CCIR/ARM signal-to-noise ratio measurements. As new units. £40 each ($+€ 1$ p\&p)

BECKMAN TURNS COUNTER DIALS

Miniature type (22 mm diam.). Counting up to 15 turn "Helipots". Brand new with mounting instructions. Only $£ 2.50$ each.

KAY SONA-GRAPH

Model 7029A Audio frequency spectrograph. $5-16000 \mathrm{~Hz}$. C/w type 6076C Scale Magnifier plug-in unit. In good working condition

- AUDIO WATTMETERS

880 hm Switchable IW \& 10W FSD. Internall 3.5 \& 8 Ohm load impedances. Housed in grey enameilled case $6 \times 6 \times 3$. Large easy to rea.
output provision. $£ 10(+£ 1)$.
HEATHKIT Model AW-IU. Internal load switchable 3, 8, 15 \& 600 Ohm . Meter scaled $0-50 \mathrm{~W}$ (+dB scalel. 5 Ranges from 5 mW -50W FSD. Mains powered. $£ 25(+£)$.
MARCONI TF893A. 1 mW -10W Full scale in 5 ranges. Impedances $2.5-20 \mathrm{~K}$ Ohm in 48 steps. Direct calibration in Watts and dBm. $\mathbf{E 8 5}(+£ 2)$.

GPO JACK SOCKET STRIPS. 20-WAY Type 320 (3 pole) $£ 2.50$ ea. Type 520 (3-pole with switching contacts) ${ }^{2}$ ea. Please include 35 p each for above 20p ea. (10+ post free). Plus VAT please.

PHILPS Model PM6456/01 FM STEREO GENERA TOR. RF Outnut freauency 1 MHz Standardised Stereo multiplex output signal. As now with handbook. $\mathbf{f 1 9 5}$

P. F. RALFE ELECTRONICS

10 CHAPEL STREET, LONDON, NW1 TEL: 01-7238753

SOLARTRON CD1740 System.

 DC-50MHz Sweep Delay Timebase £375 $\mathbf{W} \mathbf{M H z}$, new $£ 375$ TRIOCS1577A. 35MHz, new e375 c/w two 2A63 Y-Amps (DC 300 KHz .1 mV).
SPECLAL PURCHASE OF TEKTRONXX 45A PORTABLE OSCILLOSCOPES

Tektronix $454 \mathrm{DC}-150 \mathrm{MHz}$ dual-beam oscilloscopes in stock now. $5 \mathrm{mV} / \mathrm{cm} Y$-am Calibrated sweep delay. We can offer these units in first-class operational condition complete with three months guarantee, for a once only price of $£ 750$.
MARCONI Component Bridges. Models
DYMAMCO D7200, Mains/battery portable. DC-15MHz £250 COSSOR CDU150. DC-35MHz £200
TELEQUIPMENT D53 $£ 150$
TEKTRONIX 454. DC-150MHz EK50 RONIX 454. DC-150MHz TF1313 and TF2700 in stock.
ADVANCE VM77D Millivoltmeters. $15 \mathrm{~Hz}-4.5 \mathrm{MHz}$. 1 mV Full scale -300 V AC e55
WOELKE ME104C. Wow \& Flutter Meter $£ 95$ AVO Type 1 LCR Component Bridge.
WAYNE KERR AF Signal Generator Type S121 £75 AIRMEC Wave Analysers Models 853 and 248A. CENTRONICS P1 Printer, one only. AND Type 663 Printer ROHDE \& SCHWARZ SDR Signal Generatof. $300 \mathrm{MHz}-1 \mathrm{GHz}$. HEWLETT PACKARD 608C Signal Generator. $10-480 \mathrm{MHz}$ AM

CABLE \& WIRELESS Telegraph Signalling Twin DC Power supply units. 240V AC input. DC output $80-0-80 \mathrm{~V}$. Dimensions $8 \times 7 \times 19^{\prime \prime}$. Model No. DD30. Price ea. $\mathbf{£ 1 2 . 5 0}$. Carriage $£ 1.50$
PLEASE NOTE. All the pre-owned equipment shown has been carefully
 fested in our workshop and reconditioned where necessary. Tt is sold in quarantee. For our mail order customers we have a money-back scheme Repairs and servicing to all equipment at very reasonable rates. PLEASE

MICROFICHE VIEWERS Type SR5. Screen size $9 \times 5^{\prime \prime}$. ReTEXSCON SWEEPERS E55 TEXSCAN SWEEPERS Texscan Model VS40 Sweep Genorators. $0-300 \mathrm{MHz}$. Internal Markers. Also available Texscan ADD 15% VAT TOALI PRICES.

CHILTERN ELECTRONICS

HIGH STREET, CHALFONT ST. GILES, BUCKS. - Telephone 0240771234

VIDEO MONITOR AND PRINTER BARGAINS

Motorola 9-Inch Monitors

Once again we are able to offer these beautiful littie monitors at a fraction of usual price. Ideal for a micro-composite video input, mains operation, and a wide band vidth that will display a crisp 80 characters per line or more.

FREE Bonus- 5 -volt 2 -amp reg.
ONLY £34 plus V.A. T
Carriage 9.50

High Resolution 14-Inch Graphics Dlsplays

only. Look at these features

- Wide 14 -inch screen. Attractive case.
* Bandwidth better than 18 Mhz
* Standard $230-\mathrm{v}$. mains operation
* Extra 5-v. 7-amp. psu, and space inside case for logic or your micro card

While stocks last
Only $£ 50$ plus V.A.T

Protessional ASCII Keyboards

84-Koy Keyboards as used on large mainframes
Inductive/Hall Effect Switches.

- Parallel TTL ASCII out.

Numeric and cursor control keypads.
Full ASCll set -ideal for home system. Full data.
Only $£ \mathbf{5 0}$ plus V.A.T. Postage $£ 4$

PRINTER BARGAIN

or caliers only, we have a few of the famous Decwriters LA35 available. These beautiful printers are almost new, ex-demo models. Standard RS232 inteiface, max print speed $60 \mathrm{ch} / \mathrm{sec}$. Complete with attractive stand. Originally these cost over $£ 1,000$ each

Our price $\mathbf{E 2 2 0}$ plus V.A.T.

Our new retail shop is now open six days a weok, with thousands of items available at a fraction of origlnal cost. Monitors, Printers, Power Supplies, Prototype Cards, Computer Desks and much more

NOVEMBER ISSUE TESETEIO
 SERVICING-VIDEO-CONSTRUCTION•DEVELOPMENTS

FOCUS ON PORTABLES

looking at circuit techniques used in B \& W small screen TVs, starting with the i.f. strip and a.g.c. arrangements.

SERVICING THYRISTOR LINE TIMEBASES

Advances in colour c.r.t. scan coil design have made thyristor LOP stages obsolete: however, large numbers of sets are still in use, so we've published a practical guide to fault-finding and servicing.

VCR SERVICING
Tape path faults and adjustments

PLUS!
 * Quick checks on PYE Hybrid CTVs * The Spirit of '51 - for VINTAGE TV enthusiasts.
 ON SALE NOW...WELL WORTH A CLOSER LOOK

WIFAT RRTGERERFORMANGE

TYPE 3030

DC-15MHz
Bandwidth
$5 \mathrm{mV} /$ div sensitivity
$200 \mathrm{~ns}-200 \mathrm{~ms} / \mathrm{div}$ sweep speeds
Rectangular CRT
Compact and lightweight
BUILT-IN
COMPONENT TESTER

TYPE 3131

DC-15MHz Bandwidth
$5 \mathrm{mV} /$ div sensitivity on both channels
Algebraic addition and subtraction
$X-Y$ Operation
BUILT-IN
COMPONENT TESTER
£150*
Triggered and automatic swoep
Triggering to 20 MHz
Fully regulated high and low voltage supplies
200mV Calibration signal
$200 \mathrm{~ns} / \mathrm{div}$ to $0.2 \mathrm{~s} / \mathrm{div}$ timebase
5° CRT
Triggering to 35 MHz
Z Modulation
10×8 div display
TV Frame trigger
£240*

Eratech instruments Limited

WW - 031 FOR FURTHER DETAILS
Front Panel $480 \times 150 \mathrm{~mm}$. Rear Case $425 \times 250 \times 140 \mathrm{~mm}$
Top, bottom and rear cover removable for access \& Plates have heavy duty grey paint finish \star Front cluded \star Heavy gauge chassis mounting plate is pre-drilled and has tion throughout - screws choose from Front panel is of brushed aluminium finish enhanced with haeavily chromed handles to
Many sold to 'TANGERINE' users and INDUSTRY
ADD VAT AT STD. RATE \& ORDERS UNDER £5. P\&P 50p ABOVE ITEMS £1 P\&P

These are beautifully manufactured cabinets with an aluminium teet for please the wifel, louvred for ventitation and finished in an attractive two tone finish. They make excellent cabinats for
power supplies, remote control units and many more projects.
a-102(d) $\times 56(\mathrm{~h}) \times 83(\mathrm{w}) \mathrm{mm}$ $\mathrm{c}-150(\mathrm{~d}) \times 76(\mathrm{~h}) \times 103(\mathrm{w}) \mathrm{mm}$ $\mathrm{c}-150(\mathrm{~d}) \times 70(\mathrm{~h}) \times 160(\mathrm{w}) \mathrm{mm}$

W⿵冂1		$\begin{array}{ll} \text { DIODES } & \text { 1N } \\ \text { 1N4148-2p } & \text { 1N } \\ \text { 1N4001-3p } & \text { 1N } \end{array}$	$\begin{aligned} & \text { 1N4002-3p } \\ & \text { 1N4003-4p } \\ & \text { 1N4004-5p } \end{aligned}$
$\begin{gathered} \text { RE[AY-A-QUP } \\ \text { PRODUCTS } \\ \hline \end{gathered}$	Moat Lodge, Stock Chase MALDON, Essex, UK Tel: 062157242 10am-8pm Mon.-Sat.		$\begin{aligned} & \text { TRADE } \\ & \text { P.O.A. } \end{aligned}$
			$\begin{aligned} & \text { SEIKO' } \\ & 30 \mathrm{C} \text { Iron } \\ & £ 2.95 \end{aligned}$

WW - 081 FOR FURTHER DETAILS

FIRST IN THE WORLD

The ICM-12, synthesized, marine hand-portable radio
FEATURES:

- 12 channels - 6 and 16 fitted as standard.
- No waiting for crystals, can be diode programmed between $156-164 \mathrm{MHz}$.
- Automatic semi-duplex for private and link calls.
Slide-on nicad pack recharges from mains or 12 V .
- Lots of options, speaker mics, alternative battery packs, 12 V leads, and desk chargers.
- Complete with nicad battery pack, mains charger, belt clip, earphone, rubber antenna.
- Home Office type approved. RTD HP 105. PRICE E199.13 + VAT. Free carriage.
Trade enquiries very welcome - Ask for Phil Hadler

We can also supply the ICOM IC100E and IC410A VHF \& UHF PMR Base and Mobile transceivers. Fully approved, very compact built-in CTCSS and at very competitive prices.
Also the first synthesized hand portable ICH2. Two channels, high band, Simplex or Duplex. Dealers, forget your crystal problems!

Dealer outlets required, ask for Dave Stockley.
Thanet Electronics CDICOM
143 Reculver Road, Herne Bay, Kent
Tel: 02273 63859. Telex 965179

\section*{ambit
 INTERNATIONAL
 THE MOST COMPREHENSIVE RANGE OF COMPONENTS, KITS AND MODULESIN THE WORLD \& THERE'S ONLY ROOM FOR A CMOS-TTL
 | LMITOCN | 3.88 | SL1611 | 1.60 | K84433 | 1.52 | 4265 | 16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1449 | 1.86 | SL1612 | 1.60 | K844 | 1.95 | 4266 | 43 |
| U2378 | 1.28 | SL1513 | 2.06 | K84436 | 2.53 | LC7137 | . 50 |
| $\cup 2478$ | 1.28 | SL1620 | 2.17 | KB4437 | 175 | ICM72168 | 19.50 |
| $\cup 2578$ | 1.28 | SL1621 | 2.17 | KB4445 | 1.29 | HCM7216C | 19.95 |
| U2678 | | SL1623 | 2.44 | K84446 | 2.75 | ICM7217A | 9.50 |
| LM324 | 0.45 | SL1625 | 2.17 | NE5044 | 2.26 | | |
| LM33 | 0. | SL1630 | 1.62 | MC5229 | 9.60 | 95490 | 7.80 |
| LF347 | | SL16 | 1.89 | SL62 | 2.03 | HD10551 | 2.45 |
| LM348 | | | | SL6310 | 03 | | 00 |
| | 0.4 | toazo | 1.25 | SL6440 | ${ }^{3} 38$ | HD44015 | 45 |
| LF353 | 0.76 | ULN22 | 3.05 | | 75 | H044752 | |
| LM380N | 1.00 | ULN2283 | 1.00 | SAS661 | 1.48 | MC145151P | 6.00 |
| 2N419CE | 1.98 | CA3089 | 1.84 | SL6640 | ${ }^{2} .75$ | 2804 | 3.75 |
| 2N427E/8 | 6.28 | CA3130E | 0.80 | SL6690 | | 28804 P10 | |
| NE544 | 1.80 | CA3130T | 0.90 | SL670 | 2.35 | | 4.00 |
| NE555N | 0.20 | CA3140E | 0.46 | SAS | 8 | z804 DMA | |
| SLL560 | 1.98 | CA3189E | 2.20 | LS7225 | 55 | z80a DART | 50 |
| NE564 | 4.29 | CA3240E | 1.27 | ICM755 | 94 | 2804 Stor | 00 |
| NE567 | 1.30 | MC3357 | 2.85 | ${ }^{\text {ICLL8038CC }}$ | 4.50 | $2804510 / 2$ | |
| UA741CN | 0.20 | ULN3859 | 2.95 | TK10170 | 1.87 | 2804 $10 / 9$ | 95 |
| TBA820M | 0.78 | LM3900 | 0.60 | TK10321 | 75 | 28 | |
| ZNA 1034 | 2.10 | LM3909N | 0.68 | HA11223 | 2.15 | 8255 | 58 |
| LM1035 | 4.50 | LM3914N | 2.80 | HA11225 | 1.45 | 6800p | 2.90 |
| TDA1062 | 1.95 | KB4412 | 1.95 | HA12002 | 122 | 6809 | 75 |
| TDA1083 | 1.95 | K84417 | 1.80 | HA12402 | 1.95 | 6802 | 3.50 |
| TDA1090 | 3.05 | K844208 | 1.09 | Hal 2411 | 1.20 | 68400 P | 25 |
| HA1197 | 1.00 | K84423 | ${ }^{2} .30$ | HA12412 | 1.55 | 68800 P | 65 |
| MC1350 | 1.20 | K84424 | 1.65 | LF1374 | 0.33 | 2114.12 | 49 |
| HA 1370 | 1.90 | K84430 | 2.30 | MK50375 | 3.85 | 4116.2 | |
| HA1388 | 2.75 | K8 | 1.95 | MM53200 | 3.90 | 2732 | |
| SL1610 | | | 1.95 | U264 | | | |

 AND THERE'S PLENTY MORE IN THE CATALOGUE 70p inc.}

Coils, Filters: Toko, Murata, NTK, Cathodeon.

TOKO FIXED VALUE CHOKES (E12 Values)
$\begin{array}{lll}7 \mathrm{BA}-1 \text { to } 1000 \mathrm{uH} & 16 \mathrm{p} & 10 \mathrm{RB} .1 \text { to } 120 \mathrm{mH} \\ 8 R B-1 \text { to } 33 \mathrm{mH} & 19 \mathrm{p} & 10 \mathrm{RB} \cdot 15 \text { to } 1.5 \mathrm{H}\end{array}$ 33p

RETAIL SHOP OPENING HOURS	NOW IN STOCK
Monday to Thursday 8.30-6.30	MF10 - Nationat's new Oual
Friday 8.30-8.30 Saturday 9.00-5.30	Switched - Capacitor Filter:
(Access + Barclaycard orders accepted)	Price $£ 5.05$

ALL PRICES SHOWN EXCLUDE VAT. P\&P 50p per order.

AMBIT INTERNATIONAL

DEPT. WW
200 narth Fervire inan, Brentwand, Esesu
TELEPHONE (STD 0271) 230909 TELEX 995194 AMEIT G POSTCOOE CM14 $4 S 6$

Visual monitoring of anything, anywhere, by phone, in seconds, with Robot Phoneline TV.
Robot's Phoneline TV systeme provide a low-cost, efficient solution to the problem of visutly montitoring remote installations, motors, gauges, traffic, wenther, water levels, or any subject, large or small. \square The Phoneline TV equipment worke well with standard CCTV equipment and converts the broadband video signal from the camera to narrow band grade radio, then to a video signel agoin for dieplay on monitor at the recelving end. The entire procese takes as litle es 4 seconds and costs only the amount of the phone call. \square Since one or more camerns can be fed to one or more monltoring stations for viewing sequentially or simultaneously, and since the system cen be fully automsted, there is an simost iminite number of PLTV system configurations possibis. Permanent storege is ayiliable by recording the transmissions on audio cassette tapes. \square For fast, uneomplicated, inexpensive visual monitor-
ing of uny subject anyplece, Robot Phoneline $T V$ is the answer. \square Write Ing of any subject anyplece,
or call for more information or call for more information
and descriptive iterature.

Robot (UK) Ltd., Building 33 East Midlands Aírport
Castle Donington, Derby DE7 2SA
al: (0332) 812446 . Telex: 37522
 world Leaders in Phane Line Tolevilion and imsege Procesoing Syetoms

WW - 084 FOR FURTHER DETAILS

IN USE IN DESIGN
LABS \& EDUCATIONAL
ESTABLISHMENTS
AROUND THE WORLD

UV1T
Powerful, compact unit to erase up to six EPROMs quickly and safely. $10-60-\mathrm{min}-$ ute electronic timer.

UV1B
As above but without timer. $\mathbf{E 4 6 . 9 5}+$ V.A.T
Carriage paid (U.K.)
Send cheque or official order for prompt delivery.

Also available in London from: Hennomatic Ltd Henrys Radio
Ambit International

51 Arundel Street, Mossley, Lancashire Tel: Mossley (04575) 4119 WW - 082 FOR FURTHER DETAILS

ScheTronics Limited

For repair and calibration of test equipment.
We also have selected pieces of second user LF/HF equipment for sale, including
Hewlett Packard Vector Voltmeter 8405A
STC Sweep Set Audio/Broadcast plus recorder
STC Psophometer CCIT Telephone Filter
W \& G EPM $1 \mathrm{Z}=75$ Ohms
Anritsu Attenuator MN54A
Siemens Level Osc. 3W 231/233/234
£1,950

Siemens Pegamet spares
various

Unit 10, Dunstall Estate
Crabtree Manorway
Belvedere, Kent DA17 6AW
Telephone: 01-311 9657

VARIABLE VOLTAGE TRANSFORMERS

Superior Quality Preaision Made NEW POWER RHEOSTATS

mbly, continuously rated
25 WATT 10/25 50 100/150/250/500/1K Ω 1.5k E3. $10+30$ p P\&P. ($\mathbf{E z} .91$ inc. VAT)
50 WATT $250 \cap$ E5. $50+50$ p P\&P. (Ee. 90 inc. VAT) 100 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 300 / 500 / 1 \mathrm{kR} / 9.5 \mathrm{kR} / 2.5 \mathrm{kI} /$ Black Sliver Skirted Knob calibrated in Nos. 1-9, 11/2ín dia. brass

SOLID STATE EHT UNIT
Input 230 A A.C. Fully isolated. Aprcx. 15 KV . Built-in 10 sec . Timer.
Easily modified for 20 sec 30 sec to continuous operation. Size $155 \times 85 \times 50 \mathrm{~mm}$. Price $E 5+75 \mathrm{p}$ P\&P. (Total inc. VAT $£ 6.67$). N.E.C. Geared Motor. 152 rpm, $2001 \mathrm{~b} . \mathrm{in}$. 230 V
AC 50 Hz . Ratio 92 to capacitors. Fraction of maker's price. Price:
$\ell 37.50+£ 4$ p\&p. (total incl. VAT E 47.73)

$240 \vee$ A.C. SOLENOID VALVE Designed for Air/Gas at 0.7. Water 0-5 psi.
brass body. Manuf. Dewraswitch Asco. +75 P \&P ($\mathbf{E 7} 10 \mathrm{inc}$. VAT) n.m. METERS (Now) - 90 mm DIAMETER AC Amp. Type 6212:0. 1A, 0-5A. C-10 ACAmp. Type 55 C500-5A, 0-10A, 0-50A, $0-100 \mathrm{~A}$. DC Vort 15 V , -3 OC, 0 -100ADC Price $\mathbf{E 5 . 0 0}$ plus 75 p P\&P ($\mathbf{E 6 . 6 1}$ inc. VAT).

ULTRA VIOLET BLACK LIGHT FLUORESCENT TUBES
 (For use in standard bi pin fittings) 9 in 6 watt E2.50 + P\&tP 450 (E3.39 inc VA). Sin 4 watt $82.50+$ P8PP $45 p$ (E3. 33 inc. VAT)
C
(3.39 inc. VAT) Complete ballast unit for oither 6 V , 9 V or 12 V tube $230 \mathrm{~V} A \mathrm{ACop}$. Posi 55p (ebsesinc VAT 2).

Self-balisted Mercury U.V. 175 N Bulbs.
or E.S. fiting. Price incl. psp \& VAT 11.50 .
Black Light Br.s. for details.
 VAT \& P).
Stockists for Finnigans Hammerite Paint and Waxoyl products.

INPUT 230/240V a.c. 50/60 OUTPUT 0-260V
 3-PHASE VARIÄBLE VÖLTAGE TRANSFORMERS
KVA 5 amp fer phase ma-415V. Star connected
 TTRANSFORMERS T TRANSFORMERS

E329.00

$.6 \mathrm{~V} / \uparrow 2 \mathrm{~V}$ at 2 C amp $£ 16.20 \mathrm{P}$ \& P £ 2.00 (inc VAT $£ 20.93$)
0.12 V at 20 and or 0.24 V at $10 \mathrm{amp} £ 14.90$ P\&P $£ 2.00$ ($£ 19.43$ inc $0.6 \mathrm{~V} / 12 \mathrm{~V}$ at 1 c amp $\mathrm{E9} 10 \mathrm{P} \& \mathrm{P} \mathrm{E} 2.00$ (inc VAT £12.76).
P). $10 \mathrm{~V} / 17 \mathrm{~V} / 18 \mathrm{~g}$ at $10 \mathrm{amp} \mathbf{£ 1 1 . 5 5} \mathrm{P} \mathrm{\& P} \mathrm{f} 2.00$ inc $\mathrm{P} \mathrm{\& P}$ ($£ 15.58 \mathrm{inc}$

INDUSTRIAL STROBE. Suitable for both industriel and educational purposes. Kit when assembled produces a variable speed 1 to approx. 70 flash per second. Light output approx. 0.5 joules. Price, less case, $\mathbf{e 2 7}+\mathrm{f} 2 \mathrm{P} \& \mathrm{P}$ (total incl. VAT £33.36). Suitable case $£ 11$ + £2 P\&P (total incl. VAT £14.95).
FROM STOCK AT PRICES THAT DEFY COMPETITION!

AC GEARED MOTORS
DC MOTIRS icrosivithes REED SVITCHES SOLENOIDS PROGRAMME TIMERS

CF BLOWERS AC CAPACITORS STROBE KITS flashtubes CONTACTORS SYMCHRONOUS MOTORS

EPROM ERASURE KIT
Why waste money? Bulld your own EPROM ERASURE for a frac ion of the price of a made-up unit. Complete kit of parts less case to include $12^{\prime \prime} 8$ watt 2537 Angst Tube. Ballast unit, pair of bi-pin ESS CASE. Price: $£ 13.60+35 p$ P\&P. (Total incl. VAT $£ 16.50$). Wrining: Tube used in this circuit is highly dangerous to the eyes. REVERSIBLE MOTOR 42 RPM 110 V A.C. 10 Otb in. Will operate on 23IV A.C. Saeed remains at 42 rrm but toraue reduces by 50% 5 rpm of 15 rpm Epole non-rever sible Motor. Either type $\mathbf{5 5 . 5 0}$ eash +50 p P\&P. (Total inct VAT $£ 2.88$). N.M.S. BFANP NEW CĀSSETTE TVPE MOTOAS. Thiee types. $8 \mathrm{~V} 7 \mathrm{~T} / 2 \mathrm{~V}$ 12V. Price, any three, for $22+50 \mathrm{p}$. P\&P (incl VAT £2.8B) N.M.S. 333 ppm GEARED MOTOR. Torque 35 lb . in. reversible 115 V AC E14.38). Suitable Trensformer 230 V AC operation. Price $\mathrm{E} .50+$

COMPRESSOR
Thomas single diaphragm. Max. 20 psi. $11 / 4^{\prime \prime}$ cfm., ap OR, to include Transformer for 2301240 V AC $\mathbf{f 2 8} 45$

BLOWER/VACUUM PUMP

3 phase A C. motor 220/250V or $380 / 440 \mathrm{~V} .1,425 \mathrm{rpm}$, $1 / 8$ h.p. cont. Direct coupled to William Aldday Alcosa car Pon vane blower/vacuum pump. $0.9 \mathrm{ctm} 8 \mathrm{hg} . \mathrm{E} 22+£$ HY-LYGHT STROBE KIT MK IV
Approx. 4 joules. Adjustable speed. Price $\mathbb{E 2 7}+$ £2 P\&P. (Total inc. $^{\text {E }}$. ar Ea3.36). Lase Ad INSULATION TESTERS NEW
500 VOLTS 500 megohms $£ 49.00$ P\& P E2.00
 TME SWITCH VENNER TYPE ERD ne switc $200-250 \mathrm{~V}$ a.c. 30 amp contact 2 on $/ 2$ off sf read reserve and day omitting device. Buitt to hijhest Electricity Board Specification. Price f 11.50
SANGAMO WESTON TIME SWITCH
Ype S251 200/250 AC 2 on/2 off every, 24 hours. 20 amps contacts wh override swatch. Dismenter 4×3, price Also availat le Sangamo Weston 60 mmp and $A E G 80 \mathrm{amp}$. Phone o- details.
 ype $\$ 388$. As above, plus 36 hours spring reserve. Less perspex

$$
\begin{aligned}
& \text { N.M.S. - Now Mamufacturers' Surplus. } \\
& \text { R\&T - Reconditioned and Tested. }
\end{aligned}
$$

Personal callers only. Open Saturdays 9 Little Newport Street London WC2H 7JJ Tel: 01-437 0576

MEMORY UPGRADE 8×4816 AP-3 100nS £21.60
F.D. INTERFACE KIT I C 77-78 £70

ANALOGUE PORT KIT IC 73, SK $6 \mathbf{£} 7.30$ RS423 \& VDU Port Kit £10.80

All mating Connectors with Cables in stock.
Full range of ACORNSOFT, PROGRAM POWER \& BUGBYTE SOFTWARE AVAILABLE
Phone or send for our BBC leaflet
BBC FLOPPY DISC DRIVES
Single Drive 51/4"' SSSD EP.O.A.
Double Drive $51 / 4^{\prime \prime}$ SSSD $£ 360+£ 8$ carr.
Double Drive 51/4" DSDB£799+£8 carr.

CASSETTE RECORDER

Sanyo Computer Grade Recorder
$£ 24.50+£ 1.50$ Carr
Cassette Leads $£ 3.50$
Computer Cassette $£ 0.50$ ea. £4.50 for 10

NEC PC 8023 BE - C 100CPS, 80 cols Logic Seeking, Bi directional,
Forward and Reverse
Line Feed Line Feed.
Proportional Spacing, Auto Underline, Hi-Res and Block Graphics, Greek Char. Set.
Only $£ 340$ + Carr

MICRODOCTOR

This is not a logic analyser or an oscilloscope. It tests a microsystem and gives a printed reprint on RAM, ROM and 1/O - it will print memory map, search for code, check dataline shorts and operates peripherals and even disassembles the ROM.
Microdoctor complete with psu, printer probe cable and two configuration board

MICROTIMER

6502 Based Programmable clock timer with
t 224 switching times/week cycle

+ 24-hour 7 -day timer
* 4 independent switch outputs directly interfacing to thyristor/triacs
* 4 digit 7 seg. display to indicate real time, ON/OFF and Reset times
* Output to drive day of week switch and status LEDs.

Full details on request. Price for kit $£ 57$

UV ERASERS

UV1B up to 6 Eproms $£ 47.50$ UV1T with Timer $\mathbf{f 6 0}$ UV140 up to 14 Eproms $\mathbf{£ 6 1 . 5 0}$ UV141 with Timer £78 (Carr £2/eraser)
All erasers are fitted with mains switches and safety interlocks

TRAINER KITS

6502 Junior Computer $£ 85$ 6802 Nancomp 1.............E80 6809 Nancomp II............f80 1802 Micro Trainer........ 664 Full details on request

PRINTER \& USER PORT KIT
IC 69, 70, 71 PL9, 10 £9.50 Bus \& Tube Port Kit $\mathbf{£ 6 . 5 0}$

OFFICIAL - SG DEALER
 OFFICIAL BG DEALER

MONITORS

BMC BM1401 14'" Colour Monitor RGB Input 18 MHz Bandwidth 400 dots at Centre 25×40 Char $\mathrm{f} 240+\mathrm{f} 8$ Carr
BMC 12" Green Monitor Composite Input 18 MHz Bandwidth £99 + £6 Carr

ACORN ATOM

$8 K \times 2 K$ Built $£ 13512 K+12 K$ Expanded £175
$8 K+5 K+$ Colour Card $£ 170$ (Carr E3/unit)
Atom Disc Pack $£ 299$ + £6 Carr $3 A 5 v$ Regulated $£ 26+£ 2$ Carr Atom PSU $\mathrm{f7}+70 \mathrm{p}$ Carr Full Range of Atomsoft in stock Phone/send for our ATOM LIST

EPSOM MX 80 and

 100F/T3MX 80 80CPS 80 cols MX 100 100CPS
80 cols 30 CPS OP 100 A
80 cols 30 CPS
Single and Double Width

PRINTERS

 SingleChar. Full Graphics, $10^{\prime \prime}$ wide paper
Tractor Feed Standard
Friction Optional
Now only $£ 185+£ 6$ carr.
Parallel Printer lead for BBC/Atom $\mathbf{£ 1 3 . 5 0}$ Variety of interfaces, ribbons in stock 2,000 fan fold sheets $91 / 2^{\prime \prime} \times 11^{\prime \prime} £ 14+£ 3$ p\&p

Logic Seeking, BiSeeking, Bi-
directional Bit Image Printing, 9×9 Matrix
Auto Underline
MX 80 F/T3 E330 MX 100 F/T3 £430 (£8 Carr/Printer)
£295

SOFTY II INTELLIGENT PROGRAMMER

The complete microprocessor development system for Engineers and Hobbyists. You can develop programs, debug, verify and commit to
EPROMS or use in host computer by using softy as a romulator. Power ful editing facilities permit bytes, blocks of bytes changed, deleted or inserted and memory contents can be observed on ordinary TV.
Accepts most $+5 v$ Eproms
Softy II complete with PSU, TV Lead and Romulator lead $£ 169$

RUGBY ATOMIC CLOCK

This 280 micro controlled clock/calendar receives coded time data from NPL Rugby. The clock never needs to be reset. The facilities include 8 independent alarms and for each alarm there is a choice of melody or alternatively these can be used for electrical switching. A separate timer allows recording of up to 240 lap times without interrupting the count. Expansion facilities provided. See July/August ETI for details. Complete Kit $£ 120$ + f2 p\&p

BOOKS

PRE-AMPLIFERS

ACTIVE CROS̄S̈SOVERS

HEAVY DUTY POWER AMPLIFIERS

WHAT ARE YOU DRIVING?

INDUCTION LOOP TRANSMITTERS VIBRATOR/SHAKERS SERVOMOTORS MAGNETS

CRIMSON ELEKTRIK POWER AMP MODULES HAVE DONE IT ALL

CHOOSE our acclaimed Bipolar Modules for the best in $\mathrm{Hi}-\mathrm{Fi}$. These modules have been widely used by professional bodies. They are high slew, low t.h.d. devices without need for the output fuses that spoil fidelity. They have instantly resetable 'electronic fuse' and are L-bracket mounting for flexi installation.
CHOOSE Our Mosfet Modules for the most difficult loads. These modules are rugged and make ideal line step-up transformer drivers. They respond down to d.c. and make excellent servo-driving devices. They have low d.c. offset drift due to j fet inputs.

B	TYPE	MAX. O/P POWER	SUPPLY TYP.	voltage MAX.	THD TYP.	PRICE INC. V.A.T. \& POST
P	CE 608	$60 \mathrm{~W} / 8 \Omega$	± 35	± 40	< . 01%	£21.50
0	CE 1004	$100 \mathrm{~W} / 4 \Omega$	± 35	± 40	< $.018 \%$	¢25.00
L	CE 1008	$120 \mathrm{~W} / 8 \mathrm{~s}$	± 45	± 50	$<.01 \%$	£28.00
A	CE 1704	200W/4	± 45	± 63	<.015\%	$£ 35.50$
R	CE 1708	$180 \mathrm{~W} / \mathrm{BR}$	± 60	± 63	$<.01 \%$	£35.50
M	CE 3004	$320 \mathrm{~W} / 4 \Omega$	± 60	± 63	< $.02 \%$	£49.50
$\mathbf{0}$ \mathbf{S}	FE 908 FE 1704	$90 \mathrm{~W} / 8 \Omega$ $170 \mathrm{~W} / 4 \Omega$	± 45 ± 45	± 60 ± 60	< $<.01 \%$	£30.00 $£ 39.00$

Export - no problem. Please write for quotation or quote your Visa/Master Charge card number.

——

FREEPOST, 9 Claymill Road, Leicester, LE4 7JJ, England

Electricity Supply Handbook -rour riuide to tote industry:

An up-to-date copv of the Electricity Supply Handhook is the best reference
for knowing who's who and what's what in the electricitv industry.
The 1982 edition contains:-

* Over 2,000 names and locations of executive personnel in the Electricity Council, C.E.G.B., Area Boards and other organisations.
* Major authorities, government departments associated with the electrical industry.
* U.K. power stations, Area Board statistics, electricity tarifis, electrical associations.
* Pull out map of C.E.G.B. regions, power stations and transmission lines.
* Bound in maps oi Area Boards.

Famous for its total coverage, detail and accuracy, it alwas sells out fast
so make sure of vour copy todav, using the coupon below.

LINSLEY-HOOD 300 SERIES AMPLIFIERS

These latest designs from the drawing board of John LinsleyHood, engineered to the very highest standard, rapresent the
very best that is available on the kit market today. The delicacy very transparency of the tone quality enable these amplifiers to outperform on a side-by-side comparison, the bulk of amplifiers
in the commercial markt-plece and even exceed the high stannthe commercial market-place and even exceed the high stan-
dard set by his earlier 75 -watt design. Three versions are offered, a 30 watt with Darlington output
transistors, and a 35 -and 45 wart, both with Mosfet output transistors, and a 35 - and 45 - watt. both with Mosfet output
devices. All are of identical outside appearance which is dedevices. All are of identical outside appearence which is de-
signed to match and stack with our Linsley-Hood cessette recorder 2 . As wart kits the constructor's interests have been looked As with all Harr kits the constructor's interests have been looked
after in a unique way by reducing the conventional (and boring) wiring almost to the point of extinction,
Any of these kits represents a most cost-effective route to the very highest sound quality with the extra bonus of the enjoyment of building a sophist cated piece of equipment. 30- Wett Darlington ampifier, fully integrated with tone controls Special offer price for complete kits is $£ 72$.
35 -watt Mosfot amplifier. fotal cost of parts $£ 98.41$. Special offer 35 -watt Mosfot amplifier. fotal cost of parts $£ 98.41$. Special offer
for complete kits $\mathbf{E 8 7 . 4 0}$.
$\mathbf{4 5}$-watt Mosfot amplifier. Total cost of parts $\mathbf{£ 1 0 4 . 9 5}$. Special offer price for complete kits $£ 94.80$.
(Raprints of original Articles from Hi-Fi News 50p. Post free. No Aeprints of MOSFET article 25p. No V.A. T. Post free.

'P. W. WINTON' TUNER AND AMPLIFIER

Snazzy matching slimline tuner and amplifier in beautiful wooden cabinets. These Ted Pule designs are for the enthusiast. Tuner covers LW. MW, SW, FM and TV soundI Digital frequency
readout with clock and timer features. FM has g section front end and switchable bandwidit for exceptional fringe area perend and switchable bandwidih for exceptional fringe area per-
formance. Amplifier has Toroidal transtormer. Mosfet output ${ }^{\text {slages, }} 50$ watts per channel and got a cracking review in PractiTal Wireless. Amplifier. Complete Kh . $£ 163.00$
-.5109 .00

LINSLEY-HOOD CASSETIE RECORDERS

We have done two kits to this design, one using the original car cassette mechanism and the newer version using a very high
quality front loading deck. This new deck has an exceilent W \& F quality front loeding deck. This new deck has an excelient W \& Head gives an incredible frequency range (with good tape you

A very usetul cevice, connected to loudspeakers giving a 4 light
readouts of peak power delivered for the protection of both the readouts of peak power delivered for the protection of both the
Oudspeaker and the perceived quality of sound. Gives instant indication even for peaks of only five microseconds' duration. powered. Complete technology is sexept batteries. Reprint of Article 25p. No VAT. Post free

VERTICAL FRONT LOADING CASSETTE DECK VFL910

This deck is used in our Linsley-Hood Cassette Recorder 2 and has ever poessible feature to ensure top notch performance.
Recently feetu ed in this magazine in a "Digital Mulhi-Track Tape Recorder' by A. J. Ewins.

VFL910 Deck. Fitted with HS 16 Sendust Alloy Super Head £31.99

FEED YOUR MICRO BYTES WITH

 OUR SOLENOID CONTROLLED CASSETTE DECK

Front loading deck with full solenoid control of all functions Fitted 3-digit memory counter and Hall K Motion Sensor. Standard erase and stereo R/P Heads. Cheapest price ever for all these features. Only E38.90 plus VAT. Full technical specification
included.

HIGH-QUALITY HEAVY DUTY CASSETTE DECK

This will appaal to all lovers of elegant design combining a basic
simplicity with sound construction. No less than three difect simplicity with sound construction. No less than three direct
drive motors ε re integral with the die-cast structure which gives unparalleled stability to the whole unit. Dual capstans allow the use of a three head system for off-tape monitoring. Function contro is by solenory with 3 Heads 120.65

LINSLEY-HOOD 100 WATT POWER AMPLIFIER

Our complete kit for this brilliant new design is the same size as two power a nplifiers with large heatsink area, huge powar supply and speaker protection circuit. Total cost of all parts is £114.48 but cur spacial

Telephone: Oswestry (0691) 2894
Personal callers are always very welcome but please note that we are closed all day Saturday

HIGH QUALITY REPLACEMENT CASSETIE HEADS

el in

Do ycur tapes back treble? A worn head could be the problem, to berter than rewl Standard mountings make fiting ensy and our TC1 Test Cassette helps you set the azimuth spot-on. We ere the actual impc rers which means you get the berefit of lower prices for prime parts. Compare us with other supaliers and seel
The following is a list of our most popular heads, all are suitable for use on Doibe machines and are ex-stock.
HC20 Permellor Stereo Head. This is the standard head fitted as HC20 Permalloy Stereo Head. This is the standard heed fitted as
original equiprent on most decks...................................25 Original equiprent on most decks
Himo High Eete Permalloy Head. A hard-wearirg, higher per-forme nce head with metal capability, $£ 8.20$
HS18 Sendust Aloy Super Head. The best head we can find. HS16 Sendust Alloy Super Haad. The bast head we can find.
Longer life thar Permalloy, higher output than Ferrite, fantastic Longer life thar Permalloy, higher output than Ferrite, fantastic

frequency response... | Hoq5514-Track Heed for auto-reverse or quadropnonic use. Full |
| :--- |
| specification record and playback hesd |
| 7.40 | specification record and playback hesd..........................40

Please consult out list for technical dat on these and other Special Purpos Heads.

SPECIAL OFFER

Replacement heads for SONY machines.
First Qualizy Stereo head with special base to fit Sony First Qualiy Sterso head with special base to fit Sony meep in. Orly ${ }^{5} .95$ Trade prica available on 10 or more

HART TRIPLE-PURPOSE TEST CASSETTE TC1
 One i expensive test cassette enables you to set up VU level,

 head azimuth and tape spead. Invaluableheads. Only $£ 3.50$ plus VAT and 50 p postage.

CASSETTE MOTORS

Brand Now Gcverned 12v DC Tape Drive Motor Type MmI. As used in SF 525 and many other decks. 40 mm Dia $\times 35 \mathrm{~mm}$
Long, Shaft 105 mm long $\times 2 \mathrm{~mm}$ Dia. $6 \times 2.5 \mathrm{~mm}$ Mounting Long, Shaft 105 mm long $\times 2 \mathrm{~mm}$ Dia. $6 \times 2.5 \mathrm{~mm}$ Mounting
Holes on 26 mm PCD on shaft end face. Anti-cloctwise rotation at rated speed cf 2200 RPM. Free run current 25 mA . $\mathbf{f 4} .55$ otch.

Lence CRVIFFR
We have a small quantity of spare motors for these decks at $£ 6$ each complete with

Full datails of tr a entire range of HART products is contained in Our il Jstrated lists.
Ask fer you FREE copy NOW.
Enquiries for lises are also welcome from overseas but please let us have th
airmail.
In a hurry In a hurry A telephone order with credit card rumber placed please add part cost of post. packing and ins

inland

Orders up to $£ 11-50 \mathrm{p}$
Orders $£ 10$ to $£ 49-£ 1$
Orders
Oflers over $£ 5(1-\mathbf{E} 1.50$
overseas
Postage at cost plus $\mathrm{E2}$
documentation and handing
ALL PRICES PLUS VAT

2 WAYS TO RECOVERY

ACT AT ONCE - DELAY IS FATAL

GET IT - READ IT - PRACTISE $1-4$
BE READY TO SAVE A LIFE. SOMEONE MIGHT SAVE YOURS.

Display the ELECTRICAL REVIEW shock first aid chart ($356 \times 508 \mathrm{~mm}$) supplied in thousands to destinations world-wide. Recent deliveries include consignments to companies in Papua New Guinea, Dubai, United Arab Emirates, The Philippines, apart from UK commercial and industrial, educational, Central Government, Local Authorities' orders.

Carry the ELECTRICAL
REVIEW pocket-size shock card $(92 \times 126 \mathrm{~mm})$ designed to help safety and training officers, medical and welfare personnel; all who might find themselves called to save a life. Always pocket your card; there's a useful two-year calendar on the back.

ACT AT ONCE—DELAY IS FATAL!

To IPC Electrical-Electronic Press Ltd.,
General Sales Department,
Room 205,
Quadrant House,
Sutton, SM2 5AS,
Surrey,
England.

[^7]Please send copy/copies as indicated
Pocket Card @ 70p each inc VAT
PaperChart @ 70p each post free
Card Chart @ $£ 1.40$ each post free
Plastic Chart @ £2.10 each post free

Discounts: $100+$ copies 10%

$$
500+\text { copies } 15 \%
$$

(Overseas surface and air mail rates supplied on application.)

Fi INSTRUMENT RENTALS
The Company of Resource

Instrument Rentals (UK) Ltd. Lab House, Horton Road, West Drayton, Middlesex.

PRE-OWNED EQUIPMENT

In today's economic climate the opportunity to buy equipment at less than the manufacturer's list price is increasingly attractive to a growing number of organisations. Our rental inventory, which is constantly being rotated, provides an invaluable source of supply of preowned equipment. Although used, the equipment is guaranteed to meet the manufacturer's published specifications, has always been regularly maintained and is often still in immaculate condition. A guarantee is provided for up to six months and in most cases there are several units available of each type.

INSTRUMENT	SELLING PRICE E	MANUF PRICE f	INSTRUMENT	SELLING PRICE $£$	MANUF PRICE \mathbf{E}
OSCILLOSCOPES \& ACCESSORIES			TAPE RECORDERS		
Tektronix Scope 7704A/7A26/7A26/7B53A	3600	6318	Racal Store 4Ds	3000	5285
Tektronix Scope 465B/DM44	1775	2177	Racal Store 7D	4000	8281
Tektronix Scope 455	930	1945	Racal Store 14D	6000	11570
Telequipment Scope DM63	750	1776	S. E. Labs 3500/14	8000	10800
Philips Scope PM 3244	1395	2299	S. E. Labs 7000A	10500	16120
Gould Scope OS4000	1100	2095			
Gould Scope OS4002	1200	2550	DATA LOGGERS		
Tektronix Stg. Scope 464	1950	3429	Solartron Compact Logger 3430B	1800	3300
Tek. Stg. Scope 7313/7A18/7A18/7B53A	2150	6832	Fluke 2240B System	P.O.A.	
Tek. Stg. Scope 7623A/7A26/7A26/7B53A	4275	7797			
Tek. Stg. Scope 7633/7A26/7A26/7B53A	4975	9045	TRANSIENT RECORDERS		
Tektronix CT5 Probe	350	830	Data Labs DL905	750	1519
Tektronix Camera C30 AR	350	581	Franklin 3500R Dist. Mon.	2400	4331
Shackman Camera Super 7 MK 2	300	591.	Dranetz 606-3	2250	3689
Tektronix P6201 FET Probe	530	880	SOUND LEVEL METERS Bruel \& Kjaer (B \& K) 2209	800	1410
CURVE TRACERS Tektronix 577/177	2300	3648	LOGIC ANALYSERS		
			Biomation 810 D Biomation 1650 D	$\begin{array}{r} 375 \\ 1925 \end{array}$	$\begin{aligned} & 1958 \\ & 4550 \end{aligned}$
DIGITAL MULTIMETERS			Tek. 606 Display (for Biomation)	370	1908
Datron 1051	740	1750	H. P. 1610A	5450	7359
Datron 1059	510	995	Tek. 7603/7D01 F	3050	5956
Solartron 7045	250	360	Paratronics 532	1800	2211
Solartron 7055	400	1390			
Solartron 7065	600	1620	SPECTRUM ANALYSERS Solartron 1510	2700	
Fluke 8600A Fluke 8920A True RMS	295 620	433 1095	Solartron 1510 . Storage Normalizer 8750A	2700 900	5151 1376
			DESK-TOP COMPUTERS H. P. 9825A	2950	5006
COUNTERS			H. P. 98210A String Prog. Rom.	125	162
Racal Timer Counter 9905	225	395	H. P. 98216A I/O Rom.	235	306
Systron Donner Freq. Counter 6053	425	1460	H. P. 9835A	3775	6987
Systron Donner Freq. Counter 6153	650	3495	H. P. 98332A I/O Rom.	395	506
H. P. Timer Counter 5327A	525	1193	H. P. 98336A Ady. Prog. Rom.	295	337
H. P. Microwave Freq. Meter 536A	700	930 1315	H. P. 98337A Plotter Graph Rom.	295	337
Fluke Timer Counter 1953A	825	1315	H. P. 98338A Assem. Exec. Rom.	295	337
SIGNAL SOURCES			DATA TERMINALS Lear Siegier V.D.U. ADM 3A+	450	595
Marconi Sig. Gen. TF2016	1225	2195	Tektronix CT 8100 V.D.U.	325	1174
Systron Donner Pulse Gen. PG100A	200	600	H. P. 2621 A V.D.U.	775	1174
Racal/Adret GPIB Sig. Gen. 7100B	5500	7910	H. P. 2621P V.D.U. With Printer	1425	1946
H. P. Pulse Gen. 8013 B	495	1031	Texas Silent 743 Printer	495	1090
H. P. Function Gen. 3312A	415	751			
H. P. Sig. Gen. 8640 B	3750	5880	POWER SUPPLIES		
H. P. Synthesized Sig. Gen. 8672A	16700	23900	Aplab LVED 30/2	80	190
			Farnell TSV 70	275	445
			Aplab Inverter TIS 250/500	450	825
RECORDERS					
Philips Recorder PM 8222	830	1576	MISCELLANEOUS		
Philips Recorder PM 8236	1380	2841	Wayne Kerr B605 Bridge	1175	1350
TOA EPR 200A YY - T	750	1100	Ferrograph Test Set RTS 2	395	495
Anaspec $20-\mathrm{T}$	450	1100	Ferrograph Aux. Test Unit ATU 1	180	275
Watanabe 6601	1800	3080	Dymar A.F. Power Meter 2085	270	355
Micro Movement M10-120	2300	3547	Tektronix Data Comms Tester 832	840	1452
H. P. XY Recorder 7045	1160	2556	H. P. Transmission Test Set 3552A	1400	1955
H. P. XYY Recorder 7046	1550	3588	H. P. Selective Level Meas. Set 3745B	6800	14700
S. E. Labs 993 Galvo Amp	400	1069	H. P. Microwave Link Analyser 3710A	11900	15300

Scottish Office: Murraygate Industrial Estate, Whitburn, West Lothian. Telephone 050140667 Northern Office: Crossford Court, Dane Road, Sale, Cheshire. Telephone: 0619736251
Registered Office: Lab House, Horton Road, West Drayton, Middlesex. Registration No. 1532492 England, V.A.T. No. 225758447

MANUFACTURERS \& DISTRIBUTORS

CROUZET reversible geared motor. 8 r.p.m. 240 volt 50 Hz with universal T drive. $£ 35$ for $10+$ VAT; $\mathfrak{£ 1 6 2}$ for $50+V A T ; £ 300$ for $100+$ VAT; $£ 1,250$ for $500+$ VAT. Sample despatched for $£ 3.75+75$ p p\&p ($£ 5.17$ inc. VAT).

MATSUSHITA high quality 12 volt D.C. cassette drive motors, size 30 mm dia. $\times 20 \mathrm{~mm}$ high, drive shaft 7 mm long $\times 2 \mathrm{~mm}$ dia, approx. No load
 VAT: $£ 190$ for 1,000 + VAT; $£ 875$ for 5,000 + VAT: $£ 1,600$ for $10,000+$ VAT. Sample 10 sent for $£ 3+£ 1$ p\&p ($\mathbf{£ 4 . 6 0}$ inc. VAT)

BRITISH MADE TRANSFORMER, input 240 V at 50 Hz , output $12 \mathrm{~V}-0-12 \mathrm{~V}$ at $1 / 2$ amp, with built-in thermal overload cutout. P.C. mounting. £25 for $10+$ VAT; $£ 115$ for 50 + VAT; $£ 210$ for 100 + VAT; £950 for 500 + VAT; $£ 1,700$ for $1,000+$ VAT. Sample sent for $£ 3+75 p$ p\&p (£4.31 inc. VAT)

STEREO CASSETTE FRONT LOADING REPLAY MECHANISM for in-car entertainment. Complete with motor and pre-amplifier. Manuf. in U.K. under licence of STAAR S.A. £45 for $10+$ VAT; £205 for $50+$ VAT; £375 for $100+$ VAT; $£ 1,700$ for $500+$ VAT. Sample sent for $£ 5+£\} .50$ p\&p (f7.48 inc. VAT).

CHERRY E61 sub-miniature micro switches with common NO-NC contacts. Rated at 5 amps on $125-250 \mathrm{~V}$ A.C. Internal heavy duty contact gold plated for long life. £15 for $100+$ VAT; $£ 67.50$ for $500+$ VAT; $£ 125$ for $1,000+$ VAT; $£ 550$ for $5,000+$ VAT. Sample 10 sent for $£ 2+50$ p p\&p (£2.88 inc. VAT).

SPEAKERS, CHASSIS TYPE, size $67 \mathrm{~mm} \times 67 \mathrm{~mm}, 35 \mathrm{R}$ at 0.3 Watts, $£ 5$ for 10 + VAT; £23 for 50 + VAT; £42 for 100 + VAT; $£ 190$ for 500 + VAT; £350 for $1,000+$ VAT. Sample sent for $60 p+40 p$ p\&p ($£ 1.15$ inc. VAT)

Terms C.W.O. Please add 5\% to all orders for carriage plus 15% VAT. Export enquiries welcome. We find it impossible to advertise all we stock. Please telephone or write for
further enquiries. Personal callers always welcome.

FIFCTRONIC FOUIPMENT RO TELEX ES53sios EECO.G

WW - 060 FOR FURTHER DETAILS

PRODUCTION TESTINE

POWER UNITS
Now available with
3 OUTPUTS
DEVELOPMENT

SERVICING
[-] PM COMPONENTSLTD \square VALVE \& COMPONENTS SPECIALISTS

INTEGRATED CIRCUITS

 		 ज
 - $\quad \infty$ $0000000000-000$ 		过

DIODES
AA119
BA102
BA115
BA145
BA 148
BA154
BA155
BA156
BAX13
BAX16
BB105
BT151
BY 126
BY127
BY133
BY164
BY176
BY179
BY184
0.08
0.17
0.13
0.16
0.17
0.06
0.13
0.15
0.04
0.06
0.30
0.79
0.10
0.11
0.15
0.45
1.20
0.63
0.35

OUTPUT 1 : $0-30 \mathrm{v}, 25 \mathrm{ADC}$ OUTPUT 2: 0-70v, 10A AC OUTPUT 3. 0-250v, 4A AC

PHONE

(1) 1 (INTERNATIONAL

THE MOST COMPREHENSIVE RANGE OF COMPONENTS, KITS AND MODULES IN THE WORLD \& THERE'S ONLY ROOM FOR A fraction here, get the catalogue and find the rest.

BAND 2 TUNERHEADS (Varicap Tuning)
EF58O4
2 MOSEET of stages MOS FET mixar. MOSFET of stages MOSFET mixer, fied PiNdiode AGC. Tuning yotzoge
for 88108 MHz is $2-\mathrm{BV}$ Bufferec LO output. AGC input
$145 \times 10 \times 24 \mathrm{~mm}$.

7255 The lazest complete FM tunernead from RF ineut to
sterco output. MOS $F E T$ RF
 $£ 30.00$ plus VAT

911225A the 911225A is the 7230 -dited" and shrunk into a screened $u n i t ~ i s ~ i d e s i l y ~ s u l t e d ~ t o ~ u s e ~ w i t h ~$ | synthesised tuner systoms. |
| :--- |
| $\begin{array}{l}\text { Stock No } \\ \text { No }\end{array}$ |
| 10.24 | 20.82 944378 'Hyperfi' series decoder module

with the TOKO KB4437 pillot cancel PLL IC birdy filser and the KB443B muting stereo
$\begin{array}{llll}\text { Soock No. } & \text { Ruilt } & 12.24 & 25+ \\ 40.04378 & 19.95 & 18.05\end{array}$ OFCM500 wide range digital treauency/ capacitance meter. Frequency ranges:
$0.1 \mathrm{MHz}, 1.50 \mathrm{MHz}$ and $80-500 \mathrm{MHz}$, 8 digit

Stock No. mains or Ni-Cad battery operation
40.24
$40-0.1500$

An Automatic DOwer tracking VSWA and self.
ranging power meter. Complate Kit: All PCBS, anging power metor. Complete kirs, case
board mounted components, metrill
und Stock No: $40-40400{ }^{2} 52.86+£ 1.50 \mathrm{P} \mathrm{\&} \mathbf{P}$

FET DIP OSCILLATOR
An essential piece of test aquipment for the RF
constructor. GDO or WM function cover ing 1.6 215 MHz in five ranges. Autio and meter
indication. Kit includes; fibre glass PCB indication. Kit includes; fibre gisas PCB, all com-
ponents, all hardware, punch, painted and screan
printed case, wire etc. for coits sund printed scale. $\begin{array}{llll}\text { Srock No: } & & 17.24 & 25+ \\ 40-16215 & K i t & 17.90 & 16.20\end{array}$ 10. MHz SSB GENERATOR PCB, All componenis, erghr-pole crystal Stock No.
$40-10700$ Prica
£29.65

R\&EW PROJECT AND DATABRIEF PCBs High quality glass fitre printed cliruit boards
tor projects and Databriafs published in Redio

\& Elactronics World.	
27 MHz	£1.98 $£ .3 .39$
TV Pattern Generator	¢5.70
MC145151	£2.57
2 mPreamp	$\underline{80.97}$
K84417 (Undrilled)	¢0.60
0-30V PSU	$\ddagger 3.92$
2 mPAMk '	¢5. 14
ULN3859 (Undrilled)	f0.84
SSB Exciter	${ }^{\text {¢ }}$ (3.37
HA92017	¢2.16
Up Converte	¢4.75

2m PRE.AMP

Verv compact low noise MOSFET 2 mpPe . | amp. Gain 22 dB . Noise figure; less than 1.5 dB . |
| :--- |
| itp and ofo impodance, 50 ohm size; 34×9. |
| 15 mm . |

70 cm PRE.AMP
 $\begin{array}{llll}\text { Sit } & & 1.24 & 25+ \\ 40-07000 & \text { Kit } & \mathbf{3 . 9 0} & \mathbf{3 . 6 0}\end{array}$

2 m POWER AMP
20 watt 144 MHz linear power amplifler. 10 B
 mode. Developed from original class C version
in Des 81 R\&EW. High power output relay
P Pre-drilled heatsink, Optional RX Preamp.
onty
Sty $\begin{array}{lll}\text { Stock No. } & 1-24 & 25+ \\ 40.14421 & \text { Lass Pramp } & 28.50 \\ 40.14422 \text { Wlth Presmp } & 30.40 & 27.65\end{array}$
AND THERE'S PLENTY MORE IN THE CATALOGUE '70pinc.
RETAIL SHOP OPENING HOURS Monday to Thursday 8.30-6.30
 Friday 8.30-8.30 Saturday 9.00-5.30 Switched. Capactitor Fiter. (Access + Barclaycard orders accepted) Price E5.05 AL PRICES SHOWN

AMBIT INTERNATIONAL

DEPT. WW

ANGLIA INDUSTRIAL AUCTIONS

Specialist Auctioneers to the Radio and Electronic Industry
5 Station Road, Littleport, Cambs. CB6 10E Telephone: Ely (0353) 860185

AUCTION SALES

of over 700 Lots
Electrical Components \& Equipment Large and Small Quantities

Forthcoming sales to be held on the following dates:
27th October, 1982; 1st December, 1982; 12th January, 1983; 16th February, 1983; 23rd March, 1983; 27th April, 1983; 1st June, 1983; 6th July, 1983; 10th August, 1983; 14th September, 1983; 19th October, 1983; 23rd November, 1983.

Catalogues available 10 days prior to sale, price 60p inc. p\&p or for each sale for a year f5.

Entry forms on application. Although entries for cataloguing may be received up to 17 days before the date of the sale, customers are advised to enter early.

WW - 073 FOR FURTHER DETAILS

LOW DISTORTION AUDIO SIGNAL GENERATORS

Also available in kit form and alternative versions, i.e.: battery or mains. With or withou frequency meter
Literature on these units, R.F. Sig. Gen., T.H.D. meters, MVMT, Function Generators and many other instruments is available on request.

TELERADH ELECTRONICS, 325 FORE STREET, LONDON N9 OPE
Telephone 01-8073719
Closed Thursdays

WW - 068 FOR FURTHER DETAILS

Alexandra Pavilion London November 18-211982

The biggest and best event ever to be staged for the electronic hobbies enthusiast!

Walk into a whole world of electronic equipment. - Everything from resistors, IC's to homecomputers, transmitting and recelving units, citizens band raclo and peripheral equipment, video games, musicalinstruments, radio control models. . . in fact whatever your particular electronic hobby you llf find this show will be the most interesting and informative way to discover all the latest developments in your particular field.
Other attractions will inciude radio and TV transmission, electric vehicles, radio controlled models, and demonstrations by local and national organisations.
This is the age of the train - British Rail are offering a cheap rate rail fare from all major
stations in the country direct to Alexandra Palace-a bus will be walting on your antival to take you to the show. Ticket price also includes admission to the exhibition - so let the train take the strain to the Electronic Hobbies Fair.
Ticket prices at the door are $\mathbf{2}$ for adults, $\mathcal{E 1}$ for children but party rates are available for 20 people or more. To find out more, contact the Exhibition Manager, Electronic Hobbies Fair, IPC Exhlbitions, Surrey House, 1 Throwley Way. Sutton, Surrey SM1 400. Tel: 01-6438040.

Electronic Hobbies Fair is sponsored by
Practical Electronics, Everday Electronics and Practical Wireless and is organised by IPC Exhibitons Ltod.

PCI 1002 IEEE THERMOCOUPLE CONVERTER

The PCI 1002 is a 12 Channel IEEE compatible thermocouple converter having two input ranges of $\pm 10 \mathrm{mV}$ or $\pm 100 \mathrm{mV}$ F.S.D. selected by an internal switch. It has 12 Bit resolution of the A to D converter giving a resolution of 0.06 deg.C on 10 mV range and covers all common thermocouple types.

Cold Junction Compensation is provided giving a resolution of $0.2^{\circ} \mathrm{C}$ on 100 mV range and $0.02^{\circ} \mathrm{C}$ on 10 mV range.

Linearising software in Basic using optimised coefficients for ranges and thermocouple types.

Two other channels are provided via BNC input sockets on the front panel. Input ranges are I/V for 10 mV range and $\pm 10 \mathrm{~V}$ for 100 mV range.

CIL MICROSYSTEMS LTD
DECOY ROAD, WORTHING, SUSSEX.
TEL: 210474.

High resolution graphics:

We put you in the picture

This month, we home in on the picture-making aspect of computers - and report on four exciting and intriguing developments: "Bit-stick", the joystick device which brings out the artistic streak in Apple II; Apple II graphics for chemists - a package that draws molecular structures; the BBC micro as a colour graphics terminal, and how to store screen designs as graphic pages within a memory.

Also this month, we report on the Commodore 64 - a powerful computer with graphics facilities - and a new letter-addressing capability of Wordpro . .

And that's just a sample of Practical Computing together with advice for users of Pet, Apple, Tandy and Sinclair ZX 80/81 Computers. Buy Britain's leading personal computer magazine.
NOVEMBER ISSUE OUT NOW
80p AT YOUR NEWSAGENT'S - BUT HURRY

HF ANTENNAS

Su

\star MODE；Full half wave operation．
－BANDS；Up to 4 spot frequencies
\star POWER；Receive to 800W（PEP）．
\star SWR；Better than 1．5：1 on channel．

THE SMC TRAPPED DIPOLE ANTENNA

has been developed to satisfy the needs of commerical and military users．It is capable of operation between 2 and 30 MHz on as many as four spot frequencies－each capable of accommodating many channels．Excellent matching and efficiency with a single coaxia full half wave design．NB：Fower absorbing terminating resistors are not emplayed．The antenna may be light duty portable masts）can be easily effected by two people in half an hour．
Hf SSB TRAISCEIVER

FT180＂PIONEER＂HF SSB TRANSCEIVER． $1.8-18 \mathrm{MHz}, 6$ measuring only $95(\mathrm{H}) \times 240(\mathrm{~W})$ $\times 310$（D）mm and weighing 6 kg ． May be operated as a base or mobile transceiver，comple－ menting our trap dipole and to 4500 ，making this unit not only very attractive but highly competitive．

SOUTH MIDLANDS COMMUNICATIONS LTD．

OSBORNE ROAD，TOTTON
Telex： 477351 SMCOMM G SOUTHAMPTON SO4 4DN

Tel：Totton（0703） 867333

WW－ 078 FOR FURTHER DETAILS

reliable high performance \＆ practical controls individually powered modules－ mains or dc option single cases and up to 17 modules in standard $19^{\prime \prime}$ crates small size－low weight－realistic prices．

49／51 Fylde Road Preston PR1 2X0
Telephone 077257560

TOROLDALS

The toroidal transformer is now accepted as he standard in industry，overtaking the obsolete laminated type．Industry has been quick to recognise the advantages toroidals offer in size，weight，lower radiated field and， thanks to I．L．P．，PRICE．
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty．

TYPE	$\begin{gathered} \text { SERIES } \\ \text { No } \end{gathered}$	SECONDARY Volls	$\begin{gathered} \text { qMS } \\ \text { Currem } \end{gathered}$	PRICE	＊ 294 TYPES T0 CHOOSE FROM！				
$\begin{gathered} 30 \mathrm{VA} \\ 70 \times 30 \mathrm{~mm} \\ 0.45 \mathrm{Kg} \\ \hline 00 \mathrm{om} \end{gathered}$	$\begin{aligned} & 1 \times 0010 \\ & 1 \times 011 \\ & 1 \times 012 \end{aligned}$	$\begin{gathered} 6+6 \\ 9+9 \\ 12+12 \end{gathered}$	$\begin{aligned} & 250 \\ & 166 \\ & 1.25 \end{aligned}$	£5．12					$\begin{aligned} & \text { WITHIN } 1 \\ & \text { R SINGLE OR } \end{aligned}$ DERS
Regulation		$15+15$ $18+18$	1.00 0.83	－	＋ 5 IEAR NO QUIBBLE GUARANTEE				
	1x015	$22+22$ $25+25$	$\begin{aligned} & 0.68 \\ & 068 \end{aligned}$	rowners					
	1×077	$30+30$	050	9570	TYPE	$\begin{aligned} & \begin{array}{c} \text { SERIES } \\ \text { No } \end{array} \end{aligned}$	$\underset{\substack{\text { SECONDARY } \\ \text { Valts }}}{ }$	$\begin{aligned} & \text { RMS } \\ & \text { Current } \end{aligned}$	PFICE
50 VA 0.9 kg Regulation	2x010	${ }^{6+6}$	${ }^{4} 16$						
	2x011		$\begin{aligned} & 277 \\ & 2.08 \\ & 166 \\ & 1.68 \\ & 1.13 \\ & 100 \\ & 100 \\ & 083 \\ & 045 \\ & 0.22 \\ & 0.20 \end{aligned}$		225 VA	$6 \times 012$$6 \times 013$60014	$12+12$	38	
	2×013	15＋i5			$\begin{aligned} & 110 \times 45 \mathrm{~mm} \\ & 2.2 \mathrm{Kg} \\ & \text { Reguation } \end{aligned}$		$15+15$	7.50	$£ 9.20$ ＊p／oE200 －㶲声 2168 TOTAL $£ 1288$
	2×014	$18+18$		20.70		6x014	$18+18$	625	
	2×015	$22+22$				6×015	$22+22$ 25	511	
	2×016	$25+25$		－vatrios		${ }_{6 \times 10}^{6 \times 16}$	25＋25	4．50	
	2×017	$30+30$ 110		roract 59		6×017 6×018	$30+30$ $35+35$	3.75 3.21	
	2×028 2×029	110 220				6×018 6×026	$35+35$ $40+40$	$\begin{aligned} & 3.21 \\ & 2.81 \end{aligned}$	
	$\begin{aligned} & 2 \times 029 \\ & 2 \times 036 \end{aligned}$	$\begin{aligned} & 220 \\ & 240 \end{aligned}$				${ }_{6 \times 025}$	45×45	250	
	3x010	$6+6$$9+9$	6644.44			$\left\|\begin{array}{l} 6 \times 033 \\ 6 \times 033 \\ 6 \times 28 \\ 6 \times 29 \\ 6 \times 029 \\ 6 \times 030 \end{array}\right\|$	$50+50$ 110	225	
							220	102	
	3x012	12＋12	333				240	0.93	
	3x014	$c15+1518+18$	268	18.08	300 VA$110 \times 50 \mathrm{~mm}$2.6 KgRegulation$6 \%$	7×013	$15+15$	10.00	
	3×015	$22+22$	181	－0，0E1 कf			$18+18$$22+22$		
	3×016	$25+25$	160	－valef 16		${ }_{7} 7 \times 015$		6.82	
	3×017	$30+30$	1.33	roitaica ${ }^{\text {a }}$		7×015 7×017 7		¢ $\begin{gathered}6.00 \\ 500\end{gathered}$	
	3×028 3×029	110 220	$\begin{aligned} & 072 \\ & 036 \end{aligned}$			${ }_{7} 7 \times 018$	$30+30$ $35+35$	$\begin{aligned} & 5.00 \\ & 4.28 \end{aligned}$	
	$\begin{aligned} & 3 \times 029 \\ & 3 \times 030 \end{aligned}$	$\begin{aligned} & 220 \\ & 240 \end{aligned}$						3.75	－bat 1183 rotal 51400
$\begin{array}{\|c\|} \hline 120 \mathrm{VA} \\ 90 \times 40 \mathrm{~mm} \\ 1.2 \mathrm{Kg} \\ \text { Regulation } \\ 1: 1 \% \end{array}$	4×010	$6+6$	10.00	£6．90		$\begin{aligned} & 7 \times 025 \\ & \times 033 \end{aligned}$	$45+45$ $50+50$	333 3.00 3	
	4＊011	$9+9$	566				$\begin{aligned} & 110 \\ & 220 \\ & 20 \end{aligned}$	$\begin{aligned} & 3.00 \\ & 272 \end{aligned}$	
	4×012	12＋12	5.00			$\begin{aligned} & 7 \times 028 \\ & 7 \times 029 \end{aligned}$			
	4×013	$15+15$	400 3 3				240	125	
	4×014 4×015	$18+18$ $22+22$	2．73		$\begin{array}{\|c\|c} 500 \mathrm{Va} \\ 140 \times 60 \mathrm{~mm} & 8 \\ 4 \mathrm{Kg} & 8 \\ \text { fegulation } & 8 \\ 4 \% & 8 \end{array}$	8x016	$25+25$	1000	
	4×016	$25+25$	240	－Watizo		边 8×018	$30+30$$35+35$		
	4×017	$30+30$	2.00					833 714 85	
	4×018	35＋ 35	1.71	Torat 1908		8×026 8×025	$40+40$ $45+45$	$\begin{aligned} & 625 \\ & 5.55 \end{aligned}$	\＆13．53
	4×28 4×030	240	$\begin{aligned} & 0.54 \\ & 0.50 \end{aligned}$			8×03 8×042	$50+50$ $55+55$	${ }_{4} 54$	romal ata zo
$\begin{array}{c\|} 160 \mathrm{VA} \\ 110 \times 4 \mathrm{~mm} \\ 18 \mathrm{~kg} \\ \text { Heguiation } \\ 8 \% \end{array}$	5×01 5×012 5×013 5×015 5x016 5x01？ 5x018 5×025 5×028 5×029 5×030	9＋9	889	$£ 7.91$ －将I II 4 TOTA 151192		$\left\|\begin{array}{l} 0 \times 26 \\ 8 \times 20 \\ 8 \times 20 \\ 8 \times 29 \\ 8 \times 030 \end{array}\right\|$	$\begin{aligned} & 110 \\ & 220 \\ & 240 \end{aligned}$	$\begin{aligned} & 454 \\ & 227 \\ & 208 \end{aligned}$	
		$12+12$	666						
		$15+15$	5.33			9×017	$30+30$	10.41	$£ 16.13$ － 0105250 －VAI E2， 79 rotal 17442
		$18+18$	444						
		$22+22$ $25+25$	$\begin{array}{r}363 \\ 320 \\ \hline 20\end{array}$			$9 \times 018$$9 \times 206$$9 \times 025$$9 \times 2033$$9 \times 0.02$$9 \times 028$$9 \times 208$$9 \times 030$	$\begin{gathered} 35+35 \\ 40+40 \\ 45+45 \\ 50+50 \\ 55+55 \\ 110 \\ 220 \\ 240 \\ \hline \end{gathered}$	$\begin{aligned} & 8.92 \\ & 7.81 \\ & 6.94 \\ & 6.25 \\ & 5.68 \\ & 5.68 \\ & 284 \\ & 260 \end{aligned}$	
		$30+30$	266						
		$35+35$	228						
		40＊40	200						
		110 220	145 0.72						
		${ }_{240}^{220}$	${ }^{0} 0.72$						

IMPORTANT：Regulation－All voltages quated are FULL LOAD．Pisase add regulation tigure to secondary voltage to obtain oft load volkage．
The benefits of ILP toroidal transiormers
ILP toroidal transformers are only half the weight and height of their laminated equivalents，and are available with $110 \mathrm{~V}, 220 \mathrm{~V}$ or 240 V primaries coded as follows For 110 V primary insert＂ 0 ＂in place of＂X＂in type number．
For 220 V primary（Europe）insent＂ 1 ＂in place of＂X＂in type number．
For 240 V primary（JK）insert＂ 2 ＂in place of＂X＂in type number
How to order Freepost
Use this coupon．or a separate sheet of paper，to order these products，or any products from other ILP Electronics advertisements．No stamp is needed if you address to Freepost．Cheques and postal orders must be crossed and payable to HLP Electronics Lid Access and Barclaycard welcome．All UK orders sent within 7 days of receipt of order for single and smail quantity orders
Also available at Electrovalue，Maplin and Technomatic

Please send
Total purchase price
I enclose Cheque \square Postal Orders \square Int．Money Order
Debit my Access／Barclaycard No．＿
Name
Address

Signature
Post to：ILP Electronics Ltd．，Freepost 5，Graham Belf House，Roper Close Canterbury CT2 7EP．Kent．England
Telephone Sales（0227）54778：Technical（0227） 64723 Telex 965780
 TRANSFORMERS

WW－ 057 FOR FURTHER DETAILS

9
 arams
 BUKK BUYERS LS That willswey you money.

Snall type blower with inset mains motor. Smiths Extractor fan. 5 Woods, ex compute
Tangential blower. $10 \times 3^{\prime \prime}$ air outlet. Dual speed,
Ducting blower Large 1/8 H,P.

LIGHTING \& POWER CABLES

Copper Clad. PVC sheathed. Made by Volex to BSS 1.5 mm single per 100 metre 1.5 mm flat twin or 100 metres
1.5 mm flat 3 core \& E per 100 metres

6 mm sing!
per 100 metre
6 mm flat 3 core
per 100 metres
16 mm flat twin \& E
per 100 metres
15 core per 200 metres
per 200 metres
3 core and screened power flex cable:
3 cores each 50.025 (equiv. 2.5 mm) per metre
3 cores each 30.025 (equiv. 1.5 mm) per met
Armourad Cable $1.5 \mathrm{~mm}, 3$ core
Extension lead. 3 cores .5 mm pvc covered $/ 100 \mathrm{M}$
Ext. lead. twin 5 mm rubber covered $/ 1000$ metres
$£ 2.50$
$£ 3.75$
$£ 2.90$
E 12.50
E 10.00 Iron Flex. Woven cotton covered, rubber insulated FIGURE F FLEX
Figure 8 Fiex Heavy Duty .75 mm .600 metre
per 100 metre

THERMOSTATS \& HEAT SWITCHES

Thermostat: 3 level contact type
10 amp appliance type thermostst. Spindle adjus
Contact ty
$0-100^{\circ} \mathrm{C}$

Wall mounting, metal case, c/o contacts low val tage \quad| 2.30 |
| :---: |

TIMERS : CLOCKSWITCHES

Glass fronted 25 Amp. 230 24 Hour time switch. 100 amp Smiths with clockwork reserve Ex-Electricity Company. Cooker clock switch. Smit
 12 hour Clockwork operated switches 15 amp, 230 volt. On time 10 minutes
 30 minute
 120 minutes
 £1.37
 OMROMutes $\quad \mathbf{~ 1 . 3 7}$
 ref STP NH
 £3.50

BLEEPERS - SIRENS - BELLS

- ALARMS - BUZZERS

ㄹ

Black plastic boxes, $27 / 8 \times 41 / 8 \times 3$ deep Ditto $\quad 35 / 8 \times 23 / 4 \times 13 / 4$ dee Piated metal box, $71 / 2 \times 41 / 2 \times 11 / 2 \times 1$ deep

Dark grey half boxes. May be joined to make three $45 / 8 \times 25 / 8 \times 3 / 4$ de White plastic box ideal for touch switch transmetter, e Through top is square hole, $31 / 2 \times 31 / 2 \times 31 / 2$ Loudspeaker cabinet for $6 \frac{1 / 2}{2}$ " speaker
PORTABLE RADIO CASE - $5^{\prime \prime}$ speaker, size approx $6 \frac{1}{4}$ " $\times 3 \frac{31 / 4}{}{ }^{\prime \prime} \times 2^{\prime \prime}$ deep.

COUNTERS

60 .50

MOTORS - MAINS \& BATTERY

3 - 6 volt battery motor, very small . . . 15		
Mains motor with gear box:	y low current	20
	5 rev minute	£2.25
	80 rev minute	£3.00
	110 rev minute	E2.00
	200 rev minute	£1.50
Mains motor, double ended fan motor		£1.20
Ditto single ended fan motor		£1.00
Fan blade for the above		. 50
Mains motor, double ended, very powerful $11 / 2$ "stack		£1.50
Mains instrument motors with gear box:	1 rev 24 hours	£1.50
	1 rev 1 hour	£1.50
	16 rev minute	£1.50
	4 rev minute	£1.50
	2 rev minute	£1.50
	1 rev minute	

Motor, clockwork, set up to 1 hour
Motor, clockwork, set up to 1 hour with ringer 12 volt motors, Smiths, single stop switches. 12 volt motors, Smiths. double ended $1 / 4$ "spindle 2 volt motors, P Magnet type, single ended

$11 / 2 \mathrm{~h} . \mathrm{p}$. motor 3450 rpm 100 volt. 50 Hz . New

RELAYS \& RELAY BASES

6 vodard open relays 3×8 amp c/o contacts
24 volt dc coil :. $\quad .90 \quad 110$ volt ac coil
1×8 amp changeover, 230 volt AC coil
Enclosed plug in round base relays - 3 changeover contac
50 volt coil (ex fruit machine)
110 volt coll 2 changeove
12 volt coil 3 changeover
8 pin bases. Basses for 2 changeover relay
Miniature Relays: 12 volt 2 changeover 12 volt 4 changeove 24 volt

SWITCHES - ROCKER, TOGGLE, ETC.

Rocker switches: white push into hole $1^{\prime \prime} \times 7 / 16^{\prime \prime}$. All rat $10 \mathrm{amp}, \mathrm{AC} 250$ volt.
changeover centre of
on/off with neon
push to make spring return
onsh to break spring return
Larger two circuit one on one of f with mounting plate
13 amp rocker switch. Car Fastener (Dot) interlocking Interlocking Switch: blow heater, 3 rockers, 10 amp mains button operated: $15 \mathrm{amp} \mathrm{c} / 0$ contacts

10 amp offlon
15 amp off/on
Lever operated add
Lever with roller operation add
Miniature types: Burgess V4T6 c/o
Two mounted with roller opera ir
Glass reed switches: 60 watt $10 p .40$ watt $5 p$ Operating cois for reed swith multikable $3,6,9$ Ceramic magnets . . . Mullard

MAINS TRANSFORMERS

FLUORESCENT LIGHTING

12 volt inverter for $21^{\prime \prime}, 13 w$ tube with lamp leads
8. 125 watt tube
6. 85 watt tube
$6^{\prime} 85$ watt tube
$5^{\prime} 65$ watt tube
4. 40 watt tube

2' $15 / 20$ watt tube
Capacitor for $8^{\prime} 125$ watt choke
ditto for $6^{\prime} 85$ watt choke
$2^{\prime} 40$ watt bi pin end tube $1 \frac{1}{2} 2^{\prime \prime}$ diameter
3' 30 watt bi pin end tube 1 " diameter
1 m 40 watt bi pin ends tube $1 \frac{1}{2}$ " diameter
1 m 25 watt bi pin ends tube $1 /^{\prime \prime}$ diameter
${ }^{5} .80$ watt be ends tutbe $1 / 2$ diameter $^{\prime}$
8. 120 watt bc ends tube $11 / 2^{\prime \prime}$ diameter
8. 120 watt bi pin ends tube $1 \frac{1}{2} 2^{\prime \prime}$ diameter

Sign tube Philips 25 watt. "W" shape

AMPLIFIERS

1/2 watt, Japanese made with v.c.
1 watt, Mullard module 1172
4 watt, Mini-amp with v.c.
Pre-amp, Mullard Ref. 9001 module
$£ 1$.
$£ 3$
$\underset{\substack{\varepsilon_{1} \\ \varepsilon \\ 1}}{ }$
E1,
$£ 1.5$
$£ 5.00$

Approximately 100 tons of stock has to be cleared right away from our big store, hence these very low price offers. Prices quoted are for bulk orders, min imum order $£ 100$, minimum any item $£ 12$. VAT and carriage are extra, although large orders not too far away will be dzlivered free. Contact us on this point.

Should you want a small quantity of any of the items as samples, for instance then send the listed price $\times 2$, which will cover the VAT and postage on letter post items. For heavy items, add the amount you think, bearing in mind that the smallest parcel now costs $£ 1.35$ ard a 10 kilo parcel $£ 3.25$

We have listed most of the items in our stores. All gocids are offered subject to being unsold and conditions of sale are as stated, but should you want more information contact Mr. Bull or Mr. Stepney between 12 - 4 pm on (0444) 454563.

J. BULL(Electrical) Ltd.

(DEPT. WW), $34-36$ AMERICA LANE, HAYWARDS HEATH, SUSEX RH16 3OU

MISCELLANEOUS 1TEMS

Neon Mains indicators. Star dard
Extrasmall
in $230 / 240 v$ o
Bench isolation mains in 230/240v output. $250 \mathrm{~W} \quad \begin{array}{r}.55 \\ \hline\end{array}$
Mains input. Porcelain removable fuse
Light operated switch 12 volt. Encapsulated
Insulating board. srbp etc. Approx 10 tons. Sheet size
$4^{\prime} \times 4^{\prime}$ or larger. Various thinknesses, price per tb.
Ditto. Tufnol, price per lb.
Aerosol can ICI Fluon lubricant
Varicap P.B. TV tuner
Battery Holder takes 6 U2 tatteries, snap connector .50 Car Battery clips, as for cha'ger, + and - . per pai

BUY TIME SLOT METER 1 Op gives 1 hour, boxed with lock and coin $\mathbf{t r a y}$

DIMMERS \& CONTROLLERS 1250W dimmer, Ultra ref. SF20.5

TOOLS:
TOOLS:
8 ba bution dies
Screw driver miniature for zrub screw
Small sizu:, general purpose
Solenoid mains operated AIR VALVE
200/230 volt model
100 volt model
ULTRA SONIC Transmitte s and receivers VALVE HOLDERS: B9A with skirt ceramic
INSERT speaker/mike, balenced armature, 600 hm Rewireatle fuse and carrier MEM 20 amp 250 volt Magnetic Clutch. Zerox 1215494 PN $866-10$

POWER SUPPLY UNITS
In car, 12 volt for using $6 v$ alt equipment Mains to 24 volt Mullard.
Mains to $12 \mathrm{v}-600 \mathrm{~mA}$
Mains to 12 V - 600 mA
200 ohm ear piece, screen lizad
INDUSTZIAL TIMER
Omron reference STP NH, =or 0.60 seconds . Price £3. f 0 .

WASHING MACHINE PUMP Gan cooled, mains driven Price $£ 3.50$.

\section*{FERRITE RODS FOR AERIALS, ETC.
 | Dia $1 / 4^{\prime \prime}-4^{\prime \prime}$ long 15p | 5* long 20p | $8^{\prime \prime}$ long 30p |
| :---: | :---: | :---: |
| Dia 5/16"-5" long 20p | $6^{\prime \prime}$ Iong 25p | 8" long 30p |
| Dia 3/8"-4" long 20p | 5" long 25p | 8" long 30p |
| Dia $1 / 2$ " ${ }^{\text {- }}$ 6 'long 35p | | |
| Ferrite slab $-3^{\prime \prime}$ long $\times 3 / 4 \times 1 / 8^{\prime \prime}$. . . 20 | | |
| L \& M coils for above, per | set | 20 |

TELESCOPIC AERIAL

Nickel plated: Collapsed $8 \frac{1}{2}$ " extended 4 Collapsed $41 / 2^{\prime \prime}$ extended 2

BULBS \& LAMPS

Torch bulbs, 3.5 v MES Box of 25
Pilot light bulbs $6.2 \mathrm{v} .3 \mathrm{~A} \quad 11 \mathrm{~mm}$ Box of 50
$6.2 \mathrm{v} .3 \mathrm{~A} \quad 14 \mathrm{~mm}$ Box of 10
$12 \mathrm{v} .5 \mathrm{~A} \quad 16 \mathrm{~mm}$ Box of 10
Car Bulbs:
18 watt SBC
SBC Lamp holders

ULTRA SMALL 12v RELAYS
single pole 12 voli coil. Size 17 mm long 10 mm diameter.
LOCKING MECHANISM Jne fixing, with 2 keys

SWITCHES

Miniature Make before break Wafer Switch: 1 pole 12 wav/ 2 pole 6 nay 3 pole 4 way/ 4 pole 3 way 6 pole 2 way $/ 4$ pole 2 way 2 pole 2 way/ 1 pole 2 nay 2 pole 12 way $/ 4$ pole 6 way 6 pole 4 way $/ 8$ pole 3 nay 12 pole 2 wav
6 pole 5 way $/ 6$ pole 6 way
9 pole 4 way $/ 1<$ pole 2 way

Push/push table lamp ty se, berter than average quality .15 10 digit switch pad for $t s l e p h o n e$. $£ 1.00$ Computer key switches, bank of 6 with knobs . 21.25 Lever type, as used by port 9 push (6 interlocking, 3 independent tch ban independent lockingl 3 push switches, with in-egral knobs Low pressure switch, serisitive could be mouth operated Single 10 amp changeover.
 Ditto, 310 am 3 change jver MOTORISED \& AUTOMATIC SWITCHES

$£ 4.75$
3 pole 25 watt 50 volt coil 4 pole 25 watt 50 volt coil 6.00 10 Micro sw tches. Adjustable Motorised c/o Micro sw tches. Adjustable sw cams mains
capacitor run motor: $\begin{aligned} & 4 \text { switch } \\ & 6 \text { switch }\end{aligned}$ 8 switch $£ 3.00$
$£ 3.50$
HUMIDITY SVIITCH, ssindle adjustable .50 DELAY SWITCH, A delay switch which cán give delavs of a few seconds to a few m nutes, depending upon the valtage applied to ixs heater coil
WIRE WOUNDI POT, 25 watt 1 K
100 K Multi turn pots

$$
\text { and } 8 \mathrm{ohm}
$$

.50
.50
Wire wound pct with integral knob, available in values - 15 ohms, 33 ohms, 53 ohms, 100 ohms

Miniature PRESETS
.15
.05

CAPACITORS

AC 50 HZ Wo-king or for DC voltages up to three times AC.					
. 1 uf	250 v	18	3.5uf	275 v	41
. $1+2 \times .005$	250 v	23	4 ff	375 v	58
.2uf	840 v	. 23	5 ff	300 v	58
2uf	1500 v	. 38	$50 f$	370 v	70
. 2 uf	$275 v$	20	5 ff	440 v	76
1 uf	440 v	23	5 ff	570 v	82
1.25 uf	360 v	25	6 ¢f	440 v	80
1.5 uf	440 v	33	6 ¢f	660 v	. 90
$1.5+1.5$ f	440 v	58	6.25 uf	260 v	58
$1.5+1.5 \mathrm{uf}$	450 v	58	6.3 uf	400 v	85
1.7 uf	440 v	35	7.4 uf	$275 v$. 63
1.741	550 v	. 47	8uf	250 v	. 68
2uf	440 V	. 44	8uf	400 v	95
2uf	660 v	¢2.00	8uf	600 v	£1.00
$2+05 u f$	350 v	44	7MFD	440 v	. 80
2.2 ut	250 v	. 37	8.4 uf	250 v	. 70
2.5uf	250 v	. 38	11 uf	$275 v$. 83
2.501	440 v	. 46	12uf	250 v	80
2.7uf	250 v	. 40	13ut	$275 v$	85
3MF	100 v	. 29	15 u	250 v	. 93
3MF	400 v	. 50	$15 u f$	$325 v$	£1. 20
3.4uf	440 V	58	20uf	$275 v$	93
3.5uf	250v	38	32uf	250 v	£1.44
120uf	$275 v$	£2.38	62.5 uf	260 v	£2.38

TRANSISTORS

hoto transistors. Mullards seconds 75% working, 100 tor $£ 5$ Full wave rec-ifier, 4410v 2 amp g.p. 50 v Silican diodes Germanium transistors. Surface Barrier transis ${ }^{\text {or }}$

BRITAIN'S bargain BETTER Stilin WORLD-WIDE DEMAND

 WIRELESS WORLD CIRCARDS at 1976 prices 10\% discount for 10 sets! Most sets are still available even though the companion volumes CIRCUIT DESIGNS 1, 2 and 3 are out of print. (CIRCARDS SETS 1 to 30).

Fill gaps in your circuit files with these sets of $127 \times 204 \mathrm{~mm}$ cards in plastic wallets. These unique circuit cards normally contain descriptions and performance data of 10 tested circuits, together with ideas for modifying them to suit special needs.

1 Basic Active filters 2 Switching Circuits, comparators and Schmitts (But these gaps cannot be filled)
6 Constant current circuits 7 Power amplifiers 8 Astable circuits 9 Optoelectronics 10 Micro power circuits 11 Basic logic gates 12 Wideband amplifiers 13 Alarm circuits 14 Digital Counters 15 Pulse modulators 16 Current differencing amplifiers - signal processing 17 Current differencing amplifiers - signal generation 18 Current differencing amplifiers - measurement and detection 19 Monostable circuits 20 Transistor pairs 21 Voltage-to-frequency converters 22 Amplitude modulation and detection 23 Reference circuits 24 Voltage regulators 25 RC oscillators - 126 RC oscillators - 227 Linear cmos-1 28 Linear cmos - $2 \quad 29$ Analogue multipliers $30 \mathrm{Rms} / l o g /$ power laws 31 Digital multipliers 32 Transistor arrays 33 Differential and bridge amplifiers 34 Analogue gate applications-1 35 Analogue gate applications-2.

To IPC Electrical - Electronics Press Ltd. General Sales Department,
Room 205,
Quadrant House,
Sutton,
Surrey SM2 5AS

Company registration in England
Quadrant House, The Quadrant,
Sutton, Surrey SM2 5AS
Reg. No 677128

> Please send me the following sets of Circards: £2 each, $£ 18$ for 10 post free.
> Remittance enclosed................ payable to IPC BUSINESS PRESS LTD.
> Name (Please print)
> Address (Please print).

THE RELAY RACE IS ON!

We have relays of all types, to cater for most of your requirements. Listed is a selection.

PLUG-IN (BPO 3000), BPO 1000 MINIATURE LEVER KEYS, CRADLE TYPE DIL REED, PC SERIES 65 POWER RELAY MR16 SERIES, PCB MOUNTING RP SERIES, SR26 TYPE, B15 TYPE, 07 + 12 SERIES, KL SERIES, 5G SERIES, 35 SERIES CRADLE TYPE, 29 SERIES.

SAFEBLOC 250V. A.C. (single phase mains) ONLY £5.45-NO EXTRAS!

Contact us for detailed stocklist
Trade and Export enquiries welcome

RECHARGEABLE BATTERIES

PRIVATE \& TRADE ENQUIRIES WELCOME
Full range available to replace 1.5 volt dry celis and 9 voit PP type batteries, SAE for lists and prices. £1.45 for booklet, "Nickel Cadmium Power," plus catalogue.
\star New sealed lead range now available * Write or call at:
SANDWELL PLANT LTD. 2 Union Drive, Boldmere
Sutton Coldfield, West Midlands, 021-354 9764 After Hours 097784093

WW - 076 FOR FURTHER DETAILS

ELECTRONIC POWER UNITS

FOR XENON ARC AND MERCURY ARC LAMPS
UNITS AVALLABLE FOR LAMPS RANGING FROM 75 TO 6500 WATTS.
Lamp housings and lens systems manufactured as standard off the shelf models or to
specific design.

-

$$
\cdots
$$

K. T. Manners Design Ltd.
P.O. Box 936, London, W4 4NW Telephone: 01-994 7155. Telex: 28604 WW - 075 FOR FURTHER DETAILS

Beginnersstarthere!

How do I take the next step, beyond computer games and program listings? The November issue of Your Computer tells you in two articles written with the beginner in mind:

- Getting started in graphics - a description of graphics techniques, based on the BBC micro, but with explanations as to how they can be applied on the Sinclair Spectrum and Vic 20 too.

Also in this issue:

Clive answers his critics - interview with Clive Sinclair
Survey of the latest ZX81 cassettes Reviews of the new Jupiter Ace and Lynx computers

PLUS our regular advice column and program listings

- Writing machines code games for the ZX81. First in a new series in which each part will include a game illustrating the techniques described.
Get a copy from your newsagent now or take out a subscription by completing the coupon.

To: Marketing Department, Room L214, IPC Electrical-Electronic Press Ltd., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.
Please send me 12 issues of Your Computer. I enclose a cheque/PO for $£ 8$ UK/£ 14 Overseas, payable to IPC Business Press Ltd.
Name
Address
\square

WWO

Appointments

Advertisements accepted up to 12 noon Tuesday, November 2nd, for December issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 15.50$ per single col. centimetre (min. 3 cm). LINE advertisements (run on): $£ 3$ per line, minimum $£ 20$ (prepayable).
BOX NUMBERS: $£ 3$ extra. (Replies should be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS).
PHONE: IAN FAUX, 01-661 3033 (DIRECT LINE)
Cheques and Postal Orders payable to IPC Business Press Ltd.

ri
 SENIOR ELECTRONIC DESIGN ENGINEER

Rees Instruments specialise in the design and manufacture of remote viewing instruments and associated handling equipment for use in hazardous environments.
Current catalogue equipment includes radiation hardened CCTV cameras with diameters down to 17.3 mm , specialised systems for use in flammable atmospheres and systems for use in mining and qeological applications.
The company is currently seeking the services of a senior electronic design engineer to head a team of electronic engineers working on internal and external design projects.
The person in question should be educated to professional electronic engineer status with a good knowledge of both digital and analogue techniques. Experience in video and solid state imaging together with a general knowledge of colour TV principles would be desirable. The applicant should be capable of leading and controlling others of a similar discipline within his/her charge.
Other qualities such as accountability and responsibility together with a basic ability to solve day-to-day problems will be required to fulfil the role. The person will report to the acting head of design.
The company offers an excellent starting salary. Benefits include a non-contributory pension scheme and a company car will be supplied for business and private use.
Please write for an application form to Mr. A. K. Sefton, Managing Director, Rees Instruments Ltd., Westminster House, Old Woking, Surrey GU22 9LF.

ELECTROMAGNETIC COMPATIBILITY SPECIALIST ENGINEERS

Marconi Underwater Systems Ltd., a new company at Portsmouth. within the Marconi Company, need Professional Electronics Engineers or Physicists with experience in at least one of the following disciplines to join the Company for work on an important new weapon.

- RADHAZ	ELECTRONIC SYSTEM COMPATIBILITY
RFI	FILTER DESIGN
EMP	SHIELDINC DESIGN
LICHTNING EMC PREDICTION \& ANALYSIS	

The specialist group in which you would work supplies an EMC design, analysis and test service to the whole Company. As a member of the group you would work with a large project team and have the opportunity of making a significant contribution to the successful attainment of required weapon performance. We will also need Engineers with circuit design experience for these positions.
We can offer you a salary that reflects the true value of your qualifications and experience and an extensive and worthwhile benefits package. Please telephone or write to C.A. Ormonde-Dobbin, Marconi Underwater Systems Limited, Browns Lane, The Airport, Portsmouth, Hants, P03 5PH. Telephone: Portsmouth (0705) 664966 Ext. 305.
Marconi

SOMETHING A LITLLE DIFFERENT

Rural S. Yorkshire

Our client needs an RF Engineer with more than just RF experience. They must have that unique quality, flair.
The company design and manufacture communication and alarm systems for the protection of people and of people's property. Much of their work is for the disadvantaged sectors of the community, particularly the elderly. They have been established since the late '50s and have a reputation second to none in this unusual market sector.
If you have a strong RF (low power) background, a taste for rustic living and the ability to view communications through inventive and ambitious eyes then the company offer the following benefits:

* Brand new development facilities in a Georgian country house
\star Excellent salary and prospects.
\star Full relocation expenses.
* The freedom and responsibility to make a personal mark in the industry.

Telephone PAUL HECQUET to discuss this or other possibilities on 044-46 47301 or write with brief details to the address below.

The Electronics Recruitment Company

18 Station Road, Burgess Hill,West Sussex RH15 9DE

$$
0444647301 / 2 / 3 / 4
$$

UNIQUE OPPORTUNITY

The manufacturer of a Hong Kong-based market leader minicomputer system is seeking an energetic and technically competent designer to head the R and D department currently looking at the next plicant will have proven ability in design/manufacturing/marketing areas, and will be rewarded by an attractive salary plus package on a minimum two year renewable contract. This is a firstclass opportunity to head an energetic design team.

Applications should be sent, in the first instance, to:

Mr Mark Sim, General Manager EACAINTERNATIONALLTD. Block "B" 11 FI. Watson Building 13 Chong Yip St Kwun Tong, Kowloon Hong Kong

SENIOR PROJECT ENGINEER

If you have at least two years' experience in designing equipment using Z80/80 $80 / \mathrm{CP} / \mathrm{M}$ and would like to work in Chester, taking responsibility for project design and implementation in return for an attractive salary, please send a current CV to:

Sheila Drury
Kemitron Industrial and Scientific Computers 21-23 Charles Street, Hoole Chester CH2 3AY
Tel: Chester (0244) 21817

TRAINEE RADIO OFFICERS

First-class, secure career opportunities

A number of vacancies will be available in 1983/84 for suitable qualified candidates to be appointed as Trainee Radio Officers.

If your trade or training involves Radio Operating, you qualify to be considered for a Radio Officer post with the Composite Signals Organisation

Candidates must have had at least 2 years' radio operating experience or hold a PMG, MPT or MRGC certificate, or expect to obtain this shortly

On successful completion of between 36 and 42 weeks specialist training, promotion will occur to the Radio Officer grade

Registered disabled people may be considered
SALARY \& PROSPECTS
TRAINEE RADIO OFFICER: $£ 4,357$ at 19 to $£ 5,203$ at 25 and over. On promotion to Radio Officer: $£ 5,968$ at 19 to $£ 7,814$ at 25 and over. Then by four annual increments to $£ 10,662$ inclusive of shift working and Saturday and Sunday elements.

For full details please contact our Recruitment Officer on Cheltenham (0242) 21491 Ext. 2269.

Recruitment Officer, Government Communications Headquarters, Oakley, Priors Road, Cheltenham, Gloucestershire
GL52 5AJ

Hardware/Software D and D Engineers

Age 25-30 with MSc in Electronics, Computer Science, Artificial Intelligence or related subject to join lively team working
(A) Worldwide in Industrial Automation field, at $£ 12,000$; or
(B) Word Processor/Computer field. Good package
Progressive jobs. Surrey.
Ring Anne McMillan RIDGEWAY EXECUTIVE SELECTION Epsom 24951
(1826)

DIGITAL EXPERIENCE? FIELD SUPPORT R\&D AND SALES VACANCIES IN COMPUTERS NC, COMMS., MEDICAL VIDEO, ETC.
For free registration ring 0453883264 01.2900267

LO
ELECTRONICS RECRUITMENT SERVICE LOGEX HOUSE, BURLEIGH, STRDUD GLOUCESTEASHIRE GL5 2PW TEL. $0453883264,01-2900267$

$\underbrace{}_{\text {APPOINTMENTS }}$ ELECTRONICS to $£ 15,000$
 microprocessors COMPUTERS - MEDICAL DATA COMMS - RADIO Design, test, field and support engineers- -for immediate action on salary and career advance ment, please contact
 Technomark
 11. Westbourne Grove London W2. O1-229 9239

KENT EDUCATION

 COMMITTEEWEST KENT COLLEGE OF FURTHER EDUCATION Brook Street, Tonbridge, Ken ENGINEERING DEPARTMENT

LECTURER II

to teach on Radio, Television and Electronic servicing courses.
Experience with TEC courses and recent industrial employment will be an advantage.
Further details and application form available from:
Chief Administrative Office West Kent College of Further Education, Brook Street Tonbridge, Kent
(1834)

Appointments

Appointments

Technical Author

Hampshire

The IBA, responsible for Independent Television and Independent Local Radio, requires a Technical Author/Production Supervisor to be based at its Engineering Headquarters near Winchester.

This post is in the Documentation Unit, which has responsibility for descriptive maintenance manuals covering a wide range of electronics, with a growing emphasis on digital techniques.
Those applying should be experienced technical authors with the ability to produce original work centred around good diagrams. Applicants (male or female) should be qualified to HNC standard (or equivalent) in
Electronics/Telecommunications and should have a minimum of 5 years' relevant experience. Other duties include the supervision of 5 support staff within the unit and the monitoring of work loads.
The commencing salary will be on a range rising to $£ 11,283$ per annum. Relocation expenses will be paid, where appropriate.

INDEPENDENT
BROADCASTING
AUTHORITY
Please write or telephone for an application form quoting reference number WW/753cc to Glynis Powell, Personnel Officer, IBA, Crawley Court, Winchester, Hampshire SO212QA. Telephone 822270.

Directorate of Radio Technology Telecommunications Officers

There are currently a number of opportunities (two at Kenley, Nr Croydon; one at Baldock, Herts and possibly two in the London area) to be involved in the technical aspects of planning, monitoring, regulation and use of frequency bands allocated to radio communication services. Work includes the operation, development and testing of specialised equipment; the preparation of specifications, and type approval.

Candidates must have at least four years' experience and must possess either ONC in Engineering including a pass in Electrical Engineering " A " or City and Guilds
Telecommunications Technicians Certificate No 271 or the Intermediate Certificate plus Mathematics B,
Telecommunications Principles B, and either Radio and Line Transmission B or Telephony B or Telegraphy B or City and Guilds Radio, Television and Electronics Technicians Certificate No 272 or a pass in the Council of Engineering Institutions Part I examination or TEC/SCOTEC Certificate in a relevant discipline or an equivalent qualification.

Ex-Service personnel with formal approved Service technical training and at least three years' appropriate service in a senior technical capacity will also be considered. Applicants should be familiar with the operation, maintenance and testing of radio communication equipment and should have a knowledge of current radio systems.

Salary: $£ 5980-£ 8180$; Kenley $£ 454$ more, London up to £1087 more. Starting salary may be above the minimum for those with additional relevant experience. Good promotion experience.

RELOCATION ASSISTANCE MAY BE AVAILABLE.
For further details and an application form (to be returned by 11 November 1982) write to Civil Service Commission, Alencon Link, Basingstoke, Hants RG21 1JB, or telephone Basingstoke (0256) 68551 (answering service operates outside office hours). Please quote ref: T/5845.

Home Office

LASER-SCAN LABORATORIES LTD

We are among the World Leaders in the manufacture of Computer Controlled Laser Deflection Systems and have won the 1982 Queen's Award for Technology

We invite applications for the following post

IN-HOUSE COMMISSIONING ENGINEER

Required to work in a team testing and aligning the Company's precision laser plotters and digitisers. A working knowledge of TTL is essential, and knowledge of microprocessors an advantage. Industrial experience of both digital and analogue circuitry is necessary and experience in the use of lasers and associated optics would be useful. Education qualification to a minimum of HNC in Electrical and Electronic Engineering is required.
To the successful applicant we can offer pleasant working conditions, competitive salaries, non-contributory sickness scheme and other fringe benefits.

Application forms obtainable from
Personnel Officer, Laser-Scan Laboratories Ltd, Cambridge Science Park, Milton Road, Cambridge CB4 4BH. Telephone: (0223) 69872.
(1800)

TRINITY HOUSE LIGHTHOUSE SERVICE, LONDON ELECTRICAL ENGINEER
 GRADE PTO II SALARY £9,021-£10,328 p.a.

Applicants must have had a sound training in radio and light current work associated with UHF, VHF and MF communications, remote monitoring and control systems Experience in detailed planning, preparation of procurement specifications and drawings, manufacturers' acceptance testing, field trials and commissioning is essen tial.

Some knowledge of landline signalling techniques, simple computer programming and micro-technology would be an advantage

Possession of a degree in electronics/radio engineering or equivalent is required.
Generous leave allowance, pension scheme and flexible working hours.
Apply to The Establishment Officer, Trinity House Lighthouse Service, Tower Hill London EC3N 4DH or Telephone 01-480 6601 Ext. 289.

Are you flying high like the Sony Broadcast bird?

The silver bird is the symbol of Sony Broadcast Ltd, a Company which in just over 4 years has become one of the world leaders in professional broadcast television equipment. Our exciting range of products includes video cameras, VTR's/VCR's, editing control systems and a range of digital audio equipment. We are about to commence a significant planned expansion programme and applications are invited for the following new career positions.

Lecturer

Two vacancies exist within our Technical Training Department. A Lecturer is required to conduct theeretical and practical courses on our range of cameras and a second opening exists for a person to concentrate on editors. Applicants should have experience of professional broadcast television equipment and possess the ability to present ideas clearly Scope exists for occasional overseas travel and training on our range of products and in lecturing skills will be given where appropriate

Product Engineer (Editing Systems)

To provide technical support to the Marketing and Engineering divisions of the Company on our range of protessional videotape editors. The position combines in-depth technical involvement with inter departmental and customer liaison and there will be an opportunity for overseas travel.
Applicants should be graduate electronic engineers who have some experience in video technology gained either in operational television or its allied manufacturing industry.

Commissioning/QA Support Engineer

To join a small team responsible for the evaluation of product performance. Key activities will include commissioning, assistance in product customisation and the establishment and maintenance of ATE. Full product training will be given and there will be an opportunity for overseas travel.

Systems Project Engineer

To join a young and enthusiastic team involved in the design, manufacture and commissioning of complex static and mobile television systems. Candidates for this challenging and responsible position should have direct experience of sound and television principles gained in operational television or its allied manufacturing industry.

Proposals Engineer

Ideal for engineers experienced in the Broadcast TV industry who now wish to utilize their knowledge in a dynamic commercial environment. Duties will include the preparation of detailed and concise customer proposals. complete with pricing information and extensive customer and inter Company liaison will be necessary

Field Service Engineer

To be engaged in th.e service and repair of a wide range of sophisticated equipment, including video cameras, VTR's and editing control systems. A high level of self motivation and infiative is required in order to successfully undertake customer visits throughout Europe. Africa and the Middle East

Field Service Englneer (London Based)

Reporting to the Service Manager, who is based in Basingstoke, the successful applicant will be responsible for the service and repair of the full range of our equipment Candidates should live in the London area, possess a relevant qualification in electronics and have several years experience in operational television or its allied manufacturing industry

Sales Engineer (UK)

An engineer with experience in operational television or its allied manufacturing industry is required to join our UK sales team. Applicants should be aged 25-35, highly motivated and able to work on their own initiative Previous sales experience would be advantageous although this is not essential
Senior Engineer - Measurement and Maintenance To be responsible for a wide range of equipment in our Technical Training Department Applicants should have extensive experience in practical maintenance and measurement techniques on VTR's, editing systems and cameras. Many of our products are micro processor controlled, and a knowledge of micro processors, logical analysers and signature analysis techniques is desirable. Extensive product training will be given where necessary.

We offer an excellent remuneration package with first-class conditions of employment and fringe benefits
The prospects for personal development within the Company are considerable, and if you are interested please write with brief details of career and present salary to. Mike Jones. Senior Personnel Officer, Sony Broadcast Limited, City Wall House, Basing View, Basingstoke. Hampshire RG21 2LA. Telephone (0256)55011

Sony Broadcast Ltd.

City Wall House Basing View, Basingstoke Hampshire RG21 2LA United Kingdom

Appointments

CAMBRIDGE HEALTH AUTHORITY
Medical Physics Department
ADDENBROOKE'S HOSPITAL
Hills Road, Cambridge
Medical Physics
Technicians
(Electronics) Grades III and IV

Two electronics technicians are required to provide a wide range of support services with in the Cambridge area. Duties include maintenance, repair, development and construction of a wide range of equipment. The MPT III will also provide support to the CT Head Scanner in conjunction with other staff
Minimum qualification OTEC or equivalent but HTEC/HNC preferred. MPT III applicants must have three years' relevant experience. Applicants should hold a valid driving licence.

Salaries:
MPT III $£ 5,536$ (starting) rising to $£ 7,155$ per annum. MPT IV £4,668 (starting) rising to £6,137 per annum. (NB Pay award pending)
For further details contact Mr. P. E. Ward, Principal Medi cal Physics Technician, Addenbrooke's Hospital, Hills Road, Cambridge. Tel. (0223) 245151, Ext. 471.
Application form and job description from: Personnel Department, Addenbrooke's Hospital, Hills Road, Cambridge. Tel. (0223) 245151, Ext. 7350.

NOVEMBERI FAT BEARS HIBERNATE KEEN ENGINEERS START AFRESH!
 DEVELOPMENT ENGINEER

To design mobile (on water or in the air) transmitters and receivers in the low to very high frequency range. Up to $£ 10,000$ p.a. for an experienced graduate. Also required, a qualified and experienced technician to test and provide fast design 8080/8085/8088/8048 Micros at up to £9,000 p.a. in North Bucks.

SENIOR PROGRAMMER

To write high speed Real-Time multi-task software, largely in assembler but also high level languages on D.E.C. Processors running under RSX-11 for data collec tion and processing. Experience essential and a good (Engineering) degree Salary up to $£ 11,000$ p.a. in West Hants.

TECHNICAL SUPPORT ENGINEER

To back up Ethernet networks of Intel Microprocessors (some with a PDP 11 Host). Must be very good at software and know protocols and communications in a business automation environment for up to £13,000 p.a. in Bucks.

Charles Airey Associates

Tempo House, 15 Falcon Road, Battersea, London SW11 2PJ Tel: 01-223 7662 or 2286294

APPOINTMENTS LTD

the UK's No. 1 ELECTRONICS AGENCY

Design, Development and Test to $£ 14,000$ Ask for Brian Cornwell
SALES to $£ 15,000$ plus car Ask for Maurice Wayne
FIELD SERVICE to $£ 12,000$ plus car Ask for Paul Wallis
We have vacancies in ALL AREAS of the U.K.
Ask for a Free Jobs List
Telephone: 01-6375551 (3 lines)

UNITED NATIONS

invites applications from RADIO OPERATORS and RADIO TECHNICIANS

To serve in Field Service missions. Must be available for assignment any part of the world.

RADIO OPERATORS must hold 1st or 2nd Radio Operator's licence from Telecommunications Authority. Minimum international Morse code speed 30 wpm on semi-automatic key (Vibroplex), teletype minimum 50 wpm - must be able to operate and maintain telegraph and voice radio transmitters, receivers and ancillary equipment such as trailer power units, TTY, TD, etc. and be familiar with erection of mobile radio stations' antennae and emergency repairs. Salary US $\$ 17,742$ (net after Staff Assessment $\$ 14,850$ with dependents, $\$ 14,011$ at single rate).
RADIO TECHNICIANS must have a diploma from a Radio Technical School and be able to install, maintain and operate fixed transmitters up to 40 kW , mobile and portable transmitting equipment, communications receivers, diversity systems and ancillary equipment associated with above, FSK, Teletype equipment and power generators. Must also be able devise and erect omni-directional antennae and feeder lines. Climbing antennae masts may be required as field feeder lines. Climbing ally ennae masts mormallo riggers for this purpose. Maintenmissions and repair teletype equipment of Teletype Corp. and Siemens ance and repair teletype equipment of eetype Corp. and siemens
make may be required. If candidates not experienced in these operamake may be required. If candidates not experienced in these opera-
tions at recruitment time, they should be willing to acquire profitions at recruitment time, they should be willing to acquire profi-
ciency on teletype within a reasonable time. Salary US $\$ 20,715$ (net ciency on teletype within a reasonable time. Salary
after Assessment $\$ 16,880$ with dependents, $\$ 15,891$ at single rate). All candidates must have a valid driver's licence and must have a very good knowledge of English. Appointments are for six months to one year, with possibility of renewal and are subject to medical examination. In addition to salary a monthly mission allowance will be paid in local currency. This allowance varies according to duty station. Good additional benefits.
Candidates may apply in writing to:

Miss Faith Metcalf, Office of Personnel UNITED NATIONS - Room UNDC 200 New York, NY 10017 USA

(1806)

CHUBB ELECTRONICS DEVELOPMENT ENGINEERS AND DESIGN DRAUGHTSPERSONS

ENFIELD - UP TO $£ 11,000$ P.A.

Chubb Electronics is a forward-looking company, specialising in electronic security systems. Our Enfield division is currently developing a range of electronic equipment and devices to meet our UK and overseas market requirements.
We have vacancies for electronic design engineers and draughtspersons with proven design experience in a commercial environment, keen to deal with projects from specification stage through to production.

Development Engineers

We are looking for young electronics design engineers to support existing teams working on microprocessorbased systems, and/or analogue circuit design covering a variety of interesting tasks of a multi-disciplinary nature.
Design Draughtspersons
We are looking for draughtspersons to be responsible for mechanical and printed circuit board design for complete projects from initial concepts through to issue of production drawings.
Formal qualifications are desirable. Promotion opportunities within the company are good.
Please send C.V. to:

The Development Manager
GUARDALL LIMITED
Alexandra Road, Enfield
Middlesex EN3 7ER
Tel: 01-805 7222

(1857)

MEDICAL PHYSICS TECHMICIAN GRADE III
Required to work in a technical group in the busy Radiotherapy Department of this hospital. The person appointed will be chiefly responsible for maintenance work on a Linear Accelerator. Applicants should possess an ONC, HNC, HND or similar qualification in electrical engineering or electronics and have at last 3 years' technical experience.
Salary scale $£ 6,093$ to $£ 7,712$ p.a.

For an application form and further details please contact the Personnel Department Tel: 01-352 8171 ext: 446.

UNIVERSITY OF YORK Department of Electronics Applications are invited for the

 post of
SENIOR TECHNICIAN

(GRADE 5)

in the central workshop of the new Department of Electronics. The workshop staff are responsible for the maintenance of electronic instruments and for the development and construction of electronic equipment for teaching and research purposes.
Applicants are expected to have an appropriate qualification and conapiderable experience of electronics engineering, preferably including engineering, preferably including computers. The salary scale is cur-
rently $£ 5,695-£ 6,650$ (under rerently $£ 5,695-£ 6,650$ (under re-
view). Applications giving full details of age, education and experience together with the names and addresses of two referees, should be sent to: Mrs. E. D. Heavens, Senior Administrative Assistant, University of York, York YO1 5DD, by Friday, 12th November.
(1836)

Required in the Radiotherapy and Phy sics Electronics Workshop of the above hospital. The person appointed will work In a small group responsible for the maintenance of radiotherapy equipment
including three Cobalt units, a Philips 10 including three Cobalt units, a Philips 10
MeV Linear Accelerator and orthovolMeV Linear Accelerator and arthoval
tage X-Ray equipment. tage x-Ray equiplent electronics and electrical and mechanical servicing.
Applicants for MPT III should hold ONC, ANC or similar qualification in electrica, engineering or electronics with at least three years' relevant technical experience. Entry to MPT II grade is open to a technician who has served at least two years as a Technician III.

MPT III Salary on scale: $£ 6468-£ 8087$ (pay award pending) le: $£ 7600-£ 9248$ (pay award pending)

For application form and further details please contact: The Personnel Department, Royal Marsden Hospital, Fulham
Road, London, SW3. Tel: 01-352 8171 Ext 446 .

ENGINEERS FOR TOP BRITISH MICRO MANUFACTURER £8.2 TO 12.7K. oxford-bASED

Research Machines is a leading UK manufacturer of microcomputers for scientific, engineering and educational applications. Our systems have earned a particular reputation for performance, reliability and quality of manufacture - a reputation which is due to the strength of our engineering team.

The continuing development of our product range and the expansion of our manufacturing capacity has led to a demand for additional engineers to work in our Production Engineering Department.

The successful applicants will be responsible for ensuring we make efficient use of our manufacturing resources by identifying areas for improvement and recommending and implementing changes. These changes might be to the production or workstation layouts, to the assembly techniques, to the testing procedures or to the product design.

In addition, he/she will be concerned with the introduction of new products, following through from design specification to in-house or subcontract volume manufacture. This will involve working closely with Development Engineering, Purchasing, Production, Finance and Sales Departments.

It is likely that the successful applicants will be educated to HNC or degree level and have worked for a minimum of 3 years in the Design, Production or Production Engineering departments of an electronics company. A knowledge of electronics could be a distinct advantage.

We offer a particularly attractive range of benefits, including good salary; 25 days paid holiday; free BUPA, life and disability insurance, pension scheme and help with relocation expenses.

If you are interested in these vacancies please contact Pat Kember by 'phone or letter for an application form.

RESEARCH MACHINES MICROCOMPUTER SYSTEMS

Classified

Quality Controller

The Spares and Service Unit of Marconi Avionics Limited is responsible for the maintenance of a complete range of Airborne Electronics equipments for customers throughout the world. The equipments are not only of Marconi manufacture but include all the leading American and European makes.

We now require a Quality Controller to be responsible for the operation of a small quality department, overseeing the activities of a workshop of some thirty people repairingand overhauling a wide range of communication and navigation equipment for
both civil and military customers.
Applicants should have had previous experience and knowledge of the airborne electronics industry and must be familiar with CAA and MOD Quality requirements.

We offer a competitive salary, together with a wide range of fringe benefits including canteen, pension scheme and subsidised private medical insurance.

Please write with brief personal and career details to Mr R Shead, Airadio Spares and Service Unit, 22-26 Dalston Gardens, Stanmore, Middlesex HA7 1BZ.

FIELD ENGINEER

For independent AV service company to work on language laboratories and other educational equipment in the London area. Requires practical knowledge of Audio and Control Electronics, with some mechanical aptitude. Salary to $£ 8,000+$ car according to experience.

Please write to:
Bellnorgis Ltd. 9-11 Kensington High St. London W8 5NP

WESSEX REGIONAL DEPARTMENT OF MEDICAL PHYSICS

requires an

ELECTRONICS ENGINEER/ PHYSICIST

(Basic grade) to join a small team providing electronics support to clinical and scientific groups in Southampton hospitals.
The post is based in the electronics section of the medical physics depart ment at the large and modern Southampton District General Hospital.
The work involves the application of the latest electronic techniques to a wide variety of problems in many different areas of medicine and the successful candidate will be expected to design and construct equipment to a high standard under the supervision of a senior electronics engineer.

A good Honours degree in electronics or physics is essential and relevan practical experience is desirable. The starting salary will be in the range of $£ 5,667-£ 6,745$ per annum (under review) according to postgraduate experience

For further information or to make an application please contact: Professor T. Shelley, Dept. of Medical Physics, Level D, Centre Block, Southampton General Hospital, Tremona Road, Southampton, SO9 4XY. Tel: Southampton 777222 ext. 4205.

HULL HEALTH AUTHORITY

ELECTRONICS TECHNICIAN
 GRADE II

Applications are invited from persons with an HNC in Electronics or an equivalent qualification, to join a small team of technicians working in the Hull and East Yorkshire Health Authorities. Duties involve maintaining a wide range of X-ray, biochemistry and electronics equipment, including SMA Analysers and CT scanner Applicants must have experience of X -ray equipment and be car owner/drivers.
Salary: $£ 6,668$ per annum rising by annual increments to £8,316 per annum.
Further details may be obtained from Mr P. Hall, Assistant Area Engineer, Tel. (0482) 223191 ext. 108.

Application forms and job description available from the District Personnel Office, Hull Health Authority, Victoria House, Park Street, Hull, tel. (0482) 223191, ext. 99. Closing date: 3rd November 1982.

SeniorTest Technicians

Ultra are leaders in the manufacture of sophisticated communication equipment. The Test Department now seeks Senior Test Technicians to carry out a wide range of test work associated with the company's products and equipment. You will also provide a versatile capacity in fault finding, calibration and final product testing with the minimum of supervision.

Aged 21 plus, you will have a Technician's certificate or equivalent in electronics and/or at least five years practical test experience.

A highly competitive salary is offered together with a good benefits package that includes 24 days holiday, sports and social club, subsidised canteen and contributory pension scheme

Please telephone Diana Palmer on 01-578 0081 Extn. 249.

DOWTY
Ultra Electronic Communications Lid 419 Bridport Road, Greenford Trading Estate Greenford, Middlesex.
ElectronicCommunications LId.

BUSINESS OPPORTUNITIES

BUSINESS OPPORTUNITY

Electronic test equipment sale and distribution. Well established company.

Ring (0925) 68339

ARTICLES FOR SALE

 : MULTIPLE RIVETING M/Cs

Trice: TAVISHELM
TH TAVISHELM
HYDRAULICS NNTERNATIONAL UMITED
Hyprosss Houte. Station Close
Potters Bar, Herti EN6 1TM,
Telephone: 070743434

Engineers \& Scientists £9,126

Communications R\&D... ...the leading edge

At HM Government Communications Centre, we're applying the very latest ideas on electronics and other technologies to the problems of sophisticated communications systems, designed to enable and protect the flow of essential information.

The work is of the highest technical challenge, offering full and worthwhile careers to men and women of high ability, on projects covering the following areas of interest:-

RADIO - from HF to microwave, including advanced modulation systems, propagation studies, applications of Microcircuitry.

MAGNETICS

SIGNAL ANALYSIS
SYSTEMS ENGINEERING
Applicants, under 30 years of age, should have a good honcurs degree or equivalent qualification in a relevant subject, but candidates about to graduate may also apply.

Appointments are as Higher Scientific Officer
($£ 6,840-£ 9,126$) or Scientific Officer ($£ 5,422-£ 7,399$) according to qualifications and experience. Promotion prospects.

For an application form, please write to the
Recruitment Officer, (Dept. W/W 11), HM Government

Technical Writer/ Reporter

Enthusiastic journalist, ideally with technical qualifications (HND or degree) and experience, to work on MIDDLE EAST ELECTRONICS
This successful, monthly magazine is read by senior electronics engineers in the Middle East, and the Editor is looking for a responsible number two to develop the journal's potential.
Usual writing and subbing skills essential plus knowledge of the industry and preferably experience of developing countries and their technology problems. Computer Science background an advantage.
Our UK office is located in Morden, Surrey, but we offer opportunities for travel and a salary of $£ 8,400$ per annum.
Terms and conditions are in accordance with the IPC/NUJ agreement.

Write or phone for an application form to the Editor Ray Ashmore, Middle East Electronics, Crown House, 14th Floor, London Rıad, Morden, Surrey SM4 5DX. Tel: 01-543 3051.

IPC Business Press is an equal opportunity employer

SCOTTISH OFFICE

DIRECTORATE OF TELECOMMUNICATIONS

WIRELESS TECHNICIAN

Applications are invited for 1 post of Wireless Technician in the Central Services Depart ment of the Scottish Office. The post is based in East Kilbride.
Candidates must hold an Ordinary National Certificate in Electronic or Electrical Engineering or a City and Guilds of London Institute Certificate in an appropriate subject or qualification of a higher or equivalent standard and have 3 years' appropriate experience Some assistance may be given with relocation expenses.
A valid UK driving licence is essential.
Application forms and further information are obtainable from Scottish Office Personne Division, Room 110, 16 Waterlo
$(031-5568400$ ext. 4317 or 5028$)$
Closing date for receipt of completed application forms is 12 Novernber, 1982

ARTICLES FOR SALE

TELEVISION SERVICE ENGINEER

We are an expanding Television Rental and Retail company with a vacancy for an additional Television Service Engineer.
Suitable applicant will preferably hold an R.T.E.B. certificate or be training towards this qualification.
The post is directly responsible to the Service Manager

A clean driving licence is essential.
A spacious flat is available if required.
Hydes of Chertsey Ltd., 56/60 Guildford Street, Chertsey, Surrey. KT16 9BE. Chertsey 63243.
(1434)

THE SCIENTIFIC WIRE COMPANY

P.O. Box 30, London, E. 4 ENAMELLED COPPER WIRE

SWG	116	807	408
8 to 29.	276	1.50	80
30 to 34.	320	1.80	90
35 to 40.	3.40	200	1.10
41 to 43.	4.5	200	2.00
	1.37	5.32	3.19
48 to 49..............	15.96	9.54	6.38
SILVER PLATED COPPER WIRE			
14 to $30 \ldots \ldots$.	6.50	3.75	220
TINNE	D COPP	R WIP	

14 to 303.30 $\quad 236 \quad 1.34 \quad .90$ Prices include Pap, Vat and Wirs Data,
for list. Dealer enquiries welcome. Reg Office: 22 Coningsby Garden

THE OUARTZ CRYSTAL CO.LTD:
Q.C.C. WORKS, WELLINGTON CRESCENT

ARTICLES FOR SALE

G.W.M. RADIO LTD., $40 / 42$ Portland Road Worthing, Sussex. Tel. 34897. Many one-off sur plus bargains for callers. Marconi Marine Atlanta receivers from 165 . Hazeltine 3000 VDU and keyboard $£ 200$. Offers for quantity. Five weatherproof loudspeakers, 6 in . x Gin. $£ 10$ inc. P\&P. Ex-Home Office standby PSU 24 volts Nife cells mains charger £20. RTT in small and large quantities, bought and sold. All surplus and small inner dial for hours and minutes, $£ 85$ inc. P\&P.

COMPONENT CLEARANCE: resistors, capacitors, relays, transistors, ICs, hardware, etc., etc. S Kgs. $£ 5.75$. $10 \mathrm{Kgs} £ 9.50$. $20 \mathrm{Kgs} £ 15.50$. Post free. Transformers: 12V 4 amp twice £6. P\&P £2. Access, Barclaycard. Weirmede Lid, 129 St AJbans Road, Watford, Herts. Tel. Watford (0923) 49456.

OSCILLOSCOPE DC to 100 MHz DB dual TB Japanese copy Techtronics 485 , new and unused, japanese copy Techtromics 485 , new and unused,
complete with manual, probes, covers $£ 695 \mathrm{ex}$ cluding. Tel: 01-991 0070. (1819)

XWD RADIO EQUIPMENT over 500 sets stock from 28 . Send 50 p for ilustrated catalogue including £1 voucher). Weirmede Led, 129 S Albans Road, Watford, Herts. Tel. Watford (0923) 49456.

PARAPHYSICS JOURNAL: Russian transla dions about psy jour val. Russian transia phy, gravity lasers, telekinesis, contacting phy, gravity lasers, telekiness, contactial civilisations, UFOs, bjoelectic auras, dowsing in USSR, etc. Details sae $4^{\prime \prime} \times 9^{\prime \prime}$ Paraphysical Laboratory, Dowton, Wilts. (1828

BANKRUPT STOCK

Approximately 15019 inch XY black and white monitors, manufactured by Electroholme of Canada.
Brand new, in their original cartons. New cost over $£ 150$ each. Open to any sensible offer for the lot.

Telephone: 0604858075

Calcomp Head Alignment Meter £45. Sweep Generators, 4-900MRz, £40-£135. New Xuron Tools Set, £55. Avo 8 Mk. 5 ,
£69. 24 -channel UV Recorder, $£ 75$. Pneumatic Shears - fast trimming assembled PC Boards, etc., £25. Contaflex SLR (Sinusoidal shutter), ideal video, TV stills, £49. Oxygen Analyser, E59. Decade Box (mhos), Sullivan Standard Cap, f25; another, £35. Fenlow SA4
Spectrum Analyser, f98. Phase meter, Spectrum Analyser, f98. Phase meter,
£65. 30 KV EHT Meter, £29. Marconi TF £65. 30KV EHT Meter, £29. Marconi IF
$2600, £ 65$. TF 1064, £75. Various RF, AF sig-gens. HP clip-on DC Milliameter, E 65 . sig-gens. HP clip-on Curve Tracer, 995 . Centrifuge, £49. EEL Universal Densimoter, f25. Headphones, stereo, mono, binaural, suit school, atc., $£ 4.50$ ea. Laser, £49. Melting Point Apparatus, £25. Cryogenic (refrigeration) Tester, £25. Watson Microsco
photocopiers $£ 75-£ 115$.

040-376 236

INVERTERS

High quality DC-AC. Also "no break' (2ms) static switch, 19"' rack. Auto Charger.

COMPUTER POWER SYSTEMS Interport Mains-Store Ltd. POB 51, London W11 3BZ Tol: 01-721 702 or 1025310915 (9101)

TELERADIO

For low cost instruments. Freq meters, audio \& RF generators. Distortion ana tysers, oic. Assambled \& kits. Illus trated lists sent on request.

325 Fore Street, Edmonton Lore Streot, Edm
London NS OPE
Tel: 01-807 3719

INSTRUMENT BARGAINS

Now, Bankrupt Stock. SAE for details. Now, Bankrupt Stock. SAE for details.
DEW-POINT HYGROMETER, non-optical. Originally over $£ 1,000$....... only $€ 295$
PLAT. RES. THERMOMETER, Hand-held, PLAT. RES. THERMOMETER, Hand-held,
LCD, 3 wire. Half-price at 555
DPM PR THERMOMETER with integral DPM P.R. THERMOMETER with integral
lineariser, PSU, case. 3 wire..............E50 lineariser, PSU, case. 3 wire.............. $£ 50$
$3^{1 / 2}$ dig. LED DPM. 2 V . with PSU, case $31 / 2$ dig. LED DPM. 2V. With PSU, case
and temp. option..........................
9 dig. 7 -seg. mux-ed LED displays. Com. 9 dig. 7-seg. mux-ed LED displays. Com.
Cath. ... f 1.50 ALSO:
Scalamp Multi-range Galvo E15 Micrometer DIELECTRIC MEA
SUREMENT jig. Teak case. Marconi TJ2238
Quartz marine CHRONOMETER (ex Transatlantic voyage) £35
7-seg. LEDs. C.C. $4.43^{\prime \prime} \mathrm{HP}$ DL7653. All 7-seg. LEDs. C.C. K.43" HP DL7653. All
tested..................................ach 85p ested.

Please add 5\% P\&P
'Instruments', Old Hall, Thriplo Royston, Herts. SG8 7aY
Tel. Fowlmere (076-382) 44

POWER V MOS-FET tECHNOLOGY
We specialisa in all aspects of this important subject. A comprehensive service is offered to individual or OEM users, including * Hitachi Supertex and RCA V MOS-FET from stock.
$+\quad \mathrm{MMOS}$

* V MOS-FET power modules from stock. * Compatitive pri
- Printed circuits and kits.
- Printed circuits and kits.
- Design, evaluation and advice sorvice. Catalogue/sample data sent free (50p stamp appreciated towards post and packing). Phone 0251422303 and ask Richard Walsh about your application requirement or writ
AUDIO TECHNOLOGY

AUDIO TECNNOLOGY
Freppost, Church Crookham
Aldershot, Hants. GU13 OBR

Printer PSL Stand pss thandsomely ctafted in 6 mm tinted Parspex - PSS model for Microlin (atr2/83, Epson MX-80, Shetkoshe GP 100, etc. $\mathbf{£ 1 5 . 9 5 + V A T}$ + PSL for Microline 84, Epson MX82. etc. $\mathbf{1} 17.95+$ VAT APPLE PADDE \$ Male connector to Apple slot with $12^{\prime \prime}$ colour coded cables for proto boards, external units, etc. $\$ 5.95$ inc. CAMBRIDGE MICROELECTRONICS LTD. One Milton Road, Cambridge CB4 IUY (exes) $\frac{314814}{17851}$

CREED 7B KSR, 130 o.n.o. Creed 8B/RP $£ 45$ o.n.o. Can be seen working on 2×80 ! Antique
valve collection Nombrex 31 signal generator 110 o.n.o. Phone Sheffield-334370, evenings. (1816) LINSLEY-HOOD new $80-100$ watt amplifier, components and PC board available now. Other modules to follow. Sae for hiterature. Teieradio,
325 Fore Street, Edmonton, London N9 OPE 325 Fore Street, Edmonton, London (1822)
8073719. STYLI ALL TYPES supplied, send SAE for price list. Watts Radio, 8 The Apple Market,
(1709)
Kingston, Surrey.
ENCAPSULATING EQUIPMENT FOR coils, transformers, components, degassing silicone rubber, resin, epoxy. Lost way casting for brass, bronze, silver, etc. Impregnating coils, transformers, components. Vacuum equipment, low cost, used and new. Also for CRT regunning metallisRoad, Croydon CR0 2QP. 01-6849917. (9678)

TO MANUFACTURERS, WHOLESALERS BULK BUYERS, ETC. LARGE QUANTITIES OF RADIO. TV AND ELECTRONIC COMPONENTS FOR DISPOSAL
SEMICONDUCTORS, all types, INTEGRATED CIRCUITS, TRANSISTORS, SDMDES, RECTIFIERS, THYRISTORS, etc. RESISTORS, C/F, M/F, W/W, etc. CAPACITORS, SILVER MICA, POLYSTYRENE, C280, C296, DISC CERAMICS, PLATE CERAMICS, etc.
ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE, CABLES, SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFORMERS, etc.
ALL AT KNOCKOUT PRICES - Come and pay us a visit ALAD̄DIN'S CAVE
TELEPHONE: 445 0749/445 2713
BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, North Finchley, London, N. 12

Perforated Metals Screens, Plastics, Wire Meshes, Sifting Media, Cable Tray, Gratings, direct from Manufacturer's Stock. We can cut to size.

We specialise in one-offs or large quantities.

GRAEPEL PERFORATORS

 LTDUnit 1-B, CHARLES STREET Dept WS WALSALL, STAFFS WS2 9LZ
Tel. $0922611644 / 611414$. Telex 335291

HYDROKIT

Hydraulic Flypress Conversion

"HYDROKITS" ARE COMPLETE
Just remove ane conss ond operate screw shath, fithydraule ram assembly with manua
valve (all supplied), fill with hydraulic oil and connect to power source, 13 amp or 3 -phase

Hypres Hoc ict Hypress House, Station Close, Potter (0707) 43434

BUYBUK - SAVE MDNEY
 All goods new full spec devices, sent by peturn.

 IN 4148 £ $10 / \mathrm{k} 74 \mathrm{LS} 93 \mathrm{f} 18 / 100$ 16DIL skt $£ 6 / 100$ 1N $4003 \mathrm{E} 16 / \mathrm{k} 74 \mathrm{LS} 112 \mathrm{f} 12 / 1005 \mathrm{~mm}$ Red LE 1N4007 £22/k 74LS132 £22/100 £32/k f5/100 $\begin{array}{lll}\text { BC107 £6/100 TBA120C £15/100 BC182L } £ 4 / 100 \\ \text { BC108 } 66 / 100 & 2114 £ 10 / 10 & \text { 2N3904 £4/100 }\end{array}$ BC108 £6/100 $2114 £ 10 / 100 \quad 8085 A$ f $£ 7 / 10 \quad 555 £ 13 / 100$ 7805 £27/100 80085 A £27/10 PC Electronics, 3 Thornhill, Romsey Road, Whiteparish, Salisbury, Wilts. SP5 2SD. MailORGAN GENERATOR 2×44 note keyboards ORGAN GENERATOR 2×44 note keyboards
and 13 note pedal board design with sustain and buffered outputs, etc. High quatity double sided PTH board £15, pcb only.
Rythm unit, integrated circuir 12 rythms, 6 outputs $£ 10$. Full schematic and parts list supplied. Prices include P\&P. Access, Barclaycard. Sen SAE for list of organ and music parts available Leighton Electronic Services, 17 Bridge Leighton Buzzard, Beds. Tel: 0525382504.
BRIDGES, waveform/uransistor analysers. Calibrators, Standards. Millivoltmeters. Dynamometers. KW meters. Oscilloscopes. Recorders. Signal generators - sweep, low distortion, urue
RMS, audio, FM, deviation. Tel. 040376236 . (162
LAMPS AND CABLE. Large amount of lamps and cable for sale - all types and sizes, domestic and industrial. Telephone MIT (0462) 733388 between $10 \mathrm{~mm}-7 \mathrm{pm}$.

RACAL COMMUNICATIONS RECEIVERS
$500 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s} 1 \mathrm{Mhz}$ wide. RA17L - $£ 175$ RA117E - £225. A few sets available as new a $£ 75$ extra. All receivers are air tested and calibrated in our workshop. supplied with full manual, dust cover, in fair used condition. Now black metal louvied cases for above sets $\mathbf{2 2}$
each. RAS90 - ISB - SS8 - $\mathbf{~ 7 7 5}$. RAZ18 SSB - ISB and tine tune for RA117 - E50 TRANSMITTER ORIVE UNIT RATS. $1.5 \mathrm{mc} / \mathrm{s}$ 30mc/s - SSB - ISB - DSB - FSM - CN MA1978 - £25 to £50. DECADE FREQUENCY GENERATOR MA3508 Solid state synthenis GeNERA Or MA1308 Solid state synthesiser to E 200 . M $\mathrm{M} 250-1.6 \mathrm{mc} / \mathrm{s}$ to $31.6 \mathrm{me} / \mathrm{s}-\mathrm{f} 150$ (Now). MAZOG - precision frequency standard $-5 \mathrm{mc} / \mathrm{s} 1 \mathrm{mc} / \mathrm{s} 100 \mathrm{khz}$ - $£ 100$ to $£ 250$. hacal mals2 - Standing wave ratio indica 50 ohms - Auto mains 100 Auto trip switch - Transistor RACAL COUNTER 836 , new and boxed - £40 docion unted with manual - 550 to design - tasted with manual - 550 to $1 / 2$.
OSCILIOSCOPES cosSOR COU150 $-35 \mathrm{mc} / \mathrm{s}$ TEIn Beam - Solid State - $£ 175$ with manual State - $50 \mathrm{me} / \mathrm{s}$ and $100 \mathrm{mc} / \mathrm{s}$ bandwidth - $\mathbf{\$ 2 5 0}$ and $£ 350$. Tested, circuit and instructiona RACAL COUNTER $801 \mathrm{M}-125 \mathrm{Mc}-\mathrm{S}$ E50
IMAGE INTENSIFIERS - Mullard - G.E.C. or E.E. Type $X X 1060$ very high gain self-focusing systems. Minimum luminance gain 35,000 .
sten Supplied as received from Governmen supplies in original box (used) with data sheets $-£ 12$ өa. $(P \& P+V A T=\{5.25)$. All items are bought direct from H.M. Governworks. SAE for all enquiries. Phone for is ex ment for demonstration of any item. John's Radio, Whitehall Works, Whitehail Road East, Birkenshaw, Bradford BD11 2ER. Tel.
(0274) 684007 . V.A.T. and Carriage extra.
(848)

80×24 VDU

All the electronics for a 24 lines by 80 characters visual display unit on one as sembled and tested printed circuit board measuring 8.75 inch $\times 6.50$ inch. You provide: power supply $+5 v$ at 1.2 amps $+12 v /-12 v$ at 25 mA , A coded keyboard, video monito The VDU-1 will talk to the R.S. 232 serial port on your computer, at up 56 features including cursor (X, Y) addressing.
VDU-1 Assembled and tested PCB $£ 1$ PSU- 1 VDU -1 power supply $£ 32$
All prices subject to $£ 2.50$ registered deAll prices subject
SIRIUS CYBERNETICS
Comyn Lodge, 88 Holly Walk Leamington Spa, Warwickshire

Wunar's moest

mrontannow \&Enite

By retwon past - service/workshop manuals. Over 2000
Sony over 300 different CTV plus huge stocks VCRTVI
Audioforeion and UK
 TV 66.50 with circ. 28.501. SAE brings free- 50 p map-
azine/price lists/bargain oftiars/quotations - unique publications. ก5WW, K Churct (1637)

RIBBON CABLE, PLUGS AND

 CONNECTORSThe very best quality. Proven manufac turer. Plugs and connectors soid singly
or in quantities. Cable sold by the metre or by the roll
Ring or writa:
T.A.D. SUPPLIES

London W3
Tel: 7400058

Classified

DESIGN SERVICES. Electronic design development and production service available for digital and analogue instruments. RF Transmitters and receivers, telemetery and control systems. 20 years experience. R.C.S. Electronics,
Wolsey Road, Ashord, Middlesex. Phone Mr Falkner 53661 . (8341

TURN YOUR SURPLUS Capacitors, tranistors, etc, into cash. Contact COLES-HARDING \& Co., 103 South Brink, Wisbech, Cambs. 0945-4188. Immediate settlement. We also welcome the opportunity to quore for complete factory clearance.

CAPACITY AVAILABLE

TW ELECTRONICS LTD

THE PCB ASSEMBLERS

More and more companies are investigating the advantages of using a professional subcontractor. Such an undertaking requires certain assurances.
TW are able to satisfy all of them quality, competitive pricing, firm delivey and close co-operation with the customer.
Assembled boards at 100\% inspected before flow soldering and reinspected after automatic cropping and cleaning Every batch of completed boards is ismity and quality - our final assurance.
For further details, contact us at our new For furt
works:

Blenheim Industrial Park Bury St. Edmunds
8uffolk IP33 3UT
8uffolkip3
Telephone: 02843931 (1466)

BATCH PRODUCTION PC ASSEMBLY to sample or drawings any quantity. S.C. (Electronics) Lid., Unit 7, Carew St. Ind. Estate, Camberwell SES 9DF. 01-737 1422 . (1815)

SMALL BATCH PCBs produced from your artwork. Also DIALS, PANELS, LABELS. Camera work undertaken. FAST TURNAROUND Details: Winston Promotions, 9 Hatton
London ECIN 8RU. Tel. 01-405 4123/0960 London ECIN 8RU. Tel. 01-405 4123/0960.

DESIGN \& DEVELOPMENT SERVICES. We offer a comprehensive service covering electronic and mechanical design of systems, Micropment or PCBs, Analogue, Digital, Microprocessors. RF and Sensor techniques. | Arighton, Sussex. Tel. 0273557429 . \quad (1813) |
| :--- |

COURSES

UMIST 2-DAY COURSE EFFECTIVE MICROPROCESSOR SOFTWARE DESIGN 20-21 December

Microprocessor program design is explained using a problem orientated, Pascal-like design notation. The designs which result can be systematically translated into efficient assembly language for any microprocessor and are largely self-documenting.
The course will be of interest to engineers and programmers already using microprocessors and wishing to improve their design methods and project managers requiring an insight into the problems and current solutions available to the software designer. Further information from The Registrar, The University of Manchester Institute of Science and Technology, P.O. Box 88, Manchester M60 10D. Telephone 0612363311 extn. 2713; telex 666094. Closing date for registration 3rd December.
(1810)

BOXNOs.

Box number replies should be addressed to.
Box No
c'o Wireless Wor!d
Quadrant House
The Quadrant
Sutton
Surrey SM2 5AS

WANTED

Secondhand standard of resistors, capacitors and inductors. AC and standard cells. Very high accuracy precision measuring instruments.
Manufacturers: Tinsley, Guildline, Fluke, JRL, etc
Phone Tonbridge (0732) 355993
(1807)

WANTED

Scrap and re-usable mainframe computer and industrial electronic equipment.
E.M.A. Telecommunications Englneers, Orford, Woodbridge, Suffolk. Tel. 039-45 328.

WANTED

Test equipment, receivers valves, transmitters, compo nents, cable and electronic scrap, and quantity. Prompt service and cash. Member of A.R.R.A.

M \& B RADIO
 86 Bishopsgate Street
 Leeds LS1 4BB
 053235649

WANTED: Redundant test equipment
WANTED: Redundant test equipment - receiving and transmitting equipment - - Valves -
plugs and sockets - syncros, etc. Phone: John's Radio, 0274684007,84 Whitehall Road East, Birkenshaw, Bradford BDII 2ER.

WANTED FOR CASH: 7F7, 7N7, 53, 6L6 metai, $304 \mathrm{TL}, 4 \mathrm{CX1} 000 \mathrm{~A}$, all transmitting special purpose valves of Eimac/Varian. DCO INC, 10 Schuyler Avenue, North Arlington, New Jersey 07032, USA.

PHONE YOUR CLASSIFIEDS TO IAN FAUX ON 01-661 3033

Hifachi Oscilloscopes
 performance, reliability, exceptional value and immediate delivery!

Hitachi Oscilloscopes provide the quality and performance that you'd expect from such a famous name, in a newly-extended range that represents the best value for money available anywhere.

V -152F	15 MHz Dual Trace	V-353F	35
V-202F	20MHz Dual Trace	V-650F	60 MHz Dual Timebase, Trigger View
	(illustrated)	V-1050F	100 MHz Quad Trace, Dual Timebase
V-203F	20 MHz Sweep Delay	V-209	20 MHz Dual Trace, Mini-Portable
V-302F	30 MHz Dual Trace	V-509	50 MHz Dual Timebase, Mini-Portable
V-352F	35 MHz Dual Trace	V-134	10 MHz Tube Storage Oscilloscope

Prices start from under $£ 250$ (ex. V.A.T.) including 2 high-quality probes and a 2 -year warranty. We hold the range in stock for immediate delivery.
For colour brochure giving detailed specifications and prices ring (0480) 63570. Reltech Instruments, 46 High Street, Solihull, W. Midlands, B91 3 TB

WW - 086 FOR FURTHER DETAILS

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear 117-127

PAGE	PagE
Acoustical Mfg. Co. Ltd. 9	Faircrest Engineering Ltd 14
Ambit International 98, 108	Farnell Instruments Ltd.Cover ii
Amdio Ltd. ... 95	Fieldtech Heathrow Ltd. 24
Analogue Associates...................................... 23	Flight Electronics Ltd.
Anglia Components 20	Foundations of Wireless and Electronics
Armon Electronics Ltd. 14	Futronics Technology (UK) Lid. 28
Audio Electronics... 17	Fylde Electronic laboratories Ltd. 111
Audio Visual Electronic Contractors Ltd. 89	
Autotype.. 88	
Avel Lindberg (Cotswold Electronics) 22	GAS Electronics... 7
	Global Specialities Corp. (UK) Ltd. 13
	Gould Instruments Division.............................. 22
	GP Industrial Electronics Ltd............................26, 27
Bach-Simpson (UK) Ltd \qquad 108	Greenwood Electronics Ltd. \qquad Cover iv
Barrie Electronics Ltd. 95	Hameg Ltd.
Baydis .. 116	Hameg Memories
Black Star Ltd... 6	
Broadfields \& Mayco Disposals.......................... 14	Hart Electronic Kits Ltd $)$....................................... 103
Bull, J. (Electrical) Ltd112, 113	Hemmings Electronics and Microcomputers 93
	Henry's Radio ... 4, 12
Cambridge Kits ... 20	ILP Electronics Ltd............................. 90, 91, 111
Caracal Power Products Lid............................... 5	Instrument Rentals (UK) 105
Chiltern Electronics 96	Interface Quartz Devices Lt
Chiltmead Ltd.. 28	Intergrex Ltd. ... 16
CIL Microsystems Ltd. 110	
Circuit Services.. 12	Keithley Instruments Ltd. 21
Clark Masts Ltd ... 15	
Clef Products (Electronics) Ltd.......................... 108	
Comprocsys Ltd. 23	Langrex Supplies Ltd.................................... 115
Crimson Elektrik .. 102	
Crotech Instruments Ltd. 97	
	Manners, K.T. Design Ltd. 116
	Martron Ltd. ... 16
Display Electronics....................................... 25	Melkuist
DSN Marketing Ltd. 99	Modern Book Co., The .. 8
	Monolith Electronics Co. Lid. 28
Electrical Review Shock Cards........................... 104	Northern Computer Fair................................. 92
Electricity Supply Hand Book 102	Northern Electronics 98
Electronic Brokers Lid. 3, 5, 58,59	
Electronic Equipment Co. 106	Olson Electronics Ltd. 4
Electronic Hobbies Fair 109	Opus Supplies ... 29
Electrovalue.. 94	Orion Scientific Products Ltd.............................. 4

OVERSEAS ADVERTISEMENT

AGENTS:

France \& Belgium: Norbert Hellin, 50 Rue de Chemin Veat, F-9100, Boulogne, Paris.
Hungary: Mrs Edit, Bajusz, Hungexpo Advertising Agency, Budapest XIV, Varosliget.
Telephone: 225008 -Telex: Budapest 22-4525 INTFOIRE

Haly: Sig C. Epis, Etas-Kompass, S.p.a. - Servizio Estero, Via Mantegna 6, 20154 Milan.
Telephone: 347051 - Telex: 37342 Kompass

instruments set thepace

- Colour Bar Patterr Senerators
- Sweep and Marker Generator
- CRT Tester
- Field Level Checker
- Signa Level Meter
- High Yoltage Vetered Probe
- Signal Generators

Audio Test

- Gencrato־s
- Attenuators
- Systern Analyser
- Aud o Tester
- Distortion Meter
- Equaliser Amp
- Wow anc Flutter Meter
- Frecuency Fesponse Recorders
- Mill voltmeters
- Log Amplifier
- Speaker Analyser

When you select an instrument from the Leader range, you get more thar just saund engineering. That's guaranteed - by rigorous quality assurance at manufacture, and a one year warranty.
A broad range thal covers most areas of test, measurement and calıbration, with advanced fearures and hizh specification as standard. Prices that are lower than you'd expect are the tonus. Probes, covers, acods and pouches are all available to $\mathrm{\epsilon r}$ hance the application potential and ensure that Leacer instruments set the pece for others to follow.

Oscilloscopes

- 4 to 50 nHz
- Single, D ual and Quad trace
- Delayed sweef
- \$Vide bandwidth
- High sensitivit
- High accaracy
- Battery cperatad

General Test

- LCR Bricge
- Semiconductor

Curve Tracer

- Transistar Testes - Logic Probe

Power Supplies

- Laboratory kench type
- 5 models
- 500r A to 5A
- Jverload Protected

Tharda-Electronics _td Lcrdon Road, St. Ives, Huntingdon, Camb-icgeshire PE17 4HJ England. T키: (0480) 64646. Telex: 32250.
 easier than the solder you are using.
Specially formulated for fast precision solder work, it is 60% tin, 40% lead alloy with quality flux construction and melts at $183^{\circ} \mathrm{C}$. Two gauges are available-18SWG (1.2 mm) and $22 \mathrm{SWG}(0.71 \mathrm{~mm})$ in $2.5 \mathrm{Kg}, 500 \mathrm{~g}, 250 \mathrm{~g}$ and 100 g reels. Pocket size dispenser with 10 feet of Oryx 1 mm solder is also available at only 68 p (+ VAT).
Oryx is competitively priced - write now for details and technical intormation.

Greenwood Electronics Limited, Portman Road, Reading, Berkshire RG3 INE. Telephone: (0734) 595844 . Telex: 848659

The TC82-a significant development in temperature controlled soldering

The new Oryx TC 82 has features unique to any temperature controlled precision soldering iron. Available in $24 \mathrm{~V}, 50 \mathrm{~V}, 115 \mathrm{~V}$ and $210 / 240 \mathrm{~V}$ models, the TC 82 has a facility allowing the user to accurately dial any tip temperature between $260^{\circ} \mathrm{C}$ and $420^{\circ} \mathrm{C}$ by setting a dial in the handle without changing tips.

This eliminates the need for temperature

measuring equipment. You get faster and better soldering.

For 24 V models a special Oryx power unit connects directly to the iron and contains fully isolated transformer to BS3535, a safety stand, tip clean facility and illuminated mains socket switch.
The Oryx TC 82 is also extra-safe. Removing the handle automatically disconnects the ironifrom power source. Other TC 82 features include: Power-on Neon indicator in handle; burn proof cable; choice of 13 tip styles.

> And more good news

The Oryx TC 82 iron costs only $£ 13.00$ (+VAT) and the power unit for 24 V operation $£ 23.00$ (+VAT).
The TC82 240 volt is also available as a 30 watt general purpose iron at only $£ 4.95$ (+VAT).

Greenwood Electronics Limited, Portman Road, Reading, Berkshire RG3 1NE. Telephone: (0734) 595844. Telex: 848659

[^0]: VTSA
 24 Hour Telephone order service for credit card holders
 All prices exclude VAT and carriage (P\&P 75p on ordars under f10 nett)
 Official orders from educational and government establishments, and
 public companies|accepted Credit accounts available to others (subject to status)
 All orders despatched on day of receipt Out of stock items will foltow on automatically at our discretion or a refund will be given if reguested

 ## MIDWICH COMPUTER CO LTD

 Dept ww, Rickinghall House, Rickinghall, Suffolk IP22 1 HH Telephone (0379) DISS 898751
 Please make a note of our new address
 \& telephone number

[^1]: *Report of the Working Party on Technological Opportunities in Broadcasting, National Electronics Council 1982

[^2]: $10 \mathrm{~A}=0: \mathrm{B}=0.866: \mathrm{C}=-0.866$
 20 Output A, B, C
 $30 \mathrm{~A}=\mathrm{A}+\mathrm{f}^{\star}(\mathrm{B}-\mathrm{C})$
 $40 \mathrm{~B}=\mathrm{B}+\mathrm{f}^{\star}(\mathrm{C}-\mathrm{A})$
 $50 \mathrm{C}=\mathrm{C}+\mathrm{f}^{\star}(\mathrm{A}-\mathrm{B})$
 60 GOTO 20

[^3]:[^4]: Please note X in part number denotes mains voltage. Please insert ' O in place of X for 110 V ' 1 ' in place of X for 220 V (Europe), and ' 2 ' in place of X for 240 V (U.K.) All units except UC 1 incorporate our own toroldal transformers.

[^5]: Super Value 35 MHz dual-trace with hold-off._wit Bult in component tester plus full 20 MHz

[^6]: Please send me Oty_Type_Osciloscopes
 plus Oty_ Switched $\times 1 \times 10$ probes at $£ 12(+60 p \vee A T)$

 * enclose cheque/postal order payable 10

 Martron Lid for 5
 or . My Access'Barclaycard No is
 (Phoneyour credil No lor promplatlention)
 NAME
 ADDRESS
 F
 \qquad

[^7]: Company registered in England
 No 677128. Registered Office
 Quadrant House, The Quadrant,
 Sutton, Surrey SM2 5AS

